FN Thomson Reuters Web of Science™ VR 1.0 PT J AU Hollmann, EM Commaux, N Eidietis, NW Evans, TE Humphreys, DA James, AN Jernigan, TC Parks, PB Strait, EJ Wesley, JC Yu, JH Austin, ME Baylor, LR Brooks, NH Izzo, VA Jackson, GL van Zeeland, MA Wu, W AF Hollmann, E. M. Commaux, N. Eidietis, N. W. Evans, T. E. Humphreys, D. A. James, A. N. Jernigan, T. C. Parks, P. B. Strait, E. J. Wesley, J. C. Yu, J. H. Austin, M. E. Baylor, L. R. Brooks, N. H. Izzo, V. A. Jackson, G. L. van Zeeland, M. A. Wu, W. TI Experiments in DIII-D toward achieving rapid shutdown with runaway electron suppression SO PHYSICS OF PLASMAS LA English DT Article; Proceedings Paper CT 51st Annual Meeting of the Division-of-Plasma-Physics of the American-Physics-Society CY NOV 02-06, 2009 CL Atlanta, GA SP Amer Phys Soc, Div Plasma Phys DE plasma collision processes; plasma impurities; plasma magnetohydrodynamics; plasma toroidal confinement; plasma transport processes; Tokamak devices ID FAST PLASMA SHUTDOWN; DISRUPTION MITIGATION; CURRENT TERMINATION; PELLET EXPERIMENTS; GAS; TOKAMAK; JET; IMPURITY; ABLATION; JT-60U AB Experiments have been performed in the DIII-D tokamak [J. L. Luxon, Nucl. Fusion 42, 614 (2002)] toward understanding runaway electron formation and amplification during rapid discharge shutdown, as well as toward achieving complete collisional suppression of these runaway electrons via massive delivery of impurities. Runaway acceleration and amplification appear to be well explained using the zero-dimensional (0D) current quench toroidal electric field. 0D or even one-dimensional modeling using a Dreicer seed term, however, appears to be too small to explain the initial runaway seed formation. Up to 15% of the line-average electron density required for complete runaway suppression has been achieved in the middle of the current quench using optimized massive gas injection with multiple small gas valves firing simultaneously. The novel rapid shutdown techniques of massive shattered pellet injection and shell pellet injection have been demonstrated for the first time. Experiments using external magnetic perturbations to deconfine runaways have shown promising preliminary results. (C) 2010 American Institute of Physics. [doi:10.1063/1.3309426] C1 [Hollmann, E. M.; James, A. N.; Yu, J. H.; Izzo, V. A.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Commaux, N.; Jernigan, T. C.; Baylor, L. R.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Eidietis, N. W.; Parks, P. B.; Wesley, J. C.; Brooks, N. H.; Jackson, G. L.; van Zeeland, M. A.; Wu, W.] Gen Atom Co, San Diego, CA 92186 USA. [Evans, T. E.; Humphreys, D. A.; Strait, E. J.; Austin, M. E.] Univ Texas Austin, Fus Res Ctr, Austin, TX 78712 USA. RP Hollmann, EM (reprint author), Univ Calif San Diego, La Jolla, CA 92093 USA. EM ehollmann@ucsd.edu NR 33 TC 29 Z9 29 U1 3 U2 7 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2010 VL 17 IS 5 AR 056117 DI 10.1063/1.3309426 PG 8 WC Physics, Fluids & Plasmas SC Physics GA 603BM UT WOS:000278182900110 ER PT J AU Hudson, SR Nakajima, N AF Hudson, S. R. Nakajima, N. TI Pressure, chaotic magnetic fields, and magnetohydrodynamic equilibria SO PHYSICS OF PLASMAS LA English DT Article DE plasma magnetohydrodynamics; plasma pressure ID PERTURBED PLASMA EQUILIBRIA; AREA-PRESERVING MAPS; STELLARATOR EQUILIBRIA; BOUNDARY CIRCLES; HEAT-TRANSPORT; STANDARD MAP; SURFACES; ISLANDS; STOCHASTICITY; RELAXATION AB Analyses of plasma behavior often begin with a description of the ideal magnetohydrodynamic equilibrium, this being the simplest model capable of approximating macroscopic force balance. Ideal force balance is when the pressure gradient is supported by the Lorentz force, del p=j x B. We discuss the implications of allowing for a chaotic magnetic field on the solutions to this equation. We argue that the solutions are pathological and not suitable for numerical calculations. If the pressure and magnetic field are continuous, the only nontrivial solutions have an uncountable infinity of discontinuities in the pressure gradient and current. The problems arise from the arbitrarily small length scales in the structure of the field, and the consequence of ideal force balance that the pressure is constant along the field-lines, B.del p = 0. A simple method to ameliorate the singularities is to include a small but finite perpendicular diffusion. A self-consistent set of equilibrium equations is described, and some algorithmic approaches aimed at solving these equations are discussed. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3431090] C1 [Hudson, S. R.; Nakajima, N.] Natl Inst Nat Sci, Natl Inst Fus Sci, Toki, Gifu 5095292, Japan. RP Hudson, SR (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. RI Hudson, Stuart/H-7186-2013 OI Hudson, Stuart/0000-0003-1530-2733 FU Department of Energy [DE-AC02-09CH11466] FX One of us (S.R.H.) would like to thank Don Monticello, Allen Boozer, and John Krommes for stimulating discussions. Most of this work was completed during a threemonth visit by S. R. H. (visiting professor) to the National Institute for Fusion Sciences, Japan, and was supported in part by the Department of Energy under Grant No. DE-AC02-09CH11466. NR 83 TC 10 Z9 10 U1 1 U2 4 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2010 VL 17 IS 5 AR 052511 DI 10.1063/1.3431090 PG 10 WC Physics, Fluids & Plasmas SC Physics GA 603BM UT WOS:000278182900035 ER PT J AU Jackson, GL Politzer, PA Humphreys, DA Casper, TA Hyatt, AW Leuer, JA Lohr, J Luce, TC Van Zeeland, MA Yu, JH AF Jackson, G. L. Politzer, P. A. Humphreys, D. A. Casper, T. A. Hyatt, A. W. Leuer, J. A. Lohr, J. Luce, T. C. Van Zeeland, M. A. Yu, J. H. TI Understanding and predicting the dynamics of tokamak discharges during startup and rampdown SO PHYSICS OF PLASMAS LA English DT Article; Proceedings Paper CT 51st Annual Meeting of the Division-of-Plasma-Physics of the American-Physics-Society CY NOV 02-06, 2009 CL Atlanta, GA SP Amer Phys Soc, Div Plasma Phys DE discharges (electric); plasma impurities; plasma instability; plasma radiofrequency heating; Tokamak devices ID DIII-D; SIMULATIONS AB Understanding the dynamics of plasma startup and termination is important for present tokamaks and for predictive modeling of future burning plasma devices such as ITER. We report on experiments in the DIII-D tokamak that explore the plasma startup and rampdown phases and on the benchmarking of transport models. Key issues have been examined such as plasma initiation and burnthrough with limited inductive voltage and achieving flattop and maximum burn within the technical limits of coil systems and their actuators while maintaining the desired q profile. Successful rampdown requires scenarios consistent with technical limits, including controlled H-L transitions, while avoiding vertical instabilities, additional Ohmic transformer flux consumption, and density limit disruptions. Discharges were typically initiated with an inductive electric field typical of ITER, 0.3 V/m, most with second harmonic electron cyclotron assist. A fast framing camera was used during breakdown and burnthrough of low Z impurity charge states to study the formation physics. An improved "large aperture" ITER startup scenario was developed, and aperture reduction in rampdown was found to be essential to avoid instabilities. Current evolution using neoclassical conductivity in the CORSICA code agrees with rampup experiments, but the prediction of the temperature and internal inductance evolution using the Coppi-Tang model for electron energy transport is not yet accurate enough to allow extrapolation to future devices. (C) 2010 American Institute of Physics. [doi:10.1063/1.3374242] C1 [Jackson, G. L.; Politzer, P. A.; Humphreys, D. A.; Hyatt, A. W.; Leuer, J. A.; Lohr, J.; Luce, T. C.; Van Zeeland, M. A.] Gen Atom Co, San Diego, CA 92186 USA. [Casper, T. A.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Yu, J. H.] Univ Calif San Diego, La Jolla, CA 92093 USA. RP Jackson, GL (reprint author), Gen Atom Co, POB 85608, San Diego, CA 92186 USA. NR 30 TC 22 Z9 22 U1 0 U2 8 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2010 VL 17 IS 5 AR 056116 DI 10.1063/1.3374242 PG 8 WC Physics, Fluids & Plasmas SC Physics GA 603BM UT WOS:000278182900109 ER PT J AU Kaganovich, ID Davidson, RC Dorf, MA Startsev, EA Sefkow, AB Lee, EP Friedman, A AF Kaganovich, I. D. Davidson, R. C. Dorf, M. A. Startsev, E. A. Sefkow, A. B. Lee, E. P. Friedman, A. TI Physics of neutralization of intense high-energy ion beam pulses by electrons SO PHYSICS OF PLASMAS LA English DT Article; Proceedings Paper CT 51st Annual Meeting of the Division-of-Plasma-Physics of the American-Physics-Society CY NOV 02-06, 2009 CL Atlanta, GA SP Amer Phys Soc, Div Plasma Phys DE ion beam effects; plasma applications; plasma magnetohydrodynamics; plasma simulation; plasma sources; plasma temperature; plasma waves; plasma-beam interactions ID REACTOR SIZED CHAMBER; BACKGROUND PLASMA; MAGNETIC-FIELD; WHISTLER WAVES; NONLINEAR-THEORY; FUSION CHAMBER; FINAL FOCUS; TRANSPORT; CHARGE; PROPAGATION AB Neutralization and focusing of intense charged particle beam pulses by electrons form the basis for a wide range of applications to high energy accelerators and colliders, heavy ion fusion, and astrophysics. For example, for ballistic propagation of intense ion beam pulses, background plasma can be used to effectively neutralize the beam charge and current, so that the self-electric and self-magnetic fields do not affect the ballistic propagation of the beam. From the practical perspective of designing advanced plasma sources for beam neutralization, a robust theory should be able to predict the self-electric and self-magnetic fields during beam propagation through the background plasma. The major scaling relations for the self-electric and self-magnetic fields of intense ion charge bunches propagating through background plasma have been determined taking into account the effects of transients during beam entry into the plasma, the excitation of collective plasma waves, the effects of gas ionization, finite electron temperature, and applied solenoidal and dipole magnetic fields. Accounting for plasma production by gas ionization yields a larger self-magnetic field of the ion beam compared to the case without ionization, and a wake of current density and self-magnetic field perturbations is generated behind the beam pulse. A solenoidal magnetic field can be applied for controlling the beam propagation. Making use of theoretical models and advanced numerical simulations, it is shown that even a small applied magnetic field of about 100 G can strongly affect the beam neutralization. It has also been demonstrated that in the presence of an applied magnetic field the ion beam pulse can excite large-amplitude whistler waves, thereby producing a complex structure of self-electric and self-magnetic fields. The presence of an applied solenoidal magnetic field may also cause a strong enhancement of the radial self-electric field of the beam pulse propagating through the background plasma. If controlled, this physical effect can be used for optimized beam transport over long distances. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3335766] C1 [Kaganovich, I. D.; Davidson, R. C.; Dorf, M. A.; Startsev, E. A.; Sefkow, A. B.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Lee, E. P.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Friedman, A.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Kaganovich, ID (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. NR 108 TC 16 Z9 16 U1 1 U2 9 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2010 VL 17 IS 5 AR 056703 DI 10.1063/1.3335766 PG 20 WC Physics, Fluids & Plasmas SC Physics GA 603BM UT WOS:000278182900135 ER PT J AU Keidar, M Shashurin, A Volotskova, O Raitses, Y Beilis, II AF Keidar, M. Shashurin, A. Volotskova, O. Raitses, Y. Beilis, I. I. TI Mechanism of carbon nanostructure synthesis in arc plasma SO PHYSICS OF PLASMAS LA English DT Article; Proceedings Paper CT 51st Annual Meeting of the Division-of-Plasma-Physics of the American-Physics-Society CY NOV 02-06, 2009 CL Atlanta, GA SP Amer Phys Soc, Div Plasma Phys DE arcs (electric); carbon nanotubes; graphene; nanofabrication; plasma materials processing ID VACUUM-ARC; LARGE-SCALE; DISCHARGE METHOD; NANOTUBE GROWTH; MAGNETIC-FIELD; GRAPHENE; GRAPHITE; DEPOSITION; PRESSURE; DIAMETER AB Plasma enhanced techniques are widely used for synthesis of carbon nanostructures. The primary focus of this paper is to summarize recent experimental and theoretical advances in understanding of single-wall carbon nanotube (SWNT) synthesis mechanism in arcs, and to describe methods of controlling arc plasma parameters. Fundamental issues related to synthesis of SWNTs, which is a relationship between plasma parameters and SWNT characteristics are considered. It is shown that characteristics of synthesized SWNTs can be altered by varying plasma parameters. Effects of electrical and magnetic fields applied during SWNT synthesis in arc plasma are explored. Magnetic field has a profound effect on the diameter, chirality, and length of a SWNT synthesized in the arc plasma. An average length of SWNT increases by a factor of 2 in discharge with magnetic field and an amount of long nanotubes with the length above 5 mu m also increases in comparison with that observed in the discharge without a magnetic field. In addition, synthesis of a few-layer graphene in a magnetic field presence is discovered. A coupled model of plasma-electrode phenomena in atmospheric-pressure anodic arc in helium is described. Calculations indicate that substantial fraction of the current at the cathode is conducted by ions (0.7-0.9 of the total current). It is shown that nonmonotonic behavior of the arc current-voltage characteristic can be reproduced taking into account the experimentally observed dependence of the arc radius on arc current. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3312879] C1 [Keidar, M.; Shashurin, A.; Volotskova, O.] George Washington Univ, Washington, DC 20052 USA. [Raitses, Y.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Beilis, I. I.] Tel Aviv Univ, IL-69978 Tel Aviv, Israel. RP Keidar, M (reprint author), George Washington Univ, Washington, DC 20052 USA. EM keidar@gwu.edu NR 60 TC 23 Z9 23 U1 5 U2 28 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2010 VL 17 IS 5 AR 057101 DI 10.1063/1.3312879 PG 9 WC Physics, Fluids & Plasmas SC Physics GA 603BM UT WOS:000278182900142 ER PT J AU Kemp, AJ Cohen, BI Divol, L AF Kemp, A. J. Cohen, B. I. Divol, L. TI Integrated kinetic simulation of laser-plasma interactions, fast-electron generation, and transport in fast ignition SO PHYSICS OF PLASMAS LA English DT Article; Proceedings Paper CT 51st Annual Meeting of the Division-of-Plasma-Physics of the American-Physics-Society CY NOV 02-06, 2009 CL Atlanta, GA SP Amer Phys Soc, Div Plasma Phys DE high-speed optical techniques; hot carriers; ignition; plasma collision processes; plasma density; plasma kinetic theory; plasma light propagation; plasma magnetohydrodynamics; plasma production by laser; plasma simulation; plasma transport processes; plasma waves; relativistic plasmas ID TARGETS AB We present new results on the physics of short-pulse laser-matter interaction of kilojoule-picosecond pulses at full spatial and temporal scale using a new approach that combines a three-dimensional collisional electromagnetic particle-in-cell code with a magnetohydrodynamic-hybrid model of high-density plasma. In the latter, collisions damp out plasma waves, and an Ohm's law with electron inertia effects neglected determines the electric field. In addition to yielding orders of magnitude in speed-up while avoiding numerical instabilities, this allows us to model the whole problem in a single unified framework: the laser-plasma interaction at subcritical densities, energy deposition at relativistic critical densities, and fast- electron transport in solid densities. Key questions such as the multipicosecond temporal evolution of the laser energy conversion into hot electrons, the impact of return currents on the laser-plasma interaction, and the effect of self-generated electric and magnetic fields on electron transport will be addressed. We will report applications to current experiments. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3312825] C1 [Kemp, A. J.; Cohen, B. I.; Divol, L.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Kemp, AJ (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. NR 15 TC 30 Z9 30 U1 2 U2 10 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2010 VL 17 IS 5 AR 056702 DI 10.1063/1.3312825 PG 6 WC Physics, Fluids & Plasmas SC Physics GA 603BM UT WOS:000278182900134 ER PT J AU Knauer, JP Gotchev, OV Chang, PY Meyerhofer, DD Polomarov, O Betti, R Frenje, JA Li, CK Manuel, MJE Petrasso, RD Rygg, JR Seguin, FH AF Knauer, J. P. Gotchev, O. V. Chang, P. Y. Meyerhofer, D. D. Polomarov, O. Betti, R. Frenje, J. A. Li, C. K. Manuel, M. J. -E. Petrasso, R. D. Rygg, J. R. Seguin, F. H. TI Compressing magnetic fields with high-energy lasers SO PHYSICS OF PLASMAS LA English DT Article; Proceedings Paper CT 51st Annual Meeting of the Division-of-Plasma-Physics of the American-Physics-Society CY NOV 02-06, 2009 CL Atlanta, GA SP Amer Phys Soc, Div Plasma Phys DE plasma inertial confinement; plasma production by laser; plasma shock waves ID FUSION; DRIVE; PLASMA; PERFORMANCE; PROGRESS AB Laser-driven magnetic-field compression producing a magnetic field of tens of megaGauss is reported for the first time. A shock wave formed during the implosion of a cylindrical target traps an initial (seed) magnetic field that is amplified via conservation of magnetic flux. Such large fields are expected to magnetize the electrons in the hot, central plasma, leading to a cyclotron frequency exceeding the collision frequency. The Omega Laser Facility [T. R. Boehly , Opt. Commun. 133, 495 (1997)] was used to implode cylindrical CH targets filled with deuterium gas and seeded with an external field (>50 kG) from a magnetic pulse generator. This seed field is trapped and rapidly compressed by the imploding shell, minimizing the effect of resistive flux diffusion. The compressed field was probed via proton deflectrometry using 14.7 MeV protons from the D+(3)He fusion reaction emitted by an imploding glass microballoon. Line-averaged magnetic fields of the imploded core were measured to between 30 and 40 MG. Experimental data were analyzed with both a magnetohydrodynamic version of the one-dimensional hydrocode LILAC [J. Delettrez , Phys. Rev. A 36, 3926 (1987); N. W. Jang , Bull. Am. Phys. Soc. 51, 144 (2006)] and the particle propagation code GEANT4 [S. Agostinelli , Nucl. Instrum. Methods Phys. Res. A 506, 250 (2003)]. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3416557] C1 [Knauer, J. P.; Gotchev, O. V.; Chang, P. Y.; Meyerhofer, D. D.; Betti, R.] Univ Rochester, Laser Energet Lab, Rochester, NY 14623 USA. [Gotchev, O. V.; Meyerhofer, D. D.; Polomarov, O.; Betti, R.; Frenje, J. A.; Li, C. K.; Manuel, M. J. -E.; Petrasso, R. D.; Seguin, F. H.] Univ Rochester, Fus Sci Ctr Extreme States Matter & Fast Ignit P, Rochester, NY 14623 USA. [Gotchev, O. V.; Meyerhofer, D. D.; Polomarov, O.; Betti, R.] Univ Rochester, Dept Mech Engn, Rochester, NY 14623 USA. [Chang, P. Y.; Meyerhofer, D. D.; Betti, R.] Univ Rochester, Dept Phys & Astron, Rochester, NY 14623 USA. [Frenje, J. A.; Li, C. K.; Manuel, M. J. -E.; Petrasso, R. D.; Seguin, F. H.] MIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA. [Rygg, J. R.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Knauer, JP (reprint author), Univ Rochester, Laser Energet Lab, 250 E River Rd, Rochester, NY 14623 USA. RI Chang, Po-Yu/A-9004-2013; Manuel, Mario/L-3213-2015; Chang, Po-Yu/L-5745-2016 OI Manuel, Mario/0000-0002-5834-1161; NR 26 TC 32 Z9 34 U1 1 U2 14 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2010 VL 17 IS 5 AR 056318 DI 10.1063/1.3416557 PG 8 WC Physics, Fluids & Plasmas SC Physics GA 603BM UT WOS:000278182900131 ER PT J AU Krasheninnikova, NS Tang, XZ Roytershteyn, VS AF Krasheninnikova, Natalia S. Tang, Xianzhu Roytershteyn, Vadim S. TI Scaling of the plasma sheath in a magnetic field parallel to the wall SO PHYSICS OF PLASMAS LA English DT Article; Proceedings Paper CT 51st Annual Meeting of the Division-of-Plasma-Physics of the American-Physics-Society CY NOV 02-06, 2009 CL Atlanta, GA SP Amer Phys Soc, Div Plasma Phys DE plasma sheaths; plasma simulation; plasma toroidal confinement; Tokamak devices ID TARGET FUSION; TRANSITION; CONFIGURATION; SIMULATIONS; SURFACE AB Motivated by the magnetized target fusion [R. E. Siemon , Comments Plasma Phys. Controlled Fusion 18, 363 (1999)] experiment, a systematic investigation of the scaling of a one-dimensional plasma sheath with a magnetic field parallel to the wall was carried out using analytical theory and the particle-in-cell code VPIC [K. J. Bowers , Phys. Plasmas 15, 055703 (2008)]. Starting with a uniform Maxwellian distribution in three-dimensional velocity space, plasma consisting of collisionless electrons, and ions of the same temperature interacts with a perfectly absorbing wall. A much larger ion Larmor radius causes the wall to be charged positively, creating an electric field that tends to repel the ions and attract the electrons, which is the opposite of the conventional Bohm sheath [D. Bohm, Characteristics of Electrical Discharges in Magnetic Fields (McGraw-Hill, New York, 1949)]. This manifests in the form of gyro-orbit modification by this spatially varying electric field, the degree of which is found to intricately depend on the relation between three parameters: electron and ion thermal Larmor radii and plasma Debye length: rho(the), rho(thi), and lambda(D). Furthermore, the study of the sheath width scaling through the analysis of the full width at half max of electric field, x(Eh), elucidates three distinct types of behavior of x(Eh), corresponding to three different regimes: rho(thi)100 T) and electric (up to 1 GV/m) fields. This paper surveys the application of plasma spectroscopy to diagnose a variety of plasma conditions generated by pulsed power sources including: magnetic field penetration into plasma, measuring the time-dependent spatial distribution of 1 GV/m electric fields, opacity measurements approaching stellar interior conditions, characteristics of a radiating shock propagating at 330 km/s, and determination of plasma conditions in imploded capsule cores at 150 Mbar pressures. These applications provide insight into fundamental properties of nature in addition to their importance for addressing challenging pulsed power science problems. (C) 2010 American Institute of Physics. [doi:10.1063/1.3309722] C1 [Rochau, G. A.; Bailey, J. E.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Maron, Y.] Weizmann Inst Sci, Fac Phys, IL-76100 Rehovot, Israel. RP Rochau, GA (reprint author), Sandia Natl Labs, Albuquerque, NM 87185 USA. NR 67 TC 4 Z9 4 U1 0 U2 3 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2010 VL 17 IS 5 AR 055501 DI 10.1063/1.3309722 PG 11 WC Physics, Fluids & Plasmas SC Physics GA 603BM UT WOS:000278182900083 ER PT J AU Roytershteyn, V Daughton, W Dorfman, S Ren, Y Ji, H Yamada, M Karimabadi, H Yin, L Albright, BJ Bowers, KJ AF Roytershteyn, V. Daughton, W. Dorfman, S. Ren, Y. Ji, H. Yamada, M. Karimabadi, H. Yin, L. Albright, B. J. Bowers, K. J. TI Driven magnetic reconnection near the Dreicer limit SO PHYSICS OF PLASMAS LA English DT Article; Proceedings Paper CT 51st Annual Meeting of the Division-of-Plasma-Physics of the American-Physics-Society CY NOV 02-06, 2009 CL Atlanta, GA SP Amer Phys Soc, Div Plasma Phys DE magnetic reconnection; Monte Carlo methods; plasma collision processes; plasma density; plasma kinetic theory; plasma simulation ID LABORATORY PLASMA; CURRENT SHEET; MODEL; ELECTRON AB The influence of Coulomb collisions on the dynamics of driven magnetic reconnection in geometry mimicking the Magnetic Reconnection eXperiment (MRX) [M. Yamada , Phys. Plasmas 4, 1936 (1997)] is investigated using two-dimensional (2D) fully kinetic simulations with a Monte Carlo treatment of the collision operator. For values of collisionality typical of MRX, the reconnection mechanism is shown to be a combination of collisionless effects, represented by off-diagonal terms in the electron stress tensor, and collisional momentum exchange between electrons and ions. The ratio of the reconnection electric field E-R to the critical runaway field E-crit provides a convenient measure of the relative importance of these two mechanisms. The structure of electron-scale reconnection layers in the presence of collisions is investigated in light of the previously reported [S. Dorfman , Phys. Plasmas 15, 102107 (2008)] discrepancy in the width of the electron reconnection layers between collisionless simulations and experimental observations. It is demonstrated that the width of the layer increases in the presence of collisions, but does not substantially deviate from its collisionless values, given by the electron crossing orbit width, unless E-R << E-crit. Comparison with MRX observations demonstrates that the layer width in 2D simulations with Coulomb collisions is substantially smaller than the value observed in the low-density experiments with E-R less than or similar to E-crit, indicating that physical mechanisms beyond those included in the simulations control the structure of the electron layers in these experiments. (C) 2010 American Institute of Physics. [doi:10.1063/1.3399787] C1 [Roytershteyn, V.; Daughton, W.; Yin, L.; Albright, B. J.; Bowers, K. J.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Dorfman, S.; Ren, Y.; Ji, H.; Yamada, M.] Princeton Plasma Phys Lab, Ctr Magnet Self Org, Lab & Astrophys Plasmas, Princeton, NJ 08543 USA. [Karimabadi, H.] Univ Calif San Diego, La Jolla, CA 92093 USA. RP Roytershteyn, V (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. RI Yamada, Masaaki/D-7824-2015; Daughton, William/L-9661-2013; OI Yamada, Masaaki/0000-0003-4996-1649; Albright, Brian/0000-0002-7789-6525; Yin, Lin/0000-0002-8978-5320; Roytershteyn, Vadim/0000-0003-1745-7587 NR 33 TC 16 Z9 16 U1 0 U2 8 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2010 VL 17 IS 5 AR 055706 DI 10.1063/1.3399787 PG 9 WC Physics, Fluids & Plasmas SC Physics GA 603BM UT WOS:000278182900089 ER PT J AU Slutz, SA Herrmann, MC Vesey, RA Sefkow, AB Sinars, DB Rovang, DC Peterson, KJ Cuneo, ME AF Slutz, S. A. Herrmann, M. C. Vesey, R. A. Sefkow, A. B. Sinars, D. B. Rovang, D. C. Peterson, K. J. Cuneo, M. E. TI Pulsed-power-driven cylindrical liner implosions of laser preheated fuel magnetized with an axial field SO PHYSICS OF PLASMAS LA English DT Article; Proceedings Paper CT 51st Annual Meeting of the Division-of-Plasma-Physics of the American-Physics-Society CY NOV 02-06, 2009 CL Atlanta, GA SP Amer Phys Soc, Div Plasma Phys DE alpha-particles; deuterium; explosions; plasma heating by laser; plasma magnetohydrodynamics; plasma simulation; Rayleigh-Taylor instability; tritium; Z pinch ID INERTIAL CONFINEMENT FUSION; TARGET FUSION; REVERSED CONFIGURATION; PHYSICS BASIS; COMPRESSION; IGNITION; GEOMETRY; GAIN AB The radial convergence required to reach fusion conditions is considerably higher for cylindrical than for spherical implosions since the volume is proportional to r(2) versus r(3), respectively. Fuel magnetization and preheat significantly lowers the required radial convergence enabling cylindrical implosions to become an attractive path toward generating fusion conditions. Numerical simulations are presented indicating that significant fusion yields may be obtained by pulsed-power-driven implosions of cylindrical metal liners onto magnetized (>10 T) and preheated (100-500 eV) deuterium-tritium (DT) fuel. Yields exceeding 100 kJ could be possible on Z at 25 MA, while yields exceeding 50 MJ could be possible with a more advanced pulsed power machine delivering 60 MA. These implosions occur on a much shorter time scale than previously proposed implosions, about 100 ns as compared to about 10 mu s for magnetic target fusion (MTF) [I. R. Lindemuth and R. C. Kirkpatrick, Nucl. Fusion 23, 263 (1983)]. Consequently the optimal initial fuel density (1-5 mg/cc) is considerably higher than for MTF (similar to 1 mu g/cc). Thus the final fuel density is high enough to axially trap most of the alpha-particles for cylinders of approximately 1 cm in length with a purely axial magnetic field, i.e., no closed field configuration is required for ignition. According to the simulations, an initial axial magnetic field is partially frozen into the highly conducting preheated fuel and is compressed to more than 100 MG. This final field is strong enough to inhibit both electron thermal conduction and the escape of alpha-particles in the radial direction. Analytical and numerical calculations indicate that the DT can be heated to 200-500 eV with 5-10 kJ of green laser light, which could be provided by the Z-Beamlet laser. The magneto-Rayleigh-Taylor (MRT) instability poses the greatest threat to this approach to fusion. Two-dimensional Lasnex simulations indicate that the liner walls must have a substantial initial thickness (10-20% of the radius) so that they maintain integrity throughout the implosion. The Z and Z-Beamlet experiments are now being planned to test the various components of this concept, e.g., the laser heating of the fuel and the robustness of liner implosions to the MRT instability. (C) 2010 American Institute of Physics. [doi:10.1063/1.3333505] C1 [Slutz, S. A.; Herrmann, M. C.; Vesey, R. A.; Sefkow, A. B.; Sinars, D. B.; Rovang, D. C.; Peterson, K. J.; Cuneo, M. E.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Slutz, SA (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. NR 35 TC 142 Z9 147 U1 8 U2 32 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2010 VL 17 IS 5 AR 056303 DI 10.1063/1.3333505 PG 15 WC Physics, Fluids & Plasmas SC Physics GA 603BM UT WOS:000278182900116 ER PT J AU Solomon, WM Burrell, KH Garofalo, AM Kaye, SM Bell, RE Cole, AJ deGrassie, JS Diamond, PH Hahm, TS Jackson, GL Lanctot, MJ Petty, CC Reimerdes, H Sabbagh, SA Strait, EJ Tala, T Waltz, RE AF Solomon, W. M. Burrell, K. H. Garofalo, A. M. Kaye, S. M. Bell, R. E. Cole, A. J. deGrassie, J. S. Diamond, P. H. Hahm, T. S. Jackson, G. L. Lanctot, M. J. Petty, C. C. Reimerdes, H. Sabbagh, S. A. Strait, E. J. Tala, T. Waltz, R. E. TI Mechanisms for generating toroidal rotation in tokamaks without external momentum input SO PHYSICS OF PLASMAS LA English DT Article; Proceedings Paper CT 51st Annual Meeting of the Division-of-Plasma-Physics of the American-Physics-Society CY NOV 02-06, 2009 CL Atlanta, GA SP Amer Phys Soc, Div Plasma Phys DE plasma flow; plasma instability; plasma toroidal confinement; Tokamak devices ID POLOIDAL ROTATION; ELECTRIC-FIELD; DIII-D; TRANSPORT; CONFINEMENT; DISSIPATION; TURBULENCE; PLASMAS; PHYSICS AB Recent experiments on DIII-D [J. L. Luxon, Nucl. Fusion 42, 614 (2002)] and National Spherical Torus Experiment (NSTX) [M. Ono , Nucl. Fusion 40, 557 (2000)] have focused on investigating mechanisms of driving rotation in fusion plasmas. The so-called intrinsic rotation is generated by an effective torque, driven by residual stresses in the plasma, which appears to originate in the plasma edge. A clear scaling of this intrinsic drive with the H-mode pressure gradient is observed. Coupled with the experimentally inferred pinch of angular momentum, such an edge source is capable of producing sheared rotation profiles. Intrinsic drive is also possible directly in the core, although the physics mechanisms are much more complex. Another option which is being explored is the use of nonresonant magnetic fields for spinning the plasma. It is found beneficially that the torque from these fields can be enhanced at low rotation, which assists in spinning the plasma from rest, and offers increased resistance against plasma slowing. (C) 2010 American Institute of Physics. [doi:10.1063/1.3328521] C1 [Solomon, W. M.; Kaye, S. M.; Bell, R. E.; Hahm, T. S.] Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Burrell, K. H.; Garofalo, A. M.; deGrassie, J. S.; Jackson, G. L.; Petty, C. C.; Strait, E. J.; Waltz, R. E.] Gen Atom Co, San Diego, CA 92186 USA. [Cole, A. J.] Univ Wisconsin, Madison, WI 53706 USA. [Diamond, P. H.] Univ Calif San Diego, Ctr Astrophys & Space Sci, La Jolla, CA 92093 USA. [Lanctot, M. J.; Reimerdes, H.; Sabbagh, S. A.] Columbia Univ, New York, NY 10027 USA. [Tala, T.] Assoc EURATOM Tekes, FIN-02044 Espoo, Finland. RP Solomon, WM (reprint author), Princeton Univ, Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. EM wsolomon@pppl.gov RI Sabbagh, Steven/C-7142-2011; Lanctot, Matthew J/O-4979-2016; OI Lanctot, Matthew J/0000-0002-7396-3372; Solomon, Wayne/0000-0002-0902-9876 NR 49 TC 50 Z9 50 U1 0 U2 8 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2010 VL 17 IS 5 AR 056108 DI 10.1063/1.3328521 PG 11 WC Physics, Fluids & Plasmas SC Physics GA 603BM UT WOS:000278182900101 ER PT J AU Stratakis, D Kishek, RA Bernal, S Fiorito, RB Haber, I Reiser, M O'Shea, PG Tian, K Thangaraj, JCT AF Stratakis, D. Kishek, R. A. Bernal, S. Fiorito, R. B. Haber, I. Reiser, M. O'Shea, P. G. Tian, K. Thangaraj, J. C. T. TI Generalized phase-space tomography for intense beams SO PHYSICS OF PLASMAS LA English DT Article; Proceedings Paper CT 51st Annual Meeting of the Division-of-Plasma-Physics of the American-Physics-Society CY NOV 02-06, 2009 CL Atlanta, GA SP Amer Phys Soc, Div Plasma Phys DE particle beam diagnostics; particle beam focusing; phase space methods; space charge; tomography ID ELECTRON-BEAM; CHARGE; SIMULATIONS AB Tomographic phase-space mapping in an intense particle beam is reviewed. The diagnostic is extended to beams with space-charge by assuming linear forces and is implemented using either solenoidal or quadrupole focusing lattices. The technique is benchmarked against self-consistent simulation and against a direct experimental sampling of phase-space using a pinhole scan. It is demonstrated that tomography can work for time-resolved phase-space mapping and slice emittance measurement. The technique is applied to a series of proof-of-principle tests conducted at the University of Maryland. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3298894] C1 [Stratakis, D.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Kishek, R. A.; Bernal, S.; Fiorito, R. B.; Haber, I.; Reiser, M.; O'Shea, P. G.] Univ Maryland, Inst Res Elect & Appl Phys, College Pk, MD 20742 USA. [Tian, K.] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. [Thangaraj, J. C. T.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. RP Stratakis, D (reprint author), Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. RI Bernal, Santiago/B-8167-2017 OI Bernal, Santiago/0000-0001-8287-6601 NR 42 TC 1 Z9 1 U1 1 U2 2 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2010 VL 17 IS 5 AR 056701 DI 10.1063/1.3298894 PG 9 WC Physics, Fluids & Plasmas SC Physics GA 603BM UT WOS:000278182900133 ER PT J AU Taylor, G Bell, RE Hosea, JC LeBlanc, BP Phillips, CK Podesta, M Valeo, EJ Wilson, JR Ahn, JW Chen, G Green, DL Jaeger, EF Maingi, R Ryan, PM Wilgen, JB Heidbrink, WW Liu, D Bonoli, PT Brecht, T Choi, M Harvey, RW AF Taylor, G. Bell, R. E. Hosea, J. C. LeBlanc, B. P. Phillips, C. K. Podesta, M. Valeo, E. J. Wilson, J. R. Ahn, J-W. Chen, G. Green, D. L. Jaeger, E. F. Maingi, R. Ryan, P. M. Wilgen, J. B. Heidbrink, W. W. Liu, D. Bonoli, P. T. Brecht, T. Choi, M. Harvey, R. W. TI Advances in high-harmonic fast wave physics in the National Spherical Torus Experiment SO PHYSICS OF PLASMAS LA English DT Article; Proceedings Paper CT 51st Annual Meeting of the Division-of-Plasma-Physics of the American-Physics-Society CY NOV 02-06, 2009 CL Atlanta, GA SP Amer Phys Soc, Div Plasma Phys DE plasma beam injection heating; plasma diagnostics; plasma radiofrequency heating; plasma toroidal confinement; Tokamak devices ID ION ABSORPTION; NSTX; PLASMAS; HHFW; ITER AB Improved core high-harmonic fast wave (HHFW) heating at longer wavelengths and during start-up and plasma current ramp-up has now been obtained by lowering the edge density with lithium wall conditioning, thereby moving the critical density for perpendicular fast-wave propagation away from the vessel wall. Lithium conditioning allowed significant HHFW core electron heating of deuterium neutral beam injection (NBI) fuelled H-mode plasmas to be observed for the first time. Large edge localized modes were observed immediately after the termination of rf power. Visible and infrared camera images show that fast wave interactions can deposit considerable rf energy on the outboard divertor. HHFW-generated parametric decay instabilities were observed to heat ions in the plasma edge and may be the cause for a measured drag on edge toroidal rotation during HHFW heating. A significant enhancement in neutron rate and fast-ion profile was measured in NBI-fuelled plasmas when HHFW heating was applied. (C) 2010 American Institute of Physics. [doi:10.1063/1.3371956] C1 [Taylor, G.; Bell, R. E.; Hosea, J. C.; LeBlanc, B. P.; Phillips, C. K.; Podesta, M.; Valeo, E. J.; Wilson, J. R.] Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Ahn, J-W.; Chen, G.; Green, D. L.; Jaeger, E. F.; Maingi, R.; Ryan, P. M.; Wilgen, J. B.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Heidbrink, W. W.; Liu, D.] Univ Calif Irvine, Irvine, CA 92697 USA. [Bonoli, P. T.] MIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA. [Brecht, T.] Univ Minnesota, Minneapolis, MN 55455 USA. [Choi, M.] Gen Atom Co, San Diego, CA 92186 USA. [Harvey, R. W.] CompX, Del Mar, CA 92014 USA. RP Taylor, G (reprint author), Princeton Univ, Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. RI Chen, Guangye /K-3192-2012; Liu, Deyong/Q-2797-2015 OI Liu, Deyong/0000-0001-9174-7078 NR 38 TC 26 Z9 26 U1 0 U2 3 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2010 VL 17 IS 5 AR 056114 DI 10.1063/1.3371956 PG 12 WC Physics, Fluids & Plasmas SC Physics GA 603BM UT WOS:000278182900107 ER PT J AU Vaughan, K McAlpin, S Foster, JM Stevenson, RM Glendinning, SG Sorce, C AF Vaughan, K. McAlpin, S. Foster, J. M. Stevenson, R. M. Glendinning, S. G. Sorce, C. TI Asymmetrically driven implosions SO PHYSICS OF PLASMAS LA English DT Article; Proceedings Paper CT 51st Annual Meeting of the Division-of-Plasma-Physics of the American-Physics-Society CY NOV 02-06, 2009 CL Atlanta, GA SP Amer Phys Soc, Div Plasma Phys DE explosions; plasma heating by laser; plasma inertial confinement ID NATIONAL IGNITION FACILITY; MULTIPLE-BEAM CONES; SYMMETRY MEASUREMENTS; LASER SYSTEM; OMEGA-LASER; TARGETS; HOHLRAUMS; NOVA; FUSION; TIME AB Techniques to achieve uniform near-spherical symmetry of radiation drive on a capsule in a laser-heated hohlraum have received detailed attention in the context of inertial confinement fusion. However, much less attention has been paid to the understanding of the hohlraum physics in cases where the radiation drive departs significantly from spherical symmetry. A series of experiments has been carried out to study the implosion dynamics of a capsule irradiated by a deliberately asymmetric x-ray drive. The experimental data provide a sensitive test of radiation transport in hohlraums in which drive symmetry is modulated by asymmetric laser beam timing and the use of wall materials of different albedos. Data from foam ball and thin-shell capsule experiments are presented together with modeling using consecutively linked Lagrangian and Eulerian calculational schemes. The thin-shell capsules exhibit much stronger sensitivity to early-time asymmetry than do the foam balls, and this sensitivity results in the formation of a well-defined polar jet. These data are shown to challenge computational modeling in this highly asymmetric convergent regime. All of the experiments detailed were carried out at the OMEGA laser facility [J. M. Soures, R. L. McCrory, C. P. Verdon , Phys. Plasmas 3, 2108 (1996)] at the Laboratory for Laser Energetics in Rochester, NY. [doi: 10.1063/1.3354113] C1 [Vaughan, K.; McAlpin, S.; Foster, J. M.; Stevenson, R. M.] AWE Aldermaston, Reading RG7 4PR, Berks, England. [Glendinning, S. G.; Sorce, C.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Vaughan, K (reprint author), AWE Aldermaston, Reading RG7 4PR, Berks, England. NR 26 TC 1 Z9 1 U1 0 U2 1 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2010 VL 17 IS 5 AR 056316 DI 10.1063/1.3354113 PG 9 WC Physics, Fluids & Plasmas SC Physics GA 603BM UT WOS:000278182900129 ER PT J AU White, AE Peebles, WA Rhodes, TL Holland, CH Wang, G Schmitz, L Carter, TA Hillesheim, JC Doyle, EJ Zeng, L Mckee, GR Staebler, GM Waltz, RE Deboo, JC Petty, CC Burrell, KH AF White, A. E. Peebles, W. A. Rhodes, T. L. Holland, C. H. Wang, G. Schmitz, L. Carter, T. A. Hillesheim, J. C. Doyle, E. J. Zeng, L. McKee, G. R. Staebler, G. M. Waltz, R. E. DeBoo, J. C. Petty, C. C. Burrell, K. H. TI Measurements of the cross-phase angle between density and electron temperature fluctuations and comparison with gyrokinetic simulations SO PHYSICS OF PLASMAS LA English DT Article; Proceedings Paper CT 51st Annual Meeting of the Division-of-Plasma-Physics of the American-Physics-Society CY NOV 02-06, 2009 CL Atlanta, GA SP Amer Phys Soc, Div Plasma Phys DE plasma density; plasma diagnostics; plasma fluctuations; plasma kinetic theory; plasma simulation; plasma temperature; plasma toroidal confinement; plasma transport processes; plasma turbulence; Tokamak devices ID DIII-D TOKAMAK; TRANSPORT; PLASMAS; UPGRADE AB This paper presents new measurements of the cross-phase angle, alpha(neTe), between long-wavelength (k(theta)rho(s)< 0.5) density, (n) over tilde (e), and electron temperature, (T) over tilde (e), fluctuations in the core of DIII-D [J. L. Luxon, Nucl. Fusion 42, 614 (2002)] tokamak plasmas. The coherency and cross-phase angle between (n) over tilde (e) and (T) over tilde (e) are measured using coupled reflectometer and correlation electron cyclotron emission diagnostics that view the same plasma volume. In addition to the experimental results, two sets of local, nonlinear gyrokinetic turbulence simulations that are performed with the GYRO code [J. Candy and R. E. Waltz, J. Comput. Phys. 186, 545 (2003)] are described. One set, called the pre-experiment simulations, was performed prior to the experiment in order to predict a change in alpha(neTe) given experimentally realizable increases in the electron temperature, T(e). In the experiment the cross-phase angle was measured at three radial locations (rho=0.55, 0.65, and 0.75) in both a "Base" case and a "High T(e)" case. The measured cross-phase angle is in good qualitative agreement with the pre-experiment simulations, which predicted that (n) over tilde (e) and (T) over tilde (e) would be out of phase. The pre-experiment simulations also predicted a decrease in cross-phase angle as T(e) is increased. Experimentally, this trend is observed at the inner two radial locations only. The second set of simulations, the postexperiment simulations, is carried out using local parameters taken from measured experimental profiles as input to GYRO. These postexperiment simulation results are in good quantitative agreement with the measured cross-phase angle, despite disagreements with transport fluxes. Directions for future modeling and experimental work are discussed. (C) 2010 American Institute of Physics. [doi:10.1063/1.3323084] C1 [White, A. E.] ORISE, Oak Ridge, TN 37831 USA. [Peebles, W. A.; Rhodes, T. L.; Schmitz, L.; Carter, T. A.; Hillesheim, J. C.; Doyle, E. J.; Zeng, L.] Univ Calif Los Angeles, Los Angeles, CA 90095 USA. [Holland, C. H.; Wang, G.] Univ Calif San Diego, La Jolla, CA 92093 USA. [McKee, G. R.] Univ Wisconsin, Madison, WI 53706 USA. [Staebler, G. M.; Waltz, R. E.; DeBoo, J. C.; Petty, C. C.; Burrell, K. H.] Gen Atom Co, San Diego, CA 92186 USA. RP White, AE (reprint author), ORISE, Oak Ridge, TN 37831 USA. RI White, Anne/B-8990-2011; Carter, Troy/E-7090-2010 OI Carter, Troy/0000-0002-5741-0495 NR 49 TC 44 Z9 44 U1 1 U2 8 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2010 VL 17 IS 5 AR 056103 DI 10.1063/1.3323084 PG 15 WC Physics, Fluids & Plasmas SC Physics GA 603BM UT WOS:000278182900096 ER PT J AU White, RB Gorelenkov, N Heidbrink, WW Van Zeeland, MA AF White, R. B. Gorelenkov, N. Heidbrink, W. W. Van Zeeland, M. A. TI Beam distribution modification by Alfven modes SO PHYSICS OF PLASMAS LA English DT Article; Proceedings Paper CT 51st Annual Meeting of the Division-of-Plasma-Physics of the American-Physics-Society CY NOV 02-06, 2009 CL Atlanta, GA SP Amer Phys Soc, Div Plasma Phys DE eigenvalues and eigenfunctions; plasma Alfven waves; plasma instability; plasma toroidal confinement; plasma-beam interactions; Tokamak devices ID ION LOSS; ASDEX UPGRADE; PARTICLE LOSS; DIII-D; SIMULATIONS; TRANSPORT; EIGENMODE; TOKAMAK; LOSSES; JET AB Modification of a deuterium beam distribution in the presence of low amplitude toroidal Alfveacuten eigenmodes and reversed shear Alfveacuten eigenmodes in a toroidal magnetic confinement device is examined. Comparison to experimental data shows that multiple low amplitude modes can account for significant modification of high energy beam particle distributions. It is found that there is a stochastic threshold for beam transport, and that the experimental amplitudes are only slightly above this threshold. The modes produce a substantial central flattening of the beam distribution. (C) 2010 American Institute of Physics. [doi:10.1063/1.3327208] C1 [White, R. B.; Gorelenkov, N.] Princeton Univ, Plasma Phys Lab, Princeton, NJ 08543 USA. [Heidbrink, W. W.] Univ Calif Irvine, Irvine, CA 92697 USA. [Van Zeeland, M. A.] Gen Atom Co, San Diego, CA 92186 USA. RP White, RB (reprint author), Princeton Univ, Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. RI White, Roscoe/D-1773-2013 OI White, Roscoe/0000-0002-4239-2685 NR 26 TC 39 Z9 39 U1 1 U2 3 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2010 VL 17 IS 5 AR 056107 DI 10.1063/1.3327208 PG 6 WC Physics, Fluids & Plasmas SC Physics GA 603BM UT WOS:000278182900100 ER PT J AU Vakhrushev, SB Burkovsky, RG Shapiro, S Ivanov, A AF Vakhrushev, S. B. Burkovsky, R. G. Shapiro, S. Ivanov, A. TI Two-mode behavior of the PbMg1/3Nb2/3O3 relaxor SO PHYSICS OF THE SOLID STATE LA English DT Article ID DIFFUSE-SCATTERING; BURNS TEMPERATURE; POLAR NANOREGIONS; PHONON ANOMALIES; PB(MG1/3NB2/3)O-3; FERROELECTRICS; POLARIZATION; DYNAMICS AB The low-frequency lattice dynamics of lead magnoniobate has been studied using inelastic neutron scattering in the temperature range 650 K < T < 1050 K. The measurements have been performed in two Brillouin zones, (200) and (300). The data corresponding to these two zones and different values of the reduced wave vector have been treated in a common frame. It has been shown that the model assuming one optical phonon mode fails in an adequate description of scattering in both zones. The model involving a two-mode behavior of soft optical phonons provides a good agreement with experimental data. It has been demonstrated that the frequency of the low-energy soft-mode component follows the Curie-Weiss law with the Curie temperature T (C) = 400 K, which fits well dielectric spectroscopy measurements. C1 [Vakhrushev, S. B.] Russian Acad Sci, AF Ioffe Phys Tech Inst, St Petersburg 194021, Russia. [Burkovsky, R. G.] St Petersburg State Polytech Univ, St Petersburg 195251, Russia. [Shapiro, S.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Ivanov, A.] Inst Max Von Laue Paul Langevin, F-38042 Grenoble 9, France. RP Vakhrushev, SB (reprint author), Russian Acad Sci, AF Ioffe Phys Tech Inst, Politekhnicheskaya Ul 26, St Petersburg 194021, Russia. EM s.vakhrushev@mail.ioffe.ru RI Vakhrushev, Sergey/A-9855-2011 OI Vakhrushev, Sergey/0000-0003-4867-1404 FU Russian Foundation for Basic Research [08-02-00908a, 06-02-90088-NNF-a]; Branch of Physical Sciences Russian Academy of Sciences FX This study was supported by the Russian Foundation for Basic Research (project nos. 08-02-00908a and 06-02-90088-NNF-a) and the Branch of Physical Sciences of the Russian Academy of Sciences within the framework of the Basic Research Program "Neutron Investigations of the Structure of Materials and Fundamental Properties of Matter." NR 20 TC 11 Z9 11 U1 1 U2 12 PU MAIK NAUKA/INTERPERIODICA/SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013-1578 USA SN 1063-7834 J9 PHYS SOLID STATE+ JI Phys. Solid State PD MAY PY 2010 VL 52 IS 5 BP 889 EP 893 DI 10.1134/S106378341005001X PG 5 WC Physics, Condensed Matter SC Physics GA 593KI UT WOS:000277453000001 ER PT J AU Johnson, CV Steinberg, P AF Johnson, Clifford V. Steinberg, Peter TI What black holes teach about strongly coupled particles SO PHYSICS TODAY LA English DT Article C1 [Johnson, Clifford V.] Univ So Calif, Dept Phys & Astron, Los Angeles, CA 90089 USA. [Steinberg, Peter] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Johnson, CV (reprint author), Univ So Calif, Dept Phys & Astron, Los Angeles, CA 90089 USA. NR 11 TC 14 Z9 14 U1 0 U2 2 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0031-9228 J9 PHYS TODAY JI Phys. Today PD MAY PY 2010 VL 63 IS 5 BP 29 EP 33 PG 5 WC Physics, Multidisciplinary SC Physics GA 592SH UT WOS:000277399600017 ER PT J AU Jacak, B Steinberg, P AF Jacak, Barbara Steinberg, Peter TI Creating the perfect liquid in heavy-ion collisions SO PHYSICS TODAY LA English DT Article ID VISCOSITY C1 [Jacak, Barbara] SUNY Stony Brook, Stony Brook, NY 11794 USA. [Steinberg, Peter] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Jacak, B (reprint author), SUNY Stony Brook, Stony Brook, NY 11794 USA. NR 13 TC 18 Z9 18 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0031-9228 EI 1945-0699 J9 PHYS TODAY JI Phys. Today PD MAY PY 2010 VL 63 IS 5 BP 39 EP 43 PG 5 WC Physics, Multidisciplinary SC Physics GA 592SH UT WOS:000277399600019 ER PT J AU Chien, T AF Chien, TeYu TI Stepping up to the computer SO PHYSICS TODAY LA English DT Letter C1 Argonne Natl Lab, Argonne, IL 60439 USA. RP Chien, T (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM tchien@anl.gov NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0031-9228 J9 PHYS TODAY JI Phys. Today PD MAY PY 2010 VL 63 IS 5 BP 60 EP 61 PG 2 WC Physics, Multidisciplinary SC Physics GA 592SH UT WOS:000277399600028 ER PT J AU Fitzsimons, MS Miller, RM AF Fitzsimons, Michael S. Miller, R. Michael TI Serpentine soil has little influence on the root-associated microbial community composition of the serpentine tolerant grass species Avenula sulcata SO PLANT AND SOIL LA English DT Article DE Arbuscular mycorrhizal fungi (AMF); 18S rDNA; Microbial ecology; Phospholipid fatty acid analysis (PLFA) ID ARBUSCULAR MYCORRHIZAL FUNGI; CD-TOLERANT; PLANT; DIVERSITY; POPULATION; ENDOPHYTES; CALIFORNIA; FEEDBACK; ECOLOGY; STRAIN AB Soil chemistry is a known influence on plant species distribution. Serpentine soils provide a striking example of this due to their discrete nature and long-studied influence on plant communities. Characterized by high levels of heavy metals and low levels of nutrients, they present a challenge for most plant species and allow only a relatively restricted set of species to grow. We do not yet fully understand the suite of adaptations present in serpentine endemics allowing them thrive where other plant species perform poorly or not at all. In this paper we explore the possibility that serpentine plants interact with a unique set of microbial endophytes, which allow them to make a living on this challenging substrate. To examine broad-scale patterns of microbial community composition we used phospholipid fatty acid analysis. To focus more narrowly on arbuscular mycorrhizal fungi community composition we used 18S rDNA markers specific to these fungi. We found only very weak evidence for a relationship with distinct microbial communities using either technique and no evidence to show increased reliance on AMF by serpentine plants. Our results indicate that adaptation of plants to serpentine soil does not involve adaptation to a unique community of soil mutualists. C1 [Miller, R. Michael] Argonne Natl Lab, Biosci Div, Argonne, IL 60439 USA. [Fitzsimons, Michael S.] Univ Chicago, Dept Ecol & Evolut, Chicago, IL 60637 USA. RP Fitzsimons, MS (reprint author), Los Alamos Natl Lab, Biosci Div, MS-M888, Los Alamos, NM 87545 USA. EM msfitz@lanl.gov NR 61 TC 13 Z9 13 U1 3 U2 24 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0032-079X J9 PLANT SOIL JI Plant Soil PD MAY PY 2010 VL 330 IS 1-2 BP 393 EP 405 DI 10.1007/s11104-009-0213-9 PG 13 WC Agronomy; Plant Sciences; Soil Science SC Agriculture; Plant Sciences GA 577OT UT WOS:000276234200033 ER PT J AU Mangelsen, E Wanke, D Kilian, J Sundberg, E Harter, K Jansson, C AF Mangelsen, Elke Wanke, Dierk Kilian, Joachim Sundberg, Eva Harter, Klaus Jansson, Christer TI Significance of Light, Sugar, and Amino Acid Supply for Diurnal Gene Regulation in Developing Barley Caryopses SO PLANT PHYSIOLOGY LA English DT Article ID ADP-GLUCOSE PYROPHOSPHORYLASE; WRKY TRANSCRIPTION FACTOR; STARCH-BRANCHING ENZYMES; SEED DEVELOPMENT; ARABIDOPSIS-THALIANA; HORDEUM-VULGARE; WATER DIKINASE; TREHALOSE METABOLISM; EMBRYO DEVELOPMENT; FRUCTAN SYNTHESIS AB The caryopses of barley (Hordeum vulgare), as of all cereals, are complex sink organs optimized for starch accumulation and embryo development. While their early to late development has been studied in great detail, processes underlying the caryopses' diurnal adaptation to changes in light, temperature, and the fluctuations in phloem-supplied carbon and nitrogen have remained unknown. In an attempt to identify diurnally affected processes in developing caryopses at the early maturation phase, we monitored global changes of both gene expression and metabolite levels. We applied the 22 K Barley1 GeneChip microarray and identified 2,091 differentially expressed (DE) genes that were assigned to six major diurnal expression clusters. Principal component analysis and other global analyses demonstrated that the variability within the data set relates to genes involved in circadian regulation, storage compound accumulation, embryo development, response to abiotic stress, and photosynthesis. The correlation of amino acid and sugar profiles with expression trajectories led to the identification of several hundred potentially metabolite-regulated DE genes. A comparative analysis of our data set and publicly available microarray data disclosed suborgan-specific expression of almost all diurnal DE genes, with more than 350 genes specifically expressed in the pericarp, endosperm, or embryo tissues. Our data reveal a tight linkage between day/night cycles, changes in light, and the supply of carbon and nitrogen. We present a model that suggests several phases of diurnal gene expression in developing barley caryopses, summarized as starvation and priming, energy collection and carbon fixation, light protection and chaperone activity, storage and growth, and embryo development. C1 [Mangelsen, Elke; Sundberg, Eva] Swedish Univ Agr Sci, Dept Plant Biol & Forest Genet, SE-75007 Uppsala, Sweden. [Wanke, Dierk; Kilian, Joachim; Harter, Klaus] Univ Tubingen, Ctr Plant Mol Biol, D-72076 Tubingen, Germany. [Jansson, Christer] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Mangelsen, E (reprint author), Swedish Univ Agr Sci, Dept Plant Biol & Forest Genet, SE-75007 Uppsala, Sweden. EM elke.mangelsen@vbsg.slu.se FU Swedish Research Council for Environment, Agricultural Sciences, and Spatial Planning (Formas); Stiftelsen August T. Larsson Fond; Deutsche Forschungsgemeinschaft [HA2146/11-1]; U.S. Department of Energy, Lawrence Berkeley National Laboratory [DE-AC02-05CH11231] FX This work was supported by the Swedish Research Council for Environment, Agricultural Sciences, and Spatial Planning (Formas), the Stiftelsen August T. Larsson Fond, the Deutsche Forschungsgemeinschaft (grant no. HA2146/11-1), and the U.S. Department of Energy (contract no. DE-AC02-05CH11231 with the Lawrence Berkeley National Laboratory). NR 98 TC 20 Z9 21 U1 0 U2 26 PU AMER SOC PLANT BIOLOGISTS PI ROCKVILLE PA 15501 MONONA DRIVE, ROCKVILLE, MD 20855 USA SN 0032-0889 J9 PLANT PHYSIOL JI Plant Physiol. PD MAY PY 2010 VL 153 IS 1 BP 14 EP 33 DI 10.1104/pp.110.154856 PG 20 WC Plant Sciences SC Plant Sciences GA 590PS UT WOS:000277239900002 PM 20304969 ER PT J AU Hsieh, TH Li, CW Su, RC Cheng, CP Sanjaya Tsai, YC Chan, MT AF Hsieh, Tsai-Hung Li, Chia-Wen Su, Ruey-Chih Cheng, Chiu-Ping Sanjaya Tsai, Yi-Chien Chan, Ming-Tsair TI A tomato bZIP transcription factor, SlAREB, is involved in water deficit and salt stress response SO PLANTA LA English DT Article DE ABA-responsive element binding protein; Abscisic acid; Salinity; Water deficit ID HIGH-SALINITY STRESSES; ABSCISIC-ACID; ARABIDOPSIS-THALIANA; EXPRESSION PROFILES; ENHANCES TOLERANCE; TRANSGENIC PLANTS; PROTEIN-KINASES; CDNA MICROARRAY; GENE FAMILY; CROSS-TALK AB Abiotic stresses such as cold, water deficit, and salt stresses severely reduce crop productivity. Tomato (Solanum lycopersicum) is an important economic crop; however, not much is known about its stress responses. To gain insight into stress-responsive gene regulation in tomato plants, we identified transcription factors from a tomato cDNA microarray. An ABA-responsive element binding protein (AREB) was identified and named SlAREB. In tomato protoplasts, SlAREB transiently transactivated luciferase reporter gene expression driven by AtRD29A (responsive to dehydration) and SlLAP (leucine aminopeptidase) promoters with exogenous ABA application, which was suppressed by the kinase inhibitor staurosporine, indicating that an ABA-dependent post-translational modification is required for the transactivation ability of SlAREB protein. Electrophoretic mobility shift assays showed that the recombinant DNA-binding domain of SlAREB protein is able to bind AtRD29A and SlLAP promoter regions. Constitutively expressed SlAREB increased tolerance to water deficit and high salinity stresses in both Arabidopsis and tomato plants, which maintained PSII and membrane integrities as well as water content in plant bodies. Overproduction of SlAREB in Arabidopsis thaliana and tomato plants regulated stress-related genes AtRD29A, AtCOR47, and SlCI7-like dehydrin under ABA and abiotic stress treatments. Taken together, these results show that SlAREB functions to regulate some stress-responsive genes and that its overproduction improves plant tolerance to water deficit and salt stress. C1 [Li, Chia-Wen; Chan, Ming-Tsair] Acad Sinica, Biotechnol Ctr So Taiwan, Tainan 74146, Taiwan. [Hsieh, Tsai-Hung; Sanjaya; Tsai, Yi-Chien] Acad Sinica, Agr Biotechnol Res Ctr, Taipei 115, Taiwan. [Su, Ruey-Chih] Fu Jen Catholic Univ, Dept Life Sci, Taipei 24205, Taiwan. [Cheng, Chiu-Ping] Natl Taiwan Univ, Inst Plant Biol, Taipei 106, Taiwan. [Sanjaya] MSU, Dept Biochem & Mol Biol, Great Lakes Bioenergy Res Ctr, E Lansing, MI 48824 USA. [Tsai, Yi-Chien] Acad Sinica, Genom Res Ctr, Taipei 115, Taiwan. RP Chan, MT (reprint author), Acad Sinica, Biotechnol Ctr So Taiwan, Tainan 74146, Taiwan. EM mbmtchan@gate.sinica.edu.tw RI Chan, Ming-Tsair/L-2465-2015; OI Cheng, Chiu-Ping/0000-0002-6643-5643; Chan, Ming-Tsair/0000-0002-1942-9160 FU National Science Council of the Republic of China [NSC-92-2311-B-001-071, NSC-95-2311-B-001-003] FX We appreciate the efforts of Wei-Chou Houng, Ho-Ming Chen, Pei-Wen Cheng, Chi-Jia Peng, Jung-Pin Wu, and the Bioinformatics Core Laboratory of Agricultural Biotechnology Research Center in array printing and establishment of the database. We thank Dr. Su-Chiung Fang (Academia Sinica Biotechnology Center in Southern Taiwan) for helpful discussions and grammar correction. Tsai-Hung Hsieh, Chia-Wen Li, and Ruey-Chih Su contributed equally to this work. This research was supported by Academia Sinica, and grants NSC-92-2311-B-001-071 and NSC-95-2311-B-001-003 from the National Science Council of the Republic of China. NR 58 TC 53 Z9 65 U1 2 U2 28 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0032-0935 J9 PLANTA JI Planta PD MAY PY 2010 VL 231 IS 6 BP 1459 EP 1473 DI 10.1007/s00425-010-1147-4 PG 15 WC Plant Sciences SC Plant Sciences GA 583GV UT WOS:000276662700019 PM 20358223 ER PT J AU Gorelenkov, NN Fisch, NJ Fredrickson, E AF Gorelenkov, N. N. Fisch, N. J. Fredrickson, E. TI On the anomalous fast ion energy diffusion in toroidal plasmas due to cavity modes SO PLASMA PHYSICS AND CONTROLLED FUSION LA English DT Article ID FUSION TEST REACTOR; COMPRESSIONAL ALFVEN EIGENMODES; SPHERICAL TORUS EXPERIMENT; CYCLOTRON EMISSION; ALPHA-PARTICLES; BERNSTEIN WAVES; TOKAMAK; TFTR; DRIVEN; INSTABILITY AB An enormous wave-particle diffusion coefficient along paths suitable for alpha channeling had been deduced in mode-converted ion Bernstein wave experiments on the Tokamak Fusion Test Reactor (TFTR). The only plausible explanation advanced for such a large diffusion coefficient was the excitation of internal cavity modes which induce particle diffusion along identical diffusion paths, but at much higher rates. Although such a mode was conjectured, it was never observed. However, recent detailed observations of high frequency compressional Alfven eigenmodes (CAEs) on the National Spherical Torus Experiment (NSTX) indirectly support the existence of the related conjectured modes on TFTR. The eigenmodes responsible for the high frequency magnetic activity can be identified as CAEs through the polarization of the observed magnetic field oscillations in NSTX and through a comparison with the theoretically derived frequency dispersion relation. Here, we show how these recent observations of high frequency CAEs lend support to this explanation of the long-standing puzzle of anomalous fast ion energy diffusion on TFTR. The support of the conjecture that these internal modes could have caused the remarkable ion energy diffusion on TFTR carries significant and favorable implications for the possibilities in achieving the alpha channeling effect with small injected power in a tokamak reactor. C1 [Gorelenkov, N. N.; Fisch, N. J.; Fredrickson, E.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Gorelenkov, NN (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. EM ngorelen@pppl.gov NR 35 TC 11 Z9 12 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0741-3335 J9 PLASMA PHYS CONTR F JI Plasma Phys. Control. Fusion PD MAY PY 2010 VL 52 IS 5 AR 055014 DI 10.1088/0741-3335/52/5/055014 PG 13 WC Physics, Fluids & Plasmas SC Physics GA 588ZS UT WOS:000277114000015 ER PT J AU Marr, KD Lipschultz, B Catto, PJ McDermott, RM Reinke, ML Simakov, AN AF Marr, K. D. Lipschultz, B. Catto, P. J. McDermott, R. M. Reinke, M. L. Simakov, A. N. TI Comparison of neoclassical predictions with measured flows and evaluation of a poloidal impurity density asymmetry SO PLASMA PHYSICS AND CONTROLLED FUSION LA English DT Article ID JOINT EUROPEAN TORUS; EDGE ELECTRIC-FIELD; DIII-D; TRANSPORT; ROTATION; TOKAMAK; PLASMA; TURBULENCE; COLLISIONALITY; PARAMETERS AB The study and prediction of velocities in the pedestal region of Alcator C-Mod are important for understanding plasma confinement and transport. In this study we examine the simplified neoclassical predictions for impurity flows using equations developed for plasmas with background ions in the Pfirsch-Schluter (PS) (high collisionality) and banana (low collisionality) regimes. B(5+) flow profiles for H-mode plasmas are acquired using the charge-exchange recombination spectroscopy diagnostic on Alcator C-Mod and are compared with calculated profiles for the region just inside the last closed flux surface. Reasonable agreement is found between the predictions from the PS regime formalism and the measured poloidal velocities for the steep gradient region of the H-mode pedestals, regardless of the collisionality of the plasma. The agreement is poorer between the neoclassical predictions and measured velocity profiles using the banana regime formalism. Additionally, comparisons of measured velocities from the low-and high-field sides (LFS and HFS) of the plasma lead us to infer the strong possibility of a poloidal asymmetry in the B(5+) density. This asymmetry can be a factor of 2-3 for the region of the steepest gradients, with the density at the HFS being larger. The magnitude of the density asymmetry is found to be correlated with the magnitude of the poloidal velocity at the LFS of the plasma. C1 [Marr, K. D.; Lipschultz, B.; Catto, P. J.; Reinke, M. L.] MIT Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA. [McDermott, R. M.] EURATOM, Max Planck Inst Plasmaphys, Garching, Germany. [Simakov, A. N.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Marr, KD (reprint author), MIT Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA. EM kmarr@mit.edu RI Lipschultz, Bruce/J-7726-2012; OI Lipschultz, Bruce/0000-0001-5968-3684; Simakov, Andrei/0000-0001-7064-9153 FU DOE [DE-FC02-99ER54512] FX The authors would like to thank the C-Mod Operations team and the Plasma Science and Fusion Center administration team for all their hard work which made this research possible. Additional thanks go to W M Burke, R M Churchill, R S Granetz, P Helander, I H Hutchinson, J W Hughes, G Kagan, S M Wolfe, S J Wukitch and D G Whyte for their help, efforts and insight. This work was funded by DOE award # DE-FC02-99ER54512. NR 38 TC 42 Z9 42 U1 0 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0741-3335 J9 PLASMA PHYS CONTR F JI Plasma Phys. Control. Fusion PD MAY PY 2010 VL 52 IS 5 AR 055010 DI 10.1088/0741-3335/52/5/055010 PG 22 WC Physics, Fluids & Plasmas SC Physics GA 588ZS UT WOS:000277114000011 ER PT J AU Marchese, R Grandori, R Carloni, P Raugei, S AF Marchese, Roberto Grandori, Rita Carloni, Paolo Raugei, Simone TI On the Zwitterionic Nature of Gas-Phase Peptides and Protein Ions SO PLOS COMPUTATIONAL BIOLOGY LA English DT Article ID IONIZATION-MASS-SPECTROMETRY; INFRARED RADIATIVE DISSOCIATION; ELECTRON-CAPTURE DISSOCIATION; SPACE GAUSSIAN PSEUDOPOTENTIALS; MOLECULAR-DYNAMICS SIMULATIONS; SALT BRIDGE STABILIZATION; PROTONATED ARGININE DIMER; DENSITY-FUNCTIONAL THEORY; MAXIMUM CHARGE-STATE; AMINO-ACID AB Determining the total number of charged residues corresponding to a given value of net charge for peptides and proteins in gas phase is crucial for the interpretation of mass-spectrometry data, yet it is far from being understood. Here we show that a novel computational protocol based on force field and massive density functional calculations is able to reproduce the experimental facets of well investigated systems, such as angiotensin II, bradykinin, and tryptophan-cage. The protocol takes into account all of the possible protomers compatible with a given charge state. Our calculations predict that the low charge states are zwitterions, because the stabilization due to intramolecular hydrogen bonding and salt-bridges can compensate for the thermodynamic penalty deriving from deprotonation of acid residues. In contrast, high charge states may or may not be zwitterions because internal solvation might not compensate for the energy cost of charge separation. C1 [Marchese, Roberto; Carloni, Paolo; Raugei, Simone] Int Sch Adv Studies SISSA ISAS, Stat & Biol Phys Sector, Trieste, Italy. [Marchese, Roberto; Raugei, Simone] DEMOCRITOS, Trieste, Italy. [Grandori, Rita] Dept Biol Sci & Technol, Milan, Italy. [Carloni, Paolo] Italian Inst Technol, Trieste, Italy. [Carloni, Paolo] FZ Juelich, Computat Biophys sector, German Res Sch Simulat Sci, Julich, Germany. [Raugei, Simone] Rhein Westfal TH Aachen, Julich, Germany. [Raugei, Simone] Pacific NW Natl Lab, Ctr Mol Electrocatalysis, Richland, WA 99352 USA. RP Marchese, R (reprint author), Int Sch Adv Studies SISSA ISAS, Stat & Biol Phys Sector, Trieste, Italy. EM rita.grandori@unimib.it; raugei@sissa.it RI Carloni, Paolo/H-8736-2013 FU CNR/INFM; "Fondo Ateneo per la Ricerca" (FAR) FX This study was supported by the CNR/INFM with allocation of computer time at the CINECA supercomputing center and "Fondo Ateneo per la Ricerca" (FAR) to RG. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 115 TC 21 Z9 21 U1 4 U2 26 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA SN 1553-734X J9 PLOS COMPUT BIOL JI PLoS Comput. Biol. PD MAY PY 2010 VL 6 IS 5 AR e1000775 DI 10.1371/journal.pcbi.1000775 PG 11 WC Biochemical Research Methods; Mathematical & Computational Biology SC Biochemistry & Molecular Biology; Mathematical & Computational Biology GA 610TJ UT WOS:000278759700007 PM 20463874 ER PT J AU Taghavi, S van der Lelie, D Hoffman, A Zhang, YB Walla, MD Vangronsveld, J Newman, L Monchy, S AF Taghavi, Safiyh van der Lelie, Daniel Hoffman, Adam Zhang, Yian-Biao Walla, Michael D. Vangronsveld, Jaco Newman, Lee Monchy, Sebastien TI Genome Sequence of the Plant Growth Promoting Endophytic Bacterium Enterobacter sp 638 SO PLOS GENETICS LA English DT Article ID PSEUDOMONAS-CHLORORAPHIS O6; MEMBRANE-TRANSPORT SYSTEMS; ESCHERICHIA-COLI; ARABIDOPSIS-THALIANA; BURKHOLDERIA-CEPACIA; BACILLUS-SUBTILIS; NICOTIANA-TABACUM; ACC DEAMINASE; IDENTIFICATION; VIRULENCE AB Enterobacter sp. 638 is an endophytic plant growth promoting gamma-proteobacterium that was isolated from the stem of poplar (Populus trichocarpa x deltoides cv. H11-11), a potentially important biofuel feed stock plant. The Enterobacter sp. 638 genome sequence reveals the presence of a 4,518,712 bp chromosome and a 157,749 bp plasmid (pENT638-1). Genome annotation and comparative genomics allowed the identification of an extended set of genes specific to the plant niche adaptation of this bacterium. This includes genes that code for putative proteins involved in survival in the rhizosphere (to cope with oxidative stress or uptake of nutrients released by plant roots), root adhesion (pili, adhesion, hemagglutinin, cellulose biosynthesis), colonization/establishment inside the plant (chemiotaxis, flagella, cellobiose phosphorylase), plant protection against fungal and bacterial infections (siderophore production and synthesis of the antimicrobial compounds 4-hydroxybenzoate and 2-phenylethanol), and improved poplar growth and development through the production of the phytohormones indole acetic acid, acetoin, and 2,3-butanediol. Metabolite analysis confirmed by quantitative RT-PCR showed that, the production of acetoin and 2,3-butanediol is induced by the presence of sucrose in the growth medium. Interestingly, both the genetic determinants required for sucrose metabolism and the synthesis of acetoin and 2,3-butanediol are clustered on a genomic island. These findings point to a close interaction between Enterobacter sp. 638 and its poplar host, where the availability of sucrose, a major plant sugar, affects the synthesis of plant growth promoting phytohormones by the endophytic bacterium. The availability of the genome sequence, combined with metabolome and transcriptome analysis, will provide a better understanding of the synergistic interactions between poplar and its growth promoting endophyte Enterobacter sp. 638. This information can be further exploited to improve establishment and sustainable production of poplar as an energy feedstock on marginal, non-agricultural soils using endophytic bacteria as growth promoting agents. C1 [Taghavi, Safiyh; van der Lelie, Daniel; Hoffman, Adam; Zhang, Yian-Biao; Newman, Lee; Monchy, Sebastien] Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. [Walla, Michael D.] Univ S Carolina, Dept Chem & Biochem, Mass Spectrometer Ctr, Columbia, SC 29208 USA. [Vangronsveld, Jaco] Univ Hasselt, Dept Environm Biol, Diepenbeek, Belgium. RP Taghavi, S (reprint author), Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. EM vdlelied@bnl.gov FU US Department of Energy, Office of Science, BER [KP1102010, DE-AC02-98CH10886]; U.S. Department of Energy [LDRD09-005]; US Department of Energy's Office of Science; University of California, Lawrence Berkeley National Laboratory [DE-AC02-05CH11231]; Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; Los Alamos National Laboratory [DE-AC02-06NA25396] FX This work was supported by the US Department of Energy, Office of Science, BER, project number KP1102010 under contract DE-AC02-98CH10886. AH, DvdL, LN, SM, ST, and Y-BZ were supported by Laboratory Directed Research and Development funds (LDRD09-005) at the Brookhaven National Laboratory under contract with the U.S. Department of Energy. Sequencing of Enterobacter sp. 638 was performed at the Joint Genome Institute (JGI) under the auspices of the US Department of Energy's Office of Science, Biological and Environmental Research Program, and by the University of California, Lawrence Berkeley National Laboratory under contract No. DE-AC02-05CH11231, Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344, and Los Alamos National Laboratory under contract No. DE-AC02-06NA25396. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 95 TC 85 Z9 756 U1 12 U2 92 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA SN 1553-7390 J9 PLOS GENET JI PLoS Genet. PD MAY PY 2010 VL 6 IS 5 AR e1000943 DI 10.1371/journal.pgen.1000943 PG 15 WC Genetics & Heredity SC Genetics & Heredity GA 608BU UT WOS:000278557300013 PM 20485560 ER PT J AU Wang, ZL Rhee, DB Lu, JA Bohr, CT Zhou, F Vallabhaneni, H de Souza-Pinto, NC Liu, Y AF Wang, Zhilong Rhee, David B. Lu, Jian Bohr, Christina T. Zhou, Fang Vallabhaneni, Haritha de Souza-Pinto, Nadja C. Liu, Yie TI Characterization of Oxidative Guanine Damage and Repair in Mammalian Telomeres SO PLOS GENETICS LA English DT Article ID BASE EXCISION-REPAIR; ONE-ELECTRON OXIDATION; DNA-DAMAGE; SACCHAROMYCES-CEREVISIAE; DYSFUNCTIONAL TELOMERES; HOMOLOGOUS RECOMBINATION; NUCLEIC-ACIDS; GGG TRIPLETS; STRAND BREAK; CELL-DEATH AB 8-oxo-7,8-dihydroguanine (8-oxoG) and 2,6-diamino-4-hydroxy-5-formamidopyrimidine (FapyG) are among the most common oxidative DNA lesions and are substrates for 8-oxoguanine DNA glycosylase (OGG1)-initiated DNA base excision repair (BER). Mammalian telomeres consist of triple guanine repeats and are subject to oxidative guanine damage. Here, we investigated the impact of oxidative guanine damage and its repair by OGG1 on telomere integrity in mice. The mouse cells were analyzed for telomere integrity by telomere quantitative fluorescence in situ hybridization (telomere-FISH), by chromosome orientation-FISH (CO-FISH), and by indirect immunofluorescence in combination with telomere-FISH and for oxidative base lesions by Fpg-incision/Southern blot assay. In comparison to the wild type, telomere lengthening was observed in Ogg1 null (Ogg1(-/-)) mouse tissues and primary embryonic fibroblasts (MEFs) cultivated in hypoxia condition (3% oxygen), whereas telomere shortening was detected in Ogg1(-/-) mouse hematopoietic cells and primary MEFs cultivated in normoxia condition (20% oxygen) or in the presence of an oxidant. In addition, telomere length abnormalities were accompanied by altered telomere sister chromatid exchanges, increased telomere single- and double-strand breaks, and preferential telomere lagging- or G-strand losses in Ogg1(-/-) mouse cells. Oxidative guanine lesions were increased in telomeres in Ogg1(-/-) mice with aging and primary MEFs cultivated in 20% oxygen. Furthermore, oxidative guanine lesions persisted at high level in Ogg1(-/-) MEFs after acute exposure to hydrogen peroxide, while they rapidly returned to basal level in wild-type MEFs. These findings indicate that oxidative guanine damage can arise in telomeres where it affects length homeostasis, recombination, DNA replication, and DNA breakage repair. Our studies demonstrate that BER pathway is required in repairing oxidative guanine damage in telomeres and maintaining telomere integrity in mammals. C1 [Wang, Zhilong; Rhee, David B.; Lu, Jian; Bohr, Christina T.; Zhou, Fang; Vallabhaneni, Haritha; de Souza-Pinto, Nadja C.; Liu, Yie] NIA, Lab Mol Gerontol, NIH, Baltimore, MD 21224 USA. [Rhee, David B.] Univ Tennessee, Oak Ridge Natl Lab, Grad Sch Genome Sci & Technol, Knoxville, TN USA. RP Wang, ZL (reprint author), NIA, Lab Mol Gerontol, NIH, Baltimore, MD 21224 USA. EM liuyie@mail.nih.gov RI Lu, Jian/G-8391-2011; Souza-Pinto, Nadja/C-3462-2013; 3, INCT/H-4497-2013; Redoxoma, Inct/H-9962-2013 OI Lu, Jian/0000-0001-6522-8485; Souza-Pinto, Nadja/0000-0003-4206-964X; FU NIA, National Institutes of Health; UT-ORNL Graduate School of Genome Science and Technology FX This work was supported by funds from the Intramural Research Program of the NIA, National Institutes of Health. DBR was supported by UT-ORNL Graduate School of Genome Science and Technology. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 68 TC 61 Z9 61 U1 0 U2 15 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA SN 1553-7390 J9 PLOS GENET JI PLoS Genet. PD MAY PY 2010 VL 6 IS 5 AR e1000951 DI 10.1371/journal.pgen.1000951 PG 13 WC Genetics & Heredity SC Genetics & Heredity GA 608BU UT WOS:000278557300021 PM 20485567 ER PT J AU Li, H Bar, KJ Wang, SY Decker, JM Chen, YL Sun, CX Salazar-Gonzalez, JF Salazar, MG Learn, GH Morgan, CJ Schumacher, JE Hraber, P Giorgi, EE Bhattacharya, T Korber, BT Perelson, AS Eron, JJ Cohen, MS Hicks, CB Haynes, BF Markowitz, M Keele, BF Hahn, BH Shaw, GM AF Li, Hui Bar, Katharine J. Wang, Shuyi Decker, Julie M. Chen, Yalu Sun, Chuanxi Salazar-Gonzalez, Jesus F. Salazar, Maria G. Learn, Gerald H. Morgan, Charity J. Schumacher, Joseph E. Hraber, Peter Giorgi, Elena E. Bhattacharya, Tanmoy Korber, Bette T. Perelson, Alan S. Eron, Joseph J. Cohen, Myron S. Hicks, Charles B. Haynes, Barton F. Markowitz, Martin Keele, Brandon F. Hahn, Beatrice H. Shaw, George M. TI High Multiplicity Infection by HIV-1 in Men Who Have Sex with Men SO PLOS PATHOGENS LA English DT Article ID HUMAN-IMMUNODEFICIENCY-VIRUS; TYPE-1 INFECTION; SELECTIVE TRANSMISSION; IN-VIVO; RECOMBINATION; CELLS; DYNAMICS; DIVERSITY; VARIANTS; PREVENT AB Elucidating virus-host interactions responsible for HIV-1 transmission is important for advancing HIV-1 prevention strategies. To this end, single genome amplification (SGA) and sequencing of HIV-1 within the context of a model of random virus evolution has made possible for the first time an unambiguous identification of transmitted/founder viruses and a precise estimation of their numbers. Here, we applied this approach to HIV-1 env analyses in a cohort of acutely infected men who have sex with men (MSM) and found that a high proportion (10 of 28; 36%) had been productively infected by more than one virus. In subjects with multivariant transmission, the minimum number of transmitted viruses ranged from 2 to 10 with viral recombination leading to rapid and extensive genetic shuffling among virus lineages. A combined analysis of these results, together with recently published findings based on identical SGA methods in largely heterosexual (HSX) cohorts, revealed a significantly higher frequency of multivariant transmission in MSM than in HSX [19 of 50 subjects (38%) versus 34 of 175 subjects (19%); Fisher's exact p = 0.008]. To further evaluate the SGA strategy for identifying transmitted/founder viruses, we analyzed 239 overlapping 5' and 3' half genome or env-only sequences from plasma viral RNA (vRNA) and blood mononuclear cell DNA in an MSM subject who had a particularly well-documented virus exposure history 3 -6 days before symptom onset and 14-17 days before peak plasma viremia (47,600,000 vRNA molecules/ml). All 239 sequences coalesced to a single transmitted/ founder virus genome in a time frame consistent with the clinical history, and a molecular clone of this genome encoded replication competent virus in accord with model predictions. Higher multiplicity of HIV-1 infection in MSM compared with HSX is consistent with the demonstrably higher epidemiological risk of virus acquisition in MSM and could indicate a greater challenge for HIV-1 vaccines than previously recognized. C1 [Li, Hui; Bar, Katharine J.; Wang, Shuyi; Decker, Julie M.; Chen, Yalu; Sun, Chuanxi; Salazar-Gonzalez, Jesus F.; Salazar, Maria G.; Learn, Gerald H.; Schumacher, Joseph E.; Hahn, Beatrice H.; Shaw, George M.] Univ Alabama, Dept Med, Birmingham, AL 35294 USA. [Morgan, Charity J.] Univ Alabama, Dept Biostat, Birmingham, AL 35294 USA. [Hraber, Peter; Giorgi, Elena E.; Bhattacharya, Tanmoy; Korber, Bette T.; Perelson, Alan S.] Los Alamos Natl Lab, Los Alamos, NM USA. [Giorgi, Elena E.] Univ Massachusetts, Dept Math & Stat, Amherst, MA 01003 USA. [Bhattacharya, Tanmoy; Korber, Bette T.] Santa Fe Inst, Santa Fe, NM 87501 USA. [Eron, Joseph J.; Cohen, Myron S.] Univ N Carolina, Dept Med, Chapel Hill, NC USA. [Hicks, Charles B.; Haynes, Barton F.] Duke Univ, Dept Med, Durham, NC USA. [Markowitz, Martin] Aaron Diamond AIDS Res Ctr, New York, NY USA. [Markowitz, Martin] Rockefeller Univ, New York, NY 10021 USA. [Keele, Brandon F.] NCI, SAIC Frederick, Frederick, MD 21701 USA. [Hahn, Beatrice H.; Shaw, George M.] Univ Alabama, Dept Microbiol, Birmingham, AL 35294 USA. RP Li, H (reprint author), Univ Alabama, Dept Med, Birmingham, AL 35294 USA. EM gshaw@uab.edu RI Bhattacharya, Tanmoy/J-8956-2013; OI Bhattacharya, Tanmoy/0000-0002-1060-652X; Korber, Bette/0000-0002-2026-5757; Hraber, Peter/0000-0002-2920-4897 FU Center for HIV/AIDS Vaccine Immunology (CHAVI); National Institutes of Health [AI67854, AI27767, AI41534, AI28433, CA13148, RR24143, HHSN266200400088C]; Bill & Melinda Gates Foundation [37874] FX This work was supported by the Center for HIV/AIDS Vaccine Immunology (CHAVI) and by grants and contracts from the National Institutes of Health (AI67854, AI27767, AI41534, AI28433, CA13148, RR24143, HHSN266200400088C) and the Bill & Melinda Gates Foundation (37874). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 60 TC 143 Z9 145 U1 0 U2 10 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA SN 1553-7366 J9 PLOS PATHOG JI PLoS Pathog. PD MAY PY 2010 VL 6 IS 5 AR e1000890 DI 10.1371/journal.ppat.1000890 PG 17 WC Microbiology; Parasitology; Virology SC Microbiology; Parasitology; Virology GA 610TL UT WOS:000278759900012 PM 20485520 ER PT J AU Singh, AP Bhat, PC Mokhov, NV Beri, S AF Singh, A. P. Bhat, P. C. Mokhov, N. V. Beri, S. TI Beam-induced radiation in the compact muon solenoid tracker at the Large Hadron Collider SO PRAMANA-JOURNAL OF PHYSICS LA English DT Article DE Compact muon solenoid; tracker; beam radiation; dose; fluences AB The intense radiation environment at the Large Hadron Collider, CERN at a design energy of root s = 14 TeV and a luminosity of 10(34) cm(-2) s(-1) poses unprecedented challenges for safe operation and performance quality of the silicon tracker detectors in the CMS and ATLAS experiments. The silicon trackers are crucial for the physics at the LHC experiments, and the inner layers, being situated only a few centimeters from the interaction point, are most vulnerable to beam-induced radiation. We have recently carried out extensive Monte Carlo simulation studies using MARS program to estimate particle fluxes and radiation dose in the CMS silicon pixel and strip trackers from proton-proton collisions at root s = 14 TeV and from machine-induced background such as beam-gas interactions and beam halo. We will present results on radiation dose, particle fluxes and spectra from these studies and discuss implications for radiation damage and performance of the CMS silicon tracker detectors. C1 [Singh, A. P.; Beri, S.] Panjab Univ, Dept Phys, Chandigarh 160014, India. [Bhat, P. C.; Mokhov, N. V.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. RP Singh, AP (reprint author), Panjab Univ, Dept Phys, Chandigarh 160014, India. EM anil79@fnal.gov NR 7 TC 0 Z9 0 U1 0 U2 1 PU INDIAN ACAD SCIENCES PI BANGALORE PA C V RAMAN AVENUE, SADASHIVANAGAR, P B #8005, BANGALORE 560 080, INDIA SN 0304-4289 J9 PRAMANA-J PHYS JI Pramana-J. Phys. PD MAY PY 2010 VL 74 IS 5 BP 719 EP 729 PG 11 WC Physics, Multidisciplinary SC Physics GA 630SX UT WOS:000280295500003 ER PT J AU Dohnalek, Z Lyubinetsky, I Rousseau, R AF Dohnalek, Zdenek Lyubinetsky, Igor Rousseau, Roger TI Thermally-driven processes on rutile TiO2(110)-(1 x 1): A direct view at the atomic scale SO PROGRESS IN SURFACE SCIENCE LA English DT Review DE TiO2(110); Oxygen; Water; Alcohols; Adsorption; Diffusion reaction; Catalysis; STM; DFT; Review ID SCANNING-TUNNELING-MICROSCOPY; RAY PHOTOELECTRON-SPECTROSCOPY; VACUUM-ANNEALED TIO2(110); DENSITY-FUNCTIONAL THEORY; TRANSITION-METAL OXIDES; SURFACE HYDROXYL-GROUPS; TIO2 110 SURFACES; OXYGEN VACANCIES; MOLECULAR-OXYGEN; WATER-ADSORPTION AB The technological importance of TiO2 has led to a broad effort aimed at understanding the elementary steps that underlie catalytic and photocatalytic reactions. The most stable surface, rutile TiO2(1 1 0), in particular, has became a prototypical model for fundamental studies of TiO2. In this critical review we have selected oxygen, water, and alcohols to evaluate recent progress relevant for applications in the areas of water splitting and oxidation of organic contaminants. We first focus on the characterization of defects and the distribution of excess charge that results from their formation. The subsequent section concentrates on the role of individual surface sites and the effect of available charge in the adsorption processes. The discussion of adsorbate dynamics follows, providing models for intrinsic and extrinsic diffusion processes as well as rotational dynamics of anchored alkoxy species. The final section summarizes our current understanding of TiO2(1 1 0) catalyzed reactions between water, oxygen, and their dissociation products. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Dohnalek, Zdenek; Rousseau, Roger] Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Richland, WA 99352 USA. [Dohnalek, Zdenek; Lyubinetsky, Igor; Rousseau, Roger] Pacific NW Natl Lab, Inst Interfacial Catalysis, Richland, WA 99352 USA. [Lyubinetsky, Igor] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. RP Dohnalek, Z (reprint author), Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Richland, WA 99352 USA. EM Zdenek.Dohnalek@pnl.gov RI Rousseau, Roger/C-3703-2014; OI Dohnalek, Zdenek/0000-0002-5999-7867 FU U.S. Department of Energy Office of Basic Energy Sciences, Division of Chemical Sciences, Biosciences and Geosciences; U.S. DOE [DE-AC06-76RLO 1830] FX The authors would like to acknowledge many co-workers and collaborators that have been instrumental in producing a significant fraction of the results reviewed here, in particular N.A. Deskins, Y. Du, and Z. Zhang. Further we would like to thank M. Dupuis, M.A. Henderson, B.D. Kay, G.A. Kimmel, and N. Petrik for frequent enlightening discussions on this topic. The work was supported by the U.S. Department of Energy Office of Basic Energy Sciences, Division of Chemical Sciences, Biosciences and Geosciences. PNNL is operated for the U.S. DOE by Battelle Memorial Institute under Contract No. DE-AC06-76RLO 1830. NR 184 TC 179 Z9 179 U1 29 U2 192 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0079-6816 J9 PROG SURF SCI JI Prog. Surf. Sci. PD MAY-AUG PY 2010 VL 85 IS 5-8 BP 161 EP 205 DI 10.1016/j.progsurf.2010.03.001 PG 45 WC Chemistry, Physical; Physics, Condensed Matter SC Chemistry; Physics GA 659IF UT WOS:000282559500001 ER PT J AU Maksymovych, P Voznyy, O Dougherty, DB Sorescu, DC Yates, JT AF Maksymovych, Peter Voznyy, Oleksandr Dougherty, Daniel B. Sorescu, Dan C. Yates, John T., Jr. TI Gold adatom as a key structural component in self-assembled monolayers of organosulfur molecules on Au(111) SO PROGRESS IN SURFACE SCIENCE LA English DT Review DE Self-assembly; Gold; Thiol; Thiolate; Alkanethiol; Arenethiol; Adatom; Stress; Herringbone; Reconstruction; Molecular electronics; Striped phase; Etch pits ID SCANNING-TUNNELING-MICROSCOPY; DENSITY-FUNCTIONAL THEORY; X-RAY-DIFFRACTION; ALKANETHIOL MONOLAYERS; ADSORPTION SITE; ATOMIC-STRUCTURE; SINGLE-MOLECULE; N-ALKANETHIOLS; METAL-SURFACES; REAL-TIME AB Chemisorption of organosulfur molecules, such as alkanethiols, arenethiols and disulfide compounds on gold surfaces and their subsequent self-organization is the archetypal process for molecular self-assembly on surfaces. Owing to their ease of preparation and high versatility, alkanethiol self-assembled monolayers (SAMs) have been widely studied for potential applications including surface functionalization, molecular motors, molecular electronics, and immobilization of biological molecules. Despite fundamental advances, the dissociative chemistry of the sulfur headgroup on gold leading to the formation of the sulfur-gold anchor bond has remained controversial. This review summarizes the recent progress in the understanding of the geometrical and electronic structure of the anchor bond. Particular attention is drawn to the involvement of gold adatoms at all stages of alkanethiol self-assembly, including the dissociation of the disulfide (S-S) and hydrogen-sulfide (S-H) bonds and subsequent formation of the self-assembled structure. Gold adatom chemistry is proposed here to be a unifying theme that explains various aspects of the alkanethiol self-assembly and reconciles experimental evidence provided by scanning probe microscopy and spectroscopic methods of surface science. While several features of alkanethiol self-assembly have yet to be revisited in light of the new adatom-based models, the successes of alkanethiol SAMs suggest that adatom-mediated surface chemistry may be a viable future approach for the construction of self-assembled monolayers involving molecules which do not contain sulfur. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Maksymovych, Peter] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Voznyy, Oleksandr] Univ Sherbrooke, Dept Elect & Comp Engn, Ctr Excellence Informat Engn CEGI, Sherbrooke, PQ J1K 2R1, Canada. [Dougherty, Daniel B.] N Carolina State Univ, Dept Phys, Raleigh, NC 27695 USA. [Sorescu, Dan C.] US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. [Yates, John T., Jr.] Univ Virginia, Dept Chem, Charlottesville, VA 22904 USA. RP Maksymovych, P (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. EM maksymovychp@ornl.gov RI Maksymovych, Petro/C-3922-2016 OI Maksymovych, Petro/0000-0003-0822-8459 FU Division of User Facilities Basic Energy Sciences, US Department of Energy; Natural Sciences and Engineering Research Council of Canada [TPGP 350501-07]; Canada Research Chair; W.M. Keck Foundation; Army Research Office FX The writing of this review was carried out, in part, by P.M. as a staff member at the Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, sponsored by the Division of User Facilities Basic Energy Sciences, US Department of Energy. O.V. acknowledges the support from Natural Sciences and Engineering Research Council of Canada - TPGP 350501-07 and the Canada Research Chair in Quantum Semiconductors Program. P.M. and J.T.Y. experimental work at the University of Pittsburgh was supported by the W.M. Keck Foundation and by the Army Research Office. NR 161 TC 151 Z9 151 U1 19 U2 152 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0079-6816 J9 PROG SURF SCI JI Prog. Surf. Sci. PD MAY-AUG PY 2010 VL 85 IS 5-8 BP 206 EP 240 DI 10.1016/j.progsurf.2010.05.001 PG 35 WC Chemistry, Physical; Physics, Condensed Matter SC Chemistry; Physics GA 659IF UT WOS:000282559500002 ER PT J AU Laganowsky, A Benesch, JLP Landau, M Ding, LL Sawaya, MR Cascio, D Huang, QL Robinson, CV Horwitz, J Eisenberg, D AF Laganowsky, Arthur Benesch, Justin L. P. Landau, Meytal Ding, Linlin Sawaya, Michael R. Cascio, Duilio Huang, Qingling Robinson, Carol V. Horwitz, Joseph Eisenberg, David TI Crystal structures of truncated alphaA and alphaB crystallins reveal structural mechanisms of polydispersity important for eye lens function SO PROTEIN SCIENCE LA English DT Article DE X-ray diffraction; small heat shock protein; protein chaperone; desmin-related myopathy; cataract; eye lens transparency ID HEAT-SHOCK-PROTEIN; MASS-SPECTROMETRY REVEALS; AMYLOID FIBRIL FORMATION; C-TERMINAL EXTENSION; B-CRYSTALLIN; A-CRYSTALLIN; MACROMOLECULAR ASSEMBLIES; MOLECULAR CHAPERONE; SUBSTRATE-BINDING; CONSERVED DOMAIN AB Small heat shock proteins alphaA and alphaB crystallin form highly polydisperse oligomers that frustrate protein aggregation, crystallization, and amyloid formation. Here, we present the crystal structures of truncated forms of bovine alphaA crystallin (AAC(59-163)) and human alphaB crystallin (ABC(68-162)), both containing the C-terminal extension that functions in chaperone action and oligomeric assembly. In both structures, the C-terminal extensions swap into neighboring molecules, creating runaway domain swaps. This interface, termed DS, enables crystallin polydispersity because the C-terminal extension is palindromic and thereby allows the formation of equivalent residue interactions in both directions. That is, we observe that the extension binds in opposite directions at the DS interfaces of AAC(59-163) and ABC(68-162). A second dimeric interface, termed AP, also enables polydispersity by forming an antiparallel beta sheet with three distinct registration shifts. These two polymorphic interfaces enforce polydispersity of alpha crystallin. This evolved polydispersity suggests molecular mechanisms for chaperone action and for prevention of crystallization, both necessary for transparency of eye lenses. C1 [Laganowsky, Arthur; Landau, Meytal; Sawaya, Michael R.; Cascio, Duilio; Eisenberg, David] Univ Calif Los Angeles, DOE Inst Genom & Prote, Howard Hughes Med Inst, Los Angeles, CA 90095 USA. [Laganowsky, Arthur; Landau, Meytal; Cascio, Duilio; Eisenberg, David] Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90024 USA. [Benesch, Justin L. P.; Robinson, Carol V.] Univ Oxford, Phys & Theoret Chem Lab, Dept Chem, Oxford OX1 3QZ, England. [Benesch, Justin L. P.; Robinson, Carol V.] Univ Cambridge, Dept Chem, Cambridge CB2 1EW, England. [Huang, Qingling; Horwitz, Joseph] Univ Calif Los Angeles, Jules Stein Eye Inst, Los Angeles, CA 90024 USA. RP Eisenberg, D (reprint author), Univ Calif Los Angeles, DOE Inst Genom & Prote, Howard Hughes Med Inst, Los Angeles, CA 90095 USA. EM david@mbi.ucla.edu RI landau, Meytal/J-3075-2012; Eisenberg, David/E-2447-2011 OI Benesch, Justin/0000-0002-1507-3742; Sawaya, Michael/0000-0003-0874-9043; FU NIH [5T32GM008496]; DOE BER [DE-FC02-02ER63421, DE-AC02-05CH11231, DE-AC02-06CH11357]; NIH National Center for Research Resources [RR-15301]; NSF; Royal Society; HHMI; NIH National Eye Institute [EY 3897] FX Grant sponsor: NIH Chemistry Biology Interface Training Program; Grant number: 5T32GM008496; Grant sponsor: DOE BER; Grant number: DE-FC02-02ER63421, DE-AC02-05CH11231, DE-AC02-06CH11357; Grant sponsor: NIH National Center for Research Resources; Grant number: RR-15301; Grant sponsors: NSF; the Royal Society; HHMI; NIH National Eye Institute; Grant number: EY 3897. NR 58 TC 137 Z9 141 U1 4 U2 34 PU JOHN WILEY & SONS INC PI HOBOKEN PA 111 RIVER ST, HOBOKEN, NJ 07030 USA SN 0961-8368 J9 PROTEIN SCI JI Protein Sci. PD MAY PY 2010 VL 19 IS 5 BP 1031 EP 1043 DI 10.1002/pro.380 PG 13 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 591DP UT WOS:000277279500012 PM 20440841 ER PT J AU Ammons, SM Johnson, L Laag, EA Kupke, R Gavel, DT Bauman, BJ Max, CE AF Ammons, S. Mark Johnson, Luke Laag, Edward A. Kupke, Renate Gavel, Donald T. Bauman, Brian J. Max, Claire E. TI Integrated Laboratory Demonstrations of Multi-Object Adaptive Optics on a Simulated 10 Meter Telescope at Visible Wavelengths SO PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC LA English DT Article ID LASER GUIDE-STAR; SODIUM-LAYER; TOMOGRAPHY; SYSTEM AB One important frontier for astronomical adaptive optics (AO) involves methods such as multi-object AO and multi-conjugate AO that have the potential to give a significantly larger field of view than conventional AO techniques. A second key emphasis over the next decade will be to push astronomical AO to visible wavelengths. We have conducted the first laboratory simulations of wide-field, laser guide star AO at visible wavelengths on a 10 m class telescope. These experiments, utilizing the UCO/Lick Observatory's multi-object/laser tomographic adaptive optics (MOAO/LTAO) test bed, demonstrate new techniques in wave front sensing and control that are crucial to future on-sky MOAO systems. We (1) test and confirm the feasibility of highly accurate atmospheric tomography with laser guide stars, (2) demonstrate key innovations allowing open-loop operation of Shack-Hartmann wave front sensors (with errors of similar to 30 nm) as will be needed for MOAO, and (3) build a complete error budget model describing system performance. The AO system maintains a performance of 32.4% Strehl ratio on-axis, with 24.5% and 22.6% at 10" and 15", respectively, at a science wavelength of 710 nm (R-band) over the equivalent of 0.8 s of simulation. The mean ensquared energy on-axis in a 50 mas spaxel is 46%. The off-axis Strehl ratios are obtained at radial separations 2-3 times the isoplanatic angle of the atmosphere at 710 nm. The MOAO-corrected field of view is similar to 25 times larger in area than that limited by anisoplanatism at R-band. The error budget we assemble is composed almost entirely of terms verified through independent, empirical experiments, with minimal parameterization of theoretical models. We find that error terms arising from calibration inaccuracies and optical drift are comparable in magnitude to traditional terms like fitting error and tomographic error. This makes a strong case for implementing additional calibration facilities in future AO systems, including accelerometers on powered optics, three-dimensional turbulators, telescopes, and laser guide star simulators, and external calibration ports for deformable mirrors. These laboratory demonstrations add strong credibility to the implementation of on-sky demonstrators of laser tomographic adaptive optics (LTAO) on 5-10 m telescopes in the coming years. C1 [Ammons, S. Mark] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. [Johnson, Luke; Kupke, Renate; Gavel, Donald T.; Max, Claire E.] Univ Calif Santa Cruz, Ctr Adapt Opt, Santa Cruz, CA 95064 USA. [Laag, Edward A.] Univ Calif Riverside, Riverside, CA 92521 USA. [Bauman, Brian J.] Lawrence Livermore Natl Lab, Livermore, CA USA. RP Ammons, SM (reprint author), Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. EM ammons@as.arizona.edu; ljohnson@ucolick.org; laag@ucolick.org; kupke@ucolick.org; gavel@ucolick.org; bauman3@llnl.gov; max@ucolick.org OI Max, Claire/0000-0003-0682-5436 FU National Science Foundation, NSF [AST-9876783]; Gordon & Betty Moore Foundation; Allen family through UC Observatories/Lick Observatory; UCSC Graduate Division; UC Riverside Chancellor's Fellowship Program FX This work has been supported in part by the NSF Science and Technology Center for Adaptive Optics, managed by the University of California, Santa Cruz (UCSC), under the cooperative agreement No. AST-9876783.; The MOAO/LTAO test bench in the Laboratory for Adaptive Optics at UCSC has been funded by the Gordon & Betty Moore Foundation. S. M. A. acknowledges Bachmann fellowship support by the Allen family through UC Observatories/Lick Observatory, the UCSC Graduate Division, and the National Science Foundation through the G. R. F. program. E. A. L. acknowledges support through the UC Riverside Chancellor's Fellowship Program. NR 41 TC 9 Z9 9 U1 0 U2 2 PU UNIV CHICAGO PRESS PI CHICAGO PA 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA SN 0004-6280 EI 1538-3873 J9 PUBL ASTRON SOC PAC JI Publ. Astron. Soc. Pac. PD MAY PY 2010 VL 122 IS 891 BP 573 EP 589 PG 17 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 589TE UT WOS:000277175800008 ER PT J AU Kalinowski, MB Axelsson, A Bean, M Blanchard, X Bowyer, TW Brachet, G Hebel, S McIntyre, JI Peters, J Pistner, C Raith, M Ringbom, A Saey, PRJ Schlosser, C Stocki, TJ Taffary, T Ungar, RK AF Kalinowski, Martin B. Axelsson, Anders Bean, Marc Blanchard, Xavier Bowyer, Theodore W. Brachet, Guy Hebel, Simon McIntyre, Justin I. Peters, Jana Pistner, Christoph Raith, Maria Ringbom, Anders Saey, Paul R. J. Schlosser, Clemens Stocki, Trevor J. Taffary, Thomas Ungar, R. Kurt TI Discrimination of Nuclear Explosions against Civilian Sources Based on Atmospheric Xenon Isotopic Activity Ratios SO PURE AND APPLIED GEOPHYSICS LA English DT Article DE CTBT; environmental monitoring; international monitoring system; isotope activity ratios; noble gas; radioactivity monitoring; radioxenon; source discrimination; test ban; xenon ID TEST-BAN TREATY; RADIONUCLIDES; SYSTEM AB A global monitoring system for atmospheric xenon radioactivity is being established as part of the International Monitoring System that will verify compliance with the Comprehensive Nuclear-Test-Ban Treaty (CTBT) once the treaty has entered into force. This paper studies isotopic activity ratios to support the interpretation of observed atmospheric concentrations of (135)Xe, (133m)Xe, (133)Xe and (131m)Xe. The goal is to distinguish nuclear explosion sources from civilian releases. Simulations of nuclear explosions and reactors, empirical data for both test and reactor releases as well as observations by measurement stations of the International Noble Gas Experiment (INGE) are used to provide a proof of concept for the isotopic ratio based method for source discrimination. C1 [Kalinowski, Martin B.; Hebel, Simon; Peters, Jana] Carl Friedrich von Weizsacker Ctr Sci & Peace Res, D-20144 Hamburg, Germany. [Axelsson, Anders] IAEA, A-1400 Vienna, Austria. [Bean, Marc; Stocki, Trevor J.; Ungar, R. Kurt] Radiat Protect Bur, Ottawa, ON K1A 1C1, Canada. [Blanchard, Xavier; Brachet, Guy; McIntyre, Justin I.; Taffary, Thomas] CEA, DAM, DIF, F-91297 Arpajon, France. [Bowyer, Theodore W.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Pistner, Christoph] Oko Inst eV, D-64295 Darmstadt, Germany. [Raith, Maria] Seibersdorf Res GmbH, Austrian Res Ctr, A-2444 Seibersdorf, Austria. [Ringbom, Anders] Swedish Def Res Agcy FOI, S-17290 Stockholm, Sweden. [Saey, Paul R. J.] Vienna Int Ctr, Provis Tech Secretariat, Preparatory Commiss, Comprehens Nucl Test Ban Treaty Org CTBTO, A-1400 Vienna, Austria. [Schlosser, Clemens] Fed Off Radiat Protect BfS, D-79098 Freiburg, Germany. RP Kalinowski, MB (reprint author), Carl Friedrich von Weizsacker Ctr Sci & Peace Res, Beim Schlump 83, D-20144 Hamburg, Germany. EM Martin.Kalinowski@uni-hamburg.de RI McIntyre, Justin/P-1346-2014; OI McIntyre, Justin/0000-0002-3706-4310; Axelsson, Anders/0000-0002-7983-7991 FU John D. and Catherine T. MacArthur Foundation; German Foundation for Peace Research (DSF) FX Most of this work was carried out while M. K. was a staff member with the Provisional Technical Secretariat of the Preparatory Commission for the Comprehensive Nuclear-Test-Ban Treaty Organisation (CTBTO). Part of the work was accomplished during his stay at the Department of Nuclear, Plasma, and Radiological Engineering (NPRE) and the Program in Arms Control, Disarmament, and International Security (ACDIS) of the University of Illinois at Urbana-Champaign during spring of 2005. At that time, his work was sponsored by the John D. and Catherine T. MacArthur Foundation. The completion of this work was funded by the German Foundation for Peace Research (DSF). The views expressed herein are those of the authors and do not necessarily reflect the views of the CTBTO Preparatory Commission or any other organisation one of the authors is affiliated with. NR 34 TC 41 Z9 41 U1 3 U2 28 PU BIRKHAUSER VERLAG AG PI BASEL PA VIADUKSTRASSE 40-44, PO BOX 133, CH-4010 BASEL, SWITZERLAND SN 0033-4553 J9 PURE APPL GEOPHYS JI Pure Appl. Geophys. PD MAY PY 2010 VL 167 IS 4-5 BP 517 EP 539 DI 10.1007/s00024-009-0032-1 PG 23 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 577YS UT WOS:000276260500011 ER PT J AU Jin, ZD You, CF Wang, Y Shi, YW AF Jin, Zhangdong You, Chen-Feng Wang, Yi Shi, Yuewei TI Hydrological and solute budgets of Lake Qinghai, the largest lake on the Tibetan Plateau SO QUATERNARY INTERNATIONAL LA English DT Article ID ENVIRONMENTAL-CHANGE; DEPOSITION; CHINA; BALANCE AB Water level and chemistry of Lake Qinghai are sensitive to climate changes and are important for paleoclimatic implications. An accurate understanding of hydrological and chemical budgets is crucial for quantifying geochemical proxies and carbon cycle. Published results of water budget are firstly reviewed in this paper. Chemical budget and residence time of major dissolved constituents in the lake are estimated using reliable water budget and newly obtained data for seasonal water chemistry. The results indicate that carbonate weathering is the most important riverine process, resulting in dominance of Ca(2+) and DIC for river waters and groundwater. Groundwater contribution to major dissolved constituents is relatively small (4.2 +/- 0.5%). Wet atmospheric deposition contributes annually 7.4-44.0% soluble flux to the lake, resulting from eolian dust throughout the seasons. Estimates of chemical budget further suggest that (1) the Buha-type water dominates the chemical components of the lake water, (2) Na(+), Cl(-), Mg(2+), and K(+) in lake water are enriched owing to their conservative behaviors, and (3) precipitation of authigenic carbonates (low-Mg calcite, aragonite, and dolomite) transits quickly dissolved Ca(2+) into the bottom sediments of the lake, resulting in very low Ca(2+) in the lake water. Therefore, authigenic carbonates in the sediments hold potential information on the relative contribution of different solute inputs to the lake and the lake chemistry in the past. (C) 2009 Elsevier Ltd and INQUA. All rights reserved. C1 [Jin, Zhangdong] Chinese Acad Sci, Inst Earth Environm, State Key Lab Loess & Quaternary Geol, Xian 710075, Peoples R China. [Jin, Zhangdong; You, Chen-Feng] Natl Cheng Kung Univ, EDSRC, Tainan 70101, Taiwan. [Wang, Yi] Pacific NW Natl Lab, Richland, WA 99354 USA. [Shi, Yuewei] Bur Hydrol & Water Resources Qinghai Prov, Xining 810001, Peoples R China. RP Jin, ZD (reprint author), Chinese Acad Sci, Inst Earth Environm, State Key Lab Loess & Quaternary Geol, Xian 710075, Peoples R China. EM zhdjin523@hotmail.com RI Wang, Yi/F-2689-2011; Jin, Zhangdong/I-8642-2014; Loess, IEECAS/I-8075-2014 FU National Natural Science Foundation of China [40873082, 40599423] FX This work was financially supported by National Natural Science Foundation of China through grants 40873082 and 40599423. The authors especially thank Associate Professor Zhu Yuxin, Mr. Guang Hu in Nanjing Institute of Geography and Limnology, CAS; Miss Sun Yufang in Nanjing Institute of Soil Sciences, CAS; Dr. Hazel Chapman in Department of Earth Sciences, University of Cambridge, for their kind help and suggestions to sample analyses and laboratory work. Thanks are extended to Professor Yang Bo in Qinghai Institute of Salt Lake, CAS, for his assistance with sample collection. NR 27 TC 31 Z9 36 U1 3 U2 28 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1040-6182 J9 QUATERN INT JI Quat. Int. PD MAY 1 PY 2010 VL 218 IS 1-2 BP 151 EP 156 DI 10.1016/j.quaint.2009.11.024 PG 6 WC Geography, Physical; Geosciences, Multidisciplinary SC Physical Geography; Geology GA 604MM UT WOS:000278283100015 ER PT J AU Herguera, JC Herbert, T Kashgarian, M Charles, C AF Herguera, J. C. Herbert, T. Kashgarian, M. Charles, C. TI Intermediate and deep water mass distribution in the Pacific during the Last Glacial Maximum inferred from oxygen and carbon stable isotopes SO QUATERNARY SCIENCE REVIEWS LA English DT Article ID SANTA-BARBARA BASIN; CALIFORNIA CONTINENTAL-MARGIN; SEA-SURFACE TEMPERATURE; NORTH-PACIFIC; ATMOSPHERIC CO2; CLIMATE-CHANGE; EQUATORIAL PACIFIC; SOUTHERN-OCEAN; NORTHWESTERN PACIFIC; BENTHIC FORAMINIFERA AB Intermediate ocean circulation changes during the last Glacial Maximum (LGM) in the North Pacific have been linked with Northern Hemisphere climate through air sea interactions, although the extent and the source of the variability of the processes forcing these changes are still not well resolved. The ventilated volumes and ages in the upper wind driven layer are related to the wind stress curl and surface buoyancy fluxes at mid to high latitudes in the North Pacific. In contrast, the deeper thermohaline layers are more effectively ventilated by direct atmosphere-sea exchange during convective formation of Subantarctic Mode Waters (SAMW) and Antarctic Intermediate Waters (AAIW) in the Southern Ocean, the precursors of Pacific Intermediate Waters (PIW) in the North Pacific. Results reported here show a fundamental change in the carbon isotopic gradient between intermediate and deep waters during the LGM in the eastern North Pacific indicating a deepening of nutrient and carbon rich waters. These observations suggest changes in the source and nature of intermediate waters of Southern Ocean origin that feed PIW and enhanced ventilation processes in the North Pacific, further affecting paleoproductivity and export patters in this basin. Furthermore, oxygen isotopic results indicate these changes may have been accomplished in part by changes in circulation affecting the intermediate depths during the LGM. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Herguera, J. C.] Ctr Invest Cient & Ensenanza Super, Ensenada, Baja California, Mexico. [Herbert, T.] Brown Univ, Dept Geol Sci, Providence, RI 02912 USA. [Kashgarian, M.] Lawrence Livermore Natl Lab, Ctr AMS, Livermore, CA USA. [Charles, C.] UCSD, Scripps Inst Oceanog, La Jolla, CA USA. RP Herguera, JC (reprint author), Ctr Invest Cient & Ensenanza Super, Ensenada, Baja California, Mexico. EM herguera@cicese.mx RI Kashgarian, Michaele/E-1665-2011; Herguera, Juan Carlos /B-7812-2016 OI Kashgarian, Michaele/0000-0001-7824-8418; Herguera, Juan Carlos /0000-0001-8335-2607 FU IAI [UCAR 97-73970]; CONACyT [G35229-T, C01-46152] FX We are grateful to the late Adolfo Molina Cruz and Maria Luisa Machain for inviting us to participate in some of their cruises when some of the cores here reported were collected, to Captain P. Barajas and the BO El Puma crew for their highly professional talents and cordiality aboard the ship, to Rick Jahnke and Jeff Schuffert for sharing their core collection with us, to Warren Smith for his great help at the SIO Core repository, Ule Ninnemann and Graham Mortyn for their help at the stable isotope lab and to reviewers comments and suggestions which aided greatly to refocus this paper. Funding of this work was provided by IAI grant UCAR 97-73970, and CONACyT grants G35229-T and C01-46152. NR 117 TC 27 Z9 28 U1 1 U2 30 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0277-3791 J9 QUATERNARY SCI REV JI Quat. Sci. Rev. PD MAY PY 2010 VL 29 IS 9-10 BP 1228 EP 1245 DI 10.1016/j.quascirev.2010.02.009 PG 18 WC Geography, Physical; Geosciences, Multidisciplinary SC Physical Geography; Geology GA 598DM UT WOS:000277813300013 ER PT J AU Peintler-Krivan, E Van Berkel, GJ Kertesz, V AF Peintler-Krivan, Emese Van Berkel, Gary J. Kertesz, Vilmos TI Minimizing analyte electrolysis in electrospray ionization mass spectrometry using a redox buffer coated emitter electrode SO RAPID COMMUNICATIONS IN MASS SPECTROMETRY LA English DT Article ID ION-SOURCE; ELECTROCHEMICAL OXIDATION; POTENTIAL GRADIENTS; MOLECULAR-IONS; NANOSPRAY; POLYPYRROLE; DEGRADATION; POLYANILINE; DERIVATIVES; GENERATION AB An emitter electrode with an electroactive poly(pyrrole) (PPy) polymer film coating was constructed for use in electrospray ionization mass spectrometry (ESI-MS). The PPy film acted as a surface-attached redox buffer limiting the interfacial potential of the emitter electrode. While extensive oxidation of selected analytes (reserpine and amodiaquine) was observed in positive ion mode ESI using a bare metal (gold) emitter electrode, the oxidation was suppressed for these same analytes when using the PPy-coated electrode. A semi-quantitative relationship between the rate of oxidation observed and the interfacial potential of the emitter electrode was shown. The redox buffer capacity, and therefore the lifetime of the redox buffering effect, correlated with the oxidation potential of the analyte and with the magnitude of the film charge capacity. Online reduction of the PPy polymer layer using negative ion mode ESI between analyte injections was shown to successfully restore the redox buffering capacity of the polymer film to its initial state. Published in 2010 by John Wiley & Sons, Ltd. C1 [Peintler-Krivan, Emese; Van Berkel, Gary J.; Kertesz, Vilmos] Oak Ridge Natl Lab, Div Chem Sci, Organ & Biol Mass Spectrometry Grp, Oak Ridge, TN 37831 USA. RP Kertesz, V (reprint author), Oak Ridge Natl Lab, Div Chem Sci, Organ & Biol Mass Spectrometry Grp, Oak Ridge, TN 37831 USA. EM kerteszv@ornl.gov RI Kertesz, Vilmos/M-8357-2016 OI Kertesz, Vilmos/0000-0003-0186-5797 FU Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, United States Department of Energy [DE-AC05-000R22725] FX ES-MS instrumentation was provided through a Cooperative Research and Development Agreement with MDS SCIEX (CRADA No. ORNL02-0662). E. P.-K. acknowledges an ORNL appointment through the ORNL Postdoctoral Research Associates Program. This work was supported by the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, United States Department of Energy under Contract DE-AC05-000R22725 with ORNL, managed and operated by UT-Battelle, LLC. NR 46 TC 10 Z9 10 U1 2 U2 17 PU JOHN WILEY & SONS LTD PI CHICHESTER PA THE ATRIUM, SOUTHERN GATE, CHICHESTER PO19 8SQ, W SUSSEX, ENGLAND SN 0951-4198 J9 RAPID COMMUN MASS SP JI Rapid Commun. Mass Spectrom. PD MAY PY 2010 VL 24 IS 9 BP 1327 EP 1334 DI 10.1002/rcm.4522 PG 8 WC Chemistry, Analytical; Spectroscopy SC Chemistry; Spectroscopy GA 592CM UT WOS:000277352700015 PM 20391605 ER PT J AU Kalinin, SV Morozovska, AN Chen, LQ Rodriguez, BJ AF Kalinin, Sergei V. Morozovska, Anna N. Chen, Long Qing Rodriguez, Brian J. TI Local polarization dynamics in ferroelectric materials SO REPORTS ON PROGRESS IN PHYSICS LA English DT Review ID ATOMIC-FORCE MICROSCOPY; LEAD-ZIRCONATE-TITANATE; SCANNING PROBE MICROSCOPY; CRYSTAL ORIENTATION DEPENDENCE; NONLINEAR DIELECTRIC MICROSCOPY; THIN-FILM CAPACITORS; DOMAIN-WALL MOTION; PHASE-TRANSITION; BARIUM-TITANATE; PIEZOELECTRIC PROPERTIES AB Ferroelectrics and multiferroics have recently emerged as perspective materials for information technology and data storage applications. The combination of extremely narrow domain wall width and the capability to manipulate polarization by electric field opens the pathway toward ultrahigh (>10 TBit inch(-2)) storage densities and small (sub-10 nm) feature sizes. The coupling between polarization and chemical and transport properties enables applications in ferroelectric lithography and electroresistive devices. The progress in these applications, as well as fundamental studies of polarization dynamics and the role of defects and disorder on domain nucleation and wall motion, requires the capability to probe these effects on the nanometer scale. In this review, we summarize the recent progress in applications of piezoresponse force microscopy (PFM) for imaging, manipulation and spectroscopy of ferroelectric switching processes. We briefly introduce the principles and relevant instrumental aspects of PFM, with special emphasis on resolution and information limits. The local imaging studies of domain dynamics, including local switching and relaxation accessed through imaging experiments and spectroscopic studies of polarization switching, are discussed in detail. Finally, we review the recent progress on understanding and exploiting photochemical processes on ferroelectric surfaces, the role of surface adsorbates, and imaging and switching in liquids. Beyond classical applications, probing local bias-induced transition dynamics by PFM opens the pathway to studies of the influence of a single defect on electrochemical and solid state processes, thus providing model systems for batteries, fuel cells and supercapacitor applications. C1 [Kalinin, Sergei V.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Kalinin, Sergei V.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Morozovska, Anna N.] Natl Acad Sci Ukraine, V Lashkaryov Inst Semicond Phys, UA-03028 Kiev, Ukraine. [Chen, Long Qing] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA. [Rodriguez, Brian J.] Univ Coll Dublin, Conway Inst Biomol & Biomed Res, Dublin 4, Ireland. RP Kalinin, SV (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. EM sergei2@ornl.gov; brian.rodriguez@ucd.ie RI Kalinin, Sergei/I-9096-2012; Chen, LongQing/I-7536-2012; Rodriguez, Brian/A-6253-2009 OI Kalinin, Sergei/0000-0001-5354-6152; Chen, LongQing/0000-0003-3359-3781; Rodriguez, Brian/0000-0001-9419-2717 FU Center for Nanophase Materials Sciences; Oak Ridge National Laboratory; Office of Basic Energy Sciences; US Department of Energy; DOE [DE-FG02-07ER46417] FX This work was sponsored by the Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, managed and operated by UT-Battelle, LLC for the Office of Basic Energy Sciences, US Department of Energy (SVK, BJR) and by the DOE under the grant number DOE DE-FG02-07ER46417 (LQC). BJR also acknowledges the support of UCD Research. The authors are grateful to E A Eliseev and S Choudhury for their contributions to this work and to the numerous authors who provided permission to reproduce their work here. SVK gratefully acknowledges the collaboration with Stephen Jesse, Nina Balke, Maxim Nikiforov, Katyayani Seal, Peter Maksymovych and Alexander Tselev, as well as Roger Proksch (Asylum Research). He is also grateful to numerous CNMS users and attendees of the PFM workshop series, discussions with whom have contributed immensely to the writing of this paper. NR 416 TC 192 Z9 195 U1 48 U2 413 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0034-4885 EI 1361-6633 J9 REP PROG PHYS JI Rep. Prog. Phys. PD MAY PY 2010 VL 73 IS 5 AR 056502 DI 10.1088/0034-4885/73/5/056502 PG 67 WC Physics, Multidisciplinary SC Physics GA 579XQ UT WOS:000276411200002 ER PT J AU Yazyev, OV AF Yazyev, Oleg V. TI Emergence of magnetism in graphene materials and nanostructures SO REPORTS ON PROGRESS IN PHYSICS LA English DT Review ID ROOM-TEMPERATURE FERROMAGNETISM; CARBON NANOTUBES; LAYER GRAPHENE; HUBBARD-MODEL; LARGE SPIN; GRAPHITE; NANORIBBONS; DEFECTS; ELECTRON; SPINTRONICS AB Magnetic materials and nanostructures based on carbon offer unique opportunities for future technological applications such as spintronics. This paper reviews graphene-derived systems in which magnetic correlations emerge as a result of reduced dimensions, disorder and other possible scenarios. In particular, zero-dimensional graphene nanofragments, one-dimensional graphene nanoribbons and defect-induced magnetism in graphene and graphite are covered. Possible physical mechanisms of the emergence of magnetism in these systems are illustrated with the help of computational examples based on simple model Hamiltonians. In addition, this review covers spin-transport properties, proposed designs of graphene-based spintronic devices, magnetic ordering at finite temperatures as well as the most recent experimental achievements. C1 [Yazyev, Oleg V.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Yazyev, Oleg V.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Yazyev, OV (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. EM yazyev@civet.berkeley.edu RI Yazyev, Oleg/A-4073-2008 OI Yazyev, Oleg/0000-0001-7281-3199 FU Swiss National Science Foundation [PBELP2-123086] FX The author thanks J Fernandez-Rossier, Y-W Son and D Strubbe for critical reading of the manuscript. This work was supported by the Swiss National Science Foundation (grant No PBELP2-123086). NR 137 TC 473 Z9 476 U1 25 U2 324 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0034-4885 EI 1361-6633 J9 REP PROG PHYS JI Rep. Prog. Phys. PD MAY PY 2010 VL 73 IS 5 AR 056501 DI 10.1088/0034-4885/73/5/056501 PG 16 WC Physics, Multidisciplinary SC Physics GA 579XQ UT WOS:000276411200001 ER PT J AU Dolan, DH AF Dolan, D. H. TI Accuracy and precision in photonic Doppler velocimetry SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article DE Doppler measurement; measurement uncertainty; numerical analysis; signal resolution; velocimeters ID INTERFEROMETRY AB While photonic Doppler velocimetry (PDV) is becoming a common diagnostic in dynamic compression research, its limiting accuracy and precision are not well understood. Velocity resolution is known to be inversely proportional to the time resolution, but resolution estimates differ by one to two orders of magnitude. Furthermore, resolution varies with the number of recorded signals and how these signals are analyzed. Numerical simulations reveal factors that affect accuracy and precision in PDV, and the results may be extended to a broad class of measurements. After systematic effects are eliminated, the limiting velocity uncertainty in a PDV measurement is governed by the sampling rate, the signal noise fraction, and the analysis time duration. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3429257] C1 Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Dolan, DH (reprint author), Sandia Natl Labs, Albuquerque, NM 87185 USA. EM dhdolan@sandia.gov FU United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX David Holtkamp, Scott Jones, Tom Ao, Michael Furnish, Gerald Stevens, and Michael Furlanetto contributed to this paper through many useful discussions. The validation experiment was performed with the assistance of Sheri Payne, Mike Willis, Andy Shay, Jess Lynch, and Randy Hickman. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Co., for the United States Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. NR 14 TC 35 Z9 39 U1 2 U2 24 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD MAY PY 2010 VL 81 IS 5 AR 053905 DI 10.1063/1.3429257 PG 7 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 603BQ UT WOS:000278183300037 PM 20515153 ER PT J AU Grass, ME Karlsson, PG Aksoy, F Lundqvist, M Wannberg, B Mun, BS Hussain, Z Liu, Z AF Grass, Michael E. Karlsson, Patrik G. Aksoy, Funda Lundqvist, Mans Wannberg, Bjorn Mun, Bongjin S. Hussain, Zahid Liu, Zhi TI New ambient pressure photoemission endstation at Advanced Light Source beamline 9.3.2 SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article DE photoelectron spectroscopy ID RAY PHOTOELECTRON-SPECTROSCOPY; IN-SITU; CO OXIDATION; SURFACE; MICROSCOPY; NANOPARTICLES; INTERFACES; SCIENCE; SYSTEM; ESCA AB During the past decade, the application of ambient pressure photoemission spectroscopy (APPES) has been recognized as an important in situ tool to study environmental and materials science, energy related science, and many other fields. Several APPES endstations are currently under planning or development at the USA and international light sources, which will lead to a rapid expansion of this technique. The present work describes the design and performance of a new APPES instrument at the Advanced Light Source beamline 9.3.2 at Lawrence Berkeley National Laboratory. This new instrument, Scienta R4000 HiPP, is a result of collaboration between Advanced Light Source and its industrial partner VG-Scienta. The R4000 HiPP provides superior electron transmission as well as spectromicroscopy modes with 16 mu m spatial resolution in one dimension and angle-resolved modes with simulated 0.5 degrees angular resolution at 24 degrees acceptance. Under maximum transmission mode, the electron detection efficiency is more than an order of magnitude better than the previous endstation at beamline 9.3.2. Herein we describe the design and performance of the system, which has been utilized to record spectra above 2 mbar. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3427218] C1 [Grass, Michael E.; Aksoy, Funda; Hussain, Zahid; Liu, Zhi] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94709 USA. [Grass, Michael E.; Mun, Bongjin S.] Hanyang Univ ERICA, Dept Appl Phys, Gyeonggi Do 426791, South Korea. [Karlsson, Patrik G.; Lundqvist, Mans; Wannberg, Bjorn] VG Scienta, SE-75228 Uppsala, Sweden. [Aksoy, Funda] Cukurova Univ, Dept Phys, TR-01330 Adana, Turkey. [Wannberg, Bjorn] BW Particle Opt AB, SE-82222 Alfta, Sweden. RP Liu, Z (reprint author), Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94709 USA. EM zliu2@lbl.gov RI Mun, Bongjin /G-1701-2013; Liu, Zhi/B-3642-2009 OI Liu, Zhi/0000-0002-8973-6561 FU Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]; Korean government (MEST) [2009-0068720]; ALS FX We would like to thank Hendrik Bluhm, David A. Kilcoyne, John Pepper, and Monroe Thomas for their generous help during setup of the endstation. The ALS and the Molecular Foundry are supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Some additional funds were provided by the King Abdullah University of Science and Technology (KAUST). B. S. M. would like to thank the support by the Korea Research Foundation (KRF) grant funded by the Korean government (MEST) (Grant No. 2009-0068720). M. E. G. would like to thank the support of the ALS Postdoctoral Fellowship program. NR 34 TC 117 Z9 119 U1 6 U2 58 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD MAY PY 2010 VL 81 IS 5 AR 053106 DI 10.1063/1.3427218 PG 7 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 603BQ UT WOS:000278183300006 PM 20515123 ER PT J AU Jozwiak, C Graf, J Lebedev, G Andresen, N Schmid, AK Fedorov, AV El Gabaly, F Wan, W Lanzara, A Hussain, Z AF Jozwiak, C. Graf, J. Lebedev, G. Andresen, N. Schmid, A. K. Fedorov, A. V. El Gabaly, F. Wan, W. Lanzara, A. Hussain, Z. TI A high-efficiency spin-resolved photoemission spectrometer combining time-of-flight spectroscopy with exchange-scattering polarimetry SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article DE electrostatic lenses; metal-insulator transition; photoelectron spectra; polarimetry; spin dynamics; thin films ID ELECTRON-ENERGY ANALYZER; PHOTOELECTRON-SPECTROSCOPY; SYNCHROTRON-RADIATION; POLARIZATION ANALYZER; TOPOLOGICAL INSULATORS; HEMISPHERICAL ANALYZER; MOTT POLARIMETER; DIFFRACTION; FE(110); SURFACE AB We describe a spin-resolved electron spectrometer capable of uniquely efficient and high energy resolution measurements. Spin analysis is obtained through polarimetry based on low-energy exchange scattering from a ferromagnetic thin-film target. This approach can achieve a similar analyzing power (Sherman function) as state-of-the-art Mott scattering polarimeters, but with as much as 100 times improved efficiency due to increased reflectivity. Performance is further enhanced by integrating the polarimeter into a time-of-flight (TOF) based energy analysis scheme with a precise and flexible electrostatic lens system. The parallel acquisition of a range of electron kinetic energies afforded by the TOF approach results in an order of magnitude (or more) increase in efficiency compared to hemispherical analyzers. The lens system additionally features a 90 degrees bandpass filter, which by removing unwanted parts of the photoelectron distribution allows the TOF technique to be performed at low electron drift energy and high energy resolution within a wide range of experimental parameters. The spectrometer is ideally suited for high-resolution spin- and angle-resolved photoemission spectroscopy (spin-ARPES), and initial results are shown. The TOF approach makes the spectrometer especially ideal for time-resolved spin-ARPES experiments. (C) 2010 American Institute of Physics. [doi:10.1063/1.3427223] C1 [Jozwiak, C.; Lebedev, G.; Andresen, N.; Fedorov, A. V.; Hussain, Z.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. [Jozwiak, C.; Graf, J.; Schmid, A. K.; El Gabaly, F.; Lanzara, A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Jozwiak, C.; Lanzara, A.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [El Gabaly, F.] Sandia Natl Labs, Livermore, CA 94550 USA. [Wan, W.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Accelerator & Fus Res, Berkeley, CA 94720 USA. RP Jozwiak, C (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. EM cmjozwiak@lbl.gov; alanzara@lbl.gov; zhussain@lbl.gov FU Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U. S. Department of Energy [DE-AC02-05CH11231] FX We would like to thank Hans Siegmann, Neville Smith, and Z. X. Shen for providing the inspiration that began this project. We thank B. Sinkovic and Y. L. Chen for continually providing their experimental experience and expertise. We also thank S. Chourou for early help with electron-optical calculations, simulations, and explanations, J. S. Pepper, S. DiMaggio, and A. Williams for invaluable machining and technical support, and C. G. Hwang, D. R. Garcia, D. A. Siegel, and S. D. Lounis for experiment assistance. One of us (A.L.) would like to thank the University of California, Berkeley for partly supporting this project through faculty start-up funds. The work was additionally supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U. S. Department of Energy under Contract No. DE-AC02-05CH11231. The work was also supported by, and performed at the Advanced Light Source, Lawrence Berkeley National Laboratory, which is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U. S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 89 TC 22 Z9 22 U1 1 U2 35 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD MAY PY 2010 VL 81 IS 5 AR 053904 DI 10.1063/1.3427223 PG 15 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 603BQ UT WOS:000278183300036 PM 20515152 ER PT J AU Nguyen, AT Wang, LB Schauer, MM Torgerson, JR AF Nguyen, A. -T. Wang, L. -B. Schauer, M. M. Torgerson, J. R. TI Extended temperature tuning of an ultraviolet diode laser for trapping and cooling single Yb+ ions SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article DE condensation; diffraction gratings; fine structure; laser cooling; laser frequency stability; optical saturable absorption; radiation pressure; semiconductor lasers; thermoelectricity; ultraviolet sources; ultraviolet spectroscopy; ytterbium ID FUNDAMENTAL CONSTANTS AB We describe an ultraviolet (uv) diode laser system for cooling trapped Yb+ ions. Using four stages of thermoelectric cooling, 10 mW of light at 369.5 nm is obtained by cooling a 373.4-nm uv diode to approximately -20 degrees C. Frequency stabilization is provided by a diffraction grating mounted in the Littrow configuration which allows for a mode-hop free tuning range of similar to 25 GHz. In order to avoid water condensation, the diode laser and associated optics are placed inside an evacuated chamber. Saturated absorption spectroscopy utilizing an Yb hollow cathode lamp is performed. This laser system is currently being used to cool single ions in an experiment whose ultimate goal is to look for modern variation of the fine-structure constant. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3386580] C1 [Nguyen, A. -T.; Wang, L. -B.; Schauer, M. M.; Torgerson, J. R.] Los Alamos Natl Lab, Div Phys, Los Alamos, NM 87545 USA. RP Nguyen, AT (reprint author), Univ Pittsburgh, Dept Otolaryngol, Pittsburgh, PA 15261 USA. EM atn@pitt.edu NR 13 TC 2 Z9 2 U1 0 U2 2 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD MAY PY 2010 VL 81 IS 5 AR 053110 DI 10.1063/1.3386580 PG 4 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 603BQ UT WOS:000278183300010 PM 20515127 ER PT J AU Reed, BW LaGrange, T Shuttlesworth, RM Gibson, DJ Campbell, GH Browning, ND AF Reed, B. W. LaGrange, T. Shuttlesworth, R. M. Gibson, D. J. Campbell, G. H. Browning, N. D. TI Solving the accelerator-condenser coupling problem in a nanosecond dynamic transmission electron microscope SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article DE aberrations; current density; finite element analysis; imaging; magnetic lenses; ray tracing; transmission electron microscopy ID IN-SITU AB We describe a modification to a transmission electron microscope (TEM) that allows it to briefly (using a pulsed-laser-driven photocathode) operate at currents in excess of 10 mA while keeping the effects of condenser lens aberrations to a minimum. This modification allows real-space imaging of material microstructure with a resolution of order 10 nm over regions several mu m across with an exposure time of 15 ns. This is more than six orders of magnitude faster than typical video-rate TEM imaging. The key is the addition of a weak magnetic lens to couple the large-diameter high-current beam exiting the accelerator into the acceptance aperture of a conventional TEM condenser lens system. We show that the performance of the system is essentially consistent with models derived from ray tracing and finite element simulations. The instrument can also be operated as a conventional TEM by using the electron gun in a thermionic mode. The modification enables very high electron current densities in mu m-sized areas and could also be used in a nonpulsed system for high-throughput imaging and analytical TEM. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3427234] C1 [Reed, B. W.; LaGrange, T.; Shuttlesworth, R. M.; Gibson, D. J.; Campbell, G. H.; Browning, N. D.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Browning, N. D.] Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA. RP Reed, BW (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RI Campbell, Geoffrey/F-7681-2010; Reed, Bryan/C-6442-2013; OI Browning, Nigel/0000-0003-0491-251X FU U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Science and Engineering; Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX This work performed under the auspices of the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Science and Engineering, by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. NR 17 TC 22 Z9 22 U1 0 U2 16 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD MAY PY 2010 VL 81 IS 5 AR 053706 DI 10.1063/1.3427234 PG 8 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 603BQ UT WOS:000278183300028 PM 20515144 ER PT J AU Sasa, LA Yearley, EJ Welch, CF Taylor, MA Gilbertson, RD Hammeter, C Majewski, J Hjelm, RP AF Sasa, Leslie A. Yearley, Eric J. Welch, Cynthia F. Taylor, Mark A. Gilbertson, Robert D. Hammeter, Christopher Majewski, Jaroslaw Hjelm, Rex P. TI The Los Alamos Neutron Science Center neutron rheometer in the cone and plate geometry to examine tethered polymers/polymer melt interfaces via neutron reflectivity SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article DE flow measurement; liquid structure; neutron reflection; polymer melts; rheology; shear flow ID GRAFTED POLYMER LAYERS; SEGMENT-DENSITY PROFILES; SOLID-LIQUID INTERFACE; LUBRICATION FORCES; BLOCK-COPOLYMERS; GOOD SOLVENT; BRUSHES; SHEAR; SCATTERING; SURFACES AB Although several other neutron rheometers have been built to study soft matter under nonequilibrium conditions, none of them have the ability to measure the structure and behavior of the polymeric interfacial regions in highly viscous polymer melts which require high torques/high strain rates and high temperatures. A neutron rheometer in the cone and plate geometry has been constructed at the Los Alamos Neutron Science Center to rectify this lack of experimental instrumentation. It is also the first-of-its-kind to perform neutron reflectivity studies concurrently with rheological measurements. The details of both the development and testing of the Los Alamos Neutron Science Center neutron rheometer in the cone and plate configuration are described. Proof of principle neutron reflectivity results of end-grafted polystyrene against an identical melt under shear are presented, showing qualitatively that the structural attributes of the end-grafted polymer change when exposed to shear. (c) 2010 American Institute of Physics. [doi: 10.1063/1.3381037] C1 [Sasa, Leslie A.; Yearley, Eric J.; Welch, Cynthia F.; Taylor, Mark A.; Gilbertson, Robert D.; Hammeter, Christopher; Majewski, Jaroslaw; Hjelm, Rex P.] Los Alamos Natl Lab, Los Alamos Neutron Scattering Ctr, Los Alamos, NM 87545 USA. [Sasa, Leslie A.] Univ Calif Los Angeles, Dept Mech & Aerosp Engn, Los Angeles, CA 90095 USA. [Hammeter, Christopher] Univ Calif Santa Barbara, Dept Mech Engn, Santa Barbara, CA 93106 USA. RP Hjelm, RP (reprint author), Los Alamos Natl Lab, Los Alamos Neutron Scattering Ctr, Los Alamos, NM 87545 USA. EM hjelm@lanl.gov RI Lujan Center, LANL/G-4896-2012; OI Welch, Cynthia/0000-0002-4638-6434 FU National Physical Science Consortium; Department of Energy's Office of Basic Energy Sciences [DE-AC52-06NA25396] FX The authors thank Dr. Debra A. Wrobleski for the determination of the molecular weight distribution of our PS samples and Dr. Edward B. Orler for his assistance involving rheological discussions. The authors would like to thank Erik Watkins for his invaluable assistance on the SPEAR beamline. The authors also thank Melvin T. Borrego, Tim J. Medina, Michael M. Torrez, and Joshua S. Martinez for their mechanical expertise and support in manufacturing critical elements for this project. L. A. Sasa would like to gratefully acknowledge her advisor at UCLA, Professor Adrienne Lavine, for her support as well as the National Physical Science Consortium for their financial assistance. This work was supported by the use of the Lujan Neutron Scattering Center at LANSCE, which is funded by the Department of Energy's Office of Basic Energy Sciences. Los Alamos National Laboratory is operated by Los Alamos National Security LLC under DOE Contract No. DE-AC52-06NA25396. NR 66 TC 2 Z9 2 U1 1 U2 10 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD MAY PY 2010 VL 81 IS 5 AR 055102 DI 10.1063/1.3381037 PG 6 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 603BQ UT WOS:000278183300051 PM 20515167 ER PT J AU Schoenwald, K Peng, ZC Noga, D Qiu, SR Sulchek, T AF Schoenwald, K. Peng, Z. C. Noga, D. Qiu, S. R. Sulchek, T. TI Integration of atomic force microscopy and a microfluidic liquid cell for aqueous imaging and force spectroscopy SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article DE atomic force microscopy; imaging; laminar flow; microfluidics; polymers ID CALCIUM-OXALATE MONOHYDRATE; CRYSTALLIZATION; KINETICS; OSTEOPONTIN; DISSOLUTION; CITRATE; GROWTH; ARRAY AB We have designed and built a microfluidic liquid cell capable of high-resolution atomic force microscope (AFM) imaging and force spectroscopy. The liquid cell was assembled from three molded poly(dimethylsiloxane) (PDMS) pieces and integrated with commercially purchased probes. The AFM probe was embedded within the assembly such that the cantilever and tip protrude into the microfluidic channel. This channel is defined by the PDMS assembly on the top, a PDMS gasket on all four sides, and the sample substrate on the bottom, forming a liquid-tight seal. Our design features a low volume fluidic channel on the order of 50 nl, which is a reduction of over 3-5 orders of magnitude compared to several commercial liquid cells. This device facilitates testing at high shear rates and laminar flow conditions coupled with full AFM functionality in microfluidic aqueous environments, including execution of both force displacement curves and high resolution imaging. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3395879] C1 [Schoenwald, K.; Peng, Z. C.; Noga, D.; Sulchek, T.] Georgia Inst Technol, George W Woodruff Sch Mech Engn, Atlanta, GA 30332 USA. [Qiu, S. R.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Sulchek, T (reprint author), Georgia Inst Technol, George W Woodruff Sch Mech Engn, Atlanta, GA 30332 USA. EM todd.sulchek@me.gatech.edu FU U.S. Department of Energy by Lawrence Livermore National Laboratory [W-7405-Eng-48, DE-AC52-07NA27344] FX The authors thank the following scientists: Andrei Federov, Konrad Rykaczewski, and Peter Hesketh for help with imaging and Olgica Bakajin, Aleksandr Noy, and James De Yoreo for insightful suggestions. We also acknowledge Lawrence Livermore National Laboratory microfabrication advice and help from Julie Hamilton and William Benett. In part, this work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory in part under Contract No. W-7405-Eng-48 and in part under Contract No. DE-AC52-07NA27344. NR 21 TC 2 Z9 2 U1 1 U2 23 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD MAY PY 2010 VL 81 IS 5 AR 053704 DI 10.1063/1.3395879 PG 5 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 603BQ UT WOS:000278183300026 PM 20515142 ER PT J AU Stoupin, S Lenkszus, F Laird, R Goetze, K Kim, KJ Shvyd'ko, Y AF Stoupin, Stanislav Lenkszus, Frank Laird, Robert Goetze, Kurt Kim, Kwang-Je Shvyd'ko, Yuri TI Nanoradian angular stabilization of x-ray optical components SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article DE free electron lasers; laser mirrors; monochromators; optical elements ID FEEDBACK-SYSTEM; MONOCHROMATOR; MECHANISM; DESIGN AB An x-ray free-electron laser oscillator (XFELO) has been recently proposed [K. Kim , Phys. Rev. Lett. 100, 244802 (2008)]. Angular orientation and position in space of Bragg mirrors of the XFELO optical cavity must be continuously adjusted to compensate for the instabilities and maximize the output intensity. An angular stability of about 10 nrad (rms) is required [K. Kim and Y. Shvyd'ko, Phys. Rev. ST Accel. Beams 12, 030703 (2009)]. To approach this goal, a feedback loop based on a null-detection principle was designed and used for stabilization of a high-energy-resolution x-ray monochromator (Delta E/E similar or equal to 4x10(-8), E=23.7 keV) and a high-heat-load monochromator. Angular stability of about 13 nrad (rms) has been demonstrated for x-ray optical elements of the monochromators. (c) 2010 American Institute of Physics. [doi: 10.1063/1.3428722] C1 [Stoupin, Stanislav; Lenkszus, Frank; Laird, Robert; Goetze, Kurt; Kim, Kwang-Je; Shvyd'ko, Yuri] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Stoupin, S (reprint author), Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. EM sstoupin@aps.anl.gov FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX We are indebted to S. Whitcomb for very important discussions and suggestions. T. Toellner and D. Shu are acknowledged for the development of the high-resolution monochromator used in these studies. T. Roberts is acknowledged for help with implementation of the feedback system. We would like to thank J. Kropf, M. Rivers, T. Gog, and D. Shu for helpful discussions on the topic and A. Said, M. Upton, and A. Cunsolo for their help with testing. Special thanks are due to J. Kropf for loaning a lock-in amplifier at an early stage of the project. Use of the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 15 TC 7 Z9 7 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD MAY PY 2010 VL 81 IS 5 AR 055108 DI 10.1063/1.3428722 PG 7 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 603BQ UT WOS:000278183300057 PM 20515173 ER PT J AU Santella, M Hovanski, Y Frederick, A Grant, G Dahl, M AF Santella, M. Hovanski, Y. Frederick, A. Grant, G. Dahl, M. TI Friction stir spot welding of DP780 carbon steel SO SCIENCE AND TECHNOLOGY OF WELDING AND JOINING LA English DT Article DE Friction stir; Spot weld; Carbon steel; Automotive; Joint strength; Bonding ID ALUMINUM-ALLOYS; MODEL; RESISTANCE; FLOW; HEAT AB Friction stir spot welds were made in uncoated and galvannealed DP780 sheets using polycrystalline boron nitride stir tools. The tools were plunged at either a single continuous rate or in two segments consisting of a relatively high rate followed by a slower rate of shorter depth. Welding times ranged from 1 to 10 s. Increasing tool rotation speed from 800 to 1600 rev min(-1) increased strength values. The 2-segment welding procedures also produced higher strength joints. Average lap shear strengths exceeding 10.3 kN were consistently obtained in 4 s on both the uncoated and the galvannealed DP780. The likelihood of diffusion and mechanical interlocking contributing to bond formation was supported by metallographic examinations. A cost analysis based on spot welding in automobile assembly showed that for friction stir spot welding to be economically competitive with resistance spot welding the cost of stir tools must approach that of resistance spot welding electrode tips. C1 [Santella, M.; Frederick, A.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Hovanski, Y.; Grant, G.; Dahl, M.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Santella, M (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM santellaml@ornl.gov FU US Department of Energy, Assistant Secretary for Energy Efficiency and Renewable Energy, Office of FreedomCAR; Vehicle Technologies, with UT-Battelle, LLC [DE-AC05-00OR22725] FX Technical reviews of the manuscript by Roger Miller and Govindarajan Muralidharan are appreciated. The authors are particularly grateful for the technical inputs of US auto company staff who have been associated with the USCAR organisation. This includes Bill Marttila formerly of Chrysler Corp., Jim Chen formerly of General Motors Corp., Jim Quinn of General Motors Corp. and Tsung-Yu Pan formerly of Ford Motor Company. This work was sponsored by the US Department of Energy, Assistant Secretary for Energy Efficiency and Renewable Energy, Office of FreedomCAR and Vehicle Technologies, as part of the Automotive Lightweighting Materials Program (VT0505000, 3CEEE024), under contract DE-AC05-00OR22725 with UT-Battelle, LLC. NR 20 TC 13 Z9 13 U1 0 U2 6 PU MANEY PUBLISHING PI LEEDS PA STE 1C, JOSEPHS WELL, HANOVER WALK, LEEDS LS3 1AB, W YORKS, ENGLAND SN 1362-1718 J9 SCI TECHNOL WELD JOI JI Sci. Technol. Weld. Join. PD MAY PY 2010 VL 15 IS 4 BP 271 EP 278 DI 10.1179/136217109X12518083193630 PG 8 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 616ZE UT WOS:000279249700002 ER PT J AU Miles, MP Feng, Z Kohkonen, K Weickum, B Steel, R Lev, L AF Miles, M. P. Feng, Z. Kohkonen, K. Weickum, B. Steel, R. Lev, L. TI Spot joining of AA 5754 and high strength steel sheets by consumable bit SO SCIENCE AND TECHNOLOGY OF WELDING AND JOINING LA English DT Article DE Aluminium; High strength steel; Spot joining; Dissimilar alloys ID SELF-PIERCING RIVETS; ALUMINUM-ALLOY AB Spot joining of dissimilar metal alloys is difficult because of differences in melting temperature as well as differences in composition. If a fusion welding process like resistance spot welding is employed, then alloys mix in the fusion zone and can create brittle intermetallic compounds during solidification. When self-piercing riveting (SPR) is used, the alloys to be joined must be ductile enough to be formed around the rivet. In this paper, a new approach to joining dissimilar metal alloys has been studied, where a consumable bit has been used to create a spot joint between dissimilar alloys. The resulting joint has both metallurgical and mechanical bonding characteristics and can be made between very soft and very hard alloys, like dual phase (DP) 590 and DP 980 and light metals like AA 5754. Lap shear strengths of joints made by friction bit joining (FBJ) are similar to or better than comparable joints made by self-piercing riveting. C1 [Miles, M. P.; Kohkonen, K.; Weickum, B.] Brigham Young Univ, Provo, UT 84602 USA. [Feng, Z.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Steel, R.] Megastir Technol, W Bountiful, UT 84087 USA. [Lev, L.] Gen Motors R&D & Planning, Warren, MI 48090 USA. RP Miles, MP (reprint author), Brigham Young Univ, Provo, UT 84602 USA. EM mmiles@byu.edu RI Feng, Zhili/H-9382-2012 OI Feng, Zhili/0000-0001-6573-7933 FU NSF [CMMI-0834729]; US Department of Energy FX The authors acknowledge technical assistance of Larry Walker in microchemistry analysis. Steel sheet material was provided by Arcelor-Mittal Steel, and aluminium sheet material was provided by ALCOA. The authors acknowledge financial support from NSF grant CMMI-0834729), Joycelyn Harrison program manager, and from the US Department of Energy, Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Freedom CAR and Vehicle Technologies, as part of the Automotive Light weighting Materials Program, under contract no. DE-AC05-00OR22725 with UT-Battelle, LLC. NR 11 TC 24 Z9 25 U1 2 U2 16 PU MANEY PUBLISHING PI LEEDS PA STE 1C, JOSEPHS WELL, HANOVER WALK, LEEDS LS3 1AB, W YORKS, ENGLAND SN 1362-1718 J9 SCI TECHNOL WELD JOI JI Sci. Technol. Weld. Join. PD MAY PY 2010 VL 15 IS 4 BP 325 EP 330 DI 10.1179/136217110X12707333260491 PG 6 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 616ZE UT WOS:000279249700010 ER PT J AU Wiley, HS AF Wiley, H. Steven TI Keep it Simple SO SCIENTIST LA English DT Editorial Material C1 Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. RP Wiley, HS (reprint author), Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU SCIENTIST INC PI PHILADELPHIA PA 400 MARKET ST, STE 1250, PHILADELPHIA, PA 19106 USA SN 0890-3670 J9 SCIENTIST JI Scientist PD MAY PY 2010 VL 24 IS 5 BP 37 EP 37 PG 1 WC Information Science & Library Science; Multidisciplinary Sciences SC Information Science & Library Science; Science & Technology - Other Topics GA 588AJ UT WOS:000277037900016 ER PT J AU Terentyev, D Osetsky, YN Bacon, DJ AF Terentyev, D. Osetsky, Yu. N. Bacon, D. J. TI Competing processes in reactions between an edge dislocation and dislocation loops in a body-centred cubic metal SO SCRIPTA MATERIALIA LA English DT Article DE Edge dislocation; Dislocation loop; Molecular dynamics; Iron ID SELF-INTERSTITIAL CLUSTERS; MOLECULAR-DYNAMICS; IRON; MICROSTRUCTURE; SIMULATION; MODEL AB Molecular dynamics simulation was used to investigate reactions of a 1/2 < 1 1 1 >{1 1 0} edge dislocation with interstitial dislocation loops of 1/2 < 1 1 1 > and < 1 0 0 > type in a model of iron. Whether loops are strong or weak obstacles depends not only on loop size and type, but also on temperature and dislocation velocity. These parameters determine whether a loop is absorbed on the dislocation or left behind as it glides away. Absorption requires glide of a reaction segment over the loop surface and cross-slip of dipole dislocation arms attached to the ends of the segment: these mechanisms depend on temperature and strain rate, as discussed here. (C) 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Terentyev, D.] SCK CEN, Nucl Mat Sci Inst, B-2400 Mol, Belgium. [Osetsky, Yu. N.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Bacon, D. J.] Univ Liverpool, Dept Engn, Liverpool L69 3GH, Merseyside, England. RP Terentyev, D (reprint author), SCK CEN, Nucl Mat Sci Inst, Boeretang 200, B-2400 Mol, Belgium. EM dterenty@sckcen.be OI Osetskiy, Yury/0000-0002-8109-0030 FU European Commission; Division of Materials Sciences and Engineering, US Department of Energy FX This work was performed in the framework of the 7th Framework Programme collaborative project GETMAT (Grant agreement No. 212175) and partially supported by the European Commission; and by the Division of Materials Sciences and Engineering, US Department of Energy under contract with UT-Battelle, LLC (Y.O.). NR 13 TC 25 Z9 25 U1 2 U2 24 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6462 J9 SCRIPTA MATER JI Scr. Mater. PD MAY PY 2010 VL 62 IS 9 BP 697 EP 700 DI 10.1016/j.scriptamat.2010.01.034 PG 4 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 573SA UT WOS:000275933700017 ER PT J AU Zimmermann, J Van Petegem, S Bei, H Grolimund, D George, EP Van Swygenhoven, H AF Zimmermann, J. Van Petegem, S. Bei, H. Grolimund, D. George, E. P. Van Swygenhoven, H. TI Effects of focused ion beam milling and pre-straining on the microstructure of directionally solidified molybdenum pillars: A Laue diffraction analysis SO SCRIPTA MATERIALIA LA English DT Article DE Focused ion beam; X-ray diffraction; Single-crystal; Micropillars; Directional solidification ID MICROPILLARS; DAMAGE; ALLOY AB White beam Laue micro-diffraction was performed on directionally solidified, single-crystal Mo pillars in the as-grown state, after focused ion beam (FIB) milling and after pre-straining. The Laue diffraction peaks from the as-grown pillars are very sharp and show no broadening, similar to those from single-crystal Si wafers. Significant broadening and streaking of the peaks occurred after FIB milling and pre-straining, indicative of the damage these treatments induce in the nearly perfect crystal structure of the directionally solidified Mo pillars. (C) 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Zimmermann, J.; Van Petegem, S.; Grolimund, D.; Van Swygenhoven, H.] Paul Scherrer Inst, CH-5232 Villigen, Switzerland. [Bei, H.; George, E. P.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Van Swygenhoven, H (reprint author), Paul Scherrer Inst, CH-5232 Villigen, Switzerland. EM helena.vs@psi.ch RI Van Petegem, Steven/D-5908-2014; George, Easo/L-5434-2014; Van Petegem, Steven/E-9807-2016; OI Van Petegem, Steven/0000-0002-3015-7725; Bei, Hongbin/0000-0003-0283-7990 FU Swiss National Science Foundation [SNF-200020-116283]; European Commission; Division of Materials Sciences and Engineering, US Department of Energy FX HVS thanks the Swiss National Science Foundation (SNF-200020-116283) and the European Commission (6th Framework, NANOMESO) for financial support. HB and EPG were supported by the Division of Materials Sciences and Engineering, US Department of Energy. The authors thank W. Pantleon for fruitful discussions. C. Borca and M. Willimann from the MicroXAS/SLS are acknowledged for their high-quality technical support. NR 16 TC 23 Z9 23 U1 2 U2 17 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6462 J9 SCRIPTA MATER JI Scr. Mater. PD MAY PY 2010 VL 62 IS 10 BP 746 EP 749 DI 10.1016/j.scriptamat.2010.02.013 PG 4 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 578LT UT WOS:000276295800006 ER PT J AU Wejdemann, C Lienert, U Pantleon, W AF Wejdemann, C. Lienert, U. Pantleon, W. TI Reversal of asymmetry of X-ray peak profiles from individual grains during a strain path change SO SCRIPTA MATERIALIA LA English DT Article DE Plastic deformation; Strain path change; X-ray diffraction (XRD); Line broadening; Dislocation structure ID RANGE INTERNAL-STRESSES; SINGLE-CRYSTALS; DEFORMATION STRUCTURES; ELASTIC STRAINS; COPPER; DIFFRACTION; SUBGRAINS AB X-ray peak profiles are measured from individual bulk grains during tensile deformation. Two differently oriented copper samples pre-deformed in tension show the expected peak profile asymmetry caused by intra-grain stresses. One of the samples is oriented to achieve a significant change of the intra-grain stresses during in situ tensile loading and this is observed as a reversal of the sign of the peak profile asymmetry. (C) 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Wejdemann, C.; Pantleon, W.] Tech Univ Denmark, Ctr Fundamental Res Met Struct Dimens 4, Mat Res Div, Risoe Natl Lab Sustainable Energy, DK-4000 Roskilde, Denmark. [Lienert, U.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Wejdemann, C (reprint author), Tech Univ Denmark, Ctr Fundamental Res Met Struct Dimens 4, Mat Res Div, Risoe Natl Lab Sustainable Energy, Frederiksborgvej 399, DK-4000 Roskilde, Denmark. EM chwe@risoe.dtu.dk; liener-t@aps.anl.gov; pawo@risoe.dtu.dk RI Pantleon, Wolfgang/L-9657-2014 OI Pantleon, Wolfgang/0000-0001-6418-6260 FU Danish National Research Foundation; Danish Natural Science Research Council; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX The authors wish to thank L. Lorentzen and P. Olesen for sample preparation and characterization. This work was supported by the Danish National Research Foundation and the Danish Natural Science Research Council. Use of the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 16 TC 5 Z9 5 U1 0 U2 9 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6462 J9 SCRIPTA MATER JI Scr. Mater. PD MAY PY 2010 VL 62 IS 10 BP 794 EP 797 DI 10.1016/j.scriptamat.2010.01.032 PG 4 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 578LT UT WOS:000276295800018 ER PT J AU Lynch, DK Hudnut, KW Dearborn, DSP AF Lynch, David K. Hudnut, Kenneth W. Dearborn, David S. P. TI Low-altitude Aerial Color Digital Photographic Survey of the San Andreas Fault SO SEISMOLOGICAL RESEARCH LETTERS LA English DT Article C1 [Lynch, David K.; Hudnut, Kenneth W.] US Geol Survey, Pasadena, CA 91106 USA. [Dearborn, David S. P.] Lawrence Livermore Natl Lab, Livermore, CA USA. RP Lynch, DK (reprint author), POB 953, Topanga, CA 90290 USA. EM dave@caltech.edu RI Hudnut, Kenneth/G-5713-2010; Hudnut, Kenneth/B-1945-2009 OI Hudnut, Kenneth/0000-0002-3168-4797 FU Southern California Earthquake Center (SCEC) [09084] FX This work was funded in part by the Southern California Earthquake Center (SCEC) via SCEC research award 09084 to make hyper-accurate maps of the SAF in concert with B4 aerial lidar imagery taken in 2005. The USGS office in Pasadena provided the Nikon D90 camera and GPS-1 EXIF encoder. The authors are grateful to Katherine Kendrick and Rich Briggs of the USGS for thoughtful reviews of the manuscript. Stephen Mazuk and Mitzi Adams assisted with organizing and cata-loging the photographs. We thank Charles McLaughlin and Barry Hansen of Aspen Helicopters for expert piloting, and Rick Throckmorton and Jim McCrory for excellent ground support. NR 1 TC 1 Z9 1 U1 0 U2 0 PU SEISMOLOGICAL SOC AMER PI EL CERRITO PA PLAZA PROFESSIONAL BLDG, SUITE 201, EL CERRITO, CA 94530 USA SN 0895-0695 J9 SEISMOL RES LETT JI Seismol. Res. Lett. PD MAY-JUN PY 2010 VL 81 IS 3 BP 453 EP 459 DI 10.1785/gssrl.81.3.453 PG 7 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 596EV UT WOS:000277668500003 ER PT J AU Effenberger, AJ Scott, JR AF Effenberger, Andrew J., Jr. Scott, Jill R. TI Effect of Atmospheric Conditions on LIBS Spectra SO SENSORS LA English DT Review DE LIBS; vacuum; pressure; He; Ar; CO(2); resolution; isotopes; Mars ID LASER-INDUCED BREAKDOWN; OPTICAL-EMISSION SPECTROSCOPY; INDUCED PLASMA SPECTROSCOPY; HIGH-PRESSURE; SPACE EXPLORATION; REDUCED PRESSURE; AMBIENT-PRESSURE; MARS ATMOSPHERE; IN-SITU; SAMPLES AB Laser-induced breakdown spectroscopy (LIBS) is typically performed at ambient Earth atmospheric conditions. However, interest in LIBS in other atmospheric conditions has increased in recent years, especially for use in space exploration (e. g., Mars and Lunar) or to improve resolution for isotopic signatures. This review focuses on what has been reported about the performance of LIBS in reduced pressure environments as well as in various gases other than air. C1 [Effenberger, Andrew J., Jr.; Scott, Jill R.] Idaho Natl Lab INL, Idaho Falls, ID 83415 USA. RP Scott, JR (reprint author), Idaho Natl Lab INL, 1765 W Yellowstone HWY, Idaho Falls, ID 83415 USA. EM andrew.effenberger@inl.gov; jill.scott@inl.gov FU U.S. Department of Energy [DE-AC07-05ID14517] FX Work supported by the U.S. Department of Energy through the INL Laboratory Directed Research & Development (LDRD) Program under DOE Idaho Operations Office Contract DE-AC07-05ID14517. NR 53 TC 61 Z9 62 U1 0 U2 41 PU MOLECULAR DIVERSITY PRESERVATION INTERNATIONAL-MDPI PI BASEL PA KANDERERSTRASSE 25, CH-4057 BASEL, SWITZERLAND SN 1424-8220 J9 SENSORS-BASEL JI Sensors PD MAY PY 2010 VL 10 IS 5 BP 4907 EP 4925 DI 10.3390/s100504907 PG 19 WC Chemistry, Analytical; Electrochemistry; Instruments & Instrumentation SC Chemistry; Electrochemistry; Instruments & Instrumentation GA 601YV UT WOS:000278105100041 PM 22399914 ER PT J AU Kronk, R Bishop, EE Raspa, M Bickel, JO Mandel, DA Bailey, DB AF Kronk, Rebecca Bishop, Ellen E. Raspa, Melissa Bickel, Julie O. Mandel, Daniel A. Bailey, Donald B., Jr. TI Prevalence, Nature, and Correlates of Sleep Problems Among Children with Fragile X Syndrome Based on a Large Scale Parent Survey SO SLEEP LA English DT Article DE Sleep; Fragile X syndrome; survey ID ASSIGNING ICF CODES; DEVELOPMENTAL-DISABILITIES; INTELLECTUAL DISABILITY; SYNAPTIC PLASTICITY; ANGELMAN-SYNDROME; DISORDERS; MELATONIN; PATTERNS; AUTISM; BEHAVIOR AB Study Objectives: This study reports on current child sleep difficulties reported by parents of children with Fragile X syndrome (FXS). We address prevalence and type of sleep problems (e.g., difficulty falling asleep, frequent awakenings); type and effectiveness of medical and behavioral treatments (e.g., medication, surgery, environmental changes); and explore specific child and family characteristics (e.g., child age, child gender, co-occurring conditions) as possible predictors of child sleep difficulties. Design/Participants: This study is part of a larger survey addressing needs of families with children with FXS. This article focuses on the families who responded to the survey sleep questions, had one or more children with the full mutation FXS, and who reside in the United States. The mean age for male and female children in this group was 15 years and 16 years respectively (N = 1,295). Results: Parents reported that 32% of the children with FXS currently experience sleep difficulties; 84% of those children are reported to have >= 2 current sleep problems. Problems falling asleep and frequent night awakenings were the most frequently reported difficulties; 47% of males and 40% of females received >= 1medication to help with sleep. Children with more problematic health or behavioral characteristics had a higher likelihood of having current sleep problems. Conclusions: Our survey provides the most representative sample to date of sleep problems in children with FXS or any other neurodevelopmental disability. This large scale survey establishes a foundation for the prevalence of sleep disorders in children with FXS. C1 [Kronk, Rebecca] Univ Pittsburgh, Childrens Hosp Pittsburgh, UPMC, UCLID Ctr,Child Dev Unit,Fragile Ctr 10, Pittsburgh, PA 15201 USA. [Bishop, Ellen E.; Raspa, Melissa; Bailey, Donald B., Jr.] RTI Int, Res Triangle Pk, NC USA. [Bickel, Julie O.] Childrens Hosp Pittsburgh, Dept Pediat, Pittsburgh, PA 15213 USA. [Mandel, Daniel A.] Oak Ridge Inst Sci & Educ, Oak Ridge, TN USA. [Mandel, Daniel A.] Ctr Dis Control & Prevent, Natl Ctr Birth Defects & Dev Disabil, Atlanta, GA USA. RP Kronk, R (reprint author), Univ Pittsburgh, Childrens Hosp Pittsburgh, UPMC, UCLID Ctr,Child Dev Unit,Fragile Ctr 10, 45th & Penn, Pittsburgh, PA 15201 USA. EM becky.kronk@chp.edu OI Kronk, Rebecca/0000-0001-5209-7180 FU Centers for Disease Control and Prevention (CDC); Association for Prevention Teaching and Research (APTR) [U50/CCU300860, TS-1380] FX Preparation of this article was supported in part by the Centers for Disease Control and Prevention (CDC) and the Association for Prevention Teaching and Research (APTR) Cooperative Agreement No. U50/CCU300860, Project TS-1380. NR 53 TC 30 Z9 30 U1 2 U2 14 PU AMER ACAD SLEEP MEDICINE PI WESTCHESTER PA ONE WESTBROOK CORPORATE CTR, STE 920, WESTCHESTER, IL 60154 USA SN 0161-8105 J9 SLEEP JI Sleep PD MAY 1 PY 2010 VL 33 IS 5 BP 679 EP 687 PG 9 WC Clinical Neurology; Neurosciences SC Neurosciences & Neurology GA 590NC UT WOS:000277232200015 PM 20469810 ER PT J AU Zhang, ZF AF Zhang, Z. Fred TI Effective Hydraulic Conductivity of Unsaturated Isotropic Soils with Multidimensional Heterogeneity SO SOIL SCIENCE SOCIETY OF AMERICA JOURNAL LA English DT Article ID STEADY-STATE FLOW; POROUS-MEDIA; STOCHASTIC-ANALYSIS; LAYERED SEDIMENTS; GROUNDWATER FLOW; STRATIFIED SOILS; PARAMETERS; APPROXIMATION; PERMEABILITY; ANISOTROPY AB Accurate simulation and prediction of flow and transport of solutes in a heterogeneous vadose zone requires the appropriate hydraulic properties corresponding to the spatial scale of interest. Upscaling techniques are needed to provide effective properties for describing the vadose zone system's behavior with information collected at a much smaller scale. Numerical experiments were performed to investigate the effective unsaturated hydraulic conductivity of soils with different degrees and dimensionalities of heterogeneity. Researchers have extended Matheron's method for determining the hydraulic conductivity of soils with one-dimensional heterogeneity under a saturated condition to unsaturated conditions. In this work, Matheron's method was further extended to the unsaturated soils with two- and three-dimensional heterogeneity. It was found that the first-order approximation of the extended formula is similar to those based on the small-perturbation approach. The extended Matheron's method was verified using multistep numerical experiments of gravity-induced flow into synthetic soils with different degrees of heterogeneity. Results showed that the dimensionality of soil heterogeneity has a significant impact on the effective unsaturated hydraulic conductivity, and the extended Matheron's method can well estimate the effective conductivity of the soils with multidimensional heterogeneity. C1 Pacific NW Natl Lab, Richland, WA 99352 USA. RP Zhang, ZF (reprint author), Pacific NW Natl Lab, MSIN K9-33, Richland, WA 99352 USA. EM fred.zhang@pnl.gov OI Zhang, Fred/0000-0001-8676-6426 FU Remediation Decision; Fluor Hanford, Inc. FX This work was supported by the Remediation Decision Support project managed by George V. Last and funding was provided by Fluor Hanford, Inc. The synthetic soils were generated by Yulong Xie of the Energy and Environment Directorate of Pacific Northwest National Laboratory. The author is grateful to the comments from the anonymous reviewers. Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy under Contract DE-AC05-76RL01830. NR 53 TC 1 Z9 1 U1 2 U2 7 PU SOIL SCI SOC AMER PI MADISON PA 677 SOUTH SEGOE ROAD, MADISON, WI 53711 USA SN 0361-5995 J9 SOIL SCI SOC AM J JI Soil Sci. Soc. Am. J. PD MAY-JUN PY 2010 VL 74 IS 3 BP 734 EP 743 DI 10.2136/sssaj2009.0405 PG 10 WC Soil Science SC Agriculture GA 593YZ UT WOS:000277500600004 ER PT J AU Wielopolski, L Johnsen, K Zhang, Y AF Wielopolski, Lucian Johnsen, Kurt Zhang, Yuen TI Soil Analysis Based on Samples Withdrawn from Different Volumes: Correlation versus Calibration SO SOIL SCIENCE SOCIETY OF AMERICA JOURNAL LA English DT Article ID ORGANIC-CARBON; SPECTROSCOPY; UNCERTAINTY; VEGETATION; CLIMATE AB Soil, particularly in forests, is replete with spatial variation with respect to soil C. The present standard chemical method for soil analysis by dry combustion (DC) is destructive, and comprehensive sampling is labor intensive and time consuming. These, among other factors, are contributing to the development of new methods for soil analysis. These include a near- and mid-infrared (NIR and MIR) spectroscopy, laser-induced breakdown spectroscopy (LIBS), and inelastic neutron scattering (INS). These technologies overcome many of the state-of-the-art DC method's shortcomings and offer advances that it cannot. While NIR and MIR measure C bonds, the other two new methods, like DC, are more specific in measuring C and other elements based on chemical, atomic, and nuclear reactions. In addition to their fundamentally different physical principles, these approaches vastly differ in the volumes they typically sample: LIBS, 10(-9) m(3); DC, 10(-7) m(3); NIR and MIR, 10(-6) m(3); and INS, about 0.3 m(3). Thus, extra care is needed when comparing the findings from any two of these methods. Also, the high heterogeneity of the soil matrix, the nonuniformity of C distribution, and the presence of coarse fragments, particularly in forested ecosystems, further compound the difficulties in making direct comparisons. We investigated the implications of these differences when correlating any two of these methods and reviewed the processes of comparing a volumetric measurement against a point measurement. We also conducted a detailed comparison of the INS method with the standard DC test. We found that the total (soil organic matter and roots) measured by the INS correlated better than its components with the DC analyses( r(2) = 0.97, P = 10(-7)). The samples for DC analysis were taken from excavations of 40- by 40- by 40-cm plots, in 5- and 10-cm layers. C1 [Wielopolski, Lucian] Brookhaven Natl Lab, Environm Sci Dep, Upton, NY 11973 USA. [Johnsen, Kurt] US Forest Serv, So Res Stn, So Inst Forest Ecosyst Biol, Res Triangle Pk, NC 27709 USA. [Zhang, Yuen] SUNY Stony Brook, Dep Appl Math & Stat, Stony Brook, NY 11794 USA. RP Wielopolski, L (reprint author), Brookhaven Natl Lab, Environm Sci Dep, Bldg 490D, Upton, NY 11973 USA. EM lwielo@bnl.gov FU U.S. Department of Energy [DE-AC02-98CH10886] FX Special thanks go to Dr. F. Sanchez for his helpful discussions on preparing and analyzing soil samples. Partial support by the U.S. Department of Energy under Contract no. DE-AC02-98CH10886 is recognized. NR 20 TC 8 Z9 8 U1 1 U2 12 PU SOIL SCI SOC AMER PI MADISON PA 677 SOUTH SEGOE ROAD, MADISON, WI 53711 USA SN 0361-5995 J9 SOIL SCI SOC AM J JI Soil Sci. Soc. Am. J. PD MAY-JUN PY 2010 VL 74 IS 3 BP 812 EP 819 DI 10.2136/sssaj2009.0205 PG 8 WC Soil Science SC Agriculture GA 593YZ UT WOS:000277500600012 ER PT J AU McFarlane, KJ Schoenholtz, SH Powers, RF Perakis, SS AF McFarlane, Karis J. Schoenholtz, Stephen H. Powers, Robert F. Perakis, Steven S. TI Soil Organic Matter Stability in Intensively Managed Ponderosa Pine Stands in California SO SOIL SCIENCE SOCIETY OF AMERICA JOURNAL LA English DT Article ID BELOW-GROUND CARBON; FOREST SOILS; NITROGEN MINERALIZATION; NUTRIENT AVAILABILITY; DENSITY FRACTIONATION; LITTER DECOMPOSITION; VEGETATION CONTROL; 10-YEAR RESPONSES; MICROBIAL BIOMASS; PACIFIC-NORTHWEST AB Forest soils comprise a large portion of the global terrestrial C pool, and soil organic matter (SOM) is essential to soil function and forest productivity; however, responses of SOM quality to changes in fertility, moisture availability, or management are not well understood. We tested the effects of two common forest management practices, fertilization and competing vegetation control using herbicides, on surface SOM distribution and stability characteristics in three ponderosa pine (Pinus ponderosa P. Lawson & C. Lawson) plantations of differing productivity, soil type, and parent material in northern California by using density fractionation and aerobic laboratory incubation of the surface soils. The treatment effects on pine productivity revealed responses dominated by moisture limitation at the less productive sites and by nutrient hesitation at the most productive site. The stability of surface SOM increased with increasing site productivity. Fertilization increased N concentrations and decreased C/N ratios in whole soils and light fractions at the less productive sites, and the effects persisted for more than a decade. Furthermore, fertilization increased soil C mineralization from the intermediate-productivity site during incubation. In contrast, fertilization decreased C mineralization from the most productive site, suggesting that fertilization increased SOM stabilization at this site. Controlling understory vegetation with herbicides reduced N availability, as evidenced by reduced light-fraction N at the poorest site and decreased N mineralization during incubation. Our study demonstrates the importance of site characteristics and the use of a combination of indices in determining the effects of forest management practices on SOM characteristics and dynamics. C1 [McFarlane, Karis J.] Oregon State Univ, Dep Forest Engn Resources & Management, Corvallis, OR 97330 USA. [Schoenholtz, Stephen H.] Oregon State Univ, Dep Forest Engn Resources & Management, Corvallis, OR 97330 USA. [Powers, Robert F.] US Forest Serv, Pacific SW Res Stn, Redding, CA 96002 USA. [Perakis, Steven S.] US Geol Survey, Forest & Rangeland Ecosyst Sci Ctr, Corvallis, OR 97331 USA. RP McFarlane, KJ (reprint author), Lawrence Livermore Natl Lab, Ctr Accelerator Mass Spectrometry, POB 808,L-397, Livermore, CA 94551 USA. EM mcfarlane3@llnl.gov OI McFarlane, Karis/0000-0001-6390-7863 FU National Fire Plan; Sierra-Cascade Intensive Forest Management Research Cooperative; Sierra Pacific Industries; U.S. Department of Energy; Lawrence Livermore National Laboratory [W-7405-Eng-48] FX Bert Spear and Dave Young provided help in sample collection. Christina Catricala, Melissa McCartney, and Michele Pruyn provided laboratory assistance. Elizabeth Sulzman, Susan Crow, and Phil Sollins shared thoughtful and extremely helpful advice concerning the selection and application of methods for characterizing SOM. Dave Myrold and Chris Swanston provided similar advice in addition to constructive comments on the manuscript. Rob Slesak and Tom Guilderson also reviewed drafts of the manuscript. Financial support for this study was provided by the National Fire Plan, the Sierra-Cascade Intensive Forest Management Research Cooperative, and Sierra Pacific Industries. Land and labor were provided by W.M. Beaty & Associates, Crane Mills, and Sierra Pacific Industries. A portion of this work was performed under the auspices of the U.S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under Contract W-7405-Eng-48. The use of trade, firm, or corporation names in this publication is for the convenience of the reader. Such use does not constitute an official endorsement or approval by the U.S. Government of any product or service to the exclusion of others that may be suitable. NR 91 TC 7 Z9 10 U1 1 U2 21 PU SOIL SCI SOC AMER PI MADISON PA 677 SOUTH SEGOE ROAD, MADISON, WI 53711 USA SN 0361-5995 J9 SOIL SCI SOC AM J JI Soil Sci. Soc. Am. J. PD MAY-JUN PY 2010 VL 74 IS 3 BP 979 EP 992 DI 10.2136/sssaj2009.0062 PG 14 WC Soil Science SC Agriculture GA 593YZ UT WOS:000277500600029 ER PT J AU Haldar, A Singh, NK Mudryk, Y Suresh, KG Nigam, AK Pecharsky, VK AF Haldar, Arabinda Singh, Niraj K. Mudryk, Ya. Suresh, K. G. Nigam, A. K. Pecharsky, V. K. TI Temperature and magnetic field induced structural transformation in Si-doped CeFe2: An in-field X-ray diffraction study SO SOLID STATE COMMUNICATIONS LA English DT Article DE Intermetallics; Magnetostructural coupling; Supercooling; Phase coexistence ID PHASE COEXISTENCE AB Using the X-ray powder diffraction technique at various temperatures and applied magnetic fields, we have studied the magnetostructural properties of Ce(Fe0.9Si0.05)(2). The X-ray diffraction data establish quantitative relationships between bulk magnetization and the evolution of structurally distinct phases with magnetic field and temperature, and confirm the distinct features of a first-order phase transition such as supercooling and superheating. metastability, and phase co-existence of different structural polymorphs We observe the lattice volume mismatch across the structural phase transition, which appears to be the cause for the step behavior of the magnetization isotherms at low temperatures. The present study shows that the lattice distortion has to be treated explicitly, like spin, along with the effects of lattice-spin coupling to account for the magnetization behavior of this system. This structure template can resolve the issue of kinetics in this material as observed in different time scale measurements and with different experimental protocols (C) 2010 Elsevier Ltd All rights reserved. C1 [Haldar, Arabinda; Suresh, K. G.] Indian Inst Technol, Dept Phys, Bombay 400076, Maharashtra, India. [Singh, Niraj K.; Mudryk, Ya.; Pecharsky, V. K.] Iowa State Univ, Ames Lab, US Dept Energy, Ames, IA 50011 USA. [Nigam, A. K.] Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India. [Pecharsky, V. K.] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. RP Suresh, KG (reprint author), Indian Inst Technol, Dept Phys, Bombay 400076, Maharashtra, India. FU BRNS (DAE); Office of Basic Energy Sciences, Materials Sciences Division of the US Department of Energy [DE-AC02-07CH11358] FX KGS and AKN thank BRNS (DAE) for the financial assistance for carrying out this work. The Ames Laboratory is supported by the Office of Basic Energy Sciences, Materials Sciences Division of the US Department of Energy under contract No. DE-AC02-07CH11358 with Iowa State University. The authors thank Prof. K.A. Gschneidner, Jr. for fruitful discussions. NR 24 TC 13 Z9 13 U1 1 U2 9 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0038-1098 J9 SOLID STATE COMMUN JI Solid State Commun. PD MAY PY 2010 VL 150 IS 17-18 BP 879 EP 883 DI 10.1016/j.ssc.2010.01.045 PG 5 WC Physics, Condensed Matter SC Physics GA 584VM UT WOS:000276781600018 ER PT J AU Hagaman, EW Jiao, JA Chen, BH Ma, Z Yin, HF Dai, S AF Hagaman, Edward W. Jiao, Jian Chen, Banghao Ma, Zhen Yin, Hongfeng Dai, Sheng TI Surface alumina species on modified titanium dioxide: A solid-state Al-27 MAS and 3QMAS NMR investigation of catalyst supports SO SOLID STATE NUCLEAR MAGNETIC RESONANCE LA English DT Article DE Al-27 MAS NMR: Al-27 3QMAS NMR; Alumina-modified titania; Catalyst supports; Aluminum speciation; Quadrupole coupling constants; Chemical shifts ID QUADRUPOLAR NUCLEI; METHANE DEHYDROAROMATIZATION; ISOPROPYL-ALCOHOL; CO OXIDATION; MQMAS NMR; TIO2; SPECTROSCOPY; RESOLUTION; PHASE; TRANSFORMATION AB Al-27 MAS and 3QMAS NMR have been used to study Al2O3/TiO2 catalyst supports synthesized via excess-solution impregnation and surface sol-gel methods. Temperature and alumina loading level strongly affect chemical states of aluminum oxide species observed. Surface cations, Al(H2O)(6)(3+), a surface alumina monolayer, and disordered transitional aluminas (multilayers) and alpha-alumina, coexist on the TiO2 surface. Chemical shift and quadrupole coupling constants are reported for the major species identified in 3QMAS experiments. Gold particle catalysts prepared from supports calcined at 500 degrees C have optimum catalytic activity in CO oxidation, and smallest gold particle size for supports, which show maximum monolayer type octahedral alumina on the titania surface. (C) 2010 Elsevier Inc. All rights reserved. C1 [Hagaman, Edward W.; Jiao, Jian; Chen, Banghao; Ma, Zhen; Yin, Hongfeng; Dai, Sheng] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. RP Hagaman, EW (reprint author), Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. EM hagamanew@ornl.gov RI Ma, Zhen/F-1348-2010; Dai, Sheng/K-8411-2015 OI Ma, Zhen/0000-0002-2391-4943; Dai, Sheng/0000-0002-8046-3931 FU Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, US Department of Energy FX Research sponsored by the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, US Department of Energy. NR 39 TC 11 Z9 11 U1 2 U2 21 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0926-2040 J9 SOLID STATE NUCL MAG JI Solid State Nucl. Magn. Reson. PD MAY-JUN PY 2010 VL 37 IS 3-4 BP 82 EP 90 DI 10.1016/j.ssnmr.2010.05.003 PG 9 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical; Physics, Condensed Matter; Spectroscopy SC Chemistry; Physics; Spectroscopy GA 627WU UT WOS:000280075600005 PM 20542414 ER PT J AU Farinholt, KM Miller, N Sifuentes, W MacDonald, J Park, G Farrar, CR AF Farinholt, Kevin M. Miller, Nathan Sifuentes, Wilfredo MacDonald, Jason Park, Gyuhae Farrar, Charles R. TI Energy Harvesting and Wireless Energy Transmission for Embedded SHM Sensor Nodes SO STRUCTURAL HEALTH MONITORING-AN INTERNATIONAL JOURNAL LA English DT Article DE energy harvesting; wireless energy transmission; wireless sensor node; impedance method; piezoelectric transducers ID ACTIVE-SENSORS; IDENTIFICATION; VALIDATION AB In this article, we present experimental investigations using energy harvesting and wireless energy transmission to power wireless structural health monitoring sensor nodes. The goal of this study is to develop sensing systems that can be permanently embedded within a host structure without the need for an on-board power source. With this approach the required energy will be harvested from the ambient environment, or periodically delivered by a radio-frequency energy source to supplement conventional harvesting approaches. This approach combines several transducer types to harvest energy from multiple sources, providing a more robust solution that does not rely on a single energy source. Both piezoelectric and thermoelectric transducers are considered as energy harvesters to extract the ambient energy commonly available on civil structures such as bridges. Methods of increasing the efficiency, energy storage medium, target applications and the integrated use of energy harvesting sources with wireless energy transmission will be presented. C1 [Farinholt, Kevin M.; Miller, Nathan; Sifuentes, Wilfredo; MacDonald, Jason; Park, Gyuhae; Farrar, Charles R.] Los Alamos Natl Lab, Engn Inst MS T001, Los Alamos, NM 87544 USA. RP Park, G (reprint author), Los Alamos Natl Lab, Engn Inst MS T001, POB 1663, Los Alamos, NM 87544 USA. EM gpark@lanl.gov OI Farrar, Charles/0000-0001-6533-6996 NR 20 TC 13 Z9 14 U1 3 U2 16 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 1475-9217 J9 STRUCT HEALTH MONIT JI Struct. Health Monit. PD MAY PY 2010 VL 9 IS 3 SI SI BP 269 EP 280 DI 10.1177/1475921710366647 PG 12 WC Engineering, Multidisciplinary; Instruments & Instrumentation SC Engineering; Instruments & Instrumentation GA 585RJ UT WOS:000276845800008 ER PT J AU Cheggour, N Goodrich, LF Stauffer, TC Splett, JD Lu, XF Ghosh, AK Ambrosio, G AF Cheggour, N. Goodrich, L. F. Stauffer, T. C. Splett, J. D. Lu, X. F. Ghosh, A. K. Ambrosio, G. TI Influence of Ti and Ta doping on the irreversible strain limit of ternary Nb3Sn superconducting wires made by the restacked-rod process SO SUPERCONDUCTOR SCIENCE & TECHNOLOGY LA English DT Article ID CRITICAL-CURRENT DENSITY; RESEARCH-AND-DEVELOPMENT; TEMPERATURE AB Nb3Sn superconducting wires made by the restacked-rod process (RRP (R)) were found to have a dramatically improved resilience to axial tensile strain when alloyed with Ti as compared to Ta. Whereas Ta-alloyed Nb3Sn in RRP wires showed permanent damage to its current-carrying capacity (I-c) when tensioned beyond an intrinsic strain as small as 0.04%, Ti-doped Nb3Sn in RRP strands exhibits a remarkable reversibility up to a tensile strain of about 0.25%, conceivably making Ti-doped RRP wires more suitable for the high field magnets used in particle accelerators and nuclear magnetic resonance applications where mechanical forces are intense. A strain cycling experiment at room temperature caused a significant drop of I-c in Ta-alloyed wires, but induced an increase of I-c in the case of Ti-doped strands. Whereas either Ti or Ta doping yield a similar enhancement of the upper critical field of Nb3Sn, the much improved mechanical behavior of Ti-alloyed wires possibly makes Ti a better choice over Ta, at least for the RRP wire processing technique. C1 [Cheggour, N.; Goodrich, L. F.; Stauffer, T. C.; Splett, J. D.; Lu, X. F.] NIST, Boulder, CO 80305 USA. [Cheggour, N.; Lu, X. F.] Univ Colorado, Dept Phys, Boulder, CO 80309 USA. [Ghosh, A. K.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Ambrosio, G.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. RP Cheggour, N (reprint author), NIST, Boulder, CO 80305 USA. RI Lu, Xifeng/D-9582-2011; Cheggour, Najib/K-2769-2012 OI Cheggour, Najib/0000-0002-0741-3065 FU US Department of Energy, Office of High Energy Physics; US LHC Accelerator Research Program (LARP) FX This work was supported in part by the US Department of Energy, Office of High Energy Physics, and the US LHC Accelerator Research Program (LARP). NR 17 TC 17 Z9 17 U1 0 U2 8 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-2048 J9 SUPERCOND SCI TECH JI Supercond. Sci. Technol. PD MAY PY 2010 VL 23 IS 5 AR 052002 DI 10.1088/0953-2048/23/5/052002 PG 4 WC Physics, Applied; Physics, Condensed Matter SC Physics GA 587XN UT WOS:000277029800003 ER PT J AU Colombier, E Torikachvili, MS Ni, N Thaler, A Bud'ko, SL Canfield, PC AF Colombier, E. Torikachvili, M. S. Ni, N. Thaler, A. Bud'ko, S. L. Canfield, P. C. TI Electrical transport measurements under pressure for BaFe2As2 compounds doped with Co, Cr, or Sn SO SUPERCONDUCTOR SCIENCE & TECHNOLOGY LA English DT Article AB We investigate the in-plane resistivity of single crystalline samples of Ba(Fe1-xCox)(2)As-2 (x = 0.038, 0.047, 0.074, 0.1 and 0.114), Ba(Fe0.973Cr0.027)(2)As-2 and slightly tin-doped BaFe2As2 under various pressures up to 7.5 GPa, in order to establish temperature-pressure, T(P), phase diagrams and to compare the influence of pressure and doping on superconductivity. At ambient pressure, cobalt doping is known to lead to a decrease in the combined magnetic and structural transition temperature T-0. Likewise, an increase of pressure tends to have the same effect for Ba(Fe1-xCox)(2)As-2 for the various values of x. As was seen in the T(P) phase diagram of BaFe2As2, a superconducting dome is observed for Ba(Fe1-xCox)(2)As-2 samples with the dome shifted to lower temperatures and pressures with increased cobalt doping levels. A very different behaviour is noticed for Ba(Fe0.973Cr0.027)(2)As-2 and the slightly tin-doped BaFe2As2 with the decrease of T-0 being close to linear down to 2 K, and no obvious sign of superconductivity in the pressure range investigated. C1 [Colombier, E.; Ni, N.; Thaler, A.; Bud'ko, S. L.; Canfield, P. C.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Colombier, E.; Ni, N.; Thaler, A.; Bud'ko, S. L.; Canfield, P. C.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Torikachvili, M. S.] San Diego State Univ, Dept Phys, San Diego, CA 92182 USA. RP Colombier, E (reprint author), Iowa State Univ, Ames Lab, Ames, IA 50011 USA. RI Canfield, Paul/H-2698-2014; Thaler, Alexander/J-5741-2014 OI Thaler, Alexander/0000-0001-5066-8904 FU US Department of Energy-Basic Energy Sciences [DE-AC02-07CH11358]; National Science Foundation [DMR-0306165, DMR-0805335] FX Work at the Ames Laboratory was supported by the US Department of Energy-Basic Energy Sciences under contract no. DE-AC02-07CH11358. MST gratefully acknowledges support of the National Science Foundation under grant nos DMR-0306165 and DMR-0805335. We would also like to thank Daniel Braithwaite and CEA Grenoble for lending one of the Bridgman cells used in this work as well as Stella Kim (ISU) for providing a critical review of the text. NR 24 TC 23 Z9 23 U1 6 U2 21 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-2048 EI 1361-6668 J9 SUPERCOND SCI TECH JI Supercond. Sci. Technol. PD MAY PY 2010 VL 23 IS 5 AR 054003 DI 10.1088/0953-2048/23/5/054003 PG 13 WC Physics, Applied; Physics, Condensed Matter SC Physics GA 587XN UT WOS:000277029800008 ER PT J AU Das, P O'Brien, T Laver, M Dewhurst, CD Ni, N Bud'ko, SL Canfield, PC Eskildsen, MR AF Das, P. O'Brien, T. Laver, M. Dewhurst, C. D. Ni, N. Bud'ko, S. L. Canfield, P. C. Eskildsen, M. R. TI Small-angle neutron scattering study of vortices in superconducting Ba(Fe0.93Co0.07)(2)As-2 SO SUPERCONDUCTOR SCIENCE & TECHNOLOGY LA English DT Article ID FLUX-LINE-LATTICE; VORTEX CORE; 43 K; FIELD; TRANSITION AB We present small-angle neutron scattering (SANS) studies of the superconducting vortices in Ba(Fe0.93Co0.07)(2)As-2. A highly disordered vortex configuration is observed up to the highest measured field of 3 T. The field dependence of the magnitude of the SANS scattering vector indicates small vortex lattice domains of rhombic symmetry or a vortex glass with short-range hexagonal order. The disordering is attributed to strong single-vortex pinning. This is supported by an analysis of the radial width of the intensity distribution, which indicates a correlation length of a few vortex spacings. Measurements of the scattered intensity are found to decrease with increasing magnetic field, consistent with theoretical models and in reasonable agreement with estimates of the upper critical field. The temperature dependence is found to follow the BCS s-wave prediction. C1 [Das, P.; O'Brien, T.; Eskildsen, M. R.] Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA. [Laver, M.] NIST, Ctr Neutron Res, Gaithersburg, MD 20899 USA. [Dewhurst, C. D.] Inst Max Von Laue Paul Langevin, F-38042 Grenoble, France. [Ni, N.; Bud'ko, S. L.; Canfield, P. C.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Ni, N.; Bud'ko, S. L.; Canfield, P. C.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. RP Das, P (reprint author), Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA. EM eskildsen@nd.edu RI Eskildsen, Morten/E-7779-2011; Das, Pinaki/C-2877-2012; Canfield, Paul/H-2698-2014 FU US National Science Foundation [DMR-0804887, PHY-0552843]; National Institute of Standards and Technology, US Department of Commerce; National Science Foundation [DMR-0454672]; US Department of Energy, Basic Energy Sciences [DE-AC02-07CH11358] FX This work is supported by the US National Science Foundation through grants DMR-0804887 (PD, MRE) and PHY-0552843 (TO'B). We acknowledge the support of the National Institute of Standards and Technology, US Department of Commerce, in providing neutron research facilities used in this work. This work utilized facilities supported in part by the National Science Foundation under Agreement No. DMR-0454672. Work at the Ames Laboratory was supported by the US Department of Energy, Basic Energy Sciences under Contract No. DE-AC02-07CH11358. NR 29 TC 5 Z9 5 U1 0 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-2048 J9 SUPERCOND SCI TECH JI Supercond. Sci. Technol. PD MAY PY 2010 VL 23 IS 5 AR 054007 DI 10.1088/0953-2048/23/5/054007 PG 6 WC Physics, Applied; Physics, Condensed Matter SC Physics GA 587XN UT WOS:000277029800012 ER PT J AU Jin, R Pan, MH He, XB Li, GR Li, D Peng, RW Thompson, JR Sales, BC Sefat, AS McGuire, MA Mandrus, D Wendelken, JF Keppens, V Plummer, EW AF Jin, R. Pan, M. H. He, X. B. Li, Guorong Li, De Peng, Ru-wen Thompson, J. R. Sales, B. C. Sefat, A. S. McGuire, M. A. Mandrus, D. Wendelken, J. F. Keppens, V. Plummer, E. W. TI Electronic, magnetic and optical properties of two Fe-based superconductors and related parent compounds SO SUPERCONDUCTOR SCIENCE & TECHNOLOGY LA English DT Article ID ANTIFERROMAGNETISM; CHROMIUM; SURFACE; STATE AB We have investigated the electronic, magnetic, and optical properties of two Fe-based superconductors and related parent compounds via three powerful techniques: scanning tunneling microscopy/spectroscopy (STM/S), high-temperature vibrating sample magnetometry, and optical transmission spectroscopy (OTS). Below the superconducting transition temperature T(c) similar to 48 K, the STM/S of polycrystalline NdFeAsO(0.86)F(0.14) reveals a single-gap feature. The quantitative fitting of STS data results in Bardeen-Cooper-Schrieffer-like temperature dependence of the energy gap Delta(T), with 2 Delta(0)/k(B)T(c) similar to 4.3. The tunneling spectra of BaFe(2)As(2) single crystals show no evidence for the opening of a gap below the magnetic/structural transition temperature T(MS) similar to 140 K. This transition also had little impact on the transmission spectra in the wavelength range between 400 and 2400 nm. But its effect on the magnetic properties is dramatic, as reflected in the unusual magnetic susceptibility over a wide temperature range. C1 [Jin, R.; He, X. B.; Li, Guorong; Plummer, E. W.] Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA. [Pan, M. H.; Thompson, J. R.; Sales, B. C.; Sefat, A. S.; McGuire, M. A.; Mandrus, D.; Wendelken, J. F.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Li, De; Peng, Ru-wen] Nanjing Univ, Natl Lab Solid State Microstruct, Nanjing 210093, Peoples R China. [Li, De; Peng, Ru-wen] Nanjing Univ, Dept Phys, Nanjing 210093, Peoples R China. [Thompson, J. R.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Mandrus, D.; Keppens, V.] Univ Tennessee, Dept Mat & Engn, Knoxville, TN 37996 USA. RP Jin, R (reprint author), Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA. EM rjin@lsu.edu RI McGuire, Michael/B-5453-2009; He, Xiaobo/G-5435-2012; Mandrus, David/H-3090-2014; Li, Guorong/C-3806-2015; Sefat, Athena/R-5457-2016 OI McGuire, Michael/0000-0003-1762-9406; Sefat, Athena/0000-0002-5596-3504 FU Oak Ridge National Laboratory (ORNL); Division of Materials Sciences and Engineering (DMSE); US DOE at ORNL; National Science Foundation (NSF); DOE (DMSE) [NSF-DMR-0451163]; University of Tennessee FX This research was supported in part (MHP, JFW) by the Laboratory Directed Research and Development Program at Oak Ridge National Laboratory (ORNL), managed by UT-Battelle, LLC for the US Department of Energy (DOE), and in part (ASS, MAM, BCS, DM, JRT) by the Division of Materials Sciences and Engineering (DMS&E), US DOE at ORNL. EWP, XH and GL would like to acknowledge support from the National Science Foundation (NSF) and DOE (DMS&E) through NSF-DMR-0451163 and also the support from The University of Tennessee SARIF program. NR 36 TC 11 Z9 11 U1 2 U2 21 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-2048 J9 SUPERCOND SCI TECH JI Supercond. Sci. Technol. PD MAY PY 2010 VL 23 IS 5 AR 054005 DI 10.1088/0953-2048/23/5/054005 PG 6 WC Physics, Applied; Physics, Condensed Matter SC Physics GA 587XN UT WOS:000277029800010 ER PT J AU Kim, SK Tillman, ME Kim, H Kracher, A Bud'ko, SL Prozorov, R Canfield, PC AF Kim, S. K. Tillman, M. E. Kim, H. Kracher, A. Bud'ko, S. L. Prozorov, R. Canfield, P. C. TI Growth and characterization of Nd(Fe1-xCox)AsO single crystals SO SUPERCONDUCTOR SCIENCE & TECHNOLOGY LA English DT Article ID 43 K; SUPERCONDUCTIVITY; COMPOUND; EARTH; METAL AB Single crystals of NdFe1-xCoxAsO with x = 0, 0.025, 0.05, 0.075, 0.10 and 0.15 were grown via high pressure synthesis. Structural and elemental analysis showed successful substitution of Co for Fe with no detectable change in the oxygen site occupation. Magnetic, electrical transport and tunnel-diode resonator measurements were used to characterize the NdFe1-xCoxAsO crystals. These measurements indicated that superconductivity was achieved with x >= 0.025 and optimal doping was established with x = 0.05 with the maximum superconducting critical temperature of 25 K. Measurement of temperature dependent resistance in applied magnetic fields as high as 14 T showed a broadening of the superconducting transition and an H-c2(T) curve that was consistent with those of other iron pnictide superconductors. C1 [Kim, S. K.; Tillman, M. E.; Kim, H.; Kracher, A.; Bud'ko, S. L.; Prozorov, R.; Canfield, P. C.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Kim, S. K.; Tillman, M. E.; Kim, H.; Bud'ko, S. L.; Prozorov, R.; Canfield, P. C.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. RP Kim, SK (reprint author), Iowa State Univ, Ames Lab, Ames, IA 50011 USA. RI Prozorov, Ruslan/A-2487-2008; Canfield, Paul/H-2698-2014 OI Prozorov, Ruslan/0000-0002-8088-6096; FU Department of Energy, Basic Energy Sciences [DE-AC02-07CH11358] FX We thank A Kreyssig, A Kaminski, M Tanatar and J-Q Yan for their assistance as well as constructive suggestions. Work at the Ames Laboratory was supported by the Department of Energy, Basic Energy Sciences under Contract No. DE-AC02-07CH11358. NR 28 TC 10 Z9 10 U1 0 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-2048 J9 SUPERCOND SCI TECH JI Supercond. Sci. Technol. PD MAY PY 2010 VL 23 IS 5 AR 054008 DI 10.1088/0953-2048/23/5/054008 PG 6 WC Physics, Applied; Physics, Condensed Matter SC Physics GA 587XN UT WOS:000277029800013 ER PT J AU Lu, X Park, WK Yuan, HQ Chen, GF Luo, GL Wang, NL Sefat, AS McGuire, MA Jin, R Sales, BC Mandrus, D Gillett, J Sebastian, SE Greene, LH AF Lu, Xin Park, W. K. Yuan, H. Q. Chen, G. F. Luo, G. L. Wang, N. L. Sefat, A. S. McGuire, M. A. Jin, R. Sales, B. C. Mandrus, D. Gillett, J. Sebastian, Suchitra E. Greene, L. H. TI Point-contact spectroscopic studies on normal and superconducting AFe(2)As(2)-type iron pnictide single crystals SO SUPERCONDUCTOR SCIENCE & TECHNOLOGY LA English DT Article ID RESOLVED PHOTOEMISSION-SPECTROSCOPY; GAPS; BA0.6K0.4FE2AS2; SYMMETRY; SURFACE AB Point-contact Andreev reflection spectroscopy is applied to investigate the gap structure in iron pnictide single-crystal superconductors of the AFe(2)As(2) (A = Ba, Sr) family ('Fe-122'). The observed point-contact junction conductance curves, G(V), can be divided into two categories: one where Andreev reflection is present for both (Ba0.6K0.4) Fe2As2 and Ba(Fe0.9Co0.1)(2)As-2, and the other with a V-2/3 background conductance universally observed, extending even up to 100 meV for Sr0.6Na0.4Fe2As2 and Sr(Fe0.9Co0.1)(2)As-2. The latter is also observed in point-contact junctions on the nonsuperconducting parent compound BaFe2As2 and superconducting (Ba0.6K0.4)Fe2As2 crystals. Mesoscopic phase-separated coexistence of magnetic and superconducting orders is considered to explain distinct behaviors in the superconducting samples. For Ba0.6K0.4Fe2As2, double peaks due to Andreev reflection with a strongly sloping background are frequently observed for point contacts on freshly cleaved c-axis surfaces. If normalized using a background baseline and analyzed using the Blonder-Tinkham-Klapwijk model, the data show a gap size of similar to 3.0-4.0 meV with 2 Delta(0)/k(B)T(c)similar to 2.0-2.6, consistent with the smaller gap size reported for the LnFeAsO family ('Fe-1111'). For the Ba(Fe0.9Co0.1)(2)As-2, the G(V) curves typically display a zero-bias conductance peak. C1 [Lu, Xin; Park, W. K.; Greene, L. H.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Lu, Xin; Park, W. K.; Greene, L. H.] Univ Illinois, Fredrick Seitz Mat Res Lab, Urbana, IL 61801 USA. Zhejiang Univ, Dept Phys, Hangzhou 310027, Peoples R China. [Chen, G. F.; Luo, G. L.; Wang, N. L.] Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China. [Sefat, A. S.; McGuire, M. A.; Jin, R.; Sales, B. C.; Mandrus, D.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Gillett, J.; Sebastian, Suchitra E.] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England. RP Lu, X (reprint author), Univ Illinois, Dept Phys, Urbana, IL 61801 USA. EM xinlu@illinois.edu RI McGuire, Michael/B-5453-2009; Lu, Xin/B-7358-2012; Mandrus, David/H-3090-2014; Sefat, Athena/R-5457-2016 OI McGuire, Michael/0000-0003-1762-9406; Sefat, Athena/0000-0002-5596-3504 FU US DoE through the Frederick Seitz Materials Research Laboratory [DEFG02-07ER46453]; Center for Micro-analysis of Materials at UIUC; NSF [DMR 07-06013]; National Science Foundation of China [10874146, 10934005]; National Basic Research Program of China [2009CB929104]; Zhejiang Natural Science Foundation [ZJNSF R0690113]; Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, DOE FX We thank R Hasch for technical support. This work at UIUC is supported by the US DoE Award No. DEFG02-07ER46453 through the Frederick Seitz Materials Research Laboratory and the Center for Micro-analysis of Materials at UIUC. XL acknowledges the support by NSF DMR 07-06013. HQY is supported by the National Science Foundation of China (grant nos 10874146,10934005), the National Basic Research Program of China (grant no. 2009CB929104) and Zhejiang Natural Science Foundation (ZJNSF R0690113). The work at ORNL is supported by the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, DOE. NR 42 TC 21 Z9 21 U1 0 U2 19 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-2048 J9 SUPERCOND SCI TECH JI Supercond. Sci. Technol. PD MAY PY 2010 VL 23 IS 5 AR 054009 DI 10.1088/0953-2048/23/5/054009 PG 7 WC Physics, Applied; Physics, Condensed Matter SC Physics GA 587XN UT WOS:000277029800014 ER PT J AU Prozorov, R Gurevich, A Luke, G AF Prozorov, Ruslan Gurevich, Alex Luke, Graeme TI The electromagnetic properties of iron-based superconductors SO SUPERCONDUCTOR SCIENCE & TECHNOLOGY LA English DT Editorial Material C1 [Prozorov, Ruslan] Iowa State Univ, Dept Phys & Astron, Ames Natl Lab, Ames, IA 50011 USA. [Gurevich, Alex] Florida State Univ, Natl High Magnet Field Lab, Tallahassee, FL 32306 USA. [Luke, Graeme] McMaster Univ, Dept Phys & Astron, Hamilton, ON L8S 4M1, Canada. RP Prozorov, R (reprint author), Iowa State Univ, Dept Phys & Astron, Ames Natl Lab, Ames, IA 50011 USA. RI Gurevich, Alex/A-4327-2008; Prozorov, Ruslan/A-2487-2008; Luke, Graeme/A-9094-2010 OI Gurevich, Alex/0000-0003-0759-8941; Prozorov, Ruslan/0000-0002-8088-6096; NR 0 TC 2 Z9 2 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-2048 J9 SUPERCOND SCI TECH JI Supercond. Sci. Technol. PD MAY PY 2010 VL 23 IS 5 AR 050201 DI 10.1088/0953-2048/23/5/050201 PG 1 WC Physics, Applied; Physics, Condensed Matter SC Physics GA 587XN UT WOS:000277029800001 ER PT J AU Pulikkotil, JJ Ke, L van Schilfgaarde, M Kotani, T Antropov, VP AF Pulikkotil, J. J. Ke, L. van Schilfgaarde, M. Kotani, T. Antropov, V. P. TI Magnetism and exchange coupling in iron pnictides SO SUPERCONDUCTOR SCIENCE & TECHNOLOGY LA English DT Article ID SPIN DYNAMICS AB Using linear-response density-functional theory, we obtain the magnetic interactions in several iron pnictides. The ground state has been found to be non-collinear in FeSe, with a large continuum of nearly degenerate states lying very close to the magnetic 'striped' structure. The presence of non-collinearity also seems to be a generic feature of iron pnictides when the Fe moment is small. At small R(Fe-Se) the system is itinerant: strong frustration gives rise to an excess of spin entropy, long ranged interactions create incommensurate orderings and strong biquadratic coupling violates the applicability of the Heisenberg model. There is a smooth transition to more localized behavior as R(Fe-Se) increases: stable magnetic orbital order develops which favors long range AFM stripe ordering with strongly anisotropic in-plane exchange couplings. The stabilization of the stripe magnetic order is accompanied by the inversion of the exchange coupling. C1 [Pulikkotil, J. J.; Antropov, V. P.] Ames Lab, Ames, IA 50011 USA. [Ke, L.; van Schilfgaarde, M.; Kotani, T.] Arizona State Univ, Sch Mat, Tempe, AZ 85287 USA. RP Pulikkotil, JJ (reprint author), Ames Lab, Ames, IA 50011 USA. RI kotani, takao/G-4355-2011 OI kotani, takao/0000-0003-1693-7052 FU Department of Energy-Basic Energy Sciences [DE-AC02-07CH11358, DE-FG02-06ER46302]; ONR [N00014-07-1-0479] FX Work at the Ames Laboratory was supported by Department of Energy-Basic Energy Sciences, under contract no. DE-AC02-07CH11358. ASU was supported by DOE contract DE-FG02-06ER46302 and ONR grant N00014-07-1-0479, and is grateful to the Fulton High-Performance Computing Center for use of their facilities. NR 23 TC 11 Z9 11 U1 0 U2 13 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-2048 J9 SUPERCOND SCI TECH JI Supercond. Sci. Technol. PD MAY PY 2010 VL 23 IS 5 AR 054012 DI 10.1088/0953-2048/23/5/054012 PG 6 WC Physics, Applied; Physics, Condensed Matter SC Physics GA 587XN UT WOS:000277029800017 ER PT J AU Tanatar, MA Ni, N Bud'ko, SL Canfield, PC Prozorov, R AF Tanatar, M. A. Ni, N. Bud'ko, S. L. Canfield, P. C. Prozorov, R. TI Field-dependent transport critical current in single crystals of Ba(Fe1-xTMx)(2)As-2 (TM = Co, Ni) superconductors SO SUPERCONDUCTOR SCIENCE & TECHNOLOGY LA English DT Article ID VORTICES AB Critical current density was studied by direct electrical transport measurements in single crystals of Ba(Fe1-xTMx)(2)As-2 under magnetic fields up to 9 T. To understand the relation of the critical current to the structural transformations in the material, the electron doping level was controlled by the amount of TM = Co (underdoped x = 0.054 versus optimally doped x = 0.074) and by the nature of the dopant (optimally doped TM = Co versus TM = Ni). It is found that the suppression of the critical current density by the magnetic field is much slower for Ni and underdoped Co compositions than for an optimally doped Co composition. We relate this difference to the proximity to the orthorhombic/antiferromagnetic phase boundary in the T(x) phase diagram. Structural domains formed in this area of the phase diagram create favorable conditions for pinning and not only increase critical current densities, but also hamper the degradation of the critical current under magnetic field. C1 [Tanatar, M. A.; Ni, N.; Bud'ko, S. L.; Canfield, P. C.; Prozorov, R.] Ames Lab, Ames, IA 50011 USA. [Ni, N.; Bud'ko, S. L.; Canfield, P. C.; Prozorov, R.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. RP Tanatar, MA (reprint author), Ames Lab, Ames, IA 50011 USA. EM tanatar@ameslab.gov RI Prozorov, Ruslan/A-2487-2008; Canfield, Paul/H-2698-2014 OI Prozorov, Ruslan/0000-0002-8088-6096; FU Department of Energy-Basic Energy Sciences [DE-AC02-07CH11358]; Alfred P Sloan Foundation FX We thank C Martin and V G Kogan for discussions. Work at the Ames Laboratory was supported by the Department of Energy-Basic Energy Sciences under contract No. DE-AC02-07CH11358. RP acknowledges support from the Alfred P Sloan Foundation. NR 39 TC 30 Z9 30 U1 0 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-2048 EI 1361-6668 J9 SUPERCOND SCI TECH JI Supercond. Sci. Technol. PD MAY PY 2010 VL 23 IS 5 AR 054002 DI 10.1088/0953-2048/23/5/054002 PG 8 WC Physics, Applied; Physics, Condensed Matter SC Physics GA 587XN UT WOS:000277029800007 ER PT J AU Buchholz, BA Spalding, KL AF Buchholz, B. A. Spalding, K. L. TI Year of birth determination using radiocarbon dating of dental enamel SO SURFACE AND INTERFACE ANALYSIS LA English DT Article DE bomb-pulse; dental enamel; accelerator mass spectrometry; carbon-14; forensics ID BOMB C-14 DATA; AGE CALIBRATION; SAMPLE PREPARATION; ION-SOURCE; AMS; CONTAMINATION; CAMS/LLNL; GRAPHITE AB Radiocarbon dating is typically an archaeological tool rather than a forensic one. Recently, however, we have shown that the amount of radiocarbon present in tooth enamel, as a result of nuclear bomb testing during the cold war, is a remarkably accurate indicator of when a person is born. Enamel isolated from human teeth is processed to form graphite, and carbon-14 ((14)C) levels are measured using accelerator mass spectrometry. Since there is no turnover of enamel after it is formed, (14)C levels in the enamel represent (14)C levels in the atmosphere at the time of its formation. In this paper, we describe the strategy used to determine the date of birth of an individual based on radiocarbon levels in tooth enamel, focusing on the methodology of this strategy. Year of birth information can significantly assist police investigators when the identity of a deceased individual is unknown. In such cases, police will try to match particulars of the unidentified individual, which is often only gender and/or an estimate of age, with particulars from missing persons lists. Copyright (C) 2009 John Wiley & Sons, Ltd. C1 [Buchholz, B. A.] Lawrence Livermore Natl Lab, Ctr Accelerator Mass Spectrometry, Livermore, CA 94551 USA. [Spalding, K. L.] Karolinska Inst, Dept Cell & Mol Biol, S-1771 Stockholm, Sweden. RP Buchholz, BA (reprint author), Lawrence Livermore Natl Lab, Ctr Accelerator Mass Spectrometry, Livermore, CA 94551 USA. EM buchholz2@llnl.gov; kirsty.spalding@ki.se RI Buchholz, Bruce/G-1356-2011 FU Human Frontiers Science Program; NIH/NCRR [RR13461]; U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX This work was supported by grants from the Human Frontiers Science Program and by NIH/NCRR (RR13461). This work was performed in part under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 31 TC 15 Z9 15 U1 4 U2 20 PU JOHN WILEY & SONS LTD PI CHICHESTER PA THE ATRIUM, SOUTHERN GATE, CHICHESTER PO19 8SQ, W SUSSEX, ENGLAND SN 0142-2421 J9 SURF INTERFACE ANAL JI Surf. Interface Anal. PD MAY PY 2010 VL 42 IS 5 SI SI BP 398 EP 401 DI 10.1002/sia.3093 PG 4 WC Chemistry, Physical SC Chemistry GA 592BV UT WOS:000277350900010 PM 20976120 ER PT J AU Asensio, S Romero, MJ Romero, FJ Wong, C Alia-Klein, N Tomasi, D Wang, GJ Telang, F Volkow, ND Goldstein, RZ AF Asensio, Samuel Romero, Maria J. Romero, Francisco J. Wong, Christopher Alia-Klein, Nelly Tomasi, Dardo Wang, Gene-Jack Telang, Frank Volkow, Nora D. Goldstein, Rita Z. TI Striatal Dopamine D2 Receptor Availability Predicts the Thalamic and Medial Prefrontal Responses to Reward in Cocaine Abusers Three Years Later SO SYNAPSE LA English DT Article DE fMRI; PET; striatal dopamine D2 receptor availability; thalamus; prefrontal cortex; cocaine addiction; monetary reward ID LONG-TERM STABILITY; MONETARY REWARD; HUMAN BRAIN; DRUG-ABUSE; ADDICTION; BINDING; EXPECTATION; SENSITIVITY; METABOLISM; ACTIVATION AB Low levels of dopamine (DA) D2 receptor availability at a resting baseline have been previously reported in drug addicted individuals and have been associated with reduced ventral and dorsal prefrontal metabolism. The reduction in DA D2 receptor availability along with the reduced ventral frontal metabolism is thought to underlie compromised sensitivity to nondrug reward, a core characteristic of drug addiction. We therefore hypothesized that variability in DA D2 receptor availability at baseline will covary with dynamic responses to monetary reward in addicted individuals. Striatal DA D2 receptor availability was measured with [(11)C]raclopride and positron emission tomography and response to monetary reward was measured (an average of three years later) with functional magnetic resonance imaging in seven cocaine-addicted individuals. Results show that low DA D2 receptor availability in the dorsal striatum was associated with decreased thalamic response to monetary reward; while low availability in ventral striatum was associated with increased medial prefrontal (Brodmann Area 6/8/32) response to monetary reward. These preliminary results, that need to be replicated in larger sample sizes and validated with healthy controls, suggest that resting striatal DA D2 receptor availability predicts variability in functional responses to a nondrug reinforcer (money) in prefrontal cortex, implicated in behavioral monitoring, and in thalamus, implicated in conditioned responses and expectation, in cocaine-addicted individuals. Synapse 64:397-402, 2010. (C) 2009 Wiley-Liss, Inc. C1 [Wong, Christopher; Alia-Klein, Nelly; Tomasi, Dardo; Wang, Gene-Jack; Telang, Frank; Goldstein, Rita Z.] Brookhaven Natl Lab, Med Res Ctr, Upton, NY 11973 USA. [Asensio, Samuel; Romero, Maria J.; Romero, Francisco J.] Univ CEU Cardenal Herrera, Inst Drogas & Conductas Adictivas, Valencia 46113, Spain. [Volkow, Nora D.] Natl Inst Drug Abuse, Neuro Sci Ctr, Bethesda, MD USA. RP Goldstein, RZ (reprint author), Brookhaven Natl Lab, Med Res Ctr, Upton, NY 11973 USA. EM rgoldstein@bnl.gov RI Tomasi, Dardo/J-2127-2015; Asensio, Samuel/I-9426-2014 OI Asensio, Samuel/0000-0002-3028-6981 FU National Institute on Drug Abuse [IR01DA023579, R21DA02062]; Ministerio de Ciencia e Innovacion Spain [SAF2007-66,801]; Instituto de Salud Carlos III [RD06/000110032]; General Clinical Research Center [5-MO1-RR-10,710]; U.S. Department of Energy (OBER) FX Contract grant sponsor: National Institute on Drug Abuse; Contract grant numbers: IR01DA023579, R21DA02062; Contract grant sponsor: Ministerio de Ciencia e Innovacion Spain; Contract grant number: SAF2007-66,801; Contract grant sponsor: RTA (Red de Transtornos Adictivos) program from Instituto de Salud Carlos III; Contract grant number: RETICS RD06/000110032; Contract grant sponsor: General Clinical Research Center; Contract grant number: 5-MO1-RR-10,710; Contract grant sponsor: Laboratory Directed Research and Development from U.S. Department of Energy (OBER) NR 31 TC 28 Z9 28 U1 3 U2 7 PU WILEY-LISS PI HOBOKEN PA DIV JOHN WILEY & SONS INC, 111 RIVER ST, HOBOKEN, NJ 07030 USA SN 0887-4476 J9 SYNAPSE JI Synapse PD MAY PY 2010 VL 64 IS 5 BP 397 EP 402 DI 10.1002/syn.20741 PG 6 WC Neurosciences SC Neurosciences & Neurology GA 573PU UT WOS:000275927500006 PM 20034014 ER PT J AU Chen, G Shen, S Tong, J Henry, A AF Chen, Gang Shen, Sheng Tong, Jonathan Henry, Asegun TI Reinventing the polymer SO TCE LA English DT Article C1 [Chen, Gang; Shen, Sheng; Tong, Jonathan] MIT, Dept Mech Engn, Cambridge, MA 02139 USA. [Henry, Asegun] Oak Ridge Natl Lab, Oak Ridge, TN USA. RP Chen, G (reprint author), MIT, Dept Mech Engn, Cambridge, MA 02139 USA. EM gchen2@mit.edu RI Chen, Gang/J-1325-2014 OI Chen, Gang/0000-0002-3968-8530 NR 0 TC 0 Z9 0 U1 0 U2 8 PU INST CHEMICAL ENGINEERS PI RUGBY PA 165-189 RAILWAY TERRACE, DAVIS BLDG, RUGBY CV21 3HQ, ENGLAND SN 0302-0797 J9 TCE-THE CHEM ENG JI TCE PD MAY PY 2010 IS 827 BP 28 EP 29 PG 2 WC Engineering, Chemical SC Engineering GA 607SD UT WOS:000278525900055 ER PT J AU Graves, TL Anderson-Cook, CM Hamada, MS AF Graves, Todd L. Anderson-Cook, Christine M. Hamada, Michael S. TI Reliability Models for Almost-Series and Almost-Parallel Systems SO TECHNOMETRICS LA English DT Article DE Bayesian; Discrepancy; Markov chain Monte Carlo; Multilevel binomial data; Parallel and series systems ID BINOMIAL SUBSYSTEMS; BAYESIAN-ESTIMATION; COMPLEX-SYSTEMS; COMPONENTS AB When assessing system reliability using system, subsystem, and component-level data, assumptions are required about the form of the system structure in order to utilize the lower-level data. We consider model forms which allow for the assessment and modeling of possible discrepancies between reliability estimates based on different levels of data. By understanding these potential conflicts between data, we can more realistically represent the true uncertainty of the estimates and gain understanding about inconsistencies which might guide further improvements to the system model. The new methodology is illustrated with several examples. C1 [Graves, Todd L.; Anderson-Cook, Christine M.; Hamada, Michael S.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Graves, TL (reprint author), Los Alamos Natl Lab, MS F600,POB 1663, Los Alamos, NM 87545 USA. EM tgraves@lanl.gov; c-and-cook@lanl.gov; hamada@lanl.gov FU Los Alamos National Laboratory Enhanced Surveillance Campaign; Joint Department of Defense/Department of Energy FX The authors thank C. C. Essix for her encouragement of this work. The work presented here was funded by the Los Alamos National Laboratory Enhanced Surveillance Campaign and the Joint Department of Defense/Department of Energy Munitions Program. NR 21 TC 9 Z9 9 U1 2 U2 2 PU AMER STATISTICAL ASSOC PI ALEXANDRIA PA 732 N WASHINGTON ST, ALEXANDRIA, VA 22314-1943 USA SN 0040-1706 J9 TECHNOMETRICS JI Technometrics PD MAY PY 2010 VL 52 IS 2 BP 160 EP 171 DI 10.1198/TECH.2009.08185 PG 12 WC Statistics & Probability SC Mathematics GA 614FJ UT WOS:000279040500002 ER PT J AU Huzurbazar, AV Williams, BJ AF Huzurbazar, Aparna V. Williams, Brian J. TI Incorporating Covariates in Flowgraph Models: Applications to Recurrent Event Data SO TECHNOMETRICS LA English DT Article DE Bayesian prediction; Generalized linear model; Generalized transition graph; Prognostics and health management (PHM); Reliability; Survival analysis ID CHAIN MONTE-CARLO; GENERALIZED LINEAR-MODELS; POWER LAW PROCESS; NONPARAMETRIC-ESTIMATION; STATISTICAL-ANALYSIS; REPAIRABLE SYSTEMS; SURVIVAL ANALYSIS; RELIABILITY; DISPERSION; INFERENCE AB Modeling recurrent event data is of current interest in statistics and engineering. This article proposes a framework for incorporating covariates in flowgraph models, with application to recurrent event data in systems reliability settings. A flowgraph is a generalized transition graph (GTG) originally developed to model total system waiting times for semi-Markov processes. The focus of flowgraph models is expanded by linking covariates into branch transition models, enriching the toolkit of available data analysis methods for complex stochastic systems. This article takes a Bayesian approach to the analysis of flowgraph models. Potential applications are not limited to engineering systems, but also extend to survival analysis. C1 [Huzurbazar, Aparna V.; Williams, Brian J.] Los Alamos Natl Lab, Stat Sci Grp, Los Alamos, NM 87545 USA. RP Huzurbazar, AV (reprint author), Los Alamos Natl Lab, Stat Sci Grp, POB 1663, Los Alamos, NM 87545 USA. EM aparna@lanl.gov OI Williams, Brian/0000-0002-3465-4972 FU U.S. Department of Energy [DE-AC52-06NA25396] FX This work was performed under the auspices of the Los Alamos National Laboratory, an affirmative action/equal opportunity employer, operated by the Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. The authors thank the editor, anonymous associate editor, and two anonymous referees who provided many detailed comments that have substantially improved this article. NR 36 TC 8 Z9 8 U1 2 U2 3 PU AMER STATISTICAL ASSOC PI ALEXANDRIA PA 732 N WASHINGTON ST, ALEXANDRIA, VA 22314-1943 USA SN 0040-1706 EI 1537-2723 J9 TECHNOMETRICS JI Technometrics PD MAY PY 2010 VL 52 IS 2 BP 198 EP 208 DI 10.1198/TECH.2010.08044 PG 11 WC Statistics & Probability SC Mathematics GA 614FJ UT WOS:000279040500005 ER PT J AU Kanniah, KD Beringer, J Tapper, NJ Long, CN AF Kanniah, Kasturi Devi Beringer, Jason Tapper, Nigel J. Long, Chuck N. TI Aerosols and their influence on radiation partitioning and savanna productivity in northern Australia SO THEORETICAL AND APPLIED CLIMATOLOGY LA English DT Article ID PHOTOSYNTHETICALLY ACTIVE RADIATION; BIOMASS BURNING AEROSOLS; OPTICAL-PROPERTIES; TROPICAL SAVANNA; ECOSYSTEM PRODUCTIVITY; DIFFUSE-RADIATION; SIZE DISTRIBUTION; AFRICAN SAVANNAS; LIGHT-SCATTERING; SOLAR-RADIATION AB Aerosols have been shown to affect the quantity and quality of solar radiation on the Earth's surface. Savanna regions are subject to frequent burning and release of aerosols that may impact on radiation components and possibly vegetation productivity in this region. Therefore, in this study, we have analyzed the optical properties of aerosols (aerosol optical depth (AOD) and Angstrom coefficient) from the Atmospheric Radiation Measurement site in Darwin for the periods from April 2002 to June 2005 as measured by a multifilter rotating shadowband radiometer. The influence of aerosols and their effect on surface shortwave incoming solar radiation and savanna productivity were examined for the dry season using sky radiation collection of radiometers and eddy covariance measurements from the Howard Springs flux site. Results indicated that aerosol concentrations in the region were relatively low compared to other savanna regions with the maximum monthly average AOD over the period being the greatest in October (0.29 +/- 0.003 standard error at 500 nm). The highest monthly average Angstrom exponent was also found in October (1.38 +/- 0.008). The relatively low aerosol concentration in this region can be attributed to the mixture of smoke aerosols with humidity haze and local circulations. Over a range of AODs from 0.1 to 0.4, we found a modest increase in the fraction of diffuse radiation to total radiation from 11% to 21%. This small increase in diffuse fraction did not affect the carbon flux significantly. However, because the current range of AOD in the region is relatively low, the region could be sensitive to increases in aerosols and diffuse fraction in the future. C1 [Kanniah, Kasturi Devi] Univ Technol Malaysia, Dept Remote Sensing, Skudai 81310, Johor, Malaysia. [Kanniah, Kasturi Devi; Beringer, Jason; Tapper, Nigel J.] Monash Univ, Sch Geog & Environm Sci, Clayton, Vic 3800, Australia. [Long, Chuck N.] Pacific NW Natl Lab, Atmospher Radiat Measurement Program, Richland, WA 99352 USA. RP Kanniah, KD (reprint author), Univ Technol Malaysia, Dept Remote Sensing, Skudai 81310, Johor, Malaysia. EM kasturi@utm.my RI Kanniah, Kasturi/K-6777-2012; Xiongfei, Zhao/G-7690-2015; Beringer, Jason/B-8528-2008 OI Kanniah, Kasturi/0000-0001-6736-4819; Beringer, Jason/0000-0002-4619-8361 FU Australian Research Council [DP0344744, DP0772981]; Faculty of Arts, Monash University and University of Technology Malaysia; US Department of Energy FX This work is supported by Australian Research Council grants (DP0344744 and DP0772981) and a Ph.D. scholarship from the Faculty of Arts, Monash University and University of Technology Malaysia. Dr. Long acknowledges the support of the Climate Change Research Division of the US Department of Energy as part of the ARM Program. Thanks are also extended to the Bureau of Meteorology, Darwin, for the provision of meteorological data and AERONET for making available the aerosol size distribution data. NR 91 TC 14 Z9 15 U1 2 U2 18 PU SPRINGER WIEN PI WIEN PA SACHSENPLATZ 4-6, PO BOX 89, A-1201 WIEN, AUSTRIA SN 0177-798X EI 1434-4483 J9 THEOR APPL CLIMATOL JI Theor. Appl. Climatol. PD MAY PY 2010 VL 100 IS 3-4 BP 423 EP 438 DI 10.1007/s00704-009-0192-z PG 16 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 588UE UT WOS:000277098800014 ER PT J AU Marino, SR Lin, S Maiers, M Haagenson, M Spellman, S Lee, SJ Klein, J Binkowski, TA van Besien, K AF Marino, Susana R. Lin, Shang Maiers, Martin Haagenson, Michael Spellman, Stephen Lee, Stephanie J. Klein, John Binkowski, T. Andrew van Besien, Koen TI Identification of HLA class I amino acid substitutions associated with survival at day 100 post-stem cell transplant and review of the literature SO TISSUE ANTIGENS LA English DT Meeting Abstract CT 24th European Immunogenetics and Histocompatibility Conference/17th Annual Meeting of the Italian-Society-for-Immunogenetics-and-Transplantation-Biology CY MAY 15-18, 2010 CL Florence, ITALY SP Italian Soc Immunogenet & Transplantat Biol C1 [Marino, Susana R.; van Besien, Koen] Univ Chicago, Med Ctr, Chicago, IL 60637 USA. [Maiers, Martin; Spellman, Stephen] Natl Marrow Donor Program, Minneapolis, MN USA. [Haagenson, Michael] Ctr Int Blood & Marrow Transplant Res, Minneapolis, MN USA. [Lee, Stephanie J.] Fred Hutchinson Canc Res Ctr, Seattle, WA 98104 USA. [Klein, John] Med Coll Wisconsin, Milwaukee, WI 53226 USA. [Binkowski, T. Andrew] Argonne Natl Lab, Argonne, IL 60439 USA. RI van Besien, Koen/G-4221-2012 OI van Besien, Koen/0000-0002-8164-6211 NR 0 TC 0 Z9 0 U1 0 U2 0 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0001-2815 J9 TISSUE ANTIGENS JI Tissue Antigens PD MAY PY 2010 VL 75 IS 5 BP 478 EP 478 PG 1 WC Cell Biology; Immunology; Pathology SC Cell Biology; Immunology; Pathology GA 583FO UT WOS:000276659100032 ER PT J AU Somorjai, GA Li, YM AF Somorjai, Gabor A. Li, Yimin TI Major Successes of Theory-and-Experiment-Combined Studies in Surface Chemistry and Heterogeneous Catalysis SO TOPICS IN CATALYSIS LA English DT Article; Proceedings Paper CT 237th National Meeting of the American-Chemical-Society CY MAR 22-26, 2009 CL Salt Lake City, UT SP Amer Chem Soc DE Theory success; Surface chemistry; Catalysis ID SUM-FREQUENCY GENERATION; ENERGY-ELECTRON-DIFFRACTION; SCANNING TUNNELING MICROSCOPE; ATOMIC-SCALE STRUCTURE; METAL-SURFACES; AMMONIA-SYNTHESIS; VIBRATIONAL SPECTROSCOPY; SINGLE-CRYSTAL; 1ST-PRINCIPLES CALCULATIONS; METHANATION CATALYSTS AB Experimental discoveries followed by theoretical interpretations that pave the way of further advances by experimentalists is a developing pattern in modern surface chemistry and catalysis. The revolution of modern surface science started with the development of surface-sensitive techniques such as LEED, XPS, AES, ISS and SIMS, in which the close collaboration between experimentalists and theorists led to the quantitative determination of surface structure and composition. The experimental discovery of the chemical activity of surface defects and the trends in the reactivity of transitional metals followed by the explanations from the theoretical studies led to the molecular level understanding of active sites in catalysis. The molecular level knowledge, in turn, provided a guide for experiments to search for new generation of catalysts. These and many other examples of successes in experiment-and-theory-combined studies demonstrate the importance of the collaboration between experimentalists and theorists in the development of modern surface science. C1 [Somorjai, Gabor A.; Li, Yimin] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Somorjai, Gabor A.; Li, Yimin] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Somorjai, GA (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM Somorjai@cchem.berkeley.edu RI Li, Yimin/F-5817-2012; Li, Yimin/F-5821-2012 FU Office of Science, Office of Basic Energy Sciences of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the Director, Office of Science, Office of Basic Energy Sciences of the U. S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 94 TC 21 Z9 22 U1 1 U2 33 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1022-5528 EI 1572-9028 J9 TOP CATAL JI Top. Catal. PD MAY PY 2010 VL 53 IS 5-6 BP 311 EP 325 DI 10.1007/s11244-010-9449-0 PG 15 WC Chemistry, Applied; Chemistry, Physical SC Chemistry GA 587GU UT WOS:000276979100003 ER PT J AU Schweitzer, N Xin, HL Nikolla, E Miller, JT Linic, S AF Schweitzer, Neil Xin, Hongliang Nikolla, Eranda Miller, Jeffrey T. Linic, Suljo TI Establishing Relationships Between the Geometric Structure and Chemical Reactivity of Alloy Catalysts Based on Their Measured Electronic Structure SO TOPICS IN CATALYSIS LA English DT Article; Proceedings Paper CT 237th National Meeting of the American-Chemical-Society CY MAR 22-26, 2009 CL Salt Lake City, UT SP Amer Chem Soc DE Metal alloys; Predictive model; Relating geometric structures to reactivity; Pt alloys; XANES; DFT; d-band model; Structure-property relationships ID METAL-SURFACES; TRANSITION; CO; CHEMISORPTION; CHEMISTRY; SPECTRA; DESIGN; STATES; NOBLE; MODEL AB While it is fairly straightforward to predict the relative chemical reactivity of pure metals, obtaining similar structure-performance relationships for alloys is more challenging. In this contribution we present experimental analysis supported with quantum chemical DFT calculations which allowed us to propose a simple, physically transparent model to predict the impact of alloying on the local electronic structure of different sites in alloys and on the local chemical reactivity. The model was developed through studies of a number of Pt alloys. The central feature of the model is that hybridization of d-orbitals in alloys does not lead to significant charge transfer between the constituent elements in the alloy, and therefore the width of the local density of d-states projected on a site, which is easily calculated from tabulated parameters, is an excellent descriptor of the chemical reactivity of the site. C1 [Schweitzer, Neil; Xin, Hongliang; Nikolla, Eranda; Linic, Suljo] Univ Michigan, Dept Chem Engn, Ann Arbor, MI 48109 USA. [Miller, Jeffrey T.] Argonne Natl Lab, Argonne, IL 60430 USA. RP Linic, S (reprint author), Univ Michigan, Dept Chem Engn, Ann Arbor, MI 48109 USA. EM linic@umich.edu RI ID, MRCAT/G-7586-2011 FU US Department of Energy DOE-BES, Division of Chemical Sciences [FG-02-05ER15686]; NSF [CTS-CAREER 0543067, CBET 0756255]; ONR [N000140810122]; DuPont corporation; Camille Dreyfus Teacher-Scholar Award for the Camille & Henry Dreyfus Foundation FX We gratefully acknowledge the support of the US Department of Energy DOE-BES, Division of Chemical Sciences (FG-02-05ER15686), NSF (CTS-CAREER 0543067 and NSF CBET 0756255), and ONR (N000140810122) S. Linic also acknowledges the DuPont Young Professor grant by DuPont corporation and the Camille Dreyfus Teacher-Scholar Award for the Camille & Henry Dreyfus Foundation. NR 36 TC 26 Z9 26 U1 1 U2 38 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1022-5528 EI 1572-9028 J9 TOP CATAL JI Top. Catal. PD MAY PY 2010 VL 53 IS 5-6 BP 348 EP 356 DI 10.1007/s11244-010-9448-1 PG 9 WC Chemistry, Applied; Chemistry, Physical SC Chemistry GA 587GU UT WOS:000276979100006 ER PT J AU Wellendorff, J Kelkkanen, A Mortensen, JJ Lundqvist, BI Bligaard, T AF Wellendorff, Jess Kelkkanen, Andre Mortensen, Jens Jorgen Lundqvist, Bengt I. Bligaard, Thomas TI RPBE-vdW Description of Benzene Adsorption on Au(111) SO TOPICS IN CATALYSIS LA English DT Article; Proceedings Paper CT 237th National Meeting of the American-Chemical-Society CY MAR 22-26, 2009 CL Salt Lake City, UT SP Amer Chem Soc DE Benzene; Au(111); Van der Waals; RPBE-vdW; Density functional theory ID DENSITY-FUNCTIONAL THEORY; METAL-SURFACES; ELECTRONIC-STRUCTURE; DESIGN AB Density functional theory has become a popular methodology for the analysis of molecular adsorption on surfaces. Despite this popularity, there exist adsorption systems for which commonly used exchange-correlation functionals fail miserably. Particularly those systems where binding is due to van der Waals interactions. The adsorption of benzene on Au(111) is an often mentioned such system where standard density functionals predict a very weak adsorption or even a repulsion, whereas a significant adsorption is observed experimentally. We show that a considerable improvement in the description of the adsorption of benzene on Au(111) is obtained when using the so-called RPBE-vdW functional. C1 [Wellendorff, Jess; Kelkkanen, Andre; Mortensen, Jens Jorgen; Lundqvist, Bengt I.; Bligaard, Thomas] Tech Univ Denmark, Ctr Atom Scale Mat Design CAMD, Dept Phys, DK-2800 Lyngby, Denmark. [Wellendorff, Jess; Bligaard, Thomas] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Bligaard, T (reprint author), Tech Univ Denmark, Ctr Atom Scale Mat Design CAMD, Dept Phys, Bldg 307, DK-2800 Lyngby, Denmark. EM bligaard@fysik.dtu.dk RI Bligaard, Thomas/A-6161-2011; Lundqvist, Bengt/A-9013-2011; Kelkkanen, Andre/E-9007-2011 OI Bligaard, Thomas/0000-0001-9834-9179; FU Lundbeck Foundation; Danish Center for Scientific Computing FX We gratefully thank Professor J.K. Norskov for his inspiring enthusiasm and support over the years, and congratulate him with the Gabor A. Somorjai Award for Creative Research in Catalysis. We thank Professors G. A. Somorjai and C. T. Campbell for enlightening discussions. J.W. and T. B. thank the Somorjai group for kind hospitality during parts of this work. The Center for Atomic-scale Materials Design is funded by the Lundbeck Foundation, and this work was supported by the Danish Center for Scientific Computing. NR 29 TC 45 Z9 45 U1 0 U2 11 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1022-5528 EI 1572-9028 J9 TOP CATAL JI Top. Catal. PD MAY PY 2010 VL 53 IS 5-6 BP 378 EP 383 DI 10.1007/s11244-010-9443-6 PG 6 WC Chemistry, Applied; Chemistry, Physical SC Chemistry GA 587GU UT WOS:000276979100009 ER PT J AU Rodriguez, JA Liu, P Takahashi, Y Nakamura, K Vines, F Illas, F AF Rodriguez, Jose A. Liu, Ping Takahashi, Yoshiro Nakamura, Kenichi Vines, Francesc Illas, Francesc TI Desulfurization Reactions on Surfaces of Metal Carbides: Photoemission and Density-Functional Studies SO TOPICS IN CATALYSIS LA English DT Article; Proceedings Paper CT 237th National Meeting of the American-Chemical-Society CY MAR 22-26, 2009 CL Salt Lake City, UT SP Amer Chem Soc DE Hydrodesulfurization; Sulfur; Thiophene; Hydrogen; Metal carbides ID TOTAL-ENERGY CALCULATIONS; AU-C INTERACTIONS; WAVE BASIS-SET; PLANE-WAVE; HYDROTREATING CATALYSTS; CHARGE POLARIZATION; THIOPHENE; ADSORPTION; NANOPARTICLES; CHEMISTRY AB High-resolution photoemission and density functional (DF) calculations were used to study the interaction of atomic sulfur and S-containing molecules with metal carbides in which the carbon/metal ratio varies from 0.5 to 1 (M2C and MC, M = Ti, V or Mo). In these compounds, the C sites cannot be considered as simple spectators. They moderate the reactivity of the metal centers and provide bonding sites for adsorbates. For example, the adsorption of S on TiC(001) induces a large positive shift (1.0-1.3 eV) in the C 1s core level. DF calculations give a CTiTi hollow as the most stable site for the S adatoms. There is a correlation between the adsorption energy of S or thiophene and shifts in the centroid of the metal d band induced by metal-carbon bonding in the metal carbides. The M2C and MC carbides have difficulty obeying Sabatier's principle for being good HDS catalysts because some of them interact too strongly with the products (M2C stoichiometry) and the others have problems dissociating the reactants (MC stoichiometry). The addition of small Au nanoparticles is an efficient way for enhancing the HDS activity of MC catalysts. In spite of the very poor desulfurization performance of TiC and MoC, the Au/TiC and Au/MoC systems display an HDS activity comparable or higher than that of conventional Ni/MoS (x) catalysts. The Au nanoparticles probably increase the HDS activity of the metal carbides by enhancing the adsorption energy of thiophene and by helping in the dissociation of H-2 to produce the hydrogen necessary for the hydrogenolysis of C-S bonds and the removal of sulfur. C1 [Rodriguez, Jose A.; Liu, Ping] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. [Takahashi, Yoshiro; Nakamura, Kenichi] Tokyo Inst Technol, Mat & Struct Lab, Yokohama, Kanagawa 2268503, Japan. [Vines, Francesc] Univ Erlangen Nurnberg, Lehrstuhl Theoret Chem, D-91058 Erlangen, Germany. [Vines, Francesc] Univ Erlangen Nurnberg, Interdisciplinary Ctr Interface Controlled Proc, D-91058 Erlangen, Germany. [Illas, Francesc] Univ Barcelona, Dept Quim Fis, E-08028 Barcelona, Spain. [Illas, Francesc] Univ Barcelona, Inst Quim Teor & Computac IQTCUB, E-08028 Barcelona, Spain. RP Rodriguez, JA (reprint author), Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. EM rodrigez@bnl.gov RI Illas, Francesc /C-8578-2011; OI Illas, Francesc /0000-0003-2104-6123; Vines, Francesc/0000-0001-9987-8654 FU US Department of Energy, Chemical Sciences Division; Generalitat de Catalunya; Nippon Foundation for Materials Science; Spanish MICINN [FIS2008-02238/FIS]; Alexander von Humboldt Foundation FX The authors are grateful to J. Gomes (Universidade do Porto) for thought-provoking discussions about the properties of metal carbides and desulfurization reactions. Many thanks to T. Jirsak (BNL) for his help with the operation of the U7A beamline and the photoemission experiments at the NSLS. The research carried out at BNL was supported by the US Department of Energy, Chemical Sciences Division. J. A. R. acknowledges the support of the Generalitat de Catalunya in a visit to the Universitat de Barcelona. K. N. is grateful to the Nippon Foundation for Materials Science for grants that made possible part of this work and F. I. acknowledges financial support from Spanish MICINN grant FIS2008-02238/FIS. F. V. thanks the Alexander von Humboldt Foundation for financing his postdoctoral grant. Computational time on the Center for Functional Nanomaterials at BNL and the Marenostrum supercomputer of the Barcelona Supercomputing Center is gratefully acknowledged. NR 46 TC 15 Z9 15 U1 1 U2 26 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1022-5528 EI 1572-9028 J9 TOP CATAL JI Top. Catal. PD MAY PY 2010 VL 53 IS 5-6 BP 393 EP 402 DI 10.1007/s11244-010-9452-5 PG 10 WC Chemistry, Applied; Chemistry, Physical SC Chemistry GA 587GU UT WOS:000276979100011 ER PT J AU Feibelman, PJ AF Feibelman, Peter J. TI DFT Versus the "Real World" (or, Waiting for Godft) SO TOPICS IN CATALYSIS LA English DT Article; Proceedings Paper CT 237th National Meeting of the American-Chemical-Society CY MAR 22-26, 2009 CL Salt Lake City, UT SP Amer Chem Soc DE Density functional theory (DFT); Water; Ice; Hydrophilic; Wetting; Ruthenium; Dissociation; Palladium; Strain; Commensurate; Platinum; AgI; Cloud; Seeding; Graphene; Iridium; Cluster; Array; Template; Growth; Scanning tunneling microscopy (STM); Low energy electron diffraction (LEED) ID DENSITY-FUNCTIONAL APPROXIMATIONS; ELECTRON-GAS; ICE; WATER; SURFACES; PT(111); MICROSCOPY; EXCHANGE; RU(0001); FILMS AB "Real-world" problems, from the properties of synthetic, nano-structured materials to the nature of bio-materials' interactions, tax the capabilities of modern, approximate Density Functional Theory (DFT) methods. And, progress is often illusory; that is, an "improved" functional can describe systems of interest less faithfully than an older, "cruder" one. Examples discussed concern water at hydrophilic surfaces, and the morphology of nano-clusters grown on a graphene-on-precious-metal template. The results suggest that in the absence of considerable prior insight, where energy differences are small, applying DFT to decipher the meaning of well-characterized experimental data is apt to be more successful than to predict molecular-level structure. C1 Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Feibelman, PJ (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM pjfeibe@sandia.gov FU U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Science and Engineering [DE-AC04-94AL85000] FX This work was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Science and Engineering. Sandia is operated by the Lockheed Martin Co. for the U. S. DOE's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 40 TC 14 Z9 14 U1 0 U2 40 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1022-5528 EI 1572-9028 J9 TOP CATAL JI Top. Catal. PD MAY PY 2010 VL 53 IS 5-6 BP 417 EP 422 DI 10.1007/s11244-010-9451-6 PG 6 WC Chemistry, Applied; Chemistry, Physical SC Chemistry GA 587GU UT WOS:000276979100013 ER PT J AU Deters, KA Brown, RS Carter, KM Boyd, JW Eppard, MB Seaburg, AG AF Deters, Katherine A. Brown, Richard S. Carter, Kathleen M. Boyd, James W. Eppard, M. Brad Seaburg, Adam G. TI Performance Assessment of Suture Type, Water Temperature, and Surgeon Skill in Juvenile Chinook Salmon Surgically Implanted with Acoustic Transmitters SO TRANSACTIONS OF THE AMERICAN FISHERIES SOCIETY LA English DT Article ID TELEMETRY TRANSMITTERS; SWIMMING PERFORMANCE; ATLANTIC SALMON; RAINBOW-TROUT; GROWTH; MORTALITY; SURVIVAL; FISH; WILD AB This study assessed performance of seven suture types in subyearling Chinook salmon Oncorhynchus tshawytscha implanted with acoustic microtransmitters and held at two water temperatures (12 degrees C and 17 degrees C). Nonabsorbable (Ethilon) and absorbable (Monocryl) monofilament sutures and nonabsorbable (Nurolon and silk) and absorbable (Vicryl, Vicryl Plus, and Vicryl Rapide) braided sutures were used to close incisions in Chinook salmon. When differences existed among suture types, tag and suture retention were generally highest for monofilament sutures. Wound inflammation and ulceration were generally lower for Ethilon and Monocryl than for most of the braided sutures. In this study, Nurolon (braided) often resulted in low wound inflammation and ulceration, although suture retention was poor. Generally, fish held in 12 degrees C water had more desirable postsurgery healing characteristics (i.e., higher tag and suture retention; lower incision openness, wound inflammation, and ulceration) at 7 and 14 d postsurgery than fish held in 17 degrees C water. On days 34 and 63, tag retention remained high among fish in 12 degrees C water, while suture retention decreased dramatically in both water temperatures. We found a significant effect of surgeon on tag and suture retention, wound inflammation and ulceration, and incision openness. Surgeons in this study were initially thought to have similar surgical proficiency based on their extensive previous experience. However, surgeons who had received feedback on their previous surgical technique performed better in this study. Results indicate that surgical training (i.e., feedback) and perhaps aptitude, rather than surgeon experience alone, may be as important as suture type in influencing the retention of sutures and tags. The overall results support the conclusion that Monocryl is the best suture material for closing incisions created during surgical implantation of acoustic microtransmitters in subyearling Chinook salmon. Future research should include testing different suturing patterns and knotting techniques as well as the number of knots required for different incision lengths. C1 [Deters, Katherine A.; Brown, Richard S.; Carter, Kathleen M.; Boyd, James W.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Eppard, M. Brad] USA, Corps Engineers, Portland, OR 97204 USA. [Seaburg, Adam G.] Univ Washington, Columbia Basin Res, Sch Aquat & Fishery Sci, Seattle, WA 98101 USA. RP Deters, KA (reprint author), Pacific NW Natl Lab, POB 999, Richland, WA 99352 USA. EM katherine.deters@pnl.gov NR 23 TC 39 Z9 41 U1 1 U2 8 PU AMER FISHERIES SOC PI BETHESDA PA 5410 GROSVENOR LANE SUITE 110, BETHESDA, MD 20814-2199 USA SN 0002-8487 J9 T AM FISH SOC JI Trans. Am. Fish. Soc. PD MAY PY 2010 VL 139 IS 3 BP 888 EP 899 DI 10.1577/T09-043.1 PG 12 WC Fisheries SC Fisheries GA 595UQ UT WOS:000277639200022 ER PT J AU Gassman, PW Williams, JR Wang, X Saleh, A Osei, E Hauck, LM Izaurralde, RC Flowers, JD AF Gassman, P. W. Williams, J. R. Wang, X. Saleh, A. Osei, E. Hauck, L. M. Izaurralde, R. C. Flowers, J. D. TI THE AGRICULTURAL POLICY/ENVIRONMENTAL EXTENDER (APEX) MODEL: AN EMERGING TOOL FOR LANDSCAPE AND WATERSHED ENVIRONMENTAL ANALYSES SO TRANSACTIONS OF THE ASABE LA English DT Review DE APEX; Best management practices; Conservation practices; Farm and watershed simulations; Soil carbon; Water quality ID SOIL ORGANIC-MATTER; ALTERNATIVE PRACTICES; SEDIMENT YIELD; TILE FLOW; IMPACTS; EROSION; TEXAS; QUALITY; SWAT; PRODUCTIVITY AB The Agricultural Policy/Environmental eXtender (APEX) model was developed by the Black land Research and Extension Center in Temple, Texas. APEX is a flexible and dynamic tool that is capable of simulating a wide array of management practices, cropping systems, and other land uses across a broad range of agricultural landscapes, including whole farms and small watersheds. The model can be configured for novel land management strategies, such as filter strip impacts on pollutant losses from upslope crop fields, intensive rotational grazing scenarios depicting movement of cows between paddocks, vegetated grassed waterways in combination with filter strip impacts, and land application of manure removed from livestock feedlots or waste storage ponds. A description of the APEX model is provided, including an overview of all the major components in the model. Applications of the model are then reviewed, starting with livestock manure and other management scenarios performed for the National Pilot Project for Livestock and the Environment (NPP), and then continuing with feedlot, pesticide, forestry, buffer strip, conservation practice, and other management or land use scenarios performed at the plot, field, watershed, or regional scale. The application descriptions include a summary of calibration and/or validation results obtained for the different NPP assessments as well as for other APEX simulation studies. Available APEX GIS-based or Windows-based interfaces are also described, as are forthcoming improvements and additional research needs for the model. C1 [Gassman, P. W.] Iowa State Univ, Dept Econ, Ctr Agr & Rural Dev, Ames, IA 50011 USA. [Wang, X.] Texas A&M Univ Syst, Blackland Res & Extens Ctr, Temple, TX USA. [Saleh, A.; Osei, E.; Hauck, L. M.] Tarleton State Univ, Texas Inst Appl Environm Res, Stephenville, TX USA. [Izaurralde, R. C.] Pacific NW Natl Lab, Joint Global Change Res Inst, College Pk, MD USA. [Izaurralde, R. C.] Univ Maryland, College Pk, MD 20742 USA. [Flowers, J. D.] Jacobs Engn Grp Inc, Water Infrastruct, Ft Worth, TX USA. RP Gassman, PW (reprint author), Iowa State Univ, Dept Econ, Ctr Agr & Rural Dev, 560A Heady Hall, Ames, IA 50011 USA. EM pwgassma@iastate.edu RI Izaurralde, Roberto/E-5826-2012 FU USDA Natural Resources Conservation Service [Q683H753122 33]; US DOE Office of Science [DE-AC06-76RLO 1830] FX This study was funded in part from support provided by the USDA Natural Resources Conservation Service (Project No. Q683H753122#33) and US DOE Office of Science (Contract No. DE-AC06-76RLO 1830). Copyright permissions granted for figures and/or tables used in article report are also acknowledged as follows for the respective sources: (1) from ASABE for Gassman et al. (2001, 2003), Saleh et al. (2004), Wang et al. (2006b), Osei et al. (2008b), and Yin et al. (2009); (2) from Rangeland Ecology and Management, Allen Press Publishing Services, for Osei et al. (2003b); and (3) from Elsevier Science, Ltd., via License Numbers 2106611169022, 2106610765202, and 2100511130045 issued by Copyright Clearance Center, Inc., Rights link for Osei et al. (2003a), Gassman et al. (2006), and Wang et al. (2008a), respectively. Acknowledgement is also given to Mr. Matthew McBroom, Geographic Information Systems Laboratory, Arthur Temple College of Forestry and Agriculture, Stephen F. Austin University, as the creator of the original version of figure 16. NR 126 TC 57 Z9 58 U1 7 U2 70 PU AMER SOC AGRICULTURAL & BIOLOGICAL ENGINEERS PI ST JOSEPH PA 2950 NILES RD, ST JOSEPH, MI 49085-9659 USA SN 2151-0032 J9 T ASABE JI Trans. ASABE PD MAY-JUN PY 2010 VL 53 IS 3 BP 711 EP 740 PG 30 WC Agricultural Engineering SC Agriculture GA 630KR UT WOS:000280272500008 ER PT J AU Azevedo, AV de Souza, AJ Furtado, F Marchesin, D Plohr, B AF Azevedo, Arthur V. de Souza, Aparecido J. Furtado, Frederico Marchesin, Dan Plohr, Bradley TI The Solution by the Wave Curve Method of Three-Phase Flow in Virgin Reservoirs SO TRANSPORT IN POROUS MEDIA LA English DT Article ID CONSERVATION-LAWS; POROUS-MEDIA; RIEMANN PROBLEMS; OIL-RECOVERY; MULTIPHASE DISPLACEMENT; RELATIVE PERMEABILITY; MODELS; SYSTEMS; MULTICOMPONENT; STATE AB There are two goals of this study. The first is to provide an introduction to the wave curve method for finding the analytic solution of a porous medium injection problem. Similar to fractional and chromatographic flow theory, the wave curve method is based on the method of characteristics, but it is applicable to an expanded range of physical processes in porous medium flow. The second goal is to solve injection problems for immiscible three-phase flow, as described by Corey's model, in which a mixture of gas and water is injected into a porous medium containing oil and irreducible water. In particular we determine, for any choice of the phase viscosities, the proportion of the injected fluids that maximizes recovery around breakthrough time. Numerical simulations are performed to compare our solutions for Corey's model with those of other models. For the injection problems we consider, solutions for Corey's model are very similar to those for Stone's model, despite the presence of an elliptic region in the latter; and they are very different from those for the Juanes-Patzek model, which preserves strict hyperbolicity. A nice feature of our analytical method is that it facilitates explaining both differences and similarities among the solutions for the three models considered. C1 [Furtado, Frederico] Univ Wyoming, Dept Math, Laramie, WY 82071 USA. [Azevedo, Arthur V.] Univ Brasilia, Dept Matemat, BR-70910900 Brasilia, DF, Brazil. [de Souza, Aparecido J.] U Fed Campina Grande, D Matemat & Estatist, BR-58109970 Campina Grande, PB, Brazil. [Marchesin, Dan] Inst Matematica Pura & Aplicada, BR-22460 Rio De Janeiro, Brazil. [Plohr, Bradley] Los Alamos Natl Lab, Phys Condensed Matter & Complex Syst Grp, Los Alamos, NM 87544 USA. RP Furtado, F (reprint author), Univ Wyoming, Dept Math, Laramie, WY 82071 USA. EM arthur@mat.unb.br; cido@dme.ufcg.edu.br; furtado@uwyo.edu; marchesi@impa.br; plohr@lanl.gov FU FEMAT [04/10]; UnB [FUNPE 2005]; CNPq [306609/2004-5, 620017/2004-0, 490696/2004-0, 491148/2005-4, 304168/2006-8, 472067/2006-0, 474121/2008-9, 620029/2004-8, 620025/2006-9, 478668/2007-4, 401961/2008-7, IMPA-PCI 680022/2006-6]; Instituto do Milenio IM/AGIMB; FAPERJ [E-26/152.525/2006, E-26/102.723/2008, E-26/112.220/2008, E-26/110.310/2007, E-26/112.112/2008, E-26/110.414/2008]; CAPES [014/2008]; U.S. Department of Energy; [DE-FC26-08NT4] FX This study was supported in part by: FEMAT under Grant 04/10, UnB under Grant FUNPE 2005, CNPq under Grants 306609/2004-5, 620017/2004-0, 490696/2004-0, 491148/2005-4, 304168/2006-8, 472067/2006-0, 474121/2008-9, 620029/2004-8, 620025/2006-9, 478668/2007-4; 401961/2008-7, IMPA-PCI 680022/2006-6; Instituto do Milenio IM/AGIMB; FAPERJ under Grants E-26/152.525/2006, E-26/102.723/2008, E-26/112.220/2008, E-26/110.310/2007, E-26/112.112/2008, and E-26/110.414/2008; CAPES 014/2008; DE-FC26-08NT4; and the U.S. Department of Energy. The authors gratefully acknowledge the hospitality of IMPA, UFCG, UnB, and UW during this study. NR 52 TC 17 Z9 17 U1 1 U2 5 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0169-3913 J9 TRANSPORT POROUS MED JI Transp. Porous Media PD MAY PY 2010 VL 83 IS 1 SI SI BP 99 EP 125 DI 10.1007/s11242-009-9508-9 PG 27 WC Engineering, Chemical SC Engineering GA 586IS UT WOS:000276901000008 ER PT J AU Silin, D Goloshubin, G AF Silin, Dmitriy Goloshubin, Gennady TI An Asymptotic Model of Seismic Reflection from a Permeable Layer SO TRANSPORT IN POROUS MEDIA LA English DT Article DE Hooke's law; Darcy's law; Poroelasticity; Low frequency; Permeability; Asymptotic analysis; Seismic imaging ID POROELASTIC NUMERICAL EXPERIMENTS; PARTIALLY SATURATED ROCKS; POROUS-MEDIA; WAVE-PROPAGATION; ATTENUATION; EQUATIONS AB Analysis of compression wave propagation in a poroelastic medium predicts a peak of reflection from a high-permeability layer in the low-frequency end of the spectrum. An explicit formula expresses the resonant frequency through the elastic moduli of the solid skeleton, the permeability of the reservoir rock, the fluid viscosity and compressibility, and the reservoir thickness. This result is obtained through a low-frequency asymptotic analysis of Biot's model of poroelasticity. A review of the derivation of the main equations from the Hooke's law, momentum and mass balance equations, and Darcy's law suggests an alternative new physical interpretation of some coefficients of the classical poroelasticity. The velocity of wave propagation, the attenuation factor, and the wave number are expressed in the form of power series with respect to a small dimensionless parameter. The absolute value of this parameter is equal to the product of the kinematic reservoir fluid mobility and the wave frequency. Retaining only the leading terms of the series leads to explicit and relatively simple expressions for the reflection and transmission coefficients for a planar wave crossing an interface between two permeable media, as well as wave reflection from a thin highly permeable layer (a lens). Practical applications of the obtained asymptotic formulae are seismic modeling, inversion, and attribute analysis. C1 [Silin, Dmitriy] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Goloshubin, Gennady] Univ Houston, Houston, TX 77204 USA. RP Silin, D (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, 1 Cyclotron Rd,MS 90R1116, Berkeley, CA 94720 USA. EM DSilin@lbl.gov; ggoloshubin@uh.edu FU Lawrence Berkeley National Laboratory (LBNL) of the U.S. Department of Energy (DOE) [DE-AC02-05CH11231, DE-FC26-04NT15503]; University of Houston; UCOil Consortium; Reservoir Quantification Laboratory at the University of Houston FX This study has been performed at Lawrence Berkeley National Laboratory (LBNL) of the U.S. Department of Energy (DOE) under Contract No. DE-AC02-05CH11231, and at the University of Houston. It has been partially supported by DOE grant DE-FC26-04NT15503, the UCOil Consortium, and the Reservoir Quantification Laboratory at the University of Houston. The authors are thankful to Dr. Steven Pride and Dr. Andrea Cortis of LBNL for reviewing an early version of the manuscript and for critical remarks and suggestions. The authors also acknowledge with gratitude the critical remarks and suggestions by the anonymous reviewers, which have helped to significantly improve the presentation. NR 52 TC 6 Z9 10 U1 0 U2 4 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0169-3913 EI 1573-1634 J9 TRANSPORT POROUS MED JI Transp. Porous Media PD MAY PY 2010 VL 83 IS 1 SI SI BP 233 EP 256 DI 10.1007/s11242-010-9533-8 PG 24 WC Engineering, Chemical SC Engineering GA 586IS UT WOS:000276901000014 ER PT J AU Freund, A Orjalo, AV Desprez, PY Campisi, J AF Freund, Adam Orjalo, Arturo V. Desprez, Pierre-Yves Campisi, Judith TI Inflammatory networks during cellular senescence: causes and consequences SO TRENDS IN MOLECULAR MEDICINE LA English DT Review ID ONCOGENE-INDUCED SENESCENCE; NF-KAPPA-B; BENIGN PROSTATIC HYPERPLASIA; TUMOR SUPPRESSION; HUMAN FIBROBLASTS; STEM-CELLS; IN-VIVO; CARDIOVASCULAR-DISEASE; SECRETORY PHENOTYPE; CHROMATIN-STRUCTURE AB Chronic inflammation is associated with aging and plays a causative role in several age-related diseases such as cancer, atherosclerosis and osteoarthritis. The source of this chronic inflammation is often attributed to the progressive activation of immune cells over time. However, recent studies have shown that the process of cellular senescence, a tumor suppressive stress response that is also associated with aging, entails a striking increase in the secretion of proinflammatory proteins and might be an important additional contributor to chronic inflammation. Here, we list the secreted factors that make up the proinflammatory phenotype of senescent cells and describe the impact of these factors on tissue homeostasis. We also summarize the cellular pathways/processes that are known to regulate this phenotype - namely, the DNA damage response, micro-RNAs, key transcription factors and kinases and chromatin remodeling. C1 [Freund, Adam; Orjalo, Arturo V.; Desprez, Pierre-Yves; Campisi, Judith] Buck Inst Age Res, Novato, CA 94945 USA. [Freund, Adam] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Desprez, Pierre-Yves] Calif Pacific Med Ctr, Res Inst, San Francisco, CA 94107 USA. [Campisi, Judith] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Freund, A (reprint author), Buck Inst Age Res, 8001 Redwood Blvd, Novato, CA 94945 USA. EM jcampisi@buckinstitute.org FU US National Institutes of Health research [AG09909, AG025901, AG017242]; US National Institutes of Health research center [AG025708, AG032117]; Larry L. Hillblom Foundation; National Science Foundation FX The authors are supported by the US National Institutes of Health research (AG09909, AG025901, AG017242) and center (AG025708, AG032117) grants, the Larry L. Hillblom Foundation (A.V.O.) and a National Science Foundation Graduate Research Fellowship (A.F.). NR 77 TC 308 Z9 314 U1 4 U2 62 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1471-4914 J9 TRENDS MOL MED JI Trends Mol. Med PD MAY PY 2010 VL 16 IS 5 BP 238 EP 246 DI 10.1016/j.molmed.2010.03.003 PG 9 WC Biochemistry & Molecular Biology; Cell Biology; Medicine, Research & Experimental SC Biochemistry & Molecular Biology; Cell Biology; Research & Experimental Medicine GA 609PO UT WOS:000278669500005 PM 20444648 ER PT J AU Tetard, L Passian, A Farahi, RH Thundat, T AF Tetard, L. Passian, A. Farahi, R. H. Thundat, T. TI Atomic force microscopy of silica nanoparticles and carbon nanohorns in macrophages and red blood cells SO ULTRAMICROSCOPY LA English DT Article; Proceedings Paper CT 11th International Scanning Probe Microscopy Conference (ISPM) CY JUN 17-19, 2009 CL Madrid, SPAIN DE Atomic force microscopy; Mode synthesizing atomic force microscopy; Raman spectroscopy; Nanoparticles; Nanomechanics; Force curves; Cells ID CANCER; NANOTUBES; NANOTOXICOLOGY; HOLOGRAPHY; TOXICITY; THERAPY; STRESS AB The emerging interest in understanding the interactions of nanomaterial with biological systems necessitates imaging tools that capture the spatial and temporal distributions and attributes of the resulting nano-bio amalgam. Studies targeting organ specific response and/or nanoparticle-specific system toxicity would be profoundly benefited from tools that would allow imaging and tracking of in-vivo or in-vitro processes and particle-fate studies. Recently we demonstrated that mode synthesizing atomic force microscopy (MSAFM) can provide subsurface nanoscale information on the mechanical properties of materials at the nanoscale. However, the underlying mechanism of this imaging methodology is currently subject to theoretical and experimental investigation. In this paper we present further analysis by investigating tip-sample excitation forces associated with nanomechanical image formation. Images and force curves acquired under various operational frequencies and amplitudes are presented. We examine samples of mouse cells, where buried distributions of single-walled carbon nanohorns and silica nanoparticles are visualized. (C) 2010 Elsevier B.V. All rights reserved. C1 [Tetard, L.; Passian, A.; Farahi, R. H.; Thundat, T.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. [Tetard, L.; Passian, A.; Thundat, T.] Univ Tennessee, Dept Phys, Knoxville, TN 37996 USA. RP Passian, A (reprint author), Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. EM passianan@ornl.gov NR 34 TC 13 Z9 13 U1 1 U2 17 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0304-3991 J9 ULTRAMICROSCOPY JI Ultramicroscopy PD MAY PY 2010 VL 110 IS 6 BP 586 EP 591 DI 10.1016/j.ultramic.2010.02.015 PG 6 WC Microscopy SC Microscopy GA 620EX UT WOS:000279482900005 PM 20226593 ER PT J AU Tabak, FC Disseldorp, ECM Wortel, GH Katan, AJ Hesselberth, MBS Oosterkamp, TH Frenken, JWM van Spengen, WM AF Tabak, F. C. Disseldorp, E. C. M. Wortel, G. H. Katan, A. J. Hesselberth, M. B. S. Oosterkamp, T. H. Frenken, J. W. M. van Spengen, W. M. TI MEMS-based fast scanning probe microscopes SO ULTRAMICROSCOPY LA English DT Article; Proceedings Paper CT 11th International Scanning Probe Microscopy Conference (ISPM) CY JUN 17-19, 2009 CL Madrid, SPAIN DE MEMS; Scanning probe microscopy; High-speed scanning AB Scanning probe microscopy is a frequently used nanometer-scale surface investigation technique. Unfortunately, its applicability is limited by the relatively low image acquisition speed, typically seconds to minutes per image. Higher imaging speeds are desirable for rapid inspection of samples and for the study of a range of dynamic surface processes, such as catalysis and crystal growth. We have designed a new high-speed scanning probe microscope (SPM) based on micro-electro mechanical systems (MEMS). MEMS are small, typically micrometer size devices that can be designed to perform the scanning motion required in an SPM system. These devices can be optimized to have high resonance frequencies (up to the MHz range) and have very low mass (10(-11) kg). Therefore, MEMS can perform fast scanning motion without exciting resonances in the mechanical loop of the SPM, and hence scan the surface without causing the image distortion from which conventional piezo scanners suffer. We have designed a MEMS z-scanner which we have integrated in commercial AFM (atomic force microscope) and STM (scanning tunneling microscope) setups. We show the first successful AFM experiments. (C) 2010 Elsevier B.V. All rights reserved. C1 [Tabak, F. C.; Disseldorp, E. C. M.; Wortel, G. H.; Hesselberth, M. B. S.; Oosterkamp, T. H.; Frenken, J. W. M.; van Spengen, W. M.] Leiden Univ, NL-2333 CA Leiden, Netherlands. [Katan, A. J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [van Spengen, W. M.] Falco Syst, NL-1082 LV Amsterdam, Netherlands. RP Tabak, FC (reprint author), Leiden Univ, Niels Bohrweg 2, NL-2333 CA Leiden, Netherlands. EM tabak@physics.leidenuniv.nl RI Hesselberth, MBS/F-4427-2011; van Spengen, W. Merlijn/I-7949-2013; Katan, Allard/B-9670-2008; van Spengen, W. Merlijn/G-3036-2014 OI Katan, Allard/0000-0002-7185-6274; NR 24 TC 18 Z9 18 U1 1 U2 23 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0304-3991 J9 ULTRAMICROSCOPY JI Ultramicroscopy PD MAY PY 2010 VL 110 IS 6 BP 599 EP 604 DI 10.1016/j.ultramic.2010.02.018 PG 6 WC Microscopy SC Microscopy GA 620EX UT WOS:000279482900008 PM 20334976 ER PT J AU Tetard, L Passian, A Farahi, RH Kalluri, UC Davison, BH Thundat, T AF Tetard, L. Passian, A. Farahi, R. H. Kalluri, U. C. Davison, B. H. Thundat, T. TI Spectroscopy and atomic force microscopy of biomass SO ULTRAMICROSCOPY LA English DT Article; Proceedings Paper CT 11th International Scanning Probe Microscopy Conference (ISPM) CY JUN 17-19, 2009 CL Madrid, SPAIN DE Atomic force microscopy Spectroscopy; Plant cells; Biomass; Nanomechanics ID TRANSMISSION ELECTRON-MICROSCOPY; CELL-WALL; BIOLOGICAL APPLICATIONS; CELLULOSE; BIOFUELS; MICRASTERIAS; HOLOGRAPHY AB Scanning probe microscopy has emerged as a powerful approach to a broader understanding of the molecular architecture of cell walls, which may shed light on the challenge of efficient cellulosic ethanol production. We have obtained preliminary images of both Populus and switchgrass samples using atomic force microscopy (AFM). The results show distinctive features that are shared by switchgrass and Populus. These features may be attributable to the lignocellulosic cell wall composition, as the collected images exhibit the characteristic macromolecular globule structures attributable to the lignocellulosic systems. Using both AFM and a single case of mode synthesizing atomic force microscopy (MSAFM) to characterize Populus, we obtained images that clearly show the cell wall structure. The results are of importance in providing a better understanding of the characteristic features of both mature cells as well as developing plant cells. In addition, we present spectroscopic investigation of the same samples. (C) 2010 Elsevier B.V. All rights reserved. C1 [Tetard, L.; Passian, A.; Farahi, R. H.; Thundat, T.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. [Tetard, L.; Passian, A.; Thundat, T.] Univ Tennessee, Dept Phys, Knoxville, TN 37996 USA. [Kalluri, U. C.; Davison, B. H.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. RP Passian, A (reprint author), Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. EM passianan@ornl.gov RI KALLURI, UDAYA/A-6218-2011; Davison, Brian/D-7617-2013; OI Davison, Brian/0000-0002-7408-3609; KALLURI, UDAYA/0000-0002-5963-8370 NR 33 TC 12 Z9 12 U1 1 U2 18 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0304-3991 J9 ULTRAMICROSCOPY JI Ultramicroscopy PD MAY PY 2010 VL 110 IS 6 BP 701 EP 707 DI 10.1016/j.ultramic.2010.02.035 PG 7 WC Microscopy SC Microscopy GA 620EX UT WOS:000279482900025 PM 20236767 ER PT J AU Strickland, CE Ward, AL Clement, WP Draper, KE AF Strickland, Christopher E. Ward, Andy L. Clement, William P. Draper, Kathryn E. TI Engineered Surface Barrier Monitoring Using Ground-Penetrating Radar, Time-Domain Reflectometry, and Neutron-Scattering Techniques SO VADOSE ZONE JOURNAL LA English DT Article ID SOIL-WATER CONTENT; ELECTRICAL-CONDUCTIVITY; WAVE METHOD; FIELD; CALIBRATION; ACCURACY; DEPTH; GPR AB Effective monitoring of surface barriers intended to isolate and protect waste from the accessible environment requires techniques to assess their performance. Quantifying drainage conditions at any point below the barrier is difficult because field-scale drainage measurements are not well suited for assessing spatial drainage heterogeneity. Measurements of water storage, however, can provide an indirect measure of impending drainage. We measured seasonal water content at a vegetated capillary barrier on the Hanford Site in southeastern Washington to determine effective water-storage monitoring methods. Measurements were made using ground-penetrating radar (GPR) direct ground wave methods operating at 100 MHz. Simultaneous measurements using time-domain reflectometry (TDR) and neutron-scattering probe (NP) were used to determine the sampling depth of the GPR ground wave. The ground wave sampling depth increased only slightly with decreasing moisture content, ranging from 30 to 37.5 cm. The TDR measurements were made using permanently emplaced arrays, eliminating the need for repeated ground disturbance. All three methods showed similar seasonal responses, with the highest water contents observed during the winter months and decreasing through the summer. Unlike TDR and NPs, which are local-scale measurements, GPR exhibited much greater spatial detail across the barrier surface. While measurement uncertainties exist with regard to the sampling depth and dispersive effects, our results indicate that GPR can be an effective and minimally invasive method for providing reasonable near-surface estimates of soil water content changes within an engineered barrier. C1 [Strickland, Christopher E.; Ward, Andy L.; Draper, Kathryn E.] Environm Sustainabil Div, Pacific NW Natl Lab, Richland, WA 99352 USA. [Clement, William P.] Boise State Univ, Ctr Geophys Invest Shallow Subsurface, Boise, ID 83725 USA. RP Strickland, CE (reprint author), Environm Sustainabil Div, Pacific NW Natl Lab, Richland, WA 99352 USA. EM christopher.strickland@pnl.gov FU U.S. Dep. of Energy [DE-AC06-76RL01830]; EM-50 program FX This manuscript was written primarily with funds provided by the U.S. Dep. of Energy Environmental Management program. Data collection and analysis were supported by the former EM-50 program and the 200-BP-1 monitoring project managed by Fluor Hanford Inc. We are indebted to Dennis Dauble for his support in preparing this manuscript. The authors would also like to thank Andrew Binley and two anonymous reviewers for their very thorough comments. Pacific Northwest National Laboratory is operated for the U. S. Dep. of Energy by Battelle under Contract DE-AC06-76RL01830. NR 31 TC 1 Z9 1 U1 0 U2 2 PU SOIL SCI SOC AMER PI MADISON PA 677 SOUTH SEGOE ROAD, MADISON, WI 53711 USA SN 1539-1663 J9 VADOSE ZONE J JI Vadose Zone J. PD MAY PY 2010 VL 9 IS 2 BP 415 EP 423 DI 10.2136/vzj2009.0008 PG 9 WC Environmental Sciences; Soil Science; Water Resources SC Environmental Sciences & Ecology; Agriculture; Water Resources GA 596XD UT WOS:000277718000020 ER PT J AU Schick, DE Hahnlen, RM Dehoff, R Collins, P Babu, SS Dapino, MJ Lippold, JC AF Schick, D. E. Hahnlen, R. M. Dehoff, R. Collins, P. Babu, S. S. Dapino, M. J. Lippold, J. C. TI Microstructural Characterization of Bonding Interfaces in Aluminum 3003 Blocks Fabricated by Ultrasonic Additive Manufacturing SO WELDING JOURNAL LA English DT Article DE Ultrasonic Additive Manufacturing (UAM); Linear Weld Density (LWD); Scanning Electron Microscopy (SEM); Shear Strength; Al 3003-H18; Transmission Electron Microscopy ID METAL-MATRIX COMPOSITES; PROCESS PARAMETERS; PROCESS MODEL; CONSOLIDATION; ALLOYS AB Ultrasonic additive manufacturing (UAM) is a process by which hybrid and near-net-shaped products can be manufactured from thin metallic tapes. One of the main concerns of UAM is the development of anisotropic mechanical properties. in this work, the microstructures in the bond regions are characterized with optical and electron microscopy. Recrystallization and grain growth across the interface are proposed as a mechanism for the bond formation. The presence of voids or unbonded areas, which reduce the load-bearing cross section and create a stress intensity factor, is attributed to the transfer of the sonotrode texture to the new foil layer. This results in large peaks and valleys that are not filled in during processing. Tensile testing revealed the weld interface strength was 15% of the bulk foil. Shear tests of the weld interfaces showed almost 50% of the bulk shear strength of the material. Finally, optical microscopy of the fracture surfaces from the tensile tests revealed 34% of the interface area was unbonded. C1 [Schick, D. E.; Babu, S. S.; Lippold, J. C.] Ohio State Univ, Dept Mat Sci & Engn, Welding Engn Program, Columbus, OH 43210 USA. [Hahnlen, R. M.; Dapino, M. J.] Ohio State Univ, Dept Mech Engn, Columbus, OH 43210 USA. [Dehoff, R.] Oak Ridge Natl Lab, Dept Mat Sci & Engn, Oak Ridge, TN USA. [Collins, P.] Dept Mat Sci & Engn, Rock Isl, IL USA. RP Schick, DE (reprint author), Ohio State Univ, Dept Mat Sci & Engn, Welding Engn Program, 116 W 19th Ave, Columbus, OH 43210 USA. EM babu.13@osu.edu RI Babu, Sudarsanam/D-1694-2010; Dehoff, Ryan/I-6735-2016; Collins, Peter/A-4961-2016 OI Babu, Sudarsanam/0000-0002-3531-2579; Dehoff, Ryan/0000-0001-9456-9633; Collins, Peter/0000-0002-3441-2981 FU Edison Welding Institute; Smart Vehicle Concepts Center; National Science Foundation Industry/University Cooperative Research Program (I/UCRC); Smart Vehicle Concepts Graduate Fellowship Program FX The authors would like to thank the Cooperative Research Program of Edison Welding Institute for supporting this research. In addition, we thank Dr. K. Graff (EWI), Dr. M. Sriram (OSU), and Matt Short (EWI) for suggestions and fruitful discussions during preparation of the manuscript. R. M. Hahnlen and M. J. Dapino are grateful to the member organizations of the Smart Vehicle Concepts Center (www.SmartVehicleCenter.org), the National Science Foundation Industry/University Cooperative Research Program (I/UCRC), and the Smart Vehicle Concepts Graduate Fellowship Program. NR 34 TC 8 Z9 9 U1 3 U2 24 PU AMER WELDING SOC PI MIAMI PA 550 N W LEJEUNE RD, MIAMI, FL 33126 USA SN 0043-2296 J9 WELD J JI Weld. J. PD MAY PY 2010 VL 89 IS 5 BP 105S EP 115S PG 11 WC Metallurgy & Metallurgical Engineering SC Metallurgy & Metallurgical Engineering GA 593VX UT WOS:000277491100013 ER PT J AU van Vuuren, DP Smith, SJ Riahi, K AF van Vuuren, Detlef P. Smith, Steve J. Riahi, Keywan TI Downscaling socioeconomic and emissions scenarios for global environmental change research: a review SO WILEY INTERDISCIPLINARY REVIEWS-CLIMATE CHANGE LA English DT Review ID AGRICULTURAL LAND-USE; CLIMATE-CHANGE IMPACTS; FUTURE SCENARIOS; SRES; EUROPE; 21ST-CENTURY; DATABASE; GROWTH; COVER AB Global change research encompasses various scales from global to local. Impacts analysis in particular often requires spatial downscaling, whereby socioeconomic and emission variables specified at relatively large spatial scales are translated to values at a country or grid level. In this article, the methods used for spatial downscaling are reviewed, classified, and current applications discussed. It is shown that in recent years, improved methods for downscaling have been developed. (C) 2010 John Wiley & Sons, Ltd. WIREs Clim Change 2010 1 393-404 C1 [van Vuuren, Detlef P.] NetherlandsEnvironm Assessment Agcy, NL-3720 AH Bilthoven, Netherlands. [Smith, Steve J.] Pacific NW Natl Lab, Joint Global Change Res Inst, College Pk, MD 20740 USA. [Riahi, Keywan] Int Inst Appl Syst Anal, A-2361 Laxenburg, Austria. RP van Vuuren, DP (reprint author), NetherlandsEnvironm Assessment Agcy, POB 303, NL-3720 AH Bilthoven, Netherlands. EM detlef.vanvuuren@pbl.nl RI van Vuuren, Detlef/A-4764-2009; Riahi, Keywan/B-6426-2011 OI van Vuuren, Detlef/0000-0003-0398-2831; Riahi, Keywan/0000-0001-7193-3498 NR 68 TC 32 Z9 32 U1 1 U2 15 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1757-7780 EI 1757-7799 J9 WIRES CLIM CHANGE JI Wiley Interdiscip. Rev.-Clim. Chang. PD MAY-JUN PY 2010 VL 1 IS 3 BP 393 EP 404 DI 10.1002/wcc.50 PG 12 WC Environmental Studies; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA 778VD UT WOS:000291735500010 ER PT J AU Patterson, BM Campbell, J Havrilla, GJ AF Patterson, Brian M. Campbell, John Havrilla, George J. TI Integrating 3D images using laboratory-based micro X-ray computed tomography and confocal X-ray fluorescence techniques SO X-RAY SPECTROMETRY LA English DT Article ID SYNCHROTRON; CHARACTERIZE; XRF AB The application of non-destructive imaging to characterizing samples has become more important as the costs of samples increase. Imaging a sample via X-ray techniques is preferable when altering or even touching the sample affects its properties, or when the sample is fielded after characterization. Two laboratory-based X-ray techniques used at Los Alamos include micro X-ray computed tomography (MXCT) and confocal micro X-ray fluorescence (confocal MXRF). Both methods create a 3D rendering of the sample non-destructively. MXCT produces a high-resolution (sub-mu m voxel) rendering of the sample based upon X-ray absorption; the resulting model is a function of density and does not contain any elemental information. Confocal MXRF produces an elementally specific 3D rendering of the sample, but at a lower (30 x 30 x 65 mu m) resolution. By combining data from these two techniques, scientists provided a more comprehensive method of analysis. We will describe a MATLAB routine written to render each of these data sets individually and/or within the same coordinate system. This approach is shown in the analysis of two samples: an integrated circuit surface mounted resistor and a machined piece of polystyrene foam. The samples chosen provide an opportunity to compare and contrast the two X-ray techniques, identify their weaknesses and show how they are used in a complementary fashion. Copyright (C) 2010 John Wiley & Sons, Ltd. C1 [Patterson, Brian M.; Campbell, John; Havrilla, George J.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Patterson, BM (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM bpatterson@lanl.gov OI Havrilla, George/0000-0003-2052-7152; Patterson, Brian/0000-0001-9244-7376 FU US Department of Energy [DE-AC52-06NA25396]; Campaigns 4 and 10; Joint Munitions Program FX The authors thank Warren P. Steckle Jr., Blaine Randolph and Deanna Capelli for the formulation, machining and preparation of the foam samples. Los Alamos National Security LLC operates Los Alamos National Laboratory under contract number DE-AC52-06NA25396 for the US Department of Energy. Campaigns 4 and 10, and the Joint Munitions Program provided funding for this research. NR 26 TC 14 Z9 14 U1 0 U2 7 PU JOHN WILEY & SONS LTD PI CHICHESTER PA THE ATRIUM, SOUTHERN GATE, CHICHESTER PO19 8SQ, W SUSSEX, ENGLAND SN 0049-8246 J9 X-RAY SPECTROM JI X-Ray Spectrom. PD MAY-JUN PY 2010 VL 39 IS 3 BP 184 EP 190 DI 10.1002/xrs.1245 PG 7 WC Spectroscopy SC Spectroscopy GA 595TZ UT WOS:000277637400004 ER PT J AU Qi, SQ Pang, YX Hu, Q Liu, Q Li, H Zhou, YL He, TX Liang, QL Liu, YX Yuan, XQ Luo, GA Li, HL Wang, JW Yan, N Shi, YG AF Qi, Shiqian Pang, Yuxuan Hu, Qi Liu, Qun Li, Hua Zhou, Yulian He, Tianxi Liang, Qionglin Liu, Yexing Yuan, Xiaoqiu Luo, Guoan Li, Huilin Wang, Jiawei Yan, Nieng Shi, Yigong TI Crystal Structure of the Caenorhabditis elegans Apoptosome Reveals an Octameric Assembly of CED-4 SO CELL LA English DT Article ID PROGRAMMED CELL-DEATH; DISEASE RESISTANCE PROTEINS; INDUCED PROXIMITY MODEL; NB-ARC DOMAIN; CASPASE ACTIVATION; CYTOCHROME-C; MEDIATED OLIGOMERIZATION; 3-DIMENSIONAL STRUCTURE; CED-4-CED-9 COMPLEX; NUCLEOTIDE EXCHANGE AB The CED-4 homo-oligomer or apoptosome is required for initiation of programmed cell death in Caenorhabditis elegans by facilitating autocatalytic activation of the CED-3 caspase zymogen. How the CED-4 apoptosome assembles and activates CED-3 remains enigmatic. Here we report the crystal structure of the complete CED-4 apoptosome and show that it consists of eight CED-4 molecules, organized as a tetramer of an asymmetric dimer via a previously unreported interface among AAA(+) ATPases. These eight CED-4 molecules form a funnel-shaped structure. The mature CED-3 protease is monomeric in solution and forms an active holoenzyme with the CED-4 apoptosome, within which the protease activity of CED-3 is markedly stimulated. Unexpectedly, the octameric CED-4 apoptosome appears to bind only two, not eight, molecules of mature CED-3. The structure of the CED-4 apoptosome reveals shared principles for the NB-ARC family of AAA(+) ATPases and suggests a mechanism for the activation of CED-3. C1 [Pang, Yuxuan; Hu, Qi; Yuan, Xiaoqiu; Wang, Jiawei; Yan, Nieng] Tsinghua Univ, Sch Life Sci, Struct Biol Ctr, State Key Lab Biomembrane, Beijing 100084, Peoples R China. [Pang, Yuxuan; Hu, Qi; Yuan, Xiaoqiu; Wang, Jiawei; Yan, Nieng] Tsinghua Univ, Sch Med, Beijing 100084, Peoples R China. [Qi, Shiqian; Zhou, Yulian; Liu, Yexing; Shi, Yigong] Tsinghua Univ, Prot Sci Lab, Minist Educ, Beijing 100084, Peoples R China. [Liu, Qun] Brookhaven Natl Lab, New York Struct Biol Ctr, Upton, NY 11973 USA. [Li, Hua; Li, Huilin] Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. [He, Tianxi; Liang, Qionglin; Luo, Guoan] Tsinghua Univ, Dept Chem, Beijing 100084, Peoples R China. RP Yan, N (reprint author), Tsinghua Univ, Sch Life Sci, Struct Biol Ctr, State Key Lab Biomembrane, Beijing 100084, Peoples R China. EM nyan@tsinghua.edu.cn; shi-lab@tsinghua.edu.cn RI Liu, Qun/A-8757-2011; Qi, Shiqian/P-9177-2014 OI Liu, Qun/0000-0002-1179-290X; FU Ministry of Science and Technology [2009CB918801, 2009CB918802]; National Natural Science Foundation of China [30888001]; Beijing Municipal Commissions of Education and Science and Technology; Yuyuan Foundation; Li's Foundation FX We thank S. Huang and J. He at Shanghai Synchrotron Radiation Facility (SSRF) and N. Shimizu, S. Baba, and T. Kumasaka at the Spring-8 beamline BL41XU for assistance. This work was supported by funds from the Ministry of Science and Technology (grant # 2009CB918801 and 2009CB918802), Tsinghua University 985 Phase II funds, Project 30888001 supported by National Natural Science Foundation of China, and Beijing Municipal Commissions of Education and Science and Technology. N.Y. acknowledges support from the Yuyuan Foundation and Li's Foundation. NR 68 TC 78 Z9 85 U1 17 U2 115 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 0092-8674 J9 CELL JI Cell PD APR 30 PY 2010 VL 141 IS 3 BP 446 EP 457 DI 10.1016/j.cell.2010.03.017 PG 12 WC Biochemistry & Molecular Biology; Cell Biology SC Biochemistry & Molecular Biology; Cell Biology GA 589UX UT WOS:000277180800016 PM 20434985 ER PT J AU Guan, HD Simunek, J Newman, BD Wilson, JL AF Guan, Huade Simunek, Jirka Newman, Brent D. Wilson, John L. TI Modelling investigation of water partitioning at a semiarid ponderosa pine hillslope SO HYDROLOGICAL PROCESSES LA English DT Article DE hillslope; percolation; root macropore modelling; recharge; semiarid; ponderosa pine; New Mexico; root distribution; macropore flow ID HYDRAULIC CONDUCTIVITY; PREFERENTIAL FLOW; SOILS; DESERT; VEGETATION; PERMEABILITY; MACROPORES; MOVEMENT; PATHWAYS; RECHARGE AB The effects of vegetation root distribution on near-surface water partitioning can be two-fold. On the one hand, the roots facilitate deep percolation by root-induced macropore flow; on the other hand, they reduce the potential for deep percolation by root-water-uptake processes. Whether the roots impede or facilitate deep percolation depends on various conditions, including climate, soil, and vegetation characteristics. This paper examines the effects of root distribution on deep percolation into the underlying permeable bedrock for a given soil profile and climate condition using HYDRUS modelling. The simulations were based on previously field experiments on a semiarid ponderosa pine (Pinus ponderosa) hillslope. An equivalent single continuum model for simulating root macropore flow on hillslopes is presented, with root macropore hydraulic parameterization estimated based on observed root distribution. The sensitivity analysis results indicate that the root macropore effect dominates saturated soil water flow in low conductivity soils (K-matrix below 10(-7) m/s), while it is insignificant in soils with a K-matrix larger than 10(-5) m/s, consistent with observations in this and other studies. At the ponderosa pine site, the model with simple root-macropore parameterization reasonably well reproduces soil moisture distribution and some major runoff events. The results indicate that the clay-rich soil layer without root-induced macropores acts as an impeding layer for potential groundwater recharge. This impeding layer results in a bedrock percolation of less than 1% of the annual precipitation. Without this impeding layer, percolation into the underlying permeable bedrock could be as much as 20% of the annual precipitation. This suggests that at a surface with low-permeability soil overlying permeable bedrock, the root penetration depth in the soil is critical condition for whether or not significant percolation occurs. Copyright (C) 2010 John Wiley & Sons, Ltd. C1 [Guan, Huade; Wilson, John L.] New Mexico Inst Min & Technol, Dept Earth & Environm Sci, Socorro, NM 87801 USA. [Simunek, Jirka] Univ Calif Riverside, Dept Environm Sci, Riverside, CA 92521 USA. [Newman, Brent D.] Los Alamos Natl Lab, Div Earth & Environm Sci, Los Alamos, NM 87545 USA. RP Guan, HD (reprint author), Flinders Univ S Australia, Natl Ctr Groundwater Res & Training, Sch Chem Phys & Earth Sci, GPO Box 2100, Adelaide, SA 5001, Australia. EM huade.guan@flinders.edu.au RI Simunek, Jiri/F-3196-2011; Guan, Huade/E-9262-2015 OI Guan, Huade/0000-0001-5425-6974 FU SAHRA (Sustainability of semi-Arid Hydrology and Riparian Areas) under National Science Foundation [EAR-9876800]; Flinders University FX This work was primarily supported by the SAHRA (Sustainability of semi-Arid Hydrology and Riparian Areas) under the STC Program of the National Science Foundation, Agreement EAR-9876800, and partially supported by Flinders University Establishment Funding. NR 30 TC 9 Z9 10 U1 0 U2 6 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0885-6087 EI 1099-1085 J9 HYDROL PROCESS JI Hydrol. Process. PD APR 30 PY 2010 VL 24 IS 9 BP 1095 EP 1105 DI 10.1002/hyp.7571 PG 11 WC Water Resources SC Water Resources GA 592ML UT WOS:000277383000001 ER PT J AU Decca, RS Lopez, D Osquiguil, E AF Decca, R. S. Lopez, D. Osquiguil, E. TI NEW RESULTS FOR THE CASIMIR INTERACTION: SAMPLE CHARACTERIZATION AND LOW TEMPERATURE MEASUREMENTS SO INTERNATIONAL JOURNAL OF MODERN PHYSICS A LA English DT Article; Proceedings Paper CT 9th Conference on Quantum Field Theory under the Influence of External Conditions CY SEP 21-25, 2009 CL Univ Oklahoma, Oklahoma City, OK HO Univ Oklahoma DE Casimir force; MEMS; Low-temperature measurements. ID PRECISION-MEASUREMENT; FORCE; CONSTRAINTS AB We describe our latest results in the separation dependence of the Casimir interaction in the sphere-plane geometry for two Au-coated surfaces. All results are obtained by measuring the change in the resonant frequency of a sensitive microelectromechanical torsional oscillator as the separation between the sphere and the plane is changed. By means of the proximity force approximation, the change in resonant frequency yields the Casimir pressure between two parallel plates at the same separation. We present results for a new sample at room temperature, where the dielectric function has been measured in the 190-825 nm range. We show that the results of the Casimir force in this sample and in previous samples are virtually indistinguishable. Furthermore, the observed differences between measured and tabulated optical properties data do not show any effect on the calculation of the Casimir interaction. We also present results of the measurement of the Casimir force between a sphere and a plane at 300, 77, 4.2 and 2.1 K. While low temperature results are noisier than room temperature ones, precluding a direct exclusion of either the Drude or the plasma model, the average of the measurements coincide at all temperatures. C1 [Decca, R. S.] Indiana Univ Purdue Univ, Dept Phys, Indianapolis, IN 46202 USA. [Lopez, D.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Osquiguil, E.] Ctr Atom Bariloche, Lab Bajas Temp, RA-8400 San Carlos De Bariloche, Rio Negro, Argentina. RP Decca, RS (reprint author), Indiana Univ Purdue Univ, Dept Phys, Indianapolis, IN 46202 USA. EM rdecca@iupui.edu; dlopez@anl.gov; osquigui@cab.cnea.gov.ar NR 27 TC 8 Z9 8 U1 2 U2 6 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 0217-751X J9 INT J MOD PHYS A JI Int. J. Mod. Phys. A PD APR 30 PY 2010 VL 25 IS 11 BP 2223 EP 2230 DI 10.1142/S0217751X10049499 PG 8 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 595MK UT WOS:000277614500006 ER PT J AU Mottola, E AF Mottola, Emil TI THE TRACE ANOMALY AND DYNAMICAL VACUUM ENERGY IN COSMOLOGY SO INTERNATIONAL JOURNAL OF MODERN PHYSICS A LA English DT Article; Proceedings Paper CT 9th Conference on Quantum Field Theory under the Influence of External Conditions CY SEP 21-25, 2009 CL Univ Oklahoma, Oklahoma City, OK HO Univ Oklahoma DE Vacuum Energy; Trace Anomaly; Cosmological Constant; Dark Energy; Casimir Effect ID CONFORMAL ANOMALIES; QUANTUM-GRAVITY; SUPERNOVAE; ELECTRODYNAMICS AB The trace anomaly of conformal matter implies the existence of massless scalar poles in physical amplitudes involving the stress-energy tensor. These poles may be described by a local effective action with massless scalarfields, which couple to classical sources, contribute to gravitational scattering processes, and can have long range gravitational effects at macroscopic scales. In an effective field theory approach, the effective action of the anomaly is an infrared relevant term that should be added to the Einstein-Hilbert action of classical General Relativity to take account of macroscopic quantum effects. The additional scalar degrees of freedom contained in this effective action may be und erstood as responsible for both the Casimir effect in at spacetime and large quantum backreaction effects at the horizon scale of cosmological spacetimes. These effects of the trace anomaly imply that the cosmological vacuum energy is dynamical, and its value depends on macroscopic boundary conditions at the cosmological horizon scale, rather than sensitivity to the extreme ultraviolet Planck scale. C1 [Mottola, Emil] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Mottola, Emil] CERN, PH TH, Theoret Phys Grp, CH-1211 Geneva 23, Switzerland. RP Mottola, E (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. EM emil@lanl.gov OI Mottola, Emil/0000-0003-1067-1388 NR 44 TC 8 Z9 8 U1 1 U2 4 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 0217-751X J9 INT J MOD PHYS A JI Int. J. Mod. Phys. A PD APR 30 PY 2010 VL 25 IS 11 BP 2391 EP 2408 DI 10.1142/S0217751X10049670 PG 18 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 595MK UT WOS:000277614500024 ER PT J AU Shanahan, KL Klein, JE AF Shanahan, Kirk L. Klein, James E. TI Reversible and irreversible passivation of a La-Ni-Al alloy SO JOURNAL OF ALLOYS AND COMPOUNDS LA English DT Article DE La-Ni-Al alloy; Hydride; Passivation ID INTERMETALLIC COMPOUNDS; SURFACE; CATALYSTS; LANI5; OXIDATION; ELECTRODE AB This paper seeks to explore some of the effects of passivating a LaNi(4.25)Al(0.75) sample by air oxidation under controlled conditions. Passivation of this metal hydride alloy seems to have two distinct regimes. The first occurs with air oxidation at 80 and 20 degrees C. It is characterized by complete reversibility upon hydrogen readsorption, although said readsorption is hindered substantially at room temperature, requiring the material to be heated to produce the reactivation. The second regime is illustrated by 130 degrees C air oxidation and is characterized by irreversible loss of hydrogen absorption capacity. This passivation does not hinder hydrogen readsorption into the remaining hydride material. (C) 2010 Published by Elsevier B.V. C1 [Shanahan, Kirk L.; Klein, James E.] Savannah River Natl Lab, Aiken, SC 29808 USA. RP Shanahan, KL (reprint author), Savannah River Natl Lab, Bldg 999-2W, Aiken, SC 29808 USA. EM kirk.shanahan@srnl.doe.gov FU Savannah River Nuclear Solutions under U. S. Department of Energy [DE-AC09-96SR185000] FX This work was supported by Savannah River Nuclear Solutions under U. S. Department of Energy contract no. DE-AC09-96SR185000. The authors would like to thank Dr. W.A. Spencer for the assistance with mass spectrometric analyses, and B.B. Morrell for data collection assistance. NR 19 TC 0 Z9 1 U1 1 U2 2 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0925-8388 J9 J ALLOY COMPD JI J. Alloy. Compd. PD APR 30 PY 2010 VL 496 IS 1-2 BP 91 EP 95 DI 10.1016/j.jallcom.2010.01.074 PG 5 WC Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Chemistry; Materials Science; Metallurgy & Metallurgical Engineering GA 610PB UT WOS:000278744500026 ER PT J AU Roy, AK Venkatesh, A AF Roy, Ajit K. Venkatesh, Anand TI Evaluation of yield strength anomaly of Alloy 718 at 700-800 degrees C SO JOURNAL OF ALLOYS AND COMPOUNDS LA English DT Article DE High-temperature alloys; Dislocations; Phase transitions; Transmission electron microscopy ID NICKEL-BASE SUPERALLOY; TENSILE DEFORMATION; HIGH-TEMPERATURE; STRAIN-RATE; STABILITY; BEHAVIOR AB Alloy 718 showed enhanced tensile yield strength and reduced ductility at 700 and 800 C, a possible indication of yield strength anomaly phenomenon. The results of TEM, STEM and EDS verified the formation and precipitation gamma '' and delta phases at these temperatures that could have contributed to such anomalous behavior of this alloy under tensile loading. Presence of nickel (Ni) and niobium (Nb) was observed in both phases, suggesting a composition of Ni(3)Nb for them. (C) 2010 Elsevier B.V. All rights reserved. C1 [Roy, Ajit K.; Venkatesh, Anand] UNLV, Dept Mech Engn, Las Vegas, NV 89154 USA. RP Roy, AK (reprint author), Savannah River Natl Lab, 773-43A, Aiken, SC 29808 USA. EM akroy48@gmail.com FU United States Department of Energy [DE-FC07-04ID14566] FX The financial support of the United States Department of Energy under grant number DE-FC07-04ID14566 is thankfully acknowledged. NR 20 TC 3 Z9 4 U1 1 U2 7 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0925-8388 J9 J ALLOY COMPD JI J. Alloy. Compd. PD APR 30 PY 2010 VL 496 IS 1-2 BP 393 EP 398 DI 10.1016/j.jallcom.2010.02.023 PG 6 WC Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Chemistry; Materials Science; Metallurgy & Metallurgical Engineering GA 610PB UT WOS:000278744500081 ER PT J AU Aramini, JM Tubbs, JL Kanugula, S Rossi, P Ertekin, A Maglaqui, M Hamilton, K Ciccosanti, CT Jiang, M Xiao, R Soong, TT Rost, B Acton, TB Everett, JK Pegg, AE Tainer, JA Montelione, GT AF Aramini, James M. Tubbs, Julie L. Kanugula, Sreenivas Rossi, Paolo Ertekin, Asli Maglaqui, Melissa Hamilton, Keith Ciccosanti, Colleen T. Jiang, Mei Xiao, Rong Soong, Ta-Tsen Rost, Burkhard Acton, Thomas B. Everett, John K. Pegg, Anthony E. Tainer, John A. Montelione, Gaetano T. TI Structural Basis of O-6-Alkylguanine Recognition by a Bacterial Alkyltransferase-like DNA Repair Protein SO JOURNAL OF BIOLOGICAL CHEMISTRY LA English DT Article ID NUCLEOTIDE EXCISION-REPAIR; TORSION ANGLE DYNAMICS; O-6-METHYLGUANINE-DNA METHYLTRANSFERASE; ESCHERICHIA-COLI; DAMAGE RECOGNITION; BACKBONE DYNAMICS; CRYSTAL-STRUCTURE; SOFTWARE SUITE; BINDING; GENOMICS AB Alkyltransferase-like proteins (ATLs) are a novel class of DNA repair proteins related to O-6-alkylguanine-DNA alkyltransferases (AGTs) that tightly bind alkylated DNA and shunt the damaged DNA into the nucleotide excision repair pathway. Here, we present the first structure of a bacterial ATL, from Vibrio parahaemolyticus (vpAtl). We demonstrate that vpAtl adopts an AGT-like fold and that the protein is capable of tightly binding to O-6-methylguanine-containing DNA and disrupting its repair by human AGT, a hallmark of ATLs. Mutation of highly conserved residues Tyr(23) and Arg(37) demonstrate their critical roles in a conserved mechanism of ATL binding to alkylated DNA. NMR relaxation data reveal a role for conformational plasticity in the guanine-lesion recognition cavity. Our results provide further evidence for the conserved role of ATLs in this primordial mechanism of DNA repair. C1 [Aramini, James M.; Rossi, Paolo; Ertekin, Asli; Maglaqui, Melissa; Hamilton, Keith; Ciccosanti, Colleen T.; Jiang, Mei; Xiao, Rong; Acton, Thomas B.; Everett, John K.; Montelione, Gaetano T.] Rutgers State Univ, Dept Mol Biol & Biochem, Ctr Adv Biotechnol & Med, Piscataway, NJ 08854 USA. [Tubbs, Julie L.; Tainer, John A.] Scripps Res Inst, Dept Mol Biol, NE Struct Genom Consortium, La Jolla, CA 92037 USA. [Tubbs, Julie L.; Tainer, John A.] Scripps Res Inst, Skaggs Inst Chem Biol, NE Struct Genom Consortium, La Jolla, CA 92037 USA. [Kanugula, Sreenivas; Pegg, Anthony E.] Penn State Univ, Coll Med, Milton S Hershey Med Ctr, Dept Cellular & Mol Physiol, Hershey, PA 17033 USA. [Soong, Ta-Tsen; Rost, Burkhard] Columbia Univ, Dept Biochem & Mol Biophys, New York, NY 10032 USA. [Tainer, John A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, NE Struct Genom Consortium, Berkeley, CA 94720 USA. [Montelione, Gaetano T.] Univ Med & Dent New Jersey, Robert Wood Johnson Med Sch, Dept Biochem, Piscataway, NJ 08854 USA. RP Aramini, JM (reprint author), Rutgers State Univ, Dept Mol Biol & Biochem, Ctr Adv Biotechnol & Med, Piscataway, NJ 08854 USA. EM jma@cabm.rutgers.edu; guy@cabm.rutgers.edu FU NIGMS [U54-GM074958]; [CA097209]; [CA018137] FX This work was supported, in whole or in part, by National Institutes of Health Grant U54-GM074958 (to G. T. M.) from NIGMS (Protein Structure Initiative) and Grants CA097209 (to J. A. T. and A. E. P.) and CA018137 (to S. K.). NR 39 TC 12 Z9 12 U1 1 U2 10 PU AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3996 USA SN 0021-9258 J9 J BIOL CHEM JI J. Biol. Chem. PD APR 30 PY 2010 VL 285 IS 18 BP 13736 EP 13741 DI 10.1074/jbc.M109.093591 PG 6 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 587JL UT WOS:000276987700048 PM 20212037 ER PT J AU Kovalevsky, AY Chatake, T Shibayama, N Park, SY Ishikawa, T Mustyakimov, M Fisher, Z Langan, P Morimoto, Y AF Kovalevsky, Andrey Y. Chatake, Toshiyuki Shibayama, Naoya Park, Sam-Yong Ishikawa, Takuya Mustyakimov, Marat Fisher, Zoe Langan, Paul Morimoto, Yukio TI Direct Determination of Protonation States of Histidine Residues in a 2 angstrom Neutron Structure of Deoxy-Human Normal Adult Hemoglobin and Implications for the Bohr Effect SO JOURNAL OF MOLECULAR BIOLOGY LA English DT Article DE neutron protein crystallography; hemoglobin; Bohr effect; protonation state; histidine ID HUMAN DEOXYHEMOGLOBIN; MOLECULAR-BASIS; X-RAY; CRYSTALLOGRAPHY; DIFFRACTION; ROLES; ALLOSTERY; PROTEINS; MODEL AB We have investigated the protonation states of histidine residues (potential Bohr groups) in the deoxy form (T state) of human hemoglobin by direct determination of hydrogen (deuterium) positions with the neutron protein crystallography technique. The reversible binding of protons is key to the allosteric regulation of human hemoglobin. The protonation states of 35 of the 38 His residues were directly determined from neutron scattering omit maps, with 3 of the remaining residues being disordered. Protonation states of 5 equivalent His residues-alpha His20, alpha His50, alpha His89, beta His143, and beta His146-differ between the symmetry-related globin subunits. The distal His residues, alpha His58 and beta His63, are protonated in the alpha 1 beta 1 heterodimer and are neutral in alpha 2 beta 2. Buried residue alpha His103 is found to be protonated in both subunits. These distal and buried residues have the potential to act as Bohr groups. The observed protonation states of His residues are compared to changes in their pK(a) values during the transition from the T to the R state and the results provide some new insights into our understanding of the molecular mechanism of the Bohr effect. Published by Elsevier Ltd. C1 [Kovalevsky, Andrey Y.; Mustyakimov, Marat; Fisher, Zoe; Langan, Paul] Los Alamos Natl Lab, Biosci Div, Los Alamos, NM 87545 USA. [Chatake, Toshiyuki; Ishikawa, Takuya; Morimoto, Yukio] Kyoto Univ, Inst Res Reactor, Osaka 5900494, Japan. [Shibayama, Naoya] Jichi Med Univ, Dept Physiol, Shimotsuke, Tochigi 3290498, Japan. [Park, Sam-Yong] Yokohama City Univ, Prot Design Lab, Yokohama, Kanagawa 2300045, Japan. RP Kovalevsky, AY (reprint author), Los Alamos Natl Lab, Biosci Div, POB 1663, Los Alamos, NM 87545 USA. EM ayk@lanl.gov; morimoto@rri.kyoto-u.ac.jp RI Langan, Paul/N-5237-2015; OI Langan, Paul/0000-0002-0247-3122; Kovalevsky, Andrey/0000-0003-4459-9142 FU Ministry of Education, Culture, Sports, Science and Technology of Japan [17053011, 18790030]; REIMEI Research Resources of Japan Atomic Energy Research Institute; Hyogo Science and Technology; Office of Biological and Environmental Research of the Department of Energy; NIH-National Institute of General Medical Sciences [1R01GM071939-01]; LANL Laboratory Directed Research and Development [20070131ER] FX This work was supported in part by Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan (17053011 to Y.M. and 18790030 to T.C.), the REIMEI Research Resources of Japan Atomic Energy Research Institute (to Y.M.), and Hyogo Science and Technology (to Y.M.). The PCS is funded by the Office of Biological and Environmental Research of the Department of Energy. M.M. and P.L. were partly supported by an NIH-National Institute of General Medical Sciences-funded consortium (1R01GM071939-01) between Los Alamos National Laboratory (LANL) and Lawrence Berkeley National Laboratory to develop computational tools for neutron protein crystallography. A.Y.K. and P.L. were partly supported by a LANL Laboratory Directed Research and Development grant (20070131ER). NR 31 TC 16 Z9 16 U1 3 U2 9 PU ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD PI LONDON PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND SN 0022-2836 J9 J MOL BIOL JI J. Mol. Biol. PD APR 30 PY 2010 VL 398 IS 2 BP 276 EP 291 DI 10.1016/j.jmb.2010.03.016 PG 16 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 596DP UT WOS:000277664800008 PM 20230836 ER PT J AU Miller, GK Maki, JT Knudson, DL Petti, DA AF Miller, Gregory K. Maki, John T. Knudson, Darrell L. Petti, David A. TI Calculating failure probabilities for TRISO-coated fuel particles using an integral formulation SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article DE TRISO; Coated particle fuel; Gas-cooled reactor; Monte Carlo method; Integration method; PARFUME ID PERFORMANCE MODELS; BEHAVIOR AB The fundamental design for a gas-cooled reactor relies on the safe behavior of the coated particle fuel. The coating layers surrounding the fuel kernels in these spherical particles, termed the TRISO coating, act as a pressure vessel that retains fission products. The quality of the fuel is reflected in the number of particle failures that occur during reactor operation. where failed particles become a source for fission products that can then diffuse through the fuel element. The failure probability for any batch of particles, which has traditionally been calculated using the Monte Carlo method, depends on statistical variations in design parameters and on variations in the strengths of coating layers among particles in the batch. An alternative approach to calculating failure probabilities is developed herein that uses direct numerical integration of a failure probability integral. Because this is a multiple integral where the statistically varying parameters become integration variables, a fast numerical integration approach is also developed. In sample cases analyzed involving multiple failure mechanisms, results from the integration methods agree closely with Monte Carlo results. Additionally, the fast integration approach, particularly, is shown to significantly improve efficiency of failure probability calculations. These integration methods have been implemented in the PARFUME fuel performance code along with the Monte Carlo method, where each serves to verify accuracy of the others. (C) 2010 Elsevier B.V. All rights reserved. C1 [Miller, Gregory K.; Maki, John T.; Knudson, Darrell L.; Petti, David A.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Miller, GK (reprint author), Idaho Natl Lab, POB 1625, Idaho Falls, ID 83415 USA. EM GregoryK.Miller@inl.gov; John.Maki@inl.gov; Darrell.Knudson@inl.gov; David.Petti@inl.gov FU US Department of Energy, Office of Nuclear Energy, under DOE Idaho Operations Office [DE-AC07-051D14517] FX Work supported by the US Department of Energy, Office of Nuclear Energy, under DOE Idaho Operations Office Contract DE-AC07-051D14517. NR 13 TC 1 Z9 1 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD APR 30 PY 2010 VL 399 IS 2-3 BP 154 EP 161 DI 10.1016/j.jnucmat.2010.01.012 PG 8 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 602SQ UT WOS:000278159500004 ER PT J AU Snead, LL Katoh, Y Kondo, S AF Snead, Lance L. Katoh, Yutai Kondo, Sosuke TI Effects of fast neutron irradiation on zirconium carbide SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID FUEL-PARTICLES; ZRC; DIFFUSION; CERAMICS; REACTOR AB High-purity zone refined zirconium carbide has been fast neutron irradiated in the dose and temperature range of 1-10 x 10(25) N/m(2) (E > 0.1 MeV) and 635-1480 degrees C, respectively. Non-irradiated and as-irradiated properties were measured including the lattice parameter, hardness and elastic modulus as determined through nano-indentation, thermal conductivity, and indentation fracture toughness. The effects of neutron irradiation on the microstructure were also determined though using transmission electron microscopy. The general finding of this paper, limited to this particular zone refined ZrC of nominal C/Zr ratio of 0.93, is that this ceramic is quite stable under neutron irradiation in the temperature and dose range studied. Measurement of lattice parameter before and after irradiation indicated a lack of significant crystalline strain due to irradiation. Only modest changes were observed in the mechanical properties of hardness, elastic modulus, and indentation fracture toughness. The thermal conductivity underwent a slight reduction near 1000 degrees C irradiation, though was essentially unchanged for 1300-1480 degrees C irradiation. Transmission electron microscopy revealed black-spot-type defects (likely Frank or other small loops) for irradiation at 670 degrees C, maturing to faulted Frank loops at 1280 degrees C. As the irradiation temperature increased from 1280 degrees C to the highest irradiation temperature, of 1496 degrees C, a transition to prismatic loops occurs. (C) 2010 Elsevier B.V. All rights reserved. C1 [Snead, Lance L.; Katoh, Yutai; Kondo, Sosuke] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Kondo, Sosuke] Kyoto Univ, Inst Adv Energy, Kyoto 6068501, Japan. RP Snead, LL (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. EM sneadll@ornl.gov OI Katoh, Yutai/0000-0001-9494-5862 FU US Department of Energy (DOE) Basic Energy Science [DE-AC05-00OR22725] FX The authors would like to thank Joel McDuffee and Bob Sitterson for their assistance with the irradiation experiments. Irradiations were carried out in the US Department of Energy (DOE) Basic Energy Science Sponsored High Flux Isotope Reactor. The authors would also like to thank Dr. Tom Watkins of the Thermophysical Properties User Center of the Oak Ridge National Laboratory for assistance with the X-ray characterization. Research was sponsored by the DOE Office of Nuclear Energy as part of an International Nuclear Energy Research Initiative project and the Deep Burn Project. Work was carried out at the Oak Ridge National Laboratory for US Department of Energy under Contract DE-AC05-00OR22725 with UT-Battelle, LLC. NR 28 TC 26 Z9 26 U1 2 U2 30 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD APR 30 PY 2010 VL 399 IS 2-3 BP 200 EP 207 DI 10.1016/j.jnucmat.2010.01.020 PG 8 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 602SQ UT WOS:000278159500010 ER PT J AU Dong, P Reed, SA Yi, SA Kalmykov, S Li, ZY Shvets, G Matlis, NH McGuffey, C Bulanov, SS Chvykov, V Kalintchenko, G Krushelnick, K Maksimchuk, A Matsuoka, T Thomas, AGR Yanovsky, V Downer, MC AF Dong, P. Reed, S. A. Yi, S. A. Kalmykov, S. Li, Z. Y. Shvets, G. Matlis, N. H. McGuffey, C. Bulanov, S. S. Chvykov, V. Kalintchenko, G. Krushelnick, K. Maksimchuk, A. Matsuoka, T. Thomas, A. G. R. Yanovsky, V. Downer, M. C. TI Holographic visualization of laser wakefields SO NEW JOURNAL OF PHYSICS LA English DT Article ID MONOENERGETIC ELECTRON-BEAMS; PLASMA CHANNELS; WAKE-FIELD; ACCELERATOR; INTENSE; PULSES; ENERGY; INTERFEROMETRY; OSCILLATIONS; GENERATION AB We report 'snapshots' of laser-generated plasma accelerator structures acquired by frequency domain holography (FDH) and frequency domain shadowgraphy (FDS), techniques for visualizing quasi-static objects propagating near the speed of light. FDH captures images of sinusoidal wakes in mm-length plasmas of density 1 < n(e) < 5 x 10(18) cm(-3) from phase modulations they imprint on co-propagating probe pulses. Changes in the wake structure (such as the curvature of the wavefront), caused by the laser and plasma parameter variations from shot to shot, were observed. FDS visualizes laser-generated electron density bubbles in mm-length plasmas of density n(e) >= 1019 cm-3 using amplitude modulations they imprint on co-propagating probe pulses. Variations in the spatio-temporal structure of bubbles are inferred from corresponding variations in the shape of 'bullets' of probe light trapped inside them and correlated with mono-energetic electron generation. Both FDH and FDS average over structural variations that occur during propagation through the plasma medium. We explore via simulations a generalization of FDH/FDS (termed frequency domain tomography (FDT)) that can potentially record a time sequence of quasi-static snapshots, like the frames of a movie, of the wake structure as it propagates through the plasma. FDT utilizes several probe-reference pulse pairs that propagate obliquely to the wake, along with tomographic reconstruction algorithms similar to those used in medical CAT scans. C1 [Dong, P.; Reed, S. A.; Yi, S. A.; Kalmykov, S.; Li, Z. Y.; Shvets, G.; Downer, M. C.] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA. [Matlis, N. H.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [McGuffey, C.; Bulanov, S. S.; Chvykov, V.; Kalintchenko, G.; Krushelnick, K.; Maksimchuk, A.; Matsuoka, T.; Thomas, A. G. R.; Yanovsky, V.] Univ Michigan, Ctr Ultrafast Opt Sci, Ann Arbor, MI 48109 USA. RP Downer, MC (reprint author), Univ Texas Austin, Dept Phys, Austin, TX 78712 USA. EM downer@physics.utexas.edu RI Yanovsky, Victor/B-5899-2008; Thomas, Alexander/D-8210-2011; Kalmykov, Serge/A-1991-2014; Kalinchenko, Galina/G-5684-2014; OI Kalmykov, Serge/0000-0002-0946-857X; Thomas, Alexander/0000-0003-3206-8512 FU US DOE [DE-FG02-96-ER-40954, DE-FG02-07ER54945, DE-FG02-04ER41321]; NSF Physics Frontier Center [PHY-011436]; NSF/DNDO [0833499] FX This work was supported by US DOE grants DE-FG02-96-ER-40954, DE-FG02-07ER54945 and DE-FG02-04ER41321, the NSF Physics Frontier Center FOCUS (grant PHY-011436) and NSF/DNDO grant 0833499. NR 48 TC 9 Z9 9 U1 0 U2 11 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1367-2630 J9 NEW J PHYS JI New J. Phys. PD APR 30 PY 2010 VL 12 AR 045016 DI 10.1088/1367-2630/12/4/045016 PG 20 WC Physics, Multidisciplinary SC Physics GA 592DK UT WOS:000277355400014 ER PT J AU Comstock, MJ Strubbe, DA Berbil-Bautista, L Levy, N Cho, J Poulsen, D Frechet, JMJ Louie, SG Crommie, MF AF Comstock, Matthew J. Strubbe, David A. Berbil-Bautista, Luis Levy, Niv Cho, Jongweon Poulsen, Daniel Frechet, Jean M. J. Louie, Steven G. Crommie, Michael F. TI Determination of Photoswitching Dynamics through Chiral Mapping of Single Molecules Using a Scanning Tunneling Microscope SO PHYSICAL REVIEW LETTERS LA English DT Article ID AZOBENZENE DERIVATIVES; TRANS-AZOBENZENE; METAL-SURFACES; PHOTOISOMERIZATION; ISOMERIZATION; FLUORESCENCE; MECHANISM; AU(111); SYSTEMS; STATE AB Single-molecule-resolved scanning tunneling microscopy of tetra-tert-butyl azobenzene ( TTB-AB) molecules adsorbed onto Au(111) reveals chirality selection rules in their photoswitching behavior. This observation is enabled by the fact that trans-TTB-AB molecules self-assemble into homochiral domains. Cis-TTB-AB molecules produced via photoisomerization are found in two distinct conformations with final state chirality determined by the initial trans isomer chirality. Based on these observations and ab initio calculations, we propose a new inversion-based dynamical photoswitching mechanism for azobenzene molecules at a surface. C1 [Comstock, Matthew J.; Strubbe, David A.; Berbil-Bautista, Luis; Levy, Niv; Cho, Jongweon; Louie, Steven G.; Crommie, Michael F.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Poulsen, Daniel; Frechet, Jean M. J.] Univ Illinois, Dept Chem, Urbana, IL 61801 USA. [Comstock, Matthew J.; Strubbe, David A.; Berbil-Bautista, Luis; Levy, Niv; Cho, Jongweon; Poulsen, Daniel; Frechet, Jean M. J.; Louie, Steven G.; Crommie, Michael F.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Comstock, MJ (reprint author), Univ Illinois, Dept Phys, 1110 W Green St, Urbana, IL 61801 USA. RI Cho, Jongweon/F-3704-2011; OI Frechet, Jean /0000-0001-6419-0163 FU Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering Division, U. S. Department of Energy [DE-AC02-05CH11231]; NSF IGERT FX This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering Division, U. S. Department of Energy under Contract No. DE-AC02-05CH11231. Computational resources were provided by DOE at Lawrence Berkeley National Laboratory's NERSC facility. D. S. was supported by NSF IGERT. NR 25 TC 25 Z9 25 U1 2 U2 15 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD APR 30 PY 2010 VL 104 IS 17 AR 178301 DI 10.1103/PhysRevLett.104.178301 PG 4 WC Physics, Multidisciplinary SC Physics GA 590FR UT WOS:000277210600057 PM 20482149 ER PT J AU Goremychkin, EA Osborn, R Sashin, IL Riseborough, P Rainford, BD Adroja, DT Lawrence, JM AF Goremychkin, E. A. Osborn, R. Sashin, I. L. Riseborough, P. Rainford, B. D. Adroja, D. T. Lawrence, J. M. TI Transition from Heavy-Fermion to Mixed-Valence Behavior in Ce1-xYxAl3: A Quantitative Comparison with the Anderson Impurity Model SO PHYSICAL REVIEW LETTERS LA English DT Article ID METALS; STATE AB We present a neutron scattering investigation of Ce1-xYxAl3 as a function of chemical pressure, which induces a transition from heavy-fermion behavior in CeAl3 (T-K = 5 K) to a mixed-valence state at x = 0.5 (T-K = 150 K). The crossover can be modeled accurately on an absolute intensity scale by an increase in the k-f hybridization, V-kf, within the Anderson impurity model. Surprisingly, the principal effect of the increasing V-kf is not to broaden the low-energy components of the dynamic magnetic susceptibility but to transfer spectral weight to high energy. C1 [Goremychkin, E. A.; Osborn, R.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Goremychkin, E. A.; Adroja, D. T.] Rutherford Appleton Lab, ISIS Pulsed Neutron & Muon Source, Didcot OX11 0QX, Oxon, England. [Sashin, I. L.] Joint Inst Nucl Res, Dubna 141980, Moscow Region, Russia. [Riseborough, P.] Temple Univ, Dept Phys, Philadelphia, PA 19122 USA. [Rainford, B. D.] Univ Southampton, Dept Phys, Southampton S017 1BJ, Hants, England. [Lawrence, J. M.] Univ Calif Irvine, Dept Phys, Irvine, CA 92697 USA. RP Goremychkin, EA (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM ROsborn@anl.gov RI Osborn, Raymond/E-8676-2011; Riseborough, Peter/D-4689-2011 OI Osborn, Raymond/0000-0001-9565-3140; FU U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering [DE-AC02-06CH11357] FX This research was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Grant No. DE-AC02-06CH11357. NR 14 TC 2 Z9 2 U1 1 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD APR 30 PY 2010 VL 104 IS 17 AR 176402 DI 10.1103/PhysRevLett.104.176402 PG 4 WC Physics, Multidisciplinary SC Physics GA 590FR UT WOS:000277210600028 PM 20482120 ER PT J AU Ong, KP Singh, DJ Wu, P AF Ong, Khuong P. Singh, David J. Wu, Ping TI Unusual Transport and Strongly Anisotropic Thermopower in PtCoO2 and PdCoO2 SO PHYSICAL REVIEW LETTERS LA English DT Article ID DELAFOSSITES; GROWTH AB We show, using Boltzmann transport calculations and analysis of experimental data, that hexagonal PdCoO2 and PtCoO2 have a highly unusual metallic transport. The in-plane transport is typical of a very good metal, with high conductivity and low positive thermopower. The c-axis transport is completely different, with 2 orders of magnitude lower, but still coherent, conductivity and remarkably a very large negative thermopower. This large anisotropy of the thermopower provides an opportunity for investigating transport in a highly unusual regime using bulk materials. C1 [Ong, Khuong P.; Wu, Ping] Inst High Performance Comp, Singapore 138632, Singapore. [Singh, David J.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Ong, KP (reprint author), Inst High Performance Comp, 1 Fusionopolis Way, Singapore 138632, Singapore. RI Singh, David/I-2416-2012; OI Ong, Khuong/0000-0003-2835-441X FU U.S. DOE; S3TEC Energy Frontier Research Center; Institute of High Performance Computing; Agency of Science, Technology, and Research (A*STAR) FX This work was supported by the U.S. DOE, S3TEC Energy Frontier Research Center (D.J.S), the Institute of High Performance Computing and the Agency of Science, Technology, and Research (A*STAR) (K.P.O and P. W). D.J.S is grateful for the hospitality of the IHPC where a portion of this work was performed. NR 22 TC 43 Z9 43 U1 2 U2 48 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD APR 30 PY 2010 VL 104 IS 17 AR 176601 DI 10.1103/PhysRevLett.104.176601 PG 4 WC Physics, Multidisciplinary SC Physics GA 590FR UT WOS:000277210600031 PM 20482123 ER PT J AU Spataru, CD Leonard, F AF Spataru, Catalin D. Leonard, Francois TI Tunable Band Gaps and Excitons in Doped Semiconducting Carbon Nanotubes Made Possible by Acoustic Plasmons SO PHYSICAL REVIEW LETTERS LA English DT Article ID QUASI-PARTICLE ENERGIES; DIELECTRIC RESPONSE; ELECTRON; EXCITATIONS; SPECTRA AB Doping of semiconductors is essential in modern electronic and photonic devices. While doping is well understood in bulk semiconductors, the advent of carbon nanotubes and nanowires for nanoelectronic and nanophotonic applications raises some key questions about the role and impact of doping at low dimensionality. Here we show that for semiconducting carbon nanotubes, band gaps and exciton binding energies can be dramatically reduced upon experimentally relevant doping, and can be tuned gradually over a broad range of energies in contrast with higher dimensional systems. The latter feature is made possible by a novel mechanism involving strong dynamical screening effects mediated by acoustic plasmons. C1 [Spataru, Catalin D.; Leonard, Francois] Sandia Natl Labs, Livermore, CA 94551 USA. RP Spataru, CD (reprint author), Sandia Natl Labs, Livermore, CA 94551 USA. EM cdspata@sandia.gov FU U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000]; Lockheed Martin Shared Vision program FX Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the U.S. Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. Work supported by the Lockheed Martin Shared Vision program. NR 25 TC 56 Z9 56 U1 0 U2 20 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD APR 30 PY 2010 VL 104 IS 17 AR 177402 DI 10.1103/PhysRevLett.104.177402 PG 4 WC Physics, Multidisciplinary SC Physics GA 590FR UT WOS:000277210600048 PM 20482140 ER PT J AU Wang, JG Graham, MW Ma, YZ Fleming, GR Kaindl, RA AF Wang, Jigang Graham, Matt W. Ma, Yingzhong Fleming, Graham R. Kaindl, Robert A. TI Ultrafast Spectroscopy of Midinfrared Internal Exciton Transitions in Separated Single-Walled Carbon Nanotubes SO PHYSICAL REVIEW LETTERS LA English DT Article ID CARRIER DYNAMICS; PHOTOPHYSICS AB We report a femtosecond midinfrared study of the broadband low-energy response of individually separated ( 6,5) and ( 7,5) single-walled carbon nanotubes. Strong photoinduced absorption is observed around 200 meV, whose transition energy, oscillator strength, resonant chirality enhancement, and dynamics manifest the observation of quasi-one-dimensional intraexcitonic transitions. A model of the nanotube 1s-2p cross section agrees well with the signal amplitudes. Our study further reveals saturation of the photoinduced absorption with increasing phase-space filling of the correlated e-h pairs. C1 [Wang, Jigang; Kaindl, Robert A.] EO Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Wang, Jigang] Iowa State Univ, Dept Phys & Astron, Ames, IA 50010 USA. [Wang, Jigang] Iowa State Univ, Ames Lab, Ames, IA 50010 USA. [Graham, Matt W.; Ma, Yingzhong; Fleming, Graham R.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Graham, Matt W.; Ma, Yingzhong; Fleming, Graham R.] EO Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Ma, Yingzhong] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. RP Wang, JG (reprint author), EO Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RI Ma, Yingzhong/L-6261-2016 OI Ma, Yingzhong/0000-0002-8154-1006 FU Office of Science, U. S. DOE [DE-AC02-05CH11231]; LDRD; Ames Laboratory, DOE [DE-AC02-07CH11358]; NSF FX This work was supported by the Office of Science, U.S. DOE, via Contract No. DE-AC02-05CH11231 with initial provision from LDRD. Manuscript finalization was also supported by Ames Laboratory, DOE Contract No. DE-AC02-07CH11358. SWNTs were characterized at the Molecular Foundry, and prepared at U.C. Berkeley as supported by the NSF. NR 30 TC 23 Z9 23 U1 3 U2 32 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD APR 30 PY 2010 VL 104 IS 17 AR 177401 DI 10.1103/PhysRevLett.104.177401 PG 4 WC Physics, Multidisciplinary SC Physics GA 590FR UT WOS:000277210600047 PM 20482139 ER PT J AU Wingen, A Evans, TE Lasnier, CJ Spatschek, KH AF Wingen, A. Evans, T. E. Lasnier, C. J. Spatschek, K. H. TI Numerical Modeling of Edge-Localized-Mode Filaments on Divertor Plates Based on Thermoelectric Currents SO PHYSICAL REVIEW LETTERS LA English DT Article ID CHILD-LANGMUIR LAW; CATHODE AB Edge localized modes (ELMs) are qualitatively and quantitatively modeled in tokamaks using current bursts which have been observed in the scrape-off-layer (SOL) during an ELM crash. During the initial phase of an ELM, a heat pulse causes thermoelectric currents. They first flow in short connection length flux tubes which are initially established by error fields or other nonaxisymmetric magnetic perturbations. The currents change the magnetic field topology in such a way that larger areas of short connection length flux tubes emerge. Then currents predominantly flow in short SOL-like flux tubes and scale with the area of the flux tube assuming a constant current density. Quantitative predictions of flux tube patterns for a given current are in excellent agreement with measurements of the heat load and current flow at the DIII-D target plates during an ELM cycle. C1 [Wingen, A.; Spatschek, K. H.] Univ Dusseldorf, Inst Theoret Phys, D-40225 Dusseldorf, Germany. [Evans, T. E.] Gen Atom Co, San Diego, CA 92186 USA. [Lasnier, C. J.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Wingen, A (reprint author), Univ Dusseldorf, Inst Theoret Phys, D-40225 Dusseldorf, Germany. RI Wingen, Andreas/K-8822-2013; OI Wingen, Andreas/0000-0001-8855-1349 FU Reykjavik University Development Fund FX The authors acknowledge funding provided by the Reykjavik University Development Fund. NR 11 TC 20 Z9 20 U1 1 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD APR 30 PY 2010 VL 104 IS 17 AR 175001 DI 10.1103/PhysRevLett.104.175001 PG 8 WC Physics, Multidisciplinary SC Physics GA 590FR UT WOS:000277210600022 PM 20482113 ER PT J AU Hellsten, U Harland, RM Gilchrist, MJ Hendrix, D Jurka, J Kapitonov, V Ovcharenko, I Putnam, NH Shu, SQ Taher, L Blitz, IL Blumberg, B Dichmann, DS Dubchak, I Amaya, E Detter, JC Fletcher, R Gerhard, DS Goodstein, D Graves, T Grigoriev, IV Grimwood, J Kawashima, T Lindquist, E Lucas, SM Mead, PE Mitros, T Ogino, H Ohta, Y Poliakov, AV Pollet, N Robert, J Salamov, A Sater, AK Schmutz, J Terry, A Vize, PD Warren, WC Wells, D Wills, A Wilson, RK Zimmerman, LB Zorn, AM Grainger, R Grammer, T Khokha, MK Richardson, PM Rokhsar, DS AF Hellsten, Uffe Harland, Richard M. Gilchrist, Michael J. Hendrix, David Jurka, Jerzy Kapitonov, Vladimir Ovcharenko, Ivan Putnam, Nicholas H. Shu, Shengqiang Taher, Leila Blitz, Ira L. Blumberg, Bruce Dichmann, Darwin S. Dubchak, Inna Amaya, Enrique Detter, John C. Fletcher, Russell Gerhard, Daniela S. Goodstein, David Graves, Tina Grigoriev, Igor V. Grimwood, Jane Kawashima, Takeshi Lindquist, Erika Lucas, Susan M. Mead, Paul E. Mitros, Therese Ogino, Hajime Ohta, Yuko Poliakov, Alexander V. Pollet, Nicolas Robert, Jacques Salamov, Asaf Sater, Amy K. Schmutz, Jeremy Terry, Astrid Vize, Peter D. Warren, Wesley C. Wells, Dan Wills, Andrea Wilson, Richard K. Zimmerman, Lyle B. Zorn, Aaron M. Grainger, Robert Grammer, Timothy Khokha, Mustafa K. Richardson, Paul M. Rokhsar, Daniel S. TI The Genome of the Western Clawed Frog Xenopus tropicalis SO SCIENCE LA English DT Article ID MOLECULAR PALEONTOLOGY; TRANSPOSABLE ELEMENTS; IMMUNE-SYSTEM; GENE; SEQUENCE; IGD AB The western clawed frog Xenopus tropicalis is an important model for vertebrate development that combines experimental advantages of the African clawed frog Xenopus laevis with more tractable genetics. Here we present a draft genome sequence assembly of X. tropicalis. This genome encodes more than 20,000 protein-coding genes, including orthologs of at least 1700 human disease genes. Over 1 million expressed sequence tags validated the annotation. More than one-third of the genome consists of transposable elements, with unusually prevalent DNA transposons. Like that of other tetrapods, the genome of X. tropicalis contains gene deserts enriched for conserved noncoding elements. The genome exhibits substantial shared synteny with human and chicken over major parts of large chromosomes, broken by lineage-specific chromosome fusions and fissions, mainly in the mammalian lineage. C1 [Hellsten, Uffe; Shu, Shengqiang; Dubchak, Inna; Goodstein, David; Grigoriev, Igor V.; Grimwood, Jane; Lindquist, Erika; Lucas, Susan M.; Poliakov, Alexander V.; Salamov, Asaf; Schmutz, Jeremy; Terry, Astrid; Richardson, Paul M.; Rokhsar, Daniel S.] Dept Energy Joint Genome Inst, Walnut Creek, CA 94598 USA. [Harland, Richard M.; Hendrix, David; Dichmann, Darwin S.; Fletcher, Russell; Kawashima, Takeshi; Mitros, Therese; Wills, Andrea; Grammer, Timothy; Rokhsar, Daniel S.] Univ Calif Berkeley, Ctr Integrat Genom, Berkeley, CA 94720 USA. [Gilchrist, Michael J.] MRC Natl Inst Med Res, Div Syst Biol, London NW7 1AA, England. [Jurka, Jerzy; Kapitonov, Vladimir] Genet Informat Res Inst, Mountain View, CA 94043 USA. [Ovcharenko, Ivan; Taher, Leila] Natl Lib Med, Natl Ctr Biotechnol Informat, NIH, Bethesda, MD 20894 USA. [Putnam, Nicholas H.] Rice Univ, Dept Ecol & Evolutionary Biol, Houston, TX 77005 USA. [Blitz, Ira L.; Blumberg, Bruce] Univ Calif Irvine, Dept Dev & Cell Biol, Irvine, CA 92697 USA. [Amaya, Enrique] Univ Manchester, Healing Fdn Ctr, Manchester M13 9PT, Lancs, England. [Detter, John C.] Los Alamos Natl Lab, DOE Joint Genome Inst, Los Alamos, NM 87545 USA. [Gerhard, Daniela S.] NCI, Off Canc Genom, NIH, Dhhs Bethesda, MD 20892 USA. [Graves, Tina; Warren, Wesley C.; Wilson, Richard K.] Washington Univ, Sch Med, Genome Sequencing Ctr, St Louis, MO 63108 USA. [Grimwood, Jane; Schmutz, Jeremy] HudsonAlpha Inst Biotechnol, Joint Genome Inst, Huntsville, AL 35806 USA. [Kawashima, Takeshi] Okinawa Inst Sci & Technol, Okinawa 9042234, Japan. [Mead, Paul E.] St Jude Childrens Res Hosp, Dept Pathol, Memphis, TN 38105 USA. [Ogino, Hajime] Nara Inst Sci & Technol, Nara, Japan. [Ohta, Yuko] Univ Maryland, Sch Med, Dept Microbiol & Immunol, Baltimore, MD 21201 USA. [Pollet, Nicolas] Univ Evry Val Essonne, CNRS, Programme Epigenom, F-91058 Evry, France. [Robert, Jacques] Univ Rochester, Dept Microbiol & Immunol, Med Ctr, Rochester, NY 14642 USA. [Sater, Amy K.; Wells, Dan] Univ Houston, Dept Biol & Biochem, Houston, TX 77204 USA. [Vize, Peter D.] Univ Calgary, Dept Biol Sci, Calgary, AB T2N 1N4, Canada. [Zorn, Aaron M.] Cincinnati Childrens Hosp, Med Ctr, Div Dev Biol, Cincinnati, OH 45229 USA. [Grainger, Robert] Dept Biol, Charlottesville, VA 22904 USA. [Khokha, Mustafa K.] Yale Univ, Sch Med, Dept Pediat & Genet, New Haven, CT 06520 USA. RP Hellsten, U (reprint author), Dept Energy Joint Genome Inst, Walnut Creek, CA 94598 USA. EM uhellsten@lbl.gov RI Putnam, Nicholas/B-9968-2008; Dichmann, Darwin/C-7239-2012; Pollet, Nicolas/A-4746-2013; Schmutz, Jeremy/N-3173-2013; Kawashima, Takeshi/M-4510-2015 OI Putnam, Nicholas/0000-0002-1315-782X; Pollet, Nicolas/0000-0002-9975-9644; Schmutz, Jeremy/0000-0001-8062-9172; FU U.S. Department of Energy's Office of Science; University of California, Lawrence Berkeley National Laboratory [DE-AC02-05CH11231]; Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; Los Alamos National Laboratory [DE-AC02-06NA25396]; NIH, National Library of Medicine; National Human Genome Research Institute (NHGRI) [U01 HG02155]; National Institute of Child Health and Human Development FX This work was performed under the auspices of the U.S. Department of Energy's Office of Science, Biological and Environmental Research Program, and by the University of California, Lawrence Berkeley National Laboratory, under contract DE-AC02-05CH11231, Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344, and Los Alamos National Laboratory under contract DE-AC02-06NA25396. This research was supported in part by the Intramural Research Program of the NIH, National Library of Medicine, and by a grant to R. K. W. from the National Human Genome Research Institute (NHGRI U01 HG02155) with supplemental funds provided by the National Institute of Child Health and Human Development. We thank R. Gibbs and S. Scherer of the Human Genome Sequencing Center, Baylor College of Medicine, for their contributions to identification and mapping of simple sequence length polymorphisms. NR 23 TC 308 Z9 417 U1 13 U2 86 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD APR 30 PY 2010 VL 328 IS 5978 BP 633 EP 636 DI 10.1126/science.1183670 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 589OJ UT WOS:000277159800047 PM 20431018 ER PT J AU Li, C Zhang, Q Krotkov, NA Streets, DG He, KB Tsay, SC Gleason, JF AF Li, Can Zhang, Qiang Krotkov, Nickolay A. Streets, David G. He, Kebin Tsay, Si-Chee Gleason, James F. TI Recent large reduction in sulfur dioxide emissions from Chinese power plants observed by the Ozone Monitoring Instrument SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID ALGORITHM; RETRIEVAL; NO2 AB The Ozone Monitoring Instrument (OMI) aboard NASA's Aura satellite observed substantial increases in total column SO2 and tropospheric column NO2 from 2005 to 2007, over several areas in northern China where large coal-fired power plants were built during this period. The OMI-observed SO2/NO2 ratio is consistent with the SO2/NOx emissions estimated from a bottom-up approach. In 2008 over the same areas, OMI detected little change in NO2, suggesting steady electricity output from the power plants. However, dramatic reductions of SO2 emissions were observed by OMI at the same time. These reductions confirm the effectiveness of the flue-gas desulfurization (FGD) devices in reducing SO2 emissions, which likely became operational between 2007 and 2008. This study further demonstrates that the satellite sensors can monitor and characterize anthropogenic emissions from large point sources. Citation: Li, C., Q. Zhang, N. A. Krotkov, D. G. Streets, K. He, S.-C. Tsay, and J. F. Gleason (2010), Recent large reduction in sulfur dioxide emissions from Chinese power plants observed by the Ozone Monitoring Instrument, Geophys. Res. Lett., 37, L08807, doi:10.1029/2010GL042594. C1 [Li, Can] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20742 USA. [Li, Can; Krotkov, Nickolay A.; Tsay, Si-Chee; Gleason, James F.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Zhang, Qiang] Tsinghua Univ, Ctr Earth Syst Sci, Beijing 100084, Peoples R China. [Zhang, Qiang; Streets, David G.] Argonne Natl Lab, Decis & Informat Sci Div, Argonne, IL 60439 USA. [Krotkov, Nickolay A.] Univ Maryland Baltimore Cty, Goddard Earth Sci & Technol Ctr, Baltimore, MD 21288 USA. [He, Kebin] Tsinghua Univ, Dept Environm Sci & Engn, State Key Joint Lab Environm Simulat & Pollut Con, Beijing 100084, Peoples R China. RP Li, C (reprint author), Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20742 USA. EM can.li@nasa.gov RI Li, Can/F-6867-2011; Zhang, Qiang/D-9034-2012; Gleason, James/E-1421-2012; Krotkov, Nickolay/E-1541-2012; Tsay, Si-Chee/J-1147-2014 OI Krotkov, Nickolay/0000-0001-6170-6750; FU NASA; Ministry of Environmental Protection of China FX The OMI project is managed by NIVR and KNMI in the Netherlands. The authors would like to thank the KNMI OMI team for producing L1B radiance data and the U.S. OMI operational team for continuing support. The authors wish to thank Bingjiang Liu for his comments. Can Li thanks partial support from the NASA Radiation Science Program managed by Hal Maring. Nickolay Krotkov acknowledges NASA funding of OMI SO2 research. David Streets and Qiang Zhang acknowledge the support of the NASA program on Decision Support through Earth Science Research Results, managed by Lawrence Friedl. Qiang Zhang also acknowledges the support of the Project of Monitoring & Management on Emission Reduction, managed by the Ministry of Environmental Protection of China. NR 20 TC 67 Z9 71 U1 1 U2 47 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD APR 29 PY 2010 VL 37 AR L08807 DI 10.1029/2010GL042594 PG 6 WC Geosciences, Multidisciplinary SC Geology GA 590UD UT WOS:000277252800002 ER PT J AU Trattner, KJ Petrinec, SM Fuselier, SA Peterson, WK Friedel, R AF Trattner, K. J. Petrinec, S. M. Fuselier, S. A. Peterson, W. K. Friedel, R. TI Cusp energetic ions as tracers for particle transport into the magnetosphere SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID EARTHS BOW SHOCK; LOW-ALTITUDE OBSERVATIONS; ULF POWER SPECTRA; DAYSIDE MAGNETOPAUSE; ACCELERATION REGION; MEV HELIUM; POLAR; MAGNETOSHEATH; RECONNECTION; SPACECRAFT AB The magnetospheric cusps are focal points in studies of both magnetic reconnection at the magnetopause and plasma entry into the magnetosphere. Contrary to a well-understood precipitating thermal magnetosheath ion population, the origins of energetic ions in the cusp regions are still a matter of controversy. It has been suggested that these cusp energetic particles (CEP) with significant fluxes from magnetosheath energies up to several hundred keV/e are accelerated locally in the cusp. A recent paper has suggested local plasma conditions conducive to CEP acceleration in the cusp diamagnetic cavity (CDC). An alternative source region for CEP events is the quasi-parallel bow shock, which is a well-known particle accelerator. Energetic ions accelerated at the bow shock can be transported downstream and enter the cusp along newly reconnected field lines. Composition and energy spectra of these CEP events resemble those of bow shock energetic diffuse ions. We use recently developed techniques to determine the location of the reconnection site at the magnetopause, draping interplanetary magnetic field (IMF) lines over the magnetopause and mapping those field lines back into the solar wind to show the magnetic connection between the cusp regions, the Earth bow shock, and the upstream region. Several cusp crossings by the Polar satellite during variable IMF conditions are analyzed for patterns between the cusp, their connection to the upstream region, and the appearance of energetic ions in the cusp. Local plasma conditions in the cusp are also documented. This analysis reveals that the occurrence of CEP events is not uniquely determined by local plasma conditions. The flux of CEP ions depends on the location of the quasi-parallel bow shock and the magnetic topology in the magnetosheath. Our analysis allows us to use CEP ions as tracers for plasma transport into the cusp and to better understand the magnetic topology between the solar wind and the ionosphere. C1 [Trattner, K. J.; Petrinec, S. M.; Fuselier, S. A.] Lockheed Martin Adv Technol Ctr, ADCS, Palo Alto, CA 94304 USA. [Peterson, W. K.] Univ Colorado, Atmospher & Space Phys Lab, Boulder, CO 80303 USA. [Friedel, R.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Trattner, KJ (reprint author), Lockheed Martin Adv Technol Ctr, ADCS, 3251 Hanover St,B255, Palo Alto, CA 94304 USA. EM trattner@spasci.com RI Friedel, Reiner/D-1410-2012; Peterson, WK/A-8706-2009 OI Friedel, Reiner/0000-0002-5228-0281; Peterson, WK/0000-0002-1513-6096 FU NASA [NNG05GE93G, NNX08AF35G, NNG05GE15G]; National Science Foundation [0503201] FX We acknowledge the use of ISTP KP database. Solar wind observations were provided by K. Ogilvie at NASA/GSFC (Wind/SWE); magnetic field observations were provided by R. Lepping at NASA/GSFC (Wind/MFI). The work at Lockheed Martin was supported by NASA contracts NNG05GE93G, NNX08AF35G, and NNG05GE15G and by a grant from the National Science Foundation under grant 0503201. NR 44 TC 8 Z9 8 U1 0 U2 1 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD APR 29 PY 2010 VL 115 AR A04219 DI 10.1029/2009JA014919 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 590YZ UT WOS:000277265800003 ER PT J AU Hobbs, ML Wente, WB Kaneshige, MJ AF Hobbs, Michael L. Wente, William B. Kaneshige, Michael J. TI PETN Ignition Experiments and Models SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID PENTAERYTHRITOL TETRANITRATE; THERMAL INITIATION; EXPLOSIVES AB Ignition experiments from various sources, including our own laboratory, have been used to develop a simple ignition model for pentaerythritol tetranitrate (PETN). The experiments consist of differential thermal analysis, thermogravimetric analysis, differential scanning calorimetry, beaker tests, one-dimensional time to explosion tests, Sandia's instrumented thermal ignition tests (SITI), and thermal ignition of nonelectrical detonators. The model developed using this data consists of a one-step, first-order, pressure-independent mechanism used to predict pressure, temperature, and time to ignition for various configurations. The model was used to assess the state of the degraded PETN at the onset of ignition. We propose that cookoff violence for PETN can be correlated with the extent of reaction at the onset of ignition. This hypothesis was tested by evaluating metal deformation produced from detonators encased in copper as well as comparing postignition photos of the SITI experiments. C1 [Hobbs, Michael L.] Sandia Natl Labs, Engn Sci Ctr, Nanoscale & React Proc Dept, Albuquerque, NM 87105 USA. [Wente, William B.; Kaneshige, Michael J.] Sandia Natl Labs, Energet Components Realizat, Explos Projects Diagnost, Albuquerque, NM 87105 USA. RP Hobbs, ML (reprint author), Sandia Natl Labs, Engn Sci Ctr, Nanoscale & React Proc Dept, Albuquerque, NM 87105 USA. EM mlhobbs@sandia.gov FU United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX Work was performed at Sandia National Laboratories (SNL). Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. I would like to thank Mel Baer for suggesting using Damkohler numbers to evaluate reaction violence; Craig Tarver and Tri Tran at Lawrence Livermore National Laboratory for supplying the ODTX data; Bob Patton (SNL) for the DSC data; Don W. Gilbert (SNL) for the SEMTEX beaker photographs; Bertha Montoya for the SEMTEX analysis; Bill Erikson and Dean Dobranich (SNL) for reviewing the article; and Terry Aselage and Imane Khalil (SNL) for management support. NR 30 TC 6 Z9 6 U1 1 U2 6 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD APR 29 PY 2010 VL 114 IS 16 BP 5306 EP 5319 DI 10.1021/jp1007329 PG 14 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 586FM UT WOS:000276888800011 PM 20361790 ER PT J AU Chowdhury, MH Ray, K Johnson, ML Gray, SK Pond, J Lakowicz, JR AF Chowdhury, Mustafa H. Ray, Krishanu Johnson, Michael L. Gray, Stephen K. Pond, James Lakowicz, Joseph R. TI On the Feasibility of Using the Intrinsic Fluorescence of Nucleotides for DNA Sequencing SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID METAL-ENHANCED FLUORESCENCE; EXCITED-STATE LIFETIMES; COUPLED EMISSION; HUMAN GENOME; MOLECULE; DECAY; DIDEOXYNUCLEOTIDES; NANOSTRUCTURES; NANOPARTICLES; TECHNOLOGIES AB There is presently a worldwide effort to increase the speed and decrease the cost of DNA sequencing as exemplified by the goal of the National Human Genome Research Institute (NHGRI) to sequence a human genome for under $1000. Several high throughput technologies are under development. Among these, single strand sequencing using exonuclease appear very promising. However, this approach requires complete labeling of at least two bases at a time, with extrinsic high quantum yield probes. This is necessary because nucleotides absorb in the deep ultraviolet (UV) and emit with extremely low quantum yields. Hence intrinsic emission from DNA and nucleotides is not being exploited for DNA sequencing. In the present paper we consider the possibility of identifying single nucleotides using their intrinsic emission. We used the finite-difference time-domain (FDTD) method to calculate the effects of aluminum nanoparticles on nearby fluorophores that emit in the UV. We find that the radiated power of UV fluorophores is significantly increased when they are in close proximity to aluminum nanostructures. We show that there will be increased localized excitation near aluminum particles at wavelengths used to excite intrinsic nucleotide emission. Using FDTD simulation we show that a typical DNA base when coupled to appropriate aluminum nanostructures leads to highly directional emission. Additionally we present experimental results showing that a thin film of nucleotides show enhanced emission when in close proximity to aluminum nanostructures. Finally we provide Monte Carlo simulations that predict high levels of base calling accuracy for an assumed number of photons that is derived from the emission spectra of the intrinsic fluorescence of the bases. Our results suggest that single nucleotides can be detected and identified using aluminum nanostructures that enhance their intrinsic emission. This capability would be valuable for the ongoing efforts toward the $1000 genome. C1 [Chowdhury, Mustafa H.; Ray, Krishanu; Lakowicz, Joseph R.] Univ Maryland, Sch Med, Dept Biochem & Mol Biol, Ctr Fluorescence Spect, Baltimore, MD 21201 USA. [Johnson, Michael L.] Univ Virginia Hlth Syst, Dept Pharmacol, Charlottesville, VA 22908 USA. [Johnson, Michael L.] Univ Virginia Hlth Syst, Dept Internal Med, Charlottesville, VA 22908 USA. [Gray, Stephen K.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Pond, James] Lumerical Solut Inc, Vancouver, BC V6B 2Y5, Canada. RP Lakowicz, JR (reprint author), Univ Maryland, Sch Med, Dept Biochem & Mol Biol, Ctr Fluorescence Spect, 725 W Lombard St, Baltimore, MD 21201 USA. EM lakowicz@cfs.biomet.umaryland.edu FU National Institutes of Health - NHGRI [HG005090, HG002655]; NIBIB [EB006521]; National Institutes of Health - NCRR [RR019991]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX This work was supported by the National Institutes of Health - NHGRI (Grant Nos. HG005090 and HG002655), and NIBIB (Grant no. EB006521). M.L.J. was supported by the National Institutes of Health - NCRR (grant No. RR019991). Use of the Center for Nanoscale Materials was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 54 TC 17 Z9 17 U1 0 U2 12 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD APR 29 PY 2010 VL 114 IS 16 BP 7448 EP 7461 DI 10.1021/jp911229c PG 14 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 586FP UT WOS:000276889300036 PM 20436924 ER PT J AU Karunadasa, HI Chang, CJ Long, JR AF Karunadasa, Hemamala I. Chang, Christopher J. Long, Jeffrey R. TI A molecular molybdenum-oxo catalyst for generating hydrogen from water SO NATURE LA English DT Article ID TRANSITION-METAL-COMPLEXES; ACTIVE-SITE; OXIDATIVE ADDITION; LOW OVERPOTENTIALS; EVOLUTION; CHEMISTRY; ENZYMES; MODELS; H-2 AB A growing awareness of issues related to anthropogenic climate change and an increase in global energy demand have made the search for viable carbon-neutral sources of renewable energy one of the most important challenges in science today(1). The chemical community is therefore seeking efficient and inexpensive catalysts that can produce large quantities of hydrogen gas from water(1-7). Here we identify a molybdenum-oxo complex that can catalytically generate gaseous hydrogen either from water at neutral pH or from sea water. This work shows that high-valency metal-oxo species can be used to create reduction catalysts that are robust and functional in water, a concept that has broad implications for the design of 'green' and sustainable chemistry cycles. C1 [Karunadasa, Hemamala I.; Chang, Christopher J.; Long, Jeffrey R.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Karunadasa, Hemamala I.; Chang, Christopher J.; Long, Jeffrey R.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Chang, Christopher J.] Univ Calif Berkeley, Howard Hughes Med Inst, Berkeley, CA 94720 USA. RP Chang, CJ (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM chrischang@berkeley.edu; jrlong@berkeley.edu FU NSF [CHE-0617063]; Office of Science, Office of Basic Energy Sciences of the US Department of Energy [DE-AC02-05CH11231]; Tyco Electronics FX We acknowledge the NSF (grant number CHE-0617063) for research funding in the initial stages of this project. For the later stages, we acknowledge the Helios Solar Energy Research Center, which is supported by the Office of Science, Office of Basic Energy Sciences of the US Department of Energy under contract number DE-AC02-05CH11231. C. J. C. is an Investigator with the Howard Hughes Medical Institute. We thank Tyco Electronics for the partial support of H. I. K. We also thank M. Majda for discussions, D. M. Jenkins and P. Dechambenoit for experimental assistance, A. T. Iavarone for obtaining the mass spectra, and J. D. Breen for fabrication of the electrochemical cells. NR 30 TC 294 Z9 294 U1 18 U2 208 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 J9 NATURE JI Nature PD APR 29 PY 2010 VL 464 IS 7293 BP 1329 EP 1333 DI 10.1038/nature08969 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 589LI UT WOS:000277149000042 PM 20428167 ER PT J AU Guin, A Ramanathan, R Ritzi, RW Dominic, DF Lunt, IA Scheibe, TD Freedman, VL AF Guin, Arijit Ramanathan, Ramya Ritzi, Robert W., Jr. Dominic, David F. Lunt, Ian A. Scheibe, Timothy D. Freedman, Vicky L. TI Simulating the heterogeneity in braided channel belt deposits: 2. Examples of results and comparison to natural deposits SO WATER RESOURCES RESEARCH LA English DT Article ID FLOW; TRANSPORT; BEHAVIOR; MODELS; GRIDS AB In part 1 of this paper (Ramanathan et al., 2010b) we presented a methodology and a code for modeling the hierarchical sedimentary architecture in braided channel belt deposits. Here in part 2, the code was used to create a digital model of this architecture and the corresponding spatial distribution of permeability. The simulated architecture was compared to the real stratal architecture observed in an abandoned channel belt. The comparisons included assessments of similarity which were both qualitative and quantitative. The qualitative comparisons show that the geometries of unit types within the synthetic deposits are generally consistent with field observations. The unit types in the synthetic deposits would generally be recognized as representing their counterparts in nature, including cross stratasets, lobate and scroll bar deposits, and channel fills. Furthermore, the synthetic deposits have a hierarchical spatial relationship among these units consistent with observations from field exposures and geophysical images. In quantitative comparisons the proportions and the length, width, and height of unit types at different scales, across all levels of the stratal hierarchy, compare well between the synthetic and the natural deposits. A number of important attributes of the synthetic channel belt deposits are shown to be influenced by more than one level within the hierarchy of stratal architecture. First, the high-permeability open-framework gravels connected across all levels and thus formed preferential flow pathways; open-framework gravels are known to form preferential flow pathways in natural channel belt deposits. The nature of a connected cluster changed across different levels of the stratal hierarchy, and as a result of the geologic structure, the connectivity occurs at proportions of open-framework gravels below the theoretical percolation threshold for random infinite media. Second, when the channel belt model was populated with permeability distributions by lowest-level unit type, the composite permeability semivariogram contained structures that were identifiable at more than one scale, and each of these structures could be directly linked to unit types of different scales existing at different levels within the hierarchy of strata. These collective results are encouraging with respect to our goal that this model be relevant for testing ideas in future research on flow and transport in aquifers and reservoirs with multiscale heterogeneity. C1 [Guin, Arijit; Ramanathan, Ramya; Ritzi, Robert W., Jr.; Dominic, David F.] Wright State Univ, Dept Earth & Environm Sci, Dayton, OH 45435 USA. [Lunt, Ian A.] StatoilHydro Res, N-5020 Bergen, Norway. [Scheibe, Timothy D.; Freedman, Vicky L.] Pacific NW Natl Lab, Hydrol Tech Grp, Energy & Environm Directorate, Richland, WA 99352 USA. RP Guin, A (reprint author), Wright State Univ, Dept Earth & Environm Sci, Dayton, OH 45435 USA. EM robert.ritzi@wright.edu RI Scheibe, Timothy/A-8788-2008 OI Scheibe, Timothy/0000-0002-8864-5772 FU National Science Foundation [EAR-0510819, EAR-0810151] FX This research was supported by the National Science Foundation under grants EAR-0510819 and EAR-0810151. Any opinions, findings, and conclusions or recommendations expressed in this paper are those of the authors and do not necessarily reflect those of the National Science Foundation. A portion of the research was performed using EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. The paper was improved based on comments and helpful suggestions from two anonymous reviewers. NR 33 TC 17 Z9 17 U1 4 U2 14 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0043-1397 J9 WATER RESOUR RES JI Water Resour. Res. PD APR 29 PY 2010 VL 46 AR W04516 DI 10.1029/2009WR008112 PG 19 WC Environmental Sciences; Limnology; Water Resources SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water Resources GA 590ZN UT WOS:000277267300004 ER PT J AU Ramanathan, R Guin, A Ritzi, RW Dominic, DF Freedman, VL Scheibe, TD Lunt, IA AF Ramanathan, Ramya Guin, Arijit Ritzi, Robert W., Jr. Dominic, David F. Freedman, Vicky L. Scheibe, Timothy D. Lunt, Ian A. TI Simulating the heterogeneity in braided channel belt deposits: 1. A geometric-based methodology and code SO WATER RESOURCES RESEARCH LA English DT Article ID POROUS-MEDIA; STATISTICAL-MODELS; TRANSPORT; FLOW; DISPERSION; MACRODISPERSION; LITHOFACIES; HYDROFACIES; FRAMEWORK; BEHAVIOR AB A geometric-based simulation methodology was developed and incorporated into a computer code to model the hierarchical stratal architecture, and the corresponding spatial distribution of permeability, in braided channel belt deposits. The code creates digital models of these deposits as a three-dimensional cubic lattice, which can be used directly in numerical aquifer or reservoir models for fluid flow. The digital models have stratal units defined from the kilometer scale to the centimeter scale. These synthetic deposits are intended to be used as high-resolution base cases in various areas of computational research on multiscale flow and transport processes, including the testing of upscaling theories. The input parameters are primarily univariate statistics. These include the mean and variance for characteristic lengths of sedimentary unit types at each hierarchical level, and the mean and variance of log-permeability for unit types defined at only the lowest level (smallest scale) of the hierarchy. The code has been written for both serial and parallel execution. The methodology is described in part 1 of this paper. In part 2 (Guin et al., 2010), models generated by the code are presented and evaluated. C1 [Ramanathan, Ramya; Guin, Arijit; Ritzi, Robert W., Jr.; Dominic, David F.] Wright State Univ, Dept Earth & Environm Sci, Dayton, OH 45435 USA. [Freedman, Vicky L.; Scheibe, Timothy D.] Pacific NW Natl Lab, Energy & Environm Directorate, Hydrol Tech Grp, Richland, WA 99352 USA. [Lunt, Ian A.] StatoilHydro Res, N-5020 Bergen, Norway. RP Ramanathan, R (reprint author), Wright State Univ, Dept Earth & Environm Sci, Dayton, OH 45435 USA. EM robert.ritzi@wright.edu RI Scheibe, Timothy/A-8788-2008 OI Scheibe, Timothy/0000-0002-8864-5772 FU National Science Foundation [EAR-0510819, EAR-0810151] FX This research was supported by the National Science Foundation under grants EAR-0510819 and EAR-0810151. Any opinions, findings, and conclusions or recommendations expressed in this paper are those of the authors and do not necessarily reflect those of the National Science Foundation. A portion of the research was performed using EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. The paper was improved based on comments and helpful suggestions from two anonymous reviewers. NR 41 TC 24 Z9 24 U1 4 U2 15 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0043-1397 J9 WATER RESOUR RES JI Water Resour. Res. PD APR 29 PY 2010 VL 46 AR W04515 DI 10.1029/2009WR008111 PG 18 WC Environmental Sciences; Limnology; Water Resources SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water Resources GA 590ZN UT WOS:000277267300003 ER PT J AU Kim, J Reed, JL AF Kim, Joonhoon Reed, Jennifer L. TI OptORF: Optimal metabolic and regulatory perturbations for metabolic engineering of microbial strains SO BMC SYSTEMS BIOLOGY LA English DT Article ID ESCHERICHIA-COLI K-12; GENE KNOCKOUT; TRANSCRIPTIONAL REGULATION; ADAPTIVE EVOLUTION; GROWTH PHENOTYPES; GENOME; NETWORKS; PYRUVATE; FRAMEWORK; PATHWAYS AB Background: Computational modeling and analysis of metabolic networks has been successful in metabolic engineering of microbial strains for valuable biochemical production. Limitations of currently available computational methods for metabolic engineering are that they are often based on reaction deletions rather than gene deletions and do not consider the regulatory networks that control metabolism. Due to the presence of multi-functional enzymes and isozymes, computational designs based on reaction deletions can sometimes result in strategies that are genetically complicated or infeasible. Additionally, strains might not be able to grow initially due to regulatory restrictions. To overcome these limitations, we have developed a new approach (OptORF) for identifying metabolic engineering strategies based on gene deletion and overexpression. Results: Here we propose an effective method to systematically integrate transcriptional regulatory networks and metabolic networks. This allows for the formulation of linear optimization problems that search for metabolic and/or regulatory perturbations that couple biomass and biochemical production, thus proposing adaptive evolutionary strain designs. Using genome-scale models of Escherichia coli, we have implemented the OptORF algorithm (which considers gene deletions and transcriptional regulation) and compared its metabolic engineering strategies for ethanol production to those found using OptKnock (which considers reaction deletions). Our results found that the reaction-based strategies often require more gene deletions to remove the identified reactions (2 more genes than reactions), and result in lethal growth phenotypes when transcriptional regulation is considered (162 out of 200 cases). Finally, we present metabolic engineering strategies for producing ethanol and higher alcohols (e.g. isobutanol) in E. coli using our OptORF approach. We have found common genetic modifications such as deletion of pgi and overexpression of edd, as well as chemical specific strategies for producing different alcohols. Conclusions: By taking regulatory effects into account, OptORF can propose changes such as the overexpression of metabolic genes or deletion of transcriptional factors, in addition to the deletion of metabolic genes, that may lead to faster evolutionary trajectories. While biofuel production in E. coli is evaluated here, the developed OptORF approach is general and can be applied to optimize the production of different compounds in other biological systems. C1 [Kim, Joonhoon; Reed, Jennifer L.] Univ Wisconsin Madison, Dept Chem & Biol Engn, Madison, WI 53706 USA. [Kim, Joonhoon; Reed, Jennifer L.] Univ Wisconsin Madison, DOE Great Lakes Bioenergy Res Ctr, Madison, WI 53706 USA. RP Reed, JL (reprint author), Univ Wisconsin Madison, Dept Chem & Biol Engn, Madison, WI 53706 USA. EM reed@engr.wisc.edu RI Reed, Jennifer/E-5137-2011; Kim, Joonhoon/E-6253-2012 OI Kim, Joonhoon/0000-0002-7425-1828 FU DOE Great Lakes Bioenergy Research Center [DE-FC02-07ER64494] FX This work was funded by the DOE Great Lakes Bioenergy Research Center (DOE BER Office of Science DE-FC02-07ER64494). The authors also wish to acknowledge Bob Landick, Tricia Kiley, Brian Pfleger, and Christos Maravelias for useful discussions and Chris Tervo for help editing the manuscript. NR 55 TC 88 Z9 89 U1 1 U2 19 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1752-0509 J9 BMC SYST BIOL JI BMC Syst. Biol. PD APR 28 PY 2010 VL 4 AR 53 DI 10.1186/1752-0509-4-53 PG 19 WC Mathematical & Computational Biology SC Mathematical & Computational Biology GA 604DO UT WOS:000278257700002 PM 20426856 ER PT J AU Forbes, SM Benson, SM Friedmann, SJ AF Forbes, Sarah M. Benson, Sally M. Friedmann, S. Julio TI Carbon Capture and Storage SO JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION LA English DT Letter C1 [Forbes, Sarah M.] World Resources Inst, Climate & Energy Program, Washington, DC 20006 USA. [Benson, Sally M.] Stanford Univ, Global Climate & Energy Project, Stanford, CA 94305 USA. [Friedmann, S. Julio] Lawrence Livermore Natl Lab, Carbon Management Program, Livermore, CA USA. RP Forbes, SM (reprint author), World Resources Inst, Climate & Energy Program, Washington, DC 20006 USA. EM sforbes@wri.org NR 5 TC 1 Z9 1 U1 1 U2 3 PU AMER MEDICAL ASSOC PI CHICAGO PA 330 N WABASH AVE, STE 39300, CHICAGO, IL 60611-5885 USA SN 0098-7484 EI 1538-3598 J9 JAMA-J AM MED ASSOC JI JAMA-J. Am. Med. Assoc. PD APR 28 PY 2010 VL 303 IS 16 BP 1601 EP 1601 DI 10.1001/jama.2010.513 PG 1 WC Medicine, General & Internal SC General & Internal Medicine GA 588PQ UT WOS:000277085200021 PM 20424249 ER PT J AU Murdachaew, G Mundy, CJ Schenter, GK AF Murdachaew, Garold Mundy, Christopher J. Schenter, Gregory K. TI Improving the density functional theory description of water with self-consistent polarization SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID VAN-DER-WAALS; SPACE GAUSSIAN PSEUDOPOTENTIALS; TRANSFERABLE INTERACTION MODELS; ENERGY DECOMPOSITION ANALYSIS; RADIAL-DISTRIBUTION FUNCTIONS; 1ST PRINCIPLES SIMULATIONS; MOLECULAR-DYNAMICS METHOD; TIGHT-BINDING METHOD; AB-INITIO; LIQUID WATER AB We applied the self-consistent polarization density functional theory (SCP-DFT) to water. SCP-DFT requires only minimal parametrization, self-consistently includes the dispersion interaction neglected by standard DFT functionals, and has a cost similar to standard DFT despite its improved performance. Compared to the DFT functionals BLYP and BLYP-D (where the latter contains a simple dispersion correction), SCP-DFT yields interaction energies per molecule and harmonic frequencies of clusters in better agreement with experiment, with errors in the former of only a few tenths of a kcal/mol. BLYP and BLYP-D underbind and overbind the clusters, respectively, by up to about 1 kcal/mol. For liquid water, both BLYP and SCP-DFT predict radial distribution functions that are similar and overstructured compared to experiment. However, SCP-DFT improves over BLYP in predicting the experimental enthalpy of vaporization. A decomposition of the dimer interaction energy attempts to rationalize the performance of SCP-DFT. The SCP-DFT approach holds promise as an efficient and accurate method for describing large hydrogen-bonded systems, and has the potential to model complex systems with minimal parametrization. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3385797] C1 [Murdachaew, Garold; Mundy, Christopher J.; Schenter, Gregory K.] Pacific NW Natl Lab, Div Chem & Mat Sci, Richland, WA 99352 USA. RP Murdachaew, G (reprint author), Pacific NW Natl Lab, Div Chem & Mat Sci, Richland, WA 99352 USA. EM garold.murdachaew@pnl.gov RI Schenter, Gregory/I-7655-2014; OI Schenter, Gregory/0000-0001-5444-5484; Murdachaew, Garold/0000-0001-6958-6765 FU U.S. Department of Energy [DE-AC05-76RL01830] FX This work was performed under the auspices of the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, U.S. Department of Energy, under Contract No. DE-AC05-76RL01830 with Battelle Memorial Institute, which operates the Pacific Northwest National Laboratory, a multiprogram national laboratory. This research was performed in part using the computational resources in the National Energy Research Supercomputing Center (NERSC) at Lawrence Livermore National Laboratory. We also used the NWICE computational resource at PNNL. G. M. would like to thank Sotiris S. Xantheas for supplying the coordinate files of the MP2/aTZ-optimized octamers and 20-mers and Krzysztof Szalewicz for the CC-pol+NB RDF data (previously published)71 in tabular form. G. M. gratefully acknowledges discussions with Krzysztof Szalewicz and thanks Omololu Akin-Ojo for commenting on the manuscript. NR 111 TC 24 Z9 24 U1 0 U2 29 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-9606 EI 1089-7690 J9 J CHEM PHYS JI J. Chem. Phys. PD APR 28 PY 2010 VL 132 IS 16 AR 164102 DI 10.1063/1.3385797 PG 15 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 590QG UT WOS:000277241500006 PM 20441253 ER PT J AU Ledbetter, H Lawson, A Migliori, A AF Ledbetter, Hassel Lawson, Andrew Migliori, Albert TI Alpha-plutonium's Gruneisen parameter SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article ID ELASTIC-CONSTANTS; ELEMENTS AB Reported Gruneisen parameters gamma of alpha-plutonium range from 3.0 to 9.6, which is remarkable because typical Gruneisen parameter uncertainty seldom exceeds +/- 0.5. Our six new estimates obtained by different methods range from 3.2 to 9.6. The new estimates arise from Gruneisen's rule, from Einstein model and Debye model fits to low-temperature Delta V/V, from the bulk modulus temperature dependence, from the zero-point-energy contribution to the bulk modulus, and from another Gruneisen relationship whereby gamma is estimated from only the bulk modulus and volume changes with temperature (or pressure). We disregard several high estimates because of the itinerant-localized 5f-electron changes during temperature changes and pressure changes. Considering all these estimates, for alpha-plutonium, we recommend gamma = 3.7 +/- 0.4, slightly high compared with values for all elemental metals. C1 [Ledbetter, Hassel] Univ Colorado, Boulder, CO 80309 USA. [Lawson, Andrew; Migliori, Albert] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Ledbetter, H (reprint author), Univ Colorado, Boulder, CO 80309 USA. EM Hassel.Ledbetter@colorado.edu NR 28 TC 4 Z9 4 U1 1 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD APR 28 PY 2010 VL 22 IS 16 AR 165401 DI 10.1088/0953-8984/22/16/165401 PG 3 WC Physics, Condensed Matter SC Physics GA 579FI UT WOS:000276353200019 PM 21386421 ER PT J AU Winter, MB McLaurin, EJ Reece, SY Olea, C Nocera, DG Marletta, MA AF Winter, Michael B. McLaurin, Emily J. Reece, Steven Y. Olea, Charles, Jr. Nocera, Daniel G. Marletta, Michael A. TI Ru-Porphyrin Protein Scaffolds for Sensing O-2 SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID PHOSPHORESCENCE; MYOGLOBIN; DIOXYGEN; OXYGEN AB Hemoprotein-based scaffolds containing phosphorescent ruthenium(II) CO mesoporphyrin IX (RuMP) are reported here for oxygen (O-2) sensing in biological contexts. RuMP was incorporated into the protein scaffolds during protein expression utilizing a novel method that we have described previously. A high-resolution (2.00 angstrom) crystal structure revealed that the unnatural porphyrin binds to the proteins in a manner similar to the native heme and does not perturb the protein fold. The protein scaffolds were found to provide unique coordination environments for RuMP and modulate the porphyrin emission properties. Emission lifetime measurements demonstrate a linear O-2 response within the physiological range and precision comparable to commercial O-2 sensors. The RuMP proteins are robust, readily modifiable platforms and display promising O-2 sensing properties for future in vivo applications. C1 [Winter, Michael B.; Reece, Steven Y.; Olea, Charles, Jr.; Marletta, Michael A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Chem, Berkeley, CA 94720 USA. [Winter, Michael B.; Reece, Steven Y.; Olea, Charles, Jr.; Marletta, Michael A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Mol & Cell Biol, Inst QB3, Berkeley, CA 94720 USA. [Winter, Michael B.; Reece, Steven Y.; Olea, Charles, Jr.; Marletta, Michael A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Phys Biosci, Berkeley, CA 94720 USA. [McLaurin, Emily J.; Nocera, Daniel G.] MIT, Dept Chem, Cambridge, MA 02139 USA. RP Marletta, MA (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Chem, Berkeley, CA 94720 USA. EM marletta@berkeley.edu OI McLaurin, Emily/0000-0002-7681-9587 FU Army Research Office [W911NF-06-1-0101]; National Institutes of Health [R01CA126642-02, GM070671] FX We thank the Army Research Office (W911NF-06-1-0101) (D.G.N.) and the National Institutes of Health (R01CA126642-02) (D.G.N.) and (GM070671) (M.A.M.) for financial support. We also thank Prof. J. Kuriyan for structural analysis, Prof. C. Drennan and Prof. S. Marqusee for use of equipment, R. Tran for assistance with cloning, M. Herzik for assistance with X-ray diffraction collection, Dr. E. Weinert for assistance with plasma stability experiments, and Dr. A. lavarone for MS acquisition. NR 17 TC 23 Z9 23 U1 3 U2 24 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD APR 28 PY 2010 VL 132 IS 16 BP 5582 EP + DI 10.1021/ja101527r PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA 587KS UT WOS:000276991700024 PM 20373741 ER PT J AU Lin, QS Corbett, JD AF Lin, Qisheng Corbett, John D. TI Multiple Nonstoichiometric Phases with Discrete Composition Ranges in the CaAu5-CaAu4Bi-BiAu2 System. A Case Study of the Chemistry of Spinodal Decomposition SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID ICOSAHEDRAL QUASI-CRYSTAL; ALLOYS; CELL AB Synthetic explorations in the CaAu5-CaAu4Bi-BiAu2 system at 400 degrees C reveal five separate solid solution regions that show three distinct substitution patterns in the CaAu5 parent: (I) CaAu4(Au1-mBim) with 0 <= m <= 0.15(1), (II) 0.33(1) <= m <= 0.64(1), (III) 0.85(4) <= m <= 0.90(2); (IV) (Ca1-rAur)Au-4(Bi1-sAus) with 0 <= r <= 0.39(1) and 0 <= s <= 0.12(2); (V) (Ca1-p-qAupBiq)Au4Bi with 0.09(2) <= p <= 0.13(1) and 0.31(2) <= q <= 0.72(4). Single crystal X-ray studies establish that all of these phase regions have common cubic symmetry F (4) over bar 3m and that their structures (MgCu4Sn-type, an ordered derivative of MgCu2) all feature three-dimensional networks of Au-4 tetrahedra, in which the truncated tetrahedra are centered and capped by Ca/Au, Au/Bi, or Ca/Au/Bi mixtures to give 16-atom Friauf polyhedra. TB-LMTO-ASA and -COHP calculations also reveal that direct interactions between Ca-Au and Ca-Bi pairs of atoms are relatively weak and that the Bi-Au interactions in the unstable ideal CaAu4Bi are antibonding in character at E-F but that their bonding is optimized at +/- 1 e. Compositions between the five nonstoichiometric phases appear to undergo spinodal decompositions. The last phenomenon has been confirmed by HRTEM, STEM-HAADF, EPMA, and XRD studies of the nominal composition CaAu4.25Bi0.75. Its DTA analyses suggest that the phases resulting from spinodal decomposition have nearly the same melting point (similar to 807 degrees C), as expected, and that they are interconvertible through peritectic reactions at similar to 717 degrees C. C1 [Corbett, John D.] Iowa State Univ, Ames Lab, US DOE, Ames, IA 50011 USA. Iowa State Univ, Dept Chem, Ames, IA 50011 USA. RP Corbett, JD (reprint author), Iowa State Univ, Ames Lab, US DOE, Ames, IA 50011 USA. EM jcorbett@iastate.edu RI Lin, Qisheng/F-7677-2010 OI Lin, Qisheng/0000-0001-7244-7213 FU Office of the Basic Energy Sciences, Materials Sciences Division, U.S. Department of Energy (DOE); DOE [DE-AC02-07CH11358] FX The authors thank A. Kracher for collection and phase analyses of EDS data, Y. Wu for the STEM-HAADF and HRTEM images, K. Dennis for allowing use of the DTA Instruments, and N. Ni for magnetic and resistivity measurements. These measurements were all vital to the present study. This research was supported by the Office of the Basic Energy Sciences, Materials Sciences Division, U.S. Department of Energy (DOE) and was carried out in the facilities of the Ames Laboratory. The Ames Laboratory is operated for the DOE by Iowa State University under Contract No. DE-AC02-07CH11358. NR 36 TC 4 Z9 4 U1 1 U2 10 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD APR 28 PY 2010 VL 132 IS 16 BP 5662 EP 5671 DI 10.1021/ja100250d PG 10 WC Chemistry, Multidisciplinary SC Chemistry GA 587KS UT WOS:000276991700047 PM 20359212 ER PT J AU Kim, SK Sessler, JL Gross, DE Lee, CH Kim, JS Lynch, VM Delmau, LH Hay, BP AF Kim, Sung Kuk Sessler, Jonathan L. Gross, Dustin E. Lee, Chang-Hee Kim, Jong Seung Lynch, Vincent M. Delmau, Laatitia H. Hay, Benjamin P. TI A Calix[4]arene Strapped Calix[4]pyrrole: An Ion-Pair Receptor Displaying Three Different Cesium Cation Recognition Modes SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID ANION-BINDING AGENTS; 1,3-ALTERNATE CONFORMATION; MACROBICYCLIC RECEPTOR; MOLECULAR RECOGNITION; LIQUID-EXTRACTION; CROWN-ETHERS; LOGIC GATES; COMPLEXATION; METAL; HIGHLIGHTS AB An ion-pair receptor, the calix[4]pyrrole-calix[4]arene pseudodimer 2, bearing a strong anion-recognition site but not a weak cation-recognition site, has been synthesized and characterized by standard spectroscopic means and via single-crystal X-ray diffraction analysis. In 10% CD3OD in CDCl3 (v/v), this new receptor binds neither the Cs+ cation nor the F- anion when exposed to these species in the presence of other counterions; however, it forms a stable 1:1 solvent-separated CsF complex when exposed to these two ions in concert with one another in this same solvent mixture. In contrast to what is seen in the case of a previously reported crown ether "strapped" calixarene-calixpyrrole ion-pair receptor 1 (J. Am. Chem. Soc. 2008, 130, 13162-13166), where Cs+ cation recognition takes place within the crown, in 2 center dot CsF cation recognition takes place within the receptor cavity itself, as inferred from both single-crystal X-ray diffraction analyses and H-1 NMR spectroscopic studies. This binding mode is supported by calculations carried out using the MMFF94 force field model. In 10% CD3OD in CDCl3 (v/v), receptor 2 shows selectivity for CsF over the Cs+ salts of Cl-, Br-, and NO3- but will bind these other cesium salts in the absence of fluoride, both in solution and in the solid state. In the case of CsCl, an unprecedented 2:2 complex is observed in the solid state that is characterized by two different ion-pair binding modes. One of these consists of a contact ion pair with the cesium cation and chloride anion both being bound within the central binding pocket and in direct contact with one another. The other mode involves a chloride anion bound to the pyrrole NH protons of a calixpyrrole subunit and a cesium cation sandwiched between two cone shaped calix[4]pyrroles originating from separate receptor units. In contrast to what is seen for CsF and CsCl, single-crystal X-ray structural analyses and H-1 NMR spectroscopic studies reveal that receptor 2 forms a 1:1 complex with CsNO3, with the ions bound in the form of a contact ion pair. Thus, depending on the counteranion, receptor 2 is able to stabilize three different ion-pair binding modes with Cs+, namely solvent-bridged, contact, and host-separated. C1 [Kim, Sung Kuk; Sessler, Jonathan L.; Gross, Dustin E.; Lynch, Vincent M.] Univ Texas Austin, Dept Chem & Biochem, Austin, TX 78712 USA. [Lee, Chang-Hee] Kangwon Natl Univ, Dept Chem, Chunchon 200701, South Korea. [Kim, Jong Seung] Korea Univ, Dept Chem, Seoul 136701, South Korea. [Delmau, Laatitia H.; Hay, Benjamin P.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37830 USA. RP Sessler, JL (reprint author), Univ Texas Austin, Dept Chem & Biochem, 1 Univ Stn A5300, Austin, TX 78712 USA. EM sessler@mail.utexas.edu RI Gross, Dustin/B-4249-2011; Kim, Jong Seung/N-4504-2015; Lee, Chang-Hee/C-6339-2012 OI Gross, Dustin/0000-0001-8668-3380; Kim, Jong Seung/0000-0003-3477-1172; Lee, Chang-Hee/0000-0002-7906-6517 FU U.S. Department of Energy (DOE) [DE-FG02-01ER15186]; Korea NRF [MEST 20090087013]; Korean Research Foundation; Korean WCU program FX This work was supported by the Office of Basic Energy Sciences, U.S. Department of Energy (DOE) (Grant DE-FG02-01ER15186 to J.L.S.), a Korea NRF Grant (MEST 20090087013 to C.H.L.), a CRI project of the Korean Research Foundation (J.S.K), and the Korean WCU program (study leave for J.L.S.). B.P.H. and L.H.D. acknowledge support from the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, U.S. DOE at Oak Ridge National Laboratory. NR 53 TC 104 Z9 104 U1 7 U2 81 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD APR 28 PY 2010 VL 132 IS 16 BP 5827 EP 5836 DI 10.1021/ja100715e PG 10 WC Chemistry, Multidisciplinary SC Chemistry GA 587KS UT WOS:000276991700067 PM 20359214 ER PT J AU Dahotre, NB Paital, SR Samant, AN Daniel, C AF Dahotre, Narendra B. Paital, Sameer R. Samant, Anoop N. Daniel, Claus TI Wetting behaviour of laser synthetic surface microtextures on Ti-6Al-4V for bioapplication SO PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES LA English DT Article DE interference patterning; direct melting; wettability; thermal modelling; simulated body fluid ID INTERFERENCE METALLURGY; ROUGH SURFACES; TITANIUM-ALLOY; THIN-FILMS; WETTABILITY; ADHESION; MICRO; SUPERHYDROPHOBICITY; HYDROXYAPATITE; TOPOGRAPHY AB Wettability at the surface of an implant material plays a key role in its success as it modulates the protein adsorption and thereby influences cell attachment and tissue integration at the interface. Hence, surface engineering of implantable materials to enhance wettability to physiological fluid under in vivo conditions is an area of active research. In light of this, in the present work, laser-based optical interference and direct melting techniques were used to develop synthetic microtextures on Ti-6Al-4V alloys, and their effects on wettability were studied systematically. Improved wettability to simulated body fluid and distilled water was observed for Ca-P coatings obtained by direct melting technique. This superior wettability was attributed to both the appropriate surface chemistry and the three-dimensional surface features obtained using this technique. To assert a better control on surface texture and wettability, a three-dimensional thermal model based on COMSOL's multiphysics was employed to predict the features obtained by laser melting technique. The effect of physical texture and wetting on biocompatibility of laser-processed Ca-P coatings was evaluated in the preliminary efforts on culturing of mouse MC3T3-E1 osteoblast cells. C1 [Dahotre, Narendra B.; Paital, Sameer R.; Samant, Anoop N.] Univ Tennessee, Lab Laser Mat Synth & Fabricat, Knoxville, TN 37996 USA. [Dahotre, Narendra B.; Paital, Sameer R.; Samant, Anoop N.; Daniel, Claus] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Daniel, Claus] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Dahotre, NB (reprint author), Univ Tennessee, Lab Laser Mat Synth & Fabricat, Knoxville, TN 37996 USA. EM narendra.dahotre@unt.edu RI Daniel, Claus/A-2060-2008 OI Daniel, Claus/0000-0002-0571-6054 FU US Department of Energy [DE-AC05-00OR22725]; Industrial Technologies Program for the Office of Energy Efficiency and Renewable Energy FX The authors acknowledge the help from Sudarshan Phani in white light interferometry-based surface measurements. The authors also highly acknowledge the support and help from Dr Wei He and Zheng Cao in conducting cell culture measurements. A part of this research has been performed at Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the US Department of Energy under contract DE-AC05-00OR22725 and has been sponsored by the Industrial Technologies Program for the Office of Energy Efficiency and Renewable Energy. NR 42 TC 23 Z9 24 U1 2 U2 13 PU ROYAL SOC PI LONDON PA 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND SN 1364-503X J9 PHILOS T R SOC A JI Philos. Trans. R. Soc. A-Math. Phys. Eng. Sci. PD APR 28 PY 2010 VL 368 IS 1917 BP 1863 EP 1889 DI 10.1098/rsta.2010.0003 PG 27 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 572ER UT WOS:000275810800003 PM 20308107 ER PT J AU Giocondi, JL El-Dasher, BS Nancollas, GH Orme, CA AF Giocondi, Jennifer L. El-Dasher, Bassem S. Nancollas, George H. Orme, Christine A. TI Molecular mechanisms of crystallization impacting calcium phosphate cements SO PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES LA English DT Article DE atomic force microscopy; biomaterials; brushite; calcium phosphate cements; crystal morphology; growth modifiers ID CRYSTAL-GROWTH; BRUSHITE CRYSTALS; SYSTEM CA(OH)2-H3PO4-H2O; HYDROXYAPATITE CRYSTAL; OCTACALCIUM PHOSPHATE; MAGNESIUM PHOSPHATES; SELECTIVE BINDING; PHOSPHORIC-ACID; IN-VITRO; DISSOLUTION AB The biomineral calcium hydrogen phosphate dihydrate (CaHPO(4)center dot 2H(2)O), known as brushite, is a malleable material that both grows and dissolves faster than most other calcium minerals, including other calcium phosphate phases, calcium carbonates and calcium oxalates. Within the body, this ready formation and dissolution can play a role in certain diseases, such as kidney stone and plaque formation. However, these same properties, along with brushite's excellent biocompatibility, can be used to great benefit in making resorbable biomedical cements. To optimize cements, additives are commonly used to control crystallization kinetics and phase transformation. This paper describes the use of in situ scanning probe microscopy to investigate the role of several solution parameters and additives in brushite atomic step motion. Surprisingly, this work demonstrates that the activation barrier for phosphate (rather than calcium) incorporation limits growth kinetics and that additives such as magnesium, citrate and bisphosphonates each influence step motion in distinctly different ways. Our findings provide details of how, and where, molecules inhibit or accelerate kinetics. These insights have the potential to aid in designing molecules to target specific steps and to guide synergistic combinations of additives. C1 [Giocondi, Jennifer L.; El-Dasher, Bassem S.; Orme, Christine A.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Nancollas, George H.] SUNY Buffalo, Dept Chem, Buffalo, NY 14260 USA. RP Orme, CA (reprint author), Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94550 USA. EM orme1@llnl.gov RI Orme, Christine/A-4109-2009 FU US Department of Energy [DE-AC52-07NA27344]; National Institutes of Health [NIDCR DE03223] FX This work was performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Accordingly the US Government retains a non-exclusive, royalty-free licence to publish or reproduce the published form of this contribution, or allow others to do so for US Government purposes. Portions of this work were supported by the National Institutes of Health (NIDCR DE03223). NR 59 TC 30 Z9 30 U1 1 U2 38 PU ROYAL SOC PI LONDON PA 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND SN 1364-503X J9 PHILOS T R SOC A JI Philos. Trans. R. Soc. A-Math. Phys. Eng. Sci. PD APR 28 PY 2010 VL 368 IS 1917 BP 1937 EP 1961 DI 10.1098/rsta.2010.0006 PG 25 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 572ER UT WOS:000275810800006 PM 20308110 ER PT J AU Narayan, RJ Adiga, SP Pellin, MJ Curtiss, LA Hryn, AJ Stafslien, S Chisholm, B Shih, CC Shih, CM Lin, SJ Su, YY Jin, CM Zhang, JP Monteiro-Riviere, NA Elam, JW AF Narayan, Roger J. Adiga, Shashishekar P. Pellin, Michael J. Curtiss, Larry A. Hryn, Alexander J. Stafslien, Shane Chisholm, Bret Shih, Chun-Che Shih, Chun-Ming Lin, Shing-Jong Su, Yea-Yang Jin, Chunming Zhang, Junping Monteiro-Riviere, Nancy A. Elam, Jeffrey W. TI Atomic layer deposition-based functionalization of materials for medical and environmental health applications SO PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES LA English DT Article DE atomic layer deposition; self-assembly; nanoporous alumina; antimicrobial; antifouling ID NANOPOROUS ALUMINA MEMBRANES; SELF-ASSEMBLED MONOLAYERS; POROUS ALUMINA; ANODIC ALUMINA; ANTIBACTERIAL ACTIVITIES; WATER-PURIFICATION; PROTEIN ADSORPTION; SILICON MEMBRANES; HYDROGEN-PEROXIDE; SENSING RECEPTOR AB Nanoporous alumina membranes exhibit high pore densities, well-controlled and uniform pore sizes, as well as straight pores. Owing to these unusual properties, nanoporous alumina membranes are currently being considered for use in implantable sensor membranes and water purification membranes. Atomic layer deposition is a thin-film growth process that may be used to modify the pore size in a nanoporous alumina membrane while retaining a narrow pore distribution. In addition, films deposited by means of atomic layer deposition may impart improved biological functionality to nanoporous alumina membranes. In this study, zinc oxide coatings and platinum coatings were deposited on nanoporous alumina membranes by means of atomic layer deposition. PEGylated nanoporous alumina membranes were prepared by self-assembly of 1-mercaptoundec-11-yl hexa(ethylene glycol) on platinum-coated nanoporous alumina membranes. The pores of the PEGylated nanoporous alumina membranes remained free of fouling after exposure to human platelet-rich plasma; protein adsorption, fibrin networks and platelet aggregation were not observed on the coated membrane surface. Zinc oxide-coated nanoporous alumina membranes demonstrated activity against two waterborne pathogens, Escherichia coli and Staphylococcus aureus. The results of this work indicate that nanoporous alumina membranes may be modified using atomic layer deposition for use in a variety of medical and environmental health applications. C1 [Narayan, Roger J.; Jin, Chunming; Zhang, Junping; Monteiro-Riviere, Nancy A.] Univ N Carolina, Joint Dept Biomed Engn, Raleigh, NC 27695 USA. [Narayan, Roger J.; Jin, Chunming; Zhang, Junping; Monteiro-Riviere, Nancy A.] N Carolina State Univ, Raleigh, NC 27695 USA. [Adiga, Shashishekar P.] Eastman Kodak Co, Kodak Res Labs, Rochester, NY 14650 USA. [Pellin, Michael J.; Curtiss, Larry A.; Hryn, Alexander J.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Elam, Jeffrey W.] Argonne Natl Lab, Energy Sci Div, Argonne, IL 60439 USA. [Stafslien, Shane; Chisholm, Bret] N Dakota State Univ, Ctr Nanoscale Sci & Engn, Fargo, ND 58102 USA. [Shih, Chun-Che; Lin, Shing-Jong; Su, Yea-Yang] Natl Yang Ming Univ, Inst Clin Med, Sch Med, Taipei 112, Taiwan. [Shih, Chun-Che; Lin, Shing-Jong] Natl Yang Ming Univ, Cardiovasc Res Ctr, Taipei 112, Taiwan. [Shih, Chun-Ming] Taipei Med Univ, Sch Med, Grad Inst Med Sci, Taipei 110, Taiwan. [Shih, Chun-Che] Taipei Vet Gen Hosp, Div Cardiovasc Surg, Taipei 112, Taiwan. [Lin, Shing-Jong] Taipei Vet Gen Hosp, Div Cardiol, Taipei 112, Taiwan. [Monteiro-Riviere, Nancy A.] N Carolina State Univ, Ctr Chem Toxicol Res & Pharmacokinet, Raleigh, NC 27606 USA. RP Narayan, RJ (reprint author), Univ N Carolina, Joint Dept Biomed Engn, 2147 Burlington Engn Labs, Raleigh, NC 27695 USA. EM roger_narayan@msn.com RI Adiga, Shashishekar/A-8353-2008; Pellin, Michael/B-5897-2008; Narayan, Roger/J-2789-2013 OI Pellin, Michael/0000-0002-8149-9768; Narayan, Roger/0000-0002-4876-9869 NR 108 TC 20 Z9 22 U1 4 U2 33 PU ROYAL SOC PI LONDON PA 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND SN 1364-503X EI 1471-2962 J9 PHILOS T R SOC A JI Philos. Trans. R. Soc. A-Math. Phys. Eng. Sci. PD APR 28 PY 2010 VL 368 IS 1917 BP 2033 EP 2064 DI 10.1098/rsta.2010.0011 PG 32 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 572ER UT WOS:000275810800010 PM 20308114 ER PT J AU Lehikoinen, A Huttunen, JMJ Finsterle, S Kowalsky, MB Kaipio, JP AF Lehikoinen, A. Huttunen, J. M. J. Finsterle, S. Kowalsky, M. B. Kaipio, J. P. TI Dynamic inversion for hydrological process monitoring with electrical resistance tomography under model uncertainties SO WATER RESOURCES RESEARCH LA English DT Article ID VADOSE ZONE; RESISTIVITY TOMOGRAPHY; APPROXIMATION ERRORS; IMPEDANCE TOMOGRAPHY; POROUS-MEDIA; FLOW; INFORMATION; REDUCTION; INJECTION; RADAR AB We propose an approach for imaging the dynamics of complex hydrological processes. The evolution of electrically conductive fluids in porous media is imaged using time-lapse electrical resistance tomography. The related dynamic inversion problem is solved using Bayesian filtering techniques; that is, it is formulated as a sequential state estimation problem in which the target is an evolving posterior probability density of the system state. The dynamical inversion framework is based on the state space representation of the system which involves the construction of a stochastic evolution model and an observation model. The observation model that we use in this paper consists of the complete electrode model for ERT, with Archie's law relating saturations to electrical conductivity. The evolution model is an approximate model for simulating flow through partially saturated porous media. Unavoidable modeling and approximation errors in both the observation and evolution models are considered by computing approximate statistics for these errors. These models are then included in the construction of the posterior probability density of the estimated system state. This approximation error method allows the use of approximate, and therefore computationally efficient, observation and evolution models in the Bayesian filtering. We conside7r a synthetic example and show that the incorporation of an explicit model for the model uncertainties in the state space representation can yield better estimates than the frame-by-frame imaging approach. C1 [Lehikoinen, A.; Huttunen, J. M. J.; Kaipio, J. P.] Univ Kuopio, Dept Phys, FI-70211 Kuopio, Finland. [Huttunen, J. M. J.] Univ Calif Berkeley, Dept Stat, Berkeley, CA 94720 USA. [Finsterle, S.; Kowalsky, M. B.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Kaipio, J. P.] Univ Auckland, Dept Math, Auckland 1142, New Zealand. RP Lehikoinen, A (reprint author), Univ Kuopio, Dept Phys, POB 1627, FI-70211 Kuopio, Finland. EM anssi.lehikoinen@uku.fi RI Finsterle, Stefan/A-8360-2009; Huttunen, Janne/P-7002-2014; OI Finsterle, Stefan/0000-0002-4446-9906; Huttunen, Janne/0000-0002-4549-0272; Kaipio, Jari/0000-0002-7392-5149 FU Finnish Funding Agency for Technology and Innovation (TEKES) [40285/05, 40347/05]; Academy of Finland; U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the Finnish Funding Agency for Technology and Innovation (TEKES), projects 40285/05 and 40347/05; by the Academy of Finland through the Centre of Excellence in Inverse Problems Research programme; and by the U.S. Department of Energy under contract DE-AC02-05CH11231. NR 49 TC 21 Z9 22 U1 1 U2 15 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0043-1397 EI 1944-7973 J9 WATER RESOUR RES JI Water Resour. Res. PD APR 28 PY 2010 VL 46 AR W04513 DI 10.1029/2009WR008470 PG 14 WC Environmental Sciences; Limnology; Water Resources SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water Resources GA 590ZH UT WOS:000277266700001 ER PT J AU Paul, D O'Leary, SE Rajashankar, K Bu, WM Toms, A Settembre, EC Sanders, JM Begley, TP Ealick, SE AF Paul, Debamita O'Leary, Scan E. Rajashankar, Kanagalaghatta Bu, Weiming Toms, Angela Settembre, Ethan C. Sanders, Jennie M. Begley, Tadhg P. Ealick, Steven E. TI Glycal Formation in Crystals of Uridine Phosphorylase SO BIOCHEMISTRY LA English DT Article ID PURINE NUCLEOSIDE PHOSPHORYLASE; N-ACETYLGLUCOSAMINE 2-EPIMERASE; THIAMIN PHOSPHATE SYNTHASE; ELECTRON-DENSITY MAPS; ESCHERICHIA-COLI; 3-DIMENSIONAL STRUCTURE; ANGSTROM RESOLUTION; REVEALS SIMILARITY; SUBSTRATE; STATE AB Undine phosphorylase is a key enzyme in the pyrimidine salvage pathway This enzyme catalyzes the reversible phosphorolysis of undine to uracil and ribose I-phosphate (or 2'-deoxyuridine to 2'-deoxyribose 1-phosphate). Here we report the structure of hexameric Escherichia coli uridine phosphorylase treated with 5-fluorouridine and sulfate and dimeric bovine undine phosphorylase treated with 5-fluoro-2'-deoxyuridine or undine, plus sulfate. In each case the electron density shows three separate species corresponding to the pyrimidine base, sulfate, and a ribosyl species, which can be modeled as a glycal In the structures of the glycal complexes, the fluorouracil O2 atom is appropriately positioned to act as the base required for glycal formation via deprotonation at C2' Crystals of bovine undine phosphorylase treated with 2'-deoxyuridine and sulfate show intact nucleoside NMR time course studies demonstrate that uridine phosphorylase can catalyze the hydrolysis of the fluorinated nucleosides in the absence of phosphate or sulfate, without the release of intermediates or enzyme inactivation These results add a previously unencountered mechanistic motif to the body of information on glycal formation by enzymes catalyzing the cleavage of glycosyl bonds. C1 [Paul, Debamita; O'Leary, Scan E.; Rajashankar, Kanagalaghatta; Bu, Weiming; Toms, Angela; Settembre, Ethan C.; Sanders, Jennie M.; Ealick, Steven E.] Cornell Univ, Dept Chem & Chem Biol, Ithaca, NY 14853 USA. [O'Leary, Scan E.; Begley, Tadhg P.] Texas A&M Univ, Dept Chem, College Stn, TX 77842 USA. [Rajashankar, Kanagalaghatta] Argonne Natl Lab, NE CAT, Argonne, IL 60439 USA. RP Ealick, SE (reprint author), Cornell Univ, Dept Chem & Chem Biol, Ithaca, NY 14853 USA. RI Begley, Tadhg/B-5801-2015 FU NIH [GM073220, DK44083]; U S Department of Energy, Office of Basic Energy Sciences [RR-15301, DE-AC02-06CH11357] FX This work was supported by NIH Grants GM073220 to S F E and DK44083 to T.P B This work is based upon research conducted at the Advanced Photon Source on the Northeastern Collaborative Access Team beamlines, which are supported by award RR-15301 from the National Center for Research Resources at the National Institutes of Health Use of the Advanced Photon Source is supported by the U S Department of Energy, Office of Basic Energy Sciences, under Contract No DE-AC02-06CH11357 NR 45 TC 13 Z9 13 U1 0 U2 5 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0006-2960 J9 BIOCHEMISTRY-US JI Biochemistry PD APR 27 PY 2010 VL 49 IS 16 BP 3499 EP 3509 DI 10.1021/bi902073b PG 11 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 585IC UT WOS:000276817600014 PM 20364833 ER PT J AU Christensen, ST Elam, JW AF Christensen, Steven T. Elam, Jeffrey W. TI Atomic Layer Deposition of Ir-Pt Alloy Films SO CHEMISTRY OF MATERIALS LA English DT Article ID QUARTZ-CRYSTAL MICROBALANCE; THIN-FILMS; ALUMINUM-OXIDE; CONTROLLED GROWTH; EPITAXY; PLATINUM; SYSTEM; INDIUM; RUTHENIUM; SURFACES AB Atomic layer deposition (ALD) was used to prepare thin-film mixtures of iridium and platinum. By controlling the ratio between the indium(III) acetylacetonate/oxygen cycles for Ir ALD and the (trimethyl)methyleyclopentadienyl platinum(IV)/oxygen cycles for Pt ALD, the Ir/Pt ratio in the films could be controlled precisely. We first examined the growth mechanisms for the pure Ir and Pt ALD films, as well as the mixed-metal Ir-Pt ALD films, using in situ quartz crystal microbalance and quadrupole mass spectrometer measurements. These studies revealed that the nucleation and growth of each of the noble metals proceeds smoothly, with negligible perturbation caused by the presence of the other metal As a consequence of this mutual compatibility, the composition, as well as the growth per cycle for the Ir-Pt films, followed rule-of-mixtures formulas that were based on the ratio of the metal ALD cycles and the growth rates of pure Ir and Pt ALD X-ray diffraction (XRD) measurements revealed that the films deposit as single-phase alloys in which the lattice parameter varies linearly with the composition. Similar to the pure noble-metal films, the Ir-Pt alloy films grow conformally on high-aspect-ratio trenches. This capability should open up new opportunities in microelectronics, catalysis, and other applications C1 [Christensen, Steven T.; Elam, Jeffrey W.] Argonne Natl Lab, Div Energy Syst, Argonne, IL 60439 USA. RP Elam, JW (reprint author), Argonne Natl Lab, Div Energy Syst, 9700 S Cass Ave, Argonne, IL 60439 USA. FU U.S. Department of Energy [YN-19-01-000, DE-AC02-06CH11357]; National Science Foundation [DMR-0520513] FX This work was supported by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Industrial Technologies Program (under Contract No. YN-19-01-000) X-ray measurements were performed at the DuPont-Northwestern-Dow Collaborative Access Team (DND-CAT) located at Sector 5 of the Advanced Photon Source (APS) DND-CAT is supported by E. I. DuPont de Nemours & Co, The Dow Chemical Company, and the State of Illinois The electron microscopy was performed at the Electron Micioscopy Center for Materials Research (EMCMR) at Argonne National Laboratory. Use of the APS and EMCM R was supported by the U S Department of Energy, Office of Science, Office of Basic Energy Sciences (under Contract No. DE-AC02-06CH11357, operated by UChicago Argonne, LLC). Additional X-ray measurements made use of Northwestern University Central Facilities supported by the Materials Research Science and Engineering Center (through National Science Foundation Contract No DMR-0520513) NR 48 TC 44 Z9 45 U1 5 U2 57 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 J9 CHEM MATER JI Chem. Mat. PD APR 27 PY 2010 VL 22 IS 8 BP 2517 EP 2525 DI 10.1021/cm9031978 PG 9 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 585HY UT WOS:000276817200015 ER PT J AU Cheng, CJ Borisevich, AY Kan, D Takeuchi, I Nagarajan, V AF Cheng, Ching-Jung Borisevich, Albina Y. Kan, Daisuke Takeuchi, Ichiro Nagarajan, Valanoor TI Nanoscale Structural and Chemical Properties of Antipolar Clusters in Sm-Doped BiFeO3 Ferroelectric Epitaxial Thin Films SO CHEMISTRY OF MATERIALS LA English DT Article ID LEAD-ZIRCONATE-TITANATE; TRANSITION-METALS; PEROVSKITES; TEMPERATURE; ROTATIONS; CERAMICS; NANBO3; 3D AB The local atomic structure and nanoscale chemistry of an antipolar phase in Bi0.9Sm0.1FeO3 epitaxial thin Films are examined by an array of transmission electron microscopy (TEM) coupled with electron diffraction and electron energy-toss spectroscopy methods. The observations are tied to macroscopic properties of the Films, namely, polarization-electric Field hysteresis loops, dielectric constant-electric field hysteresis loops, and the dielectric loss. At room temperature, the local Sm deficiency was determined to destabilize the long-range ferroelectric state, resulting in the formation of local antipolar clusters with the appearance or PbzrO(3)-like antiparallel cation displacements, which give rise to (1)/(4){011} and (1)/(4){211} reflections as well as (1)/(2){321}, because of in-phase oxygen octahedral tilts Aberration-corrected TEM analysis reveals that the antipolar structure is actually a lamellar of highly dense ferroelectric domains with alternating polarizations With increasing temperature, a phase transition was observed at 150 degrees C, which is attributed to the reduction of the antiparallel displacements, giving way to cell-doubline, structural transition C1 [Cheng, Ching-Jung; Nagarajan, Valanoor] Univ New S Wales, Sch Mat Sci & Engn, Sydney, NSW 2052, Australia. [Borisevich, Albina Y.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Kan, Daisuke; Takeuchi, Ichiro] Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA. RP Cheng, CJ (reprint author), Univ New S Wales, Sch Mat Sci & Engn, Sydney, NSW 2052, Australia. RI Kan, Daisuke/G-3550-2010; valanoor, nagarajan/B-4159-2012; Borisevich, Albina/B-1624-2009 OI Kan, Daisuke/0000-0002-7505-0059; Borisevich, Albina/0000-0002-3953-8460 FU ARC; NEDO; DEST ISL; UMD-NSF-MRSEC [DMR 0520471]; ARO [W911NF-07-1-0410]; W.M. Keck Foundation FX Research at UNSW was supported by an ARC Discovery Project, NEDO and a DEST ISL grant. Work at Maryland was supported by access to the Shared Experimental Facilities of the UMD-NSF-MRSEC (DMR 0520471), ARO W911NF-07-1-0410, and the W.M. Keck Foundation Portions of this research conducted at Oak Ridge National Laboratory's Center for Nanophase Materials Sciences and SHaRE User Facility were sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy D K acknowledges financial support from the Japan Society for Promotion of Science NR 38 TC 36 Z9 36 U1 5 U2 54 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 J9 CHEM MATER JI Chem. Mat. PD APR 27 PY 2010 VL 22 IS 8 BP 2588 EP 2596 DI 10.1021/cm903618y PG 9 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 585HY UT WOS:000276817200024 ER PT J AU Northup, DE Snider, JR Spilde, MN Porter, ML van de Kamp, JL Boston, PJ Nyberg, AM Bargar, JR AF Northup, Diana E. Snider, Jessica R. Spilde, Michael N. Porter, Megan L. van de Kamp, Jodie L. Boston, Penelope J. Nyberg, April M. Bargar, John R. TI Diversity of rock varnish bacterial communities from Black Canyon, New Mexico SO JOURNAL OF GEOPHYSICAL RESEARCH-BIOGEOSCIENCES LA English DT Article ID 16S RIBOSOMAL-RNA; MULTIPLE SEQUENCE ALIGNMENT; MANGANESE-OXIDIZING BACTERIA; DESERT VARNISH; LACTOBACILLUS-PLANTARUM; MAXIMUM-LIKELIHOOD; WHIPPLE MOUNTAINS; ELECTRON-PROBE; SONORAN DESERT; MOJAVE DESERT AB Scientists vigorously debate the degree to which rock varnish is formed through the actions of microorganisms. To investigate this enigma, we utilized a three-pronged approach that combined (1) culture-independent molecular methods to characterize bacterial communities associated with varnish that coats the rhyolitic volcanic rocks of Black Canyon, New Mexico, and rocks with no visible varnish; (2) culturing of varnish in media supplemented with reduced forms of manganese and/or iron and no or low amounts of carbon to isolate bacteria capable of precipitating iron and/or manganese oxides; and (3) scanning electron microscopy (SEM) of varnish and nearby rock that lacks macroscopically visible varnish. Our culture-independent studies revealed significant differences between varnish and nonvarnish communities. Chloroflexi and Ktedobacteria dominated one varnish site, while the other varnish site was dominated by Cyanobacteria. The nonvarnish sites were dominated by Actinobacteria and, to a lesser extent, Cyanobacteria and were the only samples to contain Deinococcus-Thermus sequences. Approximately 65% of varnish cultures produced visible manganese precipitates. Most culture isolates were not closely related to known manganese oxidizers, with the exception of Bacillus spp. SEM revealed microbial morphologies and two types of varnish morphologies: (1) relatively smooth layers and (2) patches of botryoidal pinnacles, which were often associated with increased manganese concentrations. "Bare" rock showed evidence of incipient varnish. These results have important implications for the detection of life on extraterrestrial planets such as Mars, where putative varnish coatings have been observed, and represent some of the first culture-independent characterizations of varnish communities. C1 [Northup, Diana E.; Snider, Jessica R.] Univ New Mexico, Dept Biol, Albuquerque, NM 87131 USA. [Spilde, Michael N.] Univ New Mexico, Inst Meteorit, Albuquerque, NM 87131 USA. [Porter, Megan L.] Univ Maryland Baltimore Cty, Dept Biol Sci, Baltimore, MD 21250 USA. [van de Kamp, Jodie L.] CSIRO Marine & Atmospher Res, Hobart, Tas 7000, Australia. [Boston, Penelope J.] New Mexico Inst Min & Technol, Earth & Environm Sci Dept, Socorro, NM 87801 USA. [Nyberg, April M.] ARS, USDA, Corvallis, OR 97333 USA. [Bargar, John R.] Stanford Synchrotron Radiat Lab, Menlo Pk, CA 94025 USA. RP Northup, DE (reprint author), Univ New Mexico, Dept Biol, Albuquerque, NM 87131 USA. EM dnorthup@unm.edu RI van de Kamp, Jodie/E-9423-2015 FU National Science Foundation [EAR0311932, EAR0311930]; Kenneth Ingham Consulting; NIH, National Center for Research Resources [P20RR18754] FX Special thanks go to John Craig for analyses and countless acts of assistance in the laboratory. The authors thank Doug Moore, Sevilleta LTER, for the rain and dry deposition samples. Donna Pham and Casey Gilman were very helpful with initial sequencing efforts. Our gratitude goes to Rasima Bakhtiyarova for great assistance with culture wrangling. Leslie Melim and two anonymous reviewers provided valuable comments on the manuscript, which led to substantial improvement. This work could not have been done without the generous support of the National Science Foundation's Geosciences Directorate (EAR0311932 to D. Northup and EAR0311930 to P. Boston) and Kenneth Ingham Consulting. We acknowledge technical support from the University of New Mexico Department of Biology's Molecular Biology Facility, supported by NIH grant P20RR18754 from the Institute Development Award Program of the National Center for Research Resources. NR 101 TC 20 Z9 21 U1 1 U2 28 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-BIOGEO JI J. Geophys. Res.-Biogeosci. PD APR 27 PY 2010 VL 115 AR G02007 DI 10.1029/2009JG001107 PG 19 WC Environmental Sciences; Geosciences, Multidisciplinary SC Environmental Sciences & Ecology; Geology GA 590WU UT WOS:000277259800001 ER PT J AU Virgili, JM Nedoma, AJ Segalman, RA Balsara, NP AF Virgili, Justin M. Nedoma, Alisyn J. Segalman, Rachel A. Balsara, Nitash P. TI Ionic Liquid Distribution in Ordered Block Copolymer Solutions SO MACROMOLECULES LA English DT Article ID PHASE-BEHAVIOR; THIN-FILMS; IMMISCIBLE POLYMERS; DIBLOCK COPOLYMERS; ELECTROLYTES; SOLVENT; SEPARATION; MISCIBILITY; SCATTERING; MIXTURES AB The distribution of an ionic liquid within microphase-separated domains of a block copolymer in mixtures of the two components is studied using contrast-matched small-angle neutron scattering (SANS) and differential scanning calorimetry (DSC). In concentrated mixtures of a poly(styrene-block-2-vinyl pyridine) (S2VP) copolymer in an imidazolium bis(trifluoromethane)sulfonimide ([Im][TFSI]) ionic liquid (block copolymer volume fraction ranging from 0.51 to 0.86), the ionic liquid preferentially pervades the poly(2-vinyl pyridine) (P2VP) blocks. Unexpected differences in the degree of partitioning into P2VP-rich and polystyrene-rich (PS) microphases are observed in mixtures with hydrogenated versus deuterated [Im][TFSI]. In the case of mixtures with hydrogenated [Im][TFSI], the microphase partition coefficient, defined as the ratio of the ionic liquid volume fraction in the PS-rich microphase relative to that in the P2VP-rich microphase, ranges from 0.0 to 0.1. In contrast, the microphase partition coefficient in mixtures with deuterated [Im][TFSI] range from 0.0 to 0.7. C1 [Virgili, Justin M.; Nedoma, Alisyn J.; Segalman, Rachel A.; Balsara, Nitash P.] Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. [Balsara, Nitash P.] Univ Calif Berkeley, Lawrence Berkeley Lab, Energy & Environm Technol Div, Berkeley, CA 94720 USA. [Virgili, Justin M.; Segalman, Rachel A.; Balsara, Nitash P.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Balsara, NP (reprint author), Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. EM nbalsara@berkeley.edu OI Segalman, Rachel/0000-0002-4292-5103; Nedoma, Alisyn/0000-0002-3537-2846 FU U.S. Department of Energy [DE-AC02-05CH11231]; NIST; U.S. Department of Commerce; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy FX We gratefully acknowledge support from the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Hydrogen, Fuel Cell, and Infrastructure Technologies of the U.S. Department of Energy under contract no. DE-AC02-05CH11231. We acknowledge the support of the NIST, U.S. Department of Commerce, in providing the neutron research facilities used in this work. The initial neutron scattering experiments were conducted at Oak Ridge National Laboratory's (ORNL) High Flux Isotope Reactor, which is sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. We gratefully acknowledge Dr. Andrew Jackson for experimental assistance at NIST and Dr. Yuri Melnichenko and Dr. Gang Cheng for experimental assistance at ORNL. NR 32 TC 30 Z9 30 U1 0 U2 41 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0024-9297 J9 MACROMOLECULES JI Macromolecules PD APR 27 PY 2010 VL 43 IS 8 BP 3750 EP 3756 DI 10.1021/ma9027307 PG 7 WC Polymer Science SC Polymer Science GA 585GD UT WOS:000276811700021 ER PT J AU Chertkov, M Kroc, L Krzakala, F Vergassola, M Zdeborova, L AF Chertkov, M. Kroc, L. Krzakala, F. Vergassola, M. Zdeborova, L. TI Inference in particle tracking experiments by passing messages between images SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE belief propagation; message passing; statistical inference; turbulence; particle image velocimetry ID FLUORESCENCE CORRELATION SPECTROSCOPY; TURBULENCE; ALGORITHMS AB Methods to extract information from the tracking of mobile objects/particles have broad interest in biological and physical sciences. Techniques based on simple criteria of proximity in time-consecutive snapshots are useful to identify the trajectories of the particles. However, they become problematic as the motility and/or the density of the particles increases due to uncertainties on the trajectories that particles followed during the images' acquisition time. Here, we report an efficient method for learning parameters of the dynamics of the particles from their positions in time-consecutive images. Our algorithm belongs to the class of message-passing algorithms, known in computer science, information theory, and statistical physics as belief propagation (BP). The algorithm is distributed, thus allowing parallel implementation suitable for computations on multiple machines without significant intermachine overhead. We test our method on the model example of particle tracking in turbulent flows, which is particularly challenging due to the strong transport that those flows produce. Our numerical experiments show that the BP algorithm compares in quality with exact Markov Chain Monte Carlo algorithms, yet BP is far superior in speed. We also suggest and analyze a random distance model that provides theoretical justification for BP accuracy. Methods developed here systematically formulate the problem of particle tracking and provide fast and reliable tools for the model's extensive range of applications. C1 [Chertkov, M.; Kroc, L.; Krzakala, F.; Zdeborova, L.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Chertkov, M.; Kroc, L.; Krzakala, F.; Zdeborova, L.] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. [Chertkov, M.] New Mexico Consortium, Los Alamos, NM 87544 USA. [Krzakala, F.] Ecole Super Phys & Chim Ind ParisTech, Paris, France. [Krzakala, F.] CNRS, UMR 7083, Paris, France. [Vergassola, M.] Inst Pasteur, CNRS, UMR 2171, F-75015 Paris, France. RP Zdeborova, L (reprint author), Los Alamos Natl Lab, Div Theoret, P, Los Alamos, NM 87545 USA. EM lenka.zdeborova@gmail.com RI Krzakala, Florent/D-8846-2012; Zdeborova, Lenka/B-9999-2014; Chertkov, Michael/O-8828-2015; OI Chertkov, Michael/0000-0002-6758-515X FU National Science Foundation [0829945]; National Nuclear Security Administration of the U.S. Department of Energy at (LANL) [DE-AC52-06NA25396] FX This material is based upon work supported by the National Science Foundation under 0829945 (NMC). The work at Los Alamos National Laboratory (LANL) was carried out under the auspices of the National Nuclear Security Administration of the U.S. Department of Energy at (LANL) under Contract DE-AC52-06NA25396. NR 29 TC 11 Z9 11 U1 1 U2 3 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD APR 27 PY 2010 VL 107 IS 17 BP 7663 EP 7668 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 588QQ UT WOS:000277088700082 PM 20368454 ER PT J AU Stachowiak, JC Hayden, CC Sasaki, DY AF Stachowiak, Jeanne C. Hayden, Carl C. Sasaki, Darryl Y. TI Steric confinement of proteins on lipid membranes can drive curvature and tubulation SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE membrane curvature; giant vesicle; lipid domain; protein recognition ID FLUORESCENCE CORRELATION SPECTROSCOPY; BILAYER MEMBRANES; PHASE-SEPARATION; NANOTUBES; VESICLES; CAVEOLAE; COORDINATION; MICRODOMAINS; ORGANIZATION; FISSION AB Deformation of lipid membranes into curved structures such as buds and tubules is essential to many cellular structures including endocytic pits and filopodia. Binding of specific proteins to lipid membranes has been shown to promote membrane bending during endocytosis and transport vesicle formation. Additionally, specific lipid species are found to colocalize with many curved membrane structures, inspiring ongoing exploration of a variety of roles for lipid domains in membrane bending. However, the specific mechanisms by which lipids and proteins collaborate to induce curvature remain unknown. Here we demonstrate a new mechanism for induction and amplification of lipid membrane curvature that relies on steric confinement of protein binding on membrane surfaces. Using giant lipid vesicles that contain domains with high affinity for his-tagged proteins, we show that protein crowding on lipid domain surfaces creates a protein layer that buckles outward, spontaneously bending the domain into stable buds and tubules. In contrast to previously described bending mechanisms relying on local steric interactions between proteins and lipids (i.e. helix insertion into membranes), this mechanism produces tubules whose dimensions are defined by global parameters: domain size and membrane tension. Our results suggest the intriguing possibility that confining structures, such as lipid domains and protein lattices, can amplify membrane bending by concentrating the steric interactions between bound proteins. This observation highlights a fundamental physical mechanism for initiation and control of membrane bending that may help explain how lipids and proteins collaborate to create the highly curved structures observed in vivo. C1 [Stachowiak, Jeanne C.; Hayden, Carl C.; Sasaki, Darryl Y.] Sandia Natl Labs, Livermore, CA 94551 USA. RP Stachowiak, JC (reprint author), Sandia Natl Labs, POB 969, Livermore, CA 94551 USA. EM jcstach@sandia.gov; dysasak@sandia.gov FU Department of Energy's Office of Basic Energy Sciences; Laboratory Directed Research and Development; Department of Energy's [DE-AC04-94AL85000] FX We acknowledge Professor Daniel Fletcher of the University of California, Berkeley, for use of the spinning disc confocal microscope and for helpful discussions on this manuscript. Additionally, we thank Dr. Ross Rounsevell and Dr. Eva Schmid of the Fletcher lab for providing the his-GFP and his-mOrange proteins and for helpful discussions about our results. We thank Dr. Steven Branda of Sandia National Laboratories for cloning of the his-mOrange plasmid DNA. We thank Professor Haw Yang of Princeton University for providing his-MBP protein. We acknowledge Professor Francoise Brochard-Wyart of the Curie Institute, Paris, France and Professor Sarah Keller of the University of Washington for helpful discussions on this work. Membrane synthesis and structural studies were supported by the Division of Materials Science and Engineering for D.Y.S. and J.C.S., and membrane phase and imaging measurements were supported by the Division of Chemical Sciences, Geosciences, and Biosciences for C. C. H. in the Department of Energy's Office of Basic Energy Sciences, and the Laboratory Directed Research and Development program at Sandia National Laboratories. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 34 TC 64 Z9 64 U1 10 U2 50 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD APR 27 PY 2010 VL 107 IS 17 BP 7781 EP 7786 DI 10.1073/pnas.0913306107 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 588QQ UT WOS:000277088700034 PM 20385839 ER PT J AU Kim, T Kim, G Choi, WI Kwon, YK Zuo, JM AF Kim, Taekyung Kim, Gunn Choi, Woon Ih Kwon, Young-Kyun Zuo, Jian-Min TI Electrical transport in small bundles of single-walled carbon nanotubes: Intertube interaction and effects of tube deformation SO APPLIED PHYSICS LETTERS LA English DT Article DE ab initio calculations; carbon nanotubes; deformation; electron diffraction; energy gap; field effect transistors ID RADIAL DEFORMATION; ROPES AB We report a combined electronic transport and structural characterization study of small carbon nanotube bundles in field-effect transistors (FETs). The atomic structures of the bundles are determined by electron diffraction using an observation window built in the FET. The electrical transport of single-walled nanotube bundles depends on the structure of individual tubes, deformation due to intertube interaction, and the orientation with respect to the electric field. Ab initio simulations show that tube deformation in the bundle induces a band gap opening in a metallic tube. These results show the importance of intertube interaction in electrical transport of bundled carbon nanotubes. C1 [Kim, Taekyung] Sandia Natl Labs, CINT, Albuquerque, NM 87185 USA. [Kim, Gunn; Kwon, Young-Kyun] Kyung Hee Univ, Dept Phys, Seoul 130701, South Korea. [Kim, Gunn; Kwon, Young-Kyun] Kyung Hee Univ, Res Inst Basic Sci, Seoul 130701, South Korea. [Choi, Woon Ih] Natl Renewable Energy Lab, Computat Mat Sci Grp, Golden, CO 80401 USA. [Zuo, Jian-Min] Univ Illinois, Dept Mat Sci & Engn, Urbana, IL 61801 USA. [Zuo, Jian-Min] Univ Illinois, Frederick Seitz Mat Res Lab, Urbana, IL 61801 USA. RP Kim, T (reprint author), Sandia Natl Labs, CINT, POB 5800, Albuquerque, NM 87185 USA. EM jianzuo@ad.uiuc.edu RI Choi, Woon Ih/H-4499-2011; Kwon, Young-Kyun/G-1833-2011; OI Kwon, Young-Kyun/0000-0001-6027-8408; Choi, Woon Ih/0000-0002-7183-3400; Kim, Tae-Hwan/0000-0001-5328-0913 FU U.S. Department of Energy [DEFG02-01ER45923, DEFG02-03ER46095]; United States Department of Energy [DE-AC04-94AL85000, DEFG02-91-ER45439]; Kyung Hee University [KHU-20100119]; NRF of Korea [KRF-2009-0074951] FX This work was supported by U.S. Department of Energy Grant Nos. DEFG02-01ER45923 and DEFG02-03ER46095. T.K. also acknowledges the support by Laboratory Directed Research and Development, Sandia, a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Co., for the United States Department of Energy under Contract No. DE-AC04-94AL85000. G.K. and Y.-K.K. appreciate a financial support by a grant from Kyung Hee University in 2009 (Grant No. KHU-20100119). Y.-K.K was also supported by NRF of Korea Grant No. KRF-2009-0074951. Microscopy was carried out at the Center for Microanalysis of Materials at the Frederick Seitz Materials Research Laboratory, which is partially supported by the U.S. Department of Energy under Grant No. DEFG02-91-ER45439. NR 24 TC 16 Z9 16 U1 0 U2 13 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD APR 26 PY 2010 VL 96 IS 17 AR 173107 DI 10.1063/1.3402768 PG 3 WC Physics, Applied SC Physics GA 590QL UT WOS:000277242000034 ER PT J AU Kinion, D Clarke, J AF Kinion, D. Clarke, John TI Microstrip superconducting quantum interference device amplifier: Conditional stability SO APPLIED PHYSICS LETTERS LA English DT Article DE microstrip resonators; microwave amplifiers; SQUIDs ID NOISE AB The scattering parameters of an amplifier based on a dc superconducting quantum interference device are directly measured at 4.2 K as functions of the bias current and applied magnetic flux. These parameters are used to determine the stability of the amplifier with arbitrary source and output load impedances. It was found that the amplifier is conditionally stable, and that the stability is improved by decreasing the gain or adding negative feedback. With suitable bias selection, the amplifier is shown to be sufficiently stable to allow operation with a resonant source impedance. C1 [Kinion, D.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Kinion, D.; Clarke, John] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Kinion, D.; Clarke, John] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. RP Kinion, D (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM kinion1@llnl.gov FU Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy [DE-AC0205CH11231] FX A portion of this work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and supported by the Intelligence Advanced Research Projects Activity (D.K.). This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy under Contract No. DE-AC0205CH11231 (J.C.). NR 15 TC 4 Z9 4 U1 0 U2 3 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD APR 26 PY 2010 VL 96 IS 17 AR 172501 DI 10.1063/1.3377898 PG 3 WC Physics, Applied SC Physics GA 590QL UT WOS:000277242000022 ER PT J AU Guskov, A Gabdulkhakov, A Broser, M Glockner, C Hellmich, J Kern, J Frank, J Muh, F Saenger, W Zouni, A AF Guskov, Albert Gabdulkhakov, Azat Broser, Matthias Gloeckner, Carina Hellmich, Julia Kern, Jan Frank, Joachim Mueh, Frank Saenger, Wolfram Zouni, Athina TI Recent Progress in the Crystallographic Studies of Photosystem II SO CHEMPHYSCHEM LA English DT Review DE channels; lipids; photosystem II; plastoquinone; water oxidation ID OXYGEN-EVOLVING CENTER; X-RAY CRYSTALLOGRAPHY; WATER-OXIDIZING COMPLEX; SP PCC 6803; FTIR DIFFERENCE SPECTROSCOPY; ECHO ENVELOPE MODULATION; AMINO-ACID-RESIDUES; MANGANESE CLUSTER; CRYSTAL-STRUCTURE; THERMOSYNECHOCOCCUS-ELONGATUS AB The photosynthetic oxygen-evolving photosystem II (PSII) is the only known biochemical system that is able to oxidize water molecules and thereby generates almost all oxygen in the Earth's atmosphere. The elucidation of the structural and mechanistic aspects of PSII keeps scientists all over the world engaged since several decades. In this Minireview, we outline the progress in understanding PSII based on the most recent crystal structure at 2.9 angstrom resolution. A likely position of the chloride ion, which is known to be required for the fast turn-over of water oxidation, could be determined in native PSI) and is compared with work on bromide and iodide substituted PSII. Moreover, eleven new integral lipids could be assigned, emphasizing the importance of lipids for the perfect function of PSII. A third plastoquinone molecule (Q) and a second quinone transfer channel are revealed, making it possible to consider different mechanisms for the exchange of plastoquinone/plastoquinol molecules. In addition, possible transport channels for water, dioxygen and protons are identified. C1 [Guskov, Albert; Saenger, Wolfram] Free Univ Berlin, Inst Chem & Biochem Crystallog, D-14195 Berlin, Germany. [Broser, Matthias; Gloeckner, Carina; Hellmich, Julia; Frank, Joachim; Mueh, Frank; Zouni, Athina] Tech Univ Berlin, Inst Chem, Max Volmer Lab Biophys Chem, D-10623 Berlin, Germany. [Gabdulkhakov, Azat] Russian Acad Sci, Inst Prot Res, Pushchino 142290, Moscow Region, Russia. [Kern, Jan] Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Saenger, W (reprint author), Free Univ Berlin, Inst Chem & Biochem Crystallog, Takustr 6, D-14195 Berlin, Germany. EM saenger@chemie.fu-berlin.de; athina.zouni@tu-berlin.de RI Kern, Jan/G-2586-2013; Gabdulkhakov, Azat/H-4343-2013; Guskov, Albert/G-1286-2016 OI Kern, Jan/0000-0002-7272-1603; Gabdulkhakov, Azat/0000-0003-1016-5936; Guskov, Albert/0000-0003-2340-2216 FU DFG-Sonderforschungsbereich 498 [A4, C7]; DFG-Cluster of Excellence [B1] FX We thank D. DiFiore and C. Luneberg for the skillful technical assistance during all the PSII preparations over the years. The authors are grateful for the long-term funding by the DFG-Sonderforschungsbereich 498 (projects A4 and C7). C. Glockner and J. Hellmich are sponsored by the DFG-Cluster of Excellence "UniCat" (project B1) coordinated by the Technische Universitat Berlin. We acknowledge beam time for X-ray data collection at synchrotrons BESSY/Berlin, SLSNilligen, ESRF/Grenoble, and competent beamline support. NR 117 TC 69 Z9 69 U1 2 U2 21 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 1439-4235 J9 CHEMPHYSCHEM JI ChemPhysChem PD APR 26 PY 2010 VL 11 IS 6 BP 1160 EP 1171 DI 10.1002/cphc.200900901 PG 12 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 596EH UT WOS:000277666900007 PM 20352642 ER PT J AU Cohn, CA Fisher, SC Brownawell, BJ Schoonen, MAA AF Cohn, Corey A. Fisher, Shawn C. Brownawell, Bruce J. Schoonen, Martin A. A. TI Adenine oxidation by pyrite-generated hydroxyl radicals SO GEOCHEMICAL TRANSACTIONS LA English DT Article ID COAL-WORKERS PNEUMOCONIOSIS; DNA-DAMAGE; AIR-POLLUTION; STRESS; PARTICLES; MECHANISMS; CELLS; NUCLEOTIDES; OXYRADICALS; DISEASES AB Cellular exposure to particulate matter with concomitant formation of reactive oxygen species (ROS) and oxidization of biomolecules may lead to negative health outcomes. Evaluating the particle-induced formation of ROS and the oxidation products from reaction of ROS with biomolecules is useful for gaining a mechanistic understanding of particle-induced oxidative stress. Aqueous suspensions of pyrite particles have been shown to form hydroxyl radicals and degrade nucleic acids. Reactions between pyrite-induced hydroxyl radicals and nucleic acid bases, however, remain to be determined. Here, we compared the oxidation of adenine by Fenton-generated (i.e., ferrous iron and hydrogen peroxide) hydroxyl radicals to adenine oxidation by hydroxyl radicals generated in pyrite aqueous suspensions. Results show that adenine oxidizes in the presence of pyrite (without the addition of hydrogen peroxide) and that the rate of oxidation is dependent on the pyrite loading. Adenine oxidation was prevented by addition of either catalase or ethanol to the pyrite/adenine suspensions, which implies that hydrogen peroxide and hydroxyl radicals are causing the adenine oxidation. The adenine oxidation products, 8-oxoadenine and 2-hydroxyadenine, were the same whether hydroxyl radicals were generated by Fenton or pyrite-initiated reactions. Although nucleic acid bases are unlikely to be directly exposed to pyrite particles, the formation of ROS in the vicinity of cells may lead to oxidative stress. C1 [Cohn, Corey A.; Schoonen, Martin A. A.] SUNY Stony Brook, Dept Geosci, Ctr Environm Mol Sci, Stony Brook, NY 11794 USA. [Fisher, Shawn C.; Brownawell, Bruce J.] SUNY Stony Brook, Marine Sci Res Ctr, Stony Brook, NY 11794 USA. [Cohn, Corey A.] US DOE, Off Sci, Washington, DC 20585 USA. RP Schoonen, MAA (reprint author), SUNY Stony Brook, Dept Geosci, Ctr Environm Mol Sci, Stony Brook, NY 11794 USA. EM martin.schoonen@stonybrook.edu RI Schoonen, martin/E-7703-2011 OI Schoonen, martin/0000-0002-7133-1160 FU Center for Environmental Molecular Science (NSF) [CHE 0221934]; Office of the Vice President for Research at Stony Brook University; NSF IGERT [DGE0549370] FX This work is supported by the Center for Environmental Molecular Science (NSF CHE 0221934), a seed grant from the Office of the Vice President for Research at Stony Brook University and by the NSF IGERT program (grant number DGE0549370). NR 46 TC 11 Z9 11 U1 2 U2 26 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1467-4866 J9 GEOCHEM T JI Geochem. Trans. PD APR 26 PY 2010 VL 11 AR 2 DI 10.1186/1467-4866-11-2 PG 8 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 604HL UT WOS:000278270000001 PM 20420694 ER PT J AU Kurtz, S Geisz, J AF Kurtz, Sarah Geisz, John TI Multijunction solar cells for conversion of concentrated sunlight to electricity SO OPTICS EXPRESS LA English DT Article ID PHOTOVOLTAIC ENERGY-CONVERSION; DETAILED BALANCE LIMIT; EFFICIENCIES AB Solar-cell efficiencies have exceeded 40% in recent years. The keys to achieving these high efficiencies include: 1) use of multiple materials that span the solar spectrum, 2) growth of these materials with near-perfect quality by using epitaxial growth on single-crystal substrates, and 3) use of concentration. Growth of near-perfect semiconductor materials is possible when the lattice constants of the materials are matched or nearly matched to that of a single-crystal substrate. Multiple material combinations have now demonstrated efficiencies exceeding 40%, motivating incorporation of these cells into concentrator systems for electricity generation. The use of concentration confers several key advantages. (C) 2010 Optical Society of America C1 [Kurtz, Sarah; Geisz, John] Natl Renewable Energy Lab, Natl Ctr Photovolta, Golden, CO 80401 USA. RP Kurtz, S (reprint author), Natl Renewable Energy Lab, Natl Ctr Photovolta, 1617 Cole Blvd, Golden, CO 80401 USA. EM sarah.kurtz@nrel.gov FU U.S. Department of Energy with the National Renewable Energy Laboratory [DOEAC36-08GO28308] FX We appreciatively acknowledge S. Moon, A. Hicks, and B. Kurtz for their help with editing and figures. This review represents a short summary of years of work by dozens of people. This work was supported by the U.S. Department of Energy under Contract No. DOEAC36-08GO28308 with the National Renewable Energy Laboratory. NR 13 TC 43 Z9 45 U1 3 U2 23 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD APR 26 PY 2010 VL 18 IS 9 BP A73 EP A78 DI 10.1364/OE.18.0000A73 PG 6 WC Optics SC Optics GA 588OR UT WOS:000277082200116 PM 20607888 ER PT J AU Aad, G Abat, E Abbott, B Abdallah, J Abdelalim, AA Abdesselam, A Abdinov, O Abi, B Abolins, M Abramowicz, H Abreu, H Acerbi, E Acharya, BS Ackers, M Adams, DL Addy, TN Adelman, J Aderholz, M Adorisio, C Adragna, P Adye, T Aefsky, S Aguilar-Saavedra, JA Aharrouche, M Ahlen, SP Ahles, F Ahmad, A Ahmed, H Ahsan, M Aielli, G Akdogan, T Akesson, PF Akesson, TPA Akimoto, G Akimov, AV Aktas, A Alam, MS Alam, MA Albert, J Albrand, S Aleksa, M Aleksandrov, IN Aleppo, M Alessandria, F Alexa, C Alexander, G Alexandre, G Alexopoulos, T Alhroob, M Aliev, M Alimonti, G Alison, J Aliyev, M Allport, PP Allwood-Spiers, SE Almond, J Aloisio, A Alon, R Alonso, A Alonso, J Alviggi, MG Amako, K Amaral, P Ambrosini, G Ambrosio, G Amelung, C Ammosov, VV Amorim, A Amoros, G Amram, N Anastopoulos, C Andeen, T Anders, CF Anderson, KJ Andreazza, A Andrei, V Andrieux, ML Anduaga, XS Angerami, A Anghinolfi, F Anjos, N Annovi, A Antonaki, A Antonelli, M Arai, Y Arce, ATH Archambault, JP Arfaoui, S Arguin, JF Argyropoulos, T Arik, E Arik, M Armbruster, AJ Arms, KE Armstrong, SR Arnaez, O Arnault, C Artamonov, A Arutinov, D Asai, M Asfandiyarov, R Ask, S Asman, B Asner, D Asquith, L Assamagan, K Astbury, A Astvatsatourov, A Athar, B Atoian, G Aubert, B Auerbach, B Auge, E Augsten, K Aurousseau, M Austin, N Avolio, G Avramidou, R Axen, D Ay, C Azuelos, G Azuma, Y Baak, MA Baccaglioni, G Bacci, C Bach, AM Bachacou, H Bachas, K Bachy, G Backes, M Badescu, E Bagnaia, P Bai, Y Bailey, DC Bain, T Baines, JT Baker, OK Baker, MD Baker, S Pedrosa, FBD Banas, E Banerjee, P Banerjee, S Banfi, D Bangert, A Bansal, V Baranov, SP Baranov, S Barashkou, A Barber, T Barberio, EL Barberis, D Barbero, M Bardin, DY Barillari, T Barisonzi, M Barklow, T Barlow, N Barnett, BM Barnett, RM Baroncelli, A Barone, M Barr, AJ Barreiro, F da Costa, JBG Barrillon, P Bartheld, V Bartko, H Bartoldus, R Bartsch, D Bates, RL Bathe, S Batkova, L Batley, JR Battaglia, A Battistin, M Battistoni, G Bauer, F Bawa, HS Bazalova, M Beare, B Beau, T Beauchemin, PH Beccherle, R Becerici, N Bechtle, R Beck, GA Beck, HP Beckingham, M Becks, KH Beddall, AJ Beddall, A Bednyakov, VA Bee, C Begel, M Harpaz, SB Behera, PK Beimforde, M Belanger, GAN Belanger-Champagne, C Belhorma, B Bell, PJ Bell, WH Bella, G Bellagambala, L Bellina, F Bellomo, G Bellomo, M Belloni, A Belotskiy, K Beltramello, O Belymam, A Ben Ami, S Benary, O Benchekroun, D Benchouk, C Bendel, M Benedict, BH Benekos, N Benhammou, Y Benincasa, GP Benjamin, DP Benoit, M Bensinger, JR Benslama, K Bentvelsen, S Beretta, M Berge, D Kuutmann, EB Berger, N Berghaus, F Berglund, E Beringer, J Bernardet, K Bernat, P Bernhard, R Bernius, C Berry, T Bertin, A Bertinelli, F Bertolucci, S Besana, MI Besson, N Bethke, S Bianchi, RM Bianco, M Biebel, O Bieri, M Biesiada, J Biglietti, M Bilokon, H Binder, M Bindi, M Binet, S Bingul, A Bini, C Biscarat, C Bischof, R Bitenc, U Black, KM Blair, RE Blanch, O Blanchard, JB Blanchot, G Blocker, C Blocki, J Blondel, A Blum, W Blumenschein, U Boaretto, C Bobbink, GJ Bocci, A Bocian, D Bock, R Boehler, M Boehm, M Boek, J Boelaert, N Boser, S Bogaerts, JA Bogouch, A Bohm, C Bohm, J Boisvert, V Bold, T Boldea, V Boldyrev, A Bondarenko, VG Bondioli, M Bonino, R Boonekamp, M Boorman, G Boosten, M Booth, CN Booth, PSL Booth, P Booth, JRA Bordoni, S Borer, C Borer, K Borisov, A Borissov, G Borjanovic, I Borroni, S Bos, K Boscherini, D Bosman, M Boterenbrood, H Botterill, D Bouchami, J Boudreau, J Bouhova-Thacker, EV Boulahouache, C Bourdarios, C Boveia, A Boyd, J Boyer, BH Boyko, IR Bozhko, NI Bozovic-Jelisavcic, I Braccini, S Bracinik, J Braem, A Brambilla, E Branchini, P Brandenburg, GW Brandt, A Brandt, A Brandt, G Brandt, O Bratzler, U Brau, B Brau, JE Braun, HM Bravo, S Brelier, B Bremer, J Brenner, R Bressler, S Breton, D Brett, ND Bright-Thomas, PC Britton, D Brochu, FM Brock, I Brock, R Brodbeck, TJ Brodet, E Broggi, E Bromberg, C Brooijmans, G Brooks, WK Brown, G Brubaker, E de Renstrom, PAB Bruncko, D Bruneliere, R Brunet, S Bruni, A Bruni, G Bruschi, M Buanes, T Bucci, E Buchanan, J Buchanan, NJ Buchholz, R Buckley, AG Budagov, IA Budick, B Buscher, V Bugge, L Buira-Clark, D Buis, EJ Bujor, E Bulekov, O Bunse, M Buran, T Burckhart, H Burdin, S Burgess, T Burke, S Busato, E Bussey, R Buszello, CP Butin, E Butler, B Butler, JM Buttar, CM Butterworth, JM Byatt, T Caballero, J Urban, SC Caccia, M Caforio, D Cakir, O Calafiura, P Calderini, G Calfayan, P Calkins, R Caloba, LP Caloi, R Calvet, D Camard, A Camarri, P Cambiaghi, M Cameron, D Cammin, J Campana, S Campanelli, M Canale, V Canelli, F Canepa, A Cantero, J Capasso, L Garrido, MDMC Caprini, I Caprini, M Caprio, M Capua, M Caputo, R Caramarcu, C Cardarelli, R Sas, LC Carli, T Carlino, G Carminati, L Caron, B Caron, S Carpentieri, C Montoya, GDC Montero, SC Carter, AA Carter, JR Carvalho, J Casadei, D Casado, MP Cascella, M Cas, C Hernadez, AMC Castaneda-Miranda, E Gimenez, VC Castro, NF Castrovillari, F Cataldi, G Cataneo, F Catinaccio, A Catmore, JR Cattai, A Cattani, G Caughron, S Cauz, D Cavallari, A Cavalleri, P Cavalli, D Cavalli-Sforza, M Cavasinni, V Cazzato, A Ceradini, E Cerna, C Cerqueira, AS Cerri, A Cerrito, L Cerutti, F Cervetto, M Cetin, SA Cevenini, E Chafaq, A Chakraborty, D Chan, K Chapman, JD Chapman, JW Chareyre, E Charlton, DG Charron, S Chatterjii, S Chavda, V Cheatham, S Chekanov, S Chekulaev, SV Chelkov, GA Chen, H Chen, L Chen, S Chen, T Chen, X Cheng, S Cheplakov, A Chepurnov, VF El Moursli, RC Tcherniatine, V Chesneanu, D Cheu, E Cheung, SL Chevalier, L Chevallier, F Chiarella, V Chiefari, G Chikovani, L Childers, JT Chilingarov, A Chiodini, G Chizhov, V Choudalakis, G Chouridou, S Christiansen, T Christidi, IA Christov, A Chromek-Burckhart, D Chu, ML Chudoba, J Ciapetti, G Cicalini, E Ciftci, AK Ciftci, R Cinca, D Cindro, V Ciobotaru, MD Ciocca, C Ciocio, A Cirilli, M Citterio, M Clark, A Clark, PJ Cleland, W Clemens, JC Clement, B Clement, C Clements, D Clifft, RW Coadou, Y Cobal, M Coccaro, A Cochran, J Coco, R Coe, R Coelli, S Coggeshall, J Cogneras, E Cojocaru, CD Colas, J Cole, B Colijn, AP Collard, C Collins, NJ Collins-Tooth, C Collot, J Colon, G Coluccia, R Comune, G Muino, PC Coniavitis, E Consonni, M Constantinescu, S Conta, C Conventi, F Cook, J Cooke, M Cooper, BD Cooper-Sarkar, AM Cooper-Smith, NJ Copic, K Cornelissen, T Corradi, M Correard, S Corriveau, F Corso-Radu, A Cortes-Gonzalez, A Cortiana, G Costa, G Costa, MJ Costanzo, D Costin, T Cote, D Torres, RC Courneyea, L Couyoumtzelis, C Cowan, G Cowden, C Cox, BE Cranmer, K Cranshaw, J Cristinziani, M Crosetti, G Crupi, R Crepe-Renaudin, S Almenar, CC Donszelmann, TC Cuneo, S Cunha, A Curatolo, M Curtis, CJ Cwetanski, P Czyczula, Z D'Auria, S D'Onofrio, M D'Orazio, A Mello, ADG Da Silva, PVM Da Via, C Dabrowski, W Dahlhoff, A Dai, T Dallapiccola, C Dallison, SJ Dalmau, J Daly, CH Dam, M Dameri, M Danielsson, HO Dankers, R Dannheim, D Dao, V Darbo, G Darlea, GL Daum, C Dauvergne, JP Davey, W Davidek, T Davidson, DW Davidson, N Davidson, R Davies, M Davison, AR Dawson, I Dawson, JW Daya, RK De, K de Asmundis, R De Castro, S Salgado, PEDF De Cecco, S de Graat, J De Groot, N de Jong, R De La Cruz-Burelo, E De La Taille, C De Lotto, B De Mora, L Branco, MD De Pedis, D de Saintignon, R De Salvo, A De Sanctis, U De Santo, A De Regie, JBD De Zorzi, G Dean, S Deberg, H Dedes, G Dedovich, DV Defay, PO Degenhardt, J Dehchar, M Deile, M Del Papa, C Del Peso, J Del Prete, T Dell'Acqua, A Dell'Asta, L Della Pietra, M della Volpe, D Delmastro, M Delpierre, P Delruelle, N Delsart, PA Deluca, C Demers, S Demichev, M Demirkoz, B Deng, J Deng, W Denisov, SP Dennis, C Derkaoui, JE Derue, F Dervan, R Desch, K Deviveiros, PO Dewhurst, A DeWilde, B Dhaliwal, S Dhullipudi, R Di Ciaccio, A Di Ciaccio, L Di Domenico, A Di Girolamo, A Di Girolamo, B Di Luise, S Di Mattia, A Di Nardo, R Di Simone, A Di Sipio, R Diaz, MA Gomez, MMD Diblen, F Diehl, EB Dietl, H Dietrich, J Dietzsch, TA Diglio, S Yagci, KD Dingfelder, DJ Dionisi, C Dipanjan, R Dita, P Dita, S Dittus, F Djama, F Djilkibaev, R Djobava, T do Vale, MAB Wemans, AD Doan, TKO Dobbs, M Dobinson, R Dobos, D Dobson, E Dobson, M Dodd, J Dogan, OB Doglioni, C Doherty, T Doi, Y Dolejsi, J Dolenc, I Dolezal, Z Dolgoshein, BA Dohmae, T Domingo, E Donega, M Donini, J Dopke, J Doria, A Dos Anjos, A Dosil, M Dotti, A Dova, MT Dowell, JD Doxiadis, A Doyle, AT Dragic, J Drakoulakos, D Drasal, Z Drees, J Dressnandt, N Drevermann, H Driouichi, C Dris, M Drohan, JG Dubbert, J Dubbs, T Duchovni, E Duckeck, G Dudarev, A Dudziak, F Duhrssen, M Dur, H Duerdoth, IP Duflot, L Dufour, MA Dunford, M Yildiz, HD Dushkin, A Duxfield, R Dwuznik, M Dydak, F Dzahini, D Duren, M Ebenstein, WL Ebke, J Eckert, S Eckweiler, S Edmonds, K Edwards, CA Efthymiopoulos, I Egorov, K Ehrenfeld, W Ehrich, T Eifert, T Eigen, G Einsweiler, K Eisenhandler, E Ekelof, T El Kacimi, M Ellert, M Elles, S Ellinghaus, F Ellis, K Ellis, N Elmsheuser, J Elsing, M Ely, R Emeliyanov, D Engelmann, R Engl, A Epp, B Eppig, A Erdmann, J Ereditato, A Eremin, V Eriksson, D Ermoline, I Ernst, J Ernst, M Ernwein, J Errede, D Errede, S Ertel, E Escalier, M Escobar, C Curull, XE Esposito, B Etienne, F Etienvre, AI Etzion, E Evans, H Evdokimov, VN Fabbri, L Fabre, C Facius, K Fakhrutdinov, RM Falciano, S Falou, AC Fang, Y Fanti, M Farbin, A Farilla, A Farley, J Farooque, T Farrington, SM Farthouat, P Fassnacht, P Fassouliotis, D Fatholahzadeh, B Fayard, L Fayette, F Febbraro, R Federic, R Fedin, OL Fedorko, I Fedorko, W Feligioni, L Felzmann, CU Feng, C Feng, EJ Fenyuk, AB Ferencei, J Ferland, J Fernandes, B Fernando, W Ferrag, S Ferrando, J Ferrara, V Ferrari, A Ferrari, P Ferrari, R Ferrer, A Ferrer, ML Ferrere, D Ferretti, C Ferro, F Fiascaris, M Fichet, S Fiedler, F Filipcic, A Filippas, A Filthaut, F Fincke-Keeler, M Fiolhais, MCN Fiorini, L Firan, A Fischer, G Fischer, P Fisher, MJ Fisher, SM Flacher, HF Flammer, J Fleck, I Fleckner, J Fleischmann, P Fleischmann, S Fleuret, F Flick, T Castillo, LRF Flowerdew, MJ Fohlisch, F Fokitis, M Martin, TF Fopma, J Forbush, DA Formica, A Forti, A Fortin, D Foster, JM Fournier, D Foussat, A Fowler, AJ Fowler, K Fox, H Francavilla, P Franchino, S Francis, D Franklin, M Franz, S Fraternali, M Fratina, S Freestone, J French, ST Froeschl, R Froidevaux, D Frost, JA Fukunaga, C Torregrosa, EF Fuster, J Gabaldon, C Gabizon, O Gadfort, T Gadomski, S Gagliardi, G Gagnon, P Galea, C Gallas, EJ Gallas, MV Gallo, V Gallop, BJ Gallus, P Galyaev, E Gan, KK Gao, YS Gapienko, VA Gaponenko, A Garcia-Sciveres, M Garcia, C Navarro, JEG Garde, V Gardner, RW Garelli, N Garitaonandia, H Garonne, V Garvey, J Gatti, C Gaudio, G Gaumer, O Gauzzi, P Gavrilenko, IL Gay, C Gaycken, G Gayde, JC Gazis, EN Ge, R Gee, CNP Geich-Gimbel, C Gellerstedt, K Gemme, C Genest, MH Gentile, S Georgatos, F George, S Gerlach, P Gershon, A Geweniger, C Ghazlane, H Ghez, P Ghodbane, N Giacobbe, B Giagu, S Giakoumopoulou, V Giangiobbe, V Gianotti, F Gibbard, B Gibson, A Gibson, SM Gieraltowski, GF Gilbert, LM Gilchriese, M Gildemeister, O Gilewsky, V Gillman, AR Gingrich, DM Ginzburg, J Giokaris, N Giordani, MP Giordano, R Giorgi, FM Giovannini, R Giraud, PF Girtler, P Giugni, D Giusti, P Gjelsten, BK Gladilin, LK Glasman, C Glazov, A Glitza, KW Glonti, GL Gnanvo, KG Godfrey, J Godlewski, J Goebel, M Gopfert, T Goeringer, C Gossling, C Gottfert, T Goggi, V Goldfarb, S Goldin, D Goldschmidt, N Golling, T Gollub, NP Golovnia, SN Gomes, A Fajardo, LSG Goncalo, R Gonella, L Gong, C Gonidec, A de la Hoz, SG Silva, MLG Gonzalez-Pineiro, B Gonzalez-Sevilla, S Goodson, JJ Goossens, L Gorbounov, PA Gordon, HA Gorelov, I Gorfine, G Gorini, B Gorini, E Gorisek, A Gornicki, E Gorokhov, SA Gorski, BT Goryachev, VN Gosdzik, B Gosselink, M Gostkin, MI Gouanere, M Eschrich, IG Gouighri, M Goujdami, D Goulette, MP Goussiou, AG Goy, C Grabowska-Bold, I Grabski, V Grafstrom, P Grah, C Grahn, KJ Grancagnolo, F Grancagnolo, S Grassi, V Gratchev, V Grau, N Gray, HM Gray, JA Graziani, E Green, B Greenfield, D Greenshaw, T Greenwood, ZD Gregor, IM Grenier, P Grewal, A Griesmayer, E Griffiths, J Grigalashvili, N Grillo, AA Grimaldi, F Grimm, K Grinstein, S Gris, PLY Grishkevich, YV Groer, LS Grognuz, J Groh, M Groll, M Gross, E Grosse-Knetter, J Groth-Jensen, J Gruwe, M Grybel, K Guarino, VJ Guescini, F Guicheney, C Guida, A Guillemin, T Guler, H Gunther, J Guo, B Gupta, A Gusakov, Y Gushchin, VN Gutierrez, A Gutierrez, P Guttman, N Gutzwiller, O Guyot, C Gwenlan, C Gwilliam, CB Haas, A Haas, S Haber, C Haboubi, G Hackenburg, R Hadavand, HK Hadley, DR Haeberli, C Haefner, P Hartel, R Hahn, F Haider, S Hajduk, Z Hakobyan, H Hakobyan, RH Haller, J Hallewell, GD Hamacher, K Hamilton, A Hamilton, S Han, H Han, L Hanagaki, K Hance, M Handel, C Hanke, P Hansen, CJ Hansen, JR Hansen, JB Hansen, JD Hansen, PH Hansl-Kozanecka, T Hansson, P Hara, K Hare, GA Harenberg, T Harper, R Harrington, RD Harris, OM Harrison, K Hart, JC Hartert, J Hartjes, F Haruyama, T Harvey, A Hasegawa, S Hasegawa, Y Hashemi, K Hassani, S Hatch, M Hauff, D Haug, S Hauschild, M Hauser, R Havranek, M Hawes, BM Hawkes, CM Hawkings, RJ Hawkins, D Hayakawa, T Hayward, HS Haywood, SJ Hazen, E He, M He, YP Head, SJ Hedberg, V Heelan, L Heim, S Heinemann, B Heinemann, FEW Heisterkamp, S Helary, L Heldmann, M Heller, M Hellman, S Helsens, C Hemperek, T Henderson, RCW Hendriks, PJ Henke, M Henrichs, A Correia, AMH Henrot-Versille, S Henry-Couannier, F Hensel, C Henss, T Jimenez, YH Hershenhorn, AD Herten, G Hertenberger, R Hervas, L Hess, M Hessey, NP Hidvegi, A Higon-Rodriguez, E Hill, D Hill, JC Hill, N Hiller, KH Hillert, S Hillier, SJ Hinchliffe, I Hindson, D Hines, E Hirose, M Hirsch, F Hirschbuehl, D Hobbs, J Hod, N Hodgkinson, MC Hodgson, P Hoecker, A Hoeferkamp, MR Hoffman, J Hoffmann, D Hohlfeld, M Holder, M Hollins, TI Hollyman, G Holmes, A Holmren, SO Holy, T Holzbauer, JL Homer, RJ Homma, Y Horazdovsky, T Hori, T Horn, C Horner, S Horvat, S Hostachy, JY Hott, T Hou, S Houlden, MA Hoummada, A Howe, T Howell, DF Hrivnac, J Hruska, I Hryn'ova, T Hsu, PJ Hsu, SC Huang, GS Hubacek, Z Hubaut, F Huegging, F Huffman, BT Hughes, EW Hughes, G Hughes-Jones, RE Hurst, P Hurwitz, M Husemann, U Huseynov, N Huston, J Huth, J Iacobucci, G Iakovidis, G Ibbotson, M Ibragimov, I Ichimiya, R Iconomidou-Fayard, L Idarraga, J Idzik, M Iengo, R Igonkina, O Ikegami, Y Ikeno, M Ilchenko, Y Iliadis, D Imbault, D Imhaeuser, M Imori, M Ince, T Inigo-Golfin, J Ioannou, R Iodice, M Ionescu, G Quiles, AI Ishii, K Ishikawa, A Ishino, M Ishizawa, Y Ishmukhametov, R Isobe, T Issakov, V Issever, C Istin, S Itoh, Y Ivashin, AV Iwanski, W Iwasaki, H Izen, JM Izzo, V Jackson, B Jackson, J Jackson, JN Jackson, P Jaekel, MR Jahoda, M Jain, V Jakobs, K Jakobsen, S Jakubek, J Jana, D Jansen, E Jantsch, A Janus, M Jared, RC Jarlskog, G Jeanty, L Jelen, K Jen-La Plante, I Jenni, P Jeremie, A Jez, P Jezequel, S Ji, W Jia, J Jiang, Y Belenguer, MJ Jin, G Jin, S Jinnouchi, O Joffe, D Johansen, LG Johansen, M Johansson, KE Johansson, P Johnert, S Johns, KA Jon-And, K Jones, A Jones, G Jones, M Jones, RWL Jones, TW Jones, TJ Jonsson, O Joo, KK Joos, D Joram, C Jorge, PM Jorgensen, S Juranek, V Jussel, P Kabachenko, VV Kabana, S Kaci, M Kaczmarska, A Kado, M Kagan, H Kagan, M Kagawa, S Kaiser, S Kajomovitz, E Kalinin, S Kalinovskaya, LV Kalinowski, A Kama, S Kambara, H Kanaya, N Kaneda, M Kantserov, VA Kanzaki, J Kaplan, B Kapliy, A Kaplon, J Karagounis, M Unel, MK Karr, K Kartvelishvili, V Karyukhin, AN Kashif, L Kasmi, A Kass, RD Kastanas, A Kastoryano, M Kataoka, M Kataoka, Y Katsoufis, E Katzy, J Kaushik, V Kawagoe, K Kawamoto, T Kawamura, G Kayl, MS Kayumov, F Kazanin, VA Kazarinov, MY Kazi, SI Keates, JR Keeler, R Keener, PT Kehoe, R Keil, M Kekelidze, GD Kelly, M Kennedy, J Kenyon, M Kepka, O Kerschen, N Kersevan, BP Kersten, S Kessoku, K Ketterer, C Khakzad, M Khalil-Zada, F Khandanyan, H Khanov, A Kharchenko, D Khodinov, A Kholodenko, AG Khomich, A Khoriauli, G Khovanskiy, N Khovanskiy, V Khramov, E Khubua, J Kilvington, G Kim, H Kim, MS Kim, PC Kim, SH Kind, O Kind, P King, BT Kirk, J Kirsch, GP Kirsch, LE Kiryunin, AE Kisielewska, D Kisielewski, B Kittelmann, T Kiver, AM Kiyamura, H Kladiva, E Klaiber-Lodewigs, J Klein, M Klein, U Kleinknecht, K Klemetti, M Klier, A Klimentov, A Klimkovich, T Klingenberg, R Klinkby, EB Klioutchnikova, T Klok, PF Klous, S Kluge, EE Kluge, T Kluit, P Klute, M Kluth, S Knecht, NS Kneringer, E Knobloch, J Ko, BR Kobayashi, T Kobel, M Koblitz, B Kocian, M Kocnar, A Kodys, P Koneke, K Konig, AC Koenig, S Konig, S Kopke, L Koetsveld, F Koevesarki, P Koffas, T Koffeman, E Kohn, F Kohout, Z Kohriki, T Kokott, T Kolachev, GM Kolanoski, H Kolesnikov, V Koletsou, I Koll, J Kollar, D Kollefrath, M Kolos, S Kolya, SD Komar, AA Komaragiri, JR Kondo, T Kono, T Kononov, AI Konoplich, R Konovalov, SP Konstantinidis, N Kootz, A Koperny, S Kopikov, SV Korcyl, K Kordas, K Koreshev, V Korn, A Korolkov, I Korolkova, EV Korotkov, VA Korsmo, H Kortner, O Kostka, P Kostyukhin, VV Kotamaki, MJ Kotchetkov, D Kotv, S Kotov, VM Kotov, KY Koupilova, Z Kourkoumelis, C Koutsman, A Kovar, S Kowalewski, R Kowalski, H Kowalski, TZ Kozanecki, W Kozhin, AS Kral, V Kramarenko, VA Kramberger, G Kramer, A Krasel, O Krasny, MW Krasznahorkay, A Kreisel, A Krejci, F Kretzschmar, J Krieger, N Krieger, P Krivkova, P Krobath, G Kroeninger, K Kroha, H Kroll, J Kroseberg, J Krstic, J Kruchonak, U Kruger, H Krumshteyn, ZV Kubota, T Kuehn, S Kugel, A Kuhl, T Kuhn, D Kukhtin, A Kulchitsky, Y Kuleshov, S Kummer, C Kuna, M Kundu, N Kunkle, J Kupco, A Kurashige, H Kurata, M Kurchaninov, LL Kurochkin, YA Kus, V Kuykendall, W Kuzhir, P Kuznetsova, E Kvasnicka, O Kwee, R La Rotonda, L Labarga, L Labbe, J Lacasta, C Lacava, F Lacker, H Lacour, D Lacuesta, VR Ladygin, E Lafaye, R Laforge, B Lagouri, T Lai, S Lamanna, M Lambacher, M Lampen, CL Lampl, W Lancon, E Landgraf, U Landon, MPJ Landsman, H Lane, JL Lankford, AJ Lanni, F Lantzsch, K Lanza, A Lapin, VV Laplace, S Lapoire, C Laporte, JF Lari, T Larionov, AV Larner, A Lasseur, C Lassnig, M Lau, W Laurelli, P Lavorato, A Lavrijsen, W Laycock, P Lazarev, AB Lazzaro, A Le Dortz, O Le Guirriec, E Le Maner, C Le Menedeu, E Le Vine, M Leahu, M Lebedev, A Lebel, C Lechowski, M LeCompte, T Ledroit-Guillon, F Lee, H Lee, JSH Lee, SC Lefebvre, M Legendre, M Leger, A LeGeyt, BC Legger, F Leggett, C Lehmacher, M Miotto, GL Lehto, M Lei, X Leitner, R Lellouch, D Lellouch, J Leltchouk, M Lendermann, V Leney, KJC Lenz, T Lenzen, G Lenzi, B Leonhardt, K Lepidis, J Leroy, C Lessard, JR Lesser, J Lester, CG Cheong, ALF Leveque, J Levin, D Levinson, LJ Levitski, MS Levonian, S Lewandowska, M Leyton, M Li, H Li, S Li, X Liang, Z Liang, Z Liberti, B Lichard, R Lichtnecker, M Lie, K Liebig, W Lifshitz, R Lilley, JN Lim, H Limosani, A Limper, M Lin, SC Linde, F Linnemann, JT Lipeles, E Lipinsky, L Lipniacka, A Liss, TM Lissauer, D Lister, A Litke, AM Liu, C Liu, D Liu, H Liu, JB Liu, M Liu, S Liu, T Liu, Y Livan, M Lleres, A Lloyd, SL Lobkowicz, F Lobodzinska, E Loch, P Lockman, WS Lockwitz, S Loddenkoetter, T Loebinger, FK Loginov, A Loh, CW Lohse, T Lohwasser, K Lokajicek, M Loken, J Long, RE Lopes, L Mateos, DL Losada, M Loscutoff, P Losty, MJ Lou, X Lounis, A Loureiro, KF Love, J Love, PA Lowe, AJ Lu, F Lu, J Lu, L Lubatti, HJ Lucas, S Luci, C Lucotte, A Ludwig, A Ludwig, D Ludwig, I Ludwig, J Luehring, F Luijckx, G Luisa, L Lumb, D Luminari, L Lund, E Lund-Jensen, B Lundberg, B Lundberg, J Lundquist, J Lupi, A Lutz, G Lynn, D Lynn, J Lys, J Lytken, E Ma, H Ma, LL Maassen, M Goia, JAM Maccarrone, G Macchiolo, A Macek, B Miguens, JM Macina, D Mackeprang, R Macpherson, A MacQueen, D Madaras, RJ Mader, WF Maenner, R Maeno, T Mattig, F Mattig, S Martins, PJM Magass, C Magradze, E Magrath, CA Mahalalel, Y Mahboubi, K Mahmood, A Mahout, G Maiani, C Maidantchik, C Maio, A Mair, GM Majewski, S Makida, Y Makouski, M Makovec, N Malecki, P Malecki, P Maleev, VP Malek, F Mallik, U Malon, D Maltezos, S Malyshev, V Malyukov, S Mambelli, M Mameghani, R Mamuzic, J Manabe, A Manara, A Manca, G Mandelli, L Mandic, I Mandrysch, R Maneira, J Mangeard, PS Mangin-Brinet, M Manjavidze, ID Mann, WA Manning, PM Manolopoulos, S Manousakis-Katsikakis, A Mansoulie, B Manz, A Mapelli, A Mapelli, L March, L Marchand, JF Marchese, F Marchesotti, M Marchiori, G Marcisovsky, M Marin, A Marino, CP Marroquim, F Marshall, R Marshall, Z Martens, FK Marti-Garcia, S Martin, AJ Martin, AJ Martin, B Martin, B Martin, FF Martin, JP Martin, P Martin, TA Latour, BMD Martinez, M Outschoorn, VM Martini, A Martins, J Martynenko, V Martyniuk, AC Marzano, F Marzin, A Masetti, L Mashimo, T Mashinistov, R Masik, J Maslennikov, AL Mass, M Massa, I Massaro, G Massol, N Mastroberardino, A Masubuchi, T Mathes, M Matricon, P Matsumoto, H Matsunaga, H Matsushita, T Mattravers, C Maugain, JM Maxfield, SJ May, EN Mayer, JK Mayne, A Mazini, R Mazur, M Mazzanti, M Mazzoni, E Mazzucato, F Mc Donald, J Mc Kee, SP McCarn, A McCarthy, RL McCubbin, NA McFarlane, KW McGarvie, S McGlone, H Mchedlidze, G McLaren, RA McMahon, SJ McMahon, TR McMahon, TJ McPherson, RA Meade, A Mechnich, J Mechtel, M Medinnis, M Meera-Lebbai, R Meguro, TM Mehdiyev, R Mehlhase, S Mehta, A Meier, K Meinhardt, J Meirose, B Meirosu, C Melachrinos, C Garcia, BRM Mendez, R Navas, LM Meng, Z Menke, S Menot, C Meoni, E Merkl, D Mermod, P Merola, L Meroni, C Merritt, FS Messina, AM Messmer, I Metcalfe, J Mete, AS Meuser, S Meyer, JP Meyer, J Meyer, J Meyer, TC Meyer, WT Miao, J Michal, S Micu, L Middleton, RP Miele, P Migas, S Migliaccio, A Mijovic, L Mikenberg, G Mikestikova, M Mikulec, B Mikuz, M Miller, DW Miller, RJ Mills, WJ Mills, CM Milov, A Milstead, DA Milstein, D Mima, S Minaenko, AA Minano, M Minashvili, IA Mincer, AI Mindur, B Mineev, M Ming, Y Mir, LM Mirabelli, G Verge, LM Misawa, S Miscetti, S Misiejuk, A Mitra, A Mitrevski, J Mitrofanov, GY Mitsou, VA Miyagawa, PS Miyazaki, Y Mjornmark, JU Mladenov, D Moa, T Moch, M Mockett, P Moed, S Moeller, V Monig, K Moser, N Mohn, B Mohr, W Mohrdieck-Mock, S Moisseev, AM Moles-Valls, R Molina-Perez, J Moll, A Moneta, L Monk, J Monnier, E Montarou, G Montesano, S Monticelli, F Moore, RW Moore, TB Moorhead, CF Herrera, CM Moraes, A Morais, A Morel, J Morello, G Moreno, D Llacer, MM Morettini, P Morgan, D Morii, M Morin, J Morita, Y Morley, AK Mornacchi, G Morone, MC Morozov, SV Morris, JD Moser, HG Mosidze, M Moss, J Moszczynski, A Mount, R Mountricha, E Mouraviev, SV Moye, TH Moyse, EJW Mudrinic, M Mueller, F Mueller, J Mueller, K Muller, TA Muenstermann, D Muijs, A Muir, A Munar, A Munday, DJ Munwes, Y Murakami, K Garcia, RM Murray, WJ Mussche, I Musto, E Myagkov, AG Myska, M Nadal, J Nagai, K Nagano, K Nagasaka, Y Nairz, AM Naito, D Nakamura, K Nakano, I Nakatsuka, H Nanava, G Napier, A Nash, M Nasteva, I Nation, NR Nattermann, T Naumann, T Nauyock, F Navarro, G Nderitu, SK Neal, HA Nebot, E Nechaeva, P Negri, A Negri, G Negroni, S Nektarijevic, S Nelson, A Nelson, TK Nemecek, S Nemethy, P Nepomuceno, AA Nessi, M Nesterov, SY Neubauer, MS Neukermans, L Neusiedl, A Neves, RN Nevski, P Newcomer, FM Nicholson, C Nickerson, RB Nicolaidou, R Nicolas, L Nicoletti, G Nicquevert, B Niedercorn, E Nielsen, J Niinikoski, T Niinimaki, MJ Nikiforov, A Nikolaev, K Nikolic-Audit, I Nikolopoulos, K Nilsen, H Nilsson, BS Nilsson, P Nisati, A Nishiyama, T Nisius, R Nodulman, L Nomachi, M Nomidis, I Nomoto, H Nordberg, M Nordkvist, B Francisco, ON Norton, PR Notz, D Novakova, J Nozaki, M Nozicka, M Nugent, IM Nuncio-Quiroz, AE Nunes, R Hanninger, GN Nunnemann, T Nurse, E Nyman, T O'Neale, SW O'Neil, DC O'Shea, V Oakham, FG Oberlack, H Obermaier, M Oberson, P Ochi, A Oda, S Odaka, S Odier, J Odino, GA Ogren, H Oh, A Oh, SH Ohm, CC Ohshima, T Ohshita, H Ohska, TK Ohsugi, T Okada, S Okawa, H Okumura, Y Okuyama, T Olcese, M Olchevski, AG Oliveira, M Damazio, DO Oliver, C Oliver, J Garcia, EO Olivito, D Gomez, MO Olszewski, A Olszowska, J Omachi, C Onea, A Onofre, A Onyisi, PUE Oram, CJ Ordonez, G Oreglia, MJ Orellana, F Oren, Y Orestano, D Orlov, I Barrera, CO Orr, RS Orsini, E Ortega, EO Osborne, LS Osculati, B Ospanov, R Osuna, C Ottersbach, JP Ottewell, B Ould-Saada, F Ouraou, A Ouyang, Q Owen, M Owen, S Oyarzun, A Oye, OK Ozcan, VE Ozone, K Ozturk, N Pages, AP Aranda, CP Paganis, E Pahl, C Paige, F Pajchel, K Pal, A Palestini, S Palla, J Pallin, D Palma, A Palmer, JD Palmer, MJ Pan, YB Panagiotopoulou, E Panes, B Panikashvili, N Panin, VN Panitkin, S Pantea, D Panuskova, M Paolone, V Paoloni, A Papadopoulos, I Papadopoulou, TD Park, SJ Park, W Parker, MA Parker, SI Parodi, F Parsons, JA Parzefall, U Pasqualucci, E Passeri, A Pastore, F Pastore, F Pasztor, G Pataraia, S Pater, JR Patricelli, S Patwa, A Pauly, T Peak, LS Pecsy, M Morales, MIP Peeters, SJM Peez, M Peleganchuk, SV Peng, H Pengo, R Penson, A Penwell, J Perantoni, M Perez, K Codina, EP Garcia-Estan, MTP Reale, VP Peric, I Perini, L Pernegger, H Perrino, R Perrodo, P Persembe, S Perus, P Peshekhonov, VD Petereit, E Peters, O Petersen, BA Petersen, J Petersen, TC Petit, E Petridou, C Petrolo, E Petrucci, F Petschull, D Petteni, M Pezoa, R Pfeifer, B Phan, A Phillips, AW Piacquadio, G Piccinini, M Pickford, A Piegaia, R Pilcher, JE Pilkington, AD Dos Santos, MAP Pina, J Pinamonti, M Pinfold, JL Ping, J Pinto, B Pinzon, G Pirotte, O Pizio, C Placakyte, R Plamondon, M Plano, WG Pleier, MA Pleskach, AV Poblaguev, A Poddar, S Podlyski, F Poffenberger, P Poggioli, L Pohl, M Polci, F Polesello, G Policicchio, A Polini, A Poll, J Polychronakos, V Pomarede, DM Pomeroy, D Pommes, K Pontecorvo, L Pope, BG Popescu, R Popovic, DS Poppleton, A Papule, J Bueso, XP Porter, R Posch, C Pospelov, GE Pospichal, R Pospisil, S Potekhin, M Potrap, IN Potter, CJ Potter, CT Potter, KP Poulard, G Pousada, A Poveda, J Prabhu, R Pralavorio, P Prasad, S Prata, M Pravahan, R Pretzl, K Pribyl, L Price, D Price, LE Price, MJ Prichard, PM Prieur, D Primavera, M Primor, D Prokofiev, K Prokoshin, F Protopopescu, S Proudfoot, J Prudent, X Przysiezniak, H Psoroulas, S Ptacek, E Puigdengoles, C Purdham, J Purohit, M Puzo, P Pylypchenko, Y Qi, M Qian, J Qian, W Qian, Z Qin, Z Qing, D Quadt, A Quarrie, DR Quayle, WB Quinonez, F Raas, M Radeka, V Radescu, V Radics, B Rador, T Ragusa, F Rahal, G Rahimi, AM Rahm, C Raine, C Raith, B Rajagopalan, S Rajek, S Rammensee, M Rammer, H Rammes, M Ramstedt, M Ratoff, PN Rauscher, F Rauter, E Raymond, M Read, AL Rebuzzi, DM Redelbach, A Redlinger, G Reece, R Reeves, K Rehak, M Reichold, A Reinherz-Aronis, E Reinsch, A Reisinger, I Reeves, K Rehak, M Reichold, A Reinherz-Aronis, E Reinsch, A Reisinger, I Reljic, D Rembser, C Ren, ZL Renkel, P Rensch, B Rescia, S Rescigno, M Resconi, S Resende, B Rezaie, E Reznicek, P Rezvani, R Richards, A Richards, RA Richter, D Richter, R Richter-Was, E Ridel, M Rieke, S Rijpstra, M Rijssenbeek, M Rimoldi, A Rinaldi, L Rios, RR Risler, C Riu, I Rivoltella, G Rizatdinova, F Rizvi, E Romero, DAR Robertson, SH Robichaud-Veronneau, A Robins, S Robinson, D Robinson, JEM Robinson, M Robson, A de Lima, JGR Roda, C Dos Santos, DR Rodier, S Rodriguez, D Garcia, YR Roe, S Rohne, O Rojo, V Rolli, S Romaniouk, A Romanov, VM Romeo, G Maltrana, DR Roos, L Ros, E Rosati, S Rosenbaum, F Rosenbaum, GA Rosenberg, EI Rosselet, L Rossetti, V Rossi, LP Rossi, L Rotaru, M Rothberg, J Rottlander, I Rousseau, D Royon, CR Rozanov, A Rozen, Y Ruan, X Ruckert, B Ruckstuhl, N Rud, VI Rudolph, G Ruhr, F Ruggieri, F Ruiz-Martinez, A Rulikowska-Zarebska, E Rumiantsev, V Rumyantsev, L Runge, K Runolfsson, O Rurikova, Z Rusakovich, NA Rust, DR Rutherfoord, JP Ruwiede, C Ruzicka, R Ryabov, YF Ryadovikov, V Ryan, P Rybkin, G Rzaeva, S Saavedra, AF Sadrozinski, HFW Sadykov, R Sakamoto, H Sala, P Salamanna, G Salamon, A Saleem, MS Salihagic, D Salnikov, A Salt, J Bauza, OS Ferrando, BMS Salvatore, D Salvatore, F Salvucci, A Salzburger, A Sampsonidis, D Samset, BH Sanchez, CAS Lozano, MAS Sandaker, H Sander, HG Sanders, MP Sandhoff, M Sandhu, P Sandstroem, R Sandvoss, S Sankey, DPC Sanny, B Sansoni, A Rios, CS Santoni, C Santonico, R Saraiva, JG Sarangi, T Sarkisyan-Grinbaum, E Sarri, F Sasaki, O Sasaki, T Sasao, N Satsounkevitch, I Sauvage, G Savard, R Savine, AY Savinov, V Savoy-Navarro, A Savva, R Sawyer, L Saxon, DH Says, LP Sbarra, C Sbrizzi, A Scannicchio, DA Schaarschmidt, J Schacht, R Schafer, U Schaetzel, S Schaffer, AC Schaile, D Schaller, M Schamberger, RD Schamov, AG Schegelsky, VA Scheirich, D Schernau, M Scherzer, MI Schiavi, C Schieck, J Schioppa, M Schlager, G Schlenker, S Schlereth, JL Schmid, R Schmidt, MP Schmieden, K Schmitt, C Schmitz, M Scholte, RC Schott, M Schouten, D Schovancova, J Schram, M Schreiner, A Schricker, A Schroeder, C Schroer, N Schroers, M Schroff, D Schuh, S Schuler, G Schultes, J Schultz-Coulon, HC Schumacher, JW Schumacher, M Schumm, BA Schune, P Schwanenberger, C Schwartzman, A Schweiger, D Schwemling, P Schwienhorst, R Schwierz, R Schwindling, J Scott, WG Searcy, J Sedykh, E Segura, E Seidel, SC Seiden, A Seifert, F Seixas, JM Sekhniaidze, G Seliverstov, DM Sellden, B Seman, M Semprini-Cesari, N Serfon, C Serin, L Seuster, R Severini, H Sevior, ME Sfyrla, A Shabalina, E Shah, TP Shamim, M Shan, LY Shank, JT Shao, QT Shapiro, M Shatalov, PB Shaver, L Shaw, C Shaw, K Sherman, D Sherwood, P Shibata, A Shield, R Shimojima, M Shin, T Shmeleva, A Shochet, MJ Shupe, MA Sicho, R Sidhu, J Sidoti, A Siebel, A Siebel, M Siegert, F Siegrist, J Sijacki, DJ Silbert, O Silva, J Silver, Y Silverstein, D Silverstein, SB Simak, V Simic, L Simion, S Simmons, B Simonyan, M Sinervo, R Sinev, NB Sipica, V Siragusa, G Sisakyan, AN Sivoklokov, SY Sielin, J Sjursen, TB Skovpen, K Skubic, R Skvorodnev, N Slater, M Slattery, R Slavicek, T Sliwa, K Sloan, TJ Sloper, J Sluka, T Smakhtin, V Small, A Smirnov, SY Smirnov, Y Smirnova, LN Smirnova, O Smith, BC Smith, D Smith, KM Smizanska, M Smolek, K Snesarev, AA Snow, SW Snow, J Snuverink, J Snyder, S Soares, M Sobie, R Sodomka, J Soffer, A Solans, CA Solar, M Solc, J Camillocci, ES Solodkov, AA Solovyanov, OV Soluk, R Sondericker, J Sopko, V Sopko, B Sorbi, M Sosebee, M Soukharev, A Spagnolo, S Spano, F Speckmayer, P Spencer, E Spighi, R Spigo, G Spila, F Spiriti, E Spiwoks, R Spogli, L Spousta, M Spreitzer, T Spurlock, B Denis, RDS Stahl, T Stahlman, J Stamen, R Stancu, SN Stanecka, E Stanek, RW Stanescu, C Stapnes, S Starchenko, EA Stark, J Staroba, R Starovoitov, P Stastny, J Staude, A Stavina, R Stavropoulos, G Steele, G Stefanidis, E Steinbach, R Steinberg, R Stekl, I Stelzer, B Stelzer, HJ Stelzer-Chilton, O Stenzel, H Stevenson, K Stewart, G Stewart, TD Stiller, W Stockmanns, T Stockton, MC Stodulski, M Stoerig, K Stoicea, G Stonjek, S Strachota, R Stradling, AR Straessner, A Strandberg, J Strandberg, S Strandlie, A Strauss, M Striegel, D Strizenec, P Strohmer, R Strom, DM Strong, JA Stroynowski, R Strube, J Stugu, B Stumer, I Soh, DA Su, D Subramania, S Sugaya, Y Sugimoto, T Suhr, C Suk, M Sulin, VV Sultansoy, S Sumida, T Sun, XH Sundermann, JE Suruliz, K Sushkov, S Susinno, G Sutton, MR Suzuki, T Suzuki, Y Sviridov, YM Sykora, I Sykora, T Szczygiel, RR Szeless, B Szymocha, T Sanchez, J Ta, D Gameiro, ST Tackmann, K Taffard, A Tafirout, R Taga, A Takahashi, Y Takai, H Takashima, R Takeda, H Takeshita, T Talby, M Talyshev, A Tamsett, MC Tanaka, J Tanaka, R Tanaka, S Tanaka, S Tanaka, Y Tappern, GP Tapprogge, S Tardif, D Tarem, S Tarrade, F Tartarelli, CF Tas, P Tasevsky, M Tassi, E Tatarkhanov, M Tayalati, Y Taylor, C Taylor, FE Taylor, G Taylor, GN Taylor, RP Taylor, W Teixeira-Dias, R Ten Kate, H Teng, PK Tennenbaum-Katan, YD Ter-Antonyan, R Terada, S Terashi, K Terron, J Terwort, M Testa, M Teuscher, RJ Tevlin, CM Thadome, J Thioye, M Thoma, S Thomas, A Thomas, JP Thompson, EN Thompson, PD Thompson, PD Thompson, RJ Thompson, AS Thomson, E Thun, RP Tic, T Tikhomirov, VO Tikhonov, YA Timm, S Timmermans, CJWP Tipton, P Viegas, FJTA Tisserant, S Tobias, J Toczek, B Todorov, T Todorova-Nova, S Toggerson, B Tojo, J Tokar, S Tokushuku, K Tollefson, K Tomasek, L Tomasek, M Tomoto, M Tompkins, D Tompkins, L Toms, K Tonazzo, A Tong, G Tonoyan, A Topfel, C Topilin, ND Torrence, E Pastor, ET Toth, J Touchard, F Tovey, DR Trefzger, T Treis, J Tremblet, L Tricoli, A Trigger, IM Trilling, G Trincaz-Duvoid, S Trinh, TN Tripiana, MF Triplett, N Trischuk, W Trivedi, A Trka, Z Trocme, B Troncon, C Trzupek, A Tsarouchas, C Tseng, JCL Tsiakiris, M Tsiareshka, PV Tsionou, D Tsipolitis, G Tsiskaridze, V Tskhadadze, EG Tsukerman, II Tsulaia, V Tsung, JW Tsuno, S Tsybychev, D Tuggle, JM Turala, M Turecek, D Cakir, IT Turlay, E Tuts, PM Twomey, MS Tyilmad, M Tyndel, M Typaldos, D Tyrvainen, H Tzamarioudaki, E Tzanakos, G Uchida, K Ueda, I Ugland, M Uhlenbrock, M Uhrmacher, M Ukegawa, F Unal, G Underwood, DG Undrus, A Unel, G Unno, Y Urbaniec, D Urkovsky, E Urquijo, P Urrejola, P Usai, G Uslenghi, M Vacavant, L Vacek, V Vachon, B Vahsen, S Valderanis, C Valenta, J Valente, R Valentinetti, S Valkar, S Gallego, EV Vallecorsa, S Ferrer, JAV Van Berg, R van der Graaf, H van der Kraaij, E van der Poel, E Van Der Ster, D Van Eijk, B van Eldik, N van Gemmeren, P van Kesteren, Z van Vulpen, I Vandelli, W Vandoni, G Vaniachine, A Vankov, P Vannucci, F Rodriguez, FV Vari, R Varnes, EW Varouchas, D Vartapetian, A Varvell, KE Vasilyeva, L Vassilakopoulos, VI Vazeille, F Vegni, G Veillet, JJ Vellidis, C Veloso, F Veness, R Veneziano, S Ventura, A Ventura, D Ventura, S Venturi, M Venturi, N Vercesi, V Verducci, M Verkerke, W Vermeulen, JC Vertogardov, L Vetterli, MC Vichou, I Vickey, T Viehhauser, GHA Villa, M Villani, EG Perez, MV Vilucchi, E Vincent, P Vincter, MG Vinek, E Vinogradov, VB Virchaux, M Viret, S Virzi, J Vitale, A Vitells, O Vivarelli, I Vaque, FV Vlachos, S Vlasak, M Vlasov, N Vogel, A Vogt, H Vokac, P Vollmer, CF Volpi, M Volpini, G von der Schmitt, H von Loeben, J von Radziewski, H von Toerne, E Vorobel, V Vorobiev, AP Vorwerk, V Vos, M Voss, KC Voss, R Voss, TT Vossebeld, JH Vovenko, AS Vranjes, N Milosavljevic, MV Vrba, V Vreeswijk, M Anh, TV Vuaridel, B Vudragovic, D Vuillermet, R Vukotic, I Waananen, A Wagner, P Wahlen, H Walbersloh, J Walder, J Walker, R Walkowiak, W Wall, R Walsh, S Wang, C Wang, H Wang, J Wang, JC Wang, MW Wang, SM Wappler, F Warburton, A Ward, CP Warsinsky, M Wastie, R Watkins, PM Watson, AT Watson, MF Watts, G Watts, S Waugh, AT Waugh, BM Webel, M Weber, G Weber, JJ Weber, MD Weber, M Weber, MS Weber, P Weidberg, AR Weingarten, J Weiser, C Wellenstein, H Wellisch, HP Wells, PS Wen, M Wenaus, T Wendler, S Wengler, T Wenig, S Wermes, N Werner, M Werner, P Werth, M Werthenbach, U Wessels, M Whalen, K Wheeler-Ellis, SJ Whitaker, SP White, A White, MJ White, S Whitehead, SR Whiteson, D Whittington, D Wicek, F Wicke, D Wickens, FJ Wiedenmann, W Wielers, M Wienemann, P Wiesmann, M Wiesmann, M Wiglesworth, C Wiik, LAM Wildauer, A Wildt, MA Wilhelm, I Wilkens, HG Williams, E Williams, HH Willis, W Willocq, S Wilson, JA Wilson, MC Wilson, A Wingerter-Seez, I Winklmeier, F Wittgen, M Woehrling, E Wolter, MW Wolters, H Wosiek, BK Wotschack, J Woudstra, MJ Wraight, K Wright, C Wright, D Wrona, B Wu, SL Wu, X Wuestenfeld, J Wulf, E Wunstorf, R Wynne, BM Xaplanteris, L Xella, S Xie, S Xie, Y Xu, D Xu, G Xu, N Yamada, M Yamamoto, A Yamamoto, K Yamamoto, S Yamamura, T Yamaoka, J Yamazaki, T Yamazaki, Y Yan, Z Yang, H Yang, S Yang, UK Yang, Y Yang, Z Yao, WM Yao, Y Yarradoddi, K Yasu, Y Ye, J Ye, S Yilmaz, M Yoosoofmiya, R Yorita, K Yoshida, H Yoshida, R Young, C Youssef, SP Yu, D Yu, J Yuan, J Yuan, L Yurkewicz, A Zaets, VG Zaidan, R Zaitsev, AM Zajacova, Z Zalite, YK Zambrano, V Zanello, L Zarzhitsky, P Zaytsev, A Zdrazil, M Zeitnitz, C Zeller, M Zema, PF Zemla, A Zendler, C Zenin, AV Zenin, O Zenis, T Zenonos, Z Zenz, S Zerwas, D della Porta, GZ Zhan, Z Zhang, H Zhang, J Zhang, Q Zhang, X Zhao, L Zhao, T Zhao, Z Zhemchugov, A Zheng, S Zhong, J Zhou, B Zhou, N Zhou, Y Zhu, CG Zhu, H Zhu, Y Zhuang, X Zhuravlov, V Zilka, B Zimmermann, R Zimmermann, S Zimmermann, S Ziolkowski, M Zitoun, R Zivkovic, L Zmouchko, VV Zobernig, G Zoccoli, A Zolnierowski, Y Zsenei, A zur Nedden, M Zutshi, V AF Aad, G. Abat, E. Abbott, B. Abdallah, J. Abdelalim, A. A. Abdesselam, A. Abdinov, O. Abi, B. Abolins, M. Abramowicz, H. Abreu, H. Acerbi, E. Acharya, B. S. Ackers, M. Adams, D. L. Addy, T. N. Adelman, J. Aderholz, M. Adorisio, C. Adragna, P. Adye, T. Aefsky, S. Aguilar-Saavedra, J. A. Aharrouche, M. Ahlen, S. P. Ahles, F. Ahmad, A. Ahmed, H. Ahsan, M. Aielli, G. Akdogan, T. Akesson, P. F. Akesson, T. P. A. Akimoto, G. Akimov, A. V. Aktas, A. Alam, M. S. Alam, M. A. Albert, J. Albrand, S. Aleksa, M. Aleksandrov, I. N. Aleppo, M. Alessandria, F. Alexa, C. Alexander, G. Alexandre, G. Alexopoulos, T. Alhroob, M. Aliev, M. Alimonti, G. Alison, J. Aliyev, M. Allport, P. P. Allwood-Spiers, S. E. Almond, J. Aloisio, A. Alon, R. Alonso, A. Alonso, J. Alviggi, M. G. Amako, K. Amaral, P. Ambrosini, G. Ambrosio, G. Amelung, C. Ammosov, V. V. Amorim, A. Amoros, G. Amram, N. Anastopoulos, C. Andeen, T. Anders, C. F. Anderson, K. J. Andreazza, A. Andrei, V. Andrieux, M-L Anduaga, X. S. Angerami, A. Anghinolfi, F. Anjos, N. Annovi, A. Antonaki, A. Antonelli, M. Arai, Y. Arce, A. T. H. Archambault, J. P. Arfaoui, S. Arguin, J-F Argyropoulos, T. Arik, E. Arik, M. Armbruster, A. J. Arms, K. E. Armstrong, S. R. Arnaez, O. Arnault, C. Artamonov, A. Arutinov, D. Asai, M. Asfandiyarov, R. Ask, S. Asman, B. Asner, D. Asquith, L. Assamagan, K. Astbury, A. Astvatsatourov, A. Athar, B. Atoian, G. Aubert, B. Auerbach, B. Auge, E. Augsten, K. Aurousseau, M. Austin, N. Avolio, G. Avramidou, R. Axen, D. Ay, C. Azuelos, G. Azuma, Y. Baak, M. A. Baccaglioni, G. Bacci, C. Bach, A. M. Bachacou, H. Bachas, K. Bachy, G. Backes, M. Badescu, E. Bagnaia, P. Bai, Y. Bailey, D. C. Bain, T. Baines, J. T. Baker, O. K. Baker, M. D. Baker, S. Pedrosa, F. Baltasar Dos Santos Banas, E. Banerjee, P. Banerjee, S. Banfi, D. Bangert, A. Bansal, V. Baranov, S. P. Baranov, S. Barashkou, A. Barber, T. Barberio, E. L. Barberis, D. Barbero, M. Bardin, D. Y. Barillari, T. Barisonzi, M. Barklow, T. Barlow, N. Barnett, B. M. Barnett, R. M. Baroncelli, A. Barone, M. Barr, A. J. Barreiro, F. da Costa, J. Barreiro Guimaraes Barrillon, P. Bartheld, V. Bartko, H. Bartoldus, R. Bartsch, D. Bates, R. L. Bathe, S. Batkova, L. Batley, J. R. Battaglia, A. Battistin, M. Battistoni, G. Bauer, F. Bawa, H. S. Bazalova, M. Beare, B. Beau, T. Beauchemin, P. H. Beccherle, R. Becerici, N. Bechtle, R. Beck, G. A. Beck, H. P. Beckingham, M. Becks, K. H. Beddall, A. J. Beddall, A. Bednyakov, V. A. Bee, C. Begel, M. Harpaz, S. Behar Behera, P. K. Beimforde, M. Belanger, G. A. N. Belanger-Champagne, C. Belhorma, B. Bell, P. J. Bell, W. H. Bella, G. Bellagambala, L. Bellina, F. Bellomo, G. Bellomo, M. Belloni, A. Belotskiy, K. Beltramello, O. Belymam, A. Ben Ami, S. Benary, O. Benchekroun, D. Benchouk, C. Bendel, M. Benedict, B. H. Benekos, N. Benhammou, Y. Benincasa, G. P. Benjamin, D. P. Benoit, M. Bensinger, J. R. Benslama, K. Bentvelsen, S. Beretta, M. Berge, D. Kuutmann, E. Bergeaas Berger, N. Berghaus, F. Berglund, E. Beringer, J. Bernardet, K. Bernat, P. Bernhard, R. Bernius, C. Berry, T. Bertin, A. Bertinelli, F. Bertolucci, S. Besana, M. I. Besson, N. Bethke, S. Bianchi, R. M. Bianco, M. Biebel, O. Bieri, M. Biesiada, J. Biglietti, M. Bilokon, H. Binder, M. Bindi, M. Binet, S. Bingul, A. Bini, C. Biscarat, C. Bischof, R. Bitenc, U. Black, K. M. Blair, R. E. Blanch, O. Blanchard, J. -B. Blanchot, G. Blocker, C. Blocki, J. Blondel, A. Blum, W. Blumenschein, U. Boaretto, C. Bobbink, G. J. Bocci, A. Bocian, D. Bock, R. Boehler, M. Boehm, M. Boek, J. Boelaert, N. Boeser, S. Bogaerts, J. A. Bogouch, A. Bohm, C. Bohm, J. Boisvert, V. Bold, T. Boldea, V. Boldyrev, A. Bondarenko, V. G. Bondioli, M. Bonino, R. Boonekamp, M. Boorman, G. Boosten, M. Booth, C. N. Booth, P. S. L. Booth, P. Booth, J. R. A. Bordoni, S. Borer, C. Borer, K. Borisov, A. Borissov, G. Borjanovic, I. Borroni, S. Bos, K. Boscherini, D. Bosman, M. Boterenbrood, H. Botterill, D. Bouchami, J. Boudreau, J. Bouhova-Thacker, E. V. Boulahouache, C. Bourdarios, C. Boveia, A. Boyd, J. Boyer, B. H. Boyko, I. R. Bozhko, N. I. Bozovic-Jelisavcic, I. Braccini, S. Bracinik, J. Braem, A. Brambilla, E. Branchini, P. Brandenburg, G. W. Brandt, A. Brandt, A. Brandt, G. Brandt, O. Bratzler, U. Brau, B. Brau, J. E. Braun, H. M. Bravo, S. Brelier, B. Bremer, J. Brenner, R. Bressler, S. Breton, D. Brett, N. D. Bright-Thomas, P. C. Britton, D. Brochu, F. M. Brock, I. Brock, R. Brodbeck, T. J. Brodet, E. Broggi, E. Bromberg, C. Brooijmans, G. Brooks, W. K. Brown, G. Brubaker, E. de Renstrom, P. A. Bruckman Bruncko, D. Bruneliere, R. Brunet, S. Bruni, A. Bruni, G. Bruschi, M. Buanes, T. Bucci, E. Buchanan, J. Buchanan, N. J. Buchholz, R. Buckley, A. G. Budagov, I. A. Budick, B. Buescher, V. Bugge, L. Buira-Clark, D. Buis, E. J. Bujor, E. Bulekov, O. Bunse, M. Buran, T. Burckhart, H. Burdin, S. Burgess, T. Burke, S. Busato, E. Bussey, R. Buszello, C. P. Butin, E. Butler, B. Butler, J. M. Buttar, C. M. Butterworth, J. M. Byatt, T. Caballero, J. Cabrera Urban, S. Caccia, M. Caforio, D. Cakir, O. Calafiura, P. Calderini, G. Calfayan, P. Calkins, R. Caloba, L. P. Caloi, R. Calvet, D. Camard, A. Camarri, P. Cambiaghi, M. Cameron, D. Cammin, J. Campana, S. Campanelli, M. Canale, V. Canelli, F. Canepa, A. Cantero, J. Capasso, L. Garrido, M. D. M. Capeans Caprini, I. Caprini, M. Caprio, M. Capua, M. Caputo, R. Caramarcu, C. Cardarelli, R. Sas, L. Cardiel Carli, T. Carlino, G. Carminati, L. Caron, B. Caron, S. Carpentieri, C. Montoya, G. D. Carrillo Montero, S. Carron Carter, A. A. Carter, J. R. Carvalho, J. Casadei, D. Casado, M. P. Cascella, M. Cas, C. Hernadez, A. M. Castaneda Castaneda-Miranda, E. Castillo Gimenez, V. Castro, N. F. Castrovillari, F. Cataldi, G. Cataneo, F. Catinaccio, A. Catmore, J. R. Cattai, A. Cattani, G. Caughron, S. Cauz, D. Cavallari, A. Cavalleri, P. Cavalli, D. Cavalli-Sforza, M. Cavasinni, V. Cazzato, A. Ceradini, E. Cerna, C. Cerqueira, A. S. Cerri, A. Cerrito, L. Cerutti, F. Cervetto, M. Cetin, S. A. Cevenini, E. Chafaq, A. Chakraborty, D. Chan, K. Chapman, J. D. Chapman, J. W. Chareyre, E. Charlton, D. G. Charron, S. Chatterjii, S. Chavda, V. Cheatham, S. Chekanov, S. Chekulaev, S. V. Chelkov, G. A. Chen, H. Chen, L. Chen, S. Chen, T. Chen, X. Cheng, S. Cheplakov, A. Chepurnov, V. F. Cherkaoui El Moursli, R. Tcherniatine, V. Chesneanu, D. Cheu, E. Cheung, S. L. Chevalier, L. Chevallier, F. Chiarella, V. Chiefari, G. Chikovani, L. Childers, J. T. Chilingarov, A. Chiodini, G. Chizhov, V. Choudalakis, G. Chouridou, S. Christiansen, T. Christidi, I. A. Christov, A. Chromek-Burckhart, D. Chu, M. L. Chudoba, J. Ciapetti, G. Cicalini, E. Ciftci, A. K. Ciftci, R. Cinca, D. Cindro, V. Ciobotaru, M. D. Ciocca, C. Ciocio, A. Cirilli, M. Citterio, M. Clark, A. Clark, P. J. Cleland, W. Clemens, J. C. Clement, B. Clement, C. Clements, D. Clifft, R. W. Coadou, Y. Cobal, M. Coccaro, A. Cochran, J. Coco, R. Coe, R. Coelli, S. Coggeshall, J. Cogneras, E. Cojocaru, C. D. Colas, J. Cole, B. Colijn, A. P. Collard, C. Collins, N. J. Collins-Tooth, C. Collot, J. Colon, G. Coluccia, R. Comune, G. Muino, P. Conde Coniavitis, E. Consonni, M. Constantinescu, S. Conta, C. Conventi, F. Cook, J. Cooke, M. Cooper, B. D. Cooper-Sarkar, A. M. Cooper-Smith, N. J. Copic, K. Cornelissen, T. Corradi, M. Correard, S. Corriveau, F. Corso-Radu, A. Cortes-Gonzalez, A. Cortiana, G. Costa, G. Costa, M. J. Costanzo, D. Costin, T. Cote, D. Torres, R. Coura Courneyea, L. Couyoumtzelis, C. Cowan, G. Cowden, C. Cox, B. E. Cranmer, K. Cranshaw, J. Cristinziani, M. Crosetti, G. Crupi, R. Crepe-Renaudin, S. Almenar, C. Cuenca Donszelmann, T. Cuhadar Cuneo, S. Cunha, A. Curatolo, M. Curtis, C. J. Cwetanski, P. Czyczula, Z. D'Auria, S. D'Onofrio, M. D'Orazio, A. Gesualdi Mello, A. Da Rocha Da Silva, P. V. M. Da Via, C. Dabrowski, W. Dahlhoff, A. Dai, T. Dallapiccola, C. Dallison, S. J. Dalmau, J. Daly, C. H. Dam, M. Dameri, M. Danielsson, H. O. Dankers, R. Dannheim, D. Dao, V. Darbo, G. Darlea, G. L. Daum, C. Dauvergne, J. P. Davey, W. Davidek, T. Davidson, D. W. Davidson, N. Davidson, R. Davies, M. Davison, A. R. Dawson, I. Dawson, J. W. Daya, R. K. De, K. de Asmundis, R. De Castro, S. Salgado, P. E. De Castro Faria De Cecco, S. de Graat, J. De Groot, N. de Jong, R. De La Cruz-Burelo, E. De La Taille, C. De Lotto, B. De Mora, L. Branco, M. De Oliveira De Pedis, D. de Saintignon, R. De Salvo, A. De Sanctis, U. De Santo, A. De Regie, J. B. De Vivie De Zorzi, G. Dean, S. Deberg, H. Dedes, G. Dedovich, D. V. Defay, P. O. Degenhardt, J. Dehchar, M. Deile, M. Del Papa, C. Del Peso, J. Del Prete, T. Dell'Acqua, A. Dell'Asta, L. Della Pietra, M. della Volpe, D. Delmastro, M. Delpierre, P. Delruelle, N. Delsart, P. A. Deluca, C. Demers, S. Demichev, M. Demirkoz, B. Deng, J. Deng, W. Denisov, S. P. Dennis, C. Derkaoui, J. E. Derue, F. Dervan, R. Desch, K. Deviveiros, P. O. Dewhurst, A. DeWilde, B. Dhaliwal, S. Dhullipudi, R. Di Ciaccio, A. Di Ciaccio, L. Di Domenico, A. Di Girolamo, A. Di Girolamo, B. Di Luise, S. Di Mattia, A. Di Nardo, R. Di Simone, A. Di Sipio, R. Diaz, M. A. Gomez, M. M. Diaz Diblen, F. Diehl, E. B. Dietl, H. Dietrich, J. Dietzsch, T. A. Diglio, S. Yagci, K. Dindar Dingfelder, D. J. Dionisi, C. Dipanjan, R. Dita, P. Dita, S. Dittus, F. Djama, F. Djilkibaev, R. Djobava, T. do Vale, M. A. B. Wemans, A. Do Valle Doan, T. K. O. Dobbs, M. Dobinson, R. Dobos, D. Dobson, E. Dobson, M. Dodd, J. Dogan, O. B. Doglioni, C. Doherty, T. Doi, Y. Dolejsi, J. Dolenc, I. Dolezal, Z. Dolgoshein, B. A. Dohmae, T. Domingo, E. Donega, M. Donini, J. Dopke, J. Doria, A. Dos Anjos, A. Dosil, M. Dotti, A. Dova, M. T. Dowell, J. D. Doxiadis, A. Doyle, A. T. Dragic, J. Drakoulakos, D. Drasal, Z. Drees, J. Dressnandt, N. Drevermann, H. Driouichi, C. Dris, M. Drohan, J. G. Dubbert, J. Dubbs, T. Duchovni, E. Duckeck, G. Dudarev, A. Dudziak, F. Duehrssen, M. Duer, H. Duerdoth, I. P. Duflot, L. Dufour, M. -A. Dunford, M. Yildiz, H. Duran Dushkin, A. Duxfield, R. Dwuznik, M. Dydak, F. Dzahini, D. Dueren, M. Ebenstein, W. L. Ebke, J. Eckert, S. Eckweiler, S. Edmonds, K. Edwards, C. A. Efthymiopoulos, I. Egorov, K. Ehrenfeld, W. Ehrich, T. Eifert, T. Eigen, G. Einsweiler, K. Eisenhandler, E. Ekelof, T. El Kacimi, M. Ellert, M. Elles, S. Ellinghaus, F. Ellis, K. Ellis, N. Elmsheuser, J. Elsing, M. Ely, R. Emeliyanov, D. Engelmann, R. Engl, A. Epp, B. Eppig, A. Erdmann, J. Ereditato, A. Eremin, V. Eriksson, D. Ermoline, I. Ernst, J. Ernst, M. Ernwein, J. Errede, D. Errede, S. Ertel, E. Escalier, M. Escobar, C. Espinal Curull, X. Esposito, B. Etienne, F. Etienvre, A. I. Etzion, E. Evans, H. Evdokimov, V. N. Fabbri, L. Fabre, C. Facius, K. Fakhrutdinov, R. M. Falciano, S. Falou, A. C. Fang, Y. Fanti, M. Farbin, A. Farilla, A. Farley, J. Farooque, T. Farrington, S. M. Farthouat, P. Fassnacht, P. Fassouliotis, D. Fatholahzadeh, B. Fayard, L. Fayette, F. Febbraro, R. Federic, R. Fedin, O. L. Fedorko, I. Fedorko, W. Feligioni, L. Felzmann, C. U. Feng, C. Feng, E. J. Fenyuk, A. B. Ferencei, J. Ferland, J. Fernandes, B. Fernando, W. Ferrag, S. Ferrando, J. Ferrara, V. Ferrari, A. Ferrari, P. Ferrari, R. Ferrer, A. Ferrer, M. L. Ferrere, D. Ferretti, C. Ferro, F. Fiascaris, M. Fichet, S. Fiedler, F. Filipcic, A. Filippas, A. Filthaut, F. Fincke-Keeler, M. Fiolhais, M. C. N. Fiorini, L. Firan, A. Fischer, G. Fischer, P. Fisher, M. J. Fisher, S. M. Flacher, H. F. Flammer, J. Fleck, I. Fleckner, J. Fleischmann, P. Fleischmann, S. Fleuret, F. Flick, T. Castillo, L. R. Flores Flowerdew, M. J. Foehlisch, F. Fokitis, M. Martin, T. Fonseca Fopma, J. Forbush, D. A. Formica, A. Forti, A. Fortin, D. Foster, J. M. Fournier, D. Foussat, A. Fowler, A. J. Fowler, K. Fox, H. Francavilla, P. Franchino, S. Francis, D. Franklin, M. Franz, S. Fraternali, M. Fratina, S. Freestone, J. French, S. T. Froeschl, R. Froidevaux, D. Frost, J. A. Fukunaga, C. Torregrosa, E. Fullana Fuster, J. Gabaldon, C. Gabizon, O. Gadfort, T. Gadomski, S. Gagliardi, G. Gagnon, P. Galea, C. Gallas, E. J. Gallas, M. V. Gallo, V. Gallop, B. J. Gallus, P. Galyaev, E. Gan, K. K. Gao, Y. S. Gapienko, V. A. Gaponenko, A. Garcia-Sciveres, M. Garcia, C. Navarro, J. E. Garcia Garde, V. Gardner, R. W. Garelli, N. Garitaonandia, H. Garonne, V. Garvey, J. Gatti, C. Gaudio, G. Gaumer, O. Gauzzi, P. Gavrilenko, I. L. Gay, C. Gaycken, G. Gayde, J. -C. Gazis, E. N. Ge, R. Gee, C. N. P. Geich-Gimbel, Ch. Gellerstedt, K. Gemme, C. Genest, M. H. Gentile, S. Georgatos, F. George, S. Gerlach, P. Gershon, A. Geweniger, C. Ghazlane, H. Ghez, P. Ghodbane, N. Giacobbe, B. Giagu, S. Giakoumopoulou, V. Giangiobbe, V. Gianotti, F. Gibbard, B. Gibson, A. Gibson, S. M. Gieraltowski, G. F. Gilbert, L. M. Gilchriese, M. Gildemeister, O. Gilewsky, V. Gillman, A. R. Gingrich, D. M. Ginzburg, J. Giokaris, N. Giordani, M. P. Giordano, R. Giorgi, F. M. Giovannini, R. Giraud, P. F. Girtler, P. Giugni, D. Giusti, P. Gjelsten, B. K. Gladilin, L. K. Glasman, C. Glazov, A. Glitza, K. W. Glonti, G. L. Gnanvo, K. G. Godfrey, J. Godlewski, J. Goebel, M. Goepfert, T. Goeringer, C. Goessling, C. Goettfert, T. Goggi, V. Goldfarb, S. Goldin, D. Goldschmidt, N. Golling, T. Gollub, N. P. Golovnia, S. N. Gomes, A. Fajardo, L. S. Gomez Goncalo, R. Gonella, L. Gong, C. Gonidec, A. Gonzalez de la Hoz, S. Gonzalez Silva, M. L. Gonzalez-Pineiro, B. Gonzalez-Sevilla, S. Goodson, J. J. Goossens, L. Gorbounov, P. A. Gordon, H. A. Gorelov, I. Gorfine, G. Gorini, B. Gorini, E. Gorisek, A. Gornicki, E. Gorokhov, S. A. Gorski, B. T. Goryachev, V. N. Gosdzik, B. Gosselink, M. Gostkin, M. I. Gouanere, M. Eschrich, I. Gough Gouighri, M. Goujdami, D. Goulette, M. P. Goussiou, A. G. Goy, C. Grabowska-Bold, I. Grabski, V. Grafstroem, P. Grah, C. Grahn, K. -J. Grancagnolo, F. Grancagnolo, S. Grassi, V. Gratchev, V. Grau, N. Gray, H. M. Gray, J. A. Graziani, E. Green, B. Greenfield, D. Greenshaw, T. Greenwood, Z. D. Gregor, I. M. Grenier, P. Grewal, A. Griesmayer, E. Griffiths, J. Grigalashvili, N. Grillo, A. A. Grimaldi, F. Grimm, K. Grinstein, S. Gris, P. L. Y. Grishkevich, Y. V. Groer, L. S. Grognuz, J. Groh, M. Groll, M. Gross, E. Grosse-Knetter, J. Groth-Jensen, J. Gruwe, M. Grybel, K. Guarino, V. J. Guescini, F. Guicheney, C. Guida, A. Guillemin, T. Guler, H. Gunther, J. Guo, B. Gupta, A. Gusakov, Y. Gushchin, V. N. Gutierrez, A. Gutierrez, P. Guttman, N. Gutzwiller, O. Guyot, C. Gwenlan, C. Gwilliam, C. B. Haas, A. Haas, S. Haber, C. Haboubi, G. Hackenburg, R. Hadavand, H. K. Hadley, D. R. Haeberli, C. Haefner, P. Haertel, R. Hahn, F. Haider, S. Hajduk, Z. Hakobyan, H. Hakobyan, R. H. Haller, J. Hallewell, G. D. Hamacher, K. Hamilton, A. Hamilton, S. Han, H. Han, L. Hanagaki, K. Hance, M. Handel, C. Hanke, P. Hansen, C. J. Hansen, J. R. Hansen, J. B. Hansen, J. D. Hansen, P. H. Hansl-Kozanecka, T. Hansson, P. Hara, K. Hare, G. A. Harenberg, T. Harper, R. Harrington, R. D. Harris, O. M. Harrison, K. Hart, J. C. Hartert, J. Hartjes, F. Haruyama, T. Harvey, A. Hasegawa, S. Hasegawa, Y. Hashemi, K. Hassani, S. Hatch, M. Hauff, D. Haug, S. Hauschild, M. Hauser, R. Havranek, M. Hawes, B. M. Hawkes, C. M. Hawkings, R. J. Hawkins, D. Hayakawa, T. Hayward, H. S. Haywood, S. J. Hazen, E. He, M. He, Y. P. Head, S. J. Hedberg, V. Heelan, L. Heim, S. Heinemann, B. Heinemann, F. E. W. Heisterkamp, S. Helary, L. Heldmann, M. Heller, M. Hellman, S. Helsens, C. Hemperek, T. Henderson, R. C. W. Hendriks, P. J. Henke, M. Henrichs, A. Correia, A. M. Henriques Henrot-Versille, S. Henry-Couannier, F. Hensel, C. Henss, T. Hernandez Jimenez, Y. Hershenhorn, A. D. Herten, G. Hertenberger, R. Hervas, L. Hess, M. Hessey, N. P. Hidvegi, A. Higon-Rodriguez, E. Hill, D. Hill, J. C. Hill, N. Hiller, K. H. Hillert, S. Hillier, S. J. Hinchliffe, I. Hindson, D. Hines, E. Hirose, M. Hirsch, F. Hirschbuehl, D. Hobbs, J. Hod, N. Hodgkinson, M. C. Hodgson, P. Hoecker, A. Hoeferkamp, M. R. Hoffman, J. Hoffmann, D. Hohlfeld, M. Holder, M. Hollins, T. I. Hollyman, G. Holmes, A. Holmren, S. O. Holy, T. Holzbauer, J. L. Homer, R. J. Homma, Y. Horazdovsky, T. Hori, T. Horn, C. Horner, S. Horvat, S. Hostachy, J. -Y. Hott, T. Hou, S. Houlden, M. A. Hoummada, A. Howe, T. Howell, D. F. Hrivnac, J. Hruska, I. Hryn'ova, T. Hsu, P. J. Hsu, S. -C. Huang, G. S. Hubacek, Z. Hubaut, F. Huegging, F. Huffman, B. T. Hughes, E. W. Hughes, G. Hughes-Jones, R. E. Hurst, P. Hurwitz, M. Husemann, U. Huseynov, N. Huston, J. Huth, J. Iacobucci, G. Iakovidis, G. Ibbotson, M. Ibragimov, I. Ichimiya, R. Iconomidou-Fayard, L. Idarraga, J. Idzik, M. Iengo, R. Igonkina, O. Ikegami, Y. Ikeno, M. Ilchenko, Y. Iliadis, D. Imbault, D. Imhaeuser, M. Imori, M. Ince, T. Inigo-Golfin, J. Ioannou, R. Iodice, M. Ionescu, G. Irles Quiles, A. Ishii, K. Ishikawa, A. Ishino, M. Ishizawa, Y. Ishmukhametov, R. Isobe, T. Issakov, V. Issever, C. Istin, S. Itoh, Y. Ivashin, A. V. Iwanski, W. Iwasaki, H. Izen, J. M. Izzo, V. Jackson, B. Jackson, J. Jackson, J. N. Jackson, P. Jaekel, M. R. Jahoda, M. Jain, V. Jakobs, K. Jakobsen, S. Jakubek, J. Jana, D. Jansen, E. Jantsch, A. Janus, M. Jared, R. C. Jarlskog, G. Jeanty, L. Jelen, K. Jen-La Plante, I. Jenni, P. Jeremie, A. Jez, P. Jezequel, S. Ji, W. Jia, J. Jiang, Y. Belenguer, M. Jimenez Jin, G. Jin, S. Jinnouchi, O. Joffe, D. Johansen, L. G. Johansen, M. Johansson, K. E. Johansson, P. Johnert, S. Johns, K. A. Jon-And, K. Jones, A. Jones, G. Jones, M. Jones, R. W. L. Jones, T. W. Jones, T. J. Jonsson, O. Joo, K. K. Joos, D. Joram, C. Jorge, P. M. Jorgensen, S. Juranek, V. Jussel, P. Kabachenko, V. V. Kabana, S. Kaci, M. Kaczmarska, A. Kado, M. Kagan, H. Kagan, M. Kagawa, S. Kaiser, S. Kajomovitz, E. Kalinin, S. Kalinovskaya, L. V. Kalinowski, A. Kama, S. Kambara, H. Kanaya, N. Kaneda, M. Kantserov, V. A. Kanzaki, J. Kaplan, B. Kapliy, A. Kaplon, J. Karagounis, M. Unel, M. Karagoz Karr, K. Kartvelishvili, V. Karyukhin, A. N. Kashif, L. Kasmi, A. Kass, R. D. Kastanas, A. Kastoryano, M. Kataoka, M. Kataoka, Y. Katsoufis, E. Katzy, J. Kaushik, V. Kawagoe, K. Kawamoto, T. Kawamura, G. Kayl, M. S. Kayumov, F. Kazanin, V. A. Kazarinov, M. Y. Kazi, S. I. Keates, J. R. Keeler, R. Keener, P. T. Kehoe, R. Keil, M. Kekelidze, G. D. Kelly, M. Kennedy, J. Kenyon, M. Kepka, O. Kerschen, N. Kersevan, B. P. Kersten, S. Kessoku, K. Ketterer, C. Khakzad, M. Khalil-Zada, F. Khandanyan, H. Khanov, A. Kharchenko, D. Khodinov, A. Kholodenko, A. G. Khomich, A. Khoriauli, G. Khovanskiy, N. Khovanskiy, V. Khramov, E. Khubua, J. Kilvington, G. Kim, H. Kim, M. S. Kim, P. C. Kim, S. H. Kind, O. Kind, P. King, B. T. Kirk, J. Kirsch, G. P. Kirsch, L. E. Kiryunin, A. E. Kisielewska, D. Kisielewski, B. Kittelmann, T. Kiver, A. M. Kiyamura, H. Kladiva, E. Klaiber-Lodewigs, J. Klein, M. Klein, U. Kleinknecht, K. Klemetti, M. Klier, A. Klimentov, A. Klimkovich, T. Klingenberg, R. Klinkby, E. B. Klioutchnikova, T. Klok, P. F. Klous, S. Kluge, E. -E. Kluge, T. Kluit, P. Klute, M. Kluth, S. Knecht, N. S. Kneringer, E. Knobloch, J. Ko, B. R. Kobayashi, T. Kobel, M. Koblitz, B. Kocian, M. Kocnar, A. Kodys, P. Koeneke, K. Konig, A. C. Koenig, S. Koenig, S. Koepke, L. Koetsveld, F. Koevesarki, P. Koffas, T. Koffeman, E. Kohn, F. Kohout, Z. Kohriki, T. Kokott, T. Kolachev, G. M. Kolanoski, H. Kolesnikov, V. Koletsou, I. Koll, J. Kollar, D. Kollefrath, M. Kolos, S. Kolya, S. D. Komar, A. A. Komaragiri, J. R. Kondo, T. Kono, T. Kononov, A. I. Konoplich, R. Konovalov, S. P. Konstantinidis, N. Kootz, A. Koperny, S. Kopikov, S. V. Korcyl, K. Kordas, K. Koreshev, V. Korn, A. Korolkov, I. Korolkova, E. V. Korotkov, V. A. Korsmo, H. Kortner, O. Kostka, P. Kostyukhin, V. V. Kotamaeki, M. J. Kotchetkov, D. Kotv, S. Kotov, V. M. Kotov, K. Y. Koupilova, Z. Kourkoumelis, C. Koutsman, A. Kovar, S. Kowalewski, R. Kowalski, H. Kowalski, T. Z. Kozanecki, W. Kozhin, A. S. Kral, V. Kramarenko, V. A. Kramberger, G. Kramer, A. Krasel, O. Krasny, M. W. Krasznahorkay, A. Kreisel, A. Krejci, F. Kretzschmar, J. Krieger, N. Krieger, P. Krivkova, P. Krobath, G. Kroeninger, K. Kroha, H. Kroll, J. Kroseberg, J. Krstic, J. Kruchonak, U. Krueger, H. Krumshteyn, Z. V. Kubota, T. Kuehn, S. Kugel, A. Kuhl, T. Kuhn, D. Kukhtin, A. Kulchitsky, Y. Kuleshov, S. Kummer, C. Kuna, M. Kundu, N. Kunkle, J. Kupco, A. Kurashige, H. Kurata, M. Kurchaninov, L. L. Kurochkin, Y. A. Kus, V. Kuykendall, W. Kuzhir, P. Kuznetsova, E. Kvasnicka, O. Kwee, R. La Rotonda, L. Labarga, L. Labbe, J. Lacasta, C. Lacava, F. Lacker, H. Lacour, D. Lacuesta, V. R. Ladygin, E. Lafaye, R. Laforge, B. Lagouri, T. Lai, S. Lamanna, M. Lambacher, M. Lampen, C. L. Lampl, W. Lancon, E. Landgraf, U. Landon, M. P. J. Landsman, H. Lane, J. L. Lankford, A. J. Lanni, F. Lantzsch, K. Lanza, A. Lapin, V. V. Laplace, S. Lapoire, C. Laporte, J. F. Lari, T. Larionov, A. V. Larner, A. Lasseur, C. Lassnig, M. Lau, W. Laurelli, P. Lavorato, A. Lavrijsen, W. Laycock, P. Lazarev, A. B. Lazzaro, A. Le Dortz, O. Le Guirriec, E. Le Maner, C. Le Menedeu, E. Le Vine, M. Leahu, M. Lebedev, A. Lebel, C. Lechowski, M. LeCompte, T. Ledroit-Guillon, F. Lee, H. Lee, J. S. H. Lee, S. C. Lefebvre, M. Legendre, M. Leger, A. LeGeyt, B. C. Legger, F. Leggett, C. Lehmacher, M. Miotto, G. Lehmann Lehto, M. Lei, X. Leitner, R. Lellouch, D. Lellouch, J. Leltchouk, M. Lendermann, V. Leney, K. J. C. Lenz, T. Lenzen, G. Lenzi, B. Leonhardt, K. Lepidis, J. Leroy, C. Lessard, J. -R. Lesser, J. Lester, C. G. Cheong, A. Leung Fook Leveque, J. Levin, D. Levinson, L. J. Levitski, M. S. Levonian, S. Lewandowska, M. Leyton, M. Li, H. Li, S. Li, X. Liang, Z. Liang, Z. Liberti, B. Lichard, R. Lichtnecker, M. Lie, K. Liebig, W. Lifshitz, R. Lilley, J. N. Lim, H. Limosani, A. Limper, M. Lin, S. C. Linde, F. Linnemann, J. T. Lipeles, E. Lipinsky, L. Lipniacka, A. Liss, T. M. Lissauer, D. Lister, A. Litke, A. M. Liu, C. Liu, D. Liu, H. Liu, J. B. Liu, M. Liu, S. Liu, T. Liu, Y. Livan, M. Lleres, A. Lloyd, S. L. Lobkowicz, F. Lobodzinska, E. Loch, P. Lockman, W. S. Lockwitz, S. Loddenkoetter, T. Loebinger, F. K. Loginov, A. Loh, C. W. Lohse, T. Lohwasser, K. Lokajicek, M. Loken, J. Long, R. E. Lopes, L. Mateos, D. Lopez Losada, M. Loscutoff, P. Losty, M. J. Lou, X. Lounis, A. Loureiro, K. F. Love, J. Love, P. A. Lowe, A. J. Lu, F. Lu, J. Lu, L. Lubatti, H. J. Lucas, S. Luci, C. Lucotte, A. Ludwig, A. Ludwig, D. Ludwig, I. Ludwig, J. Luehring, F. Luijckx, G. Luisa, L. Lumb, D. Luminari, L. Lund, E. Lund-Jensen, B. Lundberg, B. Lundberg, J. Lundquist, J. Lupi, A. Lutz, G. Lynn, D. Lynn, J. Lys, J. Lytken, E. Ma, H. Ma, L. L. Maassen, M. Goia, J. A. Macana Maccarrone, G. Macchiolo, A. Macek, B. Miguens, J. Machado Macina, D. Mackeprang, R. Macpherson, A. MacQueen, D. Madaras, R. J. Mader, W. F. Maenner, R. Maeno, T. Maettig, F. Maettig, S. Martins, P. J. Magalhaes Magass, C. Magradze, E. Magrath, C. A. Mahalalel, Y. Mahboubi, K. Mahmood, A. Mahout, G. Maiani, C. Maidantchik, C. Maio, A. Mair, G. M. Majewski, S. Makida, Y. Makouski, M. Makovec, N. Malecki, Pa. Malecki, P. Maleev, V. P. Malek, F. Mallik, U. Malon, D. Maltezos, S. Malyshev, V. Malyukov, S. Mambelli, M. Mameghani, R. Mamuzic, J. Manabe, A. Manara, A. Manca, G. Mandelli, L. Mandic, I. Mandrysch, R. Maneira, J. Mangeard, P. S. Mangin-Brinet, M. Manjavidze, I. D. Mann, W. A. Manning, P. M. Manolopoulos, S. Manousakis-Katsikakis, A. Mansoulie, B. Manz, A. Mapelli, A. Mapelli, L. March, L. Marchand, J. F. Marchese, F. Marchesotti, M. Marchiori, G. Marcisovsky, M. Marin, A. Marino, C. P. Marroquim, F. Marshall, R. Marshall, Z. Martens, F. K. Marti-Garcia, S. Martin, A. J. Martin, A. J. Martin, B. Martin, B. Martin, F. F. Martin, J. P. Martin, Ph. Martin, T. A. Latour, B. Martin dit Martinez, M. Outschoorn, V. Martinez Martini, A. Martins, J. Martynenko, V. Martyniuk, A. C. Marzano, F. Marzin, A. Masetti, L. Mashimo, T. Mashinistov, R. Masik, J. Maslennikov, A. L. Mass, M. Massa, I. Massaro, G. Massol, N. Mastroberardino, A. Masubuchi, T. Mathes, M. Matricon, P. Matsumoto, H. Matsunaga, H. Matsushita, T. Mattravers, C. Maugain, J. M. Maxfield, S. J. May, E. N. Mayer, J. K. Mayne, A. Mazini, R. Mazur, M. Mazzanti, M. Mazzoni, E. Mazzucato, F. Mc Donald, J. Mc Kee, S. P. McCarn, A. McCarthy, R. L. McCubbin, N. A. McFarlane, K. W. McGarvie, S. McGlone, H. Mchedlidze, G. McLaren, R. A. McMahon, S. J. McMahon, T. R. McMahon, T. J. McPherson, R. A. Meade, A. Mechnich, J. Mechtel, M. Medinnis, M. Meera-Lebbai, R. Meguro, T. M. Mehdiyev, R. Mehlhase, S. Mehta, A. Meier, K. Meinhardt, J. Meirose, B. Meirosu, C. Melachrinos, C. Garcia, B. R. Mellado Mendez, R. Mendoza Navas, L. Meng, Z. Menke, S. Menot, C. Meoni, E. Merkl, D. Mermod, P. Merola, L. Meroni, C. Merritt, F. S. Messina, A. M. Messmer, I. Metcalfe, J. Mete, A. S. Meuser, S. Meyer, J. -P. Meyer, J. Meyer, J. Meyer, T. C. Meyer, W. T. Miao, J. Michal, S. Micu, L. Middleton, R. P. Miele, P. Migas, S. Migliaccio, A. Mijovic, L. Mikenberg, G. Mikestikova, M. Mikulec, B. Mikuz, M. Miller, D. W. Miller, R. J. Mills, W. J. Mills, C. M. Milov, A. Milstead, D. A. Milstein, D. Mima, S. Minaenko, A. A. Minano, M. Minashvili, I. A. Mincer, A. I. Mindur, B. Mineev, M. Ming, Y. Mir, L. M. Mirabelli, G. Miralles Verge, L. Misawa, S. Miscetti, S. Misiejuk, A. Mitra, A. Mitrevski, J. Mitrofanov, G. Y. Mitsou, V. A. Miyagawa, P. S. Miyazaki, Y. Mjornmark, J. U. Mladenov, D. Moa, T. Moch, M. Mockett, P. Moed, S. Moeller, V. Moenig, K. Moeser, N. Mohn, B. Mohr, W. Mohrdieck-Moeck, S. Moisseev, A. M. Moles-Valls, R. Molina-Perez, J. Moll, A. Moneta, L. Monk, J. Monnier, E. Montarou, G. Montesano, S. Monticelli, F. Moore, R. W. Moore, T. B. Moorhead, C. F. Herrera, C. Mora Moraes, A. Morais, A. Morel, J. Morello, G. Moreno, D. Moreno Llacer, M. Morettini, P. Morgan, D. Morii, M. Morin, J. Morita, Y. Morley, A. K. Mornacchi, G. Morone, M. -C. Morozov, S. V. Morris, J. D. Moser, H. G. Mosidze, M. Moss, J. Moszczynski, A. Mount, R. Mountricha, E. Mouraviev, S. V. Moye, T. H. Moyse, E. J. W. Mudrinic, M. Mueller, F. Mueller, J. Mueller, K. Mueller, T. A. Muenstermann, D. Muijs, A. Muir, A. Munar, A. Munday, D. J. Munwes, Y. Murakami, K. Garcia, R. Murillo Murray, W. J. Mussche, I. Musto, E. Myagkov, A. G. Myska, M. Nadal, J. Nagai, K. Nagano, K. Nagasaka, Y. Nairz, A. M. Naito, D. Nakamura, K. Nakano, I. Nakatsuka, H. Nanava, G. Napier, A. Nash, M. Nasteva, I. Nation, N. R. Nattermann, T. Naumann, T. Nauyock, F. Navarro, G. Nderitu, S. K. Neal, H. A. Nebot, E. Nechaeva, P. Negri, A. Negri, G. Negroni, S. Nektarijevic, S. Nelson, A. Nelson, T. K. Nemecek, S. Nemethy, P. Nepomuceno, A. A. Nessi, M. Nesterov, S. Y. Neubauer, M. S. Neukermans, L. Neusiedl, A. Neves, R. N. Nevski, P. Newcomer, F. M. Nicholson, C. Nickerson, R. B. Nicolaidou, R. Nicolas, L. Nicoletti, G. Nicquevert, B. Niedercorn, E. Nielsen, J. Niinikoski, T. Niinimaki, M. J. Nikiforov, A. Nikolaev, K. Nikolic-Audit, I. Nikolopoulos, K. Nilsen, H. Nilsson, B. S. Nilsson, P. Nisati, A. Nishiyama, T. Nisius, R. Nodulman, L. Nomachi, M. Nomidis, I. Nomoto, H. Nordberg, M. Nordkvist, B. Norniella Francisco, O. Norton, P. R. Notz, D. Novakova, J. Nozaki, M. Nozicka, M. Nugent, I. M. Nuncio-Quiroz, A. -E. Nunes, R. Hanninger, G. Nunes Nunnemann, T. Nurse, E. Nyman, T. O'Neale, S. W. O'Neil, D. C. O'Shea, V. Oakham, F. G. Oberlack, H. Obermaier, M. Oberson, P. Ochi, A. Oda, S. Odaka, S. Odier, J. Odino, G. A. Ogren, H. Oh, A. Oh, S. H. Ohm, C. C. Ohshima, T. Ohshita, H. Ohska, T. K. Ohsugi, T. Okada, S. Okawa, H. Okumura, Y. Okuyama, T. Olcese, M. Olchevski, A. G. Oliveira, M. Damazio, D. Oliveira Oliver, C. Oliver, J. Oliver Garcia, E. Olivito, D. Gomez, M. Olivo Olszewski, A. Olszowska, J. Omachi, C. Onea, A. Onofre, A. Onyisi, P. U. E. Oram, C. J. Ordonez, G. Oreglia, M. J. Orellana, F. Oren, Y. Orestano, D. Orlov, I. Barrera, C. Oropeza Orr, R. S. Orsini, E. Ortega, E. O. Osborne, L. S. Osculati, B. Ospanov, R. Osuna, C. Ottersbach, J. P. Ottewell, B. Ould-Saada, F. Ouraou, A. Ouyang, Q. Owen, M. Owen, S. Oyarzun, A. Oye, O. K. Ozcan, V. E. Ozone, K. Ozturk, N. Pacheco Pages, A. Padilla Aranda, C. Paganis, E. Pahl, C. Paige, F. Pajchel, K. Pal, A. Palestini, S. Palla, J. Pallin, D. Palma, A. Palmer, J. D. Palmer, M. J. Pan, Y. B. Panagiotopoulou, E. Panes, B. Panikashvili, N. Panin, V. N. Panitkin, S. Pantea, D. Panuskova, M. Paolone, V. Paoloni, A. Papadopoulos, I. Papadopoulou, Th. D. Park, S. J. Park, W. Parker, M. A. Parker, S. I. Parodi, F. Parsons, J. A. Parzefall, U. Pasqualucci, E. Passeri, A. Pastore, F. Pastore, Fr. Pasztor, G. Pataraia, S. Pater, J. R. Patricelli, S. Patwa, A. Pauly, T. Peak, L. S. Pecsy, M. Morales, M. I. Pedraza Peeters, S. J. M. Peez, M. Peleganchuk, S. V. Peng, H. Pengo, R. Penson, A. Penwell, J. Perantoni, M. Perez, K. Perez Codina, E. Perez Garcia-Estan, M. T. Reale, V. Perez Peric, I. Perini, L. Pernegger, H. Perrino, R. Perrodo, P. Persembe, S. Perus, P. Peshekhonov, V. D. Petereit, E. Peters, O. Petersen, B. A. Petersen, J. Petersen, T. C. Petit, E. Petridou, C. Petrolo, E. Petrucci, F. Petschull, D. Petteni, M. Pezoa, R. Pfeifer, B. Phan, A. Phillips, A. W. Piacquadio, G. Piccinini, M. Pickford, A. Piegaia, R. Pilcher, J. E. Pilkington, A. D. Dos Santos, M. A. Pimenta Pina, J. Pinamonti, M. Pinfold, J. L. Ping, J. Pinto, B. Pinzon, G. Pirotte, O. Pizio, C. Placakyte, R. Plamondon, M. Plano, W. G. Pleier, M. -A. Pleskach, A. V. Poblaguev, A. Poddar, S. Podlyski, F. Poffenberger, P. Poggioli, L. Pohl, M. Polci, F. Polesello, G. Policicchio, A. Polini, A. Poll, J. Polychronakos, V. Pomarede, D. M. Pomeroy, D. Pommes, K. Pontecorvo, L. Pope, B. G. Popescu, R. Popovic, D. S. Poppleton, A. Papule, J. Bueso, X. Portell Porter, R. Posch, C. Pospelov, G. E. Pospichal, R. Pospisil, S. Potekhin, M. Potrap, I. N. Potter, C. J. Potter, C. T. Potter, K. P. Poulard, G. Pousada, A. Poveda, J. Prabhu, R. Pralavorio, P. Prasad, S. Prata, M. Pravahan, R. Pretzl, K. Pribyl, L. Price, D. Price, L. E. Price, M. J. Prichard, P. M. Prieur, D. Primavera, M. Primor, D. Prokofiev, K. Prokoshin, F. Protopopescu, S. Proudfoot, J. Prudent, X. Przysiezniak, H. Psoroulas, S. Ptacek, E. Puigdengoles, C. Purdham, J. Purohit, M. Puzo, P. Pylypchenko, Y. Qi, M. Qian, J. Qian, W. Qian, Z. Qin, Z. Qing, D. Quadt, A. Quarrie, D. R. Quayle, W. B. Quinonez, F. Raas, M. Radeka, V. Radescu, V. Radics, B. Rador, T. Ragusa, F. Rahal, G. Rahimi, A. M. Rahm, C. Raine, C. Raith, B. Rajagopalan, S. Rajek, S. Rammensee, M. Rammer, H. Rammes, M. Ramstedt, M. Ratoff, P. N. Rauscher, F. Rauter, E. Raymond, M. Read, A. L. Rebuzzi, D. M. Redelbach, A. Redlinger, G. Reece, R. Reeves, K. Rehak, M. Reichold, A. Reinherz-Aronis, E. Reinsch, A. Reisinger, I. Reeves, K. Rehak, M. Reichold, A. Reinherz-Aronis, E. Reinsch, A. Reisinger, I. Reljic, D. Rembser, C. Ren, Z. L. Renkel, P. Rensch, B. Rescia, S. Rescigno, M. Resconi, S. Resende, B. Rezaie, E. Reznicek, P. Rezvani, R. Richards, A. Richards, R. A. Richter, D. Richter, R. Richter-Was, E. Ridel, M. Rieke, S. Rijpstra, M. Rijssenbeek, M. Rimoldi, A. Rinaldi, L. Rios, R. R. Risler, C. Riu, I. Rivoltella, G. Rizatdinova, F. Rizvi, E. Roa Romero, D. A. Robertson, S. H. Robichaud-Veronneau, A. Robins, S. Robinson, D. Robinson, J. E. M. Robinson, M. Robson, A. de Lima, J. G. Rocha Roda, C. Dos Santos, D. Roda Rodier, S. Rodriguez, D. Garcia, Y. Rodriguez Roe, S. Rohne, O. Rojo, V. Rolli, S. Romaniouk, A. Romanov, V. M. Romeo, G. Romero Maltrana, D. Roos, L. Ros, E. Rosati, S. Rosenbaum, F. Rosenbaum, G. A. Rosenberg, E. I. Rosselet, L. Rossetti, V. Rossi, L. P. Rossi, L. Rotaru, M. Rothberg, J. Rottlaender, I. Rousseau, D. Royon, C. R. Rozanov, A. Rozen, Y. Ruan, X. Ruckert, B. Ruckstuhl, N. Rud, V. I. Rudolph, G. Ruehr, F. Ruggieri, F. Ruiz-Martinez, A. Rulikowska-Zarebska, E. Rumiantsev, V. Rumyantsev, L. Runge, K. Runolfsson, O. Rurikova, Z. Rusakovich, N. A. Rust, D. R. Rutherfoord, J. P. Ruwiede, C. Ruzicka, R. Ryabov, Y. F. Ryadovikov, V. Ryan, P. Rybkin, G. Rzaeva, S. Saavedra, A. F. Sadrozinski, H. F. -W. Sadykov, R. Sakamoto, H. Sala, P. Salamanna, G. Salamon, A. Saleem, M. S. Salihagic, D. Salnikov, A. Salt, J. Salto Bauza, O. Ferrando, B. M. Salvachua Salvatore, D. Salvatore, F. Salvucci, A. Salzburger, A. Sampsonidis, D. Samset, B. H. Sanchez Sanchez, C. A. Sanchis Lozano, M. A. Sandaker, H. Sander, H. G. Sanders, M. P. Sandhoff, M. Sandhu, P. Sandstroem, R. Sandvoss, S. Sankey, D. P. C. Sanny, B. Sansoni, A. Rios, C. Santamarina Santoni, C. Santonico, R. Saraiva, J. G. Sarangi, T. Sarkisyan-Grinbaum, E. Sarri, F. Sasaki, O. Sasaki, T. Sasao, N. Satsounkevitch, I. Sauvage, G. Savard, R. Savine, A. Y. Savinov, V. Savoy-Navarro, A. Savva, R. Sawyer, L. Saxon, D. H. Says, L. P. Sbarra, C. Sbrizzi, A. Scannicchio, D. A. Schaarschmidt, J. Schacht, R. Schaefer, U. Schaetzel, S. Schaffer, A. C. Schaile, D. Schaller, M. Schamberger, R. D. Schamov, A. G. Schegelsky, V. A. Scheirich, D. Schernau, M. Scherzer, M. I. Schiavi, C. Schieck, J. Schioppa, M. Schlager, G. Schlenker, S. Schlereth, J. L. Schmid, R. Schmidt, M. P. Schmieden, K. Schmitt, C. Schmitz, M. Scholte, R. C. Schott, M. Schouten, D. Schovancova, J. Schram, M. Schreiner, A. Schricker, A. Schroeder, C. Schroer, N. Schroers, M. Schroff, D. Schuh, S. Schuler, G. Schultes, J. Schultz-Coulon, H. -C. Schumacher, J. W. Schumacher, M. Schumm, B. A. Schune, Ph. Schwanenberger, C. Schwartzman, A. Schweiger, D. Schwemling, Ph. Schwienhorst, R. Schwierz, R. Schwindling, J. Scott, W. G. Searcy, J. Sedykh, E. Segura, E. Seidel, S. C. Seiden, A. Seifert, F. Seixas, J. M. Sekhniaidze, G. Seliverstov, D. M. Sellden, B. Seman, M. Semprini-Cesari, N. Serfon, C. Serin, L. Seuster, R. Severini, H. Sevior, M. E. Sfyrla, A. Shabalina, E. Shah, T. P. Shamim, M. Shan, L. Y. Shank, J. T. Shao, Q. T. Shapiro, M. Shatalov, P. B. Shaver, L. Shaw, C. Shaw, K. Sherman, D. Sherwood, P. Shibata, A. Shield, R. Shimojima, M. Shin, T. Shmeleva, A. Shochet, M. J. Shupe, M. A. Sicho, R. Sidhu, J. Sidoti, A. Siebel, A. Siebel, M. Siegert, F. Siegrist, J. Sijacki, D. J. Silbert, O. Silva, J. Silver, Y. Silverstein, D. Silverstein, S. B. Simak, V. Simic, Lj. Simion, S. Simmons, B. Simonyan, M. Sinervo, R. Sinev, N. B. Sipica, V. Siragusa, G. Sisakyan, A. N. Sivoklokov, S. Yu. Sielin, J. Sjursen, T. B. Skovpen, K. Skubic, R. Skvorodnev, N. Slater, M. Slattery, R. Slavicek, T. Sliwa, K. Sloan, T. J. Sloper, J. Sluka, T. Smakhtin, V. Small, A. Smirnov, S. Yu. Smirnov, Y. Smirnova, L. N. Smirnova, O. Smith, B. C. Smith, D. Smith, K. M. Smizanska, M. Smolek, K. Snesarev, A. A. Snow, S. W. Snow, J. Snuverink, J. Snyder, S. Soares, M. Sobie, R. Sodomka, J. Soffer, A. Solans, C. A. Solar, M. Solc, J. Camillocci, E. Solfaroli Solodkov, A. A. Solovyanov, O. V. Soluk, R. Sondericker, J. Sopko, V. Sopko, B. Sorbi, M. Sosebee, M. Soukharev, A. Spagnolo, S. Spano, F. Speckmayer, P. Spencer, E. Spighi, R. Spigo, G. Spila, F. Spiriti, E. Spiwoks, R. Spogli, L. Spousta, M. Spreitzer, T. Spurlock, B. Denis, R. D. St. Stahl, T. Stahlman, J. Stamen, R. Stancu, S. N. Stanecka, E. Stanek, R. W. Stanescu, C. Stapnes, S. Starchenko, E. A. Stark, J. Staroba, R. Starovoitov, P. Stastny, J. Staude, A. Stavina, R. Stavropoulos, G. Steele, G. Stefanidis, E. Steinbach, R. Steinberg, R. Stekl, I. Stelzer, B. Stelzer, H. J. Stelzer-Chilton, O. Stenzel, H. Stevenson, K. Stewart, G. Stewart, T. D. Stiller, W. Stockmanns, T. Stockton, M. C. Stodulski, M. Stoerig, K. Stoicea, G. Stonjek, S. Strachota, R. Stradling, A. R. Straessner, A. Strandberg, J. Strandberg, S. Strandlie, A. Strauss, M. Striegel, D. Strizenec, P. Stroehmer, R. Strom, D. M. Strong, J. A. Stroynowski, R. Strube, J. Stugu, B. Stumer, I. Soh, D. A. Su, D. Subramania, S. Sugaya, Y. Sugimoto, T. Suhr, C. Suk, M. Sulin, V. V. Sultansoy, S. Sumida, T. Sun, X. H. Sundermann, J. E. Suruliz, K. Sushkov, S. Susinno, G. Sutton, M. R. Suzuki, T. Suzuki, Y. Sviridov, Yu. M. Sykora, I. Sykora, T. Szczygiel, R. R. Szeless, B. Szymocha, T. Sanchez, J. Ta, D. Gameiro, S. Taboada Tackmann, K. Taffard, A. Tafirout, R. Taga, A. Takahashi, Y. Takai, H. Takashima, R. Takeda, H. Takeshita, T. Talby, M. Talyshev, A. Tamsett, M. C. Tanaka, J. Tanaka, R. Tanaka, S. Tanaka, S. Tanaka, Y. Tappern, G. P. Tapprogge, S. Tardif, D. Tarem, S. Tarrade, F. Tartarelli, C. F. Tas, P. Tasevsky, M. Tassi, E. Tatarkhanov, M. Tayalati, Y. Taylor, C. Taylor, F. E. Taylor, G. Taylor, G. N. Taylor, R. P. Taylor, W. Teixeira-Dias, R. Ten Kate, H. Teng, P. K. Tennenbaum-Katan, Y. D. Ter-Antonyan, R. Terada, S. Terashi, K. Terron, J. Terwort, M. Testa, M. Teuscher, R. J. Tevlin, C. M. Thadome, J. Thioye, M. Thoma, S. Thomas, A. Thomas, J. P. Thompson, E. N. Thompson, P. D. Thompson, P. D. Thompson, R. J. Thompson, A. S. Thomson, E. Thun, R. P. Tic, T. Tikhomirov, V. O. Tikhonov, Y. A. Timm, S. Timmermans, C. J. W. P. Tipton, P. Viegas, F. J. Tique Aires Tisserant, S. Tobias, J. Toczek, B. Todorov, T. Todorova-Nova, S. Toggerson, B. Tojo, J. Tokar, S. Tokushuku, K. Tollefson, K. Tomasek, L. Tomasek, M. Tomoto, M. Tompkins, D. Tompkins, L. Toms, K. Tonazzo, A. Tong, G. Tonoyan, A. Topfel, C. Topilin, N. D. Torrence, E. Torro Pastor, E. Toth, J. Touchard, F. Tovey, D. R. Trefzger, T. Treis, J. Tremblet, L. Tricoli, A. Trigger, I. M. Trilling, G. Trincaz-Duvoid, S. Trinh, T. N. Tripiana, M. F. Triplett, N. Trischuk, W. Trivedi, A. Trka, Z. Trocme, B. Troncon, C. Trzupek, A. Tsarouchas, C. Tseng, J. C. -L. Tsiakiris, M. Tsiareshka, P. V. Tsionou, D. Tsipolitis, G. Tsiskaridze, V. Tskhadadze, E. G. Tsukerman, I. I. Tsulaia, V. Tsung, J. -W. Tsuno, S. Tsybychev, D. Tuggle, J. M. Turala, M. Turecek, D. Cakir, I. Turk Turlay, E. Tuts, P. M. Twomey, M. S. Tyilmad, M. Tyndel, M. Typaldos, D. Tyrvainen, H. Tzamarioudaki, E. Tzanakos, G. Uchida, K. Ueda, I. Ugland, M. Uhlenbrock, M. Uhrmacher, M. Ukegawa, F. Unal, G. Underwood, D. G. Undrus, A. Unel, G. Unno, Y. Urbaniec, D. Urkovsky, E. Urquijo, P. Urrejola, P. Usai, G. Uslenghi, M. Vacavant, L. Vacek, V. Vachon, B. Vahsen, S. Valderanis, C. Valenta, J. Valente, R. Valentinetti, S. Valkar, S. Valladolid Gallego, E. Vallecorsa, S. Valls Ferrer, J. A. Van Berg, R. van der Graaf, H. van der Kraaij, E. van der Poel, E. Van Der Ster, D. Van Eijk, B. van Eldik, N. van Gemmeren, P. van Kesteren, Z. van Vulpen, I. Vandelli, W. Vandoni, G. Vaniachine, A. Vankov, P. Vannucci, F. Rodriguez, F. Varela Vari, R. Varnes, E. W. Varouchas, D. Vartapetian, A. Varvell, K. E. Vasilyeva, L. Vassilakopoulos, V. I. Vazeille, F. Vegni, G. Veillet, J. J. Vellidis, C. Veloso, F. Veness, R. Veneziano, S. Ventura, A. Ventura, D. Ventura, S. Venturi, M. Venturi, N. Vercesi, V. Verducci, M. Verkerke, W. Vermeulen, J. C. Vertogardov, L. Vetterli, M. C. Vichou, I. Vickey, T. Viehhauser, G. H. A. Villa, M. Villani, E. G. Villaplana Perez, M. Vilucchi, E. Vincent, P. Vincter, M. G. Vinek, E. Vinogradov, V. B. Virchaux, M. Viret, S. Virzi, J. Vitale, A. Vitells, O. Vivarelli, I. Vives Vaque, F. Vlachos, S. Vlasak, M. Vlasov, N. Vogel, A. Vogt, H. Vokac, P. Vollmer, C. F. Volpi, M. Volpini, G. von der Schmitt, H. von Loeben, J. von Radziewski, H. von Toerne, E. Vorobel, V. Vorobiev, A. P. Vorwerk, V. Vos, M. Voss, K. C. Voss, R. Voss, T. T. Vossebeld, J. H. Vovenko, A. S. Vranjes, N. Milosavljevic, M. Vranjes Vrba, V. Vreeswijk, M. Anh, T. Vu Vuaridel, B. Vudragovic, D. Vuillermet, R. Vukotic, I. Waananen, A. Wagner, P. Wahlen, H. Walbersloh, J. Walder, J. Walker, R. Walkowiak, W. Wall, R. Walsh, S. Wang, C. Wang, H. Wang, J. Wang, J. C. Wang, M. W. Wang, S. M. Wappler, F. Warburton, A. Ward, C. P. Warsinsky, M. Wastie, R. Watkins, P. M. Watson, A. T. Watson, M. F. Watts, G. Watts, S. Waugh, A. T. Waugh, B. M. Webel, M. Weber, G. Weber, J. J. Weber, M. D. Weber, M. Weber, M. S. Weber, P. Weidberg, A. R. Weingarten, J. Weiser, C. Wellenstein, H. Wellisch, H. P. Wells, P. S. Wen, M. Wenaus, T. Wendler, S. Wengler, T. Wenig, S. Wermes, N. Werner, M. Werner, P. Werth, M. Werthenbach, U. Wessels, M. Whalen, K. Wheeler-Ellis, S. J. Whitaker, S. P. White, A. White, M. J. White, S. Whitehead, S. R. Whiteson, D. Whittington, D. Wicek, F. Wicke, D. Wickens, F. J. Wiedenmann, W. Wielers, M. Wienemann, P. Wiesmann, M. Wiesmann, M. Wiglesworth, C. Wiik, L. A. M. Wildauer, A. Wildt, M. A. Wilhelm, I. Wilkens, H. G. Williams, E. Williams, H. H. Willis, W. Willocq, S. Wilson, J. A. Wilson, M. C. Wilson, A. Wingerter-Seez, I. Winklmeier, F. Wittgen, M. Woehrling, E. Wolter, M. W. Wolters, H. Wosiek, B. K. Wotschack, J. Woudstra, M. J. Wraight, K. Wright, C. Wright, D. Wrona, B. Wu, S. L. Wu, X. Wuestenfeld, J. Wulf, E. Wunstorf, R. Wynne, B. M. Xaplanteris, L. Xella, S. Xie, S. Xie, Y. Xu, D. Xu, G. Xu, N. Yamada, M. Yamamoto, A. Yamamoto, K. Yamamoto, S. Yamamura, T. Yamaoka, J. Yamazaki, T. Yamazaki, Y. Yan, Z. Yang, H. Yang, S. Yang, U. K. Yang, Y. Yang, Z. Yao, W. -M. Yao, Y. Yarradoddi, K. Yasu, Y. Ye, J. Ye, S. Yilmaz, M. Yoosoofmiya, R. Yorita, K. Yoshida, H. Yoshida, R. Young, C. Youssef, S. P. Yu, D. Yu, J. Yuan, J. Yuan, L. Yurkewicz, A. Zaets, V. G. Zaidan, R. Zaitsev, A. M. Zajacova, Z. Zalite, Yo. K. Zambrano, V. Zanello, L. Zarzhitsky, P. Zaytsev, A. Zdrazil, M. Zeitnitz, C. Zeller, M. Zema, P. F. Zemla, A. Zendler, C. Zenin, A. V. Zenin, O. Zenis, T. Zenonos, Z. Zenz, S. Zerwas, D. della Porta, G. Zevi Zhan, Z. Zhang, H. Zhang, J. Zhang, Q. Zhang, X. Zhao, L. Zhao, T. Zhao, Z. Zhemchugov, A. Zheng, S. Zhong, J. Zhou, B. Zhou, N. Zhou, Y. Zhu, C. G. Zhu, H. Zhu, Y. Zhuang, X. Zhuravlov, V. Zilka, B. Zimmermann, R. Zimmermann, S. Zimmermann, S. Ziolkowski, M. Zitoun, R. Zivkovic, L. Zmouchko, V. V. Zobernig, G. Zoccoli, A. Zolnierowski, Y. Zsenei, A. zur Nedden, M. Zutshi, V. CA ATLAS Collaboration TI Charged-particle multiplicities in pp interactions at root s=900 GeV measured with the ATLAS detector at the LHC ATLAS Collaboration SO PHYSICS LETTERS B LA English DT Article DE Charged-particle; Multiplicities; 900 GeV; ATLAS; LHC; Minimum bias ID TRANSVERSE-MOMENTUM SPECTRA; DUAL PARTON MODEL; SQUARE-ROOT-S; CM ENERGIES; DISTRIBUTIONS; COLLISIONS; COLLIDER; MASS; TEV AB The first measurements from proton-proton collisions recorded with the ATLAS detector at the LHC are presented. Data were collected in December 2009 using a minimum-bias trigger during collisions at a centre-of-mass energy of 900 GeV. The charged-particle multiplicity, its dependence on transverse momentum and pseudorapidity, and the relationship between mean transverse momentum and charged-particle multiplicity are measured for events with at least one charged particle in the kinematic range vertical bar eta vertical bar < 2.5 and p(T) > 500 MeV. The measurements are compared to Monte Carlo models of proton-proton collisions and to results from other experiments at the same centre-of-mass energy. The charged-particle multiplicity per event and unit of pseudorapidity eta = 0 is measured to be 1.333 +/- 0.003(stat.) +/- 0.040(syst.), which is 5-15% higher than the Monte Carlo models predict. 2010 Published by Elsevier B.V. C1 [Aad, G.; Ahles, F.; Aktas, A.; Anders, C. F.; Beckingham, M.; Bernhard, R.; Bianchi, R. M.; Bitenc, U.; Bruneliere, R.; Caron, S.; Carpentieri, C.; Christov, A.; Dahlhoff, A.; Dietrich, J.; Dingfelder, D. J.; Eckert, S.; Hartert, J.; Heldmann, M.; Herten, G.; Horner, S.; Jakobs, K.; Janus, M.; Joos, D.; Ketterer, C.; Koenig, S.; Kollefrath, M.; Kononov, A. I.; Kramer, A.; Kuehn, S.; Lai, S.; Landgraf, U.; Lohwasser, K.; Ludwig, I.; Ludwig, J.; Lumb, D.; Maassen, M.; Mahboubi, K.; Mazur, M.; Meinhardt, J.; Meirose, B.; Messmer, I.; Mohr, W.; Nilsen, H.; Parzefall, U.; Pfeifer, B.; Bueso, X. Portell; Rammensee, M.; Runge, K.; Rurikova, Z.; Schroff, D.; Schumacher, M.; Stoerig, K.; Sundermann, J. E.; Thoma, S.; Tobias, J.; Venturi, M.; Vivarelli, I.; von Radziewski, H.; Warsinsky, M.; Webel, M.; Weiser, C.; Werner, M.; Wiik, L. A. M.; Xie, S.; Zimmermann, S.] Univ Freiburg, Fak Math & Phys, D-79104 Freiburg, Germany. [Alam, M. S.; Athar, B.; Ernst, J.; Mahmood, A.; Rojo, V.; Timm, S.; Wappler, F.] SUNY Albany, Albany, NY 12222 USA. [Ahmed, H.; Buchanan, N. J.; Caron, B.; Chan, K.; Chen, L.; Gingrich, D. M.; Hakobyan, R. H.; Kim, M. S.; Liu, S.; Lu, J.; Macpherson, A.; MacQueen, D.; Moore, R. W.; Pinfold, J. L.; Soluk, R.] Univ Alberta, Dept Phys, Ctr Particle Phys, Edmonton, AB T6G 2G7, Canada. [Cakir, O.; Ciftci, A. K.; Ciftci, R.; Persembe, S.] Ankara Univ, Fac Sci, Dept Phys, TR-061000 Ankara, Turkey. [Yildiz, H. Duran] Dumlupinar Univ, Kutahya, Turkey. [Yilmaz, M.] Gazi Univ, Fac Arts & Sci, Dept Phys, TR-06500 Ankara, Turkey. [Sultansoy, S.] TOBB Univ Econ & Technol, Fac Arts & Sci, Div Phys, TR-06560 Ankara, Turkey. [Cakir, I. Turk] Turkish Atom Energy Commiss, TR-06530 Ankara, Turkey. [Arnaez, O.; Aubert, B.; Aurousseau, M.; Berger, N.; Colas, J.; Di Ciaccio, L.; Doan, T. K. O.; El Kacimi, M.; Elles, S.; Ghez, P.; Gouanere, M.; Goy, C.; Guillemin, T.; Helary, L.; Hryn'ova, T.; Iengo, R.; Ionescu, G.; Jeremie, A.; Jezequel, S.; Kataoka, M.; Koletsou, I.; Labbe, J.; Lafaye, R.; Laplace, S.; Marchand, J. F.; Massol, N.; Neukermans, L.; Perrodo, P.; Przysiezniak, H.; Sauvage, G.; Simonyan, M.; Todorov, T.; Wingerter-Seez, I.; Zitoun, R.; Zolnierowski, Y.] Univ Savoie, LAPP, CNRS, IN2P3, Annecy Le Vieux, France. [Blair, R. E.; Calkins, R.; Chakraborty, D.; Chekanov, S.; Cranshaw, J.; Dawson, J. W.; Torregrosa, E. Fullana; Gieraltowski, G. F.; Guarino, V. J.; Hill, D.; Hill, N.; Karr, K.; LeCompte, T.; Lim, H.; Malon, D.; May, E. N.; Nodulman, L.; Petereit, E.; Price, L. E.; Proudfoot, J.; de Lima, J. G. Rocha; Ferrando, B. M. Salvachua; Schlereth, J. L.; Stanek, R. W.; Suhr, C.; Underwood, D. G.; van Gemmeren, P.; Vaniachine, A.; Yoshida, R.; Zhang, J.; Zhang, Q.; Zutshi, V.] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Cheu, E.; Johns, K. A.; Kaushik, V.; Lampen, C. L.; Lampl, W.; Lei, X.; Loch, P.; Rutherfoord, J. P.; Savine, A. Y.; Shaver, L.; Shupe, M. A.; Tompkins, D.; Varnes, E. W.] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. [Brandt, A.; De, K.; Dipanjan, R.; Farbin, A.; Kim, H.; Nilsson, P.; Ozturk, N.; Pal, A.; Pravahan, R.; Sarkisyan-Grinbaum, E.; Sosebee, M.; Spurlock, B.; Stradling, A. R.; Usai, G.; Vartapetian, A.; White, A.; Yu, J.] Univ Texas Arlington, Dept Phys, Arlington, TX 76019 USA. [Antonaki, A.; Fassouliotis, D.; Giakoumopoulou, V.; Giokaris, N.; Ioannou, R.; Kourkoumelis, C.; Manousakis-Katsikakis, A.; Nikolopoulos, K.; Tzanakos, G.; Vellidis, C.] Univ Athens, Dept Phys, GR-15771 Athens, Greece. [Alexopoulos, T.; Argyropoulos, T.; Avramidou, R.; Dris, M.; Filippas, A.; Fokitis, M.; Gazis, E. N.; Georgatos, F.; Iakovidis, G.; Katsoufis, E.; Maltezos, S.; Panagiotopoulou, E.; Papadopoulou, Th. D.; Savva, R.; Tsarouchas, C.; Tsipolitis, G.; Tzamarioudaki, E.; Vlachos, S.; Xaplanteris, L.] Natl Tech Univ Athens, Dept Phys, GR-15780 Zografos, Greece. [Abdinov, O.; Aliyev, M.; Huseynov, N.; Khalil-Zada, F.; Rzaeva, S.] Azerbaijan Acad Sci, Inst Phys, Baku 143, Azerbaijan. [Abdallah, J.; Blanch, O.; Bosman, M.; Bravo, S.; Casado, M. P.; Cavalli-Sforza, M.; Demirkoz, B.; Domingo, E.; Dosil, M.; Espinal Curull, X.; Fiorini, L.; Grinstein, S.; Helsens, C.; Jorgensen, S.; Korolkov, I.; Martinez, M.; Meoni, E.; Mir, L. M.; Miralles Verge, L.; Nadal, J.; Norniella Francisco, O.; Osuna, C.; Pacheco Pages, A.; Padilla Aranda, C.; Perez Codina, E.; Puigdengoles, C.; Riu, I.; Rossetti, V.; Salto Bauza, O.; Sanchez Sanchez, C. A.; Segura, E.; Sushkov, S.; Vives Vaque, F.; Volpi, M.; Vorwerk, V.] Univ Autonoma Barcelona, IFAE, ES-08193 Bellaterra, Barcelona, Spain. [Krstic, J.; Popovic, D. S.; Reljic, D.; Sijacki, D. J.; Simic, Lj.; Vranjes, N.; Milosavljevic, M. Vranjes; Vudragovic, D.] Univ Belgrade, Inst Phys, Belgrade 11001, Serbia. [Bozovic-Jelisavcic, I.; Mudrinic, M.] Vinca Inst Nucl Sci, Belgrade 11001, Serbia. [Buanes, T.; Burgess, T.; Eigen, G.; Johansen, L. G.; Kastanas, A.; Lipniacka, A.; Mohn, B.; Oye, O. K.; Sandaker, H.; Sjursen, T. B.; Stugu, B.; Tonoyan, A.; Ugland, M.] Univ Bergen, Dept Phys & Technol, NO-5007 Bergen, Norway. [Alonso, J.; Arce, A. T. H.; Arguin, J-F; Bach, A. M.; Barnett, R. M.; Beringer, J.; Biesiada, J.; Calafiura, P.; Ciocio, A.; Einsweiler, K.; Ely, R.; Gaponenko, A.; Garcia-Sciveres, M.; Gilchriese, M.; Haber, C.; Heinemann, B.; Hinchliffe, I.; Hsu, S. -C.; Korn, A.; Lavrijsen, W.; Leggett, C.; Leyton, M.; Loscutoff, P.; Lys, J.; Madaras, R. J.; Parker, S. I.; Quarrie, D. R.; Scherzer, M. I.; Shapiro, M.; Siegrist, J.; Stavropoulos, G.; Strandberg, S.; Tatarkhanov, M.; Tompkins, L.; Trilling, G.; Vahsen, S.; Varouchas, D.; Virzi, J.; Yao, W. -M.; Yao, Y.; Zdrazil, M.; Zenz, S.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Alonso, J.; Arce, A. T. H.; Arguin, J-F; Bach, A. M.; Barnett, R. M.; Beringer, J.; Biesiada, J.; Calafiura, P.; Ciocio, A.; Einsweiler, K.; Ely, R.; Gaponenko, A.; Garcia-Sciveres, M.; Gilchriese, M.; Haber, C.; Heinemann, B.; Hinchliffe, I.; Hsu, S. -C.; Korn, A.; Lavrijsen, W.; Leggett, C.; Leyton, M.; Loscutoff, P.; Lys, J.; Madaras, R. J.; Parker, S. I.; Quarrie, D. R.; Scherzer, M. I.; Shapiro, M.; Siegrist, J.; Stavropoulos, G.; Strandberg, S.; Tatarkhanov, M.; Tompkins, L.; Trilling, G.; Vahsen, S.; Varouchas, D.; Virzi, J.; Yao, W. -M.; Yao, Y.; Zdrazil, M.; Zenz, S.] Univ Calif Berkeley, Div Phys, Berkeley, CA 94720 USA. [Aliev, M.; Giorgi, F. M.; Grancagnolo, S.; Kind, O.; Kolanoski, H.; Kwee, R.; Lacker, H.; Lohse, T.; Mandrysch, R.; Nikiforov, A.; Richter, D.; Risler, C.; Garcia, Y. Rodriguez; Sidoti, A.; zur Nedden, M.] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany. [Ambrosini, G.; Battaglia, A.; Beck, H. P.; Borer, C.; Borer, K.; Cogneras, E.; Ereditato, A.; Gallo, V.; Haeberli, C.; Haug, S.; Hess, M.; Kabana, S.; Kordas, K.; Pretzl, K.; Topfel, C.; Venturi, N.; Weber, M. D.; Weber, M. S.] Univ Bern, Albert Einstein Ctr Fundamental Phys, High Energy Phys Lab, CH-3012 Bern, Switzerland. [Booth, J. R. A.; Bracinik, J.; Bright-Thomas, P. C.; Charlton, D. G.; Collins, N. J.; Curtis, C. J.; Dowell, J. D.; Garvey, J.; Harrison, K.; Hawkes, C. M.; Hillier, S. J.; Hollins, T. I.; Homer, R. J.; Lilley, J. N.; Mahout, G.; Martin, T. A.; McMahon, T. J.; Moye, T. H.; O'Neale, S. W.; Palmer, J. D.; Slater, M.; Thomas, J. P.; Thompson, P. D.; Typaldos, D.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Wilson, J. A.; Woehrling, E.] Univ Birmingham, Sch Phys & Astron, Birmingham B15 2TT, W Midlands, England. [Abat, E.; Akdogan, T.; Arik, E.; Arik, M.; Becerici, N.; Dogan, O. B.; Istin, S.; Rador, T.] Bogazici Univ, Fac Sci, Dept Phys, TR-80815 Bebek, Turkey. [Cetin, S. A.] Dogus Univ, Fac Arts & Sci, Dept Phys, TR-34722 Istanbul, Turkey. [Beddall, A. J.; Beddall, A.; Bingul, A.; Diblen, F.] Gaziantep Univ, Fac Engn, Dept Engn Phys, TR-27310 Sehitkamil, Gaziantep, Turkey. Istanbul Tech Univ, Fac Arts & Sci, Dept Phys, TR-34469 Istanbul, Turkey. [Bellagambala, L.; Bertin, A.; Bindi, M.; Boscherini, D.; Bruni, A.; Bruni, G.; Bruschi, M.; Caforio, D.; Ciocca, C.; Corradi, M.; De Castro, S.; Di Sipio, R.; Fabbri, L.; Giacobbe, B.; Giusti, P.; Grimaldi, F.; Massa, I.; Piccinini, M.; Polini, A.; Rinaldi, L.; Sbarra, C.; Sbrizzi, A.; Semprini-Cesari, N.; Spighi, R.; Valentinetti, S.; Villa, M.; Vitale, A.; Zoccoli, A.] Ist Nazl Fis Nucl, Sez Bologna, IT-40127 Bologna, Italy. [Bellagambala, L.; Bertin, A.; Bindi, M.; Boscherini, D.; Bruni, A.; Bruni, G.; Bruschi, M.; Caforio, D.; Ciocca, C.; Corradi, M.; De Castro, S.; Di Sipio, R.; Fabbri, L.; Giacobbe, B.; Giusti, P.; Grimaldi, F.; Massa, I.; Piccinini, M.; Polini, A.; Rinaldi, L.; Sbarra, C.; Sbrizzi, A.; Semprini-Cesari, N.; Spighi, R.; Valentinetti, S.; Villa, M.; Vitale, A.; Zoccoli, A.] Univ Bologna, Dipartimento Fis, IT-40127 Bologna, Italy. [Ackers, M.; Alhroob, M.; Arutinov, D.; Barbero, M.; Brock, I.; Cammin, J.; Chatterjii, S.; Cristinziani, M.; Desch, K.; Fischer, P.; Fleischmann, S.; Gaycken, G.; Geich-Gimbel, Ch.; Gonella, L.; Hemperek, T.; Huegging, F.; Karagounis, M.; Khoriauli, G.; Koevesarki, P.; Kokott, T.; Kostyukhin, V. V.; Kroseberg, J.; Krueger, H.; Lehmacher, M.; Loddenkoetter, T.; Magass, C.; Masetti, L.; Mathes, M.; Meuser, S.; Moeser, N.; Mueller, K.; Nanava, G.; Nattermann, T.; Nderitu, S. K.; Nuncio-Quiroz, A. -E.; Hanninger, G. Nunes; Peric, I.; Prabhu, R.; Psoroulas, S.; Radics, B.; Raith, B.; Rottlaender, I.; Runolfsson, O.; Ruwiede, C.; Schmieden, K.; Schmitz, M.; Stockmanns, T.; Ta, D.; Treis, J.; Tsung, J. -W.; Uhlenbrock, M.; Vlasov, N.; Vogel, A.; von Toerne, E.; Wermes, N.; Wienemann, P.; Zendler, C.; Zimmermann, R.; Zimmermann, S.] Univ Bonn, Inst Phys, D-53115 Bonn, Germany. [Ahlen, S. P.; Butler, J. M.; Harrington, R. D.; Hazen, E.; Lewandowska, M.; Love, J.; Marin, A.; Nation, N. R.; Posch, C.; Shank, J. T.; Whitaker, S. P.; Yan, Z.; Youssef, S. P.] Boston Univ, Dept Phys, Boston, MA 02215 USA. [Aefsky, S.; Amelung, C.; Bensinger, J. R.; Blocker, C.; Dushkin, A.; Hashemi, K.; Kirsch, L. E.; Kotchetkov, D.; Mladenov, D.; Pomeroy, D.; Schricker, A.; Skvorodnev, N.; Wellenstein, H.] Brandeis Univ, Dept Phys, Waltham, MA 02454 USA. [Caloba, L. P.; Cerqueira, A. S.; Torres, R. Coura; Gesualdi Mello, A. Da Rocha; Da Silva, P. V. M.; do Vale, M. A. B.; Maidantchik, C.; Marroquim, F.; Nepomuceno, A. A.; Perantoni, M.; Seixas, J. M.] Univ Fed Rio de Janeiro, COPPE, EE, IF, BR-21945970 Rio De Janeiro, Brazil. Univ Sao Paulo, Inst Fis, BR-05508900 Sao Paulo, Brazil. [Adams, D. L.; Armstrong, S. R.; Assamagan, K.; Baker, M. D.; Bathe, S.; Begel, M.; Caballero, J.; Chen, H.; Tcherniatine, V.; Cunha, A.; Salgado, P. E. De Castro Faria; Deng, W.; Dhullipudi, R.; Ernst, M.; Gadfort, T.; Gibbard, B.; Gordon, H. A.; Greenwood, Z. D.; Hackenburg, R.; Klimentov, A.; Lanni, F.; Le Vine, M.; Lissauer, D.; Lobkowicz, F.; Lynn, D.; Ma, H.; Maeno, T.; Majewski, S.; Misawa, S.; Nevski, P.; Damazio, D. Oliveira; Paige, F.; Panitkin, S.; Park, W.; Patwa, A.; Pleier, M. -A.; Polychronakos, V.; Popescu, R.; Potekhin, M.; Protopopescu, S.; Purohit, M.; Radeka, V.; Rahm, C.; Rajagopalan, S.; Redlinger, G.; Rehak, M.; Rehak, M.; Rescia, S.; Sawyer, L.; Slattery, R.; Smirnov, Y.; Snyder, S.; Sondericker, J.; Steinberg, R.; Stumer, I.; Takai, H.; Tarrade, F.; Trivedi, A.; Undrus, A.; Wenaus, T.; White, S.; Yarradoddi, K.; Ye, S.; Yu, D.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Darlea, G. L.] Univ Politehn Bucuresti, Bucharest 060042, Romania. West Univ Timisoara, Timisoara, Romania. [Gonzalez Silva, M. L.; Piegaia, R.; Romeo, G.] Univ Buenos Aires, FCEyN, Dto Fis, RA-1428 Buenos Aires, DF, Argentina. [Barber, T.; Barlow, N.; Batley, J. R.; Brochu, F. M.; Carter, J. R.; Chapman, J. D.; Cowden, C.; French, S. T.; Frost, J. A.; Hill, J. C.; Lester, C. G.; Moeller, V.; Munday, D. J.; Palmer, M. J.; Parker, M. A.; Phillips, A. W.; Robinson, D.; Ward, C. P.; White, M. J.] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England. [Archambault, J. P.; Asner, D.; Belanger, G. A. N.; Cojocaru, C. D.; Heelan, L.; Khakzad, M.; Liu, C.; Oakham, F. G.; Vincter, M. G.; Whalen, K.] Carleton Univ, Dept Phys, Ottawa, ON K1S 5B6, Canada. [Akesson, P. F.; Aleksa, M.; Amaral, P.; Andeen, T.; Anghinolfi, F.; Arfaoui, S.; Baak, M. A.; Bachas, K.; Bachy, G.; Pedrosa, F. Baltasar Dos Santos; Battistin, M.; Bellina, F.; Beltramello, O.; Berge, D.; Bertinelli, F.; Blanchot, G.; Bock, R.; Bogaerts, J. A.; Boosten, M.; Boyd, J.; Braem, A.; Bremer, J.; Bujor, E.; Burckhart, H.; Butin, E.; Campana, S.; Garrido, M. D. M. Capeans; Sas, L. Cardiel; Carli, T.; Cataneo, F.; Catinaccio, A.; Cattai, A.; Cerri, A.; Chromek-Burckhart, D.; Cook, J.; Danielsson, H. O.; Dauvergne, J. P.; Branco, M. De Oliveira; Dell'Acqua, A.; Delmastro, M.; Delruelle, N.; Di Girolamo, A.; Di Girolamo, B.; Dittus, F.; Dobinson, R.; Dobos, D.; Dobson, E.; Drakoulakos, D.; Drevermann, H.; Dudarev, A.; Duehrssen, M.; Dydak, F.; Eifert, T.; Ellis, N.; Elsing, M.; Fabre, C.; Farthouat, P.; Fassnacht, P.; Fedorko, I.; Fedorko, W.; Flacher, H. F.; Flammer, J.; Foussat, A.; Francis, D.; Franz, S.; Froeschl, R.; Froidevaux, D.; Gallas, M. V.; Garelli, N.; Garonne, V.; Gayde, J. -C.; Gianotti, F.; Gildemeister, O.; Giraud, P. F.; Godlewski, J.; Gollub, N. P.; Gonidec, A.; Goossens, L.; Gorini, B.; Gorski, B. T.; Grafstroem, P.; Grognuz, J.; Gruwe, M.; Haas, S.; Hahn, F.; Haider, S.; Hatch, M.; Hauschild, M.; Hawkings, R. J.; Correia, A. M. Henriques; Hervas, L.; Hoecker, A.; Inigo-Golfin, J.; Jaekel, M. R.; Jenni, P.; Belenguer, M. Jimenez; Jonsson, O.; Joram, C.; Kaplon, J.; Kerschen, N.; Klioutchnikova, T.; Knobloch, J.; Koblitz, B.; Koffas, T.; Kollar, D.; Kotamaeki, M. J.; Kovar, S.; Lamanna, M.; Lantzsch, K.; Lasseur, C.; Lassnig, M.; Leahu, M.; Miotto, G. Lehmann; Lichard, R.; Lucas, S.; Lundberg, J.; Mackeprang, R.; Mapelli, A.; Mapelli, L.; Marchesotti, M.; Martin, B.; Maugain, J. M.; McLaren, R. A.; Meirosu, C.; Menot, C.; Messina, A. M.; Meyer, T. C.; Michal, S.; Miele, P.; Molina-Perez, J.; Mornacchi, G.; Nairz, A. M.; Negri, G.; Nessi, M.; Nicquevert, B.; Niinikoski, T.; Nordberg, M.; Nunes, R.; Nyman, T.; Onea, A.; Palestini, S.; Palla, J.; Papadopoulos, I.; Pastore, Fr.; Pauly, T.; Pengo, R.; Pernegger, H.; Petersen, B. A.; Petersen, J.; Piacquadio, G.; Dos Santos, M. A. Pimenta; Pinamonti, M.; Pirotte, O.; Pommes, K.; Poppleton, A.; Pospichal, R.; Poulard, G.; Pribyl, L.; Price, M. J.; Primor, D.; Prokofiev, K.; Rammer, H.; Raymond, M.; Rembser, C.; Dos Santos, D. Roda; Roe, S.; Salzburger, A.; Scannicchio, D. A.; Schaller, M.; Schlager, G.; Schlenker, S.; Schott, M.; Schuh, S.; Schuler, G.; Schweiger, D.; Sherman, D.; Siebel, M.; Sloper, J.; Speckmayer, P.; Spigo, G.; Spiwoks, R.; Stanecka, E.; Stockton, M. C.; Sumida, T.; Szeless, B.; Gameiro, S. Taboada; Tackmann, K.; Tappern, G. P.; Ten Kate, H.; Viegas, F. J. Tique Aires; Tremblet, L.; Tricoli, A.; Tyrvainen, H.; Unal, G.; Van Der Ster, D.; Vandelli, W.; Vandoni, G.; Rodriguez, F. Varela; Veness, R.; Vinek, E.; Voss, R.; Vuillermet, R.; Wells, P. S.; Wenig, S.; Werner, P.; Wiesmann, M.; Wilkens, H. G.; Winklmeier, F.; Wotschack, J.; Zajacova, Z.; Zema, P. F.; Zsenei, A.] CERN, CH-1211 Geneva 23, Switzerland. [Anderson, K. J.; Boveia, A.; Brubaker, E.; Canelli, F.; Choudalakis, G.; Costin, T.; Dunford, M.; Feng, E. J.; Gardner, R. W.; Gupta, A.; Hurwitz, M.; Jen-La Plante, I.; Kapliy, A.; Mambelli, M.; Melachrinos, C.; Merritt, F. S.; Onyisi, P. U. E.; Oreglia, M. J.; Pilcher, J. E.; Shochet, M. J.; Tuggle, J. M.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Diaz, M. A.; Panes, B.; Quinonez, F.; Romero Maltrana, D.; Urrejola, P.] Pontificia Univ Catolica Chile, Fac Fis, Dept Fis, Santiago 22, Chile. [Brooks, W. K.; Kuleshov, S.; Oyarzun, A.; Pezoa, R.; Prokoshin, F.] Univ Tecn Federico Santa Maria, Dept Fis, Valparaiso, Chile. [Gong, C.; Han, L.; Jiang, Y.; Jin, G.; Liu, M.; Liu, Y.; Zhao, Z.] Chinese Acad Sci, Inst High Energy Phys, Cn Beijing 100049, Peoples R China. [Gong, C.; Han, L.; Jiang, Y.; Jin, G.; Liu, M.; Liu, Y.; Zhao, Z.] USTC, Dept Modern Phys, Hefei 230026, CN Anhui, Peoples R China. [Chen, S.; Chen, T.; Ping, J.; Qi, M.] Nanjing Univ, Dept Phys, Nanjing 210093, Peoples R China. [Feng, C.; Ge, R.; He, M.; Miao, J.; Sun, X. H.; Zhan, Z.; Zhang, X.; Zhu, C. G.] Shandong Univ, High Energy Phys Grp, Jinan 250100, CN Shandong, Peoples R China. [Busato, E.; Calvet, D.; Cinca, D.; Defay, P. O.; Febbraro, R.; Garde, V.; Ghodbane, N.; Gris, P. L. Y.; Guicheney, C.; Montarou, G.; Pallin, D.; Podlyski, F.; Santoni, C.; Says, L. P.; Vazeille, F.; Viret, S.] Univ Clermont Ferrand, CNRS, IN2P3, Lab Phys Corpusculaire,Clermont Univ, FR-63177 Aubiere, France. [Angerami, A.; Brooijmans, G.; Caughron, S.; Cole, B.; Cooke, M.; Copic, K.; Dodd, J.; Grau, N.; Gray, H. M.; Hughes, E. W.; Leltchouk, M.; Mateos, D. Lopez; Marshall, Z.; Negroni, S.; Parsons, J. A.; Penson, A.; Perez, K.; Reale, V. Perez; Spano, F.; Tuts, P. M.; Urbaniec, D.; Williams, E.; Willis, W.; Wulf, E.; Zhou, N.; Zivkovic, L.] Columbia Univ, Nevis Lab, Irvington, NY 10533 USA. [Dam, M.; Driouichi, C.; Facius, K.; Hansen, J. R.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Heisterkamp, S.; Jakobsen, S.; Jez, P.; Lundquist, J.; Nilsson, B. S.; Petersen, T. C.; Rensch, B.; Waananen, A.; Xella, S.] Univ Copenhagen, Niels Bohr Inst, DK-2100 Copenhagen O, Denmark. [Adorisio, C.; Capua, M.; Castrovillari, F.; Crosetti, G.; La Rotonda, L.; Mastroberardino, A.; Morello, G.; Salvatore, D.; Schioppa, M.; Susinno, G.; Tassi, E.] Ist Nazl Fis Nucl, Grp Coll Cosenza, IT-87036 Arcavacata Di Rende, Italy. [Adorisio, C.; Capua, M.; Castrovillari, F.; Crosetti, G.; La Rotonda, L.; Mastroberardino, A.; Morello, G.; Salvatore, D.; Schioppa, M.; Susinno, G.; Tassi, E.] Univ Calabria, Dipartimento Fis, IT-87036 Arcavacata Di Rende, Italy. [Dabrowski, W.; Dwuznik, M.; Idzik, M.; Jelen, K.; Kisielewska, D.; Koperny, S.; Kowalski, T. Z.; Mindur, B.; Rulikowska-Zarebska, E.; Toczek, B.] AGH Univ Sci & Technol, FPACS, PL-30059 Krakow, Poland. [Banas, E.; Blocki, J.; Bocian, D.; de Renstrom, P. A. Bruckman; Gornicki, E.; Hajduk, Z.; Iwanski, W.; Kaczmarska, A.; Kisielewski, B.; Korcyl, K.; Malecki, Pa.; Malecki, P.; Moszczynski, A.; Olszewski, A.; Olszowska, J.; Richter-Was, E.; Stodulski, M.; Szczygiel, R. R.; Szymocha, T.; Trzupek, A.; Turala, M.; Wolter, M. W.; Wosiek, B. K.; Zemla, A.] Polish Acad Sci, Henryk Niewodniczanski Inst Nucl Phys, PL-31342 Krakow, Poland. [Daya, R. K.; Yagci, K. Dindar; Firan, A.; Goldin, D.; Hadavand, H. K.; He, Y. P.; Hoffman, J.; Howe, T.; Ilchenko, Y.; Ishmukhametov, R.; Joffe, D.; Kasmi, A.; Kehoe, R.; Liang, Z.; Liu, T.; Lu, L.; Renkel, P.; Rios, R. R.; Stroynowski, R.; Ye, J.; Zarzhitsky, P.] So Methodist Univ, Dept Phys, Dallas, TX 75275 USA. [Ahsan, M.; Galyaev, E.; Izen, J. M.; Lou, X.; Reeves, K.; Reeves, K.] Univ Texas Dallas, Richardson, TX 75080 USA. [Bechtle, R.; Boehler, M.; Brandt, G.; Brunet, S.; Cote, D.; Ehrenfeld, W.; Ferrara, V.; Fischer, G.; Glazov, A.; Goebel, M.; Fajardo, L. S. Gomez; Gosdzik, B.; Gregor, I. M.; Haller, J.; Hiller, K. H.; Husemann, U.; Johnert, S.; Kama, S.; Katzy, J.; Koeneke, K.; Kono, T.; Kostka, P.; Kowalski, H.; Levonian, S.; Li, S.; Lobodzinska, E.; Ludwig, D.; Maettig, S.; Mamuzic, J.; Medinnis, M.; Mehlhase, S.; Moenig, K.; Moll, A.; Naumann, T.; Notz, D.; Nozicka, M.; Petschull, D.; Placakyte, R.; Qin, Z.; Stelzer, H. J.; Terwort, M.; Vogt, H.; Wildt, M. A.; Zhu, H.] DESY, D-15738 Zeuthen, Germany. [Bunse, M.; Goessling, C.; Hirsch, F.; Klaiber-Lodewigs, J.; Klingenberg, R.; Krasel, O.; Mass, M.; Muenstermann, D.; Rajek, S.; Reisinger, I.; Walbersloh, J.; Weber, J. J.; Wuestenfeld, J.; Wunstorf, R.] TU Dortmund, D-44221 Dortmund, Germany. [Goepfert, T.; Kobel, M.; Leonhardt, K.; Ludwig, A.; Mader, W. F.; Prudent, X.; Schaarschmidt, J.; Schumacher, J. W.; Schwierz, R.; Seifert, F.; Steinbach, R.; Straessner, A.] Tech Univ Dresden, Inst Kern & Teilchenphy, D-01069 Dresden, Germany. [Benjamin, D. P.; Bocci, A.; Ebenstein, W. L.; Fowler, A. J.; Klinkby, E. B.; Ko, B. R.; Oh, S. H.; Thomas, A.; Wang, C.; Yamaoka, J.] Duke Univ, Dept Phys, Durham, NC 27708 USA. [Buckley, A. G.; Clark, P. J.; Wynne, B. M.] Univ Edinburgh, Sch Phys & Astron, Edinburgh EH9 3JZ, Midlothian, Scotland. [Griesmayer, E.] Fachhsch Wiener Neustadt, AT-2700 Wiener Neustadt, Austria. [Annovi, A.; Barone, M.; Beretta, M.; Bertolucci, S.; Bilokon, H.; Braccini, S.; Cerutti, F.; Chiarella, V.; Curatolo, M.; Esposito, B.; Ferrer, M. L.; Gatti, C.; Laurelli, P.; Maccarrone, G.; Martini, A.; Miscetti, S.; Nicoletti, G.; Salvucci, A.; Sansoni, A.; Testa, M.; Ventura, S.; Vilucchi, E.; Wen, M.; Zambrano, V.] INFN, Lab Nazl Frascati, IT-00044 Frascati, Italy. [Abdelalim, A. A.; Alexandre, G.; Backes, M.; Bell, P. J.; Bell, W. H.; Berglund, E.; Blondel, A.; Bonino, R.; Bucci, E.; Clark, A.; Couyoumtzelis, C.; Dao, V.; Gomez, M. M. Diaz; Efthymiopoulos, I.; Ferrere, D.; Gadomski, S.; Navarro, J. E. Garcia; Gaumer, O.; Gonzalez-Sevilla, S.; Goulette, M. P.; Guescini, F.; Hamilton, A.; Kambara, H.; Keil, M.; Leger, A.; Lister, A.; Macina, D.; Mangin-Brinet, M.; Latour, B. Martin dit; Mazzucato, F.; Mikulec, B.; Moneta, L.; Herrera, C. Mora; Morone, M. -C.; Nektarijevic, S.; Orellana, F.; Pasztor, G.; Pohl, M.; Robichaud-Veronneau, A.; Rosselet, L.; Urquijo, P.; Vuaridel, B.; Wu, X.] Univ Geneva, Sect Phys, CH-1211 Geneva 4, Switzerland. [Barberis, D.; Cas, C.; Cervetto, M.; Coccaro, A.; Cornelissen, T.; Cuneo, S.; Dameri, M.; Darbo, G.; Ferro, F.; Gagliardi, G.; Gemme, C.; Morettini, P.; Odino, G. A.; Olcese, M.; Osculati, B.; Parodi, F.; Rossi, L. P.; Schiavi, C.] INFN, Sez Genova, IT-16146 Genoa, Italy. [Barberis, D.; Cas, C.; Cervetto, M.; Coccaro, A.; Cornelissen, T.; Cuneo, S.; Dameri, M.; Ferro, F.; Gagliardi, G.; Odino, G. A.; Osculati, B.; Parodi, F.; Schiavi, C.] Univ Genoa, Dipartimento Fis, IT-16146 Genoa, Italy. [Chikovani, L.; Djobava, T.; Khubua, J.; Magradze, E.; Mchedlidze, G.; Mosidze, M.; Tsiskaridze, V.; Tskhadadze, E. G.] Georgian Acad Sci, Inst Phys, GE-380077 Tbilisi, Rep of Georgia. [Chikovani, L.; Djobava, T.; Khubua, J.; Magradze, E.; Mchedlidze, G.; Mosidze, M.; Tsiskaridze, V.; Tskhadadze, E. G.] Tbilisi State Univ, HEP Inst, GE-380086 Tbilisi, Rep of Georgia. [Astvatsatourov, A.; Dueren, M.; Stenzel, H.] Univ Giessen, Inst Phys 2, D-35392 Giessen, Germany. [Allwood-Spiers, S. E.; Bates, R. L.; Britton, D.; Bussey, R.; Buttar, C. M.; Clements, D.; Collins-Tooth, C.; D'Auria, S.; Davidson, D. W.; Doherty, T.; Doyle, A. T.; Ferrag, S.; Kenyon, M.; McGlone, H.; Moraes, A.; Nicholson, C.; O'Shea, V.; Barrera, C. Oropeza; Pickford, A.; Raine, C.; Robson, A.; Saxon, D. H.; Shaw, C.; Smith, K. M.; Denis, R. D. St.; Steele, G.; Stewart, G.; Thompson, A. S.; Wraight, K.; Wright, C.] Univ Glasgow, Dept Phys & Astron, Glasgow G12 8QQ, Lanark, Scotland. [Ay, C.; Blumenschein, U.; Erdmann, J.; Fayette, F.; Grosse-Knetter, J.; Henrichs, A.; Hensel, C.; Klute, M.; Kohn, F.; Krieger, N.; Kroeninger, K.; Meyer, J.; Morel, J.; Park, S. J.; Quadt, A.; Shabalina, E.; Uhrmacher, M.; Weingarten, J.] Univ Gottingen, Inst Phys 2, D-37077 Gottingen, Germany. [Albrand, S.; Andrieux, M-L; Belhorma, B.; Boyer, B. H.; Clement, B.; Collot, J.; Crepe-Renaudin, S.; de Saintignon, R.; Delsart, P. A.; Donini, J.; Dzahini, D.; Hostachy, J. -Y.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Martin, Ph.; Polci, F.; Trocme, B.; Wang, J.] Univ Grenoble 1, INPG, Lab Phys Subatom & Cosmol, CNRS,IN2P3, FR-38026 Grenoble, France. [Addy, T. N.; Harvey, A.; McFarlane, K. W.; Shin, T.; Vassilakopoulos, V. I.] Hampton Univ, Dept Phys, Hampton, VA 23668 USA. [da Costa, J. Barreiro Guimaraes; Belloni, A.; Black, K. M.; Brandenburg, G. W.; Franklin, M.; Hurst, P.; Huth, J.; Jeanty, L.; Kagan, M.; Kashif, L.; Outschoorn, V. Martinez; Mills, C. M.; Moed, S.; Morii, M.; Oliver, J.; Prasad, S.; Smith, B. C.; della Porta, G. Zevi] Harvard Univ, Lab Particle Phys & Cosmol, Cambridge, MA 02138 USA. [Andrei, V.; Childers, J. T.; Dietzsch, T. A.; Foehlisch, F.; Geweniger, C.; Hanke, P.; Henke, M.; Khomich, A.; Kluge, E. -E.; Lendermann, V.; Meier, K.; Mueller, F.; Poddar, S.; Ruehr, F.; Schultz-Coulon, H. -C.; Stamen, R.; Weber, P.; Wessels, M.] Heidelberg Univ, Kirchhoff Inst Phys, D-69120 Heidelberg, Germany. [Radescu, V.; Schaetzel, S.] Inst Phys, D-69120 Heidelberg, Germany. [Kugel, A.; Maenner, R.; Schroer, N.] ZITI Ruprecht Karls Univ Heidelberg, Lehrstuhl Informat 5, D-68131 Mannheim, Germany. [Ohsugi, T.] Hiroshima Univ, Fac Sci, Higashihiroshima, JP Hiroshima 7398526, Japan. [Nagasaka, Y.] Hiroshima Inst Technol, Fac Appl Informat Sci, Hiroshima, JP Hiroshima 7315193, Japan. [Cwetanski, P.; Egorov, K.; Evans, H.; Gagnon, P.; Jain, V.; Lowe, A. J.; Luehring, F.; Manara, A.; Marino, C. P.; Ogren, H.; Penwell, J.; Price, D.; Rust, D. R.; Subramania, S.; Whittington, D.] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. [Bischof, R.; Duer, H.; Epp, B.; Girtler, P.; Jussel, P.; Kneringer, E.; Kuhn, D.; Mair, G. M.; Rudolph, G.; Schmid, R.] Inst Astro & Teilchenphys, A-6020 Innsbruck, Austria. [Behera, P. K.; Limper, M.; Mallik, U.; Pahl, C.; Schreiner, A.; Zaidan, R.] Univ Iowa, Iowa City, IA 52242 USA. [Brandt, O.; Cochran, J.; Lebedev, A.; Mete, A. S.; Meyer, W. T.; Nelson, A.; Rosenberg, E. I.; Ruiz-Martinez, A.; Triplett, N.; Yamamoto, K.] Iowa State Univ, Dept Phys & Astron, Ames High Energy Phys Grp, Ames, IA 50011 USA. [Aleksandrov, I. N.; Baranov, S.; Barashkou, A.; Bardin, D. Y.; Bednyakov, V. A.; Boyko, I. R.; Budagov, I. A.; Chelkov, G. A.; Cheplakov, A.; Chepurnov, V. F.; Chizhov, V.; Dedovich, D. V.; Demichev, M.; Glonti, G. L.; Gostkin, M. I.; Grigalashvili, N.; Gusakov, Y.; Kalinovskaya, L. V.; Kazarinov, M. Y.; Kekelidze, G. D.; Kharchenko, D.; Khovanskiy, N.; Khramov, E.; Kolesnikov, V.; Kotov, V. M.; Kruchonak, U.; Krumshteyn, Z. V.; Kukhtin, A.; Ladygin, E.; Lazarev, A. B.; Malyukov, S.; Manjavidze, I. D.; Minashvili, I. A.; Mineev, M.; Nikolaev, K.; Olchevski, A. G.; Peshekhonov, V. D.; Romanov, V. M.; Rumyantsev, L.; Rusakovich, N. A.; Sadykov, R.; Sisakyan, A. N.; Topilin, N. D.; Vinogradov, V. B.; Zhemchugov, A.] JINR Dubna, RU-141980 Moscow, Russia. [Amako, K.; Arai, Y.; Barashkou, A.; Cheplakov, A.; Doi, Y.; Haruyama, T.; Ikegami, Y.; Ikeno, M.; Ishii, K.; Ishino, M.; Iwasaki, H.; Kagawa, S.; Kanzaki, J.; Kohriki, T.; Kondo, T.; Makida, Y.; Manabe, A.; Morita, Y.; Murakami, K.; Nagano, K.; Nozaki, M.; Odaka, S.; Ohska, T. K.; Ozone, K.; Sasaki, O.; Sasaki, T.; Schieck, J.; Suzuki, Y.; Tanaka, S.; Terada, S.; Tojo, J.; Tokushuku, K.; Tsuno, S.; Unno, Y.; Yamamoto, A.; Yasu, Y.; Yoshida, H.] High Energy Accelerator Org, KEK, Tsukuba, Ibaraki 3050801, Japan. [Hayakawa, T.; Homma, Y.; Hori, T.; Ichimiya, R.; Ishikawa, A.; Kawagoe, K.; Kiyamura, H.; Kurashige, H.; Matsushita, T.; Nakatsuka, H.; Nishiyama, T.; Ochi, A.; Okada, S.; Omachi, C.; Takeda, H.; Yamazaki, Y.] Kobe Univ, Grad Sch Sci, Nada Ku, Kobe, Hyogo 6578501, Japan. [Sasao, N.] Kyoto Univ, Fac Sci, Sakyou Ku, Kyoto, JP Kyoto 6068502, Japan. [Takashima, R.] Kyoto Univ, Fushimi Ku, Kyoto, JP Kyoto 6128522, Japan. [Anduaga, X. S.; Dova, M. T.; Monticelli, F.; Tripiana, M. F.] Univ Nacl La Plata, FCE, Dept Fis, IFLP CONICET UNLP, RA-1900 La Plata, Argentina. [Borissov, G.; Bouhova-Thacker, E. V.; Brodbeck, T. J.; Catmore, J. R.; Cheatham, S.; Chilingarov, A.; Davidson, R.; De Mora, L.; Fox, H.; Henderson, R. C. W.; Hughes, G.; Jones, R. W. L.; Kartvelishvili, V.; Long, R. E.; Love, P. A.; Ratoff, P. N.; Sloan, T. J.; Small, A.; Smizanska, M.; Walder, J.] Univ Lancaster, Dept Phys, Lancaster LA1 4YB, England. [Bianco, M.; Borjanovic, I.; Brambilla, E.; Cataldi, G.; Cazzato, A.; Chiodini, G.; Coluccia, R.; Crupi, R.; Gorini, E.; Grancagnolo, F.; Guida, A.; Perrino, R.; Primavera, M.; Spagnolo, S.; Ventura, A.] INFN, Sez Lecce, IT-73100 Lecce, Italy. [Bianco, M.; Brambilla, E.; Cazzato, A.; Coluccia, R.; Crupi, R.; Gorini, E.; Guida, A.; Spagnolo, S.; Ventura, A.] Univ Salento, Dipartimento Fis, IT-73100 Lecce, Italy. [Allport, P. P.; Austin, N.; Booth, P. S. L.; Burdin, S.; D'Onofrio, M.; Dervan, R.; Greenshaw, T.; Gwilliam, C. B.; Hayward, H. S.; Houlden, M. A.; Jackson, J. N.; Jones, T. J.; King, B. T.; Klein, U.; Kluge, T.; Kretzschmar, J.; Laycock, P.; Leney, K. J. C.; Manca, G.; Maxfield, S. J.; Mehta, A.; Migas, S.; Prichard, P. M.; Vankov, P.; Vossebeld, J. H.; Wiglesworth, C.; Wrona, B.] Univ Liverpool, Oliver Lodge Lab, Liverpool L69 3BX, Merseyside, England. [Cindro, V.; Dolenc, I.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Macek, B.; Mandic, I.; Mijovic, L.; Mikuz, M.] Jozef Stefan Inst, SI-1000 Ljubljana, Slovenia. [Cindro, V.; Dolenc, I.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Macek, B.; Mandic, I.; Mijovic, L.; Mikuz, M.] Univ Ljubljana, Dept Phys, SI-1000 Ljubljana, Slovenia. [Adragna, P.; Beck, G. A.; Belymam, A.; Carter, A. A.; Cerrito, L.; Cooper, B. D.; Dalmau, J.; Eisenhandler, E.; Ellis, K.; Gnanvo, K. G.; Landon, M. P. J.; Lloyd, S. L.; Martin, A. J.; Morin, J.; Morris, J. D.; Poll, J.; Rizvi, E.; Stevenson, K.] Queen Mary Univ London, Dept Phys, London E1 4NS, England. [Alam, M. A.; Berry, T.; Boisvert, V.; Boorman, G.; Cooper-Smith, N. J.; Cowan, G.; Dragic, J.; Edwards, C. A.; Martin, T. Fonseca; George, S.; Goncalo, R.; Green, B.; Hollyman, G.; Kilvington, G.; McGarvie, S.; McMahon, T. R.; Misiejuk, A.; Strong, J. A.; Tamsett, M. C.; Teixeira-Dias, R.] Univ London, Dept Phys, Egham TW20 0EX, Surrey, England. [Asquith, L.; Baker, S.; Bernius, C.; Boeser, S.; Butterworth, J. M.; Byatt, T.; Campanelli, M.; Christidi, I. A.; Davison, A. R.; Dean, S.; Drohan, J. G.; Jones, T. W.; Konstantinidis, N.; Monk, J.; Nash, M.; Nurse, E.; Ozcan, V. E.; Richards, A.; Robinson, J. E. M.; Sherwood, P.; Siegert, F.; Simmons, B.; Stefanidis, E.; Taylor, C.; Waugh, B. M.] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Beau, T.; Bordoni, S.; Calderini, G.; Camard, A.; Cavalleri, P.; Chareyre, E.; De Cecco, S.; Derue, F.; Fichet, S.; Fleuret, F.; Imbault, D.; Krasny, M. W.; Lacour, D.; Laforge, B.; Le Dortz, O.; Lellouch, J.; Marchiori, G.; Nikolic-Audit, I.; Orsini, E.; Ridel, M.; Roos, L.; Savoy-Navarro, A.; Schwemling, Ph.; Trincaz-Duvoid, S.; Trinh, T. N.; Vannucci, F.; Vincent, P.; Yuan, L.] Univ Paris 07, Univ Paris 06, Lab Phys Nucl & Hautes Energies, CNRS,IN2P3, FR-75252 Paris 05, France. [Akesson, T. P. A.; Alonso, A.; Boelaert, N.; Groth-Jensen, J.; Hedberg, V.; Jarlskog, G.; Ji, W.; Korsmo, H.; Lundberg, B.; Lytken, E.; Mjornmark, J. U.; Smirnova, O.] Lund Univ, Nat Vetenskapliga Fak, Inst Fys, SE-22100 Lund, Sweden. [Barreiro, F.; Cantero, J.; Del Peso, J.; Gabaldon, C.; Glasman, C.; Labarga, L.; Lagouri, T.; March, L.; Nebot, E.; Oliver, C.; Peez, M.; Rodier, S.; Terron, J.] Univ Autonoma Madrid, Fac Ciencias, Dept Fis Teor, ES-28049 Madrid, Spain. [Aharrouche, M.; Bendel, M.; Blum, W.; Buescher, V.; Eckweiler, S.; Edmonds, K.; Ellinghaus, F.; Ertel, E.; Fiedler, F.; Fleckner, J.; Goeringer, C.; Groll, M.; Handel, C.; Hohlfeld, M.; Kawamura, G.; Kleinknecht, K.; Koenig, S.; Koepke, L.; Neusiedl, A.; Rieke, S.; Sander, H. G.; Schaefer, U.; Schmitt, C.; Schroeder, C.; Siragusa, G.; Tapprogge, S.; Anh, T. Vu; Weber, G.; Wicke, D.] Johannes Gutenberg Univ Mainz, Inst Phys, D-55099 Mainz, Germany. [Almond, J.; Brown, G.; Chavda, V.; Cox, B. E.; Da Via, C.; Duerdoth, I. P.; Forti, A.; Foster, J. M.; Freestone, J.; Head, S. J.; Hughes-Jones, R. E.; Ibbotson, M.; Jones, G.; Keates, J. R.; Kelly, M.; Kolya, S. D.; Lane, J. L.; Loebinger, F. K.; Marshall, R.; Martyniuk, A. C.; Masik, J.; Miyagawa, P. S.; Nasteva, I.; Nauyock, F.; Oh, A.; Owen, M.; Pater, J. R.; Pilkington, A. D.; Plano, W. G.; Potter, K. P.; Schwanenberger, C.; Snow, S. W.; Tevlin, C. M.; Thompson, R. J.; Watts, S.; Wengler, T.; Yang, U. K.] Univ Manchester, Sch Phys & Astron, Manchester M13 9PL, Lancs, England. [Bee, C.; Benchouk, C.; Bernardet, K.; Cerna, C.; Clemens, J. C.; Coadou, Y.; Correard, S.; Delpierre, P.; Djama, F.; Etienne, F.; Feligioni, L.; Hallewell, G. D.; Henry-Couannier, F.; Hoffmann, D.; Hubaut, F.; Kuna, M.; Lapoire, C.; Le Guirriec, E.; Leveque, J.; Monnier, E.; Odier, J.; Petit, E.; Pralavorio, P.; Qian, Z.; Rozanov, A.; Talby, M.; Tisserant, S.; Toth, J.; Touchard, F.; Vacavant, L.; Zhang, H.] Aix Marseille Univ, CPPM, CNRS, IN2P3, Marseille, France. [Brau, B.; Colon, G.; Dallapiccola, C.; Meade, A.; Moore, T. B.; Moyse, E. J. W.; Thompson, E. N.; van Eldik, N.; Willocq, S.; Woudstra, M. J.] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA. [Corriveau, F.; Dobbs, M.; Dufour, M. -A.; Guler, H.; Klemetti, M.; Mc Donald, J.; Potter, C. T.; Robertson, S. H.; Rios, C. Santamarina; Schram, M.; Vachon, B.; Warburton, A.] McGill Univ, High Energy Phys Group, Montreal, PQ H3A 2T8, Canada. [Barberio, E. L.; Davey, W.; Davidson, N.; Felzmann, C. U.; Kazi, S. I.; Limosani, A.; Moorhead, C. F.; Morley, A. K.; Phan, A.; Sevior, M. E.; Shao, Q. T.; Taylor, G. N.] Univ Melbourne, Sch Phys, Au Parkville, Vic 3010, Australia. [Armbruster, A. J.; Chapman, J. W.; Cirilli, M.; Dai, T.; De La Cruz-Burelo, E.; Diehl, E. B.; Eppig, A.; Ferretti, C.; Goldfarb, S.; Levin, D.; Li, X.; Liu, H.; Liu, J. B.; Mc Kee, S. P.; Neal, H. A.; Panikashvili, N.; Purdham, J.; Qian, J.; Scheirich, D.; Strandberg, J.; Thun, R. P.; Wilson, A.; Yang, H.; Zhou, B.] Univ Michigan, Dept Phys, Randall Lab 2477, Ann Arbor, MI 48109 USA. [Abolins, M.; Brock, R.; Bromberg, C.; Comune, G.; Di Mattia, A.; Ermoline, I.; Gonzalez-Pineiro, B.; Hauser, R.; Heim, S.; Holzbauer, J. L.; Huston, J.; Koll, J.; Linnemann, J. T.; Mangeard, P. S.; Martin, B.; Miller, R. J.; Pope, B. G.; Richards, R. A.; Ryan, P.; Schwienhorst, R.; Tollefson, K.] Michigan State Univ, Dept Phys & Astron, High Energy Phys Grp, E Lansing, MI 48824 USA. [Acerbi, E.; Aleppo, M.; Alessandria, F.; Alimonti, G.; Ambrosio, G.; Andreazza, A.; Baccaglioni, G.; Banfi, D.; Battistoni, G.; Bellomo, G.; Besana, M. I.; Broggi, E.; Caccia, M.; Carminati, L.; Cavalli, D.; Citterio, M.; Coelli, S.; Costa, G.; Dell'Asta, L.; Fanti, M.; Giugni, D.; Lari, T.; Lazzaro, A.; Mandelli, L.; Mazzanti, M.; Meroni, C.; Montesano, S.; Perini, L.; Pizio, C.; Ragusa, F.; Resconi, S.; Rivoltella, G.; Rossi, L.; Sala, P.; Sorbi, M.; Tartarelli, C. F.; Troncon, C.; Vegni, G.; Volpini, G.] INFN, Sez Milano, IT-20133 Milan, Italy. [Acerbi, E.; Aleppo, M.; Andreazza, A.; Banfi, D.; Besana, M. I.; Caccia, M.; Carminati, L.; Dell'Asta, L.; Fanti, M.; Lazzaro, A.; Meroni, C.; Montesano, S.; Perini, L.; Pizio, C.; Ragusa, F.; Rivoltella, G.; Rossi, L.; Sorbi, M.; Vegni, G.] Univ Milan, Dipartimento Fis, IT-20133 Milan, Italy. [Bogouch, A.; Kulchitsky, Y.; Kurochkin, Y. A.; Satsounkevitch, I.; Tsiareshka, P. V.] Natl Acad Sci Belarus, BI Stepanov Phys Inst, Minsk 220072, Byelarus. [Gilewsky, V.; Kuzhir, P.; Rumiantsev, V.; Starovoitov, P.] NC PHEP BSU, Natl Sci & Educ Ctr Particle & High Energy Phys, Minsk 220040, Byelarus. [Coco, R.; Osborne, L. S.; Taylor, F. E.] MIT, Dept Phys, Cambridge, MA 02139 USA. [Azuelos, G.; Banerjee, P.; Bouchami, J.; Charron, S.; Davies, M.; Ferland, J.; Gutierrez, A.; Lebel, C.; Leroy, C.; Goia, J. A. Macana; Martin, J. P.; Mehdiyev, R.] Univ Montreal, Grp Particle Phys, Montreal, PQ H3C 3J7, Canada. [Akimov, A. V.; Baranov, S. P.; Gavrilenko, I. L.; Kayumov, F.; Komar, A. A.; Konovalov, S. P.; Mouraviev, S. V.; Nechaeva, P.; Shmeleva, A.; Snesarev, A. A.; Sulin, V. V.; Tikhomirov, V. O.; Vasilyeva, L.] Acad Sci, PN Lebedev Phys Inst, RU-117924 Moscow, Russia. [Artamonov, A.; Khovanskiy, V.; Shatalov, P. B.; Tsukerman, I. I.] ITEP, RU-117218 Moscow, Russia. [Belotskiy, K.; Bondarenko, V. G.; Bulekov, O.; Dolgoshein, B. A.; Kantserov, V. A.; Mashinistov, R.; Morozov, S. V.; Romaniouk, A.; Smirnov, S. Yu.] Moscow Engn & Phys Inst MEPhI, RU-115409 Moscow, Russia. [Boldyrev, A.; Eremin, V.; Gladilin, L. K.; Grishkevich, Y. V.; Kramarenko, V. A.; Rud, V. I.; Sivoklokov, S. Yu.; Smirnova, L. N.] Moscow MV Lomonosov State Univ, Skobeltsyn Inst Nucl Phys MSU SINP, Moscow 119991, Russia. [Biebel, O.; Binder, M.; Boehm, M.; Brandt, A.; Calfayan, P.; Christiansen, T.; de Graat, J.; Deile, M.; Duckeck, G.; Ebke, J.; Elmsheuser, J.; Engl, A.; Galea, C.; Genest, M. H.; Hertenberger, R.; Kennedy, J.; Krobath, G.; Kummer, C.; Lambacher, M.; Legger, F.; Mameghani, R.; Mendez, R.; Merkl, D.; Mueller, T. A.; Nunnemann, T.; Obermaier, M.; Rauscher, F.; Ruckert, B.; Sanders, M. P.; Schaile, D.; Serfon, C.; Staude, A.; Stroehmer, R.; Vollmer, C. F.; Walker, R.; Zhuang, X.] Ludwig Maximilians Univ Munchen, Fak Phys, D-85748 Garching, Germany. [Aderholz, M.; Barillari, T.; Bartheld, V.; Bartko, H.; Beimforde, M.; Bethke, S.; Cortiana, G.; D'Orazio, A.; Dannheim, D.; Dedes, G.; Dietl, H.; Dubbert, J.; Ehrich, T.; Flowerdew, M. J.; Giovannini, R.; Goettfert, T.; Groh, M.; Haefner, P.; Haertel, R.; Hauff, D.; Horvat, S.; Hott, T.; Jantsch, A.; Kaiser, S.; Kiryunin, A. E.; Kluth, S.; Kortner, O.; Kotv, S.; Kroha, H.; Lutz, G.; Macchiolo, A.; Manz, A.; Menke, S.; Mohrdieck-Moeck, S.; Moser, H. G.; Nisius, R.; Oberlack, H.; Gomez, M. Olivo; Pataraia, S.; Pospelov, G. E.; Potrap, I. N.; Rauter, E.; Richter, R.; Salihagic, D.; Schacht, R.; Schieck, J.; Seuster, R.; Stiller, W.; Stonjek, S.; Striegel, D.; Valderanis, C.; von der Schmitt, H.; von Loeben, J.; Wiesmann, M.; Yuan, J.; Zhuravlov, V.] Max Planck Inst Phys & Astrophys, Werner Heisenberg Inst, D-80805 Munich, Germany. [Shimojima, M.; Tanaka, Y.] Nagasaki Inst Appl Sci, Jp Nagasaki 8510193, Japan. [Hasegawa, S.; Itoh, Y.; Ohshima, T.; Okumura, Y.; Sugimoto, T.; Takahashi, Y.; Tomoto, M.] Nagoya Univ, Grad Sch Sci, Chikusa Ku, Nagoya, Aichi 4648602, Japan. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Capasso, L.; Caprio, M.; Carlino, G.; Cevenini, E.; Chiefari, G.; Conventi, F.; de Asmundis, R.; Della Pietra, M.; della Volpe, D.; Doria, A.; Giordano, R.; Iacobucci, G.; Izzo, V.; Merola, L.; Migliaccio, A.; Musto, E.; Patricelli, S.; Sekhniaidze, G.] INFN, Sez Napoli, IT-80126 Naples, Italy. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Capasso, L.; Caprio, M.; Cevenini, E.; Chiefari, G.; della Volpe, D.; Giordano, R.; Merola, L.; Migliaccio, A.; Musto, E.; Patricelli, S.] Univ Naples Federico II, Dipartimento Sci Fis, IT-80126 Naples, Italy. [Gorelov, I.; Hoeferkamp, M. R.; Metcalfe, J.; Seidel, S. C.; Toms, K.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. [Consonni, M.; De Groot, N.; Filthaut, F.; Jansen, E.; Klok, P. F.; Konig, A. C.; Koetsveld, F.; Magrath, C. A.; Ordonez, G.; Raas, M.; Timmermans, C. J. W. P.] Radboud Univ Nijmegen, NIKHEF, Dept Expt High Energy Phys, NL-6525 AJ Nijmegen, Netherlands. [Bentvelsen, S.; Bobbink, G. J.; Bos, K.; Boterenbrood, H.; Buis, E. J.; Colijn, A. P.; Dankers, R.; Daum, C.; de Jong, R.; Doxiadis, A.; Ferrari, P.; Garitaonandia, H.; Gosselink, M.; Hartjes, F.; Hendriks, P. J.; Hessey, N. P.; Igonkina, O.; Kayl, M. S.; Klous, S.; Kluit, P.; Koffeman, E.; Koutsman, A.; Lee, H.; Liebig, W.; Linde, F.; Luijckx, G.; Massaro, G.; Mechnich, J.; Muijs, A.; Mussche, I.; Ottersbach, J. P.; Peeters, S. J. M.; Peters, O.; Reichold, A.; Resende, B.; Rijpstra, M.; Ruckstuhl, N.; Salamanna, G.; Sandstroem, R.; Scholte, R. C.; Snuverink, J.; Tsiakiris, M.; Turlay, E.; van der Graaf, H.; van der Kraaij, E.; van der Poel, E.; Van Eijk, B.; van Kesteren, Z.; van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Vreeswijk, M.] Nikhef Natl Inst Subatom Phys, NL-1098 XG Amsterdam, Netherlands. [Bentvelsen, S.; Bobbink, G. J.; Bos, K.; Boterenbrood, H.; Buis, E. J.; Colijn, A. P.; Dankers, R.; Daum, C.; de Jong, R.; Doxiadis, A.; Ferrari, P.; Garitaonandia, H.; Gosselink, M.; Hartjes, F.; Hendriks, P. J.; Hessey, N. P.; Igonkina, O.; Kayl, M. S.; Klous, S.; Kluit, P.; Koffeman, E.; Koutsman, A.; Lee, H.; Liebig, W.; Linde, F.; Luijckx, G.; Massaro, G.; Mechnich, J.; Muijs, A.; Mussche, I.; Ottersbach, J. P.; Peeters, S. J. M.; Peters, O.; Resende, B.; Rijpstra, M.; Ruckstuhl, N.; Salamanna, G.; Sandstroem, R.; Scholte, R. C.; Snuverink, J.; Tsiakiris, M.; Turlay, E.; van der Graaf, H.; van der Kraaij, E.; van der Poel, E.; Van Eijk, B.; van Kesteren, Z.; van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Vreeswijk, M.] Univ Amsterdam, NL-1098 XG Amsterdam, Netherlands. [Kazanin, V. A.; Kolachev, G. M.; Kotov, K. Y.; Malyshev, V.; Maslennikov, A. L.; Orlov, I.; Panin, V. N.; Peleganchuk, S. V.; Schamov, A. G.; Skovpen, K.; Soukharev, A.; Talyshev, A.; Tikhonov, Y. A.; Zaytsev, A.] BINP, Ru Novosibirsk 630090, Russia. [Budick, B.; Casadei, D.; Cranmer, K.; Djilkibaev, R.; Konoplich, R.; Krasznahorkay, A.; Mincer, A. I.; Nemethy, P.; Shibata, A.; Zhao, L.] NYU, Dept Phys, New York, NY 10003 USA. [Arms, K. E.; Fernando, W.; Fisher, M. J.; Gan, K. K.; Jackson, J.; Kagan, H.; Kass, R. D.; Loureiro, K. F.; Moss, J.; Rahimi, A. M.; Ter-Antonyan, R.] Ohio State Univ, Columbus, OH 43210 USA. [Mima, S.; Naito, D.; Nakano, I.] Okayama Univ, Fac Sci, Okayama 7008530, Japan. [Abbott, B.; Gutierrez, P.; Huang, G. S.; Jana, D.; Meera-Lebbai, R.; Saleem, M. S.; Severini, H.; Skubic, R.; Snow, J.; Strauss, M.] Univ Oklahoma, Homer L Dodge Dept Phys & Astron, Norman, OK 73019 USA. [Abi, B.; Khanov, A.; Rizatdinova, F.] Oklahoma State Univ, Dept Phys, Stillwater, OK 74078 USA. [Kocnar, A.] Palacky Univ, Olomouc 77207, Czech Republic. [Abdesselam, A.; Brau, J. E.; Ptacek, E.; Reinsch, A.; Robinson, M.; Searcy, J.; Shamim, M.; Sinev, N. B.; Strom, D. M.; Torrence, E.] Univ Oregon, Ctr High Energy Phys, Eugene, OR 97403 USA. [Abreu, H.; Arnault, C.; Auge, E.; Barrillon, P.; Benoit, M.; Bernat, P.; Binet, S.; Blanchard, J. -B.; Bourdarios, C.; Breton, D.; Collard, C.; De La Taille, C.; De Regie, J. B. De Vivie; Diglio, S.; Dudziak, F.; Duflot, L.; Escalier, M.; Falou, A. C.; Fayard, L.; Fournier, D.; Heller, M.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Kado, M.; Lechowski, M.; Lounis, A.; Makovec, N.; Matricon, P.; Niedercorn, E.; Perus, P.; Poggioli, L.; Puzo, P.; Rousseau, D.; Ruan, X.; Rybkin, G.; Schaffer, A. C.; Serin, L.; Simion, S.; Tanaka, R.; Veillet, J. J.; Vukotic, I.; Wicek, F.; Zerwas, D.] Univ Paris 11, CNRS, IN2P3, LAL, F-91405 Orsay, France. [Hanagaki, K.; Hirose, M.; Meguro, T. M.; Nomachi, M.; Sugaya, Y.; Uchida, K.] Osaka Univ, Grad Sch Sci, Osaka 5600043, Japan. [Bugge, L.; Buran, T.; Cameron, D.; Gjelsten, B. K.; Lund, E.; Niinimaki, M. J.; Ould-Saada, F.; Pajchel, K.; Pylypchenko, Y.; Read, A. L.; Rohne, O.; Samset, B. H.; Stapnes, S.; Strandlie, A.; Taga, A.] Univ Oslo, Dept Phys, NO-0316 Oslo 3, Norway. [Abdesselam, A.; Barr, A. J.; Beauchemin, P. H.; Brett, N. D.; Buchanan, J.; Buira-Clark, D.; Coe, R.; Cooper-Sarkar, A. M.; Dehchar, M.; Dennis, C.; Doglioni, C.; Farrington, S. M.; Ferrando, J.; Fiascaris, M.; Fopma, J.; Gallas, E. J.; Gibson, S. M.; Gilbert, L. M.; Grewal, A.; Gwenlan, C.; Hawes, B. M.; Heinemann, F. E. W.; Hindson, D.; Holmes, A.; Howell, D. F.; Huffman, B. T.; Issever, C.; Jones, M.; Unel, M. Karagoz; Kirsch, G. P.; Kundu, N.; Larner, A.; Lau, W.; Lavorato, A.; Loken, J.; Lynn, J.; Mattravers, C.; Mermod, P.; Mitra, A.; Nickerson, R. B.; Ottewell, B.; Shield, R.; Tseng, J. C. -L.; Vertogardov, L.; Vickey, T.; Viehhauser, G. H. A.; Wastie, R.; Weidberg, A. R.; Whitehead, S. R.; Yang, S.] Univ Oxford, Dept Phys, Oxford OX1 3RH, England. [Bellomo, M.; Cambiaghi, M.; Conta, C.; Ferrari, R.; Franchino, S.; Fraternali, M.; Gaudio, G.; Goggi, V.; Lanza, A.; Livan, M.; Negri, A.; Polesello, G.; Prata, M.; Rebuzzi, D. M.; Rimoldi, A.; Uslenghi, M.; Vercesi, V.] INFN, Sez Pavia, IT-27100 Pavia, Italy. [Cambiaghi, M.; Conta, C.; Franchino, S.; Fraternali, M.; Goggi, V.; Livan, M.; Negri, A.; Prata, M.; Rebuzzi, D. M.; Rimoldi, A.; Uslenghi, M.] Univ Pavia, Dipartimento Fis Nucl & Teor, IT-27100 Pavia, Italy. [Alison, J.; Degenhardt, J.; Donega, M.; Dressnandt, N.; Fratina, S.; Hance, M.; Hines, E.; Jackson, B.; Keener, P. T.; Kroll, J.; Kunkle, J.; LeGeyt, B. C.; Lipeles, E.; Martin, F. F.; Munar, A.; Newcomer, F. M.; Olivito, D.; Ospanov, R.; Reece, R.; Stahlman, J.; Thomson, E.; Van Berg, R.; Wagner, P.; Williams, H. H.] Univ Penn, Dept Phys, High Energy Phys Grp, Philadelphia, PA 19104 USA. [Fedin, O. L.; Gratchev, V.; Maleev, V. P.; Nesterov, S. Y.; Ryabov, Y. F.; Schegelsky, V. A.; Sedykh, E.; Seliverstov, D. M.; Tanaka, S.; Zalite, Yo. K.] Petersburg Nucl Phys Inst, RU-188300 Gatchina, Russia. [Cascella, M.; Cavasinni, V.; Cicalini, E.; Del Prete, T.; Dotti, A.; Francavilla, P.; Giangiobbe, V.; Lupi, A.; Mazzoni, E.; Roda, C.; Sarri, F.; Zenonos, Z.] Ist Nazl Fis Nucl, Sez Pisa, IT-56127 Pisa, Italy. [Cascella, M.; Cavasinni, V.; Cicalini, E.; Del Prete, T.; Dotti, A.; Francavilla, P.; Giangiobbe, V.; Lupi, A.; Mazzoni, E.; Roda, C.; Sarri, F.; Zenonos, Z.] Univ Pisa, Dipartimento Fis E Fermi, IT-56127 Pisa, Italy. [Boudreau, J.; Boulahouache, C.; Cleland, W.; Haboubi, G.; Kittelmann, T.; Mueller, J.; Paolone, V.; Savinov, V.; Tsulaia, V.; Wendler, S.; Yoosoofmiya, R.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Amorim, A.; Anjos, N.; Benincasa, G. P.; Carvalho, J.; Muino, P. Conde; Wemans, A. Do Valle; Fernandes, B.; Fiolhais, M. C. N.; Gomes, A.; Jorge, P. M.; Klimkovich, T.; Lopes, L.; Miguens, J. Machado; Martins, P. J. Magalhaes; Maio, A.; Maneira, J.; Martins, J.; Morais, A.; Neves, R. N.; Oliveira, M.; Onofre, A.; Palma, A.; Pina, J.; Pinto, B.; Pousada, A.; Saraiva, J. G.; Silva, J.; Soares, M.; Veloso, F.; Wolters, H.] Lab Instrumentacao & Fis Expt Particulas LIP, PT-1000149 Lisbon, Portugal. [Aguilar-Saavedra, J. A.; Castro, N. F.] Univ Granada, Dept Fis Teor & Cosmos & CAFPE, E-18071 Granada, Spain. [Bazalova, M.; Bohm, J.; Chudoba, J.; Gallus, P.; Gunther, J.; Havranek, M.; Hruska, I.; Jahoda, M.; Juranek, V.; Kepka, O.; Kupco, A.; Kus, V.; Kvasnicka, O.; Lipinsky, L.; Lokajicek, M.; Marcisovsky, M.; Mikestikova, M.; Myska, M.; Nemecek, S.; Panuskova, M.; Papule, J.; Ruzicka, R.; Schovancova, J.; Sicho, R.; Sluka, T.; Staroba, R.; Stastny, J.; Tasevsky, M.; Tic, T.; Tomasek, L.; Tomasek, M.; Valenta, J.; Vrba, V.] Acad Sci Czech Republic, Inst Phys, CZ-18221 Prague 8, Czech Republic. [Davidek, T.; Dolejsi, J.; Dolezal, Z.; Drasal, Z.; Kodys, P.; Koupilova, Z.; Krivkova, P.; Leitner, R.; Novakova, J.; Reznicek, P.; Spousta, M.; Strachota, R.; Suk, M.; Sykora, T.; Tas, P.; Trka, Z.; Valkar, S.; Vorobel, V.; Wilhelm, I.] Charles Univ Prague, Fac Math & Phys, Inst Particle & Nucl Phys, CZ-18000 Prague 8, Czech Republic. [Augsten, K.; Holy, T.; Horazdovsky, T.; Hubacek, Z.; Jakubek, J.; Kohout, Z.; Kral, V.; Krejci, F.; Pospisil, S.; Simak, V.; Slavicek, T.; Smolek, K.; Sodomka, J.; Solar, M.; Solc, J.; Sopko, V.; Sopko, B.; Stekl, I.; Turecek, D.; Vacek, V.; Vlasak, M.; Vokac, P.] Czech Tech Univ, CZ-16635 Prague 6, Czech Republic. [Ammosov, V. V.; Borisov, A.; Bozhko, N. I.; Denisov, S. P.; Evdokimov, V. N.; Fakhrutdinov, R. M.; Fenyuk, A. B.; Gapienko, V. A.; Golovnia, S. N.; Gorokhov, S. A.; Goryachev, V. N.; Gushchin, V. N.; Ivashin, A. V.; Kabachenko, V. V.; Karyukhin, A. N.; Kholodenko, A. G.; Kiver, A. M.; Kopikov, S. V.; Koreshev, V.; Korotkov, V. A.; Kozhin, A. S.; Lapin, V. V.; Larionov, A. V.; Levitski, M. S.; Makouski, M.; Minaenko, A. A.; Mitrofanov, G. Y.; Moisseev, A. M.; Myagkov, A. G.; Pleskach, A. V.; Ryadovikov, V.; Solodkov, A. A.; Solovyanov, O. V.; Starchenko, E. A.; Sviridov, Yu. M.; Vorobiev, A. P.; Vovenko, A. S.; Zaets, V. G.; Zaitsev, A. M.; Zenin, A. V.; Zenin, O.; Zmouchko, V. V.] State Res Ctr, Inst High Energy Phys, Protvino 142281, Moscow Region, Russia. [Adye, T.; Baines, J. T.; Barnett, B. M.; Botterill, D.; Burke, S.; Clifft, R. W.; Dallison, S. J.; Dewhurst, A.; Emeliyanov, D.; Fisher, S. M.; Gallop, B. J.; Gee, C. N. P.; Gillman, A. R.; Greenfield, D.; Hart, J. C.; Haywood, S. J.; Kirk, J.; McCubbin, N. A.; McMahon, S. J.; Middleton, R. P.; Murray, W. J.; Norton, P. R.; Qian, W.; Sankey, D. P. C.; Scott, W. G.; Shah, T. P.; Strube, J.; Tyndel, M.; Villani, E. G.; Weber, M.; Wickens, F. J.; Wielers, M.] Rutherford Appleton Lab, Sci & Technol Facil Council, Didcot OX11 0QX, Oxon, England. [Benslama, K.; Kalinowski, A.; Ming, Y.; Ortega, E. O.; Wang, M. W.] Univ Regina, Dept Phys, Regina, SK S4S 0A2, Canada. [Tanaka, S.] Ritsumeikan Univ, Shiga 5258577, Japan. [Abdesselam, A.; Bagnaia, P.; Biglietti, M.; Bini, C.; Boaretto, C.; Borroni, S.; Caloi, R.; Cavallari, A.; Ciapetti, G.; De Pedis, D.; De Salvo, A.; De Zorzi, G.; Di Domenico, A.; Dionisi, C.; Falciano, S.; Gauzzi, P.; Gentile, S.; Giagu, S.; Kuznetsova, E.; Lacava, F.; Luci, C.; Luminari, L.; Maiani, C.; Marzano, F.; Mirabelli, G.; Moch, M.; Nielsen, J.; Nisati, A.; Oberson, P.; Pasqualucci, E.; Petrolo, E.; Pontecorvo, L.; Rescigno, M.; Robins, S.; Rosati, S.; Camillocci, E. Solfaroli; Spila, F.; Valente, R.; Vari, R.; Veneziano, S.; Zanello, L.] Ist Nazl Fis Nucl, Sez Roma, IT-00185 Rome, Italy. [Bagnaia, P.; Biglietti, M.; Bini, C.; Boaretto, C.; Borroni, S.; Caloi, R.; Cavallari, A.; Ciapetti, G.; De Zorzi, G.; Di Domenico, A.; Dionisi, C.; Gauzzi, P.; Gentile, S.; Giagu, S.; Kuznetsova, E.; Lacava, F.; Luci, C.; Maiani, C.; Moch, M.; Oberson, P.; Robins, S.; Rosati, S.; Camillocci, E. Solfaroli; Spila, F.; Zanello, L.] Univ Roma La Sapienza, Dipartimento Fis, IT-00185 Rome, Italy. [Aielli, G.; Camarri, P.; Cardarelli, R.; Cattani, G.; Di Ciaccio, A.; Di Nardo, R.; Di Simone, A.; Liberti, B.; Marchese, F.; Paoloni, A.; Salamon, A.; Santonico, R.] INFN, Sez Roma Tor Vergata, IT-00133 Rome, Italy. [Aielli, G.; Camarri, P.; Cattani, G.; Di Ciaccio, A.; Di Nardo, R.; Di Simone, A.; Marchese, F.; Paoloni, A.; Santonico, R.] Univ Roma Tor Vergata, Dipartimento Fis, IT-00133 Rome, Italy. [Bacci, C.; Baroncelli, A.; Branchini, P.; Ceradini, E.; Di Luise, S.; Farilla, A.; Graziani, E.; Iodice, M.; Orestano, D.; Passeri, A.; Pastore, F.; Petrucci, F.; Ruggieri, F.; Spiriti, E.; Spogli, L.; Stanescu, C.; Tonazzo, A.] Ist Nazl Fis Nucl, Sez Roma Tre, IT-00146 Rome, Italy. [Bacci, C.; Ceradini, E.; Di Luise, S.; Orestano, D.; Pastore, F.; Petrucci, F.; Spogli, L.; Tonazzo, A.] Univ Roma Tre, Dipartimento Fis, IT-00146 Rome, Italy. [Benchekroun, D.; Chafaq, A.; Gouighri, M.; Goujdami, D.; Hoummada, A.] RUPHE, Ma Casablanca, Morocco. [Benchekroun, D.; Chafaq, A.; Gouighri, M.; Goujdami, D.; Hoummada, A.] Univ Hassan 2, Fac Sci Ain Chock, Ma Casablanca, Morocco. CNESTEN, LPTPM, Fac Sci, Rabat 10001, Morocco. [Derkaoui, J. E.; Tayalati, Y.] Univ Mohamed Premier, LPTPM, Fac Sci, Oujda 60000, Morocco. [Cherkaoui El Moursli, R.; Ghazlane, H.] Univ Mohammed 5, Fac Sci, Rabat 10000, Morocco. [Bachacou, H.; Bauer, F.; Besson, N.; Boonekamp, M.; Chevalier, L.; Chevallier, F.; Ernwein, J.; Etienvre, A. I.; Formica, A.; Guyot, C.; Hassani, S.; Kozanecki, W.; Lancon, E.; Laporte, J. F.; Le Menedeu, E.; Legendre, M.; Lenzi, B.; Mansoulie, B.; Marzin, A.; Meyer, J. -P.; Mountricha, E.; Nicolaidou, R.; Ouraou, A.; Pomarede, D. M.; Royon, C. R.; Schune, Ph.; Schwindling, J.; Virchaux, M.] Ctr Etud Saclay, CEA, DSM IRFU, FR-91191 Gif Sur Yvette, France. [Bangert, A.; Chouridou, S.; Dubbs, T.; Fowler, K.; Grillo, A. A.; Hansl-Kozanecka, T.; Hare, G. A.; Litke, A. M.; Lockman, W. S.; Manning, P. M.; Mitrevski, J.; Nielsen, J.; Rosenbaum, F.; Sadrozinski, H. F. -W.; Schumm, B. A.; Seiden, A.; Spencer, E.; Taylor, G.] Univ Calif Santa Cruz, SCIPP, Santa Cruz, CA 95064 USA. [Daly, C. H.; Forbush, D. A.; Goussiou, A. G.; Griffiths, J.; Harris, O. M.; Kuykendall, W.; Lubatti, H. J.; Mockett, P.; Policicchio, A.; Rothberg, J.; Twomey, M. S.; Ventura, D.; Wang, J. C.; Watts, G.; Zhao, T.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Anastopoulos, C.; Booth, C. N.; Booth, P.; Costanzo, D.; Donszelmann, T. Cuhadar; Dawson, I.; Duxfield, R.; Harper, R.; Hodgkinson, M. C.; Hodgson, P.; Johansson, P.; Korolkova, E. V.; Lehto, M.; Manolopoulos, S.; Mayne, A.; Morgan, D.; Nicolas, L.; Owen, S.; Paganis, E.; Shaw, K.; Sutton, M. R.; Tovey, D. R.; Tsionou, D.; Walsh, S.; Xu, D.] Univ Sheffield, Dept Phys & Astron, Sheffield S3 7RH, S Yorkshire, England. [Hasegawa, Y.; Miyazaki, Y.; Ohshita, H.; Takeshita, T.] Shinshu Univ, Dept Phys, Fac Sci, Matsumoto, JP Nagano 3908621, Japan. [Buchholz, R.; Fleck, I.; Grybel, K.; Holder, M.; Ibragimov, I.; Rammes, M.; Sipica, V.; Stahl, T.; Walkowiak, W.; Werthenbach, U.; Ziolkowski, M.] Univ Siegen, Fachbereich Phys, D-57068 Siegen, Germany. [Bieri, M.; Godfrey, J.; Komaragiri, J. R.; O'Neil, D. C.; Petteni, M.; Rezaie, E.; Schouten, D.; Spreitzer, T.; Stelzer, B.; Stewart, T. D.; Vetterli, M. C.] Simon Fraser Univ, Dept Phys, Burnaby, BC V5A 1S6, Canada. [Antonelli, M.; Asai, M.; Barklow, T.; Bartoldus, R.; Bawa, H. S.; Butler, B.; Gao, Y. S.; Grenier, P.; Haas, A.; Hansson, P.; Horn, C.; Jackson, P.; Kim, P. C.; Kocian, M.; Miller, D. W.; Mount, R.; Nelson, T. K.; Salnikov, A.; Schwartzman, A.; Silverstein, D.; Smith, D.; Su, D.; Wilson, M. C.; Wittgen, M.; Wright, D.; Young, C.] Stanford Linear Accelerator Ctr, Natl Accelerator Lab, Stanford, CA 94309 USA. [Batkova, L.; Federic, R.; Pecsy, M.; Stavina, R.; Sykora, I.; Tokar, S.; Zenis, T.; Zilka, B.] Comenius Univ, Fac Math Phys & Informat, SK-84248 Bratislava, Slovakia. [Bruncko, D.; Ferencei, J.; Kladiva, E.; Seman, M.; Strizenec, P.] Slovak Acad Sci, Dept Subnucl Phys, Inst Expt Phys, SK-04353 Kosice, Slovakia. [Asman, B.; Kuutmann, E. Bergeaas; Bohm, C.; Clement, C.; Eriksson, D.; Gellerstedt, K.; Hellman, S.; Hidvegi, A.; Hillert, S.; Holmren, S. O.; Johansen, M.; Johansson, K. E.; Jon-And, K.; Lesser, J.; Milstead, D. A.; Moa, T.; Nordkvist, B.; Ohm, C. C.; Ramstedt, M.; Sellden, B.; Silverstein, S. B.; Sielin, J.; Tyilmad, M.; Yang, Z.] Stockholm Univ, Dept Phys, SE-10691 Stockholm, Sweden. [Asman, B.; Kuutmann, E. Bergeaas; Clement, C.; Gellerstedt, K.; Hellman, S.; Hillert, S.; Johansen, M.; Jon-And, K.; Milstead, D. A.; Moa, T.; Nordkvist, B.; Ohm, C. C.; Ramstedt, M.; Sielin, J.; Tyilmad, M.; Yang, Z.] Stockholm Univ, Oskar Klein Ctr, SE-10691 Stockholm, Sweden. [Grahn, K. -J.; Lund-Jensen, B.] Royal Inst Technol KTH, Dept Phys, SE-10691 Stockholm, Sweden. [Ahmad, A.; Caputo, R.; Deluca, C.; DeWilde, B.; Engelmann, R.; Farley, J.; Goodson, J. J.; Grassi, V.; Gray, J. A.; Grimm, K.; Hobbs, J.; Jia, J.; Khodinov, A.; McCarthy, R. L.; Rijssenbeek, M.; Schamberger, R. D.; Tsybychev, D.; Yurkewicz, A.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [De Santo, A.; Potter, C. J.; Salvatore, F.] Univ Sussex, Dept Phys & Astron, Brighton BN1 9QH, E Sussex, England. [Lee, J. S. H.; Peak, L. S.; Saavedra, A. F.; Varvell, K. E.; Waugh, A. T.] Univ Sydney, Sch Phys, Au Sydney, NSW 2006, Australia. [Chu, M. L.; Hou, S.; Lee, S. C.; Liang, Z.; Lin, S. C.; Liu, D.; Mazini, R.; Meng, Z.; Ren, Z. L.; Soh, D. A.; Teng, P. K.; Wang, S. M.; Zhong, J.; Zhou, Y.] Acad Sinica, Inst Phys, Tw Taipei 11529, Taiwan. [Harpaz, S. Behar; Ben Ami, S.; Bressler, S.; Hershenhorn, A. D.; Kajomovitz, E.; Landsman, H.; Lifshitz, R.; Rozen, Y.; Tarem, S.; Tennenbaum-Katan, Y. D.; Vallecorsa, S.] Technion Israel Inst Technol, Dept Phys, IL-32000 Technion, Haifa, Israel. [Abramowicz, H.; Alexander, G.; Amram, N.; Bella, G.; Benary, O.; Benhammou, Y.; Brodet, E.; Etzion, E.; Gershon, A.; Ginzburg, J.; Guttman, N.; Hod, N.; Kreisel, A.; Mahalalel, Y.; Munwes, Y.; Oren, Y.; Reinherz-Aronis, E.; Silver, Y.; Soffer, A.; Urkovsky, E.] Tel Aviv Univ, Raymond & Beverly Sackler Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Iliadis, D.; Nomidis, I.; Petridou, C.; Sampsonidis, D.] Aristotle Univ Thessaloniki, Fac Sci, Dept Phys, Div Nucl & Particle Phys, GR-54124 Thessaloniki, Greece. [Akimoto, G.; Asfandiyarov, R.; Azuma, Y.; Dohmae, T.; Imori, M.; Isobe, T.; Kanaya, N.; Kaneda, M.; Kataoka, Y.; Kawamoto, T.; Kessoku, K.; Kobayashi, T.; Kubota, T.; Mashimo, T.; Masubuchi, T.; Matsumoto, H.; Matsunaga, H.; Nakamura, K.; Nomoto, H.; Oda, S.; Okawa, H.; Okuyama, T.; Sakamoto, H.; Suzuki, T.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamamoto, S.; Yamamura, T.; Yamazaki, T.] Univ Tokyo, Int Ctr Elementary Particle Phys, Bunkyo Ku, Jp Tokyo 1130033, Japan. [Akimoto, G.; Asfandiyarov, R.; Azuma, Y.; Dohmae, T.; Imori, M.; Isobe, T.; Kanaya, N.; Kaneda, M.; Kataoka, Y.; Kawamoto, T.; Kessoku, K.; Kobayashi, T.; Kubota, T.; Mashimo, T.; Masubuchi, T.; Matsumoto, H.; Matsunaga, H.; Nakamura, K.; Nomoto, H.; Oda, S.; Okawa, H.; Okuyama, T.; Sakamoto, H.; Suzuki, T.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamamoto, S.; Yamamura, T.; Yamazaki, T.] Univ Tokyo, Dept Phys, Bunkyo Ku, Jp Tokyo 1130033, Japan. [Bratzler, U.; Fukunaga, C.] Tokyo Metropolitan Univ, Grad Sch Sci & Technol, Tokyo 1920397, Japan. [Jinnouchi, O.] Tokyo Inst Technol, Meguro Ku, Tokyo 1528551, Japan. [Bailey, D. C.; Bain, T.; Beare, B.; Brelier, B.; Montero, S. Carron; Cheung, S. L.; Deviveiros, P. O.; Dhaliwal, S.; Farooque, T.; Fatholahzadeh, B.; Gibson, A.; Gorbounov, P. A.; Groer, L. S.; Guo, B.; Joo, K. K.; Knecht, N. S.; Krieger, P.; Le Maner, C.; Martens, F. K.; Mayer, J. K.; Orr, R. S.; Rezvani, R.; Rosenbaum, G. A.; Sandhu, P.; Savard, R.; Sidhu, J.; Sinervo, R.; Tardif, D.; Teuscher, R. J.; Thompson, P. D.; Trischuk, W.] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada. [Canepa, A.; Chekulaev, S. V.; Fortin, D.; Ishizawa, Y.; Kurchaninov, L. L.; Losty, M. J.; Nugent, I. M.; Oram, C. J.; Qing, D.; Stelzer-Chilton, O.; Tafirout, R.; Trigger, I. M.; Wellisch, H. P.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Idarraga, J.; Martynenko, V.; Taylor, W.] York Univ, Dept Phys & Astron, Toronto, ON M3J 1P3, Canada. [Hara, K.; Kim, S. H.; Kurata, M.; Nagai, K.; Ukegawa, F.; Yamada, M.] Univ Tsukuba, Inst Pure & Appl Sci, Tsukuba, JP Ibaraki 3058571, Japan. [Hamilton, S.; Mann, W. A.; Napier, A.; Rolli, S.; Sliwa, K.; Todorova-Nova, S.] Tufts Univ, Ctr Sci & Technol, Medford, MA 02155 USA. [Losada, M.; Mendoza Navas, L.; Moreno, D.; Navarro, G.; Pinzon, G.; Roa Romero, D. A.; Rodriguez, D.] Univ Antonio Narino, Ctr Invest, Bogota, Colombia. [Avolio, G.; Benedict, B. H.; Bold, T.; Bondioli, M.; Ciobotaru, M. D.; Corso-Radu, A.; Deng, J.; Dobson, M.; Eschrich, I. Gough; Grabowska-Bold, I.; Hawkins, D.; Kolos, S.; Lankford, A. J.; Garcia, R. Murillo; Porter, R.; Schernau, M.; Stancu, S. N.; Taffard, A.; Toggerson, B.; Unel, G.; Werth, M.; Wheeler-Ellis, S. J.; Whiteson, D.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Acharya, B. S.; Cauz, D.; Cobal, M.; De Lotto, B.; De Sanctis, U.; Del Papa, C.; Giordani, M. P.; Luisa, L.; Suruliz, K.] Ist Nazl Fis Nucl, Grp Coll Udine, IT-34014 Trieste, Italy. [Acharya, B. S.; Suruliz, K.] Abdus Salaam Int Ctr Theoret Phys, IT-34014 Trieste, Italy. [Cauz, D.; Cobal, M.; De Lotto, B.; De Sanctis, U.; Del Papa, C.; Giordani, M. P.; Luisa, L.] Univ Udine, Dipartimento Fis, IT-33100 Udine, Italy. [Benekos, N.; Coggeshall, J.; Cortes-Gonzalez, A.; Deberg, H.; Errede, D.; Errede, S.; Jones, A.; Khandanyan, H.; Lie, K.; Liss, T. M.; McCarn, A.; Neubauer, M. S.; Sfyrla, A.; Vichou, I.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Belanger-Champagne, C.; Brenner, R.; Buszello, C. P.; Coniavitis, E.; Ekelof, T.; Ellert, M.; Ferrari, A.; Hansen, C. J.] Uppsala Univ, Dept Phys & Astron, SE-75120 Uppsala, Sweden. [Amoros, G.; Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Escobar, C.; Ferrer, A.; Fuster, J.; Garcia, C.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Minano, M.; Mitsou, V. A.; Moles-Valls, R.; Moreno Llacer, M.; Oliver Garcia, E.; Perez Garcia-Estan, M. T.; Ros, E.; Salt, J.; Sanchis Lozano, M. A.; Solans, C. A.; Sanchez, J.; Torro Pastor, E.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.; Wildauer, A.] Univ Valencia, Dept Fis Mol & Nucl, Inst Fis Corpuscular IFIC, Ctr Mixto UVEG CSIC, ES-46071 Valencia, Spain. [Amoros, G.; Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Escobar, C.; Ferrer, A.; Fuster, J.; Garcia, C.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Minano, M.; Mitsou, V. A.; Moles-Valls, R.; Moreno Llacer, M.; Oliver Garcia, E.; Perez Garcia-Estan, M. T.; Ros, E.; Salt, J.; Sanchis Lozano, M. A.; Solans, C. A.; Sanchez, J.; Torro Pastor, E.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.; Wildauer, A.] IMB CNM CSIC, Bellaterra 08193, Spain. [Axen, D.; Gay, C.; Loh, C. W.; Mills, W. J.; Muir, A.] Univ British Columbia, Dept Phys, Vancouver, BC V6T 1Z1, Canada. [Albert, J.; Astbury, A.; Banerjee, S.; Bansal, V.; Berghaus, F.; Courneyea, L.; Fincke-Keeler, M.; Ince, T.; Keeler, R.; Kowalewski, R.; Lefebvre, M.; Lessard, J. -R.; McPherson, R. A.; Plamondon, M.; Poffenberger, P.; Sobie, R.; Taylor, R. P.; Voss, K. C.] Univ Victoria, Dept Phys & Astron, Victoria, BC V8W 3P6, Canada. [Yorita, K.] Waseda Univ, WISE, Shinjuku Ku, Tokyo 1698555, Japan. [Alon, R.; Duchovni, E.; Gabizon, O.; Gross, E.; Klier, A.; Lellouch, D.; Levinson, L. J.; Mikenberg, G.; Milov, A.; Milstein, D.; Silbert, O.; Smakhtin, V.; Vitells, O.] Weizmann Inst Sci, Dept Particle Phys, IL-76100 Rehovot, Israel. [Ask, S.; Montoya, G. D. Carrillo; Hernadez, A. M. Castaneda; Castaneda-Miranda, E.; Chen, X.; Dos Anjos, A.; Fang, Y.; Castillo, L. R. Flores; Goldschmidt, N.; Gutzwiller, O.; Jared, R. C.; Cheong, A. Leung Fook; Li, H.; Ma, L. L.; Garcia, B. R. Mellado; Pan, Y. B.; Morales, M. I. Pedraza; Peng, H.; Poveda, J.; Quayle, W. B.; Sarangi, T.; Wang, H.; Wiedenmann, W.; Wu, S. L.; Xu, N.; Zhu, Y.; Zobernig, G.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Fleischmann, P.; Meyer, J.; Redelbach, A.; Trefzger, T.; Verducci, M.] Univ Wurzburg, Inst Phys, D-97074 Wurzburg, Germany. [Barisonzi, M.; Becks, K. H.; Boek, J.; Braun, H. M.; Dopke, J.; Drees, J.; Flick, T.; Gerlach, P.; Glitza, K. W.; Gorfine, G.; Grah, C.; Hamacher, K.; Harenberg, T.; Henss, T.; Hirschbuehl, D.; Imhaeuser, M.; Kalinin, S.; Kersten, S.; Kind, P.; Kootz, A.; Kuhl, T.; Lenz, T.; Lenzen, G.; Lepidis, J.; Maettig, F.; Mechtel, M.; Sandhoff, M.; Sandvoss, S.; Sanny, B.; Schroers, M.; Schultes, J.; Siebel, A.; Thadome, J.; Voss, T. T.; Wahlen, H.; Zeitnitz, C.] Berg Univ Wuppertal, Fachbereich C, D-42097 Wuppertal, Germany. [Adelman, J.; Atoian, G.; Auerbach, B.; Baker, O. K.; Almenar, C. Cuenca; Czyczula, Z.; Demers, S.; Golling, T.; Hsu, P. J.; Issakov, V.; Kaplan, B.; Kastoryano, M.; Lockwitz, S.; Loginov, A.; Martin, A. J.; Poblaguev, A.; Schmidt, M. P.; Thioye, M.; Tipton, P.; Wall, R.; Zeller, M.] Yale Univ, Dept Phys, New Haven, CT 06520 USA. [Grabski, V.; Hadley, D. R.; Hakobyan, H.] Yerevan Phys Inst, AM-375036 Yerevan, Armenia. ATLAS Canada Tier 1 Data Ctr, Vancouver, BC V6T 2A3, Canada. Forschungszentrum Karlsruhe, SCC, GridKA Tier FZK 1, D-76344 Eggenstein Leopoldshafen, Germany. Univ Autonoma Barcelona, PIC, E-08193 Barcelona, Spain. [Biscarat, C.; Rahal, G.] IN2P3, CNRS, Ctr Calcul, F-69622 Villeurbanne, France. INFN CNAF, I-40127 Bologna, Italy. NORDUnet AS, Nord Data Grid Facil, DK-2770 Kastrup, Denmark. SARA Reken Netwerkdiensten, NL-1098 XG Amsterdam, Netherlands. Acad Sinica, Inst Phys, Acad Sinica Grid Comp, Taipei 11529, Taiwan. Rutherford Appleton Lab, Sci & Technol Facil Council, RAL Tier UK T1 1, Didcot OX11 0QX, Oxon, England. Brookhaven Natl Lab, RHIC & ATLAS Comp Facil, Dept Phys, Upton, NY 11973 USA. CPPM, Marseille, France. TRIUMF, Vancouver, BC V6T 2A3, Canada. Univ Napoli Parthenope, IT-80133 Naples, Italy. Louisiana Tech Univ, Ruston, LA 71272 USA. CALTECH, Dept Phys, Pasadena, CA 91125 USA. Univ Montreal, Montreal, PQ H3C 3J7, Canada. Univ Hamburg, Inst Expt Phys, D-22761 Hamburg, Germany. Petersburg Nucl Phys Inst, RU-188300 Gatchina, Russia. Shandong Univ, Sch Phys, Jinan 250100, Peoples R China. Rutherford Appleton Lab, Sci & Technol Facil Council, Didcot OX11, Oxon, England. Univ S Carolina, Dept Phys & Astron, Columbia, SC 29208 USA. KFKI Res Inst Particle & Nucl Phys, Budapest, Hungary. Jagiellonian Univ, Inst Phys, Krakow, Poland. RP Aad, G (reprint author), Univ Freiburg, Fak Math & Phys, Hermann Herder Str 3, D-79104 Freiburg, Germany. EM atlas.secretariat@cern.ch RI Smirnov, Sergei/F-1014-2011; Gladilin, Leonid/B-5226-2011; Kramarenko, Victor/E-1781-2012; Petrucci, Fabrizio/G-8348-2012; Wemans, Andre/A-6738-2012; Fabbri, Laura/H-3442-2012; Kurashige, Hisaya/H-4916-2012; Kuzhir, Polina/H-8653-2012; Delmastro, Marco/I-5599-2012; manca, giulia/I-9264-2012; Veneziano, Stefano/J-1610-2012; spagnolo, stefania/A-6359-2012; Di Nardo, Roberto/J-4993-2012; Losada, Marta/B-2261-2010; Bauer, Florian/G-8816-2011; crosetti, nanni/H-3040-2011; Ferrando, James/A-9192-2012; collins-tooth, christopher/A-9201-2012; De Cecco, Sandro/B-1016-2012; branchini, paolo/A-4857-2011; Wolter, Marcin/A-7412-2012; Rotaru, Marina/A-3097-2011; Szczygiel, Robert/B-5662-2011; Takai, Helio/C-3301-2012; Britton, David/F-2602-2010; Li, Xuefei/C-3861-2012; Smirnova, Lidia/D-8089-2012; Stoicea, Gabriel/B-6717-2011; Moraes, Arthur/F-6478-2010; Alexa, Calin/F-6345-2010; Buttar, Craig/D-3706-2011; Perrino, Roberto/B-4633-2010; de Groot, Nicolo/A-2675-2009; Pouzada, Antonio/D-8451-2011; Rescia, Sergio/D-8604-2011; Doyle, Anthony/C-5889-2009; Marti-Garcia, Salvador/F-3085-2011; turton, miranda/F-4682-2011; Gutierrez, Phillip/C-1161-2011; Robson, Aidan/G-1087-2011; Di Domenico, Antonio/G-6301-2011; Conde Muino, Patricia/F-7696-2011; Boyko, Igor/J-3659-2013; Kuleshov, Sergey/D-9940-2013; Anjos, Nuno/I-3918-2013; Kartvelishvili, Vakhtang/K-2312-2013; Liu, Sheng/K-2815-2013; Dawson, Ian/K-6090-2013; Solfaroli Camillocci, Elena/J-1596-2012; Kastoryano, Michael/L-6037-2013; Castro, Nuno/D-5260-2011; Wolters, Helmut/M-4154-2013; Warburton, Andreas/N-8028-2013; Della Pietra, Massimo/J-5008-2012; Andreazza, Attilio/E-5642-2011; Cascella, Michele/B-6156-2013; M, Saleem/B-9137-2013; messina, andrea/C-2753-2013; Amorim, Antonio/C-8460-2013; Orlov, Ilya/E-6611-2012; Annovi, Alberto/G-6028-2012; Brooks, William/C-8636-2013; Pina, Joao /C-4391-2012; Vanyashin, Aleksandr/H-7796-2013; Casadei, Diego/I-1785-2013; De, Kaushik/N-1953-2013; Sukharev, Andrey/A-6470-2014; O'Shea, Val/G-1279-2010; Lee, Jason/B-9701-2014; Morozov, Sergey/C-1396-2014; Villa, Mauro/C-9883-2009; Nemecek, Stanislav/G-5931-2014; Lokajicek, Milos/G-7800-2014; Kupco, Alexander/G-9713-2014; Mikestikova, Marcela/H-1996-2014; Marcisovsky, Michal/H-1533-2014; Snesarev, Andrey/H-5090-2013; Tomasek, Lukas/G-6370-2014; Chudoba, Jiri/G-7737-2014; Boldyrev, Alexey/K-6303-2012; Peleganchuk, Sergey/J-6722-2014; Santamarina Rios, Cibran/K-4686-2014; Bosman, Martine/J-9917-2014; Nasteva, Irina/M-8764-2014; Grinstein, Sebastian/N-3988-2014; Lei, Xiaowen/O-4348-2014; Demirkoz, Bilge/C-8179-2014; Ventura, Andrea/A-9544-2015; Villaplana Perez, Miguel/B-2717-2015; Livan, Michele/D-7531-2012; Mitsou, Vasiliki/D-1967-2009; CARPENTIERI, CARMELA/E-2137-2015; Sluka, Tomas/E-7727-2015; Martins, Paulo/M-1844-2014; Mir, Lluisa-Maria/G-7212-2015; Riu, Imma/L-7385-2014; Cabrera Urban, Susana/H-1376-2015; Cavalli-Sforza, Matteo/H-7102-2015; Ferrer, Antonio/H-2942-2015; Hansen, John/B-9058-2015; Grancagnolo, Sergio/J-3957-2015; Tassi, Enrico/K-3958-2015; Shmeleva, Alevtina/M-6199-2015; Tikhomirov, Vladimir/M-6194-2015; kayumov, fred/M-6274-2015; Camarri, Paolo/M-7979-2015; Gavrilenko, Igor/M-8260-2015; Levonian, Sergey/M-8693-2015; Akimov, Andrey/N-1769-2015; Chekulaev, Sergey/O-1145-2015; Gorelov, Igor/J-9010-2015; Konovalov, Serguei/M-9505-2015; Booth, Christopher/B-5263-2016; Gonzalez de la Hoz, Santiago/E-2494-2016; Smirnova, Oxana/A-4401-2013; Aguilar Saavedra, Juan Antonio/F-1256-2016; Pacheco Pages, Andres/C-5353-2011; Leyton, Michael/G-2214-2016; Jones, Roger/H-5578-2011; Vranjes Milosavljevic, Marija/F-9847-2016; SULIN, VLADIMIR/N-2793-2015; vasilyeva, lidia/M-9569-2015; Popescu, Razvan/H-6521-2016; Samset, Bjorn H./B-9248-2012; Olshevskiy, Alexander/I-1580-2016; Casado, Pilar/H-1484-2015; BESSON, NATHALIE/L-6250-2015; Mora Herrera, Maria Clemencia/L-3893-2016; Maneira, Jose/D-8486-2011; Prokoshin, Fedor/E-2795-2012; KHODINOV, ALEKSANDR/D-6269-2015; Morone, Maria Cristina/P-4407-2016; Goncalo, Ricardo/M-3153-2016; Canelli, Florencia/O-9693-2016; Battistoni, Giuseppe/B-5264-2012; Gauzzi, Paolo/D-2615-2009; Mindur, Bartosz/A-2253-2017; Idzik, Marek/A-2487-2017; Mashinistov, Ruslan/M-8356-2015; Solodkov, Alexander/B-8623-2017; Zaitsev, Alexandre/B-8989-2017; Yang, Haijun/O-1055-2015 OI Smirnov, Sergei/0000-0002-6778-073X; Gladilin, Leonid/0000-0001-9422-8636; Petrucci, Fabrizio/0000-0002-5278-2206; Wemans, Andre/0000-0002-9669-9500; Fabbri, Laura/0000-0002-4002-8353; Kuzhir, Polina/0000-0003-3689-0837; Delmastro, Marco/0000-0003-2992-3805; Veneziano, Stefano/0000-0002-2598-2659; spagnolo, stefania/0000-0001-7482-6348; Ferrando, James/0000-0002-1007-7816; Rotaru, Marina/0000-0003-3303-5683; Takai, Helio/0000-0001-9253-8307; Britton, David/0000-0001-9998-4342; Stoicea, Gabriel/0000-0002-7511-4614; Moraes, Arthur/0000-0002-5157-5686; Perrino, Roberto/0000-0002-5764-7337; Pouzada, Antonio/0000-0003-0556-7519; Rescia, Sergio/0000-0003-2411-8903; Doyle, Anthony/0000-0001-6322-6195; Di Domenico, Antonio/0000-0001-8078-2759; Conde Muino, Patricia/0000-0002-9187-7478; Boyko, Igor/0000-0002-3355-4662; Kuleshov, Sergey/0000-0002-3065-326X; Solfaroli Camillocci, Elena/0000-0002-5347-7764; Castro, Nuno/0000-0001-8491-4376; Wolters, Helmut/0000-0002-9588-1773; Warburton, Andreas/0000-0002-2298-7315; Della Pietra, Massimo/0000-0003-4446-3368; Andreazza, Attilio/0000-0001-5161-5759; Cascella, Michele/0000-0003-2091-2501; Orlov, Ilya/0000-0003-4073-0326; Annovi, Alberto/0000-0002-4649-4398; Brooks, William/0000-0001-6161-3570; Pina, Joao /0000-0001-8959-5044; Vanyashin, Aleksandr/0000-0002-0367-5666; De, Kaushik/0000-0002-5647-4489; O'Shea, Val/0000-0001-7183-1205; Lee, Jason/0000-0002-2153-1519; Morozov, Sergey/0000-0002-6748-7277; Villa, Mauro/0000-0002-9181-8048; Mikestikova, Marcela/0000-0003-1277-2596; Tomasek, Lukas/0000-0002-5224-1936; Peleganchuk, Sergey/0000-0003-0907-7592; Santamarina Rios, Cibran/0000-0002-9810-1816; Bosman, Martine/0000-0002-7290-643X; Nasteva, Irina/0000-0001-7115-7214; Grinstein, Sebastian/0000-0002-6460-8694; Lei, Xiaowen/0000-0002-2564-8351; Ventura, Andrea/0000-0002-3368-3413; Villaplana Perez, Miguel/0000-0002-0048-4602; Livan, Michele/0000-0002-5877-0062; Mitsou, Vasiliki/0000-0002-1533-8886; CARPENTIERI, CARMELA/0000-0002-2994-0317; Sluka, Tomas/0000-0002-8092-2026; Martins, Paulo/0000-0003-3753-3751; Mir, Lluisa-Maria/0000-0002-4276-715X; Riu, Imma/0000-0002-3742-4582; Ferrer, Antonio/0000-0003-0532-711X; Hansen, John/0000-0002-8422-5543; Grancagnolo, Sergio/0000-0001-8490-8304; Tikhomirov, Vladimir/0000-0002-9634-0581; Camarri, Paolo/0000-0002-5732-5645; Gorelov, Igor/0000-0001-5570-0133; Booth, Christopher/0000-0002-6051-2847; Gonzalez de la Hoz, Santiago/0000-0001-5304-5390; Smirnova, Oxana/0000-0003-2517-531X; Aguilar Saavedra, Juan Antonio/0000-0002-5475-8920; Pacheco Pages, Andres/0000-0001-8210-1734; Leyton, Michael/0000-0002-0727-8107; Jones, Roger/0000-0002-6427-3513; Vranjes Milosavljevic, Marija/0000-0003-4477-9733; SULIN, VLADIMIR/0000-0003-3943-2495; Popescu, Razvan/0000-0003-1989-764X; Samset, Bjorn H./0000-0001-8013-1833; Olshevskiy, Alexander/0000-0002-8902-1793; Casado, Pilar/0000-0002-0394-5646; Mora Herrera, Maria Clemencia/0000-0003-3915-3170; Maneira, Jose/0000-0002-3222-2738; Prokoshin, Fedor/0000-0001-6389-5399; KHODINOV, ALEKSANDR/0000-0003-3551-5808; Morone, Maria Cristina/0000-0002-0200-0632; Goncalo, Ricardo/0000-0002-3826-3442; Canelli, Florencia/0000-0001-6361-2117; Battistoni, Giuseppe/0000-0003-3484-1724; Gauzzi, Paolo/0000-0003-4841-5822; Mindur, Bartosz/0000-0002-5511-2611; Mashinistov, Ruslan/0000-0001-7925-4676; Solodkov, Alexander/0000-0002-2737-8674; Zaitsev, Alexandre/0000-0002-4961-8368; FU ANPCyT, Argentina; Yerevan Physics Institute, Armenia; ARC and DEST, Australia; Bundesministerium fur Wissenschaft und Forschung, Austria; National Academy of Sciences of Azerbaijan; State Committee on Science & Technologies of the Republic of Belarus; CNPq; FINEP, Brazil; NSERC; NRC; CFI, Canada; CERN; CONICYT, Chile; NSFC, China; COLCIENCIAS, Colombia; Ministry of Education, Youth and Sports of the Czech Republic; Ministry of Industry and Trade of the Czech Republic; Committee for Collaboration of the Czech Republic with CERN; Danish Natural Science Research Council; Lundbeck Foundation; European Commission, through the ARTEMIS Research Training Network; IN2P3-CNRS; Dapnia-CEA, France; Georgian Academy of Sciences; BMBF; HGF; DFG; MPG, Germany; Ministry of Education and Religion; GSRT, Greece; ISF; MINERVA; CIF; DIP; Benoziyo Center, Israel; INFN, Italy; MEXT, Japan; CNRST, Morocco; FOM; NWO, Netherlands; The Research Council of Norway; Ministry of Science and Higher Education, Poland; GRICES; FCT, Portugal; Ministry of Education and Research, Romania; Ministry of Education and Science of the Russian Federation; State Atomic Energy Corporation "Rosatom"; JINR; Ministry of Science, Serbia; Department of International Science and Technology Cooperation, Ministry of Education of the Slovak Republic; Slovenian Research Agency, Ministry of Higher Education, Science and Technology, Slovenia; Ministerio de Educacion y Ciencia, Spain; Swedish Research Council; Knut and Alice Wallenberg Foundation, Sweden; State Secretariat for Education and Science; Swiss National Science Foundation; Cantons of Bern and Geneva, Switzerland; National Science Council, Taiwan; TAEK, Turkey; Science and Technology Facilities Council; Leverhulme Trust, United Kingdom; DOE; NSF, United States of America FX We acknowledge the support of ANPCyT, Argentina; Yerevan Physics Institute, Armenia; ARC and DEST, Australia; Bundesministerium fur Wissenschaft und Forschung, Austria; National Academy of Sciences of Azerbaijan; State Committee on Science & Technologies of the Republic of Belarus; CNPq and FINEP, Brazil; NSERC, NRC, and CFI, Canada; CERN; CONICYT, Chile; NSFC, China; COLCIENCIAS, Colombia; Ministry of Education, Youth and Sports of the Czech Republic, Ministry of Industry and Trade of the Czech Republic, and Committee for Collaboration of the Czech Republic with CERN; Danish Natural Science Research Council and the Lundbeck Foundation; European Commission, through the ARTEMIS Research Training Network; IN2P3-CNRS and Dapnia-CEA, France; Georgian Academy of Sciences; BMBF, HGF, DFG and MPG, Germany; Ministry of Education and Religion, through the EPEAEK program PYTHAGORAS II and GSRT, Greece; ISF, MINERVA, CIF, DIP, and Benoziyo Center, Israel; INFN, Italy; MEXT, Japan; CNRST, Morocco; FOM and NWO, Netherlands; The Research Council of Norway; Ministry of Science and Higher Education, Poland; GRICES and FCT, Portugal; Ministry of Education and Research, Romania; Ministry of Education and Science of the Russian Federation and State Atomic Energy Corporation "Rosatom"; JINR; Ministry of Science, Serbia; Department of International Science and Technology Cooperation, Ministry of Education of the Slovak Republic; Slovenian Research Agency, Ministry of Higher Education, Science and Technology, Slovenia; Ministerio de Educacion y Ciencia, Spain; The Swedish Research Council, The Knut and Alice Wallenberg Foundation, Sweden; State Secretariat for Education and Science, Swiss National Science Foundation, and Cantons of Bern and Geneva, Switzerland; National Science Council, Taiwan; TAEK, Turkey; The Science and Technology Facilities Council and The Leverhulme Trust, United Kingdom; DOE and NSF, United States of America. NR 30 TC 125 Z9 125 U1 3 U2 160 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 EI 1873-2445 J9 PHYS LETT B JI Phys. Lett. B PD APR 26 PY 2010 VL 688 IS 1 BP 21 EP 42 DI 10.1016/j.physletb.2010.03.064 PG 22 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 705PQ UT WOS:000286150500001 ER PT J AU Adhianto, L Banerjee, S Fagan, M Krentel, M Marin, G Mellor-Crummey, J Tallent, NR AF Adhianto, L. Banerjee, S. Fagan, M. Krentel, M. Marin, G. Mellor-Crummey, J. Tallent, N. R. TI HPCTOOLKIT: tools for performance analysis of optimized parallel programs SO CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE LA English DT Article DE performance tools; call path profiling; tracing; binary analysis; execution monitoring ID VISUALIZATION AB HPCTOOLKIT is an integrated suite of tools that supports measurement, analysis, attribution, and presentation of application performance for both sequential and parallel programs. HPCTOOLKIT can pinpoint and quantify scalability bottlenecks in fully optimized parallel programs with a measurement overhead of only a few percent. Recently, new capabilities were added to HPCTOOLKIT for collecting call path profiles for fully optimized codes without any compiler support, pinpointing and quantifying bottlenecks in multithreaded programs, exploring performance information and source code using a new user interface, and displaying hierarchical space time diagrams based on traces of asynchronous call path samples. This paper provides an overview of HPCTOOLKIT and illustrates its utility for performance analysis of parallel applications. Copyright (C) 2009 John Wiley & Sons, Ltd. C1 [Adhianto, L.; Banerjee, S.; Fagan, M.; Krentel, M.; Mellor-Crummey, J.; Tallent, N. R.] Rice Univ, Dept Comp Sci, Houston, TX 77251 USA. [Marin, G.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Mellor-Crummey, J (reprint author), Rice Univ, Dept Comp Sci, POB 1892, Houston, TX 77251 USA. EM johnmc@cs.rice.edu FU Department of Energy's Office of Science [DE-FC02-07ER25800, DE-FC02-06ER25762] FX Contract/grant sponsor: Department of Energy's Office of Science; contract/grant numbers: DE-FC02-07ER25800, DE-FC02-06ER25762 NR 44 TC 96 Z9 98 U1 1 U2 5 PU JOHN WILEY & SONS LTD PI CHICHESTER PA THE ATRIUM, SOUTHERN GATE, CHICHESTER PO19 8SQ, W SUSSEX, ENGLAND SN 1532-0626 J9 CONCURR COMP-PRACT E JI Concurr. Comput.-Pract. Exp. PD APR 25 PY 2010 VL 22 IS 6 BP 685 EP 701 DI 10.1002/cpe.1553 PG 17 WC Computer Science, Software Engineering; Computer Science, Theory & Methods SC Computer Science GA 583MY UT WOS:000276682000002 ER PT J AU Arimoto, M Kawai, N Asano, K Hurley, K Suzuki, M Nakagawa, YE Shimokawabe, T Pazmino, NV Sato, R Matsuoka, M Yoshida, A Tamagawa, T Shirasaki, Y Sugita, S Takahashi, I Atteia, JL Pelangeon, A Vanderspek, R Graziani, C Prigozhin, G Villasenor, J Jernigan, JG Crew, GB Sakamoto, T Ricker, GR Woosley, SE Butler, N Levine, A Doty, JP Donaghy, TQ Lamb, DQ Fenimore, E Galassi, M Boer, M Dezalay, JP Olive, JF Braga, J Manchanda, R Pizzichini, G AF Arimoto, Makoto Kawai, Nobuyuki Asano, Katsuaki Hurley, Kevin Suzuki, Motoko Nakagawa, Yujin E. Shimokawabe, Takashi Pazmino, Nicolas Vasquez Sato, Rie Matsuoka, Masaru Yoshida, Atsumasa Tamagawa, Toru Shirasaki, Yuji Sugita, Satoshi Takahashi, Ichiro Atteia, Jean-Luc Pelangeon, Alexandre Vanderspek, Roland Graziani, Carlo Prigozhin, Gregory Villasenor, Joel Jernigan, J. Garrett Crew, Geoffrey B. Sakamoto, Takanori Ricker, George R. Woosley, Stanford E. Butler, Nat Levine, Alan Doty, John P. Donaghy, Timothy Q. Lamb, Donald Q. Fenimore, Edward Galassi, Mark Boer, Michel Dezalay, Jean-Pascal Olive, Jean-Francois Braga, Joao Manchanda, Ravi Pizzichini, Graziella TI Spectral-Lag Relations in GRB Pulses Detected with HETE-2 SO PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF JAPAN LA English DT Article DE gamma rays: bursts; gamma rays: observations; radiation mechanisms: non-thermal ID GAMMA-RAY BURSTS; PEAK LUMINOSITY; TEMPORAL PROFILES; LONG-LAG; ENERGY; FIREBALLS; DURATION; DEPENDENCE; AFTERGLOW; REDSHIFT AB Using a pulse-tit method, we investigated the spectral lags between the traditional gamma-ray band (50-400 keV) and the X-ray band (6-25 keV) for 8 GRBs with known redshifts (GRB 010921, GRB 020124, GRB 020127, ORB 021211, GRB 030528, GRB 040924, GRB 041006, and GRB 050408), detected with the WXM and FREGATE instruments aboard the HETE-2 satellite. We found several relations for individual ORB pulses between the spectral lag and other observables, such as the luminosity, pulse duration, and peak energy, E-peak. The obtained results are consistent with those for BATSE, indicating that the BATSE correlations are still valid at lower energies (6-25 keV). Furthermore, we found that the photon energy dependence for the spectral lags can be reconciled with the simple curvature effect model. We discuss the implications of these results from various points of view. C1 [Arimoto, Makoto; Kawai, Nobuyuki; Asano, Katsuaki; Shimokawabe, Takashi; Pazmino, Nicolas Vasquez] Tokyo Inst Technol, Dept Phys, Meguro Ku, Tokyo 1528551, Japan. [Hurley, Kevin; Jernigan, J. Garrett; Butler, Nat] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Suzuki, Motoko; Matsuoka, Masaru] Japan Aerosp Explorat Agcy JAXA, Tsukuba, Ibaraki 3058505, Japan. [Nakagawa, Yujin E.; Tamagawa, Toru] RIKEN, Wako, Saitama 3510198, Japan. [Sato, Rie] Inst Space & Astronaut Sci JAXA, Chuo Ku, Sagamihara, Kanagawa 2528510, Japan. [Yoshida, Atsumasa; Sugita, Satoshi; Takahashi, Ichiro] Aoyama Gakuin Univ, Dept Math & Phys, Chuo Ku, Sagamihara, Kanagawa 2528558, Japan. [Shirasaki, Yuji] Natl Inst Nat Sci, Natl Astron Observ Japan, Mitaka, Tokyo 1818588, Japan. [Atteia, Jean-Luc; Pelangeon, Alexandre] Univ Toulouse, CNRS, LATT, F-31400 Toulouse, France. [Vanderspek, Roland; Prigozhin, Gregory; Villasenor, Joel; Crew, Geoffrey B.; Ricker, George R.; Levine, Alan; Doty, John P.] MIT, Ctr Space Res, Cambridge, MA 02139 USA. [Doty, John P.] Noqsi Aerosp Ltd, Pine, CO 80470 USA. [Graziani, Carlo; Donaghy, Timothy Q.; Lamb, Donald Q.] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [Sakamoto, Takanori] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Dezalay, Jean-Pascal; Olive, Jean-Francois] Ctr Etud Spatiale Rayonnements, F-31028 Toulouse, France. [Pizzichini, Graziella] IASF Bologna, Ist Nazl Astrofis, I-40129 Bologna, Italy. [Fenimore, Edward; Galassi, Mark] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Woosley, Stanford E.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Boer, Michel] Observ Haute Provence, CNRS, OAMP, F-04870 St Michel lObservatoire, France. [Braga, Joao] Inst Nacl Pesquisas Espaciais, BR-12227010 Sao Jose Dos Campos, Brazil. [Manchanda, Ravi] Tata Inst Fundamental Res, Dept Astron & Astrophys, Bombay 400005, Maharashtra, India. RP Arimoto, M (reprint author), Tokyo Inst Technol, Dept Phys, Meguro Ku, 2-12-1 Ookayama, Tokyo 1528551, Japan. EM arimoto@hp.phys.titech.ac.jp FU Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan through Tokyo Institute of Technology [20740102]; Italian Space Agency [1/088/06/0] FX We appreciate the referee, Prof. Jon Hakkila, for his fruitful comments, which have improved our paper. M. Arimoto acknowledges financial support from the Global Center of Excellence Program by the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan through the Nanoscience and Quantum Physics Project of the Tokyo Institute of Technology. This work has been supported by a Grant-in-Aid for Young Scientists (B) 20740102 from the MEXT. G. Pizzichini acknowledges financial support from the Italian Space Agency (ASH via contract 1/088/06/0. NR 30 TC 11 Z9 11 U1 0 U2 4 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0004-6264 EI 2053-051X J9 PUBL ASTRON SOC JPN JI Publ. Astron. Soc. Jpn. PD APR 25 PY 2010 VL 62 IS 2 BP 487 EP 499 DI 10.1093/pasj/62.2.487 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 624QP UT WOS:000279834900025 ER PT J AU Lee, BC Kumauchi, M Hoff, WD AF Lee, Byoung-Chul Kumauchi, Masato Hoff, Wouter D. TI Modulating Native-like Residual Structure in the Fully Denatured State of Photoactive Yellow Protein Affects Its Refolding SO JOURNAL OF BIOLOGICAL CHEMISTRY LA English DT Article ID HALOPHILIC PHOTOTROPHIC BACTERIUM; P-COUMARIC ACID; ECTOTHIORHODOSPIRA-HALOPHILA; UNFOLDED STATE; INTERMEDIATE; CHROMOPHORE; PHOTOCYCLE; NMR; THERMODYNAMICS; PHOTORECEPTOR AB Residual structure in the fully unfolded state is a key element for understanding protein folding. We show that the residual structure in fully denatured photoactive yellow protein (PYP) is affected by isomerization of its p-coumaric acid (pCA) chromophore. The exposure of total surface area and hydrophobic surface area upon unfolding was quantified by denaturant m values and heat capacity changes (pCp), respectively. The exposure of the buried surface area upon the unfolding of the acid-denatured state of PYP containing trans-pCA is similar to 20% smaller than that of the native state. In contrast, for the partially unfolded pB photocycle intermediate containing cis-pCA, unfolding-induced exposure of the surface area is not decreased. These results show that pCA photoisomerization reduces residual structure in the fully unfolded state. Thus, residual structure in the fully unfolded state of PYP is under direct experimental control by photoexcitation. The sensitivity of the unfolded state to pCA isomerization provides a novel criterion that residual structure in the unfolded state of PYP is native-like, involving native-like protein-chromophore interactions. A largely untested prediction is that native-like residual structure facilitates the conformational search during folding. In the case of PYP, refolding from the less disordered fully unfolded state containing trans-pCA indeed is substantially accelerated. The burial of hydrophobic surface area in the fully unfolded state suggests that a significant part of the hydrophobic collapse process already has occurred in the denatured state. C1 [Lee, Byoung-Chul] Univ Calif Berkeley, Lawrence Berkeley Lab, Biol Nanostruct Facil, Berkeley, CA 94720 USA. [Lee, Byoung-Chul; Kumauchi, Masato; Hoff, Wouter D.] Oklahoma State Univ, Dept Microbiol & Mol Genet, Stillwater, OK 74078 USA. RP Hoff, WD (reprint author), 307 Life Sci E, Stillwater, OK 74078 USA. EM wouter.hoff@okstate.edu FU National Institutes of Health [GM063805]; United States Department of Energy [DE-AC02-05CH11231]; OCAST [HR07-135S] FX This work was supported, in whole or in part, by National Institutes of Health Grant GM063805 (to W.D.H.).; Both authors contributed equally to this work.; Supported by the Office of Science, Office of Basic Energy Sciences, of the United States Department of Energy under Contract DE-AC02-05CH11231; Supported in part by OCAST Grant HR07-135S and by startup funds provided by Oklahoma State University. To whom correspondence should be addressed: 307 Life Sciences East, Stillwater, OK 74078. Tel.: 405-744-4449; Fax: 405-744-6790; E-mail: wouter. hoff@okstate.edu. NR 34 TC 6 Z9 6 U1 4 U2 5 PU AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3996 USA SN 0021-9258 J9 J BIOL CHEM JI J. Biol. Chem. PD APR 23 PY 2010 VL 285 IS 17 BP 12579 EP 12586 DI 10.1074/jbc.M109.065821 PG 8 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 584XO UT WOS:000276787800015 PM 20178976 ER PT J AU Phillips, BR Coltice, N AF Phillips, Benjamin R. Coltice, Nicolas TI Temperature beneath continents as a function of continental cover and convective wavelength SO JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH LA English DT Article ID MANTLE CONVECTION; HEAT-FLOW; SUPERCONTINENT CYCLES; DEPENDENT VISCOSITY; THERMAL-CONVECTION; RAYLEIGH NUMBER; PLATE MOTIONS; POLAR WANDER; DEEP MANTLE; MODELS AB Geodynamic modeling studies have demonstrated that mantle global warming can occur in response to continental aggregation, possibly leading to large-scale melting and associated continental breakup. Such feedback calls for a recipe describing how continents help to regulate the thermal evolution of the mantle. Here we use spherical mantle convection models with continents to quantify variations in subcontinental temperature as a function of continent size and distribution and convective wavelength. Through comparison to a simple analytical boundary layer model, we show that larger continents beget warming of the underlying mantle, with heating sometimes compounded by the formation of broader convection cells associated with the biggest continents. Our results hold well for purely internally heated and partially core heated models with Rayleigh numbers of 10(5) to 10(7) containing continents with sizes ranging from that of Antarctica to Pangea. Results from a time-dependent model with three mobile continents of various sizes suggests that the tendency for temperatures to rise with continent size persists on average over timescales of billions of years. C1 [Phillips, Benjamin R.] Los Alamos Natl Lab, Div Earth & Environm Sci, Los Alamos, NM 87545 USA. [Coltice, Nicolas] Univ Lyon 1, CNRS, Lab Sci Terre, UMR 5570, F-69622 Villeurbanne, France. RP Phillips, BR (reprint author), Los Alamos Natl Lab, Div Earth & Environm Sci, Los Alamos, NM 87545 USA. EM benp@lanl.gov; coltice@univ-lyon1.fr FU Los Alamos National Laboratory; National Science Foundation FX We thank two anonymous reviewers for constructive comments that inspired a clearer manuscript. This work was supported by a Los Alamos National Laboratory Director's Postdoctoral Fellowship and a Visiting Scientist appointment at the National Science Foundation (BRP). Any opinion, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation. NR 56 TC 22 Z9 23 U1 1 U2 10 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-SOL EA JI J. Geophys. Res.-Solid Earth PD APR 23 PY 2010 VL 115 AR B04408 DI 10.1029/2009JB006600 PG 13 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 587ZP UT WOS:000277035800002 ER PT J AU Baber, S Zhou, M Lin, QL Naalla, M Jia, QX Lu, Y Luo, HM AF Baber, S. Zhou, M. Lin, Q. L. Naalla, M. Jia, Q. X. Lu, Y. Luo, H. M. TI Nanoconfined surfactant templated electrodeposition to porous hierarchical nanowires and nanotubes SO NANOTECHNOLOGY LA English DT Article ID LIQUID-CRYSTALLINE PHASES; MESOPOROUS SILICA; ELECTROCHEMICAL DEPOSITION; ALUMINA MEMBRANE; GOLD NANOWIRES; ZNO FILMS; ARRAYS; FABRICATION; METAL; OXIDE AB Porous metal (Pd and Co) and semiconductor (ZnO) nanowires, porous metal (Pt and Ni) nanotubes, and unique multiple Pt nanowires are prepared from a novel nanoconfined surfactant templated electrodeposition approach. More specifically, the overall diameter of nanowires or nanotubes is defined by the pore channels of membranes. Surfactant assembled structure nanoconfined within the pores of membranes is used to generate the porosity and to control the texture of the nanowires or nanotubes. As compared to solid nanowires and nanotubes, the porous nanowires and nanotubes exhibit unique properties. For example, porous cobalt nanowires show higher coercivity. C1 [Zhou, M.; Jia, Q. X.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Baber, S.; Lin, Q. L.; Naalla, M.; Luo, H. M.] New Mexico State Univ, Dept Chem Engn, Las Cruces, NM 88003 USA. [Lu, Y.] Univ Calif Los Angeles, Dept Chem & Biomol Engn, Los Angeles, CA 90095 USA. RP Jia, QX (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM qxjia@lanl.gov; luucla@ucla.edu; hluo@nmsu.edu RI Jia, Q. X./C-5194-2008 FU NMSU; New Mexico Consortium; Los Alamos Institute for Advanced Studies; Center for Integrated Nanotechnologies (CINT) at Los Alamos National Laboratory (LANL); United States Air Force FX We gratefully acknowledge the start-up funds from NMSU and support from the New Mexico Consortium, Los Alamos Institute for Advanced Studies, and Center for Integrated Nanotechnologies (CINT) at Los Alamos National Laboratory (LANL). Capt. S Baber acknowledges support from the United States Air Force. We also thank Dr J B He and Dr M H Xu for help with the TEM and SQUID measurements, and Dr R Kou and Professor D H Wang for valuable discussions. NR 46 TC 9 Z9 9 U1 2 U2 28 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0957-4484 J9 NANOTECHNOLOGY JI Nanotechnology PD APR 23 PY 2010 VL 21 IS 16 AR 165603 DI 10.1088/0957-4484/21/16/165603 PG 9 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA 575YY UT WOS:000276111200017 PM 20351410 ER PT J AU Fowlkes, JD Doktycz, MJ Rack, PD AF Fowlkes, J. D. Doktycz, M. J. Rack, P. D. TI An optimized nanoparticle separator enabled by electron beam induced deposition SO NANOTECHNOLOGY LA English DT Article ID RESOLUTION; GROWTH; NANOPILLARS; FABRICATION; SIMULATION AB Size-based separations technologies will inevitably benefit from advances in nanotechnology. Direct-write nanofabrication provides a useful mechanism for depositing/etching nanoscale elements in environments otherwise inaccessible to conventional nanofabrication techniques. Here, electron beam induced deposition was used to deposit an array of nanoscale features in a 3D environment with minimal material proximity effects outside the beam-interaction region. Specifically, the membrane component of a nanoparticle separator was fabricated by depositing a linear array of sharply tipped nanopillars, with a singular pitch, designed for sub-50 nm nanoparticle permeability. The nanopillar membrane was used in a dual capacity to control the flow of nanoparticles in the transaxial direction of the array while facilitating the sealing of the cellular-sized compartment in the paraxial direction. An optimized growth recipe resulted which (1) maximized the growth efficiency of the membrane (which minimizes proximity effects) and (2) preserved the fidelity of the spacing between nanopillars (which maximizes the size-based gating quality of the membrane) while (3) maintaining sharp nanopillar apexes for impaling an optically transparent polymeric lid critical for device sealing. C1 [Fowlkes, J. D.; Rack, P. D.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Nanofabricat Res Lab, Oak Ridge, TN 37381 USA. [Doktycz, M. J.] Oak Ridge Natl Lab, Biosci Div, Biol & Nanoscale Syst Grp, Oak Ridge, TN 37831 USA. [Rack, P. D.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. RP Fowlkes, JD (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Nanofabricat Res Lab, Oak Ridge, TN 37381 USA. EM fowlkesjd@ornl.gov RI Doktycz, Mitchel/A-7499-2011; OI Doktycz, Mitchel/0000-0003-4856-8343; Rack, Philip/0000-0002-9964-3254 FU Scientific User Facilities Division (SUFD), Office of Basic Energy Sciences (BES), US Department of Energy; NIH [EB000657]; US Government [DE-AC05-00OR22725] FX This research was conducted at the Nanofabrication Research Laboratory, Center for Nanophase Materials Sciences, which is sponsored by the Scientific User Facilities Division (SUFD), Office of Basic Energy Sciences (BES), US Department of Energy. Research conducted in order to unravel the fundamental aspects of the beam stimulated interactions was sponsored by the SUFD. PDR gratefully acknowledges support from both the Semiconductor Research Corporation and the Center for Nanophase Materials Sciences. JDF and MJD would like to acknowledge that the nanobiotechnology applications aspect of this research was sponsored by the NIH grant EB000657. JDF and PDR would like to acknowledge S J Randolph and M Toth of the FEI Company for their contribution related to the precursor molecules and precursor delivery equipment used in this work.; This manuscript has been authorized by a contractor of the US Government under contract DE-AC05-00OR22725. Accordingly, the US Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for US Government purposes. NR 32 TC 8 Z9 8 U1 0 U2 11 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0957-4484 J9 NANOTECHNOLOGY JI Nanotechnology PD APR 23 PY 2010 VL 21 IS 16 AR 165303 DI 10.1088/0957-4484/21/16/165303 PG 9 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA 575YY UT WOS:000276111200010 PM 20351412 ER PT J AU Abbasi, RU Abu-Zayyad, T Al-Seady, M Allen, M Amman, JF Anderson, RJ Archbold, G Belov, K Belz, JW Bergman, DR Blake, SA Brusova, OA Burt, GW Cannon, C Cao, Z Deng, W Fedorova, Y Finley, CB Gray, RC Hanlon, WF Hoffman, CM Holzscheiter, MH Hughes, G Huntemeyer, P Jones, BF Jui, CCH Kim, K Kirn, MA Loh, EC Liu, J Lundquist, JP Maestas, MM Manago, N Marek, LJ Martens, K Matthews, JAJ Matthews, JN Moore, SA O'Neill, A Painter, CA Perera, L Reil, K Riehle, R Roberts, M Rodriguez, D Sasaki, N Schnetzer, SR Scott, LM Sinnis, G Smith, JD Sokolsky, P Song, C Springer, RW Stokes, BT Stratton, S Thomas, SB Thomas, JR Thomson, GB Tupa, D Zech, A Zhang, X AF Abbasi, R. U. Abu-Zayyad, T. Al-Seady, M. Allen, M. Amman, J. F. Anderson, R. J. Archbold, G. Belov, K. Belz, J. W. Bergman, D. R. Blake, S. A. Brusova, O. A. Burt, G. W. Cannon, C. Cao, Z. Deng, W. Fedorova, Y. Finley, C. B. Gray, R. C. Hanlon, W. F. Hoffman, C. M. Holzscheiter, M. H. Hughes, G. Huentemeyer, P. Jones, B. F. Jui, C. C. H. Kim, K. Kirn, M. A. Loh, E. C. Liu, J. Lundquist, J. P. Maestas, M. M. Manago, N. Marek, L. J. Martens, K. Matthews, J. A. J. Matthews, J. N. Moore, S. A. O'Neill, A. Painter, C. A. Perera, L. Reil, K. Riehle, R. Roberts, M. Rodriguez, D. Sasaki, N. Schnetzer, S. R. Scott, L. M. Sinnis, G. Smith, J. D. Sokolsky, P. Song, C. Springer, R. W. Stokes, B. T. Stratton, S. Thomas, S. B. Thomas, J. R. Thomson, G. B. Tupa, D. Zech, A. Zhang, X. CA High Resolution Fly's Eye Collabor TI Indications of Proton-Dominated Cosmic-Ray Composition above 1.6 EeV SO PHYSICAL REVIEW LETTERS LA English DT Article ID RESOLUTION FLYS-EYE; EXTENSIVE AIR-SHOWERS; FLUORESCENCE YIELD; CALIBRATION; SPECTRUM; HIRES; DETECTORS AB We report studies of ultrahigh-energy cosmic-ray composition via analysis of depth of air shower maximum (X(max)), for air shower events collected by the High-Resolution Fly's Eye (HiRes) observatory. The HiRes data are consistent with a constant elongation rate d < X(max)>/d[log(E)] of 47.9 +/- 6.0(stat) +/- 3.2(syst) g/cm(2)/decade for energies between 1.6 and 63 EeV, and are consistent with a predominantly protonic composition of cosmic rays when interpreted via the QGSJET01 and QGSJET-II high-energy hadronic interaction models. These measurements constrain models in which the galactic-to-extragalactic transition is the cause of the energy spectrum ankle at 4 x 10(18) eV. C1 [Abbasi, R. U.; Abu-Zayyad, T.; Al-Seady, M.; Allen, M.; Anderson, R. J.; Archbold, G.; Belov, K.; Belz, J. W.; Bergman, D. R.; Blake, S. A.; Brusova, O. A.; Burt, G. W.; Cannon, C.; Cao, Z.; Deng, W.; Fedorova, Y.; Gray, R. C.; Hanlon, W. F.; Huentemeyer, P.; Jones, B. F.; Jui, C. C. H.; Kim, K.; Loh, E. C.; Lundquist, J. P.; Maestas, M. M.; Martens, K.; Matthews, J. N.; Moore, S. A.; Reil, K.; Riehle, R.; Rodriguez, D.; Smith, J. D.; Sokolsky, P.; Springer, R. W.; Stokes, B. T.; Thomas, S. B.; Thomas, J. R.; Thomson, G. B.] Univ Utah, Dept Phys, Salt Lake City, UT 84112 USA. [Amman, J. F.; Hoffman, C. M.; Holzscheiter, M. H.; Marek, L. J.; Painter, C. A.; Sinnis, G.; Tupa, D.] Los Alamos Natl Lab, Los Alamos, NM USA. [Bergman, D. R.; Hughes, G.; Perera, L.; Schnetzer, S. R.; Scott, L. M.; Stratton, S.; Thomson, G. B.; Zech, A.] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ USA. [Finley, C. B.; O'Neill, A.; Song, C.; Zhang, X.] Columbia Univ, Dept Phys, New York, NY 10027 USA. [Finley, C. B.; O'Neill, A.; Song, C.; Zhang, X.] Columbia Univ, Nevis Lab, New York, NY 10027 USA. [Kirn, M. A.] Montana State Univ, Dept Phys, Bozeman, MT 59717 USA. [Liu, J.] Inst High Energy Phys, Beijing 100039, Peoples R China. [Manago, N.; Sasaki, N.] Univ Tokyo, Inst Cosm Ray Res, Kashiwa, Chiba, Japan. [Matthews, J. A. J.; Roberts, M.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. RP Belz, JW (reprint author), Univ Utah, Dept Phys, Salt Lake City, UT 84112 USA. EM belz@physics.utah.edu RI Song, Chihwa/A-3455-2008; Martens, Kai/A-4323-2011; Belov, Konstantin/D-2520-2013; OI Tupa, Dale/0000-0002-6265-5016 FU US NSF [PHY-9321949, PHY-9322298, PHY-9904048, PHY-9974537, PHY-0098826, PHY-0140688, PHY-0245428, PHY-0305516,, PHY-0307098]; DOE [FG03-92ER40732] FX This work is supported by US NSF Grants Nos. PHY-9321949, PHY-9322298, PHY-9904048, PHY-9974537, PHY-0098826, PHY-0140688, PHY-0245428, PHY-0305516, PHY-0307098, and by the DOE Grant No. FG03-92ER40732. We gratefully acknowledge the contributions from the technical staffs of our home institutions. The cooperation of Colonels E. Fischer, G. Harter, and G. Olsen, the US Army, and the Dugway Proving Ground staff is greatly appreciated. NR 31 TC 183 Z9 183 U1 0 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD APR 23 PY 2010 VL 104 IS 16 AR 161101 DI 10.1103/PhysRevLett.104.161101 PG 5 WC Physics, Multidisciplinary SC Physics GA 587QO UT WOS:000277007700010 PM 20482038 ER PT J AU Damski, B Zurek, WH AF Damski, Bogdan Zurek, Wojciech H. TI Soliton Creation During a Bose-Einstein Condensation SO PHYSICAL REVIEW LETTERS LA English DT Article ID COSMOLOGICAL EXPERIMENTS; PHASE-TRANSITION; STRING FORMATION; SUPERFLUID HE-3; LIQUID-CRYSTALS; DYNAMICS; UNIVERSE AB We use the stochastic Gross-Pitaevskii equation to study dynamics of Bose-Einstein condensation. We show that cooling into a Bose-Einstein condensate (BEC) can create solitons with density given by the cooling rate and by the critical exponents of the transition. Thus, counting solitons left in its wake should allow one to determine the critical exponents z and v for a BEC phase transition. The same information can be extracted from two-point correlation functions. C1 [Damski, Bogdan; Zurek, Wojciech H.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Damski, B (reprint author), Los Alamos Natl Lab, Div Theoret, MS B213, Los Alamos, NM 87545 USA. RI Damski, Bogdan/E-3027-2013 FU U.S. Department of Energy FX We are grateful to Peter Engels for showing us his unpublished experimental data and for stimulating discussions. We thank Ashton Bradley for his very useful comments. We acknowledge the support of the U.S. Department of Energy through the LANL/LDRD Program. NR 27 TC 72 Z9 72 U1 0 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD APR 23 PY 2010 VL 104 IS 16 AR 160404 DI 10.1103/PhysRevLett.104.160404 PG 4 WC Physics, Multidisciplinary SC Physics GA 587QO UT WOS:000277007700004 PM 20482032 ER PT J AU Dubi, Y Balatsky, AV AF Dubi, Yonatan Balatsky, Alexander V. TI Impurity-Induced Bound States and Proximity Effect in a Bilayer Exciton Condensate SO PHYSICAL REVIEW LETTERS LA English DT Article ID BOSE-EINSTEIN CONDENSATION; QUANTUM HALL SYSTEMS; SUPERCONDUCTORS; MODEL AB The effect of impurities which induce local interlayer tunneling in bilayer exciton condensates is discussed. We show that a localized single-fermion bound state emerges inside the gap for any strength of impurity scattering and calculate the dependence of the impurity state energy and wave function on the potential strength. We show that such an impurity-induced single-fermion state enhances the interlayer coherence around it, and is similar to the superconducting proximity effect. As a direct consequence of these single-impurity states, we predict that a finite concentration of such impurities will increase the critical temperature for exciton condensation. C1 [Dubi, Yonatan; Balatsky, Alexander V.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Balatsky, Alexander V.] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. RP Dubi, Y (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RI Dubi, Yonatan/G-5304-2013 FU LDRD; Center for Integrated Nanotechnologies; U.S. Department of Energy, Office of Basic Energy Sciences user facility [DE-AC52-06NA25396] FX The authors acknowledge valuable discussions with J.-J. Su, M. Lilly, and J.Zaanen. This work was supported by LDRD and, in part, at the Center for Integrated Nanotechnologies, a U.S. Department of Energy, Office of Basic Energy Sciences user facility, by Grant No. DE-AC52-06NA25396. NR 37 TC 2 Z9 2 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD APR 23 PY 2010 VL 104 IS 16 AR 166802 DI 10.1103/PhysRevLett.104.166802 PG 4 WC Physics, Multidisciplinary SC Physics GA 587QO UT WOS:000277007700044 PM 20482072 ER PT J AU Podesta, JJ AF Podesta, J. J. TI Comment on "Turbulent Cascade at 1 AU in High Cross-Helicity Flows'' SO PHYSICAL REVIEW LETTERS LA English DT Editorial Material ID MAGNETOHYDRODYNAMIC TURBULENCE C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Podesta, JJ (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. NR 5 TC 5 Z9 5 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD APR 23 PY 2010 VL 104 IS 16 AR 169001 DI 10.1103/PhysRevLett.104.169001 PG 1 WC Physics, Multidisciplinary SC Physics GA 587QO UT WOS:000277007700060 PM 20482088 ER PT J AU Wilson, AN Korichi, A Siem, S Astier, A Bazzacco, D Bednarczyk, P Bergstrom, MH Chmel, S Cullen, DM Davidson, PM Gorgen, A Hannachi, F Hubel, H Kintz, N Lauritsen, T Lopez-Martens, A Lunardi, S Naguleswaran, S Nyako, BM Rejmund, M Schonwasser, G Schuck, C Sharpey-Schafer, JF Timar, J Wadsworth, R Libert, J AF Wilson, A. N. Korichi, A. Siem, S. Astier, A. Bazzacco, D. Bednarczyk, P. Bergstrom, M. H. Chmel, S. Cullen, D. M. Davidson, P. M. Goergen, A. Hannachi, F. Huebel, H. Kintz, N. Lauritsen, T. Lopez-Martens, A. Lunardi, S. Naguleswaran, S. Nyako, B. M. Rejmund, M. Schoenwasser, G. Schueck, C. Sharpey-Schafer, J. F. Timar, J. Wadsworth, R. Libert, J. TI Two-Particle Separation Energy Trends in the Superdeformed Well SO PHYSICAL REVIEW LETTERS LA English DT Article ID EXCITATION-ENERGIES; BAND; HG-190; PARITY; PB-194; STATES; SPINS AB A measurement of the energy and spin of superdeformed states in 190Hg, obtained through the observation of transitions directly linking superdeformed and normal states, expands the number of isotopes in which binding energies at superdeformation are known. Comparison with neighboring nuclei shows that two-proton separation energies are higher in the superdeformed state than in the normal state, despite the lower Coulomb barrier and lower total binding energy. This unexpected result provides a critical test for nuclear models. C1 [Wilson, A. N.; Davidson, P. M.] Australian Natl Univ, Res Sch Phys & Engn, Canberra, ACT 0200, Australia. [Korichi, A.; Siem, S.; Astier, A.; Hannachi, F.; Lopez-Martens, A.; Rejmund, M.; Schueck, C.] CNRS, IN2P3, CSNSM, F-91405 Orsay, France. [Siem, S.] Univ Oslo, Dept Phys, N-0316 Oslo, Norway. [Astier, A.] IPN Lyon, F-69622 Villeurbanne, France. [Bazzacco, D.; Lunardi, S.] INFN, Sez Padova, I-35131 Padua, Italy. [Bazzacco, D.; Lunardi, S.] Univ Padua, Dipartimento Fis, I-35131 Padua, Italy. [Bednarczyk, P.; Kintz, N.; Naguleswaran, S.] IReS, F-67037 Strasbourg, France. [Bergstrom, M. H.] Niels Bohr Inst, DK-2100 Copenhagen, Denmark. [Chmel, S.; Goergen, A.; Huebel, H.; Schoenwasser, G.] Univ Bonn, Helmholtz Inst Strahlen & Kernphys, D-53115 Bonn, Germany. [Cullen, D. M.] Univ Liverpool, Oliver Lodge Lab, Liverpool L69 7ZE, Merseyside, England. [Lauritsen, T.] Argonne Natl Lab, Argonne, IL 60439 USA. [Nyako, B. M.; Timar, J.] Inst Nucl Res, H-4001 Debrecen, Hungary. [Sharpey-Schafer, J. F.] iThemba LABS, ZA-7129 Somerset W, South Africa. [Wadsworth, R.] Univ York, Dept Phys, York YO10 5DD, N Yorkshire, England. [Libert, J.] CNRS, IN2P3, IPNO, F-91406 Orsay, France. RP Wilson, AN (reprint author), Australian Natl Univ, Res Sch Phys & Engn, GPO Box 4, Canberra, ACT 0200, Australia. EM Anna.Wilson@anu.edu.au RI Naguleswaran, Sanjeev/A-4305-2013; OI Gorgen, Andreas/0000-0003-1916-9941; Wilson, Anna/0000-0001-6928-1689 FU German BMBF [06BN907]; EU [ERBFMGECT98-0145, ERBFMRXCT97-0123]; OTKA [K72566]; U.S. Department of Energy; Office of Nuclear Physics [DE-AC02-06CH11357] FX The authors are grateful to Paul-Henri Heenen for making the results of his Skyrme force calculations available. This work has been supported by the German BMBF through Grant no. 06BN907 and the EU under contracts ERBFMGECT98-0145 and ERBFMRXCT97-0123, the OTKA through Grant no. K72566 and the U.S. Department of Energy, Office of Nuclear Physics, under Contract No. DE-AC02-06CH11357. NR 23 TC 7 Z9 7 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD APR 23 PY 2010 VL 104 IS 16 AR 162501 DI 10.1103/PhysRevLett.104.162501 PG 4 WC Physics, Multidisciplinary SC Physics GA 587QO UT WOS:000277007700015 PM 20482043 ER PT J AU Yin, LF Xiao, D Gai, Z Ward, TZ Widjaja, N Stocks, GM Cheng, ZH Plummer, EW Zhang, ZY Shen, J AF Yin, Lifeng Xiao, Di Gai, Zheng Ward, Thomas Z. Widjaja, Noppi Stocks, G. Malcolm Cheng, Zhao-hua Plummer, E. Ward Zhang, Zhenyu Shen, Jian TI Tuning the Ferromagnetic Coupling of Fe Nanodots on Cu(111) via Dimensionality Variation of the Mediating Electrons SO PHYSICAL REVIEW LETTERS LA English DT Article ID LAYER-ASSISTED GROWTH; SURFACE; METALS; CONFINEMENT; IMPURITIES AB Using in situ magneto-optical Kerr effect measurements and phenomenological modeling, we study the tunability in both the magnetization anisotropy and magnetic coupling of Fe nanodots on a curved Cu(111) substrate with varying vicinity. We observe that, as the terrace width w decreases, the magnetization anisotropy increases monotonically, faster when w is smaller than the nanodot size d. In contrast, the magnetic coupling strength also increases until w similar to d, after which it decreases steeply. These striking observations can be rationalized by invoking the counterintuitive dimensionality variation of the surface electrons mediating the interdot coupling: the electrons are confined to be one dimensional (1D) when w >= d, but become quasi-2D when w < d due to enhanced electron spillover across the steps bridged by the nanodots. C1 [Yin, Lifeng; Xiao, Di; Gai, Zheng; Ward, Thomas Z.; Widjaja, Noppi; Stocks, G. Malcolm; Zhang, Zhenyu; Shen, Jian] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Yin, Lifeng; Shen, Jian] Fudan Univ, Dept Phys, Shanghai 200433, Peoples R China. [Widjaja, Noppi; Zhang, Zhenyu] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Cheng, Zhao-hua] Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China. [Plummer, E. Ward] Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA. RP Shen, J (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. EM shenj@ornl.gov RI Xiao, Di/B-1830-2008; Gai, Zheng/B-5327-2012; Ward, Thomas/I-6636-2016; Stocks, George Malcollm/Q-1251-2016 OI Xiao, Di/0000-0003-0165-6848; Gai, Zheng/0000-0002-6099-4559; Ward, Thomas/0000-0002-1027-9186; Stocks, George Malcollm/0000-0002-9013-260X FU U.S. DOE (Division of Materials Sciences and Engineering, Office of Basic Energy Sciences); CMSN; U.S. NSF [DMR-0906025] FX This work was supported by the U.S. DOE (Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, and CMSN), and by the U.S. NSF (DMR-0906025). NR 34 TC 7 Z9 7 U1 0 U2 15 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD APR 23 PY 2010 VL 104 IS 16 AR 167202 DI 10.1103/PhysRevLett.104.167202 PG 4 WC Physics, Multidisciplinary SC Physics GA 587QO UT WOS:000277007700049 PM 20482077 ER PT J AU Woyke, T Tighe, D Mavromatis, K Clum, A Copeland, A Schackwitz, W Lapidus, A Wu, DY McCutcheon, JP McDonald, BR Moran, NA Bristow, J Cheng, JF AF Woyke, Tanja Tighe, Damon Mavromatis, Konstantinos Clum, Alicia Copeland, Alex Schackwitz, Wendy Lapidus, Alla Wu, Dongying McCutcheon, John P. McDonald, Bradon R. Moran, Nancy A. Bristow, James Cheng, Jan-Fang TI One Bacterial Cell, One Complete Genome SO PLOS ONE LA English DT Article ID MULTIPLE DISPLACEMENT AMPLIFICATION; MICROBIAL COMMUNITIES; XYLELLA-FASTIDIOSA; SYMBIONTS; EVOLUTION; HEMIPTERA; METAGENOMICS; CICADELLIDAE; DYNAMICS; INSIGHTS AB While the bulk of the finished microbial genomes sequenced to date are derived from cultured bacterial and archaeal representatives, the vast majority of microorganisms elude current culturing attempts, severely limiting the ability to recover complete or even partial genomes from these environmental species. Single cell genomics is a novel culture-independent approach, which enables access to the genetic material of an individual cell. No single cell genome has to our knowledge been closed and finished to date. Here we report the completed genome from an uncultured single cell of Candidatus Sulcia muelleri DMIN. Digital PCR on single symbiont cells isolated from the bacteriome of the green sharpshooter Draeculacephala minerva bacteriome allowed us to assess that this bacteria is polyploid with genome copies ranging from approximately 200-900 per cell, making it a most suitable target for single cell finishing efforts. For single cell shotgun sequencing, an individual Sulcia cell was isolated and whole genome amplified by multiple displacement amplification (MDA). Sanger-based finishing methods allowed us to close the genome. To verify the correctness of our single cell genome and exclude MDA-derived artifacts, we independently shotgun sequenced and assembled the Sulcia genome from pooled bacteriomes using a metagenomic approach, yielding a nearly identical genome. Four variations we detected appear to be genuine biological differences between the two samples. Comparison of the single cell genome with bacteriome metagenomic sequence data detected two single nucleotide polymorphisms (SNPs), indicating extremely low genetic diversity within a Sulcia population. This study demonstrates the power of single cell genomics to generate a complete, high quality, non-composite reference genome within an environmental sample, which can be used for population genetic analyzes. C1 [Woyke, Tanja; Tighe, Damon; Mavromatis, Konstantinos; Clum, Alicia; Copeland, Alex; Schackwitz, Wendy; Lapidus, Alla; Wu, Dongying; Bristow, James; Cheng, Jan-Fang] Joint Genome Inst, Dept Energy, Walnut Creek, CA USA. [McCutcheon, John P.; McDonald, Bradon R.; Moran, Nancy A.] Univ Arizona, Dept Ecol & Evolutionary Biol, Tucson, AZ USA. RP Woyke, T (reprint author), Joint Genome Inst, Dept Energy, Walnut Creek, CA USA. EM JFCheng@lbl.gov RI Moran, Nancy/G-1591-2010; McDonald, Bradon/F-8386-2013; Lapidus, Alla/I-4348-2013 OI Lapidus, Alla/0000-0003-0427-8731 FU US Department of Energy; University of California, Lawrence Berkeley National Laboratory [DE-AC02-05CH11231]; University of California, Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; University of California, Los Alamos National Laboratory [DE-AC02-06NA25396] FX This work was performed under the auspices of the US Department of Energy's Office of Science, Biological and Environmental Research Program, and by the University of California, Lawrence Berkeley National Laboratory under contract No. DE-AC02-05CH11231, Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344, and Los Alamos National Laboratory under contract No. DE-AC02-06NA25396. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 39 TC 107 Z9 108 U1 1 U2 44 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD APR 23 PY 2010 VL 5 IS 4 AR e10314 DI 10.1371/journal.pone.0010314 PG 8 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 588NU UT WOS:000277079300008 PM 20428247 ER PT J AU Matzel, JEP Ishii, HA Joswiak, D Hutcheon, ID Bradley, JP Brownlee, D Weber, PK Teslich, N Matrajt, G McKeegan, KD MacPherson, GJ AF Matzel, J. E. P. Ishii, H. A. Joswiak, D. Hutcheon, I. D. Bradley, J. P. Brownlee, D. Weber, P. K. Teslich, N. Matrajt, G. McKeegan, K. D. MacPherson, G. J. TI Constraints on the Formation Age of Cometary Material from the NASA Stardust Mission SO SCIENCE LA English DT Article ID ALUMINUM-RICH INCLUSIONS; EARLY SOLAR-SYSTEM; REFRACTORY INCLUSIONS; CHONDRULES; ALLENDE; AL-26; CHONDRITES; 81P/WILD-2; NEBULA; METEORITES AB We measured the (26)Al-(26)Mg isotope systematics of a similar to 5-micrometer refractory particle, Coki, returned from comet 81P/Wild 2 in order to relate the time scales of formation of cometary inclusions to their meteoritic counterparts. The data show no evidence of radiogenic (26)Mg and define an upper limit to the abundance of (26)Al at the time of particle formation: (26)Al/(27)Al < 1 x 10(-5). The absence of (26)Al indicates that Coki formed >1.7 million years after the oldest solids in the solar system, calcium-and aluminum-rich inclusions (CAIs). The data suggest that high-temperature inner solar system material formed, was subsequently transferred to the Kuiper Belt, and was incorporated into comets several million years after CAI formation. C1 [Matzel, J. E. P.; Ishii, H. A.; Hutcheon, I. D.; Bradley, J. P.; Teslich, N.] Lawrence Livermore Natl Lab, Inst Geophys & Planetary Phys, Livermore, CA 94550 USA. [Matzel, J. E. P.; Hutcheon, I. D.; Weber, P. K.] Lawrence Livermore Natl Lab, Glenn T Seaborg Inst, Livermore, CA 94550 USA. [Joswiak, D.; Brownlee, D.; Matrajt, G.] Univ Washington, Dept Astron, Seattle, WA 98195 USA. [McKeegan, K. D.] Univ Calif Los Angeles, Dept Earth & Space Sci, Los Angeles, CA 90095 USA. [MacPherson, G. J.] Natl Museum Nat Hist, Dept Mineral Sci, Smithsonian Inst, Washington, DC 20560 USA. RP Matzel, JEP (reprint author), Lawrence Livermore Natl Lab, Inst Geophys & Planetary Phys, Livermore, CA 94550 USA. EM matzel2@llnl.gov RI McKeegan, Kevin/A-4107-2008; UCLA, SIMS/A-1459-2011 OI McKeegan, Kevin/0000-0002-1827-729X; FU Lawrence Livermore National Laboratory (LLNL) [DE-AC52-07NA27344, 06-ERI-001]; NASA [NNH07AG46I, NNH04AB47I] FX This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory (LLNL) under contract DE-AC52-07NA27344. Supported by NASA grants NNH07AG46I (H. A. I.) and NNH04AB47I (I. D. H.) and by LLNL grant 06-ERI-001 (J.P.B.). NR 32 TC 38 Z9 38 U1 0 U2 10 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD APR 23 PY 2010 VL 328 IS 5977 BP 483 EP 486 DI 10.1126/science.1184741 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 586YR UT WOS:000276952400038 PM 20185683 ER PT J AU Pothakos, K Robinson, JK Gravanis, I Marsteller, DA Dewey, SL Tsirka, SE AF Pothakos, Konstantinos Robinson, John K. Gravanis, Iordanis Marsteller, Douglas A. Dewey, Stephen L. Tsirka, Stella E. TI Decreased serotonin levels associated with behavioral disinhibition in tissue plasminogen activator deficient (tPA(-/-)) mice SO BRAIN RESEARCH LA English DT Article DE tPA; Serotonin; Mouse; Disinhibition; Impulsivity ID LONG-TERM POTENTIATION; CENTRAL-NERVOUS-SYSTEM; NMDA RECEPTOR FUNCTION; KNOCKOUT MICE; NEURONAL DEGENERATION; SYNAPTIC PLASTICITY; CAUDATE-PUTAMEN; INHIBITION; DOPAMINE; SEIZURE AB Tissue Plasminogen Activator (tPA) is a serine protease expressed in different areas of the mammalian brain. It has been used clinically to dissolve clots and shown to have a role in neurodegeneration. Early studies suggested that tPA plays an important role in the processes of learning and memory, demonstrated at the level of behavior and synaptic plasticity. Herein, we extend the behavioral characterization of these mice to the related dimension of exploratory-related behavior using an extensive battery of behavioral tests as well as the neurotransmitter metabolism associated with the behavioral measures. Our results indicate a behavior tendency in these mice consistent with "impulsivity" or reduced exploratory inhibition. These patterns are accompanied by decreased levels of serotonin in several brain regions important in behavioral regulation in the tPA(-/-) mice compared to control animals. Systemic administration of fluoxetine reversed the behavioral disinhibition of tPA(-/-) mice, further supporting an important alteration in behavior regulation mediated by serotonin systems as underappreciated but important element of the behavioral phenotype of these animals. (C) 2010 Elsevier B.V. All rights reserved. C1 [Pothakos, Konstantinos; Gravanis, Iordanis; Marsteller, Douglas A.; Dewey, Stephen L.; Tsirka, Stella E.] SUNY Stony Brook, Dept Pharmacol Sci, Stony Brook, NY 11733 USA. [Dewey, Stephen L.] Brookhaven Natl Lab, Dept Med, Upton, NY 11973 USA. [Dewey, Stephen L.] NYU, Sch Med, Dept Psychiat, New York, NY 10016 USA. [Pothakos, Konstantinos; Robinson, John K.] SUNY Stony Brook, Dept Psychol, Stony Brook, NY 11794 USA. RP Tsirka, SE (reprint author), Univ Houston, Dept Pharmacol & Pharmaceut Sci, Houston, TX 77204 USA. EM pothakos@gmail.com; stella@pharm.stonybrook.edu FU National Institutes of Health [RO1NS42168, R01DA15041]; Department of Energy FX This work was supported by the National Institutes of Health RO1NS42168 (to S.E.T.), and R01DA15041 and the Department of Energy (to S.L.D). The authors would like to thank the members of the Tsirka lab for suggestions during the course of the work. NR 40 TC 8 Z9 8 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0006-8993 J9 BRAIN RES JI Brain Res. PD APR 22 PY 2010 VL 1326 BP 135 EP 142 DI 10.1016/j.brainres.2009.12.095 PG 8 WC Neurosciences SC Neurosciences & Neurology GA 592JV UT WOS:000277376100014 PM 20156421 ER PT J AU Chylek, P Folland, CK Lesins, G Dubey, MK AF Chylek, Petr Folland, Chris K. Lesins, Glen Dubey, Manvendra K. TI Twentieth century bipolar seesaw of the Arctic and Antarctic surface air temperatures SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID LAST GLACIAL PERIOD; GENERAL-CIRCULATION; CLIMATE-CHANGE; GREENLAND; OCEAN AB Understanding the phase relationship between climate changes in the Arctic and Antarctic regions is essential for our understanding of the dynamics of the Earth's climate system. In this paper we show that the 20th century detrended Arctic and Antarctic temperatures vary in anti-phase seesaw pattern-when the Arctic warms the Antarctica cools and visa versa. This is the first time that a bi-polar seesaw pattern has been identified in the 20th century Arctic and Antarctic temperature records. The Arctic (Antarctic) detrended temperatures are highly correlated (anti-correlated) with the Atlantic Multi-decadal Oscillation (AMO) index suggesting the Atlantic Ocean as a possible link between the climate variability of the Arctic and Antarctic regions. Recent accelerated warming of the Arctic results from a positive reinforcement of the linear warming trend (due to an increasing concentration of greenhouse gases and other possible forcings) by the warming phase of the multidecadal climate variability (due to fluctuations of the Atlantic Ocean circulation). Citation: Chylek, P., C. K. Folland, G. Lesins, and M. K. Dubey (2010), Twentieth century bipolar seesaw of the Arctic and Antarctic surface air temperatures, Geophys. Res. Lett., 37, L08703, doi: 10.1029/2010GL042793. C1 [Chylek, Petr; Dubey, Manvendra K.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Folland, Chris K.] Met Off Hadley Ctr Climate Change, Exeter EX1 3PB, Devon, England. [Lesins, Glen] Dalhousie Univ, Dept Phys & Atmospher Sci, Halifax, NS B3H 3J5, Canada. RP Chylek, P (reprint author), Los Alamos Natl Lab, MS B244, Los Alamos, NM 87545 USA. EM chylek@lanl.gov RI Dubey, Manvendra/E-3949-2010; Folland, Chris/I-2524-2013 OI Dubey, Manvendra/0000-0002-3492-790X; FU DOE Office of Biological and Environmental Research, Climate and Environmental Sciences Division; LANL branch of the Institute of Geophysics and Planetary Physics; Los Alamos National Laboratory; Joint DECC and Defra Integrated Climate Programme - DECC/Defra [GA01101] FX The reported research (LA-UR 09-07203) was supported by the DOE Office of Biological and Environmental Research, Climate and Environmental Sciences Division, by the LANL branch of the Institute of Geophysics and Planetary Physics, by Los Alamos National Laboratory's Directed Research and Development Project entitled "Flash Before the Storm" and by Joint DECC and Defra Integrated Climate Programme - DECC/Defra (GA01101). We thank Reto Ruedy and James Hansen for reading the manuscript and helpful comments. NR 23 TC 30 Z9 31 U1 1 U2 14 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD APR 22 PY 2010 VL 37 AR L08703 DI 10.1029/2010GL042793 PG 4 WC Geosciences, Multidisciplinary SC Geology GA 587YP UT WOS:000277033000005 ER PT J AU Henderson, MG Donovan, EF Foster, JC Mann, IR Immel, TJ Mende, SB Sigwarth, JB AF Henderson, M. G. Donovan, E. F. Foster, J. C. Mann, I. R. Immel, T. J. Mende, S. B. Sigwarth, J. B. TI Start-to-end global imaging of a sunward propagating, SAPS-associated giant undulation event SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID DIFFUSE AURORAL BOUNDARY; LARGE-AMPLITUDE UNDULATIONS; STRATIFIED SHEAR-LAYER; PARTICLE SIMULATION; DETACHED ARCS; INSTABILITY; FLOW; STABILITY; EMISSION AB We present high time resolution global imaging of a sunward propagating giant undulation event from start to finish. The event occurred on 24 November 2001 during a very disturbed storm interval. The giant undulations began to develop at around 1345 UTC and persisted for approximately 2 h. The sunward propagation speed was on the order of 0.6 km/s (relative to magnetic latitude-magnetic local time coordinate system). The undulations had a wavelength of similar to 718 km and amplitudes of similar to 890 km and produced ULF pulsations on the ground with a period of similar to 1108 s. We show (1) that the undulations were associated with subauroral polarization stream (SAPS) flows that were caused by the proton plasma sheet penetrating substantially farther earthward than the electron plasma sheet on the duskside and (2) that they may have been related to the arrival on the duskside of a substorm-associated westward traveling surge-like structure. The observations appear to be consistent with the development of a shear flow and/or ballooning type of instability at the plasmapause driven by intense SAPS-associated shear flows. C1 [Henderson, M. G.] Los Alamos Natl Lab, Los Alamos, NM 87544 USA. [Donovan, E. F.] Univ Calgary, Dept Phys & Astron, Calgary, AB T2N 1N4, Canada. [Foster, J. C.] MIT, Haystack Observ, Westford, MA 01886 USA. [Mann, I. R.] Univ Alberta, Dept Phys, Edmonton, AB T6G 2G2, Canada. [Immel, T. J.; Mende, S. B.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Sigwarth, J. B.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20770 USA. RP Henderson, MG (reprint author), Los Alamos Natl Lab, ISR-1,MS-D466, Los Alamos, NM 87544 USA. EM mghenderson@lanl.gov RI Henderson, Michael/A-3948-2011; OI Henderson, Michael/0000-0003-4975-9029; Donovan, Eric/0000-0002-8557-4155 FU NSF GEM [ATM-0202303]; Science and Technology Facilities Council FX The research at Los Alamos National Laboratory was supported by NSF GEM grant ATM-0202303. The SAMNET is operated by the Department of Communications Systems at Lancaster University, United Kingdom, and is funded by the Science and Technology Facilities Council. The Sym-H index data were provided by the World Data Center for Geomagnetism at Kyoto University. The polar magnetic field data were obtained via the UCLA online data server, and we thank C. Russell for making these data available there. We would also like to acknowledge the efforts of R. Skoug in providing us with corrected ACE solar wind data. M. G. H. points out that much of the contents of this paper was first presented at the fall 2002 AGU meeting and apologizes to coauthors for taking so long to publish the results. NR 39 TC 6 Z9 6 U1 0 U2 6 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD APR 22 PY 2010 VL 115 AR A04210 DI 10.1029/2009JA014106 PG 18 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 587ZU UT WOS:000277036300001 ER PT J AU Bythell, BJ Dain, RP Curtice, SS Oomens, J Steill, JD Groenewold, GS Paizs, B Van Stipdonk, MJ AF Bythell, Benjamin J. Dain, Ryan P. Curtice, Stephanie S. Oomens, Jos Steill, Jeffrey D. Groenewold, Gary S. Paizs, Bela Van Stipdonk, Michael J. TI Structure of [M + H - H2O](+) from Protonated Tetraglycine Revealed by Tandem Mass Spectrometry and IRMPD Spectroscopy SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID COLLISION-INDUCED DISSOCIATION; PROTONATED TRYPTIC PEPTIDES; TANDEM MASS-SPECTROMETRY; GAS-PHASE; FRAGMENTATION PATHWAYS; INFRARED-SPECTROSCOPY; AMIDE BOND; AB-INITIO; B-IONS; OXAZOLONE STRUCTURES AB Multiple-stage tandem mass spectrometry and collision-induced dissociation were used to investigate loss of H2O or CH3OH from protonated versions of GGGX (where X = G, A, and V), GGGGG, and the methyl esters of these peptides. In addition, wavelength-selective infrared multiple photon dissociation was used to characterize the [M + H - H2O](+) product derived from protonated GGGG and the major MS3 fragment, [M + H - H2O - 29](+) of this peak. Consistent with the earlier work [Ballard, K. D.; Gaskell, S. J. J. Am. Soc. Mass Spectrom. 1993, 4, 477-481; Reid, G. E.; Simpson, R. J.; O'Hair, R. A. J. Int..J. Mass Spectrom. 1999, 190/191, 209-230000], CID experiments show that [M + H - H2O](+) is the dominant peak generated from both protonated GGGG and protonated GGGG-OMe. This strongly suggests that the loss of the H2O molecule occurs from a position other than the C-terminal free acid and that the product does not correspond to formation of the b(4) ion. Subsequent CID of [M + H - H2O](+) supports this proposal by resulting in a major product that is 29 mass units less than the precursor ion. This is consistent with loss of HN=CH2 rather than loss of carbon monoxide (28 mass units), which is characteristic of oxazolone-type b(n) ions. Comparison between experimental and theoretical infrared spectra ''or a group of possible structures confirms that the [M + H - H2O](+) peak is not a substituted oxazolone but instead suggests formation of an ion that features a five-membered ring along the peptide backbone, close to the ammo terminus. Additionally. transition structure calculations and comparison of theoretical and experimental spectra of the [M + H - H2O - 29](+) peak also support this proposal. C1 [Dain, Ryan P.; Curtice, Stephanie S.; Van Stipdonk, Michael J.] Wichita State Univ, Dept Chem, Wichita, KS 67260 USA. [Bythell, Benjamin J.; Paizs, Bela] German Canc Res Ctr, Computat Prote Grp, D-6900 Heidelberg, Germany. [Oomens, Jos; Steill, Jeffrey D.] FOM Inst Plasma Phys Rijnhuizen, Nieuwegein, Netherlands. [Groenewold, Gary S.] Idaho Natl Lab, Interfacial Chem Grp, Idaho Falls, ID 83415 USA. RP Van Stipdonk, MJ (reprint author), Wichita State Univ, Dept Chem, Wichita, KS 67260 USA. EM mike.vanstipdonk@wichita.edu RI Oomens, Jos/F-9691-2015 FU National Science Foundation [CAREER-0239800, EIA-0216178, EPS-0236913]; State of Kansas; HIPECC; U.S. Department of Energy [DE AC07 051D14517]; German Cancer Research Center (DKFZ), Heidelberg; Deutsche Forschungsgemeinschaft; Nederlandse Organisatic voor Wetenschappelijk Onderzock (NWO) FX Work by M.V.S., R.P.D., and S.S.C. was supported in part by a grant from the National Science Foundation (CAREER-0239800). Preliminary DFT calculations were performed at Wichita State University using resources of the High-performance Computing Center (HIPECC), a facility supported by the NSF under Grants EIA-0216178 and EPS-0236913 and matching support from the State of Kansas and HIPECC. Work by G.S.G. (under the INL LDRD Program) is supported by the U.S. Department of Energy. Idaho National Laboratory, DOE Idaho Operations Office Contract DE AC07 051D14517. B.J.B. acknowledges the German Cancer Research Center (DKFZ), Heidelberg, for a guest scientist fellowship. B.P. thanks the Deutsche Forschungsgemeinschaft for a Heisenberg fellowship. J.O. and J.S. are supported by the Nederlandse Organisatic voor Wetenschappelijk Onderzock (NWO). The excellent support by Dr. B. Redlich and others of the FELIX staff is gratefully acknowledged. NR 58 TC 18 Z9 18 U1 1 U2 15 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD APR 22 PY 2010 VL 114 IS 15 BP 5076 EP 5082 DI 10.1021/jp9113046 PG 7 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 581YV UT WOS:000276562800006 PM 20353201 ER PT J AU Dmowski, W Yin, HF Dai, S Overbury, SH Egami, T AF Dmowski, Wojtek Yin, Hongfeng Dai, Sheng Overbury, Steven H. Egami, Takeshi TI Atomic Structure of Au Nanoparticles on a Silica Support by an X-ray PDF Study SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID DENSITY-FUNCTIONAL THEORY; TEMPERATURE CO OXIDATION; GOLD NANOPARTICLES; CATALYTIC-ACTIVITY; AU(111) SURFACE; ACTIVE GOLD; NANOCLUSTERS; ADSORPTION; CLUSTERS; TITANIA AB We investigated the atomic structure of gold nanoparticles with an average size of similar to 5 nm in diameter, supported by silica. We used high-energy X-ray diffraction and the atomic pair distribution function (PDF) to probe the local atomic structure. Measurements were performed from 25 to 950 degrees C. The structure is approximately fcc in average but exhibits small distortions. The structural distortion increases with the temperature and could be related to the catalytic activity of gold nanoparticles. Above 425 degrees C, rapid particle growth and coalescence were observed. C1 [Dmowski, Wojtek; Egami, Takeshi] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Yin, Hongfeng; Dai, Sheng; Overbury, Steven H.; Egami, Takeshi] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Egami, Takeshi] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. RP Dmowski, W (reprint author), Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. EM wdmowski@utk.edu RI Overbury, Steven/C-5108-2016; Dai, Sheng/K-8411-2015 OI Overbury, Steven/0000-0002-5137-3961; Dai, Sheng/0000-0002-8046-3931 FU Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, U.S. Department of Energy [DE-AC05-000R22725]; U.S. Department of Energy (DOE), Office of Science [DE-AC02-06CH11357] FX The research was sponsored by the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, U.S. Department of Energy, under Contract No. DE-AC05-000R22725 with Oak Ridge National Laboratory, managed and operated by UT-Battelle, LLC. Use of the Advanced Photon Source is supported by the U.S. Department of Energy (DOE), Office of Science, under Contract No. DE-AC02-06CH11357. NR 37 TC 6 Z9 6 U1 0 U2 18 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD APR 22 PY 2010 VL 114 IS 15 BP 6983 EP 6988 DI 10.1021/jp100443z PG 6 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 581YS UT WOS:000276562500015 ER PT J AU Perez-Tijerina, E Mejia-Rosales, S Inada, H Jose-Yacaman, M AF Perez-Tijerina, Eduardo Mejia-Rosales, Sergio Inada, Hiromi Jose-Yacaman, Miguel TI Effect of Temperature on AuPd Nanoparticles Produced by Inert Gas Condensation SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID AU/PD NANOPARTICLES; CLUSTERS; NANOALLOYS AB Bimetallic nanoparticles of AuPd were synthesized using the inert gas condensation technique, where the material is sputtered from a target and the particles are formed in an inert condensation zone. Throughout the synthesis process and jointly with the control of the atmosphere conditions, the region after the condensation chamber was kept at a fixed temperature, and several experimental runs were performed at 700 and 1000 degrees C. The synthesis conditions were set to produce particles of 5 nm of diameter, and almost all of the resulting nanoparticles were icosahedral in shape with small deviations from the mean size. We analyzed the particles by high-angle annular dark field and bright field scanning electron microscopy imaging with a resolution high enough to acquire atomic detail and to measure the distance between planes. From the micrographs and their fast Fourier transform patterns, we found that the lattice detail depends on the thermal treatment with larger lattice fringe displacements in the particles produced at 700 degrees C. Electron energy loss spectroscopy analysis in one and two dimensions shows that irrespective of the temperature the particles keep their icosahedral shape, and both chemical species are distributed nonuniformly all over the volume of the particles, but without forming core-shell structures. C1 [Perez-Tijerina, Eduardo; Mejia-Rosales, Sergio] Univ Autonoma Nuevo Leon, Ctr Innovat & Res Engn & Technol, San Nicolas De Los Garza 66450, NL, Mexico. [Perez-Tijerina, Eduardo; Mejia-Rosales, Sergio] Univ Autonoma Nuevo Leon, Fac Ciencias Fisicomatemat, San Nicolas De Los Garza 66450, NL, Mexico. [Mejia-Rosales, Sergio; Jose-Yacaman, Miguel] Univ Texas San Antonio, Dept Phys & Astron, San Antonio, TX 78249 USA. [Inada, Hiromi] Hitachi High Technol Amer Inc, Pleasanton, CA 94588 USA. [Inada, Hiromi] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. RP Perez-Tijerina, E (reprint author), Univ Autonoma Nuevo Leon, Ctr Innovat & Res Engn & Technol, San Nicolas De Los Garza 66450, NL, Mexico. EM eduardo.pereztj@uanl.edu.mx; sergio.mejiarosales@utsa.edu RI Mejia, Sergio/I-3223-2012; jose yacaman, miguel/B-5622-2009 OI Mejia, Sergio/0000-0003-0053-2632; FU International Center for Nanotechnology and Advanced Materials (ICNAM) of the University of Texas at San Antonio; Welch Foundation [AX-1615]; Mexican Council for Science and Technology (CONACYT) [119100]; Council for Science and Technology of the State of Nuevo Leon, Mexico FX This work was supported by the International Center for Nanotechnology and Advanced Materials (ICNAM) of the University of Texas at San Antonio, the Welch Foundation (Grant AX-1615), the Mexican Council for Science and Technology (CONACYT, exp. 119100), and the Council for Science and Technology of the State of Nuevo Leon, Mexico. NR 19 TC 13 Z9 13 U1 0 U2 21 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD APR 22 PY 2010 VL 114 IS 15 BP 6999 EP 7003 DI 10.1021/jp101003g PG 5 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 581YS UT WOS:000276562500018 ER PT J AU Lee, SH Han, SH Jung, HS Shin, H Lee, J Noh, JH Lee, S Cho, IS Lee, JK Kim, J Shin, H AF Lee, Sung-Hae Han, Se-Hoon Jung, Hyun Suk Shin, Hyunjung Lee, Jagab Noh, Jun-Hong Lee, Sangwook Cho, In-Sun Lee, Jung-Kun Kim, Jinyoung Shin, Hyunho TI Al-Doped ZnO Thin Film: A New Transparent Conducting Layer for ZnO Nanowire-Based Dye-Sensitized Solar Cells SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID LIGHT-EMITTING DEVICES; PHOTOVOLTAIC DEVICES; NANORODS; ANODES AB In this study, an aluminum-doped zinc oxide (AZO) layer was used as a transparent conducting oxide (TCO) layer in ZnO nanowire (NW)-based dye-sensitized solar cells (DSSCs). The well aligned, single crystalline ZnO NW arrays that were grown on the AZO films exhibited a better DSSC performance (an increased photocurrent density and fill factor) than those grown on the fluorine doped tin oxide (FTO) films. The I-V characteristics and electrochemical impedance spectroscopy measurements for the ZnO NW arrays on the AZO and FTO films clearly showed that the superior DSSC performance was caused by the facilitated charge injection from the ZnO NW to AZO, resulting from the formation of an ohmic contact. This study demonstrates that the AZO films are more favorable for highly efficient ZnO NW-based photoenergy conversion devices. C1 [Lee, Sung-Hae; Han, Se-Hoon; Jung, Hyun Suk; Shin, Hyunjung; Lee, Jagab] Kookmin Univ, Sch Adv Mat Engn, Seoul 136702, South Korea. [Noh, Jun-Hong; Lee, Sangwook; Cho, In-Sun] Seoul Natl Univ, Sch Mat Sci & Engn, Seoul 151744, South Korea. [Lee, Jung-Kun] Univ Pittsburgh, Dept Mech Engn & Mat Sci, Pittsburgh, PA 15261 USA. [Kim, Jinyoung] Natl Renewable Energy Lab, Chem & Biosci Ctr, Golden, CO 80401 USA. [Shin, Hyunho] Ganeneung Wonju Natl Univ, Dept Ceram Engn, Kangnung 210702, South Korea. RP Jung, HS (reprint author), Kookmin Univ, Sch Adv Mat Engn, Seoul 136702, South Korea. EM hjung@kookmin.ac.kr RI Shin, Hyunjung/D-5107-2009; Jung, Hyun Suk/D-4745-2011; Kim, Jin Young/B-7077-2012; Cho, In Sun/H-6557-2011; Lee, Sangwook/O-9166-2015; Jung, Hyun Suk/H-3659-2015; OI Shin, Hyunjung/0000-0003-1284-9098; Kim, Jin Young/0000-0001-7728-3182; Lee, Sangwook/0000-0002-3535-0241; Jung, Hyun Suk/0000-0002-7803-6930 FU Korean government (MEST) [R11-2005-048-00000-0]; ERC; CMPS; MEST [2009-0082659]; Kookmin University in Korea; [2009-0065889] FX This work was supported by a grant from the Korea Science and Engineering Foundation (KOSEF) of the Korean government (MEST) (R11-2005-048-00000-0, ERC, CMPS, and 2009-0065889). This work was also supported by the Nano R&D program through the National Research Foundation of Korea funded by MEST (2009-0082659) and the research program 2009 of Kookmin University in Korea. NR 27 TC 63 Z9 66 U1 5 U2 70 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD APR 22 PY 2010 VL 114 IS 15 BP 7185 EP 7189 DI 10.1021/jp1008412 PG 5 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 581YS UT WOS:000276562500043 ER PT J AU Kao, SC Govindaraju, RS AF Kao, Shih-Chieh Govindaraju, Rao S. TI Reply to comment by T. P. Hutchinson on "Trivariate statistical analysis of extreme rainfall events via the Plackett family of copulas" SO WATER RESOURCES RESEARCH LA English DT Editorial Material C1 [Kao, Shih-Chieh] Oak Ridge Natl Lab, Computat Sci & Engn Div, Oak Ridge, TN 37831 USA. [Govindaraju, Rao S.] Purdue Univ, Sch Civil Engn, W Lafayette, IN 47907 USA. RP Kao, SC (reprint author), Oak Ridge Natl Lab, Computat Sci & Engn Div, POB 2008,MS 6017, Oak Ridge, TN 37831 USA. EM kaos@ornl.gov; govind@purdue.edu RI Kao, Shih-Chieh/B-9428-2012; OI Kao, Shih-Chieh/0000-0002-3207-5328; Govindaraju, Rao/0000-0003-3957-3319 NR 4 TC 1 Z9 1 U1 0 U2 5 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0043-1397 J9 WATER RESOUR RES JI Water Resour. Res. PD APR 22 PY 2010 VL 46 AR W04802 DI 10.1029/2009WR008774 PG 3 WC Environmental Sciences; Limnology; Water Resources SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water Resources GA 587ZZ UT WOS:000277036800002 ER PT J AU Singh, A Razooky, B Cox, CD Simpson, ML Weinberger, LS AF Singh, Abhyudai Razooky, Brandon Cox, Chris D. Simpson, Michael L. Weinberger, Leor S. TI Transcriptional Bursting from the HIV-1 Promoter Is a Significant Source of Stochastic Noise in HIV-1 Gene Expression SO BIOPHYSICAL JOURNAL LA English DT Article ID CONSEQUENCES; INTEGRATION; CELLS; FATE AB Analysis of noise in gene expression has proven a powerful approach for analyzing gene regulatory architecture. To probe the regulatory mechanisms controlling expression of HIV-1, we analyze noise in gene-expression from HIV-1's long terminal repeat (LTR) promoter at different HIV-1 integration sites across the human genome. Flow cytometry analysis of GFP expression from the HIV-1 LTR shows high variability (noise) at each integration site. Notably, the measured noise levels are inconsistent with constitutive gene expression models. Instead, quantification of expression noise indicates that HIV-1 gene expression occurs through randomly timed bursts of activity from the LTR and that each burst generates an average of 2-10 mRNA transcripts before the promoter returns to an inactive state. These data indicate that transcriptional bursting can generate high variability in HIV-1 early gene products, which may critically influence the viral fate-decision between active replication and proviral latency. C1 [Singh, Abhyudai; Razooky, Brandon; Weinberger, Leor S.] Univ Calif San Diego, Dept Chem & Biochem, La Jolla, CA 92093 USA. [Weinberger, Leor S.] Univ Calif San Diego, Whitaker Inst Biomed Engn, La Jolla, CA 92093 USA. [Cox, Chris D.] Univ Tennessee, Dept Civil Engn, Knoxville, TN 37996 USA. [Cox, Chris D.] Univ Tennessee, Dept Environm Engn, Knoxville, TN 37996 USA. [Simpson, Michael L.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN USA. RP Weinberger, LS (reprint author), Univ Calif San Diego, Dept Chem & Biochem, La Jolla, CA 92093 USA. EM lsw@ucsd.edu RI Simpson, Michael/A-8410-2011; Cox, Chris/A-9451-2013; Singh, Abhyudai/D-3948-2014 OI Simpson, Michael/0000-0002-3933-3457; Cox, Chris/0000-0001-9818-5477; FU U.S. Department of Energy; California HIV/AIDS Research Program [1D08-SD-019]; Pew Scholars Foundation; University of California, San Diego, Center for AIDS Research FX We thank R. Tsien and M. David for flow cytometer use. M.L.S. acknowledges support from the Center for Nanophase Materials Sciences, sponsored by the U.S. Department of Energy. L.S.W. acknowledges support from the California HIV/AIDS Research Program (1D08-SD-019). the Pew Scholars Foundation, and the University of California, San Diego, Center for AIDS Research. NR 17 TC 71 Z9 72 U1 0 U2 10 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 0006-3495 J9 BIOPHYS J JI Biophys. J. PD APR 21 PY 2010 VL 98 IS 8 BP L32 EP L34 DI 10.1016/j.bpj.2010.03.001 PG 3 WC Biophysics SC Biophysics GA 586UT UT WOS:000276939800002 PM 20409455 ER PT J AU Kowalski, K Krishnamoorthy, S Villa, O Hammond, JR Govind, N AF Kowalski, Karol Krishnamoorthy, Sriram Villa, Oreste Hammond, Jeff R. Govind, Niranjan TI Active-space completely-renormalized equation-of-motion coupled-cluster formalism: Excited-state studies of green fluorescent protein, free-base porphyrin, and oligoporphyrin dimer SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article DE coupled cluster calculations; excited states; iterative methods; molecular biophysics; proteins ID DENSITY-FUNCTIONAL THEORY; CORRELATED MOLECULAR CALCULATIONS; 2ND-ORDER PERTURBATION-THEORY; TRIPLE EXCITATION CORRECTIONS; GAUSSIAN-BASIS SETS; SAC-CI METHOD; ELECTRONIC STATES; CONFIGURATION-INTERACTION; ABSORPTION-SPECTRA; PROTONATION STATES AB The completely renormalized equation-of-motion coupled-cluster approach with singles, doubles, and noniterative triples [CR-EOMCCSD(T)] has proven to be a reliable tool in describing vertical excitation energies in small and medium size molecules. In order to reduce the high numerical cost of the genuine CR-EOMCCSD(T) method and make noniterative CR-EOMCCSD(T) approaches applicable to large molecular systems, two active-space variants of this formalism [the CR-EOMCCSd(t)-II and CR-EOMCCSd(t)-III methods], based on two different choices of the subspace of triply excited configurations employed to construct noniterative correction, are introduced. In calculations for green fluorescent protein (GFP) and free-base porphyrin, where the CR-EOMCCSD(T) results are available, we show good agreement between the active-space CR-EOMCCSD(T) (variant II) and full CR-EOMCCSD(T) excitation energies. For the oligoporphyrin dimer (P(2)TA) active-space CR-EOMCCSD(T) results provide reasonable agreement with experimentally inferred data. For all systems considered we demonstrated that the active-space CR-EOMCCSD(T) corrections lower the EOMCCSD (iterative equation-of-motion coupled-cluster method with singles and doubles) excitation energies by 0.2 and 0.3 eV, which leads to a better agreement with experiment. We also discuss the quality of basis sets used and compare EOMCC excitation energies with excitation energies obtained with other methods. In particular, we demonstrate that for GFP and FBP Sadlej's TZP and cc-pVTZ basis sets lead to a similar quality of the EOMCC results. The performance of the CR-EOMCCSD(T) implementation is discussed from the point of view of timings of iterative parts and scalability of the most expensive, N(7), part of the calculation. In the latter case the scalability across 34 008 processors is reported. C1 [Kowalski, Karol; Govind, Niranjan] Pacific NW Natl Lab, William R Wiley Environm Mol Sci Lab, Richland, WA 99352 USA. [Krishnamoorthy, Sriram; Villa, Oreste] Pacific NW Natl Lab, Computat Sci & Math Div, Richland, WA 99352 USA. [Hammond, Jeff R.] Argonne Natl Lab, Leadership Comp Facil, Argonne, IL 60439 USA. RP Kowalski, K (reprint author), Pacific NW Natl Lab, William R Wiley Environm Mol Sci Lab, POB 999, Richland, WA 99352 USA. EM karol.kowalski@pnl.gov RI Govind, Niranjan/D-1368-2011; Hammond, Jeff/G-8607-2013 OI Hammond, Jeff/0000-0003-3181-8190 FU Extreme Scale Computing Initiative; Laboratory Directed Research and Development Program; Department of Energy's Office of Biological and Environmental Research; U. S. Department of Energy by the Battelle Memorial Institute [DE-AC06-76RLO-1830, DE-AC02-05CH11231] FX The work related to the development of the CR-EOMCCSd (t) approaches (K.K.) and development of new parallel tools (S.K. and O.V.) was supported by the Extreme Scale Computing Initiative, a Laboratory Directed Research and Development Program at Pacific Northwest National Laboratory. Most of the calculations have been performed using EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at the Pacific Northwest National Laboratory. The Pacific Northwest National Laboratory is operated for the U. S. Department of Energy by the Battelle Memorial Institute under Contract No. DE-AC06-76RLO-1830. The scalability tests of the CR-EOMCCSD(T) implementation of NWCHEM have been performed on the Franklin Cray-XT4 computer system at the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U. S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 90 TC 38 Z9 38 U1 1 U2 26 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD APR 21 PY 2010 VL 132 IS 15 AR 154103 DI 10.1063/1.3385315 PG 11 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 587EE UT WOS:000276971500004 PM 20423164 ER PT J AU Liu, DJ Chen, HT Lin, VSY Evans, JW AF Liu, Da-Jiang Chen, Hung-Ting Lin, Victor S. -Y. Evans, J. W. TI Polymer length distributions for catalytic polymerization within mesoporous materials: Non-Markovian behavior associated with partial extrusion SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article DE catalysis; extrusion; lattice theory; mesoporous materials; molecule-molecule reactions; Monte Carlo methods; polymerisation; polymers; reaction kinetics theory; reaction-diffusion systems ID RANDOM-WALKS; DIFFUSION; EQUATIONS; KINETICS AB We analyze a model for polymerization at catalytic sites distributed within parallel linear pores of a mesoporous material. Polymerization occurs primarily by reaction of monomers diffusing into the pores with the ends of polymers near the pore openings. Monomers and polymers undergo single-file diffusion within the pores. Model behavior, including the polymer length distribution, is determined by kinetic Monte Carlo simulation of a suitable atomistic-level lattice model. While the polymers remain within the pore, their length distribution during growth can be described qualitatively by a Markovian rate equation treatment. However, once they become partially extruded, the distribution is shown to exhibit non-Markovian scaling behavior. This feature is attributed to the long-tail in the "return-time distribution" for the protruding end of the partially extruded polymer to return to the pore, such return being necessary for further reaction and growth. The detailed form of the scaled length distribution is elucidated by application of continuous-time random walk theory. C1 [Liu, Da-Jiang; Chen, Hung-Ting; Lin, Victor S. -Y.; Evans, J. W.] Iowa State Univ, Ames Lab, USDOE, Ames, IA 50011 USA. [Chen, Hung-Ting; Lin, Victor S. -Y.] Iowa State Univ, Dept Chem, Ames, IA 50011 USA. [Evans, J. W.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Evans, J. W.] Iowa State Univ, Dept Math, Ames, IA 50011 USA. RP Liu, DJ (reprint author), Iowa State Univ, Ames Lab, USDOE, Ames, IA 50011 USA. EM evans@ameslab.gov FU Division of Chemical Sciences; USDOE; Ames Laboratory PCTC; Chemical Physics projects FX This work was supported by the Division of Chemical Sciences (Basic Energy Sciences), USDOE. Theory development and modeling studies were supported through the Ames Laboratory PCTC and Chemical Physics projects, respectively. Ames Laboratory is operated for the USDOE by Iowa State University under Contract No. DE-AC02-07CH11358. NR 28 TC 4 Z9 4 U1 0 U2 4 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-9606 EI 1089-7690 J9 J CHEM PHYS JI J. Chem. Phys. PD APR 21 PY 2010 VL 132 IS 15 AR 154102 DI 10.1063/1.3361663 PG 11 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 587EE UT WOS:000276971500003 PM 20423163 ER PT J AU Pasqua, A Maibaum, L Oster, G Fletcher, DA Geissler, PL AF Pasqua, Andrea Maibaum, Lutz Oster, George Fletcher, Daniel A. Geissler, Phillip L. TI Large-scale simulations of fluctuating biological membranes SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article DE biomechanics; biomembranes; elasticity; hydrophobicity; lipid bilayers; physiological models ID LIPID-BILAYERS; MULTISCALE SIMULATION; MODEL; MECHANICS; INSIGHTS; LENGTH AB We present a simple, and physically motivated, coarse-grained model of a lipid bilayer, suited for micron scale computer simulations. Each approximate to 25 nm(2) patch of bilayer is represented by a spherical particle. Mimicking forces of hydrophobic association, multiparticle interactions suppress the exposure of each sphere's equator to its implicit solvent surroundings. The requirement of high equatorial density stabilizes two-dimensional structures without necessitating crystalline order, allowing us to match both the elasticity and fluidity of natural lipid membranes. We illustrate the model's versatility and realism by characterizing a membrane's response to a prodding nanorod. C1 [Pasqua, Andrea; Maibaum, Lutz; Geissler, Phillip L.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Maibaum, Lutz; Geissler, Phillip L.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Oster, George] Univ Calif Berkeley, Dept Mol & Cellular Biol, Berkeley, CA 94720 USA. [Fletcher, Daniel A.] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA. [Fletcher, Daniel A.; Geissler, Phillip L.] Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Pasqua, A (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM maibaum@cal.berkeley.edu FU U.S. Department of Energy [DE-AC02-05CH11231] FX We thank Anthony Maggs for helpful discussions of the work presented in Ref. 10. This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. A.P. and L.M. contributed equally to this work. NR 33 TC 7 Z9 7 U1 0 U2 15 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD APR 21 PY 2010 VL 132 IS 15 AR 154107 DI 10.1063/1.3382349 PG 6 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 587EE UT WOS:000276971500008 PM 20423168 ER PT J AU Opachich, YP Comin, A Bartelt, AF Young, AT Scholl, A Feng, J Schmalhorst, J Shin, HJ Engelhorn, K Risbud, SH Reiss, G Padmore, HA AF Opachich, Y. P. Comin, A. Bartelt, A. F. Young, A. T. Scholl, A. Feng, J. Schmalhorst, J. Shin, H. J. Engelhorn, K. Risbud, S. H. Reiss, G. Padmore, H. A. TI Time-resolved demagnetization of Co2MnSi observed using x-ray magnetic circular dichroism and an ultrafast streak camera SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article ID SPIN DYNAMICS; ELECTRON; NICKEL; FERROMAGNETS; BEHAVIOR AB The demagnetization dynamics of the Heusler alloy Co2MnSi was studied using picosecond time-resolved x-ray magnetic circular dichroism. The sample was excited using femtosecond laser pulses. In contrast to the sub-picosecond demagnetization of the metal ferromagnet Ni, substantially slower demagnetization with a time constant of 3.5 +/- 0.5 ps was measured. This could be explained by a spin-dependent band gap inhibiting the spin-flip scattering of hot electrons in Co2MnSi, which is predicted to be half-metallic. A universal demagnetization time constant was measured across a range of pump power levels. C1 [Opachich, Y. P.; Young, A. T.; Scholl, A.; Feng, J.; Engelhorn, K.; Padmore, H. A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Opachich, Y. P.; Risbud, S. H.] Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA. [Comin, A.; Reiss, G.] Italian Inst Technol, I-16163 Genoa, GE, Italy. [Bartelt, A. F.] Helmholtz Ctr Berlin Mat & Energy, Dept Mat Photovolta, D-14109 Berlin, Germany. [Schmalhorst, J.] Univ Bielefeld, Dept Phys, D-33501 Bielefeld, Germany. [Shin, H. J.] Pohang Univ Sci & Technol, Pohang Accelerator Lab, Kyungbuk 790784, South Korea. RP Opachich, YP (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. EM YPOpachich@gmail.com RI Schmalhorst, Jan/E-9951-2011; Comin, Alberto/A-3002-2011; Reiss, Gunter/A-3423-2010; Scholl, Andreas/K-4876-2012 OI Comin, Alberto/0000-0001-8744-3944; Reiss, Gunter/0000-0002-0918-5940; FU Office of Science, Office of Basic Energy Sciences, of the US Department of Energy [DE-AC02-05CH11231]; Department of Education FX This work was supported by the director, Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under contract No. DE-AC02-05CH11231 a Laboratory Directed Research and Development Program. This research also constitutes part of a PhD dissertation submitted by Y P Opachich to the University of California at Davis with support from a GANN fellowship from the Department of Education. NR 29 TC 4 Z9 4 U1 1 U2 13 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD APR 21 PY 2010 VL 22 IS 15 AR 156003 DI 10.1088/0953-8984/22/15/156003 PG 5 WC Physics, Condensed Matter SC Physics GA 575VN UT WOS:000276097500019 PM 21389561 ER PT J AU Banerjee, S Szarko, JM Yuhas, BD Malliakas, CD Chen, LX Kanatzidis, MG AF Banerjee, Santanu Szarko, Jodi M. Yuhas, Benjamin D. Malliakas, Christos D. Chen, Lin X. Kanatzidis, Mercouri G. TI Room Temperature Light Emission from the Low-Dimensional Semiconductors AZrPS(6) (A = K, Rb, Cs) SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID 2ND-HARMONIC GENERATION RESPONSE; PHASE-CHANGE PROPERTIES; OPTICAL-PROPERTIES; EMITTING-DIODES; CRYSTAL-STRUCTURE; WHITE-LIGHT; THIOPHOSPHATES; SELENOPHOSPHATE; SN2P2S6; ANION AB The new semiconducting thiophosphate compounds KZrPS6, RbZrPS6, and CsZrPS6 exhibit red light emission at room temperature. The materials have longer photoluminescence lifetimes than most of the inorganic chalcogenide semiconductors. They can be solution processed into thin films for potential device fabrication. C1 [Banerjee, Santanu; Szarko, Jodi M.; Yuhas, Benjamin D.; Malliakas, Christos D.; Chen, Lin X.; Kanatzidis, Mercouri G.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. [Chen, Lin X.; Kanatzidis, Mercouri G.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Kanatzidis, MG (reprint author), Northwestern Univ, Dept Chem, 2145 Sheridan Rd, Evanston, IL 60208 USA. EM m-kanatzidis@northwestern.edu OI Szarko, Jodi/0000-0002-2181-9408 FU National Science Foundation (NSF)/Department of Energy (DOE) [CHE-0535644]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; NSF [DMR-0801855] FX ChemMatCARS Sector 15 is principally supported by the National Science Foundation (NSF)/Department of Energy (DOE) under Grant No. CHE-0535644. Use of the Advanced Photon Source at Argonne National Laboratory was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. Also support from the NSF (DMR-0801855) is gratefully acknowledged. NR 66 TC 20 Z9 20 U1 3 U2 16 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD APR 21 PY 2010 VL 132 IS 15 BP 5348 EP + DI 10.1021/ja1004653 PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA 585AX UT WOS:000276797800011 PM 20349915 ER PT J AU Ronzhin, A Albrow, M Byrum, K Demarteau, M Los, S May, E Ramberg, E Va'vra, J Zatserklyaniy, A AF Ronzhin, A. Albrow, M. Byrum, K. Demarteau, M. Los, S. May, E. Ramberg, E. Va'vra, J. Zatserklyaniy, A. TI Tests of timing properties of silicon photomultipliers SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE SiPm; Photodetectors; TOF AB Timing measurements of Silicon Photomultipliers (SiPM) [1,2] at the picosecond level were performed at Fermilab. The core timing resolution of the electronic measurement technique is approximately 2 ps. The single photoelectron time resolution (SPTR) was measured for the signals coming from the SiPM's. A SPTR of about one hundred picoseconds was obtained for SiPM's illuminated by laser pulses. The dependence of the SPTR on applied bias voltage and on the wavelength of the light was measured. A simple model is proposed to explain the difference in the SPTR for blue and red light. A time of flight system based on the SiPM's, with quartz Cherenkov radiators, was tested in a proton beam at Fermilab. The time resolution obtained is 35 ps per SiPM. Finally, requirements for the SiPM's temperature and bias voltage stability to maintain the time resolution are discussed. Published by Elsevier B.V. C1 [Ronzhin, A.; Albrow, M.; Demarteau, M.; Los, S.; Ramberg, E.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Byrum, K.; May, E.] Argonne Natl Lab, Argonne, IL 60637 USA. [Zatserklyaniy, A.] Univ Puerto Rico, Mayaguez, PR 00681 USA. [Va'vra, J.] SLAC Natl Accelerator Lab, Stanford, CA USA. RP Ronzhin, A (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. EM ronzhin@fnal.gov RI Rinaldi2, Carlos/D-4479-2011 FU University of Chicago FX Our thanks to Henry Frisch of University of Chicago, for his long term support of this work and to Hogan Nguyen of Fermilab for technical support. NR 8 TC 24 Z9 24 U1 0 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD APR 21 PY 2010 VL 616 IS 1 BP 38 EP 44 DI 10.1016/j.nima.2010.02.072 PG 7 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 596SR UT WOS:000277706200005 ER PT J AU Bennett, DP Rhie, SH Nikolaev, S Gaudi, BS Udalski, A Gould, A Christie, GW Maoz, D Dong, S McCormick, J Szymanski, MK Tristram, PJ Macintosh, B Cook, KH Kubiak, M Pietrzynski, G Soszynski, I Szewczyk, O Ulaczyk, K Wyrzykowski, L DePoy, DL Han, C Kaspi, S Lee, CU Mallia, F Natusch, T Park, BG Pogge, RW Polishook, D Abe, F Bond, IA Botzler, CS Fukui, A Hearnshaw, JB Itow, Y Kamiya, K Korpela, AV Kilmartin, PM Lin, W Ling, J Masuda, K Matsubara, Y Motomura, M Muraki, Y Nakamura, S Okumura, T Ohnishi, K Perrott, YC Rattenbury, NJ Sako, T Saito, T Sato, S Skuljan, L Sullivan, DJ Sumi, T Sweatman, WL Yock, PCM Albrow, M Allan, A Beaulieu, JP Bramich, DM Burgdorf, MJ Coutures, C Dominik, M Dieters, S Fouque, P Greenhill, J Horne, K Snodgrass, C Steele, I Tsapras, Y Chaboyer, B Crocker, A Frank, S AF Bennett, D. P. Rhie, S. H. Nikolaev, S. Gaudi, B. S. Udalski, A. Gould, A. Christie, G. W. Maoz, D. Dong, S. McCormick, J. Szymanski, M. K. Tristram, P. J. Macintosh, B. Cook, K. H. Kubiak, M. Pietrzynski, G. Soszynski, I. Szewczyk, O. Ulaczyk, K. Wyrzykowski, L. DePoy, D. L. Han, C. Kaspi, S. Lee, C-U. Mallia, F. Natusch, T. Park, B-G. Pogge, R. W. Polishook, D. Abe, F. Bond, I. A. Botzler, C. S. Fukui, A. Hearnshaw, J. B. Itow, Y. Kamiya, K. Korpela, A. V. Kilmartin, P. M. Lin, W. Ling, J. Masuda, K. Matsubara, Y. Motomura, M. Muraki, Y. Nakamura, S. Okumura, T. Ohnishi, K. Perrott, Y. C. Rattenbury, N. J. Sako, T. Saito, To. Sato, S. Skuljan, L. Sullivan, D. J. Sumi, T. Sweatman, W. L. Yock, P. C. M. Albrow, M. Allan, A. Beaulieu, J-P. Bramich, D. M. Burgdorf, M. J. Coutures, C. Dominik, M. Dieters, S. Fouque, P. Greenhill, J. Horne, K. Snodgrass, C. Steele, I. Tsapras, Y. Chaboyer, B. Crocker, A. Frank, S. CA OGLE Collaboration FUN Collaboration MOA Collaboration PLANET Collaboration RoboNet Collaboration TI MASSES AND ORBITAL CONSTRAINTS FOR THE OGLE-2006-BLG-109Lb,c JUPITER/SATURN ANALOG PLANETARY SYSTEM SO ASTROPHYSICAL JOURNAL LA English DT Article DE gravitational lensing: micro; planetary systems ID GRAVITATIONAL LENSING EXPERIMENT; SURFACE BRIGHTNESS RELATIONS; LIMB-DARKENING COEFFICIENTS; M-CIRCLE-DOT; GALACTIC BULGE; GIANT PLANETS; LIGHT CURVES; DWARF STARS; SNOW LINE; EVENT MOA-2007-BLG-192 AB We present a new analysis of the Jupiter+Saturn analog system, OGLE-2006-BLG-109Lb,c, which was the first double planet system discovered with the gravitational microlensing method. This is the only multi-planet system discovered by any method with measured masses for the star and both planets. In addition to the signatures of two planets, this event also exhibits a microlensing parallax signature and finite source effects that provide a direct measure of the masses of the star and planets, and the expected brightness of the host star is confirmed by Keck AO imaging, yielding masses of M-* = 0.51(-0.04)(+0.05) M-circle dot, M-b = 231 +/- 19 M-circle plus, and M-c = 86 +/- 7 M-circle plus. The Saturn-analog planet in this system had a planetary light-curve deviation that lasted for 11 days, and as a result, the effects of the orbital motion are visible in the microlensing light curve. We find that four of the six orbital parameters are tightly constrained and that a fifth parameter, the orbital acceleration, is weakly constrained. No orbital information is available for the Jupiter-analog planet, but its presence helps to constrain the orbital motion of the Saturn-analog planet. Assuming co-planar orbits, we find an orbital eccentricity of epsilon = 0.15(-0.10) (+0.17) and an orbital inclination of i = 64 degrees(+ 4 degrees)(-7 degrees) The 95% confidence level lower limit on the inclination of i > 49 degrees implies that this planetary system can be detected and studied via radial velocity measurements using a telescope of greater than or similar to 30 m aperture. C1 [Bennett, D. P.; Rhie, S. H.] Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA. [Nikolaev, S.; Macintosh, B.; Cook, K. H.] Lawrence Livermore Natl Lab, IGPP, Livermore, CA 94550 USA. [Gaudi, B. S.; Gould, A.; Dong, S.; Pogge, R. W.; Frank, S.] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. [Udalski, A.; Szymanski, M. K.; Kubiak, M.; Pietrzynski, G.; Soszynski, I.; Ulaczyk, K.; Wyrzykowski, L.] Univ Warsaw Observ, PL-00478 Warsaw, Poland. [Christie, G. W.] Auckland Observ, Auckland, New Zealand. [Maoz, D.; Kaspi, S.; Polishook, D.] Tel Aviv Univ, Sackler Fac Exact Sci, Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [McCormick, J.] Farm Cove Observ, Auckland 1706, New Zealand. [Tristram, P. J.; Kilmartin, P. M.] Mt John Observ, Lake Tekapo 8770, New Zealand. [Pietrzynski, G.; Szewczyk, O.] Univ Concepcion, Dept Fis, Concepcion, Chile. [Wyrzykowski, L.] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. [DePoy, D. L.] Texas A&M Univ, Dept Phys & Astron, College Stn, TX 77843 USA. [Han, C.] Chungbuk Natl Univ, Dept Phys, Chonju 371763, South Korea. [Lee, C-U.; Park, B-G.] Korea Astron & Space Sci Inst, Taejon 305348, South Korea. [Mallia, F.] Campo Catino Astron Observ, I-03016 Frosinone, Italy. [Natusch, T.] AUT Univ, Sch Comp & Math Sci, Auckland, New Zealand. [Abe, F.; Fukui, A.; Itow, Y.; Kamiya, K.; Masuda, K.; Matsubara, Y.; Motomura, M.; Nakamura, S.; Okumura, T.; Sako, T.; Sumi, T.] Nagoya Univ, Solar Terr Environm Lab, Nagoya, Aichi 4648601, Japan. [Bond, I. A.; Lin, W.; Ling, J.; Sweatman, W. L.] Massey Univ, Inst Informat & Math Sci, Auckland 1330, New Zealand. [Botzler, C. S.; Perrott, Y. C.; Rattenbury, N. J.; Skuljan, L.; Yock, P. C. M.] Univ Auckland, Dept Phys, Auckland 1001, New Zealand. [Hearnshaw, J. B.; Albrow, M.] Univ Canterbury, Dept Phys & Astron, Christchurch 8020, New Zealand. [Korpela, A. V.; Sullivan, D. J.] Victoria Univ, Sch Chem & Phys Sci, Wellington, New Zealand. [Muraki, Y.] Konan Univ, Dept Phys, Kobe, Hyogo 6588501+, Japan. [Ohnishi, K.] Nagano Natl Coll Technol, Nagano 3818550, Japan. [Saito, To.] Tokyo Metropolitan Coll Aeronaut, Tokyo 1168523, Japan. [Sato, S.] Nagoya Univ, Fac Sci, Dept Phys & Astrophys, Nagoya, Aichi 4648602, Japan. [Allan, A.] Univ Exeter, Sch Phys, Exeter EX4 4QL, Devon, England. [Beaulieu, J-P.; Coutures, C.; Dieters, S.] CNRS, Inst Astrophys Paris, F-75014 Paris, France. [Bramich, D. M.] European So Observ, D-85748 Garching, Germany. [Burgdorf, M. J.] NASA, Ames Res Ctr, SOFIA Sci Ctr, Moffett Field, CA 94035 USA. Univ Stuttgart, Deutsch SOFIA Inst, D-70569 Stuttgart, Germany. [Dominik, M.; Horne, K.] Univ St Andrews, Sch Phys & Astron, SUPA, St Andrews KY16 9SS, Fife, Scotland. [Fouque, P.] Univ Toulouse, LATT, CNRS, F-31400 Toulouse, France. [Greenhill, J.] Univ Tasmania, Sch Math & Phys, Hobart, Tas 7001, Australia. [Snodgrass, C.] European So Observ, Santiago 19, Chile. [Steele, I.] Liverpool John Moores Univ, Astrophys Res Inst, Birkenhead CH41 1LD, Merseyside, England. [Tsapras, Y.] Las Cumbres Observ, Goleta, CA 93117 USA. [Chaboyer, B.] Dartmouth Coll, Dept Phys & Astron, Hanover, NH 03755 USA. [Crocker, A.] Univ Massachusetts, Dept Astron, Amherst, MA 01002 USA. RP Bennett, DP (reprint author), Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA. EM bennett@nd.edu RI Gaudi, Bernard/I-7732-2012; Dong, Subo/J-7319-2012; Greenhill, John/C-8367-2013; OI Dominik, Martin/0000-0002-3202-0343; Chaboyer, Brian/0000-0003-3096-4161; Snodgrass, Colin/0000-0001-9328-2905 FU NSF [AST-0708890, AST-0757888]; NASA [NNX07AL71G, NNG04GL51G]; Polish MNiSW [N20303032/4275]; U.S. Department of Energy [DE-AC52-07NA27344]; JSPS [JSPS18749004]; National Research Fund of Korea [2009-0081561]; Korea Astronomy and Space Science Institute FX We thank Ian Thompson and Andy McWilliam for the reduction of the Magellan/MIKE spectrum of the lens star and its bright neighbor. D. P. B. was supported by grants AST-0708890 from the NSF and NNX07AL71G from NASA. The OGLE project is partially supported by the Polish MNiSW grant N20303032/4275 to AU. S.N.'s, B.M.'s and K.H.C.'s work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. T. S. was supported by grant JSPS18749004. C. H. was supported by the National Research Fund of Korea 2009-0081561. B-GP and C-UL were supported by Korea Astronomy and Space Science Institute. Work by A. G. and S. D. was supported in part by grant AST-0757888 from the NSF. Work by B. S. G., A. G., and R. W. P. was supported in part by grant NNG04GL51G from NASA. NR 99 TC 58 Z9 58 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD APR 20 PY 2010 VL 713 IS 2 BP 837 EP 855 DI 10.1088/0004-637X/713/2/837 PG 19 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 578XF UT WOS:000276329400010 ER PT J AU Veneziani, M Ade, PAR Bock, JJ Boscaleri, A Crill, BP de Bernardis, P De Gasperis, G de Oliveira-Costa, A De Troia, G Di Stefano, G Ganga, KM Jones, WC Kisner, TS Lange, AE MacTavish, CJ Masi, S Mauskopf, PD Montroy, TE Natoli, P Netterfield, CB Pascale, E Piacentini, F Pietrobon, D Polenta, G Ricciardi, S Romeo, G Ruhl, JE AF Veneziani, M. Ade, P. A. R. Bock, J. J. Boscaleri, A. Crill, B. P. de Bernardis, P. De Gasperis, G. de Oliveira-Costa, A. De Troia, G. Di Stefano, G. Ganga, K. M. Jones, W. C. Kisner, T. S. Lange, A. E. MacTavish, C. J. Masi, S. Mauskopf, P. D. Montroy, T. E. Natoli, P. Netterfield, C. B. Pascale, E. Piacentini, F. Pietrobon, D. Polenta, G. Ricciardi, S. Romeo, G. Ruhl, J. E. TI PROPERTIES OF GALACTIC CIRRUS CLOUDS OBSERVED BY BOOMERANG SO ASTROPHYSICAL JOURNAL LA English DT Article DE cosmology: observations; ISM: clouds; radio continuum: ISM; submillimeter: ISM ID SENSITIVITY HI SURVEY; FINAL DATA RELEASE; 2003 FLIGHT; DUST EMISSION; POWER SPECTRUM; ANISOTROPY; MAPS; COBE; SKY; RADIATION AB The physical properties of galactic cirrus emission are not well characterized. BOOMERANG is a balloon-borne experiment designed to study the cosmic microwave background at high angular resolution in the millimeter range. The BOOMERANG 245 and 345 GHz channels are sensitive to interstellar signals, in a spectral range intermediate between FIR and microwave frequencies. We look for physical characteristics of cirrus structures in a region at high galactic latitudes (b similar to -40 degrees) where BOOMERANG performed its deepest integration, combining the BOOMERANG data with other available data sets at different wavelengths. We have detected eight emission patches in the 345 GHz map, consistent with cirrus dust in the Infrared Astronomical Satellite maps. The analysis technique we have developed allows us to identify the location and the shape of cirrus clouds, and to extract the flux from observations with different instruments at different wavelengths and angular resolutions. We study the integrated flux emitted from these cirrus clouds using data from Infrared Astronomical Satellite (IRAS), DIRBE, BOOMERANG and Wilkinson Microwave Anisotropy Probe in the frequency range 23-3000 GHz (13 mm-100 mu m wavelength). We fit the measured spectral energy distributions with a combination of a gray body and a power-law spectra considering two models for the thermal emission. The temperature of the thermal dust component varies in the 7-20 K range and its emissivity spectral index is in the 1-5 range. We identified a physical relation between temperature and spectral index as had been proposed in previous works. This technique can be proficiently used for the forthcoming Planck and Herschel missions data. C1 [Veneziani, M.; de Bernardis, P.; Masi, S.; Polenta, G.; Ricciardi, S.] Univ Roma La Sapienza, Dipartimento Fis, Rome, Italy. [Veneziani, M.; Ganga, K. M.] Univ Paris Diderot, APC, F-75013 Paris, France. [Ade, P. A. R.; Mauskopf, P. D.] Cardiff Univ, Dept Phys & Astron, Cardiff, S Glam, Wales. [Bock, J. J.; Crill, B. P.; Lange, A. E.] Jet Prop Lab, Pasadena, CA 91109 USA. [Bock, J. J.; Crill, B. P.] CALTECH, Pasadena, CA 91125 USA. [Boscaleri, A.] CNR, IFAC, I-50127 Florence, Italy. [De Gasperis, G.; De Troia, G.; Natoli, P.; Pietrobon, D.] Univ Roma Tor Vergata, Dipartimento Fis, I-00173 Rome, Italy. [de Oliveira-Costa, A.] MIT, Dept Phys, Cambridge, MA 02139 USA. [Di Stefano, G.; Romeo, G.] Ist Nazl Geofis & Vulcanol, I-00143 Rome, Italy. [Jones, W. C.] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. [Kisner, T. S.; Montroy, T. E.; Ruhl, J. E.] Case Western Reserve Univ, Cleveland, OH 44106 USA. [MacTavish, C. J.] Univ London Imperial Coll Sci Technol & Med, Astrophys Grp, London, England. [Netterfield, C. B.; Pascale, E.] Univ Toronto, Dept Phys, Toronto, ON, Canada. [Pietrobon, D.] Univ Portsmouth, Inst Cosmol & Gravitat, Portsmouth PO1 2UP, Hants, England. [Polenta, G.] ESRIN, ASI Sci Data Ctr, I-00044 Frascati, Italy. [Polenta, G.] Osserv Astron Roma, INAF, I-00040 Monte Porzio Catone, Italy. [Ricciardi, S.] LBNL, Computat Res Div, Berkeley, CA 94720 USA. RP Veneziani, M (reprint author), Univ Roma La Sapienza, Dipartimento Fis, Rome, Italy. EM marcella.veneziani@roma1.infn.it RI de Gasperis, Giancarlo/C-8534-2012; Piacentini, Francesco/E-7234-2010; OI de Gasperis, Giancarlo/0000-0003-2899-2171; Piacentini, Francesco/0000-0002-5444-9327; Polenta, Gianluca/0000-0003-4067-9196; Masi, Silvia/0000-0001-5105-1439; Ricciardi, Sara/0000-0002-3807-4043; de Bernardis, Paolo/0000-0001-6547-6446; ROMEO, Giovanni/0000-0002-5535-7803 FU Faculty of the European Space Astronomy Center (ESAC-ESA); Italian Space Agency [I/038/08/0] FX The authors acknowledge Jean-Philippe Bernard, Robert Crittenden, Alessandro Melchiorri and Max Tegmark for useful discussions. M. V. acknowledges support from the Faculty of the European Space Astronomy Center (ESAC-ESA). This activity has been supported by Italian Space Agency contracts COFIS, BOOMERANG and HiGal (I/038/08/0). We are grateful to the referee for helpful comments. NR 39 TC 50 Z9 50 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD APR 20 PY 2010 VL 713 IS 2 BP 959 EP 969 DI 10.1088/0004-637X/713/2/959 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 578XF UT WOS:000276329400021 ER PT J AU Dilday, B Smith, M Bassett, B Becker, A Bender, R Castander, F Cinabro, D Filippenko, AV Frieman, JA Galbany, L Garnavich, PM Goobar, A Hopp, U Ihara, Y Jha, SW Kessler, R Lampeitl, H Marriner, J Miquel, R Molla, M Nichol, RC Nordin, J Riess, AG Sako, M Schneider, DP Sollerman, J Wheeler, JC Ostman, L Bizyaev, D Brewington, H Malanushenko, E Malanushenko, V Oravetz, D Pan, K Simmons, A Snedden, S AF Dilday, Benjamin Smith, Mathew Bassett, Bruce Becker, Andrew Bender, Ralf Castander, Francisco Cinabro, David Filippenko, Alexei V. Frieman, Joshua A. Galbany, Lluis Garnavich, Peter M. Goobar, Ariel Hopp, Ulrich Ihara, Yutaka Jha, Saurabh W. Kessler, Richard Lampeitl, Hubert Marriner, John Miquel, Ramon Molla, Mercedes Nichol, Robert C. Nordin, Jakob Riess, Adam G. Sako, Masao Schneider, Donald P. Sollerman, Jesper Wheeler, J. Craig Ostman, Linda Bizyaev, Dmitry Brewington, Howard Malanushenko, Elena Malanushenko, Viktor Oravetz, Dan Pan, Kaike Simmons, Audrey Snedden, Stephanie TI MEASUREMENTS OF THE RATE OF TYPE Ia SUPERNOVAE AT REDSHIFT less than or similar to 0.3 FROM THE SLOAN DIGITAL SKY SURVEY II SUPERNOVA SURVEY SO ASTROPHYSICAL JOURNAL LA English DT Article DE supernovae: general ID HUBBLE-SPACE-TELESCOPE; ABSOLUTE MAGNITUDE DISTRIBUTIONS; DARK ENERGY; STAR-FORMATION; LEGACY SURVEY; LIGHT CURVES; CONSTRAINTS; SYSTEM; DISCOVERIES; PHOTOMETRY AB We present ameasurement of the volumetric Type Ia supernova (SN Ia) rate based on data from the Sloan Digital Sky Survey II (SDSS-II) Supernova Survey. The adopted sample of supernovae (SNe) includes 516 SNe Ia at redshift z less than or similar to 0.3, of which 270(52%) are spectroscopically identified as SNe Ia. The remaining 246 SNe Ia were identified through their light curves; 113 of these objects have spectroscopic redshifts from spectra of their host galaxy, and 133 have photometric redshifts estimated from the SN light curves. Based on consideration of 87 spectroscopically confirmed non-Ia SNe discovered by the SDSS-II SN Survey, we estimate that 2.04+(1.61%)(-0.95) -0.95% of the photometric SNe Ia may be misidentified. The sample of SNe Ia used in this measurement represents an order of magnitude increase in the statistics for SN Ia rate measurements in the redshift range covered by the SDSS-II Supernova Survey. If we assume an SN Ia rate that is constant at low redshift (z < 0.15), then the SN observations can be used to infer a value of the SN rate of rV = (2.69(-0.30-0.01)(+ 0.34+ 0.21)) x 10(-5) SNe yr(-1) Mpc(-3) (H(0)/(70 km s(-1) Mpc(-1)))(3) at a mean redshift of similar to 0.12, based on 79 SNe Ia of which 72 are spectroscopically confirmed. However, the large sample of SNe Ia included in this study allows us to place constraints on the redshift dependence of the SN Ia rate based on the SDSS-II Supernova Survey data alone. Fitting a power-law model of the SN rate evolution, rV (z) = A(p) x((1 + z)/(1 + z(0)))(nu), over the redshift range 0.0 < z < 0.3 with z0 = 0.21, results in A(p) = (3.43+(+0.15)(-.015) SNe yr-1 Mpc-3 (H(0)/(70 km s(-1) Mpc(-1)))(3) and nu = 2.04(-0.89)(+0.89). C1 [Dilday, Benjamin; Jha, Saurabh W.] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA. [Dilday, Benjamin] Univ Chicago, Dept Phys, Chicago, IL 60637 USA. [Dilday, Benjamin; Kessler, Richard] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Smith, Mathew; Bassett, Bruce] Univ Cape Town, Dept Math & Appl Math, ZA-7701 Rondebosch, South Africa. [Smith, Mathew; Lampeitl, Hubert; Nichol, Robert C.] Univ Portsmouth, Inst Cosmol & Gravitat, Portsmouth PO1 2EG, Hants, England. [Bassett, Bruce] S African Astron Observ, ZA-7935 Cape Town, South Africa. [Becker, Andrew] Univ Washington, Dept Astron, Seattle, WA 98195 USA. [Bender, Ralf; Hopp, Ulrich] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Bender, Ralf; Hopp, Ulrich] Univ Sternwarte, D-81679 Munich, Germany. [Castander, Francisco] CSIC, IEEC, Inst Ciencies Espai, Barcelona, Spain. [Cinabro, David] Wayne State Univ, Dept Phys & Astron, Detroit, MI 48202 USA. [Filippenko, Alexei V.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Frieman, Joshua A.; Kessler, Richard] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [Frieman, Joshua A.; Marriner, John] Fermilab Natl Accelerator Lab, Ctr Astrophys, Batavia, IL 60510 USA. [Galbany, Lluis; Miquel, Ramon] Inst Fis Altes Energies, Barcelona, Spain. [Garnavich, Peter M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Goobar, Ariel; Sollerman, Jesper] Stockholm Univ, Dept Astron, Oskar Klein Ctr, SE-10691 Stockholm, Sweden. [Goobar, Ariel; Nordin, Jakob; Ostman, Linda] Stockholm Univ, Dept Phys, Albanova Univ Ctr, S-10691 Stockholm, Sweden. [Ihara, Yutaka] Univ Tokyo, Grad Sch Sci, Inst Astron, Tokyo 1810015, Japan. [Miquel, Ramon] Inst Catalana Rec & Estudis Avancats, Barcelona, Spain. [Molla, Mercedes] Ctr Invest Energet Medioambientales & Tecnol, Madrid, Spain. [Riess, Adam G.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Riess, Adam G.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Sako, Masao] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. [Schneider, Donald P.] Penn State Univ, Dept Phys & Astron, Davey Lab 525, University Pk, PA 16802 USA. [Sollerman, Jesper] Univ Copenhagen, Niels Bohr Inst, Dark Cosmol Ctr, DK-1168 Copenhagen, Denmark. [Wheeler, J. Craig] Univ Texas Austin, Dept Astron, Austin, TX 78712 USA. [Bizyaev, Dmitry; Brewington, Howard; Malanushenko, Elena; Malanushenko, Viktor; Oravetz, Dan; Pan, Kaike; Simmons, Audrey; Snedden, Stephanie] Apache Point Observ, Sunspot, NM 88349 USA. RP Dilday, B (reprint author), Rutgers State Univ, Dept Phys & Astron, 136 Frelinghuysen Rd, Piscataway, NJ 08854 USA. EM bdilday@physics.rutgers.edu RI Molla, Mercedes/I-3189-2015; Galbany, Lluis/A-8963-2017 OI Bassett, Bruce/0000-0001-7700-1069; Sollerman, Jesper/0000-0003-1546-6615; Molla, Mercedes/0000-0003-0817-581X; Galbany, Lluis/0000-0002-1296-6887 FU NSF [0114422, PHY-0551142, AST-0607485, AST-0908886]; Kavli Foundation; US Department of Energy [DE-FG02-08ER41562, DE-FG02-08ER41563] FX This work was supported in part by the Kavli Institute for Cosmological Physics at the University of Chicago through grants NSF PHY-0114422 and NSF PHY-0551142, and by an endowment from the Kavli Foundation and its founder Fred Kavli. This work was also partially supported by the US Department of Energy through grants DE-FG02-08ER41562 to Rutgers University (PI: S.W.J.) and DE-FG02-08ER41563 to U. C. Berkeley (PI: A.V.F.), as well as by NSF grants AST-0607485 and AST-0908886 (PI: A.V.F.). NR 64 TC 44 Z9 44 U1 0 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD APR 20 PY 2010 VL 713 IS 2 BP 1026 EP 1036 DI 10.1088/0004-637X/713/2/1026 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 578XF UT WOS:000276329400027 ER PT J AU Scalzo, RA Aldering, G Antilogus, P Aragon, C Bailey, S Baltay, C Bongard, S Buton, C Childress, M Chotard, N Copin, Y Fakhouri, HK Gal-Yam, A Gangler, E Hoyer, S Kasliwal, M Loken, S Nugent, P Pain, R Pecontal, E Pereira, R Perlmutter, S Rabinowitz, D Rau, A Rigaudier, G Runge, K Smadja, G Tao, C Thomas, RC Weaver, B Wu, C AF Scalzo, R. A. Aldering, G. Antilogus, P. Aragon, C. Bailey, S. Baltay, C. Bongard, S. Buton, C. Childress, M. Chotard, N. Copin, Y. Fakhouri, H. K. Gal-Yam, A. Gangler, E. Hoyer, S. Kasliwal, M. Loken, S. Nugent, P. Pain, R. Pecontal, E. Pereira, R. Perlmutter, S. Rabinowitz, D. Rau, A. Rigaudier, G. Runge, K. Smadja, G. Tao, C. Thomas, R. C. Weaver, B. Wu, C. TI NEARBY SUPERNOVA FACTORY OBSERVATIONS OF SN 2007if: FIRST TOTAL MASS MEASUREMENT OF A SUPER-CHANDRASEKHAR-MASS PROGENITOR SO ASTROPHYSICAL JOURNAL LA English DT Article DE supernovae: general; supernovae: individual (SNe 2003fg, 2006gz, 2007if, 2009dc); white dwarfs ID INTEGRAL-FIELD SPECTROGRAPH; IA SUPERNOVAE; WHITE-DWARFS; LIGHT CURVES; IMPROVED DISTANCES; STANDARD STARS; DECLINE RATE; RISE-TIME; EXPLOSION; MODELS AB We present photometric and spectroscopic observations of SN 2007if, an overluminous (M(V) =-20.4), red (B-V = 0.16 at B-band maximum), slow-rising (t(rise) = 24 days) type Ia supernova (SN Ia) in a very faint (M(g) = -14.10) host galaxy. A spectrum at 5 days past B-band maximum light is a direct match to the superChandrasekhar- mass candidate SN Ia 2003fg, showing Si II and C II at similar to 9000 km s(-1). A high signal-to-noise co-addition of the SN spectral time series reveals no Na I D absorption, suggesting negligible reddening in the host galaxy, and the late-time color evolution has the same slope as the Lira relation for normal SNe Ia. The ejecta appear to be well mixed, with no strong maximum in I band and a diversity of iron-peak lines appearing in near-maximum-light spectra. SN2007if also displays a plateau in the Si II velocity extending as late as +10 days, which we interpret as evidence for an overdense shell in the SN ejecta. We calculate the bolometric light curve of the SN and use it and the Si II velocity evolution to constrain the mass of the shell and the underlying SN ejecta, and demonstrate that SN 2007if is strongly inconsistent with a Chandrasekhar-mass scenario. Within the context of a "tamped detonation" model appropriate for double-degeneratemergers, and assuming no host extinction, we estimate the total mass of the system to be 2.4 +/- 0.2M circle dot, with 1.6 +/- 0.1M circle dot of (56)Ni and with 0.3-0.5 M circle dot in the form of an envelope of unburned carbon/oxygen. Our modeling demonstrates that the kinematics of shell entrainment provide a more efficient mechanism than incomplete nuclear burning for producing the low velocities typical of super-Chandrasekhar-mass SNe Ia. C1 [Scalzo, R. A.; Baltay, C.; Hoyer, S.; Rabinowitz, D.] Yale Univ, Dept Phys, New Haven, CT 06520 USA. [Aldering, G.; Aragon, C.; Childress, M.; Fakhouri, H. K.; Loken, S.; Perlmutter, S.; Runge, K.] Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA 94720 USA. [Antilogus, P.; Bailey, S.; Bongard, S.; Pain, R.; Wu, C.] Univ Paris 06, Univ Paris Diderot, CNRS, Lab Phys Nucl & Hautes Energies,IN2P3, F-75252 Paris, France. [Buton, C.; Chotard, N.; Copin, Y.; Gangler, E.; Pereira, R.; Smadja, G.] Univ Lyon, F-69622 Villeurbanne, France. [Buton, C.; Chotard, N.; Copin, Y.; Gangler, E.; Pereira, R.] Univ Lyon 1, F-69622 Villeurbanne, France. [Buton, C.; Chotard, N.; Copin, Y.; Gangler, E.; Pereira, R.] CNRS, IN2P3, Inst Phys Nucl Lyon, F-75700 Paris, France. [Gal-Yam, A.] Weizmann Inst Sci, Benoziyo Ctr Astrophys, IL-76100 Rehovot, Israel. [Hoyer, S.] Univ Chile, Dept Astron, Santiago, Chile. [Kasliwal, M.; Rau, A.] CALTECH, Dept Astron, Pasadena, CA 91125 USA. [Nugent, P.; Thomas, R. C.] Lawrence Berkeley Natl Lab, Computat Cosmol Ctr, Berkeley, CA 94720 USA. [Pecontal, E.; Rigaudier, G.] Ctr Rech Astron Lyon, F-69561 St Genis Laval, France. [Tao, C.] Ctr Phys Particules Marseille, F-13288 Marseille 09, France. [Weaver, B.] NYU, Ctr Cosmol & Particle Phys, New York, NY 10003 USA. RP Scalzo, RA (reprint author), Yale Univ, Dept Phys, New Haven, CT 06520 USA. EM richard.scalzo@yale.edu RI Copin, Yannick/B-4928-2015; Perlmutter, Saul/I-3505-2015; OI Copin, Yannick/0000-0002-5317-7518; Perlmutter, Saul/0000-0002-4436-4661; Scalzo, Richard/0000-0003-3740-1214 FU W. M. Keck Foundation; Office of Science; Office of High Energy Physics; U.S. Department of Energy [DE-AC02-05CH11231]; Gordon & Betty Moore Foundation; CNRS/IN2P3; CNRS/INSU; National Science foundation [0407297]; Henri Chretien International; American Astronomical Society; France-Berkeley Fund; Israeli Science Foundation; EU FX The authors are grateful to the technical and scientific staffs of the University of Hawaii 2.2 m telescope, the W. M. Keck Observatory, and Palomar Observatory, to the QUEST-II collaboration, and to HPWREN for their assistance in obtaining these data. Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation. The authors wish to recognize and acknowledge the very significant cultural role and reverence that the summit of Mauna Kea has always had within the indigenous Hawaiian community. We are most fortunate to have the opportunity to conduct observations from this mountain. This work was supported by the Director, Office of Science, Office of High Energy Physics, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231; by a grant from the Gordon & Betty Moore Foundation; and in France by support from CNRS/IN2P3, CNRS/INSU, and PNC. R. S. acknowledges support from National Science foundation grant 0407297. Y.C. acknowledges support from a Henri Chretien International Research Grant administrated by the American Astronomical Society, and from the France-Berkeley Fund. A.G.-Y. is supported by the Israeli Science Foundation, an EU Seventh Framework Programme Marie Curie IRG fellowship and the Benoziyo Center for Astrophysics, Minerva program, a research grant from the Peter and Patricia Gruber Awards, and theWilliam Z. and Eda Bess Novick New Scientists Fund at the Weizmann Institute. This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Director, Office of Science, Office of Advanced Scientific Computing Research, of the U. S. Department of Energy under Contract No. DE-AC02-05CH11231. We thank them for generous allocation of storage and computing time. HPWREN is funded by National Science Foundation Grant Number ANI-0087344, and the University of California, San Diego. IRAF is distributed by the National Optical Astronomy Observatories, which are operated by the Association of Universities for Research in Astronomy, Inc., under cooperative agreement with the National Science Foundation. The spectra of SN 1999ee were obtained through the SUSPECT Supernova Spectrum Archive, an online database maintained at the University of Oklahoma, Norman. We thank Andy Howell for providing photometry and the near-maximum spectrum of SN 2003fg, and Masayuki Yamanaka for providing Si II and C II velocity measurements derived from SN 2009dc spectra. The SMARTS 1.3 m observing queue receives support from NSF grant AST-0707627. We thank John Holtzman and Jon Cough for their assistance in photometrically monitoring our SN candidates with the NMSU 1 m telescope. We thank Dan Birchall for his assistance in collecting data with SNIFS, and for his helpful commentary on, and proofreading of, the manuscript. We NR 85 TC 145 Z9 146 U1 1 U2 8 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD APR 20 PY 2010 VL 713 IS 2 BP 1073 EP 1094 DI 10.1088/0004-637X/713/2/1073 PG 22 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 578XF UT WOS:000276329400031 ER PT J AU Guzik, JA Mussack, K AF Guzik, Joyce Ann Mussack, Katie TI EXPLORING MASS LOSS, LOW-Z ACCRETION, AND CONVECTIVE OVERSHOOT IN SOLAR MODELS TO MITIGATE THE SOLAR ABUNDANCE PROBLEM SO ASTROPHYSICAL JOURNAL LA English DT Article DE Sun: abundances; Sun: evolution; Sun: helioseismology; Sun: interior; Sun: oscillations ID EQUATION-OF-STATE; DEGREE P-MODES; ELEMENT DIFFUSION; CHEMICAL-COMPOSITION; MAIN-SEQUENCE; REVISED ABUNDANCES; SEPARATION RATIOS; STELLAR EVOLUTION; HELIOSEISMOLOGY; OPACITIES AB Solar models using the new lower abundances of Asplund et al. or Caffau et al. do not agree as well with helioseismic inferences as models that use the higher Grevesse & Noels or Grevesse & Sauval abundances. Adopting the new abundances leads to models with sound-speed discrepancies of up to 1.4% below the base of the convection zone (CZ) compared to discrepancies of less than 0.4% with the old abundances; a CZ that is too shallow; and a CZ helium abundance that is too low. Here we briefly review recent attempts to restore agreement, and we evaluate three changes to the models: early mass loss, accretion of low-Z material, and convective overshoot. One goal of these attempts is to explore models that could preserve the structure in the interior obtained with the old abundances while accommodating the new abundances at the surface. Although the mass-losing and accretion models show some improvement in agreement with seismic constraints, a satisfactory resolution to the solar abundance problem remains to be found. In addition, we perform a preliminary analysis of models with the Caffau et al. abundances that shows that the sound-speed discrepancy is reduced to only about 0.6% at the CZ base, compared to 1.4% for the Asplund et al. abundances and 0.4% for the Grevesse & Noels abundances. Furthermore, including mass loss in models with the Caffau et al. abundances may improve sound-speed agreement and help resolve the solar lithium problem. C1 [Guzik, Joyce Ann; Mussack, Katie] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Guzik, JA (reprint author), Los Alamos Natl Lab, XTD-2,MS T-086, Los Alamos, NM 87545 USA. EM joy@lanl.gov NR 86 TC 54 Z9 54 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD APR 20 PY 2010 VL 713 IS 2 BP 1108 EP 1119 DI 10.1088/0004-637X/713/2/1108 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 578XF UT WOS:000276329400033 ER PT J AU Krumholz, MR Cunningham, AJ Klein, RI Mckee, CF AF Krumholz, Mark R. Cunningham, Andrew J. Klein, Richard I. McKee, Christopher F. TI RADIATION FEEDBACK, FRAGMENTATION, AND THE ENVIRONMENTAL DEPENDENCE OF THE INITIAL MASS FUNCTION SO ASTROPHYSICAL JOURNAL LA English DT Article DE ISM: clouds; radiative transfer; stars: formation; stars: luminosity function, mass function turbulence ID ADAPTIVE MESH REFINEMENT; ORION NEBULA CLUSTER; MOLECULAR CLOUD CORES; STAR-FORMATION RATES; FIELD STARS; HYDRODYNAMIC SIMULATIONS; TURBULENT FRAGMENTATION; PROTOSTELLAR CANDIDATES; SUBMILLIMETER CLUMPS; DECAYING TURBULENCE AB The fragmentation of star-forming interstellar clouds, and the resulting stellar initial mass function (IMF), is strongly affected by the temperature structure of the collapsing gas. Since radiation feedback from embedded stars can modify this as collapse proceeds, feedback plays an important role in determining the IMF. However, the effects and importance of radiative heating are likely to depend strongly on the surface density of the collapsing clouds, which determines both their effectiveness at trapping radiation and the accretion luminosities of the stars forming within them. In this paper, we report a suite of adaptive mesh refinement radiation-hydrodynamic simulations using the ORION code in which we isolate the effect of column density on fragmentation by following the collapse of clouds of varying column density while holding the mass, initial density and velocity structure, and initial virial ratio fixed. We find that radiation does not significantly modify the overall star formation rate or efficiency, but that it suppresses fragmentation more and more as cloud surface densities increase from those typical of low-mass star-forming regions like Taurus, through the typical surface density of massive star-forming clouds in the Galaxy, up to conditions found only in super-star clusters. In regions of low surface density, fragmentation during collapse leads to the formation of small clusters rather than individual massive star systems, greatly reducing the fraction of the stellar population with masses greater than or similar to 10M circle dot. Our simulations have important implications for the formation of massive stars and the universality of the IMF. C1 [Krumholz, Mark R.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Cunningham, Andrew J.; Klein, Richard I.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Klein, Richard I.; McKee, Christopher F.] Univ Calif Berkeley, Dept Astron & Astrophys, Berkeley, CA 94720 USA. [McKee, Christopher F.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. RP Krumholz, MR (reprint author), Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. EM krumholz@ucolick.org OI Krumholz, Mark/0000-0003-3893-854X FU Alfred P. Sloan Fellowship; NASA [NNX09AK31G]; National Science Foundation [AST-0807739, AST-0908553]; US Department of Energy [DE-AC52-07NA 27344]; National Science Foundation FX We thank N. J. Evans, C. Weidner, and an anonymous referee for helpful comments. Support for this work was provided by an Alfred P. Sloan Fellowship (M.R.K.); NASA through ATFP grant NNX09AK31G (R.I.K., C.F.M., and M.R.K.); NASA part of the Spitzer Theoretical Research Program, through a contract issued by the JPL (M.R.K.); the National Science Foundation through grants AST-0807739 (M.R.K.) and AST-0908553 (R.I.K. and C.F.M.); and the US Department of Energy at the Lawrence Livermore National Laboratory under contract DE-AC52-07NA 27344 (A.C. and R.I.K.). Support for computer simulations was provided by an LRAC grant from the National Science Foundation. NR 98 TC 82 Z9 84 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD APR 20 PY 2010 VL 713 IS 2 BP 1120 EP 1133 DI 10.1088/0004-637X/713/2/1120 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 578XF UT WOS:000276329400034 ER PT J AU Krot, AN Nagashima, K Ciesla, FJ Meyer, BS Hutcheon, ID Davis, AM Huss, GR Scott, ERD AF Krot, Alexander N. Nagashima, Kazuhide Ciesla, Fred J. Meyer, Bradley S. Hutcheon, Ian D. Davis, Andrew M. Huss, Gary R. Scott, Edward R. D. TI OXYGEN ISOTOPIC COMPOSITION OF THE SUN AND MEAN OXYGEN ISOTOPIC COMPOSITION OF THE PROTOSOLAR SILICATE DUST: EVIDENCE FROM REFRACTORY INCLUSIONS SO ASTROPHYSICAL JOURNAL LA English DT Article DE comets: general; dust, extinction; Earth; ISM: abundances; meteorites, meteors, meteoroids; Sun: fundamental parameters ID EARLY SOLAR-SYSTEM; ALUMINUM-RICH INCLUSIONS; PROTOPLANETARY ACCRETION DISKS; CARBONACEOUS CHONDRITES; CRYSTALLINE SILICATES; CHONDRULE FORMATION; FERROMAGNESIAN CHONDRULES; INITIAL AL-26/AL-27; CHEMICAL EVOLUTION; CALCIUM-RICH AB Preliminary analysis of the oxygen isotopic composition of the solar wind recorded by the Genesis spacecraft suggests that the Sun is (16)O-rich compared to most chondrules, fine-grained chondrite matrices, and bulk compositions of chondrites, achondrites, and terrestrial planets (Delta(17)O=-26.5% +/- 5.6% and -33% +/- 8% (2 sigma) versus Delta(17)O similar to +/- 5%). The inferred (16)O-rich composition of the Sun is similar or slightly lighter than the (16)O-rich compositions of amoeboid olivine aggregates and typical calcium-aluminum-rich inclusions (CAIs) from primitive (unmetamorphosed) chondrites (Delta(17)O=-24%+/- 2%), which are believed to have condensed from and been melted in a gas of approximately solar composition (dust/ gas ratio similar to 0.01 by weight) within the first 0.1 Myr of the solar system formation. Based on solar system abundances, 26% of the solar system oxygen must be initially contained in dust and 74% in gas. Because solar oxygen is dominated by the gas component, these observations suggest that oxygen isotopic composition of the solar nebula gas was initially 16O-rich. Due to significant thermal processing of the protosolar molecular cloud silicate dust (primordial dust) in the solar nebula and its possible isotope exchange with the isotopically evolved solar nebula gas, the mean oxygen isotopic composition of the primordial dust is not known. In CO self-shielding models, it is assumed that primordial dust and solar nebula gas had initially identical, (16)O-rich compositions, similar to that of the Sun (Delta(17)O similar to-25% or-35%), and solids subsequently evolved toward the terrestrial value (Delta(17)O=0). However, there is no clear evidence that the oxygen isotopic compositions of the solar system solids evolved in the direction of increasing Delta(17)O with time and no 16O-rich primordial dust have yet been discovered. Here we argue that the assumption of the CO self-shielding models that primordial dust and solar nebula gas had initially identical (16)O-rich compositions is incorrect. We show that igneous CAIs with highly fractionated oxygen isotopic compositions, fractionation and unidentified nuclear effects (FUN), and fractionation (F) CAIs, have Delta(17)O ranging from -0.5% to -24.8%. Within an individual FUN or F CAI, oxygen isotopic compositions of spinel, forsterite, and pyroxene define a mass-dependent fractionation trend with a constant Delta(17)O value. The degree of mass-dependent fractionation of these minerals correlates with the sequence of their crystallization from the host CAI melt. These observations and evaporation experiments on CAI-likemelts indicate that FUN and F CAIs formed by melting of solid precursors with diverse Delta(17)O values in vacuum (total pressure < 10(-6) atm). We interpret the observed range of Delta(17)O values among FUN and F CAIs as the result of varying degrees of equilibration between (16)O-poor dust and (16)O-rich nebular gas and suggest the former is characteristic of the primordial dust. The distinctly different oxygen isotopic compositions of the primordial solar nebula dust and gas could have resulted from Galactic chemical evolution or from pollution of the protosolar molecular cloud by a massive star (>50 circle dot) ejecta. The (16)O-depleted compositions of chondrules, fine-grained matrices, chondrites, and achondrites compared to the Sun's value eflect their formation in the protoplanetary disk regions with enhanced dust/ gas ratio (up to 10(5) x solar). C1 [Krot, Alexander N.; Nagashima, Kazuhide; Huss, Gary R.; Scott, Edward R. D.] Univ Hawaii Manoa, Sch Ocean & Earth Sci & Technol, Hawaii Inst Geophys & Planetol, Honolulu, HI 96822 USA. [Ciesla, Fred J.; Davis, Andrew M.] Univ Chicago, Dept Geophys Sci, Chicago, IL 60637 USA. [Meyer, Bradley S.] Clemson Univ, Dept Phys & Astron, Clemson, SC 29634 USA. [Hutcheon, Ian D.] Lawrence Livermore Natl Lab, GT Seaborg Inst, Livermore, CA 94551 USA. [Davis, Andrew M.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. RP Krot, AN (reprint author), Univ Hawaii Manoa, Sch Ocean & Earth Sci & Technol, Hawaii Inst Geophys & Planetol, Honolulu, HI 96822 USA. EM sasha@higp.hawaii.edu OI Davis, Andrew/0000-0001-7955-6236 FU UH NASA Astrobiology Institute; NASA [NNX08AH91G, NNX07AI81G, NNH04AB47I, NNX07AJ04G]; U.S. Department of Energy [DE-AC52-07NA27344] FX We thank M. Chaussidon, R. N. Clayton, E. Gaidos, T. R. Ireland, K. Liffman, J. R. Lyons, K. D. McKeegan, M. Ozima, M. H. Thiemens, Q.- Z. Yin, E. D. Young, and H. Yurimoto for fruitful conversations. This research has received support from the UH NASA Astrobiology Institute and NASA grants NNX08AH91G, NNX07AI81G (A. N. K.), NNH04AB47I (I.D.H.), and NNX07AJ04G (B. S. M.). Work performed under the auspices of the U. S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. This is Hawaii Institute of Geophysics and Planetology publication no. 1843 and School of Ocean and Earth Science and Technology publication no. 7950. NR 96 TC 53 Z9 53 U1 3 U2 17 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD APR 20 PY 2010 VL 713 IS 2 BP 1159 EP 1166 DI 10.1088/0004-637X/713/2/1159 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 578XF UT WOS:000276329400037 ER PT J AU Asztalos, S Nikolaev, S de Vries, W Olivier, S Cook, K Wang, L AF Asztalos, S. Nikolaev, S. de Vries, W. Olivier, S. Cook, K. Wang, L. TI LOWER BOUNDS ON PHOTOMETRIC REDSHIFT ERRORS FROM TYPE Ia SUPERNOVA TEMPLATES SO ASTROPHYSICAL JOURNAL LA English DT Article DE distance scale; methods: numerical ID K-CORRECTIONS; REQUIREMENTS AB Cosmology with Type Ia supernova heretofore has required extensive spectroscopic follow-up to establish an accurate redshift. Though this resource-intensive approach is tolerable at the present discovery rate, the next generation of ground-based all-sky survey instruments will render it unsustainable. Photometry-based redshift determination may be a viable alternative, though the technique introduces non-negligible errors that ultimately degrade the ability to discriminate between competing cosmologies. We present a strictly template-based photometric redshift estimator and compute redshift reconstruction errors in the presence of statistical errors. Under highly degraded photometric conditions corresponding to a statistical error sigma of 0.5, the residual redshift error is found to be 0.236 when assuming a nightly observing cadence and a single Large Synoptic Science Telescope (LSST) u-band filter. Utilizing all six LSST bandpass filters reduces the residual redshift error to 9.1 x 10(-3). Assuming a more optimistic statistical error sigma of 0.05, we derive residual redshift errors of 4.2 x 10(-4), 5.2x10(-4), 9.2x10(-4), and 1.8x10(-3) for observations occuring nightly, every 5th, 20th and 45th night, respectively, in each of the six LSST bandpass filters. Adopting an observing cadence in which photometry is acquired with all six filters every 5th night and a realistic supernova distribution, binned redshift errors are combined with photometric errors with a sigma of 0.17 and systematic errors with a sigma similar to 0.003 to derive joint errors (sigma(w), sigma(w')) of (0.012, 0.066), respectively, in (w, w') with 68% confidence using Fisher matrix formalism. Though highly idealized in the present context, the methodology is nonetheless quite relevant for the next generation of ground-based all-sky surveys. C1 [Asztalos, S.] XIA LLC, Hayward, CA 94554 USA. [Nikolaev, S.; de Vries, W.; Olivier, S.; Cook, K.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Wang, L.] Texas A&M, College Stn, TX 77843 USA. RP Asztalos, S (reprint author), XIA LLC, Hayward, CA 94554 USA. NR 24 TC 1 Z9 1 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD APR 20 PY 2010 VL 713 IS 2 BP 1167 EP 1173 DI 10.1088/0004-637X/713/2/1167 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 578XF UT WOS:000276329400038 ER PT J AU Endeve, E Cardall, CY Budiardja, RD Mezzacappa, A AF Endeve, Eirik Cardall, Christian Y. Budiardja, Reuben D. Mezzacappa, Anthony TI GENERATION OF MAGNETIC FIELDS BY THE STATIONARY ACCRETION SHOCK INSTABILITY SO ASTROPHYSICAL JOURNAL LA English DT Article DE magnetohydrodynamics (MHD); methods: numerical; stars: magnetic field; supernovae: general ID CORE-COLLAPSE SUPERNOVAE; APPROXIMATIVE NEUTRINO TRANSPORT; RELATIVISTIC SIMULATIONS; CONSERVATION-LAWS; MASSIVE STARS; EXPLOSIONS; CONVECTION; MECHANISM; EVOLUTION; SCHEMES AB We begin an exploration of the capacity of the stationary accretion shock instability (SASI) to generate magnetic fields by adding a weak, stationary, and radial (but bipolar) magnetic field, and in some cases rotation, to an initially spherically symmetric fluid configuration that models a stalled shock in the post-bounce supernova environment. In axisymmetric simulations, we find that cycles of latitudinal flows into and radial flows out of the polar regions amplify the field parallel to the symmetry axis, typically increasing the total magnetic energy by about 2 orders of magnitude. Non-axisymmetric calculations result in fundamentally different flows and a larger magnetic energy increase: shearing associated with the SASI spiral mode contributes to a widespread and turbulent field amplification mechanism, boosting the magnetic energy by almost 4 orders of magnitude (a result which remains very sensitive to the spatial resolution of the numerical simulations). While the SASI may contribute to neutron star magnetization, these simulations do not show qualitatively new features in the global evolution of the shock as a result of SASI-induced magnetic field amplification. C1 [Endeve, Eirik; Cardall, Christian Y.; Budiardja, Reuben D.; Mezzacappa, Anthony] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. [Endeve, Eirik; Cardall, Christian Y.; Budiardja, Reuben D.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Endeve, Eirik; Budiardja, Reuben D.] Oak Ridge Natl Lab, Joint Inst Heavy Ion Res, Oak Ridge, TN 37831 USA. RP Endeve, E (reprint author), Oak Ridge Natl Lab, Div Phys, POB 2008, Oak Ridge, TN 37831 USA. EM endevee@ornl.gov RI Mezzacappa, Anthony/B-3163-2017; OI Mezzacappa, Anthony/0000-0001-9816-9741; Endeve, Eirik/0000-0003-1251-9507 FU U.S. Department of Energy Office of Nuclear Physics; Office of Advanced Scientific Computing Research; NASA Astrophysics Theory and Fundamental Physics Program; NSF PetaApps Program FX This work was supported by the U.S. Department of Energy Office of Nuclear Physics and Office of Advanced Scientific Computing Research, and by grants from the NASA Astrophysics Theory and Fundamental Physics Program and the NSF PetaApps Program. The simulations were performed on the National Center for Computational Sciences (NCCS) Leadership Computing Facility under the Innovative and Novel Computational Impact on Theory and Experiment (INCITE) Program. We thank an anonymous referee for discerning comments that led to significant improvements of the manuscript. We acknowledge support from members of the NCCS, especially Bronson Messer and Ross Toedte. NR 54 TC 33 Z9 33 U1 0 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD APR 20 PY 2010 VL 713 IS 2 BP 1219 EP 1243 DI 10.1088/0004-637X/713/2/1219 PG 25 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 578XF UT WOS:000276329400043 ER PT J AU Lawrence, E Heitmann, K White, M Higdon, D Wagner, C Habib, S Williams, B AF Lawrence, Earl Heitmann, Katrin White, Martin Higdon, David Wagner, Christian Habib, Salman Williams, Brian TI THE COYOTE UNIVERSE. III. SIMULATION SUITE AND PRECISION EMULATOR FOR THE NONLINEAR MATTER POWER SPECTRUM SO ASTROPHYSICAL JOURNAL LA English DT Article DE large-scale structure of universe; methods: numerical; methods: statistical ID DENSITY-FLUCTUATIONS; HIGH-REDSHIFT; SUPERNOVAE; COSMOLOGY; EVOLUTION AB Many of the most exciting questions in astrophysics and cosmology, including the majority of observational probes of dark energy, rely on an understanding of the nonlinear regime of structure formation. In order to fully exploit the information available from this regime and to extract cosmological constraints, accurate theoretical predictions are needed. Currently, such predictions can only be obtained from costly, precision numerical simulations. This paper is the third in a series aimed at constructing an accurate calibration of the nonlinear mass power spectrum on Mpc scales for a wide range of currently viable cosmological models, including dark energy models with w not equal -1. The first two papers addressed the numerical challenges and the scheme by which an interpolator was built from a carefully chosen set of cosmological models. In this paper, we introduce the "Coyote Universe" simulation suite which comprises nearly 1000 N-body simulations at different force and mass resolutions, spanning 38 w CDM cosmologies. This large simulation suite enables us to construct a prediction scheme, or emulator, for the nonlinear matter power spectrum accurate at the percent level out to k similar or equal to 1 h Mpc(-1). We describe the construction of the emulator, explain the tests performed to ensure its accuracy, and discuss how the central ideas may be extended to a wider range of cosmological models and applications. A power spectrum emulator code is released publicly as part of this paper. C1 [Lawrence, Earl; Higdon, David; Williams, Brian] Los Alamos Natl Lab, CCS Div, Los Alamos, NM 87545 USA. [Heitmann, Katrin] Los Alamos Natl Lab, ISR Div, Los Alamos, NM 87545 USA. [White, Martin] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [White, Martin] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Wagner, Christian] AIP, D-14482 Potsdam, Germany. [Wagner, Christian] Univ Barcelona, ICC, E-08028 Barcelona, Spain. [Habib, Salman] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Lawrence, E (reprint author), Los Alamos Natl Lab, CCS Div, CCS 6, Los Alamos, NM 87545 USA. RI White, Martin/I-3880-2015; OI White, Martin/0000-0001-9912-5070; Williams, Brian/0000-0002-3465-4972 FU DOE [W-7405-ENG-36]; Los Alamos National Laboratory; NASA FX A special acknowledgment is due to supercomputing time awarded to us under the LANL Institutional Computing Initiative. Part of this research was supported by the DOE under contract W-7405-ENG-36 and by a DOE HEP Dark Energy R& D award. S. H., K. H., D. H., E. L., and C. W. acknowledge support from the LDRD program at Los Alamos National Laboratory. K. H. was supported in part by NASA. M. W. was supported in part by NASA and the DOE. We thank Dragan Huterer, Nikhil Padmanabhan, Adrian Pope, and Michael Schneider for useful discussions. We thank Volker Springel for making the N-body code GADGET-2 publicly available. NR 26 TC 93 Z9 93 U1 0 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD APR 20 PY 2010 VL 713 IS 2 BP 1322 EP 1331 DI 10.1088/0004-637X/713/2/1322 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 578XF UT WOS:000276329400052 ER PT J AU Chaplin, WJ Appourchaux, T Elsworth, Y Garcia, RA Houdek, G Karoff, C Metcalfe, TS Molenda-Zakowicz, J Monteiro, MJPFG Thompson, MJ Brown, TM Christensen-Dalsgaard, J Gilliland, RL Kjeldsen, H Borucki, WJ Koch, D Jenkins, JM Ballot, J Basu, S Bazot, M Bedding, TR Benomar, O Bonanno, A Brandao, IM Bruntt, H Campante, TL Creevey, OL Di Mauro, MP Dogan, G Dreizler, S Eggenberger, P Esch, L Fletcher, ST Frandsen, S Gai, N Gaulme, P Handberg, R Hekker, S Howe, R Huber, D Korzennik, SG Lebrun, JC Leccia, S Martic, M Mathur, S Mosser, B New, R Quirion, PO Regulo, C Roxburgh, IW Salabert, D Schou, J Sousa, SG Stello, D Verner, GA Arentoft, T Barban, C Belkacem, K Benatti, S Biazzo, K Boumier, P Bradley, PA Broomhall, AM Buzasi, DL Claudi, RU Cunha, MS D'Antona, F Deheuvels, S Derekas, A Hernandez, AG Giampapa, MS Goupil, MJ Gruberbauer, M Guzik, JA Hale, SJ Ireland, MJ Kiss, LL Kitiashvili, IN Kolenberg, K Korhonen, H Kosovichev, AG Kupka, F Lebreton, Y Leroy, B Ludwig, HG Mathis, S Michel, E Miglio, A Montalban, J Moya, A Noels, A Noyes, RW Palle, PL Piau, L Preston, HL Cortes, TR Roth, M Sato, KH Schmitt, J Serenelli, AM Aguirre, VS Stevens, IR Suarez, JC Suran, MD Trampedach, R Turck-Chieze, S Uytterhoeven, K Ventura, R Wilson, PA AF Chaplin, W. J. Appourchaux, T. Elsworth, Y. Garcia, R. A. Houdek, G. Karoff, C. Metcalfe, T. S. Molenda-Zakowicz, J. Monteiro, M. J. P. F. G. Thompson, M. J. Brown, T. M. Christensen-Dalsgaard, J. Gilliland, R. L. Kjeldsen, H. Borucki, W. J. Koch, D. Jenkins, J. M. Ballot, J. Basu, S. Bazot, M. Bedding, T. R. Benomar, O. Bonanno, A. Brandao, I. M. Bruntt, H. Campante, T. L. Creevey, O. L. Di Mauro, M. P. Dogan, G. Dreizler, S. Eggenberger, P. Esch, L. Fletcher, S. T. Frandsen, S. Gai, N. Gaulme, P. Handberg, R. Hekker, S. Howe, R. Huber, D. Korzennik, S. G. Lebrun, J. C. Leccia, S. Martic, M. Mathur, S. Mosser, B. New, R. Quirion, P. -O. Regulo, C. Roxburgh, I. W. Salabert, D. Schou, J. Sousa, S. G. Stello, D. Verner, G. A. Arentoft, T. Barban, C. Belkacem, K. Benatti, S. Biazzo, K. Boumier, P. Bradley, P. A. Broomhall, A. -M. Buzasi, D. L. Claudi, R. U. Cunha, M. S. D'Antona, F. Deheuvels, S. Derekas, A. Garcia Hernandez, A. Giampapa, M. S. Goupil, M. J. Gruberbauer, M. Guzik, J. A. Hale, S. J. Ireland, M. J. Kiss, L. L. Kitiashvili, I. N. Kolenberg, K. Korhonen, H. Kosovichev, A. G. Kupka, F. Lebreton, Y. Leroy, B. Ludwig, H. -G. Mathis, S. Michel, E. Miglio, A. Montalban, J. Moya, A. Noels, A. Noyes, R. W. Palle, P. L. Piau, L. Preston, H. L. Roca Cortes, T. Roth, M. Sato, K. H. Schmitt, J. Serenelli, A. M. Aguirre, V. Silva Stevens, I. R. Suarez, J. C. Suran, M. D. Trampedach, R. Turck-Chieze, S. Uytterhoeven, K. Ventura, R. Wilson, P. A. TI THE ASTEROSEISMIC POTENTIAL OF KEPLER: FIRST RESULTS FOR SOLAR-TYPE STARS SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE stars: interiors; stars: late-type; stars: oscillations ID TURBULENT CONVECTION; STELLAR OSCILLATIONS; PULSATIONAL STABILITY; ABUNDANCE ANALYSIS; HR DIAGRAM; EXCITATION; MODES; INTERFEROMETRY; AMPLITUDES; PARAMETERS AB We present preliminary asteroseismic results from Kepler on three G-type stars. The observations, made at one-minute cadence during the first 33.5 days of science operations, reveal high signal-to-noise solar-like oscillation spectra in all three stars: about 20 modes of oscillation may be clearly distinguished in each star. We discuss the appearance of the oscillation spectra, use the frequencies and frequency separations to provide first results on the radii, masses, and ages of the stars, and comment in the light of these results on prospects for inference on other solar-type stars that Kepler will observe. C1 [Chaplin, W. J.; Elsworth, Y.; Karoff, C.; Hekker, S.; Broomhall, A. -M.; Hale, S. J.; Stevens, I. R.] Univ Birmingham, Sch Phys & Astron, Birmingham B15 2TT, W Midlands, England. [Appourchaux, T.; Benomar, O.; Gaulme, P.; Boumier, P.] Univ Paris 11, CNRS, Inst Astrophys Spatiale, UMR8617, F-91405 Orsay, France. [Garcia, R. A.; Mathis, S.; Piau, L.; Sato, K. H.; Turck-Chieze, S.; Uytterhoeven, K.] Univ Paris Diderot, IRFU, CNRS, CEA,DSM,Lab AIM,SAp, F-91191 Gif Sur Yvette, France. [Houdek, G.; Kolenberg, K.] Univ Vienna, Inst Astron, A-1180 Vienna, Austria. [Metcalfe, T. S.] Natl Ctr Atmospher Res, High Altitude Observ, Boulder, CO 80307 USA. [Metcalfe, T. S.] Natl Ctr Atmospher Res, Div Comp Sci, Boulder, CO 80307 USA. [Molenda-Zakowicz, J.] Univ Wroclaw, Astron Inst, PL-51622 Wroclaw, Poland. [Monteiro, M. J. P. F. G.; Bazot, M.; Brandao, I. M.; Campante, T. L.; Sousa, S. G.; Cunha, M. S.] Univ Porto, Ctr Astrofis, P-4150762 Oporto, Portugal. [Thompson, M. J.] Univ Sheffield, Sch Math & Stat, Sheffield S3 7RH, S Yorkshire, England. [Brown, T. M.] Cumbres Observ Global Telescope, Goleta, CA 93117 USA. [Christensen-Dalsgaard, J.; Kjeldsen, H.; Campante, T. L.; Dogan, G.; Frandsen, S.; Handberg, R.; Quirion, P. -O.; Arentoft, T.] Aarhus Univ, Dept Phys & Astron, DK-8000 Aarhus C, Denmark. [Gilliland, R. L.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Jenkins, J. M.] NASA, Ames Res Ctr, SETI Inst, Moffett Field, CA 94035 USA. [Ballot, J.] Univ Toulouse, CNRS, Lab Astrophys Toulouse Tarbes, F-31400 Toulouse, France. [Basu, S.; Esch, L.; Gai, N.] Yale Univ, Dept Astron, New Haven, CT 06520 USA. [Bedding, T. R.; Huber, D.; Stello, D.; Derekas, A.; Ireland, M. J.; Kiss, L. L.] Univ Sydney, Sch Phys, Sydney Inst Astron, Sydney, NSW 2006, Australia. [Bonanno, A.; Ventura, R.] INAF Osservatorio Astrofis Catania, I-95123 Catania, Italy. [Bruntt, H.; Goupil, M. J.] Observ Paris, F-92190 Meudon, France. [Creevey, O. L.; Regulo, C.; Salabert, D.; Roca Cortes, T.] Univ La Laguna, Dept Astrofis, E-28207 Tenerife, Spain. [Creevey, O. L.; Regulo, C.; Salabert, D.; Palle, P. L.; Roca Cortes, T.] Inst Astrofis Canarias, E-38200 Tenerife, Spain. [Di Mauro, M. P.] Ist Astrofis Spaziale & Fis Cosm, INAF IASF Roma, I-00133 Rome, Italy. [Dreizler, S.] Univ Gottingen, Inst Astrophys, D-37077 Gottingen, Germany. [Eggenberger, P.] Univ Geneva, Observ Geneva, CH-1290 Sauverny, Switzerland. [Fletcher, S. T.; New, R.] Sheffield Hallam Univ, Fac Arts Comp Engn & Sci, Mat Engn Res Inst, Sheffield S1 1WB, S Yorkshire, England. [Gai, N.] Beijing Normal Univ, Beijing 100875, Peoples R China. [Howe, R.; Giampapa, M. S.] Natl Opt Astron Observ, Natl Solar Observ, Tucson, AZ 85726 USA. [Korzennik, S. G.; Noyes, R. W.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Lebrun, J. C.; Martic, M.] Univ Versailles St Quentin, CNRS, LATMOS, F-91371 Verrieres Le Buisson, France. [Leccia, S.] INAF OAC, I-80131 Naples, Italy. [Mathur, S.] Indian Inst Astrophys, Bangalore 560034, Karnataka, India. [Mosser, B.; Barban, C.; Deheuvels, S.; Leroy, B.; Michel, E.] Univ Paris 06, CNRS, LESIA, Observ Paris, F-92195 Meudon, France. [Quirion, P. -O.] Canadian Space Agcy, St Hubert, PQ J3Y 8Y9, Canada. [Roxburgh, I. W.; Verner, G. A.] Univ London, Astron Unit, London E1 4NS, England. [Schou, J.; Kosovichev, A. G.] Stanford Univ, HEPL, Stanford, CA 94305 USA. [Belkacem, K.; Miglio, A.; Montalban, J.; Noels, A.] Univ Liege, Dept Astrophys Geophys & Oceanog, B-4000 Liege 1, Belgium. [Benatti, S.] Univ Padua, CISAS, I-35131 Padua, Italy. [Biazzo, K.] Osserv Astrofis Arcetri, I-50125 Florence, Italy. [Bradley, P. A.; Guzik, J. A.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Buzasi, D. L.; Preston, H. L.] Eureka Sci, Oakland, CA 94602 USA. [Claudi, R. U.] INAF Astron Observ Padova, I-35122 Padua, Italy. [D'Antona, F.] INAF Osservatorio Roma, I-00040 Monte Porzio Catone, Italy. [Derekas, A.; Kiss, L. L.] Hungarian Acad Sci, Konkoly Observ Budapest, Budapest, Hungary. [Garcia Hernandez, A.; Suarez, J. C.] CSIC, Inst Astrofis Andalucia, Granada, Spain. [Gruberbauer, M.] St Marys Univ, Dept Phys & Astron, Halifax, NS B3H 3C3, Canada. [Kitiashvili, I. N.] Stanford Univ, Ctr Turbulence Res, Stanford, CA 94305 USA. [Korhonen, H.] European So Observ, D-85748 Garching, Germany. [Kupka, F.] Univ Vienna, Fac Math, A-1090 Vienna, Austria. [Lebreton, Y.; Ludwig, H. -G.] Univ Paris Diderot, CNRS, Observ Paris, GEPI, F-92195 Meudon, France. [Moya, A.] CSIC, INTA, LAEX, CAB, Madrid 28691, Spain. [Preston, H. L.] Univ S Africa, Dept Math Sci, ZA-0003 Pretoria, South Africa. [Roth, M.] Kiepenheuer Inst Sonnenphys, D-79104 Freiburg, Germany. [Schmitt, J.] Observ Haute Provence, F-04870 St Michel lObservatoire, France. [Serenelli, A. M.; Aguirre, V. Silva] Max Planck Inst Astrophys, D-85741 Garching, Germany. [Suran, M. D.] Romanian Acad, Astron Inst, RO-40557 Bucharest, Romania. [Trampedach, R.] Univ Colorado, JILA, Boulder, CO 80309 USA. [Wilson, P. A.] Nord Opt Telescope, E-38700 Santa Cruz De La Palma, Santa Cruz Tene, Spain. [Wilson, P. A.] Univ Oslo, Inst Theoret Astrophys, N-0315 Oslo, Norway. RP Chaplin, WJ (reprint author), Univ Birmingham, Sch Phys & Astron, Birmingham B15 2TT, W Midlands, England. RI Korhonen, Heidi/E-3065-2016; Ballot, Jerome/G-1019-2010; Sousa, Sergio/I-7466-2013; Derekas, Aliz/G-2091-2016; Brandao, Isa/M-5172-2013; Monteiro, Mario J.P.F.G./B-4715-2008; Karoff, Christoffer/L-1007-2013; Lebreton, Yveline/N-2268-2014; Hale, Steven/E-3472-2015; Palle, Pere/H-4720-2015; Suarez, Juan Carlos/C-1015-2009; Ventura, Rita/B-7524-2016; OI Biazzo, Katia/0000-0002-1892-2180; Bazot, Michael/0000-0003-0166-1540; Bonanno, Alfio/0000-0003-3175-9776; Bradley, Paul/0000-0001-6229-6677; Bedding, Timothy/0000-0001-5943-1460; Cunha, Margarida/0000-0001-8237-7343; Garcia Hernandez, Antonio/0000-0002-6906-4526; Korhonen, Heidi/0000-0003-0529-1161; Sousa, Sergio/0000-0001-9047-2965; Derekas, Aliz/0000-0002-6526-9444; Brandao, Isa/0000-0002-1153-0942; Monteiro, Mario J.P.F.G./0000-0003-0513-8116; Karoff, Christoffer/0000-0003-2009-7965; Hale, Steven/0000-0002-6402-8382; Suarez, Juan Carlos/0000-0003-3649-8384; Ventura, Rita/0000-0002-5152-0482; Leccia, Silvio/0000-0001-5685-6930; Metcalfe, Travis/0000-0003-4034-0416; Bedding, Tim/0000-0001-5222-4661; Garcia, Rafael/0000-0002-8854-3776; Serenelli, Aldo/0000-0001-6359-2769; Di Mauro, Maria Pia/0000-0001-7801-7484; Handberg, Rasmus/0000-0001-8725-4502 FU NASA's Science Mission Directorate FX Funding for this Discovery mission is provided by NASA's Science Mission Directorate. The authors wish to thank the entire Kepler team, without whom these results would not be possible. We also thank all funding councils and agencies that have supported the activities of KASC Working Group 1, and the International Space Science Institute (ISSI). The analyses reported in this Letter also used observations made with FIES at the Nordic Optical Telescope, and with SOPHIE at Observatoire de Haute-Provence. NR 50 TC 93 Z9 93 U1 0 U2 16 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 EI 2041-8213 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD APR 20 PY 2010 VL 713 IS 2 BP L169 EP L175 DI 10.1088/2041-8205/713/2/L169 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 587DZ UT WOS:000276970900018 ER PT J AU Grigahcene, A Antoci, V Balona, L Catanzaro, G Daszynska-Daszkiewicz, J Guzik, JA Handler, G Houdek, G Kurtz, DW Marconi, M Monteiro, MJPFG Moya, A Ripepi, V Suarez, JC Uytterhoeven, K Borucki, WJ Brown, TM Christensen-Dalsgaard, J Gilliland, RL Jenkins, JM Kjeldsen, H Koch, D Bernabei, S Bradley, P Breger, M Di Criscienzo, M Dupret, MA Garcia, RA Hernandez, AG Jackiewicz, J Kaiser, A Lehmann, H Martin-Ruiz, S Mathias, P Molenda-Zakowicz, J Nemec, JM Nuspl, J Paparo, M Roth, M Szabo, R Suran, MD Ventura, R AF Grigahcene, A. Antoci, V. Balona, L. Catanzaro, G. Daszynska-Daszkiewicz, J. Guzik, J. A. Handler, G. Houdek, G. Kurtz, D. W. Marconi, M. Monteiro, M. J. P. F. G. Moya, A. Ripepi, V. Suarez, J. -C. Uytterhoeven, K. Borucki, W. J. Brown, T. M. Christensen-Dalsgaard, J. Gilliland, R. L. Jenkins, J. M. Kjeldsen, H. Koch, D. Bernabei, S. Bradley, P. Breger, M. Di Criscienzo, M. Dupret, M. -A. Garcia, R. A. Garcia Hernandez, A. Jackiewicz, J. Kaiser, A. Lehmann, H. Martin-Ruiz, S. Mathias, P. Molenda-Zakowicz, J. Nemec, J. M. Nuspl, J. Paparo, M. Roth, M. Szabo, R. Suran, M. D. Ventura, R. TI HYBRID gamma DORADUS-delta SCUTI PULSATORS: NEW INSIGHTS INTO THE PHYSICS OF THE OSCILLATIONS FROM KEPLER OBSERVATIONS SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE space vehicles: instruments; stars: variables: delta Scuti ID FREQUENCY RATIO METHOD; MULTICOLOR PHOTOMETRY; AM STAR; P-MODE; CONVECTION; PULSATIONS; EXCITATION; DISCOVERY; VARIABLES; ROTATION AB Observations of the pulsations of stars can be used to infer their interior structure and test theoretical models. The main-sequence gamma Doradus (Dor) and delta Scuti (Sct) stars with masses 1.2-2.5 M(circle dot) are particularly useful for these studies. The gamma Dor stars pulsate in high-order g-modes with periods of order 1 day, driven by convective blocking at the base of their envelope convection zone. The d Sct stars pulsate in low-order g- and p-modes with periods of order 2 hr, driven by the kappa mechanism operating in the He II ionization zone. Theory predicts an overlap region in the Hertzsprung-Russell diagram between instability regions, where "hybrid" stars pulsating in both types of modes should exist. The two types of modes with properties governed by different portions of the stellar interior provide complementary model constraints. Among the known gamma Dor and delta Sct stars, only four have been confirmed as hybrids. Now, analysis of combined Quarter 0 and Quarter 1 Kepler data for hundreds of variable stars shows that the frequency spectra are so rich that there are practically no pure delta Sct or gamma Dor pulsators, i.e., essentially all of the stars show frequencies in both the delta Sct and the gamma Dor frequency range. A new observational classification scheme is proposed that takes into account the amplitude as well as the frequency and is applied to categorize 234 stars as delta Sct, gamma Dor, delta Sct/gamma Dor or gamma Dor/delta Sct hybrids. C1 [Grigahcene, A.; Monteiro, M. J. P. F. G.] Univ Porto, Fac Ciencias, Ctr Astrofis, P-4150762 Oporto, Portugal. [Antoci, V.; Handler, G.; Houdek, G.; Breger, M.; Kaiser, A.] Univ Vienna, Inst Astron, A-1180 Vienna, Austria. [Balona, L.] S African Astron Observ, ZA-7935 Observatory, South Africa. [Catanzaro, G.; Ventura, R.] INAF Osservatorio Astrofis Catania, I-95123 Catania, Italy. [Daszynska-Daszkiewicz, J.; Molenda-Zakowicz, J.] Uniwersytet Wroclawski, Inst Astron, PL-51622 Wroclaw, Poland. [Guzik, J. A.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Kurtz, D. W.] Univ Cent Lancashire, Jeremiah Horrocks Inst Astrophys, Preston PR1 2HE, Lancs, England. [Marconi, M.; Ripepi, V.] INAF Osservatorio Astron Capodimonte, I-80131 Naples, Italy. [Moya, A.] CSIC, INTA, LAEX, CAB, Madrid 28691, Spain. [Suarez, J. -C.; Garcia Hernandez, A.; Martin-Ruiz, S.] CSIC, Inst Astrofis Andalucia, Granada, Spain. [Uytterhoeven, K.; Garcia, R. A.] Univ Paris Diderot, IRFU SAp, Ctr Saclay, CEA DSM CNRS,Lab AIM, F-91191 Gif Sur Yvette, France. [Jenkins, J. M.] NASA, Ames Res Ctr, SETI Inst, Moffett Field, CA 94035 USA. [Brown, T. M.] Cumbres Observ Global Telescope, Goleta, CA 93117 USA. [Christensen-Dalsgaard, J.; Kjeldsen, H.] Aarhus Univ, Dept Phys & Astron, DK-8000 Aarhus C, Denmark. [Gilliland, R. L.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Bernabei, S.] INAF Osservatorio Astron Bologna, I-40127 Bologna, Italy. [Bradley, P.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Di Criscienzo, M.] INAF Osservatorio Astron Roma, I-00040 Rome, Italy. [Dupret, M. -A.] Univ Liege, Inst Astrophys & Geophys, B-4000 Liege, Belgium. [Jackiewicz, J.] New Mexico State Univ, Dept Astron, Las Cruces, NM 88001 USA. [Lehmann, H.] Thueringer Landessternwarte, D-07778 Tautenburg, Germany. [Mathias, P.] CNRS, Observ Cote Azur, Dept Fizeau, UMR 6525, F-06304 Nice 4, France. [Nuspl, J.; Paparo, M.; Szabo, R.] Hungarian Acad Sci, Konkoly Observ Budapest, H-1525 Budapest, Hungary. [Roth, M.] Kiepenheuer Inst Sonnenphys, D-79104 Freiburg, Germany. [Suran, M. D.] Acad Romana, Astron Inst, RO-40557 Bucharest, Romania. RP Grigahcene, A (reprint author), Univ Porto, Fac Ciencias, Ctr Astrofis, Rua Estrelas, P-4150762 Oporto, Portugal. RI Monteiro, Mario J.P.F.G./B-4715-2008; Martin-Ruiz, Susana/B-6768-2013; Suarez, Juan Carlos/C-1015-2009; Ventura, Rita/B-7524-2016; OI Monteiro, Mario J.P.F.G./0000-0003-0513-8116; Suarez, Juan Carlos/0000-0003-3649-8384; Ventura, Rita/0000-0002-5152-0482; Catanzaro, Giovanni/0000-0003-4337-8612; Bradley, Paul/0000-0001-6229-6677 NR 48 TC 88 Z9 88 U1 0 U2 8 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD APR 20 PY 2010 VL 713 IS 2 BP L192 EP L197 DI 10.1088/2041-8205/713/2/L192 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 587DZ UT WOS:000276970900022 ER PT J AU Yoon, J Kang, HJ Sung, J Park, HJ Hohng, S AF Yoon, Jeongmin Kang, Hyun-Jin Sung, Jaeho Park, Hyun-Ju Hohng, Sungchul TI Highly Polymorphic G-quadruplexes in the c-MYC Promoter SO BULLETIN OF THE KOREAN CHEMICAL SOCIETY LA English DT Article DE G-quadruplex; c-MYC; Single-molecule fluorescence resonance energy transfer ID STRUCTURAL MOTIF; BINDING-PROTEIN; DNA STRUCTURES; TELOMERIC DNA; TARGET; MOLECULE; BIOLOGY; GENOME; CANCER; REGION C1 [Yoon, Jeongmin; Kang, Hyun-Jin; Sung, Jaeho; Hohng, Sungchul] Seoul Natl Univ, Dept Phys & Astron, Seoul 151747, South Korea. [Hohng, Sungchul] Seoul Natl Univ, Dept Biophys & Chem Biol, Seoul 151747, South Korea. [Yoon, Jeongmin; Kang, Hyun-Jin; Hohng, Sungchul] Seoul Natl Univ, Natl Ctr Creat Res Initiat, Seoul 151747, South Korea. [Park, Hyun-Ju] Sungkyunkwan Univ, Sch Pharm, Suwon 440746, South Korea. [Sung, Jaeho] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Hohng, S (reprint author), Seoul Natl Univ, Dept Phys & Astron, Seoul 151747, South Korea. FU Korea Research Foundation [KRF-2007-331-000128]; National Research Foundation of Korea [2009-0081562]; Ministry of Education, Science & Technology (MEST) [R31-2009-100320] FX This work was supported by the Korea Research Foundation Grant [KRF-2007-331-000128], and Creative Research Initiatives (Physical Genetics Laboratory, 2009-0081562) of National Research Foundation of Korea and grant No R31-2009-100320 from the World Class University (WCU) project of the Ministry of Education, Science & Technology (MEST). NR 24 TC 4 Z9 4 U1 0 U2 6 PU KOREAN CHEMICAL SOC PI SEOUL PA 635-4 YEOGSAM-DONG, KANGNAM-GU, SEOUL 135-703, SOUTH KOREA SN 0253-2964 J9 B KOREAN CHEM SOC JI Bull. Korean Chem. Soc. PD APR 20 PY 2010 VL 31 IS 4 BP 1025 EP 1028 DI 10.5012/bkcs.2010.31.04.1025 PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA 599QT UT WOS:000277928900047 ER PT J AU Biggin, MD AF Biggin, Mark D. TI MyoD, a Lesson in Widespread DNA Binding SO DEVELOPMENTAL CELL LA English DT Editorial Material ID ROLES; SET AB There is growing recognition that animal transcription factors bind in vivo to far more genomic regions than generally assumed earlier. In this issue of Developmental Cell, Cao et al. show that the muscle specification factor MyoD binds to regions near most genes and modifies chromatin states at these sites. C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Genom Div, Berkeley, CA 94720 USA. RP Biggin, MD (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Genom Div, Berkeley, CA 94720 USA. EM mdbiggin@lbl.gov NR 10 TC 4 Z9 4 U1 0 U2 2 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 1534-5807 J9 DEV CELL JI Dev. Cell PD APR 20 PY 2010 VL 18 IS 4 BP 505 EP 506 DI 10.1016/j.devcel.2010.04.004 PG 2 WC Cell Biology; Developmental Biology SC Cell Biology; Developmental Biology GA 588WR UT WOS:000277105800002 PM 20412764 ER PT J AU Anderson, K Del Prete, T Fullana, E Huston, J Roda, C Stanek, R AF Anderson, K. Del Prete, T. Fullana, E. Huston, J. Roda, C. Stanek, R. TI TILECAL: THE HADRONIC SECTION OF THE CENTRAL ATLAS CALORIMETER SO INTERNATIONAL JOURNAL OF MODERN PHYSICS A LA English DT Review DE LHC; ATLAS experiment; TileCal ID ELECTRONICS; SYSTEM AB This paper describes the concepts behind the TileCal design, as well as the requirements and the constraints that have finally produced the ATLAS central hadronic calorimeter. C1 [Anderson, K.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Del Prete, T.; Roda, C.] Univ Pisa, Dipartimento Fis E Fermi, I-56127 Pisa, Italy. [Del Prete, T.; Roda, C.] Inst Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Fullana, E.; Stanek, R.] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Huston, J.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. RP Anderson, K (reprint author), Univ Chicago, Enrico Fermi Inst, 5640 S Ellis, Chicago, IL 60637 USA. EM kelby@uchep.uchicago.edu; delprete@pi.infn.it; huston@pa.msu.edu; roda@mail.cern.ch; bob@hep.anl.gov NR 24 TC 1 Z9 1 U1 0 U2 0 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 0217-751X J9 INT J MOD PHYS A JI Int. J. Mod. Phys. A PD APR 20 PY 2010 VL 25 IS 10 BP 1981 EP 2003 DI 10.1142/S0217751X10049360 PG 23 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 595MI UT WOS:000277614300002 ER PT J AU van Yen, RN del-Castillo-Negrete, D Schneider, K Farge, M Chen, GY AF van Yen, Romain Nguyen del-Castillo-Negrete, Diego Schneider, Kai Farge, Marie Chen, Guangye TI Wavelet-based density estimation for noise reduction in plasma simulations using particles SO JOURNAL OF COMPUTATIONAL PHYSICS LA English DT Article DE Particle methods; Wavelets; Noise reduction; Plasma physics computations AB For given computational resources, the accuracy of plasma simulations using particles is mainly limited by the noise due to limited statistical sampling in the reconstruction of the particle distribution function. A method based on wavelet analysis is proposed and tested to reduce this noise. The method, known as wavelet-based density estimation (WBDE), was previously introduced in the statistical literature to estimate probability densities given a finite number of independent measurements. Its novel application to plasma simulations can be viewed as a natural extension of the finite size particles (FSP) approach, with the advantage of estimating more accurately distribution functions that have localized sharp features. The proposed method preserves the moments of the particle distribution function to a good level of accuracy, has no constraints on the dimensionality of the system, does not require an a priori selection of a global smoothing scale, and its able to adapt locally to the smoothness of the density based on the given discrete particle data. Moreover, the computational cost of the denoising stage is of the same order as one time step of a FSP simulation. The method is compared with a recently proposed proper orthogonal decomposition based method, and it is tested with three particle data sets involving different levels of collisionality and interaction with external and self-consistent fields. (C) 2009 Elsevier Inc. All rights reserved. C1 [del-Castillo-Negrete, Diego; Chen, Guangye] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [van Yen, Romain Nguyen; Farge, Marie] Ecole Normale Super, CNRS, Meteorol Dynam Lab, Paris, France. [Schneider, Kai] CNRS, Lab Mecan Modelisat & Procedes Propres, F-75700 Paris, France. [Schneider, Kai] Univ Aix Marseille, Ctr Math & Informat, Marseille, France. RP del-Castillo-Negrete, D (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM delcastillod@ornl.gov RI Chen, Guangye /K-3192-2012; OI del-Castillo-Negrete, Diego/0000-0001-7183-801X FU US Department of Energy [DE-AC05-00OR22725]; European Communities FX We thank Don Spong for providing the DELTA5D Monte-Carlo guiding center simulation data in Fig. 6, originally published in Ref. [15]. We also thank Xavier Garbet for his comments on the paper and for pointing out several key references, and Bill Dorland for motivating discussions. M.F. and K.S. acknowledge financial support by ANR under contract M2TFP (Methodes Multiechelles pour la Turbulence dans les Fluides et les Plasmas). M.F. is grateful to the Wissenschaftskolleg zu Berlin for hospitality while revising this paper. D.C.N. and G.Ch. acknowledge support from the Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the US Department of Energy under contract DE-AC05-00OR22725. D.C.N. also gratefully acknowledges the support and hospitality of the Ecole Centrale de Marseille for the three, one month visiting positions during the elaboration of this work. This work, supported by the European Communities under the contract of Association between EURATOM, CEA and the French Research Federation for fusion studies, was carried out within the framework of the European Fusion Development Agreement. The views and opinions expressed herein do not necessarily reflect those of the European Commission. NR 40 TC 6 Z9 8 U1 0 U2 7 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9991 J9 J COMPUT PHYS JI J. Comput. Phys. PD APR 20 PY 2010 VL 229 IS 8 BP 2821 EP 2839 DI 10.1016/j.jcp.2009.12.010 PG 19 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA 574CM UT WOS:000275966000005 ER PT J AU Pan, YX Liu, CJ Mei, DH Ge, QF AF Pan, Yun-xiang Liu, Chang-jun Mei, Donghai Ge, Qinfeng TI Effects of Hydration and Oxygen Vacancy on CO2 Adsorption and Activation on beta-Ga2O3(100) SO LANGMUIR LA English DT Article ID CARBON-DIOXIDE ADSORPTION; AUGMENTED-WAVE METHOD; GAMMA-ALUMINA; METHANOL SYNTHESIS; WATER-ADSORPTION; SURFACE; CATALYSTS; DENSITY; GAS; H2O AB The effects of hydration and oxygen vacancy on CO2 adsorption on the beta-Ga2O3(100) surface have been studied using density functional theory slab calculations. Adsorbed CO2 is activated on the dry perfect beta-Ga2O3(100) surface, resulting in a carbonate species. This adsorption is slightly endothermic, with an adsorption energy of 0.07 eV. Water is preferably adsorbed molecularly on the dry perfect beta-Ga2O3(100) surface with in adsorption energy of -0.56 eV, producing a hydrated perfect beta-Ga2O3(100) surface. Adsorption of CO2 on the hydrated surface as a carbonate species is also endothermic, with an adsorption energy of 0.14 eV. indicating a slightly repulsive interaction when H2O and CO2 are coadsorbed. The carbonate species on the hydrated perfect surface can be protonated by the coadsorbed H2O to a bicarbonate species. making the CO2 adsorption exothermic, with an adsorption energy of -0.13 eV. The effect of defects on CO2 adsorption and activation has been examined by creating an oxygen vacancy on the dry beta-Ga2O3(100) surface. The formation of an oxygen vacancy is endothermic, by 0.34 eV. with respect to a free O-2 molecule in the gas phase. Presence of the oxygen vacancy promoted the adsorption and activation of CO2. In the most stable CO2 adsorption configuration on the dry defective beta-Ga2O3(100) surface with an oxygen vacancy, one of the oxygen atoms of the adsorbed CO2 occupies the oxygen vacancy site and the CO2 adsorption energy is -0.31 eV. Water favors dissociative adsorption at the oxygen vacancy site on the defective surface. This process is spontaneous, with a reaction energy of -0.62 eV. These results indicate that. when water and CO2 are present in the adsorption system simultaneously. water will compete with CO2 for the oxygen vacancy sites and impact CO2 adsorption and conversion negatively. C1 [Pan, Yun-xiang; Ge, Qinfeng] So Illinois Univ, Dept Chem & Biochem, Carbondale, IL 62901 USA. [Pan, Yun-xiang; Liu, Chang-jun] Tianjin Univ, Sch Chem Engn, Key Lab Green Chem Technol, Minist Educ, Tianjin 300072, Peoples R China. [Mei, Donghai] Pacific NW Natl Lab, Inst Interfacial Catalysis, Richland, WA 99352 USA. RP Ge, QF (reprint author), So Illinois Univ, Dept Chem & Biochem, Carbondale, IL 62901 USA. EM qge@chem.siu.edu RI Mei, Donghai/D-3251-2011; Ge, Qingfeng/A-8498-2009; Mei, Donghai/A-2115-2012; Pan, Yun-xiang/G-6904-2015 OI Ge, Qingfeng/0000-0001-6026-6693; Mei, Donghai/0000-0002-0286-4182; FU Petroleum Research Fund [PRE-G44103-G10]; National Natural Science Foundation of China [20490203]; Illinois Clean Coal Institute; National Energy Research Scientific Computing Center (NERSC) [m752] FX We gratefully acknowledge support from the Petroleum Research Fund (PRE-G44103-G10), the National Natural Science Foundation of China (under Contract 20490203), and the Illinois Clean Coal Institute. D.M. acknowledges support of a Laboratory Directed Research and Development (LDRD) project at Pacific Northwest National Laboratory (PNNL). A portion of the computing time was granted by the scientific user projects using the Molecular Science Computing Facility M the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL). The EMS L is a DOE national scientific user facility located at PNNL. and supported by the DOE's Office or Science. Biological and Environmental Research. For the computing time, we also thank the National Energy Research Scientific Computing Center (NERSC) under Project No. m752. NR 43 TC 40 Z9 41 U1 6 U2 61 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0743-7463 J9 LANGMUIR JI Langmuir PD APR 20 PY 2010 VL 26 IS 8 BP 5551 EP 5558 DI 10.1021/la903836v PG 8 WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 581YQ UT WOS:000276562300037 PM 20047326 ER PT J AU Xiong, RC Keffer, DJ Fuentes-Cabrera, M Nicholson, DM Michalkova, A Petrova, T Leszczynski, J Odbadrakh, K Doss, BL Lewis, JP AF Xiong, Ruichang Keffer, David J. Fuentes-Cabrera, Miguel Nicholson, Donald M. Michalkova, Andrea Petrova, Tetyana Leszczynski, Jerzy Odbadrakh, Khorgolkhuu Doss, Bryant L. Lewis, James P. TI Effect of Charge Distribution on RDX Adsorption in IRMOF-10 SO LANGMUIR LA English DT Article ID METAL-ORGANIC FRAMEWORKS; ELECTRONIC-STRUCTURE CALCULATIONS; MOLECULAR-DYNAMICS SIMULATIONS; DENSITY-FUNCTIONAL THEORY; POPULATION ANALYSIS; HYDROGEN STORAGE; ATOMIC CHARGES; DISPERSION CORRECTION; FORCE-FIELD; SYSTEMS AB Quantum mechanical (QM) calculations, classical grand canonical Monte Carlo (GCMC) simulations, and classical molecular dynamics (MD) simulations are performed to test the effect of charge distribution on hexahydro-1,3,5trinitro-1,3,5-triazine (RDX) adsorption and diffusion in 1RMOF-10. Several different methods for mapping QM electron distributions Onto atomic point charges are explored. including the electrostatic potential (ESP) method, Mulliken population analysis. Lowdin population analysis, and natural bond orbital analysis. Classical GCMC and MD simulations of RDX in IRMOF-10 are performed using IS combinations of charge sources of RDX and IRMOF-10. As the charge distributions vary. interaction potential energies, the adsorption loading. and the self-diffusivities are significantly different. None of the IS combinations;ire able to quantitatively capture the dependence of the energy of adsorption on local configuration of RDX as observed in the QM calculations. We observe changes in the charge distributions of. RDX and IRMOF-10 with the introduction of an RDX molecule into the cage. We also observe a large dispersion contribution to the interaction energy from QM calculations that is not reproduced in the classical simulations, indicating that the source of discrepancy may not lie exclusively with the assignment of charges. C1 [Xiong, Ruichang; Keffer, David J.] Univ Tennessee, Dept Chem & Biomol Engn, Knoxville, TN 37996 USA. [Fuentes-Cabrera, Miguel] Univ Tennessee, Joint Inst Computat Sci, Oak Ridge, TN 37830 USA. [Fuentes-Cabrera, Miguel] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37830 USA. [Nicholson, Donald M.] Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37830 USA. [Michalkova, Andrea; Petrova, Tetyana; Leszczynski, Jerzy] Jackson State Univ, Interdisciplinary Nanotox Ctr, Jackson, MS 39217 USA. [Odbadrakh, Khorgolkhuu; Doss, Bryant L.; Lewis, James P.] W Virginia Univ, Dept Phys, Morgantown, WV 26506 USA. RP Keffer, DJ (reprint author), Univ Tennessee, Dept Chem & Biomol Engn, Knoxville, TN 37996 USA. EM dkeffer@utk.edu RI Xiong, Ruichang/O-3398-2013; Keffer, David/C-5133-2014; Fuentes-Cabrera, Miguel/Q-2437-2015 OI Xiong, Ruichang/0000-0001-9262-7545; Keffer, David/0000-0002-6246-0286; Fuentes-Cabrera, Miguel/0000-0001-7912-7079 FU National Science Foundation (NSF) [CMMI-0730207]; Division of Materials Science and Engineering, Office of Basic Energy Science of the US Department of Energy (DMN); Center for Nanophase Materials Sciences; Division of Scientific User Facilities, Office of Basic Energy Science of the US Department of Energy (MFC); NSF [OC1 07-11134] FX The authors gratefully acknowledge the financial support of National Science Foundation (NSF) under Grant CMMI-0730207. Work at ORNL was performed under the auspices of the Division of Materials Science and Engineering, Office of Basic Energy Science of the US Department of Energy (DMN). Work at ORNL was supported by the Center for Nanophase Materials Sciences, sponsored by the Division of Scientific User Facilities, Office of Basic Energy Science of the US Department of Energy (MFC) and used resources oldie National Center for Computational Sciences (NCCS), ORNL, supported by the Office of Science, USDOE, as well as resources of the National Institute for Computational Sciences (NICS), ORNL, supported by NSF with agreement number: OC1 07-11134. This work also used resources of Pittsburgh Supercomputing Center and West Virginia University (WVU) Nano for computing facilities. NR 70 TC 21 Z9 21 U1 1 U2 27 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0743-7463 J9 LANGMUIR JI Langmuir PD APR 20 PY 2010 VL 26 IS 8 BP 5942 EP 5950 DI 10.1021/la9039013 PG 9 WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 581YQ UT WOS:000276562300086 PM 20205416 ER PT J AU Bintachitt, P Jesse, S Damjanovic, D Han, Y Reaney, IM Trolier-McKinstry, S Kalinin, SV AF Bintachitt, P. Jesse, S. Damjanovic, D. Han, Y. Reaney, I. M. Trolier-McKinstry, S. Kalinin, S. V. TI Collective dynamics underpins Rayleigh behavior in disordered polycrystalline ferroelectrics SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE piezoelectric; ferroelectric; piezoelectric force microscopy; lead zirconate titanate; thin films ID ZIRCONATE-TITANATE FILMS; 90-DEGREES DOMAIN-WALLS; THIN-FILMS; PIEZOELECTRIC PROPERTIES; CERAMICS; HYSTERESIS; RELAXATION; DEPENDENCE AB Nanoscale and mesoscopic disorder and associated local hysteretic responses underpin the unique properties of spin and cluster glasses, phase-separated oxides, polycrystalline ferroelectrics, and ferromagnets alike. Despite the rich history of the field, the relationship between the statistical descriptors of hysteresis behavior such as Preisach density, and micro and nanostructure has remained elusive. By using polycrystalline ferroelectric capacitors as a model system, we now report quantitative nonlinearity measurements in 0.025-1 mu m(3) volumes, approximately 106 times smaller than previously possible. We discover that the onset of nonlinear behavior with thickness proceeds through formation and increase of areal density of micron-scale regions with large nonlinear response embedded in a more weakly nonlinear matrix. This observation indicates that large-scale collective domain wall dynamics, as opposed to motion of noninteracting walls, underpins Rayleigh behavior in disordered ferroelectrics. The measurements provide evidence for the existence and extent of the domain avalanches in ferroelectric materials, forcing us to rethink 100-year old paradigms. C1 [Bintachitt, P.; Trolier-McKinstry, S.] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA. [Bintachitt, P.; Trolier-McKinstry, S.] Penn State Univ, Mat Res Inst, University Pk, PA 16802 USA. [Jesse, S.; Kalinin, S. V.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Jesse, S.; Kalinin, S. V.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Damjanovic, D.] Swiss Fed Inst Technol Lausanne EPFL, Ceram Lab, CH-1015 Lausanne, Switzerland. [Han, Y.; Reaney, I. M.] Univ Sheffield, Dept Mat Engn, Sheffield S1 3JD, S Yorkshire, England. RP Trolier-McKinstry, S (reprint author), Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA. EM STMcKinstry@psu.edu; sergei2@ornl.gov RI Kalinin, Sergei/I-9096-2012; Damjanovic, Dragan/A-8231-2008; Jesse, Stephen/D-3975-2016; OI Kalinin, Sergei/0000-0001-5354-6152; Damjanovic, Dragan/0000-0002-9596-7438; Jesse, Stephen/0000-0002-1168-8483; Trolier-McKinstry, Susan/0000-0002-7267-9281 FU U.S. Department of Energy FX A part of this research was performed by S.J. and S. V. K. at Oak Ridge National Laboratory's Center for Nanophase Materials Sciences and was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. P. B. and S. T. M. gratefully acknowledge support from the Center for Dielectric Studies and a National Security Science and Engineering Faculty Fellowship, and CNMS User Proposal Numbers CNMS2006-020 and CNMS2009-040. P. B. also acknowledges the support of Royal Thai Government. S. V. K. is grateful for Asylum Research Corporation for providing the beta-site for the HV PFM module. NR 46 TC 60 Z9 60 U1 4 U2 33 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD APR 20 PY 2010 VL 107 IS 16 BP 7219 EP 7224 DI 10.1073/pnas.0913172107 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 586FU UT WOS:000276892300023 PM 20368462 ER PT J AU Nelson, J Huang, XJ Steinbrener, J Shapiro, D Kirz, J Marchesini, S Neiman, AM Turner, JJ Jacobsen, C AF Nelson, Johanna Huang, Xiaojing Steinbrener, Jan Shapiro, David Kirz, Janos Marchesini, Stefano Neiman, Aaron M. Turner, Joshua J. Jacobsen, Chris TI High-resolution x-ray diffraction microscopy of specifically labeled yeast cells SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE coherent imaging; immunogold labeling ID COMPUTED-TOMOGRAPHY; SPATIAL-RESOLUTION; PHASE-CONTRAST; RECONSTRUCTION; SPECIMENS AB X-ray diffraction microscopy complements other x-ray microscopy methods by being free of lens-imposed radiation dose and resolution limits, and it allows for high-resolution imaging of biological specimens too thick to be viewed by electron microscopy. We report here the highest resolution (11-13 nm) x-ray diffraction micrograph of biological specimens, and a demonstration of molecular-specific gold labeling at different depths within cells via through-focus propagation of the reconstructed wavefield. The lectin concanavalin A conjugated to colloidal gold particles was used to label the a-mannan sugar in the cell wall of the yeast Saccharomyces cerevisiae. Cells were plunge-frozen in liquid ethane and freeze-dried, after which they were imaged whole using x-ray diffraction microscopy at 750 eV photon energy. C1 [Nelson, Johanna; Huang, Xiaojing; Steinbrener, Jan; Turner, Joshua J.; Jacobsen, Chris] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Shapiro, David; Kirz, Janos; Marchesini, Stefano] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. [Neiman, Aaron M.] SUNY Stony Brook, Dept Biochem & Cell Biol, Stony Brook, NY 11794 USA. [Jacobsen, Chris] Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA. [Jacobsen, Chris] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Nelson, J (reprint author), SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. EM Johanna.Nelson@stonybrook.edu RI Marchesini, Stefano/A-6795-2009; Huang, Xiaojing/K-3075-2012; Jacobsen, Chris/E-2827-2015; Nelson Weker, Johanna/J-4159-2015 OI Huang, Xiaojing/0000-0001-6034-5893; Jacobsen, Chris/0000-0001-8562-0353; Nelson Weker, Johanna/0000-0001-6856-3203 FU National Institute for General Medical Services at the National Institutes for Health [5R21EB6134]; Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, at the Department of Energy [DE-FG02-07ER46128]; Office of Science, Office of Basic Energy Sciences, of the US Department of Energy [DE-AC02-05CH11231] FX The authors extend our appreciation to David Sayre and Malcolm Howells for their continued contribution. We wish to thank Vishwas Joshi of Nanoprobes Incorporated for the custom-made labels and silver enhancement kit and Stefan Vogt at the Advanced Photon Source for his help with specimen freeze-drying. We also thank Jim Quinn at Stony Brook University for help with the SEM images. Finally, we thank the Advanced Light Source staff for their support, especially Tolek Tyliszczak, beamline scientist at beamline 11.0.2 for his help with the STXM image. The authors thank the National Institute for General Medical Services at the National Institutes for Health for its support of the application of XDM to biological imaging under Contract 5R21EB6134. We thank the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, at the Department of Energy for support of XDM methods and instrumentation development under Contract DE-FG02-07ER46128. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under Contract DE-AC02-05CH11231. NR 50 TC 61 Z9 63 U1 2 U2 21 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD APR 20 PY 2010 VL 107 IS 16 BP 7235 EP 7239 DI 10.1073/pnas.0910874107 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 586FU UT WOS:000276892300026 PM 20368463 ER PT J AU Kollet, SJ Maxwell, RM Woodward, CS Smith, S Vanderborght, J Vereecken, H Simmer, C AF Kollet, Stefan J. Maxwell, Reed M. Woodward, Carol S. Smith, Steve Vanderborght, Jan Vereecken, Harry Simmer, Clemens TI Proof of concept of regional scale hydrologic simulations at hydrologic resolution utilizing massively parallel computer resources SO WATER RESOURCES RESEARCH LA English DT Article ID LAND-SURFACE; BOUNDARY-LAYER; MODEL; FLOW AB We present the results of a unique, parallel scaling study using a 3-D variably saturated flow problem including land surface processes that ranges from a single processor to a maximum number of 16,384 processors. In the applied finite difference framework and for a fixed problem size per processor, this results in a maximum number of approximately 8 x 10(9) grid cells (unknowns). Detailed timing information shows that the applied simulation platform ParFlow exhibits excellent parallel efficiency. This study demonstrates that regional scale hydrologic simulations on the order of 10(3) km(2) are feasible at hydrologic resolution (similar to 10(0)-10(1) m laterally, 10(-2)-10(-1) m vertically) with reasonable computation times, which has been previously assumed to be an intractable computational problem. C1 [Kollet, Stefan J.; Simmer, Clemens] Univ Bonn, Inst Meteorol, D-53121 Bonn, Germany. [Maxwell, Reed M.] Colorado Sch Mines, Dept Geol & Geol Engn, Golden, CO 80401 USA. [Smith, Steve] Lawrence Livermore Natl Lab, Comp Applicat & Res Dept, Livermore, CA 94551 USA. [Vanderborght, Jan; Vereecken, Harry] Forschungszentrum Julich, ICG 4, D-52425 Julich, Germany. [Woodward, Carol S.] Lawrence Livermore Natl Lab, Ctr Appl Sci Comp, Livermore, CA 94551 USA. [Maxwell, Reed M.] Colorado Sch Mines, Int Groundwater Modeling Ctr, Golden, CO 80401 USA. RP Kollet, SJ (reprint author), Univ Bonn, Inst Meteorol, Huegel 20, D-53121 Bonn, Germany. EM stefan.kollet@uni-bonn.de; rmaxwell@mines.edu; cswoodward@llnl.gov; smith84@llnl.gov; j.vanderborght@fz-juelich.de; h.vereecken@fz-juelich.de; csimmer@uni-bonn.de RI Maxwell, Reed/D-7980-2013; Simmer, Clemens/M-4949-2013; Woodward, Carol/M-4008-2014; OI Maxwell, Reed/0000-0002-1364-4441; Simmer, Clemens/0000-0003-3001-8642; Vanderborght, Jan/0000-0001-7381-3211 FU Deutsche Forschungsgemeinschaft (DFG) [SFB/TR 32]; U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX The financial support by the SFB/TR 32 "Pattern in Soil-Vegetation-Atmosphere Systems: Monitoring, Modeling, and Data Assimilation" funded by the Deutsche Forschungsgemeinschaft (DFG) is gratefully acknowledged. We would also like to thank the John von Neumann Institute for Computing of the Forschungszentrum Julich and project JICG42, "Inverse Modeling of Terrestrial Systems," for providing the required compute time on JUGENE. Portions of this work were performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. We also would like to thank Praveen Kumar, John Selker, Eric Wood, Dennis Lettenmaier, and one anonymous reviewer for their constructive comments and suggestions that greatly improved the quality of the manuscript. NR 24 TC 78 Z9 78 U1 4 U2 27 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0043-1397 EI 1944-7973 J9 WATER RESOUR RES JI Water Resour. Res. PD APR 20 PY 2010 VL 46 AR W04201 DI 10.1029/2009WR008730 PG 7 WC Environmental Sciences; Limnology; Water Resources SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water Resources GA 587ZY UT WOS:000277036700001 ER PT J AU Armstrong, A Li, Q Lin, Y Talin, AA Wang, GT AF Armstrong, A. Li, Q. Lin, Y. Talin, A. A. Wang, G. T. TI GaN nanowire surface state observed using deep level optical spectroscopy SO APPLIED PHYSICS LETTERS LA English DT Article ID PHOTOCONDUCTIVITY; GROWTH AB Deep level defects in n-type GaN nanowires (NWs) with and without an epitaxially-grown AlGaN shell were compared using photoconductivity-mode deep level optical spectroscopy. Hole photoemission from a defect state located approximately 2.6 eV above the valence band was observed for GaN NWs but was not observed for AlGaN/GaN core-shell NWs, indicating that this deep level is associated with a GaN surface state. Identifying GaN NW surface states and developing an effective passivation mechanism is expected to aid in the understanding and improvement of GaN NW-based sensors and optoelectronics. (C) 2010 American Institute of Physics. [doi:10.1063/1.3404182] C1 [Armstrong, A.; Li, Q.; Lin, Y.; Wang, G. T.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Talin, A. A.] Sandia Natl Labs, Livermore, CA 94551 USA. RP Armstrong, A (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM aarmstr@sandia.gov RI Wang, George/C-9401-2009 OI Wang, George/0000-0001-9007-0173 FU Laboratory Directed Research and Development program at Sandia National Laboratories; U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering FX This work was supported by the Laboratory Directed Research and Development program at Sandia National Laboratories and by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering (development of DLOS measurement capabilities). Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Co., for the United States Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94 AL85000. NR 19 TC 35 Z9 35 U1 0 U2 36 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD APR 19 PY 2010 VL 96 IS 16 AR 163106 DI 10.1063/1.3404182 PG 3 WC Physics, Applied SC Physics GA 587UY UT WOS:000277020600048 ER PT J AU Deng, HX Li, JB Li, SS Xia, JB Walsh, A Wei, SH AF Deng, Hui-Xiong Li, Jingbo Li, Shu-Shen Xia, Jian-Bai Walsh, Aron Wei, Su-Huai TI Origin of antiferromagnetism in CoO: A density functional theory study SO APPLIED PHYSICS LETTERS LA English DT Article ID INITIO MOLECULAR-DYNAMICS; EXCHANGE; METALS AB We have investigated the origin of antiferromagnetism of CoO in the rocksalt structure using spin-polarized density functional theory calculations. We find that in the rocksalt structure, the superexchange interaction between the occupied and unoccupied e(g) states plays the dominant role, which leads to an antiferromagnetic ground state, but the system also has a strong direct exchange interaction between the partially occupied minority spin t(2g) states that leads to the unusual situation that the ferromagnetic phase is more stable than most antiferromagnetic configurations. (C) 2010 American Institute of Physics. [doi:10.1063/1.3402772] C1 [Deng, Hui-Xiong; Li, Jingbo; Li, Shu-Shen; Xia, Jian-Bai] Chinese Acad Sci, Inst Semicond, State Key Lab Superlattices & Microstruct, Beijing 100083, Peoples R China. [Walsh, Aron] UCL, Dept Chem, London WC1H 0AJ, England. [Wei, Su-Huai] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Deng, HX (reprint author), Chinese Acad Sci, Inst Semicond, State Key Lab Superlattices & Microstruct, POB 912, Beijing 100083, Peoples R China. EM jbli@semi.ac.cn; suhuai.wei@nrel.gov RI Walsh, Aron/A-7843-2008 OI Walsh, Aron/0000-0001-5460-7033 FU Chinese Academy of Sciences; National Basic Research Program of China (973 Program) [G2009CB929300]; National Natural Science foundation of China [60521001, 6077061]; U.S. DOE [DE-AC36-08GO28308] FX J.L. gratefully acknowledges financial support from "One-hundred Talent Plan" of the Chinese Academy of Sciences. This work is supported by the National Basic Research Program of China (973 Program) Grant No. G2009CB929300 and the National Natural Science foundation of China under Grant Nos. 60521001 and 6077061. The work at NREL is supported by the U.S. DOE under Contract No. DE-AC36-08GO28308. NR 25 TC 18 Z9 19 U1 2 U2 15 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD APR 19 PY 2010 VL 96 IS 16 AR 162508 DI 10.1063/1.3402772 PG 3 WC Physics, Applied SC Physics GA 587UY UT WOS:000277020600035 ER PT J AU Fraboni, B Scida, A Cavallini, A Cosseddu, P Bonfiglio, A Milita, S Nastasi, M AF Fraboni, B. Scida, A. Cavallini, A. Cosseddu, P. Bonfiglio, A. Milita, S. Nastasi, M. TI Spectroscopic investigation of the semiconductor molecular packing in fully operational organic thin-film transistors SO APPLIED PHYSICS LETTERS LA English DT Article ID EVAPORATED PENTACENE FILMS; FIELD-EFFECT TRANSISTORS; ELECTRIC-FIELD; MOBILITY AB We report on Photocurrent (PC) and optical absorption spectroscopy analyses of the electronic density of states (DOS) distribution around the band-edge of pentacene films of different thickness (from 50 to 300 nm). Both experimental methods allowed us to independently monitor the increase with increasing film thickness of the Davydov splitting of the first absorption band, correlated with modifications in the film molecular structure and packing when passing from a dominant "thin film" to a dominant "bulk" phase. We show how PC spectroscopy has the remarkable ability to detect the modification of the DOS distribution in a noninvasive way, thus allowing the study of fully operational organic thin film transistors. (C) 2010 American Institute of Physics. [doi:10.1063/1.3406123] C1 [Fraboni, B.; Scida, A.; Cavallini, A.] Univ Bologna, Dipartmento Fis, I-40127 Bologna, Italy. [Cosseddu, P.; Bonfiglio, A.] Univ Cagliari, Dipartimento Ingn Elettr & Elettron, I-09123 Cagliari, Italy. [Milita, S.] CNR IMM, I-40129 Bologna, Italy. [Nastasi, M.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Fraboni, B (reprint author), Univ Bologna, Dipartmento Fis, Viale Berti Pichat 6-2, I-40127 Bologna, Italy. EM beatrice.fraboni@unibo.it RI Fraboni, Beatrice/I-8356-2012; Bonfiglio, Annalisa/J-7232-2012; Milita, Silvia/A-6048-2015; OI Milita, Silvia/0000-0002-9612-2541; COSSEDDU, Piero/0000-0003-4896-504X FU U.S. Department of Energy, Office of Basic Energy Sciences user facility [DE-AC52-06NA25396] FX This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. Department of Energy, Office of Basic Energy Sciences user facility. Los Alamos National Laboratory, an affirmative action equal opportunity employer, is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U.S. Department of Energy under Contract No. DE-AC52-06NA25396. NR 27 TC 7 Z9 7 U1 0 U2 11 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD APR 19 PY 2010 VL 96 IS 16 AR 163302 DI 10.1063/1.3406123 PG 3 WC Physics, Applied SC Physics GA 587UY UT WOS:000277020600057 ER PT J AU Laroche, D Das Sarma, S Gervais, G Lilly, MP Reno, JL AF Laroche, D. Das Sarma, S. Gervais, G. Lilly, M. P. Reno, J. L. TI Scattering mechanism in modulation-doped shallow two-dimensional electron gases SO APPLIED PHYSICS LETTERS LA English DT Article ID HIGH-MOBILITY; HETEROSTRUCTURE; GAAS; DENSITY; GROWTH; TRANSPORT AB We report on a systematic investigation of the dominant scattering mechanism in shallow two-dimensional electron gases (2DEGs) formed in modulation-doped GaAs/Al(x)Ga(1-x)As heterostructures. The power-law exponent of the electron mobility versus density, mu proportional to n(alpha), is extracted as a function of the 2DEG's depth. When shallower than 130 nm from the surface, the power-law exponent of the 2DEG, as well as the mobility, drops from alpha similar or equal to 1.65 (130 nm deep) to alpha similar or equal to 1.3 (60 nm deep). Our results for shallow 2DEGs are consistent with theoretical expectations for scattering by remote dopants, in contrast to the mobility-limiting background charged impurities of deeper heterostructures. (C) 2010 American Institute of Physics. [doi:10.1063/1.3402765] C1 [Laroche, D.; Lilly, M. P.; Reno, J. L.] Sandia Natl Labs, Ctr Integrated Nanotechnol, Albuquerque, NM 87185 USA. [Laroche, D.; Gervais, G.] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada. [Das Sarma, S.] Univ Maryland, Condensed Matter Theory Ctr, Dept Phys, College Pk, MD 20742 USA. RP Laroche, D (reprint author), Sandia Natl Labs, Ctr Integrated Nanotechnol, POB 5800, Albuquerque, NM 87185 USA. EM laroched@physics.mcgill.ca RI Das Sarma, Sankar/B-2400-2009 OI Das Sarma, Sankar/0000-0002-0439-986X FU Natural Sciences and Engineering Research Council of Canada (NSERC) FX This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. Department of Energy, Office of Basic Energy Sciences user facility. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Co., for the United States Department of Energy under Contract No. DE-AC04-94AL85000. It was also supported by the Natural Sciences and Engineering Research Council of Canada (NSERC). NR 19 TC 15 Z9 15 U1 0 U2 8 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD APR 19 PY 2010 VL 96 IS 16 AR 162112 DI 10.1063/1.3402765 PG 3 WC Physics, Applied SC Physics GA 587UY UT WOS:000277020600027 ER PT J AU Li, W Auciello, O Premnath, RN Kabius, B AF Li, Wei Auciello, Orlando Premnath, Ramesh N. Kabius, Bernd TI Giant dielectric constant dominated by Maxwell-Wagner relaxation in Al2O3/TiO2 nanolaminates synthesized by atomic layer deposition SO APPLIED PHYSICS LETTERS LA English DT Article ID THIN-FILMS; CACU3TI4O12; CAPACITOR; CERAMICS; OXIDE; DRAM AB Nanolaminates consisting of Al2O3 and TiO2 oxide sublayers were synthesized by using atomic layer deposition to produce individual layers with atomic scale thickness control. The sublayer thicknesses were kept constant for each multilayer structure, and were changed from 50 to 0.2 nm for a series of different samples. Giant dielectric constant (similar to 1000) was observed when the sublayer thickness is less than 0.5 nm, which is significantly larger than that of Al2O3 and TiO2 dielectrics. Detailed investigation revealed that the observed giant dielectric constant is originated from the Maxwell-Wagner type dielectric relaxation. (C) 2010 American Institute of Physics. [doi:10.1063/1.3413961] C1 [Li, Wei; Auciello, Orlando; Premnath, Ramesh N.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Auciello, Orlando] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Premnath, Ramesh N.] Univ Puerto Rico, Inst Funct Nanomat, San Juan, PR 00931 USA. [Kabius, Bernd] Argonne Natl Lab, Ctr Electron Microscopy, Argonne, IL 60439 USA. RP Li, W (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM whilylee@gmail.com; auciello@anl.gov FU U.S. Department of Energy, BES-Materials Sciences [DE-AC02-06CH11357] FX The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory "Argonne." This work was supported by U.S. Department of Energy, BES-Materials Sciences, under Contract No. DE-AC02-06CH11357. The electron microscopy was accomplished at the Electron Microscopy Center for Materials Research at Argonne National Laboratory. NR 22 TC 29 Z9 29 U1 3 U2 28 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD APR 19 PY 2010 VL 96 IS 16 AR 162907 DI 10.1063/1.3413961 PG 3 WC Physics, Applied SC Physics GA 587UY UT WOS:000277020600042 ER PT J AU Nath, R Hong, S Klug, JA Imre, A Bedzyk, MJ Katiyar, RS Auciello, O AF Nath, Ramesh Hong, Seungbum Klug, Jeffrey A. Imre, Alexandra Bedzyk, Michael J. Katiyar, Ram S. Auciello, Orlando TI Effects of cantilever buckling on vector piezoresponse force microscopy imaging of ferroelectric domains in BiFeO3 nanostructures SO APPLIED PHYSICS LETTERS LA English DT Article AB Systematic studies are presented on the effects of cantilever buckling in vector piezoresponse force microscopy (V-PFM) imaging of polarization domains in thin-film based (001)-oriented BiFeO3 nanostructures, as observed through the coupling of out-of-plane and in-plane PFM images. This effect is a strong function of the laser spot position on the cantilever, being strongest at the free end, and insignificant at 60% of the cantilever length from the pivot point. This finding provides a unique approach to V-PFM imaging of ferroelectric polarization domains, yielding three dimensional PFM images without sample rotation in the plane. (C) 2010 American Institute of Physics. [doi:10.1063/1.3327831] C1 [Nath, Ramesh; Hong, Seungbum; Klug, Jeffrey A.; Bedzyk, Michael J.; Auciello, Orlando] Argonne Natl Lab, Div Mat Sci, Lemont, IL 60439 USA. [Nath, Ramesh; Katiyar, Ram S.] Univ Puerto Rico, Inst Funct Nanomat, San Juan, PR 00931 USA. [Klug, Jeffrey A.; Bedzyk, Michael J.] Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA. [Imre, Alexandra; Auciello, Orlando] Argonne Natl Lab, Ctr Nanoscale Mat, Lemont, IL 60439 USA. [Bedzyk, Michael J.] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA. RP Nath, R (reprint author), Argonne Natl Lab, Div Mat Sci, Lemont, IL 60439 USA. EM premnath@zimbra.msd.anl.gov RI Joshi-Imre, Alexandra/A-2912-2010; Bedzyk, Michael/B-7503-2009; Hong, Seungbum/B-7708-2009; Klug, Jeffrey/A-3653-2013; Bedzyk, Michael/K-6903-2013 OI Joshi-Imre, Alexandra/0000-0002-4271-1623; Hong, Seungbum/0000-0002-2667-1983; FU Institute of Functional Nanomaterials, University of Puerto Rico [NSF-RII 07-01-525]; NU-MRSEC [NSF-DMR-0520513] FX The experiments were performed at Materials Science Division and Center for Nanoscale Materials at Argonne National Laboratory, a U.S. Department of Energy laboratory, operated under Contract No. DE-AC02-06CH11357. R. Nath acknowledges the support from the Institute of Functional Nanomaterials, University of Puerto Rico under the grant NSF-RII 07-01-525. M. Bedzyk acknowledges NU-MRSEC support under NSF-DMR-0520513. NR 15 TC 25 Z9 25 U1 1 U2 21 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD APR 19 PY 2010 VL 96 IS 16 AR 163101 DI 10.1063/1.3327831 PG 3 WC Physics, Applied SC Physics GA 587UY UT WOS:000277020600043 ER PT J AU Shi, X Cho, JY Salvador, JR Yang, JH Wang, H AF Shi, Xun Cho, Jung Y. Salvador, James R. Yang, Jihui Wang, Hsin TI Thermoelectric properties of polycrystalline In4Se3 and In4Te3 SO APPLIED PHYSICS LETTERS LA English DT Article ID PERFORMANCE; EFFICIENCY; DISTORTION AB High thermoelectric performance of a single crystal layered compound In4Se3 was reported recently. We present here an electrical and thermal transport property study over a wide temperature range for polycrystalline samples of In4Se3 and In4Te3. Our data demonstrate that these materials are lightly doped semiconductors, leading to large thermopower and resistivity. Very low thermal conductivity, below 1 W/m K, is observed. The power factors for In4Se3 and In4Te3 are much smaller when compared with state-of-the-art thermoelectric materials. This combined with the very low thermal conductivity results in the maximum ZT value of less than 0.6 at 700 K for In4Se3. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3389494] C1 [Yang, Jihui] GM R&D Ctr, Electrochem Energy Res Lab, Warren, MI 48090 USA. [Shi, Xun; Cho, Jung Y.] Optimal Inc, Plymouth, MI 48170 USA. [Salvador, James R.] GM R&D Ctr, Chem Sci & Mat Syst Lab, Warren, MI 48090 USA. [Wang, Hsin] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Yang, JH (reprint author), GM R&D Ctr, Electrochem Energy Res Lab, Warren, MI 48090 USA. EM jihui.yang@gm.com RI Yang, Jihui/A-3109-2009; shi, xun/B-4499-2009; Wang, Hsin/A-1942-2013 OI shi, xun/0000-0002-3806-0303; Wang, Hsin/0000-0003-2426-9867 FU DOE [DE-FC26-04NT42278]; Assistant Secretary for Energy Efficiency and Renewable Energy; Department of Energy [DEAC05000OR22725] FX X.S., J.R.S., J.Y.C., and J.Y. would like to thank Dr. J.F. Herbst and Dr. M. W. Verbrugge for continuous support and encouragement. This work was supported by GM and by DOE under corporate Agreement No. DE-FC26-04NT42278, by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Transportation Technologies as part of the High Temperature Materials Laboratory User Program at Oak Ridge National Laboratory managed by the UT-Battelle LLC, for the Department of Energy under Contract No. DEAC05000OR22725. NR 16 TC 42 Z9 42 U1 5 U2 51 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD APR 19 PY 2010 VL 96 IS 16 AR 162108 DI 10.1063/1.3389494 PG 3 WC Physics, Applied SC Physics GA 587UY UT WOS:000277020600023 ER PT J AU Smeets, PJ Woertink, JS Sels, BF Solomon, EI Schoonheydt, RA AF Smeets, Pieter J. Woertink, Julia S. Sels, Bert F. Solomon, Edward I. Schoonheydt, Robert A. TI Transition-Metal Ions in Zeolites: Coordination and Activation of Oxygen SO INORGANIC CHEMISTRY LA English DT Article ID DIFFUSE-REFLECTANCE SPECTROSCOPY; SELECTIVE CATALYTIC-REDUCTION; X-RAY-ABSORPTION; PENTASIL-CONTAINING ZEOLITES; EXCHANGED ZSM-5 ZEOLITES; ELECTRON-PARAMAGNETIC-RESONANCE; INDUCED INFRARED-ABSORPTION; CHEMICAL-VAPOR-DEPOSITION; VANADIUM-OXIDE CATALYSTS; HIGHLY-ACTIVE CATALYSTS AB Zeolites containing transition-metal ions (TMIs) often show promising activity as heterogeneous catalysts in pollution abatement and selective oxidation reactions. In this paper, two aspects of research on the TMIs Cu, Co, and Fe in zeolites are discussed: (i) coordination to the lattice and (ii) activated oxygen species. At low loading, TMIs preferably occupy exchange sites in six-membered oxygen rings (6MR), where the TMIs preferentially coordinate with the O atoms of Al tetrahedra. High TMI loadings result in a variety of TMI species formed at the zeolite surface. Removal of the extralattice O atoms during high-temperature pretreatments can result in autoreduction. Oxidation of reduced TMI sites often results in the formation of highly reactive oxygen species. In Cu-ZSM-5, calcination with O-2 results in the formation of a species, which was found to be a crucial intermediate in both the direct decomposition of NO and N2O and the selective oxidation of methane into methanol. An activated oxygen species, called alpha-O, is formed in Fe-ZSM5 and reported to be the active site in the partial oxidation of methane and benzene into methanol and phenol, respectively. However, this reactive alpha-O can only be formed with N2O, not with O-2. O-2-activated Co intermediates in faujasite (FAU) zeolites can selectively oxidize a-pinene and epoxidize styrene. In Co-FAU, Co-III superoxo and peroxo complexes are suggested to be the active cores, whereas in Cu and Fe-ZSM-5, various monomeric and dimeric sites have been proposed, but no consensus has been obtained. Very recently, the active site in Cu-ZSM-5 was identified as a bent [Cu-O-Cu](2+) core (Proc. Natl. Acad. Sci. U.S.A. 2009, 106,18908-18913). Overall, O-2 activation depends on the interplay of structural factors such as the type of zeolite and sizes of the channels and cages and chemical factors such as the Si/Al ratio and the nature, charge, and distribution of the charge-balancing cations. The presence of several different TMI sites hinders the direct study of the spectroscopic features of the active site. Spectroscopic techniques capable of selectively probing these sites, even if they only constitute a minor fraction of the total amount of TMI sites, are thus required. Fundamental knowledge of the geometric and electronic structures of the reactive active site can help in the design of novel selective oxidation catalysts. C1 [Smeets, Pieter J.; Sels, Bert F.; Schoonheydt, Robert A.] Katholieke Univ Leuven, Ctr Surface Chem & Catalysis, B-3001 Louvain, Belgium. [Smeets, Pieter J.; Woertink, Julia S.; Solomon, Edward I.] Stanford Univ, Dept Chem, Stanford, CA 94305 USA. [Solomon, Edward I.] Stanford Synchrotron Radiat Lab, Menlo Pk, CA 94025 USA. RP Schoonheydt, RA (reprint author), Katholieke Univ Leuven, Ctr Surface Chem & Catalysis, Kasteelpk Arenberg 23, B-3001 Louvain, Belgium. EM robert.schooheydt@biw.kuleuven.be FU IWT; KU Leuven; GOA; Flemish Government; NIH [DK-31450] FX P.J.S acknowledges IWT and KU Leuven for graduate and postdoctoral fellowships, and J.S.W. acknowledges the NIH for a traineeship. This research was supported by the GOA and the Long Term Structural Funding-Methusalem Funding by the Flemish Government (to R.A.S. and B.F.S.) and by NIH Grant DK-31450 (to E.I.S.). NR 157 TC 61 Z9 61 U1 8 U2 162 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 EI 1520-510X J9 INORG CHEM JI Inorg. Chem. PD APR 19 PY 2010 VL 49 IS 8 BP 3573 EP 3583 DI 10.1021/ic901814f PG 11 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 581WS UT WOS:000276556900004 PM 20380459 ER PT J AU Bakac, A AF Bakac, Andreja TI Oxygen Activation with Transition-Metal Complexes in Aqueous Solution SO INORGANIC CHEMISTRY LA English DT Article ID HYDROGEN-ATOM TRANSFER; DIOXYGEN ACTIVATION; SUPEROXOCHROMIUM(III) ION; ACYLPEROXYL RADICALS; MOLECULAR-OXYGEN; NONHEME IRON; CROSS-DISPROPORTIONATION; MACROCYCLIC COMPLEXES; HYDROPEROXO COMPLEXES; INTRINSIC BARRIERS AB Coordination to transition-metal complexes changes both the thermodynamics and kinetics of oxygen reduction. Some of the intermediates (superoxo, hydroperoxo, and oxo species) are close analogues of organic oxygen-centered radicals and peroxides (ROO(center dot), ROOH, and RO(center dot)). Metal-based intermediates are typically less reactive, but more persistent, than organic radicals, which makes the two types of intermediates similarly effective in their reactions with various substrates. The self-exchange rate constant for hydrogen-atom transfer for the couples Cr(aq)OO(2+)/Cr(aq)OOH(2+) and L(1)(H(2)O)RhOO(2+)/L(1)(H(2)O)RhOOH(2+) was estimated to be 10(1 +/- 1) M(-1) s(-1). The use of this value in the simplified Marcus equation for the Cr(aq)O(2+)/Cr(aq)OOH(2+) cross reaction provided an upper limit k(CrO,CrOH) <= 10((-2 +/- 1)) M(-1) s(-1) for Cr(aq)O(2+)/Cr(aq)OH(2+) self-exchange. Even though superoxo complexes react very slowly in bimolecular self-reactions, extremely fast cross reactions with organic counterparts, i.e., acylperoxyl radicals, have been observed. Many of the intermediates generated by the interaction of O(2) with reduced metal complexes can also be accessed by alternative routes, both thermal and photochemical. C1 [Bakac, Andreja] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Bakac, Andreja] Iowa State Univ, Dept Chem, Ames, IA 50011 USA. RP Bakac, A (reprint author), Iowa State Univ, Ames Lab, Ames, IA 50011 USA. EM bakac@ameslab.gov FU U.S. Department of Energy [DE-AC02-07CH11358]; National Science Foundation [CHE 0602183] FX The invaluable contribution by my collaborators to the work cited in the references is gratefully acknowledged. Financial support was provided by the U.S. Department of Energy (Contract DE-AC02-07CH11358) and the National Science Foundation (Grant CHE 0602183). NR 87 TC 24 Z9 24 U1 1 U2 22 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 J9 INORG CHEM JI Inorg. Chem. PD APR 19 PY 2010 VL 49 IS 8 BP 3584 EP 3593 DI 10.1021/ic9015405 PG 10 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 581WS UT WOS:000276556900005 PM 20380460 ER PT J AU Halime, Z Kieber-Emmons, MT Qayyum, MF Mondal, B Gandhi, T Puiu, SC Chufan, EE Sarjeant, AAN Hodgson, KO Hedman, B Solomon, EI Karlin, KD AF Halime, Zakaria Kieber-Emmons, Matthew T. Qayyum, Munzarin F. Mondal, Biplab Gandhi, Thirumanavelan Puiu, Simona C. Chufan, Eduardo E. Sarjeant, Amy A. N. Hodgson, Keith O. Hedman, Britt Solomon, Edward I. Karlin, Kenneth D. TI Heme-Copper-Dioxygen Complexes: Toward Understanding Ligand-Environmental Effects on the Coordination Geometry, Electronic Structure, and Reactivity SO INORGANIC CHEMISTRY LA English DT Article ID CYTOCHROME-C-OXIDASE; O-O BOND; COPPER/DIOXYGEN ADDUCT FORMATION; MU-OXO COMPLEXES; ACTIVE-SITE; FUNCTIONAL-MODEL; PARACOCCUS-DENITRIFICANS; SPECTROSCOPIC PROPERTIES; SUBSTRATE OXIDATION; CRYSTAL-STRUCTURE AB The nature of the ligand is an important aspect of controlling the structure and reactivity in coordination chemistry. In connection with our study of heme copper oxygen reactivity relevant to cytochrome c oxidase dioxygen-reduction chemistry, we compare the molecular and electronic structures of two high-spin heme-peroxo-copper [Fe(III)O(2)(2-)Cu(II)](+) complexes containing N(4) tetradentate (1) or N(3) tridentate (2) copper ligands. Combining previously reported and new resonance Raman and EXAFS data coupled to density functional theory calculations, we report a geometric structure and more complete electronic description of the high-spin heme-peroxo-copper complexes 1 and 2, which establish mu-(O(2)(2-)) side-on to the Fe(III) and end-on to Cu(II) (mu-eta(2):eta(1)) binding or the complex 1 but side-on/side-on (mu-eta(2):eta(2)) mu-peroxo coordination for the complex 2. We also compare and summarize the differences and similarities of these two complexes in their reactivity toward CO, PPh(3), acid, and phenols. The comparison of a new X-ray structure of mu-oxo complex 2a with the previously reported 1a X-ray structure, two thermal decomposition products respectively of 2 and 1, reveals a considerable difference in the Fe-O-Cu angle between the two mu-oxo complexes (angle Fe-O-Cu = 178.2 degrees in 1a and angle Fe-O-Cu = 149.5 degrees in 2a). The reaction of 2 with 1 equiv of an exogenous nitrogen-donor axial base leads to the formation of a distinctive low-temperature-stable, low-spin heme dioxygen copper complex (2b), but under the same conditions, the addition of an axial base to 1 leads to the dissociation of the heme-peroxo-copper assembly and the release of O(2). 2b reacts with phenols performing H-atom (e(-) + H(+)) abstraction resulting in O-O bond cleavage and the formation of high-valent ferryl [Fe(IV)=O] complex (2c). The nature of 2c was confirmed by a comparison of its spectroscopic features and reactivity with those of an independently prepared ferryl complex. The phenoxyl radical generated by the H-atom abstraction was either (1) directly detected by electron paramagnetic resonance spectroscopy using phenols that produce stable radicals or (2) indirectly detected by the coupling product of two phenoxyl radicals. C1 [Kieber-Emmons, Matthew T.; Qayyum, Munzarin F.; Hodgson, Keith O.; Solomon, Edward I.] Stanford Univ, Dept Chem, Stanford, CA 94305 USA. [Hodgson, Keith O.; Hedman, Britt; Solomon, Edward I.] Stanford Univ, Stanford Synchrotron Radiat Lightsource, SLAC, Stanford, CA 94309 USA. [Halime, Zakaria; Mondal, Biplab; Gandhi, Thirumanavelan; Puiu, Simona C.; Chufan, Eduardo E.; Sarjeant, Amy A. N.; Karlin, Kenneth D.] Johns Hopkins Univ, Dept Chem, Baltimore, MD 21218 USA. [Karlin, Kenneth D.] Ewha Womans Univ, Dept Bioinspired Sci, Seoul 120750, South Korea. RP Solomon, EI (reprint author), Stanford Univ, Dept Chem, Stanford, CA 94305 USA. EM edward.solomon@stanford.edu; karlin@jhu.edu RI Kieber-Emmons, Matthew/B-2041-2009 FU National Institutes of Health (NIH) [DK031450, RR-001208, GM 60353]; Bioinformatics Center of the University of Arkansas for Medical Sciences [NIH P20 RR-16460]; National Science Foundation [TG-CHE080054N]; WCU [R31-2008-000-10010-0]; Department of Energy, Office of Basic Energy Sciences; National Institutes of Health, NCRR [5 P41 RR001209]; Department of Energy, Office of Biological and Environmental Research FX These studies were supported, in part, by the National Institutes of Health (NIH; Grant DK031450 to E.I.S. and Grant RR-001208 to K.O.H.). Computational resources used in these studies were provided, in part, by the Bioinformatics Center of the University of Arkansas for Medical Sciences [NIH P20 RR-16460 from the IDeA Networks of Biomedical Research Excellence Program of the National Center for Research Resources (NCRR)] and, in part, by the National Science Foundation through TeraGrid resources provided by the NCSA (Grant TG-CHE080054N). K.D.K. acknowledges support From the NIH (Grant GM 60353) and WCU Program R31-2008-000-10010-0. The XAS data were measured at SSRL, the operations of which arc funded by the Department of Energy, Office of Basic Energy Sciences. The SSRL Structural Molecular Biology program is supported by the National Institutes of Health, NCRR, Biomedical Technology Program, and by the Department of Energy, Office of Biological and Environmental Research. This publication was made possible by Grant 5 P41 RR001209 from the NCRR, a component of the NIH. Its contents are solely the responsibility of the authors and do not necessarily represent the official view of NCRR or NIH. NR 92 TC 30 Z9 30 U1 2 U2 22 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 J9 INORG CHEM JI Inorg. Chem. PD APR 19 PY 2010 VL 49 IS 8 BP 3629 EP 3645 DI 10.1021/ic9020993 PG 17 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 581WS UT WOS:000276556900010 PM 20380465 ER PT J AU Michelini, MD Marcalo, J Russo, N Gibson, JK AF Michelini, Maria del Carmen Marcalo, Joaquim Russo, Nino Gibson, John K. TI Gas-Phase Reactions of Uranate Ions, UO2-, UO3-, UO4-, and UO4H-, with Methanol: a Convergence of Experiment and Theory SO INORGANIC CHEMISTRY LA English DT Article ID OXIDE CLUSTER CATIONS; GENERALIZED GRADIENT APPROXIMATION; DENSITY-FUNCTIONAL THEORY; UO2(111) SINGLE-CRYSTAL; ELECTRONIC-STRUCTURE; AB-INITIO; ORGANOMETALLIC CHEMISTRY; CATALYTIC ACTIVATION; MASS-SPECTROMETRY; PRIMARY ALCOHOLS AB Bimolecular reactions of uranium oxide molecular anions with methanol have been studied experimentally, by Fourier transform ion cyclotron resonance mass spectrometry, and computationally, by density functional theory (DFT). The primary goals were to provide fundamental insights into mechanistic and structural details of model reactions of uranium oxides with organics, and to examine the validity of theoretical modeling of these types of reactions. The ions UO3-, UO4-, and UO4H- each reacted with methanol to give a singular product; the primary products each exhibited sequential reactions with two additional methanol molecules to again give singular products. The observed reactions were elimination of water, formaldehyde, or hydrogen, and in one case addition of a methanol molecule. The potential energy profiles were computed for each reaction, and isotopic labeling experiments were performed to probe the validity of the computed mechanisms and structures-in each case where the experiments could be compared with the theory there was concurrence, clearly establishing the efficacy of the employed DFT methodologies for these and related reaction systems. The OFT results were furthermore in accord with the surprisingly inert nature of UO2-. The results provide a basis to understand mechanisms of key reactions of uranium oxides with organics, and a foundation to extend DFT methodologies to more complex actinide systems which are not amenable to such direct experimental studies. C1 [Michelini, Maria del Carmen; Russo, Nino] Univ Calabria, Dipartimento Chim, I-87030 Arcavacata Di Rende, Italy. [Marcalo, Joaquim] Inst Tecnol & Nucl, Unidade Ciencias Quim & Radiofarmaceut, P-2686953 Sacavem, Portugal. [Gibson, John K.] Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Michelini, MD (reprint author), Univ Calabria, Dipartimento Chim, Via P Bucci,Cubo 14 C, I-87030 Arcavacata Di Rende, Italy. EM mc.michelini@unical.it; jkgibson@lbl.gov RI Marcalo, Joaquim/J-5476-2013; PTMS, RNEM/C-1589-2014 OI Marcalo, Joaquim/0000-0001-7580-057X; FU Universita degli Studi della Calabria [233482]; Fundacao para a Ciencia e a Tecnologia (FCT) [PPCDT/QUI/58222/2004]; U.S. Department of Energy at LBNL [DE-AC02-05CH11231] FX This work was supported by the Universita degli Studi della Calabria and by FP7 project HYPOMAP (project n. 233482); by Fundacao para a Ciencia e a Tecnologia (FCT) under contract PPCDT/QUI/58222/2004; and by the Director, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences of the U.S. Department of Energy at LBNL, under Contract No. DE-AC02-05CH11231. M.C.M. is grateful for the opportunity to be a Guest Scientist M the Chemical Sciences Division at LBNL. NR 110 TC 15 Z9 15 U1 4 U2 46 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 EI 1520-510X J9 INORG CHEM JI Inorg. Chem. PD APR 19 PY 2010 VL 49 IS 8 BP 3836 EP 3850 DI 10.1021/ic902550g PG 15 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 581WS UT WOS:000276556900039 ER PT J AU Luedtke, AT Autrey, T AF Luedtke, Avery T. Autrey, Tom TI Hydrogen Release Studies of Alkali Metal Amidoboranes SO INORGANIC CHEMISTRY LA English DT Article ID AMMONIA-BORANE; THERMAL-DECOMPOSITION; STORAGE MATERIAL; LITHIUM HYDRIDE; DEHYDROGENATION; PHASE; NMR AB A series of metal amidoboranes LiNH(2)BH(3) (LAB), NaNH(2)BH(3) (SAB), LiNH(Me)BH(3) (LMAB), NaNH(Me)BH(3) (SMAB), KNH(Me)BH(3) (PMAB), and KNH((t)Bu)BH(3) (PBAB) were synthesized by solution phase methods, and the thermal release of H(2) in the solid state was studied. The mechanism of hydrogen release from metal amidoboranes, a metal ion assisted hydride transfer, is very different than the mechanism of hydrogen release from the parent compound ammonia borane (AB). On the basis of the observed trends in reaction rates of H > Me > (t)Bu, K > Na > Li, and the kinetic isotope effect, the mechanism of hydrogen release from MAB compounds was found to proceed through a bimolecular mechanism involving the intermediacy of a MH (M = Li, Na, or K). The non-volatile products formed from MABs are significantly different than the products formed after hydrogen release from AB. The boron containing products resulting from the release of 1 equiv of hydrogen from the metal amidoboranes were characterized by MAS (11)B NMR spectroscopy and found to contain both BH(3) and sp(2) hybridized BH groups, consistent with the general structure MN(R)=BHN(R)MBH(3). C1 [Luedtke, Avery T.; Autrey, Tom] Pacific NW Natl Lab, Richland, WA 99354 USA. RP Autrey, T (reprint author), Pacific NW Natl Lab, POB 999,MSIN K2-57, Richland, WA 99354 USA. EM tom.autrey@pnl.gov FU U.S. Department of Energy Office of Energy Efficiency; Renewable Energy as part of the Chemical Hydrogen Storage CoE at Pacific Northwest National Laboratory (PNNL); Department of Energy's Office of Biological and Environmental Research located at PNNL FX This work was funded by the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy as part of the Chemical Hydrogen Storage CoE at Pacific Northwest National Laboratory (PNNL). PNNL is operated for the U.S. DOE by Battelle. MAS NMR studies were performed using EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research located at PNNL. We thank our IPHE colleagues Drs. Mark Bowden (IRL), Bill David (RA L), Ping Chen (DICP), and Tony Burrell (LANL) for useful discussion. NR 29 TC 74 Z9 75 U1 3 U2 21 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 J9 INORG CHEM JI Inorg. Chem. PD APR 19 PY 2010 VL 49 IS 8 BP 3905 EP 3910 DI 10.1021/ic100119m PG 6 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 581WS UT WOS:000276556900046 PM 20232793 ER PT J AU Wilson, AD Miller, AJM DuBois, DL Labinger, JA Bercaw, JE AF Wilson, Aaron D. Miller, Alexander J. M. DuBois, Daniel L. Labinger, Jay A. Bercaw, John E. TI Thermodynamic Studies of [H2Rh(diphosphine)(2)](+) and [HRh(diphosphine)(2)(CH3CN)](2+) Complexes in Acetonitrile SO INORGANIC CHEMISTRY LA English DT Article ID HYDRIDE DONOR ABILITIES; DIPHOSPHINE CATALYZED HYDROFORMYLATION; TRANSITION-METAL HYDRIDES; BITE ANGLE; TRITYL CATION; REDUCTIVE ELIMINATION; RHODIUM COMPLEXES; HYDROGEN; BOND; PHOSPHINE AB Thermodynamic studies of a series of [H2Rh(PP)(2)](+) and [HRh(PP)(2)(CH3CN)](2+) complexes have been carried out in acetonitrile. Seven different diphosphine (PP) ligands were selected to allow variation of the electronic properties of the ligand substituents, the cone angles, and the natural bite angles (NBAs). Oxidative addition of H-2 to [Rh(PP)(2)](+) complexes is favored by diphosphine ligands with large NBAs, small cone angles, and electron donating substituents, with the NBA being the dominant factor. Large pK(a) values for [HRh(PP)(2)(CH3CN)](2+) complexes are favored by small ligand cone angles, small NBAs, and electron donating substituents with the cone angles playing a major role. The hydride donor abilities of [H2Rh(PP)(2)](+) complexes increase as the NBAs decrease, the cone angles decrease, and the electron donor abilities of the substituents increase. These results indicate that if solvent coordination is involved in hydride transfer or proton transfer reactions, the observed trends can be understood in terms of a combination of two different steric effects, NBAs and cone angles, and electron-donor effects of the ligand substituents. C1 [DuBois, Daniel L.] Pacific NW Natl Lab, Div Chem & Mat Sci, Richland, WA 99352 USA. [Wilson, Aaron D.; Miller, Alexander J. M.; Labinger, Jay A.; Bercaw, John E.] CALTECH, Arnold & Mabel Beckman Labs Chem Synth, Pasadena, CA 91125 USA. RP DuBois, DL (reprint author), Pacific NW Natl Lab, Div Chem & Mat Sci, Richland, WA 99352 USA. EM daniel.dubois@pnl.gov; jal@caltech.edu; bercaw@caltech.edu RI Wilson, Aaron/C-4364-2008 OI Wilson, Aaron/0000-0001-5865-6537 FU BP through the Methane Conversion Cooperative (MC); Office or Basic Energy Sciences, Division of Chemical Sciences; Biosciences and Geosciences of the Department of Energy; National Science Foundation FX This research was funded by BP through the Methane Conversion Cooperative (MC). D. L. DuBois would like to acknowledge the support of the Chemical Sciences program of the Office or Basic Energy Sciences, Division of Chemical Sciences. Biosciences and Geosciences of the Department of Energy and by the National Science Foundation. The Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy. NR 57 TC 22 Z9 22 U1 2 U2 13 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 J9 INORG CHEM JI Inorg. Chem. PD APR 19 PY 2010 VL 49 IS 8 BP 3918 EP 3926 DI 10.1021/ic100117y PG 9 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 581WS UT WOS:000276556900048 PM 20334390 ER PT J AU Brodsky, SJ Pasquini, B Xiao, BW Yuan, F AF Brodsky, Stanley J. Pasquini, Barbara Xiao, Bo-Wen Yuan, Feng TI Phases of augmented hadronic light-front wave functions SO PHYSICS LETTERS B LA English DT Article DE QCD; Lift-front wave function; Single spin asymmetry ID FINAL-STATE INTERACTIONS; DRELL-YAN; PARTON DISTRIBUTIONS; SPIN ASYMMETRIES; GAUGE AB It is an important question whether the final/initial state gluonic interactions which lead to naive-time-reversal-odd single-spin asymmetries and diffraction at leading twist cats be associated in a definite way wills the light-front wave function hadronic eigensolutions of QCD. We use light-front time-ordered perturbation theory at the lowest nontrivial order to obtain augmented light-front wave functions which contain an imaginary phase which depends on the choice of advanced or retarded boundary condition for the gauge potential its light-cone gauge. We apply this formalism to the wave functions of the valence Pock states of nucleons and pions, and show how this illuminates the factorization properties of naive-time-reversal-odd transverse momentum dependent observables which arise from rescattering. In particular, one calculates the identical leading-twist Sivers function from the overlap of augmented light-front wave functions that one obtains from explicit calculations of the single-spits asymmetry in semi-inclusive deep inelastic lepton-polarized nucleon scattering where the required phases come from the final-state rescattering of the struck quark with the nucleon spectators. (C) 2010 Elsevier B.V. All rights reserved. C1 [Xiao, Bo-Wen; Yuan, Feng] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, Berkeley, CA 94720 USA. [Brodsky, Stanley J.] Stanford Univ, Stanford Linear Accelerator Ctr, Natl Accelerator Lab, Stanford, CA 94309 USA. [Pasquini, Barbara] Univ Pavia, Dipartimento Fis Nucl & Teor, I-27100 Pavia, Italy. [Pasquini, Barbara] Ist Nazl Fis Nucl, Sez Pavia, Milan, Italy. [Yuan, Feng] Brookhaven Natl Lab, RIKEN BNL Res Ctr, Upton, NY 11973 USA. RP Yuan, F (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM sjbth@slac.stanford.edu; Barbara.Pasquini@pv.infn.it; bxiao@lbl.gov; fyuan@lbl.gov RI Yuan, Feng/N-4175-2013; OI Pasquini, Barbara/0000-0001-8433-5649 FU US Department of Energy [DE-AC02-05CH11231, DE-AC02-76SF00515, DE-AC02-98CH10886]; Research Infrastructure Integrating Activity "Study of Strongly Interacting Matter" [227431]; RIKEN, Brookhaven National Laboratory FX This work was supported in part by the US Department of Energy under contracts DE-AC02-05CH11231 and DE-AC02-76SF00515, and by the Research Infrastructure Integrating Activity "Study of Strongly Interacting Matter" (acronym HadronPhysics2, Grant Agreement No. 227431) under the Seventh Framework Programme of the European Community. We are grateful to RIKEN, Brookhaven National Laboratory and the US Department of Energy (contract number DE-AC02-98CH10886) for providing the facilities essential for the completion of this work. SLAC-PUB-13874. NR 22 TC 20 Z9 20 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 J9 PHYS LETT B JI Phys. Lett. B PD APR 19 PY 2010 VL 687 IS 4-5 BP 327 EP 330 DI 10.1016/j.physletb.2010.03.049 PG 4 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 590SH UT WOS:000277247200010 ER PT J AU Johnson, RS Cicotte, KN Mahoney, PJ Tuttle, BA Dirk, SM AF Johnson, Ross S. Cicotte, Kirsten N. Mahoney, Patrick J. Tuttle, Bruce A. Dirk, Shawn M. TI Thermally Induced Failure of Polymer Dielectrics SO ADVANCED MATERIALS LA English DT Article ID LIGHT-EMITTING-DIODES; CHLORINE PRECURSOR ROUTE; POLY(P-PHENYLENE VINYLENE); CONJUGATED POLYMERS; SOLAR-CELLS; ELECTROLUMINESCENCE; CONDUCTIVITY; DERIVATIVES; CHEMISTRY AB Halogen precursor polymers to poly[(2,3-diphenyl-p-phenylene)vinylene] (DP-PPV) are examined for use as advanced capacitor dielectrics. The polymer is demonstrated to function as a good dielectric until it reaches a set temperature determined by the stability of the leaving groups. Conjugation of the polymer backbone at high temperature effectively disables the capacitor, providing a 'built-in' safety mechanism for electronic devices. C1 [Johnson, Ross S.; Cicotte, Kirsten N.; Dirk, Shawn M.] Sandia Natl Labs, Organ Mat Dept, Albuquerque, NM 87185 USA. [Mahoney, Patrick J.; Tuttle, Bruce A.] Sandia Natl Labs, Elect & Nanostruct Mat Dept, Albuquerque, NM 87185 USA. RP Dirk, SM (reprint author), Sandia Natl Labs, Organ Mat Dept, POB 5800, Albuquerque, NM 87185 USA. EM smdirk@sandia.gov FU Sandia National Laboratories; United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX We would like to thank Michael Brumbach for assistance with XPS. This work was supported by the Laboratory Directed Research and Development program at Sandia National Laboratories. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. NR 22 TC 3 Z9 3 U1 0 U2 14 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 0935-9648 J9 ADV MATER JI Adv. Mater. PD APR 18 PY 2010 VL 22 IS 15 BP 1750 EP + DI 10.1002/adma.200903617 PG 5 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 592HQ UT WOS:000277369600009 PM 20496409 ER PT J AU Buchko, GW Robinson, H Abendroth, J Staker, BL Myler, PJ AF Buchko, Garry W. Robinson, Howard Abendroth, Jan Staker, Bart L. Myler, Peter J. TI Structural characterization of Burkholderia pseudomallei adenylate kinase (Adk): Profound asymmetry in the crystal structure of the 'open' state SO BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS LA English DT Article DE Adenylate kinase; Circular dichroism; Conformational transition intermediates; Melioidosis; X-ray crystallography ID NUCLEOSIDE MONOPHOSPHATE KINASES; CATALYTIC CYCLE; MODEL; REFINEMENT; MECHANISM; DYNAMICS; MOTIONS; BINDING; ENZYME AB In all organisms adenylate kinases (Adks) play a vital role in cellular energy metabolism and nucleic acid synthesis. Due to differences in catalytic properties between the Adks found in prokaryotes and in the cytoplasm of eukaryotes, there is interest in targeting this enzyme for new drug therapies against infectious bacterial agents. Here we report the 2.1 angstrom resolution crystal structure for the 220-residue Adk from Burkholderia pseudomallei (BpAdk), the etiological agent responsible for the infectious disease melioidosis. The general structure of apo BpAdk is similar to other Adk structures, composed of a CORE subdomain with peripheral ATP-binding (ATP(bd)) and LID subdomains. The two molecules in the asymmetric unit have significantly different conformations, with a backbone RMSD of 1.46 angstrom. These two BpAdk conformations may represent 'open' Adk sub-states along the preferential pathway to the 'closed' substrate-bound state. (C) 2010 Elsevier Inc. All rights reserved. C1 [Buchko, Garry W.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. [Buchko, Garry W.] Pacific NW Natl Lab, Seattle Struct Genom Ctr Infect Dis, Richland, WA 99352 USA. [Robinson, Howard] Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. [Abendroth, Jan; Staker, Bart L.] Emerald Biostruct & Seattle Struct Genom Ctr Infe, Bainbridge Isl, WA 98110 USA. [Myler, Peter J.] Seattle Biomed Res Inst, Seattle, WA 98109 USA. [Myler, Peter J.] Seattle Struct Genom Ctr Infect Dis, Seattle, WA 98109 USA. [Myler, Peter J.] Univ Washington, Dept Med Educ & Biomed Informat, Seattle, WA 98195 USA. [Myler, Peter J.] Univ Washington, Dept Global Hlth, Seattle, WA 98195 USA. RP Buchko, GW (reprint author), Pacific NW Natl Lab, Div Biol Sci, POB 999,Mail Stop K8-98, Richland, WA 99352 USA. EM garry.buchko@pnl.gov RI Buchko, Garry/G-6173-2015; OI Buchko, Garry/0000-0002-3639-1061; Myler, Peter/0000-0002-0056-0513 FU NIAID [HHSN272200700057C]; U.S. Department of Energy FX This research was funded by NIAID under Federal Contract No. HHSN272200700057C. Major portions of the research was conducted at the W.R. Wiley Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by U.S. Department of Energy's Office of Biological and Environmental Research (BER) program located at Pacific Northwest National Laboratory (PNNL). PNNL is operated for the U.S. Department of Energy by Battelle. The assistance of the X29A beam line scientists at the National Synchrotron Light Source at Brookhaven National Laboratory is appreciated. Support for beamline X29A at the National Synchrotron Light Source comes principally from the Offices of Biological and Environmental Research and of Basic Energy Sciences of the US Department of Energy, and from the National Center for Research Resources of the National Institutes of Health. The authors thank Dr. Sam Miller (University of Washington) for kindly providing the B. pseudomallei strain 1710b (Q3JK82) genomic DNA, Drs. Alberto J. Napuli and Stephen N. Hewitt for preparing the clone, and the support of the SSGCID team. NR 33 TC 1 Z9 3 U1 1 U2 4 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0006-291X J9 BIOCHEM BIOPH RES CO JI Biochem. Biophys. Res. Commun. PD APR 16 PY 2010 VL 394 IS 4 BP 1012 EP 1017 DI 10.1016/j.bbrc.2010.03.112 PG 6 WC Biochemistry & Molecular Biology; Biophysics SC Biochemistry & Molecular Biology; Biophysics GA 587JE UT WOS:000276986400026 PM 20331978 ER PT J AU de Oteyza, DG Wakayama, Y Liu, X Yang, W Cook, PL Himpsel, FJ Ortega, JE AF de Oteyza, D. G. Wakayama, Y. Liu, X. Yang, W. Cook, P. L. Himpsel, F. J. Ortega, J. E. TI Effect of fluorination on the molecule-substrate interactions of pentacene/Cu(100) interfaces SO CHEMICAL PHYSICS LETTERS LA English DT Article ID THIN-FILMS; ELECTRONIC-STRUCTURE; PERFLUORINATION; PHTHALOCYANINES; SURFACES; GROWTH AB By means of scanning tunneling microscopy (STM), X-ray photoelectron spectroscopy (XPS) and near-edge X-ray absorption fine structure (NEXAFS), we study and compare the crystalline and electronic structure of fluorinated and non-fluorinated pentacene fims on Cu(1 0 0). Pentacene perfluorination strongly affects its electronic structure both in the bulk and at the metal-organic interface. While the azimuthal anisotropy of the molecule-substrate interactions on Cu(1 0 0) remains unaffected by the fluorination, the interaction mechanisms, as concluded from their effect on the core-levels and on the conduction band of the respective molecules, show a completely disparate behaviour. (C) 2010 Elsevier B.V. All rights reserved. C1 [de Oteyza, D. G.; Ortega, J. E.] Donostia Int Phys Ctr, San Sebastian 20018, Spain. [de Oteyza, D. G.; Wakayama, Y.] Natl Inst Mat Sci, Adv Elect Mat Ctr, Tsukuba, Ibaraki 3050044, Japan. [Liu, X.] LBNL, Phys Biosci Div, Berkeley, CA 94720 USA. [Yang, W.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. [Cook, P. L.; Himpsel, F. J.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Ortega, J. E.] Univ Basque Country, Dept Fis Aplicada, San Sebastian 20018, Spain. [Ortega, J. E.] CSIC UPV EHU, Ctr Fis Mat, MPC, San Sebastian 20018, Spain. RP de Oteyza, DG (reprint author), Donostia Int Phys Ctr, Paseo Manuel Lardizabal 4, San Sebastian 20018, Spain. EM d_g_oteyza@ehu.es RI Liu, Xiaosong/D-7564-2011; CSIC-UPV/EHU, CFM/F-4867-2012; de Oteyza, Dimas/H-5955-2013; DONOSTIA INTERNATIONAL PHYSICS CTR., DIPC/C-3171-2014; Yang, Wanli/D-7183-2011; ortega, enrique/I-4445-2012 OI de Oteyza, Dimas/0000-0001-8060-6819; Yang, Wanli/0000-0003-0666-8063; NR 26 TC 15 Z9 15 U1 1 U2 25 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0009-2614 J9 CHEM PHYS LETT JI Chem. Phys. Lett. PD APR 16 PY 2010 VL 490 IS 1-3 BP 54 EP 57 DI 10.1016/j.cplett.2010.03.006 PG 4 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 577XY UT WOS:000276258500013 ER PT J AU Pierce, JR Kahn, RA Davis, MR Comstock, JM AF Pierce, Jeffrey R. Kahn, Ralph A. Davis, Matt R. Comstock, Jennifer M. TI Detecting thin cirrus in Multiangle Imaging Spectroradiometer aerosol retrievals SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID BULK SCATTERING PROPERTIES; ICE CRYSTALS; RADIATIVE-TRANSFER; SINGLE-SCATTERING; OPTICAL-THICKNESS; PARTICLE-SIZE; CLOUDS; SENSITIVITY; OCEAN; LIDAR AB Thin cirrus clouds (optical depth (OD) < 0.3) are often undetected by standard cloud masking in satellite aerosol retrieval algorithms. However, the Multiangle Imaging Spectroradiometer (MISR) aerosol retrieval has the potential to discriminate between the scattering phase functions of cirrus and aerosols, thus separating these components. Theoretical tests show that MISR is sensitive to cirrus OD within Max{0.05, 20%}, similar to MISR's sensitivity to aerosol OD, and MISR can distinguish between small and large crystals, even at low latitudes, where the range of scattering angles observed by MISR is smallest. Including just two cirrus components in the aerosol retrieval algorithm would capture typical MISR sensitivity to the natural range of cirrus properties; in situations where cirrus is present but the retrieval comparison space lacks these components, the retrieval tends to underestimate OD. Generally, MISR can also distinguish between cirrus and common aerosol types when the proper cirrus and aerosol optical models are included in the retrieval comparison space and total column OD is >similar to 0.2. However, in some cases, especially at low latitudes, cirrus can be mistaken for some combinations of dust and large nonabsorbing spherical aerosols, raising a caution about retrievals in dusty marine regions when cirrus is present. Comparisons of MISR with lidar and Aerosol Robotic Network show good agreement in a majority of the cases, but situations where cirrus clouds have optical depths >0.15 and are horizontally inhomogeneous on spatial scales shorter than similar to 50 km pose difficulties for cirrus retrieval using the MISR standard aerosol algorithm. C1 [Pierce, Jeffrey R.] Dalhousie Univ, Dept Phys & Atmospher Sci, Halifax, NS B3H 3J5, Canada. [Comstock, Jennifer M.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Davis, Matt R.] Sci Syst & Applicat Inc, Lanham, MD 20706 USA. [Kahn, Ralph A.] NASA, Goddard Space Flight Ctr, Atmospheres Lab, Greenbelt, MD 20771 USA. RP Pierce, JR (reprint author), Dalhousie Univ, Dept Phys & Atmospher Sci, Halifax, NS B3H 3J5, Canada. EM ralph.kahn@nasa.gov RI Pierce, Jeffrey/E-4681-2013; Kahn, Ralph/D-5371-2012 OI Pierce, Jeffrey/0000-0002-4241-838X; Kahn, Ralph/0000-0002-5234-6359 FU NASA; EOS-MISR FX We thank our colleagues on the Jet Propulsion Laboratory's MISR instrument team and at the NASA Langley Research Center's Atmospheric Sciences Data Center for their roles in producing the MISR data sets. We also thank Michael Garay at the Jet Propulsion Laboratory for contributions to early work on MISR cirrus sensitivity, Brian Baum at the University of Wisconsin-Madison for developing the cirrus optical models used here, Zibo Zhang at the NASA Goddard Space Flight Center for helpful discussions, and the AERONET principal investigators for contributing to the global aerosol database. J. P. was funded by a NASA Postdoctoral Fellowship for this work. R. K. is supported in part by NASA's Climate and Radiation Research and Analysis Program, under H. Maring, NASA's Atmospheric Composition Program, and the EOS-MISR project. Contributions from J. C. were supported by NASA NEWS and Department of Energy's Atmospheric Radiation Measurement programs. NR 35 TC 17 Z9 17 U1 2 U2 6 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD APR 16 PY 2010 VL 115 AR D08201 DI 10.1029/2009JD013019 PG 18 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 585LS UT WOS:000276827600002 ER PT J AU Abazov, VM Abbott, B Abolins, M Acharya, BS Adams, M Adams, T Aguilo, E Ahsan, M Alexeev, GD Alkhazov, G Alton, A Alverson, G Alves, GA Ancu, LS Aoki, M Arnoud, Y Arov, M Askew, A Asman, B Atramentov, O Avila, C BackusMayes, J Badaud, F Bagby, L Baldin, B Bandurin, DV Banerjee, S Barberis, E Barfuss, AF Baringer, P Barreto, J Bartlett, JF Bassler, U Bauer, D Beale, S Bean, A Begalli, M Begel, M Belanger-Champagne, C Bellantoni, L Benitez, JA Beri, SB Bernardi, G Bernhard, R Bertram, I Besancon, M Beuselinck, R Bezzubov, VA Bhat, PC Bhatnagar, V Blazey, G Blessing, S Bloom, K Boehnlein, A Boline, D Bolton, TA Boos, EE Borissov, G Bose, T Brandt, A Brock, R Brooijmans, G Bross, A Brown, D Bu, XB Buchholz, D Buehler, M Buescher, V Bunichev, V Burdin, S Burnett, TH Buszello, CP Calfayan, P Calpas, B Calvet, S Camacho-Perez, E Cammin, J Carrasco-Lizarraga, MA Carrera, E Carvalho, W Casey, BCK Castilla-Valdez, H Chakrabarti, S Chakraborty, D Chan, KM Chandra, A Cheu, E Chevalier-Thery, S Cho, DK Cho, SW Choi, S Choudhary, B Christoudias, T Cihangir, S Claes, D Clutter, J Cooke, M Cooper, WE Corcoran, M Couderc, F Cousinou, MC Cutts, D Cwiok, M Das, A Davies, G De, K de Jong, SJ De La Cruz-Burelo, E DeVaughan, K Deliot, F Demarteau, M Demina, R Denisov, D Denisov, SP Desai, S Diehl, HT Diesburg, M Dominguez, A Dorland, T Dubey, A Dudko, LV Duflot, L Duggan, D Duperrin, A Dutt, S Dyshkant, A Eads, M Edmunds, D Ellison, J Elvira, VD Enari, Y Eno, S Evans, H Evdokimov, A Evdokimov, VN Facini, G Ferapontov, AV Ferbel, T Fiedler, F Filthaut, F Fisher, W Fisk, HE Fortner, M Fox, H Fuess, S Gadfort, T Galea, CF Garcia-Bellido, A Gavrilov, V Gay, P Geist, W Geng, W Gerbaudo, D Gerber, CE Gershtein, Y Gillberg, D Ginther, G Golovanov, G Gomez, B Goussiou, A Grannis, PD Greder, S Greenlee, H Greenwood, ZD Gregores, EM Grenier, G Gris, P Grivaz, JF Grohsjean, A Grunendahl, S Grunewald, MW Guo, F Guo, J Gutierrez, G Gutierrez, P Haas, A Haefner, P Hagopian, S Haley, J Hall, I Hall, RE Han, L Harder, K Harel, A Hauptman, JM Hays, J Hebbeker, T Hedin, D Hegeman, JG Heinson, AP Heintz, U Hensel, C Heredia-De La Cruz, I Herner, K Hesketh, G Hildreth, MD Hirosky, R Hoang, T Hobbs, JD Hoeneisen, B Hohlfeld, M Hossain, S Houben, P Hu, Y Hubacek, Z Huske, N Hynek, V Iashvili, I Illingworth, R Ito, AS Jabeen, S Jaffre, M Jain, S Jakobs, K Jamin, D Jesik, R Johns, K Johnson, C Johnson, M Johnston, D Jonckheere, A Jonsson, P Juste, A Kajfasz, E Karmanov, D Kasper, PA Katsanos, I Kaushik, V Kehoe, R Kermiche, S Khalatyan, N Khanov, A Kharchilava, A Kharzheev, YN Khatidze, D Kirby, MH Kirsch, M Kohli, JM Kozelov, AV Kraus, J Kumar, A Kupco, A Kurca, T Kuzmin, VA Kvita, J Lacroix, F Lam, D Lammers, S Landsberg, G Lebrun, P Lee, HS Lee, WM Leflat, A Lellouch, J Li, L Li, QZ Lietti, SM Lim, JK Lincoln, D Linnemann, J Lipaev, VV Lipton, R Liu, Y Liu, Z Lobodenko, A Lokajicek, M Love, P Lubatti, HJ Luna-Garcia, R Lyon, AL Maciel, AKA Mackin, D Mattig, P Magana-Villalba, R Mal, PK Malik, S Malyshev, VL Maravin, Y Martin, B Martinez-Ortega, J McCarthy, R McGivern, CL Meijer, MM Melnitchouk, A Mendoza, L Menezes, D Mercadante, PG Merkin, M Meyer, A Meyer, J Mondal, NK Moore, RW Moulik, T Muanza, GS Mulhearn, M Mundal, O Mundim, L Nagy, E Naimuddin, M Narain, M Nayyar, R Neal, HA Negret, JP Neustroev, P Nilsen, H Nogima, H Novaes, SF Nunnemann, T Obrant, G Onoprienko, D Orduna, J Osman, N Osta, J Otec, R Garzon, GJOY Owen, M Padilla, M Padley, P Pangilinan, M Parashar, N Parihar, V Park, SJ Park, SK Parsons, J Partridge, R Parua, N Patwa, A Penning, B Perfilov, M Peters, K Peters, Y Petroff, P Piegaia, R Piper, J Pleier, MA Podesta-Lerma, PLM Podstavkov, VM Pogorelov, Y Pol, ME Polozov, P Popov, AV Prewitt, M Protopopescu, S Qian, J Quadt, A Quinn, B Rangel, MS Ranjan, K Ratoff, PN Razumov, I Renkel, P Rich, P Rijssenbeek, M Ripp-Baudot, I Rizatdinova, F Robinson, S Rominsky, M Royon, C Rubinov, P Ruchti, R Safronov, G Sajot, G Sanchez-Hernandez, A Sanders, MP Sanghi, B Savage, G Sawyer, L Scanlon, T Schaile, D Schamberger, RD Scheglov, Y Schellman, H Schliephake, T Schlobohm, S Schwanenberger, C Schwienhorst, R Sekaric, J Severini, H Shabalina, E Shamim, M Shary, V Shchukin, AA Shivpuri, RK Simak, V Sirotenko, V Skubic, P Slattery, P Smirnov, D Snow, GR Snow, J Snyder, S Soldner-Rembold, S Sonnenschein, L Sopczak, A Sosebee, M Soustruznik, K Spurlock, B Stark, J Stolin, V Stoyanova, DA Strandberg, J Strang, MA Strauss, E Strauss, M Strohmer, R Strom, D Stutte, L Sumowidagdo, S Svoisky, P Takahashi, M Tanasijczuk, A Taylor, W Tiller, B Titov, M Tokmenin, VV Torchiani, I Tsybychev, D Tuchming, B Tully, C Tuts, PM Unalan, R Uvarov, L Uvarov, S Uzunyan, S van den Berg, PJ Van Kooten, R van Leeuwen, WM Varelas, N Varnes, EW Vasilyev, IA Verdier, P Vertogradov, LS Verzocchi, M Vesterinen, M Vilanova, D Vint, P Vokac, P Wagner, R Wahl, HD Wang, MHLS Warchol, J Watts, G Wayne, M Weber, G Weber, M Wenger, A Wetstein, M White, A Wicke, D Williams, MRJ Wilson, GW Wimpenny, SJ Wobisch, M Wood, DR Wyatt, TR Xie, Y Xu, C Yacoob, S Yamada, R Yang, WC Yasuda, T Yatsunenko, YA Ye, Z Yin, H Yip, K Yoo, HD Youn, SW Yu, J Zeitnitz, C Zelitch, S Zhao, T Zhou, B Zhu, J Zielinski, M Zieminska, D Zivkovic, L Zutshi, V Zverev, EG AF Abazov, V. M. Abbott, B. Abolins, M. Acharya, B. S. Adams, M. Adams, T. Aguilo, E. Ahsan, M. Alexeev, G. D. Alkhazov, G. Alton, A. Alverson, G. Alves, G. A. Ancu, L. S. Aoki, M. Arnoud, Y. Arov, M. Askew, A. Asman, B. Atramentov, O. Avila, C. BackusMayes, J. Badaud, F. Bagby, L. Baldin, B. Bandurin, D. V. Banerjee, S. Barberis, E. Barfuss, A. -F. Baringer, P. Barreto, J. Bartlett, J. F. Bassler, U. Bauer, D. Beale, S. Bean, A. Begalli, M. Begel, M. Belanger-Champagne, C. Bellantoni, L. Benitez, J. A. Beri, S. B. Bernardi, G. Bernhard, R. Bertram, I. Besancon, M. Beuselinck, R. Bezzubov, V. A. Bhat, P. C. Bhatnagar, V. Blazey, G. Blessing, S. Bloom, K. Boehnlein, A. Boline, D. Bolton, T. A. Boos, E. E. Borissov, G. Bose, T. Brandt, A. Brock, R. Brooijmans, G. Bross, A. Brown, D. Bu, X. B. Buchholz, D. Buehler, M. Buescher, V. Bunichev, V. Burdin, S. Burnett, T. H. Buszello, C. P. Calfayan, P. Calpas, B. Calvet, S. Camacho-Perez, E. Cammin, J. Carrasco-Lizarraga, M. A. Carrera, E. Carvalho, W. Casey, B. C. K. Castilla-Valdez, H. Chakrabarti, S. Chakraborty, D. Chan, K. M. Chandra, A. Cheu, E. Chevalier-Thery, S. Cho, D. K. Cho, S. W. Choi, S. Choudhary, B. Christoudias, T. Cihangir, S. Claes, D. Clutter, J. Cooke, M. Cooper, W. E. Corcoran, M. Couderc, F. Cousinou, M. -C. Cutts, D. Cwiok, M. Das, A. Davies, G. De, K. de Jong, S. J. De La Cruz-Burelo, E. DeVaughan, K. Deliot, F. Demarteau, M. Demina, R. Denisov, D. Denisov, S. P. Desai, S. Diehl, H. T. Diesburg, M. Dominguez, A. Dorland, T. Dubey, A. Dudko, L. V. Duflot, L. Duggan, D. Duperrin, A. Dutt, S. Dyshkant, A. Eads, M. Edmunds, D. Ellison, J. Elvira, V. D. Enari, Y. Eno, S. Evans, H. Evdokimov, A. Evdokimov, V. N. Facini, G. Ferapontov, A. V. Ferbel, T. Fiedler, F. Filthaut, F. Fisher, W. Fisk, H. E. Fortner, M. Fox, H. Fuess, S. Gadfort, T. Galea, C. F. Garcia-Bellido, A. Gavrilov, V. Gay, P. Geist, W. Geng, W. Gerbaudo, D. Gerber, C. E. Gershtein, Y. Gillberg, D. Ginther, G. Golovanov, G. Gomez, B. Goussiou, A. Grannis, P. D. Greder, S. Greenlee, H. Greenwood, Z. D. Gregores, E. M. Grenier, G. Gris, Ph. Grivaz, J. -F. Grohsjean, A. Gruenendahl, S. Gruenewald, M. W. Guo, F. Guo, J. Gutierrez, G. Gutierrez, P. Haas, A. Haefner, P. Hagopian, S. Haley, J. Hall, I. Hall, R. E. Han, L. Harder, K. Harel, A. Hauptman, J. M. Hays, J. Hebbeker, T. Hedin, D. Hegeman, J. G. Heinson, A. P. Heintz, U. Hensel, C. Heredia-De La Cruz, I. Herner, K. Hesketh, G. Hildreth, M. D. Hirosky, R. Hoang, T. Hobbs, J. D. Hoeneisen, B. Hohlfeld, M. Hossain, S. Houben, P. Hu, Y. Hubacek, Z. Huske, N. Hynek, V. Iashvili, I. Illingworth, R. Ito, A. S. Jabeen, S. Jaffre, M. Jain, S. Jakobs, K. Jamin, D. Jesik, R. Johns, K. Johnson, C. Johnson, M. Johnston, D. Jonckheere, A. Jonsson, P. Juste, A. Kajfasz, E. Karmanov, D. Kasper, P. A. Katsanos, I. Kaushik, V. Kehoe, R. Kermiche, S. Khalatyan, N. Khanov, A. Kharchilava, A. Kharzheev, Y. N. Khatidze, D. Kirby, M. H. Kirsch, M. Kohli, J. M. Kozelov, A. V. Kraus, J. Kumar, A. Kupco, A. Kurca, T. Kuzmin, V. A. Kvita, J. Lacroix, F. Lam, D. Lammers, S. Landsberg, G. Lebrun, P. Lee, H. S. Lee, W. M. Leflat, A. Lellouch, J. Li, L. Li, Q. Z. Lietti, S. M. Lim, J. K. Lincoln, D. Linnemann, J. Lipaev, V. V. Lipton, R. Liu, Y. Liu, Z. Lobodenko, A. Lokajicek, M. Love, P. Lubatti, H. J. Luna-Garcia, R. Lyon, A. L. Maciel, A. K. A. Mackin, D. Maettig, P. Magana-Villalba, R. Mal, P. K. Malik, S. Malyshev, V. L. Maravin, Y. Martin, B. Martinez-Ortega, J. McCarthy, R. McGivern, C. L. Meijer, M. M. Melnitchouk, A. Mendoza, L. Menezes, D. Mercadante, P. G. Merkin, M. Meyer, A. Meyer, J. Mondal, N. K. Moore, R. W. Moulik, T. Muanza, G. S. Mulhearn, M. Mundal, O. Mundim, L. Nagy, E. Naimuddin, M. Narain, M. Nayyar, R. Neal, H. A. Negret, J. P. Neustroev, P. Nilsen, H. Nogima, H. Novaes, S. F. Nunnemann, T. Obrant, G. Onoprienko, D. Orduna, J. Osman, N. Osta, J. Otec, R. Otero y Garzon, G. J. Owen, M. Padilla, M. Padley, P. Pangilinan, M. Parashar, N. Parihar, V. Park, S. -J. Park, S. K. Parsons, J. Partridge, R. Parua, N. Patwa, A. Penning, B. Perfilov, M. Peters, K. Peters, Y. Petroff, P. Piegaia, R. Piper, J. Pleier, M. -A. Podesta-Lerma, P. L. M. Podstavkov, V. M. Pogorelov, Y. Pol, M. -E. Polozov, P. Popov, A. V. Prewitt, M. Protopopescu, S. Qian, J. Quadt, A. Quinn, B. Rangel, M. S. Ranjan, K. Ratoff, P. N. Razumov, I. Renkel, P. Rich, P. Rijssenbeek, M. Ripp-Baudot, I. Rizatdinova, F. Robinson, S. Rominsky, M. Royon, C. Rubinov, P. Ruchti, R. Safronov, G. Sajot, G. Sanchez-Hernandez, A. Sanders, M. P. Sanghi, B. Savage, G. Sawyer, L. Scanlon, T. Schaile, D. Schamberger, R. D. Scheglov, Y. Schellman, H. Schliephake, T. Schlobohm, S. Schwanenberger, C. Schwienhorst, R. Sekaric, J. Severini, H. Shabalina, E. Shamim, M. Shary, V. Shchukin, A. A. Shivpuri, R. K. Simak, V. Sirotenko, V. Skubic, P. Slattery, P. Smirnov, D. Snow, G. R. Snow, J. Snyder, S. Soeldner-Rembold, S. Sonnenschein, L. Sopczak, A. Sosebee, M. Soustruznik, K. Spurlock, B. Stark, J. Stolin, V. Stoyanova, D. A. Strandberg, J. Strang, M. A. Strauss, E. Strauss, M. Stroehmer, R. Strom, D. Stutte, L. Sumowidagdo, S. Svoisky, P. Takahashi, M. Tanasijczuk, A. Taylor, W. Tiller, B. Titov, M. Tokmenin, V. V. Torchiani, I. Tsybychev, D. Tuchming, B. Tully, C. Tuts, P. M. Unalan, R. Uvarov, L. Uvarov, S. Uzunyan, S. van den Berg, P. J. Van Kooten, R. van Leeuwen, W. M. Varelas, N. Varnes, E. W. Vasilyev, I. A. Verdier, P. Vertogradov, L. S. Verzocchi, M. Vesterinen, M. Vilanova, D. Vint, P. Vokac, P. Wagner, R. Wahl, H. D. Wang, M. H. L. S. Warchol, J. Watts, G. Wayne, M. Weber, G. Weber, M. Wenger, A. Wetstein, M. White, A. Wicke, D. Williams, M. R. J. Wilson, G. W. Wimpenny, S. J. Wobisch, M. Wood, D. R. Wyatt, T. R. Xie, Y. Xu, C. Yacoob, S. Yamada, R. Yang, W. -C. Yasuda, T. Yatsunenko, Y. A. Ye, Z. Yin, H. Yip, K. Yoo, H. D. Youn, S. W. Yu, J. Zeitnitz, C. Zelitch, S. Zhao, T. Zhou, B. Zhu, J. Zielinski, M. Zieminska, D. Zivkovic, L. Zutshi, V. Zverev, E. G. CA DO Collaboration TI Search for the Associated Production of a b Quark and a Neutral Supersymmetric Higgs Boson that Decays into tau Pairs SO PHYSICAL REVIEW LETTERS LA English DT Article ID ELECTROWEAK SYMMETRY-BREAKING; BENCHMARK SCENARIOS; STANDARD MODEL; MSSM; PHYSICS; ANATOMY; MASSES; TEV AB We report results from a search for production of a neutral Higgs boson in association with a b quark. We search for Higgs decays to tau pairs with one tau subsequently decaying to a muon and the other to hadrons. The data correspond to 2: 7 fb(-1) of p (p) over bar collisions recorded by the D0 detector at.. root s = 1.96 TeV. The data are found to be consistent with background predictions. The result allows us to exclude a significant region of parameter space of the minimal supersymmetric model. C1 [Abazov, V. M.; Alexeev, G. D.; Golovanov, G.; Kharzheev, Y. N.; Malyshev, V. L.; Tokmenin, V. V.; Vertogradov, L. S.; Yatsunenko, Y. A.] Joint Inst Nucl Res, Dubna, Russia. [Otero y Garzon, G. J.; Piegaia, R.; Tanasijczuk, A.] Univ Buenos Aires, Buenos Aires, DF, Argentina. [Alves, G. A.; Barreto, J.; Maciel, A. K. A.; Pol, M. -E.] Ctr Brasileiro Pesquisas Fis, LAFEX, Rio De Janeiro, Brazil. [Begalli, M.; Carvalho, W.; Mundim, L.; Nogima, H.] Univ Estado Rio de Janeiro, BR-20550011 Rio De Janeiro, Brazil. [Gregores, E. M.; Mercadante, P. G.] Univ Fed ABC, Santo Andre, Brazil. [Lietti, S. M.; Novaes, S. F.] Univ Estadual Paulista, Inst Fis Teor, BR-01405 Sao Paulo, Brazil. [Aguilo, E.; Beale, S.; Gillberg, D.; Liu, Z.; Moore, R. W.; Taylor, W.] Univ Alberta, Edmonton, AB, Canada. [Aguilo, E.; Beale, S.; Gillberg, D.; Liu, Z.; Moore, R. W.; Taylor, W.] Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada. [Aguilo, E.; Beale, S.; Gillberg, D.; Liu, Z.; Moore, R. W.; Taylor, W.] York Univ, Toronto, ON M3J 2R7, Canada. [Aguilo, E.; Beale, S.; Gillberg, D.; Liu, Z.; Moore, R. W.; Taylor, W.] McGill Univ, Montreal, PQ, Canada. [Bu, X. B.; Han, L.; Liu, Y.; Yin, H.] Univ Sci & Technol China, Hefei 230026, Peoples R China. [Avila, C.; Gomez, B.; Mendoza, L.; Negret, J. P.] Univ Los Andes, Bogota, Colombia. [Kvita, J.; Soustruznik, K.] Charles Univ Prague, Fac Math & Phys, Ctr Particle Phys, Prague, Czech Republic. [Hubacek, Z.; Hynek, V.; Otec, R.; Simak, V.; Vokac, P.] Czech Tech Univ, Prague, Czech Republic. [Kupco, A.; Lokajicek, M.] Acad Sci Czech Republic, Inst Phys, Ctr Particle Phys, Prague, Czech Republic. [Hoeneisen, B.] Univ San Francisco Quito, Quito, Ecuador. [Badaud, F.; Gay, P.; Gris, Ph.; Lacroix, F.] Univ Clermont Ferrand, CNRS, IN2P3, LPC, Clermont, France. [Arnoud, Y.; Martin, B.; Sajot, G.; Stark, J.] Univ Grenoble 1, CNRS, LPSC, Inst Natl Polytech Grenoble,IN2P3, Grenoble, France. [Barfuss, A. -F.; Calpas, B.; Cousinou, M. -C.; Duperrin, A.; Geng, W.; Jamin, D.; Kajfasz, E.; Kermiche, S.; Muanza, G. S.; Nagy, E.] Aix Marseille Univ, CPPM, CNRS, IN2P3, Marseille, France. [Calvet, S.; Duflot, L.; Grivaz, J. -F.; Jaffre, M.; Petroff, P.; Rangel, M. S.] Univ Paris 11, CNRS, IN2P3, LAL, F-91405 Orsay, France. [Bernardi, G.; Enari, Y.; Huske, N.; Lellouch, J.] Univ Paris 06, CNRS, IN2P3, LPNHE, Paris, France. [Bernardi, G.; Enari, Y.; Huske, N.; Lellouch, J.] Univ Paris 07, Paris, France. [Bassler, U.; Besancon, M.; Chevalier-Thery, S.; Couderc, F.; Deliot, F.; Grohsjean, A.; Royon, C.; Shary, V.; Titov, M.; Tuchming, B.; Vilanova, D.] CEA, Irfu, SPP, Saclay, France. [Brown, D.; Geist, W.; Greder, S.; Ripp-Baudot, I.] Univ Strasbourg, IPHC, CNRS, IN2P3, Strasbourg, France. [Grenier, G.; Kurca, T.; Lebrun, P.; Verdier, P.] Univ Lyon 1, IPNL, CNRS, IN2P3, F-69622 Villeurbanne, France. [Grenier, G.; Kurca, T.; Lebrun, P.; Verdier, P.] Univ Lyon, Lyon, France. [Hebbeker, T.; Kirsch, M.; Meyer, A.; Sonnenschein, L.] Rhein Westfal TH Aachen, Phys Inst A 3, Aachen, Germany. [Mundal, O.] Univ Bonn, Inst Phys, D-5300 Bonn, Germany. [Bernhard, R.; Jakobs, K.; Nilsen, H.; Torchiani, I.; Wenger, A.] Univ Freiburg, Inst Phys, Freiburg, Germany. [Hensel, C.; Meyer, J.; Park, S. -J.; Quadt, A.; Shabalina, E.] Univ Gottingen, Inst Phys 2, Gottingen, Germany. [Buescher, V.; Fiedler, F.; Hohlfeld, M.; Weber, G.; Wicke, D.] Johannes Gutenberg Univ Mainz, Inst Phys, D-6500 Mainz, Germany. [Calfayan, P.; Haefner, P.; Nunnemann, T.; Sanders, M. P.; Schaile, D.; Stroehmer, R.; Tiller, B.] Univ Munich, Munich, Germany. [Maettig, P.; Schliephake, T.; Zeitnitz, C.] Univ Wuppertal, Fachbereich Phys, Wuppertal, Germany. [Beri, S. B.; Bhatnagar, V.; Dutt, S.; Kohli, J. M.] Panjab Univ, Chandigarh 160014, India. [Choudhary, B.; Dubey, A.; Naimuddin, M.; Nayyar, R.; Ranjan, K.; Shivpuri, R. K.] Univ Delhi, Delhi 110007, India. [Acharya, B. S.; Banerjee, S.; Mondal, N. K.] Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India. [Cwiok, M.; Gruenewald, M. W.] Univ Coll Dublin, Dublin 2, Ireland. [Cho, S. W.; Lee, H. S.; Lim, J. K.; Park, S. K.] Korea Univ, Korea Detector Lab, Seoul, South Korea. [Choi, S.] Sungkyunkwan Univ, Suwon, South Korea. [Camacho-Perez, E.; Carrasco-Lizarraga, M. A.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-De La Cruz, I.; Luna-Garcia, R.; Magana-Villalba, R.; Martinez-Ortega, J.; Orduna, J.; Podesta-Lerma, P. L. M.; Sanchez-Hernandez, A.] CINVESTAV, Mexico City 14000, DF, Mexico. [Hegeman, J. G.; Houben, P.; van den Berg, P. J.; van Leeuwen, W. M.] NIKHEF, FOM Inst, Amsterdam, Netherlands. [Hegeman, J. G.; Houben, P.; van den Berg, P. J.; van Leeuwen, W. M.] Univ Amsterdam, NIKHEF, Amsterdam, Netherlands. [Ancu, L. S.; de Jong, S. J.; Filthaut, F.; Galea, C. F.; Meijer, M. M.; Svoisky, P.] Radboud Univ Nijmegen, NIKHEF, NL-6525 ED Nijmegen, Netherlands. [Gavrilov, V.; Polozov, P.; Safronov, G.; Stolin, V.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Boos, E. E.; Bunichev, V.; Dudko, L. V.; Karmanov, D.; Kuzmin, V. A.; Leflat, A.; Merkin, M.; Perfilov, M.; Zverev, E. G.] Moscow MV Lomonosov State Univ, Moscow, Russia. [Bezzubov, V. A.; Denisov, S. P.; Evdokimov, V. N.; Kozelov, A. V.; Lipaev, V. V.; Popov, A. V.; Razumov, I.; Shchukin, A. A.; Stoyanova, D. A.; Vasilyev, I. A.] Inst High Energy Phys, Protvino, Russia. [Alkhazov, G.; Lobodenko, A.; Neustroev, P.; Obrant, G.; Scheglov, Y.; Uvarov, L.; Uvarov, S.] Petersburg Nucl Phys Inst, St Petersburg, Russia. [Asman, B.; Belanger-Champagne, C.] Stockholm Univ, S-10691 Stockholm, Sweden. [Asman, B.; Belanger-Champagne, C.] Uppsala Univ, Uppsala, Sweden. [Bertram, I.; Borissov, G.; Burdin, S.; Fox, H.; Love, P.; Ratoff, P. N.; Sopczak, A.; Williams, M. R. J.] Univ Lancaster, Lancaster, England. [Bauer, D.; Beuselinck, R.; Buszello, C. P.; Christoudias, T.; Davies, G.; Hays, J.; Jesik, R.; Jonsson, P.; Osman, N.; Robinson, S.; Scanlon, T.; Vint, P.] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. [Harder, K.; Owen, M.; Peters, K.; Peters, Y.; Rich, P.; Schwanenberger, C.; Soeldner-Rembold, S.; Takahashi, M.; Vesterinen, M.; Wyatt, T. R.; Yang, W. -C.] Univ Manchester, Manchester M13 9PL, Lancs, England. [Cheu, E.; Das, A.; Johns, K.; Mal, P. K.; Varnes, E. W.] Univ Arizona, Tucson, AZ 85721 USA. [Hall, R. E.] Calif State Univ Fresno, Fresno, CA 93740 USA. [Ellison, J.; Heinson, A. P.; Li, L.; Padilla, M.; Wimpenny, S. J.] Univ Calif Riverside, Riverside, CA 92521 USA. [Adams, T.; Askew, A.; Atramentov, O.; Blessing, S.; Carrera, E.; Duggan, D.; Gershtein, Y.; Hagopian, S.; Hoang, T.; Sumowidagdo, S.; Wahl, H. D.] Florida State Univ, Tallahassee, FL 32306 USA. [Aoki, M.; Bagby, L.; Baldin, B.; Bartlett, J. F.; Bellantoni, L.; Bhat, P. C.; Boehnlein, A.; Bross, A.; Casey, B. C. K.; Cihangir, S.; Cooke, M.; Cooper, W. E.; Demarteau, M.; Denisov, D.; Desai, S.; Diehl, H. T.; Diesburg, M.; Elvira, V. D.; Fisher, W.; Fisk, H. E.; Fuess, S.; Ginther, G.; Greenlee, H.; Gruenendahl, S.; Gutierrez, G.; Illingworth, R.; Ito, A. S.; Johnson, M.; Jonckheere, A.; Juste, A.; Kasper, P. A.; Khalatyan, N.; Lee, W. M.; Li, Q. Z.; Lincoln, D.; Lipton, R.; Lyon, A. L.; Penning, B.; Podstavkov, V. M.; Rubinov, P.; Sanghi, B.; Savage, G.; Sirotenko, V.; Stutte, L.; Verzocchi, M.; Weber, M.; Yamada, R.; Yasuda, T.; Ye, Z.; Youn, S. W.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Adams, M.; Gerber, C. E.; Strom, D.; Varelas, N.] Univ Illinois, Chicago, IL 60607 USA. [Blazey, G.; Chakraborty, D.; Dyshkant, A.; Fortner, M.; Hedin, D.; Menezes, D.; Uzunyan, S.; Zutshi, V.] No Illinois Univ, De Kalb, IL 60115 USA. [Buchholz, D.; Kirby, M. H.; Schellman, H.; Yacoob, S.] Northwestern Univ, Evanston, IL 60208 USA. [Chandra, A.; Evans, H.; Lammers, S.; Parua, N.; Van Kooten, R.; Zieminska, D.] Indiana Univ, Bloomington, IN 47405 USA. [Chan, K. M.; Hildreth, M. D.; Lam, D.; Osta, J.; Pogorelov, Y.; Ruchti, R.; Smirnov, D.; Warchol, J.; Wayne, M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Parashar, N.] Purdue Univ Calumet, Hammond, IN 46323 USA. [Hauptman, J. M.] Iowa State Univ, Ames, IA 50011 USA. [Baringer, P.; Bean, A.; Clutter, J.; McGivern, C. L.; Moulik, T.; Sekaric, J.; Wilson, G. W.] Univ Kansas, Lawrence, KS 66045 USA. [Ahsan, M.; Bandurin, D. V.; Bolton, T. A.; Maravin, Y.; Onoprienko, D.; Shamim, M.] Kansas State Univ, Manhattan, KS 66506 USA. [Arov, M.; Greenwood, Z. D.; Sawyer, L.; Wobisch, M.] Louisiana Tech Univ, Ruston, LA 71272 USA. [Eno, S.; Ferbel, T.; Wetstein, M.] Univ Maryland, College Pk, MD 20742 USA. [Boline, D.; Bose, T.; Cho, D. K.; Heintz, U.; Jabeen, S.; Parihar, V.] Boston Univ, Boston, MA 02215 USA. [Alverson, G.; Barberis, E.; Facini, G.; Haley, J.; Hesketh, G.; Wood, D. R.] Northeastern Univ, Boston, MA 02115 USA. [Alton, A.; Herner, K.; Neal, H. A.; Qian, J.; Strandberg, J.; Xu, C.; Zhou, B.] Univ Michigan, Ann Arbor, MI 48109 USA. [Abolins, M.; Benitez, J. A.; Brock, R.; Edmunds, D.; Geng, W.; Hall, I.; Kraus, J.; Linnemann, J.; Piper, J.; Schwienhorst, R.; Unalan, R.] Michigan State Univ, E Lansing, MI 48824 USA. [Melnitchouk, A.; Quinn, B.] Univ Mississippi, University, MS 38677 USA. [Bloom, K.; Claes, D.; DeVaughan, K.; Dominguez, A.; Eads, M.; Johnston, D.; Katsanos, I.; Malik, S.; Snow, G. R.] Univ Nebraska, Lincoln, NE 68588 USA. [Gerbaudo, D.; Tully, C.; Wagner, R.] Princeton Univ, Princeton, NJ 08544 USA. [Iashvili, I.; Kharchilava, A.; Kumar, A.; Strang, M. A.] SUNY Buffalo, Buffalo, NY 14260 USA. [Brooijmans, G.; Gadfort, T.; Haas, A.; Johnson, C.; Parsons, J.; Tuts, P. M.; Zivkovic, L.] Columbia Univ, New York, NY 10027 USA. [Cammin, J.; Demina, R.; Ferbel, T.; Garcia-Bellido, A.; Ginther, G.; Harel, A.; Slattery, P.; Wang, M. H. L. S.; Zielinski, M.] Univ Rochester, Rochester, NY 14627 USA. [Chakrabarti, S.; Grannis, P. D.; Guo, F.; Guo, J.; Hobbs, J. D.; Hu, Y.; McCarthy, R.; Rijssenbeek, M.; Schamberger, R. D.; Strauss, E.; Tsybychev, D.; Zhu, J.] SUNY Stony Brook, Stony Brook, NY 11794 USA. [Begel, M.; Evdokimov, A.; Patwa, A.; Pleier, M. -A.; Protopopescu, S.; Snyder, S.; Yip, K.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Snow, J.] Langston Univ, Langston, OK 73050 USA. [Abbott, B.; Gutierrez, P.; Hossain, S.; Jain, S.; Rominsky, M.; Severini, H.; Skubic, P.; Strauss, M.] Univ Oklahoma, Norman, OK 73019 USA. [Khanov, A.; Rizatdinova, F.] Oklahoma State Univ, Stillwater, OK 74078 USA. [Cutts, D.; Ferapontov, A. V.; Khatidze, D.; Landsberg, G.; Narain, M.; Pangilinan, M.; Partridge, R.; Xie, Y.; Yoo, H. D.] Brown Univ, Providence, RI 02912 USA. [Brandt, A.; De, K.; Kaushik, V.; Sosebee, M.; Spurlock, B.; White, A.; Yu, J.] Univ Texas Arlington, Arlington, TX 76019 USA. [Kehoe, R.; Renkel, P.] So Methodist Univ, Dallas, TX 75275 USA. [Corcoran, M.; Mackin, D.; Padley, P.; Prewitt, M.] Rice Univ, Houston, TX 77005 USA. [Buehler, M.; Hirosky, R.; Mulhearn, M.; Zelitch, S.] Univ Virginia, Charlottesville, VA 22901 USA. [BackusMayes, J.; Burnett, T. H.; Dorland, T.; Goussiou, A.; Lubatti, H. J.; Schlobohm, S.; Watts, G.; Zhao, T.] Univ Washington, Seattle, WA 98195 USA. RP Abazov, VM (reprint author), Joint Inst Nucl Res, Dubna, Russia. RI Merkin, Mikhail/D-6809-2012; Leflat, Alexander/D-7284-2012; Dudko, Lev/D-7127-2012; Perfilov, Maxim/E-1064-2012; Gutierrez, Phillip/C-1161-2011; Mercadante, Pedro/K-1918-2012; Yip, Kin/D-6860-2013; Bolton, Tim/A-7951-2012; Mundim, Luiz/A-1291-2012; Boos, Eduard/D-9748-2012; bu, xuebing/D-1121-2012; Novaes, Sergio/D-3532-2012; Christoudias, Theodoros/E-7305-2015; Guo, Jun/O-5202-2015; Gerbaudo, Davide/J-4536-2012; Li, Liang/O-1107-2015; Ancu, Lucian Stefan/F-1812-2010; Fisher, Wade/N-4491-2013; De, Kaushik/N-1953-2013; Alves, Gilvan/C-4007-2013; Deliot, Frederic/F-3321-2014; Sharyy, Viatcheslav/F-9057-2014; Lokajicek, Milos/G-7800-2014; Kupco, Alexander/G-9713-2014; Kozelov, Alexander/J-3812-2014 OI Dudko, Lev/0000-0002-4462-3192; Yip, Kin/0000-0002-8576-4311; Mundim, Luiz/0000-0001-9964-7805; Novaes, Sergio/0000-0003-0471-8549; Christoudias, Theodoros/0000-0001-9050-3880; Guo, Jun/0000-0001-8125-9433; Gerbaudo, Davide/0000-0002-4463-0878; Li, Liang/0000-0001-6411-6107; Ancu, Lucian Stefan/0000-0001-5068-6723; De, Kaushik/0000-0002-5647-4489; Sharyy, Viatcheslav/0000-0002-7161-2616; FU DOE; NSF (USA) FX We thank the staffs at Fermilab and collaborating institutions, and acknowledge support from the DOE and NSF (USA); CEA and CNRS/IN2P3 (France); FASI, Rosatom and RFBR (Russia); CNPq, FAPERJ, FAPESP and FUNDUNESP (Brazil); DAE and DST (India); Colciencias (Colombia); CONACyT (Mexico); KRF and KOSEF (Korea); CONICET and UBACyT (Argentina); FOM (The Netherlands); STFC and the Royal Society (United Kingdom); MSMT and GACR (Czech Republic); CRC Program, CFI, NSERC and WestGrid Project (Canada); BMBF and DFG (Germany); SFI (Ireland); The Swedish Research Council (Sweden); and CAS and CNSF (China). NR 31 TC 12 Z9 12 U1 0 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD APR 16 PY 2010 VL 104 IS 15 AR 151801 DI 10.1103/PhysRevLett.104.151801 PG 7 WC Physics, Multidisciplinary SC Physics GA 587OI UT WOS:000277001700009 PM 20481981 ER PT J AU Carmele, A Richter, M Chow, WW Knorr, A AF Carmele, Alexander Richter, Marten Chow, Weng W. Knorr, Andreas TI Antibunching of Thermal Radiation by a Room-Temperature Phonon Bath: A Numerically Solvable Model for a Strongly Interacting Light-Matter-Reservoir System SO PHYSICAL REVIEW LETTERS LA English DT Article ID QUANTUM; CAVITY AB Progress in semiconductor technology introduces a new platform for quantum optics studies in solid state: a quantum dot strongly coupled to a cavity mode. We present a numerically solvable model for the combined electron, photon, and phonon dynamics. For a cavity mode prepared in a Fock state, the model reproduces the Jaynes-Cumming solution and interaction with a phonon bath leads to a higher value for the intensity-intensity correlation function: g((2))(0). In contrast, for an initial thermal photon distribution, the phonon-bath interaction gives a counterintuitive reduction in g((2))(0), resulting in the classical photon distribution evolving into a nonclassical one. C1 [Carmele, Alexander; Richter, Marten; Knorr, Andreas] Tech Univ Berlin, Inst Theoret Phys Nichtlineare Opt & Quantenelekt, D-10623 Berlin, Germany. [Richter, Marten] Univ Calif Irvine, Dept Chem, Irvine, CA 92697 USA. [Chow, Weng W.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Carmele, A (reprint author), Tech Univ Berlin, Inst Theoret Phys Nichtlineare Opt & Quantenelekt, Hardenbergstr 36, D-10623 Berlin, Germany. EM alex@itp.physik.tu-berlin.de RI Richter, Marten/B-7790-2008 OI Richter, Marten/0000-0003-4160-1008 FU Deutsche Forschungsgemeinschaft (DFG) [GRK1558]; U.S. Department of Energy [DE-AC04-94AL85000]; Energy Frontier Research Center (EFRC); Alexander von Humboldt Foundation; National Science Foundation [PHY05-51164] FX We acknowledge support by Deutsche Forschungsgemeinschaft (DFG) GRK1558, U.S. Department of Energy under Contract No. DE-AC04-94AL85000, and the Energy Frontier Research Center (EFRC) and the Alexander von Humboldt Foundation. W. W. C. thanks the SFB 787 for hospitality and A. K. thanks the Kavli Institute for Theoretical Physics (National Science Foundation under Grant No. PHY05-51164). NR 25 TC 32 Z9 32 U1 0 U2 11 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD APR 16 PY 2010 VL 104 IS 15 AR 156801 DI 10.1103/PhysRevLett.104.156801 PG 4 WC Physics, Multidisciplinary SC Physics GA 587OI UT WOS:000277001700032 PM 20482004 ER PT J AU Dubiel, SM Cieslak, J Sturhahn, W Sternik, M Piekarz, P Stankov, S Parlinski, K AF Dubiel, S. M. Cieslak, J. Sturhahn, W. Sternik, M. Piekarz, P. Stankov, S. Parlinski, K. TI Vibrational Properties of alpha- and sigma-Phase Fe-Cr Alloy SO PHYSICAL REVIEW LETTERS LA English DT Article ID NUCLEAR RESONANT SCATTERING; AUGMENTED-WAVE METHOD; SPECTROSCOPY; TEMPERATURE; SYSTEM AB Experimental and theoretical studies, of the Fe-partial phonon density of states (PDOS) for Fe(52.5)Cr(47.5) alloy having alpha and sigma phases were carried out. The former using the nuclear resonant inelastic x-ray scattering method, and the latter with the direct one. Characteristic features of PDOS, which distinguish one phase from the other, were revealed and successfully reproduced by the theory. Data pertinent to the dynamics such as the Lamb-Mossbauer factor, f, the kinetic energy per atom, E(k), and the mean force constant, D, were directly derived, while vibrational specific heat at constant volume, C(V), and vibrational entropy, S were calculated using the Fe partial PDOS. Based on the values of f and C(V), we determined Debye temperatures, Theta(D). An excellent agreement for some quantities derived from experiment and first-principles theory, like C(V) and quite good ones for others like D and S were obtained. C1 [Dubiel, S. M.; Cieslak, J.] AGH Univ Sci & Technol, Fac Phys & Appl Comp Sci, PL-30059 Krakow, Poland. [Sturhahn, W.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Sternik, M.; Piekarz, P.; Parlinski, K.] Polish Acad Sci, Inst Nucl Phys, PL-31342 Krakow, Poland. [Stankov, S.] Karlsruher Inst Technol, Inst Synchrotron Radiat, DE-76344 Eggenstein Leopoldshafen, Germany. RP Dubiel, SM (reprint author), AGH Univ Sci & Technol, Fac Phys & Appl Comp Sci, Aleja Mickiewicza 30, PL-30059 Krakow, Poland. EM dubiel@novell.ftj.agh.edu.pl RI Stankov, Svetoslav/G-3680-2010 FU Ministry of Science and Higher Education, Warsaw [N N202 228837, 44/N-COST/2007/0]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX The results reported in this study were partly obtained within the project supported by the Ministry of Science and Higher Education, Warsaw (Grant No.N N202 228837) and Project No. 44/N-COST/2007/0. Use of the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 20 TC 20 Z9 20 U1 1 U2 22 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD APR 16 PY 2010 VL 104 IS 15 AR 155503 DI 10.1103/PhysRevLett.104.155503 PG 4 WC Physics, Multidisciplinary SC Physics GA 587OI UT WOS:000277001700027 PM 20481999 ER PT J AU Lees, JP Poireau, V Prencipe, E Tisserand, V Tico, JG Grauges, E Martinelli, M Palano, A Pappagallo, M Eigen, G Stugu, B Sun, L Battaglia, M Brown, DN Hooberman, B Kerth, LT Kolomensky, YG Lynch, G Osipenkov, IL Tanabe, T Hawkes, CM Soni, N Watson, AT Koch, H Schroeder, T Asgeirsson, DJ Hearty, C Mattison, TS McKenna, JA Barrett, M Khan, A Randle-Conde, A Blinov, VE Buzykaev, AR Druzhinin, VP Golubev, VB Onuchin, AP Serednyakov, SI Skovpen, YI Solodov, EP Todyshev, KY Yushkov, AN Bondioli, M Curry, S Kirkby, D Lankford, AJ Lund, P Mandelkern, M Martin, EC Stoker, DP Atmacan, H Gary, JW Liu, F Long, O Vitug, GM Yasin, Z Sharma, V Campagnari, C Hong, TM Kovalskyi, D Richman, JD Eisner, AM Heusch, CA Kroseberg, J Lockman, WS Martinez, AJ Schalk, T Schumm, BA Seiden, A Winstrom, LO Cheng, CH Doll, DA Echenard, B Hitlin, DG Ongmongkolkul, P Porter, FC Rakitin, AY Andreassen, R Dubrovin, MS Mancinelli, G Meadows, BT Sokoloff, MD Bloom, PC Ford, WT Gaz, A Hirschauer, JF Nagel, M Nauenberg, U Smith, JG Wagner, SR Ayad, R Toki, WH Feltresi, E Hauke, A Jasper, H Karbach, TM Merkel, J Petzold, A Spaan, B Wacker, K Kobel, MJ Schubert, KR Schwierz, R Bernard, D Verderi, M Clark, PJ Playfer, S Watson, JE Andreotti, M Bettoni, D Bozzi, C Calabrese, R Cecchi, A Cibinetto, G Fioravanti, E Franchini, P Luppi, E Munerato, M Negrini, M Petrella, A Piemontese, L Santoro, V Baldini-Ferroli, R Calcaterra, A De Sangro, R Finocchiaro, G Nicolaci, M Pacetti, S Patteri, P Peruzzi, IM Piccolo, M Rama, M Zallo, A Contri, R Guido, E Lo Vetere, M Monge, MR Passaggio, S Patrignani, C Robutti, E Tosi, S Bhuyan, B Morii, M Adametz, A Marks, J Schenk, S Uwer, U Bernlochner, FU Lacker, HM Lueck, T Volk, A Dauncey, PD Tibbetts, M Behera, PK Charles, MJ Mallik, U Chen, C Cochran, J Crawley, HB Dong, L Meyer, WT Prell, S Rosenberg, EI Rubin, AE Gao, YY Gritsan, AV Guo, ZJ Arnaud, N Davier, M Derkach, D da Costa, JF Grosdidier, G Le Diberder, F Lepeltier, V Lutz, AM Malaescu, B Roudeau, P Schune, MH Serrano, J Sordini, V Stocchi, A Wang, L Wormser, G Lange, DJ Wright, DM Bingham, I Burke, JP Chavez, CA Fry, JR Gabathuler, E Gamet, R Hutchcroft, DE Payne, DJ Touramanis, C Bevan, AJ Di Lodovico, F Sacco, R Sigamani, M Cowan, G Paramesvaran, S Wren, AC Brown, DN Davis, CL Denig, AG Fritsch, M Gradl, W Hafner, A Alwyn, KE Bailey, D Barlow, RJ Jackson, G Lafferty, GD West, TJ Anderson, J Jawahery, A Roberts, DA Simi, G Tuggle, JM Dallapiccola, C Salvati, E Cowan, R Dujmic, D Fisher, PH Henderson, SW Sciolla, G Spitznagel, M Yamamoto, RK Zhao, M Patel, PM Robertson, SH Schram, M Biassoni, P Lazzaro, A Lombardo, V Palombo, F Stracka, S Cremaldi, L Godang, R Kroeger, R Sonnek, P Summers, DJ Zhao, HW Nguyen, X Simard, M Taras, P De Nardo, G Monorchio, D Onorato, G Sciacca, C Raven, G Snoek, HL Jessop, CP Knoepfel, KJ LoSecco, JM Wang, WF Corwin, LA Honscheid, K Kass, R Morris, JP Rahimi, AM Sekula, SJ Blount, NL Brau, J Frey, R Igonkina, O Kolb, JA Lu, M Rahmat, R Sinev, NB Strom, D Strube, J Torrence, E Castelli, G Gagliardi, N Margoni, M Morandin, M Posocco, M Rotondo, M Simonetto, F Stroili, R Sanchez, PD Ben-Haim, E Bonneaud, GR Briand, H Chauveau, J Hamon, O Leruste, P Marchiori, G Ocariz, J Perez, A Prendki, J Sitt, S Biasini, M Manoni, E Angelini, C Batignani, G Bettarini, S Calderini, G Carpinelli, M Cervelli, A Forti, F Giorgi, MA Lusiani, A Neri, N Paoloni, E Rizzo, G Walsh, JJ Pegna, DL Lu, C Olsen, J Smith, AJS Telnov, AV Anulli, F Baracchini, E Cavoto, G Faccini, R Ferrarotto, F Ferroni, F Gaspero, M Jackson, PD Gioi, LL Mazzoni, MA Piredda, G Renga, F Ebert, M Hartmann, T Schroder, H Waldi, R Adye, T Franek, B Olaiya, EO Wilson, FF Emery, S de Monchenault, GH Vasseur, G Yeche, C Zito, M Allen, MT Aston, D Bard, DJ Bartoldus, R Benitez, JF Cenci, R Coleman, JP Convery, MR Dingfelder, JC Dorfan, J Dubois-Felsmann, GP Dunwoodie, W Field, RC Sevilla, MF Fulsom, BG Gabareen, AM Graham, MT Grenier, P Hast, C Innes, WR Kaminski, J Kelsey, MH Kim, H Kim, P Kocian, ML Leith, DWGS Li, S Lindquist, B Luitz, S Luth, V Lynch, HL MacFarlane, DB Marsiske, H Messner, R Muller, DR Neal, H Nelson, S O'Grady, CP Ofte, I Perl, M Ratcliff, BN Roodman, A Salnikov, AA Schindler, RH Schwiening, J Snyder, A Su, D Sullivan, MK Suzuki, K Swain, SK Thompson, JM Va'vra, J Wagner, AP Weaver, M West, CA Wisniewski, WJ Wittgen, M Wright, DH Wulsin, HW Yarritu, AK Young, CC Ziegler, V Chen, XR Liu, H Park, W Purohit, MV White, RM Wilson, JR Bellis, M Burchat, PR Edwards, AJ Miyashita, TS Ahmed, S Alam, MS Ernst, JA Pan, B Saeed, MA Zain, SB Guttman, N Soffer, A Spanier, SM Wogsland, BJ Eckmann, R Ritchie, JL Ruland, AM Schilling, CJ Schwitters, RF Wray, BC Drummond, BW Izen, JM Lou, XC Bianchi, F Gamba, D Pelliccioni, M Bomben, M Cartaro, C Della Ricca, G Lanceri, L Vitale, L Azzolini, V Lopez-March, N Martinez-Vidal, F Milanes, DA Oyanguren, A Albert, J Banerjee, S Choi, HHF Hamano, K King, GJ Kowalewski, R Lewczuk, MJ Nugent, IM Roney, JM Sobie, RJ Gershon, TJ Harrison, PF Ilic, J Latham, TE Mohanty, GB Puccio, EMT Band, HR Chen, X Dasu, S Flood, KT Pan, Y Prepost, R Vuosalo, CO Wu, SL AF Lees, J. P. Poireau, V. Prencipe, E. Tisserand, V. Garra Tico, J. Grauges, E. Martinelli, M. Palano, A. Pappagallo, M. Eigen, G. Stugu, B. Sun, L. Battaglia, M. Brown, D. N. Hooberman, B. Kerth, L. T. Kolomensky, Yu. G. Lynch, G. Osipenkov, I. L. Tanabe, T. Hawkes, C. M. Soni, N. Watson, A. T. Koch, H. Schroeder, T. Asgeirsson, D. J. Hearty, C. Mattison, T. S. McKenna, J. A. Barrett, M. Khan, A. Randle-Conde, A. Blinov, V. E. Buzykaev, A. R. Druzhinin, V. P. Golubev, V. B. Onuchin, A. P. Serednyakov, S. I. Skovpen, Yu. I. Solodov, E. P. Todyshev, K. Yu. Yushkov, A. N. Bondioli, M. Curry, S. Kirkby, D. Lankford, A. J. Lund, P. Mandelkern, M. Martin, E. C. Stoker, D. P. Atmacan, H. Gary, J. W. Liu, F. Long, O. Vitug, G. M. Yasin, Z. Sharma, V. Campagnari, C. Hong, T. M. Kovalskyi, D. Richman, J. D. Eisner, A. M. Heusch, C. A. Kroseberg, J. Lockman, W. S. Martinez, A. J. Schalk, T. Schumm, B. A. Seiden, A. Winstrom, L. O. Cheng, C. H. Doll, D. A. Echenard, B. Hitlin, D. G. Ongmongkolkul, P. Porter, F. C. Rakitin, A. Y. Andreassen, R. Dubrovin, M. S. Mancinelli, G. Meadows, B. T. Sokoloff, M. D. Bloom, P. C. Ford, W. T. Gaz, A. Hirschauer, J. F. Nagel, M. Nauenberg, U. Smith, J. G. Wagner, S. R. Ayad, R. Toki, W. H. Feltresi, E. Hauke, A. Jasper, H. Karbach, T. M. Merkel, J. Petzold, A. Spaan, B. Wacker, K. Kobel, M. J. Schubert, K. R. Schwierz, R. Bernard, D. Verderi, M. Clark, P. J. Playfer, S. Watson, J. E. Andreotti, M. Bettoni, D. Bozzi, C. Calabrese, R. Cecchi, A. Cibinetto, G. Fioravanti, E. Franchini, P. Luppi, E. Munerato, M. Negrini, M. Petrella, A. Piemontese, L. Santoro, V. Baldini-Ferroli, R. Calcaterra, A. De Sangro, R. Finocchiaro, G. Nicolaci, M. Pacetti, S. Patteri, P. Peruzzi, I. M. Piccolo, M. Rama, M. Zallo, A. Contri, R. Guido, E. Lo Vetere, M. Monge, M. R. Passaggio, S. Patrignani, C. Robutti, E. Tosi, S. Bhuyan, B. Morii, M. Adametz, A. Marks, J. Schenk, S. Uwer, U. Bernlochner, F. U. Lacker, H. M. Lueck, T. Volk, A. Dauncey, P. D. Tibbetts, M. Behera, P. K. Charles, M. J. Mallik, U. Chen, C. Cochran, J. Crawley, H. B. Dong, L. Meyer, W. T. Prell, S. Rosenberg, E. I. Rubin, A. E. Gao, Y. Y. Gritsan, A. V. Guo, Z. J. Arnaud, N. Davier, M. Derkach, D. da Costa, J. Firmino Grosdidier, G. Le Diberder, F. Lepeltier, V. Lutz, A. M. Malaescu, B. Roudeau, P. Schune, M. H. Serrano, J. Sordini, V. Stocchi, A. Wang, L. Wormser, G. Lange, D. J. Wright, D. M. Bingham, I. Burke, J. P. Chavez, C. A. Fry, J. R. Gabathuler, E. Gamet, R. Hutchcroft, D. E. Payne, D. J. Touramanis, C. Bevan, A. J. Di Lodovico, F. Sacco, R. Sigamani, M. Cowan, G. Paramesvaran, S. Wren, A. C. Brown, D. N. Davis, C. L. Denig, A. G. Fritsch, M. Gradl, W. Hafner, A. Alwyn, K. E. Bailey, D. Barlow, R. J. Jackson, G. Lafferty, G. D. West, T. J. Anderson, J. Jawahery, A. Roberts, D. A. Simi, G. Tuggle, J. M. Dallapiccola, C. Salvati, E. Cowan, R. Dujmic, D. Fisher, P. H. Henderson, S. W. Sciolla, G. Spitznagel, M. Yamamoto, R. K. Zhao, M. Patel, P. M. Robertson, S. H. Schram, M. Biassoni, P. Lazzaro, A. Lombardo, V. Palombo, F. Stracka, S. Cremaldi, L. Godang, R. Kroeger, R. Sonnek, P. Summers, D. J. Zhao, H. W. Nguyen, X. Simard, M. Taras, P. De Nardo, G. Monorchio, D. Onorato, G. Sciacca, C. Raven, G. Snoek, H. L. Jessop, C. P. Knoepfel, K. J. LoSecco, J. M. Wang, W. F. Corwin, L. A. Honscheid, K. Kass, R. Morris, J. P. Rahimi, A. M. Sekula, S. J. Blount, N. L. Brau, J. Frey, R. Igonkina, O. Kolb, J. A. Lu, M. Rahmat, R. Sinev, N. B. Strom, D. Strube, J. Torrence, E. Castelli, G. Gagliardi, N. Margoni, M. Morandin, M. Posocco, M. Rotondo, M. Simonetto, F. Stroili, R. Sanchez, P. del Amo Ben-Haim, E. Bonneaud, G. R. Briand, H. Chauveau, J. Hamon, O. Leruste, Ph. Marchiori, G. Ocariz, J. Perez, A. Prendki, J. Sitt, S. Biasini, M. Manoni, E. Angelini, C. Batignani, G. Bettarini, S. Calderini, G. Carpinelli, M. Cervelli, A. Forti, F. Giorgi, M. A. Lusiani, A. Neri, N. Paoloni, E. Rizzo, G. Walsh, J. J. Pegna, D. Lopes Lu, C. Olsen, J. Smith, A. J. S. Telnov, A. V. Anulli, F. Baracchini, E. Cavoto, G. Faccini, R. Ferrarotto, F. Ferroni, F. Gaspero, M. Jackson, P. D. Gioi, L. Li Mazzoni, M. A. Piredda, G. Renga, F. Ebert, M. Hartmann, T. Schroeder, H. Waldi, R. Adye, T. Franek, B. Olaiya, E. O. Wilson, F. F. Emery, S. de Monchenault, G. Hamel Vasseur, G. Yeche, Ch. Zito, M. Allen, M. T. Aston, D. Bard, D. J. Bartoldus, R. Benitez, J. F. Cenci, R. Coleman, J. P. Convery, M. R. Dingfelder, J. C. Dorfan, J. Dubois-Felsmann, G. P. Dunwoodie, W. Field, R. C. Sevilla, M. Franco Fulsom, B. G. Gabareen, A. M. Graham, M. T. Grenier, P. Hast, C. Innes, W. R. Kaminski, J. Kelsey, M. H. Kim, H. Kim, P. Kocian, M. L. Leith, D. W. G. S. Li, S. Lindquist, B. Luitz, S. Luth, V. Lynch, H. L. MacFarlane, D. B. Marsiske, H. Messner, R. Muller, D. R. Neal, H. Nelson, S. O'Grady, C. P. Ofte, I. Perl, M. Ratcliff, B. N. Roodman, A. Salnikov, A. A. Schindler, R. H. Schwiening, J. Snyder, A. Su, D. Sullivan, M. K. Suzuki, K. Swain, S. K. Thompson, J. M. Va'vra, J. Wagner, A. P. Weaver, M. West, C. A. Wisniewski, W. J. Wittgen, M. Wright, D. H. Wulsin, H. W. Yarritu, A. K. Young, C. C. Ziegler, V. Chen, X. R. Liu, H. Park, W. Purohit, M. V. White, R. M. Wilson, J. R. Bellis, M. Burchat, P. R. Edwards, A. J. Miyashita, T. S. Ahmed, S. Alam, M. S. Ernst, J. A. Pan, B. Saeed, M. A. Zain, S. B. Guttman, N. Soffer, A. Spanier, S. M. Wogsland, B. J. Eckmann, R. Ritchie, J. L. Ruland, A. M. Schilling, C. J. Schwitters, R. F. Wray, B. C. Drummond, B. W. Izen, J. M. Lou, X. C. Bianchi, F. Gamba, D. Pelliccioni, M. Bomben, M. Cartaro, C. Della Ricca, G. Lanceri, L. Vitale, L. Azzolini, V. Lopez-March, N. Martinez-Vidal, F. Milanes, D. A. Oyanguren, A. Albert, J. Banerjee, Sw. Choi, H. H. F. Hamano, K. King, G. J. Kowalewski, R. Lewczuk, M. J. Nugent, I. M. Roney, J. M. Sobie, R. J. Gershon, T. J. Harrison, P. F. Ilic, J. Latham, T. E. Mohanty, G. B. Puccio, E. M. T. Band, H. R. Chen, X. Dasu, S. Flood, K. T. Pan, Y. Prepost, R. Vuosalo, C. O. Wu, S. L. CA BABAR Collaboration TI Search for Charged Lepton Flavor Violation in Narrow Gamma Decays SO PHYSICAL REVIEW LETTERS LA English DT Article ID MONTE-CARLO; LIGHT AB Charged-lepton flavor-violating processes are unobservable in the standard model, but they are predicted to be enhanced in several extensions to the standard model, including supersymmetry and models with leptoquarks or compositeness. We present a search for such processes in a sample of 99 x 10(6)Gamma(2S) decays and 117 x 10(6)Gamma(3S) decays collected with the BABAR detector. We place upper limits on the branching fractions B(Gamma(nS) --> e(+/-)tau(-/+)) and B(Gamma(n(S) --> mu(+/-)tau(-/+)) (n = 2, 3) at the 10(-6) level and use these results to place lower limits of order 1 TeV on the mass scale of charged-lepton flavor-violating effective operators. C1 [Lees, J. P.; Poireau, V.; Prencipe, E.; Tisserand, V.] Univ Savoie, CNRS, IN2P3, Lab Annecy Le Vieux Phys Particules, F-74941 Annecy Le Vieux, France. [Garra Tico, J.; Grauges, E.] Univ Barcelona, Fac Fis, Dept ECM, E-08028 Barcelona, Spain. [Martinelli, M.; Palano, A.; Pappagallo, M.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Martinelli, M.; Palano, A.; Pappagallo, M.] Univ Bari, Dipartimento Fis, I-70126 Bari, Italy. [Eigen, G.; Stugu, B.; Sun, L.] Univ Bergen, Inst Phys, N-5007 Bergen, Norway. [Battaglia, M.; Brown, D. N.; Hooberman, B.; Kerth, L. T.; Kolomensky, Yu. G.; Lynch, G.; Osipenkov, I. L.; Tanabe, T.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Hawkes, C. M.; Soni, N.; Watson, A. T.] Univ Birmingham, Birmingham B15 2TT, W Midlands, England. [Koch, H.; Schroeder, T.] Ruhr Univ Bochum, Inst Expt Phys 1, D-44780 Bochum, Germany. [Asgeirsson, D. J.; Hearty, C.; Mattison, T. S.; McKenna, J. A.] Univ British Columbia, Vancouver, BC V6T 1Z1, Canada. [Barrett, M.; Khan, A.; Randle-Conde, A.] Brunel Univ, Uxbridge UB8 3PH, Middx, England. [Blinov, V. E.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.; Yushkov, A. N.] Budker Inst Nucl Phys, Novosibirsk 630090, Russia. [Bondioli, M.; Curry, S.; Kirkby, D.; Lankford, A. J.; Lund, P.; Mandelkern, M.; Martin, E. C.; Stoker, D. P.] Univ Calif Irvine, Irvine, CA 92697 USA. [Atmacan, H.; Gary, J. W.; Liu, F.; Long, O.; Vitug, G. M.; Yasin, Z.] Univ Calif Riverside, Riverside, CA 92521 USA. [Sharma, V.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Campagnari, C.; Hong, T. M.; Kovalskyi, D.; Richman, J. D.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Eisner, A. M.; Heusch, C. A.; Kroseberg, J.; Lockman, W. S.; Martinez, A. J.; Schalk, T.; Schumm, B. A.; Seiden, A.; Winstrom, L. O.] Univ Calif Santa Cruz, Inst Particle Phys, Santa Cruz, CA 95064 USA. [Cheng, C. H.; Doll, D. A.; Echenard, B.; Hitlin, D. G.; Ongmongkolkul, P.; Porter, F. C.; Rakitin, A. Y.] CALTECH, Pasadena, CA 91125 USA. [Andreassen, R.; Dubrovin, M. S.; Mancinelli, G.; Meadows, B. T.; Sokoloff, M. D.] Univ Cincinnati, Cincinnati, OH 45221 USA. [Bloom, P. C.; Ford, W. T.; Gaz, A.; Hirschauer, J. F.; Nagel, M.; Nauenberg, U.; Smith, J. G.; Wagner, S. R.] Univ Colorado, Boulder, CO 80309 USA. [Ayad, R.; Toki, W. H.] Colorado State Univ, Ft Collins, CO 80523 USA. [Feltresi, E.; Hauke, A.; Jasper, H.; Karbach, T. M.; Merkel, J.; Petzold, A.; Spaan, B.; Wacker, K.] Tech Univ Dortmund, Fak Phys, D-44221 Dortmund, Germany. [Kobel, M. J.; Schubert, K. R.; Schwierz, R.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. [Bernard, D.; Verderi, M.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Clark, P. J.; Playfer, S.; Watson, J. E.] Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. [Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Fioravanti, E.; Franchini, P.; Luppi, E.; Munerato, M.; Negrini, M.; Petrella, A.; Piemontese, L.; Santoro, V.] Ist Nazl Fis Nucl, Sez Ferrara, I-44100 Ferrara, Italy. [Andreotti, M.; Bozzi, C.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Fioravanti, E.; Franchini, P.; Luppi, E.; Munerato, M.; Negrini, M.; Petrella, A.; Santoro, V.] Univ Ferrara, Dipartimento Fis, I-44100 Ferrara, Italy. [Baldini-Ferroli, R.; Calcaterra, A.; De Sangro, R.; Finocchiaro, G.; Nicolaci, M.; Pacetti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; Zallo, A.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Contri, R.; Guido, E.; Lo Vetere, M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Tosi, S.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Contri, R.; Guido, E.; Lo Vetere, M.; Monge, M. R.; Patrignani, C.; Tosi, S.] Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy. [Bhuyan, B.] Dept Phys N Guwahati, Gauhati 781039, Assam, India. [Morii, M.] Harvard Univ, Cambridge, MA 02138 USA. [Adametz, A.; Marks, J.; Schenk, S.; Uwer, U.] Heidelberg Univ, Inst Phys, D-69120 Heidelberg, Germany. [Bernlochner, F. U.; Lacker, H. M.; Lueck, T.; Volk, A.] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany. [Dauncey, P. D.; Tibbetts, M.] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. [Behera, P. K.; Charles, M. J.; Mallik, U.] Univ Iowa, Iowa City, IA 52242 USA. [Chen, C.; Cochran, J.; Crawley, H. B.; Dong, L.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Rubin, A. E.] Iowa State Univ, Ames, IA 50011 USA. [Gao, Y. Y.; Gritsan, A. V.; Guo, Z. J.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Arnaud, N.; Davier, M.; Derkach, D.; da Costa, J. Firmino; Grosdidier, G.; Le Diberder, F.; Lepeltier, V.; Lutz, A. M.; Malaescu, B.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wang, L.; Wormser, G.] CNRS, IN2P3, Lab Accelerateur Lineaire, F-91898 Orsay, France. [Arnaud, N.; Davier, M.; Derkach, D.; da Costa, J. Firmino; Grosdidier, G.; Le Diberder, F.; Lepeltier, V.; Lutz, A. M.; Malaescu, B.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wang, L.; Wormser, G.] Univ Paris 11, Ctr Sci Orsay, F-91898 Orsay, France. [Lange, D. J.; Wright, D. M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Bingham, I.; Burke, J. P.; Chavez, C. A.; Fry, J. R.; Gabathuler, E.; Gamet, R.; Hutchcroft, D. E.; Payne, D. J.; Touramanis, C.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Bevan, A. J.; Di Lodovico, F.; Sacco, R.; Sigamani, M.] Univ London, London E1 4NS, England. [Cowan, G.; Paramesvaran, S.; Wren, A. C.] Univ London Royal Holloway & Bedford New Coll, Egham TW20 0EX, Surrey, England. [Brown, D. N.; Davis, C. L.] Univ Louisville, Louisville, KY 40292 USA. [Denig, A. G.; Fritsch, M.; Gradl, W.; Hafner, A.] Johannes Gutenberg Univ Mainz, Inst Kernphys, D-55099 Mainz, Germany. [Alwyn, K. E.; Bailey, D.; Barlow, R. J.; Jackson, G.; Lafferty, G. D.; West, T. J.] Univ Manchester, Manchester M13 9PL, Lancs, England. [Anderson, J.; Jawahery, A.; Roberts, D. A.; Simi, G.; Tuggle, J. M.] Univ Maryland, College Pk, MD 20742 USA. [Dallapiccola, C.; Salvati, E.] Univ Massachusetts, Amherst, MA 01003 USA. [Cowan, R.; Dujmic, D.; Fisher, P. H.; Henderson, S. W.; Sciolla, G.; Spitznagel, M.; Yamamoto, R. K.; Zhao, M.] MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. [Patel, P. M.; Robertson, S. H.; Schram, M.] McGill Univ, Montreal, PQ H3A 2T8, Canada. [Biassoni, P.; Lazzaro, A.; Lombardo, V.; Palombo, F.; Stracka, S.] Ist Nazl Fis Nucl, Sez Milano, I-20133 Milan, Italy. [Biassoni, P.; Lazzaro, A.; Palombo, F.; Stracka, S.] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. [Cremaldi, L.; Godang, R.; Kroeger, R.; Sonnek, P.; Summers, D. J.; Zhao, H. W.] Univ Mississippi, University, MS 38677 USA. [Nguyen, X.; Simard, M.; Taras, P.] Univ Montreal, Montreal, PQ H3C 3J7, Canada. [De Nardo, G.; Monorchio, D.; Onorato, G.; Sciacca, C.] Ist Nazl Fis Nucl, Sez Napoli, I-80126 Naples, Italy. [De Nardo, G.; Monorchio, D.; Onorato, G.; Sciacca, C.] Univ Naples Federico II, Dipartimento Sci Fis, I-80126 Naples, Italy. [Raven, G.; Snoek, H. L.] Natl Inst Nucl Phys & High Energy Phys, NIKHEF, NL-1009 DB Amsterdam, Netherlands. [Jessop, C. P.; Knoepfel, K. J.; LoSecco, J. M.; Wang, W. F.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Corwin, L. A.; Honscheid, K.; Kass, R.; Morris, J. P.; Rahimi, A. M.; Sekula, S. J.] Ohio State Univ, Columbus, OH 43210 USA. [Blount, N. L.; Brau, J.; Frey, R.; Igonkina, O.; Kolb, J. A.; Lu, M.; Rahmat, R.; Sinev, N. B.; Strom, D.; Strube, J.; Torrence, E.] Univ Oregon, Eugene, OR 97403 USA. [Castelli, G.; Gagliardi, N.; Margoni, M.; Morandin, M.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Castelli, G.; Gagliardi, N.; Margoni, M.; Simonetto, F.; Stroili, R.] Univ Padua, Dipartimento Fis, I-35131 Padua, Italy. [Sanchez, P. del Amo; Ben-Haim, E.; Bonneaud, G. R.; Briand, H.; Chauveau, J.; Hamon, O.; Leruste, Ph.; Marchiori, G.; Ocariz, J.; Perez, A.; Prendki, J.; Sitt, S.; Calderini, G.] Univ Paris 07, Univ Paris 06, CNRS, Lab Phys Nucl & Hautes Energies,IN2P3, F-75252 Paris, France. [Biasini, M.; Manoni, E.] Ist Nazl Fis Nucl, Sez Perugia, I-06100 Perugia, Italy. [Peruzzi, I. M.; Biasini, M.; Manoni, E.] Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Calderini, G.; Carpinelli, M.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Neri, N.; Paoloni, E.; Rizzo, G.; Walsh, J. J.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Calderini, G.; Carpinelli, M.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Neri, N.; Paoloni, E.; Rizzo, G.] Univ Pisa, Dipartimento Fis, I-56127 Pisa, Italy. [Lusiani, A.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Pegna, D. Lopes; Lu, C.; Olsen, J.; Smith, A. J. S.; Telnov, A. V.] Princeton Univ, Princeton, NJ 08544 USA. [Anulli, F.; Baracchini, E.; Cavoto, G.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Jackson, P. D.; Gioi, L. Li; Mazzoni, M. A.; Piredda, G.; Renga, F.] Ist Nazl Fis Nucl, Sez Roma, I-00185 Rome, Italy. [Baracchini, E.; Faccini, R.; Ferroni, F.; Gaspero, M.; Renga, F.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Ebert, M.; Hartmann, T.; Schroeder, H.; Waldi, R.] Univ Rostock, D-18051 Rostock, Germany. [Adye, T.; Franek, B.; Olaiya, E. O.; Wilson, F. F.; Emery, S.; de Monchenault, G. Hamel; Vasseur, G.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Yeche, Ch.; Zito, M.; Allen, M. T.] CEA, Irfu, SPP, Ctr Saclay, F-91191 Gif Sur Yvette, France. [Aston, D.; Bard, D. J.; Bartoldus, R.; Benitez, J. F.; Cenci, R.; Coleman, J. P.; Convery, M. R.; Dingfelder, J. C.; Dorfan, J.; Dubois-Felsmann, G. P.; Dunwoodie, W.; Field, R. C.; Sevilla, M. Franco; Fulsom, B. G.; Gabareen, A. M.; Graham, M. T.; Grenier, P.; Hast, C.; Innes, W. R.; Kaminski, J.; Kelsey, M. H.; Kim, H.; Kim, P.; Kocian, M. L.; Leith, D. W. G. S.; Li, S.; Lindquist, B.; Luitz, S.; Luth, V.; Lynch, H. L.; MacFarlane, D. B.; Marsiske, H.; Messner, R.; Muller, D. R.; Neal, H.; Nelson, S.; O'Grady, C. P.; Ofte, I.; Perl, M.; Ratcliff, B. N.; Roodman, A.; Salnikov, A. A.; Schindler, R. H.; Schwiening, J.; Snyder, A.; Su, D.; Sullivan, M. K.; Suzuki, K.; Swain, S. K.; Thompson, J. M.; Va'vra, J.; Wagner, A. P.; Weaver, M.; West, C. A.; Wisniewski, W. J.; Wittgen, M.; Wright, D. H.; Wulsin, H. W.; Yarritu, A. K.; Young, C. C.; Ziegler, V.; Chen, X. R.; Liu, H.] SLAC Natl Accelerator Lab, Stanford, CA 94309 USA. [Park, W.; Purohit, M. V.; White, R. M.; Wilson, J. R.] Univ S Carolina, Columbia, SC 29208 USA. [Bellis, M.; Burchat, P. R.; Edwards, A. J.; Miyashita, T. S.] Stanford Univ, Stanford, CA 94305 USA. [Ahmed, S.; Alam, M. S.; Ernst, J. A.; Pan, B.; Saeed, M. A.; Zain, S. B.] SUNY Albany, Albany, NY 12222 USA. [Guttman, N.; Soffer, A.] Tel Aviv Univ, Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Spanier, S. M.; Wogsland, B. J.] Univ Tennessee, Knoxville, TN 37996 USA. [Eckmann, R.; Ritchie, J. L.; Ruland, A. M.; Schilling, C. J.; Schwitters, R. F.; Wray, B. C.] Univ Texas Austin, Austin, TX 78712 USA. [Drummond, B. W.; Izen, J. M.; Lou, X. C.] Univ Texas Dallas, Richardson, TX 75083 USA. [Bianchi, F.; Gamba, D.; Pelliccioni, M.] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy. [Bianchi, F.; Gamba, D.; Pelliccioni, M.] Univ Turin, Dipartimento Fis Sperimentale, I-10125 Turin, Italy. [Bomben, M.; Cartaro, C.; Della Ricca, G.; Lanceri, L.; Vitale, L.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Bomben, M.; Cartaro, C.; Della Ricca, G.; Lanceri, L.; Vitale, L.] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. [Azzolini, V.; Lopez-March, N.; Martinez-Vidal, F.; Milanes, D. A.; Oyanguren, A.] Univ Valencia, CSIC, IFIC, E-46071 Valencia, Spain. [Albert, J.; Banerjee, Sw.; Choi, H. H. F.; Hamano, K.; King, G. J.; Kowalewski, R.; Lewczuk, M. J.; Nugent, I. M.; Roney, J. M.; Sobie, R. J.] Univ Victoria, Victoria, BC V8W 3P6, Canada. [Gershon, T. J.; Harrison, P. F.; Ilic, J.; Latham, T. E.; Mohanty, G. B.; Puccio, E. M. T.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Band, H. R.; Chen, X.; Dasu, S.; Flood, K. T.; Pan, Y.; Prepost, R.; Vuosalo, C. O.; Wu, S. L.] Univ Wisconsin, Madison, WI 53706 USA. [Carpinelli, M.] Univ Sassari, I-07100 Sassari, Italy. RP Lees, JP (reprint author), Univ Savoie, CNRS, IN2P3, Lab Annecy Le Vieux Phys Particules, F-74941 Annecy Le Vieux, France. RI Martinez Vidal, F*/L-7563-2014; Kolomensky, Yury/I-3510-2015; Lo Vetere, Maurizio/J-5049-2012; Lusiani, Alberto/N-2976-2015; Morandin, Mauro/A-3308-2016; Lusiani, Alberto/A-3329-2016; Stracka, Simone/M-3931-2015; Della Ricca, Giuseppe/B-6826-2013; Di Lodovico, Francesca/L-9109-2016; Pappagallo, Marco/R-3305-2016; Calcaterra, Alessandro/P-5260-2015; Frey, Raymond/E-2830-2016; Neri, Nicola/G-3991-2012; Forti, Francesco/H-3035-2011; Rotondo, Marcello/I-6043-2012; de Sangro, Riccardo/J-2901-2012; Saeed, Mohammad Alam/J-7455-2012; Negrini, Matteo/C-8906-2014; Patrignani, Claudia/C-5223-2009; Monge, Maria Roberta/G-9127-2012; Oyanguren, Arantza/K-6454-2014; Luppi, Eleonora/A-4902-2015; White, Ryan/E-2979-2015; Calabrese, Roberto/G-4405-2015 OI Raven, Gerhard/0000-0002-2897-5323; Bellis, Matthew/0000-0002-6353-6043; Carpinelli, Massimo/0000-0002-8205-930X; Sciacca, Crisostomo/0000-0002-8412-4072; Adye, Tim/0000-0003-0627-5059; Lafferty, George/0000-0003-0658-4919; Martinelli, Maurizio/0000-0003-4792-9178; Strube, Jan/0000-0001-7470-9301; Chen, Chunhui /0000-0003-1589-9955; Martinez Vidal, F*/0000-0001-6841-6035; Kolomensky, Yury/0000-0001-8496-9975; Lo Vetere, Maurizio/0000-0002-6520-4480; Lusiani, Alberto/0000-0002-6876-3288; Morandin, Mauro/0000-0003-4708-4240; Lusiani, Alberto/0000-0002-6876-3288; Stracka, Simone/0000-0003-0013-4714; Della Ricca, Giuseppe/0000-0003-2831-6982; Di Lodovico, Francesca/0000-0003-3952-2175; Pappagallo, Marco/0000-0001-7601-5602; Calcaterra, Alessandro/0000-0003-2670-4826; Frey, Raymond/0000-0003-0341-2636; Neri, Nicola/0000-0002-6106-3756; Forti, Francesco/0000-0001-6535-7965; Rotondo, Marcello/0000-0001-5704-6163; de Sangro, Riccardo/0000-0002-3808-5455; Saeed, Mohammad Alam/0000-0002-3529-9255; Negrini, Matteo/0000-0003-0101-6963; Patrignani, Claudia/0000-0002-5882-1747; Monge, Maria Roberta/0000-0003-1633-3195; Oyanguren, Arantza/0000-0002-8240-7300; Luppi, Eleonora/0000-0002-1072-5633; White, Ryan/0000-0003-3589-5900; Calabrese, Roberto/0000-0002-1354-5400 FU DOE; NSF (U.S.A.); NSERC (Canada); CEA; CNRS-IN2P3 (France); BMBF; DFG (Germany); INFN (Italy); FOM (The Netherlands); NFR (Norway); MES (Russia); MEC (Spain); STFC (United Kingdom); European Union; A.P. Sloan Foundation FX We are grateful for the excellent luminosity and machine conditions provided by our PEP-II colleagues, and for the substantial dedicated effort from the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and kind hospitality. This work is supported by DOE and NSF (U.S.A.), NSERC (Canada), CEA and CNRS-IN2P3 (France), BMBF and DFG (Germany), INFN (Italy), FOM (The Netherlands), NFR (Norway), MES (Russia), MEC (Spain), and STFC (United Kingdom). Individuals have received support from the Marie Curie EIF (European Union) and the A.P. Sloan Foundation. NR 24 TC 9 Z9 9 U1 2 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD APR 16 PY 2010 VL 104 IS 15 AR 151802 DI 10.1103/PhysRevLett.104.151802 PG 7 WC Physics, Multidisciplinary SC Physics GA 587OI UT WOS:000277001700010 PM 20481982 ER PT J AU Lipkin, HJ AF Lipkin, Harry J. TI Comment on "Time Modulation of the K-Shell Electron Capture Decay Rates of H-like Heavy Ions at GSI Experiments'' SO PHYSICAL REVIEW LETTERS LA English DT Editorial Material C1 [Lipkin, Harry J.] Weizmann Inst Sci, Dept Particle Phys, IL-76100 Rehovot, Israel. [Lipkin, Harry J.] Tel Aviv Univ, Raymond & Beverly Sackler Fac Exact Sci, Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Lipkin, Harry J.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. RP Lipkin, HJ (reprint author), Weizmann Inst Sci, Dept Particle Phys, IL-76100 Rehovot, Israel. NR 6 TC 2 Z9 2 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD APR 16 PY 2010 VL 104 IS 15 AR 159203 DI 10.1103/PhysRevLett.104.159203 PG 1 WC Physics, Multidisciplinary SC Physics GA 587OI UT WOS:000277001700055 PM 20482027 ER PT J AU Solenov, D Mozyrsky, D AF Solenov, Dmitry Mozyrsky, Dmitry TI Metastable States and Macroscopic Quantum Tunneling in a Cold-Atom Josephson Ring SO PHYSICAL REVIEW LETTERS LA English DT Article ID BOSE-EINSTEIN CONDENSATE; DYNAMICS AB We study macroscopic properties of a system of weakly interacting neutral bosons confined in a ring-shaped potential with a Josephson junction. We derive an effective low energy action for this system and evaluate its properties. In particular, we find that the system possesses a set of metastable current-carrying states and evaluate the rates of transitions between these states due to macroscopic quantum tunneling and thermal activation mechanism. Finally, we discuss signatures of different metastable states in the time-of-flight images and argue that the effect is observable within currently available experimental technique. C1 [Solenov, Dmitry; Mozyrsky, Dmitry] Los Alamos Natl Lab, Theoret Div T4, Los Alamos, NM 87545 USA. RP Solenov, D (reprint author), Los Alamos Natl Lab, Theoret Div T4, POB 1663, Los Alamos, NM 87545 USA. EM solenov@lanl.gov; mozyrsky@lanl.gov RI Solenov, Dmitry/H-6250-2012; OI Mozyrsky, Dima/0000-0001-5305-4617 FU U.S. DOE FX We thank M. G. Boshier, I. Martin, V. Privman, and E. Timmermans for valuable discussions and comments. The work is supported by the U.S. DOE. NR 23 TC 10 Z9 10 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD APR 16 PY 2010 VL 104 IS 15 AR 150405 DI 10.1103/PhysRevLett.104.150405 PG 4 WC Physics, Multidisciplinary SC Physics GA 587OI UT WOS:000277001700005 PM 20481977 ER PT J AU Morgan, JL Darling, AE Eisen, JA AF Morgan, Jenna L. Darling, Aaron E. Eisen, Jonathan A. TI Metagenomic Sequencing of an In Vitro-Simulated Microbial Community SO PLOS ONE LA English DT Article ID HORIZONTAL GENE-TRANSFER; PHYLOGENETIC CLASSIFICATION; DNA; GENOME; EXTRACTION; SOILS; DIVERSITY; LIBRARIES; INFERENCE; ALIGNMENT AB Background: Microbial life dominates the earth, but many species are difficult or even impossible to study under laboratory conditions. Sequencing DNA directly from the environment, a technique commonly referred to as metagenomics, is an important tool for cataloging microbial life. This culture-independent approach involves collecting samples that include microbes in them, extracting DNA from the samples, and sequencing the DNA. A sample may contain many different microorganisms, macroorganisms, and even free-floating environmental DNA. A fundamental challenge in metagenomics has been estimating the abundance of organisms in a sample based on the frequency with which the organism's DNA was observed in reads generated via DNA sequencing. Methodology/Principal Findings: We created mixtures of ten microbial species for which genome sequences are known. Each mixture contained an equal number of cells of each species. We then extracted DNA from the mixtures, sequenced the DNA, and measured the frequency with which genomic regions from each organism was observed in the sequenced DNA. We found that the observed frequency of reads mapping to each organism did not reflect the equal numbers of cells that were known to be included in each mixture. The relative organism abundances varied significantly depending on the DNA extraction and sequencing protocol utilized. Conclusions/Significance: We describe a new data resource for measuring the accuracy of metagenomic binning methods, created by in vitro-simulation of a metagenomic community. Our in vitro simulation can be used to complement previous in silico benchmark studies. In constructing a synthetic community and sequencing its metagenome, we encountered several sources of observation bias that likely affect most metagenomic experiments to date and present challenges for comparative metagenomic studies. DNA preparation methods have a particularly profound effect in our study, implying that samples prepared with different protocols are not suitable for comparative metagenomics. C1 [Morgan, Jenna L.; Darling, Aaron E.; Eisen, Jonathan A.] Univ Calif Davis, Dept Med Microbiol & Immunol, Davis, CA 95616 USA. [Morgan, Jenna L.; Darling, Aaron E.; Eisen, Jonathan A.] Univ Calif Davis, Dept Ecol & Evolut, Davis, CA 95616 USA. [Morgan, Jenna L.; Eisen, Jonathan A.] Joint Genome Inst, US DOE, Walnut Creek, CA USA. RP Morgan, JL (reprint author), Univ Calif Davis, Dept Med Microbiol & Immunol, Davis, CA 95616 USA. EM jaeisen@ucdavis.edu OI Lang, Jenna/0000-0002-4871-4497; Eisen, Jonathan A./0000-0002-0159-2197; Darling, Aaron/0000-0003-2397-7925 FU Lawrence Berkeley National Laboratory; Office of Science of the U.S. Department of Energy [DE-AC02-5CH11231]; NSF [DBI-0630765] FX This project was funded primarily by Laboratory Directed Research and Development Program funds from the Lawrence Berkeley National Laboratory. The work was conducted in part at the U.S. Department of Energy Joint Genome Institute which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-5CH11231. A. Darling was supported by NSF fellowship DBI-0630765. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 47 TC 103 Z9 106 U1 3 U2 47 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD APR 16 PY 2010 VL 5 IS 4 AR e10209 DI 10.1371/journal.pone.0010209 PG 10 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 584HZ UT WOS:000276743500016 PM 20419134 ER PT J AU Ferris, P Olson, BJSC De Hoff, PL Douglass, S Casero, D Prochnik, S Geng, S Rai, R Grimwood, J Schmutz, J Nishii, I Hamaji, T Nozaki, H Pellegrini, M Umen, JG AF Ferris, Patrick Olson, Bradley J. S. C. De Hoff, Peter L. Douglass, Stephen Casero, David Prochnik, Simon Geng, Sa Rai, Rhitu Grimwood, Jane Schmutz, Jeremy Nishii, Ichiro Hamaji, Takashi Nozaki, Hisayoshi Pellegrini, Matteo Umen, James G. TI Evolution of an Expanded Sex-Determining Locus in Volvox SO SCIENCE LA English DT Article ID MINUS-DOMINANCE GENE; MATING-TYPE LOCUS; CHLAMYDOMONAS-REINHARDTII; CHROMOSOME EVOLUTION; Y-CHROMOSOME; ORIGIN; IDENTIFICATION; DIMORPHISM; REVEALS AB Although dimorphic sexes have evolved repeatedly in multicellular eukaryotes, their origins are unknown. The mating locus (MT) of the sexually dimorphic multicellular green alga Volvox carteri specifies the production of eggs and sperm and has undergone a remarkable expansion and divergence relative to MT from Chlamydomonas reinhardtii, which is a closely related unicellular species that has equal-sized gametes. Transcriptome analysis revealed a rewired gametic expression program for Volvox MT genes relative to Chlamydomonas and identified multiple gender-specific and sex-regulated transcripts. The retinoblastoma tumor suppressor homolog MAT3 is a Volvox MT gene that displays sexually regulated alternative splicing and evidence of gender-specific selection, both of which are indicative of cooption into the sexual cycle. Thus, sex-determining loci affect the evolution of both sex-related and non-sex-related genes. C1 [Ferris, Patrick; Olson, Bradley J. S. C.; De Hoff, Peter L.; Geng, Sa; Rai, Rhitu; Umen, James G.] Salk Inst Biol Studies, La Jolla, CA 92037 USA. [Douglass, Stephen; Casero, David; Pellegrini, Matteo] Univ Calif Los Angeles, Dept Mol Cell & Dev Biol, Los Angeles, CA 90095 USA. [Douglass, Stephen; Casero, David; Pellegrini, Matteo] Univ Calif Los Angeles, Inst Genom & Prote, Los Angeles, CA 90095 USA. [Prochnik, Simon] US DOE, JGI, Walnut Creek, CA 95498 USA. [Rai, Rhitu] Indian Agr Res Inst, Lab Plant Microbe Interact, Natl Res Ctr Plant Biotechnol, New Delhi 110012, India. [Grimwood, Jane; Schmutz, Jeremy] Hudson Alpha Inst Biotechnol, Genome Sequencing Ctr, Huntsville, AL 35806 USA. [Nishii, Ichiro] Nara Womens Univ, Dept Biol Sci, Nara 6308506, Japan. [Hamaji, Takashi; Nozaki, Hisayoshi] Univ Tokyo, Dept Biol Sci, Tokyo 1130033, Japan. RP Umen, JG (reprint author), Salk Inst Biol Studies, 10010 N Torrey Pines Rd, La Jolla, CA 92037 USA. EM umen@salk.edu RI Casero, David/E-7365-2010; Olson, Bradley/A-4532-2013; Schmutz, Jeremy/N-3173-2013; NOZAKI, HISAYOSHI/G-4926-2014; Umen, James/K-9120-2013; OI Casero, David/0000-0002-7347-3330; Olson, Bradley/0000-0002-4751-8347; Schmutz, Jeremy/0000-0001-8062-9172; Umen, James/0000-0003-4094-9045; Hamaji, Takashi/0000-0002-2801-2148 FU Coypu Foundation; NIH [R01 GM078376, F32 GM086037, T32-HG002536, DE-FC02-02ER63421]; Japan Society for the Promotion of Science [S05750/L06701]; Ministry of Education, Culture, Sports, Science and Technology, Japan [20247032]; AFOSR; DOE-JGI [776835]; DOE [DE-AC02-05CH11231]; DOE's Office of Science, Biological and Environmental Research; University of California, Lawrence Berkeley National Laboratory [DE-AC02-05CH11231]; Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; Los Alamos National Laboratory [DE-AC02-06NA25396] FX We thank D. Kirk for DNA from Volvox mapping populations. We thank V. Lundblad and S. Merchant for advice on the manuscript. This work was supported by the Coypu Foundation and from grants NIH R01 GM078376 to J.G.U.; NIH F32 GM086037 to B.O.; Japan Society for the Promotion of Science grant S05750/L06701 to P. F.; Grant-in-Aid for Scientific Research (20247032) from the Ministry of Education, Culture, Sports, Science and Technology, Japan to H.N.; NIH grant T32-HG002536 to S. D.; and DE-FC02-02ER63421 and AFOSR to M. P. DOE-JGI provided sequencing and analyses for algal mating loci under the Community Sequencing Program (776835) supported by the Office of Science of DOE under contract DE-AC02-05CH11231. Sequencing of the V. carteri genome was performed under the auspices of DOE's Office of Science, Biological and Environmental Research Program and by the University of California, Lawrence Berkeley National Laboratory under contract DE-AC02-05CH11231, Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344, and Los Alamos National Laboratory under contract DE-AC02-06NA25396. Sequences generated in this study have been deposited in GenBank under accession numbers GU814014, GU814015, GU784915, GU784916, and GU735444-GU735478. Materials used in this study will be made available upon request with the completion of a Materials Transfer Agreement from Salk Institute. NR 28 TC 67 Z9 68 U1 3 U2 35 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD APR 16 PY 2010 VL 328 IS 5976 BP 351 EP 354 DI 10.1126/science.1186222 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 583NR UT WOS:000276685000036 PM 20395508 ER PT J AU Vicuna, S Dracup, JA Lund, JR Dale, LL Maurer, EP AF Vicuna, Sebastian Dracup, John A. Lund, Jay R. Dale, Larry L. Maurer, Edwin P. TI Basin-scale water system operations with uncertain future climate conditions: Methodology and case studies SO WATER RESOURCES RESEARCH LA English DT Article ID RESERVOIR MANAGEMENT; CHANGE SCENARIOS; SIERRA-NEVADA; CALIFORNIA; RESOURCES; IMPACTS; ADAPTATION; HYDROLOGY; MODELS AB The old and useful paradigm used by water resource engineers, that hydrology in a given place is stationary, and hence it is sufficient to look into the past to plan for the future, does not hold anymore, according to climate change projections. This becomes especially true in snow-dominated regions like California, where not only the magnitude but also the timing of streamflow could be affected by changes in precipitation and temperature. To plan and operate water resources systems at the basin scale, it is necessary to develop new tools that are suited for this nonstationary world. In this paper we develop an optimization algorithm that can be used for different studies related to climate change and water resources management. Three applications of this algorithm are developed for the Merced River basin. The first of these gives an assessment of the climate change effects on the operations of this basin considering an adaptive management strategy embedded in the optimization algorithm. In a second application we explore different long-term adaptation strategies intended to mitigate the effects of climate change. A final application is developed to determine how beneficial it is to build a new reservoir considering explicitly the uncertainty about future climate projections. C1 [Vicuna, Sebastian] Pontificia Univ Catolica Chile, Ctr Interdisciplinario Cambio Global UC, Santiago 6904411, Chile. [Dracup, John A.] Univ Calif Berkeley, Dept Civil & Environm Engn, Berkeley, CA 94720 USA. [Lund, Jay R.] Univ Calif Davis, Dept Civil & Environm Engn, Davis, CA 95616 USA. [Dale, Larry L.] Univ Calif Berkeley, Lawrence Berkeley Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. [Maurer, Edwin P.] Santa Clara Univ, Dept Civil Engn, Santa Clara, CA 95053 USA. RP Vicuna, S (reprint author), Pontificia Univ Catolica Chile, Ctr Interdisciplinario Cambio Global UC, Av Vicuna Mackenna 4860, Santiago 6904411, Chile. EM svicuna@uc.cl; dracup@ce.berkeley.edu; jrlund@ucdavis.edu; lldale@lbl.gov; emaurer@engr.scu.edu RI Maurer, Edwin/C-7190-2009 OI Maurer, Edwin/0000-0001-7134-487X NR 37 TC 37 Z9 37 U1 1 U2 35 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0043-1397 EI 1944-7973 J9 WATER RESOUR RES JI Water Resour. Res. PD APR 16 PY 2010 VL 46 AR W04505 DI 10.1029/2009WR007838 PG 19 WC Environmental Sciences; Limnology; Water Resources SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water Resources GA 585NK UT WOS:000276832200001 ER PT J AU Davis, PA Brown, JC Saunders, M Lanigan, G Wright, E Fortune, T Burke, J Connolly, J Jones, MB Osborne, B AF Davis, P. A. Brown, J. Clifton Saunders, M. Lanigan, G. Wright, E. Fortune, T. Burke, J. Connolly, J. Jones, M. B. Osborne, B. TI Assessing the effects of agricultural management practices on carbon fluxes: Spatial variation and the need for replicated estimates of Net Ecosystem Exchange SO AGRICULTURAL AND FOREST METEOROLOGY LA English DT Article DE Replication; Eddy covariance; Non-inversion tillage; Hordeum vulgare; Spatial variation; NEE ID EDDY-COVARIANCE MEASUREMENTS; LONG-TERM; SOIL RESPIRATION; ENERGY-BALANCE; CO2 EXCHANGE; DECIDUOUS FOREST; DIOXIDE EXCHANGE; BOREAL FOREST; SEQUESTRATION; HETEROGENEITY AB Replicated measurements of Net Ecosystem CO2 Exchange (NEE) were made on four arable plots using two eddy covariance (EC) towers that were moved at regular intervals. Replicated plots were created by dividing a large arable field into four approximately equal areas (similar to 2.5 ha). Regular adjustments of the EC measurement height (1.5-1.9 m) due to seasonal changes in canopy height ensured that the analyzed fluxes were derived from the individual plots. This was sufficient to make high-quality flux measurements with the energy balance accounting for up to 96% of the available energy in the system. The replicated experiment included two treatment plots managed with conventional tillage practices (CON) and two plots managed with non-inversion tillage (NIT). The mean annual NEE (aNEE) over all plots and years showed a carbon uptake of -163 g [C] m(-2) y(-1). Plot to plot variability ranged between 9 and 70 g [C] m(-2) y(-1). Differences in leaf area index (LAI) were the most likely cause of plot to plot variability. For the majority of the experiment spatial variation was greater than treatment effects and provided over half the total annual uncertainty, demonstrating the need to address spatial variability when assessing aNEE using EC techniques. Interannual variation in the measured fluxes was greater than the plot-to-plot or the treatment variations, most likely due to differences in water availability, although this could be confounded by changes in spatial variability due to other environmental factors or management operations. The proportionally large uncertainty associated with spatial and interannual variability when compared to the measured fluxes, suggests that NEE estimates are, in the short term, unlikely to result in sufficiently accurate estimates of net biome productivity (NBP) for assessing the slow accumulation/loss of SOC associated with altered tillage management without a much larger number of replicated plots. Whilst the approach used has limited statistical power it could be modified to accommodate a large number of replicates to provide more robust estimates of treatment differences. (C) 2010 Elsevier B.V. All rights reserved. C1 [Davis, P. A.; Saunders, M.; Osborne, B.] Univ Coll Dublin, Sch Biol & Environm Sci, Dublin 4, Ireland. [Brown, J. Clifton; Saunders, M.; Lanigan, G.; Jones, M. B.] Univ Dublin Trinity Coll, Sch Nat Sci, Dublin 2, Ireland. [Wright, E.; Connolly, J.] UCD, Sch Math Sci, Dublin 4, Ireland. [Lanigan, G.] TEAGASC, Johnstown Castle, Wexford, Ireland. [Fortune, T.; Burke, J.] TEAGASC, Crops Res Ctr, Oak Pk, Carlow, Ireland. [Brown, J. Clifton] Aberystwyth Univ, IBER, Aberystwyth, Dyfed, Wales. RP Davis, PA (reprint author), Univ Coll Dublin, Sch Biol & Environm Sci, Dublin 4, Ireland. EM phadavis@indiana.edu RI Lanigan, Gary/C-6864-2012; Saunders, Matthew/J-2552-2015 OI Lanigan, Gary/0000-0003-0813-3097; Saunders, Matthew/0000-0002-1965-8932 FU Irish Environmental Protection Agency (EPA) [2003-FS-CD-LS-IS, 2001-CD-1-M1] FX This study was supported by the Irish Environmental Protection Agency (EPA), contract numbers: 2003-FS-CD-LS-IS and 2001-CD-1-M1. We would like to thank Robert Clements for help with EdiRE and the cospectral analyses. NR 58 TC 16 Z9 16 U1 3 U2 32 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-1923 EI 1873-2240 J9 AGR FOREST METEOROL JI Agric. For. Meteorol. PD APR 15 PY 2010 VL 150 IS 4 BP 564 EP 574 DI 10.1016/j.agrformet.2010.01.021 PG 11 WC Agronomy; Forestry; Meteorology & Atmospheric Sciences SC Agriculture; Forestry; Meteorology & Atmospheric Sciences GA 585ZL UT WOS:000276869800007 ER PT J AU Jun, JH Song, ZH Liu, ZJ Nikolau, BJ Yeung, ES Lee, YJ AF Jun, Ji Hyun Song, Zhihong Liu, Zhenjiu Nikolau, Basil J. Yeung, Edward S. Lee, Young Jin TI High-Spatial and High-Mass Resolution Imaging of Surface Metabolites of Arabidopsis thaliana by Laser Desorption-Ionization Mass Spectrometry Using Colloidal Silver SO ANALYTICAL CHEMISTRY LA English DT Article ID PROTEIN EXPRESSION; PLANT METABOLITES; TISSUE-SECTIONS; MATRIX; BRAIN; PEPTIDES; MS; DISTRIBUTIONS; MOLECULES; POLYMERS AB High-spatial resolution and high-mass resolution techniques are developed and adopted for the mass spectrometric imaging of epicuticular lipids on the surface of Arabidopsis thaliana. Single cell level spatial resolution of 12 pm was achieved by reducing the laser beam size by using an optical fiber with 25 pm core diameter in a vacuum matrix-assisted laser desorption ionization-linear ion trap (vMALDI-LTQ) mass spectrometer and improved matrix application using an oscillating capillary nebulizer. Fine chemical images of a whole flower were visualized in this high spatial resolution showing substructure of an anther and single pollen grains at the stigma and anthers. The LTQ-Orbitrap with a MALDI ion source was adopted to achieve MS imaging in high mass resolution. Specifically, isobaric silver ion adducts of C29 alkane (m/z 515.3741) and C28 aldehyde (m/z 515.3377), indistinguishable in low-resolution LTQ, can now be clearly distinguished and their chemical images could be separately constructed. In the application to roots, the high spatial resolution allowed molecular MS imaging of secondary roots and the high mass resolution allowed direct identification of lipid metabolites on root surfaces. C1 [Jun, Ji Hyun; Song, Zhihong; Liu, Zhenjiu; Nikolau, Basil J.; Yeung, Edward S.; Lee, Young Jin] US DOE, Ames Lab, Ames, IA 50011 USA. [Jun, Ji Hyun; Yeung, Edward S.; Lee, Young Jin] Iowa State Univ, Dept Chem, Ames, IA 50011 USA. [Song, Zhihong; Nikolau, Basil J.] Iowa State Univ, Dept Biochem Biophys & Mol Biol, Ames, IA 50011 USA. RP Lee, YJ (reprint author), US DOE, Ames Lab, Ames, IA 50011 USA. EM yjlee@iastate.edu RI Song, Zhihong/D-2335-2010; Lee, Young Jin/F-2317-2011 OI Lee, Young Jin/0000-0002-2533-5371 FU U.S. Department of Energy [DE-AC02-07CH11358]; U.S. Department of Energy, Office of Basic Energy Science, Division of Chemical Sciences FX The authors thank Sangwon Cha for his technical advice and James W. Anderegg in the Ames Laboratory for the SEM images. We also acknowledge the technical expertise and advice of Ann Perera, W. M. Keck Metabolomics Research Laboratory. The Ames Laboratory is operated for the U.S. Department of Energy by Iowa State University under Contract No. DE-AC02-07CH11358. This work was supported by U.S. Department of Energy, Office of Basic Energy Science, Division of Chemical Sciences. NR 37 TC 86 Z9 86 U1 1 U2 56 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 J9 ANAL CHEM JI Anal. Chem. PD APR 15 PY 2010 VL 82 IS 8 BP 3255 EP 3265 DI 10.1021/ac902990p PG 11 WC Chemistry, Analytical SC Chemistry GA 581WZ UT WOS:000276557600023 PM 20235569 ER PT J AU Xu, Y Cao, Q Svec, F Frechet, JMJ AF Xu, Yan Cao, Qing Svec, Frantisek Frechet, Jean M. J. TI Porous Polymer Monolithic Column with Surface-Bound Gold Nanoparticles for the Capture and Separation of Cysteine-Containing Peptides SO ANALYTICAL CHEMISTRY LA English DT Article ID TUBULAR CAPILLARY ELECTROCHROMATOGRAPHY; PERFORMANCE LIQUID-CHROMATOGRAPHY; 2-DIMENSIONAL GEL-ELECTROPHORESIS; EXCHANGE STATIONARY PHASES; ION CHROMATOGRAPHY; PROTEOME ANALYSIS; GAS-CHROMATOGRAPHY; CONTINUOUS ROD; PROTEINS; PRECONCENTRATION AB A new porous polymer monolithic capillary column modified with gold nanoparticles that enables the selective capture of cysteine-containing peptides has been developed to reduce the complexity of peptide mixtures generated in bottom-up proteomic analysis. The column is prepared from a poly(glycidyl methacrylate-co-ethylene dimethacrylate) monolith through reaction of some of its epoxide moieties with cysteamine to afford a monolith rich in surface thiol groups. In situ reduction of chloroauric acid within the column is then used to form gold nanoparticles attached to the surface of the pores of the monolith. This process preserves the excellent hydrodynamic properties of the monolithic column while providing a means to selectively retain cysteine-containing peptides from an analyte due to their high affinity for gold. Release of the retained peptides is subsequently achieved with an excess of 2-mercaptoethanol. The loading capacity determined for L-cysteine using frontal elution is 2.58 mu mol/m. Since the gold-thiol link is less stable at elevated temperatures, the adsorption capacity is recovered by washing the column at 80 degrees C for 2 h. While regeneration is easy, the multiplicity of bonds between the monolithic support and the gold nanoparticles prevents their elution even under harsh conditions such as treatment with pure 2-mercaptoethanol or treatment with boiling water for 5 h. Application of the gold modified monolith in tandem with a packed C18 capillary column is demonstrated with baseline separation of a peptide mixture achieved in a two step process. The first involves retention of cysteine-containing peptides in monolith with reversed phase separation of all other peptides, while the retained peptides are released from monolith and separated in the second step. C1 [Xu, Yan; Cao, Qing; Svec, Frantisek; Frechet, Jean M. J.] Univ Calif Berkeley, Coll Chem, Berkeley, CA 94720 USA. [Svec, Frantisek; Frechet, Jean M. J.] EO Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Cao, Qing] Peking Univ, Beijing Natl Lab Mol Sci, Key Lab Bioorgan Chem & Mol Engn, Minist Educ,Coll Chem, Beijing 100871, Peoples R China. RP Frechet, JMJ (reprint author), Univ Calif Berkeley, Coll Chem, Berkeley, CA 94720 USA. EM frechet@berkeley.edu RI Xu, Yan/B-3639-2010; OI Frechet, Jean /0000-0001-6419-0163 FU National Institute of Health [GM48364]; China Scholarship Council (Ministry of Education of China); Office of Science, Office of Basic Energy Sciences, U.S. Department of Energy [DE-AC02-05CH11231] FX Financial support of this research by a grant of the National Institute of Health (GM48364) is gratefully acknowledged. Q.C. thanks the China Scholarship Council (Ministry of Education of China) for support. Analytical nanostructural work performed at the Molecular Foundry, Lawrence Berkeley National Laboratory, was supported by the Office of Science, Office of Basic Energy Sciences, U.S. Department of Energy, under Contract No. DE-AC02-05CH11231. NR 68 TC 117 Z9 120 U1 10 U2 130 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 EI 1520-6882 J9 ANAL CHEM JI Anal. Chem. PD APR 15 PY 2010 VL 82 IS 8 BP 3352 EP 3358 DI 10.1021/ac1002646 PG 7 WC Chemistry, Analytical SC Chemistry GA 581WZ UT WOS:000276557600036 PM 20302345 ER PT J AU Biegon, A Kim, SW Logan, J Hooker, JM Muench, L Fowler, JS AF Biegon, Anat Kim, Sung-Won Logan, Jean Hooker, Jacob M. Muench, Lisa Fowler, Joanna S. TI Nicotine Blocks Brain Estrogen Synthase (Aromatase): In Vivo Positron Emission Tomography Studies in Female Baboons SO BIOLOGICAL PSYCHIATRY LA English DT Article DE Amygdala; CYP19; extragonadal estrogen; imaging; smoking; vorozole ID CYTOCHROME-P450 AROMATASE; SMOKING; INHIBITORS; COTININE; RATS AB Background: Cigarette smoking and nicotine have complex effects on human physiology and behavior, including some effects similar to those elicited by inhibition of aromatase, the last enzyme in estrogen biosynthesis. We report the first in vivo primate study to determine whether there is a direct effect of nicotine administration on brain aromatase. Methods: Brain aromatase availability was examined with positron emission tomography and the selective aromatase inhibitor [(11)C]vorozole in six baboons before and after exposure to IV nicotine at .015 and .03 mg/kg. Results: Nicotine administration produced significant, dose-dependent reductions in [(11)C]vorozole binding. The amygdala and preoptic area showed the largest reductions. Plasma levels of nicotine and its major metabolite cotinine were similar to those found in cigarette smokers. Conclusions: Nicotine interacts in vivo with primate brain aromatase in regions involved in mood, aggression, and sexual behavior. C1 [Biegon, Anat; Kim, Sung-Won; Logan, Jean; Hooker, Jacob M.; Muench, Lisa; Fowler, Joanna S.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Kim, Sung-Won; Muench, Lisa] NIAAA, Bethesda, MD USA. RP Biegon, A (reprint author), Bldg 490 Med, Upton, NY 11973 USA. EM biegon@bnl.gov OI Hooker, Jacob/0000-0002-9394-7708; Logan, Jean/0000-0002-6993-9994 FU Brookhaven National Laboratory [DE-AC02-98CH10886]; National Institutes of Health [RO1 NS050285, KO5DA020001] FX This study was carried out with the infrastructure of the Brookhaven National Laboratory under contract DE-AC02-98CH10886. This work was supported in pail by National Institutes of Health RO1 NS050285 (AB) and KO5DA020001 (JSF). NR 20 TC 14 Z9 16 U1 0 U2 0 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0006-3223 J9 BIOL PSYCHIAT JI Biol. Psychiatry PD APR 15 PY 2010 VL 67 IS 8 BP 774 EP 777 DI 10.1016/j.biopsych.2010.01.004 PG 4 WC Neurosciences; Psychiatry SC Neurosciences & Neurology; Psychiatry GA 584EE UT WOS:000276732600012 PM 20188349 ER PT J AU Hah, SS Henderson, PT Turteltaub, KW AF Hah, Sang Soo Henderson, Paul T. Turteltaub, Kenneth W. TI Towards biomarker-dependent individualized chemotherapy: Exploring cell-specific differences in oxaliplatin-DNA adduct distribution using accelerator mass spectrometry SO BIOORGANIC & MEDICINAL CHEMISTRY LETTERS LA English DT Article DE Oxaliplatin; DNA adduct; Accelerator mass spectrometry ID CANCER CELLS; CISPLATIN-DNA; RECOGNITION; DRUGS; 8-OXODG AB Oxaliplatin is a third-generation platinum-based anticancer drug that is currently used in the treatment of metastatic colorectal cancer. Oxaliplatin, like other platinum-based anticancer drugs such as cisplatin and carboplatin, is known to induce apoptosis in tumor cells by binding to nuclear DNA, forming mono-adducts, and intra- and interstrand diadducts. Previously, we reported an accelerator mass spectrometry (AMS) assay to measure the kinetics of oxaliplatin-induced DNA damage and repair (Hah, S. S.; Sumbad, R. A.; de Vere White, R. W.; Turteltaub, K. W.; Henderson, P. T. Chem. Res. Toxicol. 2007, 20, 1745). Here, we describe another application of AMS to the measurement of oxaliplatin-DNA adduct distribution in cultured platinum-sensitive testicular (833 K) and platinum-resistant breast (MDA-MB-231) cancer cells, which resulted in elucidation of cell-dependent differentiation of oxaliplatin-DNA adduct formation, implying that differential adduction and/or accumulation of the drug in cellular DNA may be responsible for the sensitivity of cancer cells to platinum treatment. Ultimately, we hope to use this method to measure the intrinsic platinated DNA adduct repair capacity in cancer patients for use as a biomarker for diagnostics or a predictor of patient outcome. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Hah, Sang Soo] Kyung Hee Univ, Dept Chem, Seoul 130701, South Korea. [Hah, Sang Soo] Kyung Hee Univ, Res Inst Basic Sci, Seoul 130701, South Korea. [Henderson, Paul T.; Turteltaub, Kenneth W.] Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA 94550 USA. RP Hah, SS (reprint author), Kyung Hee Univ, Dept Chem, 1 Hoegi Dong, Seoul 130701, South Korea. EM sshah@khu.ac.kr RI Hah, Sang Soo/D-2621-2011 FU U.S. Department of Energy [DE-AC52-07NA27344]; DOE/LDRD [06-LW-023]; Korea Government (MEST) [2009-0064333] FX Kurt Hack is acknowledged for preparing AMS samples. This work was performed at the Research Resource for Biomedical Accelerator Mass Spectrometry under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344, and was supported in part by DOE/LDRD Grant 06-LW-023 and by the Korea Science and Engineering Foundation (KOSEF) Grant funded by the Korea Government (MEST) (No. 2009-0064333). NR 21 TC 8 Z9 8 U1 3 U2 11 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0960-894X J9 BIOORG MED CHEM LETT JI Bioorg. Med. Chem. Lett. PD APR 15 PY 2010 VL 20 IS 8 BP 2448 EP 2451 DI 10.1016/j.bmcl.2010.03.020 PG 4 WC Chemistry, Medicinal; Chemistry, Organic SC Pharmacology & Pharmacy; Chemistry GA 578KF UT WOS:000276291500010 PM 20335033 ER PT J AU Cai, J Hu, Y Prausnitz, JM AF Cai, Jun Hu, Ying Prausnitz, John M. TI Simplified critical-point criteria for some multicomponent systems SO CHEMICAL ENGINEERING SCIENCE LA English DT Article DE Continuous thermodynamics; Critical property; Critical-point criteria; Polydisperse mixture ID POLYDISPERSE FLUID MIXTURES; EQUATION-OF-STATE; CONTINUOUS THERMODYNAMICS; PHASE-EQUILIBRIA; STABILITY; COMPONENTS; PRESSURES; BEHAVIOR AB Stability theory for multicomponent fluid mixtures is used to calculate the spinodal and the critical locus for a multicomponent mixture. Upon using well-defined simplifying assumptions, the criteria developed here are suitable for mixtures whose properties are described by a molecular-thermodynamic model where the Helmholtz energy depends on composition-average model parameters. Such mixtures are typically encountered in systems that contain homologues. Our method is especially useful when the homologue-mixture contains a large number of components. Different from our previous work (Fluid Phase Equilibria, 206, 41-59, 2003), the criteria developed here do not require that the model parameters depend on moments of a characteristic property (e.g. molecular weight) used to characterize the distribution of components. The spinodal lines and the critical points obtained by our method are identical to those obtained from the less-computer-efficient Gibbs traditional method. To illustrate, the Soave-Redlich-Kwong equation of state is used to calculate critical properties of mixtures containing carbon dioxide, hydrogen sulphide, and alkanes. (C) 2009 Elsevier Ltd. All rights reserved. C1 [Prausnitz, John M.] Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. [Cai, Jun; Hu, Ying] E China Univ Sci & Technol, Dept Chem, Shanghai 200237, Peoples R China. [Prausnitz, John M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Prausnitz, JM (reprint author), Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. EM prausnit@cchem.berkeley.edu FU National Natural Science Foundation of China [20973062]; Ministry of Education of China [B08021]; PCSIRT; Office for Basic Sciences, US Department of Energy FX For financial support. JC and YH are grateful to the National Natural Science Foundation of China (no. 20973062), the Ministry of Education of China, 111 project (B08021) and to PCSIRT; JMP is grateful to the Office for Basic Sciences, US Department of Energy. NR 30 TC 1 Z9 1 U1 3 U2 8 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0009-2509 J9 CHEM ENG SCI JI Chem. Eng. Sci. PD APR 15 PY 2010 VL 65 IS 8 BP 2443 EP 2453 DI 10.1016/j.ces.2009.11.024 PG 11 WC Engineering, Chemical SC Engineering GA 580RV UT WOS:000276468200002 ER PT J AU Liu, BJ Hu, W Kim, YS Zou, HF Robertson, GP Jiang, ZH Guiver, MD AF Liu, Baijun Hu, Wei Kim, Yu Seung Zou, Haifeng Robertson, Gilles P. Jiang, Zhenhua Guiver, Michael D. TI Preparation and DMFC performance of a sulfophenylated poly(arylene ether ketone) polymer electrolyte membrane SO ELECTROCHIMICA ACTA LA English DT Article DE Poly(aryl ether ketone)s; Polymer electrolyte membrane; Fuel cells; Membrane electrode assemblies; Direct methanol fuel cells ID METHANOL FUEL-CELLS; PROTON-EXCHANGE MEMBRANES; COPOLYMERS; PHENYL; NAFION AB A sulfonated poly(aryl ether ether ketone ketone) (PEEKK) having a well-defined rigid homopolymer-like chemical structure was synthesized from a readily prepared PEEKK by post-sulfonation with concentrated sulfuric acid at room temperature within several hours. The polymer electrolyte membrane (PEM) cast from the resulting polymer exhibited an excellent combination of thermal resistance, oxidative and dimensional stability, low methanol fuel permeability and high proton conductivity. Furthermore, membrane electrode assemblies (MEAs) were successfully fabricated and good direct methanol fuel cell (DMFC) performance was observed. At 2 M MeOH feed, the current density at 0.5 V reached 165 mA/cm, which outperformed our reported similarly structured analogues and MEAs derived from comparative Nafion (R) membranes. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Liu, Baijun; Hu, Wei; Zou, Haifeng; Jiang, Zhenhua] Jilin Univ, Coll Chem, Alan G McDiarmid Inst, Changchun 130012, Peoples R China. [Kim, Yu Seung] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Robertson, Gilles P.; Guiver, Michael D.] CNR, Inst Chem Proc & Environm Technol, Ottawa, ON K1A 0R6, Canada. [Guiver, Michael D.] Hanyang Univ, Dept Energy Engn, Seoul 133791, South Korea. RP Liu, BJ (reprint author), Jilin Univ, Coll Chem, Alan G McDiarmid Inst, 2699 Qianjin St, Changchun 130012, Peoples R China. EM liubj@jlu.edu.cn RI Liu, Brian/A-5069-2013; Guiver, Michael/I-3248-2016 OI Guiver, Michael/0000-0003-2619-6809 FU National Natural Science Foundation of China [50973040]; Science and Technology Development Plan of Jilin Province, China [20090322]; US Department of Energy, Fuel cell technologies; Ministry of Education, Science and Technology [R31-2008-000-10092-0] FX Financial support for this project was provided by the National Natural Science Foundation of China (No. 50973040) and the Science and Technology Development Plan of Jilin Province, China (No. 20090322). The work conducted at the Los Alamos National Laboratory was supported by US Department of Energy, Fuel cell technologies. MG acknowledges the support by the WCU (World Class University) program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology (R31-2008-000-10092-0). NR 23 TC 15 Z9 16 U1 0 U2 28 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0013-4686 J9 ELECTROCHIM ACTA JI Electrochim. Acta PD APR 15 PY 2010 VL 55 IS 11 BP 3817 EP 3823 DI 10.1016/j.electacta.2010.02.014 PG 7 WC Electrochemistry SC Electrochemistry GA 586TK UT WOS:000276935900029 ER PT J AU Spalding, BP Brooks, SC Watson, DB AF Spalding, Brian P. Brooks, Scott C. Watson, David B. TI Hydrogel-Encapsulated Soil: A Tool to Measure Contaminant Attenuation In Situ SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article AB Hydrogel encapsulation presents a novel and powerful general method to observe many water solid contaminant interactions in situ for a variety of aqueous media including groundwater, with a variety of nondestructive analytical methods, and with a variety of solids including contaminated soil. After intervals of groundwater immersion, polyacrylamide hydrogel-encapsulated solid specimens were retrieved, assayed nondestructively for uranium and other elements using X-ray fluorescence spectroscopy, and replaced in groundwater for continued reaction. Desorption dynamics of uranium from contaminated soils and other solids, when moved to uncontaminated groundwater, were fit to a general two-component kinetic retention model with slow-release and fast-release fractions for the total uranium. In a group of Oak Ridge soils with varying ambient uranium contamination (169 1360 mg/kg), the uranium fraction retained under long-term in situ kinetic behavior was strongly correlated (r(2) = 0.89) with residual uranium after laboratory sequential extraction of water-soluble and cation-exchangeable fractions of the soils. To illustrate how potential remedial techniques can be compared to natural attenuation, thermal stabilization of one soil increased the size of its long-term in situ retained fraction from 50% to 88% of the total uranium and increased the half-life of that long-term retained fraction from 990 to 40000 days. C1 [Spalding, Brian P.; Brooks, Scott C.; Watson, David B.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. RP Spalding, BP (reprint author), Oak Ridge Natl Lab, Div Environm Sci, POB 2008, Oak Ridge, TN 37831 USA. EM spaldingbp@highland.net RI Brooks, Scott/B-9439-2012; Watson, David/C-3256-2016 OI Brooks, Scott/0000-0002-8437-9788; Watson, David/0000-0002-4972-4136 FU U.S. Department of Energy, Office of Science Biological and Environmental Research, Environmental Remediation Sciences Program (ERSP) [DE-AC05-00OR22725] FX This research was funded by the U.S. Department of Energy, Office of Science Biological and Environmental Research, Environmental Remediation Sciences Program (ERSP). Oak Ridge National Laboratory is managed by UT-Battelle, LLC, for the U.S. Department of Energy under Contract DE-AC05-00OR22725. NR 13 TC 11 Z9 11 U1 0 U2 5 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD APR 15 PY 2010 VL 44 IS 8 BP 3047 EP 3051 DI 10.1021/es903983f PG 5 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 581WK UT WOS:000276556000048 PM 20230051 ER PT J AU Chouyyok, W Wiacek, RJ Pattamakomsan, K Sangvanich, T Grudzien, RM Fryxell, GE Yantasee, W AF Chouyyok, Wilaiwan Wiacek, Robert J. Pattamakomsan, Kanda Sangvanich, Thanapon Grudzien, Rafal M. Fryxell, Glen E. Yantasee, Wassana TI Phosphate Removal by Anion Binding on Functionalized Nanoporous Sorbents SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID SELF-ASSEMBLED MONOLAYERS; MESOPOROUS SUPPORTS SAMMS; COAL FLY-ASH; WATER; ADSORPTION; ADSORBENT; WASTE; PHOSPHORUS; ZIRCONIUM; RECOVERY AB Phosphate was captured from aqueous solutions by cationic metal EDA complexes anchored inside mesoporous silica MCM-41 supports (Cu(II) EDA-SAMMS and Fe(III) EDA-SAMMS). Fe EDA-SAMMS was more effective at capturing phosphate than the Cu EDA-SAMMS and was further studied for matrix effects (e.g., pH, ionic strength, and competing anions) and sorption performance (e.g., capacity and rate). The adsorption of phosphate was highly pH dependent it increased with increasing pH from 1.0 to 6.5, and decreased above pH 6.5. The adsorption was affected by high ionic strength (0.1 M of NaCl). In the presence of 1000-fold molar excess of chloride and nitrate anions, phosphate removal by Fe-EDA-SAMMS was not affected. Slight, moderate and large impacts were seen with bicarbonate, sulfate, and citrate anions, respectively. The phosphate adsorption data on Fe-EDA-SAMMS agreed well with the Langmuir model with the estimated maximum capacity of 43.3 mg/g. The material displayed rapid sorption rate (99% of phosphate removal within 1 min) and lowering the phosphate content to similar to 10 mu g/L of phosphorus, which is lower than the EPA's established freshwater contaminant level for phosphorus (20 mu g/L). C1 [Chouyyok, Wilaiwan; Wiacek, Robert J.; Pattamakomsan, Kanda; Sangvanich, Thanapon; Grudzien, Rafal M.; Fryxell, Glen E.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Yantasee, Wassana] Oregon Hlth & Sci Univ, Portland, OR 97239 USA. RP Fryxell, GE (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM gIen.fryxell@pnl.gov; yantasee@ohsu.edu FU National Institute of Allergy and Infectious Disease (NIAID) [R01 AI074064]; National Institute of Environmental Health Sciences (NIEHS) [R21 ES015620]; DOE Laboratory Directed Research and Development; U.S. Department of Energy [DE-AC06-67RLO 1830] FX This work was supported by the National Institute of Allergy and Infectious Disease (NIAID), grant no. R01 AI074064, the National Institute of Environmental Health Sciences (NIEHS), grant no. R21 ES015620, and DOE Laboratory Directed Research and Development funding. A portion of research was performed using EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. Pacific Northwest National Laboratory is operated for the U.S. Department of Energy by Battelle under contract DE-AC06-67RLO 1830. NR 42 TC 66 Z9 74 U1 11 U2 84 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X EI 1520-5851 J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD APR 15 PY 2010 VL 44 IS 8 BP 3073 EP 3078 DI 10.1021/es100787m PG 6 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 581WK UT WOS:000276556000052 PM 20345133 ER PT J AU Zhang, CY Kang, QJ Wang, X Zilles, JL Muller, RH Werth, CJ AF Zhang, Changyong Kang, Qinjun Wang, Xing Zilles, Julie L. Mueller, Roland H. Werth, Charles J. TI Effects of Pore-Scale Heterogeneity and Transverse Mixing on Bacterial Growth in Porous Media SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID BIOMASS PLUG DEVELOPMENT; MICROBIAL-GROWTH; BIODEGRADATION; MODEL; PROPAGATION; CHEMOTAXIS; SIMULATION; TRANSPORT; DILUTION; SOLUTES AB Microbial degradation of contaminants in the subsurface requires the availability of nutrients; this is impacted by porous media heterogeneity and the degree of transverse mixing. Two types of microfluidic pore structures etched into silicon wafers (i.e., micromodels), (i) a homogeneous distribution of cylindrical posts and (ii) aggregates of large and small cylindrical posts, were used to evaluate the impact of heterogeneity on growth of a pure culture (Delftia acidovorans) that degrades (R)-2-(2,4-dichlorophenoxy)propionate (R-2,4-DP). Following inoculation, dissolved O(2) and R-2,4-DP were introduced as two parallel streams that mixed transverse to the direction of flow. In the homogeneous micromodel, biomass growth was uniform in pore bodies along the center mixing line, while in the aggregate micromodel, preferential growth occurred between aggregates and slower less dense growth occurred throughout aggregates along the center mixing line. The homogeneous micromodel had more rapid growth overall (2 times) and more R-2,4-DP degradation (9.5%) than the aggregate pore structure (5.7%). Simulation results from a pore-scale reactive transport model indicate mass transfer limitations within aggregates along the center mixing line decreased overall reaction; hence, slower biomass growth rates relative to the homogeneous micromodel are expected. Results from this study contribute to a better understanding of the coupling between mass transfer, reaction rates, and biomass growth in complex porous media and suggest successful implementation and analysis of bioremediation systems requires knowledge of subsurface heterogeneity. C1 [Wang, Xing; Zilles, Julie L.; Werth, Charles J.] Univ Illinois, Dept Civil & Environm Engn, Urbana, IL 61801 USA. [Zhang, Changyong] Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Div Chem & Mat Sci, Richland, WA 99352 USA. [Kang, Qinjun] Los Alamos Natl Lab, Div Earth & Environm Sci, Computat Earth Sci Grp EES 16, Los Alamos, NM 87545 USA. [Mueller, Roland H.] UFZ Helmholtz Ctr Environm Res, Dept Environm Microbiol, D-04318 Leipzig, Germany. RP Werth, CJ (reprint author), Univ Illinois, Dept Civil & Environm Engn, 205 N Mathews Ave, Urbana, IL 61801 USA. EM werth@illinois.edu RI Zhang, Changyong/A-8012-2013; Kang, Qinjun/A-2585-2010 OI Zilles, Julie/0000-0001-8684-4519; Kang, Qinjun/0000-0002-4754-2240 FU USDA National Institute of Food and Agriculture [2007-35107-17817]; Environmental Molecular Sciences Laboratory (EMSL); DOE, Office of Biological and Environmental Research FX We thank Robert Sanford from the University of Illinois and Peter Lichtner from Los Alamos National Laboratory for helpful discussions; we also thank Albert Valocchi from the University of Illinois and Thomas Willingham from Exxon Mobil Upstream Research Company for help with pore-scale modeling. This project was supported by the National Research Initiative Grant no. 2007-35107-17817 from the USDA National Institute of Food and Agriculture. Partial financial support for C.Y.Z was provided by the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the DOE, Office of Biological and Environmental Research and located at PNNL. NR 37 TC 27 Z9 27 U1 2 U2 39 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD APR 15 PY 2010 VL 44 IS 8 BP 3085 EP 3092 DI 10.1021/es903396h PG 8 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 581WK UT WOS:000276556000054 PM 20192171 ER PT J AU Bourg, IC Richter, FM Christensen, JN Sposito, G AF Bourg, Ian C. Richter, Frank M. Christensen, John N. Sposito, Garrison TI Isotopic mass dependence of metal cation diffusion coefficients in liquid water SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Article ID MOLECULAR-DYNAMICS SIMULATION; SITE-MODEL DESCRIPTION; AQUEOUS-SOLUTIONS; NATURAL-GAS; DIFFERENTIAL DIFFUSION; IONIC-CONDUCTIVITY; SULFATE REDUCTION; CARIACO BASIN; SOLVATED ION; FRACTIONATION AB Isotope distributions in natural systems can be highly sensitive to the mass (m) dependence of solute diffusion coefficients (D) in liquid water. Isotope geochemistry studies routinely have assumed that this mass dependence either is negligible (as predicted by hydrodynamic theories) or follows a kinetic-theory-like inverse square-root relationship (D proportional to m(-0.5)). However, our recent experimental results and molecular dynamics (MD) simulations showed that the mass dependence of D is intermediate between hydrodynamic and kinetic theory predictions (D proportional to m(-beta) with 0 <= beta < 0.2 for Li(+), Cl(-), Mg(2+), and the noble gases). In this paper, we present new MD simulations and experimental results for Na(+), K(+), Cs(+), and Ca(2+) that confirm the generality of the inverse power-law relation D proportional to m(-beta). Our new findings allow us to develop a general description of the influence of solute valence and radius on the mass dependence of D for monatomic solutes in liquid water. This mass dependence decreases with solute radius and with the magnitude of solute valence. Molecular-scale analysis of our MD simulation results reveals that these trends derive from the exponent beta being smallest for those solutes whose motions are most strongly coupled to solvent hydrodynamic modes. Published by Elsevier Ltd. C1 [Bourg, Ian C.; Christensen, John N.; Sposito, Garrison] Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Geochem, Div Earth Sci, Berkeley, CA 94720 USA. [Bourg, Ian C.; Richter, Frank M.] Univ Chicago, Dept Geophys Sci, Chicago, IL 60637 USA. [Bourg, Ian C.] Harvard Univ, Dept Earth & Planetary Sci, Cambridge, MA 02138 USA. RP Bourg, IC (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Geochem, Div Earth Sci, Berkeley, CA 94720 USA. EM icbourg@lbl.gov RI Bourg, Ian/A-6405-2013; Christensen, John/D-1475-2015; OI Bourg, Ian/0000-0002-5265-7229 FU Office of Energy Research, Office of Basic Energy Sciences, of the U.S. Department of Energy, National Energy Research Scientific Computing Center [DE-AC02-05CH11231, DE-FG02-01ER15254]; National Science Foundation FX The research reported in this paper was supported by the Director, Office of Energy Research, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract Nos. DE-AC02-05CH11231 (ICB/JNC/GS) and DE-FG02-01ER15254 (ICB/FMR). This research used resources of the National Energy Research Scientific Computing Center, which is supported by the office of sciences of the U.S. Department of Energy under contract No. DE-AC02-05CH11231. This research also was supported by the National Science Foundation through TeraGrid resources provided by the San Diego Supercomputer Center. The authors are grateful to Professor R.E. Zeebe and two anonymous reviewers for helpful comments on the manuscript. NR 52 TC 31 Z9 31 U1 2 U2 43 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD APR 15 PY 2010 VL 74 IS 8 BP 2249 EP 2256 DI 10.1016/j.gca.2010.01.024 PG 8 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 572SZ UT WOS:000275854700001 ER PT J AU Houlbreque, F McCulloch, M Roark, B Guilderson, T Meibom, A Kimball, J Mortimer, G Cuif, JP Dunbar, R AF Houlbreque, Fanny McCulloch, Malcolm Roark, Brendan Guilderson, Tom Meibom, Anders Kimball, Justine Mortimer, Graham Cuif, Jean-Pierre Dunbar, Robert TI Uranium-series dating and growth characteristics of the deep-sea scleractinian coral: Enallopsammia rostrata from the Equatorial Pacific SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Article ID 2 GORGONIAN CORALS; COLLECTOR MASS-SPECTROMETRY; COLD-WATER CORALS; LOPHELIA-PERTUSA; PRIMNOA-RESEDAEFORMIS; DESMOPHYLLUM-CRISTAGALLI; NORTHEAST ATLANTIC; ANNUAL PERIODICITY; MEDITERRANEAN-SEA; ISOTOPE RATIOS AB The deep-sea coral, Enallopsammia rostrata, a member of the Dendrophylliidae family, is a major structure-forming species that creates massive dendroid colonies, up to 1 m wide and 0.5 m tall. Living colonies of E. rostrata have been collected using the PISCES submersibles from three locations from 480 to 788 m water depth in the Line Islands (similar to 160 degrees W) in the Equatorial Pacific. We have applied to these colonies a high sensitivity, low blank technique to determine U-series ages in small quantities (70 +/- 15 mg) of modern and near modern calcareous skeletons using MC-ICP-MS (Multi-collector Inductively Coupled Plasma Mass Spectrometer). The application of this method to living slow-growing colonies from a range of sites as well as the observations of axial growth patterns in thin sections of their skeletons offer the first expanded and well constrained data on longevity, growth pattern and mean growth rates in E. rostrata. Absolute dated specimens indicate life spans of colonies ranging from 209 +/- 8 yrs to 605 +/- 7 yrs with radial growth rates from 0.012 to 0.072 mm yr(-1) and vertical extension rates from 0.6 to 1.9 mm yr(-1). The linear growth rates reported here are lower than those reported for other deep-sea scleractinian corals (Lophelia pertusa and Madrepora oculata). The U-series dating indicates that the growth ring patterns of E. rostrata are not consistent with annual periodicity emphasizing the importance of absolute radiometric dating methods to constrain growth rates. Slow accretion and extreme longevity make this species and its habitat especially vulnerable to disturbances and impacts from human activities. This dating method combined with observation of growth patterns opens up new perspectives in the field of deep-sea corals since it can provide quantitative estimates of growth rates and longevity of deep-sea corals in general. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Houlbreque, Fanny; Kimball, Justine; Dunbar, Robert] Stanford Univ, Stanford, CA 95064 USA. [Houlbreque, Fanny] Marine Environm Labs, IAEA, Monaco, Monaco. [McCulloch, Malcolm; Mortimer, Graham] Australian Natl Univ, Res Sch Earth Sci, Canberra, ACT, Australia. [McCulloch, Malcolm] Univ Western Australia, Sch Earth & Environm, Crawley, WA 6009, Australia. [McCulloch, Malcolm] Univ Western Australia, ARC Ctr Excellence Coral Reef Studies, Crawley, WA 6009, Australia. [Roark, Brendan] Texas A&M Univ, Dept Geog, College Stn, TX 77843 USA. [Guilderson, Tom] LLNL, Ctr Accelerator Mass Spectrometry, Livermore, CA 94551 USA. [Meibom, Anders] Univ Paris 11, UMR Interact & Dynam Environm Surface 8148, Orsay, France. [Cuif, Jean-Pierre] Museum Natl Hist Nat, USM 0205, Lab Etud Mat Extraterrestre, F-75231 Paris, France. RP Houlbreque, F (reprint author), Stanford Univ, Stanford, CA 95064 USA. EM F.Houlbreque@iaea.org RI Houlbreque, Fanny/C-9735-2010; McCulloch, Malcolm/C-3651-2009; Roark, Erin/D-4124-2013 OI Roark, Erin/0000-0002-1742-9642 FU Stanford University; French Ministry of Foreign Affairs; National Geographic Society [CRE: 7717-04]; National Science Foundation [OCE-0551792, OCE-0551481]; Australian Research Council [DP0559042, DP0986505] FX This work was funded by a fellowship from Stanford University and by a Lavoisier Fellowship from the French Ministry of Foreign Affairs. We especially thank Bob Jones for assistance with SEM imaging in Stanford University. The NOAA Hawai'ian Undersea Research Laboratory funded ship time and submersible resources. Field and logistical supports were provided by The National Geographic Society (CRE: 7717-04). Analytical and additional supports were provided by the National Science Foundation (OCE-0551792 and OCE-0551481). We also gratefully acknowledge the support provided by the Australian Research Council to Malcolm McCulloch and Robert Dunbar from Grants DP0559042 and DP0986505. We would like to thank Dr. Stephen Cairns (Smithsonian Institution, Washington) for the identification of the specimens and Christian Marschal for helping us in this study. Thanks are due to four anonymous reviewers for the helpful comments and constructive remarks on this paper. NR 86 TC 7 Z9 7 U1 0 U2 18 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 EI 1872-9533 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD APR 15 PY 2010 VL 74 IS 8 BP 2380 EP 2395 DI 10.1016/j.gca.2010.01.017 PG 16 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 572SZ UT WOS:000275854700010 ER PT J AU Zhang, XS Srinivasan, R Van Liew, M AF Zhang, Xuesong Srinivasan, Raghavan Van Liew, Michael TI On the use of multi-algorithm, genetically adaptive multi-objective method for multi-site calibration of the SWAT model SO HYDROLOGICAL PROCESSES LA English DT Article DE distributed hydrologic model; multi-method search; multi-objective optimization; multi-site calibration; soil and water assessment tool ID GLOBAL OPTIMIZATION; RIVER-BASIN; HYDROLOGIC-MODELS; CLIMATE-CHANGE; EVOLUTIONARY ALGORITHMS; PARAMETER-ESTIMATION; SENSITIVITY-ANALYSIS; LAND-USE; NSGA-II; EFFICIENT AB With the availability of spatially distributed data, distributed hydrologic models are increasingly used for simulation of spatially varied hydrologic processes to understand and manage natural and human activities that affect watershed systems. Multi-objective optimization methods have been applied to calibrate distributed hydrologic models using observed data from multiple sites. As the time consumed by running these complex models is increasing substantially, selecting efficient and effective multi-objective optimization algorithms is becoming a nontrivial issue. In this study, we evaluated a multi-algorithm, genetically adaptive multi-objective method (AMALGAM) for multi-site calibration of a distributed hydrologic model-Soil and Water Assessment Tool (SWAT), and compared its performance with two widely used evolutionary multi-objective optimization (EMO) algorithms (i.e. Strength Pareto Evolutionary Algorithm 2 (SPEA2) and Non-dominated Sorted Genetic Algorithm II (NSGA-II)). In order to provide insights into each method's overall performance, these three methods were tested in four watersheds with various characteristics. The test results indicate that the AMALGAM can consistently provide competitive or superior results compared with the other two methods. The multi-method search framework of AMALGAM, which can flexibly and adaptively utilize multiple optimization algorithms, makes it a promising tool for multi-site calibration of the distributed SWAT. For practical use of AMALGAM, it is suggested to implement this method in multiple trials with relatively small number of model runs rather than run it once with long iterations. In addition, incorporating different multi-objective optimization algorithms and multi-mode search operators into AMALGAM deserves further research. Copyright (C) 2009 John Wiley & Sons, Ltd. C1 [Zhang, Xuesong] Pacific NW Natl Lab, Joint Global Change Res Inst, College Pk, MD 20740 USA. [Srinivasan, Raghavan] Texas A&M Univ, Spatial Sci Lab, Dept Ecosyst Sci & Management, College Stn, TX 77843 USA. [Van Liew, Michael] Montana Dept Environm Qual, Helena, MT 59620 USA. RP Zhang, XS (reprint author), Pacific NW Natl Lab, Joint Global Change Res Inst, 5825 Univ Res Court,Suite 3500, College Pk, MD 20740 USA. EM Xuesong.Zhang@pnl.gov RI zhang, xuesong/B-7907-2009; Srinivasan, R/D-3937-2009 NR 61 TC 40 Z9 45 U1 2 U2 20 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0885-6087 J9 HYDROL PROCESS JI Hydrol. Process. PD APR 15 PY 2010 VL 24 IS 8 BP 955 EP 969 DI 10.1002/hyp.7528 PG 15 WC Water Resources SC Water Resources GA 576QP UT WOS:000276161600001 ER PT J AU Gourgiotis, A Isnard, H Aubert, M Dupont, E AlMahamid, I Tiang, G Rao, L Lukens, W Cassette, P Panebianco, S Letourneau, A Chartier, F AF Gourgiotis, A. Isnard, H. Aubert, M. Dupont, E. AlMahamid, I. Tiang, G. Rao, L. Lukens, W. Cassette, P. Panebianco, S. Letourneau, A. Chartier, F. TI Accurate determination of Curium and Californium isotopic ratios by inductively coupled plasma quadrupole mass spectrometry (ICP-QMS) in Cm-248 samples for transmutation studies SO INTERNATIONAL JOURNAL OF MASS SPECTROMETRY LA English DT Review DE Quadrupole ICP-MS; Californium; Curium; Isotope ratio measurements; Transmutation ID CROSS-SECTION MEASUREMENTS; WATER SAMPLES; PRECISION; URANIUM; LEAD; FRACTIONATION; MS; CHROMATOGRAPHY; SPECTROSCOPY; PLUTONIUM AB The French Atomic Energy Commission has carried out several experiments including the mini-INCA (INcineration of Actinides) project for the study of minor-actinide transmutation processes in high intensity thermal neutron fluxes, in view of proposing solutions to reduce the radiotoxicity of long-lived nuclear wastes. In this context, a Cm sample enriched in Cm-248 (similar to 97%) was irradiated in thermal neutron flux at the High Flux Reactor (HFR) of the Laue-Langevin Institute (ILL). This work describes a quadrupole ICP-MS (ICP-QMS) analytical procedure for precise and accurate isotopic composition determination of Cm before sample irradiation and of Cm and Cf after sample irradiation. The factors that affect the accuracy and reproducibility of isotopic ratio measurements by ICP-QMS, such as peak centre correction, detector dead time, mass bias, abundance sensitivity and hydrides formation, instrumental background, and memory blank were carefully evaluated and corrected. Uncertainties of the isotopic ratios, taking into account internal precision of isotope ratio measurements, peak tailing, and hydrides' formations ranged from 0.3% to 1.3%. This uncertainties' range is quite acceptable for the nuclear data to be used in transmutation studies. (C) 2010 Elsevier By. All rights reserved. C1 [Gourgiotis, A.; Isnard, H.; Aubert, M.] Commiss Energie Atom, DEN DPC SECR LANIE, F-91191 Gif Sur Yvette, France. [Dupont, E.; Panebianco, S.; Letourneau, A.] Commiss Energie Atom, DSM IRFU SPhN, F-91191 Gif Sur Yvette, France. [AlMahamid, I.] New York State Dept Hlth, Wadsworth Ctr, Albany, NY 12201 USA. [AlMahamid, I.] SUNY Albany, Sch Publ Hlth, Albany, NY 12222 USA. [Cassette, P.] Commiss Energie Atom, LIST, Lab Natl Henri Becquerel LNE LNHB, F-91191 Gif Sur Yvette, France. [Chartier, F.] Commiss Energie Atom, DEN DPC, F-91191 Gif Sur Yvette, France. [Tiang, G.; Rao, L.; Lukens, W.] Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Gourgiotis, A (reprint author), Commiss Energie Atom, DEN DPC SECR LANIE, Batiment 391, F-91191 Gif Sur Yvette, France. EM alkiviadis.gourgiotis@cea.fr NR 45 TC 7 Z9 7 U1 0 U2 16 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1387-3806 J9 INT J MASS SPECTROM JI Int. J. Mass Spectrom. PD APR 15 PY 2010 VL 291 IS 3 BP 101 EP 107 DI 10.1016/j.ijms.2010.02.002 PG 7 WC Physics, Atomic, Molecular & Chemical; Spectroscopy SC Physics; Spectroscopy GA 580DY UT WOS:000276428400001 ER PT J AU Bond, GM Browning, JF Snow, CS AF Bond, Gillian M. Browning, James F. Snow, Clark S. TI Development of bubble microstructure in ErT2 films during aging SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID HELIUM BUBBLES; ELECTRON-MICROSCOPY; TRITIUM STORAGE; METALS; TEM; PALLADIUM; DECAY; RELEASE; GROWTH AB Helium bubbles form in metal tritide films as tritium decays into He-3, influencing mechanical properties and long-term film stability. The bubble nucleation and growth mechanisms comprise an active research area, but there has been only one previous systematic experimental study of helium bubble growth in metal tritides, on zirconium tritides. There have been no such studies on tritides such as ErT2 that form platelike bubbles and lack a secondary bubble population on a network of line dislocations, and yet such a study is needed to inform the modeling of helium bubble microstructure development in a broader range of metal tritides. Transmission electron microscopy has been used to study the growth and evolution of helium bubbles in ErT2 films over a four-year period. The results have been used to test the present models of helium bubble nucleation and growth in metal tritides, particularly those forming platelike bubbles. The results support the models of Trinkaus and Cowgill. The observations of nonuniform bubble thicknesses and the pattern of grain-boundary bubble formation, however, indicate that these models could be strengthened by closer attention to details of interfacial energy. It is strongly recommended that efforts be made (either experimentally or by calculation) to determine anisotropy of tritide/helium interfacial energy, both for clean, stoichiometric interfaces, and also allowing for such factors as nonstoichiometry and segregation. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3359653] C1 [Bond, Gillian M.] New Mexico Inst Min & Technol, Dept Mat & Met Engn, Socorro, NM 87801 USA. [Browning, James F.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Snow, Clark S.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Bond, GM (reprint author), New Mexico Inst Min & Technol, Dept Mat & Met Engn, Socorro, NM 87801 USA. EM gbond@nmt.edu OI Browning, James/0000-0001-8379-259X NR 38 TC 10 Z9 12 U1 1 U2 14 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD APR 15 PY 2010 VL 107 IS 8 AR 083514 DI 10.1063/1.3359653 PG 8 WC Physics, Applied SC Physics GA 591LX UT WOS:000277303200035 ER PT J AU Ding, JL Asay, JR Ao, T AF Ding, J. L. Asay, J. R. Ao, T. TI Modeling of the elastic precursor behavior and dynamic inelasticity of tantalum under ramp wave loading to 17 GPa SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID YIELD-POINT PHENOMENA; METALS; SOLIDS; FLOW AB In a previous study by Asay et al. [J. Appl. Phys. 106, 073515 (2009)], the inelastic response of annealed and cold-rolled pure polycrystalline tantalum at intermediate strain rates was characterized with ramp wave loading to peak longitudinal stresses of 17 GPa. It was found that the annealed Ta at strain rates of about 10(6)/s exhibited pronounced elastic overshoot, followed by rapid stress relaxation and the amplitude of the elastic precursor depicted essentially no dependence on sample thickness for samples with controlled initial properties, in contrast to the precursor attenuation typically observed in shock wave experiments. The precursor for the cold-rolled sample was more dispersive and did not exhibit the characteristics depicted by the annealed samples. A principal objective of the present study was to gain some insights into this behavior and its implication on the deformation mechanisms for tantalum. Another objective was to gain a fundamental understanding of the dynamic inelasticity of polycrystalline tantalum, its evolution with the processing history, and the resultant thermomechanical behavior. The approach used to achieve these objectives was to first develop a material model that captured the observed material characteristics and then to use numerical simulations of dynamic experiments to gain additional insights into the observed material behavior. The constitutive model developed is based on the concept of dislocation generation and motion. Despite its simplicity, the model works quite well for both sets of data and serves a valuable tool to achieve the research objectives. The tantalum studied here essentially exhibits a strong rate sensitivity and this behavior is modeled through the low dislocation density and the strong stress dependence of the dislocation velocity. For the annealed material, the mobile dislocation density is assumed to be essentially zero in the model. This low dislocation density combined with strong stress dependence of dislocation velocity results in a metastable elastic response and a precursor that shows little attenuation. The increase of mobile dislocations through the cold-rolling process leads to a less rate-sensitive behavior for the cold-rolled tantalum and also the disappearance of the precursor behavior observed for the annealed samples. Both the low dislocation density and the strong rate dependence of the dislocation velocity may be related to the low mobility of the screw dislocations in bcc metals. This low mobility results from its extended, three-dimensional core structure. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3373388] C1 [Ding, J. L.] Washington State Univ, Sch Mech & Mat Engn, Pullman, WA 99164 USA. [Asay, J. R.] Ktech Corp Inc, Albuquerque, NM 87185 USA. [Ao, T.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Ding, JL (reprint author), Washington State Univ, Sch Mech & Mat Engn, Pullman, WA 99164 USA. EM ding@mme.wsu.edu NR 29 TC 16 Z9 16 U1 1 U2 13 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD APR 15 PY 2010 VL 107 IS 8 AR 083508 DI 10.1063/1.3373388 PG 12 WC Physics, Applied SC Physics GA 591LX UT WOS:000277303200029 ER PT J AU Pantel, D Chu, YH Martin, LW Ramesh, R Hesse, D Alexe, M AF Pantel, Daniel Chu, Ying-Hao Martin, Lane W. Ramesh, Ramamoorthy Hesse, Dietrich Alexe, Marin TI Switching kinetics in epitaxial BiFeO3 thin films SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID POLARIZATION AB The switching kinetics in epitaxial (001)-, (110)-, and (111)-oriented BiFeO3 thin films were investigated as a function of applied field and time. It was found that the ferroelectric switching behavior obeys the Kolmogorov-Avrami-Ishibashi theory only in the high field range. The detailed behavior depends on the film orientation. A comparison with standard systems, such as epitaxial Pb(Zr0.2Ti0.8)O-3 films, reveals some similarities as well as some differences. For instance, the presence of 109 degrees and 71 degrees ferroelastic domain walls might be ruled out as the source of the decrease in switched polarization at low applied fields, in contrast to what is the case for a/c domain walls in tetragonal Pb(Zr0.2Ti0.8)O-3. (C) 2010 American Institute of Physics. [doi:10.1063/1.3392884] C1 [Pantel, Daniel; Hesse, Dietrich; Alexe, Marin] Max Planck Inst Microstruct Phys, D-06120 Halle, Germany. [Chu, Ying-Hao] Natl Chiao Tung Univ, Dept Mat Sci & Engn, Hsinchu 30010, Taiwan. [Martin, Lane W.] Univ Illinois, Dept Mat Sci & Engn, Urbana, IL 61801 USA. [Martin, Lane W.; Ramesh, Ramamoorthy] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Martin, Lane W.; Ramesh, Ramamoorthy] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Martin, Lane W.; Ramesh, Ramamoorthy] Univ Calif Berkeley, Dept Mat Sci, Berkeley, CA 94720 USA. [Martin, Lane W.; Ramesh, Ramamoorthy] Univ Calif Berkeley, Dept Engn, Berkeley, CA 94720 USA. RP Pantel, D (reprint author), Max Planck Inst Microstruct Phys, Weinberg 2, D-06120 Halle, Germany. EM dpantel@mpi-halle.mpg.de RI Ying-Hao, Chu/A-4204-2008; Martin, Lane/H-2409-2011; Alexe, Marin/K-3882-2016 OI Ying-Hao, Chu/0000-0002-3435-9084; Martin, Lane/0000-0003-1889-2513; Alexe, Marin/0000-0002-0386-3026 FU German Science Foundation (DFG) [SFB762]; Office of Science, Office of Basic Energy Sciences, Materials Sciences Division of the U. S. Department of Energy [DE-AC02-05CH11231]; National Science Council, R.O.C. [NSC 97-3114-M-009-001] FX The work has been supported by the German Science Foundation (DFG) under Grant No. SFB762. The work at Berkeley is supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences Division of the U. S. Department of Energy under Contract No. DE-AC02-05CH11231. Y.H.C. would also like to acknowledge the support of the National Science Council, R.O.C., under Contract No. NSC 97-3114-M-009-001. NR 24 TC 20 Z9 20 U1 1 U2 28 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD APR 15 PY 2010 VL 107 IS 8 AR 084111 DI 10.1063/1.3392884 PG 4 WC Physics, Applied SC Physics GA 591LX UT WOS:000277303200086 ER PT J AU Walker, M Nordquist, C Czaplewski, D Patrizi, G McGruer, N Krim, J AF Walker, M. Nordquist, C. Czaplewski, D. Patrizi, G. McGruer, N. Krim, J. TI Impact of in situ oxygen plasma cleaning on the resistance of Ru and Au-Ru based rf microelectromechanical system contacts in vacuum SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID MEMS SWITCH CONTACTS; ELECTRICAL CONTACT; TRANSPORT; FRICTION; FILMS; DEGRADATION; METAL AB Contact resistance measurements are reported for radio frequency microelectromechanical system switches operating in an ultrahigh vacuum system equipped with in situ oxygen plasma cleaning capabilities. Ru-based contacts were prepared by means of standard sputtering techniques, sputtering followed by postdeposition oxidation, (surface RuO2) or reactive sputtering in the presence of oxygen (bulk RuO2). In situ oxygen plasma cleaning lowered the resistance of Ru contacts by two or more orders of magnitude but not lower than Au contacts, irrespective of whether the Au contacts were cleaned. The time dependence of the resistance was fit to power law extrapolations to infer contact creep properties and resistance values at t=infinity. Time-dependent creep properties of mixed Au-Ru contacts were observed to be similar to those of Au-Au contacts, while the absolute value of the resistance of such contacts was more comparable to Ru-Ru contacts. Prior to, and for short oxygen plasma exposure times, bulk RuO2 resistance values exhibited much larger variations than values measured for surface RuO2. For O-2 plasma exposure times exceeding about 5 min, the bulk and surface RuO2 resistance values converged, at both t=0 and t=infinity, with the t=infinity values falling within experimental error of theoretical values predicted for ideal surfaces. The data strongly support prior reports in the surface science literature of oxygen plasma induced thickening of oxide layers present on Ru surfaces. In addition, they demonstrate that vacuum alone is insufficient to remove contaminants from the contact surfaces and/or prevent such contaminants from reforming after oxygen plasma exposure. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3353991] C1 [Walker, M.] N Carolina State Univ, Dept Mat Sci & Engn, Raleigh, NC 27695 USA. [Nordquist, C.; Czaplewski, D.; Patrizi, G.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [McGruer, N.] Northeastern Univ, Dept Elect & Comp Engn, Boston, MA 02115 USA. [Krim, J.] N Carolina State Univ, Dept Phys, Raleigh, NC 27695 USA. RP Walker, M (reprint author), N Carolina State Univ, Dept Mat Sci & Engn, Box 7907, Raleigh, NC 27695 USA. EM jkrim@unity.ncsu.edu FU AFOSR MURI [FA9550-04-1-0381]; DARPA [HR0011-06-1-0051]; United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This work was supported by AFOSR MURI under Grant No. FA9550-04-1-0381 entitled "Multifunctional Extreme Environment Surfaces: Nanotribology for Air and Space" and DARPA S&T Fundamentals Program, "Center for rf MEMS Reliability and Design Fundamentals," Grant No. HR0011-06-1-0051. The authors would also like to thank Dr. Z. J. Guo for assistance in sample preparation at Northeastern University. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Co., for the United States Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. NR 36 TC 19 Z9 19 U1 0 U2 7 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD APR 15 PY 2010 VL 107 IS 8 AR 084509 DI 10.1063/1.3353991 PG 7 WC Physics, Applied SC Physics GA 591LX UT WOS:000277303200113 ER PT J AU Solin, P Kuzmin, D Svyatskiy, D Slodicka, M AF Solin, Pavel Kuzmin, Dmitri Svyatskiy, Daniil Slodicka, Marian TI Special Issue: Finite Element Methods in Engineering and Science (FEMTEC 2009) Preface SO JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS LA English DT Editorial Material C1 [Solin, Pavel] Univ Nevada, Dept Math & Stat, Reno, NV 89557 USA. [Kuzmin, Dmitri] Univ Houston, Dept Math, Houston, TX 77004 USA. [Svyatskiy, Daniil] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Slodicka, Marian] Univ Ghent, Ghent, Belgium. RP Solin, P (reprint author), Univ Nevada, Dept Math & Stat, Reno, NV 89557 USA. EM solin@unr.edu; kuzmin@math.uh.edu; dasvyat@lanl.gov; ms@cage.ugent.be NR 0 TC 0 Z9 0 U1 1 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0377-0427 J9 J COMPUT APPL MATH JI J. Comput. Appl. Math. PD APR 15 PY 2010 VL 233 IS 12 SI SI BP 3075 EP 3076 DI 10.1016/j.cam.2009.12.047 PG 2 WC Mathematics, Applied SC Mathematics GA 574CK UT WOS:000275965800001 ER PT J AU Li, ST AF Li, Shengtai TI Comparison of refinement criteria for structured adaptive mesh refinement SO JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS LA English DT Article; Proceedings Paper CT 2nd International Conference on Finite Element Methods in Engineering and Science CY JAN 05-09, 2009 CL Tahoe City, CA SP Univ Texas El Paso, Univ Nevada Reno DE Adaptive mesh refinement (AMR); Refinement criteria; Verification and validation ID HYDRODYNAMICS AB We have investigated and analyzed the grid convergence issues for an adaptive mesh refinement (AMR) code. We have found that the numerical results for the AMR grid may have a larger error than those for the unrefined uniform grid. After a detailed analysis, we have found that the numerical solution at the coarse-fine interface between different levels of the grid converges only in the first-order accuracy. Therefore, the error near the coarse-fine interface can quickly dominate the error in the other regions if the coarse-fine interface is active and not covered by the fine grid. We propose, implement, and compare several refinement criteria. Some of them can catch the large-error region near the coarse-fine interface and refine them with the fine grid. Published by Elsevier B.V. C1 Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Li, ST (reprint author), Los Alamos Natl Lab, Div Theoret, POB 1663, Los Alamos, NM 87545 USA. EM sli@lanl.gov OI Li, Shengtai/0000-0002-4142-3080 NR 11 TC 6 Z9 6 U1 1 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0377-0427 J9 J COMPUT APPL MATH JI J. Comput. Appl. Math. PD APR 15 PY 2010 VL 233 IS 12 SI SI BP 3139 EP 3147 DI 10.1016/j.cam.2009.08.104 PG 9 WC Mathematics, Applied SC Mathematics GA 574CK UT WOS:000275965800009 ER PT J AU Bailey, D Berndt, M Kucharik, M Shashkov, M AF Bailey, David Berndt, Markus Kucharik, Milan Shashkov, Mikhail TI Reduced-dissipation remapping of velocity in staggered arbitrary Lagrangian-Eulerian methods SO JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS LA English DT Article; Proceedings Paper CT 2nd International Conference on Finite Element Methods in Engineering and Science CY JAN 05-09, 2009 CL Tahoe City, CA SP Univ Texas El Paso, Univ Nevada Reno DE Conservative interpolations; Staggered discretization; Flux-based remap; Velocity remap ID FINITE-ELEMENT-METHOD; COMPUTING METHOD; FLOW SPEEDS; ALGORITHMS; GRIDS AB Remapping is an essential part of most Arbitrary Lagrangian-Eulerian (ALE) methods. In this paper, we focus on the part of the remapping algorithm that performs the interpolation of the fluid velocity field from the Lagrangian to the rezoned computational mesh in the context of a staggered discretization. Standard remapping algorithms generate a discrepancy between the remapped kinetic energy, and the kinetic energy that is obtained from the remapped nodal velocities which conserves momentum. In most ALE codes, this discrepancy is redistributed to the internal energy of adjacent computational cells which allows for the conservation of total energy. This approach can introduce oscillations in the internal energy field, which may not be acceptable. We analyze the approach introduced in Bailey (1984) [11] which is not supposed to introduce dissipation. On a simple example, we demonstrate a situation in which this approach fails. A modification of this approach is described, which eliminates (when it is possible) or reduces the energy discrepancy. (C) 2009 Elsevier B.V. All rights reserved. C1 [Kucharik, Milan] Czech Tech Univ, Fac Nucl Sci & Phys Engn, CR-11519 Prague 1, Czech Republic. [Bailey, David] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Berndt, Markus; Kucharik, Milan; Shashkov, Mikhail] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Kucharik, M (reprint author), Czech Tech Univ, Fac Nucl Sci & Phys Engn, Brehova 7, CR-11519 Prague 1, Czech Republic. EM dsb@llnl.gov; berndt@lanl.gov; kucharik@lanl.gov; shashkov@lanl.gov RI Berndt, Markus/F-3185-2013; OI Berndt, Markus/0000-0001-5360-6848 NR 15 TC 4 Z9 4 U1 1 U2 18 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0377-0427 J9 J COMPUT APPL MATH JI J. Comput. Appl. Math. PD APR 15 PY 2010 VL 233 IS 12 SI SI BP 3148 EP 3156 DI 10.1016/j.cam.2009.09.008 PG 9 WC Mathematics, Applied SC Mathematics GA 574CK UT WOS:000275965800010 ER PT J AU Lin, Y Johnson, JR Wang, XY AF Lin, Y. Johnson, J. R. Wang, X. Y. TI Hybrid simulation of mode conversion at the magnetopause SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID KELVIN-HELMHOLTZ INSTABILITY; INTERPLANETARY MAGNETIC-FIELD; LATITUDE BOUNDARY-LAYER; KINETIC ALFVEN WAVES; DISTANT TAIL MAGNETOPAUSE; PLASMA SHEET IONS; SOLAR-WIND; DAYSIDE MAGNETOPAUSE; GEOTAIL OBSERVATIONS; SUBSOLAR MAGNETOPAUSE AB Two-dimensional hybrid simulations are used to investigate how fast-mode compressional waves incident on a magnetopause current layer mode convert both linearly and nonlinearly to short wavelength (k(perpendicular to)rho(i) similar to 1) kinetic Alfven waves near the Alfven resonance surface. The background magnetic fields on both sides of the current layer are parallel to each other and perpendicular to the magnetopause normal, corresponding to a northward interplanetary magnetic field. The simulations are performed in a 2-D plane (xz), where x is normal to the magnetopause and z is tilted by an angle, theta, relative to the magnetic field. We examine how the mode conversion depends on wave frequency omega(0), wave vector, Alfven velocity profile (particularly the magnetopause width, D(0)), ion beta in the magnetosheath, electron-to-ion temperature ratio, and incident wave amplitude. Kinetic effects resolve the resonance, and KAWs radiate back to the magnetosheath side of the current layer. The compressional wave absorption rate is estimated and compared with linear theory. Unlike the prediction from low-frequency theory of the Alfven resonance, KAWs are also generated in cases with theta = 0 degrees, provided omega(0) > 0.1 Omega(0), with Omega(0) being the ion cyclotron frequency in the magnetosheath. As the incident wave amplitude is increased, several nonlinear wave properties are manifested in the mode conversion process. Harmonics of the driver frequency are generated. As a result of nonlinear wave interaction, the mode conversion region and its spectral width are broadened. The nonlinear waves provide a significant transport of momentum across the magnetopause and are associated with significant ion heating in the resonant region. C1 [Johnson, J. R.] Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Lin, Y.; Wang, X. Y.] Auburn Univ, Dept Phys, Allison Lab 206, Auburn, AL 36849 USA. RP Lin, Y (reprint author), Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. EM ylin@physics.auburn.edu; jrj@pppl.gov; xywang@physics.auburn.edu FU NSF [ATM-0646442, ATM0902730, ATM0614012]; NASA [NNH07AF37I, NNG07EK69I, NNX06AB87G, NNH09AM531, NNH09AK631]; DOE [DE-AC02-09CH11466] FX This work was supported by NSF grant ATM-0646442 and NASA grant NNH07AF37I to Auburn University, and at PPPL by NASA grants (NNG07EK69I, NNX06AB87G, NNH09AM531, NNH09AK631, and NNH07AF37I), NSF grants (ATM0902730 and ATM0614012), and DOE contract DE-AC02-09CH11466. Computer resources were provided by the Arctic Region Supercomputer Center. NR 80 TC 18 Z9 18 U1 0 U2 2 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD APR 15 PY 2010 VL 115 AR A04208 DI 10.1029/2009JA014524 PG 17 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 585MX UT WOS:000276830900001 ER PT J AU Lee, SD Snyder, EG Willis, R Fischer, R Gates-Anderson, D Sutton, M Viani, B Drake, J MacKinney, J AF Lee, Sang Don Snyder, Emily G. Willis, Robert Fischer, Robert Gates-Anderson, Dianne Sutton, Mark Viani, Brian Drake, John MacKinney, John TI Radiological dispersal device outdoor simulation test: Cesium chloride particle characteristics SO JOURNAL OF HAZARDOUS MATERIALS LA English DT Article DE Cesium chloride; Particle characterization; Radiological dispersal device; Computer-controlled scanning electron microscopy; Energy dispersive X-ray spectrometry ID PHASE-TRANSITIONS AB Particles were generated from the detonation of simulated radiological dispersal devices (RDDs) using non-radioactive CsCl powder and explosive C4. The physical and chemical properties of the resulting particles were characterized. Two RDD simulation tests were conducted at Lawrence Livermore National Laboratory: one of the simulated RDDs was positioned 1 m above a steel plate and the other was partially buried in soil. Particles were collected with filters at a distance of 150 m from the origin of the RDD device, and particle mass concentrations were monitored to identify the particle plume intensity using real time particle samplers. Particles collected on filters were analyzed via computer-controlled scanning electron microscopy coupled with energy dispersive X-ray spectrometry (CCSEM/EDX) to determine their size distribution, morphology, and chemical constituents. This analysis showed that particles generated by the detonation of explosives can be associated with other materials (e.g., soil) that are in close proximity to the RDD device and that the morphology and chemical makeup of the particles change depending on the interactions of the RDD device with the surrounding materials. Published by Elsevier B.V. C1 [Lee, Sang Don; Snyder, Emily G.; Willis, Robert] US EPA, Res Triangle Pk, NC 27711 USA. [Drake, John] US EPA, Cincinnati, OH 45268 USA. [Fischer, Robert; Gates-Anderson, Dianne; Sutton, Mark] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Viani, Brian] Simbol Min Corp, Pleasanton, CA 94566 USA. [MacKinney, John] US Dept Homeland Secur, Washington, DC 20528 USA. RP Lee, SD (reprint author), US EPA, 109 TW Alexander Dr,MD E343-06, Res Triangle Pk, NC 27711 USA. EM lee.sangdon@epa.gov NR 9 TC 4 Z9 4 U1 2 U2 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0304-3894 J9 J HAZARD MATER JI J. Hazard. Mater. PD APR 15 PY 2010 VL 176 IS 1-3 BP 56 EP 63 DI 10.1016/j.jhazmat.2009.10.126 PG 8 WC Engineering, Environmental; Engineering, Civil; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 559PZ UT WOS:000274839700008 PM 19945219 ER PT J AU Kuhlman, KL Iguzquiza, EP AF Kuhlman, Kristopher L. Pardo Iguzquiza, Eulogio TI Universal cokriging of hydraulic heads accounting for boundary conditions SO JOURNAL OF HYDROLOGY LA English DT Article DE Kriging; Cokriging; Boundary conditions; Matern covariance; Cauchy covariance; Gaussian covariance AB When contouring scalar potentials from point observations the process can often benefit from including the known effects of boundary curves with specified potential or gradient. Here we consider the hydraulic head in an aquifer and both no-flow and constant-head boundary conditions. We present a new approach to enforcing that equipotential contours be normal to no-flow boundaries. A constant-head boundary, with unknown head, can be included through the same process by rotating the boundary vector by 90 degrees. Collocated observations of heads and boundaries can specify a constant-head boundary of known value. We estimate head given both head and boundary condition observations, cokriging with both types of information. Our new approach uses gradient vectors in contrast with previous approximate finite-difference methods that include boundary conditions in kriging. Either the approach given here or the finite-difference method must be implemented with smooth covariance models, e.g., Gaussian, generalized Cauchy, and Matern. (C) 2010 Elsevier B.V. All rights reserved. C1 [Kuhlman, Kristopher L.] Sandia Natl Labs, Repository Performance Dept, Carlsbad, NM 88220 USA. [Pardo Iguzquiza, Eulogio] Inst Geol & Minero Espana, Madrid 28003, Spain. RP Kuhlman, KL (reprint author), Sandia Natl Labs, Repository Performance Dept, 4100 Natl Pk Highway, Carlsbad, NM 88220 USA. EM klkuhlm@sandia.gov RI Kuhlman, Kristopher/I-7283-2012; Pardo-Iguzquiza, Eulogio/A-6324-2013 OI Kuhlman, Kristopher/0000-0003-3397-3653; Pardo-Iguzquiza, Eulogio/0000-0002-3865-8639 FU United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX The authors would like to thank three anonymous reviewers for their comments, which improved the examples and notation. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 21 TC 3 Z9 4 U1 0 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-1694 J9 J HYDROL JI J. Hydrol. PD APR 15 PY 2010 VL 384 IS 1-2 BP 14 EP 25 DI 10.1016/j.jhydrol.2010.01.002 PG 12 WC Engineering, Civil; Geosciences, Multidisciplinary; Water Resources SC Engineering; Geology; Water Resources GA 580JQ UT WOS:000276444700002 ER PT J AU Lee, KS Jeong, MH Lee, JS Pivovar, BS Kim, YS AF Lee, Kwan-Soo Jeong, Myung-Hwan Lee, Jae-Suk Pivovar, Bryan S. Kim, Yu Seung TI Optimizing end-group cross-linkable polymer electrolytes for fuel cell applications SO JOURNAL OF MEMBRANE SCIENCE LA English DT Article DE Polymer electrolyte membrane; Fuel cell; Proton conductivity; Sulfonation; Cross-linking; Optimization ID PROTON-EXCHANGE MEMBRANES; COPOLYMERS; PERFORMANCE AB This paper demonstrates the optimization of proton conductivity and water uptake for cross-linkable polymer electrolytes through synthesis and characterization of end-group cross-linkable sulfonated poly(arylene ether) copolymers. The extent of reaction of cross-linking was controlled by reaction time resulting in a series of polymers with two, independent tunable parameters, degree of sulfonation (DS) and degree of cross-linking (DC). For the polymers presented, cross-linking improved proton conductivity while reducing water uptake, an uncommon trend in polymer electrolytes where water is critical for proton conduction. Other trends relating to changes are reported and the results yield insight into the role of DS and DC and how to optimize electrochemical properties and performance of polymer electrolytes through these tunable parameters. Select polymer electrolytes were tested in fuel cells where performance and durability with accelerated relative humidity cycling were compared with Nafion. Published by Elsevier B.V. C1 [Lee, Kwan-Soo; Kim, Yu Seung] Los Alamos Natl Lab, Sensors & Electrochem Devices Grp, Los Alamos, NM 87545 USA. [Lee, Kwan-Soo; Jeong, Myung-Hwan; Lee, Jae-Suk] Gwangju Inst Sci & Technol, Dept Mat Sci & Engn, Kwangju 500712, South Korea. [Pivovar, Bryan S.] Natl Renewable Energy Lab, Hydrogen Technol & Syst Ctr, Golden, CO 80401 USA. RP Kim, YS (reprint author), Los Alamos Natl Lab, Sensors & Electrochem Devices Grp, Los Alamos, NM 87545 USA. EM yskim@lanl.gov RI Lee, Kwan Soo/B-9927-2008; Yu, Yong-guen/G-5480-2014 OI Lee, Kwan Soo/0000-0002-5315-3487; FU Korea Research Foundation (KRF); U.S. Department of Energy Office of Hydrogen, Fuel Cells and Infrastructure Technologies; Ministry of Knowledge Economy, Republic of Korea [20093020030030-11-1-000] FX We thank Professor Jim McGrath, Virginia Tech, for useful discussion and providing BPSH samples. K.S. Lee thanks the "Global Internship Program" of Korea Research Foundation (KRF) for financial support. This work was partially supported by the U.S. Department of Energy Office of Hydrogen, Fuel Cells and Infrastructure Technologies. This work was partially supported by New & Renewable Energy R&D program (20093020030030-11-1-000) under the Ministry of Knowledge Economy, Republic of Korea. NR 29 TC 23 Z9 24 U1 0 U2 12 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0376-7388 EI 1873-3123 J9 J MEMBRANE SCI JI J. Membr. Sci. PD APR 15 PY 2010 VL 352 IS 1-2 BP 180 EP 188 DI 10.1016/j.memsci.2010.02.014 PG 9 WC Engineering, Chemical; Polymer Science SC Engineering; Polymer Science GA 583XS UT WOS:000276714400024 ER PT J AU Thomas, RD Zhaunerchyk, V Hellberg, F Ehlerding, A Geppert, WD Bahati, E Bannister, ME Fogle, MR Vane, CR Petrignani, A Andersson, PU Ojekull, J Pettersson, JBC van der Zande, WJ Larsson, M AF Thomas, R. D. Zhaunerchyk, V. Hellberg, F. Ehlerding, A. Geppert, W. D. Bahati, E. Bannister, M. E. Fogle, M. R. Vane, C. R. Petrignani, A. Andersson, P. U. Ojekull, J. Pettersson, J. B. C. van der Zande, W. J. Larsson, M. TI Hot Water from Cold. The Dissociative Recombination of Water Cluster Ions SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article; Proceedings Paper CT 30th International Symposium on Free Radicals CY JUL 25-30, 2009 CL Savonlinna, FINLAND ID PROTON; CHEMISTRY; ELECTRONS; DYNAMICS; LASERS AB Dissociative recombination of the Zundel cation D5O2+ almost exclusively produces D + 2 D2O with a maximum kinetic energy release of 5.1 eV. An imaging technique is used to investigate the distribution of the available reaction energy among these products. Analysis shows that as much as 4 eV can be stored internally by the molecular fragments, with a preference for producing highly excited molecular fragments, and that the deuteron shows a nonrandom distribution of kinetic energies. A possible mechanism and the implications for these observations are addressed. C1 [Thomas, R. D.; Zhaunerchyk, V.; Hellberg, F.; Ehlerding, A.; Geppert, W. D.] Stockholm Univ, Dept Phys, SE-10691 Stockholm, Sweden. [Bahati, E.; Bannister, M. E.; Fogle, M. R.; Vane, C. R.; Larsson, M.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. [Petrignani, A.] FOM, Inst AMOLF, NL-1098 SJ Amsterdam, Netherlands. [Andersson, P. U.; Ojekull, J.; Pettersson, J. B. C.] Univ Gothenburg, Dept Chem, SE-41296 Gothenburg, Sweden. [van der Zande, W. J.] Radboud Univ Nijmegen, Inst Mol & Mat, NL-6500 GL Nijmegen, Netherlands. RP Thomas, RD (reprint author), Stockholm Univ, Dept Phys, SE-10691 Stockholm, Sweden. EM rdt@fysik.su.se RI Andersson, Patrik/A-6058-2010; Pettersson, Jan/D-2250-2009; Petrignani, Annemieke/E-8589-2010; Zhaunerchyk, Vitali/E-9751-2016 OI Petrignani, Annemieke/0000-0002-6116-5867; NR 28 TC 4 Z9 4 U1 0 U2 9 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD APR 15 PY 2010 VL 114 IS 14 BP 4843 EP 4846 DI 10.1021/jp9095979 PG 4 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 579BL UT WOS:000276341300021 PM 20148540 ER PT J AU Miller, JA Klippenstein, SJ Georgievskii, Y Harding, LB Allen, WD Simmonett, AC AF Miller, James A. Klippenstein, Stephen J. Georgievskii, Yuri Harding, Lawrence B. Allen, Wesley D. Simmonett, Andrew C. TI Reactions between Resonance-Stabilized Radicals: Propargyl plus Allyl SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article; Proceedings Paper CT 30th International Symposium on Free Radicals CY JUL 25-30, 2009 CL Savonlinna, FINLAND ID PHENOMENOLOGICAL RATE COEFFICIENTS; AROMATIC-HYDROCARBON FORMATION; TRANSITION-STATE THEORY; WELL MASTER EQUATION; ELEMENTARY REACTIONS; PREDICTIVE THEORY; BENZENE FORMATION; ALIPHATIC FUELS; KINETICS; FLAMES AB This article describes a detailed theoretical analysis of the reaction between allyl and propargyl. In this analysis, we employ high-level electronic structure calculations to characterize the potential energy surface and various forms of transition-state theory (TST) to calculate microcanonical, J-resolved rate coefficients-conventional TST for isomerizations, and the variable reaction coordinate form of variational TST for the "barrierless" association/dissociation processes. These rate coefficients are used in a time-dependent, multiple-well master equation to determine phenomenological rate coefficients, k(T,p), for various product channels. The analysis indicates that the formation of (cyclic) c-C(6)H(7) and c-C(6)H(8) species is suppressed by elevated pressure. Overall, the results suggest that the formation of these five-membered rings from the reaction is not as important as previously thought. A simplified description of the kinetics of the reaction is discussed, and corresponding rate coefficients are provided. C1 [Miller, James A.] Sandia Natl Labs, Combust Res Facil, Livermore, CA 94551 USA. [Klippenstein, Stephen J.; Georgievskii, Yuri; Harding, Lawrence B.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Allen, Wesley D.; Simmonett, Andrew C.] Univ Georgia, Ctr Computat Chem, Athens, GA 30602 USA. [Allen, Wesley D.; Simmonett, Andrew C.] Univ Georgia, Dept Chem, Athens, GA 30602 USA. RP Miller, JA (reprint author), Sandia Natl Labs, Combust Res Facil, Livermore, CA 94551 USA. EM jamille@sandia.gov RI Allen, Wesley/C-9867-2010 OI Allen, Wesley/0000-0002-4288-2297 NR 39 TC 33 Z9 34 U1 1 U2 45 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD APR 15 PY 2010 VL 114 IS 14 BP 4881 EP 4890 DI 10.1021/jp910604b PG 10 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 579BL UT WOS:000276341300027 PM 20121283 ER PT J AU White, CE Provis, JL Proffen, T Riley, DP van Deventer, JSJ AF White, Claire E. Provis, John L. Proffen, Thomas Riley, Daniel P. van Deventer, Jannie S. J. TI Density Functional Modeling of the Local Structure of Kaolinite Subjected to Thermal Dehydroxylation SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID PAIR DISTRIBUTION FUNCTION; MULLITE REACTION SERIES; ALUMINOSILICATE GLASSES; OUTSTANDING PROBLEMS; METAKAOLIN; TRANSFORMATIONS; TEMPERATURE; DIFFRACTION; GEOPOLYMER; CONCRETE AB Understanding the atomic-level changes that occur as kaolinite is converted (thermally dehydroxylated) to metakaolin is critical to the optimization of this large-scale industrial process. Metakaolin is X-ray amorphous; therefore, conventional crystallographic techniques do not reveal the changes in local structure during its formation. Local structure-based experimental techniques are useful in understanding the atomic structure but do not provide the thermodynamic information which is necessary to ensure plausibility of refined structures. Here, kaolinite dehydroxylation is modeled using density functional theory, and a stepwise methodology, where several water molecules are removed from the structure, geometry optimization is carried out, and then the process is repeated. Hence, the structure remains in an energetically and thermodynamically feasible state while transitioning from kaolinite to metakaolin. The structures generated during the dehydroxylation process are validated by comparison with X-ray and neutron pair distribution function data. Thus, this study illustrates one possible route by which dehydroxylation of kaolinite can take place, revealing a chemically, energetically, and experimentally plausible structure of metakaolin. This methodology of density functional modeling of the stepwise changes in a material is not limited in application to kaolinite or other aluminosilicates and provides an accurate representation of the local structural changes occurring in materials used in industrially important processes. C1 [White, Claire E.; Provis, John L.; van Deventer, Jannie S. J.] Univ Melbourne, Dept Chem & Biomol Engn, Melbourne, Vic 3010, Australia. [Proffen, Thomas] Los Alamos Natl Lab, Manuel Lujan Jr Neutron Scattering Ctr, Los Alamos, NM 87545 USA. [Riley, Daniel P.] Univ Melbourne, Dept Mech Engn, Melbourne, Vic 3010, Australia. RP Provis, JL (reprint author), Univ Melbourne, Dept Chem & Biomol Engn, Melbourne, Vic 3010, Australia. EM jprovis@unimelb.edu.au RI White, Claire/A-1722-2011; Lujan Center, LANL/G-4896-2012; Provis, John/A-7631-2008; Proffen, Thomas/B-3585-2009 OI White, Claire/0000-0002-4800-7960; Provis, John/0000-0003-3372-8922; Proffen, Thomas/0000-0002-1408-6031 FU Australian Research Council (ARC); U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357, DE-AC52-06NA25396]; NSF [DMR 00-76488]; NCI National Facility at the ANU FX This work was funded in part by the Australian Research Council (ARC) (including sonic funding via the Particulate Fluids Processing Centre, a Special Research Centre of the ARC) and in part by a studentship paid to Claire White by the Centre for Sustainable Resource Processing via the Geopolymer Alliance. The authors would like to thank Dr. Hyunjeong Kim, Los Alamos National Laboratory, for assistance with the NPDF experiment. We also thank Dr. Katherine Page for collecting the X-ray PDF data from ID-11-B at the APS, Argonne National Laboratory, and Dr. Kia Wallwork for assistance with the experiment at the Australian Synchrotron. Use of the Advanced Photon Source at Argonne National Laboratory was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. The NPDF instrument is located at Los Alamos Neutron Science Center, funded by the DOE Office of Basic Energy Sciences. Los Alamos National Laboratory is operated by Los Alamos National Security LLC tinder DOE Contract DE-AC52-06NA25396. The upgrade of NPDF has been funded by the NSF through Grant DMR 00-76488. X-ray diffraction data were collected on the Powder Diffraction beamline (10BMI) at the Australian Synchrotron, Victoria, Australia. The views expressed herein are those of the authors and are not necessarily those of the owner or operator of the Australian Synchrotron. The DFT modeling was supported by an award under the Merit Allocation Scheme on the NCI National Facility at the ANU. NR 37 TC 45 Z9 45 U1 4 U2 29 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD APR 15 PY 2010 VL 114 IS 14 BP 4988 EP 4996 DI 10.1021/jp911108d PG 9 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 579BL UT WOS:000276341300040 PM 20297842 ER PT J AU Ohsawa, T Henderson, MA Chambers, SA AF Ohsawa, Takeo Henderson, Michael A. Chambers, Scott A. TI Epitaxial Growth and Orientational Dependence of Surface Photochemistry in Crystalline TiO2 Rutile Films Doped with Nitrogen SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID TRIMETHYL ACETATE; ELECTRONIC-STRUCTURE; ATOMICALLY SMOOTH; TITANIUM-DIOXIDE; N INCORPORATION; TIO2(110); SEMICONDUCTOR; REACTIVITY; PHOTOLYSIS; WATER AB We have prepared and investigated the structural, compositional, morphological, and photochemical properties of N-doped TiO2(110), -(100), and -(001) epitaxial films grown by means of plasma-assisted molecular beam epitaxy The N solid solubility is limited to similar to 1-2 atom % of the total anions in the lattice in films where excellent long-range structural order is maintained throughout growth. The photochemical activity of the resulting surfaces was evaluated by using hole-mediated decomposition of adsorbed trimethyl acetate. Undoped surfaces of the three orientations exhibited comparable photochemical activities. However, the dependence of the photochemical activity on N concentration shows a marked crystallographic dependence The results are rationalized in terms of the apparent crystallographic anisotropy of hole mobility as well as hole trapping and detrapping probabilities C1 [Ohsawa, Takeo; Henderson, Michael A.; Chambers, Scott A.] Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Richland, WA 99352 USA. [Ohsawa, Takeo] Tohoku Univ, WPI, AIMR, Sendai, Miyagi 9808577, Japan. RP Chambers, SA (reprint author), Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Richland, WA 99352 USA. RI Ohsawa, Takeo/A-5373-2010 FU U S Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences. and Biosciences; U S. Department of Energy by the Battelle Memorial Institute [DEAC06-76RLO1830]; Department of Energy's Office of Biological and Environmental Research FX This work was supported by the U S Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences. and Biosciences. Pacific Northwest National Laboratory is a multiprogram national laboratory operated for the U S. Department of Energy by the Battelle Memorial Institute under contract DEAC06-76RLO1830 This work was performed in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at the Pacific Northwest National Laboratory. NR 33 TC 15 Z9 15 U1 0 U2 18 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD APR 15 PY 2010 VL 114 IS 14 BP 6595 EP 6601 DI 10.1021/jp1002726 PG 7 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 579BP UT WOS:000276341700054 ER PT J AU Sorescu, DC Rice, BM AF Sorescu, Dan C. Rice, Betsy M. TI Theoretical Predictions of Energetic Molecular Crystals at Ambient and Hydrostatic Compression Conditions Using Dispersion Corrections to Conventional Density Functionals (DFT-D) SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID SMALL ORGANIC-MOLECULES; PENTAERYTHRITOL TETRANITRATE PETN; DER-WAALS CORRECTION; AB-INITIO; SOLID NITROMETHANE; BLIND TEST; 1,3,5,7-TETRANITRO-1,3,5,7-TETRAAZACYCLOOCTANE HMX; DYNAMICS SIMULATIONS; NEUTRON-DIFFRACTION; GAMMA-RDX AB Theoretical predictions of the crystallographic properties of a series of 10 energetic molecular crystals have been done using a semiempirical correction to account for the van der Waals interactions in conventional density functional theory (termed DFT-D) as implemented in a pseudopotential plane-wave code This series contains compounds representative for energetic materials applications, that is, hexahydro-1,3,5-trinitro-1,3,5-s triazine (alpha- and gamma-RDX phases), 1,3,5.7-tetramtro-1,3,5,7-tetraaza-cyclooctane (beta-, alpha-, and delta-HMX phases), 2,4,6,8,10,12-hexanitrohexaazaisowurtzitane (CL20) (epsilon-, beta-, and gamma-HNIW phases), nitromethane (NM), trans-1,2,-dinitrocyclopropane, 1,2,3,5,7-pentanitrocubane (PNC), pentaerythruol tetramtrate (PETN), 2,4,6-trinitro-1,3,5-benzenetriamine (TATB), 2,4,6-trinitrotoluene (TNT-I phase), and 1,1-diammo-2,2-dinitroethylene (FOX-7), systems belonging to diverse chemical classes that encompass nitramines, nitroalkanes, nitroaromatics, nitrocubanes, nitrate esters. and amino-nitro derivatives At ambient pressure, we show that the DFT-D method is capable of providing an accurate description of the crystallographic lattice parameters with error bars significantly lower than those obtained using conventional DFT Practically, for all crystals considered in this study the predicted lattice parameters are within 2% from the corresponding experimental data [alpha-RDX (1 58%), beta-HMX (0 64%). epsilon-HNIW (1 42%), NM (0.75%), DNCP (1 99%), TATB (1.74%), TNT-I (0 92%), PNC(0.78%), PETN(1.35%), FOX-7(1.57%)1, with the best level of agreement being found for systems where experimental data have been collected at low temperatures A similar good agreement of the predicted and experimental crystallographic parameters was obtained under hydrostatic compression conditions as demonstrated for the cases of RDX, HMX. CL20, NM, TATB, and PETN crystals These results indicate that the DFT-D method provides significant improvements for description of intermolecular interactions in molecular crystals at both ambient and high pressures relative to conventional DFT. In this last case, large errors of the predicted lattice parameters have been found at low pressures; theoretical values approach the experimental results only at pressures in excess of 6 GPa C1 [Sorescu, Dan C.] Natl Energy Technol Lab, US Dept Energy, Pittsburgh, PA 15236 USA. [Rice, Betsy M.] USA, Res Lab, Aberdeen Proving Ground, MD 21005 USA. RP Sorescu, DC (reprint author), Natl Energy Technol Lab, US Dept Energy, Pittsburgh, PA 15236 USA. NR 65 TC 86 Z9 92 U1 5 U2 70 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD APR 15 PY 2010 VL 114 IS 14 BP 6734 EP 6748 DI 10.1021/jp100379a PG 15 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 579BP UT WOS:000276341700074 ER PT J AU Woodhouse, M Perkins, CL Rawls, MT Cormier, RA Liang, ZQ Nardes, AM Gregg, BA AF Woodhouse, Michael Perkins, Craig L. Rawls, Matthew T. Cormier, Russell A. Liang, Ziqi Nardes, Alexandre M. Gregg, Brian A. TI Non-Conjugated Polymers for Organic Photovoltaics: Physical and Optoelectronic Properties of Poly(perylene diimides) SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID CRYSTAL PERYLENE DIIMIDE; SOLAR-CELLS; THIN-FILMS; CONJUGATED POLYMER; ENERGY; POLY(3-HEXYLTHIOPHENE); PHOTOLUMINESCENCE; SEMICONDUCTORS; ORIENTATION; TRANSPORT AB Most polymers employed in organic photovoltaic cells have pi-conjugated backbones Here we investigate the physical and optoelectionic properties of three nonconjugated polymers based on perylene diimides The optical properties. exciton diffusion length, band edge positions, conductivity, and carrier mobility of these polymers are described They are electron-conducting and highly photostable The film structure and optoelectronic properties vary with deposition conditions and annealing procedures One of the polymers has an unusually long exciton diffusion length of 22 nm. The free electron density resulting from n-type charged defects is similar to 3 x 10(15) cm(-3) in one polymer and is even lower in the others Simple bilayer solar cells are limited by their series resistance suggesting that these semiconductor films would benefit from doping C1 [Woodhouse, Michael; Perkins, Craig L.; Rawls, Matthew T.; Cormier, Russell A.; Liang, Ziqi; Nardes, Alexandre M.; Gregg, Brian A.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Gregg, BA (reprint author), Natl Renewable Energy Lab, 1617 Cole Blvd, Golden, CO 80401 USA. RI Liang, Ziqi/G-9312-2011; Nardes, Alexandre/C-8556-2012 FU Division of Chemical Sciences, Geosciences and Biosciences, Office of Basic Energy Sciences; U S Department of Energy [DE-AC36-08GO28308] FX We thank Andrew Fergeson, Matthew Reese, and Anthony Morfa for helpful discussions and Bobby To for the SEM and AFM images The optical field intensity simulation was carried out by Jao van de Lagemaat. This work was funded by the Division of Chemical Sciences, Geosciences and Biosciences, Office of Basic Energy Sciences and by the Solar Energy Technology Program of the U S Department of Energy through Contract No DE-AC36-08GO28308 to NREL NR 53 TC 10 Z9 10 U1 0 U2 17 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD APR 15 PY 2010 VL 114 IS 14 BP 6784 EP 6790 DI 10.1021/jp910738a PG 7 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 579BP UT WOS:000276341700080 ER PT J AU Persson, K Sethuraman, VA Hardwick, LJ Hinuma, Y Meng, YS van der Ven, A Srinivasan, V Kostecki, R Ceder, G AF Persson, Kristin Sethuraman, Vijay A. Hardwick, Laurence J. Hinuma, Yoyo Meng, Ying Shirley van der Ven, Anton Srinivasan, Venkat Kostecki, Robert Ceder, Gerbrand TI Lithium Diffusion in Graphitic Carbon SO JOURNAL OF PHYSICAL CHEMISTRY LETTERS LA English DT Article ID LI-ION INSERTION; ELECTROCHEMICAL IMPEDANCE; INTERCALATION; COEFFICIENT; BATTERIES; ELECTRODE; ANODES; CELLS; PERFORMANCE; ADSORPTION AB Graphitic carbon is currently considered the state-of-the-art material for the negative electrode in lithium ion cells, mainly due to its high reversibility and low operating potential. However, carbon anodes exhibit mediocre charge/discharge rate performance, which contributes to severe transport-induced surface structural damage upon prolonged cycling and limits the lifetime of the cell. Lithium bulk diffusion in graphitic carbon is not yet completely understood, partly due to the complexity of measuring bulk transport properties in finite-sized nonisotropic particles. To solve this problem for graphite, we use the Devanathan-Stachurski electrochemical methodology combined with ab initio computations to deconvolute and quantify the mechanism of lithium ion diffusion in highly oriented pyrolytic graphite (HOPG). The results reveal inherent high lithium ion diffusivity in the direction parallel to the graphene plane (similar to 10(-7)-10(-6) cm(2) s(-1)), as compared to sluggish lithium ion transport along grain boundaries (similar to 10(-11) cm(2) s(-1)), indicating the possibility of rational design of carbonaceous materials and composite electrodes with very high rate capability. C1 [Persson, Kristin] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Persson, Kristin; Sethuraman, Vijay A.; Hardwick, Laurence J.; Srinivasan, Venkat; Kostecki, Robert] MIT, Cambridge, MA 02139 USA. [Sethuraman, Vijay A.] Brown Univ, Providence, RI 02906 USA. [Hardwick, Laurence J.] Univ St Andrews, St Andrews KY16 9ST, Fife, Scotland. [Hinuma, Yoyo; Meng, Ying Shirley] Univ Calif San Diego, La Jolla, CA 92093 USA. [van der Ven, Anton] Univ Michigan, Ann Arbor, MI 48109 USA. RP Persson, K (reprint author), Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM kapersson@lbl.gov RI Sethuraman, Vijay/E-5702-2010; Meng, Shirley /I-1276-2013 OI Sethuraman, Vijay/0000-0003-4624-1355; FU Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies of the U.S. Department of Energy [DE-AC02-05CH11231]; Ford Motor Company [014502-010]; NSF [DMR 0748516] FX Work at the Lawrence Berkeley National Laboratory was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies of the U.S. Department of Energy, under Contract No. DE-AC02-05CH11231. Work at the Massachusetts Institute of Technology was supported by Ford Motor Company under Grant Number 014502-010. A.V.D.V. acknowledges support from NSF under Grant No. DMR 0748516. NR 39 TC 193 Z9 195 U1 25 U2 211 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1948-7185 J9 J PHYS CHEM LETT JI J. Phys. Chem. Lett. PD APR 15 PY 2010 VL 1 IS 8 BP 1176 EP 1180 DI 10.1021/jz100188d PG 5 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Atomic, Molecular & Chemical SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 588BP UT WOS:000277041500002 ER PT J AU Zang, J Chempath, S Konduri, S Nair, S Sholl, DS AF Zang, Ji Chempath, Shaji Konduri, Suchitra Nair, Sankar Sholl, David S. TI Flexibility of Ordered Surface Hydroxyls Influences the Adsorption of Molecules in Single-Walled Aluminosilicate Nanotubes SO JOURNAL OF PHYSICAL CHEMISTRY LETTERS LA English DT Article ID MIXED-OXIDE NANOTUBES; IMOGOLITE NANOTUBES; MONTE-CARLO; WATER; SIMULATION; SILICALITE; DIFFUSION; ZEOLITE; DIMENSIONS; FRAMEWORK AB Single-walled aluminosilicate nanotubes (NTs) are attractive for molecular separation applications because of their highly ordered structure, tunable dimensions, as well as their hydrophilic and functionalizable interiors. These NTs possess a pore surface consisting of an ordered array of silanol groups with flexible hydroxyls. We show that the flexibility of these hydroxyl groups is critical in the adsorption of hydrogen-bonding molecules. Specifically, we study the adsorption of water, methanol, CO2, and CH4 in the NT via grand canonical Monte Carlo (GCMC) simulations. The experimentally observed hydrophilicity of the surface can be captured in adsorption calculations only if the structural and orientational flexibility of the surface hydroxyls is incorporated. The adsorption selectivity of water over methanol is predicted to be larger than 100, which makes aluminosilicate NTs promising for dehydration of alcohols. Flexibility effects are less significant for the adsorption of non-hydrogen-bonding molecules. C1 [Zang, Ji; Konduri, Suchitra; Nair, Sankar; Sholl, David S.] Georgia Inst Technol, Sch Chem & Biomol Engn, Atlanta, GA 30332 USA. [Chempath, Shaji] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Sholl, DS (reprint author), Georgia Inst Technol, Sch Chem & Biomol Engn, 311 Ferst Dr NW, Atlanta, GA 30332 USA. EM david.sholl@chbe.gatech.edu RI Zang, Ji/B-3956-2011 FU NSF [NSF-0846586, CBET-0709090] FX This work was partially supported by the NSF under Awards NSF-#0846586 (CAREER) and CBET-0709090. NR 33 TC 29 Z9 29 U1 5 U2 19 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1948-7185 J9 J PHYS CHEM LETT JI J. Phys. Chem. Lett. PD APR 15 PY 2010 VL 1 IS 8 BP 1235 EP 1240 DI 10.1021/jz100219q PG 6 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Atomic, Molecular & Chemical SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 588BP UT WOS:000277041500012 ER PT J AU Xu, CC Gong, MY Zondlo, JW Liu, XB Finklea, HO AF Xu, Chunchuan Gong, Mingyang Zondlo, John W. Liu, XingBo Finklea, Harry O. TI The effect of HCl in syngas on Ni-YSZ anode-supported solid oxide fuel cells SO JOURNAL OF POWER SOURCES LA English DT Article DE SOFC; Ni-YSZ anode; Coal syngas; HCl impurity; Nickel morphological change; Chlorine adsorption ID COAL SYNGAS; NICKEL; PERFORMANCE; SURFACE AB The Ni-YSZ cermet anode of the solid oxide fuel cell (SOFC) has excellent electrochemical performance in a clean blended synthetic coal syngas mixture. However, chloride, one of the major contaminants existing in coal-derived syngas, may poison the Ni-YSZ cermet and cause degradation in cell performance. Both hydrogen chloride (HCl) and chlorine (Cl(2)) have been reported to attack the Ni in the anode when using electrolyte-supported SOFCs. In this paper, a commercial anode-supported SOFC was exposed to syngas with a concentration of 100 ppm HCl under a constant current load at 800 degrees C for 300 h and 850 degrees C for 100 h. The cell performance was evaluated periodically using electrochemical methods. A unique feature of this experiment is that the active central part of the anode was exposed directly to the fuel without an intervening current collector. Post-mortem analyses of the SOFC anode were performed using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS). The results show that the 100 ppm concentration of HCl causes about 3% loss of performance for the Ni-YSZ anode-supported cell during the 400 h test. Permanent changes were noted in the surface microstructure of the nickel particles in the cell anode. (C) 2009 Elsevier B.V. All rights reserved. C1 [Xu, Chunchuan; Zondlo, John W.] W Virginia Univ, Dept Chem Engn, Morgantown, WV 26506 USA. [Gong, Mingyang; Liu, XingBo] W Virginia Univ, Dept Mech & Aerosp Engn, Morgantown, WV 26506 USA. [Finklea, Harry O.] W Virginia Univ, C Eugene Bennett Dept Chem, Morgantown, WV 26506 USA. [Finklea, Harry O.] US DOE, Natl Energy Technol Lab, Inst Adv Energy Studies, Washington, DC USA. RP Xu, CC (reprint author), W Virginia Univ, Dept Chem Engn, Morgantown, WV 26506 USA. EM Chunchuan.Xu@mail.wvu.edu RI Gong, Mingyang/E-5939-2012 FU US DOE Office of Basic Energy Sciences; NETL (National Energy Technology Laboratory); WV State EPSCoR Office; West Virginia University [DE-FG02-06ER46299] FX This work is conducted under US DOE (Department of Energy) EPSCoR Program. It is jointly sponsored by US DOE Office of Basic Energy Sciences, NETL (National Energy Technology Laboratory), WV State EPSCoR Office and the West Virginia University under grant number DE-FG02-06ER46299. Dr. T. Fitzsimmons is the DOE Technical Monitor. Dr. R. Bajura is the Administrative Manager and Dr. I. Celik is the Technical Manager and Principal Investigator of this project. The authors would like to thank Dr. R.S. Gemmen and Dr. Edward M. Sabolsky for suggestions and use of software. Dr. Andy Woodworth, Mr. Liviu Magean, Mrs. Andrienne McGraw are thanked for SEM, EDS, XRD and XPS data. NR 16 TC 22 Z9 22 U1 3 U2 26 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 J9 J POWER SOURCES JI J. Power Sources PD APR 15 PY 2010 VL 195 IS 8 SI SI BP 2149 EP 2158 DI 10.1016/j.jpowsour.2009.09.079 PG 10 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA 547UG UT WOS:000273914300004 ER PT J AU Gray, J AF Gray, Joe TI CANCER Genomics of metastasis SO NATURE LA English DT Editorial Material C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA. RP Gray, J (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA. EM jwgray@lbl.gov FU NCI NIH HHS [P50 CA058207] NR 8 TC 10 Z9 10 U1 0 U2 1 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 J9 NATURE JI Nature PD APR 15 PY 2010 VL 464 IS 7291 BP 989 EP 990 DI 10.1038/464989a PG 2 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 582XW UT WOS:000276635000025 PM 20393550 ER PT J AU Hudson, TJ Anderson, W Aretz, A Barker, AD Bell, C Bernabe, RR Bhan, MK Calvo, F Eerola, I Gerhard, DS Guttmacher, A Guyer, M Hemsley, FM Jennings, JL Kerr, D Klatt, P Kolar, P Kusuda, J Lane, DP Laplace, F Lu, YY Nettekoven, G Ozenberger, B Peterson, J Rao, TS Remacle, J Schafer, AJ Shibata, T Stratton, MR Vockley, JG Watanabe, K Yang, HM Yuen, MMF Knoppers, M Bobrow, M Cambon-Thomsen, A Dressler, LG Dyke, SOM Joly, Y Kato, K Kennedy, KL Nicolas, P Parker, MJ Rial-Sebbag, E Romeo-Casabona, CM Shaw, KM Wallace, S Wiesner, GL Zeps, N Lichter, P Biankin, AV Chabannon, C Chin, L Clement, B de Alava, E Degos, F Ferguson, ML Geary, P Hayes, DN Johns, AL Nakagawa, H Penny, R Piris, MA Sarin, R Scarpa, A Shibata, T van de Vijver, M Futreal, PA Aburatani, H Bayes, M Bowtell, DDL Campbell, PJ Estivill, X Grimmond, SM Gut, I Hirst, M Lopez-Otin, C Majumder, P Marra, M Nakagawa, H Ning, ZM Puente, XS Ruan, YJ Shibata, T Stratton, MR Stunnenberg, HG Swerdlow, H Velculescu, VE Wilson, RK Xue, HH Yang, L Spellman, PT Bader, GD Boutros, PC Campbell, PJ Flicek, P Getz, G Guigo, R Guo, GW Haussler, D Heath, S Hubbard, TJ Jiang, T Jones, SM Li, QB Lopez-Bigas, N Luo, RB Pearson, JV Puente, XS Quesada, V Raphael, BJ Sander, C Shibata, T Speed, TP Stuart, JM Teague, JW Totoki, Y Tsunoda, T Valencia, A Wheeler, DA Wu, HL Zhao, SC Zhou, GY Stein, LD Guigo, R Hubbard, TJ Joly, Y Jones, SM Lathrop, M Lopez-Bigas, N Ouellette, BFF Spellman, PT Teague, JW Thomas, G Valencia, A Yoshida, T Kennedy, KL Axton, M Dyke, SOM Futreal, PA Gunter, C Guyer, M McPherson, JD Miller, LJ Ozenberger, B Kasprzyk, A Zhang, JJ Haider, SA Wang, JX Yung, CK Cross, A Liang, Y Gnaneshan, S Guberman, J Hsu, J Bobrow, M Chalmers, DRC Hasel, KW Joly, Y Kaan, TSH Kennedy, KL Knoppers, BM Lowrance, WW Masui, T Nicolas, P Rial-Sebbag, E Rodriguez, LL Vergely, C Yoshida, T Grimmond, SM Biankin, AV Bowtell, DDL Cloonan, N Defazio, A Eshleman, JR Etemadmoghadam, D Gardiner, BA Kench, JG Scarpa, A Sutherland, RL Tempero, MA Waddell, NJ Wilson, PJ Gallinger, S Tsao, MS Shaw, PA Petersen, GM Mukhopadhyay, D Chin, L DePinho, RA Thayer, S Muthuswamy, L Shazand, K Beck, T Sam, M Timms, L Ballin, V Lu, YY Ji, JF Zhang, XQ Chen, F Hu, XD Zhou, GY Yang, Q Tian, G Zhang, LH Xing, XF Li, XH Zhu, ZG Yu, YY Yu, J Yang, HM Lathrop, M Tost, J Brennan, P Holcatova, I Zaridze, D Brazma, A Egevad, L Prokhortchouk, E Banks, RE Uhlen, M Cambon-Thomsen, A Viksna, J Ponten, F Skryabin, K Stratton, MR Futreal, PA Birney, E Borg, A Borresen-Dale, AL Caldas, C Foekens, JA Martin, S Reis-Filho, JS Richardson, AL Sotiriou, C Stunnenberg, HG Thomas, G van de Vijver, M van't Veer, L Birnbaum, D Blanche, H Boucher, P Boyault, S Chabannon, C Gut, I Masson-Jacquemier, JD Lathrop, M Pauporte, I Pivot, X Vincent-Salomon, A Tabone, E Theillet, C Thomas, G Tost, J Treilleux, I Bioulac-Sage, P Clement, B Decaens, T Degos, F Franco, D Gut, I Gut, M Heath, S Lathrop, M Samuel, D Thomas, G Zucman-Rossi, J Lichter, P Eils, R Brors, B Korbel, JO Korshunov, A Landgraf, P Lehrach, H Pfister, S Radlwimmer, B Reifenberger, G Taylor, MD von Kalle, C Majumder, PP Sarin, R Scarpa, A Pederzoli, P Lawlor, RT Delledonne, M Bardelli, A Biankin, AV Grimmond, SM Gress, T Klimstra, D Zamboni, G Shibata, T Nakamura, Y Nakagawa, H Kusuda, J Tsunoda, T Miyano, S Aburatani, H Kato, K Fujimoto, A Yoshida, T Campo, E Lopez-Otin, C Estivill, X Guigo, R de Sanjose, S Piris, MA Montserrat, E Gonzalez-Diaz, M Puente, XS Jares, P Valencia, A Himmelbaue, H Quesada, V Bea, S Stratton, MR Futreal, PA Campbell, PJ Vincent-Salomon, A Richardson, AL Reis-Filho, JS van de Vijver, M Thomas, G Masson-Jacquemier, JD Aparicio, S Borg, A Borresen-Dale, AL Caldas, C Foekens, JA Stunnenberg, HG van't Veer, L Easton, DF Spellman, PT Martin, S Chin, L Collins, FS Compton, CC Ferguson, ML Getz, G Gunter, C Guyer, M Hayes, DN Lander, ES Ozenberger, B Penny, R Peterson, J Sander, C Speed, TP Spellman, PT Wheeler, DA Wilson, RK Chin, L Knoppers, BM Lander, ES Lichter, P Stratton, MR Bobrow, M Burke, W Collins, FS DePinho, RA Easton, DF Futreal, PA Green, AR Guyer, M Hamilton, SR Hubbard, TJ Kallioniemi, OP Kennedy, KL Ley, TJ Liu, ET Lu, YY Majumder, P Marra, M Ozenberger, B Peterson, J Schafer, AJ Spellman, PT Stunnenberg, HG Wainwright, BJ Wilson, RK Yang, HM AF Hudson, Thomas J. Anderson, Warwick Aretz, Axel Barker, Anna D. Bell, Cindy Bernabe, Rosa R. Bhan, M. K. Calvo, Fabien Eerola, Iiro Gerhard, Daniela S. Guttmacher, Alan Guyer, Mark Hemsley, Fiona M. Jennings, Jennifer L. Kerr, David Klatt, Peter Kolar, Patrik Kusuda, Jun Lane, David P. Laplace, Frank Lu, Youyong Nettekoven, Gerd Ozenberger, Brad Peterson, Jane Rao, T. S. Remacle, Jacques Schafer, Alan J. Shibata, Tatsuhiro Stratton, Michael R. Vockley, Joseph G. Watanabe, Koichi Yang, Huanming Yuen, Matthew M. F. Knoppers, M. Bobrow, Martin Cambon-Thomsen, Anne Dressler, Lynn G. Dyke, Stephanie O. M. Joly, Yann Kato, Kazuto Kennedy, Karen L. Nicolas, Pilar Parker, Michael J. Rial-Sebbag, Emmanuelle Romeo-Casabona, Carlos M. Shaw, Kenna M. Wallace, Susan Wiesner, Georgia L. Zeps, Nikolajs Lichter, Peter Biankin, Andrew V. Chabannon, Christian Chin, Lynda Clement, Bruno de Alava, Enrique Degos, Francoise Ferguson, Martin L. Geary, Peter Hayes, D. Neil Johns, Amber L. Nakagawa, Hidewaki Penny, Robert Piris, Miguel A. Sarin, Rajiv Scarpa, Aldo Shibata, Tatsuhiro van de Vijver, Marc Futreal, P. Andrew Aburatani, Hiroyuki Bayes, Monica Bowtell, David D. L. Campbell, Peter J. Estivill, Xavier Grimmond, Sean M. Gut, Ivo Hirst, Martin Lopez-Otin, Carlos Majumder, Partha Marra, Marco Nakagawa, Hidewaki Ning, Zemin Puente, Xose S. Ruan, Yijun Shibata, Tatsuhiro Stratton, Michael R. Stunnenberg, Hendrik G. Swerdlow, Harold Velculescu, Victor E. Wilson, Richard K. Xue, Hong H. Yang, Liu Spellman, Paul T. Bader, Gary D. Boutros, Paul C. Campbell, Peter J. Flicek, Paul Getz, Gad Guigo, Roderic Guo, Guangwu Haussler, David Heath, Simon Hubbard, Tim J. Jiang, Tao Jones, Steven M. Li, Qibin Lopez-Bigas, Nuria Luo, Ruibang Pearson, John V. Puente, Xose S. Quesada, Victor Raphael, Benjamin J. Sander, Chris Shibata, Tatsuhiro Speed, Terence P. Stuart, Joshua M. Teague, Jon W. Totoki, Yasushi Tsunoda, Tatsuhiko Valencia, Alfonso Wheeler, David A. Wu, Honglong Zhao, Shancen Zhou, Guangyu Stein, Lincoln D. Guigo, Roderic Hubbard, Tim J. Joly, Yann Jones, Steven M. Lathrop, Mark Lopez-Bigas, Nuria Ouellette, B. F. Francis Spellman, Paul T. Teague, Jon W. Thomas, Gilles Valencia, Alfonso Yoshida, Teruhiko Kennedy, Karen L. Axton, Myles Dyke, Stephanie O. M. Futreal, P. Andrew Gunter, Chris Guyer, Mark McPherson, John D. Miller, Linda J. Ozenberger, Brad Kasprzyk, Arek Zhang, Junjun Haider, Syed A. Wang, Jianxin Yung, Christina K. Cross, Anthony Liang, Yong Gnaneshan, Saravanamuttu Guberman, Jonathan Hsu, Jack Bobrow, Martin Chalmers, Don R. C. Hasel, Karl W. Joly, Yann Kaan, Terry S. H. Kennedy, Karen L. Knoppers, Bartha M. Lowrance, William W. Masui, Tohru Nicolas, Pilar Rial-Sebbag, Emmanuelle Rodriguez, Laura Lyman Vergely, Catherine Yoshida, Teruhiko Grimmond, Sean M. Biankin, Andrew V. Bowtell, David D. L. Cloonan, Nicole Defazio, Anna Eshleman, James R. Etemadmoghadam, Dariush Gardiner, Brooke A. Kench, James G. Scarpa, Aldo Sutherland, Robert L. Tempero, Margaret A. Waddell, Nicola J. Wilson, Peter J. Gallinger, Steve Tsao, Ming-Sound Shaw, Patricia A. Petersen, Gloria M. Mukhopadhyay, Debabrata Chin, Lynda DePinho, Ronald A. Thayer, Sarah Muthuswamy, Lakshmi Shazand, Kamran Beck, Timothy Sam, Michelle Timms, Lee Ballin, Vanessa Lu, Youyong Ji, Jiafu Zhang, Xiuqing Chen, Feng Hu, Xueda Zhou, Guangyu Yang, Qi Tian, Geng Zhang, Lianhai Xing, Xiaofang Li, Xianghong Zhu, Zhenggang Yu, Yingyan Yu, Jun Yang, Huanming Lathrop, Mark Tost, Joerg Brennan, Paul Holcatova, Ivana Zaridze, David Brazma, Alvis Egevad, Lars Prokhortchouk, Egor Banks, Rosamonde Elizabeth Uhlen, Mathias Cambon-Thomsen, Anne Viksna, Juris Ponten, Fredrik Skryabin, Konstantin Stratton, Michael R. Futreal, P. Andrew Birney, Ewan Borg, Ake Borresen-Dale, Anne-Lise Caldas, Carlos Foekens, John A. Martin, Sancha Reis-Filho, Jorge S. Richardson, Andrea L. Sotiriou, Christos Stunnenberg, Hendrik G. Thomas, Gilles van de Vijver, Marc van't Veer, Laura Birnbaum, Daniel Blanche, Helene Boucher, Pascal Boyault, Sandrine Chabannon, Christian Gut, Ivo Masson-Jacquemier, Jocelyne D. Lathrop, Mark Pauporte, Iris Pivot, Xavier Vincent-Salomon, Anne Tabone, Eric Theillet, Charles Thomas, Gilles Tost, Joerg Treilleux, Isabelle Bioulac-Sage, Paulette Clement, Bruno Decaens, Thomas Degos, Francoise Franco, Dominique Gut, Ivo Gut, Marta Heath, Simon Lathrop, Mark Samuel, Didier Thomas, Gilles Zucman-Rossi, Jessica Lichter, Peter Eils, Roland Brors, Benedikt Korbel, Jan O. Korshunov, Andrey Landgraf, Pablo Lehrach, Hans Pfister, Stefan Radlwimmer, Bernhard Reifenberger, Guido Taylor, Michael D. von Kalle, Christof Majumder, Partha P. Sarin, Rajiv Scarpa, Aldo Pederzoli, Paolo Lawlor, Rita T. Delledonne, Massimo Bardelli, Alberto Biankin, Andrew V. Grimmond, Sean M. Gress, Thomas Klimstra, David Zamboni, Giuseppe Shibata, Tatsuhiro Nakamura, Yusuke Nakagawa, Hidewaki Kusuda, Jun Tsunoda, Tatsuhiko Miyano, Satoru Aburatani, Hiroyuki Kato, Kazuto Fujimoto, Akihiro Yoshida, Teruhiko Campo, Elias Lopez-Otin, Carlos Estivill, Xavier Guigo, Roderic de Sanjose, Silvia Piris, Miguel A. Montserrat, Emili Gonzalez-Diaz, Marcos Puente, Xose S. Jares, Pedro Valencia, Alfonso Himmelbaue, Heinz Quesada, Victor Bea, Silvia Stratton, Michael R. Futreal, P. Andrew Campbell, Peter J. Vincent-Salomon, Anne Richardson, Andrea L. Reis-Filho, Jorge S. van de Vijver, Marc Thomas, Gilles Masson-Jacquemier, Jocelyne D. Aparicio, Samuel Borg, Ake Borresen-Dale, Anne-Lise Caldas, Carlos Foekens, John A. Stunnenberg, Hendrik G. van't Veer, Laura Easton, Douglas F. Spellman, Paul T. Martin, Sancha Chin, Lynda Collins, Francis S. Compton, Carolyn C. Ferguson, Martin L. Getz, Gad Gunter, Chris Guyer, Mark Hayes, D. Neil Lander, Eric S. Ozenberger, Brad Penny, Robert Peterson, Jane Sander, Chris Speed, Terence P. Spellman, Paul T. Wheeler, David A. Wilson, Richard K. Chin, Lynda Knoppers, Bartha M. Lander, Eric S. Lichter, Peter Stratton, Michael R. Bobrow, Martin Burke, Wylie Collins, Francis S. DePinho, Ronald A. Easton, Douglas F. Futreal, P. Andrew Green, Anthony R. Guyer, Mark Hamilton, Stanley R. Hubbard, Tim J. Kallioniemi, Olli P. Kennedy, Karen L. Ley, Timothy J. Liu, Edison T. Lu, Youyong Majumder, Partha Marra, Marco Ozenberger, Brad Peterson, Jane Schafer, Alan J. Spellman, Paul T. Stunnenberg, Hendrik G. Wainwright, Brandon J. Wilson, Richard K. Yang, Huanming CA Int Canc Genome Consortium TI International network of cancer genome projects SO NATURE LA English DT Article ID MYELOID-LEUKEMIA GENOME; SOMATIC MUTATIONS; BREAST-CANCER; GENE; PATHWAYS; LANDSCAPES; DATABASE AB The International Cancer Genome Consortium (ICGC) was launched to coordinate large-scale cancer genome studies in tumours from 50 different cancer types and/or subtypes that are of clinical and societal importance across the globe. Systematic studies of more than 25,000 cancer genomes at the genomic, epigenomic and transcriptomic levels will reveal the repertoire of oncogenic mutations, uncover traces of the mutagenic influences, define clinically relevant subtypes for prognosis and therapeutic management, and enable the development of new cancer therapies. C1 [Jennings, Jennifer L.; Boutros, Paul C.; Stein, Lincoln D.; Ouellette, B. F. Francis; McPherson, John D.; Kasprzyk, Arek; Zhang, Junjun; Wang, Jianxin; Yung, Christina K.; Cross, Anthony; Liang, Yong; Gnaneshan, Saravanamuttu; Guberman, Jonathan; Hsu, Jack; Muthuswamy, Lakshmi; Shazand, Kamran; Beck, Timothy; Sam, Michelle; Timms, Lee; Ballin, Vanessa] Ontario Inst Canc Res, Toronto, ON M5G 0A3, Canada. Univ Toronto, Dept Med Biophys, Toronto, ON M5S 1A1, Canada. Univ Toronto, Dept Mol Genet, Toronto, ON M5S 1A1, Canada. [Hudson, Thomas J.; Anderson, Warwick] Natl Hlth & Med Res Council, Canberra, ACT 2601, Australia. [Aretz, Axel] German Aerosp Ctr DLR, Project Management Agcy, D-53175 Bonn, Germany. [Barker, Anna D.; Gerhard, Daniela S.; Vockley, Joseph G.; Shaw, Kenna M.; Compton, Carolyn C.] NCI, US Natl Inst Hlth, Bethesda, MD 20892 USA. [Bell, Cindy; Hasel, Karl W.] Genome Canada, Ottawa, ON K2P 1P1, Canada. [Bernabe, Rosa R.; Klatt, Peter] Minist Sci & Innovat, Secretariat State Res, Madrid 28027, Spain. [Bhan, M. K.; Rao, T. S.] Govt India, Minist Sci & Technol, Dept Biotechnol, New Delhi 110003, India. [Calvo, Fabien; Chabannon, Christian; Boucher, Pascal; Pauporte, Iris] Natl Canc Inst, F-92513 Boulogne, France. [Eerola, Iiro; Kolar, Patrik; Remacle, Jacques] European Commiss, Hlth Res Directorate, Genom & Syst Biol Unit, B-1049 Brussels, Belgium. [Guttmacher, Alan] Eunice Kennedy Shriver Natl Inst Child Hlth & Hum, US Natl Inst Hlth, Bethesda, MD 20892 USA. [Guyer, Mark; Ozenberger, Brad; Peterson, Jane; Rodriguez, Laura Lyman] NHGRI, US Natl Inst Hlth, Bethesda, MD 20892 USA. [Hemsley, Fiona M.; Lane, David P.] Canc Res UK, London WC2A 3PX, England. [Kerr, David] Qatar Fdn, Sidra Med & Res Ctr, Doha, Qatar. Univ Oxford, Dept Clin Pharmacol, Oxford OX2 6HE, England. [Kusuda, Jun; Masui, Tohru] Natl Inst Biomed Innovat, Osaka 5670085, Japan. [Laplace, Frank] Fed Minist Educ & Res, Div Mol Life Sci, D-11055 Berlin, Germany. [Lu, Youyong; Ji, Jiafu; Chen, Feng; Zhang, Lianhai; Xing, Xiaofang; Li, Xianghong] Peking Univ, Sch Oncol, Beijing Canc Inst & Hosp, Beijing 100142, Peoples R China. [Nettekoven, Gerd] German Canc Aid, D-53113 Bonn, Germany. [Schafer, Alan J.] Wellcome Trust Res Labs, London NW1 2BE, England. [Shibata, Tatsuhiro; Totoki, Yasushi; Yoshida, Teruhiko; Zaridze, David] Natl Canc Ctr, Chuo Ku, Tokyo 1040045, Japan. [Stratton, Michael R.; Dyke, Stephanie O. M.; Kennedy, Karen L.; Futreal, P. Andrew; Campbell, Peter J.; Ning, Zemin; Swerdlow, Harold; Hubbard, Tim J.; Teague, Jon W.; Martin, Sancha] Hinxton, Wellcome Trust Sanger Inst, Cambridge CB10 1SA, England. [Watanabe, Koichi] RIKEN, Yokohama Inst, Kanagawa, Japan. [Yang, Huanming; Guo, Guangwu; Jiang, Tao; Li, Qibin; Luo, Ruibang; Wu, Honglong; Zhao, Shancen; Zhou, Guangyu; Zhang, Xiuqing; Hu, Xueda; Yang, Qi; Tian, Geng] BGI Shenzhen, Shenzhen 518083, Guangdong, Peoples R China. [Yuen, Matthew M. F.] Hong Kong Univ Sci & Technol, Hong Kong, Hong Kong, Peoples R China. [Knoppers, M.; Joly, Yann; Wallace, Susan; Knoppers, Bartha M.] McGill Univ, Ctr Genom & Policy, Montreal, PQ H3A 1A4, Canada. [Knoppers, M.; Wallace, Susan] Genome Quebec Innovat Ctr, Montreal, PQ H3A 1A4, Canada. [Bobrow, Martin] Univ Cambridge, Cambridge Inst Med Res, Dept Med Genet, Cambridge CB2 0XY, England. [Cambon-Thomsen, Anne; Rial-Sebbag, Emmanuelle] Fac Med Toulouse, INSERM, U558, F-31073 Toulouse, France. [Dressler, Lynn G.] Univ N Carolina, Sch Pharm, Div Pharmaceut Outcomes & Policy, Inst Pharmacogen & Individualized Therapy, Chapel Hill, NC 27599 USA. [Kato, Kazuto] Kyoto Univ, Grad Sch Biostudies, Inst Integrated Cell Mat Sci, Inst Res Humanities, Kyoto 6068501, Japan. [Nicolas, Pilar; Romeo-Casabona, Carlos M.] Univ Deusto, Interuniv Chair Law & Human Genome, Bizkaia 48007, Spain. [Parker, Michael J.] Univ Oxford, Ethox Ctr, Oxford OX3 7LF, England. [Wiesner, Georgia L.] Case Western Reserve Univ, Dept Genet, Cleveland, OH 44106 USA. [Wiesner, Georgia L.] Univ Hosp Cleveland, Case Med Ctr, Ctr Human Genet, Cleveland, OH 44106 USA. St John God Pathol, Subiaco, WA 6008, Australia. Univ Western Australia, Sch Pathol & Lab Med, Nedlands, WA 6009, Australia. [Zeps, Nikolajs] Univ Western Australia, Sch Surg, Nedlands, WA 6009, Australia. [Lichter, Peter; Eils, Roland; Brors, Benedikt; Pfister, Stefan; Radlwimmer, Bernhard] German Canc Res Ctr, D-69120 Heidelberg, Germany. [Biankin, Andrew V.; Johns, Amber L.; Kench, James G.; Sutherland, Robert L.] Univ New S Wales, Garvan Inst Med Res, Sydney, NSW 2010, Australia. Bankstown Hosp, Dept Surg, Sydney, NSW 2200, Australia. [Birnbaum, Daniel; Chabannon, Christian; Masson-Jacquemier, Jocelyne D.] Inst J Paoli I Calmettes, F-13273 Marseille, France. [Chin, Lynda; DePinho, Ronald A.] Dana Farber Canc Inst, Belfer Inst Appl Canc Sci, Boston, MA 02115 USA. [Chin, Lynda] Harvard Univ, Sch Med, Dept Dermatol, Boston, MA 02115 USA. [Clement, Bruno] INSERM, U991, F-35043 Rennes, France. [de Alava, Enrique; Gonzalez-Diaz, Marcos] Univ Salamanca, Ctr Invest Canc, Univ Hosp, Dept Hematol, Salamanca 37007, Spain. [Degos, Francoise] Hop Beaujon, F-92110 Clichy, France. [Ferguson, Martin L.] MLF Consulting, Arlington, MA 02474 USA. [Geary, Peter] Canadian Tumour Repository Network, Winnipeg, MB R3M 0V5, Canada. [Hayes, D. Neil] Univ N Carolina, Div Med Oncol, Lineberger Comprehens Canc Ctr, Dept Internal Med, Chapel Hill, NC 27599 USA. [Nakagawa, Hidewaki; Tsunoda, Tatsuhiko; Nakamura, Yusuke; Fujimoto, Akihiro] RIKEN, Ctr Genom Med, Kanagawa 2300045, Japan. [Penny, Robert] Int Genom Consortium, Phoenix, AZ 85004 USA. [Piris, Miguel A.] Spanish Natl Canc Res Ctr, Mol Pathol Programme, Madrid 28029, Spain. [Sarin, Rajiv] Tata Mem Hosp, Adv Ctr Treatment, Res & Educ Canc, Navi Mumbai 41021, Maharashtra, India. [Scarpa, Aldo; Zamboni, Giuseppe] Univ Verona, Dept Pathol, I-37134 Verona, Italy. [Scarpa, Aldo; Lawlor, Rita T.] Verona Univ Hosp, Ctr Appl Res Canc ARC NET, I-37134 Verona, Italy. [van de Vijver, Marc; van't Veer, Laura] Netherlands Canc Inst, NL-1066 CX Amsterdam, Netherlands. [van de Vijver, Marc] Acad Med Ctr, NL-1015 AZ Amsterdam, Netherlands. [Aburatani, Hiroyuki] Univ Tokyo, Res Ctr Adv Sci & Technol, Meguro Ku, Tokyo 1538904, Japan. [Bayes, Monica; Estivill, Xavier; Himmelbaue, Heinz] Pompeu Fabra Univ, Ctr Genom Regulat, Barcelona 08003, Spain. [Bayes, Monica] Biomed Res Ctr CIBERESP, Publ Hlth & Epidemiol Network, Barcelona 08003, Catalonia, Spain. [Bowtell, David D. L.; Etemadmoghadam, Dariush] Peter MacCallum Canc Ctr, Melbourne, Vic 3002, Australia. [Etemadmoghadam, Dariush] Univ Melbourne, Dept Biochem & Mol Biol, Parkville, Vic 3010, Australia. Univ Cambridge, Dept Haematol, Cambridge CB2 2XY, England. [Grimmond, Sean M.; Pearson, John V.; Cloonan, Nicole; Gardiner, Brooke A.; Waddell, Nicola J.] Univ Queensland, Inst Mol Biosci, Queensland Ctr Med Genom, Brisbane, Qld 4067, Australia. [Gut, Ivo; Heath, Simon; Lathrop, Mark; Tost, Joerg] CEA, DSV, IG Ctr Natl Genotypage, F-91057 Evry, France. [Hirst, Martin; Marra, Marco; Jones, Steven M.] British Columbia Canc Agcy, Canadas Michael Smith Genome Sci Ctr, Vancouver, BC V5Z 1L3, Canada. [Lopez-Otin, Carlos; Puente, Xose S.; Quesada, Victor] Univ Oviedo, Inst Univ Oncol, Dept Bioquim & Biol Mol, E-33006 Oviedo, Spain. [Majumder, Partha; Majumder, Partha P.] Natl Inst Biomed Genom, Kalyani 741251, W Bengal, India. [McPherson, John D.] Univ Toronto, Dept Med Biophys, Toronto, ON M5S 1A1, Canada. [Ruan, Yijun; Liu, Edison T.] Agcy Sci Technol & Res, Genome Inst Singapore, Singapore 138672, Singapore. [Stunnenberg, Hendrik G.] Radboud Univ Nijmegen, Nijmegen Ctr Mol Life Sci, NL-6500 HB Nijmegen, Netherlands. [Velculescu, Victor E.] Johns Hopkins Kimmel Canc Ctr, Ludwig Ctr Canc Genet & Therapeut, Baltimore, MD 21231 USA. [Wilson, Richard K.; Ley, Timothy J.] Washington Univ, Sch Med, Genome Ctr, St Louis, MO 63108 USA. Washington Univ, Sch Med, Siteman Canc Ctr, St Louis, MO 63108 USA. [Xue, Hong H.] HKUST, Appl Genom Ctr, Fok Ying Grad Sch, Hong Kong, Hong Kong, Peoples R China. [Xue, Hong H.] Hong Kong Univ Sci & Technol, Dept Biochem, Hong Kong, Hong Kong, Peoples R China. [Yang, Liu] Zhejiang Univ, Inst Canc, Hangzhou 310009, Zhejiang, Peoples R China. [Spellman, Paul T.] Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94510 USA. [Bader, Gary D.] Univ Toronto, Donnelly Ctr Cellular & Biomol Res, Toronto, ON M5S 3E1, Canada. [Bader, Gary D.] Univ Toronto, Banting & Best Dept Med Res, Toronto, ON M5S 3E1, Canada. [Flicek, Paul; Brazma, Alvis; Birney, Ewan; Korbel, Jan O.] Hinxton, European Bioinformat Inst, European Mol Biol Lab, Cambridge CB10 1SD, England. [Getz, Gad; Lander, Eric S.] MIT, Cambridge, MA 02142 USA. [Getz, Gad] Broad Inst Harvard, Cambridge, MA 02142 USA. [Guigo, Roderic] Univ Pompeu Fabra, Spanish Natl Bioinformat Inst, Barcelona 08003, Spain. Univ Pompeu Fabra, Ctr Genom Regulat, Barcelona 08003, Spain. [Haussler, David] Univ Calif Santa Cruz, Howard Hughes Med Inst, Santa Cruz, CA 95064 USA. [Haussler, David] Univ Calif Santa Cruz, Ctr Biomol Sci & Engn, Santa Cruz, CA 95064 USA. [Lopez-Bigas, Nuria] Pompeu Fabra Univ, Dept Expt & Hlth Sci, Res Unit Biomed Informat, Barcelona 08003, Spain. [Raphael, Benjamin J.] Brown Univ, Ctr Computat Mol Biol, Providence, RI 02912 USA. [Raphael, Benjamin J.] Brown Univ, Dept Comp Sci, Providence, RI 02912 USA. [Sander, Chris] Mem Sloan Kettering Canc Ctr, Computat Biol Ctr, New York, NY 10065 USA. [Speed, Terence P.] Walter & Eliza Hall Inst Med Res, Parkville, Vic 3052, Australia. [Speed, Terence P.] Univ Calif Berkeley, Dept Stat, Berkeley, CA 94720 USA. [Stuart, Joshua M.] Univ Calif Santa Cruz, Dept Biomol Engn, Santa Cruz, CA 95064 USA. [Valencia, Alfonso] Spanish Natl Canc Res Ctr CNIO, Spanish Natl Bioinformat Inst, Madrid 28029, Spain. [Valencia, Alfonso] Spanish Natl Canc Res Ctr CNIO, Struct Biol & Biocomputing Programme, Madrid 28029, Spain. [Wheeler, David A.] Baylor Coll Med, Human Genome Sequencing Ctr, Houston, TX 77030 USA. Baylor Coll Med, Dept Mol & Human Genet, Houston, TX 77030 USA. [Blanche, Helene; Gut, Marta] Ctr Etud Polymorphisme Humain, Fdn Jean Dausset, F-75010 Paris, France. [Thomas, Gilles] Univ Lyon 1, F-69622 Villeurbanne, France. Fdn Synergie Lyon Canc, F-69008 Lyon, France. [Axton, Myles] Natl Genet, New York, NY 10013 USA. [Gunter, Chris] HudsonAlpha Inst Biotechnol, Huntsville, AL 35806 USA. [Miller, Linda J.] Nat & Nat Res Journals, New York, NY 10013 USA. [Haider, Syed A.] Univ Cambridge, Comp Lab, Cambridge CB3 0FD, England. [Chalmers, Don R. C.] Univ Tasmania, Fac Law, Hobart, Tas 7001, Australia. [Kaan, Terry S. H.] Natl Univ Singapore, Fac Law, Singapore 259776, Singapore. [Lowrance, William W.] Consultant Hlth Res Eth & Policy, F-34280 La Grande Motte, France. [Vergely, Catherine] Inst Gustave Roussy, ISIS 39, F-94805 Villejuif, France. [Defazio, Anna] Westmead Hosp, Dept Gynaecol Oncol, Westmead, NSW 2145, Australia. [Defazio, Anna] Univ Sydney, Westmead Millennium Inst, Westmead Inst Canc Res, Westmead, NSW 2145, Australia. [Eshleman, James R.] Johns Hopkins Med Inst, Sol Goldman Pancreat Canc Res Ctr, Baltimore, MD 21231 USA. [Kench, James G.] Univ Sydney, Royal Prince Alfred Hosp, Dept Anat Pathol, Sydney, NSW 2050, Australia. [Tempero, Margaret A.] Univ Calif San Francisco, Helen Diller Family Comprehens Canc Ctr, San Francisco, CA 94115 USA. [Gallinger, Steve] Toronto Gen Hosp, Dept Gen Surg, Toronto, ON M5G 2C4, Canada. [Gallinger, Steve] Samuel Lunenfeld Res Inst, Toronto, ON M5S 1A1, Canada. [Tsao, Ming-Sound] Ontario Canc Inst, Univ Hlth Network, Toronto, ON M5G 2M9, Canada. [Tsao, Ming-Sound] Univ Toronto, Dept Lab Med & Pathobiol, Toronto, ON M5S 1A1, Canada. [Shaw, Patricia A.] Univ Hlth Network, Dept Pathol, Toronto, ON M5G 2C4, Canada. [Petersen, Gloria M.] Mayo Clin, Dept Hlth Sci Res, Rochester, MN 55905 USA. [Mukhopadhyay, Debabrata] Mayo Clin, Dept Biochem & Mol Biol, Rochester, MN 55905 USA. [DePinho, Ronald A.] Harvard Univ, Sch Med, Dept Med & Genet, Boston, MA 02115 USA. [Thayer, Sarah] Harvard Univ, Sch Med, Dept Surg, Boston, MA 02115 USA. [Zhu, Zhenggang; Yu, Yingyan] Shanghai Jiao Tong Univ, Sch Med, Shanghai Ruijin Hosp, Shanghai 200025, Peoples R China. [Yu, Jun] Chinese Univ Hong Kong, Inst Digest Dis, Hong Kong, Hong Kong, Peoples R China. [Brennan, Paul] Int Agcy Res Canc, F-69372 Lyon, France. [Holcatova, Ivana] Charles Univ Prague, Fac Med 1, Inst Hyg & Epidemiol, Prague 12108, Czech Republic. [Zaridze, David] NN Blokhin Russian Canc Res Ctr, Dept Epidemiol & Prevent, Moscow 115478, Russia. [Egevad, Lars] Karolinska Univ Hosp, Karolinska Inst, SE-17176 Stockholm, Sweden. [Prokhortchouk, Egor] Russian Acad Sci, Ctr Bioengn, Moscow 117312, Russia. [Banks, Rosamonde Elizabeth] St James Univ Hosp, Leeds Inst Mol Med, Canc Res UK Ctr, Leeds LS9 7TF, W Yorkshire, England. [Uhlen, Mathias] KTH Royal Inst Technol, Sci Life Lab, SE-10044 Stockholm, Sweden. [Viksna, Juris] Univ Latvia, Inst Math & Comp Sci, LV-1459 Riga, Latvia. [Ponten, Fredrik] Uppsala Univ, SE-75105 Uppsala, Sweden. [Skryabin, Konstantin] Kurchatov Sci Ctr, Moscow 123182, Russia. [Borg, Ake] Lund Univ, Dept Oncol, SE-22185 Lund, Sweden. [Borresen-Dale, Anne-Lise] Oslo Univ Hosp, Radiumhosp, Inst Canc Res, N-0310 Oslo, Norway. [Borresen-Dale, Anne-Lise] Univ Oslo, Fac Med, N-0316 Oslo, Norway. [Caldas, Carlos] Univ Cambridge, Dept Oncol, Cambridge CB2 0RE, England. [Caldas, Carlos] Li Ka Shing Ctr, Canc Res UK Cambridge Res Inst, Cambridge CB2 0RE, England. [Foekens, John A.] Josephine Nefkens Inst, Erasmus MC Rotterdam, Dept Med Oncol, NL-3015 CE Rotterdam, Netherlands. [Foekens, John A.] Canc Genom Ctr, NL-3015 CE Rotterdam, Netherlands. [Reis-Filho, Jorge S.] Inst Canc Res, Breakthrough Breast Canc Res Ctr, London SW3 6JB, England. [Richardson, Andrea L.] Dana Farber Canc Inst, Boston, MA 02115 USA. [Richardson, Andrea L.] Brigham & Womens Hosp, Dept Pathol, Boston, MA 02115 USA. [Boyault, Sandrine; Tabone, Eric; Treilleux, Isabelle] Ctr Leon Berard, F-69373 Lyon, France. [Sotiriou, Christos] Inst Jules Bordet, B-1000 Brussels, Belgium. [Pivot, Xavier] Hop Jean Minjoz, F-25030 Besancon, France. [Vincent-Salomon, Anne] Inst Curie, F-75231 Paris, France. [Theillet, Charles] Ctr Val Aurelle, F-34298 Montpellier, France. [Bioulac-Sage, Paulette] Hop Pellegrin, F-33076 Bordeaux, France. [Decaens, Thomas] Hop Henri Mondor, F-94010 Creteil, France. [Decaens, Thomas] INSERM, U955, F-94000 Creteil, France. [Franco, Dominique] Hop Antoine Beclere, F-92141 Clamart, France. [Samuel, Didier] Hop Paul Brousse, AP HP, Ctr Hepatobilaire, F-94800 Villejuif, France. [Samuel, Didier] INSERM, U785, F-94800 Villejuif, France. [Zucman-Rossi, Jessica] INSERM, U674, F-75010 Paris, France. [Eils, Roland] Heidelberg Univ, D-69120 Heidelberg, Germany. [Korbel, Jan O.] European Mol Biol Lab, Genome Biol Unit, D-69126 Heidelberg, Germany. [Korshunov, Andrey] Univ Heidelberg Hosp, Dept Neuropathol, D-69120 Heidelberg, Germany. [Landgraf, Pablo] Univ Dusseldorf, Clin Pediat Oncol Hematol & Immunol, D-40225 Dusseldorf, Germany. [Lehrach, Hans] Max Planck Inst Mol Genet, D-14195 Berlin, Germany. [Pfister, Stefan] Univ Heidelberg Hosp, Dept Pediat Hematol & Oncol, D-69120 Heidelberg, Germany. [Reifenberger, Guido] Univ Dusseldorf, Inst Neuropathol, D-40001 Dusseldorf, Germany. [Taylor, Michael D.] Hosp Sick Children, Div Neurosurg, Toronto, ON M5G 1X8, Canada. [Taylor, Michael D.] Hosp Sick Children, Arthur & Sonia Labatt Brain Tumour Res Ctr, Toronto, ON M5G 1X8, Canada. [von Kalle, Christof] Natl Ctr Tumor Dis, D-69120 Heidelberg, Germany. [von Kalle, Christof] German Canc Res Ctr, Div Translat Oncol, D-69120 Heidelberg, Germany. [Pederzoli, Paolo] Univ Hosp Trust Verona, Dept Surg, I-37134 Verona, Italy. [Delledonne, Massimo] Univ Verona, Dept Biotechnol, Funct Genom Ctr, I-37134 Verona, Italy. [Bardelli, Alberto] Univ Torino, Inst Canc Res & Treatment, Mol Genet Lab, I-10060 Turin, Italy. [Bardelli, Alberto] FIRC Inst Mol Oncol, I-20139 Milan, Italy. [Gress, Thomas] Univ Marburg, Dept Gastroenterol Endocrinol Metab & Infectiol, D-35043 Marburg, Germany. [Klimstra, David] Mem Sloan Kettering Canc Ctr, Dept Pathol, New York, NY 10065 USA. [Nakamura, Yusuke; Miyano, Satoru] Univ Tokyo, Inst Med Sci, Ctr Human Genome, Minato Ku, Tokyo 1088639, Japan. Univ Barcelona, Hosp Clin, E-08036 Barcelona, Spain. [Wilson, Peter J.; de Sanjose, Silvia] Hosp Llobregat, Inst Catala Oncol IDIBELL, Unit Infect & Canc,CIBER Epidemiol & Salud Publ, Canc Epidemiol Res Programme, Lhospitalet De Llobregat 08907, Spain. [Aparicio, Samuel] British Columbia Canc Agcy, BC Canc Res Ctr, Vancouver, BC V5Z 1L3, Canada. [Easton, Douglas F.] Univ Cambridge, Dept Primary Care & Oncol, Dept Publ Hlth, Cambridge CB1 8RN, England. [Collins, Francis S.] US Natl Inst Hlth, Bethesda, MD 20892 USA. [Burke, Wylie] Univ Washington, Dept Bioeth & Humanities, Seattle, WA 98195 USA. [Green, Anthony R.] Univ Cambridge, Dept Haematol, Cambridge CB2 2XY, England. [Green, Anthony R.] Univ Cambridge, Cambridge Inst Med Res, Cambridge CB2 2XY, England. [Hamilton, Stanley R.] Univ Texas MD Anderson Canc Ctr, Houston, TX 77030 USA. [Kallioniemi, Olli P.] Univ Helsinki, Inst Mol Med Finland, FIN-00290 Helsinki, Finland. [Ley, Timothy J.] Washington Univ, Sch Med, Dept Med, St Louis, MO 63110 USA. [Ley, Timothy J.] Washington Univ, Sch Med, Dept Genet, St Louis, MO 63110 USA. [Wainwright, Brandon J.] Univ Queensland, Inst Mol Biosci, Brisbane, Qld 4072, Australia. RP Hudson, TJ (reprint author), Ontario Inst Canc Res, Toronto, ON M5G 0A3, Canada. EM tom.hudson@oicr.on.ca RI Liu, Edison/C-4141-2008; Estivill, Xavier/E-2957-2012; Korbel, Jan/G-6470-2012; Speed, Terence /B-8085-2009; Bader, Gary/C-1176-2009; Caldas, Carlos/A-7543-2008; Cloonan, Nicole/B-5272-2008; Piris, Miguel/B-7067-2008; sander, chris/H-1452-2011; IBSAL, Secretaria/H-3719-2011; Kallioniemi, Olli/H-5111-2011; Gnaneshan, Saravanamuttu/D-2305-2012; Yuen, Matthew /E-5621-2011; Heath, Simon/J-4138-2012; Ning, Zemin/D-2411-2013; Brors, Benedikt/E-5620-2013; Gallinger, Steven/E-4575-2013; Zaridze, David/K-5605-2013; Kallioniemi, Olli/H-4738-2012; Decaens, Thomas/L-9483-2013; Tang, Macy/B-9798-2014; deFazio, Anna/D-3939-2013; de Sanjose Llongueras, Silvia/H-6339-2014; Tsunoda, Tatsuhiko/K-2061-2014; Estivill, Xavier/A-3125-2013; Stunnenberg, Hendrik/D-6875-2012; Gill, Anthony/D-4215-2015; Guigo, Roderic/D-1303-2010; Lopez-Bigas, Nuria/F-6193-2011; Hubbard, Tim/C-2567-2008; Chalmers, Don/J-7658-2014; Valencia, Alfonso/I-3127-2015; Radlwimmer, Bernhard/I-3229-2013; IBIS, SARCOMAS/O-1893-2015; Giuseppe, Zamboni/A-5991-2016; Hirst, Martin/B-7684-2016; Quesada, Victor/B-6557-2014; Gardiner, Brooke/C-7773-2011; Eils, Roland/B-6121-2009; Pfister, Stefan/F-6860-2013; Clement, Bruno/E-5546-2016; Bowtell, David/H-1007-2016; Waddell, Nic/H-4929-2015; Prokhortchouk, Egor/I-9108-2014; Yu, Jun /D-8569-2015; Grimmond, Sean/J-5304-2016; Jones, Steven/C-3621-2009; Lopez-Otin, Carlos/C-6657-2013; Pearson, John/F-2249-2011; scarpa, aldo/K-6832-2016; Gasull, Martina/A-6630-2013; Marra, Marco/B-5987-2008; McPherson, John/D-2633-2017; Bea, Silvia/K-7699-2014; OI Korbel, Jan/0000-0002-2798-3794; Speed, Terence /0000-0002-5403-7998; Bader, Gary/0000-0003-0185-8861; Piris, Miguel/0000-0001-5839-3634; Kallioniemi, Olli/0000-0002-3231-0332; Gnaneshan, Saravanamuttu/0000-0002-0455-8701; Yuen, Matthew /0000-0002-6773-328X; Brors, Benedikt/0000-0001-5940-3101; Kallioniemi, Olli/0000-0002-3231-0332; deFazio, Anna/0000-0003-0057-4744; Estivill, Xavier/0000-0002-0723-2256; Gill, Anthony/0000-0002-9447-1967; Guigo, Roderic/0000-0002-5738-4477; Lopez-Bigas, Nuria/0000-0003-4925-8988; Hubbard, Tim/0000-0002-1767-9318; Chalmers, Don/0000-0002-7925-8818; Valencia, Alfonso/0000-0002-8937-6789; Radlwimmer, Bernhard/0000-0002-4553-7800; Giuseppe, Zamboni/0000-0001-7428-4673; Quesada, Victor/0000-0002-8398-3457; Gardiner, Brooke/0000-0003-3740-3244; Eils, Roland/0000-0002-0034-4036; Pfister, Stefan/0000-0002-5447-5322; Bowtell, David/0000-0001-9089-7525; Grimmond, Sean/0000-0002-8102-7998; Lopez-Otin, Carlos/0000-0001-6964-1904; Pearson, John/0000-0003-0904-4598; scarpa, aldo/0000-0003-1678-739X; McPherson, John/0000-0001-8049-9347; Sarin, Rajiv/0000-0002-6405-8282; Bea, Silvia/0000-0001-7192-2385; Hayes, D. Neil/0000-0001-6203-7771; Ning, Zemin/0000-0003-4359-776X; Egevad, Lars/0000-0001-8531-222X; Suarez-Puente, Xose/0000-0001-9525-1483; zucman-rossi, Jessica/0000-0002-5687-0334; Banks, Rosamonde/0000-0002-0042-8715; Tost, Jorg/0000-0002-2683-0817; Flicek, Paul/0000-0002-3897-7955; lawlor, Rita/0000-0003-3160-0634; Birney, Ewan/0000-0001-8314-8497; Martin, Sancha/0000-0001-6213-5259; Biankin, Andrew/0000-0002-0362-5597; Gonzalez Diaz, Marcos/0000-0001-6637-1072; Campo, elias/0000-0001-9850-9793; Brazma, Alvis/0000-0001-5988-7409; Yung, Christina/0000-0003-2958-150X NR 35 TC 714 Z9 725 U1 15 U2 225 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 EI 1476-4687 J9 NATURE JI Nature PD APR 15 PY 2010 VL 464 IS 7291 BP 993 EP 998 DI 10.1038/nature08987 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 582XW UT WOS:000276635000029 ER PT J AU Chen, L Yang, SY Jakoncic, J Zhang, JJ Huang, XY AF Chen, Lin Yang, Shengyu Jakoncic, Jean Zhang, J. Jillian Huang, Xin-Yun TI Migrastatin analogues target fascin to block tumour metastasis SO NATURE LA English DT Article ID CELL-MIGRATION INHIBITORS; NEGATIVE BREAST-CANCER; ACTIN-BUNDLING PROTEIN; EXPRESSION; CARCINOMA; MOTILITY; GENE; DISCOVERY; FILOPODIA; ROLES AB Tumour metastasis is the primary cause of death of cancer patients. Development of new therapeutics preventing tumour metastasis is urgently needed. Migrastatin is a natural product secreted by Streptomyces(1,2), and synthesized migrastatin analogues such as macroketone are potent inhibitors of metastatic tumour cell migration, invasion and metastasis(3-6). Here we show that these migrastatin analogues target the actin-bundling protein fascin to inhibit its activity. X-ray crystal structural studies reveal that migrastatin analogues bind to one of the actin-binding sites on fascin. Our data demonstrate that actin cytoskeletal proteins such as fascin can be explored as new molecular targets for cancer treatment, in a similar manner to the microtubule protein tubulin. C1 [Chen, Lin; Yang, Shengyu; Zhang, J. Jillian; Huang, Xin-Yun] Cornell Univ, Weill Med Coll, Dept Physiol, New York, NY 10065 USA. [Jakoncic, Jean] Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA. RP Huang, XY (reprint author), Cornell Univ, Weill Med Coll, Dept Physiol, New York, NY 10065 USA. EM xyhuang@med.cornell.edu RI Yang, Shengyu/I-9531-2012 OI Yang, Shengyu/0000-0002-7933-6118 FU National Institutes of Health [CA136837]; Department of Defense [W81XWH-06-1-0362] FX J. J. Z. and X. Y. H. dedicate this paper to the memory of Yonghong Zhang, who died of cancer on 12 September 2009. We are grateful to W. Gerald (deceased) at Memorial Sloan-Kettering Cancer Center for letting us examine his DNA microarray data on human breast tumour samples for the fascin expression. We thank S. Almo for the fascin plasmid; S. Danishefsky and colleagues for the biotin-conjugated macroketone used in the initial exploration of the conditions for protein purification; members of the J. Massague laboratory for teaching the use of the IVIS Imaging system; the personnel at the beamlines X6A and X4C of the National Synchrotron Light Source for the beamtime and for assistance; and D. Eliezer, T. Maack, L. Palmer, H. Wu and members of our laboratory for critically reading the manuscript. We thank S. Almo and his colleagues, H. Wu and J. Wu, for help with the crystallization experiments. This work was supported by grants from the National Institutes of Health (CA136837) and the Department of Defense (W81XWH-06-1-0362). NR 36 TC 121 Z9 131 U1 2 U2 34 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 J9 NATURE JI Nature PD APR 15 PY 2010 VL 464 IS 7291 BP 1062 EP U135 DI 10.1038/nature08978 PG 7 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 582XW UT WOS:000276635000043 PM 20393565 ER PT J AU Alvermann, A Fehske, H Trugman, SA AF Alvermann, Andreas Fehske, Holger Trugman, Stuart A. TI Polarons and slow quantum phonons SO PHYSICAL REVIEW B LA English DT Article ID MOLECULAR-CRYSTAL MODEL; HOLSTEIN POLARON; DYNAMICAL PROPERTIES; ADIABATIC THEORY; ONE-DIMENSION; ELECTRON; CONDUCTIVITY; LOCALIZATION; SYSTEMS; MOTION AB We describe the formation and properties of Holstein polarons in the entire parameter regime. Our presentation focuses on the polaron mass and radius, which we obtain with an improved numerical technique. It is based on the combination of variational exact diagonalization with an improved construction of phonon states, providing results even for the strong coupling adiabatic regime. In particular we can describe the formation of large and heavy adiabatic polarons. A comparison of the polaron mass for the one- and three-dimensional situation explains how the different properties in the static oscillator limit determine the behavior in the adiabatic regime. The transport properties of large and small polarons are characterized by the f-sum rule and the optical conductivity. Our calculations are approximation free and have negligible numerical error. This allows us to give a conclusive and impartial description of polaron formation. We finally discuss the implications of our results for situations beyond the Holstein model. C1 [Alvermann, Andreas; Fehske, Holger] Ernst Moritz Arndt Univ Greifswald, Inst Phys, D-17489 Greifswald, Germany. [Trugman, Stuart A.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Alvermann, A (reprint author), Ernst Moritz Arndt Univ Greifswald, Inst Phys, D-17489 Greifswald, Germany. OI Trugman, Stuart/0000-0002-6688-7228 FU U.S. Department of Energy, Center for Integrated Nanotechnologies, at Los Alamos National Laboratory [DE-AC52-06NA25396]; Sandia National Laboratories [DE-AC04-94AL85000] FX This work was supported by the U.S. Department of Energy, Center for Integrated Nanotechnologies, at Los Alamos National Laboratory (Contract No. DE-AC52-06NA25396) and Sandia National Laboratories (Contract No. DE-AC04-94AL85000). A. A. and H. F. are grateful for hospitality provided at the Los Alamos National Laboratory. NR 66 TC 28 Z9 28 U1 0 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD APR 15 PY 2010 VL 81 IS 16 AR 165113 DI 10.1103/PhysRevB.81.165113 PG 9 WC Physics, Condensed Matter SC Physics GA 590HX UT WOS:000277217200041 ER PT J AU Cui, XY Carter, DJ Fuchs, M Delley, B Wei, SH Freeman, AJ Stampfl, C AF Cui, X. Y. Carter, D. J. Fuchs, M. Delley, B. Wei, S. H. Freeman, A. J. Stampfl, C. TI Continuously tunable band gap in GaN/AlN (0001) superlattices via built-in electric field SO PHYSICAL REVIEW B LA English DT Article ID MOLECULAR-BEAM EPITAXY; QUANTUM-WELLS; MACROSCOPIC POLARIZATION; HETEROJUNCTIONS; HETEROSTRUCTURES; PSEUDOPOTENTIALS; SPECTROSCOPY; OFFSETS; ALN AB Based on all-electron density-functional theory calculations using the generalized gradient approximation, we demonstrate the continuous tunability of the band gap and strength of the built-in electric field in GaN/AlN (0001) superlattices by control of the thickness of both the well (GaN) and barrier (AlN) regions. The effects of strain for these quantities are also studied. Calculations taking into account the self-interaction correction exhibit the same dependence on thickness. The calculated electric field strength values are in good agreement with recent experiments. Spontaneous polarization dominates the contribution to the electric field and the strain-induced piezoelectric polarization is estimated to contribute only about 5-10%. C1 [Cui, X. Y.; Carter, D. J.; Stampfl, C.] Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia. [Carter, D. J.] Curtin Univ Technol, Nanochem Res Inst, Perth, WA 6845, Australia. [Fuchs, M.] Max Planck Gesell, Fritz Haber Inst, D-14195 Berlin, Germany. [Delley, B.] Paul Scherrer Inst, CH-5232 Villigen, Switzerland. [Wei, S. H.] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Freeman, A. J.] Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA. RP Cui, XY (reprint author), Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia. RI Carter, Damien/H-9768-2012; Delley, Bernard/E-1336-2014 OI Delley, Bernard/0000-0002-7020-2869 FU Australian Commonwealth Government; NSF (U.S.) FX We acknowledge the computing resources provided by the NCI National Facility in Canberra, Australia, which is supported by the Australian Commonwealth Government, and from the NSF (U.S.) (through its MRSEC program at the Northwestern Materials Research Center) NR 36 TC 20 Z9 20 U1 1 U2 20 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD APR 15 PY 2010 VL 81 IS 15 AR 155301 DI 10.1103/PhysRevB.81.155301 PG 5 WC Physics, Condensed Matter SC Physics GA 590FQ UT WOS:000277210500072 ER PT J AU Dahal, HP Hu, ZX Sinitsyn, NA Yang, K Balatsky, AV AF Dahal, Hari P. Hu, Zi-Xiang Sinitsyn, N. A. Yang, Kun Balatsky, A. V. TI Edge states in a honeycomb lattice: Effects of anisotropic hopping and mixed edges SO PHYSICAL REVIEW B LA English DT Article ID ELECTRONIC-PROPERTIES; CARBON NANOTUBES; GRAPHENE; RIBBONS; GAS AB We study the edge states in graphene in the presence of a magnetic field perpendicular to the plane of the lattice. Most of the work done so far discusses the edge states in either zigzag or armchair edge graphene considering an isotropic electron hopping. In practice, graphene can have a mixture of armchair and zigzag edges and the electron hopping can be anisotropic, which is the subject of this article. We predict that the mixed edges smear the enhanced local density of states (LDOS) at E=0 of the zigzag edge and, on the other hand, the anisotropic hopping gives rise to the enhanced LDOS at E=0 in the armchair edge. The behavior of the LDOS can be studied using scanning tunneling microscopy (STM) experiments. We suggest that care must be taken while interpreting the STM data, because the clear distinction between the zigzag edge (enhanced LDOS at E=0) and armchair edge (suppressed LDOS at E=0) can be lost if the hopping is not isotropic and if the edges are mixed. C1 [Dahal, Hari P.; Balatsky, A. V.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Hu, Zi-Xiang] Asia Pacific Ctr Theoret Phys, Pohang 790784, Gyeongbuk, South Korea. [Hu, Zi-Xiang; Yang, Kun] Florida State Univ, Natl High Magnet Field Lab, Tallahassee, FL 32310 USA. [Hu, Zi-Xiang; Yang, Kun] Florida State Univ, Dept Phys, Tallahassee, FL 32310 USA. [Sinitsyn, N. A.] Los Alamos Natl Lab, CNLS CCS 3, Los Alamos, NM 87545 USA. [Balatsky, A. V.] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. RP Dahal, HP (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. EM avb@lanl.gov RI Yang, Kun/J-8956-2016 FU National Nuclear Security Administration of the U.S. Department of Energy at Los Alamos National Laboratory [DE-AC52-06NA25396]; Ministry of Education of China; National Science Foundation [DMR-0704133] FX This work was carried out under the auspices of the National Nuclear Security Administration of the U.S. Department of Energy at Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396. Z.X.H. thanks the Ministry of Education of China for support to visit the NHMFL. K.Y. is supported by National Science Foundation Grant No. DMR-0704133. NR 41 TC 5 Z9 5 U1 0 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD APR 15 PY 2010 VL 81 IS 15 AR 155406 DI 10.1103/PhysRevB.81.155406 PG 8 WC Physics, Condensed Matter SC Physics GA 590FQ UT WOS:000277210500105 ER PT J AU Darancet, P Olevano, V Mayou, D AF Darancet, Pierre Olevano, Valerio Mayou, Didier TI Quantum transport through resistive nanocontacts: Effective one-dimensional theory and conductance formulas for nonballistic leads SO PHYSICAL REVIEW B LA English DT Article ID CONDUCTIVITY; MOLECULES; SYSTEMS AB We introduce a quantum transport formalism based on a map of a real three-dimensional lead-conductor-lead system into an effective one-dimensional (1D) system. The resulting effective 1D theory is an in principle exact formalism to calculate the conductance. Besides being more efficient than the principal layers approach, it naturally leads to a five-partitioned workbench (instead of three) where each part of the device (the true central device, the ballistic and the nonballistic leads) is explicitely treated, allowing better physical insight into the contact resistance mechanisms. Independently, we derive a generalized Fisher-Lee formula and a generalized Meir-Wingreen formula for the correlated and uncorrelated conductance and current of the system where the initial restrictions to ballistic leads are generalized to the case of resistive contacts. We present an application to graphene nanoribbons. C1 [Darancet, Pierre; Olevano, Valerio; Mayou, Didier] CNRS, Inst Neel, F-38042 Grenoble, France. [Darancet, Pierre; Olevano, Valerio; Mayou, Didier] UJF, F-38042 Grenoble, France. [Darancet, Pierre; Olevano, Valerio; Mayou, Didier] ETSF, Berkeley, CA 94720 USA. [Darancet, Pierre] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Darancet, P (reprint author), CNRS, Inst Neel, F-38042 Grenoble, France. NR 29 TC 10 Z9 10 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD APR 15 PY 2010 VL 81 IS 15 AR 155422 DI 10.1103/PhysRevB.81.155422 PG 11 WC Physics, Condensed Matter SC Physics GA 590FQ UT WOS:000277210500121 ER PT J AU Fransson, J Balatsky, AV Zhu, JX AF Fransson, J. Balatsky, A. V. Zhu, Jian-Xin TI Dynamical properties of a vibrating molecular quantum dot in a Josephson junction SO PHYSICAL REVIEW B LA English DT Article ID MAGNETIC-ANISOTROPY; SPIN; SPECTROSCOPY; SURFACE AB We investigate dynamical transport aspects of a combined nanomechanical-superconducting device in which Cooper pair tunneling interfere with the mechanical motion of a vibrating molecular quantum dot embedded in a Josephson junction. Six different regimes for the tunneling dynamics are identified with respect to the electron level and the charging energy in the quantum dot. In five of those regimes new time scales are introduced which are associated with the energies of the single-electron transitions within the quantum dot while there is one regime where the internal properties of the quantum dot are static. C1 [Fransson, J.] Dept Phys & Astron, SE-75121 Uppsala, Sweden. [Balatsky, A. V.; Zhu, Jian-Xin] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Balatsky, A. V.] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. RP Fransson, J (reprint author), Dept Phys & Astron, Box 530, SE-75121 Uppsala, Sweden. EM jonas.fransson@fysik.uu.se RI Fransson, Jonas/A-9238-2009; OI Zhu, Jianxin/0000-0001-7991-3918 FU Swedish Research Council; Royal Swedish Academy of Sciences; U.S. DOE [DE-AC52-06NA25396]; LDRD; BES FX J.F. acknowledges support from the Swedish Research Council and Royal Swedish Academy of Sciences. A.V.B. and J.X.Z. acknowledge that this work was supported by U.S. DOE, LDRD and BES, and was carried out under the auspices of the NNSA of the U.S. DOE at LANL under Contract No. DE-AC52-06NA25396. NR 30 TC 5 Z9 5 U1 0 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD APR 15 PY 2010 VL 81 IS 15 AR 155440 DI 10.1103/PhysRevB.81.155440 PG 6 WC Physics, Condensed Matter SC Physics GA 590FQ UT WOS:000277210500139 ER PT J AU Khodas, M Tsvelik, AM AF Khodas, M. Tsvelik, A. M. TI Effect of thermal fluctuations of spin density wave order parameter on the quasiparticle spectral function SO PHYSICAL REVIEW B LA English DT Article ID MODEL AB The two-dimensional model of itinerant electrons coupled to an antiferromagnetic order parameter is considered. In the mean-field solution the Fermi surface undergoes reconstruction and breaks into disconnected "pockets". We have studied the effect of the thermal fluctuations of the order parameter on the spectral density in such system. These fluctuations lead to a finite width of the spectral line scaling linearly with temperature. Due to the thermal fluctuations the quasiparticle spectral weight is transferred into a magnetic Brillouin zone. This can be interpreted as restoration of "arcs" of the noninteracting Fermi surface. C1 [Khodas, M.; Tsvelik, A. M.] Brookhaven Natl Lab, Dept Condensed Matter Phys & Mat Sci, Upton, NY 11973 USA. RP Khodas, M (reprint author), Brookhaven Natl Lab, Dept Condensed Matter Phys & Mat Sci, Upton, NY 11973 USA. FU U.S. DOE [DE-AC02-98 CH 10886]; BNL LDRD [08-002] FX We are grateful to A. Chubukov for encouraging discussions and interest to the work. We acknowledge support by the U.S. DOE under Contract No. DE-AC02-98 CH 10886. This research was also supported as part of the Center for Emerging Superconductivity funded by the U.S. Department of Energy, Office of Science. M. Khodas acknowledges support from BNL LDRD under Grant No. 08-002. NR 11 TC 4 Z9 4 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD APR 15 PY 2010 VL 81 IS 15 AR 155102 DI 10.1103/PhysRevB.81.155102 PG 7 WC Physics, Condensed Matter SC Physics GA 590FQ UT WOS:000277210500032 ER PT J AU Kim, S Kim, C Lee, S Marathe, S Noh, DY Kang, HC Kim, SS Sandy, A Narayanan, S AF Kim, Sunam Kim, Chan Lee, Suyong Marathe, Shashidhara Noh, D. Y. Kang, H. C. Kim, S. S. Sandy, A. Narayanan, S. TI Coherent hard x-ray diffractive imaging of nonisolated objects confined by an aperture SO PHYSICAL REVIEW B LA English DT Article ID CRYSTALLOGRAPHY; MICROSCOPY; SCATTERING AB Coherent hard x-ray imaging of nonisolated weak phase objects is demonstrated by confining x-ray beam in a region of a few micrometers in cross section using a micrometer-sized aperture. Two major obstacles in the hard x-ray coherent diffraction imaging, isolating samples and obtaining central speckles, are addressed by using the aperture. The usefulness of the proposed method is illustrated by reconstructing the exit wave field of a nanoscale trench structure fabricated on silicon which serves as a weak phase object. The quantitative phase information of the exit wave field was used to reconstruct the depth profile of the trench structure. The scanning capability of this method was also briefly discussed. C1 [Kim, Sunam; Kim, Chan; Lee, Suyong; Marathe, Shashidhara; Noh, D. Y.] Gwangju Inst Sci & Technol, Dept Mat Sci & Engn & Nanobio Mat & Elect, Grad Program Photon & Appl Phys, Kwangju 500712, South Korea. [Kang, H. C.] Chosun Univ, Dept Adv Mat Engn, Kwangju 501759, South Korea. [Kang, H. C.] Chosun Univ, Educ Ctr Mould Technol Adv Mat & Parts BK21, Kwangju 501759, South Korea. [Kim, S. S.; Sandy, A.; Narayanan, S.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Kim, S (reprint author), Gwangju Inst Sci & Technol, Dept Mat Sci & Engn & Nanobio Mat & Elect, Grad Program Photon & Appl Phys, Kwangju 500712, South Korea. EM dynoh@gist.ac.kr FU Korean National Research Foundation (NRF) through the NCRC [R15-2008-006-00000-0]; WCU [R31-200810026-0]; GIST; Korean Ministry of Knowledge and Economy; U.S. Department of Energy [DE-AC02-06CH11357] FX This work was supported by the Korean National Research Foundation (NRF) through the NCRC (Grant No. R15-2008-006-00000-0) and WCU (Grant No. R31-200810026-0). We acknowledge the support from GIST Photonics 2020 Project and the Ultrashort Quantum Beam Facility Program of the Korean Ministry of Knowledge and Economy. Use of the Advanced Photon Source was supported by the U.S. Department of Energy under Contract No. DE-AC02-06CH11357. NR 24 TC 4 Z9 4 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD APR 15 PY 2010 VL 81 IS 16 AR 165437 DI 10.1103/PhysRevB.81.165437 PG 5 WC Physics, Condensed Matter SC Physics GA 590HX UT WOS:000277217200114 ER PT J AU Korber, C Krishnakumar, V Klein, A Panaccione, G Torelli, P Walsh, A Da Silva, JLF Wei, SH Egdell, RG Payne, DJ AF Koerber, C. Krishnakumar, V. Klein, A. Panaccione, G. Torelli, P. Walsh, A. Da Silva, J. L. F. Wei, S. -H. Egdell, R. G. Payne, D. J. TI Electronic structure of In2O3 and Sn-doped In2O3 by hard x-ray photoemission spectroscopy SO PHYSICAL REVIEW B LA English DT Article ID PHOTOELECTRON ANGULAR-DISTRIBUTION; TRANSPARENT CONDUCTING OXIDES; TOTAL-ENERGY CALCULATIONS; INDIUM-TIN-OXIDE; WAVE BASIS-SET; OPTICAL-PROPERTIES; VOLPE PROJECT; TIN(IV) OXIDE; SURFACE; PARAMETERS AB The valence and core levels of In2O3 and Sn-doped In2O3 have been studied by hard x-ray photoemission spectroscopy (hv = 6000 eV) and by conventional Al K alpha (hv = 1486.6 eV) x-ray photoemission spectroscopy. The experimental spectra are compared with density-functional theory calculations. It is shown that structure deriving from electronic levels with significant In or Sn 5s character is selectively enhanced under 6000 eV excitation. This allows us to infer that conduction band states in Sn-doped samples and states at the bottom of the valence band both contain a pronounced In 5s contribution. The In 3d core line measured at hv = 1486.6 eV for both undoped and Sn-doped In2O3 display an asymmetric lineshape, and may be fitted with two components associated with screened and unscreened final states. The In 3d core line spectra excited at hv = 6000 eV for the Sn-doped samples display pronounced shoulders and demand a fit with two components. The In 3d core line spectrum for the undoped sample can also be fitted with two components, although the relative intensity of the component associated with the screened final state is low, compared to excitation at 1486.6 eV. These results are consistent with a high concentration of carriers confined close to the surface of nominally undoped In2O3. This conclusion is in accord with the fact that a conduction band feature observed for undoped In2O3 in Al K alpha x-ray photoemission is much weaker than expected in hard x-ray photoemission. C1 [Koerber, C.; Krishnakumar, V.; Klein, A.] Tech Univ Darmstadt, D-64287 Darmstadt, Germany. [Panaccione, G.] INFM CNR, Lab TASC, I-34012 Trieste, Italy. [Torelli, P.] CNR INFM S3, I-41100 Modena, Italy. [Walsh, A.] UCL, Dept Chem, London WC1H, England. [Da Silva, J. L. F.] Univ Sao Paulo, Inst Fis Sao Carlos, BR-13560970 Sao Carlos, SP, Brazil. [Wei, S. -H.] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Egdell, R. G.; Payne, D. J.] Univ Oxford, Chem Res Lab, Dept Chem, Oxford OX1 3TA, England. RP Korber, C (reprint author), Tech Univ Darmstadt, D-64287 Darmstadt, Germany. RI Walsh, Aron/A-7843-2008; Payne, David/C-2117-2011; Klein, Andreas/E-6081-2010; Torelli, Piero /F-8940-2010; Payne, David/C-2148-2014; Da Silva, Juarez L. F./D-1779-2011; Sao Carlos Institute of Physics, IFSC/USP/M-2664-2016; OI Walsh, Aron/0000-0001-5460-7033; Klein, Andreas/0000-0001-7463-1495; Payne, David/0000-0002-2120-6679; Da Silva, Juarez L. F./0000-0003-0645-8760; TORELLI, PIERO/0000-0001-9300-9685 FU EPSRC [GR/S94148, EP/E025722/1]; U.S. Department of Energy [DE-AC36-08GO28308]; CNR-INFM FX Experimental work on transparent conducting oxides in Oxford was supported under EPSRC under grant No. GR/S94148 and the Scienta XPS facility by EPSRC under grant No. EP/E025722/1. We thank G. Beamson and D. S. L. Law for assistance with Al K alpha XPS measurements. The work at NREL was funded by the U.S. Department of Energy under Contract No. DE-AC36-08GO28308. Work on the VOLPE project has been supported in part by CNR-INFM. D.J.P. is grateful to Christ Church, University of Oxford. NR 71 TC 51 Z9 51 U1 4 U2 56 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD APR 15 PY 2010 VL 81 IS 16 AR 165207 DI 10.1103/PhysRevB.81.165207 PG 9 WC Physics, Condensed Matter SC Physics GA 590HX UT WOS:000277217200054 ER PT J AU Petkov, V Shastri, SD AF Petkov, V. Shastri, S. D. TI Element-specific structure of materials with intrinsic disorder by high-energy resonant x-ray diffraction and differential atomic pair-distribution functions: A study of PtPd nanosized catalysts SO PHYSICAL REVIEW B LA English DT Article ID NANOPARTICLES; SIZE; PD; SCATTERING; RESOLUTION AB We demonstrate how high-energy resonant x-ray diffraction (XRD) and differential atomic-pair-distribution function (PDF) analysis can be used to characterize the atomic ordering in materials of limited structural coherence with both excellent spatial resolution and element specificity. First we prove that this experimental approach is feasible by probing the K-absorption edge of Au(similar to 81 keV) atoms in chemically ordered and disordered bulk Cu3Au alloys. The resulting Au-differential PDFs show very clearly the different ways Au atoms are known to occupy the sites of otherwise identical cubic lattices of those materials. Next we apply it to a more complex material: PtPd alloy and core-shell nanosized (similar to 2-4 nm) particles by probing the K-absorption edge of Pt(similar to 78 keV). The resulting Pt-differential atomic PDFs reveal how exactly the atomic ordering of catalytically active Pt atoms is affected by the nanoparticles' design, thus providing a firm structural basis for understanding their properties. The work is a step forward in expanding the limits of applicability of nontraditional XRD to the rapidly growing field of materials of unusual structural complexity. C1 [Petkov, V.] Cent Michigan Univ, Dept Phys, Mt Pleasant, MI 48859 USA. [Shastri, S. D.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Petkov, V (reprint author), Cent Michigan Univ, Dept Phys, Mt Pleasant, MI 48859 USA. EM petkov@phy.cmich.edu FU DOE [DE-AC02-06CH11357] FX We would like to acknowledge R. G. Nuzzo, S. I. Sanchez, and M. W. Small for providing the PtPd samples and engaging in meaningful discussions. Work at APS is supported by DOE under Contract No. DE-AC02-06CH11357. NR 30 TC 18 Z9 18 U1 4 U2 23 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD APR 15 PY 2010 VL 81 IS 16 AR 165428 DI 10.1103/PhysRevB.81.165428 PG 8 WC Physics, Condensed Matter SC Physics GA 590HX UT WOS:000277217200105 ER PT J AU Sato, Y Unal, B Lograsso, TA Thiel, PA Schmid, AK Duden, T Bartelt, NC McCarty, KF AF Sato, Y. Unal, B. Lograsso, T. A. Thiel, P. A. Schmid, A. K. Duden, T. Bartelt, N. C. McCarty, K. F. TI Periodic step arrays on the aperiodic i-Al-Pd-Mn quasicrystal surface at high temperature SO PHYSICAL REVIEW B LA English DT Article ID ENERGY-ELECTRON DIFFRACTION; MICROSCOPY; DYNAMICS; PHASONS; ALPDMN AB We have observed the configuration and motion of surface steps on the aperiodic icosahedral (i-) Al-Pd-Mn quasicrystal using low-energy electron microscopy and scanning tunneling microscopy. As the quasicrystal is cooled from high temperature, bulk vacancies migrate to the surface causing the surface to be etched. Surprisingly, this etching occurs by two types of steps with different heights moving in different directions with different velocities. The steady-state surface morphology is a uniformly spaced rhomboidal step network. This network requires that the layer stacking near the surface deviates from the bulk quasicrystal stacking. C1 [Sato, Y.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Sato, Y.; Schmid, A. K.; Duden, T.] Univ Calif Berkeley, Lawrence Berkeley Lab, Natl Ctr Electron Microscopy, Berkeley, CA 94720 USA. [Unal, B.; Thiel, P. A.] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. [Unal, B.; Lograsso, T. A.; Thiel, P. A.] Ames Lab, Ames, IA 50011 USA. [Thiel, P. A.] Iowa State Univ, Dept Chem, Ames, IA 50011 USA. [Bartelt, N. C.; McCarty, K. F.] Sandia Natl Labs, Livermore, CA 94551 USA. RP Sato, Y (reprint author), Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. RI McCarty, Kevin/F-9368-2012; Bartelt, Norman/G-2927-2012 OI McCarty, Kevin/0000-0002-8601-079X; FU U.S. Department of Energy (USDOE) [DE-AC02-07CH11358, DE-AC02-05CH1123, DE-AC04-94AL8500] FX This work was supported by the Office of Science, Basic Energy Sciences, Materials Science and Engineering Division of the U.S. Department of Energy (USDOE) under Contracts No. DE-AC02-07CH11358 (Ames), No. DE-AC02-05CH1123 (LBNL), and No. DE-AC04-94AL8500 (Sandia). We thank W. Theis for sharing LEEM data from ELETTRA (Trieste, Italy) and D. Gratias for fruitful discussions about phason walls. NR 28 TC 1 Z9 1 U1 0 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD APR 15 PY 2010 VL 81 IS 16 AR 161406 DI 10.1103/PhysRevB.81.161406 PG 4 WC Physics, Condensed Matter SC Physics GA 590HX UT WOS:000277217200022 ER PT J AU Vasic, R Sadowski, JT Choi, YJ Zhou, HD Wiebe, CR Cheong, SW Rowe, JE Ulrich, MD AF Vasic, R. Sadowski, J. T. Choi, Y. J. Zhou, H. D. Wiebe, C. R. Cheong, S. W. Rowe, J. E. Ulrich, M. D. TI Surface reconstruction of hexagonal Y-doped HoMnO3 and LuMnO3 studied using low-energy electron diffraction SO PHYSICAL REVIEW B LA English DT Article ID MANGANITES; YMNO3; SRTIO3(100); PEROVSKITES; TRANSITION AB We have investigated the (0001) surfaces of several hexagonal manganite perovskites by low-energy electron diffraction (LEED) in order to determine if the surface periodicity is different from that of the bulk materials. These LEED studies were conducted using near-normal incidence geometry with a low energy electron microscope (LEEM)/LEED apparatus from room temperature to 1200 degrees C and with an electron energy in the range of 15-50 eV. Diffraction patterns showed features of bulk-terminated periodicity as well as a 2 x 2 surface reconstruction. Possible origins for this surface reconstruction structure are discussed and comparisons are made with surface studies of other complex oxides. C1 [Vasic, R.] Yeshiva Univ, Dept Phys, New York, NY 10033 USA. [Sadowski, J. T.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. [Choi, Y. J.; Cheong, S. W.] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA. [Zhou, H. D.; Wiebe, C. R.] Florida State Univ, Condensed Matter Grp Expt, NHMFL, Tallahassee, FL 32310 USA. [Rowe, J. E.; Ulrich, M. D.] N Carolina State Univ, Dept Phys, Raleigh, NC 27695 USA. [Ulrich, M. D.] USA, Res Off, Div Phys, Res Triangle Pk, NC 27709 USA. RP Vasic, R (reprint author), Yeshiva Univ, Dept Phys, New York, NY 10033 USA. RI Zhou, Haidong/O-4373-2016; OI Sadowski, Jerzy/0000-0002-4365-7796 FU U.S. Department of Energy (DOE), Office of Basic Energy Sciences (BES) [DE-FG02-07ER46382, DE-AC02-98CH10886]; National Science Foundation through NSF [DMR0449569]; State of Florida FX We acknowledge Army Research Office for support for this research. Work at Rutgers was supported by U.S. Department of Energy (DOE), Office of Basic Energy Sciences (BES) DE-FG02-07ER46382. The NHMFL is supported by contractual agreement between the National Science Foundation through NSF under Grant No. DMR0449569 and the State of Florida. Research carried out in part at the Center for Functional Nanomaterials, Brookhaven National Laboratory, which is supported by the DOE BES, under Contract No. DE-AC02-98CH10886. The National Synchrotron Light Source, Brookhaven National Laboratory, is supported by the DOE BES, under Contract No. DE-AC02-98CH10886. NR 32 TC 0 Z9 0 U1 0 U2 22 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD APR 15 PY 2010 VL 81 IS 16 AR 165417 DI 10.1103/PhysRevB.81.165417 PG 6 WC Physics, Condensed Matter SC Physics GA 590HX UT WOS:000277217200094 ER PT J AU Vercosa, DG Barros, EB Souza, AG Mendes, J Samsonidze, GG Saito, R Dresselhaus, MS AF Vercosa, D. G. Barros, E. B. Souza Filho, A. G. Mendes Filho, J. Samsonidze, Ge. G. Saito, R. Dresselhaus, M. S. TI Torsional instability of chiral carbon nanotubes SO PHYSICAL REVIEW B LA English DT Article ID POTENTIALS; SYMMETRY AB In this work we investigate the presence of a torsional instability in single-wall carbon nanotubes which causes small diameter chiral carbon nanotubes to show natural torsion. To obtain insight into the nature of this instability, the natural torsion is calculated using an extended tight-binding model and is found to decrease as the inverse cube of the diameter. The dependence of the natural torsion on chiral angle is found to be different for metallic and semiconducting nanotubes, specially for near-armchair nanotubes, for which the behavior of semiconducting nanotubes deviates from the simple sin(6 theta) behavior observed for metallic nanotubes. The presence of this natural torsion implies a revision of the calculation of the chiral angle of the nanotubes. C1 [Vercosa, D. G.; Barros, E. B.; Souza Filho, A. G.; Mendes Filho, J.] Univ Fed Ceara, Dept Fis, BR-60455900 Fortaleza, Ceara, Brazil. [Samsonidze, Ge. G.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Dept Phys, Berkeley, CA 94720 USA. [Saito, R.] Tohoku Univ, Dept Phys, Sendai, Miyagi 9808578, Japan. [Dresselhaus, M. S.] MIT, Dept Elect Engn & Comp Engn, Cambridge, MA 02139 USA. [Dresselhaus, M. S.] MIT, Dept Phys, Cambridge, MA 02139 USA. RP Vercosa, DG (reprint author), Univ Fed Ceara, Dept Fis, BR-60455900 Fortaleza, Ceara, Brazil. EM ebarros@fisica.ufc.br RI Saito, Riichiro/B-1132-2008; Souza, Antonio/D-8978-2011; BARROS, EDUARDO/A-4555-2013; Mendes Filho, Josue/K-7083-2013; Nanobiosimes, Inct/K-2263-2013; Samsonidze, Georgy/G-3613-2016; UFC, DF/E-1564-2017; Universidade Federal do Ceara, Physics Department/J-4630-2016; OI Souza, Antonio/0000-0003-3802-1168; Samsonidze, Georgy/0000-0002-3759-1794; Universidade Federal do Ceara, Physics Department/0000-0002-9247-6780; Barros, Eduardo Bede/0000-0001-9210-9166 FU NSF-CNPq [491083/2005-0]; CNPq [550435/2007-7, 577489/2008-9, 477392/2007-5, 306335/2007-7]; Funcap; NSF [DMR 07-04197]; MEXT [20241023]; Rede Nacional de Pesquisa em Nanotubos de Carbono (MCT-CNPq) FX E.B.B. Acknowledges NSF-CNPq (Grant No. 491083/2005-0) joint collaboration, CNPq under Grant No. 550435/2007-7 and Funcap for financial support. M.S.D. acknowledges NSF under Grant No. DMR 07-04197. R.S. acknowledges MEXT under Grant No. 20241023. A.G.S.F. acknowledges partial support from CNPq Grants No. 577489/2008-9, No. 477392/2007-5, No. 306335/2007-7 and Rede Nacional de Pesquisa em Nanotubos de Carbono (MCT-CNPq). NR 19 TC 23 Z9 23 U1 0 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD APR 15 PY 2010 VL 81 IS 16 AR 165430 DI 10.1103/PhysRevB.81.165430 PG 5 WC Physics, Condensed Matter SC Physics GA 590HX UT WOS:000277217200107 ER PT J AU Wong, FJ Baek, SH Chopdekar, RV Mehta, VV Jang, HW Eom, CB Suzuki, Y AF Wong, Franklin J. Baek, Seung-Hyub Chopdekar, Rajesh V. Mehta, Virat V. Jang, Ho-Won Eom, Chang-Beom Suzuki, Yuri TI Metallicity in LaTiO3 thin films induced by lattice deformation SO PHYSICAL REVIEW B LA English DT Article ID INSULATOR TRANSITIONS; MAGNETIC-PROPERTIES; TRANSPORT; SRTIO3 AB Orthorhombic bulk LaTiO3 is a correlated Mott insulator whose delicate antiferromagnetic insulating ground state can be easily destroyed by cation vacancies, excess oxygen, or alkaline-earth dopants, resulting in metallicity. Here we show that metallic conduction can also be realized in epitaxial LaTiO3 thin films on (001) SrTiO3 substrates, while films grown on (110) DyScO3 and GdScO3 substrates are insulating. These results illustrate the sensitivity of electrical transport to lattice effects and demonstrate the tunability of correlated oxide thin-film properties via substrate-induced deformation. C1 [Wong, Franklin J.; Chopdekar, Rajesh V.; Mehta, Virat V.; Suzuki, Yuri] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Wong, Franklin J.; Mehta, Virat V.; Suzuki, Yuri] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Baek, Seung-Hyub; Jang, Ho-Won; Eom, Chang-Beom] Univ Wisconsin, Dept Mat Sci & Engn, Madison, WI 53706 USA. RP Wong, FJ (reprint author), Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. RI Chopdekar, Rajesh/D-2067-2009; Baek, Seung-Hyub/B-9189-2013; Eom, Chang-Beom/I-5567-2014; Jang, Ho Won/D-9866-2011 OI Chopdekar, Rajesh/0000-0001-6727-6501; Jang, Ho Won/0000-0002-6952-7359 FU Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering; U.S. Department of Energy [DE-AC02-05CH11231]; National Science Foundation [ECCS-0708759]; Packard Foundation; Office of Naval Research [N00014-07-1-0215]; NSF [DMR0604277] FX The authors gratefully acknowledge financial support at Berkeley from the Director, Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. The RSM measurements performed at Madison were supported by the National Science Foundation Contract No. ECCS-0708759, the Packard Foundation, and the Office of Naval Research Contract No. N00014-07-1-0215. RVC was supported by NSF Contract No. DMR0604277. The authors would like to thank K. M. Yu for his assistance in Rutherford backscattering measurements. F.J.W. and Y.S. would like to thank T.H. Geballe and N.A. Spaldin for thoughtful discussions. The electron microscopy work was performed on the Philips 300 kV FEG in the National Center for Electron Microscopy, Lawrence Berkeley National Laboratory. F.J.W. would like to acknowledge C. Song for technical assistance and microscopy training. NR 26 TC 25 Z9 25 U1 4 U2 59 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD APR 15 PY 2010 VL 81 IS 16 AR 161101 DI 10.1103/PhysRevB.81.161101 PG 4 WC Physics, Condensed Matter SC Physics GA 590HX UT WOS:000277217200001 ER PT J AU Zhang, XG Wen, ZC Wei, HX Han, XF AF Zhang, X. -G. Wen, Z. C. Wei, H. X. Han, X. F. TI Giant Coulomb blockade magnetoresistance in magnetic tunnel junctions with a granular layer SO PHYSICAL REVIEW B LA English DT Article ID ROOM-TEMPERATURE; QUANTUM DOTS; CHARGE AB We show that the Coulomb blockade voltage can be made to depend strongly on the electron spin in a discontinuous magnetic granular layer inserted in the middle of an insulating layer of a tunnel junction. This strong spin dependence is predicted from the local intergranular magnetoresistance effects, including giant magnetoresistance (GMR), tunneling magnetoresistance, colossal magnetoresistance, or GMR through a polymer spacer. The resulting Coulomb blockade magnetoresistance (CBMR) ratio can exceed the magnetoresistance ratio of the granular layer itself by orders of magnitude. Unlike other magnetoresistance effects, the CBMR effect does not require magnetic electrodes. C1 [Zhang, X. -G.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Zhang, X. -G.] Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN 37831 USA. [Wen, Z. C.; Wei, H. X.; Han, X. F.] Chinese Acad Sci, Inst Phys, Beijing Natl Lab Condensed Matter Phys, State Key Lab Magnetism, Beijing 100190, Peoples R China. RP Zhang, XG (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. EM xgz@ornl.gov OI Wen, Zhenchao/0000-0001-7496-1339 FU State Key Project of Fundamental Research of Ministry of Science and Technology (MOST) [2006CB932200, 2010CB934400]; National Natural Science Foundation (NSFC) [10874225, 50928101, 50721001]; Beijing Municipal Commission of Education; K. C. Wong Education Foundation, Hong Kong FX Portion of this research was conducted at the Center for Nanophase Materials Sciences, sponsored at Oak Ridge National Laboratory by the Division of Scientific User Facilities, Office of Basic Energy Sciences, U. S. Department of Energy. It was also supported by the State Key Project of Fundamental Research of Ministry of Science and Technology (MOST, under Grants No. 2006CB932200 and No. 2010CB934400) and National Natural Science Foundation (NSFC under Grants No. 10874225, No. 50928101, and No. 50721001), and the partial support of Graduate Education Project of Beijing Municipal Commission of Education and K. C. Wong Education Foundation, Hong Kong. NR 26 TC 11 Z9 11 U1 0 U2 12 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD APR 15 PY 2010 VL 81 IS 15 AR 155122 DI 10.1103/PhysRevB.81.155122 PG 5 WC Physics, Condensed Matter SC Physics GA 590FQ UT WOS:000277210500052 ER PT J AU Zhou, XW Jones, RE Aubry, S AF Zhou, X. W. Jones, R. E. Aubry, S. TI Molecular dynamics prediction of thermal conductivity of GaN films and wires at realistic length scales SO PHYSICAL REVIEW B LA English DT Article ID GALLIUM NITRIDE; HEAT-CONDUCTION; PHONON CONFINEMENT; SILICON NANOWIRES; GRAIN-BOUNDARIES; QUANTUM-WELL; SIMULATION; TEMPERATURE; TRANSPORT; NANODEVICES AB Recent molecular dynamics simulation methods have enabled thermal conductivity of bulk materials to be estimated. In these simulations, periodic boundary conditions are used to extend the system dimensions to the thermodynamic limit. Such a strategy cannot be used for nanostructures with finite dimensions which are typically much larger than it is possible to simulate directly. To bridge the length scales between the simulated and the actual nanostructures, we perform large-scale molecular dynamics calculations of thermal conductivities at different system dimensions to examine a recently developed conductivity vs dimension scaling theory for both film and wire configurations. We demonstrate that by an appropriate application of the scaling law, reliable interpolations can be used to accurately predict thermal conductivity of films and wires as a function of film thickness or wire radius at realistic length scales from molecular dynamics simulations. We apply this method to predict thermal conductivities for GaN wurtzite nanostructures. C1 [Zhou, X. W.; Jones, R. E.] Sandia Natl Labs, Mech Mat Dept, Livermore, CA 94550 USA. [Aubry, S.] Stanford Univ, Dept Mech Engn, Mech & Computat Grp, Stanford, CA 94304 USA. RP Zhou, XW (reprint author), Sandia Natl Labs, Mech Mat Dept, Livermore, CA 94550 USA. EM xzhou@sandia.gov FU United States Department of Energy [DEAC04-94AL85000] FX Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy National Nuclear Security Administration under Contract No. DEAC04-94AL85000. This work was performed under a Laboratory Directed Research and Development (LDRD) project. NR 54 TC 15 Z9 15 U1 1 U2 22 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD APR 15 PY 2010 VL 81 IS 15 AR 155321 DI 10.1103/PhysRevB.81.155321 PG 13 WC Physics, Condensed Matter SC Physics GA 590FQ UT WOS:000277210500092 ER PT J AU Buckley, MR Fox, PJ AF Buckley, Matthew R. Fox, Patrick J. TI Dark matter self-interactions and light force carriers SO PHYSICAL REVIEW D LA English DT Article ID RAY POSITRON FRACTION; ELECTRON-BEAM-DUMP; SEARCH; HALO; CONSTRAINTS; SATELLITES; COSMOLOGY; ABUNDANCE; ENERGIES AB Recent observations from PAMELA, FERMI, and ATIC point to a new source of high energy cosmic rays. If these signals are due to annihilating dark matter (DM), the annihilation cross section in the present day must be substantially larger than that necessary for thermal freeze-out in the early universe. A new force, mediated by a particle of mass O(100 MeV), leading to a velocity-dependent annihilation cross section-a "Sommerfeld enhancement''-has been proposed as a possible explanation. We point out that such models necessarily increase the DM self-scattering cross section, and use observational bounds on the amount of DM-DM scattering allowed in various astrophysical systems to place constraints on the mass and couplings of the light mediator. C1 [Buckley, Matthew R.] CALTECH, Dept Phys, Pasadena, CA 91125 USA. [Fox, Patrick J.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. RP Buckley, MR (reprint author), CALTECH, Dept Phys, Pasadena, CA 91125 USA. OI Buckley, Matthew/0000-0003-1109-3460 FU Department of Energy [DE-FG03-92-ER40701]; Fermi Research Alliance, LLC [DE-AC02-07CH11359] FX We thank M. Kaplinghat, and H.-B. Yu for informative discussions. We would like to thank N. Weiner for helpful discussions and comments on a draft of this work, and the Galileo Galilei Institute for Theoretical Physics for hospitality while part of this work was completed. M. R. B. would like to thank S. Carroll, D. Hooper, and M. Wise for useful discussion and advice. He also thanks the Aspen Center for Physics for providing a stimulating environment for collaboration and writing. P.J.F. would like to thank E. Poppitz for collaboration during the early stages of this work. M. R. B. is supported by the Department of Energy, under Grant No. DE-FG03-92-ER40701. Fermilab is operated by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the United States Department of Energy. NR 68 TC 92 Z9 93 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD APR 15 PY 2010 VL 81 IS 8 AR 083522 DI 10.1103/PhysRevD.81.083522 PG 9 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 590DU UT WOS:000277205000039 ER PT J AU Henley, EM Johnson, MB Kisslinger, LS AF Henley, Ernest M. Johnson, Mikkel B. Kisslinger, Leonard S. TI Electroweak phase transition nucleation with the MSSM and electromagnetic field creation SO PHYSICAL REVIEW D LA English DT Article ID PRIMORDIAL MAGNETIC-FIELDS; BUBBLE COLLISIONS; EARLY UNIVERSE; TEMPERATURE; BARYOGENESIS; CONSTRAINTS; TURBULENCE; MODEL; QCD AB Using EW-MSSM field theory, so the electroweak phase transition (EWPT) is first order, we derive the equations of motion (e.o.m.) for the gauge fields. With an isospin ansatz we derive e.o.m. for the electrically charged W fields uncoupled from all other fields. These and the lepton currents serve as the current for the Maxwell-like e.o.m. for the electromagnetic field. The electromagnetic field arising during EWPT bubble nucleation without leptons is found. We then calculate the electron current contribution, which is seen to be quite large. This provides the basis for determining the magnetic field created by EWPT bubble collisions, which could seed galactic and extragalactic magnetic fields. C1 [Henley, Ernest M.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Johnson, Mikkel B.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Kisslinger, Leonard S.] Carnegie Mellon Univ, Dept Phys, Pittsburgh, PA 15213 USA. RP Henley, EM (reprint author), Univ Washington, Dept Phys, Seattle, WA 98195 USA. FU NSF [PHY-00070888]; DOE [W-7405-ENG-36, DE-FG02-97ER41014] FX This work was supported in part by NSF Grant No. PHY-00070888, and in part by DOE Contracts No. W-7405-ENG-36 and No. DE-FG02-97ER41014. The authors thank Professor W. Y. Pauchy Hwang and Dr. S. Walawalkar for helpful discussions, and Los Alamos National Laboratory for hospitality. NR 36 TC 10 Z9 10 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD APR 15 PY 2010 VL 81 IS 8 AR 085035 DI 10.1103/PhysRevD.81.085035 PG 8 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 590DU UT WOS:000277205000152 ER PT J AU Deng, XY Lee, J Matranga, C AF Deng, Xingyi Lee, Junseok Matranga, Christopher TI Preparation and characterization of Fe3O4(111) nanoparticles and thin films on Au(111) SO SURFACE SCIENCE LA English DT Article DE Iron-oxides; Fe3O4(111); alpha-Fe2O3(0001); Nanoparticles and thin films; Au(111); Scanning tunneling microscopy (STM); X-ray photoelectron spectroscopy (XPS) ID SCANNING-TUNNELING-MICROSCOPY; IRON-OXIDE FILMS; LEED CRYSTALLOGRAPHY; SENSING PROPERTIES; SURFACE-STRUCTURE; GROWTH; PT(111); ALPHA-FE2O3(0001); FEO; NUCLEATION AB Fe3O4 nanoparticles and thin films were prepared on the Au(111) surface and characterized using X-ray photoelectron spectroscopy (XPS) and scanning tunneling microscopy (STM). Fe3O4 was formed by annealing alpha-Fe2O3(0001) structures on Au(111) at 750 K in ultrahigh vacuum (UHV) for 60 min. Transformation of the alpha-Fe2O3(0001) structures into Fe3O4 nanoparticles and thin films was supported by XPS. STM images show that during the growth procedure used, Fe3O4 initially appears as nanoparticles at low coverages, and forms thin films at similar to 2 monolayer equivalents (MLE) of iron. Two types of ordered superstructures were observed on the Fe3O4 particles with periodicities of similar to 50 and similar to 42 angstrom, respectively. As the Fe3O4 particles form more continuous films, the similar to 50 angstrom feature was the predominant superstructure observed. The Fe3O4 structures at all coverages show a hexagonal unit cell with a similar to 3 angstrom periodicity in the atomically resolved STM images. (C) 2010 Elsevier B.V. All rights reserved. C1 [Deng, Xingyi; Lee, Junseok; Matranga, Christopher] US DOE, NETL, Pittsburgh, PA 15236 USA. RP Deng, XY (reprint author), US DOE, NETL, POB 10940, Pittsburgh, PA 15236 USA. EM Xingyi.Deng@netl.doe.gov RI Matranga, Christopher/E-4741-2015; OI Matranga, Christopher/0000-0001-7082-5938; Deng, Xingyi/0000-0001-9109-1443 FU National Energy Technology Laboratory's [DE-AC26-04NT41817] FX This technical effort was performed in support of the National Energy Technology Laboratory's on-going research in Fischer-Tropsch catalysts for the Hydrogen from Coal Program under the RDS Contract DE-AC26-04NT41817. Reference in this work to any specific commercial product is to facilitate understanding and does not necessarily imply endorsement by the US Department of Energy. NR 31 TC 28 Z9 28 U1 9 U2 74 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0039-6028 J9 SURF SCI JI Surf. Sci. PD APR 15 PY 2010 VL 604 IS 7-8 BP 627 EP 632 DI 10.1016/j.susc.2010.01.006 PG 6 WC Chemistry, Physical; Physics, Condensed Matter SC Chemistry; Physics GA 583ZA UT WOS:000276718000003 ER PT J AU Nadeau, JS Wright, BW Synovec, RE AF Nadeau, Jeremy S. Wright, Bob W. Synovec, Robert E. TI Chemometric analysis of gas chromatography-mass spectrometry data using fast retention time alignment via a total ion current shift function SO TALANTA LA English DT Article DE Alignment; Gas chromatography; Mass spectrometry; Principal component analysis ID COMPREHENSIVE 2-DIMENSIONAL SEPARATIONS; PRINCIPAL COMPONENT ANALYSIS; PIECEWISE ALIGNMENT; DATA SETS; FEATURE-SELECTION; CHEMICAL-ANALYSIS; LEAST-SQUARES; MS DATA; ALGORITHM; CLASSIFICATION AB A critical comparison of methods for correcting severely retention time shifted gas chromatography-mass spectrometry (GC-MS) data is presented. The method reported herein is an adaptation to the piecewise alignment algorithm to quickly align severely shifted one-dimensional (1D) total ion current (TIC) data, then applying these shifts to broadly align all mass channels throughout the separation, referred to as a TIC shift function (SF). The maximum shift varied from (-) 5 s in the beginning of the chromatographic separation to (+) 20 s toward the end of the separation, equivalent to a maximum shift of over 5 peak widths. Implementing the TIC shift function (TIC SF) prior to Fisher Ratio (F-Ratio) feature selection and then principal component analysis (PCA) was found to be a viable approach to classify complex chromatograms, that in this study were obtained from GC-MS separations of three gasoline samples serving as complex test mixtures, referred to as types C, M and S. The reported alignment algorithm via the TIC SF approach corrects for large dynamic shifting in the data as well as subtle peak-to-peak shifts. The benefits of the overall TIC SF alignment and feature selection approach were quantified using the degree-of-class separation (DCS) metric of the PCA scores plots using the type C and M samples, since they were the most similar, and thus the most challenging samples to properly classify. The DCS values showed an increase from an initial value of essentially zero for the unaligned GC-TIC data to a value of 7.9 following alignment: however, the DCS was unchanged by feature selection using F-Ratios for the GC-TIC data. The full mass spectral data provided an increase to a final DCS of 13.7 after alignment and two-dimensional (2D) F-Ratio feature selection. (C) 2009 Elsevier B.V. All rights reserved. C1 [Nadeau, Jeremy S.; Synovec, Robert E.] Univ Washington, Dept Chem, Seattle, WA 98195 USA. [Wright, Bob W.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Synovec, RE (reprint author), Univ Washington, Dept Chem, Box 351700, Seattle, WA 98195 USA. EM synovec@chem.washington.edu FU U.S. Department of Energy; U.S. Department of Energy [DE-ACO5-76RLO 1830] FX The authors thank Karisa M. Pierce for developing the initial alignment algorithm, which was further developed and adapted in this report. This work was supported by the Internal Revenue Service through an Interagency Agreement with the U.S. Department of Energy. The Pacific Northwest National Laboratory is operated by Battelle Memorial Institute for the U.S. Department of Energy under contract DE-ACO5-76RLO 1830. The views, opinions, or findings contained in this report are those of the authors and should not be construed as the official Internal Revenue Service position, policy, or decision unless designated by other documentation. NR 40 TC 18 Z9 18 U1 2 U2 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0039-9140 J9 TALANTA JI Talanta PD APR 15 PY 2010 VL 81 IS 1-2 BP 120 EP 128 DI 10.1016/j.talanta.2009.11.046 PG 9 WC Chemistry, Analytical SC Chemistry GA 575FQ UT WOS:000276052700020 PM 20188897 ER PT J AU Gao, J Wang, HL Shreve, A Iyer, R AF Gao, Jun Wang, Hsing Lin Shreve, Andrew Iyer, Rashi TI Fullerene derivatives induce premature senescence: A new toxicity paradigm or novel biomedical applications SO TOXICOLOGY AND APPLIED PHARMACOLOGY LA English DT Article DE Engineered nanomaterials; Fullerenes; Cellular senescence; Reactive oxygen species; Cell cycle arrest; HERC5 ID MAMMARY EPITHELIAL-CELLS; NORMAL HUMAN FIBROBLASTS; CYCLIN-DEPENDENT KINASES; FIELD-EFFECT TRANSISTORS; CELLULAR SENESCENCE; REPLICATIVE SENESCENCE; ENVIRONMENTAL-IMPACT; TUMOR SUPPRESSION; GROWTH ARREST; DNA-DAMAGE AB Engineered fullerenes (C(60)) are extensively used for commercial and clinical applications based on their unique physicochemical properties. Such materials have also been recognized as byproducts of many industrial activities. Functionalization of C(60) may significantly influence the nature of its interactions with biological systems, impacting its applications and raising uncertainties about its health effects. In the present study, we compared the bioimpact of two chemically modified fullerene derivatives, hexa carboxyl fullerene adduct (Hexa-C(60)) and tris carboxyl fullerene adduct (tris-C(60)) to pristine fullerene C(60) encapsulated with gamma (gamma)-cyclodextrin C(60) (CD-C(60)), using human cutaneous epithelial cells (HEK) to simulate possible applications and occupational dermal exposure route. We report, for the first time, the discovery of premature senescence as a potential endpoint of nanomaterial elicited biological effects, providing a new paradigm for nanoparticle-induced toxicity in human cells. Moreover, this response appeared to be functionalization specific, in that, only tris-C(60) induced senescence. We investigated key biological responses, such as cellular viability, intracellular ROS generation, cell proliferation and cell cycle responses. Our results indicate that the often observed 'anti-apoptotic' function of fullerene derivatives may be independent of their 'ROS scavenging' role as previously reported. We discovered that the tris-C(60)-induced responses were associated with G(0)/G(1) cell cycle arrest and cellular senescence. On further evaluation of the molecular mechanisms underlying the senescent response, a significant decrease in the expression levels of HERC5 was noted. HERC5 is a ubiquitin ligase of the HERC family and is implicated to be involved in innate immune responses to viral and bacterial infections. Published by Elsevier Inc. C1 [Gao, Jun; Iyer, Rashi] Los Alamos Natl Lab, Biosci Div, Los Alamos, NM 87545 USA. [Wang, Hsing Lin] Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA. [Shreve, Andrew] Los Alamos Natl Lab, Ctr Integrated Nanotechnol CINT, Los Alamos, NM 87545 USA. RP Iyer, R (reprint author), Los Alamos Natl Lab, Biosci Div, M888,TA 43,HRL 2, Los Alamos, NM 87545 USA. EM rashi@lanl.gov FU Los Alamos National Laboratory; Los Alamos National Laboratory [DE-AC52-06NA25396]; Sandia National Laboratory [DE-AC04-94AL85000]; National Flow Cytometry Resource [RR-01315] FX This work was supported by Los Alamos National Laboratory, LDRD-DR program. This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. Department of Energy, Office of Basic Energy Sciences user facility. Los Alamos National Laboratory (contract DE-AC52-06NA25396) and Sandia National Laboratory (contract DE-AC04-94AL85000). The authors acknowledge the support of the National Flow Cytometry Resource (NIH, National Center for Research Resources RR-01315). The authors thank Gabriel A. Montano and Jennifer Martinez for their assistance with the physical characterization of the fullerenes. NR 79 TC 13 Z9 13 U1 2 U2 22 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0041-008X J9 TOXICOL APPL PHARM JI Toxicol. Appl. Pharmacol. PD APR 15 PY 2010 VL 244 IS 2 BP 130 EP 143 DI 10.1016/j.taap.2009.12.025 PG 14 WC Pharmacology & Pharmacy; Toxicology SC Pharmacology & Pharmacy; Toxicology GA 583HO UT WOS:000276664800004 PM 20045429 ER PT J AU Matthews, JL Schultz, IR Easterling, MR Melnick, RL AF Matthews, Jessica L. Schultz, Irvin R. Easterling, Michael R. Melnick, Ronald L. TI Physiologically based pharmacokinetic modeling of dibromoacetic acid in F344 rats SO TOXICOLOGY AND APPLIED PHARMACOLOGY LA English DT Article DE Dibromoacetic acid; Glutathione-S-transferase zeta; F344 rats; PBPK ID GLUTATHIONE-TRANSFERASE-ZETA; SPRAGUE-DAWLEY RATS; DICHLOROACETIC ACID; DRINKING-WATER; DOSE-RESPONSE; B6C3F1 MICE; CATALYZED BIOTRANSFORMATION; ORAL BIOAVAILABILITY; URINARY METABOLITES; TYROSINE METABOLISM AB A novel physiologically based pharmacokinetic (PBPK) model structure, which includes submodels for the common metabolites (glyoxylate (GXA) and oxalate (OXA)) that may be involved in the toxicity or carcinogenicity of dibromoacetic acid (DBA), has been developed. Particular attention is paid to the representation of hepatic metabolism, which is the primary elimination mechanism. DBA-induced suicide inhibition is modeled by irreversible covalent binding of the intermediate metabolite alpha-halocarboxymethylglutathione (alpha H1) to the glutathione-S-transferase zeta (GSTzeta) enzyme. We also present data illustrating the presence of a secondary non-GSTzeta metabolic pathway for DBA, but not dichloroacetic acid (DCA), that produces GXA. The model is calibrated with plasma and urine concentration data from DBA exposures in female F344 rats through intravenous (IV), oral gavage, and drinking water routes. Sensitivity analysis is performed to confirm identifiability of estimated parameters. Finally, model validation is performed with data sets not used during calibration. Given the structural similarity of dihaloacetates (DHAs), we hypothesize that the PBPK model presented here has the capacity to describe the kinetics of any member or mixture of members of this class in any species with the alteration of chemical-and species-specific parameters. (C) 2010 Elsevier Inc. All rights reserved. C1 [Matthews, Jessica L.; Easterling, Michael R.] SRA Int Inc, Durham, NC 27713 USA. [Schultz, Irvin R.] Battelle Pacific NW Lab, Sequim, WA 98382 USA. [Melnick, Ronald L.] NIEHS, Environm Toxicol Program, Res Triangle Pk, NC 27709 USA. RP Matthews, JL (reprint author), SRA Int Inc, 2605 Meridian Pkwy,Suite 200, Durham, NC 27713 USA. EM Jessica_Matthews@sra.com; irv.schultz@pnl.gov; Michael_Easterling@sra.com; ron.melnick@gmail.com RI Matthews, Jessica/D-5478-2014; OI Matthews, Jessica L./0000-0002-6968-3474 FU National Institutes of Health (NIH), National Institute of Environmental Health Sciences (NIEHS); National Toxicology Program (NTP); NIEHS [GS-00E-0003L, HHSN273200700060P] FX This work was supported (in part) by the Intramural Research Program of the National Institutes of Health (NIH), National Institute of Environmental Health Sciences (NIEHS) and the National Toxicology Program (NTP). The work of J. Matthews was supported by NIEHS contract #GS-00E-0003L. The work of Dr. Schultz was supported by NIEHS contract #HHSN273200700060P. NR 42 TC 2 Z9 2 U1 0 U2 3 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0041-008X EI 1096-0333 J9 TOXICOL APPL PHARM JI Toxicol. Appl. Pharmacol. PD APR 15 PY 2010 VL 244 IS 2 BP 196 EP 207 DI 10.1016/j.taap.2009.12.033 PG 12 WC Pharmacology & Pharmacy; Toxicology SC Pharmacology & Pharmacy; Toxicology GA 583HO UT WOS:000276664800011 PM 20045428 ER PT J AU Hurwitz, MM Newman, PA Li, F Oman, LD Morgenstern, O Braesicke, P Pyle, JA AF Hurwitz, M. M. Newman, P. A. Li, F. Oman, L. D. Morgenstern, O. Braesicke, P. Pyle, J. A. TI Assessment of the breakup of the Antarctic polar vortex in two new chemistry-climate models SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID SOUTHERN-HEMISPHERE; OZONE DEPLETION; STRATOSPHERE; TEMPERATURE; REANALYSIS; IMPACT; WINTER AB Successful simulation of the breakup of the Antarctic polar vortex depends on the representation of tropospheric stationary waves at Southern Hemisphere middle latitudes. This paper assesses the vortex breakup in two new chemistry-climate models (CCMs). The stratospheric version of the UK Chemistry and Aerosols model is able to reproduce the observed timing of the vortex breakup. Version 2 of the Goddard Earth Observing System (GEOS V2) model is typical of CCMs in that the Antarctic polar vortex breaks up too late; at 10 hPa, the mean transition to easterlies at 60 S is delayed by 12-13 days as compared with the ERA-40 and National Centers for Environmental Prediction reanalyses. The two models' skill in simulating planetary wave driving during the October-November period accounts for differences in their simulation of the vortex breakup, with GEOS V2 unable to simulate the magnitude and tilt of geopotential height anomalies in the troposphere and thus underestimating the wave driving. In the GEOS V2 CCM the delayed breakup of the Antarctic vortex biases polar temperatures and trace gas distributions in the upper stratosphere in November and December. C1 [Hurwitz, M. M.; Newman, P. A.; Oman, L. D.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Hurwitz, M. M.] Oak Ridge Associated Univ, NASA Postdoctoral Program, Oak Ridge, TN USA. [Li, F.] Univ Maryland Baltimore Cty, Goddard Earth Sci & Technol Ctr, Baltimore, MD 21228 USA. [Oman, L. D.] Johns Hopkins Univ, Dept Earth & Planetary Sci, Baltimore, MD 21218 USA. [Morgenstern, O.] Natl Inst Water & Atmospher Res, Omakau 9352, New Zealand. [Morgenstern, O.; Braesicke, P.; Pyle, J. A.] Univ Cambridge, Dept Chem, NCAS Climate Chem, Cambridge CB2 1EW, England. RP Hurwitz, MM (reprint author), NASA, Goddard Space Flight Ctr, Code 613-3, Greenbelt, MD 20771 USA. EM margaret.m.hurwitz@nasa.gov RI Newman, Paul/D-6208-2012; Oman, Luke/C-2778-2009; Li, Feng/H-2241-2012; Braesicke, Peter/D-8330-2016 OI Newman, Paul/0000-0003-1139-2508; Oman, Luke/0000-0002-5487-2598; Braesicke, Peter/0000-0003-1423-0619 FU NASA Postdoctoral Program at Goddard Space Flight Center; Natural Environmental Research Council through the NCAS initiative; European Commission [SCOUT-O3 IP] FX The authors thank the Chemistry-Climate Model Validation Activity (CCMVal) of World Climate Research Programme-Stratospheric Processes and their Role in Climate (WCRP-SPARC) for organizing the model data analysis activity. The UK MetOffice is acknowledged for use of the MetUM. Furthermore, the authors thank NASA's MAP program, E. Nash for providing the streamline plotting code, and J. E. Nielsen for running the GEOS V2 simulation. M. M. Hurwitz is supported by an appointment to the NASA Postdoctoral Program at Goddard Space Flight Center, administered by Oak Ridge Associated Universities through a contract with NASA. O. Morgenstern, P. Braesicke and J. A. Pyle are supported by the Natural Environmental Research Council through the NCAS initiative and by the European Commission under the Framework 6 SCOUT-O3 IP. NR 30 TC 16 Z9 16 U1 0 U2 6 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD APR 14 PY 2010 VL 115 AR D07105 DI 10.1029/2009JD012788 PG 13 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 585LM UT WOS:000276827000002 ER PT J AU Kadossov, E Cabrini, S Burghaus, U AF Kadossov, E. Cabrini, S. Burghaus, U. TI Adsorption kinetics and dynamics of CO on silica supported Au nanoclusters-Utilizing physical vapor deposition and electron beam lithography SO JOURNAL OF MOLECULAR CATALYSIS A-CHEMICAL LA English DT Article DE Surface science; Experimental; Heterogeneous catalysis; Molecular beam scattering; Kinetics ID TIO2-SUPPORTED GOLD NANOCLUSTERS; THERMAL-DESORPTION MEASUREMENTS; MODEL CATALYSTS; CARBON-MONOXIDE; MOLECULAR-BEAM; AU(110)-(1 X-2); OXYGEN-CHEMISORPTION; CLUSTER DEPOSITION; 1-PERCENT AU/AL2O3; OXIDATION AB The adsorption kinetics and dynamics of CO on silica supported Au clusters have been studied by thermal desorption spectroscopy (TDS) and molecular beam scattering. Physical vapor deposition (PVD) and electron beam lithography (EBL) have been used to fabricate the samples. According to our prior study (Kadossov et al., in press [49]), a maximum in the initial adsorption probability, So, occurs for 3 nm Au clusters. Therefore, in the present study, we have focused on this cluster size for PVD samples. In addition, 12 nm EBL Au clusters have been studied. This is presently one of the smallest achievable cluster sizes using EBL for macroscopic samples. Auger electron spectroscopy and scanning electron microscopy have been used to further characterize the samples. TDS revealed well-known features for PVD samples; i.e., two peaks assigned to CO adsorption on different defect sites were present. Interestingly, TDS data of EBL samples were dominated solely by one CO desorption peak. The initial adsorption probability of CO, So, decreased as a function of impact energy, E,, and adsorption temperature, T,, for both samples, which is consistent with non-activated molecular adsorption. The coverage dependence of the adsorption probability and So are discussed in the framework of the capture zone model. (C) 2010 Elsevier B.V. All rights reserved. C1 [Kadossov, E.; Burghaus, U.] N Dakota State Univ, Dept Chem Biochem & Mol Biol, Fargo, ND 58105 USA. [Cabrini, S.] LBNL, Nanofabricat Facil, Mol Foundry, Berkeley, CA 94720 USA. RP Burghaus, U (reprint author), N Dakota State Univ, Dept Chem Biochem & Mol Biol, Fargo, ND 58105 USA. EM uwe.burghaus@ndsu.edu FU NSF [CHE-0743932]; U.S. Department of Energy, Office of Basic Energy Sciences [DE-ACO2-05CH11231] FX Financial support by an NSF-CAREER award (CHE-0743932) is acknowledged by NDSU. Assistance by J. Justin at NDSU is acknowledged. Work at the Molecular Foundry (Berkeley) was supported by the U.S. Department of Energy, Office of Basic Energy Sciences through Contract No. DE-ACO2-05CH11231. NR 73 TC 10 Z9 10 U1 1 U2 14 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1381-1169 EI 1873-314X J9 J MOL CATAL A-CHEM JI J. Mol. Catal. A-Chem. PD APR 14 PY 2010 VL 321 IS 1-2 BP 101 EP 109 DI 10.1016/j.molcata.2010.02.009 PG 9 WC Chemistry, Physical SC Chemistry GA 583RK UT WOS:000276696600014 ER PT J AU Beiersdorfer, P AF Beiersdorfer, Peter TI Testing QED and atomic-nuclear interactions with high-Z ions SO JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS LA English DT Review ID STATE LAMB SHIFT; 1S-2S TRANSITION FREQUENCY; SELF-ENERGY CORRECTION; HYDROGEN-LIKE IONS; HYPERFINE-STRUCTURE; CHARGED IONS; FORM-FACTORS; QUANTUM ELECTRODYNAMICS; 2S(1/2)-2P(3/2) LEVELS; PRECISION-MEASUREMENT AB Measurements of high-Z hydrogen-like ions have not yet been able to compete with the ultra-high precise test of quantum electrodynamics (QED) carried out using atomic hydrogen. However, recent advances in theory and experiment have enabled measurements involving high-Z lithium-like ions to test two-loop QED at a level similar to that achieved with atomic hydrogen. Tests of two-loop QED are limited in both cases by the uncertainties in the finite nuclear size, i.e. the uncertainties associated with the proton charge radius and the finite size of high-Z nuclei, respectively. Future experiments employing high-Z ions are described that might go beyond the present limitations. Measurements of the hyperfine splitting in highly charged ions cannot readily be described by theory, in part because of poor understanding of the finite nuclear magnetization radius. The discrepancy between measurements and theory leaves open the possibility of new physics not yet addressed by our current understanding of atomic-nuclear interactions. C1 Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Beiersdorfer, P (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM beiersdorfer@llnl.gov FU US Department of Energy; Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX This work was performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. NR 83 TC 23 Z9 23 U1 0 U2 11 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-4075 EI 1361-6455 J9 J PHYS B-AT MOL OPT JI J. Phys. B-At. Mol. Opt. Phys. PD APR 14 PY 2010 VL 43 IS 7 SI SI AR 074032 DI 10.1088/0953-4075/43/7/074032 PG 10 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 571MO UT WOS:000275756100033 ER PT J AU Chen, MH Cheng, KT AF Chen, M. H. Cheng, K. T. TI A large-scale relativistic configuration-interaction approach: application to the 4s(2)-4s4p transition energies and E1 rates for Zn-like ions SO JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS LA English DT Article ID PERTURBATION-THEORY CALCULATIONS; ZINC ISOELECTRONIC SEQUENCE; BEAM-FOIL SPECTROSCOPY; GA-LIKE IONS; N = 4; RESONANCE LINES; KR-VII; INTERCOMBINATION TRANSITIONS; QUANTUM ELECTRODYNAMICS; LIFETIME MEASUREMENTS AB Relativistic configuration-interaction calculations of the 4s4p excitation energies and 4s(2)-4s4p E1 transitions for Zn-like ions from Z = 30 to 92 are shown. B-spline basis functions are used for these large-scale calculations. QED corrections to the excitation energies are also calculated. Results are in good agreement with other theories and with experiment, and demonstrate the utility of this method for high-precision atomic structure calculations not just for few-electron systems but also for large atomic systems such as Zn-like ions along the entire isoelectronic sequence. C1 [Chen, M. H.; Cheng, K. T.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Chen, MH (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM chen7@llnl.gov FU US Department of Energy [DE-AC52-07NA27344] FX Work performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. NR 77 TC 31 Z9 31 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-4075 J9 J PHYS B-AT MOL OPT JI J. Phys. B-At. Mol. Opt. Phys. PD APR 14 PY 2010 VL 43 IS 7 SI SI AR 074019 DI 10.1088/0953-4075/43/7/074019 PG 12 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 571MO UT WOS:000275756100020 ER PT J AU Ishikawa, Y Santana, JA Trabert, E AF Ishikawa, Yasuyuki Santana, Juan A. Traebert, Elmar TI Relativistic multireference many-body perturbation theory for open-shell ions with multiple valence shell electrons: the transition rates and lifetimes of the excited levels in chlorinelike Fe X SO JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS LA English DT Article ID CONFIGURATION-INTERACTION CALCULATIONS; GAUSSIAN-BASIS-SET; MULTICONFIGURATION DIRAC-FOCK; ALKALI-METAL ATOMS; ENERGY-LEVELS; ISOELECTRONIC SEQUENCE; FORBIDDEN LINES; STORAGE-RING; EMISSION-LINES; SELF-ENERGY AB A recently developed relativistic multireference many-body perturbation theory based on multireference configuration-interaction wavefunctions as zeroth-order wavefunctions is outlined. The perturbation theory employs a general class of configuration-interaction wavefunctions as reference functions, and thus is applicable to multiple open valence shell systems with near degeneracy of a manifold of strongly interacting configurations. Multireference many-body perturbation calculations are reported for the ground and excited states of chlorinelike Fe X in which the near degeneracy of a manifold of strongly interacting configurations mandates a multireference treatment. Term energies of a total of 83 excited levels arising from the 3s(2)3p(5), 3s3p(6), 3s(2)3p(4)3d, 3s3p(5)3d, and 3s(2)3p(3)3d(2) configurations of the ion are evaluated to high accuracy. Transition rates associated with E1/M1/E2/M2/E3 radiative decays and lifetimes of a number of excited levels are calculated and compared with laboratory measurements to critically evaluate recent experiments. C1 [Ishikawa, Yasuyuki; Santana, Juan A.] Univ Puerto Rico, Dept Chem, Rio Piedras, PR 00931 USA. [Ishikawa, Yasuyuki; Santana, Juan A.] Univ Puerto Rico, Chem Phys Program, Rio Piedras, PR 00931 USA. [Traebert, Elmar] Ruhr Univ Bochum, Astron Inst, D-44780 Bochum, Germany. [Traebert, Elmar] LLNL, Div Phys, Livermore, CA 94551 USA. RP Ishikawa, Y (reprint author), Univ Puerto Rico, Dept Chem, POB 23346, Rio Piedras, PR 00931 USA. EM yishikawa@uprrp.edu RI Santana, Juan A./G-4329-2011 OI Santana, Juan A./0000-0003-2349-6312 FU Lawrence Livermore National Laboratory [B579693]; NASA [NNH04AA751]; US Department of Energy [DE-AC52-07NA27344] FX The authors thank Peter Beiersdorfer (Livermore) for advice and support. The work at UPR is supported in part by the Lawrence Livermore National Laboratory under subcontract no B579693, and the work was also supported by NASA's Astronomy and Physics Research and Analysis Program under contract no NNH04AA751. ET acknowledges support by the Deutsche Forschungsgemeinschaft (DFG). Some of this work was performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 75 TC 7 Z9 7 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-4075 EI 1361-6455 J9 J PHYS B-AT MOL OPT JI J. Phys. B-At. Mol. Opt. Phys. PD APR 14 PY 2010 VL 43 IS 7 SI SI AR 074022 DI 10.1088/0953-4075/43/7/074022 PG 9 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 571MO UT WOS:000275756100023 ER PT J AU Trabert, E AF Traebert, E. TI In pursuit of highly accurate atomic lifetime measurements of multiply charged ions SO JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS LA English DT Review ID DYE-LASER SPECTROSCOPY; EXPERIMENTAL TRANSITION-PROBABILITIES; METASTABLE LEVEL LIFETIMES; FINE-STRUCTURE STATES; 4P DOUBLET LEVELS; STORAGE-RING; BEAM-FOIL; RADIATIVE LIFETIMES; FE-X; PRECISION-MEASUREMENT AB Accurate atomic lifetime data are useful for terrestrial and astrophysical plasma diagnostics. At accuracies higher than those required for these applications, lifetime measurements test atomic structure theory in ways complementary to spectroscopic energy determinations. At the highest level of accuracy, the question arises whether such tests reach the limits of modern theory, a combination of quantum mechanics and QED, and possibly point to physics beyond the standard model. If high-precision atomic lifetime measurements, especially on multiply charged ions, have not quite reached this high accuracy yet, then what is necessary to attain this goal? C1 [Traebert, E.] Ruhr Univ Bochum, Fac Phys & Astron, Astron Inst, D-44780 Bochum, Germany. [Traebert, E.] Lawrence Livermore Natl Lab, Div Phys, Livermore, CA 94550 USA. RP Trabert, E (reprint author), Ruhr Univ Bochum, Fac Phys & Astron, Astron Inst, D-44780 Bochum, Germany. EM traebert@astro.rub.de FU Deutsche Forschungsgemeinschaft (DFG); US Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX ET acknowledges support by the Deutsche Forschungsgemeinschaft (DFG). Some of this work was performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 167 TC 17 Z9 17 U1 1 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-4075 EI 1361-6455 J9 J PHYS B-AT MOL OPT JI J. Phys. B-At. Mol. Opt. Phys. PD APR 14 PY 2010 VL 43 IS 7 SI SI AR 074034 DI 10.1088/0953-4075/43/7/074034 PG 19 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 571MO UT WOS:000275756100035 ER PT J AU Cross, JO Newville, M Maranville, BB Bordel, C Hellman, F Harris, VG AF Cross, J. O. Newville, M. Maranville, B. B. Bordel, C. Hellman, F. Harris, V. G. TI Evidence for nanoscale two-dimensional Co clusters in CoPt3 films with perpendicular magnetic anisotropy SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article ID X-RAY-ABSORPTION; PT ALLOY-FILMS; FINE-STRUCTURE; THIN-FILMS; ORDER; XAFS; SPECTRA AB The length scale of the local chemical anisotropy responsible for the growth-temperature-induced perpendicular magnetic anisotropy of face-centered cubic CoPt3 alloy films was investigated using polarized extended x-ray absorption fine structure (EXAFS). These x-ray measurements were performed on a series of four (111) CoPt3 films epitaxially grown on (0001) sapphire substrates. The EXAFS data show a preference for Co-Co pairs parallel to the film plane when the film exhibits magnetic anisotropy, and random chemical order otherwise. Furthermore, atomic pair correlation anisotropy was evidenced only in the EXAFS signal from the next neighbors to the absorbing Co atoms and from multiple scattering paths focused through the next neighbors. This suggests that the Co clusters are no more than a few atoms in extent in the plane and one monolayer in extent out of the plane. Our EXAFS results confirm the correlation between perpendicular magnetic anisotropy and two-dimensional Co segregation in CoPt3 alloy films, and establish a length scale on the order of 10 A for the Co clusters. C1 [Cross, J. O.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Cross, J. O.] Argonne Natl Lab, Argonne, IL 60439 USA. [Newville, M.] Univ Chicago, Consortium Adv Radiat Sources, Chicago, IL 60637 USA. [Maranville, B. B.; Hellman, F.] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA. [Maranville, B. B.] NIST, Ctr Neutron Res, Gaithersburg, MD 20899 USA. [Bordel, C.; Hellman, F.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Harris, V. G.] Northeastern Univ, Dept Elect & Comp Engn, Boston, MA 02115 USA. RP Cross, JO (reprint author), Univ Washington, Dept Phys, Seattle, WA 98195 USA. EM cbordel@berkeley.edu RI MSD, Nanomag/F-6438-2012 FU Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of US Department of Energy; Advanced Photon Source [W-31-109-Eng-38, DE-AC0206CH11357]; National Science Foundation; University of Washington; Natural Sciences and Engineering Research Council in Canada; Simon Fraser University; [DE-FG02-04ER46100]; [DE-AC02-05CH11231] FX We would like to thank the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of US Department of Energy for supporting: (i) the use of PNC-CAT and the Advanced Photon Source under Contract No. W-31-109-Eng-38 and Contract No. DE-AC0206CH11357; (ii) BBM and FH for the sample preparation and magnetic characterizations under Contract No. DE-FG02-04ER46100; (iii) CB and FH for characterization and analysis under Contract No. DE-AC02-05CH11231. The PNC-CAT beamlines are also supported by funding from the National Science Foundation, the University of Washington, the Natural Sciences and Engineering Research Council in Canada, and Simon Fraser University. The authors also acknowledge and thank J W Freeland, Y U Idzerda, S Stadler, S Sinha and J Kortright for critical discussions about x-ray diffuse scattering on these samples; E T Yu and D M Schaadt for AFM images and valuable discussion of their interpretation; and B Culbertson for RBS measurements. NR 31 TC 3 Z9 3 U1 1 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD APR 14 PY 2010 VL 22 IS 14 AR 146002 DI 10.1088/0953-8984/22/14/146002 PG 7 WC Physics, Condensed Matter SC Physics GA 574CZ UT WOS:000275967400016 PM 21389536 ER PT J AU Kim, HS Christen, HM AF Kim, H. S. Christen, H. M. TI Controlling the magnetic properties of LaMnO3 thin films on SrTiO3(100) by deposition in a O-2/Ar gas mixture SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article ID TRANSITION-TEMPERATURE; LASER-ABLATION; MAGNETORESISTANCE; OXYGEN; MANGANITES; TRANSPORT AB The magnetic, structural, and transport properties of pulsed-laser deposited LaMnO3 thin films are analyzed as a function of the O-2 partial pressure in the growth environment (using an O-2/Ar gas mixture). Interestingly, the magnetic properties do not change gradually as the O-2 content increases. Instead, ferromagnetism emerges rapidly with the oxygen; a critical amount of Ar is needed to suppress ferromagnetism effectively in LaMnO3 thin films. The most dramatic suppression of ferromagnetism occurs only in the narrow window below 10% oxygen, where the ferromagnetic moments decrease by a factor of 17. Above a certain oxygen concentration, the ferromagnetic moment no longer increases with oxygen. The sample grown in pure oxygen shows a metal-insulator transition at similar to 200 K, but exhibits an insulating behavior again below similar to 150 K. This intermediate metallic behavior is significantly suppressed by using the O-2/Ar gas mixture. C1 [Kim, H. S.; Christen, H. M.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Kim, HS (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RI Christen, Hans/H-6551-2013 OI Christen, Hans/0000-0001-8187-7469 FU Division of Materials Science and Engineering, US Department of Energy FX This research was supported by the Division of Materials Science and Engineering, US Department of Energy. NR 23 TC 19 Z9 19 U1 1 U2 24 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 EI 1361-648X J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD APR 14 PY 2010 VL 22 IS 14 AR 146007 DI 10.1088/0953-8984/22/14/146007 PG 4 WC Physics, Condensed Matter SC Physics GA 574CZ UT WOS:000275967400021 PM 21389541 ER PT J AU Woodward, JJ NejatyJahromy, Y Britt, RD Marletta, MA AF Woodward, Joshua J. NejatyJahromy, Yaser Britt, R. David Marletta, Michael A. TI Pterin-Centered Radical as a Mechanistic Probe of the Second Step of Nitric Oxide Synthase SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID HYDROXY-L-ARGININE; HEME DOMAIN; TETRAHYDROBIOPTERIN; CATALYSIS; OXIDATION; NITROXYL; INTERMEDIATE; PORPHYRINS; OXYGEN AB The enzyme nitric oxide synthase is both medically relevant and of particular interest from a basic sciences perspective due to the complex nature of the chemical mechanism used to generate NO. The enzyme utilizes multiple redox-active cofactors and substrates to catalyze the five-electron oxidation of substrate L-arginine to citrulline and nitric oxide. Two flavins, a cysteine-coordinated heme cofactor and, uniquely, a tetrahydrobiopterin cofactor, are used to deliver electrons from the cosubstrate NADPH to molecular oxygen, analogous to other P450s. The unprecedented involvement of the pterin cofactor as a single electron donor is unique among P450s and pterin utilizing proteins alike and adds to the complexity of this enzyme. In this report, the peroxide shunt with both Mn- and Fe-containing heme domain constructs of iNOS(heme) was used to characterize the formation of HNO as the initial inorganic product produced when oxygen activation occurs without pterin radical formation. To recover NO formation, preturnover of the iron-containing enzyme with L-arginine was used to generate the pterin-centered radical, followed by peroxide shunt chemistry. Comparison of NO produced by this reaction with reactions that do not undergo preturnover, do not have peroxide added, or are performed with a pterin unable to generate a radical shows NO production to be dependent on both a pterin-centered radical and activated oxygen. Finally, the chemical HNO donor, Angeli's salt, was used to form the ferrous nitrosyl in the presence of the pterin radical intermediate. Under these conditions, the rate of pterin radical decay was increased as monitored by EPR spectroscopy. In comparison to pterin that aerobically decays, the Angeli's salt treated sample is also significantly protected from oxidation, suggesting ferrous-nitrosyl-mediated reduction of the radical. Taken together, these results support a dual redox cycling role for the pterin cofactor during NOS turnover of NHA with particular importance for the proper release of NO from a proposed ferrous nitrosyl intermediate. C1 [Marletta, Michael A.] Univ Calif Berkeley, Inst QB3, Dept Chem, Berkeley, CA 94720 USA. [Marletta, Michael A.] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Marletta, Michael A.] Univ Calif Berkeley, Calif Inst Quantitat Biosci, Berkeley, CA 94720 USA. [Marletta, Michael A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Phys Biosci, Berkeley, CA 94720 USA. [NejatyJahromy, Yaser; Britt, R. David] Univ Calif Davis, Dept Chem, Davis, CA 95616 USA. RP Marletta, MA (reprint author), Univ Calif Berkeley, Inst QB3, Dept Chem, 570 Stanley Hall, Berkeley, CA 94720 USA. FU Aldo DeBenedictis Fund FX This work was supported by the Aldo DeBenedictis Fund. We thank Prof. Theodor Agapie for providing critical review of the manuscript. NR 19 TC 26 Z9 26 U1 0 U2 10 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD APR 14 PY 2010 VL 132 IS 14 BP 5105 EP 5113 DI 10.1021/ja909378n PG 9 WC Chemistry, Multidisciplinary SC Chemistry GA 581VS UT WOS:000276553700037 PM 20307068 ER PT J AU Meharenna, YT Doukov, T Li, HY Soltis, SM Poulos, TL AF Meharenna, Yergalem T. Doukov, Tzanko Li, Huiying Soltis, S. Michael Poulos, Thomas L. TI Crystallographic and Single-Crystal Spectral Analysis of the Peroxidase Ferryl Intermediate SO BIOCHEMISTRY LA English DT Article ID CYTOCHROME-C PEROXIDASE; COMPOUND-II; PROTONATION; HEME AB The ferryl [Fe(IV)O] intermediate is important in many heme enzymes, and thus, the precise nature of the Fe(IV)-O bond is critical in understanding enzymatic mechanisms. The 1.40 angstrom crystal structure of cytochrome c peroxidase Compound I has been determined as a function of X-ray dose while the visible spectrum was being monitored. The Fe-O bond increases in length from 1.73 angstrom in the low-X-ray dose structure to 1.90 angstrom in the high-dose structure. The low-dose structure correlates well with an Fe(IV)=O bond, while we postulate that the high-dose structure is the cryo-trapped Fe(III) OH species previously thought to be an Fe(IV) OH species. C1 [Meharenna, Yergalem T.; Li, Huiying; Poulos, Thomas L.] Univ Calif Irvine, Dept Mol Biol & Biochem, Irvine, CA 92697 USA. [Doukov, Tzanko; Soltis, S. Michael] Stanford Univ, Stanford Synchrotron Radiat Lightsource, SLAC, Macromol Crystallog Grp, Stanford, CA 94025 USA. [Meharenna, Yergalem T.; Li, Huiying; Poulos, Thomas L.] Univ Calif Irvine, Dept Pharmaceut Sci, Irvine, CA 92697 USA. [Meharenna, Yergalem T.; Li, Huiying; Poulos, Thomas L.] Univ Calif Irvine, Dept Chem, Irvine, CA 92697 USA. RP Poulos, TL (reprint author), Univ Calif Irvine, Dept Mol Biol & Biochem, Irvine, CA 92697 USA. EM poulos@uci.edu FU National Institutes of Health [GM42614] FX Work at the University of California was supported by National Institutes of Health Grant GM42614 (T.L.P.). NR 14 TC 41 Z9 41 U1 2 U2 19 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0006-2960 J9 BIOCHEMISTRY-US JI Biochemistry PD APR 13 PY 2010 VL 49 IS 14 BP 2984 EP 2986 DI 10.1021/bi100238r PG 3 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 577YB UT WOS:000276258800002 PM 20230048 ER PT J AU Wang, XQ Lee, JS Zhu, Q Liu, J Wang, Y Dai, S AF Wang, Xiqing Lee, Je Seung Zhu, Qing Liu, Jun Wang, Yong Dai, Sheng TI Ammonia-Treated Ordered Mesoporous Carbons as Catalytic Materials for Oxygen Reduction Reaction SO CHEMISTRY OF MATERIALS LA English DT Article ID ELECTROLYTE FUEL-CELLS; NITROGEN-CONTAINING CARBON; ACTIVE-SITES; SUPPORT; METAL; ELECTROCATALYST; SPECTROSCOPY; ENHANCEMENT; TEMPERATURE; DURABILITY C1 [Wang, Xiqing; Lee, Je Seung; Zhu, Qing; Dai, Sheng] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. [Liu, Jun; Wang, Yong] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Dai, S (reprint author), Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. EM dais@ornl.gov RI Wang, Xiqing/E-3062-2010; Wang, Yong/C-2344-2013; Dai, Sheng/K-8411-2015 OI Wang, Xiqing/0000-0002-1843-008X; Dai, Sheng/0000-0002-8046-3931 FU Office of Energy Efficiency and Renewable Energy (EERE), U.S. Department of Energy with Oak Ridge National Laboratory [DE-AC05-0096OR22725] FX This research was sponsored by the Office of Energy Efficiency and Renewable Energy (EERE), U.S. Department of Energy, under Contract DE-AC05-0096OR22725 with Oak Ridge National Laboratory, managed and operated by UT-Battelle, LLC. NR 41 TC 205 Z9 212 U1 20 U2 145 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 J9 CHEM MATER JI Chem. Mat. PD APR 13 PY 2010 VL 22 IS 7 BP 2178 EP 2180 DI 10.1021/cm100139d PG 3 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 579SU UT WOS:000276394800002 ER PT J AU Son, YH Lee, JK Soong, Y Martello, D Chyu, M AF Son, You-Hwan Lee, Jung-Kun Soong, Yee Martello, Donald Chyu, Minking TI Structure-Property Correlation in Iron Oxide Nanoparticle-Clay Hybrid Materials SO CHEMISTRY OF MATERIALS LA English DT Article ID MAGNETIC NANOPARTICLES; MONTMORILLONITE; NANOCOMPOSITES; ALPHA-FE2O3; MONOLAYERS AB Heterostructures between montmorillonite and embedded alpha-Fe2O3 nanoparticles are explored to create new hybrid particles with high magnetic response and magnetic-field induced tunability. alpha-Fe2O3 nanoparticles are hybridized to montmorillonite clays by using an intercalation technique. Also, stable aqueous fluids consisting of the heterostructured particles are prepared and the rheology of the fluids under external magnetic field is examined. When alpha-Fe2O3 a nanoparticles are embedded in the interlayer space of montmorillonite clays, the magnetization per Fe atom increases at most 60 times. This unique combination of the magnetization and the coercivity is traced to the suppressed growth of embedded alpha-Fe2O3 nanoparticles by the aluminosilicate layers, leading to the size control, anisotropic magnetic interaction, and uniaxial stress of two-dimensionally distributed alpha-Fe2O3 nanoparticles. Furthermore, high magnetization of heterostructured particles leads to strong dependence of fluids' viscosity on the external magnetic field. The present study indicates that the new heterostructured particles have unique magnetic field-dependent properties that are not attainable in individual clay or iron oxide particles. C1 [Son, You-Hwan; Lee, Jung-Kun; Chyu, Minking] Univ Pittsburgh, Dept Mech Engn & Mat Sci, Pittsburgh, PA 15261 USA. [Soong, Yee; Martello, Donald] US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15261 USA. RP Lee, JK (reprint author), Univ Pittsburgh, Dept Mech Engn & Mat Sci, Pittsburgh, PA 15261 USA. EM jul37@pitt.edu FU U.S. Department of Energy FX This work was supported by the U.S. Department of Energy. The authors thank Dr. Ian Nettleship and Dr. Prashant Kumta for very helpful technical discussions. NR 46 TC 18 Z9 18 U1 3 U2 18 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 J9 CHEM MATER JI Chem. Mat. PD APR 13 PY 2010 VL 22 IS 7 BP 2226 EP 2232 DI 10.1021/cm9024843 PG 7 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 579SU UT WOS:000276394800009 ER PT J AU Furman, JD Warner, AY Teat, SJ Mikhailovsky, AA Cheetham, AK AF Furman, Joshua D. Warner, Alina Y. Teat, Simon J. Mikhailovsky, Alexander A. Cheetham, Anthony K. TI Tunable, Ligand-Based Emission from Inorganic-Organic Frameworks: A New Approach to Phosphors for Solid State Lighting and Other Applications SO CHEMISTRY OF MATERIALS LA English DT Article ID CONJUGATED OLIGOMERS; RED PHOSPHORS; PI-STACKING; FLUORENONE; POLYMERS; PHOTOLUMINESCENCE; COORDINATION; LUMINESCENCE; COPOLYMERS; COMPLEXES AB Two dense inorganic-organic frameworks were prepared using the intrinsically luminescent organic ligand 9-fluorenone-2,7-dicarboxylic acid (H2FDC) in combination with the alkaline earth metals calcium and strontium. Ca(FDC)(H2O)(2) (1) and Sr(FDC)(H2O)(5)center dot 2H(2)O (2) were prepared hydrothermally and both adopt three-dimensional framework structures. They absorb strongly between 380 and 460 nm and show broad visible emission with peaks at 503 and 526 nm, respectively. Structure 1 shows a quantum yield at room temperature of 7.8% which increases to 15% at -196 degrees C, while structure 2 shows a room temperature quantum yield of 2.8%, increasing to 3.3% at -196 degrees C. C1 [Furman, Joshua D.; Cheetham, Anthony K.] Univ Cambridge, Dept Mat Sci & Met, Cambridge CB2 3QZ, England. [Furman, Joshua D.; Warner, Alina Y.] Univ Calif Santa Barbara, Mitsubishi Chem Ctr Adv Mat, Santa Barbara, CA 93106 USA. [Teat, Simon J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. [Mikhailovsky, Alexander A.] Univ Calif Santa Barbara, Dept Chem, Santa Barbara, CA 93106 USA. RP Cheetham, AK (reprint author), Univ Cambridge, Dept Mat Sci & Met, Pembroke St, Cambridge CB2 3QZ, England. EM akc30@cam.ac.uk RI Furman, Joshua/F-3632-2010 FU Mitsubishi Chemical Center for Advanced Materials; NSF [DMR05-20415]; RISE program at the UCSB MRL; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231, DE-AC02-06CH11357]; ERC FX The authors thank Guang Wu for his advice on crystallography. J.F. and A.K.C. thank the Mitsubishi Chemical Center for Advanced Materials for their support and Naoto Kijima, Jeffery Gerbec, and Yasuo Shimomura for helpful discussion. Facilities at UCSB were supported by NSF DMR05-20415. A.W. was supported by the RISE program at the UCSB MRL. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Use of the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. A.K.C. thanks the ERC for an Advanced Investigator Award. NR 52 TC 44 Z9 45 U1 0 U2 26 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 EI 1520-5002 J9 CHEM MATER JI Chem. Mat. PD APR 13 PY 2010 VL 22 IS 7 BP 2255 EP 2260 DI 10.1021/cm9030733 PG 6 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 579SU UT WOS:000276394800013 ER PT J AU Zhao, XY Piliego, C Kim, B Poulsen, DA Ma, BW Unruh, DA Frechet, JMJ AF Zhao, Xiaoyong Piliego, Claudia Kim, BongSoo Poulsen, Daniel A. Ma, Biwu Unruh, David A. Frechet, Jean M. J. TI Solution-Processable Crystalline Platinum-Acetylide Oligomers with Broadband Absorption for Photovoltaic Cells SO CHEMISTRY OF MATERIALS LA English DT Article ID HETEROJUNCTION SOLAR-CELLS; DONOR-ACCEPTOR HETEROJUNCTIONS; FIELD-EFFECT TRANSISTORS; CHARGE-TRANSPORT; ORGANIC PHOTOVOLTAICS; MOLECULAR DESIGN; POLYMER; EFFICIENT; COMPLEXES; SEXITHIOPHENES AB A series of solution-processable and crystalline platinum-acetylide oligomers containing a thienyl benzothiadiazole thienyl core and oligothiophene alkynyl ligands are synthesized and characterized. X-ray crystallography analysis indicates a two-dimensional arrangement of oligomers through CH-pi interactions in single crystals. These oligomers show two intense and broad absorption bands in the visible spectral region, with the short-wavelength absorption band being strongly dependent on the olieothiophene length. In neat films, all the oligomers form large crystalline domains of several hundred nanometers in size upon thermal treatment and exhibit space-charge limited current (SCLC) mobilities on the order of 10(-5)-10(-4) cm(2) V(-1) s(-1). The photovoltaic properties of these oligomers were evaluated by fabricating bulk heterojunction devices with fullerene derivatives (PC(61)BM and PC(71)BM) and some of these devices showed high-power conversion efficiencies (PCEs) of up to 3% and a peak external quantum efficiency (EQE) to 50% under AM 1.5 simulated solar illumination. The present work suggests that well-defined platinum oligomers with desirable light-absorbing and self-assembly properties have potential for solution-processed organic photovoltaics. C1 [Frechet, Jean M. J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. Univ Calif Berkeley, Coll Chem, Berkeley, CA 94720 USA. RP Frechet, JMJ (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. EM frechet@berkeley.edu RI Ma, Biwu/B-6943-2012; OI Frechet, Jean /0000-0001-6419-0163 FU Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy [DE-AC02-05CH11231]; National Science Foundation [CHE-0233882] FX This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy (under Contract No. DE-AC02-05CH11231). GIXS measurements were performed at the Stanford Synchrotron Radiation Laboratory, a national user facility operated by Stanford University on behalf of the U.S. Department of Energy, Office of Basic Energy Sciences. We also acknowledge the use of the Molecular Graphics and Computing Facility at UC, Berkeley which was supported by a National Science Foundation Grant (No. CHE-0233882). NR 50 TC 66 Z9 66 U1 3 U2 22 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 J9 CHEM MATER JI Chem. Mat. PD APR 13 PY 2010 VL 22 IS 7 BP 2325 EP 2332 DI 10.1021/cm903329a PG 8 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 579SU UT WOS:000276394800021 ER PT J AU Landis, EC Klein, KL Liao, A Pop, E Hensley, DK Melechko, AV Hamers, RJ AF Landis, Elizabeth C. Klein, Kate L. Liao, Albert Pop, Eric Hensley, Dale K. Melechko, Anatoli V. Hamers, Robert J. TI Covalent Functionalization and Electron-Transfer Properties of Vertically Aligned Carbon Nanofibers: The Importance of Edge-Plane Sites SO CHEMISTRY OF MATERIALS LA English DT Article ID ORDERED GRAPHITE-ELECTRODES; HYDROGEN-TERMINATED DIAMOND; X-RAY PHOTOEMISSION; PHOTOCHEMICAL FUNCTIONALIZATION; TRANSFER KINETICS; THIN-FILMS; BIOSENSOR APPLICATIONS; SURFACE OXIDES; REACTIVE SITES; TUBE ENDS AB The use of covalently bonded molecular layers provides a way to combine the outstanding stability and electrochemical properties of carbon-based structures with the unique properties of molecular structures for applications such as electrocatalysis and solar conversion. The functionalization of vertically aligned carbon nanofibers (VACNFs) with 1-alkenes, using ultraviolet light, was investigated as a potential way to impart a variety of different functional groups onto the nanofiber sidewalls. We report how variations in the nanofiber growth rate impact both the amount of exposed edge-plane sites and the resulting electrochemical activity toward Ru(NH(3))(6)(3+/2+) and Fe(CN)(6)(3-/4-) redox couples. Measurements of the distribution of surface oxides show that surface oxides are unaffected by the grafting of alkenes to the nanofibers. Carbon nanofiber reactivity was also compared to multiwalled and single-walled carbon nanotubes. Our results demonstrate that edge-plane sites are preferred sites for photochemical grafting, but that the grafting of molecular layers only slightly reduces the overall electrochemical activity of the nanofibers toward the Ru(NH(3))(6)(3+/2+) couple. These results provide new insights into the relationships between the chemical reactivity and electrochemical properties of nanostructured carbon materials and highlight the crucial role that exposed edge-plane sites play in the electrochemical properties of carbon nanotubes and nanofibers. C1 [Landis, Elizabeth C.; Hamers, Robert J.] Univ Wisconsin, Dept Chem, Madison, WI 53706 USA. [Klein, Kate L.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Klein, Kate L.; Hensley, Dale K.; Melechko, Anatoli V.] Oak Ridge Natl Lab, Div Mat Sci, Ctr Nanophase, Oak Ridge, TN 37831 USA. [Liao, Albert; Pop, Eric] Univ Illinois, Dept Elect & Comp Engn, Micro & Nanotechnol Lab, Urbana, IL 61801 USA. [Melechko, Anatoli V.] N Carolina State Univ, Dept Mat Sci & Engn, Raleigh, NC 27695 USA. RP Hamers, RJ (reprint author), Univ Wisconsin, Dept Chem, 1101 Univ Ave, Madison, WI 53706 USA. EM rjhamers@wisc.edu RI Pop, Eric/A-9475-2009; Melechko, Anatoli/B-8820-2008; Hensley, Dale/A-6282-2016; Hamers, Robert/C-6466-2008 OI Pop, Eric/0000-0003-0436-8534; Hensley, Dale/0000-0001-8763-7765; Hamers, Robert/0000-0003-3821-9625 FU National Science Foundation [DMR0706559, CHE0911543]; Center for Nanophase Materials Sciences; Division of Materials Sciences and Engineering of the DOE Office of Science; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy [CNMS2007-252] FX This work was supported in part by the National Science Foundation (Grant Nos. DMR0706559 and CHE0911543). K.L.K. and D.K.H acknowledge support from the Center for Nanophase Materials Sciences. A. V.M. acknowledges support from the Division of Materials Sciences and Engineering of the DOE Office of Science. A portion of this research was conducted at the Center for Nanophase Materials Science, which is sponsored at Oak Ridge National Laboratory by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy, via CNMS Project CNMS2007-252. NR 60 TC 32 Z9 32 U1 2 U2 25 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 J9 CHEM MATER JI Chem. Mat. PD APR 13 PY 2010 VL 22 IS 7 BP 2357 EP 2366 DI 10.1021/cm9036132 PG 10 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 579SU UT WOS:000276394800025 ER PT J AU Michalsky, J Denn, F Flynn, C Hodges, G Kiedron, P Koontz, A Schlemmer, J Schwartz, SE AF Michalsky, Joseph Denn, Frederick Flynn, Connor Hodges, Gary Kiedron, Piotr Koontz, Annette Schlemmer, James Schwartz, Stephen E. TI Climatology of aerosol optical depth in north-central Oklahoma: 1992-2008 SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID ATMOSPHERIC RADIATION; ARM PROGRAM; INSTRUMENT; AERONET; ALGORITHMS; CLOUD; SITE AB Aerosol optical depth (AOD) has been measured at the Atmospheric Radiation Measurement Program central facility near Lamont, Oklahoma, since the fall of 1992. Most of the data presented are from the multifilter rotating shadowband radiometer, a narrow-band, interference-filter Sun radiometer with five aerosol bands in the visible and near infrared; however, AOD measurements have been made simultaneously and routinely at the site by as many as three different types of instruments, including two pointing Sun radiometers. Scatterplots indicate high correlations and small biases consistent with earlier comparisons. The early part of this 16 year record had a disturbed stratosphere with residual Mt. Pinatubo aerosols, followed by the cleanest stratosphere in decades. As such, the last 13 years of the record reflect changes that have occurred predominantly in the troposphere. The field calibration technique is briefly described and compared to Langley calibrations from Mauna Loa Observatory. A modified cloud screening technique is introduced that increases the number of daily averaged AODs retrieved annually to about 250 days compared with 175 days when a more conservative method was employed in earlier studies. AODs are calculated when the air mass is less than six; that is, when the Sun's elevation is greater than 9.25. The more inclusive cloud screen and the use of most of the daylight hours yield a data set that can be used to more faithfully represent the true aerosol climate for this site. The diurnal aerosol cycle is examined month-by-month to assess the effects of an aerosol climatology on the basis of infrequent sampling such as that from satellites. C1 [Michalsky, Joseph] NOAA, Earth Syst Res Lab, Boulder, CO 80305 USA. [Denn, Frederick] Sci Syst & Applicat Inc, Hampton, VA 23693 USA. [Flynn, Connor; Koontz, Annette] Pacific NW Natl Lab, Richland, WA 99352 USA. [Hodges, Gary; Kiedron, Piotr] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80305 USA. [Schlemmer, James] SUNY Albany, Atmospher Sci Res Ctr, Albany, NY 12203 USA. [Schwartz, Stephen E.] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Michalsky, J (reprint author), NOAA, Earth Syst Res Lab, 325 Broadway R GMD, Boulder, CO 80305 USA. EM joseph.michalsky@noaa.gov RI Schwartz, Stephen/C-2729-2008 OI Schwartz, Stephen/0000-0001-6288-310X FU Office of Biological and Environmental Research of the U.S. Department of Energy; NASA Earth Observing System FX This research was supported in part by the Office of Biological and Environmental Research of the U.S. Department of Energy as part of the Atmospheric Radiation Measurement Program. The data from the COVE site are funded by the NASA Earth Observing System. NR 20 TC 25 Z9 25 U1 0 U2 11 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD APR 13 PY 2010 VL 115 AR D07203 DI 10.1029/2009JD012197 PG 16 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 585LL UT WOS:000276826900003 ER PT J AU Xia, JB Yuan, SW Wang, Z Kirklin, S Dorney, B Liu, DJ Yu, LP AF Xia, Jiangbin Yuan, Shengwen Wang, Zhuo Kirklin, Scott Dorney, Brian Liu, Di-Jia Yu, Luping TI Nanoporous Polyporphyrin as Adsorbent for Hydrogen Storage SO MACROMOLECULES LA English DT Article ID METAL-ORGANIC FRAMEWORKS; NETWORK POLYMERS; ADSORPTION; PORPHYRIN; METALLOPORPHYRINS; TEMPERATURE; ANALOGS; ZN; CU AB Novel polyporphyrins with high surface area over 1500 m(2)/g have been synthesized, and their hydrogen absorption capacities were measured. Porphyrin functionalized with thiophenyl groups was designed as starting monomer; the porphyrin cores offer coordination sites for metal ions which could potentially enhance the interaction with hydrogen for favorable hydrogen storage while the thiophenyl groups are used for cross-linking the monomers under oxidative coupling conditions to yield highly porous networks. These polyporphyrins adsorb up to 5.0 mass % H(2) at 77 K and 65 bar. Compared with metal free polymer, iron(II)-containing polymer shows finite increase in heat of adsorption for hydrogen, suggesting a promising approach for designing high heat of adsorption porous materials. C1 [Yuan, Shengwen; Kirklin, Scott; Dorney, Brian; Liu, Di-Jia] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Xia, Jiangbin; Wang, Zhuo; Yu, Luping] Univ Chicago, Dept Chem, Chicago, IL 60637 USA. [Xia, Jiangbin; Wang, Zhuo; Yu, Luping] Univ Chicago, James Franck Inst, Chicago, IL 60637 USA. RP Liu, DJ (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM djliu@anl.gov; lupingyu@midway.uchicago.edu FU U.S. Department of Energy FX This work was supported by the U.S. Department of Energy's Fuel Cell Technologies program under the Office of Energy Efficiency and Renewable Energy. The authors wish to thank GM and Air Products for providing the AX-2 sample, and thank Ms. Desiree White for experimental support. NR 31 TC 52 Z9 53 U1 1 U2 43 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0024-9297 J9 MACROMOLECULES JI Macromolecules PD APR 13 PY 2010 VL 43 IS 7 BP 3325 EP 3330 DI 10.1021/ma100026f PG 6 WC Polymer Science SC Polymer Science GA 577OH UT WOS:000276232800031 ER PT J AU Sohn, KE Kojio, K Berry, BC Karim, A Coffin, RC Bazan, GC Kramer, EJ Sprung, M Wang, J AF Sohn, Karen E. Kojio, Ken Berry, Brian C. Karim, Alamgir Coffin, Robert C. Bazan, Guillermo C. Kramer, Edward J. Sprung, Michael Wang, Jin TI Surface Effects on the Thin Film Morphology of Block Copolymers with Bulk Order-Order Transitions SO MACROMOLECULES LA English DT Article ID SEPARATED DIBLOCK COPOLYMERS; ABC TRIBLOCK TERPOLYMERS; PHASE-BEHAVIOR; MICELLE FORMATION; CYLINDER; KINETICS; LAMELLAR; SPHERE; MELTS; MICRODOMAINS AB The morphology of poly(styrene-b-ethylene-r-butylene) (SEB) and poly(styrene-b-ethylene-r-butylene-b-styrene) (SEBS) thin films annealed both above (165 degrees C) and below (125 degrees C) the bulk order order transition temperatures (OOT) (similar to 140 degrees C) was characterized with grazing incidence small-angle X-ray scattering (GISAXS), dynamic secondary ion mass spectrometry (d-SIMS), and atomic force microscopy (AFM). The SEBS thin film morphology is always spherical, regardless of film thickness or annealing temperature, leading us to conclude that the OOT for films up to five layers of spheres is depressed by at least 10 degrees C relative to the bulk. In contrast, the SEB film morphology at both 125 and 165 degrees C is always cylindrical, except when the film thickness is less than t(cyl), a monolayer of cylinders. For SEB film thicknesses, t, less than t(cyl) at 165 degrees C either a partial or full monolayer of spheres forms (thickness t(sph)) with coexistence of patches of spheres and cylinders when t(sph) < t < t(cyl). Thus, we conclude that the OOT for SEB film thickness between t(cyl) and 5t(cyl) is increased by at least 20 degrees C over that of the bulk. This complex phase behavior can be understood qualitatively by considering two small contributions to the free energy f per block copolymer chain in the films: (1) an increase in f due to packing frustration and (2) a decrease in f due to the entropy of chain ends near the block copolymer film surfaces. The SEBS has no chain ends near the surface, and we propose that the larger packing frustration of SEBS chains in the square Wigner-Seitz cells of the cylinder monolayer, and the surface half-layers in thicker films, leads to the stabilization of the spherical morphology, which has a smaller packing frustration in the monolayer and surface half-layers. The SEB cylinders and sphere monolayers have the same packing frustration as those of the SEBS, but the contribution of the added entropy of chain ends near the surface is larger for the cylinders than for the spheres, more than offsetting the effect of packing frustration and thus stabilizing the cylindrical morphology at temperatures above the OOT. C1 [Sohn, Karen E.; Kramer, Edward J.] Univ Calif Santa Barbara, Dept Mat, Santa Barbara, CA 93106 USA. [Kojio, Ken] Nagasaki Univ, Dept Mat Sci & Engn, Nagasaki 8528521, Japan. [Berry, Brian C.; Karim, Alamgir] NIST, Div Polymers, Gaithersburg, MD 20899 USA. [Coffin, Robert C.; Bazan, Guillermo C.] Univ Calif Santa Barbara, Dept Chem & Biochem, Santa Barbara, CA 93106 USA. [Sprung, Michael; Wang, Jin] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Kramer, Edward J.] Univ Calif Santa Barbara, Dept Chem Engn, Santa Barbara, CA 93106 USA. RP Kramer, EJ (reprint author), Univ Calif Santa Barbara, Dept Mat, Santa Barbara, CA 93106 USA. EM edkramer@mrl.ucsb.edu RI Bazan, Guillermo/B-7625-2014 FU National Science Foundation [DMR-07-04539]; NSF [N00014-02-1-0170, DMR05-20415]; DOE Division of Basic Energy Sciences [W-31-109-ENG-38]; NSF-REU; NSF-NNIN [44771-7475] FX Acknowledgment. Primary funding was provided by the National Science Foundation DMR Polymers Program under Award DMR-07-04539 and by the NSF Graduate Research Fellowship with secondary funding provided by the ONR under Grant N00014-02-1-0170. The Advanced Photon Source at Argonne National Laboratory is funded by the DOE Division of Basic Energy Sciences by Grant W-31-109-ENG-38. Some of the work presented was conducted at the NIST Combinatorial Methods Center. Terence Choy (now at LIC Berkeley) separated the diblock and triblock from the blend and was funded by the NSF-REU program. This work made use of central facilities at the MRL at UCSB, which is funded by the MRSEC program of the NSF under Grant DMR05-20415, and from use of the nanofabrication facilities, which is supported by the NSF-NNIN under Award 44771-7475. Dale Handlin from Kraton provided the commercial polymer blend. We acknowledge many helpful discussions with Mark Matsen (Reading) as well as with Glenn Fredrickson (UCSB) on differences between diblock copolymers and triblock copolymers. Gila Stein (Houston), Vindhya Mishra, and Kristin Schmidt (UCSB) are thanked for useful discussions on the GISAXS analysis. NR 54 TC 16 Z9 16 U1 5 U2 42 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0024-9297 J9 MACROMOLECULES JI Macromolecules PD APR 13 PY 2010 VL 43 IS 7 BP 3406 EP 3414 DI 10.1021/ma1001194 PG 9 WC Polymer Science SC Polymer Science GA 577OH UT WOS:000276232800041 ER PT J AU Nedoma, AJ Lai, P Jackson, A Robertson, ML Wanakule, NS Balsara, NP AF Nedoma, Alisyn J. Lai, Peggy Jackson, Andrew Robertson, Megan L. Wanakule, Nisita S. Balsara, Nitash P. TI Phase Behavior of Asymmetric Multicomponent A/B/A-C Blends with Unequal Homopolymer Molecular Weights SO MACROMOLECULES LA English DT Article ID TERNARY POLYMER BLENDS; ANGLE NEUTRON-SCATTERING; BLOCK-COPOLYMER; REPULSIVE INTERACTIONS; DIBLOCK COPOLYMER; BICONTINUOUS MICROEMULSIONS; COPOLYMER/HOMOPOLYMER BLENDS; THERMODYNAMIC INTERACTIONS; MECHANICAL-PROPERTIES; SURFACTANT SOLUTIONS AB Small angle neutron scattering is used to study the phase behavior of mixtures of two immiscible homopolymers (A and B) and a diblock copolymer (A-C) wherein B and C chains exhibit attractive interactions (negative Flory-Huggins interaction parameter) and the other pairs of chains exhibit repulsive interactions. This study explores the effect of homopolymer molecular weight asymmetry (N(A)/N(B) not equal I, where N(I) is the number of monomer units per chain in homopolymer I) at fixed segregation strength of the homopolymers. The temperature windows over which lamellae, microemulsions, macrophase separation, and homogeneous phases are found are affected qualitatively by N(A)/N(B). In particular, a homogeneous window that was not present in symmetric A/B/A-C blends is seen when N(A)/N(B) exceeds a critical value. C1 [Nedoma, Alisyn J.; Lai, Peggy; Wanakule, Nisita S.; Balsara, Nitash P.] Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. [Jackson, Andrew] Natl Inst Stand & Technol, Ctr Neutron Res, Gaithersburg, MD 20899 USA. [Jackson, Andrew] Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA. [Robertson, Megan L.] Univ Minnesota, Dept Chem Engn & Mat Sci, Minneapolis, MN 55455 USA. [Balsara, Nitash P.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Balsara, Nitash P.] Univ Calif Berkeley, Lawrence Berkeley Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. RP Balsara, NP (reprint author), Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. EM nbalsara@berkeley.edu RI Jackson, Andrew/B-9793-2008; OI Jackson, Andrew/0000-0002-6296-0336; Nedoma, Alisyn/0000-0002-3537-2846 FU National Institute of Standards and Technology; U.S. Department of Commerce; National Science Foundation [DMR-0454672] FX We acknowledge The Dow Chemical Company for providing the primary support for this work and Dr. T. Kalanthar for guidance and helpful discussions. A.J.N. was also supported by the Tyco Fellowship. We acknowledge the support of the National Institute of Standards and Technology, U.S. Department of Commerce, in providing the neutron research facilities used in this work. This work utilized facilities supported in part by the National Science Foundation under Agreement No. DMR-0454672. NR 71 TC 6 Z9 6 U1 1 U2 22 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0024-9297 J9 MACROMOLECULES JI Macromolecules PD APR 13 PY 2010 VL 43 IS 7 BP 3549 EP 3555 DI 10.1021/ma1000354 PG 7 WC Polymer Science SC Polymer Science GA 577OH UT WOS:000276232800056 ER PT J AU Kadau, K Barber, JL Germann, TC Holian, BL Alder, BJ AF Kadau, Kai Barber, John L. Germann, Timothy C. Holian, Brad L. Alder, Berni J. TI Atomistic methods in fluid simulation SO PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES LA English DT Article DE molecular dynamics; direct simulation Monte Carlo; Rayleigh-Taylor instability; Richtmyer-Meshkov instability; high-performance computing; SPASM ID RAYLEIGH-TAYLOR INSTABILITY; MOLECULAR-DYNAMICS; BENARD CONVECTION; TRANSITION; EQUATION; GROWTH; WAVES AB Atomistic methods, such as molecular dynamics and direct simulation Monte Carlo, constitute a powerful and growing set of techniques for fluid-dynamics simulation. The more fundamental nature of such methods, which exhibit nonlinear transport effects and small-scale fluctuations, extends their modelling accuracy to a significantly wider range of scales and regimes than the more traditional Navier-Stokes-based continuum fluid-simulation techniques. In this paper, we describe the current state of the art in atomistic fluid simulation, from both a theoretical and a computational standpoint, and outline the advantages and limitations of such methods. In addition, we present an overview of some recent atomistic-simulation results on fluid instabilities and on the physical scaling of atomistic techniques. Finally, we suggest possible avenues of future research in the field. C1 [Kadau, Kai; Barber, John L.; Germann, Timothy C.; Holian, Brad L.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Alder, Berni J.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Kadau, K (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM kadaukai@yahoo.com OI Germann, Timothy/0000-0002-6813-238X FU National Nuclear Security Administration of the US Department of Energy at Los Alamos National Laboratory [DE-AC52-06NA25396] FX This work was carried out under the auspices of the National Nuclear Security Administration of the US Department of Energy at Los Alamos National Laboratory under contract no. DE-AC52-06NA25396 with funding from the ASC project. NR 44 TC 20 Z9 20 U1 1 U2 12 PU ROYAL SOC PI LONDON PA 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND SN 1364-503X J9 PHILOS T R SOC A JI Philos. Trans. R. Soc. A-Math. Phys. Eng. Sci. PD APR 13 PY 2010 VL 368 IS 1916 BP 1547 EP 1560 DI 10.1098/rsta.2009.0218 PG 14 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 564TZ UT WOS:000275241800002 PM 20211873 ER PT J AU Andrews, MJ Dalziel, SB AF Andrews, Malcolm J. Dalziel, Stuart B. TI Small Atwood number Rayleigh-Taylor experiments SO PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES LA English DT Review DE Rayleigh-Taylor instability; small Atwood number; turbulent mixing; experiments ID MIXING LAYER; INSTABILITY; EVOLUTION; FLUIDS; TURBULENCE AB Consideration is given to small Atwood number (non-dimensional density difference) experiments to investigate mixing driven by Rayleigh-Taylor (R-T) instability. The past 20 years have seen the development of novel experiments to investigate R-T mixing and, simultaneously, the advent of high-fidelity diagnostics. Indeed, the developments of experiments and diagnostics have gone hand in hand, and as a result modern R- T experiments rival the capabilities and research scope of shear-driven mixing experiments. Thus, research into the small Atwood number limit has made significant progress over the past 20 years, and has offered important insights into natural mixing processes as well as the general R-T problem. This review of small Atwood number experiments serves as an opportunity to discuss progress, and also to provoke thoughts about future high Atwood number designs and difficulties. C1 [Dalziel, Stuart B.] Univ Cambridge, Dept Appl Math & Theoret Phys, Cambridge CB3 0WA, England. [Andrews, Malcolm J.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Dalziel, SB (reprint author), Univ Cambridge, Dept Appl Math & Theoret Phys, Wilberforce Rd, Cambridge CB3 0WA, England. EM s.dalziel@damtp.cam.ac.uk OI Dalziel, Stuart/0000-0002-8487-2038 FU US Department of Energy [DE-FG03-99DP00276/A000, DE-FG03-02NA00060, DE-FG52-06NA26154]; AWE FX The water tunnel experiments referred to in this paper were performed in the Stockpile Stewardship Academic Alliances (SSAA) laboratory of Andrews at Texas A&M University by Dale Snider, Peter Wilson, Praveen Ramaprabhu, Arindam Banerjee, Wayne Kraft and Nicholas Mueschke, with the support of the US Department of Energy under contracts DE-FG03-99DP00276/A000, DE-FG03-02NA00060 and DE-FG52-06NA26154. Dalziel's sliding barrier experiments were supported by AWE through an extended series of contracts with the assistance of Paul Linden, Jose Redondo, Joanne Holford, David Leppinen and Andrew Lawrie. NR 44 TC 17 Z9 17 U1 1 U2 9 PU ROYAL SOC PI LONDON PA 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND SN 1364-503X EI 1471-2962 J9 PHILOS T R SOC A JI Philos. Trans. R. Soc. A-Math. Phys. Eng. Sci. PD APR 13 PY 2010 VL 368 IS 1916 BP 1663 EP 1679 DI 10.1098/rsta.2010.0007 PG 17 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 564TZ UT WOS:000275241800008 PM 20211879 ER PT J AU Sleiman, M Gundel, LA Pankow, JF Jacob, P Singer, BC Destaillats, H AF Sleiman, Mohamad Gundel, Lara A. Pankow, James F. Jacob, Peyton, III Singer, Brett C. Destaillats, Hugo TI Formation of carcinogens indoors by surface-mediated reactions of nicotine with nitrous acid, leading to potential thirdhand smoke hazards SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE exposure; indoor environment; nitrosamine; nitrogen oxides; heterogeneous chemistry ID ENVIRONMENTAL TOBACCO-SMOKE; GAS-PHASE; NO2; EXPOSURE; NITROSAMINES; DIOXIDE; CANCER; OZONE AB This study shows that residual nicotine from tobacco smoke sorbed to indoor surfaces reacts with ambient nitrous acid (HONO) to form carcinogenic tobacco-specific nitrosamines (TSNAs). Substantial levels of TSNAs were measured on surfaces inside a smoker's vehicle. Laboratory experiments using cellulose as a model indoor material yielded a >10-fold increase of surface-bound TSNAs when sorbed secondhand smoke was exposed to 60 ppbv HONO for 3 hours. In both cases we identified 1-(N-methyl-N-nitrosamino)-1-(3-pyridinyl)-4-butanal, a TSNA absent in freshly emitted tobacco smoke, as the major product. The potent carcinogens 4-(methylnitrosamino)-1-(3-pyridinyl)-1-butanone and N-nitroso nornicotine were also detected. Time-course measurements revealed fast TSNA formation, with up to 0.4% conversion of nicotine. Given the rapid sorption and persistence of high levels of nicotine on indoor surfaces-including clothing and human skin-this recently identified process represents an unappreciated health hazard through dermal exposure, dust inhalation, and ingestion. These findings raise concerns about exposures to the tobacco smoke residue that has been recently dubbed "thirdhand smoke." Our work highlights the importance of reactions at indoor interfaces, particularly those involving amines and NO(x)/HONO cycling, with potential health impacts. C1 [Sleiman, Mohamad; Gundel, Lara A.; Singer, Brett C.; Destaillats, Hugo] Univ Calif Berkeley, Lawrence Berkeley Lab, Indoor Environm Dept, Berkeley, CA 94720 USA. [Pankow, James F.] Portland State Univ, Dept Chem, Portland, OR 97201 USA. [Jacob, Peyton, III] Univ Calif San Francisco, Dept Med, San Francisco, CA 94143 USA. [Jacob, Peyton, III] Univ Calif San Francisco, Dept Psychiat, San Francisco, CA 94143 USA. [Destaillats, Hugo] Arizona State Univ, Sch Sustainable Engn & Built Environm, Tempe, AZ 85287 USA. RP Destaillats, H (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Indoor Environm Dept, 1 Cyclotron Rd,MS 70-108B, Berkeley, CA 94720 USA. EM HDestaillats@lbl.gov RI Destaillats, Hugo/B-7936-2013 FU University of California [16RT-0158]; US Department of Energy [DE-AC02-05CH11231]; Flight Attendant Medical Research Institute; National Institutes of Health [DA012393] FX We express our gratitude to S. Schick (University of California San Francisco), C.J. Weschler (Environmental & Occupational Health Science Institute, Rutgers University, and Technical University of Denmark), K. Asotra (University of California Tobacco-Related Diseases Research Program), and W.J. Fisk (LBNL) for helpful suggestions and to R. Maddalena, M. Russell, R. Dod, F. Mizbani, E. Smith (LBNL), W. Luo, C. Chen, W. Ascher (Portland State University), C. Havel, and M. Goniewicz (University of California San Francisco) for their assistance. We also thank the journal editor and reviewers for their helpful suggestions. This work was supported by the University of California Tobacco-Related Diseases Research Program (Project 16RT-0158). Experimental work was carried out at LBNL under US Department of Energy Contract DE-AC02-05CH11231. Laboratory resources at University of California San Francisco were supported by the Flight Attendant Medical Research Institute and by National Institutes of Health Grant DA012393. NR 25 TC 135 Z9 140 U1 6 U2 63 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD APR 13 PY 2010 VL 107 IS 15 BP 6576 EP 6581 DI 10.1073/pnas.0912820107 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 583AC UT WOS:000276642100006 PM 20142504 ER PT J AU Vaden, TD Song, C Zaveri, RA Imre, D Zelenyuk, A AF Vaden, Timothy D. Song, Chen Zaveri, Rahul A. Imre, Dan Zelenyuk, Alla TI Morphology of mixed primary and secondary organic particles and the adsorption of spectator organic gases during aerosol formation SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE secondary organic aerosol; single-particle mass spectrometry; morphology ID EMISSIONS; SPLAT; SIZE; FINE; CITY AB Primary organic aerosol (POA) and associated vapors can play an important role in determining the formation and properties of secondary organic aerosol (SOA). If SOA and POA are miscible, POA will significantly enhance SOA formation and some POA vapor will incorporate into SOA particles. When the two are not miscible, condensation of SOA on POA particles forms particles with complex morphology. In addition, POA vapor can adsorb to the surface of SOA particles increasing their mass and affecting their evaporation rates. To gain insight into SOA/POA interactions we present a detailed experimental investigation of the morphologies of SOA particles formed during ozonolysis of alpha-pinene in the presence of dioctyl phthalate (DOP) particles, serving as a simplified model of hydrophobic POA, using a single-particle mass spectrometer. Ultraviolet laser depth-profiling experiments were used to characterize two different types of mixed SOA/DOP particles: those formed by condensation of the oxidized alpha-pinene products on size-selected DOP particles and by condensation of DOP on size-selected alpha-pinene SOA particles. The results show that the hydrophilic SOA and hydrophobic DOP do not mix but instead form layered phases. In addition, an examination of homogeneously nucleated SOA particles formed in the presence of DOP vapor shows them to have an adsorbed DOP coating layer that is similar to 4 nm thick and carries 12% of the particles mass. These results may have implications for SOA formation and behavior in the atmosphere, where numerous organic compounds with various volatilities and different polarities are present. C1 [Vaden, Timothy D.; Song, Chen; Zaveri, Rahul A.; Zelenyuk, Alla] Pacific NW Natl Lab, Richland, WA 99352 USA. [Imre, Dan] Imre Consulting, Richland, WA 99352 USA. RP Zelenyuk, A (reprint author), Pacific NW Natl Lab, POB 999,MSIN K8-88,902 Battelle Blvd, Richland, WA 99352 USA. EM alla.zelenyuk@pnl.gov RI Song, Chen/H-3374-2011; OI Zaveri, Rahul/0000-0001-9874-8807 FU U.S. Department of Energy Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences; Office of Biological and Environmental Research; Department of Energy's Office of Biological and Environmental Research at Pacific Northwest National Laboratory (PNNL); U.S. Department of Energy [DE-AC06-76RL0 1830] FX The authors would like to thank Dr. Manish Shrivastava for helpful discussions. This work was supported by the U.S. Department of Energy Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences and Office of Biological and Environmental Research. This research was performed in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research at Pacific Northwest National Laboratory (PNNL). PNNL is operated by the U.S. Department of Energy by Battelle Memorial Institute under Contract DE-AC06-76RL0 1830. NR 13 TC 55 Z9 56 U1 2 U2 38 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD APR 13 PY 2010 VL 107 IS 15 BP 6658 EP 6663 DI 10.1073/pnas.0911206107 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 583AC UT WOS:000276642100020 PM 20194795 ER PT J AU Sukumar, N Mathews, FS Langan, P Davidson, VL AF Sukumar, N. Mathews, F. S. Langan, P. Davidson, V. L. TI A joint x-ray and neutron study on amicyanin reveals the role of protein dynamics in electron transfer SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE copper protein; hydrogen/deuterium exchange; hydrogen bonding; oxidation/reduction; redox potential ID BLUE COPPER PROTEIN; PARACOCCUS-DENITRIFICANS; METHYLAMINE DEHYDROGENASE; CYTOCHROME C-551I; CRYSTAL-STRUCTURE; TRANSFER COMPLEX; HYDROGEN-BONDS; DIFFRACTION; CRYSTALLOGRAPHY; RESOLUTION AB The joint x-ray/neutron diffraction model of the Type I copper protein, amicyanin from Paracoccus denitrificans was determined at 1.8 angstrom resolution. The protein was crystallized using reagents prepared in D(2)O. About 86% of the amide hydrogen atoms are either partially or fully exchanged, which correlates well with the atomic depth of the amide nitrogen atom and the secondary structure type, but with notable exceptions. Each of the four residues that provide copper ligands is partially deuterated. The model reveals the dynamic nature of the protein, especially around the copper-binding site. A detailed analysis of the presence of deuterated water molecules near the exchange sites indicates that amide hydrogen exchange is primarily due to the flexibility of the protein. Analysis of the electron transfer path through the protein shows that residues in that region are highly dynamic, as judged by hydrogen/deuterium exchange. This could increase the rate of electron transfer by transiently shortening through-space jumps in pathways or by increasing the atomic packing density. Analysis of C-H center dot center dot center dot X bonding reveals previously undefined roles of these relatively weak H bonds, which, when present in sufficient number can collectively influence the structure, redox, and electron transfer properties of amicyanin. C1 [Sukumar, N.] Cornell Univ, NE Collaborat Access Team, Argonne Natl Lab, Argonne, IL 60439 USA. [Sukumar, N.] Cornell Univ, Dept Chem & Chem Biol, Argonne Natl Lab, Argonne, IL 60439 USA. [Mathews, F. S.] Washington Univ, Sch Med, Dept Biochem & Mol Biophys, St Louis, MO 63110 USA. [Langan, P.] Los Alamos Natl Lab, Biosci Div, Los Alamos, NM 87545 USA. [Davidson, V. L.] Univ Mississippi, Med Ctr, Dept Biochem, Jackson, MS 39216 USA. RP Sukumar, N (reprint author), Cornell Univ, NE Collaborat Access Team, Argonne Natl Lab, Bldg 436E, Argonne, IL 60439 USA. EM sukumar@anl.gov RI Langan, Paul/N-5237-2015; OI Langan, Paul/0000-0002-0247-3122; Davidson, Victor/0000-0002-1966-7302 FU National Center for Research Resources [RR-15301]; National Institutes of Health [GM-41574]; US Department of Energy [DE-AC02-06CH11357] FX We thank Dr. Marat Mustyakimov, Los Alamos National Laboratory, for his help during the refinement, and Professor Ealick, Cornell University, for helpful discussions. This work is supported by award RR-15301 (Northeastern Collaborative Access Team facility at the Advanced Photon Source) from the National Center for Research Resources and the National Institutes of Health Grant GM-41574 (V. L. D.). Use of the Advanced Photon Source is supported by the US Department of Energy, Office of Science, Office of Basic Energy Science, under Contract DE-AC02-06CH11357. The data were collected at the Protein Crystallography Station, funded by the office of Biological and Environmental Research of the US Department of Energy. NR 34 TC 16 Z9 17 U1 0 U2 6 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD APR 13 PY 2010 VL 107 IS 15 BP 6817 EP 6822 DI 10.1073/pnas.0912672107 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 583AC UT WOS:000276642100048 PM 20351252 ER PT J AU Bunch, TE West, A Firestone, RB Kennett, JP Wittke, JH Kinzie, CR Wolbach, WS AF Bunch, Ted E. West, Allen Firestone, Richard B. Kennett, James P. Wittke, James H. Kinzie, Charles R. Wolbach, Wendy S. TI Geochemical data reported by Paquay et al. do not refute Younger Dryas impact event SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Letter C1 [Bunch, Ted E.; Wittke, James H.] No Arizona Univ, Flagstaff, AZ 86011 USA. [West, Allen] GeoSci Consulting, Dewey, AZ 86327 USA. [Firestone, Richard B.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Kennett, James P.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Kinzie, Charles R.; Wolbach, Wendy S.] Depaul Univ, Chicago, IL 60614 USA. RP Bunch, TE (reprint author), No Arizona Univ, Flagstaff, AZ 86011 USA. EM tbear1@cableone.net OI Wolbach, Wendy/0000-0003-4398-8269; Firestone, Richard/0000-0003-3833-5546 NR 5 TC 5 Z9 5 U1 1 U2 5 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD APR 13 PY 2010 VL 107 IS 15 BP E58 EP E58 DI 10.1073/pnas.1001156107 PG 1 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 583AC UT WOS:000276642100100 PM 20388907 ER PT J AU Zhan, YQ Holmstrom, E Lizarraga, R Eriksson, O Liu, XJ Li, FH Carlegrim, E Stafstrom, S Fahlman, M AF Zhan, Yiqiang Holmstrom, Erik Lizarraga, Raquel Eriksson, Olle Liu, Xianjie Li, Fenghong Carlegrim, Elin Stafstrom, Sven Fahlman, Mats TI Efficient Spin Injection Through Exchange Coupling at Organic Semiconductor/Ferromagnet Heterojunctions SO ADVANCED MATERIALS LA English DT Article ID SPINTRONICS; VALVE; INTERFACES; DEVICES AB The schematic visualization of the Alq(3) molecule on the Fe substrate with the optimized geometry at lowest total energy. When the Alq(3) molecule is relaxed on the surface, only two of the wings are lying down on the Fe surface, and the third wing remains perpendicular to the surface, showing a strong hybridization occurance. C1 [Zhan, Yiqiang; Liu, Xianjie; Li, Fenghong; Carlegrim, Elin; Stafstrom, Sven; Fahlman, Mats] Linkoping Univ, Dept Phys Chem & Biol, S-58183 Linkoping, Sweden. [Holmstrom, Erik; Lizarraga, Raquel] Univ Austral Chile, Inst Fis, Valdivia, Chile. [Holmstrom, Erik; Lizarraga, Raquel] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Eriksson, Olle] Uppsala Univ, Dept Phys & Mat Sci, S-75121 Uppsala, Sweden. RP Zhan, YQ (reprint author), Linkoping Univ, Dept Phys Chem & Biol, S-58183 Linkoping, Sweden. EM yiqzh@ifm.liu.se RI Stafstrom, Sven/G-2982-2011; Zhan, Yiqiang/A-6687-2008; Holmstrom, Erik/A-5308-2009; Eriksson, Olle/E-3265-2014; Riminucci, Alberto/D-7525-2011; Fahlman, Mats/A-1524-2009; Liu, Xianjie/E-6076-2010 OI Stafstrom, Sven/0000-0001-6555-239X; Zhan, Yiqiang/0000-0001-8391-2555; Holmstrom, Erik/0000-0002-1198-3861; Eriksson, Olle/0000-0001-5111-1374; Riminucci, Alberto/0000-0003-0976-1810; Fahlman, Mats/0000-0001-9879-3915; Liu, Xianjie/0000-0002-3190-2774 FU PBCT (Chile) [ACT-24/2006]; FONDECYT [11070115, 11080259]; Swedish Research Council; Knut and Alice Wallenberg Foundation FX The experimental part of work was carried out within the EU Integrated Project OFSPIN (EU-FP6-STREP). Chilean support given by PBCT (Chile) Grant No.ACT-24/2006 and FONDECYT projects 11070115 and 11080259. In general, the Surface Physics and Chemistry division is supported by the Swedish Research Council (project grant and Linneus center) and the Knut and Alice Wallenberg Foundation. Supporting Information is available online from Wiley InterScience or from the author. NR 27 TC 50 Z9 51 U1 8 U2 46 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0935-9648 J9 ADV MATER JI Adv. Mater. PD APR 12 PY 2010 VL 22 IS 14 BP 1626 EP + DI 10.1002/adma.200903556 PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 590EB UT WOS:000277205900012 PM 20496393 ER PT J AU Biegalski, MD Dorr, K Kim, DH Christen, HM AF Biegalski, M. D. Doerr, K. Kim, D. H. Christen, H. M. TI Applying uniform reversible strain to epitaxial oxide films SO APPLIED PHYSICS LETTERS LA English DT Article DE bismuth compounds; epitaxial layers; lanthanum compounds; lattice constants; Poisson ratio; strontium compounds; X-ray diffraction ID THIN-FILMS AB We demonstrate using four-circle x-ray diffraction that the piezoelectric substrate of Pb(Mg1/3Nb2/3)(0.72)Ti0.28O3(001) induces uniform reversible in-plane strain to epitaxially-grown oxide films and bilayers. The biaxial in-plane strain depends linearly on the applied electrical voltage. Utilizing the reversible strain, the strain-dependent lattice structure and the Poisson number characterizing the elastic response is determined for 200 nm thick SrTiO3, LaScO3, and BiFeO3 films. The uniformity and reversibility of the strain provides access to the direct quantitative measurement of strain-dependent properties of epitaxial oxide films. C1 [Biegalski, M. D.; Christen, H. M.] Oak Ridge Natl Lab, CNMS, Oak Ridge, TN 37830 USA. [Doerr, K.] IFW Dresden, Inst Metall Mat, D-01171 Dresden, Germany. [Kim, D. H.] Tulane Univ, Dept Phys & Engn Phys, New Orleans, LA 70118 USA. RP Biegalski, MD (reprint author), Oak Ridge Natl Lab, CNMS, Oak Ridge, TN 37830 USA. EM biegalskim@ornl.gov RI Kim, Dae Ho/B-4670-2012; Christen, Hans/H-6551-2013 OI Christen, Hans/0000-0001-8187-7469 FU Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. DOE; Deutsche Forschungsgemeinschaft [FOR520] FX The research at the CNMS was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. DOE. K. D. acknowledges funding by the Deutsche Forschungsgemeinschaft, FOR520. NR 20 TC 52 Z9 52 U1 4 U2 49 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD APR 12 PY 2010 VL 96 IS 15 AR 151905 DI 10.1063/1.3374323 PG 3 WC Physics, Applied SC Physics GA 584ZR UT WOS:000276794100023 ER PT J AU Bisig, A Rhensius, J Kammerer, M Curcic, M Stoll, H Schutz, G Van Waeyenberge, B Chou, KW Tyliszczak, T Heyderman, LJ Krzyk, S von Bieren, A Klaui, M AF Bisig, Andre Rhensius, Jan Kammerer, Matthias Curcic, Michael Stoll, Hermann Schuetz, Gisela Van Waeyenberge, Bartel Chou, Kang Wei Tyliszczak, Tolek Heyderman, Laura J. Krzyk, Stephen von Bieren, Arndt Klaeui, Mathias TI Direct imaging of current induced magnetic vortex gyration in an asymmetric potential well SO APPLIED PHYSICS LETTERS LA English DT Article DE elastic constants; magnetic domain walls; magnetic structure; nanomagnetics; nanowires; Permalloy; time resolved spectroscopy; X-ray microscopy ID DOMAIN-WALL MOTION; DYNAMICS AB Employing time-resolved x-ray microscopy, we investigate the dynamics of a pinned magnetic vortex domain wall in a magnetic nanowire. The gyrotropic motion of the vortex core is imaged in response to an exciting ac current. The elliptical vortex core trajectory at resonance reveals asymmetries in the local potential well that are correlated with the pinning geometry. Using the analytical model of a two-dimensional harmonic oscillator, we determine the resonance frequency of the vortex core gyration and, from the eccentricity of the vortex core trajectory at resonance, we can deduce the stiffness of the local potential well. C1 [Bisig, Andre; Rhensius, Jan; Krzyk, Stephen; von Bieren, Arndt; Klaeui, Mathias] Univ Konstanz, Fachbereich Phys, D-78457 Constance, Germany. [Bisig, Andre; Kammerer, Matthias; Curcic, Michael; Stoll, Hermann; Schuetz, Gisela] Max Planck Inst Met Res, D-70569 Stuttgart, Germany. [Rhensius, Jan; Heyderman, Laura J.] Paul Scherrer Inst, Lab Micro & Nanotechnol, CH-5232 Villigen, Switzerland. [Van Waeyenberge, Bartel] Univ Ghent, Dept Solid State Sci, B-9000 Ghent, Belgium. [Chou, Kang Wei; Tyliszczak, Tolek] LBNL, Adv Light Source, Berkeley, CA 94720 USA. [Klaeui, Mathias] Univ Konstanz, Zukunftskolleg, D-78457 Constance, Germany. RP Klaui, M (reprint author), Univ Konstanz, Fachbereich Phys, Univ Str 10, D-78457 Constance, Germany. EM mathias@klaeui.de RI Klaui, Mathias/B-6972-2009; Heyderman, Laura/E-7959-2015 OI Klaui, Mathias/0000-0002-4848-2569; FU DFG [KL1811]; Landesstiftung Baden Wurttemberg; European Research Council [ERC2007-Stg 208162]; EU RTN SPINSWITCH [MRTN-CT-2006-035327]; Samsung Advanced Institute of Technology; Office of Science, Office of Basic Energy Sciences, of the U. S. Department of Energ [DE-AC02-05CH11231] FX We thank Lutz Heyne for numerical calculations, the DFG (SFB 767, Grant No. KL1811), the Landesstiftung Baden Wurttemberg, the European Research Council via its Starting Independent Researcher Grant (Grant No. ERC2007-Stg 208162) scheme, EU RTN SPINSWITCH (Grant No. MRTN-CT-2006-035327), and the Samsung Advanced Institute of Technology for financial support. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 21 TC 15 Z9 15 U1 1 U2 20 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD APR 12 PY 2010 VL 96 IS 15 AR 152506 DI 10.1063/1.3373590 PG 3 WC Physics, Applied SC Physics GA 584ZR UT WOS:000276794100046 ER PT J AU Di, ZF Wang, YQ Nastasi, M Theodore, ND AF Di, Z. F. Wang, Y. Q. Nastasi, M. Theodore, N. David TI Origin of reverse annealing effect in hydrogen-implanted silicon SO APPLIED PHYSICS LETTERS LA English DT Article DE annealing; channelling; elemental semiconductors; hydrogen; ion implantation; nucleation; silicon ID DEFECTS; GROWTH; SI AB In contradiction to conventional damage annealing, thermally annealed H-implanted Si exhibits an increase in damage or reverse annealing behavior, whose mechanism has remained elusive. In this work, we conclusively elucidate that the reverse annealing effect is due to the nucleation and growth of hydrogen-induced platelets. Platelets are responsible for an increase in the height and width of the channeling damage peak following increased isochronal anneals. C1 [Di, Z. F.; Wang, Y. Q.; Nastasi, M.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Theodore, N. David] Freescale Semicond Inc, Silicon Technol Solut, Tempe, AZ 85284 USA. RP Di, ZF (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87545 USA. EM zengfeng@lanl.gov FU Department of Energy, Office of Basic Energy Science FX This work is supported by the Department of Energy, Office of Basic Energy Science. NR 21 TC 4 Z9 4 U1 0 U2 6 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD APR 12 PY 2010 VL 96 IS 15 AR 154103 DI 10.1063/1.3396987 PG 3 WC Physics, Applied SC Physics GA 584ZR UT WOS:000276794100082 ER PT J AU Kim, S Yi, DC Passian, A Thundat, T AF Kim, Seonghwan Yi, Dechang Passian, Ali Thundat, Thomas TI Observation of an anomalous mass effect in microcantilever-based biosensing caused by adsorbed DNA SO APPLIED PHYSICS LETTERS LA English DT Article DE adsorbed layers; adsorption; bioMEMS; biosensors; cantilevers; DNA; hydrodynamics; microsensors; molecular biophysics ID ATOMIC-FORCE MICROSCOPE; BIOLOGICAL DETECTION; FREQUENCY; SENSORS; HYBRIDIZATION; CANTILEVERS AB Quantifying adsorbed mass using resonance frequency variation in a microcantilever is an established technique. However, when applied to adsorbed mass determination in liquids, the resonance frequency variations represent several contributions. While the discrepancy between the apparent and real adsorbed mass is negligible for measurements in air, it can be significant in liquids. Here we present an anomalous effect of adsorbed DNA on the resonance frequency of microcantilevers which cannot be explained using current models. Our findings suggest that the measured frequency shifts may be explained on the basis of a hydrodynamic interaction caused by the adsorbed molecules on the cantilever. C1 [Kim, Seonghwan; Yi, Dechang; Passian, Ali; Thundat, Thomas] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. [Passian, Ali; Thundat, Thomas] Univ Tennessee, Dept Phys, Knoxville, TN 37996 USA. [Thundat, Thomas] Univ Tennessee, Dept Mech Aerosp & Biomed Engn, Knoxville, TN 37996 USA. RP Thundat, T (reprint author), Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. EM thundattg@ornl.gov RI Kim, Seonghwan/J-6884-2012 OI Kim, Seonghwan/0000-0001-7735-3582 FU Scientific User Facilities Division; OBES; U.S. DOE; U.S. DOE [DE-AC05-00OR22725] FX This research at ORNL's CNMS was sponsored by the Scientific User Facilities Division, OBES, U.S. DOE. ORNL is managed by UT-Battelle, LLC for the U.S. DOE under Contract No. DE-AC05-00OR22725. NR 24 TC 14 Z9 14 U1 3 U2 11 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD APR 12 PY 2010 VL 96 IS 15 AR 153703 DI 10.1063/1.3399234 PG 3 WC Physics, Applied SC Physics GA 584ZR UT WOS:000276794100078 ER PT J AU Lounis, SD Siegel, DA Broesler, R Hwang, CG Haller, EE Lanzara, A AF Lounis, S. D. Siegel, D. A. Broesler, R. Hwang, C. G. Haller, E. E. Lanzara, A. TI Resonant photoluminescent charging of epitaxial graphene SO APPLIED PHYSICS LETTERS LA English DT Article DE doping; epitaxial layers; Fermi level; graphene; photoelectron spectra; photoluminescence; Schottky barriers; silicon compounds ID ELECTRONIC-PROPERTIES; SILICON-CARBIDE; RADIATION; DEFECTS; EXCITON AB Photoluminescence spectroscopy (PL) and angle resolved photoemission spectroscopy have been used to study the interaction between epitaxially grown graphene and the silicon carbide (SiC) substrate. We report evidence of an anomalous temperature dependent shift in the Fermi energy with a maximum at 65 K. A similarly anomalous onset of the photoluminescence spectrum is also observed at this temperature. These results are explained by the formation of a Schottky barrier at the graphene/SiC interface, which is also responsible for large electron doping of epitaxially grown graphene films. Moreover, we identify a strong resonance between the sharp no-phonon peaks of the D(1) photoluminescence spectrum in SiC and the electronic transition across the barrier, suggesting that epitaxial graphene might be also used to selectively detect photons of precise energies. C1 [Lounis, S. D.] Univ Calif Berkeley, Grad Grp Appl Sci & Technol, Berkeley, CA 94720 USA. [Lounis, S. D.; Siegel, D. A.; Broesler, R.; Hwang, C. G.; Haller, E. E.; Lanzara, A.] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Siegel, D. A.; Lanzara, A.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Broesler, R.; Haller, E. E.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. RP Lounis, SD (reprint author), Univ Calif Berkeley, Grad Grp Appl Sci & Technol, Berkeley, CA 94720 USA. EM alanzara@lbl.gov FU Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy [DE-AC02-05CH11231]; UCOP FX We thank P. Yu and D. H. Lee for very useful discussions. ARPES measurements were supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Photoluminescence measurements were supported by the UCOP program on carbon-based nanostructures. NR 15 TC 4 Z9 4 U1 1 U2 18 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD APR 12 PY 2010 VL 96 IS 15 AR 151913 DI 10.1063/1.3396201 PG 3 WC Physics, Applied SC Physics GA 584ZR UT WOS:000276794100031 ER PT J AU Polizos, G Tuncer, E Sauers, I More, KL AF Polizos, Georgios Tuncer, Enis Sauers, Isidor More, Karren L. TI Properties of a nanodielectric cryogenic resin SO APPLIED PHYSICS LETTERS LA English DT Article DE dielectric losses; electric breakdown; filled polymers; nanocomposites; nanofabrication; nanoparticles; titanium compounds ID CARBON NANOTUBES; NANOFIBER COMPOSITES; NANOCOMPOSITES; BEHAVIOR; CRYSTALLIZATION; DISPERSION; SILICA AB Physical properties of a nanodielectric composed of in situ synthesized titanium dioxide (TiO(2)) nanoparticles (< 5 nm in diameter) and a cryogenic resin are reported. The dielectric losses were reduced by a factor of 2 in the nanocomposite, indicating that the presence of small TiO(2) nanoparticles restricted the mobility of the polymer chains. Dielectric breakdown data of the nanodielectric was distributed over a narrower range than that of the unfilled resin. The nanodielectric had 1.56 times higher 1% breakdown probability than the resin, yielding 0.64 times thinner insulation thickness for the same voltage level, which is beneficial in high voltage engineering. C1 [Polizos, Georgios; Tuncer, Enis; Sauers, Isidor] Oak Ridge Natl Lab, Div Fus Energy, Appl Superconduct Grp, Oak Ridge, TN 37831 USA. [More, Karren L.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Microscopy Grp, Oak Ridge, TN 37831 USA. RP Polizos, G (reprint author), Oak Ridge Natl Lab, Div Fus Energy, Appl Superconduct Grp, Oak Ridge, TN 37831 USA. EM tuncere@ornl.gov RI More, Karren/A-8097-2016; OI More, Karren/0000-0001-5223-9097; Tuncer, Enis/0000-0002-9324-4324 FU U.S. Department of Energy, Office of Electricity Delivery, and Energy Reliability, Advance Cables and Conductors [DE-AC05-00OR22725]; Scientific User Facilities Division, Office of Basic Energy Sciences, and U.S. Department of Energy FX Research sponsored by the U.S. Department of Energy, Office of Electricity Delivery, and Energy Reliability, Advance Cables and Conductors, under Contract No. DE-AC05-00OR22725 with Oak Ridge National Laboratory, managed and operated by UT-Battelle, LLC. The DSC and DMA measurements were performed at Oak Ridge National Laboratory's Center for Nanophase Materials Sciences, sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, and U.S. Department of Energy. NR 24 TC 10 Z9 10 U1 0 U2 13 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD APR 12 PY 2010 VL 96 IS 15 AR 152903 DI 10.1063/1.3394011 PG 3 WC Physics, Applied SC Physics GA 584ZR UT WOS:000276794100049 ER PT J AU Prokop, C Piot, P Lin, MC Stoltz, P AF Prokop, C. Piot, P. Lin, M. C. Stoltz, P. TI Numerical modeling of a table-top tunable Smith-Purcell terahertz free-electron laser operating in the super-radiant regime SO APPLIED PHYSICS LETTERS LA English DT Article DE diffraction gratings; finite difference time-domain analysis; free electron lasers; laser tuning; superradiance; terahertz wave generation AB Terahertz (THz) radiation occupies a very large portion of the electromagnetic spectrum and has generated much recent interest due to its ability to penetrate deep into many organic materials without the damage associated with ionizing radiation such as x-rays. One path for generating copious amount of tunable narrow-band THz radiation is based on the Smith-Purcell free-electron laser (SPFEL) effect. In this paper we propose a simple concept for a compact two-stage tunable SPFEL operating in the super-radiant regime capable of radiating at the fundamental bunching frequency. We demonstrate its capabilities and performances using the conformal finite-difference time-domain electromagnetic solver VORPAL. C1 [Prokop, C.; Piot, P.] No Illinois Univ, Dept Phys, No Illinois Ctr Accelerator & Detector Dev, De Kalb, IL 60115 USA. [Piot, P.] Fermilab Natl Accelerator Lab, Accelerator Phys Ctr, Batavia, IL 60510 USA. [Lin, M. C.; Stoltz, P.] Tech X Corp, Boulder, CO 80303 USA. RP Prokop, C (reprint author), No Illinois Univ, Dept Phys, No Illinois Ctr Accelerator & Detector Dev, De Kalb, IL 60115 USA. EM cprokop@gmail.com FU U.S. Department of Education with Northern Illinois University [P116Z050086] FX We thank Dr. P. Spentzouris (FNAL) for granting us access to the NERSC computers where our simulations were performed. This work was partially supported by the U.S. Department of Education under Contract No. P116Z050086 with Northern Illinois University. NR 17 TC 37 Z9 37 U1 0 U2 6 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD APR 12 PY 2010 VL 96 IS 15 AR 151502 DI 10.1063/1.3386543 PG 3 WC Physics, Applied SC Physics GA 584ZR UT WOS:000276794100017 ER PT J AU Pryce, IM Koleske, DD Fischer, AJ Atwater, HA AF Pryce, Imogen M. Koleske, Daniel D. Fischer, Arthur J. Atwater, Harry A. TI Plasmonic nanoparticle enhanced photocurrent in GaN/InGaN/GaN quantum well solar cells SO APPLIED PHYSICS LETTERS LA English DT Article DE gallium compounds; III-V semiconductors; indium compounds; nanoparticles; photoconductivity; plasmonics; semiconductor quantum wells; silver; solar cells; wide band gap semiconductors ID GAN AB We demonstrate enhanced external quantum efficiency and current-voltage characteristics due to scattering by 100 nm silver nanoparticles in a single 2.5 nm thkck InGaAn quantum well photovoltaic device. Nanoparticle arrays were fabricated on the surface of the device using an anodic alumina template masking process. The Ag nanoparticles increase light scattering, light trapping, and carrier collection in the III-N semiconductor layers leaqding to enhancement of the external quantum efficiency by up to 54%. Additionally, the short-circuit current in cells with 200 nm p-GaN emitter regions is increased by 6% under AM 1.5 illumination. AFORS-Het simulation software results were used to prdict cell performance and optimize emitter layer thickness. C1 [Pryce, Imogen M.; Atwater, Harry A.] CALTECH, Thomas J Watson Labs Appl Phys, Pasadena, CA 91125 USA. [Koleske, Daniel D.; Fischer, Arthur J.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Atwater, Harry A.] CALTECH, Kavli Nanosci Inst, Pasadena, CA 91125 USA. RP Pryce, IM (reprint author), CALTECH, Thomas J Watson Labs Appl Phys, Pasadena, CA 91125 USA. EM imogen@caltech.edu RI Pryce, Imogen/D-1302-2010 FU Department of Energy; Caltech Center for Sustainable Energy Research; National Science Foundation FX This research was supported by the Department of Energy Solar Energy Technology Program, the Global Climate and Energy Program, and the Caltech Center for Sustainable Energy Research. One of the authors (IMP) acknowledges the support of a National Science Foundation Graduate Fellowship. NR 16 TC 54 Z9 57 U1 8 U2 64 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD APR 12 PY 2010 VL 96 IS 15 AR 153501 DI 10.1063/1.3377900 PG 3 WC Physics, Applied SC Physics GA 584ZR UT WOS:000276794100071 ER PT J AU Duda, JR Kuuskraa, V Godec, M Van Leeuwen, T AF Duda, John R. Kuuskraa, Vello Godec, Michael Van Leeuwen, Tyler TI Modeling exercises assess US CO2-EOR potential SO OIL & GAS JOURNAL LA English DT Article C1 [Duda, John R.] US DOE, Strateg Ctr Nat Gas & Oil, Natl Energy Technol Lab, Morgantown, WV USA. [Kuuskraa, Vello; Godec, Michael; Van Leeuwen, Tyler] Adv Resources Int Inc, Arlington, VA USA. RP Duda, JR (reprint author), US DOE, Strateg Ctr Nat Gas & Oil, Natl Energy Technol Lab, Morgantown, WV USA. EM John.Duda@netl.doe.gov; vkuuskraa@adv-res.com; mgodec@adv-res.com NR 0 TC 1 Z9 1 U1 2 U2 3 PU PENNWELL PUBL CO ENERGY GROUP PI TULSA PA 1421 S SHERIDAN RD PO BOX 1260, TULSA, OK 74112 USA SN 0030-1388 J9 OIL GAS J JI Oil Gas J. PD APR 12 PY 2010 VL 108 IS 13 BP 52 EP 55 PG 4 WC Energy & Fuels; Engineering, Petroleum SC Energy & Fuels; Engineering GA 670YH UT WOS:000283465500019 ER PT J AU Guzey, V Strikman, M AF Guzey, V. Strikman, M. TI Color fluctuation approximation for multiple interactions in leading twist theory of nuclear shadowing SO PHYSICS LETTERS B LA English DT Article ID DEEP-INELASTIC SCATTERING; PARTON DISTRIBUTIONS; DIFFRACTION; HERA; QCD; EVOLUTION; DIS AB The leading twist theory of nuclear shadowing predicts the shadowing correction to nuclear parton distributions at small x by connecting it to the leading twist hard diffraction in electron-nucleon scattering. The uncertainties of the predictions are related to the shadowing effects resulting from the interaction of the hard probe with N >= 3 nucleons. We argue that the pattern of hard diffraction observed at HERA allows one to reduce these uncertainties. We develop a new approach to the treatment of these multiple interactions, which is based on the concept of the color fluctuations and accounts for the presence of both point-like and hadron-like configurations in the virtual photon wave function. Using the developed framework, we update our predictions for the leading twist nuclear shadowing in nuclear parton distributions of heavy nuclei at small x. (C) 2010 Elsevier B.V. All rights reserved. C1 [Guzey, V.] Thomas Jefferson Natl Accelerator Facil, Ctr Theory, Newport News, VA 23606 USA. [Strikman, M.] Penn State Univ, Dept Phys, University Pk, PA 16802 USA. RP Guzey, V (reprint author), Thomas Jefferson Natl Accelerator Facil, Ctr Theory, Newport News, VA 23606 USA. EM vguzey@jlab.org; strikman@phys.psu.edu OI Guzey, Vadim/0000-0002-2393-8507 FU US DOE [DE-AC05-060R23177, DE-FG02-93ER40771] FX The authors would like to thank L. Frankfurt for the collaboration on the subjects presented in this work.; Authored by Jefferson Science Associates, LLC, under US DOE Contract No. DE-AC05-060R23177. The US Government retains a nonexclusive, paid-up, irrevocable, world-wide license to publish or reproduce this manuscript for US Government purposes. Supported by DOE grant under contract DE-FG02-93ER40771. NR 34 TC 17 Z9 17 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 J9 PHYS LETT B JI Phys. Lett. B PD APR 12 PY 2010 VL 687 IS 2-3 BP 167 EP 173 DI 10.1016/j.physletb.2010.03.008 PG 7 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 588LF UT WOS:000277070800014 ER PT J AU Balitsky, I Chirilli, GA AF Balitsky, Ian Chirilli, Giovanni A. TI High-energy amplitudes in N=4 SYM in the next-to-leading order SO PHYSICS LETTERS B LA English DT Article DE Pomeron; Conformal invariance ID SMALL-X EVOLUTION; BFKL POMERON; SCATTERING; QCD AB The high-energy behavior of the N = 4 SYM amplitudes in the Regge limit can be calculated order by order in perturbation theory using the high-energy operator expansion in Wilson lines. At large No a typical four-point amplitude is determined by a single BFKL pomeron. The conformal structure of the four-point amplitude is fixed in terms of two functions: pomeron intercept and the coefficient function in front of the pomeron (the product of two residues). The pomeron intercept is universal while the coefficient function depends on the correlator in question. The intercept is known in the first two orders in coupling constant: BFKL intercept and NLO BFKL intercept calculated in Kotikov and Lipatov (2000, 2003, 2004) [1]. As an example of using the Wilson-line OPE, we calculate the coefficient function in front of the pomeron for the correlator of four Z(2) currents in the first two orders in perturbation theory. (C) 2010 Elsevier B.V. All rights reserved. C1 [Balitsky, Ian] Old Dominion Univ, Dept Phys, Norfolk, VA 23529 USA. [Balitsky, Ian] Jlab, Theory Grp, Newport News, VA 23606 USA. [Chirilli, Giovanni A.] Ecole Polytech, CNRS, Ctr Phys Theor, F-91128 Palaiseau, France. [Chirilli, Giovanni A.] Univ Paris 11, CNRS, LPT, F-91405 Orsay, France. RP Balitsky, I (reprint author), Old Dominion Univ, Dept Phys, 4600 Elkhorn Ave, Norfolk, VA 23529 USA. EM balitsky@jlab.org; chirilli@cpht.polytechnique.fr FU Jefferson Science Associates, LLC [DE-AC05-060R23177]; G.A.C. [ANR-06-JCJC-0084] FX The authors are grateful to L.N. Lipatov and J. Penedones for valuable discussions. This work was supported by contract DE-AC05-060R23177 under which the Jefferson Science Associates, LLC operate the Thomas Jefferson National Accelerator Facility. The work of G.A.C. is supported by the grant ANR-06-JCJC-0084. NR 31 TC 22 Z9 22 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 J9 PHYS LETT B JI Phys. Lett. B PD APR 12 PY 2010 VL 687 IS 2-3 BP 204 EP 213 DI 10.1016/j.physletb.2010.02.084 PG 10 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 588LF UT WOS:000277070800021 ER PT J AU Looker, Q Stonehill, LC Wallace, MS Galassi, M Cowee, MM Fenimore, E AF Looker, Q. Stonehill, L. C. Wallace, M. S. Galassi, M. Cowee, M. M. Fenimore, E. TI Demonstration of imaging via backscattering of annihilation gamma rays SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Compton backscatter; Three-dimensional imaging; Positron emission; Time-of-flight imaging AB Imaging via backscattering of annihilation gamma rays (IBAG) is a technique for three-dimensional gamma ray imaging of objects when only one side is accessible, such as for objects behind a wall or other barrier. This technique utilizes a positron source to produce nearly collinear, 511-keV gamma rays in opposite directions. One of these provides timing and directionality tagging, while the other backscatters off the object to be imaged. The scattering location can be reconstructed using the relative timing of the two gamma ray signals and the positions at which they are detected. Excellent timing resolution is required, since the time-of-flight information is essential for reconstruction. Three-dimensional imaging requires two arrays of detectors, one for the 511-keV tagging gamma ray and one for the backscattered gamma ray. We are studying the feasibility of an WAG system using LaBr(3) to give good timing resolution and energy-based event selection. This paper presents one-dimensional position reconstruction measurements from our laboratory system for a variety of objects and barriers. Published by Elsevier B.V. C1 [Looker, Q.; Stonehill, L. C.; Wallace, M. S.; Galassi, M.; Cowee, M. M.; Fenimore, E.] Los Alamos Natl Lab, Los Alamos, NM 87544 USA. RP Stonehill, LC (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87544 USA. EM qlooker@gmail.com; lauracs@lanl.gov NR 8 TC 3 Z9 3 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD APR 11 PY 2010 VL 615 IS 3 BP 295 EP 300 DI 10.1016/j.nima.2010.01.078 PG 6 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 590LU UT WOS:000277228500008 ER PT J AU Airapetian, A Akopov, N Akopov, Z Amarian, M Aschenauer, EC Augustyniak, W Avakian, R Avetissian, A Avetisyan, E Ball, B Belostotski, S Bianchi, N Blok, HP Bottcher, H Borissov, A Bowles, J Bryzgalov, V Burns, J Capiluppi, M Capitani, GP Cisbani, E Ciullo, G Contalbrigo, M Dalpiaz, PF Deconinck, W De Leo, R De Nardo, L De Sanctis, E Diefenthaler, M Di Nezza, P Dreschler, J Duren, M Ehrenfried, M Elbakian, G Ellinghaus, F Fabbri, R Fantoni, A Felawka, L Frullani, S Gabbert, D Gapienko, G Gapienko, V Garibaldi, F Gavrilov, G Gharibyan, V Giordano, F Gliske, S Hadjidakis, C Hartig, M Hasch, D Hasegawa, T Hill, G Hillenbrand, A Hoek, M Holler, Y Hristova, I Imazu, Y Ivanilov, A Izotov, A Jackson, HE Jgoun, A Jo, HS Joosten, S Kaiser, R Karyan, G Keri, T Kinney, E Kisselev, A Kobayashi, N Korotkov, V Kozlov, V Krauss, B Kravchenko, P Krivokhijine, VG Lagamba, L Lamb, R Lapikas, L Lehmann, I Lenisa, P Linden-Levy, LA Ruiz, AL Lorenzon, W Lu, XG Lu, XR Ma, BQ Mahon, D Makins, NCR Manaenkov, SI Manfre, L Mao, Y Marianski, B de la Ossa, AM Marukyan, H Miller, CA Miyachi, Y Movsisyan, A Muccifora, V Muller, D Murray, M Mussgiller, A Nappi, E Naryshkin, Y Nass, A Negodaev, M Nowak, WD Pappalardo, LL Perez-Benito, R Pickert, N Raithel, M Reimer, PE Reolon, AR Riedl, C Rith, K Rosner, G Rostomyan, A Rubin, J Ryckbosch, D Salomatin, Y Sanftl, F Schafer, A Schnell, G Schuler, KP Seitz, B Shibata, TA Shutov, V Stancari, M Statera, M Steffens, E Steijger, JJM Stenzel, H Stewart, J Stinzing, F Taroian, S Terkulov, A Trzcinski, A Tytgat, M Vandenbroucke, A Van der Nat, PB Van Haarlem, Y Van Hulse, C Varanda, M Veretennikov, D Vikhrov, V Vilardi, I Vogel, C Wang, S Yaschenko, S Ye, H Ye, Z Yen, S Yu, W Zeiler, D Zihlmann, B Zupranski, P AF Airapetian, A. Akopov, N. Akopov, Z. Amarian, M. Aschenauer, E. C. Augustyniak, W. Avakian, R. Avetissian, A. Avetisyan, E. Ball, B. Belostotski, S. Bianchi, N. Blok, H. P. Boettcher, H. Borissov, A. Bowles, J. Bryzgalov, V. Burns, J. Capiluppi, M. Capitani, G. P. Cisbani, E. Ciullo, G. Contalbrigo, M. Dalpiaz, P. F. Deconinck, W. De Leo, R. De Nardo, L. De Sanctis, E. Diefenthaler, M. Di Nezza, P. Dreschler, J. Dueren, M. Ehrenfried, M. Elbakian, G. Ellinghaus, F. Fabbri, R. Fantoni, A. Felawka, L. Frullani, S. Gabbert, D. Gapienko, G. Gapienko, V. Garibaldi, F. Gavrilov, G. Gharibyan, V. Giordano, F. Gliske, S. Hadjidakis, C. Hartig, M. Hasch, D. Hasegawa, T. Hill, G. Hillenbrand, A. Hoek, M. Holler, Y. Hristova, I. Imazu, Y. Ivanilov, A. Izotov, A. Jackson, H. E. Jgoun, A. Jo, H. S. Joosten, S. Kaiser, R. Karyan, G. Keri, T. Kinney, E. Kisselev, A. Kobayashi, N. Korotkov, V. Kozlov, V. Krauss, B. Kravchenko, P. Krivokhijine, V. G. Lagamba, L. Lamb, R. Lapikas, L. Lehmann, I. Lenisa, P. Linden-Levy, L. A. Ruiz, A. Lopez Lorenzon, W. Lu, X. -G. Lu, X. -R. Ma, B. -Q. Mahon, D. Makins, N. C. R. Manaenkov, S. I. Manfre, L. Mao, Y. Marianski, B. de la Ossa, A. Martinez Marukyan, H. Miller, C. A. Miyachi, Y. Movsisyan, A. Muccifora, V. Mueller, D. Murray, M. Mussgiller, A. Nappi, E. Naryshkin, Y. Nass, A. Negodaev, M. Nowak, W. -D. Pappalardo, L. L. Perez-Benito, R. Pickert, N. Raithel, M. Reimer, P. E. Reolon, A. R. Riedl, C. Rith, K. Rosner, G. Rostomyan, A. Rubin, J. Ryckbosch, D. Salomatin, Y. Sanftl, F. Schaefer, A. Schnell, G. Schueler, K. P. Seitz, B. Shibata, T. -A. Shutov, V. Stancari, M. Statera, M. Steffens, E. Steijger, J. J. M. Stenzel, H. Stewart, J. Stinzing, F. Taroian, S. Terkulov, A. Trzcinski, A. Tytgat, M. Vandenbroucke, A. Van der Nat, P. B. Van Haarlem, Y. Van Hulse, C. Varanda, M. Veretennikov, D. Vikhrov, V. Vilardi, I. Vogel, C. Wang, S. Yaschenko, S. Ye, H. Ye, Z. Yen, S. Yu, W. Zeiler, D. Zihlmann, B. Zupranski, P. CA HERMES Collaboration TI Measurement of azimuthal asymmetries associated with deeply virtual Compton scattering on an unpolarized deuterium target SO NUCLEAR PHYSICS B LA English DT Article DE DIS; HERMES experiment; GPD; DVCS; Deuteron; Unpolarized deuterium target ID GENERALIZED PARTON DISTRIBUTIONS; IMPACT PARAMETER SPACE; EVOLUTION KERNELS; HELICITY-FLIP; NUCLEON; HERA; AMPLITUDE; HERMES AB Azimuthal asymmetries in exclusive electroproduction of a real photon from an unpolarized deuterium target are measured with respect to beam helicity and charge. They appear in the distribution of these photons in the azimuthal angle phi around the virtual-photon direction, relative to the lepton scattering plane. The extracted asymmetries are attributed to either the deeply virtual Compton scattering process or its interference with the Bethe-Heitler process. They are compared with earlier results on the proton target. In the measured kinematic region, the beam-charge asymmetry amplitudes and the leading amplitudes of the beam-helicity asymmetries on an unpolarized deuteron target are compatible with the results from unpolarized protons. (C) 2009 Elsevier B.V. All rights reserved. C1 [Diefenthaler, M.; Krauss, B.; Mussgiller, A.; Nass, A.; Pickert, N.; Raithel, M.; Rith, K.; Steffens, E.; Stinzing, F.; Vogel, C.; Yaschenko, S.; Zeiler, D.] Univ Erlangen Nurnberg, Inst Phys, D-91058 Erlangen, Germany. [Jackson, H. E.; Reimer, P. E.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [De Leo, R.; Lagamba, L.; Nappi, E.; Vilardi, I.] Ist Nazl Fis Nucl, Sez Bari, I-70124 Bari, Italy. [Ma, B. -Q.; Mao, Y.; Wang, S.; Ye, H.] Peking Univ, Sch Phys, Beijing 100871, Peoples R China. [Ellinghaus, F.; Kinney, E.; de la Ossa, A. Martinez] Univ Colorado, Nucl Phys Lab, Boulder, CO 80309 USA. [Akopov, Z.; Avetisyan, E.; Borissov, A.; Deconinck, W.; De Nardo, L.; Gavrilov, G.; Giordano, F.; Hartig, M.; Holler, Y.; Mussgiller, A.; Rostomyan, A.; Schueler, K. P.; Varanda, M.; Ye, Z.; Zihlmann, B.] DESY, D-22603 Hamburg, Germany. [Amarian, M.; Aschenauer, E. C.; Boettcher, H.; Fabbri, R.; Gabbert, D.; Hillenbrand, A.; Hristova, I.; Lu, X. -G.; Negodaev, M.; Nowak, W. -D.; Riedl, C.; Schnell, G.; Stewart, J.; Yaschenko, S.] DESY, D-15738 Zeuthen, Germany. [Krivokhijine, V. G.; Shutov, V.] Joint Inst Nucl Res, Dubna 141980, Russia. [Capiluppi, M.; Ciullo, G.; Contalbrigo, M.; Dalpiaz, P. F.; Giordano, F.; Lenisa, P.; Pappalardo, L. L.; Stancari, M.; Statera, M.] Univ Ferrara, Ist Nazl Fis Nucl, Sez Ferrara, I-44100 Ferrara, Italy. [Capiluppi, M.; Ciullo, G.; Contalbrigo, M.; Dalpiaz, P. F.; Giordano, F.; Lenisa, P.; Pappalardo, L. L.; Stancari, M.; Statera, M.] Univ Ferrara, Dipartimento Fis, I-44100 Ferrara, Italy. [Bianchi, N.; Capitani, G. P.; De Sanctis, E.; Di Nezza, P.; Fantoni, A.; Hadjidakis, C.; Hasch, D.; Muccifora, V.; Reolon, A. R.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Jo, H. S.; Joosten, S.; Ruiz, A. Lopez; Ryckbosch, D.; Schnell, G.; Tytgat, M.; Vandenbroucke, A.; Van Haarlem, Y.; Van Hulse, C.] Univ Ghent, Dept Subatom & Radiat Phys, B-9000 Ghent, Belgium. [Airapetian, A.; Ehrenfried, M.; Perez-Benito, R.; Stenzel, H.; Yu, W.] Univ Giessen, Inst Phys, D-35392 Giessen, Germany. [Bowles, J.; Burns, J.; Hill, G.; Hoek, M.; Kaiser, R.; Keri, T.; Lehmann, I.; Mahon, D.; Murray, M.; Rosner, G.; Seitz, B.] Univ Glasgow, Dept Phys & Astron, Glasgow G12 8QQ, Lanark, Scotland. [Joosten, S.; Lamb, R.; Linden-Levy, L. A.; Makins, N. C. R.; Rubin, J.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Airapetian, A.; Ball, B.; Deconinck, W.; Gliske, S.; Lorenzon, W.] Univ Michigan, Randall Lab Phys, Ann Arbor, MI 48109 USA. [Kozlov, V.; Terkulov, A.] PN Lebedev Phys Inst, Moscow 117924, Russia. [Blok, H. P.; Dreschler, J.; Lapikas, L.; Steijger, J. J. M.; Van der Nat, P. B.] Natl Inst Subatom Phys Nikhef, NL-1009 DB Amsterdam, Netherlands. [Belostotski, S.; Gavrilov, G.; Izotov, A.; Jgoun, A.; Kisselev, A.; Kravchenko, P.; Manaenkov, S. I.; Naryshkin, Y.; Veretennikov, D.; Vikhrov, V.] Petersburg Nucl Phys Inst, Gatchina 188300, Leningrad Regio, Russia. [Bryzgalov, V.; Gapienko, G.; Gapienko, V.; Ivanilov, A.; Korotkov, V.; Salomatin, Y.] Inst High Energy Phys, Protvino 142281, Moscow Region, Russia. [Sanftl, F.; Schaefer, A.] Univ Regensburg, Inst Theoret Phys, D-93040 Regensburg, Germany. [Cisbani, E.; Frullani, S.; Garibaldi, F.; Manfre, L.] Ist Super Sanita, Ist Nazl Fis Nucl, Sez Roma 1, Grp Sanita, I-00161 Rome, Italy. [Cisbani, E.; Frullani, S.; Garibaldi, F.; Manfre, L.] Ist Super Sanita, Phys Lab, I-00161 Rome, Italy. [De Nardo, L.; Felawka, L.; Gavrilov, G.; Miller, C. A.; Yen, S.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Hasegawa, T.; Imazu, Y.; Kobayashi, N.; Lu, X. -R.; Miyachi, Y.; Shibata, T. -A.] Tokyo Inst Technol, Dept Phys, Tokyo 152, Japan. [Blok, H. P.] Vrije Univ Amsterdam, Dept Phys, NL-1081 HV Amsterdam, Netherlands. [Augustyniak, W.; Marianski, B.; Trzcinski, A.; Zupranski, P.] Andrzej Soltan Inst Nucl Studies, PL-00689 Warsaw, Poland. [Akopov, N.; Avakian, R.; Avetissian, A.; Elbakian, G.; Gharibyan, V.; Karyan, G.; Marukyan, H.; Movsisyan, A.; Taroian, S.] Yerevan Phys Inst, Yerevan 375036, Armenia. RP Rith, K (reprint author), Univ Erlangen Nurnberg, Inst Phys, D-91058 Erlangen, Germany. EM klaus.rith@physik.uni-erlangen.de RI Cisbani, Evaristo/C-9249-2011; Deconinck, Wouter/F-4054-2012; Gavrilov, Gennady/C-6260-2013; Reimer, Paul/E-2223-2013; Negodaev, Mikhail/A-7026-2014; Taroian, Sarkis/E-1668-2014; Kozlov, Valentin/M-8000-2015; Terkulov, Adel/M-8581-2015; OI Mueller, Dieter/0000-0003-0341-0446; Deconinck, Wouter/0000-0003-4033-6716; Cisbani, Evaristo/0000-0002-6774-8473; Lagamba, Luigi/0000-0002-0233-9812 FU DESY management; FWO-Flanders and IWT, Belgium; Natural Sciences and Engineering Research Council of Canada; National Natural Science Foundation of China; Alexander von Humboldt Stiftung; German Bundesministerium fur Bildung und Forschung (BMBF); Deutsche Forschungsgemeinschaft (DFG); Italian Istituto Nazionale di Fisica Nucleare (INFN); MEXT of Japan; JSPS of Japan; G-COE of Japan; Dutch Foundation for Fundamenteel Onderzoek der Materie (FOM); UK Engineering and Physical Sciences Research Council; Science and Technology Facilities Council; Scottish Universities Physics Alliance; US Department of Energy (DOE); National Science Foundation (NSF); Russian Academy of Science; Russian Federal Agency for Science and Innovations; Ministry of Economy; Ministry of Education and Science of Armenia; European Community [RII3-CT-2004-506078] FX We gratefully acknowledge the DESY management for its support and the staff at DESY and the collaborating institutions for their significant effort. This work was supported by the FWO-Flanders and IWT, Belgium; the Natural Sciences and Engineering Research Council of Canada; the National Natural Science Foundation of China; the Alexander von Humboldt Stiftung; the German Bundesministerium fur Bildung und Forschung (BMBF); the Deutsche Forschungsgemeinschaft (DFG); the Italian Istituto Nazionale di Fisica Nucleare (INFN); the MEXT, JSPS, and G-COE of Japan; the Dutch Foundation for Fundamenteel Onderzoek der Materie (FOM); the UK Engineering and Physical Sciences Research Council, the Science and Technology Facilities Council, and the Scottish Universities Physics Alliance; the US Department of Energy (DOE) and the National Science Foundation (NSF); the Russian Academy of Science and the Russian Federal Agency for Science and Innovations; the Ministry of Economy and the Ministry of Education and Science of Armenia; and the European Community-Research Infrastructure Activity under the FP6 "Structuring the European Research Area" program (HadronPhysics, contract No. RII3-CT-2004-506078). NR 72 TC 31 Z9 31 U1 1 U2 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0550-3213 J9 NUCL PHYS B JI Nucl. Phys. B PD APR 11 PY 2010 VL 829 IS 1-2 BP 1 EP 27 DI 10.1016/j.nuclphysb.2009.12.004 PG 27 WC Physics, Particles & Fields SC Physics GA 556RG UT WOS:000274608300001 ER PT J AU Headrick, JM Reichardt, TA Settersten, TB Bambha, RP Kliner, DAV AF Headrick, Jeffrey M. Reichardt, Thomas A. Settersten, Thomas B. Bambha, Ray P. Kliner, Dahv A. V. TI Application of laser photofragmentation-resonance enhanced multiphoton ionization to ion mobility spectrometry SO APPLIED OPTICS LA English DT Article ID FRAGMENT DETECTION SPECTROSCOPY; EXCITED ELECTRONIC STATES; PLASMA CHROMATOGRAPHY; TRACE DETECTION; NITROAROMATIC MOLECULES; ATMOSPHERIC-PRESSURE; INDUCED FLUORESCENCE; 2-PHOTON IONIZATION; ENERGETIC MATERIALS; MASS-SPECTROMETRY AB We demonstrate detection of nitro-containing compounds with laser photofragmentation (PF) coupled with resonance enhanced multiphoton ionization (REMPI) and ion mobility spectrometry (IMS). In PF-REMPI, a laser dissociates the parent molecules, producing fragments that can then be ionized by absorption of additional laser photons. The production of these ions strongly depends on the wavelength of laser light, with ion yields corresponding to the absorption spectrum of the fragments [nitric oxide (NO) in the present case]. Combining IMS with PF-REMPI provides further specificity, separating ions according to their mobilities through an atmospheric-pressure drift tube. In this work, we use a pulsed UV laser to examine the characteristics of atmospheric-pressure PF-REMPI, the chemistry occurring in the ionization region and drift tube, and the viability of detecting ions created by both resonance-enhanced and nonresonant ionization. Probing NO in a helium-nitrogen bath, we demonstrate that the detection of ions displays single-shot response to changes in ion generation, with an ion extraction-to-collection efficiency of similar to 12%. We then evaluate the sensitivity and specificity of PF-REMPI/IMS as applied to the detection of both the explosive surrogate 2, 4-dinitrotoluene and the nuisance compound nitrobenzene. (C) 2010 Optical Society of America C1 [Headrick, Jeffrey M.; Reichardt, Thomas A.; Settersten, Thomas B.; Bambha, Ray P.; Kliner, Dahv A. V.] Sandia Natl Labs, Livermore, CA 94551 USA. RP Reichardt, TA (reprint author), Sandia Natl Labs, POB 969,MS 9056, Livermore, CA 94551 USA. EM tareich@sandia.gov RI Settersten, Thomas/B-3480-2009 OI Settersten, Thomas/0000-0002-8017-0258 FU Sandia National Laboratories; Laboratory Directed Research and Development program at Sandia National Laboratories; United States Department of Energy National Nuclear Security Administration [DE-AC04-94AL85000] FX This work was supported by the Laboratory Directed Research and Development program at Sandia National Laboratories. In addition, the authors acknowledge Kent B. Pfeifer, Francis A. Bouchier, and Kevin L. Linker of Sandia National Laboratories, Albuquerque, New Mexico, for their valuable input regarding IMS technology and design. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 54 TC 4 Z9 5 U1 2 U2 17 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1559-128X EI 2155-3165 J9 APPL OPTICS JI Appl. Optics PD APR 10 PY 2010 VL 49 IS 11 BP 2204 EP 2214 DI 10.1364/AO.49.002204 PG 11 WC Optics SC Optics GA 582QG UT WOS:000276612200028 PM 20390024 ER PT J AU Kashiv, Y Davis, AM Gallino, R Cai, Z Lai, B Sutton, SR Clayton, RN AF Kashiv, Y. Davis, A. M. Gallino, R. Cai, Z. Lai, B. Sutton, S. R. Clayton, R. N. TI EXTINCT Zr-93 IN SINGLE PRESOLAR SiC GRAINS FROM LOW MASS ASYMPTOTIC GIANT BRANCH STARS AND CONDENSATION FROM Zr-DEPLETED GAS SO ASTROPHYSICAL JOURNAL LA English DT Article DE astrochemistry; circumstellar matter; nuclear reactions, nucleosynthesis, abundances; stars: abundances; stars: AGB and post-AGB ID SILICON-CARBIDE GRAINS; ISOTOPIC COMPOSITIONS; S-PROCESS; SOLAR-SYSTEM; STELLAR NUCLEOSYNTHESIS; PRIMITIVE METEORITES; CHEMICAL-COMPOSITION; INTERSTELLAR GRAINS; MURCHISON METEORITE; GALACTIC EVOLUTION AB Synchrotron X-ray fluorescence was used in this study for the first time to measure trace element abundances in single presolar grains. The abundances of Zr and Nb were determined in SiC grains of the KJF size-separate. These grains are most likely from C-rich asymptotic giant branch stars (mainstream grains). Comparison of the data with s-process calculations suggests that the relatively short-lived isotope Zr-93 (t(1/2) = 1.5 x 10(6) yr) condensed into the grains. The Nb/Zr ratios of the majority of the grains are higher than the s-process and CI chondrite ratios. This is probably due to grains condensing from stellar gas that was depleted in Zr, potentially because of earlier condensation of ZrC, but not depleted in Nb. However, grain contamination with solar system Nb is possible as well. Upper limits on the initial Zr-93/Zr ratios in the grains agree with the ratios observed in late-type S stars. C1 [Kashiv, Y.; Davis, A. M.; Sutton, S. R.; Clayton, R. N.] Univ Chicago, Dept Geophys Sci, Chicago, IL 60637 USA. [Kashiv, Y.; Davis, A. M.; Clayton, R. N.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Gallino, R.] Univ Turin, Dipartimento Fis Gen, I-10125 Turin, Italy. [Cai, Z.; Lai, B.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Sutton, S. R.] Univ Chicago, Consortium Adv Radiat Sources, Chicago, IL 60637 USA. [Clayton, R. N.] Univ Chicago, Dept Chem, Chicago, IL 60637 USA. RP Kashiv, Y (reprint author), Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA. EM yoavk@phys.huji.ac.il FU National Aeronautics and Space Administration; Italian MIUR-FIRB; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [W-31-109-ENG-38] FX We thank Sachiko Amari and Roy S. Lewis for sharing their Murchison KJF sample. Helpful discussions with Roy S. Lewis and Michael Paul are greatly appreciated. We thank Thomas J. Bernatowicz and Thomas K. Croat for helpful discussions and for sharing unpublished data. Reviews by Katharina Lodders and two anonymous reviewers greatly improved the paper. This work was supported by the National Aeronautics and Space Administration through grants to A. M. D. and R. N. C. R. G. acknowledges support by the Italian MIUR-FIRB project "Astrophysical origin of elements beyond the Fe peak." Use of the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. W-31-109-ENG-38. NR 49 TC 15 Z9 15 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD APR 10 PY 2010 VL 713 IS 1 BP 212 EP 219 DI 10.1088/0004-637X/713/1/212 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 573MR UT WOS:000275918500019 ER PT J AU White, M Pope, A Carlson, J Heitmann, K Habib, S Fasel, P Daniel, D Lukic, Z AF White, Martin Pope, Adrian Carlson, Jordan Heitmann, Katrin Habib, Salman Fasel, Patricia Daniel, David Lukic, Zarija TI PARTICLE MESH SIMULATIONS OF THE Ly alpha FOREST AND THE SIGNATURE OF BARYON ACOUSTIC OSCILLATIONS IN THE INTERGALACTIC MEDIUM SO ASTROPHYSICAL JOURNAL LA English DT Article DE cosmology: theory; intergalactic medium; large-scale structure of universe; methods: numerical; quasars: absorption lines ID LUMINOUS RED GALAXIES; DIGITAL SKY SURVEY; MATTER POWER SPECTRUM; IONIZING-RADIATION FLUCTUATIONS; TEMPERATURE-DENSITY RELATION; QSO ABSORPTION-SPECTRA; LARGE-SCALE STRUCTURE; EQUATION-OF-STATE; REDSHIFT SURVEY; FLUX DISTRIBUTION AB We present a set of ultra-large particle-mesh simulations of the Ly alpha forest targeted at understanding the imprint of baryon acoustic oscillations in the inter-galactic medium. We use nine dark matter only simulations which can, for the first time, simultaneously resolve the Jeans scale of the intergalactic gas while covering the large volumes required to adequately sample the acoustic feature. Mock absorption spectra are generated using the fluctuating Gunn-Peterson approximation which have approximately correct flux probability density functions and small-scale power spectra. On larger scales, there is clear evidence in the redshift-space correlation function for an acoustic feature, which matches a linear theory template with constant bias. These spectra, which we make publicly available, can be used to test pipelines, plan future experiments, and model various physical effects. As an illustration, we discuss the basic properties of the acoustic signal in the forest, the scaling of errors with noise and source number density, modified statistics to treat mean flux evolution and mis-estimation, and non-gravitational sources such as fluctuations in the photoionizing background and temperature fluctuations due to He II reionization. C1 [White, Martin; Carlson, Jordan] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [White, Martin] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Pope, Adrian; Heitmann, Katrin] Los Alamos Natl Lab, ISR 1, Los Alamos, NM 87545 USA. [Pope, Adrian; Habib, Salman; Lukic, Zarija] Los Alamos Natl Lab, T2, Los Alamos, NM 87545 USA. [Pope, Adrian] Los Alamos Natl Lab, CCS 6, Los Alamos, NM 87545 USA. [Fasel, Patricia] Los Alamos Natl Lab, CCS 3, Los Alamos, NM 87545 USA. [Daniel, David] Los Alamos Natl Lab, CCS 1, Los Alamos, NM 87545 USA. RP White, M (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. RI White, Martin/I-3880-2015 OI White, Martin/0000-0001-9912-5070 FU DoE [W-7405-ENG-36]; LDRD program at Los Alamos National Laboratory FX M. W. thanks Shirley Ho, MattMcQuinn, AveryMeiksin, and Anze Slosar for conversations on the Lya forest. The simulations used in this work were run at LANL under the Roadrunner Open Science Program. Part of the analysis was done under the Los Alamos Institutional Computing Program. We thank the LANL Roadrunner support team for their outstanding effort in helping complete the simulation runs for this project. The analysis also made use of the computing resources of the National Energy Research Scientific Computing Center and the Laboratory Research Computing project at Lawrence Berkeley National Laboratory. M. W. is supported by the NASA and the DoE. Part of this research was supported by the DoE under contract W-7405-ENG-36. D. D., P. F., S. H., K. H., Z. L., and A. P. acknowledge support from the LDRD program at Los Alamos National Laboratory. NR 72 TC 31 Z9 32 U1 0 U2 8 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD APR 10 PY 2010 VL 713 IS 1 BP 383 EP 393 DI 10.1088/0004-637X/713/1/383 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 573MR UT WOS:000275918500032 ER PT J AU Abbott, BP Abbott, R Acernese, F Adhikari, R Ajith, P Allen, B Allen, G Alshourbagy, M Amin, RS Anderson, SB Anderson, WG Antonucci, F Aoudia, S Arain, MA Araya, M Armandula, H Armor, P Arun, KG Aso, Y Aston, S Astonea, P Aufmuth, P Aulbert, C Babak, S Baker, P Ballardin, G Ballmer, S Barker, C Barker, D Barone, F Barr, B Barriga, P Barsotti, L Barsuglia, M Barton, MA Bartos, I Bassiri, R Bastarrika, M Bauer, TS Behnke, B Beker, M Benacquista, M Betzwieser, J Beyersdorf, PT Bigotta, S Bilenko, IA Billingsley, G Birindelli, S Biswas, R Bizouard, MA Black, E Blackburn, JK Blackburn, L Blair, D Bland, B Boccara, C Bodiya, TP Bogue, L Bondub, F Bonelli, L Bork, R Boschi, V Bose, S Bosi, L Braccinia, S Bradaschia, C Brady, PR Braginsky, VB Brau, JE Bridges, DO Brillet, A Brinkmann, M Brisson, V Van Den Broeck, C Brooks, AF Brown, DA Brummit, A Brunet, G Budzynski, R Bulik, T Bullington, A Bulten, HJ Buonanno, A Burmeister, O Buskulic, D Byer, RL Cadonati, L Cagnoli, G Calloni, E Camp, JB Campagna, E Cannizzo, J Cannon, KC Canuel, B Cao, J Carbognani, F Cardenas, L Caride, S Castaldi, G Caudill, S Cavaglia, M Cavalier, F Cavalieri, R Cella, G Cepeda, C Cesarini, E Chalermsongsak, T Chalkley, E Charlton, P Chassande-Mottin, E Chatterji, S Chelkowski, S Chen, Y Chincarini, A Christensen, N Chung, CTY Clark, D Clark, J Clayton, JH Cleva, F Coccia, E Cokelaer, T Colacino, CN Colas, J Colla, A Colombini, M Conte, R Cook, D Corbitt, TRC Corda, C Cornish, N Corsi, A Coulon, JP Coward, D Coyne, DC Creighton, JDE Creighton, TD Cruise, AM Culter, RM Cumming, A Cunningham, L Cuoco, E Danilishin, SL D'Antonio, S Danzmann, K Dari, A Dattilo, V Daudert, B Davier, M Davies, G Daw, EJ Day, R De Rosa, R DeBra, D Degallaix, J del Prete, M Dergachev, V Desai, S DeSalvo, R Dhurandhar, S Di Fiore, L Di Lieto, A Emilio, MDP Di Virgilio, A Diaz, M Dietz, A Donovan, F Dooley, KL Doomes, EE Drago, M Drever, RWP Dueck, J Duke, I Dumas, JC Dwyer, JG Echols, C Edgar, M Effler, A Ehrens, P Espinoza, E Etzel, T Evans, M Evans, T Fafone, V Fairhurst, S Faltas, Y Fan, Y Fazi, D Fehrmann, H Ferrante, I Fidecaro, F Finn, LS Fiori, I Flaminio, R Flasch, K Foley, S Forrest, C Fotopoulos, N Fournier, JD Franc, J Franzen, A Frasca, S Frasconi, F Frede, M Frei, M Frei, Z Freise, A Frey, R Fricke, T Fritschel, P Frolov, VV Fyffe, M Galdi, V Gammaitoni, L Garofoli, JA Garufiab, F Gemme, G Genin, E Gennai, A Gholami, I Giaime, JA Giampanis, S Giardina, KD Giazotto, A Goda, K Goetz, E Goggin, LM Gonzalez, G Gorodetsky, ML Gossler, S Gouaty, R Granata, M Granata, V Grant, A Gras, S Gray, C Gray, M Greenhalgh, RJS Gretarsson, AM Greverie, C Grimaldi, F Grosso, R Grote, H Grunewald, S Guenther, M Guidi, G Gustafson, EK Gustafson, R Hage, B Hallam, JM Hammer, D Hammond, GD Hanna, C Hanson, J Harms, J Harry, GM Harry, IW Harstad, ED Haughian, K Hayama, K Heefner, J Heitmann, H Hello, P Heng, IS Heptonstall, A Hewitson, M Hild, S Hirose, E Hoak, D Hodge, KA Holt, K Hosken, DJ Hough, J Hoyland, D Huet, D Hughey, B Huttner, SH Ingram, DR Isogai, T Ito, M Ivanov, A Jaranowski, P Johnson, B Johnson, WW Jones, DI Jones, G Jones, R de la Jordana, LS Ju, L Kalmus, P Kalogera, V Kandhasamy, S Kanner, J Kasprzyk, D Katsavounidis, E Kawabe, K Kawamura, S Kawazoe, F Kells, W Keppel, DG Khalaidovski, A Khalili, FY Khan, R Khazanov, E King, P Kissel, JS Klimenko, S Kokeyama, K Kondrashov, V Kopparapu, R Koranda, S Kowalska, I Kozak, D Krishnan, B Krolak, A Kumar, R Kwee, P La Penna, P Lam, PK Landry, M Lantz, B Lazzarini, A Lei, H Lei, M Leindecker, N Leonor, I Leroy, N Letendre, N Li, C Lin, H Lindquist, PE Littenberg, TB Lockerbie, NA Lodhia, D Longo, M Lorenzini, M Loriette, V Lormand, M Losurdo, G Lu, P Lubinski, M Lucianetti, A Luck, H Machenschalk, B MacInnis, M Mackowski, JM Mageswaran, M Mailand, K Majorana, E Mana, N Mandel, I Mandic, V Mantovani, M Marchesoni, F Marion, F Marka, S Marka, Z Markosyan, A Markowitz, J Maros, E Marque, J Martelli, F Martin, IW Martin, RM Marx, JN Mason, K Masserot, A Matichard, F Matone, L Matzner, RA Mavalvala, N McCarthy, R McClelland, DE McGuire, SC McHugh, M McIntyre, G McKechan, DJA McKenzie, K Mehmet, M Melatos, A Melissinos, AC Mendell, G Menendez, DF Menzinger, F Mercer, RA Meshkov, S Messenger, C Meyer, MS Michel, C Milano, L Miller, J Minelli, J Minenkova, Y Mino, Y Mitrofanov, VP Mitselmakher, G Mittleman, R Miyakawa, O Moe, B Mohan, M Mohanty, SD Mohapatra, SRP Moreau, J Moreno, G Morgado, N Morgia, A Morioka, T Mors, K Mosca, S Moscatelli, V Mossavi, K Mours, B MowLowry, C Mueller, G Muhammad, D zur Muhlen, H Mukherjee, S Mukhopadhyay, H Mullavey, A Muller-Ebhardt, H Munch, J Murray, PG Myers, E Myers, J Nash, T Nelson, J Neri, I Newton, G Nishizawa, A Nocera, F Numata, K Ochsner, E O'Dell, J Ogin, GH O'Reilly, B O'Shaughnessy, R Ottaway, DJ Ottens, RS Overmier, H Owen, BJ Pagliaroli, G Palomba, C Pan, Y Pankow, C Paoletti, F Papa, MA Parameshwaraiah, V Pardi, S Pasqualetti, A Passaquieti, R Passuello, D Patel, P Pedraza, M Penn, S Perreca, A Persichetti, G Pichot, M Piergiovanni, F Pierro, V Pietka, M Pinard, L Pinto, IM Pitkin, M Pletsch, HJ Plissi, MV Poggiani, R Postiglione, F Prato, M Principe, M Prix, R Prodi, GA Prokhorov, L Puncken, O Punturo, M Puppo, P Quetschke, V Raab, FJ Rabaste, O Rabeling, DS Radkins, H Raffai, P Raics, Z Rainer, N Rakhmanov, M Rapagnani, P Raymond, V Re, V Reed, CM Reed, T Regimbau, T Rehbein, H Reid, S Reitze, DH Ricci, F Riesen, R Riles, K Rivera, B Roberts, P Robertson, NA Robinet, F Robinson, C Robinson, EL Rocchi, A Roddy, S Rolland, L Rollins, J Romano, JD Romanoac, R Romie, JH Rosinska, D Rover, C Rowan, S Rudiger, A Ruggi, P Russell, P Ryan, K Sakata, S Salemi, F Sandberg, V Sannibale, V Santamaria, L Saraf, S Sarin, P Sassolas, B Sathyaprakash, BS Sato, S Satterthwaite, M Saulson, PR Savage, R Savov, P Scanlan, M Schilling, R Schnabel, R Schofield, R Schulz, B Schutz, BF Schwinberg, P Scott, J Scott, SM Searle, AC Sears, B Seifert, F Sellers, D Sengupta, AS Sentenac, D Sergeev, A Shapiro, B Shawhan, P Shoemaker, DH Sibley, A Siemens, X Sigg, D Sinha, S Sintes, AM Slagmolen, BJJ Slutsky, J van der Sluys, MV Smith, JR Smith, MR Smith, ND Somiya, K Sorazu, B Stein, A Stein, LC Steplewski, S Stochino, A Stone, R Strain, KA Strigin, S Stroeer, A Sturani, R Stuver, AL Summerscales, TZ Sun, KX Sung, M Sutton, PJ Swinkels, B Szokoly, GP Talukder, D Tang, L Tanner, DB Tarabrin, SP Taylor, JR Taylor, R Terenzi, R Thacker, J Thorne, KA Thorne, KS Uring, ATR Tokmakov, KV Toncelli, A Tonelli, M Torres, C Torrie, C Tournefier, E Travasso, F Traylor, G Trias, M Trummer, J Ugolini, D Ulmen, J Urbanek, K Vahlbruch, H Vajente, G Vallisneri, M van den Brand, JFJ van der Putten, S Vass, S Vaulin, R Vavoulidis, M Vecchio, A Vedovato, G van Veggel, AA Veitch, J Veitch, P Veltkamp, C Verkindt, D Vetrano, F Vicere, A Villar, A Vineta, JY Vocca, H Vorvick, C Vyachanin, SP Waldman, SJ Wallace, L Ward, RL Was, M Weidner, A Weinert, M Weinstein, AJ Weiss, R Wen, L Wen, S Wette, K Whelan, JT Whitcomb, SE Whiting, BF Wilkinson, C Willems, PA Williams, HR Williams, L Willke, B Wilmut, I Winkelmann, L Winkler, W Wipf, CC Wiseman, AG Woan, G Wooley, R Worden, J Wu, W Yakushin, I Yamamoto, H Yan, Z Yoshida, S Yvert, M Zanolin, M Zhang, J Zhang, L Zhao, C Zotov, N Zucker, ME Zweizig, J Begin, S Corongiu, A D'Amico, N Freire, PCC Hessels, JWT Hobbs, GB Kramer, M Lyne, AG Manchester, RN Marshall, FE Middleditch, J Possenti, A Ransom, SM Stairs, IH Stappers, B AF Abbott, B. P. Abbott, R. Acernese, F. Adhikari, R. Ajith, P. Allen, B. Allen, G. Alshourbagy, M. Amin, R. S. Anderson, S. B. Anderson, W. G. Antonucci, F. Aoudia, S. Arain, M. A. Araya, M. Armandula, H. Armor, P. Arun, K. G. Aso, Y. Aston, S. Astonea, P. Aufmuth, P. Aulbert, C. Babak, S. Baker, P. Ballardin, G. Ballmer, S. Barker, C. Barker, D. Barone, F. Barr, B. Barriga, P. Barsotti, L. Barsuglia, M. Barton, M. A. Bartos, I. Bassiri, R. Bastarrika, M. Bauer, Th. S. Behnke, B. Beker, M. Benacquista, M. Betzwieser, J. Beyersdorf, P. T. Bigotta, S. Bilenko, I. A. Billingsley, G. Birindelli, S. Biswas, R. Bizouard, M. A. Black, E. Blackburn, J. K. Blackburn, L. Blair, D. Bland, B. Boccara, C. Bodiya, T. P. Bogue, L. Bondub, F. Bonelli, L. Bork, R. Boschi, V. Bose, S. Bosi, L. Braccinia, S. Bradaschia, C. Brady, P. R. Braginsky, V. B. Brau, J. E. Bridges, D. O. Brillet, A. Brinkmann, M. Brisson, V. Van Den Broeck, C. Brooks, A. F. Brown, D. A. Brummit, A. Brunet, G. Budzynski, R. Bulik, T. Bullington, A. Bulten, H. J. Buonanno, A. Burmeister, O. Buskulic, D. Byer, R. L. Cadonati, L. Cagnoli, G. Calloni, E. Camp, J. B. Campagna, E. Cannizzo, J. Cannon, K. C. Canuel, B. Cao, J. Carbognani, F. Cardenas, L. Caride, S. Castaldi, G. Caudill, S. Cavaglia, M. Cavalier, F. Cavalieri, R. Cella, G. Cepeda, C. Cesarini, E. Chalermsongsak, T. Chalkley, E. Charlton, P. Chassande-Mottin, E. Chatterji, S. Chelkowski, S. Chen, Y. Chincarini, A. Christensen, N. Chung, C. T. Y. Clark, D. Clark, J. Clayton, J. H. Cleva, F. Coccia, E. Cokelaer, T. Colacino, C. N. Colas, J. Colla, A. Colombini, M. Conte, R. Cook, D. Corbitt, T. R. C. Corda, C. Cornish, N. Corsi, A. Coulon, J. -P. Coward, D. Coyne, D. C. Creighton, J. D. E. Creighton, T. D. Cruise, A. M. Culter, R. M. Cumming, A. Cunningham, L. Cuoco, E. Danilishin, S. L. D'Antonio, S. Danzmann, K. Dari, A. Dattilo, V. Daudert, B. Davier, M. Davies, G. Daw, E. J. Day, R. De Rosa, R. DeBra, D. Degallaix, J. del Prete, M. Dergachev, V. Desai, S. DeSalvo, R. Dhurandhar, S. Di Fiore, L. Di Lieto, A. Emilio, M. Di Paolo Di Virgilio, A. Diaz, M. Dietz, A. Donovan, F. Dooley, K. L. Doomes, E. E. Drago, M. Drever, R. W. P. Dueck, J. Duke, I. Dumas, J. -C. Dwyer, J. G. Echols, C. Edgar, M. Effler, A. Ehrens, P. Espinoza, E. Etzel, T. Evans, M. Evans, T. Fafone, V. Fairhurst, S. Faltas, Y. Fan, Y. Fazi, D. Fehrmann, H. Ferrante, I. Fidecaro, F. Finn, L. S. Fiori, I. Flaminio, R. Flasch, K. Foley, S. Forrest, C. Fotopoulos, N. Fournier, J. -D. Franc, J. Franzen, A. Frasca, S. Frasconi, F. Frede, M. Frei, M. Frei, Z. Freise, A. Frey, R. Fricke, T. Fritschel, P. Frolov, V. V. Fyffe, M. Galdi, V. Gammaitoni, L. Garofoli, J. A. Garufiab, F. Gemme, G. Genin, E. Gennai, A. Gholami, I. Giaime, J. A. Giampanis, S. Giardina, K. D. Giazotto, A. Goda, K. Goetz, E. Goggin, L. M. Gonzalez, G. Gorodetsky, M. L. Gossler, S. Gouaty, R. Granata, M. Granata, V. Grant, A. Gras, S. Gray, C. Gray, M. Greenhalgh, R. J. S. Gretarsson, A. M. Greverie, C. Grimaldi, F. Grosso, R. Grote, H. Grunewald, S. Guenther, M. Guidi, G. Gustafson, E. K. Gustafson, R. Hage, B. Hallam, J. M. Hammer, D. Hammond, G. D. Hanna, C. Hanson, J. Harms, J. Harry, G. M. Harry, I. W. Harstad, E. D. Haughian, K. Hayama, K. Heefner, J. Heitmann, H. Hello, P. Heng, I. S. Heptonstall, A. Hewitson, M. Hild, S. Hirose, E. Hoak, D. Hodge, K. A. Holt, K. Hosken, D. J. Hough, J. Hoyland, D. Huet, D. Hughey, B. Huttner, S. H. Ingram, D. R. Isogai, T. Ito, M. Ivanov, A. Jaranowski, P. Johnson, B. Johnson, W. W. Jones, D. I. Jones, G. Jones, R. de la Jordana, L. Sancho Ju, L. Kalmus, P. Kalogera, V. Kandhasamy, S. Kanner, J. Kasprzyk, D. Katsavounidis, E. Kawabe, K. Kawamura, S. Kawazoe, F. Kells, W. Keppel, D. G. Khalaidovski, A. Khalili, F. Y. Khan, R. Khazanov, E. King, P. Kissel, J. S. Klimenko, S. Kokeyama, K. Kondrashov, V. Kopparapu, R. Koranda, S. Kowalska, I. Kozak, D. Krishnan, B. Krolak, A. Kumar, R. Kwee, P. La Penna, P. Lam, P. K. Landry, M. Lantz, B. Lazzarini, A. Lei, H. Lei, M. Leindecker, N. Leonor, I. Leroy, N. Letendre, N. Li, C. Lin, H. Lindquist, P. E. Littenberg, T. B. Lockerbie, N. A. Lodhia, D. Longo, M. Lorenzini, M. Loriette, V. Lormand, M. Losurdo, G. Lu, P. Lubinski, M. Lucianetti, A. Lueck, H. Machenschalk, B. MacInnis, M. Mackowski, J. -M. Mageswaran, M. Mailand, K. Majorana, E. Mana, N. Mandel, I. Mandic, V. Mantovani, M. Marchesoni, F. Marion, F. Marka, S. Marka, Z. Markosyan, A. Markowitz, J. Maros, E. Marque, J. Martelli, F. Martin, I. W. Martin, R. M. Marx, J. N. Mason, K. Masserot, A. Matichard, F. Matone, L. Matzner, R. A. Mavalvala, N. McCarthy, R. McClelland, D. E. McGuire, S. C. McHugh, M. McIntyre, G. McKechan, D. J. A. McKenzie, K. Mehmet, M. Melatos, A. Melissinos, A. C. Mendell, G. Menendez, D. F. Menzinger, F. Mercer, R. A. Meshkov, S. Messenger, C. Meyer, M. S. Michel, C. Milano, L. Miller, J. Minelli, J. Minenkova, Y. Mino, Y. Mitrofanov, V. P. Mitselmakher, G. Mittleman, R. Miyakawa, O. Moe, B. Mohan, M. Mohanty, S. D. Mohapatra, S. R. P. Moreau, J. Moreno, G. Morgado, N. Morgia, A. Morioka, T. Mors, K. Mosca, S. Moscatelli, V. Mossavi, K. Mours, B. MowLowry, C. Mueller, G. Muhammad, D. zur Muehlen, H. Mukherjee, S. Mukhopadhyay, H. Mullavey, A. Mueller-Ebhardt, H. Munch, J. Murray, P. G. Myers, E. Myers, J. Nash, T. Nelson, J. Neri, I. Newton, G. Nishizawa, A. Nocera, F. Numata, K. Ochsner, E. O'Dell, J. Ogin, G. H. O'Reilly, B. O'Shaughnessy, R. Ottaway, D. J. Ottens, R. S. Overmier, H. Owen, B. J. Pagliaroli, G. Palomba, C. Pan, Y. Pankow, C. Paoletti, F. Papa, M. A. Parameshwaraiah, V. Pardi, S. Pasqualetti, A. Passaquieti, R. Passuello, D. Patel, P. Pedraza, M. Penn, S. Perreca, A. Persichetti, G. Pichot, M. Piergiovanni, F. Pierro, V. Pietka, M. Pinard, L. Pinto, I. M. Pitkin, M. Pletsch, H. J. Plissi, M. V. Poggiani, R. Postiglione, F. Prato, M. Principe, M. Prix, R. Prodi, G. A. Prokhorov, L. Puncken, O. Punturo, M. Puppo, P. Quetschke, V. Raab, F. J. Rabaste, O. Rabeling, D. S. Radkins, H. Raffai, P. Raics, Z. Rainer, N. Rakhmanov, M. Rapagnani, P. Raymond, V. Re, V. Reed, C. M. Reed, T. Regimbau, T. Rehbein, H. Reid, S. Reitze, D. H. Ricci, F. Riesen, R. Riles, K. Rivera, B. Roberts, P. Robertson, N. A. Robinet, F. Robinson, C. Robinson, E. L. Rocchi, A. Roddy, S. Rolland, L. Rollins, J. Romano, J. D. Romanoac, R. Romie, J. H. Rosinska, D. Roever, C. Rowan, S. Ruediger, A. Ruggi, P. Russell, P. Ryan, K. Sakata, S. Salemi, F. Sandberg, V. Sannibale, V. Santamaria, L. Saraf, S. Sarin, P. Sassolas, B. Sathyaprakash, B. S. Sato, S. Satterthwaite, M. Saulson, P. R. Savage, R. Savov, P. Scanlan, M. Schilling, R. Schnabel, R. Schofield, R. Schulz, B. Schutz, B. F. Schwinberg, P. Scott, J. Scott, S. M. Searle, A. C. Sears, B. Seifert, F. Sellers, D. Sengupta, A. S. Sentenac, D. Sergeev, A. Shapiro, B. Shawhan, P. Shoemaker, D. H. Sibley, A. Siemens, X. Sigg, D. Sinha, S. Sintes, A. M. Slagmolen, B. J. J. Slutsky, J. van der Sluys, M. V. Smith, J. R. Smith, M. R. Smith, N. D. Somiya, K. Sorazu, B. Stein, A. Stein, L. C. Steplewski, S. Stochino, A. Stone, R. Strain, K. A. Strigin, S. Stroeer, A. Sturani, R. Stuver, A. L. Summerscales, T. Z. Sun, K. -X. Sung, M. Sutton, P. J. Swinkels, B. Szokoly, G. P. Talukder, D. Tang, L. Tanner, D. B. Tarabrin, S. P. Taylor, J. R. Taylor, R. Terenzi, R. Thacker, J. Thorne, K. A. Thorne, K. S. Uring, A. Th R. Tokmakov, K. V. Toncelli, A. Tonelli, M. Torres, C. Torrie, C. Tournefier, E. Travasso, F. Traylor, G. Trias, M. Trummer, J. Ugolini, D. Ulmen, J. Urbanek, K. Vahlbruch, H. Vajente, G. Vallisneri, M. van den Brand, J. F. J. van der Putten, S. Vass, S. Vaulin, R. Vavoulidis, M. Vecchio, A. Vedovato, G. van Veggel, A. A. Veitch, J. Veitch, P. Veltkamp, C. Verkindt, D. Vetrano, F. Vicere, A. Villar, A. Vineta, J. -Y. Vocca, H. Vorvick, C. Vyachanin, S. P. Waldman, S. J. Wallace, L. Ward, R. L. Was, M. Weidner, A. Weinert, M. Weinstein, A. J. Weiss, R. Wen, L. Wen, S. Wette, K. Whelan, J. T. Whitcomb, S. E. Whiting, B. F. Wilkinson, C. Willems, P. A. Williams, H. R. Williams, L. Willke, B. Wilmut, I. Winkelmann, L. Winkler, W. Wipf, C. C. Wiseman, A. G. Woan, G. Wooley, R. Worden, J. Wu, W. Yakushin, I. Yamamoto, H. Yan, Z. Yoshida, S. Yvert, M. Zanolin, M. Zhang, J. Zhang, L. Zhao, C. Zotov, N. Zucker, M. E. Zweizig, J. Begin, S. Corongiu, A. D'Amico, N. Freire, P. C. C. Hessels, J. W. T. Hobbs, G. B. Kramer, M. Lyne, A. G. Manchester, R. N. Marshall, F. E. Middleditch, J. Possenti, A. Ransom, S. M. Stairs, I. H. Stappers, B. CA LIGO Sci Collaboration Virgo Collaboration TI SEARCHES FOR GRAVITATIONAL WAVES FROM KNOWN PULSARS WITH SCIENCE RUN 5 LIGO DATA SO ASTROPHYSICAL JOURNAL LA English DT Article DE gravitational waves; pulsars: general ID NEUTRON-STARS; CRAB PULSAR; SPIN-DOWN; DISCOVERY; DISTANCE; LIMIT AB We present a search for gravitational waves from 116 known millisecond and young pulsars using data from the fifth science run of the LIGO detectors. For this search, ephemerides overlapping the run period were obtained for all pulsars using radio and X-ray observations. We demonstrate an updated search method that allows for small uncertainties in the pulsar phase parameters to be included in the search. We report no signal detection from any of the targets and therefore interpret our results as upper limits on the gravitational wave signal strength. The most interesting limits are those for young pulsars. We present updated limits on gravitational radiation from the Crab pulsar, where the measured limit is now a factor of 7 below the spin-down limit. This limits the power radiated via gravitational waves to be less than similar to 2% of the available spin-down power. For the X-ray pulsar J0537-6910 we reach the spin-down limit under the assumption that any gravitational wave signal from it stays phase locked to the X-ray pulses over timing glitches, and for pulsars J1913+1011 and J1952+3252 we are only a factor of a few above the spin-down limit. Of the recycled millisecond pulsars, several of themeasured upper limits are only about an order of magnitude above their spin-down limits. For these our best (lowest) upper limit on gravitational wave amplitude is 2.3 x 10(-26) for J1603-7202 and our best (lowest) limit on the inferred pulsar ellipticity is 7.0 x 10(-8) for J2124-3358. C1 [Abbott, B. P.; Abbott, R.; Adhikari, R.; Anderson, S. B.; Araya, M.; Armandula, H.; Aso, Y.; Ballmer, S.; Barton, M. A.; Betzwieser, J.; Billingsley, G.; Black, E.; Blackburn, J. K.; Bork, R.; Boschi, V.; Brooks, A. F.; Cannon, K. C.; Cardenas, L.; Cepeda, C.; Chalermsongsak, T.; Chatterji, S.; Coyne, D. C.; Daudert, B.; DeSalvo, R.; Echols, C.; Ehrens, P.; Espinoza, E.; Etzel, T.; Fazi, D.; Gustafson, E. K.; Hanna, C.; Heefner, J.; Heptonstall, A.; Hodge, K. A.; Ivanov, A.; Kalmus, P.; Kells, W.; Keppel, D. G.; King, P.; Kondrashov, V.; Kozak, D.; Lazzarini, A.; Lei, M.; Lindquist, P. E.; Mageswaran, M.; Mailand, K.; Maros, E.; Marx, J. N.; McIntyre, G.; Meshkov, S.; Miyakawa, O.; Nash, T.; Ogin, G. H.; Patel, P.; Pedraza, M.; Robertson, N. A.; Russell, P.; Sannibale, V.; Searle, A. C.; Sears, B.; Sengupta, A. S.; Smith, M. R.; Stochino, A.; Taylor, R.; Torrie, C.; Vass, S.; Villar, A.; Wallace, L.; Ward, R. L.; Weinstein, A. J.; Whitcomb, S. E.; Willems, P. A.; Yamamoto, H.; Zhang, L.; Zweizig, J.] CALTECH, LIGO, Pasadena, CA 91125 USA. [Acernese, F.; Barone, F.; Calloni, E.; De Rosa, R.; Di Fiore, L.; Garufiab, F.; Milano, L.; Mosca, S.; Pardi, S.; Persichetti, G.; Romanoac, R.] Ist Nazl Fis Nucl, Sez Napoli, I-80126 Naples, Italy. [Calloni, E.; De Rosa, R.; Garufiab, F.; Milano, L.; Mosca, S.; Pardi, S.; Persichetti, G.] Univ Naples Federico II, Complesso Univ Monte S Angelo, I-80126 Naples, Italy. [Acernese, F.; Barone, F.; Conte, R.; Postiglione, F.; Romanoac, R.] Univ Salerno, I-84084 Salerno, Italy. [Ajith, P.; Allen, B.; Aulbert, C.; Brinkmann, M.; Burmeister, O.; Danzmann, K.; Degallaix, J.; Dueck, J.; Fehrmann, H.; Frede, M.; Giampanis, S.; Gossler, S.; Grote, H.; Hewitson, M.; Kawazoe, F.; Khalaidovski, A.; Lueck, H.; Mehmet, M.; Messenger, C.; Mors, K.; Mossavi, K.; Mueller-Ebhardt, H.; Pletsch, H. J.; Prix, R.; Puncken, O.; Rainer, N.; Rehbein, H.; Roever, C.; Ruediger, A.; Schilling, R.; Schnabel, R.; Schulz, B.; Seifert, F.; Taylor, J. R.; Veltkamp, C.; Weidner, A.; Weinert, M.; Willke, B.; Winkelmann, L.; Winkler, W.] Max Planck Inst Gravitat Phys, Albert Einstein Inst, D-30167 Hannover, Germany. [Allen, B.; Anderson, W. G.; Armor, P.; Biswas, R.; Brady, P. R.; Clayton, J. H.; Creighton, J. D. E.; Flasch, K.; Fotopoulos, N.; Goggin, L. M.; Hammer, D.; Koranda, S.; Mercer, R. A.; Moe, B.; Papa, M. A.; Siemens, X.; Vaulin, R.; Wiseman, A. G.] Univ Wisconsin, Milwaukee, WI 53201 USA. [Allen, G.; Bullington, A.; Byer, R. L.; Clark, D.; DeBra, D.; Lantz, B.; Leindecker, N.; Lu, P.; Markosyan, A.; Sinha, S.; Sun, K. -X.; Ulmen, J.; Urbanek, K.] Stanford Univ, Stanford, CA 94305 USA. [Alshourbagy, M.; Bigotta, S.; Bonelli, L.; Braccinia, S.; Bradaschia, C.; Cella, G.; Corda, C.; del Prete, M.; Di Lieto, A.; Di Virgilio, A.; Ferrante, I.; Fidecaro, F.; Frasconi, F.; Gennai, A.; Giazotto, A.; Paoletti, F.; Passaquieti, R.; Passuello, D.; Poggiani, R.; Toncelli, A.; Tonelli, M.; Vajente, G.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Alshourbagy, M.; Bigotta, S.; Bonelli, L.; Corda, C.; Di Lieto, A.; Ferrante, I.; Fidecaro, F.; Passaquieti, R.; Poggiani, R.; Toncelli, A.; Tonelli, M.; Vajente, G.] Univ Pisa, I-56127 Pisa, Italy. [del Prete, M.; Mantovani, M.] Univ Siena, I-53100 Siena, Italy. [Amin, R. S.; Caudill, S.; Giaime, J. A.; Gonzalez, G.; Johnson, W. W.; Kissel, J. S.; Matichard, F.; Slutsky, J.; Sung, M.; Wen, S.] Louisiana State Univ, Baton Rouge, LA 70803 USA. [Antonucci, F.; Astonea, P.; Colla, A.; Corsi, A.; Frasca, S.; Majorana, E.; Moscatelli, V.; Palomba, C.; Puppo, P.; Rapagnani, P.; Ricci, F.] Ist Nazl Fis Nucl, Sez Roma, I-00185 Rome, Italy. [Colla, A.; Colombini, M.; Corsi, A.; Frasca, S.; Rapagnani, P.; Ricci, F.] Univ Roma La Sapienza, I-00185 Rome, Italy. [Aoudia, S.; Birindelli, S.; Brillet, A.; Cleva, F.; Coulon, J. -P.; Fournier, J. -D.; Greverie, C.; Mana, N.; Pichot, M.; Regimbau, T.; Vineta, J. -Y.] CNRS, Observ Cote Azur, Dept Artemis, F-06304 Nice, France. [Bondub, F.] Univ Rennes 1, CNRS, Inst Phys Rennes, F-35042 Rennes, France. [Arain, M. A.; Dooley, K. L.; Faltas, Y.; Klimenko, S.; Lin, H.; Lucianetti, A.; Martin, R. M.; Mitselmakher, G.; Mueller, G.; Ottens, R. S.; Pankow, C.; Quetschke, V.; Reitze, D. H.; Tanner, D. B.; Whiting, B. F.; Williams, L.; Wu, W.] Univ Florida, Gainesville, FL 32611 USA. [Arun, K. G.; Bizouard, M. A.; Brisson, V.; Cavalier, F.; Davier, M.; Hello, P.; Leroy, N.; Robinet, F.; Vavoulidis, M.; Was, M.] Univ Paris 11, CNRS, IN2P3, LAL, F-91898 Orsay, France. [Aston, S.; Chelkowski, S.; Cruise, A. M.; Culter, R. M.; Freise, A.; Hallam, J. M.; Hild, S.; Kasprzyk, D.; Lodhia, D.; Perreca, A.; Vecchio, A.; Veitch, J.] Univ Birmingham, Birmingham B15 2TT, W Midlands, England. [Aufmuth, P.; Danzmann, K.; Franzen, A.; Hage, B.; Kwee, P.; Lueck, H.; zur Muehlen, H.; Uring, A. Th R.; Vahlbruch, H.; Willke, B.] Leibniz Univ Hannover, D-30167 Hannover, Germany. [Babak, S.; Behnke, B.; Chen, Y.; Gholami, I.; Grunewald, S.; Krishnan, B.; Machenschalk, B.; Papa, M. A.; Robinson, E. L.; Santamaria, L.; Schutz, B. F.; Whelan, J. T.] Max Planck Inst Gravitat Phys, Albert Einstein Inst, D-14476 Golm, Germany. [Baker, P.; Cornish, N.; Littenberg, T. B.] Montana State Univ, Bozeman, MT 59717 USA. [Ballardin, G.; Canuel, B.; Carbognani, F.; Cavalieri, R.; Colas, J.; Cuoco, E.; Dattilo, V.; Day, R.; Fiori, I.; Genin, E.; Huet, D.; La Penna, P.; Marque, J.; Menzinger, F.; Mohan, M.; Nocera, F.; Paoletti, F.; Pasqualetti, A.; Ruggi, P.; Sentenac, D.; Swinkels, B.] EGO, I-56021 Cascina, Pi, Italy. [Barker, C.; Barker, D.; Bland, B.; Cook, D.; Effler, A.; Gray, C.; Guenther, M.; Ingram, D. R.; Johnson, B.; Kawabe, K.; Landry, M.; Lubinski, M.; McCarthy, R.; Mendell, G.; Moreno, G.; Myers, E.; Myers, J.; Parameshwaraiah, V.; Raab, F. J.; Radkins, H.; Reed, C. M.; Rivera, B.; Ryan, K.; Sandberg, V.; Savage, R.; Schwinberg, P.; Sigg, D.; Vorvick, C.; Wilkinson, C.; Worden, J.] Hanford Observ, LIGO, Richland, WA 99352 USA. [Barr, B.; Bassiri, R.; Bastarrika, M.; Chalkley, E.; Cumming, A.; Cunningham, L.; Edgar, M.; Grant, A.; Hammond, G. D.; Haughian, K.; Heng, I. S.; Hough, J.; Huttner, S. H.; Jones, R.; Kumar, R.; Martin, I. W.; Miller, J.; Murray, P. G.; Nelson, J.; Newton, G.; Pitkin, M.; Plissi, M. V.; Reid, S.; Robertson, N. A.; Rowan, S.; Scott, J.; Sorazu, B.; Strain, K. A.; Tokmakov, K. V.; van Veggel, A. A.; Woan, G.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. [Barriga, P.; Blair, D.; Coward, D.; Dumas, J. -C.; Fan, Y.; Gras, S.; Hoyland, D.; Ju, L.; Wen, L.; Yan, Z.; Zhao, C.] Univ Western Australia, Crawley, WA 6009, Australia. [Barsotti, L.; Blackburn, L.; Bodiya, T. P.; Brunet, G.; Cao, J.; Corbitt, T. R. C.; Donovan, F.; Duke, I.; Evans, M.; Foley, S.; Fritschel, P.; Goda, K.; Grimaldi, F.; Harry, G. M.; Hughey, B.; Katsavounidis, E.; MacInnis, M.; Markowitz, J.; Mason, K.; Mavalvala, N.; Mittleman, R.; Sarin, P.; Shapiro, B.; Shoemaker, D. H.; Smith, N. D.; Stein, A.; Stein, L. C.; Waldman, S. J.; Weiss, R.; Wipf, C. C.; Zucker, M. E.] MIT, LIGO, Cambridge, MA 02139 USA. [Barsuglia, M.; Chassande-Mottin, E.; Granata, M.; Rabaste, O.] Univ Paris 07, CEA, Observ Paris, APC,CNRS,UMR7164,IN2P3,DSM,IRFU, F-75221 Paris 05, France. [Bartos, I.; Dwyer, J. G.; Khan, R.; Marka, S.; Marka, Z.; Matone, L.; Raics, Z.; Rollins, J.] Columbia Univ, New York, NY 10027 USA. [Bauer, Th. S.; Beker, M.; Brown, D. A.; Bulten, H. J.; Gossler, S.; Rabeling, D. S.; van den Brand, J. F. J.; van der Putten, S.] NIKHEF H, Natl Inst Subatom Phys, NL-1009 DB Amsterdam, Netherlands. [Bulten, H. J.; Rabeling, D. S.; van den Brand, J. F. J.] Vrije Univ Amsterdam, NL-1081 HV Amsterdam, Netherlands. [Benacquista, M.; Creighton, T. D.; Diaz, M.; Grosso, R.; Hayama, K.; Lei, H.; Mohanty, S. D.; Mukherjee, S.; Rakhmanov, M.; Romano, J. D.; Stone, R.; Tang, L.] Univ Texas Brownsville & Texas Southmost Coll, Brownsville, TX 78520 USA. [Beyersdorf, P. T.] San Jose State Univ, San Jose, CA 95192 USA. [Bilenko, I. A.; Braginsky, V. B.; Danilishin, S. L.; Gorodetsky, M. L.; Khalili, F. Y.; Mitrofanov, V. P.; Prokhorov, L.; Strigin, S.; Tarabrin, S. P.; Vyachanin, S. P.] Moscow MV Lomonosov State Univ, Moscow 119992, Russia. [Boccara, C.; Loriette, V.; Moreau, J.] CNRS, ESPCI, F-75005 Paris, France. [Bogue, L.; Bridges, D. O.; Evans, T.; Fricke, T.; Frolov, V. V.; Fyffe, M.; Giaime, J. A.; Giardina, K. D.; Gouaty, R.; Hanson, J.; Hoak, D.; Holt, K.; Lormand, M.; Meyer, M. S.; Muhammad, D.; O'Reilly, B.; Overmier, H.; Riesen, R.; Roddy, S.; Romie, J. H.; Sellers, D.; Sibley, A.; Stuver, A. L.; Thacker, J.; Thorne, K. A.; Torres, C.; Traylor, G.; Wooley, R.; Yakushin, I.] Livingston Observ, LIGO, Livingston, LA 70754 USA. [Bose, S.; Steplewski, S.; Talukder, D.] Washington State Univ, Pullman, WA 99164 USA. [Bosi, L.; Dari, A.; Gammaitoni, L.; Marchesoni, F.; Neri, I.; Punturo, M.; Travasso, F.; Vocca, H.] Ist Nazl Fis Nucl, Sez Perugia, I-6123 Perugia, Italy. [Dari, A.; Gammaitoni, L.; Neri, I.; Travasso, F.] Univ Perugia, I-6123 Perugia, Italy. [Brau, J. E.; Frey, R.; Harstad, E. D.; Ito, M.; Leonor, I.; Schofield, R.] Univ Oregon, Eugene, OR 97403 USA. [Van Den Broeck, C.; Clark, J.; Cokelaer, T.; Davies, G.; Dietz, A.; Fairhurst, S.; Harry, I. W.; Jones, G.; McKechan, D. J. A.; Robinson, C.; Sathyaprakash, B. S.; Schutz, B. F.; Sutton, P. J.] Cardiff Univ, Cardiff CF24 3AA, S Glam, Wales. [Garofoli, J. A.; Hirose, E.; Saulson, P. R.; Smith, J. R.] Syracuse Univ, Syracuse, NY 13244 USA. [Brummit, A.; Greenhalgh, R. J. S.; O'Dell, J.; Wilmut, I.] Rutherford Appleton Lab, HSIC, Didcot OX11 0QX, Oxon, England. [Krolak, A.] IM PAN, PL-00956 Warsaw, Poland. [Budzynski, R.] Warsaw Univ, PL-00681 Warsaw, Poland. [Bulik, T.; Kowalska, I.] Warsaw Univ, PL-00478 Warsaw, Poland. [Bulik, T.; Rosinska, D.] CAMK PAM, PL-00716 Warsaw, Poland. [Jaranowski, P.; Pietka, M.] Bialystok Univ, PL-15424 Bialystok, Poland. [Krolak, A.] IPJ, PL-05400 Sierk Otwock, Poland. [Rosinska, D.] Inst Astron, PL-65265 Zielona Gora, Poland. [Buonanno, A.; Kanner, J.; Ochsner, E.; Pan, Y.; Shawhan, P.] Univ Maryland, College Pk, MD 20742 USA. [Buskulic, D.; Dietz, A.; Granata, V.; Letendre, N.; Marion, F.; Masserot, A.; Mours, B.; Rolland, L.; Tournefier, E.; Trummer, J.; Verkindt, D.; Yvert, M.] Univ Savoie, CNRS, IN2P3, Lab Annecy Le Vieux Phys Particules, F-74941 Annecy Le Vieux, France. [Cadonati, L.; Mohapatra, S. R. P.] Univ Massachusetts, Amherst, MA 01003 USA. [Cagnoli, G.; Campagna, E.; Guidi, G.; Lorenzini, M.; Losurdo, G.; Martelli, F.; Piergiovanni, F.; Sturani, R.; Vetrano, F.; Vicere, A.] Ist Nazl Fis Nucl, Sez Firenze, I-50019 Sesto Fiorentino, Italy. [Campagna, E.] Univ Florence, I-50121 Florence, Italy. [Campagna, E.; Cesarini, E.; Guidi, G.; Martelli, F.; Piergiovanni, F.; Sturani, R.; Vetrano, F.; Vicere, A.] Univ Urbino Carlo Bo, I-61029 Urbino, Italy. [Camp, J. B.; Cannizzo, J.; Numata, K.; Stroeer, A.; Marshall, F. E.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Caride, S.; Dergachev, V.; Goetz, E.; Gustafson, R.; Riles, K.; Zhang, J.] Univ Michigan, Ann Arbor, MI 48109 USA. [Castaldi, G.; Galdi, V.; Longo, M.; Pierro, V.; Pinto, I. M.; Principe, M.] Univ Sannio Benevento, I-82100 Benevento, Italy. [Cavaglia, M.] Univ Mississippi, University, MS 38677 USA. [Charlton, P.] Charles Sturt Univ, Wagga Wagga, NSW 2678, Australia. [Chen, Y.; Li, C.; Mino, Y.; Savov, P.; Somiya, K.; Thorne, K. S.; Vallisneri, M.; Wen, L.] CALTECH, CaRT, Pasadena, CA 91125 USA. [Chincarini, A.; Gemme, G.; Prato, M.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Christensen, N.; Isogai, T.] Carleton Coll, Northfield, MN 55057 USA. [Chung, C. T. Y.; Melatos, A.] Univ Melbourne, Parkville, Vic 3010, Australia. [Coccia, E.; D'Antonio, S.; Emilio, M. Di Paolo; Fafone, V.; Minenkova, Y.; Morgia, A.; Pagliaroli, G.; Rocchi, A.; Terenzi, R.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, I-00133 Rome, Italy. [Coccia, E.; Fafone, V.; Morgia, A.] Univ Roma Tor Vergata, I-00133 Rome, Italy. [Terenzi, R.] INAF, IFSI, I-00133 Rome, Italy. [Emilio, M. Di Paolo; Pagliaroli, G.] Univ Aquila, I-67100 Laquila, Italy. [Colacino, C. N.; Frei, Z.; Raffai, P.; Szokoly, G. P.] Eotvos Lorand Univ, ELTE, H-1053 Budapest, Hungary. [Daw, E. J.] Univ Sheffield, Sheffield S10 2TN, S Yorkshire, England. [Desai, S.; Finn, L. S.; Kopparapu, R.; Menendez, D. F.; Minelli, J.; O'Shaughnessy, R.; Owen, B. J.; Williams, H. R.] Penn State Univ, University Pk, PA 16802 USA. [Dhurandhar, S.; Mukhopadhyay, H.] Interuniv Ctr Astron & Astrophys, Pune 411007, Maharashtra, India. [Doomes, E. E.; McGuire, S. C.] So Univ & A&M Coll, Baton Rouge, LA 70813 USA. [Prodi, G. A.; Re, V.; Salemi, F.] Ist Nazl Fis Nucl, Grp Coll Trento, I-38050 Trento, Italy. [Prodi, G. A.; Re, V.; Salemi, F.] Univ Trent, I-38050 Trento, Italy. [Drago, M.; Vedovato, G.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Drago, M.] Univ Padua, I-35131 Padua, Italy. [Flaminio, R.; Franc, J.; Mackowski, J. -M.; Michel, C.; Morgado, N.; Pinard, L.; Sassolas, B.] Univ Lyon 1, CNRS, IN2P3, LMA, F-69622 Villeurbanne, France. [Forrest, C.; Melissinos, A. C.] Univ Rochester, Rochester, NY 14627 USA. [Frei, M.; Matzner, R. A.] Univ Texas Austin, Austin, TX 78712 USA. [Gray, M.; Lam, P. K.; McClelland, D. E.; McKenzie, K.; MowLowry, C.; Mullavey, A.; Satterthwaite, M.; Scott, S. M.; Slagmolen, B. J. J.; Wette, K.] Australian Natl Univ, Canberra, ACT 0200, Australia. [Gretarsson, A. M.; Zanolin, M.] Embry Riddle Aeronaut Univ, Prescott, AZ 86301 USA. [Harms, J.; Kandhasamy, S.; Mandic, V.] Univ Minnesota, Minneapolis, MN 55455 USA. [Hosken, D. J.; Munch, J.; Ottaway, D. J.; Veitch, P.] Univ Adelaide, Adelaide, SA 5005, Australia. [Jones, D. I.] Univ Southampton, Southampton SO17 1BJ, Hants, England. [de la Jordana, L. Sancho; Sintes, A. M.; Trias, M.] Univ Illes Balears, E-07122 Palma De Mallorca, Spain. [Kalogera, V.; Mandel, I.; Raymond, V.; van der Sluys, M. V.] Northwestern Univ, Evanston, IL 60208 USA. [Kawamura, S.; Kokeyama, K.; Morioka, T.; Nishizawa, A.; Sakata, S.; Sato, S.] Natl Astron Observ Japan, Tokyo 1818588, Japan. [Khazanov, E.; Sergeev, A.] Inst Appl Phys, Nizhnii Novgorod 603950, Russia. [Lockerbie, N. A.] Univ Strathclyde, Glasgow G1 1XQ, Lanark, Scotland. [McHugh, M.] Loyola Univ, New Orleans, LA 70118 USA. [Penn, S.] Hobart & William Smith Coll, Geneva, NY 14456 USA. [Reed, T.; Scanlan, M.; Zotov, N.] Louisiana Tech Univ, Ruston, LA 71272 USA. [Roberts, P.; Summerscales, T. Z.] Andrews Univ, Berrien Springs, MI 49104 USA. [Saraf, S.] Sonoma State Univ, Rohnert Pk, CA 94928 USA. [Ugolini, D.] Trinity Univ, San Antonio, TX 78212 USA. [Whelan, J. T.] Rochester Inst Technol, Rochester, NY 14623 USA. [Yoshida, S.] SE Louisiana Univ, Hammond, LA 70402 USA. [Begin, S.; Stairs, I. H.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada. [Begin, S.] Univ Laval, Dept Phys Genie Phys & Opt, Ste Foy, PQ G1K 7P4, Canada. [Corongiu, A.; D'Amico, N.; Possenti, A.] Osservatorio Astron Cagliari, INAF, I-09012 Capoterra, Italy. [D'Amico, N.] Univ Cagliari, Dipartimento Fis, I-09042 Monserrato, Italy. [Freire, P. C. C.] Arecibo Observ, Arecibo, PR 00612 USA. [Freire, P. C. C.] W Virginia Univ, Dept Phys, Morgantown, WV 26506 USA. [Hessels, J. W. T.] Netherlands Inst Radio Astron ASTRON, NL-7990 AA Dwingeloo, Netherlands. [Hessels, J. W. T.] Univ Amsterdam, Astron Inst Anton Pannekoek, NL-1098 SJ Amsterdam, Netherlands. [Hobbs, G. B.; Manchester, R. N.] CSIRO, Australia Telescope Natl Facil, Epping, NSW 1710, Australia. [Kramer, M.; Lyne, A. G.; Stappers, B.] Univ Manchester, Jodrell Bank, Ctr Astrophys Alan Turing Bldg, Manchester M13 9PL, Lancs, England. [Middleditch, J.] Los Alamos Natl Lab, Comp Computat & Stat Sci Div, Los Alamos, NM 87545 USA. [Ransom, S. M.] Natl Radio Astron Observ, Charlottesville, VA 22903 USA. RP Abbott, BP (reprint author), CALTECH, LIGO, Pasadena, CA 91125 USA. RI Vecchio, Alberto/F-8310-2015; Mow-Lowry, Conor/F-8843-2015; Khan, Rubab/F-9455-2015; Ottaway, David/J-5908-2015; Postiglione, Fabio/O-4744-2015; Rocchi, Alessio/O-9499-2015; Martelli, Filippo/P-4041-2015; Biswas, Rahul/H-7474-2016; mosca, simona/I-7116-2012; Frasconi, Franco/K-1068-2016; Sigg, Daniel/I-4308-2015; Pinto, Innocenzo/L-3520-2016; Harms, Jan/J-4359-2012; Ferrante, Isidoro/F-1017-2012; Travasso, Flavio/J-9595-2016; Bartos, Imre/A-2592-2017; Cella, Giancarlo/A-9946-2012; Cesarini, Elisabetta/C-4507-2017; Frey, Raymond/E-2830-2016; Di Virgilio, Angela Dora Vittoria/E-9078-2015; Sergeev, Alexander/F-3027-2017; Ward, Robert/I-8032-2014; Colla, Alberto/J-4694-2012; Drago, Marco/E-7134-2013; Re, Virginia /F-6403-2013; Pitkin, Matthew/I-3802-2013; Vyatchanin, Sergey/J-2238-2012; Khazanov, Efim/B-6643-2014; Salemi, Francesco/F-6988-2014; Lucianetti, Antonio/G-7383-2014; Losurdo, Giovanni/K-1241-2014; Lam, Ping Koy/A-5276-2008; Danilishin, Stefan/K-7262-2012; Canuel, Benjamin/C-7459-2014; Khalili, Farit/D-8113-2012; Strigin, Sergey/I-8337-2012; Cuoco, Elena/I-8789-2012; Vicere, Andrea/J-1742-2012; Mitrofanov, Valery/D-8501-2012; Puppo, Paola/J-4250-2012; Rapagnani, Piero/J-4783-2012; Gemme, Gianluca/C-7233-2008; Bilenko, Igor/D-5172-2012; Allen, Bruce/K-2327-2012; Chen, Yanbei/A-2604-2013; Barker, David/A-5671-2013; Zhao, Chunnong/C-2403-2013; Ju, Li/C-2623-2013; Bigotta, Stefano/F-8652-2011; Freise, Andreas/F-8892-2011; Marchesoni, Fabio/A-1920-2008; Kawabe, Keita/G-9840-2011; Toncelli, Alessandra/A-5352-2012; Hammond, Giles/A-8168-2012; Vocca, Helios/F-1444-2010; D'Amico, Nichi/A-5715-2009; Finn, Lee Samuel/A-3452-2009; Prato, Mirko/D-8531-2012; Santamaria, Lucia/A-7269-2012; Prokhorov, Leonid/I-2953-2012; Gorodetsky, Michael/C-5938-2008; Punturo, Michele/I-3995-2012; Lueck, Harald/F-7100-2011; Kawazoe, Fumiko/F-7700-2011; Neri, Igor/F-1482-2010; Galdi, Vincenzo/B-1670-2008; Hammond, Giles/B-7861-2009; Gammaitoni, Luca/B-5375-2009; McClelland, David/E-6765-2010; Hild, Stefan/A-3864-2010; prodi, giovanni/B-4398-2010; Rowan, Sheila/E-3032-2010; Strain, Kenneth/D-5236-2011; Acernese, Fausto/E-4989-2010; Raab, Frederick/E-2222-2011; Martin, Iain/A-2445-2010; OI Vecchio, Alberto/0000-0002-6254-1617; Khan, Rubab/0000-0001-5100-5168; Postiglione, Fabio/0000-0003-0628-3796; Rocchi, Alessio/0000-0002-1382-9016; Martelli, Filippo/0000-0003-3761-8616; Biswas, Rahul/0000-0002-0774-8906; mosca, simona/0000-0001-7869-8275; Frasconi, Franco/0000-0003-4204-6587; Sigg, Daniel/0000-0003-4606-6526; Ferrante, Isidoro/0000-0002-0083-7228; Travasso, Flavio/0000-0002-4653-6156; Cella, Giancarlo/0000-0002-0752-0338; Cesarini, Elisabetta/0000-0001-9127-3167; Frey, Raymond/0000-0003-0341-2636; Di Virgilio, Angela Dora Vittoria/0000-0002-2237-7533; Jaranowski, Piotr/0000-0001-8085-3414; Stein, Leo/0000-0001-7559-9597; Swinkels, Bas/0000-0002-3066-3601; Ward, Robert/0000-0001-5503-5241; Ricci, Fulvio/0000-0001-5475-4447; Whelan, John/0000-0001-5710-6576; Vedovato, Gabriele/0000-0001-7226-1320; LONGO, Maurizio/0000-0001-8325-4003; Fairhurst, Stephen/0000-0001-8480-1961; Boschi, Valerio/0000-0001-8665-2293; Matichard, Fabrice/0000-0001-8982-8418; Pinto, Innocenzo M./0000-0002-2679-4457; Guidi, Gianluca/0000-0002-3061-9870; Minelli, Jeff/0000-0002-5330-912X; Corongiu, Alessandro/0000-0002-5924-3141; Santamaria, Lucia/0000-0002-5986-0449; Pierro, Vincenzo/0000-0002-6020-5521; Coccia, Eugenio/0000-0002-6669-5787; Hallam, Jonathan Mark/0000-0002-7087-0461; Vetrano, Flavio/0000-0002-7523-4296; Nishizawa, Atsushi/0000-0003-3562-0990; calloni, enrico/0000-0003-4819-3297; Sorazu, Borja/0000-0002-6178-3198; Bondu, Francois/0000-0001-6487-5197; Zweizig, John/0000-0002-1521-3397; O'Shaughnessy, Richard/0000-0001-5832-8517; Pitkin, Matthew/0000-0003-4548-526X; Losurdo, Giovanni/0000-0003-0452-746X; Lam, Ping Koy/0000-0002-4421-601X; Danilishin, Stefan/0000-0001-7758-7493; Vicere, Andrea/0000-0003-0624-6231; Puppo, Paola/0000-0003-4677-5015; Gemme, Gianluca/0000-0002-1127-7406; Allen, Bruce/0000-0003-4285-6256; Zhao, Chunnong/0000-0001-5825-2401; Marchesoni, Fabio/0000-0001-9240-6793; Toncelli, Alessandra/0000-0003-4400-8808; Vocca, Helios/0000-0002-1200-3917; Finn, Lee Samuel/0000-0002-3937-0688; Prato, Mirko/0000-0002-2188-8059; Gorodetsky, Michael/0000-0002-5159-2742; Punturo, Michele/0000-0001-8722-4485; Lueck, Harald/0000-0001-9350-4846; Neri, Igor/0000-0002-9047-9822; Galdi, Vincenzo/0000-0002-4796-3600; Gammaitoni, Luca/0000-0002-4972-7062; McClelland, David/0000-0001-6210-5842; prodi, giovanni/0000-0001-5256-915X; Strain, Kenneth/0000-0002-2066-5355; Acernese, Fausto/0000-0003-3103-3473; Granata, Massimo/0000-0003-3275-1186; Ransom, Scott/0000-0001-5799-9714; Di Paolo Emilio, Maurizio/0000-0002-9558-3610; Scott, Jamie/0000-0001-6701-6515; PERSICHETTI, GIANLUCA/0000-0001-8424-9791; Freise, Andreas/0000-0001-6586-9901; Mandel, Ilya/0000-0002-6134-8946; Whiting, Bernard F/0000-0002-8501-8669; Principe, Maria/0000-0002-6327-0628; Kanner, Jonah/0000-0001-8115-0577; Garufi, Fabio/0000-0003-1391-6168; Piergiovanni, Francesco/0000-0001-8063-828X FU Australian Research Council; Council of Scientific and Industrial Research of India; Istituto Nazionale di Fisica Nucleare of Italy; Spanish Ministerio de Educacion y Ciencia; Conselleria d'Economia Hisenda i Innovacio of the Govern de les Illes Balears; Netherlands Organisation for Scientific Research; Royal Society; Scottish Funding Council; Polish Ministry of Science and Higher Education; Foundation for Polish Science; Scottish Universities Physics Alliance; National Aeronautics and Space Administration; Carnegie Trust; Leverhulme Trust; David and Lucile Packard Foundation; Research Corporation; Alfred P. Sloan Foundation; Natural Sciences and Engineering Research Council of Canada; Commonwealth Government FX The authors gratefully acknowledge the support of the United States National Science Foundation for the construction and operation of the LIGO Laboratory, the Science and Technology Facilities Council of the United Kingdom, the Max-Planck-Society, and the State of Niedersachsen/Germany for support of the construction and operation of the GEO600 detector, and the Italian Istituto Nazionale di Fisica Nucleare and the French Centre National de la Recherche Scientifique for the construction and operation of the Virgo detector. The authors also gratefully acknowledge the support of the research by these agencies and by the Australian Research Council, the Council of Scientific and Industrial Research of India, the Istituto Nazionale di Fisica Nucleare of Italy, the Spanish Ministerio de Educacion y Ciencia, the Conselleria d'Economia Hisenda i Innovacio of the Govern de les Illes Balears, the Foundation for Fundamental Research on Matter supported by the Netherlands Organisation for Scientific Research, the Royal Society, the Scottish Funding Council, the Polish Ministry of Science and Higher Education, the FOCUS Programme of Foundation for Polish Science, the Scottish Universities Physics Alliance, the National Aeronautics and Space Administration, the Carnegie Trust, the Leverhulme Trust, the David and Lucile Packard Foundation, the Research Corporation, and the Alfred P. Sloan Foundation. LIGO Document No. LIGO-P080112-v5. Pulsar research at UBC is supported by a Natural Sciences and Engineering Research Council of Canada Discovery Grant. The Parkes radio telescope is part of the Australia Telescope which is funded by the Commonwealth Government for operation as a National Facility managed by CSIRO. The National Radio Astronomy Observatory is a facility of the United States National Science Foundation operated under cooperative agreement by Associated Universities, Inc. We thank Maura McLaughlin for useful discussions. NR 45 TC 111 Z9 112 U1 3 U2 46 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD APR 10 PY 2010 VL 713 IS 1 BP 671 EP 685 DI 10.1088/0004-637X/713/1/671 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 573MR UT WOS:000275918500060 ER PT J AU Abbasi, RU Abu-Zayyad, T Allen, M Amann, JF Archbold, G Belov, K Belz, JW Bergman, DR Blake, SA Brusova, OA Burt, GW Cannon, C Cao, Z Deng, W Fedorova, Y Findlay, J Finley, CB Gray, RC Hanlon, WF Hoffman, CM Holzscheiter, MH Hughes, G Huntemeyer, P Ivanov, D Jones, BF Jui, CCH Kim, K Kirn, MA Koers, H Loh, EC Maestas, MM Manago, N Marek, LJ Martens, K Matthews, JAJ Matthews, JN Moore, SA O'Neill, A Painter, CA Perera, L Reil, K Riehle, R Roberts, MD Rodriguez, D Sasaki, M Schnetzer, SR Scott, LM Sinnis, G Smith, JD Sokolsky, P Song, C Springer, RW Stokes, BT Stratton, SR Thomas, JR Thomas, SB Thomson, GB Tinyakov, P Tupa, D Wiencke, LR Zech, A Zhang, X AF Abbasi, R. U. Abu-Zayyad, T. Allen, M. Amann, J. F. Archbold, G. Belov, K. Belz, J. W. Bergman, D. R. Blake, S. A. Brusova, O. A. Burt, G. W. Cannon, C. Cao, Z. Deng, W. Fedorova, Y. Findlay, J. Finley, C. B. Gray, R. C. Hanlon, W. F. Hoffman, C. M. Holzscheiter, M. H. Hughes, G. Huentemeyer, P. Ivanov, D. Jones, B. F. Jui, C. C. H. Kim, K. Kirn, M. A. Koers, H. Loh, E. C. Maestas, M. M. Manago, N. Marek, L. J. Martens, K. Matthews, J. A. J. Matthews, J. N. Moore, S. A. O'Neill, A. Painter, C. A. Perera, L. Reil, K. Riehle, R. Roberts, M. D. Rodriguez, D. Sasaki, M. Schnetzer, S. R. Scott, L. M. Sinnis, G. Smith, J. D. Sokolsky, P. Song, C. Springer, R. W. Stokes, B. T. Stratton, S. R. Thomas, J. R. Thomas, S. B. Thomson, G. B. Tinyakov, P. Tupa, D. Wiencke, L. R. Zech, A. Zhang, X. CA High Resolution Fly's Eye Collabor TI ANALYSIS OF LARGE-SCALE ANISOTROPY OF ULTRA-HIGH ENERGY COSMIC RAYS IN HiRes DATA SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE cosmic rays; large-scale structure of universe; magnetic fields ID ACTIVE GALACTIC NUCLEI; ARRIVAL DIRECTIONS; FLYS EYE; SPECTRUM; OBJECTS AB Stereo data collected by the HiRes experiment over a six-year period are examined for large-scale anisotropy related to the inhomogeneous distribution of matter in the nearby universe. We consider the generic case of small cosmic-ray deflections and a large number of sources tracing the matter distribution. In this matter tracer model the expected cosmic-ray flux depends essentially on a single free parameter, the typical deflection angle theta(s). We find that the HiRes data with threshold energies of 40 EeV and 57 EeV are incompatible with the matter tracer model at a 95% confidence level unless theta(s) > 10 degrees and are compatible with an isotropic flux. The data set above 10 EeV is compatible with both the matter tracer model and an isotropic flux. C1 [Abbasi, R. U.; Abu-Zayyad, T.; Allen, M.; Archbold, G.; Belov, K.; Belz, J. W.; Bergman, D. R.; Blake, S. A.; Brusova, O. A.; Burt, G. W.; Cannon, C.; Cao, Z.; Deng, W.; Fedorova, Y.; Findlay, J.; Gray, R. C.; Hanlon, W. F.; Huentemeyer, P.; Jones, B. F.; Jui, C. C. H.; Kim, K.; Loh, E. C.; Maestas, M. M.; Martens, K.; Matthews, J. N.; Moore, S. A.; Reil, K.; Riehle, R.; Rodriguez, D.; Smith, J. D.; Sokolsky, P.; Springer, R. W.; Stokes, B. T.; Thomas, J. R.; Thomas, S. B.; Thomson, G. B.; Wiencke, L. R.] Univ Utah, Dept Phys, Salt Lake City, UT 84112 USA. [Abbasi, R. U.; Abu-Zayyad, T.; Allen, M.; Archbold, G.; Belov, K.; Belz, J. W.; Bergman, D. R.; Blake, S. A.; Brusova, O. A.; Burt, G. W.; Cannon, C.; Cao, Z.; Deng, W.; Fedorova, Y.; Gray, R. C.; Hanlon, W. F.; Huentemeyer, P.; Jones, B. F.; Jui, C. C. H.; Kim, K.; Loh, E. C.; Maestas, M. M.; Martens, K.; Matthews, J. N.; Moore, S. A.; Reil, K.; Riehle, R.; Rodriguez, D.; Smith, J. D.; Sokolsky, P.; Springer, R. W.; Stokes, B. T.; Thomas, J. R.; Thomas, S. B.; Thomson, G. B.; Wiencke, L. R.] Univ Utah, High Energy Astrophys Inst, Salt Lake City, UT 84112 USA. [Amann, J. F.; Hoffman, C. M.; Holzscheiter, M. H.; Marek, L. J.; Painter, C. A.; Sinnis, G.; Tupa, D.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Bergman, D. R.; Hughes, G.; Ivanov, D.; Perera, L.; Schnetzer, S. R.; Scott, L. M.; Stokes, B. T.; Stratton, S. R.; Thomson, G. B.; Zech, A.] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA. [Cao, Z.] Inst High Energy Phys, Beijing 100039, Peoples R China. [Finley, C. B.; O'Neill, A.; Song, C.; Zhang, X.] Columbia Univ, Dept Phys, New York, NY 10027 USA. [Finley, C. B.; O'Neill, A.; Song, C.; Zhang, X.] Columbia Univ, Nevis Labs, New York, NY 10027 USA. [Kirn, M. A.] Montana State Univ, Dept Phys, Bozeman, MT 59717 USA. [Koers, H.; Tinyakov, P.] Univ Libre Bruxelles, B-1050 Brussels, Belgium. [Manago, N.; Sasaki, M.] Univ Tokyo, Inst Cosm Ray Res, Chiba 2778582, Japan. [Matthews, J. A. J.; Roberts, M. D.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. RP Abbasi, RU (reprint author), Univ Utah, Dept Phys, Salt Lake City, UT 84112 USA. RI Song, Chihwa/A-3455-2008; Martens, Kai/A-4323-2011; Belov, Konstantin/D-2520-2013; OI Koers, Hylke/0000-0001-6538-7590; Tupa, Dale/0000-0002-6265-5016 FU National Science Foundation [NSF-PHY-9321949, NSF-PHY-9322298, NSF-PHY-9974537, NSF-PHY-0071069, NSF-PHY-0098826, NSF-PHY-0140688, NSF-PHY-0245328, NSF-PHY-0307098, NSF-PHY-0305516]; Department of Energy [FG03-92ER40732]; BSP; FNRS [1.5.335.08]; IISN [4.4509.10] FX This work is supported by the National Science Foundation under contracts NSF-PHY-9321949, NSF-PHY-9322298, NSF-PHY-9974537, NSF-PHY-0071069, NSF-PHY-0098826, NSF-PHY-0140688, NSF-PHY-0245328, NSF-PHY-0307098, and NSF-PHY-0305516, Department of Energy grant FG03-92ER40732, the BSP under IUAP VI/11, the FNRS contract 1.5.335.08, and the IISN contract 4.4509.10. We gratefully acknowledge the contribution from the technical staffs of our home institutions and thank the University of Utah Center for High Performance Computing for their contributions. The cooperation of Colonels E. Fisher, G. Harter, G. Olsen, the US Army, and the Dugway Proving Ground staff is appreciated. NR 28 TC 32 Z9 32 U1 0 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 EI 2041-8213 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD APR 10 PY 2010 VL 713 IS 1 BP L64 EP L68 DI 10.1088/2041-8205/713/1/L64 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 582KA UT WOS:000276594900014 ER PT J AU Barrett, RF Chan, THF D'Azevedo, EF Jaeger, EF Wong, K Wong, RY AF Barrett, R. F. Chan, T. H. F. D'Azevedo, E. F. Jaeger, E. F. Wong, K. Wong, R. Y. TI Complex version of high performance computing LINPACK benchmark (HPL) SO CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE LA English DT Article DE parallel dense solver; HPL ID LINEAR ALGEBRA SUBPROGRAMS; PLASMAS; FUTURE; SET AB This paper describes our effort to enhance the performance of the AORSA fusion energy simulation program through the use of high-performance LINPACK (HPL) benchmark, commonly used in ranking the top 500 supercomputers. The algorithm used by HPL, enhanced by a set of tuning options, is more effective than that found in the ScaLAPACK library. Retrofitting these algorithms, such as look-ahead processing of pivot elements, into ScaLAPACK is considered as a major undertaking. Moreover, HPL is configured as a benchmark, but only for real-valued coefficients. We therefore developed software to convert HPL for use within an application program that generates complex coefficient linear systems. Although HPL is not normally perceived as a part of an application, our results show that the modified HPL software brings a significant increase in the performance of the solver when simulating the highest resolution experiments thus far configured, achieving 87.5 TFLOPS on over 20 000 processors on the Cray XT4. Copyright (c) 2009 John Wiley & Sons, Ltd. C1 [Barrett, R. F.; D'Azevedo, E. F.; Jaeger, E. F.] Oak Ridge Natl Lab, Natl Ctr Computat Sci, Oak Ridge, TN 37831 USA. [Chan, T. H. F.; Wong, R. Y.] Chinese Univ Hong Kong, Hong Kong, Hong Kong, Peoples R China. [Wong, K.] Univ Tennessee, Joint Inst Computat Sci, Knoxville, TN 37996 USA. RP Barrett, RF (reprint author), Oak Ridge Natl Lab, Natl Ctr Computat Sci, Bldg 5600,MS 6008, Oak Ridge, TN 37831 USA. EM rbarrett@ornl.gov FU U.S. Department of Energy [DE-ACO5-00OR22725]; UT-Battelle, LLC [DE-ACO5-00OR22725]; Chinese University of Hong Kong (CUHK) FX Contract/grant sponsor: U.S. Department of Energy; contract/grant number: DE-ACO5-00OR22725; Contract/grant sponsor: UT-Battelle, LLC; contract/grant number: DE-ACO5-00OR22725; Contract/grant sponsor: The Chinese University of Hong Kong (CUHK) NR 28 TC 8 Z9 8 U1 0 U2 1 PU JOHN WILEY & SONS LTD PI CHICHESTER PA THE ATRIUM, SOUTHERN GATE, CHICHESTER PO19 8SQ, W SUSSEX, ENGLAND SN 1532-0626 J9 CONCURR COMP-PRACT E JI Concurr. Comput.-Pract. Exp. PD APR 10 PY 2010 VL 22 IS 5 BP 573 EP 587 DI 10.1002/cpe.1476 PG 15 WC Computer Science, Software Engineering; Computer Science, Theory & Methods SC Computer Science GA 574TL UT WOS:000276016400002 ER PT J AU Yang, ZQ Khangaonkara, T Calvi, M Nelson, K AF Yang, Zhaoqing Khangaonkara, Tarang Calvi, Maria Nelson, Kurt TI Simulation of cumulative effects of nearshore restoration projects on estuarine hydrodynamics SO ECOLOGICAL MODELLING LA English DT Article DE Restoration; Cumulative effect; Estuary; Modeling; Hydrodynamics ID SALT MARSHES; COASTAL OCEAN; FINITE-VOLUME; WATER-QUALITY; MODEL; CONSERVATION; WETLANDS AB Many nearshore restoration projects are currently underway at coastal locations where human influence and development have disrupted natural habitat and coastal ecological systems. The objectives of these projects in general are to restore the lost estuarine functions to the tidal marshland. Often these projects are conducted with little understanding of the potential effects of other nearby projects within the ecosystem, and similarly, it is easy to neglect the effect of the local project on the larger estuarine scale. In this paper, a modeling study is presented to evaluate the hydrodynamic responses of multiple restoration projects and their cumulative effect in the Snohomish River estuary in Washington, USA. The concept of absolute mean tidal transport is introduced and used to measure the cumulative effect of the proposed restoration projects on the estuarine hydrodynamics. The results show that the hydrodynamic responses due to multiple restoration projects are additive in the estuary, and the effect is nonlinear. The hydrodynamic response under restoration conditions depends on the size of the restoration area and the geometric configuration of the existing river channels. Within a complex braided estuary such as the Snohomish, the influence of a specific restoration project is not only experienced locally, but also found to significantly affect tidal transport in all distributary branches within the system. Published by Elsevier B.V. C1 [Yang, Zhaoqing; Khangaonkara, Tarang] Battelle Marine Sci Lab, Seattle, WA 98109 USA. [Calvi, Maria; Nelson, Kurt] Tulalip Tribes Washington, Tulalip, WA 98271 USA. RP Yang, ZQ (reprint author), Battelle Marine Sci Lab, 1100 Dexter Ave N,Suite 400, Seattle, WA 98109 USA. EM zhaoqing.yang@pnl.gov FU Tulalip Tribes of Washington State, Snohomish County; Port of Everett; City of Everett FX This study was funded by the Tulalip Tribes of Washington State, Snohomish County, the Port of Everett, and the City of Everett. The authors would like to thank Vaughn Collins (formerly with Snohomish County) for providing LIDAR bathymetry and on ground information about site-specific conditions and Mindy Rowse and Kurt Fresh of Northwest Fisheries Science Center of the National Oceanic and Atmospheric Administration Fisheries Service for arranging a guided field trip that provided valuable insight on the hydrodynamic behavior of numerous distributaries in the Snohomish estuary. The authors would also like to thank Prof. Changsheng Chen of the University of Massachusetts-Dartmouth for providing the source code of FVCOM to conduct this research. NR 35 TC 16 Z9 19 U1 1 U2 12 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0304-3800 J9 ECOL MODEL JI Ecol. Model. PD APR 10 PY 2010 VL 221 IS 7 BP 969 EP 977 DI 10.1016/j.ecolmodel.2008.12.006 PG 9 WC Ecology SC Environmental Sciences & Ecology GA 572DT UT WOS:000275808200002 ER PT J AU Yang, ZQ Sobocinski, KL Heatwole, D Khangaonkar, T Thom, R Fuller, R AF Yang, Zhaoqing Sobocinski, Kathryn L. Heatwole, Danelle Khangaonkar, Tarang Thom, Ronald Fuller, Roger TI Hydrodynamic and ecological assessment of nearshore restoration: A modeling study SO ECOLOGICAL MODELLING LA English DT Article DE Estuaries; Modeling; Tides; Hydrodynamics; Restoration; Habitat ID RIVER ESTUARY; SALT MARSHES; OCEAN MODEL; COASTAL; CIRCULATION; WASHINGTON; SALINITY; SURVIVAL; WETLANDS; COMPLEX AB Along the Pacific Northwest coast, much of the estuarine habitat has been lost over the last century to agricultural land use, residential and commercial development, and transportation corridors. As a result, many of the ecological processes and functions have been disrupted. To protect and improve these coastal habitats that are vital to aquatic species, many projects are currently underway to restore estuarine and coastal ecosystems through dike breaches, setbacks, and removals. Understanding site-specific information on physical processes is critical for improving the success of such restoration actions. In this study, a three-dimensional hydrodynamic model was developed to simulate estuarine processes in the Stillaguamish River estuary, where restoration of a 160-acre parcel through dike setback has been proposed. The model was calibrated to observed tide, current, and salinity data for existing conditions and applied to simulate the hydrodynamic responses to two restoration alternatives. Model results were then combined with biophysical data to predict habitat responses within the restoration footprint. Results showed that the proposed dike removal would result in desired tidal flushing and conditions that would support four habitat types on the restoration footprint. At the estuary scale, restoration would substantially increase the proportion of area flushed with freshwater (<5 ppt) at flood tide. Potential implications of predicted changes in salinity and flow dynamics are discussed relative to the distribution of tidal marsh habitat. (C) 2009 Elsevier B.V. All rights reserved. C1 [Yang, Zhaoqing; Khangaonkar, Tarang] Pacific NW Natl Lab, Seattle, WA 98109 USA. [Sobocinski, Kathryn L.; Thom, Ronald] Pacific NW Natl, Sequim, WA 98382 USA. [Heatwole, Danelle] Nature Conservancy, Seattle, WA 98101 USA. [Fuller, Roger] Nature Conservancy, Mt Vernon, WA 98273 USA. RP Yang, ZQ (reprint author), Pacific NW Natl Lab, 1100 Dexter Ave N,Suite 400, Seattle, WA 98109 USA. EM zhaoqing.yang@pnl.gov NR 31 TC 16 Z9 18 U1 2 U2 19 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0304-3800 J9 ECOL MODEL JI Ecol. Model. PD APR 10 PY 2010 VL 221 IS 7 BP 1043 EP 1053 DI 10.1016/j.ecolmodel.2009.07.011 PG 11 WC Ecology SC Environmental Sciences & Ecology GA 572DT UT WOS:000275808200009 ER PT J AU Blanton, JO Garrett, AJ Bollinger, JS Hayes, DW Koffman, LD Amft, J Moore, T AF Blanton, J. O. Garrett, A. J. Bollinger, J. S. Hayes, D. W. Koffman, L. D. Amft, J. Moore, T. TI Transport and retention of a conservative tracer in an isolated creek-marsh system SO ESTUARINE COASTAL AND SHELF SCIENCE LA English DT Article DE tidal creek; intertidal area; flushing time; conservative tracers; numerical simulation; sensitivity analysis ID COASTAL-PLAIN ESTUARY; VELOCITY VARIATIONS; TIDAL CREEKS; SALT; ASYMMETRY; SEDIMENT; IMAGERY; CHANNEL; WATER; RIVER AB A study of tracer transport and retention in a small tidal creek and marsh system located in the southeastern US was conducted using a three-dimensional hydrodynamic model and data from a dye tracer release. The model simulated tidally driven flow, including inundation and drying out of the marshes and the dispersal of the dye tracer. Flow measurements in the tidal creek showed that the simulations appeared to generally duplicate the tidally driven flow into and out of the tidal creeks and marshes. The dye tracer experiment was conducted to test the hydrodynamic model's ability to simulate dispersal of a point release of pollutants into the creek during an incoming tide. The simulations reproduced much of the experimental measurements, but bathymetric errors and lack of resolution of the smallest arms of the tidal creeks affected the ability to faithfully reproduce the initial peak in measured dye tracer concentrations at a sampling location far from the boundary. The lack of the smallest tidal creeks led to some trapping of water and dye in the marshes. Two independent estimates of flushing time yielded values between 1.6 and 2.4 days. An uncertainty analysis indicates that model simulations are sensitive to variations in parameters such as water depth and marsh grass density. On the other hand, omission of the smallest tidal creeks in simulations may be partially offset by decreasing marsh grass density. Further improvements must rely on more accurate and detailed bathymetric data that resolves the smaller arms of the tidal creeks and includes quantitative information about the density and distribution of marsh grass. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Blanton, J. O.; Amft, J.; Moore, T.] Skidaway Inst Oceanog, Savannah, GA 31406 USA. [Garrett, A. J.; Bollinger, J. S.; Hayes, D. W.; Koffman, L. D.] Savannah River Natl Lab, Aiken, SC 29808 USA. RP Blanton, JO (reprint author), Skidaway Inst Oceanog, 10 Ocean Sci Circle, Savannah, GA 31406 USA. EM jack.blanton@skio.usg.edu FU Georgia Coastal Zone Management Program [RR100-279/9262764]; National Science Foundation LTER [OCE-9982133]; Department of Energy [DE-AC09-96SR18500] FX We gratefully acknowledge the following agencies that supported the work described in this paper: the Georgia Coastal Zone Management Program (Grant No. RR100-279/9262764), National Science Foundation LTER (Grant No. OCE-9982133), and the Department of Energy (Contract No. DE-AC09-96SR18500). Our thanks go to Mike Robinson and Anna Boyette at Skidaway Institute of Oceanography for assistance in preparation of the figures. NR 30 TC 7 Z9 7 U1 4 U2 14 PU ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD PI LONDON PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND SN 0272-7714 EI 1096-0015 J9 ESTUAR COAST SHELF S JI Estuar. Coast. Shelf Sci. PD APR 10 PY 2010 VL 87 IS 2 BP 333 EP 345 DI 10.1016/j.ecss.2010.01.010 PG 13 WC Marine & Freshwater Biology; Oceanography SC Marine & Freshwater Biology; Oceanography GA 582TO UT WOS:000276622100018 ER PT J AU Dohrmann, CR Widlund, OB AF Dohrmann, Clark R. Widlund, Olof B. TI Hybrid domain decomposition algorithms for compressible and almost incompressible elasticity SO INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING LA English DT Article DE domain decomposition; overlapping Schwarz; preconditioners; iterative methods; almost incompressible elasticity; mixed finite element methods ID OVERLAPPING SCHWARZ METHODS; LINEAR ELASTICITY; ELLIPTIC PROBLEMS; 3 DIMENSIONS; PRECONDITIONER; ELEMENT; COEFFICIENTS; SYSTEMS AB Overlapping Schwarz methods are considered for mixed finite element approximations of linear elasticity, with discontinuous pressure spaces, as well as for compressible elasticity approximated by standard conforming finite elements. The coarse components of the preconditioners are based on spaces, with a number of degrees of freedom per subdomain which are uniformly bounded, which are similar to those previously developed for scalar elliptic problems and domain decomposition methods of iterative substructuring type, i.e. methods based on nonoverlapping decompositions of the domain. The local components of the new preconditioners are based on solvers on a set of overlapping subdomains. In the current study, the dimension of the coarse spaces is smaller than in recently developed algorithms; in the compressible case all independent face degrees of freedom have been eliminated while in the almost incompressible case five out of six are not needed. In many cases, this will result in a reduction of the dimension of the coarse space by about one half compared with that of the algorithm previously considered. In addition, in spite of using overlapping subdomains to define the local components of the preconditioner, values of the residual and the approximate solution need only to be retained on the interface between the subdomains in the iteration of the new hybrid Schwarz algorithm. The use of discontinuous pressures makes it possible to work exclusively with symmetric, positive-definite problems and the standard preconditioned conjugate gradient method. Bounds are established for the condition number of the preconditioned operators. The bound for the almost incompressible case grows in proportion to the square of the logarithm of the number of degrees of freedom of individual subdomains and the third power of the relative overlap between the overlapping subdomains, and it is independent of the Poisson ratio as well as jumps in the Lame parameters across the interface between the subdomains. Numerical results illustrate the findings. Copyright (C) 2009 John Wiley & Sons, Ltd. C1 [Dohrmann, Clark R.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Widlund, Olof B.] NYU, Courant Inst, New York, NY 10012 USA. RP Dohrmann, CR (reprint author), Sandia Natl Labs, Mail Stop 0346, Albuquerque, NM 87185 USA. EM crdohrm@sandia.gov FU United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000]; U.S. Department of Energy [DE-FG02-06ER25718]; National Science Foundation [DMS-0513251] FX Contract/grant sponsor: The United States Department of Energy's National Nuclear Security Administration; contract/grant number: DE-AC04-94AL85000; Contract/grant sponsor: U.S. Department of Energy; contract/grant number: DE-FG02-06ER25718; Contract/grant sponsor: National Science Foundation; contract/grant number: DMS-0513251 NR 37 TC 23 Z9 23 U1 0 U2 5 PU JOHN WILEY & SONS LTD PI CHICHESTER PA THE ATRIUM, SOUTHERN GATE, CHICHESTER PO19 8SQ, W SUSSEX, ENGLAND SN 0029-5981 J9 INT J NUMER METH ENG JI Int. J. Numer. Methods Eng. PD APR 9 PY 2010 VL 82 IS 2 BP 157 EP 183 DI 10.1002/nme.2761 PG 27 WC Engineering, Multidisciplinary; Mathematics, Interdisciplinary Applications SC Engineering; Mathematics GA 585IP UT WOS:000276818900002 ER PT J AU Iyer, RR Pluciennik, A Genschel, J Tsai, MS Beese, LS Modrich, P AF Iyer, Ravi R. Pluciennik, Anna Genschel, Jochen Tsai, Miaw-Sheue Beese, Lorena S. Modrich, Paul TI MutL alpha and Proliferating Cell Nuclear Antigen Share Binding Sites on MutS beta SO JOURNAL OF BIOLOGICAL CHEMISTRY LA English DT Article ID DNA MISMATCH REPAIR; INTERSTRAND CROSS-LINKS; RECOGNITION COMPLEX; HMUTS-ALPHA; EXCISION; MSH2-MSH6; PROTEINS; INTERACT; SYSTEM; RECONSTITUTION AB MutS beta (MSH2-MSH3) mediates repair of insertion-deletion heterologies but also triggers triplet repeat expansions that cause neurological diseases. Like other DNA metabolic activities, MutS beta interacts with proliferating cell nuclear antigen (PCNA) via a conserved motif (QXX(L/I)XXFF). We demonstrate that MutS beta-PCNA complex formation occurs with an affinity of similar to 0.1 mu M and a preferred stoichiometry of 1:1. However, up to 20% of complexes are multivalent under conditions where MutS beta is in molar excess over PCNA. Conformational studies indicate that the two proteins associate in an end-to-end fashion in solution. Surprisingly, mutation of the PCNA-binding motif of MutS beta not only abolishes PCNA binding, but unlike MutS beta, also dramatically attenuates MutS beta-MutL alpha interaction, MutL alpha endonuclease activation, and bidirectional mismatch repair. As predicted by these findings, PCNA competes with MutL alpha for binding to MutS beta, an effect that is blocked by the cell cycle regulator p21(CIP1). We propose that MutS beta-MutL alpha interaction is mediated in part by residues ((L/I)SRFF) embedded within the MSH3 PCNA-binding motif. To our knowledge this is the first case where residues important for PCNA binding also mediate interaction with a second protein. These findings also indicate that MutS beta- and MutS alpha-initiated repair events differ in fundamental ways. C1 [Iyer, Ravi R.; Pluciennik, Anna; Genschel, Jochen; Beese, Lorena S.; Modrich, Paul] Duke Univ, Med Ctr, Dept Biochem, Durham, NC 27710 USA. [Modrich, Paul] Duke Univ, Med Ctr, Howard Hughes Med Inst, Durham, NC 27710 USA. [Tsai, Miaw-Sheue] Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Canc & DNA Damage Responses, Berkeley, CA 94720 USA. RP Modrich, P (reprint author), Duke Univ, Med Ctr, Dept Biochem, Durham, NC 27710 USA. EM modrich@biochem.duke.edu RI beese, lorena/G-4993-2010 FU National Institutes of Health [R01 GM45190, P01 CA92584] FX This work was supported, in whole or in part, by National Institutes of Health Grants R01 GM45190 and P01 CA92584. NR 49 TC 23 Z9 23 U1 0 U2 5 PU AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3996 USA SN 0021-9258 J9 J BIOL CHEM JI J. Biol. Chem. PD APR 9 PY 2010 VL 285 IS 15 BP 11730 EP 11739 DI 10.1074/jbc.M110.104125 PG 10 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 578IF UT WOS:000276286200076 PM 20154325 ER PT J AU Liu, KJ Lemons, DS Winske, D Gary, SP AF Liu, Kaijun Lemons, Don S. Winske, Dan Gary, S. Peter TI Relativistic electron scattering by electromagnetic ion cyclotron fluctuations: Test particle simulations SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID RADIATION BELT ELECTRONS; PITCH-ANGLE DIFFUSION; ANISOTROPY INSTABILITIES; EARTHS MAGNETOSPHERE; RESONANT DIFFUSION; GEOMAGNETIC STORMS; EMIC WAVES; PLASMA; MAGNETOSHEATH; ACCELERATION AB Relativistic electron scattering by electromagnetic ion cyclotron (EMIC) fluctuations is studied using test particle computations coupled to the results of a hybrid simulation code. The enhanced EMIC fluctuations are derived from a 1-D, self-consistent hybrid simulation model and are due to the growth of the Alfven cyclotron instability driven by the ion temperature anisotropy, T-i perpendicular to > T-i parallel to (where the subscripts perpendicular to and parallel to refer to directions perpendicular and parallel to the background magnetic field, respectively), in a magnetized, homogeneous, collisionless plasma with a single ion species. The test particle computations follow the motion of relativistic test electrons in the input EMIC fluctuations. The time evolution of the mean square pitch angle change of the test electrons is calculated and used to determine the pitch angle diffusion coefficient. Finally, the results are compared with quasi-linear diffusion theory. The diffusion coefficients given by the test particle computations agree with the ones from quasi-linear theory very well except for large-amplitude waves (delta B/B-0 >= 0.03 in the case presented, where dB is the wave magnetic field amplitude and B-0 is the background magnetic field) when the weak turbulence approximation in quasi-linear theory breaks down. Quasi-linear theory overestimates the pitch angle diffusion coefficient for large-amplitude waves and may, consequently, overestimate the pitch angle diffusion of relativistic electrons in the radiation belts at high L values. C1 [Liu, Kaijun; Winske, Dan; Gary, S. Peter] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Lemons, Don S.] Bethel Coll, Dept Phys, N Newton, KS 67117 USA. RP Liu, KJ (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM liukaijun@gmail.com RI Dong, Li/F-4931-2010 FU Defense Threat Reduction Agency [IACRO 07-4323I]; National Aeronautics and Space Administration FX This work was performed under the auspices of the U.S. Department of Energy (DOE). It was supported primarily by the Defense Threat Reduction Agency under the "Basic Research for Combating Weapons of Mass Destruction (WMD)" Program, project IACRO 07-4323I, with additional support from the Heliospheric Guest Investigators Program of the National Aeronautics and Space Administration. NR 41 TC 25 Z9 25 U1 1 U2 6 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD APR 9 PY 2010 VL 115 AR A04204 DI 10.1029/2009JA014807 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 581UA UT WOS:000276549100002 ER PT J AU Sampathkumar, P Ozyurt, SA Miller, SA Bain, KT Rutter, ME Gheyi, T Abrams, B Wang, YC Atwell, S Luz, JG Thompson, DA Wasserman, SR Emtage, JS Park, EC Rongo, C Jin, YS Klemke, RL Sauder, JM Burley, SK AF Sampathkumar, Parthasarathy Ozyurt, Sinem A. Miller, Stacy A. Bain, Kevin T. Rutter, Marc E. Gheyi, Tarun Abrams, Benjamin Wang, Yingchun Atwell, Shane Luz, John G. Thompson, Devon A. Wasserman, Stephen R. Emtage, J. Spencer Park, Eun Chan Rongo, Christopher Jin, Yishi Klemke, Richard L. Sauder, J. Michael Burley, Stephen K. TI Structures of PHR Domains from Mus musculus Phr1 (Mycbp2) Explain the Loss-of-Function Mutation (Gly1092 -> Glu) of the C. elegans Ortholog RPM-1 SO JOURNAL OF MOLECULAR BIOLOGY LA English DT Article DE PHR domain; Phr1; RPM-1; Mycbp2; synaptic development and axon guidance ID UBIQUITIN LIGASE RPM-1; SYNAPTIC GROWTH; FORMATION REVEALS; PROTEIN; HIGHWIRE; KINASE; GENE; SYNAPTOGENESIS; REFINEMENT; PROJECTION AB PHR [PAM (protein associated with Myc) HIW (Highwire) RPM-1 (regulator of presynaptic morphology 1)] proteins are conserved, large multi-domain E3 ubiquitin ligases with modular architecture. PHR proteins presynaptically control synaptic growth and axon guidance and postsynaptically regulate endocytosis of glutamate receptors. Dysfunction of neuronal ubiquitin-mediated proteasomal degradation is implicated in various neurodegenerative diseases. PHR proteins are characterized by the presence of two PHR domains near the N-terminus, which are essential for proper localization and function. Structures of both the first and second PHR domains of Mus musculus (mouse) Phr1 (MYC binding protein 2, Mycbp2) have been determined, revealing a novel beta sandwich fold composed of 11 antiparallel beta-strands. Conserved loops decorate the apical side of the first PHR domain (MmPHR1), yielding a distinct conserved surface feature. The surface of the second PHR domain (MmPHR2), in contrast, lacks significant conservation. Importantly, the structure of MmPHR1 provides insights into a loss-of-function mutation, Gly1092 -> Glu, observed in the Caenorhabditis elegans ortholog RPM-1. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Sampathkumar, Parthasarathy; Ozyurt, Sinem A.; Miller, Stacy A.; Bain, Kevin T.; Rutter, Marc E.; Gheyi, Tarun; Atwell, Shane; Luz, John G.; Thompson, Devon A.; Emtage, J. Spencer; Sauder, J. Michael; Burley, Stephen K.] Eli Lilly & Co, Lilly Biotechnol Ctr, San Diego, CA 92121 USA. [Abrams, Benjamin; Jin, Yishi] Univ Calif Santa Cruz, Dept Mol Cell & Dev Biol, Sinsheimer Labs, Santa Cruz, CA 95064 USA. [Wang, Yingchun; Klemke, Richard L.] Univ Calif San Diego, Dept Pathol, San Diego, CA 92093 USA. [Wang, Yingchun; Klemke, Richard L.] Univ Calif San Diego, Moores Canc Ctr, San Diego, CA 92093 USA. [Wasserman, Stephen R.] Eli Lilly & Co, LRL CAT, Adv Photon Source, Argonne Natl Lab, Argonne, IL 60439 USA. [Park, Eun Chan; Rongo, Christopher] Rutgers State Univ, Waksman Inst, Dept Genet, Piscataway, NJ USA. [Jin, Yishi] Univ Calif San Diego, Howard Hughes Med Inst, San Diego, CA 92093 USA. [Jin, Yishi] Univ Calif San Diego, Div Biol Sci, Neurobiol Sect, San Diego, CA 92093 USA. RP Sampathkumar, P (reprint author), Eli Lilly & Co, Lilly Biotechnol Ctr, 10300 Campus Point Dr,Suite 200, San Diego, CA 92121 USA. EM sampathkumarpa@lilly.com FU SGX Pharmaceuticals, Inc; Eli Lilly and Company; National Institutes of Health [U54 GM074945, NS035546]; U.S. Department of Energy, Office of Basic Energy Sciences FX This work was carried out at SGX Pharmaceuticals, Inc., and Eli Lilly and Company. Funding for this work was provided by National Institutes of Health Grants U54 GM074945 (PI: S.K.B.) and NS035546 (PI: Y.J.). Use of the Advanced Photon Source (APS) was supported by the U.S. Department of Energy, Office of Basic Energy Sciences. Use of the LRL-CAT beamline facilities at Sector 31 of the APS was provided by Eli Lilly and Company, which operates the facility. Authors declare no financial interest related to the work described in this communication. NR 44 TC 2 Z9 3 U1 0 U2 5 PU ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD PI LONDON PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND SN 0022-2836 J9 J MOL BIOL JI J. Mol. Biol. PD APR 9 PY 2010 VL 397 IS 4 BP 883 EP 892 DI 10.1016/j.jmb.2010.02.017 PG 10 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 582AH UT WOS:000276566900003 PM 20156452 ER PT J AU Mastro, MA Simpkins, B Wang, GT Hite, J Eddy, CR Kim, HY Ahn, J Kim, J AF Mastro, Michael A. Simpkins, Blake Wang, George T. Hite, Jennifer Eddy, Charles R., Jr. Kim, Hong-Youl Ahn, Jaehui Kim, Jihyun TI Polarization fields in III-nitride nanowire devices SO NANOTECHNOLOGY LA English DT Article ID GROWTH; GAN; HETEROSTRUCTURES; SEMICONDUCTORS; LAYERS AB Control of the polarization fields is the most important parameter in designing III-nitride thin-film devices, and herein we show that the polarization fields may be equally, if not more, important in devising III-nitride nanowire devices. One common approach to produce III-nitride nanowires is via a vapor-liquid-solid approach that, in general, yields nanowires with the major (growth) axis in the < 11 (2) over bar0 > direction. The cross section of this wire is an isosceles triangle with two {1 (1) over bar 01} facets and one {0001} facet. In this work, we analyze the polarization fields that arise in two distinct sets of crystal planes that can manifest in this triangular nanowire geometry: (0001), (1 (1) over bar0 (1) over bar), ((1) over bar 10 (1) over bar) or (000 (1) over bar), (1 (1) over bar 01), ((1) over bar 101). Calculations show that the polarization field at the {0001} facet is much larger than at the two opposing {1 (1) over bar 01} facets, although the sign of the field at each facet has a complicated dependence on the orientation and structure of the nanowire. An undoped nanowire transistor was fabricated that displayed p-type operation based solely on polarization-induced hole carriers at the (000 (1) over bar) AlGaN/GaN interface, consistent with our field calculations. C1 [Mastro, Michael A.; Simpkins, Blake; Hite, Jennifer; Eddy, Charles R., Jr.] USN, Res Lab, Washington, DC 20375 USA. [Wang, George T.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Kim, Hong-Youl; Ahn, Jaehui; Kim, Jihyun] Korea Univ, Dept Chem & Biol Engn, Seoul 136701, South Korea. RP Mastro, MA (reprint author), USN, Res Lab, 4555 Overlook Ave SW, Washington, DC 20375 USA. EM michael.mastro@nrl.navy.mil RI Kim, Jihyun/F-6940-2013; Hite, Jennifer/L-5637-2015 OI Hite, Jennifer/0000-0002-4090-0826 FU Office of Naval Research; Sandia Corporation; US Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX Research at the US Naval Research Lab is supported by the Office of Naval Research. Sandia is operated by Sandia Corporation, a Lockheed Martin Company for the US Department of Energy's National Nuclear Security Administration under contract no. DE-AC04-94AL85000. NR 19 TC 14 Z9 14 U1 0 U2 12 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0957-4484 J9 NANOTECHNOLOGY JI Nanotechnology PD APR 9 PY 2010 VL 21 IS 14 AR 145205 DI 10.1088/0957-4484/21/14/145205 PG 5 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA 570DP UT WOS:000275652200011 PM 20220226 ER PT J AU Aaltonen, T Adelman, J Gonzalez, BA Amerio, S Amidei, D Anastassov, A Annovi, A Antos, J Apollinari, G Apresyan, A Arisawa, T Artikov, A Asaadi, J Ashmanskas, W Attal, A Aurisano, A Azfar, F Badgett, W Barbaro-Galtieri, A Barnes, VE Barnett, BA Barria, P Bartos, P Bauer, G Beauchemin, PH Bedeschi, F Beecher, D Behari, S Bellettini, G Bellinger, J Benjamin, D Beretvas, A Bhatti, A Binkley, M Bisello, D Bizjak, I Blair, RE Blocker, C Blumenfeld, B Bocci, A Bodek, A Boisvert, V Bortoletto, D Boudreau, J Boveia, A Brau, B Bridgeman, A Brigliadori, L Bromberg, C Brubaker, E Budagov, J Budd, HS Budd, S Burkett, K Busetto, G Bussey, P Buzatu, A Byrum, KL Cabrera, S Calancha, C Camarda, S Campanelli, M Campbell, M Canelli, F Canepa, A Carls, B Carlsmith, D Carosi, R Carrillo, S Carron, S Casal, B Casarsa, M Castro, A Catastini, P Cauz, D Cavaliere, V Cavalli-Sforza, M Cerri, A Cerrito, L Chang, SH Chen, YC Chertok, M Chiarelli, G Chlachidze, G Chlebana, F Cho, K Chokheli, D Chou, JP Chung, K Chung, WH Chung, YS Chwalek, T Ciobanu, CI Ciocci, MA Clark, A Clark, D Compostella, G Convery, ME Conway, J Corbo, M Cordelli, M Cox, CA Cox, DJ Crescioli, F Almenar, CC Cuevas, J Culbertson, R Cully, JC Dagenhart, D Datta, M Davies, T de Barbaro, P De Cecco, S Deisher, A De Lorenzo, G Dell'Orso, M Deluca, C Demortier, L Deng, J Deninno, M d'Errico, M Di Canto, A di Giovanni, GP Di Ruzza, B Dittmann, JR D'Onofrio, M Donati, S Dong, P Dorigo, T Dube, S Ebina, K Elagin, A Erbacher, R Errede, D Errede, S Ershaidat, N Eusebi, R Fang, HC Farrington, S Fedorko, WT Feild, RG Feindt, M Fernandez, JP Ferrazza, C Field, R Flanagan, G Forrest, R Frank, MJ Franklin, M Freeman, JC Furic, I Gallinaro, M Galyardt, J Garberson, F Garcia, JE Garfinkel, AF Garosi, P Gerberich, H Gerdes, D Gessler, A Giagu, S Giakoumopoulou, V Giannetti, P Gibson, K Gimmell, JL Ginsburg, CM Giokaris, N Giordani, M Giromini, P Giunta, M Giurgiu, G Glagolev, V Glenzinski, D Gold, M Goldschmidt, N Golossanov, A Gomez, G Gomez-Ceballos, G Goncharov, M Gonzalez, O Gorelov, I Goshaw, AT Goulianos, K Gresele, A Grinstein, S Grosso-Pilcher, C Group, RC Grundler, U da Costa, JG Gunay-Unalan, Z Haber, C Hahn, SR Halkiadakis, E Han, BY Han, JY Happacher, F Hara, K Hare, D Hare, M Harr, RF Hartz, M Hatakeyama, K Hays, C Heck, M Heinrich, J Herndon, M Heuser, J Hewamanage, S Hidas, D Hill, CS Hirschbuehl, D Hocker, A Hou, S Houlden, M Hsu, SC Hughes, RE Hurwitz, M Husemann, U Hussein, M Huston, J Incandela, J Introzzi, G Iori, M Ivanov, A James, E Jang, D Jayatilaka, B Jeon, EJ Jha, MK Jindariani, S Johnson, W Jones, M Joo, KK Jun, SY Jung, JE Junk, TR Kamon, T Kar, D Karchin, PE Kato, Y Kephart, R Ketchum, W Keung, J Khotilovich, V Kilminster, B Kim, DH Kim, HS Kim, HW Kim, JE Kim, MJ Kim, SB Kim, SH Kim, YK Kimura, N Kirsch, L Klimenko, S Kondo, K Kong, DJ Konigsberg, J Korytov, A Kotwal, AV Kreps, M Kroll, J Krop, D Krumnack, N Kruse, M Krutelyov, V Kuhr, T Kulkarni, NP Kurata, M Kwang, S Laasanen, AT Lami, S Lammel, S Lancaster, M Lander, RL Lannon, K Lath, A Latino, G Lazzizzera, I LeCompte, T Lee, E Lee, HS Lee, JS Lee, SW Leone, S Lewis, JD Lin, CJ Linacre, J Lindgren, M Lipeles, E Lister, A Litvintsev, DO Liu, C Liu, T Lockyer, NS Loginov, A Lovas, L Lucchesi, D Lueck, J Lujan, P Lukens, P Lungu, G Lys, J Lysak, R MacQueen, D Madrak, R Maeshima, K Makhoul, K Maksimovic, P Malde, S Malik, S Manca, G Manousakis-Katsikakis, A Margaroli, F Marino, C Marino, CP Martin, A Martin, V Martinez, M Martinez-Ballarin, R Mastrandrea, P Mathis, M Mattson, ME Mazzanti, P McFarland, KS McIntyre, P McNulty, R Mehta, A Mehtala, P Menzione, A Mesropian, C Miao, T Mietlicki, D Miladinovic, N Miller, R Mills, C Milnik, M Mitra, A Mitselmakher, G Miyake, H Moed, S Moggi, N Mondragon, MN Moon, CS Moore, R Morello, MJ Morlock, J Fernandez, PM Mulmenstadt, J Mukherjee, A Muller, T Murat, P Mussini, M Nachtman, J Nagai, Y Naganoma, J Nakamura, K Nakano, I Napier, A Nett, J Neu, C Neubauer, MS Neubauer, S Nielsen, J Nodulman, L Norman, M Norniella, O Nurse, E Oakes, L Oh, SH Oh, YD Oksuzian, I Okusawa, T Orava, R Osterberg, K Griso, SP Pagliarone, C Palencia, E Papadimitriou, V Papaikonomou, A Paramanov, AA Parks, B Pashapour, S Patrick, J Pauletta, G Paulini, M Paus, C Peiffer, T Pellett, DE Penzo, A Phillips, TJ Piacentino, G Pianori, E Pinera, L Pitts, K Plager, C Pondrom, L Potamianos, K Poukhov, O Prokoshin, F Pronko, A Ptohos, F Pueschel, E Punzi, G Pursley, J Rademacker, J Rahaman, A Ramakrishnan, V Ranjan, N Redondo, I Renton, P Renz, M Rescigno, M Richter, S Rimondi, F Ristori, L Robson, A Rodrigo, T Rodriguez, T Rogers, E Rolli, S Roser, R Rossi, M Rossin, R Roy, P Ruiz, A Russ, J Rusu, V Rutherford, B Saarikko, H Safonov, A Sakumoto, WK Santi, L Sartori, L Sato, K Savoy-Navarro, A Schlabach, P Schmidt, A Schmidt, EE Schmidt, MA Schmidt, MP Schmitt, M Schwarz, T Scodellaro, L Scribano, A Scuri, F Sedov, A Seidel, S Seiya, Y Semenov, A Sexton-Kennedy, L Sforza, F Sfyrla, A Shalhout, SZ Shears, T Shepard, PF Shimojima, M Shiraishi, S Shochet, M Shon, Y Shreyber, I Simonenko, A Sinervo, P Sisakyan, A Slaughter, AJ Slaunwhite, J Sliwa, K Smith, JR Snider, FD Snihur, R Soha, A Somalwar, S Sorin, V Squillacioti, P Stanitzki, M St Denis, R Stelzer, B Stelzer-Chilton, O Stentz, D Strologas, J Strycker, GL Suh, JS Sukhanov, A Suslov, I Taffard, A Takashima, R Takeuchi, Y Tanaka, R Tang, J Tecchio, M Teng, PK Thom, J Thome, J Thompson, GA Thomson, E Tipton, P Ttito-Guzman, P Tkaczyk, S Toback, D Tokar, S Tollefson, K Tomura, T Tonelli, D Torre, S Torretta, D Totaro, P Tourneur, S Trovato, M Tsai, SY Tu, Y Turini, N Ukegawa, F Uozumi, S van Remortel, N Varganov, A Vataga, E Vazquez, F Velev, G Vellidis, C Vidal, M Vila, I Vilar, R Vogel, M Volobouev, I Volpi, G Wagner, P Wagner, RG Wagner, RL Wagner, W Wagner-Kuhr, J Wakisaka, T Wallny, R Wang, SM Warburton, A Waters, D Weinberger, M Weinelt, J Wester, WC Whitehouse, B Whiteson, D Wicklund, AB Wicklund, E Wilbur, S Williams, G Williams, HH Wilson, P Winer, BL Wittich, P Wolbers, S Wolfe, C Wolfe, H Wright, T Wu, X Wurthwein, F Yagil, A Yamamoto, K Yamaoka, J Yang, UK Yang, YC Yao, WM Yeh, GP Yi, K Yoh, J Yorita, K Yoshida, T Yu, GB Yu, I Yu, SS Yun, JC Zanetti, A Zeng, Y Zhang, X Zheng, Y Zucchelli, S AF Aaltonen, T. Adelman, J. Alvarez Gonzalez, B. Amerio, S. Amidei, D. Anastassov, A. Annovi, A. Antos, J. Apollinari, G. Apresyan, A. Arisawa, T. Artikov, A. Asaadi, J. Ashmanskas, W. Attal, A. Aurisano, A. Azfar, F. Badgett, W. Barbaro-Galtieri, A. Barnes, V. E. Barnett, B. A. Barria, P. Bartos, P. Bauer, G. Beauchemin, P. -H. Bedeschi, F. Beecher, D. Behari, S. Bellettini, G. Bellinger, J. Benjamin, D. Beretvas, A. Bhatti, A. Binkley, M. Bisello, D. Bizjak, I. Blair, R. E. Blocker, C. Blumenfeld, B. Bocci, A. Bodek, A. Boisvert, V. Bortoletto, D. Boudreau, J. Boveia, A. Brau, B. Bridgeman, A. Brigliadori, L. Bromberg, C. Brubaker, E. Budagov, J. Budd, H. S. Budd, S. Burkett, K. Busetto, G. Bussey, P. Buzatu, A. Byrum, K. L. Cabrera, S. Calancha, C. Camarda, S. Campanelli, M. Campbell, M. Canelli, F. Canepa, A. Carls, B. Carlsmith, D. Carosi, R. Carrillo, S. Carron, S. Casal, B. Casarsa, M. Castro, A. Catastini, P. Cauz, D. Cavaliere, V. Cavalli-Sforza, M. Cerri, A. Cerrito, L. Chang, S. H. Chen, Y. C. Chertok, M. Chiarelli, G. Chlachidze, G. Chlebana, F. Cho, K. Chokheli, D. Chou, J. P. Chung, K. Chung, W. H. Chung, Y. S. Chwalek, T. Ciobanu, C. I. Ciocci, M. A. Clark, A. Clark, D. Compostella, G. Convery, M. E. Conway, J. Corbo, M. Cordelli, M. Cox, C. A. Cox, D. J. Crescioli, F. Almenar, C. Cuenca Cuevas, J. Culbertson, R. Cully, J. C. Dagenhart, D. Datta, M. Davies, T. de Barbaro, P. De Cecco, S. Deisher, A. De Lorenzo, G. Dell'Orso, M. Deluca, C. Demortier, L. Deng, J. Deninno, M. d'Errico, M. Di Canto, A. di Giovanni, G. P. Di Ruzza, B. Dittmann, J. R. D'Onofrio, M. Donati, S. Dong, P. Dorigo, T. Dube, S. Ebina, K. Elagin, A. Erbacher, R. Errede, D. Errede, S. Ershaidat, N. Eusebi, R. Fang, H. C. Farrington, S. Fedorko, W. T. Feild, R. G. Feindt, M. Fernandez, J. P. Ferrazza, C. Field, R. Flanagan, G. Forrest, R. Frank, M. J. Franklin, M. Freeman, J. C. Furic, I. Gallinaro, M. Galyardt, J. Garberson, F. Garcia, J. E. Garfinkel, A. F. Garosi, P. Gerberich, H. Gerdes, D. Gessler, A. Giagu, S. Giakoumopoulou, V. Giannetti, P. Gibson, K. Gimmell, J. L. Ginsburg, C. M. Giokaris, N. Giordani, M. Giromini, P. Giunta, M. Giurgiu, G. Glagolev, V. Glenzinski, D. Gold, M. Goldschmidt, N. Golossanov, A. Gomez, G. Gomez-Ceballos, G. Goncharov, M. Gonzalez, O. Gorelov, I. Goshaw, A. T. Goulianos, K. Gresele, A. Grinstein, S. Grosso-Pilcher, C. Group, R. C. Grundler, U. da Costa, J. Guimaraes Gunay-Unalan, Z. Haber, C. Hahn, S. R. Halkiadakis, E. Han, B. -Y. Han, J. Y. Happacher, F. Hara, K. Hare, D. Hare, M. Harr, R. F. Hartz, M. Hatakeyama, K. Hays, C. Heck, M. Heinrich, J. Herndon, M. Heuser, J. Hewamanage, S. Hidas, D. Hill, C. S. Hirschbuehl, D. Hocker, A. Hou, S. Houlden, M. Hsu, S. -C. Hughes, R. E. Hurwitz, M. Husemann, U. Hussein, M. Huston, J. Incandela, J. Introzzi, G. Iori, M. Ivanov, A. James, E. Jang, D. Jayatilaka, B. Jeon, E. J. Jha, M. K. Jindariani, S. Johnson, W. Jones, M. Joo, K. K. Jun, S. Y. Jung, J. E. Junk, T. R. Kamon, T. Kar, D. Karchin, P. E. Kato, Y. Kephart, R. Ketchum, W. Keung, J. Khotilovich, V. Kilminster, B. Kim, D. H. Kim, H. S. Kim, H. W. Kim, J. E. Kim, M. J. Kim, S. B. Kim, S. H. Kim, Y. K. Kimura, N. Kirsch, L. Klimenko, S. Kondo, K. Kong, D. J. Konigsberg, J. Korytov, A. Kotwal, A. V. Kreps, M. Kroll, J. Krop, D. Krumnack, N. Kruse, M. Krutelyov, V. Kuhr, T. Kulkarni, N. P. Kurata, M. Kwang, S. Laasanen, A. T. Lami, S. Lammel, S. Lancaster, M. Lander, R. L. Lannon, K. Lath, A. Latino, G. Lazzizzera, I. LeCompte, T. Lee, E. Lee, H. S. Lee, J. S. Lee, S. W. Leone, S. Lewis, J. D. Lin, C. -J. Linacre, J. Lindgren, M. Lipeles, E. Lister, A. Litvintsev, D. O. Liu, C. Liu, T. Lockyer, N. S. Loginov, A. Lovas, L. Lucchesi, D. Lueck, J. Lujan, P. Lukens, P. Lungu, G. Lys, J. Lysak, R. MacQueen, D. Madrak, R. Maeshima, K. Makhoul, K. Maksimovic, P. Malde, S. Malik, S. Manca, G. Manousakis-Katsikakis, A. Margaroli, F. Marino, C. Marino, C. P. Martin, A. Martin, V. Martinez, M. Martinez-Ballarin, R. Mastrandrea, P. Mathis, M. Mattson, M. E. Mazzanti, P. McFarland, K. S. McIntyre, P. McNulty, R. Mehta, A. Mehtala, P. Menzione, A. Mesropian, C. Miao, T. Mietlicki, D. Miladinovic, N. Miller, R. Mills, C. Milnik, M. Mitra, A. Mitselmakher, G. Miyake, H. Moed, S. Moggi, N. Mondragon, M. N. Moon, C. S. Moore, R. Morello, M. J. Morlock, J. Fernandez, P. Movilla Muelmenstadt, J. Mukherjee, A. Muller, Th. Murat, P. Mussini, M. Nachtman, J. Nagai, Y. Naganoma, J. Nakamura, K. Nakano, I. Napier, A. Nett, J. Neu, C. Neubauer, M. S. Neubauer, S. Nielsen, J. Nodulman, L. Norman, M. Norniella, O. Nurse, E. Oakes, L. Oh, S. H. Oh, Y. D. Oksuzian, I. Okusawa, T. Orava, R. Osterberg, K. Griso, S. Pagan Pagliarone, C. Palencia, E. Papadimitriou, V. Papaikonomou, A. Paramanov, A. A. Parks, B. Pashapour, S. Patrick, J. Pauletta, G. Paulini, M. Paus, C. Peiffer, T. Pellett, D. E. Penzo, A. Phillips, T. J. Piacentino, G. Pianori, E. Pinera, L. Pitts, K. Plager, C. Pondrom, L. Potamianos, K. Poukhov, O. Prokoshin, F. Pronko, A. Ptohos, F. Pueschel, E. Punzi, G. Pursley, J. Rademacker, J. Rahaman, A. Ramakrishnan, V. Ranjan, N. Redondo, I. Renton, P. Renz, M. Rescigno, M. Richter, S. Rimondi, F. Ristori, L. Robson, A. Rodrigo, T. Rodriguez, T. Rogers, E. Rolli, S. Roser, R. Rossi, M. Rossin, R. Roy, P. Ruiz, A. Russ, J. Rusu, V. Rutherford, B. Saarikko, H. Safonov, A. Sakumoto, W. K. Santi, L. Sartori, L. Sato, K. Savoy-Navarro, A. Schlabach, P. Schmidt, A. Schmidt, E. E. Schmidt, M. A. Schmidt, M. P. Schmitt, M. Schwarz, T. Scodellaro, L. Scribano, A. Scuri, F. Sedov, A. Seidel, S. Seiya, Y. Semenov, A. Sexton-Kennedy, L. Sforza, F. Sfyrla, A. Shalhout, S. Z. Shears, T. Shepard, P. F. Shimojima, M. Shiraishi, S. Shochet, M. Shon, Y. Shreyber, I. Simonenko, A. Sinervo, P. Sisakyan, A. Slaughter, A. J. Slaunwhite, J. Sliwa, K. Smith, J. R. Snider, F. D. Snihur, R. Soha, A. Somalwar, S. Sorin, V. Squillacioti, P. Stanitzki, M. St Denis, R. Stelzer, B. Stelzer-Chilton, O. Stentz, D. Strologas, J. Strycker, G. L. Suh, J. S. Sukhanov, A. Suslov, I. Taffard, A. Takashima, R. Takeuchi, Y. Tanaka, R. Tang, J. Tecchio, M. Teng, P. K. Thom, J. Thome, J. Thompson, G. A. Thomson, E. Tipton, P. Ttito-Guzman, P. Tkaczyk, S. Toback, D. Tokar, S. Tollefson, K. Tomura, T. Tonelli, D. Torre, S. Torretta, D. Totaro, P. Tourneur, S. Trovato, M. Tsai, S. -Y. Tu, Y. Turini, N. Ukegawa, F. Uozumi, S. van Remortel, N. Varganov, A. Vataga, E. Vazquez, F. Velev, G. Vellidis, C. Vidal, M. Vila, I. Vilar, R. Vogel, M. Volobouev, I. Volpi, G. Wagner, P. Wagner, R. G. Wagner, R. L. Wagner, W. Wagner-Kuhr, J. Wakisaka, T. Wallny, R. Wang, S. M. Warburton, A. Waters, D. Weinberger, M. Weinelt, J. Wester, W. C., III Whitehouse, B. Whiteson, D. Wicklund, A. B. Wicklund, E. Wilbur, S. Williams, G. Williams, H. H. Wilson, P. Winer, B. L. Wittich, P. Wolbers, S. Wolfe, C. Wolfe, H. Wright, T. Wu, X. Wuerthwein, F. Yagil, A. Yamamoto, K. Yamaoka, J. Yang, U. K. Yang, Y. C. Yao, W. M. Yeh, G. P. Yi, K. Yoh, J. Yorita, K. Yoshida, T. Yu, G. B. Yu, I. Yu, S. S. Yun, J. C. Zanetti, A. Zeng, Y. Zhang, X. Zheng, Y. Zucchelli, S. CA CDF Collaboration TI Search for the Higgs Boson Using Neural Networks in Events with Missing Energy and b-Quark Jets in p(p)over-bar Collisions at root s=1.96 TeV SO PHYSICAL REVIEW LETTERS LA English DT Article ID STANDARD MODEL AB We report on a search for the standard model Higgs boson produced in association with a W or Z boson in p (p) over bar collisions at root s = 1.96 TeV recorded by the CDF II experiment at the Tevatron in a data sample corresponding to an integrated luminosity of 2.1 fb(-1). We consider events which have no identified charged leptons, an imbalance in transverse momentum, and two or three jets where at least one jet is consistent with originating from the decay of a b hadron. We find good agreement between data and background predictions. We place 95% confidence level upper limits on the production cross section for several Higgs boson masses ranging from 110 GeV/c(2) to 150 GeV/c(2). For a mass of 115 GeV/c(2) the observed (expected) limit is 6.9 (5.6) times the standard model prediction. C1 [Aaltonen, T.; Mehtala, P.; Orava, R.; Osterberg, K.; Saarikko, H.; van Remortel, N.] Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. [Aaltonen, T.; Mehtala, P.; Orava, R.; Osterberg, K.; Saarikko, H.; van Remortel, N.] Helsinki Inst Phys, FIN-00014 Helsinki, Finland. [Chen, Y. C.; Hou, S.; Mitra, A.; Teng, P. K.; Thom, J.; Tsai, S. -Y.; Wang, S. M.] Acad Sinica, Inst Phys, Taipei 11529, Taiwan. [Blair, R. E.; Byrum, K. L.; LeCompte, T.; Nodulman, L.; Paramanov, A. A.; Wagner, R. G.; Wicklund, A. B.] Argonne Natl Lab, Argonne, IL 60439 USA. [Giakoumopoulou, V.; Giokaris, N.; Manousakis-Katsikakis, A.; Vellidis, C.] Univ Athens, GR-15771 Athens, Greece. [Attal, A.; Camarda, S.; Canelli, F.; Cavalli-Sforza, M.; De Lorenzo, G.; Deluca, C.; D'Onofrio, M.; Grinstein, S.; Martinez, M.; Sorin, V.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. [Dittmann, J. R.; Frank, M. J.; Hatakeyama, K.; Hewamanage, S.; Krumnack, N.] Baylor Univ, Waco, TX 76798 USA. [Brigliadori, L.; Castro, A.; Deninno, M.; Jha, M. K.; Mazzanti, P.; Moggi, N.; Mussini, M.; Rimondi, F.; Zucchelli, S.] Ist Nazl Fis Nucl, I-40126 Bologna, Italy. [Brigliadori, L.; Castro, A.; Mussini, M.; Rimondi, F.; Zucchelli, S.] Univ Bologna, I-40127 Bologna, Italy. [Blocker, C.; Clark, D.; Kirsch, L.; Miladinovic, N.] Brandeis Univ, Waltham, MA 02254 USA. [Chertok, M.; Conway, J.; Cox, C. A.; Cox, D. J.; Erbacher, R.; Forrest, R.; Ivanov, A.; Johnson, W.; Lander, R. L.; Pellett, D. E.; Smith, J. R.] Univ Calif Davis, Davis, CA 95616 USA. [Plager, C.; Wallny, R.; Zheng, Y.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Norman, M.; Wuerthwein, F.; Yagil, A.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Boveia, A.; Brau, B.; Galyardt, J.; Garberson, F.; Hill, C. S.; Incandela, J.; Krutelyov, V.; Rossin, R.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Alvarez Gonzalez, B.; Casal, B.; Cuevas, J.; Gomez, G.; Rodrigo, T.; Ruiz, A.; Scodellaro, L.; Vila, I.; Vilar, R.] Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain. [Gallinaro, M.; Jang, D.; Jun, S. Y.; Paulini, M.; Pueschel, E.; Russ, J.; Thome, J.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Adelman, J.; Brubaker, E.; Fedorko, W. T.; Grosso-Pilcher, C.; Hurwitz, M.; Ketchum, W.; Kim, Y. K.; Krop, D.; Kwang, S.; Lee, H. S.; Schmidt, M. A.; Shiraishi, S.; Shochet, M.; Tang, J.; Wilbur, S.; Wolfe, C.; Yang, U. K.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Antos, J.; Bartos, P.; Lovas, L.; Lysak, R.; Tokar, S.] Comenius Univ, Bratislava 84248, Slovakia. [Antos, J.; Bartos, P.; Lovas, L.; Lysak, R.; Tokar, S.] Inst Expt Phys, Kosice 04001, Slovakia. [Artikov, A.; Budagov, J.; Chokheli, D.; Glagolev, V.; Poukhov, O.; Prokoshin, F.; Semenov, A.; Simonenko, A.; Sisakyan, A.; Suslov, I.] Joint Inst Nucl Res, RU-141980 Dubna, Russia. [Benjamin, D.; Bocci, A.; Cabrera, S.; Deng, J.; Goshaw, A. T.; Jayatilaka, B.; Kotwal, A. V.; Kruse, M.; Oh, S. H.; Phillips, T. J.; Yamaoka, J.; Yu, G. B.; Zeng, Y.] Duke Univ, Durham, NC 27708 USA. [Apollinari, G.; Ashmanskas, W.; Badgett, W.; Beretvas, A.; Binkley, M.; Burkett, K.; Canelli, F.; Carron, S.; Casarsa, M.; Chlachidze, G.; Chlebana, F.; Chung, K.; Convery, M. E.; Culbertson, R.; Dagenhart, D.; Datta, M.; Dong, P.; Freeman, J. C.; Ginsburg, C. M.; Glenzinski, D.; Golossanov, A.; Group, R. C.; Hahn, S. R.; Hocker, A.; James, E.; Jindariani, S.; Junk, T. R.; Kephart, R.; Kilminster, B.; Lammel, S.; Lewis, J. D.; Lindgren, M.; Litvintsev, D. O.; Liu, T.; Lukens, P.; Madrak, R.; Maeshima, K.; Miao, T.; Mondragon, M. N.; Moore, R.; Fernandez, P. Movilla; Mukherjee, A.; Murat, P.; Nachtman, J.; Palencia, E.; Papadimitriou, V.; Patrick, J.; Pronko, A.; Ptohos, F.; Roser, R.; Rusu, V.; Rutherford, B.; Schlabach, P.; Schmidt, E. E.; Sexton-Kennedy, L.; Slaughter, A. J.; Snider, F. D.; Soha, A.; Thom, J.; Tkaczyk, S.; Tonelli, D.; Torretta, D.; Velev, G.; Wagner, R. L.; Wester, W. C., III; Wicklund, E.; Wilson, P.; Wittich, P.; Wolbers, S.; Yeh, G. P.; Yi, K.; Yu, S. S.; Yun, J. C.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Carrillo, S.; Field, R.; Furic, I.; Goldschmidt, N.; Kar, D.; Klimenko, S.; Konigsberg, J.; Korytov, A.; Mitselmakher, G.; Oksuzian, I.; Pinera, L.; Sukhanov, A.; Vazquez, F.] Univ Florida, Gainesville, FL 32611 USA. [Annovi, A.; Cordelli, M.; Giromini, P.; Happacher, F.; Kim, M. J.; Torre, S.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Clark, A.; Garcia, J. E.; Lister, A.; Wu, X.] Univ Geneva, CH-1211 Geneva 4, Switzerland. [Bussey, P.; Davies, T.; Martin, V.; Robson, A.; St Denis, R.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. [Chou, J. P.; Franklin, M.; da Costa, J. Guimaraes; Mills, C.; Moed, S.] Harvard Univ, Cambridge, MA 02138 USA. [Bridgeman, A.; Budd, S.; Carls, B.; Errede, D.; Errede, S.; Gerberich, H.; Grundler, U.; Marino, C. P.; Neubauer, M. S.; Norniella, O.; Pitts, K.; Rogers, E.; Sfyrla, A.; Taffard, A.; Thompson, G. A.; Zhang, X.] Univ Illinois, Urbana, IL 61801 USA. [Barnett, B. A.; Behari, S.; Blumenfeld, B.; Giurgiu, G.; Maksimovic, P.; Mathis, M.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Chwalek, T.; Feindt, M.; Gessler, A.; Heck, M.; Heuser, J.; Hirschbuehl, D.; Kreps, M.; Kuhr, T.; Lueck, J.; Marino, C.; Milnik, M.; Morlock, J.; Muller, Th.; Neubauer, S.; Papaikonomou, A.; Peiffer, T.; Renz, M.; Richter, S.; Schmidt, A.; Wagner, W.; Wagner-Kuhr, J.; Weinelt, J.] Karlsruhe Inst Technol, Inst Expt Kernphys, D-76131 Karlsruhe, Germany. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Uozumi, S.; Yang, Y. C.; Yu, I.] Kyungpook Natl Univ, Ctr High Energy Phys, Taegu 702701, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Uozumi, S.; Yang, Y. C.; Yu, I.] Seoul Natl Univ, Seoul 151742, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Uozumi, S.; Yang, Y. C.; Yu, I.] Sungkyunkwan Univ, Suwon 440746, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Uozumi, S.; Yang, Y. C.; Yu, I.] Korea Inst Sci & Technol Informat, Taejon 305806, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Uozumi, S.; Yang, Y. C.; Yu, I.] Chonnam Natl Univ, Kwangju 500757, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Uozumi, S.; Yang, Y. C.; Yu, I.] Chonbuk Natl Univ, Jeonju 561756, South Korea. [Barbaro-Galtieri, A.; Cerri, A.; Deisher, A.; Fang, H. C.; Haber, C.; Hsu, S. -C.; Lin, C. -J.; Lujan, P.; Lys, J.; Muelmenstadt, J.; Nielsen, J.; Volobouev, I.; Yao, W. M.] Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Houlden, M.; Manca, G.; McNulty, R.; Mehta, A.; Shears, T.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Beecher, D.; Bizjak, I.; Campanelli, M.; Cerrito, L.; Lancaster, M.; Malik, S.; Nurse, E.; Waters, D.] UCL, London WC1E 6BT, England. [Calancha, C.; Fernandez, J. P.; Gonzalez, O.; Martinez-Ballarin, R.; Redondo, I.; Ttito-Guzman, P.; Vidal, M.] Ctr Invest Energet Medioambient & Tecnol, E-28040 Madrid, Spain. [Bauer, G.; Gomez-Ceballos, G.; Goncharov, M.; Makhoul, K.; Paus, C.] MIT, Cambridge, MA 02139 USA. [Beauchemin, P. -H.; Buzatu, A.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] McGill Univ, Inst Particle Phys, Montreal, PQ H3A 2T8, Canada. [Beauchemin, P. -H.; Buzatu, A.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada. [Beauchemin, P. -H.; Buzatu, A.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] Univ Toronto, Toronto, ON M5S 1A7, Canada. [Beauchemin, P. -H.; Buzatu, A.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Amidei, D.; Campbell, M.; Cully, J. C.; Gerdes, D.; Mietlicki, D.; Strycker, G. L.; Tecchio, M.; Varganov, A.; Wright, T.] Univ Michigan, Ann Arbor, MI 48109 USA. [Bromberg, C.; Gunay-Unalan, Z.; Hussein, M.; Huston, J.; Miller, R.; Tollefson, K.] Michigan State Univ, E Lansing, MI 48824 USA. [Shreyber, I.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Gold, M.; Gorelov, I.; Seidel, S.; Strologas, J.; Vogel, M.] Univ New Mexico, Albuquerque, NM 87131 USA. [Anastassov, A.; Schwarz, T.; Stentz, D.] Northwestern Univ, Evanston, IL 60208 USA. [Hughes, R. E.; Lannon, K.; Parks, B.; Slaunwhite, J.; Winer, B. L.; Wolfe, H.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.; Takashima, R.; Tanaka, R.] Okayama Univ, Okayama 7008530, Japan. [Kato, Y.; Okusawa, T.; Seiya, Y.; Wakisaka, T.; Yamamoto, K.; Yorita, K.; Yoshida, T.] Osaka City Univ, Osaka 588, Japan. [Azfar, F.; Farrington, S.; Hays, C.; Linacre, J.; Malde, S.; Oakes, L.; Rademacker, J.; Renton, P.] Univ Oxford, Oxford OX1 3RH, England. [Amerio, S.; Bisello, D.; Busetto, G.; Compostella, G.; d'Errico, M.; Dorigo, T.; Gresele, A.; Lazzizzera, I.; Lucchesi, D.; Griso, S. Pagan] Ist Nazl Fis Nucl, Sez Padova Trento, I-35131 Padua, Italy. [Amerio, S.; Bisello, D.; Busetto, G.; d'Errico, M.; Gresele, A.; Lazzizzera, I.; Lucchesi, D.; Griso, S. Pagan] Univ Padua, I-35131 Padua, Italy. [Ciobanu, C. I.; Corbo, M.; di Giovanni, G. P.; Ershaidat, N.; Savoy-Navarro, A.; Tourneur, S.] Univ Paris 06, LPNHE, IN2P3, CNRS,UMR7585, F-75252 Paris, France. [Canepa, A.; Heinrich, J.; Keung, J.; Kroll, J.; Lipeles, E.; Lockyer, N. S.; Neu, C.; Pianori, E.; Rodriguez, T.; Thomson, E.; Tu, Y.; Wagner, P.; Whiteson, D.; Williams, H. H.] Univ Penn, Philadelphia, PA 19104 USA. [Barria, P.; Bedeschi, F.; Bellettini, G.; Carosi, R.; Catastini, P.; Cavaliere, V.; Chiarelli, G.; Ciocci, M. A.; Crescioli, F.; Dell'Orso, M.; Di Canto, A.; Di Ruzza, B.; Donati, S.; Ferrazza, C.; Garosi, P.; Giannetti, P.; Giunta, M.; Introzzi, G.; Lami, S.; Latino, G.; Leone, S.; Menzione, A.; Morello, M. J.; Piacentino, G.; Punzi, G.; Ristori, L.; Sartori, L.; Scribano, A.; Scuri, F.; Sforza, F.; Squillacioti, P.; Trovato, M.; Turini, N.; Vataga, E.; Volpi, G.] Ist Nazl Fis Nucl, I-56127 Pisa, Italy. [Bellettini, G.; Crescioli, F.; Dell'Orso, M.; Di Canto, A.; Donati, S.; Punzi, G.; Sforza, F.; Volpi, G.] Univ Pisa, I-56127 Pisa, Italy. [Barria, P.; Catastini, P.; Cavaliere, V.; Ciocci, M. A.; Garosi, P.; Latino, G.; Scribano, A.; Squillacioti, P.; Turini, N.] Univ Siena, I-56127 Pisa, Italy. [Ferrazza, C.; Trovato, M.; Vataga, E.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Boudreau, J.; Gibson, K.; Hartz, M.; Liu, C.; Rahaman, A.; Shepard, P. F.] Univ Pittsburgh, Pittsburgh, PA 15260 USA. [Apresyan, A.; Barnes, V. E.; Bortoletto, D.; Flanagan, G.; Garfinkel, A. F.; Jones, M.; Laasanen, A. T.; Margaroli, F.; Potamianos, K.; Ranjan, N.; Sedov, A.] Purdue Univ, W Lafayette, IN 47907 USA. [Bodek, A.; Boisvert, V.; Budd, H. S.; Chung, Y. S.; de Barbaro, P.; Gimmell, J. L.; Han, B. -Y.; Han, J. Y.; McFarland, K. S.; Sakumoto, W. K.] Univ Rochester, Rochester, NY 14627 USA. [Bhatti, A.; Demortier, L.; Goulianos, K.; Lungu, G.; Mesropian, C.] Rockefeller Univ, New York, NY 10021 USA. [De Cecco, S.; Giagu, S.; Giordani, M.; Iori, M.; Mastrandrea, P.; Rescigno, M.] Ist Nazl Fis Nucl, Sez Roma 1, I-00185 Rome, Italy. [Giagu, S.; Giordani, M.; Iori, M.] Univ Roma La Sapienza, I-00185 Rome, Italy. [Dube, S.; Halkiadakis, E.; Hare, D.; Hidas, D.; Lath, A.; Somalwar, S.] Rutgers State Univ, Piscataway, NJ 08855 USA. [Asaadi, J.; Aurisano, A.; Elagin, A.; Eusebi, R.; Kamon, T.; Khotilovich, V.; Lee, E.; Lee, S. W.; McIntyre, P.; Safonov, A.; Toback, D.; Weinberger, M.] Texas A&M Univ, College Stn, TX 77843 USA. [Cauz, D.; Pagliarone, C.; Pauletta, G.; Penzo, A.; Rossi, M.; Santi, L.; Totaro, P.; Zanetti, A.] Ist Nazl Fis Nucl, I-34100 Trieste, Italy. [Cauz, D.; Pagliarone, C.; Pauletta, G.; Penzo, A.; Rossi, M.; Santi, L.; Totaro, P.; Zanetti, A.] Ist Nazl Fis Nucl, I-33100 Udine, Italy. [Giordani, M.; Pauletta, G.; Santi, L.; Totaro, P.] Univ Trieste Udine, I-33100 Udine, Italy. [Hara, K.; Kim, S. H.; Kurata, M.; Miyake, H.; Nagai, Y.; Naganoma, J.; Nakamura, K.; Sato, K.; Shimojima, M.; Takeuchi, Y.; Tomura, T.; Ukegawa, F.] Univ Tsukuba, Tsukuba, Ibaraki 305, Japan. [Hare, M.; Napier, A.; Rolli, S.; Sliwa, K.; Whitehouse, B.] Tufts Univ, Medford, MA 02155 USA. [Arisawa, T.; Ebina, K.; Kimura, N.; Kondo, K.; Yoh, J.] Waseda Univ, Tokyo 169, Japan. [Harr, R. F.; Karchin, P. E.; Kulkarni, N. P.; Mattson, M. E.; Shalhout, S. Z.] Wayne State Univ, Detroit, MI 48201 USA. [Bellinger, J.; Carlsmith, D.; Chung, W. H.; Herndon, M.; Nett, J.; Pondrom, L.; Pursley, J.; Ramakrishnan, V.; Shon, Y.] Univ Wisconsin, Madison, WI 53706 USA. [Almenar, C. Cuenca; Feild, R. G.; Husemann, U.; Loginov, A.; Martin, A.; Schmitt, M.; Stanitzki, M.; Tipton, P.] Yale Univ, New Haven, CT 06520 USA. RP Aaltonen, T (reprint author), Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. RI Muelmenstaedt, Johannes/K-2432-2015; Introzzi, Gianluca/K-2497-2015; Piacentino, Giovanni/K-3269-2015; Martinez Ballarin, Roberto/K-9209-2015; Gorelov, Igor/J-9010-2015; Canelli, Florencia/O-9693-2016; Moon, Chang-Seong/J-3619-2014; Scodellaro, Luca/K-9091-2014; Grinstein, Sebastian/N-3988-2014; Paulini, Manfred/N-7794-2014; Russ, James/P-3092-2014; unalan, zeynep/C-6660-2015; Lazzizzera, Ignazio/E-9678-2015; vilar, rocio/P-8480-2014; Cabrera Urban, Susana/H-1376-2015; Garcia, Jose /H-6339-2015; ciocci, maria agnese /I-2153-2015; Cavalli-Sforza, Matteo/H-7102-2015; Chiarelli, Giorgio/E-8953-2012; Ruiz, Alberto/E-4473-2011; Punzi, Giovanni/J-4947-2012; Zeng, Yu/C-1438-2013; Annovi, Alberto/G-6028-2012; Ivanov, Andrew/A-7982-2013; Warburton, Andreas/N-8028-2013; Kim, Soo-Bong/B-7061-2014; Lysak, Roman/H-2995-2014; Robson, Aidan/G-1087-2011; De Cecco, Sandro/B-1016-2012; St.Denis, Richard/C-8997-2012; manca, giulia/I-9264-2012; Amerio, Silvia/J-4605-2012 OI Muelmenstaedt, Johannes/0000-0003-1105-6678; Introzzi, Gianluca/0000-0002-1314-2580; Piacentino, Giovanni/0000-0001-9884-2924; Martinez Ballarin, Roberto/0000-0003-0588-6720; Gorelov, Igor/0000-0001-5570-0133; Canelli, Florencia/0000-0001-6361-2117; Moon, Chang-Seong/0000-0001-8229-7829; Scodellaro, Luca/0000-0002-4974-8330; Grinstein, Sebastian/0000-0002-6460-8694; Paulini, Manfred/0000-0002-6714-5787; Russ, James/0000-0001-9856-9155; unalan, zeynep/0000-0003-2570-7611; Lazzizzera, Ignazio/0000-0001-5092-7531; ciocci, maria agnese /0000-0003-0002-5462; Chiarelli, Giorgio/0000-0001-9851-4816; Ruiz, Alberto/0000-0002-3639-0368; Punzi, Giovanni/0000-0002-8346-9052; Annovi, Alberto/0000-0002-4649-4398; Ivanov, Andrew/0000-0002-9270-5643; Warburton, Andreas/0000-0002-2298-7315; FU U.S. Department of Energy and National Science Foundation; Italian Istituto Nazionale di Fisica Nucleare; Ministry of Education, Culture, Sports, Science and Technology of Japan; Natural Sciences and Engineering Research Council of Canada; National Science Council of the Republic of China; Swiss National Science Foundation; A.P. Sloan Foundation; Bundesministerium fur Bildung und Forschung, Germany; World Class University; National Research Foundation of Korea; Science and Technology Facilities Council; Royal Society, UK; Institut National de Physique Nucleaire et Physique des Particules/CNRS; Russian Foundation for Basic Research; Ministerio de Ciencia e Innovacion; Programa Consolider-Ingenio 2010, Spain; Slovak RD Agency; Academy of Finland FX We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the U.S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A.P. Sloan Foundation; the Bundesministerium fur Bildung und Forschung, Germany; the World Class University Program, the National Research Foundation of Korea; the Science and Technology Facilities Council and the Royal Society, UK; the Institut National de Physique Nucleaire et Physique des Particules/CNRS; the Russian Foundation for Basic Research; the Ministerio de Ciencia e Innovacion, and Programa Consolider-Ingenio 2010, Spain; the Slovak R&D Agency; and the Academy of Finland. NR 21 TC 8 Z9 8 U1 2 U2 16 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD APR 9 PY 2010 VL 104 IS 14 AR 141801 DI 10.1103/PhysRevLett.104.141801 PG 7 WC Physics, Multidisciplinary SC Physics GA 581RL UT WOS:000276541900011 ER PT J AU Alver, B Back, BB Baker, MD Ballintijn, M Barton, DS Betts, RR Bickley, AA Bindel, R Busza, W Carroll, A Chai, Z Decowski, MP Garcia, E Gburek, T George, N Gulbrandsen, K Halliwell, C Hamblen, J Hauer, M Henderson, C Hofman, DJ Hollis, RS Holynski, R Holzman, B Iordanova, A Johnson, E Kane, JL Khan, N Kulinich, P Kuo, CM Li, W Lin, WT Loizides, C Manly, S Mignerey, AC Nouicer, R Olszewski, A Pak, R Reed, C Roland, C Roland, G Sagerer, J Seals, H Sedykh, I Smith, CE Stankiewicz, MA Steinberg, P Stephans, GSF Sukhanov, A Tonjes, MB Trzupek, A Vale, C van Nieuwenhuizen, GJ Vaurynovich, SS Verdier, R Veres, GI Walters, P Wenger, E Wolfs, FLH Wosiek, B Wozniak, K Wyslouch, B AF Alver, B. Back, B. B. Baker, M. D. Ballintijn, M. Barton, D. S. Betts, R. R. Bickley, A. A. Bindel, R. Busza, W. Carroll, A. Chai, Z. Decowski, M. P. Garcia, E. Gburek, T. George, N. Gulbrandsen, K. Halliwell, C. Hamblen, J. Hauer, M. Henderson, C. Hofman, D. J. Hollis, R. S. Holynski, R. Holzman, B. Iordanova, A. Johnson, E. Kane, J. L. Khan, N. Kulinich, P. Kuo, C. M. Li, W. Lin, W. T. Loizides, C. Manly, S. Mignerey, A. C. Nouicer, R. Olszewski, A. Pak, R. Reed, C. Roland, C. Roland, G. Sagerer, J. Seals, H. Sedykh, I. Smith, C. E. Stankiewicz, M. A. Steinberg, P. Stephans, G. S. F. Sukhanov, A. Tonjes, M. B. Trzupek, A. Vale, C. van Nieuwenhuizen, G. J. Vaurynovich, S. S. Verdier, R. Veres, G. I. Walters, P. Wenger, E. Wolfs, F. L. H. Wosiek, B. Wozniak, K. Wyslouch, B. TI Event-by-Event Fluctuations of Azimuthal Particle Anisotropy in Au plus Au Collisions at root s(NN)=200 GeV SO PHYSICAL REVIEW LETTERS LA English DT Article ID QUARK-GLUON PLASMA; NUCLEAR COLLISIONS; FLOW; COLLABORATION; PERSPECTIVE AB This Letter presents the first measurement of event-by-event fluctuations of the elliptic flow parameter nu(2) in Au + Au collisions root s(NN) = 200 GeV as a function of collision centrality. The relative non-statistical fluctuations of the nu(2) parameter are found to be approximately 40%. The results, including contributions from event-by-event elliptic flow fluctuations and from azimuthal correlations that are unrelated to the reaction plane (nonflow correlations), establish an upper limit on the magnitude of underlying elliptic flow fluctuations. This limit is consistent with predictions based on spatial fluctuations of the participating nucleons in the initial nuclear overlap region. These results provide important constraints on models of the initial state and hydrodynamic evolution of relativistic heavy ion collisions. C1 [Alver, B.; Ballintijn, M.; Busza, W.; Decowski, M. P.; Gulbrandsen, K.; Henderson, C.; Kane, J. L.; Kulinich, P.; Li, W.; Loizides, C.; Reed, C.; Roland, C.; Roland, G.; Stephans, G. S. F.; Vale, C.; van Nieuwenhuizen, G. J.; Vaurynovich, S. S.; Verdier, R.; Veres, G. I.; Wenger, E.; Wyslouch, B.] MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. [Back, B. B.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Baker, M. D.; Barton, D. S.; Carroll, A.; Chai, Z.; George, N.; Hauer, M.; Holzman, B.; Nouicer, R.; Pak, R.; Seals, H.; Sedykh, I.; Stankiewicz, M. A.; Steinberg, P.; Sukhanov, A.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Baker, M. D.; Barton, D. S.; Carroll, A.; Chai, Z.; George, N.; Hauer, M.; Holzman, B.; Nouicer, R.; Pak, R.; Seals, H.; Sedykh, I.; Stankiewicz, M. A.; Steinberg, P.; Sukhanov, A.] Brookhaven Natl Lab, CA Dept, Upton, NY 11973 USA. [Gburek, T.; Holynski, R.; Olszewski, A.; Trzupek, A.; Wosiek, B.; Wozniak, K.] Inst Nucl Phys PAN, Krakow, Poland. [Kuo, C. M.; Lin, W. T.] Natl Cent Univ, Dept Phys, Chungli 32054, Taiwan. [Betts, R. R.; Garcia, E.; Halliwell, C.; Hofman, D. J.; Hollis, R. S.; Iordanova, A.; Nouicer, R.; Sagerer, J.; Smith, C. E.] Univ Illinois, Dept Phys, Chicago, IL 60607 USA. [Bickley, A. A.; Bindel, R.; Mignerey, A. C.; Tonjes, M. B.] Univ Maryland, Dept Chem, College Pk, MD 20742 USA. [Hamblen, J.; Johnson, E.; Khan, N.; Manly, S.; Walters, P.; Wolfs, F. L. H.] Univ Rochester, Dept Phys & Astron, Rochester, NY 14627 USA. RP Alver, B (reprint author), MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. RI Decowski, Patrick/A-4341-2011; Mignerey, Alice/D-6623-2011 FU U.S. DOE [DE-AC02-98CH10886, DE-FG02-93ER40802, DE-FG02-94ER40818, DE-FG02-94ER40865, DE-FG0299ER41099, DE-AC02-06CH11357]; U.S. NSF [9603486, 0072204, 0245011]; Polish MNiSW [N N202 282234 (2008-2010)]; NSC of Taiwan [NSC 89-2112-M-008-024]; Hungarian OTKA [F 049823] FX This work was partially supported by U.S. DOE grants DE-AC02-98CH10886, DE-FG02-93ER40802, DE-FG02-94ER40818, DE-FG02-94ER40865, DE-FG0299ER41099, and DE-AC02-06CH11357, by U.S. NSF grants 9603486, 0072204, and 0245011, by Polish MNiSW grant N N202 282234 (2008-2010), by NSC of Taiwan Contract NSC 89-2112-M-008-024, and by Hungarian OTKA grant (F 049823). NR 26 TC 35 Z9 35 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD APR 9 PY 2010 VL 104 IS 14 AR 142301 DI 10.1103/PhysRevLett.104.142301 PG 5 WC Physics, Multidisciplinary SC Physics GA 581RL UT WOS:000276541900013 ER PT J AU Jayasekera, T Kong, BD Kim, KW Nardelli, MB AF Jayasekera, Thushari Kong, B. D. Kim, K. W. Nardelli, M. Buongiorno TI Band Engineering and Magnetic Doping of Epitaxial Graphene on SiC (0001) SO PHYSICAL REVIEW LETTERS LA English DT Article ID ELECTRONIC-STRUCTURE AB Using calculations from first principles we show how specific interface modifications can lead to a fine-tuning of the doping and band alignment in epitaxial graphene on SiC. Upon different choices of dopants, we demonstrate that one can achieve a variation of the valence band offset between the graphene Dirac point and the valence band edge of SiC up to 1.5 eV. Finally, via appropriate magnetic doping one can induce a half-metallic behavior in the first graphene monolayer. These results clearly establish the potential for graphene utilization in innovative electronic and spintronic devices. C1 [Jayasekera, Thushari; Nardelli, M. Buongiorno] N Carolina State Univ, Dept Phys, Raleigh, NC 27695 USA. [Kong, B. D.; Kim, K. W.] N Carolina State Univ, Dept Elect & Comp Engn, Raleigh, NC 27695 USA. [Nardelli, M. Buongiorno] Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN 37831 USA. RP Nardelli, MB (reprint author), N Carolina State Univ, Dept Phys, Raleigh, NC 27695 USA. EM mbnardelli@ncsu.edu RI Jayasekera, Thushari /A-3626-2011; KONG, BYOUNG DON/A-2186-2012; Buongiorno Nardelli, Marco/C-9089-2009 OI KONG, BYOUNG DON/0000-0003-4072-4399; FU DARPA/HRL CERA; SRC/FCRP FENA; U.S. ARO; Office of BES, U.S. DOE at ORNL [DE-AC-05-00OR22725]; UT-Battelle, LLC FX This work was supported, in part, by the DARPA/HRL CERA, SRC/FCRP FENA, and U.S. ARO. M. B. N. wishes to acknowledge partial support from the Office of BES, U.S. DOE at ORNL under Contract No. DE-AC-05-00OR22725 with UT-Battelle, LLC. Calculations have been carried out at NCCS-ORNL. NR 29 TC 44 Z9 45 U1 3 U2 47 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD APR 9 PY 2010 VL 104 IS 14 AR 146801 DI 10.1103/PhysRevLett.104.146801 PG 4 WC Physics, Multidisciplinary SC Physics GA 581RL UT WOS:000276541900032 PM 20481952 ER PT J AU Oganessian, YT Abdullin, FS Bailey, PD Benker, DE Bennett, ME Dmitriev, SN Ezold, JG Hamilton, JH Henderson, RA Itkis, MG Lobanov, YV Mezentsev, AN Moody, KJ Nelson, SL Polyakov, AN Porter, CE Ramayya, AV Riley, FD Roberto, JB Ryabinin, MA Rykaczewski, KP Sagaidak, RN Shaughnessy, DA Shirokovsky, IV Stoyer, MA Subbotin, VG Sudowe, R Sukhov, AM Tsyganov, YS Utyonkov, VK Voinov, AA Vostokin, GK Wilk, PA AF Oganessian, Yu. Ts. Abdullin, F. Sh. Bailey, P. D. Benker, D. E. Bennett, M. E. Dmitriev, S. N. Ezold, J. G. Hamilton, J. H. Henderson, R. A. Itkis, M. G. Lobanov, Yu. V. Mezentsev, A. N. Moody, K. J. Nelson, S. L. Polyakov, A. N. Porter, C. E. Ramayya, A. V. Riley, F. D. Roberto, J. B. Ryabinin, M. A. Rykaczewski, K. P. Sagaidak, R. N. Shaughnessy, D. A. Shirokovsky, I. V. Stoyer, M. A. Subbotin, V. G. Sudowe, R. Sukhov, A. M. Tsyganov, Yu. S. Utyonkov, V. K. Voinov, A. A. Vostokin, G. K. Wilk, P. A. TI Synthesis of a New Element with Atomic Number Z=117 SO PHYSICAL REVIEW LETTERS LA English DT Article ID SUPERHEAVY NUCLEI AB The discovery of a new chemical element with atomic number Z = 117 is reported. The isotopes (293)117 and (294)117 were produced in fusion reactions between Ca-48 and Bk-249. Decay chains involving 11 new nuclei were identified by means of the Dubna gas-filled recoil separator. The measured decay properties show a strong rise of stability for heavier isotopes with Z >= 111, validating the concept of the long sought island of enhanced stability for superheavy nuclei. C1 [Oganessian, Yu. Ts.; Abdullin, F. Sh.; Dmitriev, S. N.; Itkis, M. G.; Lobanov, Yu. V.; Mezentsev, A. N.; Polyakov, A. N.; Sagaidak, R. N.; Shirokovsky, I. V.; Subbotin, V. G.; Sukhov, A. M.; Tsyganov, Yu. S.; Utyonkov, V. K.; Voinov, A. A.; Vostokin, G. K.] Joint Inst Nucl Res, RU-141980 Dubna, Russia. [Bailey, P. D.; Benker, D. E.; Ezold, J. G.; Porter, C. E.; Riley, F. D.; Roberto, J. B.; Rykaczewski, K. P.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Bennett, M. E.; Sudowe, R.] Univ Nevada, Las Vegas, NV 89154 USA. [Hamilton, J. H.; Ramayya, A. V.] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA. [Henderson, R. A.; Moody, K. J.; Nelson, S. L.; Shaughnessy, D. A.; Stoyer, M. A.; Wilk, P. A.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Ryabinin, M. A.] Res Inst Atom Reactors, RU-433510 Dimitrovgrad, Russia. RP Oganessian, YT (reprint author), Joint Inst Nucl Res, RU-141980 Dubna, Russia. EM oganessian@jinr.ru RI Wilk, Philip/B-5954-2008; OI Ezold, Julie/0000-0002-5055-0022; Roberto, James/0000-0002-4234-0252 FU Russian Federal Agency of Atomic Energy, RFBR [07-02-00029, 09-02-12060, 09-03-12214]; U.S. Department of Energy [DE-AC05-00OR2272, DE-AC52-07NA27344, DE-FG-05-88ER40407, DE-FG07-01AL67358] FX We are grateful to the JINR Directorate and the U-400 cyclotron and ion source crews for their continuous support of the experiment. We acknowledge the support of the Russian Federal Agency of Atomic Energy, RFBR Grants No. 07-02-00029, No. 09-02-12060, and No. 09-03-12214, and of the U.S. Department of Energy through Contracts No. DE-AC05-00OR2272 (ORNL) and No. DE-AC52-07NA27344 (LLNL), and Grants No. DE-FG-05-88ER40407 (Vanderbilt University) and No. DE-FG07-01AL67358 (UNLV). These studies were performed in the framework of the Russian Federation/U.S. Joint Coordinating Committee for Research on Fundamental Properties of Matter. NR 18 TC 283 Z9 301 U1 2 U2 18 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD APR 9 PY 2010 VL 104 IS 14 AR 142502 DI 10.1103/PhysRevLett.104.142502 PG 4 WC Physics, Multidisciplinary SC Physics GA 581RL UT WOS:000276541900015 PM 20481935 ER PT J AU Sanii, B Ashby, PD AF Sanii, Babak Ashby, Paul D. TI High Sensitivity Deflection Detection of Nanowires SO PHYSICAL REVIEW LETTERS LA English DT Article ID FORCE; BEAMS AB A critical limitation of nanoelectromechanical systems (NEMS) is the lack of a high-sensitivity position detection mechanism. We introduce a noninterferometric optical approach to determine the position of nanowires with a high sensitivity and bandwidth. Its physical origins and limitations are determined by Mie scattering analysis. This enables a dramatic miniaturization of detectable cantilevers, with attendant reductions to the fundamental minimum force noise in highly damping environments. We measure the force noise of an 81 +/- 9 nm radius Ag(2)Ga nanowire cantilever in water at 6 +/- 3 fN/root Hz. C1 [Sanii, Babak; Ashby, Paul D.] LBNL, Berkeley, CA 94618 USA. RP Sanii, B (reprint author), LBNL, Berkeley, CA 94618 USA. OI Ashby, Paul/0000-0003-4195-310X FU Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC0205CH11231] FX We appreciate input from S. Aloni, V. Altoe, R. W. Friddle, A. J. Katan, A. Muller-Egan, D. F. Ogletree, A. S. Risbud, M. Salmeron, P. J. Schuck, A. M. Schwartzberg, T. M. Short, A. Weber-Bargioni, and E. Wong. Work at the Molecular Foundry was supported by the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC0205CH11231. NR 18 TC 23 Z9 23 U1 1 U2 14 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD APR 9 PY 2010 VL 104 IS 14 AR 147203 DI 10.1103/PhysRevLett.104.147203 PG 4 WC Physics, Multidisciplinary SC Physics GA 581RL UT WOS:000276541900037 PM 20481957 ER PT J AU Yoshimatsu, K Okabe, T Kumigashira, H Okamoto, S Aizaki, S Fujimori, A Oshima, M AF Yoshimatsu, K. Okabe, T. Kumigashira, H. Okamoto, S. Aizaki, S. Fujimori, A. Oshima, M. TI Dimensional-Crossover-Driven Metal-Insulator Transition in SrVO3 Ultrathin Films SO PHYSICAL REVIEW LETTERS LA English DT Article ID LAYERED PEROVSKITE COMPOUNDS; EVOLUTION; SYSTEMS AB We have investigated the changes occurring in the electronic structure of digitally controlled SrVO3 ultrathin films across the metal-insulator transition (MIT) by the film thickness using in situ photoemission spectroscopy. With decreasing film thickness, a pseudogap is formed at EF through spectral weight transfer from the coherent part to the incoherent part. The pseudogap finally evolves into an energy gap that is indicative of the MIT in a SrVO3 ultrathin film. The observed spectral behavior is reproduced by layer dynamical-mean-field-theory calculations, and it indicates that the observed MIT is caused by the reduction in the bandwidth due to the dimensional crossover. C1 [Yoshimatsu, K.; Okabe, T.; Kumigashira, H.; Oshima, M.] Univ Tokyo, Dept Appl Chem, Bunkyo Ku, Tokyo 1138656, Japan. [Kumigashira, H.] Japan Sci & Technol Agcy, PRESTO, Kawaguchi, Saitama 3320012, Japan. [Kumigashira, H.; Oshima, M.] Univ Tokyo, Synchrotron Radiat Res Org, Bunkyo Ku, Tokyo 1138656, Japan. [Okamoto, S.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Aizaki, S.; Fujimori, A.] Univ Tokyo, Dept Phys, Bunkyo Ku, Tokyo 1138656, Japan. [Oshima, M.] Japan Sci & Technol Agcy, CREST, Bunkyo Ku, Tokyo 1138656, Japan. RP Yoshimatsu, K (reprint author), Univ Tokyo, Dept Appl Chem, Bunkyo Ku, Tokyo 1138656, Japan. EM kumigashira@sr.t.u-tokyo.ac.jp RI Okamoto, Satoshi/G-5390-2011 OI Okamoto, Satoshi/0000-0002-0493-7568 FU Japan Society for the Promotion of Science (JSPS) [A19684010, A19204037]; JST; Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, U.S. Department of Energy FX This work was supported by a Grant-in-Aid for Scientific Research (Grants No. A19684010 and No. A19204037) from the Japan Society for the Promotion of Science (JSPS) and JST PRESTO program. K. Y. acknowledges the financial support from JSPS. The work at Oak Ridge National Laboratory was supported by the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, U.S. Department of Energy. NR 24 TC 65 Z9 65 U1 9 U2 64 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD APR 9 PY 2010 VL 104 IS 14 AR 147601 DI 10.1103/PhysRevLett.104.147601 PG 4 WC Physics, Multidisciplinary SC Physics GA 581RL UT WOS:000276541900042 PM 20481962 ER PT J AU Dirks, PHGM Kibii, JM Kuhn, BF Steininger, C Churchill, SE Kramers, JD Pickering, R Farber, DL Meriaux, AS Herries, AIR King, GCP Berger, LR AF Dirks, Paul H. G. M. Kibii, Job M. Kuhn, Brian F. Steininger, Christine Churchill, Steven E. Kramers, Jan D. Pickering, Robyn Farber, Daniel L. Meriaux, Anne-Sophie Herries, Andy I. R. King, Geoffrey C. P. Berger, Lee R. TI Geological Setting and Age of Australopithecus sediba from Southern Africa SO SCIENCE LA English DT Article ID STERKFONTEIN; PALEOENVIRONMENTS; GEOCHRONOLOGY; DEPOSITS; SURFACES; DESERT; SKULL AB We describe the geological, geochronological, geomorphological, and faunal context of the Malapa site and the fossils of Australopithecus sediba. The hominins occur with a macrofauna assemblage that existed in Africa between 2.36 and 1.50 million years ago (Ma). The fossils are encased in water-laid, clastic sediments that were deposited along the lower parts of what is now a deeply eroded cave system, immediately above a flowstone layer with a U-Pb date of 2.026 +/- 0.021 Ma. The flowstone has a reversed paleomagnetic signature and the overlying hominin-bearing sediments are of normal polarity, indicating deposition during the 1.95- to 1.78-Ma Olduvai Subchron. The two hominin specimens were buried together in a single debris flow that lithified soon after deposition in a phreatic environment inaccessible to scavengers. C1 [Dirks, Paul H. G. M.] James Cook Univ, Sch Earth & Environm Sci, Townsville, Qld 4811, Australia. [Dirks, Paul H. G. M.; Steininger, Christine; Kramers, Jan D.; Berger, Lee R.] Univ Witwatersrand, Sch Geosci, ZA-2050 Wits, South Africa. [Kibii, Job M.; Kuhn, Brian F.; Steininger, Christine; Churchill, Steven E.; Berger, Lee R.] Univ Witwatersrand, Inst Human Evolut, ZA-2050 Wits, South Africa. [Churchill, Steven E.] Duke Univ, Dept Evolutionary Anthropol, Durham, NC 27708 USA. [Kramers, Jan D.] Univ Bern, Inst Geol Sci, CH-3012 Bern, Switzerland. [Kramers, Jan D.] Univ Johannesburg, Dept Geol, ZA-2006 Auckland Pk, South Africa. [Pickering, Robyn] Univ Melbourne, Sch Earth Sci, Melbourne, Vic 3010, Australia. [Farber, Daniel L.] Lawrence Livermore Natl Lab, Ctr Accelerator Mass Spectrometry, Livermore, CA 94550 USA. [Farber, Daniel L.] Univ Calif Santa Cruz, Dept Earth & Planetary Sci, Santa Cruz, CA 95064 USA. [Meriaux, Anne-Sophie] Univ Newcastle, Sch Geog Polit & Sociol, Newcastle Upon Tyne NE1 7RU, Tyne & Wear, England. [Herries, Andy I. R.] Univ New S Wales, Sch Med Sci, UNSW Archaeomagnetism Lab, Sydney, NSW 2052, Australia. [Herries, Andy I. R.] Univ Liverpool, Dept Earth & Ocean Sci, Geomagnetism Lab, Liverpool L69 3BX, Merseyside, England. [King, Geoffrey C. P.] Inst Phys Globe, Lab Tecton, F-75252 Paris, France. RP Dirks, PHGM (reprint author), James Cook Univ, Sch Earth & Environm Sci, Townsville, Qld 4811, Australia. EM paul.dirks@jcu.edu.au RI Meriaux, Anne-Sophie/G-1754-2010; Farber, Daniel/F-9237-2011; OI Berger, Lee/0000-0002-0367-7629 FU Palaeontological Scientific Trust (PAST); Institute for Human Evolution; University of the Witwatersrand; School of Geosciences, University of the Witwatersrand; AfricaArray; France-SA; Khure Africa project; LLNL GEO-CAMS; US-NSF [EAR-0345895]; Swiss National Science Foundation; UNSW Faculty of Medicine; ARC [DP0877603]; Liverpool University FX We thank the South African Heritage Resource Agency for allowing work on the Malapa site; the Nash family for granting access to the Malapa site and continued support; the Palaeontological Scientific Trust (PAST), the Institute for Human Evolution, University of the Witwatersrand and the School of Geosciences, University of the Witwatersrand, for funding; and the University of the Witwatersrand's Schools of Geosciences and Anatomical Sciences and the Bernard Price Institute for Palaeontology for support and facilities. Further support was provided by AfricaArray (P. H. G. M. D.), the France-SA, !Khure Africa project (G. C. P. K., D. L. F., A.-S.M.), and LLNL GEO-CAMS and the US-NSF EAR-0345895 (D. L. F.). R. P. is supported by a Swiss National Science Foundation Post-Doctoral Grant and gratefully acknowledges J. Woodhead, A. Grieg, and the team at Melbourne University. A. I. R. H. was funded through a UNSW Faculty of Medicine research grant and ARC Discovery Grant DP0877603 and acknowledges the support of the Liverpool University Geomagnetism Laboratory staff. Contributions to mapping and sample preparation by G. Charlesworth and Z. Jinnah are kindly acknowledged. NR 29 TC 69 Z9 74 U1 3 U2 45 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD APR 9 PY 2010 VL 328 IS 5975 BP 205 EP 208 DI 10.1126/science.1184950 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 580OU UT WOS:000276459600036 PM 20378812 ER PT J AU Lei, Y Mehmood, F Lee, S Greeley, J Lee, B Seifert, S Winans, RE Elam, JW Meyer, RJ Redfern, PC Teschner, D Schlogl, R Pellin, MJ Curtiss, LA Vajda, S AF Lei, Y. Mehmood, F. Lee, S. Greeley, J. Lee, B. Seifert, S. Winans, R. E. Elam, J. W. Meyer, R. J. Redfern, P. C. Teschner, D. Schlogl, R. Pellin, M. J. Curtiss, L. A. Vajda, S. TI Increased Silver Activity for Direct Propylene Epoxidation via Subnanometer Size Effects SO SCIENCE LA English DT Article ID SELECTIVE PROPENE EPOXIDATION; MOLECULAR-OXYGEN; PARTICLE-SIZE; CATALYSTS; CLUSTERS; SURFACE; REACTIVITY; ETHYLENE; HYDROGEN; TITANIA AB Production of the industrial chemical propylene oxide is energy-intensive and environmentally unfriendly. Catalysts based on bulk silver surfaces with direct propylene epoxidation by molecular oxygen have not resolved these problems because of substantial formation of carbon dioxide. We found that unpromoted, size-selected Ag(3) clusters and similar to 3.5-nanometer Ag nanoparticles on alumina supports can catalyze this reaction with only a negligible amount of carbon dioxide formation and with high activity at low temperatures. Density functional calculations show that, relative to extended silver surfaces, oxidized silver trimers are more active and selective for epoxidation because of the open-shell nature of their electronic structure. The results suggest that new architectures based on ultrasmall silver particles may provide highly efficient catalysts for propylene epoxidation. C1 [Lei, Y.; Lee, S.; Redfern, P. C.; Curtiss, L. A.; Vajda, S.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Lei, Y.; Meyer, R. J.] Univ Illinois, Dept Chem Engn, Chicago, IL 60607 USA. [Mehmood, F.; Pellin, M. J.; Curtiss, L. A.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Greeley, J.; Vajda, S.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Lee, B.; Seifert, S.; Winans, R. E.] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA. [Elam, J. W.] Argonne Natl Lab, Div Energy Syst, Argonne, IL 60439 USA. [Teschner, D.; Schlogl, R.] Max Planck Gesell, Fritz Haber Inst, Dept Inorgan Chem, D-14195 Berlin, Germany. [Vajda, S.] Yale Univ, Dept Chem Engn, New Haven, CT 06520 USA. RP Curtiss, LA (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM curtiss@anl.gov; vajda@anl.gov RI Pellin, Michael/B-5897-2008; OI Pellin, Michael/0000-0002-8149-9768; Lei, Yu/0000-0002-4161-5568 FU U.S. Department of Energy, Office of Basic Energy (Chemical Sciences, Materials Sciences, and Scientific User Facilities) [DE-AC-02-06CH11357]; American Chemical Society; U.S. Air Force Office of Scientific Research FX Work at Argonne National Laboratory was supported by the U.S. Department of Energy, Office of Basic Energy Sciences (Chemical Sciences, Materials Sciences, and Scientific User Facilities), under contract DE-AC-02-06CH11357. We thank the BESSY staff for their support. Also supported by the American Chemical Society Petroleum Research Fund (Y.L. and R.J.M.) and the U.S. Air Force Office of Scientific Research (S. V.). We acknowledge grants of computer time at the Molecular Science Computing Facility at Pacific Northwest National Laboratory and the Laboratory Computing Resource Center at Argonne National Laboratory. A Full Utility Patent Application was filed by Argonne in March 2009, entitled "Subnanometer and Nanometer Catalysts, Method for Preparing Size-Selected Catalyst" (Application 12/402,948). NR 36 TC 300 Z9 302 U1 48 U2 348 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD APR 9 PY 2010 VL 328 IS 5975 BP 224 EP 228 DI 10.1126/science.1185200 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 580OU UT WOS:000276459600041 PM 20378815 ER PT J AU Hinnell, AC Ferre, TPA Vrugt, JA Huisman, JA Moysey, S Rings, J Kowalsky, MB AF Hinnell, A. C. Ferre, T. P. A. Vrugt, J. A. Huisman, J. A. Moysey, S. Rings, J. Kowalsky, M. B. TI Improved extraction of hydrologic information from geophysical data through coupled hydrogeophysical inversion SO WATER RESOURCES RESEARCH LA English DT Article ID ELECTRICAL-RESISTIVITY TOMOGRAPHY; GROUND-PENETRATING RADAR; SOIL-WATER CONTENT; VADOSE ZONE; HYDRAULIC CONDUCTIVITY; PARAMETER-ESTIMATION; BOREHOLE RADAR; MODEL; AQUIFER; TRANSPORT AB There is increasing interest in the use of multiple measurement types, including indirect (geophysical) methods, to constrain hydrologic interpretations. To date, most examples integrating geophysical measurements in hydrology have followed a three-step, uncoupled inverse approach. This approach begins with independent geophysical inversion to infer the spatial and/or temporal distribution of a geophysical property (e. g., electrical conductivity). The geophysical property is then converted to a hydrologic property (e. g., water content) through a petrophysical relation. The inferred hydrologic property is then used either independently or together with direct hydrologic observations to constrain a hydrologic inversion. We present an alternative approach, coupled inversion, which relies on direct coupling of hydrologic models and geophysical models during inversion. We compare the abilities of coupled and uncoupled inversion using a synthetic example where surface-based electrical conductivity surveys are used to monitor one dimensional infiltration and redistribution. Through this illustrative example, we show that the coupled approach can provide significant reductions in uncertainty for hydrologic properties and associated predictions if the underlying model is a faithful representation of the hydrologic processes. However, if the hydrologic model exhibits structural errors, the coupled inversion may not improve the hydrologic interpretation. Despite this limitation, our results support the use of coupled hydrogeophysical inversion both for the direct benefits of reduced errors during inversion and because of the secondary benefits that accrue because of the extensive communication and sharing of data necessary to produce a coupled model, which will likely lead to more thoughtful use of geophysical data in hydrologic studies. C1 [Hinnell, A. C.; Ferre, T. P. A.] Univ Arizona, Tucson, AZ 85721 USA. [Huisman, J. A.; Rings, J.] Forschungszentrum Julich, D-52425 Julich, Germany. [Kowalsky, M. B.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Moysey, S.] Clemson Univ, Clemson, SC 29634 USA. [Vrugt, J. A.] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. [Vrugt, J. A.] Univ Calif Irvine, Henri Samueli Sch Engn, Dept Civil & Environm Engn, Irvine, CA USA. RP Hinnell, AC (reprint author), Univ Arizona, Tucson, AZ 85721 USA. EM andrew.hinnell@gmail.com RI Moysey, Stephen/H-4658-2012; Rings, Joerg/C-4899-2008; Huisman, J.A. (Sander)/I-7078-2012; Vrugt, Jasper/C-3660-2008; OI Huisman, Johan Alexander/0000-0002-1327-0945 FU USDA Cooperative State Research, Education and Extension Service [2003-351023674]; National Science Foundation [EAR 07-53521]; Los Alamos National Laboratory; Deutsche Forschungsgemeinschaft (DFG) [HU1312/2]; U.S. Department of Energy [DE-AC02-05CH11231] FX We would like to thank Kamini Singha and the anonymous reviewers for their thorough reviews and helpful suggestions for improving the manuscript. During this project, Andrew Hinnell was supported by the National Research Initiative of the USDA Cooperative State Research, Education and Extension Service, grant 2003-351023674. Ty Ferre was supported by the National Science Foundation as the director of the CUAHSI HydroGeoPhysics facility under grant EAR 07-53521 awarded to the Consortium of Universities for the Advancement of Hydrologic Science. Jasper Vrugt was supported by a J. Robert Oppenheimer Fellowship from the Los Alamos National Laboratory postdoctoral program. J. A. Huisman is supported by grant HU1312/2 of the Deutsche Forschungsgemeinschaft (DFG). Michael Kowalsky was supported by the U.S. Department of Energy, contract DE-AC02-05CH11231. NR 74 TC 81 Z9 82 U1 2 U2 39 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0043-1397 EI 1944-7973 J9 WATER RESOUR RES JI Water Resour. Res. PD APR 9 PY 2010 VL 46 AR W00D40 DI 10.1029/2008WR007060 PG 14 WC Environmental Sciences; Limnology; Water Resources SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water Resources GA 581VG UT WOS:000276552300001 ER PT J AU Liu, L Xu, YW Shea, C Fowler, JS Hooker, JM Tonge, PJ AF Liu, Li Xu, Youwen Shea, Colleen Fowler, Joanna S. Hooker, Jacob M. Tonge, Peter J. TI Radiosynthesis and Bioimaging of the Tuberculosis Chemotherapeutics Isoniazid, Rifampicin and Pyrazinamide in Baboons SO JOURNAL OF MEDICINAL CHEMISTRY LA English DT Article ID PERFORMANCE LIQUID-CHROMATOGRAPHY; CEREBRAL EXTRACELLULAR-SPACE; MYCOBACTERIUM-TUBERCULOSIS; CEREBROSPINAL-FLUID; DRUG-RESISTANCE; BRAIN-TISSUE; PENETRATION; PHARMACOKINETICS; MENINGITIS; AGENTS AB The front-line tuberculosis (TB) chemotherapeutics isoniazid (INH), rifampicin (RIF), and pyrazinamide (PZA) have been labeled with carbon-11 and the biodistribution of each labeled drug has been determined in baboons using positron emission tomography (PET). Each radiosynthesis and formulation has been accomplished in 1 h, using [(11)C]CH(3)I to label RIF and [(11)C]HCN to label INH and PZA. Following iv administration, INH, PZA, RIF, and/or their radiolabeled metabolites clear rapidly from many tissues; however, INH, PZA, and/or their radiolabeled metabolites accumulate in the bladder while RIF and/or its radiolabeled metabolites accumulates in the liver and gall bladder, consistent with the known routes of excretion of the drugs. In addition, the biodistribution data demonstrate that the ability of the three drugs and their radiolabeled metabolites to cross the blood brain barrier decreases in the order PZA > INH > RIF, although in all cases the estimated drug concentrations are greater than the minimum inhibitory concentration (MIC) values for inhibiting bacterial growth of Mycobacterium tuberculosis (MTB). The pharmacokinetic (PK) and drug distribution data have important implications for treatment of disseminated TB in the brain and pave the way for imaging the distribution of the pathogen in vivo. C1 [Xu, Youwen; Shea, Colleen; Fowler, Joanna S.; Hooker, Jacob M.] Brookhaven Natl Lab, Dept Med, Upton, NY 11973 USA. [Liu, Li; Tonge, Peter J.] SUNY Stony Brook, Dept Chem, Inst Chem Biol & Drug Discovery, Stony Brook, NY 11794 USA. RP Hooker, JM (reprint author), Athinoula A Martinos Ctr Biomed Imaging, Charlestown, MA 02129 USA. EM hooker@nmr.mgh.harvard.edu; peter.tonge@sunysb.edu OI Hooker, Jacob/0000-0002-9394-7708 FU NIH [AI084189]; U.S. Department of Energy [DE-AC02-98CH10886] FX This work was supported by NIH grant AI084189 to P.J.T. In addition, the work at Brookhaven National Laboratory was performed under contract DE-AC02-98CH10886 with the U.S. Department of Energy, and with infrastructure support from its Office of Biological and Environmental Research. We are grateful to Dr. Michael Schueller for cyclotron operation, David Alexoff for technical assistance with data processing, and the PET radiotracer and imaging team at BNL (Lisa Muench, Pauline Carter, Payton King, and Don Warner) for carrying out primate imaging experiments. NR 45 TC 22 Z9 22 U1 0 U2 8 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0022-2623 J9 J MED CHEM JI J. Med. Chem. PD APR 8 PY 2010 VL 53 IS 7 BP 2882 EP 2891 DI 10.1021/jm901858n PG 10 WC Chemistry, Medicinal SC Pharmacology & Pharmacy GA 575VC UT WOS:000276096300017 PM 20205479 ER PT J AU Rudakov, F Weber, PM AF Rudakov, Fedor Weber, Peter M. TI Ultrafast Curve Crossing Dynamics through Conical Intersections in Methylated Cyclopentadienes SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID RYDBERG FINGERPRINT SPECTROSCOPY; RING-OPENING REACTION; PHOTOELECTRON-SPECTROSCOPY; STATE DYNAMICS; RELAXATION; 1,3-CYCLOHEXADIENE; PHOTOCHEMISTRY; HYDROCARBONS; DIFFRACTION; MOLECULES AB We explored the curve crossing dynamics of 1,2,3,4-tetramethyl-cyclopentadiene (TMCPD) and 1,2,3,4,5-pentamethyl-cyclopentadiene (PMCPD) upon pi -> pi* excitation to the 1B(2) state using time-resolved, resonance-enhanced multiphoton ionization mass and photoelectron spectroscopy. Upon excitation with a femtosecond laser pulse at 267 nm, the energy relaxation pathway is observed by a time-delayed probe pulse at 400 nm, which ionizes the molecule through Rydberg states that reveal the momentary state of the molecule in the photoelectron spectra. We observe that the initially populated 1B(2) state decays to the 2A(1) surface in 135 fs in TMCPD and 183 fs in PMCPD, followed by a crossing to the ground state 1A(1) surface on 57 and 60 fs time scales for TMCPD and PMCPD, respectively. The spectroscopic signatures of the 2A(1) states are clearly revealed in the two-photon ionization photoelectron spectra. In both systems we observe that the ground states are recovered completely, indicating that no new molecular structures are created on the time scale of the experiment. C1 [Weber, Peter M.] Brown Univ, Dept Chem, Providence, RI 02912 USA. [Rudakov, Fedor] Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN 37831 USA. RP Weber, PM (reprint author), Brown Univ, Dept Chem, Providence, RI 02912 USA. EM peter_weber@brown.edu FU Division of Chemical Sciences, Geosciences, and Biosciences; Office of Basic Energy Sciences, U.S. Department of Energy [DE-FG02-03ER15452, DE-AC05-000R22725] FX This project is supported by the Division of Chemical Sciences, Geosciences, and Biosciences, the Office of Basic Energy Sciences, the U.S. Department of Energy by Grant Number DE-FG02-03ER15452. Fedor Rudakov's research is performed as a Eugene P. Wigner Fellow and staff member at the Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U.S. Department of Energy under Contract DE-AC05-000R22725. NR 29 TC 5 Z9 5 U1 3 U2 11 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD APR 8 PY 2010 VL 114 IS 13 BP 4501 EP 4506 DI 10.1021/jp910786s PG 6 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 575VH UT WOS:000276096800004 PM 20225838 ER PT J AU Xing, XP Wang, XB Wang, LS AF Xing, Xiao-Peng Wang, Xue-Bin Wang, Lai-Sheng TI Photoelectron Imaging of Doubly Charged Anions, -O2C(CH2)(n)CO2- (n=2-8): Observation of Near 0 eV Electrons Due to Secondary Dissociative Autodetachment SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID KINETIC-ENERGY DISTRIBUTION; REPULSIVE COULOMB BARRIER; GAS-PHASE; THERMIONIC EMISSION; SMALL CLUSTERS; PHOTODETACHMENT SPECTROSCOPY; DICARBOXYLATE DIANIONS; MULTIPHOTON IONIZATION; IONS; COMPLEXES AB The hallmark of multiply charged anions is the repulsive Coulomb barrier (RCB), which prevents low-energy electrons from being emitted in photodetachment experiments. However, using photoelectron imaging, we have observed persistent near 0 eV electrons during photodetachment of doubly charged dicarboxylate anions, -O2C(CH2)(n)CO2- (D-n(2-), n = 2-8). Here we show that these low-energy electron signals are well structured and are independent of the detachment photon fluxes or energies. The relative intensities of these signals are dependent on n, with maxima at n = 2, 4, and 6. These near 0 eV electrons cannot come from direct photodetachment of the dianions and are proposed to come from decarboxylation of the product radical anions upon photodetachment of the parent dianions [(O2C)-O-center dot(CH2)(n)CO2- -> CO2 + (center dot)(CH2)(n)CO2-], followed by dissociative autodetachment [(center dot)(CH2)(n)CO2- -> (CH2)(n) + CO2 + e] or hydrogen-transfer-induced electron detachment [(center dot)(CH2)(n)CO2- -> CH2=CH(CH2)(n-2)CO2H + e]. Energetic considerations suggest that these processes are exothermic. It is further observed that solvation by one water molecule quenches the low-energy electron signals in the spectra of D-n(2-)(H2O), consistent with the proposed mechanisms. These indirect dissociative autodetachment processes are expected to involve cyclic transition states for n > 2, which is in agreement with the dependence on the chain length due to the anticipated strains in the intermediate steps. The quenching of the low-energy electron signals by one water molecule demonstrates the importance of salvation on chemical reactions. C1 [Wang, Lai-Sheng] Brown Univ, Dept Chem, Providence, RI 02912 USA. [Xing, Xiao-Peng; Wang, Xue-Bin] Washington State Univ, Dept Phys, Richland, WA 99354 USA. [Xing, Xiao-Peng; Wang, Xue-Bin] Pacific NW Natl Lab, Div Chem & Mat Sci, Richland, WA 99352 USA. RP Wang, LS (reprint author), Brown Univ, Dept Chem, Providence, RI 02912 USA. EM Lai-Sheng_Wang@brown.edu FU National Science Foundation [CHE-0749496] FX We thank Prof. A. I. Boldyrev and Ms. A. P. Sergeeva for valuable discussions and the National Science Foundation (CHE-0749496) for the support of this work. NR 77 TC 12 Z9 12 U1 1 U2 24 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD APR 8 PY 2010 VL 114 IS 13 BP 4524 EP 4530 DI 10.1021/jp1011523 PG 7 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 575VH UT WOS:000276096800007 PM 20235502 ER PT J AU Lind, MC Garrison, SL Becnel, JM AF Lind, Maria C. Garrison, Stephen L. Becnel, James M. TI Trimolecular Reactions of Uranium Hexafluoride with Water SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID EFFECTIVE CORE POTENTIALS; GAS-PHASE REACTION; OXIDE TETRAFLUORIDE; AB-INITIO; VIBRATIONAL FREQUENCIES; THEORETICAL MECHANISM; UF6 HYDROLYSIS; DENSITY; COMPLEXES; URANYL AB The hydrolysis reaction of uranium hexafluoride (UF(6)) is a key step in the synthesis of uranium dioxide (UO(2)) powder for nuclear fuels. Mechanisms for the hydrolysis reactions are studied here with density functional theory and the Stuttgart small-core scalar relativistic pseudopotential and associated basis set for uranium. The reaction of a single UF(6) molecule with a water molecule in the gas phase has been previously predicted to proceed over a relatively sizable barrier of 78.2 kJ.mol(-1), indicating this reaction is only feasible at elevated temperatures. Given the observed formation of a second morphology for the UO(2) product coupled with the observations of rapid, spontaneous hydrolysis at ambient conditions, an alternate reaction pathway must exist. In the present work, two trimolecular hydrolysis mechanisms are studied with density functional theory: (1) the reaction between two UF(6) molecules and one water molecule, and (2) the reaction of two water molecules with a single UF(6) molecule. The predicted reaction of two UF(6) molecules with one water molecule displays an interesting "fluorine-shuttle" mechanism, a significant energy barrier of 69.0 kJ.mol(-1) to the formation of UF(5)OH, and an enthalpy of reaction (Delta H(298)) of +17.9 kJ.mol(-1). The reaction of a single UF(6) molecule with two water molecules displays a "proton-shuttle" mechanism, and is more favorable, having a slightly lower computed energy barrier of 58.9 kJ.mol(-1) and an exothermic enthalpy of reaction (Delta H(298)) of -13.9 kJ.mol(-1). The exothermic nature of the overall UF(6) + 2H(2)O trimolecular reaction and the lowering of the barrier height with respect to the bimolecular reaction are encouraging. C1 [Lind, Maria C.; Garrison, Stephen L.; Becnel, James M.] Savannah River Nucl Solut LLC, Savannah River Natl Lab, Aiken, SC 29808 USA. RP Garrison, SL (reprint author), Savannah River Nucl Solut LLC, Savannah River Natl Lab, Aiken, SC 29808 USA. EM Stephen.Garrison@SRNL.doe.gov FU U.S. Department of Energy [DE-AC09-08SR 22470] FX The present work was supported through Contract DE-AC09-08SR 22470 with the U.S. Department of Energy. This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or any third party's use or the results of such use of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors. The views and opinions of the authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. Images for this document were prepared using the cheMVP software written by Dr. Andrew C. Simmonett. NR 48 TC 5 Z9 5 U1 2 U2 19 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD APR 8 PY 2010 VL 114 IS 13 BP 4641 EP 4646 DI 10.1021/jp909368g PG 6 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 575VH UT WOS:000276096800021 PM 20210345 ER PT J AU Mudalige, K Habuchi, S Goodwin, PM Pai, RK De Schryver, F Cotlet, M AF Mudalige, Kumara Habuchi, Satoshi Goodwin, Peter M. Pai, Ranjith K. De Schryver, Frans Cotlet, Mircea TI Photophysics of the Red Chromophore of HcRed: Evidence for Cis-Trans Isomerization and Protonation-State Changes SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID GREEN FLUORESCENT PROTEIN; ANEMONE ENTACMAEA-QUADRICOLOR; SINGLE-MOLECULE SPECTROSCOPY; ANGSTROM CRYSTAL-STRUCTURE; STRUCTURAL BASIS; PH INDICATOR; DYNAMICS; EXCITATION; GFP; DRONPA AB HcRed is a dimeric intrinsically fluorescent protein with origins in the sea anemone Heteractis cri spa. This protein exhibits deep red absorption and emission properties. Using a combination of ensemble and single molecule methods and by varying environmental parameters such as temperature and pH, we found spectroscopic evidence for the presence of two ground state conformers, trans and cis chromophores that are in thermal equilibrium and that follow different excited-state pathways upon exposure to light. The photocycle of HcRed appears to be a combination of both kindling proteins and bright emitting GFP/GFP-like proteins: the trans chromophore undergoes light driven isomerization followed by radiative relaxation with a fluorescence lifetime of 0.5 ns. The cis chromophore exhibits a photocycle similar to bright GFPs and GFP-like proteins such as enhanced GFP, enhanced YFP or DsRed, with radiative relaxation with a fluorescence lifetime of 1.5 ns, singlet triplet deactivation on a microsecond time scale and solvent controlled protonation/deprotonation in tens of microseconds. Using single molecule spectroscopy, we identify trans and cis conformers at the level of individual moieties and show that it is possible that the two conformers can coexist in a single protein due to the dimeric nature of HcRed. C1 [Mudalige, Kumara; Pai, Ranjith K.; Cotlet, Mircea] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. [Habuchi, Satoshi; De Schryver, Frans] Katholieke Univ Leuven, Dept Chem, B-3001 Heverlee, Belgium. [Goodwin, Peter M.] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. RP Cotlet, M (reprint author), Brookhaven Natl Lab, Ctr Funct Nanomat, Mail Stop 735, Upton, NY 11973 USA. EM cotlet@bnl.gov OI Krishna Pai, Prof. Dr. Ranjith/0000-0003-3323-0876; Habuchi, Satoshi/0000-0002-6663-2807 FU U.S. Department of Energy, Division of Materials Sciences and Division of Chemical Sciences [DE-ACO2-98CH10886, DE-AC52-06NA25396, DE-AC04-94AL85000]; Los Alamos National Laboratory in New Mexico; research council of the Katholieke Universiteit Leuven in Belgium; International Iberian Nanotechnology Laboratory (INL) of Portugal FX Research carried out in part at the Center for Functional Nanomaterials, Brookhaven National Laboratory, which is supported by the U.S. Department of Energy, Division of Materials Sciences and Division of Chemical Sciences, under Contract No. DE-ACO2-98CH10886 and in part, at the Center for Integrated Nanotechnologies, a U.S. Department of Energy, Office of Basic Energy Sciences user facility at Los Alamos National Laboratory (Contract DE-AC52-06NA25396) and Sandia National Laboratories (Contract DE-AC04-94AL85000). Financial support was provided in part by the laboratory directed research and development program at Los Alamos National Laboratory in New Mexico and by the research council of the Katholieke Universiteit Leuven in Belgium. RKP is financially supported by the International Iberian Nanotechnology Laboratory (INL) of Portugal. We thank Dr. K.A. Lukyanov for providing the plasmid for Hc Red and Dr. Johan Hofkens (Leuven) and Dr. Jim Werner (Los Alamos) for help provided at various stages of the project. NR 60 TC 7 Z9 7 U1 1 U2 16 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD APR 8 PY 2010 VL 114 IS 13 BP 4678 EP 4685 DI 10.1021/jp9102146 PG 8 WC Chemistry, Physical SC Chemistry GA 575VF UT WOS:000276096600034 PM 20230057 ER PT J AU Uejio, JS Schwartz, CP Duffin, AM England, A Prendergast, D Saykally, RJ AF Uejio, Janet S. Schwartz, Craig P. Duffin, Andrew M. England, Alice Prendergast, David Saykally, Richard J. TI Monopeptide versus Monopeptoid: Insights on Structure and Hydration of Aqueous Alanine and Sarcosine via X-ray Absorption Spectroscopy SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID DENSITY-FUNCTIONAL THEORY; HYDROGEN-BOND NETWORK; LIQUID WATER; AMINO-ACIDS; ELECTRONIC-STRUCTURE; PEPTOID OLIGOMERS; ORGANIC-MOLECULES; EXTREME STABILITY; SIDE-CHAINS; CORE-LEVEL AB Despite the obvious significance, the aqueous interactions of peptides remain incompletely understood. Their synthetic analogues called peptoids (poly-N-substituted glycines) have recently emerged as a promising biomimetic material, particularly due to their robust secondary structure and resistance to denaturation. We describe comparative near-edge X-ray absorption fine structure spectroscopy studies of aqueous sarcosine, the simplest peptoid, and alanine, its peptide isomer, interpreted by density functional theory calculations. The sarcosine nitrogen K-edge spectrum is blue shifted with respect to that of alanine, in agreement with our calculations; we conclude that this shift results primarily from the methyl group substitution on the nitrogen of sarcosine. Our calculations indicate that the nitrogen K-edge spectrum of alanine differs significantly between dehydrated and hydrated scenarios, while that of the sarcosine zwitterion is less affected by hydration. In contrast, the computed sarcosine spectrum is greatly impacted by conformational variations, while the alanine spectrum is not. This relates to a predicted solvent dependence for alanine, as compared to sarcosine. Additionally, we show the theoretical nitrogen K-edge spectra to be sensitive to the degree of hydration, indicating that experimental X-ray spectroscopy may be able to distinguish between bulk and partial hydration, such as found in confined environments near proteins and in reverse micelles. C1 [Uejio, Janet S.; Schwartz, Craig P.; Duffin, Andrew M.; England, Alice; Saykally, Richard J.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Uejio, Janet S.; Schwartz, Craig P.; Duffin, Andrew M.; England, Alice; Saykally, Richard J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Saykally, RJ (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. RI Prendergast, David/E-4437-2010; OI England, Alice/0000-0001-7698-8156 FU Office of Science; U.S. Department of Energy [DE-AC02-05CH11231]; Advanced Light Source (ALS) Fellowship FX We thank Wanli Yang at beamline 8.0.1 for his help with the experimental results. We also thank Ronald Zuckermann at the Molecular Foundry for suggesting candidate molecules. This work was done under the auspices of the Chemical Sciences Division, Office of Basic Energy Sciences, the Molecular Foundry, Lawrence Berkeley National Laboratory, supported by the Office of Science, and computational resources were provided by the National Energy Resource Center, Office of Science; all of which are supported by the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Thanks to the Advanced Light Source (ALS) Fellowship fund and the ALS itself, which is supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences Division, of the U.S. Department of Energy under contract no. DE-AC02-05CH1231. NR 55 TC 10 Z9 10 U1 0 U2 6 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD APR 8 PY 2010 VL 114 IS 13 BP 4702 EP 4709 DI 10.1021/jp911007k PG 8 WC Chemistry, Physical SC Chemistry GA 575VF UT WOS:000276096600037 PM 20235589 ER PT J AU Atwater, MA Phillips, J Leseman, ZC AF Atwater, Mark A. Phillips, Jonathan Leseman, Zayd C. TI Formation of Carbon Nanofibers and Thin Films Catalyzed by Palladium in Ethylene-Hydrogen Mixtures SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID FILAMENT GROWTH; IRON CATALYST; DEPOSITION; NICKEL; SPILLOVER; PLATINUM; DECOMPOSITION; MECHANISM; OXIDATION; MONOXIDE AB The nature of observed growth of solid carbon on palladium from ethylene hydrogen mixtures is consistent with the supposition that the primary source of carbon for growth is homogeneously generated radicals. Evidence includes the lack of growth in the absence of a reacting mixture, sharp maxima as a function of temperature, and dramatic differences in temperature of growth as a function of mixture composition. The finding that the structure of the support strongly influenced the morphology of the solid carbon, and the temperature regime for deposition, is also consistent with this model. Carbon nanofibers were found to form on sputtered palladium films and palladium nanopowder (ca. 700 degrees C), whereas planar carbon structures deposited on palladium micrometer powder and foil (ca. 600 degrees C). A radical species growth mechanism is consistent not only with observations made herein but also with data presented in earlier studies. C1 [Atwater, Mark A.; Phillips, Jonathan; Leseman, Zayd C.] Univ New Mexico, Albuquerque, NM 87131 USA. [Phillips, Jonathan] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Leseman, ZC (reprint author), Univ New Mexico, Albuquerque, NM 87131 USA. EM zleseman@unm.edu RI Phillips, Jonathan/D-3760-2011 FU New Mexico Space Grant Consortium FX The authors gratefully acknowledge the support of the New Mexico Space Grant Consortium. This work was completed in part at the University of New Mexico Manufacturing Training and Technology Center. NR 44 TC 8 Z9 8 U1 0 U2 8 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD APR 8 PY 2010 VL 114 IS 13 BP 5804 EP 5810 DI 10.1021/jp9106734 PG 7 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 575VB UT WOS:000276096200013 ER PT J AU Peng, P Sadtler, B Alivisatos, AP Saykally, RJ AF Peng, Paul Sadtler, Bryce Alivisatos, A. Paul Saykally, Richard J. TI Exciton Dynamics in CdS-Ag2S Nanorods with Tunable Composition Probed by Ultrafast Transient Absorption Spectroscopy SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID CATION-EXCHANGE; OPTICAL-PROPERTIES; CARRIER DYNAMICS; QUANTUM DOTS; NANOCRYSTALS; CDSE; SIZE; FEMTOSECOND; PHOTOLUMINESCENCE; SELENIDE AB Electron relaxation dynamics in CdS-Ag2S nanorods have been measured as a function of the relative fraction of the two semiconductors, which can be tuned via cation exchange between Cd2+ and Ag+. The transient bleach of the first excitonic state of the CdS nanorods is characterized by a biexponential decay corresponding to fast relaxation of the excited electrons into trap states. This signal completely disappears when the nanorods are converted to Ag2S but is fully recovered after a second exchange to convert them back to CdS, demonstrating annealing of the nonradiative trap centers probed and the robustness of the cation exchange reaction. Partial cation exchange produces heterostructures with embedded regions of Ag2S within the CdS nanorods. Transient bleaching of the CdS first excitonic state shows that increasing the fraction of Ag2S produces a greater contribution from the fast component of the biexponential bleach recovery, indicating that new midgap relaxation pathways are created by the Ag2S material. Transient absorption with a mid-infrared probe further confirms the presence of states that preferentially trap electrons on a time scale of 1 ps, 2 orders of magnitude faster than that of the parent CdS nanorods. These results suggest that the Ag2S regions within the heterostucture provide an efficient relaxation pathway for excited electrons in the CdS conduction band. C1 [Peng, Paul; Sadtler, Bryce; Alivisatos, A. Paul; Saykally, Richard J.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Sadtler, Bryce; Alivisatos, A. Paul] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Saykally, Richard J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Saykally, RJ (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM saykally@berkeley.edu RI Alivisatos , Paul /N-8863-2015 OI Alivisatos , Paul /0000-0001-6895-9048 FU U.S. Department of Energy [DE-AC02-05CH1123]; National Science Foundation [CHE-0650950]; NSF-IGERT foundation FX The authors thank Dr. Gordana Dukovic and Dr. Prashant K. Jain for helpful discussions in preparing the manuscript and Maxwell Merkle for measurement of nanorod concentrations. The nanocrystal synthesis portion of this work, carried out by B.S. and supervised by A.P.A. and R.J.S., was supported by the Director, Office of Science, Office of Basic Energy Sciences, Chemical and Materials Sciences Divisions, of the U.S. Department of Energy under Contract No. DE-AC02-05CH1123. The spectroscopy experiments, carried out by P. P. and supervised by R.J.S., were supported by the Experimental Physical Chemistry Division of the National Science Foundation under Grant No. CHE-0650950. P.P. was supported by the NSF-IGERT foundation. NR 32 TC 30 Z9 31 U1 4 U2 49 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD APR 8 PY 2010 VL 114 IS 13 BP 5879 EP 5885 DI 10.1021/jp9116722 PG 7 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 575VB UT WOS:000276096200024 ER PT J AU Deskins, NA Rousseau, R Dupuis, M AF Deskins, N. Aaron Rousseau, Roger Dupuis, Michel TI Defining the Role of Excess Electrons in the Surface Chemistry of TiO2 SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID DENSITY-FUNCTIONAL THEORY; OXYGEN VACANCIES; TIO2(110) SURFACE; REDUCED TIO2(110); MOLECULAR-OXYGEN; OH GROUPS; O-2; DISSOCIATION; ADSORPTION; ENERGY AB Understanding and quantifying the principles governing surface-to-adsorbate charge transfer is of utmost importance because excess electrons in n-type oxides alter significantly surface binding and reactivity. We performed a systematic study using density functional theory (DFT) of the role of excess electrons in ruffle TiO2 which can result from point defects such as oxygen vacancies, bridging row hydroxyls, and interstitial Ti species. These defects create excess electrons within the Ti sublattice which can perform redox chemistry on adsorbates. We show the similarity of these defects in their ability to donate electrons to surface adsorbates, indicating that experimentally distinguishing the nature of the defects may be difficult. We examined the adsorption and reactivity of O-2 in detail and also present a generalization of these findings for a variety of species. A characterization of the redox properties of the surface/adsorbate complex indicates that when the electronegativity of the adsorbate is greater than the surface electronegativity, significant charge transfer from the reduced surface to the absorbate occurs. Surface defects do not participate in significant charge transfer for adsorbates with low electronegativity. Through variations of the U parameter in the DFT+U theory we modulated the position of the defect states in the band gap. Increased stability of the defect states leads to more difficult charge transfer to the adsorbates and a decrease in the adsorption energy. The present study offers insights on requirements with regard to modeling reduced TiO2 using electronic structure methods and an understanding of how to control the surface reactivity through degree of reduction or defect state location. C1 [Deskins, N. Aaron; Rousseau, Roger; Dupuis, Michel] Pacific NW Natl Lab, Div Chem & Mat Sci, Richland, WA 99352 USA. RP Deskins, NA (reprint author), Worcester Polytech Inst, Dept Chem Engn, Worcester, MA 01609 USA. EM nadeskins@wpi.edu RI Deskins, Nathaniel/H-3954-2012; Rousseau, Roger/C-3703-2014 FU U.S. Department of Energy (DOE); Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division FX We thank Yingue Du, Zhenrong Zhang, Zdenek Dohnalek, Igor Lyubinetsky, Greg Kimmel, Horia Metiu, and Mike Henderson for stimulating discussions and acknowledge the U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division, for funding. All work was performed at Pacific Northwest National Laboratory (PNNL) which is operated by Battelle for the DOE. Computational resources were provided by the Molecular Science Computing Facility at EMSL/PNNL and the National Energy Research Scientific Computing Center at Lawrence Berkeley National Laboratory. NR 66 TC 115 Z9 116 U1 12 U2 98 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD APR 8 PY 2010 VL 114 IS 13 BP 5891 EP 5897 DI 10.1021/jp101155t PG 7 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 575VB UT WOS:000276096200026 ER PT J AU Shin, YS Dohnalkova, A Lin, YH AF Shin, Yongsoon Dohnalkova, Alice Lin, Yuehe TI Preparation of Homogeneous Gold-Silver Alloy Nanoparticles Using the Apoferritin Cavity As a Nanoreactor SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID AU-AG; PHASE SYNTHESIS; PROTEIN CAGES; CO OXIDATION; FUEL-CELLS; REDUCTION; FERRITIN; BIOMINERALIZATION; ELECTROCATALYSTS; NANOCOMPOSITES AB Homogeneous Au-Ag alloy nanoparticles have been synthesized in the cavity of horse spleen apoferritin (HSAF) by a diffusion technique. The Au-Ag nanoparticle cores are 5.6-6.3 nm in diameter with narrow size distribution (<= 1.0 nm), and their average diameter was gradually increased with an increase in the Ag content. The core formation ratios of Au-Ag-HASF samples are higher than 80%. These series of nanoparticles were applied for the reduction of 4-nitrophenol in the presence of NaBH(4). As the Au content was increased in the Au Ag HSAF nanoparticles, the rate constant of the reduction was exponentially increased from 1.3 x 10(-3) s(-1) (pure Ag HSAF) to 7.58 x 10(-2) s(-1) (pure Au HSAF). These synthesized Au-Ag nanoparticles with different compositions will be further applicable in catalysis, sensing, and biomedical areas. C1 [Shin, Yongsoon; Lin, Yuehe] Pacific NW Natl Lab, Div Chem & Mat Sci, Richland, WA 99354 USA. RP Shin, YS (reprint author), Pacific NW Natl Lab, Div Chem & Mat Sci, 902 Battelle Blvd,POB 999, Richland, WA 99354 USA. EM yongsoon.shin@pnl.gov RI Lin, Yuehe/D-9762-2011 OI Lin, Yuehe/0000-0003-3791-7587 FU Pacific Northwest National Laboratory (PNNL); U.S. Department of Energy's Office of Biological and Environmental Research; DOE [DE-AC05-76RL01830] FX This work is supported by a laboratory-directed research and development program at Pacific Northwest National Laboratory (PNNL). This research was performed at the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the U.S. Department of Energy's Office of Biological and Environmental Research. PNNL is operated by Battelle for DOE under contract DE-AC05-76RL01830. NR 44 TC 33 Z9 33 U1 8 U2 40 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD APR 8 PY 2010 VL 114 IS 13 BP 5985 EP 5989 DI 10.1021/jp911004a PG 5 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 575VB UT WOS:000276096200037 ER PT J AU Zheng, HH Liu, G Battaglia, V AF Zheng, Honghe Liu, Gao Battaglia, Vince TI Film-Forming Properties of Propylene Carbonate in the Presence of a Quaternary Ammonium Ionic Liquid on Natural Graphite Anode SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY; ELECTROLYTE-SOLUTIONS; LI-ION; VINYLENE CARBONATE; ETHYLENE CARBONATE; LITHIUM SALT; BATTERIES; INTERCALATION; SOLVATION; CELLS AB Propylene carbonate (PC) in electrolytes is generally believed to lead to graphite exfoliation due to intensive cointercalation and ceaseless decomposition reactions. This paper reports the formation of an effective solid electrolyte interface (SE!) film on a natural graphite surface through decomposition of PC in the presence of a quaternary ammonium ionic liquid. With an ionic liquid content of at least 60%, the PC molecules are reduced in the first charge, effectively passivating the graphite anode and allowing the formation of LiC6 with high capacity and good reversibility. In the electrolyte containing 20 vol % PC, the natural graphite anode attains a discharge capacity of 322.8 mAh/g and 76.5% coulombic efficiency on the first cycle. A stable discharge capacity of around 330 mAh/g was obtained in the initial 20 cycles without any noticeable capacity loss. This result compares favorably with using 20 vol % ethylene carbonate (EC) as the film-forming additive in the electrolyte. SEM and FTIR studies demonstrate the formation of a thin, homogeneous SEI layer on the graphite-electrode surface through the reduction of PC molecules. Raman spectroscopy studies show a significant decrease of the interaction between the Li ion and PC molecules in the presence of the quaternary ammonium ionic liquid. The competition for Li ions between PC and the ionic liquid reduces the solvation of PC molecules for Li ions, which in turn limits the intercalation of PC into the graphene layers during Li intercalation, an event that typically leads to exfoliation. Instead, the loosely bound PC is reduced at the graphite/electrolyte interface, forming a stable SEI. C1 [Zheng, Honghe; Liu, Gao; Battaglia, Vince] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Zheng, Honghe] Suzhou Univ, Coll Energy, Suzhou 215006, Peoples R China. RP Zheng, HH (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. EM hzheng@lbl.gov FU U.S.-D.O.E; Natural Science Foundation of China (NSFC) [20573033]; 863 key project of China [2009AA03Z225] FX This work was supported by the U.S.-D.O.E as part of the Batteries for Advanced Transportation Technologies Program. The authors are also greatly indebted to the funding of Natural Science Foundation of China (NSFC, Contract No. 20573033) and the 863 key project of China (2009AA03Z225). NR 37 TC 17 Z9 19 U1 2 U2 40 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD APR 8 PY 2010 VL 114 IS 13 BP 6182 EP 6189 DI 10.1021/jp910734c PG 8 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 575VB UT WOS:000276096200062 ER PT J AU Cai, Y Smith, A Shinar, J Shinar, R AF Cai, Yuankun Smith, Alex Shinar, Joseph Shinar, Ruth TI Data analysis and aging in phosphorescent oxygen-based sensors SO SENSORS AND ACTUATORS B-CHEMICAL LA English DT Article DE Stretched exponential analysis; Organic light emitting devices; OLEDs; Oxygen sensor; Dissolved oxygen sensor; Glucose sensor; Lactate sensor ID LIGHT-EMITTING DEVICES; COMBINATORIAL FABRICATION; DIELECTRIC-RELAXATION; DISSOLVED-OXYGEN; METAL-COMPLEXES; FILMS; LUMINESCENCE; POLYMER; PHASE; DECAY AB The stretched exponential analysis of the photoluminescence (PL) decay curves of the oxygen-sensitive dye Pt octaethylporphyrin (PtOEP) embedded in a polystyrene (PS) film and used in gas-phase oxygen, dissolved oxygen (DO), glucose, and lactate sensors is discussed. Light emitting diodes (LEDs) and organic LEDs (OLEDs) served as the pulsed excitation sources for the PL. Typically, the stretched exponential analysis resulted in excellent fits of the oxygen-quenched PL decay curves, superior to the single exponential analysis (including an offset) and other models, in particular at the higher oxygen levels. While some previous studies of gas-phase oxygen sensors analyzed the decay curves with a single value of the stretching factor l (which was not suitable in this work), and other studies used the product of a single exponential and a stretched exponential with a fixed beta, in this study only the stretched exponential term was used with beta as a variable. As a result, beta was found to decrease with increasing O(2) concentration ([O(2)]). from beta = 1 i.e., a simple exponential decay, at gas-phase [O(2)]= 0 and [DO] = 0. The effect of doping the PtOEP:PS films with 360 nm titania particles (which enhance the PL) on the data analysis was also examined. In general, the TiO(2) increased the PL decay time and beta. The results indicate that a distribution of O(2) :dye collision rates, induced by the microheterogeneity of the sensor films, is responsible for the non-exponential decay kinetics. The [O(2)]-dependent beta is possibly associated with shallow multiple quencher trapping sites in the PS matrix that affect the frequency of dye:O(2) collisions. The TiO(2) particles may possibly increase O(2) trapping at their surface, reducing the effective concentration of O(2) molecules that collide with the dye, and thus increasing the PL decay time and beta. Additionally, the long-term stability, data analysis, and detection sensitivity of the DO sensor during and following one-year aging, with the sensing film constantly immersed in water, are described. The findings impact commercial PL-based DO sensors. (C) 2010 Elsevier B.V. All rights reserved. C1 [Cai, Yuankun; Shinar, Joseph] Iowa State Univ, US DOE, Ames Lab, Ames, IA 50011 USA. [Cai, Yuankun; Shinar, Joseph] Iowa State Univ, Dept Phys & Astron, Ames, IA USA. [Smith, Alex; Shinar, Joseph; Shinar, Ruth] Integrated Sensor Technol Inc, Ames, IA USA. [Shinar, Ruth] Iowa State Univ, Microelect Res Ctr, Ames, IA USA. [Shinar, Ruth] Iowa State Univ, Dept Elect & Comp Engn, Ames, IA USA. RP Shinar, J (reprint author), Iowa State Univ, US DOE, Ames Lab, Ames, IA 50011 USA. EM jshinar@iastate.edu; rshinar@iastate.edu FU United States Department of Energy (USDOE) [DE-AC 02-07CH11358]; NSF [IIP 0724090] FX Ames Laboratory is operated by Iowa State University (ISU) for the United States Department of Energy (USDOE) under Contract DE-AC 02-07CH11358. This work was partially supported by the Director for Energy Research, Office of Basic Energy Sciences, USDOE, and by NSF Grant IIP 0724090. NR 38 TC 15 Z9 15 U1 4 U2 21 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0925-4005 J9 SENSOR ACTUAT B-CHEM JI Sens. Actuator B-Chem. PD APR 8 PY 2010 VL 146 IS 1 BP 14 EP 22 DI 10.1016/j.snb.2010.02.028 PG 9 WC Chemistry, Analytical; Electrochemistry; Instruments & Instrumentation SC Chemistry; Electrochemistry; Instruments & Instrumentation GA 586UA UT WOS:000276937800003 ER PT J AU Wang, M Kang, QJ Ben-Naim, E AF Wang, Moran Kang, Qinjun Ben-Naim, Eli TI Modeling of electrokinetic transport in silica nanofluidic channels SO ANALYTICA CHIMICA ACTA LA English DT Article DE Electrokinetic transport; Nanofluidics; Surface dissociation; Double layer interaction ID POISSON-BOLTZMANN EQUATION; PRESSURE-DRIVEN TRANSPORT; DOUBLE-LAYER OVERLAP; ELECTROOSMOTIC FLOWS; ENERGY-CONVERSION; IONIC TRANSPORT; MOLECULAR-DYNAMICS; SOLUTION INTERFACE; LIQUID FLOW; NANOCHANNELS AB We present a theoretical and numerical modeling study of the multiphysicochemical process in electrokinetic transport in silica nanochannels. The electrochemical boundary condition is solved by considering both the chemical equilibrium on solid-liquid interfaces and the salt concentration enrichment caused by the double layer interaction. The transport behavior is modeled numerically by solving the governing equations using the lattice Poisson-Boltzmann method. The framework is validated by good agreements with the experimental data for all range of ionic concentrations. The modeling results suggest that when the double layers interact, the bulk salt concentration enrichment results in the saturation of conductances for low ionic concentrations. Both the streaming conductance and the electrical conductance are enhanced by the double layer interaction, and such enhancements diminish when the channel size is larger than 10 times of the Debye length. The streaming conductance increases with pH almost linearly when pH <8, while the electrical conductance increases with pH exponentially. Published by Elsevier B.V. C1 [Wang, Moran; Kang, Qinjun] Los Alamos Natl Lab, Computat Earth Sci Grp, Los Alamos, NM 87545 USA. [Wang, Moran; Kang, Qinjun] Los Alamos Natl Lab, Earth & Environm Sci Div, Los Alamos, NM 87545 USA. [Wang, Moran; Ben-Naim, Eli] Los Alamos Natl Lab, Phys Condensed Matter & Complex Syst Grp, Los Alamos, NM 87545 USA. [Wang, Moran; Ben-Naim, Eli] Los Alamos Natl Lab, Ctr Nonlinear Study, Div Theoret, Los Alamos, NM 87545 USA. RP Wang, M (reprint author), Los Alamos Natl Lab, Computat Earth Sci Grp, POB 1663, Los Alamos, NM 87545 USA. EM mwang@lanl.gov RI Wang, Moran/A-1150-2010; Kang, Qinjun/A-2585-2010 OI Kang, Qinjun/0000-0002-4754-2240 FU LANL's LDRD [20080727PRD2] FX This work is supported by LANL's LDRD Project 20080727PRD2, through the J.R. Oppenheimer Fellowship awarded to M.W. The authors would like to thank Prof. Stein D for providing the experimental data, Prof. Dekker C., Prof. Yang R.J., Dr. Lichtner P., Prof. Revil A. and Prof. Bazant M. for helpful discussions. NR 62 TC 26 Z9 26 U1 2 U2 29 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0003-2670 J9 ANAL CHIM ACTA JI Anal. Chim. Acta PD APR 7 PY 2010 VL 664 IS 2 BP 158 EP 164 DI 10.1016/j.aca.2010.02.018 PG 7 WC Chemistry, Analytical SC Chemistry GA 595RO UT WOS:000277630300008 PM 20363398 ER PT J AU Khodadadi, S Roh, JH Kisliuk, A Mamontov, E Tyagi, M Woodson, SA Briber, RM Sokolov, AP AF Khodadadi, S. Roh, J. H. Kisliuk, A. Mamontov, E. Tyagi, M. Woodson, S. A. Briber, R. M. Sokolov, A. P. TI Dynamics of Biological Macromolecules: Not a Simple Slaving by Hydration Water SO BIOPHYSICAL JOURNAL LA English DT Article ID PROTEIN GLASS-TRANSITION; NEUTRON-SCATTERING; TRANSFER-RNA; SOLVENT; LYSOZYME; SPECTROSCOPY; FLUCTUATIONS; MYOGLOBIN AB We studied the dynamics of hydrated tRNA using neutron and dielectric spectroscopy techniques. A comparison of our results with earlier data reveals that the dynamics of hydrated tRNA is slower and varies more strongly with temperature than the dynamics of hydrated proteins. At the same time, tRNA appears to have faster dynamics than DNA. We demonstrate that a similar difference appears in the dynamics of hydration water for these biomolecules. The results and analysis contradict the traditional view of slaved dynamics, which assumes that the dynamics of biological macromolecules just follows the dynamics of hydration water. Our results demonstrate that the dynamics of biological macromolecules and their hydration water depends strongly on the chemical and three-dimensional structures of the biomolecules. We conclude that the whole concept of slaving dynamics should be reconsidered, and that the mutual influence of biomolecules and their hydration water must be taken into account. C1 [Kisliuk, A.; Sokolov, A. P.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. [Mamontov, E.] Oak Ridge Natl Lab, Spallat Neutron Source, Oak Ridge, TN USA. [Khodadadi, S.] Univ Akron, Dept Polymer Sci, Akron, OH 44325 USA. [Roh, J. H.; Tyagi, M.; Briber, R. M.] Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA. [Roh, J. H.; Woodson, S. A.] Johns Hopkins Univ, TC Jenkins Dept Biophys, Baltimore, MD USA. [Roh, J. H.; Tyagi, M.] Natl Inst Stand & Technol, Ctr Neutron Res, Gaithersburg, MD 20899 USA. [Sokolov, A. P.] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. RP Sokolov, AP (reprint author), Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. EM sokolov@utk.edu RI Briber, Robert/A-3588-2012; Tyagi, Madhu Sudan/M-4693-2014; Mamontov, Eugene/Q-1003-2015; OI Briber, Robert/0000-0002-8358-5942; Tyagi, Madhu Sudan/0000-0002-4364-7176; Mamontov, Eugene/0000-0002-5684-2675; Woodson, Sarah/0000-0003-0170-1987 NR 35 TC 57 Z9 57 U1 1 U2 28 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 0006-3495 EI 1542-0086 J9 BIOPHYS J JI Biophys. J. PD APR 7 PY 2010 VL 98 IS 7 BP 1321 EP 1326 DI 10.1016/j.bpj.2009.12.4284 PG 6 WC Biophysics SC Biophysics GA 582FU UT WOS:000276582700025 PM 20371332 ER PT J AU Wagner, GW Procell, LR Sorrick, DC Lawson, GE Wells, CM Reynolds, CM Ringelberg, DB Foley, KL Lumetta, GJ Blanchard, DL AF Wagner, George W. Procell, Lawrence R. Sorrick, David C. Lawson, Glenn E. Wells, Claire M. Reynolds, Charles M. Ringelberg, David B. Foley, Karen L. Lumetta, Gregg J. Blanchard, David L., Jr. TI All-Weather Hydrogen Peroxide-Based Decontamination of CBRN Contaminants SO INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH LA English DT Article ID CHROMATOGRAPHY MASS-SPECTROMETRY; CHEMICAL WARFARE SAMPLES; NERVE AGENT VX; DEGRADATION-PRODUCTS; SULFUR MUSTARD; DETOXIFICATION; OXIDATION; SARIN AB A hydrogen peroxide-based decontaminant, Decon Green, is efficacious for the decontamination of chemical agents VX (S-2-(diisopropylamino)ethyl O-ethyl methylphosphonothioate), GD (Soman, pinacolyl methylphosphonofluoridate), and HD (mustard, bis(2-chloroethyl) sulfide); the biological agent anthrax (Bacillus anthracis); and radiological isotopes (137)Cs and (60)Co; thus demonstrating the ability of this decontamination approach to ameliorate the aftermath of all three types of weapons of mass destruction (WMD). Reaction mechanisms afforded for the chemical agents are discussed as are rationales for the enhanced removal efficacy of recalcitrant (60)Co on certain surfaces. Decontaminants of this nature can be deployed, and are effective, at very low temperatures (-32 degrees C), as shown for studies done with VX and HD simulants, without the need for external heat sources. Finally, the efficacy of a lower-logistics, dry decontaminant powder concentrate (utilizing the solid active-oxygen compounds peracetyl borate and Peroxydone) which can be reconstituted with water in the field prior to use, is presented. C1 [Wagner, George W.; Procell, Lawrence R.; Sorrick, David C.] USA, ECBC, Aberdeen Proving Ground, MD 21010 USA. [Lawson, Glenn E.; Wells, Claire M.] USN, Ctr Surface Warfare, Dahlgren, VA 22448 USA. [Reynolds, Charles M.; Ringelberg, David B.; Foley, Karen L.] USA, Cold Reg Res & Engn Lab, Hanover, NH 03755 USA. [Lumetta, Gregg J.; Blanchard, David L., Jr.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Wagner, GW (reprint author), USA, ECBC, Aberdeen Proving Ground, MD 21010 USA. EM george.wagner@us.army.mil FU Defense Threat Reduction Agency (DTRA) [CDEC3007, BA06DEC052]; [206023.84BP0] FX The many participants who contributed to this work can be found in the references to the prior work, and they are gratefully acknowledged for their technical and experimental endeavors. Support of this work was provided under Project Nos. 206023.84BP0 and CDEC3007, and Defense Threat Reduction Agency (DTRA) Projects CDEC3007 and BA06DEC052. NR 39 TC 27 Z9 28 U1 1 U2 39 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0888-5885 J9 IND ENG CHEM RES JI Ind. Eng. Chem. Res. PD APR 7 PY 2010 VL 49 IS 7 BP 3099 EP 3105 DI 10.1021/ie9019177 PG 7 WC Engineering, Chemical SC Engineering GA 574TI UT WOS:000276016100008 ER PT J AU McFarlane, J Tsouris, C Birdwell, JF Schuh, DL Jennings, HL Boitrago, AMP Terpstra, SM AF McFarlane, Joanna Tsouris, Costas Birdwell, Joseph F., Jr. Schuh, Denise L. Jennings, Hal L. Boitrago, Amy M. Palmer Terpstra, Sarah M. TI Production of Biodiesel at the Kinetic Limit in a Centrifugal Reactor/Separator SO INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH LA English DT Article ID BASE-CATALYZED TRANSESTERIFICATION; THERMAL-DECOMPOSITION; SOLVENT-EXTRACTION; HEAT CAPACITY; PONGAMIA OIL; SOYBEAN OIL; TRIGLYCERIDES; REACTOR; ACIDS; FLOW AB The kinetics of the transesterification of soybean oil has been investigated in a centrifugal contactor reactor/separator at temperatures from 45 to 80 degrees C and pressures up to 2.6 bar. The high shear force and turbulent mixing achieved in the contactor minimized the effect of diffusion on the apparent reaction rate, and hence it could be assumed that the transesterification rate was limited by the reaction kinetics. The yields of product methyl esters were quantified using gas chromatography flame ionization detection (GC-FID), infrared (IR) spectroscopy, proton nuclear magnetic resonance (H(1)NMR), and viscosity measurements and typically were found to achieve 90% of complete conversion within 2 min. However, to meet American Society for Testing and Materials (ASTM) specifications with one pass through the reactor, a minimum 22-min residence time at 80 degrees C was needed. Performance was improved by stepwise processing, allowing separation of byproduct glycerine and injection of additional small aliquots of methanol at each step. The chemical kinetics was successfully modeled using a three-step mechanism of reversible reactions, and employing activation energies from the literature, with some modification in pre-exponential factors. The mechanism correctly predicted the exponential decline in reaction rate as increasing methyl ester and glycerine concentrations allow reverse reactions to occur at significant rates. C1 [McFarlane, Joanna; Tsouris, Costas; Birdwell, Joseph F., Jr.; Schuh, Denise L.; Jennings, Hal L.; Boitrago, Amy M. Palmer; Terpstra, Sarah M.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP McFarlane, J (reprint author), Oak Ridge Natl Lab, POB 2008, Oak Ridge, TN 37831 USA. EM mcfarlanej@ornl.gov RI Tsouris, Costas/C-2544-2016; McFarlane, Joanna/C-5998-2016 OI Tsouris, Costas/0000-0002-0522-1027; McFarlane, Joanna/0000-0002-4112-5104 FU Oak Ridge National Laboratory; Department of Energy's Office of Energy Efficiency and Renewable Energy; Nu-Energie, LLC [01377] FX The authors thank Nu-Energie (particularly Brian Hullette and Joel Day) for providing the reaction materials and help with the analysis of the product, and Elizabeth Ashby for her assistance with the chemical kinetic modeling. Preliminary research was sponsored by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U.S. Department of Energy. Funding for this project was provided in part by the Department of Energy's Office of Energy Efficiency and Renewable Energy's Technology Commercialization and Deployment Program's Technology Commercialization Fund and by Nu-Energie, LLC, under CRADA No. 01377. NR 31 TC 5 Z9 5 U1 0 U2 9 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0888-5885 J9 IND ENG CHEM RES JI Ind. Eng. Chem. Res. PD APR 7 PY 2010 VL 49 IS 7 BP 3160 EP 3169 DI 10.1021/ie901229x PG 10 WC Engineering, Chemical SC Engineering GA 574TI UT WOS:000276016100016 ER PT J AU Tamblyn, I Bonev, SA AF Tamblyn, Isaac Bonev, Stanimir A. TI A note on the metallization of compressed liquid hydrogen SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article DE ab initio calculations; dissociation; hydrogen; hydrogen bonds; metal-insulator transition; molecular dynamics method; phase diagrams ID INSULATOR-METAL TRANSITION; FLUID MOLECULAR-HYDROGEN; GPA 1.4 MBAR; SOLID HYDROGEN; PRESSURE; CONDUCTIVITY; SILANE AB We examine the molecular-atomic transition in liquid hydrogen as it relates to metallization. Pair potentials are obtained from first principles molecular dynamics and compared with potentials derived from quadratic response. The results provide insight into the nature of covalent bonding under extreme conditions. Based on this analysis, we construct a schematic dissociation-metallization phase diagram and suggest experimental approaches that should significantly reduce the pressures necessary for the realization of the elusive metallic phase of hydrogen. C1 [Tamblyn, Isaac; Bonev, Stanimir A.] Dalhousie Univ, Dept Phys, Halifax, NS B3H 3J5, Canada. [Bonev, Stanimir A.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Tamblyn, I (reprint author), Dalhousie Univ, Dept Phys, Halifax, NS B3H 3J5, Canada. EM itamblyn@dal.ca; stanimir.bonev@dal.ca RI Tamblyn, Isaac/B-4542-2010 OI Tamblyn, Isaac/0000-0002-8146-6667 FU NSERC; CFI; Killam Trusts; Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX Work supported by NSERC and CFI. Compute resources were provided by ACEnet. I.T. acknowledges support by the Killam Trusts. Work at Lawrence Livermore National Laboratory was performed under Contract No. DE-AC52-07NA27344. NR 35 TC 13 Z9 13 U1 0 U2 13 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD APR 7 PY 2010 VL 132 IS 13 AR 134503 DI 10.1063/1.3369625 PG 4 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 587EO UT WOS:000276972600025 PM 20387937 ER PT J AU Ni, PA Anders, A AF Ni, Pavel A. Anders, Andre TI Supersonic metal plasma impact on a surface: an optical investigation of the pre-surface region SO JOURNAL OF PHYSICS D-APPLIED PHYSICS LA English DT Article ID CHARGE-STATE DISTRIBUTIONS; VACUUM-ARC; CATHODIC ARC; FILMS; DEPOSITION; TRENCHES; DENSITY; ENERGY; CU AB Aluminium plasma, produced in high vacuum by a pulsed, filtered cathodic arc plasma source, was directed onto a substrate to form a coating. The accompanying 'optical flare' known from the literature was visually observed, photographed and spectroscopically investigated with appropriately high temporal (1 mu s) and spatial (100 mu m) resolution. Consistent with other observations using different techniques, it was found that the impact of the fully ionized plasma produces metal neutrals as well as desorbed gases, both of which interact with the incoming plasma. Charge exchange collisions between doubly charged aluminium ions and neutral atoms lead to a reduction of the flow of doubly charged ions before they reach the surface. Accordingly, some of the neutrals become ionized as they move away from the surface. These plasma-wall interactions are relevant for coating processes such as plasma-based ion implantation and deposition. They are also important for interpreting the plasma properties such as ion charge state distributions. Specifically, ions in cathodic arcs may be more highly charged near their origin, the cathode spots, than when measured far from the spots. C1 [Ni, Pavel A.; Anders, Andre] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Anders, A (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM aanders@lbl.gov RI Anders, Andre/B-8580-2009 OI Anders, Andre/0000-0002-5313-6505 FU US Department of Energy [DE-AC02-05CH11231] FX The work was supported by the US Department of Energy under Contract No DE-AC02-05CH11231. NR 29 TC 3 Z9 3 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0022-3727 EI 1361-6463 J9 J PHYS D APPL PHYS JI J. Phys. D-Appl. Phys. PD APR 7 PY 2010 VL 43 IS 13 AR 135201 DI 10.1088/0022-3727/43/13/135201 PG 6 WC Physics, Applied SC Physics GA 571KM UT WOS:000275750700013 ER PT J AU Quici, N Vera, ML Choi, H Puma, GL Dionysiou, DD Litter, MI Destaillats, H AF Quici, Natalia Vera, Maria L. Choi, Hyeok Puma, Gianluca Li Dionysiou, Dionysios D. Litter, Marta I. Destaillats, Hugo TI Effect of key parameters on the photocatalytic oxidation of toluene at low concentrations in air under 254+185 nm UV irradiation SO APPLIED CATALYSIS B-ENVIRONMENTAL LA English DT Article DE Heterogeneous photocatalysis; TiO(2); Titania; Toluene; UVPCO; Photocatalytic oxidation; Air treatment; Indoors ID VOLATILE ORGANIC-COMPOUNDS; INDOOR AIR; GAS-PHASE; TIO2 PHOTOCATALYSIS; BY-PRODUCTS; DEGRADATION; WATER; DECOMPOSITION; FORMALDEHYDE; CATALYST AB The effect of key experimental parameters on the removal of toluene under 254 + 185 nm irradiation was investigated using a benchtop photocatalytic flow reactor. Toluene was introduced at low concentrations between 10 and 500 ppbv, typical of indoor environments, and reacted on TiO(2)-coated Raschig rings. Two different TiO(2)-coated rings were prepared: in one case, by dip-coating using a P25 aqueous suspension and, on the other, using an organic/inorganic sol-gel method that produced thin films of mesoporous anatase. Flow rates in the photoreactor varied between 4 L min(-1) and 125 mL min(-1), leading to residence times in the range 100 ms < tau < 2 s. Toluene removal efficiencies were between 30% and 90%, indicating that the system did not achieve total conversion under the present experimental conditions. For each air flow rate, the conversion of toluene was significantly higher when the reactor length was 10 cm, as compared with 5 cm: however, only marginal increases in conversions were achieved in the two reactor lengths at equal residence time and different concentrations of toluene, suggesting that the system is effectively behaving as an ideal reactor and that the reaction is first-order in the concentration of toluene. Experiments were carried out between 0% and 66% relative humidity (RH), the fastest reaction rate being observed at moderately low humidity conditions (10% RH). Formaldehyde was formed as a partial oxidation byproduct at low and at high residence times (240 and 960 ms), although higher formaldehyde molar yields (up to 20%) were observed at low tau (240 ms) and moderate humidity conditions (10% and 33%), suggesting that both T and RH can be optimized to reduce the formation of harmful intermediates. Toluene removal efficiency increased with the TiO(2) thickness (i.e., mass) until a maximum value of 500 nm, beyond which the removal efficiency did not increase further. Published by Elsevier B.V. C1 [Destaillats, Hugo] Univ Calif Berkeley, Lawrence Berkeley Lab, Indoor Environm Dept, Berkeley, CA 94720 USA. [Destaillats, Hugo] Arizona State Univ, Sch Sustainable Engn & Built Environm, Tempe, AZ USA. [Quici, Natalia; Vera, Maria L.; Litter, Marta I.] Comis Nacl Energia Atom, RA-1650 San Martin, Buenos Aires, Argentina. [Quici, Natalia; Litter, Marta I.] Consejo Nacl Invest Cient & Tecn, Buenos Aires, DF, Argentina. [Choi, Hyeok] Univ Texas Arlington, Dept Civil Engn, Arlington, TX 76019 USA. [Puma, Gianluca Li] Univ Nottingham, Dept Environm Chem & Engn, Nottingham NG7 2RD, England. [Dionysiou, Dionysios D.] Univ Cincinnati, Dept Civil & Environm Engn, Cincinnati, OH 45221 USA. [Litter, Marta I.] Univ Gen San Martin, Inst Invest & Ingn Ambiental, RA-1650 San Martin, Buenos Aires, Argentina. RP Destaillats, H (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Indoor Environm Dept, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM HDestaillats@lbl.gov RI Li Puma, Gianluca/G-2998-2010; Destaillats, Hugo/B-7936-2013; OI Litter, Marta/0000-0002-0312-0177; Li Puma, Gianluca/0000-0002-9168-6284 FU Laboratory Directed Research and Development (LDRD); U.S. Department of Energy [DE-AC02-05CH11231, 08-103]; CNEA-CONICET in Argentina; CNEA, Argentina [ANPCyT PICT2003-13-13261]; University of Cincinnati, USA FX This work was supported by Laboratory Directed Research and Development (LDRD) funding from Berkeley Lab, provided by the Director, Office of Science, of the U.S. Department of Energy under contract no. DE-AC02-05CH11231 (project #08-103). The authors thank R. Maddalena and M. Russell (LBNL) for GC/MS support, and M. Sleiman and L. Gundel for reviewing this manuscript. N. Quici thanks CNEA-CONICET in Argentina for a doctoral fellowship. Samples used in this project were prepared by Prof. M.I. Litter at CNEA, Argentina (project ANPCyT PICT2003-13-13261) and Prof. D.D. Dionysiou at University of Cincinnati, USA. NR 43 TC 46 Z9 46 U1 3 U2 37 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0926-3373 J9 APPL CATAL B-ENVIRON JI Appl. Catal. B-Environ. PD APR 6 PY 2010 VL 95 IS 3-4 BP 312 EP 319 DI 10.1016/j.apcatb.2010.01.009 PG 8 WC Chemistry, Physical; Engineering, Environmental; Engineering, Chemical SC Chemistry; Engineering GA 584MI UT WOS:000276755700015 ER PT J AU Pretto, DI Tsutakawa, S Brosey, CA Castillo, A Chagot, ME Smith, JA Tainer, JA Chazin, WJ AF Pretto, Dalyir I. Tsutakawa, Susan Brosey, Chris A. Castillo, Amalchi Chagot, Marie-Eve Smith, Jarrod A. Tainer, John A. Chazin, Walter J. TI Structural Dynamics and Single-Stranded DNA Binding Activity of the Three N-Terminal Domains of the Large Subunit of Replication Protein A from Small Angle X-ray Scattering SO BIOCHEMISTRY LA English DT Article ID BASIC CLEFT; RPA; MECHANISM; REPAIR; PHOSPHORYLATION; POLARITY; RECOGNITION; SUGGESTS; REVEALS; COMPLEX AB Replication protein A (RPA) is the primary eukaryotic single-stranded DNA (ssDNA) binding protein utilized in diverse DNA transactions in the cell. RPA is a heterotrimeric protein with seven globular domains connected by flexible linkers, which enable substantial interdomain motion that is essential to its function. Small angle X-ray scattering (SAXS) experiments with two multidomain constructs from the N-terminus of the large subunit (RPA70) were used to examine the structural dynamics of these domains and their response to the binding of ssDNA. The SAXS data combined with molecular dynamics simulations reveal substantial interdomain flexibility for both RPA70AB (the tandem high-affinity ssDNA binding domains A and B connected by a 10-residue linker) and RPA70NAB (RPA70AB extended by a 70-residue linker to the RPA70N protein interaction domain). Binding of ssDNA to RPA70NAB reduces the interdomain flexibility between the A and B domains but has no effect on RPA70N: These studies provide the first direct measurements of changes in orientation of these three RPA domains upon binding ssDNA. The results support a model in which RPA70N remains structurally independent of RPA70AB in the DNA-bound state and therefore freely available to serve as a protein recruitment module. C1 [Pretto, Dalyir I.; Brosey, Chris A.; Castillo, Amalchi; Chagot, Marie-Eve; Smith, Jarrod A.; Chazin, Walter J.] Vanderbilt Univ, Struct Biol Ctr, Nashville, TN 37232 USA. [Pretto, Dalyir I.; Brosey, Chris A.; Castillo, Amalchi; Chagot, Marie-Eve; Smith, Jarrod A.; Chazin, Walter J.] Vanderbilt Univ, Dept Biochem, Nashville, TN 37232 USA. [Chazin, Walter J.] Vanderbilt Univ, Dept Chem, Nashville, TN 37232 USA. [Tsutakawa, Susan; Tainer, John A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Chazin, WJ (reprint author), Vanderbilt Univ, Struct Biol Ctr, 465 21st Ave,Suite 5140, Nashville, TN 37232 USA. EM walter.chazin@vanderbilt.edu FU National Institutes of Health (NIH) [RO1 GM65484, PO1 CA92584]; Vanderbilt Molecular Biophysics Training Program [T32 GM08320]; Vanderbilt Center in Molecular Toxicology [P50 ES00267]; Vanderbilt-Ingram Cancer Center [P30 CA68485]; U.S. Department of Energy (DOE) Integrated Diffraction Analysis Technologies (IDAT) program; DOE program Molecular Assemblies Genes and Genomics Integrated Efficiently (MAGGIE) [DE-AC02-05CH11231] FX This research has been funded by the National Institutes of Health (NIH) (Grain RO1 GM65484). Additional NIH support was provided by the Structural Biology of DNA Repair Machines Program (PO1 CA92584), the Vanderbilt Molecular Biophysics Training Program (T32 GM08320), the Vanderbilt Center in Molecular Toxicology (P50 ES00267), and the Vanderbilt-Ingram Cancer Center (P30 CA68485). The X-ray scattering technology and applications to the determination of macromolecular shapes and conformations at the SIBYLS beamline at the Advanced Light Source, Lawrence Berkeley National Laboratory, are supported in part by the U.S. Department of Energy (DOE) Integrated Diffraction Analysis Technologies (IDAT) program and the DOE program Molecular Assemblies Genes and Genomics Integrated Efficiently (MAGGIE) under Contract DE-AC02-05CH11231. NR 37 TC 24 Z9 24 U1 0 U2 3 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0006-2960 J9 BIOCHEMISTRY-US JI Biochemistry PD APR 6 PY 2010 VL 49 IS 13 BP 2880 EP 2889 DI 10.1021/bi9019934 PG 10 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 574HB UT WOS:000275978900014 PM 20184389 ER PT J AU Tatebe, K Zeytun, A Ribeiro, RM Hoffmann, R Harrod, KS Forst, CV AF Tatebe, Ken Zeytun, Ahmet Ribeiro, Ruy M. Hoffmann, Robert Harrod, Kevin S. Forst, Christian V. TI Response network analysis of differential gene expression in human epithelial lung cells during avian influenza infections SO BMC BIOINFORMATICS LA English DT Article ID STRESS-RESPONSE; ONTOLOGY; CYTOSCAPE; DISCOVERY; PROFILES; RESOURCE; VIRUSES; PATHWAY; MODELS; EGR-1 AB Background: The recent emergence of the H5N1 influenza virus from avian reservoirs has raised concern about future influenza strains of high virulence emerging that could easily infect humans. We analyzed differential gene expression of lung epithelial cells to compare the response to H5N1 infection with a more benign infection with Respiratory Syncytial Virus (RSV). These gene expression data are then used as seeds to find important nodes by using a novel combination of the Gene Ontology database and the Human Network of gene interactions. Additional analysis of the data is conducted by training support vector machines (SVM) with the data and examining the orientations of the optimal hyperplanes generated. Results: Analysis of gene clustering in the Gene Ontology shows no significant clustering of genes unique to H5N1 response at 8 hours post infection. At 24 hours post infection, however, a number of significant gene clusters are found for nodes representing "immune response" and "response to virus" terms. There were no significant clusters of genes in the Gene Ontology for the control (Mock) or RSV experiments that were unique relative to the H5N1 response. The genes found to be most important in distinguishing H5N1 infected cells from the controls using SVM showed a large degree of overlap with the list of significantly regulated genes. However, though none of these genes were members of the GO clusters found to be significant. Conclusions: Characteristics of H5N1 infection compared to RSV infection show several immune response factors that are specific for each of these infections. These include faster timescales within the cell as well as a more focused activation of immunity factors. Many of the genes that are found to be significantly expressed in H5N1 response relative to the control experiments are not found to cluster significantly in the Gene Ontology. These genes are, however, often closely linked to the clustered genes through the Human Network. This may suggest the need for more diverse annotations of these genes and verification of their action in immune response. C1 [Tatebe, Ken; Forst, Christian V.] Univ Texas SW Med Ctr Dallas, Dept Clin Sci, Dallas, TX 75390 USA. [Zeytun, Ahmet] Los Alamos Natl Lab, Biosci Div, Los Alamos, NM USA. [Hoffmann, Robert] Mem Sloan Kettering Canc Ctr, Computat Biol Ctr, New York, NY 10021 USA. [Harrod, Kevin S.] Lovelace Resp Res Inst, Albuquerque, NM USA. RP Forst, CV (reprint author), Univ Texas SW Med Ctr Dallas, Dept Clin Sci, Dallas, TX 75390 USA. EM Christian.Forst@UTSouthwestern.edu OI Ribeiro, Ruy/0000-0002-3988-8241 FU DOE/LANL [20070099DR] FX Part of this work was sponsored by DOE/LANL under grant 20070099DR. NR 31 TC 9 Z9 10 U1 0 U2 2 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1471-2105 J9 BMC BIOINFORMATICS JI BMC Bioinformatics PD APR 6 PY 2010 VL 11 AR 170 DI 10.1186/1471-2105-11-170 PG 15 WC Biochemical Research Methods; Biotechnology & Applied Microbiology; Mathematical & Computational Biology SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology; Mathematical & Computational Biology GA 597VK UT WOS:000277790100001 PM 20370926 ER PT J AU Koga, T Wong, J Endoh, MK Mahajan, D Gutt, C Satija, SK AF Koga, Tadanori Wong, Johnny Endoh, Maya K. Mahajan, Devinder Gutt, Christian Satija, Sushil K. TI Hydrate Formation at the Methane/Water Interface on the Molecular Scale SO LANGMUIR LA English DT Article ID LIQUID WATER; FILM GROWTH AB We report the nucleation process of methane hydrate on the molecular scale. A stationary planar interface separating methane gas and liquid water was studied by using in situ neutron reflectivity. We found that the angstrom-scale surface roughening is triggered as soon as the water phase contacts methane gas under the hydrate forming conditions. In addition, it was found that the microscopic surface structure remains unchanged until a macroscopic hydrate film is developed at the interface. We therefore postulate that the angstrom-scale surface roughening is attributed to the formation of microscopic hydrate "embryos" in a "dynamic equilibrium" manner. C1 [Koga, Tadanori; Wong, Johnny; Mahajan, Devinder] SUNY Stony Brook, Chem & Mol Engn Program, Stony Brook, NY 11794 USA. [Koga, Tadanori; Endoh, Maya K.; Mahajan, Devinder] SUNY Stony Brook, Dept Mat Sci & Engn, Stony Brook, NY 11794 USA. [Mahajan, Devinder] Brookhaven Natl Lab, Energy Sci & Technol Dept, Upton, NY 11973 USA. [Gutt, Christian] DESY, HASYLAB, D-22603 Hamburg, Germany. [Satija, Sushil K.] NIST, Ctr Neutron Res, Gaithersburg, MD 20899 USA. RP Koga, T (reprint author), SUNY Stony Brook, Chem & Mol Engn Program, Stony Brook, NY 11794 USA. EM tkoga@notes.cc.sunysb.edu RI Koga, Tadanori/A-4007-2010; Gutt, Christian/H-9846-2012; Gutt, Christian/F-6337-2013 FU Donors of the American Chemical Society [47110-G10] FX Acknowledgment is made to the Donors of the American Chemical Society Petroleum Research Fund (47110-G10) for support of this research. The authors thank D. Forman, M. Eaton, J. Jerome, and Nil. Rafailovich for helping with the setup for the LR experiments. NR 18 TC 13 Z9 14 U1 2 U2 20 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0743-7463 J9 LANGMUIR JI Langmuir PD APR 6 PY 2010 VL 26 IS 7 BP 4627 EP 4630 DI 10.1021/la1004853 PG 4 WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 574MY UT WOS:000275995100018 PM 20229992 ER PT J AU Choi, S Park, I Hao, Z Holman, HYN Pisano, AP Zohdi, TI AF Choi, Sun Park, Inkyu Hao, Zhao Holman, Hoi-ying N. Pisano, Albert P. Zohdi, Tarek I. TI Ultrafast Self-Assembly of Microscale Particles by Open-Channel Flow SO LANGMUIR LA English DT Article ID ORDERED 2-DIMENSIONAL ARRAYS; POLYMERIC MICROSPHERES; MICROFLUIDIC CHANNELS; COLLOIDAL PARTICLES; IN-SITU; CRYSTALS; CRYSTALLIZATION; MICROBEADS AB We developed an ultrafast microfluidic approach to self-assemble microparticles in three dimensions by taking advantage of simple photolithography and capillary action of microparticle-dispersed suspensions. The theoretical principles of high-speed assembly have been explained, and the experimental verifications of the assembly of various sizes of silica microspheres and silica gel microspheres within thin and long open microchannels by using this approach have been demonstrated. We anticipate that the presented technique will be widely used in the semiconductor and Bio-MEMS (microelectromechanical systems) fields because it offers a fast way to control 3D microscale particle assemblies and also has superb compatibility with photolithography, which can lead to an easy integration of particle assembly with existing CMOS (complementary metal oxide-semiconductor) and M EMS fabrication processes. C1 [Choi, Sun; Pisano, Albert P.] Univ Calif Berkeley, Lawrence Berkeley Lab, BSAC, Berkeley, CA 94720 USA. [Choi, Sun; Pisano, Albert P.; Zohdi, Tarek I.] Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Mech Engn, Berkeley, CA 94720 USA. [Choi, Sun; Hao, Zhao; Holman, Hoi-ying N.] Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Ecol, Div Earth Sci, Berkeley, CA 94720 USA. [Park, Inkyu] Korea Adv Inst Sci & Technol, Dept Mech Engn, Taejon 305701, South Korea. RP Choi, S (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, BSAC, Berkeley, CA 94720 USA. EM sunchoi@eecs.berkeley.edu RI Park, Inkyu/C-1717-2011; Holman, Hoi-Ying/N-8451-2014; Hao, Zhao/G-2391-2015 OI Holman, Hoi-Ying/0000-0002-7534-2625; Hao, Zhao/0000-0003-0677-8529 NR 26 TC 17 Z9 17 U1 3 U2 17 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0743-7463 J9 LANGMUIR JI Langmuir PD APR 6 PY 2010 VL 26 IS 7 BP 4661 EP 4667 DI 10.1021/la903492w PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 574MY UT WOS:000275995100024 PM 19921822 ER PT J AU Wang, L Ding, Y Yang, WG Liu, WJ Cai, ZH Kung, J Shu, JF Hemley, RJ Mao, WL Mao, HK AF Wang, Lin Ding, Yang Yang, Wenge Liu, Wenjun Cai, Zhonghou Kung, Jennifer Shu, Jinfu Hemley, Russell J. Mao, Wendy L. Mao, Ho-kwang TI Nanoprobe measurements of materials at megabar pressures SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE extreme conditions; imaging; x-ray ID X-RAY-DIFFRACTION; EMISSION SPECTROSCOPY; PHASE-TRANSITION; POST-PEROVSKITE; SINGLE-CRYSTAL; IRON; DIAMOND; GIGAPASCALS; RESOLUTION; PHYSICS AB The use of nanoscale x-ray probes overcomes several key limitations in the study of materials up to multimegabar (>200) pressures, namely, the spatial resolution of measurements of multiple samples, stress gradients, and crystal domains in micron to submicron size samples in diamond-anvil cells. Mixtures of Fe, Pt, and W were studied up to 282 GPa with 250-600 nm size synchrotron x-ray absorption and diffraction probes. The probes readily resolve signals from individual materials, between sample and gasket, and peak pressures, in contrast to the 5-mu m-sized x-ray beams that are now becoming routine. The use of nanoscale x-ray beams also enables single-crystal x-ray diffraction studies in nominally poly-crystalline samples at ultrahigh pressures, as demonstrated in measurements of (Mg, Fe)SiO(3) postperovskite. These capabilities have potential for driving a push toward higher maximum pressures and further miniaturization of high-pressure devices, in the process advancing studies at extreme conditions. C1 [Shu, Jinfu; Hemley, Russell J.; Mao, Ho-kwang] Carnegie Inst Washington, Geophys Lab, Washington, DC 20015 USA. [Wang, Lin; Ding, Yang; Yang, Wenge; Mao, Ho-kwang] Carnegie Inst Washington, High Pressure Synerget Consortium, Argonne, IL 60439 USA. [Yang, Wenge; Mao, Ho-kwang] Carnegie Inst Washington, High Pressure Collaborat Access Team, Argonne, IL 60439 USA. [Liu, Wenjun; Cai, Zhonghou] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Kung, Jennifer] Natl Cheng Kung Univ, Dept Earth Sci, Tainan 70101, Taiwan. [Mao, Wendy L.] Stanford Univ, Stanford, CA 94305 USA. [Mao, Wendy L.] SLAC Natl Accelerator Lab, Stanford Inst Mat & Energy Sci, Menlo Pk, CA 94025 USA. RP Hemley, RJ (reprint author), Carnegie Inst Washington, Geophys Lab, 5251 Broad Branch Rd NW, Washington, DC 20015 USA. EM hemley@gl.ciw.edu RI Mao, Wendy/D-1885-2009; Yang, Wenge/H-2740-2012; WANG, LIN/G-7884-2012; Ding, Yang/K-1995-2014 OI Ding, Yang/0000-0002-8845-4618 FU U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0001057, DE-AC02-06CH11357]; Department of Energy, Office of Basic Energy Sciences; Department of Energy, National Nuclear Security Administration (Carnegie/Department of Energy Alliance Center; National Science Foundation [MRI-0821584, EAR-0810255, EAR-0738873]; International Balzan Foundation FX HPSynC is supported as part of EFree, an Energy Frontier Research Center funded by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award DE-SC0001057. Use of the HPCAT facility was supported by the Department of Energy, Office of Basic Energy Sciences, the Department of Energy, National Nuclear Security Administration (Carnegie/Department of Energy Alliance Center), and the National Science Foundation. The Advanced Photon Source is supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract DE-AC02-06CH11357. Research of L. W. was supported by National Science Foundation Grants MRI-0821584 and EAR-0810255 and the International Balzan Foundation. W. L. M. is supported through the National Science Foundation Geophysics Grant EAR-0738873. NR 48 TC 17 Z9 17 U1 2 U2 18 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD APR 6 PY 2010 VL 107 IS 14 BP 6140 EP 6145 DI 10.1073/pnas.1001141107 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 579MH UT WOS:000276374400006 PM 20304801 ER PT J AU Sebastian, SE Harrison, N Altarawneh, MM Mielke, CH Liang, RX Bonn, DA Hardy, WN Lonzarich, GG AF Sebastian, Suchitra E. Harrison, N. Altarawneh, M. M. Mielke, C. H. Liang, Ruixing Bonn, D. A. Hardy, W. N. Lonzarich, G. G. TI Metal-insulator quantum critical point beneath the high T-c superconducting dome SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE fermi surface; high temperature superconductivity; metal-insulator transition; quantum oscillations; quantum critical point ID FERMI-SURFACE; TEMPERATURE; OSCILLATIONS; TRANSITION; HEAVY; PHASE AB An enduring question in correlated systems concerns whether superconductivity is favored at a quantum critical point (QCP) characterized by a divergent quasiparticle effective mass. Despite such a scenario being widely postulated in high T-c cuprates and invoked to explain non-Fermi liquid transport signatures, experimental evidence is lacking for a critical divergence under the superconducting dome. We use ultrastrong magnetic fields to measure quantum oscillations in underdoped YBa2Cu3O6+x, revealing a dramatic doping-dependent upturn in quasiparticle effective mass at a critical metal-insulator transition beneath the superconducting dome. Given the location of this QCP under a plateau in T-c in addition to a postulated QCP at optimal doping, we discuss the intriguing possibility of two intersecting superconducting subdomes, each centered at a critical Fermi surface instability. C1 [Sebastian, Suchitra E.; Lonzarich, G. G.] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England. [Harrison, N.; Altarawneh, M. M.; Mielke, C. H.] Los Alamos Natl Lab, Natl High Magnet Field Lab, Los Alamos, NM 87545 USA. [Liang, Ruixing; Bonn, D. A.; Hardy, W. N.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z4, Canada. [Liang, Ruixing; Bonn, D. A.; Hardy, W. N.] Canadian Inst Adv Res, Toronto, ON M5G 1Z8, Canada. RP Sebastian, SE (reprint author), Univ Cambridge, Cavendish Lab, JJ Thomson Ave, Cambridge CB3 0HE, England. EM ses59@cam.ac.uk; nharrison@lanl.gov RI Mielke, Charles/S-6827-2016; OI Mielke, Charles/0000-0002-2096-5411; Harrison, Neil/0000-0001-5456-7756 FU U. S. Department of Energy; National Science Foundation; State of Florida; BES program "Science in 100 T,"; Trinity College (University of Cambridge) FX The authors thank P. B. Littlewood for theoretical input; M. Gordon, A. Paris, D. Rickel, D. Roybal, and C. Swenson for technical assistance; and S. Beniwal, G. S. Boebinger, B. Ramshaw, S. C. Riggs, and M. L. Sutherland for discussions. This work was supported by the U. S. Department of Energy, the National Science Foundation, the State of Florida, the BES program "Science in 100 T," and Trinity College (University of Cambridge). NR 37 TC 82 Z9 82 U1 0 U2 26 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD APR 6 PY 2010 VL 107 IS 14 BP 6175 EP 6179 DI 10.1073/pnas.0913711107 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 579MH UT WOS:000276374400012 PM 20304800 ER PT J AU Yin, YB Zhang, H Olman, V Xu, Y AF Yin, Yanbin Zhang, Han Olman, Victor Xu, Ying TI Genomic arrangement of bacterial operons is constrained by biological pathways encoded in the genome SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE bacterial genome; bioinformatics; genome organization; nucleoid; neighboring genes ID ESCHERICHIA-COLI; MICROBIAL GENOMES; BACILLUS-SUBTILIS; ORGANIZATION; CHROMOSOME; DATABASE; GENES; PATTERNS; BIAS AB It is generally known that bacterial genes working in the same biological pathways tend to group into operons, possibly to facilitate cotranscription and to provide stoichiometry. However, very little is understood about what may determine the global arrangement of bacterial genes in a genome beyond the operon level. Here we present evidence that the global arrangement of operons in a bacterial genome is largely influenced by the tendency that a bacterium keeps its operons encoding the same biological pathway in nearby genomic locations, and by the tendency to keep operons involved in multiple pathways in locations close to the other members of their participating pathways. We also observed that the activation frequencies of pathways also influence the genomic locations of their encoding operons, tending to have operons of the more frequently activated pathways more tightly clustered together. We have quantitatively assessed the influences on the global genomic arrangement of operons by different factors. We found that the current arrangements of operons in most of the bacterial genomes we studied tend to minimize the overall distance between consecutive operons of a same pathway across all pathways encoded in the genome. C1 [Yin, Yanbin; Zhang, Han; Olman, Victor; Xu, Ying] Univ Georgia, Dept Biochem & Mol Biol, Computat Syst Biol Lab, Athens, GA 30605 USA. [Yin, Yanbin; Zhang, Han; Olman, Victor; Xu, Ying] Univ Georgia, Inst Bioinformat, Athens, GA 30605 USA. [Yin, Yanbin; Xu, Ying] BioEnergy Sci Ctr BESC, Dept Energy, Oak Ridge, TN 37831 USA. [Xu, Ying] Jilin Univ, Coll Comp Sci & Technol, Changchun 130023, Jilin, Peoples R China. [Zhang, Han] Nankai Univ, Dept Automat, Tianjin 300071, Peoples R China. RP Xu, Y (reprint author), Univ Georgia, Dept Biochem & Mol Biol, Computat Syst Biol Lab, Athens, GA 30605 USA. EM xyn@bmb.uga.edu RI Yin, Yanbin/C-9788-2010 OI Yin, Yanbin/0000-0001-7667-881X FU National Science Foundation [DEB-0830024, DBI-0542119]; BioEnergy Science Center [DE-PS02-06ER64304]; Office of Biological and Environmental Research in the Department of Energy Office of Science FX We are grateful to the editor and the two anonymous reviewers for their insightful and invaluable comments and suggestions, which have helped to improve the overall quality of the paper. We thank Drs. Juan Cui and Xizeng Mao of the Computational Systems Biology Laboratory for their helpful discussion throughout this project. This work was supported by National Science Foundation (DEB-0830024 and DBI-0542119) and the BioEnergy Science Center grant (DE-PS02-06ER64304), which is supported by the Office of Biological and Environmental Research in the Department of Energy Office of Science. NR 28 TC 18 Z9 19 U1 2 U2 11 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD APR 6 PY 2010 VL 107 IS 14 BP 6310 EP 6315 DI 10.1073/pnas.0911237107 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 579MH UT WOS:000276374400035 PM 20308592 ER PT J AU Huang, C Bouhelier, A Berthelot, J des-Francs, GC Finot, E Weeber, JC Dereux, A Kostcheev, S Baudrion, AL Plain, J Bachelot, R Royer, P Wiederrecht, GP AF Huang, C. Bouhelier, A. Berthelot, J. des-Francs, G. Colas Finot, E. Weeber, J. -C. Dereux, A. Kostcheev, S. Baudrion, A. -L. Plain, J. Bachelot, R. Royer, P. Wiederrecht, G. P. TI External control of the scattering properties of a single optical nanoantenna SO APPLIED PHYSICS LETTERS LA English DT Article DE antennas; nanotechnology; optical variables control ID YAGI-UDA ANTENNA; LIQUID; FORCES AB We present a mechanism to control the scattering properties of individual optical nanoantennas by applying an external electric field. We find that by electrically tuning an anisotropic load medium the scattered intensity becomes voltage-dependent. We also demonstrate that the scattering diagram of the antenna can be externally adjusted. This on-demand command opens up the possibility to tune an antenna without changing its geometrical parameters. C1 [Huang, C.; Bouhelier, A.; Berthelot, J.; des-Francs, G. Colas; Finot, E.; Weeber, J. -C.; Dereux, A.] Univ Bourgogne, Lab Interdisciplinaire Carnot Bourgogne, CNRS UMR 5209, F-21000 Dijon, France. [Kostcheev, S.; Baudrion, A. -L.; Plain, J.; Bachelot, R.; Royer, P.] Univ Technol Troyes, Lan Nanotechnol Instrumentat Opt, Inst Charles Delauney, F-10010 Troyes, France. [Wiederrecht, G. P.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. RP Huang, C (reprint author), Univ Bourgogne, Lab Interdisciplinaire Carnot Bourgogne, CNRS UMR 5209, F-21000 Dijon, France. EM alexandre.bouhelier@u-bourgogne.fr RI Plain, Jerome/A-2888-2009; Colas des Francs, Gerard/C-9400-2009; Berthelot, Johann/G-4206-2011; Bachelot, Renaud/M-6888-2015; Dereux, Alain/K-8754-2016 OI Colas des Francs, Gerard/0000-0002-5097-7317; Berthelot, Johann/0000-0002-7087-7364; Dereux, Alain/0000-0002-9009-114X FU A.N.R. [PNANO 07-51, BLANC 07-2-188654]; U. S. Department of Energy, Office of Science, Office of Basic Energy Science [DE-AC02-06CH11357] FX The authors thank the A.N.R. under grants Antares (PNANO 07-51), Photohybird (BLANC 07-2-188654), Use of the Center for Nanoscale Materials was supported by U. S. Department of Energy, Office of Science, Office of Basic Energy Science, under Contract No. DE-AC02-06CH11357. NR 21 TC 8 Z9 9 U1 0 U2 11 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD APR 5 PY 2010 VL 96 IS 14 AR 143116 DI 10.1063/1.3385155 PG 3 WC Physics, Applied SC Physics GA 581VY UT WOS:000276554600082 ER PT J AU Kobayashi, M Thareja, G Sun, Y Goel, N Garner, M Tsai, W Pianetta, P Nishi, Y AF Kobayashi, Masaharu Thareja, Gaurav Sun, Yun Goel, Niti Garner, Mike Tsai, Wilman Pianetta, Piero Nishi, Yoshio TI The effects of wet surface clean and in situ interlayer on In-0.52Al0.48As metal-oxide-semiconductor characteristics SO APPLIED PHYSICS LETTERS LA English DT Article DE aluminium compounds; gallium arsenide; III-V semiconductors; indium compounds; internal stresses; lattice constants; photoluminescence; semiconductor quantum wells; X-ray diffraction ID GATE STACK; INGAAS; TRANSISTOR; SILICON; VOLTAGE AB The effect of the surface passivation with ex situ wet clean as well as insertion of an III-V in situ grown interlayer, on the HfO2/In0.52Al0.48As interface characteristics was investigated with capacitance/conductance measurements, and synchrotron radiation photoemission spectroscopy A very thin aluminum oxide passivation layer grown after In0.52Al0.48As surface clean improves the In0.52Al0.48As metal-oxide-semiconductor characteristics compared to native oxide covered interface, giving an interface state density (D-it) 3.8)x 10(12) cm(-2) eV(-1) at 0.31 eV from conduction band edge. Furthermore, insertion of a thin In0. 53Ga0.47As cap layer effectively prevented Al oxidation further improving electrical properties, such as frequency dispersion, hysteresis, (2.7)x 10(12) cm(-2) eV(-1)) and capacitive equivalent oxide thickness. (c) 2010 American Institute of Physics. C1 [Kobayashi, Masaharu; Thareja, Gaurav; Pianetta, Piero; Nishi, Yoshio] Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA. [Sun, Yun; Pianetta, Piero] Stanford Liner Accelerator Ctr, Stanford Synchrotron Radiat Lab, Menlo Pk, CA 94305 USA. [Goel, Niti; Tsai, Wilman] SEMATECH, Austin, TX 78741 USA. [Garner, Mike] Intel Corp, Santa Clara, CA 95052 USA. RP Kobayashi, M (reprint author), Stanford Univ, Dept Elect Engn, 420 Via Palou Mall, Stanford, CA 94305 USA. EM masaharu@stanford.edu FU Intel Corporation FX A portion of this research was carried out at the Stanford Synchrotron Radiation Laboratory, a national user facility operated by Stanford University on behalf of the U.S. Department of Energy, Office of Basic Energy Sciences. The authors acknowledge Intel Corporation for financial support. The authors also acknowledge C. K. Gaspe and M. B. Santos, University Oklahoma for MBE growth of samples. NR 17 TC 3 Z9 3 U1 3 U2 8 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD APR 5 PY 2010 VL 96 IS 14 AR 142906 DI 10.1063/1.3379024 PG 3 WC Physics, Applied SC Physics GA 581VY UT WOS:000276554600066 ER PT J AU Lany, S Zunger, A AF Lany, Stephan Zunger, Alex TI Dual nature of acceptors in GaN and ZnO: The curious case of the shallow Mg-Ga deep state SO APPLIED PHYSICS LETTERS LA English DT Article DE beryllium; deep levels; density functional theory; doping profiles; effective mass; gallium compounds; ground states; III-V semiconductors; II-VI semiconductors; impurity states; lithium; magnesium; semiconductor doping; wide band gap semiconductors; zinc; zinc compounds ID GROUP-I ELEMENTS; DOPED GAN; ENERGY; IMPURITIES AB Employing a Koopmans corrected density functional method, we find that the metal-site acceptors Mg, Be, and Zn in GaN and Li in ZnO bind holes in deep levels that are largely localized at single anion ligand atoms. In addition to this deep ground state (DGS), we observe an effective-masslike delocalized state that can exist as a short lived shallow transient state (STS). The Mg dopant in GaN represents the unique case where the ionization energy of the localized deep level exceeds only slightly that of the shallow effective-mass acceptor, which explains why Mg works so exceptionally well as an acceptor dopant. C1 [Lany, Stephan; Zunger, Alex] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Lany, S (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM Stephan.Lany@NREL.gov RI Zunger, Alex/A-6733-2013; OI Lany, Stephan/0000-0002-8127-8885 FU U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy [DE-AC36-08GO28308] FX This work was funded by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, under Contract No. DE-AC36-08GO28308 to NREL. The use of MPP capabilities at the National Energy Research Scientific Computing Center is gratefully acknowledged. NR 26 TC 49 Z9 49 U1 3 U2 44 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD APR 5 PY 2010 VL 96 IS 14 AR 142114 DI 10.1063/1.3383236 PG 3 WC Physics, Applied SC Physics GA 581VY UT WOS:000276554600044 ER PT J AU van Schilfgaarde, M Coutts, TJ Newman, N Peshek, T AF van Schilfgaarde, Mark Coutts, Timothy J. Newman, Nathan Peshek, Timothy TI Thin film tandem photovoltaic cell from II-IV-V chalcopyrites SO APPLIED PHYSICS LETTERS LA English DT Article DE cadmium compounds; energy gap; germanium compounds; magnesium compounds; quasiparticles; semiconductor thin films; silicon compounds; solar cells; thin film devices; tin compounds; zinc compounds AB Using quasiparticle self-consistent GW (QSGW) theory, we analyze materials properties of the II-IV-V family of chalcopyrite semiconductors consisting of compounds and alloys based on (Mg,Zn,Cd)(Si,Ge,Sn)(P,As)(2), and show how they may offer excellent opportunities for the development of tandem thin-film solar cells. The constituent elements are abundant and nearly lattice-matched compounds can be found with near optimum band gaps. We show the close connection to band structures of other fourfold coordinated compounds that have led to the highest efficiency devices, and suggest potentially optimum alloys for tandem thin-film cells. C1 [van Schilfgaarde, Mark] Arizona State Univ, Sch Mat, Tempe, AZ 85287 USA. [Coutts, Timothy J.; Newman, Nathan; Peshek, Timothy] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP van Schilfgaarde, M (reprint author), Arizona State Univ, Sch Mat, Tempe, AZ 85287 USA. EM mark.vanschilfgaarde@asu.edu RI Newman, Nathan/E-1466-2011 OI Newman, Nathan/0000-0003-2819-9616 FU DOE-EERE [DE-FG36-08GO18002] FX This project was supported by DOE-EERE under Grant No. DE-FG36-08GO18002. NR 8 TC 8 Z9 8 U1 2 U2 19 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD APR 5 PY 2010 VL 96 IS 14 AR 143503 DI 10.1063/1.3377857 PG 3 WC Physics, Applied SC Physics GA 581VY UT WOS:000276554600097 ER PT J AU Stickel, JJ AF Stickel, Jonathan J. TI Data smoothing and numerical differentiation by a regularization method SO COMPUTERS & CHEMICAL ENGINEERING LA English DT Article DE Data smoothing; Regularization; Numerical differentiation; Inverse problems ID GENERAL-METHOD AB While data smoothing by regularization is not new. the method has been little used by scientists and engineers to analyze noisy data In this tutorial survey, the general concepts of the method and mathematical development necessary for implementation for a variety of data types are presented The method can easily accommodate unequally spaced and even non-monotonic scattered data. Methods for scaling the regularization parameter and determining its optimal value are also presented The method is shown to be especially useful for determining numerical derivatives of the data trend, where the usual finite-difference approach amplifies the noise Additionally, the method is shown to be helpful for interpolation and extrapolation Two examples data sets were used to demonstrate the use of smoothing by regularization: a model data set constructed by adding random errors to a sine curve and global mean temperature data from the NASA Goddard Institute for Space Studies. (C) 2009 Elsevier Ltd. All rights reseived. C1 Natl Renewable Energy Lab, Natl Bioenergy Ctr, Golden, CO 80401 USA. RP Stickel, JJ (reprint author), Natl Renewable Energy Lab, Natl Bioenergy Ctr, 1617 Cole Blvd, Golden, CO 80401 USA. NR 28 TC 23 Z9 23 U1 0 U2 19 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0098-1354 J9 COMPUT CHEM ENG JI Comput. Chem. Eng. PD APR 5 PY 2010 VL 34 IS 4 BP 467 EP 475 DI 10.1016/j.compchemeng.2009.10.007 PG 9 WC Computer Science, Interdisciplinary Applications; Engineering, Chemical SC Computer Science; Engineering GA 580DK UT WOS:000276426900005 ER PT J AU Chekanov, S Derrick, M Magill, S Musgrave, B Nicholass, D Repond, J Yoshida, R Mattingly, MCK Antonioli, P Bari, G Bellagamba, L Boscherini, D Bruni, A Bruni, G Cindolo, F Corradi, M Iacobucci, G Margotti, A Nania, R Polini, A Antonelli, S Basile, M Bindi, M Cifarelli, L Contin, A De Pasquale, S Sartorelli, G Zichichi, A Bartsch, D Brock, I Hartmann, H Hilger, E Jakob, HP Jungst, M Nuncio-Quiroz, AE Paul, E Samson, U Schonberg, V Shehzadi, R Wlasenko, M Morris, JD Kaur, M Kaur, P Singh, I Capua, M Fazio, S Mastroberardino, A Schioppa, M Susinno, G Tassi, E Kim, JY Ibrahim, ZA Idris, FM Kamaluddin, B Abdullah, WATW Ning, Y Ren, Z Sciulli, F Chwastowski, J Eskreys, A Figiel, J Galas, A Olkiewicz, K Pawlik, B Stopa, P Zawiejski, L Adamczyk, L Bold, T Grabowska-Bold, I Kisielewska, D Lukasik, J Przybycien, M Suszycki, L Kotanski, A Slominski, W Bachynska, O Behnke, O Behr, J Behrens, U Blohm, C Borras, K Bot, D Ciesielski, R Coppola, N Fang, S Geiser, A Gottlicher, P Grebenyuk, J Gregor, I Haas, T Hain, W Huttmann, A Januschek, F Kahle, B Katkov, II Klein, U Kotz, U Kowalski, H Libov, V Lisovyi, M Lobodzinska, E Lohr, B Mankel, R Melzer-Pellmann, IA Miglioranzi, S Montanari, A Namsoo, T Notz, D Parenti, A Roloff, P Rubinsky, I Schneekloth, U Spiridonov, A Szuba, D Szuba, J Theedt, T Tomaszewska, J Wolf, G Wrona, K Yagues-Molina, AG Youngman, C Zeuner, W Drugakov, V Lohmann, W Schlenstedt, S Barbagli, G Gallo, E Pelfer, PG Bamberger, A Dobur, D Karstens, F Vlasov, NN Bussey, PJ Doyle, AT Forrest, M Saxon, DH Skillicorn, IO Gialas, I Papageorgiu, K Holm, U Klanner, R Lohrmann, E Perrey, H Schleper, P Schorner-Sadenius, T Sztuk, J Stadie, H Turcato, M Long, KR Tapper, AD Matsumoto, T Nagano, K Tokushuku, K Yamada, S Yamazaki, Y Barakbaev, AN Boos, EG Pokrovskiy, NS Zhautykov, BO Aushev, V Borodin, M Kadenko, I Korol, I Kuprash, O Lontkovskyi, D Makarenko, I Onishchuk, Y Salii, A Sorokin, I Verbytskyi, A Viazlo, V Volynets, O Zenaiev, O Zolko, M Son, D de Favereau, J Piotrzkowski, K Barreiro, F Glasman, C Jimenez, M del Peso, J Ron, E Terron, J Uribe-Estrada, C Corriveau, F Schwartz, J Zhou, C Tsurugai, T Antonov, A Dolgoshein, BA Gladkov, D Sosnovtsev, V Stifutkin, A Suchkov, S Dementiev, RK Ermolov, PF Gladilin, LK Golubkov, YA Khein, LA Korzhavina, IA Kuzmin, VA Levchenko, BB Lukina, OY Proskuryakov, AS Shcheglova, LM Zotkin, DS Abt, I Caldwell, A Kollar, D Reisert, B Schmidke, WB Grigorescu, G Keramidas, A Koffeman, E Kooijman, P Pellegrino, A Tiecke, H Vazquez, M Wiggers, L Brummer, N Bylsma, B Durkin, LS Lee, A Ling, TY Cooper-Sarkar, AM Devenish, RCE Ferrando, J Foster, B Gwenlan, C Horton, K Oliver, K Robertson, A Walczak, R Bertolin, A Dal Corso, F Dusini, S Longhin, A Stanco, L Brugnera, R Carlin, R Garfagnini, A Limentani, S Oh, BY Raval, A Whitmore, JJ Iga, Y D'Agostini, G Marini, G Nigro, A Hart, JC Abramowicz, H Ingbir, R Kananov, S Levy, A Stern, A Ishitsuka, M Kanno, T Kuze, M Maeda, J Hori, R Okazaki, N Shimizu, S Hamatsu, R Kitamura, S Ota, O Ri, YD Costa, M Ferrero, MI Monaco, V Sacchi, R Sola, V Solano, A Arneodo, M Ruspa, M Fourletov, S Martin, JF Stewart, TP Boutle, SK Butterworth, JM Jones, TW Loizides, JH Wing, M Brzozowska, B Ciborowski, J Grzelak, G Kulinski, P Luzniak, P Malka, J Nowak, RJ Pawlak, JM Perlanski, W Zarnecki, AF Adamus, M Plucinski, P Tymieniecka, T Eisenberg, Y Hochman, D Karshon, U Brownson, E Reeder, DD Savin, AA Smith, WH Wolfe, H Bhadra, S Catterall, CD Hartner, G Noor, U Whyte, J AF Chekanov, S. Derrick, M. Magill, S. Musgrave, B. Nicholass, D. Repond, J. Yoshida, R. Mattingly, M. C. K. Antonioli, P. Bari, G. Bellagamba, L. Boscherini, D. Bruni, A. Bruni, G. Cindolo, F. Corradi, M. Iacobucci, G. Margotti, A. Nania, R. Polini, A. Antonelli, S. Basile, M. Bindi, M. Cifarelli, L. Contin, A. De Pasquale, S. Sartorelli, G. Zichichi, A. Bartsch, D. Brock, I. Hartmann, H. Hilger, E. Jakob, H. -P. Juengst, M. Nuncio-Quiroz, A. E. Paul, E. Samson, U. Schoenberg, V. Shehzadi, R. Wlasenko, M. Morris, J. D. Kaur, M. Kaur, P. Singh, I. Capua, M. Fazio, S. Mastroberardino, A. Schioppa, M. Susinno, G. Tassi, E. Kim, J. Y. Ibrahim, Z. A. Idris, F. Mohamad Kamaluddin, B. Abdullah, W. A. T. Wan Ning, Y. Ren, Z. Sciulli, F. Chwastowski, J. Eskreys, A. Figiel, J. Galas, A. Olkiewicz, K. Pawlik, B. Stopa, P. Zawiejski, L. Adamczyk, L. Bold, T. Grabowska-Bold, I. Kisielewska, D. Lukasik, J. Przybycien, M. Suszycki, L. Kotanski, A. Slominski, W. Bachynska, O. Behnke, O. Behr, J. Behrens, U. Blohm, C. Borras, K. Bot, D. Ciesielski, R. Coppola, N. Fang, S. Geiser, A. Goettlicher, P. Grebenyuk, J. Gregor, I. Haas, T. Hain, W. Huettmann, A. Januschek, F. Kahle, B. Katkov, I. I. Klein, U. Koetz, U. Kowalski, H. Libov, V. Lisovyi, M. Lobodzinska, E. Loehr, B. Mankel, R. Melzer-Pellmann, I. -A. Miglioranzi, S. Montanari, A. Namsoo, T. Notz, D. Parenti, A. Roloff, P. Rubinsky, I. Schneekloth, U. Spiridonov, A. Szuba, D. Szuba, J. Theedt, T. Tomaszewska, J. Wolf, G. Wrona, K. Yaguees-Molina, A. G. Youngman, C. Zeuner, W. Drugakov, V. Lohmann, W. Schlenstedt, S. Barbagli, G. Gallo, E. Pelfer, P. G. Bamberger, A. Dobur, D. Karstens, F. Vlasov, N. N. Bussey, P. J. Doyle, A. T. Forrest, M. Saxon, D. H. Skillicorn, I. O. Gialas, I. Papageorgiu, K. Holm, U. Klanner, R. Lohrmann, E. Perrey, H. Schleper, P. Schoerner-Sadenius, T. Sztuk, J. Stadie, H. Turcato, M. Long, K. R. Tapper, A. D. Matsumoto, T. Nagano, K. Tokushuku, K. Yamada, S. Yamazaki, Y. Barakbaev, A. N. Boos, E. G. Pokrovskiy, N. S. Zhautykov, B. O. Aushev, V. Borodin, M. Kadenko, I. Korol, Ie. Kuprash, O. Lontkovskyi, D. Makarenko, I. Onishchuk, Yu. Salii, A. Sorokin, Iu. Verbytskyi, A. Viazlo, V. Volynets, O. Zenaiev, O. Zolko, M. Son, D. de Favereau, J. Piotrzkowski, K. Barreiro, F. Glasman, C. Jimenez, M. del Peso, J. Ron, E. Terron, J. Uribe-Estrada, C. Corriveau, F. Schwartz, J. Zhou, C. Tsurugai, T. Antonov, A. Dolgoshein, B. A. Gladkov, D. Sosnovtsev, V. Stifutkin, A. Suchkov, S. Dementiev, R. K. Ermolov, P. F. Gladilin, L. K. Golubkov, Yu. A. Khein, L. A. Korzhavina, I. A. Kuzmin, V. A. Levchenko, B. B. Lukina, O. Yu. Proskuryakov, A. S. Shcheglova, L. M. Zotkin, D. S. Abt, I. Caldwell, A. Kollar, D. Reisert, B. Schmidke, W. B. Grigorescu, G. Keramidas, A. Koffeman, E. Kooijman, P. Pellegrino, A. Tiecke, H. Vazquez, M. Wiggers, L. Bruemmer, N. Bylsma, B. Durkin, L. S. Lee, A. Ling, T. Y. Cooper-Sarkar, A. M. Devenish, R. C. E. Ferrando, J. Foster, B. Gwenlan, C. Horton, K. Oliver, K. Robertson, A. Walczak, R. Bertolin, A. Dal Corso, F. Dusini, S. Longhin, A. Stanco, L. Brugnera, R. Carlin, R. Garfagnini, A. Limentani, S. Oh, B. Y. Raval, A. Whitmore, J. J. Iga, Y. D'Agostini, G. Marini, G. Nigro, A. Hart, J. C. Abramowicz, H. Ingbir, R. Kananov, S. Levy, A. Stern, A. Ishitsuka, M. Kanno, T. Kuze, M. Maeda, J. Hori, R. Okazaki, N. Shimizu, S. Hamatsu, R. Kitamura, S. Ota, O. Ri, Y. D. Costa, M. Ferrero, M. I. Monaco, V. Sacchi, R. Sola, V. Solano, A. Arneodo, M. Ruspa, M. Fourletov, S. Martin, J. F. Stewart, T. P. Boutle, S. K. Butterworth, J. M. Jones, T. W. Loizides, J. H. Wing, M. Brzozowska, B. Ciborowski, J. Grzelak, G. Kulinski, P. Luzniak, P. Malka, J. Nowak, R. J. Pawlak, J. M. Perlanski, W. Zarnecki, A. F. Adamus, M. Plucinski, P. Tymieniecka, T. Eisenberg, Y. Hochman, D. Karshon, U. Brownson, E. Reeder, D. D. Savin, A. A. Smith, W. H. Wolfe, H. Bhadra, S. Catterall, C. D. Hartner, G. Noor, U. Whyte, J. TI Measurement of isolated photon production in deep inelastic ep scattering ZEUS Collaboration SO PHYSICS LETTERS B LA English DT Article DE DIS; Photon emission; Quark radiation; Isolated photon ID CENTRAL TRACKING DETECTOR; E-T PHOTONS; BARREL CALORIMETER; HADRON-COLLISIONS; CROSS-SECTIONS; MONTE-CARLO; DESIGN; HERA; CONSTRUCTION; GENERATOR AB Isolated photon production in deep inelastic ep scattering has been measured with the ZEUS detector at HERA using an integrated luminosity of 320 pb(-1). Measurements were made in the isolated-photon transverse-energy and pseudorapidity ranges 4 < E-T(gamma) < 15 GeV and 0.7 < eta(gamma) < 0.9 for exchanged photon virtualities, Q(2), in the range 10 < Q(2) < 350 GeV2 and for invariant masses of the hadronic system W-X > 5 GeV. Differential cross sections are presented for inclusive isolated photon production as functions of Q(2), x, E-T(gamma) and eta(gamma). Leading-logarithm parton-shower Monte Carlo simulations and perturbative QCD predictions give a reasonable description of the data over most of the kinematic range. (C) 2010 Elsevier B.V. All rights reserved. C1 [Bachynska, O.; Behnke, O.; Behr, J.; Behrens, U.; Blohm, C.; Borras, K.; Bot, D.; Ciesielski, R.; Coppola, N.; Fang, S.; Geiser, A.; Goettlicher, P.; Grebenyuk, J.; Gregor, I.; Haas, T.; Hain, W.; Huettmann, A.; Januschek, F.; Kahle, B.; Katkov, I. I.; Klein, U.; Koetz, U.; Kowalski, H.; Libov, V.; Lisovyi, M.; Lobodzinska, E.; Loehr, B.; Mankel, R.; Melzer-Pellmann, I. -A.; Miglioranzi, S.; Montanari, A.; Namsoo, T.; Notz, D.; Parenti, A.; Roloff, P.; Rubinsky, I.; Schneekloth, U.; Spiridonov, A.; Szuba, D.; Szuba, J.; Theedt, T.; Tomaszewska, J.; Wolf, G.; Wrona, K.; Yaguees-Molina, A. G.; Youngman, C.; Zeuner, W.] DESY, D-2000 Hamburg, Germany. [Chekanov, S.; Derrick, M.; Magill, S.; Musgrave, B.; Nicholass, D.; Repond, J.; Yoshida, R.] Argonne Natl Lab, Argonne, IL 60439 USA. [Mattingly, M. C. K.] Andrews Univ, Berrien Springs, MI 49104 USA. [Antonioli, P.; Bari, G.; Bellagamba, L.; Boscherini, D.; Bruni, A.; Bruni, G.; Cindolo, F.; Corradi, M.; Iacobucci, G.; Margotti, A.; Nania, R.; Polini, A.; Antonelli, S.; Basile, M.; Bindi, M.; Cifarelli, L.; Contin, A.; De Pasquale, S.; Sartorelli, G.; Zichichi, A.] INFN Bologna, Bologna, Italy. [Antonelli, S.; Basile, M.; Bindi, M.; Cifarelli, L.; Contin, A.; De Pasquale, S.; Sartorelli, G.; Zichichi, A.] Univ Bologna, Bologna, Italy. [Bartsch, D.; Brock, I.; Hartmann, H.; Hilger, E.; Jakob, H. -P.; Juengst, M.; Nuncio-Quiroz, A. E.; Paul, E.; Samson, U.; Schoenberg, V.; Shehzadi, R.; Wlasenko, M.] Univ Bonn, Inst Phys, D-5300 Bonn, Germany. [Morris, J. D.] Univ Bristol, HH Wills Phys Lab, Bristol BS8 1TL, Avon, England. [Kaur, M.; Kaur, P.; Singh, I.] Panjab Univ, Dept Phys, Chandigarh 160014, India. [Capua, M.; Fazio, S.; Mastroberardino, A.; Schioppa, M.; Susinno, G.; Tassi, E.] Univ Calabria, Dept Phys, I-87036 Cosenza, Italy. [Capua, M.; Fazio, S.; Mastroberardino, A.; Schioppa, M.; Susinno, G.; Tassi, E.] Ist Nazl Fis Nucl, Cosenza, Italy. [Kim, J. Y.] Chonnam Natl Univ, Kwangju, South Korea. [Ibrahim, Z. A.; Idris, F. Mohamad; Kamaluddin, B.; Abdullah, W. A. T. Wan] Univ Malaya, Kuala Lumpur 50603, Malaysia. [Ning, Y.; Ren, Z.; Sciulli, F.] Columbia Univ, Nevis Labs, Irvington, NY 10027 USA. [Chwastowski, J.; Eskreys, A.; Figiel, J.; Galas, A.; Olkiewicz, K.; Pawlik, B.; Stopa, P.; Zawiejski, L.] Polish Acad Sci, Henryk Niewodniczanski Inst Nucl Phys, Krakow, Poland. [Adamczyk, L.; Bold, T.; Grabowska-Bold, I.; Kisielewska, D.; Lukasik, J.; Przybycien, M.; Suszycki, L.] AGH Univ Sci & Technol, Fac Phys & Appl Comp Sci, Krakow, Poland. [Kotanski, A.; Slominski, W.] Jagellonian Univ, Dept Phys, Krakow, Poland. [Drugakov, V.; Lohmann, W.; Schlenstedt, S.] DESY, Zeuthen, Germany. [Barbagli, G.; Gallo, E.; Pelfer, P. G.] INFN Florence, Florence, Italy. [Pelfer, P. G.] Univ Florence, Florence, Italy. [Bamberger, A.; Dobur, D.; Karstens, F.; Vlasov, N. N.] Univ Freiburg, Fak Phys, D-7800 Freiburg, Germany. [Bussey, P. J.; Doyle, A. T.; Forrest, M.; Saxon, D. H.; Skillicorn, I. O.] Univ Glasgow, Dept Phys & Astron, Glasgow, Lanark, Scotland. [Gialas, I.; Papageorgiu, K.] Univ Aegean, Dept Engn Management & Finance, Chios, Greece. [Holm, U.; Klanner, R.; Lohrmann, E.; Perrey, H.; Schleper, P.; Schoerner-Sadenius, T.; Sztuk, J.; Stadie, H.; Turcato, M.] Univ Hamburg, Inst Exp Phys, Hamburg, Germany. [Long, K. R.; Tapper, A. D.] Univ London Imperial Coll Sci Technol & Med, High Energy Nucl Phys Grp, London, England. [Matsumoto, T.; Nagano, K.; Tokushuku, K.; Yamada, S.; Yamazaki, Y.] KEK, Inst Particle & Nucl Studies, Tsukuba, Ibaraki, Japan. [Barakbaev, A. N.; Boos, E. G.; Pokrovskiy, N. S.; Zhautykov, B. O.] Minist Educ & Sci Kazakhstan, Inst Phys & Technol, Alma Ata, Kazakhstan. [Aushev, V.; Borodin, M.; Kadenko, I.; Korol, Ie.; Kuprash, O.; Lontkovskyi, D.; Makarenko, I.; Onishchuk, Yu.; Salii, A.; Sorokin, Iu.; Verbytskyi, A.; Viazlo, V.; Volynets, O.; Zenaiev, O.; Zolko, M.] Natl Acad Sci, Inst Nucl Res, Kiev, Ukraine. [Aushev, V.; Borodin, M.; Kadenko, I.; Korol, Ie.; Kuprash, O.; Lontkovskyi, D.; Makarenko, I.; Onishchuk, Yu.; Salii, A.; Sorokin, Iu.; Verbytskyi, A.; Viazlo, V.; Volynets, O.; Zenaiev, O.; Zolko, M.] Kiev Natl Univ, Kiev, Ukraine. [Son, D.] Kyungpook Natl Univ, Ctr High Energy Phys, Taegu, South Korea. [de Favereau, J.; Piotrzkowski, K.] Catholic Univ Louvain, Inst Phys Nucl, B-1348 Louvain, Belgium. [Barreiro, F.; Glasman, C.; Jimenez, M.; del Peso, J.; Ron, E.; Terron, J.; Uribe-Estrada, C.] Univ Autonoma Madrid, Dept Fis Teor, Madrid, Spain. [Corriveau, F.; Schwartz, J.; Zhou, C.] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada. [Tsurugai, T.] Meiji Gakuin Univ, Fac Gen Educ, Yokohama, Kanagawa, Japan. [Antonov, A.; Dolgoshein, B. A.; Gladkov, D.; Sosnovtsev, V.; Stifutkin, A.; Suchkov, S.] Moscow Engn Phys Inst, Moscow 115409, Russia. [Dementiev, R. K.; Ermolov, P. F.; Gladilin, L. K.; Golubkov, Yu. A.; Khein, L. A.; Korzhavina, I. A.; Kuzmin, V. A.; Levchenko, B. B.; Lukina, O. Yu.; Proskuryakov, A. S.; Shcheglova, L. M.; Zotkin, D. S.] Moscow MV Lomonosov State Univ, Inst Nucl Phys, Moscow, Russia. [Abt, I.; Caldwell, A.; Kollar, D.; Reisert, B.; Schmidke, W. B.] Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany. [Grigorescu, G.; Keramidas, A.; Koffeman, E.; Kooijman, P.; Pellegrino, A.; Tiecke, H.; Vazquez, M.; Wiggers, L.] NIKHEF, Amsterdam, Netherlands. [Grigorescu, G.; Keramidas, A.; Koffeman, E.; Kooijman, P.; Pellegrino, A.; Tiecke, H.; Vazquez, M.; Wiggers, L.] Univ Amsterdam, Amsterdam, Netherlands. [Bruemmer, N.; Bylsma, B.; Durkin, L. S.; Lee, A.; Ling, T. Y.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Cooper-Sarkar, A. M.; Devenish, R. C. E.; Ferrando, J.; Foster, B.; Gwenlan, C.; Horton, K.; Oliver, K.; Robertson, A.; Walczak, R.] Univ Oxford, Dept Phys, Oxford, England. [Bertolin, A.; Dal Corso, F.; Dusini, S.; Longhin, A.; Stanco, L.; Brugnera, R.; Carlin, R.; Garfagnini, A.; Limentani, S.] Ist Nazl Fis Nucl, Padua, Italy. [Brugnera, R.; Carlin, R.; Garfagnini, A.; Limentani, S.] Univ Padua, Dipartimento Fis, Padua, Italy. [Oh, B. Y.; Raval, A.; Whitmore, J. J.] Penn State Univ, Dept Phys, University Pk, PA 16802 USA. [Iga, Y.] Polytech Univ, Sagamihara, Kanagawa, Japan. [D'Agostini, G.; Marini, G.; Nigro, A.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [D'Agostini, G.; Marini, G.; Nigro, A.] Ist Nazl Fis Nucl, Rome, Italy. [Hart, J. C.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Abramowicz, H.; Ingbir, R.; Kananov, S.; Levy, A.; Stern, A.] Tel Aviv Univ, Raymond & Beverly Sackler Fac Exact Sci, Sch Phys, IL-69978 Tel Aviv, Israel. [Ishitsuka, M.; Kanno, T.; Kuze, M.; Maeda, J.] Tokyo Inst Technol, Dept Phys, Tokyo 152, Japan. [Hori, R.; Okazaki, N.; Shimizu, S.] Univ Tokyo, Dept Phys, Tokyo 113, Japan. [Hamatsu, R.; Kitamura, S.; Ota, O.; Ri, Y. D.] Tokyo Metropolitan Univ, Dept Phys, Tokyo, Japan. [Costa, M.; Ferrero, M. I.; Monaco, V.; Sacchi, R.; Sola, V.; Solano, A.] Univ Turin, Turin, Italy. [Costa, M.; Ferrero, M. I.; Monaco, V.; Sacchi, R.; Sola, V.; Solano, A.; Arneodo, M.; Ruspa, M.] Ist Nazl Fis Nucl, I-10125 Turin, Italy. [Arneodo, M.; Ruspa, M.] Univ Piemonte Orientale, Turin, Italy. [Fourletov, S.; Martin, J. F.; Stewart, T. P.] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada. [Boutle, S. K.; Butterworth, J. M.; Jones, T. W.; Loizides, J. H.; Wing, M.] UCL, Dept Phys & Astron, London, England. [Brzozowska, B.; Ciborowski, J.; Grzelak, G.; Kulinski, P.; Luzniak, P.; Malka, J.; Nowak, R. J.; Pawlak, J. M.; Perlanski, W.; Zarnecki, A. F.] Warsaw Univ, Inst Expt Phys, Warsaw, Poland. [Adamus, M.; Plucinski, P.; Tymieniecka, T.] Inst Nucl Studies, PL-00681 Warsaw, Poland. [Eisenberg, Y.; Hochman, D.; Karshon, U.] Weizmann Inst Sci, Dept Particle Phys, Rehovot, Israel. [Brownson, E.; Reeder, D. D.; Savin, A. A.; Smith, W. H.; Wolfe, H.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Bhadra, S.; Catterall, C. D.; Hartner, G.; Noor, U.; Whyte, J.] York Univ, Dept Phys, N York, ON M3J 1P3, Canada. [Kaur, P.; Singh, I.] Max Planck Inst, Munich, Germany. [Spiridonov, A.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Szuba, D.] INP, Krakow, Poland. [Ciborowski, J.] Univ Lodz, PL-90131 Lodz, Poland. [Tymieniecka, T.] Univ Podlasie, Siedlce, Poland. RP Haas, T (reprint author), DESY, Notkestr 85, D-2000 Hamburg, Germany. EM tobias.haas@desy.de RI Suchkov, Sergey/M-6671-2015; De Pasquale, Salvatore/B-9165-2008; dusini, stefano/J-3686-2012; Capua, Marcella/A-8549-2015; IBRAHIM, ZAINOL ABIDIN/C-1121-2010; Gladilin, Leonid/B-5226-2011; Levchenko, B./D-9752-2012; Proskuryakov, Alexander/J-6166-2012; Dementiev, Roman/K-7201-2012; Korzhavina, Irina/D-6848-2012; Wiggers, Leo/B-5218-2015; Fazio, Salvatore /G-5156-2010; WAN ABDULLAH, WAN AHMAD TAJUDDIN/B-5439-2010; Doyle, Anthony/C-5889-2009; Tassi, Enrico/K-3958-2015; Ferrando, James/A-9192-2012 OI De Pasquale, Salvatore/0000-0001-9236-0748; dusini, stefano/0000-0002-1128-0664; Capua, Marcella/0000-0002-2443-6525; Arneodo, Michele/0000-0002-7790-7132; Longhin, Andrea/0000-0001-9103-9936; Raval, Amita/0000-0003-0164-4337; Gladilin, Leonid/0000-0001-9422-8636; Wiggers, Leo/0000-0003-1060-0520; Doyle, Anthony/0000-0001-6322-6195; Ferrando, James/0000-0002-1007-7816 NR 45 TC 18 Z9 18 U1 1 U2 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 EI 1873-2445 J9 PHYS LETT B JI Phys. Lett. B PD APR 5 PY 2010 VL 687 IS 1 BP 16 EP 25 DI 10.1016/j.physletb.2010.02.045 PG 10 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 583FT UT WOS:000276659600004 ER PT J AU Arsene, IC Bearden, IG Beavis, D Bekele, S Besliu, C Budick, B Boggild, H Chasman, C Christensen, CH Christiansen, P Dalsgaard, HH Debbe, R Gaardhoje, JJ Hagel, K Ito, H Jipa, A Johnson, EB Jorgensen, CE Karabowicz, R Katrynska, N Kim, EJ Larsen, TM Lee, JH Lovhoiden, G Majka, Z Murray, MJ Natowitz, J Nielsen, BS Nygaard, C Pal, D Qviller, A Rami, F Ristea, C Ristea, O Rohrich, D Sanders, SJ Staszel, P Tveter, TS Videbaek, F Wada, R Yang, H Yin, Z Zgura, IS AF Arsene, I. C. Bearden, I. G. Beavis, D. Bekele, S. Besliu, C. Budick, B. Boggild, H. Chasman, C. Christensen, C. H. Christiansen, P. Dalsgaard, H. H. Debbe, R. Gaardhoje, J. J. Hagel, K. Ito, H. Jipa, A. Johnson, E. B. Jorgensen, C. E. Karabowicz, R. Katrynska, N. Kim, E. J. Larsen, T. M. Lee, J. H. Lovhoiden, G. Majka, Z. Murray, M. J. Natowitz, J. Nielsen, B. S. Nygaard, C. Pal, D. Qviller, A. Rami, F. Ristea, C. Ristea, O. Rohrich, D. Sanders, S. J. Staszel, P. Tveter, T. S. Videbaek, F. Wada, R. Yang, H. Yin, Z. Zgura, I. S. CA BRAHMS Collaboration TI Kaon and pion production in central Au plus Au collisions at,root s(NN)=62.4 GeV BRAHMS Collaboration SO PHYSICS LETTERS B LA English DT Article DE Heavy ion collisions; Strangeness enhancement; Baryon chemical potential ID AU+AU COLLISIONS; 11.6A GEV/C; DYNAMICS; MODEL AB Invariant p(T) spectra and rapidity densities covering a large rapidity range (-0.1 < y < 3.5) are presented for pi(+/-) and K-+/- mesons from central Au + Au collisions at root s(NN) 62.4 GeV. The mid-rapidity yields of meson particles relative to their anti-particles are found to be close to unity (pi(-)/pi(+) similar to 1, K-/K+ similar to 0.85) while the anti-proton to proton ratio is (p) over bar /p similar to 0.49. The rapidity dependence of the pi(-)/pi(+) ratio is consistent with a small increase towards forward rapidities while the K-/K+ and (p) over bar /p ratios show a steep decrease to similar to 0.3 for kaons and 0.022 for protons at y similar to 3. It is observed that the kaon production relative to its own anti-particle as well as to pion production in wide rapidity and energy ranges shows an apparent universal behavior consistent with the baryo-chemical potential, as deduced from the (p) over bar /p ratio, being the driving parameter. (C) 2010 Elsevier B.V. All rights reserved. C1 [Beavis, D.; Chasman, C.; Debbe, R.; Ito, H.; Lee, J. H.; Videbaek, F.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Rami, F.] Univ Strasbourg, Strasbourg, France. [Rami, F.] Inst Pluridisciplinaire Hubert Curien, Strasbourg, France. [Zgura, I. S.] Inst Space Sci, Bucharest, Romania. [Karabowicz, R.; Katrynska, N.; Majka, Z.; Staszel, P.] Jagiellonian Univ, M Smoluchowski Inst Phys, Krakow, Poland. [Budick, B.] NYU, New York, NY USA. [Bearden, I. G.; Boggild, H.; Christensen, C. H.; Christiansen, P.; Dalsgaard, H. H.; Gaardhoje, J. J.; Jorgensen, C. E.; Larsen, T. M.; Nielsen, B. S.; Nygaard, C.; Ristea, C.] Univ Copenhagen, Niels Bohr Inst, DK-2100 Copenhagen, Denmark. [Hagel, K.; Natowitz, J.; Wada, R.] Texas A&M Univ, College Stn, TX USA. [Rohrich, D.; Yang, H.; Yin, Z.] Univ Bergen, Dept Phys & Technol, Bergen, Norway. [Besliu, C.; Jipa, A.; Ristea, O.] Univ Bucharest, Bucharest, Romania. [Bekele, S.; Johnson, E. B.; Kim, E. J.; Murray, M. J.; Pal, D.; Sanders, S. J.] Univ Kansas, Lawrence, KS 66045 USA. [Arsene, I. C.; Lovhoiden, G.; Qviller, A.; Tveter, T. S.] Univ Oslo, Dept Phys, Oslo, Norway. RP Arsene, IC (reprint author), GSI Helmholtzzentrum Schwerionenforsch GmBH, EMMI, Darmstadt, Germany. EM i.c.arsene@fys.uio.no; videbaek@bnl.gov RI Christensen, Christian Holm/A-4901-2010; Christensen, Christian/D-6461-2012; Yang, Hongyan/J-9826-2014; Bearden, Ian/M-4504-2014 OI Christensen, Christian Holm/0000-0002-1850-0121; Christensen, Christian/0000-0002-1850-0121; Bearden, Ian/0000-0003-2784-3094 FU U.S. Department of Energy [DE-AC02-98-CH 10886, DE-FG03-93-ER40773, DE-FG03-96-ER40981, DE-FG02-99-ER41121]; Danish Natural Science Research Council; Polish Ministry of Science and Higher Education [1248/B/H03/2009/36]; Romanian Ministry of Education and Research [500311999, 6077/2000]; RHIC Computing Facilty FX This work was supported by the Division of Nuclear Physics of the Office of Science of the U.S. Department of Energy under contracts DE-AC02-98-CH 10886, DE-FG03-93-ER40773, DEFG03-96-ER40981, and DE-FG02-99-ER41121, the Danish Natural Science Research Council, the Research Council of Norway, the Polish Ministry of Science and Higher Education (Contract No. 1248/B/H03/2009/36), and the Romanian Ministry of Education and Research (500311999, 6077/2000). We thank the staff of the Collider-Accelerator Division at BNL and the RHIC Computing Facilty for their support to the experiment. NR 32 TC 13 Z9 13 U1 0 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 J9 PHYS LETT B JI Phys. Lett. B PD APR 5 PY 2010 VL 687 IS 1 BP 36 EP 41 DI 10.1016/j.physletb.2010.02.078 PG 6 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 583FT UT WOS:000276659600007 ER PT J AU Scarlata, CJ Hyman, DA AF Scarlata, Christopher J. Hyman, Deborah A. TI Development and validation of a fast high pressure liquid chromatography method for the analysis of lignocellulosic biomass hydrolysis and fermentation products SO JOURNAL OF CHROMATOGRAPHY A LA English DT Article DE Biomass; Renewable energy; Cation-exchange HPLC; Acetic acid; Ethanol; Furfural; Fast acid method ID CATION-EXCHANGE COLUMNS; ORGANIC-ACIDS; CORN STOVER; PRETREATMENT; HPLC; ETHANOL; YIELDS; WOOD AB A simple, precise, and accurate 10-min high pressure liquid chromatography (HPLC) method was developed and validated for the analysis of organic acids, alcohols, and furans from processing biomass into renewable fuels. The method uses an H(+) form cation-exchange resin stationary phase that has a five-fold shorter analysis time versus that in the traditional method. The new method was used for the analysis of acetic acid, ethanol, 5-hydroxymethyl furfural, and furfural. Results were compared with a legacy method that has historically has been used to analyze the same compounds but with a 55 min run time. Linearity was acceptable on the new method with r(2) > 0.999 for all compounds using refractive index detection. Limits of detection were between 0.003 and 0.03 g/L and limits of quantification were between 0.1 and 0.01 g/L. The relative standard deviations for precision were less than 0.4% and recoveries ranged from 92% to 114% for all compounds. (C) 2010 Elsevier B.V. All rights reserved. C1 [Scarlata, Christopher J.; Hyman, Deborah A.] Natl Renewable Energy Lab, Natl Bioenergy Ctr, Golden, CO 80401 USA. RP Scarlata, CJ (reprint author), Natl Renewable Energy Lab, Natl Bioenergy Ctr, 1617 Cole Blvd, Golden, CO 80401 USA. EM christopher.scarlata@nrel.gov FU US Department of Energy, Office of Biomass FX This project was funded by the US Department of Energy, Office of Biomass Programs. HPLC data for ethanol produced by simultaneous saccharification and fermentation was provided by Gary McMillen. LC-MS data for the co-elution of levulinic and acetic acid was provided by Richard Mowery and Kevin Chambliss. Pre-treated corn stover hemicellulose hydrolysate was prepared in the NREL Process Development Unit by Bob Lyons, Wes Hjelm, and Jody Farmer. NR 24 TC 19 Z9 19 U1 2 U2 16 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0021-9673 J9 J CHROMATOGR A JI J. Chromatogr. A PD APR 2 PY 2010 VL 1217 IS 14 BP 2082 EP 2087 DI 10.1016/j.chroma.2010.01.061 PG 6 WC Biochemical Research Methods; Chemistry, Analytical SC Biochemistry & Molecular Biology; Chemistry GA 578HZ UT WOS:000276285600002 PM 20202640 ER PT J AU Nocek, BP Gillner, DM Fan, Y Holz, RC Joachimiak, A AF Nocek, Boguslaw P. Gillner, Danuta M. Fan, Yao Holz, Richard C. Joachimiak, Andrzej TI Structural Basis for Catalysis by the Mono- and Dimetalated Forms of the dapE-Encoded N-succinyl-L,L-Diaminopimelic Acid Desuccinylase SO JOURNAL OF MOLECULAR BIOLOGY LA English DT Article DE X-ray crystallography; zinc; hydrolases; mechanism; antimicrobials ID AEROMONAS-PROTEOLYTICA AMINOPEPTIDASE; HAEMOPHILUS-INFLUENZAE; SPECTROSCOPIC CHARACTERIZATION; CRYSTAL-STRUCTURE; SUBSTRATE-SPECIFICITY; ESCHERICHIA-COLI; LYSINE; BIOSYNTHESIS; DIAMINOPIMELATE; PATHWAY AB Biosynthesis of lysine and meso-diaminopimelic acid in bacteria provides essential components for protein synthesis and construction of the bacterial peptidoglycan cell wall. The dapE operon enzymes synthesize both mesodiaminopimelic acid and lysine and, therefore, represent potential targets for novel antibacterials. The dapE-encoded N-succinyl-L,L-diaminopimelic acid desuccinylase functions in a late step of the pathway and converts N-succinyl-L,L-diaminopimelic acid to L,L-diaminopimelic acid and succinate. Deletion of the dapE gene is lethal to Helicobacter pylori and Mycobacterium smegmatis, indicating that DapE's are essential for cell growth and proliferation. Since there are no similar pathways in humans, inhibitors that target DapE may have selective toxicity against only bacteria. A major limitation in developing antimicrobial agents that target DapE has been the lack of structural information. Herein, we report the high-resolution X-ray crystal structures of the DapE from Haemophilus influenzae with one and two zinc ions bound in the active site, respectively. These two forms show different activity. Based on these newly determined structures, we propose a revised catalytic mechanism of peptide bond cleavage by DapE enzymes. These structures provide important insight into catalytic mechanism of DapE enzymes as well as a structural foundation that is critical for the rational design of DapE inhibitors. (c) 2010 Elsevier Ltd. All rights reserved. C1 [Gillner, Danuta M.; Holz, Richard C.] Loyola Univ, Chicago, IL 60626 USA. [Nocek, Boguslaw P.; Fan, Yao; Joachimiak, Andrzej] Argonne Natl Lab, Midwest Ctr Struct Genom, Argonne, IL 60439 USA. [Nocek, Boguslaw P.; Fan, Yao; Joachimiak, Andrzej] Argonne Natl Lab, Struct Biol Ctr, Argonne, IL 60439 USA. [Gillner, Danuta M.] Silesian Tech Univ, PL-44100 Gliwice, Poland. RP Holz, RC (reprint author), Loyola Univ, Chicago, IL 60626 USA. EM rholz1@luc.edu; andrzejj@anl.gov RI Fan, Yao/C-7910-2014 FU National Science Foundation [CHE-0652981]; National Institutes of Health [GM074942]; U.S. Department of Energy, Office of Biological and Environmental Research [DE-AC02-06CH11357] FX The authors are grateful to all members of the Structural Biology Center at Argonne National Laboratory for their help in conducting these experiments. This work was supported by the National Science Foundation (CHE-0652981, R.C.H.), the National Institutes of Health (GM074942, A.J.), and the U.S. Department of Energy, Office of Biological and Environmental Research, under contract DE-AC02-06CH11357 (A.J.). NR 48 TC 24 Z9 25 U1 0 U2 7 PU ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD PI LONDON PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND SN 0022-2836 J9 J MOL BIOL JI J. Mol. Biol. PD APR 2 PY 2010 VL 397 IS 3 BP 617 EP 626 DI 10.1016/j.jmb.2010.01.062 PG 10 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 576VI UT WOS:000276177300001 PM 20138056 ER PT J AU Das, D Moiani, D Axelrod, HL Miller, MD McMullan, D Jin, KK Abdubek, P Astakhova, T Burra, P Carlton, D Chiu, HJ Clayton, T Deller, MC Duan, L Ernst, D Feuerhelm, J Grant, JC Grzechnik, A Grzechnik, SK Han, GW Jaroszewski, L Klock, HE Knuth, MW Kozbial, P Krishna, SS Kumar, A Marciano, D Morse, AT Nigoghossian, E Okach, L Paulsen, J Reyes, R Rife, CL Sefcovic, N Tien, HJ Trame, CB van den Bedem, H Weekes, D Xu, QP Hodgson, KO Wooley, J Elsliger, MA Deacon, AM Godzik, A Lesley, SA Tainer, JA Wilson, IA AF Das, Debanu Moiani, Davide Axelrod, Herbert L. Miller, Mitchell D. McMullan, Daniel Jin, Kevin K. Abdubek, Polat Astakhova, Tamara Burra, Prasad Carlton, Dennis Chiu, Hsiu-Ju Clayton, Thomas Deller, Marc C. Duan, Lian Ernst, Dustin Feuerhelm, Julie Grant, Joanna C. Grzechnik, Anna Grzechnik, Slawomir K. Han, Gye Won Jaroszewski, Lukasz Klock, Heath E. Knuth, Mark W. Kozbial, Piotr Krishna, S. Sri Kumar, Abhinav Marciano, David Morse, Andrew T. Nigoghossian, Edward Okach, Linda Paulsen, Jessica Reyes, Ron Rife, Christopher L. Sefcovic, Natasha Tien, Henry J. Trame, Christine B. van den Bedem, Henry Weekes, Dana Xu, Qingping Hodgson, Keith O. Wooley, John Elsliger, Marc-Andre Deacon, Ashley M. Godzik, Adam Lesley, Scott A. Tainer, John A. Wilson, Ian A. TI Crystal Structure of the First Eubacterial Mre11 Nuclease Reveals Novel Features that May Discriminate Substrates During DNA Repair SO JOURNAL OF MOLECULAR BIOLOGY LA English DT Article DE Mre11; nuclease; DNA repair; crystal structure; structural genomics ID DOUBLE-STRAND BREAKS; ESCHERICHIA-COLI; SACCHAROMYCES-CEREVISIAE; ATAXIA-TELANGIECTASIA; DENSITY MODIFICATION; PROTEIN CRYSTALS; COMPLEX; RECOMBINATION; REFINEMENT; SBCCD AB Mre11 nuclease plays a central role in the repair of cytotoxic and mutagenic DNA double-strand breaks. As X-ray structural information has been available only for the Pyrococcus furiosus enzyme (PfMre11), the conserved and variable features of this nuclease across the domains of life have not been experimentally defined. Our crystal structure and biochemical studies demonstrate that TM1635 from Thermotoga maritima, originally annotated as a putative nuclease, is an Mre11 endo/exonuclease (TmMre11) and the first such structure from eubacteria. TmMre11 and PfMre11 display similar overall structures, despite sequence identity in the twilight zone of only similar to 20%. However, they differ substantially in their DNA-specificity domains and in their dimeric organization. Residues in the nuclease domain are highly conserved, but those in the DNA-specificity domain are not. The structural differences likely affect how Mre11 from different organisms recognize and interact with single-stranded DNA, double-stranded DNA and DNA hairpin structures during DNA repair. The TmMre11 nuclease active site has no bound metal ions, but is conserved in sequence and structure with the exception of a histidine that is important in PfMre11 nuclease activity. Nevertheless, biochemical characterization confirms that TmMre11 possesses both endonuclease and exonuclease activities on single-stranded and double-stranded DNA substrates, respectively. (c) 2010 Elsevier Ltd. All rights reserved. C1 [Moiani, Davide; Carlton, Dennis; Clayton, Thomas; Deller, Marc C.; Grzechnik, Anna; Han, Gye Won; Marciano, David; Tien, Henry J.; Elsliger, Marc-Andre; Lesley, Scott A.; Tainer, John A.; Wilson, Ian A.] Scripps Res Inst, Dept Mol Biol, La Jolla, CA 92037 USA. [Das, Debanu; Axelrod, Herbert L.; Miller, Mitchell D.; Jin, Kevin K.; Chiu, Hsiu-Ju; Kumar, Abhinav; Reyes, Ron; Rife, Christopher L.; Trame, Christine B.; van den Bedem, Henry; Xu, Qingping; Deacon, Ashley M.] SLAC Natl Accelerator Lab, Stanford Synchrotron Radiat Lightsource, Menlo Pk, CA 94025 USA. [Moiani, Davide; Tainer, John A.] Scripps Res Inst, Skaggs Inst Chem Biol, La Jolla, CA 92037 USA. [McMullan, Daniel; Abdubek, Polat; Ernst, Dustin; Feuerhelm, Julie; Grant, Joanna C.; Klock, Heath E.; Knuth, Mark W.; Nigoghossian, Edward; Okach, Linda; Paulsen, Jessica; Lesley, Scott A.] Novartis Res Fdn, Prot Sci Dept, Genom Inst, San Diego, CA 92121 USA. [Astakhova, Tamara; Duan, Lian; Grzechnik, Slawomir K.; Jaroszewski, Lukasz; Krishna, S. Sri; Morse, Andrew T.; Wooley, John; Godzik, Adam] Univ Calif San Diego, Ctr Res Biol Syst, La Jolla, CA 92093 USA. [Burra, Prasad; Jaroszewski, Lukasz; Kozbial, Piotr; Krishna, S. Sri; Sefcovic, Natasha; Weekes, Dana; Godzik, Adam] Burnham Inst Med Res, Prograrn Bioinformat & Syst Biol, La Jolla, CA 92037 USA. [Tainer, John A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Mol Biol, Div Life Sci, Berkeley, CA 94720 USA. RP Tainer, JA (reprint author), Scripps Res Inst, Dept Mol Biol, La Jolla, CA 92037 USA. EM jat@scripps.edu; wilson@scripps.edu RI Godzik, Adam/A-7279-2009; OI Godzik, Adam/0000-0002-2425-852X; van den Bedem, Henry/0000-0003-2358-841X FU National Institute of General Medical Sciences Protein Structure Initiative [P50 GM62411, U54 GM074898]; Department of Energy; Office of Biological and Environmental Research; National Institutes of Health (National Center for Research Resources, Biomedical Technology Program, and the National Institute of General Medical Sciences); [CA117638]; [CA092584] FX The project was sponsored by the National Institute of General Medical Sciences Protein Structure Initiative (P50 GM62411, U54 GM074898). Portions of this research were performed at the Stanford Synchrotron Radiation Lightsource (SSRL). The SSRL is a national user facility at the SLAC National Accelerator Laboratory operated by Stanford University on behalf of the United States Department of Energy, Office of Basic Energy Sciences. The SSRL Structural Molecular Biology Program is supported by the Department of Energy, Office of Biological and Environmental Research, and by the National Institutes of Health (National Center for Research Resources, Biomedical Technology Program, and the National Institute of General Medical Sciences). Mre11 research in the Tainer group is funded by CA117638 and CA092584. We are grateful to Chiharu Hitomi and Dr Julie Tubbs in the Tainer group for assistance with site-directed mutagenesis and biochemical assays. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institute of General Medical Sciences or the National Institutes of Health. Genomic DNA from Thermotoga maritima MSB8 (DSM3109) (ATCC #43589D-5) was obtained from the American Type Culture Collection (ATCC). NR 69 TC 22 Z9 22 U1 1 U2 11 PU ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD PI LONDON PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND SN 0022-2836 J9 J MOL BIOL JI J. Mol. Biol. PD APR 2 PY 2010 VL 397 IS 3 BP 647 EP 663 DI 10.1016/j.jmb.2010.01.049 PG 17 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 576VI UT WOS:000276177300003 PM 20122942 ER PT J AU Shao, YY Zhang, S Kou, R Wang, XQ Wang, CM Dai, S Viswanathan, V Liu, J Wang, Y Lin, YH AF Shao, Yuyan Zhang, Sheng Kou, Rong Wang, Xiqing Wang, Chongmin Dai, Sheng Viswanathan, Vilayanur Liu, Jun Wang, Yong Lin, Yuehe TI Noncovalently functionalized graphitic mesoporous carbon as a stable support of Pt nanoparticles for oxygen reduction SO JOURNAL OF POWER SOURCES LA English DT Article DE Graphitized mesoporous carbon; Noncovalent functionalization; Fuel cells; Electrocatalyst; Durability ID METHANOL FUEL-CELLS; CATALYST SUPPORT; ELECTROCATALYTIC PROPERTIES; ELECTRICAL-CONDUCTIVITY; PLATINUM NANOPARTICLES; SURFACE-CHEMISTRY; CATHODE CATALYSTS; HIGH DISPERSION; NANOTUBES; DURABILITY AB We report a durable electrocatalyst support, highly graphitized mesoporous carbon (GMPC), for oxygen reduction in polymer electrolyte membrane (PEM) fuel cells. GMPC is prepared through graphitizing the self-assembled soft-template mesoporous carbon (MPC) under high temperature. Heat-treatment at 2800 degrees C greatly improves the degree of graphitization while most of the mesoporous structures and the specific surface area of MPC are retained. GMPC is then noncovalently functionalized with poly(diallyldimethylammonium chloride) (PDDA) and loaded with Pt nanoparticles by reducing Pt precursor (H(2)PtCl(6)) in ethylene glycol. Pt nanoparticles of similar to 3.0nm in diameter are uniformly dispersed on GMPC. Compared to Pt supported on Vulcan XC-72 carbon black (Pt/XC-72), Pt/GMPC exhibits a higher mass activity towards oxygen reduction reaction (ORR) and the mass activity retention (in percentage) is improved by a factor of similar to 2 after 44 h accelerated degradation test under the potential step (1.4-0.85 V) electrochemical stressing condition which focuses on support corrosion. The enhanced activity and durability of Pt/GMPC are attributed to the graphitic structure of GMPC which is more resistant to corrosion. These findings demonstrate that GMPC is a promising oxygen reduction electrocatalyst support for PEM fuel cells. The approach reported in this work provides a facile, eco-friendly promising strategy for synthesizing stable metal nanoparticles on hydrophobic support materials. (C) 2009 Elsevier B.V. All rights reserved. C1 [Shao, Yuyan; Zhang, Sheng; Kou, Rong; Wang, Chongmin; Viswanathan, Vilayanur; Liu, Jun; Wang, Yong; Lin, Yuehe] Pacific NW Natl Lab, Richland, WA 99352 USA. [Wang, Xiqing; Dai, Sheng] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Wang, Y (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM Yongwang@pnl.gov; Yuehe.lin@pnl.gov RI Wang, Xiqing/E-3062-2010; Zhang, Sheng/H-2452-2011; Shao, Yuyan/A-9911-2008; Lin, Yuehe/D-9762-2011; Wang, Yong/C-2344-2013; Dai, Sheng/K-8411-2015 OI Wang, Xiqing/0000-0002-1843-008X; Zhang, Sheng/0000-0001-7532-1923; Shao, Yuyan/0000-0001-5735-2670; Lin, Yuehe/0000-0003-3791-7587; Dai, Sheng/0000-0002-8046-3931 FU U.S. DOE [DE-AC05-76L01830]; DOE's Office of Biological and Environmental Research FX This work is supported by the U.S. DOE-EERE HFCIT Program. Part of the research described in this paper was performed at the Environmental Molecular Science Laboratory, a national scientific user facility sponsored by DOE's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL). PNNL is operated by Battelle for DOE under Contract DE-AC05-76L01830. NR 62 TC 53 Z9 53 U1 3 U2 35 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 J9 J POWER SOURCES JI J. Power Sources PD APR 2 PY 2010 VL 195 IS 7 SI SI BP 1805 EP 1811 DI 10.1016/j.jpowsour.2009.10.036 PG 7 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA 547JM UT WOS:000273883400007 ER PT J AU Kang, HB Myung, ST Amine, K Lee, SM Sun, YK AF Kang, Han-Byeol Myung, Seung-Taek Amine, Khalil Lee, Sung-Man Sun, Yang-Kook TI Improved electrochemical properties of BiOF-coated 5 V spinel Li[Ni(0.5)Mni(1.5)]O-4 for rechargeable lithium batteries SO JOURNAL OF POWER SOURCES LA English DT Article DE 5 V spinel; BiOF coating; Cathode; HF scavenger; Lithium batteries ID SECONDARY BATTERIES; CATHODE MATERIAL; ION BATTERIES; LINI0.5MN1.5O4 SPINEL; LI; METAL; NI; POTENTIALS; ELECTRODES; OXIDES AB The electrochemical properties of BiOF-coated 5 V spinel Li[Ni0.5Mn1.5]O-4 were investigated at elevated temperatures (55 degrees C). As observed by scanning and transmission electron microscopy, BiOF nanolayers with similar to 10 nm thickness were coated on the surface of Li[Ni0.5Mn1.5]O-4. The BiOF coating layer protected the surface of the active materials from HF generated by the decomposition of LiPFG in the electrolyte during electrochemical cycling. The dissolution of transition metal elements was also suppressed upon cycling. Therefore, the capacity retention of the BiOF-coated Li[Ni0.5Mn1.5]O-4 was obviously improved compared to the pristine Li[Ni0.5Mn1.5]O-4 at 55 degrees C. (C) 2009 Elsevier B.V. All rights reserved. C1 [Kang, Han-Byeol; Sun, Yang-Kook] Hanyang Univ, Dept Chem Engn, Seoul 133791, South Korea. [Myung, Seung-Taek] Iwate Univ, Dept Chem Engn, Morioka, Iwate 0208551, Japan. [Amine, Khalil] Argonne Natl Lab, Chem Sci & Engn Div, Electrochem Technol Program, Argonne, IL 60439 USA. [Lee, Sung-Man] Kangwon Natl Univ, Dept Adv Mat Sci & Engn, Chunchon 200701, Kangwon Do, South Korea. RP Sun, YK (reprint author), Hanyang Univ, Dept Chem Engn, Seoul 133791, South Korea. EM smyung@iwate-u.ac.jp; yksun@hanyang.ac.kr RI Sun, Yang-Kook/B-9157-2013; Amine, Khalil/K-9344-2013 OI Sun, Yang-Kook/0000-0002-0117-0170; FU Ministry of Knowledge Economy, Korea [2008-11-0055] FX This research was supported by a grant from the Energy Technology R&D Programs of the Ministry of Knowledge Economy, Korea. (No. 2008-11-0055). NR 28 TC 68 Z9 75 U1 2 U2 40 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 J9 J POWER SOURCES JI J. Power Sources PD APR 2 PY 2010 VL 195 IS 7 SI SI BP 2023 EP 2028 DI 10.1016/j.jpowsour.2009.10.068 PG 6 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA 547JM UT WOS:000273883400039 ER PT J AU Tran, C Yang, XQ Qu, DY AF Tran, Chris Yang, Xiao-Qing Qu, Deyang TI Investigation of the gas-diffusion-electrode used as lithium/air cathode in non-aqueous electrolyte and the importance of carbon material porosity SO JOURNAL OF POWER SOURCES LA English DT Article DE Li-air; Gas-diffusion-electrode; Non-aqueous electrolyte; Porosity; Electrode passivation ID AIR SECONDARY BATTERIES; LITHIUM/OXYGEN BATTERY; ORGANIC ELECTROLYTE; CATALYST AB The gas-diffusion-electrode used in a Li-air cell has been studied in a unique homemade electrochemical cell. Three major obstacles for the development of a feasible Li-air system were discussed with a focus on the development of a functional gas-diffusion-electrode in non-aqueous electrolytes and the way of avoiding the passivation of gas-diffusion-electrodes caused by the deposition of the reduction products. It is the first time that the importance of establishing the 3-phase electrochemical interface in nonaqueous electrolyte is demonstrated by creating air-diffusion paths and an air saturated portion for an air cathode. A model mechanism of electrode passivation by the reaction products was also proposed. Lithium oxides formed during O(2) reduction tend to block small pores, preventing them from further utilization in the electrochemical reaction. On the other hand, lithium oxides would accumulate inside the large pores during the reduction until the density of oxides becomes high enough to choke-off the mass transfer. Carbon materials with a high surface area associated with larger pores should be selected to make the gas-diffusion-electrode for Li-air battery. For the first time, a near linear relationship between the capacity of GDE in a non-aqueous electrolyte and the average pore diameter was demonstrated, which could be used to estimate the capacity of the GDE quantitatively. (C) 2009 Elsevier B.V. All rights reserved. C1 [Tran, Chris; Qu, Deyang] Univ Massachusetts, Dept Chem, Boston, MA 02125 USA. [Yang, Xiao-Qing] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. RP Qu, DY (reprint author), Univ Massachusetts, Dept Chem, 100 Morrissey Blvd, Boston, MA 02125 USA. EM deyang.qu@umb.edu FU U.S. Department of Energy [DEAC02-98CH10886]; UMB FX The work was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies, under the program "Hybrid and Electric Systems," of the U.S. Department of Energy under Contract Number DEAC02-98CH10886. The work at UMB was also partially supported through the UMB faculty start-up grant. Both financial supports are gratefully acknowledged. NR 22 TC 180 Z9 189 U1 11 U2 122 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 J9 J POWER SOURCES JI J. Power Sources PD APR 2 PY 2010 VL 195 IS 7 SI SI BP 2057 EP 2063 DI 10.1016/j.jpowsour.2009.10.012 PG 7 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA 547JM UT WOS:000273883400044 ER PT J AU Joyce, CD McIntyre, T Simmons, S LaDuca, H Breitzer, JG Lopez, CM Jansen, AN Vaughey, JT AF Joyce, Christopher D. McIntyre, Toni Simmons, Sade LaDuca, Holly Breitzer, Jonathan G. Lopez, Carmen M. Jansen, Andrew N. Vaughey, J. T. TI Synthesis and electrochemical evaluation of an amorphous titanium dioxide derived from a solid state precursor SO JOURNAL OF POWER SOURCES LA English DT Article DE Titanium dioxide; Precursor; Electrochemistry; Anode ID RECHARGEABLE LITHIUM BATTERIES; ION INTERCALATION; BROOKITE TIO2; RUTILE TIO2; INSERTION; PERFORMANCE; STORAGE; NANOMATERIALS; ELECTRODES; CATHODE AB Titanium oxides are an important class of lithium-ion battery electrodes owing to their good capacity and stability within the cell environment. Although most Ti(IV) oxides are poor electronic conductors, new methods developed to synthesize nanometer scale primary particles have achieved the higher rate capability needed for modern commercial applications. In this report, the anionic water stable titanium oxalate anion [TiO(C(2)O(4))(2)](2-) was isolated in high yield as the insoluble DABCO (1,4-diazabicyclo[2.2.2]octane) salt. Powder X-ray diffraction studies show that the titanium dioxide material isolated after annealing in air is initially amorphous, converts to N-doped anatase above 400 degrees C, then to rutile above 600 degrees C. Electrochemical studies indicate that the amorphous titanium dioxide phase within a carbon matrix has a stable cycling capacity of similar to 350 mAh g(-1). On crystallizing at 400 degrees C to a carbon-coated anatase the capacity drops to 210 mAh g-1. and finally upon carbon burn-off to 50 mAh g(-1). Mixtures of the amorphous titanium dioxide and Li(4)Ti(5)O(12) showed a similar electrochemical profile and capacity to Li(4)Ti(5)O(12) but with the addition of a sloping region to the end of the discharge curve that could be advantageous for determining state-of-charge in systems using Li(4)Ti(5)O(12). (C) 2009 Elsevier B.V. All rights reserved. C1 [Joyce, Christopher D.; LaDuca, Holly; Lopez, Carmen M.; Jansen, Andrew N.; Vaughey, J. T.] Argonne Natl Lab, Electrochem Energy Storage Grp, Chem Sci & Engn Div, Argonne, IL 60439 USA. [McIntyre, Toni; Simmons, Sade; Breitzer, Jonathan G.] Fayetteville State Univ, Dept Nat Sci, Fayetteville, NC USA. RP Vaughey, JT (reprint author), Argonne Natl Lab, Electrochem Energy Storage Grp, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM vaughey@anl.gov RI Jansen, Andrew/Q-5912-2016; OI Jansen, Andrew/0000-0003-3244-7790; Lopez, Carmen M./0000-0002-6096-0674; Vaughey, John/0000-0002-2556-6129 FU U.S. Department of Energy [DE-AC02-06CH11357] FX The authors would like to thank Ms. Anna Baebler and Dr. Chris Johnson for their assistance. The research was performed, in part, at Argonne National Laboratory as a research participant in the FaST Program. The program is administered by Argonne's Division of Educational Programs with funding provided by the U.S. Department of Energy and the National Science Foundation's North Carolina Louis Stokes Alliance for Minority Participation. Support to conduct this work came from the Office of Vehicle Technologies (Batteries for Advanced Transportation Technologies (BATT) Program) of the U.S. Department of Energy under Contract No. DE-AC02-06CH11357 and is gratefully acknowledged. NR 29 TC 13 Z9 14 U1 0 U2 39 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 J9 J POWER SOURCES JI J. Power Sources PD APR 2 PY 2010 VL 195 IS 7 SI SI BP 2064 EP 2068 DI 10.1016/j.jpowsour.2009.10.061 PG 5 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA 547JM UT WOS:000273883400045 ER PT J AU Goodnick, S Korkin, A Krstic, P Mascher, P Preston, J Zaslavsky, A AF Goodnick, Stephen Korkin, Anatoli Krstic, Predrag Mascher, Peter Preston, John Zaslavsky, Alex TI Semiconductor nanotechnology: novel materials and devices for electronics, photonics and renewable energy applications SO NANOTECHNOLOGY LA English DT Editorial Material C1 [Goodnick, Stephen] Arizona State Univ, Tempe, AZ 85287 USA. [Krstic, Predrag] Oak Ridge Natl Lab, Oak Ridge, TN USA. [Mascher, Peter; Preston, John] McMaster Univ, Hamilton, ON L8S 4L8, Canada. [Zaslavsky, Alex] Brown Univ, Providence, RI 02912 USA. RP Goodnick, S (reprint author), Arizona State Univ, Tempe, AZ 85287 USA. RI Preston, John/B-5773-2009; Zaslavsky, Alexander/F-6232-2012 OI Preston, John/0000-0002-1612-1048; NR 2 TC 4 Z9 4 U1 0 U2 8 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0957-4484 J9 NANOTECHNOLOGY JI Nanotechnology PD APR 2 PY 2010 VL 21 IS 13 AR 130201 DI 10.1088/0957-4484/21/13/130201 PG 2 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA 564UD UT WOS:000275242200001 PM 20234072 ER PT J AU Koshkakaryan, G Cao, D Klivansky, LM Teat, SJ Tran, JL Liu, Y AF Koshkakaryan, Gayane Cao, Dennis Klivansky, Liana M. Teat, Simon J. Tran, Jasper L. Liu, Yi TI Dual Selectivity Expressed in [2+2+1] Dynamic Clipping of Unsymmetrical [2]Catenanes SO ORGANIC LETTERS LA English DT Article ID TEMPLATE-DIRECTED SYNTHESIS; DONOR-ACCEPTOR INTERACTIONS; TRANSLATIONAL ISOMERISM; THERMODYNAMIC CONTROL; MACHINE PROTOTYPES; COVALENT CHEMISTRY; MOLECULAR MACHINES; RING; METATHESIS; ROTAXANES AB A pi-templated dynamic [2 + 2 + 1] Clipping protocol Is established for the synthesis of [2]catenanes from two parts dialdehyde, two parts diamine, and one part tetracationic cyclophane. It is further diversified for the selective formation of an unsymmetrical [2]catenane showing great translational selectivity by employing two different dialdehydes in a one-pot reaction. The dual selectivity and the dynamic nature are verified by (1)H NMR spectroscopy, X-ray single-crystal structural studies, and exchange experiments. C1 [Koshkakaryan, Gayane; Cao, Dennis; Klivansky, Liana M.; Teat, Simon J.; Tran, Jasper L.; Liu, Yi] Univ Calif Berkeley, Lawrence Berkeley Lab, Mol Foundry & Adv Light Source, Berkeley, CA 94720 USA. RP Liu, Y (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Mol Foundry & Adv Light Source, Berkeley, CA 94720 USA. EM yliu@lbl.gov RI Liu, yi/A-3384-2008; Cao, Dennis/C-2240-2013 OI Liu, yi/0000-0002-3954-6102; Cao, Dennis/0000-0002-0315-1619 FU Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05, CH11231] FX This work and the Advanced Light Source are supported by the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05 CH11231. We thank Dr. Antonio Dipasquale of College of Chemistry, University of California, Berkeley for his help on X-ray structural analysis. NR 52 TC 24 Z9 24 U1 2 U2 9 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1523-7060 J9 ORG LETT JI Org. Lett. PD APR 2 PY 2010 VL 12 IS 7 BP 1528 EP 1531 DI 10.1021/ol100215c PG 4 WC Chemistry, Organic SC Chemistry GA 573CG UT WOS:000275885400039 PM 20199052 ER PT J AU Aaltonen, T Adelman, J Akimoto, T Gonzalez, BA Amerio, S Amidei, D Anastassov, A Annovi, A Antos, J Apollinari, G Apresyan, A Arisawa, T Artikov, A Ashmanskas, W Attal, A Aurisano, A Azfar, F Badgett, W Barbaro-Galtieri, A Barnes, VE Barnett, BA Barria, P Bartos, P Bartsch, V Bauer, G Beauchemin, PH Bedeschi, F Beecher, D Behari, S Bellettini, G Bellinger, J Benjamin, D Beretvas, A Beringer, J Bhatti, A Binkley, M Bisello, D Bizjak, I Blair, RE Blocker, C Blumenfeld, B Bocci, A Bodek, A Boisvert, V Bolla, G Bortoletto, D Boudreau, J Boveia, A Brau, B Bridgeman, A Brigliadori, L Bromberg, C Brubaker, E Budagov, J Budd, HS Budd, S Burke, S Burkett, K Busetto, G Bussey, P Buzatu, A Byrum, KL Cabrera, S Calancha, C Campanelli, M Campbell, M Canelli, F Canepa, A Carls, B Carlsmith, D Carosi, R Carrillo, S Carron, S Casal, B Casarsa, M Castro, A Catastini, P Cauz, D Cavaliere, V Cavalli-Sforza, M Cerri, A Cerrito, L Chang, SH Chen, YC Chertok, M Chiarelli, G Chlachidze, G Chlebana, F Cho, K Chokheli, D Chou, JP Choudalakis, G Chuang, SH Chung, K Chung, WH Chung, YS Chwalek, T Ciobanu, CI Ciocci, MA Clark, A Clark, D Compostella, G Convery, ME Conway, J Cordelli, M Cortiana, G Cox, CA Cox, DJ Crescioli, F Almenar, CC Cuevas, J Culbertson, R Cully, JC Dagenhart, D Datta, M Davies, T de Barbaro, P De Cecco, S Deisher, A De Lorenzo, G Dell'Orso, M Deluca, C Demortier, L Deng, J Deninno, M Derwent, PF Di Canto, A di Giovanni, GP Dionisi, C Di Ruzza, B Dittmann, JR D'Onofrio, M Donati, S Dong, P Donini, J Dorigo, T Dube, S Efron, J Elagin, A Erbacher, R Errede, D Errede, S Eusebi, R Fang, HC Farrington, S Fedorko, WT Feild, RG Feindt, M Fernandez, JP Ferrazza, C Field, R Flanagan, G Forrest, R Frank, MJ Franklin, M Freeman, JC Furic, I Gallinaro, M Galyardt, J Garberson, F Garcia, JE Garfinkel, AF Garosi, P Genser, K Gerberich, H Gerdes, D Gessler, A Giagu, S Giakoumopoulou, V Giannetti, P Gibson, K Gimmell, JL Ginsburg, CM Giokaris, N Giordani, M Giromini, P Giunta, M Giurgiu, G Glagolev, V Glenzinski, D Gold, M Goldschmidt, N Golossanov, A Gomez, G Gomez-Ceballos, G Goncharov, M Gonzalez, O Gorelov, I Goshaw, AT Goulianos, K Gresele, A Grinstein, S Grosso-Pilcher, C Group, RC Grundler, U da Costa, JG Gunay-Unalan, Z Haber, C Hahn, K Hahn, SR Halkiadakis, E Han, BY Han, JY Happacher, F Hara, K Hare, D Hare, M Harper, S Harr, RF Harris, RM Hartz, M Hatakeyama, K Hays, C Heck, M Heijboer, A Heinrich, J Henderson, C Herndon, M Heuser, J Hewamanage, S Hidas, D Hill, CS Hirschbuehl, D Hocker, A Hou, S Houlden, M Hsu, SC Huffman, BT Hughes, RE Husemann, U Hussein, M Huston, J Incandela, J Introzzi, G Iori, M Ivanov, A James, E Jang, D Jayatilaka, B Jeon, EJ Jha, MK Jindariani, S Johnson, W Jones, M Joo, KK Jun, SY Jung, JE Junk, TR Kamon, T Kar, D Karchin, PE Kato, Y Kephart, R Ketchum, W Keung, J Khotilovich, V Kilminster, B Kim, DH Kim, HS Kim, HW Kim, JE Kim, MJ Kim, SB Kim, SH Kim, YK Kimura, N Kirsch, L Klimenko, S Knuteson, B Ko, BR Kondo, K Kong, DJ Konigsberg, J Korytov, A Kotwal, AV Kreps, M Kroll, J Krop, D Krumnack, N Kruse, M Krutelyov, V Kubo, T Kuhr, T Kulkarni, NP Kurata, M Kwang, S Laasanen, AT Lami, S Lammel, S Lancaster, M Lander, RL Lannon, K Lath, A Latino, G Lazzizzera, I LeCompte, T Lee, E Lee, HS Lee, SW Leone, S Lewis, JD Lin, CS Linacre, J Lindgren, M Lipeles, E Lister, A Litvintsev, DO Liu, C Liu, T Lockyer, NS Loginov, A Loreti, M Lovas, L Lucchesi, D Luci, C Lueck, J Lujan, P Lukens, P Lungu, G Lyons, L Lys, J Lysak, R MacQueen, D Madrak, R Maeshima, K Makhoul, K Maki, T Maksimovic, P Malde, S Malik, S Manca, G Manousakis-Katsikakis, A Margaroli, F Marino, C Marino, CP Martin, A Martin, V Martinez, M Martinez-Ballarin, R Maruyama, T Mastrandrea, P Masubuchi, T Mathis, M Mattson, ME Mazzanti, P McFarland, KS McIntyre, P McNulty, R Mehta, A Mehtala, P Menzione, A Merkel, P Mesropian, C Miao, T Miladinovic, N Miller, R Mills, C Milnik, M Mitra, A Mitselmakher, G Miyake, H Moed, S Moggi, N Mondragon, MN Moon, CS Moore, R Morello, MJ Morlock, J Fernandez, PM Mulmenstadt, J Mukherjee, A Muller, T Mumford, R Murat, P Mussini, M Nachtman, J Nagai, Y Nagano, A Naganoma, J Nakamura, K Nakano, I Napier, A Necula, V Nett, J Neu, C Neubauer, MS Neubauer, S Nielsen, J Nodulman, L Norman, M Norniella, O Nurse, E Oakes, L Oh, SH Oh, YD Oksuzian, I Okusawa, T Orava, R Osterberg, K Griso, SP Pagliarone, C Palencia, E Papadimitriou, V Papaikonomou, A Paramonov, AA Parks, B Pashapour, S Patrick, J Pauletta, G Paulini, M Paus, C Peiffer, T Pellett, DE Penzo, A Phillips, TJ Piacentino, G Pianori, E Pinera, L Pitts, K Plager, C Pondrom, L Poukhov, O Pounder, N Prakoshyn, F Pronko, A Proudfoot, J Ptohos, F Pueschel, E Punzi, G Pursley, J Rademacker, J Rahaman, A Ramakrishnan, V Ranjan, N Redondo, I Renton, P Renz, M Rescigno, M Richter, S Rimondi, F Ristori, L Robson, A Rodrigo, T Rodriguez, T Rogers, E Rolli, S Roser, R Rossi, M Rossin, R Roy, P Ruiz, A Russ, J Rusu, V Rutherford, B Saarikko, H Safonov, A Sakumoto, WK Salto, O Santi, L Sarkar, S Sartori, L Sato, K Savoy-Navarro, A Schlabach, P Schmidt, A Schmidt, EE Schmidt, MA Schmidt, MP Schmitt, M Schwarz, T Scodellaro, L Scribano, A Scuri, F Sedov, A Seidel, S Seiya, Y Semenov, A Sexton-Kennedy, L Sforza, F Sfyrla, A Shalhout, SZ Shears, T Shepard, PF Shimojima, M Shiraishi, S Shochet, M Shon, Y Shreyber, I Simonenko, A Sinervo, P Sisakyan, A Slaughter, AJ Slaunwhite, J Sliwa, K Smith, JR Snider, FD Snihur, R Soderberg, M Soha, A Somalwar, S Sorin, V Spreitzer, T Squillacioti, P Stanitzki, M St Denis, R Stelzer, B Stelzer-Chilton, O Stentz, D Strologas, J Strycker, GL Suh, JS Sukhanov, A Suslov, I Suzuki, T Taffard, A Takashima, R Takeuchi, Y Tanaka, R Tecchio, M Teng, PK Terashi, K Thom, J Thompson, AS Thompson, GA Thomson, E Tipton, P Ttito-Guzman, P Tkaczyk, S Toback, D Tokar, S Tollefson, K Tomura, T Tonelli, D Torre, S Torretta, D Totaro, P Tourneur, S Trovato, M Tsai, SY Tu, Y Turini, N Ukegawa, F Vallecorsa, S van Remortel, N Varganov, A Vataga, E Vazquez, F Velev, G Vellidis, C Vidal, M Vidal, R Vila, I Vilar, R Vine, T Vogel, M Volobouev, I Volpi, G Wagner, P Wagner, RG Wagner, RL Wagner, W Wagner-Kuhr, J Wakisaka, T Wallny, R Wang, SM Warburton, A Waters, D Weinberger, M Weinelt, J Wester, WC Whitehouse, B Whiteson, D Wicklund, AB Wicklund, E Wilbur, S Williams, G Williams, HH Wilson, P Winer, BL Wittich, P Wolbers, S Wolfe, C Wright, T Wu, X Wurthwein, F Xie, S Yagil, A Yamamoto, K Yamaoka, J Yang, UK Yang, YC Yao, WM Yeh, GP Yi, K Yoh, J Yorita, K Yoshida, T Yu, GB Yu, I Yu, SS Yun, JC Zanello, L Zanetti, A Zhang, X Zheng, Y Zucchelli, S AF Aaltonen, T. Adelman, J. Akimoto, T. Alvarez Gonzalez, B. Amerio, S. Amidei, D. Anastassov, A. Annovi, A. Antos, J. Apollinari, G. Apresyan, A. Arisawa, T. Artikov, A. Ashmanskas, W. Attal, A. Aurisano, A. Azfar, F. Badgett, W. Barbaro-Galtieri, A. Barnes, V. E. Barnett, B. A. Barria, P. Bartos, P. Bartsch, V. Bauer, G. Beauchemin, P. -H. Bedeschi, F. Beecher, D. Behari, S. Bellettini, G. Bellinger, J. Benjamin, D. Beretvas, A. Beringer, J. Bhatti, A. Binkley, M. Bisello, D. Bizjak, I. Blair, R. E. Blocker, C. Blumenfeld, B. Bocci, A. Bodek, A. Boisvert, V. Bolla, G. Bortoletto, D. Boudreau, J. Boveia, A. Brau, B. Bridgeman, A. Brigliadori, L. Bromberg, C. Brubaker, E. Budagov, J. Budd, H. S. Budd, S. Burke, S. Burkett, K. Busetto, G. Bussey, P. Buzatu, A. Byrum, K. L. Cabrera, S. Calancha, C. Campanelli, M. Campbell, M. Canelli, F. Canepa, A. Carls, B. Carlsmith, D. Carosi, R. Carrillo, S. Carron, S. Casal, B. Casarsa, M. Castro, A. Catastini, P. Cauz, D. Cavaliere, V. Cavalli-Sforza, M. Cerri, A. Cerrito, L. Chang, S. H. Chen, Y. C. Chertok, M. Chiarelli, G. Chlachidze, G. Chlebana, F. Cho, K. Chokheli, D. Chou, J. P. Choudalakis, G. Chuang, S. H. Chung, K. Chung, W. H. Chung, Y. S. Chwalek, T. Ciobanu, C. I. Ciocci, M. A. Clark, A. Clark, D. Compostella, G. Convery, M. E. Conway, J. Cordelli, M. Cortiana, G. Cox, C. A. Cox, D. J. Crescioli, F. Almenar, C. Cuenca Cuevas, J. Culbertson, R. Cully, J. C. Dagenhart, D. Datta, M. Davies, T. de Barbaro, P. De Cecco, S. Deisher, A. De Lorenzo, G. Dell'Orso, M. Deluca, C. Demortier, L. Deng, J. Deninno, M. Derwent, P. F. Di Canto, A. di Giovanni, G. P. Dionisi, C. Di Ruzza, B. Dittmann, J. R. D'Onofrio, M. Donati, S. Dong, P. Donini, J. Dorigo, T. Dube, S. Efron, J. Elagin, A. Erbacher, R. Errede, D. Errede, S. Eusebi, R. Fang, H. C. Farrington, S. Fedorko, W. T. Feild, R. G. Feindt, M. Fernandez, J. P. Ferrazza, C. Field, R. Flanagan, G. Forrest, R. Frank, M. J. Franklin, M. Freeman, J. C. Furic, I. Gallinaro, M. Galyardt, J. Garberson, F. Garcia, J. E. Garfinkel, A. F. Garosi, P. Genser, K. Gerberich, H. Gerdes, D. Gessler, A. Giagu, S. Giakoumopoulou, V. Giannetti, P. Gibson, K. Gimmell, J. L. Ginsburg, C. M. Giokaris, N. Giordani, M. Giromini, P. Giunta, M. Giurgiu, G. Glagolev, V. Glenzinski, D. Gold, M. Goldschmidt, N. Golossanov, A. Gomez, G. Gomez-Ceballos, G. Goncharov, M. Gonzalez, O. Gorelov, I. Goshaw, A. T. Goulianos, K. Gresele, A. Grinstein, S. Grosso-Pilcher, C. Group, R. C. Grundler, U. da Costa, J. Guimaraes Gunay-Unalan, Z. Haber, C. Hahn, K. Hahn, S. R. Halkiadakis, E. Han, B. -Y. Han, J. Y. Happacher, F. Hara, K. Hare, D. Hare, M. Harper, S. Harr, R. F. Harris, R. M. Hartz, M. Hatakeyama, K. Hays, C. Heck, M. Heijboer, A. Heinrich, J. Henderson, C. Herndon, M. Heuser, J. Hewamanage, S. Hidas, D. Hill, C. S. Hirschbuehl, D. Hocker, A. Hou, S. Houlden, M. Hsu, S. -C. Huffman, B. T. Hughes, R. E. Husemann, U. Hussein, M. Huston, J. Incandela, J. Introzzi, G. Iori, M. Ivanov, A. James, E. Jang, D. Jayatilaka, B. Jeon, E. J. Jha, M. K. Jindariani, S. Johnson, W. Jones, M. Joo, K. K. Jun, S. Y. Jung, J. E. Junk, T. R. Kamon, T. Kar, D. Karchin, P. E. Kato, Y. Kephart, R. Ketchum, W. Keung, J. Khotilovich, V. Kilminster, B. Kim, D. H. Kim, H. S. Kim, H. W. Kim, J. E. Kim, M. J. Kim, S. B. Kim, S. H. Kim, Y. K. Kimura, N. Kirsch, L. Klimenko, S. Knuteson, B. Ko, B. R. Kondo, K. Kong, D. J. Konigsberg, J. Korytov, A. Kotwal, A. V. Kreps, M. Kroll, J. Krop, D. Krumnack, N. Kruse, M. Krutelyov, V. Kubo, T. Kuhr, T. Kulkarni, N. P. Kurata, M. Kwang, S. Laasanen, A. T. Lami, S. Lammel, S. Lancaster, M. Lander, R. L. Lannon, K. Lath, A. Latino, G. Lazzizzera, I. LeCompte, T. Lee, E. Lee, H. S. Lee, S. W. Leone, S. Lewis, J. D. Lin, C. -S. Linacre, J. Lindgren, M. Lipeles, E. Lister, A. Litvintsev, D. O. Liu, C. Liu, T. Lockyer, N. S. Loginov, A. Loreti, M. Lovas, L. Lucchesi, D. Luci, C. Lueck, J. Lujan, P. Lukens, P. Lungu, G. Lyons, L. Lys, J. Lysak, R. MacQueen, D. Madrak, R. Maeshima, K. Makhoul, K. Maki, T. Maksimovic, P. Malde, S. Malik, S. Manca, G. Manousakis-Katsikakis, A. Margaroli, F. Marino, C. Marino, C. P. Martin, A. Martin, V. Martinez, M. Martinez-Ballarin, R. Maruyama, T. Mastrandrea, P. Masubuchi, T. Mathis, M. Mattson, M. E. Mazzanti, P. McFarland, K. S. McIntyre, P. McNulty, R. Mehta, A. Mehtala, P. Menzione, A. Merkel, P. Mesropian, C. Miao, T. Miladinovic, N. Miller, R. Mills, C. Milnik, M. Mitra, A. Mitselmakher, G. Miyake, H. Moed, S. Moggi, N. Mondragon, M. N. Moon, C. S. Moore, R. Morello, M. J. Morlock, J. Fernandez, P. Movilla Muelmenstaedt, J. Mukherjee, A. Muller, Th. Mumford, R. Murat, P. Mussini, M. Nachtman, J. Nagai, Y. Nagano, A. Naganoma, J. Nakamura, K. Nakano, I. Napier, A. Necula, V. Nett, J. Neu, C. Neubauer, M. S. Neubauer, S. Nielsen, J. Nodulman, L. Norman, M. Norniella, O. Nurse, E. Oakes, L. Oh, S. H. Oh, Y. D. Oksuzian, I. Okusawa, T. Orava, R. Osterberg, K. Griso, S. Pagan Pagliarone, C. Palencia, E. Papadimitriou, V. Papaikonomou, A. Paramonov, A. A. Parks, B. Pashapour, S. Patrick, J. Pauletta, G. Paulini, M. Paus, C. Peiffer, T. Pellett, D. E. Penzo, A. Phillips, T. J. Piacentino, G. Pianori, E. Pinera, L. Pitts, K. Plager, C. Pondrom, L. Poukhov, O. Pounder, N. Prakoshyn, F. Pronko, A. Proudfoot, J. Ptohos, F. Pueschel, E. Punzi, G. Pursley, J. Rademacker, J. Rahaman, A. Ramakrishnan, V. Ranjan, N. Redondo, I. Renton, P. Renz, M. Rescigno, M. Richter, S. Rimondi, F. Ristori, L. Robson, A. Rodrigo, T. Rodriguez, T. Rogers, E. Rolli, S. Roser, R. Rossi, M. Rossin, R. Roy, P. Ruiz, A. Russ, J. Rusu, V. Rutherford, B. Saarikko, H. Safonov, A. Sakumoto, W. K. Salto, O. Santi, L. Sarkar, S. Sartori, L. Sato, K. Savoy-Navarro, A. Schlabach, P. Schmidt, A. Schmidt, E. E. Schmidt, M. A. Schmidt, M. P. Schmitt, M. Schwarz, T. Scodellaro, L. Scribano, A. Scuri, F. Sedov, A. Seidel, S. Seiya, Y. Semenov, A. Sexton-Kennedy, L. Sforza, F. Sfyrla, A. Shalhout, S. Z. Shears, T. Shepard, P. F. Shimojima, M. Shiraishi, S. Shochet, M. Shon, Y. Shreyber, I. Simonenko, A. Sinervo, P. Sisakyan, A. Slaughter, A. J. Slaunwhite, J. Sliwa, K. Smith, J. R. Snider, F. D. Snihur, R. Soderberg, M. Soha, A. Somalwar, S. Sorin, V. Spreitzer, T. Squillacioti, P. Stanitzki, M. St Denis, R. Stelzer, B. Stelzer-Chilton, O. Stentz, D. Strologas, J. Strycker, G. L. Suh, J. S. Sukhanov, A. Suslov, I. Suzuki, T. Taffard, A. Takashima, R. Takeuchi, Y. Tanaka, R. Tecchio, M. Teng, P. K. Terashi, K. Thom, J. Thompson, A. S. Thompson, G. A. Thomson, E. Tipton, P. Ttito-Guzman, P. Tkaczyk, S. Toback, D. Tokar, S. Tollefson, K. Tomura, T. Tonelli, D. Torre, S. Torretta, D. Totaro, P. Tourneur, S. Trovato, M. Tsai, S. -Y. Tu, Y. Turini, N. Ukegawa, F. Vallecorsa, S. van Remortel, N. Varganov, A. Vataga, E. Vazquez, F. Velev, G. Vellidis, C. Vidal, M. Vidal, R. Vila, I. Vilar, R. Vine, T. Vogel, M. Volobouev, I. Volpi, G. Wagner, P. Wagner, R. G. Wagner, R. L. Wagner, W. Wagner-Kuhr, J. Wakisaka, T. Wallny, R. Wang, S. M. Warburton, A. Waters, D. Weinberger, M. Weinelt, J. Wester, W. C., III Whitehouse, B. Whiteson, D. Wicklund, A. B. Wicklund, E. Wilbur, S. Williams, G. Williams, H. H. Wilson, P. Winer, B. L. Wittich, P. Wolbers, S. Wolfe, C. Wright, T. Wu, X. Wuerthwein, F. Xie, S. Yagil, A. Yamamoto, K. Yamaoka, J. Yang, U. K. Yang, Y. C. Yao, W. M. Yeh, G. P. Yi, K. Yoh, J. Yorita, K. Yoshida, T. Yu, G. B. Yu, I. Yu, S. S. Yun, J. C. Zanello, L. Zanetti, A. Zhang, X. Zheng, Y. Zucchelli, S. CA CDF Collaboration TI First Measurement of the b-Jet Cross Section in Events with a W Boson in p(p)over-bar Collisions at root s=1.96 TeV SO PHYSICAL REVIEW LETTERS LA English DT Article ID DETECTOR; PHYSICS AB The cross section for jets from b quarks produced with a W boson has been measured in p (p) over bar collision data from 1: 9 fb(-1) of integrated luminosity recorded by the CDF II detector at the Tevatron. The W + b-jets process poses a significant background in measurements of top quark production and prominent searches for the Higgs boson. We measure a b-jet cross section of 2.74 + 0.27(stat) +/- 0.42(syst) pb in association with a single flavor of leptonic W boson decay over a limited kinematic phase space. This measured result cannot be accommodated in several available theoretical predictions. C1 [Aaltonen, T.; Maki, T.; Mehtala, P.; Orava, R.; Osterberg, K.; Saarikko, H.; van Remortel, N.] Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. [Aaltonen, T.; Maki, T.; Mehtala, P.; Orava, R.; Osterberg, K.; Saarikko, H.; van Remortel, N.] Helsinki Inst Phys, FIN-00014 Helsinki, Finland. [Chen, Y. C.; Hou, S.; Martin, V.; Mitra, A.; Teng, P. K.; Tsai, S. -Y.; Wang, S. M.] Acad Sinica, Inst Phys, Taipei 11529, Taiwan. [Blair, R. E.; Byrum, K. L.; LeCompte, T.; Nodulman, L.; Proudfoot, J.; Wagner, R. G.; Wicklund, A. B.] Argonne Natl Lab, Argonne, IL 60439 USA. [Giakoumopoulou, V.; Giokaris, N.; Manousakis-Katsikakis, A.; Vellidis, C.] Univ Athens, GR-15771 Athens, Greece. [Attal, A.; Cavalli-Sforza, M.; De Lorenzo, G.; Deluca, C.; D'Onofrio, M.; Martinez, M.; Salto, O.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. [Dittmann, J. R.; Frank, M. J.; Hewamanage, S.; Krumnack, N.] Baylor Univ, Waco, TX 76798 USA. [Brigliadori, L.; Castro, A.; Deninno, M.; Jha, M. K.; Mazzanti, P.; Moggi, N.; Mussini, M.; Rimondi, F.; Zucchelli, S.] Ist Nazl Fis Nucl Bologna, I-40127 Bologna, Italy. [Brigliadori, L.; Castro, A.; Deninno, M.; Jha, M. K.; Mazzanti, P.; Moggi, N.; Mussini, M.; Rimondi, F.; Zucchelli, S.] Univ Bologna, I-40127 Bologna, Italy. [Blocker, C.; Clark, D.; Kirsch, L.; Miladinovic, N.] Brandeis Univ, Waltham, MA 02254 USA. [Chertok, M.; Conway, J.; Cox, C. A.; Cox, D. J.; Almenar, C. Cuenca; Erbacher, R.; Forrest, R.; Ivanov, A.; Johnson, W.; Lander, R. L.; Lister, A.; Pellett, D. E.; Schwarz, T.; Smith, J. R.; Soha, A.] Univ Calif Davis, Davis, CA 95616 USA. [Dong, P.; Plager, C.; Wallny, R.; Zheng, Y.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Norman, M.; Wuerthwein, F.; Yagil, A.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Boveia, A.; Brau, B.; Garberson, F.; Hill, C. S.; Incandela, J.; Krutelyov, V.; Rossin, R.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Alvarez Gonzalez, B.; Casal, B.; Cuevas, J.; Gomez, G.; Rodrigo, T.; Ruiz, A.; Scodellaro, L.; Vila, I.; Vilar, R.] Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain. [Galyardt, J.; Jang, D.; Jun, S. Y.; Paulini, M.; Pueschel, E.; Russ, J.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Adelman, J.; Brubaker, E.; Canelli, F.; Fedorko, W. T.; Grosso-Pilcher, C.; Ketchum, W.; Kim, Y. K.; Krop, D.; Kwang, S.; Lee, H. S.; Paramonov, A. A.; Schmidt, M. A.; Shiraishi, S.; Shochet, M.; Wilbur, S.; Wolfe, C.; Yang, U. K.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Antos, J.; Bartos, P.; Lovas, L.; Lysak, R.; Tokar, S.] Comenius Univ, Bratislava 84248, Slovakia. [Antos, J.; Bartos, P.; Lovas, L.; Lysak, R.; Tokar, S.] Inst Expt Phys, Kosice 04001, Slovakia. [Artikov, A.; Budagov, J.; Chokheli, D.; Glagolev, V.; Poukhov, O.; Prakoshyn, F.; Semenov, A.; Simonenko, A.; Sisakyan, A.; Suslov, I.] Joint Inst Nucl Res, RU-141980 Dubna, Russia. [Benjamin, D.; Bocci, A.; Cabrera, S.; Deng, J.; Goshaw, A. T.; Hidas, D.; Jayatilaka, B.; Ko, B. R.; Kotwal, A. V.; Kruse, M.; Necula, V.; Oh, S. H.; Phillips, T. J.; Yamaoka, J.] Duke Univ, Durham, NC 27708 USA. [Apollinari, G.; Ashmanskas, W.; Badgett, W.; Beretvas, A.; Binkley, M.; Burke, S.; Burkett, K.; Canelli, F.; Casarsa, M.; Chlachidze, G.; Chlebana, F.; Chung, K.; Convery, M. E.; Culbertson, R.; Dagenhart, D.; Datta, M.; Derwent, P. F.; Eusebi, R.; Freeman, J. C.; Genser, K.; Ginsburg, C. M.; Glenzinski, D.; Golossanov, A.; Group, R. C.; Hahn, S. R.; Harris, R. M.; Hocker, A.; James, E.; Jindariani, S.; Junk, T. R.; Kephart, R.; Kilminster, B.; Lammel, S.; Lewis, J. D.; Lindgren, M.; Litvintsev, D. O.; Liu, T.; Lukens, P.; Madrak, R.; Maeshima, K.; Miao, T.; Mondragon, M. N.; Moore, R.; Fernandez, P. Movilla; Mukherjee, A.; Murat, P.; Nachtman, J.; Palencia, E.; Papadimitriou, V.; Patrick, J.; Pronko, A.; Ptohos, F.; Roser, R.; Rusu, V.; Rutherford, B.; Sato, K.; Schlabach, P.; Schmidt, E. E.; Sexton-Kennedy, L.; Slaughter, A. J.; Snider, F. D.; Thom, J.; Tkaczyk, S.; Tonelli, D.; Torretta, D.; Velev, G.; Vidal, R.; Wagner, R. L.; Wester, W. C., III; Wicklund, E.; Wilson, P.; Wittich, P.; Wolbers, S.; Yeh, G. P.; Yi, K.; Yoh, J.; Yu, S. S.; Yun, J. C.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Carrillo, S.; Field, R.; Furic, I.; Goldschmidt, N.; Kar, D.; Klimenko, S.; Konigsberg, J.; Korytov, A.; Mitselmakher, G.; Oksuzian, I.; Pinera, L.; Sukhanov, A.; Vazquez, F.] Univ Florida, Gainesville, FL 32611 USA. [Annovi, A.; Cordelli, M.; Giromini, P.; Happacher, F.; Kim, M. J.; Torre, S.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Clark, A.; Garcia, J. E.; Vallecorsa, S.; Wu, X.] Univ Geneva, CH-1211 Geneva 4, Switzerland. [Bussey, P.; Davies, T.; Martin, V.; Robson, A.; St Denis, R.; Thompson, A. S.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. [Chou, J. P.; Franklin, M.; Grinstein, S.; da Costa, J. Guimaraes; Mills, C.; Moed, S.] Harvard Univ, Cambridge, MA 02138 USA. [Bridgeman, A.; Budd, S.; Carls, B.; Errede, D.; Errede, S.; Gerberich, H.; Grundler, U.; Marino, C. P.; Neubauer, M. S.; Norniella, O.; Pitts, K.; Rogers, E.; Sfyrla, A.; Taffard, A.; Thompson, G. A.; Zhang, X.] Univ Illinois, Urbana, IL 61801 USA. [Barnett, B. A.; Behari, S.; Blumenfeld, B.; Giurgiu, G.; Maksimovic, P.; Mathis, M.; Mumford, R.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Chwalek, T.; Feindt, M.; Gessler, A.; Heck, M.; Heuser, J.; Hirschbuehl, D.; Kreps, M.; Kuhr, T.; Lueck, J.; Marino, C.; Milnik, M.; Morlock, J.; Muller, Th.; Neubauer, S.; Papaikonomou, A.; Peiffer, T.; Renz, M.; Richter, S.; Schmidt, A.; Wagner, W.; Wagner-Kuhr, J.] Univ Karlsruhe, Inst Expt Kernphys, D-76128 Karlsruhe, Germany. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Kyungpook Natl Univ, Ctr High Energy Phys, Taegu 702701, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Seoul Natl Univ, Seoul 151742, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Sungkyunkwan Univ, Suwon 440746, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Korea Inst Sci & Technol Informat, Taejon 305806, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Chonnam Natl Univ, Kwangju 500757, South Korea. Chonbuk Natl Univ, Jeonju 561756, South Korea. [Barbaro-Galtieri, A.; Beringer, J.; Cerri, A.; Deisher, A.; Fang, H. C.; Haber, C.; Hsu, S. -C.; Lin, C. -S.; Lujan, P.; Lys, J.; Muelmenstaedt, J.; Nielsen, J.; Volobouev, I.; Yao, W. M.] Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Houlden, M.; Manca, G.; McNulty, R.; Mehta, A.; Shears, T.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Bartsch, V.; Beecher, D.; Bizjak, I.; Cerrito, L.; Lancaster, M.; Malik, S.; Nurse, E.; Vine, T.; Waters, D.] UCL, London WC1E 6BT, England. [Calancha, C.; Fernandez, J. P.; Gonzalez, O.; Martinez-Ballarin, R.; Redondo, I.; Ttito-Guzman, P.; Vidal, M.] CIEMAT, E-28040 Madrid, Spain. [Bauer, G.; Choudalakis, G.; Gomez-Ceballos, G.; Goncharov, M.; Hahn, K.; Henderson, C.; Knuteson, B.; Makhoul, K.; Paus, C.; Xie, S.] MIT, Cambridge, MA 02139 USA. [Beauchemin, P. -H.; Buzatu, A.; Carron, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] McGill Univ, Inst Particle Phys, Montreal, PQ H3A 2T8, Canada. [Beauchemin, P. -H.; Buzatu, A.; Carron, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada. [Beauchemin, P. -H.; Buzatu, A.; Carron, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] Univ Toronto, Toronto, ON M5S 1A7, Canada. [Beauchemin, P. -H.; Buzatu, A.; Carron, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Amidei, D.; Campbell, M.; Cully, J. C.; Gerdes, D.; Soderberg, M.; Strycker, G. L.; Tecchio, M.; Varganov, A.; Wright, T.] Univ Michigan, Ann Arbor, MI 48109 USA. [Bromberg, C.; Campanelli, M.; Gunay-Unalan, Z.; Hussein, M.; Huston, J.; Miller, R.; Sorin, V.; Tollefson, K.] Michigan State Univ, E Lansing, MI 48824 USA. [Shreyber, I.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Gold, M.; Gorelov, I.; Seidel, S.; Strologas, J.; Vogel, M.] Univ New Mexico, Albuquerque, NM 87131 USA. [Anastassov, A.; Schmitt, M.; Stentz, D.] Northwestern Univ, Evanston, IL 60208 USA. [Efron, J.; Hughes, R. E.; Lannon, K.; Parks, B.; Slaunwhite, J.; Winer, B. L.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.; Takashima, R.; Tanaka, R.] Okayama Univ, Okayama 7008530, Japan. [Kato, Y.; Okusawa, T.; Seiya, Y.; Wakisaka, T.; Yamamoto, K.; Yoshida, T.] Osaka City Univ, Osaka 588, Japan. [Azfar, F.; Farrington, S.; Harper, S.; Hays, C.; Huffman, B. T.; Linacre, J.; Lyons, L.; Malde, S.; Oakes, L.; Pounder, N.; Rademacker, J.; Renton, P.] Univ Oxford, Oxford OX1 3RH, England. [Amerio, S.; Bisello, D.; Busetto, G.; Compostella, G.; Cortiana, G.; Donini, J.; Dorigo, T.; Gresele, A.; Lazzizzera, I.; Loreti, M.; Lucchesi, D.; Griso, S. Pagan; Sartori, L.] Ist Nazl Fis Nucl, Sez Padova Trento, I-35131 Padua, Italy. [Amerio, S.; Bisello, D.; Busetto, G.; Compostella, G.; Cortiana, G.; Donini, J.; Dorigo, T.; Gresele, A.; Lazzizzera, I.; Loreti, M.; Lucchesi, D.; Griso, S. Pagan; Sartori, L.] Univ Padua, I-35131 Padua, Italy. [Ciobanu, C. I.; di Giovanni, G. P.; Savoy-Navarro, A.; Tourneur, S.] Univ Paris 06, CNRS, IN2P3, LPNHE, F-75252 Paris, France. [Canepa, A.; Heijboer, A.; Heinrich, J.; Keung, J.; Kroll, J.; Lipeles, E.; Lockyer, N. S.; Neu, C.; Pianori, E.; Rodriguez, T.; Thomson, E.; Tu, Y.; Wagner, P.; Whiteson, D.; Williams, H. H.] Univ Penn, Philadelphia, PA 19104 USA. [Barria, P.; Bedeschi, F.; Bellettini, G.; Carosi, R.; Catastini, P.; Cavaliere, V.; Chiarelli, G.; Ciocci, M. A.; Crescioli, F.; Dell'Orso, M.; Di Canto, A.; Donati, S.; Ferrazza, C.; Garosi, P.; Giannetti, P.; Giunta, M.; Introzzi, G.; Lami, S.; Latino, G.; Leone, S.; Menzione, A.; Morello, M. J.; Piacentino, G.; Punzi, G.; Ristori, L.; Scribano, A.; Scuri, F.; Sforza, F.; Squillacioti, P.; Trovato, M.; Turini, N.; Vataga, E.; Volpi, G.] Ist Nazl Fis Nucl, I-56127 Pisa, Italy. [Bellettini, G.; Chiarelli, G.; Crescioli, F.; Dell'Orso, M.; Di Canto, A.; Donati, S.; Lami, S.; Latino, G.; Piacentino, G.; Punzi, G.; Ristori, L.; Scribano, A.; Scuri, F.; Sforza, F.; Squillacioti, P.; Trovato, M.; Volpi, G.] Univ Pisa, I-56127 Pisa, Italy. [Barria, P.; Bedeschi, F.; Bellettini, G.; Carosi, R.; Catastini, P.; Cavaliere, V.; Chiarelli, G.; Ciocci, M. A.; Crescioli, F.; Dell'Orso, M.; Di Canto, A.; Donati, S.; Ferrazza, C.; Garosi, P.; Giannetti, P.; Giunta, M.; Introzzi, G.; Lami, S.; Latino, G.; Leone, S.; Menzione, A.; Morello, M. J.; Ristori, L.; Squillacioti, P.; Trovato, M.; Turini, N.; Vataga, E.; Volpi, G.] Univ Siena, I-56127 Pisa, Italy. [Barria, P.; Bedeschi, F.; Bellettini, G.; Carosi, R.; Catastini, P.; Cavaliere, V.; Chiarelli, G.; Ciocci, M. A.; Crescioli, F.; Dell'Orso, M.; Di Canto, A.; Donati, S.; Ferrazza, C.; Garosi, P.; Giannetti, P.; Giunta, M.; Introzzi, G.; Lami, S.; Latino, G.; Leone, S.; Menzione, A.; Morello, M. J.; Piacentino, G.; Punzi, G.; Ristori, L.; Scribano, A.; Scuri, F.; Sforza, F.; Squillacioti, P.; Trovato, M.; Turini, N.; Vataga, E.; Volpi, G.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Boudreau, J.; Gibson, K.; Hartz, M.; Liu, C.; Rahaman, A.; Shepard, P. F.] Univ Pittsburgh, Pittsburgh, PA 15260 USA. [Apresyan, A.; Barnes, V. E.; Bolla, G.; Bortoletto, D.; Flanagan, G.; Garfinkel, A. F.; Jones, M.; Laasanen, A. T.; Margaroli, F.; Merkel, P.; Ranjan, N.; Sedov, A.] Purdue Univ, W Lafayette, IN 47907 USA. [Bodek, A.; Boisvert, V.; Budd, H. S.; Chung, Y. S.; de Barbaro, P.; Gimmell, J. L.; Han, B. -Y.; Han, J. Y.; McFarland, K. S.; Sakumoto, W. K.; Yu, G. B.] Univ Rochester, Rochester, NY 14627 USA. [Bhatti, A.; Demortier, L.; Goulianos, K.; Hatakeyama, K.; Lungu, G.; Mesropian, C.; Terashi, K.] Rockefeller Univ, New York, NY 10021 USA. [De Cecco, S.; Dionisi, C.; Gallinaro, M.; Giagu, S.; Iori, M.; Luci, C.; Mastrandrea, P.; Rescigno, M.; Sarkar, S.; Zanello, L.] Ist Nazl Fis Nucl, Sez Roma, I-00185 Rome, Italy. [De Cecco, S.; Dionisi, C.; Gallinaro, M.; Giagu, S.; Iori, M.; Luci, C.; Mastrandrea, P.; Rescigno, M.; Sarkar, S.; Zanello, L.] Univ Roma La Sapienza, I-00185 Rome, Italy. [Chuang, S. H.; Dube, S.; Halkiadakis, E.; Hare, D.; Lath, A.; Somalwar, S.] Rutgers State Univ, Piscataway, NJ 08855 USA. [Aurisano, A.; Elagin, A.; Kamon, T.; Khotilovich, V.; Lee, E.; Lee, S. W.; McIntyre, P.; Safonov, A.; Toback, D.; Weinberger, M.] Texas A&M Univ, College Stn, TX 77843 USA. [Cauz, D.; Di Ruzza, B.; Giordani, M.; Pagliarone, C.; Pauletta, G.; Penzo, A.; Rossi, M.; Santi, L.; Totaro, P.; Zanetti, A.] Ist Nazl Fis Nucl Trieste Udine, I-34100 Trieste, Italy. [Cauz, D.; Di Ruzza, B.; Giordani, M.; Pagliarone, C.; Pauletta, G.; Penzo, A.; Rossi, M.; Santi, L.; Totaro, P.; Zanetti, A.] Univ Trieste Udine, I-33100 Udine, Italy. [Akimoto, T.; Hara, K.; Kim, S. H.; Kimura, N.; Kubo, T.; Kurata, M.; Maruyama, T.; Masubuchi, T.; Miyake, H.; Nagai, Y.; Nagano, A.; Naganoma, J.; Nakamura, K.; Shimojima, M.; Suzuki, T.; Takeuchi, Y.; Tomura, T.; Ukegawa, F.] Univ Tsukuba, Tsukuba, Ibaraki 305, Japan. [Hare, M.; Napier, A.; Rolli, S.; Sliwa, K.; Weinelt, J.; Whitehouse, B.] Tufts Univ, Medford, MA 02155 USA. [Arisawa, T.; Kondo, K.; Yorita, K.] Waseda Univ, Tokyo 169, Japan. [Harr, R. F.; Karchin, P. E.; Kulkarni, N. P.; Mattson, M. E.; Shalhout, S. Z.] Wayne State Univ, Detroit, MI 48201 USA. [Bellinger, J.; Carlsmith, D.; Chung, W. H.; Herndon, M.; Nett, J.; Pondrom, L.; Pursley, J.; Ramakrishnan, V.; Shon, Y.] Univ Wisconsin, Madison, WI 53706 USA. [Feild, R. G.; Husemann, U.; Loginov, A.; Martin, A.; Schmidt, M. P.; Stanitzki, M.; Tipton, P.] Yale Univ, New Haven, CT 06520 USA. RP Aaltonen, T (reprint author), Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. RI Introzzi, Gianluca/K-2497-2015; Piacentino, Giovanni/K-3269-2015; Martinez Ballarin, Roberto/K-9209-2015; Gorelov, Igor/J-9010-2015; Xie, Si/O-6830-2016; Canelli, Florencia/O-9693-2016; Scodellaro, Luca/K-9091-2014; Grinstein, Sebastian/N-3988-2014; Paulini, Manfred/N-7794-2014; Russ, James/P-3092-2014; unalan, zeynep/C-6660-2015; Lazzizzera, Ignazio/E-9678-2015; vilar, rocio/P-8480-2014; Cabrera Urban, Susana/H-1376-2015; Garcia, Jose /H-6339-2015; ciocci, maria agnese /I-2153-2015; Cavalli-Sforza, Matteo/H-7102-2015; Chiarelli, Giorgio/E-8953-2012; Muelmenstaedt, Johannes/K-2432-2015; Zeng, Yu/C-1438-2013; Robson, Aidan/G-1087-2011; De Cecco, Sandro/B-1016-2012; Warburton, Andreas/N-8028-2013; Kim, Soo-Bong/B-7061-2014; Lysak, Roman/H-2995-2014; Ivanov, Andrew/A-7982-2013; St.Denis, Richard/C-8997-2012; Ruiz, Alberto/E-4473-2011; Punzi, Giovanni/J-4947-2012; Amerio, Silvia/J-4605-2012; Annovi, Alberto/G-6028-2012; Moon, Chang-Seong/J-3619-2014 OI Introzzi, Gianluca/0000-0002-1314-2580; Piacentino, Giovanni/0000-0001-9884-2924; Martinez Ballarin, Roberto/0000-0003-0588-6720; Gorelov, Igor/0000-0001-5570-0133; Xie, Si/0000-0003-2509-5731; Canelli, Florencia/0000-0001-6361-2117; Scodellaro, Luca/0000-0002-4974-8330; Grinstein, Sebastian/0000-0002-6460-8694; Paulini, Manfred/0000-0002-6714-5787; Russ, James/0000-0001-9856-9155; unalan, zeynep/0000-0003-2570-7611; Lazzizzera, Ignazio/0000-0001-5092-7531; ciocci, maria agnese /0000-0003-0002-5462; Chiarelli, Giorgio/0000-0001-9851-4816; Muelmenstaedt, Johannes/0000-0003-1105-6678; Warburton, Andreas/0000-0002-2298-7315; Ivanov, Andrew/0000-0002-9270-5643; Ruiz, Alberto/0000-0002-3639-0368; Punzi, Giovanni/0000-0002-8346-9052; Annovi, Alberto/0000-0002-4649-4398; Moon, Chang-Seong/0000-0001-8229-7829 FU U.S. Department of Energy; National Science Foundation; Italian Istituto Nazionale di Fisica Nucleare; Ministry of Education, Culture, Sports, Science and Technology of Japan; Natural Sciences and Engineering Research Council of Canada; National Science Council of the Republic of China; Swiss National Science Foundation; A. P. Sloan Foundation; Bundesministerium fur Bildung und Forschung, Germany; Korean Science and Engineering Foundation; Korean Research Foundation; Science and Technology Facilities Council; Royal Society, UK; Institut National de Physique Nucleaire et Physique des Particules/CNRS; Russian Foundation for Basic Research; Ministerio de Educacion y Ciencia; Consolider-Ingenio, Spain; Slovak Ramp; D Agency; Academy of Finland FX We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the U.S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A. P. Sloan Foundation; the Bundesministerium fur Bildung und Forschung, Germany; the Korean Science and Engineering Foundation and the Korean Research Foundation; the Science and Technology Facilities Council and the Royal Society, UK; the Institut National de Physique Nucleaire et Physique des Particules/CNRS; the Russian Foundation for Basic Research; the Ministerio de Educacion y Ciencia and Programa Consolider-Ingenio 2010, Spain; the Slovak R & D Agency; and the Academy of Finland. NR 36 TC 8 Z9 8 U1 1 U2 14 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD APR 2 PY 2010 VL 104 IS 13 AR 131801 DI 10.1103/PhysRevLett.104.131801 PG 8 WC Physics, Multidisciplinary SC Physics GA 577YV UT WOS:000276260800005 ER PT J AU Adare, A Afanasiev, S Aidala, C Ajitanand, NN Akiba, Y Al-Bataineh, H Alexander, J Al-Jamel, A Aoki, K Aphecetche, L Armendariz, R Aronson, SH Asai, J Atomssa, ET Averbeck, R Awes, TC Azmoun, B Babintsev, V Baksay, G Baksay, L Baldisseri, A Barish, KN Barnes, PD Bassalleck, B Bathe, S Batsouli, S Baublis, V Bauer, F Bazilevsky, A Belikov, S Bennett, R Berdnikov, Y Bickley, AA Bjorndal, MT Boissevain, JG Borel, H Boyle, K Brooks, ML Brown, DS Bucher, D Buesching, H Bumazhnov, V Bunce, G Burward-Hoy, JM Butsyk, S Campbell, S Chai, JS Chang, BS Charvet, JL Chernichenko, S Chiba, J Chi, CY Chiu, M Choi, IJ Chujo, T Chung, P Churyn, A Cianciolo, V Cleven, CR Cobigo, Y Cole, BA Comets, MP Constantin, P Csanad, M Csorgo, T Dahms, T Das, K David, G Deaton, MB Dehmelt, K Delagrange, H Denisov, A d'Enterria, D Deshpande, A Desmond, EJ Dietzsch, O Dion, A Donadelli, M Drachenberg, JL Drapier, O Drees, A Dubey, AK Durum, A Dzhordzhadze, V Efremenko, YV Egdemir, J Ellinghaus, F Emam, WS Enokizono, A En'yo, H Espagnon, B Esumi, S Eyser, KO Fields, DE Finger, M Finger, M Fleuret, F Fokin, SL Forestier, B Fraenkel, Z Frantz, JE Franz, A Frawley, AD Fujiwara, K Fukao, Y Fung, SY Fusayasu, T Gadrat, S Garishvili, I Gastineau, F Germain, M Glenn, A Gong, H Gonin, M Gosset, J Goto, Y de Cassagnac, RG Grau, N Greene, SV Perdekamp, MG Gunji, T Gustafsson, HA Hachiya, T Henni, AH Haegemann, C Haggerty, JS Hagiwara, MN Hamagaki, H Han, R Harada, H Hartouni, EP Haruna, K Harvey, M Haslum, E Hasuko, K Hayano, R Heffner, M Hemmick, TK Hester, T Heuser, JM He, X Hiejima, H Hill, JC Hobbs, R Hohlmann, M Holmes, M Holzmann, W Homma, K Hong, B Horaguchi, T Hornback, D Hur, MG Ichihara, T Imai, K Inaba, M Inoue, Y Isenhower, D Isenhower, L Ishihara, M Isobe, T Issah, M Isupov, A Jacak, BV Jia, J Jin, J Jinnouchi, O Johnson, BM Joo, KS Jouan, D Kajihara, F Kametani, S Kamihara, N Kamin, J Kaneta, M Kang, JH Kanou, H Kawagishi, T Kawall, D Kazantsev, AV Kelly, S Khanzadeev, A Kikuchi, J Kim, DH Kim, DJ Kim, E Kim, YS Kinney, E Kiss, A Kistenev, E Kiyomichi, A Klay, J Klein-Boesing, C Kochenda, L Kochetkov, V Komkov, B Konno, M Kotchetkov, D Kozlov, A Kral, A Kravitz, A Kroon, PJ Kubart, J Kunde, GJ Kurihara, N Kurita, K Kweon, MJ Kwon, Y Kyle, GS Lacey, R Lai, YS Lajoie, JG Lebedev, A Le Bornec, Y Leckey, S Lee, DM Lee, MK Lee, T Leitch, MJ Leite, MAL Lenzi, B Lim, H Liska, T Litvinenko, A Liu, MX Li, X Li, XH Love, B Lynch, D Maguire, CF Makdisi, YI Malakhov, A Malik, MD Manko, VI Mao, Y Masek, L Masui, H Matathias, F McCain, MC McCumber, M McGaughey, PL Miake, Y Mikes, P Miki, K Miller, TE Milov, A Mioduszewski, S Mishra, GC Mishra, M Mitchell, JT Mitrovski, M Morreale, A Morrison, DP Moss, JM Moukhanova, TV Mukhopadhyay, D Murata, J Nagamiya, S Nagata, Y Nagle, JL Naglis, M Nakagawa, I Nakamiya, Y Nakamura, T Nakano, K Newby, J Nguyen, M Norman, BE Nyanin, AS Nystrand, J O'Brien, E Oda, SX Ogilvie, CA Ohnishi, H Ojha, ID Okada, H Okada, K Oka, M Omiwade, OO Oskarsson, A Otterlund, I Ouchida, M Ozawa, K Pak, R Pal, D Palounek, APT Pantuev, V Papavassiliou, V Park, J Park, WJ Pate, SF Pei, H Peng, JC Pereira, H Peresedov, V Peressounko, DY Pinkenburg, C Pisani, RP Purschke, ML Purwar, AK Qu, H Rak, J Rakotozafindrabe, A Ravinovich, I Read, KF Rembeczki, S Reuter, M Reygers, K Riabov, V Riabov, Y Roche, G Romana, A Rosati, M Rosendahl, SSE Rosnet, P Rukoyatkin, P Rykov, VL Ryu, SS Sahlmueller, B Saito, N Sakaguchi, T Sakai, S Sakata, H Samsonov, V Sato, HD Sato, S Sawada, S Seele, J Seidl, R Semenov, V Seto, R Sharma, D Shea, TK Shein, I Shevel, A Shibata, TA Shigaki, K Shimomura, M Shohjoh, T Shoji, K Sickles, A Silva, CL Silvermyr, D Silvestre, C Sim, KS Singh, CP Singh, V Skutnik, S Slunecka, M Smith, WC Soldatov, A Soltz, RA Sondheim, WE Sorensen, SP Sourikova, IV Staley, F Stankus, PW Stenlund, E Stepanov, M Ster, A Stoll, SP Sugitate, T Suire, C Sullivan, JP Sziklai, J Tabaru, T Takagi, S Takagui, EM Taketani, A Tanaka, KH Tanaka, Y Tanida, K Tannenbaum, MJ Taranenko, A Tarjan, P Thomas, TL Togawa, M Toia, A Tojo, J Tomasek, L Torii, H Towell, RS Tram, VN Tserruya, I Tsuchimoto, Y Tuli, SK Tydesjo, H Tyurin, N Vale, C Valle, H van Hecke, HW Velkovska, J Vertesi, R Vinogradov, AA Virius, M Vrba, V Vznuzdaev, E Wagner, M Walker, D Wang, XR Watanabe, Y Wessels, J White, SN Willis, N Winter, D Woody, CL Wysocki, M Xie, W Yamaguchi, YL Yanovich, A Yasin, Z Ying, J Yokkaichi, S Young, GR Younus, I Yushmanov, IE Zajc, WA Zaudtke, O Zhang, C Zhou, S Zimanyi, J Zolin, L AF Adare, A. Afanasiev, S. Aidala, C. Ajitanand, N. N. Akiba, Y. Al-Bataineh, H. Alexander, J. Al-Jamel, A. Aoki, K. Aphecetche, L. Armendariz, R. Aronson, S. H. Asai, J. Atomssa, E. T. Averbeck, R. Awes, T. C. Azmoun, B. Babintsev, V. Baksay, G. Baksay, L. Baldisseri, A. Barish, K. N. Barnes, P. D. Bassalleck, B. Bathe, S. Batsouli, S. Baublis, V. Bauer, F. Bazilevsky, A. Belikov, S. Bennett, R. Berdnikov, Y. Bickley, A. A. Bjorndal, M. T. Boissevain, J. G. Borel, H. Boyle, K. Brooks, M. L. Brown, D. S. Bucher, D. Buesching, H. Bumazhnov, V. Bunce, G. Burward-Hoy, J. M. Butsyk, S. Campbell, S. Chai, J. -S. Chang, B. S. Charvet, J. -L. Chernichenko, S. Chiba, J. Chi, C. Y. Chiu, M. Choi, I. J. Chujo, T. Chung, P. Churyn, A. Cianciolo, V. Cleven, C. R. Cobigo, Y. Cole, B. A. Comets, M. P. Constantin, P. Csanad, M. Csorgo, T. Dahms, T. Das, K. David, G. Deaton, M. B. Dehmelt, K. Delagrange, H. Denisov, A. d'Enterria, D. Deshpande, A. Desmond, E. J. Dietzsch, O. Dion, A. Donadelli, M. Drachenberg, J. L. Drapier, O. Drees, A. Dubey, A. K. Durum, A. Dzhordzhadze, V. Efremenko, Y. V. Egdemir, J. Ellinghaus, F. Emam, W. S. Enokizono, A. En'yo, H. Espagnon, B. Esumi, S. Eyser, K. O. Fields, D. E. Finger, M. Finger, M., Jr. Fleuret, F. Fokin, S. L. Forestier, B. Fraenkel, Z. Frantz, J. E. Franz, A. Frawley, A. D. Fujiwara, K. Fukao, Y. Fung, S. -Y. Fusayasu, T. Gadrat, S. Garishvili, I. Gastineau, F. Germain, M. Glenn, A. Gong, H. Gonin, M. Gosset, J. Goto, Y. de Cassagnac, R. Granier Grau, N. Greene, S. V. Perdekamp, M. Grosse Gunji, T. Gustafsson, H. -A. Hachiya, T. Henni, A. Hadj Haegemann, C. Haggerty, J. S. Hagiwara, M. N. Hamagaki, H. Han, R. Harada, H. Hartouni, E. P. Haruna, K. Harvey, M. Haslum, E. Hasuko, K. Hayano, R. Heffner, M. Hemmick, T. K. Hester, T. Heuser, J. M. He, X. Hiejima, H. Hill, J. C. Hobbs, R. Hohlmann, M. Holmes, M. Holzmann, W. Homma, K. Hong, B. Horaguchi, T. Hornback, D. Hur, M. G. Ichihara, T. Imai, K. Inaba, M. Inoue, Y. Isenhower, D. Isenhower, L. Ishihara, M. Isobe, T. Issah, M. Isupov, A. Jacak, B. V. Jia, J. Jin, J. Jinnouchi, O. Johnson, B. M. Joo, K. S. Jouan, D. Kajihara, F. Kametani, S. Kamihara, N. Kamin, J. Kaneta, M. Kang, J. H. Kanou, H. Kawagishi, T. Kawall, D. Kazantsev, A. V. Kelly, S. Khanzadeev, A. Kikuchi, J. Kim, D. H. Kim, D. J. Kim, E. Kim, Y. -S. Kinney, E. Kiss, A. Kistenev, E. Kiyomichi, A. Klay, J. Klein-Boesing, C. Kochenda, L. Kochetkov, V. Komkov, B. Konno, M. Kotchetkov, D. Kozlov, A. Kral, A. Kravitz, A. Kroon, P. J. Kubart, J. Kunde, G. J. Kurihara, N. Kurita, K. Kweon, M. J. Kwon, Y. Kyle, G. S. Lacey, R. Lai, Y. -S. Lajoie, J. G. Lebedev, A. Le Bornec, Y. Leckey, S. Lee, D. M. Lee, M. K. Lee, T. Leitch, M. J. Leite, M. A. L. Lenzi, B. Lim, H. Liska, T. Litvinenko, A. Liu, M. X. Li, X. Li, X. H. Love, B. Lynch, D. Maguire, C. F. Makdisi, Y. I. Malakhov, A. Malik, M. D. Manko, V. I. Mao, Y. Masek, L. Masui, H. Matathias, F. McCain, M. C. McCumber, M. McGaughey, P. L. Miake, Y. Mikes, P. Miki, K. Miller, T. E. Milov, A. Mioduszewski, S. Mishra, G. C. Mishra, M. Mitchell, J. T. Mitrovski, M. Morreale, A. Morrison, D. P. Moss, J. M. Moukhanova, T. V. Mukhopadhyay, D. Murata, J. Nagamiya, S. Nagata, Y. Nagle, J. L. Naglis, M. Nakagawa, I. Nakamiya, Y. Nakamura, T. Nakano, K. Newby, J. Nguyen, M. Norman, B. E. Nyanin, A. S. Nystrand, J. O'Brien, E. Oda, S. X. Ogilvie, C. A. Ohnishi, H. Ojha, I. D. Okada, H. Okada, K. Oka, M. Omiwade, O. O. Oskarsson, A. Otterlund, I. Ouchida, M. Ozawa, K. Pak, R. Pal, D. Palounek, A. P. T. Pantuev, V. Papavassiliou, V. Park, J. Park, W. J. Pate, S. F. Pei, H. Peng, J. -C. Pereira, H. Peresedov, V. Peressounko, D. Yu. Pinkenburg, C. Pisani, R. P. Purschke, M. L. Purwar, A. K. Qu, H. Rak, J. Rakotozafindrabe, A. Ravinovich, I. Read, K. F. Rembeczki, S. Reuter, M. Reygers, K. Riabov, V. Riabov, Y. Roche, G. Romana, A. Rosati, M. Rosendahl, S. S. E. Rosnet, P. Rukoyatkin, P. Rykov, V. L. Ryu, S. S. Sahlmueller, B. Saito, N. Sakaguchi, T. Sakai, S. Sakata, H. Samsonov, V. Sato, H. D. Sato, S. Sawada, S. Seele, J. Seidl, R. Semenov, V. Seto, R. Sharma, D. Shea, T. K. Shein, I. Shevel, A. Shibata, T. -A. Shigaki, K. Shimomura, M. Shohjoh, T. Shoji, K. Sickles, A. Silva, C. L. Silvermyr, D. Silvestre, C. Sim, K. S. Singh, C. P. Singh, V. Skutnik, S. Slunecka, M. Smith, W. C. Soldatov, A. Soltz, R. A. Sondheim, W. E. Sorensen, S. P. Sourikova, I. V. Staley, F. Stankus, P. W. Stenlund, E. Stepanov, M. Ster, A. Stoll, S. P. Sugitate, T. Suire, C. Sullivan, J. P. Sziklai, J. Tabaru, T. Takagi, S. Takagui, E. M. Taketani, A. Tanaka, K. H. Tanaka, Y. Tanida, K. Tannenbaum, M. J. Taranenko, A. Tarjan, P. Thomas, T. L. Togawa, M. Toia, A. Tojo, J. Tomasek, L. Torii, H. Towell, R. S. Tram, V-N. Tserruya, I. Tsuchimoto, Y. Tuli, S. K. Tydesjo, H. Tyurin, N. Vale, C. Valle, H. van Hecke, H. W. Velkovska, J. Vertesi, R. Vinogradov, A. A. Virius, M. Vrba, V. Vznuzdaev, E. Wagner, M. Walker, D. Wang, X. R. Watanabe, Y. Wessels, J. White, S. N. Willis, N. Winter, D. Woody, C. L. Wysocki, M. Xie, W. Yamaguchi, Y. L. Yanovich, A. Yasin, Z. Ying, J. Yokkaichi, S. Young, G. R. Younus, I. Yushmanov, I. E. Zajc, W. A. Zaudtke, O. Zhang, C. Zhou, S. Zimanyi, J. Zolin, L. CA PHENIX Collaboration TI Enhanced Production of Direct Photons in Au plus Au Collisions at root s(NN)=200 GeV and Implications for the Initial Temperature SO PHYSICAL REVIEW LETTERS LA English DT Article ID NUCLEUS-NUCLEUS COLLISIONS; THERMAL PHOTONS AB The production of e(+)e(-) pairs for m(e+e-) < 0.3 GeV/c(2) and 1< p(T) < 5 GeV/c is measured in p + p and Au + Au collisions at root s(NN) = 200 GeV. An enhanced yield above hadronic sources is observed. Treating the excess as photon internal conversions, the invariant yield of direct photons is deduced. In central Au + Au collisions, the excess of the direct photon yield over p + p is exponential in transverse momentum, with an inverse slope T = 221 +/- 19(stat) +/- 19(syst) MeV. Hydrodynamical models with initial temperatures ranging from T-init similar to 300-600 MeV at times of similar to 0.6-0.15 fm/c after the collision are in qualitative agreement with the data. Lattice QCD predicts a phase transition to quark gluon plasma at similar to 170 MeV. C1 [Adare, A.; Bickley, A. A.; Ellinghaus, F.; Glenn, A.; Kelly, S.; Kinney, E.; Nagle, J. L.; Seele, J.; Wysocki, M.] Univ Colorado, Boulder, CO 80309 USA. [Deaton, M. B.; Drachenberg, J. L.; Hagiwara, M. N.; Isenhower, D.; Isenhower, L.; Omiwade, O. O.; Smith, W. C.; Towell, R. S.] Abilene Christian Univ, Abilene, TX 79699 USA. [Mishra, M.; Singh, C. P.; Singh, V.; Tuli, S. K.] Banaras Hindu Univ, Dept Phys, Varanasi 221005, Uttar Pradesh, India. [Aronson, S. H.; Azmoun, B.; Bazilevsky, A.; Belikov, S.; Buesching, H.; Bunce, G.; David, G.; Desmond, E. J.; Franz, A.; Haggerty, J. S.; Harvey, M.; Johnson, B. M.; Kistenev, E.; Kroon, P. J.; Lynch, D.; Makdisi, Y. I.; Mioduszewski, S.; Mitchell, J. T.; Morrison, D. P.; O'Brien, E.; Pak, R.; Pinkenburg, C.; Pisani, R. P.; Purschke, M. L.; Sakaguchi, T.; Sato, S.; Shea, T. K.; Sourikova, I. V.; Stoll, S. P.; Tannenbaum, M. J.; White, S. N.; Woody, C. L.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Barish, K. N.; Bathe, S.; Bauer, F.; Dzhordzhadze, V.; Emam, W. S.; Eyser, K. O.; Fung, S. -Y.; Hester, T.; Kotchetkov, D.; Li, X. H.; Morreale, A.; Seto, R.; Xie, W.; Yasin, Z.] Univ Calif Riverside, Riverside, CA 92521 USA. [Finger, M.; Finger, M., Jr.; Kubart, J.; Masek, L.; Mikes, P.; Slunecka, M.] Charles Univ Prague, CR-11636 Prague 1, Czech Republic. [Li, X.; Zhou, S.] CIAE, Beijing, Peoples R China. [Gunji, T.; Hamagaki, H.; Hayano, R.; Isobe, T.; Kajihara, F.; Kametani, S.; Kurihara, N.; Oda, S. X.; Ozawa, K.; Sakaguchi, T.] Univ Tokyo, Grad Sch Sci, Ctr Nucl Study, Bunkyo Ku, Tokyo 1130033, Japan. [Aidala, C.; Batsouli, S.; Bjorndal, M. T.; Chi, C. Y.; Chiu, M.; Cole, B. A.; d'Enterria, D.; Frantz, J. E.; Jia, J.; Jin, J.; Kravitz, A.; Lai, Y. -S.; Matathias, F.; Winter, D.; Zajc, W. A.; Zhang, C.] Columbia Univ, New York, NY 10027 USA. [Aidala, C.; Batsouli, S.; Bjorndal, M. T.; Chi, C. Y.; Chiu, M.; Cole, B. A.; d'Enterria, D.; Frantz, J. E.; Jia, J.; Jin, J.; Kravitz, A.; Lai, Y. -S.; Matathias, F.; Winter, D.; Zajc, W. A.; Zhang, C.] Nevis Labs, Irvington, NY 10533 USA. [Kral, A.; Liska, T.; Virius, M.] Czech Tech Univ, Prague 16636 6, Czech Republic. [Baldisseri, A.; Borel, H.; Charvet, J. -L.; Cobigo, Y.; Gosset, J.; Pereira, H.; Silvestre, C.; Staley, F.] CEA Saclay, Dapnia, F-91191 Gif Sur Yvette, France. [Tarjan, P.; Vertesi, R.] Univ Debrecen, H-4010 Debrecen, Hungary. [Csanad, M.; Kiss, A.] Eotvos Lorand Univ, ELTE, H-1117 Budapest, Hungary. [Baksay, G.; Baksay, L.; Dehmelt, K.; Hohlmann, M.; Rembeczki, S.] Florida Inst Technol, Melbourne, FL 32901 USA. [Das, K.; Frawley, A. D.] Florida State Univ, Tallahassee, FL 32306 USA. [Cleven, C. R.; He, X.; Mishra, G. C.; Qu, H.; Ying, J.] Georgia State Univ, Atlanta, GA 30303 USA. [Enokizono, A.; Hachiya, T.; Harada, H.; Haruna, K.; Homma, K.; Nakamiya, Y.; Nakamura, T.; Ouchida, M.; Sakata, H.; Shigaki, K.; Sugitate, T.; Tsuchimoto, Y.] Hiroshima Univ, Higashihiroshima 7398526, Japan. [Babintsev, V.; Bumazhnov, V.; Chernichenko, S.; Churyn, A.; Denisov, A.; Durum, A.; Kochetkov, V.; Semenov, V.; Shein, I.; Soldatov, A.; Tyurin, N.; Yanovich, A.] Inst High Energy Phys, State Res Ctr Russian Federat, IHEP Protvino, Protvino 142281, Russia. [Chiu, M.; Perdekamp, M. Grosse; Hiejima, H.; McCain, M. C.; Peng, J. -C.; Seidl, R.] Univ Illinois, Urbana, IL 61801 USA. [Kubart, J.; Masek, L.; Mikes, P.; Tomasek, L.; Vrba, V.] Acad Sci Czech Republic, Inst Phys, Prague 18221 8, Czech Republic. [Belikov, S.; Constantin, P.; Grau, N.; Hill, J. C.; Lajoie, J. G.; Lebedev, A.; Ogilvie, C. A.; Pei, H.; Rak, J.; Rosati, M.; Skutnik, S.; Vale, C.] Iowa State Univ, Ames, IA 50011 USA. [Afanasiev, S.; Finger, M.; Finger, M., Jr.; Isupov, A.; Litvinenko, A.; Malakhov, A.; Peresedov, V.; Rukoyatkin, P.; Slunecka, M.; Zolin, L.] Joint Inst Nucl Res, Dubna 141980, Moscow Region, Russia. [Chai, J. -S.; Hur, M. G.; Kim, Y. -S.] KAERI, Cyclotron Applicat Lab, Seoul, South Korea. [Chiba, J.; Nagamiya, S.; Sato, S.; Sawada, S.; Tanaka, K. H.] KEK, High Energy Accelerator Res Org, Tsukuba, Ibaraki 3050801, Japan. [Csorgo, T.; Ster, A.; Sziklai, J.; Zimanyi, J.] Hungarian Acad Sci MTA KFKI RMKI, KFKI Res Inst Particle & Nucl Phys, H-1525 Budapest, Hungary. [Hong, B.; Kweon, M. J.; Park, W. J.; Sim, K. S.] Korea Univ, Seoul 136701, South Korea. [Fokin, S. L.; Kazantsev, A. V.; Manko, V. I.; Moukhanova, T. V.; Nyanin, A. S.; Peressounko, D. Yu.; Vinogradov, A. A.; Yushmanov, I. E.] Kurchatov Inst, Russian Res Ctr, Moscow, Russia. [Aoki, K.; Fukao, Y.; Imai, K.; Okada, H.; Saito, N.; Sato, H. D.; Shoji, K.; Togawa, M.; Wagner, M.] Kyoto Univ, Kyoto 6068502, Japan. [Atomssa, E. T.; Drapier, O.; Fleuret, F.; Gonin, M.; de Cassagnac, R. Granier; Rakotozafindrabe, A.; Romana, A.; Tram, V-N.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Enokizono, A.; Hartouni, E. P.; Heffner, M.; Klay, J.; Newby, J.; Soltz, R. A.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Barnes, P. D.; Boissevain, J. G.; Brooks, M. L.; Burward-Hoy, J. M.; Butsyk, S.; Constantin, P.; Kunde, G. J.; Lee, D. M.; Leitch, M. J.; Liu, M. X.; McGaughey, P. L.; Moss, J. M.; Norman, B. E.; Palounek, A. P. T.; Purwar, A. K.; Sondheim, W. E.; Sullivan, J. P.; van Hecke, H. W.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Forestier, B.; Gadrat, S.; Roche, G.; Rosnet, P.] Univ Clermont Ferrand, CNRS, IN2P3, LPC, F-63177 Clermont Ferrand, Aubiere, France. [Gustafsson, H. -A.; Haslum, E.; Nystrand, J.; Oskarsson, A.; Otterlund, I.; Rosendahl, S. S. E.; Stenlund, E.; Tydesjo, H.] Lund Univ, Dept Phys, SE-22100 Lund, Sweden. [Bucher, D.; Klein-Boesing, C.; Reygers, K.; Sahlmueller, B.; Wessels, J.; Zaudtke, O.] Univ Munster, Inst Kernphys, D-48149 Munster, Germany. [Joo, K. S.; Kim, D. H.] Myongji Univ, Yongin 449728, Kyonggido, South Korea. [Fusayasu, T.; Tanaka, Y.] Nagasaki Inst Appl Sci, Nagasaki 8510193, Japan. [Bassalleck, B.; Fields, D. E.; Haegemann, C.; Hobbs, R.; Malik, M. D.; Rak, J.; Thomas, T. L.; Younus, I.] Univ New Mexico, Albuquerque, NM 87131 USA. [Al-Bataineh, H.; Al-Jamel, A.; Armendariz, R.; Brown, D. S.; Kyle, G. S.; Papavassiliou, V.; Pate, S. F.; Stepanov, M.; Wang, X. R.] New Mexico State Univ, Las Cruces, NM 88003 USA. [Awes, T. C.; Batsouli, S.; Cianciolo, V.; Efremenko, Y. V.; Read, K. F.; Silvermyr, D.; Stankus, P. W.; Young, G. R.; Zhang, C.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Comets, M. P.; Espagnon, B.; Jouan, D.; Le Bornec, Y.; Suire, C.; Willis, N.] Univ Paris 11, IPN Orsay, CNRS, IN2P3, F-91406 Orsay, France. [Han, R.; Mao, Y.] Peking Univ, Beijing 100871, Peoples R China. [Baublis, V.; Khanzadeev, A.; Kochenda, L.; Komkov, B.; Riabov, V.; Riabov, Y.; Samsonov, V.; Shevel, A.; Vznuzdaev, E.] Petersburg Nucl Phys Inst, Gatchina 188300, Leningrad Reg, Russia. [Akiba, Y.; Aoki, K.; En'yo, H.; Fujiwara, K.; Fukao, Y.; Goto, Y.; Hachiya, T.; Hasuko, K.; Heuser, J. M.; Horaguchi, T.; Ichihara, T.; Imai, K.; Inoue, Y.; Ishihara, M.; Kajihara, F.; Kamihara, N.; Kanou, H.; Kiyomichi, A.; Kurita, K.; Mao, Y.; Murata, J.; Nakagawa, I.; Nakano, K.; Ohnishi, H.; Okada, H.; Rykov, V. L.; Saito, N.; Sato, H. D.; Shibata, T. -A.; Shoji, K.; Taketani, A.; Tanida, K.; Togawa, M.; Tojo, J.; Torii, H.; Tsuchimoto, Y.; Wagner, M.; Watanabe, Y.; Yokkaichi, S.] RIKEN, Inst Phys & Chem Res, Wako, Saitama 3510198, Japan. [Akiba, Y.; Asai, J.; Bunce, G.; Deshpande, A.; En'yo, H.; Fields, D. E.; Goto, Y.; Perdekamp, M. Grosse; Ichihara, T.; Jinnouchi, O.; Kaneta, M.; Kawall, D.; Nakagawa, I.; Okada, K.; Saito, N.; Tabaru, T.; Taketani, A.; Tanida, K.; Watanabe, Y.; Xie, W.; Yokkaichi, S.] RIKEN, BNL Res Ctr, Brookhaven Natl Lab, Upton, NY 11973 USA. [Inoue, Y.; Kurita, K.; Murata, J.] Rikkyo Univ, Dept Phys, Toshima Ku, Tokyo 1718501, Japan. [Berdnikov, Y.] St Petersburg State Polytech Univ, St Petersburg, Russia. [Dietzsch, O.; Donadelli, M.; Leite, M. A. L.; Lenzi, B.; Silva, C. L.; Takagui, E. M.] Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil. [Kim, E.; Lee, T.; Lim, H.; Park, J.] Seoul Natl Univ, Syst Elect Lab, Seoul, South Korea. [Ajitanand, N. N.; Alexander, J.; Chung, P.; Holzmann, W.; Issah, M.; Lacey, R.; Mitrovski, M.; Shevel, A.; Taranenko, A.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. [Averbeck, R.; Bennett, R.; Boyle, K.; Butsyk, S.; Campbell, S.; Dahms, T.; Deshpande, A.; Dion, A.; Drees, A.; Egdemir, J.; Frantz, J. E.; Gong, H.; Hemmick, T. K.; Jacak, B. V.; Kamin, J.; Leckey, S.; Matathias, F.; McCumber, M.; Milov, A.; Nguyen, M.; Pantuev, V.; Purwar, A. K.; Reuter, M.; Sickles, A.; Toia, A.; Walker, D.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Aphecetche, L.; Delagrange, H.; Gastineau, F.; Germain, M.; Henni, A. Hadj] Univ Nantes, CNRS, IN2P3, Ecole Mines Nantes,SUBATECH, Nantes, France. [Dzhordzhadze, V.; Garishvili, I.; Glenn, A.; Hornback, D.; Kwon, Y.; Read, K. F.; Sorensen, S. P.] Univ Tennessee, Knoxville, TN 37996 USA. [Horaguchi, T.; Kamihara, N.; Kanou, H.; Nakano, K.; Shibata, T. -A.] Tokyo Inst Technol, Dept Phys, Meguro Ku, Tokyo 1528551, Japan. [Esumi, S.; Inaba, M.; Kawagishi, T.; Konno, M.; Masui, H.; Miake, Y.; Miki, K.; Nagata, Y.; Oka, M.; Sakai, S.; Sato, S.; Shimomura, M.; Shohjoh, T.; Takagi, S.] Univ Tsukuba, Inst Phys, Tsukuba, Ibaraki 305, Japan. [Chujo, T.; Greene, S. V.; Holmes, M.; Love, B.; Maguire, C. F.; Miller, T. E.; Mukhopadhyay, D.; Ojha, I. D.; Pal, D.; Valle, H.; Velkovska, J.] Vanderbilt Univ, Nashville, TN 37235 USA. [Kametani, S.; Kikuchi, J.; Sakaguchi, T.; Yamaguchi, Y. L.] Waseda Univ, Adv Res Inst Sci & Engn, Shinjuku Ku, Tokyo 1620044, Japan. [Dubey, A. K.; Fraenkel, Z.; Kozlov, A.; Naglis, M.; Ravinovich, I.; Sharma, D.; Tserruya, I.] Weizmann Inst Sci, IL-76100 Rehovot, Israel. [Chang, B. S.; Choi, I. J.; Kang, J. H.; Kim, D. J.; Kwon, Y.; Lee, M. K.; Ryu, S. S.] Yonsei Univ, IPAP, Seoul 120749, South Korea. RP Adare, A (reprint author), Univ Colorado, Boulder, CO 80309 USA. EM jacak@skipper.physics.sunysb.edu RI Semenov, Vitaliy/E-9584-2017; YANG, BOGEUM/I-8251-2012; Tomasek, Lukas/G-6370-2014; Dahms, Torsten/A-8453-2015; En'yo, Hideto/B-2440-2015; Hayano, Ryugo/F-7889-2012; HAMAGAKI, HIDEKI/G-4899-2014; Durum, Artur/C-3027-2014; Sorensen, Soren /K-1195-2016; Yokkaichi, Satoshi/C-6215-2017; Taketani, Atsushi/E-1803-2017; seto, richard/G-8467-2011; Csanad, Mate/D-5960-2012; Csorgo, Tamas/I-4183-2012 OI Tomasek, Lukas/0000-0002-5224-1936; Dahms, Torsten/0000-0003-4274-5476; Hayano, Ryugo/0000-0002-1214-7806; Sorensen, Soren /0000-0002-5595-5643; Taketani, Atsushi/0000-0002-4776-2315; FU Department of Energy (USA); NSF (USA); MEXT (Japan); JSPS (Japan); CNPq (Brazil); FAPESP (Brazil); NSFC (China); MSMT (Czech Republic); IN2P3/CNRS (France); CEA (France); BMBF (Germany); DAAD (Germany); AvH (Germany); OTKA (Hungary); DAE (India); ISF (Israel); NRF (Korea); MES (Russia); RAS (Russia); FAAE (Russia); V.R. (Sweden); KAW (Sweden); U.S. CRDF; US-Hungarian NSF-OTKA-MTA; US-Israel BSF FX We thank the staff of the Collider-Accelerator and Physics Departments at BNL for their vital contributions. We acknowledge support from the Department of Energy and NSF (USA), MEXT and JSPS (Japan), CNPq and FAPESP (Brazil), NSFC (China), MSMT (Czech Republic), IN2P3/CNRS, and CEA (France), BMBF, DAAD, and AvH (Germany), OTKA (Hungary), DAE (India), ISF (Israel), NRF (Korea), MES, RAS, and FAAE (Russia), V.R. and KAW (Sweden), U.S. CRDF for the FSU, US-Hungarian NSF-OTKA-MTA, and US-Israel BSF. NR 21 TC 225 Z9 227 U1 5 U2 21 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD APR 2 PY 2010 VL 104 IS 13 AR 132301 DI 10.1103/PhysRevLett.104.132301 PG 6 WC Physics, Multidisciplinary SC Physics GA 577YV UT WOS:000276260800011 ER PT J AU Back, BB Baker, SI Brown, BA Deibel, CM Freeman, SJ DiGiovine, BJ Hoffman, CR Kay, BP Lee, HY Lighthall, JC Marley, ST Pardo, RC Rehm, KE Schiffer, JP Shetty, DV Vann, AW Winkelbauer, J Wuosmaa, AH AF Back, B. B. Baker, S. I. Brown, B. A. Deibel, C. M. Freeman, S. J. DiGiovine, B. J. Hoffman, C. R. Kay, B. P. Lee, H. Y. Lighthall, J. C. Marley, S. T. Pardo, R. C. Rehm, K. E. Schiffer, J. P. Shetty, D. V. Vann, A. W. Winkelbauer, J. Wuosmaa, A. H. TI First Experiment with HELIOS: The Structure of B-13 SO PHYSICAL REVIEW LETTERS LA English DT Article ID 1P SHELL; STATES AB A first experiment is reported that makes use of a new kind of spectrometer uniquely suited to the study of reactions with radioactive beams in inverse kinematics, the helical orbit spectrometer, HELIOS. The properties of some low-lying states in the neutron-rich N = 8 nucleus B-13 were studied with good resolution. From the measured angular distributions of the (d, p) reaction and the relative spectroscopic factors, spin and configuration assignments of the first- and third-excited states of this nucleus can be constrained. C1 [Back, B. B.; Baker, S. I.; Deibel, C. M.; DiGiovine, B. J.; Hoffman, C. R.; Kay, B. P.; Lee, H. Y.; Pardo, R. C.; Rehm, K. E.; Schiffer, J. P.] Argonne Natl Lab, Argonne, IL 60439 USA. [Brown, B. A.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Deibel, C. M.] Michigan State Univ, Joint Inst Nucl Astrophys, E Lansing, MI 48824 USA. [Freeman, S. J.] Univ Manchester, Schuster Lab, Manchester M13 9PL, Lancs, England. [Lighthall, J. C.; Marley, S. T.; Shetty, D. V.; Vann, A. W.; Winkelbauer, J.; Wuosmaa, A. H.] Western Michigan Univ, Dept Phys, Kalamazoo, MI 49008 USA. RP Back, BB (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM schiffer@anl.gov RI Freeman, Sean/B-1280-2010; Kay, Benjamin/F-3291-2011 OI Freeman, Sean/0000-0001-9773-4921; Kay, Benjamin/0000-0002-7438-0208 FU U.S. Department of Energy, Office of Nuclear Physics [DE-AC02-06CH11357, DE-FG02-04ER41320]; NSF [PHY-02-16783, PHY-07-58099.] FX This work was supported by the U.S. Department of Energy, Office of Nuclear Physics, under Contracts No. DE-AC02-06CH11357 and No. DE-FG02-04ER41320 and NSF Grants No. PHY-02-16783 and No. PHY-07-58099. NR 16 TC 25 Z9 25 U1 0 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD APR 2 PY 2010 VL 104 IS 13 AR 132501 DI 10.1103/PhysRevLett.104.132501 PG 4 WC Physics, Multidisciplinary SC Physics GA 577YV UT WOS:000276260800012 PM 20481878 ER PT J AU Chang, P Betti, R Spears, BK Anderson, KS Edwards, J Fatenejad, M Lindl, JD McCrory, RL Nora, R Shvarts, D AF Chang, Py. Betti, R. Spears, B. K. Anderson, K. S. Edwards, J. Fatenejad, M. Lindl, J. D. McCrory, R. L. Nora, R. Shvarts, D. TI Generalized Measurable Ignition Criterion for Inertial Confinement Fusion SO PHYSICAL REVIEW LETTERS LA English DT Article ID TARGETS; ENERGY; GAIN AB A multidimensional measurable criterion for central ignition of inertial-confinement-fusion capsules is derived. The criterion accounts for the effects of implosion nonuniformities and depends on three measurable parameters: the neutron-averaged total areal density (rho R(n)(tot)), the ion temperature (T(n)), and the yield over clean (YOC ratio of the measured neutron yield to the predicted one-dimensional yield). The YOC measures the implosion uniformity. The criterion can be approximated by chi = (rho R(n)(tot))(0.8) (T(n)/4.7)(1.7)YOC(mu) > 1 (where rho R is in g cm(-2), T in keV, and mu approximate to 0.4-0.5) and can be used to assess the performance of cryogenic implosions on the NIF and OMEGA. Cryogenic implosions on OMEGA have achieved chi similar to 0.02-0.03. C1 [Chang, Py.; Betti, R.; Anderson, K. S.; McCrory, R. L.; Nora, R.] Univ Rochester, Laser Energet Lab, Rochester, NY 14623 USA. [Chang, Py.; Betti, R.; Anderson, K. S.; Nora, R.] Univ Rochester, Fus Sci Ctr Extreme States Matter, Rochester, NY 14623 USA. [Spears, B. K.; Edwards, J.; Lindl, J. D.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Fatenejad, M.] Univ Wisconsin, Dept Engn Phys, Madison, WI 53706 USA. [Shvarts, D.] Ben Gurion Univ Negev, IL-84015 Beer Sheva, Israel. [Shvarts, D.] NRCN, Negev, Israel. RP Chang, P (reprint author), Univ Rochester, Laser Energet Lab, 250 E River Rd, Rochester, NY 14623 USA. RI Chang, Po-Yu/A-9004-2013; Chang, Po-Yu/L-5745-2016 FU U.S. Department of Energy [DE-FC02-04ER54789, DE-FC52-08NA28302] FX This work has been supported by the U.S. Department of Energy under Cooperative Agreement No. DE-FC02-04ER54789 and No. DE-FC52-08NA28302. NR 17 TC 28 Z9 30 U1 0 U2 16 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD APR 2 PY 2010 VL 104 IS 13 AR 135002 DI 10.1103/PhysRevLett.104.135002 PG 4 WC Physics, Multidisciplinary SC Physics GA 577YV UT WOS:000276260800023 PM 20481889 ER PT J AU Dong, P Reed, SA Yi, SA Kalmykov, S Shvets, G Downer, MC Matlis, NH Leemans, WP McGuffey, C Bulanov, SS Chvykov, V Kalintchenko, G Krushelnick, K Maksimchuk, A Matsuoka, T Thomas, AGR Yanovsky, V AF Dong, Peng Reed, S. A. Yi, S. A. Kalmykov, S. Shvets, G. Downer, M. C. Matlis, N. H. Leemans, W. P. McGuffey, C. Bulanov, S. S. Chvykov, V. Kalintchenko, G. Krushelnick, K. Maksimchuk, A. Matsuoka, T. Thomas, A. G. R. Yanovsky, V. TI Formation of Optical Bullets in Laser-Driven Plasma Bubble Accelerators SO PHYSICAL REVIEW LETTERS LA English DT Article ID MONOENERGETIC ELECTRON-BEAMS; WAVE-GUIDE; INTENSE; PULSES; WAKEFIELDS AB Electron density bubbles-wake structures generated in plasma of density (n) over bar (e) similar to 10(19) cm(-3) by the light pressure of intense ultrashort laser pulses-are shown to reshape weak copropagating probe pulses into optical "bullets.'' The bullets are reconstructed using frequency-domain interferometric techniques in order to visualize bubble formation. Bullets are confined in three dimensions to plasma-wavelength size, and exhibit higher intensity, broader spectrum and flatter temporal phase than surrounding probe light, evidence of their compression by the bubble. Bullets observed at 0.8 less than or similar to (n) over bar (e) less than or similar to 1.2 x 10(19) cm(-3) provide the first observation of bubble formation below the electron capture threshold. At higher (n) over bar (e), bullets appear with high shot-to-shot stability together with relativistic electrons that vary widely in spectrum, and help relate bubble formation to fast electron generation. C1 [Dong, Peng; Reed, S. A.; Yi, S. A.; Kalmykov, S.; Shvets, G.; Downer, M. C.] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA. [Matlis, N. H.; Leemans, W. P.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [McGuffey, C.; Bulanov, S. S.; Chvykov, V.; Kalintchenko, G.; Krushelnick, K.; Maksimchuk, A.; Matsuoka, T.; Thomas, A. G. R.; Yanovsky, V.] Univ Michigan, Ctr Ultrafast Opt Sci, Ann Arbor, MI 48109 USA. RP Dong, P (reprint author), Univ Texas Austin, Dept Phys, Austin, TX 78712 USA. EM downer@physics.utexas.edu RI Yanovsky, Victor/B-5899-2008; Thomas, Alexander/D-8210-2011; Kalmykov, Serge/A-1991-2014; Kalinchenko, Galina/G-5684-2014; OI Kalmykov, Serge/0000-0002-0946-857X; Thomas, Alexander/0000-0003-3206-8512 FU DOE [DE-FG02-07ER54945, DE-FG02-96ER40954, DE-FG02-04ER41321, DE-AC02-05CH11231]; NSF Physics Frontier Center FOCUS [PHY-011436]; NSF/DNDO [0833499] FX This work was supported by DOE grants DE-FG02-07ER54945, DE-FG02-96ER40954, DE-FG02-04ER41321, and DE-AC02-05CH11231, NSF Physics Frontier Center FOCUS (Grant PHY-011436) and NSF/DNDO Grant 0833499. The authors thank A. Pukhov for the VLPL code, and the Texas Advanced Computing Center for computing resources. NR 28 TC 33 Z9 33 U1 1 U2 12 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD APR 2 PY 2010 VL 104 IS 13 AR 134801 DI 10.1103/PhysRevLett.104.134801 PG 4 WC Physics, Multidisciplinary SC Physics GA 577YV UT WOS:000276260800021 PM 20481887 ER PT J AU McChesney, JL Bostwick, A Ohta, T Seyller, T Horn, K Gonzalez, J Rotenberg, E AF McChesney, J. L. Bostwick, Aaron Ohta, Taisuke Seyller, Thomas Horn, Karsten Gonzalez, J. Rotenberg, Eli TI Extended van Hove Singularity and Superconducting Instability in Doped Graphene SO PHYSICAL REVIEW LETTERS LA English DT Article ID ELECTRONIC-STRUCTURE; GRAPHITE; PHOTOEMISSION; PSEUDOGAPS; MECHANISM; SCENARIO; STATE; CAC6; C6CA AB We have investigated the effects of doping on a single layer of graphene using angle-resolved photoemission spectroscopy. We show that many-body interactions severely warp the Fermi surface, leading to an extended van Hove singularity (EVHS) at the graphene M point. The ground state properties of graphene with such an EVHS are calculated, analyzing the competition between a magnetic instability and the tendency towards superconductivity. We find that the latter plays the dominant role as it is enhanced by the strong modulation of the interaction along the Fermi line, leading to an energy scale for the onset of the pairing instability as large as 1 meV when the Fermi energy is sufficiently close to the EVHS. C1 [McChesney, J. L.; Bostwick, Aaron; Ohta, Taisuke; Rotenberg, Eli] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [McChesney, J. L.] Montana State Univ, Bozeman, MT 59717 USA. [Ohta, Taisuke; Horn, Karsten] Max Planck Gesell, Fritz Haber Inst, D-1000 Berlin, Germany. [Seyller, Thomas] Univ Erlangen Nurnberg, Inst Phys Kondensierten Mat, Erlangen, Germany. [Gonzalez, J.] CSIC, Inst Estructura Mat, E-28006 Madrid, Spain. RP McChesney, JL (reprint author), Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. RI Rotenberg, Eli/B-3700-2009; Seyller, Thomas/F-8410-2011; Bostwick, Aaron/E-8549-2010; McChesney, Jessica/K-8911-2013; Gonzalez, Jose/K-7610-2014 OI Rotenberg, Eli/0000-0002-3979-8844; Seyller, Thomas/0000-0002-4953-2142; McChesney, Jessica/0000-0003-0470-2088; FU Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [FIS2008-00124/FIS] FX We are grateful to R. Markiewicz and C.Y. Kim for discussions. Research at the Advanced Light Source was supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy. J.G. acknowledges the financial support of MICINN (Spain) through Grant No. FIS2008-00124/FIS. NR 32 TC 140 Z9 140 U1 4 U2 64 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD APR 2 PY 2010 VL 104 IS 13 AR 136803 DI 10.1103/PhysRevLett.104.136803 PG 4 WC Physics, Multidisciplinary SC Physics GA 577YV UT WOS:000276260800036 PM 20481902 ER PT J AU Park, HS Lorenz, KT Cavallo, RM Pollaine, SM Prisbrey, ST Rudd, RE Becker, RC Bernier, JV Remington, BA AF Park, Hye-Sook Lorenz, K. T. Cavallo, R. M. Pollaine, S. M. Prisbrey, S. T. Rudd, R. E. Becker, R. C. Bernier, J. V. Remington, B. A. TI Viscous Rayleigh-Taylor Instability Experiments at High Pressure and Strain Rate SO PHYSICAL REVIEW LETTERS LA English DT Article ID CONSTITUTIVE MODEL; FACILITY; METALS AB Experimental results showing significant reductions from classical in the Rayleigh-Taylor instability growth rate due to high pressure effective lattice viscosity are presented. Using a laser created ramped drive, vanadium samples are compressed and accelerated quasi-isentropically at similar to 1 Mbar peak pressures, while maintaining the sample in the solid state. Comparisons with simulations and theory indicate that the high pressure, high strain rate conditions trigger a phonon drag mechanism, resulting in the observed high effective lattice viscosity and strong stabilization of the Rayleigh-Taylor instability. C1 [Park, Hye-Sook; Lorenz, K. T.; Cavallo, R. M.; Pollaine, S. M.; Prisbrey, S. T.; Rudd, R. E.; Becker, R. C.; Bernier, J. V.; Remington, B. A.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Park, HS (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RI Becker, Richard/I-1196-2013 FU Lawrence Livermore National Security, LLC, (LLNS) [DE-AC52-07NA27344] FX This work was performed under the auspices of the Lawrence Livermore National Security, LLC, (LLNS) under Contract No. DE-AC52-07NA27344. NR 26 TC 44 Z9 50 U1 1 U2 12 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD APR 2 PY 2010 VL 104 IS 13 AR 135504 DI 10.1103/PhysRevLett.104.135504 PG 4 WC Physics, Multidisciplinary SC Physics GA 577YV UT WOS:000276260800028 PM 20481894 ER PT J AU Prasad, S Jiang, Z Sprung, M Sinha, SK Dhinojwala, A AF Prasad, Shishir Jiang, Zhang Sprung, Michael Sinha, Sunil K. Dhinojwala, Ali TI Effect of Surface Freezing on Meniscus Relaxation in Side Chain Comb Polymers SO PHYSICAL REVIEW LETTERS LA English DT Article ID TIME SCALES; FIBER; EXISTENCE; DYNAMICS; RISE AB We have observed a sharp slowing down of the relaxation of the liquid meniscus for polydn-alkyl acrylate) at temperatures where there are no abrupt changes in bulk viscosity or surface tension. This slowing down is due to the formation of a surface-ordered monolayer above the bulk melting temperatures. X-ray photon correlation spectroscopy measurements reveal that the surface capillary fluctuations are also significantly slower due to the formation of the ordered monolayer for film thicknesses comparable to that of the precursor films. The slowing down of the precursor film dynamics is responsible for slower meniscus relaxation below the surface ordering transition temperature. C1 [Prasad, Shishir; Dhinojwala, Ali] Univ Akron, Dept Polymer Sci, Akron, OH 44325 USA. [Jiang, Zhang; Sinha, Sunil K.] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA. [Sprung, Michael] Argonne Natl Lab, Chicago, IL 60439 USA. RP Prasad, S (reprint author), Univ Akron, Dept Polymer Sci, Akron, OH 44325 USA. EM ali4@uakron.edu RI Jiang, Zhang/A-3297-2012 OI Jiang, Zhang/0000-0003-3503-8909 FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; NSF [DMR-0512156, DMR-0706665]; Basic Energy Sciences, U.S. Department of Energy [DE-FG02-04ER46173] FX The use of the APS was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. We thank NSF [DMR-0512156 (A. D.) and DMR-0706665 (S. K. S.)] and Basic Energy Sciences, U.S. Department of Energy [DE-FG02-04ER46173 (S. K. S.)] for the financial support. NR 23 TC 1 Z9 1 U1 0 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD APR 2 PY 2010 VL 104 IS 13 AR 137801 DI 10.1103/PhysRevLett.104.137801 PG 4 WC Physics, Multidisciplinary SC Physics GA 577YV UT WOS:000276260800049 PM 20481915 ER PT J AU Vitev, I Zhang, BW AF Vitev, Ivan Zhang, Ben-Wei TI Jet Tomography of High-Energy Nucleus-Nucleus Collisions at Next-to-Leading Order SO PHYSICAL REVIEW LETTERS LA English DT Article ID INCLUSIVE CROSS-SECTION; HEAVY-ION COLLISIONS; HADRON-COLLISIONS; ALPHA-S(3); PHYSICS; GLUONS; QUARKS AB We demonstrate that jet observables are highly sensitive to the characteristics of the vacuum and the in-medium QCD parton showers and propose techniques that exploit this sensitivity to constrain the mechanism of quark and gluon energy loss in strongly interacting plasmas. As a first example, we calculate the inclusive jet cross section in high-energy nucleus-nucleus collisions to O(alpha(3)(s)). Theoretical predictions for the medium-induced jet broadening and the suppression of the jet production rate due to cold and hot nuclear matter effects in Au + Au and Cu + Cu reactions at RHIC are presented. C1 [Vitev, Ivan] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Vitev, I (reprint author), Los Alamos Natl Lab, Div Theoret, MS B238, Los Alamos, NM 87545 USA. NR 24 TC 65 Z9 65 U1 1 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD APR 2 PY 2010 VL 104 IS 13 AR 132001 DI 10.1103/PhysRevLett.104.132001 PG 4 WC Physics, Multidisciplinary SC Physics GA 577YV UT WOS:000276260800006 PM 20481872 ER PT J AU Abelev, BI Aggarwal, MM Ahammed, Z Alakhverdyants, AV Alekseev, I Anderson, BD Arkhipkin, D Averichev, GS Balewski, J Barnby, LS Baumgart, S Beavis, DR Bellwied, R Betancourt, MJ Betts, RR Bhasin, A Bhati, AK Bichsel, H Bielcik, J Bielcikova, J Biritz, B Bland, LC Bonner, BE Bouchet, J Braidot, E Brandin, AV Bridgeman, A Bruna, E Bueltmann, S Bunzarov, I Burton, TP Cai, XZ Caines, H Calderon, M Catu, O Cebra, D Cendejas, R Cervantes, MC Chajecki, Z Chaloupka, P Chattopadhyay, S Chen, HF Chen, JH Chen, JY Cheng, J Cherney, M Chikanian, A Choi, KE Christie, W Chung, P Clarke, RF Codrington, MJM Corliss, R Cramer, JG Crawford, HJ Das, D Dash, S Leyva, AD De Silva, LC Debbe, RR Dedovich, TG DePhillips, M Derevschikov, AA de Souza, RD Didenko, L Djawotho, P Dogra, SM Dong, X Drachenberg, JL Draper, JE Dunlop, JC Mazumdar, MRD Efimov, LG Elhalhuli, E Elnimr, M Engelage, J Eppley, G Erazmus, B Estienne, M Eun, L Evdokimov, O Fachini, P Fatemi, R Fedorisin, J Fersch, RG Filip, P Finch, E Fine, V Fisyak, Y Gagliardi, CA Gangadharan, DR Ganti, MS Garcia-Solis, EJ Geromitsos, A Geurts, F Ghazikhanian, V Ghosh, P Gorbunov, YN Gordon, A Grebenyuk, O Grosnick, D Grube, B Guertin, SM Gupta, A Gupta, N Guryn, W Haag, B Hamed, A Han, LX Harris, JW Hays-Wehle, JP Heinz, M Heppelmann, S Hirsch, A Hjort, E Hoffman, AM Hoffmann, GW Hofman, DJ Hollis, RS Huang, B Huang, HZ Humanic, TJ Huo, L Igo, G Iordanova, A Jacobs, P Jacobs, WW Jakl, P Jena, C Jin, F Jones, CL Jones, PG Joseph, J Judd, EG Kabana, S Kajimoto, K Kang, K Kapitan, J Kauder, K Keane, D Kechechyan, A Kettler, D Kikola, DP Kiryluk, J Kisiel, A Klein, SR Knospe, AG Kocoloski, A Koetke, DD Kollegger, T Konzer, J Kopytine, M Koralt, I Koroleva, L Korsch, W Kotchenda, L Kouchpil, V Kravtsov, P Krueger, K Krus, M Kumar, L Kurnadi, P Lamont, MAC Landgraf, JM LaPointe, S Lauret, J Lebedev, A Lednicky, R Lee, CH Lee, JH Leight, W Levine, MJ Li, C Li, L Li, N Li, W Li, X Li, Y Li, Z Lin, G Lindenbaum, SJ Lisa, MA Liu, F Liu, H Liu, J Ljubicic, T Llope, WJ Longacre, RS Love, WA Lu, Y Luo, X Ma, GL Ma, YG Mahapatra, DP Majka, R Mal, OI Mangotra, LK Manweiler, R Margetis, S Markert, C Masui, H Matis, HS Matulenko, YA McDonald, D McShane, TS Meschanin, A Milner, R Minaev, NG Mioduszewski, S Mischke, A Mitrovski, MK Mohanty, B Mondal, MM Morozov, B Morozov, DA Munhoz, MG Nandi, BK Nattrass, C Nayak, TK Nelson, JM Netrakanti, PK Ng, MJ Nogach, LV Nurushev, SB Odyniec, G Ogawa, A Okada, H Okorokov, V Olson, D Pachr, M Page, BS Pal, SK Pandit, Y Panebratsev, Y Pawlak, T Peitzmann, T Perevoztchikov, V Perkins, C Peryt, W Phatak, SC Pile, P Planinic, M Ploskon, MA Pluta, J Plyku, D Poljak, N Poskanzer, AM Potukuchi, BVKS Powell, CB Prindle, D Pruneau, C Pruthi, NK Pujahari, PR Putschke, J Qiu, H Raniwala, R Raniwala, S Ray, RL Redwine, R Reed, R Ritter, HG Roberts, JB Rogachevskiy, OV Romero, JL Rose, A Roy, C Ruan, L Sahoo, R Sakai, S Sakrejda, I Sakuma, T Salur, S Sandweiss, J Sangaline, E Schambach, J Scharenberg, RP Schmitz, N Schuster, TR Seele, J Seger, J Selyuzhenkov, I Seyboth, P Shahaliev, E Shao, M Sharma, M Shi, SS Sichtermann, EP Simon, F Singaraju, RN Skoby, MJ Smirnov, N Sorensen, P Sowinski, J Spinka, HM Srivastava, B Stanislaus, TDS Staszak, D Stevens, JR Stock, R Strikhanov, M Stringfellow, B Suaide, AAP Suarez, MC Subba, NL Sumbera, M Sun, XM Sun, Y Sun, Z Surrow, B Svirida, DN Symons, TJM de Toledo, AS Takahashi, J Tang, AH Tang, Z Tarini, LH Tarnowsky, T Thein, D Thomas, H Tian, J Timmins, AR Timoshenko, S Tlusty, D Tokarev, M Trainor, TA Tram, VN Trentalange, S Tribble, RE Tsai, OD Ulery, J Ullrich, T Underwood, DG Van Buren, G van Leeuwen, M van Nieuwenhuizen, G Vanfossen, JA Varma, R Vasconcelos, GMS Vasiliev, AN Videbaek, F Viyogi, YP Vokal, S Voloshin, SA Wada, M Walker, M Wang, F Wang, G Wang, H Wang, JS Wang, Q Wang, XL Wang, Y Webb, G Webb, JC Westfall, GD Whitten, C Wieman, H Wingfield, E Wissink, SW Witt, R Wu, Y Xie, W Xu, H Xu, N Xu, QH Xu, W Xu, Y Xu, Z Xue, L Yang, Y Yepes, P Yip, K Yoo, IK Yue, Q Zawisza, M Zbroszczyk, H Zhan, W Zhang, J Zhang, S Zhang, WM Zhang, XP Zhang, Y Zhang, ZP Zhao, J Zhong, C Zhou, J Zhou, W Zhu, X Zhu, YH Zoulkarneev, R Zoulkarneeva, Y AF Abelev, B. I. Aggarwal, M. M. Ahammed, Z. Alakhverdyants, A. V. Alekseev, I. Anderson, B. D. Arkhipkin, D. Averichev, G. S. Balewski, J. Barnby, L. S. Baumgart, S. Beavis, D. R. Bellwied, R. Betancourt, M. J. Betts, R. R. Bhasin, A. Bhati, A. K. Bichsel, H. Bielcik, J. Bielcikova, J. Biritz, B. Bland, L. C. Bonner, B. E. Bouchet, J. Braidot, E. Brandin, A. V. Bridgeman, A. Bruna, E. Bueltmann, S. Bunzarov, I. Burton, T. P. Cai, X. Z. Caines, H. Calderon, M. Catu, O. Cebra, D. Cendejas, R. Cervantes, M. C. Chajecki, Z. Chaloupka, P. Chattopadhyay, S. Chen, H. F. Chen, J. H. Chen, J. Y. Cheng, J. Cherney, M. Chikanian, A. Choi, K. E. Christie, W. Chung, P. Clarke, R. F. Codrington, M. J. M. Corliss, R. Cramer, J. G. Crawford, H. J. Das, D. Dash, S. Leyva, A. Davila De Silva, L. C. Debbe, R. R. Dedovich, T. G. DePhillips, M. Derevschikov, A. A. de Souza, R. Derradi Didenko, L. Djawotho, P. Dogra, S. M. Dong, X. Drachenberg, J. L. Draper, J. E. Dunlop, J. C. Mazumdar, M. R. Dutta Efimov, L. G. Elhalhuli, E. Elnimr, M. Engelage, J. Eppley, G. Erazmus, B. Estienne, M. Eun, L. Evdokimov, O. Fachini, P. Fatemi, R. Fedorisin, J. Fersch, R. G. Filip, P. Finch, E. Fine, V. Fisyak, Y. Gagliardi, C. A. Gangadharan, D. R. Ganti, M. S. Garcia-Solis, E. J. Geromitsos, A. Geurts, F. Ghazikhanian, V. Ghosh, P. Gorbunov, Y. N. Gordon, A. Grebenyuk, O. Grosnick, D. Grube, B. Guertin, S. M. Gupta, A. Gupta, N. Guryn, W. Haag, B. Hamed, A. Han, L. -X. Harris, J. W. Hays-Wehle, J. P. Heinz, M. Heppelmann, S. Hirsch, A. Hjort, E. Hoffman, A. M. Hoffmann, G. W. Hofman, D. J. Hollis, R. S. Huang, B. Huang, H. Z. Humanic, T. J. Huo, L. Igo, G. Iordanova, A. Jacobs, P. Jacobs, W. W. Jakl, P. Jena, C. Jin, F. Jones, C. L. Jones, P. G. Joseph, J. Judd, E. G. Kabana, S. Kajimoto, K. Kang, K. Kapitan, J. Kauder, K. Keane, D. Kechechyan, A. Kettler, D. Kikola, D. P. Kiryluk, J. Kisiel, A. Klein, S. R. Knospe, A. G. Kocoloski, A. Koetke, D. D. Kollegger, T. Konzer, J. Kopytine, M. Koralt, I. Koroleva, L. Korsch, W. Kotchenda, L. Kouchpil, V. Kravtsov, P. Krueger, K. Krus, M. Kumar, L. Kurnadi, P. Lamont, M. A. C. Landgraf, J. M. LaPointe, S. Lauret, J. Lebedev, A. Lednicky, R. Lee, C. -H. Lee, J. H. Leight, W. Levine, M. J. Li, C. Li, L. Li, N. Li, W. Li, X. Li, Y. Li, Z. Lin, G. Lindenbaum, S. J. Lisa, M. A. Liu, F. Liu, H. Liu, J. Ljubicic, T. Llope, W. J. Longacre, R. S. Love, W. A. Lu, Y. Luo, X. Ma, G. L. Ma, Y. G. Mahapatra, D. P. Majka, R. Mal, O. I. Mangotra, L. K. Manweiler, R. Margetis, S. Markert, C. Masui, H. Matis, H. S. Matulenko, Yu. A. McDonald, D. McShane, T. S. Meschanin, A. Milner, R. Minaev, N. G. Mioduszewski, S. Mischke, A. Mitrovski, M. K. Mohanty, B. Mondal, M. M. Morozov, B. Morozov, D. A. Munhoz, M. G. Nandi, B. K. Nattrass, C. Nayak, T. K. Nelson, J. M. Netrakanti, P. K. Ng, M. J. Nogach, L. V. Nurushev, S. B. Odyniec, G. Ogawa, A. Okada, H. Okorokov, V. Olson, D. Pachr, M. Page, B. S. Pal, S. K. Pandit, Y. Panebratsev, Y. Pawlak, T. Peitzmann, T. Perevoztchikov, V. Perkins, C. Peryt, W. Phatak, S. C. Pile, P. Planinic, M. Ploskon, M. A. Pluta, J. Plyku, D. Poljak, N. Poskanzer, A. M. Potukuchi, B. V. K. S. Powell, C. B. Prindle, D. Pruneau, C. Pruthi, N. K. Pujahari, P. R. Putschke, J. Qiu, H. Raniwala, R. Raniwala, S. Ray, R. L. Redwine, R. Reed, R. Ritter, H. G. Roberts, J. B. Rogachevskiy, O. V. Romero, J. L. Rose, A. Roy, C. Ruan, L. Sahoo, R. Sakai, S. Sakrejda, I. Sakuma, T. Salur, S. Sandweiss, J. Sangaline, E. Schambach, J. Scharenberg, R. P. Schmitz, N. Schuster, T. R. Seele, J. Seger, J. Selyuzhenkov, I. Seyboth, P. Shahaliev, E. Shao, M. Sharma, M. Shi, S. S. Sichtermann, E. P. Simon, F. Singaraju, R. N. Skoby, M. J. Smirnov, N. Sorensen, P. Sowinski, J. Spinka, H. M. Srivastava, B. Stanislaus, T. D. S. Staszak, D. Stevens, J. R. Stock, R. Strikhanov, M. Stringfellow, B. Suaide, A. A. P. Suarez, M. C. Subba, N. L. Sumbera, M. Sun, X. M. Sun, Y. Sun, Z. Surrow, B. Svirida, D. N. Symons, T. J. M. de Toledo, A. Szanto Takahashi, J. Tang, A. H. Tang, Z. Tarini, L. H. Tarnowsky, T. Thein, D. Thomas, H. Tian, J. Timmins, A. R. Timoshenko, S. Tlusty, D. Tokarev, M. Trainor, T. A. Tram, V. N. Trentalange, S. Tribble, R. E. Tsai, O. D. Ulery, J. Ullrich, T. Underwood, D. G. Van Buren, G. van Leeuwen, M. van Nieuwenhuizen, G. Vanfossen, J. A., Jr. Varma, R. Vasconcelos, G. M. S. Vasiliev, A. N. Videbaek, F. Viyogi, Y. P. Vokal, S. Voloshin, S. A. Wada, M. Walker, M. Wang, F. Wang, G. Wang, H. Wang, J. S. Wang, Q. Wang, X. L. Wang, Y. Webb, G. Webb, J. C. Westfall, G. D. Whitten, C., Jr. Wieman, H. Wingfield, E. Wissink, S. W. Witt, R. Wu, Y. Xie, W. Xu, H. Xu, N. Xu, Q. H. Xu, W. Xu, Y. Xu, Z. Xue, L. Yang, Y. Yepes, P. Yip, K. Yoo, I. -K. Yue, Q. Zawisza, M. Zbroszczyk, H. Zhan, W. Zhang, J. Zhang, S. Zhang, W. M. Zhang, X. P. Zhang, Y. Zhang, Z. P. Zhao, J. Zhong, C. Zhou, J. Zhou, W. Zhu, X. Zhu, Y. H. Zoulkarneev, R. Zoulkarneeva, Y. CA STAR Collaboration TI Observation of an Antimatter Hypernucleus SO SCIENCE LA English DT Article ID QUARK-GLUON-PLASMA; LIGHT HYPERNUCLEI; STRANGENESS; LIFETIME; COLLISIONS; PHYSICS; SEARCH AB Nuclear collisions recreate conditions in the universe microseconds after the Big Bang. Only a very small fraction of the emitted fragments are light nuclei, but these states are of fundamental interest. We report the observation of antihypertritons-comprising an antiproton, an antineutron, and an antilambda hyperon-produced by colliding gold nuclei at high energy. Our analysis yields 70 +/- 17 antihypertritons (3/Lambda(H) over bar) and 157 +/- 30 hypertritons (H-3(Lambda)). The measured yields of H-3(Lambda) (3/Lambda(H) over bar) and He-3 ((3)(He) over bar) are similar, suggesting an equilibrium in coordinate and momentum space populations of up, down, and strange quarks and antiquarks, unlike the pattern observed at lower collision energies. The production and properties of antinuclei, and of nuclei containing strange quarks, have implications spanning nuclear and particle physics, astrophysics, and cosmology. C1 [Abelev, B. I.; Betts, R. R.; Evdokimov, O.; Garcia-Solis, E. J.; Hofman, D. J.; Hollis, R. S.; Iordanova, A.; Kauder, K.; Suarez, M. C.] Univ Illinois, Chicago, IL 60607 USA. [Aggarwal, M. M.; Bhati, A. K.; Kumar, L.; Pruthi, N. K.] Panjab Univ, Chandigarh 160014, India. [Ahammed, Z.; Chattopadhyay, S.; Mazumdar, M. R. Dutta; Ganti, M. S.; Ghosh, P.; Mohanty, B.; Nayak, T. K.; Pal, S. K.; Singaraju, R. N.; Viyogi, Y. P.] Bhabha Atom Res Ctr, Ctr Variable Energy Cyclotron, Kolkata 700064, W Bengal, India. [Alakhverdyants, A. V.; Averichev, G. S.; Bunzarov, I.; Dedovich, T. G.; Efimov, L. G.; Fedorisin, J.; Filip, P.; Kechechyan, A.; Lednicky, R.; Panebratsev, Y.; Rogachevskiy, O. V.; Shahaliev, E.; Tokarev, M.; Vokal, S.; Zoulkarneev, R.; Zoulkarneeva, Y.] Joint Inst Nucl Res, Dubna 141980, Russia. [Alekseev, I.; Koroleva, L.; Morozov, B.; Svirida, D. N.] Alikhanov Inst Theoret & Expt Phys, Moscow, Russia. [Anderson, B. D.; Bouchet, J.; Joseph, J.; Keane, D.; Kopytine, M.; Margetis, S.; Pandit, Y.; Subba, N. L.; Vanfossen, J. A., Jr.; Zhang, W. M.] Kent State Univ, Kent, OH 44242 USA. [Arkhipkin, D.; Beavis, D. R.; Bland, L. C.; Christie, W.; Debbe, R. R.; DePhillips, M.; Didenko, L.; Dunlop, J. C.; Fachini, P.; Fine, V.; Fisyak, Y.; Gordon, A.; Guryn, W.; Lamont, M. A. C.; Landgraf, J. M.; Lauret, J.; Lebedev, A.; Lee, J. H.; Levine, M. J.; Ljubicic, T.; Longacre, R. S.; Love, W. A.; Ogawa, A.; Okada, H.; Perevoztchikov, V.; Pile, P.; Ruan, L.; Sorensen, P.; Tang, A. H.; Ullrich, T.; Van Buren, G.; Videbaek, F.; Xu, Z.; Yip, K.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Balewski, J.; Betancourt, M. J.; Corliss, R.; Hays-Wehle, J. P.; Hoffman, A. M.; Jones, C. L.; Kocoloski, A.; Leight, W.; Milner, R.; Redwine, R.; Sakuma, T.; Seele, J.; Surrow, B.; van Nieuwenhuizen, G.; Walker, M.] MIT, Cambridge, MA 02139 USA. [Barnby, L. S.; Burton, T. P.; Elhalhuli, E.; Jones, P. G.; Nelson, J. M.; Westfall, G. D.] Univ Birmingham, Birmingham, W Midlands, England. [Baumgart, S.; Bruna, E.; Caines, H.; Catu, O.; Chikanian, A.; Finch, E.; Harris, J. W.; Heinz, M.; Knospe, A. G.; Lin, G.; Majka, R.; Nattrass, C.; Putschke, J.; Sandweiss, J.; Smirnov, N.] Yale Univ, New Haven, CT 06520 USA. [Bellwied, R.; De Silva, L. C.; Elnimr, M.; LaPointe, S.; Pruneau, C.; Sharma, M.; Tarini, L. H.; Timmins, A. R.; Voloshin, S. A.] Wayne State Univ, Detroit, MI 48201 USA. [Bhasin, A.; Dogra, S. M.; Gupta, A.; Gupta, N.; Mangotra, L. K.; Potukuchi, B. V. K. S.] Univ Jammu, Jammu 180001, India. [Bichsel, H.; Cramer, J. G.; Kettler, D.; Prindle, D.; Trainor, T. A.] Univ Washington, Seattle, WA 98195 USA. [Bielcik, J.; Krus, M.; Pachr, M.] Czech Tech Univ, Fac Nucl Sci & Phys Engn, CR-11519 Prague, Czech Republic. [Bielcikova, J.; Chaloupka, P.; Chung, P.; Jakl, P.; Kapitan, J.; Kouchpil, V.; Sumbera, M.; Tlusty, D.] Nucl Phys Inst AS CR, Prague 25068, Czech Republic. [Biritz, B.; Cendejas, R.; Gangadharan, D. R.; Ghazikhanian, V.; Guertin, S. M.; Huang, H. Z.; Igo, G.; Kurnadi, P.; Sakai, S.; Staszak, D.; Trentalange, S.; Tsai, O. D.; Wang, G.; Whitten, C., Jr.; Xu, W.] Univ Calif Los Angeles, Los Angeles, CA 90095 USA. [Bonner, B. E.; Eppley, G.; Geurts, F.; Liu, J.; Llope, W. J.; McDonald, D.; Roberts, J. B.; Yepes, P.; Zhou, J.] Rice Univ, Houston, TX 77251 USA. [Braidot, E.; Mischke, A.; Peitzmann, T.; van Leeuwen, M.] NIKHEF, Amsterdam, Netherlands. [Braidot, E.; Mischke, A.; Peitzmann, T.; van Leeuwen, M.] Univ Utrecht, Amsterdam, Netherlands. [Brandin, A. V.; Kotchenda, L.; Kravtsov, P.; Okorokov, V.; Strikhanov, M.; Timoshenko, S.] Moscow Engn Phys Inst, Moscow 115409, Russia. [Bridgeman, A.; Krueger, K.; Spinka, H. M.; Underwood, D. G.] Argonne Natl Lab, Argonne, IL 60439 USA. [Bueltmann, S.; Koralt, I.; Plyku, D.] Old Dominion Univ, Norfolk, VA 23529 USA. [Cai, X. Z.; Chen, J. H.; Han, L. -X.; Jin, F.; Li, W.; Ma, G. L.; Ma, Y. G.; Tian, J.; Xue, L.; Zhang, S.; Zhao, J.; Zhong, C.; Zhu, Y. H.] Shanghai Inst Appl Phys, Shanghai 201800, Peoples R China. [Calderon, M.; Cebra, D.; Das, D.; Draper, J. E.; Haag, B.; Liu, H.; Reed, R.; Romero, J. L.; Sangaline, E.] Univ Calif Davis, Davis, CA 95616 USA. [Cervantes, M. C.; Clarke, R. F.; Codrington, M. J. M.; Djawotho, P.; Drachenberg, J. L.; Gagliardi, C. A.; Hamed, A.; Huo, L.; Mioduszewski, S.; Tribble, R. E.] Texas A&M Univ, College Stn, TX 77843 USA. [Chajecki, Z.; Humanic, T. J.; Lisa, M. A.] Ohio State Univ, Columbus, OH 43210 USA. [Chen, H. F.; Huang, B.; Li, C.; Lu, Y.; Luo, X.; Shao, M.; Sun, Y.; Tang, Z.; Wang, X. L.; Xu, Y.; Zhang, Z. P.] Univ Sci & Technol China, Hefei 230026, Peoples R China. [Chen, J. Y.; Li, N.; Li, Z.; Liu, F.; Shi, S. S.; Wu, Y.; Zhang, J.] CCNU HZNU, Inst Particle Phys, Wuhan 430079, Peoples R China. [Cheng, J.; Kang, K.; Li, Y.; Wang, Y.; Yue, Q.; Zhu, X.] Tsinghua Univ, Beijing 100084, Peoples R China. [Cherney, M.; Gorbunov, Y. N.; McShane, T. S.; Seger, J.] Creighton Univ, Omaha, NE 68178 USA. [Choi, K. E.; Grube, B.; Lee, C. -H.; Yoo, I. -K.] Pusan Natl Univ, Pusan, South Korea. [Dash, S.; Jena, C.; Mahapatra, D. P.; Phatak, S. C.] Inst Phys, Bhubaneswar 751005, Orissa, India. [Leyva, A. Davila; Hoffmann, G. W.; Kajimoto, K.; Li, L.; Markert, C.; Ray, R. L.; Schambach, J.; Thein, D.; Wada, M.; Wingfield, E.] Univ Texas Austin, Austin, TX 78712 USA. [Derevschikov, A. A.; Matulenko, Yu. A.; Meschanin, A.; Minaev, N. G.; Morozov, D. A.; Nogach, L. V.; Nurushev, S. B.; Vasiliev, A. N.] Inst High Energy Phys, Protvino, Russia. [de Souza, R. Derradi; Takahashi, J.; Vasconcelos, G. M. S.] Univ Estadual Campinas, Sao Paulo, Brazil. [Dong, X.; Grebenyuk, O.; Hjort, E.; Jacobs, P.; Kikola, D. P.; Kiryluk, J.; Klein, S. R.; Masui, H.; Matis, H. S.; Odyniec, G.; Olson, D.; Ploskon, M. A.; Poskanzer, A. M.; Powell, C. B.; Ritter, H. G.; Rose, A.; Sakrejda, I.; Salur, S.; Sichtermann, E. P.; Sun, X. M.; Symons, T. J. M.; Thomas, H.; Tram, V. N.; Wieman, H.; Xu, N.; Zhang, X. P.; Zhang, Y.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Erazmus, B.; Estienne, M.; Geromitsos, A.; Kabana, S.; Roy, C.; Sahoo, R.] SUBATECH, Nantes, France. [Eun, L.; Heppelmann, S.] Penn State Univ, University Pk, PA 16802 USA. [Fatemi, R.; Fersch, R. G.; Korsch, W.; Webb, G.] Univ Kentucky, Lexington, KY 40506 USA. [Grosnick, D.; Koetke, D. D.; Manweiler, R.; Stanislaus, T. D. S.; Webb, J. C.] Valparaiso Univ, Valparaiso, IN 46383 USA. [Hirsch, A.; Konzer, J.; Li, X.; Netrakanti, P. K.; Scharenberg, R. P.; Skoby, M. J.; Srivastava, B.; Stringfellow, B.; Ulery, J.; Wang, F.; Wang, Q.; Xie, W.] Purdue Univ, W Lafayette, IN 47907 USA. [Jacobs, W. W.; Mal, O. I.; Page, B. S.; Selyuzhenkov, I.; Sowinski, J.; Stevens, J. R.; Wissink, S. W.] Indiana Univ, Bloomington, IN 47408 USA. [Kisiel, A.; Pawlak, T.; Peryt, W.; Pluta, J.; Zawisza, M.; Zbroszczyk, H.] Warsaw Univ Technol, Warsaw, Poland. [Kollegger, T.; Mitrovski, M. K.; Schuster, T. R.; Stock, R.] Goethe Univ Frankfurt, Frankfurt, Germany. [Lindenbaum, S. J.] CUNY City Coll, New York, NY 10031 USA. [Munhoz, M. G.; Suaide, A. A. P.; de Toledo, A. Szanto] Univ Sao Paulo, Sao Paulo, Brazil. [Nandi, B. K.; Pujahari, P. R.; Varma, R.] Indian Inst Technol, Bombay 400076, Maharashtra, India. [Planinic, M.; Poljak, N.] Univ Zagreb, HR-10002 Zagreb, Croatia. [Qiu, H.; Sun, Z.; Wang, J. S.; Xu, H.; Yang, Y.; Zhan, W.] Inst Modern Phys, Lanzhou, Peoples R China. [Raniwala, R.; Raniwala, S.] Univ Rajasthan, Jaipur 302004, Rajasthan, India. [Schmitz, N.; Seyboth, P.; Simon, F.] Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany. [Tarnowsky, T.; Wang, H.] Michigan State Univ, E Lansing, MI 48824 USA. [Witt, R.] USN Acad, Annapolis, MD 21402 USA. [Xu, Q. H.; Zhou, W.] Shandong Univ, Jinan 250100, Shandong, Peoples R China. RP Abelev, BI (reprint author), Univ Illinois, Chicago, IL 60607 USA. RI Inst. of Physics, Gleb Wataghin/A-9780-2017; Okorokov, Vitaly/C-4800-2017; Ma, Yu-Gang/M-8122-2013; Bielcikova, Jana/G-9342-2014; Alekseev, Igor/J-8070-2014; Sumbera, Michal/O-7497-2014; Strikhanov, Mikhail/P-7393-2014; Xu, Wenqin/H-7553-2014; Dogra, Sunil /B-5330-2013; Chaloupka, Petr/E-5965-2012; Huang, Bingchu/H-6343-2015; Nattrass, Christine/J-6752-2016; Derradi de Souza, Rafael/M-4791-2013; Suaide, Alexandre/L-6239-2016; Svirida, Dmitry/R-4909-2016; Barnby, Lee/G-2135-2010; Mischke, Andre/D-3614-2011; Takahashi, Jun/B-2946-2012; Yoo, In-Kwon/J-6222-2012; Lednicky, Richard/K-4164-2013; Peitzmann, Thomas/K-2206-2012; Tang, Zebo/A-9939-2014; Yang, Yanyun/B-9485-2014; Witt, Richard/H-3560-2012; Yip, Kin/D-6860-2013; Xue, Liang/F-8077-2013; Voloshin, Sergei/I-4122-2013; Pandit, Yadav/I-2170-2013 OI Sorensen, Paul/0000-0001-5056-9391; Thomas, James/0000-0002-6256-4536; van Leeuwen, Marco/0000-0002-5222-4888; Okorokov, Vitaly/0000-0002-7162-5345; Ma, Yu-Gang/0000-0002-0233-9900; Bhasin, Anju/0000-0002-3687-8179; Alekseev, Igor/0000-0003-3358-9635; Sumbera, Michal/0000-0002-0639-7323; Strikhanov, Mikhail/0000-0003-2586-0405; Xu, Wenqin/0000-0002-5976-4991; Huang, Bingchu/0000-0002-3253-3210; Nattrass, Christine/0000-0002-8768-6468; Derradi de Souza, Rafael/0000-0002-2084-7001; Suaide, Alexandre/0000-0003-2847-6556; Barnby, Lee/0000-0001-7357-9904; Takahashi, Jun/0000-0002-4091-1779; Peitzmann, Thomas/0000-0002-7116-899X; Tang, Zebo/0000-0002-4247-0081; Yang, Yanyun/0000-0002-5982-1706; Yip, Kin/0000-0002-8576-4311; Xue, Liang/0000-0002-2321-9019; Pandit, Yadav/0000-0003-2809-7943 FU U.S. DOE Office of Science; NSF; Sloan Foundation; DFG cluster of excellence "Origin and Structure of the Universe" [CNRS/IN2P3]; STFC; EPSRC of the United Kingdom; FAPESP CNPq of Brazil; Ministry of Education and Science of the Russian Federation; NNSFC of China; CAS of China; MoST of China; MoE of China; GA of the Czech Republic; MSMT of the Czech Republic; FOM of the Netherlands; NOW of the Netherlands; DAE of India; DST of India; CSIR of India; Polish Ministry of Science and Higher Education; Korea Research Foundation; Ministry of Science, Education and Sports of the Republic of Croatia; Russian Ministry of Science and Technology and RosAtom of Russia FX We thank K. Synder for providing Fig. 1, and the RHIC Operations Group and RCF at BNL, the NERSC Center at LBNL, and the Open Science Grid consortium for providing resources and support. Supported by the Offices of NP and HEP within the U.S. DOE Office of Science; NSF; the Sloan Foundation; the DFG cluster of excellence "Origin and Structure of the Universe," CNRS/IN2P3; STFC and EPSRC of the United Kingdom; FAPESP CNPq of Brazil; Ministry of Education and Science of the Russian Federation; NNSFC, CAS, MoST, and MoE of China; GA and MSMT of the Czech Republic; FOM and NOW of the Netherlands; DAE, DST, and CSIR of India; Polish Ministry of Science and Higher Education; Korea Research Foundation; Ministry of Science, Education and Sports of the Republic of Croatia; and Russian Ministry of Science and Technology and RosAtom of Russia. NR 40 TC 102 Z9 102 U1 7 U2 58 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 EI 1095-9203 J9 SCIENCE JI Science PD APR 2 PY 2010 VL 328 IS 5974 BP 58 EP 62 DI 10.1126/science.1183980 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 577DR UT WOS:000276202200033 ER PT J AU Matson, DW Graff, GL Male, JL Johnson, BR Nie, ZM Joly, AG Olsen, LC AF Matson, Dean W. Graff, Gordon L. Male, Jonathan L. Johnson, Bradley R. Nie, Zimin Joly, Alan G. Olsen, Larry C. TI Synthesis and screening of thin films in the CeCl3-CeBr3 system for scintillator applications SO THIN SOLID FILMS LA English DT Article DE Scintillator; Combinatorial; Thermal evaporation; CeCl3; CeBr3 ID COMBINATORIAL SYNTHESIS; CERIUM FLUORIDE; SPECTROSCOPY; MECHANISMS AB Thin film samples of CeCl3, CeBr3, and combinatorial compositions along the CeCl3-CeBr3 join were produced using thermal evaporation, which is being evaluated as a method for rapid screening of scintillator materials. The combinatorial thin films were shown to be compositionally reproducible from run-to-run within reasonable limitations. Analytical results suggest a continuous variation in the combinatorial samples in terms of their compositions, crystal structures, and luminescence characteristics. (C) 2009 Elsevier B.V. All rights reserved. C1 [Matson, Dean W.; Graff, Gordon L.; Male, Jonathan L.; Johnson, Bradley R.; Nie, Zimin; Joly, Alan G.; Olsen, Larry C.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Matson, DW (reprint author), Pacific NW Natl Lab, POB 999, Richland, WA 99352 USA. EM dean.matson@pnl.gov FU Radiation Detection Materials Discovery Initiative; Laboratory Directed Research and Development initiative at the Pacific Northwest National Laboratory; DOE [DE-AC06-76RLO 1830] FX This work was supported by the Radiation Detection Materials Discovery Initiative, a Laboratory Directed Research and Development initiative at the Pacific Northwest National Laboratory. Parts of the work were conducted at the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) a DOE User Facility operated by Battelle for the DOE Office of Biological and Environmental Research. Pacific Northwest National Laboratory is operated for the DOE under Contract DE-AC06-76RLO 1830. NR 19 TC 3 Z9 3 U1 1 U2 10 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0040-6090 J9 THIN SOLID FILMS JI Thin Solid Films PD APR 2 PY 2010 VL 518 IS 12 BP 3194 EP 3198 DI 10.1016/j.tsf.2009.09.015 PG 5 WC Materials Science, Multidisciplinary; Materials Science, Coatings & Films; Physics, Applied; Physics, Condensed Matter SC Materials Science; Physics GA 582DB UT WOS:000276574700010 ER PT J AU Anders, A Lim, SHN Yu, KM Andersson, J Rosen, J McFarland, M Brown, J AF Anders, Andre Lim, Sunnie H. N. Yu, Kin Man Andersson, Joakim Rosen, Johanna McFarland, Mike Brown, Jeff TI High quality ZnO:Al transparent conducting oxide films synthesized by pulsed filtered cathodic arc deposition SO THIN SOLID FILMS LA English DT Article DE Transparent conducting oxide; Aluminum-doped zinc oxide; Filtered cathodic arc ID VACUUM-ARC; THIN-FILMS; ENERGETIC CONDENSATION; OPTICAL-PROPERTIES; PLASMA; PARAMETERS AB Aluminum-doped zinc oxide, ZnO:Al or AZO, is a well-known n-type transparent conducting oxide with great potential in a number of applications currently dominated by indium tin oxide. In this study, the optical and electrical properties of AZO thin films deposited on glass and silicon by pulsed filtered cathodic arc deposition are systematically studied. In contrast to magnetron sputtering, this technique does not produce energetic negative ions, and therefore ion damage can be minimized. The quality of the AZO films strongly depends on growth temperature while only marginal improvements are obtained with post-deposition annealing. The best films, grown at a temperature of about 200 degrees C, have resistivities in the low to mid 10(-4) Omega cm range with a transmittance better than 85% in the visible part of the spectrum. It is remarkable that relatively good films of small thickness (60 nm) can be fabricated using this method. (C) 2009 Elsevier B.V. All rights reserved. C1 [Anders, Andre; Lim, Sunnie H. N.; Yu, Kin Man; Andersson, Joakim; Rosen, Johanna] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Lim, Sunnie H. N.] Univ Sydney, Sch Appl Phys, Sydney, NSW 2006, Australia. [Andersson, Joakim] Uppsala Univ, Angstrom Lab, Uppsala, Sweden. [Rosen, Johanna] Linkoping Univ, Linkoping, Sweden. [McFarland, Mike; Brown, Jeff] Acree Technol Inc, Concord, CA USA. RP Anders, A (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. EM aanders@lbl.gov RI Andersson, Joakim/A-3017-2009; Lim, Sunnie/A-2827-2012; Yu, Kin Man/J-1399-2012; Rosen, Johanna/M-9284-2014; Anders, Andre/B-8580-2009; OI Andersson, Joakim/0000-0003-2991-1927; Yu, Kin Man/0000-0003-1350-9642; Anders, Andre/0000-0002-5313-6505; Brown, Jeffery/0000-0001-8569-7174 FU U.S. Department of Energy [DE-AC02-05CH11231]; RoseStreet Labs Energy, Inc.; Australian Research Council (ARC) [DP0666883]; Australian Institute of Nuclear Science and Engineering (AINSE) [AINGRA07012P, AINGRA07094]; SSF Strategic Research Centre; Wenner-Gren Foundations FX This work was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Building Technology, and by the Director, Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering of the U.S. Department of Energy under contract no. DE-AC02-05CH11231. K.M. Yu thanks RoseStreet Labs Energy, Inc. for additional support; S.H.N. Lim gratefully acknowledges the financial support by the Australian Research Council (ARC project DP0666883) and the Australian Institute of Nuclear Science and Engineering (AINSE grants AINGRA07012P and AINGRA07094); J. Rosen and J. Andersson acknowledge the support of the SSF Strategic Research Centre on Materials Science for Nanoscale Surface Engineering, and the Wenner-Gren Foundations (both Sweden), respectively. NR 38 TC 39 Z9 39 U1 3 U2 31 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0040-6090 J9 THIN SOLID FILMS JI Thin Solid Films PD APR 2 PY 2010 VL 518 IS 12 BP 3313 EP 3319 DI 10.1016/j.tsf.2009.10.006 PG 7 WC Materials Science, Multidisciplinary; Materials Science, Coatings & Films; Physics, Applied; Physics, Condensed Matter SC Materials Science; Physics GA 582DB UT WOS:000276574700032 ER PT J AU Faulconer, LS Parham, CA Connor, DM Kuzmiak, C Koomen, M Lee, Y Cho, KR Rafoth, J Livasy, CA Kim, E Zeng, DL Cole, E Zhong, Z Pisano, ED AF Faulconer, Laura S. Parham, Chris A. Connor, Dean M. Kuzmiak, Cherie Koomen, Marcia Lee, Yeonhee Cho, Kyu Ran Rafoth, Josh Livasy, Chad A. Kim, Eunhee Zeng, Donglin Cole, Elodia Zhong, Zhong Pisano, Etta D. TI Effect of Breast Compression on Lesion Characteristic Visibility with Diffraction-Enhanced Imaging SO ACADEMIC RADIOLOGY LA English DT Article DE Diffraction-enhanced imaging; breast cancer; breast compression; reader study; refraction contrast ID DIGITAL MAMMOGRAPHY; SYNCHROTRON-RADIATION; CANCER SPECIMENS; CONTRAST; CONSPICUOUSNESS AB Rationale and Objectives: Conventional mammography can not distinguish between transmitted, scattered, or refracted x-rays, thus requiring breast compression to decrease tissue depth and separate overlapping structures. Diffraction-enhanced imaging (DEI) uses monochromatic x-rays and perfect crystal diffraction to generate images with contrast based on absorption, refraction, or scatter. Because DEI possesses inherently superior contrast mechanisms, the current study assesses the effect of breast compression on lesion characteristic visibility with DEI imaging of breast specimens. Materials and Methods: Eleven breast tissue specimens, containing a total of 21 regions of interest, were imaged by DEI uncompressed, half-compressed, or fully compressed. A fully compressed DEI image was displayed on a soft-copy mammography review workstation, next to a DEI image acquired with reduced compression, maintaining all other imaging parameters. Five breast imaging radiologists scored image quality metrics considering known lesion pathology, ranking their findings on a 7-point Likert scale. Results: When fully compressed DEI images were compared to those acquired with approximately a 25% difference in tissue thickness, there was no difference in scoring of lesion feature visibility. For fully compressed DEI images compared to those acquired with approximately a 50% difference in tissue thickness, across the five readers, there was a difference in scoring of lesion feature visibility. The scores for this difference in tissue thickness were significantly different at one rocking curve position and for benign lesion characterizations. These results should be verified in a larger study because when evaluating the radiologist scores overall, we detected a significant difference between the scores reported by the five radiologists. Conclusions: Reducing the need for breast compression might increase patient comfort during mammography. Our results suggest that DEI may allow a reduction in compression without substantially compromising clinical image quality. C1 [Cole, Elodia; Pisano, Etta D.] Univ N Carolina, Biomed Res Imaging Ctr, Chapel Hill, NC 27599 USA. [Faulconer, Laura S.] Univ N Carolina, Dept Biomed Engn, Chapel Hill, NC 27599 USA. [Kuzmiak, Cherie; Koomen, Marcia; Lee, Yeonhee; Rafoth, Josh] Univ N Carolina, Dept Radiol, Chapel Hill, NC 27599 USA. [Livasy, Chad A.] Univ N Carolina, Dept Pathol & Lab Med, Chapel Hill, NC 27599 USA. [Kim, Eunhee; Zeng, Donglin] Univ N Carolina, Dept Biostat, Chapel Hill, NC 27599 USA. [Parham, Chris A.] Univ Calif San Francisco, Dept Radiol, San Francisco, CA 94143 USA. [Connor, Dean M.; Zhong, Zhong] Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA. [Cho, Kyu Ran] Korea Univ, Dept Radiol, Seoul, South Korea. RP Pisano, ED (reprint author), Univ N Carolina, Biomed Res Imaging Ctr, CB 7000,4030 Bondurant Hall, Chapel Hill, NC 27599 USA. EM etta-pisano@med.unc.edu OI Cole, Elodia/0000-0002-2301-7468 NR 33 TC 5 Z9 5 U1 0 U2 3 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 1076-6332 J9 ACAD RADIOL JI Acad. Radiol. PD APR PY 2010 VL 17 IS 4 BP 433 EP 440 DI 10.1016/j.acra.2009.10.020 PG 8 WC Radiology, Nuclear Medicine & Medical Imaging SC Radiology, Nuclear Medicine & Medical Imaging GA 574BM UT WOS:000275963400006 PM 20036586 ER PT J AU Wang, Y Shao, YY Matson, DW Li, JH Lin, YH AF Wang, Ying Shao, Yuyan Matson, Dean W. Li, Jinghong Lin, Yuehe TI Nitrogen-Doped Graphene and Its Application in Electrochemical Biosensing SO ACS NANO LA English DT Article DE graphene; nitrogen doping; electrocatalysis; direct electrochemistry; biosensing ID X-RAY PHOTOELECTRON; CARBON NANOTUBES; POLYMER NANOCOMPOSITES; GLUCOSE BIOSENSORS; OXIDE; SPECTROSCOPY; REDUCTION; SHEETS; XPS; NANOELECTRODE AB Chemical doping with foreign atoms is an effective method to intrinsically modify the properties of host materials. Among them, nitrogen doping plays a critical role in regulating the electronic properties of carbon materials. Recently, graphene, as a true two-dimensional carbon material, has shown fascinating applications in bioelectronics and biosensors. In this paper, we report a facile strategy to prepare N-doped graphene by using nitrogen plasma treatment of graphene synthesized via a chemical method. Meanwhile, a possible schematic diagram has been proposed to detail the structure of N-doped graphene. By controlling the exposure time, the N percentage in host graphene can be regulated, ranging from 0.11 to 1.35%. Moreover, the as-prepared N-doped graphene has displayed high electrocatalytic activity for reduction of hydrogen peroxide and fast direct electron transfer kinetics for glucose oxidase. The N-doped graphene has further been used for glucose biosensing with concentrations as low as 0.01 mM in the presence of interferences. C1 [Wang, Ying; Li, Jinghong] Tsinghua Univ, Dept Chem, Key Lab Bioorgan Phosphorus Chem & Chem Biol, Beijing 100084, Peoples R China. [Wang, Ying; Shao, Yuyan; Matson, Dean W.; Lin, Yuehe] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Li, JH (reprint author), Tsinghua Univ, Dept Chem, Key Lab Bioorgan Phosphorus Chem & Chem Biol, Beijing 100084, Peoples R China. EM jhli@mail.tsinghua.edu.cn; yuehe.lin@pnl.gov RI Shao, Yuyan/A-9911-2008; Lin, Yuehe/D-9762-2011; Li, Jinghong /D-4283-2012 OI Shao, Yuyan/0000-0001-5735-2670; Lin, Yuehe/0000-0003-3791-7587; Li, Jinghong /0000-0002-0750-7352 FU Pacific Northwest National Laboratory (PNNL); U.S. Department of Energy's (DOE's) Office of Biological and Environmental Research [DE-AC05-76RL01830]; National Natural Science Foundation of China [20975060]; National Basic Research Program of China [2007CB310500] FX This work was supported by a laboratory-directed research and development program at Pacific Northwest National Laboratory (PNNL). Part of the research described in this paper was performed at the Environmental Molecular Sciences Laboratory, a national scientific-user facility sponsored by the U.S. Department of Energy's (DOE's) Office of Biological and Environmental Research and located at the Pacific Northwest National Laboratory (PNNL). PNNL is operated for DOE by Battelle under Contract DE-AC05-76RL01830. This work was also financially supported by the National Natural Science Foundation of China (No. 20975060), National Basic Research Program of China (No. 2007CB310500). The authors would like to acknowledge M. H. Engelhard for XPS measurements. Y.W. would like to acknowledge the fellowship from PNNL. NR 52 TC 978 Z9 997 U1 181 U2 1244 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 J9 ACS NANO JI ACS Nano PD APR PY 2010 VL 4 IS 4 BP 1790 EP 1798 DI 10.1021/nn100315s PG 9 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 586ZX UT WOS:000276956800004 PM 20373745 ER PT J AU Haroz, EH Rice, WD Lu, BY Ghosh, S Hauge, RH Weisman, RB Doorn, SK Kono, J AF Haroz, Erik H. Rice, William D. Lu, Benjamin Y. Ghosh, Saunab Hauge, Robert H. Weisman, R. Bruce Doorn, Stephen K. Kono, Junichiro TI Enrichment of Armchair Carbon Nanotubes via Density Gradient Ultracentrifugation: Raman Spectroscopy Evidence SO ACS NANO LA English DT Article DE carbon nanotubes; armchair; separation; enrichment; ultracentrifugation; optical absorption; photoluminescence; resonant Raman scattering ID QUANTUM WIRES; DIFFERENTIATION AB We have used resonant Raman scattering spectroscopy to fully analyze the relative abundances of different (n,m) species in single-walled carbon nanotube samples that are metallically enriched by density gradient ultracentrifugation. Strikingly, the data clearly show that our density gradient ultracentrifugation process enriches the metallic fractions in armchair and near-armchair species. We observe that armchair carbon nanotubes constitute more than 50% of each (2n + m) family. C1 [Haroz, Erik H.; Rice, William D.; Lu, Benjamin Y.; Kono, Junichiro] Rice Univ, Dept Elect & Comp Engn, Houston, TX 77005 USA. [Ghosh, Saunab; Hauge, Robert H.; Weisman, R. Bruce] Rice Univ, Dept Chem, Houston, TX 77005 USA. [Doorn, Stephen K.] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. RP Kono, J (reprint author), Rice Univ, Dept Elect & Comp Engn, Houston, TX 77005 USA. EM skdoorn@lanl.gov; kono@rice.edu RI Hauge, Robert/A-7008-2011; Ghosh, Saunab/H-5258-2012; OI Hauge, Robert/0000-0002-3656-0152; Weisman, R. Bruce/0000-0001-8546-9980 FU DOE/BES [DEFG02-06ER46308]; Robert A. Welch Foundation [C-1509, C-0807]; Air Force Research Laboratories [FA8650-05-D-5807]; NSF [CHE-0809020]; LANL LORD Program FX This work was supported by the DOE/BES through Grant No. DEFG02-06ER46308, the Robert A. Welch Foundation through Grant Nos. C-1509 and C-0807, the Air Force Research Laboratories under contract number FA8650-05-D-5807, the NSF through Grant No. CHE-0809020, and the LANL LORD Program. We would like to thank Kazuhiro Yanagi, Carter Kittrell, Wade Adams, Noe Alvarez, and Cary Pint for useful and stimulating discussions. NR 29 TC 54 Z9 55 U1 3 U2 28 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 J9 ACS NANO JI ACS Nano PD APR PY 2010 VL 4 IS 4 BP 1955 EP 1962 DI 10.1021/nn901908n PG 8 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 586ZX UT WOS:000276956800026 PM 20302343 ER PT J AU Sykora, M Koposov, AY McGuire, JA Schulze, RK Tretiak, O Pietryga, JM Klimov, VI AF Sykora, Milan Koposov, Alexey Y. McGuire, John A. Schulze, Roland K. Tretiak, Olexandr Pietryga, Jeffrey M. Klimov, Victor I. TI Effect of Air Exposure on Surface Properties, Electronic Structure, and Carrier Relaxation in PbSe Nanocrystals SO ACS NANO LA English DT Article DE PbSe; nanocrystals; quantum dots photochemistry; Auger recombination; carrier multiplication; multiexciton generation ID MULTIPLE EXCITON GENERATION; TIME-RESOLVED PHOTOLUMINESCENCE; QUANTUM DOTS; COLLOIDAL PBSE; LEAD SELENIDE; SEMICONDUCTOR NANOCRYSTALS; ELECTRICAL-PROPERTIES; INFRARED-EMISSION; CDSE NANOCRYSTALS; OPTICAL GAIN AB Effects of air exposure on surface properties, electronic structure, and carrier relaxation dynamics in colloidal PbSe nanocrystals (NCs) were studied using X-ray photoelectron spectroscopy, transmission electron microscopy, and steady-state and time-resolved photoluminescence (PL) spectioscopies. We show that exposure of NC hexane solutions to air under ambient conditions leads to rapid oxidation of NCs such that up to 50% of their volume is transformed into PbO, SeO2, or PbSeO2 within 24 h. The oxidation is a thermally activated process, spontaneous at room temperature. The oxidation-induced reduction in the size of the PbSe "core" increases quantum confinement, causing shifts of the PL band and the absorption onset to higher energies. The exposure of NC solutions to air also causes rapid (within minutes) quenching of PL intensity followed by slow (within hours) recovery during which the PL quantum yield can reach values exceeding those observed prior to the air exposure. The short-term PL quenching is attributed to enhanced carrier trapping induce I by adsorption of oxygen onto the NC surface, while the PL recovery at longer times is predominantly due to eduction in the efficiency of the "intrinsic" nonradiative interband recombination caused by the increase of the hand gap in oxidized NCs. Although the analysis of subnanosecond relaxation dynamics in air-exposed NCs is complicated by a significant enhancement in fast carrier trapping, our picosecond PL measurements suggest that air exposure likely has only a weak effect on Auger recombination and also does not significantly affect the efficiency of carrier multiplication. We also show that the effects of air exposure are partially suppressed in PbSe/CdSe core/shell structures. C1 [Sykora, Milan; Koposov, Alexey Y.; McGuire, John A.; Tretiak, Olexandr; Pietryga, Jeffrey M.; Klimov, Victor I.] Los Alamos Natl Lab, Ctr Adv Solar Photophys, Div Chem, Los Alamos, NM 87545 USA. [Schulze, Roland K.] Los Alamos Natl Lab, Div Mat Sci, Los Alamos, NM 87545 USA. RP Sykora, M (reprint author), Los Alamos Natl Lab, Ctr Adv Solar Photophys, Div Chem, POB 1663, Los Alamos, NM 87545 USA. EM sykoram@lanl.gov; klimov@lanl.gov RI McGuire, John/C-3380-2015; Koposov, Alexey/R-9423-2016; OI McGuire, John/0000-0002-0682-0953; Koposov, Alexey/0000-0001-5898-3204; Klimov, Victor/0000-0003-1158-3179; Schulze, Roland/0000-0002-6601-817X FU Los Alamos National Laboratory Directed Research and Development Funds; U.S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences (BES); Chemical Sciences, Biosciences and Geosciences Division of BES, U.S. DOE FX M.S., A.Y.K., and J.A.M. acknowledge support by Los Alamos National Laboratory Directed Research and Development Funds. V.I.K. is supported by the Center for Advanced Solar Photophysics, an Energy Frontier Research Center funded by the U.S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences (BES). J.M.P. and J.A.M acknowledge support by the Chemical Sciences, Biosciences and Geosciences Division of BES, U.S. DOE. We thank D. Werder for the assistance with the acquisition of the TEM images. NR 61 TC 121 Z9 121 U1 6 U2 65 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD APR PY 2010 VL 4 IS 4 BP 2021 EP 2034 DI 10.1021/nn100131w PG 14 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 586ZX UT WOS:000276956800034 PM 20369900 ER PT J AU Argyris, D Cole, DR Striolo, A AF Argyris, Dimitrios Cole, David R. Striolo, Alberto TI Ion-Specific Effects under Confinement: The Role of Interfacial Water SO ACS NANO LA English DT Article DE molecular dynamics simulation; solid-liquid interfaces; silica; SPC/E water; ions; aqueous electrolytes ID MOLECULAR-DYNAMICS SIMULATION; CARBON NANOTUBE MEMBRANES; MONTE-CARLO-SIMULATION; ELECTROLYTE-SOLUTIONS; TRANSPORT PHENOMENA; SILICA NANOPORES; DOUBLE-LAYER; FORCE-FIELD; SURFACE; ADSORPTION AB All-atom molecular dynamics simulations were employed for the study of the structure and dynamics of aqueous electrolyte solutions within slit-shaped silica nanopores with a width of 10.67 angstrom at ambient temperature. All simulations were conducted for 250 ns to capture the dynamics of ion adsorption and to obtain the equilibrium distribution of multiple ionic species (Na(+), Cs(+), and Cl(-)) within the pores. The results clearly support the existence of ion-specific effects under confinement, which can be explained by the properties of interfacial water. Cl(-) strongly adsorbs onto the silica surface. Although neither Na(+) nor Cs(+) is in contact with the solid surface, they show ion-specific behavior. The differences between the density distributions of cations within the pore are primarily due to size effects through their interaction with confined water molecules. The majority of Na+ ions appear within one water layer in close proximity to the silica surface, whereas Cs(+) is excluded from well-defined water layers. As a consequence of this preferential distribution, we observe enhanced in-plane mobility for Cs(+) ions, found near the center of the pore, compared to that for Na(+) ions, closer to the solid substrate. These observations illustrate the key role of interfacial water in determining ion-specific effects under confinement and have practical importance in several fields, from geology to biology. C1 [Argyris, Dimitrios; Striolo, Alberto] Univ Oklahoma, Sch Chem Biol & Mat Engn, Norman, OK 73019 USA. [Cole, David R.] Oak Ridge Natl Lab, Geochem & Interfacial Sci Grp, Div Chem Sci, Oak Ridge, TN 37831 USA. RP Striolo, A (reprint author), Univ Oklahoma, Sch Chem Biol & Mat Engn, Norman, OK 73019 USA. EM astriolo@ou.edu RI Striolo, Alberto/G-2926-2011 FU Division of Chemical Sciences, Geosciences and Biosciences, Office of Basic Energy Sciences, U.S. Department of Energy [DE-AC05-000R22725]; DoE EPSCoR, Office of Basic Energy Sciences, U.S. Department of Energy [DE-SC0001902] FX Financial support was provided, in part, by the Division of Chemical Sciences, Geosciences and Biosciences, Office of Basic Energy Sciences, U.S. Department of Energy, by contract number DE-AC05-000R22725 to Oak Ridge National Laboratory (managed and operated by UT-Battelle, LLC), and by DoE EPSCoR, Office of Basic Energy Sciences, U.S. Department of Energy, by contract number DE-SC0001902 to The University of Oklahoma. Generous allocations of computing time were provided by the OU Supercomputing Center for Education and Research (OSCER) at the University of Oklahoma and by the National Energy Research Scientific Computing Center (NERSC) at Lawrence Berkeley National Laboratory. NR 67 TC 71 Z9 71 U1 9 U2 92 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 J9 ACS NANO JI ACS Nano PD APR PY 2010 VL 4 IS 4 BP 2035 EP 2042 DI 10.1021/nn100251g PG 8 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 586ZX UT WOS:000276956800035 PM 20373748 ER PT J AU Feng, G Qiao, R Huang, JS Sumpter, BG Meunier, V AF Feng, Guang Qiao, Rui Huang, Jingsong Sumpter, Bobby G. Meunier, Vincent TI Ion Distribution in Electrified Micropores and Its Role in the Anomalous Enhancement of Capacitance SO ACS NANO LA English DT Article DE electrochemical capacitor; electrical double layer; micropore; ion hydration; sandwich model ID MOLECULAR-DYNAMICS SIMULATION; ELECTROCHEMICAL CAPACITORS; ATOMISTIC SIMULATION; ELECTROOSMOTIC FLOWS; MODEL; HYDRATION; CARBON; SIZES; ELCTROOSMOSIS; ELECTROLYTES AB The distribution of K(+) ions in electrified slit-shaped micropores with pore widths ranging from 9.36 to 14.7 angstrom was studied using molecular dynamics simulations. We show that, in slit pores with pore widths between 10 and 14.7 angstrom, the K(+) ion distribution differs qualitatively from that described by classical electrical double-layer (EDL) theories in that fully hydrated K(+) ions accumulate primarily in the central plane of the slit pores. This phenomenon disappears when the pore width is narrower than 10 angstrom. Ion hydration and water water interactions, which are rarely considered in prior EDL theories for micropores, are found to be responsible for this behavior. On the basis of these results, we have developed a new sandwich capacitance model to describe the capacitance of the EDLs formed by K(+) ions enclosed in slit-shaped micropores. This model is capable of predicting the anomalous enhancement of capacitance experimentally observed in micropores. C1 [Huang, Jingsong; Sumpter, Bobby G.; Meunier, Vincent] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Feng, Guang; Qiao, Rui] Clemson Univ, Coll Engn & Sci, Clemson, SC 29634 USA. RP Qiao, R (reprint author), Clemson Univ, Coll Engn & Sci, Clemson, SC 29634 USA. EM rqiao@clemson.edu; meunierv@ornl.gov RI Huang, Jingsong/A-2789-2008; Qiao, Rui/B-2350-2009; Feng, Guang/D-8989-2011; Meunier, Vincent/F-9391-2010; Sumpter, Bobby/C-9459-2013; OI Huang, Jingsong/0000-0001-8993-2506; Qiao, Rui/0000-0001-5219-5530; Meunier, Vincent/0000-0002-7013-179X; Sumpter, Bobby/0000-0001-6341-0355; Feng, Guang/0000-0001-6659-9181 FU NSF [CBET-0756496]; Oak Ridge National Laboratory (ORNL); U.S. Department of Energy [DEAC05-00OR22725] FX The authors thank the Clemson-CCIT office for providing computer time. The Clemson authors acknowledge support from the NSF under Grant No. CBET-0756496. R.Q. was partly supported by an appointment to the HERE program for faculty at the Oak Ridge National Laboratory (ORNL) administered by ORISE. The authors at ORNL gratefully acknowledge the support from the Laboratory Directed Research and Development Program of ORNL and from U.S. Department of Energy under Contract No. DEAC05-00OR22725 with UT-Battelle, LLC at ORNL NR 32 TC 66 Z9 66 U1 9 U2 63 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 J9 ACS NANO JI ACS Nano PD APR PY 2010 VL 4 IS 4 BP 2382 EP 2390 DI 10.1021/nn100126w PG 9 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 586ZX UT WOS:000276956800074 PM 20364850 ER PT J AU Launey, ME Chen, PY McKittrick, J Ritchie, RO AF Launey, M. E. Chen, P-Y. McKittrick, J. Ritchie, R. O. TI Mechanistic aspects of the fracture toughness of elk antler bone SO ACTA BIOMATERIALIA LA English DT Article DE Biomaterials; Elk antler; Cortical bone; Fracture toughness; Resistance-curves ID HUMAN CORTICAL BONE; CRACK-GROWTH-RESISTANCE; CEMENT LINE; DEFORMATION; FAILURE; PROPAGATION; MICROSCOPY; BEHAVIOR; COLLAGEN; FIBRILS AB Bone is an adaptive material that is designed for different functional requirements; indeed, bones have a variety of properties depending on their role in the body. To understand the mechanical response of bone requires the elucidation of its structure function relationships. Here, we examine the fracture toughness of compact bone of elk antler, which is an extremely fast-growing primary bone designed for a totally different function than human (secondary) bone. We find that antler in the transverse (breaking) orientation is one of the toughest biological materials known. Its resistance to fracture is achieved during crack growth (extrinsically) by a combination of gross crack deflection/twisting and crack bridging via uncracked "ligaments" in the crack wake, both mechanisms activated by microcracking primarily at lamellar boundaries. We present an assessment of the toughening mechanisms acting in antler as compared to human cortical bone, and identify an enhanced role of inelastic deformation in antler which further contributes to its (intrinsic) toughness. Published by Elsevier Ltd. on behalf of Acta Materialia Inc. C1 [Launey, M. E.; Ritchie, R. O.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Chen, P-Y.; McKittrick, J.] Univ Calif San Diego, Mat Sci & Engn Program, Dept Mech & Aerosp Engn, La Jolla, CA 92093 USA. [Ritchie, R. O.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. RP Ritchie, RO (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. EM roritchie@lbl.gov RI Ritchie, Robert/A-8066-2008 OI Ritchie, Robert/0000-0002-0501-6998 FU Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, of the US Department of Energy [DE-AC02-05CH11231]; National Science Foundation [DMR 0510138]; Army Research Office [W911-08-1-0461] FX This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, of the US Department of Energy under Contract No. DE-AC02-05CH11231 (specifically for MEL and ROR). PYC and JM acknowledge financial support from the National Science Foundation Grant DMR 0510138 and the Army Research Office Grant W911-08-1-0461. The X-ray micro-tomography was performed at the Advanced Light Source synchrotron radiation facility (beamline 8.3.2) at the Lawrence Berkeley National Laboratory under the same contract. The authors thank Holly D. Barth for help with the X-ray computed tomographs. NR 55 TC 57 Z9 57 U1 2 U2 30 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1742-7061 J9 ACTA BIOMATER JI Acta Biomater. PD APR PY 2010 VL 6 IS 4 BP 1505 EP 1514 DI 10.1016/j.actbio.2009.11.026 PG 10 WC Engineering, Biomedical; Materials Science, Biomaterials SC Engineering; Materials Science GA 574SM UT WOS:000276013500033 PM 19941980 ER PT J AU Sharma, N Macquart, RB Avdeev, M Christensen, M McIntyre, GJ Chen, YS Ling, CD AF Sharma, Neeraj Macquart, Rene B. Avdeev, Maxim Christensen, Mogens McIntyre, Garry J. Chen, Yu-Sheng Ling, Chris D. TI Re-investigation of the structure and crystal chemistry of the Bi2O3-W2O6 'type (Ib)' solid solution using single-crystal neutron and synchrotron X-ray diffraction SO ACTA CRYSTALLOGRAPHICA SECTION B-STRUCTURAL SCIENCE LA English DT Article ID POWDER DIFFRACTION; OXIDE; SYSTEM; FLUORITE; PHASES; BI2WO6; BOND; SUPERSTRUCTURES; CONDUCTIVITY; BI2O3-TA2O5 AB Single crystals of composition Bi35.66W4.34O66.51 (or Bi8.2WO15.3, bismuth tungsten oxide), within the type (Ib) solid-solution region of the Bi2O3-WO3 system, were synthesized using the floating-zone furnace method. Synchrotron X-ray and neutron single-crystal diffraction data were used to confirm the previously tentative assignment of the room-temperature space group as I4(1). Fourier analysis of the combined X-ray and neutron datasets was used to elucidate and refine fully the cation and anion arrays for the first time. The mixed cation site M1 is shown to be coordinated by eight O atoms in an irregular cube when M = Bi, and by six O atoms in an octahedron when M = W. The resulting disorder in the average structure around M1 is discussed in the context of experimentally observed oxide-ion conductivity. C1 [Sharma, Neeraj; Avdeev, Maxim; Ling, Chris D.] Australian Nucl Sci & Technol Org, Bragg Inst, Menai, NSW 2234, Australia. [Macquart, Rene B.; Ling, Chris D.] Univ Sydney, Sch Chem, Sydney, NSW 2006, Australia. [Christensen, Mogens] Aarhus Univ, Dept Chem, DK-8000 Aarhus C, Denmark. [McIntyre, Garry J.] Inst Laue Langevin, F-38042 Grenoble 9, France. [Chen, Yu-Sheng] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Sharma, N (reprint author), Australian Nucl Sci & Technol Org, Bragg Inst, PMB 1, Menai, NSW 2234, Australia. EM njs@ansto.gov.au RI Ling, Chris D/B-2228-2009; Sharma, Neeraj/G-4949-2011; Avdeev, Maxim/A-5625-2008 OI Ling, Chris D/0000-0003-2205-3106; Sharma, Neeraj/0000-0003-1197-6343; Avdeev, Maxim/0000-0003-2366-5809 FU Australian Research Council [DP0666465]; Australian Institute of Nuclear Science and Engineering Postgraduate Research Awards scheme.; US Department of Energy [DE-AC02-06CH11357] FX This work was supported by the Australian Research Council - Discovery Projects (DP0666465) and the Australian Institute of Nuclear Science and Engineering Postgraduate Research Awards scheme. Collection of synchrotron X-ray diffraction data at the Advanced Photon Source was supported by the Australian Synchrotron Research Program, which is funded by the Commonwealth of Australia under the Access to Major Research Facilities Programme. Use of the Advanced Photon Source is supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. Financial support for travel to the ILL was provided by the Access to Major Research Facilities Programme which is a component of the International Science Linkages Programme established under the Australian Government's innovation statement, Backing Australia's Ability. NR 42 TC 5 Z9 5 U1 3 U2 15 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0108-7681 J9 ACTA CRYSTALLOGR B JI Acta Crystallogr. Sect. B-Struct. Sci. PD APR PY 2010 VL 66 BP 165 EP 172 DI 10.1107/S0108768110001874 PN 2 PG 8 WC Chemistry, Multidisciplinary; Crystallography SC Chemistry; Crystallography GA 570CI UT WOS:000275648800007 PM 20305350 ER PT J AU Dauter, Z AF Dauter, Zbigniew TI Carrying out an optimal experiment SO ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY LA English DT Article ID DIFFRACTION DATA-COLLECTION; RADIATION; STRATEGIES; REFINEMENT; SAD AB Diffraction data collection is the last experimental stage in structural crystallography. It has several technical and theoretical aspects and a compromise usually has to be found between various parameters in order to achieve optimal data quality. The influence and importance of various experimental parameters and their consequences are discussed in the context of different data applications, such as molecular replacement, anomalous phasing, high-resolution refinement or searching for ligands. C1 NCI, Synchrotron Radiat Res Sect, MCL, Argonne Natl Lab, Argonne, IL 60439 USA. RP Dauter, Z (reprint author), NCI, Synchrotron Radiat Res Sect, MCL, Argonne Natl Lab, Argonne, IL 60439 USA. EM dauter@anl.gov NR 18 TC 16 Z9 17 U1 0 U2 2 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0907-4449 J9 ACTA CRYSTALLOGR D JI Acta Crystallogr. Sect. D-Biol. Crystallogr. PD APR PY 2010 VL 66 BP 389 EP 392 DI 10.1107/S0907444909038578 PN 4 PG 4 WC Biochemical Research Methods; Biochemistry & Molecular Biology; Biophysics; Crystallography SC Biochemistry & Molecular Biology; Biophysics; Crystallography GA 573US UT WOS:000275941300008 PM 20382992 ER PT J AU Holton, JM Frankel, KA AF Holton, James M. Frankel, Kenneth A. TI The minimum crystal size needed for a complete diffraction data set SO ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY LA English DT Article ID X-RAY-DIFFRACTION; RADIATION-DAMAGE; PROTEIN CRYSTALS; DATA-COLLECTION; MACROMOLECULAR CRYSTALS; POLARIZATION CORRECTION; CRYOGENIC TEMPERATURES; SYNCHROTRON-RADIATION; DOSE CALCULATIONS; AREA DETECTOR AB In this work, classic intensity formulae were united with an empirical spot-fading model in order to calculate the diameter of a spherical crystal that will scatter the required number of photons per spot at a desired resolution over the radiation-damage-limited lifetime. The influences of molecular weight, solvent content, Wilson B factor, X-ray wavelength and attenuation on scattering power and dose were all included. Taking the net photon count in a spot as the only source of noise, a complete data set with a signal-to-noise ratio of 2 at 2 A resolution was predicted to be attainable from a perfect lysozyme crystal sphere 1.2 mm in diameter and two different models of photoelectron escape reduced this to 0.5 or 0.34 mm. These represent 15-fold to 700-fold less scattering power than the smallest experimentally determined crystal size to date, but the gap was shown to be consistent with the background scattering level of the relevant experiment. These results suggest that reduction of background photons and diffraction spot size on the detector are the principal paths to improving crystallographic data quality beyond current limits. C1 [Holton, James M.] Univ Calif San Francisco, Dept Biochem & Biophys, San Francisco, CA 94158 USA. [Holton, James M.; Frankel, Kenneth A.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Holton, JM (reprint author), Univ Calif San Francisco, Dept Biochem & Biophys, San Francisco, CA 94158 USA. EM jmholton@lbl.gov FU National Institutes of Health [GM074929, GM082250]; National Cancer Institute [CA92584]; US Department of Energy [DE-AC02-05CH11231] FX We would like to thank Colin Nave, John Spence, Scott Classen, Elizabeth Duke, Robert Stroud, Arwen Pearson and Elspeth Garman for extremely helpful discussions of this manuscript. This work was supported by grants from the National Institutes of Health (GM074929 and GM082250), the National Cancer Institute (CA92584) and the US Department of Energy under contract No. DE-AC02-05CH11231 at Lawrence Berkeley National Laboratory. NR 117 TC 70 Z9 70 U1 2 U2 11 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0907-4449 J9 ACTA CRYSTALLOGR D JI Acta Crystallogr. Sect. D-Biol. Crystallogr. PD APR PY 2010 VL 66 BP 393 EP 408 DI 10.1107/S0907444910007262 PN 4 PG 16 WC Biochemical Research Methods; Biochemistry & Molecular Biology; Biophysics; Crystallography SC Biochemistry & Molecular Biology; Biophysics; Crystallography GA 573US UT WOS:000275941300009 PM 20382993 ER PT J AU Blum, MM Tomanicek, SJ John, H Hanson, BL Ruterjans, H Schoenborn, BP Langan, P Chen, JCH AF Blum, Marc-Michael Tomanicek, Stephen J. John, Harald Hanson, B. Leif Rueterjans, Heinz Schoenborn, Benno P. Langan, Paul Chen, Julian C. -H. TI X-ray structure of perdeuterated diisopropyl fluorophosphatase (DFPase): perdeuteration of proteins for neutron diffraction SO ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY AND CRYSTALLIZATION COMMUNICATIONS LA English DT Article DE diisopropyl fluorophosphatase; perdeuteration ID HIGH-RESOLUTION NEUTRON; D-XYLOSE ISOMERASE; CRYSTALLOGRAPHIC ANALYSIS; BIOLOGICAL MACROMOLECULES; CYTOCHROME P450CAM; PROTONATION STATES; ALDOSE REDUCTASE; LOLIGO-VULGARIS; HYDROGEN-ATOMS; MECHANISM AB The signal-to-noise ratio is one of the limiting factors in neutron macromolecular crystallography. Protein perdeuteration, which replaces all H atoms with deuterium, is a method of improving the signal-to-noise ratio of neutron crystallography experiments by reducing the incoherent scattering of the hydrogen isotope. Detailed analyses of perdeuterated and hydrogenated structures are necessary in order to evaluate the utility of perdeuterated crystals for neutron diffraction studies. The room-temperature X-ray structure of perdeuterated diisopropyl fluorophosphatase (DFPase) is reported at 2.1 A resolution. Comparison with an independently refined hydrogenated room-temperature structure of DFPase revealed no major systematic differences, although the crystals of perdeuterated DFPase did not diffract neutrons. The lack of diffraction is examined with respect to data-collection and crystallographic parameters. The diffraction characteristics of successful neutron structure determinations are presented as a guideline for future neutron diffraction studies of macromolecules. X-ray diffraction to beyond 2.0 A resolution appears to be a strong predictor of successful neutron structures. C1 [Rueterjans, Heinz; Chen, Julian C. -H.] Goethe Univ Frankfurt, Inst Biophys Chem, D-60438 Frankfurt, Germany. [Blum, Marc-Michael] Blum Sci Serv, D-80331 Munich, Germany. [Tomanicek, Stephen J.; Hanson, B. Leif; Langan, Paul] Univ Toledo, Dept Chem, Toledo, OH 43606 USA. [Tomanicek, Stephen J.] Oak Ridge Natl Lab, Spallat Neutron Source, Oak Ridge, TN 37831 USA. [John, Harald] Bundeswehr Inst Pharmacol & Toxicol, D-80937 Munich, Germany. [Schoenborn, Benno P.; Langan, Paul] Los Alamos Natl Lab, Biosci Div, Los Alamos, NM 87545 USA. RP Chen, JCH (reprint author), Goethe Univ Frankfurt, Inst Biophys Chem, Max von Laue Str 9, D-60438 Frankfurt, Germany. EM chen@chemie.uni-frankfurt.de RI Hanson, Bryant Leif/F-8007-2010; Langan, Paul/N-5237-2015; Blum, Marc-Michael/M-7691-2014 OI Hanson, Bryant Leif/0000-0003-0345-3702; Langan, Paul/0000-0002-0247-3122; Blum, Marc-Michael/0000-0003-1856-2071 FU German Ministry of Defence [E/UR3G/6G115/6A801]; Hessisches Ministerium fur Wissenschaft und Kultur; NSF [446218]; Office of Science and the Office of Biological and Environmental Research of the US Department of Energy; NIH-NIGMS [1R01GM071939-01] FX We thank Mary Jo Waltman for technical assistance. This project was funded by the German Ministry of Defence under grant E/UR3G/6G115/6A801 and the Hessisches Ministerium fur Wissenschaft und Kultur. ST and BLH were supported by NSF 446218. The PCS is funded by the Office of Science and the Office of Biological and Environmental Research of the US Department of Energy. PL and BPS were partly supported by an NIH-NIGMS-funded consortium (1R01GM071939-01) between Los Alamos National Laboratory and Lawrence Berkeley National Laboratory to develop computational tools for neutron protein crystallography. NR 40 TC 11 Z9 11 U1 1 U2 9 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1744-3091 J9 ACTA CRYSTALLOGR F JI Acta Crystallogr. F-Struct. Biol. Cryst. Commun. PD APR PY 2010 VL 66 BP 379 EP 385 DI 10.1107/S1744309110004318 PN 4 PG 7 WC Biochemical Research Methods; Biochemistry & Molecular Biology; Biophysics; Crystallography SC Biochemistry & Molecular Biology; Biophysics; Crystallography GA 580ZC UT WOS:000276488700002 PM 20383004 ER PT J AU Kovalevsky, AY Fisher, SZ Seaver, S Mustyakimov, M Sukumar, N Langan, P Mueser, TC Hanson, BL AF Kovalevsky, A. Y. Fisher, S. Zoe Seaver, Sean Mustyakimov, Marat Sukumar, Narayanasami Langan, Paul Mueser, Timothy C. Hanson, B. Leif TI Preliminary neutron and X-ray crystallographic studies of equine cyanomethemoglobin SO ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY AND CRYSTALLIZATION COMMUNICATIONS LA English DT Article DE equine hemoglobin; time-of-flight neutron diffraction; R state; joint XN refinement; protonation ID PROTEIN CRYSTALLOGRAPHY; BIOLOGICAL MACROMOLECULES; HUMAN DEOXYHEMOGLOBIN; SPALLATION NEUTRONS; DATA QUALITY; DIFFRACTION; HEMOGLOBIN; RESOLUTION AB Room-temperature and 100 K X-ray and room-temperature neutron diffraction data have been measured from equine cyanomethemoglobin to 1.7 A resolution using a home source, to 1.6 A resolution on NE-CAT at the Advanced Photon Source and to 2.0 A resolution on the PCS at Los Alamos Neutron Science Center, respectively. The cyanomethemoglobin is in the R state and preliminary room-temperature electron and neutron scattering density maps clearly show the protonation states of potential Bohr groups. Interestingly, a water molecule that is in the vicinity of the heme group and coordinated to the distal histidine appears to be expelled from this site in the low-temperature structure. C1 [Seaver, Sean; Langan, Paul; Mueser, Timothy C.; Hanson, B. Leif] Univ Toledo, Dept Chem, Toledo, OH 43606 USA. [Kovalevsky, A. Y.; Fisher, S. Zoe; Mustyakimov, Marat; Langan, Paul] Los Alamos Natl Lab, Biosci Div, Los Alamos, NM 87545 USA. [Sukumar, Narayanasami] Argonne Natl Lab, APS, NE CAT, Argonne, IL 60439 USA. RP Hanson, BL (reprint author), Univ Toledo, Dept Chem, Toledo, OH 43606 USA. EM leif.hanson@gmail.com RI Hanson, Bryant Leif/F-8007-2010; Langan, Paul/N-5237-2015; OI Hanson, Bryant Leif/0000-0003-0345-3702; Langan, Paul/0000-0002-0247-3122; Kovalevsky, Andrey/0000-0003-4459-9142 FU NIH-NIGMS [1R01GM07193901]; LANL LDRD [20080789PRD3, 20070131ER]; NSF [446218]; US Department of Energy, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX The PCS is funded by the Office of Biological and Environmental Research of the US Department of Energy. MM and PL were partly supported by an NIH-NIGMS-funded consortium (1R01GM07193901) between LANL and LBNL to develop computational tools for neutron protein crystallography. AYK was partly supported by an LANL LDRD grant (20080789PRD3). AYK and PL were partly supported by an LANL LDRD grant (20070131ER). TCM and BLH were supported by NSF (446218). This work is based upon research conducted at the Advanced Photon Source on the Northeastern Collaborative Access Team beamlines, which are supported by award RR-15301 from the National Center for Research Resources at the National Institutes of Health. Use of the Advanced Photon Source is supported by the US Department of Energy, Office of Basic Energy Sciences under Contract No. DE-AC02-06CH11357. NR 24 TC 4 Z9 4 U1 0 U2 1 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1744-3091 J9 ACTA CRYSTALLOGR F JI Acta Crystallogr. F-Struct. Biol. Cryst. Commun. PD APR PY 2010 VL 66 BP 474 EP 477 DI 10.1107/S1744309110007840 PN 4 PG 4 WC Biochemical Research Methods; Biochemistry & Molecular Biology; Biophysics; Crystallography SC Biochemistry & Molecular Biology; Biophysics; Crystallography GA 580ZC UT WOS:000276488700024 PM 20383026 ER PT J AU Pojprapai, S Luo, Z Clausen, B Vogel, SC Brown, DW Russel, J Hoffman, M AF Pojprapai(Imlao), Soodkhet Luo, Zhenhua Clausen, Bjorn Vogel, Sven C. Brown, Donald W. Russel, Jennifer Hoffman, Mark TI Dynamic processes of domain switching in lead zirconate titanate under cyclic mechanical loading by in situ neutron diffraction SO ACTA MATERIALIA LA English DT Article DE Ferroelectric; Ferroelastic; Domain switching; Neutron diffraction ID FERROELECTRIC CERAMICS; PZT; PEROVSKITE; DEPENDENCE; BEHAVIOR; TEXTURE; CREEP; SOFT AB The performance of ferroelectric ceramics is governed by the ability of domains to switch. A decrease in the switching ability can lead to degradation of the materials and failure of ferroelectric devices. In this work the dynamic properties of domain reorientation are studied. In situ time-of-flight neutron diffraction is used to probe the evolution of ferroelastic domain texture under mechanical cyclic loading in bulk lead zirconate titanate ceramics. The high sensitivity of neutron diffraction to lattice strain is exploited to precisely analyze the change of domain texture and strain through a full-pattern Rietveld method. These results are then used to construct a viscoelastic model, which explains the correlation between macroscopic phenomena (i.e. creep and recovered deformation) and microscopic dynamic behavior (i.e. ferroelastic switching, lattice strain). (C) 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Pojprapai(Imlao), Soodkhet] Suranaree Univ Technol, Sch Ceram Engn, Nakhon Ratchasima, Thailand. [Pojprapai(Imlao), Soodkhet; Luo, Zhenhua; Russel, Jennifer; Hoffman, Mark] Univ New S Wales, Sch Mat Sci & Engn, Sydney, NSW, Australia. [Clausen, Bjorn; Vogel, Sven C.; Brown, Donald W.] Los Alamos Natl Lab, Los Alamos Neutron Sci Ctr, Los Alamos, NM USA. RP Pojprapai, S (reprint author), Suranaree Univ Technol, Sch Ceram Engn, Nakhon Ratchasima, Thailand. EM soodkhet@g.sut.ac.th RI Hoffman, Mark/E-5021-2012; Lujan Center, LANL/G-4896-2012; Clausen, Bjorn/B-3618-2015; OI Hoffman, Mark/0000-0003-2927-1165; Clausen, Bjorn/0000-0003-3906-846X; Luo, Zhenhua/0000-0003-0766-6174; Vogel, Sven C./0000-0003-2049-0361 FU ARC [DP0558596]; Department of Energy [DE-AC52-06NA25396, 06SCPE401] FX Travel support to access these facilities was provided by the Access to Major Research Facilities (AMRF) program, administered by the Australian Nuclear Science and Technology Organisation (ANSTO), under proposal number 04/05-N-23. This work was financially supported by the ARC Discovery Grant No. DP0558596. S.P. thanks Dr. Jacob L. Jones, University of Florida, and Dr. Peter Bryant of Thales Underwater Systems Pty Ltd. (Australia) for technical assistance and fruitful discussions. This work has benefited from the use of the Lujan Neutron Scattering Center at LANSCE, funded by the Department of Energy's Office of Basic Energy Sciences. Los Alamos National Laboratory is operated by Los Alamos National Security LLC under DOE Contract DE-AC52-06NA25396. This work was sponsored by the U.S. Dept. of Energy, Office of Basic Energy Sciences Project FWP 06SCPE401. NR 35 TC 3 Z9 3 U1 0 U2 10 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 J9 ACTA MATER JI Acta Mater. PD APR PY 2010 VL 58 IS 6 BP 1897 EP 1908 DI 10.1016/j.actamat.2009.11.026 PG 12 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 568GY UT WOS:000275511700001 ER PT J AU Wang, ZG Li, JB Gao, F Weber, WJ AF Wang, Z. G. Li, J. B. Gao, F. Weber, W. J. TI Tensile and compressive mechanical behavior of twinned silicon carbide nanowires SO ACTA MATERIALIA LA English DT Article DE Twinning; Nanotructures; Fracture; Buckling; Molecular dynamics ID CHEMICAL-VAPOR-DEPOSITION; AB-INITIO CALCULATIONS; BETA-SIC NANOWIRES; LOW-TEMPERATURE; THIN-FILMS; SIMULATION; ELASTICITY; NANOTUBES; POLYTYPES; GROWTH AB Molecular dynamics simulations with the Tersoff potential were used to study the response of twinned SiC nanowires under tensile and compressive strain. The critical strain of the twinned nanowires can be enhanced by twin stacking faults, and their critical strains are larger than those of perfect nanowires with the same diameters. Under axial tensile strain, the bonds of the nanowires are stretched just before failure. The failure behavior is found to depend on the twin segment thickness and the diameter of the nanowires. An atomic chain is observed for thin nanowires with small twin segment thickness under tension strain. Under axial compressive strain, the collapse of twinned SiC nanowires exhibits two different failure modes, depending on the length and diameter of the nanowires, i.e., shell buckling for short nanowires and columnar buckling for longer nanowires. (C) 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Wang, Z. G.] Univ Elect Sci & Technol China, Dept Appl Phys, Chengdu 610054, Peoples R China. [Wang, Z. G.; Li, J. B.] Chinese Acad Sci, Inst Semicond, State Key Lab Superlattices & Microstruct, Beijing 100083, Peoples R China. [Gao, F.; Weber, W. J.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Wang, ZG (reprint author), Univ Elect Sci & Technol China, Dept Appl Phys, Chengdu 610054, Peoples R China. EM zgwang@uestc.edu.cn RI Weber, William/A-4177-2008; Gao, Fei/H-3045-2012; Wang, Zhiguo/B-7132-2009 OI Weber, William/0000-0002-9017-7365; FU National Natural Science Foundation of China [10704014]; Young Scientists Foundation of Sichuan [09ZQ026-029]; UESTC [JX0731]; Chinese Academy of Sciences [60925016]; US Department of Energy [DE-AC05-76RL01830] FX Z. Wang was financially supported by the National Natural Science Foundation of China (10704014) and the Young Scientists Foundation of Sichuan (09ZQ026-029) and UESTC (JX0731). J. Li gratefully acknowledges financial support from the "One-Hundred Talents Plan" of the Chinese Academy of Sciences and National Science Fund for Distinguished Young Scholar (Grants No. 60925016). F. Gao and W.J. Weber were supported by the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, US Department of Energy under Contract DE-AC05-76RL01830. NR 55 TC 20 Z9 20 U1 3 U2 39 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 EI 1873-2453 J9 ACTA MATER JI Acta Mater. PD APR PY 2010 VL 58 IS 6 BP 1963 EP 1971 DI 10.1016/j.actamat.2009.11.039 PG 9 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 568GY UT WOS:000275511700007 ER PT J AU Bruno, G Efremov, AM Clausen, B Balagurov, AM Simkin, VN Wheaton, BR Webb, JE Brown, DW AF Bruno, Giovanni Efremov, Alexander M. Clausen, Bjorn Balagurov, Anatoly M. Simkin, Valeriy N. Wheaton, Bryan R. Webb, James E. Brown, Donald W. TI On the stress-free lattice expansion of porous cordierite SO ACTA MATERIALIA LA English DT Article DE Micro-strains; Neutron diffraction; Thermal expansion; Integrity factor; Micro-cracking ID THERMAL-EXPANSION; NEUTRON-DIFFRACTION; ANISOTROPY AB An extensive investigation of the lattice expansion (up to 1200 degrees C) of porous synthetic cordierite (obtained by firing a mixture of talc, clay, alumina and silica) was carried out using time-of-flight neutron diffraction at LANSCE, Los Alamos, NM, USA and FNLP, Dubna, Russia. An extruded rod and several powders, with different particle size (dispersity), were studied, with the aim of monitoring the variation of the (lattice) micro-strain as a function of temperature and its influence on the microscopic and macroscopic thermal expansion. Results show a different expansion of the a- and b-axes of the orthorhombic cell (in the rod above 800 degrees C). While the finest powder seems to contract more along the c-axis, thus hinting at the presence of smaller stress, the integral peak width increases as a function of temperature in the intermediate range (300-700 degrees C). This could be explained by the integrity factor modeling in terms of micro-cracking. In polycrystalline cordierite, the model implies tension along the a- and b-axes (positive thermal expansion) accompanied by compression along the c-axis (negative thermal expansion) and a stress release upon cooling, via a thermal micro-cracking mechanism. The calculations of the cordierite macroscopic thermal expansion having as input crystal axial expansions assumed to be stress-free allowed us to conclude that even a fine powder (5 mu m particle size) cannot be considered completely stress-free. This conclusion is supported by microstructural observations. (C) 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Bruno, Giovanni] CETC, CS&S, Corning SAS, F-77210 Avon, France. [Efremov, Alexander M.] Corning Inc, Modeling & Simulat, CSC, St Petersburg 194021, Russia. [Clausen, Bjorn; Brown, Donald W.] Los Alamos Natl Lab, LANSCE, Los Alamos, NM 87545 USA. [Balagurov, Anatoly M.; Simkin, Valeriy N.] Joint Inst Nucl Res, FLNP, Dubna 141980, Russia. [Wheaton, Bryan R.; Webb, James E.] Corning Inc, CS&S, SP, Corning, NY 14830 USA. RP Bruno, G (reprint author), CETC, CS&S, Corning SAS, F-77210 Avon, France. EM brunog@corning.com RI Bruno, Giovanni/E-2817-2013; Clausen, Bjorn/B-3618-2015 OI Clausen, Bjorn/0000-0003-3906-846X FU US Department of Energy [DE-AC52-06NA25396] FX The authors would like to thank Dr Gregory Merkel (Corning Inc., Corning, NY, USA) for insightful discussions and dilation data. Cedric Le Goff (Corning SAS-CETC, Avon, France) provided the SEM micrographs (Fig. 1). We acknowledge beamtime at the Lujan Neutron Scattering Center at LANSCE, funded by the US Department of Energy's Office of Basic Energy Sciences. Los Alamos National Laboratory is operated by Los Alamos National Security LLC under DOE contract DE-AC52-06NA25396. We also acknowledge beamtime at the IBR2 Reactor of the Frank Laboratory of Neutron Physics in Dubna, Russia. NR 27 TC 25 Z9 25 U1 1 U2 17 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 J9 ACTA MATER JI Acta Mater. PD APR PY 2010 VL 58 IS 6 BP 1994 EP 2003 DI 10.1016/j.actamat.2009.11.042 PG 10 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 568GY UT WOS:000275511700010 ER PT J AU Benhassine, M Saiz, E Tomsia, AP De Coninck, J AF Benhassine, M. Saiz, E. Tomsia, A. P. De Coninck, J. TI Role of substrate commensurability on non-reactive wetting kinetics of liquid metals SO ACTA MATERIALIA LA English DT Article DE High-temperature spreading; Diffusion; Wetting; Liquid metals; Molecular dynamics ID MOLECULAR-DYNAMICS; SIMULATIONS; DIFFUSION; FILMS; AG AB The dynamics of spreading of liquid metal atoms via molecular dynamics is considered vs. the commensurability of the solid surface with respect to the size of the liquid atoms. The solid surfaces are modeled as rigid (1 0 0) oriented Ni and, for two series of simulations, the lattice spacing of the substrate is varied from the regular equilibrium spacing to a commensurate situation with Au or Ag drops spreading spontaneously on top. The diffusion is calculated in the layered region of the liquid in contact with the two different solid surfaces and then compared. Then, the dynamic evolution of the contact angle is fitted to Molecular Kinetic Theory and compared with the two substrate geometries. It is observed that the friction parameter scales as the inverse of the diffusion in the interfacial region. The change in ordering induced by the commensurate substrate is characterized by examining the density profiles across the solid/liquid interface and fitting the curve by an exponential decay with a characteristic correlation distance 1/kappa. It is shown that the commensurability/non-commensurability of the solid surface with respect to the liquid atoms changes the ordering, which plays a significant role in the dynamics, a feature not properly taken into account in the present formulation of Molecular Kinetic Theory. (C) 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Benhassine, M.; De Coninck, J.] Univ Mons Hainaut, Ctr Res Mol Modelling, B-7000 Mons, Belgium. [Saiz, E.; Tomsia, A. P.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP De Coninck, J (reprint author), Univ Mons Hainaut, Ctr Res Mol Modelling, Parc Initialis,Av Copern 1, B-7000 Mons, Belgium. EM joel.deconinck@umons.ac.be FU US Department of Energy [DE-AC02-05CH11231] FX M. Benhassine acknowledges funding from the FNRS of Belgium under the Fonds pour la Formation A la Recherche dans l'Industrie et dans l'Agriculture. This work was also supported by the Director, Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, of the US Department of Energy under Contract No. DE-AC02-05CH11231. NR 31 TC 9 Z9 9 U1 0 U2 11 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 J9 ACTA MATER JI Acta Mater. PD APR PY 2010 VL 58 IS 6 BP 2068 EP 2078 DI 10.1016/j.actamat.2009.11.049 PG 11 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 568GY UT WOS:000275511700017 ER PT J AU Zhou, SH Napolitano, RE AF Zhou, S. H. Napolitano, R. E. TI Phase stability for the Cu-Zr system: First-principles, experiments and solution-based modeling SO ACTA MATERIALIA LA English DT Article DE Copper alloys; Intermetallic compounds; Thermodynamics; Phase transformations ID COPPER-ZIRCONIUM ALLOYS; AUGMENTED-WAVE METHOD; X-RAY-DIFFRACTION; INTERMEDIATE PHASES; AMORPHOUS-ALLOYS; GLASS-FORMATION; MECHANICAL-PROPERTIES; TRANSITION-METALS; ASSOCIATION MODEL; CRYSTAL-STRUCTURE AB First-principles calculations and experimental methods were employed to investigate the relative stability of intermetallic phases in the Cu-Zr system. Computed enthalpies of formation indicate that Cu(51)Zr(14)-beta and CuZr(2)-C11(b) are stable phases, while Cu-(5)Zr-C15(b), Cu(10)Zr(7-)phi and CuZr-B2 are metastable at 0 K. Heat treatment and microanalysis revealed two important findings which clarify the phase equilibria. First, the stability range for the Cu(5)Zr-C15(b) phase was found to have a lower bound associated with an eutectoid invariant between 802 and 955 K, below which it decomposes to face-centered cubic Cu Plus Cu(51)Zr(14)-beta-Second, the Cu(5)Zr(8) phase, previously reported as stable, was not observed in a Cu-56.4 at.% Zr alloy after holding at 955 and 1036 K for >100 h. This phase, therefore, was not considered to be stable. Based on computational and experimental results, Gibbs free energies were modeled, including the Cu(2)Zr-sigma, Cu(24)Zr(13-mu) and metastable CuZr-(B19' and B33) phases. The associated phase diagrams are presented. (C) 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Napolitano, R. E.] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. [Zhou, S. H.; Napolitano, R. E.] US DOE, Ames Lab, Ames, IA 50011 USA. RP Napolitano, RE (reprint author), Iowa State Univ, Dept Mat Sci & Engn, 2200 Hoover Hall, Ames, IA 50011 USA. EM ralphn@iastate.edu FU Department of Energy - Basic Energy Sciences [DE-AC02-07CH11358] FX This work was performed at the Ames Laboratory and supported by the Department of Energy - Basic Energy Sciences under Contract No. DE-AC02-07CH11358. The authors would like to thank Dr. A. Kracher for assistance with EPMA measurements. NR 58 TC 34 Z9 35 U1 3 U2 32 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 J9 ACTA MATER JI Acta Mater. PD APR PY 2010 VL 58 IS 6 BP 2186 EP 2196 DI 10.1016/j.actamat.2009.12.004 PG 11 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 568GY UT WOS:000275511700027 ER PT J AU Wang, J Li, N Anderoglu, O Zhang, X Misra, A Huang, JY Hirth, JP AF Wang, J. Li, N. Anderoglu, O. Zhang, X. Misra, A. Huang, J. Y. Hirth, J. P. TI Detwinning mechanisms for growth twins in face-centered cubic metals SO ACTA MATERIALIA LA English DT Article DE Nanotwins; Detwinning; In situ TEM; Atomistic simulations ID ULTRAHIGH-STRENGTH; COPPER; DISLOCATIONS; INTERFACES; DYNAMICS; BARRIERS; GOLD AB Using in situ transmission electron microscopy, we studied the stability of growth twins. We observed the rapid migration of incoherent twin boundaries (ITBs), indicating that nanotwins are unstable. Topological analysis and atomistic simulations are adopted to explore detwinning mechanisms. The results show that: (i) the detwinning process is accomplished via the collective glide of multiple twinning dislocations that form an ITB; (ii) detwinning can easily occur for thin twins, and the driving force is mainly attributed to a variation of the excess energy of a coherent twin boundary; (iii) shear stresses enable ITBs to migrate easily, causing the motion of coherent twin boundaries; and (iv) the migration velocity depends on stacking fault energy. The results imply that detwinning becomes the dominant deformation mechanism for growth twins of the order of a few nanometers thick. Published by Elsevier Ltd. on behalf of Acta Materialia Inc. C1 [Wang, J.; Misra, A.; Hirth, J. P.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Li, N.; Anderoglu, O.; Zhang, X.] Texas A&M Univ, Dept Mech Engn, Mat Sci & Engn Program, College Stn, TX 77843 USA. [Huang, J. Y.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Wang, J (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM wangj6@lanl.gov; zhangx@tamu.edu RI Li, Nan /F-8459-2010; Huang, Jianyu/C-5183-2008; Misra, Amit/H-1087-2012; Zhang, Xinghang/H-6764-2013; Wang, Jian/F-2669-2012 OI Li, Nan /0000-0002-8248-9027; Zhang, Xinghang/0000-0002-8380-8667; Wang, Jian/0000-0001-5130-300X FU US Department of Energy, Office of Science, Office of Basic Energy Sciences [AC04-94AL85000]; NSF-DMR Metallic Materials and Nanostructures program [0644835] FX This work was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences. X.Z. acknowledges financial support by the NSF-DMR Metallic Materials and Nanostructures program, under Grant No. 0644835, and access to the Center for Integrated Nanotechnologies at Los Alamos National Laboratory through a user program. This work was performed, in part, at the Center for Integrated Nanotechnologies, a US Department of Energy, Office of Basic Energy Sciences user facility. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a Lock-heed-Martin Company, for the US Department of Energy under Contract No. DE-AC04-94AL85000. NR 35 TC 170 Z9 172 U1 17 U2 165 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 J9 ACTA MATER JI Acta Mater. PD APR PY 2010 VL 58 IS 6 BP 2262 EP 2270 DI 10.1016/j.actamat.2009.12.013 PG 9 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 568GY UT WOS:000275511700034 ER PT J AU Caballero, FG Miller, MK Garcia-Mateo, C AF Caballero, F. G. Miller, M. K. Garcia-Mateo, C. TI Carbon supersaturation of ferrite in a nanocrystalline bainitic steel SO ACTA MATERIALIA LA English DT Article DE Steels; Bainite; Three-dimensional atom probe (3DAP) ID FIELD-ION MICROSCOPY; NI-C MARTENSITES; ATOM-PROBE; CARBIDE PRECIPITATION; ALLOYING ELEMENTS; TRANSFORMATION; AUSTENITE; MECHANISM; SHEAR AB The extremely slow transformation kinetics of a nanocrystalline bainitic steel allows the carbon content of the bainitic ferrite away from any carbon-enriched regions such as dislocations and boundaries to be determined by atom probe tomography as the bainite transformation progresses at 200 degrees C. A high level of carbon, well above that expected from para-equilibrium with austenite, has been detected in solid solution in bainitic ferrite at the early stage of transformation. Results provide strong evidence that bainite transformation is essentially displacive in nature so that the newly formed bainitic ferrite retains much of the carbon content of the parent austenite. (C) 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Caballero, F. G.; Garcia-Mateo, C.] CSIC, Ctr Nacl Invest Met, Dept Met Phys, E-28040 Madrid, Spain. [Miller, M. K.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Caballero, FG (reprint author), CSIC, Ctr Nacl Invest Met, Dept Met Phys, Avda Gregorio Amo 8, E-28040 Madrid, Spain. EM fgc@cenim.csic.es RI CABALLERO, FRANCISCA/A-4292-2008; Garcia-Mateo, Carlos/A-7752-2008; OI Garcia-Mateo, Carlos/0000-0002-4773-5077; Caballero, Francisca/0000-0002-5548-7659 FU Research Fund for Coal and Steel; Spanish Ministry of Science and Innovation [RFSR-CT-2008-00022, MAT2007-63873]; Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy FX The authors gratefully acknowledge the support of the Research Fund for Coal and Steel and the Spanish Ministry of Science and Innovation for funding this research under the contracts RFSR-CT-2008-00022 and MAT2007-63873, respectively. Research at the Oak Ridge National Laboratory SHaRE User Facility was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy. NR 41 TC 62 Z9 68 U1 3 U2 38 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 J9 ACTA MATER JI Acta Mater. PD APR PY 2010 VL 58 IS 7 BP 2338 EP 2343 DI 10.1016/j.actamat.2009.12.020 PG 6 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 581LA UT WOS:000276523200006 ER PT J AU Cheng, S Wang, YD Choo, H Wang, XL Almer, JD Liaw, PK Lee, YK AF Cheng, S. Wang, Y. D. Choo, H. Wang, X. -L. Almer, J. D. Liaw, P. K. Lee, Y. K. TI An assessment of the contributing factors to the superior properties of a nanostructured steel using in situ high-energy X-ray diffraction SO ACTA MATERIALIA LA English DT Article DE Synchrotron high-energy X-ray diffraction; Nanostructured steel; Martensitic transformation; Luders banding; Texture ID METASTABLE AUSTENITIC STEEL; NEUTRON-DIFFRACTION; ELASTOPLASTIC DEFORMATION; TENSILE BEHAVIOR; HIGH-STRENGTH; CARBON STEEL; DUCTILITY; STRESS; TRANSFORMATION; TEXTURE AB In contrast to most nanostructured materials, outstanding mechanical property has been demonstrated in a nanostructured metastable austenitic steel, owing to the new characteristics of deformation-induced martensitic transformation. In this paper, by employing an in situ high-energy X-ray diffraction technique, we explore these characteristics by examining factors from the load partitioning, Luders banding, to texture development. It was found that the martensitic transformation was mainly driven through Luders band propagation. Marked load transfer takes place from austenite to martensite as Luders band propagates, and continues into the homogeneous deformation regime. The texture development is mostly contributed by martensitic transformation, but dislocation-based plasticity also plays a role. The effective load partitioning along with the deformability of martensite promotes sample ductility. (C) 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Cheng, S.; Choo, H.; Liaw, P. K.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Cheng, S.; Choo, H.; Wang, X. -L.] Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA. [Wang, Y. D.] Beijing Inst Technol, Sch Mat Sci & Engn, Beijing 100081, Peoples R China. [Almer, J. D.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Lee, Y. K.] Yonsei Univ, Dept Met Engn, Seoul 120749, South Korea. RP Cheng, S (reprint author), Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. EM scheng1@utk.edu RI Wang, Xun-Li/C-9636-2010; Cheng, Sheng/D-9153-2013; wang, yandong/G-9404-2013; Choo, Hahn/A-5494-2009 OI Wang, Xun-Li/0000-0003-4060-8777; Cheng, Sheng/0000-0003-1137-1926; Choo, Hahn/0000-0002-8006-8907 FU National Science Foundation [DMR-0421219, DMR-0231320]; US Department of Energy Office of Science [DE-AC02-06CH11357] FX This work is supported by the National Science Foundation Major Research Instrumentation (MRI) Program (DMR-0421219) and International Materials Institutes (IMI) Program (DMR-A0231320). Use of the APS was supported by the US Department of Energy Office of Science, under Contract No. DE-AC02-06CH11357. NR 39 TC 17 Z9 17 U1 4 U2 25 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 J9 ACTA MATER JI Acta Mater. PD APR PY 2010 VL 58 IS 7 BP 2419 EP 2429 DI 10.1016/j.actamat.2009.12.028 PG 11 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 581LA UT WOS:000276523200014 ER PT J AU Terentyev, DA Osetsky, YN Bacon, DJ AF Terentyev, D. A. Osetsky, Yu. N. Bacon, D. J. TI Effects of temperature on structure and mobility of the < 1 0 0 > edge dislocation in body-centred cubic iron SO ACTA MATERIALIA LA English DT Article DE Bee metals; Dislocation loops; Hardening; < 1 0 0 > dislocation ID MOLECULAR-DYNAMICS SIMULATIONS; SELF-INTERSTITIAL CLUSTERS; SCREW DISLOCATIONS; COMPUTER-SIMULATION; CORE STRUCTURE; METALS; FE; LOOP AB Dislocation segments with Burgers vector b = < 1 0 0 > are formed during deformation of body-centred-cubic (bcc) metals by the interaction between dislocations with b = 1/2 < 1 1 1 >. Such segments are also created by reactions between dislocations and dislocation loops in irradiated bcc metals. The obstacle resistance produced by these segments on gliding dislocations is controlled by their mobility, which is determined in turn by the atomic structure of their cores. The core structure of a straight < 1 0 0 > edge dislocation is investigated here by atomic-scale computer simulation for alpha-iron using three different interatomic potentials. At low temperature the dislocation has a nonplanar core consisting of two 1/2 < 1 1 1 > fractional dislocations with atomic disregistry spread on planes inclined to the main glide plane. Increasing temperature modifies this core structure and so reduces the critical applied shear stress for glide of the < 1 0 0 > dislocation. It is concluded that the response of the < 1 0 0 > edge dislocation to temperature or applied stress determines specific reaction pathways occurring between a moving dislocation and 1/2 < 1 1 1 > dislocation loops. The implications of this for plastic flow in unirradiated and irradiated ferritic materials are discussed and demonstrated by examples. (C) 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Terentyev, D. A.] CEN SCK, Nucl Mat Sci Inst, B-2400 Mol, Belgium. [Osetsky, Yu. N.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Bacon, D. J.] Univ Liverpool, Dept Engn, Liverpool L69 3GH, Merseyside, England. RP Terentyev, DA (reprint author), CEN SCK, Nucl Mat Sci Inst, Boeretang 200, B-2400 Mol, Belgium. EM dterenty@sckcen.be OI Osetskiy, Yury/0000-0002-8109-0030 FU European Fusion programme; Division of Materials Science and Engineering, U.S. Department of Energy; European Atomic Energy Community [FP7/2007-2011, 212175] FX We acknowledge Profs. V. Vitek and L. Kubin and Dr. S.L. Dudarev for helpful discussions. This work was supported by the European Fusion programme and the Division of Materials Science and Engineering, U.S. Department of Energy under contract with UT-Battelle, LLC (YO). This research has received partial funding from the European Atomic Energy Community's 7th Framework Programme (FP7/2007-2011), under grant agreement number 212175 (GetMat project). NR 21 TC 25 Z9 25 U1 6 U2 32 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 J9 ACTA MATER JI Acta Mater. PD APR PY 2010 VL 58 IS 7 BP 2477 EP 2482 DI 10.1016/j.actamat.2009.12.033 PG 6 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 581LA UT WOS:000276523200019 ER PT J AU Mulay, RP Wollmershauser, JA Heisel, MA Bei, H Russell, AM Agnew, SR AF Mulay, R. P. Wollmershauser, J. A. Heisel, M. A. Bei, H. Russell, A. M. Agnew, S. R. TI X-ray diffraction study of the phase purity, order and texture of ductile B2 intermetallics SO ACTA MATERIALIA LA English DT Article DE Ductility; Intermetallics; Ordering; Preferred orientation; Dislocations ID ALLOYS; YAG; SLIP; COMPOUND; FRACTURE; CUZN; YCU AB Representatives (AgY, CuY, AgEr, CuDy, MgY and MgCe) of the newly discovered family of ductile stoichiometric B2 intermetallic (metal rare-earth element, MR) compounds were characterized by X-ray diffraction, to determine if their anomalous ductility is related to an exceptional level of phase purity, lack of chemical ordering or a strong crystallographic texture. Brittle NiAl served as an anti-type in this study. We found that all of the rare-earth compounds, except MgY, have a significant volume fraction (similar to 5-20 vol.%) of second phases (M(2)R intermetallics and R(2)O(3) oxides), which has not been reported in previous studies of these materials. The most ductile of observed MR compounds, AgY, is highly ordered. A moderate texture was observed in AgY, which may explain its higher ductility (using polycrystal modeling) as compared to other MR compounds. However, the intrinsic polycrystalline ductility of these compounds in the randomly textured state (like that observed in CuY) still has no specific, definitive explanation. (C) 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Mulay, R. P.; Wollmershauser, J. A.; Heisel, M. A.; Agnew, S. R.] Univ Virginia, Charlottesville, VA 22904 USA. [Bei, H.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Russell, A. M.] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. RP Agnew, SR (reprint author), Univ Virginia, Charlottesville, VA 22904 USA. EM sra4p@virginia.edu OI Russell, Alan/0000-0001-5264-0104; Bei, Hongbin/0000-0003-0283-7990 FU National Science Foundation [DMR-0547981]; Division of Materials Sciences and Engineering, US Department of Energy FX The work carried out at the University of Virginia was sponsored by the National Science Foundation through a CAREER Grant DMR-0547981. Work in Oak Ridge National Laboratory was sponsored by the Division of Materials Sciences and Engineering, US Department of Energy. We are grateful to Dr. Joachim Schneibel and Mr. Cecil A. Carmichael, Jr. (Oak Ridge National Laboratory) for providing the NiAl arc-casting. NR 38 TC 6 Z9 6 U1 0 U2 5 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 J9 ACTA MATER JI Acta Mater. PD APR PY 2010 VL 58 IS 7 BP 2788 EP 2796 DI 10.1016/j.actamat.2010.01.026 PG 9 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 581LA UT WOS:000276523200050 ER PT J AU Jiang, DE AF Jiang De-En TI Understanding and Predicting Thiolated Gold Nanoclusters from First Principles SO ACTA PHYSICO-CHIMICA SINICA LA English DT Review DE Thiolate; Gold; Nanoclusters; Density functional calculation; Electronic structure; Superatom complex ID PROTECTED AU CLUSTERS; LARGE-SCALE SYNTHESIS; X-RAY CRYSTAL; AU-25 CLUSTERS; MESO-2,3-DIMERCAPTOSUCCINIC ACID; 3-DIMENSIONAL MONOLAYERS; THEORETICAL CHEMISTRY; EXCHANGE REACTIONS; LIGAND-EXCHANGE; METAL-CLUSTERS AB This is an exciting tulle for studying thiolated gold nanoclusters Single crystal structures of Au-102(SR)(44) and Au-25(SR)(18)(-) (-SR being an organothiolate group) bring both surprises and excitement in this field First principles density functional theory (DFT) simulations turn out to be an important tool to understand and predict thiolated gold nanoclusters In this review. I summarize the progresses made by us and others in applying first principles DFT to thiolated gold nanoclusters. as inspired by the recent experiments First, I will give some experimental background on synthesis of thiolated gold nanoclusters. followed by a description of the recent experimental breakthroughs Then I will introduce the superatom complex concept as a way to understand the electronic structure of thiolated gold nanoclusters or smaller nanoparticles Next, I will describe in detail how first principles DFT is used to understand the Au-thiolate interface, predict structures for Au-38(SR)(21), screen good dopants for the Au-25(SR)(18)(-) cluster, design the smallest magic thiolated gold cluster, and demonstrate the need for the trimer protecting motif I will conclude with a grand challenge the real time monitoring of nucleation of thiolated gold nanoclusters C1 Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. RP Jiang, DE (reprint author), Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. RI Jiang, De-en/D-9529-2011 OI Jiang, De-en/0000-0001-5167-0731 FU Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Science. US Department of Enemy FX The project was supported by the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Science. US Department of Enemy NR 115 TC 11 Z9 11 U1 0 U2 42 PU PEKING UNIV PRESS PI BEIJING PA PEKING UNIV, CHEMISTRY BUILDING, BEIJING 100871, PEOPLES R CHINA SN 1000-6818 J9 ACTA PHYS-CHIM SIN JI Acta Phys.-Chim. Sin. PD APR PY 2010 VL 26 IS 4 BP 999 EP 1016 DI 10.3866/PKU.WHXB20100414 PG 18 WC Chemistry, Physical SC Chemistry GA 587AK UT WOS:000276958400028 ER PT J AU Vaidya, NK Huang, HX AF Vaidya, Naveen K. Huang, Huaxiong TI Influenza Viral Membrane Deformation Due to Refolding of HA-Protein: Two-dimensional Model and Analysis SO ADVANCES IN APPLIED MATHEMATICS AND MECHANICS LA English DT Article DE Hemagglutinin protein; Influenza virus; Membrane deformation; Membrane fusion ID VIRUS HEMAGGLUTININ; CONFORMATIONAL CHANGE; LOW-PH; FUSION; MECHANISM; SPECTROSCOPY; MICRODOMAINS; HYPOTHESIS; INTERPLAY; SURFACE AB In this paper we study influenza viral membrane deformation related to the refolding of Hemagglutinin (HA) protein. The focus of the paper is to understand membrane deformation and budding due to experimentally observed linear HA-protein clusters, which have not been mathematically studied before. The viral membrane is modeled as a two dimensional incompressible lipid bilayer with bending rigidity. For tensionless membranes, we derive an analytical solution while for membrane under tension we solve the problem numerically. Our solution for tensionless membranes shows that the height of membrane deformation increases monotonically with the bending moment exerted by HA-proteins and attains its maximum when the size of the protein cluster reaches a critical value. Our results also show that the hypothesis of dimple formation proposed in the literature is valid in the two dimensional setting. Our comparative study of axisymmetric HA-clusters and linear HA-clusters reveals that the linear HA-clusters are not favorable to provide a sufficient energy required to overcome an energy barrier for a successful fusion, despite their capability to cause membrane deformation and budding. C1 [Vaidya, Naveen K.; Huang, Huaxiong] York Univ, Dept Math & Stat, Toronto, ON M3J 1P3, Canada. [Vaidya, Naveen K.] Los Alamos Natl Lab, Theoret Biol & Biophys Grp, Los Alamos, NM 87545 USA. RP Huang, HX (reprint author), York Univ, Dept Math & Stat, Toronto, ON M3J 1P3, Canada. EM nvaidya@lanl.gov; hhuang@yorku.ca FU York University, Canada; Natural Science and Engineering Research Council (NSERC) of Canada; Mathematics for Information Technology and Complex System (MITACS) of Canada FX This research was supported by the Susan Mann Dissertation Scholarship Award of York University, Canada; the Natural Science and Engineering Research Council (NSERC) of Canada; and Mathematics for Information Technology and Complex System (MITACS) of Canada. NR 37 TC 0 Z9 0 U1 2 U2 5 PU GLOBAL SCIENCE PRESS PI WANCHAI PA ROOM 3208, CENTRAL PLAZA, 18 HARBOUR RD, WANCHAI, HONG KONG 00000, PEOPLES R CHINA SN 2070-0733 J9 ADV APPL MATH MECH JI Adv. Appl. Math. Mech. PD APR PY 2010 VL 2 IS 2 BP 160 EP 182 DI 10.4208/aamm.09-m0954 PG 23 WC Mathematics, Applied; Mechanics SC Mathematics; Mechanics GA 708ZG UT WOS:000286402200002 ER PT J AU Pau, GSH Bell, JB Pruess, K Almgren, AS Lijewski, MJ Zhang, KN AF Pau, George S. H. Bell, John B. Pruess, Karsten Almgren, Ann S. Lijewski, Michael J. Zhang, Keni TI High-resolution simulation and characterization of density-driven flow in CO2 storage in saline aquifers SO ADVANCES IN WATER RESOURCES LA English DT Article DE Carbon sequestration; Porous media ID LONG-TERM STORAGE; POROUS-MEDIA; CARBON-DIOXIDE; BOUSSINESQ APPROXIMATION; NATURAL-CONVECTION; TRANSPORT; STABILITY; ONSET; BRINE; LAYER AB Simulations are routinely used to study the process of carbon dioxide (CO2) sequestration in saline aquifers. In this paper, we describe the modeling and simulation of the dissolution-diffusion-convection process based on a total velocity splitting formulation for a variable-density incompressible single-phase model. A second-order accurate sequential algorithm, implemented within a block-structured adaptive mesh refinement (AMR) framework, is used to perform high-resolution studies of the process. We study both the short-term and long-term behaviors of the process. It is found that the onset time of convection follows closely the prediction of linear stability analysis. In addition, the CO2 flux at the top boundary, which gives the rate at which CO2 gas dissolves into a negatively buoyant aqueous phase, will reach a stabilized state at the space and time scales we are interested in. This flux is found to be proportional to permeability, and independent of porosity and effective diffusivity, indicative of a convection-dominated flow. A 3D simulation further shows that the added degrees of freedom shorten the onset time and increase the magnitude of the stabilized CO2 flux by about 25%. Finally, our results are found to be comparable to results obtained from TOUGH2-MP. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Pau, George S. H.; Bell, John B.; Pruess, Karsten; Almgren, Ann S.; Lijewski, Michael J.; Zhang, Keni] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Pau, GSH (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM gpau@lbl.gov RI Pau, George Shu Heng/F-2363-2015 OI Pau, George Shu Heng/0000-0002-9198-6164 FU Applied Mathematics Research Program; Office of Basic Energy Sciences of the US Department of Energy [DE-AC02-05CH11231]; Office of Science of the US Department of Energy FX Support for this work was provided by the Applied Mathematics Research Program and the Office of Basic Energy Sciences of the US Department of Energy under contract DE-AC02-05CH11231. This research used resources of the National Energy Research Scientific Computing Center and the Lawrencium computational cluster resource provided by the LBNL's IT Division, both of which are supported by the Office of Science of the US Department of Energy under the same contract. NR 28 TC 132 Z9 134 U1 4 U2 53 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0309-1708 J9 ADV WATER RESOUR JI Adv. Water Resour. PD APR PY 2010 VL 33 IS 4 BP 443 EP 455 DI 10.1016/j.advwatres.2010.01.009 PG 13 WC Water Resources SC Water Resources GA 586NO UT WOS:000276917400008 ER PT J AU Willingham, T Zhang, CY Werth, CJ Valocchi, AJ Oostrom, M Wietsma, TW AF Willingham, Thomas Zhang, Changyong Werth, Charles J. Valocchi, Albert J. Oostrom, Mart Wietsma, Thomas W. TI Using dispersivity values to quantify the effects of pore-scale flow focusing on enhanced reaction along a transverse mixing zone SO ADVANCES IN WATER RESOURCES LA English DT Article DE Mixing; Dispersion; Preferential-flow; Micromodel ID POROUS-MEDIA; BIODEGRADATION; COEFFICIENTS; DILUTION; GROWTH; MODELS; PLUME AB A key challenge for predictive modeling of transverse mixing and reaction of solutes in groundwater is to determine values of transverse dispersivity (alpha(T)) in heterogeneous flow fields that accurately describe mixing and reaction at the pore scale. We evaluated the effects of flow focusing in high permeability zones on mixing enhancement using experimental micromodel flow cells and pore-scale lattice-Boltzmann-finite-volume model (LB-FVM) simulations. Micromodel results were directly compared to LB-FVM simulations using two different pore structures, and excellent agreement was obtained. Six different flow focusing pore structures were then systematically tested using LB-FVM, and both analytical solutions and a two-dimensional (2D) continuum-scale model were used to fit alpha(T) values to pore-scale results. Pore-scale results indicate that the overall rate of mixing-limited reaction increased by up to 40% when flow focusing occurred, and it was greater in pore structures with longer flow focusing regions and greater porosity contrast. For each pore structure, alpha(T) values from analytical solutions of transverse concentration profiles or total product at a given longitudinal location showed good agreement for nonreactive and reactive solutes, and values determined in flow focusing zones were always smaller than those downgradient after the flow focusing zone. Transverse dispersivity values from the 2D continuum model were between values within and downgradient from the flow focusing zone determined from analytical solutions. Also, total product and transverse concentration profiles along the entire pore structure from the 2D continuum model matched pore scale results. These results indicate that accurate quantification of pore-scale flow focusing with transverse dispersion coefficients is possible only when the entire flow and concentration fields are considered. Published by Elsevier Ltd. C1 [Zhang, Changyong] Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Div Chem & Mat Sci, Richland, WA 99354 USA. [Willingham, Thomas; Werth, Charles J.; Valocchi, Albert J.] Univ Illinois, Dept Civil & Environm Engn, Environm Engn & Sci Program, Urbana, IL 61801 USA. [Oostrom, Mart; Wietsma, Thomas W.] Pacific NW Natl Lab, Energy & Environm Directorate, Hydrol Grp, Richland, WA 99354 USA. RP Zhang, CY (reprint author), Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Div Chem & Mat Sci, 3335 Q Ave,MSIN K8-96, Richland, WA 99354 USA. EM Changyong.Zhang@pnl.gov RI Zhang, Changyong/A-8012-2013 FU National Science Foundation [BES-496714]; Department of Energy's Office of Biological and Environmental Research located at the Pacific Northwest National Laboratory FX This work was supported in part by the National Science Foundation through Grant BES-496714 and through an IPENG fellowship for T.W. A portion of the research was performed in the Environmental Molecular Sciences Laboratory sponsored by the Department of Energy's Office of Biological and Environmental Research located at the Pacific Northwest National Laboratory. NR 28 TC 23 Z9 23 U1 0 U2 28 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0309-1708 J9 ADV WATER RESOUR JI Adv. Water Resour. PD APR PY 2010 VL 33 IS 4 BP 525 EP 535 DI 10.1016/j.advwatres.2010.02.004 PG 11 WC Water Resources SC Water Resources GA 586NO UT WOS:000276917400015 ER PT J AU Cummings, PT Docherty, H Iacovella, CR Singh, JK AF Cummings, Peter T. Docherty, Hugh Iacovella, Christopher R. Singh, Jayant K. TI Phase Transitions in Nanoconfined Fluids: The Evidence from Simulation and Theory SO AICHE JOURNAL LA English DT Editorial Material DE nanoconfined fluids; phase transitions; atomistic simulation; surface forces ID MOLECULARLY THIN-LAYERS; CUT MICA SHEETS; COMPLEX FLUIDS; LOW-FRICTION; FORCE-FIELD; SURFACES; FILMS; LIQUIDS; BEHAVIOR; LUBRICATION C1 [Cummings, Peter T.; Docherty, Hugh; Iacovella, Christopher R.; Singh, Jayant K.] Vanderbilt Univ, Dept Chem & Biomol Engn, Nashville, TN 37235 USA. [Cummings, Peter T.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Cummings, Peter T.] Vanderbilt Univ, Med Ctr, Vanderbilt Ctr Integrat Canc Biol, Nashville, TN 37232 USA. [Singh, Jayant K.] Indian Inst Technol Kanpur, Dept Chem Engn, Kanpur 208016, Uttar Pradesh, India. RP Cummings, PT (reprint author), Vanderbilt Univ, Dept Chem & Biomol Engn, 221 Kirkland Hall, Nashville, TN 37235 USA. EM Peter.cummings@vanderbilt.edu RI Singh, Jayant/A-1820-2011; Iacovella, Christopher/D-1821-2011; Iacovella, Christopher/D-2050-2011; Cummings, Peter/B-8762-2013 OI Cummings, Peter/0000-0002-9766-2216 NR 42 TC 40 Z9 41 U1 3 U2 32 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0001-1541 J9 AICHE J JI AICHE J. PD APR PY 2010 VL 56 IS 4 BP 842 EP 848 DI 10.1002/aic.12226 PG 7 WC Engineering, Chemical SC Engineering GA 574RF UT WOS:000276009700001 ER PT J AU Wachsman, ED Singhal, SC AF Wachsman, Eric D. Singhal, Subhash C. TI Solid oxide fuel cell commercialization, research and challenges SO AMERICAN CERAMIC SOCIETY BULLETIN LA English DT Article ID ELECTROLYTE; TEMPERATURE; CATHODES; SOFCS C1 [Wachsman, Eric D.] Univ Maryland, Energy Res Ctr, College Pk, MD 20742 USA. [Wachsman, Eric D.] Univ Florida, Florida Inst Sustainable Energy, Gainesville, FL 32611 USA. [Singhal, Subhash C.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Singhal, Subhash C.] Siemens Westinghouse Power Corp, Fuel Cell Technol, Pittsburgh, PA USA. RP Wachsman, ED (reprint author), Univ Maryland, Energy Res Ctr, College Pk, MD 20742 USA. EM ewach@umd.edu; singhal@pnl.gov NR 21 TC 5 Z9 5 U1 3 U2 22 PU AMER CERAMIC SOC PI WESTERVILLE PA 600 N CLEVELAND AVE, WESTERVILLE, OH 43082 USA SN 0002-7812 J9 AM CERAM SOC BULL JI Am. Ceram. Soc. Bull. PD APR PY 2010 VL 89 IS 3 BP 23 EP + PG 7 WC Materials Science, Ceramics SC Materials Science GA 683BA UT WOS:000284445500015 ER PT J AU Han, WS McPherson, BJ Lichtner, PC Wang, FP AF Han, Weon Shik McPherson, Brian J. Lichtner, Peter C. Wang, Fred P. TI EVALUATION OF TRAPPING MECHANISMS IN GEOLOGIC CO2 SEQUESTRATION: CASE STUDY OF SACROC NORTHERN PLATFORM, A 35-YEAR CO2 INJECTION SITE SO AMERICAN JOURNAL OF SCIENCE LA English DT Article DE Carbon dioxide; Geologic sequestration; CO2 trapping mechanisms; Heterogeneity; Numerical Simulation; SACROC Unit ID AQUEOUS NACL SOLUTIONS; SUPERCRITICAL CARBON-DIOXIDE; STORAGE CAPACITY ESTIMATION; WATER-ROCK INTERACTIONS; DEPLETED GAS-RESERVOIR; DEEP SALINE FORMATIONS; KELLY-SNYDER FIELD; REACTIVE TRANSPORT; PURE WATER; DISSOLUTION KINETICS AB CO2 trapping mechanisms in geologic sequestration are the specific processes that hold CO2 underground in porous formations after it is injected. The main trapping mechanisms of interest include (1) fundamental confinement of mobile CO2 phase under low-permeability caprocks, or stratigraphic trapping, (2) conversion of CO2 to mineral precipitates, or mineral trapping, (3) dissolution in in situ fluid, or solubility trapping, and (4) trapping by surface tension (capillary force) and, correspondingly, remaining in porous media as an immobile CO2 phase, or residual CO2 trapping. The purpose of this work is to evaluate and quantify the competing roles of these different trapping mechanisms, including the relative amounts of storage by each. For the sake of providing a realistic appraisal, we conducted our analyses on a case study site, the SACROC Unit in the Permian basin of western Texas. CO2 has been injected in the subsurface at the SACROC Unit for more than 35 years for the purpose of enhanced oil recovery. Our analysis of the SACROC production and injection history data suggests that,about 93 million metric tons of CO2 were injected and about 38 million metric tons were produced from 1972 to 2005. As a result, a simple mass-balance suggests that the SACROC Unit has accumulated approximately 55 million metric tons of CO2. Our study specifically focuses on the northern platform area of the SACROC Unit where about 7 million metric tons of CO2 is stored. In the model describing the SACROC northern platform, porosity distributions were defined from extensive analyses of both 3-D seismic surveys and calibrated well logging data from 368 locations. Permeability distributions were estimated from determined porosity fields using a rock-fabric classification approach. The developed 3-D geocellular model representing the SACROC northern platform consists of over 9.4 million elements that characterize detailed 3-D heterogeneous reservoir geology. To facilitate simulation using conventional personal computers, we upscaled the 9.4 million elements model using a "renormalization" technique to reduce it to 15,470 elements. Analysis of groundwater chemistry from both the oil production formations (Cisco and Canyon Groups) and the formation above the sealing caprock suggests that the Wolfcamp Shale Formation performs well as a caprock at the SACROC Unit. However, results of geochemical mixing models also suggest that a small amount of shallow groundwater may be contaminated by reservoir brine possibly due to: (1) downward recharge of recycled reservoir brine from brine pits at the surface, or (2) upward leakage of CO2-saturated reservoir brine through the Wolfcamp Shale Formation. Using the upscaled 3-D geocellular model with detailed fluid injection/production history data and a vast amount of field data, we developed two separate models to evaluate competing CO2 trapping mechanisms at the SACROC northern platform. The first model simulated CO2 trapping mechanisms in a reservoir saturated with brine only. The second model simulated CO2 trapping mechanisms in a reservoir saturated with both brine and oil. CO2 trapping mechanisms in the brine-only model show distinctive stages accompanying injection and post-injection periods. In the 30-year injection period from 1972 to 2002, the amount of mobile CO2 increased to 5.0 million metric tons without increasing immobile CO2, and the mass of solubility-trapped CO2 sharply rose to 1.7 million metric tons. After CO2 injection ceased, the amount of mobile CO2 dramatically decreased and the amount of immobile CO2 increased. Relatively small amounts of mineral precipitation (less than 0.2 million metric tons of CO2 equivalent) occurred after 200 years. In the brine-plus-oil model, dissolution of CO2 in oil (oil-solubility trapping) and mobile CO2 dominated during the entire simulation period. While supercritical-phase CO2 is mobile near the injection wells due to the high CO2 saturation, it behaves like residually trapped CO2 because of the small density contrast between oil and CO2. In summary, the brine-only model reflected dominance by residual CO2 trapping over the long term, while CO2 in the brine-plus-oil model was dominated by oil-solubility trapping. C1 [Han, Weon Shik] Univ Utah, Energy & Geosci Inst, Salt Lake City, UT 84108 USA. [McPherson, Brian J.] Univ Utah, Dept Civil & Environm Engn, Salt Lake City, UT 84112 USA. [Lichtner, Peter C.] Los Alamos Natl Lab, Los Alamos, NM 87575 USA. [Wang, Fred P.] Texas Bur Econ Geol, Austin, TX 78713 USA. RP Han, WS (reprint author), Univ Utah, Energy & Geosci Inst, Salt Lake City, UT 84108 USA. EM wshan@egi.utah.edu FU U.S. Department of Energy [DE-FC26-06NT42591] FX The authors would like to thank Mike Raines and Renee Robertson at Kinder Morgan Inc. for the useful discussion and CMG Ltd. for allowing us to use their GEM simulator in this research. We also appreciated Dr. Audigane, Dr. Marini, and Dr. Firoozabadi for their thoughtful reviews. This work was part of a Ph.D. dissertation studied at New Mexico Institute of Mining and Technology mentored by various committees including Dr. John L. Wilson, Fred M. Phillips, and Peter S. Mozley and partly supported by the Southwest Regional Partnership CO2 Project funded by U.S. Department of Energy, under the contract no. DE-FC26-06NT42591. NR 171 TC 35 Z9 35 U1 1 U2 39 PU AMER JOURNAL SCIENCE PI NEW HAVEN PA YALE UNIV, PO BOX 208109, NEW HAVEN, CT 06520-8109 USA SN 0002-9599 J9 AM J SCI JI Am. J. Sci. PD APR PY 2010 VL 310 IS 4 BP 282 EP 324 DI 10.2475/04.2010.03 PG 43 WC Geosciences, Multidisciplinary SC Geology GA 619GE UT WOS:000279416400003 ER PT J AU Sigdel, T Kaushal, A Gritsenko, M Norbeck, A Qian, W Xiao, W Camp, D Smith, R Sarwal, M AF Sigdel, T. Kaushal, A. Gritsenko, M. Norbeck, A. Qian, W. Xiao, W. Camp, D. Smith, R. Sarwal, M. TI Novel Shotgun Proteomics Approach Identifies Proteins Specific for Acute Renal Transplant Rejection. SO AMERICAN JOURNAL OF TRANSPLANTATION LA English DT Meeting Abstract CT 10th American Transplant Congress CY MAY 01-05, 2010 CL San Diego, CA SP Amer Soc Transplantat C1 [Sigdel, T.; Kaushal, A.; Sarwal, M.] Stanford Univ, Stanford, CA 94305 USA. [Gritsenko, M.; Norbeck, A.; Qian, W.; Xiao, W.; Camp, D.; Smith, R.] Pacific NW Natl Lab, Richland, WA 99352 USA. RI Smith, Richard/J-3664-2012 OI Smith, Richard/0000-0002-2381-2349 NR 0 TC 3 Z9 3 U1 0 U2 1 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1600-6135 J9 AM J TRANSPLANT JI Am. J. Transplant. PD APR PY 2010 VL 10 SU 4 SI SI BP 289 EP 290 PG 2 WC Surgery; Transplantation SC Surgery; Transplantation GA 573NX UT WOS:000275921702275 ER PT J AU Pearce, CI Henderson, CMB Telling, ND Pattrick, RAD Charnock, JM Coker, VS Arenholz, E Tuna, F van der Laan, G AF Pearce, Carolyn I. Henderson, C. Michael B. Telling, Neil D. Pattrick, Richard A. D. Charnock, John M. Coker, Victoria S. Arenholz, Elke Tuna, Floriana van der Laan, Gerrit TI Fe site occupancy in magnetite-ulvospinel solid solutions: A new approach using X-ray magnetic circular dichroism SO AMERICAN MINERALOGIST LA English DT Article DE Titanomagnetite; titanomaghemite; cation site ordering; vacancy ordering; X-ray absorption spectroscopy; X-ray magnetic circular dichroism; magnetic moment ID 2P ABSORPTION-SPECTRA; OCEAN-FLOOR BASALTS; CURVED-WAVE THEORY; CATION DISTRIBUTION; SYNCHROTRON-RADIATION; CRYSTAL-CHEMISTRY; ROCK-MAGNETISM; TITANOMAGNETITES; OXIDATION; TITANOMAGHEMITE AB Ordering of Fe(3+) and Fe(2+) cations between octahedral and tetrahedral sites in synthetic members of the magnetite-ulvospinel (Fe(3)O(4)-Fe(2)TiO(4)) solid-solution series was determined using Fe L(2,3)-edge X-ray magnetic circular dichroism (XMCD) coupled with electron microprobe and chemical analysis, Ti L(2,3)-edge and Fe K-edge X-ray absorption spectroscopy (XAS), and unit-cell parameters. Microprobe analyses, cell edges, and chemical FeO determinations showed that bulk compositions were stoichiometric magnetite-ulvospinel solid solutions. XMCD showed that the surface was sensitive to redox conditions, and samples required re-equilibration with solid-solid buffers. Detailed site-occupancy analysis gave Fe(2+)/Fe(3+) XMCD-intensity ratios close to stoichiometric values. L(2,3)-edge XAS confirmed that Ti(4+) was restricted to octahedral sites. XMCD showed that significant Fe(2+) only entered the tetrahedral sites when Ti content was >0.40 atoms per formula unit (apfu), whereas Fe(2+) in octahedral sites increased from 1 apfu in magnetite to a maximum of similar to 1.4 apfu when Ti content was 0.45 apfu. As Ti content increased, a steady increase in Fe(2+) in tetrahedral sites was observable in the XMCD spectra, concurrent with a slow decrease in Fe(2+) in octahedral sites. Calculated magnetic moments decreased rapidly from magnetite (4.06 mu(B)) to USP45 (1.5 mu(B)), then more slowly toward ulvospinel (0 mu(B)). Two synthesized samples were maghemitized by re-equilibrating with an oxidizing buffer. XMCD showed that Fe(2+) oxidation, with concomitant vacancy formation, was restricted to octahedral sites. Through the direct measurement of Fe oxidation states, XMCD results can be used to rationalize the magnetic properties of titanomagnetites, along with oxidized titanomaghemitized analogs, in Earth's crustal rocks. C1 [Pearce, Carolyn I.; Henderson, C. Michael B.; Telling, Neil D.; Pattrick, Richard A. D.; Charnock, John M.; Coker, Victoria S.; van der Laan, Gerrit] Univ Manchester, Sch Earth Atmospher & Environm Sci, Manchester M13 9PL, Lancs, England. [Pearce, Carolyn I.; Henderson, C. Michael B.; Telling, Neil D.; Pattrick, Richard A. D.; Charnock, John M.; Coker, Victoria S.; van der Laan, Gerrit] Univ Manchester, Williamson Res Ctr Mol Environm Sci, Manchester M13 9PL, Lancs, England. [Henderson, C. Michael B.] Sci & Technol Funding Council Daresbury Lab, Warrington WA4 4AD, Cheshire, England. [Arenholz, Elke] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Tuna, Floriana] Univ Manchester, Sch Chem, Manchester M13 9PL, Lancs, England. [van der Laan, Gerrit] Diamond Light Source, Didcot OX11 0DE, Oxon, England. RP Pearce, CI (reprint author), Pacific NW Natl Lab, POB 999,MS K8-96, Richland, WA 99352 USA. EM carolyn.pearce@pnl.gov RI Coker, Victoria/B-4181-2012; van der Laan, Gerrit/Q-1662-2015 OI van der Laan, Gerrit/0000-0001-6852-2495 FU EPSRC [EP/D058767/1]; BBSRC [BB/E003788/1]; U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the EPSRC grants EPSRC EP/D058767/1 and BBSRC grant BB/E003788/1 and we thank J.R. Lloyd as P.I. We are indebted to D.A. Plant for his assistance with the electron-microprobe analysis and T. Jensen for the chemical analysis. We thank J. Waters for his assistance with XRD measurements. We also thank STEC Daresbury Laboratory for provision of beamtime and I. Harvey for his assistance on station 9.3. The Advanced Light Source is supported by the Director, Office of Science. Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. We acknowledge the contribution of Don Lindsley for his invaluable advice on the synthesis of titanomagnetites and his insightful comments. NR 52 TC 36 Z9 37 U1 4 U2 36 PU MINERALOGICAL SOC AMER PI CHANTILLY PA 3635 CONCORDE PKWY STE 500, CHANTILLY, VA 20151-1125 USA SN 0003-004X J9 AM MINERAL JI Am. Miner. PD APR PY 2010 VL 95 IS 4 BP 425 EP 439 DI 10.2138/am.2010.3343 PG 15 WC Geochemistry & Geophysics; Mineralogy SC Geochemistry & Geophysics; Mineralogy GA 578CB UT WOS:000276269900001 ER PT J AU Ishii, HA Krot, AN Bradley, JP Keil, K Nagashima, K Teslich, N Jacobsen, B Yin, QZ AF Ishii, Hope A. Krot, Alexander N. Bradley, John P. Keil, Klaus Nagashima, Kazuhide Teslich, Nick Jacobsen, Benjamin Yin, Qing-Zhu TI Discovery, mineral paragenesis, and origin of wadalite in a meteorite SO AMERICAN MINERALOGIST LA English DT Article DE Wadalite; Allende; type B CAIs; aqueous alteration; fluid-mediated metamorphism ID AL-RICH INCLUSIONS; HYDROGEN-CHLORIDE GAS; CV3 CHONDRITES; HIGH-TEMPERATURE; EXTINCT CL-36; SOLAR-SYSTEM; ALLENDE; METAMORPHISM; CAIS AB The mineral wadalite (ideal and simplified formula: Ca(6)Al(5)Si(2)O(16)Cl(3)) has been discovered for the first time in a meteorite, specifically in coarse-grained, igneous type B calcium-aluminum-rich inclusions (CAIs) from the CV carbonaceous chondrite Allende. We report the results of electron microprobe, scanning electron microscopy, and transmission electron microscopy analyses of wadalite-bearing assemblages in the Allende CAIs and propose that wadalite formed by metamorphic reaction between akermanitic melilite and anorthite, likely mediated by chlorine-bearing fluids. Petrographic relationships support the likelihood of multistage alterations by fluids of different chemistries interspersed or coinciding with thermal metamorphic episodes on the Allende parent asteroid. Fluid involvement in metamorphism of Allende CAIs implies that these objects experienced open-system alteration after accretion into the CV chondrite parent asteroid, which may have resulted in disturbances of their oxygen- and magnesium-isotope systematics. C1 [Ishii, Hope A.; Bradley, John P.; Teslich, Nick] Lawrence Livermore Natl Lab, Inst Geophys & Planetary Phys, Livermore, CA 94550 USA. [Krot, Alexander N.; Keil, Klaus; Nagashima, Kazuhide] Univ Hawaii Manoa, Sch Ocean & Earth Sci & Technol, Hawaii Inst Geophys & Planetol, Honolulu, HI 96822 USA. [Jacobsen, Benjamin; Yin, Qing-Zhu] Univ Calif Davis, Dept Geol, Davis, CA 95616 USA. RP Ishii, HA (reprint author), Lawrence Livermore Natl Lab, Inst Geophys & Planetary Phys, Livermore, CA 94550 USA. EM hope.ishii@llnl.gov RI Yin, Qing-Zhu/B-8198-2009 OI Yin, Qing-Zhu/0000-0002-4445-5096 FU U.S. Department of Energy [W-7405-Eng-48, DE-AC52-07NA27344]; NASA [NNX08AE08G, NNH06AF991, NNH09AK261, NNX08AG57G, NNX09AC93G]; LLNL FX we thank Herbert Palme for providing several Allende CAI fragments including AJEF and A39 used in this study and Steve Simon and Larry Grossman for additional Allende CAIs. This manuscript benefited from constructive reviews by Hughes Leroux and Laurence Garvie. Portions of this work were performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory in part under contract no. W-7405-Eng-48 and in part under contract DE-AC52-07NA27344. This work was supported by NASA grants NNX08AE08G to K.K NNH06AF991 to and NNH09AK261 to H.A.I. Q.Z.Y. acknowledges support of an IGPP Minigrant from LLNL and NASA grants NNX08AG57G and NNX09AC93G. NR 30 TC 10 Z9 11 U1 1 U2 11 PU MINERALOGICAL SOC AMER PI CHANTILLY PA 3635 CONCORDE PKWY STE 500, CHANTILLY, VA 20151-1125 USA SN 0003-004X J9 AM MINERAL JI Am. Miner. PD APR PY 2010 VL 95 IS 4 BP 440 EP 448 DI 10.2138/am.2010.3296 PG 9 WC Geochemistry & Geophysics; Mineralogy SC Geochemistry & Geophysics; Mineralogy GA 578CB UT WOS:000276269900002 ER PT J AU Courtin-Nomade, A Bril, H Beny, JM Kunz, M Tamura, N AF Courtin-Nomade, Alexandra Bril, Hubert Beny, Jean-Michel Kunz, Martin Tamura, Nobumichi TI Sulfide oxidation observed using micro-Raman spectroscopy and micro-X-ray diffraction: The importance of water/rock ratios and pH conditions SO AMERICAN MINERALOGIST LA English DT Article DE Elemental sulfur; sulfides; iron arsenate; mu SXRD mineral species map ID CRYSTALLINE SCORODITE; ARSENOPYRITE FEASS; ELEMENTAL SULFUR; PYRITE OXIDATION; FERRIC ARSENATE; MINE TAILINGS; PRECIPITATION; FERRIHYDRITE; FEASO4.2H2O; SOLUBILITY AB Oxidative dissolution of arsenopyrite and pyrite from two former mining sites located in the French Massif Central has been studied to determine some of the critical parameters controlling the formation of secondary phases. Micro-Raman spectroscopy (mu RS) and micro-scanning X-ray diffraction (mu SXRD) were used for mineralogical identification and for mapping the distribution of these alteration products. The two milling sites are characterized by different pH conditions and sedimentary environments. Enguiales exhibits acidic conditions (pH similar to 3) and consists of coarse-grained tailings on a steep slope, which have been leached by meteoric waters and represent an oxidizing environment with a high solid/solution ratio. In contrast, the Cheni site shows near neutral conditions (pH similar to 6.3) and consists of muddy tailings deposited in a settling basin, which exemplify an oxidizing environment with a low solid/solution ratio. Amorphous or poorly crystalline iron arsenate (e.g., amorphous scorodite or parasymplesite-like phase) are among the first products precipitated from oxidized arsenopyrites. These iron arsenates are highly mobile and are frequently observed in association with non-arsenian pyrites, where in some instances they have matured into more crystalline forms. Arsenic may also be trapped by amorphous or poorly crystalline iron (oxy)hydroxides, as has been observed for goethite or jarosite in the latter stages of sulfide oxidation. This study also shows that rings of elemental sulfur are formed around altered sulfides, but only when conditions are near neutral. C1 [Courtin-Nomade, Alexandra; Bril, Hubert] Univ Limoges, GRESE, EA 4330, FST, F-87060 Limoges, France. [Beny, Jean-Michel] Univ Orleans, CNRS, INSU, F-45071 Orleans 2, France. [Beny, Jean-Michel] Univ Tours, ISTO, UMR 6113, F-45071 Orleans 2, France. [Kunz, Martin; Tamura, Nobumichi] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Courtin-Nomade, A (reprint author), Univ Limoges, GRESE, EA 4330, FST, 123 Ave Albert Thomas, F-87060 Limoges, France. EM alexandra.courtin@unilim.fr RI Kunz, Martin/K-4491-2012 OI Kunz, Martin/0000-0001-9769-9900 FU regional council of Limousin; U.S. Department of Energy [DE-AC02-05CH11231] FX Financial support was provided from the regional council of Limousin. We thank Michel Peymirat for the sample preparation, T. Merle for access to the mu RS facility in Limoges, M. Fialin for his technical support on EPMA measurements, M. Soubrand-Colin and M. Vanaecker for their assistance during synchrotron based experiments, and C. Grosbois for her helpful comments on an early draft. We also thank J. Feinberg for handling the review and the two reviewers for their useful comments to improve this manuscript. The operations of the ALS at LBNL are supported by the Director, Office of Science, Office of Basic Energy Sciences, U.S. Department of Energy under contract number DE-AC02-05CH11231. NR 51 TC 17 Z9 17 U1 1 U2 19 PU MINERALOGICAL SOC AMER PI CHANTILLY PA 3635 CONCORDE PKWY STE 500, CHANTILLY, VA 20151-1125 USA SN 0003-004X J9 AM MINERAL JI Am. Miner. PD APR PY 2010 VL 95 IS 4 BP 582 EP 591 DI 10.2138/am.2010.3331 PG 10 WC Geochemistry & Geophysics; Mineralogy SC Geochemistry & Geophysics; Mineralogy GA 578CB UT WOS:000276269900019 ER PT J AU Heredia, NJ Beer, NR Hara, CA Hiddessen, AL Bailey, CG AF Heredia, Nicholas J. Beer, N. Reginald Hara, Christine A. Hiddessen, Amy L. Bailey, Christopher G. TI In vitro double transposition for DNA identification SO ANALYTICAL BIOCHEMISTRY LA English DT Article DE Transposition; DNA sequencing; Microdroplets; Microfluidics ID SINGLE-MOLECULE PCR; PICOLITER DROPLETS; TN7 TRANSPOSITION; EMULSION PCR; REAL-TIME; ON-CHIP; AMPLIFICATION; CHROMOSOME; SELECTION; END AB We present a double transposition technique that inserts two different transposons into target DNA to act as priming sites for amplifying the region between the two transposons for sequencing applications. Unlike some current sequencing approaches, the genome of the unknown target remains intact in this method. The transposition reaction, DNA repair, and subsequent sequencing were performed entirely in vitro, without the need for transformation into bacteria, and resulted in sequence homology with the plasmid DNA target. This approach can reduce the time required for the assay by more than a day compared with standard techniques and reduces the number of required enzymatic steps. In addition, the in vitro method enables transposition to be carried out in automated microfluidic platforms without the need for significant sample manipulation. As a demonstration of incorporating transposition techniques into high-throughput technologies, single transposition reactions were carried out in picoliter-sized droplets generated on a microfluidic platform. (C) 2009 Elsevier Inc. All rights reserved. C1 [Heredia, Nicholas J.; Beer, N. Reginald; Hara, Christine A.; Hiddessen, Amy L.; Bailey, Christopher G.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Bailey, CG (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM bailey38@llnl.gov FU Lawrence Livermore National Laboratory (LLNL) [02-SI-008]; U.S. Department of Energy [DE-AC52-07NA27344] FX The authors acknowledge Kelly Spruiell for her assistance. This work was supported by the Laboratory Directed Research and Development Program at the Lawrence Livermore National Laboratory (LLNL, 02-SI-008). This work was performed under the auspices of the U.S. Department of Energy by the LLNL (DE-AC52-07NA27344). NR 20 TC 1 Z9 1 U1 0 U2 4 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0003-2697 J9 ANAL BIOCHEM JI Anal. Biochem. PD APR 1 PY 2010 VL 399 IS 1 BP 78 EP 83 DI 10.1016/j.ab.2009.11.030 PG 6 WC Biochemical Research Methods; Biochemistry & Molecular Biology; Chemistry, Analytical SC Biochemistry & Molecular Biology; Chemistry GA 565NG UT WOS:000275300000012 PM 19944058 ER PT J AU Moritz, TJ Taylor, DS Polage, CR Krol, DM Lane, SM Chan, JW AF Moritz, Tobias J. Taylor, Douglas S. Polage, Christopher R. Krol, Denise M. Lane, Stephen M. Chan, James W. TI Effect of Cefazolin Treatment on the Nonresonant Raman Signatures of the Metabolic State of Individual Escherichia coli Cells SO ANALYTICAL CHEMISTRY LA English DT Article ID RAPID IDENTIFICATION; LASER TWEEZERS; BACKBONE VIBRATIONS; AQUEOUS-SOLUTION; MICROBIAL-CELLS; SPECTROSCOPY; DNA; BACTERIAL; SPECTRA; COLI AB Laser tweezers Raman spectroscopy (LTRS) was used to characterize the Raman fingerprints of the metabolic states of Escherichia coli (E. coli) cells and to determine the spectral changes associated with cellular response to the antibiotic Cefazolin. The Raman spectra of E. coli cells sampled at different time points in the bacterial growth curve exhibited several spectral features that enabled direct identification of the growth phase of the bacteria. Four groups of Raman peaks were identified based on similarities in the time-dependent behavior of their intensities over the course of the growth curve. These groupings were also consistent with the different biochemical species represented by the Raman peaks. Raman peaks associated with DNA and RNA displayed a decrease in intensity over time, while protein-specific Raman vibrations increased at different rates. The adenine ring-breathing mode at 729 and the 1245 cm(-1) vibration peaked in intensity within the first 10 h and decreased afterward. Application of principal component analysis (PCA) to the Raman spectra enabled accurate identification of the different metabolic states of the bacterial cells. The Raman spectra of cells exposed to Cefazolin at the end of log phase exhibited a different behavior. The 729 and 1245 cm(-1) Raman peaks showed a slight decrease in intensity from 4 to 10 h after inoculation. Moreover, a shift in the spectral position of the adenine ring-breathing mode from 724 to 729 cm(-1), which was observed during normal bacterial growth, was inhibited during antibiotic drug treatment. These results suggest that potential Raman markers exist that can be used to identify E. coli cell response to antibiotic drug treatment. C1 [Moritz, Tobias J.; Taylor, Douglas S.; Lane, Stephen M.; Chan, James W.] Univ Calif Davis, NSF Ctr Biophoton Sci & Technol, Sacramento, CA 95817 USA. [Moritz, Tobias J.; Krol, Denise M.] Univ Calif Davis, Biophys Grad Grp, Davis, CA 95616 USA. [Taylor, Douglas S.] Univ Calif Davis, Med Ctr, Dept Pediat, Sacramento, CA 95820 USA. [Polage, Christopher R.] Univ Calif Davis, Med Ctr, Dept Pathol & Lab Med, Sacramento, CA 95820 USA. [Krol, Denise M.] Univ Calif Davis, Dept Appl Sci, Davis, CA 95616 USA. [Chan, James W.] Lawrence Livermore Natl Lab, Div Phys, Livermore, CA 94550 USA. RP Chan, JW (reprint author), Univ Calif Davis, NSF Ctr Biophoton Sci & Technol, Sacramento, CA 95817 USA. EM chan19@llnl.gov RI Chan, James/J-3829-2014; OI Polage, Christopher/0000-0003-1433-6886 FU National Science Foundation; Center for Biophotonics; NSF Science and Technology Center [PHY 0120999]; Children's Miracle Network, University of California, Davis FX We thank Distinguished Professor John Roth (Department of Microbiology at University of California, Davis) for a very helpful discussion. This work has been supported by funding from the National Science Foundation. The Center for Biophotonics, an NSF Science and Technology Center, is managed by the University of California, Davis, under cooperative agreement no. PHY 0120999. D. Taylor acknowledges support from the Children's Miracle Network, University of California, Davis. NR 39 TC 31 Z9 34 U1 3 U2 27 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 EI 1520-6882 J9 ANAL CHEM JI Anal. Chem. PD APR 1 PY 2010 VL 82 IS 7 BP 2703 EP 2710 DI 10.1021/ac902351a PG 8 WC Chemistry, Analytical SC Chemistry GA 574PM UT WOS:000276004000018 PM 20196565 ER PT J AU Leskovjan, AC Kretlow, A Miller, LM AF Leskovjan, Andreana C. Kretlow, Ariane Miller, Lisa M. TI Fourier Transform Infrared Imaging Showing Reduced Unsaturated Lipid Content in the Hippocampus of a Mouse Model of Alzheimer's Disease SO ANALYTICAL CHEMISTRY LA English DT Article ID MILD COGNITIVE IMPAIRMENT; AMYLOID PRECURSOR PROTEIN; DOCOSAHEXAENOIC ACID; OXIDATIVE STRESS; AGING BRAIN; FATTY-ACIDS; RAT-BRAIN; DIFFERENT REGIONS; TRANSGENIC MICE; BETA-PEPTIDES AB Polyunsaturated fatty acids are essential to brain functions such as membrane fluidity, signal transduction, and cell survival. It is also thought that low levels of unsaturated lipid in the brain may contribute to Alzheimer's disease (AD) risk or severity. However, it is not known how accumulation of unsaturated lipids is affected in different regions of the hippocampus, which is a central target of AD plaque pathology, during aging. In this study, we used Fourier transform infrared imaging (FTIRI) to visualize the unsaturated lipid content in specific regions of the hippocampus in the PSAPP mouse model of AD as a function of plaque formation. Specifically, the unsaturated lipid content was imaged using the olefinic =CH stretching mode at 3012 cm(-1). The axonal, dendritic, and somatic layers of the hippocampus were examined in the mice at 13, 24, 40, and 56 weeks old. Results showed that lipid unsaturation in the axonal layer was significantly increased with normal aging in control (CNT) mice (p < 0.01) but remained low and relatively constant in PSAPP mice. Thus, these findings indicate that unsaturated lipid content is reduced in hippocampal white matter during amyloid pathogenesis and that maintaining unsaturated lipid content early in the disease may be critical in avoiding progression of the disease. C1 [Leskovjan, Andreana C.; Miller, Lisa M.] SUNY Stony Brook, Dept Biomed Engn, Stony Brook, NY 11794 USA. [Leskovjan, Andreana C.; Kretlow, Ariane; Miller, Lisa M.] Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA. RP Miller, LM (reprint author), SUNY Stony Brook, Dept Biomed Engn, Stony Brook, NY 11794 USA. EM lmiller@bnl.gov FU National Institutes of Health [R01-GM66873, S10-RR023782]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-98CH10886] FX The authors would like to thank Janelle Collins for her skillful technical assistance with the animal dissection and tissue preparation. We would also like to thank Alvin Acerbo and Randy Smith for assistance with the FTIR microscope. This work is funded by the National Institutes of Health Grants R01-GM66873 and S10-RR023782. The National Synchrotron Light Source is funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract DE-AC02-98CH10886. There are no conflicts of interest associated with this work. NR 53 TC 32 Z9 32 U1 1 U2 11 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 J9 ANAL CHEM JI Anal. Chem. PD APR 1 PY 2010 VL 82 IS 7 BP 2711 EP 2716 DI 10.1021/ac1002728 PG 6 WC Chemistry, Analytical SC Chemistry GA 574PM UT WOS:000276004000019 PM 20187625 ER PT J AU Du, D Zou, ZX Shin, YS Wang, J Wu, H Engelhard, MH Liu, J Aksay, IA Lin, YH AF Du, Dan Zou, Zhexiang Shin, Yongsoon Wang, Jun Wu, Hong Engelhard, Mark H. Liu, Jun Aksay, Ilhan A. Lin, Yuehe TI Sensitive Immunosensor for Cancer Biomarker Based on Dual Signal Amplification Strategy of Graphene Sheets and Multienzyme Functionalized Carbon Nanospheres SO ANALYTICAL CHEMISTRY LA English DT Article ID TUMOR-NECROSIS-FACTOR; ALPHA-FETOPROTEIN; ELECTROCHEMICAL IMMUNOASSAY; NANOPARTICLE LABELS; GOLD NANOPARTICLES; PROTEIN; SERUM; SYSTEM; ASSAY; IMMOBILIZATION AB A novel electrochemical immunosensor for sensitive detection of cancer biomarker alpha-fetoprotein (AFP) is described that uses a graphene sheet sensor platform and functionalized carbon nanospheres (CNSs) labeled with horseradish peroxidase-secondary antibodies (HRP-Ab2). Greatly enhanced sensitivity for the cancer biomarker is based on a dual signal amplification strategy: first, the synthesized CNSs yielded a homogeneous and narrow size distribution, which allowed several binding events of HRP-Ab2 on each nanosphere. Enhanced sensitivity was achieved by introducing the multibioconjugates of HRP-Ab2-CNSs onto the electrode surface through "sandwich" immunoreactions. Second, functionalized graphene sheets used for the biosensor platform increased the surface area to capture a large amount of primary antibodies (Ab1), thus amplifying the detection response. On the basis of the dual signal amplification strategy of graphene sheets and the multienzyme labeling, the developed immunosensor showed a 7-fold increase in detection signal compared to the immunosensor without graphene modification and CNSs labeling. The proposed method could respond to 0.02 ng mL(-1) AFP with a linear calibration range from 0.05 to 6 ng mL(-1). This amplification strategy is a promising platform for clinical screening of cancer biomarkers and point-of-care diagnostics. C1 [Du, Dan; Zou, Zhexiang; Shin, Yongsoon; Wang, Jun; Wu, Hong; Engelhard, Mark H.; Liu, Jun; Lin, Yuehe] Pacific NW Natl Lab, Richland, WA 99352 USA. [Aksay, Ilhan A.] Princeton Univ, Dept Chem Engn, Princeton, NJ 08544 USA. [Du, Dan] Cent China Normal Univ, Coll Chem, Minist Educ, Key Lab Pesticide & Chem Biol, Wuhan 430079, Peoples R China. RP Lin, YH (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM yuehe.lin@pnl.gov RI Engelhard, Mark/F-1317-2010; Aksay, Ilhan/B-9281-2008; Lin, Yuehe/D-9762-2011; Du, Dan (Annie)/G-3821-2012; OI Lin, Yuehe/0000-0003-3791-7587; Engelhard, Mark/0000-0002-5543-0812 FU National Institute of Environmental Health Sciences [U54 ES16015]; National Institutes of Health; National Natural Science Foundation of China [20705010]; U.S. Department of Energy (DOE) [DE-AC05-76RL01830]; ARO/MURI [W911NF-09-1-0476] FX The work was done at Pacific Northwest National Laboratory (PNNL) and was supported partially by Grant U54 ES16015 from the National Institute of Environmental Health Sciences, the National Institutes of Health, and a PNNL Laboratory Directed Research and Development project. This work was also supported partially by the National Natural Science Foundation of China (20705010). PNNL is operated for the U.S. Department of Energy (DOE) by Battelle under Contract DE-AC05-76RL01830. The characterization was performed using EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. IAA. acknowledges support from ARO/MURI under Grant Number W911NF-09-1-0476 and Directed Technologies. NR 56 TC 310 Z9 320 U1 34 U2 343 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 EI 1520-6882 J9 ANAL CHEM JI Anal. Chem. PD APR 1 PY 2010 VL 82 IS 7 BP 2989 EP 2995 DI 10.1021/ac100036p PG 7 WC Chemistry, Analytical SC Chemistry GA 574PM UT WOS:000276004000053 PM 20201502 ER PT J AU Miles, LG Isberg, SR Thomson, PC Glenn, TC Lance, SL Dalzell, P Moran, C AF Miles, L. G. Isberg, S. R. Thomson, P. C. Glenn, T. C. Lance, S. L. Dalzell, P. Moran, C. TI QTL mapping for two commercial traits in farmed saltwater crocodiles (Crocodylus porosus) SO ANIMAL GENETICS LA English DT Article DE crocodilian; QTL; quantitative trait loci; reptile; saltwater crocodile ID GENETIC-LINKAGE MAP; QUANTITATIVE-ANALYSIS; LOCI; POPULATIONS; GROWTH; FATNESS; VALUES; PIGS AB P>The recent generation of a genetic linkage map for the saltwater crocodile (Crocodylus porosus) has now made it possible to carry out the systematic searches necessary for the identification of quantitative trait loci (QTL) affecting traits of economic, as well as evolutionary, importance in crocodilians. In this study, we conducted genome-wide scans for two commercially important traits, inventory head length (which is highly correlated with growth rate) and number of scale rows (SR, a skin quality trait), for the existence of QTL in a commercial population of saltwater crocodiles at Darwin Crocodile Farm, Northern Territory, Australia. To account for the uncommonly large difference in sex-specific recombination rates apparent in the saltwater crocodile, a duel mapping strategy was employed. This strategy employed a sib-pair analysis to take advantage of our full-sib pedigree structure, together with a half-sib analysis to account for, and take advantage of, the large difference in sex-specific recombination frequencies. Using these approaches, two putative QTL regions were identified for SR on linkage group 1 (LG1) at 36 cM, and on LG12 at 0 cM. The QTL identified in this investigation represent the first for a crocodilian and indeed for any non-avian member of the Class Reptilia. Mapping of QTL is an important first step towards the identification of genes and causal mutations for commercially important traits and the development of selection tools for implementation in crocodile breeding programmes for the industry. C1 [Miles, L. G.; Isberg, S. R.; Thomson, P. C.; Dalzell, P.; Moran, C.] Univ Sydney, Fac Vet Sci, Sydney, NSW 2006, Australia. [Isberg, S. R.] Porosus Pty Ltd, Palmerston, NT 0831, Australia. [Glenn, T. C.; Lance, S. L.] Univ Georgia, Savannah River Ecol Lab, Aiken, SC 29802 USA. [Glenn, T. C.] Univ Georgia, Dept Environm Hlth Sci, Athens, GA 30602 USA. [Glenn, T. C.] Univ Georgia, Georgia Genom Facil, Athens, GA 30602 USA. [Dalzell, P.] SE Area Lab Serv, Randwick, NSW 2031, Australia. RP Miles, LG (reprint author), Univ Sydney, Fac Vet Sci, Sydney, NSW 2006, Australia. EM l.miles@usyd.edu.au RI Glenn, Travis/A-2390-2008; Lance, Stacey/K-9203-2013 OI Lance, Stacey/0000-0003-2686-1733 FU Rural Industries Research and Development Corporation (RIRDC) [US-139A]; Porosus Pty Ltd FX We especially like to acknowledge the management and staff at Darwin Crocodile Farm (Porosus Pty Ltd) for allowing access to the animals and for their assistance with sample and data collection. We would also like to acknowledge and thank Dr Ken Jones and Mr Brad Temple at SREL for their contributions to the data generation.This research was supported by Rural Industries Research and Development Corporation (RIRDC) grant US-139A to the University of Sydney, and Porosus Pty Ltd. All research took place at the University of Sydney, Australia, Darwin Crocodile Farm, NT, Australia, and the Savannah River Ecology Laboratory (SREL) of the University of Georgia (UGA), USA. Tissue samples were provided by Darwin Crocodile Farm, NT, Australia. Capture, handling and blood sampling of crocodiles were approved by Australian Animal Ethic Committee, permit No. N00/8-2005/3/4177. NR 26 TC 4 Z9 5 U1 1 U2 25 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0268-9146 J9 ANIM GENET JI Anim. Genet. PD APR PY 2010 VL 41 IS 2 BP 142 EP 149 DI 10.1111/j.1365-2052.2009.01978.x PG 8 WC Agriculture, Dairy & Animal Science; Genetics & Heredity SC Agriculture; Genetics & Heredity GA 564HT UT WOS:000275204600004 PM 19917044 ER PT J AU Favorite, JA Bledsoe, KC AF Favorite, Jeffrey A. Bledsoe, Keith C. TI Eigenvalue sensitivity to system dimensions SO ANNALS OF NUCLEAR ENERGY LA English DT Article AB Adjoint-based first-order sensitivity theory is applied to estimate the sensitivity of the k(eff) eigenvalue to system geometric dimensions. Macroscopic cross sections in the neighborhood of a material interface are expressed in terms of a Heaviside step function. Differentiating the transport and fission operators of the transport equation with respect to the location of the interface results in a Dirac delta function. The final equation for the sensitivity has the forward-adjoint product integrals evaluated on the unperturbed interface; these are multiplied groupwise by the cross-section differences across the interface. The equation applies to the sensitivity of k(eff) to the uniform expansion or contraction of a surface but not to a surface translation or rotation. The equation is related to an earlier one derived for internal interface perturbations in transport theory. The method is demonstrated and compared with direct perturbation calculations in spherical (r only) and cylindrical (r-z) geometries based on criticality benchmark experiments. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Favorite, Jeffrey A.; Bledsoe, Keith C.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Favorite, JA (reprint author), Los Alamos Natl Lab, Transport Applicat XCP 7,MS F663, Los Alamos, NM 87545 USA. EM fave@lanl.gov OI Bledsoe, Keith/0000-0002-6627-5344 NR 20 TC 2 Z9 2 U1 0 U2 6 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0306-4549 J9 ANN NUCL ENERGY JI Ann. Nucl. Energy PD APR PY 2010 VL 37 IS 4 BP 522 EP 528 DI 10.1016/j.anucene.2010.01.004 PG 7 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 585KG UT WOS:000276823700009 ER PT J AU Toth, M Frase, H Chow, JW Smith, C Vakulenko, SB AF Toth, Marta Frase, Hilary Chow, Joseph W. Smith, Clyde Vakulenko, Sergei B. TI Mutant APH(2 '')-IIa Enzymes with Increased Activity against Amikacin and Isepamicin SO ANTIMICROBIAL AGENTS AND CHEMOTHERAPY LA English DT Article ID AMINOGLYCOSIDE RESISTANCE GENES; 16S RIBOSOMAL-RNA; ENTEROCOCCUS-FAECIUM; ANTIBIOTICS; COLI AB Directed evolution by random PCR mutagenesis of the gene for the aminoglycoside 2 ''-IIa phosphotransferase generated R92H/D268N and N196D/D268N mutant enzymes, resulting in elevated levels of resistance to amikacin and isepamicin but not to other aminoglycoside antibiotics. Increases in the activities of the mutant phosphotransferases for isepamicin are the result of decreases in K(m) values, while improved catalytic efficiency for amikacin is the result of both a decrease in K(m) values and an increase in turnover of the antibiotic. Enzymes with R92H, D268N, and D268N single amino acid substitutions did not result in elevated MICs for aminoglycosides. C1 [Toth, Marta; Frase, Hilary; Vakulenko, Sergei B.] Univ Notre Dame, Dept Chem & Biochem, Notre Dame, IN 46556 USA. [Chow, Joseph W.] Merck Res Labs, Dept Infect Dis Clin Res, N Wales, PA 19454 USA. [Smith, Clyde] Stanford Univ, Stanford Synchrotron Radiat Lab, Menlo Pk, CA 94025 USA. RP Vakulenko, SB (reprint author), Univ Notre Dame, Dept Chem & Biochem, 417 Nieuwland Sci Hall, Notre Dame, IN 46556 USA. EM svakulen@nd.edu FU National Institutes of Health [RO1 AI057393] FX This work was supported by a grant from the National Institutes of Health (RO1 AI057393). NR 22 TC 7 Z9 7 U1 0 U2 0 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0066-4804 J9 ANTIMICROB AGENTS CH JI Antimicrob. Agents Chemother. PD APR PY 2010 VL 54 IS 4 BP 1590 EP 1595 DI 10.1128/AAC.01444-09 PG 6 WC Microbiology; Pharmacology & Pharmacy SC Microbiology; Pharmacology & Pharmacy GA 570HG UT WOS:000275662700026 PM 20145089 ER PT J AU Ayala-del-Rio, HL Chain, PS Grzymski, JJ Ponder, MA Ivanova, N Bergholz, PW Di Bartolo, G Hauser, L Land, M Bakermans, C Rodrigues, D Klappenbach, J Zarka, D Larimer, F Richardson, P Murray, A Thomashow, M Tiedje, JM AF Ayala-del-Rio, Hector L. Chain, Patrick S. Grzymski, Joseph J. Ponder, Monica A. Ivanova, Natalia Bergholz, Peter W. Di Bartolo, Genevive Hauser, Loren Land, Miriam Bakermans, Corien Rodrigues, Debora Klappenbach, Joel Zarka, Dan Larimer, Frank Richardson, Paul Murray, Alison Thomashow, Michael Tiedje, James M. TI The Genome Sequence of Psychrobacter arcticus 273-4, a Psychroactive Siberian Permafrost Bacterium, Reveals Mechanisms for Adaptation to Low-Temperature Growth SO APPLIED AND ENVIRONMENTAL MICROBIOLOGY LA English DT Article ID RNA SECONDARY STRUCTURE; WAX ESTER SYNTHESIS; COLD ADAPTATION; SP-NOV.; INSERTION SEQUENCES; ESCHERICHIA-COLI; DNA; IDENTIFICATION; PROTEINS; ALIGNMENT AB Psychrobacter arcticus strain 273-4, which grows at temperatures as low as -10 degrees C, is the first cold-adapted bacterium from a terrestrial environment whose genome was sequenced. Analysis of the 2.65-Mb genome suggested that some of the strategies employed by P. arcticus 273-4 for survival under cold and stress conditions are changes in membrane composition, synthesis of cold shock proteins, and the use of acetate as an energy source. Comparative genome analysis indicated that in a significant portion of the P. arcticus proteome there is reduced use of the acidic amino acids and proline and arginine, which is consistent with increased protein flexibility at low temperatures. Differential amino acid usage occurred in all gene categories, but it was more common in gene categories essential for cell growth and reproduction, suggesting that P. arcticus evolved to grow at low temperatures. Amino acid adaptations and the gene content likely evolved in response to the long-term freezing temperatures (-10 degrees C to -12 degrees C) of the Kolyma (Siberia) permafrost soil from which this strain was isolated. Intracellular water likely does not freeze at these in situ temperatures, which allows P. arcticus to live at subzero temperatures. C1 [Ayala-del-Rio, Hector L.] Univ Puerto Rico, Dept Biol, CUH Postal Stn, Humacao, PR 00791 USA. [Ayala-del-Rio, Hector L.; Ponder, Monica A.; Bergholz, Peter W.; Bakermans, Corien; Rodrigues, Debora; Klappenbach, Joel; Zarka, Dan; Thomashow, Michael; Tiedje, James M.] Michigan State Univ, Ctr Microbial Ecol, E Lansing, MI 48824 USA. [Chain, Patrick S.] Lawrence Livermore Natl Lab, Livermore, CA USA. [Grzymski, Joseph J.; Murray, Alison] Univ Nevada, Desert Res Inst, Reno, NV 89506 USA. [Chain, Patrick S.; Ivanova, Natalia; Di Bartolo, Genevive; Richardson, Paul] Joint Genome Inst, Walnut Creek, CA USA. [Hauser, Loren; Land, Miriam; Larimer, Frank] Oak Ridge Natl Lab, Div Life Sci, Oak Ridge, TN USA. RP Ayala-del-Rio, HL (reprint author), Univ Puerto Rico, Dept Biol, CUH Postal Stn, 100-908th Rd, Humacao, PR 00791 USA. EM hlayala@hpcf.upr.edu RI Bergholz, Peter/C-1293-2010; Hauser, Loren/H-3881-2012; chain, patrick/B-9777-2013; Land, Miriam/A-6200-2011; OI Land, Miriam/0000-0001-7102-0031; Rodrigues, Debora/0000-0002-3124-1443 FU NASA Astrobiology Institute [NCC2-1274]; DOE's Joint Genome Institute FX This work was supported by NASA Astrobiology Institute cooperative agreement NCC2-1274 and by DOE's Joint Genome Institute. We thank Ivan Davila Marcano for statistical advice and Ting Zhang Wang and Antoine Danching for help with the correspondence analysis and model-based clustering. NR 79 TC 49 Z9 384 U1 4 U2 30 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0099-2240 EI 1098-5336 J9 APPL ENVIRON MICROB JI Appl. Environ. Microbiol. PD APR PY 2010 VL 76 IS 7 BP 2304 EP 2312 DI 10.1128/AEM.02101-09 PG 9 WC Biotechnology & Applied Microbiology; Microbiology SC Biotechnology & Applied Microbiology; Microbiology GA 572PD UT WOS:000275844200032 PM 20154119 ER PT J AU Nancharaiah, YV Dodge, C Venugopalan, VP Narasimhan, SV Francis, AJ AF Nancharaiah, Y. V. Dodge, C. Venugopalan, V. P. Narasimhan, S. V. Francis, A. J. TI Immobilization of Cr(VI) and Its Reduction to Cr(III) Phosphate by Granular Biofilms Comprising a Mixture of Microbes SO APPLIED AND ENVIRONMENTAL MICROBIOLOGY LA English DT Article ID SEQUENCING BATCH REACTOR; CHROMATE REDUCTION; HEXAVALENT CHROMIUM; AEROBIC GRANULATION; BACTERIAL REDUCTION; SOLUBLE CHROMATE; SLUDGE; REMOVAL; BIOMATERIAL; BIOSORPTION AB We assessed the potential of mixed microbial consortia, in the form of granular biofilms, to reduce chromate and remove it from synthetic minimal medium. In batch experiments, acetate-fed granular biofilms incubated aerobically reduced 0.2 mM Cr(VI) from a minimal medium at 0.15 mM day(-1) g(-1), with reduction of 0.17 mM day(-1) g(-1) under anaerobic conditions. There was negligible removal of Cr(VI) (i) without granular biofilms, (ii) with lyophilized granular biofilms, and (iii) with granules in the absence of an electron donor. Analyses by X-ray absorption near edge spectroscopy (XANES) of the granular biofilms revealed the conversion of soluble Cr(VI) to Cr(III). Extended X-ray absorption fine-structure (EXAFS) analysis of the Cr-laden granular biofilms demonstrated similarity to Cr(III) phosphate, indicating that Cr(III) was immobilized with phosphate on the biomass subsequent to microbial reduction. The sustained reduction of Cr(VI) by granular biofilms was confirmed in fed-batch experiments. Our study demonstrates the promise of granular-biofilm-based systems in treating Cr(VI)-containing effluents and wastewater. C1 [Nancharaiah, Y. V.; Dodge, C.; Francis, A. J.] Brookhaven Natl Lab, Dept Environm Sci, Upton, NY 11973 USA. [Nancharaiah, Y. V.; Venugopalan, V. P.; Narasimhan, S. V.] Bhabha Atom Res Ctr Facil, Water & Steam Chem Div, Kalpakkam 603102, Tamil Nadu, India. RP Francis, AJ (reprint author), Brookhaven Natl Lab, Dept Environm Sci, Bldg 490A, Upton, NY 11973 USA. EM francis1@bnl.gov FU Department of Atomic Energy, Government of India; Environmental Remediation Sciences Division, Office of Biological and Environmental Research, Office of Science, U.S. Department of Energy [DE-AC02-98CH10886]; Indo-US Visiting Research Professorship Award FX This research was supported by the Department of Atomic Energy, Government of India, and in part by the Environmental Remediation Sciences Division, Office of Biological and Environmental Research, Office of Science, U.S. Department of Energy under contract no. DE-AC02-98CH10886. Y.V.N. gratefully acknowledges the American Society for Microbiology for the Indo-US Visiting Research Professorship Award. NR 40 TC 28 Z9 29 U1 1 U2 30 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0099-2240 J9 APPL ENVIRON MICROB JI Appl. Environ. Microbiol. PD APR PY 2010 VL 76 IS 8 BP 2433 EP 2438 DI 10.1128/AEM.02792-09 PG 6 WC Biotechnology & Applied Microbiology; Microbiology SC Biotechnology & Applied Microbiology; Microbiology GA 578FX UT WOS:000276280100008 PM 20173073 ER PT J AU Nichols, D Cahoon, N Trakhtenberg, EM Pham, L Mehta, A Belanger, A Kanigan, T Lewis, K Epstein, SS AF Nichols, D. Cahoon, N. Trakhtenberg, E. M. Pham, L. Mehta, A. Belanger, A. Kanigan, T. Lewis, K. Epstein, S. S. TI Use of Ichip for High-Throughput In Situ Cultivation of "Uncultivable" Microbial Species SO APPLIED AND ENVIRONMENTAL MICROBIOLOGY LA English DT Article ID SUBSTRATE MEMBRANE SYSTEM; UNCULTURED SOIL BACTERIA; 16S RIBOSOMAL-RNA; SEA-WATER; MICROORGANISMS; DIVERSITY; POPULATIONS; BIOSPHERE; VIABILITY; CHAMBER AB One of the oldest unresolved microbiological phenomena is why only a small fraction of the diverse microbiological population grows on artificial media. The "uncultivable" microbial majority arguably represents our planet's largest unexplored pool of biological and chemical novelty. Previously we showed that species from this pool could be grown inside diffusion chambers incubated in situ, likely because diffusion provides microorganisms with their naturally occurring growth factors. Here we utilize this approach and develop a novel high-throughput platform for parallel cultivation and isolation of previously uncultivated microbial species from a variety of environments. We have designed and tested an isolation chip (ichip) composed of several hundred miniature diffusion chambers, each inoculated with a single environmental cell. We show that microbial recovery in the ichip exceeds manyfold that afforded by standard cultivation, and the grown species are of significant phylogenetic novelty. The new method allows access to a large and diverse array of previously inaccessible microorganisms and is well suited for both fundamental and applied research. C1 [Epstein, S. S.] Northeastern Univ, Dept Biol, Boston, MA 02115 USA. [Trakhtenberg, E. M.] Argonne Natl Lab, Argonne, IL 60439 USA. [Kanigan, T.] BioTrove Inc, Woburn, MA 01801 USA. RP Epstein, SS (reprint author), Northeastern Univ, Dept Biol, 134 Mugar Hall,360 Huntington Ave, Boston, MA 02115 USA. EM s.epstein@neu.edu FU NSF [OCE-0221267, MCB-0348341, DEB-0816840]; DOE [DE-FG02-04ER63782, DE-FG02-07ER64507] FX This work was supported in part by NSF grants OCE-0221267, MCB-0348341, and DEB-0816840 to S. S. E., DOE grant DE-FG02-04ER63782 to K. L. and S. S. E., and DOE grants DE-FG02-07ER64507 and DE-FG02-04ER63782 to S. S. E. and K. L. NR 42 TC 122 Z9 132 U1 34 U2 307 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0099-2240 EI 1098-5336 J9 APPL ENVIRON MICROB JI Appl. Environ. Microbiol. PD APR PY 2010 VL 76 IS 8 BP 2445 EP 2450 DI 10.1128/AEM.01754-09 PG 6 WC Biotechnology & Applied Microbiology; Microbiology SC Biotechnology & Applied Microbiology; Microbiology GA 578FX UT WOS:000276280100010 PM 20173072 ER PT J AU Reed, DW Smith, JM Francis, CA Fujita, Y AF Reed, David W. Smith, Jason M. Francis, Christopher A. Fujita, Yoshiko TI Responses of Ammonia-Oxidizing Bacterial and Archaeal Populations to Organic Nitrogen Amendments in Low-Nutrient Groundwater SO APPLIED AND ENVIRONMENTAL MICROBIOLOGY LA English DT Article ID 16S RIBOSOMAL-RNA; CALCIUM-CARBONATE PRECIPITATION; BASALT AQUIFER; RELATIVE ABUNDANCE; MICROBIAL ECOLOGY; DIVERSITY; GENES; OXIDATION; CRENARCHAEOTA; NITRIFICATION AB To evaluate the potential for organic nitrogen addition to stimulate the in situ growth of ammonia oxidizers during a field scale bioremediation trial, samples collected from the Eastern Snake River Plain Aquifer in Idaho before, during, and after the addition of molasses and urea were subjected to PCR analysis of ammonia monooxygenase subunit A (amoA) genes. Ammonia-oxidizing bacteria (AOB) and archaea (AOA) were present in all of the samples tested, with AOA amoA genes outnumbering AOB amoA genes in all of the samples. Following urea addition, nitrate levels rose and bacterial amoA copy numbers increased dramatically, suggesting that urea hydrolysis stimulated nitrification. Bacterial amoA diversity was limited to two Nitrosomonas phylotypes, whereas archaeal amoA analyses revealed 20 distinct operational taxonomic units, including several that were markedly different from all previously reported sequences. Results from this study demonstrate the likelihood of stimulating ammonia-oxidizing communities during field scale manipulation of groundwater conditions to promote urea hydrolysis. C1 [Reed, David W.; Fujita, Yoshiko] Idaho Natl Lab, Biol Syst Dept, Idaho Falls, ID 83415 USA. [Smith, Jason M.; Francis, Christopher A.] Stanford Univ, Dept Environm Earth Syst Sci, Stanford, CA 94305 USA. RP Reed, DW (reprint author), Idaho Natl Lab, Biol Syst Dept, Idaho Falls, ID 83415 USA. EM David.Reed@inl.gov RI Fujita, Yoshiko/S-2007-2016; Reed, David/C-3337-2017 OI Fujita, Yoshiko/0000-0002-4472-4102; Reed, David/0000-0003-4877-776X FU U.S. Department of Energy, Office of Science under DOE Idaho Operations Office [DE-AC07-05ID14517] FX This work was supported by the U.S. Department of Energy, Office of Science under DOE Idaho Operations Office contract DE-AC07-05ID14517. NR 45 TC 19 Z9 19 U1 3 U2 28 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0099-2240 J9 APPL ENVIRON MICROB JI Appl. Environ. Microbiol. PD APR PY 2010 VL 76 IS 8 BP 2517 EP 2523 DI 10.1128/AEM.02436-09 PG 7 WC Biotechnology & Applied Microbiology; Microbiology SC Biotechnology & Applied Microbiology; Microbiology GA 578FX UT WOS:000276280100018 PM 20190081 ER PT J AU Li, YC Irwin, DC Wilson, DB AF Li, Yongchao Irwin, Diana C. Wilson, David B. TI Increased Crystalline Cellulose Activity via Combinations of Amino Acid Changes in the Family 9 Catalytic Domain and Family 3c Cellulose Binding Module of Thermobifida fusca Cel9A SO APPLIED AND ENVIRONMENTAL MICROBIOLOGY LA English DT Article ID THERMOMONOSPORA-FUSCA; STREPTOMYCES-LIVIDANS; DNA-SEQUENCES; EXPRESSION; EXOCELLULASE; HYDROLYSIS; CELLULASES; MECHANISM; CLONING; GENE AB Amino acid modifications of the Thermobifida fusca Cel9A-68 catalytic domain or carbohydrate binding module 3c (CBM3c) were combined to create enzymes with changed amino acids in both domains. Bacterial crystalline cellulose ( BC) and swollen cellulose (SWC) assays of the expressed and purified enzymes showed that three combinations resulted in 150% and 200% increased activity, respectively, and also increased synergistic activity with other cellulases. Several other combinations resulted in drastically lowered activity, giving insight into the need for a balance between the binding in the catalytic cleft on either side of the cleavage site, as well as coordination between binding affinity for the catalytic domain and CBM3c. The same combinations of amino acid variants in the whole enzyme, Cel9A-90, did not increase BC or SWC activity but did have higher filter paper ( FP) activity at 12% digestion. C1 [Irwin, Diana C.; Wilson, David B.] Cornell Univ, Dept Mol Biol & Genet, Ithaca, NY 14853 USA. [Li, Yongchao] Oak Ridge Natl Lab, Bioenergy Sci Ctr, Oak Ridge, TN 37831 USA. RP Wilson, DB (reprint author), Cornell Univ, Dept Mol Biol & Genet, 458 Biotechnol Bldg, Ithaca, NY 14853 USA. EM dbw3@cornell.edu RI Li, Yongchao/H-6321-2011 FU DOE Office of Biological and Environmental Research Genomes to Life Program through the BioEnergy Science Center FX This work was supported by the DOE Office of Biological and Environmental Research Genomes to Life Program through the BioEnergy Science Center. NR 20 TC 24 Z9 24 U1 0 U2 8 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0099-2240 J9 APPL ENVIRON MICROB JI Appl. Environ. Microbiol. PD APR PY 2010 VL 76 IS 8 BP 2582 EP 2588 DI 10.1128/AEM.02735-09 PG 7 WC Biotechnology & Applied Microbiology; Microbiology SC Biotechnology & Applied Microbiology; Microbiology GA 578FX UT WOS:000276280100026 PM 20173060 ER PT J AU Maier, RM Palmer, MW Andersen, GL Halonen, MJ Josephson, KC Maier, RS Martinez, FD Neilson, JW Stern, DA Vercelli, D Wright, AL AF Maier, Raina M. Palmer, Michael W. Andersen, Gary L. Halonen, Marilyn J. Josephson, Karen C. Maier, Robert S. Martinez, Fernando D. Neilson, Julia W. Stern, Debra A. Vercelli, Donata Wright, Anne L. TI Environmental Determinants of and Impact on Childhood Asthma by the Bacterial Community in Household Dust SO APPLIED AND ENVIRONMENTAL MICROBIOLOGY LA English DT Article ID GRADIENT GEL-ELECTROPHORESIS; CANONICAL CORRESPONDENCE-ANALYSIS; 16S RIBOSOMAL-RNA; EARLY-LIFE; YOUNG-CHILDREN; EXPOSURE; RISK; POPULATIONS; ENDOTOXIN; AGE AB Asthma increased dramatically in the last decades of the 20th century and is representative of chronic diseases that have been linked to altered microbial exposure and immune responses. Here we evaluate the effects of environmental exposures typically associated with asthma protection or risk on the microbial community structure of household dust ( dogs, cats, and day care). PCR-denaturing gradient gel analysis (PCR-DGGE) demonstrated that the bacterial community structure in house dust is significantly impacted by the presence of dogs or cats in the home (P = 0.0190 and 0.0029, respectively) and by whether or not children attend day care (P = 0.0037). In addition, significant differences in the dust bacterial community were associated with asthma outcomes in young children, including wheezing (P = 0.0103) and specific IgE (P = 0.0184). Our findings suggest that specific bacterial populations within the community are associated with either risk or protection from asthma. C1 [Maier, Raina M.; Josephson, Karen C.; Neilson, Julia W.] Univ Arizona, Dept Soil Water & Environm Sci, Tucson, AZ 85721 USA. [Vercelli, Donata] Univ Arizona, Dept Cell Biol & Anat, Tucson, AZ 85721 USA. [Martinez, Fernando D.; Wright, Anne L.] Univ Arizona, Dept Pediat, Tucson, AZ 85721 USA. [Halonen, Marilyn J.] Univ Arizona, Dept Pharmacol, Tucson, AZ 85721 USA. [Halonen, Marilyn J.; Martinez, Fernando D.; Stern, Debra A.; Vercelli, Donata; Wright, Anne L.] Univ Arizona, Arizona Resp Ctr, Tucson, AZ 85721 USA. [Palmer, Michael W.] Oklahoma State Univ, Dept Bot, Stillwater, OK 74078 USA. [Andersen, Gary L.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Maier, Robert S.] USA, Engineer Res & Dev Ctr, Vicksburg, MS USA. RP Maier, RM (reprint author), Univ Arizona, Dept Soil Water & Environm Sci, 429 Shantz Bldg 38, Tucson, AZ 85721 USA. EM rmaier@ag.arizona.edu RI Palmer, Michael/A-2519-2008; Andersen, Gary/G-2792-2015 OI Andersen, Gary/0000-0002-1618-9827 FU NIAID NIH HHS [AI61811, R01 AI042268, R01 AI061811, AI 42268] NR 29 TC 30 Z9 31 U1 0 U2 10 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0099-2240 J9 APPL ENVIRON MICROB JI Appl. Environ. Microbiol. PD APR PY 2010 VL 76 IS 8 BP 2663 EP 2667 DI 10.1128/AEM.01665-09 PG 5 WC Biotechnology & Applied Microbiology; Microbiology SC Biotechnology & Applied Microbiology; Microbiology GA 578FX UT WOS:000276280100036 PM 20154107 ER PT J AU Ghafghazi, S Sowlati, T Sokhansanj, S Melin, S AF Ghafghazi, S. Sowlati, T. Sokhansanj, S. Melin, S. TI A multicriteria approach to evaluate district heating system options SO APPLIED ENERGY LA English DT Article DE District heating systems; Multicriteria decision making; PROMETHEE; Group decision making; Renewable energy; Biomass ID RENEWABLE ENERGY-SOURCES; DECISION-MAKING; PROMETHEE METHOD; PLANTS; MCDM; AID; EXPLOITATION; FEASIBILITY; PROJECTS; CRITERIA AB District energy systems, in which renewable energy sources may be utilized, are centralized systems to provide energy to residential and commercial buildings. The aim of this paper is to evaluate and rank energy sources available for a case of district heating system in Vancouver, Canada, based on multiple criteria and the view points of different stakeholders, and to show how communication would affect the ranking of alternatives. The available energy sources are natural gas, biomass (wood pellets), sewer heat, and geothermal heat. The evaluation criteria include GHG emissions, particulate matter emissions, maturity of technology, traffic load, and local source. In order to rank the energy options the PROMETHEE method is used. In this paper, two different scenarios were developed to indicate how the communication between the stakeholders would affect their preferences about criteria weights and would change the ranking of alternatives. The result of this study shows that without communication the best energy source for the considered district energy system is different for different stakeholders. While, addressing concerns through efficient communication would result in a general consensus. In this case, wood pellet is the best energy alternative for all the stakeholders. (C) 2009 Elsevier Ltd. All rights reserved. C1 [Ghafghazi, S.; Sowlati, T.] Univ British Columbia, Dept Wood Sci, Vancouver, BC V6T 1Z4, Canada. [Sokhansanj, S.; Melin, S.] Univ British Columbia, Dept Chem & Biol Engn, Vancouver, BC V6T 1Z3, Canada. [Sokhansanj, S.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. [Melin, S.] Delta Res Corp, Delta, BC, Canada. RP Sowlati, T (reprint author), Univ British Columbia, Dept Wood Sci, 2931-2424 Main Mall, Vancouver, BC V6T 1Z4, Canada. EM taraneh.sowlati@ubc.ca OI Ghafghazi, Saeed/0000-0001-8226-6176 NR 36 TC 55 Z9 58 U1 2 U2 21 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0306-2619 J9 APPL ENERG JI Appl. Energy PD APR PY 2010 VL 87 IS 4 BP 1134 EP 1140 DI 10.1016/j.apenergy.2009.06.021 PG 7 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA 555JL UT WOS:000274506500007 ER PT J AU Duan, J Fischer, P Iliescu, T Ozgokmen, TM AF Duan, J. Fischer, P. Iliescu, T. Ozgokmen, T. M. TI Bridging the Boussinesq and primitive equations through spatio-temporal filtering SO APPLIED MATHEMATICS LETTERS LA English DT Article DE Boussinesq equations; Primitive equations; Filtering; Scaling ID LARGE-EDDY SIMULATION AB We propose a novel approach for bridging the Boussinesq equations and the primitive equations. This approach uses spatio-temporal filtering as an alternative to traditional scaling arguments. (C) 2009 Elsevier Ltd. All rights reserved. C1 [Iliescu, T.] Virginia Polytech Inst & State Univ, Dept Math, Blacksburg, VA 24061 USA. [Duan, J.] IIT, Dept Appl Math, Chicago, IL 60616 USA. [Fischer, P.] Argonne Natl Lab, MCS Div, Argonne, IL 60439 USA. [Ozgokmen, T. M.] Univ Miami, RSMAS, MPO, Miami, FL USA. RP Iliescu, T (reprint author), Virginia Polytech Inst & State Univ, Dept Math, Blacksburg, VA 24061 USA. EM duan@iit.edu; fischer@mcs.anl.gov; iliescu@vt.edu; tozgokmen@rsmas.miami.edu FU National Science Foundation [OCE-0620464, OCE-0620661] FX We greatly appreciate the support of National Science Foundation via grants OCE-0620464 and OCE-0620661 under the Collaboration in Mathematical Geosciences (CMG) initiative. NR 8 TC 6 Z9 6 U1 0 U2 0 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0893-9659 J9 APPL MATH LETT JI Appl. Math. Lett. PD APR PY 2010 VL 23 IS 4 BP 453 EP 456 DI 10.1016/j.aml.2009.11.015 PG 4 WC Mathematics, Applied SC Mathematics GA 578CF UT WOS:000276270300024 ER PT J AU Co, DT Lockard, JV McCamant, DW Wasielewski, MR AF Co, Dick T. Lockard, Jenny V. McCamant, David W. Wasielewski, Michael R. TI Narrow-bandwidth tunable picosecond pulses in the visible produced by noncollinear optical parametric amplification with a chirped blue pump SO APPLIED OPTICS LA English DT Article ID STIMULATED RAMAN-SPECTROSCOPY; FEMTOSECOND PULSES; BARIUM BORATE; HIGH-POWER; VIBRATIONAL SPECTROSCOPY; GENERATION; SCATTERING; AMPLIFIER; DYNAMICS; REDISTRIBUTION AB Narrow-bandwidth (similar to 27 cm(-1)) tunable picosecond pulses from 480 nm-780 nm were generated from the output of a 1 kHz femtosecond titanium: sapphire laser system using a type I noncollinear optical parametric amplifier (NOPA) with chirped second-harmonic generation (SHG) pumping. Unlike a femtosecond NOPA, this system utilizes a broadband pump beam, the chirped 400 nm SHG of the Ti:sapphire fundamental, to amplify a monochromatic signal beam (spectrally-filtered output of a type II collinear OPA). Optimum geometric conditions for simultaneous phase-and group-velocity matching were calculated in the visible spectrum. This design is an efficient and simple method for generating tunable visible picosecond pulses that are synchronized to the femtosecond pulses. (C) 2010 Optical Society of America C1 [Co, Dick T.; Wasielewski, Michael R.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. [Co, Dick T.; Wasielewski, Michael R.] Northwestern Univ, Argonne NW Solar Energy Res Ctr, Evanston, IL 60208 USA. [Lockard, Jenny V.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [McCamant, David W.] Univ Rochester, Dept Chem, Rochester, NY 14627 USA. RP Wasielewski, MR (reprint author), Northwestern Univ, Dept Chem, 2145 Sheridan Rd, Evanston, IL 60208 USA. EM m-wasielewski@northwestern.edu OI Co, Dick/0000-0003-0698-3004; McCamant, David/0000-0002-9095-040X FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0001059] FX This work was supported as part of the ANSER Center, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Award Number DE-SC0001059. NR 39 TC 8 Z9 8 U1 0 U2 21 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1559-128X EI 2155-3165 J9 APPL OPTICS JI Appl. Optics PD APR 1 PY 2010 VL 49 IS 10 BP 1880 EP 1885 DI 10.1364/AO.49.001880 PG 6 WC Optics SC Optics GA 576WD UT WOS:000276179500046 PM 20357874 ER PT J AU Awwal, AAS AF Awwal, Abdul Ahad S. TI What can we learn from the shape of a correlation peak for position estimation? SO APPLIED OPTICS LA English DT Article ID NATIONAL-IGNITION-FACILITY; PHASE-ONLY FILTER; PATTERN-RECOGNITION; PERFORMANCE; ALIGNMENT; NOISE; OPTIMIZATION; TEMPLATES; TARGET; SIGNAL AB Matched filtering is a robust technique to identify and locate objects in the presence of noise. Traditionally, the amplitude of the correlation peak is used for detection of a match. However, when distinguishing objects that are not significantly different or detecting objects under high noise imaging conditions, the normalized peak amplitude alone may not provide sufficient discrimination. In this paper, we demonstrate that measurements derived from the shape of the correlation peak offer not only higher levels of discrimination but also accurate position estimation. To our knowledge, this is the first time such features have been used in a real-time system, like the National Ignition Facility, where such techniques enable real-time, accurate position estimation and alignment under challenging imaging conditions. It is envisioned that systems utilizing matched filtering will greatly benefit from incorporating additional shape based information. (C) 2010 Optical Society of America C1 Lawrence Livermore Natl Lab, Natl Ignit Facil, Livermore, CA 94551 USA. RP Awwal, AAS (reprint author), Lawrence Livermore Natl Lab, Natl Ignit Facil, Livermore, CA 94551 USA. EM awwal1@llnl.gov NR 30 TC 13 Z9 13 U1 1 U2 3 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1559-128X EI 2155-3165 J9 APPL OPTICS JI Appl. Optics PD APR 1 PY 2010 VL 49 IS 10 BP B40 EP B50 DI 10.1364/AO.49.000B40 PG 11 WC Optics SC Optics GA 576WD UT WOS:000276179500004 PM 20357840 ER PT J AU Michel, HE Awwal, AAS AF Michel, Howard E. Awwal, Abdul Ahad S. TI Artificial neural networks using complex numbers and phase encoded weights SO APPLIED OPTICS LA English DT Article ID SEMICONDUCTOR OPTICAL AMPLIFIER; BACKPROPAGATION ALGORITHM; MULTIVALUED NEURONS; UNIVERSAL BINARY; LOGIC; GATES; XOR; CLASSIFICATION; COMPUTATION; DYNAMICS AB The model of a simple perceptron using phase-encoded inputs and complex-valued weights is proposed. The aggregation function, activation function, and learning rule for the proposed neuron are derived and applied to Boolean logic functions and simple computer vision tasks. The complex-valued neuron (CVN) is shown to be superior to traditional perceptrons. An improvement of 135% over the theoretical maximum of 104 linearly separable problems (of three variables) solvable by conventional perceptrons is achieved without additional logic, neuron stages, or higher order terms such as those required in polynomial logic gates. The application of CVN in distortion invariant character recognition and image segmentation is demonstrated. Implementation details are discussed, and the CVN is shown to be very attractive for optical implementation since optical computations are naturally complex. The cost of the CVN is less in all cases than the traditional neuron when implemented optically. Therefore, all the benefits of the CVN can be obtained without additional cost. However, on those implementations dependent on standard serial computers, CVN will be more cost effective only in those applications where its increased power can offset the requirement for additional neurons. (C) 2010 Optical Society of America C1 [Michel, Howard E.] Univ Massachusetts Dartmouth, Dept Elect & Comp Engn, N Dartmouth, MA 02747 USA. [Awwal, Abdul Ahad S.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Michel, HE (reprint author), Univ Massachusetts Dartmouth, Dept Elect & Comp Engn, 285 Old Westport Rd, N Dartmouth, MA 02747 USA. EM hmichel@umassd.edu NR 46 TC 12 Z9 12 U1 0 U2 1 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1559-128X EI 2155-3165 J9 APPL OPTICS JI Appl. Optics PD APR 1 PY 2010 VL 49 IS 10 BP B71 EP B82 DI 10.1364/AO.49.000B71 PG 12 WC Optics SC Optics GA 576WD UT WOS:000276179500007 PM 20357843 ER PT J AU Awwal, A Iftekharuddin, K Karim, M Neifeld, M Stork, D AF Awwal, Abdul Iftekharuddin, Khan Karim, Mohammad Neifeld, Mark Stork, David TI Convergence in Optical and Digital Pattern Recognition: introduction to the feature issue SO APPLIED OPTICS LA English DT Editorial Material C1 [Awwal, Abdul] Lawrence Livermore Natl Lab, Natl Ignit Facil, Livermore, CA 94551 USA. [Iftekharuddin, Khan] Univ Memphis, Dept Elect & Comp Engn, Memphis, TN 38152 USA. [Karim, Mohammad] Old Dominion Univ, Res Off, Norfolk, VA 23508 USA. [Neifeld, Mark] Univ Arizona, Dept Elect & Comp Engn, Tucson, AZ 85721 USA. [Stork, David] Ricoh Innovat, Menlo Pk, CA 94025 USA. RP Awwal, A (reprint author), Lawrence Livermore Natl Lab, Natl Ignit Facil, Livermore, CA 94551 USA. EM awwal1@llnl.gov NR 0 TC 2 Z9 2 U1 0 U2 0 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1559-128X EI 2155-3165 J9 APPL OPTICS JI Appl. Optics PD APR 1 PY 2010 VL 49 IS 10 BP DPR1 EP DPR2 DI 10.1364/AO.49.00DPR1 PG 2 WC Optics SC Optics GA 576WD UT WOS:000276179500001 PM 20357847 ER PT J AU Sutter, E Sutter, P AF Sutter, Eli Sutter, Peter TI Vapor-liquid-solid growth and Sb doping of Ge nanowires from a liquid Au-Sb-Ge ternary alloy SO APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING LA English DT Article ID HETEROSTRUCTURES AB Single-crystalline Sb-doped Ge nanowires (NWs) with excellent structural properties and uniform composition have been synthesized with high yield by vapor-liquid-solid (VLS) growth by low-temperature thermal evaporation from a mixture of Ge and Sb powders. During deposition, both the Ge and the Sb dopant became incorporated in the VLS seed nanoparticle. In situ annealing experiments during transmission electron microscopy establish that a liquid ternary Au-Sb-Ge alloy constitutes the active phase of the VLS seed drop at high temperatures, which governs the growth of the one-dimensional Ge NW and its doping by Sb. C1 [Sutter, Eli; Sutter, Peter] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. RP Sutter, E (reprint author), Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. EM esutter@bnl.gov FU US Department of Energy [DE-AC02-98CH1-886] FX Work performed under the auspices of the US Department of Energy under contract No. DE-AC02-98CH1-886. NR 13 TC 6 Z9 6 U1 1 U2 9 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0947-8396 J9 APPL PHYS A-MATER JI Appl. Phys. A-Mater. Sci. Process. PD APR PY 2010 VL 99 IS 1 BP 217 EP 221 DI 10.1007/s00339-009-5502-x PG 5 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA 575LZ UT WOS:000276069900030 ER PT J AU Rothamer, DA Snyder, JA Hanson, RK Steeper, RR AF Rothamer, D. A. Snyder, J. A. Hanson, R. K. Steeper, R. R. TI Optimization of a tracer-based PLIF diagnostic for simultaneous imaging of EGR and temperature in IC engines SO APPLIED PHYSICS B-LASERS AND OPTICS LA English DT Article ID LASER-INDUCED FLUORESCENCE; FUEL CONCENTRATION; COMBUSTION; ACETONE; VISUALIZATION; 3-PENTANONE; WAVELENGTH; ABSORPTION; GASES; RATIO AB A tracer-based planar laser-induced fluorescence (TB-PLIF) imaging diagnostic using 3-pentanone has been optimized for use in IC engines. The diagnostic utilizes dual-wavelength excitation of 3-pentanone in the ultraviolet to make simultaneous measurements of exhaust gas residual mole fraction and temperature. A merit function based optimization of the diagnostic precision was performed which allowed for selection of optimal excitation wavelengths for the conditions of interest. Optimized system performance was validated in a motored optical engine over a wide range of in-cylinder temperatures and pressures. In-cylinder results verify the utility of the uncertainty estimates. Differences in magnitude between the estimated and measured precision were determined to be due to errors in parameter values used in the calculations. The observed 2.1% temperature precision at a temperature of 600 K was compared with previous TB-PLIF temperature measurements and shown to be approximately a factor of 2 better than previous results. C1 [Rothamer, D. A.] Univ Wisconsin, Madison, WI 53706 USA. [Snyder, J. A.; Hanson, R. K.] Stanford Univ, Stanford, CA 94305 USA. [Steeper, R. R.] Sandia Natl Labs, Livermore, CA USA. RP Rothamer, DA (reprint author), Univ Wisconsin, 1500 Engn Dr,Rm 127, Madison, WI 53706 USA. EM rothamer@wisc.edu OI Rothamer, David/0000-0002-5159-7842 FU Nissan Motor Co., Ltd; US Department of Energy, Office of Vehicle Technologies; United States Department of Energy's National Nuclear Security Administration [DEAC04-94AL85000] FX Research at Stanford University was sponsored by Nissan Motor Co., Ltd. Research at Sandia National Laboratories was supported by the US Department of Energy, Office of Vehicle Technologies. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DEAC04-94AL85000. NR 38 TC 23 Z9 23 U1 1 U2 15 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0946-2171 J9 APPL PHYS B-LASERS O JI Appl. Phys. B-Lasers Opt. PD APR PY 2010 VL 99 IS 1-2 BP 371 EP 384 DI 10.1007/s00340-009-3815-2 PG 14 WC Optics; Physics, Applied SC Optics; Physics GA 573EW UT WOS:000275892200052 ER PT J AU Colonna, N Abbondanno, U Aerts, G Alvarez, H Alvarez-Velarde, F Andriamonje, S Andrzejewski, J Assimakopoulos, P Audouin, L Badurek, G Baumann, P Becvar, F Berthoumieux, E Calviani, M Calvino, F Cano-Ott, D Capote, R de Albornoz, AC Cennini, P Chepel, V Chiaveri, E Cortes, G Couture, A Cox, J Dahlfors, M David, S Dillman, I Dolfini, R Domingo-Pardo, C Dridi, W Duran, I Eleftheriadis, C Ferrant, L Ferrari, A Ferreira-Marques, R Frais-Koelbl, H Fujii, K Furman, W Goncalves, I Gonzalez-Romero, E Goverdovski, A Gramegna, F Griesmayer, E Guerrero, C Gunsing, F Haas, B Haight, R Heil, M Herrera-Martinez, A Igashira, M Isaev, S Jericha, E Kappeler, F Kadi, Y Karadimos, D Karamanis, D Kerveno, M Ketlerov, V Koehler, P Konovalov, V Kossionides, E Krticka, M Lampoudis, C Leeb, H Lindote, A Lopes, I Lozano, M Lukic, S Marganiec, J Marques, L Marrone, S Martinez, T Massimi, C Mastinu, P Mengoni, A Milazzo, PM Moreau, C Mosconi, M Neves, F Oberhummer, H O'Brien, S Oshima, M Pancin, J Papachristodoulou, C Papadopoulos, C Paradela, C Patronis, N Pavlik, A Pavlopoulos, P Perrot, L Pigni, MT Plag, R Plompen, A Plukis, A Poch, A Pretel, C Quesada, J Rauscher, T Reifarth, R Rosetti, M Rubbia, C Rudolf, G Rullhusen, P Salgado, J Sarchiapone, L Savvidis, I Stephan, C Tagliente, G Tain, JL Tassan-Got, L Tavora, L Terlizzi, R Vannini, G Vaz, P Ventura, A Villamarin, D Vicente, MC Vlachoudis, V Vlastou, R Voss, F Walter, S Wendler, H Wiescher, M Wisshak, K AF Colonna, N. Abbondanno, U. Aerts, G. Alvarez, H. Alvarez-Velarde, F. Andriamonje, S. Andrzejewski, J. Assimakopoulos, P. Audouin, L. Badurek, G. Baumann, P. Becvar, F. Berthoumieux, E. Calviani, M. Calvino, F. Cano-Ott, D. Capote, R. de Albornoz, A. Carrillo Cennini, P. Chepel, V. Chiaveri, E. Cortes, G. Couture, A. Cox, J. Dahlfors, M. David, S. Dillman, I. Dolfini, R. Domingo-Pardo, C. Dridi, W. Duran, I. Eleftheriadis, C. Ferrant, L. Ferrari, A. Ferreira-Marques, R. Frais-Koelbl, H. Fujii, K. Furman, W. Goncalves, I. Gonzalez-Romero, E. Goverdovski, A. Gramegna, F. Griesmayer, E. Guerrero, C. Gunsing, F. Haas, B. Haight, R. Heil, M. Herrera-Martinez, A. Igashira, M. Isaev, S. Jericha, E. Kaeppeler, F. Kadi, Y. Karadimos, D. Karamanis, D. Kerveno, M. Ketlerov, V. Koehler, P. Konovalov, V. Kossionides, E. Krticka, M. Lampoudis, C. Leeb, H. Lindote, A. Lopes, I. Lozano, M. Lukic, S. Marganiec, J. Marques, L. Marrone, S. Martinez, T. Massimi, C. Mastinu, P. Mengoni, A. Milazzo, P. M. Moreau, C. Mosconi, M. Neves, F. Oberhummer, H. O'Brien, S. Oshima, M. Pancin, J. Papachristodoulou, C. Papadopoulos, C. Paradela, C. Patronis, N. Pavlik, A. Pavlopoulos, P. Perrot, L. Pigni, M. T. Plag, R. Plompen, A. Plukis, A. Poch, A. Pretel, C. Quesada, J. Rauscher, T. Reifarth, R. Rosetti, M. Rubbia, C. Rudolf, G. Rullhusen, P. Salgado, J. Sarchiapone, L. Savvidis, I. Stephan, C. Tagliente, G. Tain, J. L. Tassan-Got, L. Tavora, L. Terlizzi, R. Vannini, G. Vaz, P. Ventura, A. Villamarin, D. Vicente, M. C. Vlachoudis, V. Vlastou, R. Voss, F. Walter, S. Wendler, H. Wiescher, M. Wisshak, K. CA N TOF Collaboration TI Neutron cross-sections for next generation reactors: New data from n_TOF SO APPLIED RADIATION AND ISOTOPES LA English DT Article; Proceedings Paper CT 7th International Topical Meeting on Industrial Radiation and Radioisotope Measurement Application CY JUN 22-27, 2008 CL Czech Tech univ, Prague, CZECH REPUBLIC HO Czech Tech univ DE Neutron cross-sections; Spallation neutron source; Emerging nuclear technologies; n_TOF AB In 2002, an innovative neutron time-of-flight facility started operation at CERN: n_TOF. The main characteristics that make the new facility unique are the high instantaneous neutron flux, high resolution and wide energy range. Combined with state-of-the-art detectors and data acquisition system, these features have allowed to collect high accuracy neutron cross-section data on a variety of isotopes, many of which radioactive, of interest for Nuclear Astrophysics and for applications to advanced reactor technologies. A review of the most important results on capture and fission reactions obtained so far at n_TOF is presented, together with plans for new measurements related to nuclear industry. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Colonna, N.; Marrone, S.; Tagliente, G.; Terlizzi, R.] Ist Nazl Fis Nucl, I-70126 Bari, Italy. [Abbondanno, U.; Fujii, K.; Milazzo, P. M.; Moreau, C.] Ist Nazl Fis Nucl, Trieste, Italy. [Alvarez, H.; Duran, I.; Paradela, C.] Univ Santiago de Compostela, Santiago De Compostela, Spain. [Alvarez-Velarde, F.; Cano-Ott, D.; Gonzalez-Romero, E.; Guerrero, C.; Martinez, T.; Villamarin, D.; Vicente, M. C.] CIEMAT, E-28040 Madrid, Spain. [Andrzejewski, J.; Marganiec, J.] Univ Lodz, PL-90131 Lodz, Poland. [Assimakopoulos, P.; Karadimos, D.; Karamanis, D.; Papachristodoulou, C.; Patronis, N.] Univ Ioannina, GR-45110 Ioannina, Greece. [Audouin, L.; David, S.; Ferrant, L.; Isaev, S.; Stephan, C.; Tassan-Got, L.] IPN, IN2P3, CNRS, Orsay, France. [Badurek, G.; Jericha, E.; Leeb, H.; Oberhummer, H.; Pigni, M. T.] Vienna Univ Technol, Osterreich Univ, Atominst, Vienna, Austria. [Baumann, P.; Kerveno, M.; Lukic, S.; Rudolf, G.] IreS, IN2P3, CNRS, Strasbourg, France. [Becvar, F.; Krticka, M.] Charles Univ Prague, Prague, Czech Republic. [Calvino, F.] Univ Politecn Madrid, E-28040 Madrid, Spain. [Capote, R.; Frais-Koelbl, H.; Griesmayer, E.; Mengoni, A.] IAEA, Nucl Data Sect, A-1400 Vienna, Austria. [Capote, R.; Lozano, M.; Milazzo, P. M.; Quesada, J.] Univ Seville, Seville, Spain. [de Albornoz, A. Carrillo; Marques, L.; Salgado, J.; Tavora, L.; Vaz, P.] ITN, Lisbon, Portugal. [Cennini, P.; Chiaveri, E.; Dahlfors, M.; Ferrari, A.; Herrera-Martinez, A.; Kadi, Y.; Mengoni, A.; Sarchiapone, L.; Vlachoudis, V.; Wendler, H.] CERN, Geneva, Switzerland. [Chepel, V.; Ferreira-Marques, R.; Goncalves, I.; Lindote, A.; Lopes, I.; Neves, F.] Univ Coimbra, LIP Coimbra, P-3000 Coimbra, Portugal. [Chepel, V.; Ferreira-Marques, R.; Goncalves, I.; Lindote, A.; Lopes, I.; Neves, F.] Univ Coimbra, Dept Fis, P-3000 Coimbra, Portugal. [Aerts, G.; Andriamonje, S.; Berthoumieux, E.; Dridi, W.; Gunsing, F.; Lampoudis, C.; Pancin, J.; Perrot, L.; Plukis, A.] CEA Saclay, DSM DAPNIA, F-91191 Gif Sur Yvette, France. [Cortes, G.; Poch, A.; Pretel, C.] Univ Politecn Cataluna, Barcelona, Spain. [Couture, A.; Cox, J.; O'Brien, S.; Wiescher, M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Dillman, I.; Heil, M.; Kaeppeler, F.; Mosconi, M.; Plag, R.; Voss, F.; Walter, S.; Wisshak, K.] Forschungszentrum Karlsruhe, Inst Kernphys, Karlsruhe, Germany. [Dolfini, R.; Rubbia, C.] Univ Pavia, I-27100 Pavia, Italy. [Domingo-Pardo, C.; Tain, J. L.] Univ Valencia, CSIC, Inst Fis Corpuscular, E-46003 Valencia, Spain. [Eleftheriadis, C.; Lampoudis, C.; Savvidis, I.] Aristotle Univ Thessaloniki, Thessaloniki, Greece. [Furman, W.; Konovalov, V.] Joint Inst Nucl Res, Frank Lab Neutron Phys, Dubna, Russia. [Goverdovski, A.; Ketlerov, V.] Inst Phys & Power Engn, Obninsk, Russia. [Calviani, M.; Gramegna, F.; Mastinu, P.] Ist Nazl Fis Nucl, Lab Nazl Legnaro, Legnaro, Italy. [Haas, B.] CENBG, IN2P3, CNRS, Bordeaux, France. [Haight, R.; Reifarth, R.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Igashira, M.] Tokyo Inst Technol, Tokyo 152, Japan. [Koehler, P.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. [Kossionides, E.] NCSR, Athens, Greece. [Massimi, C.; Vannini, G.] Univ Bologna, Dipartimento Fis, I-40126 Bologna, Italy. [Massimi, C.; Vannini, G.] Sez INFN Bologna, Bologna, Italy. [Oshima, M.] Japan Atom Energy Res Inst, Tokai, Ibaraki 31911, Japan. [Papadopoulos, C.; Vlastou, R.] Natl Tech Univ Athens, GR-10682 Athens, Greece. [Pavlik, A.] Univ Vienna, Inst Isotopenforsch & Kernphys, A-1010 Vienna, Austria. [Pavlopoulos, P.] Pole Univ Leonard de Vinci, Paris, France. [Plompen, A.; Rullhusen, P.] CEC JRC IRMM, Geel, Belgium. [Rauscher, T.] Univ Basel, Dept Phys & Astron, Basel, Switzerland. [Rosetti, M.; Ventura, A.] ENEA, Bologna, Italy. RP Colonna, N (reprint author), Ist Nazl Fis Nucl, V Orabona 4, I-70126 Bari, Italy. EM nicola.colonna@ba.infn.it RI Paradela, Carlos/J-1492-2012; Gramegna, Fabiana/B-1377-2012; Calvino, Francisco/K-5743-2014; Mengoni, Alberto/I-1497-2012; Tain, Jose L./K-2492-2014; Cano Ott, Daniel/K-4945-2014; Quesada Molina, Jose Manuel/K-5267-2014; Guerrero, Carlos/L-3251-2014; Gonzalez Romero, Enrique/L-7561-2014; Pretel Sanchez, Carme/L-8287-2014; Martinez, Trinitario/K-6785-2014; Capote Noy, Roberto/M-1245-2014; Massimi, Cristian/B-2401-2015; Duran, Ignacio/H-7254-2015; Alvarez Pol, Hector/F-1930-2011; Massimi, Cristian/K-2008-2015; Cortes, Guillem/B-6869-2014; Jericha, Erwin/A-4094-2011; Rauscher, Thomas/D-2086-2009; Becvar, Frantisek/D-3824-2012; Chepel, Vitaly/H-4538-2012; Ventura, Alberto/B-9584-2011; Lindote, Alexandre/H-4437-2013; Neves, Francisco/H-4744-2013; Goncalves, Isabel/J-6954-2013; Vaz, Pedro/K-2464-2013; Lopes, Isabel/A-1806-2014; OI Chepel, Vitaly/0000-0003-0675-4586; Lozano Leyva, Manuel Luis/0000-0003-2853-4103; Paradela Dobarro, Carlos/0000-0003-0175-8334; Koehler, Paul/0000-0002-6717-0771; Domingo-Pardo, Cesar/0000-0002-2915-5466; Gramegna, Fabiana/0000-0001-6112-0602; Calvino, Francisco/0000-0002-7198-4639; Mengoni, Alberto/0000-0002-2537-0038; Goncalves, Isabel/0000-0002-1997-955X; Pavlik, Andreas/0000-0001-7526-3372; Cano Ott, Daniel/0000-0002-9568-7508; Quesada Molina, Jose Manuel/0000-0002-2038-2814; Guerrero, Carlos/0000-0002-2111-546X; Gonzalez Romero, Enrique/0000-0003-2376-8920; Martinez, Trinitario/0000-0002-0683-5506; Capote Noy, Roberto/0000-0002-1799-3438; Massimi, Cristian/0000-0001-9792-3722; Alvarez Pol, Hector/0000-0001-9643-6252; Massimi, Cristian/0000-0003-2499-5586; Jericha, Erwin/0000-0002-8663-0526; Rauscher, Thomas/0000-0002-1266-0642; Ventura, Alberto/0000-0001-6748-7931; Lindote, Alexandre/0000-0002-7965-807X; Neves, Francisco/0000-0003-3635-1083; Vaz, Pedro/0000-0002-7186-2359; Lopes, Isabel/0000-0003-0419-903X; Marques, Rui/0000-0003-3549-8198 NR 11 TC 6 Z9 6 U1 1 U2 19 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0969-8043 J9 APPL RADIAT ISOTOPES JI Appl. Radiat. Isot. PD APR-MAY PY 2010 VL 68 IS 4-5 BP 643 EP 646 DI 10.1016/j.apradiso.2010.01.003 PG 4 WC Chemistry, Inorganic & Nuclear; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging SC Chemistry; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging GA 580AK UT WOS:000276418600032 PM 20096595 ER PT J AU Gardner, RP Sood, A AF Gardner, Robin P. Sood, Avneet TI On the future of Monte Carlo simulation for nuclear logs SO APPLIED RADIATION AND ISOTOPES LA English DT Article; Proceedings Paper CT 7th International Topical Meeting on Industrial Radiation and Radioisotope Measurement Application CY JUN 22-27, 2008 CL Czech Tech univ, Prague, CZECH REPUBLIC HO Czech Tech univ ID DETECTOR RESPONSE FUNCTIONS; LOGGING TOOL RESPONSES; NEUTRON POROSITY; INTERACTION MECHANISMS; SEMIEMPIRICAL MODEL; CODE DEVELOPMENT; PULSED NEUTRON; MCPNL; SI(LI); MCDNL AB The oil and oil well logging companies have long been innovators in many technologies that are used in oil well logging. This includes the development and use of radiation detection equipment in the harsh environment of oil wells. It also certainly includes the use of Monte Carlo simulation in the study, optimum design, and calculation of corrections and correction factors for the inverse logging problem. This latter area is the subject of this paper. Past milestones in this area are discussed along with those of the present and future work. The perspective is from the viewpoint of the authors. (C) 2009 Elsevier Ltd. All rights reserved. C1 [Gardner, Robin P.] N Carolina State Univ, Dept Nucl Engn, Ctr Engn Applicat Radioisotopes, Raleigh, NC 27695 USA. [Sood, Avneet] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Gardner, RP (reprint author), N Carolina State Univ, Dept Nucl Engn, Ctr Engn Applicat Radioisotopes, Raleigh, NC 27695 USA. EM gardner@ncsu.edu NR 29 TC 3 Z9 4 U1 1 U2 2 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0969-8043 J9 APPL RADIAT ISOTOPES JI Appl. Radiat. Isot. PD APR-MAY PY 2010 VL 68 IS 4-5 BP 932 EP 935 DI 10.1016/j.apradiso.2009.10.021 PG 4 WC Chemistry, Inorganic & Nuclear; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging SC Chemistry; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging GA 580AK UT WOS:000276418600102 PM 19897380 ER PT J AU Shen, N Matthews, MJ Fair, JE Britten, JA Nguyen, HT Cooke, D Elhadj, S Yang, ST AF Shen, Nan Matthews, Manyalibo J. Fair, James E. Britten, Jerald A. Nguyen, Hoang T. Cooke, Diane Elhadj, Selim Yang, Steven T. TI Laser smoothing of sub-micron grooves in hydroxyl-rich fused silica SO APPLIED SURFACE SCIENCE LA English DT Article DE Viscosity; Capillarity; Laser polishing; Damage mitigation; Fused silica; Hydroxyl group ID DAMAGE; GLASS; VISCOSITY; SURFACE; CAPILLARITY; OPTICS; FLOW AB Nano-to micrometer-sized surface defects on UV-grade fused silica surfaces are known to be effectively smoothed through the use of high-temperature localized CO(2) laser heating, thereby enhancing optical properties. However, the details of the mass transport and the effect of hydroxyl content on the laser smoothing of defective silica at sub-micron length scales are still not completely understood. In this study, we examine the morphological evolution of sub-micron, dry-etched periodic surface structures on type II and type III SiO(2) substrates under 10.6 mm CO(2) laser irradiation using atomic force microscopy (AFM). In situ thermal imaging was used to map the transient temperature field across the heated region, allowing assessment of the T-dependent mass transport mechanisms under different laser-heating conditions. Computational fluid dynamics simulations correlated well with experimental results, and showed that for large effective capillary numbers (N(c) > 2), surface diffusion is negligible and smoothing is dictated by capillary action, despite the relatively small spatial scales studied here. Extracted viscosity values over 1700-2000 K were higher than the predicted bulk values, but were consistent with the surface depletion of OH groups, which was confirmed using confocal Raman microscopy. Published by Elsevier B. V. C1 [Shen, Nan; Matthews, Manyalibo J.; Fair, James E.; Britten, Jerald A.; Nguyen, Hoang T.; Cooke, Diane; Elhadj, Selim; Yang, Steven T.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Matthews, MJ (reprint author), 7000 East Ave,L-592, Livermore, CA 94550 USA. EM ibo@llnl.gov FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX The authors would like to thank Drs. Bill Henshaw and Michael Feit for useful discussions on UV light scattering, and Dr. James Stolken for help in assessing silica viscosity data. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 31 TC 15 Z9 15 U1 4 U2 19 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0169-4332 J9 APPL SURF SCI JI Appl. Surf. Sci. PD APR 1 PY 2010 VL 256 IS 12 BP 4031 EP 4037 DI 10.1016/j.apsusc.2010.01.073 PG 7 WC Chemistry, Physical; Materials Science, Coatings & Films; Physics, Applied; Physics, Condensed Matter SC Chemistry; Materials Science; Physics GA 564RM UT WOS:000275234000055 ER PT J AU Dieckmann, J McKenney, K Brodrick, J AF Dieckmann, John McKenney, Kurtis Brodrick, James TI Variable Frequency Drives, Part 1: The Technology SO ASHRAE JOURNAL LA English DT Article C1 [Dieckmann, John] TIAX LLC, Mech Syst Grp, Cambridge, MA USA. [Brodrick, James] US DOE, Bldg Technol Program, Washington, DC USA. RP Dieckmann, J (reprint author), TIAX LLC, Mech Syst Grp, Cambridge, MA USA. NR 2 TC 2 Z9 2 U1 0 U2 1 PU AMER SOC HEATING REFRIGERATING AIR-CONDITIONING ENG, INC, PI ATLANTA PA 1791 TULLIE CIRCLE NE, ATLANTA, GA 30329 USA SN 0001-2491 J9 ASHRAE J JI ASHRAE J. PD APR PY 2010 VL 52 IS 4 BP 60 EP 62 PG 3 WC Thermodynamics; Construction & Building Technology; Engineering, Mechanical SC Thermodynamics; Construction & Building Technology; Engineering GA 582XO UT WOS:000276634000012 ER PT J AU Smith, N Miller, A Li, WD Filippenko, AV Silverman, JM Howard, AW Nugent, P Marcy, GW Bloom, JS Ghez, AM Lu, J Yelda, S Bernstein, RA Colucci, JE AF Smith, Nathan Miller, Adam Li, Weidong Filippenko, Alexei V. Silverman, Jeffrey M. Howard, Andrew W. Nugent, Peter Marcy, Geoffrey W. Bloom, Joshua S. Ghez, Andrea M. Lu, Jessica Yelda, Sylvana Bernstein, Rebecca A. Colucci, Janet E. TI DISCOVERY OF PRECURSOR LUMINOUS BLUE VARIABLE OUTBURSTS IN TWO RECENT OPTICAL TRANSIENTS: THE FITFULLY VARIABLE MISSING LINKS UGC 2773-OT AND SN 2009ip SO ASTRONOMICAL JOURNAL LA English DT Article DE circumstellar matter; stars: evolution; stars: mass-loss; stars: variables: general; stars: winds, outflows; supernovae: general ID ETA-CARINAE ANALOG; NGC 300; CIRCUMSTELLAR SHELLS; SPECTRAL EVOLUTION; DORADUS VARIABLES; P-CYGNI; STARS; SUPERNOVA; ERUPTION; STELLAR AB We present progenitor-star detections, light curves, and optical spectra of supernova (SN) 2009ip and the 2009 optical transient in UGC 2773 (U2773-OT), which were not genuine SNe. Precursor variability in the decade before outburst indicates that both of the progenitor stars were luminous blue variables (LBVs). Their pre-outburst light curves resemble the S Doradus phases that preceded giant eruptions of the prototypical LBVs eta Carinae and SN 1954J (V12 in NGC 2403), with intermediate progenitor luminosities. Hubble Space Telescope detections a decade before discovery indicate that the SN 2009ip and U2773-OT progenitors were supergiants with likely initial masses of 50-80 M(circle dot) and greater than or similar to 20 M(circle dot), respectively. Both outbursts had spectra befitting known LBVs, although in different physical states. SN 2009ip exhibited a hot LBV spectrum with characteristic speeds of 550 km s(-1), plus evidence for faster material up to 5000 km s-1, resembling the slow Homunculus and fast blast wave of eta Carinae. In contrast, U2773-OT shows a forest of narrow absorption and emission lines comparable to that of S Dor in its cool state, plus [Ca II] emission and an infrared excess indicative of dust, similar to SN 2008S and the 2008 optical transient in NGC 300 (N300-OT). The [Ca II] emission is probably tied to a dusty pre-outburst environment, and is not a distinguishing property of the outburst mechanism. The LBV nature of SN 2009ip and U2773-OT may provide a critical link between historical LBV eruptions, while U2773-OT may provide a link between LBVs and the unusual dust-obscured transients SN 2008S and N300-OT. Future searches will uncover more examples of precursor LBV variability of this kind, providing key clues that may help unravel the instability driving LBV eruptions in massive stars. C1 [Smith, Nathan; Miller, Adam; Li, Weidong; Filippenko, Alexei V.; Silverman, Jeffrey M.; Howard, Andrew W.; Marcy, Geoffrey W.; Bloom, Joshua S.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Nugent, Peter] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Ghez, Andrea M.; Lu, Jessica; Yelda, Sylvana] Univ Calif Los Angeles, Div Astron & Astrophys, Los Angeles, CA 90095 USA. [Bernstein, Rebecca A.; Colucci, Janet E.] Univ Calif Santa Cruz, Lick Observ, UCO, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. RP Smith, N (reprint author), Univ Calif Berkeley, Dept Astron, 601 Campbell Hall, Berkeley, CA 94720 USA. EM nathans@astro.berkeley.edu OI Lu, Jessica/0000-0001-9611-0009 FU National Science Foundation (NSF) [AST-0607485, AST-0908886]; TABASGO Foundation; Richard & Rhoda Goldman Fund; Space Telescope Science Institute [AR-11248]; NASA [NAS 5-26555]; NASA/Swift Guest Investigator; U.S. Department of Energy; NASA; NSF; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231] FX We thank an anonymous referee for critical comments that helped improve the manuscript. Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and NASA; the observatory was made possible by the generous financial support of the W. M. Keck Foundation. We thank the Lick and Keck Observatory staffs for their dedicated help, and we acknowledge Chris Fassnacht for assistance with obtaining flatfields for the NIRC2 observations. We are grateful to Cullen Blake, Dan Starr, and Mike Strutskie for their help with the development and operations of PAIRITEL. In addition, we appreciate the assistance and patience of Ryan Foley, Armin Rest, and Dan Kasen during the Keck/LRIS observing run when we discovered the rebrightening of SN 2009ip. The supernova research of A. V. F.'s group at U. C. Berkeley is supported by National Science Foundation (NSF) grants AST-0607485 and AST-0908886, the TABASGO Foundation, and the Richard & Rhoda Goldman Fund. Financial support for this work was also provided by NASA through grant AR-11248 from the Space Telescope Science Institute, which is operated by Associated Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. KAIT and its ongoing operation were made possible by donations from Sun Microsystems, Inc., the Hewlett-Packard Company, AutoScope Corporation, Lick Observatory, the NSF, the University of California, the Sylvia & Jim Katzman Foundation, and the TABASGO Foundation. J. S. B. and A. A. M. were partially supported by a NASA/Swift Guest Investigator (Cycle 5) grant and a SciDAC grant from the U.S. Department of Energy. This research used data products from the Two Micron All Sky Survey, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center/California Institute of Technology, funded by NASA and the NSF. It also used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under contract No. DE-AC02-05CH11231; P. E. N. thanks them for a generous allocation of computing time and space on their machines in support of DeepSky. NR 83 TC 79 Z9 79 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 J9 ASTRON J JI Astron. J. PD APR PY 2010 VL 139 IS 4 BP 1451 EP 1467 DI 10.1088/0004-6256/139/4/1451 PG 17 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 568BO UT WOS:000275496900013 ER PT J AU Bianco, FB Zhang, ZW Lehner, MJ Mondal, S King, SK Giammarco, J Holman, MJ Coehlo, NK Wang, JH Alcock, C Axelrod, T Byun, YI Chen, WP Cook, KH Dave, R de Pater, I Kim, DW Lee, T Lin, HC Lissauer, JJ Marshall, SL Protopapas, P Rice, JA Schwamb, ME Wang, SY Wen, CY AF Bianco, F. B. Zhang, Z. -W. Lehner, M. J. Mondal, S. King, S. -K. Giammarco, J. Holman, M. J. Coehlo, N. K. Wang, J. -H. Alcock, C. Axelrod, T. Byun, Y. -I. Chen, W. P. Cook, K. H. Dave, R. de Pater, I. Kim, D. -W. Lee, T. Lin, H. -C. Lissauer, J. J. Marshall, S. L. Protopapas, P. Rice, J. A. Schwamb, M. E. Wang, S. -Y. Wen, C. -Y. TI THE TAOS PROJECT: UPPER BOUNDS ON THE POPULATION OF SMALL KUIPER BELT OBJECTS AND TESTS OF MODELS OF FORMATION AND EVOLUTION OF THE OUTER SOLAR SYSTEM SO ASTRONOMICAL JOURNAL LA English DT Article DE Kuiper belt: general; occultations ID AMERICAN OCCULTATION SURVEY; JUPITER-FAMILY COMETS; TRANS-NEPTUNIAN BODIES; SIZE DISTRIBUTION; STELLAR OCCULTATIONS; COLLISIONAL EVOLUTION; SCATTERED DISK; OORT CLOUD; SEARCH; ACCRETION AB We have analyzed the first 3.75 years of data from the Taiwanese American Occultation Survey (TAOS). TAOS monitors bright stars to search for occultations by Kuiper Belt objects (KBOs). This data set comprises 5 x 10(5) star hours of multi-telescope photometric data taken at 4 or 5 Hz. No events consistent with KBO occultations were found in this data set. We compute the number of events expected for the Kuiper Belt formation and evolution models of Pan & Sari, Kenyon & Bromley, Benavidez & Campo Bagatin, and Fraser. A comparison with the upper limits we derive from our data constrains the parameter space of these models. This is the first detailed comparison of models of the KBO size distribution with data from an occultation survey. Our results suggest that the KBO population is composed of objects with low internal strength and that planetary migration played a role in the shaping of the size distribution. C1 [Bianco, F. B.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Bianco, F. B.] Global Telescope Network Inc, Cumbres Observ, Santa Barbara, CA 93117 USA. [Bianco, F. B.] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. [Bianco, F. B.; Lehner, M. J.; Holman, M. J.; Alcock, C.; Protopapas, P.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Zhang, Z. -W.; Lehner, M. J.; King, S. -K.; Wang, J. -H.; Lee, T.; Lin, H. -C.; Wang, S. -Y.; Wen, C. -Y.] Acad Sinica, Inst Astron & Astrophys, Taipei 10617, Taiwan. [Zhang, Z. -W.; Wang, J. -H.; Chen, W. P.] Natl Cent Univ, Inst Astron, Jhongli 32054, Taiwan. [Mondal, S.] ARIES, Naini Tal 263129, India. [Giammarco, J.] Eastern Univ, Dept Phys & Astron, St Davids, PA 19087 USA. [Giammarco, J.] Villanova Univ, Dept Phys, Villanova, PA 19085 USA. [Coehlo, N. K.; Rice, J. A.] Univ Calif Berkeley, Dept Stat, Berkeley, CA 94720 USA. [Axelrod, T.] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. [Byun, Y. -I.; Kim, D. -W.] Yonsei Univ, Dept Astron, Seoul 120749, South Korea. [Cook, K. H.] Lawrence Livermore Natl Lab, Inst Geophys & Planetary Phys, Livermore, CA 94550 USA. [Dave, R.; Kim, D. -W.; Protopapas, P.] Initiat Innovat Comp Harvard, Cambridge, MA 02138 USA. [de Pater, I.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Lissauer, J. J.] NASA, Ames Res Ctr, Space Sci & Astrobiol Div 245 3, Moffett Field, CA 94035 USA. [Marshall, S. L.] Kavli Inst Particle Astrophys & Cosmol, Menlo Pk, CA 94025 USA. [Schwamb, M. E.] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. RP Bianco, FB (reprint author), Univ Calif Santa Barbara, Dept Phys, Mail Code 9530, Santa Barbara, CA 93106 USA. EM fbianco@lcogt.net RI Lee, Typhoon/N-8347-2013; OI Lehner, Matthew/0000-0003-4077-0985 FU NSF [AST-0501681, DMS-0636667]; NASA [NNG04G113G]; NSC [96-2112-M008- 024-MY3]; National Research Foundation of Korea [2009-0075376]; NASA's Planetary Geology & Geophysics Program; [AS-88-TP-A02] FX The authors thank Scott Kenyon, for insightful conversations. Work at the CfA was supported in part by the NSF under grant AST-0501681 and by NASA under grant NNG04G113G. Work at NCU was supported by the grant NSC 96-2112-M008- 024-MY3. Work at ASIAA was supported in part by the thematic research program AS-88-TP-A02. Work at Yonsei was supported by National Research Foundation of Korea through grant 2009-0075376 (Space Science Institute). The work of N. Coehlo was supported in part by NSF grant DMS-0636667. Work at LLNL was performed in part under USDOE Contract W-7405-Eng-48 and Contract DE-AC52-07NA27344. Work at SLAC was performed under USDOE contract DE-AC0276SF00515. Work at NASA Ames was supported by NASA's Planetary Geology & Geophysics Program. NR 51 TC 25 Z9 25 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 J9 ASTRON J JI Astron. J. PD APR PY 2010 VL 139 IS 4 BP 1499 EP 1514 DI 10.1088/0004-6256/139/4/1499 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 568BO UT WOS:000275496900018 ER PT J AU Grashorn, EW de Jong, JK Goodman, MC Habig, A Marshak, ML Mufson, S Osprey, S Schreiner, P AF Grashorn, E. W. de Jong, J. K. Goodman, M. C. Habig, A. Marshak, M. L. Mufson, S. Osprey, S. Schreiner, P. TI The atmospheric charged kaon/pion ratio using seasonal variation methods SO ASTROPARTICLE PHYSICS LA English DT Article DE Cosmic rays; Seasonal effect; Kaons; Pions; Muons ID COLLISIONS AB Observed since the 1950s, the seasonal effect on underground muons is a well studied phenomenon The interaction height of incident cosmic rays changes as the temperature of the atmosphere changes, which affects the production height of mesons (mostly pions and kaons) The decay of these mesons produces muons that can be detected underground The production of mons is dominated by pion decay, and previous work did not include the effect of kaons In this work, the methods of Barrett and MACRO are extended to include the effect of kaons These efforts give rise to a new method to measure the atmospheric Kin ratio at energies beyond the reach of current fixed target experiments These methods were applied to data from the MINUS far detector A method is developed for making these measurements at other underground detectors, including OPERA, Super-K, IceCube, Baksan and the MINUS near detector. (C) 2010 Elsevier B.V. All rights reserved. C1 [Grashorn, E. W.] Ohio State Univ, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Goodman, M. C.] Argonne Natl Lab, Argonne, IL 60439 USA. [Schreiner, P.] Benedictine Univ, Dept Phys, Lisle, IL 60532 USA. [de Jong, J. K.] IIT, Div Phys, Chicago, IL 60616 USA. [Mufson, S.] Indiana Univ, Bloomington, IN 47405 USA. [Grashorn, E. W.; Marshak, M. L.] Univ Minnesota, Minneapolis, MN 55455 USA. [Habig, A.] Univ Minnesota, Dept Phys, Duluth, MN 55812 USA. [Osprey, S.] Univ Oxford, Dept Phys, Oxford OX1 3RH, England. RP Grashorn, EW (reprint author), Ohio State Univ, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. RI Osprey, Scott/P-6621-2016 OI Osprey, Scott/0000-0002-8751-1211 FU US Department of Energy; UK Science and Technologies Facilities Council; US National Science Foundation; Center for Cosmology and AstroParticle Physics at Ohio State University; University of Minnesota FX We thank our many colleagues who provided vital input as these methods were developed, especially Tom Kelley for providing comments on the presentation of the mathematics. This work was supported by the US Department of Energy, the UK Science and Technologies Facilities Council, the US National Science Foundation, the Center for Cosmology and AstroParticle Physics at Ohio State University and the University of Minnesota. We also acknowledge the BADC and the ECMWF for providing the environmental data for this project. NR 22 TC 11 Z9 11 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0927-6505 J9 ASTROPART PHYS JI Astropart Phys. PD APR PY 2010 VL 33 IS 3 BP 140 EP 145 DI 10.1016/j.astropartphys.2009.12.006 PG 6 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 580AZ UT WOS:000276420300002 ER PT J AU Hooper, D Taylor, AM AF Hooper, Dan Taylor, Andrew M. TI On the heavy chemical composition of the ultra-high energy cosmic rays SO ASTROPARTICLE PHYSICS LA English DT Article DE UHECR; Composition ID NUCLEI PROPAGATION; UHECR SPECTRUM; AIR-SHOWERS; NEUTRINOS; PHOTODISINTEGRATION; SIMULATION; TRANSITION; MODEL; DIP AB The Pierre Auger Observatory's (PAO) shower profile measurements can be used to constrain the chemical composition of the ultra-high energy cosmic ray (UHECR) spectrum In particular, the PAO's measurements of the average depth of shower maximum and the fluctuations of the depth of shower maximum indicate that the cosmic ray spectrum is dominated by a fairly narrow distribution (in charge) of heavy or intermediate mass nuclei at the highest measured energies (E >= 10(19) eV), and contains mostly lighter nuclei or protons at lower energies (E similar to 10(18) eV) In this article, we study the propagation of UHECR nuclei with the goal of using these measurements, along with those of the shape of the spectrum, to constrain the chemical composition of the particles accelerated by the sources of the UHECRs We find that with modest intergalactic magnetic fields, 03 nG in strength with 1 Mpc coherent lengths, good fits to the combined PAO data can be found for the case in which the sources accelerate primarily intermediate mass nuclei (such as nitrogen or silicon) Without intergalactic magnetic fields, we do not find any composition scenarios that can accommodate the PAO data For a spectrum dominated by heavy or Intermediate mass nuclei, the Galactic (and intergalactic) magnetic fields are expected to erase any significant angular correlation between the sources and arrival directions of UHECRs. (C) 2010 Published by Elsevier B.V. C1 [Taylor, Andrew M.] Max Planck Inst Kernphys, D-69029 Heidelberg, Germany. [Hooper, Dan] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Hooper, Dan] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [Taylor, Andrew M.] ISDC, CH-1290 Versoix, Switzerland. RP Taylor, AM (reprint author), Max Planck Inst Kernphys, Postfach 103980, D-69029 Heidelberg, Germany. FU US Department of Energy [DE-FG02-95ER40896]; NASA [NAG5-10842] FX We would like to thank both Subir Sarkar and Felix Aharonian for their invaluable contributions to this work We would also like to thank Michael Unger for useful discussions. DH is supported by the US Department of Energy. including Grant DE-FG02-95ER40896, and by NASA Grant NAG5-10842. NR 68 TC 31 Z9 31 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0927-6505 EI 1873-2852 J9 ASTROPART PHYS JI Astropart Phys. PD APR PY 2010 VL 33 IS 3 BP 151 EP 159 DI 10.1016/j.astropartphys.2010.01.003 PG 9 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 580AZ UT WOS:000276420300004 ER PT J AU Abdo, AA Ackermann, M Ajello, M Allafort, A Baldini, L Ballet, J Barbiellini, G Bastieri, D Bechtol, K Bellazzini, R Berenji, B Blandford, RD Bloom, ED Bonamente, E Borgland, AW Bouvier, A Bregeon, J Brez, A Brigida, M Bruel, P Burnett, TH Buson, S Caliandro, GA Cameron, RA Camilo, F Caraveo, PA Carrigan, S Casandjian, JM Cecchi, C Celik, O Chekhtman, A Cheung, CC Chiang, J Ciprini, S Claus, R Cognard, I Cohen-Tanugi, J Conrad, J Corbet, R DeCesar, ME Dermer, CD Desvignes, G de Angelis, A de Palma, F Digel, SW Dormody, M Silva, EDE Drell, PS Dubois, R Dumora, D Espinoza, C Farnier, C Favuzzi, C Fegan, SJ Focke, WB Frailis, M Freire, PCC Fukazawa, Y Funk, S Fusco, P Gargano, F Gasparrini, D Gehrels, N Germani, S Giavitto, G Giglietto, N Giordano, F Glanzman, T Godfrey, G Grenier, IA Grondin, MH Grove, JE Guillemot, L Guiriec, S Hadasch, D Harding, AK Hays, E Hobbs, G Horan, D Hughes, RE Johannesson, G Johnson, AS Johnson, TJ Johnson, WN Johnston, S Kamae, T Katagiri, H Kataoka, J Kawai, N Kerr, M Knodlseder, J Kramer, M Kuss, M Lande, J Latronico, L Lemoine-Goumard, M Garde, ML Longo, F Loparco, F Lott, B Lovellette, MN Lubrano, P Lyne, AG Makeev, A Manchester, RN Marelli, M Mazziotta, MN McConville, W McEnery, JE McGlynn, S Meurer, C Michelson, PF Mitthumsiri, W Mizuno, T Moiseev, AA Monte, C Monzani, ME Morselli, A Moskalenko, IV Murgia, S Nolan, PL Norris, JP Noutsos, A Nuss, E Ohsugi, T Omodei, N Orlando, E Ormes, JF Ozaki, M Paneque, D Panetta, JH Parent, D Pelassa, V Pepe, M Pesce-Rollins, M Pierbattista, M Piron, F Porter, TA Raino, S Rando, R Ransom, SM Razzano, M Reimer, A Reimer, O Reposeur, T Ripken, J Ritz, S Rochester, LS Rodriguez, AY Romani, RW Roth, M Ryde, F Sadrozinski, HFW Sander, A Parkinson, PMS Scargle, JD Sgro, C Siskind, EJ Smith, DA Smith, PD Spandre, G Spinelli, P Stappers, BW Starck, JL Strickman, MS Suson, DJ Takahashi, H Tanaka, T Thayer, JB Thayer, JG Theureau, G Thompson, DJ Thorsett, SE Tibaldo, L Torres, DF Tosti, G Tramacere, A Usher, TL Van Etten, A Vasileiou, V Venter, C Vilchez, N Vitale, V Waite, AP Wallace, E Wang, P Weltevrede, P Winer, BL Wood, KS Ylinen, T Ziegler, M AF Abdo, A. A. Ackermann, M. Ajello, M. Allafort, A. Baldini, L. Ballet, J. Barbiellini, G. Bastieri, D. Bechtol, K. Bellazzini, R. Berenji, B. Blandford, R. D. Bloom, E. D. Bonamente, E. Borgland, A. W. Bouvier, A. Bregeon, J. Brez, A. Brigida, M. Bruel, P. Burnett, T. H. Buson, S. Caliandro, G. A. Cameron, R. A. Camilo, F. Caraveo, P. A. Carrigan, S. Casandjian, J. M. Cecchi, C. Celik, Oe. Chekhtman, A. Cheung, C. C. Chiang, J. Ciprini, S. Claus, R. Cognard, I. Cohen-Tanugi, J. Conrad, J. Corbet, R. DeCesar, M. E. Dermer, C. D. Desvignes, G. de Angelis, A. de Palma, F. Digel, S. W. Dormody, M. do Couto e Silva, E. Drell, P. S. Dubois, R. Dumora, D. Espinoza, C. Farnier, C. Favuzzi, C. Fegan, S. J. Focke, W. B. Frailis, M. Freire, P. C. C. Fukazawa, Y. Funk, S. Fusco, P. Gargano, F. Gasparrini, D. Gehrels, N. Germani, S. Giavitto, G. Giglietto, N. Giordano, F. Glanzman, T. Godfrey, G. Grenier, I. A. Grondin, M. -H. Grove, J. E. Guillemot, L. Guiriec, S. Hadasch, D. Harding, A. K. Hays, E. Hobbs, G. Horan, D. Hughes, R. E. Johannesson, G. Johnson, A. S. Johnson, T. J. Johnson, W. N. Johnston, S. Kamae, T. Katagiri, H. Kataoka, J. Kawai, N. Kerr, M. Knoedlseder, J. Kramer, M. Kuss, M. Lande, J. Latronico, L. Lemoine-Goumard, M. Garde, M. Llena Longo, F. Loparco, F. Lott, B. Lovellette, M. N. Lubrano, P. Lyne, A. G. Makeev, A. Manchester, R. N. Marelli, M. Mazziotta, M. N. McConville, W. McEnery, J. E. McGlynn, S. Meurer, C. Michelson, P. F. Mitthumsiri, W. Mizuno, T. Moiseev, A. A. Monte, C. Monzani, M. E. Morselli, A. Moskalenko, I. V. Murgia, S. Nolan, P. L. Norris, J. P. Noutsos, A. Nuss, E. Ohsugi, T. Omodei, N. Orlando, E. Ormes, J. F. Ozaki, M. Paneque, D. Panetta, J. H. Parent, D. Pelassa, V. Pepe, M. Pesce-Rollins, M. Pierbattista, M. Piron, F. Porter, T. A. Raino, S. Rando, R. Ransom, S. M. Razzano, M. Reimer, A. Reimer, O. Reposeur, T. Ripken, J. Ritz, S. Rochester, L. S. Rodriguez, A. Y. Romani, R. W. Roth, M. Ryde, F. Sadrozinski, H. F. -W. Sander, A. Parkinson, P. M. Saz Scargle, J. D. Sgro, C. Siskind, E. J. Smith, D. A. Smith, P. D. Spandre, G. Spinelli, P. Stappers, B. W. Starck, J. -L. Strickman, M. S. Suson, D. J. Takahashi, H. Tanaka, T. Thayer, J. B. Thayer, J. G. Theureau, G. Thompson, D. J. Thorsett, S. E. Tibaldo, L. Torres, D. F. Tosti, G. Tramacere, A. Usher, T. L. Van Etten, A. Vasileiou, V. Venter, C. Vilchez, N. Vitale, V. Waite, A. P. Wallace, E. Wang, P. Weltevrede, P. Winer, B. L. Wood, K. S. Ylinen, T. Ziegler, M. TI DISCOVERY OF PULSED gamma-RAYS FROM PSR J0034-0534 WITH THE FERMI LARGE AREA TELESCOPE: A CASE FOR CO-LOCATED RADIO AND gamma-RAY EMISSION REGIONS SO ASTROPHYSICAL JOURNAL LA English DT Article DE gamma rays: general; pulsars: general; pulsars: individual (PSR J0034-0534) ID MILLISECOND PULSARS; LIGHT CURVES; GIANT PULSES; CRAB PULSAR; SLOT GAPS; RADIATION; GEOMETRY; SEARCH AB Millisecond pulsars (MSPs) have been firmly established as a class of gamma-ray emitters via the detection of pulsations above 0.1 GeV from eight MSPs by the Fermi Large Area Telescope (LAT). Using 13 months of LAT data, significant gamma-ray pulsations at the radio period have been detected from the MSP PSR J0034-0534, making it the ninth clear MSP detection by the LAT. The gamma-ray light curve shows two peaks separated by 0.274 +/- 0.015 in phase which are very nearly aligned with the radio peaks, a phenomenon seen only in the Crab pulsar until now. The >= 0.1 GeV spectrum of this pulsar is well fit by an exponentially cutoff power law with a cutoff energy of 1.8 +/- 0.6 +/- 0.1 GeV and a photon index of 1.5 +/- 0.2 +/- 0.1, first errors are statistical and second are systematic. The near-alignment of the radio and gamma-ray peaks strongly suggests that the radio and gamma-ray emission regions are co-located and both are the result of caustic formation. C1 [Abdo, A. A.; Chekhtman, A.; Cheung, C. C.; Dermer, C. D.; Grove, J. E.; Johnson, W. N.; Lovellette, M. N.; Makeev, A.; Parent, D.; Roth, M.; Strickman, M. S.; Wood, K. S.] USN, Res Lab, Div Space Sci, Washington, DC 20375 USA. [Abdo, A. A.; Cheung, C. C.] Natl Acad Sci, Natl Res Council Res Associate, Washington, DC 20001 USA. [Ackermann, M.; Ajello, M.; Allafort, A.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Borgland, A. W.; Bouvier, A.; Cameron, R. A.; Chiang, J.; Claus, R.; Digel, S. W.; do Couto e Silva, E.; Drell, P. S.; Dubois, R.; Focke, W. B.; Funk, S.; Glanzman, T.; Godfrey, G.; Johannesson, G.; Johnson, A. S.; Kamae, T.; Lande, J.; Michelson, P. F.; Mitthumsiri, W.; Monzani, M. E.; Moskalenko, I. V.; Murgia, S.; Nolan, P. L.; Paneque, D.; Panetta, J. H.; Reimer, A.; Reimer, O.; Rochester, L. S.; Romani, R. W.; Tanaka, T.; Thayer, J. B.; Thayer, J. G.; Tramacere, A.; Usher, T. L.; Van Etten, A.; Waite, A. P.; Wang, P.] Stanford Univ, WW Hansen Expt Phys Lab, Kavli Inst Particle Astrophys & Cosmol, Dept Phys, Stanford, CA 94305 USA. [Ackermann, M.; Ajello, M.; Allafort, A.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Borgland, A. W.; Bouvier, A.; Cameron, R. A.; Chiang, J.; Claus, R.; Digel, S. W.; do Couto e Silva, E.; Drell, P. S.; Dubois, R.; Focke, W. B.; Funk, S.; Glanzman, T.; Godfrey, G.; Johannesson, G.; Johnson, A. S.; Kamae, T.; Lande, J.; Michelson, P. F.; Mitthumsiri, W.; Monzani, M. E.; Moskalenko, I. V.; Murgia, S.; Nolan, P. L.; Paneque, D.; Panetta, J. H.; Reimer, A.; Reimer, O.; Rochester, L. S.; Romani, R. W.; Tanaka, T.; Thayer, J. B.; Thayer, J. G.; Tramacere, A.; Usher, T. L.; Van Etten, A.; Waite, A. P.; Wang, P.] Stanford Univ, SLAC, Natl Accelerator Lab, Stanford, CA 94305 USA. [Baldini, L.; Bellazzini, R.; Bregeon, J.; Brez, A.; Kuss, M.; Latronico, L.; Omodei, N.; Pesce-Rollins, M.; Razzano, M.; Reimer, A.; Sgro, C.; Spandre, G.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Ballet, J.; Casandjian, J. M.; Grenier, I. A.; Pierbattista, M.; Starck, J. -L.; Tibaldo, L.] Univ Paris Diderot, CEA Saclay, CNRS, Lab AIM,CEA IRFU,Serv Astrophys, F-91191 Gif Sur Yvette, France. [Barbiellini, G.; Giavitto, G.; Longo, F.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Barbiellini, G.; Giavitto, G.; Longo, F.] Univ Trieste, Dipartmento Fis, I-34127 Trieste, Italy. [Bastieri, D.; Rando, R.; Tibaldo, L.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Bastieri, D.; Buson, S.; Carrigan, S.; Rando, R.; Tibaldo, L.] Univ Padua, Dipartimento Fis G Galilei, I-35131 Padua, Italy. [Bonamente, E.; Cecchi, C.; Germani, S.; Lubrano, P.; Pepe, M.; Tosti, G.] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy. [Bonamente, E.; Cecchi, C.; Ciprini, S.; Germani, S.; Lubrano, P.; Pepe, M.; Tosti, G.] Univ Perugia, Dipartimento Fis, I-06123 Perugia, Italy. [Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Giglietto, N.; Giordano, F.; Loparco, F.; Monte, C.; Raino, S.; Spinelli, P.] Univ & Politecn Bari, Dipartimento Fis M Merlin, I-70126 Bari, Italy. [Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Gargano, F.; Giglietto, N.; Giordano, F.; Loparco, F.; Mazziotta, M. N.; Monte, C.; Raino, S.; Spinelli, P.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Bruel, P.; Fegan, S. J.; Horan, D.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Burnett, T. H.; Kerr, M.; Roth, M.; Wallace, E.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Caliandro, G. A.; Rodriguez, A. Y.; Torres, D. F.] CSIC, IEEC, Inst Ciencies Espai, Barcelona 08193, Spain. [Camilo, F.] Columbia Univ, Columbia Astrophys Lab, New York, NY 10027 USA. [Caraveo, P. A.; Marelli, M.] Ist Astrofis Spaziale & Fis Cosm, INAF, I-20133 Milan, Italy. [Celik, Oe.; Corbet, R.; DeCesar, M. E.; Gehrels, N.; Harding, A. K.; Hays, E.; Johnson, T. J.; McConville, W.; McEnery, J. E.; Moiseev, A. A.; Thompson, D. J.; Vasileiou, V.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Celik, Oe.; Moiseev, A. A.; Vasileiou, V.] CRESST, Greenbelt, MD 20771 USA. [Celik, Oe.; Corbet, R.; Vasileiou, V.] Univ Maryland Baltimore Cty, Dept Phys, Baltimore, MD 21250 USA. [Celik, Oe.; Corbet, R.; Vasileiou, V.] Univ Maryland Baltimore Cty, Ctr Space Sci & Technol, Baltimore, MD 21250 USA. [Chekhtman, A.; Makeev, A.; Parent, D.] George Mason Univ, Fairfax, VA 22030 USA. [Cognard, I.; Desvignes, G.; Theureau, G.] CNRS, UMR 6115, LPCE, F-45071 Orleans 02, France. [Cognard, I.; Desvignes, G.; Theureau, G.] INSU, CNRS, Observ Paris, Stn Radioastron Nancay, F-18330 Nancay, France. [Cohen-Tanugi, J.; Farnier, C.; Nuss, E.; Pelassa, V.; Piron, F.] Univ Montpellier 2, CNRS, IN2P3, Lab Phys Theor & Astroparticules, Montpellier, France. [Conrad, J.; Garde, M. Llena; Meurer, C.; Ripken, J.] Stockholm Univ, Dept Phys, SE-10691 Stockholm, Sweden. [Conrad, J.; Garde, M. Llena; McGlynn, S.; Meurer, C.; Ripken, J.; Ryde, F.; Ylinen, T.] Oskar Klein Ctr Cosmoparticle Phys, SE-10691 Stockholm, Sweden. [DeCesar, M. E.; Gehrels, N.; Johnson, T. J.; McConville, W.; McEnery, J. E.; Moiseev, A. A.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [DeCesar, M. E.; Gehrels, N.; Johnson, T. J.; McConville, W.; McEnery, J. E.; Moiseev, A. A.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [de Angelis, A.; Frailis, M.] Univ Udine, Dipartimento Fis, I-33100 Udine, Italy. [de Angelis, A.; Frailis, M.] Ist Nazl Fis Nucl, Sez Trieste, Grp Coll Udine, I-33100 Udine, Italy. [Dormody, M.; Porter, T. A.; Ritz, S.; Sadrozinski, H. F. -W.; Parkinson, P. M. Saz; Thorsett, S. E.; Ziegler, M.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Dept Phys, Santa Cruz, CA 95064 USA. [Dormody, M.; Porter, T. A.; Ritz, S.; Sadrozinski, H. F. -W.; Parkinson, P. M. Saz; Thorsett, S. E.; Ziegler, M.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Dumora, D.; Grondin, M. -H.; Guillemot, L.; Lemoine-Goumard, M.; Lott, B.; Parent, D.; Reposeur, T.; Smith, D. A.] CEN Bordeaux Gradignan, CNRS, UMR 5797, IN2P3, F-33175 Gradignan, France. [Dumora, D.; Grondin, M. -H.; Guillemot, L.; Lemoine-Goumard, M.; Lott, B.; Parent, D.; Reposeur, T.; Smith, D. A.] Univ Bordeaux, Ctr Etud Nucl Bordeaux Gradignan, UMR 5797, F-33175 Gradignan, France. [Espinoza, C.; Kramer, M.; Lyne, A. G.; Noutsos, A.; Stappers, B. W.; Weltevrede, P.] Univ Manchester, Sch Phys & Astron, Jodrell Bank, Ctr Astrophys, Manchester M13 9PL, Lancs, England. [Freire, P. C. C.; Guillemot, L.; Kramer, M.] Max Planck Inst Radioastron, D-53121 Bonn, Germany. [Fukazawa, Y.; Katagiri, H.; Mizuno, T.; Ohsugi, T.; Takahashi, H.] Hiroshima Univ, Dept Phys Sci, Hiroshima 7398526, Japan. [Gasparrini, D.] Agenzia Spaziale Italiana, Sci Data Ctr, I-00044 Frascati, Rome, Italy. [Gehrels, N.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Guiriec, S.] Univ Alabama, CSPAR, Huntsville, AL 35899 USA. [Hadasch, D.; Torres, D. F.] ICREA, Barcelona, Spain. [Hobbs, G.; Johnston, S.; Manchester, R. N.] CSIRO, Australia Telescope Natl Facil, Epping, NSW 1710, Australia. [Hughes, R. E.; Sander, A.; Smith, P. D.; Winer, B. L.] Ohio State Univ, Dept Phys, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Kataoka, J.] Waseda Univ, Shinjuku Ku, Tokyo 1698050, Japan. [Kawai, N.] Tokyo Inst Technol, Dept Phys, Meguro, Tokyo 1528551, Japan. [Kawai, N.] RIKEN, Cosm Radiat Lab, Inst Phys & Chem Res, Wako, Saitama 3510198, Japan. [Knoedlseder, J.; Vilchez, N.] UPS, CNRS, Ctr Etud Spatiale Rayonnements, F-31028 Toulouse 4, France. [McGlynn, S.; Ryde, F.; Ylinen, T.] Royal Inst Technol KTH, Dept Phys, SE-10691 Stockholm, Sweden. [Morselli, A.; Vitale, V.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, I-00133 Rome, Italy. [Norris, J. P.; Ormes, J. F.] Univ Denver, Dept Phys & Astron, Denver, CO 80208 USA. [Orlando, E.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Ozaki, M.] JAXA, Inst Space & Astronaut Sci, Sagamihara, Kanagawa 2298510, Japan. [Ransom, S. M.] Natl Radio Astron Observ, Charlottesville, VA 22903 USA. [Reimer, O.] Leopold Franzens Univ Innsbruck, Inst Astro & Teilchenphys, A-6020 Innsbruck, Austria. [Reimer, O.] Leopold Franzens Univ Innsbruck, Inst Theoret Phys, A-6020 Innsbruck, Austria. [Scargle, J. D.] NASA, Ames Res Ctr, Div Space Sci, Moffett Field, CA 94035 USA. [Siskind, E. J.] NYCB Real Time Comp Inc, Lattingtown, NY 11560 USA. [Suson, D. J.] Purdue Univ Calumet, Dept Chem & Phys, Hammond, IN 46323 USA. [Tramacere, A.] CIFS, I-10133 Turin, Italy. [Venter, C.] North West Univ, ZA-2520 Potchefstroom, South Africa. [Vitale, V.] Univ Roma Tor Vergata, Dipartimento Fis, I-00133 Rome, Italy. [Ylinen, T.] Univ Kalmar, Sch Pure & Appl Nat Sci, SE-39182 Kalmar, Sweden. RP Razzano, M (reprint author), USN, Res Lab, Div Space Sci, Washington, DC 20375 USA. EM guillemo@mpifr-bonn.mpg.de; ahardingx@yahoo.com; Tyrel.J.Johnson@nasa.gov; Christo.Venter@nwu.ac.za RI Starck, Jean-Luc/D-9467-2011; Venter, Christo/E-6884-2011; Kuss, Michael/H-8959-2012; giglietto, nicola/I-8951-2012; Tosti, Gino/E-9976-2013; Ozaki, Masanobu/K-1165-2013; Thompson, David/D-2939-2012; Harding, Alice/D-3160-2012; Gehrels, Neil/D-2971-2012; McEnery, Julie/D-6612-2012; Baldini, Luca/E-5396-2012; lubrano, pasquale/F-7269-2012; Morselli, Aldo/G-6769-2011; Nolan, Patrick/A-5582-2009; Rando, Riccardo/M-7179-2013; Hays, Elizabeth/D-3257-2012; Johnson, Neil/G-3309-2014; Reimer, Olaf/A-3117-2013; Funk, Stefan/B-7629-2015; Gargano, Fabio/O-8934-2015; Johannesson, Gudlaugur/O-8741-2015; Loparco, Francesco/O-8847-2015; Moskalenko, Igor/A-1301-2007; Mazziotta, Mario /O-8867-2015; Sgro, Carmelo/K-3395-2016; Torres, Diego/O-9422-2016; OI Starck, Jean-Luc/0000-0003-2177-7794; Venter, Christo/0000-0002-2666-4812; giglietto, nicola/0000-0002-9021-2888; Thompson, David/0000-0001-5217-9135; lubrano, pasquale/0000-0003-0221-4806; Morselli, Aldo/0000-0002-7704-9553; Thorsett, Stephen/0000-0002-2025-9613; De Angelis, Alessandro/0000-0002-3288-2517; Frailis, Marco/0000-0002-7400-2135; Caraveo, Patrizia/0000-0003-2478-8018; Sgro', Carmelo/0000-0001-5676-6214; Reimer, Olaf/0000-0001-6953-1385; Funk, Stefan/0000-0002-2012-0080; Gargano, Fabio/0000-0002-5055-6395; Johannesson, Gudlaugur/0000-0003-1458-7036; Loparco, Francesco/0000-0002-1173-5673; Moskalenko, Igor/0000-0001-6141-458X; Mazziotta, Mario /0000-0001-9325-4672; Torres, Diego/0000-0002-1522-9065; Rando, Riccardo/0000-0001-6992-818X; Giordano, Francesco/0000-0002-8651-2394 FU Netherlands Foundation for Radio Astronomy, ASTRON FX The Westerbork Synthesis Radio Telescope is operated by Netherlands Foundation for Radio Astronomy, ASTRON. NR 50 TC 38 Z9 38 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD APR 1 PY 2010 VL 712 IS 2 BP 957 EP 963 DI 10.1088/0004-637X/712/2/957 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 569KF UT WOS:000275594600016 ER PT J AU Farouqi, K Kratz, KL Pfeiffer, B Rauscher, T Thielemann, FK Truran, JW AF Farouqi, K. Kratz, K. -L. Pfeiffer, B. Rauscher, T. Thielemann, F. -K. Truran, J. W. TI CHARGED-PARTICLE AND NEUTRON-CAPTURE PROCESSES IN THE HIGH-ENTROPY WIND OF CORE-COLLAPSE SUPERNOVAE SO ASTROPHYSICAL JOURNAL LA English DT Article DE nuclear reactions, nucleosynthesis, abundances; supernovae: general; Sun: abundances ID R-PROCESS NUCLEOSYNTHESIS; STATISTICAL-MODEL CALCULATIONS; ASTROPHYSICAL REACTION-RATES; NUCLEAR-MASS FORMULA; DRIVEN WINDS; II SUPERNOVAE; PROTONEUTRON STARS; PROCESS ABUNDANCES; LOW-METALLICITY; ALPHA-PROCESS AB The astrophysical site of the r-process is still uncertain, and a full exploration of the systematics of this process in terms of its dependence on nuclear properties from stability to the neutron drip-line within realistic stellar environments has still to be undertaken. Sufficiently high neutron-to-seed ratios can only be obtained either in very neutron-rich low-entropy environments or moderately neutron-rich high-entropy environments, related to neutron star mergers (or jets of neutron star matter) and the high-entropy wind of core-collapse supernova explosions. As chemical evolution models seem to disfavor neutron star mergers, we focus here on high-entropy environments characterized by entropy S, electron abundance Y-e, and expansion velocity V-exp. We investigate the termination point of charged-particle reactions, and we define a maximum entropy S-final for a given V-exp and Y-e, beyond which the seed production of heavy elements fails due to the very small matter density. We then investigate whether an r-process subsequent to the charged-particle freeze-out can in principle be understood on the basis of the classical approach, which assumes a chemical equilibrium between neutron captures and photodisintegrations, possibly followed by a beta-flow equilibrium. In particular, we illustrate how long such a chemical equilibrium approximation holds, how the freeze-out from such conditions affects the abundance pattern, and which role the late capture of neutrons originating from beta-delayed neutron emission can play. Furthermore, we analyze the impact of nuclear properties from different theoretical mass models on the final abundances after these late freeze-out phases and beta-decays back to stability. As only a superposition of astrophysical conditions can provide a good fit to the solar r-abundances, the question remains how such superpositions are attained, resulting in the apparently robust r-process pattern observed in low metallicity stars. C1 [Farouqi, K.; Truran, J. W.] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [Farouqi, K.; Truran, J. W.] Univ Chicago, Joint Inst Nucl Astrophys, Chicago, IL 60637 USA. [Farouqi, K.; Pfeiffer, B.] Johannes Gutenberg Univ Mainz, Inst Kernchem, D-55128 Mainz, Germany. [Farouqi, K.; Kratz, K. -L.; Pfeiffer, B.] Johannes Gutenberg Univ Mainz, HGF Virtuelles Inst Kernstruktur & Nukl Astrophys, D-55128 Mainz, Germany. [Kratz, K. -L.; Pfeiffer, B.] Max Planck Inst Chem, Otto Hahn Inst, D-55128 Mainz, Germany. [Rauscher, T.; Thielemann, F. -K.] Univ Basel, Dept Phys, CH-4056 Basel, Switzerland. [Truran, J. W.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. RP Farouqi, K (reprint author), Univ Chicago, Dept Astron & Astrophys, 5640 S Ellis Ave, Chicago, IL 60637 USA. EM farouqi@uchicago.edu; k-l.Kratz@mpic.de; BPfeiffe@uni-mainz.de; Thomas.Rauscher@unibas.ch; F-K.Thielemann@unibas.ch; truran@nova.uchicago.edu RI Rauscher, Thomas/D-2086-2009 OI Rauscher, Thomas/0000-0002-1266-0642 FU University of Chicago by the National Science Foundation [PHY 02-16783, PHY 08-22648]; "Deutsche Forschungsgemeinschaft" (DFG) [806/13-1]; Helmholtz Gemeinschaft [VH-VI-061]; Swiss National Science Foundation (SNF); Argonne National Laboratory [DE-AC0206CH11357] FX This work is supported in part at the University of Chicago by the National Science Foundation under grants PHY 02-16783 and PHY 08-22648 for the Physics Frontier Center "Joint Institute for Nuclear Astrophysics" (JINA), by the "Deutsche Forschungsgemeinschaft" (DFG) under contract KR 806/13-1, by the Helmholtz Gemeinschaft under grant VH-VI-061 and by the Swiss National Science Foundation (SNF).; J.W.T. and K. F. acknowledge support from the Argonne National Laboratory, operated under contract No. DE-AC0206CH11357 with the DOE. NR 75 TC 87 Z9 89 U1 1 U2 10 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD APR 1 PY 2010 VL 712 IS 2 BP 1359 EP 1377 DI 10.1088/0004-637X/712/2/1359 PG 19 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 569KF UT WOS:000275594600050 ER PT J AU Long, KS Blair, WP Winkler, PF Becker, RH Gaetz, TJ Ghavamian, P Helfand, DJ Hughes, JP Kirshner, RP Kuntz, KD McNeil, EK Pannuti, TG Plucinsky, PP Saul, D Tullmann, R Williams, B AF Long, Knox S. Blair, William P. Winkler, P. Frank Becker, Robert H. Gaetz, Terrance J. Ghavamian, Parviz Helfand, David J. Hughes, John P. Kirshner, Robert P. Kuntz, Kip D. McNeil, Emily K. Pannuti, Thomas G. Plucinsky, Paul P. Saul, Destry Tuellmann, Ralph Williams, Benjamin TI THE CHANDRA ACIS SURVEY OF M33: X-RAY, OPTICAL, AND RADIO PROPERTIES OF THE SUPERNOVA REMNANTS SO ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES LA English DT Article DE galaxies: individual (M33); galaxies: ISM; ISM: supernova remnants; radio continuum: galaxies ID LARGE-MAGELLANIC-CLOUD; XMM-NEWTON SURVEY; CURRENTLY FORMING STARS; NEARBY SPIRAL GALAXIES; H-II REGION; NOVA REMNANTS; CASSIOPEIA-A; EMISSION; CHASEM33; SPECTROSCOPY AB M33 contains a large number of emission nebulae identified as supernova remnants (SNRs) based on the high [S II]:H alpha ratios characteristic of shocked gas. Using Chandra data from the ChASeM33 survey with a 0.35-2 keV sensitivity of similar to 2 x 10(34) erg s(-1), we have detected 82 of 137 SNR candidates, yielding confirmation of (or at least strongly support for) their SNR identifications. This provides the largest sample of remnants detected at optical and X-ray wavelengths in any galaxy, including the Milky Way. A spectral analysis of the seven X-ray brightest SNRs reveals that two, G98-31 and G98-35, have spectra that appear to indicate enrichment by ejecta from core-collapse supernova explosions. In general, the X-ray-detected SNRs have soft X-ray spectra compared to the vast majority of sources detected along the line of sight to M33. It is unlikely that there are any other undiscovered thermally dominated X-ray SNRs with luminosities in excess of similar to 4 x 10(35) erg s(-1) in the portions of M33 covered by the ChASeM33 survey. We have used a combination of new and archival optical and radio observations to attempt to better understand why some objects are detected as X-ray sources and others are not. We have also developed a morphological classification scheme for the optically identified SNRs and discussed the efficacy of this scheme as a predictor of X-ray detectability. Finally, we have compared the SNRs found in M33 to those that have been observed in the Galaxy and the Magellanic Clouds. There are no close analogs of Cas A, Kepler's SNR, Tycho's SNR, or the Crab Nebula in the regions of M33 surveyed, but we have found an X-ray source with a power-law spectrum coincident with a small-diameter radio source that may be the first pulsar-wind nebula recognized in M33. C1 [Long, Knox S.; Ghavamian, Parviz] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Blair, William P.; Kuntz, Kip D.] Johns Hopkins Univ, Henry A Rowland Dept Phys & Astron, Baltimore, MD 21218 USA. [Winkler, P. Frank; McNeil, Emily K.] Middlebury Coll, Dept Phys, Middlebury, VT 05753 USA. [Becker, Robert H.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Becker, Robert H.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Gaetz, Terrance J.; Kirshner, Robert P.; Plucinsky, Paul P.; Tuellmann, Ralph] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Helfand, David J.; Saul, Destry] Columbia Univ, Columbia Astrophys Lab, New York, NY 10027 USA. [Hughes, John P.] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA. [Pannuti, Thomas G.] Morehead State Univ, Dept Earth & Space Sci, Ctr Space Sci, Morehead, KY 40351 USA. [Williams, Benjamin] Univ Washington, Dept Astron, Seattle, WA 98195 USA. RP Long, KS (reprint author), Space Telescope Sci Inst, 3700 San Martin Dr, Baltimore, MD 21218 USA. EM long@stsci.edu; wpb@pha.jhu.edu; winkler@middlebury.edu FU National Aeronautics and Space Administration [G06-7073A, NAS8-03060]; National Science Foundation [AST-0307613, AST-0908566]; US Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX Support for this work was provided by the National Aeronautics and Space Administration through Chandra Award Number G06-7073A issued by the Chandra X-ray Observatory Center, which is operated by the Smithsonian Astrophysical Observatory for and on behalf of the National Aeronautics Space Administration under contract NAS8-03060. P. P. P. and T. J. G. acknowledge support under NASA contract NAS8-03060. P. F. W. and E. K. M. acknowledge additional support from the National Science Foundation through grants AST-0307613 and AST-0908566. The work by R. H. B. was partly performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. We acknowledge our extensive use of the optical data on M33 from the Local Group Galaxies Survey, and are grateful to P. Massey and his colleagues for obtaining these data and for making them freely available. This work has made extensive use of SAOImage DS9 (Joye & Mandel 2003), developed by the Smithsonian Astrophysical Observatory. We also acknowledge the heroic efforts of the referee, M. Filipovic, for an extremely careful reading of the original manuscript and numerous comments that have improved this paper. NR 82 TC 40 Z9 40 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0067-0049 EI 1538-4365 J9 ASTROPHYS J SUPPL S JI Astrophys. J. Suppl. Ser. PD APR PY 2010 VL 187 IS 2 BP 495 EP 559 DI 10.1088/0067-0049/187/2/495 PG 65 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 585QJ UT WOS:000276841500008 ER PT J AU Williams, PT AF Williams, Paul T. TI Reductions in incident coronary heart disease risk above guideline physical activity levels in men SO ATHEROSCLEROSIS LA English DT Article DE Epidemiology; Physical activity; Prevention; Cardiovascular disease ID NATIONAL RUNNERS HEALTH; WEIGHT-GAIN; FITNESS; HYPERTENSION; EXERCISE; DISTANCE AB Background: One-half of Americans currently meet guideline physical activity levels. For these individuals, exceeding guideline levels may provide additional health benefits. Methods: Incident physician-diagnosed myocardial infarction and angina, revascularization procedures (CABG, PTCA), and ischemic heart disease deaths during 7.7-year follow-up were compared to baseline usual distance run in 35,402 male runners. Results: Men reported 467 incident CHD and the National Death Index identified an additional 54 ischemic heart disease deaths. Per km/day run, the men's risks declined 5% for fatal and nonfatal CHD (P = 0.001), nonfatal CHD (P = 0.0008), and revascularization procedures (P = 0.002). Their risks for nonfatal myocardial infarctions and angina declined 7% (P = 0.02) and 10% (P = 0.003), respectively. Compared to <3 km/day run (upper limit guideline level), >9 km/day run produced risks 65% lower for angina (P = 0.008), 29% lower for nonfatal CHD (P = 0.04), and 26% lower for fatal and nonfatal CHD (P = 0.06). Conclusions: Exceeding guideline physical activity levels produce important CHD-risk reductions. (C) 2009 Published by Elsevier Ireland Ltd. C1 Lawrence Berkeley Natl Lab, Div Life Sci, Donner Lab, Berkeley, CA 94720 USA. RP Williams, PT (reprint author), Lawrence Berkeley Natl Lab, Div Life Sci, Donner Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM ptwilliams@lbl.gov FU Institute of Aging [AG032004]; Department of Energy [DE-AC0376SF00098] FX This research was supported in part by grant AG032004 from the Institute of Aging and was conducted at the Ernest Orlando Lawrence Berkeley National Laboratory (Department of Energy DE-AC0376SF00098 to the University of California). The author wishes to thank Ms. Kathryn Hoffman for her help in collecting the data and reviewing the manuscript. NR 16 TC 16 Z9 16 U1 0 U2 6 PU ELSEVIER IRELAND LTD PI CLARE PA ELSEVIER HOUSE, BROOKVALE PLAZA, EAST PARK SHANNON, CO, CLARE, 00000, IRELAND SN 0021-9150 J9 ATHEROSCLEROSIS JI Atherosclerosis PD APR PY 2010 VL 209 IS 2 BP 524 EP 527 DI 10.1016/j.atherosclerosis.2009.09.018 PG 4 WC Cardiac & Cardiovascular Systems; Peripheral Vascular Disease SC Cardiovascular System & Cardiology GA 576PS UT WOS:000276158000034 PM 19815208 ER PT J AU Gajewicz, A Haranczyk, M Puzyn, T AF Gajewicz, Agnieszka Haranczyk, Maciej Puzyn, Tomasz TI Predicting logarithmic values of the subcooled liquid vapor pressure of halogenated persistent organic pollutants with QSPR: How different are chlorinated and brominated congeners? SO ATMOSPHERIC ENVIRONMENT LA English DT Article DE Brominated POPs; Vapor pressure; QSPR ID STRUCTURE-PROPERTY RELATIONSHIPS; QUANTITATIVE STRUCTURE-ACTIVITY; POLYCHLORINATED DIPHENYL ETHERS; CHLORONAPHTHALENE CONGENERS; PARTITION-COEFFICIENTS; MOLECULAR DESCRIPTORS; APPLICABILITY DOMAIN; QSAR MODELS; VALIDATION; REGRESSION AB Logarithmic values of the subcooled liquid vapor pressure (log P-L) were estimated for 1436 polychlorinated and polybrominated congeners of benzenes, biphenyls, dibenzo-p-dioxins, dibenzofurans, diphenyl ethers and naphthalenes by employing the Quantitative Structure Property Relationships (QSPR) approach. The QSPR model developed with GA-PLS technique was characterized by satisfactory goodness-of-fit, robustness and the external predictive performance ((RY)-Y-2 = 0.970, Q(CV)(2) = 0.970, Q(Ext)(2) = 0.966, RMSEC = 0.21, RMSECV = 0.22 and RMSEP = 0.22). The externally validated model has been applied to predict subcooled liquid vapor pressure of uninvestigated halogenated persistent organic pollutants. Moreover, a simple arithmetic relationship between logarithmic values of subcooled liquid vapor pressures in pairs of chloro- and bromo-analogues has been found. This relationship can be used for estimating log P-L of a brominated compound, whenever log P-L of its chlorinated counterpart is known, without necessity of performing any time-consuming computations. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Gajewicz, Agnieszka; Puzyn, Tomasz] Univ Gdansk, Lab Environm Chemometr, Fac Chem, PL-80952 Gdansk, Poland. [Haranczyk, Maciej] Univ Calif Berkeley, Lawrence Berkeley Lab, Computat Res Div, Berkeley, CA 94720 USA. RP Puzyn, T (reprint author), Univ Gdansk, Lab Environm Chemometr, Fac Chem, Sobieskiego 18-19, PL-80952 Gdansk, Poland. EM puzi@qsar.eu.org RI Haranczyk, Maciej/A-6380-2014; OI Haranczyk, Maciej/0000-0001-7146-9568; Puzyn, Tomasz/0000-0003-0449-8339 FU Foundation for Polish Science; Norwegian Financial Mechanism; EEA Financial Mechanism in Poland; Polish Ministry of Science and Higher Education [DS/8430-4-0171-9]; U. S. Department of Energy [DE-AC02-05CH11231] FX T.P. thanks the Foundation for Polish Science for granting him with a fellowship and a research grant in frame of the HOMING Program supported by Norwegian Financial Mechanism and EEA Financial Mechanism in Poland. This work was supported by the Polish Ministry of Science and Higher Education Grant No. DS/8430-4-0171-9. M.H. is a 2008 Seaborg Fellow at Lawrence Berkeley National Laboratory. This research was supported in part (to M.H.) by the U. S. Department of Energy under contract DE-AC02-05CH11231. NR 42 TC 24 Z9 25 U1 3 U2 37 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1352-2310 EI 1873-2844 J9 ATMOS ENVIRON JI Atmos. Environ. PD APR PY 2010 VL 44 IS 11 SI SI BP 1428 EP 1436 DI 10.1016/j.atmosenv.2010.01.041 PG 9 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA 584FO UT WOS:000276736600006 ER PT J AU Hwang, SH Yoon, CS Ryu, KN Paik, SY Cho, JH AF Hwang, Sung Ho Yoon, Chung Sik Ryu, Kyong Nam Paik, Samuel Y. Cho, Jun Ho TI Assessment of airborne environmental bacteria and related factors in 25 underground railway stations in Seoul, Korea SO ATMOSPHERIC ENVIRONMENT LA English DT Article DE Total airborne bacteria; Underground railway stations; Platform screen door; Depth; Temperature; Environmental bacteria ID BUILDINGS; EXPOSURE; INDOOR; FUNGI; BIOAEROSOLS; SYMPTOMS AB This study assessed bacterial concentrations in indoor air at 25 underground railway stations in Seoul, Korea, and investigated various related factors including the presence of platform screen doors (PSD), depth of the station, year of construction, temperature, relative humidity, and number of passengers. A total of 72 aerosol samples were collected from all the stations. Concentrations of total airborne bacteria (TAB) ranged from not detected (ND) to 4997 CFU m(-3), with an overall geometric mean (GM) of 191 CFU m(-3). Airborne bacteria were detected at 23 stations (92%) and Gram-negative bacteria (GNB) were detected at two stations (8%). TAB concentrations of four stations (16%) exceeded 800 CFU m(-3), the Korea indoor bio-aerosol guideline. The results of the study showed that TAB concentrations at the stations without PSD showed higher TAB concentrations than those with PSD, though not at statistically significant levels. TAB concentrations of deeper stations revealed significantly higher levels than those of shallower stations. Based on this study, it is recommended that mitigation measures be applied to improve the indoor air quality (IAQ) of underground railway stations in Seoul, with focused attention on deeper stations. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Cho, Jun Ho] Hanyang Womens Coll, Seoul 133793, South Korea. [Hwang, Sung Ho; Yoon, Chung Sik; Ryu, Kyong Nam] Seoul Natl Univ, Sch Publ Hlth, Inst Hlth & Environm Sci, Seoul 110799, South Korea. [Paik, Samuel Y.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Cho, JH (reprint author), Hanyang Womens Coll, 17 Haeng Dong Sungdong Ku, Seoul 133793, South Korea. EM cjhjunho@hywoman.ac.kr NR 28 TC 22 Z9 23 U1 0 U2 12 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1352-2310 J9 ATMOS ENVIRON JI Atmos. Environ. PD APR PY 2010 VL 44 IS 13 BP 1658 EP 1662 DI 10.1016/j.atmosenv.2010.01.047 PG 5 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA 589OT UT WOS:000277162200008 ER PT J AU Tomlinson, CG Atack, JM Chapados, B Tainer, JA Grasby, JA AF Tomlinson, Christopher G. Atack, John M. Chapados, Brian Tainer, John A. Grasby, Jane A. TI Substrate recognition and catalysis by flap endonucleases and related enzymes SO BIOCHEMICAL SOCIETY TRANSACTIONS LA English DT Article; Proceedings Paper CT Conference on Machines on Genes - Enzymes that, Break and Move DNA and RNA CY AUG 12-14, 2009 CL Robinson Coll, Cambridge, ENGLAND HO Robinson Coll DE DNA repair; exonuclease-1 (EXO-1); flap endonuclease 1 (FEN-1); gap endonuclease 1 (GEN-1); metal ion; xeroderma pigmentosum complementation group G (lambda PG) ID CRYSTAL-STRUCTURE; DNA-BINDING; STRUCTURAL BASIS; REPAIR; REPLICATION; FEN-1; PCNA; EXONUCLEASE; POLYMERASE; FAMILY AB FENs (flap endonucleases) and related FEN-like enzymes [EXO-1 (exonuclease-1), GEN-1 (gap endonuclease 1) and XPG (xeroderma pigmentosum complementation group G)] are a family of bivalent-metal-ion-dependent nucleases that catalyse structure-specific hydrolysis of DNA duplex-containing nucleic acid structures during DNA replication, repair and recombination. In the case of FENs, the ability to catalyse reactions on a variety of substrates has been rationalized as a result of combined functional and structural studies. Analyses of FENs also exemplify controversies regarding the two-metal-ion mechanism. However, kinetic studies of T5FEN (bacteriophage T5 FEN) reveal that a two-metal-ion-like mechanism for chemical catalysis is plausible. Consideration of the metallobiochemistry and the positioning of substrate in metal-free structures has led to the proposal that the duplex termini of substrates are unpaired in the catalytically active form and that FENs and related enzymes may recognize breathing duplex termini within more complex structures. An outstanding issue in FEN catalysis is the role played by the intermediate (I) domain arch or clamp. It has been proposed that FENs thread the 5'-portion of their substrates through this arch, which is wide enough to accommodate single-stranded, but not double-stranded, DNA. However, FENs exhibit gap endonuclease activity acting upon substrates that have a region of 5'-duplex. Moreover, the action of other FEN family members such as GEN-1, proposed to target Holliday junctions without termini, appears incompatible with a threading mechanism. An alterative is that the I domain is used as a clamp. A future challenge is to clarify the role of this domain in FENs and related enzymes. C1 [Tomlinson, Christopher G.; Atack, John M.; Grasby, Jane A.] Univ Sheffield, Krebs Inst, Dept Chem, Ctr Chem Biol, Sheffield S3 7HF, S Yorkshire, England. [Chapados, Brian; Tainer, John A.] Scripps Res Inst, Dept Mol Biol, Skaggs Inst Chem Biol, La Jolla, CA 92037 USA. [Tainer, John A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Mol Biol, Div Life Sci, Berkeley, CA 94720 USA. RP Grasby, JA (reprint author), Univ Sheffield, Krebs Inst, Dept Chem, Ctr Chem Biol, Sheffield S3 7HF, S Yorkshire, England. RI Atack, John/B-7961-2015 OI Atack, John/0000-0002-7994-6995 FU Biotechnology and Biological Sciences Research Council NR 27 TC 28 Z9 28 U1 1 U2 17 PU PORTLAND PRESS LTD PI LONDON PA THIRD FLOOR, EAGLE HOUSE, 16 PROCTER STREET, LONDON WC1V 6 NX, ENGLAND SN 0300-5127 J9 BIOCHEM SOC T JI Biochem. Soc. Trans. PD APR PY 2010 VL 38 BP 433 EP 437 PN 2 PG 5 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 585DR UT WOS:000276805000023 PM 20298197 ER PT J AU Goksu, EI Hoopes, MI Nellis, BA Xing, CY Faller, R Frank, CW Risbud, SH Satcher, JH Longo, ML AF Goksu, Emel I. Hoopes, Matthew I. Nellis, Barbara A. Xing, Chenyue Faller, Roland Frank, Curtis W. Risbud, Subhash H. Satcher, Joe H., Jr. Longo, Marjorie L. TI Silica xerogel/aerogel-supported lipid bilayers: Consequences of surface corrugation SO BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES LA English DT Review DE Atomic force microscopy; Quartz crystal microbalance; Membrane raft; Coarse-graining; Porous material; Membrane bending ID SOL-GEL SYNTHESIS; ATOMIC-FORCE MICROSCOPY; FLUID PHOSPHOLIPID-BILAYERS; ION MASS-SPECTROMETRY; COARSE-GRAINED MODEL; PHASE-TRANSITION; CELL-MEMBRANES; COMPUTER-SIMULATION; COLLOIDAL CRYSTALS; CURVATURE AB The objective of this paper was to review our recent investigations of silica xerogel and aerogel-supported lipid bilayers. These systems provide a format to observe relationships between substrate curvature and supported lipid bilayer formation, lipid dynamics, and lipid mixtures phase behavior and partitioning. Sensitive surface techniques such as quartz crystal microbalance and atomic force microscopy are readily applied to these systems. To inform current and future investigations, we review the experimental literature involving the impact of curvature on lipid dynamics, lipid and phase-separated lipid domain localization, and membrane-substrate conformations and we review our molecular dynamics simulations of supported lipid bilayers with the atomistic and molecular information they provide. (C) 2009 Elsevier B.V. All rights reserved. C1 [Goksu, Emel I.; Hoopes, Matthew I.; Nellis, Barbara A.; Xing, Chenyue; Faller, Roland; Risbud, Subhash H.; Longo, Marjorie L.] Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA. [Nellis, Barbara A.; Satcher, Joe H., Jr.] Lawrence Livermore Natl Lab, Chem Mat Earth & Life Sci Directorate, Livermore, CA 94550 USA. [Frank, Curtis W.] Stanford Univ, Dept Chem Engn, Stanford, CA 94305 USA. RP Longo, ML (reprint author), Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA. EM mllongo@ucdavis.edu FU NSF NIRT [CBET 0506602]; NSF MRSEC [NSF DMR 0213618]; Training Program in Biomolecular Technology [T32-GM08799]; U.S. Department of Energy by Lawrence Livermore National Laboratory [W-7405-Eng-48, DE-AC52-07NA27344] FX We acknowledge funding by the NSF NIRT Program (CBET 0506602) and the NSF MRSEC Program CPIMA (NSF DMR 0213618). M.I.H. acknowledges support by an industry/campus supported fellowship under the Training Program in Biomolecular Technology No. T32-GM08799 at the University of California, Davis. This work was partially performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory in part under Contract W-7405-Eng-48 and in part under Contract DE-AC52-07NA27344. Some of the computer simulations were performed at the National Institute for Computational Sciences (allocation MCB070076N). NR 78 TC 18 Z9 18 U1 4 U2 51 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0005-2736 J9 BBA-BIOMEMBRANES JI Biochim. Biophys. Acta-Biomembr. PD APR PY 2010 VL 1798 IS 4 SI SI BP 719 EP 729 DI 10.1016/j.bbamem.2009.09.007 PG 11 WC Biochemistry & Molecular Biology; Biophysics SC Biochemistry & Molecular Biology; Biophysics GA 574NZ UT WOS:000275998300003 PM 19766590 ER PT J AU Carson, JP Kuprat, AP Jiao, XM Dyedov, V del Pin, F Guccione, JM Ratcliffe, MB Einstein, DR AF Carson, James P. Kuprat, Andrew P. Jiao, Xiangmin Dyedov, Volodymyr del Pin, Facundo Guccione, Julius M. Ratcliffe, Mark B. Einstein, Daniel R. TI Adaptive generation of multimaterial grids from imaging data for biomedical Lagrangian fluid-structure simulations SO BIOMECHANICS AND MODELING IN MECHANOBIOLOGY LA English DT Article DE Multimaterial grid generation; Micro MRI; Mouse heart; Fluid-structure interaction; Volume-conserving smoothing ID FINITE-ELEMENT-METHOD; SHEAR-STRESS; ENDOTHELIAL-CELLS; ISOGEOMETRIC ANALYSIS; PARTICLE DEPOSITION; BLOOD-FLOW; CARDIOGENESIS; NURBS AB Spatial discretization of complex imaging- derived fluid-solid geometries, such as the cardiac environment, is a critical but often overlooked challenge in biomechanical computations. This is particularly true in problems with Lagrangian interfaces, where the fluid and solid phases share a common interface geometrically. For simplicity and better accuracy, it is also highly desirable for the two phases to have a matching surface mesh at the interface between them. We outline a method for solving this problem, and illustrate the approach with a 3D fluid-solid mesh of the mouse heart. An MRI dataset of a perfusion-fixed mouse heart with 50 mu m isotropic resolution was semi-automatically segmented using a customized multimaterial connected-threshold approach that divided the volume into non-overlapping regions of blood, tissue, and background. Subsequently a multimaterial marching cubes algorithm was applied to the segmented data to produce two detailed, compatible isosurfaces, one for blood and one for tissue. Both isosurfaces were simultaneously smoothed with a multimaterial smoothing algorithm that exactly conserves the volume for each phase. Using these two isosurfaces, we developed and applied novel automated meshing algorithms to generate anisotropic hybrid meshes on arbitrary biological geometries with the number of layers and the desired element anisotropy for each phase as the only input parameters. Since our meshes adapt to the local feature sizes and include boundary layer prisms, they are more efficient and accurate than non-adaptive, isotropic meshes, and the fluid-structure interaction computations will tend to have relative error equilibrated over the whole mesh. C1 [Carson, James P.; Kuprat, Andrew P.; Einstein, Daniel R.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Jiao, Xiangmin; Dyedov, Volodymyr] SUNY Stony Brook, Dept Appl Math & Stat, Stony Brook, NY 11794 USA. [del Pin, Facundo] Livermore Software Technol Corp, Livermore, CA USA. [Guccione, Julius M.; Ratcliffe, Mark B.] San Francisco VA Med Ctr, UCSF Dept Surg, San Francisco, CA USA. RP Carson, JP (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM james.carson@pnl.gov; andrew.kuprat@pnl.gov; jiao@ams.sunysb.edu; vladimir@ams.sunysb.edu; fdelpin@lstc.com; julius.guccione@va.gov; mark.ratcliffe@va.gov; daniel.einstein@pnl.gov OI Kuprat, Andrew/0000-0003-4159-918X; Jiao, Xiangmin/0000-0002-7111-9813 FU NCRR/NCI [P41 RR05959/U24 CA092656]; National Heart Lung and Blood Institute [1RO1HL073598-01A1, 1R01HL084431-01A1]; National Science Foundation [DMS-0809285]; U.S Department of Energy [LDRD DE-AC05-76RL01830] FX MR data was supplied by Dr. G. Allan Johnson, Duke Center for In Vivo Microscopy under support from NCRR/NCI (P41 RR05959/U24 CA092656). This research was funded by the National Heart Lung and Blood Institute Awards 1RO1HL073598-01A1 and 1R01HL084431-01A1, by the National Science Foundation under award number DMS-0809285, and by the U.S Department of Energy under LDRD DE-AC05-76RL01830. NR 41 TC 9 Z9 9 U1 0 U2 4 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 1617-7959 J9 BIOMECH MODEL MECHAN JI Biomech. Model. Mechanobiol. PD APR PY 2010 VL 9 IS 2 BP 187 EP 201 DI 10.1007/s10237-009-0170-5 PG 15 WC Biophysics; Engineering, Biomedical SC Biophysics; Engineering GA 568TM UT WOS:000275545800006 PM 19727874 ER PT J AU Tumuluru, JS Tabil, L Opoku, A Mosqueda, MR Fadeyi, O AF Tumuluru, Jaya Shankar Tabil, Lope Opoku, Anthony Mosqueda, Maria Rosario Fadeyi, Olaniyi TI Effect of process variables on the quality characteristics of pelleted wheat distiller's dried grains with solubles SO BIOSYSTEMS ENGINEERING LA English DT Article ID SINGLE-SCREW EXTRUSION; PHYSICAL-PROPERTIES; STARCH; GELATINIZATION; PRODUCTS; EXTRUDER; COOKING; DDGS; MOISTURE; BLENDS AB The rapid expansion of ethanol processing plants in Canada has resulted in a significant increase in the production of wheat-based distiller's dried grains with solubles (DDGS). Transportation and flowability problems associated with DDGS necessitate investigations on pelleting. In the present study, the effect of process variables like die temperature (T) and feed moisture content (M(w)) on the pellet properties like pellet moisture content, durability and pellet density was explored using a single pelleting machine; further studies on pelleting DDGS using a pilot-scale pellet mill were also conducted to understand the effect of die diameter and steam conditioning on durability and bulk density of pellets. Proximate analysis of DDGS indicated that crude protein and dry matter were in the range of 37.37-40.33% and 91.27-92.60%, respectively. Linear regression models developed for pellet quality attributes like pellet moisture content, pellet density and durability adequately described the single pelleting process with R(2) value of 0.97, 0.99 and 0.7, respectively. ANOVA results have indicated that linear terms T and M and the interaction term T x M(w) were statistically significant at P < 0.01 and P < 0.1 for pellet moisture content and pellet density. Based on the trends of the surface plots, a medium T of about 50-80 degrees C and a low M(w) of about 5.1% resulted in maximum pellet density and durability and minimum pellet moisture content. Results from pilot-scale studies indicated that bulk density, durability and throughput values were 436.8-528.9 kg m(-3), 60.3-92.7% and 45.52-68.77 kg h(-1), respectively. It was observed that both die diameter and steam addition had a significant effect on the bulk density and the durability values. The highest bulk density and durability were achieved with 6.4 mm die diameter with steam addition compared to 7.9 mm die with or without steam addition. (C) 2010 IAgrE. Published by Elsevier Ltd. All rights reserved. C1 [Tumuluru, Jaya Shankar; Tabil, Lope; Opoku, Anthony; Mosqueda, Maria Rosario; Fadeyi, Olaniyi] Univ Saskatchewan, Dept Agr & Bioresource Engn, Saskatoon, SK S7N 5A9, Canada. RP Tumuluru, JS (reprint author), Idaho Natl Lab, Energy Syst & Technol Div, Biofuels & Renewable Energy Technol Dept, POB 1625, Idaho Falls, ID 83415 USA. EM JayaShankar.Tumuluru@inl.gov FU Biofuel Industries (FOBI); Agriculture and Agri-Food Canada FX We would like to acknowledge the technical assistance provided by Dr. Colleen Christensen and Ravindra Heendeniya of Feeds Innovation Institute of the University of Saskatchewan. Financial support of this project was made possible through the Feed Opportunities from Biofuel Industries (FOBI) and the Agricultural Bioproducts Innovation Program of Agriculture and Agri-Food Canada. NR 46 TC 19 Z9 21 U1 0 U2 5 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 1537-5110 J9 BIOSYST ENG JI Biosyst. Eng. PD APR PY 2010 VL 105 IS 4 BP 466 EP 475 DI 10.1016/j.biosystemseng.2010.01.005 PG 10 WC Agricultural Engineering; Agriculture, Multidisciplinary SC Agriculture GA 586UP UT WOS:000276939400005 ER PT J AU Gray, SA Weigel, KM Miller, KD Ndung'u, J Buscher, P Tran, T Baird, C Cangelosi, GA AF Gray, Sean A. Weigel, Kris M. Miller, Keith D. Ndung'u, Joseph Buscher, Philippe Tran, Thao Baird, Cheryl Cangelosi, Gerard A. TI Flow Cytometry-Based Methods for Assessing Soluble scFv Activities and Detecting Antigens in Solution SO BIOTECHNOLOGY AND BIOENGINEERING LA English DT Article DE Trypanosoma; African trypanosomiasis; antibodies; scFv; yeast-display; S. cerevisiae; invariant surface glycoproteins; ISG; flow cytometry; yeast-display; competitive inhibition ID HUMAN AFRICAN TRYPANOSOMIASIS; SURFACE GLYCOPROTEIN ISG75; CHAIN FV ANTIBODIES; ESCHERICHIA-COLI; SACCHAROMYCES-CEREVISIAE; SLEEPING SICKNESS; DISPLAY LIBRARY; RNA APTAMERS; GENE FAMILY; YEAST AB Novel methods are reported for evaluating and utilizing single chain fragment variable (scFv) antibodies derived from yeast-display libraries. Yeast-display was used to select scFv specific to invariant surface glycoproteins (ISG) of Trypanosoma brucei. A limiting step in the isolation of scFv from non-immune libraries is the conversion of highly active yeast-displayed scFv into soluble antibodies that can be used in standard immunoassays. Challenges include limited solubility or activity following secretion and purification of scFv. For this reason, few scFv derived from yeast-display platforms have moved into development and implementation as diagnostic reagents. To address this problem, assays were developed that employ both yeast-displayed and -secreted scFv as analytical reagents. The first is a competitive inhibition flow cytometry (CIFC) assay that detects secreted scFv by virtue of their ability to competitively inhibit the binding of biotinylated antigen to yeast-displayed scFv. The second is an epitope binning assay that uses secreted scFv to identify additional yeast-displayed scFv that bind non-overlapping or non-competing epitopes on an antigen. The epitope binning assay was used not only to identify sandwich assay pairs with yeast-displayed scFv, but also to identify active soluble scFv present in low concentration in a crude expression extract. Finally, a CIFC assay was developed that bypasses entirely the need for soluble scFv expression, by using yeast-displayed scFv to detect unlabeled antigen in samples. These methods will facilitate the continued development and practical implementation of scFv derived from yeast-display libraries. C1 [Gray, Sean A.; Weigel, Kris M.; Cangelosi, Gerard A.] Seattle Biomed Res Inst, Seattle, WA 98109 USA. [Miller, Keith D.; Baird, Cheryl] Pacific NW Natl Lab, Richland, WA 99352 USA. [Ndung'u, Joseph] Fdn Innovat New Diagnost, Cointrin, Switzerland. [Buscher, Philippe; Tran, Thao] Inst Trop Med, Dept Parasitol, B-2000 Antwerp, Belgium. [Tran, Thao] Vrije Univ Brussels, Lab Mol & Cellular Immunol, Brussels, Belgium. RP Gray, SA (reprint author), Seattle Biomed Res Inst, 307 Westlake Ave N,Suite 500, Seattle, WA 98109 USA. EM sean.gray@sbri.org RI Buscher, Philippe/B-9956-2012; OI Buscher, Philippe/0000-0002-1926-7472; Weigel, Kris/0000-0003-3199-2148 FU Foundation for Innovative New Diagnostics (FIND, Geneva, Switzerland); NIAID [R21 AI0744571, U01AI082186] FX Contract grant sponsor: Foundation for Innovative New Diagnostics (FIND, Geneva, Switzerland); Contract grant sponsor: NIAID; Contract grant numbers: R21 AI0744571, U01AI082186; The authors thank Dr. Mark Carrington for providing recombinant ISG64, ISG65, and ISG75 antigen for this study. We also thank Magdalena Radwanska for helpful input throughout the project. This work was supported by a grant from the Foundation for Innovative New Diagnostics (FIND, Geneva, Switzerland), by NIAID grant R21 AI0744571 to S.A.G., and by NIAID grant U01AI082186 to G.A.C. NR 34 TC 9 Z9 9 U1 0 U2 5 PU JOHN WILEY & SONS INC PI HOBOKEN PA 111 RIVER ST, HOBOKEN, NJ 07030 USA SN 0006-3592 J9 BIOTECHNOL BIOENG JI Biotechnol. Bioeng. PD APR 1 PY 2010 VL 105 IS 5 BP 973 EP 981 DI 10.1002/bit.22607 PG 9 WC Biotechnology & Applied Microbiology SC Biotechnology & Applied Microbiology GA 572LA UT WOS:000275832200013 PM 19953671 ER PT J AU Mohagheghi, A Schell, DJ AF Mohagheghi, Ali Schell, Daniel J. TI Impact of Recycling Stillage on Conversion of Dilute Sulfuric Acid Pretreated Corn Stover to Ethanol SO BIOTECHNOLOGY AND BIOENGINEERING LA English DT Article DE recycle water; stillage; ethanol; Zymomonas mobilis; corn stover ID ENZYMATIC-HYDROLYSIS; ZYMOMONAS-MOBILIS; PROCESS STREAMS; FERMENTATION; DETOXIFICATION; RECIRCULATION; SOFTWOOD; KINETICS; YIELDS; WATER AB Both the current corn starch to ethanol industry and the emerging lignocellulosic biofuels industry view recycling of spent fermentation broth or stillage as a method to reduce fresh water use. The objective of this study was to understand the impact of recycling stillage on conversion of corn stover to ethanol. Sugars in a dilute-acid pretreated corn stover hydrolysate were fermented to ethanol by the glucose-xylose fermenting bacteria Zymomonas mobilis 8b. Three serial fermentations were performed at two different initial sugar concentrations using either 10% or 25% of the stillage as makeup water for the next fermentation in the series. Serial fermentations were performed to achieve near steady state concentration of inhibitors and other compounds in the corn stover hydrolysate. Little impact on ethanol yields was seen at sugar concentrations equivalent to pretreated corn stover slurry at 15% (w/w) with 10% recycle of the stillage. However, ethanol yields became progressively poorer as the sugar concentration increased and fraction of the stillage recycled increased. At an equivalent corn stover slurry concentration of 20% with 25% recycled stillage the ethanol yield was only 5%. For this microorganism with dilute-acid pretreated corn stover, recycling a large fraction of the stillage had a significant negative impact on fermentation performance. Although this finding is of concern for biochemical-based lignocellulose conversion processes, other microorganism/pretreatment technology combinations will likely perform differently. C1 [Mohagheghi, Ali; Schell, Daniel J.] Natl Renewable Energy Lab, Natl Bioenergy Ctr, Golden, CO 80401 USA. RP Mohagheghi, A (reprint author), Natl Renewable Energy Lab, Natl Bioenergy Ctr, 1617 Cole Blvd, Golden, CO 80401 USA. EM ali.mohagheghi@nrel.gov FU U.S. Department of Energy's Office of the Biomass Program FX Contract grant sponsor: U.S. Department of Energy's Office of the Biomass Program NR 14 TC 8 Z9 8 U1 2 U2 9 PU JOHN WILEY & SONS INC PI HOBOKEN PA 111 RIVER ST, HOBOKEN, NJ 07030 USA SN 0006-3592 J9 BIOTECHNOL BIOENG JI Biotechnol. Bioeng. PD APR 1 PY 2010 VL 105 IS 5 BP 992 EP 996 DI 10.1002/bit.22625 PG 5 WC Biotechnology & Applied Microbiology SC Biotechnology & Applied Microbiology GA 572LA UT WOS:000275832200015 PM 19998277 ER PT J AU Jha, SS Danelishvili, L Wagner, D Maser, J Li, YJ Moric, I Vogt, S Yamazaki, Y Lai, B Bermudez, LE AF Jha, Samradhni S. Danelishvili, Lia Wagner, Dirk Maser, Joerg Li, Yong-jun Moric, Ivana Vogt, Steven Yamazaki, Yoshitaka Lai, Barry Bermudez, Luiz E. TI Virulence-related Mycobacterium avium subsp hominissuis MAV_2928 gene is associated with vacuole remodeling in macrophages SO BMC MICROBIOLOGY LA English DT Article ID PHAGOSOME-LYSOSOME FUSION; PROTEIN-A; TUBERCULOSIS PHAGOSOME; ELEMENTAL ANALYSIS; MOUSE MACROPHAGES; RAT MACROPHAGES; PPE GENE; MATURATION; EXPRESSION; INHIBITION AB Background: Mycobacterium avium subsp hominissuis (previously Mycobacterium avium subsp avium) is an environmental organism associated with opportunistic infections in humans. Mycobacterium hominissuis infects and replicates within mononuclear phagocytes. Previous study characterized an attenuated mutant in which the PPE gene (MAV_2928) homologous to Rv1787 was inactivated. This mutant, in contrast to the wild-type bacterium, was shown both to have impaired the ability to replicate within macrophages and to have prevented phagosome/lysosome fusion. Results: MAV_2928 gene is primarily upregulated upon phagocytosis. The transcriptional profile of macrophages infected with the wild-type bacterium and the mutant were examined using DNA microarray, which showed that the two bacteria interact uniquely with mononuclear phagocytes. Based on the results, it was hypothesized that the phagosome environment and vacuole membrane of the wild-type bacterium might differ from the mutant. Wild-type bacterium phagosomes expressed a number of proteins different from those infected with the mutant. Proteins on the phagosomes were confirmed by fluorescence microscopy and Western blot. The environment in the phagosome of macrophages infected with the mutant differed from the environment of vacuoles with M. hominissuis wild-type in the concentration of zinc, manganese, calcium and potassium. Conclusion: The results suggest that the MAV_2928 gene/operon might participate in the establishment of bacterial intracellular environment in macrophages. C1 [Jha, Samradhni S.; Danelishvili, Lia; Bermudez, Luiz E.] Oregon State Univ, Coll Vet Med, Dept Biomed Sci, Corvallis, OR 97331 USA. [Wagner, Dirk] Univ Freiburg, Dept Internal Med Infect Dis 2, D-79106 Freiburg, Germany. [Maser, Joerg; Moric, Ivana; Vogt, Steven; Lai, Barry] Argonne Natl Lab, Argonne, IL 60439 USA. [Li, Yong-jun] Geron Corp, Menlo Pk, CA 94025 USA. [Yamazaki, Yoshitaka] Shinshu Univ, Sch Med, Dept Resp & Infect Dis, Matsumoto, Nagano 3908621, Japan. [Bermudez, Luiz E.] Oregon State Univ, Coll Sci, Dept Microbiol, Corvallis, OR 97331 USA. RP Bermudez, LE (reprint author), Oregon State Univ, Coll Vet Med, Dept Biomed Sci, Corvallis, OR 97331 USA. EM luiz.bermudez@oregonstate.edu RI Wagner, Dirk/G-4598-2013; Maser, Jorg/K-6817-2013; Vogt, Stefan/B-9547-2009; Wagner, Dirk/D-9778-2016; Vogt, Stefan/J-7937-2013 OI Danelishvili, Lia/0000-0003-1390-3121; Vogt, Stefan/0000-0002-8034-5513; Wagner, Dirk/0000-0002-3271-5815; Vogt, Stefan/0000-0002-8034-5513 FU Mass Spectrometry Core Facility of the Environmental Health Sciences Center, Oregon State University; National Institute of Environmental Health Sciences, National Institutes of Health [P30 ES00210]; NIH [AI47010, AI043199] FX We are grateful for the support of the Mass Spectrometry Core Facility of the Environmental Health Sciences Center, Oregon State University, and from grant number P30 ES00210, from National Institute of Environmental Health Sciences, National Institutes of Health. This work was also supported by the NIH grants # AI47010 and AI043199. NR 47 TC 19 Z9 20 U1 0 U2 4 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1471-2180 J9 BMC MICROBIOL JI BMC Microbiol. PD APR 1 PY 2010 VL 10 AR 100 DI 10.1186/1471-2180-10-100 PG 21 WC Microbiology SC Microbiology GA 625WI UT WOS:000279927100001 PM 20359357 ER PT J AU Gdula, MR Mardaryev, AN Sharov, AA Sharova, TY Kohwi-Shigematsu, T Botchkarev, VA Fessing, MY AF Gdula, M. R. Mardaryev, A. N. Sharov, A. A. Sharova, T. Y. Kohwi-Shigematsu, T. Botchkarev, V. A. Fessing, M. Y. TI Special AT-rich binding protein (Satb1) controls establishing tissue-specific chromatin organization and expression of terminal differentiation-associated genes in keratinocytes SO BRITISH JOURNAL OF DERMATOLOGY LA English DT Meeting Abstract CT Annual Meeting of the British-Society-for-Investigative-Dermatology CY APR 12-14, 2010 CL Edinburgh, SCOTLAND SP British Soc Investigat Dermatol C1 [Gdula, M. R.; Mardaryev, A. N.; Botchkarev, V. A.; Fessing, M. Y.] Univ Bradford, Ctr Skin Sci, Bradford BD7 1DP, W Yorkshire, England. [Sharov, A. A.; Sharova, T. Y.; Botchkarev, V. A.] Boston Univ, Dept Dermatol, Boston, MA 02215 USA. [Kohwi-Shigematsu, T.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. EM m.fessing@bradford.ac.uk NR 0 TC 0 Z9 0 U1 0 U2 1 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0007-0963 J9 BRIT J DERMATOL JI Br. J. Dermatol. PD APR PY 2010 VL 162 IS 4 BP 929 EP 929 PG 1 WC Dermatology SC Dermatology GA 571PT UT WOS:000275767500083 ER PT J AU Myers, SC Begnaud, ML Ballard, S Pasyanos, ME Phillips, WS Ramirez, AL Antolik, MS Hutchenson, KD Dwyer, JJ Rowe, CA Wagner, GS AF Myers, Stephen C. Begnaud, Michael L. Ballard, Sanford Pasyanos, Michael E. Phillips, W. Scott Ramirez, Abelardo L. Antolik, Michael S. Hutchenson, Kevin D. Dwyer, John J. Rowe, Charlotte A. Wagner, Gregory S. TI A Crust and Upper-Mantle Model of Eurasia and North Africa for Pn Travel-Time Calculation SO BULLETIN OF THE SEISMOLOGICAL SOCIETY OF AMERICA LA English DT Article ID VELOCITIES BENEATH; LATERAL VARIATIONS; SEISMIC LOCATION; EVENTS; IDENTIFICATION; TOMOGRAPHY AB We develop a regional seismic travel-time (RSTT) model and method for use in routine seismic analysis. The model parameterization is a global tessellation of nodes with a velocity profile at each node. Interpolation of the velocity profiles generates a 3D crust and laterally variable upper-mantle velocity. The upper-mantle velocity profile at each node is represented as a linear velocity gradient, which enables travel-time computation in approximately 1 millisecond. This computational speed allows the model to be used in routine analyses in operational monitoring systems. We refine the model using a tomographic formulation that adjusts the average crustal velocity, mantle velocity at the Moho, and the mantle velocity gradient at each node. While the RSTT model is inherently global, our first RSTT tomographic effort covers Eurasia and North Africa, where we have compiled a data set of approximately 600,000 Pn arrivals. Ten percent of the data set is randomly selected and set aside for testing purposes. Travel-time residual variance for the validation data is reduced by 32%. Based on a geographically distributed set of validation events with epicenter accuracy of 5 km or better, epicenter error using 16 Pn arrivals is reduced by 46% from 17.3 km (ak135 model) to 9.3 km (RSTT model) after tomography. The median uncertainty ellipse area is reduced by 68% from 3070 km(2) (ak135) to 994 km2 (RSTT), and the number of ellipses with area less than 1000 km2, which is the area allowed for onsite inspection under the Comprehensive Nuclear Test Ban Treaty, is increased from 0% (ak135) to 51% (RSTT). C1 [Myers, Stephen C.; Pasyanos, Michael E.; Ramirez, Abelardo L.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Begnaud, Michael L.; Phillips, W. Scott; Rowe, Charlotte A.] Los Alamos Natl Lab, Geophys Grp, Los Alamos, NM 87545 USA. [Ballard, Sanford] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Antolik, Michael S.; Hutchenson, Kevin D.] Quantum Technol Sci Inc, Cocoa Beach, FL 32930 USA. [Dwyer, John J.; Wagner, Gregory S.] AF Tech Applicat Ctr, Patrick AFB, FL 32925 USA. RP Myers, SC (reprint author), Lawrence Livermore Natl Lab, L-046,Box 808,7000 East Ave, Livermore, CA 94550 USA. RI GEOFON, GlobalSeismicNetwork/E-4273-2012; Pasyanos, Michael/C-3125-2013; Myers, Stephen/K-1368-2014; OI Myers, Stephen/0000-0002-0315-5599; Begnaud, Michael/0000-0002-1491-9451; Rowe, Charlotte/0000-0001-5803-0147 NR 33 TC 29 Z9 31 U1 0 U2 3 PU SEISMOLOGICAL SOC AMER PI EL CERRITO PA PLAZA PROFESSIONAL BLDG, SUITE 201, EL CERRITO, CA 94530 USA SN 0037-1106 J9 B SEISMOL SOC AM JI Bull. Seismol. Soc. Amer. PD APR 1 PY 2010 VL 100 IS 2 BP 640 EP 656 DI 10.1785/0120090198 PG 17 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 569LB UT WOS:000275597200018 ER PT J AU Kim, A Dreger, DS Larsen, S AF Kim, Ahyi Dreger, Douglas S. Larsen, Shawn TI Moderate Earthquake Ground-Motion Validation in the San Francisco Bay Area SO BULLETIN OF THE SEISMOLOGICAL SOCIETY OF AMERICA LA English DT Article ID LOMA-PRIETA EARTHQUAKE; ELASTIC WAVE-EQUATIONS; 3-DIMENSIONAL SIMULATION; HORIZONTAL COMPONENT; CLARA VALLEY; CALIFORNIA; VELOCITY; MODEL; PERIODS; BASIN AB We performed 3D ground-motion simulations for 10 recent small to moderate earthquakes (M(w) 4.1-5.4) in the San Francisco Bay area to evaluate two versions of the USGS 3D velocity model (Brocher, 2005; Jachens et al., 2006; Brocher, 2008). Comparisons were made in terms of modeling phase arrival timing, peak ground-motion amplitudes, and the seismic waveforms. In the simulations we assumed the source parameters reported in the Berkeley Seismological Laboratory (BSL) Moment Tensor Catalog. Broadband seismic data from the Berkeley Digital Seismic Network (BDSN), and strong motion data from the USGS and the California Geological Survey (CGS) strong motion arrays were used in the analysis. The comparison of peak ground velocity (PGV) for both models reveals that both 3D models predict the observed PGV well over four orders of magnitude, and P- and S-wave timing and pseudospectral acceleration (PSA) are well modeled by the 3D structure. While the revised model (model 8.3.0) significantly improved the timing of the first arrival, and the waveform fit is generally good, there remain discrepancies in estimated amplitudes and durations that require improvements to the structure. Nevertheless, from our low-frequency (0.5 Hz) analysis we found that the 3D model is suitable for the simulation of PGV to assess the strong shaking hazard of future large earthquakes, because earthquakes larger than M 6 have PGV carried by waves of 1 to several seconds period. C1 [Kim, Ahyi] Schlumberger Cambridge Res Ltd, Cambridge CB3 0EL, England. [Dreger, Douglas S.] Berkeley Seismol Lab, Berkeley, CA 94720 USA. [Larsen, Shawn] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Kim, A (reprint author), Schlumberger Cambridge Res Ltd, High Cross,Madingley Rd, Cambridge CB3 0EL, England. FU USGS [USDI 08HQGR0064] FX We acknowledge support from the USGS under contract (USDI 08HQGR0064). We appreciate the constructive comments and detailed information regarding velocity model updates from Brad Aaggard. This is BSL contribution number 09-06. NR 29 TC 7 Z9 7 U1 0 U2 2 PU SEISMOLOGICAL SOC AMER PI EL CERRITO PA PLAZA PROFESSIONAL BLDG, SUITE 201, EL CERRITO, CA 94530 USA SN 0037-1106 J9 B SEISMOL SOC AM JI Bull. Seismol. Soc. Amer. PD APR 1 PY 2010 VL 100 IS 2 BP 819 EP 825 DI 10.1785/0120090076 PG 7 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 569LB UT WOS:000275597200030 ER PT J AU Anderson, ML Myers, SC AF Anderson, Megan L. Myers, Stephen C. TI Assessment of Regional-Distance Location Calibration Using a Multiple-Event Location Algorithm SO BULLETIN OF THE SEISMOLOGICAL SOCIETY OF AMERICA LA English DT Article ID EARTHQUAKE LOCATION; SEISMIC LOCATION; STATIONS; MODELS; ERRORS; BASIN AB We test the use of a multiple-event seismic location method to improve epicenter accuracy estimates. Regional arrival-time observations of 74 Nevada Test Site explosions with known locations comprise the test data set. We investigate epicenter accuracy as a function of the number of events in the multiple-event system that are constrained at the known hypocenter (calibration), the effect of distance between calibration and unconstrained events, and the use of velocity models with varying travel-time prediction accuracy. Further, we test the utility of using a posteriori travel-time residuals to assess location and travel-time prediction accuracy. We find that constraining one event at the known hypocenter reduces epicenter error for all other events by 58% on average compared to locations produced without constraining events. The incremental improvement in epicenter accuracy rapidly diminishes as more hypocenters are constrained, and incremental location improvement is minimal when the number of constrained hypocenters exceeds 10. Events closest to a constrained event exhibit small location bias. Distinct epicenter bias occurs when the distance between the calibration event and the relocated event is greater than a few tens of kilometers. Last, we confirm that metrics based on a posteriori travel-time residuals are poor indicators of both epicenter accuracy and velocity model-based travel-time prediction accuracy. C1 [Anderson, Megan L.] Colorado Coll, Dept Geol, Colorado Springs, CO 80903 USA. [Myers, Stephen C.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Anderson, ML (reprint author), Colorado Coll, Dept Geol, 14 E Cache La Poudre St, Colorado Springs, CO 80903 USA. RI Myers, Stephen/K-1368-2014 OI Myers, Stephen/0000-0002-0315-5599 FU National Nuclear Security Administration Office of Nonproliferation Research; Engineering Office of Defense Nuclear Nonproliferation FX This study was supported by the National Nuclear Security Administration Office of Nonproliferation Research and the Engineering Office of Defense Nuclear Nonproliferation. We would also like to thank Bill Walter and Flori Ryall for their preparation of the data set utilized in this study and Bill Rodi for help with the use of the GMEL location code. Thanks to Sarah Robinson for her input on the presentation of the data. NR 30 TC 1 Z9 1 U1 0 U2 2 PU SEISMOLOGICAL SOC AMER PI EL CERRITO PA PLAZA PROFESSIONAL BLDG, SUITE 201, EL CERRITO, CA 94530 USA SN 0037-1106 J9 B SEISMOL SOC AM JI Bull. Seismol. Soc. Amer. PD APR 1 PY 2010 VL 100 IS 2 BP 868 EP 875 DI 10.1785/0120090145 PG 8 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 569LB UT WOS:000275597200036 ER PT J AU Poloski, AP Etchells, AW Chun, J Adkins, HE Casella, AM Minette, MJ Yokuda, ST AF Poloski, Adam P. Etchells, Arthur W. Chun, Jaehun Adkins, Harold E. Casella, Andrew M. Minette, Michael J. Yokuda, Satoru T. TI A PIPELINE TRANSPORT CORRELATION FOR SLURRIES WITH SMALL BUT DENSE PARTICLES SO CANADIAN JOURNAL OF CHEMICAL ENGINEERING LA English DT Article DE critical velocity; small particles; dense particles; Hanford waste slurry; deposition Froude number; Archimedes number ID HORIZONTAL PIPES; DEPOSIT VELOCITY; FLOW; SOLIDS AB Most correlations/models for minimum transport or critical velocity of slurry were developed for slurries composed of particles greater than similar to 100-200 mu m diameter with narrow particle-size distributions which is typical of the minerals industry. Many other process industries handle smaller particles In particular waste slurries at the U S Department of Energy's Hanford Site have broad size distributions and significant fractions of smaller particles Despite the size of these wastes, recent studies at Pacific Northwest National Laboratory indicate that the small particles might be of sufficient density to pose a significant risk for pipeline deposition and plugging To allow predictive assessment of deposition of fine dense particles for waste slurry transport at the U S DOE Hanford site, a pipeline-transport correlation for critical velocity was developed using a simple power-law between two dimensionless numbers important for slurry transport, the deposition Froude and Archimedes numbers The correlation accords well with experimental data for slurries with Archimedes numbers <80 and is an adequate pipeline design guide for processing Hanford waste slurry C1 [Poloski, Adam P.; Chun, Jaehun; Adkins, Harold E.; Casella, Andrew M.; Minette, Michael J.; Yokuda, Satoru T.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Etchells, Arthur W.] AWE3 Enterprises, Philadelphia, PA 19106 USA. RP Poloski, AP (reprint author), Pacific NW Natl Lab, POB 999, Richland, WA 99352 USA. OI Casella, Andrew/0000-0002-4053-6593 NR 23 TC 13 Z9 13 U1 1 U2 11 PU JOHN WILEY & SONS INC PI HOBOKEN PA 111 RIVER ST, HOBOKEN, NJ 07030 USA SN 0008-4034 J9 CAN J CHEM ENG JI Can. J. Chem. Eng. PD APR PY 2010 VL 88 IS 2 BP 182 EP 189 DI 10.1002/cjce.20260 PG 8 WC Engineering, Chemical SC Engineering GA 578ZH UT WOS:000276335200011 ER PT J AU Palmer, JC Llobet, A Yeon, SH Fischer, JE Shi, Y Gogotsi, Y Gubbins, KE AF Palmer, J. C. Llobet, A. Yeon, S. -H. Fischer, J. E. Shi, Y. Gogotsi, Y. Gubbins, K. E. TI Modeling the structural evolution of carbide-derived carbons using quenched molecular dynamics SO CARBON LA English DT Article ID REVERSE MONTE-CARLO; PAIR DISTRIBUTION FUNCTION; PORE-SIZE; NANOPOROUS CARBON; POROUS GLASSES; SIMULATION; ADSORPTION; BET AB We develop morphologically realistic models for amorphous carbon using quenched molecular dynamics. We show that as the thermal quench rate is decreased, the model structures become more highly ordered, forming large graphene-like fragments and regularly shaped porous features. The evolution of these changes is compared with a series of carbide-derived carbons synthesized from crystalline TiC using different chlorination temperatures. In general, we find that the structural changes in the models are similar to those seen in experiment and that these changes have a significant impact on pore size distributions, specific surface areas, and adsorption isotherms, which are used to empirically characterize microporous carbons. (C) 2009 Elsevier Ltd. All rights reserved. C1 [Palmer, J. C.; Gubbins, K. E.] N Carolina State Univ, Dept Chem & Biomol Engn, Raleigh, NC 27695 USA. [Llobet, A.] Los Alamos Natl Lab, LANSCE, Los Alamos, NM 87545 USA. [Yeon, S. -H.; Gogotsi, Y.] Drexel Univ, Dept Mat Sci & Engn, Philadelphia, PA 19104 USA. [Fischer, J. E.] Univ Penn, Dept Mat Sci & Engn, Philadelphia, PA 19104 USA. [Shi, Y.] Rensselaer Polytech Inst, Dept Mat Sci & Engn, Troy, NY 12180 USA. RP Palmer, JC (reprint author), N Carolina State Univ, Dept Chem & Biomol Engn, Raleigh, NC 27695 USA. EM jcpalmer@ncsu.edu RI Llobet, Anna/B-1672-2010; Shi, Yunfeng/B-3278-2008; Gogotsi, Yury/B-2167-2008 OI Shi, Yunfeng/0000-0003-1700-6049; Gogotsi, Yury/0000-0001-9423-4032 FU National Science Foundation [CBET-0932656]; US Department of Energy [DE-FC36-04GO14280, DE-FG02-08ER46522, DE-FG01-05ER05-01]; DOE Office of Basic Energy Sciences; DOE [DE-AC52-06NA25396] FX We are thankful to Dr. Gleb Yushin, Georgia Tech, for providing TEM micrographs. we also thank the National Science Foundation (Grant no. CBET-0932656) (JCP and KEG, modeling) and the US Department of Energy (Grant nos. DE-FC36-04GO14280 (S.-H. Y, CDC synthesis), DE-FG02-08ER46522 (JEF, neutron scattering sample preparation and coordination analysis), and DE-FG01-05ER05-01 (YG, HRTEM)) for supporting this work. The neutron scattering results benefited from the use of HIPD at the Lujan Center at Los Alamos Neutron Science Center, funded by DOE Office of Basic Energy Sciences. Los Alamos National Laboratory is operated by Los Alamos National Security LLC under DOE Contract DE-AC52-06NA25396. NR 26 TC 87 Z9 88 U1 5 U2 58 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0008-6223 J9 CARBON JI Carbon PD APR PY 2010 VL 48 IS 4 BP 1116 EP 1123 DI 10.1016/j.carbon.2009.11.033 PG 8 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 559MO UT WOS:000274829500022 ER PT J AU Bhat, VV Contescu, CI Gallego, NC Baker, FS AF Bhat, Vinay V. Contescu, Cristian I. Gallego, Nidia C. Baker, Frederick S. TI Atypical hydrogen uptake on chemically-activated, ultramicroporous carbon SO CARBON LA English DT Article ID CARBIDE-DERIVED CARBONS; INTERCALATION COMPOUNDS; NANOPOROUS MATERIALS; POTENTIAL-THEORY; ADSORPTION; STORAGE; SPILLOVER; DESORPTION; NANOTUBES; GASES AB Hydrogen adsorption on ultramicroporous carbon was investigated at near-ambient temperatures using volumetric and gravimetric methods The results showed that the main process, physisorption, is accompanied by a slow process of different nature, that causes slow uptake at high pressures and hysteresis on desorption The combined result is unusually high levels of hydrogen uptake at near-ambient temperatures and pressures (e g up to 0 8 wt % at 25 degrees C and 2 MPa). The heat of adsorption corresponding to the slow process leading to high uptake (17-20 kJ/mol) is higher than usually reported for carbon materials, the adsorption kinetics is slow, and the isotherms exhibit pronounced hysteresis These unusual properties were attributed to contributions from polarization-enhanced physisorption induced by traces of alkali metals residual from chemical activation The results support the hypothesis that polarization-induced physisorption in high surface area carbons modified with traces of alkali metal ions is an alternate route for increasing the hydrogen storage capacity of carbon adsorbents (C) 2009 Elsevier Ltd All rights reserved C1 [Bhat, Vinay V.; Contescu, Cristian I.; Gallego, Nidia C.; Baker, Frederick S.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Contescu, CI (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, 1 Bethel Valley Rd, Oak Ridge, TN 37831 USA. RI Contescu, Cristian/E-8880-2011; OI Contescu, Cristian/0000-0002-7450-3722; Gallego, Nidia/0000-0002-8252-0194 FU Division of Materials Science and Engineering, U S Department of Energy [DE-AC05-00OR22275]; Scientific Users Facility Division, Office of Basic Energy Sciences, U S Department of Energy; ORISE; ORNL FX This research is supported by the Division of Materials Science and Engineering, U S Department of Energy, under contract DE-AC05-00OR22275 with U. T Battelle, LLC A portion of this research was conducted at ORNL's Center for Nanophase Materials Science, which is sponsored by the Scientific Users Facility Division, Office of Basic Energy Sciences, U S Department of Energy. The authors acknowledge Dr. A. Lupini (ORNL) for high resolution STEM images One of the authors (VV.B) acknowledges the appointment under ORNL Postdoctoral Associate Program administered jointly by ORISE and ORNL The authors acknowledge MeadWestvaco Corporation (Charleston, SC) for kindly supplying the UMC sample, and Dr Karol Putyera's help (EAG Shiva Technologies, Inc, Syracuse, NY) with GDMS analysis of UMC material NR 43 TC 40 Z9 41 U1 1 U2 18 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0008-6223 J9 CARBON JI Carbon PD APR PY 2010 VL 48 IS 5 BP 1331 EP 1340 DI 10.1016/j.carbon.2009.12.001 PG 10 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 569XL UT WOS:000275636000002 ER PT J AU Marcinek, M Hardwick, LJ Zukowska, GZ Kostecki, R AF Marcinek, Marek Hardwick, Laurence J. Zukowska, Grazyna Z. Kostecki, Robert TI Microwave plasma chemical vapor deposition of graphitic carbon thin films SO CARBON LA English DT Article ID TRANSMISSION ELECTRON-MICROSCOPY; RAMAN-SPECTROSCOPY; FIELD-EMISSION; AMORPHOUS-CARBON; DIAMOND GROWTH; CVD GROWTH; NI AB Thin layers of graphitic carbon were produced from solid organic precursors by a one-step microwave plasma chemical vapor deposition method Low-pressure Ar-plasma and strong electromagnetic radiation led to the rapid evaporation and pyrolysis of organic precursors at relatively low temperatures, yielding uniform films of nanometer-sized graphitized carbon particles The structure and morphology of the carbon films were examined using scanning electron microscopy, transmission electron microscopy, and Raman spectroscopy A direct correlation between electrical conductivity of graphitic thin films and their structure was established (C) 2010 Elsevier Ltd All rights reserved C1 [Marcinek, Marek; Hardwick, Laurence J.; Kostecki, Robert] Univ Calif Berkeley, Lawrence Berkeley Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. [Zukowska, Grazyna Z.] Warsaw Univ Technol, Fac Chem, PL-00664 Warsaw, Poland. RP Kostecki, R (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. FU US Department of Energy [DE-AC02-05CH11231] FX This work was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of FreedomCAR and Vehicle Technologies of the US Department of Energy under Contract No. DE-AC02-05CH11231 NR 37 TC 9 Z9 9 U1 3 U2 14 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0008-6223 J9 CARBON JI Carbon PD APR PY 2010 VL 48 IS 5 BP 1552 EP 1557 DI 10.1016/j.carbon.2009.12.052 PG 6 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 569XL UT WOS:000275636000030 ER PT J AU Khan, MI Deb, S Aydemir, K Alwarthan, AA Chattopadhyay, S Miller, JT Marshall, CL AF Khan, M. Ishaque Deb, Sangita Aydemir, Kadir Alwarthan, Abdulrahman A. Chattopadhyay, Soma Miller, Jeffrey T. Marshall, Christopher L. TI Vanadium Oxide Based Nanostructured Materials for Catalytic Oxidative Dehydrogenation of Propane: Effect of Heterometallic Centers on the Catalyst Performance SO CATALYSIS LETTERS LA English DT Article DE Vanadium oxides; Oxidative dehydrogenation; Heterogeneous catalysis; Propylene; X-ray absorption spectroscopy; EXAFS ID MG-O CATALYSTS; FRAMEWORK MATERIALS; MOLYBDENUM; CLUSTERS; ISOPOLYVANADATE; IFEFFIT; ARTEMIS; ATHENA AB Catalytic properties of a series of new class of catalysts materials-[Co(3)(H(2)O)(12)V(18)O(42) (XO(4))]center dot 24H(2)O (VNM-Co), [Fe(3)(H(2)O)(12)V(18)O(42)(XO(4))]center dot 24H(2)O (VNM-Fe) (X = V, S) and [H(6)Mn(3)(H(2)O)(12)V(18)O(42)(VO(4))]center dot 30H(2)O for the oxidative dehydrogenation of propane is studied. The open-framework nanostructures in these novel materials consist of three-dimensional arrays of {V(18)O(42)(XO(4))} (X = V, S) clusters interconnected by {-O-M-O-} (M = Mn, Fe, Co) linkers. The effect of change in the heterometallic center M (M = Mn, Co, Fe) of the linkers on the catalyst performance was studied. The catalyst material with Co in the linker showed the best performance in terms of propane conversion and selectivity at 350 degrees C. The material containing Fe was most active but least selective and Mn containing catalyst was least active. The catalysts were characterized by Temperature Programmed Reduction (TPR), BET surface area measurement, Diffuse Reflectance Infrared Fourier Transform Spectroscopy, and X-ray Absorption Spectroscopy. TPR results show that all three catalysts are easily reducible and therefore are active at relatively low temperature. In situ X-ray absorption near edge spectroscopy (XANES) and extended X-ray absorption fine structure spectroscopy (EXAFS) studies revealed that the oxidation state of Co(II) remained unchanged up to 425 degrees C (even after pretreatment). The reduction of Co(II) into metallic form starts at 425 degrees C and this process is completed at 600 degrees C. C1 [Khan, M. Ishaque; Deb, Sangita; Aydemir, Kadir; Chattopadhyay, Soma] IIT, Dept Biol Chem & Phys Sci, Chicago, IL 60616 USA. [Alwarthan, Abdulrahman A.] King Saud Univ, Dept Chem, Coll Sci, Riyadh 11451, Saudi Arabia. [Miller, Jeffrey T.; Marshall, Christopher L.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. RP Khan, MI (reprint author), IIT, Dept Biol Chem & Phys Sci, Chicago, IL 60616 USA. EM khan@iit.edu RI ID, MRCAT/G-7586-2011; Marshall, Christopher/D-1493-2015 OI Marshall, Christopher/0000-0002-1285-7648 FU King Saud University, Riyadh, Saudi Arabia FX This work was partially supported by a grant ( to M. I. K.) from King Saud University, Riyadh, Saudi Arabia. NR 36 TC 4 Z9 4 U1 0 U2 14 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1011-372X J9 CATAL LETT JI Catal. Lett. PD APR PY 2010 VL 135 IS 3-4 BP 282 EP 290 DI 10.1007/s10562-010-0275-6 PG 9 WC Chemistry, Physical SC Chemistry GA 571UQ UT WOS:000275781700019 ER PT J AU Strelkova, MI Safonov, AA Sukhanov, LP Umanskiy, SY Kirillov, IA Potapkin, BV Pasman, HJ Tentner, AM AF Strelkova, M. I. Safonov, A. A. Sukhanov, L. P. Umanskiy, S. Ya. Kirillov, I. A. Potapkin, B. V. Pasman, H. J. Tentner, A. M. TI Low temperature n-butane oxidation skeletal mechanism, based on multilevel approach SO COMBUSTION AND FLAME LA English DT Article DE n-butane; Low-temperature skeletal mechanism; Quantum-chemical calculations; Reaction constant ID AUTOIGNITION; RADICALS; COMBUSTION; MIXTURES; PRESSURE; AIR; TRANSITION; PARAMETERS; CHEMISTRY; KINETICS AB In order to reconcile an increasingly large deviation (order of magnitude) of the ignition delay time at decreasing initial temperature, computed using the prior art kinetic schemes, with the available experimental values, a new skeletal mechanism (54 species, 94 reactions) for low-temperature (500-800 K) ignition of n- butane in air based on ab initio calculations is developed. The skeletal mechanism obtained accurately reproduces n-butane combustion kinetics for the practically important ranges of pressure. temperature and fuel-air equivalence ratio, especially in the low-temperature range. The elaborated first principal skeletal chemical kinetic mechanism of n-butane oxidation was validated against available experimental results for normal and elevated initial pressure (1-15 atm) using the Chemical Work Bench code. A good agreement with experiments was shown. (c) 2010 The Combustion Institute. Published by Elsevier Inc. All rights reserved. C1 [Strelkova, M. I.; Sukhanov, L. P.; Kirillov, I. A.; Potapkin, B. V.] RRC Kurchatov Inst, Moscow 123182, Russia. [Safonov, A. A.; Umanskiy, S. Ya.; Potapkin, B. V.] Kintech Lab, Moscow 123182, Russia. [Safonov, A. A.] Photochem Ctr, Moscow 119421, Russia. [Umanskiy, S. Ya.] NN Semenov Chem Phys Inst, Moscow 119991, Russia. [Pasman, H. J.] Delft Univ Technol, NL-2600 AA Delft, Netherlands. [Tentner, A. M.] Argonne Natl Lab, Argonne, IL 60439 USA. RP Strelkova, MI (reprint author), RRC Kurchatov Inst, 1 Kurchatov Sq, Moscow 123182, Russia. EM strelkova@hepti.kiae.ru RI Sukhanov, Leonid/K-9701-2013 OI Sukhanov, Leonid/0000-0001-8599-8102 NR 34 TC 6 Z9 7 U1 0 U2 14 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0010-2180 J9 COMBUST FLAME JI Combust. Flame PD APR PY 2010 VL 157 IS 4 BP 641 EP 652 DI 10.1016/j.combustflame.2009.12.018 PG 12 WC Thermodynamics; Energy & Fuels; Engineering, Multidisciplinary; Engineering, Chemical; Engineering, Mechanical SC Thermodynamics; Energy & Fuels; Engineering GA 567YG UT WOS:000275484500004 ER PT J AU Castelnau, O Cordier, P Lebensohn, RA Merkel, S Raterron, P AF Castelnau, Olivier Cordier, Patrick Lebensohn, R. A. Merkel, Sebastien Raterron, Paul TI Microstructures and rheology of the Earth's upper mantle inferred from a multiscale approach SO COMPTES RENDUS PHYSIQUE LA English DT Article DE Olivine; Dislocations; High pressure; Viscoplasticity; Polycrystal; Homogenization; Earth mantle ID OLIVINE SLIP SYSTEMS; SULU TERRANE CHINA; SELF-CONSISTENT; SEISMIC ANISOTROPY; FIELD FLUCTUATIONS; VISCOPLASTIC POLYCRYSTALS; NONLINEAR COMPOSITES; SCREW DISLOCATIONS; STACKING-FAULTS; PRESSURE SENSITIVITY AB The strongly anisotropic rheology of olivine polycrystals, associated to their microstructure, constitutes a key feature affecting the dynamics of the Earth's upper mantle. High pressure deformation experiments carried out on olivine single crystals under synchrotron radiation, together with estimations of lattice friction based on first-principle calculations, show a transition from easy [100] to easy [001] slips as pressure and temperature (thus depth) increases. We input these data at the slip system level into the second-order extension of the self-consistent scheme to assess microstructure evolution along a typical flow pattern beneath an oceanic spreading center. (C) 2010 Academic des sciences. Published by Elsevier Masson SAS. All rights reserved. C1 [Castelnau, Olivier] Arts & Metiers ParisTech, PIMM, CNRS, F-75013 Paris, France. [Cordier, Patrick; Merkel, Sebastien; Raterron, Paul] Univ Lille 1, Unite Mat & Transformat, F-59655 Villeneuve Dascq, France. [Lebensohn, R. A.] Los Alamos Natl Lab, MST8 MS G755, Los Alamos, NM 87545 USA. RP Castelnau, O (reprint author), Arts & Metiers ParisTech, PIMM, CNRS, 151 Blvd Hop, F-75013 Paris, France. EM olivier.castelnau@paris.ensam.fr; Patrick.Cordier@univ-lille1.fr; lebenso@lanl.gov; sebastien.merkel@univ-lille1.fr; Paul.Raterron@univ-lille1.fr RI Lebensohn, Ricardo/A-2494-2008; Merkel, Sebastien/E-5501-2011; castelnau, olivier/E-7789-2011; Cordier, Patrick/D-2357-2012; Raterron, Paul/C-5594-2013 OI Lebensohn, Ricardo/0000-0002-3152-9105; Merkel, Sebastien/0000-0003-2767-581X; castelnau, olivier/0000-0001-7422-294X; Cordier, Patrick/0000-0002-1883-2994; FU Centre National de la Recherche Scientifique CNRS/INSU; CNRS; Agence Nationale de la Recherche (ANR) [BLAN08-2_343541] FX This research was supported by the Centre National de la Recherche Scientifique CNRS/INSU Grants "DyETI 2005", the CNRS "Programme International de Collaboration Scientifique" (PICS program), as well as the Agence Nationale de la Recherche (ANR) Grant BLAN08-2_343541 "Mantle Rheology". O. Castelnau wishes to thank D.K. Blackman for the many discussions on mantle dynamic. NR 60 TC 15 Z9 15 U1 2 U2 24 PU ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER PI PARIS PA 23 RUE LINOIS, 75724 PARIS, FRANCE SN 1631-0705 J9 CR PHYS JI C. R. Phys. PD APR-MAY PY 2010 VL 11 IS 3-4 BP 304 EP 315 DI 10.1016/j.crhy.2010.07.011 PG 12 WC Astronomy & Astrophysics; Physics, Multidisciplinary SC Astronomy & Astrophysics; Physics GA 673WM UT WOS:000283694900012 ER PT J AU Tikare, V Braginsky, M Bouvard, D Vagnon, A AF Tikare, Veena Braginsky, Michael Bouvard, Didier Vagnon, Alexander TI Numerical simulation of microstructural evolution during sintering at the mesoscale in a 3D powder compact SO COMPUTATIONAL MATERIALS SCIENCE LA English DT Article DE Sintering; Microstructural evolution; Modeling; Numerical simulation; Densification ID GRAIN-GROWTH; COMPUTER-SIMULATION; MOLECULAR-DYNAMICS; FINITE-ELEMENT; POTTS-MODEL; PARTICLES; DIFFUSION; BOUNDARY; KINETICS; MECHANISM AB This paper presents a numerical model that is capable of simulating microstructural evolution during simple solid-state sintering of a complex 3D powder particle compact. This model, a Potts kinetic Monte Carlo model, is a true mesoscale model that can simulate a large number of particles while resolving microstructural features such as particles, necks, pores and more in detail. Furthermore, it is shown that this model can simulate all the stages of sintering from the initial particle contact to neck growth with open, percolating porosity to closed isolated pores seamlessly. The various kinetic processes that lead to densification and other microstructural changes are shown to be simulated correctly. The model is demonstrated by comparing the microstructural evolution resulting from simulation to experimental results, namely 3D microtomographic images obtained from synchrotron radiation of a Cu-powder compact while it was sintering. For quantitative comparison, we extrapolated a grain structure into the simple microtomographic image that consists of mass distribution only. (C) 2010 Elsevier B.V. All rights reserved. C1 [Tikare, Veena] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Braginsky, Michael] Universal Energy Syst Inc, Dayton, OH 45432 USA. [Bouvard, Didier; Vagnon, Alexander] Grenoble INP CNRS UJF, Lab SIMAP, F-38402 St Martin Dheres, France. RP Tikare, V (reprint author), Sandia Natl Labs, POB 5800,MS 0747, Albuquerque, NM 87185 USA. EM VTikare@sandia.gov; Michael.Braginsky.ctr@wpafb.af.mil; didier.bouvard@grenoble-inp.fr FU United States Department of Energy [DE-AC04-94AL85000] FX Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract DE-AC04-94AL85000. NR 40 TC 27 Z9 27 U1 3 U2 22 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0927-0256 J9 COMP MATER SCI JI Comput. Mater. Sci. PD APR PY 2010 VL 48 IS 2 BP 317 EP 325 DI 10.1016/j.commatsci.2010.01.013 PG 9 WC Materials Science, Multidisciplinary SC Materials Science GA 595SV UT WOS:000277634300012 ER PT J AU Zhang, LZ Bartel, T Lusk, MT AF Zhang, Liangzhe Bartel, Timothy Lusk, Mark T. TI Parallelized hybrid Monte Carlo simulation of stress-induced texture evolution SO COMPUTATIONAL MATERIALS SCIENCE LA English DT Article DE Monte Carlo; Grain boundary; Elasticity; Anisotropy; Texture; Driving force ID PHASE-FIELD; MICROSTRUCTURE EVOLUTION; ROLLING TEXTURES; RECRYSTALLIZATION; METALS; MODELS; DEFORMATION; ALGORITHM; GROWTH; ENERGY AB A parallelized hybrid Monte Carlo (HMC) methodology is devised to quantify the microstructural evolution of polycrystalline material under elastic loading. The approach combines a time explicit material point method (MPM) for the mechanical stresses with a calibrated Monte Carlo (cMC) model for grain boundary kinetics. The computed elastic stress generates an additional driving force for grain boundary migration. The paradigm is developed, tested, and subsequently used to quantify the effect of elastic stress on the evolution of texture in nickel polycrystals. As expected, elastic loading favors grains which appear softer with respect to the loading direction. The rate of texture evolution is also quantified, and an internal variable rate equation is constructed which predicts the time evolution of the distribution of orientations. (C) 2010 Elsevier BM. All rights reserved. C1 [Zhang, Liangzhe; Lusk, Mark T.] Colorado Sch Mines, Dept Phys, Golden, CO 80401 USA. [Bartel, Timothy] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Lusk, MT (reprint author), Colorado Sch Mines, Dept Phys, Golden, CO 80401 USA. EM mlusk@mines.edu FU Sandia National Laboratories; United States Department of Energy [DE-AC04-94AL85000]; National Science Foundation; National Renewable Energy Laboratories FX The research is supported by Sandia National Laboratories and is guided by Elizabeth Holm. Sandia National Laboratories are operated by the Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC04-94AL85000. We also acknowledge the Golden Energy Computing Organization at the Colorado School of Mines for the use of resources acquired with financial assistance from the National Science Foundation and the National Renewable Energy Laboratories. NR 35 TC 8 Z9 8 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0927-0256 EI 1879-0801 J9 COMP MATER SCI JI Comput. Mater. Sci. PD APR PY 2010 VL 48 IS 2 BP 419 EP 425 DI 10.1016/j.commatsci.2010.02.002 PG 7 WC Materials Science, Multidisciplinary SC Materials Science GA 595SV UT WOS:000277634300025 ER PT J AU Shi, XY Gao, H Lazouskaya, VI Kang, QJ Jin, Y Wang, LP AF Shi, Xiao-yan Gao, Hui Lazouskaya, Volha I. Kang, Qinjun Jin, Yan Wang, Lian-Ping TI Viscous flow and colloid transport near air-water interface in a microchannel SO COMPUTERS & MATHEMATICS WITH APPLICATIONS LA English DT Article DE Gas-liquid interfacial flow; Moving contact line; Colloid retention; Colloid transport; Lattice Boltzmann equation; Interface tracking ID LATTICE BOLTZMANN-EQUATION; UNSATURATED POROUS-MEDIA; NUMERICAL-SIMULATION; IMMISCIBLE DROPLET; CAPILLARY CHANNEL; SURFACE; RETENTION; DISPLACEMENT; PARTICLES; SCALE AB In order to understand the transport behavior of colloids near an air-water interface (AWI), two computational methods are applied to simulate the local water flow field near a moving AWI in a 20 microfluidic channel. The first method is a mesoscopic multicomponent and multiphase lattice Boltzmann (LBM) model and the second is the macroscopic, Navier-Stokes based, volume-of-fluid interface tracking method. In the LBM, it is possible to predict the dynamic contact angles after the static contact angle is correctly set, and the predicted dynamic contact angles are in good agreement with previous observations. It is demonstrated that the two methods can yield a similar flow velocity field if they are applied properly. The flow field relative to AWI depends on the direction of the flow, and exhibits curved streamlines that transport fluid between the center of the channel and the wall region. Using the obtained flow, the motion of sub-micron colloids in a de-ionized water solution is then studied by a Lagrangian approach. The observed colloid trajectories are in qualitative agreement with our visualizations using a confocal microscope. (C) 2009 Elsevier Ltd. All rights reserved. C1 [Shi, Xiao-yan; Gao, Hui; Wang, Lian-Ping] Univ Delaware, Dept Mech Engn, Newark, DE 19716 USA. [Lazouskaya, Volha I.; Jin, Yan] Univ Delaware, Dept Plant & Soil Sci, Newark, DE 19716 USA. [Kang, Qinjun] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Wang, LP (reprint author), Univ Delaware, Dept Mech Engn, Newark, DE 19716 USA. EM graceshi@udel.edu; hgao@udel.edu; volha@udel.edu; qkang@lanl.gov; yjin@udel.edu; lwang@udel.edu RI Wang, Lian-Ping/N-7516-2016; Kang, Qinjun/A-2585-2010 OI Wang, Lian-Ping/0000-0003-4276-0051; Kang, Qinjun/0000-0002-4754-2240 FU US Department of Agriculture [NRI-2006-02551, NRI-2008-02803]; US National Science Foundation [ATM-0527140]; National Natural Science Foundation of China [10628206]; NSF [BET 0827259] FX This study is supported by the US Department of Agriculture (NRI-2006-02551, NRI-2008-02803), US National Science Foundation (ATM-0527140), and National Natural Science Foundation of China (Project No. 10628206). LPW acknowledges the travel support provided by ICMMES-08 through the NSF grant BET 0827259. We thank Professor Stephane Zaleski of Universite Pierre et Marie Curie, France for making his VOFIT code available to us. The kind help from Dr. Bogdan Rosa with the NCL graphics is acknowledged. NR 35 TC 5 Z9 5 U1 2 U2 25 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0898-1221 EI 1873-7668 J9 COMPUT MATH APPL JI Comput. Math. Appl. PD APR PY 2010 VL 59 IS 7 BP 2290 EP 2304 DI 10.1016/j.camwa.2009.08.059 PG 15 WC Mathematics, Applied SC Mathematics GA 590JB UT WOS:000277220600013 ER PT J AU Hemez, F Atamturktur, HS Unal, C AF Hemez, Francois Atamturktur, H. Sezer Unal, Cetin TI Defining predictive maturity for validated numerical simulations SO COMPUTERS & STRUCTURES LA English DT Article DE Modeling and simulation; Model calibration; Predictive maturity metric; Decision-making ID TRANSIENT; DYNAMICS; OUTPUT AB The increasing reliance on computer simulations in decision-making motivates the need to formulate a commonly accepted definition for "predictive maturity." The concept of predictive maturity involves quantitative metrics that could prove useful while allocating resources for physical testing and code development. Such metrics should be able to track progress (or lack thereof) as additional knowledge becomes available and is integrated into the simulations for example, through the addition of new experimental datasets during model calibration, and/or through the implementation of better physics models in the codes. This publication contributes to a discussion of attributes that a metric of predictive maturity should exhibit. It is contended that the assessment of predictive maturity must go beyond the goodness-of-fit of the model to the available test data We firmly believe that predictive maturity must also consider the "knobs," or ancillary variables, used to calibrate the model and the degree to which physical experiments cover the domain of applicability. The emphasis herein is placed on translating the proposed attributes into mathematical properties, such as the degree of regularity and asymptotic limits of the maturity function Altogether these mathematical properties define a set of constraints that the predictive maturity function must satisfy. Based on these constraints, we propose a Predictive Maturity Index (PMI). Physical datasets are used to illustrate how the PMI quantifies the maturity of the non-linear. Preston-Tonks-Wallace model of plastic deformation applied to beryllium, a light-weight, high-strength metal. The question "does collecting additional data fin prove predictive power?" is answered by computing the PMI iteratively as additional experimental datasets become available. The results obtained reflect that coverage of the validation domain is as Important to predictive maturity as goodness-of-fit. The example treated also indicates that the stabilization of predictive maturity can be observed, provided that enough physical experiments are available. (C) 2010 Elsevier Ltd All rights reserved C1 [Hemez, Francois; Atamturktur, H. Sezer; Unal, Cetin] Los Alamos Natl Lab, Div Appl Phys, Div X, Los Alamos, NM 87545 USA. RP Atamturktur, HS (reprint author), Los Alamos Natl Lab, Div Appl Phys, Div X, POB 1663, Los Alamos, NM 87545 USA. OI Hemez, Francois/0000-0002-5319-4078 FU US Department of Energy [DE-AC52-06NA25396] FX This work is performed under the auspices of the Validation and Uncertainty project of the Nuclear Energy Advanced Modeling and Simulation (NEAMS) program at Los Alamos National Laboratory (LANL). at Los Alamos National Laboratory (LANL). The first two authors are grateful to Cetin Unal, M&S project leader, for his support and technical leadership. LANL is operated by the Los Alamos National Security, LLC for the National Nuclear Security Administration of the US Department of Energy under Contract DE-AC52-06NA25396. NR 25 TC 19 Z9 19 U1 0 U2 2 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0045-7949 J9 COMPUT STRUCT JI Comput. Struct. PD APR PY 2010 VL 88 IS 7-8 BP 497 EP 505 DI 10.1016/j.compstruc.2010.01.005 PG 9 WC Computer Science, Interdisciplinary Applications; Engineering, Civil SC Computer Science; Engineering GA 576PC UT WOS:000276156000009 ER PT J AU Tan, L Ren, X Allen, TR AF Tan, L. Ren, X. Allen, T. R. TI Corrosion behavior of 9-12% Cr ferritic-martensitic steels in supercritical water SO CORROSION SCIENCE LA English DT Article DE Oxidation; Kinetics; Exfoliation; Porosity ID HIGH-TEMPERATURE OXIDATION; ALLOYS; HCM12A; VAPOR; T91 AB As important structural materials for advanced power plants, the corrosion of 9-12% Cr ferritic-martensitic steels exposed to both high-temperature water and supercritical water (SCW) was studied using a variety of characterization techniques. Exposure temperature and time showed significant effects on the surface morphologies, oxide scale thickness, and oxide constituents. The steels approximately followed near-parabolic oxidation kinetics in the SCW conditions. The inner spinel layer was found to be porous with a size of tens of nanometers independent upon the exposure temperature and time. High temperature accelerated the formation of a large amount of pores in the outer magnetite layer. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Tan, L.; Ren, X.; Allen, T. R.] Univ Wisconsin, Madison, WI 53706 USA. RP Tan, L (reprint author), Oak Ridge Natl Lab, 1 Bethel Valley Rd,POB 2008,MS6136, Oak Ridge, TN 37831 USA. EM tanl@ornl.gov RI Tan, Lizhen/A-7886-2009; Ren, Xiaowei/D-2024-2010; OI Tan, Lizhen/0000-0002-3418-2450; Allen, Todd/0000-0002-2372-7259 FU Idaho National Laboratory FX The authors thank Drs. M. Anderson, K. Sridharan, P. Brooks, Y. Chen, and A. Kruizenga for designing, building and maintaining the test loop and performing the exposure tests of the samples. This work was supported by the Idaho National Laboratory as part of the Department of Energy Generation IV Initiative. CompuTherm LLC is acknowledged for kindly providing the license for using their products Pandat software and PanFe database. This research utilized NSF-supported shared facilities at the University of Wisconsin. NR 33 TC 50 Z9 60 U1 3 U2 27 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0010-938X J9 CORROS SCI JI Corrosion Sci. PD APR PY 2010 VL 52 IS 4 BP 1520 EP 1528 DI 10.1016/j.corsci.2009.12.032 PG 9 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 575YI UT WOS:000276108900049 ER EF