FN Thomson Reuters Web of Science™ VR 1.0 PT B AU Wang, JG AF Wang, J. G. BE Chabot, E DArras, H TI MAGNETIC FRINGE FIELDS AND INTERFERENCE IN HIGH-INTENSITY ACCELERATORS SO NEURAL COMPUTATION AND PARTICLE ACCELERATORS: RESEARCH, TECHNOLOGY AND APPLICATIONS SE Neuroscience Research Progress Series LA English DT Article; Book Chapter ID ORDER TRANSFER MATRICES; QUADRUPOLE LENSES; TRANSFER MAPS AB Magnetic devices such as solenoids, dipoles, quadrupoles, sextupoles, wigglers and undulators are essential components for beam orbit control in charged particle accelerators. Magnetic fringe fields and their interference play important roles in particle dynamics, but their analyses are not always an easy task. In high-energy accelerators where the magnets usually have very large aspect ratio (length over aperture), the contribution of magnetic fringe fields to particle motion is relatively or even negligibly small, and simple approximations usually suffice. Since most of the magnets are also installed far apart, there rarely exists magnetic interference. However, this is not the case for advanced high-intensity accelerators, especially for high-current circular machines such as those for light sources and spallation neutron sources. Magnetic devices in these machines usually have large aperture and short length (small aspect ratio), and they are packed densely along beam lines due to limited space. The fringe fields of magnets become more profound and the interference among adjacent magnets often causes problems for machine operation. This becomes a challenge for the design of high-intensity accelerators. Magnetic fringe fields and their interference are usually difficult problems to analyze accurately. This is because the problems are usually highly non-linear and in general require accurate three dimensional calculations. In recent years, with progress in advanced magnet simulation codes and ever increasing computing power, magnetic fringe field and interference analyses can be handled with reasonable effort and high accuracy. In this chapter we will review the historical background and status of the treatment of magnetic fringe fields and interference in particle accelerators. Particularly, we will present recent research results on the subject associated with the Spallation Neutron Source (SNS) accumulator ring built at Oak Ridge National Laboratory. Magnetic field distributions of the SNS ring magnets are analyzed based on 3D computer simulations, at high accuracy, for their fringe constituents. Taking into account the effect of magnetic fringe fields and interference, we obtain more accurate particle optics in the magnets, which differ considerably from conventional treatments. Particle tracking directly in simulation models containing magnet assemblies provides a new and better approach of studying beam dynamics in beam lines. The method and techniques developed in our research should be directly applicable to other high-intensity accelerators. C1 ORNL, SNS, Oak Ridge, TN 37831 USA. RP Wang, JG (reprint author), ORNL, SNS, Oak Ridge, TN 37831 USA. NR 85 TC 1 Z9 1 U1 0 U2 0 PU NOVA SCIENCE PUBLISHERS, INC PI HAUPPAUGE PA 400 OSER AVE, STE 1600, HAUPPAUGE, NY 11788-3635 USA BN 978-1-60741-280-9 J9 NEUROSCI RES PROG SE PY 2010 BP 1 EP 87 PG 87 WC Neurosciences; Physics, Applied SC Neurosciences & Neurology; Physics GA BSE71 UT WOS:000284290100001 ER PT B AU Wu, AT Swenson, DR Kneisel, P Wu, G Insepov, Z Saunders, J Manus, R Golden, B Castagnola, S Sommer, W Harms, E Khabiboulline, T Murayi, W Edwards, H AF Wu, A. T. Swenson, D. R. Kneisel, P. Wu, G. Insepov, Z. Saunders, J. Manus, R. Golden, B. Castagnola, S. Sommer, W. Harms, E. Khabiboulline, T. Murayi, W. Edwards, H. BE Chabot, E DArras, H TI INVESTIGATION OF SURFACE TREATMENTS OF NIOBIUM FLAT SAMPLES AND SRF CAVITIES BY GAS CLUSTER ION BEAM TECHNIQUE FOR PARTICLE ACCELERATORS SO NEURAL COMPUTATION AND PARTICLE ACCELERATORS: RESEARCH, TECHNOLOGY AND APPLICATIONS SE Neuroscience Research Progress Series LA English DT Article; Book Chapter ID FIELD-EMISSION; BREAKDOWN; MASS AB More and more particle accelerators are using Nb Superconducting Radio Frequency (SRF) technology due to the steady progress made during the last few decades in the SRF field. Improvement of the surface treatments of Nb SRF cavities is an indispensable part of the evolution of SRF Technology. In this chapter, a study of the surface treatments of Nb flat samples and SRF single cell cavities via Gas Cluster Ion Beam (GCIB) technique will be reported. Beams of Ar, O(2), N(2), and NF(3) clusters with accelerating voltages up to 35 kV were employed in the treatments. The treated surfaces of Nb flat samples were examined by a scanning field emission microscope, a scanning electron microscope equipped with an energy dispersive x-ray analyzer, a secondary ion mass spectrometry, an atomic force microscope, and a 3-D profilometer. The experiments revealed that GCIB technique could not only modify surface morphology of Nb, but also change the surface oxide layer structure of Nb and reduce the number of field emission sites on the surface dramatically. Computer simulation via atomistic molecular dynamics and a phenomenological surface dynamics was employed to help understand the experimental results. Due to its effectiveness at changing the depth and composition of the surface oxide layer structure of Nb, GOB might be a key to understanding and overcoming the limitations of the high-field Q-slope. Based on the encouraging experimental results obtained from flat sample study, a novel setup was constructed to allow GCIB treatments on Nb single cell cavities. First results of RF tests on the GCIB treated Nb single cell cavities showed that the quality factor Q of the cavity could be improved substantially at 4.5 K and the superconducting gap value, extracted from RF measurements at different temperatures below superconducting transition temperature, was enhanced by oxygen GCIB treatments. This study indicates that GCIB is a promising surface treatment technique for Nb SRF cavities to be used in particle accelerators. C1 [Wu, A. T.; Kneisel, P.; Saunders, J.; Manus, R.; Golden, B.; Castagnola, S.; Sommer, W.] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. [Wu, A. T.] Epion Corp, Billerica, MA 01821 USA. [Wu, G.; Khabiboulline, T.; Murayi, W.; Edwards, H.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Insepov, Z.] Argonne Natl Lab, Argonne, IL 60439 USA. RP Wu, AT (reprint author), Thomas Jefferson Natl Accelerator Facil, 12000 Jefferson Ave, Newport News, VA 23606 USA. RI Insepov, Zinetula/L-2095-2013 OI Insepov, Zinetula/0000-0002-8079-6293 NR 26 TC 0 Z9 0 U1 0 U2 1 PU NOVA SCIENCE PUBLISHERS, INC PI HAUPPAUGE PA 400 OSER AVE, STE 1600, HAUPPAUGE, NY 11788-3635 USA BN 978-1-60741-280-9 J9 NEUROSCI RES PROG SE PY 2010 BP 147 EP 187 PG 41 WC Neurosciences; Physics, Applied SC Neurosciences & Neurology; Physics GA BSE71 UT WOS:000284290100004 ER PT B AU Wu, AT AF Wu, A. T. BE Chabot, E DArras, H TI SURFACE TREATMENTS OF NIOBIUM SUPERCONDUTING RADIO FREQUENCY CAVITIES BY ELECTROPOLISHING FOR PARTICLE ACCELERATORS SO NEURAL COMPUTATION AND PARTICLE ACCELERATORS: RESEARCH, TECHNOLOGY AND APPLICATIONS SE Neuroscience Research Progress Series LA English DT Article; Book Chapter C1 Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. RP Wu, AT (reprint author), Thomas Jefferson Natl Accelerator Facil, 12000 Jefferson Ave, Newport News, VA 23606 USA. NR 12 TC 0 Z9 0 U1 0 U2 0 PU NOVA SCIENCE PUBLISHERS, INC PI HAUPPAUGE PA 400 OSER AVE, STE 1600, HAUPPAUGE, NY 11788-3635 USA BN 978-1-60741-280-9 J9 NEUROSCI RES PROG SE PY 2010 BP 269 EP 273 PG 5 WC Neurosciences; Physics, Applied SC Neurosciences & Neurology; Physics GA BSE71 UT WOS:000284290100009 ER PT J AU Yaghmaie, F Saeed, O Garan, SA Voelker, MA Sternberg, H Timiras, PS AF Yaghmaie, Farzin Saeed, Omar Garan, Steven A. Voelker, Mark A. Sternberg, Hal Timiras, Paola S. TI Estrogen receptor-alpha immunoreactivity in the arcuate hypothalamus of young and middle-aged female mice SO NEUROENDOCRINOLOGY LETTERS LA English DT Article DE estrogen receptor alpha; arcuate hypothalamus; puberty; aging ID CALORICALLY RESTRICTED MICE; CENTRAL-NERVOUS-SYSTEM; NEUROENDOCRINE FUNCTION; SYNAPTIC PLASTICITY; GENE-EXPRESSION; MESSENGER-RNA; LIFE-SPAN; IN-VIVO; ESTRADIOL; NUCLEUS AB BACKGROUND: Changes in the neuroendocrine regulation of gonadal function, via altered hypothalamic sensitivity to peripheral hormones, are known to schedule reproductive maturation in the young and influence reproductive senescence. Estrogen (E) is a key hormone in this process. While changes in circulating levels of E over the life span are well documented, less is known about the corresponding changes in E sensitivity over the lifespan, especially during middle-age, when the initial signs of reproductive senescence emerge. OBJECTIVE: Taking Estrogen Receptor (ER)-alpha-immunoreactive cells as an index of hypothalamic sensitivity to E, this investigation aims to quantify alterations occurring at middle age in comparison to young age. METHODS: We counted ER-alpha-immunoreactive (IR) cells in the Arcuate hypothalamus of 6-week-old (young) and 18-month-old (middle-aged) C57BL/6J female mice, sacrificed at vaginal opening and diestrous, respectively. An automated imaging microscopy system (AIMS) was employed to generate counts of ER-alpha-IR cells for each sampled section of the Arcuate nucleus (ARC). RESULTS: This study shows a 21% reduction in the number of ER-alpha-IR cells and an 18% reduction in total ARC cell populations with aging. However, the calculated percentage of ER-alpha IR cells is similar in both young and middle aged mice, 30% and 29%, respectively. CONCLUSIONS: Both ER-alpha IR cell populations and total cell populations within the ARC hypothalamus decline by middle age in comparison to young age. Despite such a significant decrease in ER-alpha immunoreactive and total cells, both young and middle age mice maintain a similar ratio of ER-alpha IR cells to total cells in the ARC hypothalamus. C1 [Yaghmaie, Farzin] Univ Calif Los Angeles, Dept Psychiat & Behav Sci, Semel Inst Neurosci & Human Behav, Los Angeles, CA 90095 USA. [Saeed, Omar] Emory Univ, Dept Internal Med, Atlanta, GA 30322 USA. [Garan, Steven A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Voelker, Mark A.; Sternberg, Hal] BioTime Inc, Alameda, CA USA. [Timiras, Paola S.] Univ Calif Berkeley, Dept Mol Cell & Biol, Berkeley, CA 94720 USA. RP Yaghmaie, F (reprint author), Univ Calif Los Angeles, Dept Psychiat & Behav Sci, Semel Inst Neurosci & Human Behav, 760 Westwood Plaza, Los Angeles, CA 90095 USA. EM fyaghmaie@mednet.ucla.edu FU NIH [AG19145]; BioTime Inc. FX This study is dedicated to the memory of Paola S. Timiras and would not have been possible without the contributions of Lee R. McCook. Supported by NIH-AG19145 grant and BioTime Inc. NR 26 TC 5 Z9 5 U1 0 U2 0 PU MAGHIRA & MAAS PUBLICATIONS PI STOCKHOLM PA PO BOX 26132, S-100 41 STOCKHOLM, SWEDEN SN 0172-780X J9 NEUROENDOCRINOL LETT JI Neuroendocrinol. Lett. PY 2010 VL 31 IS 1 BP 56 EP 62 PG 7 WC Endocrinology & Metabolism; Neurosciences SC Endocrinology & Metabolism; Neurosciences & Neurology GA 737PY UT WOS:000288581900008 PM 20150877 ER PT J AU Hayashi, M Tang, CY Verpelli, C Narayanan, R Stearns, M Xu, RM Li, HL Sala, C Hayashi, Y AF Hayashi, Mariko Tang, Chunyan Verpelli, Chiara Narayanan, Radhakrishnan Stearns, Marissa Xu, Rui-Ming Li, Huilin Sala, Carlo Hayashi, Yasunori TI The postsynaptic density proteins homer and shank form a polymeric network structure SO NEUROSCIENCE RESEARCH LA English DT Meeting Abstract C1 [Hayashi, Mariko] Keio Univ, Sch Med, Dept Pharmacol, Tokyo 108, Japan. [Hayashi, Mariko; Hayashi, Yasunori] MIT, RIKEN MIT Neurosci Res Ctr, Cambridge, MA 02139 USA. [Hayashi, Mariko; Narayanan, Radhakrishnan; Stearns, Marissa; Hayashi, Yasunori] RIKEN, Brain Sci Inst, Wako, Saitama, Japan. [Tang, Chunyan; Li, Huilin] Brookhaven Natl Lab, Upton, NY 11973 USA. [Verpelli, Chiara; Sala, Carlo] CNR, I-00185 Rome, Italy. RI Sala, Carlo/A-2493-2009; Verpelli, Chiara/K-6673-2016 OI Sala, Carlo/0000-0003-0662-9523; Verpelli, Chiara/0000-0003-2949-9725 NR 0 TC 1 Z9 1 U1 0 U2 0 PU ELSEVIER IRELAND LTD PI CLARE PA ELSEVIER HOUSE, BROOKVALE PLAZA, EAST PARK SHANNON, CO, CLARE, 00000, IRELAND SN 0168-0102 J9 NEUROSCI RES JI Neurosci. Res. PY 2010 VL 68 SU 1 BP E339 EP E339 DI 10.1016/j.neures.2010.07.1499 PG 1 WC Neurosciences SC Neurosciences & Neurology GA V24XS UT WOS:000208443702264 ER PT J AU Henn, FA Li, B Piriz, J Sartorius, A Mirrone, M Malinow, R AF Henn, Fritz A. Li, Bo Piriz, John Sartorius, Alexander Mirrone, Martine Malinow, Robert TI The l. habenula, a key to understanding depression SO NEUROSCIENCE RESEARCH LA English DT Meeting Abstract C1 [Henn, Fritz A.; Mirrone, Martine] Brookhaven Natl Lab, Upton, NY 11973 USA. [Li, Bo] Cold Spring Harbor Lab, Cold Spring Harbor, NY USA. [Piriz, John; Malinow, Robert] Uinvers Calif San Diego, San Diego, CA USA. [Sartorius, Alexander] Cent Inst Mental Hlth, Mannheim, Germany. NR 0 TC 0 Z9 0 U1 1 U2 2 PU ELSEVIER IRELAND LTD PI CLARE PA ELSEVIER HOUSE, BROOKVALE PLAZA, EAST PARK SHANNON, CO, CLARE, 00000, IRELAND SN 0168-0102 J9 NEUROSCI RES JI Neurosci. Res. PY 2010 VL 68 SU 1 BP E17 EP E17 DI 10.1016/j.neures.2010.07.310 PG 1 WC Neurosciences SC Neurosciences & Neurology GA V24XS UT WOS:000208443700074 ER PT J AU Klemke, RL Wang, YC Jacobs, JM Yang, F Wang, W Camp, DG Smith, RD AF Klemke, Richard L. Wang, Yingchun Jacobs, Jon M. Yang, Feng Wang, Wei Camp, David G., II Smith, Richard D. TI Identification of spatially regulated phosphoprotein networks controlling neuritogenesis SO NEUROSCIENCE RESEARCH LA English DT Meeting Abstract C1 [Klemke, Richard L.; Wang, Yingchun; Wang, Wei] Univ Calif San Diego, Dept Pathol, La Jolla, CA 92093 USA. [Klemke, Richard L.; Wang, Yingchun; Wang, Wei] Univ Calif San Diego, Moores Canc Ctr, La Jolla, CA 92093 USA. [Jacobs, Jon M.; Yang, Feng; Camp, David G., II; Smith, Richard D.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. RI Smith, Richard/J-3664-2012 OI Smith, Richard/0000-0002-2381-2349 NR 0 TC 0 Z9 0 U1 0 U2 1 PU ELSEVIER IRELAND LTD PI CLARE PA ELSEVIER HOUSE, BROOKVALE PLAZA, EAST PARK SHANNON, CO, CLARE, 00000, IRELAND SN 0168-0102 J9 NEUROSCI RES JI Neurosci. Res. PY 2010 VL 68 SU 1 BP E35 EP E35 DI 10.1016/j.neures.2010.07.397 PG 1 WC Neurosciences SC Neurosciences & Neurology GA V24XS UT WOS:000208443700161 ER PT S AU Hylen, J AF Hylen, J. BE Goodman, MC Kaplan, DM Sullivan, Z TI How to Build a Superbeam SO NEUTRINO FACTORIES, SUPERBEAMS, AND BETA BEAMS SE AIP Conference Proceedings LA English DT Proceedings Paper CT 11th International Workshop on Neutrino Factories, Superbeams and Beta Beams CY JUL 20-25, 2009 CL Chicago, IL SP Illinois Inst Technol, Fermilab DE Neutrino beam-line AB A discussion of design issues for future conventional neutrino beam-lines with proton beam power above a megawatt. C1 Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. RP Hylen, J (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. NR 1 TC 0 Z9 0 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-0763-3 J9 AIP CONF PROC PY 2010 VL 1222 BP 15 EP 19 DI 10.1063/1.3399280 PG 5 WC Physics, Applied; Physics, Atomic, Molecular & Chemical SC Physics GA BPD88 UT WOS:000278627700003 ER PT S AU Harris, DA AF Harris, Deborah A. BE Goodman, MC Kaplan, DM Sullivan, Z TI Long-Baseline Neutrino Oscillation Phenomenology SO NEUTRINO FACTORIES, SUPERBEAMS, AND BETA BEAMS SE AIP Conference Proceedings LA English DT Proceedings Paper CT 11th International Workshop on Neutrino Factories, Superbeams and Beta Beams CY JUL 20-25, 2009 CL Chicago, IL SP Illinois Inst Technol, Fermilab DE Neutrino oscillations; systematic uncertainties ID VIOLATION; BEAM AB There is a large body of phenomenological work that quantifies the physics reach of future long baseline oscillation experiments. In this article we discuss what assumptions are made about each experiment's ability to predict its far detector signal and background statistics. To understand the difficulty associated with making background predictions even with a near detector, we also examine the current experience of the MINOS experiment, and its ability to predict its far detector signal and background fractions for its electron neutrino oscillation search. Finally, we discuss the program that is needed in order to get from the current state of the art in far detector predictions to what is required (or often simply assumed) for future generations of oscillation experiments. C1 Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. RP Harris, DA (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. NR 18 TC 0 Z9 0 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-0763-3 J9 AIP CONF PROC PY 2010 VL 1222 BP 20 EP 25 DI 10.1063/1.3399296 PG 6 WC Physics, Applied; Physics, Atomic, Molecular & Chemical SC Physics GA BPD88 UT WOS:000278627700004 ER PT S AU Bross, A AF Bross, Alan BE Goodman, MC Kaplan, DM Sullivan, Z TI From Superbeams to Neutrino Factories SO NEUTRINO FACTORIES, SUPERBEAMS, AND BETA BEAMS SE AIP Conference Proceedings LA English DT Proceedings Paper CT 11th International Workshop on Neutrino Factories, Superbeams and Beta Beams CY JUL 20-25, 2009 CL Chicago, IL SP Illinois Inst Technol, Fermilab DE neutrino oscillation; neutrino factory ID PHYSICS AB The Neutrino Factory, which produces an extremely intense source of flavor-tagged neutrinos from muon decays in a storage ring, arguably gives the best physics reach for CP violation, as well as virtually all parameters in the neutrino oscillation parameter space. I will briefly describe the physics capabilities of the baseline Neutrino Factory as compared to other possible future facilities (beta-beam and super-beam facilities), give an overview or the accelerator complex and describe in detail the current international R&D program. C1 Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. RP Bross, A (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. NR 27 TC 0 Z9 0 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-0763-3 J9 AIP CONF PROC PY 2010 VL 1222 BP 47 EP 51 DI 10.1063/1.3399628 PG 5 WC Physics, Applied; Physics, Atomic, Molecular & Chemical SC Physics GA BPD88 UT WOS:000278627700009 ER PT S AU Schmitz, D AF Schmitz, D. BE Goodman, MC Kaplan, DM Sullivan, Z TI Review of Current and Future Neutrino Cross-Section Experiments SO NEUTRINO FACTORIES, SUPERBEAMS, AND BETA BEAMS SE AIP Conference Proceedings LA English DT Proceedings Paper CT 11th International Workshop on Neutrino Factories, Superbeams and Beta Beams CY JUL 20-25, 2009 CL Chicago, IL SP Illinois Inst Technol, Fermilab DE Neutrino; scattering experiments; cross-sections ID SINGLE-PION-PRODUCTION AB There has been a surge of progress and published results in neutrino cross-section physics in recent years. In many cases, absolute differential cross-sections are being measured for the first time and can be compared to interaction models first developed decades ago. These measurements are important input for the next generation of accelerator-based neutrino oscillation experiments where precise understanding of both signal and background channels will be critical to the observation of sub-dominant oscillation effects. This paper discusses recent results from several experiments and describes new experiments currently under construction dedicated to making these measurements with unprecedented precision. C1 Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. RP Schmitz, D (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. OI Schmitz, David/0000-0003-2165-7389 NR 40 TC 0 Z9 0 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-0763-3 J9 AIP CONF PROC PY 2010 VL 1222 BP 52 EP 56 DI 10.1063/1.3399394 PG 5 WC Physics, Applied; Physics, Atomic, Molecular & Chemical SC Physics GA BPD88 UT WOS:000278627700010 ER PT S AU Bross, A Ellis, M Martinez, EF Geer, S Li, T Mena, O Pascoli, S AF Bross, Alan Ellis, Malcolm Martinez, Enrique Fernandez Geer, Steve Li, Tracey Mena, Olga Pascoli, Silvia BE Goodman, MC Kaplan, DM Sullivan, Z TI The Low Energy Neutrino Factory SO NEUTRINO FACTORIES, SUPERBEAMS, AND BETA BEAMS SE AIP Conference Proceedings LA English DT Proceedings Paper CT 11th International Workshop on Neutrino Factories, Superbeams and Beta Beams CY JUL 20-25, 2009 CL Chicago, IL SP Illinois Inst Technol, Fermilab DE Neutrino factory; neutrino oscillations; long-baseline experiments ID LINE-EXPERIMENT-SIMULATOR; OSCILLATION EXPERIMENTS AB We show that a low energy neutrino factory with a baseline of 1300 km and muon energy of 4.5 GeV has an excellent physics reach. The results of our optimisation studies demonstrate that such a setup can have remarkable sensitivity to theta(13) and delta for sin(2)(2 theta(13)) > 10(-4), and to the mass hierarchy for sin(2)(2 theta(13)) > 10(-3). We also illustrate the power of the unique combination of golden and platinum channels accessible to the low energy neutrino factory. We have considered both a 20 kton totally active scintillating detector and a 100 kton liquid argon detector as possible detector technologies, finding that a liquid argon detector with very good background rejection can produce sensitivity to theta(13) and delta competitive with that of the International Design Study neutrino factory. C1 [Bross, Alan; Ellis, Malcolm; Martinez, Enrique Fernandez; Geer, Steve; Li, Tracey; Mena, Olga; Pascoli, Silvia] Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. RP Bross, A (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. FU Fermi National Accelerator Laboratory; Fermi Research Association [DE-AC02-76CH03000]; U.S. Department of Energy; European Commission [227579]; Theoretical Physics Department at Fermilab; STFC; DFG; European Community under European Commission [212372]; LAGUNA [212343] FX This work was supported in part by the Fermi National Accelerator Laboratory, which is operated by the Fermi Research Association, under contract No. DE-AC02-76CH03000 with the U.S. Department of Energy. SP acknowledges the support of EuCARD, which is co-funded by the European Commission within the Framework Programme 7 Capacities Specific Programme, under Grant Agreement number 227579. OM and SP would like to thank the Theoretical Physics Department at Fermilab for hospitality and support. TL acknowledges the support of a STFC studentship and funding for overseas fieldwork, and thanks the organisers of NuFact09 for partial support in attending the conference. EFM also acknowledges support by the DFG cluster of excellence Origin and Structure of the Universe. This work was undertaken with support from the European Community under the European Commission Framework Programme 7 Design Studies: EUROnu (Project Number 212372) and LAGUNA (Project Number 212343). NR 19 TC 2 Z9 2 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-0763-3 J9 AIP CONF PROC PY 2010 VL 1222 BP 84 EP + DI 10.1063/1.3399403 PG 2 WC Physics, Applied; Physics, Atomic, Molecular & Chemical SC Physics GA BPD88 UT WOS:000278627700015 ER PT S AU Papavassiliou, V AF Papavassiliou, V. BE Goodman, MC Kaplan, DM Sullivan, Z TI Strangeness in the Nucleon, Cold Dark Matter in the Universe, and Neutrino Scattering off Liquid Argon SO NEUTRINO FACTORIES, SUPERBEAMS, AND BETA BEAMS SE AIP Conference Proceedings LA English DT Proceedings Paper CT 11th International Workshop on Neutrino Factories, Superbeams and Beta Beams CY JUL 20-25, 2009 CL Chicago, IL SP Illinois Inst Technol, Fermilab DE Neutrino interactions; Neutrino detectors; Quantum chromodynamics; Dark matter ID PROBE WMAP OBSERVATIONS; ELASTIC-SCATTERING; POLARIZED PROTONS; SPIN STRUCTURE; FORM-FACTORS; SUN AB The strangeness content of the nucleon and the contribution of strange quarks to various nucleon quantum numbers, besides being of fundamental interest, also affects calculations of cross sections of processes that are important in searches for new physics. Here we focus on direct searches for cold dark matter, in the scenario in which the lightest supersymmetric neutral particle dominates the CDM density in the universe and point out that interpretation of searches, as well as the choice of optimal materials for future experiments, are hobbled by uncertainties in the contribution of strange quarks to the nucleon spin. We show how a future low-energy neutrino experiment using a liquid-Ar TPC can make important contributions in determining this quantity with much better precision and reduced theoretical uncertainties. C1 Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. RP Papavassiliou, V (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. NR 29 TC 0 Z9 0 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-0763-3 J9 AIP CONF PROC PY 2010 VL 1222 BP 186 EP 190 DI 10.1063/1.3399287 PG 5 WC Physics, Applied; Physics, Atomic, Molecular & Chemical SC Physics GA BPD88 UT WOS:000278627700036 ER PT S AU Li, D Uesugi, T Wildner, E AF Li, D. Uesugi, T. Wildner, E. BE Goodman, MC Kaplan, DM Sullivan, Z TI Accelerator Physics Working Group Summary SO NEUTRINO FACTORIES, SUPERBEAMS, AND BETA BEAMS SE AIP Conference Proceedings LA English DT Proceedings Paper CT 11th International Workshop on Neutrino Factories, Superbeams and Beta Beams CY JUL 20-25, 2009 CL Chicago, IL SP Illinois Inst Technol, Fermilab DE Beta Beams; Muon Ionization Cooling; EURISOL; EUROnu; FFAG; MICE; Muon Collider; Neutrino Factory AB The Accelerator Physics Working Group addressed the worldwide R&D activities performed in support of future neutrino facilities. These studies cover R&D activities for Super Beam, Beta Beam and muon-based Neutrino Factory facilities. Beta Beam activities reported the important progress made, together with the research activity planned for the coming years. Discussion sessions were also organized jointly with other working groups in order to define common ground for the optimization of a future neutrino facility. Lessons learned from already operating neutrino facilities provide key information for the design of any future neutrino facility, and were also discussed in this meeting. Radiation damage, remote handling for equipment maintenance and exchange, and primary proton beam stability and monitoring were among the important subjects presented and discussed. Status reports for each of the facility subsystems were presented: proton drivers, targets, capture systems, and muon cooling and acceleration systems. The preferred scenario for each type of possible future facility was presented, together with the challenges and remaining issues. The baseline specification for the muon-based Neutrino Factory was reviewed and updated where required. This report will emphasize new results and ideas and discuss possible changes in the baseline scenarios of the facilities. A list of possible future steps is proposed that should be followed up at NuFact10. C1 [Li, D.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Uesugi, T.] Kyoto Univ, Inst Res Reactor, Kyoto, Japan. [Wildner, E.] CERN, CH-1211 Geneva, Switzerland. RP Li, D (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. FU U.S. Department of Energy [DE-AC02-05CH11231] FX This work was partially supported by the Director, Office of Science, Office of High Energy Physics, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 3 TC 0 Z9 0 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-0763-3 J9 AIP CONF PROC PY 2010 VL 1222 BP 267 EP + DI 10.1063/1.3399313 PG 2 WC Physics, Applied; Physics, Atomic, Molecular & Chemical SC Physics GA BPD88 UT WOS:000278627700051 ER PT S AU Lebedev, V Nagaitsev, S AF Lebedev, Valeri Nagaitsev, Sergei BE Goodman, MC Kaplan, DM Sullivan, Z TI Project X ICD-2 and Its Upgrades for Neutrino Factory or Muon Collider SO NEUTRINO FACTORIES, SUPERBEAMS, AND BETA BEAMS SE AIP Conference Proceedings LA English DT Proceedings Paper CT 11th International Workshop on Neutrino Factories, Superbeams and Beta Beams CY JUL 20-25, 2009 CL Chicago, IL SP Illinois Inst Technol, Fermilab DE Muon collider; neutrino factory; rare decays AB This paper reviews the Initial Configuration Document for Fermi lab's Project X and considers its possible upgrades for a neutrino factory or muon collider. C1 [Lebedev, Valeri; Nagaitsev, Sergei] Fermilab Natl Accelerator Lab, Batavia, IL 60563 USA. RP Lebedev, V (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60563 USA. NR 5 TC 0 Z9 0 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-0763-3 J9 AIP CONF PROC PY 2010 VL 1222 BP 274 EP 278 DI 10.1063/1.3399317 PG 5 WC Physics, Applied; Physics, Atomic, Molecular & Chemical SC Physics GA BPD88 UT WOS:000278627700052 ER PT S AU Neuffer, D AF Neuffer, David BE Goodman, MC Kaplan, DM Sullivan, Z TI Proton Beam Formation at Fermilab for mu 2e (and for NF/MC) SO NEUTRINO FACTORIES, SUPERBEAMS, AND BETA BEAMS SE AIP Conference Proceedings LA English DT Proceedings Paper CT 11th International Workshop on Neutrino Factories, Superbeams and Beta Beams CY JUL 20-25, 2009 CL Chicago, IL SP Illinois Inst Technol, Fermilab DE Muon; muon conversion; proton source; muon collider; neutrino factory AB Proton bunch formation from the Fermi lab proton sources for the mu2e experiment is discussed. In the initial scenario a single intense h=1 bunch is formed in the Accumulator/Debuncher, with slow extraction providing the required spill. However, the mu2e experiment could use h=4 bunching in the Accumulator rather than h=1, with the 4 bunches fed one at a time into the more isochronous Debuncher for slow extraction. The h=4 variant has several advantages and a few disadvantages, and can reduce peak beam intensities, and therefore improve space charge limits. The method can be extended to project X to enable high duty cycle extraction within space charge limits. A further extension should make possible an accumulator/buncher scenario that can provide 8 GeV short bunches for a neutrino factory and/or muon collider scenario. C1 Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. RP Neuffer, D (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. NR 6 TC 0 Z9 0 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-0763-3 J9 AIP CONF PROC PY 2010 VL 1222 BP 279 EP 282 DI 10.1063/1.3399318 PG 4 WC Physics, Applied; Physics, Atomic, Molecular & Chemical SC Physics GA BPD88 UT WOS:000278627700053 ER PT S AU Stratakis, D Gallardo, JC Palmer, RB AF Stratakis, Diktys Gallardo, Juan C. Palmer, Robert B. BE Goodman, MC Kaplan, DM Sullivan, Z TI RF Breakdown in Magnetic Fields: Previous Work, Recent Theory, and Future Plans SO NEUTRINO FACTORIES, SUPERBEAMS, AND BETA BEAMS SE AIP Conference Proceedings LA English DT Proceedings Paper CT 11th International Workshop on Neutrino Factories, Superbeams and Beta Beams CY JUL 20-25, 2009 CL Chicago, IL SP Illinois Inst Technol, Fermilab DE rf breakdown; external magnetic fields; neutrino factory; muon collider AB Recent experiments on the breakdown of rf cavities revealed severe surface damage and a reduction of the maximum accelerating gradient after operation in an external magnetic field. This finding implies the possibility of serious problems for cooling lattices wherein rf cavities and external magnetic fields coexist, such as those of the proposed neutrino factory and muon collider. An experimental program that could study those problems and their possible solutions is discussed. Emphasis is given to a magnetically insulated cavity design in which the walls are parallel to the magnetic field lines and consequently damage from field emission is expected to be suppressed. C1 [Stratakis, Diktys; Gallardo, Juan C.; Palmer, Robert B.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. RP Stratakis, D (reprint author), Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. OI Gallardo, Juan C/0000-0002-5191-3067 NR 18 TC 3 Z9 3 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-0763-3 J9 AIP CONF PROC PY 2010 VL 1222 BP 303 EP 307 DI 10.1063/1.3399327 PG 5 WC Physics, Applied; Physics, Atomic, Molecular & Chemical SC Physics GA BPD88 UT WOS:000278627700058 ER PT S AU Gallardo, JC Zisman, MS AF Gallardo, Juan C. Zisman, Michael S. BE Goodman, MC Kaplan, DM Sullivan, Z TI Thoughts on Incorporating HPRF in a Linear Cooling Channel SO NEUTRINO FACTORIES, SUPERBEAMS, AND BETA BEAMS SE AIP Conference Proceedings LA English DT Proceedings Paper CT 11th International Workshop on Neutrino Factories, Superbeams and Beta Beams CY JUL 20-25, 2009 CL Chicago, IL SP Illinois Inst Technol, Fermilab DE Muons; Ionization Cooling AB We discuss a possible implementation of high-pressure gas-filled RF (HPRF) cavities in a linear cooling channel for muons and some of the technical issues that must be dealt with. The approach we describe is a hybrid approach that uses high-pressure hydrogen gas to avoid cavity breakdown, along with discrete LiH absorbers to provide the majority of the energy loss. Initial simulations show that the channel performs as well as the original vacuum RF channel while potentially avoiding the degradation in RE gradient associated with the strong magnetic field in the cooling channel. C1 [Gallardo, Juan C.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Zisman, Michael S.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Gallardo, JC (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. FU U.S. Department of Energy [DE-AC02-05CH11231 (LBNL), DE-AC02-98CH10886 (BNL)] FX We wish to thank Michael A. Green, Alfred Moretti and Steve Virostek for helpful discussions on implementation issues. This work was supported by the Director, Office of Science, Office of High Energy Physics, of the U.S. Department of Energy under Contract Nos. DE-AC02-05CH11231 (LBNL) and DE-AC02-98CH10886 (BNL). NR 8 TC 3 Z9 3 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-0763-3 J9 AIP CONF PROC PY 2010 VL 1222 BP 308 EP + DI 10.1063/1.3399329 PG 2 WC Physics, Applied; Physics, Atomic, Molecular & Chemical SC Physics GA BPD88 UT WOS:000278627700059 ER PT S AU Alexahin, Y AF Alexahin, Y. BE Goodman, MC Kaplan, DM Sullivan, Z TI Helical FOFO Snake for 6D Ionization Cooling of Muons SO NEUTRINO FACTORIES, SUPERBEAMS, AND BETA BEAMS SE AIP Conference Proceedings LA English DT Proceedings Paper CT 11th International Workshop on Neutrino Factories, Superbeams and Beta Beams CY JUL 20-25, 2009 CL Chicago, IL SP Illinois Inst Technol, Fermilab DE muon beam; ionization cooling; beam dynamics AB A channel for 6D ionization cooling of muons is described which consists of periodically inclined solenoids of alternating polarity, liquid hydrogen absorbers placed inside the solenoids and RF cavities between them. An important feature of such a channel (called Helical FOFO snake) is that it can cool simultaneously mons of both signs. Theoretical considerations as well as results of simulations with G4beamline are presented which show that a 200 MHz HFOFO snake has sufficient acceptance to be used for initial 6D cooling in mon colliders and neutrino factories. C1 Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. RP Alexahin, Y (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. NR 9 TC 5 Z9 5 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-0763-3 J9 AIP CONF PROC PY 2010 VL 1222 BP 313 EP 318 DI 10.1063/1.3399331 PG 6 WC Physics, Applied; Physics, Atomic, Molecular & Chemical SC Physics GA BPD88 UT WOS:000278627700060 ER PT S AU Kirk, HG AF Kirk, H. G. BE Goodman, MC Kaplan, DM Sullivan, Z TI Recent Results from the MERIT Experiment SO NEUTRINO FACTORIES, SUPERBEAMS, AND BETA BEAMS SE AIP Conference Proceedings LA English DT Proceedings Paper CT 11th International Workshop on Neutrino Factories, Superbeams and Beta Beams CY JUL 20-25, 2009 CL Chicago, IL SP Illinois Inst Technol, Fermilab DE Magnetohydrodynamics; targets AB MERIT is a proof-of-principle experiment which demonstrates the key target concepts for the production of muons required for a muon collider or a neutrino factory. The experiment was run at CERN utilizing 14 and 24 GeV proton beams from the PS. The key elements of the experiment include the impact of the proton beam with a free flowing mercury jet within the confines of a 15-T solenoid field. Results from the experiment are reported. C1 Brookhaven Natl Lab, Upton, NY 11973 USA. RP Kirk, HG (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. NR 7 TC 0 Z9 0 U1 0 U2 1 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-0763-3 J9 AIP CONF PROC PY 2010 VL 1222 BP 319 EP 322 DI 10.1063/1.3399332 PG 4 WC Physics, Applied; Physics, Atomic, Molecular & Chemical SC Physics GA BPD88 UT WOS:000278627700061 ER PT S AU Ding, X Cline, D Kirk, H Berg, JS AF Ding, X. Cline, D. Kirk, H. Berg, J. S. BE Goodman, MC Kaplan, DM Sullivan, Z TI Meson Production Simulations for a Mercury Jet Target SO NEUTRINO FACTORIES, SUPERBEAMS, AND BETA BEAMS SE AIP Conference Proceedings LA English DT Proceedings Paper CT 11th International Workshop on Neutrino Factories, Superbeams and Beta Beams CY JUL 20-25, 2009 CL Chicago, IL SP Illinois Inst Technol, Fermilab DE Mercury jet target; meson production AB A study of target parameters for a high-power, liquid mercury jet target system for a neutrino factory or muon collider is presented. Using the MARS15 code, we simulate particle production initiated by incoming protons below the jet with kinetic energies between 2 and 100 GeV. For each proton beam eneray, we maximize production by varying the geometric parameters of the target: the mercury jet radius, the incoming proton beam angle, and the crossing angle between the mercury jet and the proton beam. With an 8 GeV proton beam, we study the variation of meson production with the direction of the proton beam relative to the jet. C1 [Ding, X.; Kirk, H.; Berg, J. S.] Brookhaven Natl Lab, 820M, Upton, NY 11973 USA. [Ding, X.; Cline, D.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. RP Ding, X (reprint author), Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. EM xding@bnl.gov RI Berg, Joseph/E-8371-2014 OI Berg, Joseph/0000-0002-5955-6973 FU US DOE [DE-AC02-98CH10886] FX We thank the Advanced Accelerator Group personnel from BNL and Prof. Kirk T. McDonald from Princeton University for their ongoing support and encouragement. This work was supported by the US DOE under contract No. DE-AC02-98CH10886. NR 6 TC 0 Z9 0 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-0763-3 J9 AIP CONF PROC PY 2010 VL 1222 BP 323 EP + DI 10.1063/1.3399334 PG 2 WC Physics, Applied; Physics, Atomic, Molecular & Chemical SC Physics GA BPD88 UT WOS:000278627700062 ER PT S AU Popovic, M AF Popovic, Milorad BE Goodman, MC Kaplan, DM Sullivan, Z TI Project X and a Muon Facility at Fermilab SO NEUTRINO FACTORIES, SUPERBEAMS, AND BETA BEAMS SE AIP Conference Proceedings LA English DT Proceedings Paper CT 11th International Workshop on Neutrino Factories, Superbeams and Beta Beams CY JUL 20-25, 2009 CL Chicago, IL SP Illinois Inst Technol, Fermilab DE Linac; target; muons; neutrinos AB An integrated program is described, starting with muon experiments in the Booster era, continuing with a 2 MW target station, a 4 GeV Neutrino Factory and a 3 TeV Muon Collider, all driven by Project X. This idea provides an integrated approach to the Intensity and Energy Frontiers at Fermilab. C1 Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. RP Popovic, M (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-0763-3 J9 AIP CONF PROC PY 2010 VL 1222 BP 336 EP 338 DI 10.1063/1.3399337 PG 3 WC Physics, Applied; Physics, Atomic, Molecular & Chemical SC Physics GA BPD88 UT WOS:000278627700065 ER PT S AU Boehnlein, D AF Boehnlein, David CA JASMIN Collaboration BE Goodman, MC Kaplan, DM Sullivan, Z TI Studies of Muon-Induced Radioactivity at NuMI SO NEUTRINO FACTORIES, SUPERBEAMS, AND BETA BEAMS SE AIP Conference Proceedings LA English DT Proceedings Paper CT 11th International Workshop on Neutrino Factories, Superbeams and Beta Beams CY JUL 20-25, 2009 CL Chicago, IL SP Illinois Inst Technol, Fermilab DE Muon-induced reactions AB The JASMIN Collaboration has studied the production of radionuclides by muons in the muon alcoves of the NuMI beamline at Fermilab. Samples of aluminum and copper are exposed to the muon field and counted on HPGe detectors when removed to determine their content of radioactive isotopes. We compare the results to MARS simulations and discuss the radiological implications for neutrino factories and muon colliders. C1 [Boehnlein, David; JASMIN Collaboration] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. RP Boehnlein, D (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. NR 5 TC 0 Z9 0 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-0763-3 J9 AIP CONF PROC PY 2010 VL 1222 BP 344 EP 347 DI 10.1063/1.3399339 PG 4 WC Physics, Applied; Physics, Atomic, Molecular & Chemical SC Physics GA BPD88 UT WOS:000278627700067 ER PT S AU Pasternak, J Aslaninejad, M Berg, JS Kelliher, DJ Machida, S AF Pasternak, J. Aslaninejad, M. Berg, J. Scott Kelliher, D. J. Machida, S. BE Goodman, MC Kaplan, DM Sullivan, Z TI Injection/Extraction Studies for the Muon FFAG SO NEUTRINO FACTORIES, SUPERBEAMS, AND BETA BEAMS SE AIP Conference Proceedings LA English DT Proceedings Paper CT 11th International Workshop on Neutrino Factories, Superbeams and Beta Beams CY JUL 20-25, 2009 CL Chicago, IL SP Illinois Inst Technol, Fermilab DE Neutrino Factory; muon acceleration; non-scaling FFAG; injection; extraction AB The non-scaling fixed field alternating gradient (NS-FFAG) ring is a candidate muon accelerator in the Neutrino Factory complex according to the present baseline, which is currently being addressed by the International Design Study (IDS-NF). In order to achieve small orbit excursion, motivated by magnet cost reduction, and small time of flight variation, dictated by the need to use high RF frequency, lattices with a very compact cell structure and short straight sections are required. The resulting geometry dictates very difficult constraints on the injection/extraction systems. Beam dynamics in the non-scaling FTAG is studied using codes capable of correctly tracking with large transverse amplitude and momentum spread. The feasibility of injection/extraction is studied and various implementations focusing on minimization of kicker/septum strength are presented. Finally the parameters of the resulting kicker magnets are estimated. C1 [Pasternak, J.; Aslaninejad, M.] Univ London Imperial Coll Sci Technol & Med, Dept Phys, London, England. [Pasternak, J.] STFC, ISIS, RAL, Didcot, Oxon, England. [Berg, J. Scott] BNL, New York, NY USA. [Kelliher, D. J.; Machida, S.] STFC, ASTec, RAL, Didcot, Oxon, England. RP Pasternak, J (reprint author), Univ London Imperial Coll Sci Technol & Med, Dept Phys, London, England. RI Berg, Joseph/E-8371-2014; OI Berg, Joseph/0000-0002-5955-6973; Kelliher, David/0000-0001-9583-7804 NR 5 TC 0 Z9 0 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-0763-3 J9 AIP CONF PROC PY 2010 VL 1222 BP 353 EP + DI 10.1063/1.3399341 PG 2 WC Physics, Applied; Physics, Atomic, Molecular & Chemical SC Physics GA BPD88 UT WOS:000278627700069 ER PT S AU Berg, JS AF Berg, J. Scott BE Goodman, MC Kaplan, DM Sullivan, Z TI Status and Plans for the Accelerator Working Group of the International Design Study of the Neutrino Factory SO NEUTRINO FACTORIES, SUPERBEAMS, AND BETA BEAMS SE AIP Conference Proceedings LA English DT Proceedings Paper CT 11th International Workshop on Neutrino Factories, Superbeams and Beta Beams CY JUL 20-25, 2009 CL Chicago, IL SP Illinois Inst Technol, Fermilab DE neutrino factory AB The purpose of the International Design Study of the Neutrino Factory (IDS-NF) is to produce a design report for a neutrino factory in 2013. I report the status of the accelerator design and plans for future studies. C1 Brookhaven Natl Lab, Upton, NY 11973 USA. RP Berg, JS (reprint author), Brookhaven Natl Lab, Bldg 901A,POB 5000, Upton, NY 11973 USA. RI Berg, Joseph/E-8371-2014 OI Berg, Joseph/0000-0002-5955-6973 NR 27 TC 0 Z9 0 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-0763-3 J9 AIP CONF PROC PY 2010 VL 1222 BP 358 EP 362 DI 10.1063/1.3399342 PG 5 WC Physics, Applied; Physics, Atomic, Molecular & Chemical SC Physics GA BPD88 UT WOS:000278627700070 ER PT S AU Bogacz, SA AF Bogacz, S. Alex BE Goodman, MC Kaplan, DM Sullivan, Z TI Recirculating Linac Acceleration - End-to-End Simulation SO NEUTRINO FACTORIES, SUPERBEAMS, AND BETA BEAMS SE AIP Conference Proceedings LA English DT Proceedings Paper CT 11th International Workshop on Neutrino Factories, Superbeams and Beta Beams CY JUL 20-25, 2009 CL Chicago, IL SP Illinois Inst Technol, Fermilab DE Muon Accelerator; Neutrino Factory; Recirculating Linac; Beam Dynamics; Lattice Design ID MUON ACCELERATION; BEAM DYNAMICS AB A conceptual design of a high-pass-number Recirculating Linear Accelerator (RLA) for muons is presented. The scheme involves three superconducting linacs (201 MHz): a single pass linear Pre-accelerator followed by a pair multi-pass (4.5-pass) 'Dogbone' RLAs. Acceleration starts after ionization cooling at 220 MeV/c and proceeds to 12.6 GeV. The Pre-accelerator captures a large muon phase space and accelerates muons to relativistic energies, while adiabatically decreasing the phase-space volume, so that effective acceleration in the RLA is possible. The RLA further compresses and shapes up the longitudinal and transverse phase-spaces, while increasing the energy. Appropriate choice of multi-pass linac optics based on FODO focusing assures large number of passes in the RLA. The proposed 'Dogbone' configuration facilitates simultaneous acceleration of both mu(+/-) species through the requirement of mirror symmetric optics of the return 'droplet' arcs. Finally, presented end-to-end simulation validates the efficiency and acceptance of the accelerator system. C1 Thomas Jefferson Natl Accelerator Facil, Ctr Adv Studies Accelerators, Newport News, VA 23606 USA. RP Bogacz, SA (reprint author), Thomas Jefferson Natl Accelerator Facil, Ctr Adv Studies Accelerators, 12000 Jefferson Ave, Newport News, VA 23606 USA. NR 5 TC 1 Z9 1 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-0763-3 J9 AIP CONF PROC PY 2010 VL 1222 BP 363 EP 367 DI 10.1063/1.3399343 PG 5 WC Physics, Applied; Physics, Atomic, Molecular & Chemical SC Physics GA BPD88 UT WOS:000278627700071 ER PT S AU Glenzinski, D AF Glenzinski, D. BE Goodman, MC Kaplan, DM Sullivan, Z TI The Mu2e Experiment At Fermilab SO NEUTRINO FACTORIES, SUPERBEAMS, AND BETA BEAMS SE AIP Conference Proceedings LA English DT Proceedings Paper CT 11th International Workshop on Neutrino Factories, Superbeams and Beta Beams CY JUL 20-25, 2009 CL Chicago, IL SP Illinois Inst Technol, Fermilab DE muon-to-electron conversion; CLFV decays ID PHYSICS AB The physics motivations, target sensitivity, and status of the Mu2e experiment at Fermilab are described. C1 Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. RP Glenzinski, D (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. NR 7 TC 17 Z9 17 U1 0 U2 1 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-0763-3 J9 AIP CONF PROC PY 2010 VL 1222 BP 383 EP 386 DI 10.1063/1.3399348 PG 4 WC Physics, Applied; Physics, Atomic, Molecular & Chemical SC Physics GA BPD88 UT WOS:000278627700075 ER PT S AU Coleman, R AF Coleman, Richard BE Goodman, MC Kaplan, DM Sullivan, Z TI The Mu2e Muon Beamline SO NEUTRINO FACTORIES, SUPERBEAMS, AND BETA BEAMS SE AIP Conference Proceedings LA English DT Proceedings Paper CT 11th International Workshop on Neutrino Factories, Superbeams and Beta Beams CY JUL 20-25, 2009 CL Chicago, IL SP Illinois Inst Technol, Fermilab DE muon beams AB The muon source For the Mu2e experiment at Fermi lab is described in detail. Requirements, design and simulations are described and some possible modifications are discussed. C1 Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. RP Coleman, R (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. NR 7 TC 0 Z9 0 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-0763-3 J9 AIP CONF PROC PY 2010 VL 1222 BP 387 EP 390 DI 10.1063/1.3399349 PG 4 WC Physics, Applied; Physics, Atomic, Molecular & Chemical SC Physics GA BPD88 UT WOS:000278627700076 ER PT S AU Syphers, MJ AF Syphers, M. J. BE Goodman, MC Kaplan, DM Sullivan, Z TI Fermilab Proton Beam for Mu2e SO NEUTRINO FACTORIES, SUPERBEAMS, AND BETA BEAMS SE AIP Conference Proceedings LA English DT Proceedings Paper CT 11th International Workshop on Neutrino Factories, Superbeams and Beta Beams CY JUL 20-25, 2009 CL Chicago, IL SP Illinois Inst Technol, Fermilab DE Muon conversion; accelerator AB Plans to use existing Fermi lab facilities to provide beam for the Muon to Electron Conversion Experiment (Mu2e) are under development. The experiment will follow the completion of the Tevatron Collider Run II, utilizing the beam lines and storage rings used today for antiproton accumulation without considerable reconfiguration. The proposed Mu2e operating scenario is described as well as the accelerator issues being addressed to meet the experimental goals. C1 Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. RP Syphers, MJ (reprint author), Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. NR 7 TC 0 Z9 0 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-0763-3 J9 AIP CONF PROC PY 2010 VL 1222 BP 391 EP 395 DI 10.1063/1.3399350 PG 5 WC Physics, Applied; Physics, Atomic, Molecular & Chemical SC Physics GA BPD88 UT WOS:000278627700077 ER PT S AU Clayton, SM AF Clayton, Steven M. BE Goodman, MC Kaplan, DM Sullivan, Z TI The MuCap Experiment SO NEUTRINO FACTORIES, SUPERBEAMS, AND BETA BEAMS SE AIP Conference Proceedings LA English DT Proceedings Paper CT 11th International Workshop on Neutrino Factories, Superbeams and Beta Beams CY JUL 20-25, 2009 CL Chicago, IL SP Illinois Inst Technol, Fermilab DE muon capture; muonic hydrogen; muon lifetime; time projection chamber ID PSEUDOSCALAR COUPLING-CONSTANT; MUON-CAPTURE; HYDROGEN; MOLECULE; PHYSICS; PROTON AB Muon capture on the proton is sensitive to the weak pseudoscalar form factor, g(p), one of the basic parameters characterizing the nucleon electroweak charged-current interaction. There is a precise theoretical prediction for g(p) based on chiral symmetry of QCD, yet the results of past experiments are controversial: they are dependent on a poorly-known, mu-molecular kinetic parameter, and there is no point of mutual agreement between theory and all experiments. The goal of the Mu Cap experiment is to clarify the situation by measuring the rate of muon capture on the free proton to 1%, which determines g(p) to 6%, higher precision than achieved in previous experiments and without ambiguities in the interpretation. This talk will cover the motivation for and design of the Mu Cap experiment, first physics results from the new measurement, and improvements toward the final precision goal. C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Clayton, SM (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87545 USA. OI Clayton, Steven/0000-0002-1401-2761 NR 25 TC 1 Z9 1 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-0763-3 J9 AIP CONF PROC PY 2010 VL 1222 BP 407 EP 411 DI 10.1063/1.3399355 PG 5 WC Physics, Applied; Physics, Atomic, Molecular & Chemical SC Physics GA BPD88 UT WOS:000278627700081 ER PT S AU Prebys, E AF Prebys, Eric BE Goodman, MC Kaplan, DM Sullivan, Z TI Extinction in the Mu2e Beam Line SO NEUTRINO FACTORIES, SUPERBEAMS, AND BETA BEAMS SE AIP Conference Proceedings LA English DT Proceedings Paper CT 11th International Workshop on Neutrino Factories, Superbeams and Beta Beams CY JUL 20-25, 2009 CL Chicago, IL SP Illinois Inst Technol, Fermilab DE Beam extinction; Mu2e AB The proposed Mu2e experiment at Fermi lab has very specific requirements for the proton beam which is used to produce muons. It requires short proton bunches (<100 ns FW), separated by 1-2 mu sec. It is vital that the beam outside of the hunches be suppressed at a level of at least 10(9) relative to the beam in the hunches. This note briefly presents the motivation for this "extinction" requirement, and then describes how the experiment hopes to achieve it. Finally, possible techniques for measuring the extinction will be discussed. C1 Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. RP Prebys, E (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. NR 5 TC 0 Z9 0 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-0763-3 J9 AIP CONF PROC PY 2010 VL 1222 BP 415 EP 419 DI 10.1063/1.3399357 PG 5 WC Physics, Applied; Physics, Atomic, Molecular & Chemical SC Physics GA BPD88 UT WOS:000278627700083 ER PT S AU Kahn, SA Abrams, RJ Ankenbrandt, C Cummings, MAC Johnson, RP Roberts, TJ Yonehara, K AF Kahn, S. A. Abrams, R. J. Ankenbrandt, C. Cummings, M. A. C. Johnson, R. P. Roberts, T. J. Yonehara, K. BE Goodman, MC Kaplan, DM Sullivan, Z TI The MANX Muon Cooling Experiment Detection System SO NEUTRINO FACTORIES, SUPERBEAMS, AND BETA BEAMS SE AIP Conference Proceedings LA English DT Proceedings Paper CT 11th International Workshop on Neutrino Factories, Superbeams and Beta Beams CY JUL 20-25, 2009 CL Chicago, IL SP Illinois Inst Technol, Fermilab DE Muon cooling; muon collider; helical cooling channel AB The MANX experiment is being proposed to demonstrate the reduction of 6D muon phase space emittance, using a continuous liquid absorber to provide ionization cooling in a helical solenoid magnetic channel. The experiment involves the construction of a two-period-long helical cooling channel (HCC) to reduce the muon invariant emittance by a factor of two. The HCC would replace the current cooling section of the MICE experiment now being set up at the Rutherford Appleton Laboratory. The MANX experiment would use the existing MICE spectrometers and muon beam line. We discuss the placement of detection planes to optimize the muon track resolution. C1 [Kahn, S. A.; Abrams, R. J.; Ankenbrandt, C.; Cummings, M. A. C.; Johnson, R. P.; Roberts, T. J.] Muons Inc, Batavia, IL USA. [Yonehara, K.] Fermi Lab, Batavia, IL USA. RP Kahn, SA (reprint author), Muons Inc, Batavia, IL USA. FU DOE STTR [DE-FG02-05ER86252] FX This work was supported in part by DOE STTR grant DE-FG02-05ER86252. NR 6 TC 0 Z9 0 U1 0 U2 1 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-0763-3 J9 AIP CONF PROC PY 2010 VL 1222 BP 463 EP + DI 10.1063/1.3399371 PG 2 WC Physics, Applied; Physics, Atomic, Molecular & Chemical SC Physics GA BPD88 UT WOS:000278627700094 ER PT S AU Yoshikawa, C Neuffer, D AF Yoshikawa, C. Neuffer, D. BE Goodman, MC Kaplan, DM Sullivan, Z TI Comparison of G4beamline and ICOOL Simulations of a Neutrino Factory/Muon Collider Front End and Simplification in RF Structure Requirements SO NEUTRINO FACTORIES, SUPERBEAMS, AND BETA BEAMS SE AIP Conference Proceedings LA English DT Proceedings Paper CT 11th International Workshop on Neutrino Factories, Superbeams and Beta Beams CY JUL 20-25, 2009 CL Chicago, IL SP Illinois Inst Technol, Fermilab DE Neutrino Factory; Muon Collider; Front End; Phase Rotation; G4beamline. ICOOL AB Earlier studies on the front end of a neutrino factory or muon collider have relied on a single simulation tool, ICOOL. We present here a cross-check against another simulation tool, G4beamline. We also perform a study to simplify the RF structure requirements by reducing the number of RF cavity frequencies and gradients. This investigation is also pertinent to engineering tolerances expected of these structures. We conclude with a discussion of future studies. C1 [Yoshikawa, C.] Muons Inc, 552 N Batavia Ave, Batavia, IL 60510 USA. [Neuffer, D.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. RP Yoshikawa, C (reprint author), Muons Inc, 552 N Batavia Ave, Batavia, IL 60510 USA. EM cary.yoshikawa@muonsinc.com FU DOE STTR [DE-FG02-05ER86252]; FRA DOE [DE-AC02-07CH11359] FX Supported in part by DOE STTR grant DE-FG02-05ER86252 and FRA DOE DE-AC02-07CH11359 NR 5 TC 0 Z9 0 U1 0 U2 1 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-0763-3 J9 AIP CONF PROC PY 2010 VL 1222 BP 498 EP + DI 10.1063/1.3399391 PG 2 WC Physics, Applied; Physics, Atomic, Molecular & Chemical SC Physics GA BPD88 UT WOS:000278627700103 ER PT J AU Dolotko, O Wiench, JW Dennis, KW Pecharsky, VK Balema, VP AF Dolotko, Oleksandr Wiench, Jerzy W. Dennis, Kevin W. Pecharsky, Vitalij K. Balema, Viktor P. TI Mechanically induced reactions in organic solids: liquid eutectics or solid-state processes? SO NEW JOURNAL OF CHEMISTRY LA English DT Article ID FREE MECHANOCHEMICAL SYNTHESIS; OXIDATIVE COUPLING REACTION; BALL-MILLING CONDITIONS; SOLVENT-FREE SYNTHESIS; EFFICIENT; CONDENSATION; AZACHALCONES; CHALCONES; COMPLEXES; PHENOLS AB The solvent-free reaction between o-vanillin and p-toluidine was investigated using NMR, DSC and XRD analyses. At room temperature, o-vanillin and p-toluidine react in a liquid eutectic formed upon grinding, while below 10 degrees C the same materials appear to react without the formation of a liquid phase, which most likely remains hidden behind solid reactants and reaction products. C1 [Dolotko, Oleksandr; Wiench, Jerzy W.; Pecharsky, Vitalij K.] Iowa State Univ, Ames Lab, US Dept Energy, Ames, IA 50011 USA. [Pecharsky, Vitalij K.] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. [Balema, Viktor P.] Sigma Aldrich Corp, Aldrich Mat Sci, Milwaukee, WI 53209 USA. RP Pecharsky, VK (reprint author), Iowa State Univ, Ames Lab, US Dept Energy, Ames, IA 50011 USA. EM vitkp@ameslab.gov; vbalema@sial.com NR 34 TC 32 Z9 32 U1 1 U2 9 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1144-0546 J9 NEW J CHEM JI New J. Chem. PY 2010 VL 34 IS 1 BP 25 EP 28 DI 10.1039/b9nj00588a PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA 535IB UT WOS:000272959800004 ER PT J AU Werkema, EL Yahia, A Maron, L Eisenstein, O Andersen, RA AF Werkema, Evan L. Yahia, Ahmed Maron, Laurent Eisenstein, Odile Andersen, Richard A. TI Splitting a C-O bond in dialkylethers with bis(1,2,4-tri-tert-butylcyclopentadienyl)cerium hydride does not occur by a sigma-bond metathesis pathway: a combined experimental and DFT computational study SO NEW JOURNAL OF CHEMISTRY LA English DT Article ID ALKYLLITHIUM COMPOUNDS; FLUORINE EXCHANGE; H ACTIVATION; CLEAVAGE; ALPHA; COMPLEXES; HYDROGEN; ETHER; DECOMPOSITION; MECHANISM AB The addition of diethylether to [1,2,4(Me(3)C)(3)C(5)H(2)](2)CeH, abbreviated Cp'(2)CeH, gives Cp'(2)CeOEt and ethane. Similarly, di-n-propyl- or di-n-butylether gives Cp'(2)Ce(O-n-Pr) and propane or Cp'(2)Ce(O-n-Bu) and butane, respectively. Using Cp'(2)CeD, the propane and butane contain deuterium predominantly in their methyl groups. Mechanisms, formulated on the basis of DFT computational studies, show that the reactions begin by an alpha-or beta-CH activation with comparable activation barriers, but only the beta-CH activation intermediate evolves into the alkoxide product and an olefin. The olefin then inserts into the Ce-H bond forming the alkyl derivative, Cp'(2)CeR, which eliminates alkane. The alpha-CH activation intermediate is in equilibrium with the starting reagents, Cp'(2)CeH and the ether, which accounts for the deuterium label in the methyl groups of the alkane. The one-step sigma-bond metathesis mechanism has a much higher activation barrier than either of the two-step mechanisms. C1 [Yahia, Ahmed; Maron, Laurent] Univ Toulouse, LPCNO, INSA, UPS, F-31077 Toulouse, France. [Yahia, Ahmed; Maron, Laurent] CNRS, LPCNO, F-31077 Toulouse, France. [Werkema, Evan L.; Andersen, Richard A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Dept Chem, Berkeley, CA 94720 USA. [Werkema, Evan L.; Andersen, Richard A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Yahia, Ahmed] CEA CNRS UM2, ICSM UM5257, F-30207 Bagnols Sur Ceze, France. [Eisenstein, Odile] Univ Montpellier 2, CNRS 5253, Inst Charles Gerhardt, F-34095 Montpellier, France. RP Maron, L (reprint author), Univ Toulouse, LPCNO, INSA, UPS, 135 Ave Rangueil, F-31077 Toulouse, France. RI Eisenstein, Odile/I-1704-2016 OI Eisenstein, Odile/0000-0001-5056-0311 FU Office of Science, Office of Basic Energy Sciences (OBES) of the U.S. Department of Energy (DOE) [DE-AC02-05CH11231]; CNRS; Minister of High Education and Research; CEA FX This work was supported by the Director, Office of Science, Office of Basic Energy Sciences (OBES) of the U.S. Department of Energy (DOE) under Contract no. DE-AC02-05CH11231. A. Y. thanks the Computer Center, CCRT of the CEA for a generous donation of computation time. L. M. and O. E. thank the CNRS and Minister of High Education and Research for funding, and A. Y. thanks the CEA for a PhD fellowship. L. M. is a junior member of the Institut Universitaire de France. NR 32 TC 6 Z9 6 U1 0 U2 16 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1144-0546 J9 NEW J CHEM JI New J. Chem. PY 2010 VL 34 IS 10 BP 2189 EP 2196 DI 10.1039/c0nj00261e PG 8 WC Chemistry, Multidisciplinary SC Chemistry GA 655CG UT WOS:000282219600019 ER PT S AU Carpenter, JH Flicker, DG Root, S Magyar, RJ Hanson, DL Mattsson, TR AF Carpenter, J. H. Flicker, D. G. Root, S. Magyar, R. J. Hanson, D. L. Mattsson, T. R. BE Soulard, L TI High fidelity equation of state for xenon SO NEW MODELS AND HYDROCODES FOR SHOCK WAVE PROCESSES IN CONDENSED MATTER SE EPJ Web of Conferences LA English DT Proceedings Paper CT Conference on New Models and Hydrocodes for Shock Wave Processes in Condensed Matter CY MAY 24-28, 2010 CL Paris, FRANCE ID LIQUID XENON; CORRESPONDING STATES; SOLID XENON; THERMODYNAMIC PROPERTIES; PERTURBATION-THEORY; PHASE-TRANSITIONS; X-RAY; DENSITY; KRYPTON; SURFACE AB The noble gas xenon is a particularly interesting element. At standard pressure xenon is an fcc solid which melts at 161 K and then boils at 165 K, thus displaying a rather narrow liquid range on the phase diagram. On the other hand, under pressure the melting point is significantly higher: 3000 K at 30 GPa [1]. Under shock compression, electronic excitations become important at 40 GPa [2]. Finally, xenon forms stable molecules with fluorine (XeF2) suggesting that the electronic structure is significantly more complex than expected for a noble gas. With these reasons in mind, we studied the xenon Hugoniot using DFT/QMD [3] and validated the simulations with multi-Mbar shock compression experiments. The results show that existing equation of state models lack fidelity and so we developed a wide-range free-energy based equation of state using experimental data and results from first-principles simulations. C1 [Carpenter, J. H.; Flicker, D. G.; Root, S.; Magyar, R. J.; Hanson, D. L.; Mattsson, T. R.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Carpenter, JH (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM jhcarpe@sandia.gov; dgflick@sandia.gov; sroot@sandia.gov; rjmagya@sandia.gov; dlhanso@sandia.gov; trmatts@sandia.gov NR 51 TC 1 Z9 1 U1 1 U2 20 PU E D P SCIENCES PI CEDEX A PA 17 AVE DU HOGGAR PARC D ACTIVITES COUTABOEUF BP 112, F-91944 CEDEX A, FRANCE SN 2100-014X J9 EPJ WEB CONF PY 2010 VL 10 AR 00018 DI 10.1051/epjconf/20101000018 PG 11 WC Mechanics; Physics, Condensed Matter SC Mechanics; Physics GA BUU62 UT WOS:000290385000017 ER PT S AU Dupont, V Chen, SP Germann, TC AF Dupont, V. Chen, S. -P. Germann, T. C. BE Soulard, L TI Isomorphic phase transformation in shocked Cerium using molecular dynamics SO NEW MODELS AND HYDROCODES FOR SHOCK WAVE PROCESSES IN CONDENSED MATTER SE EPJ Web of Conferences LA English DT Proceedings Paper CT Conference on New Models and Hydrocodes for Shock Wave Processes in Condensed Matter CY MAY 24-28, 2010 CL Paris, FRANCE ID ELASTIC-CONSTANTS; TRANSITIONS; SIMULATIONS; CRYSTALS; WAVES; GAMMA AB Cerium (Ce) undergoes a significant (similar to 16%) volume collapse associated with an isomorphic fcc-fcc phase transformation when subject to compressive loading. We present here a new Embedded Atom Method (EAM) potential for Cerium that models two minima for the two fcc phases. We show results from its use in Molecular Dynamics (MD) simulations of Ce samples subjected to shocks with pressures ranging from 0.5 to 25 GPa. A split wave structure is observed, with an elastic precursor followed by a plastic wave. The plastic wave causes the expected fcc-fcc phase transformation. Comparisons to experiments and MD simulations on Cesium (Cs) indicate that three waves could be observed. The construction of the EAM potential may be the source of the difference. C1 [Dupont, V.; Chen, S. -P.; Germann, T. C.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Dupont, V (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM vdupont@lanl.gov; sc@lanl.gov; tcg@lanl.gov RI Rollin, Virginie/G-5147-2010; OI Rollin, Virginie/0000-0003-2572-5967; Germann, Timothy/0000-0002-6813-238X NR 24 TC 0 Z9 0 U1 1 U2 9 PU E D P SCIENCES PI CEDEX A PA 17 AVE DU HOGGAR PARC D ACTIVITES COUTABOEUF BP 112, F-91944 CEDEX A, FRANCE SN 2100-014X J9 EPJ WEB CONF PY 2010 VL 10 AR 00009 DI 10.1051/epjconf/20101000009 PG 6 WC Mechanics; Physics, Condensed Matter SC Mechanics; Physics GA BUU62 UT WOS:000290385000008 ER PT S AU Harrison, AK Shashkov, MJ Fung, J Kamm, JR Canfield, TR AF Harrison, A. K. Shashkov, M. J. Fung, J. Kamm, J. R. Canfield, T. R. BE Soulard, L TI Development of a sub-scale dynamics model for pressure relaxation of multi-material cells in Lagrangian hydrodynamics SO NEW MODELS AND HYDROCODES FOR SHOCK WAVE PROCESSES IN CONDENSED MATTER SE EPJ Web of Conferences LA English DT Proceedings Paper CT Conference on New Models and Hydrocodes for Shock Wave Processes in Condensed Matter CY MAY 24-28, 2010 CL Paris, FRANCE AB We have extended the Sub-Scale Dynamics (SSD) closure model for multi-fluid computational cells. Volume exchange between two materials is based on the interface area and a notional interface translation velocity, which is derived from a linearized Riemann solution. We have extended the model to cells with any number of materials, computing pressure-difference-driven volume and energy exchange as the algebraic sum of pairwise interactions. In multiple dimensions, we rely on interface reconstruction to provide interface areas and orientations, and centroids of material polygons. In order to prevent unphysically large or unmanageably small material volumes, we have used a flux-corrected transport (FCT) approach to limit the pressure-driven part of the volume exchange. We describe the implementation of this model in two dimensions in the FLAG hydrodynamics code. We also report on Lagrangian test calculations, comparing them with others made using a mixed-zone closure model due to Tipton, and with corresponding calculations made with only single-material cells. We find that in some cases, the SSD model more accurately predicts the state of material in mixed cells. By comparing the algebraic forms of both models, we identify similar dependencies on state and dynamical variables, and propose explanations for the apparent higher fidelity of the SSD model. C1 [Harrison, A. K.; Shashkov, M. J.; Fung, J.; Canfield, T. R.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Kamm, J. R.] Sandia Natl Labs, Livermore, CA 94550 USA. RP Harrison, AK (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87545 USA. EM alanh@lanl.gov NR 11 TC 0 Z9 0 U1 0 U2 3 PU E D P SCIENCES PI CEDEX A PA 17 AVE DU HOGGAR PARC D ACTIVITES COUTABOEUF BP 112, F-91944 CEDEX A, FRANCE SN 2100-014X J9 EPJ WEB CONF PY 2010 VL 10 AR UNSP 000039 DI 10.1051/epjconf/201010000039 PG 11 WC Mechanics; Physics, Condensed Matter SC Mechanics; Physics GA BUU62 UT WOS:000290385000038 ER PT S AU Herring, SD Germann, TC Gronbech-Jensen, N AF Herring, S. D. Germann, T. C. Gronbech-Jensen, N. BE Soulard, L TI Sensitivity effects of void density and arrangement in a REBO high explosive SO NEW MODELS AND HYDROCODES FOR SHOCK WAVE PROCESSES IN CONDENSED MATTER SE EPJ Web of Conferences LA English DT Proceedings Paper CT Conference on New Models and Hydrocodes for Shock Wave Processes in Condensed Matter CY MAY 24-28, 2010 CL Paris, FRANCE ID DETONATION; MODEL AB The shock response of two-dimensional model high explosive crystals with various arrangements of circular voids is explored. We simulate a piston impact using molecular dynamics simulations with a Reactive Empirical Bond Order (REBO) model potential for a sub-micron, sub-ns exothermic reaction in a diatomic molecular solid. In square lattices of voids all of one size, reducing that size or increasing the porosity while holding the other parameter fixed causes the hotspots to consume the material more quickly and detonation to occur sooner and at lower piston velocities. The early time behavior is seen to follow a very simple ignition and growth model. The hotspots are seen to collectively develop a broad pressure wave (a sonic, diffuse deflagration front) that, upon merging with the lead shock, transforms it into a detonation. The reaction yields produced by triangular lattices are not significantly different. With random void arrangements, the mean time to detonation is 15.5% larger than with the square lattice; the standard deviation of detonation delays is just 5.1%. C1 [Herring, S. D.; Germann, T. C.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Herring, SD (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. EM herring@lanl.gov; tcg@lanl.gov; ngjensen@ucdavis.edu OI Germann, Timothy/0000-0002-6813-238X NR 16 TC 0 Z9 0 U1 2 U2 3 PU E D P SCIENCES PI CEDEX A PA 17 AVE DU HOGGAR PARC D ACTIVITES COUTABOEUF BP 112, F-91944 CEDEX A, FRANCE SN 2100-014X J9 EPJ WEB CONF PY 2010 VL 10 AR 00024 DI 10.1051/epjconf/20101000024 PG 7 WC Mechanics; Physics, Condensed Matter SC Mechanics; Physics GA BUU62 UT WOS:000290385000023 ER PT S AU Holian, BL AF Holian, B. L. BE Soulard, L TI A History of constitutive modeling via molecular dynamics: Shock waves in fluids and gases SO NEW MODELS AND HYDROCODES FOR SHOCK WAVE PROCESSES IN CONDENSED MATTER SE EPJ Web of Conferences LA English DT Proceedings Paper CT Conference on New Models and Hydrocodes for Shock Wave Processes in Condensed Matter CY MAY 24-28, 2010 CL Paris, FRANCE ID SHEAR VISCOSITY; EQUILIBRIUM AB From its inception in the mid-Fifties, the method of molecular-dynamics (MD) computer simulations has been used to probe the foundations of statistical mechanics, first for equilibrium equation-of-state averages, and then for transport properties from equilibrium fluctuations. Traditional statistical mechanical theoreticians were shocked to see that this new-fangled computational physics approach was feasible, even with incredibly tiny samples (on the order of a hundred atoms). When direct measurement of transport coefficients by non-equilibrium molecular dynamics (NEMD) was proposed in the early Seventies, even greater resistance was encountered from the traditionalists though evidence for convergence with the equilibrium fluctuation method gradually accumulated. In the late Seventies and early Eighties, shock-wave simulations by NEMD made it possible to test directly the principal continuum constitutive theory for fluids, namely, Navier-Stokes viscous flow and Fourier's Law of heat conduction. To everyone's surprise - and the consternation of many - NEMD, once again, demonstrated that continuum theory applies at embarrassingly small (atomistic) time and length scales. We pursue this early line of work into the modern era, showing how NEMD shock-wave simulations can still provide surprising insights and improvements upon our understanding of constitutive modeling. C1 Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Holian, BL (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. NR 30 TC 1 Z9 1 U1 2 U2 5 PU E D P SCIENCES PI CEDEX A PA 17 AVE DU HOGGAR PARC D ACTIVITES COUTABOEUF BP 112, F-91944 CEDEX A, FRANCE SN 2100-014X J9 EPJ WEB CONF PY 2010 VL 10 AR 00002 DI 10.1051/epjconf/20101000002 PG 13 WC Mechanics; Physics, Condensed Matter SC Mechanics; Physics GA BUU62 UT WOS:000290385000001 ER PT S AU Kamm, JR Shashkov, MJ Rider, WJ AF Kamm, J. R. Shashkov, M. J. Rider, W. J. BE Soulard, L TI A new pressure relaxation closure model for one-dimensional two-material Lagrangian hydrodynamics SO NEW MODELS AND HYDROCODES FOR SHOCK WAVE PROCESSES IN CONDENSED MATTER SE EPJ Web of Conferences LA English DT Proceedings Paper CT Conference on New Models and Hydrocodes for Shock Wave Processes in Condensed Matter CY MAY 24-28, 2010 CL Paris, FRANCE AB We present a new model for closing a system of Lagrangian hydrodynamics equations for a two-material cell with a single velocity model. We describe a new approach that is motivated by earlier work of Delov and Sadchikov and of Goncharov and Yanilkin. Using a linearized Riemann problem to initialize volume fraction changes, we require that each material satisfy its own p dV equation, which breaks the overall energy balance in the mixed cell. To enforce this balance, we redistribute the energy discrepancy by assuming that the corresponding pressure change in each material is equal. This multiple-material model is packaged as part of a two-step time integration scheme. We compare results of our approach with other models and with corresponding pure-material calculations, on two-material test problems with ideal-gas or stiffened-gas equations of state. C1 [Kamm, J. R.; Rider, W. J.] Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. [Shashkov, M. J.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Kamm, JR (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM jrkamm@sandia.gov FU US Department of Energy National Nuclear Security Administration Advanced Simulation and Computing (ASC) Program; US Department of Energy Office of Science Advanced Scientific Computing Research (ASCR) Program; [DE-AC52-06NA25396] FX DE-AC52-06NA25396. The authors gratefully acknowledge the partial support of the US Department of Energy National Nuclear Security Administration Advanced Simulation and Computing (ASC) Program and the partial support of the US Department of Energy Office of Science Advanced Scientific Computing Research (ASCR) Program in Applied Mathematics Research. The authors thank A. Barlow, Yu. Bondarenko, D. Burton, B. Despres, P.-H. Maire, L. Margolin, and Yu. Yanilkin for numerous stimulating discussions on these topics. NR 9 TC 0 Z9 0 U1 0 U2 1 PU E D P SCIENCES PI CEDEX A PA 17 AVE DU HOGGAR PARC D ACTIVITES COUTABOEUF BP 112, F-91944 CEDEX A, FRANCE SN 2100-014X J9 EPJ WEB CONF PY 2010 VL 10 AR UNSP 00038 DI 10.1051/epjconf/20101000038 PG 7 WC Mechanics; Physics, Condensed Matter SC Mechanics; Physics GA BUU62 UT WOS:000290385000037 ER PT S AU Kaul, A AF Kaul, A. BE Soulard, L TI Damage experiments in a cylindrical geometry SO NEW MODELS AND HYDROCODES FOR SHOCK WAVE PROCESSES IN CONDENSED MATTER SE EPJ Web of Conferences LA English DT Proceedings Paper CT Conference on New Models and Hydrocodes for Shock Wave Processes in Condensed Matter CY MAY 24-28, 2010 CL Paris, FRANCE AB Studying spallation damage with a cylindrical configuration allows for a natural recollection of the damaged material under proper driving conditions. Additionally, the damaged material can come to a complete rest without the application of further stopping forces. Specific areas of research include the damage initiation regime in convergent geometry, behavior of material recollected after damage, and effects of convergent geometry on the material response. Such experiments produce unique strain and shear stress states, motivating improvements in existing computational material models and increasing the predictive capabilities of codes. A LANL/VNIIEF joint experimental series has produced cylindrical aluminum failure initiation data and studied the behavior of material recollected after damage initiation and after complete failure. In addition to post-shot collection of the damaged target material for subsequent metallographic analysis, dynamic in-situ experimental diagnostics include velocimetry and transverse radial radiography. This paper will discuss the current experimental status. C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Kaul, A (reprint author), Los Alamos Natl Lab, XCP 5,MS F663, Los Alamos, NM 87545 USA. NR 0 TC 0 Z9 0 U1 0 U2 1 PU E D P SCIENCES PI CEDEX A PA 17 AVE DU HOGGAR PARC D ACTIVITES COUTABOEUF BP 112, F-91944 CEDEX A, FRANCE SN 2100-014X J9 EPJ WEB CONF PY 2010 VL 10 AR 00011 DI 10.1051/epjconf/20101000011 PG 7 WC Mechanics; Physics, Condensed Matter SC Mechanics; Physics GA BUU62 UT WOS:000290385000010 ER PT S AU Kaul, A AF Kaul, A. BE Soulard, L TI Modeling solid Rayleigh-Taylor growth SO NEW MODELS AND HYDROCODES FOR SHOCK WAVE PROCESSES IN CONDENSED MATTER SE EPJ Web of Conferences LA English DT Proceedings Paper CT Conference on New Models and Hydrocodes for Shock Wave Processes in Condensed Matter CY MAY 24-28, 2010 CL Paris, FRANCE AB Intense impulses applied to solid materials result in high strain rates, strong plastic strains and significant temperature increments. Data in such regimes would allow confidence in extending material strength models to strain rates of 10(6)-10(7) s(-1). High explosives can be used to accelerate a plate with a perturbation on the side facing the HE, resulting in a Rayleigh-Taylor-like perturbation growth that depends on amplitude and wavelength of the initial surface perturbation, strength of the material, time dependence of the driving pressure force, and temperature of the material. Such experiments have been conducted on perturbed copper plates at LANL, using the LANSCE proton radiography beam to obtain multiple frames of data for each experiment. The results of numerical simulations of these experiments using a 2-D ALE code are presented. C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Kaul, A (reprint author), Los Alamos Natl Lab, XCP 5,MS F663, Los Alamos, NM 87545 USA. NR 3 TC 0 Z9 0 U1 0 U2 2 PU E D P SCIENCES PI CEDEX A PA 17 AVE DU HOGGAR PARC D ACTIVITES COUTABOEUF BP 112, F-91944 CEDEX A, FRANCE SN 2100-014X J9 EPJ WEB CONF PY 2010 VL 10 AR 00012 DI 10.1051/epjconf/20101000012 PG 7 WC Mechanics; Physics, Condensed Matter SC Mechanics; Physics GA BUU62 UT WOS:000290385000011 ER PT S AU Menikoff, R Shaw, MS AF Menikoff, R. Shaw, M. S. BE Soulard, L TI Reactive burn models and ignition & growth concept SO NEW MODELS AND HYDROCODES FOR SHOCK WAVE PROCESSES IN CONDENSED MATTER SE EPJ Web of Conferences LA English DT Proceedings Paper CT Conference on New Models and Hydrocodes for Shock Wave Processes in Condensed Matter CY MAY 24-28, 2010 CL Paris, FRANCE ID SHOCK INITIATION; EXPLOSIVES AB Plastic-bonded explosives are heterogeneous materials. Experimentally, shock initiation is sensitive to small amounts of porosity, due to the formation of hot spots (small localized regions of high temperature). This leads to the Ignition & Growth concept, introduced by Lee and Tarver in 1980, as the basis for reactive burn models. A homogenized burn rate needs to account for three meso-scale physical effects: (i) the density of active hot spots or burn centers; (ii) the growth of the burn fronts triggered by the burn centers; (iii) a geometric factor that accounts for the overlap of deflagration wavelets from adjacent burn centers. These effects can be combined and the burn model defined by specifying the reaction progress variable. lambda = g(s) as a function of a dimensionless reaction length s(t) = r(bc)/l(bc), rather than by specifying an explicit burn rate. The length scale l(bc)(P(s)) = [ N(bc)(P(s))](-1/3) is the average distance between burn centers, where N(bc) is the number density of burn centers activated by the lead shock. The reaction length r(bc)(t) = integral(t)(0) D(P(t'))dt' is the distance the burn front propagates from a single burn center, where D(P) is the deflagration speed as a function of the local pressure and t is the time since the shock arrival. A key implementation issue is how to determine the lead shock strength in conjunction with a shock capturing scheme. We have developed a robust algorithm for this purpose based on the Hugoniot jump condition for the energy. The algorithm utilizes the time dependence of density, pressure and energy within each cell. The method is independent of the numerical dissipation used for shock capturing. It is local and can be used in one or more space dimensions. The burn model has a small number of parameters which can be calibrated to fit velocity gauge data from shock initiation experiments. C1 [Menikoff, R.; Shaw, M. S.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Menikoff, R (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87545 USA. EM rtm@lanl.gov; mss@lanl.gov NR 24 TC 6 Z9 7 U1 3 U2 12 PU E D P SCIENCES PI CEDEX A PA 17 AVE DU HOGGAR PARC D ACTIVITES COUTABOEUF BP 112, F-91944 CEDEX A, FRANCE SN 2100-014X J9 EPJ WEB CONF PY 2010 VL 10 AR 00003 DI 10.1051/epjconf/20101000003 PG 9 WC Mechanics; Physics, Condensed Matter SC Mechanics; Physics GA BUU62 UT WOS:000290385000002 ER PT S AU Raevsky, VA Aprelkov, ON Ignatova, ON Igonin, VI Lebedev, AI Nadezhin, SS Zocher, MA Preston, D Coul, A AF Raevsky, V. A. Aprelkov, O. N. Ignatova, O. N. Igonin, V. I. Lebedev, A. I. Nadezhin, S. S. Zocher, M. A. Preston, D. Coul, A. BE Soulard, L TI Development of wide-range constitutive equations for calculations of high-rate deformation of metals SO NEW MODELS AND HYDROCODES FOR SHOCK WAVE PROCESSES IN CONDENSED MATTER SE EPJ Web of Conferences LA English DT Proceedings Paper CT Conference on New Models and Hydrocodes for Shock Wave Processes in Condensed Matter CY MAY 24-28, 2010 CL Paris, FRANCE ID MODEL AB For development of models of strength and compressibility of metals in wide range of pressures (up to several megabar) and strain rates. (epsilon) over dot similar to 1 divided by 10(8) s(-1), the method of dynamic tests is used. Since direct measurement of strength is impossible under complicated intensive high-rate loading, a formal model is created at first, and then it is updated basing on comparison with many experiments, which are sensitive to shear strength. Elastic-plastic, viscous-elastic-plastic and relaxation integral models became nowadays most commonly used. The basic unsolved problems in simulation of high-rate deformation of metals are mentioned in the paper. C1 [Raevsky, V. A.; Aprelkov, O. N.; Ignatova, O. N.; Igonin, V. I.; Lebedev, A. I.; Nadezhin, S. S.] FSUE RFNC VNIIEF, Sarov, Russia. [Zocher, M. A.; Preston, D.; Coul, A.] Los Alamos Natl Lab, Los Alamos, NM USA. RP Raevsky, VA (reprint author), FSUE RFNC VNIIEF, Sarov, Russia. EM root@gdd.vniief.ru NR 22 TC 0 Z9 0 U1 0 U2 3 PU E D P SCIENCES PI CEDEX A PA 17 AVE DU HOGGAR PARC D ACTIVITES COUTABOEUF BP 112, F-91944 CEDEX A, FRANCE SN 2100-014X J9 EPJ WEB CONF PY 2010 VL 10 AR UNSP 00022 DI 10.1051/epjconf/20101000022 PG 8 WC Mechanics; Physics, Condensed Matter SC Mechanics; Physics GA BUU62 UT WOS:000290385000021 ER PT S AU Skokov, VI Ignatova, ON Malyshev, AN Podurets, AM Raevsky, VA Tkachenko, MI Zocher, MA AF Skokov, V. I. Ignatova, O. N. Malyshev, A. N. Podurets, A. M. Raevsky, V. A. Tkachenko, M. I. Zocher, M. A. BE Soulard, L TI Spall fracture of copper under loading by shock waves with duration less 1 microsecond SO NEW MODELS AND HYDROCODES FOR SHOCK WAVE PROCESSES IN CONDENSED MATTER SE EPJ Web of Conferences LA English DT Proceedings Paper CT Conference on New Models and Hydrocodes for Shock Wave Processes in Condensed Matter CY MAY 24-28, 2010 CL Paris, FRANCE AB The paper presents results of experimental researches on spall fracture of polycrystalline copper when loading by shock waves with intensity of 20-33 GPa and duration < 1 mu s. It is shown that decrease of copper spall strength is observed behind SW front at SW intensity of similar to 33 GPa (above threshold of formation of heterogeneous deformation bands). When reducing SW intensity to 27 GPa, spall strength is restored. Duration of the softened copper state does not exceed similar to 0.5 mu s. The method for spall strength evaluation is based on measurement of maximum damage in post-test samples. C1 [Skokov, V. I.; Ignatova, O. N.; Malyshev, A. N.; Podurets, A. M.; Raevsky, V. A.; Tkachenko, M. I.] FSUE RFNC VNIIEF, Sarov, Russia. [Zocher, M. A.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Skokov, VI (reprint author), FSUE RFNC VNIIEF, Sarov, Russia. EM root@gdd.vniief.ru FU Los Alamos National Laboratory and Scientific School [NSh-1307.2008.1] FX The work was supported by Los Alamos National Laboratory and Scientific School NSh-1307.2008.1. NR 8 TC 0 Z9 0 U1 0 U2 0 PU E D P SCIENCES PI CEDEX A PA 17 AVE DU HOGGAR PARC D ACTIVITES COUTABOEUF BP 112, F-91944 CEDEX A, FRANCE SN 2100-014X J9 EPJ WEB CONF PY 2010 VL 10 AR UNSP 00019 DI 10.1051/epjconf/20101000019 PG 5 WC Mechanics; Physics, Condensed Matter SC Mechanics; Physics GA BUU62 UT WOS:000290385000018 ER PT S AU Tonks, DL Bingert, J Livescu, V Luo, S Bronkhorst, C AF Tonks, D. L. Bingert, J. Livescu, V. Luo, S. Bronkhorst, C. BE Soulard, L TI Mesoscale polycrystal calculations of damage in spallation in metals SO NEW MODELS AND HYDROCODES FOR SHOCK WAVE PROCESSES IN CONDENSED MATTER SE EPJ Web of Conferences LA English DT Proceedings Paper CT Conference on New Models and Hydrocodes for Shock Wave Processes in Condensed Matter CY MAY 24-28, 2010 CL Paris, FRANCE AB The goal of this project is to produce a damage model forspallation in metals informed by the polycrystalline grain structure at themesoscale. Earlier damage models addressed the continuum macroscale in whichthese effects were averaged out. In this work we focus on cross sectionsfrom recovered samples examined with EBSD (electron backscattereddiffraction), which reveal crystal grain orientations and voids. We seek tounderstand the loading histories of specific sample regions by meshing upthe crystal grain structure of these regions and simulating the stress, strain, and damage histories in our hydrocode, FLAG. The stresses and strainhistories are the fundamental drivers of damage and must be calculated. Thecalculated final damage structures are compared with those from therecovered samples to validate the simulations. C1 [Tonks, D. L.; Bingert, J.; Livescu, V.; Luo, S.; Bronkhorst, C.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Tonks, DL (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. RI Bronkhorst, Curt/B-4280-2011 OI Bronkhorst, Curt/0000-0002-2709-1964 NR 4 TC 0 Z9 0 U1 0 U2 1 PU E D P SCIENCES PI CEDEX A PA 17 AVE DU HOGGAR PARC D ACTIVITES COUTABOEUF BP 112, F-91944 CEDEX A, FRANCE SN 2100-014X J9 EPJ WEB CONF PY 2010 VL 10 AR 00006 DI 10.1051/epjconf/20101000006 PG 4 WC Mechanics; Physics, Condensed Matter SC Mechanics; Physics GA BUU62 UT WOS:000290385000005 ER PT J AU Gea-Izquierdo, G Makela, A Margolis, H Bergeron, Y Black, TA Dunn, A Hadley, J Paw, KT Falk, M Wharton, S Monson, R Hollinger, DY Laurila, T Aurela, M McCaughey, H Bourque, C Vesala, T Berninger, F AF Gea-Izquierdo, Guillermo Makela, Annikki Margolis, Hank Bergeron, Yves Black, T. Andrew Dunn, Allison Hadley, Julian Paw U, Kyaw Tha Falk, Matthias Wharton, Sonia Monson, Russell Hollinger, David Y. Laurila, Tuomas Aurela, Mika McCaughey, Harry Bourque, Charles Vesala, Timo Berninger, Frank TI Modeling acclimation of photosynthesis to temperature in evergreen conifer forests SO NEW PHYTOLOGIST LA English DT Article DE boreal ecosystems; carbon fluxes; eddy covariance; mechanistic models; temperature acclimation ID NET ECOSYSTEM EXCHANGE; BLACK SPRUCE FORESTS; OLD-GROWTH FOREST; SCOTS PINE; CARBON-EXCHANGE; BOREAL FOREST; GAS-EXCHANGE; CO2 EXCHANGE; INTERANNUAL VARIABILITY; SOIL RESPIRATION AB P>In this study, we used a canopy photosynthesis model which describes changes in photosynthetic capacity with slow temperature-dependent acclimations. A flux-partitioning algorithm was applied to fit the photosynthesis model to net ecosystem exchange data for 12 evergreen coniferous forests from northern temperate and boreal regions. The model accounted for much of the variation in photosynthetic production, with modeling efficiencies (mean > 67%) similar to those of more complex models. The parameter describing the rate of acclimation was larger at the northern sites, leading to a slower acclimation of photosynthesis to temperature. The response of the rates of photosynthesis to air temperature in spring was delayed up to several days at the coldest sites. Overall photosynthesis acclimation processes were slower at colder, northern locations than at warmer, more southern, and more maritime sites. Consequently, slow changes in photosynthetic capacity were essential to explaining variations of photosynthesis for colder boreal forests (i.e. where acclimation of photosynthesis to temperature was slower), whereas the importance of these processes was minor in warmer conifer evergreen forests. C1 [Gea-Izquierdo, Guillermo; Berninger, Frank] Univ Quebec, Dept Sci Biol, CEF, Montreal, PQ H3P 3P8, Canada. [Makela, Annikki] Univ Helsinki, Dept Forest Ecol, FIN-00014 Helsinki, Finland. [Margolis, Hank] Univ Laval Quebec, Ctr Etud Foret, Fac Foresterie Geog & Geomat, Laval, PQ G1V 0A6, Canada. [Bergeron, Yves] Univ Quebec Abitibi Temiscamingue, Rouyn Noranda, PQ J9X 5E4, Canada. [Black, T. Andrew] Univ British Columbia, Fac Land & Food Syst, Vancouver, BC V6T 1Z4, Canada. [Dunn, Allison] Harvard Univ, Dept Earth & Planetary Sci, Cambridge, MA 02138 USA. [Hadley, Julian] Harvard Univ, Petersham, MA 01366 USA. [Paw U, Kyaw Tha; Falk, Matthias] Univ Calif Davis, Dept Land Air & Water Resources, Davis, CA 95616 USA. [Monson, Russell] Univ Colorado, Dept Ecol & Evolutionary Biol, Boulder, CO 80309 USA. [Hollinger, David Y.] USDA Forest Serv, No Res Stn, Durham, NH 03824 USA. [Laurila, Tuomas; Aurela, Mika] Finnish Meteorol Inst, FI-00101 Helsinki, Finland. [McCaughey, Harry] Queens Univ, Dept Geog, Kingston, ON K7L 3N6, Canada. [Bourque, Charles] Univ New Brunswick, Fredericton, NB E3B 5A3, Canada. [Vesala, Timo] Univ Helsinki, Dept Phys, FI-00014 Helsinki, Finland. [Wharton, Sonia] Lawrence Livermore Natl Lab, Atmospher Earth & Energy Div, Livermore, CA 94551 USA. RP Gea-Izquierdo, G (reprint author), Univ Quebec, Dept Sci Biol, CEF, CP 8888,Succ Ctr Ville, Montreal, PQ H3P 3P8, Canada. EM guigeiz@gmail.com RI Hollinger, David/G-7185-2012; Aurela, Mika/L-4724-2014; Gea-Izquierdo, Guillermo/C-6159-2015; Vesala, Timo/C-3795-2017; OI Gea-Izquierdo, Guillermo/0000-0003-0148-3721; Vesala, Timo/0000-0002-4852-7464; Berninger, Frank/0000-0001-7718-1661; Makela, Annikki/0000-0001-9633-7350 FU NSERC; Office of Science (BER), US Department of Energy [DE-AI02-07ER64355] FX This contribution was partly funded by a NSERC strategic grant held by Y.B. and F.B. We thank the participants and supporters of Ameriflux, Fluxnet and the Canadian Carbon Program (CFCAS, NSERC, NRCan, Environment Canada) for providing the flux and meteorological data. The Howland research was supported by the Office of Science (BER), US Department of Energy, Interagency Agreement No. DE-AI02-07ER64355. NR 60 TC 16 Z9 16 U1 4 U2 35 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0028-646X EI 1469-8137 J9 NEW PHYTOL JI New Phytol. PY 2010 VL 188 IS 1 BP 175 EP 186 DI 10.1111/j.1469-8137.2010.03367.x PG 12 WC Plant Sciences SC Plant Sciences GA 646OI UT WOS:000281551500019 PM 20618918 ER PT J AU Wegrzyn, JL Eckert, AJ Choi, M Lee, JM Stanton, BJ Sykes, R Davis, MF Tsai, CJ Neale, DB AF Wegrzyn, Jill L. Eckert, Andrew J. Choi, Minyoung Lee, Jennifer M. Stanton, Brian J. Sykes, Robert Davis, Mark F. Tsai, Chung-Jui Neale, David B. TI Association genetics of traits controlling lignin and cellulose biosynthesis in black cottonwood (Populus trichocarpa, Salicaceae) secondary xylem SO NEW PHYTOLOGIST LA English DT Article DE association genetics; biofuels; black cottonwood (Populus trichocarpa); genotyping; lignin biosynthesis; linkage disequilibrium; resequencing; single nucleotide polymorphism (SNP) ID PHENYLALANINE AMMONIA-LYASE; CINNAMYL ALCOHOL-DEHYDROGENASE; EXPRESSED SEQUENCE TAGS; WOOD PROPERTY TRAITS; COA-REDUCTASE CCR; PINUS-TAEDA L.; DOWN-REGULATION; NUCLEOTIDE POLYMORPHISM; O-METHYLTRANSFERASE; QUAKING ASPEN AB P>An association genetics approach was used to examine individual genes and alleles at the loci responsible for complex traits controlling lignocellulosic biosynthesis in black cottonwood (Populus trichocarpa). Recent interest in poplars as a source of renewable energy, combined with the vast genomic resources available, has enabled further examination of their genetic diversity. Forty candidate genes were resequenced in a panel of 15 unrelated individuals to identify single nucleotide polymorphisms (SNPs). Eight hundred and seventy-six SNPs were successfully genotyped in a clonally replicated population (448 clones). The association population (average of 2.4 ramets per clone) was phenotyped using pyrolysis molecular beam mass spectrometry. Both single-marker and haplotype-based association tests were implemented to identify associations for composite traits representing lignin content, syringyl : guaiacyl ratio and C6 sugars. Twenty-seven highly significant, unique, single-marker associations (false discovery rate Q < 0.10) were identified across 40 candidate genes in three composite traits. Twenty-three significant haplotypes within 11 genes were discovered in two composite traits. Given the rapid decay of within-gene linkage disequilibrium and the high coverage of amplicons across each gene, it is likely that the numerous polymorphisms identified are in close proximity to the causative SNPs and the haplotype associations reflect information present in the associations between markers. C1 [Wegrzyn, Jill L.; Neale, David B.] Univ Calif Davis, Dept Plant Sci, Davis, CA 95616 USA. [Eckert, Andrew J.; Choi, Minyoung; Lee, Jennifer M.] Univ Calif Davis, Sect Evolut & Ecol, Davis, CA 95616 USA. [Eckert, Andrew J.; Neale, David B.] Univ Calif Davis, Ctr Populat Biol, Davis, CA 95616 USA. [Stanton, Brian J.] Greenwood Resources, Genet Resources Conservat Program, Portland, OR 97201 USA. [Sykes, Robert; Davis, Mark F.] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Tsai, Chung-Jui] Univ Georgia, Dept Genet, Athens, GA 30602 USA. [Tsai, Chung-Jui] Univ Georgia, Sch Forestry & Nat Resources, Athens, GA 30602 USA. [Neale, David B.] Univ Calif Davis, Bioenergy Res Ctr BERC, Davis, CA 95616 USA. [Neale, David B.] US Forest Serv, USDA, Inst Forest Genet, Davis, CA 95616 USA. RP Neale, DB (reprint author), Univ Calif Davis, Dept Plant Sci, Davis, CA 95616 USA. EM dbneale@ucdavis.edu RI Eckert, Andrew/E-4788-2011; Tsai, CJ/C-2450-2009; OI Eckert, Andrew/0000-0002-6522-2646; Tsai, CJ/0000-0002-9282-7704; Wegrzyn, Jill/0000-0001-5923-0888; davis, mark/0000-0003-4541-9852 FU Chevron Technology Ventures-UC Davis Biofuels FX We thank Charles Nicolet and Vanessa Rashbrook for performing the SNP genotyping, and John Liechty and Benjamin Figueroa for bioinformatics support. Funding for this project was made available through the Chevron Technology Ventures-UC Davis Biofuels Project. NR 95 TC 71 Z9 73 U1 4 U2 32 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0028-646X J9 NEW PHYTOL JI New Phytol. PY 2010 VL 188 IS 2 BP 515 EP 532 DI 10.1111/j.1469-8137.2010.03415.x PG 18 WC Plant Sciences SC Plant Sciences GA 655DW UT WOS:000282225000020 PM 20831625 ER PT J AU Gomez, S Ferrieri, RA Schueller, M Orians, CM AF Gomez, Sara Ferrieri, Richard A. Schueller, Michael Orians, Colin M. TI Methyl jasmonate elicits rapid changes in carbon and nitrogen dynamics in tomato SO NEW PHYTOLOGIST LA English DT Article DE carbon transport; herbivory; induced defense; methyl jasmonate (MeJA); nitrogen transport; resource mobilization; resource sequestration; tolerance ID NICOTIANA-ATTENUATA; MANDUCA-SEXTA; INDUCED RESPONSES; CHEMICAL DEFENSE; PLANT DEFENSE; TRANSCRIPTIONAL RESPONSES; PHENOTYPIC PLASTICITY; PROTEINASE-INHIBITORS; VASCULAR ARCHITECTURE; POLYPHENOL OXIDASE AB P>Evidence is emerging to support the notion that in response to herbivory, plants undergo changes in their primary metabolism and are able to fine-tune the allocation of new and existing resources and temporarily direct them to storage organs. We hypothesized that simulated herbivory increases the export of resources out of the affected tissues and increases allocation to roots. We used short-lived radioisotopes to study in vivo the dynamics of newly incorporated 11CO(2) and 13NH(3). Methyl jasmonate (MeJA), a known defense elicitor, was applied to the foliage of tomato plants and 4 h later we monitored leaf uptake, export and whole-plant allocation of [11C]photosynthate and [13N]amino acids. There was a marginally significant decrease in the fixation of 11CO(2), and an increase in the export of newly acquired carbon and nitrogen out of MeJA-treated leaves. The proportion of nitrogen allocated to roots increased, whereas the proportion of carbon did not change. These results are in agreement with our hypotheses, showing a change in the allocation of resources after treatment with MeJA; this may reduce the chance of resources being lost to herbivores and act as a buffer to biotic stress by increasing the potential for plant regrowth and survival after the attack. C1 [Gomez, Sara; Orians, Colin M.] Tufts Univ, Dept Biol, Medford, MA 02155 USA. [Ferrieri, Richard A.; Schueller, Michael] Brookhaven Natl Lab, Dept Med, Upton, NY 11973 USA. [Gomez, Sara] Univ Rhode Isl, Dept Biol Sci, Kingston, RI 02881 USA. RP Gomez, S (reprint author), Tufts Univ, Dept Biol, Medford, MA 02155 USA. EM sara.gomez@tufts.edu FU National Research Initiative of the USDA Cooperative State Research, Education and Extension Service [2007-35302-18351]; US DOE, Office of Biological and Environmental Research [DE-AC02-98CH10886] FX This research was supported by the National Research Initiative of the USDA Cooperative State Research, Education and Extension Service under USDA/CSREES grant 2007-35302-18351 and, in part, by the US DOE, Office of Biological and Environmental Research under contract DE-AC02-98CH10886. NR 92 TC 55 Z9 56 U1 6 U2 38 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0028-646X J9 NEW PHYTOL JI New Phytol. PY 2010 VL 188 IS 3 BP 835 EP 844 DI 10.1111/j.1469-8137.2010.03414.x PG 10 WC Plant Sciences SC Plant Sciences GA 667AV UT WOS:000283165900020 PM 20723074 ER PT J AU de Graaff, MA Classen, AT Castro, HF Schadt, CW AF de Graaff, Marie-Anne Classen, Aimee T. Castro, Hector F. Schadt, Christopher W. TI Labile soil carbon inputs mediate the soil microbial community composition and plant residue decomposition rates SO NEW PHYTOLOGIST LA English DT Article DE bacteria; carbon-13; decomposition; exudation; fungi; priming; qPCR; root exudation ID LITTER DECOMPOSITION; C-14-LABELED SOIL; GLUCOSE ADDITIONS; ATMOSPHERIC CO2; ORGANIC-MATTER; RIBOSOMAL-RNA; TRACE AMOUNTS; ELEVATED CO2; RHIZOSPHERE; SUBSTRATE AB P>Root carbon (C) inputs may regulate decomposition rates in soil, and in this study we ask: how do labile C inputs regulate decomposition of plant residues, and soil microbial communities? In a 14 d laboratory incubation, we added C compounds often found in root exudates in seven different concentrations (0, 0.7, 1.4, 3.6, 7.2, 14.4 and 21.7 mg C g-1 soil) to soils amended with and without 13C-labeled plant residue. We measured CO(2) respiration and shifts in relative fungal and bacterial rRNA gene copy numbers using quantitative polymerase chain reaction (qPCR). Increased labile C input enhanced total C respiration, but only addition of C at low concentrations (0.7 mg C g-1) stimulated plant residue decomposition (+2%). Intermediate concentrations (1.4, 3.6 mg C g-1) had no impact on plant residue decomposition, while greater concentrations of C (> 7.2 mg C g-1) reduced decomposition (-50%). Concurrently, high exudate concentrations (> 3.6 mg C g-1) increased fungal and bacterial gene copy numbers, whereas low exudate concentrations (< 3.6 mg C g-1) increased metabolic activity rather than gene copy numbers. These results underscore that labile soil C inputs can regulate decomposition of more recalcitrant soil C by controlling the activity and relative abundance of fungi and bacteria. C1 [de Graaff, Marie-Anne] Boise State Univ, Dept Biol Sci, Boise, ID 83725 USA. [de Graaff, Marie-Anne; Castro, Hector F.; Schadt, Christopher W.] Oak Ridge Natl Lab, Biosci Div, Mol Microbial Ecol Grp, Oak Ridge, TN 37831 USA. [Classen, Aimee T.; Castro, Hector F.] Univ Tennessee, Dept Ecol & Evolutionary Biol, Knoxville, TN 37966 USA. RP de Graaff, MA (reprint author), Boise State Univ, Dept Biol Sci, Boise, ID 83725 USA. EM marie-annedegraaff@boisestate.edu RI Classen, Aimee/C-4035-2008; Schadt, Christopher/B-7143-2008 OI Classen, Aimee/0000-0002-6741-3470; Schadt, Christopher/0000-0001-8759-2448 FU US Department of Energy, Office of Science, Biological and Environmental Research; US Department of Energy [DE-AC05-00OR22725] FX Joanne Childs, Scott Hawley, and Tyler Clement assisted with the laboratory work and analyses. Charles Garten Jr performed the residue quality and isotope analyses. Five reviewers provide invaluable feedback on this manuscript. This research was sponsored by the US Department of Energy, Office of Science, Biological and Environmental Research and conducted at Oak Ridge National Laboratory, which is managed by UT Battelle, LLC, for the US Department of Energy under Contract DE-AC05-00OR22725. NR 62 TC 89 Z9 90 U1 17 U2 197 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0028-646X J9 NEW PHYTOL JI New Phytol. PY 2010 VL 188 IS 4 BP 1055 EP 1064 DI 10.1111/j.1469-8137.2010.03427.x PG 10 WC Plant Sciences SC Plant Sciences GA 678LG UT WOS:000284074900014 PM 21058948 ER PT J AU da Costa, ACL Galbraith, D Almeida, S Portela, BTT da Costa, M Silva, JD Braga, AP de Goncalves, PHL de Oliveira, AAR Fisher, R Phillips, OL Metcalfe, DB Levy, P Meir, P AF Lola da Costa, Antonio Carlos Galbraith, David Almeida, Samuel Tanaka Portela, Bruno Takeshi da Costa, Mauricio de Athaydes Silva Junior, Joao Braga, Alan P. de Goncalves, Paulo H. L. de Oliveira, Alex A. R. Fisher, Rosie Phillips, Oliver L. Metcalfe, Daniel B. Levy, Peter Meir, Patrick TI Effect of 7 yr of experimental drought on vegetation dynamics and biomass storage of an eastern Amazonian rainforest SO NEW PHYTOLOGIST LA English DT Article DE Amazon rainforest; biomass; drought; tree mortality; wood production ID ABOVEGROUND LIVE BIOMASS; EL-NINO DROUGHT; TROPICAL FORESTS; TREE MORTALITY; WOOD DENSITY; BRAZILIAN AMAZONIA; POSITIVE FEEDBACKS; WATER STATUS; CARBON; CLIMATE AB P>At least one climate model predicts severe reductions of rainfall over Amazonia during this century. Long-term throughfall exclusion (TFE) experiments represent the best available means to investigate the resilience of the Amazon rainforest to such droughts. Results are presented from a 7 yr TFE study at Caxiuana National Forest, eastern Amazonia. We focus on the impacts of the drought on tree mortality, wood production and above-ground biomass. Tree mortality in the TFE plot over the experimental period was 2.5% yr-1, compared with 1.25% yr-1 in a nearby control plot experiencing normal rainfall. Differences in stem mortality between plots were greatest in the largest (> 40 cm diameter at breast height (dbh)) size class (4.1% yr-1 in the TFE and 1.4% yr-1 in the control). Wood production in the TFE plot was c. 30% lower than in the control plot. Together, these changes resulted in a loss of 37.8 +/- 2.0 Mg carbon (C) ha-1 in the TFE plot (2002-2008), compared with no change in the control. These results are remarkably consistent with those from another TFE (at Tapajos National Forest), suggesting that eastern Amazonian forests may respond to prolonged drought in a predictable manner. C1 [Galbraith, David; Meir, Patrick] Univ Edinburgh, Sch Geosci, Edinburgh EH8 9XP, Midlothian, Scotland. [Lola da Costa, Antonio Carlos; Tanaka Portela, Bruno Takeshi; da Costa, Mauricio; de Athaydes Silva Junior, Joao; Braga, Alan P.; de Goncalves, Paulo H. L.; de Oliveira, Alex A. R.] Fed Univ Para, Ctr Geociencias, BR-66017970 Belem, Para, Brazil. [Galbraith, David; Levy, Peter] Ctr Ecol & Hydrol, Penicuik EH26 0QB, Midlothian, Scotland. [Almeida, Samuel] Museu Paraense Emilio Goeldi, BR-66077530 Belem, Para, Brazil. [Fisher, Rosie] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Phillips, Oliver L.] Univ Leeds, Sch Geog, Leeds LS2 9JT, W Yorkshire, England. [Metcalfe, Daniel B.] Univ Oxford, Ctr Environm, Oxford OX1 3QY, England. RP Galbraith, D (reprint author), Univ Edinburgh, Sch Geosci, Drummond St, Edinburgh EH8 9XP, Midlothian, Scotland. EM darga@ceh.ac.uk RI Phillips, Oliver/A-1523-2011; Meir, Patrick/J-8344-2012; Levy, Peter/K-6523-2012; Fisher, Rosie/E-7746-2013 OI Phillips, Oliver/0000-0002-8993-6168; Levy, Peter/0000-0002-8505-1901; FU NERC [NER/A/S/2003/1609, NE/B503384/1]; EU; Gordon and Betty Moore Foundation FX This research contributes to the Brazil-led Large Scale Biosphere - Atmosphere Experiment in Amazonia. This work was supported by a NERC standard grant (NER/A/S/2003/1609). The authors would like to thank the Museu Paraense Emilio Goeldi for the use of its field station and laboratory facilities, and numerous field assistants for their support in data collection. We thank the EU PARAMA project, a NERC Urgency grant (NE/B503384/1), and the Gordon and Betty Moore Foundation for supporting the RAINFOR network in monitoring additional permanent plots at Caxiuana. NR 76 TC 116 Z9 118 U1 12 U2 128 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0028-646X EI 1469-8137 J9 NEW PHYTOL JI New Phytol. PY 2010 VL 187 IS 3 BP 579 EP 591 DI 10.1111/j.1469-8137.2010.03309.x PG 13 WC Plant Sciences SC Plant Sciences GA 628LV UT WOS:000280122500007 PM 20553386 ER PT J AU Metcalfe, DB Meir, P Aragao, LEOC Lobo-do-Vale, R Galbraith, D Fisher, RA Chaves, MM Maroco, JP da Costa, ACL de Almeida, SS Braga, AP Goncalves, PHL de Athaydes, J da Costa, M Portela, TTB de Oliveira, AAR Malhi, Y Williams, M AF Metcalfe, D. B. Meir, P. Aragao, L. E. O. C. Lobo-do-Vale, R. Galbraith, D. Fisher, R. A. Chaves, M. M. Maroco, J. P. da Costa, A. C. L. de Almeida, S. S. Braga, A. P. Goncalves, P. H. L. de Athaydes, J. da Costa, M. Portela, T. T. B. de Oliveira, A. A. R. Malhi, Y. Williams, M. TI Shifts in plant respiration and carbon use efficiency at a large-scale drought experiment in the eastern Amazon SO NEW PHYTOLOGIST LA English DT Article DE Amazon rain forest; carbon cycling; carbon dioxide; carbon use efficiency; drought; gross primary productivity; net primary productivity; partitioning ID ABOVEGROUND LIVE BIOMASS; NET PRIMARY PRODUCTION; MOIST TROPICAL FOREST; BELOW-GROUND CARBON; RAIN-FOREST; CLIMATE VARIABILITY; SOIL EMISSIONS; NITROUS-OXIDE; GAS-EXCHANGE; NITRIC-OXIDE AB P>The effects of drought on the Amazon rainforest are potentially large but remain poorly understood. Here, carbon (C) cycling after 5 yr of a large-scale through-fall exclusion (TFE) experiment excluding about 50% of incident rainfall from an eastern Amazon rainforest was compared with a nearby control plot. Principal C stocks and fluxes were intensively measured in 2005. Additional minor components were either quantified in later site measurements or derived from the available literature. Total ecosystem respiration (R-eco) and total plant C expenditure (PCE, the sum of net primary productivity (NPP) and autotrophic respiration (R-auto)), were elevated on the TFE plot relative to the control. The increase in PCE and R-eco was mainly caused by a rise in R-auto from foliage and roots. Heterotrophic respiration did not differ substantially between plots. NPP was 2.4 +/- 1.4 t C ha-1 yr-1 lower on the TFE than the control. Ecosystem carbon use efficiency, the proportion of PCE invested in NPP, was lower in the TFE plot (0.24 +/- 0.04) than in the control (0.32 +/- 0.04). Drought caused by the TFE treatment appeared to drive fundamental shifts in ecosystem C cycling with potentially important consequences for long-term forest C storage. C1 [Meir, P.; Galbraith, D.; Williams, M.] Univ Edinburgh, Sch Geosci, Edinburgh, Midlothian, Scotland. [Aragao, L. E. O. C.] Univ Exeter, Sch Geog, Exeter, Devon, England. [Lobo-do-Vale, R.; Chaves, M. M.] Univ Tecn Lisboa, Inst Super Agron, P-1100 Lisbon, Portugal. [Fisher, R. A.] Los Alamos Natl Lab, Los Alamos, NM USA. [Maroco, J. P.] Univ Nova Lisboa, Inst Tecnol Quim & Biol, Oeiras, Portugal. [da Costa, A. C. L.; Braga, A. P.; Goncalves, P. H. L.; de Athaydes, J.; da Costa, M.; Portela, T. T. B.; de Oliveira, A. A. R.] Fed Univ Para, Ctr Geociencias, BR-66059 Belem, Para, Brazil. [Metcalfe, D. B.; Galbraith, D.; Malhi, Y.] Univ Oxford, Ctr Environm, Oxford, England. RP Metcalfe, DB (reprint author), Swedish Univ Agr Sci, Dept Forest Ecol & Management, S-90183 Umea, Sweden. EM daniel.metcalfe@ouce.ox.ac.uk RI Maroco, Joao/A-5729-2010; Meir, Patrick/J-8344-2012; aragao, luiz/G-8387-2012; Fisher, Rosie/E-7746-2013; Maroco, Joao/D-4339-2015; Williams, Mathew/G-6140-2016; Lobo do Vale, Raquel/D-4570-2013; OI Maroco, Joao/0000-0001-9214-5378; aragao, luiz/0000-0002-4134-6708; Maroco, Joao/0000-0001-9214-5378; Williams, Mathew/0000-0001-6117-5208; Lobo do Vale, Raquel/0000-0003-4566-5420; Chaves, Maria Manuela/0000-0002-1664-3188 FU NERC [NER/A/S/2003/1609]; RS Dudley Stamp award; University of Edinburgh Elizabeth Sinclair award FX This research contributes to the Brazil-led LBA project and was supported by a NERC PhD studentship and research grant (NER/A/S/2003/1609), a RS Dudley Stamp award, and a University of Edinburgh Elizabeth Sinclair award. Thanks to Leonardo Sa and Ima Vieira for their scientific support and collaboration, and the Museu Paraense Emilio Goeldi for the use of its field station and laboratory facilities. NR 92 TC 51 Z9 56 U1 13 U2 84 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0028-646X J9 NEW PHYTOL JI New Phytol. PY 2010 VL 187 IS 3 BP 608 EP 621 DI 10.1111/j.1469-8137.2010.03319.x PG 14 WC Plant Sciences SC Plant Sciences GA 628LV UT WOS:000280122500009 PM 20553394 ER PT J AU Fisher, R McDowell, N Purves, D Moorcroft, P Sitch, S Cox, P Huntingford, C Meir, P Woodward, FI AF Fisher, Rosie McDowell, Nate Purves, Drew Moorcroft, Paul Sitch, Stephen Cox, Peter Huntingford, Chris Meir, Patrick Woodward, F. Ian TI Assessing uncertainties in a second-generation dynamic vegetation model caused by ecological scale limitations SO NEW PHYTOLOGIST LA English DT Article DE Amazon; competition; competitive exclusion; dynamic global vegetation model (DGVM); ecosystem demography; migration; perfect plasticity; scaling ID INDUCED TREE MORTALITY; AMAZONIAN RAIN-FOREST; COMMUNITY ECOLOGY; CLIMATE-CHANGE; WOOD DENSITY; TRADE-OFFS; TERRESTRIAL ECOSYSTEMS; STOMATAL CONDUCTANCE; TROPICAL FORESTS; CARBON AB P>Second-generation Dynamic Global Vegetation Models (DGVMs) have recently been developed that explicitly represent the ecological dynamics of disturbance, vertical competition for light, and succession. Here, we introduce a modified second-generation DGVM and examine how the representation of demographic processes operating at two-dimensional spatial scales not represented by these models can influence predicted community structure, and responses of ecosystems to climate change. The key demographic processes we investigated were seed advection, seed mixing, sapling survival, competitive exclusion and plant mortality. We varied these parameters in the context of a simulated Amazon rainforest ecosystem containing seven plant functional types (PFTs) that varied along a trade-off surface between growth and the risk of starvation induced mortality. Varying the five unconstrained parameters generated community structures ranging from monocultures to equal co-dominance of the seven PFTs. When exposed to a climate change scenario, the competing impacts of CO(2) fertilization and increasing plant mortality caused ecosystem biomass to diverge substantially between simulations, with mid-21st century biomass predictions ranging from 1.5 to 27.0 kg C m-2. Filtering the results using contemporary observation ranges of biomass, leaf area index (LAI), gross primary productivity (GPP) and net primary productivity (NPP) did not substantially constrain the potential outcomes. We conclude that demographic processes represent a large source of uncertainty in DGVM predictions. C1 [Fisher, Rosie; McDowell, Nate] Los Alamos Natl Lab, Div Earth & Environm Sci, Los Alamos, NM 87545 USA. [Purves, Drew] Microsoft Res, Cambridge, England. [Moorcroft, Paul] Harvard Univ, Dept Organism & Evolutionary Biol, Cambridge, MA 02138 USA. [Sitch, Stephen] Univ Leeds, Dept Geog, Leeds, W Yorkshire, England. [Cox, Peter] Univ Exeter, Sch Engn Math & Phys Sci, Exeter EX4 4QF, Devon, England. [Cox, Peter] Met Off Hadley Ctr, Exeter EX1 3PB, Devon, England. [Huntingford, Chris] Ctr Ecol & Hydrol, Wallingford OX10 8BB, Oxon, England. [Meir, Patrick] Univ Edinburgh, Sch Geosci, Edinburgh, Midlothian, Scotland. [Woodward, F. Ian] Univ Sheffield, Dept Anim & Plant Sci, Sheffield S10 2TN, S Yorkshire, England. RP Fisher, R (reprint author), Los Alamos Natl Lab, Div Earth & Environm Sci, Los Alamos, NM 87545 USA. EM rosieafisher@gmail.com RI Woodward, Ian/B-7762-2008; Huntingford, Chris/A-4307-2008; Meir, Patrick/J-8344-2012; Fisher, Rosie/E-7746-2013; Sitch, Stephen/F-8034-2015; Cox, Peter/B-3299-2012; OI Sitch, Stephen/0000-0003-1821-8561; Huntingford, Chris/0000-0002-5941-7770 FU UK Natural Environment Research Council; LANL/LDRD program; DOE Office of Science FX Funding was provided by the UK Natural Environment Research Council QUEST 'Quantifying Ecosystem's Role in the Carbon Cycle' project (QUERCC), the LANL/LDRD program and DOE Office of Science (BER) Program for Ecosystem Research. R.F. thanks Craig Allen, Doug Clark, Micheal Dietze, Manuel Gloor, Heike Lischke, Jon Lloyd, Mark Lomas, Oliver Philips, Colin Prentice, Todd Ringler, Allan Spessa, Ying-Ping Wang, Mark Westoby, Mat Williams and Ian Wright for interesting discussions that helped formulate the ideas in this manuscript. NR 98 TC 109 Z9 110 U1 5 U2 103 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0028-646X J9 NEW PHYTOL JI New Phytol. PY 2010 VL 187 IS 3 BP 666 EP 681 DI 10.1111/j.1469-8137.2010.03340.x PG 16 WC Plant Sciences SC Plant Sciences GA 628LV UT WOS:000280122500012 PM 20618912 ER PT J AU McDowell, NG Sevanto, S AF McDowell, Nate G. Sevanto, Sanna TI The mechanisms of carbon starvation: how, when, or does it even occur at all? SO NEW PHYTOLOGIST LA English DT Editorial Material DE carbon (C); drought; hydraulics; mortality; phloem; stomata ID PLANT-SURVIVAL; DROUGHT; TEMPERATURE; SENSITIVITY; MORTALITY; TURNOVER; STARCH; STRESS; GROWTH; DIE C1 [McDowell, Nate G.; Sevanto, Sanna] Los Alamos Natl Lab, Div Earth & Environm Sci, Los Alamos, NM 87545 USA. RP McDowell, NG (reprint author), Los Alamos Natl Lab, Div Earth & Environm Sci, Los Alamos, NM 87545 USA. EM mcdowell@lanl.gov NR 14 TC 95 Z9 97 U1 7 U2 98 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0028-646X J9 NEW PHYTOL JI New Phytol. PY 2010 VL 186 IS 2 BP 264 EP 266 DI 10.1111/j.1469-8137.2010.03232.x PG 3 WC Plant Sciences SC Plant Sciences GA 574WM UT WOS:000276024900002 PM 20409181 ER PT J AU Iversen, CM AF Iversen, Colleen M. TI Digging deeper: fine-root responses to rising atmospheric CO2 concentration in forested ecosystems SO NEW PHYTOLOGIST LA English DT Review DE carbon storage; depth distribution; ecosystem model; elevated [CO2]; forests; fine roots; nutrient cycling; turnover ID ELEVATED CARBON-DIOXIDE; SITCHENSIS BONG CARR; LOBLOLLY-PINE FOREST; SOIL-N AVAILABILITY; LONG-TERM EXPOSURE; VERTICAL-DISTRIBUTION; TEMPERATE FOREST; TROPOSPHERIC O-3; DECIDUOUS FOREST; TREMBLING ASPEN AB Experimental evidence from a diverse set of forested ecosystems indicates that CO2 enrichment may lead to deeper rooting distributions. While the causes of greater root production at deeper soil depths under elevated CO2 concentration ([CO2]) require further investigation, altered rooting distributions are expected to affect important ecosystem processes. The depth at which fine roots are produced may influence root chemistry, physiological function, and mycorrhizal infection, leading to altered nitrogen (N) uptake rates and slower turnover. Also, soil processes such as microbial decomposition are slowed at depth in the soil, potentially affecting the rate at which root detritus becomes incorporated into soil organic matter. Deeper rooting distributions under elevated [CO2] provide exciting opportunities to use novel sensors and chemical analyses throughout the soil profile to track the effects of root proliferation on carbon (C) and N cycling. Models do not currently incorporate information on root turnover and C and N cycling at depth in the soil, and modification is necessary to accurately represent processes associated with altered rooting depth distributions. Progress in understanding and modeling the interface between deeper rooting distributions under elevated [CO2] and soil C and N cycling will be critical in projecting the sustainability of forest responses to rising atmospheric [CO2]. C1 Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. RP Iversen, CM (reprint author), Oak Ridge Natl Lab, Div Environm Sci, 1 Bethel Valley Rd, Oak Ridge, TN 37831 USA. EM iversencm@ornl.gov RI Iversen, Colleen/B-8983-2012 FU United States Department of Energy, Office of Science, Biological and Environmental Research [DE-AC05-00OR22725] FX Thank you to M. A. de Graaff, P. Hanson, R. Norby, J. Warren and three anonymous reviewers for comments that improved an earlier draft of the manuscript. Research was supported by the United States Department of Energy, Office of Science, Biological and Environmental Research. Oak Ridge National Laboratory is managed by UT-Battelle, LLC for the United States Department of Energy under contract DE-AC05-00OR22725. NR 94 TC 109 Z9 112 U1 10 U2 97 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0028-646X J9 NEW PHYTOL JI New Phytol. PY 2010 VL 186 IS 2 BP 346 EP 357 DI 10.1111/j.1469-8137.2009.03122.x PG 12 WC Plant Sciences SC Plant Sciences GA 574WM UT WOS:000276024900015 PM 20015070 ER PT J AU Tallis, MJ Lin, Y Rogers, A Zhang, J Street, NR Miglietta, F Karnosky, DF De Angelis, P Calfapietra, C Taylor, G AF Tallis, M. J. Lin, Y. Rogers, A. Zhang, J. Street, N. R. Miglietta, F. Karnosky, D. F. De Angelis, P. Calfapietra, C. Taylor, G. TI The transcriptome of Populus in elevated CO2 reveals increased anthocyanin biosynthesis during delayed autumnal senescence SO NEW PHYTOLOGIST LA English DT Article DE anthocyanin biosynthesis; autumnal senescence; cDNA microarray; elevated CO2; LDOX; Populus ID SUCROSE-SPECIFIC INDUCTION; DIOXIDE ENRICHMENT FACE; LEAF SENESCENCE; CARBON-DIOXIDE; GENE-EXPRESSION; POPLAR PLANTATION; GROWTH CESSATION; DOWN-REGULATION; EUROPEAN ASPEN; CLIMATE-CHANGE AB The delay in autumnal senescence that has occurred in recent decades has been linked to rising temperatures. Here, we suggest that increasing atmospheric CO2 may partly account for delayed autumnal senescence and for the first time, through transcriptome analysis, identify gene expression changes associated with this delay. Using a plantation of Populus x euramericana grown in elevated [CO2] (e[CO2]) with free-air CO2 enrichment (FACE) technology, we investigated the molecular and biochemical basis of this response. A Populus cDNA microarray was used to identify genes representing multiple biochemical pathways influenced by e[CO2] during senescence. Gene expression changes were confirmed through real-time quantitative PCR, and leaf biochemical assays. Pathways for secondary metabolism and glycolysis were significantly up-regulated by e[CO2] during senescence, in particular, those related to anthocyanin biosynthesis. Expressed sequence tags (ESTs) representing the two most significantly up-regulated transcripts in e[CO2], LDOX (leucoanthocyanidin dioxgenase) and DFR (dihydroflavonol reductase), gave (e[CO2]/ambient CO2 (a[CO2])) expression ratios of 39.6 and 19.3, respectively. We showed that in e[CO2] there was increased autumnal leaf sugar accumulation and up-regulation of genes determining anthocyanin biosynthesis which, we propose, prolongs leaf longevity during natural autumnal senescence. C1 [Tallis, M. J.; Lin, Y.; Zhang, J.; Street, N. R.; Taylor, G.] Univ Southampton, Sch Biol Sci, Southampton SO16 7PX, Hants, England. [Rogers, A.] Brookhaven Natl Lab, Dept Environm Sci, Upton, NY 11973 USA. [Rogers, A.] Univ Illinois, Dept Crop Sci, Urbana, IL 61801 USA. [Zhang, J.] Peking Univ, Coll Life Sci, Beijing 100871, Peoples R China. [Miglietta, F.] CNR, Inst Biometeorol, I-50145 Florence, Italy. [Karnosky, D. F.] Michigan Technol Univ, Sch Forest Resources & Environm Sci, Houghton, MI 49931 USA. [De Angelis, P.; Calfapietra, C.] Univ Tuscia, Dept Forest Environm & Resources DISAFRI, I-01100 Viterbo, Italy. RP Taylor, G (reprint author), Univ Southampton, Sch Biol Sci, Bassett Crescent E, Southampton SO16 7PX, Hants, England. EM g.taylor@soton.ac.uk RI Miglietta, Franco/A-1257-2009; Street, Nathaniel/B-3920-2008; De Angelis, Paolo/A-6863-2012; Rogers, Alistair/E-1177-2011; Calfapietra, Carlo/E-2269-2015 OI Miglietta, Franco/0000-0003-1474-8143; Street, Nathaniel/0000-0001-6031-005X; De Angelis, Paolo/0000-0001-8310-8831; Rogers, Alistair/0000-0001-9262-7430; FU European Commission through the Directorate General Research [QLK5-CT-2002-00953]; EC [ENV4-CT97-0657, EVR1-CT-2002-40027]; Office of Science (BER), US Department of Energy [DE-FG02-04ER63792, DE-AC02-98CH10886]; DEFRA FX This research was supported by the European Commission through the Directorate General Research within the Fifth Framework for Research - Quality of Life and Management of the Living Resources Programme, contract number QLK5-CT-2002-00953 (POPYOMICS), coordinated by the University of Southampton. The POPFACE experiment within the EUROFACE infrastructure was supported by the EC through its Environment R&D programme within the Fourth Framework as a research contract ENV4-CT97-0657 ( POPFACE) and within the Fifth Framework as contract EVR1-CT-2002-40027 ( EUROFACE) coordinated by Giuseppe Scarascia-Mugnozza at the University of Viterbo. This research was also supported by the Office of Science (BER), US Department of Energy, grant no. DE-FG02-04ER63792, 'POPGENICS' awarded to GT and DFK. AR was supported by the US Department of Energy Office of Science grant no. DEFG02-04ER63792 and by contract no. DE-AC02-98CH10886 to Brookhaven National Laboratory. Research in the laboratory of GT was also supported by the DEFRA project BEGIN and the Seventh Framework Network of Excellence, EVOLTREE. The authors thank B. Gielen, C. Calfapietra, T. Oro, GJJ Clarkson, M. Pecchiari and C. Steynen for help in the field, and L. E. Graham and J. Tucker for help with the microarray hybridizations. A. Zaldei is thanked for support of the infrastructure at the POPFACE field site. NR 73 TC 38 Z9 39 U1 3 U2 56 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0028-646X J9 NEW PHYTOL JI New Phytol. PY 2010 VL 186 IS 2 BP 415 EP 428 DI 10.1111/j.1469-8137.2010.03184.x PG 14 WC Plant Sciences SC Plant Sciences GA 574WM UT WOS:000276024900022 PM 20202130 ER PT J AU Escamilla-Trevino, LL Shen, H Uppalapati, SR Ray, T Tang, YH Hernandez, T Yin, YB Xu, Y Dixon, RA AF Escamilla-Trevino, Luis L. Shen, Hui Uppalapati, Srinivasa Rao Ray, Tui Tang, Yuhong Hernandez, Timothy Yin, Yanbin Xu, Ying Dixon, Richard A. TI Switchgrass (Panicum virgatum) possesses a divergent family of cinnamoyl CoA reductases with distinct biochemical properties SO NEW PHYTOLOGIST LA English DT Article DE allelic variation; bioenergy; bioethanol; cinnamoyl CoA reductase; gene family; switchgrass (Panicum virgatum) ID MULTIPLE SEQUENCE ALIGNMENT; ALFALFA MEDICAGO-SATIVA; DOWN-REGULATION; MONOLIGNOL BIOSYNTHESIS; HYDROXYCINNAMOYL-COA; O-METHYLTRANSFERASE; LIGNIN COMPOSITION; CHEMICAL SYNTHESES; COENZYME; ARABIDOPSIS AB P> The down-regulation of enzymes of the monolignol pathway results in reduced recalcitrance of biomass for lignocellulosic ethanol production. Cinnamoyl CoA reductase (CCR) catalyzes the first step of the phenylpropanoid pathway specifically dedicated to monolignol biosynthesis. However, plants contain multiple CCR-like genes, complicating the selection of lignin-specific targets. This study was undertaken to understand the complexity of the CCR gene family in tetraploid switchgrass (Panicum virgatum) and to determine the biochemical properties of the encoded proteins. Four switchgrass cDNAs (most with multiple variants) encoding putative CCRs were identified by phylogenetic analysis, heterologously expressed in Escherichia coli, and the corresponding enzymes were characterized biochemically. Two cDNAs, PvCCR1 and PvCCR2, encoded enzymes with CCR activity. They are phylogenetically distinct, differentially expressed, and the corresponding enzymes exhibited different biochemical properties with regard to substrate preference. PvCCR1 has higher specific activity and prefers feruloyl CoA as substrate, whereas PvCCR2 prefers caffeoyl and 4-coumaroyl CoAs. Allelic variants of each cDNA were detected, but the two most diverse variants of PvCCR1 encoded enzymes with similar catalytic activity. Based on its properties and expression pattern, PvCCR1 is probably associated with lignin biosynthesis during plant development (and is therefore a target for the engineering of improved biomass), whereas PvCCR2 may function in defense. C1 [Escamilla-Trevino, Luis L.; Shen, Hui; Uppalapati, Srinivasa Rao; Ray, Tui; Tang, Yuhong; Hernandez, Timothy; Dixon, Richard A.] Samuel Roberts Noble Fdn Inc, Div Plant Biol, Ardmore, OK 73401 USA. [Escamilla-Trevino, Luis L.; Shen, Hui; Tang, Yuhong; Hernandez, Timothy; Yin, Yanbin; Xu, Ying; Dixon, Richard A.] US DOE, BESC, Washington, DC 20585 USA. [Yin, Yanbin; Xu, Ying] Univ Georgia, Dept Biochem & Mol Biol, Athens, GA 30602 USA. [Yin, Yanbin; Xu, Ying] Univ Georgia, Inst Bioinformat, Athens, GA 30602 USA. RP Dixon, RA (reprint author), Samuel Roberts Noble Fdn Inc, Div Plant Biol, 2510 Sam Noble Pkwy, Ardmore, OK 73401 USA. EM radixon@noble.org RI Yin, Yanbin/C-9788-2010 OI Yin, Yanbin/0000-0001-7667-881X FU US Department of Energy Bioenergy Research Centers, through the Office of Biological and Environmental Research in the DOE Office of Science FX We thank Dr Fang Chen for assistance with the synthesis of caffeoyl aldehyde and 5-hydroxyferuloyl aldehyde, Dr Zengyu Wang for providing us with the cDNA of PvCCR-like1, and Drs Huanzhong Wang and Malay Saha for critical reading of the manuscript. This work was supported by the US Department of Energy Bioenergy Research Centers, through the Office of Biological and Environmental Research in the DOE Office of Science. NR 58 TC 40 Z9 41 U1 3 U2 18 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0028-646X J9 NEW PHYTOL JI New Phytol. PY 2010 VL 185 IS 1 BP 143 EP 155 DI 10.1111/j.1469-8137.2009.03018.x PG 13 WC Plant Sciences SC Plant Sciences GA 527CS UT WOS:000272344800016 PM 19761442 ER PT S AU Farrar, CR Worden, K AF Farrar, Charles R. Worden, Keith BE Deraemaeker, A Worden, K TI An Introduction to Structural Health Monitoring SO NEW TRENDS IN VIBRATION BASED STRUCTURAL HEALTH MONITORING SE CISM Courses and Lectures LA English DT Proceedings Paper CT Symposium on New Trends in Vibration Based Structural Health Monitoring CY SEP, 2009 CL CISM, Udine, ITALY HO CISM ID DAMAGE IDENTIFICATION AB This introduction begins with a brief history of SHM technology development. Recent research has begun to recognise that a productive approach to the Structural Health Monitoring (SHM) problem is to regard it as one of statistical pattern recognition (SPR); a paradigm addressing the problem in such a way is described in detail herein as it forms the basis for the organisation of this book. In the process of providing the historical overview and summarising the SPR paradigm, the subsequent chapters in this book are cited in an effort to show how they fit into this overview of SHM. In the conclusions are stated a number of technical challenges that the authors believe must be addressed if SHM is to gain wider acceptance. C1 [Farrar, Charles R.] Los Alamos Natl Lab, Engn Inst, Los Alamos, NM 87545 USA. [Worden, Keith] Univ Sheffield, Dept Mech Engn, Dynami Res Grp, Sheffield S1 3JD, S Yorkshire, England. RP Farrar, CR (reprint author), Los Alamos Natl Lab, Engn Inst, Los Alamos, NM 87545 USA. NR 22 TC 3 Z9 3 U1 2 U2 8 PU SPRINGER-VERLAG WIEN PI VIENNA PA SACHSENPLATZ 4-6, A-1201 VIENNA, AUSTRIA SN 0254-1971 BN 978-3-7091-0398-2 J9 CISM COURSES LECT PY 2010 IS 530 BP 1 EP + PG 3 WC Engineering, Civil; Engineering, Mechanical SC Engineering GA BDF58 UT WOS:000313023800001 ER PT J AU Chang, T Wu, CC Podesta, J Echim, M Lamy, H Tam, SWY AF Chang, T. Wu, C. C. Podesta, J. Echim, M. Lamy, H. Tam, S. W. Y. TI ROMA (Rank-Ordered Multifractal Analyses) of intermittency in space plasmas - a brief tutorial review SO NONLINEAR PROCESSES IN GEOPHYSICS LA English DT Review ID SELF-ORGANIZED CRITICALITY; SOLAR-WIND; TURBULENCE; COMPLEXITY; DYNAMICS; SHEET AB Intermittent fluctuations are the consequence of the dynamic interactions of multiple coherent or pseudo-coherent structures of varied sizes in the stochastic media (Chang, 1999). We briefly review here a recently developed technique, the Rank-Ordered Multifractal Analysis (ROMA), which is both physically explicable and quantitatively accurate in deciphering the multifractal characteristics of such intermittent structures (Chang and Wu, 2008). The utility of the method is demonstrated using results obtained from large-scale 2-D MHD simulations as well as in-situ observations of magnetic field fluctuations from the interplanetary and magnetospheric cusp regions, and the broad-band electric field oscillations from the auroral zone. C1 [Chang, T.] MIT, Kavli Inst Astrophys & Space Res, Cambridge, MA 02139 USA. [Wu, C. C.] Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Los Angeles, CA 90095 USA. [Podesta, J.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Echim, M.; Lamy, H.] Belgian Inst Space Aeron, B-1180 Brussels, Belgium. [Echim, M.] Inst Space Sci, Bucharest 077125, Romania. [Tam, S. W. Y.] Natl Cheng Kung Univ, Plasma & Space Sci Ctr, Tainan 70101, Taiwan. [Tam, S. W. Y.] Natl Cheng Kung Univ, Inst Space Astrophys & Plasma Sci, Tainan 70101, Taiwan. RP Chang, T (reprint author), MIT, Kavli Inst Astrophys & Space Res, 77 Massachusetts Ave, Cambridge, MA 02139 USA. EM tsc@space.mit.edu RI Echim, Marius/F-1813-2010 OI Echim, Marius/0000-0001-7038-9494 FU National Science Foundation; Air Force Office of Scientific Research of the US government; ESA [PECS KEEV 98049]; PRODEX/Cluster at BIRA-IASB, Brussels [PEA 90096]; National Science Council of R.O.C. FX TC and CCW are grateful to the National Science Foundation and the Air Force Office of Scientific Research of the US government for generous research support, ME acknowledges support from ESA (PECS KEEV 98049), ME and HL are supported by a PRODEX/Cluster contract (PEA 90096) conducted at BIRA-IASB, Brussels, and SWYT acknowledges the National Science Council of R.O.C. for support. NR 24 TC 9 Z9 9 U1 1 U2 5 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1023-5809 J9 NONLINEAR PROC GEOPH JI Nonlinear Process Geophys. PY 2010 VL 17 IS 5 BP 545 EP 551 DI 10.5194/npg-17-545-2010 PG 7 WC Geochemistry & Geophysics; Meteorology & Atmospheric Sciences SC Geochemistry & Geophysics; Meteorology & Atmospheric Sciences GA 673LP UT WOS:000283664500014 ER PT J AU del-Castillo-Negrete, D AF del-Castillo-Negrete, D. TI Non-diffusive, non-local transport in fluids and plasmas SO NONLINEAR PROCESSES IN GEOPHYSICS LA English DT Article ID ANOMALOUS DIFFUSION; CHAOTIC TRANSPORT; RANDOM-WALKS; TURBULENCE; FLOW; MODELS; SHEAR AB A review of non-diffusive transport in fluids and plasmas is presented. In the fluid context, nondiffusive chaotic transport by Rossby waves in zonal flows is studied following a Lagrangian approach. In the plasma physics context the problem of interest is test particle transport in pressure-gradient-driven plasma turbulence. In both systems the probability density function (PDF) of particle displacements is strongly non-Gaussian and the statistical moments exhibit super-diffusive anomalous scaling. Fractional diffusion models are proposed and tested in the quantitative description of the non-diffusive Lagrangian statistics of the fluid and plasma problems. Also, fractional diffusion operators are used to construct non-local transport models exhibiting up-hill transport, multivalued flux-gradient relations, fast pulse propagation phenomena, and "tunneling" of perturbations across transport barriers. C1 Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP del-Castillo-Negrete, D (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM delcastillod@ornl.gov OI del-Castillo-Negrete, Diego/0000-0001-7183-801X FU U.S. Department of Energy [DE-AC05-00OR22725] FX This work was sponsored by the Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U.S. Department of Energy under contract DE-AC05-00OR22725. NR 40 TC 11 Z9 11 U1 0 U2 5 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1023-5809 J9 NONLINEAR PROC GEOPH JI Nonlinear Process Geophys. PY 2010 VL 17 IS 6 BP 795 EP 807 DI 10.5194/npg-17-795-2010 PG 13 WC Geochemistry & Geophysics; Meteorology & Atmospheric Sciences SC Geochemistry & Geophysics; Meteorology & Atmospheric Sciences GA 698FL UT WOS:000285578800015 ER PT B AU Hwang, RN AF Hwang, R. N. BA Azmy, Y Sartori, E BF Azmy, Y Sartori, E TI Resonance Theory in Reactor Applications SO NUCLEAR COMPUTATIONAL SCIENCE: A CENTURY IN REVIEW LA English DT Article; Book Chapter ID RIGOROUS POLE REPRESENTATION; CROSS-SECTIONS; NUCLEAR-REACTIONS; NEUTRONS; ABSORPTION; CRYSTAL; FLUCTUATIONS; LATTICES; CAPTURE; URANIUM C1 [Hwang, R. N.] Argonne Natl Lab, Argonne, IL 60439 USA. NR 89 TC 1 Z9 1 U1 0 U2 1 PU SPRINGER PI NEW YORK PA 233 SPRING STREET, NEW YORK, NY 10013, UNITED STATES BN 978-90-481-3410-6 PY 2010 BP 217 EP 290 DI 10.1007/978-90-481-3411-3_5 D2 10.1007/978-90-481-3411-3 PG 74 WC Computer Science, Theory & Methods; Physics, Nuclear SC Computer Science; Physics GA BOZ11 UT WOS:000278092200005 ER PT B AU Cacuci, DG AF Cacuci, Dan Gabriel BA Azmy, Y Sartori, E BF Azmy, Y Sartori, E TI Sensitivity and Uncertainty Analysis of Models and Data SO NUCLEAR COMPUTATIONAL SCIENCE: A CENTURY IN REVIEW LA English DT Article; Book Chapter ID HYDRAULIC CODE SYSTEM; NON-LINEAR SYSTEMS; ADJOINT SENSITIVITY; INPUT VARIABLES; RISK ANALYSIS; COEFFICIENTS; OUTPUT; RESPONSES; PLANS; FLOW C1 [Cacuci, Dan Gabriel] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Cacuci, Dan Gabriel] Univ Calif Santa Barbara, Dept Chem & Nucl Engn, Santa Barbara, CA 93106 USA. [Cacuci, Dan Gabriel] Univ Illinois, Dept Nucl Engn, Urbana, IL 61801 USA. [Cacuci, Dan Gabriel] Univ Karlsruhe, Karlsruhe, Germany. [Cacuci, Dan Gabriel] Univ Virginia, Charlottesville, VA 22903 USA. [Cacuci, Dan Gabriel] Karlsruhe Inst Technol, Inst Nucl Technol & Reactor Safety, Karlsruhe, Germany. [Cacuci, Dan Gabriel] Univ Calif Berkeley, Berkeley, CA 94720 USA. RP Cacuci, DG (reprint author), Univ Michigan, Dept Nucl Engn & Radiol Sci, Ann Arbor, MI 48109 USA. EM Dan.Cacuci@KIT.Edu NR 68 TC 1 Z9 1 U1 0 U2 1 PU SPRINGER PI NEW YORK PA 233 SPRING STREET, NEW YORK, NY 10013, UNITED STATES BN 978-90-481-3410-6 PY 2010 BP 291 EP 353 DI 10.1007/978-90-481-3411-3_6 D2 10.1007/978-90-481-3411-3 PG 63 WC Computer Science, Theory & Methods; Physics, Nuclear SC Computer Science; Physics GA BOZ11 UT WOS:000278092200006 ER PT B AU Whitesides, GE Westfall, RM Hopper, CM AF Whitesides, G. E. Westfall, R. M. Hopper, C. M. BA Azmy, Y Sartori, E BF Azmy, Y Sartori, E TI Criticality Safety Methods SO NUCLEAR COMPUTATIONAL SCIENCE: A CENTURY IN REVIEW LA English DT Article; Book Chapter C1 [Whitesides, G. E.; Westfall, R. M.; Hopper, C. M.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Whitesides, GE (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM whitesidesge@ornl.gov; westfallrm@ornl.gov; hoppercm@ornl.gov NR 5 TC 0 Z9 0 U1 0 U2 0 PU SPRINGER PI NEW YORK PA 233 SPRING STREET, NEW YORK, NY 10013, UNITED STATES BN 978-90-481-3410-6 PY 2010 BP 355 EP 373 DI 10.1007/978-90-481-3411-3_7 D2 10.1007/978-90-481-3411-3 PG 19 WC Computer Science, Theory & Methods; Physics, Nuclear SC Computer Science; Physics GA BOZ11 UT WOS:000278092200007 ER PT J AU Abriola, D Sonzogni, AA AF Abriola, D. Sonzogni, A. A. TI Nuclear Data Sheets for A=72 SO NUCLEAR DATA SHEETS LA English DT Review ID HIGH-SPIN STATES; LOW-LYING STATES; THERMAL NEUTRON CAPTURE; MEDIUM-WEIGHT NUCLEI; EVEN GE ISOTOPES; GAMMA DIRECTIONAL CORRELATIONS; DRIFTED GERMANIUM DETECTOR; ODD BR-72 NUCLEUS; DECAY HALF-LIVES; OR-EQUAL-TO AB Experimental data on ground- and excited-state properties for all known nuclei with mass number A=72 have been compiled and evaluated. States populated in radioactive decay, as well as in nuclear reactions, have been considered. For these nuclei, level and decay schemes, as well as tables of nuclear properties, are given. This work supersedes the 1994 evaluation by W.-T. Chow and M.M. King (1994Ch45). C1 [Abriola, D.] IAEA, Dep Nucl Sci & Applicat, Div Phys & Chem Sci, Nucl Data Sect, A-1400 Vienna, Austria. [Sonzogni, A. A.] Brookhaven Natl Lab, Natl Nucl Data Ctr, Upton, NY 11973 USA. [Abriola, D.] Comis Nacl Energia Atom, Tandar Lab, RA-1429 Buenos Aires, DF, Argentina. RP Abriola, D (reprint author), IAEA, Dep Nucl Sci & Applicat, Div Phys & Chem Sci, Nucl Data Sect, A-1400 Vienna, Austria. NR 251 TC 19 Z9 20 U1 1 U2 3 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0090-3752 EI 1095-9904 J9 NUCL DATA SHEETS JI Nucl. Data Sheets PD JAN PY 2010 VL 111 IS 1 BP 1 EP + DI 10.1016/j.nds.2009.12.001 PG 139 WC Physics, Nuclear SC Physics GA 552TB UT WOS:000274315400001 ER PT J AU Chiara, CJ Kondev, FG AF Chiara, C. J. Kondev, F. G. TI Nuclear Data Sheets for A=204 SO NUCLEAR DATA SHEETS LA English DT Review ID ALPHA-DECAY PROPERTIES; ELECTRIC QUADRUPOLE-MOMENTS; DEFICIENT ASTATINE ISOTOPES; HIGH-SPIN STATES; MASS NUMBER ASSIGNMENTS; STABLE LEAD ISOTOPES; GAMMA-RAYS; POLONIUM ISOTOPES; MERCURY ISOTOPES; CHARGE-RADII AB Evaluated nuclear structure and decay data for all nuclei within the A=204 mass chain are presented. The experimental data are evaluated and best values for level and gamma-ray energies, quantum numbers, lifetimes, gamma-ray intensities, and other nuclear properties are recommended. Inconsistencies and discrepancies that exist in the literature are noted. This work supersedes the earlier evaluation by M R. Schmorak (1994Sc24), published in Nuclear Data Sheets 72, 409 (1994). C1 [Chiara, C. J.; Kondev, F. G.] Argonne Natl Lab, Nucl Engn Div, Argonne, IL 60439 USA. RP Chiara, CJ (reprint author), Argonne Natl Lab, Nucl Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. NR 287 TC 14 Z9 14 U1 0 U2 3 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0090-3752 J9 NUCL DATA SHEETS JI Nucl. Data Sheets PD JAN PY 2010 VL 111 IS 1 BP 141 EP + DI 10.1016/j.nds.2009.12.002 PG 133 WC Physics, Nuclear SC Physics GA 552TB UT WOS:000274315400002 ER PT S AU Mincher, BJ AF Mincher, Bruce J. BE Wai, CM Mincher, BJ TI The Nuclear Renaissance: Producing Environmentally Sustainable Nuclear Power SO NUCLEAR ENERGY AND THE ENVIRONMENT SE ACS Symposium Series LA English DT Proceedings Paper CT 238th Annual Meeting of the American-Chemical-Society CY AUG 16-20, 2009 CL Washington, DC SP ACS, Div Chem Educ, ACS, Div Ind & Engn Chem ID SOLVENT-EXTRACTION; SEPARATION; ARTICLE; AMIDES AB A renewed global interest in nuclear power, the so-called nuclear renaissance, is underway. Energy demand continues to rise, and it is now recognized that nuclear energy will be required to meet this demand. The long-term environmental sustainability of expanded nuclear power production will require more efficient processes for the conversion of uranium to energy. Thus, for purposes of increased efficiency of energy production and to reduce the amount of waste interred in a repository it is likely that the reprocessing of spent nuclear fuel, or "closed" fuel cycle, will be more widely adopted in the future. This will be a major component of the development of environmentally sustainable nuclear power. This chapter introduces the symposium book documenting the latest research from around the world with a goal of creating an environmentally sustainable nuclear power industry. Held 16-20 August, 2009 in Washington DC, USA, the symposium hosted scientists from the fuel cycle countries of Canada, China, Germany, Sweden, France, Japan and the USA. The scientists in attendance presented plans and progress for the aqueous separation of fission products and the minor actinides to improve the efficiency of power generation and to minimize the amount of material requiring geological disposal. C1 Idaho Natl Lab, Aqueous Separat & Radiochem Dept, Idaho Falls, ID 83415 USA. RP Mincher, BJ (reprint author), Idaho Natl Lab, Aqueous Separat & Radiochem Dept, POB 1625, Idaho Falls, ID 83415 USA. EM bruce.mincher@inl.gov; bruce.mincher@inl.gov RI Mincher, Bruce/C-7758-2017 NR 21 TC 2 Z9 2 U1 1 U2 17 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 SIXTEENTH ST NW, WASHINGTON, DC 20036 USA SN 0097-6156 BN 978-0-8412-2585-5 J9 ACS SYM SER JI ACS Symp. Ser. PY 2010 VL 1046 BP 3 EP 10 PG 8 WC Chemistry, Applied; Chemistry, Multidisciplinary; Nuclear Science & Technology SC Chemistry; Nuclear Science & Technology GA BVP57 UT WOS:000292221500001 ER PT S AU Todd, TA AF Todd, T. A. BE Wai, CM Mincher, BJ TI Separations Research for Advanced Nuclear Fuel Cycles SO NUCLEAR ENERGY AND THE ENVIRONMENT SE ACS Symposium Series LA English DT Proceedings Paper CT 238th Annual Meeting of the American-Chemical-Society CY AUG 16-20, 2009 CL Washington, DC SP ACS, Div Chem Educ, ACS, Div Ind & Engn Chem ID EXTRACTION AB The United States Department of Energy has been conducting research into advanced separation methods for the recycle of used nuclear fuel components for the last decade. Separation of certain used fuel constituents allows for improved waste management (by developing waste forms tailored for specific long-lived radioisotopes) and transmutation of long-lived actinide elements. One incentive for processing used fuel is to reduce the time that the overall radiotoxicity of the used fuel is greater than that of natural uranium ore. Spent fuel must be managed for geologic time scales (300,000+ years) while fuel that is processed to recycle and transmute actinide elements requires management for engineering time scales (hundreds of years). Efficient separation processes are needed for treatment of current light water reactor used fuel and future fast transmutation fuel (metal or oxide). Low process losses and product purity sufficient to meet fuel specifications are needed. C1 Div Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Todd, TA (reprint author), Div Idaho Natl Lab, POB 1625, Idaho Falls, ID 83415 USA. EM terry.todd@inl.gov RI Todd, Terry /O-4930-2016 OI Todd, Terry /0000-0003-1324-6950 NR 11 TC 4 Z9 4 U1 0 U2 5 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 SIXTEENTH ST NW, WASHINGTON, DC 20036 USA SN 0097-6156 BN 978-0-8412-2585-5 J9 ACS SYM SER JI ACS Symp. Ser. PY 2010 VL 1046 BP 13 EP 18 PG 6 WC Chemistry, Applied; Chemistry, Multidisciplinary; Nuclear Science & Technology SC Chemistry; Nuclear Science & Technology GA BVP57 UT WOS:000292221500002 ER PT S AU Lumetta, GJ Carter, JC Gelis, AV Vandegrift, GF AF Lumetta, Gregg J. Carter, Jennifer C. Gelis, Artem V. Vandegrift, George F. BE Wai, CM Mincher, BJ TI Combining Octyl(phenyl)-N,N-diisobutyl-carbamoylmethylphosphine Oxide and Bis-(2-ethylhexyl)phosphoric Acid Extractants for Recovering Transuranic Elements from Irradiated Nuclear Fuel SO NUCLEAR ENERGY AND THE ENVIRONMENT SE ACS Symposium Series LA English DT Proceedings Paper CT 238th Annual Meeting of the American-Chemical-Society CY AUG 16-20, 2009 CL Washington, DC SP ACS, Div Chem Educ, ACS, Div Ind & Engn Chem ID LANTHANIDES(III); SOLVENT; ARTICLE; SYSTEM; HDEHP AB Advanced concepts for closing the nuclear fuel cycle include separating Am and Cm from other fuel components. Separating these elements from the lanthanide elements at an industrial scale remains a significant technical challenge. We describe here a chemical system in which a neutral extractant-octyl(phenyl)-N,N-diisobutyl-carbamoylmethylphosphine oxide (CMPO)-is combined with an acidic extractant-bis-(2-ethylhexyl)phosphoric acid (HDEHP)-to form a single process solvent (with dodecane as the diluent) for separating Am and Cm from the other components of irradiated nuclear fuel. Continuous variation experiments in which the relative CMPO and HDEHP concentrations are varied indicate a synergistic relationship between the two extractants in the extraction of Am from buffered diethylenetriaminepentaacetic acid (DTPA) solutions. A solvent mixture consisting or 0.1 M CMPO + 1 M HDEHP in dodecane offers acceptable extraction efficiency for the trivalent lanthanides and actinides from 1 M HNO(3) while maintaining good lanthanide/actinide separation factors in the stripping regime (buffered DTPA solutions with pH 3.5 to 4). Using citrate buffer instead of lactate buffer results in improved lanthanide/actinide separation factors. C1 [Lumetta, Gregg J.; Carter, Jennifer C.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Lumetta, GJ (reprint author), Pacific NW Natl Lab, POB 999,MSIN P7-25, Richland, WA 99352 USA. EM gregg.lumetta@pnl.gov NR 12 TC 10 Z9 10 U1 0 U2 4 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 SIXTEENTH ST NW, WASHINGTON, DC 20036 USA SN 0097-6156 BN 978-0-8412-2585-5 J9 ACS SYM SER JI ACS Symp. Ser. PY 2010 VL 1046 BP 107 EP 118 PG 12 WC Chemistry, Applied; Chemistry, Multidisciplinary; Nuclear Science & Technology SC Chemistry; Nuclear Science & Technology GA BVP57 UT WOS:000292221500009 ER PT S AU Colon-Mercado, HR Elvington, MC Steimke, JL Steeper, TJ Herman, DT Gorensek, MB Summers, WA Hobbs, DT AF Colon-Mercado, H. R. Elvington, M. C. Steimke, J. L. Steeper, T. J. Herman, D. T. Gorensek, M. B. Summers, W. A. Hobbs, D. T. BE Wai, CM Mincher, BJ TI Recent Advances in the Development of the Hybrid Sulfur Process for Hydrogen Production SO NUCLEAR ENERGY AND THE ENVIRONMENT SE ACS Symposium Series LA English DT Proceedings Paper CT 238th Annual Meeting of the American-Chemical-Society CY AUG 16-20, 2009 CL Washington, DC SP ACS, Div Chem Educ, ACS, Div Ind & Engn Chem ID POLYBENZIMIDAZOLE; STATE; ACID; CELL AB Thermochemical processes are being developed to provide global-scale quantities of hydrogen. A variant on sulfur-based thermochemical cycles is the Hybrid Sulfur (HyS) Process, which uses a sulfur dioxide depolarized electrolyzer (SDE) to produce the hydrogen. In the HyS Process, sulfur dioxide is oxidized in the presence of water at the electrolyzer anode to produce sulfuric acid and protons. The protons are transported through a cation-exchange membrane electrolyte to the cathode and are reduced to form hydrogen. In the second stage of the process, the sulfuric acid by-product from the electrolyzer is thermally decomposed at high temperature to produce sulfur dioxide and oxygen. The two gases are separated and the sulfur dioxide recycled to the electrolyzer for oxidation. The Savannah River National Laboratory (SRNL) has been exploring a fuel-cell design concept for the SDE using an anolyte feed comprised of concentrated sulfuric acid saturated with sulfur dioxide. The advantages of this design concept include high electrochemical efficiency and small footprint compared to a parallel-plate electrolyzer design. This paper will provide a summary of recent advances in the development of the SDE for the HyS process. C1 [Colon-Mercado, H. R.; Elvington, M. C.; Steimke, J. L.; Steeper, T. J.; Herman, D. T.; Gorensek, M. B.; Summers, W. A.; Hobbs, D. T.] Savannah River Nucl Solut LLC, Savannah River Natl Lab, Aiken, SC 29808 USA. RP Colon-Mercado, HR (reprint author), Savannah River Nucl Solut LLC, Savannah River Natl Lab, Aiken, SC 29808 USA. EM david.hobbs@srnl.doe.gov NR 16 TC 2 Z9 2 U1 0 U2 3 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 SIXTEENTH ST NW, WASHINGTON, DC 20036 USA SN 0097-6156 BN 978-0-8412-2585-5 J9 ACS SYM SER JI ACS Symp. Ser. PY 2010 VL 1046 BP 141 EP 154 PG 14 WC Chemistry, Applied; Chemistry, Multidisciplinary; Nuclear Science & Technology SC Chemistry; Nuclear Science & Technology GA BVP57 UT WOS:000292221500012 ER PT S AU Mincher, BJ AF Mincher, Bruce J. BE Wai, CM Mincher, BJ TI An Overview of Selected Radiation Chemical Reactions Affecting Fuel Cycle Solvent Extraction SO NUCLEAR ENERGY AND THE ENVIRONMENT SE ACS Symposium Series LA English DT Proceedings Paper CT 238th Annual Meeting of the American-Chemical-Society CY AUG 16-20, 2009 CL Washington, DC SP ACS, Div Chem Educ, ACS, Div Ind & Engn Chem ID NITRIC-ACID SOLUTIONS; AQUEOUS-SOLUTIONS; PULSE-RADIOLYSIS; GAMMA-RADIOLYSIS; RATE CONSTANTS; TRIBUTYL-PHOSPHATE; HYDRATED ELECTRONS; HYDROXYL RADICALS; NITROUS-ACID; DEGRADATION AB Aqueous solvent extraction for the recovery of uranium and plutonium from dissolved nuclear fuel has been used successfully since the advent of the nuclear age. Following decades of PUREX operating experience in several countries, new solvent extraction processes are now being developed worldwide to extract additional long-lived radionuclides, including especially the minor actindes. These must be partitioned from the lanthanides in what is an especially challenging separation. These new processes rely on specialty ligands as metal complexing agents. They must be reasonably stable to hydrolytic and radiolytic degradation in the acidic, irradiated biphasic system. Solvent system degradation may lead to decreases in ligand concentration, production of interfering degradation products, and changes in solvent viscocity and phase separation parameters. Therefore, research is underway in the USA, Europe and Asia with a goal of understanding these affects on solvent extraction efficiency for specific systems. This chapter presents an overview of the important reactions that are common to all solvent extraction systems with reference to recent research findings at Idaho National Lab (INL) and elsewhere. It is shown that indirect radiolysis by reaction with radiolytically produced reactive species such as hydroxyl radical, radical cations and nitrous acid is responsible for much ligand and diluent degradation. Understanding these reactions requires a combination of steady-state and pulsed irradiation experiments and solvent extraction distribution ratio measurements. C1 Idaho Natl Lab, Aqueous Separat & Radiochem Dept, Idaho Falls, ID 83415 USA. RP Mincher, BJ (reprint author), Idaho Natl Lab, Aqueous Separat & Radiochem Dept, POB 1625, Idaho Falls, ID 83415 USA. EM Bruce.Mincher@inl.gov; Bruce.Mincher@inl.gov RI Mincher, Bruce/C-7758-2017 NR 45 TC 1 Z9 1 U1 0 U2 8 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 SIXTEENTH ST NW, WASHINGTON, DC 20036 USA SN 0097-6156 BN 978-0-8412-2585-5 J9 ACS SYM SER JI ACS Symp. Ser. PY 2010 VL 1046 BP 181 EP + PG 6 WC Chemistry, Applied; Chemistry, Multidisciplinary; Nuclear Science & Technology SC Chemistry; Nuclear Science & Technology GA BVP57 UT WOS:000292221500015 ER PT S AU Elias, G Mincher, BJ Mezyk, SP Cullen, TD Martin, LR AF Elias, Gracy Mincher, Bruce J. Mezyk, Stephen P. Cullen, Thomas D. Martin, Leigh R. BE Wai, CM Mincher, BJ TI Nitration Mechanisms of Anisole during Gamma Irradiation of Aqueous Nitrite and Nitrate Solutions SO NUCLEAR ENERGY AND THE ENVIRONMENT SE ACS Symposium Series LA English DT Proceedings Paper CT 238th Annual Meeting of the American-Chemical-Society CY AUG 16-20, 2009 CL Washington, DC SP ACS, Div Chem Educ, ACS, Div Ind & Engn Chem, ACS, Div Fuel Chem ID AROMATIC-SUBSTITUTION; RATE CONSTANTS; SULFURIC-ACID; NITROUS ACID; NITROSATION; RADIOLYSIS; RADICALS; TOLUENE AB The nitration of aromatic compounds in the condensed phase is of interest to nuclear waste treatment applications. This chapter discusses our investigation of radiolytic aromatic nitration mechanisms in the condensed phase toward understanding the nitration products created during nuclear fuel reprocessing. The nitration reactions of anisole, a model aromatic compound, were studied in y-irradiated acidic nitrate, neutral nitrate, and neutral nitrite solutions. The nitrated anisole product distributions were the same with and without radiation in acidic solution, although more products were formed with radiation. In the irradiated acidic condensed phase, radiation-enhanced nitrous acid-catalyzed nitrosonium ion electrophilic aromatic substitution followed by oxidation reactions dominated over radical addition reactions. Neutral nitrate anisole solutions were dominated by mixed nitrosonium/nitronium ion electrophilic aromatic substitution reactions, but with lower product yields. Irradiation of neutral nitrite anisole solution resulted in a statistical substitution pattern for nitroanisole products, suggesting non-electrophilic free radical reactions involving the center dot NO2 radical. C1 [Elias, Gracy; Mincher, Bruce J.; Martin, Leigh R.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Elias, G (reprint author), Idaho Natl Lab, POB 1625, Idaho Falls, ID 83415 USA. EM gracy.elias@inl.gov RI Mincher, Bruce/C-7758-2017; OI Martin, Leigh/0000-0001-7241-7110 NR 18 TC 0 Z9 0 U1 0 U2 3 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 SIXTEENTH ST NW, WASHINGTON, DC 20036 USA SN 0097-6156 BN 978-0-8412-2585-5 J9 ACS SYM SER JI ACS Symp. Ser. PY 2010 VL 1046 BP 205 EP 214 PG 10 WC Chemistry, Applied; Chemistry, Multidisciplinary; Nuclear Science & Technology SC Chemistry; Nuclear Science & Technology GA BVP57 UT WOS:000292221500017 ER PT S AU Martin, LR Mincher, BJ Mezyk, SP Elias, G Tillotson, RD AF Martin, Leigh R. Mincher, Bruce J. Mezyk, Stephen P. Elias, Gracy Tillotson, Richard D. BE Wai, CM Mincher, BJ TI Effects of Aqueous Phase Radiolysis on Lactic Acid Under TALSPEAK Conditions SO NUCLEAR ENERGY AND THE ENVIRONMENT SE ACS Symposium Series LA English DT Proceedings Paper CT 238th Annual Meeting of the American-Chemical-Society CY AUG 16-20, 2009 CL Washington, DC SP ACS, Div Chem Educ, ACS, Div Ind & Engn Chem ID PULSE-RADIOLYSIS; RATE CONSTANTS; EXTRACTION; TEMPERATURE; LANTHANIDES; REACTIVITY; SEPARATION; PRODUCTS; RADICALS; KINETICS AB Understanding the radiolytic degradation behavior of the organic molecules involved in new or existing schemes for the recycling of used nuclear fuels is of major importance for sustaining a closed nuclear fuel cycle. The TALSPEAK process for the separation of the trivalent lanthanides from the trivalent actinides is one process that has been receiving increased attention in recent years. Despite this, there is still little known about the radiolysis effects on the aqueous phase complexants lactic acid and diethylenetriamine-N,N,N',N '',N ''-pentaacetic acid (DTPA) used to accomplish this separation. This chapter discusses the results of our continued investigations into the radiolytic degradation of lactic acid in TALSPEAK aqueous phases and the resulting effects on the trivalent actinide/lanthanide separation. C1 [Martin, Leigh R.; Mincher, Bruce J.; Tillotson, Richard D.] Idaho Natl Lab, Aqueous Separat & Radiochem Dept, Idaho Falls, ID 83415 USA. RP Martin, LR (reprint author), Idaho Natl Lab, Aqueous Separat & Radiochem Dept, POB 1625, Idaho Falls, ID 83415 USA. EM Leigh.Martin@inl.gov RI Martin, Leigh/P-3167-2016; Mincher, Bruce/C-7758-2017 OI Martin, Leigh/0000-0001-7241-7110; NR 24 TC 3 Z9 3 U1 0 U2 1 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 SIXTEENTH ST NW, WASHINGTON, DC 20036 USA SN 0097-6156 BN 978-0-8412-2585-5 J9 ACS SYM SER JI ACS Symp. Ser. PY 2010 VL 1046 BP 243 EP 253 PG 11 WC Chemistry, Applied; Chemistry, Multidisciplinary; Nuclear Science & Technology SC Chemistry; Nuclear Science & Technology GA BVP57 UT WOS:000292221500020 ER PT S AU Rao, LF Tian, GX Xia, YX Friese, JI Zanonato, P Di Bernardo, P AF Rao, Linfeng Tian, Guoxin Xia, Yuanxian Friese, Judah I. Zanonato, PierLuigi Di Bernardo, Plinio BE Wai, CM Mincher, BJ TI Bridging the Gap in the Chemical Thermodynamic Database for Nuclear Waste Repository: Studies of the Effect of Temperature on Actinide Complexation SO NUCLEAR ENERGY AND THE ENVIRONMENT SE ACS Symposium Series LA English DT Proceedings Paper CT 238th Annual Meeting of the American-Chemical-Society CY AUG 16-20, 2009 CL Washington, DC SP ACS, Div Chem Educ, ACS, Div Ind & Engn Chem, ACS, Div Fuel Chem ID VARIABLE TEMPERATURES; ELEVATED-TEMPERATURES; AQUEOUS-SOLUTIONS; NEPTUNIUM(V); FLUORIDE; SULFATE; URANIUM(VI); HYDROLYSIS AB Recent results of thermodynamic studies on the complexation of actinides (UO22+, NpO2+ and Pu4+) with F-, SO42- and H2PO4-/HPO42- at elevated temperatures are reviewed. The data indicate that, for all systems except the 1:1 complexation of Np(V) with HPO42-, the complexation of actinides is enhanced by the increase in temperature. The enhancement is primarily due to the increase in the entropy term (T Delta S) that exceeds the increase in the enthalpy (Delta H) as the temperature is increased. These data bridge the gaps in the chemical thermodynamic database for nuclear waste repository where the temperature could remain significantly higher than 25 degrees C for a long time after the closure of the repository. C1 [Rao, Linfeng; Tian, Guoxin] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Rao, LF (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. EM lrao@lbl.gov NR 23 TC 0 Z9 0 U1 0 U2 9 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 SIXTEENTH ST NW, WASHINGTON, DC 20036 USA SN 0097-6156 BN 978-0-8412-2585-5 J9 ACS SYM SER JI ACS Symp. Ser. PY 2010 VL 1046 BP 299 EP 318 PG 20 WC Chemistry, Applied; Chemistry, Multidisciplinary; Nuclear Science & Technology SC Chemistry; Nuclear Science & Technology GA BVP57 UT WOS:000292221500023 ER PT S AU Crawford, CL Jantzen, CM AF Crawford, C. L. Jantzen, C. M. BE Wai, CM Mincher, BJ TI Evaluation of THOR (TM) Mineralized Waste Forms (Granular and Monolith) for the DOE Advanced Remediation Technologies (ART) Phase 2 Project SO NUCLEAR ENERGY AND THE ENVIRONMENT SE ACS Symposium Series LA English DT Proceedings Paper CT 238th Annual Meeting of the American-Chemical-Society CY AUG 16-20, 2009 CL Washington, DC SP ACS, Div Chem Educ, ACS, Div Ind & Engn Chem AB Fluidized Bed Steam Reforming (FBSR) processing of Hanford Low Activity Waste (LAW) and Waste Treatment Plant Secondary Waste (WTP-SW) simulants were performed in 2008 by THOR(TM) Treatment Technologies LLC (TTT). Testing was performed at the Hazen Research Inc. (HRI) Engineering Scale Technology Demonstration (ESTD) pilot plant facilities in Golden, CO. FBSR mineralized aggregate products from pilot tests on simulated waste representative of the Hanford LAW and the WTP-SW were characterized and leach tested at SRNL. Aggregates were monolithed using several different binders at various monolith scales including 2 '' cubes and 2 '' x 4 '', 3 '' x 6 '' and 6 '' x 12 '' cylinders. Monoliths were compression tested upon curing up to 28 days and also characterized and leach tested. A geopolymer formulation using flyash gives optimal monolith performance relative to compressive strength, durability and toxic metal retention. C1 [Crawford, C. L.; Jantzen, C. M.] Savannah River Nucl Solut SRNS, Savannah River Natl Lab SRNL, Aiken, SC 29808 USA. RP Crawford, CL (reprint author), Savannah River Nucl Solut SRNS, Savannah River Natl Lab SRNL, Aiken, SC 29808 USA. EM charles.crawford@srnl.doe.gov NR 9 TC 0 Z9 0 U1 0 U2 0 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 SIXTEENTH ST NW, WASHINGTON, DC 20036 USA SN 0097-6156 BN 978-0-8412-2585-5 J9 ACS SYM SER JI ACS Symp. Ser. PY 2010 VL 1046 BP 319 EP 331 PG 13 WC Chemistry, Applied; Chemistry, Multidisciplinary; Nuclear Science & Technology SC Chemistry; Nuclear Science & Technology GA BVP57 UT WOS:000292221500024 ER PT J AU Nemeth, NN Bratton, RL AF Nemeth, Noel N. Bratton, Robert L. TI Overview of statistical models of fracture for nonirradiated nuclear-graphite components SO NUCLEAR ENGINEERING AND DESIGN LA English DT Review ID SILICON-CARBIDE MICROSPECIMENS; BUNDLES PROBABILITY MODEL; R-CURVE BEHAVIOR; FIBROUS COMPOSITES; BRITTLE MATERIALS; POLYGRANULAR GRAPHITES; STRENGTH VARIABILITY; ELECTRICAL BREAKDOWN; RELIABILITY-ANALYSIS; PERCOLATION MODELS AB Nuclear-grade (low-impurity) graphite for the fuel element and moderator material for Next Generation (Gen IV) Reactors displays large scatter in strength and a nonlinear stress-strain response from damage accumulation. This response can be characterized as quasi-brittle. In this review, relevant statistical failure models for various brittle and quasi-brittle material systems are discussed with regard to strength distribution, size effect, multiaxial strength, and damage accumulation. This includes descriptions of the Weibull. Batdorf, and Burchell models as well as models that describe the strength response of composite materials, which involves distributed damage. Results from lattice simulations are included for a physics-based description of material breakdown. Consideration is given to the predicted transition between brittle and quasi-brittle damage behavior versus the density of damage (level of disorder) within the material system. The literature indicates that weakest-link-based failure modeling approaches appear to be reasonably robust in that they can be applied to materials that display distributed damage, provided that the level of disorder in the material is not too large. The Weibull distribution is argued to be the most appropriate statistical distribution to model the stochastic strength response of graphite. Published by Elsevier B.V. C1 [Nemeth, Noel N.] NASA Glenn Res Ctr, Cleveland, OH USA. [Bratton, Robert L.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Nemeth, NN (reprint author), NASA Glenn Res Ctr, Cleveland, OH USA. EM Noel.N.Nemeth@nasa.gov FU National Aeronautics and Space Administration [SAA3-824]; Battelle Memorial Institute [SAA3-824]; Battelle Energy Alliance, LLC with the U.S. Department of Energy. [DE-AC07-05ID14517] FX Notice for Copyrighted Information: This manuscript is a joint work of employees of the National Aeronautics and Space Administration and employees of Battelle Memorial Institute (under contract to Idaho National Laboratory) under Space Act Agreement SAA3-824 with the National Aeronautics and Space Administration. The United States Government may prepare derivative works, publish or reproduce this manuscript, and allow other to do so. Any publisher accepting this manuscript for publication acknowledges that the United States Government retains a nonexclusive, irrevocable, worldwide license to prepare derivative works, publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes.; The authors thank Prof. Phoenix and Dr. Nukala for providing helpful correspondence and publications of their research and Andrew Walker for assistance in preparing this manuscript. This manuscript was funded by Battelle Energy Alliance, LLC, under contract no. DE-AC07-05ID14517 with the U.S. Department of Energy. NR 168 TC 10 Z9 10 U1 2 U2 12 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0029-5493 EI 1872-759X J9 NUCL ENG DES JI Nucl. Eng. Des. PD JAN PY 2010 VL 240 IS 1 BP 1 EP 29 DI 10.1016/j.nucengdes.2009.10.002 PG 29 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 547IC UT WOS:000273879500001 ER PT J AU Wachs, D AF Wachs, Daniel TI Reactor conversion SO NUCLEAR ENGINEERING INTERNATIONAL LA English DT Article C1 Idaho Natl Lab, GTRI Tech Lead Fuel Dev, Nucl Fuels Performance Dept, Idaho Falls, ID 83415 USA. RP Wachs, D (reprint author), Idaho Natl Lab, GTRI Tech Lead Fuel Dev, Nucl Fuels Performance Dept, POB 1625, Idaho Falls, ID 83415 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU WILMINGTON PUBL PI SIDCUP PA WILMINGTON HOUSE, MAIDSTONE RD, FOOTS CRAY, SIDCUP DA14 SHZ, KENT, ENGLAND SN 0029-5507 J9 NUCL ENG INT JI Nucl. Eng. Int. PD JAN PY 2010 VL 55 IS 666 BP 18 EP 21 PG 4 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 584AW UT WOS:000276723400005 ER PT J AU Liu, Y Aleksandrov, A Assadi, S Blokland, W Deibele, C Grice, W Long, C Pelaia, T Webster, A AF Liu, Y. Aleksandrov, A. Assadi, S. Blokland, W. Deibele, C. Grice, W. Long, C. Pelaia, T. Webster, A. TI Laser wire beam profile monitor in the spallation neutron source (SNS) superconducting linac SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Laser wire; Beam diagnostics; Spallation neutron source; Beam profile monitor; Superconducting linac; Photodetachment ID PHASE-SPACE; H-BEAMS AB The spallation neutron source (SNS) at Oak Ridge National Laboratory is an accelerator-based, neutron-scattering facility. SNS uses a large-scale, high-energy superconducting linac (SCL) to provide high beam power utilizing hydrogen ion (H(-)) beams. For the diagnostics of high-brightness H(-) beams in the SCL, nonintrusive methods are preferred. This paper describes design, implementation, theoretical analysis, and experimental demonstration of a nonintrusive profile monitor system based on photodetachment, also known as laser wire, installed in the SNS SCL. The SNS laser wire system is the world's largest of its kind with a capability of measuring horizontal and vertical profiles of an operational H- beam at each of the 23 cryomodule stations along the SCL beam line by employing a single light source. Presently 9 laser wire stations have been commissioned that measure profiles of the H- beam at energy levels from 200 MeV to 1 GeV. The laser wire diagnostics has no moving parts inside the beam pipe, causes no contamination on the superconducting cavity, and can be run parasitically on an operational neutron production H(-) beam. (C) 2009 Elsevier B.V. All rights reserved. C1 [Liu, Y.; Aleksandrov, A.; Assadi, S.; Blokland, W.; Deibele, C.; Grice, W.; Long, C.; Pelaia, T.; Webster, A.] Oak Ridge Natl Lab, Spallat Neutron Source, Oak Ridge, TN 37831 USA. RP Liu, Y (reprint author), Oak Ridge Natl Lab, Spallat Neutron Source, Oak Ridge, TN 37831 USA. EM liuy2@ornl.gov RI Grice, Warren/L-8466-2013; OI Grice, Warren/0000-0003-4266-4692 FU US Department of Energy [DE-AC05-00OR22725] FX The authors thank members of the Beam Instrumentation, Accelerator Physics, and Operations Groups at the SNS Research Accelerator Division for their discussions and technical support. Ted Hunter is acknowledged for providing the information about the magnet design. We are also grateful to Norbert Holtkamp and Stuart Henderson for their support of this project. Oak Ridge National Laboratory is managed by UT Battelle, LLC for the US Department of Energy under Contract no. DE-AC05-00OR22725. NR 17 TC 8 Z9 8 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD JAN 1 PY 2010 VL 612 IS 2 BP 241 EP 253 DI 10.1016/j.nima.2009.10.061 PG 13 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 550NQ UT WOS:000274135100003 ER PT J AU Zholents, A Penn, G AF Zholents, A. Penn, G. TI Obtaining two attosecond pulses for X-ray stimulated Raman spectroscopy SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE FEL; Attosecond; Echo ID FELS AB Attosecond X-ray pulses are an indispensable tool for the study of electronic and structural changes in molecules undergoing chemical reactions. They have a wide bandwidth comparable to the energy bands of valence electronic states and, therefore, are well suited for making and probing multiple valence electronic excitations using core electron transitions. Here we propose a method of creating a sequence of two attosecond soft X-ray pulses in a free electron laser by optical manipulation of electrons located in two different sections of the electron bunch. The energy of each X-ray pulse can be of the order of 100 nJ and the pulse width of the order of 250 as. The carrier frequency of each X-ray pulse can be independently tuned to a resonant core electron transition of a specific atom of the molecule. The time interval between the two attosecond pulses is tunable from a few femtoseconds to a hundred femtoseconds with better than 100 as precision. (C) 2009 Elsevier B.V. All rights reserved. C1 [Zholents, A.; Penn, G.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Penn, G (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. EM gepenn@lbl.gov FU Office of Science, High Energy Physics, U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the Director, Office of Science, High Energy Physics, U.S. Department of Energy under Contract no. DE-AC02-05CH11231. One of us (AZ) is very grateful to I. Schweigert, S. Mukamel and W. McCurdy for useful discussions. NR 21 TC 38 Z9 39 U1 1 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD JAN 1 PY 2010 VL 612 IS 2 BP 254 EP 259 DI 10.1016/j.nima.2009.10.063 PG 6 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 550NQ UT WOS:000274135100004 ER PT J AU Wittwer, D Abdullin, FS Aksenov, NV Albin, YV Bozhikov, GA Dmitriev, SN Dressler, R Eichler, R Gaggeler, HW Henderson, RA Hubener, S Kenneally, JM Lebedev, VY Lobanov, YV Moody, KJ Oganessian, YT Petrushkin, OV Polyakov, AN Piguet, D Rasmussen, P Sagaidak, RN Serov, A Shirokovsky, IV Shaughnessy, DA Shishkin, SV Sukhov, AM Stoyer, MA Stoyer, NJ Tereshatov, EE Tsyganov, YS Utyonkov, VK Vostokin, GK Wegrzecki, M Wilk, PA AF Wittwer, D. Abdullin, F. Sh. Aksenov, N. V. Albin, Yu. V. Bozhikov, G. A. Dmitriev, S. N. Dressler, R. Eichler, R. Gaeggeler, H. W. Henderson, R. A. Huebener, S. Kenneally, J. M. Lebedev, V. Ya. Lobanov, Yu. V. Moody, K. J. Oganessian, Yu. Ts. Petrushkin, O. V. Polyakov, A. N. Piguet, D. Rasmussen, P. Sagaidak, R. N. Serov, A. Shirokovsky, I. V. Shaughnessy, D. A. Shishkin, S. V. Sukhov, A. M. Stoyer, M. A. Stoyer, N. J. Tereshatov, E. E. Tsyganov, Yu. S. Utyonkov, V. K. Vostokin, G. K. Wegrzecki, M. Wilk, P. A. TI Gas phase chemical studies of superheavy elements using the Dubna gas-filled recoil separator - Stopping range determination SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS LA English DT Article DE Heavy ion; Stopping force; Mylar; Argon; Superheavy elements; Physical preseparator ID HEAVY-IONS; EMPIRICAL-APPROACH; PRODUCTS; POWER; SURFACES; SOLIDS; CHARGE; AR-18; RADON; LI-3 AB Currently, gas phase chemistry experiments with heaviest elements are usually performed with the gas-jet technique with the disadvantage that all reaction products are collected in a gas-filled thermalisation chamber adjacent to the target. The incorporation of a physical preseparation device between target and collection chamber opens up the perspective to perform new chemical studies. But this approach requires detailed knowledge of the stopping force (STF) of the heaviest elements in various materials. Measurements of the energy loss of mercury (Hg), radon (Rn), and nobelium (No) in Mylar and argon (Ar) were performed at low kinetic energies of around (40-270) keV per nucleon. The experimentally obtained values were compared with STF calculations of the commonly used program for calculating stopping and ranges of ions in matter (SRIM). Using the obtained data points an extrapolation of the STF up to element 114, eka-lead, in the same stopping media was carried out. These estimations were applied to design and to perform a first chemical experiment with a superheavy element behind a physical preseparator using the nuclear fusion reaction (244)Pu((48)Ca; 3n)(289)114. One decay chain assigned to an atom of (285)112, the alpha-decay product of (289)114, was observed. (c) 2009 Elsevier B.V. All rights reserved. C1 [Wittwer, D.; Eichler, R.; Gaeggeler, H. W.; Serov, A.] Univ Bern, Dept Chem & Biochem, CH-3012 Bern, Switzerland. [Wittwer, D.; Dressler, R.; Eichler, R.; Gaeggeler, H. W.; Piguet, D.; Rasmussen, P.; Serov, A.] Paul Scherrer Inst, Labor Radio & Umweltchem, CH-5232 Villigen, Switzerland. [Abdullin, F. Sh.; Aksenov, N. V.; Albin, Yu. V.; Bozhikov, G. A.; Dmitriev, S. N.; Lebedev, V. Ya.; Lobanov, Yu. V.; Oganessian, Yu. Ts.; Petrushkin, O. V.; Polyakov, A. N.; Sagaidak, R. N.; Shirokovsky, I. V.; Shishkin, S. V.; Sukhov, A. M.; Tereshatov, E. E.; Tsyganov, Yu. S.; Utyonkov, V. K.; Vostokin, G. K.] Joint Inst Nucl Res, Flerov Lab Nucl React, Dubna 141980, Russia. [Henderson, R. A.; Kenneally, J. M.; Moody, K. J.; Shaughnessy, D. A.; Stoyer, M. A.; Stoyer, N. J.; Wilk, P. A.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Huebener, S.] Forschungszentrum Dresden Rossendorf, D-01314 Dresden, Germany. [Wegrzecki, M.] Inst Electr Mat Technol, PL-02668 Warsaw, Poland. RP Wittwer, D (reprint author), Univ Bern, Dept Chem & Biochem, CH-3012 Bern, Switzerland. EM david.wittwer@psi.ch RI Wilk, Philip/B-5954-2008; Eichler, Robert/G-5130-2011 FU Russian Foundation for Basic Research [07-03-00430-a, 07-02-00029-a]; Swiss National Science Foundation [200020-117671/1] FX We thank the staff of the U-400 cyclotron for providing intense beams of 48Ca. The 244Pu target material was provided by the U.S. DOE through ORNL, Oak Ridge, USA. The LLNL work was performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory (contract: DE-AC52-07NA27344). This work was supported in part by the Russian Foundation for Basic Research (Grants: 07-03-00430-a, 07-02-00029-a) and by the Swiss National Science Foundation (Grant: 200020-117671/1). NR 36 TC 24 Z9 24 U1 1 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-583X J9 NUCL INSTRUM METH B JI Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms PD JAN 1 PY 2010 VL 268 IS 1 BP 28 EP 35 DI 10.1016/j.nimb.2009.09.062 PG 8 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Atomic, Molecular & Chemical; Physics, Nuclear SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 535NZ UT WOS:000272978600005 ER PT J AU Abelev, BI Aggarwal, MM Ahammed, Z Alakhverdyants, AV Anderson, BD Arkhipkin, D Averichev, GS Badyal, SK Balewski, J Barannikova, O Barnby, LS Baudot, J Baumgart, S Beavis, DR Bellwied, R Benedosso, F Betancourt, MJ Betts, RR Bhasin, A Bhati, AK Bichsel, H Bielcik, J Bielcikova, J Biritz, B Bland, LC Bnzarov, I Bombara, M Bonner, BE Bouchet, J Braidot, E Brandin, AV Bruna, E Bueltmann, S Burton, TP Bystersky, M Cai, XZ Caines, H Calderon, M Catu, O Cebra, D Cendejas, R Cervantes, MC Chajecki, Z Chaloupka, P Chattopadhyay, S Chen, HF Chen, JH Chen, JY Cheng, J Cherney, M Chikanian, A Choi, KE Christie, W Clarke, RF Codrington, MJM Corliss, R Cormier, TM Cosentino, MR Cramer, JG Crawford, HJ Das, D Das, S Dash, S Daugherity, M De Silva, LC Dedovich, TG DePhillips, M Derevschikov, AA de Souza, RD Didenko, L Djawotho, P Dogra, SM Dong, X Drachenberg, JL Draper, JE Dunlop, JC Mazumdar, MRD Efimov, LG Elhalhuli, E Elnimr, M Engelage, J Eppley, G Erazmus, B Estienne, M Eun, L Fachini, P Fatemi, R Fedorisin, J Feng, A Filip, P Finch, E Fine, V Fisyak, Y Gagliardi, CA Gaillard, L Gangadharan, DR Ganti, MS Garcia-Solis, EJ Geromitsos, A Geurts, F Ghazikhanian, V Ghosh, P Gorbunov, YN Gordon, A Grebenyuk, O Grosnick, D Grube, B Guertin, SM Guimaraes, KSFF Gupta, A Gupta, N Guryn, W Haag, B Hallman, TJ Hamed, A Harris, JW He, W Heinz, M Hepplemann, S Hippolyte, B Hirsch, A Hjort, E Hoffman, AM Hoffmann, GW Hofman, DJ Hollis, RS Huang, HZ Humanic, TJ Huo, L Igo, G Lordanova, A Jacobs, P Jacobs, WW Jakl, P Jena, C Jin, F Jones, CL Jones, PG Joseph, J Judd, EG Kabana, S Kajimoto, K Kang, K Kapitan, J Kauder, K Keane, D Kechechyan, A Kettler, D Khodyrev, VY Kikola, DP Kiryluk, J Kisiel, A Klein, SR Knospe, AG Kocoloski, A Koetke, DD Konzer, J Kopytine, M Koralt, I Korsch, W Kotchenda, L Kouchpil, V Kravtsov, P Kravtsov, VI Krueger, K Krus, M Kuhn, C Kumar, L Kurnadi, P Lamont, MAC Landgraf, JM LaPointe, S Lauret, J Lebedev, A Lednicky, R Lee, CH Lee, JH Leight, W LeVine, MJ Li, C Li, N Li, Y Lin, G Lindenbaum, SJ Lisa, MA Liu, F Liu, H Liu, J Liu, L Ljubicic, T Llope, WJ Longacre, RS Love, WA Lu, Y Ludlam, T Ma, GL Ma, YG Mahapatra, DP Majka, R Mall, OI Mangotra, LK Manweiler, R Margetis, S Markert, C Masui, H Matis, HS Matulenko, YA McDonald, D McShane, TS Meschanin, A Millner, R Minaev, NG Mioduszewski, S Mischke, A Mohanty, B Mondal, MM Morozov, DA Munhoz, MG Nandi, BK Nattrass, C Nayak, TK Nelson, JM Netrakanti, PK Ng, MJ Nogach, LV Nurushev, SB Odyniec, G Ogawa, A Okada, H Okorokov, V Olson, D Pachr, M Page, BS Pal, SK Pandit, Y Panebratsev, Y Pawlak, T Peitzmann, T Perevoztchikov, V Perkins, C Peryt, W Phatak, SC Pile, P Planinic, M Ploskon, MA Pluta, J Plyku, D Poljak, N Poskanzer, AM Potukuchi, BVKS Prindle, D Pruneau, C Pruthi, NK Pujahari, PR Putschke, J Raniwala, R Raniwala, S Ray, RL Redwine, R Reed, R Ridiger, A Ritter, HG Roberts, JB Rogachevskiy, OV Romero, JL Rose, A Roy, C Ruan, L Russcher, MJ Sahoo, R Sakai, S Sakrejda, I Sakuma, T Salur, S Sandweiss, J Sarsour, M Schambach, J Scharenberg, RP Schmitz, N Seger, J Selyuzhenkov, I Seyboth, P Shabetai, A Shahaliev, E Shao, M Sharma, M Shi, SS Shi, XH Sichtermann, EP Simon, F Singaraju, RN Skoby, MJ Smirnov, N Sorensen, P Sowinski, J Spinka, HM Srivastava, B Stanislaus, TDS Staszak, D Strikhanov, M Stringfellow, B Suaide, AAP Suarez, MC Subba, NL Sumbera, M Sun, XM Sun, Y Sun, Z Surrow, B Symons, TJM de Toledo, AS Takahashi, J Tang, AH Tang, Z Tarini, LH Tarnowsky, T Thein, D Thomas, JH Tian, J Timmins, AR Timoshenko, S Tlusty, D Tokarev, M Trainor, TA Tram, VN Trattner, AL Trentalange, S Tribble, RE Tsai, OD Ulery, J Ullrich, T Underwood, DG Van Buren, G van Leeuwen, M van Nieuwenhuizen, G Vanfossen, JA Varma, R Vasconcelos, GMS Vasiliev, AN Videbaek, F Vigdor, SE Viyogi, YP Vokal, S Voloshin, SA Wada, M Walker, M Wang, F Wang, G Wang, H Wang, JS Wang, Q Wang, X Wang, XL Wang, Y Webb, G Webb, JC Westfall, GD Whitten, C Wieman, H Wissink, SW Witt, R Wu, Y Xie, W Xu, N Xu, QH Xu, Y Xu, Z Yang, Y Yepes, P Yip, K Yoo, IK Yue, Q Zawisza, M Zbroszczyk, H Zhan, W Zhang, S Zhang, WM Zhang, XP Zhang, Y Zhang, ZP Zhao, Y Zhong, C Zhou, J Zhu, X Zoulkarneev, R Zoulkarneeva, Y Zuo, JX AF Abelev, B. I. Aggarwal, M. M. Ahammed, Z. Alakhverdyants, A. V. Anderson, B. D. Arkhipkin, D. Averichev, G. S. Badyal, S. K. Balewski, J. Barannikova, O. Barnby, L. S. Baudot, J. Baumgart, S. Beavis, D. R. Bellwied, R. Benedosso, F. Betancourt, M. J. Betts, R. R. Bhasin, A. Bhati, A. K. Bichsel, H. Bielcik, J. Bielcikova, J. Biritz, B. Bland, L. C. Bnzarov, I. Bombara, M. Bonner, B. E. Bouchet, J. Braidot, E. Brandin, A. V. Bruna, E. Bueltmann, S. Burton, T. P. Bystersky, M. Cai, X. Z. Caines, H. Calderon, M. Catu, O. Cebra, D. Cendejas, R. Cervantes, M. C. Chajecki, Z. Chaloupka, P. Chattopadhyay, S. Chen, H. F. Chen, J. H. Chen, J. Y. Cheng, J. Cherney, M. Chikanian, A. Choi, K. E. Christie, W. Clarke, R. F. Codrington, M. J. M. Corliss, R. Cormier, T. M. Cosentino, M. R. Cramer, J. G. Crawford, H. J. Das, D. Das, S. Dash, S. Daugherity, M. De Silva, L. C. Dedovich, T. G. DePhillips, M. Derevschikov, A. A. de Souza, R. Derradi Didenko, L. Djawotho, P. Dogra, S. M. Dong, X. Drachenberg, J. L. Draper, J. E. Dunlop, J. C. Mazumdar, M. R. Dutta Efimov, L. G. Elhalhuli, E. Elnimr, M. Engelage, J. Eppley, G. Erazmus, B. Estienne, M. Eun, L. Fachini, P. Fatemi, R. Fedorisin, J. Feng, A. Filip, P. Finch, E. Fine, V. Fisyak, Y. Gagliardi, C. A. Gaillard, L. Gangadharan, D. R. Ganti, M. S. Garcia-Solis, E. J. Geromitsos, A. Geurts, F. Ghazikhanian, V. Ghosh, P. Gorbunov, Y. N. Gordon, A. Grebenyuk, O. Grosnick, D. Grube, B. Guertin, S. M. Guimaraes, K. S. F. F. Gupta, A. Gupta, N. Guryn, W. Haag, B. Hallman, T. J. Hamed, A. Harris, J. W. He, W. Heinz, M. Hepplemann, S. Hippolyte, B. Hirsch, A. Hjort, E. Hoffman, A. M. Hoffmann, G. W. Hofman, D. J. Hollis, R. S. Huang, H. Z. Humanic, T. J. Huo, L. Igo, G. Lordanova, A. Jacobs, P. Jacobs, W. W. Jakl, P. Jena, C. Jin, F. Jones, C. L. Jones, P. G. Joseph, J. Judd, E. G. Kabana, S. Kajimoto, K. Kang, K. Kapitan, J. Kauder, K. Keane, D. Kechechyan, A. Kettler, D. Khodyrev, V. Yu. Kikola, D. P. Kiryluk, J. Kisiel, A. Klein, S. R. Knospe, A. G. Kocoloski, A. Koetke, D. D. Konzer, J. Kopytine, M. Koralt, I. Korsch, W. Kotchenda, L. Kouchpil, V. Kravtsov, P. Kravtsov, V. I. Krueger, K. Krus, M. Kuhn, C. Kumar, L. Kurnadi, P. Lamont, M. A. C. Landgraf, J. M. LaPointe, S. Lauret, J. Lebedev, A. Lednicky, R. Lee, C. -H. Lee, J. H. Leight, W. LeVine, M. J. Li, C. Li, N. Li, Y. Lin, G. Lindenbaum, S. J. Lisa, M. A. Liu, F. Liu, H. Liu, J. Liu, L. Ljubicic, T. Llope, W. J. Longacre, R. S. Love, W. A. Lu, Y. Ludlam, T. Ma, G. L. Ma, Y. G. Mahapatra, D. P. Majka, R. Mall, O. I. Mangotra, L. K. Manweiler, R. Margetis, S. Markert, C. Masui, H. Matis, H. S. Matulenko, Yu. A. McDonald, D. McShane, T. S. Meschanin, A. Millner, R. Minaev, N. G. Mioduszewski, S. Mischke, A. Mohanty, B. Mondal, M. M. Morozov, D. A. Munhoz, M. G. Nandi, B. K. Nattrass, C. Nayak, T. K. Nelson, J. M. Netrakanti, P. K. Ng, M. J. Nogach, L. V. Nurushev, S. B. Odyniec, G. Ogawa, A. Okada, H. Okorokov, V. Olson, D. Pachr, M. Page, B. S. Pal, S. K. Pandit, Y. Panebratsev, Y. Pawlak, T. Peitzmann, T. Perevoztchikov, V. Perkins, C. Peryt, W. Phatak, S. C. Pile, P. Planinic, M. Ploskon, M. A. Pluta, J. Plyku, D. Poljak, N. Poskanzer, A. M. Potukuchi, B. V. K. S. Prindle, D. Pruneau, C. Pruthi, N. K. Pujahari, P. R. Putschke, J. Raniwala, R. Raniwala, S. Ray, R. L. Redwine, R. Reed, R. Ridiger, A. Ritter, H. G. Roberts, J. B. Rogachevskiy, O. V. Romero, J. L. Rose, A. Roy, C. Ruan, L. Russcher, M. J. Sahoo, R. Sakai, S. Sakrejda, I. Sakuma, T. Salur, S. Sandweiss, J. Sarsour, M. Schambach, J. Scharenberg, R. P. Schmitz, N. Seger, J. Selyuzhenkov, I. Seyboth, P. Shabetai, A. Shahaliev, E. Shao, M. Sharma, M. Shi, S. S. Shi, X. -H. Sichtermann, E. P. Simon, F. Singaraju, R. N. Skoby, M. J. Smirnov, N. Sorensen, P. Sowinski, J. Spinka, H. M. Srivastava, B. Stanislaus, T. D. S. Staszak, D. Strikhanov, M. Stringfellow, B. Suaide, A. A. P. Suarez, M. C. Subba, N. L. Sumbera, M. Sun, X. M. Sun, Y. Sun, Z. Surrow, B. Symons, T. J. M. de Toledo, A. Szanto Takahashi, J. Tang, A. H. Tang, Z. Tarini, L. H. Tarnowsky, T. Thein, D. Thomas, J. H. Tian, J. Timmins, A. R. Timoshenko, S. Tlusty, D. Tokarev, M. Trainor, T. A. Tram, V. N. Trattner, A. L. Trentalange, S. Tribble, R. E. Tsai, O. D. Ulery, J. Ullrich, T. Underwood, D. G. Van Buren, G. van Leeuwen, M. van Nieuwenhuizen, G. Vanfossen, J. A., Jr. Varma, R. Vasconcelos, G. M. S. Vasiliev, A. N. Videbaek, F. Vigdor, S. E. Viyogi, Y. P. Vokal, S. Voloshin, S. A. Wada, M. Walker, M. Wang, F. Wang, G. Wang, H. Wang, J. S. Wang, Q. Wang, X. Wang, X. L. Wang, Y. Webb, G. Webb, J. C. Westfall, G. D. Whitten, C., Jr. Wieman, H. Wissink, S. W. Witt, R. Wu, Y. Xie, W. Xu, N. Xu, Q. H. Xu, Y. Xu, Z. Yang, Y. Yepes, P. Yip, K. Yoo, I. -K. Yue, Q. Zawisza, M. Zbroszczyk, H. Zhan, W. Zhang, S. Zhang, W. M. Zhang, X. P. Zhang, Y. Zhang, Z. P. Zhao, Y. Zhong, C. Zhou, J. Zhu, X. Zoulkarneev, R. Zoulkarneeva, Y. Zuo, J. X. CA STAR Collaboration TI Center of mass energy and system-size dependence of photon production at forward rapidity at RHIC SO NUCLEAR PHYSICS A LA English DT Article DE Particle production; Photons; Forward rapidity; Limiting fragmentation ID QUARK-GLUON PLASMA; NUCLEUS-NUCLEUS COLLISIONS; HEAVY-ION COLLISIONS; PLUS AU COLLISIONS; MULTIPLICITY; MATTER; COLLABORATION; PERSPECTIVE; CONDENSATE; DETECTOR AB We present the multiplicity and pseudorapidity distributions of photons produced in Au + Au and Cu + Cu collisions at root(NN)-N-s = 62.4 and 200 GeV. The photons are measured in the region -3.7 < eta < -2.3 using the photon Multiplicity detector in the STAR experiment at RHIC. The number of photons produced per average number of participating nucleon pairs increases with the beam energy and is independent of (lie collision centrality. For collisions with similar average numbers of participating nucleons the photon multiplicities are observed to be similar for An + Au and Cu + Cu collisions at a given beam energy. The ratios of the number of charged particles to photons in the measured pseudorapidity range are found to be 1.4 +/- 0.1 and 1.2 +/- 0.1 for root(NN)-N-s = 62.4 and 200 GeV, respectively. The energy dependence of this ratio could reflect varying contributions from baryons to charged particles, while mesons are the dominant contributors to photon production in the given kinematic region. The photon pseudorapidity distributions normalized by average number of participating nucleon pairs, when plotted as a function of eta-Y-beam, are found to follow a longitudinal scaling independent of centrality and colliding ion species at both beam energies. (C) 2009 Elsevier B.V. All rights reserved. C1 [Ahammed, Z.; Chattopadhyay, S.; Das, S.; Mazumdar, M. R. Dutta; Ganti, M. S.; Ghosh, P.; Mohanty, B.; Mondal, M. M.; Nayak, T. K.; Singaraju, R. N.] Variable Energy Cyclotron Ctr, Kolkata 700064, India. [Krueger, K.; Spinka, H. M.; Underwood, D. G.] Argonne Natl Lab, Argonne, IL 60439 USA. [Barnby, L. S.; Bombara, M.; Burton, T. P.; Elhalhuli, E.; Gaillard, L.; Jones, P. G.; Nelson, J. M.] Univ Birmingham, Birmingham, W Midlands, England. [Arkhipkin, D.; Beavis, D. R.; Bland, L. C.; Christie, W.; DePhillips, M.; Didenko, L.; Dunlop, J. C.; Fachini, P.; Fine, V.; Fisyak, Y.; Gordon, A.; Guryn, W.; Hallman, T. J.; Lamont, M. A. C.; Landgraf, J. M.; Lauret, J.; Lebedev, A.; Lee, J. H.; LeVine, M. J.; Ljubicic, T.; Longacre, R. S.; Love, W. A.; Ludlam, T.; Ogawa, A.; Okada, H.; Perevoztchikov, V.; Pile, P.; Ruan, L.; Sorensen, P.; Tang, A. H.; Ullrich, T.; Van Buren, G.; Videbaek, F.; Xu, Z.; Yip, K.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Crawford, H. J.; Engelage, J.; Judd, E. G.; Ng, M. J.; Perkins, C.; Trattner, A. L.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Calderon, M.; Cebra, D.; Das, D.; Draper, J. E.; Haag, B.; Liu, H.; Mall, O. I.; Reed, R.; Romero, J. L.] Univ Calif Davis, Davis, CA 95616 USA. [Biritz, B.; Cendejas, R.; Gangadharan, D. R.; Ghazikhanian, V.; Guertin, S. M.; Huang, H. Z.; Igo, G.; Kurnadi, P.; Sakai, S.; Staszak, D.; Trentalange, S.; Tsai, O. D.; Wang, G.; Whitten, C., Jr.] Univ Calif Los Angeles, Los Angeles, CA 90095 USA. [de Souza, R. Derradi; Takahashi, J.; Vasconcelos, G. M. S.] Univ Estadual Campinas, Sao Paulo, Brazil. [Abelev, B. I.; Barannikova, O.; Betts, R. R.; Garcia-Solis, E. J.; Hofman, D. J.; Hollis, R. S.; Lordanova, A.; Kauder, K.; Lee, C. -H.; Suarez, M. C.] Univ Illinois, Chicago, IL 60607 USA. [Cherney, M.; Gorbunov, Y. N.; McShane, T. S.; Seger, J.] Creighton Univ, Omaha, NE 68178 USA. [Bielcik, J.; Krus, M.; Pachr, M.] Czech Tech Univ, FNSPE, Prague 11519, Czech Republic. [Bielcikova, J.; Bystersky, M.; Chaloupka, P.; Jakl, P.; Kapitan, J.; Kouchpil, V.; Sumbera, M.; Tlusty, D.] Acad Sci Czech Republic, Inst Nucl Phys, CZ-25068 Rez, Czech Republic. [Dash, S.; Jena, C.; Mahapatra, D. P.; Phatak, S. C.; Viyogi, Y. P.] Inst Phys, Bhubaneswar 751005, Orissa, India. [Nandi, B. K.; Pujahari, P. R.; Varma, R.] Indian Inst Technol, Bombay 400076, Maharashtra, India. [He, W.; Jacobs, W. W.; Page, B. S.; Selyuzhenkov, I.; Sowinski, J.; Vigdor, S. E.; Wissink, S. W.] Indiana Univ, Bloomington, IN 47408 USA. [Baudot, J.; Hippolyte, B.; Kuhn, C.; Shabetai, A.] Histitut Rech Subat, Strasbourg, France. [Badyal, S. K.; Bhasin, A.; Dogra, S. M.; Gupta, A.; Gupta, N.; Mangotra, L. K.; Potukuchi, B. V. K. S.] Univ Jammu, Jammu 180001, India. [Alakhverdyants, A. V.; Averichev, G. S.; Bnzarov, I.; Dedovich, T. G.; Efimov, L. G.; Fedorisin, J.; Filip, P.; Kechechyan, A.; Lednicky, R.; Panebratsev, Y.; Rogachevskiy, O. V.; Shahaliev, E.; Tokarev, M.; Vokal, S.; Zoulkarneev, R.; Zoulkarneeva, Y.] Joint Inst Nucl Res, Dubna 141980, Russia. [Anderson, B. D.; Bouchet, J.; Chen, J. H.; Joseph, J.; Keane, D.; Kopytine, M.; Li, Y.; Margetis, S.; Pandit, Y.; Subba, N. L.; Vanfossen, J. A., Jr.; Zhang, W. M.] Kent State Univ, Kent, OH 44242 USA. [Fatemi, R.; Korsch, W.; Webb, G.] Univ Kentucky, Lexington, KY 40506 USA. [Sun, Z.; Wang, J. S.; Yang, Y.; Zhan, W.] Inst Modern Phys, Lanzhou, Peoples R China. [Dong, X.; Grebenyuk, O.; Hjort, E.; Jacobs, P.; Kikola, D. P.; Kiryluk, J.; Klein, S. R.; Masui, H.; Matis, H. S.; Odyniec, G.; Olson, D.; Ploskon, M. A.; Poskanzer, A. M.; Ritter, H. G.; Rose, A.; Sakrejda, I.; Salur, S.; Sichtermann, E. P.; Sun, X. M.; Symons, T. J. M.; Thomas, J. H.; Tram, V. N.; Wieman, H.; Xu, N.; Zhang, X. P.; Zhang, Y.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Balewski, J.; Betancourt, M. J.; Corliss, R.; Hoffman, A. M.; Jones, C. L.; Kocoloski, A.; Leight, W.; Millner, R.; Redwine, R.; Sakuma, T.; Surrow, B.; van Nieuwenhuizen, G.; Walker, M.] MIT, Cambridge, MA 02139 USA. [Schmitz, N.; Seyboth, P.; Simon, F.] Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany. [Tarnowsky, T.; Wang, H.; Westfall, G. D.] Michigan State Univ, E Lansing, MI 48824 USA. [Brandin, A. V.; Kotchenda, L.; Kravtsov, P.; Okorokov, V.; Ridiger, A.; Strikhanov, M.; Timoshenko, S.] Moscow Engn Phys Inst, Moscow 115409, Russia. [Lindenbaum, S. J.] CUNY City Coll, New York, NY 10031 USA. [Benedosso, F.; Braidot, E.; Mischke, A.; Peitzmann, T.; Russcher, M. J.; van Leeuwen, M.] NIKHEF, Amsterdam, Netherlands. [Benedosso, F.; Braidot, E.; Mischke, A.; Peitzmann, T.; Russcher, M. J.; van Leeuwen, M.] Univ Utrecht, Amsterdam, Netherlands. [Chajecki, Z.; Humanic, T. J.; Lisa, M. A.] Ohio State Univ, Columbus, OH 43210 USA. [Bueltmann, S.; Koralt, I.; Plyku, D.] Old Dominion Univ, Norfolk, VA 23529 USA. [Aggarwal, M. M.; Bhati, A. K.; Kumar, L.; Pruthi, N. K.] Panjab Univ, Chandigarh 160014, India. [Eun, L.; Hepplemann, S.] Penn State Univ, University Pk, PA 16802 USA. [Derevschikov, A. A.; Khodyrev, V. Yu.; Kravtsov, V. I.; Matulenko, Yu. A.; Meschanin, A.; Minaev, N. G.; Morozov, D. A.; Nogach, L. V.; Nurushev, S. B.; Vasiliev, A. N.] Inst High Energy Phys, Protvino, Russia. [Hirsch, A.; Konzer, J.; Netrakanti, P. K.; Scharenberg, R. P.; Skoby, M. J.; Srivastava, B.; Stringfellow, B.; Ulery, J.; Wang, F.; Wang, Q.; Xie, W.] Purdue Univ, W Lafayette, IN 47907 USA. [Choi, K. E.; Grube, B.; Lee, C. -H.; Yoo, I. -K.] Pusan Natl Univ, Pusan 609735, South Korea. [Raniwala, R.; Raniwala, S.] Univ Rajasthan, Jaipur 302004, Rajasthan, India. [Bonner, B. E.; Eppley, G.; Geurts, F.; Liu, J.; Llope, W. J.; McDonald, D.; Roberts, J. B.; Yepes, P.; Zhou, J.] Rice Univ, Houston, TX 77251 USA. [Cosentino, M. R.; Guimaraes, K. S. F. F.; Munhoz, M. G.; Suaide, A. A. P.; de Toledo, A. Szanto] Univ Sao Paulo, Sao Paulo, Brazil. [Chen, H. F.; Li, C.; Lu, Y.; Shao, M.; Sun, Y.; Tang, Z.; Wang, X. L.; Xu, Y.; Zhang, Z. P.; Zhao, Y.] Univ Sci & Technol China, Hefei 230026, Peoples R China. [Xu, Q. H.] Shandong Univ, Jinan 250100, Peoples R China. [Cai, X. Z.; Jin, F.; Ma, G. L.; Ma, Y. G.; Shi, X. -H.; Tian, J.; Zhang, S.; Zhong, C.; Zuo, J. X.] Shanghai Inst Appl Phys, Shanghai 201800, Peoples R China. [Erazmus, B.; Estienne, M.; Geromitsos, A.; Kabana, S.; Roy, C.; Sahoo, R.] SUBATECH, Nantes, France. [Cervantes, M. C.; Clarke, R. F.; Codrington, M. J. M.; Djawotho, P.; Drachenberg, J. L.; Gagliardi, C. A.; Hamed, A.; Huo, L.; Mioduszewski, S.; Sarsour, M.; Tribble, R. E.] Texas A&M Univ, College Stn, TX 77843 USA. [Daugherity, M.; Hoffmann, G. W.; Kajimoto, K.; Markert, C.; Ray, R. L.; Schambach, J.; Thein, D.; Wada, M.] Univ Texas Austin, Austin, TX 78712 USA. [Cheng, J.; Kang, K.; Li, Y.; Wang, X.; Wang, Y.; Yue, Q.; Zhu, X.] Tsinghua Univ, Beijing 100084, Peoples R China. [Witt, R.] USN Acad, Annapolis, MD 21402 USA. [Grosnick, D.; Koetke, D. D.; Manweiler, R.; Stanislaus, T. D. S.; Webb, J. C.] Valparaiso Univ, Valparaiso, IN 46383 USA. [Kisiel, A.; Pawlak, T.; Peryt, W.; Pluta, J.; Zawisza, M.; Zbroszczyk, H.] Warsaw Univ Technol, Warsaw, Poland. [Bichsel, H.; Cramer, J. G.; Kettler, D.; Prindle, D.; Trainor, T. A.] Univ Washington, Seattle, WA 98195 USA. [Elnimr, M.] Wayne State Univ, Detroit, MI 48201 USA. [Chen, J. Y.; Feng, A.; Li, N.; Liu, F.; Liu, L.; Shi, S. S.; Wu, Y.] CCNU HZNU, Inst Particle Phys, Wuhan 430079, Peoples R China. [Baumgart, S.; Bruna, E.; Caines, H.; Catu, O.; Chikanian, A.; Finch, E.; Harris, J. W.; Heinz, M.; Knospe, A. G.; Lin, G.; Majka, R.; Nattrass, C.; Putschke, J.; Sandweiss, J.; Smirnov, N.] Yale Univ, New Haven, CT 06520 USA. [Planinic, M.; Poljak, N.] Univ Zagreb, HR-10002 Zagreb, Croatia. RP Mohanty, B (reprint author), Variable Energy Cyclotron Ctr, Kolkata 700064, India. EM bmohanty@veccal.ernet.in RI Voloshin, Sergei/I-4122-2013; Pandit, Yadav/I-2170-2013; Barnby, Lee/G-2135-2010; Lednicky, Richard/K-4164-2013; Yang, Yanyun/B-9485-2014; Bielcikova, Jana/G-9342-2014; Mischke, Andre/D-3614-2011; Takahashi, Jun/B-2946-2012; Planinic, Mirko/E-8085-2012; Yoo, In-Kwon/J-6222-2012; Peitzmann, Thomas/K-2206-2012; Witt, Richard/H-3560-2012; Yip, Kin/D-6860-2013; Cosentino, Mauro/L-2418-2014; Sumbera, Michal/O-7497-2014; Strikhanov, Mikhail/P-7393-2014; Dogra, Sunil /B-5330-2013; Fornazier Guimaraes, Karin Silvia/H-4587-2016; Chaloupka, Petr/E-5965-2012; Nattrass, Christine/J-6752-2016; Derradi de Souza, Rafael/M-4791-2013; Suaide, Alexandre/L-6239-2016; Inst. of Physics, Gleb Wataghin/A-9780-2017; Okorokov, Vitaly/C-4800-2017; Ma, Yu-Gang/M-8122-2013 OI Fisyak, Yuri/0000-0002-3151-8377; Mohanty, Bedangadas/0000-0001-9610-2914; Bhasin, Anju/0000-0002-3687-8179; Sorensen, Paul/0000-0001-5056-9391; Thomas, James/0000-0002-6256-4536; van Leeuwen, Marco/0000-0002-5222-4888; Pandit, Yadav/0000-0003-2809-7943; Barnby, Lee/0000-0001-7357-9904; Yang, Yanyun/0000-0002-5982-1706; Takahashi, Jun/0000-0002-4091-1779; Peitzmann, Thomas/0000-0002-7116-899X; Yip, Kin/0000-0002-8576-4311; Cosentino, Mauro/0000-0002-7880-8611; Sumbera, Michal/0000-0002-0639-7323; Strikhanov, Mikhail/0000-0003-2586-0405; Fornazier Guimaraes, Karin Silvia/0000-0003-0578-9533; Nattrass, Christine/0000-0002-8768-6468; Derradi de Souza, Rafael/0000-0002-2084-7001; Suaide, Alexandre/0000-0003-2847-6556; Okorokov, Vitaly/0000-0002-7162-5345; Ma, Yu-Gang/0000-0002-0233-9900 FU Offices of NP and HEP within the US DOE Office of Science; US NSF; Sloan Foundation; DFG cluster of excellence 'Origin and Structure of the Universe'; CNRS/IN2P3; STFC and EPSRC of the United Kingdom; FAPESP CNPq of Brazil; Ministry of Ed. and Sci. of the Russian Federation; NNSFC; CAS; MoST; MoE of China; GA and MSMT of the Czech Republic; FOM and NWO of the Netherlands; DAE; DST; CSIR of India; Polish Ministry of Sci. and Higher Ed.; Korea Research Foundation; Ministry of Sci., Ed. and Sports of the Rep. of Croatia; Russian Ministry of Sci. and Tech.; RosAtom of Russia FX We thank the RHIC Operations Group and RCF at BNL, the NERSC Center at LBNL and the Open Science Grid consortium for providing resources and support. This work was supported in part by the Offices of NP and HEP within the US DOE Office of Science, the US NSF, the Sloan Foundation, the DFG cluster of excellence 'Origin and Structure of the Universe', CNRS/IN2P3, STFC and EPSRC of the United Kingdom, FAPESP CNPq of Brazil, Ministry of Ed. and Sci. of the Russian Federation, NNSFC, CAS, MoST, and MoE of China, GA and MSMT of the Czech Republic, FOM and NWO of the Netherlands, DAE, DST, and CSIR of India, Polish Ministry of Sci. and Higher Ed., Korea Research Foundation, Ministry of Sci., Ed. and Sports of the Rep. of Croatia, Russian Ministry of Sci. and Tech., and RosAtom of Russia. NR 48 TC 9 Z9 9 U1 1 U2 14 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 EI 1873-1554 J9 NUCL PHYS A JI Nucl. Phys. A PD JAN 1 PY 2010 VL 832 IS 1-2 BP 134 EP 147 DI 10.1016/j.nuclphysa.2009.11.011 PG 14 WC Physics, Nuclear SC Physics GA 551PX UT WOS:000274222600009 ER PT J AU Yip, K AF Yip, Kin CA Star Collaboration TI Physics with tagged forward protons at RHIC SO NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS LA English DT Proceedings Paper CT 3rd Joint International Hadron Structure Conference CY AUG 29-SEP 03, 2009 CL Tatranska Strba, SLOVAKIA ID DOUBLE-POMERON-EXCHANGE AB The physics reach of the STAR detector at RHIC has been extended to include elastic and inelastic diffraction measurements with tagged forward protons. This program has started at RHIC in p+p collisions with a special optics run of beta* similar to 21 m at STAR, at the center-of-mass energy root s = 200 GeV during the last week of the RHIC 2009 run. C1 Brookhaven Natl Lab, Collider Accelerator Dept, Upton, NY 11973 USA. RP Yip, K (reprint author), Brookhaven Natl Lab, Collider Accelerator Dept, Upton, NY 11973 USA. RI Yip, Kin/D-6860-2013 OI Yip, Kin/0000-0002-8576-4311 NR 17 TC 0 Z9 0 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0920-5632 J9 NUCL PHYS B-PROC SUP JI Nucl. Phys. B-Proc. Suppl. PD JAN PY 2010 VL 198 BP 136 EP 139 DI 10.1016/j.nuclphysbps.2009.12.028 PG 4 WC Physics, Particles & Fields SC Physics GA 577FL UT WOS:000276207600028 ER PT S AU Bennett, ME Hirschi, R Pignatari, M Diehl, S Fryer, C Herwig, F Hungerford, A Magkotsios, G Rockefeller, G Timmes, F Wiescher, M Young, P AF Bennett, M. E. Hirschi, R. Pignatari, M. Diehl, S. Fryer, C. Herwig, F. Hungerford, A. Magkotsios, G. Rockefeller, G. Timmes, F. Wiescher, M. Young, P. BE Formicola, A Gustavino, C Junker, M TI The effect of C-12+C-12 rate uncertainties on s-process yields SO NUCLEAR PHYSICS IN ASTROPHYSICS IV (NPAIV 2009) SE Journal of Physics Conference Series LA English DT Proceedings Paper CT 4th International Conference on Nuclear Physics in Astrophysics CY JUN 08-12, 2009 CL Lab Nazl Frascati, Frascati, ITALY HO Lab Nazl Frascati ID MASSIVE STARS; PROCESS NUCLEOSYNTHESIS; WEAK COMPONENT; EVOLUTION AB The slow neutron capture process in massive stars (the weak s-process) produces most of the s-only isotopes in the mass region 60 < A < 90. The nuclear reaction rates used in simulations of this process have a profound effect on the final s-process yields. We generated 1D stellar models of a 25 M-circle dot star varying the C-12 + C-12 rate by a factor of 10 and calculated full nucleosynthesis using the post-processing code PPN. Increasing or decreasing the rate by a factor of 10 affects the convective history and nucleosynthesis, and consequently the final yields. C1 [Bennett, M. E.; Hirschi, R.] Univ Keele, Astrophys Grp, Keele ST5 5BG, Staffs, England. [Hirschi, R.] Univ Tokyo, IPMU, Chiba 2778582, Japan. [Pignatari, M.; Magkotsios, G.; Wiescher, M.] Univ Notre Dame, Joint Nucl Inst Astrophys, Notre Dame, IN 46556 USA. [Pignatari, M.] TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3, Canada. [Diehl, S.] Los Alamos Natl Lab, Theoret Astrophys Grp, Los Alamos, NM 87544 USA. [Fryer, C.; Hungerford, A.; Rockefeller, G.] Los Alamos Natl Lab, Phys Method CCS2, Computat, Los Alamos, NM 87544 USA. [Pignatari, M.; Herwig, F.] Univ Victoria, Dept Phys & Astron, POB 3055, Victoria, BC V8W 3P6, Canada. [Magkotsios, G.; Timmes, F.; Young, P.] Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ 85287 USA. RP Bennett, ME (reprint author), Univ Keele, Astrophys Grp, Keele ST5 5BG, Staffs, England. EM meb@astro.keele.ac.uk RI Rockefeller, Gabriel/G-2920-2010; OI Rockefeller, Gabriel/0000-0002-9029-5097; Pignatari, Marco/0000-0002-9048-6010 NR 15 TC 7 Z9 7 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1742-6588 J9 J PHYS CONF SER PY 2010 VL 202 AR UNSP 012023 DI 10.1088/1742-6596/202/1/012023 PG 4 WC Astronomy & Astrophysics; Physics, Nuclear SC Astronomy & Astrophysics; Physics GA BTQ97 UT WOS:000287821100023 ER PT S AU Petermann, I Martinez-Pinedo, G Arcones, A Hix, WR Kelic, A Langanke, K Panov, I Rauscher, T Schmidt, KH Thielemann, FK Zinner, N AF Petermann, I. Martinez-Pinedo, G. Arcones, A. Hix, W. R. Kelic, A. Langanke, K. Panov, I. Rauscher, T. Schmidt, K-H Thielemann, F-K Zinner, N. BE Formicola, A Gustavino, C Junker, M TI Network calculations for r-process nucleosynthesis SO NUCLEAR PHYSICS IN ASTROPHYSICS IV (NPAIV 2009) SE Journal of Physics Conference Series LA English DT Proceedings Paper CT 4th International Conference on Nuclear Physics in Astrophysics CY JUN 08-12, 2009 CL Lab Nazl Frascati, Frascati, ITALY HO Lab Nazl Frascati ID FISSION AB The r-process is known to be responsible for the synthesis of about half of the elements heavier than iron, nevertheless its astrophysical site has not yet been clearly ascertained, but observations indicate that at least two possible sites should contribute to the solar system abundance oft-process elements. The r-process being responsible for the production of elements heavier than Z = 56 operates rather robustly always resulting in a similar relative abundance pattern. From the nuclear-physics point of view the r-process requires the knowledge of a large number of reaction rates involving exotic nuclei that are not accessible by experiment and data have to be provided by theoretical predictions. We have developed for the first time a complete database of reaction rates that in addition to neutron-capture rates and beta-decay half-lives includes the dominant reactions that can induce fission (neutron-capture, beta-decay and spontaneous fission) and the corresponding fission yields. In addition, we have implemented these reaction rates in a fully implicit reaction network. The influence of the nuclear physics input constituted in the reaction rates based on the two mass models FRDM and ETFSI and on the astrophysical conditions simulating a cold or hot environment are examined. C1 [Petermann, I.; Martinez-Pinedo, G.; Arcones, A.; Kelic, A.; Langanke, K.; Schmidt, K-H] GSI Helmholtzzentrum Schwerionenforsch, Darmstadt, Germany. [Petermann, I.; Arcones, A.; Langanke, K.] Inst Kernphys, Darmstadt, Germany. [Hix, W. R.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. [Rauscher, T.; Thielemann, F-K] Univ Basel, Dept Phys & Astron, Basel, Switzerland. [Zinner, N.] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA. [Panov, I.] Inst Theoret & Expt Phys, Moscow 117218, Russia. RP Petermann, I (reprint author), GSI Helmholtzzentrum Schwerionenforsch, Darmstadt, Germany. RI Hix, William/E-7896-2011; Rauscher, Thomas/D-2086-2009; Martinez-Pinedo, Gabriel/A-1915-2013; Panov, Igor/F-1454-2013 OI Hix, William/0000-0002-9481-9126; Rauscher, Thomas/0000-0002-1266-0642; Martinez-Pinedo, Gabriel/0000-0002-3825-0131; NR 12 TC 5 Z9 5 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1742-6588 J9 J PHYS CONF SER PY 2010 VL 202 AR UNSP 012008 DI 10.1088/1742-6596/202/1/012008 PG 4 WC Astronomy & Astrophysics; Physics, Nuclear SC Astronomy & Astrophysics; Physics GA BTQ97 UT WOS:000287821100008 ER PT S AU Setoodehnia, K Chen, AA Chen, J Clark, JA Deibel, C Kahl, D Lennard, WN Parker, PD Wrede, C AF Setoodehnia, K. Chen, A. A. Chen, J. Clark, J. A. Deibel, C. Kahl, D. Lennard, W. N. Parker, P. D. Wrede, C. BE Formicola, A Gustavino, C Junker, M TI Study of astrophysically important resonant states in S-30 using the S-32(p,t)S-30 reaction SO NUCLEAR PHYSICS IN ASTROPHYSICS IV (NPAIV 2009) SE Journal of Physics Conference Series LA English DT Proceedings Paper CT 4th International Conference on Nuclear Physics in Astrophysics CY JUN 08-12, 2009 CL Lab Nazl Frascati, Frascati, ITALY HO Lab Nazl Frascati AB A small fraction (<1%) of presolar SiC grains is suggested to have been formed in the ejecta of classical novae. The P-29(p,gamma)S-30 reaction plays an important role in understanding the Si isotopic abundances in such grains, which in turn provide us with information on the nature of the probable white dwarf progenitor's core, as well as the peak temperatures achieved during nova outbursts, and thus the nova nucleosynthetic path. This rate at nova temperatures is determined by two low-lying 3(+) and 2(+) resonances above the proton threshold at 4399 keV in S-30. Despite several experimental studies in the past, however, these two states have only been observed very recently. We have studied the S-30 nuclear structure via the S-32(p,t)S-30 reaction at 5 laboratory angles between 9 degrees to 62 degrees. We have observed 14 states, eleven of which are above the proton threshold, including two levels at 4692.7 +/- 4.5 keV and 4813.8 +/- 3.4 keV that are candidates for the 3+ and the previously "missing" 2(+) state, respectively. C1 [Setoodehnia, K.; Chen, A. A.; Chen, J.; Kahl, D.] McMaster Univ, Dept Phys & Astron, Hamilton, ON L8S 4M1, Canada. [Clark, J. A.; Deibel, C.] Argonne Natl Lab, Div Phys, 9700 S Cass Ave, Argonne, IL 60439 USA. [Kahl, D.] Univ Tokyo, Grad Sch Sci, Ctr Nucl Studies, Wako, Saitama 351, Japan. [Lennard, W. N.] Univ Western Ontario, Dept Phys & Astron, London, ON N6A 3K7, Canada. [Parker, P. D.] Yale Univ, Wright Nucl Struct Lab, New Haven, CT 06520 USA. [Wrede, C.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. RP Setoodehnia, K (reprint author), McMaster Univ, Dept Phys & Astron, Hamilton, ON L8S 4M1, Canada. EM setoodk@mcmaster.ca OI Chen, Jun/0000-0003-0447-7466 NR 10 TC 0 Z9 0 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1742-6588 J9 J PHYS CONF SER PY 2010 VL 202 AR UNSP 012042 DI 10.1088/1742-6596/202/1/012042 PG 4 WC Astronomy & Astrophysics; Physics, Nuclear SC Astronomy & Astrophysics; Physics GA BTQ97 UT WOS:000287821100042 ER PT S AU Kamano, H AF Kamano, Hiroyuki BE Ozawa, A Liu, WP TI Study of nucleon resonances at EBAC@JLab SO NUCLEAR PHYSICS TRENDS SE AIP Conference Proceedings LA English DT Proceedings Paper CT 7th China-Japan Joint Nuclear Physics Symposium CY NOV 09-13, 2009 CL Univ Tsukuba, Inst Phys, Tsukuba, JAPAN SP Univ Tsukuba, Inst phys, Univ Tsukuba Tandem Accelerator Complex, Univ Tsukuba, Ctr Computat Sci, RIKEN, Nishina Ctr, Shanghai Nucl Soc, Osaka Univ, Res Ctr Nucl Phys, Tsukuba City HO Univ Tsukuba, Inst Phys DE Dynamical coupled-channels analysis; meson production reactions; Roper resonance ID AMPLITUDE; POLES; MODEL AB We present the dynamical origin of the P(11) nucleon resonances resulting from a dynamical coupled-channels (DCC) analysis of meson production reactions off a nucleon target, which is conducted at Excited Baryon Analysis Center (EBAC) of Jefferson Lab. Two resonance poles are found in the energy region where the Roper resonance P(11)(1440) was identified. Furthermore, the two resonance poles and the next higher resonance pole corresponding to P(11)(1710) are found to originate from a single bare state. C1 Thomas Jefferson Natl Accelerator Facil, Excited Baryon Anal Ctr, Newport News, VA 23606 USA. RP Kamano, H (reprint author), Thomas Jefferson Natl Accelerator Facil, Excited Baryon Anal Ctr, Newport News, VA 23606 USA. EM hkamano@jlab.org NR 15 TC 0 Z9 0 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-0780-0 J9 AIP CONF PROC PY 2010 VL 1235 BP 113 EP 117 DI 10.1063/1.3442579 PG 5 WC Physics, Nuclear SC Physics GA BRL11 UT WOS:000282996300019 ER PT S AU Zhu, SJ Hamilton, JH Wang, JG Ding, HB Gu, L Ramayya, AV Hwang, JK Liu, SH Li, K Luo, YX Rasmussen, JO Lee, IY Xu, Q Yeoh, EY Xiao, ZG Qi, B Meng, J AF Zhu, S. J. Hamilton, J. H. Wang, J. G. Ding, H. B. Gu, L. Ramayya, A. V. Hwang, J. K. Liu, S. H. Li, K. Luo, Y. X. Rasmussen, J. O. Lee, I. Y. Xu, Q. Yeoh, E. Y. Xiao, Z. G. Qi, B. Meng, J. BE Ozawa, A Liu, WP TI New Band Structures in A similar to 110 Neutron-Rich Nuclei SO NUCLEAR PHYSICS TRENDS SE AIP Conference Proceedings LA English DT Proceedings Paper CT 7th China-Japan Joint Nuclear Physics Symposium CY NOV 09-13, 2009 CL Univ Tsukuba, Inst Phys, Tsukuba, JAPAN SP Univ Tsukuba, Inst phys, Univ Tsukuba Tandem Accelerator Complex, Univ Tsukuba, Ctr Computat Sci, RIKEN, Nishina Ctr, Shanghai Nucl Soc, Osaka Univ, Res Ctr Nucl Phys, Tsukuba City HO Univ Tsukuba, Inst Phys DE Nuclear structure; Neutron-rich nuclei; Mult-phonon gamma-bands; Chiral doublet bands; Pseudospin bands ID CHIRAL VIBRATIONS; MO-106; FISSION; RU-108 AB The high spin states of neutron-rich nuclei in A similar to 110 region have been carefully investigated by measuring prompt gamma-gamma-gamma coincident measurements populated in the spontaneous fission of Cf-252 with the Gammasphere detector array. Many new collective bands have been discovered. In this proceeding paper, we introduce some interesting new band structures recently observed by our cooperative groups, that is, the one-phonon- and two-phonon gamma-vibrational bands in odd-A Nb-103, Mo-105 and Tc-107, the chiral doublet bands in even-even Mo-106, Ru-110 and Ru-112, and the pseudospin partner bands with in Tc-108. The characteristics of these band structures have been discussed. C1 [Zhu, S. J.; Wang, J. G.; Ding, H. B.; Gu, L.; Xu, Q.; Yeoh, E. Y.; Xiao, Z. G.] Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China. [Hamilton, J. H.; Ramayya, A. V.; Hwang, J. K.; Liu, S. H.; Li, K.; Luo, Y. X.] Vanderbilt Univ, Dept Phys, Nashville, TN 37235 USA. [Luo, Y. X.; Rasmussen, J. O.; Lee, I. Y.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Qi, B.; Meng, J.] Peking Univ, Sch Phys, Beijing 100871, Peoples R China. RP Zhu, SJ (reprint author), Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China. EM zhushj@mail.tsinghua.edu.cn RI Qi, Bin/G-7657-2012; Meng, Jie/B-8548-2009; OI Meng, Jie/0000-0002-0977-5318; Hwang, Jae-Kwang/0000-0002-4100-3473 FU National Natural Science Foundation of China [10775078, 10975082]; Major State Basic Research Development Program [2007CB815005]; Special Program of Higher Education Science Foundation [20070003149]; U. S. Department of Energy [DE-FG05-88ER40407, DE-AC03-76SF00098] FX The work at Tsinghua University were supported by National Natural Science Foundation of China under Grants No.10775078, 10975082, the Major State Basic Research Development Program under Grand No. 2007CB815005, the Special Program of Higher Education Science Foundation under Grant No. 20070003149. The work at Vanderbilt University and Lawrence Berkeley National Laboratory was supported by U. S. Department of Energy under Grant and Contract Nos. DE-FG05-88ER40407, and DE-AC03-76SF00098. NR 27 TC 0 Z9 0 U1 0 U2 9 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-0780-0 J9 AIP CONF PROC PY 2010 VL 1235 BP 253 EP + DI 10.1063/1.3442604 PG 2 WC Physics, Nuclear SC Physics GA BRL11 UT WOS:000282996300041 ER PT S AU Matsuta, K Zhu, SY Mihara, M Zhou, DM Nishimura, D Zheng, YN Fukuda, M Yuan, DQ Matsumiya, R Zuo, Y Komurasaki, J Fan, P Zhang, XZ Ishikawa, D Suzuki, T Nagatomo, T Izumikawa, T Ohtsubo, T Takahashi, S Hirano, H Shimbara, Y Kubo, T Yamada, R Namiki, Y Nagashima, M Momota, S Ooi, K Nojiri, Y Kameda, D Kitagawa, A Kanazaw, M Torikoshi, M Sato, S Minamisono, T Sumikamall, T Ogura, M Akai, H Alonso, JR Symons, TJM Krebs, GF AF Matsuta, K. Zhu, Shengyun Mihara, M. Zhou, Dongmei Nishimura, D. Zheng, Yongnan Fukuda, M. Yuan, Daqing Matsumiya, R. Zuo, Yi Komurasaki, J. Fan, Ping Zhang, Xizhen Ishikawa, D. Suzuki, T. Nagatomo, T. Izumikawa, T. Ohtsubo, T. Takahashi, S. Hirano, H. Shimbara, Y. Kubo, T. Yamada, R. Namiki, Y. Nagashima, M. Momota, S. Ooi, K. Nojiri, Y. Kameda, D. Kitagawa, A. Kanazaw, M. Torikoshi, M. Sato, S. Minamisono, T. Sumikamall, T. Ogura, M. Akai, H. Alonso, J. R. Symons, T. J. M. Krebs, G. F. BE Ozawa, A Liu, WP TI Electromagnetic Moments of Proton-Rich P-28 and Decomposition of Its Spin SO NUCLEAR PHYSICS TRENDS SE AIP Conference Proceedings LA English DT Proceedings Paper CT 7th China-Japan Joint Nuclear Physics Symposium CY NOV 09-13, 2009 CL Univ Tsukuba, Inst Phys, Tsukuba, JAPAN SP Univ Tsukuba, Inst phys, Univ Tsukuba Tandem Accelerator Complex, Univ Tsukuba, Ctr Computat Sci, RIKEN, Nishina Ctr, Shanghai Nucl Soc, Osaka Univ, Res Ctr Nucl Phys, Tsukuba City HO Univ Tsukuba, Inst Phys DE magnetic moment; P-28; beta-NMR; spin; polarization phenomena ID NUCLEI AB The magnetic moment of P-28 (I-pi = 3(+), T-1/2 = 270.3 ms) has been measured precisely by means of beta-NMR technique. The obtained magnetic moment is vertical bar mu(P-28)vertical bar = 0.3115 (34) mu(N). Combined with the magnetic moment of its mirror partner Al-28, the nuclear spin I = 3 is decomposed into its 4 components. The measurement of the Q moment has also been tried. From the preliminary NQR spectrum, it was found that the quadrupole coupling constant eqQ/h may be slightly larger than the prediction, which may show enhancement of the Q moment. C1 [Matsuta, K.; Mihara, M.; Nishimura, D.; Fukuda, M.; Matsumiya, R.; Komurasaki, J.; Ishikawa, D.; Ogura, M.; Akai, H.] Osaka Univ, Dpt Phys, Osaka 5600043, Japan. [Zhu, Shengyun; Zhou, Dongmei; Zheng, Yongnan; Yuan, Daqing; Zuo, Yi; Fan, Ping; Zhang, Xizhen] CIAE, Beijing 102413, Peoples R China. [Suzuki, T.] Nihon Univ, Dept Phys, Tokyo 1560045, Japan. [Nagatomo, T.] Int Christian Univ, Dept Chem, Mitaka, Tokyo 1818585, Japan. [Nagatomo, T.; Kameda, D.] RIKEN, Nishina Ctr, Wako, Saitama 3510198, Japan. [Izumikawa, T.] Niigata Univ, RI Ctr, Niigata 9518510, Japan. [Ohtsubo, T.; Takahashi, S.; Hirano, H.; Shimbara, Y.; Kubo, T.; Yamada, R.; Namiki, Y.; Nagashima, M.] Niigata Univ, Dept Phys, Niigata 9502181, Japan. [Momota, S.; Ooi, K.; Nojiri, Y.] Kochi Univ Technol, Kochi 7828502, Japan. [Kitagawa, A.; Kanazaw, M.; Torikoshi, M.; Sato, S.] Natl Inst Radiol Sci, Chiba 2638555, Japan. [Minamisono, T.] Fukui Univ Tech, Fukui 9108505, Japan. [Sumikamall, T.] Tokyo Univ Sci, Chiba 2780022, Japan. [Alonso, J. R.; Symons, T. J. M.; Krebs, G. F.] Lawrence Berkeley Nat Lab, Berkeley, CA 94720 USA. RP Matsuta, K (reprint author), Osaka Univ, Dpt Phys, Osaka 5600043, Japan. EM matsuta@vg.phys.sci.osaka-u.ac.jp FU NIRS (National Institute of Radiological Sciences) HIMAC [P026]; Japan society for the promotion of science FX The present work was performed at NIRS (National Institute of Radiological Sciences) HIMAC under the research project with heavyions (program No. P026). The authors are grateful to the staffs of HIMAC. The work was partly supported by the grant in aid for scientific research from the Japan society for the promotion of science. NR 8 TC 1 Z9 1 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-0780-0 J9 AIP CONF PROC PY 2010 VL 1235 BP 260 EP + DI 10.1063/1.3442605 PG 2 WC Physics, Nuclear SC Physics GA BRL11 UT WOS:000282996300042 ER PT S AU McClelland-Kerr, J Stevens, R AF McClelland-Kerr, John Stevens, Rebecca BE Apikyan, SA Diamond, DJ TI BUILDING SAFEGUARDS INFRASTRUCTURE SO NUCLEAR POWER AND ENERGY SECURITY SE NATO Science for Peace and Security Series A-Chemistry and Biology LA English DT Proceedings Paper CT NATO Advanced Research Workshop on Nuclear Power and Energy Security CY MAY 26-29, 2009 CL Yerevan, ARMENIA SP NATO, ASTEC C1 [McClelland-Kerr, John; Stevens, Rebecca] Natl Nucl Secur Adm, Int Nucl Safeguards & Engagement Program, US DOE, Washington, DC USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU SPRINGER PI DORDRECHT PA PO BOX 17, 3300 AA DORDRECHT, NETHERLANDS SN 1874-6489 BN 978-90-481-3503-5 J9 NATO SCI PEACE SEC A JI NATO Sci. Peace Secur. Ser. A-Chem. Biol. PY 2010 BP 13 EP 18 DI 10.1007/978-90-481-3504-2_3 PG 6 WC Energy & Fuels; Environmental Studies SC Energy & Fuels; Environmental Sciences & Ecology GA BPZ84 UT WOS:000280449400003 ER PT S AU Moffitt, RL AF Moffitt, Robert L. BE Apikyan, SA Diamond, DJ TI NUCLEAR SAFETY INFRASTRUCTURE SO NUCLEAR POWER AND ENERGY SECURITY SE NATO Science for Peace and Security Series A-Chemistry and Biology LA English DT Proceedings Paper CT NATO Advanced Research Workshop on Nuclear Power and Energy Security CY MAY 26-29, 2009 CL Yerevan, ARMENIA SP NATO, ASTEC C1 [Moffitt, Robert L.] Pacific NW Natl Lab, Richland, WA 99352 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU SPRINGER PI DORDRECHT PA PO BOX 17, 3300 AA DORDRECHT, NETHERLANDS SN 1874-6489 BN 978-90-481-3503-5 J9 NATO SCI PEACE SEC A JI NATO Sci. Peace Secur. Ser. A-Chem. Biol. PY 2010 BP 37 EP 44 DI 10.1007/978-90-481-3504-2_6 PG 8 WC Energy & Fuels; Environmental Studies SC Energy & Fuels; Environmental Sciences & Ecology GA BPZ84 UT WOS:000280449400006 ER PT S AU Trosman, G AF Trosman, Greg BE Apikyan, SA Diamond, DJ TI NUCLEAR SAFETY AND ENERGY SECURITY SO NUCLEAR POWER AND ENERGY SECURITY SE NATO Science for Peace and Security Series A-Chemistry and Biology LA English DT Proceedings Paper CT NATO Advanced Research Workshop on Nuclear Power and Energy Security CY MAY 26-29, 2009 CL Yerevan, ARMENIA SP NATO, ASTEC C1 [Trosman, Greg] US DOE, Washington, DC USA. NR 0 TC 0 Z9 0 U1 0 U2 11 PU SPRINGER PI DORDRECHT PA PO BOX 17, 3300 AA DORDRECHT, NETHERLANDS SN 1874-6489 BN 978-90-481-3503-5 J9 NATO SCI PEACE SEC A JI NATO Sci. Peace Secur. Ser. A-Chem. Biol. PY 2010 BP 63 EP 67 DI 10.1007/978-90-481-3504-2_9 PG 5 WC Energy & Fuels; Environmental Studies SC Energy & Fuels; Environmental Sciences & Ecology GA BPZ84 UT WOS:000280449400009 ER PT S AU Budnitz, RJ AF Budnitz, Robert J. BE Apikyan, SA Diamond, DJ TI STATUS REPORT ON THE SAFETY OF OPERATING US NUCLEAR POWER PLANTS (WHY EXPERTS BELIEVE THAT TODAY'S OPERATING NUCLEAR POWER REACTORS ARE MUCH SAFER THAN THEY WERE 20 YEARS AGO) SO NUCLEAR POWER AND ENERGY SECURITY SE NATO Science for Peace and Security Series A-Chemistry and Biology LA English DT Proceedings Paper CT NATO Advanced Research Workshop on Nuclear Power and Energy Security CY MAY 26-29, 2009 CL Yerevan, ARMENIA SP NATO, ASTEC AB The main emphasis of this presentation and paper is to address why experts believe that today's operating nuclear power reactors are much safer than they were 10 or 20 years ago. There is strong evidence to support this belief for the power reactors now operating in all of the advanced countries, and in many of the less developed countries too, although in a few of these latter countries there are continuing safety concerns. The paper will present recent and historical data from the U.S., a discussion of what the data mean and why, and a perspective about what events and trends have been the causes for the major safety improvements that have occurred. The extension of the conclusion to other countries will also be discussed. Finally, the reasons why safety-improvement programs must continue in some of the less-developed countries are described C1 [Budnitz, Robert J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. NR 3 TC 0 Z9 0 U1 0 U2 2 PU SPRINGER PI DORDRECHT PA PO BOX 17, 3300 AA DORDRECHT, NETHERLANDS SN 1874-6489 BN 978-90-481-3503-5 J9 NATO SCI PEACE SEC A JI NATO Sci. Peace Secur. Ser. A-Chem. Biol. PY 2010 BP 109 EP 119 DI 10.1007/978-90-481-3504-2_15 PG 11 WC Energy & Fuels; Environmental Studies SC Energy & Fuels; Environmental Sciences & Ecology GA BPZ84 UT WOS:000280449400015 ER PT S AU Allendorf, MD Houk, RJT Bhakta, R Nielsen, IMB Doty, FP AF Allendorf, M. D. Houk, R. J. T. Bhakta, R. Nielsen, I. M. B. Doty, F. P. GP MRS BE Fiederle, M Perry, DL Burger, A Franks, L Yasuda, K TI Scintillating Metal Organic Frameworks A New Class of Radiation Detection Materials SO NUCLEAR RADIATION DETECTION MATERIALS-2009 SE Materials Research Society Symposium Proceedings LA English DT Proceedings Paper CT Symposium on Nuclear Radiation Detection Materials CY APR 14-16, 2009 CL San Francisco, CA ID POSTSYNTHETIC COVALENT MODIFICATION; SURFACE-AREA; ANTHRACENE; DESIGN; NAPHTHALENE; MOLECULES; CHEMISTRY; CRYSTALS; CHANNELS; POROSITY AB The detection and identification of subatomic particles is an important scientific problem with implications for medical devices, radiography, biochemical analysis, particle physics, and astrophysics In addition the development of efficient detectors of neutrons generated by fissile material is a pressing need for nuclear nonproliferation and counterterrorism efforts A critical objective in the field of radiation detection is to develop the physical insight necessary to rationally design new scintillation materials for specific applications However none of the material types currently used in has sufficient synthetic versatility to expert systematic control over the factors controlling the light output and its dynamics Here we describe a spectroscopic investigation of two stilbene based metal organic frameworks (MOFs) we synthesized demonstrating that they emit light in response to ionizing radiation creating the first completely new class of scintillation materials since the advent of plastic scintillators in 1950 This highly novel and unexpected property of MOFs opens a new route to rational design of radiation detection materials, since the spectroscopy shows that both the luminescence spectrum and its timing can be varied by altering the local environment of the chromophore within the MOF Therefore the inherent synthetic flexibility of MOFs which enables both the chromophore structure and its local environment to be systematically varied, suggests that this class of materials can serve as a controlled nanolaboratory' for probing a broad range of photophysical and radiation detection phenomena In this presentation we report on the time dependent flourescence and radioluminescence of these MOFs and related structures Multiple decay characteristics have been observed for some materials under study including fast(ns) terms of the electronic states, crystal structures, intermolecular interactions, and transport effects mediating the luminescence The potential for particle discrimination schemes and large scale production of MOFs and will be discussed C1 [Allendorf, M. D.; Houk, R. J. T.; Bhakta, R.; Nielsen, I. M. B.; Doty, F. P.] Sandia Natl Labs, Livermore, CA 94551 USA. RP Allendorf, MD (reprint author), Sandia Natl Labs, Livermore, CA 94551 USA. NR 41 TC 0 Z9 0 U1 1 U2 14 PU MATERIALS RESEARCH SOCIETY PI WARRENDALE PA 506 KEYSTONE DRIVE, WARRENDALE, PA 15088-7563 USA SN 0272-9172 J9 MATER RES SOC SYMP P PY 2010 VL 1164 BP 81 EP 91 PG 11 WC Materials Science, Multidisciplinary; Physics, Nuclear SC Materials Science; Physics GA BSL60 UT WOS:000284865000009 ER PT S AU Ahle, L Bizarri, G Boatner, L Cherepy, NJ Choong, WS Moses, WW Payne, SA Shah, K Sheets, S Sturm, BW AF Ahle, Larry Bizarri, Gregory Boatner, Lynn Cherepy, Nerine J. Choong, Woon-Seng Moses, William W. Payne, Stephen A. Shah, Kanai Sheets, Steven Sturm, Benjamin W. GP MRS BE Fiederle, M Perry, DL Burger, A Franks, L Yasuda, K TI Studies of Non-Proportionality in Alkali Halide and Strontium Iodide Scintillators Using SLYNCI SO NUCLEAR RADIATION DETECTION MATERIALS-2009 SE Materials Research Society Symposium Proceedings LA English DT Proceedings Paper CT Symposium on Nuclear Radiation Detection Materials CY APR 14-16, 2009 CL San Francisco, CA ID NONPROPORTIONALITY; FACILITY; ENERGY AB Recently a collaboration of LLNL and LBNL has constructed a second generation Compton coincidence instrument to study the non proportionality of scintillators [1 3] This device, known as SLYNCI (Scintillator Light-Yield Non proportionality Characterization Instrument), has can completely characterize a sample with less than 24 hours of running time Thus, SLYNCI enables a number of systematic studies of scintillators since many samples can be processed in a reasonable length of time These studies of scintillators since many samples can be processed in a reasonable length of time These studies include differences in non proportionality between different types of scintillators, different members of the same family of scintillatores, and impact of different doping levels The results of such recent studies are presented here, including a study of various alkali halides and the impact of europium doping level in strontium iodide Directions of future work area also discussed C1 [Ahle, Larry; Cherepy, Nerine J.; Payne, Stephen A.; Sheets, Steven; Sturm, Benjamin W.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Ahle, L (reprint author), Lawrence Livermore Natl Lab, 7000 E Ave, Livermore, CA 94551 USA. RI Cherepy, Nerine/F-6176-2013; Boatner, Lynn/I-6428-2013 OI Cherepy, Nerine/0000-0001-8561-923X; Boatner, Lynn/0000-0002-0235-7594 NR 11 TC 1 Z9 1 U1 2 U2 4 PU MATERIALS RESEARCH SOCIETY PI WARRENDALE PA 506 KEYSTONE DRIVE, WARRENDALE, PA 15088-7563 USA SN 0272-9172 J9 MATER RES SOC SYMP P PY 2010 VL 1164 BP 99 EP 104 PG 6 WC Materials Science, Multidisciplinary; Physics, Nuclear SC Materials Science; Physics GA BSL60 UT WOS:000284865000011 ER PT S AU Du, MH Takenaka, H Singh, DJ AF Du, Mao-Hua Takenaka, Hiroyuki Singh, David J. GP MRS BE Fiederle, M Perry, DL Burger, A Franks, L Yasuda, K TI First principles study of defects and carrier compensation in semiconductor radiation detector materials SO NUCLEAR RADIATION DETECTION MATERIALS-2009 SE Materials Research Society Symposium Proceedings LA English DT Proceedings Paper CT Symposium on Nuclear Radiation Detection Materials CY APR 14-16, 2009 CL San Francisco, CA ID CDTE AB We discuss defect engineering strategies in radiation detector materials The goal is to increase resistivity by defect induced Fermi level pinning without causing defect induced reductions in the carrier drifting length We show calculated properties of various intrinsic defects and impuritites in CdTe We suggest that the defect complex of a hydrogen atom and an isovalent impurity on an anion site may be an excellent candidate in many semiconductors for Fermi level pinning without carrier trapping C1 [Du, Mao-Hua] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Du, MH (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RI Du, Mao-Hua/B-2108-2010; Singh, David/I-2416-2012 OI Du, Mao-Hua/0000-0001-8796-167X; NR 16 TC 0 Z9 0 U1 0 U2 3 PU MATERIALS RESEARCH SOCIETY PI WARRENDALE PA 506 KEYSTONE DRIVE, WARRENDALE, PA 15088-7563 USA SN 0272-9172 J9 MATER RES SOC SYMP P PY 2010 VL 1164 BP 107 EP 112 PG 6 WC Materials Science, Multidisciplinary; Physics, Nuclear SC Materials Science; Physics GA BSL60 UT WOS:000284865000012 ER PT S AU Yang, G Bolotnikov, AE Camarda, GS Cui, Y Hossain, A Yao, HW Kim, K James, RB AF Yang, G. Bolotnikov, A. E. Camarda, G. S. Cui, Y. Hossain, A. Yao, H. W. Kim, K. James, R. B. GP MRS BE Fiederle, M Perry, DL Burger, A Franks, L Yasuda, K TI Opto-electrical characterization and X-ray Mapping of large-volume cadmium zinc SO NUCLEAR RADIATION DETECTION MATERIALS-2009 SE Materials Research Society Symposium Proceedings LA English DT Proceedings Paper CT Symposium on Nuclear Radiation Detection Materials CY APR 14-16, 2009 CL San Francisco, CA ID DETECTORS AB Large volume cadmium zinc telluride (CZT) radiation detectors would greatly improve radiation detection capabilities and therefore, attract extensive scientific and commercial interests CZT crystals with volumes as large as hundreds of centimeters can be achieved today due to improvements in the crystal growth technology However the poor performance of large volume CZT detectors is still a challenging problem affecting the commercialization of CZT detectors and imaging arrays We have employed Pockels effect measurements and synchrotron X ray mapping techniques to investigate the performance limiting factors for large-volume CZT detectors Experimental results with the above characterization methods reveal the non uniform distribution of internal electric field of large-volume CZT detectors, which help us to better understand the responsible mechanism for the insufficient carrrier collection in large-volume CZT detectors C1 [Yang, G.; Bolotnikov, A. E.; Camarda, G. S.; Cui, Y.; Hossain, A.; Yao, H. W.; Kim, K.; James, R. B.] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Yang, G (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. RI Yang, Ge/G-1354-2011 NR 5 TC 0 Z9 0 U1 1 U2 5 PU MATERIALS RESEARCH SOCIETY PI WARRENDALE PA 506 KEYSTONE DRIVE, WARRENDALE, PA 15088-7563 USA SN 0272-9172 J9 MATER RES SOC SYMP P PY 2010 VL 1164 BP 165 EP 170 PG 6 WC Materials Science, Multidisciplinary; Physics, Nuclear SC Materials Science; Physics GA BSL60 UT WOS:000284865000018 ER PT S AU Cherepy, N Payne, SA Hawrami, R Burger, A Boatner, L Van Loef, E Shah, K AF Cherepy, Nerine Payne, Stephen A. Hawrami, Rastgo Burger, Arnold Boatner, Lynn Van Loef, Edgar Shah, Kanai GP MRS BE Fiederle, M Perry, DL Burger, A Franks, L Yasuda, K TI Prospects for High Resolution Gamma Ray Spectroscopy with Europium-Doped Strontium Iodide SO NUCLEAR RADIATION DETECTION MATERIALS-2009 SE Materials Research Society Symposium Proceedings LA English DT Proceedings Paper CT Symposium on Nuclear Radiation Detection Materials CY APR 14-16, 2009 CL San Francisco, CA AB Europium-doped strontium iodide scintillators offer a light yield exceeding 100,000 photons/MeV and excellent light yield proportionality while at the same time SrI(2) is readily grown in single crystal form This far, our collaboration has demonstrated an energy resolution with strontium iodide of 2 6% at 662 keV and 7 6% at 60 keV, and we have grown single crystals surpassing 30cm(3) in size (with lower resolution) Our analysis indicates that SrI(2)(Eu) has the potential to offer 2% energy resolution at 662 keV with optimized material, optics, and read out In particular, improvements in feedstock purity may result in crystal structural and chemical homogeneity, leading to improved light yield uniformity throughout the crystal volume, and consequently better energy resolution Uniform, efficient light collection and detection, is also required to achieve the best energy resolution with a SrI(2)(Eu) scintillator device C1 [Cherepy, Nerine; Payne, Stephen A.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Cherepy, N (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RI Cherepy, Nerine/F-6176-2013; Boatner, Lynn/I-6428-2013 OI Cherepy, Nerine/0000-0001-8561-923X; Boatner, Lynn/0000-0002-0235-7594 NR 10 TC 1 Z9 1 U1 0 U2 3 PU MATERIALS RESEARCH SOCIETY PI WARRENDALE PA 506 KEYSTONE DRIVE, WARRENDALE, PA 15088-7563 USA SN 0272-9172 J9 MATER RES SOC SYMP P PY 2010 VL 1164 BP 179 EP 184 PG 6 WC Materials Science, Multidisciplinary; Physics, Nuclear SC Materials Science; Physics GA BSL60 UT WOS:000284865000020 ER PT S AU Yang, P Doty, FP Rodriguez, MA Sanchez, MR Zhou, X Shah, KS AF Yang, Pin Doty, F. Patrick Rodriguez, Mark A. Sanchez, Margaret R. Zhou, Xiaowong Shah, Kanai S. GP MRS BE Fiederle, M Perry, DL Burger, A Franks, L Yasuda, K TI The Synthesis and Structures of Elpasolite Halide Scintillators SO NUCLEAR RADIATION DETECTION MATERIALS-2009 SE Materials Research Society Symposium Proceedings LA English DT Proceedings Paper CT Symposium on Nuclear Radiation Detection Materials CY APR 14-16, 2009 CL San Francisco, CA ID DIAGRAMS; LABR3 AB Low cost high performance gamma ray spectrometers are urgently needed for nonproliferation and homeland security applications Available scintillation materials fall short of the requirements for energy resolution and sensitivity at room temperature The emerging lanthanide halide based materials while having the desired luminosity and proportionality have proven difficult to produce in the large sizes and low cost required due to highly anisotropic properties caused by the non cubic crystal structure New cubic materials such as the recently discovered elpasolite family (A(2)BLnX(6) Ln lanthanide and X halogen) hold promise for scintillator materials die to their high light output proportionality and toughness The isotropic nature of the cubic elpasolites leads to minimal thermomechanical stresses during single crystal solidification and eliminates the problematic light scattering at the grain boundaries Therefore it may be possible to produce these materials in large sizes as either single crystals or transparent ceramics with high production yield and reduced costs In this study we investigated the cubic elpasolite halide synthesis studies the structural variations of four different compounds including Cs(2)NaLaBr(6) Cs(2)LiLaBr(6) Cs(2)NaLaI(6) and Cs(2)LiLaI(6) Attempts to produce a large area detector by a hot torging technique were explored C1 [Yang, Pin; Rodriguez, Mark A.; Sanchez, Margaret R.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Yang, P (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. NR 18 TC 1 Z9 1 U1 7 U2 9 PU MATERIALS RESEARCH SOCIETY PI WARRENDALE PA 506 KEYSTONE DRIVE, WARRENDALE, PA 15088-7563 USA SN 0272-9172 J9 MATER RES SOC SYMP P PY 2010 VL 1164 BP 185 EP 192 PG 8 WC Materials Science, Multidisciplinary; Physics, Nuclear SC Materials Science; Physics GA BSL60 UT WOS:000284865000021 ER PT J AU Chandler, D Primm, RT Maldonado, GI AF Chandler, David Primm, R. T., III Maldonado, G. Ivan TI Power Distribution Analysis for the ORNL High Flux Isotope Reactor Critical Experiment 3 SO NUCLEAR SCIENCE AND ENGINEERING LA English DT Article AB The mission of the Reduced Enrichment for Research and Test Reactors Program is to minimize and, to the extent possible, eliminate the use of highly enriched uranium (HEU) in civilian nuclear applications by working to convert research and test reactors, as well as radioisotope production processes, to low-enriched uranium (LEU) fuel and targets. Oak Ridge National Laboratory (ORNL) is currently reviewing the design bases and key operating criteria including fuel operating parameters, enrichment-related safety analyses, fuel performance, and fuel fabrication in regard to converting the fuel of the High Flux Isotope Reactor (HFIR) from HEU to LEU. The purpose of this study is to validate Monte Carlo methods currently in use for conversion analyses. The methods have been validated for the prediction of flux values in the reactor target, reflector, and beam tubes, but this study focuses on the prediction of the power density profile in the core. Power distributions were calculated in the fuel elements of the HFIR, a research reactor at ORNL, via MCNP and were compared to experimentally obtained data. This study was performed to validate Monte Carlo methods for power density calculations and to observe biases. A current three-dimensional MCNP model was modified to replicate the 1965 HFIR Critical Experiment 3 (HFIRCE-3). In this experiment, the power profile was determined by counting the gamma activity at selected locations in the core. "Foils" (chunks of fuel meat and clad) were punched out of the fuel elements in HFIRCE-3 following irradiation, and experimental relative power densities were obtained by measuring the activity of these foils and comparing each foils activity to the activity of a normalizing foil. This analysis consisted of calculating corresponding activities by inserting volume tallies into the modified MCNP model to represent the punchings. The average fission density was calculated for each foil location and then normalized to the reference foil. Power distributions were obtained for clean core (no poison in moderator and symmetrical rod position at 44.536 cm withdrawn with respect to the core axial midplane) and fully poisoned moderator (1.35 grams of boron per liter in moderator and rods fully withdrawn) conditions. The observed deviations between the experimental and calculated values for both conditions were within the reported experimental uncertainties except for some foils located on the top and bottom edges of the fuel plates. C1 [Chandler, David] Univ Cincinnati, Dept Mech Engn, Cincinnati, OH 45221 USA. [Primm, R. T., III] Oak Ridge Natl Lab, Res Reactors Div, Oak Ridge, TN 37831 USA. [Maldonado, G. Ivan] Univ Tennessee, Dept Nucl Engn, Knoxville, TN 37996 USA. RP Chandler, D (reprint author), Univ Cincinnati, Dept Mech Engn, Cincinnati, OH 45221 USA. EM Ivan.Maldonado@utk.edu OI Maldonado, Guillermo/0000-0001-7377-4494 NR 8 TC 0 Z9 0 U1 0 U2 0 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5639 J9 NUCL SCI ENG JI Nucl. Sci. Eng. PD JAN PY 2010 VL 164 IS 1 BP 53 EP 68 PG 16 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 537GH UT WOS:000273100700003 ER PT J AU Berardini, TZ Li, DH Huala, E Bridges, S Burgess, S McCarthy, F Carbon, S Lewis, SE Mungall, CJ Abdulla, A Wood, V Feltrin, E Valle, G Chisholm, RL Fey, P Gaudet, P Kibbe, W Basu, S Bushmanova, Y Eilbeck, K Siegele, DA McIntosh, B Renfro, D Zweifel, A Hu, JC Ashburner, M Tweedie, S Alam-Faruque, Y Apweiler, R Auchinchloss, A Bairoch, A Barrell, D Binns, D Blatter, MC Bougueleret, L Boutet, E Breuza, L Bridge, A Browne, P Chan, WM Coudert, E Daugherty, L Dimmer, E Eberhardt, R Estreicher, A Famiglietti, L Ferro-Rojas, S Feuermann, M Foulger, R Gruaz-Gumowski, N Hinz, U Huntley, R Jimenez, S Jungo, F Keller, G Laiho, K Legge, D Lemercier, P Lieberherr, D Magrane, M O'Donovan, C Pedruzzi, I Poux, S Rivoire, C Roechert, B Sawford, T Schneider, M Stanley, E Stutz, A Sundaram, S Tognolli, M Xenarios, I Harris, MA Deegan, JI Ireland, A Lomax, J Jaiswal, P Chibucos, M Giglio, MG Wortman, J Hannick, L Madupu, R Botstein, D Dolinski, K Livstone, MS Oughtred, R Blake, JA Bult, C Diehl, AD Dolan, M Drabkin, H Eppig, JT Hill, DP Ni, L Ringwald, M Sitnikov, D Collmer, C Torto-Alalibo, T Laulederkind, S Shimoyama, M Twigger, S D'Eustachio, P Matthews, L Balakrishnan, R Binkley, G Cherry, JM Christie, KR Costanzo, MC Engel, SR Fisk, DG Hirschman, JE Hitz, BC Hong, EL Krieger, CJ Miyasato, SR Nash, RS Park, J Skrzypek, MS Weng, SA Wong, ED Aslett, M Chan, J Kishore, R Sternberg, P Van Auken, K Khodiyar, VK Lovering, RC Talmud, PJ Howe, D Westerfield, M AF Berardini, Tanya Z. Li, Donghui Huala, Eva Bridges, Susan Burgess, Shane McCarthy, Fiona Carbon, Seth Lewis, Suzanna E. Mungall, Christopher J. Abdulla, Amina Wood, Valerie Feltrin, Erika Valle, Giorgio Chisholm, Rex L. Fey, Petra Gaudet, Pascale Kibbe, Warren Basu, Siddhartha Bushmanova, Yulia Eilbeck, Karen Siegele, Deborah A. McIntosh, Brenley Renfro, Daniel Zweifel, Adrienne Hu, James C. Ashburner, Michael Tweedie, Susan Alam-Faruque, Yasmin Apweiler, Rolf Auchinchloss, Andrea Bairoch, Amos Barrell, Daniel Binns, David Blatter, Marie-Claude Bougueleret, Lydie Boutet, Emmanuel Breuza, Lionel Bridge, Alan Browne, Paul Chan, Wei Mun Coudert, Elizabeth Daugherty, Louise Dimmer, Emily Eberhardt, Ruth Estreicher, Anne Famiglietti, Livia Ferro-Rojas, Serenella Feuermann, Marc Foulger, Rebecca Gruaz-Gumowski, Nadine Hinz, Ursula Huntley, Rachael Jimenez, Silvia Jungo, Florence Keller, Guillaume Laiho, Kati Legge, Duncan Lemercier, Philippe Lieberherr, Damien Magrane, Michele O'Donovan, Claire Pedruzzi, Ivo Poux, Sylvain Rivoire, Catherine Roechert, Bernd Sawford, Tony Schneider, Michel Stanley, Eleanor Stutz, Andre Sundaram, Shyamala Tognolli, Michael Xenarios, Ioannis Harris, Midori A. Deegan (nee Clark), Jennifer I. Ireland, Amelia Lomax, Jane Jaiswal, Pankaj Chibucos, Marcus Giglio, Michelle Gwinn Wortman, Jennifer Hannick, Linda Madupu, Ramana Botstein, David Dolinski, Kara Livstone, Michael S. Oughtred, Rose Blake, Judith A. Bult, Carol Diehl, Alexander D. Dolan, Mary Drabkin, Harold Eppig, Janan T. Hill, David P. Ni, Li Ringwald, Martin Sitnikov, Dmitry Collmer, Candace Torto-Alalibo, Trudy Laulederkind, Stan Shimoyama, Mary Twigger, Simon D'Eustachio, Peter Matthews, Lisa Balakrishnan, Rama Binkley, Gail Cherry, J. Michael Christie, Karen R. Costanzo, Maria C. Engel, Stacia R. Fisk, Dianna G. Hirschman, Jodi E. Hitz, Benjamin C. Hong, Eurie L. Krieger, Cynthia J. Miyasato, Stuart R. Nash, Robert S. Park, Julie Skrzypek, Marek S. Weng, Shuai Wong, Edith D. Aslett, Martin Chan, Juancarlos Kishore, Ranjana Sternberg, Paul Van Auken, Kimberly Khodiyar, Varsha K. Lovering, Ruth C. Talmud, Philippa J. Howe, Doug Westerfield, Monte CA Gene Ontology Consortium TI The Gene Ontology in 2010: extensions and refinements The Gene Ontology Consortium SO NUCLEIC ACIDS RESEARCH LA English DT Article AB The Gene Ontology (GO) Consortium (http://www.geneontology.org) (GOC) continues to develop, maintain and use a set of structured, controlled vocabularies for the annotation of genes, gene products and sequences. The GO ontologies are expanding both in content and in structure. Several new relationship types have been introduced and used, along with existing relationships, to create links between and within the GO domains. These improve the representation of biology, facilitate querying, and allow GO developers to systematically check for and correct inconsistencies within the GO. Gene product annotation using GO continues to increase both in the number of total annotations and in species coverage. GO tools, such as OBO-Edit, an ontology-editing tool, and AmiGO, the GOC ontology browser, have seen major improvements in functionality, speed and ease of use. C1 [Berardini, Tanya Z.; Li, Donghui; Huala, Eva] Carnegie Inst Sci, TAIR, Dept Plant Biol, Stanford, CA USA. [Bridges, Susan; Burgess, Shane; McCarthy, Fiona] Mississippi State Univ, AgBase, Mississippi State, MS USA. [Carbon, Seth; Lewis, Suzanna E.; Mungall, Christopher J.; Abdulla, Amina] LBNL, BBOP, Berkeley, CA USA. [Wood, Valerie] Canc Res UK, London, England. [Feltrin, Erika; Valle, Giorgio] Univ Padua, CRIBI, I-35100 Padua, Italy. [Chisholm, Rex L.; Fey, Petra; Gaudet, Pascale; Kibbe, Warren; Basu, Siddhartha; Bushmanova, Yulia] Northwestern Univ, DictyBase, Chicago, IL 60611 USA. [Eilbeck, Karen] Univ Utah, Eccles Inst Human Genet, Salt Lake City, UT USA. [Siegele, Deborah A.; McIntosh, Brenley; Renfro, Daniel; Zweifel, Adrienne; Hu, James C.] Texas A&M Univ, Dept Biol, College Stn, TX 77843 USA. [Siegele, Deborah A.; McIntosh, Brenley; Renfro, Daniel; Zweifel, Adrienne; Hu, James C.] Texas A&M Univ, Dept Biochem & Biophys, College Stn, TX 77843 USA. [Tweedie, Susan] Univ Cambridge, Dept Genet, FlyBase, Cambridge CB2 3EH, England. [Alam-Faruque, Yasmin; Apweiler, Rolf; Auchinchloss, Andrea; Bairoch, Amos; Barrell, Daniel; Binns, David; Blatter, Marie-Claude; Bougueleret, Lydie; Boutet, Emmanuel; Breuza, Lionel; Bridge, Alan; Browne, Paul; Chan, Wei Mun; Coudert, Elizabeth; Daugherty, Louise; Dimmer, Emily; Eberhardt, Ruth; Estreicher, Anne; Famiglietti, Livia; Ferro-Rojas, Serenella; Feuermann, Marc; Foulger, Rebecca; Gruaz-Gumowski, Nadine; Hinz, Ursula; Huntley, Rachael; Jimenez, Silvia; Jungo, Florence; Keller, Guillaume; Laiho, Kati; Legge, Duncan; Lemercier, Philippe; Lieberherr, Damien; Magrane, Michele; O'Donovan, Claire; Pedruzzi, Ivo; Poux, Sylvain; Rivoire, Catherine; Roechert, Bernd; Sawford, Tony; Schneider, Michel; Stanley, Eleanor; Stutz, Andre; Sundaram, Shyamala; Tognolli, Michael; Xenarios, Ioannis] GOA UniProtKB EBI, Hinxton, England. [Alam-Faruque, Yasmin; Apweiler, Rolf; Auchinchloss, Andrea; Bairoch, Amos; Barrell, Daniel; Binns, David; Blatter, Marie-Claude; Bougueleret, Lydie; Boutet, Emmanuel; Breuza, Lionel; Bridge, Alan; Browne, Paul; Chan, Wei Mun; Coudert, Elizabeth; Daugherty, Louise; Dimmer, Emily; Eberhardt, Ruth; Estreicher, Anne; Famiglietti, Livia; Ferro-Rojas, Serenella; Feuermann, Marc; Foulger, Rebecca; Gruaz-Gumowski, Nadine; Hinz, Ursula; Huntley, Rachael; Jimenez, Silvia; Jungo, Florence; Keller, Guillaume; Laiho, Kati; Legge, Duncan; Lemercier, Philippe; Lieberherr, Damien; Magrane, Michele; O'Donovan, Claire; Pedruzzi, Ivo; Poux, Sylvain; Rivoire, Catherine; Roechert, Bernd; Sawford, Tony; Schneider, Michel; Stanley, Eleanor; Stutz, Andre; Sundaram, Shyamala; Tognolli, Michael; Xenarios, Ioannis] SIB, Geneva, Switzerland. [Harris, Midori A.; Deegan (nee Clark), Jennifer I.; Ireland, Amelia; Lomax, Jane] GO EBI, Hinxton, England. [Jaiswal, Pankaj] Oregon State Univ, Dept Bot & Plant Pathol, Corvallis, OR 97331 USA. [Chibucos, Marcus; Giglio, Michelle Gwinn; Wortman, Jennifer] Univ Maryland, Sch Med, Inst Genome Sci, Baltimore, MD 21201 USA. [Hannick, Linda; Madupu, Ramana] J Craig Venter Inst, Rockville, MD USA. [Botstein, David; Dolinski, Kara; Livstone, Michael S.; Oughtred, Rose] Princeton Univ, Lewis Sigler Inst Integrat Genom, Princeton, NJ 08544 USA. [Blake, Judith A.; Bult, Carol; Diehl, Alexander D.; Dolan, Mary; Drabkin, Harold; Eppig, Janan T.; Hill, David P.; Ni, Li; Ringwald, Martin; Sitnikov, Dmitry] Jackson Lab, MGI, Bar Harbor, ME 04609 USA. [Collmer, Candace] Wells Coll, PAMGO, Aurora, NY USA. [Laulederkind, Stan; Shimoyama, Mary; Twigger, Simon] Med Coll Wisconsin, RGD, Milwaukee, WI 53226 USA. [D'Eustachio, Peter; Matthews, Lisa] NYU, Dept Biochem, Sch Med, New York, NY 10016 USA. [Balakrishnan, Rama; Binkley, Gail; Cherry, J. Michael; Christie, Karen R.; Costanzo, Maria C.; Engel, Stacia R.; Fisk, Dianna G.; Hirschman, Jodi E.; Hitz, Benjamin C.; Hong, Eurie L.; Krieger, Cynthia J.; Miyasato, Stuart R.; Nash, Robert S.; Park, Julie; Skrzypek, Marek S.; Weng, Shuai; Wong, Edith D.] Stanford Univ, Dept Genet, SGD, Stanford, CA 94305 USA. [Aslett, Martin] Wellcome Trust Sanger Inst, Hinxton, England. [Chan, Juancarlos; Kishore, Ranjana; Sternberg, Paul; Van Auken, Kimberly] CALTECH, WormBase, Pasadena, CA 91125 USA. [Khodiyar, Varsha K.; Lovering, Ruth C.; Talmud, Philippa J.] UCL, London, England. [Howe, Doug; Westerfield, Monte] Univ Oregon, ZFIN, Eugene, OR 97403 USA. RP Berardini, TZ (reprint author), Carnegie Inst Sci, TAIR, Dept Plant Biol, Stanford, CA USA. EM tberardini@arabidopsis.org RI Fey, Petra/O-5977-2015; Pedruzzi, Ivo/O-7423-2015; Diehl, Alexander/G-9883-2016; Jaiswal, Pankaj/H-7599-2016; Huntley, Rachael/R-1036-2016 OI Fey, Petra/0000-0002-4532-2703; Pedruzzi, Ivo/0000-0001-8561-7170; Diehl, Alexander/0000-0001-9990-8331; Jaiswal, Pankaj/0000-0002-1005-8383; Huntley, Rachael/0000-0001-6718-3559 FU National Human Genome Research Institute (NHGRI) [P41 HG02273]; National Institutes of Health Institutes [HG000330, HG02223, HG004341, HG003751, HG01315, HG002659]; National Heart, Blood and Lung Institute [HL64541]; National Institute of General Medical Sciences [U24GM077905, U24GM088849]; National Science Foundation [0703908, 0417062, EF-0523736]; UK Medical Research Council [G0500293]; British Heart Foundation [SP/07/007/23671]; European Union Sixth Framework Programme [LSHG-CT-2003-503269]; National Human Genome Research Institute [P41 HG02273] FX National Human Genome Research Institute (NHGRI) (P41 HG02273 to GO PIs J.A.B., M.A., J.M.C., S.L.); GO Consortium member databases receive funding from several National Institutes of Health Institutes [National Human Genome Research Institute (HG000330 to M.G.D., HG02223 to Wormbase, HG004341 to K.E., HG003751 to Reactome, HG01315 to S.G.D., HG002659 to Z.F.I.N.); National Heart, Blood and Lung Institute (HL64541 to R.G.D.), National Institute of General Medical Sciences (U24GM077905, U24GM088849 to EcoliWiki)]; National Science Foundation (DBI# 0703908 to Gramene, DBI# 0417062 to TAIR, EF-0523736 to PAMGO); UK Medical Research Council (G0500293 to FlyBase); British Heart Foundation (SP/07/007/23671); European Union Sixth Framework Programme (LSHG-CT-2003-503269 to Reactome). Funding for open access charge: National Human Genome Research Institute (grant # P41 HG02273). NR 6 TC 14 Z9 14 U1 1 U2 19 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0305-1048 J9 NUCLEIC ACIDS RES JI Nucleic Acids Res. PD JAN PY 2010 VL 38 SU 1 BP D331 EP D335 DI 10.1093/nar/gkp1018 PG 5 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 579TV UT WOS:000276399100051 ER PT J AU Dehal, PS Joachimiak, MP Price, MN Bates, JT Baumohl, JK Chivian, D Friedland, GD Huang, KH Keller, K Novichkov, PS Dubchak, IL Alm, EJ Arkin, AP AF Dehal, Paramvir S. Joachimiak, Marcin P. Price, Morgan N. Bates, John T. Baumohl, Jason K. Chivian, Dylan Friedland, Greg D. Huang, Katherine H. Keller, Keith Novichkov, Pavel S. Dubchak, Inna L. Alm, Eric J. Arkin, Adam P. TI MicrobesOnline: an integrated portal for comparative and functional genomics SO NUCLEIC ACIDS RESEARCH LA English DT Article ID PROKARYOTIC GENOMES; DATABASE; TOOL; ANNOTATION; RESOURCE; GENES AB Since 2003, MicrobesOnline (http://www.microbesonline.org) has been providing a community resource for comparative and functional genome analysis. The portal includes over 1000 complete genomes of bacteria, archaea and fungi and thousands of expression microarrays from diverse organisms ranging from model organisms such as Escherichia coli and Saccharomyces cerevisiae to environmental microbes such as Desulfovibrio vulgaris and Shewanella oneidensis. To assist in annotating genes and in reconstructing their evolutionary history, MicrobesOnline includes a comparative genome browser based on phylogenetic trees for every gene family as well as a species tree. To identify co-regulated genes, MicrobesOnline can search for genes based on their expression profile, and provides tools for identifying regulatory motifs and seeing if they are conserved. MicrobesOnline also includes fast phylogenetic profile searches, comparative views of metabolic pathways, operon predictions, a workbench for sequence analysis and integration with RegTransBase and other microbial genome resources. The next update of MicrobesOnline will contain significant new functionality, including comparative analysis of metagenomic sequence data. Programmatic access to the database, along with source code and documentation, is available at http://microbesonline.org/programmers.html. C1 [Dehal, Paramvir S.; Joachimiak, Marcin P.; Price, Morgan N.; Bates, John T.; Baumohl, Jason K.; Chivian, Dylan; Friedland, Greg D.; Huang, Katherine H.; Keller, Keith; Novichkov, Pavel S.; Dubchak, Inna L.; Alm, Eric J.; Arkin, Adam P.] Virtual Inst Microbial Stress & Survival, Berkeley, CA 94720 USA. [Dehal, Paramvir S.; Joachimiak, Marcin P.; Price, Morgan N.; Bates, John T.; Baumohl, Jason K.; Chivian, Dylan; Friedland, Greg D.; Huang, Katherine H.; Keller, Keith; Novichkov, Pavel S.; Dubchak, Inna L.; Arkin, Adam P.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Bates, John T.; Chivian, Dylan; Friedland, Greg D.; Arkin, Adam P.] MIT, US DOE, Joint BioEnergy Inst, Cambridge, MA 02139 USA. [Alm, Eric J.] MIT, Dept Biol Engn, Cambridge, MA 02139 USA. [Alm, Eric J.] MIT, Dept Civil Engn, Cambridge, MA 02139 USA. [Arkin, Adam P.] Univ Calif Berkeley, Dept Biol Engn, Berkeley, CA 94720 USA. Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA. RP Dehal, PS (reprint author), Virtual Inst Microbial Stress & Survival, Berkeley, CA 94720 USA. EM psdehal@lbl.gov RI Arkin, Adam/A-6751-2008 OI Arkin, Adam/0000-0002-4999-2931 FU US Department of Energy Genomics: GTL program [DE-AC02-05CH11231]; DOE FX US Department of Energy Genomics: GTL program (grant DE-AC02-05CH11231). Funding for open access charge: DOE grant. NR 25 TC 192 Z9 199 U1 4 U2 20 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0305-1048 J9 NUCLEIC ACIDS RES JI Nucleic Acids Res. PD JAN PY 2010 VL 38 SU 1 BP D396 EP D400 DI 10.1093/nar/gkp919 PG 5 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 579TV UT WOS:000276399100062 PM 19906701 ER PT J AU Durek, P Schmidt, R Heazlewood, JL Jones, A MacLean, D Nagel, A Kersten, B Schulze, WX AF Durek, Pawel Schmidt, Robert Heazlewood, Joshua L. Jones, Alexandra MacLean, Daniel Nagel, Axel Kersten, Birgit Schulze, Waltraud X. TI PhosPhAt: the Arabidopsis thaliana phosphorylation site database. An update SO NUCLEIC ACIDS RESEARCH LA English DT Article ID PLASMA-MEMBRANE PROTEINS; PHOSPHOPROTEOMIC ANALYSIS; DATA SETS; IN-VIVO; NETWORKS; IDENTIFICATION; MECHANISM; RESPONSES; REVEALS AB The PhosPhAt database of Arabidopsis phosphorylation sites was initially launched in August 2007. Since then, along with 10-fold increase in database entries, functionality of PhosPhAt (phosphat.mpimp-golm.mpg.de) has been considerably upgraded and re-designed. PhosPhAt is now more of a web application with the inclusion of advanced search functions allowing combinatorial searches by Boolean terms. The results output now includes interactive visualization of annotated fragmentation spectra and the ability to export spectra and peptide sequences as text files for use in other applications. We have also implemented dynamic links to other web resources thus augmenting PhosPhAt-specific information with external protein-related data. For experimental phosphorylation sites with information about dynamic behavior in response to external stimuli, we display simple time-resolved diagrams. We have included predictions for pT and pY sites and updated pS predictions. Access to prediction algorithm now allows 'on-the-fly' prediction of phosphorylation of any user-uploaded protein sequence. Protein Pfam domain structures are now mapped onto the protein sequence display next to experimental and predicted phosphorylation sites. Finally, we have implemented functional annotation of proteins using MAPMAN ontology. These new developments make the PhosPhAt resource a useful and powerful tool for the scientific community as a whole beyond the plant sciences. C1 [Durek, Pawel; Schmidt, Robert; Nagel, Axel; Kersten, Birgit; Schulze, Waltraud X.] Max Planck Inst Mol Pflanzenphysiol, D-14476 Golm, Germany. [Heazlewood, Joshua L.] Univ Calif Berkeley, Lawrence Berkeley Lab, Joint BioEnergy Inst, Berkeley, CA 94720 USA. [Jones, Alexandra; MacLean, Daniel] John Innes Ctr, Sainsbury Lab, Norwich NR4 7UH, Norfolk, England. RP Schulze, WX (reprint author), Max Planck Inst Mol Pflanzenphysiol, Muhlenberg 1, D-14476 Golm, Germany. EM wschulze@mpimp-golm.mpg.de RI Heazlewood, Joshua/A-2554-2008; Jones, Alexandra/B-5227-2009; Schulze, Waltraud/E-9800-2011; MacLean, Dan/C-7046-2013; OI Heazlewood, Joshua/0000-0002-2080-3826; Jones, Alexandra/0000-0003-2571-8708; Schulze, Waltraud/0000-0001-9957-7245; MacLean, Dan/0000-0003-1032-0887; Kersten, Birgit/0000-0001-9900-9133 FU Bundesministerium fur Bildung und Forschung (BMBF) [0315046, 0315049]; Max Planck Society, Germany FX Financial support by the Bundesministerium fur Bildung und Forschung (BMBF) (GABI-FUTURE Grants 0315046 and 0315049A to B. K. and A. N.). Funding for open access charge: Max Planck Society, Germany. NR 32 TC 146 Z9 146 U1 4 U2 34 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0305-1048 EI 1362-4962 J9 NUCLEIC ACIDS RES JI Nucleic Acids Res. PD JAN PY 2010 VL 38 SU 1 BP D828 EP D834 DI 10.1093/nar/gkp810 PG 7 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 579TV UT WOS:000276399100129 PM 19880383 ER PT J AU Liolios, K Chen, IMA Mavromatis, K Tavernarakis, N Hugenholtz, P Markowitz, VM Kyrpides, NC AF Liolios, Konstantinos Chen, I-Min A. Mavromatis, Konstantinos Tavernarakis, Nektarios Hugenholtz, Philip Markowitz, Victor M. Kyrpides, Nikos C. TI The Genomes On Line Database (GOLD) in 2009: status of genomic and metagenomic projects and their associated metadata SO NUCLEIC ACIDS RESEARCH LA English DT Article ID WORLD-WIDE; SYSTEM; INFORMATION; MONITOR AB The Genomes On Line Database (GOLD) is a comprehensive resource for centralized monitoring of genome and metagenome projects worldwide. Both complete and ongoing projects, along with their associated metadata, can be accessed in GOLD through precomputed tables and a search page. As of September 2009, GOLD contains information for more than 5800 sequencing projects, of which 1100 have been completed and their sequence data deposited in a public repository. GOLD continues to expand, moving toward the goal of providing the most comprehensive repository of metadata information related to the projects and their organisms/environments in accordance with the Minimum Information about a (Meta) Genome Sequence (MIGS/MIMS) specification. GOLD is available at: http://www.genomesonline.org and has a mirror site at the Institute of Molecular Biology and Biotechnology, Crete, Greece, at: http://gold.imbb.forth.gr/ C1 [Liolios, Konstantinos; Mavromatis, Konstantinos; Kyrpides, Nikos C.] DOE Joint Genome Inst, Genome Biol Program, Walnut Creek, CA USA. [Chen, I-Min A.; Markowitz, Victor M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Biol Data Management & Technol Ctr, Berkeley, CA 94720 USA. [Tavernarakis, Nektarios] Fdn Res & Technol, Inst Mol Biol & Biotechnol, Iraklion, Crete, Greece. [Hugenholtz, Philip] DOE Joint Genome Inst, Microbial Ecol Program, Walnut Creek, CA USA. RP Kyrpides, NC (reprint author), DOE Joint Genome Inst, Genome Biol Program, 2800 Mitchell Dr, Walnut Creek, CA USA. EM nckyrpides@lbl.gov RI Hugenholtz, Philip/G-9608-2011; Tavernarakis, Nektarios/B-9684-2013; Kyrpides, Nikos/A-6305-2014 OI Tavernarakis, Nektarios/0000-0002-5253-1466; Kyrpides, Nikos/0000-0002-6131-0462 FU US Department of Energy's Office of Science, Biological and Environmental Research Program; University of California, Lawrence Berkeley National Laboratory [DE-AC0205CH11231]; Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; Los Alamos National Laboratory [DE-AC0206NA25396]; Department of Energy FX The US Department of Energy's Office of Science, Biological and Environmental Research Program; and by the University of California, Lawrence Berkeley National Laboratory under Contract No. DE-AC0205CH11231, Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344; and Los Alamos National Laboratory under Contract No. DE-AC0206NA25396. Funding for open access charge: Department of Energy. NR 18 TC 227 Z9 232 U1 1 U2 15 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0305-1048 J9 NUCLEIC ACIDS RES JI Nucleic Acids Res. PD JAN PY 2010 VL 38 SU 1 BP D346 EP D354 DI 10.1093/nar/gkp848 PG 9 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 579TV UT WOS:000276399100054 PM 19914934 ER PT J AU Markowitz, VM Chen, IMA Palaniappan, K Chu, K Szeto, E Grechkin, Y Ratner, A Anderson, I Lykidis, A Mavromatis, K Ivanova, NN Kyrpides, NC AF Markowitz, Victor M. Chen, I-Min A. Palaniappan, Krishna Chu, Ken Szeto, Ernest Grechkin, Yuri Ratner, Anna Anderson, Iain Lykidis, Athanasios Mavromatis, Konstantinos Ivanova, Natalia N. Kyrpides, Nikos C. TI The integrated microbial genomes system: an expanding comparative analysis resource SO NUCLEIC ACIDS RESEARCH LA English DT Article ID RNA GENES; DATABASE; ANNOTATION; TOOLS AB The integrated microbial genomes (IMG) system serves as a community resource for comparative analysis of publicly available genomes in a comprehensive integrated context. IMG contains both draft and complete microbial genomes integrated with other publicly available genomes from all three domains of life, together with a large number of plasmids and viruses. IMG provides tools and viewers for analyzing and reviewing the annotations of genes and genomes in a comparative context. Since its first release in 2005, IMG's data content and analytical capabilities have been constantly expanded through regular releases. Several companion IMG systems have been set up in order to serve domain specific needs, such as expert review of genome annotations. IMG is available at http://img.jgi.doe.gov. C1 [Markowitz, Victor M.; Chen, I-Min A.; Palaniappan, Krishna; Chu, Ken; Szeto, Ernest; Grechkin, Yuri; Ratner, Anna] Univ Calif Berkeley, Lawrence Berkeley Lab, Biol Data Management & Technol Ctr, Berkeley, CA 94720 USA. RP Markowitz, VM (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Biol Data Management & Technol Ctr, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM VMMarkowitz@lbl.gov; nckyrpides@lbl.gov RI Kyrpides, Nikos/A-6305-2014 OI Kyrpides, Nikos/0000-0002-6131-0462 FU Office of Science; Office of Biological and Environmental Research; Life Sciences Division; U.S. Department of Energy [DE-AC0205CH11231]; Lawrence Berkeley National Laboratory FX Director, Office of Science, Office of Biological and Environmental Research, Life Sciences Division, U.S. Department of Energy (Contract No. DE-AC0205CH11231). Funding for open access charge: Lawrence Berkeley National Laboratory. NR 29 TC 149 Z9 151 U1 2 U2 10 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0305-1048 J9 NUCLEIC ACIDS RES JI Nucleic Acids Res. PD JAN PY 2010 VL 38 SU 1 BP D382 EP D390 DI 10.1093/nar/gkp887 PG 9 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 579TV UT WOS:000276399100060 PM 19864254 ER PT J AU Mi, HY Dong, Q Muruganujan, A Gaudet, P Lewis, S Thomas, PD AF Mi, Huaiyu Dong, Qing Muruganujan, Anushya Gaudet, Pascale Lewis, Suzanna Thomas, Paul D. TI PANTHER version 7: improved phylogenetic trees, orthologs and collaboration with the Gene Ontology Consortium SO NUCLEIC ACIDS RESEARCH LA English DT Article ID FUNCTION EVOLUTION DATA; PROTEIN-SEQUENCE; DATABASE; BIOLOGY; ANNOTATIONS; PATHWAYS AB Protein Analysis THrough Evolutionary Relationships (PANTHER) is a comprehensive software system for inferring the functions of genes based on their evolutionary relationships. Phylogenetic trees of gene families form the basis for PANTHER and these trees are annotated with ontology terms describing the evolution of gene function from ancestral to modern day genes. One of the main applications of PANTHER is in accurate prediction of the functions of uncharacterized genes, based on their evolutionary relationships to genes with functions known from experiment. The PANTHER website, freely available at http://www.pantherdb.org, also includes software tools for analyzing genomic data relative to known and inferred gene functions. Since 2007, there have been several new developments to PANTHER: (i) improved phylogenetic trees, explicitly representing speciation and gene duplication events, (ii) identification of gene orthologs, including least diverged orthologs (best one-to-one pairs), (iii) coverage of more genomes (48 genomes, up to 87% of genes in each genome; see http://www.pantherdb.org/panther/summaryStats. jsp), (iv) improved support for alternative database identifiers for genes, proteins and microarray probes and (v) adoption of the SBGN standard for display of biological pathways. In addition, PANTHER trees are being annotated with gene function as part of the Gene Ontology Reference Genome project, resulting in an increasing number of curated functional annotations. C1 [Mi, Huaiyu; Dong, Qing; Muruganujan, Anushya; Thomas, Paul D.] SRI Int, Evolutionary Syst Biol Grp, Menlo Pk, CA 94025 USA. [Gaudet, Pascale] Northwestern Univ, Evanston, IL 60208 USA. [Lewis, Suzanna] Lawrence Berkeley Natl Lab, BBOP, Berkeley, CA USA. RP Thomas, PD (reprint author), SRI Int, Evolutionary Syst Biol Grp, 333 Ravenswood Ave, Menlo Pk, CA 94025 USA. EM paul.thomas@sri.com OI Lewis, Suzanna/0000-0002-8343-612X FU National Institute of General Medical Sciences [GM081084] FX National Institute of General Medical Sciences (GM081084). Funding for open access: SRI International. NR 26 TC 212 Z9 220 U1 3 U2 15 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0305-1048 J9 NUCLEIC ACIDS RES JI Nucleic Acids Res. PD JAN PY 2010 VL 38 SU 1 BP D204 EP D210 DI 10.1093/nar/gkp1019 PG 7 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 579TV UT WOS:000276399100031 PM 20015972 ER PT J AU Novichkov, PS Laikova, ON Novichkova, ES Gelfand, MS Arkin, AP Dubchak, I Rodionov, DA AF Novichkov, Pavel S. Laikova, Olga N. Novichkova, Elena S. Gelfand, Mikhail S. Arkin, Adam P. Dubchak, Inna Rodionov, Dmitry A. TI RegPrecise: a database of curated genomic inferences of transcriptional regulatory interactions in prokaryotes SO NUCLEIC ACIDS RESEARCH LA English DT Article ID NAD METABOLISM; MYCOBACTERIUM-TUBERCULOSIS; GAMMA-PROTEOBACTERIA; BACILLUS-SUBTILIS; GENE-REGULATION; NETWORKS; BACTERIA; REGULON; RECONSTRUCTION; IDENTIFICATION AB The RegPrecise database (http://regprecise.lbl.gov) was developed for capturing, visualization and analysis of predicted transcription factor regulons in prokaryotes that were reconstructed and manually curated by utilizing the comparative genomic approach. A significant number of high-quality inferences of transcriptional regulatory interactions have been already accumulated for diverse taxonomic groups of bacteria. The reconstructed regulons include transcription factors, their cognate DNA motifs and regulated genes/operons linked to the candidate transcription factor binding sites. The RegPrecise allows for browsing the regulon collections for: (i) conservation of DNA binding sites and regulated genes for a particular regulon across diverse taxonomic lineages; (ii) sets of regulons for a family of transcription factors; (iii) repertoire of regulons in a particular taxonomic group of species; (iv) regulons associated with a metabolic pathway or a biological process in various genomes. The initial release of the database includes similar to 11 500 candidate binding sites for similar to 400 orthologous groups of transcription factors from over 350 prokaryotic genomes. Majority of these data are represented by genome-wide regulon reconstructions in Shewanella and Streptococcus genera and a large-scale prediction of regulons for the LacI family of transcription factors. Another section in the database represents the results of accurate regulon propagation to the closely related genomes. C1 [Gelfand, Mikhail S.; Rodionov, Dmitry A.] Russian Acad Sci, Inst Informat Transmiss Problems, Moscow 127994, Russia. [Novichkov, Pavel S.; Novichkova, Elena S.; Arkin, Adam P.; Dubchak, Inna] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Laikova, Olga N.] State Sci Ctr GosNIIGenetika, Moscow 117545, Russia. [Gelfand, Mikhail S.] Moscow MV Lomonosov State Univ, Fac Bioengn & Bioinformat, Moscow 119992, Russia. [Arkin, Adam P.] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94704 USA. [Dubchak, Inna] Joint Genome Inst, Dept Energy, Walnut Creek, CA 94598 USA. [Rodionov, Dmitry A.] Burnham Inst Med Res, La Jolla, CA 92037 USA. RP Rodionov, DA (reprint author), Russian Acad Sci, Inst Informat Transmiss Problems, Moscow 127994, Russia. EM rodionov@burnham.org RI Gelfand, Mikhail/F-3425-2012; Arkin, Adam/A-6751-2008; OI Arkin, Adam/0000-0002-4999-2931; Rodionov, Dmitry/0000-0002-0939-390X FU U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research, Genomics Program [DE-AC02-05CH11231]; U.S. Department of Energy; National Science Foundation [DBI-0850546]; Howard Hughes Medical Institute [55005610]; Russian Fund for Basic Research [08-04-01000, 09-04-92745]; Russian Academy of Sciences; Russian Science Agency [2.740. 11.0101]; Russian President's grant for young scientists [MK-422.2009.4] FX This work was part of the Virtual Institute for Microbial Stress and Survival (http://VIMSS.lbl.gov) supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research, Genomics Program: GTL through contract DE-AC02-05CH11231 between Lawrence Berkeley National Laboratory and the U.S. Department of Energy; National Science Foundation (award DBI-0850546 to D. A. R.), Howard Hughes Medical Institute (55005610 to M. S. G.); Russian Fund for Basic Research (08-04-01000 to D. A. R. and 09-04-92745 to M. S. G.); Russian Academy of Sciences (program 'Molecular and Cellular Biology' to D. A. R and M. S. G.), Russian Science Agency (contract 2.740. 11.0101 to M. S. G.), and Russian President's grant for young scientists (MK-422.2009.4 to D. A. R.). Funding for open access charge: US Department of Energy (DE-AC02-05CH11231). NR 40 TC 111 Z9 113 U1 2 U2 12 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0305-1048 J9 NUCLEIC ACIDS RES JI Nucleic Acids Res. PD JAN PY 2010 VL 38 SU 1 BP D111 EP D118 DI 10.1093/nar/gkp894 PG 8 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 579TV UT WOS:000276399100018 PM 19884135 ER PT J AU Ulrich, LE Zhulin, IB AF Ulrich, Luke E. Zhulin, Igor B. TI The MiST2 database: a comprehensive genomics resource on microbial signal transduction SO NUCLEIC ACIDS RESEARCH LA English DT Article ID BACTERIAL CHEMOTAXIS; SIGMA FACTORS; SEQUENCE; PREDICTION; EVOLUTION AB The MiST2 database (http://mistdb.com) identifies and catalogs the repertoire of signal transduction proteins in microbial genomes. Signal transduction systems regulate the majority of cellular activities including the metabolism, development, host-recognition, biofilm production, virulence, and antibiotic resistance of human pathogens. Thus, knowledge of the proteins and interactions that comprise these communication networks is an essential component to furthering biomedical discovery. These are identified by searching protein sequences for specific domain profiles that implicate a protein in signal transduction. Compared to the previous version of the database, MiST2 contains a host of new features and improvements including the following: draft genomes; extra-cytoplasmic function (ECF) sigma factor protein identification; enhanced classification of signaling proteins; novel, high-quality domain models for identifying histidine kinases and response regulators; neighboring two-component genes; gene cart; better search capabilities; enhanced taxonomy browser; advanced genome browser; and a modern, biologist-friendly web interface. MiST2 currently contains 966 complete and 157 draft bacterial and archaeal genomes, which collectively contain more than 245 000 signal transduction proteins. The majority (66%) of these are one-component systems, followed by two-component proteins (26%), chemotaxis (6%), and finally ECF factors (2%). C1 [Ulrich, Luke E.] Agile Genom LLC, Mt Pleasant, SC 29466 USA. [Ulrich, Luke E.; Zhulin, Igor B.] Univ Tennessee, Dept Microbiol, Knoxville, TN 37996 USA. [Zhulin, Igor B.] Oak Ridge Natl Lab, BioEnergy Sci Ctr, Oak Ridge, TN 37886 USA. [Zhulin, Igor B.] Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN 37886 USA. RP Ulrich, LE (reprint author), Agile Genom LLC, Mt Pleasant, SC 29466 USA. EM ulrich.luke+sci@gmail.com RI Zhulin, Igor/A-2308-2012 OI Zhulin, Igor/0000-0002-6708-5323 FU National Institutes of Health [GM083177, GM72285]; South Carolina Research Association; Office of Biological and Environmental Research in the DOE Office of Science FX National Institutes of Health (GM083177 to L.E.U. and GM72285 to I.B.Z., partial); South Carolina Research Association (2008-009 to L.E.U.); BioEnergy Science Center which is supported by the Office of Biological and Environmental Research in the DOE Office of Science. Funding for open access charge: BioEnergy Science Center which is supported by the Office of Biological and Environmental Research in the DOE Office of Science. NR 32 TC 115 Z9 117 U1 3 U2 12 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0305-1048 J9 NUCLEIC ACIDS RES JI Nucleic Acids Res. PD JAN PY 2010 VL 38 SU 1 BP D401 EP D407 DI 10.1093/nar/gkp940 PG 7 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 579TV UT WOS:000276399100063 PM 19900966 ER PT S AU Spotz, W Kominarczuk, J AF Spotz, William Kominarczuk, Jakub BA Simos, TE BF Simos, TE BE Psihoyios, G Tsitouras, C TI Generalized High Order Compact Methods SO NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS I-III SE AIP Conference Proceedings LA English DT Proceedings Paper CT International Conference on Numerical Analysis and Applied Mathematics CY SEP 19-25, 2010 CL Rhodes, GREECE SP European Soc Comp Methods Sci & Engn DE high order compact methods; generalized finite difference method ID CONVECTION-DIFFUSION EQUATION; ACCURACY MULTIGRID SOLUTION; FINITE-DIFFERENCE METHOD; VARIABLE-COEFFICIENTS; ARBITRARY MESHES; SCHEME; GRIDS AB The fundamental ideas of the high order compact method are combined with the generalized finite difference method. The result is a finite difference method that works on unstructured, nonuniform grids, and is more accurate than one would classically expect from the number of grid points employed. C1 [Spotz, William] Sandia Natl Labs, Livermore, CA 94550 USA. [Kominarczuk, Jakub] Univ Calif Berkeley, Berkeley, CA 94720 USA. RP Spotz, W (reprint author), Sandia Natl Labs, Livermore, CA 94550 USA. NR 20 TC 0 Z9 0 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-0834-0 J9 AIP CONF PROC PY 2010 VL 1281 BP 765 EP + PG 2 WC Engineering, Multidisciplinary; Mathematics, Applied; Physics, Applied; Physics, Multidisciplinary; Physics, Mathematical SC Engineering; Mathematics; Physics GA BUK49 UT WOS:000289661500201 ER PT S AU Strohmaier, E Williams, S Kaiser, A Madduri, K Ibrahim, K Bailey, D Demmel, JW AF Strohmaier, Erich Williams, Samuel Kaiser, Alex Madduri, Kamesh Ibrahim, Khaled Bailey, David Demmel, James W. BA Simos, TE BF Simos, TE BE Psihoyios, G Tsitouras, C TI A Kernel Testbed for Parallel Architecture, Language, and Performance Research SO NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS I-III SE AIP Conference Proceedings LA English DT Proceedings Paper CT International Conference on Numerical Analysis and Applied Mathematics CY SEP 19-25, 2010 CL Rhodes, GREECE SP European Soc Comp Methods Sci & Engn DE Computer Architecture; Computer Programming; Computer System Performance Evaluation C1 [Strohmaier, Erich; Williams, Samuel; Kaiser, Alex; Madduri, Kamesh; Ibrahim, Khaled; Bailey, David; Demmel, James W.] Univ Calif Berkeley, Lawrence Berkeley Lab, Computat Res Div, Berkeley, CA 94720 USA. RP Strohmaier, E (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Computat Res Div, Berkeley, CA 94720 USA. NR 5 TC 0 Z9 0 U1 0 U2 10 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-0834-0 J9 AIP CONF PROC PY 2010 VL 1281 BP 1297 EP 1300 DI 10.1063/1.3497950 PG 4 WC Engineering, Multidisciplinary; Mathematics, Applied; Physics, Applied; Physics, Multidisciplinary; Physics, Mathematical SC Engineering; Mathematics; Physics GA BUK49 UT WOS:000289661500347 ER PT S AU Rodrigues, A Dosanjh, S Hemmert, S AF Rodrigues, Arun Dosanjh, Sudip Hemmert, Scott BA Simos, TE BF Simos, TE BE Psihoyios, G Tsitouras, C TI Co-design for High Performance Computing SO NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS I-III SE AIP Conference Proceedings LA English DT Proceedings Paper CT International Conference on Numerical Analysis and Applied Mathematics CY SEP 19-25, 2010 CL Rhodes, GREECE SP European Soc Comp Methods Sci & Engn DE Exascale computing; co-design; high performance computing; system simulation AB Co-design has been identified as a key strategy for achieving Exascale computing in this decade. This paper de scribes the need for co-design in High Performance Computing, related research in embedded computing and the development of hardware/software co-simulation methods. C1 [Rodrigues, Arun; Dosanjh, Sudip; Hemmert, Scott] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Rodrigues, A (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. NR 11 TC 0 Z9 0 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-0834-0 J9 AIP CONF PROC PY 2010 VL 1281 BP 1309 EP 1312 DI 10.1063/1.3497955 PG 4 WC Engineering, Multidisciplinary; Mathematics, Applied; Physics, Applied; Physics, Multidisciplinary; Physics, Mathematical SC Engineering; Mathematics; Physics GA BUK49 UT WOS:000289661500350 ER PT S AU Agouzal, A Lipnikov, K Vassilevski, Y AF Agouzal, Abdelattif Lipnikov, Konstantin Vassilevski, Yuri BA Simos, TE BF Simos, TE BE Psihoyios, G Tsitouras, C TI Adaptive Solution of PDEs on Anisotropic Triangular Meshes SO NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS I-III SE AIP Conference Proceedings LA English DT Proceedings Paper CT International Conference on Numerical Analysis and Applied Mathematics CY SEP 19-25, 2010 CL Rhodes, GREECE SP European Soc Comp Methods Sci & Engn DE anisotropic meshes; adaptive meshes; PDEs; finite elements AB We describe a method for generating anisotropic adaptive meshes for finite element solution of second-order PDEs. The adaptive meshes allows us to minimize the gradient of a discretization error. The key element of this method is construction of a tensor metric from edge-based error estimates. We verify with numerical experiments that for a mesh with N triangles, the energy norm of the discretization error is proportional to N-1/2 even for strongly anisotropic meshes. C1 [Agouzal, Abdelattif] Univ Lyon 1, Equipe Anal Numer Lyon St Etienne, Anal Numer Lab, Bat 101, F-69622 Villeurbanne, France. [Lipnikov, Konstantin] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Vassilevski, Yuri] Russian Acad Sci, Inst Numer Mathemat, Moscow, Russia. RP Agouzal, A (reprint author), Univ Lyon 1, Equipe Anal Numer Lyon St Etienne, Anal Numer Lab, Bat 101, F-69622 Villeurbanne, France. RI Vassilevski, Yuri/A-6068-2016 FU Russian Foundation for Basic Research [08-01-00159, 09-01-00115]; RAS program "Optimal methods for problems of mathematical physics",; Federal program "Scientific and pedagogical personnel of innovative Russia" FX Research of the third author was supported in part by the Russian Foundation for Basic Research through grants 08-01-00159, 09-01-00115, by the RAS program Optimal methods for problems of mathematical physics, and by the Federal program Scientific and pedagogical personnel of innovative Russia. NR 12 TC 0 Z9 0 U1 0 U2 1 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-0834-0 J9 AIP CONF PROC PY 2010 VL 1281 BP 1558 EP + PG 2 WC Engineering, Multidisciplinary; Mathematics, Applied; Physics, Applied; Physics, Multidisciplinary; Physics, Mathematical SC Engineering; Mathematics; Physics GA BUK49 UT WOS:000289661501035 ER PT S AU Bihari, BL AF Bihari, Barna L. BA Simos, TE BF Simos, TE BE Psihoyios, G Tsitouras, C TI Looking for a Few Good Codes: The Search for Algorithms that Match Tomorrow's Computers SO NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS I-III SE AIP Conference Proceedings LA English DT Proceedings Paper CT International Conference on Numerical Analysis and Applied Mathematics CY SEP 19-25, 2010 CL Rhodes, GREECE SP European Soc Comp Methods Sci & Engn DE Algorithms; Multi-physics; Simulations; Parallel Computing; Computer Architecture C1 Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Bihari, BL (reprint author), Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94550 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-0834-0 J9 AIP CONF PROC PY 2010 VL 1281 BP 1761 EP 1763 PG 3 WC Engineering, Multidisciplinary; Mathematics, Applied; Physics, Applied; Physics, Multidisciplinary; Physics, Mathematical SC Engineering; Mathematics; Physics GA BUK49 UT WOS:000289661501093 ER PT S AU Bihari, BL AF Bihari, Barna L. BA Simos, TE BF Simos, TE BE Psihoyios, G Tsitouras, C TI Applicability of Transactional Memory to Modern Codes SO NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS I-III SE AIP Conference Proceedings LA English DT Proceedings Paper CT International Conference on Numerical Analysis and Applied Mathematics CY SEP 19-25, 2010 CL Rhodes, GREECE SP European Soc Comp Methods Sci & Engn DE Algorithms; Transactional Memory; Finite Volume; Monte Carlo AB In this paper we illustrate the features and study the applicability of transactional memory (TM) as an efficient and easy-to-use alternative for handling memory conflicts in multi-theaded physics simulations that use shared memory. The tool used for our preliminary analysis of this novel construct is IBM's freely available Software Transactional Memory (STM) system. Instead of attempting to apply it to a production grade simulation code, we developed a much simpler test code that exhibits most of the salient features of modern unstructured mesh algorithms, but without the complicated physical models. We apply STM to two frequently used algorithms in realistic multi-physics codes. Our computational experiments indicate a good fit between these application scenarios and the TM features. C1 Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Bihari, BL (reprint author), Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94550 USA. NR 4 TC 2 Z9 2 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-0834-0 J9 AIP CONF PROC PY 2010 VL 1281 BP 1764 EP 1767 DI 10.1063/1.3498214 PG 4 WC Engineering, Multidisciplinary; Mathematics, Applied; Physics, Applied; Physics, Multidisciplinary; Physics, Mathematical SC Engineering; Mathematics; Physics GA BUK49 UT WOS:000289661501094 ER PT S AU Rajan, M Doerfler, D AF Rajan, Mahesh Doerfler, Douglas BA Simos, TE BF Simos, TE BE Psihoyios, G Tsitouras, C TI HPC Application Performance and Scaling: Understanding Trends and Future Challenges with Application Benchmarks on past, Present and Future Tri-Lab Computing Systems SO NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS I-III SE AIP Conference Proceedings LA English DT Proceedings Paper CT International Conference on Numerical Analysis and Applied Mathematics CY SEP 19-25, 2010 CL Rhodes, GREECE SP European Soc Comp Methods Sci & Engn DE HPC; computer architectures; application performance; parallel scaling AB In this paper HPC architectural characteristics and their impact on application performance and scaling are investigated. Performance data gathered over several generations of very large HPC systems like: ASC Red Storm, ASC Purple, and a large InfiniBand cluster - Red Sky, are analyzed. As the number of cache coherent cores and number of NUMA domains at a compute node keeps increasing, we analyze their impact with a few simple benchmarks and several applications. We present bottlenecks and remedies examining production applications. We conclude with preliminary early-hardware performance data from the ASC Cielo, a petaFLOPS class future capability system. C1 [Rajan, Mahesh; Doerfler, Douglas] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Rajan, M (reprint author), Sandia Natl Labs, POB 5800,MS 0807, Albuquerque, NM 87185 USA. NR 7 TC 0 Z9 0 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-0834-0 J9 AIP CONF PROC PY 2010 VL 1281 BP 1777 EP 1780 DI 10.1063/1.3498221 PG 4 WC Engineering, Multidisciplinary; Mathematics, Applied; Physics, Applied; Physics, Multidisciplinary; Physics, Mathematical SC Engineering; Mathematics; Physics GA BUK49 UT WOS:000289661501097 ER PT S AU Kaushik, D Keyes, D Allsopp, N Balay, S Smith, B AF Kaushik, Dinesh Keyes, David Allsopp, Nicholas Balay, Satish Smith, Barry BA Simos, TE BF Simos, TE BE Psihoyios, G Tsitouras, C TI Hierarchical Programming Models for Exascale Computing Potential and Challenges SO NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS I-III SE AIP Conference Proceedings LA English DT Proceedings Paper CT International Conference on Numerical Analysis and Applied Mathematics CY SEP 19-25, 2010 CL Rhodes, GREECE SP European Soc Comp Methods Sci & Engn C1 [Kaushik, Dinesh; Keyes, David; Allsopp, Nicholas; Balay, Satish; Smith, Barry] King Abdullah Univ Sci & Technol, Thuwal, Saudi Arabia. [Balay, Satish; Smith, Barry] Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. RP Kaushik, D (reprint author), King Abdullah Univ Sci & Technol, Thuwal, Saudi Arabia. EM dinesh.kaushik@kaust.edu.sa; david.keyes@kaust.edu.sa; nicholas.allsopp@kaust.edu.sa; balay@mcs.anl.gov; bsmithi@mcs.anl.gov OI Keyes, David Elliot/0000-0002-4052-7224 NR 2 TC 0 Z9 0 U1 0 U2 2 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-0834-0 J9 AIP CONF PROC PY 2010 VL 1281 BP 1783 EP + DI 10.1063/1.3498226 PG 2 WC Engineering, Multidisciplinary; Mathematics, Applied; Physics, Applied; Physics, Multidisciplinary; Physics, Mathematical SC Engineering; Mathematics; Physics GA BUK49 UT WOS:000289661501100 ER PT J AU Hamilton, JR Hills, RG AF Hamilton, J. R. Hills, R. G. TI Relation of Validation Experiments to Applications SO NUMERICAL HEAT TRANSFER PART B-FUNDAMENTALS LA English DT Article ID COMPUTATIONAL FLUID-DYNAMICS; MODEL VALIDATION; RESOLVING POWER; SIMULATION; VERIFICATION; UNCERTAINTY; DISCRETE AB Model validation efforts often use a suite of experiments to provide data to test models for predictive use for a targeted application. A question that naturally arises is oDoes the experimental suite provide data to adequately test the target application model?o The goal of this article is to develop methodology to partially address this question. The methodology utilizes computational models for the individual test suite experiments and for the target application, to assess coverage. The impact of uncertainties in model parameters on the assessment is addressed. Simple linear and nonlinear heat conduction examples of the methodology are provided. C1 [Hills, R. G.] Sandia Natl Labs, Dept 1544, Albuquerque, NM 87185 USA. [Hamilton, J. R.] New Mexico State Univ, Dept Mech & Aerosp Engn, Las Cruces, NM 88003 USA. RP Hills, RG (reprint author), Sandia Natl Labs, Dept 1544, Albuquerque, NM 87185 USA. EM rhills@sandia.gov FU U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000]; SNL [237203] FX This work was performed at Sandia National Laboratories (SNL), which is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. Some work was performed at New Mexico State University through a contract with SNL under PO #237203. The authors wish to thank Tim Trucano, Kevin Dowding, Martin Pilch, and Laura Swiler of Sandia National Laboratories, Albuquerque, New Mexico, for their insight and support during the development of this methodology. NR 36 TC 1 Z9 1 U1 1 U2 6 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 530 WALNUT STREET, STE 850, PHILADELPHIA, PA 19106 USA SN 1040-7790 EI 1521-0626 J9 NUMER HEAT TR B-FUND JI Numer Heat Tranf. B-Fundam. PY 2010 VL 57 IS 5 BP 307 EP 332 AR PII 923237552 DI 10.1080/10407790.2010.481487 PG 26 WC Thermodynamics; Mechanics SC Thermodynamics; Mechanics GA 615FU UT WOS:000279120300001 ER PT J AU Hamilton, JR Hills, RG AF Hamilton, J. R. Hills, R. G. TI Relation of Validation Experiments to Applications: A Nonlinear Approach SO NUMERICAL HEAT TRANSFER PART B-FUNDAMENTALS LA English DT Article ID COMPUTATIONAL FLUID-DYNAMICS; RESOLVING POWER; SIMULATION; VERIFICATION; UNCERTAINTY; DISCRETE; MODEL AB Model validation efforts often use a suite of experiments to provide data to test models for predictive use for a targeted application. A question that naturally arises is oDoes the experimental suite provide data to adequately test the target application model?o The goal of this article is to develop methodology to partially address this question by utilizing computational models for the individual test suite experiments and for the target application, coupled with linear and nonlinear optimization techniques. The results show that the nonlinear methodology developed represents a significant improvement in ability to address this question, for the application considered. C1 [Hills, R. G.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Hamilton, J. R.] New Mexico State Univ, Dept Mech & Aerosp Engn, Las Cruces, NM 88003 USA. RP Hills, RG (reprint author), Sandia Natl Labs, POB 5800,MS 0828, Albuquerque, NM 87185 USA. EM rghills@sandia.gov FU U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000]; SNL [237203]; Sandia National Laboratories, Albuquerque, New Mexico FX Work reported here was performed at Sandia National Laboratories (SNL), which is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. Some work was performed at New Mexico State University through a contract with SNL under PO #237203. The authors wish to thank Tim Trucano, Kevin Dowding, Martin Pilch, and Laura Swiler of Sandia National Laboratories, Albuquerque, New Mexico, for their insight and support during the development of this methodology. NR 33 TC 1 Z9 1 U1 0 U2 4 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 530 WALNUT STREET, STE 850, PHILADELPHIA, PA 19106 USA SN 1040-7790 EI 1521-0626 J9 NUMER HEAT TR B-FUND JI Numer Heat Tranf. B-Fundam. PY 2010 VL 57 IS 6 BP 373 EP 395 AR PII 923933676 DI 10.1080/10407790.2010.496661 PG 23 WC Thermodynamics; Mechanics SC Thermodynamics; Mechanics GA 622BR UT WOS:000279634000001 ER PT B AU Klein, RI AF Klein, Richard I. BE Pogorelov, NV Audit, E Zank, GP TI Feedback Effects in the High Mass and Low Mass Star Formation SO NUMERICAL MODELING OF SPACE PLASMA FLOWS ASTRONUM-2009 SE Astronomical Society of the Pacific Conference Series LA English DT Proceedings Paper CT 4th International Conference on Numerical Modeling of Space Plasma Flows Astronum 2009 CY JUN 29-JUL 03, 2009 CL Congress Ctr Majestic, Chamonix, FRANCE HO Congress Ctr Majestic ID MOLECULAR CLOUD CORES; RADIATIVE-TRANSFER; FRAGMENTATION; COLLAPSE; OUTFLOWS; EVOLUTION; LIMIT AB The formation of massive stars remains one of the most significant unsolved problems in astrophysics, with implications for the formation of the elements and the structure and evolution of galaxies. It is these stars, with masses greater than 8-10 solar masses, that eventually explode as supernovae and produce most of the heavy elements in the universe, dominate the energy injection into the interstellar medium of galaxies and by injecting both heavy elements and energy into the surrounding medium, shape the evolution of galaxies. Despite the importance of massive star formation, relatively little is known about them theoretically as they pose a major theoretical challenge: How is it possible to sustain a sufficiently high mass accretion rate into a protostellar core despite the radiation pressure on the accreting envelope? I discuss our work on the first 3D simulations of massive star formation. Using our high resolution 3D radiation-hydrodynamic adaptive mesh refinement code ORION with a v/c correct treatment of the radiation transport, we have investigated the formation of high mass stars from both smooth and turbulent initial conditions in the collapsing massive core. I discuss our work on identifying 2 new mechanisms that efficiently solve the problem of the Eddington barrier to high mass star formation; the presence of 3D Rayleigh Taylor instabilities in radiation driven bubbles present in the accreting envelope and the feedback due to protostellar outflows providing radiation an escape mechanism from the accreting envelope in addition to the feedback from protostellar radiation and its affect on stellar multiplicity. 11 also discuss the effects of radiative transfer on low mass star formation in a turbulent molecular cloud. I compare the distribution of stellar masses, accretion rates, and temperatures in the cases with and without radiative transfer, and demonstrate that radiative feedback has profound effect on accretion, multiplicity, and mass by reducing the number of stars formed and the total rate at which gas turns into stars. Calculations that omit radiative feedback from protostars significantly underestimate the gas temperature and the strength of tins effect. C1 Lawrence Livermore Natl Lab, Livermore, CA USA. RP Klein, RI (reprint author), Lawrence Livermore Natl Lab, Livermore, CA USA. NR 22 TC 0 Z9 0 U1 0 U2 0 PU ASTRONOMICAL SOC PACIFIC PI SAN FRANCISCO PA 390 ASHTON AVE, SAN FRANCISCO, CA 94112 USA BN 978-1-58381-738-4 J9 ASTR SOC P PY 2010 VL 429 BP 97 EP 105 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA BTR17 UT WOS:000287839100016 ER PT B AU Lee, D Dubey, A Olson, K Weide, K Antypas, K AF Lee, Dongwook Dubey, Anshu Olson, Kevin Weide, Klaus Antypas, Katerina BE Pogorelov, NV Audit, E Zank, GP TI Exploiting the Extensibility of the FLASH Code Architecture for Unsplit Time Integration SO NUMERICAL MODELING OF SPACE PLASMA FLOWS ASTRONUM-2009 SE Astronomical Society of the Pacific Conference Series LA English DT Proceedings Paper CT 4th International Conference on Numerical Modeling of Space Plasma Flows Astronum 2009 CY JUN 29-JUL 03, 2009 CL Congress Ctr Majestic, Chamonix, FRANCE HO Congress Ctr Majestic ID MAGNETOHYDRODYNAMICS; HYDRODYNAMICS AB FLASH is a component-based massively parallel multiphysics simulation code with a wide user base. The time integration in FLASH was originally designed using Strang operator splitting for hydrodynamics. In version 3 of the FLASH release, we added an Unsplit Staggered Mesh Magnetohydrodynamics (USM-MHD) solver based on the constrained transport method of Lee and Deane. This method tested and exercised the modularity and extensibility of the FLASH code architecture, with abstraction of time integration and solution mesh from solvers being the focus. In this paper we present the relevant architectural details of the FLASH code that facilitated the incorporation of unsplit time integration into a. primarily directionally split framework. Additionally, we discuss the challenges posed by adaptive mesh refinement to the USM-MHD solver and their solutions. Finally we present analysis of the relative computational performance split versus unsplit methods, and also the weak scaling performance of the unsplit USM-MHD solver in a parallel environment. C1 [Lee, Dongwook; Dubey, Anshu; Weide, Klaus] Univ Chicago, ASC FLASH Ctr, 5640 S Ellis, Chicago, IL 60637 USA. [Olson, Kevin] Drexel Univ, Dept Phys, Philadelphia, PA 19104 USA. [Antypas, Katerina] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Lee, D (reprint author), Univ Chicago, ASC FLASH Ctr, 5640 S Ellis, Chicago, IL 60637 USA. FU ASC/Alliance Center for Astrophysical Thermonuclear Flashes at the University of Chicago; U.S. Department of Energy to the Center for Astrophysical Thermonuclear Flashes at the University of Chicago [B523820] FX The FLASH code has been developed by the DOE- supported ASC/Alliance Center for Astrophysical Thermonuclear Flashes at the University of Chicago. This work is supported by the U.S. Department of Energy under Grant No. B523820 to the Center for Astrophysical Thermonuclear Flashes at the University of Chicago. NR 7 TC 1 Z9 1 U1 0 U2 3 PU ASTRONOMICAL SOC PACIFIC PI SAN FRANCISCO PA 390 ASHTON AVE, SAN FRANCISCO, CA 94112 USA BN 978-1-58381-738-4 J9 ASTR SOC P PY 2010 VL 429 BP 247 EP + PG 2 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA BTR17 UT WOS:000287839100038 ER PT B AU Clyne, J Gruchalla, K Rast, M AF Clyne, John Gruchalla, Kenny Rast, Mark BE Pogorelov, NV Audit, E Zank, GP TI VAPOR: Visual, Statistical, and Structural Analysis of Astrophysical Flows SO NUMERICAL MODELING OF SPACE PLASMA FLOWS ASTRONUM-2009 SE Astronomical Society of the Pacific Conference Series LA English DT Proceedings Paper CT 4th International Conference on Numerical Modeling of Space Plasma Flows Astronum 2009 CY JUN 29-JUL 03, 2009 CL Congress Ctr Majestic, Chamonix, FRANCE HO Congress Ctr Majestic AB In this paper we discuss recent developments in the capabilities of VAPOR: a desktop application that leverages today's powerful CPUs and GPUs to enable visualization and analysis of terascale data sets using only a commodity PC or laptop. We review VAPOR's current capabilities, highlighting support for Adaptive Mesh Refinement (AMR) grids, and present new developments in interactive feature-based visualization and statistical analysis. C1 [Clyne, John] Natl Ctr Atmospher Res, POB 3000, Boulder, CO 80307 USA. [Gruchalla, Kenny] Natl Renewable Energy Lab, Golden, CO USA. [Rast, Mark] Univ Colorado, Boulder, CO USA. RP Clyne, J (reprint author), Natl Ctr Atmospher Res, POB 3000, Boulder, CO 80307 USA. FU National Science Foundation [ITR-0325934] FX This work was funded in part by the National Science Foundation under grant ITR-0325934. The AMR plume data was provided by Matthias Rempel, and that of Taylor-Green turbulence by Pablo Mininni. NR 13 TC 0 Z9 0 U1 0 U2 0 PU ASTRONOMICAL SOC PACIFIC PI SAN FRANCISCO PA 390 ASHTON AVE, SAN FRANCISCO, CA 94112 USA BN 978-1-58381-738-4 J9 ASTR SOC P PY 2010 VL 429 BP 323 EP + PG 2 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA BTR17 UT WOS:000287839100048 ER PT B AU Weber, GH Ahern, S Bethel, EW Borovikov, S Childs, HR Deines, E Garth, C Hagen, H Hamann, B Joy, KI Martin, D Meredith, J Prabhat Pugmire, D Rubel, O Van Straalen, B Wu, K AF Weber, G. H. Ahern, S. Bethel, E. W. Borovikov, S. Childs, H. R. Deines, E. Garth, C. Hagen, H. Hamann, B. Joy, K. I. Martin, D. Meredith, J. Prabhat Pugmire, D. Ruebel, O. Van Straalen, B. Wu, K. BE Pogorelov, NV Audit, E Zank, GP TI Recent Advances in VisIt: AMR Streamlines and Query-driven Visualization SO NUMERICAL MODELING OF SPACE PLASMA FLOWS ASTRONUM-2009 SE Astronomical Society of the Pacific Conference Series LA English DT Proceedings Paper CT 4th International Conference on Numerical Modeling of Space Plasma Flows Astronum 2009 CY JUN 29-JUL 03, 2009 CL Congress Ctr Majestic, Chamonix, FRANCE HO Congress Ctr Majestic AB Adaptive Mesh Refinement (AMR) is a highly effective method for simulations spanning a large range of spatiotemporal scales such as those encountered in astrophysical simulations. Combining research in novel AMR visualization algorithms and basic infrastructure work, the Department of Energy (DOE) Scientific Discovery through Advanced Computing (SciDAC) Visualization and Analytics Center for Enabling Technologies (VACET) has extended Visit, an open source visualization tool that can handle AMR data without converting it to alternate representations. This paper focuses on two recent advances in the development of VisIt. First, we have developed streamline computation methods that properly handle multi-domain data sets and utilize effectively multiple processors on parallel machines. Furthermore, we are working on streamline calculation methods that consider an AMR hierarchy and detect transitions from a lower resolution patch into a finer patch and improve interpolation at level boundaries. Second, we focus on visualization of large-scale particle data sets. By integrating the DOE Scientific Data Management (SDM) Center's FastBit indexing technology into Visit, we are able to reduce particle counts effectively by thresholding and by loading only those particles from disk that satisfy the thresholding criteria. Furthermore, using FastBit it becomes possible to compute parallel coordinate views efficiently, thus facilitating interactive data exploration of massive particle data sets. C1 [Weber, G. H.; Bethel, E. W.; Childs, H. R.; Hamann, B.; Joy, K. I.; Martin, D.; Prabhat; Ruebel, O.; Van Straalen, B.; Wu, K.] Univ Calif Berkeley, Computat Res Div, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Weber, G. H.; Childs, H. R.; Deines, E.; Garth, C.; Hagen, H.; Hamann, B.; Joy, K. I.; Ruebel, O.] Univ Calif Davis, Inst Data Anal & Visualizat, Dept Comp Sci, Davis, CA 95616 USA. [Ahern, S.; Meredith, J.; Pugmire, D.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Borovikov, S.] Univ Alabama, Ctr Space Plasma & Aeron Res, Huntsville, AL 35899 USA. [Hagen, H.; Ruebel, O.] Tech Univ Kaiserslautern, Int Res Training Grp 1131, D-67653 Kaiserslautern, Germany. RP Weber, GH (reprint author), Univ Calif Berkeley, Computat Res Div, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. FU Office of Advanced Scientific Computing Research, Office of Science, of the U.S. Department of Energy through the Scientific Discovery through Advanced Computing (SciDAC) program's Visualization and Analytics Center for Enabling Technologies (VACET) [DE-AC02-05CH11231]; German Research Foundation (DFG) through the International Research Training Group [1131] FX This work was supported by the Director, Office of Advanced Scientific Computing Research, Office of Science, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231 through the Scientific Discovery through Advanced Computing (SciDAC) programs Visualization and Analytics Center for Enabling Technologies (VACET) and also the support provided by the German Research Foundation (DFG) through the International Research Training Group 1131. We thank the members of the LBNL Visualization Group, the LBNL ANAG, the LBNL CCSE, and the VisIt development team. NR 11 TC 2 Z9 2 U1 0 U2 0 PU ASTRONOMICAL SOC PACIFIC PI SAN FRANCISCO PA 390 ASHTON AVE, SAN FRANCISCO, CA 94112 USA BN 978-1-58381-738-4 J9 ASTR SOC P PY 2010 VL 429 BP 329 EP + PG 2 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA BTR17 UT WOS:000287839100049 ER PT S AU Kim, SJ Kim, DH Oh, KH Rollett, AD Lebensoh, RA Han, HN AF Kim, S-J Kim, D. H. Oh, K. H. Rollett, A. D. Lebensoh, R. A. Han, H. N. BE Barlat, F Moon, YH Lee, MG TI An Elastoplastic Finite Element Modeling Coupled with Orientation Image based Micromechanical Approach SO NUMIFORM 2010, VOLS 1 AND 2: DEDICATED TO PROFESSOR O. C. ZIENKIEWICZ (1921-2009) SE AIP Conference Proceedings LA English DT Proceedings Paper CT 10th International Conference on Numerical Methods in Industrial Forming Processes (NUMIFORM 2010) CY JUN 13-17, 2010 CL Pohang, SOUTH KOREA SP Korean Soc Technol Plastic, POSTECH, Grad Inst Ferrous Technol, Pusan Natl Univ, ERC Net Shape & Die Mfg, Korea Inst Ind Technol, Korea Inst Mat Sci, POSCO, POSTECH, World Class Univ Program, GIFT DE microstructure; misorientation; texture; orientation image microscopy (OIM) ID NUMERICAL-METHOD; COMPOSITES; POLYCRYSTALS AB An efficient formula, which is based on fast Fourier transform (FFT) algorithm and orientation image, was implemented into an elasto-plastic finite element method, in order to calculate the plastic deformation of polycrystalline material with intracrystalline resolution for arbitrary deformation. This new finite element model will provide the changes in average orientation and intracrystalline misorientation as well as the stress and strain behavior for various polycrystalline materials under arbitrary deformation. C1 [Kim, S-J; Kim, D. H.; Oh, K. H.; Han, H. N.] Seoul Natl Univ, RIAM, Dept Mat Sci & Engn, Seoul 151744, South Korea. [Kim, S-J; Kim, D. H.; Oh, K. H.; Han, H. N.] Seoul Natl Univ, RIAM, Ctr Iron & Steel Res, Seoul 151744, South Korea. [Rollett, A. D.] Carnegie Mellon Univ, Dept Mat Sci & Engn, Pittsburgh, PA 15213 USA. [Lebensoh, R. A.] Los Alamos Natl Lab, Mat Sci & Technol Div, Los Alamos, NM 87544 USA. RP Kim, SJ (reprint author), Seoul Natl Univ, RIAM, Dept Mat Sci & Engn, Seoul 151744, South Korea. FU National Research Foundation of Korea (NRF); Korea government (MEST) [2009-0083038] FX This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (2009-0083038) NR 12 TC 1 Z9 1 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-0800-5 J9 AIP CONF PROC PY 2010 VL 1252 BP 103 EP + PG 2 WC Engineering, Mechanical; Mathematics, Applied; Physics, Applied SC Engineering; Mathematics; Physics GA BQV11 UT WOS:000281912300012 ER PT S AU Choi, KS Liu, WN Sun, X Khaleel, MA AF Choi, K. S. Liu, W. N. Sun, X. Khaleel, M. A. BE Barlat, F Moon, YH Lee, MG TI Predicting Ductility and Failure Modes of TRIP Steels under Different Loading Conditions SO NUMIFORM 2010, VOLS 1 AND 2: DEDICATED TO PROFESSOR O. C. ZIENKIEWICZ (1921-2009) SE AIP Conference Proceedings LA English DT Proceedings Paper CT 10th International Conference on Numerical Methods in Industrial Forming Processes (NUMIFORM 2010) CY JUN 13-17, 2010 CL Pohang, SOUTH KOREA SP Korean Soc Technol Plastic, POSTECH, Grad Inst ferrous Technol, Pusan Natl Univ, ERC Net Shape & Die Mfg, Korea Inst Ind Technol, Korea Inst Mat Sci, POSCO, POSTECH, World Class Univ Progrem, GIFT DE TRIP steel; ductility; failure criteria; retained austenite; phase transformation ID INDUCED MARTENSITIC-TRANSFORMATION; ASSISTED MULTIPHASE STEELS; DEFORMATION-BEHAVIOR; MULTISCALE MECHANICS; INDUCED PLASTICITY; DEPENDENCE; KINETICS; MICRO AB In this paper, we examine the ultimate ductility and failure modes of a TRIP (TRansformation-Induced Plasticity) 800 steel with an advanced micromechanics-based finite element analysis. The representative volume element (RVE) for the TRIP800 under examination is developed based on an actual microstructure obtained from scanning electron microscopy (SEM). The evolution of retained austenite during deformation process and the mechanical properties of the constituent phases of the TRIP800 steel are obtained from the synchrotron-based in-situ high-energy Xray diffraction (HEXRD) experiments and a self-consistent (SC) model. The ductile failure of the TRIP800 under different loading conditions is predicted in the form of plastic strain localization without any prescribed failure criteria for the individual phases. Comparisons of the computational results with experimental measurements suggest that the microstructure-based finite element analysis can well capture the overall macroscopic behavior of the TRIP800 steel under different loading conditions. The methodology described in this study may be extended for studying the ultimate ductile failure mechanisms of TRIP steels as well as the effects of the various processing parameters on the macroscopic behaviors of TRIP steels. C1 [Choi, K. S.; Liu, W. N.; Sun, X.; Khaleel, M. A.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Sun, X (reprint author), Pacific NW Natl Lab, POB 999, Richland, WA 99352 USA. EM xin.sun@pnl.gov OI khaleel, mohammad/0000-0001-7048-0749 NR 21 TC 0 Z9 0 U1 0 U2 3 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-0800-5 J9 AIP CONF PROC PY 2010 VL 1252 BP 1265 EP 1270 DI 10.1063/1.3457528 PG 6 WC Engineering, Mechanical; Mathematics, Applied; Physics, Applied SC Engineering; Mathematics; Physics GA BQV11 UT WOS:000281912300165 ER PT S AU Wren, J Vestrand, WT Wozniak, P Davis, H AF Wren, James Vestrand, W. Thomas Wozniak, Przemek Davis, Heath BE Silva, DR Peck, AB Soifer, BT TI A Portable Observatory for Persistent Monitoring of the Night Sky SO OBSERVATORY OPERATIONS: STRATEGIES, PROCESSES, AND SYSTEMS III SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Observatory Operations: Strategies, Processes, and Systems III CY JUN 30-JUL 02, 2010 CL San Diego, CA SP SPIE ID GAMMA-RAY BURST; COMET 17P/HOLMES; TELESCOPE; OUTBURST AB We describe the design and operation of a small, transportable, robotic observatory that has been developed at Los Alamos National Laboratory. This small observatory, called RQD2 (Raptor-Q Design 2), is the prototype for nodes in a global network capable of continuous persistent monitoring of the night sky. The observatory employs five wide-field imagers that altogether view about 90% of the sky above 12 degrees elevation with a sensitivity of R = 10 magnitude in 10 seconds. Operating robotically, the RQD2 system acquires a nearly full-sky image every 20 seconds, taking more than 10,000 individual images per night. It also runs real-time astrometric and photometric pipelines that provide both a capability to autonomously search for bright astronomical transients and monitor the variability of optical extinction across the full sky. The first RQD2 observatory began operation in March 2009 and is currently operating at the Fenton Hill site located near Los Alamos, NM. We present a detailed description of the RQD2 system and the data taken during the first several months of operation. C1 [Wren, James; Vestrand, W. Thomas; Wozniak, Przemek; Davis, Heath] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Wren, J (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM jwren@lanl.gov OI Wozniak, Przemyslaw/0000-0002-9919-3310 NR 15 TC 2 Z9 2 U1 0 U2 1 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-81948-227-3 J9 PROC SPIE PY 2010 VL 7737 AR 773723 DI 10.1117/12.859039 PG 10 WC Astronomy & Astrophysics; Optics SC Astronomy & Astrophysics; Optics GA BSU48 UT WOS:000285827700052 ER PT J AU Hecht, MW AF Hecht, Matthew W. TI Cautionary tales of persistent accumulation of numerical error: Dispersive centered advection SO OCEAN MODELLING LA English DT Article DE Advection; Dispersive error; Diapycnal mixing; Convection; Ocean modelling ID OCEAN CIRCULATION MODELS; TRACER TRANSPORTS; WATER PROPERTIES; COORDINATE; TURBULENCE; SCHEMES; FLUX AB We identify a potentially severe source of spurious cooling within and below the thermocline. The effect involves an interplay between tracer advection scheme and eddy parameterization: a dispersive advection scheme generates spurious warm and cold extrema, and then the tracer mixing scheme is relied upon to moderate those extrema. Noise suppression is less robust when the eddy parameterization consists of the more physically based use of eddy-induced transport and isopycnal tracer mixing. Convection occurs in response to the spurious warm and cold extrema generated by the dispersive advection scheme, driving a persistent cooling below the thermocline. When choosing an advection scheme for ocean climate modelling this effect should be considered as a significant concern associated with the use of dispersive centered advection. (C) 2010 Elsevier Ltd. All rights reserved. C1 Los Alamos Natl Lab, CCS Div, Los Alamos, NM 87545 USA. RP Hecht, MW (reprint author), Los Alamos Natl Lab, CCS Div, Mail Stop B296, Los Alamos, NM 87545 USA. EM mhecht@lanl.gov OI Hecht, Matthew/0000-0003-0946-4007 FU Department of Energy's Office of Science FX We thank Mathew Maltrud and Frank Bryan for the result shown in Fig. 1 and Gokhan Danabasoglu for comments on the manuscript. The ideas presented here were developed in conversation with the other ocean modelers at Los Alamos. This work was supported by the Department of Energy's Office of Science. Los Alamos National Laboratory is operated by Los Alamos National Security, LLC for the Department of Energy. NR 31 TC 7 Z9 7 U1 1 U2 2 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1463-5003 J9 OCEAN MODEL JI Ocean Model. PY 2010 VL 35 IS 3 BP 270 EP 276 DI 10.1016/j.ocemod.2010.07.005 PG 7 WC Meteorology & Atmospheric Sciences; Oceanography SC Meteorology & Atmospheric Sciences; Oceanography GA 670VK UT WOS:000283455200013 ER PT J AU Hunke, EC AF Hunke, Elizabeth C. TI Thickness sensitivities in the CICE sea ice model SO OCEAN MODELLING LA English DT Article DE Sea ice thickness; Albedo; Conductivity; Ridging; Modeling; Arctic; Antarctic ID PACK ICE; OCEAN; DEFORMATION; SURFACE; ALBEDO; COVER AB Passive microwave satellite observations of ice extent and concentration form the foundation of sea ice model evaluations, due to their wide spatial coverage and decades-long availability. Observations related to other model quantities are somewhat more limited but increasing as interest in high-latitude processes intensifies. Sea ice thickness, long judged a critical quantity in the physical system, is now being scrutinized more closely in sea ice model simulations as more expansive measurements become available. While albedo is often the first parameter chosen by modelers to adjust simulated ice thickness, this paper explores a set of less prominent parameters to which thickness is also quite sensitive. These include parameters associated with sea ice conductivity, mechanical redistribution, oceanic heat flux, and ice-ocean dynamic stress, in addition to shortwave radiation. Multiple combinations of parameter values can produce the same mean ice thickness using the Los Alamos Sea Ice Model, CICE. One of these "tuned" simulations is compared with a variety of observational data sets in both hemispheres. While deformed ice area compares well with the limited observations available for ridged ice, thickness measurements differ such that the model cannot agree with all of them simultaneously. Albedo and ice-ocean dynamic parameters that affect the turning of the ice relative to the ocean currents have the largest effect on ice thickness, of the parameters tested here. That is, sea ice thickness is highly sensitive to changes in external forcing by the atmosphere or ocean, and therefore serves as a sensitive diagnostic for high-latitude change. (C) 2010 Elsevier Ltd. All rights reserved. C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Hunke, EC (reprint author), Los Alamos Natl Lab, MS B216, Los Alamos, NM 87545 USA. EM eclare@lanl.gov FU Biological and Environmental Research division of the US Department of Energy Office of Science; US Department of Energy [DE-AC52-06NA25396] FX I sincerely thank Dr. William Lipscomb for helpful discussions regarding this paper and for his numerous contributions to the CICE model itself. I am also grateful for Dr. Adrian Turner's careful reading and suggestions for improvement of the manuscript. This work was performed within the Climate, Ocean and Sea Ice Modeling (COSIM) project at Los Alamos National Laboratory, whose funding from the Biological and Environmental Research division of the US Department of Energy Office of Science is gratefully acknowledged. Los Alamos National Laboratory is operated by the National Nuclear Security Administration of the US Department of Energy under Contract No. DE-AC52-06NA25396. NR 39 TC 31 Z9 32 U1 0 U2 11 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1463-5003 EI 1463-5011 J9 OCEAN MODEL JI Ocean Model. PY 2010 VL 34 IS 3-4 BP 137 EP 149 DI 10.1016/j.ocemod.2010.05.004 PG 13 WC Meteorology & Atmospheric Sciences; Oceanography SC Meteorology & Atmospheric Sciences; Oceanography GA 634JV UT WOS:000280578000006 ER PT J AU Nadiga, BT Straub, DN AF Nadiga, B. T. Straub, D. N. TI Alternating zonal jets and energy fluxes in barotropic wind-driven gyres SO OCEAN MODELLING LA English DT Article DE Ocean circulation; Alternating zonal jets; Wind-driven circulation; Energy flux ID BETA-PLANE; FLOWS; TURBULENCE; OCEAN; CIRCULATION; BASIN AB The barotropic beta-plane vorticity equation is considered under steady large scale (double-gyre) and small scale (stochastic) forcing. For both forcings, regimes are found in which alternating zonal jets appear. For steady large scale forcing, this regime is characterized by weak forcing and weak dissipation. Attention is focused on energy cascades due to the nonlinear and beta terms and the jets are found to be associated with to a near compensation in these cascades over a range of wavenumbers. Additionally, interaction between flow forced at large scale and flow forced at small scale is examined. Published by Elsevier Ltd. C1 [Nadiga, B. T.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Straub, D. N.] McGill Univ, Montreal, PQ H3A 2K6, Canada. RP Nadiga, BT (reprint author), Los Alamos Natl Lab, MS B296, Los Alamos, NM 87545 USA. EM balu@lanl.gov; david.straub@mcgill.ca NR 24 TC 10 Z9 10 U1 0 U2 4 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1463-5003 EI 1463-5011 J9 OCEAN MODEL JI Ocean Model. PY 2010 VL 33 IS 3-4 BP 257 EP 269 DI 10.1016/j.ocemod.2010.02.007 PG 13 WC Meteorology & Atmospheric Sciences; Oceanography SC Meteorology & Atmospheric Sciences; Oceanography GA 599PC UT WOS:000277924600004 ER PT J AU Scott, RB Arbic, BK Chassignet, EP Coward, AC Maltrud, M Merryfield, WJ Srinivasan, A Varghese, A AF Scott, Robert B. Arbic, Brian K. Chassignet, Eric P. Coward, Andrew C. Maltrud, Mathew Merryfield, William J. Srinivasan, Ashwanth Varghese, Anson TI Total kinetic energy in four global eddying ocean circulation models and over 5000 current meter records SO OCEAN MODELLING LA English DT Article DE Eddying OGCM; Kinetic energy; Moored current meters; Model validation; Model intercomparison ID GULF-STREAM; NORTH-ATLANTIC; GEOSTROPHIC TURBULENCE; NUMERICAL-SIMULATION; MOORING MOTION; IMPACT; 1/10-DEGREES; TOPOGRAPHY; RESOLUTION; TRANSPORT AB We compare the total kinetic energy (TKE) in four global eddying ocean circulation simulations with a global dataset of over 5000, quality controlled, moored current meter records. At individual mooring sites, there was considerable scatter between models and observations that was greater than estimated statistical uncertainty. Averaging over all current meter records in various depth ranges, all four models had mean TKE within a factor of two of observations above 3500 m, and within a factor of three below 3500 m. With the exception of observations between 20 and 100 m, the models tended to straddle the observations. However, individual models had clear biases. The free running (no data assimilation) model biases were largest below 2000 m. Idealized simulations revealed that the parameterized bottom boundary layer tidal currents were not likely the source of the problem, but that reducing quadratic bottom drag coefficient may improve the fit with deep observations. Data assimilation clearly improved the model-observation comparison, especially below 2000 m, despite assimilated data existing mostly above this depth and only south of 47 degrees N. Different diagnostics revealed different aspects of the comparison, though in general the models appeared to be in an eddying-regime with TKE that compared reasonably well with observations. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Scott, Robert B.; Varghese, Anson] Univ Texas Austin, Inst Geophys, Jackson Sch Geosci, Austin, TX 78759 USA. [Arbic, Brian K.; Chassignet, Eric P.] Florida State Univ, Dept Oceanog, Tallahassee, FL 32306 USA. [Arbic, Brian K.; Chassignet, Eric P.] Florida State Univ, Ctr Ocean Atmospher Predict Studies, Tallahassee, FL 32306 USA. [Coward, Andrew C.] Natl Oceanog Ctr, James Rennell Div Ocean Circulat & Climate, Southampton SO14 3ZH, Hants, England. [Maltrud, Mathew] Los Alamos Natl Lab, Fluid Dynam Grp, Climate Ocean & Sea Ice Modeling Project, Los Alamos, NM 87545 USA. [Merryfield, William J.] Univ Victoria, Meteorol Serv Canada, Canadian Ctr Climate Modelling & Anal, Victoria, BC V8W 2Y2, Canada. [Srinivasan, Ashwanth] Univ Miami, Ctr Computat Sci, Miami, FL USA. [Srinivasan, Ashwanth] Univ Miami, RSMAS MPO, Miami, FL USA. RP Scott, RB (reprint author), Univ Texas Austin, Inst Geophys, Jackson Sch Geosci, JJ Pickle Res Campus,Bldg 196 ROC,10100 Burnet Rd, Austin, TX 78759 USA. EM rscott@ig.utexas.edu RI Scott, Robert/B-9876-2008; OI Arbic, Brian K/0000-0002-7969-2294 NR 54 TC 22 Z9 22 U1 0 U2 11 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1463-5003 J9 OCEAN MODEL JI Ocean Model. PY 2010 VL 32 IS 3-4 SI SI BP 157 EP 169 DI 10.1016/j.ocemod.2010.01.005 PG 13 WC Meteorology & Atmospheric Sciences; Oceanography SC Meteorology & Atmospheric Sciences; Oceanography GA 586UZ UT WOS:000276940500005 ER PT J AU Zharkov, V Nof, D Weijer, W AF Zharkov, V. Nof, D. Weijer, W. TI Retroflection from a double-slanted coastline: a model for the Agulhas leakage variability SO OCEAN SCIENCE LA English DT Article ID ATLANTIC OVERTURNING CIRCULATION; SOUTH-ATLANTIC; INTEROCEAN EXCHANGE; BOUNDARY CURRENT; NUMERICAL-MODEL; RING FORMATION; INDIAN-OCEAN; DYNAMICS; EDDIES; IMPACT AB The Agulhas leakage to the South Atlantic exhibits a strong anti-correlation with the mass flux of the Agulhas Current. When the Agulhas retroflection is in its normal position near Cape Agulhas, leakage is relatively high and the nearby South African coastal slant (angle of derivation from zonal) is very small and relatively invariant alongshore. During periods of strong incoming flux (low leakage), the retroflection shifts upstream to Port Elizabeth or East London, where the coastline shape has a "kink", i.e., the slant changes abruptly from small on the west side, to large (about 55 degrees) on the east side. Here, we show that the variability of rings shedding and anti-correlation between Agulhas mass flux and leakage to the South Atlantic may be attributed to this kink. To do so, we develop a nonlinear analytical model for retroflection near a coastline that consists of two sections, a zonal western section and a strongly slanted eastern section. The principal difference between this and the model of a straight slanted coast (discussed in our earlier papers) is that, here, free purely westward propagation of eddies along the zonal coastline section is allowed. This introduces an interesting situation in which strong slant of the coast east of the kink prohibits the formation and shedding of rings, while the almost zonal coastal orientation west of the kink encourages shedding. Therefore, the kink "locks" the position of the retroflection, forcing it to occur just downstream of the kink. Rings are necessarily shed from the retroflection area in our kinked model, regardless of the degree of eastern coast slant. In contrast, a no-kink model with a coastline of intermediate slant indicates that shedding is almost completely arrested by that slant. We suggest that the observed difference in ring-shedding intensity during times of normal retroflection position and times when the retroflection is shifted eastward is due to the change in the retroflection location with respect to the kink. When the incoming flux detaches from the coast north of the kink, ring transport is small; when the flux detaches south of the kink, transport is large. Simple process-oriented numerical simulations are in fair agreement with our analytical results. C1 [Zharkov, V.; Nof, D.] Florida State Univ, Inst Geophys Fluid Dynam, Tallahassee, FL 32306 USA. [Nof, D.] Florida State Univ, Dept Oceanog, Tallahassee, FL 32306 USA. [Weijer, W.] Los Alamos Natl Lab, New Mexico Consortium, Los Alamos, NM 87545 USA. RP Nof, D (reprint author), Florida State Univ, Inst Geophys Fluid Dynam, Tallahassee, FL 32306 USA. EM nof@ocean.fsu.edu RI Weijer, Wilbert/A-7909-2010 FU NASA [NNG05GP65H, NNX07AL97G]; LANL/IGPP [1815]; NSF [OCE-0752225, OCE-9911342, OCE-0545204, OCE-0241036]; BSF [2006296]; Jim and Shelia O'Brien Graduate Fellowship FX The study was supported by NASA Doctoral Fellowship Grant NNG05GP65H; LANL/IGPP Grant (1815); NSF (OCE-0752225, OCE-9911342, OCE-0545204, OCE-0241036), BSF (2006296), and NASA (NNX07AL97G). V. Zharkov was also funded by the Jim and Shelia O'Brien Graduate Fellowship. We are grateful to Steve Van Gorder for helping in the numerical simulations. We also thank Donna Samaan for helping in preparation of the manuscript and Tonya Clayton for assistance in improving the style. NR 43 TC 3 Z9 3 U1 1 U2 2 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1812-0784 J9 OCEAN SCI JI Ocean Sci. PY 2010 VL 6 IS 4 BP 997 EP 1011 DI 10.5194/os-6-997-2010 PG 15 WC Meteorology & Atmospheric Sciences; Oceanography SC Meteorology & Atmospheric Sciences; Oceanography GA 698FS UT WOS:000285579900012 ER PT S AU Burnett, DC Sheaffer, D AF Burnett, David C. Sheaffer, Donald, Jr. GP IEEE TI Preliminary Evaluation of Imaging Sonars for High-Security Underwater Assessment SO OCEANS 2010 SE OCEANS-IEEE LA English DT Proceedings Paper CT Washington State Conference and Trade Center (WSCTC) CY SEP 20-23, 2010 CL Seattle, WA SP IEEE, Marine Technol, OES AB This paper discusses preliminary evaluation of three acoustic systems capable of producing human-recognizable images of underwater scenes for use in high-consequence security system situations where final assessment of an event must be performed by a human operator. Tested systems included the BlueView ProViewer P450E-15, BlueView ProViewer P900E-20, and RESON SeaBat 7128, which were chosen for the good balance of resolution and range provided by their frequency of operation (450kHz, 900kHz, and 400kHz, respectively) revealed during a prior study. Video clips were recorded from these systems while observing swimmers, open-circuit scuba divers, and closed-circuit rebreather divers in a marine harbor in St. Petersburg, FL. Clips were randomized and presented to 18 volunteer evaluators who were asked to identify which clips contained divers and which did not. The highest scoring system also had the highest operating frequency. However, the same high-scoring sonar in a different configuration scored similar to the system with the lowest frequency. This indicates that signal frequency, and therefore image resolution, is not a definite predictor of human assessment performance. After noticing many evaluators performed poorly with cluttered clips or clips with low acoustic target strength, results were recalculated to remove swimmers and surface swim routes such that only uncluttered, clearly-reflecting targets were included. Some sonar scores were moderately improved by this change, while others significantly decreased. This indicated that target clarity is also not a definite predictor of human assessment performance. Further analysis is recommended to reveal all major factors affecting assessment to maximize quality and eventually bring underwater security assessment to a high level. C1 [Burnett, David C.; Sheaffer, Donald, Jr.] Sandia Natl Labs, Livermore, CA 94550 USA. RP Burnett, DC (reprint author), Sandia Natl Labs, 7011 East Ave, Livermore, CA 94550 USA. NR 1 TC 0 Z9 0 U1 0 U2 1 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 0197-7385 BN 978-1-4244-4333-8 J9 OCEANS-IEEE PY 2010 PG 5 WC Acoustics; Engineering, Electrical & Electronic; Oceanography SC Acoustics; Engineering; Oceanography GA BTO61 UT WOS:000287539100292 ER PT S AU Copping, AE Anderson, RM Van Cleve, FB AF Copping, Andrea E. Anderson, Richard M. Van Cleve, F. Brie GP IEEE TI Applying Risk Science and Stakeholder Engagement to Overcome Environmental Barriers to Marine and Hydrokinetic Energy Projects SO OCEANS 2010 SE OCEANS-IEEE LA English DT Proceedings Paper CT Washington State Conference and Trade Center (WSCTC) CY SEP 20-23, 2010 CL Seattle, WA SP IEEE, Marine Technol, OES AB The production of electricity from the moving waters of the ocean has the potential to be a viable addition to the portfolio of renewable energy sources worldwide. The marine and hydrokinetic (MHK) industry faces many hurdles, including technology development, challenges of offshore deployments, and financing; however, the barrier most commonly identified by industry, regulators, and stakeholders is the uncertainty surrounding potential environmental effects of devices placed in the water and the permitting processes associated with real or potential impacts. Regulatory processes are not well positioned to judge the severity of harm due to turbines or wave generators. Risks from MHK devices to endangered or protected animals in coastal waters and rivers, as well as the habitats that support them, are poorly understood. This uncertainty raises concerns about catastrophic interactions between spinning turbine blades or slack mooring lines and marine mammals, birds and fish. In order to accelerate the deployment of tidal and wave devices, there is a need to evaluate the extensive list of potential interactions that may cause harm to marine organisms and ecosystems, to set priorities for regulatory triggers, and to direct future research. Identifying the risk of MHK technology components on specific marine organisms and ecosystem components can separate perceived from real risk-relevant interactions. Scientists from Pacific Northwest National Laboratory (PNNL) are developing an Environmental Risk Evaluation System (ERES) to assess environmental effects associated with MHK technologies and projects through a systematic analytical process, with specific input from key stakeholder groups. The array of stakeholders interested in the development of MHK is broad, segmenting into those whose involvement is essential for the success of the MHK project, those who are influential, and those who are interested. PNNL and their partners have engaged these groups, gaining valuable information, gathering pertinent feedback on the efficacy of the process, and providing a level of ownership for the risk evaluation process that will encourage adoption of the outcome to inform future MHK siting and permitting decisions. The ERES development process provides the scientific structure to support risk characterization, comparison of tradeoffs, and risk-informed decision-making by project and technology developers, regulatory agencies, and other interested stakeholders. The PNNL team will determine the range and severity of environmental effects of MHK development, leading to the development of mitigation strategies where residual risk remains. C1 [Copping, Andrea E.; Anderson, Richard M.; Van Cleve, F. Brie] Pacific Northwest Natl Lab, Seattle, WA 98121 USA. RP Copping, AE (reprint author), Pacific Northwest Natl Lab, Seattle, WA 98121 USA. FU U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy through agreements to Pacific Northwest National Laboratory FX This work is supported by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy through agreements to Pacific Northwest National Laboratory. Key project partners include Oak Ridge National Laboratory, the Northwest National Marine Renewable Energy Centers operated by the University of Washington and Oregon State University, and Pacific Energy Ventures. NR 15 TC 0 Z9 0 U1 2 U2 14 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 0197-7385 BN 978-1-4244-4333-8 J9 OCEANS-IEEE PY 2010 PG 7 WC Acoustics; Engineering, Electrical & Electronic; Oceanography SC Acoustics; Engineering; Oceanography GA BTO61 UT WOS:000287539100214 ER PT S AU James, SC Seetho, E Jones, C Roberts, J AF James, Scott C. Seetho, Eddy Jones, Craig Roberts, Jesse GP IEEE TI Simulating Environmental Changes Due to Marine Hydrokinetic Energy Installations SO OCEANS 2010 SE OCEANS-IEEE LA English DT Proceedings Paper CT Washington State Conference and Trade Center (WSCTC) CY SEP 20-23, 2010 CL Seattle, WA SP IEEE, Marine Technol, OES ID CANOPY; TURBULENCE; SEDIMENT; MODEL; CLOSURE; FLOWS AB Marine hydrokinetic (MHK) projects will extract energy from ocean currents and tides, thereby altering water velocities and currents in the site's waterway. These hydrodynamics changes can potentially affect the ecosystem, both near the MHK installation and in surrounding (i.e., far field) regions. In both marine and freshwater environments, devices will remove energy (momentum) from the system, potentially altering water quality and sediment dynamics. In estuaries, tidal ranges and residence times could change (either increasing or decreasing depending on system flow properties and where the effects are being measured). Effects will be proportional to the number and size of structures installed, with large MHK projects having the greatest potential effects and requiring the most in-depth analyses. This work implements modification to an existing flow, sediment dynamics, and water-quality code (SNL-EFDC) to qualify, quantify, and visualize the influence of MHK-device momentum/energy extraction at a representative site. New algorithms simulate changes to system fluid dynamics due to removal of momentum and reflect commensurate changes in turbulent kinetic energy and its dissipation rate. A generic model is developed to demonstrate corresponding changes to erosion, sediment dynamics, and water quality. Also, bed-slope effects on sediment erosion and bedload velocity are incorporated to better understand scour potential. C1 [James, Scott C.; Seetho, Eddy] Sandia Natl Labs, Thermal Fluids Sci & Engn Dept, POB 969, Livermore, CA 94551 USA. [Jones, Craig] Sea Engn Inc, Santa Cruz, CA 95060 USA. [Roberts, Jesse] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP James, SC (reprint author), Sandia Natl Labs, Thermal Fluids Sci & Engn Dept, POB 969, Livermore, CA 94551 USA. EM scjames@sandia.gov; eseetho@sandia.gov; cjones@seaengineering.com; jdrober@sandia.gov NR 46 TC 0 Z9 0 U1 1 U2 9 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 0197-7385 BN 978-1-4244-4333-8 J9 OCEANS-IEEE PY 2010 PG 10 WC Acoustics; Engineering, Electrical & Electronic; Oceanography SC Acoustics; Engineering; Oceanography GA BTO61 UT WOS:000287539100013 ER PT S AU Matsumoto, H Bohnenstiehl, D Dziak, RP Williams, L Gliege, R Meinig, CN Harben, P AF Matsumoto, H. Bohnenstiehl, D. Dziak, R. P. Williams, L. Gliege, R. Meinig, C. N. Harben, P. GP IEEE TI A Vertical Hydrophone Array Coupled via Inductive Modem for Detecting Deep-Ocean Seismic and Volcanic Sources SO OCEANS 2010 SE OCEANS-IEEE LA English DT Proceedings Paper CT Washington State Conference and Trade Center (WSCTC) CY SEP 20-23, 2010 CL Seattle, WA SP IEEE, Marine Technol, OES ID PROPAGATION; RIDGE AB A vertical autonomous hydrophone (VAUH) array useful for a long-term low-frequency underwater acoustic propagation study was developed at Oregon State University (OSU), North Carolina State University and the National Oceanic and Atmospheric Administration's (NOAA) Pacific Environmental Lab (PMEL). To analyze the arrival structure of the hydroacoustic signals in deep water, we needed a multichannel vertical hydrophone array with relative timing accuracy of as good as 10 ms/year where no GPS or Network Time Protocol (NTP) is available. A new scheme takes advantage of Inductive Modem Modules (IMM (R) from Sea-Bird Electronics) and a low-power accurate clock (QT2001 (R) from Q-Tech Corporation). With the master unit sending an accurate 1-PPS pulse train once a day to slave instruments over a single wire inductive modem/mooring cable, it synchronizes the other slaves' clocks and keeps the timing errors among the instruments less than 10msec. As compared to the timing synchronization methods based on three-wire serial or NTP network interface, it only requires an insulated single wire mooring cable using seawater as a return. It is robust, low power and useful for long-term time synchronization of multiple instruments serially connected. As a trial, an array consisting of three vertical autonomous hydrophones (VAUH) was deployed in the Lau Basin from December 2009 to April 2010 at 21 degrees 25'12.60 '' S, 176 degrees 12'45.50 '' W. Each unit was fastened on a 1000-m long 5/16 '' jacketed cable with a 500 m of separation. All three VAUHs recorded continuously the low frequency acoustic signal at 250-Hz sampling rate and maintained a relative timing accuracy of less than 10 ms. The acoustic record shows that the entire region is active with seismicity and submarine eruptions. The results of the four-month long monitoring and comparison with other single hydrophone moorings in the area are discussed(1). C1 [Matsumoto, H.; Dziak, R. P.] Oregon State Univ, 2115 SE OSU Dr, Newport, OR 97365 USA. [Bohnenstiehl, D.] North Carolina State Univ, Raleigh, NC 27695 USA. [Williams, L.] MIT, Cambridge, MA 02142 USA. [Gliege, R.] Univ Washington, Seattle, WA 98105 USA. [Meinig, C. N.] NOAA, Pacific Marine Environm Lab, Seattle, WA 98115 USA. [Harben, P.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Matsumoto, H (reprint author), Oregon State Univ, 2115 SE OSU Dr, Newport, OR 97365 USA. FU NSF [0825295] FX This study was funded by NSF grant #0825295. NR 15 TC 0 Z9 0 U1 1 U2 2 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 0197-7385 BN 978-1-4244-4333-8 J9 OCEANS-IEEE PY 2010 PG 7 WC Acoustics; Engineering, Electrical & Electronic; Oceanography SC Acoustics; Engineering; Oceanography GA BTO61 UT WOS:000287539100063 ER PT S AU Matzner, S Maxwell, A Myers, J Caviggia, K Elster, J Foley, M Jones, M Ogden, G Sorensen, E Zurk, L Tagestad, J Stephan, A Peterson, M Bradley, D AF Matzner, S. Maxwell, A. Myers, J. Caviggia, K. Elster, J. Foley, M. Jones, M. Ogden, G. Sorensen, E. Zurk, L. Tagestad, J. Stephan, A. Peterson, M. Bradley, D. GP IEEE TI Small Vessel Contribution to Underwater Noise SO OCEANS 2010 SE OCEANS-IEEE LA English DT Proceedings Paper CT Washington State Conference and Trade Center (WSCTC) CY SEP 20-23, 2010 CL Seattle, WA SP IEEE, Marine Technol, OES ID FREQUENCY; LEVEL; SEA; KHZ AB Understanding the types of noise generated by a small boat is important for ensuring that marine ecosystems are protected from detrimental anthropogenic noise. Here we present the results of a field test conducted to examine the effects of engine RPM, number of engines and number of propeller blades on the broadband and narrowband noise produced by a small boat. The test boat was a 23-foot aluminum-hulled boat with dual 100 hp engines. The broadband noise and narrowband peak levels were observed using two hydrophones in different locations. The broadband noise levels were affected by both the number of engines and the RPM; the narrowband peaks showed a greater increase in amplitude with an increase in RPM than the broadband noise levels. C1 [Matzner, S.; Maxwell, A.; Myers, J.; Caviggia, K.; Elster, J.; Jones, M.; Stephan, A.; Bradley, D.] Pacific NW Natl Lab, Sequim, WA 98382 USA. [Foley, M.; Tagestad, J.; Peterson, M.] Pacific NorthWest Natl Lab, Richland, WA 99352 USA. [Ogden, G.; Sorensen, E.; Zurk, L.] Portland State Univ, Dept Elect & Comp Engn, Portland, OR 97202 USA. RP Matzner, S (reprint author), Pacific NW Natl Lab, Sequim, WA 98382 USA. NR 21 TC 0 Z9 0 U1 1 U2 2 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 0197-7385 BN 978-1-4244-4333-8 J9 OCEANS-IEEE PY 2010 PG 7 WC Acoustics; Engineering, Electrical & Electronic; Oceanography SC Acoustics; Engineering; Oceanography GA BTO61 UT WOS:000287539100317 ER PT S AU Nelson, E AF Nelson, Eric GP IEEE TI Developing an Instrumentation Package for in-Water Testing of Marine Hydrokinetic Energy Devices SO OCEANS 2010 SE OCEANS-IEEE LA English DT Proceedings Paper CT Washington State Conference and Trade Center (WSCTC) CY SEP 20-23, 2010 CL Seattle, WA SP IEEE, Marine Technol, OES AB The ocean-energy industry is still in its infancy and device developers have provided their own equipment and procedures for testing. Currently, no testing standards exist for ocean energy devices in the United States. Furthermore, as prototype devices move from the test tank to in-water testing, the logistical challenges and costs grow. Development of instrumentation packages that can be moved from device to device is one means of reducing testing costs and providing data to the industry as a whole. As a first step, the U.S. National Renewable Energy Laboratory (NREL) is developing instrumentation packages that will provide common measurements across various ocean energy devices. Considerations in choosing an instrumentation controller are summarized in this paper using experiences from the oceanographic and wind industry. Some of the NREL National Wind Technology Center's wind turbine certification tests are suggested as examples of possible tests for MHK devices. Next, challenges that must be addressed in the development of the ocean instrumentation controller are outlined. For example, the instrument package must be adaptable to fit a large array of devices but still conduct common measurements. Finally, data file format and long term database storage options are outlined. NREL welcomes input from the industry regarding its measurement needs. C1 Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Nelson, E (reprint author), Natl Renewable Energy Lab, 1617 Cole Blvd,MS 3811, Golden, CO 80401 USA. NR 6 TC 0 Z9 0 U1 0 U2 1 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 0197-7385 BN 978-1-4244-4333-8 J9 OCEANS-IEEE PY 2010 PG 7 WC Acoustics; Engineering, Electrical & Electronic; Oceanography SC Acoustics; Engineering; Oceanography GA BTO61 UT WOS:000287539100038 ER PT S AU Souder, HC Li, Y Thresher, R AF Souder, Heidi Crevison Li, Ye Thresher, Robert GP IEEE TI Marine Hydrokinetic Turbine Technology and the Environment: Device-Biota Interactions SO OCEANS 2010 SE OCEANS-IEEE LA English DT Proceedings Paper CT Washington State Conference and Trade Center (WSCTC) CY SEP 20-23, 2010 CL Seattle, WA SP IEEE, Marine Technol, OES ID FIELD EXPERIMENT; COLONIZATION; FISH AB Because marine hydrokinetic (MHK) turbine technologies are still in their infancy, their impacts on the environment remain largely unknown. Although few empirical data exist for MHK technologies, more data are available for other man-made structures. This paper discusses fish, mammal, bird, and benthic organism interactions with MHK devices and other man-made structures that may be analogous to these MHK technologies. In experiments conducted on the Mississippi River Lock and Dam No. 2, the survival of several species of small and large fish that passed through an MHK turbine was 99%. No data on mammal, sea turtle, or bird interactions with MHK turbines were available, but other types of anthropogenic mortality and traumatic injuries to these groups of animals have been well documented. Collisions with ships and fishing gear have greatly impacted most groups of marine mammals. Large whales that inhabit shallow coastal waters and diving birds that use sight to pursue prey underwater are at risk for collision. However, many devices have a positive impact on fish or benthic organism populations because they act as fish aggregation devices or artificial reefs. C1 [Souder, Heidi Crevison; Li, Ye; Thresher, Robert] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Souder, HC (reprint author), Natl Renewable Energy Lab, 1617 Cole Blvd, Golden, CO 80401 USA. NR 11 TC 0 Z9 0 U1 1 U2 13 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 0197-7385 BN 978-1-4244-4333-8 J9 OCEANS-IEEE PY 2010 PG 3 WC Acoustics; Engineering, Electrical & Electronic; Oceanography SC Acoustics; Engineering; Oceanography GA BTO61 UT WOS:000287539100044 ER PT S AU Thomson, J Polagye, B Richmond, M Durgesh, V AF Thomson, Jim Polagye, Brian Richmond, Marshall Durgesh, Vibhav GP IEEE TI Quantifying Turbulence for Tidal Power Applications SO OCEANS 2010 SE OCEANS-IEEE LA English DT Proceedings Paper CT Washington State Conference and Trade Center (WSCTC) CY SEP 20-23, 2010 CL Seattle, WA SP IEEE, Marine Technol, OES ID KINETIC-ENERGY; DISSIPATION AB Using newly collected data from a tidal power site in Puget Sound, WA, metrics for turbulence quantification are assessed and discussed. Of particular interest is the robustness of the "turbulent intensity," defined as the ratio of velocity standard deviation to velocity mean. Simultaneously, the quality of raw ping Acoustic Doppler Current Profiler (ADCP) data for turbulence studies is evaluated against Acoustic Doppler Velocimeter (ADV) data at a point. Removal of Doppler noise from the raw ping data is shown to be a crucial step in turbulence quantification. Excluding periods of slack tide, the corrected turbulent intensity estimates at a height of 4.6 m above the seabed are 10% and 11% from the ADCP and ADV, respectively. Estimates of the turbulent dissipation rate are more variable, from 10(-3) to 10(-1) W/m(3). An example analysis of coherent Turbulent Kinetic Energy (TKE) is presented. C1 [Thomson, Jim; Polagye, Brian] Univ Washington, NW Natl Marine Renewable Energy Ctr, Seattle, WA 98105 USA. [Richmond, Marshall; Durgesh, Vibhav] Pacific NW Natl Lab, Hydrol Grp, Richland, WA 99352 USA. RP Thomson, J (reprint author), Univ Washington, NW Natl Marine Renewable Energy Ctr, Seattle, WA 98105 USA. EM jthomson@apl.washington.edu FU U.S. Department of Energy; Office of Energy Efficiency; Renewable Energy - Wind and Water Power Program FX Support for this research provided by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy - Wind and Water Power Program NR 15 TC 0 Z9 0 U1 0 U2 2 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 0197-7385 BN 978-1-4244-4333-8 J9 OCEANS-IEEE PY 2010 PG 8 WC Acoustics; Engineering, Electrical & Electronic; Oceanography SC Acoustics; Engineering; Oceanography GA BTO61 UT WOS:000287539100114 ER PT S AU Ward, J Schultz, I Woodruff, D Roesijadi, G Copping, A AF Ward, J. Schultz, I. Woodruff, D. Roesijadi, G. Copping, A. GP IEEE TI Assessing the Effects of Marine and Hydrokinetic Energy Development on Marine and Estuarine Resources SO OCEANS 2010 SE OCEANS-IEEE LA English DT Proceedings Paper CT Washington State Conference and Trade Center (WSCTC) CY SEP 20-23, 2010 CL Seattle, WA SP IEEE, Marine Technol, OES ID SALMON ONCORHYNCHUS-TSHAWYTSCHA; MAGNETIC-FIELD; RENEWABLE ENERGY; CANCER-MAGISTER; DUNGENESS CRAB; JUVENILES; ANTIPREDATOR; MIGRATION; EXPOSURE; BEHAVIOR AB The world's oceans and estuaries offer enormous potential to meet the nation's growing demand for energy. The use of marine and hydrokinetic (MHK) devices to harness the power of wave and tidal energy could contribute significantly toward meeting federal-and state-mandated renewable energy goals while supplying a substantial amount of clean energy to coastal communities. Locations along the eastern and western coasts of the United States between 40 and 70 north latitude are ideal for MHK deployment, and recent estimates of wave and current energy resource potential in the US suggest that up to 400 terawatt hours could be generated, representing about 10% of national energy demand. Because energy derived from wave and tidal devices is highly predictable, their inclusion in our energy portfolio could help balance available sources of energy production, including hydroelectric, coal, nuclear, wind, solar, geothermal, and others. As an emerging industry, MHK energy developers face many challenges associated with the siting, permitting, construction, and operation of pilot and commercial-scale facilities. As the industry progresses, it will be necessary not only to secure financial support and develop robust technologies capable of efficient, continued operation in harsh environments, but also to implement effective monitoring programs to evaluate long-term effects of device operation and assure resource agencies and members of the public that potential environmental impacts are understood and can be addressed. At this time, little is known about the environmental effects of MHK energy generation at pilot-or full-scale operational scenarios. Potential effects could include changes to aquatic species behavior from exposure to electromagnetic fields or operational noise; physical interaction of marine mammals, fish, and invertebrates with operating devices or mooring cables; or changes to beach characteristics and water quality from long-term deployment of devices in coastal locations. This lack of knowledge creates a high degree of uncertainty that affects the actions of regulatory agencies, influences the opinions and concerns of stakeholder groups, affects the commitment of energy project developers and investors, and ultimately, the solvency of the industry. To address the complexity of environmental issues associated with MHK energy, PNNL has received support from the Department of Energy Office of Energy Efficiency and Renewable Energy Waterpower Program to develop research and development that draws on the knowledge of the industry, regulators, and stakeholders. Initial research has focused on 1) the development of a knowledge management database and related environmental risk evaluation system, 2) the use of hydrodynamic models to assess the effects of energy removal on coastal systems, 3) the development of laboratory and mesocosm experiments to evaluate the effects of EMF and noise on representative marine and estuarine species, and 4) collaborative interaction with regulators and other stakeholders to facilitate ocean energy devices, including participation in coastal and marine spatial planning activities. In this paper, we describe our approach for initial laboratory investigations to evaluate potential environmental effects of EMFs on aquatic resources. Testing will be conducted on species that are a) easily procured and cultured, b) ecologically, commercially, recreationally or culturally valuable, and c) reasonable surrogates for threatened or endangered species. Biological endpoints of interest are those that provide compelling evidence of magnetic field detection and have a nexus to individual, community, or population-level effects. Through laboratory, mesocosm, and limited field testing, we hope to reduce the uncertainly associated with the development of ocean energy resources, and gain regulatory and stakeholder acceptance. We believe this is the best approach for moving the science forward and provides the best opportunity for successfully applying this technology toward meeting our country's renewable energy needs. During the project, the team will work closely with two other national laboratories (Sandia and Oak Ridge), the Northwest National Marine Renewable Energy Center at University of Washington and Oregon State University, and Pacific Energy Ventures. C1 [Ward, J.; Schultz, I.; Woodruff, D.; Roesijadi, G.; Copping, A.] Pacific NW Natl Lab, Marine Sci Lab, Sequim, WA 98382 USA. RP Ward, J (reprint author), Pacific NW Natl Lab, Marine Sci Lab, 1529 W Sequim Bay Rd, Sequim, WA 98382 USA. NR 27 TC 0 Z9 0 U1 3 U2 29 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 0197-7385 BN 978-1-4244-4333-8 J9 OCEANS-IEEE PY 2010 PG 7 WC Acoustics; Engineering, Electrical & Electronic; Oceanography SC Acoustics; Engineering; Oceanography GA BTO61 UT WOS:000287539100049 ER PT J AU Belk, MC Tuckfield, RC AF Belk, Mark C. Tuckfield, R. Cary TI Changing costs of reproduction: age-based differences in reproductive allocation and escape performance in a livebearing fish SO OIKOS LA English DT Article ID LIFE-HISTORY; SWIMMING PERFORMANCE; GAMBUSIA-AFFINIS; LOCOMOTOR PERFORMANCE; POECILIA-RETICULATA; PREDATION RISK; HIDDEN COST; CLUTCH SIZE; TRADE-OFF; MOSQUITOFISH AB The reproductive value hypothesis predicts that if residual reproductive value declines as a female ages, then young females should allocate less of available energy to current fecundity and more to future reproduction; whereas, older females should allocate more of available energy to current fecundity and less to future reproduction (i.e. survival). We test the prediction that older female Gambusia affinis exhibit higher levels of allocation to reproduction (i.e. fecundity) and consequently experience greater decline in escape performance (survival cost) during pregnancy compared to young females. Old females had relatively larger clutch wet masses and clutch wet mass increased more during pregnancy compared to young females. Correspondingly, old females exhibit a significant decline in escape velocity over the course of pregnancy; whereas young females show no change in escape velocity throughout pregnancy. Old females have higher escape velocities early in pregnancy and their performance only declines to about the level of performance of young females by the end of pregnancy. Thus, although old females exhibit a greater decline in performance they are better able to ameliorate the cost of decreased performance. C1 [Belk, Mark C.] Brigham Young Univ, Dept Biol, Provo, UT 84602 USA. [Tuckfield, R. Cary] Savannah River Ecol Lab, Aiken, SC USA. RP Belk, MC (reprint author), Brigham Young Univ, Dept Biol, Provo, UT 84602 USA. EM mark_belk@byu.edu FU Multicultural Student Program; Office of Research and Creative Activities at Brigham Young Univ. Mosquitofish FX We thank D. Gonzalez, B. Alvord and J. Hyun for help with data collection. Funding was provided by the Multicultural Student Program and the Office of Research and Creative Activities at Brigham Young Univ. Mosquitofish were collected under permit no. 1COLL5011 from the Utah Division of Wildlife Resources. All experiments complied with Inst. Animal Care and Use Committee guidelines at Brigham Young Univ. and were approved by the IACUC. NR 32 TC 16 Z9 19 U1 0 U2 16 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0030-1299 J9 OIKOS JI Oikos PD JAN PY 2010 VL 119 IS 1 BP 163 EP 169 DI 10.1111/j.1600-0706.2009.17742.x PG 7 WC Ecology SC Environmental Sciences & Ecology GA 536UJ UT WOS:000273069000018 ER PT B AU Sessler, AM AF Sessler, Andrew M. BE Fort, DC TI Turning a Dream (Deftly, Subtly, and Effectively) into Reality Creating Scientists Paul F. Brandwein SO ONE LEGACY OF PAUL F. BRANDWEIN: CREATING SCIENTISTS SE Classics in Science Education LA English DT Biographical-Item; Book Chapter C1 [Sessler, Andrew M.] Ohio State Univ, Columbus, OH 43210 USA. [Sessler, Andrew M.] Lawrence Berkeley Natl Lab, Berkeley, CA USA. RP Sessler, AM (reprint author), Ohio State Univ, Columbus, OH 43210 USA. NR 1 TC 0 Z9 0 U1 0 U2 0 PU SPRINGER PI NEW YORK PA 233 SPRING STREET, NEW YORK, NY 10013, UNITED STATES BN 978-90-481-2527-2 J9 CLASS SCI EDUC PY 2010 VL 2 BP 5 EP 7 DI 10.1007/978-90-481-2528-9_1 D2 10.1007/978-90-481-2528-9 PG 3 WC Education & Educational Research SC Education & Educational Research GA BOV63 UT WOS:000277775900001 ER PT S AU Raman, RN Pivetti, CD Rubenchik, AM Matthews, DL Troppmann, C Demos, SG AF Raman, Rajesh N. Pivetti, Christopher D. Rubenchik, Alexander M. Matthews, Dennis L. Troppmann, Christoph Demos, Stavros G. BE Alfano, RR TI Optical spectroscopy approach for the predictive assessment of kidney functional recovery following ischemic injury SO OPTICAL BIOPSY VII SE Proceedings of SPIE-The International Society for Optical Engineering LA English DT Proceedings Paper CT Conference on Optical Biopsy VII CY JAN 25-28, 2010 CL San Francisco, CA SP SPIE, Ocean Optics Inc DE kidney; ischemia; reperfusion; spectral imaging; in vivo ID OXIDATION-REDUCTION STATE; RAT-KIDNEY; LACTATE; TISSUE; VIVO AB Tissue that has undergone significant yet unknown amount of ischemic injury is frequently encountered in organ transplantation and trauma clinics. With no reliable real-time method of assessing the degree of injury incurred in tissue, surgeons generally rely on visual observation which is subjective. In this work, we investigate the use of optical spectroscopy methods as a potentially more reliable approach. Previous work by various groups was strongly suggestive that tissue autofluorescence from NADH obtained under UV excitation is sensitive to metabolic response changes. To test and expand upon this concept, we monitored autofluorescence and light scattering intensities of injured vs. uninjured rat kidneys via multimodal imaging under 355 nm, 325 nm, and 266 nm excitation as well as scattering under 500 nm illumination. 355 nm excitation was used to probe mainly NADH, a metabolite, while 266 nm excitation was used to probe mainly tryptophan to correct for non-metabolic signal artifacts. The ratio of autofluorescence intensities derived under these two excitation wavelengths was calculated and its temporal profile was fit to a relaxation model. Time constants were extracted, and longer time constants were associated with kidney dysfunction. Analysis of both the autofluorescence and light scattering images suggests that changes in microstructure tissue morphology, blood absorption spectral characteristics, and pH contribute to the behavior of the observed signal which may be used to obtain tissue functional information and offer predictive capability. C1 [Raman, Rajesh N.; Rubenchik, Alexander M.; Demos, Stavros G.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Raman, RN (reprint author), Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94551 USA. NR 16 TC 0 Z9 0 U1 1 U2 1 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-7957-0 J9 P SOC PHOTO-OPT INS PY 2010 VL 7561 AR 756109 DI 10.1117/12.842413 PG 7 WC Chemistry, Physical; Microscopy; Optics; Radiology, Nuclear Medicine & Medical Imaging SC Chemistry; Microscopy; Optics; Radiology, Nuclear Medicine & Medical Imaging GA BSS15 UT WOS:000285579800005 ER PT S AU Damm, D Maiorov, M AF Damm, D. Maiorov, M. BE Dickey, FM Beyer, RA TI Thermal and Radiative Transport Analysis of Laser Ignition of Energetic Materials SO OPTICAL TECHNOLOGIES FOR ARMING, SAFING, FUZING, AND FIRING VI SE Proceedings of SPIE-The International Society for Optical Engineering LA English DT Proceedings Paper CT Conference on Optical Technologies for Arming, Safing, Fuzing, and Firing VI CY AUG 02, 2010 CL San Diego, CA SP SPIE DE Energetic materials; laser ignition; Thermal modeling; Radiative transport AB Laser ignition of energetic materials is an attractive technology for replacement of low energy electro-explosive devices which pose a safety hazard. The development of this technology has historically been based on go/no-go threshold testing using off-the-shelf laser diodes and solid state lasers. Here we seek to build a more fundamental understanding of the laser ignition process by analyzing the interactions and response of the energetic material to the incident laser beam. We begin with a radiative heat transfer model of the laser-beam-assisted heating of a homogeneous energetic material with given optical properties. An analytical solution of the 2-flux model equations is developed and this expression for the volumetric absorption of laser energy in an absorbing and isotropically scattering medium is coupled to the conservation of energy equation. Two limiting cases-minimum power and minimum energy thresholds for ignition-are discussed, and the minimum energy threshold is calculated directly from the energy equation in the limit of zero dissipative losses. The effects of power density and beam shape are of particular interest and two common configurations are analyzed. Although the applicability of thermal models is limited by large uncertainties in the optical properties of energetic materials, the analysis provides a qualitative understanding of the ignition process and a correlation between ignition thresholds and the various material properties and design parameters. C1 [Damm, D.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Damm, D (reprint author), Sandia Natl Labs, POB 5800,MS 1452, Albuquerque, NM 87185 USA. EM dldamm@sandia.gov NR 11 TC 5 Z9 5 U1 2 U2 3 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-8291-4 J9 P SOC PHOTO-OPT INS PY 2010 VL 7795 AR 779502 DI 10.1117/12.861033 PG 12 WC Optics; Physics, Applied SC Optics; Physics GA BTQ32 UT WOS:000287761900001 ER PT S AU Bernacki, BE Blake, TA Mendoza, A Johnson, TJ AF Bernacki, Bruce E. Blake, Thomas A. Mendoza, Albert Johnson, Timothy J. BE Lewis, C Burgess, D Zamboni, R Kajzar, F Heckman, EM TI Visible Hyperspectral Imaging for Standoff Detection of Explosives on Surfaces SO OPTICS AND PHOTONICS FOR COUNTERTERRORISM AND CRIME FIGHTING VI AND OPTICAL MATERIALS IN DEFENCE SYSTEMS TECHNOLOGY VII SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Optics and Photon for Counterterrorism and Crime Fighting VI/Optical Materials in Defence Systems Technology VII CY SEP 20-23, 2010 CL Toulouse, FRANCE SP Electro Magnet Remote Sensing Defence Technol Ctr, SFO, SPIE DE explosives detection; standoff explosives detection; visible hyperspectral imaging AB There is an ever-increasing need to be able to detect the presence of explosives, preferably from standoff distances of tens of meters. This paper presents an application of visible hyperspectral imaging using anomaly, polarization, and spectral identification approaches for the standoff detection (13 meters) of nitroaromatic explosives on realistic painted surfaces based upon the colorimetric differences between tetryl and TNT which are enhanced by solar irradiation. C1 [Bernacki, Bruce E.; Blake, Thomas A.; Mendoza, Albert; Johnson, Timothy J.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Bernacki, BE (reprint author), Pacific NW Natl Lab, POB 999, Richland, WA 99352 USA. EM bruce.bernacki@pnl.gov NR 15 TC 0 Z9 0 U1 0 U2 1 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-8356-0 J9 PROC SPIE PY 2010 VL 7838 AR 78380C DI 10.1117/12.870739 PG 7 WC Optics; Imaging Science & Photographic Technology SC Optics; Imaging Science & Photographic Technology GA BTP55 UT WOS:000287714000009 ER PT S AU Awwal, AAS AF Awwal, Abdul A. S. BE Awwal, AAS Iftekharuddin, KM Burkhart, SC TI Detection of Hohlraum Target Position for Laser Fusion Experiments SO OPTICS AND PHOTONICS FOR INFORMATION PROCESSING IV SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Optics and Photonics for Information Processing IV CY AUG 04-05, 2010 CL San Diego, CA SP SPIE DE Pattern recognition; image processing; correlation shape; laser alignment ID NATIONAL-IGNITION-FACILITY; PATTERN-RECOGNITION; AUTOMATIC ALIGNMENT; FILTER AB A hohlraum is a cylindrical structure that holds a laser fusion target at the National Ignition Facility. It must be aligned properly for all the 192 laser beams to hit the target and cause a fusion reaction. Video images of the hohlraum are used to align the hohlraum to the required position. A matched filtering based approach is used to locate the circular alignment fiducial of the hohlraum. One of the challenges of the automatic alignment algorithm is the presence of a number of nearly concentric features from which only one will provide the valid position information. The problem is compounded by blurring of relevant features by defocus or insufficient illumination and amplification of non-relevant features. It is shown that to identify the appropriate fiducial; the shape (or size) in addition to amplitude of correlation peak must be considered. C1 Lawrence Livermore Natl Lab, Natl Ignit Facil Laser Sci Engn & Operat, Livermore, CA 94551 USA. RP Awwal, AAS (reprint author), Lawrence Livermore Natl Lab, Natl Ignit Facil Laser Sci Engn & Operat, Livermore, CA 94551 USA. EM awwal1@llnl.gov NR 14 TC 0 Z9 0 U1 0 U2 3 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-8293-8 J9 PROC SPIE PY 2010 VL 7797 AR 77970G DI 10.1117/12.861994 PG 7 WC Computer Science, Interdisciplinary Applications; Optics; Physics, Applied; Imaging Science & Photographic Technology SC Computer Science; Optics; Physics; Imaging Science & Photographic Technology GA BTQ76 UT WOS:000287800800011 ER PT S AU Burkhart, SC Bliss, E Di Nicola, P Kalantar, D Lowe-Webb, R McCarville, T Nelson, D Salmon, T Schindler, T Villanueva, J Wilhelmsen, K AF Burkhart, S. C. Bliss, E. Di Nicola, P. Kalantar, D. Lowe-Webb, R. McCarville, T. Nelson, D. Salmon, T. Schindler, T. Villanueva, J. Wilhelmsen, K. BE Awwal, AAS Iftekharuddin, KM Burkhart, SC TI The National Ignition Facility: Alignment from construction to shot operations SO OPTICS AND PHOTONICS FOR INFORMATION PROCESSING IV SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Optics and Photonics for Information Processing IV CY AUG 04-05, 2010 CL San Diego, CA SP SPIE AB The National Ignition Facility in Livermore, California, completed it's commissioning milestone on March 10, 2009 when it fired all 192 beams at a combined energy of 1.1 MJ at 351nm. Subsequently, a target shot series from August through December of 2009 culminated in scale ignition target design experiments up to 1.2 MJ in the National Ignition Campaign. Preparations are underway through the first half of of 2010 leading to DT ignition and gain experiments in the fall of 2010 into 2011. The top level requirement for beam pointing to target of 50 mu m rms is the culmination of 15 years of engineering design of a stable facility, commissioning of precision alignment, and precise shot operations controls. Key design documents which guided this project were published in the mid 1990' s, driving systems designs. Precision Survey methods were used throughout construction, commissioning and operations for precision placement. Rigorous commissioning processes were used to ensure and validate placement and alignment throughout commissioning and in present day operations. Accurate and rapid system alignment during operations is accomplished by an impressive controls system to align and validate alignment readiness, assuring machine safety and productive experiments. C1 [Burkhart, S. C.; Bliss, E.; Di Nicola, P.; Kalantar, D.; Lowe-Webb, R.; McCarville, T.; Nelson, D.; Salmon, T.; Schindler, T.; Villanueva, J.; Wilhelmsen, K.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Burkhart, SC (reprint author), Lawrence Livermore Natl Lab, POB 808, Livermore, CA 94551 USA. NR 14 TC 0 Z9 0 U1 0 U2 1 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-8293-8 J9 PROC SPIE PY 2010 VL 7797 AR 77970M DI 10.1117/12.861485 PG 13 WC Computer Science, Interdisciplinary Applications; Optics; Physics, Applied; Imaging Science & Photographic Technology SC Computer Science; Optics; Physics; Imaging Science & Photographic Technology GA BTQ76 UT WOS:000287800800016 ER PT S AU Conder, A Chang, J Kegelmeyer, L Spaeth, M Whitman, P AF Conder, Alan Chang, Jim Kegelmeyer, Laura Spaeth, Mary Whitman, Pam BE Awwal, AAS Iftekharuddin, KM Burkhart, SC TI Final Optics Damage Inspection (FODI) for the National Ignition Facility SO OPTICS AND PHOTONICS FOR INFORMATION PROCESSING IV SE Proceedings of SPIE-The International Society for Optical Engineering LA English DT Proceedings Paper CT Conference on Optics and Photonics for Information Processing IV CY AUG 04-05, 2010 CL San Diego, CA SP SPIE DE FODI; NIF; optics inspection; laser-induced damage; high-resolution image analysis AB The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory (LLNL) routinely fires high energy shots (> 6 kJ per beamline) through the final optics, located on the target chamber. After a high fluence shot, exceeding 4J/cm(2) at 351 nm wavelength, the final optics are inspected for laser-induced damage. The FODI (Final Optics Damage Inspection) system has been developed for this purpose, with requirements to detect laser-induced damage initiation and to track and size it's growth to the point at which the optic is removed and the site mitigated. The FODI system is the "corner stone" of the NIF optic recycle strategy. We will describe the FODI system and discuss the challenges to make optics inspection a routine part of NIF operations. C1 [Conder, Alan; Chang, Jim; Kegelmeyer, Laura; Spaeth, Mary; Whitman, Pam] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Conder, A (reprint author), Lawrence Livermore Natl Lab, 7000 East Ave,POB 808,L-463, Livermore, CA 94551 USA. EM conder1@llnl.gov NR 0 TC 7 Z9 7 U1 1 U2 18 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-8293-8 J9 P SOC PHOTO-OPT INS PY 2010 VL 7797 AR 77970P DI 10.1117/12.862596 PG 12 WC Computer Science, Interdisciplinary Applications; Optics; Physics, Applied; Imaging Science & Photographic Technology SC Computer Science; Optics; Physics; Imaging Science & Photographic Technology GA BTQ76 UT WOS:000287800800018 ER PT J AU Leyffer, S Munson, T AF Leyffer, Sven Munson, Todd TI Solving multi-leader-common-follower games SO OPTIMIZATION METHODS & SOFTWARE LA English DT Article DE Nash games; Stackelberg games; nonlinear programming; nonlinear complementarity problems; mathematical programming with equilibrium constraints; equilibrium problems with equilibrium constraints ID VARIATIONAL INEQUALITY CONSTRAINTS; INTERIOR-POINT METHOD; MATHEMATICAL PROGRAMS; COMPLEMENTARITY CONSTRAINTS; EQUILIBRIUM CONSTRAINTS; OPTIMIZATION; CONVERGENCE AB Multi-leader-common-follower games arise when modelling two or more competitive firms, the leaders, that commit to their decisions prior to another group of competitive firms, the followers, that react to the decisions made by the leaders. These problems lead in a natural way to equilibrium problems with equilibrium constraints (EPECs). We develop a characterization of the solution sets for these problems and examine a variety of nonlinear optimization and nonlinear complementarity formulations of EPECs. We distinguish two broad cases: problems where the leaders can cost-differentiate and problems with price-consistent followers. We demonstrate the practical viability of our approach by solving a range of medium-sized test problems. C1 [Leyffer, Sven; Munson, Todd] Argonne Natl Lab, Math & Comp Sci Div, Argonne, IL 60439 USA. RP Munson, T (reprint author), Argonne Natl Lab, Math & Comp Sci Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM tmunson@mcs.anl.gov FU Office of Advanced Scientific Computing Research, Office of Science, US Department of Energy [DE-AC02-06CH11357]; National Science Foundation [0631622] FX This work was supported by the Mathematical, Information, and Computational Sciences Division subprogram of the Office of Advanced Scientific Computing Research, Office of Science, US Department of Energy, under Contract DE-AC02-06CH11357, and by the National Science Foundation under Grant 0631622. NR 32 TC 31 Z9 33 U1 0 U2 3 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 1055-6788 J9 OPTIM METHOD SOFTW JI Optim. Method Softw. PY 2010 VL 25 IS 4 BP 601 EP 623 AR PII 917044697 DI 10.1080/10556780903448052 PG 23 WC Computer Science, Software Engineering; Operations Research & Management Science; Mathematics, Applied SC Computer Science; Operations Research & Management Science; Mathematics GA 596AJ UT WOS:000277655300006 ER PT J AU Griffin, JD Kolda, TG AF Griffin, Joshua D. Kolda, Tamara G. TI Asynchronous parallel hybrid optimization combining DIRECT and GSS SO OPTIMIZATION METHODS & SOFTWARE LA English DT Article; Proceedings Paper CT 2nd International Conference on Nonlinear Programming with Applications CY APR 07-09, 2009 CL Beijing, PEOPLES R CHINA DE parallel; asynchronous; distributed computing; hybrid optimization; global optimization; direct search; derivative-free; generating set search; pattern search ID CONSTRAINED GLOBAL OPTIMIZATION; DERIVATIVE-FREE OPTIMIZATION; MEDICAL IMAGE REGISTRATION; GENERATING SET SEARCH; PATTERN SEARCH; NONLINEAR OPTIMIZATION; DIRECT ALGORITHM; INPUT VARIABLES; MODEL AB In this paper, we explore hybrid parallel global optimization using Dividing Rectangles (DIRECT) and asynchronous generating set search (GSS). Both DIRECT and GSS are derivative-free and so require only objective function values; this makes these methods applicable to a wide variety of science and engineering problems. DIRECT is a global search method that strategically divides the search space into ever-smaller rectangles, sampling the objective function at the centre point for each rectangle. GSS is a local search method that samples the objective function at trial points around the current best point, i.e. the point with the lowest function value. Latin hypercube sampling can be used to seed GSS with a good starting point. Using a set of global optimization test problems, we compare the parallel performance of DIRECT and GSS with hybrids that combine the two methods. Our experiments suggest that the hybrid methods are much faster than DIRECT and scale better when more processors are added. This improvement in performance is achieved without any sacrifice in the quality of the solution - the hybrid methods find the global optimum whenever DIRECT does. C1 [Kolda, Tamara G.] Sandia Natl Labs, Informat & Decis Sci Dept, Livermore, CA 94551 USA. [Griffin, Joshua D.] SAS Inst Inc, Cary, NC 27513 USA. RP Kolda, TG (reprint author), Sandia Natl Labs, Informat & Decis Sci Dept, Livermore, CA 94551 USA. EM tgkolda@sandia.gov RI Kolda, Tamara/B-1628-2009 OI Kolda, Tamara/0000-0003-4176-2493 FU United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This work was funded by Sandia National Laboratories, a multiprogramme laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. NR 65 TC 4 Z9 4 U1 1 U2 6 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OR14 4RN, OXON, ENGLAND SN 1055-6788 EI 1029-4937 J9 OPTIM METHOD SOFTW JI Optim. Method Softw. PY 2010 VL 25 IS 5 BP 797 EP 817 AR PII 913891192 DI 10.1080/10556780903039893 PG 21 WC Computer Science, Software Engineering; Operations Research & Management Science; Mathematics, Applied SC Computer Science; Operations Research & Management Science; Mathematics GA 610CG UT WOS:000278706700010 ER PT S AU Wright, JB Brener, I Westlake, KR Branch, DW Shaw, MJ Vawter, GA AF Wright, J. B. Brener, I. Westlake, K. R. Branch, D. W. Shaw, M. J. Vawter, G. A. BE Eldada, LA Lee, EH TI A platform for multiplexed sensing of biomolecules using high-Q microring resonator arrays with differential readout and integrated microfluidics SO OPTOELECTRONIC INTEGRATED CIRCUITS XII SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Optoelectronic Integrated Circuits XII CY JAN 27-28, 2010 CL San Francisco, CA SP SPIE DE Integrated optics; microsensors; ridge waveguides; biochemistry; resonators; waveguides ID RING-RESONATOR; DISK RESONATOR; SENSORS AB We demonstrate chemical/biological sensor arrays based on high quality factor evanescent microring waveguide resonators in a process that is compatible with CMOS fabrication, glass microfluidic integration, and robust surface chemistry ligand attachment. We cancel out any fluctuations due to liquid temperature variations through a differential dual sensor design. Using laser locking servo techniques we attain detection sensitivities in the ng/ml range. This combination of silicon photonic sensors, robust packaging, high sensitivity and arrayed design is capable of providing a platform for multiplexed chem-bio sensing of molecules suspended in solution. C1 [Wright, J. B.; Brener, I.; Westlake, K. R.; Branch, D. W.; Shaw, M. J.; Vawter, G. A.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Wright, JB (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. RI Brener, Igal/G-1070-2010; Wright, Jeremy/G-7149-2011 OI Brener, Igal/0000-0002-2139-5182; Wright, Jeremy/0000-0001-6861-930X NR 21 TC 6 Z9 6 U1 3 U2 11 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-8001-9 J9 PROC SPIE PY 2010 VL 7605 AR 76050C DI 10.1117/12.842283 PG 11 WC Engineering, Electrical & Electronic; Optics SC Engineering; Optics GA BSH13 UT WOS:000284396700009 ER PT J AU Kim, H Ralph, J AF Kim, Hoon Ralph, John TI Solution-state 2D NMR of ball-milled plant cell wall gels in DMSO-d(6)/pyridine-d(5) SO ORGANIC & BIOMOLECULAR CHEMISTRY LA English DT Review ID GAS CHROMATOGRAPHY/MASS SPECTROMETRY; CELLULOLYTIC ENZYME LIGNIN; NUCLEAR-MAGNETIC-RESONANCE; ABIES L. KARST; IONIC LIQUIDS; WOOD LIGNIN; DFRC METHOD; ACETYLATED GALACTOGLUCOMANNAN; LIGNOCELLULOSIC MATERIALS; PECTIC POLYSACCHARIDES AB NMR fingerprinting of the components of finely divided plant cell walls swelled in DMSO has been recently described. Cell wall gels, produced directly in the NMR tube with perdeutero-dimethylsulfoxide, allowed the acquisition of well resolved/dispersed 2D C-13-H-1 correlated solution-state NMR spectra of the entire array of wall polymers, without the need for component fractionation. That is, without actual solubilization, and without apparent structural modification beyond that inflicted by the ball milling and ultrasonication steps, satisfactorily interpretable spectra can be acquired that reveal compositional and structural details regarding the polysaccharide and lignin components in the wall. Here, the profiling method has been improved by using a mixture of perdeuterated DMSO and pyridine (4 : 1, v/v). Adding pyridine provided not only easier sample handling because of the better mobility compared to the DMSO-d(6)-only system but also considerably elevated intensities and improved resolution of the NMR spectra due to the enhanced swelling of the cell walls. This modification therefore provides a more rapid method for comparative structural evaluation of plant cell walls than is currently available. We examined loblolly pine (Pinus taeda, a gymnosperm), aspen (Populus tremuloides, an angiosperm), kenaf (Hibiscus cannabinus, an herbaceous plant), and corn (Zea mays L., a grass, i.e., from the Poaceae family). In principle, lignin composition (notably, the syringyl : guaiacyl : p-hydroxyphenyl ratio) can be quantified without the need for lignin isolation. Correlations for p-coumarate units in the corn sample are readily seen, and a variety of the ferulate correlations are also well resolved; ferulates are important components responsible for cell wall cross-linking in grasses. Polysaccharide anomeric correlations were tentatively assigned for each plant sample based on standard samples and various literature data. With the new potential for chemometric analysis using the 2D NMR fingerprint, this gel-state method may provide the basis for an attractive approach to providing a secondary screen for selecting biomass lines and for optimizing biomass processing and conversion efficiencies. C1 [Kim, Hoon; Ralph, John] Univ Wisconsin, Dept Biochem, DOE Great Lakes BioEnergy Res Ctr, Madison, WI 53706 USA. [Ralph, John] Univ Wisconsin, Dept Biol Syst Engn, Madison, WI 53706 USA. RP Kim, H (reprint author), Univ Wisconsin, Dept Biochem, DOE Great Lakes BioEnergy Res Ctr, Madison, WI 53706 USA. EM hoonkim@wisc.edu; jralph@wisc.edu FU Office of Science (BER); U.S. Dept. of Energy [DE-AI02-06ER64299, DE-FC02-07ER64494]; National Institutes of Health [P41RR02301, P41GM66326, RR02781, RR08438]; University of Wisconsin; National Science Foundation [DMB-8415048, BIR-9214394]; U.S. Department of Agriculture FX We are grateful to Paul Schatz, Takuya Akiyama, Ron Hatfield, Jane Marita, Dan Yelle, Fachuang Lu, and Dino Ress for various discussions. This research was supported by the Office of Science (BER), U.S. Dept. of Energy, Interagency agreement No. DE-AI02-06ER64299, and was also funded in part by the DOE Great Lakes Bioenergy Research Center (www.greatlakesbioenergy.org), which is supported by the U. S. Department of Energy, Office of Science, Office of Biological and Environmental Research, through Cooperative Agreement DE-FC02-07ER64494 between The Board of Regents of the University ofWisconsin System and the U. S. Department of Energy. This study made use of 750 MHz instruments at the National Magnetic Resonance Facility at Madison, which is supported by National Institutes of Health grants P41RR02301 (Biomedical Research Technology Program, National Center for Research Resources) and P41GM66326 (National Institute of General Medical Sciences). Equipment in the facility was purchased with funds from the University of Wisconsin, the National Institutes of Health (P41GM66326, P41RR02301, RR02781, RR08438), the National Science Foundation (DMB-8415048, BIR-9214394), and the U.S. Department of Agriculture. NR 109 TC 213 Z9 216 U1 8 U2 138 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1477-0520 J9 ORG BIOMOL CHEM JI Org. Biomol. Chem. PY 2010 VL 8 IS 3 BP 576 EP 591 DI 10.1039/b916070a PG 16 WC Chemistry, Organic SC Chemistry GA 545OX UT WOS:000273745100013 PM 20090974 ER PT S AU Stewart, FF AF Stewart, Frederick F. BE Allen, DW Tebby, JC Loakes, D TI Phosphazenes SO ORGANOPHOSPHORUS CHEMISTRY, VOL 39 SE SPR-Organophosphorus Chemistry LA English DT Article; Book Chapter ID LIGHT-EMITTING-DIODES; SELF-ASSEMBLED NANOPARTICLES; PLASMA-TREATED POLYAMIDE-6; ENERGY-DENSITY COMPOUNDS; SITU TEMPLATE APPROACH; IN-STENT STENOSIS; POLYPHOSPHAZENE NANOTUBES; FLUORINATED ALCOHOLS; SURFACE MODIFICATION; CYCLIC PHOSPHAZENES C1 Idaho Natl Lab, Interfacial Chem Dept, Idaho Falls, ID 83415 USA. RP Stewart, FF (reprint author), Idaho Natl Lab, Interfacial Chem Dept, Idaho Falls, ID 83415 USA. NR 114 TC 0 Z9 0 U1 0 U2 1 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, CAMBRIDGE CB4 4WF, CAMBS, ENGLAND SN 0306-0713 BN 978-1-84755-058-3; 978-1-84973-083-9 J9 SPR-ORGANOPHOS CHEM PY 2010 VL 39 BP 308 EP 352 DI 10.1039/9781849730839-00308 D2 10.1039/9781849730839 PG 45 WC Chemistry, Organic SC Chemistry GA BA1DE UT WOS:000332401500010 ER PT J AU Rosendahl, J Ronai, Z Kovacs, P Teich, N Wittenburg, H Bluher, M Stumvoll, M Mossner, J Keim, V Bradbury, ARM Sahin-Toth, M AF Rosendahl, Jonas Ronai, Zsolt Kovacs, Peter Teich, Niels Wittenburg, Henning Blueher, Matthias Stumvoll, Michael Moessner, Joachim Keim, Volker Bradbury, Andrew R. M. Sahin-Toth, Miklos TI Sequence Analysis of the Human Tyrosylprotein Sulfotransferase-2 Gene in Subjects with Chronic Pancreatitis SO PANCREATOLOGY LA English DT Article DE Chronic pancreatitis; Genetic association study; Tyrosine sulfation; tyrosylprotein sulfotransferase-2 variant; tyrosylprotein sulfotransferase-2 haplotype; PHASE ID ANIONIC TRYPSINOGEN PRSS2; TYROSINE O-SULFATION; IDIOPATHIC CHRONIC-PANCREATITIS; HUMAN CATIONIC TRYPSINOGEN; HEREDITARY PANCREATITIS; HAPLOTYPE RECONSTRUCTION; MOLECULAR-CLONING; INHIBITOR GENE; MUTATIONS; EXPRESSION AB Background/Aims: Human trypsinogens are post-translationally sulfated on Tyr154 by the Golgi resident enzyme tyrosylprotein sulfotransferase-2 (TPST2). Tyrosine sulfation stimulates the autoactivation of human cationic trypsinogen. Because increased trypsinogen autoactivation has been implicated as a pathogenic mechanism in chronic pancreatitis, we hypothesized that genetic variants of TPST2 might alter the risk for the disease. Methods: We sequenced the 4 protein-coding exons and the adjacent intronic sequences of TPST2 in 151 subjects with chronic pancreatitis and in 169 healthy controls. The functional effect of TPST2 variants on trypsinogen sulfation was analyzed in transfected HEK 293T cells. Results: We detected 10 common polymorphic variants, including 6 synonymous variants and 4 intronic variants, with similar frequencies in patients and controls. None of the 8 common haplotypes reconstructed from the frequent variants showed an association with chronic pancreatitis. In addition, we identified 5 rare TPST2 variants, which included 3 synonymous alterations, the c.458G>A (p.R153H) nonsynonymous variant and the c.-9C>T variant in the 5' untranslated region. The p.R153H variant was found in a family with hereditary pancreatitis; however, it did not segregate with the disease. In functional assays, both the p. R153H and c.-9C>T TPST2 variants catalyzed trypsinogen sulfation as well as wild-type TPST2. Conclusion: Genetic variants of human TPST2 exert no influence on the risk of chronic pancreatitis. Copyright (C) 2010 S. Karger AG, Basel and IAP C1 [Rosendahl, Jonas; Wittenburg, Henning; Moessner, Joachim; Keim, Volker] Univ Leipzig, Dept Gastroenterol & Hepatol, Leipzig, Germany. [Kovacs, Peter] Univ Leipzig, Interdisciplinary Ctr Clin Res Leipzig, Leipzig, Germany. [Blueher, Matthias; Stumvoll, Michael] Univ Leipzig, Dept Endocrinol, Leipzig, Germany. [Teich, Niels] Internist Gemeinschaftspraxis Verdauungs & Stoffw, Leipzig, Germany. [Ronai, Zsolt; Sahin-Toth, Miklos] Boston Univ, Dept Mol & Cell Biol, Henry M Goldman Sch Dent Med, Boston, MA 02215 USA. [Bradbury, Andrew R. M.] Los Alamos Natl Lab, Biosci Div, Los Alamos, NM USA. RP Rosendahl, J (reprint author), Univ Klinikum Leipzig, Med Klin & Poliklin 2, Dept Innere Med, Philipp Rosenthal Str 27, DE-04103 Leipzig, Germany. EM jonas.rosendahl@medizin.uni-leipzig.de OI Ronai, Zsolt/0000-0002-0909-7932; Bradbury, Andrew/0000-0002-5567-8172 FU Deutsche Forschungsgemeinschaft [Ro 3929/1-1]; NIH [AA014544, DK058088] FX This work was supported by the Deutsche Forschungsgemeinschaft Ro 3929/1-1 (to J.R.) and NIH grants AA014544 and DK058088 to M.S.-T. We thank the individuals who have participated in this study. We also thank Claudia Ruffert (Leipzig) and Knut Krohn, Birgit Oelzner and Kathleen Stein (Interdisciplinary Center for Clinical Research Leipzig, Core Unit for DNA-Technologies) for their excellent technical assistance. NR 32 TC 1 Z9 1 U1 1 U2 2 PU KARGER PI BASEL PA ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND SN 1424-3903 J9 PANCREATOLOGY JI Pancreatology PY 2010 VL 10 IS 2-3 BP 165 EP 172 DI 10.1159/000231979 PG 8 WC Gastroenterology & Hepatology SC Gastroenterology & Hepatology GA 621MO UT WOS:000279583200010 PM 20460947 ER PT S AU Tanaka, M AF Tanaka, Michiko BE Gnoli, C Mazzocchi, F TI Domain analysis of computational science Fifty years of a scientific computing group SO PARADIGMS AND CONCEPTUAL SYSTEMS IN KNOWLEDGE ORGANIZATION SE Advances in Knowledge Organization LA English DT Proceedings Paper CT 11th International ISKO Conference CY FEB 23-26, 2010 CL Rome, ITALY SP Int Soc Knowledge Org, Italian Chapter, Sapienza Univ of Rome, Fac Philosophy ID COCITATION AB I employed bibliometric and historical methods to study the domain of the Scientific Computing group at Brookhaven National Laboratory (BNL) for an extended period of fifty years, from 1958 to 2007. I noted and confirmed the growing emergence of interdisciplinarity within the group. I also identified a strong, consistent mathematics and physics orientation within it. C1 [Tanaka, Michiko] Brookhaven Natl Lab, Upton, NY 11973 USA. NR 15 TC 2 Z9 2 U1 1 U2 1 PU ERGON-VERLAG GMBH PI WURZBURG PA KEESBURGSTRABE 11, WURZBURG, D-97074, GERMANY SN 0938-5495 BN 978-3-89913-746-0 J9 ADV KNOW OR PY 2010 VL 12 BP 248 EP 253 PG 6 WC Information Science & Library Science SC Information Science & Library Science GA BB2TI UT WOS:000342293700034 ER PT S AU Guisado, JL Jimenez-Morales, F Guerra, JM de Vega, FF Iskra, KA Sloot, PMA Gonzalez, DL AF Guisado, J. L. Jimenez-Morales, F. Guerra, J. M. de Vega, F. Fernandez Iskra, K. A. Sloot, P. M. A. Lombrana Gonzalez, Daniel BE DeVega, FF CantuPaz, E TI Laser Dynamics Modelling and Simulation: An Application of Dynamic Load Balancing of Parallel Cellular Automata SO PARALLEL AND DISTRIBUTED COMPUTATIONAL INTELLIGENCE SE Studies in Computational Intelligence LA English DT Article; Book Chapter ID SYSTEMS; ENVIRONMENT; TOOL C1 [Guisado, J. L.] Univ Seville, Dept Arquitectura & Tecnol Computadores, ETS Ingn Informat, E-41012 Seville, Spain. [Jimenez-Morales, F.] Univ Seville, Dept Fis Mat Condensada, E-41080 Seville, Spain. [Guerra, J. M.] Univ Complutense Madrid, Dept Opt, Fac CC Fis, E-28040 Madrid, Spain. [de Vega, F. Fernandez; Lombrana Gonzalez, Daniel] Univ Extremadura, Ctr Univ Merida, Merida 06800, Badajoz, Spain. [Iskra, K. A.] Argonne Natl Lab, Div Math & Comp Sci, Argonne, IL 60439 USA. [Sloot, P. M. A.] Univ Amsterdam, Sect Computat Sci, Lab Comp Syst Architecture & Programming, Fac Sci, NL-1098 SJ Amsterdam, Netherlands. RP Guisado, JL (reprint author), Univ Seville, Dept Arquitectura & Tecnol Computadores, ETS Ingn Informat, Avda Reina Mercedes S-N, E-41012 Seville, Spain. EM jlguisado@us.es; jimenez@us.es; jmguerra@fis.ucm.es; fcofdez@unex.es; iskra@mcsanl.gov; p.m.a.sloot@uva.nl; daniellg@unex.es RI Guisado, J.L./L-2278-2014 OI Jimenez Morales, Francisco/0000-0002-5209-9028; Guisado, J.L./0000-0001-5480-7617 NR 47 TC 0 Z9 0 U1 0 U2 0 PU SPRINGER-VERLAG BERLIN PI BERLIN PA HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY SN 1860-949X BN 978-3-642-10674-3 J9 STUD COMPUT INTELL PY 2010 VL 269 BP 321 EP 347 D2 10.1007/978-3-642-10675-0 PG 27 WC Computer Science, Artificial Intelligence; Computer Science, Hardware & Architecture SC Computer Science GA BRF27 UT WOS:000282603700014 ER PT J AU Piernas-Canovas, J Nieplocha, J AF Piernas-Canovas, Juan Nieplocha, Jarek TI Implementation and evaluation of active storage in modern parallel file systems SO PARALLEL COMPUTING LA English DT Article DE Active Storage; Lustre; PVFS2; Striped file; NetCDF AB Active Storage is a technology aimed at reducing the bandwidth requirements of current supercomputing systems, and leveraging the processing power of the storage nodes used by some modern file systems. To achieve both objectives. Active Storage moves certain processing tasks to the storage nodes, near the data they manage. Our proposal for Active Storage has several key features: user-space implementation which facilitates the port to different file systems, analytical model to anticipate the performance of Active Storage with respect to a traditional system, support for striped files and complex-format files such as netCDF, and scientific-friendly programming and run-time environment. (c) 2009 Elsevier B.V. All rights reserved. C1 [Piernas-Canovas, Juan] Univ Murcia, E-30001 Murcia, Spain. [Piernas-Canovas, Juan; Nieplocha, Jarek] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Piernas-Canovas, J (reprint author), Univ Murcia, Avda Teniente Flomesta 5, E-30001 Murcia, Spain. EM piernas@ditec.um.es; jarek.nieplocha@pnl.gov FU Department of Energy, Office of Advanced Scientific Computing Research at the Pacific Northwest National Laboratory; Battelle for the US Department of Energy [DE-AC06-76RL01830]; Spanish MEC; European Commission FEDER [CSD2006-00046, TIN2006-15516-C04-03] FX The research described in this paper was supported by the Department of Energy, Office of Advanced Scientific Computing Research at the Pacific Northwest National Laboratory, a multiprogram national laboratory operated by Battelle for the US Department of Energy under Contract DE-AC06-76RL01830, and by the Spanish MEC and European Commission FEDER funds under Grants "Consolider Ingenio-2010 CSD2006-00046", and "TIN2006-15516-C04-03". Jarek Nieplocha In Memoriam, 1961-2009. NR 41 TC 4 Z9 4 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-8191 EI 1872-7336 J9 PARALLEL COMPUT JI Parallel Comput. PD JAN PY 2010 VL 36 IS 1 BP 26 EP 47 DI 10.1016/j.parco.2009.11.002 PG 22 WC Computer Science, Theory & Methods SC Computer Science GA 569RR UT WOS:000275617600004 ER PT S AU Cicotti, P Li, XS Baden, SB AF Cicotti, Pietro Li, Xiaoye S. Baden, Scott B. BE Chapman, B Desprez, F Joubert, GR Lichnewsky, A Peters, F Priol, T TI Performance Modeling Tools for Parallel Sparse Linear Algebra Computations SO PARALLEL COMPUTING: FROM MULTICORES AND GPU'S TO PETASCALE SE Advances in Parallel Computing LA English DT Proceedings Paper CT International Parallel Computing Conference (ParCo) CY SEP 01-04, 2009 CL Ecole Normale Super, Lyon, FRANCE SP BULL, CAPS, CNRS, IBM, GENCI, INRIA, sgi, PRACE, Univ Lyon, LIP HO Ecole Normale Super DE Performance modeling; linear algebra; parallel sparse factorizations ID FACTORIZATION AB We developed a Performance Modeling Tools (PMTOOLS) library to enable simulation-based performance modeling for parallel sparse linear algebra algorithms. The library includes micro-benchmarks for calibrating the system's parameters, functions for collecting and retrieving performance data, and a cache simulator for modeling the detailed memory system activities. Using these tools, we have built simulation modules to model and predict performance of different variants of parallel sparse LU and Cholesky factorization algorithms. We validated the simulated results with the existing implementation in SuperLU_DIST, and showed that our performance prediction errors are only 6.1% and 6.6% with 64 processors IBM power5 and Cray XT4, respectively. More importantly, we have successfully used this simulation framework to forecast the performance of different algorithm choices, and helped prototyping new algorithm implementations. C1 [Cicotti, Pietro; Baden, Scott B.] Univ Calif San Diego, Dept Comp Sci & Engn, La Jolla, CA 92093 USA. [Li, Xiaoye S.] Lawrence Berkeley Natl Lab, Computat Res Div, Berkeley, CA 94720 USA. RP Li, XS (reprint author), Lawrence Berkeley Natl Lab, Computat Res Div, Berkeley, CA 94720 USA. EM pcicotti@cse.ucsd.edu; xsli@lbl.gov; baden@cse.ucsd.edu FU NSF [ACI0326013]; Director, Office of Science; Office of Advanced Scientific Computing Research, of the U.S. Department of Energy [DE-AC02-05CH11231]; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231] FX This research was supported in part by the NSF contract ACI0326013, and in part by the Director, Office of Science, Office of Advanced Scientific Computing Research, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. It used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 10 TC 0 Z9 0 U1 0 U2 0 PU IOS PRESS PI AMSTERDAM PA NIEUWE HEMWEG 6B, 1013 BG AMSTERDAM, NETHERLANDS SN 0927-5452 BN 978-1-60750-530-3; 978-1-60750-529-7 J9 ADV PARALLEL COMPUT PY 2010 VL 19 BP 83 EP 90 DI 10.3233/978-1-60750-530-3-83 PG 8 WC Computer Science, Software Engineering; Computer Science, Theory & Methods SC Computer Science GA BG9IU UT WOS:000393292700009 ER PT S AU Canning, A Shalf, J Wang, LW Wasserman, H Gajbe, M AF Canning, A. Shalf, J. Wang, L-W. Wasserman, H. Gajbe, M. BE Chapman, B Desprez, F Joubert, GR Lichnewsky, A Peters, F Priol, T TI A Comparison of Different Communication Structures for Scalable Parallel Three Dimensional FFTs in First Principles Codes SO PARALLEL COMPUTING: FROM MULTICORES AND GPU'S TO PETASCALE SE Advances in Parallel Computing LA English DT Proceedings Paper CT International Parallel Computing Conference (ParCo) CY SEP 01-04, 2009 CL Ecole Normale Super, Lyon, FRANCE SP BULL, CAPS, CNRS, IBM, GENCI, INRIA, sgi, PRACE, Univ Lyon, LIP HO Ecole Normale Super DE Fast Fourier Transform; Parallel Computing; Materials Science ID TOTAL-ENERGY CALCULATIONS AB Plane Wave based first principles electronic structure calculations are the most widely used approach for electronic structure calculations in materials science. In this formulation the electronic wavefunctions are expanded in plane waves (Fourier components) in three dimensional space and 3d FFTs are used to construct the charge density in real space. Many other scientific application codes in the areas of fluid mechanics, climate research and accelerator design also require efficient parallel 3d FFTs. Due to the large amount of communications required in parallel 3d FFTs the scaling of these application codes on large parallel machines depends critically on having a 3d FFT that scales efficiently to large processor counts. In this paper we compare different implementations for the communications in a 3d FFT to determine the most scalable method to use for our application. We present results up to 16K cores on the Cray XT4 and IBM Blue Gene/P as well as compare our implementations to publicly available 3d FFTs such as P3DFFT and FFTW. In our application our 3d FFTs significantly outperform any publicly available software. Our 3d FFT has been implemented in many different first principles codes used for research in materials science, nanoscience, energy technologies etc. as well as being a stand alone benchmark code used for the procurement of new machines at the Department of Energy NERSC computing center. C1 [Canning, A.; Shalf, J.; Wang, L-W.; Wasserman, H.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Gajbe, M.] Georgia Inst Technol, Atlanta, GA 30332 USA. RP Canning, A (reprint author), Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM ACanning@lbl.gov FU Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231, DE-AC02-06CH11357] FX This research used resources of the National Energy Research Scientific Computing Center at the Lawrence Berkeley National Laboratory and the Argonne Leadership Computing Facility at Argonne National Laboratory, which are supported by the Office of Science of the U.S. Department of Energy under contracts DE-AC02-05CH11231 and DE-AC02-06CH11357. NR 10 TC 2 Z9 2 U1 0 U2 0 PU IOS PRESS PI AMSTERDAM PA NIEUWE HEMWEG 6B, 1013 BG AMSTERDAM, NETHERLANDS SN 0927-5452 BN 978-1-60750-530-3; 978-1-60750-529-7 J9 ADV PARALLEL COMPUT PY 2010 VL 19 BP 107 EP 116 DI 10.3233/978-1-60750-530-3-107 PG 10 WC Computer Science, Software Engineering; Computer Science, Theory & Methods SC Computer Science GA BG9IU UT WOS:000393292700012 ER PT S AU Gopalsami, N Liao, SL Koehl, ER Elmer, TW Heifetz, A Chien, HT Raptis, AC AF Gopalsami, Nachappa Liao, Shaolin Koehl, Eugene R. Elmer, Thomas W. Heifetz, Alexander Chien, Hual-Te Raptis, Apostolos C. BE Wikner, DA Luukanen, AR TI Passive Millimeter Wave Imaging and Spectroscopy System for Terrestrial Remote Sensing SO PASSIVE MILLIMETER-WAVE IMAGING TECHNOLOGY XIII SE Proceedings of SPIE-The International Society for Optical Engineering LA English DT Proceedings Paper CT Conference on Passive Millimeter - Wave Imaging Technology XIII CY APR 08, 2010 CL Orlando, FL SP SPIE DE passive millimeter waves; single pixel imaging; chemical spectroscopy AB We have built a passive millimeter wave imaging and spectroscopy system with a 15-channel filter bank in the 146-154 GHz band for terrestrial remote sensing. We had built the spectroscopy system first and have now retrofitted an imaging element to it as a single pixel imager. The imaging element consisted of a 15-cm-diameter imaging lens fed to a corrugated scalar horn. Image acquisition is carried out by scanning the lens with a 2-axis translation stage. A LabVIEW-based software program integrates the imaging and spectroscopy systems with online display of spectroscopic information while the system scans each pixel position. The software also allows for integrating the image intensity of all 15 channels to increase the signal-to-noise ratio by a factor of similar to 4 relative to single channel image. The integrated imaging and spectroscopy system produces essentially 4-D data in which spatial data are along 2 dimensions, spectral data are in the 3rd dimension, and time is the 4(th) dimension. The system performance was tested by collecting imaging and spectral data with a 7.5-cm-diameter and 1m long gas cell in which test chemicals were introduced against a liquid nitrogen background. C1 [Gopalsami, Nachappa; Liao, Shaolin; Koehl, Eugene R.; Elmer, Thomas W.; Heifetz, Alexander; Chien, Hual-Te; Raptis, Apostolos C.] Argonne Natl Lab, Lemont, IL 60439 USA. RP Gopalsami, N (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Lemont, IL 60439 USA. OI Elmer, Thomas/0000-0003-0363-5928 NR 7 TC 2 Z9 2 U1 0 U2 0 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-8134-4 J9 P SOC PHOTO-OPT INS PY 2010 VL 7670 AR 767003 DI 10.1117/12.850123 PG 7 WC Optics; Imaging Science & Photographic Technology SC Optics; Imaging Science & Photographic Technology GA BSL68 UT WOS:000284869900002 ER PT S AU Sheen, DM Hall, TE Severtsen, RH McMakin, DL Hatchell, BK Valdez, PLJ AF Sheen, David M. Hall, Thomas E. Severtsen, Ronald H. McMakin, Douglas L. Hatchell, Brian K. Valdez, Patrick L. J. BE Wikner, DA Luukanen, AR TI Standoff concealed weapon detection using a 350 GHz radar imaging system SO PASSIVE MILLIMETER-WAVE IMAGING TECHNOLOGY XIII SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Passive Millimeter - Wave Imaging Technology XIII CY APR 08, 2010 CL Orlando, FL SP SPIE DE Millimeter waves; sub-millimeter; terahertz; imaging; personnel surveillance; personnel screening; concealed-weapon detection ID MILLIMETER-WAVE AB The sub-millimeter (sub-mm) wave frequency band from 300 - 1000 GHz is currently being developed for standoff concealed weapon detection imaging applications. This frequency band is of interest due to the unique combination of high resolution and clothing penetration. The Pacific Northwest National Laboratory (PNNL) is currently developing a 350 GHz, active, wideband, three-dimensional, radar imaging system to evaluate the feasibility of active sub-mm imaging for standoff detection. Standoff concealed weapon and explosive detection is a pressing national and international need for both civilian and military security, as it may allow screening at safer distances than portal screening techniques. PNNL has developed a prototype active wideband 350 GHz radar imaging system based on a wideband, heterodyne, frequency-multiplier-based transceiver system coupled to a quasi-optical focusing system and high-speed rotating conical scanner. This prototype system operates at ranges up to 10+ meters, and can acquire an image in 10 - 20 seconds, which is fast enough to scan cooperative personnel for concealed weapons. The wideband operation of this system provides accurate ranging information, and the images obtained are fully three-dimensional. During the past year, several improvements to the system have been designed and implemented, including increased imaging speed using improved balancing techniques, wider bandwidth, and improved image processing techniques. In this paper, the imaging system is described in detail and numerous imaging results are presented. C1 [Sheen, David M.; Hall, Thomas E.; Severtsen, Ronald H.; McMakin, Douglas L.; Hatchell, Brian K.; Valdez, Patrick L. J.] US DOE, Battelle, Pacific NW Div, Pacific NW Natl Lab, Richland, WA 99352 USA. RP Sheen, DM (reprint author), US DOE, Battelle, Pacific NW Div, Pacific NW Natl Lab, POB 999, Richland, WA 99352 USA. EM david.sheen@pnl.gov NR 13 TC 10 Z9 10 U1 5 U2 22 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-8134-4 J9 PROC SPIE PY 2010 VL 7670 AR 767008 DI 10.1117/12.852788 PG 12 WC Optics; Imaging Science & Photographic Technology SC Optics; Imaging Science & Photographic Technology GA BSL68 UT WOS:000284869900007 ER PT J AU Holland, H Koschny, T Ahnert, P Meixensberger, J Koschny, R AF Holland, Heidrun Koschny, Thomas Ahnert, Peter Meixensberger, Juergen Koschny, Ronald TI WHO grade-specific comparative genomic hybridization pattern of astrocytoma - A meta-analysis SO PATHOLOGY RESEARCH AND PRACTICE LA English DT Article DE Astrocytoma; Glioblastoma multiforme; Comparative genomic hybridization; CGH; Meta-analysis ID GLIOBLASTOMA-MULTIFORME; GENETIC ALTERATIONS; ANAPLASTIC OLIGODENDROGLIOMAS; CYTOGENETIC ANALYSIS; AMPLIFICATION SITES; II ASTROCYTOMAS; NERVOUS-SYSTEM; TUMORS; GLIOMAS; CANCER AB To detect novel genetic alterations, many astrocytomas have been investigated by comparative genomic hybridization (CGH). To identify aberration profiles characteristic of World Health Organization (WHO) grade I, II, III, and IV astrocytoma, we performed a meta-analysis of detailed genome wide CGH data of all 467 cases published so far. After expansion of all given aberrations to the maximum of 850 GTG-band resolution, the frequencies of genetic imbalances were calculated for each chromosomal band, separately for all four WHO grades. Low-grade astrocytoma has already demonstrated one characteristic of glioblastoma multiforme, gain of chromosome 7 with a hot spot at 7q32, but without loss of chromosome 10. In anaplastic astrocytoma, a more complex aberration pattern emerges from diffuse genetic imbalances. Gains of 7q32-q36 and 7p12 become the most frequent aberrations at chromosome 7. In glioblastoma multiforme, coarse aberrations like +7, -9p, -10, and -13 represent the most frequent aberrations as a characteristic pattern. In contrast to lower tumor grades, glioblastoma multiforme demonstrates +7p12 as the most frequently affected band on chromosome 7. To quantify the gradual transition from WHO grade II-IV astrocytoma, we calculated the relative increase and decrease in frequency for each detected aberration of the tumor genome. The most pronounced and diverse changes of genetic material occur at the virtual transition from low-grade to anaplastic astrocytoma. Further transition to glioblastoma multiforme is characterized by gain of 1p, chromosome 7, and loss of chromosome 10. Summing up, the expansion of the CGH results to the 850 GTG-band resolution enabled a meta-analysis to visualize WHO grade-specific aberration profiles in astrocytoma. (C) 2010 Elsevier GmbH. All rights reserved. C1 [Koschny, Ronald] Univ Heidelberg, Dept Internal Med, D-69120 Heidelberg, Germany. [Holland, Heidrun; Ahnert, Peter] Univ Leipzig, Fac Med, Translat Ctr Regenerat Med, Leipzig, Germany. [Koschny, Thomas] Iowa State Univ, Ames Lab, Ames, IA USA. [Koschny, Thomas] Iowa State Univ, Dept Phys & Astron, Ames, IA USA. [Koschny, Thomas] FORTH, Inst Elect Struct & Laser, Iraklion, Crete, Greece. [Ahnert, Peter] Univ Leipzig, Inst Med Informat Stat & Epidemiol, Leipzig, Germany. [Meixensberger, Juergen] Univ Leipzig, Clin Neurosurg, Leipzig, Germany. RP Koschny, R (reprint author), Univ Heidelberg, Dept Internal Med, Neuenheimer Feld 410, D-69120 Heidelberg, Germany. EM ronald.koschny@med.uni-heidelberg.de RI Ahnert, Peter/I-8150-2015 OI Ahnert, Peter/0000-0002-1771-0856 NR 48 TC 6 Z9 6 U1 0 U2 1 PU ELSEVIER GMBH, URBAN & FISCHER VERLAG PI JENA PA OFFICE JENA, P O BOX 100537, 07705 JENA, GERMANY SN 0344-0338 J9 PATHOL RES PRACT JI Pathol. Res. Pract. PY 2010 VL 206 IS 10 BP 663 EP 668 DI 10.1016/j.prp.2010.04.002 PG 6 WC Pathology SC Pathology GA 678MZ UT WOS:000284082700002 PM 20570053 ER PT S AU Hattar, K Branson, JV Powell, CJ Vizkelethy, G Rossi, P Doyle, BL AF Hattar, Khalid Branson, Janelle V. Powell, Cody J. Vizkelethy, Gyorgy Rossi, Paolo Doyle, Barney L. BE Doty, FP Barber, HB Roehrig, H Schirato, RC TI Imaging penetrating radiation through ion photon emission microscopy SO PENETRATING RADIATION SYSTEMS AND APPLICATIONS XI SE Proceedings of SPIE-The International Society for Optical Engineering LA English DT Proceedings Paper CT Conference on Penetrating Radiation Systems and Applications XI CY AUG 02-05, 2010 CL San Diego, CA SP SPIE DE Radiation effects microscopy; radiation hardness; ion luminescence AB The ion photon emission microscope (IPEM), a new radiation effects microscope for the imaging of single event effects from penetrating radiation, is being developed at Sandia National Laboratories and implemented on the 88" cyclotron at Lawrence Berkeley National Laboratories. The microscope is designed to permit the direct correlation between the locations of high-energy heavy-ion strikes and single event effects in microelectronic devices. The development of this microscope has required the production of a robust optical system that is compatible with the ion beam lines, design and assembly of a fast single photon sensitive measurement system to provide the necessary coincidence, and the development and testing of many scintillating films. A wide range of scintillating material for application to the ion photon emission microscope has been tested with few meeting the stringent radiation hardness, intensity, and photon lifetime requirements. The initial results of these luminescence studies and the current operation of the ion photon emission microscope will be presented. Finally, the planned development for future microscopes and ion luminescence testing chambers will be discussed. C1 [Hattar, Khalid; Branson, Janelle V.; Powell, Cody J.; Vizkelethy, Gyorgy; Rossi, Paolo; Doyle, Barney L.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Hattar, K (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM khattar@sandia.gov NR 11 TC 0 Z9 0 U1 0 U2 4 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-8302-7 J9 P SOC PHOTO-OPT INS PY 2010 VL 7806 AR 78060C DI 10.1117/12.864157 PG 9 WC Optics; Physics, Applied SC Optics; Physics GA BSU65 UT WOS:000285832300004 ER PT S AU Zhou, XW Doty, FP Yang, P AF Zhou, X. W. Doty, F. Patrick Yang, P. BE Doty, FP Barber, HB Roehrig, H Schirato, RC TI Atomistic Models for Scintillator Discovery SO PENETRATING RADIATION SYSTEMS AND APPLICATIONS XI SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Penetrating Radiation Systems and Applications XI CY AUG 02-05, 2010 CL San Diego, CA SP SPIE DE Elpasolites; LaBr3; crystal stability criterion; mechanical properties; molecular dynamics; interatomic potential; charge transfer; electronegativity effect ID SCIENCE AB A(2)BLnX(6) elpasolites (A, B: alkali; Ln: lanthanide; X: halogen), LaBr3 lanthanum bromide, and AX alkali halides are three classes of the ionic compound crystals being explored for.-ray detection applications. Elpasolites are attractive because they can be optimized from combinations of four different elements. One design goal is to create cubic crystals that have isotropic optical properties and can be grown into large crystals at lower costs. Unfortunately, many elpasolites do not have cubic crystals and the experimental trial-and-error approach to find the cubic elpasolites has been prolonged and inefficient. LaBr3 is attractive due to its established good scintillation properties. The problem is that this brittle material is not only prone to fracture during services, but also difficult to grow into large crystals resulting in high production cost. Unfortunately, it is not always clear how to strengthen LaBr3 due to the lack of understanding of its fracture mechanisms. The problem with alkali halides is that their properties decay rapidly over time especially under harsh environment. Here we describe our recent progress on the development of atomistic models that may begin to enable the prediction of crystal structures and the study of fracture mechanisms of multi-element compounds. C1 [Zhou, X. W.] Sandia Natl Labs, Mech Mat Dept, Livermore, CA 94550 USA. RP Zhou, XW (reprint author), Sandia Natl Labs, Mech Mat Dept, Livermore, CA 94550 USA. NR 14 TC 1 Z9 1 U1 2 U2 3 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-8302-7 J9 PROC SPIE PY 2010 VL 7806 AR 78060E DI 10.1117/12.864152 PG 6 WC Optics; Physics, Applied SC Optics; Physics GA BSU65 UT WOS:000285832300005 ER PT S AU Adkins, JN Mottaz, H Metz, TO Ansong, C Manes, NP Smith, RD Heffron, F AF Adkins, Joshua N. Mottaz, Heather Metz, Thomas O. Ansong, Charles Manes, Nathan P. Smith, Richard D. Heffron, Fred BE Soloviev, M TI Performing Comparative Peptidomics Analyses of Salmonella from Different Growth Conditions SO PEPTIDOMICS: METHODS AND PROTOCOLS SE Methods in Molecular Biology LA English DT Article; Book Chapter DE Comparative proteomics; Salmonella; mass spectrometry; peptide extraction; native proteases; accurate mass ID TANDEM MASS-SPECTROMETRY; ACCURATE MASS; ESCHERICHIA-COLI; PROTEOME; IDENTIFICATIONS; THROUGHPUT; SEARCH; SYSTEM AB Host-pathogen interactions are complex competitions during which both the host and the pathogen adapt rapidly to each other in order for one or the other to Survive. Salmonella enterica serovar Typhimurium is a pathogen with a broad host range that causes a typhoid fever-like disease in mice and severe food poisoning in humans. The murine typhoid fever is a systemic infection in which S. typhimurium evades part of the immune system by replicating inside macrophages and other cells. The transition from a foodborne contaminant to an intracellular pathogen must occur rapidly in Multiple, ordered steps in order for S. typhimurium to thrive within its host environment. Using S. typhimurium isolated from rich Culture conditions and from conditions that mimic the hostile intracellular environment of the host cell, a native low molecular weight protein fraction, or peptidome, was enriched from cell lysates by precipitation of intact proteins with organic solvents. The enriched peptidome was analyzed by both LC-MS/MS and LC-MS-based methods, although several other methods are possible. Pre-fractionation of peptides allowed identification of small proteins and protein degradation products that would normally be overlooked. Comparison of peptides present in lysates prepared from Salmonella grown under different conditions provided a unique insight into Cellular degradation processes as well as identification of novel peptides encoded in the genome but not annotated. The overall approach is detailed here as applied to Salmonella and is adapt-able to a broad range of biological systems. C1 [Adkins, Joshua N.; Mottaz, Heather; Metz, Thomas O.; Ansong, Charles; Manes, Nathan P.; Smith, Richard D.] Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Richland, WA 99352 USA. [Heffron, Fred] Oregon Hlth & Sci Univ, Dept Mol Microbiol & Immunol, Portland, OR 97201 USA. RP Adkins, JN (reprint author), Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Richland, WA 99352 USA. RI Smith, Richard/J-3664-2012; Adkins, Joshua/B-9881-2013; Manes, Nathan/E-2817-2012; OI Smith, Richard/0000-0002-2381-2349; Adkins, Joshua/0000-0003-0399-0700; Manes, Nathan/0000-0001-6701-3314; Metz, Tom/0000-0001-6049-3968 FU NCRR NIH HHS [RR18522]; NIAID NIH HHS [R01 AI022933, Y1-AI-4894-01, Y1-AI-8401-01] NR 24 TC 1 Z9 1 U1 0 U2 6 PU HUMANA PRESS INC PI TOTOWA PA 999 RIVERVIEW DR, STE 208, TOTOWA, NJ 07512-1165 USA SN 1064-3745 BN 978-1-60761-534-7 J9 METHODS MOL BIOL JI Methods Mol. Biol. PY 2010 VL 615 BP 13 EP 27 DI 10.1007/978-1-60761-535-4_2 D2 10.1007/978-1-60761-535-4 PG 15 WC Biochemical Research Methods; Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA BMT72 UT WOS:000273556700002 PM 20013197 ER PT B AU Aad, G Abbott, B Abdallah, J Abdelalim, AA Abdesselam, A Abdinov, O Abi, B Abolins, M Abramowicz, H Abreu, H Acharya, BS Adams, DL Addy, TN Adelman, J Adorisio, C Adragna, P Adye, T Aefsky, S Aguilar-Saavedra, JA Aharrouche, M Ahlen, SP Ahles, F Ahmad, A Ahmed, H Ahsan, M Aielli, G Akdogan, T Akesson, TPA Akimoto, G Akimov, AV Aktas, A Alam, MS Alam, MA Albert, J Albrand, S Aleksa, M Aleksandrov, IN Alessandria, F Alexa, C Alexander, G Alexandre, G Alexopoulos, T Alhroob, M Aliev, M Alimonti, G Alison, J Aliyev, M Allport, PP Allwood-Spiers, SE Almond, J Aloisio, A Alon, R Alonso, A Alviggi, MG Amako, K Amelung, C Ammosov, VV Amorim, A Amoros, G Amram, N Anastopoulos, C Andeen, T Anders, CF Anderson, KJ Andreazza, A Andrei, V Anduaga, XS Angerami, A Anghinolfi, F Anjos, N Antonaki, A Antonelli, M Antonelli, S Antunovic, B Anulli, F Aoun, S Arabidze, G Aracenal, I Arai, Y Arce, ATH Archambault, JP Arfaoui, S Arguin, JF Argyropoulos, T Arik, E Arik, M Armbruster, AJ Arnaez, O Arnault, C Artamonov, A Arutinov, D Asai, M Asai, S Asfandiyarov, R Ask, S Asman, B Asner, D Asquith, L Assamagan, K Astbury, A Astvatsatourov, A Atoian, G Auerbach, B Auge, E Augsten, K Aurousseau, M Austin, N Avolio, G Avramidou, R Axen, D Ay, C Azuelos, G Azuma, Y Baak, MA Baccaglioni, G Bacci, C Bach, A Bachacou, H Bachas, K Backes, M Badescu, E Bagnaia, P Bai, Y Bailey, DC Bain, T Baines, JT Baker, OK Baker, MD Pedrosa, FBD Banas, E Banerjee, P Banerjee, S Banti, D Bangert, A Bansal, V Baranov, SP Baranov, S Barashkou, A Barber, T Barberio, EL Barberis, D Barbero, M Bardin, DY Barillari, T Barisonzi, M Barklow, T Barlow, N Barnett, BM Barnett, RM Baron, S Baroncelli, A Barr, AJ Barreiro, F da Costa, JBG Barrillon, P Barros, N Bartoldus, R Bartsch, D Bastos, J Bates, RL Bathe, S Batkova, L Batley, JR Battaglia, A Battistin, M Bauer, F Bawa, HS Bazalova, M Beare, B Beau, T Beauchemin, PH Beccherle, R Becerici, N Bechtle, R Beck, GA Beck, HP Beckingham, M Becks, KH Bedajanek, I Beddall, AJ Beddall, A Bednar, P Bednyakov, VA Bee, C Begel, M Harpaz, SB Behera, PK Beimforde, M Belanger-Champagne, C Bell, PJ Bell, WH Bella, G Bellagamba, L Bellina, F Bellomo, M Belloni, A Belotskiy, K Beltramello, O Ben Ami, S Benary, O Benchekroun, D Bendel, M Benedict, BH Benekos, N Benhammou, Y Benincasa, GP Benjamin, DP Benoit, M Bensinger, JR Benslama, K Bentvelsen, S Beretta, N Berge, D Kuutmann, EB Berger, N Berghaus, F Berglund, E Beringer, J Bernardet, K Bernat, P Bernhard, R Bernius, C Berry, T Bertin, A Besson, N Bethke, S Bianchi, RM Bianco, M Biebel, O Biesiada, J Biglietti, M Bilokon, H Bindi, M Binet, S Bingul, A Bini, C Biscarat, C Bitenc, U Black, KM Blair, RE Blanchard, JB Blanchot, G Blocker, C Blocki, J Blondel, A Blum, W Blumenschein, U Bobbink, GJ Bocci, A Boehler, M Boek, J Boelaert, N Boser, S Bogaerts, JA Bogouch, A Bohm, C Bohm, J Boisvert, V Bold, T Boldea, V Boldyrev, A Bondarenko, VG Bondioli, M Boonekamp, M Booth, JRA Bordoni, S Borer, C Borisov, A Borissov, G Borjanovic, I Borroni, S Bos, K Boscherini, D Bosman, M Bosteels, M Boterenbrood, H Bouchami, J Boudreau, J Bouhova-Thacker, EV Boulahouache, C Bourdarios, C Boyd, J Boyko, IR Bozovic-Jelisavcic, I Bracinik, J Braem, A Branchini, P Brandenburg, GW Brandt, A Brandt, G Brandt, O Bratzler, U Brau, B Brau, JE Braun, HM Brelier, B Bremer, J Brenner, R Bressler, S Breton, D Brett, ND Britton, D Brochu, FM Brock, I Brock, R Brodbeck, TJ Brodet, E Broggi, F Bromberg, C Brooijmans, G Brooks, WK Brown, G Brubaker, E de Renstrom, PAB Bruncko, D Bruneliere, R Brunet, S Bruni, A Bruni, G Bruschi, M Buanes, T Bucci, F Buchanan, J Buchholz, P Buckley, AG Budagov, IA Budick, B Buscher, V Bugge, L Bulekov, O Bunse, M Buran, T Burckhart, H Burdin, S Burgess, T Burke, S Busato, E Bussey, P Buszello, CP Butin, F Butler, B Butler, JM Buttar, CM Butterworth, JM Byatt, T Caballero, J Urban, SC Caforio, D Cakir, O Calafiura, P Calderini, G Calfayan, P Calkins, R Caloba, LP Caloi, R Calvet, D Camarri, P Cambiaghi, M Cameron, D Segura, FC Campana, S Campanelli, M Canale, V Canelli, F Canepa, A Cantero, J Capasso, L Garrido, MDMC Caprini, I Caprini, M Capua, M Caputo, R Caracinha, D Caramarcu, C Cardarelli, R Carli, T Carlino, G Carminati, L Caron, B Caron, S Montoya, GDC Montero, SC Carter, AA Carter, JR Carvalho, J Casadei, D Casado, MP Cascella, M Caso, C Hernadez, AMC Castaneda-Miranda, E Gimenez, VC Castro, N Cataldi, G Catinaccio, A Catmore, JR Cattai, A Cattani, G Caughron, S Cauz, D Cavalleri, P Cavallli, D Cavalli-Sforza, M Cavasinni, V Ceradini, F Cerqueira, AS Cerri, A Cerrito, L Cerutti, F Cetin, SA Cevenini, F Chafaq, A Chakraborty, D Chan, K Chapman, JD Chapman, JW Chareyre, E Charlton, DG Chavda, V Cheatham, S Chekanov, S Chekulaev, SV Chelkov, GA Chen, H Chen, S Chen, T Chen, X Cheng, S Cheplakov, A Chepurnov, VF El Moursli, RC Tcherniatine, V Chesneanu, D Cheu, E Cheung, SL Chevalier, L Chevallier, F Chiarella, V Chiefari, G Chikovani, L Childers, JT Chilingarov, A Chiodini, G Chizhov, M Choudalakis, G Chouridou, S Chren, D Christidi, IA Christov, A Chromek-Burckhart, D Chu, ML Chudoba, J Ciapetti, G Ciftci, AK Ciftci, R Cinca, D Cindro, V Ciobotaru, MD Ciocca, C Ciocio, A Cirilli, M Citterio, M Clark, A Cleland, W Clemens, JC Clement, B Clement, C Clements, D Coadou, Y Cobal, M Coccaro, A Cochran, J Coelli, S Coggeshall, J Cogneras, E Cojocaru, CD Colas, J Cole, B Colijn, AP Collard, C Collins, NJ Collins-Tooth, C Collot, J Colon, G Coluccia, R Muino, PC Coniavitis, E Consonni, M Constantinescu, S Conta, C Conventi, F Cook, J Cooke, M Cooper, BD Cooper-Sarkar, AM Cooper-Smith, NJ Copic, K Cornelissen, T Corradi, M Corriveau, F Corso-Radu, A Cortes-Gonzalez, A Codiana, G Costa, G Costa, MJ Costanzo, D Costin, T Cote, D Torres, RC Courneyea, L Cowan, G Cowden, C Cox, BE Cranmer, K Cranshaw, J Cristinziani, M Crosetti, G Crupi, R Crepe-Renaudin, S Almenar, CC Donszelmann, TC Curatolo, M Curtis, CJ Cwetanski, P Czyczula, Z D'Auria, S D'Onofrio, M D'Orazio, A Da Silva, PVM Da Via, C Dabrowski, W Dai, T Dallapiccola, C Dallison, SJ Daly, CH Dam, M Danielsson, HO Dannheim, D Dao, V Darbo, G Darlea, GL Davey, W Davidek, T Davidson, N Davidson, R Davison, AR Dawson, I Dawson, JW Daya, RK De, K de Asmundis, R De Castro, S Salgado, PEDF De Cecco, S de Graat, J De Groot, N de Jong, P De la Cruz-Burelo, E De la Taille, C De Mora, L Branco, MD De Pedis, D De Salvo, A De Sanctis, U De Santo, A De Regie, JBD De Zorzi, G Dean, S Deberg, H Dedes, G Dedovich, DV Defay, PO Degenhardt, J Dehchar, M Del Papa, C Del Peso, J Del Prete, T Dell'Acqua, A Dell'Asta, L Della Pietra, M della Volpe, D Delmastro, M Delruelle, N Delsart, PA Deluca, C Demers, S Demichev, M Demirkoz, B Deng, J Deng, W Denisov, SP Dennis, C Derkaouic, JE Derue, F Dervan, P Desch, K Deviveiros, PO Dewhurst, A DeWilde, B Dhaliwal, S Dhullipudi, R Di Ciaccio, A Di Ciaccio, L Di Domenico, A Di Girolamo, A Di Girolamo, B Di Luise, S Di Mattia, A Di Nardo, R Di Simone, A Di Sipio, R Diaz, MA Diblen, F Diehl, EB Dietrich, J Diglio, S Yagci, KD Dingfelder, DJ Dionisi, C Dita, P Dita, S Dittus, F Djama, F Djilkibaev, R Djobava, T do Vale, MAB Wemans, AD Dobbs, M Dobos, D Dobson, E Dobson, M Dodd, J Dogan, OB Doherty, T Doi, Y Dolejsi, J Dolenc, I Dolezal, Z Dolgoshein, BA Dohmae, T Donega, M Donini, J Dopke, J Doria, A Dos Anjos, A Dotti, A Dova, MT Doxiadis, A Doyle, AT Drasal, Z Driouichi, C Dris, M Dubbert, J Duchovni, E Duckeck, G Dudarev, A Dudziak, F Duhrssen, M Duflot, L Dufour, MA Dunford, M Duperrin, A Yildiz, HD Dushkin, A Duxfield, R Dwuznik, M Duren, M Ebenstein, WL Ebke, J Eckert, S Eckweiler, S Edmonds, K Edwards, CA Eerola, P Egorov, K Ehrenfeld, W Ehrich, T Eifert, T Eigen, G Einsweiler, K Eisenhandler, E Ekelof, T El Kacimi, M Ellert, M Elles, S Ellinghaus, F Ellis, K Ellis, N Elmsheuser, J Elsing, M Ely, R Emeliyanov, D Engelmann, R Engl, A Epp, B Eppig, A Epshteyn, VS Ereditato, A Eriksson, D Ermoline, I Ernst, J Ernst, M Ernwein, J Errede, D Errede, S Ertel, E Escalier, M Escobar, C Curull, XE Esposito, B Etienne, F Etienvre, AI Etzion, E Evans, H Fabbri, L Fabre, C Faccioli, P Facius, K Fakhrutdinov, RM Falciano, S Falou, AC Fang, Y Fanti, M Farbin, A Farilla, A Farley, J Farooque, T Farrington, SM Farthouat, P Fassi, F Fassnacht, P Fassouliotis, D Fatholahzadeh, B Fayard, L Fayette, F Febbraro, R Federic, P Fedin, OL Fedorko, I Fedorko, W Feligioni, L Felzmann, CU Feng, C Feng, EJ Fenyuk, AB Ferencei, J Ferland, J Fernandes, B Fernando, W Ferrag, S Ferrando, J Ferrari, A Ferrari, P Ferrari, R Ferrer, A Ferrer, ML Ferrere, D Ferretti, C Fiascaris, M Fiedler, F Filipcic, A Filippas, A Filthaut, F Fincke-Keeler, M Fiolhais, MCN Fiorini, L Firan, A Fischer, G Fisher, MJ Flechl, M Fleck, I Fleckner, J Fleischmann, P Fleischmann, S Flick, T Castillo, LRF Flowerdew, MJ Fohlisch, F Fokitis, M Martin, TF Forbush, DA Formica, A Forti, A Fortin, D Foster, JM Fournier, D Foussat, A Fowler, AJ Fowler, K Fox, H Francavilla, P Franchino, S Francis, D Franklin, M Franz, S Fraternali, M Fratina, S Freestone, J French, ST Froeschl, R Froidevaux, D Frost, JA Fukunaga, C Torregrosa, EF Fuster, J Gabaldon, C Gabizon, O Gadfort, T Gadomski, S Gagliardi, G Gagnon, P Galea, C Gallas, EJ Gallas, MV Gallop, BJ Gallus, P Galyaev, E Gan, KK Gao, YS Gaponenko, A Garcia-Sciveres, M Garcia, C Navarro, JEG Gardner, RW Garelli, N Garitaonandia, H Garonne, V Gatti, C Gaudio, G Gaumer, O Gauzzi, P Gavrilenko, IL Gay, C Gaycken, G Gayde, JC Gazis, EN Ge, P Gee, CNP Geich-Gimbel, C Gellerstedt, K Gemme, C Genest, MH Gentile, S Georgatos, F George, S Gerlach, P Gershon, A Geweniger, C Ghazlane, H Ghez, P Ghodbane, N Giacobbe, B Giagu, S Giakoumopoulous, V Giangiobbe, V Gianotti, F Gibbard, B Gibson, A Gibson, SM Gilbert, LM Gilchriese, M Gilewsky, V Gillberg, D Gillman, AR Gingrich, DM Ginzburg, J Giokaris, N Giordani, MP Giordano, R Giovannini, P Giraud, PF Girtler, P Giugni, D Giusti, P Gjelsten, BK Gladilin, LK Glasman, C Glazov, A Glitza, KW Glonti, GL Godfrey, J Godlewski, J Goebel, M Gopfert, T Goeringer, C Gossling, C Gottfert, T Goggi, V Goldfarb, S Goldin, D Golling, T Gollub, NP Gomes, A Fajardo, LSG Goncalo, R Gonella, L Gong, C de la Hoz, SG Silva, MLG Gonzalez-Sevilla, S Goodson, JJ Goossens, L Orbounov, PA Gordon, HA Gorelov, I Gorfine, G Gorini, B Gorini, E Gorisek, A Gornicki, E Goryachev, SV Goryachev, VN Gosdzik, B Gosselink, M Gostkin, MI Eschrich, IG Gouighri, M Goujdami, D Goulette, MP Goussiou, AG Goy, C Grabowska-Bold, I Grafstrom, P Grahn, KJ Cardoso, LG Grancagnolo, F Grancagnolo, S Grassi, V Gratchev, V Grau, N Gray, HM Gray, JA Graziani, E Green, B Greenshaw, T Greenwood, ZD Gregor, IM Grenier, P Griesmayer, E Griffiths, J Grigalashvili, N Grillo, AA Grimm, K Grinstein, S Grishkevich, YV Groer, LS Grognuz, J Groh, M Groll, M Gross, E Grosse-Knetter, J Groth-Jensen, J Grybel, K Guarino, VJ Guicheney, C Guida, A Guillemin, T Guler, H Gunther, J Guo, B Gupta, A Gusakov, Y Gutierrez, A Gutierrez, P Guttman, N Gutzwiller, O Guyot, C Gwenlan, C Gwilliam, CB Haas, A Haas, S Haber, C Hackenburg, R Hadavand, HK Hadley, DR Haefner, P Hartel, R Hajduk, Z Hakobyan, H Haller, J Hamacher, K Hamilton, A Hamilton, S Han, H Han, L Hanagaki, K Hance, M Handel, C Hanke, P Hansen, JR Hansen, JB Hansen, JD Hansen, PH Hansl-Kozanecka, T Hansson, P Hara, K Hare, GA Harenberg, T Harrington, RD Harris, OB Harris, OM Harrison, K Hartert, J Hartjes, F Haruyama, T Harvey, A Hasegawa, S Hasegawa, Y Hashemi, K Hassani, S Hatch, M Haug, F Haug, S Hauschild, M Hauser, R Havranek, M Hawkes, CM Hawkings, RJ Hawkins, D Hayakawa, T Hayward, HS Haywood, SJ He, M Head, SJ Hedberg, V Heelan, L Heim, S Heinemann, B Heisterkamp, S Helary, L Heller, M Hellman, S Helsens, C Hemperek, T Henderson, RCW Henke, M Henrichs, A Correia, AMH Henrot-Versille, S Hensel, C Henss, T Hershenhorn, AD Herten, G Hertenberger, R Hervas, L Hessey, NP Hidvegi, A Higon-Rodriguez, E Hill, D Hill, JC Hiller, KH Hillier, SJ Hinchliffe, I Hirose, M Hirsch, F Hobbs, J Hod, N Hodgkinson, MC Hodgson, P Hoecker, A Hoeferkamp, MR Hoffman, J Hoffmann, D Hohlfeld, M Holmgren, SO Holy, T Holzbauer, JL Homma, Y Homola, P Horazdovsky, T Hori, T Horn, C Horner, S Horvat, S Hostachy, JY Hou, S Houlden, MA Hoummada, A Howe, T Hrivnac, J Hryn'ova, T Hsu, PJ Hsu, SC Huang, GS Hubacek, Z Hubaut, F Huegging, F Hughes, EW Hughes, G Hughes-Jones, RE Hurst, P Hurwitz, M Husemann, U Huseynov, N Huston, J Huth, J Iacobucci, G Iakovidis, G Ibragimov, I Iconomidou-Fayard, L Idarraga, J Iengo, P Igonkina, O Ikegami, Y Ikeno, M Ilchenko, Y Iliadis, D Ilyushenka, Y Imori, M Ince, T Ioannou, P Iodice, M Quiles, AI Ishikawa, A Ishino, M Ishmukhametov, R Isobe, T Issakov, V Issever, C Istin, S Itoh, Y Ivashin, AV Iwanski, W Iwasaki, H Izen, JM Izzo, V Jackson, JN Jackson, P Jaekel, M Jahoda, M Jain, V Jakobs, K Jakobsen, S Jakubek, J Jana, D Jansen, E Jantsch, A Janus, M Jared, RC Jarlskog, G Jarron, P Jeanty, L Jelen, K Plante, IJL Jenni, P Jez, P Jezequel, S Ji, W Jia, J Jiang, Y Belenguer, MJ Jin, G Jin, S Jinnouchi, O Joffe, D Johansen, M Johansson, KE Johansson, P Johnert, S Johns, KA Jon-And, K Jones, G Jones, RWL Jones, TW Jones, TJ Jonsson, O Joos, D Joram, C Jorge, PM Juranek, V Jussel, P Kabachenko, VV Kabana, S Kaci, M Kaczmarska, A Kado, M Kagan, H Kagan, M Kaiser, S Kajomovitz, E Kalinovskaya, LV Kalinowski, A Kama, S Kanaya, N Kaneda, M Kantserov, VA Kanzaki, J Kaplan, B Kapliy, A Kaplon, J Karagounis, M Unel, MK Kartvelishvili, V Karyukhin, AN Kashif, L Kasmi, A Kass, RD Kastanas, A Kastoryano, M Kataoka, M Kataoka, Y Katsoufis, E Katzy, J Kaushik, V Kawagoe, K Kawamoto, T Kawamura, G Kayl, MS Kayumov, F Kazanin, VA Kazarinov, MY Kazi, SI Keates, JR Keeler, R Keener, PT Kehoe, R Keil, M Kekelidze, GD Kelly, M Kennedy, J Kenyon, M Kepka, O Kerschen, N Kersevan, BP Kersten, S Kessoku, K Khakzad, M Khalil-zada, F Khandanyan, H Khanov, A Kharchenko, D Khodinov, A Kholodenko, AG Khomich, A Khoriauli, G Khovanskiy, N Khovanskiy, V Khramov, E Khubua, J Kilvington, G Kim, H Kim, MS Kim, PC Kim, SH Kind, O Kind, P King, BT Kirk, J Kirsch, GP Kirsch, LE Kiryunin, AE Kisielewska, D Kittelmann, T Kiyamura, H Kladiva, E Klein, M Klein, U Kleinknecht, K Klemetti, M Klier, A Klimentov, A Klingenberg, R Klinkby, EB Klioutchnikova, T Klok, PF Klous, S Kluge, EE Kluge, T Kluit, P Klute, M Kluth, S Knecht, NS Kneringer, E Ko, BR Kobayashi, T Kobel, M Koblitz, B Kocian, M Kocnar, A Kodys, P Koneke, K Konig, AC Kopke, L Koetsveld, F Koevesarki, P Koffas, T Koffeman, E Kohn, F Kohout, Z Kohriki, T Kokott, T Kolanoski, H Kolesnikov, V Koletsou, I Koll, J Kollar, D Kolos, S Kolya, SD Komar, AA Komaragiri, JR Kondo, T Kono, T Kononov, AI Konoplich, R Konovalov, SP Konstantinidis, N Koperny, S Korcyl, K Kordas, K Koreshev, V Korn, A Korolkov, I Korolkova, EV Korotkov, VA Kortner, O Kostka, P Kostyukhin, VV Kotamaki, MJ Kotov, S Kotov, VM Kotov, KY Koupilova, Z Kourkoumelis, C Koutsman, A Kowalewski, R Kowalski, H Kowalski, TZ Kozanecki, W Kozhin, AS Kral, V Kramarenko, VA Kramberger, G Krasny, MW Krasznahorkay, A Kreisel, A Krejci, F Krepouri, A Kretzschmar, J Krieger, P Krobath, G Kroeninger, K Kroha, H Kroll, J Kroseberg, J Krstic, J Kruchonak, U Kruger, H Krumshteyn, ZV Kubota, T Kuehn, S Kugel, A Kuhl, T Kuhn, D Kukhtin, V Kulchitsky, Y Kuleshov, S Kummer, C Kuna, M Kupco, A Kurashige, H Kurata, M Kurchaninov, LL Kurochkin, YA Kus, V Kuykendall, W Kuznetsova, E Kvasnicka, O Kwee, R La Rosa, M La Rotonda, L Labarga, L Labbe, J Lacasta, C Lacava, F Lacker, H Lacour, D Lacuesta, VR Ladygin, E Lafaye, R Laforge, B Lagouri, T Lai, S Lamanna, M Lampen, CL Lampl, W Lancon, E Landgraf, U Landon, MPJ Lane, JL Lankford, AJ Lanni, F Lantzsch, K Lanza, A Laplace, S Lapoire, C Laporte, JF Lari, T Larionov, AV Larner, A Lasseur, C Lassnig, M Laurelli, P Lavrijsen, W Laycock, P Lazarev, AB Lazzaro, A Le Dortz, O Le Guirriec, E Le Maner, C Le Menedeu, E Le Vine, M Leahu, M Lebedev, A Lebel, C LeCompte, T Ledroit-Guillon, F Lee, H Lee, JSH Lee, SC Lefebvre, M Legendre, M LeGeyt, BC Legger, F Leggett, C Lehmacher, M Miotto, GL Lei, X Leitner, R Lelas, D Lellouch, D Lellouch, J Leltchouk, M Lendermann, V Leney, KJC Lenz, G Lenzen, G Lenzi, B Leonhardt, K Leroy, C Lessard, JR Lester, CC Cheong, ALF Leveque, J Levin, D Levinson, LJ Levitski, MS Levonian, S Lewandowska, M Leyton, M Li, H Li, J Li, S Li, X Liang, Z Liang, Z Liberti, B Lichard, P Lichtnecker, M Lie, K Liebig, W Liko, D Lilley, JN Lim, H Limosani, A Limper, M Lin, SC Lindsay, SW Linhart, V Linnemann, JT Liolios, A Lipeles, E Lipinsky, L Lipniacka, A Liss, TM Lissauer, D Litke, AM Liu, C Liu, D Liu, H Liu, JB Liu, M Liu, S Liu, T Liu, Y Livan, M Lleres, A Lloyd, SL Lobodzinska, E Loch, P Lockman, WS Lockwitz, S Loddenkoetter, T Loebinger, FK Loginov, A Loh, CW Lohse, T Lohwasser, K Lokajicek, M Loken, J Lopes, L Mateos, DL Losada, M Loscutoff, P Losty, MJ Lou, X Lounis, A Loureiro, KF Lovas, L Love, J Love, P Lowe, AJ Lu, F Lu, J Lubatti, HJ Luci, C Lucotte, A Ludwig, A Ludwig, D Ludwig, I Ludwig, J Luehring, F Luisa, L Lumb, D Luminari, L Lund, E Lund-Jensen, B Lundberg, B Lundberg, J Lundquist, J Lutz, G Lynn, D Lys, J Lytken, E Ma, H Ma, LL Maccarrone, G Macchiolo, A Macek, B Miguens, JM Mackeprang, R Madaras, RJ Mader, WF Maenner, R Maeno, T Mattig, P Mattig, S Martins, PJM Magradze, E Magrath, CA Mahalalel, Y Mahboubi, K Mahmood, A Mahout, G Maiani, C Maidantchik, C Maio, A Majewski, S Makida, V Makouski, M Makovec, N Malecki, P Malecki, P Maleev, VP Malek, F Mallik, U Malon, D Maltezos, S Malyshev, V Malyukov, S Mambelli, M Mameghani, R Mamuzic, J Manabe, A Mandelli, L Mandic, I Mandrysch, R Maneira, J Mangeard, PS Manjavidze, ID Manousakis-Katsikakis, A Mansoulie, B Mapelli, A Mapelli, L March, L Marchand, JF Marchese, F Marcisovsky, M Marino, CP Marques, CN Marroquim, F Marshall, R Marshall, Z Martens, FK Garcia, SMI Martin, AJ Martin, AJ Martin, B Martin, B Martin, FF Martin, JP Martin, TA Latour, BMD Martinez, M Outschoorn, VM Martini, A Martynenko, V Martyniuk, AC Maruyama, T Marzano, F Marzin, A Masetti, L Mashimo, T Mashinistov, R Masik, J Maslennikov, AL Massaro, G Massol, N Mastroberardino, A Masubuchi, T Mathes, M Matricon, P Matsumoto, H Matsunaga, H Matsushita, T Mattravers, C Maxfield, SJ May, EN Mayne, A Mazini, R Mazur, M Mazzanti, M Mazzanti, P Mc Donald, J Mc Kee, SP McCarn, A McCarthy, RL McCubbin, NA McFarlane, KW McGlone, H Mchedlidze, G McLaren, RA McMahon, SJ McMahon, TR McPherson, RA Meade, A Mechnich, JJ Mechtel, M Medinnis, M Meera-Lebbai, R Meguro, TM Mehdiyev, R Mehlhase, S Mehta, A Meier, K Meirose, B Melamed-Katz, A Garcia, BRM Meng, Z Menke, S Meoni, E Merkl, D Mermod, P Merola, L Meronia, C Merritt, FS Messina, AM Messmer, I Metcalfe, J Mete, AS Meyer, JP Meyer, J Meyer, TC Meyer, WT Miao, J Micua, L Middleton, RP Migas, S Mijovic, L Mikenberg, G Mikui, M Miller, DW Mills, WJ Mills, CM Milov, A Milstead, DA Minaenko, AA Minano, M Minashvili, IA Mincer, AI Mindur, B Mineev, M Mir, LM Mirabelli, G Misawa, S Miscetti, S Misiejuk, A Mitrevski, J Mitsou, VA Miyagawa, PS Mjornmark, JU Mladenov, D Moa, T Mockett, P Moed, S Moeller, V Monig, K Moser, N Mohn, B Mohr, W Mohrdieck-Mock, S Moles-Valls, R Molina-Perez, JJ Moloney, G Monk, J Monnier, E Montesano, S Monticelli, F Moore, RW Herrera, CM Moraes, A Morais, A Morel, J Morello, G Moreno, D Llacer, MM Morettini, P Morii, M Morley, AK Mornacchi, G Morozov, SV Morris, JD Moser, HG Mosidze, M Moss, J Mount, R Mountricha, E Mouraviev, SV Moyse, EJW Mudrinic, M Mueller, F Mueller, J Mueller, K Muller, TA Muenstermann, D Muir, A Garcia, RM Murray, WJ Mussche, I Musto, E Myagkov, AG Myska, M Nadal, J Nagai, K Nagano, K Nagasaka, Y Nairz, AM Nakamura, K Nakano, I Nakatsuka, H Nanava, G Napier, A Nash, M Nation, NR Nattermann, T Naumann, T Navarro, G Nderitu, SK Neal, HA Nebot, E Nechaeva, P Negri, A Negri, G Nelson, A Nelson, TK Nemecek, S Nemethy, P Nepomuceno, AA Nessi, M Neubauer, MS Neusiedl, A Neves, RN Nevski, P Newcomer, FM Nicholson, C Nickerson, RB Nicolaidou, R Nicolas, L Nicoletti, G Niedercorn, F Nielsen, J Nikiforov, A Nikolaev, K Nikolic-Audit, I Nikolopoulos, K Nilsen, H Nilsson, P Nisati, A Nishiyama, T Nisius, R Nodulman, L Nomachi, M Nomidis, I Nomoto, H Nordberg, M Nordkvist, B Notz, D Novakova, J Nozaki, M Nozicka, M Nugent, IM Nuncio-Quiroz, AE Hanninger, GN Nunnemann, T Nurse, E O'Neil, DC O'Shea, V Oakham, FG Oberlack, H Ochi, A Oda, S Odaka, S Odier, J Odino, GA Ogren, H Oh, SH Ohm, CC Ohshima, T Ohshita, H Ohsugi, T Okada, S Okawa, H Okumura, Y Olcese, M Olchevski, AG Oliveira, M Damazio, DO Oliver, J Garcia, EO Olivito, D Olszewski, A Olszowska, J Omachi, C Onofre, A Onyisi, PUE Oram, CJ Ordonez, G Oreglia, MJ Oren, Y Orestano, D Orlov, I Barrera, CO Orr, RS Ortega, EO Osculati, B Osuna, C Otec, R Ottersbach, JP Ould-Saada, F Ouraou, A Ouyang, Q Owen, M Owen, S Ozcan, VE Ozone, K Ozturk, N Pages, AP Padhi, S Aranda, CP Paganis, E Pahl, C Paige, F Pajchel, K Pal, A Palestini, S Pallin, D Palma, A Palmer, JD Pan, YB Panagiotopoulou, E Panes, B Panikashvili, N Panitkin, S Pantea, D Panuskova, M Paolone, V Papadopoulou, TD Park, SJ Park, W Parker, MA Parker, SI Parodi, F Parsons, JA Parzefall, U Pasqualucci, E Passardi, G Passeri, A Pastore, F Pastore, F Pasztor, G Pataraia, S Pater, JR Patricelli, S Patwa, A Pauly, T Peak, LS Pecsy, M Morales, MIP Peleganchuk, SV Peng, H Penson, A Penwell, J Perantoni, M Perez, K Codina, EP Garcia-Estan, MTP Reale, VP Perini, L Pernegger, H Perrino, R Perrodo, P Persembe, S Perus, P Peshekhonov, VD Petersen, BA Petersen, J Petersen, TC Petit, E Petridou, C Petrolo, E Petrucci, F Petschull, D Petteni, M Pezoa, R Pfeifer, B Phan, A Phillips, AW Piacquadio, G Piccinini, M Piegaia, R Pilcher, JE Pilkington, AD Pina, J Pinamonti, M Pinfold, JL Ping, J Pinto, B Pirotte, O Pizio, C Placakyte, R Plamondon, M Plano, WG Pleier, MA Poblaguev, A Poddar, S Podlyski, F Poffenberger, P Poggioli, L Pohl, M Polci, F Polesello, G Policicchio, A Polini, A Poll, J Polychronakos, V Pomarede, DM Pomeroy, D Pommes, K Pontecorvo, L Pope, BG Popovic, DS Poppleton, A Popule, J Bueso, XP Porter, R Pospelov, GE Pospichal, P Pospisil, S Potekhin, M Potrap, IN Potter, CJ Potter, CT Potter, KP Poulard, G Poveda, J Prabhu, R Pralavorio, P Prasad, S Pravahan, R Preda, T Pretzl, K Pribyl, L Price, D Price, LE Prichard, PM Prieur, D Primavera, M Prokofiev, K Prokoshin, F Protopopescu, S Proudfoot, J Prudent, X Przysiezniak, H Psoroulas, S Ptacek, E Puigdengoles, C Purdham, J Purohit, M Puzo, P Pylypchenko, Y Qi, M Qian, J Qian, W Qian, Z Qin, Z Qing, D Quadt, A Quarrie, DR Quayle, WB Quinonez, F Raas, M Radeka, V Radescu, V Radics, B Rador, T Ragusa, F Rahal, G Rahimi, AM Rahm, D Rajagopalan, S Rammes, M Ratoff, PN Rauscher, F Rauter, E Raymond, M Read, AL Rebuzzi, DM Redelbach, A Redlinger, G Reece, R Reeves, K Reinherz-Aronis, E Reinsch, A Reisinger, I Reljic, D Rembser, C Ren, ZL Renkel, P Rescia, S Rescigno, M Resconi, S Resende, B Reznicek, P Rezvani, R Richards, A Richards, RA Richter, D Richter, R Richter-Was, E Ridel, M Rieke, S Rijpstra, M Rijssenbeek, M Rimoldi, A Rinaldi, L Rios, RR Riu, I Rivoltella, G Rizatdinova, F Rizvi, ER Romero, DAR Robertson, SH Robichaud-Veronneau, A Robinson, D Robinson, M Robson, A de Limas, JGR Roda, C Rodriguez, D Garcia, YR Roe, S Rohne, O Rojo, V Rolli, S Romaniouk, A Romanov, VM Romeo, G Maltrana, DR Roos, L Ros, E Rosati, S Rosenbaum, GA Rosenberg, EI Rosselet, L Rossi, LP Rotaru, M Rothberg, J Rottlander, I Rousseau, D Royon, CR Rozanov, A Rozen, Y Ruan, X Ruckert, B Ruckstuhl, N Rud, VI Rudolph, G Ruhr, F Ruggieri, E Ruiz-Martinez, A Rumyantsev, L Rusakovich, NA Rutherfoord, JP Ruwiedel, C Ruzicka, P Ryabov, YF Ryadovikov, V Ryan, P Rybkin, G Rzaeva, S Saavedra, AF Sadrozinski, HFW Sadykov, R Sakamoto, H Salamanna, G Salamon, A Saleem, M Salihagic, D Salnikov, A Salt, J Ferrandos, BMS Salvatore, D Salvatore, F Salvucci, A Salzburger, A Sampsonidis, D Samset, BH Lozano, MAS Sandaker, H Sander, HG Sanders, MP Sandhoff, M Sandstroem, R Sandvoss, S Sankey, DPC Sanny, B Sansoni, A Rios, CS Santi, L Santoni, C Santonico, R Santos, D Santos, J Saraiva, JG Sarangi, T Sarkisyan-Grinbaum, E Sarri, F Sasaki, O Sasaki, T Sasao, N Satsounkevitch, I Sauvage, G Savardb, P Savine, AY Savinov, V Sawyer, L Saxon, DH Says, LP Sbarra, C Sbrizzi, A Scannicchio, DA Schaarschmidt, J Schacht, P Schafer, U Schaetzel, S Schaffer, AC Schaile, D Schamberger, RD Schamov, AG Schegelsky, VA Scheirich, D Schernau, M Scherzer, MI Schiavi, C Schieck, J Schioppa, M Schlenker, S Schlereth, JL Schmid, P Schmidt, MP Schmieden, K Schmitt, C Schmitz, M Schott, M Schouten, D Schovancova, J Schram, M Schreiner, A Schroeder, C Schroer, N Schroers, M Schuler, G Schultes, J Schultz-Coulon, HC Schumacher, J Schumacher, M Schumm, BA Schune, P Schwanenberger, C Schwartzman, A Schwemling, P Schwienhorst, R Schwierz, R Schwindling, J Scott, WG Searcy, J Sedykh, E Segura, E Seidel, SC Seiden, A Seifert, F Seixas, JM Sekhniaidze, G Seliverstov, DM Sellden, B Seman, M Semprini-Cesari, N Serfon, C Serin, L Seuster, R Severini, H Sevior, ME Sfyrla, A Shamim, M Shan, LY Shank, JT Shao, QT Shapiro, M Shatalov, PB Shaver, L Shaw, C Shaw, K Sherman, D Sherwood, P Shibata, A Shimojima, M Shin, T Shmeleva, A Shochet, MJ Shupe, MA Sicho, P Sidoti, A Siebel, A Siegert, F Siegrist, J Sijacki, D Silbert, O Silva, J Silver, Y Silverstein, D Silverstein, SB Simak, V Simic, L Simion, S Simmons, B Simonyan, M Sinervo, P Sinev, NB Sipica, V Siragusa, G Sisakyan, AN Sivoklokov, SY Sjoelin, J Sjursen, TB Skubic, P Skvorodnev, N Slater, M Slavicek, T Sliwa, K Sloper, J Sluka, T Smakhtin, V Smirnov, SY Smirnov, Y Smirnova, LN Smirnova, O Smith, BC Smith, D Smith, KM Smizanska, M Smolek, K Snesarev, AA Snow, SW Snow, J Snuverink, J Snyder, S Soares, M Sobie, R Sodomka, J Soffer, A Solans, CA Solar, M Camillocci, ES Solodkov, AA Solovyanov, OV Soluk, R Sondericker, J Sopko, V Sopko, B Sosebee, M Sosnovtsev, VV Suay, LS Soukharev, A Spagnolo, S Spano, F Speckmayer, P Spencer, E Spighi, R Spigo, G Spila, F Spiwoks, R Spousta, M Spreitzer, T Spurlock, B Denis, RDS Stahl, T Stamen, R Stancu, SN Stanecka, E Stanek, RW Stanescu, C Stapnes, S Starchenko, EA Stark, J Staroba, P Starovoitov, P Stastny, J Staude, A Stavina, P Stavropoulos, G Steinbach, P Steinberg, P Stekl, I Stelzer, B Stelzer, HJ Stelzer-Chilton, O Stenzel, H Stevenson, K Stewart, G Stockton, MC Stoerig, K Stoicea, G Stonjek, S Strachota, P Stradling, A Straessner, A Strandberg, J Strandberg, S Strandlie, A Strauss, M Strizenec, P Strohmer, R Strom, DM Strong, JA Stroynowski, R Strube, J Stugu, B Stumer, I Soh, DA Su, D Suchkov, SI Sugaya, Y Sugimoto, T Suhr, C Suk, M Sulin, VV Sultansoy, S Sumida, T Sun, X Sundermann, JE Suruliz, K Sushkov, S Susinno, G Sutton, MR Suzuki, T Suzuki, Y Sviridov, YM Sykora, I Sykora, T Szymocha, T Sanchez, J Ta, D Tackmann, K Taffard, A Tafirout, R Taga, A Takahashi, Y Takai, H Takashima, R Takeda, H Takeshita, T Talby, M Talyshev, A Tamsett, MC Tanaka, J Tanaka, R Tanaka, S Tanaka, S Tappern, GP Tapprogge, S Tardif, D Tarem, S Tarrade, F Tartarelli, GF Tas, P Tasevsky, M Tassi, E Taylor, C Taylor, FE Taylor, GN Taylor, RP Taylor, W Teixeira-Dias, P Ten Kate, H Teng, PK Terada, S Terashi, K Terron, J Terwort, M Testa, M Teuscher, RJ Tevlin, CM Thadome, J Thananuwong, R Thioye, M Thoma, S Thomas, JP Thomas, TL Thompson, EN Thompson, PD Thompson, PD Thompson, RJ Thompson, AS Thomson, E Thun, RP Tic, T Tikhomirov, VO Tikhonov, YA Timmermans, CJWP Tipton, P Viegas, FJTA Tisserant, S Tobias, J Toczek, B Todorov, T Todorova-Nova, S Toggerson, B Tojo, J Tokar, S Tokushuku, K Tollefson, K Tomasek, L Tomasek, M Tomasz, F Tomoto, M Tompkins, D Tompkins, L Toms, K Tong, G Tonoyan, A Topfel, C Topilin, ND Torrence, E Pastor, ET Toth, J Touchard, F Tovey, DR Tovey, SN Trefzger, T Tremblet, L Tricoli, A Trigger, IM Trincaz-Duvoid, S Trinh, TN Tripiana, MF Triplett, N Trivedi, A Trocme, B Troncon, C Trzupek, A Tsarouchas, C Tseng, JCL Tsiafis, I Tsiakiris, M Tsiareshka, PV Tsionou, D Tsipolitis, G Tsiskaridze, V Tskhadadze, EG Tsukerman, II Tsulaia, V Tsung, JW Tsuno, S Tsybychev, D Turala, M Turecek, D Cakir, IT Turlay, E Tuts, PM Twomey, MS Tylmad, M Tyndel, M Tzanakos, G Uchida, K Ueda, I Uhlenbrock, M Uhrmacher, M Ukegawa, F Unal, G Underwood, DG Undrus, A Unel, G Unno, Y Urbaniec, D Urkovsky, E Urquijo, P Urrejola, P Usai, G Uslenghi, M Vacavant, L Vacek, V Vachon, B Vahsen, S Valenta, J Valente, P Valentinetti, S Valkar, S Gallego, EV Vallecorsa, S Ferrer, JAV Van Berg, R van der Graaf, H van der Kraaij, E van der Poel, E Van Der Ster, D van Eldik, N van Gemmeren, P van Kesteren, Z van Vulpen, I Vandelli, W Vandoni, G Vaniachine, A Vankov, P Vannucci, F Rodriguez, FV Vari, R Varnes, EW Varouchas, D Vartapetian, A Varvell, KE Vasilyeva, L Vassilakopoulos, VI Vazeille, F Vegni, G Veillet, JJ Vellidis, C Veloso, F Veness, R Veneziano, S Ventura, A Ventura, D Venturi, M Venturi, N Vercesi, V Verducci, M Verkerke, W Vermeulen, JC Vetterli, MC Vichou, I Vickey, T Viehhauser, GHA Villa, M Villani, EG Perez, MV Villate, J Vilucchi, E Vincter, MG Vinek, E Vinogradov, VB Viret, S Virzi, J Vitale, A Vitells, OV Vivarelli, I Vaques, FV Vlachos, S Vlasak, M Vlasov, N Vogt, H Vokac, P Volpi, M Volpini, G von der Schmitt, H von Loeben, J von Radziewski, H von Toerne, E Vorobel, V Vorobiev, AP Vorwerk, V Vos, M Voss, R Voss, TT Vossebeld, JH Vranjes, N Milosavljevic, MV Vrba, V Vreeswijk, M Anh, TV Vudragovic, D Vuillermet, R Vukotic, I Wagner, P Wahlen, H Walbersloh, J Walder, J Walker, R Walkowiak, W Wall, R Wang, C Wang, H Wang, J Wang, JC Wang, SM Ward, CP Warsinsky, M Wastie, R Watkins, PM Watson, AT Watson, MF Watts, G Watts, S Waugh, AT Waugh, BM Webel, M Weber, J Weber, MD Weber, M Weber, MS Weber, P Weidberg, AR Weingarten, J Weiser, C Wellenstein, H Wells, PS Wen, M Wenaus, T Wendler, S Wengler, T Wenig, S Wermes, N Werner, M Werner, P Werth, M Werthenbach, U Wessels, M Whalen, K Wheeler-Ellis, SJ Whitaker, SP White, A White, MJ White, S Whiteson, D Whittington, D Wicek, F Wicke, D Wickens, FJ Wiedenmann, W Wielers, M Wienemann, P Wiglesworth, C Wiik, LAM Wildauer, A Wildt, MA Wilhelm, I Wilkens, HG Williams, E Williams, HH Willis, W Willocq, S Wilson, JA Wilson, MG Wilson, A Wingerter-Seez, I Winklmeier, F Wittgen, M Wolter, MW Wolters, H Wosiek, BK Wotschack, J Woudstra, MJ Wraight, K Wright, C Wright, D Wrona, B Wu, SL Wu, X Wulf, E Xella, S Xie, S Xie, Y Xu, D Xu, N Yamada, M Yamamoto, A Yamamoto, S Yamamura, T Yamanaka, K Yamaoka, J Yamazaki, T Yamazaki, Y Yan, Z Yang, H Yang, UK Yang, Y Yang, Z Yao, WM Yao, Y Yasu, Y Ye, J Ye, S Yilmaz, M Yoosoofmiya, R Yorita, K Yoshida, R Young, C Youssef, SP Yu, D Yu, J Yu, M Yu, X Yuan, J Yuan, L Yurkewicz, A Zaidan, R Zaitsev, AM Zajacova, Z Zambrano, V Zanello, L Zarzhitsky, P Zaytsev, A Zeitnitz, C Zeller, M Zema, PF Zemla, A Zendler, C Zenin, O Zenis, T Zenonos, Z Zenz, S Zerwas, D della Porta, GZ Zhan, Z Zhang, H Zhang, J Zhang, Q Zhang, X Zhao, L Zhao, T Zhao, Z Zhemchugov, A Zheng, S Zhong, J Zhou, B Zhou, N Zhou, Y Zhu, CG Zhu, H Zhu, Y Zhuang, X Zhuravlov, V Zilka, B Zimmermann, R Zimmermann, S Zimmermann, S Ziolkowski, M Zitoun, R Zivkovic, L Zmouchko, VV Zobernig, G Zoccoli, A zur Nedden, M Zutshi, V AF Aad, G. Abbott, B. Abdallah, J. Abdelalim, A. A. Abdesselam, A. Abdinov, O. Abi, B. Abolins, M. Abramowicz, H. Abreu, H. Acharya, B. S. Adams, D. L. Addy, T. N. Adelman, J. Adorisio, C. Adragna, P. Adye, T. Aefsky, S. Aguilar-Saavedra, J. A. Aharrouche, M. Ahlen, S. P. Ahles, F. Ahmad, A. Ahmed, H. Ahsan, M. Aielli, G. Akdogan, T. Akesson, T. P. A. Akimoto, G. Akimov, A. V. Aktas, A. Alam, M. S. Alam, M. A. Albert, J. Albrand, S. Aleksa, M. Aleksandrov, I. N. Alessandria, F. Alexa, C. Alexander, G. Alexandre, G. Alexopoulos, T. Alhroob, M. Aliev, M. Alimonti, G. Alison, J. Aliyev, M. Allport, P. P. Allwood-Spiers, S. E. Almond, J. Aloisio, A. Alon, R. Alonso, A. Alviggi, M. G. Amako, K. Amelung, C. Ammosov, V. V. Amorim, A. Amoros, G. Amram, N. Anastopoulos, C. Andeen, T. Anders, C. F. Anderson, K. J. Andreazza, A. Andrei, V. Anduaga, X. S. Angerami, A. Anghinolfi, F. Anjos, N. Antonaki, A. Antonelli, M. Antonelli, S. Antunovic, B. Anulli, F. Aoun, S. Arabidze, G. Aracenal, I. Arai, Y. Arce, A. T. H. Archambault, J. P. Arfaoui, S. Arguin, J. -F. Argyropoulos, T. Arik, E. Arik, M. Armbruster, A. J. Arnaez, O. Arnault, C. Artamonov, A. Arutinov, D. Asai, M. Asai, S. Asfandiyarov, R. Ask, S. Asman, B. Asner, D. Asquith, L. Assamagan, K. Astbury, A. Astvatsatourov, A. Atoian, G. Auerbach, B. Auge, E. Augsten, K. Aurousseau, M. Austin, N. Avolio, G. Avramidou, R. Axen, D. Ay, C. Azuelos, G. Azuma, Y. Baak, M. A. Baccaglioni, G. Bacci, C. Bach, A. Bachacou, H. Bachas, K. Backes, M. Badescu, E. Bagnaia, P. Bai, Y. Bailey, D. C. Bain, T. Baines, J. T. Baker, O. K. Baker, M. D. Pedrosa, F. Baltasar Dos Santos Banas, E. Banerjee, P. Banerjee, S. Banti, D. Bangert, A. Bansal, V. Baranov, S. P. Baranov, S. Barashkou, A. Barber, T. Barberio, E. L. Barberis, D. Barbero, M. Bardin, D. Y. Barillari, T. Barisonzi, M. Barklow, T. Barlow, N. Barnett, B. M. Barnett, R. M. Baron, S. Baroncelli, A. Barr, A. J. Barreiro, F. da Costa, J. Barreiro Guimaraes Barrillon, P. Barros, N. Bartoldus, R. Bartsch, D. Bastos, J. Bates, R. L. Bathe, S. Batkova, L. Batley, J. R. Battaglia, A. Battistin, M. Bauer, F. Bawa, H. S. Bazalova, M. Beare, B. Beau, T. Beauchemin, P. H. Beccherle, R. Becerici, N. Bechtle, R. Beck, G. A. Beck, H. P. Beckingham, M. Becks, K. H. Bedajanek, I. Beddall, A. J. Beddall, A. Bednar, P. Bednyakov, V. A. Bee, C. Begel, M. Harpaz, S. Behar Behera, P. K. Beimforde, M. Belanger-Champagne, C. Bell, P. J. Bell, W. H. Bella, G. Bellagamba, L. Bellina, F. Bellomo, M. Belloni, A. Belotskiy, K. Beltramello, O. Ben Ami, S. Benary, O. Benchekroun, D. Bendel, M. Benedict, B. H. Benekos, N. Benhammou, Y. Benincasa, G. P. Benjamin, D. P. Benoit, M. Bensinger, J. R. Benslama, K. Bentvelsen, S. Beretta, Ni. Berge, D. Kuutmann, E. Bergeaas Berger, N. Berghaus, F. Berglund, E. Beringer, J. Bernardet, K. Bernat, P. Bernhard, R. Bernius, C. Berry, T. Bertin, A. Besson, N. Bethke, S. Bianchi, R. M. Bianco, M. Biebel, O. Biesiada, J. Biglietti, M. Bilokon, H. Bindi, M. Binet, S. Bingul, A. Bini, C. Biscarat, C. Bitenc, U. Black, K. M. Blair, R. E. Blanchard, J. -B. Blanchot, G. Blocker, C. Blocki, J. Blondel, A. Blum, W. Blumenschein, U. Bobbink, G. J. Bocci, A. Boehler, M. Boek, J. Boelaert, N. Boeser, S. Bogaerts, J. A. Bogouch, A. Bohm, C. Bohm, J. Boisvert, V. Bold, T. Boldea, V. Boldyrev, A. Bondarenko, V. G. Bondioli, M. Boonekamp, M. Booth, J. R. A. Bordoni, S. Borer, C. Borisov, A. Borissov, G. Borjanovic, I. Borroni, S. Bos, K. Boscherini, D. Bosman, M. Bosteels, M. Boterenbrood, H. Bouchami, J. Boudreau, J. Bouhova-Thacker, E. V. Boulahouache, C. Bourdarios, C. Boyd, J. Boyko, I. R. Bozovic-Jelisavcic, I. Bracinik, J. Braem, A. Branchini, P. Brandenburg, G. W. Brandt, A. Brandt, G. Brandt, O. Bratzler, U. Brau, B. Brau, J. E. Braun, H. M. Brelier, B. Bremer, J. Brenner, R. Bressler, S. Breton, D. Brett, N. D. Britton, D. Brochu, F. M. Brock, I. Brock, R. Brodbeck, T. J. Brodet, E. Broggi, F. Bromberg, C. Brooijmans, G. Brooks, W. K. Brown, G. Brubaker, E. de Renstrom, P. A. Bruckman Bruncko, D. Bruneliere, R. Brunet, S. Bruni, A. Bruni, G. Bruschi, M. Buanes, T. Bucci, F. Buchanan, J. Buchholz, P. Buckley, A. G. Budagov, I. A. Budick, B. Buescher, V. Bugge, L. Bulekov, O. Bunse, M. Buran, T. Burckhart, H. Burdin, S. Burgess, T. Burke, S. Busato, E. Bussey, P. Buszello, C. P. Butin, F. Butler, B. Butler, J. M. Buttar, C. M. Butterworth, J. M. Byatt, T. Caballero, J. Cabrera Urban, S. Caforio, D. Cakir, O. Calafiura, P. Calderini, G. Calfayan, P. Calkins, R. Caloba, L. P. Caloi, R. Calvet, D. Camarri, P. Cambiaghi, M. Cameron, D. Campabadal Segura, F. Campana, S. Campanelli, M. Canale, V. Canelli, F. Canepa, A. Cantero, J. Capasso, L. Garrido, M. D. M. Capeans Caprini, I. Caprini, M. Capua, M. Caputo, R. Caracinha, D. Caramarcu, C. Cardarelli, R. Carli, T. Carlino, G. Carminati, L. Caron, B. Caron, S. Montoya, G. D. Carrillo Montero, S. Carron Carter, A. A. Carter, J. R. Carvalho, J. Casadei, D. Casado, M. P. Cascella, M. Caso, C. Hernadez, A. M. Castaneda Castaneda-Miranda, E. Castillo Gimenez, V. Castro, N. Cataldi, G. Catinaccio, A. Catmore, J. R. Cattai, A. Cattani, G. Caughron, S. Cauz, D. Cavalleri, P. Cavallli, D. Cavalli-Sforza, M. Cavasinni, V. Ceradini, F. Cerqueira, A. S. Cerri, A. Cerrito, L. Cerutti, F. Cetin, S. A. Cevenini, F. Chafaq, A. Chakraborty, D. Chan, K. Chapman, J. D. Chapman, J. W. Chareyre, E. Charlton, D. G. Chavda, V. Cheatham, S. Chekanov, S. Chekulaev, S. V. Chelkov, G. A. Chen, H. Chen, S. Chen, T. Chen, X. Cheng, S. Cheplakov, A. Chepurnov, V. F. El Moursli, R. Cherkaoui Tcherniatine, V. Chesneanu, D. Cheu, E. Cheung, S. L. Chevalier, L. Chevallier, F. Chiarella, V. Chiefari, G. Chikovani, L. Childers, J. T. Chilingarov, A. Chiodini, G. Chizhov, M. Choudalakis, G. Chouridou, S. Chren, D. Christidi, I. A. Christov, A. Chromek-Burckhart, D. Chu, M. L. Chudoba, J. Ciapetti, G. Ciftci, A. K. Ciftci, R. Cinca, D. Cindro, V. Ciobotaru, M. D. Ciocca, C. Ciocio, A. Cirilli, M. Citterio, M. Clark, A. Cleland, W. Clemens, J. C. Clement, B. Clement, C. Clements, D. Coadou, Y. Cobal, M. Coccaro, A. Cochran, J. Coelli, S. Coggeshall, J. Cogneras, E. Cojocaru, C. D. Colas, J. Cole, B. Colijn, A. P. Collard, C. Collins, N. J. Collins-Tooth, C. Collot, J. Colon, G. Coluccia, R. Conde Muino, P. Coniavitis, E. Consonni, M. Constantinescu, S. Conta, C. Conventi, F. Cook, J. Cooke, M. Cooper, B. D. Cooper-Sarkar, A. M. Cooper-Smith, N. J. Copic, K. Cornelissen, T. Corradi, M. Corriveau, F. Corso-Radu, A. Cortes-Gonzalez, A. Codiana, G. Costa, G. Costa, M. J. Costanzo, D. Costin, T. Cote, D. Coura Torres, R. Courneyea, L. Cowan, G. Cowden, C. Cox, B. E. Cranmer, K. Cranshaw, J. Cristinziani, M. Crosetti, G. Crupi, R. Crepe-Renaudin, S. Almenar, C. Cuenca Donszelmann, T. Cuhadar Curatolo, M. Curtis, C. J. Cwetanski, P. Czyczula, Z. D'Auria, S. D'Onofrio, M. D'Orazio, A. Da Silva, P. V. M. Da Via, C. Dabrowski, W. Dai, T. Dallapiccola, C. Dallison, S. J. Daly, C. H. Dam, M. Danielsson, H. O. Dannheim, D. Dao, V. Darbo, G. Darlea, G. L. Davey, W. Davidek, T. Davidson, N. Davidson, R. Davison, A. R. Dawson, I. Dawson, J. W. Daya, R. K. De, K. de Asmundis, R. De Castro, S. Salgado, P. E. De Castro Faria De Cecco, S. de Graat, J. De Groot, N. de Jong, P. De La Cruz-Burelo, E. De La Taille, C. De Mora, L. Branco, M. De Oliveira De Pedis, D. De Salvo, A. De Sanctis, U. De Santo, A. De Regie, J. B. De Vivie De Zorzi, G. Dean, S. Deberg, H. Dedes, G. Dedovich, D. V. Defay, P. O. Degenhardt, J. Dehchar, M. Del Papa, C. Del Peso, J. Del Prete, T. Dell'Acqua, A. Dell'Asta, L. Della Pietra, M. della Volpe, D. Delmastro, M. Delruelle, N. Delsart, P. A. Deluca, C. Demers, S. Demichev, M. Demirkoz, B. Deng, J. Deng, W. Denisov, S. P. Dennis, C. Derkaouic, J. E. Derue, F. Dervan, P. Desch, K. Deviveiros, P. O. Dewhurst, A. DeWilde, B. Dhaliwal, S. Dhullipudi, R. Di Ciaccio, A. Di Ciaccio, L. Di Domenico, A. Di Girolamo, A. Di Girolamo, B. Di Luise, S. Di Mattia, A. Di Nardo, R. Di Simone, A. Di Sipio, R. Diaz, M. A. Diblen, F. Diehl, E. B. Dietrich, J. Diglio, S. Yagci, K. Dindar Dingfelder, D. J. Dionisi, C. Dita, P. Dita, S. Dittus, F. Djama, F. Djilkibaev, R. Djobava, T. do Vale, M. A. B. Do Valle Wemans, A. Dobbs, M. Dobos, D. Dobson, E. Dobson, M. Dodd, J. Dogan, O. B. Doherty, T. Doi, Y. Dolejsi, J. Dolenc, I. Dolezal, Z. Dolgoshein, B. A. Dohmae, T. Donega, M. Donini, J. Dopke, J. Doria, A. Dos Anjos, A. Dotti, A. Dova, M. T. Doxiadis, A. Doyle, A. T. Drasal, Z. Driouichi, C. Dris, M. Dubbert, J. Duchovni, E. Duckeck, G. Dudarev, A. Dudziak, F. Duehrssen, M. Duflot, L. Dufour, M. -A. Dunford, M. Duperrin, A. Yildiz, H. Duran Dushkin, A. Duxfield, R. Dwuznik, M. Dueren, M. Ebenstein, W. L. Ebke, J. Eckert, S. Eckweiler, S. Edmonds, K. Edwards, C. A. Eerola, P. Egorov, K. Ehrenfeld, W. Ehrich, T. Eifert, T. Eigen, G. Einsweiler, K. Eisenhandler, E. Ekelof, T. El Kacimi, M. Ellert, M. Elles, S. Ellinghaus, F. Ellis, K. Ellis, N. Elmsheuser, J. Elsing, M. Ely, R. Emeliyanov, D. Engelmann, R. Engl, A. Epp, B. Eppig, A. Epshteyn, V. S. Ereditato, A. Eriksson, D. Ermoline, I. Ernst, J. Ernst, M. Ernwein, J. Errede, D. Errede, S. Ertel, E. Escalier, M. Escobar, C. Espinal Curull, X. Esposito, B. Etienne, F. Etienvre, A. I. Etzion, E. Evans, H. Fabbri, L. Fabre, C. Faccioli, P. Facius, K. Fakhrutdinov, R. M. Falciano, S. Falou, A. C. Fang, Y. Fanti, M. Farbin, A. Farilla, A. Farley, J. Farooque, T. Farrington, S. M. Farthouat, P. Fassi, F. Fassnacht, P. Fassouliotis, D. Fatholahzadeh, B. Fayard, L. Fayette, F. Febbraro, R. Federic, P. Fedin, O. L. Fedorko, I. Fedorko, W. Feligioni, L. Felzmann, C. U. Feng, C. Feng, E. J. Fenyuk, A. B. Ferencei, J. Ferland, J. Fernandes, B. Fernando, W. Ferrag, S. Ferrando, J. Ferrari, A. Ferrari, P. Ferrari, R. Ferrer, A. Ferrer, M. L. Ferrere, D. Ferretti, C. Fiascaris, M. Fiedler, F. Filipcic, A. Filippas, A. Filthaut, F. Fincke-Keeler, M. Fiolhais, M. C. N. Fiorini, L. Firan, A. Fischer, G. Fisher, M. J. Flechl, M. Fleck, I. Fleckner, J. Fleischmann, P. Fleischmann, S. Flick, T. Flores Castillo, L. R. Flowerdew, M. J. Foehlisch, F. Fokitis, M. Martin, T. Fonseca Forbush, D. A. Formica, A. Forti, A. Fortin, D. Foster, J. M. Fournier, D. Foussat, A. Fowler, A. J. Fowler, K. Fox, H. Francavilla, P. Franchino, S. Francis, D. Franklin, M. Franz, S. Fraternali, M. Fratina, S. Freestone, J. French, S. T. Froeschl, R. Froidevaux, D. Frost, J. A. Fukunaga, C. Torregrosa, E. Fullana Fuster, J. Gabaldon, C. Gabizon, O. Gadfort, T. Gadomski, S. Gagliardi, G. Gagnon, P. Galea, C. Gallas, E. J. Gallas, M. V. Gallop, B. J. Gallus, P. Galyaev, E. Gan, K. K. Gao, Y. S. Gaponenko, A. Garcia-Sciveres, M. Garcia, C. Navarro, J. E. Garcia Gardner, R. W. Garelli, N. Garitaonandia, H. Garonne, V. Gatti, C. Gaudio, G. Gaumer, O. Gauzzi, P. Gavrilenko, I. L. Gay, C. Gaycken, G. Gayde, J. -C. Gazis, E. N. Ge, P. Gee, C. N. P. Geich-Gimbel, Ch. Gellerstedt, K. Gemme, C. Genest, M. H. Gentile, S. Georgatos, F. George, S. Gerlach, P. Gershon, A. Geweniger, C. Ghazlane, H. Ghez, P. Ghodbane, N. Giacobbe, B. Giagu, S. Giakoumopoulous, V. Giangiobbe, V. Gianotti, F. Gibbard, B. Gibson, A. Gibson, S. M. Gilbert, L. M. Gilchriese, M. Gilewsky, V. Gillberg, D. Gillman, A. R. Gingrich, D. M. Ginzburg, J. Giokaris, N. Giordani, M. P. Giordano, R. Giovannini, P. Giraud, P. F. Girtler, P. Giugni, D. Giusti, P. Gjelsten, B. K. Gladilin, L. K. Glasman, C. Glazov, A. Glitza, K. W. Glonti, G. L. Godfrey, J. Godlewski, J. Goebel, M. Goepfert, T. Goeringer, C. Goessling, C. Goettfert, T. Goggi, V. Goldfarb, S. Goldin, D. Golling, T. Gollub, N. P. Gomes, A. Fajardo, L. S. Gomez Goncalo, R. Gonella, L. Gong, C. Gonzalez de la Hoz, S. Gonzalez Silva, M. L. Gonzalez-Sevilla, S. Goodson, J. J. Goossens, L. Orbounov, P. A. Gordon, H. A. Gorelov, I. Gorfine, G. Gorini, B. Gorini, E. Gorisek, A. Gornicki, E. Goryachev, S. V. Goryachev, V. N. Gosdzik, B. Gosselink, M. Gostkin, M. I. Eschrich, I. Gough Gouighri, M. Goujdami, D. Goulette, M. P. Goussiou, A. G. Goy, C. Grabowska-Bold, I. Grafstroem, P. Grahn, K. -J. Granado Cardoso, L. Grancagnolo, F. Grancagnolo, S. Grassi, V. Gratchev, V. Grau, N. Gray, H. M. Gray, J. A. Graziani, E. Green, B. Greenshaw, T. Greenwood, Z. D. Gregor, I. M. Grenier, P. Griesmayer, E. Griffiths, J. Grigalashvili, N. Grillo, A. A. Grimm, K. Grinstein, S. Grishkevich, Y. V. Groer, L. S. Grognuz, J. Groh, M. Groll, M. Gross, E. Grosse-Knetter, J. Groth-Jensen, J. Grybel, K. Guarino, V. J. Guicheney, C. Guida, A. Guillemin, T. Guler, H. Gunther, J. Guo, B. Gupta, A. Gusakov, Y. Gutierrez, A. Gutierrez, P. Guttman, N. Gutzwiller, O. Guyot, C. Gwenlan, C. Gwilliam, C. B. Haas, A. Haas, S. Haber, C. Hackenburg, R. Hadavand, H. K. Hadley, D. R. Haefner, P. Haertel, R. Hajduk, Z. Hakobyan, H. Haller, J. Hamacher, K. Hamilton, A. Hamilton, S. Han, H. Han, L. Hanagaki, K. Hance, M. Handel, C. Hanke, P. Hansen, J. R. Hansen, J. B. Hansen, J. D. Hansen, P. H. Hansl-Kozanecka, T. Hansson, P. Hara, K. Hare, G. A. Harenberg, T. Harrington, R. D. Harris, O. B. Harris, O. M. Harrison, K. Hartert, J. Hartjes, F. Haruyama, T. Harvey, A. Hasegawa, S. Hasegawa, Y. Hashemi, K. Hassani, S. Hatch, M. Haug, F. Haug, S. Hauschild, M. Hauser, R. Havranek, M. Hawkes, C. M. Hawkings, R. J. Hawkins, D. Hayakawa, T. Hayward, H. S. Haywood, S. J. He, M. Head, S. J. Hedberg, V. Heelan, L. Heim, S. Heinemann, B. Heisterkamp, S. Helary, L. Heller, M. Hellman, S. Helsens, C. Hemperek, T. Henderson, R. C. W. Henke, M. Henrichs, A. Correia, A. M. Henriques Henrot-Versille, S. Hensel, C. Henss, T. Hershenhorn, A. D. Herten, G. Hertenberger, R. Hervas, L. Hessey, N. P. Hidvegi, A. Higon-Rodriguez, E. Hill, D. Hill, J. C. Hiller, K. H. Hillier, S. J. Hinchliffe, I. Hirose, M. Hirsch, F. Hobbs, J. Hod, N. Hodgkinson, M. C. Hodgson, P. Hoecker, A. Hoeferkamp, M. R. Hoffman, J. Hoffmann, D. Hohlfeld, M. Holmgren, S. O. Holy, T. Holzbauer, J. L. Homma, Y. Homola, P. Horazdovsky, T. Hori, T. Horn, C. Horner, S. Horvat, S. Hostachy, J. -Y. Hou, S. Houlden, M. A. Hoummada, A. Howe, T. Hrivnac, J. Hryn'ova, T. Hsu, P. J. Hsu, S. -C. Huang, G. S. Hubacek, Z. Hubaut, F. Huegging, F. Hughes, E. W. Hughes, G. Hughes-Jones, R. E. Hurst, P. Hurwitz, M. Husemann, U. Huseynov, N. Huston, J. Huth, J. Iacobucci, G. Iakovidis, G. Ibragimov, I. Iconomidou-Fayard, L. Idarraga, J. Iengo, P. Igonkina, O. Ikegami, Y. Ikeno, M. Ilchenko, Y. Iliadis, D. Ilyushenka, Y. Imori, M. Ince, T. Ioannou, P. Iodice, M. Irles Quiles, A. Ishikawa, A. Ishino, M. Ishmukhametov, R. Isobe, T. Issakov, V. Issever, C. Istin, S. Itoh, Y. Ivashin, A. V. Iwanski, W. Iwasaki, H. Izen, J. M. Izzo, V. Jackson, J. N. Jackson, P. Jaekel, M. Jahoda, M. Jain, V. Jakobs, K. Jakobsen, S. Jakubek, J. Jana, D. Jansen, E. Jantsch, A. Janus, M. Jared, R. C. Jarlskog, G. Jarron, P. Jeanty, L. Jelen, K. Plante, I. Jen-La Jenni, P. Jez, P. Jezequel, S. Ji, W. Jia, J. Jiang, Y. Belenguer, M. Jimenez Jin, G. Jin, S. Jinnouchi, O. Joffe, D. Johansen, M. Johansson, K. E. Johansson, P. Johnert, S. Johns, K. A. Jon-And, K. Jones, G. Jones, R. W. L. Jones, T. W. Jones, T. J. Jonsson, O. Joos, D. Joram, C. Jorge, P. M. Juranek, V. Jussel, P. Kabachenko, V. V. Kabana, S. Kaci, M. Kaczmarska, A. Kado, M. Kagan, H. Kagan, M. Kaiser, S. Kajomovitz, E. Kalinovskaya, L. V. Kalinowski, A. Kama, S. Kanaya, N. Kaneda, M. Kantserov, V. A. Kanzaki, J. Kaplan, B. Kapliy, A. Kaplon, J. Karagounis, M. Unel, M. Karagoz Kartvelishvili, V. Karyukhin, A. N. Kashif, L. Kasmi, A. Kass, R. D. Kastanas, A. Kastoryano, M. Kataoka, M. Kataoka, Y. Katsoufis, E. Katzy, J. Kaushik, V. Kawagoe, K. Kawamoto, T. Kawamura, G. Kayl, M. S. Kayumov, F. Kazanin, V. A. Kazarinov, M. Y. Kazi, S. I. Keates, J. R. Keeler, R. Keener, P. T. Kehoe, R. Keil, M. Kekelidze, G. D. Kelly, M. Kennedy, J. Kenyon, M. Kepka, O. Kerschen, N. Kersevan, B. P. Kersten, S. Kessoku, K. Khakzad, M. Khalil-zada, F. Khandanyan, H. Khanov, A. Kharchenko, D. Khodinov, A. Kholodenko, A. G. Khomich, A. Khoriauli, G. Khovanskiy, N. Khovanskiy, V. Khramov, E. Khubua, J. Kilvington, G. Kim, H. Kim, M. S. Kim, P. C. Kim, S. H. Kind, O. Kind, P. King, B. T. Kirk, J. Kirsch, G. P. Kirsch, L. E. Kiryunin, A. E. Kisielewska, D. Kittelmann, T. Kiyamura, H. Kladiva, E. Klein, M. Klein, U. Kleinknecht, K. Klemetti, M. Klier, A. Klimentov, A. Klingenberg, R. Klinkby, E. B. Klioutchnikova, T. Klok, P. F. Klous, S. Kluge, E. -E. Kluge, T. Kluit, P. Klute, M. Kluth, S. Knecht, N. S. Kneringer, E. Ko, B. R. Kobayashi, T. Kobel, M. Koblitz, B. Kocian, M. Kocnar, A. Kodys, P. Koeneke, K. Konig, A. C. Koepke, L. Koetsveld, F. Koevesarki, P. Koffas, T. Koffeman, E. Kohn, F. Kohout, Z. Kohriki, T. Kokott, T. Kolanoski, H. Kolesnikov, V. Koletsou, I. Koll, J. Kollar, D. Kolos, S. Kolya, S. D. Komar, A. A. Komaragiri, J. R. Kondo, T. Kono, T. Kononov, A. I. Konoplich, R. Konovalov, S. P. Konstantinidis, N. Koperny, S. Korcyl, K. Kordas, K. Koreshev, V. Korn, A. Korolkov, I. Korolkova, E. V. Korotkov, V. A. Kortner, O. Kostka, P. Kostyukhin, V. V. Kotamaeki, M. J. Kotov, S. Kotov, V. M. Kotov, K. Y. Koupilova, Z. Kourkoumelis, C. Koutsman, A. Kowalewski, R. Kowalski, H. Kowalski, T. Z. Kozanecki, W. Kozhin, A. S. Kral, V. Kramarenko, V. A. Kramberger, G. Krasny, M. W. Krasznahorkay, A. Kreisel, A. Krejci, F. Krepouri, A. Kretzschmar, J. Krieger, P. Krobath, G. Kroeninger, K. Kroha, H. Kroll, J. Kroseberg, J. Krstic, J. Kruchonak, U. Krueger, H. Krumshteyn, Z. V. Kubota, T. Kuehn, S. Kugel, A. Kuhl, T. Kuhn, D. Kukhtin, V. Kulchitsky, Y. Kuleshov, S. Kummer, C. Kuna, M. Kupco, A. Kurashige, H. Kurata, M. Kurchaninov, L. L. Kurochkin, Y. A. Kus, V. Kuykendall, W. Kuznetsova, E. Kvasnicka, O. Kwee, R. La Rosa, M. La Rotonda, L. Labarga, L. Labbe, J. Lacasta, C. Lacava, F. Lacker, H. Lacour, D. Lacuesta, V. R. Ladygin, E. Lafaye, R. Laforge, B. Lagouri, T. Lai, S. Lamanna, M. Lampen, C. L. Lampl, W. Lancon, E. Landgraf, U. Landon, M. P. J. Lane, J. L. Lankford, A. J. Lanni, F. Lantzsch, K. Lanza, A. Laplace, S. Lapoire, C. Laporte, J. F. Lari, T. Larionov, A. V. Larner, A. Lasseur, C. Lassnig, M. Laurelli, P. Lavrijsen, W. Laycock, P. Lazarev, A. B. Lazzaro, A. Le Dortz, O. Le Guirriec, E. Le Maner, C. Le Menedeu, E. Le Vine, M. Leahu, M. Lebedev, A. Lebel, C. LeCompte, T. Ledroit-Guillon, F. Lee, H. Lee, J. S. H. Lee, S. C. Lefebvre, M. Legendre, M. LeGeyt, B. C. Legger, F. Leggett, C. Lehmacher, M. Miotto, G. Lehmann Lei, X. Leitner, R. Lelas, D. Lellouch, D. Lellouch, J. Leltchouk, M. Lendermann, V. Leney, K. J. C. Lenz, G. Lenzen, G. Lenzi, B. Leonhardt, K. Leroy, C. Lessard, J. -R. Lester, C. C. Cheong, A. Leung Fook Leveque, J. Levin, D. Levinson, L. J. Levitski, M. S. Levonian, S. Lewandowska, M. Leyton, M. Li, H. Li, J. Li, S. Li, X. Liang, Z. Liang, Z. Liberti, B. Lichard, P. Lichtnecker, M. Lie, K. Liebig, W. Liko, D. Lilley, J. N. Lim, H. Limosani, A. Limper, M. Lin, S. C. Lindsay, S. W. Linhart, V. Linnemann, J. T. Liolios, A. Lipeles, E. Lipinsky, L. Lipniacka, A. Liss, T. M. Lissauer, D. Litke, A. M. Liu, C. Liu, D. Liu, H. Liu, J. B. Liu, M. Liu, S. Liu, T. Liu, Y. Livan, M. Lleres, A. Lloyd, S. L. Lobodzinska, E. Loch, P. Lockman, W. S. Lockwitz, S. Loddenkoetter, T. Loebinger, F. K. Loginov, A. Loh, C. W. Lohse, T. Lohwasser, K. Lokajicek, M. Loken, J. Lopes, L. Mateos, D. Lopez Losada, M. Loscutoff, P. Losty, M. J. Lou, X. Lounis, A. Loureiro, K. F. Lovas, L. Love, J. Love, P. Lowe, A. J. Lu, F. Lu, J. Lubatti, H. J. Luci, C. Lucotte, A. Ludwig, A. Ludwig, D. Ludwig, I. Ludwig, J. Luehring, F. Luisa, L. Lumb, D. Luminari, L. Lund, E. Lund-Jensen, B. Lundberg, B. Lundberg, J. Lundquist, J. Lutz, G. Lynn, D. Lys, J. Lytken, E. Ma, H. Ma, L. L. Maccarrone, G. Macchiolo, A. Macek, B. Machado Miguens, J. Mackeprang, R. Madaras, R. J. Mader, W. F. Maenner, R. Maeno, T. Maettig, P. Maettig, S. Magalhaes Martins, P. J. Magradze, E. Magrath, C. A. Mahalalel, Y. Mahboubi, K. Mahmood, A. Mahout, G. Maiani, C. Maidantchik, C. Maio, A. Majewski, S. Makida, V. Makouski, M. Makovec, N. Malecki, Pa. Malecki, P. Maleev, V. P. Malek, F. Mallik, U. Malon, D. Maltezos, S. Malyshev, V. Malyukov, S. Mambelli, M. Mameghani, R. Mamuzic, J. Manabe, A. Mandelli, L. Mandic, I. Mandrysch, R. Maneira, J. Mangeard, P. S. Manjavidze, I. D. Manousakis-Katsikakis, A. Mansoulie, B. Mapelli, A. Mapelli, L. March, L. Marchand, J. F. Marchese, F. Marcisovsky, M. Marino, C. P. Marques, C. N. Marroquim, F. Marshall, R. Marshall, Z. Martens, F. K. Marti i Garcia, S. Martin, A. J. Martin, A. J. Martin, B. Martin, B. Martin, F. F. Martin, J. P. Martin, T. A. Latour, B. Martin Dit Martinez, M. Outschoorn, V. Martinez Martini, A. Martynenko, V. Martyniuk, A. C. Maruyama, T. Marzano, F. Marzin, A. Masetti, L. Mashimo, T. Mashinistov, R. Masik, J. Maslennikov, A. L. Massaro, G. Massol, N. Mastroberardino, A. Masubuchi, T. Mathes, M. Matricon, P. Matsumoto, H. Matsunaga, H. Matsushita, T. Mattravers, C. Maxfield, S. J. May, E. N. Mayne, A. Mazini, R. Mazur, M. Mazzanti, M. Mazzanti, P. Mc Donald, J. Mc Kee, S. P. McCarn, A. McCarthy, R. L. McCubbin, N. A. McFarlane, K. W. McGlone, H. Mchedlidze, G. McLaren, R. A. McMahon, S. J. McMahon, T. R. McPherson, R. A. Meade, A. Mechnich, J. J. Mechtel, M. Medinnis, M. Meera-Lebbai, R. Meguro, T. M. Mehdiyev, R. Mehlhase, S. Mehta, A. Meier, K. Meirose, B. Melamed-Katz, A. Garcia, B. R. Mellado Meng, Z. Menke, S. Meoni, E. Merkl, D. Mermod, P. Merola, L. Meronia, C. Merritt, F. S. Messina, A. M. Messmer, I. Metcalfe, J. Mete, A. S. Meyer, J. -P. Meyer, J. Meyer, T. C. Meyer, W. T. Miao, J. Micua, L. Middleton, R. P. Migas, S. Mijovic, L. Mikenberg, G. Mikui, M. Miller, D. W. Mills, W. J. Mills, C. M. Milov, A. Milstead, D. A. Minaenko, A. A. Minano, M. Minashvili, I. A. Mincer, A. I. Mindur, B. Mineev, M. Mir, L. M. Mirabelli, G. Misawa, S. Miscetti, S. Misiejuk, A. Mitrevski, J. Mitsou, V. A. Miyagawa, P. S. Mjornmark, J. U. Mladenov, D. Moa, T. Mockett, P. Moed, S. Moeller, V. Moenig, K. Moeser, N. Mohn, B. Mohr, W. Mohrdieck-Moeck, S. Moles-Valls, R. Molina-Perez, J. J. Moloney, G. Monk, J. Monnier, E. Montesano, S. Monticelli, F. Moore, R. W. Herrera, C. Mora Moraes, A. Morais, A. Morel, J. Morello, G. Moreno, D. Moreno Llacer, M. Morettini, P. Morii, M. Morley, A. K. Mornacchi, G. Morozov, S. V. Morris, J. D. Moser, H. G. Mosidze, M. Moss, J. Mount, R. Mountricha, E. Mouraviev, S. V. Moyse, E. J. W. Mudrinic, M. Mueller, F. Mueller, J. Mueller, K. Mueller, T. A. Muenstermann, D. Muir, A. Garcia, R. Murillo Murray, W. J. Mussche, I. Musto, E. Myagkov, A. G. Myska, M. Nadal, J. Nagai, K. Nagano, K. Nagasaka, Y. Nairz, A. M. Nakamura, K. Nakano, I. Nakatsuka, H. Nanava, G. Napier, A. Nash, M. Nation, N. R. Nattermann, T. Naumann, T. Navarro, G. Nderitu, S. K. Neal, H. A. Nebot, E. Nechaeva, P. Negri, A. Negri, G. Nelson, A. Nelson, T. K. Nemecek, S. Nemethy, P. Nepomuceno, A. A. Nessi, M. Neubauer, M. S. Neusiedl, A. Neves, R. N. Nevski, P. Newcomer, F. M. Nicholson, C. Nickerson, R. B. Nicolaidou, R. Nicolas, L. Nicoletti, G. Niedercorn, F. Nielsen, J. Nikiforov, A. Nikolaev, K. Nikolic-Audit, I. Nikolopoulos, K. Nilsen, H. Nilsson, P. Nisati, A. Nishiyama, T. Nisius, R. Nodulman, L. Nomachi, M. Nomidis, I. Nomoto, H. Nordberg, M. Nordkvist, B. Notz, D. Novakova, J. Nozaki, M. Nozicka, M. Nugent, I. M. Nuncio-Quiroz, A. -E. Hanninger, G. Nunes Nunnemann, T. Nurse, E. O'Neil, D. C. O'Shea, V. Oakham, F. G. Oberlack, H. Ochi, A. Oda, S. Odaka, S. Odier, J. Odino, G. A. Ogren, H. Oh, S. H. Ohm, C. C. Ohshima, T. Ohshita, H. Ohsugi, T. Okada, S. Okawa, H. Okumura, Y. Olcese, M. Olchevski, A. G. Oliveira, M. Damazio, D. Oliveira Oliver, J. Oliver Garcia, E. Olivito, D. Olszewski, A. Olszowska, J. Omachi, C. Onofre, A. Onyisi, P. U. E. Oram, C. J. Ordonez, G. Oreglia, M. J. Oren, Y. Orestano, D. Orlov, I. Barrera, C. Oropeza Orr, R. S. Ortega, E. O. Osculati, B. Osuna, C. Otec, R. Ottersbach, J. P. Ould-Saada, F. Ouraou, A. Ouyang, Q. Owen, M. Owen, S. Ozcan, V. E. Ozone, K. Ozturk, N. Pacheco Pages, A. Padhi, S. Padilla Aranda, C. Paganis, E. Pahl, C. Paige, F. Pajchel, K. Pal, A. Palestini, S. Pallin, D. Palma, A. Palmer, J. D. Pan, Y. B. Panagiotopoulou, E. Panes, B. Panikashvili, N. Panitkin, S. Pantea, D. Panuskova, M. Paolone, V. Papadopoulou, Th. D. Park, S. J. Park, W. Parker, M. A. Parker, S. I. Parodi, F. Parsons, J. A. Parzefall, U. Pasqualucci, E. Passardi, G. Passeri, A. Pastore, F. Pastore, Fr. Pasztor, G. Pataraia, S. Pater, J. R. Patricelli, S. Patwa, A. Pauly, T. Peak, L. S. Pecsy, M. Morales, M. I. Pedraza Peleganchuk, S. V. Peng, H. Penson, A. Penwell, J. Perantoni, M. Perez, K. Perez Codina, E. Perez Garcia-Estan, M. T. Reale, V. Perez Perini, L. Pernegger, H. Perrino, R. Perrodo, P. Persembe, S. Perus, P. Peshekhonov, V. D. Petersen, B. A. Petersen, J. Petersen, T. C. Petit, E. Petridou, C. Petrolo, E. Petrucci, F. Petschull, D. Petteni, M. Pezoa, R. Pfeifer, B. Phan, A. Phillips, A. W. Piacquadio, G. Piccinini, M. Piegaia, R. Pilcher, J. E. Pilkington, A. D. Pina, J. Pinamonti, M. Pinfold, J. L. Ping, J. Pinto, B. Pirotte, O. Pizio, C. Placakyte, R. Plamondon, M. Plano, W. G. Pleier, M. -A. Poblaguev, A. Poddar, S. Podlyski, F. Poffenberger, P. Poggioli, L. Pohl, M. Polci, F. Polesello, G. Policicchio, A. Polini, A. Poll, J. Polychronakos, V. Pomarede, D. M. Pomeroy, D. Pommes, K. Pontecorvo, L. Pope, B. G. Popovic, D. S. Poppleton, A. Popule, J. Bueso, X. Portell Porter, R. Pospelov, G. E. Pospichal, P. Pospisil, S. Potekhin, M. Potrap, I. N. Potter, C. J. Potter, C. T. Potter, K. P. Poulard, G. Poveda, J. Prabhu, R. Pralavorio, P. Prasad, S. Pravahan, R. Preda, T. Pretzl, K. Pribyl, L. Price, D. Price, L. E. Prichard, P. M. Prieur, D. Primavera, M. Prokofiev, K. Prokoshin, F. Protopopescu, S. Proudfoot, J. Prudent, X. Przysiezniak, H. Psoroulas, S. Ptacek, E. Puigdengoles, C. Purdham, J. Purohit, M. Puzo, P. Pylypchenko, Y. Qi, M. Qian, J. Qian, W. Qian, Z. Qin, Z. Qing, D. Quadt, A. Quarrie, D. R. Quayle, W. B. Quinonez, F. Raas, M. Radeka, V. Radescu, V. Radics, B. Rador, T. Ragusa, F. Rahal, G. Rahimi, A. M. Rahm, D. Rajagopalan, S. Rammes, M. Ratoff, P. N. Rauscher, F. Rauter, E. Raymond, M. Read, A. L. Rebuzzi, D. M. Redelbach, A. Redlinger, G. Reece, R. Reeves, K. Reinherz-Aronis, E. Reinsch, A. Reisinger, I. Reljic, D. Rembser, C. Ren, Z. L. Renkel, P. Rescia, S. Rescigno, M. Resconi, S. Resende, B. Reznicek, P. Rezvani, R. Richards, A. Richards, R. A. Richter, D. Richter, R. Richter-Was, E. Ridel, M. Rieke, S. Rijpstra, M. Rijssenbeek, M. Rimoldi, A. Rinaldi, L. Rios, R. R. Riu, I. Rivoltella, G. Rizatdinova, F. Rizvi, E. R. Romero, D. A. Roa Robertson, S. H. Robichaud-Veronneau, A. Robinson, D. Robinson, M. Robson, A. de Limas, J. G. Rocha Roda, C. Rodriguez, D. Garcia, Y. Rodriguez Roe, S. Rohne, O. Rojo, V. Rolli, S. Romaniouk, A. Romanov, V. M. Romeo, G. Maltrana, D. Romero Roos, L. Ros, E. Rosati, S. Rosenbaum, G. A. Rosenberg, E. I. Rosselet, L. Rossi, L. P. Rotaru, M. Rothberg, J. Rottlaender, I. Rousseau, D. Royon, C. R. Rozanov, A. Rozen, Y. Ruan, X. Ruckert, B. Ruckstuhl, N. Rud, V. I. Rudolph, G. Ruehr, F. Ruggieri, E. Ruiz-Martinez, A. Rumyantsev, L. Rusakovich, N. A. Rutherfoord, J. P. Ruwiedel, C. Ruzicka, P. Ryabov, Y. F. Ryadovikov, V. Ryan, P. Rybkin, G. Rzaeva, S. Saavedra, A. F. Sadrozinski, H. F. -W. Sadykov, R. Sakamoto, H. Salamanna, G. Salamon, A. Saleem, M. Salihagic, D. Salnikov, A. Salt, J. Ferrandos, B. M. Salvachua Salvatore, D. Salvatore, F. Salvucci, A. Salzburger, A. Sampsonidis, D. Samset, B. H. Sanchis Lozano, M. A. Sandaker, H. Sander, H. G. Sanders, M. P. Sandhoff, M. Sandstroem, R. Sandvoss, S. Sankey, D. P. C. Sanny, B. Sansoni, A. Rios, C. Santamarina Santi, L. Santoni, C. Santonico, R. Santos, D. Santos, J. Saraiva, J. G. Sarangi, T. Sarkisyan-Grinbaum, E. Sarri, F. Sasaki, O. Sasaki, T. Sasao, N. Satsounkevitch, I. Sauvage, G. Savardb, P. Savine, A. Y. Savinov, V. Sawyer, L. Saxon, D. H. Says, L. P. Sbarra, C. Sbrizzi, A. Scannicchio, D. A. Schaarschmidt, J. Schacht, P. Schaefer, U. Schaetzel, S. Schaffer, A. C. Schaile, D. Schamberger, R. D. Schamov, A. G. Schegelsky, V. A. Scheirich, D. Schernau, M. Scherzer, M. I. Schiavi, C. Schieck, J. Schioppa, M. Schlenker, S. Schlereth, J. L. Schmid, P. Schmidt, M. P. Schmieden, K. Schmitt, C. Schmitz, M. Schott, M. Schouten, D. Schovancova, J. Schram, M. Schreiner, A. Schroeder, C. Schroer, N. Schroers, M. Schuler, G. Schultes, J. Schultz-Coulon, H. -C. Schumacher, J. Schumacher, M. Schumm, B. A. Schune, Ph. Schwanenberger, C. Schwartzman, A. Schwemling, Ph. Schwienhorst, R. Schwierz, R. Schwindling, J. Scott, W. G. Searcy, J. Sedykh, E. Segura, E. Seidel, S. C. Seiden, A. Seifert, F. Seixas, J. M. Sekhniaidze, G. Seliverstov, D. M. Sellden, B. Seman, M. Semprini-Cesari, N. Serfon, C. Serin, L. Seuster, R. Severini, H. Sevior, M. E. Sfyrla, A. Shamim, M. Shan, L. Y. Shank, J. T. Shao, Q. T. Shapiro, M. Shatalov, P. B. Shaver, L. Shaw, C. Shaw, K. Sherman, D. Sherwood, P. Shibata, A. Shimojima, M. Shin, T. Shmeleva, A. Shochet, M. J. Shupe, M. A. Sicho, P. Sidoti, A. Siebel, A. Siegert, F. Siegrist, J. Sijacki, Dj. Silbert, O. Silva, J. Silver, Y. Silverstein, D. Silverstein, S. B. Simak, V. Simic, Lj. Simion, S. Simmons, B. Simonyan, M. Sinervo, P. Sinev, N. B. Sipica, V. Siragusa, G. Sisakyan, A. N. Sivoklokov, S. Yu. Sjoelin, J. Sjursen, T. B. Skubic, P. Skvorodnev, N. Slater, M. Slavicek, T. Sliwa, K. Sloper, J. Sluka, T. Smakhtin, V. Smirnov, S. Yu. Smirnov, Y. Smirnova, L. N. Smirnova, O. Smith, B. C. Smith, D. Smith, K. M. Smizanska, M. Smolek, K. Snesarev, A. A. Snow, S. W. Snow, J. Snuverink, J. Snyder, S. Soares, M. Sobie, R. Sodomka, J. . Soffer, A. Solans, C. A. Solar, M. Camillocci, E. Solfaroli Solodkov, A. A. Solovyanov, O. V. Soluk, R. Sondericker, J. Sopko, V. Sopko, B. Sosebee, M. Sosnovtsev, V. V. Sospedra Suay, L. Soukharev, A. Spagnolo, S. Spano, F. Speckmayer, P. Spencer, E. Spighi, R. Spigo, G. Spila, F'. Spiwoks, R. Spousta, M. Spreitzer, T. Spurlock, B. Denis, R. D. St. Stahl, T. Stamen, R. Stancu, S. N. Stanecka, E. Stanek, R. W. Stanescu, C. Stapnes, S. Starchenko, E. A. Stark, J. Staroba, P. Starovoitov, P. Stastny, J. Staude, A. Stavina, P. Stavropoulos, G. Steinbach, P. Steinberg, P. Stekl, I. Stelzer, B. Stelzer, H. J. Stelzer-Chilton, O. Stenzel, H. Stevenson, K. Stewart, G. Stockton, M. C. Stoerig, K. Stoicea, G. Stonjek, S. Strachota, P. Stradling, A. Straessner, A. Strandberg, J. Strandberg, S. Strandlie, A. Strauss, M. Strizenec, P. Stroehmer, R. Strom, D. M. Strong, J. A. Stroynowski, R. Strube, J. Stugu, B. Stumer, I. Soh, D. A. Su, D. Suchkov, S. I. Sugaya, Y. Sugimoto, T. Suhr, C. Suk, M. Sulin, V. V. Sultansoy, S. Sumida, T. Sun, X. Sundermann, J. E. Suruliz, K. Sushkov, S. Susinno, G. Sutton, M. R. Suzuki, T. Suzuki, Y. Sviridov, Yu. M. Sykora, I. Sykora, T. Szymocha, T. Sanchez, J. Ta, D. Tackmann, K. Taffard, A. Tafirout, R. Taga, A. Takahashi, Y. Takai, H. Takashima, R. Takeda, H. Takeshita, T. Talby, M. Talyshev, A. Tamsett, M. C. Tanaka, J. Tanaka, R. Tanaka, S. Tanaka, S. Tappern, G. P. Tapprogge, S. Tardif, D. Tarem, S. Tarrade, F. Tartarelli, G. F. Tas, P. Tasevsky, M. Tassi, E. Taylor, C. Taylor, F. E. Taylor, G. N. Taylor, R. P. Taylor, W. Teixeira-Dias, P. Ten Kate, H. Teng, P. K. Terada, S. Terashi, K. Terron, J. Terwort, M. Testa, M. Teuscher, R. J. Tevlin, C. M. Thadome, J. Thananuwong, R. Thioye, M. Thoma, S. Thomas, J. P. Thomas, T. L. Thompson, E. N. Thompson, P. D. Thompson, P. D. Thompson, R. J. Thompson, A. S. Thomson, E. Thun, R. P. Tic, T. Tikhomirov, V. O. Tikhonov, Y. A. Timmermans, C. J. W. P. Tipton, P. Viegas, F. J. Tique Aires Tisserant, S. Tobias, J. Toczek, B. Todorov, T. Todorova-Nova, S. Toggerson, B. Tojo, J. Tokar, S. Tokushuku, K. Tollefson, K. Tomasek, L. Tomasek, M. Tomasz, F. Tomoto, M. Tompkins, D. Tompkins, L. Toms, K. Tong, G. Tonoyan, A. Topfel, C. Topilin, N. D. Torrence, E. Torro Pastor, E. Toth, J. Touchard, F. Tovey, D. R. Tovey, S. N. Trefzger, T. Tremblet, L. Tricoli, A. Trigger, I. M. Trincaz-Duvoid, S. Trinh, T. N. Tripiana, M. F. Triplett, N. Trivedi, A. Trocme, B. Troncon, C. Trzupek, A. Tsarouchas, C. Tseng, J. C. -L. Tsiafis, I. Tsiakiris, M. Tsiareshka, P. V. Tsionou, D. Tsipolitis, G. Tsiskaridze, V. Tskhadadze, E. G. Tsukerman, I. I. Tsulaia, V. Tsung, J. -W. Tsuno, S. Tsybychev, D. Turala, M. Turecek, D. Cakir, I. Turk Turlay, E. Tuts, P. M. Twomey, M. S. Tylmad, M. Tyndel, M. Tzanakos, G. Uchida, K. Ueda, I. Uhlenbrock, M. Uhrmacher, M. Ukegawa, F. Unal, G. Underwood, D. G. Undrus, A. Unel, G. Unno, Y. Urbaniec, D. Urkovsky, E. Urquijo, P. Urrejola, P. Usai, G. Uslenghi, M. Vacavant, L. Vacek, V. Vachon, B. Vahsen, S. Valenta, J. Valente, P. Valentinetti, S. Valkar, S. Valladolid Gallego, E. Vallecorsa, S. Ferrer, J. A. Valls Van Berg, R. van der Graaf, H. van der Kraaij, E. van der Poel, E. Van Der Ster, D. van Eldik, N. van Gemmeren, P. van Kesteren, Z. van Vulpen, I. Vandelli, W. Vandoni, G. Vaniachine, A. Vankov, P. Vannucci, F. Rodriguez, F. Varela Vari, R. Varnes, E. W. Varouchas, D. Vartapetian, A. Varvell, K. E. Vasilyeva, L. Vassilakopoulos, V. I. Vazeille, F. Vegni, G. Veillet, J. J. Vellidis, C. Veloso, F. Veness, R. Veneziano, S. Ventura, A. Ventura, D. Venturi, M. Venturi, N. Vercesi, V. Verducci, M. Verkerke, W. Vermeulen, J. C. Vetterli, M. C. Vichou, I. Vickey, T. Viehhauser, G. H. A. Villa, M. Villani, E. G. Villaplana Perez, M. Villate, J. Vilucchi, E. Vincter, M. G. Vinek, E. Vinogradov, V. B. Viret, S. Virzi, J. Vitale, A. Vitells, O. V. Vivarelli, I. Vives Vaques, F. Vlachos, S. Vlasak, M. Vlasov, N. Vogt, H. Vokac, P. Volpi, M. Volpini, G. von der Schmitt, H. von Loeben, J. von Radziewski, H. von Toerne, E. Vorobel, V. Vorobiev, A. P. Vorwerk, V. Vos, M. Voss, R. Voss, T. T. Vossebeld, J. H. Vranjes, N. Milosavljevic, M. Vranjes Vrba, V. Vreeswijk, M. Anh, T. Vu Vudragovic, D. Vuillermet, R. Vukotic, I. Wagner, P. Wahlen, H. Walbersloh, J. Walder, J. Walker, R. Walkowiak, W. Wall, R. Wang, C. Wang, H. Wang, J. Wang, J. C. Wang, S. M. Ward, C. P. Warsinsky, M. Wastie, R. Watkins, P. M. Watson, A. T. Watson, M. F. Watts, G. Watts, S. Waugh, A. T. Waugh, B. M. Webel, M. Weber, J. Weber, M. D. Weber, M. Weber, M. S. Weber, P. Weidberg, A. R. Weingarten, J. Weiser, C. Wellenstein, H. Wells, P. S. Wen, M. Wenaus, T. Wendler, S. Wengler, T. Wenig, S. Wermes, N. Werner, M. Werner, P. Werth, M. Werthenbach, U. Wessels, M. Whalen, K. Wheeler-Ellis, S. J. Whitaker, S. P. White, A. White, M. J. White, S. Whiteson, D. Whittington, D. Wicek, F. Wicke, D. Wickens, F. J. Wiedenmann, W. Wielers, M. Wienemann, P. Wiglesworth, C. Wiik, L. A. M. Wildauer, A. Wildt, M. A. Wilhelm, I. Wilkens, H. G. Williams, E. Williams, H. H. Willis, W. Willocq, S. Wilson, J. A. Wilson, M. G. Wilson, A. Wingerter-Seez, I. Winklmeier, F. Wittgen, M. Wolter, M. W. Wolters, H. Wosiek, B. K. Wotschack, J. Woudstra, M. J. Wraight, K. Wright, C. Wright, D. Wrona, B. Wu, S. L. Wu, X. Wulf, E. Xella, S. Xie, S. Xie, Y. Xu, D. Xu, N. Yamada, M. Yamamoto, A. Yamamoto, S. Yamamura, T. Yamanaka, K. Yamaoka, J. Yamazaki, T. Yamazaki, Y. Yan, Z. Yang, H. Yang, U. K. Yang, Y. Yang, Z. Yao, W. -M. Yao, Y. Yasu, Y. Ye, J. Ye, S. Yilmaz, M. Yoosoofmiya, R. Yorita, K. Yoshida, R. Young, C. Youssef, S. P. Yu, D. Yu, J. Yu, M. Yu, X. Yuan, J. Yuan, L. Yurkewicz, A. Zaidan, R. Zaitsev, A. M. Zajacova, Z. Zambrano, V. Zanello, L. Zarzhitsky, P. Zaytsev, A. Zeitnitz, C. Zeller, M. Zema, P. F. Zemla, A. Zendler, C. Zenin, O. Zenis, T. Zenonos, Z. Zenz, S. Zerwas, D. della Porta, G. Zevi Zhan, Z. Zhang, H. Zhang, J. Zhang, Q. Zhang, X. Zhao, L. Zhao, T. Zhao, Z. Zhemchugov, A. Zheng, S. Zhong, J. Zhou, B. Zhou, N. Zhou, Y. Zhu, C. G. Zhu, H. Zhu, Y. Zhuang, X. Zhuravlov, V. Zilka, B. Zimmermann, R. Zimmermann, S. Zimmermann, S. Ziolkowski, M. Zitoun, R. Zivkovic, L. Zmouchko, V. V. Zobernig, G. Zoccoli, A. zur Nedden, M. Zutshi, V. CA ATLAS Collaboration GP ATLAS Collaboration CERN TI Readiness of the ATLAS liquid argon calorimeter for LHC collisions SO PERFORMANCE OF THE ATLAS DECTECTOR LA English DT Article; Book Chapter ID END-CAP CALORIMETER; ELECTROMAGNETIC BARREL CALORIMETER; BEAM TESTS; RESOLUTION; CONSTRUCTION; ELECTRONICS; CALIBRATION AB The ATLAS liquid argon calorimeter has been operating continuously since August 2006. At this time, only part of the calorimeter was readout, but since the beginning of 2008, all calorimeter cells have been connected to the ATLAS readout system in preparation for LHC collisions. This paper gives an overview of the liquid argon calorimeter performance measured in situ with random triggers, calibration data, cosmic muons, and LHC beam splash events. Results on the detector operation, timing performance, electronics noise, and gain stability are presented. High energy deposits from radiative cosmic muons and beam splash events allow to check the intrinsic constant term of the energy resolution. The uniformity of the electromagnetic barrel calorimeter response along eta (averaged over phi) is measured at the percent level using minimum ionizing cosmic muons. Finally, studies of electromagnetic showers from radiative muons have been used to cross-check the Monte Carlo simulation. The performance results obtained using the ATLAS readout, data acquisition, and reconstruction software indicate that the liquid argon calorimeter is well-prepared for collisions at the dawn of the LHC era. C1 [Aad, G.; Aoun, S.; Bee, C.; Bernardet, K.; Clemens, J. C.; Coadou, Y.; Djama, F.; Duperrin, A.; Etienne, F.; Feligioni, L.; Hoffmann, D.; Hubaut, F.; Kuna, M.; Lapoire, C.; Le Guirriec, E.; Leveque, J.; Monnier, E.; Odier, J.; Petit, E.; Pralavorio, P.; Qian, Z.; Rozanov, A.; Talby, M.; Tisserant, S.; Toth, J.; Touchard, F.; Vacavant, L.; Zhang, H.] Aix Marseille Univ, CPPM, CNRS, IN2P3, Marseille, France. [Aleksa, M.; Andeen, T.; Anghinolfi, F.; Arfaoui, S.; Arik, E.; Baak, M. A.; Bachas, K.; Pedrosa, F. Baltasar Dos Santos; Baron, S.; Battistin, M.; Bellina, F.; Beltramello, O.; Bendel, M.; Berge, D.; Blanchot, G.; Bogaerts, J. A.; Bosteels, M.; Boyd, J.; Braem, A.; Bremer, J.; Burckhart, H.; Butin, F.; Campana, S.; Garrido, M. D. M. Capeans; Carli, T.; Caso, C.; Catinaccio, A.; Cattai, A.; Cerri, A.; Chromek-Burckhart, D.; Cook, J.; Dallison, S. J.; Danielsson, H. O.; Branco, M. De Oliveira; Dell'Acqua, A.; Delmastro, M.; Delruelle, N.; Di Girolamo, A.; Di Girolamo, B.; Dittus, F.; Dobos, D.; Dogan, O. B.; Dudarev, A.; Eifert, T.; Ellis, N.; Elsing, M.; Fabre, C.; Farthouat, P.; Fassnacht, P.; Fedorko, I.; Fedorko, W.; Foussat, A.; Francis, D.; Franz, S.; Froeschl, R.; Froidevaux, D.; Gallas, M. V.; Garelli, N.; Garonne, V.; Gayde, J. -C.; Gianotti, F.; Giraud, P. F.; Godlewski, J.; Gollub, N. P.; Goossens, L.; Gorini, B.; Grafstroem, P.; Grognuz, J.; Gutzwiller, O.; Haas, S.; Hatch, M.; Haug, F.; Hauschild, M.; Hawkings, R. J.; Correia, A. M. Henriques; Hervas, L.; Hill, D.; Hoecker, A.; Issakov, V.; Jaekel, M.; Jakobsen, S.; Jarron, P.; Jenni, P.; Belenguer, M. Jimenez; Jonsson, O.; Joram, C.; Kaplon, J.; Kataoka, M.; Kerschen, N.; Klioutchnikova, T.; Koblitz, B.; Koffas, T.; Kollar, D.; Kotamaeki, M. J.; Lamanna, M.; Lantzsch, K.; Lasseur, C.; Lassnig, M.; Leahu, M.; Miotto, G. Lehmann; Lichard, P.; Liko, D.; Lundberg, J.; Mackeprang, R.; Mapelli, A.; Mapelli, L.; Martin, B.; McLaren, R. A.; Messina, A. M.; Meyer, T. C.; Molina-Perez, J. J.; Mornacchi, G.; Nairz, A. M.; Negri, G.; Nessi, M.; Nordberg, M.; Palestini, S.; Passardi, G.; Pastore, Fr.; Pauly, T.; Pernegger, H.; Petersen, B. A.; Petersen, J.; Pirotte, O.; Pommes, K.; Poppleton, A.; Pospichal, P.; Poulard, G.; Pribyl, L.; Prokofiev, K.; Raymond, M.; Rembser, C.; Roe, S.; Scannicchio, D. A.; Schlenker, S.; Schmidt, M. P.; Schott, M.; Schuler, G.; Sherman, D.; Sloper, J.; Solovyanov, O. V.; Speckmayer, P.; Spigo, G.; Spiwoks, R.; Stanecka, E.; Stumer, I.; Sumida, T.; Tackmann, K.; Tappern, G. P.; Ten Kate, H.; Viegas, F. J. Tique Aires; Tremblet, L.; Tricoli, A.; Tylmad, M.; Unal, G.; Van Der Ster, D.; Vandelli, W.; Vandoni, G.; Rodriguez, F. Varela; Veness, R.; Vinek, E.; Voss, R.; Vuillermet, R.; Wells, P. S.; Wenig, S.; Werner, P.; Wilkens, H. G.; Winklmeier, F.; Wotschack, J.; Zajacova, Z.; Zema, P. F.; Zmouchko, V. V.] CERN, CH-1211 Geneva 23, Switzerland. [Alam, M. S.; Ernst, J.; Gao, Y. S.; Mahmood, A.; Rojo, V.] SUNY Albany, Albany, NY 12222 USA. [Ahmed, H.; Caron, B.; Chan, K.; Gingrich, D. M.; Kim, M. S.; Liu, S.; Lu, J.; Moore, R. W.; Pinfold, J. L.; Soluk, R.] Univ Alberta, Dept Phys, Ctr Particle Phys, Edmonton, AB T6G 2G7, Canada. [Cakir, O.; Ciftci, A. K.; Ciftci, R.; Yildiz, H. Duran; Persembe, S.; Sultansoy, S.; Cakir, I. Turk; Yilmaz, M.] Ankara Univ, Dept Phys, Fac Sci, TR-061000 Ankara, Turkey. [Arnaez, O.; Aurousseau, M.; Berger, N.; Colas, J.; Di Ciaccio, L.; El Kacimi, M.; Elles, S.; Ghez, P.; Goy, C.; Guillemin, T.; Helary, L.; Hryn'ova, T.; Iengo, P.; Jezequel, S.; Koletsou, I.; Labbe, J.; Lafaye, R.; Laplace, S.; Marchand, J. F.; Massol, N.; Morel, J.; Perrodo, P.; Przysiezniak, H.; Sauvage, G.; Simonyan, M.; Todorov, T.; Wingerter-Seez, I.; Zitoun, R.] Univ Savoie, LAPP, CNRS, IN2P3, Annecy Le Vieux, France. [Blair, R. E.; Calkins, R.; Chakraborty, D.; Chekanov, S.; Cranshaw, J.; Dawson, J. W.; Torregrosa, E. Fullana; Guarino, V. J.; Hill, D.; LeCompte, T.; Lim, H.; Malon, D.; May, E. N.; Nodulman, L.; Price, L. E.; Proudfoot, J.; de Limas, J. G. Rocha; Ferrandos, B. M. Salvachua; Schlereth, J. L.; Stanek, R. W.; Suhr, C.; Underwood, D. G.; van Gemmeren, P.; Vaniachine, A.; Yoshida, R.; Zhang, J.; Zhang, Q.; Zutshi, V.] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Cheu, E.; Johns, K. A.; Kaushik, V.; Lampen, C. L.; Lampl, W.; Lei, X.; Loch, P.; Rutherfoord, J. P.; Savine, A. Y.; Shaver, L.; Shupe, M. A.; Tompkins, D.; Varnes, E. W.] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. [Brandt, A.; De, K.; Farbin, A.; Kim, H.; Li, J.; Nilsson, P.; Ozturk, N.; Pal, A.; Pravahan, R.; Sarkisyan-Grinbaum, E.; Sosebee, M.; Spurlock, B.; Stradling, A.; Usai, G.; Vartapetian, A.; White, A.; Yu, J.] Univ Texas Arlington, Dept Phys, Arlington, TX 76019 USA. [Antonaki, A.; Arabidze, G.; Fassouliotis, D.; Giakoumopoulous, V.; Giokaris, N.; Ioannou, P.; Kourkoumelis, C.; Manousakis-Katsikakis, A.; Nikolopoulos, K.; Tzanakos, G.; Vellidis, C.] Univ Athens, Dept Phys, GR-15771 Athens, Greece. [Alexopoulos, T.; Argyropoulos, T.; Avramidou, R.; Dris, M.; Filippas, A.; Fokitis, M.; Gazis, E. N.; Georgatos, F.; Iakovidis, G.; Katsoufis, E.; Maltezos, S.; Mountricha, E.; Panagiotopoulou, E.; Papadopoulou, Th. D.; Tsarouchas, C.; Tsipolitis, G.; Vlachos, S.] Natl Tech Univ Athens, Dept Phys, Iroon Polytech 9, GR-15780 Zografos, Greece. [Abdinov, O.; Aliyev, M.; Huseynov, N.; Khalil-zada, F.; Rzaeva, S.] Azerbaijan Acad Sci, Inst Phys, AZ-143 Baku, Azerbaijan. [Abdallah, J.; Bosman, M.; Casado, M. P.; Cavalli-Sforza, M.; D'Onofrio, M.; Espinal Curull, X.; Fiorini, L.; Grinstein, S.; Helsens, C.; Korolkov, I.; Martinez, M.; Meoni, E.; Mir, L. M.; Nadal, J.; Osuna, C.; Pacheco Pages, A.; Padilla Aranda, C.; Perez Codina, E.; Puigdengoles, C.; Riu, I.; Segura, E.; Sushkov, S.; Vives Vaques, F.; Volpi, M.; Vorwerk, V.] Univ Autonoma Barcelona, Inst Fis Altes Energies, IFAE, ES-08193 Bellaterra, Barcelona, Spain. [Krstic, J.; Popovic, D. S.; Reljic, D.; Sijacki, Dj.; Simic, Lj.; Vranjes, N.; Milosavljevic, M. Vranjes; Vudragovic, D.] Univ Belgrade, Inst Phys, Belgrade 11001, Serbia. [Bozovic-Jelisavcic, I.; Mudrinic, M.] Vinca Inst Nucl Sci, Belgrade 11001, Serbia. [Buanes, T.; Burgess, T.; Eigen, G.; Kastanas, A.; Lipniacka, A.; Mohn, B.; Sandaker, H.; Sjursen, T. B.; Stugu, B.; Tonoyan, A.] Univ Bergen, Dept Phys & Technol, NO-5007 Bergen, Norway. [Arce, A. T. H.; Arguin, J. -F.; Bach, A.; Barnett, R. M.; Beringer, J.; Biesiada, J.; Calafiura, P.; Ciocio, A.; Einsweiler, K.; Ely, R.; Gaponenko, A.; Garcia-Sciveres, M.; Gilchriese, M.; Haber, C.; Harris, O. M.; Heinemann, B.; Hinchliffe, I.; Hsu, S. -C.; Korn, A.; Lavrijsen, W.; Leggett, C.; Leyton, M.; Loscutoff, P.; Lys, J.; Madaras, R. J.; Parker, S. I.; Quarrie, D. R.; Scherzer, M. I.; Shapiro, M.; Siegrist, J.; Stavropoulos, G.; Strandberg, S.; Tompkins, L.; Vahsen, S.; Varouchas, D.; Virzi, J.; Yao, W. -M.; Yao, Y.; Zenz, S.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA 94720 USA. [Aliev, M.; Grancagnolo, S.; Kind, O.; Kolanoski, H.; Kwee, R.; Lacker, H.; Lohse, T.; Mandrysch, R.; Nikiforov, A.; Richter, D.; Garcia, Y. Rodriguez; Sidoti, A.; zur Nedden, M.] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany. [Battaglia, A.; Beck, H. P.; Borer, C.; Cogneras, E.; Ereditato, A.; Haug, S.; Kabana, S.; Kordas, K.; Pretzl, K.; Topfel, C.; Venturi, N.; Weber, M. D.; Weber, M. S.] Univ Bern, CH-3012 Bern, Switzerland. [Booth, J. R. A.; Bracinik, J.; Charlton, D. G.; Collins, N. J.; Curtis, C. J.; Hadley, D. R.; Harrison, K.; Hawkes, C. M.; Hillier, S. J.; Lilley, J. N.; Mahout, G.; Martin, T. A.; Palmer, J. D.; Slater, M.; Stockton, M. C.; Thomas, J. P.; Thompson, P. D.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Wilson, J. A.] Albert Einstein Ctr Fundamental Phys, High Energy Phys Lab, CH-3012 Bern, Switzerland. [Booth, J. R. A.; Bracinik, J.; Charlton, D. G.; Collins, N. J.; Curtis, C. J.; Hadley, D. R.; Harrison, K.; Hawkes, C. M.; Hillier, S. J.; Lilley, J. N.; Mahout, G.; Martin, T. A.; Palmer, J. D.; Slater, M.; Stockton, M. C.; Thomas, J. P.; Thompson, P. D.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Wilson, J. A.] Switzerland Univ Birmingham, Sch Phys & Astron, Birmingham B15 2TT, W Midlands, England. [Akdogan, T.; Arik, E.; Arik, M.; Becerici, N.; Beddall, A. J.; Beddall, A.; Bingul, A.; Cetin, S. A.; Diblen, F.; Dogan, O. B.; Istin, S.; Rador, T.] Bogazici Univ, Dept Phys, Fac Sci, TR-80815 Bebek, Turkey. [Antonelli, S.; Bellagamba, L.; Bertin, A.; Bindi, M.; Boscherini, D.; Bruni, A.; Bruni, G.; Bruschi, M.; Caforio, D.; Ciocca, C.; Corradi, M.; De Castro, S.; Di Sipio, R.; Fabbri, L.; Faccioli, P.; Giacobbe, B.; Giusti, P.; Mazzanti, P.; Piccinini, M.; Polini, A.; Rinaldi, L.; Sbarra, C.; Sbrizzi, A.; Semprini-Cesari, N.; Spighi, R.; Valentinetti, S.; Villa, M.; Vitale, A.; Zoccoli, A.] INFN Sez Bologna, IT-40127 Bologna, Italy. [Antonelli, S.; Bertin, A.; Bindi, M.; Caforio, D.; Ciocca, C.; De Castro, S.; Di Sipio, R.; Fabbri, L.; Faccioli, P.; Piccinini, M.; Sbarra, C.; Sbrizzi, A.; Semprini-Cesari, N.; Solovyanov, O. V.; Valentinetti, S.; Villa, M.; Vitale, A.; Zoccoli, A.] Univ Bologna, Dipartimento Fis, IT-40127 Bologna, Italy. [Alhroob, M.; Arutinov, D.; Barbero, M.; Bartsch, D.; Brock, I.; Cristinziani, M.; Desch, K.; Fleischmann, S.; Gaycken, G.; Geich-Gimbel, Ch.; Gonella, L.; Hemperek, T.; Huegging, F.; Karagounis, M.; Khoriauli, G.; Koevesarki, P.; Kokott, T.; Kostyukhin, V. V.; Kroseberg, J.; Krueger, H.; Lehmacher, M.; Loddenkoetter, T.; Masetti, L.; Mathes, M.; Moeser, N.; Mueller, K.; Nanava, G.; Nattermann, T.; Nderitu, S. K.; Nuncio-Quiroz, A. -E.; Hanninger, G. Nunes; Prabhu, R.; Psoroulas, S.; Radics, B.; Rottlaender, I.; Ruwiedel, C.; Schmieden, K.; Schmitz, M.; Ta, D.; Tsung, J. -W.; Uhlenbrock, M.; Vlasov, N.; von Toerne, E.; Wermes, N.; Wienemann, P.; Zendler, C.; Zimmermann, R.; Zimmermann, S.] Univ Bonn, Inst Phys, D-53115 Bonn, Germany. [Ahlen, S. P.; Butler, J. M.; Harrington, R. D.; Lewandowska, M.; Love, J.; Nation, N. R.; Shank, J. T.; Whitaker, S. P.; Yan, Z.; Youssef, S. P.] Boston Univ, Dept Phys, Boston, MA 02215 USA. [Aefsky, S.; Amelung, C.; Bensinger, J. R.; Blocker, C.; Dushkin, A.; Hashemi, K.; Kirsch, L. E.; Mladenov, D.; Pomeroy, D.; Skvorodnev, N.; Wellenstein, H.] Brandeis Univ, Dept Phys, Waltham, MA 02454 USA. [Caloba, L. P.; Cerqueira, A. S.; Coura Torres, R.; Da Silva, P. V. M.; do Vale, M. A. B.; Maidantchik, C.; Marroquim, F.; Nepomuceno, A. A.; Perantoni, M.; Seixas, J. M.] Univ Fed Rio de Janeiro, Inst Fis, BR-21945970 Rio De Janeiro, Brazil. Univ Sao Paulo, Inst Fis, BR-05508900 Sao Paulo, Brazil. [Adams, D. L.; Assamagan, K.; Baker, M. D.; Bathe, S.; Begel, M.; Caballero, J.; Chen, H.; Tcherniatine, V.; Salgado, P. E. De Castro Faria; Deng, W.; Dhullipudi, R.; Ernst, M.; Gibbard, B.; Gordon, H. A.; Greenwood, Z. D.; Hackenburg, R.; Klimentov, A.; Lanni, F.; Le Vine, M.; Lissauer, D.; Lynn, D.; Ma, H.; Maeno, T.; Majewski, S.; Misawa, S.; Nagai, K.; Nevski, P.; Damazio, D. Oliveira; Paige, F.; Panitkin, S.; Park, W.; Patwa, A.; Pleier, M. -A.; Polychronakos, V.; Potekhin, M.; Protopopescu, S.; Purohit, M.; Radeka, V.; Rahm, D.; Rajagopalan, S.; Redlinger, G.; Rescia, S.; Sawyer, L.; Smirnov, Y.; Snyder, S.; Sondericker, J.; Steinberg, P.; Stumer, I.; Takai, H.; Tarrade, F.; Trivedi, A.; Undrus, A.; Wenaus, T.; White, S.; Ye, S.; Yu, D.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Alexa, C.; Badescu, E.; Boldea, V.; Caprini, I.; Caprini, M.; Caramarcu, C.; Chesneanu, D.; Constantinescu, S.; Darlea, G. L.; Dita, P.; Dita, S.; Micua, L.; Pantea, D.; Preda, T.; Rotaru, M.; Stoicea, G.] Natl Inst Phys & Nucl Engn, R-077125 Bucharest, Romania. Univ Politehn Bucuresti, Bucharest 060042, Romania. W Univ Timisoara, Timisoara, Romania. [Gonzalez Silva, M. L.; Piegaia, R.; Romeo, G.] Univ Buenos Aires, Dto Fis, FCEyN, RA-1428 Buenos Aires, DF, Argentina. [Barber, T.; Barlow, N.; Batley, J. R.; Brochu, F. M.; Carter, J. R.; Chapman, J. D.; Cowden, C.; Demirkoz, B.; French, S. T.; Frost, J. A.; Hill, J. C.; Lester, C. C.; Moeller, V.; Parker, M. A.; Phillips, A. W.; Robinson, D.; Ward, C. P.; White, M. J.] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England. [Archambault, J. P.; Asner, D.; Cojocaru, C. D.; Gillberg, D.; Heelan, L.; Khakzad, M.; Liu, C.; Oakham, F. G.; Vincter, M. G.; Whalen, K.] Carleton Univ, Dept Phys, Ottawa, ON K1S 5B6, Canada. [Anderson, K. J.; Brubaker, E.; Canelli, F.; Choudalakis, G.; Costin, T.; Dunford, M.; Feng, E. J.; Gardner, R. W.; Gupta, A.; Hurwitz, M.; Plante, I. Jen-La; Kapliy, A.; Mambelli, M.; Merritt, F. S.; Onyisi, P. U. E.; Oreglia, M. J.; Pilcher, J. E.; Shochet, M. J.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Diaz, M. A.; Panes, B.; Quinonez, F.; Maltrana, D. Romero; Urrejola, P.] Pontificia Univ Catolica Chile, Fac Fis, Dept Fis, Santiago, Chile. [Brooks, W. K.; Kuleshov, S.; Pezoa, R.; Prokoshin, F.] Univ Tecn Federico Santa Maria, Dept Fis, Valparaiso, Chile. [Bai, Y.; Chen, S.; Chen, T.; Cheng, S.; Feng, C.; Ge, P.; Gong, C.; Han, H.; Han, L.; He, M.; Jiang, Y.; Jin, G.; Jin, S.; Liu, M.; Liu, Y.; Lu, F.; Miao, J.; Ouyang, Q.; Ping, J.; Qi, M.; Ruan, X.; Shan, L. Y.; Sun, X.; Tong, G.; Xie, Y.; Yang, Y.; Yu, X.; Zhan, Z.; Zhang, X.; Zhao, Z.; Zheng, S.; Zhu, C. G.] Chinese Acad Sci, Inst HEP, Beijing 100049, Peoples R China. [Bai, Y.; Chen, S.; Chen, T.; Cheng, S.; Feng, C.; Ge, P.; Gong, C.; Han, H.; Han, L.; He, M.; Jiang, Y.; Jin, G.; Jin, S.; Liu, M.; Liu, Y.; Lu, F.; Miao, J.; Ouyang, Q.; Ping, J.; Qi, M.; Ruan, X.; Shan, L. Y.; Sun, X.; Tong, G.; Xie, Y.; Yang, Y.; Yu, X.; Zhan, Z.; Zhang, X.; Zhao, Z.; Zheng, S.; Zhu, C. G.] USTC, Dept Modern Phys, Hefei 230026, Anhui, Peoples R China. [Bai, Y.; Chen, S.; Chen, T.; Cheng, S.; Feng, C.; Ge, P.; Gong, C.; Han, H.; Han, L.; He, M.; Jiang, Y.; Jin, G.; Jin, S.; Liu, M.; Liu, Y.; Lu, F.; Miao, J.; Ouyang, Q.; Ping, J.; Qi, M.; Ruan, X.; Shan, L. Y.; Sun, X.; Tong, G.; Xie, Y.; Yang, Y.; Yu, X.; Zhan, Z.; Zhang, X.; Zhao, Z.; Zheng, S.; Zhong, J.; Zhu, C. G.] Nanjing Univ, Dept Phys, Nanjing 210093, Jiangsu, Peoples R China. [Busato, E.; Calvet, D.; Cinca, D.; Defay, P. O.; Febbraro, R.; Ghodbane, N.; Guicheney, C.; Pallin, D.; Podlyski, F.; Santoni, C.; Says, L. P.; Vazeille, F.; Viret, S.] Univ Clermont Ferrand, Lab Phys Corpusculaire, CNRS, IN2P3, FR-63177 Aubiere, France. [Angerami, A.; Brooijmans, G.; Caughron, S.; Cole, B.; Cooke, M.; Copic, K.; Dodd, J.; Gadfort, T.; Grau, N.; Gray, H. M.; Hughes, E. W.; Leltchouk, M.; Mateos, D. Lopez; Marshall, Z.; Parsons, J. A.; Penson, A.; Perez, K.; Reale, V. Perez; Spano, F.; Tuts, P. M.; Urbaniec, D.; Williams, E.; Willis, W.; Wulf, E.; Zhou, N.; Zivkovic, L.] Columbia Univ, Nevis Lab, Irvington, NY 10533 USA. [Czyczula, Z.; Dam, M.; Driouichi, C.; Facius, K.; Hansen, J. R.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Heisterkamp, S.; Jez, P.; Lundquist, J.; Petersen, T. C.; Xella, S.] Univ Copenhagen, Niels Bohr Inst, DK-2100 Copenhagen O, Denmark. [Adorisio, C.; Capua, M.; Crosetti, G.; La Rotonda, L.; Mastroberardino, A.; Morello, G.; Salvatore, D.; Schioppa, M.; Susinno, G.; Tassi, E.] INFN Grp Coll Cosenza, IT-87036 Arcavacata Di Rende, Italy. [Adorisio, C.; Capua, M.; Crosetti, G.; La Rotonda, L.; Mastroberardino, A.; Morello, G.; Salvatore, D.; Schioppa, M.; Susinno, G.; Tassi, E.] Univ Calabria, Dipartimento Fis, IT-87036 Arcavacata Di Rende, Italy. [Bold, T.; Dabrowski, W.; Dwuznik, M.; Grabowska-Bold, I.; Jelen, K.; Kisielewska, D.; Koperny, S.; Kowalski, T. Z.; Mindur, B.; Toczek, B.] AGH Univ Sci & Technol, Fac Phys & Appl Comp Sci, FPACS, AGH UST, PL-30059 Krakow, Poland. [Banas, E.; Blocki, J.; de Renstrom, P. A. Bruckman; Gornicki, E.; Hajduk, Z.; Iwanski, W.; Kaczmarska, A.; Korcyl, K.; Malecki, Pa.; Malecki, P.; Olszewski, A.; Olszowska, J.; Richter-Was, E.; Szymocha, T.; Trzupek, A.; Turala, M.; Wolter, M. W.; Wosiek, B. K.; Zemla, A.] Polish Acad Sci, Henryk Niewodniczanski Inst Nucl Phys, PL-31342 Krakow, Poland. [Daya, R. K.; Yagci, K. Dindar; Firan, A.; Goldin, D.; Hadavand, H. K.; Hoffman, J.; Howe, T.; Ilchenko, Y.; Ishmukhametov, R.; Joffe, D.; Kasmi, A.; Kehoe, R.; Liang, Z.; Liu, T.; Renkel, P.; Rios, R. R.; Stroynowski, R.; Ye, J.; Zarzhitsky, P.] So Methodist Univ, Dept Phys, Dallas, TX 75275 USA. [Ahsan, M.; Galyaev, E.; Izen, J. M.; Lou, X.] Univ Texas Dallas, Richardson, TX 75080 USA. [Antunovic, B.; Bechtle, R.; Boehler, M.; Brandt, G.; Brunet, S.; Cote, D.; Ehrenfeld, W.; Fischer, G.; Glazov, A.; Goebel, M.; Gosdzik, B.; Gregor, I. M.; Haller, J.; Hiller, K. H.; Husemann, U.; Johnert, S.; Kama, S.; Katzy, J.; Koeneke, K.; Kono, T.; Kostka, P.; Kowalski, H.; Levonian, S.; Li, S.; Lobodzinska, E.; Ludwig, D.; Maettig, S.; Mamuzic, J.; Medinnis, M.; Mehlhase, S.; Moenig, K.; Naumann, T.; Notz, D.; Nozicka, M.; Petschull, D.; Placakyte, R.; Qin, Z.; Salzburger, A.; Stelzer, H. J.; Terwort, M.; Vogt, H.; Wildt, M. A.; Zhu, H.] DESY, D-22603 Hamburg, Germany. [Bunse, M.; Goessling, C.; Hirsch, F.; Klingenberg, R.; Muenstermann, D.; Reisinger, I.; Walbersloh, J.; Weber, J.] TU Dortmund, DE-44221 Dortmund, Germany. [Goepfert, T.; Kobel, M.; Leonhardt, K.; Ludwig, A.; Mader, W. F.; Prudent, X.; Schaarschmidt, J.; Schumacher, J.; Schwierz, R.; Seifert, F.; Steinbach, P.; Straessner, A.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01069 Dresden, Germany. [Benjamin, D. P.; Bocci, A.; Ebenstein, W. L.; Fowler, A. J.; Klinkby, E. B.; Ko, B. R.; Oh, S. H.; Wang, C.; Yamaoka, J.] Duke Univ, Dept Phys, Durham, NC 27708 USA. Univ Edinburgh, Sch Phys & Astron, Edinburgh EH9 3JZ, Midlothian, Scotland. [Griesmayer, E.] Fachhsch Wiener Neustadt, AT-2700 Wiener Neustadt, Austria. [Antonelli, M.; Beretta, Ni.; Bilokon, H.; Cerutti, F.; Chiarella, V.; Curatolo, M.; Esposito, B.; Ferrer, M. L.; Gatti, C.; Laurelli, P.; Maccarrone, G.; Martini, A.; Miscetti, S.; Nicoletti, G.; Salvucci, A.; Sansoni, A.; Testa, M.; Vilucchi, E.; Wen, M.; Zambrano, V.] INFN Lab Nazl Frascati, IT-00044 Frascati, Italy. [Ahles, F.; Aktas, A.; Anders, C. F.; Beckingham, M.; Bernhard, R.; Bianchi, R. M.; Bitenc, U.; Bruneliere, R.; Caron, S.; Christov, A.; Dietrich, J.; Dingfelder, D. J.; Duehrssen, M.; Eckert, S.; Hartert, J.; Herten, G.; Horner, S.; Jakobs, K.; Janus, M.; Joos, D.; Kononov, A. I.; Kuehn, S.; Lai, S.; Landgraf, U.; Lohwasser, K.; Ludwig, I.; Ludwig, J.; Lumb, D.; Mahboubi, K.; Mazur, M.; Meirose, B.; Messmer, I.; Mohr, W.; Nilsen, H.; Parzefall, U.; Pfeifer, B.; Piacquadio, G.; Bueso, X. Portell; Schumacher, M.; Stoerig, K.; Sundermann, J. E.; Thoma, S.; Tobias, J.; Venturi, M.; Vivarelli, I.; von Radziewski, H.; Warsinsky, M.; Webel, M.; Weiser, C.; Werner, M.; Wiik, L. A. M.; Xie, S.; Zimmermann, S.] Univ Freiburg, Fak Math & Phys, D-79104 Freiburg, Germany. [Abdelalim, A. A.; Alexandre, G.; Backes, M.; Bell, W. H.; Berglund, E.; Blondel, A.; Bucci, F.; Clark, A.; Dao, V.; Ferrere, D.; Gadomski, S.; Navarro, J. E. Garcia; Gaumer, O.; Gonzalez-Sevilla, S.; Goulette, M. P.; Hamilton, A.; Keil, M.; Latour, B. Martin Dit; Herrera, C. Mora; Pasztor, G.; Pohl, M.; Robichaud-Veronneau, A.; Rosselet, L.; Thananuwong, R.; Urquijo, P.; Wu, X.] Univ Geneva, Sect Phys, CH-1211 Geneva 4, Switzerland. [Barberis, D.; Beccherle, R.; Caso, C.; Coccaro, A.; Cornelissen, T.; Darbo, G.; Gagliardi, G.; Gemme, C.; Morettini, P.; Odino, G. A.; Olcese, M.; Osculati, B.; Parodi, F.; Rossi, L. P.; Schiavi, C.] INFN Sez Genova, IT-16146 Genoa, Italy. [Barberis, D.; Caso, C.; Coccaro, A.; Cornelissen, T.; Gagliardi, G.; Odino, G. A.; Osculati, B.; Parodi, F.; Schiavi, C.] Univ Genoa, Dipartimento Fis, IT-16146 Genoa, Italy. [Chikovani, L.; Djobava, T.; Khubua, J.; Magradze, E.; Mchedlidze, G.; Mosidze, M.; Tsiskaridze, V.; Tskhadadze, E. G.] Georgian Acad Sci, Inst Phys, GE-380077 Tbilisi, Rep of Georgia. [Chikovani, L.; Djobava, T.; Khubua, J.; Magradze, E.; Mchedlidze, G.; Mosidze, M.; Tsiskaridze, V.; Tskhadadze, E. G.] Tbilisi State Univ, HEP Inst, GE-380086 Tbilisi, Rep of Georgia. [Astvatsatourov, A.; Dueren, M.; Stenzel, H.] Univ Giessen, Inst Phys 2, D-35392 Giessen, Germany. [Allwood-Spiers, S. E.; Bates, R. L.; Britton, D.; Bussey, P.; Buttar, C. M.; Clements, D.; Collins-Tooth, C.; D'Auria, S.; Doherty, T.; Doyle, A. T.; Ferrag, S.; Kenyon, M.; McGlone, H.; Moraes, A.; Nicholson, C.; O'Shea, V.; Barrera, C. Oropeza; Robson, A.; Saxon, D. H.; Shaw, C.; Smith, K. M.; Denis, R. D. St.; Stewart, G.; Thompson, A. S.; Wraight, K.; Wright, C.] Univ Glasgow, Dept Phys & Astron, Glasgow G12 8QQ, Lanark, Scotland. [Ay, C.; Blumenschein, U.; Brandt, O.; Fayette, F.; Grosse-Knetter, J.; Henrichs, A.; Hensel, C.; Klute, M.; Kohn, F.; Kroeninger, K.; Meyer, J.; Park, S. J.; Quadt, A.; Uhrmacher, M.; Weingarten, J.] Univ Gottingen, Inst Phys 2, D-37077 Gottingen, Germany. [Albrand, S.; Clement, B.; Collot, J.; Crepe-Renaudin, S.; Delsart, P. A.; Donini, J.; Hostachy, J. -Y.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Polci, F.; Stark, J.; Trocme, B.; Wang, J.] Univ Grenoble 1, INPG, Lab Phys Subatom & Cosmol, CNRS,IN2P3, FR-38026 Grenoble, France. [Addy, T. N.; Harvey, A.; McFarlane, K. W.; Shin, T.; Vassilakopoulos, V. I.] Hampton Univ, Dept Phys, Hampton, VA 23668 USA. [da Costa, J. Barreiro Guimaraes; Belloni, A.; Black, K. M.; Brandenburg, G. W.; Franklin, M.; Hurst, P.; Huth, J.; Jeanty, L.; Kagan, M.; Kashif, L.; Outschoorn, V. Martinez; Mills, C. M.; Moed, S.; Morii, M.; Oliver, J.; Prasad, S.; Smith, B. C.; della Porta, G. Zevi] Harvard Univ, Lab Particle Phys & Cosmol, Cambridge, MA 02138 USA. [Andrei, V.; Childers, J. T.; Foehlisch, F.; Geweniger, C.; Hanke, P.; Henke, M.; Khomich, A.; Kluge, E. -E.; Lendermann, V.; Meier, K.; Mueller, F.; Poddar, S.; Ruehr, F.; Schultz-Coulon, H. -C.; Stamen, R.; Weber, P.; Wessels, M.] Heidelberg Univ, Kirchhoff Inst Phys, DE-69120 Heidelberg, Germany. [Radescu, V.; Schaetzel, S.] Inst Phys, D-69120 Heidelberg, Germany. [Kugel, A.; Maenner, R.; Schroer, N.; Yu, M.] ZITI Ruprecht Karls Univ Heidelberg, Lehrstuhl Informat 5, DE-68131 Mannheim, Germany. [Ohsugi, T.] Hiroshima Univ, Fac Sci, Higashihiroshima, JP Hiroshima 7398526, Japan. [Nagasaka, Y.] Hiroshima Inst Technol, Fac Appl Informat Sci, Hiroshima, JP Hiroshima 7315193, Japan. [Cwetanski, P.; Egorov, K.; Evans, H.; Gagnon, P.; Jain, V.; Lowe, A. J.; Luehring, F.; Marino, C. P.; Ogren, H.; Penwell, J.; Price, D.; Whittington, D.] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. [Epp, B.; Girtler, P.; Jussel, P.; Kneringer, E.; Kuhn, D.; Rudolph, G.; Schmid, P.] Inst Astro & Teilchenphys, A-6020 Innsbruck, Austria. [Behera, P. K.; Limper, M.; Mallik, U.; Pahl, C.; Schreiner, A.; Zaidan, R.] Univ Iowa, Iowa City, IA 52242 USA. [Cochran, J.; Lebedev, A.; Mete, A. S.; Meyer, W. T.; Nelson, A.; Rosenberg, E. I.; Triplett, N.; Yamanaka, K.] Iowa State Univ, Ames High Energy Phys Grp, Dept Phys & Astron, Ames, IA 50011 USA. [Aleksandrov, I. N.; Baranov, S.; Barashkou, A.; Bardin, D. Y.; Bednyakov, V. A.; Boyko, I. R.; Budagov, I. A.; Chelkov, G. A.; Cheplakov, A.; Chepurnov, V. F.; Chizhov, M.; Dedovich, D. V.; Demichev, M.; Glonti, G. L.; Gostkin, M. I.; Grigalashvili, N.; Gusakov, Y.; Ilyushenka, Y.; Kalinovskaya, L. V.; Kazarinov, M. Y.; Kekelidze, G. D.; Kharchenko, D.; Khovanskiy, N.; Khramov, E.; Kolesnikov, V.; Kotov, V. M.; Kruchonak, U.; Krumshteyn, Z. V.; Kukhtin, V.; Ladygin, E.; Lazarev, A. B.; Malyukov, S.; Manjavidze, I. D.; Minashvili, I. A.; Mineev, M.; Nikolaev, K.; Olchevski, A. G.; Peshekhonov, V. D.; Romanov, V. M.; Rumyantsev, L.; Rusakovich, N. A.; Sadykov, R.; Sisakyan, A. N.; Topilin, N. D.; Vinogradov, V. B.; Zhemchugov, A.] Joint Inst Nucl Res Dubna, Joint Inst Nucl Res, RU-141980 Moscow, Russia. [Amako, K.; Arai, Y.; Doi, Y.; Haruyama, T.; Ikegami, Y.; Ikeno, M.; Ishino, M.; Iwasaki, H.; Kanzaki, J.; Kohriki, T.; Kondo, T.; Makida, V.; Manabe, A.; Nagano, K.; Nozaki, M.; Odaka, S.; Ozone, K.; Sasaki, O.; Sasaki, T.; Suzuki, Y.; Tanaka, S.; Terada, S.; Tojo, J.; Tokushuku, K.; Tsuno, S.; Unno, Y.; Yamamoto, A.; Yasu, Y.] High Energy Accelerator Res Org, KEK, Tsukuba, Ibaraki 3050801, Japan. [Hayakawa, T.; Homma, Y.; Hori, T.; Ishikawa, A.; Kawagoe, K.; Kiyamura, H.; Kurashige, H.; Matsushita, T.; Nakatsuka, H.; Nishiyama, T.; Ochi, A.; Okada, S.; Omachi, C.; Takeda, H.; Yamazaki, Y.] Kobe Univ, Grad Sch Sci, Nada Ku, Jp Kobe 6578501, Japan. [Sasao, N.] Kyoto Univ, Fac Sci, Sakyou Ku, Kyoto, JP Kyoto 6068502, Japan. [Takashima, R.] Kyoto Univ, Fushimi Ku, Kyoto, JP Kyoto 6128522, Japan. [Anduaga, X. S.; Dova, M. T.; Monticelli, F.; Tripiana, M. F.] Univ Nacl La Plata, Dept Fis, FCE, IFLP CONICET UNLP, RA-1900 La Plata, Argentina. [Borissov, G.; Bouhova-Thacker, E. V.; Brodbeck, T. J.; Catmore, J. R.; Cheatham, S.; Chilingarov, A.; Davidson, R.; De Mora, L.; Dewhurst, A.; Fox, H.; Henderson, R. C. W.; Hughes, G.; Jones, R. W. L.; Kartvelishvili, V.; Love, P.; Ratoff, P. N.; Smizanska, M.; Walder, J.] Univ Lancaster, Dept Phys, Lancaster LA1 4YB, England. [Bianco, M.; Borjanovic, I.; Cataldi, G.; Chiodini, G.; Coluccia, R.; Crupi, R.; Gorini, E.; Grancagnolo, F.; Guida, A.; Perrino, R.; Primavera, M.; Spagnolo, S.; Ventura, A.] INFN Sez Lecce, IT-73100 Lecce, Italy. [Bianco, M.; Coluccia, R.; Crupi, R.; Gorini, E.; Guida, A.; Spagnolo, S.; Ventura, A.] Univ Salento, Dipartimento Fis, IT-73100 Lecce, Italy. [Allport, P. P.; Austin, N.; Burdin, S.; Dervan, P.; Greenshaw, T.; Gwilliam, C. B.; Hayward, H. S.; Houlden, M. A.; Jackson, J. N.; Jones, T. J.; King, B. T.; Klein, M.; Klein, U.; Kluge, T.; Kretzschmar, J.; Laycock, P.; Leney, K. J. C.; Lindsay, S. W.; Maxfield, S. J.; Mehta, A.; Migas, S.; Prichard, P. M.; Vankov, P.; Vossebeld, J. H.; Wiglesworth, C.; Wrona, B.] Univ Liverpool, Oliver Lodge Lab, Liverpool L69 3BX, Merseyside, England. [Cindro, V.; Dolenc, I.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Macek, B.; Mandic, I.; Mijovic, L.; Mikui, M.] Jozef Stefan Inst, SI-1000 Ljubljana, Slovenia. [Cindro, V.; Dolenc, I.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Macek, B.; Mandic, I.; Mijovic, L.; Mikui, M.] Univ Ljubljana, Dept Phys, SI-1000 Ljubljana, Slovenia. [Adragna, P.; Beck, G. A.; Carter, A. A.; Cerrito, L.; Cooper, B. D.; Eisenhandler, E.; Ellis, K.; Landon, M. P. J.; Lloyd, S. L.; Martin, A. J.; Morris, J. D.; Poll, J.; Rizvi, E. R.; Stevenson, K.] Queen Mary Univ London, Dept Phys, London E1 4NS, England. [Alam, M. A.; Berry, T.; Boisvert, V.; Cooper-Smith, N. J.; Cowan, G.; De Santo, A.; Edwards, C. A.; Martin, T. Fonseca; George, S.; Goncalo, R.; Green, B.; Kilvington, G.; McMahon, T. R.; Misiejuk, A.; Strong, J. A.; Tamsett, M. C.; Teixeira-Dias, P.] Univ London, Dept Phys, Egham TW20 0EX, Surrey, England. [Asquith, L.; Bernius, C.; Boeser, S.; Buckley, A. G.; Butterworth, J. M.; Byatt, T.; Campanelli, M.; Davison, A. R.; Dean, S.; Harris, O. B.; Jones, T. W.; Konstantinidis, N.; Monk, J.; Nash, M.; Nurse, E.; Ozcan, V. E.; Richards, A.; Sherwood, P.; Siegert, F.; Simmons, B.; Taylor, C.; Waugh, B. M.] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Beau, T.; Bordoni, S.; Calderini, G.; Cavalleri, P.; Chareyre, E.; De Cecco, S.; Derue, F.; Krasny, M. W.; Lacour, D.; Laforge, B.; Le Dortz, O.; Lellouch, J.; Nikolic-Audit, I.; Ridel, M.; Roos, L.; Schwemling, Ph.; Trincaz-Duvoid, S.; Trinh, T. N.; Vannucci, F.; Yuan, L.] Univ Paris 07, Univ Paris 06, Lab Phys Nucl & Hautes Energies, CNRS,IN2P3, FR-75252 Paris 05, France. [Akesson, T. P. A.; Boelaert, N.; Eerola, P.; Groth-Jensen, J.; Hedberg, V.; Jarlskog, G.; Ji, W.; Lundberg, B.; Lytken, E.; Mjornmark, J. U.; Smirnova, O.] Lund Univ, Inst Fys, Nat Vetenskapliga Fak, SE-22100 Lund, Sweden. [Barreiro, F.; Cantero, J.; Del Peso, J.; Gabaldon, C.; Glasman, C.; Labarga, L.; Lagouri, T.; March, L.; Nebot, E.; Terron, J.] Univ Autonoma Madrid, Fac Ciencias, Dept Fis Teor, ES-28049 Madrid, Spain. [Aharrouche, M.; Bendel, M.; Blum, W.; Buescher, V.; Eckweiler, S.; Edmonds, K.; Ellinghaus, F.; Ertel, E.; Fiedler, F.; Fleckner, J.; Goeringer, C.; Groll, M.; Handel, C.; Hohlfeld, M.; Kawamura, G.; Kleinknecht, K.; Koepke, L.; Neusiedl, A.; Rieke, S.; Sander, H. G.; Schaefer, U.; Schmitt, C.; Schroeder, C.; Siragusa, G.; Tapprogge, S.; Anh, T. Vu; Wicke, D.] Johannes Gutenberg Univ Mainz, Inst Phys, DE-55099 Mainz, Germany. [Almond, J.; Ask, S.; Bell, P. J.; Brown, G.; Chavda, V.; Cox, B. E.; Da Via, C.; Forti, A.; Foster, J. M.; Freestone, J.; Head, S. J.; Hughes-Jones, R. E.; Jones, G.; Keates, J. R.; Kelly, M.; Kolya, S. D.; Lane, J. L.; Loebinger, F. K.; Marshall, R.; Martyniuk, A. C.; Masik, J.; Miyagawa, P. S.; Owen, M.; Pater, J. R.; Pilkington, A. D.; Plano, W. G.; Potter, K. P.; Schwanenberger, C.; Snow, S. W.; Tevlin, C. M.; Thompson, R. J.; Watts, S.; Wengler, T.; Yang, U. K.] Univ Manchester, Sch Phys & Astron, Manchester M13 9PL, Lancs, England. [Brau, B.; Colon, G.; Dallapiccola, C.; Meade, A.; Moyse, E. J. W.; Thompson, E. N.; van Eldik, N.; Willocq, S.; Woudstra, M. J.] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA. [Corriveau, F.; Dobbs, M.; Dufour, M. -A.; Guler, H.; Klemetti, M.; Mc Donald, J.; Potter, C. T.; Robertson, S. H.; Rios, C. Santamarina; Schram, M.; Vachon, B.] McGill Univ, High Energy Phys Grp, Montreal, PQ H3A 2T8, Canada. [Barberio, E. L.; Davey, W.; Davidson, N.; Felzmann, C. U.; Kazi, S. I.; La Rosa, M.; Limosani, A.; Moloney, G.; Morley, A. K.; Phan, A.; Sevior, M. E.; Shao, Q. T.; Taylor, G. N.; Tovey, S. N.] Univ Melbourne, Sch Phys, Au Parkville, Vic 3010, Australia. [Armbruster, A. J.; Chapman, J. W.; Cirilli, M.; Dai, T.; De La Cruz-Burelo, E.; Diehl, E. B.; Eppig, A.; Ferretti, C.; Goldfarb, S.; Levin, D.; Li, X.; Liu, H.; Liu, J. B.; Mc Kee, S. P.; Neal, H. A.; Panikashvili, N.; Purdham, J.; Qian, J.; Scheirich, D.; Strandberg, J.; Thun, R. P.; Wilson, A.; Yang, H.; Zhou, B.] Univ Michigan, Dept Phys, Randall Lab 2477, Ann Arbor, MI 48109 USA. [Abolins, M.; Brock, R.; Bromberg, C.; Di Mattia, A.; Ermoline, I.; Hauser, R.; Heim, S.; Holzbauer, J. L.; Huston, J.; Koll, J.; Linnemann, J. T.; Mangeard, P. S.; Martin, B.; Pope, B. G.; Richards, R. A.; Ryan, P.; Schwienhorst, R.; Solovyanov, O. V.; Tollefson, K.] Michigan State Univ, Dept Phys & Astron, High Energy Phys Grp, E Lansing, MI 48824 USA. [Alessandria, F.; Alimonti, G.; Andreazza, A.; Baccaglioni, G.; Banti, D.; Broggi, F.; Carminati, L.; Cavallli, D.; Citterio, M.; Coelli, S.; Costa, G.; Dell'Asta, L.; Fanti, M.; Giugni, D.; Grassi, V.; Lari, T.; Lazzaro, A.; Mandelli, L.; Mazzanti, M.; Meronia, C.; Montesano, S.; Perini, L.; Pizio, C.; Ragusa, F.; Resconi, S.; Rivoltella, G.; Tartarelli, G. F.; Troncon, C.; Vegni, G.; Volpini, G.] INFN Sez Milano, IT-20133 Milan, Italy. [Alessandria, F.; Andreazza, A.; Baccaglioni, G.; Banti, D.; Broggi, F.; Carminati, L.; Coelli, S.; Dell'Asta, L.; Fanti, M.; Lazzaro, A.; Mazzanti, M.; Montesano, S.; Perini, L.; Pizio, C.; Ragusa, F.; Rivoltella, G.; Vegni, G.; Volpini, G.] Univ Milan, Dipartimento Fis, IT-20133 Milan, Italy. [Bogouch, A.; Kulchitsky, Y.; Kurochkin, Y. A.; Satsounkevitch, I.; Tsiareshka, P. V.] Natl Acad Sci Belarus, BI Stepanov Phys Inst, Minsk 220072, Byelarus. [Gilewsky, V.; Starovoitov, P.] NC PHEP BSU, Natl Sci & Educ Ctr Particle & High Energy Phys, Minsk 220040, Byelarus. [Taylor, F. E.] MIT, Dept Phys, Cambridge, MA 02139 USA. [Azuelos, G.; Banerjee, P.; Bouchami, J.; Ferland, J.; Gutierrez, A.; Lebel, C.; Leroy, C.; Martin, J. P.; Mehdiyev, R.] Univ Montreal, Grp Particle Phys, Montreal, PQ H3C 3J7, Canada. [Akimov, A. V.; Baranov, S. P.; Gavrilenko, I. L.; Kayumov, F.; Komar, A. A.; Konovalov, S. P.; Mouraviev, S. V.; Nechaeva, P.; Shmeleva, A.; Snesarev, A. A.; Sulin, V. V.; Tikhomirov, V. O.; Vasilyeva, L.] AcaSci, PN Lebedev Phys Inst, RU-117924 Moscow, Russia. [Artamonov, A.; Epshteyn, V. S.; Khovanskiy, V.; Shatalov, P. B.; Tsukerman, I. I.] ITEP, RU-117218 Moscow, Russia. [Belotskiy, K.; Bondarenko, V. G.; Bulekov, O.; Dolgoshein, B. A.; Kantserov, V. A.; Mashinistov, R.; Morozov, S. V.; Romaniouk, A.; Smirnov, S. Yu.; Sosnovtsev, V. V.; Suchkov, S. I.] Moscow Engn Phys Inst MEPh1, RU-115409 Moscow, Russia. [Boldyrev, A.; Gladilin, L. K.; Grishkevich, Y. V.; Kramarenko, V. A.; Rud, V. I.; Sivoklokov, S. Yu.; Smirnova, L. N.] Moscow MV Lomonosov State Univ, Skobeltsyn Inst Nucl Phys MSU SINP, Moscow 119991, Russia. [Biebel, O.; Calfayan, P.; de Graat, J.; Duckeck, G.; Ebke, J.; Elmsheuser, J.; Engl, A.; Galea, C.; Genest, M. H.; Hertenberger, R.; Kennedy, J.; Krobath, G.; Kummer, C.; Legger, F.; Lichtnecker, M.; Mameghani, R.; Merkl, D.; Mueller, T. A.; Nunnemann, T.; Rauscher, F.; Ruckert, B.; Sanders, M. P.; Schaile, D.; Serfon, C.; Staude, A.; Stroehmer, R.; Walker, R.; Zhuang, X.] Univ Munich, Fak Phys, DE-85748 Garching, Germany. [Barillari, T.; Beimforde, M.; Bethke, S.; Codiana, G.; D'Orazio, A.; Dannheim, D.; Dedes, G.; Dubbert, J.; Ehrich, T.; Flowerdew, M. J.; Giovannini, P.; Goettfert, T.; Groh, M.; Haefner, P.; Haertel, R.; Horvat, S.; Jantsch, A.; Kaiser, S.; Kiryunin, A. E.; Kluth, S.; Kortner, O.; Kotov, S.; Kroha, H.; Lutz, G.; Macchiolo, A.; Menke, S.; Mohrdieck-Moeck, S.; Moser, H. G.; Nisius, R.; Oberlack, H.; Pataraia, S.; Pospelov, G. E.; Potrap, I. N.; Rauter, E.; Richter, R.; Salihagic, D.; Schacht, P.; Schieck, J.; Seuster, R.; Stonjek, S.; von der Schmitt, H.; von Loeben, J.; Yuan, J.; Zhuravlov, V.] Max Planck Inst Phys & Astrophys, Werner Heisenberg Inst, D-80805 Munich, Germany. [Shimojima, M.] Nagasaki Inst Appl Sci, Jp Nagasaki 8510193, Japan. [Hasegawa, S.; Itoh, Y.; Ohshima, T.; Okumura, Y.; Sugimoto, T.; Takahashi, Y.; Tomoto, M.] Nagoya Univ, Grad Sch Sci, Chikusa Ku, Nagoya, Aichi 4648602, Japan. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Capasso, L.; Carlino, G.; Cevenini, F.; Chiefari, G.; Conventi, F.; de Asmundis, R.; Della Pietra, M.; della Volpe, D.; Doria, A.; Giordano, R.; Iacobucci, G.; Izzo, V.; Merola, L.; Musto, E.; Patricelli, S.; Sekhniaidze, G.] INFN Sez Napoli, IT-80126 Naples, Italy. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Capasso, L.; Cevenini, F.; Chiefari, G.; della Volpe, D.; Giordano, R.; Merola, L.; Musto, E.; Patricelli, S.] Univ Naples Federico II, Dipartimento Sci Fisiche, IT-80126 Naples, Italy. Complesso Univ Monte St Angelo, IT-80126 Naples, Italy. [Gorelov, I.; Hoeferkamp, M. R.; Metcalfe, J.; Seidel, S. C.; Thomas, T. L.; Toms, K.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. [Consonni, M.; De Groot, N.; Filthaut, F.; Jansen, E.; Klok, P. F.; Konig, A. C.; Koetsveld, F.; Magrath, C. A.; Ordonez, G.; Raas, M.; Timmermans, C. J. W. P.] Radboud Univ Nijmegen NIKHEF, Dept Expt High Energy Phys, NL-6525 ED Nijmegen, Netherlands. [Bentvelsen, S.; Bobbink, G. J.; Bos, K.; Boterenbrood, H.; Colijn, A. P.; de Jong, P.; Doxiadis, A.; Ferrari, P.; Garitaonandia, H.; Gosselink, M.; Hartjes, F.; Hessey, N. P.; Igonkina, O.; Kayl, M. S.; Klous, S.; Kluit, P.; Koffeman, E.; Koutsman, A.; Lee, H.; Liebig, W.; Massaro, G.; Mechnich, J. J.; Mussche, I.; Ottersbach, J. P.; Resende, B.; Rijpstra, M.; Ruckstuhl, N.; Salamanna, G.; Sandstroem, R.; Snuverink, J.; Tsiakiris, M.; van der Graaf, H.; van der Kraaij, E.; van der Poel, E.; van Kesteren, Z.; van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Vreeswijk, M.] Nikhef Natl Inst Subatom Phys, NL-1098 XG Amsterdam, Netherlands. [Bentvelsen, S.; Bobbink, G. J.; Bos, K.; Boterenbrood, H.; Colijn, A. P.; de Jong, P.; Doxiadis, A.; Ferrari, P.; Garitaonandia, H.; Gosselink, M.; Hartjes, F.; Hessey, N. P.; Igonkina, O.; Kayl, M. S.; Klous, S.; Kluit, P.; Koffeman, E.; Koutsman, A.; Lee, H.; Liebig, W.; Massaro, G.; Mechnich, J. J.; Mussche, I.; Ottersbach, J. P.; Resende, B.; Rijpstra, M.; Ruckstuhl, N.; Salamanna, G.; Sandstroem, R.; Snuverink, J.; Tsiakiris, M.; van der Graaf, H.; van der Kraaij, E.; van der Poel, E.; van Kesteren, Z.; van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Vreeswijk, M.] Univ Amsterdam, NL-1098 XG Amsterdam, Netherlands. [Kazanin, V. A.; Kotov, K. Y.; Malyshev, V.; Maslennikov, A. L.; Orlov, I.; Peleganchuk, S. V.; Schamov, A. G.; Soukharev, A.; Talyshev, A.; Tikhonov, Y. A.; Zaytsev, A.] Budker Inst Nucl Phys, RU-630090 Novosibirsk, Russia. [Budick, B.; Casadei, D.; Cranmer, K.; Djilkibaev, R.; Konoplich, R.; Krasznahorkay, A.; Mincer, A. I.; Nemethy, P.; Shibata, A.; Zhao, L.] NYU, Dept Phys, New York, NY 10003 USA. [Fernando, W.; Fisher, M. J.; Gan, K. K.; Kagan, H.; Kass, R. D.; Loureiro, K. F.; Moss, J.; Rahimi, A. M.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.] Okayama Univ, Fac Sci, Okayama 7008530, Japan. [Abbott, B.; Gutierrez, P.; Huang, G. S.; Jana, D.; Meera-Lebbai, R.; Saleem, M.; Severini, H.; Skubic, P.; Snow, J.; Strauss, M.] Univ Oklahoma, Homer L Dodge Dept Phys & Astron, Norman, OK 73019 USA. [Abi, B.; Khanov, A.; Rizatdinova, F.] Oklahoma State Univ, Dept Phys, Stillwater, OK 74078 USA. [Kocnar, A.] Palacky Univ, Olomouc 77207, Czech Republic. [Brau, J. E.; Ptacek, E.; Reinsch, A.; Robinson, M.; Searcy, J.; Shamim, M.; Sinev, N. B.; Strom, D. M.; Torrence, E.] Univ Oregon, Ctr High Energy Phys, Eugene, OR 97403 USA. [Abreu, H.; Arnault, C.; Auge, E.; Barrillon, P.; Benoit, M.; Bernat, P.; Binet, S.; Blanchard, J. -B.; Bourdarios, C.; Breton, D.; Collard, C.; De La Taille, C.; De Regie, J. B. De Vivie; Diglio, S.; Dudziak, F.; Duflot, L.; Escalier, M.; Falou, A. C.; Fayard, L.; Fournier, D.; Heller, M.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Kado, M.; Lounis, A.; Makovec, N.; Matricon, P.; Niedercorn, F.; Perus, P.; Poggioli, L.; Puzo, P.; Rousseau, D.; Rybkin, G.; Schaffer, A. C.; Serin, L.; Simion, S.; Tanaka, R.; Turlay, E.; Veillet, J. J.; Vukotic, I.; Wicek, F.; Zerwas, D.] Univ Paris 11, CNRS, IN2P3, LAL, F-91405 Orsay, France. [Hanagaki, K.; Hirose, M.; Meguro, T. M.; Nomachi, M.; Sugaya, Y.; Uchida, K.] Osaka Univ, Grad Sch Sci, Toyonaka, Osaka 5600043, Japan. [Bugge, L.; Buran, T.; Cameron, D.; Gjelsten, B. K.; Lund, E.; Ould-Saada, F.; Pajchel, K.; Pylypchenko, Y.; Read, A. L.; Rohne, O.; Samset, B. H.; Stapnes, S.; Strandlie, A.; Taga, A.] Univ Oslo, Dept Phys, NO-03163 Oslo 3, Norway. [Abdesselam, A.; Barr, A. J.; Beauchemin, P. H.; Brett, N. D.; Buchanan, J.; Cooper-Sarkar, A. M.; Dehchar, M.; Dennis, C.; Dobson, E.; Farrington, S. M.; Ferrando, J.; Fiascaris, M.; Gallas, E. J.; Gibson, S. M.; Gilbert, L. M.; Gwenlan, C.; Issever, C.; Unel, M. Karagoz; Kirsch, G. P.; Larner, A.; Loken, J.; Mattravers, C.; Mermod, P.; Nickerson, R. B.; Tseng, J. C. -L.; Viehhauser, G. H. A.; Wastie, R.; Weidberg, A. R.] Univ Oxford, Dept Phys, Oxford OX1 3RH, England. [Bellomo, M.; Cambiaghi, M.; Conta, C.; Ferrari, R.; Franchino, S.; Fraternali, M.; Gaudio, G.; Goggi, V.; Lanza, A.; Livan, M.; Negri, A.; Polesello, G.; Rebuzzi, D. M.; Rimoldi, A.; Uslenghi, M.; Vercesi, V.] INFN Sez Pavia, IT-27100 Pavia, Italy. [Cambiaghi, M.; Conta, C.; Franchino, S.; Fraternali, M.; Goggi, V.; Livan, M.; Negri, A.; Rebuzzi, D. M.; Rimoldi, A.; Uslenghi, M.] Univ Pavia, Dipartimento Fis Nucl & Teor, IT-27100 Pavia, Italy. [Alison, J.; Degenhardt, J.; Donega, M.; Fratina, S.; Hance, M.; Keener, P. T.; Kroll, J.; LeGeyt, B. C.; Lipeles, E.; Martin, F. F.; Newcomer, F. M.; Olivito, D.; Reece, R.; Thomson, E.; Van Berg, R.; Wagner, P.; Williams, H. H.] Univ Penn, Dept Phys, High Energy Phys Grp, Philadelphia, PA 19104 USA. [Fedin, O. L.; Gratchev, V.; Kolos, S.; Maleev, V. P.; Ryabov, Y. F.; Schegelsky, V. A.; Sedykh, E.; Seliverstov, D. M.] Petersburg Nucl Phys Inst, RU-188300 Gatchina, Russia. [Cascella, M.; Cavasinni, V.; Del Prete, T.; Dotti, A.; Francavilla, P.; Giangiobbe, V.; Roda, C.; Sarri, F.; Zenonos, Z.] INFN Sez Pisa, IT-56127 Pisa, Italy. [Cascella, M.; Cavasinni, V.; Del Prete, T.; Dotti, A.; Francavilla, P.; Giangiobbe, V.; Roda, C.; Sarri, F.; Zenonos, Z.] Univ Pisa, Dipartimento Fis E Fermi, IT-56127 Pisa, Italy. [Boudreau, J.; Boulahouache, C.; Cleland, W.; Kittelmann, T.; Mueller, J.; Paolone, V.; Prieur, D.; Savinov, V.; Tsulaia, V.; Wendler, S.; Yoosoofmiya, R.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Aguilar-Saavedra, J. A.; Castro, N.] Univ Granada, Dept Fis Teor & Cosmos, E-18071 Granada, Spain. [Aguilar-Saavedra, J. A.; Castro, N.] CAFPE, E-18071 Granada, Spain. [Amorim, A.; Anjos, N.; Barros, N.; Bastos, J.; Benincasa, G. P.; Caracinha, D.; Carvalho, J.; Conde Muino, P.; De Salvo, A.; Do Valle Wemans, A.; Fernandes, B.; Fiolhais, M. C. N.; Gomes, A.; Granado Cardoso, L.; Jorge, P. M.; Lopes, L.; Machado Miguens, J.; Magalhaes Martins, P. J.; Maio, A.; Maneira, J.; Marques, C. N.; Morais, A.; Neves, R. N.; Oliveira, M.; Onofre, A.; Palma, A.; Pina, J.; Pinto, B.; Santos, D.; Santos, J.; Saraiva, J. G.; Silva, J.; Soares, M.; Veloso, F.; Villate, J.; Wolters, H.] Lab Instrumentacao & Fis Expt Particulas LIP, P-1000149 Lisbon, Portugal. [Bazalova, M.; Bohm, J.; Chudoba, J.; Gallus, P.; Gunther, J.; Havranek, M.; Jahoda, M.; Juranek, V.; Kupco, A.; Kus, V.; Kvasnicka, O.; Lipinsky, L.; Lokajicek, M.; Marcisovsky, M.; Myska, M.; Nemecek, S.; Panuskova, M.; Popule, J.; Ruzicka, P.; Schovancova, J.; Sicho, P.; Sluka, T.; Staroba, P.; Stastny, J.; Tasevsky, M.; Tic, T.; Tomasek, L.; Tomasek, M.; Valenta, J.; Vrba, V.] Acad Sci Czech Republic, Inst Phys, CZ-18221 Prague 8, Czech Republic. [Davidek, T.; Dolejsi, J.; Dolezal, Z.; Drasal, Z.; Kodys, P.; Koupilova, Z.; Leitner, R.; Novakova, J.; Reznicek, P.; Spousta, M.; Strachota, P.; Suk, M.; Sykora, T.; Tas, P.; Valkar, S.; Vorobel, V.; Wilhelm, I.] Charles Univ Prague, Inst Particle & Nucl Phys, Fac Math & Phys, CZ-18000 Prague 8, Czech Republic. [Augsten, K.; Bedajanek, I.; Chren, D.; Holy, T.; Homola, P.; Horazdovsky, T.; Hubacek, Z.; Jakubek, J.; Kohout, Z.; Kral, V.; Krejci, F.; Linhart, V.; Otec, R.; Pospisil, S.; Simak, V.; Slavicek, T.; Smolek, K.; Sodomka, J. .; Solar, M.; Sopko, V.; Sopko, B.; Stekl, I.; Turecek, D.; Vacek, V.; Vlasak, M.; Vokac, P.] Czech Tech Univ, CZ-16635 Prague 6, Czech Republic. [Ammosov, V. V.; Borisov, A.; Denisov, S. P.; Fakhrutdinov, R. M.; Fenyuk, A. B.; Goryachev, S. V.; Goryachev, V. N.; Ivashin, A. V.; Kabachenko, V. V.; Karyukhin, A. N.; Kholodenko, A. G.; Koreshev, V.; Korotkov, V. A.; Kozhin, A. S.; Larionov, A. V.; Levitski, M. S.; Makouski, M.; Minaenko, A. A.; Myagkov, A. G.; Ryadovikov, V.; Solodkov, A. A.; Solovyanov, O. V.; Starchenko, E. A.; Sviridov, Yu. M.; Vorobiev, A. P.; Zaitsev, A. M.; Zenin, O.; Zmouchko, V. V.] State Res Ctr, Inst High Energy Phys, Protvino 142281, Moscow Region, Russia. [Adye, T.; Baines, J. T.; Barnett, B. M.; Burke, S.; Dallison, S. J.; Emeliyanov, D.; Gallop, B. J.; Gee, C. N. P.; Gillman, A. R.; Haywood, S. J.; Kirk, J.; McCubbin, N. A.; McMahon, S. J.; Middleton, R. P.; Murray, W. J.; Nash, M.; Qian, W.; Sankey, D. P. C.; Scott, W. G.; Strube, J.; Tyndel, M.; Villani, E. G.; Weber, M.; Wickens, F. J.; Wielers, M.] Rutherford Appleton Lab, Sci & Technol Facil Council, Didcot OX11 0QX, Oxon, England. [Benslama, K.; Kalinowski, A.; Ortega, E. O.] Univ Regina, Dept Phys, Regina, SK S4S 0A2, Canada. [Tanaka, S.] Ritsumeikan Univ, Jp Kusatsu, Shiga 5258577, Japan. [Anulli, F.; Bagnaia, P.; Biglietti, M.; Bini, C.; Borroni, S.; Caloi, R.; Ciapetti, G.; De Pedis, D.; De Salvo, A.; De Zorzi, G.; Di Domenico, A.; Dionisi, C.; Falciano, S.; Gauzzi, P.; Gentile, S.; Giagu, S.; Kuznetsova, E.; Lacava, F.; Luci, C.; Luminari, L.; Maiani, C.; Marzano, F.; Mirabelli, G.; Nisati, A.; Pasqualucci, E.; Petrolo, E.; Pontecorvo, L.; Rescigno, M.; Rosati, S.; Camillocci, E. Solfaroli; Spila, F'.; Valente, P.; Vari, R.; Veneziano, S.; Zanello, L.] INFN Sez Roma, IT-00185 Rome, Italy. [Bagnaia, P.; Biglietti, M.; Bini, C.; Borroni, S.; Caloi, R.; Ciapetti, G.; De Zorzi, G.; Di Domenico, A.; Dionisi, C.; Gauzzi, P.; Gentile, S.; Giagu, S.; Kuznetsova, E.; Lacava, F.; Luci, C.; Maiani, C.; Rosati, S.; Camillocci, E. Solfaroli; Spila, F'.; Zanello, L.] Univ Roma La Sapienza, Dipartimento Fis, IT-00185 Rome, Italy. [Aielli, G.; Camarri, P.; Cardarelli, R.; Cattani, G.; Di Ciaccio, A.; Di Nardo, R.; Di Simone, A.; Liberti, B.; Marchese, F.; Salamon, A.; Santonico, R.] INFN Sez Roma Tor Vergata, IT-00133 Rome, Italy. [Aielli, G.; Camarri, P.; Cattani, G.; Di Ciaccio, A.; Di Nardo, R.; Di Simone, A.; Marchese, F.; Santonico, R.] Univ Roma Tor Vergata, Dipartimento Fis, IT-00133 Rome, Italy. [Bacci, C.; Baroncelli, A.; Branchini, P.; Ceradini, F.; Di Luise, S.; Farilla, A.; Graziani, E.; Iodice, M.; Orestano, D.; Passeri, A.; Pastore, F.; Petrucci, F.; Ruggieri, E.; Stanescu, C.] INFN Sez Roma Tre, IT-00146 Rome, Italy. [Bacci, C.; Ceradini, F.; Di Luise, S.; Orestano, D.; Pastore, F.; Petrucci, F.] Univ Roma Tre, Dipartimento Fis, IT-00146 Rome, Italy. [Benchekroun, D.; Chafaq, A.; Gouighri, M.; Goujdami, D.; Hoummada, A.] Univ Hassan 2, Fac Sci Ain Chock, Casablanca, Morocco. Ctr Natl Energie Sci Tech Nucl CNESTEN, Rabat 10001, Morocco. [Derkaouic, J. E.] Univ Mohamed Premier, LPTPM, Fac Sci, Oujda 60000, Morocco. [El Moursli, R. Cherkaoui; Ghazlane, H.] Univ Mohammed 5, LPNR, Fac Sci, Rabat 10000, Morocco. [Bachacou, H.; Bauer, F.; Besson, N.; Boonekamp, M.; Chevalier, L.; Chevallier, F.; Ernwein, J.; Etienvre, A. I.; Formica, A.; Guyot, C.; Hassani, S.; Kepka, O.; Kozanecki, W.; Lancon, E.; Laporte, J. F.; Le Menedeu, E.; Legendre, M.; Lenzi, B.; Mansoulie, B.; Marzin, A.; Meyer, J. -P.; Nicolaidou, R.; Ouraou, A.; Pomarede, D. M.; Royon, C. R.; Schune, Ph.; Schwindling, J.] CEA, Ctr Etud Saclay, DSM IRFU, FR-91191 Gif Sur Yvette, France. [Bangert, A.; Chouridou, S.; Fowler, K.; Grillo, A. A.; Hansl-Kozanecka, T.; Hare, G. A.; Litke, A. M.; Lockman, W. S.; Mitrevski, J.; Nielsen, J.; Sadrozinski, H. F. -W.; Schumm, B. A.; Seiden, A.; Spencer, E.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Daly, C. H.; Forbush, D. A.; Goussiou, A. G.; Griffiths, J.; Harris, O. M.; Kuykendall, W.; Lubatti, H. J.; Mockett, P.; Policicchio, A.; Rothberg, J.; Twomey, M. S.; Ventura, D.; Wang, J. C.; Watts, G.; Zhao, T.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Anastopoulos, C.; Costanzo, D.; Donszelmann, T. Cuhadar; Dawson, I.; Duxfield, R.; Hodgkinson, M. C.; Hodgson, P.; Johansson, P.; Korolkova, E. V.; Mayne, A.; Nicolas, L.; Owen, S.; Paganis, E.; Shaw, K.; Sutton, M. R.; Tovey, D. R.; Tsionou, D.; Xu, D.] Univ Sheffield, Dept Phys & Astron, Sheffield S3 7RH, S Yorkshire, England. [Hasegawa, Y.; Ohshita, H.; Takeshita, T.] Shinshu Univ, Dept Phys, Fac Sci, Matsumoto, JP Nagano 3908621, Japan. [Buchholz, P.; Fleck, I.; Grybel, K.; Ibragimov, I.; Rammes, M.; Sipica, V.; Stahl, T.; Walkowiak, W.; Werthenbach, U.; Ziolkowski, M.] Univ Siegen, Fachbereich Phys, D-57068 Siegen, Germany. [Godfrey, J.; Komaragiri, J. R.; O'Neil, D. C.; Petteni, M.; Schouten, D.; Spreitzer, T.; Stelzer, B.; Vetterli, M. C.] Simon Fraser Univ, Dept Phys, Ca Burnaby, BC V5A 1S6, Canada. [Aracenal, I.; Asai, M.; Barklow, T.; Bartoldus, R.; Bawa, H. S.; Butler, B.; Gao, Y. S.; Grenier, P.; Haas, A.; Hansson, P.; Horn, C.; Jackson, P.; Kim, P. C.; Kocian, M.; Miller, D. W.; Mount, R.; Nelson, T. K.; Salnikov, A.; Schwartzman, A.; Silverstein, D.; Smith, D.; Su, D.; Wilson, M. G.; Wittgen, M.; Wright, D.; Young, C.] SLAC Natl Accelerator Lab, Stanford, CA 94309 USA. [Batkova, L.; Bednar, P.; Bruncko, D.; Federic, P.; Ferencei, J.; Kladiva, E.; Lovas, L.; Pecsy, M.; Seman, M.; Stavina, P.; Strizenec, P.; Sykora, I.; Tokar, S.; Tomasz, F.; Zenis, T.; Zilka, B.] Comenius Univ, Fac Math Phys & Informat, SK-84248 Bratislava, Slovakia. [Batkova, L.; Bednar, P.; Bruncko, D.; Federic, P.; Ferencei, J.; Kladiva, E.; Lovas, L.; Pecsy, M.; Seman, M.; Stavina, P.; Strizenec, P.; Sykora, I.; Tokar, S.; Tomasz, F.; Zenis, T.; Zilka, B.] Slovak Acad Sci, Inst Expt Phys, Dept Subnucl Phys, SK-04353 Kosice, Slovakia. [Asman, B.; Kuutmann, E. Bergeaas; Bohm, C.; Clement, C.; Eriksson, D.; Gellerstedt, K.; Hellman, S.; Hidvegi, A.; Holmgren, S. O.; Johansen, M.; Johansson, K. E.; Jon-And, K.; Milstead, D. A.; Moa, T.; Nordkvist, B.; Ohm, C. C.; Sellden, B.; Silverstein, S. B.; Sjoelin, J.; Tylmad, M.; Yang, Z.] Stockholm Univ, Dept Phys, SE-10691 Stockholm, Sweden. [Grahn, K. -J.; Lund-Jensen, B.] Royal Inst Technol KITH, Dept Phys, SE-10691 Stockholm, Sweden. [Ahmad, A.; Caputo, R.; Deluca, C.; DeWilde, B.; Engelmann, R.; Farley, J.; Goodson, J. J.; Gray, J. A.; Grimm, K.; Hobbs, J.; Jia, J.; Khodinov, A.; McCarthy, R. L.; Rijssenbeek, M.; Schamberger, R. D.; Tsybychev, D.; Yurkewicz, A.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Potter, C. J.; Salvatore, F.] Univ Sussex, Dept Phys & Astronom, Brighton BN1 9RH, E Sussex, England. [Lee, J. S. H.; Peak, L. S.; Saavedra, A. F.; Varvell, K. E.; Waugh, A. T.] Univ Sydney, Sch Phys, Au Sydney, NSW 2006, Australia. [Chu, M. L.; Hou, S.; Lee, S. C.; Liang, Z.; Lin, S. C.; Liu, D.; Mazini, R.; Meng, Z.; Ren, Z. L.; Soh, D. A.; Teng, P. K.; Wang, S. M.; Zhong, J.; Zhou, Y.] Acad Sinica, Inst Phys, Tw Taipei 11529, Taiwan. [Harpaz, S. Behar; Ben Ami, S.; Bressler, S.; Hershenhorn, A. D.; Kajomovitz, E.; Rozen, Y.; Tarem, S.; Vallecorsa, S.] Technion Israel Inst Technol, Dept Phys, IL-32000 Technion, Il Haifa, Israel. [Abramowicz, H.; Alexander, G.; Amram, N.; Bella, G.; Benary, O.; Benhammou, Y.; Brodet, E.; Etzion, E.; Gershon, A.; Ginzburg, J.; Guttman, N.; Hod, N.; Kreisel, A.; Mahalalel, Y.; Oren, Y.; Reinherz-Aronis, E.; Silver, Y.; Soffer, A.; Urkovsky, E.] Tel Aviv Univ, Raymond & Beverly Sackler Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Christidi, I. A.; Iliadis, D.; Krepouri, A.; Liolios, A.; Nomidis, I.; Petridou, C.; Sampsonidis, D.; Tsiafis, I.] Aristotle Univ Thessaloniki, Fac Sci, Div Nucl & Particle Phys, Dept Phys, GR-54124 Thessaloniki, Greece. [Akimoto, G.; Asai, S.; Azuma, Y.; Dohmae, T.; Imori, M.; Isobe, T.; Kanaya, N.; Kaneda, M.; Kataoka, Y.; Kawamoto, T.; Kessoku, K.; Kobayashi, T.; Kubota, T.; Mashimo, T.; Masubuchi, T.; Matsumoto, H.; Matsunaga, H.; Nakamura, K.; Nomoto, H.; Oda, S.; Okawa, H.; Sakamoto, H.; Suzuki, T.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamamoto, S.; Yamamura, T.; Yamazaki, T.] Univ Tokyo, Int Ctr Elementary Particle Phys, Jp Tokyo 1130033, Japan. [Akimoto, G.; Asai, S.; Azuma, Y.; Dohmae, T.; Imori, M.; Isobe, T.; Kanaya, N.; Kaneda, M.; Kataoka, Y.; Kawamoto, T.; Kessoku, K.; Kobayashi, T.; Kubota, T.; Mashimo, T.; Masubuchi, T.; Matsumoto, H.; Matsunaga, H.; Nakamura, K.; Nomoto, H.; Oda, S.; Okawa, H.; Sakamoto, H.; Suzuki, T.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamamoto, S.; Yamamura, T.; Yamazaki, T.] Dept Phys, Bunkyo Ku, Jp Tokyo 1130033, Japan. [Bratzler, U.; Fukunaga, C.] Tokyo Metropolitan Univ, Grad Sch Sci & Technol, Hachioji, Tokyo 1920397, Japan. [Jinnouchi, O.] Tokyo Inst Technol, Meguro Ku, Tokyo 1528551, Japan. [Bailey, D. C.; Bain, T.; Beare, B.; Brelier, B.; Montero, S. Carron; Cheung, S. L.; Deviveiros, P. O.; Dhaliwal, S.; Farooque, T.; Fatholahzadeh, B.; Gibson, A.; Orbounov, P. A.; Groer, L. S.; Guo, B.; Knecht, N. S.; Krieger, P.; Le Maner, C.; Martens, F. K.; Orr, R. S.; Rezvani, R.; Rosenbaum, G. A.; Savardb, P.; Sinervo, P.; Tardif, D.; Teuscher, R. J.; Thompson, P. D.] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada. [Azuelos, G.; Canepa, A.; Caron, B.; Chekulaev, S. V.; Fortin, D.; Gingrich, D. M.; Kurchaninov, L. L.; Losty, M. J.; Nugent, I. M.; Oakham, F. G.; Oram, C. J.; Qing, D.; Savardb, P.; Stelzer-Chilton, O.; Tafirout, R.; Trigger, I. M.; Vetterli, M. C.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Idarraga, J.; Martynenko, V.; Taylor, W.] York Univ, Dept Phys & Astron, Toronto, ON M3J 1P3, Canada. [Hara, K.; Kim, S. H.; Kurata, M.; Maruyama, T.; Ukegawa, F.; Yamada, M.] Univ Tsukuba, Inst Pure & Appl Sci, Tsukuba, JP Ibaraki 3058571, Japan. [Hamilton, S.; Napier, A.; Rolli, S.; Sliwa, K.; Todorova-Nova, S.] Tufts Univ, Ctr Sci & Technol, Medford, MA 02155 USA. [Fajardo, L. S. Gomez; Losada, M.; Moreno, D.; Navarro, G.; Romero, D. A. Roa; Rodriguez, D.] Univ Antonio Narino, Ctr Invest, Bogota, Colombia. [Avolio, G.; Benedict, B. H.; Bold, T.; Bondioli, M.; Ciobotaru, M. D.; Corso-Radu, A.; Deng, J.; Dobson, M.; Eschrich, I. Gough; Grabowska-Bold, I.; Hawkins, D.; Kolos, S.; Lankford, A. J.; Garcia, R. Murillo; Porter, R.; Schernau, M.; Stancu, S. N.; Taffard, A.; Toggerson, B.; Unel, G.; Werth, M.; Wheeler-Ellis, S. J.; Whiteson, D.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Acharya, B. S.; Cauz, D.; Cobal, M.; De Sanctis, U.; Del Papa, C.; Giordani, M. P.; Luisa, L.; Pinamonti, M.; Santi, L.; Suruliz, K.] INFN Grp Coll Udine, IT-34014 Trieste, Italy. [Acharya, B. S.; Suruliz, K.] Abdus Salaam Int Ctr Theoret Phys, IT-34014 Trieste, Italy. [Cauz, D.; Cobal, M.; De Sanctis, U.; Del Papa, C.; Giordani, M. P.; Luisa, L.; Pinamonti, M.; Santi, L.] Univ Udine, Dipartimento Fis, IT-33100 Udine, Italy. [Benekos, N.; Coggeshall, J.; Cortes-Gonzalez, A.; Deberg, H.; Errede, D.; Errede, S.; Khandanyan, H.; Lie, K.; Liss, T. M.; McCarn, A.; Neubauer, M. S.; Sfyrla, A.; Vichou, I.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Belanger-Champagne, C.; Brenner, R.; Buszello, C. P.; Coniavitis, E.; Ekelof, T.; Ellert, M.; Ferrari, A.; Flechl, M.] Uppsala Univ, Dept Phys & Astron, SE-75120 Uppsala, Sweden. [Amoros, G.; Cabrera Urban, S.; Campabadal Segura, F.; Castillo Gimenez, V.; Costa, M. J.; Escobar, C.; Fassi, F.; Ferrer, A.; Fuster, J.; Garcia, C.; Gonzalez de la Hoz, S.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; Marti i Garcia, S.; Minano, M.; Mitsou, V. A.; Moles-Valls, R.; Moreno Llacer, M.; Oliver Garcia, E.; Perez Garcia-Estan, M. T.; Ros, E.; Ruiz-Martinez, A.; Salt, J.; Sanchis Lozano, M. A.; Solans, C. A.; Sospedra Suay, L.; Sanchez, J.; Torro Pastor, E.; Valladolid Gallego, E.; Ferrer, J. A. Valls; Villaplana Perez, M.; Vos, M.; Wildauer, A.] Inst Fis Corpuscular IFIC Ctr Mixto UVEG CSIC, ES-46071 Valencia, Spain. [Amoros, G.; Cabrera Urban, S.; Campabadal Segura, F.; Castillo Gimenez, V.; Costa, M. J.; Escobar, C.; Fassi, F.; Ferrer, A.; Fuster, J.; Garcia, C.; Gonzalez de la Hoz, S.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; Marti i Garcia, S.; Minano, M.; Mitsou, V. A.; Moles-Valls, R.; Moreno Llacer, M.; Oliver Garcia, E.; Perez Garcia-Estan, M. T.; Ros, E.; Ruiz-Martinez, A.; Salt, J.; Sanchis Lozano, M. A.; Solans, C. A.; Sospedra Suay, L.; Sanchez, J.; Torro Pastor, E.; Valladolid Gallego, E.; Ferrer, J. A. Valls; Villaplana Perez, M.; Vos, M.; Wildauer, A.] Univ Valencia, Dept Fis At Mol & Nucl, Barcelona 08193, Spain. [Amoros, G.; Cabrera Urban, S.; Campabadal Segura, F.; Castillo Gimenez, V.; Costa, M. J.; Escobar, C.; Fassi, F.; Ferrer, A.; Fuster, J.; Garcia, C.; Gonzalez de la Hoz, S.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; Marti i Garcia, S.; Minano, M.; Mitsou, V. A.; Moles-Valls, R.; Moreno Llacer, M.; Oliver Garcia, E.; Perez Garcia-Estan, M. T.; Ros, E.; Ruiz-Martinez, A.; Salt, J.; Sanchis Lozano, M. A.; Solans, C. A.; Sospedra Suay, L.; Sanchez, J.; Torro Pastor, E.; Valladolid Gallego, E.; Ferrer, J. A. Valls; Villaplana Perez, M.; Vos, M.; Wildauer, A.] Inst Microelect Barcelona IMB CNM CSIC, Barcelona 08193, Spain. [Axen, D.; Gay, C.; Loh, C. W.; Mills, W. J.; Muir, A.] Univ British Columbia, Dept Phys, Vancouver, BC V6T 1Z1, Canada. [Albert, J.; Astbury, A.; Banerjee, S.; Bansal, V.; Berghaus, F.; Courneyea, L.; Fincke-Keeler, M.; Ince, T.; Keeler, R.; Kowalewski, R.; Lefebvre, M.; Lelas, D.; Lessard, J. -R.; McPherson, R. A.; Plamondon, M.; Poffenberger, P.; Sobie, R.; Taylor, R. P.] Univ Victoria, Dept Phys & Astron, Victoria, BC V8W 3P6, Canada. [Yorita, K.] Waseda Univ, WISE, Shinjuku Ku, Tokyo 1698555, Japan. [Alon, R.; Duchovni, E.; Gabizon, O.; Gross, E.; Klier, A.; Lellouch, D.; Levinson, L. J.; Melamed-Katz, A.; Mikenberg, G.; Milov, A.; Silbert, O.; Smakhtin, V.; Vitells, O. V.] Weizmann Inst Sci, Dept Particle Phys, IL-76100 Rehovot, Israel. [Asfandiyarov, R.; Montoya, G. D. Carrillo; Hernadez, A. M. Castaneda; Castaneda-Miranda, E.; Chen, X.; Dos Anjos, A.; Fang, Y.; Flores Castillo, L. R.; Jared, R. C.; Cheong, A. Leung Fook; Li, H.; Ma, L. L.; Garcia, B. R. Mellado; Padhi, S.; Pan, Y. B.; Morales, M. I. Pedraza; Peng, H.; Poveda, J.; Quayle, W. B.; Sarangi, T.; Vickey, T.; Wang, H.; Wiedenmann, W.; Wu, S. L.; Xu, N.; Zhu, Y.; Zobernig, G.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Fleischmann, P.; Redelbach, A.; Trefzger, T.; Verducci, M.] Univ Wurzburg, Inst Phys, D-97074 Wurzburg, Germany. [Barisonzi, M.; Becks, K. H.; Boek, J.; Braun, H. M.; Dopke, J.; Flick, T.; Gerlach, P.; Glitza, K. W.; Gorfine, G.; Hamacher, K.; Harenberg, T.; Henss, T.; Kersten, S.; Kind, P.; Kuhl, T.; Lenz, G.; Lenzen, G.; Maettig, P.; Mechtel, M.; Reeves, K.; Sandhoff, M.; Sandvoss, S.; Sanny, B.; Schroers, M.; Schultes, J.; Siebel, A.; Thadome, J.; Voss, T. T.; Wahlen, H.; Zeitnitz, C.] Berg Univ Wuppertal, Fachbereich Phys C, D-42097 Wuppertal, Germany. [Adelman, J.; Atoian, G.; Auerbach, B.; Baker, O. K.; Almenar, C. Cuenca; Demers, S.; Golling, T.; Hsu, P. J.; Issakov, V.; Kaplan, B.; Kastoryano, M.; Lockwitz, S.; Loginov, A.; Martin, A. J.; Poblaguev, A.; Schmidt, M. P.; Thioye, M.; Tipton, P.; Wall, R.; Zeller, M.] Yale Univ, Dept Phys, New Haven, CT 06520 USA. [Hakobyan, H.] Yerevan Phys Inst, AM-375036 Yerevan, Armenia. ATLAS Canada Tier 1 Data Ctr, Vancouver, BC V6T 2A3, Canada. Forschungszentrum Karlsruhe, Steinbuch Ctr Comp SCC, GridKA Tier FZK 1, D-76344 Eggenstein Leopoldshafen, Germany. Univ Autonoma Barcelona, E-08193 Bellaterra, Spain. [Biscarat, C.; Rahal, G.] Univ Lyon 1, CNRS, Ctr Calcul, IN2P3, F-69622 Villeurbanne, France. INFN CNAF, I-40127 Bologna, Italy. NORDUnet AS, Nord Data Grid Facil, DK-2770 Kastrup, Denmark. SARA Reken Netwerkdiensten, NL-1098 XG Amsterdam, Netherlands. Acad Sinica, Inst Phys, Acad Sinica Grid Comp, Taipei 11529, Taiwan. [Goggi, V.; Mattravers, C.] Rutherford Appleton Lab, Sci & Technol Facil Council, Didcot OX11 0QX, Oxon, England. Brookhaven Natl Lab, Dept Phys, RHIC & ATLAS Comp Facil, Upton, NY 11973 USA. [Beddall, A. J.; Beddall, A.; Bingul, A.] Gaziantep Univ, Gaziantep, Turkey. [Buckley, A. G.] Univ Durham, Inst Particle Phenomenol, Dept Phys, Ogden Ctr Fundamental Phys,Sci Labs, Durham DH1 3LE, England. [Conventi, F.; Della Pietra, M.] Univ Napoli Parthenope, IT-80133 Naples, Italy. [Dhullipudi, R.; Greenwood, Z. D.; Sawyer, L.] Louisiana Tech Univ, Ruston, LA 71272 USA. Calif State Univ Fresno, Dept Phys, Fresno, CA 93740 USA. [Gray, H. M.; Mateos, D. Lopez; Marshall, Z.; Perez, K.] CALTECH, Dept Phys, Pasadena, CA 91125 USA. [Haller, J.; Kono, T.; Terwort, M.; Wildt, M. A.] Univ Hamburg, Inst Expt Phys, D-22761 Hamburg, Germany. [Liang, Z.; Soh, D. A.] Sun Yat Sen Univ, Sch Phys & Engn, Guangzhou, Guangdong, Peoples R China. [Liu, D.; Meng, Z.] Shandong Univ, Sch Phys, Jinan 250100, Peoples R China. [Park, W.; Purohit, M.; Trivedi, A.] Univ S Carolina, Dept Phys & Astron, Columbia, SC 29208 USA. [Pasztor, G.; Toth, J.] KFKI Res Inst Particle & Nucl Phys, Budapest, Hungary. [Richter-Was, E.] Jagiellonian Univ, Inst Phys, Krakow, Poland. RP Aad, G (reprint author), Aix Marseille Univ, CPPM, CNRS, IN2P3, Marseille, France. RI Riu, Imma/L-7385-2014; Aguilar Saavedra, Juan Antonio/F-1256-2016; Leyton, Michael/G-2214-2016; Casado, Pilar/H-1484-2015; Canelli, Florencia/O-9693-2016; Mashinistov, Ruslan/M-8356-2015; Boldyrev, Alexey/K-6303-2012; Lei, Xiaowen/O-4348-2014; Ventura, Andrea/A-9544-2015; Villaplana Perez, Miguel/B-2717-2015; Mir, Lluisa-Maria/G-7212-2015; Wemans, Andre/A-6738-2012; Kartvelishvili, Vakhtang/K-2312-2013; Dawson, Ian/K-6090-2013; O'Shea, Val/G-1279-2010; Staroba, Pavel/G-8850-2014; Lokajicek, Milos/G-7800-2014; Kupco, Alexander/G-9713-2014; Chudoba, Jiri/G-7737-2014 OI Riu, Imma/0000-0002-3742-4582; Aguilar Saavedra, Juan Antonio/0000-0002-5475-8920; Leyton, Michael/0000-0002-0727-8107; Casado, Pilar/0000-0002-0394-5646; Canelli, Florencia/0000-0001-6361-2117; Mashinistov, Ruslan/0000-0001-7925-4676; Lei, Xiaowen/0000-0002-2564-8351; Ventura, Andrea/0000-0002-3368-3413; Villaplana Perez, Miguel/0000-0002-0048-4602; Mir, Lluisa-Maria/0000-0002-4276-715X; Wemans, Andre/0000-0002-9669-9500; O'Shea, Val/0000-0001-7183-1205; NR 38 TC 0 Z9 0 U1 0 U2 19 PU SPRINGER-VERLAG BERLIN PI BERLIN PA HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY BN 978-3-642-22115-6 PY 2010 BP 1 EP 31 D2 10.1007/978-3-642-22116-3 PG 31 WC Instruments & Instrumentation; Physics, Particles & Fields SC Instruments & Instrumentation; Physics GA BAF48 UT WOS:000304018500001 ER PT B AU Aad, G Abbott, B Abdallah, J Abdelalim, AA Abdesselam, A Abdinov, O Abi, B Abolins, M Abramowicz, H Abreu, H Acharya, BS Adams, DL Addy, TN Adelman, J Adorisio, C Adragna, P Adye, T Aefsky, S Aguilar-Saavedra, JA Aharrouche, M Ahlen, SP Ahles, F Ahmad, A Ahsan, M Aielli, G Akdogan, T Akesson, TPA Akimoto, G Akimov, AV Aktas, A Alam, MS Alam, MA Albrand, S Aleksa, M Aleksandrov, IN Alexa, C Alexander, G Alexandre, G Alexopoulos, T Alhroob, M Aliev, M Alimonti, G Alison, J Aliyev, M Allport, PP Allwood-Spiers, SE Almond, J Aloisio, A Alon, R Alonso, A Alviggi, MG Amako, K Amelung, C Amorim, A Amoros, G Amram, N Anastopoulos, C Andeen, T Anders, CF Anderson, KJ Andreazza, A Andrei, V Anduaga, XS Angerami, A Anghinolfi, F Anjos, N Annovi, A Antonaki, A Antonelli, M Antonelli, S Antos, J Antunovic, B Anulli, F Aoun, S Arabidze, G Aracena, I Arai, Y Arce, ATH Archambault, JP Arfaoui, S Arguin, JF Argyropoulos, T Arik, M Armbruster, AJ Arnaez, O Arnault, C Artamonov, A Arutinov, D Asai, M Asai, S Asfandiyarov, R Ask, S Asman, B Asner, D Asquith, L Assamagan, K Astvatsatourov, A Atoian, G Auerbach, B Augsten, K Aurousseau, M Austin, N Avolio, G Avramidou, R Ay, C Azuelos, G Azuma, Y Baak, MA Bach, AM Bachacou, H Bachas, K Backes, M Badescu, E Bagnaia, P Bai, Y Bain, T Baines, JT Baker, OK Baker, MD Baker, S Pedrosa, FBD Banas, E Banerjee, P Banerjee, S Banfi, D Bangert, A Bansal, V Baranov, SP Barashkou, A Barber, T Barberio, EL Barberis, D Barbero, M Bardin, DY Barillari, T Barisonzi, M Barklow, T Barlow, N Barnett, BM Barnett, RM Baroncelli, A Barr, AJ Barreiro, F da Costa, JBG Barrillon, P Bartoldus, R Bartsch, D Bates, RL Batkova, L Batley, JR Battaglia, A Battistin, M Bauer, F Bawa, HS Bazalova, M Beare, B Beau, T Beauchemin, PH Beccherle, R Bechtle, P Beck, GA Beck, HP Beckingham, M Becks, KH Beddall, AJ Beddall, A Bednyakov, VA Bee, C Begel, M Harpaz, SB Behera, PK Beimforde, M Belanger-Champagne, C Bell, PJ Bell, WH Bella, G Bellagamba, L Bellina, F Bellomo, M Belloni, A Belotskiy, K Beltramello, O Ben Ami, S Benary, O Benchekroun, D Bendel, M Benedict, BH Benekos, N Benhammou, Y Benjamin, DP Benoit, M Bensinger, JR Benslama, K Bentvelsen, S Beretta, M Berge, D Kuutmann, EB Berger, N Berghaus, F Berglund, E Beringer, J Bernabeu, J Bernat, P Bernhard, R Bernius, C Berry, T Bertin, A Besana, MI Besson, N Bethke, S Bianchi, RM Bianco, M Biebel, O Biesiada, J Biglietti, M Bilokon, H Bindi, M Bingul, A Bini, C Biscarat, C Bitenc, U Black, KM Blair, RE Blanchard, JB Blanchot, G Blocker, C Blondel, A Blum, W Blumenschein, U Bobbink, CJ Bocci, A Boehler, M Boek, J Boelaert, N Boser, S Bogaerts, JA Bogouch, A Bohm, C Bohm, J Boisvert, V Bold, T Boldea, V Bondarenko, VG Bondioli, M Boonekamp, M Bordoni, S Borer, C Borisov, A Borissov, G Borjanovic, I Borroni, S Bos, K Boscherini, D Bosman, M Boterenbrood, H Bouchami, J Boudreau, J Bouhova-Thacker, EV Boulahouache, C Bourdarios, C Boveia, A Boyd, J Boyko, IR Bozovic-Jelisavcic, I Bracinik, J Braem, A Branchini, P Brandt, A Brandt, G Brandt, O Bratzler, U Brau, B Brau, JE Braun, HM Brelier, B Bremer, J Brenner, R Bressler, S Britton, D Brochu, FM Brock, I Brock, R Brodet, E Bromberg, C Brooijmans, G Brooks, WK Brown, G de Renstrom, PAB Bruncko, D Bruneliere, R Brunet, S Bruni, A Bruni, G Bruschi, M Bucci, F Buchanan, J Buchholz, P Buckley, AG Budagov, IA Budick, B Buscher, V Bugge, L Bulekov, O Bunse, M Buran, T Burckhart, H Burdin, S Burgess, T Burke, S Busato, E Bussey, P Buszello, CP Butin, F Butler, B Butler, JM Buttar, CM Butterworth, JM Byatt, T Caballero, J Urban, SC Caforio, D Cakir, O Calafiura, P Calderini, G Calfayan, P Calkins, R Caloba, LP Calvet, D Camarri, P Cameron, D Campana, S Campanelli, M Canale, V Canelli, F Canepa, A Cantero, J Capasso, L Garrido, MDMC Caprini, I Caprini, M Capua, M Caputo, R Caramarcu, C Cardarelli, R Carli, T Carlino, G Carminati, L Caron, B Caron, S Montoya, GDC Montero, SC Carter, AA Carter, JR Carvalho, J Casadei, D Casado, MP Cascella, M Hernandez, AMC Castaneda-Miranda, E Gimenez, VC Castro, NF Cataldi, G Catinaccio, A Catmore, JR Cattai, A Cattani, G Caughron, S Cavalleri, P Cavalli, D Cavalli-Sforza, M Cavasinni, V Ceradini, F Cerqueira, AS Cerri, A Cerrito, L Cerutti, F Cetin, SA Chafaq, A Chakraborty, D Chan, K Chapman, JD Chapman, JW Chareyre, E Charlton, DG Chavda, V Cheatham, S Chekanov, S Chekulaev, SV Chelkov, GA Chen, H Chen, S Chen, X Cheplakov, A Chepurnov, VF El Moursli, RC Tcherniatine, V Chesneanu, D Cheu, E Cheung, SL Chevalier, L Chevallier, F Chiefari, G Chikovani, L Childers, JT Chilingarov, A Chiodini, G Chizhov, V Choudalakis, G Chouridou, S Christidi, IA Christov, A Chromek-Burckhart, D Chu, ML Chudoba, J Ciapetti, G Ciftci, AK Ciftci, R Cinca, D Cindro, V Ciobotaru, MD Ciocca, C Ciocio, A Cirilli, M Clark, A Clark, PJ Cleland, W Clemens, JC Clement, B Clement, C Coadou, Y Cobal, M Coccaro, A Cochran, J Coggeshall, J Cogneras, E Colijn, AP Collard, C Collins, N Collins-Tooth, C Collot, J Colon, G Muino, PC Coniavitis, E Conidi, MC Consonni, M Constantinescu, S Conta, C Conventi, F Cooke, M Cooper, BD Cooper-Sarkar, AM Cooper-Smith, NJ Copic, K Cornelissen, T Corradi, M Corriveau, F Corso-Radu, A Cortes-Gonzalez, A Cortiana, G Costa, G Costa, MJ Costanzo, D Costin, T Cote, D Torres, RC Courneyea, L Cowan, G Cowden, C Cox, BE Cranmer, K Cranshaw, J Cristinziani, M Crosetti, G Crupi, R Crepe-Renaudin, S Almenar, CC Donszelmann, TC Curatolo, M Curtis, CJ Cwetanski, P Czyczula, Z D'Auria, S D'Onofrio, M D'Orazio, A Da Via, C Dabrowski, W Dai, T Dallapiccola, C Dallison, SJ Daly, CH Dam, M Danielsson, HO Dannheim, D Dao, V Darbo, G Darlea, GL Davey, W Davidek, T Davidson, N Davidson, R Davies, M Davison, AR Dawson, I Daya, RK De, K de Asmundis, R De Castro, S Salgado, PEDF De Cecco, S de Graat, J De Groot, N de Jong, P De Mora, L Branco, MD De Pedis, D De Salvo, A De Sanctis, U De Santo, A De Regie, JBD Dean, S Dedovich, DV Degenhardt, J Dehchar, M Del Papa, C Del Peso, J Del Prete, T Dell'Acqua, A Dell'Asta, L Della Pietra, M della Volpe, D Delmastro, M Delsart, PA Deluca, C Demers, S Demichev, M Demirkoz, B Deng, J Deng, W Denisov, SP Derkaoui, JE Derue, F Dervan, P Desch, K Deviveiros, PO Dewhurst, A DeWilde, B Dhaliwal, S Dhullipudi, R Di Ciaccio, A Di Ciaccio, L Di Girolamo, A Di Girolamo, B Di Luse, S Di Mattia, A Di Nardo, R Di Simone, A Di Sipio, R Diaz, MA Diblen, F Diehl, EB Dietrich, J Dietzsch, TA Diglio, S Yagei, KD Dingfelder, J Dionisi, C Dita, P Dita, S Dittus, F Djama, F Djilkibaev, R Djobava, T do Vale, MAB Wemans, AD Doan, TKO Dobos, D Dobson, E Dobson, M Doglioni, C Doherty, T Dolejsi, J Dolenc, I Dolezal, Z Dolgoshein, BA Dohmae, T Donega, M Donini, J Dopke, J Doria, A Dos Anjos, A Dotti, A Dova, MT Doxiadis, A Doyle, AT Drasal, Z Dris, M Dubbert, J Duchovni, E Duckeck, G Dudarev, A Dudziak, F Duhrssen, M Duflot, L Dufour, MA Dunford, M Yildiz, HD Duxfield, R Dwuznik, M Duren, M Ebenstein, WL Ebke, J Eckweiler, S Edmonds, K Edwards, CA Egorov, K Ehrenfeld, W Ehrich, T Eifert, T Eigen, G Einsweiler, K Eisenhandler, E Ekelof, T El Kacimi, M Ellert, M Ellest, S Ellinghaus, F Ellis, K Ellis, N Elmsheuser, J Elsing, M Emeliyanov, D Engelmann, R Engl, A Epp, B Eppig, A Erdmann, J Ereditato, A Eriksson, D Ermoline, I Ernst, J Ernst, M Ernwein, J Errede, D Errede, S Ertel, E Escalier, M Escobar, C Curull, XE Esposito, B Etienvre, AI Etzion, E Evans, H Fabbri, L Fabre, C Facius, K Fakhrutdinov, RM Falciano, S Fang, Y Fanti, M Farbin, A Farilla, A Farley, J Farooque, T Farrington, SM Farthouat, P Fassnacht, P Fassouliotis, D Fatholahzadeh, B Fayard, L Fayette, F Febbraro, R Federic, P Fedin, OL Fedorko, W Feligioni, L Felzmann, CU Feng, C Feng, EJ Fenyuk, AB Ferencei, J Ferland, J Fernandes, B Fernando, W Ferrag, S Ferrando, J Ferrara, V Ferrari, A Ferrari, P Ferrari, R Ferrer, A Ferrer, ML Ferrere, D Ferretti, C Fiascaris, M Fiedler, F Filipcic, A Filippas, A Filthaut, F Fincke-Keeler, M Fiolhais, MCN Fiorini, L Firan, A Fischer, G Fisher, MJ Flechl, M Fleck, I Fleckner, J Fleischmann, P Fleischmann, S Flick, T Castillo, LRF Flowerdew, MJ Martin, TF Formica, A Forti, A Fortin, D Fournier, D Fowler, AJ Fowler, K Fox, H Francavilla, P Franchino, S Francis, D Franklin, M Franz, S Fraternali, M Fratina, S Freestone, J French, ST Froesch, R Froidevaux, D Frost, JA Fukunaga, C Torregrosa, EF Fuster, J Gabaldon, C Gabizon, O Gadfort, T Gadomski, S Gagliardi, G Gagnon, P Galea, C Gallas, EJ Gallo, V Gallop, BJ Gaus, P Galyaev, E Gan, KK Gao, YS Gaponenko, A Garcia-Sciveres, M Garcia, C Navarre, JEG Gardner, RW Garelli, N Garitaonandia, H Garonne, V Gatti, C Gaudio, G Gautard, V Gauzzi, P Gavrilenko, IL Gay, C Gaycken, G Gazis, EN Ge, P Gee, CNP Geich-Gimbel, C Gellerstedt, K Gemme, C Genest, MH Gentile, S Georgatos, F George, S Gershon, A Ghazlane, H Ghodbane, N Giacobbe, B Giagu, S Giakoumopoulou, V Giangiobbe, V Gianotti, F Gibbard, B Gibson, A Gibson, SM Gilbert, LM Gilchriese, M Gilewsky, V Gingrich, DM Ginzburg, J Giokaris, N Giordani, MP Giordano, R Giorgi, FM Giovannini, P Giraud, PF Girtler, P Giugni, D Giusti, P Gjelsten, BK Gladilin, LK Glasman, C Glazov, A Glitza, KW Glonti, GL Godfrey, J Godlewski, JJ Goebel, M Gopfert, T Goeringer, C Gossling, C Gottfert, T Goggi, V Goldfarb, S Goldin, D Golling, T Gomes, A Fajardo, LSG Goncalo, R Gonella, L Gong, C de la Hoz, SG Silva, MLG Gonzalez-Sevilla, S Goodson, JJ Goossens, L Gordon, HA Gorelov, I Gorfine, G Gorini, B Gorini, E Gorisek, A Gornicki, E Gosdzik, B Gosselink, M Gostkin, MI Eschrich, IG Gouighri, M Goujdami, D Goulette, MP Goussiou, AG Goy, C Grabowska-Bold, I Grafstrom, P Grahn, KJ Grancagnolo, S Grassi, V Gratchev, V Grau, N Gray, HM Gray, JA Graziani, E Green, B Greenshaw, T Greenwood, ZD Gregor, IM Grenier, P Griesmayer, E Griffiths, J Grigalashvili, N Grillo, AA Grimm, K Grinstein, S Grishkevich, YV Groh, M Groll, M Gross, E Grosse-Knetter, J Groth-Jensen, J Grybel, K Guicheney, C Guida, A Guillemin, T Guler, H Gunther, J Guo, B Gusakov, Y Gutierrez, A Gutierrez, P Guttman, N Gutzwiller, O Guyot, C Gwenlan, C Gwilliam, CB Haas, A Haas, S Haber, C Hadavand, HK Hadley, DR Haefner, P Hajduk, Z Hakohyan, H Haller, J Hamacher, K Hamilton, A Hamilton, S Han, L Hanagaki, K Hance, M Handel, C Hanke, P Hansen, JR Hansen, JB Hansen, JD Hansen, PH Hansl-Kozanecka, T Hansson, P Hara, K Hare, GA Harenberg, T Harrington, RD Harris, OM Harrison, K Hartert, J Hartjes, F Harvey, A Hasegawa, S Hasegawa, Y Hassani, S Haug, S Hauschild, M Hauser, R Havranek, M Hawkes, CM Hawkings, RJ Hayakawa, T Hayward, HS Haywood, SJ Head, SJ Hedberg, V Heelan, L Heim, S Heinemann, B Heisterkamp, S Helary, L Heller, M Hellman, S Helsens, C Hemperek, T Henderson, RCW Henke, M Henrichs, A Correia, AMH Henrot-Versille, S Hensel, C Henss, T Jimenez, YH Hershenhorn, AD Herten, G Hertenberger, R Hervas, L Hessey, NP Higon-Rodriguez, E Hill, JC Hiller, KH Hillert, S Hillier, SJ Hinchliffe, I Hines, E Hirose, M Hirsch, F Hirschbuehl, D Hobbs, J Hod, N Hodgkinson, MC Hodgson, P Hoecker, A Hoeferkamp, MR Hoffman, J Hoffmann, D Hohlfeld, M Holy, T Holzbauer, JL Homma, Y Horazdovsky, T Hori, T Horn, C Horner, S Horvat, S Hostachy, JY Hou, S Hoummada, A Howe, T Hrivnac, J Hryn'ova, T Hsu, PJ Hsu, SC Huang, GS Hubacek, Z Hubaut, F Huegging, E Huffman, TB Hughes, EW Hughes, G Hurwitz, M Husemann, U Huseynov, N Huston, J Huth, J Lacobucci, G Iakovidis, G Ibragimov, I Iconomidou-Fayard, L Idarraga, J Iengo, P Igonkina, O Ikegami, Y Ikeno, M Ilchenko, Y Iliadis, D Ince, T Ioannou, P Iodice, M Quiles, AI Ishikawa, A Ishino, M Ishmukhametov, R Isobe, T Issever, C Istin, S Itoh, Y Ivashin, AV Iwanski, W Iwasaki, H Izen, JM Izzo, V Jackson, B Jackson, JN Jackson, P Jaekel, MR Jain, V Jakobs, K Jakobsen, S Jakubek, J Jana, DK Jankowski, E Jansen, E Jantsch, A Janus, M Jarlskog, G Jeanty, L Plante, IJL Jenni, P Jez, P Jezequel, S Ji, W Jia, J Jiang, Y Belenguer, MJ Jin, S Jinnouchi, O Joffe, D Johansen, M Johansson, KE Johansson, P Johnert, S Johns, KA Jon-And, K Jones, G Jones, RWL Jones, TJ Jorge, PM Joseph, J Juranek, V Jussel, P Kabachenko, VV Kaci, M Kaczmarska, A Kado, M Kagan, H Kagan, M Kaiser, S Kajomovitz, E Kalinin, S Kalinovskaya, LV Kama, S Kanaya, N Kaneda, M Kantserov, VA Kanzaki, J Kaplan, B Kapliy, A Kaplon, J Kar, D Karagounis, M Unel, MK Karnevskiy, M Kartvelishvili, V Karyukhin, AN Kashif, L Kasmi, A Kass, RD Kastanas, A Kastoryano, M Kataoka, M Kataoka, Y Katsoufis, E Katzy, J Kaushik, V Kawagoe, K Kawamoto, T Kawamura, G Kayl, MS Kayumov, F Kazanin, VA Kazarinov, MY Keates, JR Keeler, R Keener, PT Kehoe, R Keil, M Kekelidze, GD Kelly, M Kenyon, M Kepka, O Kerschen, N Kersevan, BP Kersten, S Kessoku, K Khakzad, M Khalil-zada, F Khandanyan, H Khanov, A Kharchenko, D Khodinov, A Khomich, A Khoriauli, G Khovanskiy, N Khovanskiy, V Khramov, E Khubua, J Kim, H Kim, MS Kim, PC Kim, SH Kind, O Kind, P King, BT Kirk, J Kirsch, GP Kirsch, LE Kiryunin, AE Kisielewska, D Kittelmann, T Kiyamura, H Kladiva, E Klein, M Klein, U Kleinknecht, K Klemetti, M Klier, A Klimentov, A Klingenberg, R Klinkby, EB Klioutchnikova, T Klok, PF Klous, S Kluge, EE Kluge, T Kluit, P Klute, M Kluth, S Knecht, NS Kneringer, E Ko, BR Kobayashi, T Kobel, M Koblitz, B Kocian, M Kocnar, A Kodys, P Koneke, K Konig, AC Koenig, S Kopke, L Koetsveld, F Koevesarki, P Koffas, T Koffeman, E Kohn, F Kohout, Z Kohriki, T Kolanoski, H Kolesnikov, V Koletsou, I Koll, J Kollar, D Kolos, S Kolya, SD Komar, AA Komaragiri, JR Kondo, T Kono, T Konoplich, R Konovalov, SP Konstantinidis, N Koperny, S Korcyl, K Kordas, K Korn, A Korolkov, I Korolkova, EV Korotkov, VA Kortner, O Kostka, P Kostyukhin, VV Kotov, S Kotov, VM Kotov, KY Kourkoumelis, C Koutsman, A Kowalewski, R Kowalski, H Kowalski, TZ Kozanecki, W Kozhin, AS Kral, V Kramarenko, VA Kramberger, G Krasny, MW Krasznahorkay, A Kraus, J Kreisel, A Krejci, F Kretzschmar, J Krieger, N Krieger, P Kroeninger, K Kroha, H Kroll, J Kroseberg, J Krstic, J Kruchonak, U Kruger, H Krumshteyn, ZV Kubota, T Kuehn, S Kugel, A Kuhl, T Kuhn, D Kukhtin, V Kulchitsky, Y Kuleshov, S Kummer, C Kuna, M Kunkle, J Kupco, A Kurashige, H Kurata, M Kurochkin, YA Kus, V Kwee, R La Rosa, A La Rotonda, L Labbe, J Lacasta, C Lacava, F Lacker, H Lacour, D Lacuesta, VR Ladygin, E Lafaye, R Laforge, B Lagouri, T Lai, S Lamanna, M Lampen, CL Lampl, W Lancon, E Landgraf, U Landon, MPJ Lane, JL Lankford, AJ Lanni, F Lantzsch, K Lanza, A Laplace, S Lapoire, C Laporte, JE Lari, T Larner, A Lassnig, M Laurelli, P Lavrijsen, W Laycock, P Lazarev, AB Lazzaro, A Le Dortz, O Le Guirriec, E Le Menedeu, E Lebedev, A Lebel, C LeCompte, T Ledroit-Guillon, F Lee, H Lee, JSH Lee, SC Lefebvre, M Legendre, M LeGeyt, BC Legger, F Leggett, C Lehmacher, M Miotto, GL Lei, X Leitner, R Lellouch, D Lellouch, J Lendermann, V Leney, KJC Lenz, T Lenzen, G Lenzi, B Leonhardt, K Leroy, C Lessard, JR Lester, CG Cheong, ALF Leveque, J Levin, D Levinson, LJ Leyton, M Li, H Li, X Liang, Z Liang, Z Liberti, B Lichard, P Lichtnecker, M Lie, K Liebig, W Lilley, JN Limosani, A Limper, M Lin, SC Linnemann, JT Lipeles, E Lipinsky, L Lipniacka, A Liss, TM Lissauer, D Lister, A Litke, AM Liu, C Liu, D Liu, H Liu, JB Liu, T Liu, Y Livan, M Lleres, A Lloyd, SL Lobodzinska, E Loch, P Lockman, WS Lockwitz, S Loddenkoetter, T Loebinger, FK Loginov, A Loh, CW Lohse, T Lohwasser, K Lokajicek, M Long, RE Lopes, L Mateos, DL Losada, M Loscutoff, P Lou, X Lounis, A Loureiro, KF Lovas, L Love, J Love, PA Lowe, AJ Lu, F Lubatti, HJ Luci, C Lucotte, A Ludwig, A Ludwig, D Ludwig, I Luehring, F Lumb, D Luminari, L Lund, E Lund-Jensen, B Lundberg, B Lundberg, J Lundquist, J Lynn, D Lys, J Lytken, E Ma, H Ma, LL Goia, JAM Maccarrone, G Macchiolo, A Macek, B Miguens, JM Mackeprang, R Madaras, RJ Mader, WF Maenner, R Maeno, T Mattig, P Mattig, S Martins, PJM Magradze, E Mahalalel, Y Mahboubi, K Mahmood, A Maiani, C Maidantchik, C Maio, A Majewski, S Makida, Y Makouski, M Makovec, N Malecki, P Malecki, P Maleev, VP Malek, F Mallik, U Malon, D Maltezos, S Malyshev, V Malyukov, S Mambelli, M Mameghani, R Mamuzic, J Mandelli, L Mandic, I Mandrysch, R Maneira, J Mangeard, PS Manjavidze, ID Manning, PM Manousakis-Katsikakis, A Mansoulie, B Mapelli, A Mapelli, L March, L Marchand, JF Marchese, F Marchiori, G Marcisovsky, M Marino, CP Marroquim, F Marshall, Z Marti-Garcia, S Martin, AJ Martin, AJ Martin, B Martin, B Martin, FF Martin, JP Martin, TA Latour, BMD Martinez, M Outschoorn, VM Martyniuk, AC Marzano, F Marzin, A Masetti, L Mashimo, T Mashinistov, R Masik, J Mastennikov, AL Massa, I Massol, N Mastroberardino, A Masubuchi, T Matricon, P Matsunaga, H Matsushita, T Mattravers, C Maxfield, SJ Mayne, A Mazini, R Mazur, M Mc Donald, J Mc Kee, SP McCarn, A McCarthy, RL McCubbin, NA McFarlane, KW McGlone, H Mchedlidze, G McMahon, SJ McPherson, RA Meade, A Mechnich, J Mechtel, M Medinnis, M Meera-Lebbai, R Meguro, TM Mehlhase, S Mehta, A Meier, K Meirose, B Melachrinos, C Garcia, BRM Navas, LM Meng, Z Menke, S Meoni, E Mermod, P Merola, L Meroni, C Merritt, FS Messina, AM Metcalfe, J Mete, AS Meyer, JP Meyer, J Meyer, J Meyer, TC Meyer, WT Miao, J Michal, S Micu, L Middleton, RP Migas, S Mijovic, L Mikenberg, G Mikestikova, M Mikuz, M Miller, DW Mills, WJ Mills, CM Milov, A Milstead, DA Milstein, D Minaenko, AA Minano, M Minashvili, IA Mincer, AI Mindur, B Mineev, M Ming, Y Mir, LM Mirabelli, G Misawa, S Misiejuk, A Mitrevski, J Mitsou, VA Miyagawa, PS Mjornmark, JU Moa, T Moed, S Moeller, V Monig, K Moser, N Mohr, W Mohrdieck-Mock, S Moles-Valls, R Molina-Perez, J Monk, J Monnier, E Montesano, S Monticelli, F Moore, RW Herrera, CM Moraes, A Morais, A Morel, J Morello, G Moreno, D Llacer, MM Morettini, P Morii, M Morley, AK Mornacchi, G Morozov, SV Morris, JD Moser, HG Mosidze, M Moss, J Mount, R Mountricha, E Mouraviev, SV Moyse, EJW Mudrinic, M Mueller, F Mueller, J Mueller, K Muller, TA Muenstermann, D Muir, A Munwes, Y Garcia, RM Murray, WJ Mussche, I Musto, E Myagkov, AG Myska, M Nadal, J Nagai, K Nagano, K Nagasaka, Y Nairz, AM Nakamura, K Nakano, I Nakatsuka, H Nanava, G Napier, A Nash, M Nation, NR Nattermann, T Naumann, T Navarro, G Nderitu, SK Neal, HA Nebot, E Nechaeva, P Negri, A Negri, G Nelson, A Nelson, TK Nemecek, S Nemethy, P Nepomuceno, AA Nessi, M Neubauer, MS Neusiedl, A Neves, RM Nevski, P Newcomer, FM Nickerson, RB Nicolaidou, R Nicolas, L Nicoletti, G Nicquevert, B Niedercorn, F Nielsen, J Nikiforov, A Nikolaev, K Nikolic-Audit, I Nikolopoulos, K Nilsen, H Nilsson, P Nisati, A Nishiyama, T Nisius, R Nodulman, L Nomachi, M Nomidis, I Nordberg, M Nordkvist, B Notz, D Novakova, J Nozaki, M Nozicka, M Nugent, IM Nuncio-Quiroz, AE Hanninger, GN Nunnemann, T Nurse, E O'Neil, DC O'Shea, V Oakham, FG Oberlack, H Ochi, A Oda, S Odaka, S Odier, J Ogren, H Oh, A Oh, SH Ohm, CC Ohshima, T Ohshita, H Ohsugi, T Okada, S Okawa, H Okumura, Y Okuyama, T Olchevski, AG Oliveira, M Damazio, DO Garcia, EO Olivito, D Olszewski, A Olszowska, J Omachi, C Onofre, A Onyisi, PUE Oram, CJ Oreglia, MJ Oren, Y Orestano, D Orlov, I Barrera, CO Orr, RS Ortega, EO Osculati, B Ospanov, R Osuna, C Ottersbach, JP Ould-Saada, F Ouraou, A Ouyang, Q Owen, M Owen, S Oyarzun, A Ozcan, VE Ozone, K Ozturk, N Pages, AP Aranda, CP Paganis, E Pahl, C Paige, F Pajchel, K Palestini, S Pallin, D Palma, A Palmer, JD Pan, YB Panagiotopoulou, E Panes, B Panikashvili, N Panitkin, S Pantea, D Panuskova, M Paolone, V Papadopoulou, TD Park, SJ Park, W Parker, MA Parodi, F Parsons, JA Parzefall, U Pasqualucci, E Passeri, A Pastore, F Pastore, F Pasztor, G Pataraia, S Pater, JR Patricelli, S Pauly, T Peak, LS Pecsy, M Morales, MIP Peleganchuk, SV Peng, H Penson, A Penwell, J Perantoni, M Perez, K Codina, EP Garcia-Estan, MTP Reale, VP Perini, L Pernegger, H Perrino, R Persembe, S Perus, P Peshekhonov, VD Petersen, BA Petersen, TC Petit, E Petridou, C Petrolo, E Petrucci, F Petschull, D Petteni, M Pezoa, R Phan, A Phillips, AW Phillips, PW Piacquadio, G Piccinini, M Piegaia, R Pilcher, JE Pilkington, AD Pina, J Pinamonti, M Pinfold, JL Pinto, B Pizio, C Placakyte, R Plamondon, M Pleier, MA Poblaguev, A Poddar, S Podlyski, F Poggioli, L Pohl, M Polci, F Polesello, G Policicchio, A Polini, A Poll, J Polychronakos, V Pomeroy, D Pommes, K Ponsot, P Pontecorvo, L Pope, BG Popeneciu, GA Popovic, DS Poppleton, A Popule, J Bueso, XP Porter, R Pospelov, GE Pospisil, S Potekhin, M Potrap, IN Potter, CJ Potter, CT Potter, KP Poulard, G Poveda, J Prabhu, R Pralavorio, P Prasad, S Pravahan, R Pribyl, L Price, D Price, LE Prichard, PM Prieur, D Primavera, M Prokofiev, K Prokoshin, F Protopopescu, S Proudfoot, J Prudent, X Przysiezniak, H Psoroulas, S Ptacek, E Purdham, J Purohit, M Puzo, P Pylypchenko, Y Qi, M Qian, J Qian, W Qin, Z Quadt, A Quarrie, DR Quayle, WB Quinonez, F Raas, M Radeka, V Radescu, V Radics, B Rador, T Ragusa, F Rahal, G Rahimi, AM Rajagopalan, S Rammeasee, M Rammes, M Rauscher, F Rauter, E Raymond, M Read, AL Rebuzzi, DM Redelbach, A Redlinger, G Reece, R Reeves, K Reinherz-Aronis, E Reinsch, A Reisinger, I Reljic, D Rembser, C Ren, ZL Renkel, P Rescia, S Rescigno, M Resconi, S Resende, B Reznicek, P Rezvani, R Richards, A Richter, R Richter-Was, E Ridel, M Rijpstra, M Rijssenbeek, M Rimoldi, A Rinaldi, L Rios, RR Riu, I Rizatdinova, F Rizvi, E Romero, DAR Robertson, SH Robichaud-Veronneau, A Robinson, D Robinson, JEM Robinson, M Robson, A de Lima, JGR Roda, C Dos Santos, DR Rodriguez, D Garcia, YR Roe, S Rohne, O Rojo, V Rolli, S Romaniouk, A Romanov, VM Romeo, G Maltrana, DR Roos, L Ros, E Rosati, S Rosenbaum, GA Rosselet, L Rossetti, V Rossi, LP Rotaru, M Rothberg, J Rousseau, D Royon, CR Rozanov, A Rozen, Y Ruan, X Ruckert, B Ruckstuhl, N Rud, VI Rudolph, G Ruhr, F Ruggieri, E Ruiz-Martinez, A Rumyantsev, L Rurikova, Z Rusakovich, NA Rutherfoord, JP Ruwiedel, C Ruzicka, P Ryabov, YF Ryan, P Rybkin, G Rzaeva, S Saavedra, AF Sadrozinski, HFW Sadykov, R Tehrani, FS Sakamoto, H Salamanna, G Salamon, A Saleem, MS Salihagic, D Salnikov, A Salt, J Ferrando, BMS Salvatore, D Salvatore, F Salvucci, A Salzburger, A Sampsonidis, D Samset, BH Sandaker, H Sander, HG Sanders, MP Sandhoff, M Sandhu, P Sandstroem, R Sandvoss, S Sankey, DPC Sanny, B Sansoni, A Rios, CS Santoni, C Santonico, R Saraiva, JG Sarangi, T Sarkisyan-Grinbaum, E Sarri, F Sasaki, O Sasao, N Satsounkevitch, I Sauvage, G Savard, P Savine, AY Savinov, V Sawyer, L Saxon, DH Says, LP Sbarra, C Sbrizzi, A Scannicchio, DA Schaarschmidt, J Schacht, P Schafer, U Schaetzel, S Schaffer, AC Schaile, D Schamberger, RD Schamov, AG Scharf, V Schegelsky, VA Scheirich, D Schernau, M Scherzer, M Schiavi, C Schieck, J Schioppa, M Schlenker, S Schmidt, E Schmieden, K Schmitt, C Schmitz, M Schonig, A Schott, M Schouten, D Schovancova, J Schram, M Schreiner, A Schroeder, C Schroer, N Schroers, M Schultes, J Schultz-Coulon, HC Schumacher, JW Schumacher, M Schumm, BA Schune, P Schwanenberger, C Schwartzman, A Schwemling, P Schwienhorst, R Schwierz, R Schwindling, J Scott, WG Searcy, J Sedykh, E Segura, E Seidel, SC Seiden, A Seifert, F Seixas, JM Sekhniaidze, G Seliverstov, DM Sellden, B Semprini-Cesari, N Serfon, C Serin, L Seuster, R Severini, H Sevior, ME Sfyrla, A Shabalina, E Shamim, M Shan, LY Shank, JT Shao, QT Shapiro, M Shatalov, PB Shaw, K Sherman, D Sherwood, P Shibata, A Shimojima, M Shin, T Shmeleva, A Shochet, MJ Shupe, MA Sicho, P Sidoti, A Siegert, F Siegrist, J Sijacki, D Silbert, O Silva, J Silver, Y Silverstein, D Silverstein, SB Simak, V Simic, L Simion, S Simmons, B Simonyan, M Sinervo, P Sinev, NB Sipica, V Siragusa, G Sisakyan, AN Sivoklokov, SY Sjoelin, J Sjursen, TB Skovpen, K Skubic, P Slater, M Slavicek, T Sliwa, K Sloper, J Smakhtin, V Smirnov, SY Smirnov, Y Smirnova, LN Smirnova, O Smith, BC Smith, D Smith, KM Smizanska, M Smolek, K Snesarev, AA Snow, SW Snow, J Snuverink, J Snyder, S Soares, M Sobie, R Sodomka, J Soffer, A Solans, CA Solar, M Solc, J Camillocci, ES Solodkov, AA Solovyanov, OV Sondericker, J Sopko, V Sopko, B Sosebee, M Soukharev, A Spagnolo, S Spano, F Spighi, R Spigo, G Spila, F Spiwoks, R Spousta, M Spreitzer, T Spurlock, B St Denis, RD Stahl, T Stahlman, JJ Stamen, R Stancu, SN Stanecka, E Stanek, RW Stanescu, C Stapnes, S Starchenko, EA Stark, J Staroba, P Starovoitov, P Stastny, J Stavina, P Steele, G Steinbach, P Steinberg, P Stekl, I Stelzer, B Stelzer, HJ Stelzer-Chilton, O Stenzel, H Stevenson, K Stewart, GA Stockton, MC Stoerig, K Stoicea, G Stonjek, S Strachota, P Stradling, AR Straessner, A Strandberg, J Strandberg, S Strandlie, A Strauss, M Strizenec, P Strohmer, R Strom, DM Stroynowski, R Strube, J Stugu, B Sturm, P Soh, DA Su, D Sugaya, Y Sugimoto, T Suhr, C Suk, M Sulin, VV Sultansoy, S Sumida, T Sun, XH Sundermann, JE Suruliz, K Sushkov, S Susinno, G Sutton, MR Suzuki, T Suzuki, Y Sykora, I Sykora, T Szymocha, T Sanchez, J Ta, D Tackmann, K Taffard, A Tafirout, R Taga, A Takahashi, Y Takai, H Takashima, R Takeda, H Takeshita, T Talby, M Talyshev, A Tamsett, MC Tanaka, J Tanaka, R Tanaka, S Tanaka, S Tapprogge, S Tardif, D Tarem, S Tarrade, F Tartarelli, GF Tas, P Tasevsky, M Tassi, E Tatarkhanov, M Taylor, C Taylor, FE Taylor, GN Taylor, RP Taylor, W Teixeira-Dias, P Ten Kate, H Teng, PK Tennenbaum-Katan, YD Terada, S Terashi, K Terron, J Terwort, M Testa, M Teuscher, R Therhaag, J Thioye, M Thoma, S Thomas, JP Thompson, EN Thompson, PD Thompson, PD Thompson, RJ Thompson, AS Thomson, E Thun, RP Tic, T Tikhomirov, VO Tikhonov, VA Tipton, P Viegas, FJTA Tisserant, S Toczek, B Todorov, T Todorova-Nova, S Toggerson, B Tojo, J Tokar, S Tokushuku, K Tollefson, K Tomasek, L Tomasek, M Tomoto, M Tompkins, L Toms, K Tonoyan, A Topfel, C Topilin, ND Torchiani, I Torrence, E Pastor, ET Toth, J Touchard, F Tovey, DR Trefzger, T Tremblet, L Tricoli, A Trigger, IM Trincaz-Duvoid, S Trinh, TN Tripiana, MF Triplett, N Trischuk, W Trivedi, A Trocme, B Troncon, C Trzupek, A Tsarouchas, C Tseng, JCL Tsiakiris, M Tsiareshka, PV Tsionou, D Tsipolitis, G Tsiskaridze, V Tskhadadze, EG Tsukerman, II Tsulaia, V Tsung, JW Tsuno, S Tsybychev, D Tuggle, JM Turecek, D Cakir, IT Turlay, E Tuts, PM Twomey, MS Tylmad, M Tyndel, M Uchida, K Ueda, I Ueno, R Ugland, M Uhlenbrock, M Uhrmacher, M Ukegawa, F Unal, G Undrus, A Unel, G Unno, Y Urbaniec, D Urkovsky, E Urquijo, P Urrejola, P Usai, G Uslenghi, M Vacavant, L Vacek, V Vachon, B Vahsen, S Valente, P Valentinetti, S Valkar, S Gallego, EV Vallecorsa, S Ferrer, JAV Van Berg, R van der Graaf, H van der Kraaij, E van der Poel, E van der Ster, D van Eldik, N van Gemmeren, P van Kesteren, Z van Vulpen, I Vandelli, W Vaniachine, A Vankov, P Vannucci, F Vari, R Varnes, EW Varouchas, D Vartapetian, A Varvell, KE Vasilyeva, L Vassilakopoulos, VI Vazeille, F Vellidis, C Veloso, F Veneziano, S Ventura, A Ventura, D Venturi, M Venturi, N Vercesi, V Verducci, M Verkerke, W Vermeulen, JC Vetterli, MC Vichou, I Vickey, T Viehhauser, GHA Villa, M Villani, EG Perez, MV Vilucchi, E Vincter, MG Vinek, E Vinogradov, VB Viret, S Virzi, J Vitale, A Vitells, O Vivarelli, I Vague, FV Vlachos, S Vlasak, M Vlasov, N Vogel, A Vokac, P Volpi, M von der Schmitt, H von Loeben, J von Radziewski, H von Toerne, E Vorobel, V Vorwerk, V Vos, M Voss, R Voss, TT Vossebeld, JH Vranjes, N Milosavljevic, MV Vrba, V Vreeswijk, M Anh, TV Vudragovic, D Vuillermet, R Vukotic, I Wagner, P Walbersloh, J Walder, J Walker, R Walkowiak, W Wall, R Wang, C Wang, H Wang, J Wang, SM Warburton, A Ward, CP Warsinsky, M Wastie, R Watkins, PM Watson, AT Watson, MF Watts, G Watts, S Waugh, AT Waugh, BM Weber, MD Weber, M Weber, MS Weber, P Weidberg, AR Weingarten, J Weiser, C Wellenstein, H Wells, PS Wenaus, T Wendler, S Wengler, T Wenig, S Wermes, N Werner, M Werner, P Werth, M Werthenbach, U Wessels, M Whalen, K White, A White, MJ White, S Whitehead, SR Whiteson, D Whittington, D Wicek, F Wicke, D Wickens, FJ Wiedenmann, W Wielers, M Wienemann, P Wiglesworth, C Wiik, LAM Wildauer, A Wildt, MA Wilkens, HG Williams, E Williams, HH Willocq, S Wilson, JA Wilson, MG Wilson, A Wingerter-Seez, I Winklmeier, F Wittgen, M Wolter, MW Wolters, H Wosiek, BK Wotschack, J Woudstra, MJ Wraight, K Wright, C Wright, D Wrona, B Wu, SL Wu, X Wulf, E Wynne, BM Xaplanteris, L Xella, S Xie, S Xu, D Xu, N Yamada, M Yamamoto, A Yamamoto, K Yamamoto, S Yamamura, T Yamaoka, J Yamazaki, T Yamazaki, Y Yan, Z Yang, H Yang, UK Yang, Z Yao, WM Yao, Y Yasu, Y Ye, J Ye, S Yilmaz, M Yoosoofmiya, R Yorita, K Yoshida, R Young, C Youssef, SP Yu, D Yu, J Yuan, L Yurkewicz, A Zaidan, R Zaitsev, AM Zajacova, Z Zambrano, V Zanello, L Zaytsev, A Zeitnitz, C Zeller, M Zemla, A Zendler, C Zenin, O Zenis, T Zenonos, Z Zenz, S Zerwas, D della Porta, GZ Zhan, Z Zhang, H Zhang, J Zhang, Q Zhang, X Zhao, L Zhao, T Zhao, Z Zhemchugov, A Zhong, J Zhou, B Zhou, N Zhou, Y Zhu, CG Zhu, H Zhu, Y Zhuang, X Zhuravlov, V Zimmermann, R Zimmermann, S Zimmermann, S Ziolkowski, M Zivkovic, L Zobernig, G Zoccoli, A zur Nedden, M Zutshi, V AF Aad, G. Abbott, B. Abdallah, J. Abdelalim, A. A. Abdesselam, A. Abdinov, O. Abi, B. Abolins, M. Abramowicz, H. Abreu, H. Acharya, B. S. Adams, D. L. Addy, T. N. Adelman, J. Adorisio, C. Adragna, P. Adye, T. Aefsky, S. Aguilar-Saavedra, J. A. Aharrouche, M. Ahlen, S. P. Ahles, F. Ahmad, A. Ahsan, M. Aielli, G. Akdogan, T. Akesson, T. P. A. Akimoto, G. Akimov, A. V. Aktas, A. Alam, M. S. Alam, M. A. Albrand, S. Aleksa, M. Aleksandrov, I. N. Alexa, C. Alexander, G. Alexandre, G. Alexopoulos, T. Alhroob, M. Aliev, M. Alimonti, G. Alison, J. Aliyev, M. Allport, P. P. Allwood-Spiers, S. E. Almond, J. Aloisio, A. Alon, R. Alonso, A. Alviggi, M. G. Amako, K. Amelung, C. Amorim, A. Amoros, G. Amram, N. Anastopoulos, C. Andeen, T. Anders, C. F. Anderson, K. J. Andreazza, A. Andrei, V. Anduaga, X. S. Angerami, A. Anghinolfi, F. Anjos, N. Annovi, A. Antonaki, A. Antonelli, M. Antonelli, S. Antos, J. Antunovic, B. Anulli, F. Aoun, S. Arabidze, G. Aracena, I. Arai, Y. Arce, A. T. H. Archambault, J. P. Arfaoui, S. Arguin, J. -F. Argyropoulos, T. Arik, M. Armbruster, A. J. Arnaez, O. Arnault, C. Artamonov, A. Arutinov, D. Asai, M. Asai, S. Asfandiyarov, R. Ask, S. Asman, B. Asner, D. Asquith, L. Assamagan, K. Astvatsatourov, A. Atoian, G. Auerbach, B. Augsten, K. Aurousseau, M. Austin, N. Avolio, G. Avramidou, R. Ay, C. Azuelos, G. Azuma, Y. Baak, M. A. Bach, A. M. Bachacou, H. Bachas, K. Backes, M. Badescu, E. Bagnaia, P. Bai, Y. Bain, T. Baines, J. T. Baker, O. K. Baker, M. D. Baker, S. Pedrosa, F. Baltasar Dos Santos Banas, E. Banerjee, P. Banerjee, S. Banfi, D. Bangert, A. Bansal, V. Baranov, S. P. Barashkou, A. Barber, T. Barberio, E. L. Barberis, D. Barbero, M. Bardin, D. Y. Barillari, T. Barisonzi, M. Barklow, T. Barlow, N. Barnett, B. M. Barnett, R. M. Baroncelli, A. Barr, A. J. Barreiro, F. da Costa, J. Barreiro Guimaraes Barrillon, P. Bartoldus, R. Bartsch, D. Bates, R. L. Batkova, L. Batley, J. R. Battaglia, A. Battistin, M. Bauer, F. Bawa, H. S. Bazalova, M. Beare, B. Beau, T. Beauchemin, P. H. Beccherle, R. Bechtle, P. Beck, G. A. Beck, H. P. Beckingham, M. Becks, K. H. Beddall, A. J. Beddall, A. Bednyakov, V. A. Bee, C. Begel, M. Harpaz, S. Behar Behera, P. K. Beimforde, M. Belanger-Champagne, C. Bell, P. J. Bell, W. H. Bella, G. Bellagamba, L. Bellina, F. Bellomo, M. Belloni, A. Belotskiy, K. Beltramello, O. Ben Ami, S. Benary, O. Benchekroun, D. Bendel, M. Benedict, B. H. Benekos, N. Benhammou, Y. Benjamin, D. P. Benoit, M. Bensinger, J. R. Benslama, K. Bentvelsen, S. Beretta, M. Berge, D. Kuutmann, E. Bergeaas Berger, N. Berghaus, F. Berglund, E. Beringer, J. Bernabeu, J. Bernat, P. Bernhard, R. Bernius, C. Berry, T. Bertin, A. Besana, M. I. Besson, N. Bethke, S. Bianchi, R. M. Bianco, M. Biebel, O. Biesiada, J. Biglietti, M. Bilokon, H. Bindi, M. Bingul, A. Bini, C. Biscarat, C. Bitenc, U. Black, K. M. Blair, R. E. Blanchard, J. -B. Blanchot, G. Blocker, C. Blondel, A. Blum, W. Blumenschein, U. Bobbink, C. J. Bocci, A. Boehler, M. Boek, J. Boelaert, N. Boeser, S. Bogaerts, J. A. Bogouch, A. Bohm, C. Bohm, J. Boisvert, V. Bold, T. Boldea, V. Bondarenko, V. G. Bondioli, M. Boonekamp, M. Bordoni, S. Borer, C. Borisov, A. Borissov, G. Borjanovic, I. Borroni, S. Bos, K. Boscherini, D. Bosman, M. Boterenbrood, H. Bouchami, J. Boudreau, J. Bouhova-Thacker, E. V. Boulahouache, C. Bourdarios, C. Boveia, A. Boyd, J. Boyko, I. R. Bozovic-Jelisavcic, I. Bracinik, J. Braem, A. Branchini, P. Brandt, A. Brandt, G. Brandt, O. Bratzler, U. Brau, B. Brau, J. E. Braun, H. M. Brelier, B. Bremer, J. Brenner, R. Bressler, S. Britton, D. Brochu, F. M. Brock, I. Brock, R. Brodet, E. Bromberg, C. Brooijmans, G. Brooks, W. K. Brown, G. de Renstrom, P. A. Bruckman Bruncko, D. Bruneliere, R. Brunet, S. Bruni, A. Bruni, G. Bruschi, M. Bucci, F. Buchanan, J. Buchholz, P. Buckley, A. G. Budagov, I. A. Budick, B. Buescher, V. Bugge, L. Bulekov, O. Bunse, M. Buran, T. Burckhart, H. Burdin, S. Burgess, T. Burke, S. Busato, E. Bussey, P. Buszello, C. P. Butin, F. Butler, B. Butler, J. M. Buttar, C. M. Butterworth, J. M. Byatt, T. Caballero, J. Cabrera Urban, S. Caforio, D. Cakir, O. Calafiura, P. Calderini, G. Calfayan, P. Calkins, R. Caloba, L. P. Calvet, D. Camarri, P. Cameron, D. Campana, S. Campanelli, M. Canale, V. Canelli, F. Canepa, A. Cantero, J. Capasso, L. Garrido, M. D. M. Capeans Caprini, I. Caprini, M. Capua, M. Caputo, R. Caramarcu, C. Cardarelli, R. Carli, T. Carlino, G. Carminati, L. Caron, B. Caron, S. Montoya, G. D. Carrillo Montero, S. Carron Carter, A. A. Carter, J. R. Carvalho, J. Casadei, D. Casado, M. P. Cascella, M. Hernandez, A. M. Castaneda Castaneda-Miranda, E. Castillo Gimenez, V. Castro, N. F. Cataldi, G. Catinaccio, A. Catmore, J. R. Cattai, A. Cattani, G. Caughron, S. Cavalleri, P. Cavalli, D. Cavalli-Sforza, M. Cavasinni, V. Ceradini, F. Cerqueira, A. S. Cerri, A. Cerrito, L. Cerutti, F. Cetin, S. A. Chafaq, A. Chakraborty, D. Chan, K. Chapman, J. D. Chapman, J. W. Chareyre, E. Charlton, D. G. Chavda, V. Cheatham, S. Chekanov, S. Chekulaev, S. V. Chelkov, G. A. Chen, H. Chen, S. Chen, X. Cheplakov, A. Chepurnov, V. F. El Moursli, R. Cherkaoui Tcherniatine, V. Chesneanu, D. Cheu, E. Cheung, S. L. Chevalier, L. Chevallier, F. Chiefari, G. Chikovani, L. Childers, J. T. Chilingarov, A. Chiodini, G. Chizhov, V. Choudalakis, G. Chouridou, S. Christidi, I. A. Christov, A. Chromek-Burckhart, D. Chu, M. L. Chudoba, J. Ciapetti, G. Ciftci, A. K. Ciftci, R. Cinca, D. Cindro, V. Ciobotaru, M. D. Ciocca, C. Ciocio, A. Cirilli, M. Clark, A. Clark, P. J. Cleland, W. Clemens, J. C. Clement, B. Clement, C. Coadou, Y. Cobal, M. Coccaro, A. Cochran, J. Coggeshall, J. Cogneras, E. Colijn, A. P. Collard, C. Collins, N. J. Collins-Tooth, C. Collot, J. Colon, G. Conde Muino, P. Coniavitis, E. Conidi, M. C. Consonni, M. Constantinescu, S. Conta, C. Conventi, F. Cooke, M. Cooper, B. D. Cooper-Sarkar, A. M. Cooper-Smith, N. J. Copic, K. Cornelissen, T. Corradi, M. Corriveau, F. Corso-Radu, A. Cortes-Gonzalez, A. Cortiana, G. Costa, G. Costa, M. J. Costanzo, D. Costin, T. Cote, D. Coura Torres, R. Courneyea, L. Cowan, G. Cowden, C. Cox, B. E. Cranmer, K. Cranshaw, J. Cristinziani, M. Crosetti, G. Crupi, R. Crepe-Renaudin, S. Almenar, C. Cuenca Donszelmann, T. Cuhadar Curatolo, M. Curtis, C. J. Cwetanski, P. Czyczula, Z. D'Auria, S. D'Onofrio, M. D'Orazio, A. Da Via, C. Dabrowski, W. Dai, T. Dallapiccola, C. Dallison, S. J. Daly, C. H. Dam, M. Danielsson, H. O. Dannheim, D. Dao, V. Darbo, G. Darlea, G. L. Davey, W. Davidek, T. Davidson, N. Davidson, R. Davies, M. Davison, A. R. Dawson, I. Daya, R. K. De, K. de Asmundis, R. De Castro, S. Salgado, P. E. De Castro Faria De Cecco, S. de Graat, J. De Groot, N. de Jong, P. De Mora, L. Branco, M. De Oliveira De Pedis, D. De Salvo, A. De Sanctis, U. De Santo, A. De Regie, J. B. De Vivie Dean, S. Dedovich, D. V. Degenhardt, J. Dehchar, M. Del Papa, C. Del Peso, J. Del Prete, T. Dell'Acqua, A. Dell'Asta, L. Della Pietra, M. della Volpe, D. Delmastro, M. Delsart, P. A. Deluca, C. Demers, S. Demichev, M. Demirkoz, B. Deng, J. Deng, W. Denisov, S. P. Derkaoui, J. E. Derue, F. Dervan, P. Desch, K. Deviveiros, P. O. Dewhurst, A. DeWilde, B. Dhaliwal, S. Dhullipudi, R. Di Ciaccio, A. Di Ciaccio, L. Di Girolamo, A. Di Girolamo, B. Di Luse, S. Di Mattia, A. Di Nardo, R. Di Simone, A. Di Sipio, R. Diaz, M. A. Diblen, F. Diehl, E. B. Dietrich, J. Dietzsch, T. A. Diglio, S. Yagei, K. Dindar Dingfelder, J. Dionisi, C. Dita, P. Dita, S. Dittus, F. Djama, F. Djilkibaev, R. Djobava, T. do Vale, M. A. B. Do Valle Wemans, A. Doan, T. K. O. Dobos, D. Dobson, E. Dobson, M. Doglioni, C. Doherty, T. Dolejsi, J. Dolenc, I. Dolezal, Z. Dolgoshein, B. A. Dohmae, T. Donega, M. Donini, J. Dopke, J. Doria, A. Dos Anjos, A. Dotti, A. Dova, M. T. Doxiadis, A. Doyle, A. T. Drasal, Z. Dris, M. Dubbert, J. Duchovni, E. Duckeck, G. Dudarev, A. Dudziak, F. Duehrssen, M. Duflot, L. Dufour, M. -A. Dunford, M. Yildiz, H. Duran Duxfield, R. Dwuznik, M. Dueren, M. Ebenstein, W. L. Ebke, J. Eckweiler, S. Edmonds, K. Edwards, C. A. Egorov, K. Ehrenfeld, W. Ehrich, T. Eifert, T. Eigen, G. Einsweiler, K. Eisenhandler, E. Ekelof, T. El Kacimi, M. Ellert, M. Ellest, S. Ellinghaus, F. Ellis, K. Ellis, N. Elmsheuser, J. Elsing, M. Emeliyanov, D. Engelmann, R. Engl, A. Epp, B. Eppig, A. Erdmann, J. Ereditato, A. Eriksson, D. Ermoline, I. Ernst, J. Ernst, M. Ernwein, J. Errede, D. Errede, S. Ertel, E. Escalier, M. Escobar, C. Espinal Curull, X. Esposito, B. Etienvre, A. I. Etzion, E. Evans, H. Fabbri, L. Fabre, C. Facius, K. Fakhrutdinov, R. M. Falciano, S. Fang, Y. Fanti, M. Farbin, A. Farilla, A. Farley, J. Farooque, T. Farrington, S. M. Farthouat, P. Fassnacht, P. Fassouliotis, D. Fatholahzadeh, B. Fayard, L. Fayette, F. Febbraro, R. Federic, P. Fedin, O. L. Fedorko, W. Feligioni, L. Felzmann, C. U. Feng, C. Feng, E. J. Fenyuk, A. B. Ferencei, J. Ferland, J. Fernandes, B. Fernando, W. Ferrag, S. Ferrando, J. Ferrara, V. Ferrari, A. Ferrari, P. Ferrari, R. Ferrer, A. Ferrer, M. L. Ferrere, D. Ferretti, C. Fiascaris, M. Fiedler, F. Filipcic, A. Filippas, A. Filthaut, F. Fincke-Keeler, M. Fiolhais, M. C. N. Fiorini, L. Firan, A. Fischer, G. Fisher, M. J. Flechl, M. Fleck, I. Fleckner, J. Fleischmann, P. Fleischmann, S. Flick, T. Castillo, L. R. Flores Flowerdew, M. J. Martin, T. Fonseca Formica, A. Forti, A. Fortin, D. Fournier, D. Fowler, A. J. Fowler, K. Fox, H. Francavilla, P. Franchino, S. Francis, D. Franklin, M. Franz, S. Fraternali, M. Fratina, S. Freestone, J. French, S. T. Froesch, R. Froidevaux, D. Frost, J. A. Fukunaga, C. Torregrosa, E. Fullana Fuster, J. Gabaldon, C. Gabizon, O. Gadfort, T. Gadomski, S. Gagliardi, G. Gagnon, P. Galea, C. Gallas, E. J. Gallo, V. Gallop, B. J. Gaus, P. Galyaev, E. Gan, K. K. Gao, Y. S. Gaponenko, A. Garcia-Sciveres, M. Garcia, C. Navarre, J. E. Garcia Gardner, R. W. Garelli, N. Garitaonandia, H. Garonne, V. Gatti, C. Gaudio, G. Gautard, V. Gauzzi, P. Gavrilenko, I. L. Gay, C. Gaycken, G. Gazis, E. N. Ge, P. Gee, C. N. P. Geich-Gimbel, Ch. Gellerstedt, K. Gemme, C. Genest, M. H. Gentile, S. Georgatos, F. George, S. Gershon, A. Ghazlane, H. Ghodbane, N. Giacobbe, B. Giagu, S. Giakoumopoulou, V. Giangiobbe, V. Gianotti, F. Gibbard, B. Gibson, A. Gibson, S. M. Gilbert, L. M. Gilchriese, M. Gilewsky, V. Gingrich, D. M. Ginzburg, J. Giokaris, N. Giordani, M. P. Giordano, R. Giorgi, F. M. Giovannini, P. Giraud, P. F. Girtler, P. Giugni, D. Giusti, P. Gjelsten, B. K. Gladilin, L. K. Glasman, C. Glazov, A. Glitza, K. W. Glonti, G. L. Godfrey, J. Godlewski, J. J. Goebel, M. Goepfert, T. Goeringer, C. Goessling, C. Goettfert, T. Goggi, V. Goldfarb, S. Goldin, D. Golling, T. Gomes, A. Fajardo, L. S. Gomez Goncalo, R. Gonella, L. Gong, C. Gonzalez de la Hoz, S. Silva, M. L. Gonzalez Gonzalez-Sevilla, S. Goodson, J. J. Goossens, L. Gordon, H. A. Gorelov, I. Gorfine, G. Gorini, B. Gorini, E. Gorisek, A. Gornicki, E. Gosdzik, B. Gosselink, M. Gostkin, M. I. Eschrich, I. Gough Gouighri, M. Goujdami, D. Goulette, M. P. Goussiou, A. G. Goy, C. Grabowska-Bold, I. Grafstroem, P. Grahn, K. -J. Grancagnolo, S. Grassi, V. Gratchev, V. Grau, N. Gray, H. M. Gray, J. A. Graziani, E. Green, B. Greenshaw, T. Greenwood, Z. D. Gregor, I. M. Grenier, P. Griesmayer, E. Griffiths, J. Grigalashvili, N. Grillo, A. A. Grimm, K. Grinstein, S. Grishkevich, Y. V. Groh, M. Groll, M. Gross, E. Grosse-Knetter, J. Groth-Jensen, J. Grybel, K. Guicheney, C. Guida, A. Guillemin, T. Guler, H. Gunther, J. Guo, B. Gusakov, Y. Gutierrez, A. Gutierrez, P. Guttman, N. Gutzwiller, O. Guyot, C. Gwenlan, C. Gwilliam, C. B. Haas, A. Haas, S. Haber, C. Hadavand, H. K. Hadley, D. R. Haefner, P. Hajduk, Z. Hakohyan, H. Haller, J. Hamacher, K. Hamilton, A. Hamilton, S. Han, L. Hanagaki, K. Hance, M. Handel, C. Hanke, P. Hansen, J. R. Hansen, J. B. Hansen, J. D. Hansen, P. H. Hansl-Kozanecka, T. Hansson, P. Hara, K. Hare, G. A. Harenberg, T. Harrington, R. D. Harris, O. M. Harrison, K. Hartert, J. Hartjes, F. Harvey, A. Hasegawa, S. Hasegawa, Y. Hassani, S. Haug, S. Hauschild, M. Hauser, R. Havranek, M. Hawkes, C. M. Hawkings, R. J. Hayakawa, T. Hayward, H. S. Haywood, S. J. Head, S. J. Hedberg, V. Heelan, L. Heim, S. Heinemann, B. Heisterkamp, S. Helary, L. Heller, M. Hellman, S. Helsens, C. Hemperek, T. Henderson, R. C. W. Henke, M. Henrichs, A. Correia, A. M. Henriques Henrot-Versille, S. Hensel, C. Henss, T. Hernandez Jimenez, Y. Hershenhorn, A. D. Herten, G. Hertenberger, R. Hervas, L. Hessey, N. P. Higon-Rodriguez, E. Hill, J. C. Hiller, K. H. Hillert, S. Hillier, S. J. Hinchliffe, I. Hines, E. Hirose, M. Hirsch, F. Hirschbuehl, D. Hobbs, J. Hod, N. Hodgkinson, M. C. Hodgson, P. Hoecker, A. Hoeferkamp, M. R. Hoffman, J. Hoffmann, D. Hohlfeld, M. Holy, T. Holzbauer, J. L. Homma, Y. Horazdovsky, T. Hori, T. Horn, C. Horner, S. Horvat, S. Hostachy, J. -Y. Hou, S. Hoummada, A. Howe, T. Hrivnac, J. Hryn'ova, T. Hsu, P. J. Hsu, S. -C. Huang, G. S. Hubacek, Z. Hubaut, F. Huegging, E. Huffman, T. B. Hughes, E. W. Hughes, G. Hurwitz, M. Husemann, U. Huseynov, N. Huston, J. Huth, J. Lacobucci, G. Iakovidis, G. Ibragimov, I. Iconomidou-Fayard, L. Idarraga, J. Iengo, P. Igonkina, O. Ikegami, Y. Ikeno, M. Ilchenko, Y. Iliadis, D. Ince, T. Ioannou, P. Iodice, M. Irles Quiles, A. Ishikawa, A. Ishino, M. Ishmukhametov, R. Isobe, T. Issever, C. Istin, S. Itoh, Y. Ivashin, A. V. Iwanski, W. Iwasaki, H. Izen, J. M. Izzo, V. Jackson, B. Jackson, J. N. Jackson, P. Jaekel, M. R. Jain, V. Jakobs, K. Jakobsen, S. Jakubek, J. Jana, D. K. Jankowski, E. Jansen, E. Jantsch, A. Janus, M. Jarlskog, G. Jeanty, L. Plante, I. Jen-La Jenni, P. Jez, P. Jezequel, S. Ji, W. Jia, J. Jiang, Y. Belenguer, M. Jimenez Jin, S. Jinnouchi, O. Joffe, D. Johansen, M. Johansson, K. E. Johansson, P. Johnert, S. Johns, K. A. Jon-And, K. Jones, G. Jones, R. W. L. Jones, T. J. Jorge, P. M. Joseph, J. Juranek, V. Jussel, P. Kabachenko, V. V. Kaci, M. Kaczmarska, A. Kado, M. Kagan, H. Kagan, M. Kaiser, S. Kajomovitz, E. Kalinin, S. Kalinovskaya, L. V. Kama, S. Kanaya, N. Kaneda, M. Kantserov, V. A. Kanzaki, J. Kaplan, B. Kapliy, A. Kaplon, J. Kar, D. Karagounis, M. Unel, M. Karagoz Karnevskiy, M. Kartvelishvili, V. Karyukhin, A. N. Kashif, L. Kasmi, A. Kass, R. D. Kastanas, A. Kastoryano, M. Kataoka, M. Kataoka, Y. Katsoufis, E. Katzy, J. Kaushik, V. Kawagoe, K. Kawamoto, T. Kawamura, G. Kayl, M. S. Kayumov, F. Kazanin, V. A. Kazarinov, M. Y. Keates, J. R. Keeler, R. Keener, P. T. Kehoe, R. Keil, M. Kekelidze, G. D. Kelly, M. Kenyon, M. Kepka, O. Kerschen, N. Kersevan, B. P. Kersten, S. Kessoku, K. Khakzad, M. Khalil-zada, F. Khandanyan, H. Khanov, A. Kharchenko, D. Khodinov, A. Khomich, A. Khoriauli, G. Khovanskiy, N. Khovanskiy, V. Khramov, E. Khubua, J. Kim, H. Kim, M. S. Kim, P. C. Kim, S. H. Kind, O. Kind, P. King, B. T. Kirk, J. Kirsch, G. P. Kirsch, L. E. Kiryunin, A. E. Kisielewska, D. Kittelmann, T. Kiyamura, H. Kladiva, E. Klein, M. Klein, U. Kleinknecht, K. Klemetti, M. Klier, A. Klimentov, A. Klingenberg, R. Klinkby, E. B. Klioutchnikova, T. Klok, P. F. Klous, S. Kluge, E. -E. Kluge, T. Kluit, P. Klute, M. Kluth, S. Knecht, N. S. Kneringer, E. Ko, B. R. Kobayashi, T. Kobel, M. Koblitz, B. Kocian, M. Kocnar, A. Kodys, P. Koeneke, K. Konig, A. C. Koenig, S. Koepke, L. Koetsveld, F. Koevesarki, P. Koffas, T. Koffeman, E. Kohn, F. Kohout, Z. Kohriki, T. Kolanoski, H. Kolesnikov, V. Koletsou, I. Koll, J. Kollar, D. Kolos, S. Kolya, S. D. Komar, A. A. Komaragiri, J. R. Kondo, T. Kono, T. Konoplich, R. Konovalov, S. P. Konstantinidis, N. Koperny, S. Korcyl, K. Kordas, K. Korn, A. Korolkov, I. Korolkova, E. V. Korotkov, V. A. Kortner, O. Kostka, P. Kostyukhin, V. V. Kotov, S. Kotov, V. M. Kotov, K. Y. Kourkoumelis, C. Koutsman, A. Kowalewski, R. Kowalski, H. Kowalski, T. Z. Kozanecki, W. Kozhin, A. S. Kral, V. Kramarenko, V. A. Kramberger, G. Krasny, M. W. Krasznahorkay, A. Kraus, J. Kreisel, A. Krejci, F. Kretzschmar, J. Krieger, N. Krieger, P. Kroeninger, K. Kroha, H. Kroll, J. Kroseberg, J. Krstic, J. Kruchonak, U. Krueger, H. Krumshteyn, Z. V. Kubota, T. Kuehn, S. Kugel, A. Kuhl, T. Kuhn, D. Kukhtin, V. Kulchitsky, Y. Kuleshov, S. Kummer, C. Kuna, M. Kunkle, J. Kupco, A. Kurashige, H. Kurata, M. Kurochkin, Y. A. Kus, V. Kwee, R. La Rosa, A. La Rotonda, L. Labbe, J. Lacasta, C. Lacava, F. Lacker, H. Lacour, D. Lacuesta, V. R. Ladygin, E. Lafaye, R. Laforge, B. Lagouri, T. Lai, S. Lamanna, M. Lampen, C. L. Lampl, W. Lancon, E. Landgraf, U. Landon, M. P. J. Lane, J. L. Lankford, A. J. Lanni, F. Lantzsch, K. Lanza, A. Laplace, S. Lapoire, C. Laporte, J. E. Lari, T. Larner, A. Lassnig, M. Laurelli, P. Lavrijsen, W. Laycock, P. Lazarev, A. B. Lazzaro, A. Le Dortz, O. Le Guirriec, E. Le Menedeu, E. Lebedev, A. Lebel, C. LeCompte, T. Ledroit-Guillon, F. Lee, H. Lee, J. S. H. Lee, S. C. Lefebvre, M. Legendre, M. LeGeyt, B. C. Legger, F. Leggett, C. Lehmacher, M. Miotto, G. Lehmann Lei, X. Leitner, R. Lellouch, D. Lellouch, J. Lendermann, V. Leney, K. J. C. Lenz, T. Lenzen, G. Lenzi, B. Leonhardt, K. Leroy, C. Lessard, J. -R. Lester, C. G. Cheong, A. Leung Fook Leveque, J. Levin, D. Levinson, L. J. Leyton, M. Li, H. Li, X. Liang, Z. Liang, Z. Liberti, B. Lichard, P. Lichtnecker, M. Lie, K. Liebig, W. Lilley, J. N. Limosani, A. Limper, M. Lin, S. C. Linnemann, J. T. Lipeles, E. Lipinsky, L. Lipniacka, A. Liss, T. M. Lissauer, D. Lister, A. Litke, A. M. Liu, C. Liu, D. Liu, H. Liu, J. B. Liu, T. Liu, Y. Livan, M. Lleres, A. Lloyd, S. L. Lobodzinska, E. Loch, P. Lockman, W. S. Lockwitz, S. Loddenkoetter, T. Loebinger, F. K. Loginov, A. Loh, C. W. Lohse, T. Lohwasser, K. Lokajicek, M. Long, R. E. Lopes, L. Mateos, D. Lopez Losada, M. Loscutoff, P. Lou, X. Lounis, A. Loureiro, K. F. Lovas, L. Love, J. Love, P. A. Lowe, A. J. Lu, F. Lubatti, H. J. Luci, C. Lucotte, A. Ludwig, A. Ludwig, D. Ludwig, I. Luehring, F. Lumb, D. Luminari, L. Lund, E. Lund-Jensen, B. Lundberg, B. Lundberg, J. Lundquist, J. Lynn, D. Lys, J. Lytken, E. Ma, H. Ma, L. L. Goia, J. A. Macana Maccarrone, G. Macchiolo, A. Macek, B. Machado Miguens, J. Mackeprang, R. Madaras, R. J. Mader, W. F. Maenner, R. Maeno, T. Maettig, P. Maettig, S. Magalhaes Martins, P. J. Magradze, E. Mahalalel, Y. Mahboubi, K. Mahmood, A. Maiani, C. Maidantchik, C. Maio, A. Majewski, S. Makida, Y. Makouski, M. Makovec, N. Malecki, Pa. Malecki, P. Maleev, V. P. Malek, F. Mallik, U. Malon, D. Maltezos, S. Malyshev, V. Malyukov, S. Mambelli, M. Mameghani, R. Mamuzic, J. Mandelli, L. Mandic, I. Mandrysch, R. Maneira, J. Mangeard, P. S. Manjavidze, I. D. Manning, P. M. Manousakis-Katsikakis, A. Mansoulie, B. Mapelli, A. Mapelli, L. March, L. Marchand, J. F. Marchese, F. Marchiori, G. Marcisovsky, M. Marino, C. P. Marroquim, F. Marshall, Z. Marti-Garcia, S. Martin, A. J. Martin, A. J. Martin, B. Martin, B. Martin, F. F. Martin, J. P. Martin, T. A. Latour, B. Martin Dit Martinez, M. Outschoorn, V. Martinez Martyniuk, A. C. Marzano, F. Marzin, A. Masetti, L. Mashimo, T. Mashinistov, R. Masik, J. Mastennikov, A. L. Massa, I. Massol, N. Mastroberardino, A. Masubuchi, T. Matricon, P. Matsunaga, H. Matsushita, T. Mattravers, C. Maxfield, S. J. Mayne, A. Mazini, R. Mazur, M. Mc Donald, J. Mc Kee, S. P. McCarn, A. McCarthy, R. L. McCubbin, N. A. McFarlane, K. W. McGlone, H. Mchedlidze, G. McMahon, S. J. McPherson, R. A. Meade, A. Mechnich, J. Mechtel, M. Medinnis, M. Meera-Lebbai, R. Meguro, T. M. Mehlhase, S. Mehta, A. Meier, K. Meirose, B. Melachrinos, C. Garcia, B. R. Mellado Navas, L. Mendoza Meng, Z. Menke, S. Meoni, E. Mermod, P. Merola, L. Meroni, C. Merritt, F. S. Messina, A. M. Metcalfe, J. Mete, A. S. Meyer, J. -P. Meyer, J. Meyer, J. Meyer, T. C. Meyer, W. T. Miao, J. Michal, S. Micu, L. Middleton, R. P. Migas, S. Mijovic, L. Mikenberg, G. Mikestikova, M. Mikuz, M. Miller, D. W. Mills, W. J. Mills, C. M. Milov, A. Milstead, D. A. Milstein, D. Minaenko, A. A. Minano, M. Minashvili, I. A. Mincer, A. I. Mindur, B. Mineev, M. Ming, Y. Mir, L. M. Mirabelli, G. Misawa, S. Misiejuk, A. Mitrevski, J. Mitsou, V. A. Miyagawa, P. S. Mjornmark, J. U. Moa, T. Moed, S. Moeller, V. Moenig, K. Moeser, N. Mohr, W. Mohrdieck-Moeck, S. Moles-Valls, R. Molina-Perez, J. Monk, J. Monnier, E. Montesano, S. Monticelli, F. Moore, R. W. Herrera, C. Mora Moraes, A. Morais, A. Morel, J. Morello, G. Moreno, D. Moreno Llacer, M. Morettini, P. Morii, M. Morley, A. K. Mornacchi, G. Morozov, S. V. Morris, J. D. Moser, H. G. Mosidze, M. Moss, J. Mount, R. Mountricha, E. Mouraviev, S. V. Moyse, E. J. W. Mudrinic, M. Mueller, F. Mueller, J. Mueller, K. Mueller, T. A. Muenstermann, D. Muir, A. Munwes, Y. Garcia, R. Murillo Murray, W. J. Mussche, I. Musto, E. Myagkov, A. G. Myska, M. Nadal, J. Nagai, K. Nagano, K. Nagasaka, Y. Nairz, A. M. Nakamura, K. Nakano, I. Nakatsuka, H. Nanava, G. Napier, A. Nash, M. Nation, N. R. Nattermann, T. Naumann, T. Navarro, G. Nderitu, S. K. Neal, H. A. Nebot, E. Nechaeva, P. Negri, A. Negri, G. Nelson, A. Nelson, T. K. Nemecek, S. Nemethy, P. Nepomuceno, A. A. Nessi, M. Neubauer, M. S. Neusiedl, A. Neves, R. M. Nevski, P. Newcomer, F. M. Nickerson, R. B. Nicolaidou, R. Nicolas, L. Nicoletti, G. Nicquevert, B. Niedercorn, F. Nielsen, J. Nikiforov, A. Nikolaev, K. Nikolic-Audit, I. Nikolopoulos, K. Nilsen, H. Nilsson, P. Nisati, A. Nishiyama, T. Nisius, R. Nodulman, L. Nomachi, M. Nomidis, I. Nordberg, M. Nordkvist, B. Notz, D. Novakova, J. Nozaki, M. Nozicka, M. Nugent, I. M. Nuncio-Quiroz, A. -E. Hanninger, G. Nunes Nunnemann, T. Nurse, E. O'Neil, D. C. O'Shea, V. Oakham, F. G. Oberlack, H. Ochi, A. Oda, S. Odaka, S. Odier, J. Ogren, H. Oh, A. Oh, S. H. Ohm, C. C. Ohshima, T. Ohshita, H. Ohsugi, T. Okada, S. Okawa, H. Okumura, Y. Okuyama, T. Olchevski, A. G. Oliveira, M. Damazio, D. Oliveira Oliver Garcia, E. Olivito, D. Olszewski, A. Olszowska, J. Omachi, C. Onofre, A. Onyisi, P. U. E. Oram, C. J. Oreglia, M. J. Oren, Y. Orestano, D. Orlov, I. Barrera, C. Oropeza Orr, R. S. Ortega, E. O. Osculati, B. Ospanov, R. Osuna, C. Ottersbach, J. P. Ould-Saada, F. Ouraou, A. Ouyang, Q. Owen, M. Owen, S. Oyarzun, A. Ozcan, V. E. Ozone, K. Ozturk, N. Pacheco Pages, A. Padilla Aranda, C. Paganis, E. Pahl, C. Paige, F. Pajchel, K. Palestini, S. Pallin, D. Palma, A. Palmer, J. D. Pan, Y. B. Panagiotopoulou, E. Panes, B. Panikashvili, N. Panitkin, S. Pantea, D. Panuskova, M. Paolone, V. Papadopoulou, Th. D. Park, S. J. Park, W. Parker, M. A. Parodi, F. Parsons, J. A. Parzefall, U. Pasqualucci, E. Passeri, A. Pastore, F. Pastore, Fr. Pasztor, G. Pataraia, S. Pater, J. R. Patricelli, S. Pauly, T. Peak, L. S. Pecsy, M. Morales, M. I. Pedraza Peleganchuk, S. V. Peng, H. Penson, A. Penwell, J. Perantoni, M. Perez, K. Perez Codina, E. Perez Garcia-Estan, M. T. Reale, V. Perez Perini, L. Pernegger, H. Perrino, R. Persembe, S. Perus, P. Peshekhonov, V. D. Petersen, B. A. Petersen, T. C. Petit, E. Petridou, C. Petrolo, E. Petrucci, F. Petschull, D. Petteni, M. Pezoa, R. Phan, A. Phillips, A. W. Phillips, P. W. Piacquadio, G. Piccinini, M. Piegaia, R. Pilcher, J. E. Pilkington, A. D. Pina, J. Pinamonti, M. Pinfold, J. L. Pinto, B. Pizio, C. Placakyte, R. Plamondon, M. Pleier, M. -A. Poblaguev, A. Poddar, S. Podlyski, F. Poggioli, L. Pohl, M. Polci, F. Polesello, G. Policicchio, A. Polini, A. Poll, J. Polychronakos, V. Pomeroy, D. Pommes, K. Ponsot, P. Pontecorvo, L. Pope, B. G. Popeneciu, G. A. Popovic, D. S. Poppleton, A. Popule, J. Bueso, X. Porte Porter, R. Pospelov, G. E. Pospisil, S. Potekhin, M. Potrap, I. N. Potter, C. J. Potter, C. T. Potter, K. P. Poulard, G. Poveda, J. Prabhu, R. Pralavorio, P. Prasad, S. Pravahan, R. Pribyl, L. Price, D. Price, L. E. Prichard, P. M. Prieur, D. Primavera, M. Prokofiev, K. Prokoshin, F. Protopopescu, S. Proudfoot, J. Prudent, X. Przysiezniak, H. Psoroulas, S. Ptacek, E. Purdham, J. Purohit, M. Puzo, P. Pylypchenko, Y. Qi, M. Qian, J. Qian, W. Qin, Z. Quadt, A. Quarrie, D. R. Quayle, W. B. Quinonez, F. Raas, M. Radeka, V. Radescu, V. Radics, B. Rador, T. Ragusa, F. Rahal, G. Rahimi, A. M. Rajagopalan, S. Rammeasee, M. Rammes, M. Rauscher, F. Rauter, E. Raymond, M. Read, A. L. Rebuzzi, D. M. Redelbach, A. Redlinger, G. Reece, R. Reeves, K. Reinherz-Aronis, E. Reinsch, A. Reisinger, I. Reljic, D. Rembser, C. Ren, Z. L. Renkel, P. Rescia, S. Rescigno, M. Resconi, S. Resende, B. Reznicek, P. Rezvani, R. Richards, A. Richter, R. Richter-Was, E. Ridel, M. Rijpstra, M. Rijssenbeek, M. Rimoldi, A. Rinaldi, L. Rios, R. R. Riu, I. Rizatdinova, F. Rizvi, E. Romero, D. A. Roa Robertson, S. H. Robichaud-Veronneau, A. Robinson, D. Robinson, J. E. M. Robinson, M. Robson, A. de Lima, J. G. Rocha Roda, C. Dos Santos, D. Roda Rodriguez, D. Garcia, Y. Rodriguez Roe, S. Rohne, O. Rojo, V. Rolli, S. Romaniouk, A. Romanov, V. M. Romeo, G. Maltrana, D. Romero Roos, L. Ros, E. Rosati, S. Rosenbaum, G. A. Rosselet, L. Rossetti, V. Rossi, L. P. Rotaru, M. Rothberg, J. Rousseau, D. Royon, C. R. Rozanov, A. Rozen, Y. Ruan, X. Ruckert, B. Ruckstuhl, N. Rud, V. I. Rudolph, G. Ruehr, F. Ruggieri, E. Ruiz-Martinez, A. Rumyantsev, L. Rurikova, Z. Rusakovich, N. A. Rutherfoord, J. P. Ruwiedel, C. Ruzicka, P. Ryabov, Y. F. Ryan, P. Rybkin, G. Rzaeva, S. Saavedra, A. F. Sadrozinski, H. F. -W. Sadykov, R. Tehrani, F. Safai Sakamoto, H. Salamanna, G. Salamon, A. Saleem, M. S. Salihagic, D. Salnikov, A. Salt, J. Ferrando, B. M. Salvachua Salvatore, D. Salvatore, F. Salvucci, A. Salzburger, A. Sampsonidis, D. Samset, B. H. Sandaker, H. Sander, H. G. Sanders, M. P. Sandhoff, M. Sandhu, P. Sandstroem, R. Sandvoss, S. Sankey, D. P. C. Sanny, B. Sansoni, A. Rios, C. Santamarina Santoni, C. Santonico, R. Saraiva, J. G. Sarangi, T. Sarkisyan-Grinbaum, E. Sarri, F. Sasaki, O. Sasao, N. Satsounkevitch, I. Sauvage, G. Savard, P. Savine, A. Y. Savinov, V. Sawyer, L. Saxon, D. H. Says, L. P. Sbarra, C. Sbrizzi, A. Scannicchio, D. A. Schaarschmidt, J. Schacht, P. Schaefer, U. Schaetzel, S. Schaffer, A. C. Schaile, D. Schamberger, R. D. Schamov, A. G. Scharf, V. Schegelsky, V. A. Scheirich, D. Schernau, M. Scherzer, M. I. Schiavi, C. Schieck, J. Schioppa, M. Schlenker, S. Schmidt, E. Schmieden, K. Schmitt, C. Schmitz, M. Schoenig, A. Schott, M. Schouten, D. Schovancova, J. Schram, M. Schreiner, A. Schroeder, C. Schroer, N. Schroers, M. Schultes, J. Schultz-Coulon, H. -C. Schumacher, J. W. Schumacher, M. Schumm, B. A. Schune, Ph. Schwanenberger, C. Schwartzman, A. Schwemling, Ph. Schwienhorst, R. Schwierz, R. Schwindling, J. Scott, W. G. Searcy, J. Sedykh, E. Segura, E. Seidel, S. C. Seiden, A. Seifert, F. Seixas, J. M. Sekhniaidze, G. Seliverstov, D. M. Sellden, B. Semprini-Cesari, N. Serfon, C. Serin, L. Seuster, R. Severini, H. Sevior, M. E. Sfyrla, A. Shabalina, E. Shamim, M. Shan, L. Y. Shank, J. T. Shao, Q. T. Shapiro, M. Shatalov, P. B. Shaw, K. Sherman, D. Sherwood, P. Shibata, A. Shimojima, M. Shin, T. Shmeleva, A. Shochet, M. J. Shupe, M. A. Sicho, P. Sidoti, A. Siegert, F. Siegrist, J. Sijacki, Dj. Silbert, O. Silva, J. Silver, Y. Silverstein, D. Silverstein, S. B. Simak, V. Simic, Lj. Simion, S. Simmons, B. Simonyan, M. Sinervo, P. Sinev, N. B. Sipica, V. Siragusa, G. Sisakyan, A. N. Sivoklokov, S. Yu. Sjoelin, J. Sjursen, T. B. Skovpen, K. Skubic, P. Slater, M. Slavicek, T. Sliwa, K. Sloper, J. Smakhtin, V. Smirnov, S. Yu. Smirnov, Y. Smirnova, L. N. Smirnova, O. Smith, B. C. Smith, D. Smith, K. M. Smizanska, M. Smolek, K. Snesarev, A. A. Snow, S. W. Snow, J. Snuverink, J. Snyder, S. Soares, M. Sobie, R. Sodomka, J. Soffer, A. Solans, C. A. Solar, M. Solc, J. Camillocci, E. Solfaroli Solodkov, A. A. Solovyanov, O. V. Sondericker, J. Sopko, V. Sopko, B. Sosebee, M. Soukharev, A. Spagnolo, S. Spano, F. Spighi, R. Spigo, G. Spila, F. Spiwoks, R. Spousta, M. Spreitzer, T. Spurlock, B. St Denis, R. D. Stahl, T. Stahlman, J. J. Stamen, R. Stancu, S. N. Stanecka, E. Stanek, R. W. Stanescu, C. Stapnes, S. Starchenko, E. A. Stark, J. Staroba, P. Starovoitov, P. Stastny, J. Stavina, P. Steele, G. Steinbach, P. Steinberg, P. Stekl, I. Stelzer, B. Stelzer, H. J. Stelzer-Chilton, O. Stenzel, H. Stevenson, K. Stewart, G. A. Stockton, M. C. Stoerig, K. Stoicea, G. Stonjek, S. Strachota, P. Stradling, A. R. Straessner, A. Strandberg, J. Strandberg, S. Strandlie, A. Strauss, M. Strizenec, P. Stroehmer, R. Strom, D. M. Stroynowski, R. Strube, J. Stugu, B. Sturm, P. Soh, D. A. Su, D. Sugaya, Y. Sugimoto, T. Suhr, C. Suk, M. Sulin, V. V. Sultansoy, S. Sumida, T. Sun, X. H. Sundermann, J. E. Suruliz, K. Sushkov, S. Susinno, G. Sutton, M. R. Suzuki, T. Suzuki, Y. Sykora, I. Sykora, T. Szymocha, T. Sanchez, J. Ta, D. Tackmann, K. Taffard, A. Tafirout, R. Taga, A. Takahashi, Y. Takai, H. Takashima, R. Takeda, H. Takeshita, T. Talby, M. Talyshev, A. Tamsett, M. C. Tanaka, J. Tanaka, R. Tanaka, S. Tanaka, S. Tapprogge, S. Tardif, D. Tarem, S. Tarrade, F. Tartarelli, G. F. Tas, P. Tasevsky, M. Tassi, E. Tatarkhanov, M. Taylor, C. Taylor, F. E. Taylor, G. N. Taylor, R. P. Taylor, W. Teixeira-Dias, P. Ten Kate, H. Teng, P. K. Tennenbaum-Katan, Y. D. Terada, S. Terashi, K. Terron, J. Terwort, M. Testa, M. Teuscher, Rj. Therhaag, J. Thioye, M. Thoma, S. Thomas, J. P. Thompson, E. N. Thompson, P. D. Thompson, P. D. Thompson, R. J. Thompson, A. S. Thomson, E. Thun, R. P. Tic, T. Tikhomirov, V. O. Tikhonov, V. A. Tipton, P. Viegas, F. J. Tique Aires Tisserant, S. Toczek, B. Todorov, T. Todorova-Nova, S. Toggerson, B. Tojo, J. Tokar, S. Tokushuku, K. Tollefson, K. Tomasek, L. Tomasek, M. Tomoto, M. Tompkins, L. Toms, K. Tonoyan, A. Topfel, C. Topilin, N. D. Torchiani, I. Torrence, E. Torro Pastor, E. Toth, J. Touchard, F. Tovey, D. R. Trefzger, T. Tremblet, L. Tricoli, A. Trigger, I. M. Trincaz-Duvoid, S. Trinh, T. N. Tripiana, M. F. Triplett, N. Trischuk, W. Trivedi, A. Trocme, B. Troncon, C. Trzupek, A. Tsarouchas, C. Tseng, J. C. -L. Tsiakiris, M. Tsiareshka, P. V. Tsionou, D. Tsipolitis, G. Tsiskaridze, V. Tskhadadze, E. G. Tsukerman, I. I. Tsulaia, V. Tsung, J. -W. Tsuno, S. Tsybychev, D. Tuggle, J. M. Turecek, D. Cakir, I. Turk Turlay, E. Tuts, P. M. Twomey, M. S. Tylmad, M. Tyndel, M. Uchida, K. Ueda, I. Ueno, R. Ugland, M. Uhlenbrock, M. Uhrmacher, M. Ukegawa, F. Unal, G. Undrus, A. Unel, G. Unno, Y. Urbaniec, D. Urkovsky, E. Urquijo, P. Urrejola, P. Usai, G. Uslenghi, M. Vacavant, L. Vacek, V. Vachon, B. Vahsen, S. Valente, P. Valentinetti, S. Valkar, S. Valladolid Gallego, E. Vallecorsa, S. Valls Ferrer, J. A. Van Berg, R. van der Graaf, H. van der Kraaij, E. van der Poel, E. van der Ster, D. van Eldik, N. van Gemmeren, P. van Kesteren, Z. van Vulpen, I. Vandelli, W. Vaniachine, A. Vankov, P. Vannucci, F. Vari, R. Varnes, E. W. Varouchas, D. Vartapetian, A. Varvell, K. E. Vasilyeva, L. Vassilakopoulos, V. I. Vazeille, F. Vellidis, C. Veloso, F. Veneziano, S. Ventura, A. Ventura, D. Venturi, M. Venturi, N. Vercesi, V. Verducci, M. Verkerke, W. Vermeulen, J. C. Vetterli, M. C. Vichou, I. Vickey, T. Viehhauser, G. H. A. Villa, M. Villani, E. G. Villaplana Perez, M. Vilucchi, E. Vincter, M. G. Vinek, E. Vinogradov, V. B. Viret, S. Virzi, J. Vitale, A. Vitells, O. Vivarelli, I. Vives Vague, F. Vlachos, S. Vlasak, M. Vlasov, N. Vogel, A. Vokac, P. Volpi, M. von der Schmitt, H. von Loeben, J. von Radziewski, H. von Toerne, E. Vorobel, V. Vorwerk, V. Vos, M. Voss, R. Voss, T. T. Vossebeld, J. H. Vranjes, N. Milosavljevic, M. Vranjes Vrba, V. Vreeswijk, M. Anh, T. Vu Vudragovic, D. Vuillermet, R. Vukotic, I. Wagner, P. Walbersloh, J. Walder, J. Walker, R. Walkowiak, W. Wall, R. Wang, C. Wang, H. Wang, J. Wang, S. M. Warburton, A. Ward, C. P. Warsinsky, M. Wastie, R. Watkins, P. M. Watson, A. T. Watson, M. F. Watts, G. Watts, S. Waugh, A. T. Waugh, B. M. Weber, M. D. Weber, M. Weber, M. S. Weber, P. Weidberg, A. R. Weingarten, J. Weiser, C. Wellenstein, H. Wells, P. S. Wenaus, T. Wendler, S. Wengler, T. Wenig, S. Wermes, N. Werner, M. Werner, P. Werth, M. Werthenbach, U. Wessels, M. Whalen, K. White, A. White, M. J. White, S. Whitehead, S. R. Whiteson, D. Whittington, D. Wicek, F. Wicke, D. Wickens, F. J. Wiedenmann, W. Wielers, M. Wienemann, P. Wiglesworth, C. Wiik, L. A. M. Wildauer, A. Wildt, M. A. Wilkens, H. G. Williams, E. Williams, H. H. Willocq, S. Wilson, J. A. Wilson, M. G. Wilson, A. Wingerter-Seez, I. Winklmeier, F. Wittgen, M. Wolter, M. W. Wolters, H. Wosiek, B. K. Wotschack, J. Woudstra, M. J. Wraight, K. Wright, C. Wright, D. Wrona, B. Wu, S. L. Wu, X. Wulf, E. Wynne, B. M. Xaplanteris, L. Xella, S. Xie, S. Xu, D. Xu, N. Yamada, M. Yamamoto, A. Yamamoto, K. Yamamoto, S. Yamamura, T. Yamaoka, J. Yamazaki, T. Yamazaki, Y. Yan, Z. Yang, H. Yang, U. K. Yang, Z. Yao, W. -M. Yao, Y. Yasu, Y. Ye, J. Ye, S. Yilmaz, M. Yoosoofmiya, R. Yorita, K. Yoshida, R. Young, C. Youssef, S. P. Yu, D. Yu, J. Yuan, L. Yurkewicz, A. Zaidan, R. Zaitsev, A. M. Zajacova, Z. Zambrano, V. Zanello, L. Zaytsev, A. Zeitnitz, C. Zeller, M. Zemla, A. Zendler, C. Zenin, O. Zenis, T. Zenonos, Z. Zenz, S. Zerwas, D. della Porta, G. Zevi Zhan, Z. Zhang, H. Zhang, J. Zhang, Q. Zhang, X. Zhao, L. Zhao, T. Zhao, Z. Zhemchugov, A. Zhong, J. Zhou, B. Zhou, N. Zhou, Y. Zhu, C. G. Zhu, H. Zhu, Y. Zhuang, X. Zhuravlov, V. Zimmermann, R. Zimmermann, S. Zimmermann, S. Ziolkowski, M. Zivkovic, L. Zobernig, G. Zoccoli, A. zur Nedden, M. Zutshi, V. CA ATLAS Collaboration GP ATLAS Collaboration CERN TI The ATLAS Inner Detector commissioning and calibration SO PERFORMANCE OF THE ATLAS DECTECTOR LA English DT Article; Book Chapter ID SILICON PIXEL SENSORS; SEMICONDUCTOR TRACKER; IONIZATION ENERGY; OPTOELECTRONICS; READOUT; MODULES AB The ATLAS Inner Detector is a composite tracking system consisting of silicon pixels, silicon strips and straw tubes in a 2 T magnetic field. Its installation was completed in August 2008 and the detector took part in data-taking with single LHC beams and cosmic rays. The initial detector operation, hardware commissioning and in-situ calibrations are described. Tracking performance has been measured with 7.6 million cosmic-ray events, collected using a tracking trigger and reconstructed with modular pattern-recognition and fitting software. The intrinsic hit efficiency and tracking trigger efficiencies are close to 100%. Lorentz angle measurements for both electrons and holes, specific energy-loss calibration and transition radiation turn-on measurements have been performed. Different alignment techniques have been used to reconstruct the detector geometry. After the initial alignment, a transverse impact parameter resolution of 22.1 +/- 0.9 mu m and a relative momentum resolution sigma(p)/p = (4.83 +/- 0.16) x 10(-4) GeV-1 x p(T) have been measured for high momentum tracks. C1 [Aad, G.; Ahles, F.; Aktas, A.; Anders, C. F.; Beckingham, M.; Bernhard, R.; Bianchi, R. M.; Bitenc, U.; Bruneliere, R.; Caron, S.; Christov, A.; Dietrich, J.; Dingfelder, J.; Flechl, M.; Hartert, J.; Herten, G.; Horner, S.; Jakobs, K.; Janus, M.; Kuehn, S.; Lai, S.; Landgraf, U.; Lohwasser, K.; Ludwig, I.; Lumb, D.; Mahboubi, K.; Mazur, M.; Meirose, B.; Mohr, W.; Nilsen, H.; Parzefall, U.; Bueso, X. Porte; Rammeasee, M.; Rurikova, Z.; Schmidt, E.; Schumacher, M.; Stoerig, K.; Sundermann, J. E.; Thoma, S.; Venturi, M.; Vivarelli, I.; von Radziewski, H.; Warsinsky, M.; Weiser, C.; Werner, M.; Wiik, L. A. M.; Xie, S.; Zimmermann, S.] Univ Freiburg, Fak Math & Phys, D-79104 Freiburg, Germany. [Aleksa, M.; Andeen, T.; Anghinolfi, F.; Arfaoui, S.; Baak, M. A.; Bachas, K.; Pedrosa, F. Baltasar Dos Santos; Battistin, M.; Bellina, F.; Beltramello, O.; Berge, D.; Blanchot, G.; Bogaerts, J. A.; Bogouch, A.; Boyd, J.; Braem, A.; Bremer, J.; Burckhart, H.; Butin, F.; Campana, S.; Garrido, M. D. M. Capeans; Carli, T.; Catinaccio, A.; Cattai, A.; Cerri, A.; Chromek-Burckhart, D.; Dallison, S. J.; Danielsson, H. O.; Branco, M. De Oliveira; Dell'Acqua, A.; Delmastro, M.; Di Girolamo, A.; Di Girolamo, B.; Dittus, F.; Dobos, D.; Dobson, E.; Dudarev, A.; Duehrssen, M.; Eifert, T.; Ellis, N.; Elsing, M.; Fabre, C.; Farthouat, P.; Fassnacht, P.; Fedorko, W.; Francis, D.; Franz, S.; Froesch, R.; Froidevaux, D.; Garelli, N.; Garonne, V.; Gianotti, F.; Giraud, P. F.; Godlewski, J. J.; Goossens, L.; Gorini, B.; Grafstroem, P.; Haas, S.; Hauschild, M.; Hawkings, R. J.; Correia, A. M. Henriques; Hervas, L.; Hoecker, A.; Jaekel, M. R.; Jenni, P.; Belenguer, M. Jimenez; Kaplon, J.; Kerschen, N.; Klioutchnikova, T.; Koblitz, B.; Koffas, T.; Kollar, D.; La Rosa, A.; Lamanna, M.; Lantzsch, K.; Lassnig, M.; Miotto, G. Lehmann; Lichard, P.; Lundberg, J.; Mapelli, A.; Mapelli, L.; Martin, B.; Messina, A. M.; Meyer, T. C.; Michal, S.; Molina-Perez, J.; Mornacchi, G.; Nairz, A. M.; Negri, G.; Nessi, M.; Nicquevert, B.; Nordberg, M.; Palestini, S.; Pastore, Fr.; Pauly, T.; Pernegger, H.; Petersen, B. A.; Piacquadio, G.; Pommes, K.; Poppleton, A.; Poulard, G.; Pribyl, L.; Prokofiev, K.; Raymond, M.; Rembser, C.; Dos Santos, D. Roda; Roe, S.; Salzburger, A.; Scannicchio, D. A.; Schlenker, S.; Schott, M.; Sherman, D.; Sloper, J.; Spigo, G.; Spiwoks, R.; Stanecka, E.; Stockton, M. C.; Sumida, T.; Tackmann, K.; Ten Kate, H.; Viegas, F. J. Tique Aires; Torchiani, I.; Tremblet, L.; Tricoli, A.; Unal, G.; van der Ster, D.; Vandelli, W.; Vinek, E.; Voss, R.; Vuillermet, R.; Wells, P. S.; Wenig, S.; Werner, P.; Wilkens, H. G.; Winklmeier, F.; Wotschack, J.; Zajacova, Z.] CERN, CH-1211 Geneva 23, Switzerland. [Alam, M. S.; Ernst, J.; Goggi, V.; Mahmood, A.; Rojo, V.] SUNY Albany, Albany, NY 12222 USA. [Caron, B.; Chan, K.; Gingrich, D. M.; Kim, M. S.; Moore, R. W.; Pinfold, J. L.] Univ Alberta, Dept Phys, Ctr Particle Phys, Edmonton, AB T6G 2G7, Canada. [Cakir, O.; Ciftci, A. K.; Ciftci, R.; Persembe, S.] Ankara Univ, Dept Phys, Fac Sci, TR-061000 Ankara, Turkey. [Yildiz, H. Duran] Dumlupinar Univ, Fac Arts & Sci, Dept Phys, Kutahya, Turkey. [Yilmaz, M.] Gazi Univ, Fac Arts & Sci, Dept Phys, TR-06500 Ankara, Turkey. [Sultansoy, S.] TOBB Univ Econ & Technol, Fac Arts & Sci, Div Phys, TR-06560 Ankara, Turkey. [Cakir, I. Turk] Turkish Atom Energy Commiss, TR-06530 Ankara, Turkey. [Arnaez, O.; Aurousseau, M.; Berger, N.; Di Ciaccio, L.; Doan, T. K. O.; El Kacimi, M.; Ellest, S.; Goy, C.; Guillemin, T.; Helary, L.; Hryn'ova, T.; Iengo, P.; Jezequel, S.; Kataoka, M.; Koletsou, I.; Labbe, J.; Lafaye, R.; Laplace, S.; Marchand, J. F.; Massol, N.; Przysiezniak, H.; Sauvage, G.; Todorov, T.; Wingerter-Seez, I.] Univ Savoie, LAPP, CNRS, IN2P3, Annecy Le Vieux, France. [Blair, R. E.; Chekanov, S.; Cranshaw, J.; Torregrosa, E. Fullana; LeCompte, T.; Malon, D.; Nodulman, L.; Price, L. E.; Proudfoot, J.; Ferrando, B. M. Salvachua; Stanek, R. W.; van Gemmeren, P.; Vaniachine, A.; Yoshida, R.; Zhang, J.; Zhang, Q.] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Cheu, E.; Johns, K. A.; Kaushik, V.; Lampen, C. L.; Lampl, W.; Lei, X.; Loch, P.; Rutherfoord, J. P.; Savine, A. Y.; Shupe, M. A.; Varnes, E. W.] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. [Brandt, A.; De, K.; Farbin, A.; Kim, H.; Nilsson, P.; Ozturk, N.; Pravahan, R.; Sarkisyan-Grinbaum, E.; Sosebee, M.; Spurlock, B.; Stradling, A. R.; Usai, G.; Vartapetian, A.; White, A.; Yu, J.] Univ Texas Arlington, Dept Phys, Arlington, TX 76019 USA. [Antonaki, A.; Arabidze, G.; Fassouliotis, D.; Giakoumopoulou, V.; Giokaris, N.; Ioannou, P.; Kourkoumelis, C.; Manousakis-Katsikakis, A.; Nikolopoulos, K.; Vellidis, C.] Univ Athens, Dept Phys, GR-15771 Athens, Greece. [Alexopoulos, T.; Argyropoulos, T.; Avramidou, R.; Dris, M.; Filippas, A.; Gazis, E. N.; Georgatos, F.; Iakovidis, G.; Katsoufis, E.; Maltezos, S.; Panagiotopoulou, E.; Papadopoulou, Th. D.; Tsarouchas, C.; Tsipolitis, G.; Vlachos, S.; Xaplanteris, L.] Natl Tech Univ Athens, Dept Phys, Iroon Polytech 9, GR-15780 Zografos, Greece. [Abdinov, O.; Aliyev, M.; Huseynov, N.; Khalil-zada, F.; Rzaeva, S.] Azerbaijan Acad Sci, Inst Phys, AZ-143 Baku, Azerbaijan. [Abdallah, J.; Bosman, M.; Casado, M. P.; Cavalli-Sforza, M.; Conidi, M. C.; Demirkoz, B.; Espinal Curull, X.; Fiorini, L.; Grinstein, S.; Helsens, C.; Korolkov, I.; Martinez, M.; Meoni, E.; Mir, L. M.; Nadal, J.; Osuna, C.; Pacheco Pages, A.; Padilla Aranda, C.; Perez Codina, E.; Riu, I.; Rossetti, V.; Segura, E.; Sushkov, S.; Vives Vague, F.; Volpi, M.; Vorwerk, V.] Univ Autonoma Barcelona, Inst Fis Altes Energies, IFAE, ES-08193 Bellaterra, Barcelona, Spain. [Borjanovic, I.; Krstic, J.; Popovic, D. S.; Reljic, D.; Sijacki, Dj.; Simic, Lj.; Vranjes, N.; Milosavljevic, M. Vranjes; Vudragovic, D.] Univ Belgrade, Inst Phys, Belgrade 11001, Serbia. [Bozovic-Jelisavcic, I.; Mudrinic, M.] Vinca Inst Nucl Sci, Belgrade 11001, Serbia. [Burgess, T.; Eigen, G.; Kastanas, A.; Lipniacka, A.; Sandaker, H.; Sjursen, T. B.; Stugu, B.; Tonoyan, A.; Ugland, M.] Univ Bergen, Dept Phys & Technol, NO-5007 Bergen, Norway. [Arce, A. T. H.; Arguin, J. -F.; Bach, A. M.; Barnett, R. M.; Beringer, J.; Biesiada, J.; Calafiura, P.; Ciocio, A.; Einsweiler, K.; Gaponenko, A.; Garcia-Sciveres, M.; Gilchriese, M.; Haber, C.; Heinemann, B.; Hinchliffe, I.; Hsu, S. -C.; Joseph, J.; Korn, A.; Lavrijsen, W.; Leggett, C.; Loscutoff, P.; Lys, J.; Madaras, R. J.; Quarrie, D. R.; Scherzer, M. I.; Shapiro, M.; Siegrist, J.; Strandberg, S.; Tatarkhanov, M.; Tompkins, L.; Vahsen, S.; Varouchas, D.; Virzi, J.; Yao, W. -M.; Yao, Y.; Zenz, S.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA 94720 USA. [Aliev, M.; Giorgi, F. M.; Grancagnolo, S.; Kind, O.; Kolanoski, H.; Kwee, R.; Lacker, H.; Leyton, M.; Lohse, T.; Mandrysch, R.; Nikiforov, A.; Garcia, Y. Rodriguez; Sidoti, A.; zur Nedden, M.] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany. [Battaglia, A.; Beck, H. P.; Borer, C.; Ereditato, A.; Gallo, V.; Haug, S.; Topfel, C.; Venturi, N.; Weber, M. D.; Weber, M. S.] Univ Bern, Albert Einstein Ctr Fundamental Phys, High Energy Phys Lab, CH-3012 Bern, Switzerland. [Bracinik, J.; Charlton, D. G.; Collins, N. J.; Curtis, C. J.; Hadley, D. R.; Harrison, K.; Hawkes, C. M.; Hillier, S. J.; Lilley, J. N.; Martin, T. A.; Palmer, J. D.; Slater, M.; Thomas, J. P.; Thompson, P. D.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Wilson, J. A.] Univ Birmingham, Sch Phys & Astron, Birmingham B15 2TT, W Midlands, England. [Akdogan, T.; Arik, M.; Istin, S.; Rador, T.] Bogazici Univ, Dept Phys, Fac Sci, TR-80815 Bebek, Turkey. [Cetin, S. A.] Dogus Univ, Fac Arts & Sci, Dept Phys, TR-34722 Istanbul, Turkey. [Beddall, A. J.; Beddall, A.; Bingul, A.; Diblen, F.] Gaziantep Univ, Dept Engn Phys, Fac Engn, TR-27310 Sehitkamil, Gaziantep, Turkey. Istanbul Tech Univ, Fac Arts & Sci, Dept Phys, TR-34469 Istanbul, Turkey. [Antonelli, S.; Bellagamba, L.; Bertin, A.; Bindi, M.; Boscherini, D.; Bruni, A.; Bruni, G.; Bruschi, M.; Caforio, D.; Ciocca, C.; Corradi, M.; De Castro, S.; Di Sipio, R.; Fabbri, L.; Giacobbe, B.; Giusti, P.; Massa, I.; Piccinini, M.; Polini, A.; Rinaldi, L.; Sbarra, C.; Sbrizzi, A.; Semprini-Cesari, N.; Spighi, R.; Valentinetti, S.; Villa, M.; Vitale, A.; Zoccoli, A.] INFN Sez Bologna, IT-40127 Bologna, Italy. [Antonelli, S.; Bertin, A.; Bindi, M.; Caforio, D.; Ciocca, C.; De Castro, S.; Di Sipio, R.; Fabbri, L.; Massa, I.; Piccinini, M.; Sbarra, C.; Sbrizzi, A.; Semprini-Cesari, N.; Valentinetti, S.; Villa, M.; Vitale, A.; Zoccoli, A.] Univ Bologna, Dipartimento Fis, IT-40127 Bologna, Italy. [Alhroob, M.; Arutinov, D.; Barbero, M.; Bartsch, D.; Brock, I.; Cristinziani, M.; Desch, K.; Fleischmann, S.; Gaycken, G.; Geich-Gimbel, Ch.; Gonella, L.; Hemperek, T.; Huegging, E.; Ince, T.; Karagounis, M.; Khoriauli, G.; Koevesarki, P.; Kostyukhin, V. V.; Kroseberg, J.; Krueger, H.; Lehmacher, M.; Loddenkoetter, T.; Masetti, L.; Moeser, N.; Mueller, K.; Nanava, G.; Nattermann, T.; Nderitu, S. K.; Nuncio-Quiroz, A. -E.; Hanninger, G. Nunes; Prabhu, R.; Psoroulas, S.; Radics, B.; Ruwiedel, C.; Schmieden, K.; Schmitz, M.; Ta, D.; Therhaag, J.; Tsung, J. -W.; Uhlenbrock, M.; Vlasov, N.; Vogel, A.; von Toerne, E.; Wermes, N.; Wienemann, P.; Zendler, C.; Zimmermann, R.; Zimmermann, S.] Univ Bonn, Inst Phys, D-53115 Bonn, Germany. [Ahlen, S. P.; Butler, J. M.; Harrington, R. D.; Love, J.; Nation, N. R.; Shank, J. T.; Yan, Z.; Youssef, S. P.] Boston Univ, Dept Phys, Boston, MA 02215 USA. [Aefsky, S.; Amelung, C.; Blocker, C.; Kirsch, L. E.; Pomeroy, D.; Wellenstein, H.] Brandeis Univ, Dept Phys, Waltham, MA 02454 USA. [Caloba, L. P.; Cerqueira, A. S.; Coura Torres, R.; do Vale, M. A. B.; Maidantchik, C.; Marroquim, F.; Nepomuceno, A. A.; Perantoni, M.; Seixas, J. M.] Univ Fed Rio de Janeiro, COPPE EE IF, BR-21945970 Rio De Janeiro, Brazil. Univ Sao Paulo, Inst Fis, BR-05508900 Sao Paulo, Brazil. [Adams, D. L.; Assamagan, K.; Baker, M. D.; Begel, M.; Caballero, J.; Chen, H.; Tcherniatine, V.; Salgado, P. E. De Castro Faria; Deng, W.; Dhullipudi, R.; Ernst, M.; Gadfort, T.; Gibbard, B.; Gordon, H. A.; Greenwood, Z. D.; Klimentov, A.; Lanni, F.; Lissauer, D.; Lynn, D.; Ma, H.; Maeno, T.; Majewski, S.; Misawa, S.; Nevski, P.; Damazio, D. Oliveira; Paige, F.; Panitkin, S.; Park, W.; Pleier, M. -A.; Polychronakos, V.; Potekhin, M.; Protopopescu, S.; Purohit, M.; Radeka, V.; Rajagopalan, S.; Redlinger, G.; Rescia, S.; Sawyer, L.; Smirnov, Y.; Snyder, S.; Sondericker, J.; Steinberg, P.; Takai, H.; Tarrade, F.; Trivedi, A.; Undrus, A.; Wenaus, T.; White, S.; Ye, S.; Yu, D.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Alexa, C.; Badescu, E.; Boldea, V.; Caprini, I.; Caprini, M.; Caramarcu, C.; Chesneanu, D.; Constantinescu, S.; Dita, P.; Dita, S.; Micu, L.; Pantea, D.; Popeneciu, G. A.; Rotaru, M.; Stoicea, G.] Natl Inst Phys & Nucl Engn, R-077125 Bucharest, Romania. [Darlea, G. L.] Univ Politehn Bucuresti, Bucharest 060042, Romania. W Univ Timisoara, Timisoara, Romania. [Silva, M. L. Gonzalez; Piegaia, R.; Romeo, G.] Univ Buenos Aires, FCEyN, Dto Fis, RA-1428 Buenos Aires, DF, Argentina. [Barber, T.; Barlow, N.; Batley, J. R.; Brochu, F. M.; Carter, J. R.; Chapman, J. D.; Cowden, C.; French, S. T.; Frost, J. A.; Hill, J. C.; Lester, C. G.; Moeller, V.; Parker, M. A.; Phillips, A. W.; Robinson, D.; Ward, C. P.; White, M. J.] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England. [Archambault, J. P.; Asner, D.; Heelan, L.; Khakzad, M.; Liu, C.; Oakham, F. G.; Ueno, R.; Vincter, M. G.; Whalen, K.] Carleton Univ, Dept Phys, Ottawa, ON K1S 5B6, Canada. [Anderson, K. J.; Boveia, A.; Canelli, F.; Choudalakis, G.; Costin, T.; Dunford, M.; Feng, E. J.; Gardner, R. W.; Hurwitz, M.; Plante, I. Jen-La; Kapliy, A.; Mambelli, M.; Melachrinos, C.; Merritt, F. S.; Onyisi, P. U. E.; Oreglia, M. J.; Pilcher, J. E.; Shochet, M. J.; Tuggle, J. M.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Diaz, M. A.; Panes, B.; Quinonez, F.; Maltrana, D. Romero; Urrejola, P.] Pontificia Univ Catolica Chile, Fac Fis, Dept Fis, Santiago 22, Chile. [Brooks, W. K.; Kuleshov, S.; Oyarzun, A.; Pezoa, R.; Prokoshin, F.] Univ Tecn Federico Santa Maria, Dept Fis, Valparaiso, Chile. [Bai, Y.; Jin, S.; Lu, F.; Ouyang, Q.; Shan, L. Y.] Chinese Acad Sci, Inst High Energy Phys, Beijing 100049, Peoples R China. [Gong, C.; Han, L.; Jiang, Y.; Liu, J. B.; Liu, Y.; Zhao, Z.] Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Peoples R China. [Chen, S.; Qi, M.] Nanjing Univ, Dept Phys, Nanjing 210093, Jiangsu, Peoples R China. [Feng, C.; Ge, P.; Miao, J.; Sun, X. H.; Zhan, Z.; Zhang, X.; Zhu, C. G.] Shandong Univ, High Energy Phys Grp, Jinan 250100, Shandong, Peoples R China. [Bensinger, J. R.; Busato, E.; Calvet, D.; Cinca, D.; Febbraro, R.; Ghodbane, N.; Guicheney, C.; Pallin, D.; Podlyski, F.; Santoni, C.; Says, L. P.; Vazeille, F.; Viret, S.] Univ Clermont Ferrand, Clermont Univ, CNRS, Lab Phys Corpusculaire,IN2P3, FR-63177 Aubiere, France. [Angerami, A.; Brooijmans, G.; Caughron, S.; Cooke, M.; Copic, K.; Grau, N.; Gray, H. M.; Hughes, E. W.; Mateos, D. Lopez; Marshall, Z.; Parsons, J. A.; Penson, A.; Perez, K.; Reale, V. Perez; Spano, F.; Tuts, P. M.; Urbaniec, D.; Williams, E.; Wulf, E.; Zhou, N.; Zivkovic, L.] Columbia Univ, Nevis Lab, Irvington, NY 10533 USA. [Dam, M.; Facius, K.; Hansen, J. R.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Heisterkamp, S.; Jakobsen, S.; Jez, P.; Lundquist, J.; Mackeprang, R.; Petersen, T. C.; Simonyan, M.; Xella, S.] Univ Copenhagen, Niels Bohr Inst, DK-2100 Copenhagen O, Denmark. [Adorisio, C.; Capua, M.; Crosetti, G.; La Rotonda, L.; Mastroberardino, A.; Morello, G.; Salvatore, D.; Schioppa, M.; Susinno, G.; Tassi, E.] INFN Grp Coll Cosenza, IT-87036 Arcavacata Di Rende, Italy. [Adorisio, C.; Capua, M.; Crosetti, G.; La Rotonda, L.; Mastroberardino, A.; Morello, G.; Salvatore, D.; Schioppa, M.; Susinno, G.; Tassi, E.] Univ Calabria, Dipartimento Fis, IT-87036 Arcavacata Di Rende, Italy. [Dabrowski, W.; Dwuznik, M.; Kisielewska, D.; Koperny, S.; Kowalski, T. Z.; Mindur, B.; Toczek, B.] AGH Univ Sci & Technol, Fac Phys & Appl Comp Sci, PL-30059 Krakow, Poland. [Banas, E.; de Renstrom, P. A. Bruckman; Gornicki, E.; Hajduk, Z.; Iwanski, W.; Kaczmarska, A.; Korcyl, K.; Malecki, Pa.; Malecki, P.; Olszewski, A.; Olszowska, J.; Richter-Was, E.; Szymocha, T.; Trzupek, A.; Wolter, M. W.; Wosiek, B. K.; Zemla, A.] Polish Acad Sci, Henryk Niewodniczanski Inst Nucl Phys, PL-31342 Krakow, Poland. [Daya, R. K.; Yagei, K. Dindar; Firan, A.; Goldin, D.; Hadavand, H. K.; Hoffman, J.; Howe, T.; Ilchenko, Y.; Ishmukhametov, R.; Joffe, D.; Kasmi, A.; Kehoe, R.; Liang, Z.; Liu, T.; Renkel, P.; Rios, R. R.; Stroynowski, R.; Ye, J.] So Methodist Univ, Dept Phys, Dallas, TX 75275 USA. [Ahsan, M.; Galyaev, E.; Izen, J. M.; Lou, X.; Reeves, K.] Univ Texas Dallas, Richardson, TX 75080 USA. [Antunovic, B.; Bechtle, P.; Kuutmann, E. Bergeaas; Boehler, M.; Brandt, G.; Brunet, S.; Cote, D.; Ehrenfeld, W.; Ferrara, V.; Fischer, G.; Glazov, A.; Goebel, M.; Fajardo, L. S. Gomez; Gosdzik, B.; Gregor, I. M.; Haller, J.; Hiller, K. H.; Husemann, U.; Johnert, S.; Kama, S.; Karnevskiy, M.; Katzy, J.; Koeneke, K.; Kono, T.; Kostka, P.; Kowalski, H.; Lobodzinska, E.; Ludwig, D.; Maettig, S.; Mamuzic, J.; Medinnis, M.; Mehlhase, S.; Moenig, K.; Naumann, T.; Notz, D.; Nozicka, M.; Petschull, D.; Placakyte, R.; Qin, Z.; Stelzer, H. J.; Terwort, M.; Wildt, M. A.; Zhu, H.] DESY, D-15738 Zeuthen, Germany. [Bunse, M.; Goessling, C.; Hirsch, F.; Klingenberg, R.; Muenstermann, D.; Reisinger, I.; Walbersloh, J.] TU Dortmund, DE-44221 Dortmund, Germany. [Goepfert, T.; Kar, D.; Kobel, M.; Leonhardt, K.; Ludwig, A.; Mader, W. F.; Prudent, X.; Schaarschmidt, J.; Schumacher, J. W.; Schwierz, R.; Seifert, F.; Steinbach, P.; Straessner, A.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01069 Dresden, Germany. [Benjamin, D. P.; Bocci, A.; Ebenstein, W. L.; Fowler, A. J.; Klinkby, E. B.; Ko, B. R.; Oh, S. H.; Wang, C.; Yamaoka, J.] Duke Univ, Dept Phys, Durham, NC 27708 USA. [Buckley, A. G.; Clark, P. J.; Wynne, B. M.] Univ Edinburgh, Sch Phys & Astron, Edinburgh EH9 3JZ, Midlothian, Scotland. [Griesmayer, E.] Fachhsch Wiener Neustadt, AT-2700 Wiener Neustadt, Austria. [Annovi, A.; Antonelli, M.; Beretta, M.; Bilokon, H.; Cerutti, F.; Curatolo, M.; Esposito, B.; Ferrer, M. L.; Gatti, C.; Laurelli, P.; Maccarrone, G.; Nicoletti, G.; Salvucci, A.; Sansoni, A.; Testa, M.; Vilucchi, E.; Zambrano, V.] INFN Lab Nazl Frascati, IT-00044 Frascati, Italy. [Abdelalim, A. A.; Alexandre, G.; Backes, M.; Bell, P. J.; Bell, W. H.; Berglund, E.; Blondel, A.; Bucci, F.; Clark, A.; Dao, V.; Ferrere, D.; Gadomski, S.; Navarre, J. E. Garcia; Gonzalez-Sevilla, S.; Goulette, M. P.; Hamilton, A.; Lister, A.; Latour, B. Martin Dit; Herrera, C. Mora; Pasztor, G.; Pohl, M.; Robichaud-Veronneau, A.; Rosselet, L.; Urquijo, P.; Wu, X.] Univ Geneva, Sect Phys, CH-1211 Geneva 4, Switzerland. [Barberis, D.; Beccherle, R.; Coccaro, A.; Cornelissen, T.; Darbo, G.; Gagliardi, G.; Gemme, C.; Morettini, P.; Osculati, B.; Parodi, F.; Rossi, L. P.; Schiavi, C.] INFN Sez Genova, IT-16146 Genoa, Italy. [Barberis, D.; Coccaro, A.; Cornelissen, T.; Gagliardi, G.; Osculati, B.; Parodi, F.; Schiavi, C.] Univ Genoa, Dipartimento Fis, IT-16146 Genoa, Italy. [Chikovani, L.; Djobava, T.; Khubua, J.; Magradze, E.; Mchedlidze, G.; Mosidze, M.; Tsiskaridze, V.; Tskhadadze, E. G.] Georgian Acad Sci, Inst Phys, GE-380077 Tbilisi, Rep of Georgia. [Chikovani, L.; Djobava, T.; Khubua, J.; Magradze, E.; Mchedlidze, G.; Mosidze, M.; Tsiskaridze, V.; Tskhadadze, E. G.] Tbilisi State Univ, HEP Inst, GE-380086 Tbilisi, Rep of Georgia. [Astvatsatourov, A.; Dueren, M.; Stenzel, H.] Univ Giessen, Inst Phys 2, D-35392 Giessen, Germany. [Allwood-Spiers, S. E.; Bates, R. L.; Britton, D.; Bussey, P.; Buttar, C. M.; Collins-Tooth, C.; D'Auria, S.; Doherty, T.; Doyle, A. T.; Ferrag, S.; Kenyon, M.; McGlone, H.; Moraes, A.; O'Shea, V.; Barrera, C. Oropeza; Robson, A.; Saxon, D. H.; Smith, K. M.; St Denis, R. D.; Steele, G.; Stewart, G. A.; Thompson, A. S.; Wraight, K.; Wright, C.] Univ Glasgow, Dept Phys & Astron, Glasgow G12 8QQ, Lanark, Scotland. [Ay, C.; Blumenschein, U.; Brandt, O.; Erdmann, J.; Fayette, F.; Grosse-Knetter, J.; Henrichs, A.; Hensel, C.; Keil, M.; Klute, M.; Kohn, F.; Krieger, N.; Kroeninger, K.; Meyer, J.; Morel, J.; Park, S. J.; Quadt, A.; Shabalina, E.; Uhrmacher, M.; Weingarten, J.] Univ Gottingen, Inst Phys 2, D-37077 Gottingen, Germany. [Albrand, S.; Clement, B.; Collot, J.; Crepe-Renaudin, S.; Delsart, P. A.; Donini, J.; Hostachy, J. -Y.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Polci, F.; Stark, J.; Trocme, B.; Wang, J.] Univ Grenoble 1, CNRS, IN2P3, Lab Phys Subatom & Cosmol,INPG, FR-38026 Grenoble, France. [Addy, T. N.; Harvey, A.; McFarlane, K. W.; Shin, T.; Vassilakopoulos, V. I.] Hampton Univ, Dept Phys, Hampton, VA 23668 USA. [da Costa, J. Barreiro Guimaraes; Belloni, A.; Black, K. M.; Franklin, M.; Huth, J.; Jeanty, L.; Kagan, M.; Kashif, L.; Outschoorn, V. Martinez; Mills, C. M.; Moed, S.; Morii, M.; Prasad, S.; Smith, B. C.; della Porta, G. Zevi] Harvard Univ, Lab Particle Phys & Cosmol, Cambridge, MA 02138 USA. [Andrei, V.; Childers, J. T.; Dietzsch, T. A.; Hanke, P.; Henke, M.; Khomich, A.; Kluge, E. -E.; Lendermann, V.; Meier, K.; Mueller, F.; Poddar, S.; Ruehr, F.; Scharf, V.; Schultz-Coulon, H. -C.; Stamen, R.; Weber, P.; Wessels, M.] Heidelberg Univ, Kirchhoff Inst Phys, D-69120 Heidelberg, Germany. [Radescu, V.; Schaetzel, S.; Schoenig, A.] Inst Phys, D-69120 Heidelberg, Germany. [Kugel, A.; Maenner, R.; Schroer, N.] ZITI Ruprecht Karls Univ Heidelberg, Lehrstuhl Informat 5, DE-68131 Mannheim, Germany. [Ohsugi, T.] Hiroshima Univ, Fac Sci, Higashihiroshima, JP Hiroshima 7398526, Japan. [Nagasaka, Y.] Hiroshima Inst Technol, Fac Appl Informat Sci, Hiroshima, JP Hiroshima 7315193, Japan. [Cwetanski, P.; Egorov, K.; Evans, H.; Gagnon, P.; Jain, V.; Lowe, A. J.; Luehring, F.; Marino, C. P.; Ogren, H.; Penwell, J.; Price, D.; Whittington, D.] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. [Epp, B.; Girtler, P.; Jussel, P.; Kneringer, E.; Kuhn, D.; Rudolph, G.] Inst Astro & Teilchenphys, A-6020 Innsbruck, Austria. [Behera, P. K.; Limper, M.; Mallik, U.; Pahl, C.; Schreiner, A.; Zaidan, R.] Univ Iowa, Iowa City, IA 52242 USA. [Cochran, J.; Lebedev, A.; Mete, A. S.; Meyer, W. T.; Nelson, A.; Ruiz-Martinez, A.; Triplett, N.; Yamamoto, K.] Iowa State Univ, Ames High Energy Phys Grp, Dept Phys & Astron, Ames, IA 50011 USA. [Aleksandrov, I. N.; Barashkou, A.; Bardin, D. Y.; Bednyakov, V. A.; Boyko, I. R.; Budagov, I. A.; Chelkov, G. A.; Cheplakov, A.; Chepurnov, V. F.; Chizhov, V.; Dedovich, D. V.; Demichev, M.; Glonti, G. L.; Gostkin, M. I.; Grigalashvili, N.; Gusakov, Y.; Kalinovskaya, L. V.; Kazarinov, M. Y.; Kekelidze, G. D.; Kharchenko, D.; Khovanskiy, N.; Khramov, E.; Kolesnikov, V.; Kotov, V. M.; Kruchonak, U.; Krumshteyn, Z. V.; Kukhtin, V.; Ladygin, E.; Lazarev, A. B.; Malyukov, S.; Manjavidze, I. D.; Minashvili, I. A.; Mineev, M.; Nikolaev, K.; Olchevski, A. G.; Peshekhonov, V. D.; Romanov, V. M.; Rumyantsev, L.; Rusakovich, N. A.; Sadykov, R.; Sisakyan, A. N.; Topilin, N. D.; Vinogradov, V. B.; Zhemchugov, A.] Joint Inst Nucl Res Dubna, Joint Inst Nucl Res, RU-141980 Moscow, Moscow Region, Russia. [Amako, K.; Arai, Y.; Ikegami, Y.; Ikeno, M.; Ishino, M.; Iwasaki, H.; Kanzaki, J.; Kohriki, T.; Kondo, T.; Makida, Y.; Nagano, K.; Nozaki, M.; Odaka, S.; Ozone, K.; Sasaki, O.; Suzuki, Y.; Tanaka, S.; Terada, S.; Tojo, J.; Tokushuku, K.; Tsuno, S.; Unno, Y.; Yamamoto, A.; Yasu, Y.] KEK, High Energy Accelerator Res Org, Tsukuba, Ibaraki 3050801, Japan. [Hayakawa, T.; Homma, Y.; Hori, T.; Ishikawa, A.; Kawagoe, K.; Kiyamura, H.; Kurashige, H.; Matsushita, T.; Nakatsuka, H.; Nishiyama, T.; Ochi, A.; Okada, S.; Omachi, C.; Takeda, H.; Yamazaki, Y.] Kobe Univ, Grad Sch Sci, Nada Ku, Jp Kobe 6578501, Japan. [Sasao, N.] Kyoto Univ, Fac Sci, Sakyou Ku, Kyoto 6068502, Japan. [Takashima, R.] Kyoto Univ, Fushimi Ku, Kyoto 6128522, Japan. [Anduaga, X. S.; Dova, M. T.; Monticelli, F.; Tripiana, M. F.] Univ Nacl La Plata, Dept Fis, FCE, IFLP CONICET UNLP, RA-1900 La Plata, Argentina. [Borissov, G.; Bouhova-Thacker, E. V.; Catmore, J. R.; Cheatham, S.; Chilingarov, A.; Davidson, R.; De Mora, L.; Fox, H.; Henderson, R. C. W.; Hughes, G.; Jones, R. W. L.; Kartvelishvili, V.; Long, R. E.; Love, P. A.; Smizanska, M.; Walder, J.] Univ Lancaster, Dept Phys, Lancaster LA1 4YB, England. [Bianco, M.; Cataldi, G.; Chiodini, G.; Crupi, R.; Gorini, E.; Guida, A.; Perrino, R.; Primavera, M.; Spagnolo, S.; Ventura, A.] INFN Sez Lecce, IT-73100 Lecce, Italy. [Bianco, M.; Crupi, R.; Gorini, E.; Guida, A.; Spagnolo, S.; Ventura, A.] Univ Salento, Dipartimento Fis, IT-73100 Lecce, Italy. [Allport, P. P.; Austin, N.; Burdin, S.; D'Onofrio, M.; Dervan, P.; Greenshaw, T.; Gwilliam, C. B.; Hayward, H. S.; Jackson, J. N.; Jones, T. J.; King, B. T.; Klein, M.; Klein, U.; Kluge, T.; Kretzschmar, J.; Laycock, P.; Leney, K. J. C.; Maxfield, S. J.; Mehta, A.; Migas, S.; Prichard, P. M.; Vankov, P.; Vossebeld, J. H.; Wiglesworth, C.; Wrona, B.] Univ Liverpool, Oliver Lodge Lab, Liverpool L69 3BX, Merseyside, England. [Cindro, V.; Dolenc, I.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Macek, B.; Mandic, I.; Mijovic, L.; Mikuz, M.] Jozef Stefan Inst, SI-1000 Ljubljana, Slovenia. [Cindro, V.; Dolenc, I.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Macek, B.; Mandic, I.; Mijovic, L.; Mikuz, M.] Univ Ljubljana, Dept Phys, SI-1000 Ljubljana, Slovenia. [Adragna, P.; Beck, G. A.; Carter, A. A.; Cerrito, L.; Cooper, B. D.; Eisenhandler, E.; Ellis, K.; Landon, M. P. J.; Lloyd, S. L.; Martin, A. J.; Morris, J. D.; Poll, J.; Rizvi, E.; Stevenson, K.] Queen Mary Univ London, Dept Phys, London E1 4NS, England. [Alam, M. A.; Berry, T.; Boisvert, V.; Cooper-Smith, N. J.; Cowan, G.; Edwards, C. A.; Martin, T. Fonseca; George, S.; Goncalo, R.; Green, B.; Misiejuk, A.; Tamsett, M. C.; Teixeira-Dias, P.] Univ London, Dept Phys, Egham TW20 0EX, Surrey, England. [Asquith, L.; Baker, S.; Bernius, C.; Boeser, S.; Butterworth, J. M.; Byatt, T.; Campanelli, M.; Christidi, I. A.; Davison, A. R.; Dean, S.; Jansen, E.; Konstantinidis, N.; Monk, J.; Nash, M.; Nurse, E.; Ozcan, V. E.; Richards, A.; Robinson, J. E. M.; Sherwood, P.; Siegert, F.; Simmons, B.; Taylor, C.; Waugh, B. M.] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Beau, T.; Bordoni, S.; Calderini, G.; Cavalleri, P.; Chareyre, E.; De Cecco, S.; Derue, F.; Krasny, M. W.; Lacour, D.; Laforge, B.; Le Dortz, O.; Lellouch, J.; Marchiori, G.; Nikolic-Audit, I.; Ridel, M.; Roos, L.; Schwemling, Ph.; Trincaz-Duvoid, S.; Trinh, T. N.; Vannucci, F.; Yuan, L.] Univ Paris 07, Univ Paris 06, CNRS, Lab Phys Nucl & Hautes Energies,IN2P3, FR-75252 Paris 05, France. [Akesson, T. P. A.; Alonso, A.; Boelaert, N.; Groth-Jensen, J.; Hedberg, V.; Jarlskog, G.; Ji, W.; Lundberg, B.; Lytken, E.; Mjornmark, J. U.; Smirnova, O.] Lund Univ, Inst Fys, Nat Vetenskapliga Fak, SE-22100 Lund, Sweden. [Barreiro, F.; Cantero, J.; Del Peso, J.; Gabaldon, C.; Glasman, C.; Lagouri, T.; March, L.; Nebot, E.; Terron, J.] Univ Autonoma Madrid, Fac Ciencias, Dept Fis Teor, ES-28049 Madrid, Spain. [Aharrouche, M.; Bendel, M.; Blum, W.; Buescher, V.; Eckweiler, S.; Edmonds, K.; Ellinghaus, F.; Ertel, E.; Fiedler, F.; Fleckner, J.; Goeringer, C.; Groll, M.; Handel, C.; Hohlfeld, M.; Kawamura, G.; Kleinknecht, K.; Koenig, S.; Koepke, L.; Neusiedl, A.; Sander, H. G.; Schaefer, U.; Schmitt, C.; Schroeder, C.; Siragusa, G.; Tapprogge, S.; Anh, T. Vu; Wicke, D.] Johannes Gutenberg Univ Mainz, Inst Phys, DE-55099 Mainz, Germany. [Almond, J.; Ask, S.; Brown, G.; Chavda, V.; Cox, B. E.; Da Via, C.; Forti, A.; Freestone, J.; Head, S. J.; Jones, G.; Keates, J. R.; Kelly, M.; Kolya, S. D.; Lane, J. L.; Loebinger, F. K.; Martyniuk, A. C.; Masik, J.; Miyagawa, P. S.; Oh, A.; Owen, M.; Pater, J. R.; Pilkington, A. D.; Potter, K. P.; Schwanenberger, C.; Snow, S. W.; Thompson, R. J.; Watts, S.; Wengler, T.; Yang, U. K.] Univ Manchester, Sch Phys & Astron, Manchester M13 9PL, Lancs, England. [Aoun, S.; Bee, C.; Clemens, J. C.; Coadou, Y.; Djama, F.; Feligioni, L.; Hoffmann, D.; Hubaut, F.; Kuna, M.; Lapoire, C.; Le Guirriec, E.; Leveque, J.; Monnier, E.; Odier, J.; Petit, E.; Pralavorio, P.; Rozanov, A.; Talby, M.; Tisserant, S.; Toth, J.; Touchard, F.; Vacavant, L.; Zhang, H.] Aix Marseille Univ, CNRS, IN2P3, CPPM, Marseille, France. [Brau, B.; Colon, G.; Dallapiccola, C.; Meade, A.; Moyse, E. J. W.; Thompson, E. N.; van Eldik, N.; Willocq, S.; Woudstra, M. J.] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA. [Corriveau, F.; Dufour, M. -A.; Guler, H.; Klemetti, M.; Mc Donald, J.; Potter, C. T.; Robertson, S. H.; Rios, C. Santamarina; Schram, M.; Vachon, B.; Warburton, A.] McGill Univ, High Energy Phys Grp, Montreal, PQ H3A 2T8, Canada. [Barberio, E. L.; Davey, W.; Davidson, N.; Felzmann, C. U.; Limosani, A.; Morley, A. K.; Phan, A.; Sevior, M. E.; Shao, Q. T.; Taylor, G. N.] Univ Melbourne, Sch Phys, Au Parkville, Vic 3010, Australia. [Armbruster, A. J.; Chapman, J. W.; Cirilli, M.; Dai, T.; Diehl, E. B.; Eppig, A.; Ferretti, C.; Goldfarb, S.; Levin, D.; Li, X.; Liu, H.; Mc Kee, S. P.; Neal, H. A.; Panikashvili, N.; Purdham, J.; Qian, J.; Scheirich, D.; Strandberg, J.; Thun, R. P.; Wilson, A.; Yang, H.; Zhou, B.] Univ Michigan, Randall Lab 2477, Dept Phys, Ann Arbor, MI 48109 USA. [Abolins, M.; Brock, R.; Bromberg, C.; Di Mattia, A.; Ermoline, I.; Hauser, R.; Heim, S.; Holzbauer, J. L.; Huston, J.; Koll, J.; Kraus, J.; Linnemann, J. T.; Mangeard, P. S.; Martin, B.; Pope, B. G.; Ryan, P.; Schwienhorst, R.; Tollefson, K.] Michigan State Univ, Dept Phys & Astron, High Energy Phys Grp, E Lansing, MI 48824 USA. [Alimonti, G.; Andreazza, A.; Banfi, D.; Besana, M. I.; Carminati, L.; Cavalli, D.; Costa, G.; Dell'Asta, L.; Fanti, M.; Giugni, D.; Lari, T.; Lazzaro, A.; Mandelli, L.; Meroni, C.; Montesano, S.; Perini, L.; Pizio, C.; Ragusa, F.; Resconi, S.; Tartarelli, G. F.; Troncon, C.] INFN Sez Milano, IT-20133 Milan, Italy. [Andreazza, A.; Banfi, D.; Besana, M. I.; Carminati, L.; Dell'Asta, L.; Fanti, M.; Lazzaro, A.; Montesano, S.; Perini, L.; Pizio, C.; Ragusa, F.] Univ Milan, Dipartimento Fis, IT-20133 Milan, Italy. [Bogouch, A.; Kulchitsky, Y.; Kurochkin, Y. A.; Satsounkevitch, I.; Tsiareshka, P. V.] Natl Acad Sci Belarus, BI Stepanov Phys Inst, Minsk 220072, Byelarus. [Gilewsky, V.; Starovoitov, P.] NC PHEP BSU, Natl Sci & Educ Ctr Particle & High Energy Phys, Minsk 220040, Byelarus. [Taylor, F. E.] MIT, Dept Phys, Cambridge, MA 02139 USA. [Azuelos, G.; Banerjee, P.; Bouchami, J.; Davies, M.; Ferland, J.; Gutierrez, A.; Lebel, C.; Leroy, C.; Goia, J. A. Macana; Martin, J. P.] Univ Montreal, Grp Particle Phys, Montreal, PQ H3C 3J7, Canada. [Akimov, A. V.; Baranov, S. P.; Gavrilenko, I. L.; Kayumov, F.; Komar, A. A.; Konovalov, S. P.; Mouraviev, S. V.; Nechaeva, P.; Shmeleva, A.; Snesarev, A. A.; Sulin, V. V.; Tikhomirov, V. O.; Vasilyeva, L.] Acad Sci, PN Lebedev Phys Inst, RU-117924 Moscow, Russia. [Artamonov, A.; Khovanskiy, V.; Shatalov, P. B.; Tsukerman, I. I.] ITEP, RU-117218 Moscow, Russia. [Belotskiy, K.; Bondarenko, V. G.; Bulekov, O.; Dolgoshein, B. A.; Kantserov, V. A.; Mashinistov, R.; Morozov, S. V.; Romaniouk, A.; Smirnov, S. Yu.] Moscow Engn & Phys Inst MEPhI, RU-115409 Moscow, Russia. [Gladilin, L. K.; Grishkevich, Y. V.; Kramarenko, V. A.; Rud, V. I.; Sivoklokov, S. Yu.; Smirnova, L. N.] Moscow MV Lomonosov State Univ, Skobeltsyn Inst Nucl Phys MSU SINP, Moscow 119991, Russia. [Biebel, O.; Calfayan, P.; de Graat, J.; Duckeck, G.; Ebke, J.; Elmsheuser, J.; Engl, A.; Galea, C.; Genest, M. H.; Hertenberger, R.; Kummer, C.; Legger, F.; Lichtnecker, M.; Mameghani, R.; Mueller, T. A.; Nunnemann, T.; Rauscher, F.; Ruckert, B.; Sanders, M. P.; Schaile, D.; Serfon, C.; Walker, R.; Zhuang, X.] Univ Munich, Fak Phys, DE-85748 Garching, Germany. [Cortiana, G.; D'Orazio, A.; Dannheim, D.; Dubbert, J.; Jantsch, A.; Kiryunin, A. E.; Kroha, H.; Macchiolo, A.; Moser, H. G.; Oberlack, H.; Pospelov, G. E.; Potrap, I. N.; Quadt, A.; Rauter, E.; Salihagic, D.; Schieck, J.; von der Schmitt, H.; von Loeben, J.] Max Planck Inst Phys & Astrophys, Werner Heisenberg Inst, D-80805 Munich, Germany. [Shimojima, M.] Nagasaki Inst Appl Sci, Jp Nagasaki 8510193, Japan. [Hasegawa, S.; Itoh, Y.; Ohshima, T.; Okumura, Y.; Sugimoto, T.; Takahashi, Y.; Tomoto, M.] Nagoya Univ, Grad Sch Sci, Chikusa Ku, Nagoya, Aichi 4648602, Japan. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Capasso, L.; Carlino, G.; Chiefari, G.; Conventi, F.; de Asmundis, R.; Della Pietra, M.; della Volpe, D.; Doria, A.; Giordano, R.; Lacobucci, G.; Izzo, V.; Merola, L.; Musto, E.; Patricelli, S.; Sekhniaidze, G.] INFN Sez Napoli, IT-80126 Naples, Italy. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Capasso, L.; Chiefari, G.; della Volpe, D.; Giordano, R.; Merola, L.; Musto, E.; Patricelli, S.] Univ Naples Federico II, Dipartimento Sci Fisiche, IT-80126 Naples, Italy. [Gorelov, I.; Hoeferkamp, M. R.; Metcalfe, J.; Seidel, S. C.; Toms, K.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. [Consonni, M.; De Groot, N.; Filthaut, F.; Klok, P. F.; Konig, A. C.; Koetsveld, F.; Raas, M.] Radboud Univ Nijmegen NIKHEF, Dept Expt High Energy Phys, NL-6525 AJ Nijmegen, Netherlands. [Bentvelsen, S.; Bobbink, C. J.; Bos, K.; Boterenbrood, H.; Colijn, A. P.; de Jong, P.; Doxiadis, A.; Ferrari, P.; Garitaonandia, H.; Gosselink, M.; Hartjes, F.; Hessey, N. P.; Igonkina, O.; Kayl, M. S.; Klous, S.; Kluit, P.; Koffeman, E.; Koutsman, A.; Lee, H.; Liebig, W.; Mechnich, J.; Mussche, I.; Ottersbach, J. P.; Rijpstra, M.; Ruckstuhl, N.; Salamanna, G.; Sandstroem, R.; Snuverink, J.; Tsiakiris, M.; Turlay, E.; van der Graaf, H.; van der Kraaij, E.; van der Poel, E.; van Kesteren, Z.; van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Vreeswijk, M.] Nikhef Natl Inst Subatom Phys, NL-1098 XG Amsterdam, Netherlands. [Bentvelsen, S.; Bobbink, C. J.; Bos, K.; Boterenbrood, H.; Colijn, A. P.; de Jong, P.; Doxiadis, A.; Ferrari, P.; Garitaonandia, H.; Gosselink, M.; Hartjes, F.; Hessey, N. P.; Igonkina, O.; Kayl, M. S.; Klous, S.; Kluit, P.; Koffeman, E.; Koutsman, A.; Lee, H.; Liebig, W.; Mechnich, J.; Mussche, I.; Ottersbach, J. P.; Rijpstra, M.; Ruckstuhl, N.; Salamanna, G.; Sandstroem, R.; Snuverink, J.; Tsiakiris, M.; Turlay, E.; van der Graaf, H.; van der Kraaij, E.; van der Poel, E.; van Kesteren, Z.; van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Vreeswijk, M.] Univ Amsterdam, NL-1098 XG Amsterdam, Netherlands. [Calkins, R.; Chakraborty, D.; de Lima, J. G. Rocha; Suhr, C.; Zutshi, V.] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. [Kotov, K. Y.; Malyshev, V.; Mastennikov, A. L.; Orlov, I.; Peleganchuk, S. V.; Quadt, A.; Schamov, A. G.; Skovpen, K.; Soukharev, A.; Talyshev, A.; Zaytsev, A.] Budker Inst Nucl Phys BINP, RU-630090 Novosibirsk, Russia. [Budick, B.; Casadei, D.; Cranmer, K.; Djilkibaev, R.; Konoplich, R.; Krasznahorkay, A.; Mincer, A. I.; Nemethy, P.; Neves, R. M.; Shibata, A.; Zhao, L.] NYU, Dept Phys, New York, NY 10003 USA. [Fernando, W.; Fisher, M. J.; Gan, K. K.; Kagan, H.; Kass, R. D.; Loureiro, K. F.; Moss, J.; Rahimi, A. M.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.] Okayama Univ, Fac Sci, Okayama 7008530, Japan. [Abbott, B.; Gutierrez, P.; Huang, G. S.; Jana, D. K.; Meera-Lebbai, R.; Saleem, M. S.; Severini, H.; Skubic, P.; Snow, J.; Strauss, M.] Univ Oklahoma, Homer L Dodge Dept Phys & Astron, Norman, OK 73019 USA. [Abi, B.; Khanov, A.; Rizatdinova, F.] Oklahoma State Univ, Dept Phys, Stillwater, OK 74078 USA. [Kocnar, A.] Palacky Univ, Olomouc 77207, Czech Republic. [Brau, J. E.; Ptacek, E.; Reinsch, A.; Robinson, M.; Searcy, J.; Shamim, M.; Sinev, N. B.; Strom, D. M.; Torrence, E.] Univ Oregon, Ctr High Energy Phys, Eugene, OR 97403 USA. [Abreu, H.; Arnault, C.; Barrillon, P.; Benoit, M.; Bernat, P.; Blanchard, J. -B.; Bourdarios, C.; Collard, C.; De Regie, J. B. De Vivie; Diglio, S.; Dudziak, F.; Duflot, L.; Escalier, M.; Fayard, L.; Fournier, D.; Heller, M.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Kado, M.; Lounis, A.; Makovec, N.; Matricon, P.; Niedercorn, F.; Perus, P.; Poggioli, L.; Puzo, P.; Rousseau, D.; Ruan, X.; Rybkin, G.; Schaffer, A. C.; Serin, L.; Simion, S.; Tanaka, R.; Vukotic, I.; Wicek, F.; Zerwas, D.] Univ Paris 11, CNRS, IN2P3, LAL, F-91405 Orsay, France. [Hanagaki, K.; Hirose, M.; Meguro, T. M.; Nomachi, M.; Sugaya, Y.; Uchida, K.] Osaka Univ, Grad Sch Sci, Toyonaka, Osaka 5600043, Japan. [Bugge, L.; Buran, T.; Cameron, D.; Gjelsten, B. K.; Lund, E.; Ould-Saada, F.; Pajchel, K.; Pylypchenko, Y.; Read, A. L.; Rohne, O.; Samset, B. H.; Stapnes, S.; Strandlie, A.; Taga, A.] Univ Oslo, Dept Phys, NO-0316 Oslo 3, Norway. [Abdesselam, A.; Barr, A. J.; Beauchemin, P. H.; Buchanan, J.; Cooper-Sarkar, A. M.; Dehchar, M.; Doglioni, C.; Farrington, S. M.; Ferrando, J.; Fiascaris, M.; Gallas, E. J.; Gibson, S. M.; Gilbert, L. M.; Gwenlan, C.; Huffman, T. B.; Issever, C.; Unel, M. Karagoz; Kirsch, G. P.; Larner, A.; Mattravers, C.; Mermod, P.; Nickerson, R. B.; Tseng, J. C. -L.; Vickey, T.; Viehhauser, G. H. A.; Wastie, R.; Weidberg, A. R.; Whitehead, S. R.] Univ Oxford, Dept Phys, Oxford OX1 3RH, England. [Bellomo, M.; Conta, C.; Ferrari, R.; Franchino, S.; Fraternali, M.; Gaudio, G.; Goggi, V.; Lanza, A.; Livan, M.; Negri, A.; Polesello, G.; Rebuzzi, D. M.; Rimoldi, A.; Uslenghi, M.; Vercesi, V.] INFN Sez Pavia, IT-27100 Pavia, Italy. [Conta, C.; Franchino, S.; Fraternali, M.; Goggi, V.; Livan, M.; Negri, A.; Rebuzzi, D. M.; Rimoldi, A.; Uslenghi, M.] Univ Pavia, Dipartimento Fis Nucl & Teor, IT-27100 Pavia, Italy. [Alison, J.; Degenhardt, J.; Donega, M.; Fratina, S.; Hance, M.; Hines, E.; Jackson, B.; Keener, P. T.; Kroll, J.; Kunkle, J.; LeGeyt, B. C.; Lipeles, E.; Martin, F. F.; Newcomer, F. M.; Olivito, D.; Ospanov, R.; Reece, R.; Stahlman, J. J.; Thomson, E.; Van Berg, R.; Wagner, P.; Williams, H. H.] Univ Penn, Dept Phys, High Energy Phys Grp, Philadelphia, PA 19104 USA. [Fedin, O. L.; Gratchev, V.; Kolos, S.; Maleev, V. P.; Ryabov, Y. F.; Schegelsky, V. A.; Sedykh, E.; Seliverstov, D. M.] Petersburg Nucl Phys Inst, RU-188300 Gatchina, Russia. [Cascella, M.; Cavasinni, V.; Del Prete, T.; Dotti, A.; Francavilla, P.; Giangiobbe, V.; Roda, C.; Sarri, F.; Zenonos, Z.] INFN Sez Pisa, IT-56127 Pisa, Italy. [Cascella, M.; Cavasinni, V.; Del Prete, T.; Dotti, A.; Francavilla, P.; Giangiobbe, V.; Roda, C.; Sarri, F.; Zenonos, Z.] Univ Pisa, Dipartimento Fis E Fermi, IT-56127 Pisa, Italy. [Boudreau, J.; Boulahouache, C.; Cleland, W.; Kittelmann, T.; Mueller, J.; Paolone, V.; Prieur, D.; Savinov, V.; Tsulaia, V.; Wendler, S.; Yoosoofmiya, R.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Amorim, A.; Anjos, N.; Carvalho, J.; Conde Muino, P.; Do Valle Wemans, A.; Fernandes, B.; Fiolhais, M. C. N.; Gomes, A.; Jorge, P. M.; Lopes, L.; Machado Miguens, J.; Magalhaes Martins, P. J.; Maio, A.; Maneira, J.; Morais, A.; Oliveira, M.; Onofre, A.; Palma, A.; Pina, J.; Pinto, B.; Saraiva, J. G.; Silva, J.; Soares, M.; Veloso, F.; Wolters, H.] Lab Instrumentacao & Fis Expt Particulas LIP, P-1000149 Lisbon, Portugal. [Aguilar-Saavedra, J. A.; Castro, N. F.] Univ Granada, Dept Fis Teor & Cosmos, E-18071 Granada, Spain. [Aguilar-Saavedra, J. A.; Castro, N. F.] CAFPE, E-18071 Granada, Spain. [Bazalova, M.; Bohm, J.; Chudoba, J.; Gaus, P.; Gunther, J.; Havranek, M.; Juranek, V.; Kepka, O.; Kupco, A.; Kus, V.; Lipinsky, L.; Lokajicek, M.; Marcisovsky, M.; Mikestikova, M.; Myska, M.; Nemecek, S.; Panuskova, M.; Popule, J.; Ruzicka, P.; Schovancova, J.; Sicho, P.; Staroba, P.; Stastny, J.; Tasevsky, M.; Tic, T.; Tomasek, L.; Tomasek, M.; Vrba, V.] Acad Sci Czech Republic, Inst Phys, CZ-18221 Prague 8, Czech Republic. [Davidek, T.; Dolejsi, J.; Dolezal, Z.; Drasal, Z.; Kodys, P.; Leitner, R.; Novakova, J.; Reznicek, P.; Spousta, M.; Strachota, P.; Suk, M.; Sykora, T.; Tas, P.; Valkar, S.; Vorobel, V.] Charles Univ Prague, Inst Particle & Nucl Phys, Fac Math & Phys, CZ-18000 Prague 8, Czech Republic. [Augsten, K.; Holy, T.; Horazdovsky, T.; Hubacek, Z.; Jakubek, J.; Kohout, Z.; Kral, V.; Krejci, F.; Pospisil, S.; Simak, V.; Slavicek, T.; Smolek, K.; Sodomka, J.; Solar, M.; Solc, J.; Sopko, V.; Sopko, B.; Stekl, I.; Turecek, D.; Vacek, V.; Vlasak, M.; Vokac, P.] Czech Tech Univ, CZ-16635 Prague 6, Czech Republic. [Borisov, A.; Denisov, S. P.; Fakhrutdinov, R. M.; Fenyuk, A. B.; Ivashin, A. V.; Kabachenko, V. V.; Karyukhin, A. N.; Korotkov, V. A.; Kozhin, A. S.; Makouski, M.; Minaenko, A. A.; Myagkov, A. G.; Solodkov, A. A.; Solovyanov, O. V.; Starchenko, E. A.; Zaitsev, A. M.; Zenin, O.] State Res Ctr, Inst High Energy Phys, Protvino 142281, Moscow Region, Russia. [Benslama, K.; Ming, Y.; Ortega, E. O.] Univ Regina, Dept Phys, Regina, SK S4S 0A2, Canada. [Tanaka, S.] Ritsumeikan Univ, Jp Kusatsu, Shiga 5258577, Japan. [Anulli, F.; Bagnaia, P.; Biglietti, M.; Bini, C.; Borroni, S.; Ciapetti, G.; De Pedis, D.; De Salvo, A.; Dionisi, C.; Falciano, S.; Gauzzi, P.; Gentile, S.; Giagu, S.; Lacava, F.; Luci, C.; Luminari, L.; Maiani, C.; Marzano, F.; Mirabelli, G.; Nisati, A.; Pasqualucci, E.; Petrolo, E.; Pontecorvo, L.; Rescigno, M.; Tehrani, F. Safai; Camillocci, E. Solfaroli; Spila, F.; Valente, P.; Vari, R.; Veneziano, S.; Zanello, L.] INFN Sez Roma 1, IT-00185 Rome, Italy. [Bagnaia, P.; Biglietti, M.; Bini, C.; Borroni, S.; Ciapetti, G.; Dionisi, C.; Gauzzi, P.; Gentile, S.; Giagu, S.; Lacava, F.; Luci, C.; Maiani, C.; Tehrani, F. Safai; Camillocci, E. Solfaroli; Spila, F.; Zanello, L.] Univ Roma La Sapienza, Dipartimento Fis, IT-00185 Rome, Italy. [Aielli, G.; Camarri, P.; Cardarelli, R.; Cattani, G.; Di Ciaccio, A.; Di Nardo, R.; Di Simone, A.; Liberti, B.; Marchese, F.; Salamon, A.; Santonico, R.] INFN Sez Roma Tor Vergata, IT-00133 Rome, Italy. [Aielli, G.; Camarri, P.; Cattani, G.; Di Ciaccio, A.; Di Nardo, R.; Di Simone, A.; Marchese, F.; Santonico, R.] Univ Roma Tor Vergata, Dipartimento Fis, IT-00133 Rome, Italy. [Baroncelli, A.; Branchini, P.; Ceradini, F.; Di Luse, S.; Farilla, A.; Graziani, E.; Iodice, M.; Orestano, D.; Passeri, A.; Pastore, F.; Petrucci, F.; Ruggieri, E.; Stanescu, C.] INFN Sez Roma Tre, IT-00146 Rome, Italy. [Ceradini, F.; Di Luse, S.; Orestano, D.; Pastore, F.; Petrucci, F.] Univ Roma Tre, Dipartimento Fis, IT-00146 Rome, Italy. [Benchekroun, D.; Chafaq, A.; Gouighri, M.; Goujdami, D.; Hoummada, A.] Univ Hassan 2, RUPHE, Fac Sci Ain Chock, Casablanca, Morocco. Ctr Natl Energie Sci Techn Nucl CNESTEN, Rabat 10001, Morocco. [Derkaoui, J. E.] Univ Mohamed Premier, LPTPM, Fac Sci, Oujda 60000, Morocco. [El Moursli, R. Cherkaoui; Ghazlane, H.] Univ Mohammed 5, Fac Sci, Rabat 10000, Morocco. [Bachacou, H.; Bauer, F.; Besson, N.; Boonekamp, M.; Chevalier, L.; Chevallier, F.; Ernwein, J.; Etienvre, A. I.; Formica, A.; Gautard, V.; Guyot, C.; Hassani, S.; Kozanecki, W.; Lancon, E.; Laporte, J. E.; Le Menedeu, E.; Legendre, M.; Lenzi, B.; Mansoulie, B.; Marzin, A.; Meyer, J. -P.; Mountricha, E.; Nicolaidou, R.; Ouraou, A.; Ponsot, P.; Resende, B.; Royon, C. R.; Schune, Ph.; Schwindling, J.] CEA, DSM IRFU, Ctr Etud Saclay, FR-91191 Gif Sur Yvette, France. [Bangert, A.; Chouridou, S.; Fowler, K.; Grillo, A. A.; Hansl-Kozanecka, T.; Hare, G. A.; Litke, A. M.; Lockman, W. S.; Manning, P. M.; Mitrevski, J.; Nielsen, J.; Sadrozinski, H. F. -W.; Schumm, B. A.; Seiden, A.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Daly, C. H.; Goussiou, A. G.; Griffiths, J.; Harris, O. M.; Lubatti, H. J.; Policicchio, A.; Rosati, S.; Rothberg, J.; Twomey, M. S.; Ventura, D.; Watts, G.; Zhao, T.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Anastopoulos, C.; Costanzo, D.; Donszelmann, T. Cuhadar; Dawson, I.; Duxfield, R.; Hodgkinson, M. C.; Hodgson, P.; Johansson, P.; Korolkova, E. V.; Mayne, A.; Nicolas, L.; Owen, S.; Paganis, E.; Shaw, K.; Sutton, M. R.; Tovey, D. R.; Tsionou, D.; Xu, D.] Univ Sheffield, Dept Phys & Astron, Sheffield S3 7RH, S Yorkshire, England. [Hasegawa, Y.; Ohshita, H.; Takeshita, T.] Shinshu Univ, Dept Phys, Fac Sci, Matsumoto, JP Nagano 3908621, Japan. [Buchholz, P.; Fleck, I.; Grybel, K.; Ibragimov, I.; Rammes, M.; Sipica, V.; Stahl, T.; Walkowiak, W.; Werthenbach, U.; Ziolkowski, M.] Univ Siegen, Fachbereich Phys, D-57068 Siegen, Germany. [Godfrey, J.; Komaragiri, J. R.; O'Neil, D. C.; Petteni, M.; Schouten, D.; Spreitzer, T.; Stelzer, B.; Vetterli, M. C.] Simon Fraser Univ, Dept Phys, Ca Burnaby, BC V5A 1S6, Canada. [Aracena, I.; Asai, M.; Barklow, T.; Bartoldus, R.; Bawa, H. S.; Butler, B.; Gao, Y. S.; Grenier, P.; Haas, A.; Hansson, P.; Horn, C.; Jackson, P.; Kim, P. C.; Kocian, M.; Miller, D. W.; Mount, R.; Nelson, T. K.; Salnikov, A.; Schwartzman, A.; Silverstein, D.; Smith, D.; Su, D.; Wilson, M. G.; Wittgen, M.; Wright, D.; Young, C.] SLAC Natl Accelerator Lab, Stanford, CA 94309 USA. [Batkova, L.; Federic, P.; Lovas, L.; Pecsy, M.; Stavina, P.; Sykora, I.; Tokar, S.; Zenis, T.] Comenius Univ, Fac Math Phys & Informat, Phys Informat, SK-84248 Bratislava, Slovakia. [Antos, J.; Bruncko, D.; Ferencei, J.; Kladiva, E.; Strizenec, P.] Slovak Acad Sci, Dept Subnucl Phys, Inst Expt Phys, SK-04353 Kosice, Slovakia. [Asman, B.; Bohm, C.; Clement, C.; Eriksson, D.; Gellerstedt, K.; Hellman, S.; Hillert, S.; Johansen, M.; Johansson, K. E.; Jon-And, K.; Milstead, D. A.; Moa, T.; Nordkvist, B.; Ohm, C. C.; Sellden, B.; Silverstein, S. B.; Sjoelin, J.; Tylmad, M.; Yang, Z.] Stockholm Univ, Dept Phys, SE-10691 Stockholm, Sweden. [Asman, B.; Clement, C.; Gellerstedt, K.; Hellman, S.; Hillert, S.; Johansen, M.; Jon-And, K.; Milstead, D. A.; Moa, T.; Nordkvist, B.; Ohm, C. C.; Sjoelin, J.; Tylmad, M.; Yang, Z.] Oskar Klein Ctr, SE-10691 Stockholm, Sweden. [Grahn, K. -J.; Lund-Jensen, B.] Royal Inst Technol KTH, Dept Phys, SE-10691 Stockholm, Sweden. [Ahmad, A.; Caputo, R.; Deluca, C.; DeWilde, B.; Engelmann, R.; Farley, J.; Goodson, J. J.; Grassi, V.; Gray, J. A.; Grimm, K.; Hobbs, J.; Jia, J.; Khodinov, A.; McCarthy, R. L.; Rijssenbeek, M.; Schamberger, R. D.; Tsybychev, D.; Yurkewicz, A.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [De Santo, A.; Potter, C. J.; Salvatore, F.] Univ Sussex, Dept Phys & Astron, Brighton BN1 9QH, E Sussex, England. [Lee, J. S. H.; Peak, L. S.; Saavedra, A. F.; Varvell, K. E.; Waugh, A. T.] Univ Sydney, Sch Phys, Au Sydney, NSW 2006, Australia. [Chu, M. L.; Hou, S.; Lee, S. C.; Liang, Z.; Lin, S. C.; Liu, D.; Mazini, R.; Meng, Z.; Ren, Z. L.; Soh, D. A.; Teng, P. K.; Wang, S. M.; Zhong, J.; Zhou, Y.] Acad Sinica, Inst Phys, Acad Sinica Grid Comp, Taipei 11529, Taiwan. [Harpaz, S. Behar; Ben Ami, S.; Bressler, S.; Hershenhorn, A. D.; Kajomovitz, E.; Rozen, Y.; Tarem, S.; Tennenbaum-Katan, Y. D.; Vallecorsa, S.] Technion Israel Inst Technol, Dept Phys, IL-32000 Technion, IL Haifa, Israel. [Abramowicz, H.; Alexander, G.; Amram, N.; Bella, G.; Benary, O.; Benhammou, Y.; Brodet, E.; Etzion, E.; Gershon, A.; Ginzburg, J.; Guttman, N.; Hod, N.; Kreisel, A.; Mahalalel, Y.; Munwes, Y.; Oren, Y.; Reinherz-Aronis, E.; Silver, Y.; Soffer, A.; Urkovsky, E.] Tel Aviv Univ, Raymond & Beverly Sackler Sch Phys & Astron, IL-69978 Ramat Aviv, ILTel Aviv, Israel. [Iliadis, D.; Kordas, K.; Nomidis, I.; Petridou, C.; Sampsonidis, D.] Univ Thessaloniki, Fac Sci, Dept Phys, Div Nucl & Particle Phys, GR-54124 Thessaloniki, Greece. [Akimoto, G.; Asai, S.; Azuma, Y.; Dohmae, T.; Isobe, T.; Kanaya, N.; Kaneda, M.; Kataoka, Y.; Kawamoto, T.; Kessoku, K.; Kobayashi, T.; Kubota, T.; Mashimo, T.; Masubuchi, T.; Matsunaga, H.; Nakamura, K.; Oda, S.; Okuyama, T.; Sakamoto, H.; Suzuki, T.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamamoto, S.; Yamamura, T.; Yamazaki, T.] Univ Tokyo, Int Ctr Elementary Particle Phys, Jp Tokyo 1130033, Japan. [Akimoto, G.; Asai, S.; Azuma, Y.; Dohmae, T.; Isobe, T.; Kanaya, N.; Kaneda, M.; Kataoka, Y.; Kawamoto, T.; Kessoku, K.; Kobayashi, T.; Kubota, T.; Mashimo, T.; Masubuchi, T.; Matsunaga, H.; Nakamura, K.; Oda, S.; Okuyama, T.; Sakamoto, H.; Suzuki, T.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamamoto, S.; Yamamura, T.; Yamazaki, T.] Dept Phys, Bunkyo Ku, Jp Tokyo 1130033, Japan. [Bratzler, U.; Fukunaga, C.] Tokyo Metropolitan Univ, Grad Sch Sci & Technol, Hachioji, Tokyo 1920397, Japan. [Jinnouchi, O.] Tokyo Inst Technol, Meguro Ku, Tokyo 1528551, Japan. [Bain, T.; Beare, B.; Brelier, B.; Montero, S. Carron; Cheung, S. L.; Deviveiros, P. O.; Dhaliwal, S.; Farooque, T.; Fatholahzadeh, B.; Gibson, A.; Guo, B.; Jankowski, E.; Knecht, N. S.; Krieger, P.; Orr, R. S.; Rezvani, R.; Rosenbaum, G. A.; Sandhu, P.; Savard, P.; Sinervo, P.; Tardif, D.; Teuscher, Rj.; Thompson, P. D.; Trischuk, W.] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada. [Idarraga, J.; Taylor, W.] York Univ, Dept Phys & Astron, Toronto, ON M3J 1P3, Canada. [Hara, K.; Kim, S. H.; Kurata, M.; Nagai, K.; Ukegawa, F.; Yamada, M.] Univ Tsukuba, Inst Pure & Appl Sci, Tsukuba, JP Ibaraki 3058571, Japan. [Hamilton, S.; Napier, A.; Rolli, S.; Sliwa, K.; Todorova-Nova, S.] Tufts Univ, Ctr Sci & Technol, Medford, MA 02155 USA. [Losada, M.; Navas, L. Mendoza; Moreno, D.; Navarro, G.; Romero, D. A. Roa; Rodriguez, D.] Univ Antonio Narino, Ctr Invest, Bogota, Colombia. [Avolio, G.; Benedict, B. H.; Bold, T.; Bondioli, M.; Ciobotaru, M. D.; Corso-Radu, A.; Deng, J.; Dobson, M.; Eschrich, I. Gough; Grabowska-Bold, I.; Kolos, S.; Lankford, A. J.; Garcia, R. Murillo; Okawa, H.; Porter, R.; Schernau, M.; Stancu, S. N.; Taffard, A.; Toggerson, B.; Unel, G.; Werth, M.; Whiteson, D.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Acharya, B. S.; Cobal, M.; De Sanctis, U.; Del Papa, C.; Giordani, M. P.; Pinamonti, M.; Suruliz, K.] INFN Grp Coll Udine, IT-34014 Trieste, Italy. [Acharya, B. S.; Suruliz, K.] Abdus Salaam Int Ctr Theoret Phys, IT-34014 Trieste, Italy. [Cobal, M.; De Sanctis, U.; Del Papa, C.; Giordani, M. P.; Pinamonti, M.] Univ Udine, Dipartimento Fis, IT-33100 Udine, Italy. [Benekos, N.; Coggeshall, J.; Cortes-Gonzalez, A.; Errede, D.; Errede, S.; Khandanyan, H.; Lie, K.; Liss, T. M.; McCarn, A.; Neubauer, M. S.; Sfyrla, A.; Vichou, I.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Belanger-Champagne, C.; Brenner, R.; Buszello, C. P.; Coniavitis, E.; Ekelof, T.; Ellert, M.; Ferrari, A.] Uppsala Univ, Dept Phys & Astron, SE-75120 Uppsala, Sweden. [Amoros, G.; Bernabeu, J.; Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Escobar, C.; Ferrer, A.; Fuster, J.; Garcia, C.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Minano, M.; Mitsou, V. A.; Moles-Valls, R.; Moreno Llacer, M.; Oliver Garcia, E.; Perez Garcia-Estan, M. T.; Ros, E.; Salt, J.; Solans, C. A.; Sanchez, J.; Torro Pastor, E.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.; Wildauer, A.] Ctr Mixto UVEG CSIC, Inst Fis Corpuscular IFIC, ES-46071 Valencia, Spain. [Amoros, G.; Bernabeu, J.; Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Escobar, C.; Ferrer, A.; Fuster, J.; Garcia, C.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Minano, M.; Mitsou, V. A.; Moles-Valls, R.; Moreno Llacer, M.; Oliver Garcia, E.; Perez Garcia-Estan, M. T.; Ros, E.; Salt, J.; Solans, C. A.; Sanchez, J.; Torro Pastor, E.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.; Wildauer, A.] Univ Valencia, Dept Fis At Mol & Nucl, Barcelona 08193, Spain. [Amoros, G.; Bernabeu, J.; Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Escobar, C.; Ferrer, A.; Fuster, J.; Garcia, C.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Minano, M.; Mitsou, V. A.; Moles-Valls, R.; Moreno Llacer, M.; Oliver Garcia, E.; Perez Garcia-Estan, M. T.; Ros, E.; Salt, J.; Solans, C. A.; Sanchez, J.; Torro Pastor, E.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.; Wildauer, A.] Inst Microelect Barcelona IMB CNM CSIC, Barcelona 08193, Spain. [Gay, C.; Loh, C. W.; Mills, W. J.; Muir, A.] Univ British Columbia, Dept Phys, Ca Vancouver, BC V6T 1Z1, Canada. [Banerjee, S.; Bansal, V.; Berghaus, F.; Courneyea, L.; Fincke-Keeler, M.; Keeler, R.; Kowalewski, R.; Lefebvre, M.; Lessard, J. -R.; McPherson, R. A.; Plamondon, M.; Sobie, R.; Taylor, R. P.] Univ Victoria, Dept Phys & Astron, Victoria, BC V8W 3P6, Canada. [Yorita, K.] Waseda Univ, WISE, Shinjuku Ku, Tokyo 1698555, Japan. [Alon, R.; Duchovni, E.; Gabizon, O.; Gross, E.; Klier, A.; Lellouch, D.; Levinson, L. J.; Mikenberg, G.; Milov, A.; Milstein, D.; Silbert, O.; Smakhtin, V.; Vitells, O.] Weizmann Inst Sci, Dept Particle Phys, IL-76100 Rehovot, Israel. [Asfandiyarov, R.; Montoya, G. D. Carrillo; Hernandez, A. M. Castaneda; Castaneda-Miranda, E.; Chen, X.; Dos Anjos, A.; Fang, Y.; Castillo, L. R. Flores; Gutzwiller, O.; Cheong, A. Leung Fook; Li, H.; Ma, L. L.; Garcia, B. R. Mellado; Pan, Y. B.; Morales, M. I. Pedraza; Peng, H.; Poveda, J.; Quayle, W. B.; Sarangi, T.; Wang, H.; Wiedenmann, W.; Wu, S. L.; Xu, N.; Zhu, Y.; Zobernig, G.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Fleischmann, P.; Meyer, J.; Redelbach, A.; Stroehmer, R.; Trefzger, T.; Verducci, M.] Univ Wurzburg, Inst Phys, D-97074 Wurzburg, Germany. [Barisonzi, M.; Becks, K. H.; Boek, J.; Braun, H. M.; Dopke, J.; Flick, T.; Glitza, K. W.; Gorfine, G.; Hamacher, K.; Harenberg, T.; Henss, T.; Hirschbuehl, D.; Kalinin, S.; Kersten, S.; Kind, P.; Kuhl, T.; Lenz, T.; Lenzen, G.; Maettig, P.; Mechtel, M.; Sandhoff, M.; Sandvoss, S.; Sanny, B.; Schroers, M.; Schultes, J.; Sturm, P.; Voss, T. T.; Zeitnitz, C.] Berg Univ Wuppertal, Fachbereich C, D-42097 Wuppertal, Germany. [Adelman, J.; Atoian, G.; Auerbach, B.; Baker, O. K.; Almenar, C. Cuenca; Czyczula, Z.; Demers, S.; Golling, T.; Hsu, P. J.; Kaplan, B.; Kastoryano, M.; Lockwitz, S.; Loginov, A.; Martin, A. J.; Poblaguev, A.; Quadt, A.; Thioye, M.; Tipton, P.; Wall, R.; Zeller, M.] Yale Univ, Dept Phys, New Haven, CT 06520 USA. [Hakohyan, H.] Yerevan Phys Inst, AM-375036 Yerevan, Armenia. TRIUMF, ATLAS Canada Tier Data Ctr 1, Vancouver, BC V6T 2A3, Canada. Forschungszentrum Karlsruhe, Steinbuch Ctr Comp SCC, GridKA Tier FZK 1, D-76344 Eggenstein Leopoldshafen, Germany. Univ Autonoma Barcelona, PIC, E-08193 Bellaterra, Spain. [Biscarat, C.; Cogneras, E.; Rahal, G.] CNRS, IN2P3, Ctr Calcul, F-69622 Villeurbanne, France. INFN CNAF, I-40127 Bologna, Italy. NORDUnet AS, Nord Data Grid Facil, DK-2770 Kastrup, Denmark. SARA Reken Netwerkdiensten, NL-1098 XG Amsterdam, Netherlands. Acad Sinica, Inst Phys, Acad Sinica Grid Comp, Taipei 11529, Taiwan. [Adye, T.; Baines, J. T.; Barnett, B. M.; Burke, S.; Dallison, S. J.; Dewhurst, A.; Emeliyanov, D.; Gallop, B. J.; Gee, C. N. P.; Haywood, S. J.; Kirk, J.; McCubbin, N. A.; McMahon, S. J.; Middleton, R. P.; Murray, W. J.; Phillips, P. W.; Qian, W.; Sankey, D. P. C.; Scott, W. G.; Strube, J.; Tyndel, M.; Villani, E. G.; Weber, M.; Wickens, F. J.; Wielers, M.] Rutherford Appleton Lab, Sci & Technol Facil Council, UK T1 RAL Tier 1, Didcot OX11 0QX, Oxon, England. Brookhaven Natl Lab, Dept Phys, RHIC & ATLAS Comp Facil, Upton, NY 11973 USA. [Bold, T.; Grabowska-Bold, I.] AGH Univ Sci & Technol, FPACS, Krakow, Poland. [Conventi, F.; Della Pietra, M.] Univ Napoli Parthenope, IT-80133 Naples, Italy. [Dhullipudi, R.] Louisiana Tech Univ, Ruston, LA 71272 USA. [Gao, Y. S.] Calif State Univ Fresno, Fresno, CA 93740 USA. [Gray, H. M.; Marshall, Z.; Perez, K.] CALTECH, Pasadena, CA 91125 USA. [Greenwood, Z. D.; Sawyer, L.] Louisiana Tech Univ, Ruston, LA 71270 USA. [Haller, J.; Kono, T.; Terwort, M.; Wildt, M. A.] Univ Hamburg, Inst Expt Phys, D-22761 Hamburg, Germany. [Liang, Z.; Soh, D. A.] Sun Yat Sen Univ, Sch Phys & Engn, Guangzhou, Guangdong, Peoples R China. [Liu, D.; Meng, Z.] Shandong Univ, Sch Phys, Jinan 250100, Peoples R China. [Purohit, M.] Univ S Carolina, Dept Phys & Astron, Columbia, SC 29208 USA. [Pasztor, G.; Toth, J.] KFKI Res Inst Particle & Nucl Phys, Budapest, Hungary. [Richter-Was, E.] Jagiellonian Univ, Inst Phys, Krakow, Poland. RP Aad, G (reprint author), Univ Freiburg, Fak Math & Phys, Hermann Herder Str 3, D-79104 Freiburg, Germany. RI Riu, Imma/L-7385-2014; Aguilar Saavedra, Juan Antonio/F-1256-2016; Leyton, Michael/G-2214-2016; Casado, Pilar/H-1484-2015; Canelli, Florencia/O-9693-2016; Mashinistov, Ruslan/M-8356-2015; Mikestikova, Marcela/H-1996-2014; Chudoba, Jiri/G-7737-2014; Lei, Xiaowen/O-4348-2014; Ventura, Andrea/A-9544-2015; Villaplana Perez, Miguel/B-2717-2015; Mir, Lluisa-Maria/G-7212-2015; Wemans, Andre/A-6738-2012; Kartvelishvili, Vakhtang/K-2312-2013; Dawson, Ian/K-6090-2013; O'Shea, Val/G-1279-2010; Staroba, Pavel/G-8850-2014; Lokajicek, Milos/G-7800-2014; Kupco, Alexander/G-9713-2014 OI Riu, Imma/0000-0002-3742-4582; Aguilar Saavedra, Juan Antonio/0000-0002-5475-8920; Leyton, Michael/0000-0002-0727-8107; Casado, Pilar/0000-0002-0394-5646; Canelli, Florencia/0000-0001-6361-2117; Mashinistov, Ruslan/0000-0001-7925-4676; Mikestikova, Marcela/0000-0003-1277-2596; Lei, Xiaowen/0000-0002-2564-8351; Ventura, Andrea/0000-0002-3368-3413; Villaplana Perez, Miguel/0000-0002-0048-4602; Mir, Lluisa-Maria/0000-0002-4276-715X; Wemans, Andre/0000-0002-9669-9500; O'Shea, Val/0000-0001-7183-1205; NR 46 TC 0 Z9 0 U1 0 U2 11 PU SPRINGER-VERLAG BERLIN PI BERLIN PA HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY BN 978-3-642-22115-6 PY 2010 BP 33 EP 67 D2 10.1007/978-3-642-22116-3 PG 35 WC Instruments & Instrumentation; Physics, Particles & Fields SC Instruments & Instrumentation; Physics GA BAF48 UT WOS:000304018500002 ER PT B AU Aad, G Abbott, B Abdallah, J Abdelalim, AA Abdesselam, A Abdinov, O Abi, B Abolins, M Abramowicz, H Abreu, H Acharya, BS Adams, DL Addy, TN Adelman, J Adorisio, C Adragna, P Adye, T Aefsky, S Aguilar-Saavedra, JA Aharrouche, M Ahlen, SP Ahles, F Ahmad, A Ahmed, H Ahsan, M Aielli, G Akdogan, T Akesson, TPA Akimoto, G Akimov, AV Aktas, A Alam, MS Alam, MA Albert, J Albrand, S Aleksa, M Aleksandrov, IN Alessandria, F Alexa, C Alexander, G Alexandre, G Alexopoulos, T Alhroob, M Aliev, M Alimonti, G Alison, J Aliyev, M Allport, PP Allwood-Spiers, SE Almond, J Aloisio, A Alon, R Alonso, A Alviggi, MG Amako, K Amelung, C Ammosov, VV Amorim, A Amoros, G Amram, N Anastopoulos, C Andeen, T Anders, CF Anderson, KJ Andreazza, A Andrei, V Anduaga, XS Angerami, A Anghinolfi, E Anjos, N Antonaki, A Antonelli, M Antonelli, S Antos, J Antunovic, B Anulli, F Aoun, S Arabidze, G Aracena, I Arai, Y Arce, ATH Archambault, JP Arfaoui, S Arguin, JF Argyropoulos, T Arik, E Arik, M Armbruster, AJ Arnaez, O Arnault, C Artamonov, A Arutinov, D Asai, M Asai, S Asfandiyarov, R Ask, S Asman, B Asner, D Asquith, L Assamagan, K Astbury, A Astvatsatourov, A Atoian, G Auerbach, B Auge, E Augsten, K Aurousseau, M Austin, N Avolio, G Avramidou, R Axen, D Ay, C Azuelos, G Azuma, Y Baak, MA Bacci, C Bach, A Bachacou, H Bachas, K Backes, M Badescu, E Bagnaia, P Bai, Y Bailey, DC Bain, T Baines, I Baker, OK Baker, MD Baker, S Pedrosa, FBD Banas, E Banerjee, P Banerjee, S Banfi, D Bangert, A Bansal, V Baranov, SP Baranov, S Barashkou, A Barber, T Barberio, EL Barberis, D Barbero, M Bardin, DY Barillari, T Barisonzi, M Barklow, T Barlow, N Barnett, BM Barnett, RM Baron, S Baroncelli, A Barr, AJ Barreiro, F da Costa, JBG Barrillon, P Barros, N Bartoldus, R Bartsch, D Bastos, J Bates, RL Batkova, L Batley, JR Battaglia, A Battistin, M Bauer, F Bawa, HS Bazalova, M Beare, B Beau, T Beauchemin, PH Beccherle, R Becerici, N Bechtle, P Beck, GA Beck, HP Beckingham, M Becks, KH Bedajanek, I Beddall, AJ Beddall, A Bednar, P Bednyakov, VA Bee, C Begel, M Harpaz, SB Behera, PK Beimforde, M Belanger-Champagne, C Bell, PJ Bell, WH Bella, G Bellagamba, L Bellina, F Bellomo, M Belloni, A Belotskiy, K Beltramello, O Ben Ami, S Benary, O Benchekroun, D Bendel, M Benedict, BH Benekos, N Benhammou, Y Benincasa, GP Benjamin, DP Benoit, M Bensinger, JR Benslama, K Bentvelsen, S Beretta, M Berge, D Kuutmann, EB Berger, N Berghaus, F Berglund, E Beringer, J Bernardet, K Bernat, P Bernhard, R Bernius, C Berry, T Bertin, A Besana, MI Besson, N Bethke, S Bianchi, RM Bianco, M Biebel, O Biesiada, J Biglietti, M Bilokon, H Bindi, M Binet, S Bingul, A Bini, C Biscarat, C Bitenc, U Black, KM Blair, RE Blanchard, JB Blanchot, G Blocker, C Blocki, J Blondel, A Blum, W Blumenschein, U Bobbink, GJ Bocci, A Boehler, M Boek, J Boelaert, N Boser, S Bogaerts, JA Bogouch, A Bohm, C Bohm, J Boisvert, V Bold, T Boldea, V Boldyrev, A Bondarenko, VG Bondioli, M Boonekamp, M Bordoni, S Borer, C Borisov, A Borissov, G Borjanovic, I Borroni, S Bos, K Boscherini, D Bosman, M Bosteels, M Boterenbrood, H Bouchami, J Boudreau, J Bouhova-Thacker, EV Boulahouache, C Bourdarios, C Boyd, J Boyko, IR Bozovic-Jelisavcic, I Bracinik, J Braem, A Branchini, P Brandenburg, GW Brandt, A Brandt, G Brandt, O Bratzler, U Bran, B Brau, JE Braun, HM Brelier, B Bremer, J Brenner, R Bressler, S Breton, D Britton, D Brochu, FM Brock, I Brock, R Rodbeck, TJ Brodet, E Broggi, F Bromberg, C Brooijmans, G Brooks, WK Brown, G Brubaker, E de Renstrom, PAB Bruncko, D Bruneliere, R Brunet, S Bruni, A Bruni, G Bruschi, M Buanes, T Bucci, F Buchanan, J Buchholz, P Buckley, AG Budagov, IA Budick, B Buscher, V Bugge, L Bulekov, O Bunse, M Buran, T Burckhart, H Burdin, S Burgess, T Burke, S Busato, E Bussey, P Buszello, CP Butin, F Butler, B Butler, JM Buttar, CM Butterworth, JM Byatt, T Caballero, J Urban, SC Caforio, D Cakir, O Calafiura, P Calderini, G Calfayan, P Calkins, R Caloba, LP Caloi, R Calvet, D Camarri, P Cambiaghi, M Cameron, D Segura, FC Campana, S Campanelli, M Canale, V Canelli, F Canepa, A Cantero, J Capasso, L Garrido, MDMC Caprini, I Caprini, M Capua, M Caputo, R Caracinha, D Caramarcu, C Cardarelli, R Carli, T Carlino, G Carminati, L Caron, B Caron, S Montoya, GDC Montero, SC Carter, AA Carter, JR Carvalho, J Casadei, D Casado, MP Cascella, M Caso, C Hernadez, AMC Castaneda-Miranda, E Gimenez, VC Castro, N Cataldi, G Catinaccio, A Catmore, JR Cattai, A Cattani, G Caughron, S Cauz, D Cavalleri, P Cavalli, D Cavalli-Sforza, M Cavasinni, V Ceradini, F Cerqueira, AS Cerri, A Cerrito, L Cerutti, F Cetin, SA Cevenini, F Chafaq, A Chakraborty, D Chan, K Chapman, JD Chapman, JW Chareyre, E Charlton, DG Chavda, V Cheatham, S Chekanov, S Chekulaev, SV Chelkov, GA Chen, H Chen, S Chen, T Chen, X Cheng, S Cheplakov, A Chepurnov, VF El Moursli, RC Tcherniatine, V Chesneanu, D Cheu, E Cheung, SL Chevalier, L Chevallier, F Chiarella, V Chiefari, G Chikovani, L Childers, JT Chilingarov, A Chiodini, G Chizhov, M Choudalakis, G Chouridou, S Christidi, IA Christov, A Chromek-Burckhart, D Chu, ML Chudoba, J Ciapetti, G Ciftci, AK Ciftci, R Cinca, D Cindro, V Ciobotaru, MD Ciocca, C Ciocio, A Cirilli, M Citterio, M Clark, A Cleland, W Clemens, C Clement, B Clement, C Coadou, Y Cobal, M Coccaro, A Cochran, J Coelli, S Coggeshall, J Cogneras, E Cojocaru, CD Colas, J Cole, B Colijn, AP Collard, C Collins, NJ Collins-Tooth, C Collot, J Colon, G Muino, PC Coniavitis, E Consonni, M Constantinescu, S Conta, C Conventi, F Cook, J Cooke, M Cooper, BD Cooper-Sarkar, AM Cooper-Smith, NJ Copic, K Cornelissen, T Corradi, M Corriveau, F Corso-Radu, A Cortes-Gonzalez, A Cortiana, G Costa, G Costa, MJ Costanzo, D Costin, T Cote, D Torres, RC Courneyea, L Cowan, G Cowden, C Cox, BE Cranmer, K Cranshaw, J Cristinziani, M Crosetti, G Crupi, R Crepe-Renaudin, S Almenar, CC Donszelmann, TC Curatolo, M Curtis, CJ Cwetanski, P Czyczula, Z D'Auria, S D'Onofrio, M D'Orazio, A Da Silva, PVM Da Via, C Dabrowski, W Dai, T Dallapiccola, C Dallison, SJ Daly, CH Dam, M Danielsson, HO Dannheim, D Dao, V Darbo, G Darlea, GL Davey, W Davidek, T Davidson, N Davidson, R Davies, M Davison, AR Dawson, I Dawson, JW Daya, RK De, K de Asmundis, R De Castro, S Salgado, PEDF De Cecco, S de Graat, J De Groot, N de Jong, P De La Cruz-Burelo, E De La Taille, C De Mora, L Branco, MD De Pedis, D De Salvo, A De Sanctis, U De Santo, A De Regie, JBD De Zorzi, G Dean, S Deberg, H Dedes, G Dedovich, DV Defay, PO Degenhardt, J Dehchar, M Del Papa, C Del Peso, J Del Prete, T Dell'Acqua, A Dell'Asta, L Della Pietra, M della Volpe, D Delmastro, M Delruelle, N Delsart, PA Deluca, C Demers, S Demichev, M Demirkoz, B Deng, J Deng, W Denisov, SP Dennis, C Derkaoui, JE Derue, F Dervan, P Desch, K Deviveiros, PO Dewhurst, A DeWilde, B Dhaliwal, S Dhullipudi, R Di Ciaccio, A Di Ciaccio, L Di Domenico, A Di Girolamo, A Di Girolamo, B Di Luise, S Di Mattia, A Di Nardo, R Di Simone, A Di Sipio, R Diaz, MA Diblen, F Diehl, EB Dietrich, J Dietzsch, TA Diglio, S Yagci, KD Dingfelder, DJ Dionisi, C Dita, P Dita, S Dittus, F Djama, F Djilkibaev, R Djobava, T do Vale, MAB Wemans, AD Doan, TKO Dobbs, M Dobos, D Dobson, E Dobson, M Dodd, J Doherty, T Doi, Y Dolejsi, J Dolenc, I Dolezal, Z Dolgoshein, BA Dohmae, T Donega, M Donini, J Dopke, J Doria, A Dos Anjos, A Dotti, A Dova, MT Doxiadis, A Doyle, AT Drasal, Z Driouichi, C Dris, M Dubbert, J Duchovni, E Duckeck, G Dudarev, A Dudziak, F Duhrssen, M Duflot, L Dufour, MA Dunford, M Duperrin, A Yildiz, HD Dushkin, A Duxfield, R Dwuznik, M Duren, M Ebenstein, WL Ebke, J Eckert, S Eckweiler, S Edmonds, K Edwards, CA Eerola, P Egorov, K Ehrenfeld, W Ehrich, T Eifert, T Eigen, G Einsweiler, K Eisenhandler, E Ekelof, T El Kacimi, M Ellert, M Elles, S Ellinghaus, F Ellis, K Ellis, N Elmsheuser, J Elsing, M Ely, R Emeliyanov, D Engelmann, R Engl, A Epp, B Eppig, A Epshteyn, VS Ereditato, A Eriksson, D Ermoline, I Ernst, J Ernst, M Ernwein, J Errede, D Errede, S Ertel, E Escalier, M Escobar, C Curull, XE Esposito, B Etienne, F Etienvre, AI Etzion, E Evans, H Fabbri, L Fabre, C Facius, K Fakhrutdinov, RM Falciano, S Falou, AC Fang, Y Fanti, M Farbin, A Farilla, A Farley, J Farooque, T Farrington, SM Farthouat, P Fassi, F Fassnacht, P Fassouliotis, D Fatholahzadeh, B Fayard, L Fayette, F Febbraro, R Federic, P Fedin, OL Fedorko, I Fedorko, W Feligioni, L Felzmann, CU Feng, C Feng, EJ Fenyuk, AB Ferencei, J Ferland, J Fernandes, B Fernando, W Ferrag, S Ferrando, J Ferrari, A Ferrari, R Ferrari, R Ferrer, A Ferrer, ML Ferrere, D Ferretti, C Fiascaris, M Fiedler, F Filipcic, A Filippas, A Filthaut, F Fincke-Keeler, M Fiolhais, MCN Fiorini, L Firan, A Fischer, G Fisher, MJ Flechl, M Fleck, I Fleckner, J Fleischmann, P Fleischmann, S Flick, T Castillo, LRF Flowerdew, MJ Fohlisch, F Fokitis, M Martin, TF Forbush, DA Formica, A Forti, A Fortin, D Foster, JMJ Fournier, D Foussat, A Fowler, AJ Fowler, K Fox, H Francavilla, P Franchino, S Francis, D Franklin, M Franz, S Fraternali, M Fratina, S Freestone, J French, ST Froeschl, R Froidevaux, D Frost, JA Fukunaga, C Torregrosa, EF Fuster, J Gabaldon, C Gabizon, O Gadfort, T Gadomski, S Gagliardi, G Gagnon, P Galea, C Gallas, E Gallas, MV Gallo, V Gallop, BJ Gallus, P Galyaev, E Gan, KK Gao, YS Gaponenko, A Garcia-Sciveres, M Garcia, C Navarro, JEG Gardner, RW Garelli, N Garitaonandia, H Garonne, V Gatti, C Gaudio, G Gaumer, O Gauzzi, P Gavrilenko, IL Gay, C Gaycken, G Gayde, JC Gazis, EN Ge, P Gee, CNP Geich-Gimbel, C Gellerstedt, K Gemme, C Genest, MH Gentile, S Georgatos, F George, S Gerlach, P Gershon, A Geweniger, C Ghazlane, H Ghez, P Ghodbane, N Giacobbe, B Giagu, S Giakoumopoulou, V Giangiobbe, V Gianotti, F Gibbard, B Gibson, A Gibson, SM Gilbert, LM Gilchriese, M Gilewsky, V Gillman, AR Gingrich, DM Ginzburg, J Giokaris, N Giordani, MP Giordano, R Giovannini, P Giraud, PF Girtler, P Giugni, D Giusti, P Gjelsten, BK Gladilin, LK Glasman, C Glazov, A Glitza, KW Glonti, GL Godfrey, J Godlewski, J Goebel, M Gopfert, T Goeringer, C Gossling, C Gottfert, T Goggi, V Goldfarb, S Goldin, D Golling, T Gollub, NP Gomes, A Fajardo, LSG Goncalo, R Gonella, L Gong, C de la Hoz, SG Silva, MLG Gonzalez-Sevilla, S Goodson, JJ Goossens, L Gorbounov, PA Gordon, HA Gorelov, I Gorfine, G Gorini, B Gorini, E Gorisek, A Gornicki, E Goryachev, VN Gosdzik, B Gosselink, M Gostkin, MI Eschrich, IG Gouighri, M Goujdami, D Goulette, MP Goussiou, AG Goy, C Grabowska-Bold, I Grafstrom, P Grahn, KJ Cardoso, LG Grancagnolo, F Grancagnolo, S Grassi, V Gratchev, V Grau, N Gray, HM Gray, JA Graziani, E Green, B Greenshaw, T Greenwood, ZD Gregor, IM Grenier, P Griesmayer, E Griffiths, J Grigalashvili, N Grillo, AA Grimm, K Grinstein, S Grishkevich, YV Groer, LS Grognuz, J Groh, M Groll, M Gross, E Grosse-Knetter, J Groth-Jensen, J Grybel, K Guarino, VJ Guicheney, C Guida, A Guillemin, T Guler, H Gunther, J Guo, B Gupta, A Gusakov, Y Gutierrez, A Gutierrez, P Guttman, N Gutzwiller, O Guyot, C Gwenlan, C Gwilliam, CB Haas, A Haas, S Haber, C Hackenburg, R Hadavand, HK Hadley, DR Haefner, P Hartel, R Hajduk, Z Hakobyan, H Haller, J Hamacher, K Hamilton, A Hamilton, S Han, H Han, L Hanagaki, K Hance, M Handel, C Hanke, R Hansen, JR Hansen, JB Hansen, JD Hansen, PH Hansl-Kozanecka, T Hansson, P Hara, K Hare, GA Harenberg, T Harrington, RD Harris, OM Harrison, K Hartert, J Hartjes, E Haruyama, T Harvey, A Hasegawa, S Hasegawa, Y Hashemi, K Hassani, S Hatch, M Haug, F Haug, S Hauschild, M Hauser, R Havranek, M Hawkes, CM Hawkings, RJ Hawkins, D Hayakawa, T Hayward, HS Haywood, SJ He, M Head, SJ Hedberg, V Heelan, L Heim, S Heinemann, B Heisterkamp, S Helary, L Heller, M Hellman, S Helsens, C Hemperek, T Henderson, RCW Henke, M Henrichs, A Correia, AMH Henrot-Versille, S Hensel, C Henss, T Jimenez, YH Hershenhorn, AD Herten, G Hertenberger, R Hervas, L Hessey, NP Hidvegi, A Higon-Rodriguez, E Hill, D Hill, JC Hiller, KH Hillert, S Hillier, SJ Hinchliffe, I Hines, E Hirose, M Hirsch, F Hirschbuehl, D Hobbs, J Hod, N Hodgkinson, MC Hodgson, P Hoecker, A Hoeferkamp, MR Hoffman, J Hoffmann, D Hohlfeld, M Holmgren, SO Holy, T Holzbauer, JL Homma, Y Homola, P Horazdovsky, T Hori, T Horn, C Horner, S Horvat, S Hostachy, JY Hou, S Houlden, MA Hoummada, A Howe, T Hrivnac, J Hryn'ova, T Hsu, PJ Hsu, SC Huang, GS Hubacek, Z Hubaut, F Huegging, F Hughes, EW Hughes, G Hughes-Jones, RE Hurst, P Hurwitz, M Husemann, U Huseynov, N Huston, J Huth, J Iacobucci, G Lakovidis, G Ibragimov, I Iconomidou-Fayard, L Idarraga, J Iengo, P Igonkina, O Ikegami, Y Ikeno, M Ilchenko, Y Iliadis, D Ilyushenka, Y Imori, M Ince, T Ioannou, P Iodice, M Quiles, AI Ishikawa, A Ishino, M Ishmukhametov, R Isobe, T Issakov, V Issever, C Istin, S Itoh, V Ivashin, AV Iwasaki, H Izen, JM Izzo, V Jackson, B Jackson, JN Jackson, P Jaekel, M Jahoda, M Jain, V Jakobs, K Jakobsen, S Jakubek, J Jana, D Jansen, E Jantsch, A Janus, M Jared, RC Jarlskog, G Jarron, P Jeanty, L Plante, IJL Jenni, P Jez, P Jezequel, S Ji, W Jia, J Jiang, Y Belenguer, MJ Jin, G Jin, S Jinnouchi, O Joffe, D Johansen, M Johansson, KE Johansson, P Johnert, S Johns, KA Jon-And, K Jones, G Jones, RWL Jones, TW Jones, TJ Jonsson, O Joos, D Joram, C Jorge, PM Juranek, V Jussel, P Kabachenko, VV Kabana, S Kaci, M Kaczmarska, A Kado, M Kagan, H Kagan, M Kaiser, S Kajomovitz, E Kalinin, S Kalinovskaya, LV Kalinowski, A Kama, S Kanaya, N Kaneda, M Kantserov, VA Kanzaki, J Kaplan, B Kapliy, A Kaplon, J Karagounis, M Unel, MK Kartvelishvili, V Karyukhin, AN Kashif, L Kasmi, A Kass, RD Kastanas, A Kastoryano, M Kataoka, M Kataoka, Y Katsoufis, E Katzy, J Kaushik, V Kawagoe, K Kawamoto, T Kawamura, G Kayl, MS Kayumov, F Kazanin, VA Kazarinov, MY Kazi, SI Keates, JR Keeler, R Keener, PT Kehoe, R Keil, M Kekelidze, GD Kelly, M Kennedy, J Kenyon, M Kepka, O Kerschen, N Kersevan, BP Kersten, S Kessoku, K Khakzad, M Khalil-zada, F Khandanyan, H Khanov, A Kharchenko, D Khodinov, A Kholodenko, AG Khomich, A Khoriauli, G Khovanskiy, N Khovanskiy, V Khramov, E Khubua, J Kilvington, G Kim, H Kim, MS Kim, PC Kim, SH Kind, O Kind, P King, BT Kirk, J Kirsch, GP Kirsch, LE Kiryunin, AE Kisielewska, D Kittelmann, T Kiyamura, H Kladiva, E Klein, M Klein, U Kleinknecht, K Klemetti, M Klier, A Klimentov, A Klingenberg, R Klinkby, EB Klioutchnikova, T Klok, PF Klous, S Kluge, EE Kluge, T Kluit, P Klute, M Kluth, S Knecht, NS Kneringer, E Ko, BR Kobayashi, T Kobel, M Koblitz, B Kocian, M Kocnar, A Kodys, P Koneke, K Konig, AC Kopke, L Koetsveld, F Koevesarki, P Koffas, T Koffeman, E Kohn, F Kohout, Z Kohriki, T Kokott, T Kolanoski, H Kolesnikov, V Koletsou, I Koll, J Kollar, D Kolos, S Kolya, SD Komar, AA Komaragiri, JR Kondo, T Kono, T Kononov, AI Konoplich, R Konovalov, SP Konstantinidis, N Koperny, S Korcyl, K Kordas, K Koreshev, V Korn, A Korolkov, I Korolkova, EV Korotkov, VA Kortner, O Kostka, P Kostyukhin, VV Kotamaki, MJ Kotov, S Kotov, VM Kotov, KY Koupilova, Z Kourkoumelis, C Koutsman, A Kowalewski, R Kowalski, H Kowalski, TZ Kozanecki, W Kozhin, AS Kral, V Kramarenko, VA Kramberger, G Krasny, MW Krasznahorkay, A Kreisel, A Krejci, F Krepouri, A Kretzschmar, J Krieger, P Krobath, G Kroeninger, K Kroha, H Kroll, J Kroseberg, J Krstic, J Kruchonak, U Kruger, H Krumshteyn, ZV Kubota, T Kuehn, S Kugel, A Kuhl, T Kuhn, D Kukhtin, V Kulchitsky, Y Kuleshov, S Kummer, C Kuna, M Kunkle, J Kupco, A Kurashige, H Kurata, M Kurchaninov, LL Kurochkin, VA Kus, V Kuznetsova, E Kvasnicka, O Kwee, R La Rotonda, L Labarga, L Labbe, J Lacasta, C Lacava, F Lacker, H Lacour, D Lacuesta, VR Ladygin, E Lafaye, R Laforge, B Lagouri, T Lai, S Lamanna, M Lampen, CL Lampl, W Lancon, E Landgraf, U Landon, MPJ Lane, JL Lankford, AJ Lanni, F Lantzsch, K Lanza, A Laplace, S Lapoire, C Laporte, JF Lari, T Larionov, AV Larner, A Lasseur, C Lassnig, M Laurelli, P Lavrijsen, W Laycock, P Lazarev, AB Lazzaro, A Le Dortz, O Le Guirriec, E Le Maner, C Le Menedeu, E Le Vine, M Leahu, M Lebedev, A Lebel, C LeCompte, T Ledroit-Guillon, F Lee, H Lee, JSH Lee, SC Lefebvre, M Legendre, M LeGeyt, BC Legger, F Leggett, C Lehmacher, M Miotto, GL Lei, X Leitner, R Lelas, D Lellouch, D Lellouch, J Leltchouk, M Lendermann, V Leney, KJC Lenz, T Lenzen, G Lenzi, B Leonhardt, K Leroy, C Lessard, JR Lester, CG Cheong, ALF Leveque, J Levin, D Levinson, LJ Levitski, MS Levonian, S Lewandowska, M Leyton, M Li, H Li, J Li, S Li, X Liang, Z Liang, Z Liberti, B Lichard, P Lichtnecker, M Lie, K Liebig, W Liko, D Lilley, JN Lim, H Limosani, A Limper, M Lin, SC Lindsay, SW Linhart, V Linnemann, JT Liolios, A Lipeles, E Lipinsky, L Lipniacka, A Liss, TM Lissauer, D Lister, A Litke, AM Liu, C Liu, D Liu, H Liu, JB Liu, M Liu, S Liu, T Liu, Y Livan, M Lleres, A Lloyd, SL Lobodzinska, E Loch, P Lockman, WS Lockwitz, S Loddenkoetter, T Loebinger, FK Loginov, A Loh, CW Lohse, T Lohwasser, K Lokajicek, M Loken, J Lopes, L Mateos, DL Losada, M Loscutoff, P Losty, MJ Lou, X Lounis, A Loureiro, KF Lovas, L Love, J Love, P Lowe, AJ Lu, F Lu, J Lubatti, HJ Luci, C Lucotte, A Ludwig, A Ludwig, D Ludwig, I Ludwig, J Luehring, F Luisa, L Lumb, D Luminari, L Lund, E Lund-Jensen, B Lundberg, B Lundberg, J Lundquist, J Lutz, G Lynn, D Lys, J Lytken, E Ma, H Ma, LL Goia, JAM Maccarrone, G Macchiolo, A Macek, B Miguens, JM Mackeprang, R Madaras, RJ Mader, WF Maenner, R Maeno, T Mattig, P Mattig, S Martins, PJM Magradze, E Magrath, CA Mahalalel, Y Mahboubi, K Mahmood, A Mahout, G Maiani, C Maidantchik, C Maio, A Majewski, S Makida, Y Makouski, M Makovec, N Malecki, P Malecki, P Maleev, VP Malek, F Mallik, U Malon, D Maltezos, S Malyshev, V Malyukov, S Mambelli, M Mameghani, R Mamuzic, J Manabe, A Mandelli, L Mandic, I Mandrysch, R Maneira, J Mangeard, PS Manjavidze, ID Manning, PM Manousakis-Katsikakis, A Mansoulie, B Mapelli, A Mapelli, L March, L Marchand, JF Marchese, F Marchiori, G Marcisovsky, M Marino, CP Marques, CN Marroquim, F Marshall, R Marshall, Z Martens, FK Garcia, SMI Martin, AJ Martin, AJ Martin, B Martin, B Martin, FF Martin, JP Martin, TA Latour, BMD Martinez, M Outschoorn, VM Martini, A Martyniuk, AC Maruyama, T Marzano, F Marzin, A Masetti, L Mashimo, T Mashinistov, R Masik, J Maslennikov, AL Massaro, G Massol, N Mastroberardino, A Masubuchi, T Mathes, M Matricon, P Matsunaga, H Matsushita, T Mattravers, C Maxfield, SJ May, EN Mayne, A Mazini, R Mazur, M Mazzanti, N Mazzanti, P Mc Donald, J Mc Kee, SP McCarn, A McCarthy, RL McCubbin, NA McFarlane, KW McGlone, H Mchedlidze, G McLaren, RA McMahon, SJ McMahon, TR McPherson, RA Meade, A Mechnich, J Mechtel, M Medinnis, M Meera-Lebbai, R Meguro, TM Mehdiyev, R Mehlhase, S Mehta, A Meier, K Meirose, B Melachrinos, C Melamed-Katz, A Garcia, BRM Meng, Z Menke, S Meoni, E Merkl, I Mermod, P Merola, L Meroni, C Merritt, FS Messina, AM Messmer, I Metcalfe, J Mete, AS Meyer, JP Meyer, J Meyer, J Meyer, TC Meyer, WT Miao, J Michal, S Micu, L Middleton, RP Migas, S Mijovic, L Mikenberg, G Mikuz, M Miller, DW Mills, WJ Mills, CM Milov, A Milstead, DA Minaenko, AA Minano, M Minashvili, IA Mincer, AI Mindur, B Mineev, M Ming, Y Mir, LM Mirabelli, G Misawa, S Miscetti, S Misiejuk, A Mitrevski, J Mitsou, VA Miyagawa, PS Mjornmark, JU Mladenov, D Moa, T Moed, S Moeller, V Monig, K Moser, N Mohn, B Mohr, W Mohrdieck-Mock, S Moles-Valls, R Molina-Perez, J Moloney, G Monk, J Monnier, E Montesano, S Monticelli, F Moore, RW Herrera, CM Moraes, A Morais, A Morel, J Morello, G Moreno, D Llacer, MM Morettini, P Morii, M Morley, AK Mornacchi, G Morozov, SV Morris, JD Moser, HG Mosidze, M Moss, J Mount, R Mountricha, E Mouraviev, SV Moyse, EJW Mudrinic, M Mueller, F Mueller, J Mueller, K Muller, TA Muenstermann, D Muir, A Munwes, Y Garcia, RM Murray, WJ Mussche, I Musto, E Myagkov, AG Myska, M Nadal, J Nagai, K Nagano, K Nagasaka, Y Nairz, AM Nakamura, K Nakano, I Nakatsuka, H Nanava, G Napier, A Nash, M Nation, NR Nattermann, T Naumann, T Navarro, G Nderitu, SK Neal, HA Nebot, E Nechaeva, P Negri, A Negri, G Nelson, A Nelson, TK Nemecek, S Nemethy, P Nepomuceno, AA Nessi, M Neubauer, MS Neusiedl, A Neves, RN Nevski, P Newcomer, FM Nickerson, RB Nicolaidou, R Nicolas, L Nicoletti, G Niedercorn, F Nielsen, J Nikiforov, A Nikolaev, K Nikolic-Audit, I Nikolopoulos, K Nilsen, H Nilsson, P Nisati, A Nishiyama, T Nisius, R Nodulman, L Nomachi, M Nomidis, I Nordberg, M Nordkvist, B Notz, D Novakova, J Nozaki, M Nozicka, M Nugent, IM Nuncio-Quiroz, AE Hanninger, GN Nunnemann, T Nurse, E O'Neil, DC O'Shea, V Oakham, FG Oberlack, H Ochi, A Oda, S Odaka, S Odier, J Odino, GA Ogren, H Oh, A Oh, SH Ohm, CC Ohshima, T Ohshita, H Ohsugi, T Okada, S Okawa, H Okumura, Y Olcese, M Olchevski, AG Oliveira, M Damazio, DO Oliver, J Garcia, EO Olivito, D Olszewski, A Olszowska, J Omachi, C Onofre, A Onyisi, PUE Oram, CJ Ordonez, G Oreglia, MJ Oren, Y Orestano, D Orlov, I Barrera, CO Orr, RS Ortega, EO Osculati, B Ospanov, R Osuna, C Otec, R Ottersbach, JP Ould-Saada, F Ouraou, A Ouyang, Q Owen, M Owen, S Oyarzun, A Ozcan, VE Ozone, K Ozturk, N Pages, AP Padhi, S Aranda, CP Paganis, E Pahl, C Paige, F Pajchel, K Palestini, S Pallin, D Palma, A Palmer, JD Pan, YB Panagiotopoulou, E Panes, B Panikashvili, N Panitkin, S Pantea, D Panuskova, M Paolone, V Papadopoulou, TD Park, SJ Park, W Parker, MA Parker, SI Parodi, F Parsons, JA Parzefall, U Pasqualucci, E Passardi, G Passeri, A Pastore, F Pastore, F Pasztor, G Pataraia, S Pater, JR Patricelli, S Patwa, A Pauly, T Peak, LS Pecsy, M Morales, MIP Peleganchuk, SV Peng, H Penson, A Penwell, J Perantoni, M Perez, K Codina, EP Garcia-Estan, MTP Reale, VP Perini, L Pernegger, H Perrino, R Perrodo, P Persembe, S Perus, P Peshekhonov, VD Petersen, BA Petersen, J Petersen, TC Petit, E Petridou, C Petrolo, E Petrucci, F Petschull, D Petteni, M Pezoa, R Pfeifer, B Phan, A Phillips, AW Piacquadio, G Piccinini, M Piegaia, R Pilcher, JE Pilkington, AD Pina, J Pinamonti, M Pinfold, JL Ping, J Pinto, B Pizio, C Placakyte, R Plamondon, M Plano, WG Pleier, MA Poblaguev, A Poddar, S Podlyski, F Poffenberger, P Poggioli, L Pohl, M Polci, F Polesello, G Policicchio, A Polini, A Poll, J Polychronakos, V Pomarede, DM Pomeroy, D Pommes, K Pontecorvo, L Pope, BG Popovic, DS Poppleton, A Popule, J Bueso, XP Porter, R Pospelov, GE Pospichal, P Pospisil, S Potekhin, M Potrap, IN Potter, CJ Potter, CT Potter, KP Poulard, G Poveda, J Prabhu, R Pralavorio, P Prasad, S Pravahan, R Preda, T Pretzl, K Pribyl, L Price, D Price, LE Prichard, PM Prieur, D Primavera, M Prokofiev, K Prokoshin, F Protopopescu, S Proudfoot, J Prudent, X Przysiezniak, H Psoroulas, S Ptacek, E Puigdengoles, C Purdham, J Purohit, M Puzo, P Pylypchenko, Y Qi, M Qian, J Qian, W Qian, Z Qin, Z Qing, D Quadt, A Quarrie, DR Quayle, WB Quinonez, E Raas, M Radeka, V Radescu, V Radics, B Rador, T Ragusa, F Rahal, G Rahimi, AM Rahm, D Rajagopalan, S Rammes, M Ratoff, PN Rauscher, F Rauter, E Raymond, M Read, AL Rebuzzi, DM Redelbach, A Redlinger, G Reece, R Reeves, K Reinherz-Aronis, E Reinsch, A Reisinger, I Reljic, D Rembser, C Ren, ZL Renkel, P Rescia, S Rescigno, M Resconi, S Resende, B Reznicek, P Rezvani, R Richards, A Richards, RA Richter, R Richter-Was, E Ridel, M Rieke, S Rijpstra, M Rijssenbeek, M Rimoldi, A Rinaldi, L Rios, RR Riu, I Rivoltella, G Rizatdinova, F Rizvi, ER Romero, DAR Robertson, SH Robichaud-Veronneau, A Robinson, D Robinson, J Robinson, M Robson, A de Lima, JGR Roda, C Dos Santos, DR Rodriguez, D Garcia, YR Roe, S Rohne, O Rojo, V Rolli, S Romaniouk, A Romanov, VM Romeo, G Maltrana, DR Roos, L Ros, E Rosati, S Rosenbaum, GA Rosenberg, EI Rosselet, L Rossetti, V Rossi, LP Rotaru, M Rothberg, J Rottlander, I Rousseau, D Royon, CR Rozanov, A Rozen, Y Ruan, X Ruckert, B Ruckstuhl, N Rud, VI Rudolph, G Ruhr, F Ruggieri, F Ruiz-Martinez, A Rumyantsev, L Rusakovich, NA Rutherfoord, JP Ruwiedel, C Ruzicka, P Ryabov, YF Ryadovikov, V Ryan, P Rybkin, G Rzaeva, S Saavedra, AF Sadrozinski, HFW Sadykov, R Sakamoto, H Salamanna, G Salamon, A Saleem, M Salihagic, D Salnikov, A Salt, J Ferrando, BMS Salvatore, D Salvatore, F Salvucci, A Salzburger, A Sampsonidis, D Samset, BH Lozano, MAS Sandaker, H Sander, HG Sanders, MP Sandhoff, M Sandstroem, R Sandvoss, S Sankey, DPC Sanny, B Sansoni, A Rios, CS Santi, L Santoni, C Santonico, R Santos, J Saraiva, JG Sarangi, T Sarkisyan-Grinbaum, E Sarri, F Sasaki, O Sasaki, T Sasao, N Satsounkevitch, I Sauvage, G Savard, P Savine, AY Savinov, V Sawyer, L Saxon, DH Says, LP Sbarra, C Sbrizzi, A Scannicchio, DA Schaarschmidt, J Schacht, P Schafer, U Schaetzel, S Schaffer, AC Schaile, D Schamberger, RD Schamov, AG Schegelsky, VA Scheirich, D Schernau, M Scherzer, MI Schiavi, C Schieck, J Schioppa, M Schlenker, S Schlereth, JL Schmid, P Schmieden, K Schmitt, C Schmitz, M Schott, M Schouten, D Schovancova, J Schram, M Schreiner, A Schroeder, C Schroer, N Schroers, M Schuler, G Schultes, J Schultz-Coulon, HC Schumacher, JW Schumacher, M Schumm, BA Schune, P Schwanenberger, C Schwartzman, A Schwemling, P Schwienhorst, R Schwierz, R Schwindling, J Scott, WG Searcy, J Sedykh, E Segura, E Seidel, SC Seiden, A Seifert, F Seixas, JM Sekhniaidze, G Seliverstov, DM Sellden, B Seman, M Semprini-Cesari, N Serfon, C Serin, L Seuster, R Severini, H Sevior, ME Sfyrla, A Shabalina, E Shamim, M Shan, LY Shank, JT Shao, QT Shapiro, M Shatalov, PB Shaver, L Shaw, K Sherman, I Sherwood, P Shibata, A Shimojima, M Shin, T Shmeleva, A Shochet, MJ Shupe, MA Sicho, P Sidoti, A Siebel, A Siegert, F Siegrist, J Sijacki, D Silbert, O Silva, J Silver, Y Silverstein, D Silverstein, SB Simak, V Simic, L Simion, S Simmons, B Simonyan, M Sinervo, P Sinev, NB Sipica, V Siragusa, G Sisakyan, AN Sivoklokov, SY Sjoelin, J Sjursen, TB Skubic, P Skvorodnev, N Slater, M Slavicek, T Sliwa, K Sloper, J Sluka, T Smakhtin, V Smirnov, SY Smirnov, Y Smirnova, LN Smirnova, O Smith, BC Smith, D Smith, KM Smizanska, M Smolek, K Snesarev, AA Snow, SW Snow, J Snuverink, J Snyder, S Soares, M Sobie, R Sodomka, J Soffer, A Solans, CA Solar, M Solc, J Camilocci, ES Solodkov, AA Solovyanov, OV Soluk, R Sondericker, J Sopko, V Sopko, B Sosebee, M Sosnovtsev, VV Suay, LS Soukharev, A Spagnolo, S Spano, F Speckmayer, P Spencer, E Spighi, R Spigo, G Spila, F Spiwoks, R Spousta, M Spreitzer, T Spurlock, B St Denis, RD Stahl, T Stahlman, J Stamen, R Stancu, SN Stanecka, E Stanek, RW Stanescu, C Stapnes, S Starchenko, EA Stark, J Staroba, P Starovoitov, P Stastny, J Staude, A Stavina, P Stavropoulos, G Steele, G Steinbach, P Steinberg, P Stekl, I Stelzer, B Stelzer, HJ Stelzer-Chilton, O Stenzel, H Stevenson, K Stewart, G Stockton, MC Stoerig, K Stoicea, G Stonjek, S Strachota, P Stradling, A Straessner, A Strandberg, J Strandberg, S Strandlie, A Strauss, M Strizenec, P Strohmer, R Strom, DM Strong, JA Stroynowski, R Strube, J Stugu, B Stumer, I Soh, DA Su, D Suchkov, SI Sugaya, Y Sugimoto, T Suhr, C Suk, M Sulin, VV Sultansoy, S Sumida, T Sun, X Sundermann, JE Suruliz, K Sushkov, S Susinno, G Sutton, MR Suzuki, T Suzuki, Y Sviridov, YM Sykora, I Sykora, T Szymocha, T Sanchez, J Ta, D Tackmann, K Taffard, A Tafirout, R Taga, A Takahashi, Y Takai, H Takashima, R Takeda, H Takeshita, T Talby, M Talyshev, A Tamsett, MC Tanaka, J Tanaka, R Tanaka, S Tanaka, S Tappern, GP Tapprogge, S Tardif, D Tarem, S Tarrade, F Tartarelli, GF Tas, P Tasevsky, M Tassi, E Tatarkhanov, M Taylor, C Taylor, FE Taylor, GN Taylor, RP Taylor, W Teixeira-Dias, P Ten Kate, H Teng, PK Tennenbaum-Katan, YD Terada, S Terashi, K Terron, J Terwort, M Testa, M Teuscher, RJ Tevlin, CM Thadome, J Thananuwong, R Thioye, M Thoma, S Thomas, JP Thomas, TL Thompson, EN Thompson, PD Thompson, PD Thompson, RJ Thompson, AS Thomson, E Thun, RP Tic, T Tikhomirov, VO Tikhonov, VA Timmermans, CJWP Tipton, P Viegas, FJTA Tisserant, S Tobias, J Toczek, B Todorov, T Todorova-Nova, S Toggerson, B Tojo, J Tokar, S Tokushuku, K Tollefson, K Tomasek, L Tomasek, M Tomasz, F Tomoto, M Tompkins, D Tompkins, L Toms, K Tong, G Tonoyan, A Topfel, C Topilin, ND Torrence, E Pastor, ET Toth, J Touchard, F Tovey, DR Tovey, SN Trefzger, T Tremblet, L Tricoli, A Trigger, IM Trincaz-Duvoid, S Trinh, TN Tripiana, MF Triplett, N Trischuk, W Trivedi, A Trocme, B Troncon, C Trzupek, A Tsarouchas, C Tseng, JCL Tsiafis, I Tsiakiris, M Tsiareshka, PV Tsionou, D Tsipolitis, G Tsiskaridze, V Tskhadadze, EG Tsukerman, II Tsulaia, V Tsung, JW Tsuno, S Tsybychev, D Turala, M Turecek, D Cakir, IT Turlay, E Tuts, PM Twomey, MS Tylmad, M Tyndel, M Tzanakos, G Uchida, K Ueda, I Ugland, M Uhlenbrock, M Uhrmacher, M Ukegawa, F Unal, G Underwood, DC Undrus, A Unel, G Unno, Y Urbaniec, D Urkovsky, E Urquijo, P Urrejola, P Usai, G Uslenghi, M Vacavant, L Vacek, V Vachon, B Vahsen, S Valenta, J Valente, P Valentinetti, S Valkar, S Gallego, EV Vallecorsa, S Ferrer, JAV Van Berg, R van der Graaf, H van der Kraaij, E van der Poel, E Van Der Ster, D van Eldik, N van Gemmeren, P van Kesteren, Z van Vulpen, I Vandelli, W Vandoni, G Vaniachine, A Vankov, P Vannucci, F Rodriguez, FV Vari, R Varnes, EW Varouchas, D Vartapetian, A Varvell, KE Vasilyeva, L Vassilakopoulos, VI Vazeille, F Vegni, G Veillet, JJ Vellidis, C Veloso, F Veness, R Veneziano, S Ventura, A Ventura, D Venturi, M Venturi, N Vercesi, V Verducci, M Verkerke, W Vermeulen, JC Vetterli, MC Vichou, I Vickey, T Viehhauser, GHA Villa, M Villani, EG Perez, MV Villate, J Vilucchi, E Vincter, MG Vinek, E Vinogradov, VB Viret, S Virzi, J Vitale, A Vitells, OV Vivarelli, I Vaques, EV Vlachos, S Vlasak, M Vlasov, N Vogel, A Vokac, P Volpi, M Volpini, G von der Schmitt, H von Loeben, J von Radziewski, H von Toerne, E Vorobel, V Vorobiev, AP Vorwerk, V Vos, M Voss, R Voss, TT Vossebeld, JH Vranjes, N Milosavljevic, MV Vrba, V Vreeswijk, M Anh, TV Vudragovic, D Vuillermet, R Vukotic, I Wagner, P Wahlen, H Walbersloh, J Walder, J Walker, R Walkowiak, W Wall, R Wang, C Wang, H Wang, J Wang, JC Wang, SM Ward, CP Warsinsky, M Wastie, R Watkins, PM Watson, AT Watson, MF Watts, G Watts, S Waugh, AT Waugh, BM Webel, M Weber, J Weber, MD Weber, M Weber, MS Weber, P Weidberg, AR Weingarten, J Weiser, C Wellenstein, H Wells, PS Wen, M Wenaus, T Wendler, S Wengler, T Wenig, S Wermes, N Werner, M Werner, P Werth, M Werthenbach, U Wessels, M Whalen, K Wheeler-Ellis, SJ Whitaker, SP White, A White, MJ White, S Whiteson, D Whittington, D Wicek, F Wicke, D Wickens, FJ Wiedenmann, W Wielers, M Wienemann, P Wiglesworth, C Wiik, LAM Wildauer, A Wildt, MA Wilhelm, I Wilkens, HG Williams, E Williams, HH Willis, W Willocq, S Wilson, JA Wilson, MG Wilson, A Wingerter-Seez, I Winklmeier, F Wittgen, M Wolter, MW Wolters, H Wosiek, BK Wotschack, J Woudstra, MJ Wraight, K Wright, C Wright, D Wrona, B Wu, SL Wu, X Wulf, E Xella, S Xie, S Xie, Y Xu, D Xu, N Yamada, M Yamamoto, A Yamamoto, S Yamamura, T Yamanaka, K Yamaoka, J Yamazaki, T Yamazaki, Y Yan, Z Yang, H Yang, UK Yang, Y Yang, Z Yao, WM Yao, Y Yasu, Y Ye, J Ye, S Yilmaz, M Yoosoofmiya, R Yorita, K Yoshida, R Young, C Youssef, SP Yu, D Yu, J Yu, M Yu, X Yuan, J Yuan, L Yurkewicz, A Zaidan, R Zaitsev, AM Zajacova, Z Zambrano, V Zanello, L Zarzhitsky, P Zaytsev, A Zeitnitz, C Zeller, M Zema, PF Zemla, A Zendler, C Zenin, O Zenis, T Zenonos, Z Zenz, S Zerwas, D della Porta, GZ Zhan, Z Zhang, H Zhang, J Zhang, Q Zhang, X Zhao, L Zhao, T Zhao, Z Zhemchugov, A Zheng, S Zhong, J Zhou, B Zhou, N Zhou, Y Zhu, CG Zhu, H Zhu, Y Zhuang, X Zhuravlov, V Zimmermann, R Zimmermann, S Zimmermann, S Ziolkowski, M Zitoun, R Zivkovic, L Zmouchko, VV Zobernig, G Zoccoli, A zur Nedden, M Zutshi, V AF Aad, G. Abbott, B. Abdallah, J. Abdelalim, A. A. Abdesselam, A. Abdinov, O. Abi, B. Abolins, M. Abramowicz, H. Abreu, H. Acharya, B. S. Adams, D. L. Addy, T. N. Adelman, J. Adorisio, C. Adragna, P. Adye, T. Aefsky, S. Aguilar-Saavedra, J. A. Aharrouche, M. Ahlen, S. P. Ahles, F. Ahmad, A. Ahmed, H. Ahsan, M. Aielli, G. Akdogan, T. Akesson, T. P. A. Akimoto, G. Akimov, A. V. Aktas, A. Alam, M. S. Alam, M. A. Albert, J. Albrand, S. Aleksa, M. Aleksandrov, I. N. Alessandria, F. Alexa, C. Alexander, G. Alexandre, G. Alexopoulos, T. Alhroob, M. Aliev, M. Alimonti, G. Alison, J. Aliyev, M. Allport, P. P. Allwood-Spiers, S. E. Almond, J. Aloisio, A. Alon, R. Alonso, A. Alviggi, M. G. Amako, K. Amelung, C. Ammosov, V. V. Amorim, A. Amoros, G. Amram, N. Anastopoulos, C. Andeen, T. Anders, C. F. Anderson, K. J. Andreazza, A. Andrei, V. Anduaga, X. S. Angerami, A. Anghinolfi, E. Anjos, N. Antonaki, A. Antonelli, M. Antonelli, S. Antos, J. Antunovic, B. Anulli, F. Aoun, S. Arabidze, G. Aracena, I. Arai, Y. Arce, A. T. H. Archambault, J. P. Arfaoui, S. Arguin, J. -F. Argyropoulos, T. Arik, E. Arik, M. Armbruster, A. J. Arnaez, O. Arnault, C. Artamonov, A. Arutinov, D. Asai, M. Asai, S. Asfandiyarov, R. Ask, S. Asman, B. Asner, D. Asquith, L. Assamagan, K. Astbury, A. Astvatsatourov, A. Atoian, G. Auerbach, B. Auge, E. Augsten, K. Aurousseau, M. Austin, N. Avolio, G. Avramidou, R. Axen, D. Ay, C. Azuelos, G. Azuma, Y. Baak, M. A. Bacci, C. Bach, A. Bachacou, H. Bachas, K. Backes, M. Badescu, E. Bagnaia, P. Bai, Y. Bailey, D. C. Bain, T. Baines, It. Baker, O. K. Baker, M. D. Baker, S. Pedrosa, F. Baltasar Dos Santos Banas, E. Banerjee, P. Banerjee, S. Banfi, D. Bangert, A. Bansal, V. Baranov, S. P. Baranov, S. Barashkou, A. Barber, T. Barberio, E. L. Barberis, D. Barbero, M. Bardin, D. Y. Barillari, T. Barisonzi, M. Barklow, T. Barlow, N. Barnett, B. M. Barnett, R. M. Baron, S. Baroncelli, A. Barr, A. J. Barreiro, F. da Costa, J. Barreiro Guimaraes Barrillon, P. Barros, N. Bartoldus, R. Bartsch, D. Bastos, J. Bates, R. L. Batkova, L. Batley, J. R. Battaglia, A. Battistin, M. Bauer, F. Bawa, H. S. Bazalova, M. Beare, B. Beau, T. Beauchemin, P. H. Beccherle, R. Becerici, N. Bechtle, P. Beck, G. A. Beck, H. P. Beckingham, M. Becks, K. H. Bedajanek, I. Beddall, A. J. Beddall, A. Bednar, P. Bednyakov, V. A. Bee, C. Begel, M. Harpaz, S. Behar Behera, P. K. Beimforde, M. Belanger-Champagne, C. Bell, P. J. Bell, W. H. Bella, G. Bellagamba, L. Bellina, F. Bellomo, M. Belloni, A. Belotskiy, K. Beltramello, O. Ben Ami, S. Benary, O. Benchekroun, D. Bendel, M. Benedict, B. H. Benekos, N. Benhammou, Y. Benincasa, G. P. Benjamin, D. P. Benoit, M. Bensinger, J. R. Benslama, K. Bentvelsen, S. Beretta, M. Berge, D. Kuutmann, E. Bergeaas Berger, N. Berghaus, F. Berglund, E. Beringer, J. Bernardet, K. Bernat, P. Bernhard, R. Bernius, C. Berry, T. Bertin, A. Besana, M. I. Besson, N. Bethke, S. Bianchi, R. M. Bianco, M. Biebel, O. Biesiada, J. Biglietti, M. Bilokon, H. Bindi, M. Binet, S. Bingul, A. Bini, C. Biscarat, C. Bitenc, U. Black, K. M. Blair, R. E. Blanchard, J. -B. Blanchot, G. Blocker, C. Blocki, J. Blondel, A. Blum, W. Blumenschein, U. Bobbink, G. J. Bocci, A. Boehler, M. Boek, J. Boelaert, N. Boeser, S. Bogaerts, J. A. Bogouch, A. Bohm, C. Bohm, J. Boisvert, V. Bold, T. Boldea, V. Boldyrev, A. Bondarenko, V. G. Bondioli, M. Boonekamp, M. Bordoni, S. Borer, C. Borisov, A. Borissov, G. Borjanovic, I. Borroni, S. Bos, K. Boscherini, D. Bosman, M. Bosteels, M. Boterenbrood, H. Bouchami, J. Boudreau, J. Bouhova-Thacker, E. V. Boulahouache, C. Bourdarios, C. Boyd, J. Boyko, I. R. Bozovic-Jelisavcic, I. Bracinik, J. Braem, A. Branchini, P. Brandenburg, G. W. Brandt, A. Brandt, G. Brandt, O. Bratzler, U. Bran, B. Brau, J. E. Braun, H. M. Brelier, B. Bremer, J. Brenner, R. Bressler, S. Breton, D. Britton, D. Brochu, F. M. Brock, I. Brock, R. Rodbeck, T. J. Brodet, E. Broggi, F. Bromberg, C. Brooijmans, G. Brooks, W. K. Brown, G. Brubaker, E. de Renstrom, P. A. Bruckman Bruncko, D. Bruneliere, R. Brunet, S. Bruni, A. Bruni, G. Bruschi, M. Buanes, T. Bucci, F. Buchanan, J. Buchholz, P. Buckley, A. G. Budagov, I. A. Budick, B. Buescher, V. Bugge, L. Bulekov, O. Bunse, M. Buran, T. Burckhart, H. Burdin, S. Burgess, T. Burke, S. Busato, E. Bussey, P. Buszello, C. P. Butin, F. Butler, B. Butler, J. M. Buttar, C. M. Butterworth, J. M. Byatt, T. Caballero, J. Cabrera Urban, S. Caforio, D. Cakir, O. Calafiura, P. Calderini, G. Calfayan, P. Calkins, R. Caloba, L. P. Caloi, R. Calvet, D. Camarri, P. Cambiaghi, M. Cameron, D. Campabadal Segura, F. Campana, S. Campanelli, M. Canale, V. Canelli, F. Canepa, A. Cantero, J. Capasso, L. Garrido, M. D. M. Capeans Caprini, I. Caprini, M. Capua, M. Caputo, R. Caracinha, D. Caramarcu, C. Cardarelli, R. Carli, T. Carlino, G. Carminati, L. Caron, B. Caron, S. Montoya, G. D. Carrillo Montero, S. Carron Carter, A. A. Carter, J. R. Carvalho, J. Casadei, D. Casado, M. P. Cascella, M. Caso, C. Hernadez, A. M. Castaneda Castaneda-Miranda, E. Castillo Gimenez, V. Castro, N. Cataldi, G. Catinaccio, A. Catmore, J. R. Cattai, A. Cattani, G. Caughron, S. Cauz, D. Cavalleri, P. Cavalli, D. Cavalli-Sforza, M. Cavasinni, V. Ceradini, F. Cerqueira, A. S. Cerri, A. Cerrito, L. Cerutti, F. Cetin, S. A. Cevenini, F. Chafaq, A. Chakraborty, D. Chan, K. Chapman, J. D. Chapman, J. W. Chareyre, E. Charlton, D. G. Chavda, V. Cheatham, S. Chekanov, S. Chekulaev, S. V. Chelkov, G. A. Chen, H. Chen, S. Chen, T. Chen, X. Cheng, S. Cheplakov, A. Chepurnov, V. F. El Moursli, R. Cherkaoui Tcherniatine, V. Chesneanu, D. Cheu, E. Cheung, S. L. Chevalier, L. Chevallier, F. Chiarella, V. Chiefari, G. Chikovani, L. Childers, J. T. Chilingarov, A. Chiodini, G. Chizhov, M. Choudalakis, G. Chouridou, S. Christidi, I. A. Christov, A. Chromek-Burckhart, D. Chu, M. L. Chudoba, J. Ciapetti, G. Ciftci, A. K. Ciftci, R. Cinca, D. Cindro, V. Ciobotaru, M. D. Ciocca, C. Ciocio, A. Cirilli, M. Citterio, M. Clark, A. Cleland, W. Clemens, C. Clement, B. Clement, C. Coadou, Y. Cobal, M. Coccaro, A. Cochran, J. Coelli, S. Coggeshall, J. Cogneras, E. Cojocaru, C. D. Colas, J. Cole, B. Colijn, A. P. Collard, C. Collins, N. J. Collins-Tooth, C. Collot, J. Colon, G. Conde Muino, P. Coniavitis, E. Consonni, M. Constantinescu, S. Conta, C. Conventi, F. Cook, J. Cooke, M. Cooper, B. D. Cooper-Sarkar, A. M. Cooper-Smith, N. J. Copic, K. Cornelissen, T. Corradi, M. Corriveau, F. Corso-Radu, A. Cortes-Gonzalez, A. Cortiana, G. Costa, G. Costa, M. J. Costanzo, D. Costin, T. Cote, D. Coura Torres, R. Courneyea, L. Cowan, G. Cowden, C. Cox, B. E. Cranmer, K. Cranshaw, J. Cristinziani, M. Crosetti, G. Crupi, R. Crepe-Renaudin, S. Almenar, C. Cuenca Donszelmann, T. Cuhadar Curatolo, M. Curtis, C. J. Cwetanski, P. Czyczula, Z. D'Auria, S. D'Onofrio, M. D'Orazio, A. Da Silva, P. V. M. Da Via, C. Dabrowski, W. Dai, T. Dallapiccola, C. Dallison, S. J. Daly, C. H. Dam, M. Danielsson, H. O. Dannheim, D. Dao, V. Darbo, G. Darlea, G. L. Davey, W. Davidek, T. Davidson, N. Davidson, R. Davies, M. Davison, A. R. Dawson, I. Dawson, J. W. Daya, R. K. De, K. de Asmundis, R. De Castro, S. Salgado, P. E. De Castro Faria De Cecco, S. de Graat, J. De Groot, N. de Jong, P. De La Cruz-Burelo, E. De La Taille, C. De Mora, L. Branco, M. De Oliveira De Pedis, D. De Salvo, A. De Sanctis, U. De Santo, A. De Regie, J. B. De Vivie De Zorzi, G. Dean, S. Deberg, H. Dedes, G. Dedovich, D. V. Defay, P. O. Degenhardt, J. Dehchar, M. Del Papa, C. Del Peso, J. Del Prete, T. Dell'Acqua, A. Dell'Asta, L. Della Pietra, M. della Volpe, D. Delmastro, M. Delruelle, N. Delsart, P. A. Deluca, C. Demers, S. Demichev, M. Demirkoz, B. Deng, J. Deng, W. Denisov, S. P. Dennis, C. Derkaoui, J. E. Derue, F. Dervan, P. Desch, K. Deviveiros, P. O. Dewhurst, A. DeWilde, B. Dhaliwal, S. Dhullipudi, R. Di Ciaccio, A. Di Ciaccio, L. Di Domenico, A. Di Girolamo, A. Di Girolamo, B. Di Luise, S. Di Mattia, A. Di Nardo, R. Di Simone, A. Di Sipio, R. Diaz, M. A. Diblen, F. Diehl, E. B. Dietrich, J. Dietzsch, T. A. Diglio, S. Yagci, K. Dindar Dingfelder, D. J. Dionisi, C. Dita, P. Dita, S. Dittus, F. Djama, F. Djilkibaev, R. Djobava, T. do Vale, M. A. B. Do Valle Wemans, A. Doan, T. K. O. Dobbs, M. Dobos, D. Dobson, E. Dobson, M. Dodd, J. Doherty, T. Doi, Y. Dolejsi, J. Dolenc, I. Dolezal, Z. Dolgoshein, B. A. Dohmae, T. Donega, M. Donini, J. Dopke, J. Doria, A. Dos Anjos, A. Dotti, A. Dova, M. T. Doxiadis, A. Doyle, A. T. Drasal, Z. Driouichi, C. Dris, M. Dubbert, J. Duchovni, E. Duckeck, G. Dudarev, A. Dudziak, F. Duehrssen, M. Duflot, L. Dufour, M. -A. Dunford, M. Duperrin, A. Yildiz, H. Duran Dushkin, A. Duxfield, R. Dwuznik, M. Dueren, M. Ebenstein, W. L. Ebke, J. Eckert, S. Eckweiler, S. Edmonds, K. Edwards, C. A. Eerola, P. Egorov, K. Ehrenfeld, W. Ehrich, T. Eifert, T. Eigen, G. Einsweiler, K. Eisenhandler, E. Ekelof, T. El Kacimi, M. Ellert, M. Elles, S. Ellinghaus, F. Ellis, K. Ellis, N. Elmsheuser, J. Elsing, M. Ely, R. Emeliyanov, D. Engelmann, R. Engl, A. Epp, B. Eppig, A. Epshteyn, V. S. Ereditato, A. Eriksson, D. Ermoline, I. Ernst, J. Ernst, M. Ernwein, J. Errede, D. Errede, S. Ertel, E. Escalier, M. Escobar, C. Espinal Curull, X. Esposito, B. Etienne, F. Etienvre, A. I. Etzion, E. Evans, H. Fabbri, L. Fabre, C. Facius, K. Fakhrutdinov, R. M. Falciano, S. Falou, A. C. Fang, Y. Fanti, M. Farbin, A. Farilla, A. Farley, J. Farooque, T. Farrington, S. M. Farthouat, P. Fassi, F. Fassnacht, P. Fassouliotis, D. Fatholahzadeh, B. Fayard, L. Fayette, F. Febbraro, R. Federic, P. Fedin, O. L. Fedorko, I. Fedorko, W. Feligioni, L. Felzmann, C. U. Feng, C. Feng, E. J. Fenyuk, A. B. Ferencei, J. Ferland, J. Fernandes, B. Fernando, W. Ferrag, S. Ferrando, J. Ferrari, A. Ferrari, R. Ferrari, R. Ferrer, A. Ferrer, M. L. Ferrere, D. Ferretti, C. Fiascaris, M. Fiedler, F. Filipcic, A. Filippas, A. Filthaut, F. Fincke-Keeler, M. Fiolhais, M. C. N. Fiorini, L. Firan, A. Fischer, G. Fisher, M. J. Flechl, M. Fleck, I. Fleckner, J. Fleischmann, P. Fleischmann, S. Flick, T. Castillo, L. R. Flores Flowerdew, M. J. Foehlisch, F. Fokitis, M. Martin, T. Fonseca Forbush, D. A. Formica, A. Forti, A. Fortin, D. Foster, J. M. J. Fournier, D. Foussat, A. Fowler, A. J. Fowler, K. Fox, H. Francavilla, P. Franchino, S. Francis, D. Franklin, M. Franz, S. Fraternali, M. Fratina, S. Freestone, J. French, S. T. Froeschl, R. Froidevaux, D. Frost, J. A. Fukunaga, C. Torregrosa, E. Fullana Fuster, J. Gabaldon, C. Gabizon, O. Gadfort, T. Gadomski, S. Gagliardi, G. Gagnon, P. Galea, C. Gallas, Ej. Gallas, M. V. Gallo, V. Gallop, B. J. Gallus, P. Galyaev, E. Gan, K. K. Gao, Y. S. Gaponenko, A. Garcia-Sciveres, M. Garcia, C. Navarro, J. E. Garcia Gardner, R. W. Garelli, N. Garitaonandia, H. Garonne, V. Gatti, C. Gaudio, G. Gaumer, O. Gauzzi, P. Gavrilenko, I. L. Gay, C. Gaycken, G. Gayde, J. -C. Gazis, E. N. Ge, P. Gee, C. N. P. Geich-Gimbel, Ch. Gellerstedt, K. Gemme, C. Genest, M. H. Gentile, S. Georgatos, F. George, S. Gerlach, P. Gershon, A. Geweniger, C. Ghazlane, H. Ghez, P. Ghodbane, N. Giacobbe, B. Giagu, S. Giakoumopoulou, V. Giangiobbe, V. Gianotti, F. Gibbard, B. Gibson, A. Gibson, S. M. Gilbert, L. M. Gilchriese, M. Gilewsky, V. Gillman, A. R. Gingrich, D. M. Ginzburg, J. Giokaris, N. Giordani, M. P. Giordano, R. Giovannini, P. Giraud, P. F. Girtler, P. Giugni, D. Giusti, P. Gjelsten, B. K. Gladilin, L. K. Glasman, C. Glazov, A. Glitza, K. W. Glonti, G. L. Godfrey, J. Godlewski, J. Goebel, M. Goepfert, T. Goeringer, C. Goessling, C. Goettfert, T. Goggi, V. Goldfarb, S. Goldin, D. Golling, T. Gollub, N. P. Gomes, A. Fajardo, L. S. Gomez Goncalo, R. Gonella, L. Gong, C. Gonzalez de la Hoz, S. Gonzalez Silva, M. L. Gonzalez-Sevilla, S. Goodson, J. J. Goossens, L. Gorbounov, P. A. Gordon, H. A. Gorelov, I. Gorfine, G. Gorini, B. Gorini, E. Gorisek, A. Gornicki, E. Goryachev, V. N. Gosdzik, B. Gosselink, M. Gostkin, M. I. Eschrich, I. Gough Gouighri, M. Goujdami, D. Goulette, M. P. Goussiou, A. G. Goy, C. Grabowska-Bold, I. Grafstroem, P. Grahn, K. -J. Granado Cardoso, L. Grancagnolo, F. Grancagnolo, S. Grassi, V. Gratchev, V. Grau, N. Gray, H. M. Gray, J. A. Graziani, E. Green, B. Greenshaw, T. Greenwood, Z. D. Gregor, I. M. Grenier, P. Griesmayer, E. Griffiths, J. Grigalashvili, N. Grillo, A. A. Grimm, K. Grinstein, S. Grishkevich, Y. V. Groer, L. S. Grognuz, J. Groh, M. Groll, M. Gross, E. Grosse-Knetter, J. Groth-Jensen, J. Grybel, K. Guarino, V. J. Guicheney, C. Guida, A. Guillemin, T. Guler, H. Gunther, J. Guo, B. Gupta, A. Gusakov, Y. Gutierrez, A. Gutierrez, P. Guttman, N. Gutzwiller, O. Guyot, C. Gwenlan, C. Gwilliam, C. B. Haas, A. Haas, S. Haber, C. Hackenburg, R. Hadavand, H. K. Hadley, D. R. Haefner, P. Haertel, R. Hajduk, Z. Hakobyan, H. Haller, J. Hamacher, K. Hamilton, A. Hamilton, S. Han, H. Han, L. Hanagaki, K. Hance, M. Handel, C. Hanke, R. Hansen, J. R. Hansen, J. B. Hansen, J. D. Hansen, P. H. Hansl-Kozanecka, T. Hansson, P. Hara, K. Hare, G. A. Harenberg, T. Harrington, R. D. Harris, O. M. Harrison, K. Hartert, J. Hartjes, E. Haruyama, T. Harvey, A. Hasegawa, S. Hasegawa, Y. Hashemi, K. Hassani, S. Hatch, M. Haug, F. Haug, S. Hauschild, M. Hauser, R. Havranek, M. Hawkes, C. M. Hawkings, R. J. Hawkins, D. Hayakawa, T. Hayward, H. S. Haywood, S. J. He, M. Head, S. J. Hedberg, V. Heelan, L. Heim, S. Heinemann, B. Heisterkamp, S. Helary, L. Heller, M. Hellman, S. Helsens, C. Hemperek, T. Henderson, R. C. W. Henke, M. Henrichs, A. Correia, A. M. Henriques Henrot-Versille, S. Hensel, C. Henss, T. Hernandez Jimenez, Y. Hershenhorn, A. D. Herten, G. Hertenberger, R. Hervas, L. Hessey, N. P. Hidvegi, A. Higon-Rodriguez, E. Hill, D. Hill, J. C. Hiller, K. H. Hillert, S. Hillier, S. J. Hinchliffe, I. Hines, E. Hirose, M. Hirsch, F. Hirschbuehl, D. Hobbs, J. Hod, N. Hodgkinson, M. C. Hodgson, P. Hoecker, A. Hoeferkamp, M. R. Hoffman, J. Hoffmann, D. Hohlfeld, M. Holmgren, S. O. Holy, T. Holzbauer, J. L. Homma, Y. Homola, P. Horazdovsky, T. Hori, T. Horn, C. Horner, S. Horvat, S. Hostachy, J. -Y. Hou, S. Houlden, M. A. Hoummada, A. Howe, T. Hrivnac, J. Hryn'ova, T. Hsu, P. J. Hsu, S. -C. Huang, G. S. Hubacek, Z. Hubaut, F. Huegging, F. Hughes, E. W. Hughes, G. Hughes-Jones, R. E. Hurst, P. Hurwitz, M. Husemann, U. Huseynov, N. Huston, J. Huth, J. Iacobucci, G. Lakovidis, G. Ibragimov, I. Iconomidou-Fayard, L. Idarraga, J. Iengo, P. Igonkina, O. Ikegami, Y. Ikeno, M. Ilchenko, Y. Iliadis, D. Ilyushenka, Y. Imori, M. Ince, T. Ioannou, P. Iodice, M. Irles Quiles, A. Ishikawa, A. Ishino, M. Ishmukhametov, R. Isobe, T. Issakov, V. Issever, C. Istin, S. Itoh, V. Ivashin, A. V. Iwasaki, H. Izen, J. M. Izzo, V. Jackson, B. Jackson, J. N. Jackson, P. Jaekel, M. Jahoda, M. Jain, V. Jakobs, K. Jakobsen, S. Jakubek, J. Jana, D. Jansen, E. Jantsch, A. Janus, M. Jared, R. C. Jarlskog, G. Jarron, P. Jeanty, L. Plante, I. Jen-La Jenni, P. Jez, P. Jezequel, S. Ji, W. Jia, J. Jiang, Y. Belenguer, M. Jimenez Jin, G. Jin, S. Jinnouchi, O. Joffe, D. Johansen, M. Johansson, K. E. Johansson, P. Johnert, S. Johns, K. A. Jon-And, K. Jones, G. Jones, R. W. L. Jones, T. W. Jones, T. J. Jonsson, O. Joos, D. Joram, C. Jorge, P. M. Juranek, V. Jussel, P. Kabachenko, V. V. Kabana, S. Kaci, M. Kaczmarska, A. Kado, M. Kagan, H. Kagan, M. Kaiser, S. Kajomovitz, E. Kalinin, S. Kalinovskaya, L. V. Kalinowski, A. Kama, S. Kanaya, N. Kaneda, M. Kantserov, V. A. Kanzaki, J. Kaplan, B. Kapliy, A. Kaplon, J. Karagounis, M. Unel, M. Karagoz Kartvelishvili, V. Karyukhin, A. N. Kashif, L. Kasmi, A. Kass, R. D. Kastanas, A. Kastoryano, M. Kataoka, M. Kataoka, Y. Katsoufis, E. Katzy, J. Kaushik, V. Kawagoe, K. Kawamoto, T. Kawamura, G. Kayl, M. S. Kayumov, F. Kazanin, V. A. Kazarinov, M. Y. Kazi, S. I. Keates, J. R. Keeler, R. Keener, P. T. Kehoe, R. Keil, M. Kekelidze, G. D. Kelly, M. Kennedy, J. Kenyon, M. Kepka, O. Kerschen, N. Kersevan, B. P. Kersten, S. Kessoku, K. Khakzad, M. Khalil-zada, F. Khandanyan, H. Khanov, A. Kharchenko, D. Khodinov, A. Kholodenko, A. G. Khomich, A. Khoriauli, G. Khovanskiy, N. Khovanskiy, V. Khramov, E. Khubua, J. Kilvington, G. Kim, H. Kim, M. S. Kim, P. C. Kim, S. H. Kind, O. Kind, P. King, B. T. Kirk, J. Kirsch, G. P. Kirsch, L. E. Kiryunin, A. E. Kisielewska, D. Kittelmann, T. Kiyamura, H. Kladiva, E. Klein, M. Klein, U. Kleinknecht, K. Klemetti, M. Klier, A. Klimentov, A. Klingenberg, R. Klinkby, E. B. Klioutchnikova, T. Klok, P. F. Klous, S. Kluge, E. -E. Kluge, T. Kluit, P. Klute, M. Kluth, S. Knecht, N. S. Kneringer, E. Ko, B. R. Kobayashi, T. Kobel, M. Koblitz, B. Kocian, M. Kocnar, A. Kodys, P. Koeneke, K. Konig, A. C. Koepke, L. Koetsveld, F. Koevesarki, P. Koffas, T. Koffeman, E. Kohn, F. Kohout, Z. Kohriki, T. Kokott, T. Kolanoski, H. Kolesnikov, V. Koletsou, I. Koll, J. Kollar, D. Kolos, S. Kolya, S. D. Komar, A. A. Komaragiri, J. R. Kondo, T. Kono, T. Kononov, A. I. Konoplich, R. Konovalov, S. P. Konstantinidis, N. Koperny, S. Korcyl, K. Kordas, K. Koreshev, V. Korn, A. Korolkov, I. Korolkova, E. V. Korotkov, V. A. Kortner, O. Kostka, P. Kostyukhin, V. V. Kotamaeki, M. J. Kotov, S. Kotov, V. M. Kotov, K. Y. Koupilova, Z. Kourkoumelis, C. Koutsman, A. Kowalewski, R. Kowalski, H. Kowalski, T. Z. Kozanecki, W. Kozhin, A. S. Kral, V. Kramarenko, V. A. Kramberger, G. Krasny, M. W. Krasznahorkay, A. Kreisel, A. Krejci, F. Krepouri, A. Kretzschmar, J. Krieger, P. Krobath, G. Kroeninger, K. Kroha, H. Kroll, J. Kroseberg, J. Krstic, J. Kruchonak, U. Krueger, H. Krumshteyn, Z. V. Kubota, T. Kuehn, S. Kugel, A. Kuhl, T. Kuhn, D. Kukhtin, V. Kulchitsky, Y. Kuleshov, S. Kummer, C. Kuna, M. Kunkle, J. Kupco, A. Kurashige, H. Kurata, M. Kurchaninov, L. L. Kurochkin, V. A. Kus, V. Kuznetsova, E. Kvasnicka, O. Kwee, R. La Rotonda, L. Labarga, L. Labbe, J. Lacasta, C. Lacava, F. Lacker, H. Lacour, D. Lacuesta, V. R. Ladygin, E. Lafaye, R. Laforge, B. Lagouri, T. Lai, S. Lamanna, M. Lampen, C. L. Lampl, W. Lancon, E. Landgraf, U. Landon, M. P. J. Lane, J. L. Lankford, A. J. Lanni, F. Lantzsch, K. Lanza, A. Laplace, S. Lapoire, C. Laporte, J. F. Lari, T. Larionov, A. V. Larner, A. Lasseur, C. Lassnig, M. Laurelli, P. Lavrijsen, W. Laycock, P. Lazarev, A. B. Lazzaro, A. Le Dortz, O. Le Guirriec, E. Le Maner, C. Le Menedeu, E. Le Vine, M. Leahu, M. Lebedev, A. Lebel, C. LeCompte, T. Ledroit-Guillon, F. Lee, H. Lee, J. S. H. Lee, S. C. Lefebvre, M. Legendre, M. LeGeyt, B. C. Legger, F. Leggett, C. Lehmacher, M. Miotto, G. Lehmann Lei, X. Leitner, R. Lelas, D. Lellouch, D. Lellouch, J. Leltchouk, M. Lendermann, V. Leney, K. J. C. Lenz, T. Lenzen, G. Lenzi, B. Leonhardt, K. Leroy, C. Lessard, J. -R. Lester, C. G. Cheong, A. Leung Fook Leveque, J. Levin, D. Levinson, L. J. Levitski, M. S. Levonian, S. Lewandowska, M. Leyton, M. Li, H. Li, J. Li, S. Li, X. Liang, Z. Liang, Z. Liberti, B. Lichard, P. Lichtnecker, M. Lie, K. Liebig, W. Liko, D. Lilley, J. N. Lim, H. Limosani, A. Limper, M. Lin, S. C. Lindsay, S. W. Linhart, V. Linnemann, J. T. Liolios, A. Lipeles, E. Lipinsky, L. Lipniacka, A. Liss, T. M. Lissauer, D. Lister, A. Litke, A. M. Liu, C. Liu, D. Liu, H. Liu, J. B. Liu, M. Liu, S. Liu, T. Liu, Y. Livan, M. Lleres, A. Lloyd, S. L. Lobodzinska, E. Loch, P. Lockman, W. S. Lockwitz, S. Loddenkoetter, T. Loebinger, F. K. Loginov, A. Loh, C. W. Lohse, T. Lohwasser, K. Lokajicek, M. Loken, J. Lopes, L. Mateos, D. Lopez Losada, M. Loscutoff, P. Losty, M. J. Lou, X. Lounis, A. Loureiro, K. F. Lovas, L. Love, J. Love, P. Lowe, A. J. Lu, F. Lu, J. Lubatti, H. J. Luci, C. Lucotte, A. Ludwig, A. Ludwig, D. Ludwig, I. Ludwig, J. Luehring, F. Luisa, L. Lumb, D. Luminari, L. Lund, E. Lund-Jensen, B. Lundberg, B. Lundberg, J. Lundquist, J. Lutz, G. Lynn, D. Lys, J. Lytken, E. Ma, H. Ma, L. L. Goia, J. A. Macana Maccarrone, G. Macchiolo, A. Macek, B. Machado Miguens, J. Mackeprang, R. Madaras, R. J. Mader, W. F. Maenner, R. Maeno, T. Maettig, P. Maettig, S. Magalhaes Martins, P. J. Magradze, E. Magrath, C. A. Mahalalel, Y. Mahboubi, K. Mahmood, A. Mahout, G. Maiani, C. Maidantchik, C. Maio, A. Majewski, S. Makida, Y. Makouski, M. Makovec, N. Malecki, Pa. Malecki, P. Maleev, V. P. Malek, F. Mallik, U. Malon, D. Maltezos, S. Malyshev, V. Malyukov, S. Mambelli, M. Mameghani, R. Mamuzic, J. Manabe, A. Mandelli, L. Mandic, I. Mandrysch, R. Maneira, J. Mangeard, P. S. Manjavidze, I. D. Manning, P. M. Manousakis-Katsikakis, A. Mansoulie, B. Mapelli, A. Mapelli, L. March, L. Marchand, J. F. Marchese, F. Marchiori, G. Marcisovsky, M. Marino, C. P. Marques, C. N. Marroquim, F. Marshall, R. Marshall, Z. Martens, F. K. Marti i Garcia, S. Martin, A. J. Martin, A. J. Martin, B. Martin, B. Martin, F. F. Martin, J. P. Martin, T. A. Latour, B. Martin Dit Martinez, M. Outschoorn, V. Martinez Martini, A. Martyniuk, A. C. Maruyama, T. Marzano, F. Marzin, A. Masetti, L. Mashimo, T. Mashinistov, R. Masik, J. Maslennikov, A. L. Massaro, G. Massol, N. Mastroberardino, A. Masubuchi, T. Mathes, M. Matricon, P. Matsunaga, H. Matsushita, T. Mattravers, C. Maxfield, S. J. May, E. N. Mayne, A. Mazini, R. Mazur, M. Mazzanti, Ni. Mazzanti, P. Mc Donald, J. Mc Kee, S. P. McCarn, A. McCarthy, R. L. McCubbin, N. A. McFarlane, K. W. McGlone, H. Mchedlidze, G. McLaren, R. A. McMahon, S. J. McMahon, T. R. McPherson, R. A. Meade, A. Mechnich, J. Mechtel, M. Medinnis, M. Meera-Lebbai, R. Meguro, T. M. Mehdiyev, R. Mehlhase, S. Mehta, A. Meier, K. Meirose, B. Melachrinos, C. Melamed-Katz, A. Garcia, B. R. Mellado Meng, Z. Menke, S. Meoni, E. Merkl, I. Mermod, P. Merola, L. Meroni, C. Merritt, F. S. Messina, A. M. Messmer, I. Metcalfe, J. Mete, A. S. Meyer, J. -P. Meyer, J. Meyer, J. Meyer, T. C. Meyer, W. T. Miao, J. Michal, S. Micu, L. Middleton, R. P. Migas, S. Mijovic, L. Mikenberg, G. Mikuz, M. Miller, D. W. Mills, W. J. Mills, C. M. Milov, A. Milstead, D. A. Minaenko, A. A. Minano, M. Minashvili, I. A. Mincer, A. I. Mindur, B. Mineev, M. Ming, Y. Mir, L. M. Mirabelli, G. Misawa, S. Miscetti, S. Misiejuk, A. Mitrevski, J. Mitsou, V. A. Miyagawa, P. S. Mjornmark, J. U. Mladenov, D. Moa, T. Moed, S. Moeller, V. Moenig, K. Moeser, N. Mohn, B. Mohr, W. Mohrdieck-Moeck, S. Moles-Valls, R. Molina-Perez, J. Moloney, G. Monk, J. Monnier, E. Montesano, S. Monticelli, F. Moore, R. W. Herrera, C. Mora Moraes, A. Morais, A. Morel, J. Morello, G. Moreno, D. Moreno Llacer, M. Morettini, P. Morii, M. Morley, A. K. Mornacchi, G. Morozov, S. V. Morris, J. D. Moser, H. G. Mosidze, M. Moss, J. Mount, R. Mountricha, E. Mouraviev, S. V. Moyse, E. J. W. Mudrinic, M. Mueller, F. Mueller, J. Mueller, K. Mueller, T. A. Muenstermann, D. Muir, A. Munwes, Y. Garcia, R. Murillo Murray, W. J. Mussche, I. Musto, E. Myagkov, A. G. Myska, M. Nadal, J. Nagai, K. Nagano, K. Nagasaka, Y. Nairz, A. M. Nakamura, K. Nakano, I. Nakatsuka, H. Nanava, G. Napier, A. Nash, M. Nation, N. R. Nattermann, T. Naumann, T. Navarro, G. Nderitu, S. K. Neal, H. A. Nebot, E. Nechaeva, P. Negri, A. Negri, G. Nelson, A. Nelson, T. K. Nemecek, S. Nemethy, P. Nepomuceno, A. A. Nessi, M. Neubauer, M. S. Neusiedl, A. Neves, R. N. Nevski, P. Newcomer, F. M. Nickerson, R. B. Nicolaidou, R. Nicolas, L. Nicoletti, G. Niedercorn, F. Nielsen, J. Nikiforov, A. Nikolaev, K. Nikolic-Audit, I. Nikolopoulos, K. Nilsen, H. Nilsson, P. Nisati, A. Nishiyama, T. Nisius, R. Nodulman, L. Nomachi, M. Nomidis, I. Nordberg, M. Nordkvist, B. Notz, D. Novakova, J. Nozaki, M. Nozicka, M. Nugent, I. M. Nuncio-Quiroz, A. -E. Hanninger, G. Nunes Nunnemann, T. Nurse, E. O'Neil, D. C. O'Shea, V. Oakham, F. G. Oberlack, H. Ochi, A. Oda, S. Odaka, S. Odier, J. Odino, G. A. Ogren, H. Oh, A. Oh, S. H. Ohm, C. C. Ohshima, T. Ohshita, H. Ohsugi, T. Okada, S. Okawa, H. Okumura, Y. Olcese, M. Olchevski, A. G. Oliveira, M. Damazio, D. Oliveira Oliver, J. Oliver Garcia, E. Olivito, D. Olszewski, A. Olszowska, J. Omachi, C. Onofre, A. Onyisi, P. U. E. Oram, C. J. Ordonez, G. Oreglia, M. J. Oren, Y. Orestano, D. Orlov, I. Barrera, C. Oropeza Orr, R. S. Ortega, E. O. Osculati, B. Ospanov, R. Osuna, C. Otec, R. Ottersbach, J. P. Ould-Saada, F. Ouraou, A. Ouyang, Q. Owen, M. Owen, S. Oyarzun, A. Ozcan, V. E. Ozone, K. Ozturk, N. Pacheco Pages, A. Padhi, S. Padilla Aranda, C. Paganis, E. Pahl, C. Paige, F. Pajchel, K. Palestini, S. Pallin, D. Palma, A. Palmer, J. D. Pan, Y. B. Panagiotopoulou, E. Panes, B. Panikashvili, N. Panitkin, S. Pantea, D. Panuskova, M. Paolone, V. Papadopoulou, Th. D. Park, S. J. Park, W. Parker, M. A. Parker, S. I. Parodi, F. Parsons, J. A. Parzefall, U. Pasqualucci, E. Passardi, G. Passeri, A. Pastore, F. Pastore, Fr. Pasztor, G. Pataraia, S. Pater, J. R. Patricelli, S. Patwa, A. Pauly, T. Peak, L. S. Pecsy, M. Morales, M. I. Pedraza Peleganchuk, S. V. Peng, H. Penson, A. Penwell, J. Perantoni, M. Perez, K. Perez Codina, E. Perez Garcia-Estan, M. T. Reale, V. Perez Perini, L. Pernegger, H. Perrino, R. Perrodo, P. Persembe, S. Perus, P. Peshekhonov, V. D. Petersen, B. A. Petersen, J. Petersen, T. C. Petit, E. Petridou, C. Petrolo, E. Petrucci, F. Petschull, D. Petteni, M. Pezoa, R. Pfeifer, B. Phan, A. Phillips, A. W. Piacquadio, G. Piccinini, M. Piegaia, R. Pilcher, J. E. Pilkington, A. D. Pina, J. Pinamonti, M. Pinfold, J. L. Ping, J. Pinto, B. Pizio, C. Placakyte, R. Plamondon, M. Plano, W. G. Pleier, M. -A. Poblaguev, A. Poddar, S. Podlyski, F. Poffenberger, P. Poggioli, L. Pohl, M. Polci, F. Polesello, G. Policicchio, A. Polini, A. Poll, J. Polychronakos, V. Pomarede, D. M. Pomeroy, D. Pommes, K. Pontecorvo, L. Pope, B. G. Popovic, D. S. Poppleton, A. Popule, J. Bueso, X. Portell Porter, R. Pospelov, G. E. Pospichal, P. Pospisil, S. Potekhin, M. Potrap, I. N. Potter, C. J. Potter, C. T. Potter, K. P. Poulard, G. Poveda, J. Prabhu, R. Pralavorio, P. Prasad, S. Pravahan, R. Preda, T. Pretzl, K. Pribyl, L. Price, D. Price, L. E. Prichard, P. M. Prieur, D. Primavera, M. Prokofiev, K. Prokoshin, F. Protopopescu, S. Proudfoot, J. Prudent, X. Przysiezniak, H. Psoroulas, S. Ptacek, E. Puigdengoles, C. Purdham, J. Purohit, M. Puzo, P. Pylypchenko, Y. Qi, M. Qian, J. Qian, W. Qian, Z. Qin, Z. Qing, D. Quadt, A. Quarrie, D. R. Quayle, W. B. Quinonez, E. Raas, M. Radeka, V. Radescu, V. Radics, B. Rador, T. Ragusa, F. Rahal, G. Rahimi, A. M. Rahm, D. Rajagopalan, S. Rammes, M. Ratoff, P. N. Rauscher, F. Rauter, E. Raymond, M. Read, A. L. Rebuzzi, D. M. Redelbach, A. Redlinger, G. Reece, R. Reeves, K. Reinherz-Aronis, E. Reinsch, A. Reisinger, I. Reljic, D. Rembser, C. Ren, Z. L. Renkel, P. Rescia, S. Rescigno, M. Resconi, S. Resende, B. Reznicek, P. Rezvani, R. Richards, A. Richards, R. A. Richter, R. Richter-Was, E. Ridel, M. Rieke, S. Rijpstra, M. Rijssenbeek, M. Rimoldi, A. Rinaldi, L. Rios, R. R. Riu, I. Rivoltella, G. Rizatdinova, F. Rizvi, E. R. Roa Romero, D. A. Robertson, S. H. Robichaud-Veronneau, A. Robinson, D. Robinson, J. Robinson, M. Robson, A. de Lima, J. G. Rocha Roda, C. Dos Santos, D. Roda Rodriguez, D. Garcia, Y. Rodriguez Roe, S. Rohne, O. Rojo, V. Rolli, S. Romaniouk, A. Romanov, V. M. Romeo, G. Maltrana, D. Romero Roos, L. Ros, E. Rosati, S. Rosenbaum, G. A. Rosenberg, E. I. Rosselet, L. Rossetti, V. Rossi, L. P. Rotaru, M. Rothberg, J. Rottlaender, I. Rousseau, D. Royon, C. R. Rozanov, A. Rozen, Y. Ruan, X. Ruckert, B. Ruckstuhl, N. Rud, V. I. Rudolph, G. Ruehr, F. Ruggieri, F. Ruiz-Martinez, A. Rumyantsev, L. Rusakovich, N. A. Rutherfoord, J. P. Ruwiedel, C. Ruzicka, P. Ryabov, Y. F. Ryadovikov, V. Ryan, P. Rybkin, G. Rzaeva, S. Saavedra, A. F. Sadrozinski, H. F. -W. Sadykov, R. Sakamoto, H. Salamanna, G. Salamon, A. Saleem, M. Salihagic, D. Salnikov, A. Salt, J. Ferrando, B. M. Salvachua Salvatore, D. Salvatore, F. Salvucci, A. Salzburger, A. Sampsonidis, D. Samset, B. H. Sanchis Lozano, M. A. Sandaker, H. Sander, H. G. Sanders, M. P. Sandhoff, M. Sandstroem, R. Sandvoss, S. Sankey, D. P. C. Sanny, B. Sansoni, A. Rios, C. Santamarina Santi, L. Santoni, C. Santonico, R. Santos, J. Saraiva, J. G. Sarangi, T. Sarkisyan-Grinbaum, E. Sarri, F. Sasaki, O. Sasaki, T. Sasao, N. Satsounkevitch, I. Sauvage, G. Savard, P. Savine, A. Y. Savinov, V. Sawyer, L. Saxon, D. H. Says, L. P. Sbarra, C. Sbrizzi, A. Scannicchio, D. A. Schaarschmidt, J. Schacht, P. Schaefer, U. Schaetzel, S. Schaffer, A. C. Schaile, D. Schamberger, R. D. Schamov, A. G. Schegelsky, V. A. Scheirich, D. Schernau, M. Scherzer, M. I. Schiavi, C. Schieck, J. Schioppa, M. Schlenker, S. Schlereth, J. L. Schmid, P. Schmieden, K. Schmitt, C. Schmitz, M. Schott, M. Schouten, D. Schovancova, J. Schram, M. Schreiner, A. Schroeder, C. Schroer, N. Schroers, M. Schuler, G. Schultes, J. Schultz-Coulon, H. -C. Schumacher, J. W. Schumacher, M. Schumm, B. A. Schune, Ph. Schwanenberger, C. Schwartzman, A. Schwemling, Ph. Schwienhorst, R. Schwierz, R. Schwindling, J. Scott, W. G. Searcy, J. Sedykh, E. Segura, E. Seidel, S. C. Seiden, A. Seifert, F. Seixas, J. M. Sekhniaidze, G. Seliverstov, D. M. Sellden, B. Seman, M. Semprini-Cesari, N. Serfon, C. Serin, L. Seuster, R. Severini, H. Sevior, M. E. Sfyrla, A. Shabalina, E. Shamim, M. Shan, L. Y. Shank, J. T. Shao, Q. T. Shapiro, M. Shatalov, P. B. Shaver, L. Shaw, K. Sherman, I. Sherwood, P. Shibata, A. Shimojima, M. Shin, T. Shmeleva, A. Shochet, M. J. Shupe, M. A. Sicho, P. Sidoti, A. Siebel, A. Siegert, F. Siegrist, J. Sijacki, Dj. Silbert, O. Silva, J. Silver, Y. Silverstein, D. Silverstein, S. B. Simak, V. Simic, Lj. Simion, S. Simmons, B. Simonyan, M. Sinervo, P. Sinev, N. B. Sipica, V. Siragusa, G. Sisakyan, A. N. Sivoklokov, S. Yu. Sjoelin, J. Sjursen, T. B. Skubic, P. Skvorodnev, N. Slater, M. Slavicek, T. Sliwa, K. Sloper, J. Sluka, T. Smakhtin, V. Smirnov, S. Yu. Smirnov, Y. Smirnova, L. N. Smirnova, O. Smith, B. C. Smith, D. Smith, K. M. Smizanska, M. Smolek, K. Snesarev, A. A. Snow, S. W. Snow, J. Snuverink, J. Snyder, S. Soares, M. Sobie, R. Sodomka, J. Soffer, A. Solans, C. A. Solar, M. Solc, J. Camilocci, E. Solfaroli Solodkov, A. A. Solovyanov, O. V. Soluk, R. Sondericker, J. Sopko, V. Sopko, B. Sosebee, M. Sosnovtsev, V. V. Sospedra Suay, L. Soukharev, A. Spagnolo, S. Spano, F. Speckmayer, P. Spencer, E. Spighi, R. Spigo, G. Spila, F. Spiwoks, R. Spousta, M. Spreitzer, T. Spurlock, B. St Denis, R. D. Stahl, T. Stahlman, J. Stamen, R. Stancu, S. N. Stanecka, E. Stanek, R. W. Stanescu, C. Stapnes, S. Starchenko, E. A. Stark, J. Staroba, P. Starovoitov, P. Stastny, J. Staude, A. Stavina, P. Stavropoulos, G. Steele, G. Steinbach, P. Steinberg, P. Stekl, I. Stelzer, B. Stelzer, H. J. Stelzer-Chilton, O. Stenzel, H. Stevenson, K. Stewart, G. Stockton, M. C. Stoerig, K. Stoicea, G. Stonjek, S. Strachota, P. Stradling, A. Straessner, A. Strandberg, J. Strandberg, S. Strandlie, A. Strauss, M. Strizenec, P. Stroehmer, R. Strom, D. M. Strong, J. A. Stroynowski, R. Strube, J. Stugu, B. Stumer, I. Soh, D. A. Su, D. Suchkov, S. I. Sugaya, Y. Sugimoto, T. Suhr, C. Suk, M. Sulin, V. V. Sultansoy, S. Sumida, T. Sun, X. Sundermann, J. E. Suruliz, K. Sushkov, S. Susinno, G. Sutton, M. R. Suzuki, T. Suzuki, Y. Sviridov, Yu. M. Sykora, I. Sykora, T. Szymocha, T. Sanchez, J. Ta, D. Tackmann, K. Taffard, A. Tafirout, R. Taga, A. Takahashi, Y. Takai, H. Takashima, R. Takeda, H. Takeshita, T. Talby, M. Talyshev, A. Tamsett, M. C. Tanaka, J. Tanaka, R. Tanaka, S. Tanaka, S. Tappern, G. P. Tapprogge, S. Tardif, D. Tarem, S. Tarrade, F. Tartarelli, G. F. Tas, P. Tasevsky, M. Tassi, E. Tatarkhanov, M. Taylor, C. Taylor, F. E. Taylor, G. N. Taylor, R. P. Taylor, W. Teixeira-Dias, P. Ten Kate, H. Teng, P. K. Tennenbaum-Katan, Y. D. Terada, S. Terashi, K. Terron, J. Terwort, M. Testa, M. Teuscher, R. J. Tevlin, C. M. Thadome, J. Thananuwong, R. Thioye, M. Thoma, S. Thomas, J. P. Thomas, T. L. Thompson, E. N. Thompson, P. D. Thompson, P. D. Thompson, R. J. Thompson, A. S. Thomson, E. Thun, R. P. Tic, T. Tikhomirov, V. O. Tikhonov, V. A. Timmermans, C. J. W. P. Tipton, P. Viegas, F. J. Tique Aires Tisserant, S. Tobias, J. Toczek, B. Todorov, T. Todorova-Nova, S. Toggerson, B. Tojo, J. Tokar, S. Tokushuku, K. Tollefson, K. Tomasek, L. Tomasek, M. Tomasz, F. Tomoto, M. Tompkins, D. Tompkins, L. Toms, K. Tong, G. Tonoyan, A. Topfel, C. Topilin, N. D. Torrence, E. Torro Pastor, E. Toth, J. Touchard, F. Tovey, D. R. Tovey, S. N. Trefzger, T. Tremblet, L. Tricoli, A. Trigger, I. M. Trincaz-Duvoid, S. Trinh, T. N. Tripiana, M. F. Triplett, N. Trischuk, W. Trivedi, A. Trocme, B. Troncon, C. Trzupek, A. Tsarouchas, C. Tseng, J. C. -L. Tsiafis, I. Tsiakiris, M. Tsiareshka, P. V. Tsionou, D. Tsipolitis, G. Tsiskaridze, V. Tskhadadze, E. G. Tsukerman, I. I. Tsulaia, V. Tsung, J. -W. Tsuno, S. Tsybychev, D. Turala, M. Turecek, D. Cakir, I. Turk Turlay, E. Tuts, P. M. Twomey, M. S. Tylmad, M. Tyndel, M. Tzanakos, G. Uchida, K. Ueda, I. Ugland, M. Uhlenbrock, M. Uhrmacher, M. Ukegawa, F. Unal, G. Underwood, D. C. Undrus, A. Unel, G. Unno, Y. Urbaniec, D. Urkovsky, E. Urquijo, P. Urrejola, P. Usai, G. Uslenghi, M. Vacavant, L. Vacek, V. Vachon, B. Vahsen, S. Valenta, J. Valente, P. Valentinetti, S. Valkar, S. Valladolid Gallego, E. Vallecorsa, S. Valls Ferrer, J. A. Van Berg, R. van der Graaf, H. van der Kraaij, E. van der Poel, E. Van Der Ster, D. van Eldik, N. van Gemmeren, P. van Kesteren, Z. van Vulpen, I. Vandelli, W. Vandoni, G. Vaniachine, A. Vankov, P. Vannucci, F. Rodriguez, F. Varela Vari, R. Varnes, E. W. Varouchas, D. Vartapetian, A. Varvell, K. E. Vasilyeva, L. Vassilakopoulos, V. I. Vazeille, F. Vegni, G. Veillet, J. J. Vellidis, C. Veloso, F. Veness, R. Veneziano, S. Ventura, A. Ventura, D. Venturi, M. Venturi, N. Vercesi, V. Verducci, M. Verkerke, W. Vermeulen, J. C. Vetterli, M. C. Vichou, I. Vickey, T. Viehhauser, G. H. A. Villa, M. Villani, E. G. Villaplana Perez, M. Villate, J. Vilucchi, E. Vincter, M. G. Vinek, E. Vinogradov, V. B. Viret, S. Virzi, J. Vitale, A. Vitells, O. V. Vivarelli, I. Vives Vaques, E. Vlachos, S. Vlasak, M. Vlasov, N. Vogel, A. Vokac, P. Volpi, M. Volpini, G. von der Schmitt, H. von Loeben, J. von Radziewski, H. von Toerne, E. Vorobel, V. Vorobiev, A. P. Vorwerk, V. Vos, M. Voss, R. Voss, T. T. Vossebeld, J. H. Vranjes, N. Milosavljevic, M. Vranjes Vrba, V. Vreeswijk, M. Anh, T. Vu Vudragovic, D. Vuillermet, R. Vukotic, I. Wagner, P. Wahlen, H. Walbersloh, J. Walder, J. Walker, R. Walkowiak, W. Wall, R. Wang, C. Wang, H. Wang, J. Wang, J. C. Wang, S. M. Ward, C. P. Warsinsky, M. Wastie, R. Watkins, P. M. Watson, A. T. Watson, M. F. Watts, G. Watts, S. Waugh, A. T. Waugh, B. M. Webel, M. Weber, J. Weber, M. D. Weber, M. Weber, M. S. Weber, P. Weidberg, A. R. Weingarten, J. Weiser, C. Wellenstein, H. Wells, P. S. Wen, M. Wenaus, T. Wendler, S. Wengler, T. Wenig, S. Wermes, N. Werner, M. Werner, P. Werth, M. Werthenbach, U. Wessels, M. Whalen, K. Wheeler-Ellis, S. J. Whitaker, S. P. White, A. White, M. J. White, S. Whiteson, D. Whittington, D. Wicek, F. Wicke, D. Wickens, F. J. Wiedenmann, W. Wielers, M. Wienemann, P. Wiglesworth, C. Wiik, L. A. M. Wildauer, A. Wildt, M. A. Wilhelm, I. Wilkens, H. G. Williams, E. Williams, H. H. Willis, W. Willocq, S. Wilson, J. A. Wilson, M. G. Wilson, A. Wingerter-Seez, I. Winklmeier, F. Wittgen, M. Wolter, M. W. Wolters, H. Wosiek, B. K. Wotschack, J. Woudstra, M. J. Wraight, K. Wright, C. Wright, D. Wrona, B. Wu, S. L. Wu, X. Wulf, E. Xella, S. Xie, S. Xie, Y. Xu, D. Xu, N. Yamada, M. Yamamoto, A. Yamamoto, S. Yamamura, T. Yamanaka, K. Yamaoka, J. Yamazaki, T. Yamazaki, Y. Yan, Z. Yang, H. Yang, U. K. Yang, Y. Yang, Z. Yao, W. -M. Yao, Y. Yasu, Y. Ye, J. Ye, S. Yilmaz, M. Yoosoofmiya, R. Yorita, K. Yoshida, R. Young, C. Youssef, S. P. Yu, D. Yu, J. Yu, M. Yu, X. Yuan, J. Yuan, L. Yurkewicz, A. Zaidan, R. Zaitsev, A. M. Zajacova, Z. Zambrano, V. Zanello, L. Zarzhitsky, P. Zaytsev, A. Zeitnitz, C. Zeller, M. Zema, P. F. Zemla, A. Zendler, C. Zenin, O. Zenis, T. Zenonos, Z. Zenz, S. Zerwas, D. della Porta, G. Zevi Zhan, Z. Zhang, H. Zhang, J. Zhang, Q. Zhang, X. Zhao, L. Zhao, T. Zhao, Z. Zhemchugov, A. Zheng, S. Zhong, J. Zhou, B. Zhou, N. Zhou, Y. Zhu, C. G. Zhu, H. Zhu, Y. Zhuang, X. Zhuravlov, V. Zimmermann, R. Zimmermann, S. Zimmermann, S. Ziolkowski, M. Zitoun, R. Zivkovic, L. Zmouchko, V. V. Zobernig, G. Zoccoli, A. zur Nedden, M. Zutshi, V. CA ATLAS Collaboration GP ATLAS Collaboration CERN TI Drift Time Measurement in the ATLAS Liquid Argon Electromagnetic Calorimeter using Cosmic Muons SO PERFORMANCE OF THE ATLAS DECTECTOR LA English DT Article; Book Chapter ID CONSTRUCTION; VELOCITY; XE; KR; AR AB The ionization signals in the liquid argon of the ATLAS electromagnetic calorimeter are studied in detail using cosmic muons. In particular, the drift time of the ionization electrons is measured and used to assess the intrinsic uniformity of the calorimeter gaps and estimate its impact on the constant term of the energy resolution. The drift times of electrons in the cells of the second layer of the calorimeter are uniform at the level of 1.3% in the barrel and 2.8% in the endcaps. This leads to an estimated contribution to the constant term of (0.29(-0.04)(+0.05))% in the barrel and (0.54(-0.04)(+0.06))% in the endcaps. The same data are used to measure the drift velocity of ionization electrons in liquid argon, which is found to be 4.61 +/- 0.07 mm/mu s at 88.5 K and 1 kV/mm. C1 [Aad, G.; Ahles, F.; Aktas, A.; Anders, C. F.; Beckingham, M.; Bernhard, R.; Bianchi, R. M.; Bitenc, U.; Bruneliere, R.; Caron, S.; Christov, A.; Dietrich, J.; Dingfelder, D. J.; Duehrssen, M.; Eckert, S.; Hartert, J.; Herten, G.; Horner, S.; Jakobs, K.; Janus, M.; Joos, D.; Kononov, A. I.; Kuehn, S.; Lai, S.; Landgraf, U.; Lohwasser, K.; Ludwig, I.; Ludwig, J.; Lumb, D.; Mahboubi, K.; Mazur, M.; Meirose, B.; Messmer, I.; Mohr, W.; Nilsen, H.; Parzefall, U.; Pfeifer, B.; Piacquadio, G.; Bueso, X. Portell; Schumacher, M.; Stoerig, K.; Sundermann, J. E.; Thoma, S.; Tobias, J.; Venturi, M.; Vivarelli, I.; von Radziewski, H.; Warsinsky, M.; Webel, M.; Weiser, C.; Werner, M.; Wiik, L. A. M.; Xie, S.; Zimmermann, S.] Univ Freiburg, Fak Math & Phys, D-79104 Freiburg, Germany. [Aleksa, M.; Andeen, T.; Anghinolfi, E.; Arfaoui, S.; Arik, E.; Baak, M. A.; Bachas, K.; Pedrosa, F. Baltasar Dos Santos; Baron, S.; Battistin, M.; Bellina, F.; Beltramello, O.; Berge, D.; Blanchot, G.; Bogaerts, J. A.; Bogouch, A.; Bosteels, M.; Boyd, J.; Braem, A.; Bremer, J.; Burckhart, H.; Butin, F.; Campana, S.; Garrido, M. D. M. Capeans; Carli, T.; Caso, C.; Catinaccio, A.; Cattai, A.; Cerri, A.; Chromek-Burckhart, D.; Cook, J.; Dallison, S. J.; Danielsson, H. O.; Branco, M. De Oliveira; Dell'Acqua, A.; Delmastro, M.; Delruelle, N.; Di Girolamo, A.; Di Girolamo, B.; Dittus, F.; Dobos, D.; Dobson, E.; Dudarev, A.; Eifert, T.; Ellis, N.; Elsing, M.; Fabre, C.; Farthouat, P.; Fassnacht, P.; Fedorko, I.; Fedorko, W.; Foussat, A.; Francis, D.; Franz, S.; Froeschl, R.; Froidevaux, D.; Gallas, M. V.; Garelli, N.; Garonne, V.; Gayde, J. -C.; Gianotti, F.; Giraud, P. F.; Godlewski, J.; Gollub, N. P.; Goossens, L.; Gorini, B.; Grafstroem, P.; Grognuz, J.; Gutzwiller, O.; Haas, S.; Hatch, M.; Haug, F.; Hauschild, M.; Hawkings, R. J.; Correia, A. M. Henriques; Hervas, L.; Hill, D.; Hoecker, A.; Issakov, V.; Jaekel, M.; Jakobsen, S.; Jarron, P.; Jenni, P.; Belenguer, M. Jimenez; Jonsson, O.; Joram, C.; Kaplon, J.; Kerschen, N.; Klioutchnikova, T.; Koblitz, B.; Koffas, T.; Kollar, D.; Kotamaeki, M. J.; Lamanna, M.; Lantzsch, K.; Lasseur, C.; Lassnig, M.; Leahu, M.; Miotto, G. Lehmann; Lichard, P.; Liko, D.; Lundberg, J.; Mackeprang, R.; Mapelli, A.; Mapelli, L.; Martin, B.; McLaren, R. A.; Messina, A. M.; Meyer, T. C.; Michal, S.; Molina-Perez, J.; Mornacchi, G.; Nairz, A. M.; Negri, G.; Nessi, M.; Nordberg, M.; Palestini, S.; Passardi, G.; Pastore, Fr.; Pauly, T.; Pernegger, H.; Petersen, B. A.; Petersen, J.; Pommes, K.; Poppleton, A.; Pospichal, P.; Poulard, G.; Pribyl, L.; Prokofiev, K.; Raymond, M.; Rembser, C.; Dos Santos, D. Roda; Roe, S.; Salzburger, A.; Scannicchio, D. A.; Schlenker, S.; Schott, M.; Schuler, G.; Sherman, I.; Sloper, J.; Speckmayer, P.; Spigo, G.; Spiwoks, R.; Stanecka, E.; Stockton, M. C.; Strong, J. A.; Stumer, I.; Sumida, T.; Tackmann, K.; Tappern, G. P.; Ten Kate, H.; Viegas, F. J. Tique Aires; Tremblet, L.; Tricoli, A.; Unal, G.; Van Der Ster, D.; Vandelli, W.; Vandoni, G.; Rodriguez, F. Varela; Veness, R.; Vinek, E.; Voss, R.; Vuillermet, R.; Wells, P. S.; Wenig, S.; Werner, P.; Wilkens, H. G.; Winklmeier, F.; Wotschack, J.; Zajacova, Z.; Zema, P. F.; Zmouchko, V. V.] CERN, CH-1211 Geneva 23, Switzerland. [Alam, M. S.; Ernst, J.; Mahmood, A.; Rojo, V.] SUNY Albany, Albany, NY 12222 USA. [Ahmed, H.; Caron, B.; Chan, K.; Gingrich, D. M.; Kim, M. S.; Liu, S.; Lu, J.; Moore, R. W.; Pinfold, J. L.; Soluk, R.] Univ Alberta, Dept Phys, Ctr Particle Phys, Edmonton, AB T6G 2G7, Canada. [Cakir, O.; Ciftci, A. K.; Ciftci, R.; Yildiz, H. Duran; Persembe, S.; Sultansoy, S.; Cakir, I. Turk; Yilmaz, M.] Ankara Univ, Dept Phys, Fac Sci, TR-061000 Ankara, Turkey. [Arnaez, O.; Aurousseau, M.; Berger, N.; Colas, J.; Di Ciaccio, L.; Doan, T. K. O.; El Kacimi, M.; Elles, S.; Ghez, P.; Goy, C.; Guillemin, T.; Helary, L.; Hryn'ova, T.; Iengo, P.; Jezequel, S.; Kataoka, M.; Koletsou, I.; Labbe, J.; Lafaye, R.; Laplace, S.; Marchand, J. F.; Massol, N.; Morel, J.; Perrodo, P.; Przysiezniak, H.; Sauvage, G.; Simonyan, M.; Todorov, T.; Wingerter-Seez, I.; Zitoun, R.] Univ Savoie, CNRS, IN2P3, LAPP, Annecy Le Vieux, France. [Blair, R. E.; Calkins, R.; Chakraborty, D.; Chekanov, S.; Cranshaw, J.; Dawson, J. W.; Torregrosa, E. Fullana; Guarino, V. J.; Hill, D.; LeCompte, T.; Lim, H.; Malon, D.; May, E. N.; Nodulman, L.; Price, L. E.; Proudfoot, J.; de Lima, J. G. Rocha; Ferrando, B. M. Salvachua; Schlereth, J. L.; Stanek, R. W.; Suhr, C.; Underwood, D. C.; van Gemmeren, P.; Vaniachine, A.; Yoshida, R.; Zhang, J.; Zhang, Q.; Zutshi, V.] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Cheu, E.; Johns, K. A.; Kaushik, V.; Lampen, C. L.; Lampl, W.; Lei, X.; Loch, P.; Rutherfoord, J. P.; Savine, A. Y.; Shaver, L.; Shupe, M. A.; Tompkins, D.; Varnes, E. W.] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. [Brandt, A.; De, K.; Farbin, A.; Kim, H.; Li, J.; Nilsson, P.; Ozturk, N.; Pravahan, R.; Sarkisyan-Grinbaum, E.; Sosebee, M.; Spurlock, B.; Stradling, A.; Usai, G.; Vartapetian, A.; White, A.; Yu, J.] Univ Texas Arlington, Dept Phys, Arlington, TX 76019 USA. [Antonaki, A.; Arabidze, G.; Fassouliotis, D.; Giakoumopoulou, V.; Ginzburg, J.; Ioannou, P.; Kourkoumelis, C.; Manousakis-Katsikakis, A.; Nikolopoulos, K.; Tzanakos, G.; Vellidis, C.] Univ Athens, Dept Phys, GR-15771 Athens, Greece. [Alexopoulos, T.; Argyropoulos, T.; Avramidou, R.; Dris, M.; Filippas, A.; Fokitis, M.; Gazis, E. N.; Georgatos, F.; Lakovidis, G.; Katsoufis, E.; Maltezos, S.; Mountricha, E.; Panagiotopoulou, E.; Papadopoulou, Th. D.; Tsarouchas, C.; Tsipolitis, G.; Vlachos, S.] Natl Tech Univ Athens, Dept Phys, Iroon Polytech 9, GR-15780 Zografos, Greece. [Abdinov, O.; Aliyev, M.; Huseynov, N.; Khalil-zada, F.; Rzaeva, S.] Azerbaijan Acad Sci, Inst Phys, AZ-143 Baku, Azerbaijan. [Abdallah, J.; Bosman, M.; Casado, M. P.; Cavalli-Sforza, M.; Demirkoz, B.; Espinal Curull, X.; Fiorini, L.; Grinstein, S.; Helsens, C.; Korolkov, I.; Martinez, M.; Meoni, E.; Mir, L. M.; Nadal, J.; Osuna, C.; Pacheco Pages, A.; Padilla Aranda, C.; Perez Codina, E.; Puigdengoles, C.; Riu, I.; Rossetti, V.; Segura, E.; Sushkov, S.; Vives Vaques, E.; Volpi, M.; Vorwerk, V.] Univ Autonoma Barcelona, Inst Fis Altes Energies, IFAE, ES-08193 Bellaterra, Barcelona, Spain. [Krstic, J.; Popovic, D. S.; Reljic, D.; Sijacki, Dj.; Simic, Lj.; Vranjes, N.; Milosavljevic, M. Vranjes; Vudragovic, D.] Univ Belgrade, Inst Phys, Belgrade 11001, Serbia. [Bozovic-Jelisavcic, I.; Mudrinic, M.] Vinca Inst Nucl Sci, Belgrade 11001, Serbia. [Buanes, T.; Burgess, T.; Eigen, G.; Kastanas, A.; Lipniacka, A.; Mohn, B.; Sandaker, H.; Sjursen, T. B.; Stugu, B.; Tonoyan, A.; Ugland, M.] Univ Bergen, Dept Phys & Technol, NO-5007 Bergen, Norway. [Arce, A. T. H.; Arguin, J. -F.; Bach, A.; Barnett, R. M.; Beringer, J.; Biesiada, J.; Calafiura, P.; Ciocio, A.; Einsweiler, K.; Ely, R.; Gaponenko, A.; Garcia-Sciveres, M.; Gilchriese, M.; Haber, C.; Heinemann, B.; Hinchliffe, I.; Hsu, S. -C.; Korn, A.; Lavrijsen, W.; Leggett, C.; Leyton, M.; Loscutoff, P.; Lys, J.; Madaras, R. J.; Parker, S. I.; Quarrie, D. R.; Scherzer, M. I.; Shapiro, M.; Siegrist, J.; Stavropoulos, G.; Strandberg, S.; Tatarkhanov, M.; Tompkins, L.; Vahsen, S.; Varouchas, D.; Virzi, J.; Yao, W. -M.; Yao, Y.; Zenz, S.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA 94720 USA. [Aliev, M.; Grancagnolo, S.; Kind, O.; Kolanoski, H.; Kwee, R.; Lacker, H.; Lohse, T.; Mandrysch, R.; Nikiforov, A.; Garcia, Y. Rodriguez; Sidoti, A.; zur Nedden, M.] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany. [Battaglia, A.; Beck, H. P.; Borer, C.; Cogneras, E.; Ereditato, A.; Gallo, V.; Haug, S.; Kabana, S.; Kordas, K.; Pretzl, K.; Topfel, C.; Venturi, N.; Weber, M. D.; Weber, M. S.] Univ Bern, Albert Einstein Ctr Fundamental Phys, High Energy Phys Lab, CH-3012 Bern, Switzerland. [Bracinik, J.; Charlton, D. G.; Collins, N. J.; Curtis, C. J.; Hadley, D. R.; Harrison, K.; Hawkes, C. M.; Hillier, S. J.; Lilley, J. N.; Mahout, G.; Martin, T. A.; Palmer, J. D.; Slater, M.; Thomas, J. P.; Thompson, P. D.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Wilson, J. A.] Univ Birmingham, Sch Phys & Astron, Birmingham B15 2TT, W Midlands, England. [Akdogan, T.; Arik, E.; Arik, M.; Becerici, N.; Beddall, A. J.; Beddall, A.; Bingul, A.; Cetin, S. A.; Diblen, F.; Istin, S.; Rador, T.] Bogazici Univ, Dept Phys, Fac Sci, TR-80815 Bebek, Turkey. [Antonelli, S.; Bellagamba, L.; Bertin, A.; Bindi, M.; Boscherini, D.; Bruni, A.; Bruni, G.; Bruschi, M.; Caforio, D.; Ciocca, C.; Corradi, M.; De Castro, S.; Di Sipio, R.; Fabbri, L.; Giacobbe, B.; Giusti, P.; Mazzanti, P.; Piccinini, M.; Polini, A.; Rinaldi, L.; Sbarra, C.; Sbrizzi, A.; Semprini-Cesari, N.; Spighi, R.; Valentinetti, S.; Villa, M.; Vitale, A.; Zoccoli, A.] INFN Sez Bologna, IT-40127 Bologna, Italy. [Antonelli, S.; Bertin, A.; Bindi, M.; Caforio, D.; Ciocca, C.; De Castro, S.; Di Sipio, R.; Fabbri, L.; Piccinini, M.; Sbarra, C.; Sbrizzi, A.; Semprini-Cesari, N.; Valentinetti, S.; Villa, M.; Vitale, A.; Zoccoli, A.] Univ Bologna, Dipartimento Fis, IT-40127 Bologna, Italy. [Alhroob, M.; Arutinov, D.; Barbero, M.; Bartsch, D.; Brock, I.; Cristinziani, M.; Desch, K.; Fleischmann, S.; Gaycken, G.; Geich-Gimbel, Ch.; Gonella, L.; Hemperek, T.; Huegging, F.; Karagounis, M.; Khoriauli, G.; Koevesarki, P.; Kokott, T.; Kostyukhin, V. V.; Kroseberg, J.; Krueger, H.; Lehmacher, M.; Loddenkoetter, T.; Masetti, L.; Mathes, M.; Moeser, N.; Mueller, K.; Nanava, G.; Nattermann, T.; Nderitu, S. K.; Nuncio-Quiroz, A. -E.; Hanninger, G. Nunes; Prabhu, R.; Psoroulas, S.; Radics, B.; Rottlaender, I.; Ruwiedel, C.; Schmieden, K.; Schmitz, M.; Ta, D.; Tsung, J. -W.; Uhlenbrock, M.; Vlasov, N.; Vogel, A.; von Toerne, E.; Wermes, N.; Wienemann, P.; Zendler, C.; Zimmermann, R.; Zimmermann, S.] Univ Bonn, Inst Phys, D-53115 Bonn, Germany. [Ahlen, S. P.; Butler, J. M.; Harrington, R. D.; Lewandowska, M.; Love, J.; Nation, N. R.; Shank, J. T.; Whitaker, S. P.; Yan, Z.; Youssef, S. P.] Boston Univ, Dept Phys, Boston, MA 02215 USA. [Aefsky, S.; Amelung, C.; Bensinger, J. R.; Blocker, C.; Dushkin, A.; Hashemi, K.; Kirsch, L. E.; Mladenov, D.; Pomeroy, D.; Skvorodnev, N.; Wellenstein, H.] Brandeis Univ, Dept Phys, Waltham, MA 02454 USA. [Caloba, L. P.; Cerqueira, A. S.; Coura Torres, R.; Da Silva, P. V. M.; do Vale, M. A. B.; Maidantchik, C.; Marroquim, F.; Nepomuceno, A. A.; Perantoni, M.; Seixas, J. M.] Univ Fed Rio de Janeiro, Inst Fis, BR-21945970 Rio De Janeiro, Brazil. Univ Sao Paulo, Inst Fis, BR-05508900 Sao Paulo, Brazil. [Adams, D. L.; Assamagan, K.; Baker, M. D.; Begel, M.; Caballero, J.; Chen, H.; Tcherniatine, V.; Salgado, P. E. De Castro Faria; Deng, W.; Dhullipudi, R.; Ernst, M.; Gadfort, T.; Gibbard, B.; Gordon, H. A.; Greenwood, Z. D.; Hackenburg, R.; Klimentov, A.; Lanni, F.; Le Vine, M.; Lissauer, D.; Lynn, D.; Ma, H.; Maeno, T.; Majewski, S.; Misawa, S.; Nagai, K.; Nevski, P.; Damazio, D. Oliveira; Paige, F.; Panitkin, S.; Park, W.; Patwa, A.; Pleier, M. -A.; Polychronakos, V.; Potekhin, M.; Protopopescu, S.; Purohit, M.; Radeka, V.; Rahm, D.; Rajagopalan, S.; Redlinger, G.; Rescia, S.; Sawyer, L.; Smirnov, Y.; Snyder, S.; Sondericker, J.; Steinberg, P.; Stumer, I.; Takai, H.; Tarrade, F.; Trivedi, A.; Undrus, A.; Wenaus, T.; White, S.; Ye, S.; Yu, D.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Alexa, C.; Badescu, E.; Boldea, V.; Caprini, I.; Caprini, M.; Caramarcu, C.; Chesneanu, D.; Constantinescu, S.; Darlea, G. L.; Dita, P.; Dita, S.; Micu, L.; Pantea, D.; Preda, T.; Rotaru, M.; Stoicea, G.] Natl Inst Phys & Nucl Engn, R-077125 Bucharest, Romania. Univ Politehn Bucuresti, Sect 6, Bucharest 060042, Romania. W Univ Timisoara, Timisoara, Romania. [Gonzalez Silva, M. L.; Piegaia, R.; Romeo, G.] Univ Buenos Aires, FCEyN, Dto Fis, RA-1428 Buenos Aires, DF, Argentina. [Barber, T.; Barlow, N.; Batley, J. R.; Brochu, F. M.; Carter, J. R.; Chapman, J. D.; Cowden, C.; French, S. T.; Frost, J. A.; Hill, J. C.; Lester, C. G.; Moeller, V.; Parker, M. A.; Phillips, A. W.; Robinson, D.; Ward, C. P.; White, M. J.] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England. [Archambault, J. P.; Asner, D.; Cojocaru, C. D.; Heelan, L.; Khakzad, M.; Liu, C.; Oakham, F. G.; Vincter, M. G.; Whalen, K.] Carleton Univ, Dept Phys, Ottawa, ON K1S 5B6, Canada. [Anderson, K. J.; Brubaker, E.; Canelli, F.; Choudalakis, G.; Costin, T.; Dunford, M.; Feng, E. J.; Gardner, R. W.; Gupta, A.; Hurwitz, M.; Plante, I. Jen-La; Kapliy, A.; Mambelli, M.; Melachrinos, C.; Merritt, F. S.; Onyisi, P. U. E.; Oreglia, M. J.; Pilcher, J. E.; Shochet, M. J.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Diaz, M. A.; Panes, B.; Quinonez, E.; Maltrana, D. Romero; Urrejola, P.] Pontificia Univ Catolica Chile, Fac Fis, Dept Fis, Santiago 22, Chile. [Brooks, W. K.; Kuleshov, S.; Oyarzun, A.; Pezoa, R.; Prokoshin, F.] Univ Tecn Federico Santa Maria, Dept Fis, Valparaiso, Chile. [Bai, Y.; Chen, S.; Chen, T.; Cheng, S.; Feng, C.; Ge, P.; Gong, C.; Han, H.; Han, L.; He, M.; Jiang, Y.; Jin, G.; Jin, S.; Liu, M.; Liu, Y.; Lu, F.; Miao, J.; Ouyang, Q.; Ping, J.; Qi, M.; Shan, L. Y.; Sun, X.; Tong, G.; Xie, Y.; Yang, Y.; Yu, X.; Zhan, Z.; Zhang, X.; Zhao, Z.; Zheng, S.; Zhu, C. G.] Chinese Acad Sci, Inst HEP, CN-100049 Beijing, Peoples R China. [Bai, Y.; Chen, S.; Chen, T.; Cheng, S.; Feng, C.; Ge, P.; Gong, C.; Eschrich, I. Gough; Han, H.; Han, L.; He, M.; Jiang, Y.; Jin, G.; Jin, S.; Liu, M.; Liu, Y.; Lu, F.; Miao, J.; Ouyang, Q.; Ping, J.; Qi, M.; Shan, L. Y.; Sun, X.; Tong, G.; Xie, Y.; Yang, Y.; Yu, X.; Zhan, Z.; Zhang, X.; Zhao, Z.; Zheng, S.; Zhu, C. G.] USTC, Dept Modern Phys, CN-230026 Hefei, Anhui, Peoples R China. [Bai, Y.; Chen, S.; Chen, T.; Cheng, S.; Feng, C.; Ge, P.; Gong, C.; Han, H.; Han, L.; He, M.; Jiang, Y.; Jin, G.; Jin, S.; Liu, M.; Liu, Y.; Lu, F.; Miao, J.; Ouyang, Q.; Ping, J.; Qi, M.; Shan, L. Y.; Sun, X.; Tong, G.; Xie, Y.; Yang, Y.; Yu, X.; Zhan, Z.; Zhang, X.; Zhao, Z.; Zheng, S.; Zhong, J.; Zhu, C. G.] Nanjing Univ, Dept Phys, CN-210093 Nanjing, Jiangsu, Peoples R China. [Bai, Y.; Chen, S.; Chen, T.; Cheng, S.; Feng, C.; Ge, P.; Gong, C.; Han, H.; Han, L.; He, M.; Jiang, Y.; Jin, G.; Jin, S.; Liu, M.; Liu, Y.; Lu, F.; Miao, J.; Ouyang, Q.; Ping, J.; Qi, M.; Shan, L. Y.; Sun, X.; Tong, G.; Xie, Y.; Yang, Y.; Yu, X.; Zhan, Z.; Zhang, X.; Zhao, Z.; Zheng, S.; Zhu, C. G.] Shandong Univ, HEP Grp, CN-250100 Jinan, Shandong, Peoples R China. [Busato, E.; Calvet, D.; Cinca, D.; Defay, P. O.; Febbraro, R.; Ghodbane, N.; Guicheney, C.; Pallin, D.; Podlyski, F.; Santoni, C.; Says, L. P.; Vazeille, F.; Viret, S.] Univ Clermont Ferrand, CNRS, IN2P3, Lab Phys Corpusculaire, FR-63177 Aubiere, France. [Angerami, A.; Brooijmans, G.; Caughron, S.; Cole, B.; Cooke, M.; Copic, K.; Dodd, J.; Grau, N.; Gray, H. M.; Hughes, E. W.; Leltchouk, M.; Mateos, D. Lopez; Marshall, Z.; Parsons, J. A.; Penson, A.; Perez, K.; Reale, V. Perez; Spano, F.; Tuts, P. M.; Urbaniec, D.; Williams, E.; Willis, W.; Wulf, E.; Zhou, N.; Zivkovic, L.] Columbia Univ, Nevis Lab, Irvington, NY 10533 USA. [Dam, M.; Driouichi, C.; Facius, K.; Hansen, J. R.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Heisterkamp, S.; Jez, P.; Lundquist, J.; Petersen, T. C.; Xella, S.] Univ Copenhagen, Niels Bohr Inst, DK-2100 Copenhagen 0, Denmark. [Adorisio, C.; Capua, M.; Crosetti, G.; La Rotonda, L.; Mastroberardino, A.; Morello, G.; Salvatore, D.; Schioppa, M.; Susinno, G.; Tassi, E.] INFN Grp Coll Cosenza, IT-87036 Arcavacata Di Rende, Italy. [Adorisio, C.; Capua, M.; Crosetti, G.; La Rotonda, L.; Mastroberardino, A.; Morello, G.; Salvatore, D.; Schioppa, M.; Susinno, G.; Tassi, E.] Univ Calabria, Dipartimento Fis, IT-87036 Arcavacata Di Rende, Italy. [Bold, T.; Dabrowski, W.; Dwuznik, M.; Grabowska-Bold, I.; Kisielewska, D.; Koperny, S.; Kowalski, T. Z.; Mindur, B.; Toczek, B.] AGH Univ Sci & Technol, FPACS, Fac Phys & Appl Comp Sci, PL-30059 Krakow, Poland. [Banas, E.; Blocki, J.; de Renstrom, P. A. Bruckman; Gornicki, E.; Hajduk, Z.; Kaczmarska, A.; Korcyl, K.; Malecki, Pa.; Malecki, P.; Olszewski, A.; Olszowska, J.; Richter-Was, E.; Szymocha, T.; Trzupek, A.; Turala, M.; Wolter, M. W.; Wosiek, B. K.; Zemla, A.] Polish Acad Sci, Henryk Niewodniczanski Inst Nucl Phys, PL-31342 Krakow, Poland. [Daya, R. K.; Yagci, K. Dindar; Firan, A.; Goldin, D.; Hadavand, H. K.; Hoffman, J.; Howe, T.; Ilchenko, Y.; Ishmukhametov, R.; Joffe, D.; Kasmi, A.; Kehoe, R.; Liang, Z.; Liu, T.; Renkel, P.; Rios, R. R.; Stroynowski, R.; Ye, J.; Zarzhitsky, P.] So Methodist Univ, Dept Phys, Dallas, TX 75275 USA. [Ahsan, M.; Galyaev, E.; Izen, J. M.; Lou, X.; Reeves, K.] Univ Texas Dallas, Richardson, TX 75080 USA. [Antunovic, B.; Bechtle, P.; Boehler, M.; Brandt, G.; Brunet, S.; Cote, D.; Ehrenfeld, W.; Fischer, G.; Glazov, A.; Goebel, M.; Fajardo, L. S. Gomez; Gosdzik, B.; Gregor, I. M.; Haller, J.; Hiller, K. H.; Husemann, U.; Johnert, S.; Kama, S.; Katzy, J.; Koeneke, K.; Kono, T.; Kostka, P.; Kowalski, H.; Levonian, S.; Li, S.; Lobodzinska, E.; Ludwig, D.; Maettig, S.; Mamuzic, J.; Medinnis, M.; Mehlhase, S.; Moenig, K.; Naumann, T.; Notz, D.; Nozicka, M.; Petschull, D.; Placakyte, R.; Qin, Z.; Stelzer, H. J.; Terwort, M.; Wildt, M. A.; Zhu, H.] DESY, D-22603 Hamburg, Germany. [Bunse, M.; Goessling, C.; Hirsch, F.; Klingenberg, R.; Muenstermann, D.; Reisinger, I.; Walbersloh, J.; Weber, J.] TU Dortmund, DE-44221 Dortmund, Germany. [Goepfert, T.; Kobel, M.; Leonhardt, K.; Ludwig, A.; Mader, W. F.; Prudent, X.; Schaarschmidt, J.; Schumacher, J. W.; Schwierz, R.; Seifert, F.; Steinbach, P.; Straessner, A.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01069 Dresden, Germany. [Benjamin, D. P.; Bocci, A.; Ebenstein, W. L.; Fowler, A. J.; Klinkby, E. B.; Ko, B. R.; Oh, S. H.; Wang, C.; Yamaoka, J.] Duke Univ, Dept Phys, Durham, NC 27708 USA. [Buckley, A. G.] Univ Edinburgh, Sch Phys & Astron, Edinburgh EH9 3JZ, Midlothian, Scotland. [Griesmayer, E.] Fachhsch Wiener Neustadt, AT-2700 Wiener Neustadt, Austria. [Antonelli, M.; Beretta, M.; Bilokon, H.; Cerutti, F.; Chiarella, V.; Curatolo, M.; Esposito, B.; Ferrer, M. L.; Gatti, C.; Laurelli, P.; Maccarrone, G.; Martini, A.; Miscetti, S.; Nicoletti, G.; Salvucci, A.; Sansoni, A.; Testa, M.; Vilucchi, E.; Wen, M.; Zambrano, V.] INFN Lab Nazl Frascati, IT-00044 Frascati, Italy. [Abdelalim, A. A.; Alexandre, G.; Backes, M.; Bell, W. H.; Berglund, E.; Blondel, A.; Bucci, F.; Clark, A.; Dao, V.; Ferrere, D.; Gadomski, S.; Navarro, J. E. Garcia; Gaumer, O.; Gonzalez-Sevilla, S.; Goulette, M. P.; Hamilton, A.; Keil, M.; Lister, A.; Latour, B. Martin Dit; Herrera, C. Mora; Pasztor, G.; Pohl, M.; Robichaud-Veronneau, A.; Rosselet, L.; Thananuwong, R.; Urquijo, P.; Wu, X.] Univ Geneva, Sect Phys, CH-1211 Geneva 4, Switzerland. [Barberis, D.; Beccherle, R.; Caso, C.; Coccaro, A.; Cornelissen, T.; Darbo, G.; Gagliardi, G.; Gemme, C.; Morettini, P.; Odino, G. A.; Olcese, M.; Osculati, B.; Parodi, F.; Rossi, L. P.; Schiavi, C.] INFN Sez Genova, IT-16146 Genoa, Italy. [Barberis, D.; Caso, C.; Coccaro, A.; Cornelissen, T.; Gagliardi, G.; Odino, G. A.; Osculati, B.; Parodi, F.; Schiavi, C.] Univ Genoa, Dipartimento Fis, IT-16146 Genoa, Italy. [Chikovani, L.; Djobava, T.; Khubua, J.; Magradze, E.; Mchedlidze, G.; Mosidze, M.; Tsiskaridze, V.; Tskhadadze, E. G.] Georgian Acad Sci, Inst Phys, GE-380077 Tbilisi, Rep of Georgia. [Chikovani, L.; Djobava, T.; Khubua, J.; Magradze, E.; Mchedlidze, G.; Mosidze, M.; Tsiskaridze, V.; Tskhadadze, E. G.] Tbilisi State Univ, HEP Inst, GE-380086 Tbilisi, Rep of Georgia. [Astvatsatourov, A.; Dueren, M.; Stenzel, H.] Univ Giessen, Inst Phys 2, D-35392 Giessen, Germany. [Allwood-Spiers, S. E.; Bates, R. L.; Britton, D.; Bussey, P.; Buttar, C. M.; Collins-Tooth, C.; D'Auria, S.; Doherty, T.; Doyle, A. T.; Ferrag, S.; Kenyon, M.; McGlone, H.; Moraes, A.; O'Shea, V.; Barrera, C. Oropeza; Robson, A.; Saxon, D. H.; Smith, K. M.; St Denis, R. D.; Steele, G.; Stewart, G.; Thompson, A. S.; Wraight, K.; Wright, C.] Univ Glasgow, Dept Phys & Astron, Glasgow G12 8QQ, Lanark, Scotland. [Ay, C.; Blumenschein, U.; Brandt, O.; Fayette, F.; Grosse-Knetter, J.; Henrichs, A.; Hensel, C.; Klute, M.; Kohn, F.; Kroeninger, K.; Meyer, J.; Park, S. J.; Quadt, A.; Shabalina, E.; Uhrmacher, M.; Weingarten, J.] Univ Gottingen, Inst Phys 2, D-37077 Gottingen, Germany. [Albrand, S.; Clement, B.; Collot, J.; Crepe-Renaudin, S.; Delsart, P. A.; Donini, J.; Hostachy, J. -Y.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Polci, F.; Stark, J.; Trocme, B.; Wang, J.] Univ Grenoble 1, INPG, CNRS, Lab Phys Subatom & Cosmol,IN2P3, FR-38026 Grenoble, France. [Addy, T. N.; Harvey, A.; McFarlane, K. W.; Shin, T.; Vassilakopoulos, V. I.] Hampton Univ, Dept Phys, Hampton, VA 23668 USA. [da Costa, J. Barreiro Guimaraes; Belloni, A.; Black, K. M.; Brandenburg, G. W.; Franklin, M.; Hurst, P.; Huth, J.; Jeanty, L.; Kagan, M.; Kashif, L.; Outschoorn, V. Martinez; Mills, C. M.; Moed, S.; Morii, M.; Oliver, J.; Prasad, S.; Smith, B. C.; della Porta, G. Zevi] Harvard Univ, Lab Particle Phys & Cosmol, Cambridge, MA 02138 USA. [Andrei, V.; Childers, J. T.; Dietzsch, T. A.; Foehlisch, F.; Geweniger, C.; Hanke, R.; Henke, M.; Khomich, A.; Kluge, E. -E.; Lendermann, V.; Meier, K.; Mueller, F.; Poddar, S.; Ruehr, F.; Schultz-Coulon, H. -C.; Stamen, R.; Weber, P.; Wessels, M.] Heidelberg Univ, Kirchhoff Inst Phys, D-69120 Heidelberg, Germany. [Radescu, V.; Schaetzel, S.] Inst Phys, D-69120 Heidelberg, Germany. [Kugel, A.; Maenner, R.; Schroer, N.; Yu, M.] ZITI Ruprecht Karls Univ Heidelberg, Lehrstuhl Informat 5, DE-68131 Mannheim, Germany. [Ohsugi, T.] Hiroshima Univ, Fac Sci, Higashihiroshima, JP Hiroshima 7398526, Japan. [Nagasaka, Y.] Hiroshima Inst Technol, Fac Appl Informat Sci, Hiroshima, JP Hiroshima 7315193, Japan. [Cwetanski, P.; Egorov, K.; Evans, H.; Gagnon, P.; Jain, V.; Lowe, A. J.; Luehring, F.; Marino, C. P.; Ogren, H.; Penwell, J.; Price, D.; Whittington, D.] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. [Epp, B.; Girtler, P.; Jussel, P.; Kneringer, E.; Kuhn, D.; Rudolph, G.; Schmid, P.] Inst Astro & Teilchenphys, A-6020 Innsbruck, Austria. [Behera, P. K.; Limper, M.; Mallik, U.; Pahl, C.; Schreiner, A.; Zaidan, R.] Univ Iowa, Iowa City, IA 52242 USA. [Cochran, J.; Lebedev, A.; Mete, A. S.; Meyer, W. T.; Nelson, A.; Rosenberg, E. I.; Ruiz-Martinez, A.; Triplett, N.; Yamanaka, K.] Iowa State Univ, Ames High Energy Phys Grp, Dept Phys & Astron, Ames, IA 50011 USA. [Aleksandrov, I. N.; Baranov, S.; Barashkou, A.; Bardin, D. Y.; Bednyakov, V. A.; Boyko, I. R.; Budagov, I. A.; Chelkov, G. A.; Cheplakov, A.; Chepurnov, V. F.; Chizhov, M.; Dedovich, D. V.; Demichev, M.; Glonti, G. L.; Gostkin, M. I.; Grigalashvili, N.; Gusakov, Y.; Ilyushenka, Y.; Kalinovskaya, L. V.; Kazarinov, M. Y.; Kekelidze, G. D.; Kharchenko, D.; Khovanskiy, N.; Khramov, E.; Kolesnikov, V.; Kotov, V. M.; Kruchonak, U.; Krumshteyn, Z. V.; Kukhtin, V.; Ladygin, E.; Lazarev, A. B.; Malyukov, S.; Manjavidze, I. D.; Minashvili, I. A.; Mineev, M.; Nikolaev, K.; Olchevski, A. G.; Peshekhonov, V. D.; Romanov, V. M.; Rumyantsev, L.; Rusakovich, N. A.; Sadykov, R.; Sisakyan, A. N.; Topilin, N. D.; Vinogradov, V. B.; Zhemchugov, A.] Joint Inst Nucl Res Dubna, Joint Inst Nucl Res, RU-141980 Dubna, Moscow Region, Russia. [Amako, K.; Arai, Y.; Doi, Y.; Haruyama, T.; Ikegami, Y.; Ikeno, M.; Ishino, M.; Iwasaki, H.; Kanzaki, J.; Kohriki, T.; Kondo, T.; Makida, Y.; Manabe, A.; Nagano, K.; Nozaki, M.; Odaka, S.; Ozone, K.; Sasaki, O.; Sasaki, T.; Suzuki, Y.; Tanaka, S.; Terada, S.; Tojo, J.; Tokushuku, K.; Tsuno, S.; Unno, Y.; Yamamoto, A.; Yasu, Y.] KEK, High Energy Accelerator Res Org, Tsukuba, Ibaraki 3050801, Japan. [Hayakawa, T.; Homma, Y.; Hori, T.; Ishikawa, A.; Kawagoe, K.; Kiyamura, H.; Kurashige, H.; Matsushita, T.; Nakatsuka, H.; Nishiyama, T.; Ochi, A.; Okada, S.; Omachi, C.; Takeda, H.; Yamazaki, Y.] Kobe Univ, Grad Sch Sci, Nada Ku, Jp Kobe 6578501, Japan. [Sasao, N.] Kyoto Univ, Fac Sci, Sakyou Ku, Kyoto 6068502, Japan. [Takashima, R.] Kyoto Univ, Fushimi Ku, Kyoto 6128522, Japan. [Anduaga, X. S.; Dova, M. T.; Monticelli, F.; Tripiana, M. F.] Univ Nacl La Plata, Dept Fis, FCE, IFLP CONICET UNLP, RA-1900 La Plata, Buenos Aires, Argentina. [Borissov, G.; Bouhova-Thacker, E. V.; Rodbeck, T. J.; Catmore, J. R.; Cheatham, S.; Chilingarov, A.; Davidson, R.; De Mora, L.; Dewhurst, A.; Fox, H.; Henderson, R. C. W.; Hughes, G.; Jones, R. W. L.; Kartvelishvili, V.; Love, P.; Ratoff, P. N.; Smizanska, M.; Walder, J.] Univ Lancaster, Dept Phys, Lancaster LA1 4YB, England. [Bianco, M.; Borjanovic, I.; Cataldi, G.; Chiodini, G.; Crupi, R.; Gorini, E.; Grancagnolo, F.; Guida, A.; Perrino, R.; Primavera, M.; Spagnolo, S.; Ventura, A.] INFN Sez Lecce, IT-73100 Lecce, Italy. [Bianco, M.; Crupi, R.; Gorini, E.; Guida, A.; Spagnolo, S.; Ventura, A.] Univ Salento, Dipartimento Fis, IT-73100 Lecce, Italy. [Allport, P. P.; Austin, N.; Burdin, S.; D'Onofrio, M.; Dervan, P.; Greenshaw, T.; Gwilliam, C. B.; Hayward, H. S.; Houlden, M. A.; Jackson, J. N.; Jones, T. J.; King, B. T.; Klein, M.; Klein, U.; Kluge, T.; Kretzschmar, J.; Laycock, P.; Leney, K. J. C.; Lindsay, S. W.; Maxfield, S. J.; Mehta, A.; Migas, S.; Prichard, P. M.; Vankov, P.; Vossebeld, J. H.; Wiglesworth, C.; Wrona, B.] Univ Liverpool, Oliver Lodge Lab, Liverpool L69 3BX, Merseyside, England. [Cindro, V.; Dolenc, I.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Macek, B.; Mandic, I.; Mijovic, L.; Mikuz, M.] Jozef Stefan Inst, SI-1000 Ljubljana, Slovenia. [Cindro, V.; Dolenc, I.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Macek, B.; Mandic, I.; Mijovic, L.; Mikuz, M.] Univ Ljubljana, Dept Phys, SI-1000 Ljubljana, Slovenia. [Adragna, P.; Beck, G. A.; Carter, A. A.; Cerrito, L.; Cooper, B. D.; Eisenhandler, E.; Ellis, K.; Landon, M. P. J.; Lloyd, S. L.; Martin, A. J.; Morris, J. D.; Poll, J.; Rizvi, E. R.; Stevenson, K.] Queen Mary Univ London, Dept Phys, London E1 4NS, England. [Alam, M. A.; Berry, T.; Boisvert, V.; Cooper-Smith, N. J.; Cowan, G.; Edwards, C. A.; Martin, T. Fonseca; George, S.; Goncalo, R.; Green, B.; Kilvington, G.; McMahon, T. R.; Misiejuk, A.; Strong, J. A.; Tamsett, M. C.; Teixeira-Dias, P.] Univ London, Dept Phys, Egham TW20 0EX, Surrey, England. [Asquith, L.; Baker, S.; Bernius, C.; Boeser, S.; Butterworth, J. M.; Byatt, T.; Campanelli, M.; Davison, A. R.; Dean, S.; Jones, T. W.; Konstantinidis, N.; Monk, J.; Nash, M.; Nurse, E.; Ozcan, V. E.; Richards, A.; Robinson, J.; Sherwood, P.; Siegert, F.; Simmons, B.; Taylor, C.; Waugh, B. M.] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Beau, T.; Bordoni, S.; Calderini, G.; Cavalleri, P.; Chareyre, E.; De Cecco, S.; Derue, F.; Krasny, M. W.; Lacour, D.; Laforge, B.; Le Dortz, O.; Lellouch, J.; Marchiori, G.; Nikolic-Audit, I.; Ridel, M.; Roos, L.; Schwemling, Ph.; Trincaz-Duvoid, S.; Trinh, T. N.; Vannucci, F.; Yuan, L.] Univ Paris 07, Univ Paris 06, CNRS, Lab Phys Nucl & Hautes Energies,IN2P3, FR-75252 Paris 05, France. [Akesson, T. P. A.; Alonso, A.; Boelaert, N.; Eerola, P.; Groth-Jensen, J.; Hedberg, V.; Jarlskog, G.; Ji, W.; Lundberg, B.; Lytken, E.; Mjornmark, J. U.; Smirnova, O.] Lund Univ, Nat Vetenskapliga Fak, Inst Fys, SE-22100 Lund, Sweden. [Barreiro, F.; Cantero, J.; Del Peso, J.; Gabaldon, C.; Glasman, C.; Labarga, L.; Lagouri, T.; March, L.; Nebot, E.; Terron, J.] Univ Autonoma Madrid, Fac Ciencias, Dept Fis Teor, ES-28049 Madrid, Spain. [Aharrouche, M.; Bendel, M.; Blum, W.; Buescher, V.; Eckweiler, S.; Edmonds, K.; Ellinghaus, F.; Ertel, E.; Fiedler, F.; Fleckner, J.; Goeringer, C.; Groll, M.; Handel, C.; Hohlfeld, M.; Kawamura, G.; Kleinknecht, K.; Koepke, L.; Neusiedl, A.; Rieke, S.; Sander, H. G.; Schaefer, U.; Schmitt, C.; Schroeder, C.; Siragusa, G.; Tapprogge, S.; Anh, T. Vu; Wicke, D.] Johannes Gutenberg Univ Mainz, Inst Phys, DE-55099 Mainz, Germany. [Almond, J.; Ask, S.; Bell, P. J.; Brown, G.; Chavda, V.; Cox, B. E.; Da Via, C.; Forti, A.; Foster, J. M. J.; Freestone, J.; Head, S. J.; Hughes-Jones, R. E.; Jones, G.; Keates, J. R.; Kelly, M.; Kolya, S. D.; Lane, J. L.; Loebinger, F. K.; Marshall, R.; Martyniuk, A. C.; Masik, J.; Miyagawa, P. S.; Oh, A.; Owen, M.; Pater, J. R.; Pilkington, A. D.; Plano, W. G.; Potter, K. P.; Schwanenberger, C.; Snow, S. W.; Tevlin, C. M.; Thompson, R. J.; Watts, S.; Wengler, T.; Yang, U. K.] Univ Manchester, Sch Phys & Astron, Manchester M13 9PL, Lancs, England. [Aoun, S.; Bee, C.; Bernardet, K.; Clemens, C.; Coadou, Y.; Djama, F.; Duperrin, A.; Etienne, F.; Feligioni, L.; Hoffmann, D.; Hubaut, F.; Kuna, M.; Lapoire, C.; Le Guirriec, E.; Leveque, J.; Monnier, E.; Odier, J.; Petit, E.; Pralavorio, P.; Qian, Z.; Rozanov, A.; Talby, M.; Tisserant, S.; Toth, J.; Touchard, F.; Vacavant, L.; Zhang, H.] Aix Marseille Univ, CPPM, CNRS, IN2P3, Marseille, France. [Bran, B.; Colon, G.; Dallapiccola, C.; Meade, A.; Moyse, E. J. W.; Thompson, E. N.; van Eldik, N.; Willocq, S.; Woudstra, M. J.] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA. [Corriveau, F.; Dobbs, M.; Dufour, M. -A.; Guler, H.; Klemetti, M.; Mc Donald, J.; Potter, C. T.; Robertson, S. H.; Rios, C. Santamarina; Schram, M.; Vachon, B.] McGill Univ, High Energy Phys Grp, Montreal, PQ H3A 2T8, Canada. [Barberio, E. L.; Davey, W.; Davidson, N.; Felzmann, C. U.; Kazi, S. I.; Limosani, A.; Moloney, G.; Morley, A. K.; Phan, A.; Sevior, M. E.; Shao, Q. T.; Taylor, G. N.; Tovey, S. N.] Univ Melbourne, Sch Phys, Au Parkville, Vic 3010, Australia. [Armbruster, A. J.; Chapman, J. W.; Cirilli, M.; Dai, T.; De La Cruz-Burelo, E.; Diehl, E. B.; Eppig, A.; Ferretti, C.; Goldfarb, S.; Levin, D.; Li, X.; Liu, H.; Liu, J. B.; Mc Kee, S. P.; Neal, H. A.; Panikashvili, N.; Purdham, J.; Qian, J.; Scheirich, D.; Strandberg, J.; Thun, R. P.; Wilson, A.; Yang, H.; Zhou, B.] Univ Michigan, Dept Phys, Randall Lab 277, Ann Arbor, MI 48109 USA. [Abolins, M.; Brock, R.; Bromberg, C.; Di Mattia, A.; Ermoline, I.; Hauser, R.; Heim, S.; Holzbauer, J. L.; Huston, J.; Koll, J.; Linnemann, J. T.; Mangeard, P. S.; Martin, B.; Pope, B. G.; Richards, R. A.; Ryan, P.; Schwienhorst, R.; Tollefson, K.] Michigan State Univ, Dept Phys & Astron, High Energy Phys Grp, E Lansing, MI 48824 USA. [Alessandria, F.; Alimonti, G.; Andreazza, A.; Banfi, D.; Besana, M. I.; Broggi, F.; Carminati, L.; Cavalli, D.; Citterio, M.; Coelli, S.; Costa, G.; Dell'Asta, L.; Fanti, M.; Giugni, D.; Grassi, V.; Lari, T.; Lazzaro, A.; Mandelli, L.; Mazzanti, Ni.; Meroni, C.; Montesano, S.; Perini, L.; Pizio, C.; Ragusa, F.; Resconi, S.; Rivoltella, G.; Tartarelli, G. F.; Troncon, C.; Vegni, G.; Volpini, G.] INFN Sez Milano, IT-20133 Milan, Italy. [Andreazza, A.; Banfi, D.; Besana, M. I.; Carminati, L.; Dell'Asta, L.; Fanti, M.; Lazzaro, A.; Montesano, S.; Perini, L.; Pizio, C.; Ragusa, F.; Rivoltella, G.; Vegni, G.] Univ Milan, Dipartimento Fis, IT-20133 Milan, Italy. [Bogouch, A.; Kulchitsky, Y.; Kurochkin, V. A.; Satsounkevitch, I.; Tsiareshka, P. V.] Natl Acad Sci Belarus, BI Stepanov Phys Inst, Minsk 220072, Byelarus. [Gilewsky, V.; Starovoitov, P.] NC PHEP BSU, Natl Sci & Educ Ctr Particle & High Energy Phys, Minsk 220040, Byelarus. [Taylor, F. E.] MIT, Dept Phys, Cambridge, MA 02139 USA. [Azuelos, G.; Banerjee, P.; Bouchami, J.; Davies, M.; Ferland, J.; Gutierrez, A.; Lebel, C.; Leroy, C.; Goia, J. A. Macana; Martin, J. P.; Mehdiyev, R.] Univ Montreal, Grp Particle Phys, Montreal, PQ H3C 3J7, Canada. [Akimov, A. V.; Baranov, S. P.; Gavrilenko, I. L.; Kayumov, F.; Komar, A. A.; Konovalov, S. P.; Mouraviev, S. V.; Nechaeva, P.; Shmeleva, A.; Snesarev, A. A.; Sulin, V. V.; Tikhomirov, V. O.; Vasilyeva, L.] Acad Sci, PN Lebedev Phys Inst, RU-117924 Moscow, Russia. [Artamonov, A.; Epshteyn, V. S.; Khovanskiy, V.; Shatalov, P. B.; Tsukerman, I. I.] ITEP, RU-117218 Moscow, Russia. [Belotskiy, K.; Bondarenko, V. G.; Bulekov, O.; Dolgoshein, B. A.; Kantserov, V. A.; Mashinistov, R.; Morozov, S. V.; Romaniouk, A.; Smirnov, S. Yu.; Sosnovtsev, V. V.; Suchkov, S. I.] Moscow Engn & Phys Inst MEPhI, RU-115409 Moscow, Russia. [Boldyrev, A.; Gladilin, L. K.; Grishkevich, Y. V.; Kramarenko, V. A.; Rud, V. I.; Sivoklokov, S. Yu.; Smirnova, L. N.] Moscow MV Lomonosov State Univ, Skobeltsyn Inst Nucl Phys MSU SINP, Moscow 119991, Russia. [Biebel, O.; Calfayan, P.; de Graat, J.; Duckeck, G.; Ebke, J.; Elmsheuser, J.; Engl, A.; Galea, C.; Genest, M. H.; Hertenberger, R.; Kennedy, J.; Krobath, G.; Kummer, C.; Legger, F.; Lichtnecker, M.; Mameghani, R.; Merkl, I.; Mueller, T. A.; Nunnemann, T.; Rauscher, F.; Ruckert, B.; Sanders, M. P.; Schaile, D.; Serfon, C.; Staude, A.; Stroehmer, R.; Walker, R.; Zhuang, X.] Univ Munich, Fak Phys, DE-85748 Garching, Germany. [Barillari, T.; Beimforde, M.; Bethke, S.; Cortiana, G.; D'Orazio, A.; Dannheim, D.; Dedes, G.; Dubbert, J.; Ehrich, T.; Flowerdew, M. J.; Giovannini, P.; Goettfert, T.; Groh, M.; Haefner, P.; Haertel, R.; Horvat, S.; Jantsch, A.; Kaiser, S.; Kiryunin, A. E.; Kluth, S.; Kortner, O.; Kotov, S.; Kroha, H.; Lutz, G.; Macchiolo, A.; Menke, S.; Mohrdieck-Moeck, S.; Moser, H. G.; Nisius, R.; Oberlack, H.; Pataraia, S.; Pospelov, G. E.; Potrap, I. N.; Rauter, E.; Richter, R.; Salihagic, D.; Schacht, P.; Schieck, J.; Seuster, R.; Stonjek, S.; von der Schmitt, H.; von Loeben, J.; Yuan, J.; Zhuravlov, V.] Max Planck Inst Phys & Astrophys, Werner Heisenberg Inst, D-80805 Munich, Germany. [Shimojima, M.] Nagasaki Inst Appl Sci, Jp Nagasaki 8510193, Japan. [Hasegawa, S.; Itoh, V.; Ohshima, T.; Okumura, Y.; Sugimoto, T.; Takahashi, Y.; Tomoto, M.] Nagoya Univ, Grad Sch Sci, Chikusa Ku, Nagoya, Aichi 4648602, Japan. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Capasso, L.; Carlino, G.; Cevenini, F.; Chiefari, G.; Conventi, F.; de Asmundis, R.; Della Pietra, M.; della Volpe, D.; Doria, A.; Giordano, R.; Iacobucci, G.; Izzo, V.; Merola, L.; Musto, E.; Patricelli, S.; Sekhniaidze, G.] INFN Sez Napoli, IT-80126 Naples, Italy. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Capasso, L.; Cevenini, F.; Chiefari, G.; della Volpe, D.; Giordano, R.; Merola, L.; Musto, E.; Patricelli, S.] Univ Naples Federico II, Dipartimento Sci Fisiche, IT-80126 Naples, Italy. [Gorelov, I.; Hoeferkamp, M. R.; Metcalfe, J.; Seidel, S. C.; Thomas, T. L.; Toms, K.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. [Consonni, M.; De Groot, N.; Filthaut, F.; Jansen, E.; Klok, P. F.; Konig, A. C.; Koetsveld, F.; Magrath, C. A.; Ordonez, G.; Raas, M.; Timmermans, C. J. W. P.] Radboud Univ Nijmegen NIKHEF, Dept Expt High Energy Phys, NL-6525 ED Nijmegen, Netherlands. [Bentvelsen, S.; Bobbink, G. J.; Bos, K.; Boterenbrood, H.; Colijn, A. P.; de Jong, P.; Doxiadis, A.; Ferrari, R.; Garitaonandia, H.; Gosselink, M.; Hartjes, E.; Hessey, N. P.; Igonkina, O.; Kayl, M. S.; Klous, S.; Kluit, P.; Koffeman, E.; Koutsman, A.; Lee, H.; Liebig, W.; Massaro, G.; Mechnich, J.; Mussche, I.; Ottersbach, J. P.; Resende, B.; Rijpstra, M.; Ruckstuhl, N.; Salamanna, G.; Sandstroem, R.; Snuverink, J.; Tsiakiris, M.; Turlay, E.; van der Graaf, H.; van der Kraaij, E.; van der Poel, E.; van Kesteren, Z.; van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Vreeswijk, M.] Nikhef Natl Inst Subatom Phys, NL-1098 XG Amsterdam, Netherlands. [Bentvelsen, S.; Bobbink, G. J.; Bos, K.; Boterenbrood, H.; Colijn, A. P.; de Jong, P.; Doxiadis, A.; Ferrari, R.; Garitaonandia, H.; Gosselink, M.; Hartjes, E.; Hessey, N. P.; Igonkina, O.; Kayl, M. S.; Klous, S.; Kluit, P.; Koffeman, E.; Koutsman, A.; Lee, H.; Liebig, W.; Massaro, G.; Mechnich, J.; Mussche, I.; Ottersbach, J. P.; Resende, B.; Rijpstra, M.; Ruckstuhl, N.; Salamanna, G.; Sandstroem, R.; Snuverink, J.; Tsiakiris, M.; Turlay, E.; van der Graaf, H.; van der Kraaij, E.; van der Poel, E.; van Kesteren, Z.; van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Vreeswijk, M.] Univ Amsterdam, NL-1098 XG Amsterdam, Netherlands. [Kazanin, V. A.; Kotov, K. Y.; Malyshev, V.; Maslennikov, A. L.; Orlov, I.; Peleganchuk, S. V.; Schamov, A. G.; Soukharev, A.; Talyshev, A.; Tikhonov, V. A.; Zaytsev, A.] Budker Inst Nucl Phys BINP, RU-630090 Novosibirsk, Russia. [Budick, B.; Casadei, D.; Cranmer, K.; Djilkibaev, R.; Konoplich, R.; Krasznahorkay, A.; Mincer, A. I.; Nemethy, P.; Shibata, A.; Zhao, L.] NYU, Dept Phys, New York, NY 10003 USA. [Fernando, W.; Fisher, M. J.; Gan, K. K.; Kagan, H.; Kass, R. D.; Loureiro, K. F.; Moss, J.; Rahimi, A. M.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.] Okayama Univ, Fac Sci, Okayama 7008530, Japan. [Abbott, B.; Gutierrez, P.; Huang, G. S.; Jana, D.; Meera-Lebbai, R.; Saleem, M.; Severini, H.; Skubic, P.; Snow, J.; Strauss, M.] Univ Oklahoma, Homer L Dodge Dept Phys & Astron, Norman, OK 73019 USA. [Abi, B.; Khanov, A.; Rizatdinova, F.] Oklahoma State Univ, Dept Phys, Stillwater, OK 74078 USA. [Kocnar, A.] Palacky Univ, Olomouc 77207, Czech Republic. [Brau, J. E.; Ptacek, E.; Reinsch, A.; Robinson, M.; Searcy, J.; Shamim, M.; Sinev, N. B.; Strom, D. M.; Torrence, E.] Univ Oregon, Ctr High Energy Phys, Eugene, OR 97403 USA. [Abreu, H.; Arnault, C.; Auge, E.; Barrillon, P.; Benoit, M.; Bernat, P.; Binet, S.; Blanchard, J. -B.; Bourdarios, C.; Breton, D.; Collard, C.; De La Taille, C.; De Regie, J. B. De Vivie; Diglio, S.; Dudziak, F.; Duflot, L.; Escalier, M.; Falou, A. C.; Fayard, L.; Fournier, D.; Heller, M.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Kado, M.; Lounis, A.; Makovec, N.; Matricon, P.; Niedercorn, F.; Perus, P.; Poggioli, L.; Puzo, P.; Rousseau, D.; Ruan, X.; Rybkin, G.; Schaffer, A. C.; Serin, L.; Simion, S.; Tanaka, R.; Veillet, J. J.; Vukotic, I.; Wicek, F.; Zerwas, D.] Univ Paris 11, CNRS, IN2P3, LAL, F-91405 Orsay, France. [Hanagaki, K.; Hirose, M.; Meguro, T. M.; Nomachi, M.; Sugaya, Y.; Uchida, K.] Osaka Univ, Grad Sch Sci, Toyonaka, Osaka 5600043, Japan. [Bugge, L.; Buran, T.; Cameron, D.; Gjelsten, B. K.; Lund, E.; Ould-Saada, F.; Pajchel, K.; Pylypchenko, Y.; Read, A. L.; Rohne, O.; Samset, B. H.; Stapnes, S.; Strandlie, A.; Taga, A.] Univ Oslo, Dept Phys, NO-0316 Oslo 3, Norway. [Abdesselam, A.; Barr, A. J.; Beauchemin, P. H.; Buchanan, J.; Cooper-Sarkar, A. M.; Dehchar, M.; Dennis, C.; Farrington, S. M.; Ferrando, J.; Fiascaris, M.; Gallas, Ej.; Gibson, S. M.; Gilbert, L. M.; Gwenlan, C.; Issever, C.; Unel, M. Karagoz; Kirsch, G. P.; Larner, A.; Loken, J.; Mattravers, C.; Mermod, P.; Nickerson, R. B.; Tseng, J. C. -L.; Viehhauser, G. H. A.; Wastie, R.; Weidberg, A. R.] Univ Oxford, Dept Phys, Oxford OX1 3RH, England. [Bellomo, M.; Cambiaghi, M.; Conta, C.; Ferrari, R.; Franchino, S.; Fraternali, M.; Gaudio, G.; Goggi, V.; Lanza, A.; Livan, M.; Negri, A.; Polesello, G.; Rebuzzi, D. M.; Rimoldi, A.; Uslenghi, M.; Vercesi, V.] INFN Sez Pavia, IT-27100 Pavia, Italy. [Cambiaghi, M.; Conta, C.; Franchino, S.; Fraternali, M.; Goggi, V.; Livan, M.; Negri, A.; Rebuzzi, D. M.; Rimoldi, A.; Uslenghi, M.] Univ Pavia, Dipartimento Fis Nucl & Teor, IT-27100 Pavia, Italy. [Alison, J.; Degenhardt, J.; Donega, M.; Fratina, S.; Hance, M.; Hines, E.; Jackson, B.; Keener, P. T.; Kroll, J.; Kunkle, J.; LeGeyt, B. C.; Lipeles, E.; Martin, F. F.; Newcomer, F. M.; Olivito, D.; Ospanov, R.; Reece, R.; Stahlman, J.; Thomson, E.; Van Berg, R.; Wagner, P.; Williams, H. H.] Univ Penn, Dept Phys, High Energy Phys Grp, Philadelphia, PA 19104 USA. [Fedin, O. L.; Gratchev, V.; Kolos, S.; Maleev, V. P.; Ryabov, Y. F.; Schegelsky, V. A.; Sedykh, E.; Seliverstov, D. M.] Petersburg Nucl Phys Inst, RU-188300 Gatchina, Russia. [Cascella, M.; Cavasinni, V.; Del Prete, T.; Dotti, A.; Francavilla, P.; Giangiobbe, V.; Roda, C.; Sarri, F.; Zenonos, Z.] INFN Sez Pisa, IT-56127 Pisa, Italy. [Cascella, M.; Cavasinni, V.; Del Prete, T.; Dotti, A.; Francavilla, P.; Giangiobbe, V.; Roda, C.; Sarri, F.; Zenonos, Z.] Univ Pisa, Dipartimento Fis E Fermi, IT-56127 Pisa, Italy. [Boudreau, J.; Boulahouache, C.; Cleland, W.; Kittelmann, T.; Mueller, J.; Paolone, V.; Prieur, D.; Savinov, V.; Tsulaia, V.; Wendler, S.; Yoosoofmiya, R.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Aguilar-Saavedra, J. A.; Castro, N.] Univ Granada, Dept Fis Teor & Cosmos, E-18071 Granada, Spain. [Aguilar-Saavedra, J. A.; Castro, N.] CAFPE, E-18071 Granada, Spain. [Amorim, A.; Anjos, N.; Barros, N.; Bastos, J.; Benincasa, G. P.; Caracinha, D.; Carvalho, J.; Conde Muino, P.; Do Valle Wemans, A.; Fernandes, B.; Fiolhais, M. C. N.; Gomes, A.; Granado Cardoso, L.; Jorge, P. M.; Lopes, L.; Machado Miguens, J.; Magalhaes Martins, P. J.; Maio, A.; Maneira, J.; Marques, C. N.; Morais, A.; Neves, R. N.; Oliveira, M.; Onofre, A.; Palma, A.; Pina, J.; Pinto, B.; Santos, J.; Saraiva, J. G.; Silva, J.; Soares, M.; Veloso, F.; Villate, J.; Wolters, H.] Lab Instrumentacao & Fis Expt Particulas LIP, P-1000149 Lisbon, Portugal. [Bazalova, M.; Bohm, J.; Chudoba, J.; Gallus, P.; Gunther, J.; Havranek, M.; Jahoda, M.; Juranek, V.; Kepka, O.; Kupco, A.; Kus, V.; Kvasnicka, O.; Lipinsky, L.; Lokajicek, M.; Marcisovsky, M.; Myska, M.; Nemecek, S.; Panuskova, M.; Popule, J.; Ruzicka, P.; Schovancova, J.; Sicho, P.; Sluka, T.; Staroba, P.; Stastny, J.; Tasevsky, M.; Tic, T.; Tomasek, L.; Tomasek, M.; Valenta, J.; Vrba, V.] Acad Sci Czech Republic, Inst Phys, CZ-18221 Prague 8, Czech Republic. [Davidek, T.; Dolejsi, J.; Dolezal, Z.; Drasal, Z.; Kodys, P.; Koupilova, Z.; Leitner, R.; Novakova, J.; Reznicek, P.; Spousta, M.; Strachota, P.; Suk, M.; Sykora, T.; Tas, P.; Valkar, S.; Vorobel, V.; Wilhelm, I.] Charles Univ Prague, Inst Particle & Nucl Phys, Fac Math & Phys, CZ-18000 Prague 8, Czech Republic. [Augsten, K.; Bedajanek, I.; Holy, T.; Homola, P.; Horazdovsky, T.; Hubacek, Z.; Jakubek, J.; Kohout, Z.; Kral, V.; Krejci, F.; Linhart, V.; Otec, R.; Pospisil, S.; Simak, V.; Slavicek, T.; Smolek, K.; Sodomka, J.; Solar, M.; Solc, J.; Sopko, V.; Sopko, B.; Stekl, I.; Turecek, D.; Vacek, V.; Vlasak, M.; Vokac, P.] Czech Tech Univ, CZ-16635 Prague 6, Czech Republic. [Ammosov, V. V.; Borisov, A.; Denisov, S. P.; Fakhrutdinov, R. M.; Fenyuk, A. B.; Goryachev, V. N.; Ivashin, A. V.; Kabachenko, V. V.; Karyukhin, A. N.; Kholodenko, A. G.; Koreshev, V.; Korotkov, V. A.; Kozhin, A. S.; Larionov, A. V.; Levitski, M. S.; Makouski, M.; Minaenko, A. A.; Myagkov, A. G.; Ryadovikov, V.; Solodkov, A. A.; Solovyanov, O. V.; Starchenko, E. A.; Sviridov, Yu. M.; Vorobiev, A. P.; Zaitsev, A. M.; Zenin, O.; Zmouchko, V. V.] State Res Ctr, Inst High Energy Phys, Protvino 142281, Moscow Region, Russia. [Adye, T.; Baines, It.; Barnett, B. M.; Burke, S.; Dallison, S. J.; Emeliyanov, D.; Gallop, B. J.; Gee, C. N. P.; Gillman, A. R.; Haywood, S. J.; Kirk, J.; McCubbin, N. A.; McMahon, S. J.; Middleton, R. P.; Murray, W. J.; Qian, W.; Sankey, D. P. C.; Scott, W. G.; Strube, J.; Tyndel, M.; Villani, E. G.; Weber, M.; Wickens, F. J.; Wielers, M.] Rutherford Appleton Lab, Sci & Technol Facil Council, UK TI RAL Tier 1, Didcot OX11 0QX, Oxon, England. [Benslama, K.; Kalinowski, A.; Ming, Y.; Ortega, E. O.] Univ Regina, Dept Phys, Regina, SK S4S 0A2, Canada. [Tanaka, S.] Ritsumeikan Univ, Jp Kusatsu, Shiga 5258577, Japan. [Anulli, F.; Bagnaia, P.; Biglietti, M.; Bini, C.; Borroni, S.; Caloi, R.; Ciapetti, G.; De Pedis, D.; De Salvo, A.; De Zorzi, G.; Di Domenico, A.; Dionisi, C.; Falciano, S.; Gauzzi, P.; Gentile, S.; Giagu, S.; Kuznetsova, E.; Lacava, F.; Luci, C.; Luminari, L.; Maiani, C.; Marzano, F.; Mirabelli, G.; Nisati, A.; Pasqualucci, E.; Petrolo, E.; Pontecorvo, L.; Rescigno, M.; Rosati, S.; Camilocci, E. Solfaroli; Spila, F.; Valente, P.; Vari, R.; Veneziano, S.; Zanello, L.] INFN Sez Roma 1, IT-00185 Rome, Italy. [Bagnaia, P.; Biglietti, M.; Bini, C.; Borroni, S.; Caloi, R.; Ciapetti, G.; De Zorzi, G.; Di Domenico, A.; Dionisi, C.; Gauzzi, P.; Gentile, S.; Giagu, S.; Kuznetsova, E.; Lacava, F.; Luci, C.; Maiani, C.; Rosati, S.; Camilocci, E. Solfaroli; Spila, F.; Zanello, L.] Univ Roma La Sapienza, Dipartimento Fis, IT-00185 Rome, Italy. [Aielli, G.; Camarri, P.; Cardarelli, R.; Cattani, G.; Di Ciaccio, A.; Di Nardo, R.; Di Simone, A.; Liberti, B.; Marchese, F.; Salamon, A.; Santonico, R.] INFN Sez Roma Tor Vergata, IT-00133 Rome, Italy. [Aielli, G.; Camarri, P.; Cattani, G.; Di Ciaccio, A.; Di Nardo, R.; Di Simone, A.; Marchese, F.; Santonico, R.] Univ Roma Tor Vergata, Dipartimento Fis, IT-00133 Rome, Italy. [Bacci, C.; Baroncelli, A.; Branchini, P.; Ceradini, F.; Di Luise, S.; Farilla, A.; Graziani, E.; Iodice, M.; Orestano, D.; Passeri, A.; Pastore, F.; Petrucci, F.; Ruggieri, F.; Stanescu, C.] INFN Sez Roma Tre, IT-00146 Rome, Italy. [Bacci, C.; Ceradini, F.; Di Luise, S.; Orestano, D.; Pastore, F.; Petrucci, F.] Univ Roma Tre, Dipartimento Fis, IT-00146 Rome, Italy. Ctr Natl Energie Sci Tech Nucl CNESTEN, Rabat 10001, Morocco. [Derkaoui, J. E.] Univ Mohamed Premier, Fac Sci, LPTPM, Oujda 60000, Morocco. [El Moursli, R. Cherkaoui; Ghazlane, H.] Univ Mohammed 5, LPNR, Fac Sci, Rabat 10000, Morocco. [Bachacou, H.; Bauer, F.; Besson, N.; Boonekamp, M.; Chevalier, L.; Chevallier, F.; Ernwein, J.; Etienvre, A. I.; Formica, A.; Guyot, C.; Hassani, S.; Kozanecki, W.; Lancon, E.; Laporte, J. F.; Le Menedeu, E.; Legendre, M.; Lenzi, B.; Mansoulie, B.; Marzin, A.; Meyer, J. -P.; Nicolaidou, R.; Ouraou, A.; Pomarede, D. M.; Royon, C. R.; Schune, Ph.; Schwindling, J.] Ctr Etud Saclay, CEA, DSM IRFU, FR-91191 Gif Sur Yvette, France. [Bangert, A.; Chouridou, S.; Fowler, K.; Grillo, A. A.; Hansl-Kozanecka, T.; Hare, G. A.; Litke, A. M.; Lockman, W. S.; Manning, P. M.; Mitrevski, J.; Nielsen, J.; Sadrozinski, H. F. -W.; Schumm, B. A.; Seiden, A.; Spencer, E.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Daly, C. H.; Forbush, D. A.; Goussiou, A. G.; Griffiths, J.; Harris, O. M.; Lubatti, H. J.; Policicchio, A.; Rothberg, J.; Twomey, M. S.; Ventura, D.; Wang, J. C.; Watts, G.; Zhao, T.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Anastopoulos, C.; Costanzo, D.; Donszelmann, T. Cuhadar; Dawson, I.; Duxfield, R.; Hodgkinson, M. C.; Hodgson, P.; Johansson, P.; Korolkova, E. V.; Mayne, A.; Nicolas, L.; Owen, S.; Paganis, E.; Shaw, K.; Sutton, M. R.; Tovey, D. R.; Tsionou, D.; Xu, D.] Univ Sheffield, Dept Phys & Astron, Sheffield S3 7RH, S Yorkshire, England. [Hasegawa, Y.; Ohshita, H.; Takeshita, T.] Shinshu Univ, Dept Phys, Fac Sci, Matsumoto, JP Nagano 3908621, Japan. [Buchholz, P.; Fleck, I.; Grybel, K.; Ibragimov, I.; Rammes, M.; Sipica, V.; Stahl, T.; Walkowiak, W.; Werthenbach, U.; Ziolkowski, M.] Univ Siegen, Fachbereich Phys, D-57068 Siegen, Germany. [Godfrey, J.; Komaragiri, J. R.; O'Neil, D. C.; Petteni, M.; Schouten, D.; Spreitzer, T.; Stelzer, B.; Vetterli, M. C.] Simon Fraser Univ, Dept Phys, Ca Burnaby, BC V5A 1S6, Canada. [Aracena, I.; Asai, M.; Barklow, T.; Bartoldus, R.; Bawa, H. S.; Butler, B.; Gao, Y. S.; Grenier, P.; Haas, A.; Hansson, P.; Horn, C.; Jackson, P.; Kim, P. C.; Kocian, M.; Miller, D. W.; Mount, R.; Nelson, T. K.; Salnikov, A.; Schwartzman, A.; Silverstein, D.; Smith, D.; Su, D.; Wilson, M. G.; Wittgen, M.; Wright, D.; Young, C.] SLAC Natl Accelerator Lab, Stanford, CA 94309 USA. [Antos, J.; Batkova, L.; Bednar, P.; Bruncko, D.; Federic, P.; Ferencei, J.; Kladiva, E.; Lovas, L.; Pecsy, M.; Seman, M.; Stavina, P.; Strizenec, P.; Sykora, I.; Tokar, S.; Tomasz, F.; Zenis, T.] Comenius Univ, Fac Math Phys & Informat, SK-84248 Bratislava, Slovakia. [Antos, J.; Batkova, L.; Bednar, P.; Bruncko, D.; Federic, P.; Ferencei, J.; Kladiva, E.; Lovas, L.; Pecsy, M.; Seman, M.; Stavina, P.; Strizenec, P.; Sykora, I.; Tokar, S.; Tomasz, F.; Zenis, T.] Slovak Acad Sci, Inst Expt Phys, Dept Subnucl Phys, SK-04353 Kosice, Slovakia. [Asman, B.; Kuutmann, E. Bergeaas; Bohm, C.; Clement, C.; Eriksson, D.; Gellerstedt, K.; Hellman, S.; Hidvegi, A.; Hillert, S.; Holmgren, S. O.; Johansen, M.; Johansson, K. E.; Jon-And, K.; Milstead, D. A.; Moa, T.; Nordkvist, B.; Ohm, C. C.; Sellden, B.; Silverstein, S. B.; Sjoelin, J.; Tylmad, M.; Yang, Z.] Stockholm Univ, Dept Phys, SE-10691 Stockholm, Sweden. [Grahn, K. -J.; Lund-Jensen, B.] Royal Inst Technol KTH, Dept Phys, SE-10691 Stockholm, Sweden. [Ahmad, A.; Caputo, R.; Deluca, C.; DeWilde, B.; Engelmann, R.; Farley, J.; Goodson, J. J.; Gray, J. A.; Grimm, K.; Hobbs, J.; Jia, J.; Khodinov, A.; McCarthy, R. L.; Rijssenbeek, M.; Schamberger, R. D.; Tsybychev, D.; Yurkewicz, A.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [De Santo, A.; Potter, C. J.; Salvatore, F.] Univ Sussex, Dept Phys & Astron, Brighton BN1 9QH, E Sussex, England. [Lee, J. S. H.; Peak, L. S.; Saavedra, A. F.; Varvell, K. E.; Waugh, A. T.] Univ Sydney, Sch Phys, Au Sydney, NSW 2006, Australia. [Chu, M. L.; Hou, S.; Lee, S. C.; Liang, Z.; Lin, S. C.; Liu, D.; Mazini, R.; Meng, Z.; Ren, Z. L.; Soh, D. A.; Teng, P. K.; Wang, S. M.; Zhong, J.; Zhou, Y.] Acad Sinica, Inst Phys, TW-11529 Taipei, Taiwan. [Harpaz, S. Behar; Ben Ami, S.; Bressler, S.; Hershenhorn, A. D.; Kajomovitz, E.; Rozen, Y.; Tarem, S.; Tennenbaum-Katan, Y. D.; Vallecorsa, S.] Technion Israel Inst Technol, Dept Phys, IL-32000 Technion, Haifa, Israel. [Abramowicz, H.; Alexander, G.; Amram, N.; Bella, G.; Benary, O.; Benhammou, Y.; Brodet, E.; Etzion, E.; Gershon, A.; Guttman, N.; Hod, N.; Kreisel, A.; Mahalalel, Y.; Munwes, Y.; Oren, Y.; Reinherz-Aronis, E.; Silver, Y.; Soffer, A.; Urkovsky, E.] Tel Aviv Univ, Raymond & Beverly Sackler Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Christidi, I. A.; Iliadis, D.; Krepouri, A.; Liolios, A.; Nomidis, I.; Petridou, C.; Sampsonidis, D.; Tsiafis, I.] Aristotle Univ Thessaloniki, Dept Phys, Fac Sci, Div Nucl & Particle Phys, GR-54124 Thessaloniki, Greece. [Akimoto, G.; Asai, S.; Azuma, Y.; Dohmae, T.; Imori, M.; Isobe, T.; Kanaya, N.; Kaneda, M.; Kataoka, Y.; Kawamoto, T.; Kessoku, K.; Kobayashi, T.; Kubota, T.; Mashimo, T.; Masubuchi, T.; Matsunaga, H.; Nakamura, K.; Oda, S.; Okawa, H.; Sakamoto, H.; Suzuki, T.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamamoto, S.; Yamamura, T.; Yamazaki, T.] Univ Tokyo, Int Ctr Elementary Particle Phys, Jp Tokyo 1130033, Japan. [Akimoto, G.; Asai, S.; Azuma, Y.; Dohmae, T.; Imori, M.; Isobe, T.; Kanaya, N.; Kaneda, M.; Kataoka, Y.; Kawamoto, T.; Kessoku, K.; Kobayashi, T.; Kubota, T.; Mashimo, T.; Masubuchi, T.; Matsunaga, H.; Nakamura, K.; Oda, S.; Okawa, H.; Sakamoto, H.; Suzuki, T.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamamoto, S.; Yamamura, T.; Yamazaki, T.] Dept Phys, Bunkyo Ku, Jp Tokyo 1130033, Japan. [Bratzler, U.; Fukunaga, C.] Tokyo Metropolitan Univ, Grad Sch Sci & Technol, Hachioji, Tokyo 1920397, Japan. [Jinnouchi, O.] Tokyo Inst Technol, Meguro Ku, Tokyo 1528551, Japan. [Akimoto, G.; Asai, S.; Azuma, Y.; Dohmae, T.; Imori, M.; Isobe, T.; Kanaya, N.; Kaneda, M.; Kataoka, Y.; Kawamoto, T.; Kessoku, K.; Kobayashi, T.; Kubota, T.; Mashimo, T.; Masubuchi, T.; Matsunaga, H.; Nakamura, K.; Oda, S.; Okawa, H.; Sakamoto, H.; Suzuki, T.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamamoto, S.; Yamamura, T.; Yamazaki, T.] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada. [Azuelos, G.; Canepa, A.; Caron, B.; Chekulaev, S. V.; Fortin, D.; Gingrich, D. M.; Kurchaninov, L. L.; Losty, M. J.; Nugent, I. M.; Oakham, F. G.; Oram, C. J.; Qing, D.; Savard, P.; Stelzer-Chilton, O.; Tafirout, R.; Trigger, I. M.; Vetterli, M. C.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Idarraga, J.; Taylor, W.] York Univ, Dept Phys & Astron, Toronto, ON M3J 1P3, Canada. [Hara, K.; Kim, S. H.; Kurata, M.; Maruyama, T.; Ukegawa, F.; Yamada, M.] Univ Tsukuba, Inst Pure & Appl Sci, Tsukuba, JP Ibaraki 3058571, Japan. [Napier, A.; Rolli, S.; Sliwa, K.; Todorova-Nova, S.] Tufts Univ, Ctr Sci & Technol, Medford, MA 02155 USA. [Losada, M.; Moreno, D.; Navarro, G.; Roa Romero, D. A.; Rodriguez, D.] Univ Antonio Narino, Ctr Invest, Bogota, Colombia. [Avolio, G.; Benedict, B. H.; Bold, T.; Bondioli, M.; Ciobotaru, M. D.; Corso-Radu, A.; Deng, J.; Dobson, M.; Eschrich, I. Gough; Grabowska-Bold, I.; Hawkins, D.; Kolos, S.; Lankford, A. J.; Garcia, R. Murillo; Porter, R.; Schernau, M.; Stancu, S. N.; Taffard, A.; Toggerson, B.; Unel, G.; Werth, M.; Wheeler-Ellis, S. J.; Whiteson, D.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Acharya, B. S.; Cauz, D.; Cobal, M.; De Sanctis, U.; Del Papa, C.; Giordani, M. P.; Luisa, L.; Pinamonti, M.; Santi, L.; Suruliz, K.] INFN Grp Coll Udine, IT-34014 Trieste, Italy. [Acharya, B. S.; Suruliz, K.] Abdus Salaam Int Ctr Theoret Phys, IT-34014 Trieste, Italy. [Cauz, D.; Cobal, M.; De Sanctis, U.; Del Papa, C.; Giordani, M. P.; Luisa, L.; Pinamonti, M.; Santi, L.] Univ Udine, Dipartimento Fis, IT-33100 Udine, Italy. [Benekos, N.; Coggeshall, J.; Cortes-Gonzalez, A.; Deberg, H.; Errede, D.; Errede, S.; Khandanyan, H.; Lie, K.; Liss, T. M.; McCarn, A.; Neubauer, M. S.; Sfyrla, A.; Vichou, I.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Belanger-Champagne, C.; Brenner, R.; Buszello, C. P.; Coniavitis, E.; Ekelof, T.; Ellert, M.; Ferrari, A.; Flechl, M.] Uppsala Univ, Dept Phys & Astron, SE-75120 Uppsala, Sweden. [Amoros, G.; Cabrera Urban, S.; Campabadal Segura, F.; Castillo Gimenez, V.; Costa, M. J.; Escobar, C.; Fassi, F.; Ferrer, A.; Fuster, J.; Garcia, C.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; Marti i Garcia, S.; Minano, M.; Mitsou, V. A.; Moles-Valls, R.; Moreno Llacer, M.; Oliver Garcia, E.; Perez Garcia-Estan, M. T.; Ros, E.; Salt, J.; Sanchis Lozano, M. A.; Solans, C. A.; Sospedra Suay, L.; Sanchez, J.; Torro Pastor, E.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.; Wildauer, A.] Ctr Mixto UVEG CSIC, Inst Fis Corpuscular IFIC, ES-46071 Valencia, Spain. [Amoros, G.; Cabrera Urban, S.; Campabadal Segura, F.; Castillo Gimenez, V.; Costa, M. J.; Escobar, C.; Fassi, F.; Ferrer, A.; Fuster, J.; Garcia, C.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; Marti i Garcia, S.; Minano, M.; Mitsou, V. A.; Moles-Valls, R.; Moreno Llacer, M.; Oliver Garcia, E.; Perez Garcia-Estan, M. T.; Ros, E.; Salt, J.; Sanchis Lozano, M. A.; Solans, C. A.; Sospedra Suay, L.; Sanchez, J.; Torro Pastor, E.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.; Wildauer, A.] Univ Valencia, Dept Fis At Mol & Nucl, Barcelona 08193, Spain. [Amoros, G.; Cabrera Urban, S.; Campabadal Segura, F.; Castillo Gimenez, V.; Costa, M. J.; Escobar, C.; Fassi, F.; Ferrer, A.; Fuster, J.; Garcia, C.; Gonzalez de la Hoz, S.; Eschrich, I. Gough; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; Marti i Garcia, S.; Minano, M.; Mitsou, V. A.; Moles-Valls, R.; Moreno Llacer, M.; Oliver Garcia, E.; Perez Garcia-Estan, M. T.; Ros, E.; Salt, J.; Sanchis Lozano, M. A.; Solans, C. A.; Sospedra Suay, L.; Sanchez, J.; Torro Pastor, E.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.; Wildauer, A.] Inst Microelect Barcelona IMB CNM CSIC, Barcelona 08193, Spain. [Axen, D.; Gay, C.; Loh, C. W.; Mills, W. J.; Muir, A.] Univ British Columbia, Dept Phys, Ca Vancouver, BC V6T 1Z1, Canada. [Albert, J.; Astbury, A.; Banerjee, S.; Bansal, V.; Berghaus, F.; Courneyea, L.; Fincke-Keeler, M.; Ince, T.; Keeler, R.; Kowalewski, R.; Lefebvre, M.; Lelas, D.; Lessard, J. -R.; McPherson, R. A.; Plamondon, M.; Poffenberger, P.; Sobie, R.; Taylor, R. P.] Univ Victoria, Dept Phys & Astron, Victoria, BC V8W 3P6, Canada. [Yorita, K.] Waseda Univ, Shinjuku Ku, Tokyo 1698555, Japan. [Alon, R.; Duchovni, E.; Gabizon, O.; Gross, E.; Klier, A.; Lellouch, D.; Levinson, L. J.; Melamed-Katz, A.; Mikenberg, G.; Milov, A.; Silbert, O.; Smakhtin, V.; Vitells, O. V.] Weizmann Inst Sci, Dept Particle Phys, IL-76100 Rehovot, Israel. [Asfandiyarov, R.; Montoya, G. D. Carrillo; Hernadez, A. M. Castaneda; Castaneda-Miranda, E.; Chen, X.; Dos Anjos, A.; Fang, Y.; Castillo, L. R. Flores; Jared, R. C.; Cheong, A. Leung Fook; Li, H.; Ma, L. L.; Garcia, B. R. Mellado; Padhi, S.; Pan, Y. B.; Morales, M. I. Pedraza; Peng, H.; Poveda, J.; Quayle, W. B.; Sarangi, T.; Vickey, T.; Wang, H.; Wiedenmann, W.; Wu, S. L.; Xu, N.; Zhu, Y.; Zobernig, G.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Fleischmann, P.; Meyer, J.; Redelbach, A.; Trefzger, T.; Verducci, M.] Univ Wurzburg, Inst Phys, D-97074 Wurzburg, Germany. [Barisonzi, M.; Becks, K. H.; Boek, J.; Braun, H. M.; Dopke, J.; Flick, T.; Gerlach, P.; Glitza, K. W.; Gorfine, G.; Hamacher, K.; Harenberg, T.; Henss, T.; Hirschbuehl, D.; Kalinin, S.; Kersten, S.; Kind, P.; Kuhl, T.; Lenz, T.; Lenzen, G.; Maettig, P.; Mechtel, M.; Sandhoff, M.; Sandvoss, S.; Sanny, B.; Schroers, M.; Schultes, J.; Siebel, A.; Thadome, J.; Voss, T. T.; Wahlen, H.; Zeitnitz, C.] Berg Univ Wuppertal, Fachbereich C, D-42097 Wuppertal, Germany. [Adelman, J.; Atoian, G.; Auerbach, B.; Baker, O. K.; Almenar, C. Cuenca; Czyczula, Z.; Demers, S.; Golling, T.; Hsu, P. J.; Issakov, V.; Kaplan, B.; Kastoryano, M.; Lockwitz, S.; Loginov, A.; Martin, A. J.; Poblaguev, A.; Thioye, M.; Tipton, P.; Wall, R.; Zeller, M.] Yale Univ, Dept Phys, New Haven, CT 06520 USA. [Hakobyan, H.] Yerevan Phys Inst, AM-375036 Yerevan, Armenia. ATLAS Canada Tier 1 Data Ctr, Vancouver, BC V6T 2A3, Canada. Forschungszentrum Karlsruhe, GridKA Tier FZK 1, Steinbuch Ctr Comp SCC, D-76344 Eggenstein Leopoldshafen, Germany. Univ Autonoma Barcelona, PIC, E-08193 Bellaterra, Spain. [Biscarat, C.; Rahal, G.] Univ Lyon 1, CNRS, IN2P3, Ctr Calcul, F-69622 Villeurbanne, France. INFN CNAF, I-40127 Bologna, Italy. NORDUnet AS, Nord Data Grid Facil, DK-2770 Kastrup, Denmark. SARA Reken Netwerkdiensten, NL-1098 XG Amsterdam, Netherlands. Acad Sinica, Inst Phys, Acad Sinica Grid Comp, Taipei 11529, Taiwan. Brookhaven Natl Lab, Dept Phys, RHIC & ATLAS Comp Facil, Upton, NY 11973 USA. [Beddall, A. J.; Beddall, A.; Bingul, A.] Gaziantep Univ, Gaziantep, Turkey. [Buckley, A. G.] Univ Durham, Inst Particle Phenomenol, Dept Phys, Ogden Ctr Fundamental Phys,Sci Labs, Durham DH1 3LE, England. [Conventi, F.; Della Pietra, M.] Univ Napoli Parthenope, IT-80133 Naples, Italy. [Dhullipudi, R.; Greenwood, Z. D.; Sawyer, L.] Louisiana Tech Univ, Ruston, LA 71272 USA. Calif State Univ Fresno, Dept Phys, Fresno, CA 93740 USA. [Gray, H. M.; Mateos, D. Lopez; Marshall, Z.; Perez, K.] CALTECH, Dept Phys, Pasadena, CA 91125 USA. [Haller, J.; Kono, T.; Terwort, M.; Wildt, M. A.] Univ Hamburg, Inst Expt Phys, D-22761 Hamburg, Germany. [Liang, Z.; Soh, D. A.] Sun Yat Sen Univ, Sch Phys & Engn, Kaohsiung, Taiwan. [Liu, D.; Meng, Z.] Shandong Univ, Sch Phys, Jinan 250100, Peoples R China. [Park, W.; Purohit, M.; Trivedi, A.] Univ S Carolina, Dept Phys & Astron, Columbia, SC 29208 USA. [Pasztor, G.; Toth, J.] KFKI Res Inst Particle & Nucl Phys, Budapest, Hungary. [Richter-Was, E.] Jagiellonian Univ, Inst Phys, Krakow, Poland. RP Aad, G (reprint author), Univ Freiburg, Fak Math & Phys, Hermann Herder Str 3, D-79104 Freiburg, Germany. RI Riu, Imma/L-7385-2014; Aguilar Saavedra, Juan Antonio/F-1256-2016; Leyton, Michael/G-2214-2016; Canelli, Florencia/O-9693-2016; Mashinistov, Ruslan/M-8356-2015; Snesarev, Andrey/H-5090-2013; Villaplana Perez, Miguel/B-2717-2015; Mir, Lluisa-Maria/G-7212-2015; Wemans, Andre/A-6738-2012; Kartvelishvili, Vakhtang/K-2312-2013; Dawson, Ian/K-6090-2013; O'Shea, Val/G-1279-2010; Staroba, Pavel/G-8850-2014; Lokajicek, Milos/G-7800-2014; Kupco, Alexander/G-9713-2014; Chudoba, Jiri/G-7737-2014; Boldyrev, Alexey/K-6303-2012; Lei, Xiaowen/O-4348-2014; Ventura, Andrea/A-9544-2015 OI Riu, Imma/0000-0002-3742-4582; Aguilar Saavedra, Juan Antonio/0000-0002-5475-8920; Leyton, Michael/0000-0002-0727-8107; Canelli, Florencia/0000-0001-6361-2117; Mashinistov, Ruslan/0000-0001-7925-4676; Villaplana Perez, Miguel/0000-0002-0048-4602; Mir, Lluisa-Maria/0000-0002-4276-715X; Wemans, Andre/0000-0002-9669-9500; O'Shea, Val/0000-0001-7183-1205; Lei, Xiaowen/0000-0002-2564-8351; Ventura, Andrea/0000-0002-3368-3413 NR 18 TC 0 Z9 0 U1 0 U2 14 PU SPRINGER-VERLAG BERLIN PI BERLIN PA HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY BN 978-3-642-22115-6 PY 2010 BP 69 EP 99 D2 10.1007/978-3-642-22116-3 PG 31 WC Instruments & Instrumentation; Physics, Particles & Fields SC Instruments & Instrumentation; Physics GA BAF48 UT WOS:000304018500003 ER PT B AU Aad, G Abbott, B Abdallah, J Abdelalim, AA Abdesselam, A Abdinov, O Abi, B Abolins, M Abramowicz, H Abreu, H Acharya, BS Adams, DL Addy, TN Adelman, J Adorisio, C Adragna, P Adye, T Aefsky, S Aguilar-Saavedra, JA Aharrouche, M Ahlen, SP Ahles, F Ahmad, A Ahmed, H Ahsan, M Aielli, G Akdogan, T Akesson, TPA Akimoto, G Akimov, AV Aktas, A Alam, MS Alam, MA Albrand, S Aleksa, M Aleksandrov, IN Alexa, C Alexander, G Alexandre, G Alexopoulos, T Alhroob, M Aliev, M Alimonti, G Alison, J Aliyev, M Allport, PP Allwood-Spiers, SE Almond, J Aloisio, A Alon, R Alonso, A Alviggi, MG Amako, K Amelung, C Amorim, A Amoros, G Amram, N Anastopoulos, C Andeen, T Anders, CF Anderson, KJ Andreazza, A Andrei, V Anduaga, XS Angerami, A Anghinolfi, F Anjos, N Annovi, A Antonaki, A Antonelli, M Antonelli, S Antos, J Antunovic, B Anulli, F Aoun, S Arabidze, G Aracena, I Arai, Y Arce, ATH Archambault, JP Arfaoui, S Arguin, JF Argyropoulos, T Arik, M Armbruster, AJ Arnaez, O Arnault, C Artamonov, A Arutinov, D Asai, M Asai, S Asfandiyarov, R Ask, S Asman, B Asner, D Asquith, L Assamagan, K Astbury, A Astvatsatourov, A Atoian, G Auerbach, B Augsten, K Aurousseau, M Austin, N Avolio, G Avramidou, R Axen, D Ay, C Azuelos, G Azuma, Y Baak, MA Bach, AM Bachacou, H Bachas, K Backes, M Badescu, E Bagnaia, P Bai, Y Bain, T Baines, JI Baker, OK Baker, MD Baker, S Pedrosa, FBD Banas, E Banerjee, P Banerjee, S Banfi, D Bangert, A Bansal, V Baranov, SP Baranov, S Barashkou, A Barber, T Barberio, EL Barberis, D Barbero, M Bardin, DY Barillari, T Barisonzi, M Barklow, T Barlow, N Barnett, BM Barnett, RM Baroncelli, A Barr, AJ Barreiro, F da Costa, JBG Barrillon, P Bartoldus, R Bartsch, D Bates, RL Batkova, L Batley, JR Battaglia, A Battistin, M Bauer, F Bawa, HS Bazalova, M Beare, B Beau, T Beauchemin, PH Beccherle, R Becerici, N Bechtle, P Beck, GA Beck, HP Beckingham, M Becks, KH Bcddall, AJ Beddall, A Bednyakov, VA Bee, C Begel, M Harpaz, SB Behera, PK Beimforde, M Belanger-Champagne, C Bell, PJ Bell, WH Bella, G Bellagamba, L Bellina, F Bellomo, M Belloni, A Belotskiy, K Beltramello, O Ben Ami, S Benary, O Benchekroun, D Bendel, M Benedict, BH Benekos, N Benhammou, Y Benincasa, GP Benjamin, PP Benoit, M Bensinger, JR Benslama, K Bentvelsen, S Beretta, M Berge, D Kuutmann, EB Berger, N Berghaus, F Berglund, E Beringer, J Bernat, P Bernhard, R Bernius, C Berry, T Bertin, A Besana, MI Besson, N Bethke, S Bianchi, RM Bianco, M Biebel, O Biesiada, J Biglietti, M Bilokon, H Bindi, M Binet, S Bingul, A Bini, C Biscarat, C Bitenc, U Black, KM Blair, RE Blanchard, JB Blanchot, G Blocker, C Blondel, A Blum, W Blumenschein, U Bobbink, GJ Bocci, A Boehler, M Boek, J Boelaert, N Boser, S Bogaerts, JA Bogouch, A Bohm, C Bohm, J Boisvert, V Bold, T Boldea, V Bondarenko, VG Bondioli, M Boonekamp, M Bordoni, S Borer, C Borisov, A Borissov, G Borjanovic, I Borroni, S Bos, K Boscherini, D Bosman, M Boterenbrood, H Bouchami, J Boudreau, J Bouhova-Thacker, EV Boulahouache, C Bourdarios, C Boveia, A Boyd, J Boyko, IR Bozovic-Jelisavcic, I Bracinik, J Braem, A Branchini, P Brandenburg, GW Brandt, A Brandt, G Brandt, O Bratzler, U Brau, B Brau, JE Braun, HM Brelier, B Bremer, J Brenner, R Bressler, S Britton, D Brochu, FM Brock, I Brock, R Brodet, E Bromberg, C Brooijmans, G Brooks, WK Brown, G de Renstrom, PAB Bruncko, D Bruneliere, R Brunet, S Bruni, A Bruni, G Bruschi, M Bucci, F Buchanan, J Buchholz, P Buckley, AG Budagov, IA Budick, B Buscher, V Bugge, L Bulekov, O Bunse, M Buran, T Burckhart, H Burdin, S Burgess, T Burke, S Busato, E Bussey, P Buszello, CP Butin, F Butler, B Butler, JM Buttar, CM Butterworth, JM Byatt, T Caballero, J Urban, SC Caforio, D Cakir, O Calafiura, P Calderini, G Calfayan, P Calkins, R Caloba, LP Calvet, D Camarri, P Cameron, D Campana, S Campanelli, M Canale, V Canelli, E Canepa, A Cantero, J Capasso, L Garrido, MDMC Caprini, I Caprini, M Capua, M Caputo, R Caramarcu, C Cardarelli, R Carli, T Carlino, G Carminati, L Caron, B Caron, S Montoya, GDC Montero, SC Carter, AA Carter, JR Carvalho, J Casadei, D Casado, MP Cascella, M Hernandez, AMC Castaneda-Miranda, E Gimenez, VC Castro, NF Cataldi, G Catinaccio, A Catmore, JR Cattai, A Cattani, G Caughron, S Cauz, D Cavalleri, P Cavalli, D Cavalli-Sforza, M Cavasinni, V Ceradini, F Cerqueira, AS Cerri, A Cerrito, L Cerutti, F Cetin, SA Chafaq, A Chakraborty, D Chan, K Chapman, JD Chapman, JW Chareyre, E Charlton, DG Chavda, V Cheatham, S Chekanov, S Chekulaev, SV Chelkov, GA Chen, H Chen, S Chen, X Cheplakov, A Chepurnov, VF El Moursli, RC Tcherniatine, V Chesneanu, D Cheu, E Cheung, SL Chevalier, L Chevallier, F Chiarella, V Chiefari, G Chikovani, L Childers, JT Chilingarov, A Chiodini, G Chizhov, V Choudalakis, G Chouridou, S Christidi, IA Christov, A Chromek-Burckhart, D Chu, ML Chudoba, J Ciapetti, G Ciftci, AK Ciftci, R Cinca, D Cindro, V Ciobotaru, MD Ciocca, C Ciocio, A Cirilli, M Citterio, M Clark, A Clark, PJ Cleland, W Clemens, JC Clement, B Clement, C Coadou, Y Cobal, M Coccaro, A Cochran, J Coggeshall, J Cogneras, E Colijn, AP Collard, C Collins, NJ Collins-Tooth, C Collot, J Colon, G Muino, PC Coniavitis, E Consonni, M Constantinescu, S Conta, C Conventi, F Cooke, M Cooper, BD Cooper-Sarkar, AM Cooper-Smith, NJ Copic, K Cornelissen, T Corradi, M Corriveau, F Corso-Radu, A Cortes-Gonzalez, A Cortiana, G Costa, G Costa, MJ Costanzo, D Costin, T Cote, D Torres, RC Courneyea, L Cowan, G Cowden, C Cox, BE Cranmer, K Cranshaw, J Cristinziani, M Crosetti, G Crupi, R Crepe-Renaudin, S Almenar, CC Donszelmann, TC Curatolo, M Curtis, CJ Cwetanski, P Czyczula, Z D'Auria, S D'Onofrio, M D'Orazio, A Da Via, C Dabrowski, W Dai, T Dallapiccola, C Dallison, SJ Daly, CH Dam, M Danielsson, HO Dannheim, D Dao, V Darbo, G Darlea, GL Davey, W Davidek, T Davidson, N Davidson, R Davies, M Davison, AR Dawson, I Daya, RK De, K de Asmundis, R De Castro, S Salgado, PEDF De Cecco, S de Graat, J De Groot, N de Jong, P De Mora, L Branco, MD De Pedis, D De Salvo, A De Sanctis, U De Santo, A De Regie, JBD De Zorzi, G Dean, S Dedovich, DV Degenhardt, J Dehchar, M Del Papa, C Del Peso, J Del Prete, T Dell'Acqua, A Dell'Asta, L Della Pietra, M della Volpe, D Delmastro, M Delsart, PA Deluca, C Demers, S Demichev, M Demirkoz, B Deng, J Deng, W Denisov, SP Derkaoui, JE Derue, F Dervan, P Desch, K Deviveiros, PO Dewhurst, A DeWilde, B Dhaliwal, S Dhullipudi, R Di Ciaccio, A Di Ciaccio, L Di Domenico, A Di Girolamo, A Di Girolamo, B Di Luise, S Di Mattia, A Di Nardo, R Di Simone, A Di Sipio, R Diaz, MA Diblen, F Diehl, EB Dietrich, J Dietzsch, TA Diglio, S Yagci, KD Dingfelder, J Dionisi, C Dita, R Dita, S Dittus, F Djama, F Djilkibaev, R Djobava, T do Vale, MAB Wemans, AD Doan, TKO Dobos, D Dobson, E Dobson, M Doglioni, C Doherty, T Dolejsi, J Dolenc, I Dolezal, Z Dolgoshein, BA Dohmae, T Donega, M Donini, JJ Dopke, J Doria, A Dos Anjos, A Dotti, A Dova, MT Doxiadis, A Doyle, AT Drasal, Z Dris, M Dubbert, J Duchovni, E Duckeck, G Dudarev, A Dudziak, F Duhrssen, M Duflot, L Dufour, MA Dunford, M Yildiz, HD Dushkin, A Duxfield, R Dwuznik, M Duren, M Ebenstein, WL Ebke, J Eckweiler, S Edmonds, K Edwards, CA Egorov, K Ehrenfeld, W Ehrich, T Eifert, T Eigen, G Einsweiler, K Eisenhandler, E Ekelof, T El Kacimi, M Ellert, M Elles, S Ellinghaus, F Ellis, K Ellis, N Elmsheuser, J Elsing, M Emeliyanov, D Engelmann, R Engl, A Epp, B Eppig, A Erdmann, J Ereditato, A Eriksson, D Ermoline, I Ernst, J Ernst, M Ernwein, J Errede, D Errede, S Ertel, E Escalier, M Escobar, C Curull, XE Esposito, B Etienvre, AI Etzion, E Evans, H Fabbri, L Fabre, C Facius, K Fakhrutdinov, RM Falciano, S Fang, Y Fanti, M Farbin, A Farilla, A Farley, J Farooque, T Farrington, SM Farthouat, P Fassnacht, P Fassouliotis, D Fatholahzadeh, B Fayard, L Fayette, F Febbraro, R Federic, P Fedin, OL Fedorko, W Feligioni, L Felzmann, CU Feng, C Feng, EJ Fenyuk, AB Ferencei, J Ferland, J Fernandes, B Fernando, W Ferrag, S Ferrando, J Ferrara, V Ferrari, A Ferrari, P Ferrari, R Ferrer, A Ferrer, ML Ferrere, D Ferretti, C Fiascaris, M Fiedler, F Filipcic, A Filippas, A Filthaut, F Fincke-Keeler, M Fiolhais, MCN Fiorini, L Firan, A Fischer, G Fisher, MJ Flechl, M Fleck, I Fleckner, J Fleischmann, P Fleischmann, S Flick, T Castillo, LRF Flowerdew, MJ Martin, TF Formica, A Forti, A Fortin, D Fournier, D Fowler, AJ Fowler, K Fox, H Francavilla, P Franchino, S Francis, D Franklin, M Franz, S Fraternali, M Fratina, S Freestone, J French, ST Froeschl, R Froidevaux, D Frost, JA Fukunaga, C Torregrosa, EF Fuster, J Gabaldon, C Gabizon, O Gadfort, T Gadomski, S Gagliardi, G Gagnon, P Galea, C Gallas, EJ Gallo, V Gallop, BJ Gallus, P Galyaev, E Gan, KK Gao, YS Gaponenko, A Garcia-Sciveres, M Garcia, C Navarro, JEG Gardner, RW Garelli, N Garitaonandia, H Garonne, V Gatti, C Gaudio, G Gautard, V Gauzzi, P Gavrilenko, IL Gay, C Gaycken, G Gazis, EN Ge, P Gee, CNP Geich-Gimbel, C Gellerstedt, K Gemme, C Genest, MH Gentile, S Georgatos, F George, S Gershon, A Ghazlane, H Ghodbane, N Giacobbe, B Giagu, S Giakoumopoulou, V Giangiobbe, V Gianotti, F Gibbard, B Gibson, A Gibson, SM Gilbert, LM Gilchriese, M Gilewsky, V Gingrich, DM Ginzburg, J Giokaris, N Giordani, MP Giordano, R Giorgi, FM Giovannini, P Giraud, PF Girtler, P Giugni, D Giusti, P Gjelsten, BK Gladilin, LK Glasman, C Glazov, A Glitza, KW Glonti, GL Godfrey, J Godlewski, J Goebel, M Gopfert, T Goerioger, C Gossling, C Gottfert, T Goggi, V Goldfarb, S Goldin, D Golling, T Gomes, A Fajardo, LSG Goncalo, R Gonella, L Gong, C de la Hoz, SG Silva, MLG Gonzalez-Sevilla, S Goodson, JJ Goossens, L Gordon, HA Gorelov, I Gorfine, G Gorini, B Gorini, E Gorisek, A Gornicki, E Gosdzik, B Gosselink, M Gostkin, MI Eschrich, IG Gouighri, M Goujdami, D Goulette, MP Goussiou, AG Goy, C Grabowska-Bold, I Grafstrom, P Grahn, KJ Grancagnolo, S Grassi, V Gratchev, V Grau, N Gray, HM Gray, JA Graziani, E Green, B Greenshaw, T Greenwood, ZD Gregor, IM Grenier, P Griesmayer, E Griffiths, J Grigalashvili, N Grillo, AA Grimm, K Grinstein, S Grishkevich, YV Groh, M Groll, M Gross, E Grosse-Knetter, J Groth-Jensen, J Grybel, K Guicheney, C Guida, A Guillemin, T Guler, H Gunther, J Guo, B Gupta, A Gusakov, Y Gutierrez, A Gutierrez, P Guttman, N Gutzwiller, O Guyot, C Gwenlan, C Gwilliam, CB Haas, A Haas, S Haber, C Hadavand, HK Hadley, DR Haefner, P Hartel, R Hajduk, Z Hakobyan, H Haller, J Hamacher, K Hamilton, A Hamilton, S Han, L Hanagaki, K Hance, M Handel, C Hanke, P Hansen, JR Hansen, JB Hansen, JD Hansen, PH Hansl-Kozanecka, T Hansson, P Hara, K Hare, GA Harenberg, T Harrington, RD Harris, OM Harrison, K Hartert, J Hartjes, F Harvey, A Hasegawa, S Hasegawa, Y Hashemi, K Hassani, S Haug, S Hauschild, M Hauser, R Havranek, M Hawkes, CM Hawkings, RJ Hayakawa, T Hayward, HS Haywood, SJ Head, SJ Hedberg, V Heelan, L Heim, S Heinemann, B Heisterkamp, S Helary, L Heller, M Hellman, S Helsens, C Hemperek, T Henderson, RCW Henke, M Henrichs, A Correia, AMH Henrot-Versille, S Hensel, C Henss, T Jimenez, YH Hershenhorn, AD Herten, G Hertenberger, R Hervas, L Hessey, NP Higon-Rodriguez, E Hill, JC Hiller, KH Hillert, S Hillier, SJ Hinchliffe, I Hines, E Hirose, M Hirsch, F Hirschbuehl, D Hobbs, J Hod, N Hodgkinson, MC Hodgson, P Hoecker, A Hoeferkamp, MR Hoffman, J Hoffmann, D Hohlfeld, M Holy, T Holzbauer, JL Homma, Y Horazdovsky, T Hori, T Horn, C Horner, S Horvat, S Hostachy, JY Hou, S Hoummada, A Howe, T Hrivnac, J Hryn'ova, T Hsu, PJ Hsu, SC Huang, GS Hubacek, Z Hubaut, F Huegging, F Hughes, EW Hughes, G Hurwitz, M Husemann, U Huseynov, N Huston, J Huth, J Iacobucci, G Iakovidis, G Ibragimov, I Iconomidou-Fayard, L Idarraga, J Iengo, P Igonkina, O Ikegami, Y Ikeno, M Ilchenko, Y Iliadis, D Ince, T Ioannou, P Iodice, M Quiles, AI Ishikawa, A Ishino, M Ishmukhametov, R Isobe, T Issakov, V Issever, C Istin, S Itoh, Y Ivashin, AV Iwanski, W Iwasaki, H Izen, JM Izzo, V Jackson, B Jackson, JN Jackson, P Jaekel, MR Jain, V Jakobs, K Jakobsen, S Jakubek, J Jana, DK Jansen, E Jantsch, A Janus, M Jared, RC Jarlskog, G Jeanty, L Plante, IJL Jenni, P Jez, P Jezequel, S Ji, W Jia, J Jiang, Y Belenguer, MJ Jin, S Jinnouchi, O Joffe, D Johansen, M Johansson, KE Johansson, P Johnert, S Johns, KA Jon-And, K Jones, G Jones, RWL Jones, TJ Jorge, PM Joseph, J Juranek, V Jussel, P Kabachenko, VV Kaci, M Kaczmarska, A Kado, M Kagan, H Kagan, M Kaiser, S Kajomovitz, E Kalinin, S Kalinovskaya, LV Kalinowski, A Kama, S Kanaya, N Kaneda, M Kantserov, VA Kanzaki, J Kaplan, B Kapliy, A Kaplon, J Kar, D Karagounis, M Unel, MK Kartvelishvili, V Karyukhin, AN Kashif, L Kasmi, A Kass, RD Kastanas, A Kastoryano, M Kataoka, M Kataoka, Y Katsoufis, E Katzy, J Kaushik, V Kawagoe, K Kawamoto, T Kawamura, G Kayl, MS Kayumov, F Kazanin, VA Kazarinov, MY Keates, JR Keeler, R Keener, PT Kehoe, R Keil, M Kekelidze, GD Kelly, M Kenyon, M Kepka, O Kerschen, N Kersevan, BP Kersten, S Kessoku, K Khakzad, M Khalil-zada, F Khandanyan, H Khanov, A Kharchenko, D Khodinov, A Khomich, A Khoriauli, G Khovanskiy, N Khovanskiy, V Khramov, E Khubua, J Kim, H Kim, MS Kim, PC Kim, SH Kind, O Kind, P King, BT Kirk, J Kirsch, GP Kirsch, LE Kiryunin, AE Kisielewska, D Kittelmann, T Kiyamura, H Kladiva, E Klein, M Klein, U Kleinknecht, K Klemetti, M Klier, A Klimentov, A Klingenberg, R Klinkby, EB Klioutchnikova, T Klok, PF Klous, S Kluge, EE Kluge, T Kluit, P Klute, M Kluth, S Knecht, NS Kneringer, E Ko, BR Kobayashi, T Kobel, M Koblitz, B Kocian, M Kocnar, A Kodys, P Koneke, K Konig, AC Koenig, S Kopke, L Koetsveld, F Koevesarki, P Koffas, T Koffeman, E Kohn, F Kohout, Z Kohriki, T Kolanoski, H Kolesnikov, V Koletsou, I Koll, J Kollar, D Kolos, S Kolya, SD Komar, AA Komaragiri, JR Kondo, T Kono, T Konoplich, R Konovalov, SP Konstantinidis, N Koperny, S Korcyl, K Kordas, K Korn, A Korolkov, I Korolkova, EV Korotkov, VA Kortner, O Kostka, P Kostyukhin, VV Kotov, S Kotov, VM Kotov, KY Kourkoumelis, C Koutsman, A Kowalewski, R Kowalski, H Kowalski, TZ Kozanecki, W Kozhin, AS Kral, V Kramarenko, VA Kramberger, G Krasny, MW Krasznahorkay, A Kreisel, A Krejci, F Kretzschmar, J Krieger, N Krieger, P Kroeninger, K Kroha, H Kroll, J Kroseberg, J Krstic, JJ Kruchonak, U Kruger, H Krumshteyn, ZV Kubota, T Kuehn, S Kugel, A Kuhl, T Kuhn, D Kukhtin, V Kulchitsky, Y Kuleshov, S Kummer, C Kuna, M Kunkle, J Kupco, A Kurashige, H Kurata, M Kurchaninov, LL Kurochkin, YA Kus, V Kwee, R La Rotonda, L Labbe, J Lacasta, C Lacava, F Lacker, H Lacour, D Lacuesta, VR Ladygin, E Lafaye, R Laforge, B Lagouri, T Lai, S Lamanna, M Lampen, CL Lampl, W Lancon, E Landgraf, U Landon, MPJ Lane, JL Lankford, AJ Lanni, F Lantzsch, K Lanza, A Laplace, S Lapoire, C Laporte, JF Lari, T Larner, A Lassnig, M Laurelli, P Lavrijsen, W Laycock, P Lazarev, AB Lazzaro, A Le Dortz, O Le Guirriec, E Le Menedeu, E Le Vine, M Lebedev, A Lebel, C LeCompte, T Ledroit-Guillon, F Lee, H Lee, JSH Lee, SC Lefebvre, M Legendre, M LeGeyt, BC Legger, F Leggett, C Lehmacher, M Miotto, GL Lei, X Leitner, R Lellouch, D Lellouch, J Lendermann, V Leney, KJC Lenz, T Lenzen, G Lenzi, B Leonhardt, K Leroy, C Lessard, JR Lester, CG Cheong, ALF Leveque, J Levin, D Levinson, LJ Leyton, M Li, H Li, S Li, X Liang, Z Liang, Z Liberti, B Lichard, P Lichtnecker, M Lie, K Liebig, W Lilley, JN Lim, H Limosani, A Limper, M Lin, SC Linnemann, JT Lipeles, E Lipinsky, L Lipniacka, A Liss, TM Lissauer, D Lister, A Litke, AM Liu, C Liu, D Liu, H Liu, JB Liu, M Liu, T Liu, Y Livan, M Lleres, A Lloyd, SL Lobodzinska, E Loch, P Lockman, WS Lockwitz, S Loddenkoetter, T Loebinger, FK Loginov, A Loh, CW Lohse, T Lohwasser, K Lokajicek, M Long, RE Lopes, L Mateos, DL Losada, M Loscutoff, P Lou, X Lounis, A Loureiro, KF Lovas, L Love, J Love, PA Lowe, AJ Lu, F Lubatti, HJ Luci, C Lucotte, A Ludwig, A Ludwig, D Ludwig, I Luehring, F Luisa, L Lumb, D Luminari, L Lund, E Lund-Jensen, B Lundberg, B Lundberg, J Lundquist, J Lynn, D Lys, J Lytken, E Ma, H Ma, LL Goia, JAM Maccarrone, G Macchiolo, A Macek, B Miguens, JM Mackeprang, R Madaras, RJ Mader, WF Maenner, R Maeno, T Mattig, P Mattig, S Martins, PJM Magradze, E Mahalalel, Y Mahboubi, K Mahmood, A Maiani, C Maidantchik, C Maio, A Majewski, S Makida, Y Makouski, M Makovec, N Malecki, P Malecki, P Maleev, VP Malek, F Mallik, U Malon, D Maltezos, S Malyshev, V Malyukov, S Mambelli, M Mameghani, R Mamuzic, J Mandelli, L Mandic, I Mandrysch, R Maneira, J Mangeard, PS Manjavidze, ID Manning, PM Manousakis-Katsikakis, A Mansoulie, B Mapelli, A Mapelli, L March, L Marchand, JF Marchese, F Marchiori, G Marcisovsky, M Marino, CP Marroquim, F Marshall, Z Marti-Garcia, S Martin, AJ Martin, AJ Martin, B Martin, B Martin, FF Martin, JP Martin, TA Latour, BMD Martinez, M Outschoorn, VM Martini, A Martyniuk, AC Marzano, F Marzin, A Masetti, L Mashimo, T Mashinistov, R Masik, J Maslennikov, AL Massa, I Massol, N Mastroberardino, A Masubuchi, T Matricon, P Matsunaga, H Matsushita, T Mattravers, C Maxfield, SJ Mayne, A Mazini, R Mazur, M Mazzanti, M Mc Donald, J Mc Kee, SP McCarn, A McCarthy, RL McCubbin, NA McFarlane, KW McGlone, H Mchedlidze, G McMahon, SJ McPherson, RA Meade, A Mechnich, J Mechtel, M Medinnis, M Meera-Lebbai, R Meguro, TM Mehlhase, S Mehta, A Meier, K Meirose, B Melachrinos, C Garcia, BRM Navas, LM Meng, Z Menke, S Meoni, E Mermod, P Merola, L Meroni, C Merritt, FS Messina, AM Metcalfe, J Mete, AS Meyer, JP Meyer, J Meyer, J Meyer, TC Meyer, WT Miao, J Michal, S Micu, L Middleton, RP Migas, S Mijovic, L Mikenberg, G Mikestikova, M Mikuz, M Miller, DW Mills, WJ Mills, CM Milov, A Milstead, DA Milstein, D Minaenko, AA Minano, M Minashvili, IA Mincer, AI Mindur, B Mineev, M Ming, Y Mir, LM Mirabelli, G Misawa, S Miscetti, S Misiejuk, A Mitrevski, J Mitsou, VA Miyagawa, PS Mjornmark, JU Mladenov, D Moa, T Moed, S Moeller, V Monig, K Moser, N Mohr, W Mohrdieck-Mock, S Moles-Valls, R Molina-Perez, J Monk, J Monnier, E Montesano, S Monticelli, F Moore, RW Herrera, CM Moraes, A Morais, A Morel, J Morello, G Moreno, D Llacer, MM Morettini, P Morii, M Morley, AK Mornacchi, G Morozov, SV Morris, JD Moser, HG Mosidze, M Moss, J Mount, R Mountricha, E Mouraviev, SV Moyse, EJW Mudrinic, M Mueller, F Mueller, J Mueller, K Muller, TA Muenstermann, D Muir, A Munwes, Y Garcia, RM Murray, WJ Mussche, I Musto, E Myagkov, AG Myska, M Nadal, J Nagai, K Nagano, K Nagasaka, Y Nairz, AM Nakamura, K Nakano, I Nakatsuka, H Nanava, G Napier, A Nash, M Nation, NR Nattermann, T Naumann, T Navarro, G Nderitu, SK Neal, HA Nebot, E Nechaeva, P Negri, A Negri, G Nelson, A Nelson, TK Nemecek, S Nemethy, P Nepomuceno, AA Nessi, M Neubauer, MS Neusiedl, A Neves, RM Nevski, P Newcomer, FM Nickerson, RB Nicolaidou, R Nicolas, L Nicoletti, G Nicquevert, B Niedercorn, F Nielsen, J Nikiforov, A Nikolaev, K Nikolic-Audit, I Nikolopoulos, K Nilsen, H Nilsson, P Nisati, A Nishiyama, T Nisius, R Nodulmans, L Nomachi, M Nomidis, I Nordberg, M Nordkvist, B Notz, D Novakova, J Nozaki, M Nozicka, M Nugent, IM Nuncio-Quiroz, AE Hanninger, GN Nunnemann, T Nurse, E O'Neil, DC O'Shea, V Oakham, FG Oberlack, H Ochi, A Oda, S Odaka, S Odier, J Ogren, H Oh, A Oh, SH Ohm, CC Ohshima, T Ohshita, H Ohsugi, T Okada, S Okawa, H Okumura, Y Okuyama, T Olchevski, AG Oliveira, M Damazio, DO Oliver, J Garcia, EO Olivito, D Olszewski, A Olszowska, J Omachi, C Onofre, A Onyisi, PUE Oram, CJ Oreglia, MJ Oren, Y Orestano, D Orlov, I Barrera, CO Orr, RS Ortega, EO Osculati, B Ospanov, R Osuna, C Ottersbach, JP Ould-Saada, F Ouraou, A Ouyang, Q Owen, M Owen, S Oyarzun, A Ozcan, VE Ozone, K Ozturk, N Pages, AP Aranda, CP Paganis, E Pahl, C Paige, E Pajchel, K Palestini, S Pallin, D Palma, A Palmer, JD Pan, YB Panagiotopoulou, E Panes, B Panikashvili, N Panitkin, S Pantea, D Panuskova, M Paolone, V Papadopoulou, TD Park, SJ Park, W Parker, MA Parker, SI Parodi, F Parsons, JA Parzefall, U Pasqualucci, E Passeri, A Pastore, F Pastore, F Pasztor, G Pataraia, S Pater, JR Patricelli, S Patwa, A Pauly, T Peak, LS Pecsy, M Morales, MIP Peleganchuk, SV Peng, H Penson, A Penwell, J Perantoni, M Perez, K Codina, EP Garcia-Estan, MTP Reale, VP Perini, L Pernegger, H Perrino, R Persembe, S Perus, P Peshekhonov, VD Petersen, BA Petersen, TC Petit, E Petridou, C Petrolo, E Petrucci, F Petschull, D Petteni, M Pezoa, R Phan, A Phillips, AW Piacquadio, G Piccinini, M Piegaia, R Pilcher, JEJ Pilkington, AD Pina, J Pinamonti, M Pinfold, JL Pinto, B Pizio, C Placakyte, R Plamondon, M Pleier, MA Poblaguev, A Poddar, S Podlyski, F Poffenberger, P Poggioli, L Pohl, M Polci, F Polesello, G Policicchio, A Polini, A Poll, J Polychronakos, V Pomeroy, D Pommes, K Ponsot, P Pontecorvo, L Pope, BG Popeneciu, GA Popovic, DS Poppleton, A Popule, J Bueso, XP Porter, R Pospelov, GE Pospisil, S Potekhin, M Potrap, IN Potter, CJ Potter, CT Potter, KP Poulard, G Poveda, J Prabhu, R Pralavorio, P Prasad, S Pravahan, R Pribyl, L Price, D Price, LE Prichard, PM Prieur, D Primavera, M Prokofiev, K Prokoshin, F Protopopescu, S Proudfoot, J Prudent, X Przysiezniak, H Psoroulas, S Ptacek, E Puigdengoles, C Purdham, J Purohit, M Puzo, P Pylypchenko, Y Qi, M Qian, J Qian, W Qin, Z Quadt, A Quarrie, DR Quayle, WB Quinonez, F Raas, M Radeka, V Radescu, V Radics, B Rador, T Ragusa, F Rahal, G Rahimi, AM Rajagopalan, S Rammensee, M Rammes, M Rauscher, F Rauter, E Raymond, M Read, AL Rebuzzi, DM Redelbach, A Redlinger, G Reece, R Reeves, K Reinherz-Aronis, E Reinsch, A Reisinger, I Reljic, D Rembser, C Ren, ZL Renkel, P Rescia, S Rescigno, M Resconi, S Resende, B Reznicek, P Rezvani, R Richards, A Richards, RA Richter, R Richter-Was, E Ridel, M Rijpstra, M Rijssenbeek, M Rimoldi, A Rinaldi, L Rios, RR Riu, I Rizatdinova, F Rizvi, E Romero, DAR Robertson, SH Robichaud-Veronneau, A Robinson, D Robinson, JEM Robinson, M Robson, A de Lima, JGR Roda, C Dos Santos, DR Rodriguez, D Garcia, YR Roe, S Rohne, O Rojo, V Rolli, S Romaniouk, A Romanov, VM Romeo, G Maltrana, DR Roos, L Ros, E Rosati, S Rosenbaum, GA Rosselet, L Rossetti, V Rossi, LP Rotaru, M Rothberg, J Rousseau, D Royon, CR Rozanov, A Rozen, Y Ruan, X Ruckert, B Ruckstuhl, N Rud, VI Rudolph, G Ruhr, F Ruggieri, F Ruiz-Martinez, A Rumyantsev, L Rurikova, Z Rusakovich, NA Rutherfoord, JP Ruwiedel, C Ruzicka, P Ryabov, YF Ryan, P Rybkin, G Rzaeva, S Saavedra, AF Sadrozinski, HFW Sadykov, R Sakamoto, H Salamanna, G Salamon, A Saleem, MS Salihagic, D Salnikov, A Salt, J Ferrando, BMS Salvatore, D Salvatore, F Salvucci, A Salzburger, A Sampsonidis, D Samset, BH Sandaker, H Sander, HG Sanders, MP Sandhoff, M Sandhu, P Sandstroem, R Sandvoss, S Sankey, DPC Sanny, B Sansoni, A Rios, CS Santoni, C Santonico, R Saraiva, JG Sarangi, T Sarkisyan-Grinbaum, E Sarri, F Sasaki, O Sasao, N Satsounkevitch, I Sauvage, G Savard, P Savine, AY Savinov, V Sawyer, L Saxon, DH Says, LP Sbarra, C Sbrizzi, A Scannicchio, DA Schaarschmidt, J Schacht, P Schafer, U Schaetzel, S Schaffer, AC Schaile, D Schamberger, RD Schamov, AG Schegelsky, VA Scheirich, D Schernau, M Scherzer, MI Schiavi, C Schieck, J Schioppa, M Schlenker, S Schmieden, K Schmitt, C Schmitz, M Schott, M Schouten, D Schovancova, J Schram, M Schreiner, A Schroeder, C Schroer, N Schroers, M Schultes, J Schultz-Coulon, HC Schumacher, JW Schumacher, M Schumm, BA Schune, P Schwanenberger, C Schwartzman, A Schwemling, P Schwienhorst, R Schwierz, R Schwindling, J Scott, WG Searcy, J Sedykh, E Segura, E Seidel, SC Seiden, A Seifert, F Seixas, JM Sekhniaidze, G Seliverstov, DM Sellden, B Semprini-Cesari, N Serfon, C Serin, L Seuster, R Severini, H Sevior, ME Sfyrla, A Shabalina, E Shamim, M Shan, LY Shank, JT Shao, QT Shapiro, M Shatalov, PB Shaw, K Sherman, D Sherwood, P Shibata, A Shimojima, M Shin, T Shmeleva, A Shochet, MJ Shupe, MA Sicho, P Sidoti, A Siegert, F Siegrist, J Sijacki, D Silbert, O Silva, J Silver, Y Silverstein, D Silverstein, SB Simak, V Simic, L Simion, S Simmons, B Simonyan, M Sinervo, P Sinev, NB Sipica, V Siragusa, G Sisakyan, AN Sivoklokov, SY Sjoelin, J Sjursen, TB Skovpen, K Skubic, P Slater, M Slavicek, T Sliwa, K Sloper, J Sluka, T Smakhtin, V Smirnov, SY Smirnov, Y Smirnova, LN Smirnova, O Smith, BC Smith, D Smith, KM Smizanska, M Smolek, K Snesarev, AA Snow, SW Snow, J Snuverink, J Snyder, S Soares, M Sobie, R Sodomka, J Soffer, A Solans, CA Solar, M Solc, J Camillocci, ES Solodkov, AA Solovyanov, OV Soluk, R Sondericker, J Sopko, V Sopko, B Sosebee, M Soukharev, A Spagnolo, S Spano, F Spencer, E Spighi, R Spigo, G Spila, F Spiwoks, R Spousta, M Spreitzer, T Spurlock, B St Denis, RD Stahl, T Stahlman, J Stamen, R Stancu, SN Stanecka, E Stanek, RW Stanescu, C Stapnes, S Starchenko, EA Stark, J Staroba, P Starovoitov, P Stastny, J Stavina, P Steele, G Steinbach, P Steinberg, P Stekl, I Stelzer, B Stelzer, HJ Stelzer-Chilton, O Stenzel, H Stevenson, K Stewart, GA Stockton, MC Stoerig, K Stoicea, G Stonjek, S Strachota, P Stradling, AR Straessner, A Strandberg, J Strandberg, S Strandlie, A Strauss, M Strizenec, P Strohmer, R Strom, DM Stroynowski, R Strube, J Stugu, B Soh, DA Su, D Sugaya, Y Sugimoto, T Suhr, C Suk, M Sulin, VV Sultansoy, S Sumida, T Sun, XH Sundermann, JE Suruliz, K Sushkov, S Susinno, G Sutton, MR Suzuki, T Suzuki, Y Sykora, I Sykora, T Szymocha, T Sanchez, J Ta, D Tackmann, K Taffard, A Tafirout, R Taga, A Takahashi, Y Takai, H Takashima, R Takeda, H Takeshita, T Talby, M Talyshev, A Tamsett, MC Tanaka, J Tanaka, R Tanaka, S Tanaka, S Tapprogge, S Tardif, D Tarem, S Tarrade, F Tartarelli, GF Tas, P Tasevsky, M Tassi, E Tatarkhanov, M Taylor, C Taylor, FE Taylor, GN Taylor, RP Taylor, W Teixeira-Dias, P Ten Kate, H Teng, PK Tennenbaum-Katan, YD Terada, S Terashi, K Terron, J Terwort, M Testa, M Teuscher, RJ Thioye, M Thoma, S Thomas, JP Thompson, EN Thompson, PD Thompson, PD Thompson, RJ Thompson, AS Thomson, E Thun, RP Tic, T Tikhomirov, VO Tikhonov, VA Tipton, P Viegas, FJTA Tisserant, S Toczek, B Todorov, T Todorova-Nova, S Toggerson, B Tojo, J Tokar, S Tokushuku, K Tollefson, K Tomasek, L Tomasek, M Tomoto, M Tompkins, L Toms, K Tonoyan, A Topfel, C Topilin, ND Torrence, E Pastor, ET Toth, J Touchard, F Tovey, DR Trefzger, T Tremblet, L Tricoli, A Trigger, IM Trincaz-Duvoid, S Trinh, TN Tripiana, MF Triplett, N Trischuk, W Trivedi, A Trocme, B Troncon, C Trzupek, A Tsarouchas, C Tseng, JCL Tsiakiris, M Tsiareshka, PV Tsionou, D Tsipolitis, G Tsiskaridze, V Tskhadadze, EG Tsukerman, II Tsulaia, V Tsung, JW Tsuno, S Tsybychev, D Tuggle, JM Turecek, D Cakir, IT Turlay, E Tuts, PM Twomey, MS Tylmad, M Tyndel, M Uchida, K Ueda, I Ugland, M Uhlenbrock, M Uhrmacher, M Ukegawa, F Unal, G Undrus, A Unel, G Unno, Y Urbaniec, D Urkovsky, E Urquijo, P Urrejola, R Usai, G Uslenghi, M Vacavant, L Vacek, V Vachon, B Vahsen, S Valente, P Valentinetti, S Valkar, S Gallego, EV Vallecorsa, S Ferrer, JAV Van Berg, R van der Graaf, H van der Kraaij, E van der Poel, E van der Ster, D van Eldik, N van Gemmeren, P van Kesteren, Z van Vulpen, I Vandelli, W Vaniachine, A Vankov, P Vannucci, F Vari, R Varnes, EW Varouchas, D Vartapetian, A Varvell, KE Vasilyeva, L Vassilakopoulos, VI Vazeille, F Vellidis, C Veloso, F Veneziano, S Ventura, A Ventura, D Venturi, M Venturi, N Vercesi, V Verducci, M Verkerke, W Vermeulen, JC Vetterli, MC Vichou, I Vickey, T Viehhauser, GHA Villa, M Villani, EG Perez, MV Vilucchi, E Vincter, MG Vinek, E Vinogradov, VB Viret, S Virzi, J Vitale, A Vitells, O Vivarelli, I Vaque, FV Vlachos, S Vlasak, M Vlasov, N Vogel, A Vokac, P Volpi, M von der Schmitt, H von Loeben, J von Radziewski, H von Toerne, E Vorobel, V Vorwerk, V Vos, M Voss, R Voss, TT Vossebeld, JH Vranjes, N Milosavljevic, MV Vrba, V Vreeswijk, M Anh, TV Vudragovic, D Vuillermet, R Vukotic, I Wagner, P Walbersloh, J Walder, J Walker, R Walkowiak, W Wall, R Wang, C Wang, H Wang, J Wang, SM Warburton, A Ward, CP Warsinsky, M Wastie, R Watkins, PM Watson, AT Watson, MF Watts, G Watts, S Waugh, AT Waugh, BM Weber, MD Weber, M Weber, MS Weber, P Weidberg, AR Weingarten, J Weiser, C Wellenstein, H Wells, PS Wen, M Wenaus, T Wendler, S Wengler, T Wenig, S Wermes, N Werner, M Werner, P Werth, M Werthenbach, U Wessels, M Whalen, K White, A White, MJ White, S Whitehead, SR Whiteson, D Whittington, D Wicek, F Wicke, D Wickens, FJ Wiedenmann, W Wielers, M Wienemann, P Wiglesworth, C Wiik, LAM Wildauer, A Wildt, MA Wilkens, HG Williams, E Williams, HH Willocq, S Wilson, JA Wilson, MG Wilson, A Wingerter-Seez, I Winklmeier, F Wittgen, M Wolter, MW Wolters, H Wosiek, BK Wotschack, J Woudstra, MJ Wraight, K Wright, C Wright, D Wrona, B Wu, SL Wu, X Wulf, E Wynne, BM Xaplanteris, L Xella, S Xie, S Xu, D Xu, N Yamada, M Yamamoto, A Yamamoto, K Yamamoto, S Yamamura, T Yamaoka, J Yamazaki, T Yamazaki, Y Yan, Z Yang, H Yang, UK Yang, Z Yao, WM Yao, Y Yasu, Y Ye, J Ye, S Yilmaz, M Yoosoofmiya, R Yorita, K Yoshida, R Young, C Youssef, SP Yu, D Yu, J Yuan, L Yurkewicz, A Zaidan, R Zaitsev, AM Zajacova, Z Zambrano, V Zanello, L Zaytsev, A Zeitnitz, C Zeller, M Zemla, A Zendler, C Zenin, O Zenis, T Zenonos, Z Zenz, S Zerwas, D della Porta, GZ Zhan, Z Zhang, H Zhang, J Zhang, Q Zhang, X Zhao, L Zhao, T Zhao, Z Zhemchugov, A Zhong, J Zhou, B Zhou, N Zhou, Y Zhu, CG Zhu, H Zhu, Y Zhuang, X Zhuravlov, V Zimmermann, R Zimmermann, S Zimmermann, S Ziolkowski, M Zivkovic, L Zobernig, G Zoccoli, A zur Nedden, M Zutshi, V AF Aad, G. Abbott, B. Abdallah, J. Abdelalim, A. A. Abdesselam, A. Abdinov, O. Abi, B. Abolins, M. Abramowicz, H. Abreu, H. Acharya, B. S. Adams, D. L. Addy, T. N. Adelman, J. Adorisio, C. Adragna, P. Adye, T. Aefsky, S. Aguilar-Saavedra, J. A. Aharrouche, M. Ahlen, S. P. Ahles, F. Ahmad, A. Ahmed, H. Ahsan, M. Aielli, G. Akdogan, T. Akesson, T. P. A. Akimoto, G. Akimov, A. V. Aktas, A. Alam, M. S. Alam, M. A. Albrand, S. Aleksa, M. Aleksandrov, I. N. Alexa, C. Alexander, G. Alexandre, G. Alexopoulos, T. Alhroob, M. Aliev, M. Alimonti, G. Alison, J. Aliyev, M. Allport, P. P. Allwood-Spiers, S. E. Almond, J. Aloisio, A. Alon, R. Alonso, A. Alviggi, M. G. Amako, K. Amelung, C. Amorim, A. Amoros, G. Amram, N. Anastopoulos, C. Andeen, T. Anders, C. F. Anderson, K. J. Andreazza, A. Andrei, V. Anduaga, X. S. Angerami, A. Anghinolfi, F. Anjos, N. Annovi, A. Antonaki, A. Antonelli, M. Antonelli, S. Antos, J. Antunovic, B. Anulli, F'. Aoun, S. Arabidze, G. Aracena, I. Arai, Y. Arce, A. T. H. Archambault, J. P. Arfaoui, S. Arguin, J. -F. Argyropoulos, T. Arik, M. Armbruster, A. J. Arnaez, O. Arnault, C. Artamonov, A. Arutinov, D. Asai, M. Asai, S. Asfandiyarov, R. Ask, S. Asman, B. Asner, D. Asquith, L. Assamagan, K. Astbury, A. Astvatsatourov, A. Atoian, G. Auerbach, B. Augsten, K. Aurousseau, M. Austin, N. Avolio, G. Avramidou, R. Axen, D. Ay, C. Azuelos, G. Azuma, Y. Baak, M. A. Bach, A. M. Bachacou, H. Bachas, K. Backes, M. Badescu, E. Bagnaia, P. Bai, Y. Bain, T. Baines, J. I. Baker, O. K. Baker, M. D. Baker, S. Pedrosa, F. Baltasar Dos Santos Banas, E. Banerjee, P. Banerjee, S. Banfi, D. Bangert, A. Bansal, V. Baranov, S. P. Baranov, S. Barashkou, A. Barber, T. Barberio, E. L. Barberis, D. Barbero, M. Bardin, D. Y. Barillari, T. Barisonzi, M. Barklow, T. Barlow, N. Barnett, B. M. Barnett, R. M. Baroncelli, A. Barr, A. J. Barreiro, F. da Costa, J. Barreiro Guimaraes Barrillon, P. Bartoldus, R. Bartsch, D. Bates, R. L. Batkova, L. Batley, J. R. Battaglia, A. Battistin, M. Bauer, F. Bawa, H. S. Bazalova, M. Beare, B. Beau, T. Beauchemin, P. H. Beccherle, R. Becerici, N. Bechtle, P. Beck, G. A. Beck, H. P. Beckingham, M. Becks, K. H. Bcddall, A. J. Beddall, A. Bednyakov, V. A. Bee, C. Begel, M. Harpaz, S. Behar Behera, P. K. Beimforde, M. Belanger-Champagne, C. Bell, P. J. Bell, W. H. Bella, G. Bellagamba, L. Bellina, F. Bellomo, M. Belloni, A. Belotskiy, K. Beltramello, O. Ben Ami, S. Benary, O. Benchekroun, D. Bendel, M. Benedict, B. H. Benekos, N. Benhammou, Y. Benincasa, G. P. Benjamin, P. P. Benoit, M. Bensinger, J. R. Benslama, K. Bentvelsen, S. Beretta, M. Berge, D. Kuutmann, E. Bergeaas Berger, N. Berghaus, F. Berglund, E. Beringer, J. Bernat, P. Bernhard, R. Bernius, C. Berry, T. Bertin, A. Besana, M. I. Besson, N. Bethke, S. Bianchi, R. M. Bianco, M. Biebel, O. Biesiada, J. Biglietti, M. Bilokon, H. Bindi, M. Binet, S. Bingul, A. Bini, C. Biscarat, C. Bitenc, U. Black, K. M. Blair, R. E. Blanchard, J. -B. Blanchot, G. Blocker, C. Blondel, A. Blum, W. Blumenschein, U. Bobbink, G. J. Bocci, A. Boehler, M. Boek, J. Boelaert, N. Boeser, S. Bogaerts, J. A. Bogouch, A. Bohm, C. Bohm, J. Boisvert, V. Bold, T. Boldea, V. Bondarenko, V. G. Bondioli, M. Boonekamp, M. Bordoni, S. Borer, C. Borisov, A. Borissov, G. Borjanovic, I. Borroni, S. Bos, K. Boscherini, D. Bosman, M. Boterenbrood, H. Bouchami, J. Boudreau, J. Bouhova-Thacker, E. V. Boulahouache, C. Bourdarios, C. Boveia, A. Boyd, J. Boyko, I. R. Bozovic-Jelisavcic, I. Bracinik, J. Braem, A. Branchini, P. Brandenburg, G. W. Brandt, A. Brandt, G. Brandt, O. Bratzler, U. Brau, B. Brau, J. E. Braun, H. M. Brelier, B. Bremer, J. Brenner, R. Bressler, S. Britton, D. Brochu, F. M. Brock, I. Brock, R. Brodet, E. Bromberg, C. Brooijmans, G. Brooks, W. K. Brown, G. de Renstrom, P. A. Bruckman Bruncko, D. Bruneliere, R. Brunet, S. Bruni, A. Bruni, G. Bruschi, M. Bucci, F. Buchanan, J. Buchholz, P. Buckley, A. G. Budagov, I. A. Budick, B. Buescher, V. Bugge, L. Bulekov, O. Bunse, M. Buran, T. Burckhart, H. Burdin, S. Burgess, T. Burke, S. Busato, E. Bussey, P. Buszello, C. P. Butin, F. Butler, B. Butler, J. M. Buttar, C. M. Butterworth, J. M. Byatt, T. Caballero, J. Cabrera Urban, S. Caforio, D. Cakir, O. Calafiura, P. Calderini, G. Calfayan, P. Calkins, R. Caloba, L. P. Calvet, D. Camarri, P. Cameron, D. Campana, S. Campanelli, M. Canale, V. Canelli, E. Canepa, A. Cantero, J. Capasso, L. Garrido, M. D. M. Capeans Caprini, I. Caprini, M. Capua, M. Caputo, R. Caramarcu, C. Cardarelli, R. Carli, T. Carlino, G. Carminati, L. Caron, B. Caron, S. Montoya, G. D. Carrillo Montero, S. Carron Carter, A. A. Carter, J. R. Carvalho, J. Casadei, D. Casado, M. P. Cascella, M. Hernandez, A. M. Castaneda Castaneda-Miranda, E. Castillo Gimenez, V. Castro, N. F. Cataldi, G. Catinaccio, A. Catmore, J. R. Cattai, A. Cattani, G. Caughron, S. Cauz, D. Cavalleri, P. Cavalli, D. Cavalli-Sforza, M. Cavasinni, V. Ceradini, F. Cerqueira, A. S. Cerri, A. Cerrito, L. Cerutti, F. Cetin, S. A. Chafaq, A. Chakraborty, D. Chan, K. Chapman, J. D. Chapman, J. W. Chareyre, E. Charlton, D. G. Chavda, V. Cheatham, S. Chekanov, S. Chekulaev, S. V. Chelkov, G. A. Chen, H. Chen, S. Chen, X. Cheplakov, A. Chepurnov, V. F. El Moursli, R. Cherkaoui Tcherniatine, V. Chesneanu, D. Cheu, E. Cheung, S. L. Chevalier, L. Chevallier, F. Chiarella, V. Chiefari, G. Chikovani, L. Childers, J. T. Chilingarov, A. Chiodini, G. Chizhov, V. Choudalakis, G. Chouridou, S. Christidi, I. A. Christov, A. Chromek-Burckhart, D. Chu, M. L. Chudoba, J. Ciapetti, G. Ciftci, A. K. Ciftci, R. Cinca, D. Cindro, V. Ciobotaru, M. D. Ciocca, C. Ciocio, A. Cirilli, M. Citterio, M. Clark, A. Clark, P. J. Cleland, W. Clemens, J. C. Clement, B. Clement, C. Coadou, Y. Cobal, M. Coccaro, A. Cochran, J. Coggeshall, J. Cogneras, E. Colijn, A. P. Collard, C. Collins, N. J. Collins-Tooth, C. Collot, J. Colon, G. Conde Muino, P. Coniavitis, E. Consonni, M. Constantinescu, S. Conta, C. Conventi, F. Cooke, M. Cooper, B. D. Cooper-Sarkar, A. M. Cooper-Smith, N. J. Copic, K. Cornelissen, T. Corradi, M. Corriveau, F. Corso-Radu, A. Cortes-Gonzalez, A. Cortiana, G. Costa, G. Costa, M. J. Costanzo, D. Costin, T. Cote, D. Coura Torres, R. Courneyea, L. Cowan, G. Cowden, C. Cox, B. E. Cranmer, K. Cranshaw, J. Cristinziani, M. Crosetti, G. Crupi, R. Crepe-Renaudin, S. Almenar, C. Cuenca Donszelmann, T. Cuhadar Curatolo, M. Curtis, C. J. Cwetanski, P. Czyczula, Z. D'Auria, S. D'Onofrio, M. D'Orazio, A. Da Via, C. Dabrowski, W. Dai, T. Dallapiccola, C. Dallison, S. J. Daly, C. H. Dam, M. Danielsson, H. O. Dannheim, D. Dao, V. Darbo, G. Darlea, G. L. Davey, W. Davidek, T. Davidson, N. Davidson, R. Davies, M. Davison, A. R. Dawson, I. Daya, R. K. De, K. de Asmundis, R. De Castro, S. Salgado, P. E. De Castro Faria De Cecco, S. de Graat, J. De Groot, N. de Jong, P. De Mora, L. Branco, M. De Oliveira De Pedis, D. De Salvo, A. De Sanctis, U. De Santo, A. De Regie, J. B. De Vivie De Zorzi, G. Dean, S. Dedovich, D. V. Degenhardt, J. Dehchar, M. Del Papa, C. Del Peso, J. Del Prete, T. Dell'Acqua, A. Dell'Asta, L. Della Pietra, M. della Volpe, D. Delmastro, M. Delsart, P. A. Deluca, C. Demers, S. Demichev, M. Demirkoz, B. Deng, J. Deng, W. Denisov, S. P. Derkaoui, J. E. Derue, F. Dervan, P. Desch, K. Deviveiros, P. O. Dewhurst, A. DeWilde, B. Dhaliwal, S. Dhullipudi, R. Di Ciaccio, A. Di Ciaccio, L. Di Domenico, A. Di Girolamo, A. Di Girolamo, B. Di Luise, S. Di Mattia, A. Di Nardo, R. Di Simone, A. Di Sipio, R. Diaz, M. A. Diblen, F. Diehl, E. B. Dietrich, J. Dietzsch, T. A. Diglio, S. Yagci, K. Dindar Dingfelder, J. Dionisi, C. Dita, R. Dita, S. Dittus, F. Djama, F. Djilkibaev, R. Djobava, T. do Vale, M. A. B. Do Valle Wemans, A. Doan, T. K. O. Dobos, D. Dobson, E. Dobson, M. Doglioni, C. Doherty, T. Dolejsi, J. Dolenc, I. Dolezal, Z. Dolgoshein, B. A. Dohmae, T. Donega, M. Donini, J. J. Dopke, J. Doria, A. Dos Anjos, A. Dotti, A. Dova, M. T. Doxiadis, A. Doyle, A. T. Drasal, Z. Dris, M. Dubbert, J. Duchovni, E. Duckeck, G. Dudarev, A. Dudziak, F. Duehrssen, M. Duflot, L. Dufour, M. -A. Dunford, M. Yildiz, H. Duran Dushkin, A. Duxfield, R. Dwuznik, M. Dueren, M. Ebenstein, W. L. Ebke, J. Eckweiler, S. Edmonds, K. Edwards, C. A. Egorov, K. Ehrenfeld, W. Ehrich, T. Eifert, T. Eigen, G. Einsweiler, K. Eisenhandler, E. Ekelof, T. El Kacimi, M. Ellert, M. Elles, S. Ellinghaus, F. Ellis, K. Ellis, N. Elmsheuser, J. Elsing, M. Emeliyanov, D. Engelmann, R. Engl, A. Epp, B. Eppig, A. Erdmann, J. Ereditato, A. Eriksson, D. Ermoline, I. Ernst, J. Ernst, M. Ernwein, J. Errede, D. Errede, S. Ertel, E. Escalier, M. Escobar, C. Espinal Curull, X. Esposito, B. Etienvre, A. I. Etzion, E. Evans, H. Fabbri, L. Fabre, C. Facius, K. Fakhrutdinov, R. M. Falciano, S. Fang, Y. Fanti, M. Farbin, A. Farilla, A. Farley, J. Farooque, T. Farrington, S. M. Farthouat, P. Fassnacht, P. Fassouliotis, D. Fatholahzadeh, B. Fayard, L. Fayette, F. Febbraro, R. Federic, P. Fedin, O. L. Fedorko, W. Feligioni, L. Felzmann, C. U. Feng, C. Feng, E. J. Fenyuk, A. B. Ferencei, J. Ferland, J. Fernandes, B. Fernando, W. Ferrag, S. Ferrando, J. Ferrara, V. Ferrari, A. Ferrari, P. Ferrari, R. Ferrer, A. Ferrer, M. L. Ferrere, D. Ferretti, C. Fiascaris, M. Fiedler, F. Filipcic, A. Filippas, A. Filthaut, F. Fincke-Keeler, M. Fiolhais, M. C. N. Fiorini, L. Firan, A. Fischer, G. Fisher, M. J. Flechl, M. Fleck, I. Fleckner, J. Fleischmann, P. Fleischmann, S. Flick, T. Castillo, L. R. Flores Flowerdew, M. J. Martin, T. Fonseca Formica, A. Forti, A. Fortin, D. Fournier, D. Fowler, A. J. Fowler, K. Fox, H. Francavilla, P. Franchino, S. Francis, D. Franklin, M. Franz, S. Fraternali, M. Fratina, S. Freestone, J. French, S. T. Froeschl, R. Froidevaux, D. Frost, J. A. Fukunaga, C. Torregrosa, E. Fullana Fuster, J. Gabaldon, C. Gabizon, O. Gadfort, T. Gadomski, S. Gagliardi, G. Gagnon, P. Galea, C. Gallas, E. J. Gallo, V. Gallop, B. J. Gallus, P. Galyaev, E. Gan, K. K. Gao, Y. S. Gaponenko, A. Garcia-Sciveres, M. Garcia, C. Navarro, J. E. Garcia Gardner, R. W. Garelli, N. Garitaonandia, H. Garonne, V. Gatti, C. Gaudio, G. Gautard, V. Gauzzi, P. Gavrilenko, I. L. Gay, C. Gaycken, G. Gazis, E. N. Ge, P. Gee, C. N. P. Geich-Gimbel, Ch. Gellerstedt, K. Gemme, C. Genest, M. H. Gentile, S. Georgatos, F. George, S. Gershon, A. Ghazlane, H. Ghodbane, N. Giacobbe, B. Giagu, S. Giakoumopoulou, V. Giangiobbe, V. Gianotti, F. Gibbard, B. Gibson, A. Gibson, S. M. Gilbert, L. M. Gilchriese, M. Gilewsky, V. Gingrich, D. M. Ginzburg, J. Giokaris, N. Giordani, M. P. Giordano, R. Giorgi, F. M. Giovannini, P. Giraud, P. F. Girtler, P. Giugni, D. Giusti, P. Gjelsten, B. K. Gladilin, L. K. Glasman, C. Glazov, A. Glitza, K. W. Glonti, G. L. Godfrey, J. Godlewski, J. Goebel, M. Goepfert, T. Goerioger, C. Goessling, C. Goettfert, T. Goggi, V. Goldfarb, S. Goldin, D. Golling, T. Gomes, A. Fajardo, L. S. Gomez Goncalo, R. Gonella, L. Gong, C. Gonzalez de la Hoz, S. Gonzalez Silva, M. L. Gonzalez-Sevilla, S. Goodson, J. J. Goossens, L. Gordon, H. A. Gorelov, I. Gorfine, G. Gorini, B. Gorini, E. Gorisek, A. Gornicki, E. Gosdzik, B. Gosselink, M. Gostkin, M. I. Eschrich, I. Gough Gouighri, M. Goujdami, D. Goulette, M. P. Goussiou, A. G. Goy, C. Grabowska-Bold, I. Grafstroem, P. Grahn, K. -J. Grancagnolo, S. Grassi, V. Gratchev, V. Grau, N. Gray, H. M. Gray, J. A. Graziani, E. Green, B. Greenshaw, T. Greenwood, Z. D. Gregor, I. M. Grenier, P. Griesmayer, E. Griffiths, J. Grigalashvili, N. Grillo, A. A. Grimm, K. Grinstein, S. Grishkevich, Y. V. Groh, M. Groll, M. Gross, E. Grosse-Knetter, J. Groth-Jensen, J. Grybel, K. Guicheney, C. Guida, A. Guillemin, T. Guler, H. Gunther, J. Guo, B. Gupta, A. Gusakov, Y. Gutierrez, A. Gutierrez, P. Guttman, N. Gutzwiller, O. Guyot, C. Gwenlan, C. Gwilliam, C. B. Haas, A. Haas, S. Haber, C. Hadavand, H. K. Hadley, D. R. Haefner, P. Haertel, R. Hajduk, Z. Hakobyan, H. Haller, J. Hamacher, K. Hamilton, A. Hamilton, S. Han, L. Hanagaki, K. Hance, M. Handel, C. Hanke, P. Hansen, J. R. Hansen, J. B. Hansen, J. D. Hansen, P. H. Hansl-Kozanecka, T. Hansson, P. Hara, K. Hare, G. A. Harenberg, T. Harrington, R. D. Harris, O. M. Harrison, K. Hartert, J. Hartjes, F. Harvey, A. Hasegawa, S. Hasegawa, Y. Hashemi, K. Hassani, S. Haug, S. Hauschild, M. Hauser, R. Havranek, M. Hawkes, C. M. Hawkings, R. J. Hayakawa, T. Hayward, H. S. Haywood, S. J. Head, S. J. Hedberg, V. Heelan, L. Heim, S. Heinemann, B. Heisterkamp, S. Helary, L. Heller, M. Hellman, S. Helsens, C. Hemperek, T. Henderson, R. C. W. Henke, M. Henrichs, A. Correia, A. M. Henriques Henrot-Versille, S. Hensel, C. Henss, T. Hernandez Jimenez, Y. Hershenhorn, A. D. Herten, G. Hertenberger, R. Hervas, L. Hessey, N. P. Higon-Rodriguez, E. Hill, J. C. Hiller, K. H. Hillert, S. Hillier, S. J. Hinchliffe, I. Hines, E. Hirose, M. Hirsch, F. Hirschbuehl, D. Hobbs, J. Hod, N. Hodgkinson, M. C. Hodgson, P. Hoecker, A. Hoeferkamp, M. R. Hoffman, J. Hoffmann, D. Hohlfeld, M. Holy, T. Holzbauer, J. L. Homma, Y. Horazdovsky, T. Hori, T. Horn, C. Horner, S. Horvat, S. Hostachy, J. -Y. Hou, S. Hoummada, A. Howe, T. Hrivnac, J. Hryn'ova, T. Hsu, P. J. Hsu, S. -C. Huang, G. S. Hubacek, Z. Hubaut, F. Huegging, F. Hughes, E. W. Hughes, G. Hurwitz, M. Husemann, U. Huseynov, N. Huston, J. Huth, J. Iacobucci, G. Iakovidis, G. Ibragimov, I. Iconomidou-Fayard, L. Idarraga, J. Iengo, P. Igonkina, O. Ikegami, Y. Ikeno, M. Ilchenko, Y. Iliadis, D. Ince, T. Ioannou, P. Iodice, M. Irles Quiles, A. Ishikawa, A. Ishino, M. Ishmukhametov, R. Isobe, T. Issakov, V. Issever, C. Istin, S. Itoh, Y. Ivashin, A. V. Iwanski, W. Iwasaki, H. Izen, J. M. Izzo, V. Jackson, B. Jackson, J. N. Jackson, P. Jaekel, M. R. Jain, V. Jakobs, K. Jakobsen, S. Jakubek, J. Jana, D. K. Jansen, E. Jantsch, A. Janus, M. Jared, R. C. Jarlskog, G. Jeanty, L. Plante, I. Jen-La Jenni, P. Jez, P. Jezequel, S. Ji, W. Jia, J. Jiang, Y. Belenguer, M. Jimenez Jin, S. Jinnouchi, O. Joffe, D. Johansen, M. Johansson, K. E. Johansson, P. Johnert, S. Johns, K. A. Jon-And, K. Jones, G. Jones, R. W. L. Jones, T. J. Jorge, P. M. Joseph, J. Juranek, V. Jussel, P. Kabachenko, V. V. Kaci, M. Kaczmarska, A. Kado, M. Kagan, H. Kagan, M. Kaiser, S. Kajomovitz, E. Kalinin, S. Kalinovskaya, L. V. Kalinowski, A. Kama, S. Kanaya, N. Kaneda, M. Kantserov, V. A. Kanzaki, J. Kaplan, B. Kapliy, A. Kaplon, J. Kar, D. Karagounis, M. Unel, M. Karagoz Kartvelishvili, V. Karyukhin, A. N. Kashif, L. Kasmi, A. Kass, R. D. Kastanas, A. Kastoryano, M. Kataoka, M. Kataoka, Y. Katsoufis, E. Katzy, J. Kaushik, V. Kawagoe, K. Kawamoto, T. Kawamura, G. Kayl, M. S. Kayumov, F. Kazanin, V. A. Kazarinov, M. Y. Keates, J. R. Keeler, R. Keener, P. T. Kehoe, R. Keil, M. Kekelidze, G. D. Kelly, M. Kenyon, M. Kepka, O. Kerschen, N. Kersevan, B. P. Kersten, S. Kessoku, K. Khakzad, M. Khalil-zada, F. Khandanyan, H. Khanov, A. Kharchenko, D. Khodinov, A. Khomich, A. Khoriauli, G. Khovanskiy, N. Khovanskiy, V. Khramov, E. Khubua, J. Kim, H. Kim, M. S. Kim, P. C. Kim, S. H. Kind, O. Kind, P. King, B. T. Kirk, J. Kirsch, G. P. Kirsch, L. E. Kiryunin, A. E. Kisielewska, D. Kittelmann, T. Kiyamura, H. Kladiva, E. Klein, M. Klein, U. Kleinknecht, K. Klemetti, M. Klier, A. Klimentov, A. Klingenberg, R. Klinkby, E. B. Klioutchnikova, T. Klok, P. F. Klous, S. Kluge, E. -E. Kluge, T. Kluit, P. Klute, M. Kluth, S. Knecht, N. S. Kneringer, E. Ko, B. R. Kobayashi, T. Kobel, M. Koblitz, B. Kocian, M. Kocnar, A. Kodys, P. Koeneke, K. Konig, A. C. Koenig, S. Koepke, L. Koetsveld, F. Koevesarki, P. Koffas, T. Koffeman, E. Kohn, F. Kohout, Z. Kohriki, T. Kolanoski, H. Kolesnikov, V. Koletsou, I. Koll, J. Kollar, D. Kolos, S. Kolya, S. D. Komar, A. A. Komaragiri, J. R. Kondo, T. Kono, T. Konoplich, R. Konovalov, S. P. Konstantinidis, N. Koperny, S. Korcyl, K. Kordas, K. Korn, A. Korolkov, I. Korolkova, E. V. Korotkov, V. A. Kortner, O. Kostka, P. Kostyukhin, V. V. Kotov, S. Kotov, V. M. Kotov, K. Y. Kourkoumelis, C. Koutsman, A. Kowalewski, R. Kowalski, H. Kowalski, T. Z. Kozanecki, W. Kozhin, A. S. Kral, V. Kramarenko, V. A. Kramberger, G. Krasny, M. W. Krasznahorkay, A. Kreisel, A. Krejci, F. Kretzschmar, J. Krieger, N. Krieger, P. Kroeninger, K. Kroha, H. Kroll, J. Kroseberg, J. Krstic, J. J. Kruchonak, U. Krueger, H. Krumshteyn, Z. V. Kubota, T. Kuehn, S. Kugel, A. Kuhl, T. Kuhn, D. Kukhtin, V. Kulchitsky, Y. Kuleshov, S. Kummer, C. Kuna, M. Kunkle, J. Kupco, A. Kurashige, H. Kurata, M. Kurchaninov, L. L. Kurochkin, Y. A. Kus, V. Kwee, R. La Rotonda, L. Labbe, J. Lacasta, C. Lacava, F. Lacker, H. Lacour, D. Lacuesta, V. R. Ladygin, E. Lafaye, R. Laforge, B. Lagouri, T. Lai, S. Lamanna, M. Lampen, C. L. Lampl, W. Lancon, E. Landgraf, U. Landon, M. P. J. Lane, J. L. Lankford, A. J. Lanni, F. Lantzsch, K. Lanza, A. Laplace, S. Lapoire, C. Laporte, J. F. Lari, T. Larner, A. Lassnig, M. Laurelli, P. Lavrijsen, W. Laycock, P. Lazarev, A. B. Lazzaro, A. Le Dortz, O. Le Guirriec, E. Le Menedeu, E. Le Vine, M. Lebedev, A. Lebel, C. LeCompte, T. Ledroit-Guillon, F. Lee, H. Lee, J. S. H. Lee, S. C. Lefebvre, M. Legendre, M. LeGeyt, B. C. Legger, F. Leggett, C. Lehmacher, M. Miotto, G. Lehmann Lei, X. Leitner, R. Lellouch, D. Lellouch, J. Lendermann, V. Leney, K. J. C. Lenz, T. Lenzen, G. Lenzi, B. Leonhardt, K. Leroy, C. Lessard, J. -R. Lester, C. G. Cheong, A. Leung Fook Leveque, J. Levin, D. Levinson, L. J. Leyton, M. Li, H. Li, S. Li, X. Liang, Z. Liang, Z. Liberti, B. Lichard, P. Lichtnecker, M. Lie, K. Liebig, W. Lilley, J. N. Lim, H. Limosani, A. Limper, M. Lin, S. C. Linnemann, J. T. Lipeles, E. Lipinsky, L. Lipniacka, A. Liss, T. M. Lissauer, D. Lister, A. Litke, A. M. Liu, C. Liu, D. Liu, H. Liu, J. B. Liu, M. Liu, T. Liu, Y. Livan, M. Lleres, A. Lloyd, S. L. Lobodzinska, E. Loch, P. Lockman, W. S. Lockwitz, S. Loddenkoetter, T. Loebinger, F. K. Loginov, A. Loh, C. W. Lohse, T. Lohwasser, K. Lokajicek, M. Long, R. E. Lopes, L. Mateos, D. Lopez Losada, M. Loscutoff, P. Lou, X. Lounis, A. Loureiro, K. F. Lovas, L. Love, J. Love, P. A. Lowe, A. J. Lu, F. Lubatti, H. J. Luci, C. Lucotte, A. Ludwig, A. Ludwig, D. Ludwig, I. Luehring, F. Luisa, L. Lumb, D. Luminari, L. Lund, E. Lund-Jensen, B. Lundberg, B. Lundberg, J. Lundquist, J. Lynn, D. Lys, J. Lytken, E. Ma, H. Ma, L. L. Goia, J. A. Macana Maccarrone, G. Macchiolo, A. Macek, B. Machado Miguens, J. Mackeprang, R. Madaras, R. J. Mader, W. F. Maenner, R. Maeno, T. Maettig, P. Maettig, S. Magalhaes Martins, P. J. Magradze, E. Mahalalel, Y. Mahboubi, K. Mahmood, A. Maiani, C. Maidantchik, C. Maio, A. Majewski, S. Makida, Y. Makouski, M. Makovec, N. Malecki, Pa. Malecki, P. Maleev, V. P. Malek, F. Mallik, U. Malon, D. Maltezos, S. Malyshev, V. Malyukov, S. Mambelli, M. Mameghani, R. Mamuzic, J. Mandelli, L. Mandic, I. Mandrysch, R. Maneira, J. Mangeard, P. S. Manjavidze, I. D. Manning, P. M. Manousakis-Katsikakis, A. Mansoulie, B. Mapelli, A. Mapelli, L. March, L. Marchand, J. F. Marchese, F. Marchiori, G. Marcisovsky, M. Marino, C. P. Marroquim, F. Marshall, Z. Marti-Garcia, S. Martin, A. J. Martin, A. J. Martin, B. Martin, B. Martin, F. F. Martin, J. P. Martin, T. A. Latour, B. Martin Dit Martinez, M. Outschoorn, V. Martinez Martini, A. Martyniuk, A. C. Marzano, F. Marzin, A. Masetti, L. Mashimo, T. Mashinistov, R. Masik, J. Maslennikov, A. L. Massa, I. Massol, N. Mastroberardino, A. Masubuchi, T. Matricon, P. Matsunaga, H. Matsushita, T. Mattravers, C. Maxfield, S. J. Mayne, A. Mazini, R. Mazur, M. Mazzanti, M. Mc Donald, J. Mc Kee, S. P. McCarn, A. McCarthy, R. L. McCubbin, N. A. McFarlane, K. W. McGlone, H. Mchedlidze, G. McMahon, S. J. McPherson, R. A. Meade, A. Mechnich, J. Mechtel, M. Medinnis, M. Meera-Lebbai, R. Meguro, T. M. Mehlhase, S. Mehta, A. Meier, K. Meirose, B. Melachrinos, C. Garcia, B. R. Mellado Mendoza Navas, L. Meng, Z. Menke, S. Meoni, E. Mermod, P. Merola, L. Meroni, C. Merritt, F. S. Messina, A. M. Metcalfe, J. Mete, A. S. Meyer, J. -P. Meyer, J. Meyer, J. Meyer, T. C. Meyer, W. T. Miao, J. Michal, S. Micu, L. Middleton, R. P. Migas, S. Mijovic, L. Mikenberg, G. Mikestikova, M. Mikuz, M. Miller, D. W. Mills, W. J. Mills, C. M. Milov, A. Milstead, D. A. Milstein, D. Minaenko, A. A. Minano, M. Minashvili, I. A. Mincer, A. I. Mindur, B. Mineev, M. Ming, Y. Mir, L. M. Mirabelli, G. Misawa, S. Miscetti, S. Misiejuk, A. Mitrevski, J. Mitsou, V. A. Miyagawa, P. S. Mjornmark, J. U. Mladenov, D. Moa, T. Moed, S. Moeller, V. Moenig, K. Moeser, N. Mohr, W. Mohrdieck-Moeck, S. Moles-Valls, R. Molina-Perez, J. Monk, J. Monnier, E. Montesano, S. Monticelli, F. Moore, R. W. Herrera, C. Mora Moraes, A. Morais, A. Morel, J. Morello, G. Moreno, D. Moreno Llacer, M. Morettini, P. Morii, M. Morley, A. K. Mornacchi, G. Morozov, S. V. Morris, J. D. Moser, H. G. Mosidze, M. Moss, J. Mount, R. Mountricha, E. Mouraviev, S. V. Moyse, E. J. W. Mudrinic, M. Mueller, F. Mueller, J. Mueller, K. Mueller, T. A. Muenstermann, D. Muir, A. Munwes, Y. Garcia, R. Murillo Murray, W. J. Mussche, I. Musto, E. Myagkov, A. G. Myska, M. Nadal, J. Nagai, K. Nagano, K. Nagasaka, Y. Nairz, A. M. Nakamura, K. Nakano, I. Nakatsuka, H. Nanava, G. Napier, A. Nash, M. Nation, N. R. Nattermann, T. Naumann, T. Navarro, G. Nderitu, S. K. Neal, H. A. Nebot, E. Nechaeva, P. Negri, A. Negri, G. Nelson, A. Nelson, T. K. Nemecek, S. Nemethy, P. Nepomuceno, A. A. Nessi, M. Neubauer, M. S. Neusiedl, A. Neves, R. M. Nevski, P. Newcomer, F. M. Nickerson, R. B. Nicolaidou, R. Nicolas, L. Nicoletti, G. Nicquevert, B. Niedercorn, F. Nielsen, J. Nikiforov, A. Nikolaev, K. Nikolic-Audit, I. Nikolopoulos, K. Nilsen, H. Nilsson, P. Nisati, A. Nishiyama, T. Nisius, R. Nodulmans, L. Nomachi, M. Nomidis, I. Nordberg, M. Nordkvist, B. Notz, D. Novakova, J. Nozaki, M. Nozicka, M. Nugent, I. M. Nuncio-Quiroz, A. -E. Hanninger, G. Nunes Nunnemann, T. Nurse, E. O'Neil, D. C. O'Shea, V. Oakham, F. G. Oberlack, H. Ochi, A. Oda, S. Odaka, S. Odier, J. Ogren, H. Oh, A. Oh, S. H. Ohm, C. C. Ohshima, T. Ohshita, H. Ohsugi, T. Okada, S. Okawa, H. Okumura, Y. Okuyama, T. Olchevski, A. G. Oliveira, M. Damazio, D. Oliveira Oliver, J. Oliver Garcia, E. Olivito, D. Olszewski, A. Olszowska, J. Omachi, C. Onofre, A. Onyisi, P. U. E. Oram, C. J. Oreglia, M. J. Oren, Y. Orestano, D. Orlov, I. Barrera, C. Oropeza Orr, R. S. Ortega, E. O. Osculati, B. Ospanov, R. Osuna, C. Ottersbach, J. P. Ould-Saada, F. Ouraou, A. Ouyang, Q. Owen, M. Owen, S. Oyarzun, A. Ozcan, V. E. Ozone, K. Ozturk, N. Pacheco Pages, A. Padilla Aranda, C. Paganis, E. Pahl, C. Paige, E. Pajchel, K. Palestini, S. Pallin, D. Palma, A. Palmer, J. D. Pan, Y. B. Panagiotopoulou, E. Panes, B. Panikashvili, N. Panitkin, S. Pantea, D. Panuskova, M. Paolone, V. Papadopoulou, Th. D. Park, S. J. Park, W. Parker, M. A. Parker, S. I. Parodi, F. Parsons, J. A. Parzefall, U. Pasqualucci, E. Passeri, A. Pastore, F. Pastore, Fr. Pasztor, G. Pataraia, S. Pater, J. R. Patricelli, S. Patwa, A. Pauly, T. Peak, L. S. Pecsy, M. Morales, M. I. Pedraza Peleganchuk, S. V. Peng, H. Penson, A. Penwell, J. Perantoni, M. Perez, K. Perez Codina, E. Perez Garcia-Estan, M. T. Reale, V. Perez Perini, L. Pernegger, H. Perrino, R. Persembe, S. Perus, P. Peshekhonov, V. D. Petersen, B. A. Petersen, T. C. Petit, E. Petridou, C. Petrolo, E. Petrucci, F. Petschull, D. Petteni, M. Pezoa, R. Phan, A. Phillips, A. W. Piacquadio, G. Piccinini, M. Piegaia, R. Pilcher, J. E. J. Pilkington, A. D. Pina, J. Pinamonti, M. Pinfold, J. L. Pinto, B. Pizio, C. Placakyte, R. Plamondon, M. Pleier, M. -A. Poblaguev, A. Poddar, S. Podlyski, F. Poffenberger, P. Poggioli, L. Pohl, M. Polci, F. Polesello, G. Policicchio, A. Polini, A. Poll, J. Polychronakos, V. Pomeroy, D. Pommes, K. Ponsot, P. Pontecorvo, L. Pope, B. G. Popeneciu, G. A. Popovic, D. S. Poppleton, A. Popule, J. Bueso, X. Portell Porter, R. Pospelov, G. E. Pospisil, S. Potekhin, M. Potrap, I. N. Potter, C. J. Potter, C. T. Potter, K. P. Poulard, G. Poveda, J. Prabhu, R. Pralavorio, P. Prasad, S. Pravahan, R. Pribyl, L. Price, D. Price, L. E. Prichard, P. M. Prieur, D. Primavera, M. Prokofiev, K. Prokoshin, F. Protopopescu, S. Proudfoot, J. Prudent, X. Przysiezniak, H. Psoroulas, S. Ptacek, E. Puigdengoles, C. Purdham, J. Purohit, M. Puzo, P. Pylypchenko, Y. Qi, M. Qian, J. Qian, W. Qin, Z. Quadt, A. Quarrie, D. R. Quayle, W. B. Quinonez, F. Raas, M. Radeka, V. Radescu, V. Radics, B. Rador, T. Ragusa, F. Rahal, G. Rahimi, A. M. Rajagopalan, S. Rammensee, M. Rammes, M. Rauscher, F. Rauter, E. Raymond, M. Read, A. L. Rebuzzi, D. M. Redelbach, A. Redlinger, G. Reece, R. Reeves, K. Reinherz-Aronis, E. Reinsch, A. Reisinger, I. Reljic, D. Rembser, C. Ren, Z. L. Renkel, P. Rescia, S. Rescigno, M. Resconi, S. Resende, B. Reznicek, P. Rezvani, R. Richards, A. Richards, R. A. Richter, R. Richter-Was, E. Ridel, M. Rijpstra, M. Rijssenbeek, M. Rimoldi, A. Rinaldi, L. Rios, R. R. Riu, I. Rizatdinova, F. Rizvi, E. Roa Romero, D. A. Robertson, S. H. Robichaud-Veronneau, A. Robinson, D. Robinson, J. E. M. Robinson, M. Robson, A. de Lima, J. G. Rocha Roda, C. Dos Santos, D. Roda Rodriguez, D. Garcia, Y. Rodriguez Roe, S. Rohne, O. Rojo, V. Rolli, S. Romaniouk, A. Romanov, V. M. Romeo, G. Maltrana, D. Romero Roos, L. Ros, E. Rosati, S. Rosenbaum, G. A. Rosselet, L. Rossetti, V. Rossi, L. P. Rotaru, M. Rothberg, J. Rousseau, D. Royon, C. R. Rozanov, A. Rozen, Y. Ruan, X. Ruckert, B. Ruckstuhl, N. Rud, V. I. Rudolph, G. Ruehr, F. Ruggieri, F. Ruiz-Martinez, A. Rumyantsev, L. Rurikova, Z. Rusakovich, N. A. Rutherfoord, J. P. Ruwiedel, C. Ruzicka, P. Ryabov, Y. F. Ryan, P. Rybkin, G. Rzaeva, S. Saavedra, A. F. Sadrozinski, H. F. -W. Sadykov, R. Sakamoto, H. Salamanna, G. Salamon, A. Saleem, M. S. Salihagic, D. Salnikov, A. Salt, J. Ferrando, B. M. Salvachua Salvatore, D. Salvatore, F. Salvucci, A. Salzburger, A. Sampsonidis, D. Samset, B. H. Sandaker, H. Sander, H. G. Sanders, M. P. Sandhoff, M. Sandhu, P. Sandstroem, R. Sandvoss, S. Sankey, D. P. C. Sanny, B. Sansoni, A. Rios, C. Santamarina Santoni, C. Santonico, R. Saraiva, J. G. Sarangi, T. Sarkisyan-Grinbaum, E. Sarri, F. Sasaki, O. Sasao, N. Satsounkevitch, I. Sauvage, G. Savard, P. Savine, A. Y. Savinov, V. Sawyer, L. Saxon, D. H. Says, L. P. Sbarra, C. Sbrizzi, A. Scannicchio, D. A. Schaarschmidt, J. Schacht, P. Schaefer, U. Schaetzel, S. Schaffer, A. C. Schaile, D. Schamberger, R. D. Schamov, A. G. Schegelsky, V. A. Scheirich, D. Schernau, M. Scherzer, M. I. Schiavi, C. Schieck, J. Schioppa, M. Schlenker, S. Schmieden, K. Schmitt, C. Schmitz, M. Schott, M. Schouten, D. Schovancova, J. Schram, M. Schreiner, A. Schroeder, C. Schroer, N. Schroers, M. Schultes, J. Schultz-Coulon, H. -C. Schumacher, J. W. Schumacher, M. Schumm, B. A. Schune, Ph. Schwanenberger, C. Schwartzman, A. Schwemling, Ph. Schwienhorst, R. Schwierz, R. Schwindling, J. Scott, W. G. Searcy, J. Sedykh, E. Segura, E. Seidel, S. C. Seiden, A. Seifert, F. Seixas, J. M. Sekhniaidze, G. Seliverstov, D. M. Sellden, B. Semprini-Cesari, N. Serfon, C. Serin, L. Seuster, R. Severini, H. Sevior, M. E. Sfyrla, A. Shabalina, E. Shamim, M. Shan, L. Y. Shank, J. T. Shao, Q. T. Shapiro, M. Shatalov, P. B. Shaw, K. Sherman, D. Sherwood, P. Shibata, A. Shimojima, M. Shin, T. Shmeleva, A. Shochet, M. J. Shupe, M. A. Sicho, P. Sidoti, A. Siegert, F. Siegrist, J. Sijacki, Dj. Silbert, O. Silva, J. Silver, Y. Silverstein, D. Silverstein, S. B. Simak, V. Simic, Lj. Simion, S. Simmons, B. Simonyan, M. Sinervo, P. Sinev, N. B. Sipica, V. Siragusa, G. Sisakyan, A. N. Sivoklokov, S. Yu. Sjoelin, J. Sjursen, T. B. Skovpen, K. Skubic, P. Slater, M. Slavicek, T. Sliwa, K. Sloper, J. Sluka, T. Smakhtin, V. Smirnov, S. Yu. Smirnov, Y. Smirnova, L. N. Smirnova, O. Smith, B. C. Smith, D. Smith, K. M. Smizanska, M. Smolek, K. Snesarev, A. A. Snow, S. W. Snow, J. Snuverink, J. Snyder, S. Soares, M. Sobie, R. Sodomka, J. Soffer, A. Solans, C. A. Solar, M. Solc, J. Camillocci, E. Solfaroli Solodkov, A. A. Solovyanov, O. V. Soluk, R. Sondericker, J. Sopko, V. Sopko, B. Sosebee, M. Soukharev, A. Spagnolo, S. Spano, F. Spencer, E. Spighi, R. Spigo, G. Spila, F. Spiwoks, R. Spousta, M. Spreitzer, T. Spurlock, B. St Denis, R. D. Stahl, T. Stahlman, J. Stamen, R. Stancu, S. N. Stanecka, E. Stanek, R. W. Stanescu, C. Stapnes, S. Starchenko, E. A. Stark, J. Staroba, P. Starovoitov, P. Stastny, J. Stavina, P. Steele, G. Steinbach, P. Steinberg, P. Stekl, I. Stelzer, B. Stelzer, H. J. Stelzer-Chilton, O. Stenzel, H. Stevenson, K. Stewart, G. A. Stockton, M. C. Stoerig, K. Stoicea, G. Stonjek, S. Strachota, P. Stradling, A. R. Straessner, A. Strandberg, J. Strandberg, S. Strandlie, A. Strauss, M. Strizenec, P. Stroehmer, R. Strom, D. M. Stroynowski, R. Strube, J. Stugu, B. Soh, D. A. Su, D. Sugaya, Y. Sugimoto, T. Suhr, C. Suk, M. Sulin, V. V. Sultansoy, S. Sumida, T. Sun, X. H. Sundermann, J. E. Suruliz, K. Sushkov, S. Susinno, G. Sutton, M. R. Suzuki, T. Suzuki, Y. Sykora, I. Sykora, T. Szymocha, T. Sanchez, J. Ta, D. Tackmann, K. Taffard, A. Tafirout, R. Taga, A. Takahashi, Y. Takai, H. Takashima, R. Takeda, H. Takeshita, T. Talby, M. Talyshev, A. Tamsett, M. C. Tanaka, J. Tanaka, R. Tanaka, S. Tanaka, S. Tapprogge, S. Tardif, D. Tarem, S. Tarrade, F. Tartarelli, G. F. Tas, P. Tasevsky, M. Tassi, E. Tatarkhanov, M. Taylor, C. Taylor, F. E. Taylor, G. N. Taylor, R. P. Taylor, W. Teixeira-Dias, P. Ten Kate, H. Teng, P. K. Tennenbaum-Katan, Y. D. Terada, S. Terashi, K. Terron, J. Terwort, M. Testa, M. Teuscher, R. J. Thioye, M. Thoma, S. Thomas, J. P. Thompson, E. N. Thompson, P. D. Thompson, P. D. Thompson, R. J. Thompson, A. S. Thomson, E. Thun, R. P. Tic, T. Tikhomirov, V. O. Tikhonov, V. A. Tipton, P. Viegas, F. J. Tigue Aires Tisserant, S. Toczek, B. Todorov, T. Todorova-Nova, S. Toggerson, B. Tojo, J. Tokar, S. Tokushuku, K. Tollefson, K. Tomasek, L. Tomasek, M. Tomoto, M. Tompkins, L. Toms, K. Tonoyan, A. Topfel, C. Topilin, N. D. Torrence, E. Torro Pastor, E. Toth, J. Touchard, F. Tovey, D. R. Trefzger, T. Tremblet, L. Tricoli, A. Trigger, I. M. Trincaz-Duvoid, S. Trinh, T. N. Tripiana, M. F. Triplett, N. Trischuk, W. Trivedi, A. Trocme, B. Troncon, C. Trzupek, A. Tsarouchas, C. Tseng, J. C. -L. Tsiakiris, M. Tsiareshka, P. V. Tsionou, D. Tsipolitis, G. Tsiskaridze, V. Tskhadadze, E. G. Tsukerman, I. I. Tsulaia, V. Tsung, J. -W. Tsuno, S. Tsybychev, D. Tuggle, J. M. Turecek, D. Cakir, I. Turk Turlay, E. Tuts, P. M. Twomey, M. S. Tylmad, M. Tyndel, M. Uchida, K. Ueda, I. Ugland, M. Uhlenbrock, M. Uhrmacher, M. Ukegawa, F. Unal, G. Undrus, A. Unel, G. Unno, Y. Urbaniec, D. Urkovsky, E. Urquijo, P. Urrejola, R. Usai, G. Uslenghi, M. Vacavant, L. Vacek, V. Vachon, B. Vahsen, S. Valente, P. Valentinetti, S. Valkar, S. Valladolid Gallego, E. Vallecorsa, S. Valls Ferrer, J. A. Van Berg, R. van der Graaf, H. van der Kraaij, E. van der Poel, E. van der Ster, D. van Eldik, N. van Gemmeren, P. van Kesteren, Z. van Vulpen, I. Vandelli, W. Vaniachine, A. Vankov, P. Vannucci, F. Vari, R. Varnes, E. W. Varouchas, D. Vartapetian, A. Varvell, K. E. Vasilyeva, L. Vassilakopoulos, V. I. Vazeille, F. Vellidis, C. Veloso, F. Veneziano, S. Ventura, A. Ventura, D. Venturi, M. Venturi, N. Vercesi, V. Verducci, M. Verkerke, W. Vermeulen, J. C. Vetterli, M. C. Vichou, I. Vickey, T. Viehhauser, G. H. A. Villa, M. Villani, E. G. Villaplana Perez, M. Vilucchi, E. Vincter, M. G. Vinek, E. Vinogradov, V. B. Viret, S. Virzi, J. Vitale, A. Vitells, O. Vivarelli, I. Vives Vaque, F. Vlachos, S. Vlasak, M. Vlasov, N. Vogel, A. Vokac, P. Volpi, M. von der Schmitt, H. von Loeben, J. von Radziewski, H. von Toerne, E. Vorobel, V. Vorwerk, V. Vos, M. Voss, R. Voss, T. T. Vossebeld, J. H. Vranjes, N. Milosavljevic, M. Vranjes Vrba, V. Vreeswijk, M. Anh, T. Vu Vudragovic, D. Vuillermet, R. Vukotic, I. Wagner, P. Walbersloh, J. Walder, J. Walker, R. Walkowiak, W. Wall, R. Wang, C. Wang, H. Wang, J. Wang, S. M. Warburton, A. Ward, C. P. Warsinsky, M. Wastie, R. Watkins, P. M. Watson, A. T. Watson, M. F. Watts, G. Watts, S. Waugh, A. T. Waugh, B. M. Weber, M. D. Weber, M. Weber, M. S. Weber, P. Weidberg, A. R. Weingarten, J. Weiser, C. Wellenstein, H. Wells, P. S. Wen, M. Wenaus, T. Wendler, S. Wengler, T. Wenig, S. Wermes, N. Werner, M. Werner, P. Werth, M. Werthenbach, U. Wessels, M. Whalen, K. White, A. White, M. J. White, S. Whitehead, S. R. Whiteson, D. Whittington, D. Wicek, F. Wicke, D. Wickens, F. J. Wiedenmann, W. Wielers, M. Wienemann, P. Wiglesworth, C. Wiik, L. A. M. Wildauer, A. Wildt, M. A. Wilkens, H. G. Williams, E. Williams, H. H. Willocq, S. Wilson, J. A. Wilson, M. G. Wilson, A. Wingerter-Seez, I. Winklmeier, F. Wittgen, M. Wolter, M. W. Wolters, H. Wosiek, B. K. Wotschack, J. Woudstra, M. J. Wraight, K. Wright, C. Wright, D. Wrona, B. Wu, S. L. Wu, X. Wulf, E. Wynne, B. M. Xaplanteris, L. Xella, S. Xie, S. Xu, D. Xu, N. Yamada, M. Yamamoto, A. Yamamoto, K. Yamamoto, S. Yamamura, T. Yamaoka, J. Yamazaki, T. Yamazaki, Y. Yan, Z. Yang, H. Yang, U. K. Yang, Z. Yao, W. -M. Yao, Y. Yasu, Y. Ye, J. Ye, S. Yilmaz, M. Yoosoofmiya, R. Yorita, K. Yoshida, R. Young, C. Youssef, S. P. Yu, D. Yu, J. Yuan, L. Yurkewicz, A. Zaidan, R. Zaitsev, A. M. Zajacova, Z. Zambrano, V. Zanello, L. Zaytsev, A. Zeitnitz, C. Zeller, M. Zemla, A. Zendler, C. Zenin, O. Zenis, T. Zenonos, Z. Zenz, S. Zerwas, D. della Porta, G. Zevi Zhan, Z. Zhang, H. Zhang, J. Zhang, Q. Zhang, X. Zhao, L. Zhao, T. Zhao, Z. Zhemchugov, A. Zhong, J. Zhou, B. Zhou, N. Zhou, Y. Zhu, C. G. Zhu, H. Zhu, Y. Zhuang, X. Zhuravlov, V. Zimmermann, R. Zimmermann, S. Zimmermann, S. Ziolkowski, M. Zivkovic, L. Zobernig, G. Zoccoli, A. zur Nedden, M. Zutshi, V. CA ATLAS Collaboration GP ATLAS Collaboration CERN TI Commissioning of the ATLAS Muon Spectrometer with cosmic rays SO PERFORMANCE OF THE ATLAS DECTECTOR LA English DT Article; Book Chapter ID DRIFT; MDT; CHAMBERS; BEAM AB The ATLAS detector at the Large Hadron Collider has collected several hundred million cosmic ray events during 2008 and 2009. These data were used to commission the Muon Spectrometer and to study the performance of the trigger and tracking chambers, their alignment, the detector control system, the data acquisition and the analysis programs. We present the performance in the relevant parameters that determine the quality of the muon measurement. We discuss the single element efficiency, resolution and noise rates, the calibration method of the detector response and of the alignment system, the track reconstruction efficiency and the momentum measurement. The results show that the detector is close to the design performance and that the Muon Spectrometer is ready to detect muons produced in high energy proton proton collisions. C1 [Aad, G.; Ahles, F.; Aktas, A.; Anders, C. F.; Beckingham, M.; Bernhard, R.; Bianchi, R. M.; Bitenc, U.; Bruneliere, R.; Caron, S.; Christov, A.; Dietrich, J.; Dingfelder, J.; Hartert, J.; Herten, G.; Horner, S.; Jakobs, K.; Janus, M.; Kuehn, S.; Lai, S.; Landgraf, U.; Lohwasser, K.; Ludwig, I.; Lumb, D.; Mahboubi, K.; Mazur, M.; Meirose, B.; Mohr, W.; Nilsen, H.; Parzefall, U.; Bueso, X. Portell; Rammensee, M.; Rurikova, Z.; Schumacher, M.; Stoerig, K.; Sundermann, J. E.; Thoma, S.; Venturi, M.; Vivarelli, I.; von Radziewski, H.; Warsinsky, M.; Weiser, C.; Werner, M.; Wiik, L. A. M.; Xie, S.; Zimmermann, S.] Univ Freiburg, Fak Math & Phys, D-79104 Freiburg, Germany. [Aleksa, M.; Andeen, T.; Anghinolfi, F.; Arfaoui, S.; Baak, M. A.; Bachas, K.; Pedrosa, F. Baltasar Dos Santos; Battistin, M.; Bellina, F.; Beltramello, O.; Berge, D.; Blanchot, G.; Bogaerts, J. A.; Boyd, J.; Braem, A.; Bremer, J.; Burckhart, H.; Butin, F.; Campana, S.; Garrido, M. D. M. Capeans; Carli, T.; Catinaccio, A.; Cattai, A.; Cerri, A.; Chromek-Burckhart, D.; Dallison, S. J.; Danielsson, H. O.; Branco, M. De Oliveira; Dell'Acqua, A.; Delmastro, M.; Di Girolamo, A.; Di Girolamo, B.; Dittus, F.; Dobos, D.; Dobson, E.; Dudarev, A.; Duehrssen, M.; Eifert, T.; Ellis, N.; Elsing, M.; Fabre, C.; Farthouat, P.; Fassnacht, P.; Fedorko, W.; Francis, D.; Franz, S.; Froeschl, R.; Froidevaux, D.; Garelli, N.; Garonne, V.; Gianotti, F.; Giraud, P. F.; Godlewski, J.; Goossens, L.; Gorini, B.; Grafstroem, P.; Haas, S.; Hauschild, M.; Hawkings, R. J.; Correia, A. M. Henriques; Hervas, L.; Hoecker, A.; Issakov, V.; Jaekel, M. R.; Jenni, P.; Belenguer, M. Jimenez; Kaplon, J.; Kerschen, N.; Klioutchnikova, T.; Koblitz, B.; Koffas, T.; Kollar, D.; Lamanna, M.; Lantzsch, K.; Lassnig, M.; Miotto, G. Lehmann; Lichard, P.; Lundberg, J.; Mapelli, A.; Mapelli, L.; Martin, B.; Messina, A. M.; Meyer, T. C.; Michal, S.; Molina-Perez, J.; Mornacchi, G.; Nairz, A. M.; Negri, G.; Nessi, M.; Nicquevert, B.; Nordberg, M.; Palestini, S.; Pastore, Fr.; Pauly, T.; Pernegger, H.; Petersen, B. A.; Piacquadio, G.; Pommes, K.; Poppleton, A.; Poulard, G.; Pribyl, L.; Prokofiev, K.; Raymond, M.; Rembser, C.; Dos Santos, D. Roda; Roe, S.; Salzburger, A.; Scannicchio, D. A.; Schlenker, S.; Schott, M.; Sherman, D.; Sloper, J.; Spigo, G.; Spiwoks, R.; Stanecka, E.; Stockton, M. C.; Sumida, T.; Tackmann, K.; Ten Kate, H.; Viegas, F. J. Tigue Aires; Tremblet, L.; Tricoli, A.; Unal, G.; van der Ster, D.; Vandelli, W.; Vinek, E.; Voss, R.; Vuillermet, R.; Wells, P. S.; Wenig, S.; Werner, P.; Wilkens, H. G.; Winklmeier, F.; Wotschack, J.; Zajacova, Z.] CERN, CH-1211 Geneva 23, Switzerland. [Alam, M. S.; Ernst, J.; Kolos, S.; Mahmood, A.; Rojo, V.] SUNY Albany, Albany, NY 12222 USA. [Ahmed, H.; Caron, B.; Chan, K.; Gingrich, D. M.; Kim, M. S.; Moore, R. W.; Pinfold, J. L.; Soluk, R.] Univ Alberta, Dept Phys, Ctr Particle Phys, Edmonton, AB T6G 2G7, Canada. [Cakir, O.; Ciftci, A. K.; Ciftci, R.; Persembe, S.] Ankara Univ, Fac Sci, Dept Phys, TR-061000 Ankara, Turkey. [Yildiz, H. Duran] Dumlupinar Univ, Fac Arts & Sci, Dept Phys, Kutahya, Turkey. [Yilmaz, M.] Gazi Univ, Fac Arts & Sci, Dept Phys, TR-06500 Ankara, Turkey. [Sultansoy, S.] TOBB Univ Econ & Technol, Fac Arts & Sci, Div Phys, TR-06560 Ankara, Turkey. [Cakir, I. Turk] Turkish Atom Energy Commiss, TR-06530 Ankara, Turkey. [Arnaez, O.; Aurousseau, M.; Berger, N.; Di Ciaccio, L.; Doan, T. K. O.; El Kacimi, M.; Elles, S.; Goy, C.; Guillemin, T.; Helary, L.; Hryn'ova, T.; Iengo, P.; Jezequel, S.; Kataoka, M.; Koletsou, I.; Labbe, J.; Lafaye, R.; Laplace, S.; Marchand, J. F.; Massol, N.; Przysiezniak, H.; Sauvage, G.; Todorov, T.; Wingerter-Seez, I.] Univ Savoie, LAPP, CNRS, IN2P3, Annecy Le Vieux, France. [Blair, R. E.; Chekanov, S.; Cranshaw, J.; Torregrosa, E. Fullana; LeCompte, T.; Lim, H.; Malon, D.; Nodulmans, L.; Price, L. E.; Proudfoot, J.; Ferrando, B. M. Salvachua; Stanek, R. W.; van Gemmeren, P.; Vaniachine, A.; Yoshida, R.; Zhang, J.; Zhang, Q.] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Cheu, E.; Johns, K. A.; Kaushik, V.; Lampen, C. L.; Lampl, W.; Lei, X.; Loch, P.; Rutherfoord, J. P.; Savine, A. Y.; Shupe, M. A.; Varnes, E. W.] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. [Brandt, A.; De, K.; Farbin, A.; Kim, H.; Nilsson, P.; Ozturk, N.; Pravahan, R.; Sarkisyan-Grinbaum, E.; Sosebee, M.; Spurlock, B.; Stradling, A. R.; Usai, G.; Vartapetian, A.; White, A.; Yu, J.] Univ Texas Arlington, Dept Phys, Arlington, TX 76019 USA. [Antonaki, A.; Arabidze, G.; Fassouliotis, D.; Giakoumopoulou, V.; Giokaris, N.; Ioannou, P.; Kourkoumelis, C.; Manousakis-Katsikakis, A.; Nikolopoulos, K.; Vellidis, C.] Univ Athens, Dept Phys, GR-15771 Athens, Greece. [Alexopoulos, T.; Argyropoulos, T.; Avramidou, R.; Dris, M.; Filippas, A.; Gazis, E. N.; Georgatos, F.; Iakovidis, G.; Katsoufis, E.; Maltezos, S.; Panagiotopoulou, E.; Papadopoulou, Th. D.; Tsarouchas, C.; Tsipolitis, G.; Vlachos, S.; Xaplanteris, L.] Natl Tech Univ Athens, Dept Phys, Iroon Polytech 9, GR-15780 Zografos, Greece. [Abdinov, O.; Aliyev, M.; Huseynov, N.; Khalil-zada, F.; Rzaeva, S.] Azerbaijan Acad Sci, Inst Phys, AZ-143 Baku, Azerbaijan. [Abdallah, J.; Bosman, M.; Casado, M. P.; Cavalli-Sforza, M.; Demirkoz, B.; Espinal Curull, X.; Fiorini, L.; Grinstein, S.; Helsens, C.; Korolkov, I.; Martinez, M.; Meoni, E.; Mir, L. M.; Nadal, J.; Osuna, C.; Pacheco Pages, A.; Padilla Aranda, C.; Perez Codina, E.; Puigdengoles, C.; Riu, I.; Rossetti, V.; Segura, E.; Sushkov, S.; Vives Vaque, F.; Volpi, M.; Vorwerk, V.] Univ Autonoma Barcelona, Inst Fis Altes Energies, IFAE, ES-08193 Bellaterra, Barcelona, Spain. [Krstic, J. J.; Popovic, D. S.; Reljic, D.; Sijacki, Dj.; Simic, Lj.; Vranjes, N.; Milosavljevic, M. Vranjes; Vudragovic, D.] Univ Belgrade, Inst Phys, Belgrade 11001, Serbia. [Bozovic-Jelisavcic, I.; Mudrinic, M.] Vinca Inst Nucl Sci, Belgrade 11001, Serbia. [Burgess, T.; Eigen, G.; Kastanas, A.; Lipniacka, A.; Sandaker, H.; Sjursen, T. B.; Stugu, B.; Tonoyan, A.; Ugland, M.] Univ Bergen, Dept Phys & Technol, NO-5007 Bergen, Norway. [Arce, A. T. H.; Arguin, J. -F.; Bach, A. M.; Barnett, R. M.; Beringer, J.; Biesiada, J.; Calafiura, P.; Ciocio, A.; Einsweiler, K.; Gaponenko, A.; Garcia-Sciveres, M.; Gilchriese, M.; Haber, C.; Heinemann, B.; Hinchliffe, I.; Hsu, S. -C.; Joseph, J.; Korn, A.; Lavrijsen, W.; Leggett, C.; Leyton, M.; Loscutoff, P.; Lys, J.; Madaras, R. J.; Parker, S. I.; Quarrie, D. R.; Scherzer, M. I.; Shapiro, M.; Siegrist, J.; Strandberg, S.; Tatarkhanov, M.; Tompkins, L.; Vahsen, S.; Varouchas, D.; Virzi, J.; Yao, W. -M.; Yao, Y.; Zenz, S.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA 94720 USA. [Aliev, M.; Giorgi, F. M.; Grancagnolo, S.; Kind, O.; Kolanoski, H.; Kwee, R.; Lacker, H.; Lohse, T.; Mandrysch, R.; Nikiforov, A.; Garcia, Y. Rodriguez; Sidoti, A.; zur Nedden, M.] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany. [Battaglia, A.; Beck, H. P.; Borer, C.; Ereditato, A.; Gallo, V.; Haug, S.; Topfel, C.; Venturi, N.; Weber, M. D.; Weber, M. S.] Univ Bern, Albert Einstein Ctr Fundamental Phys, High Energy Phys Lab, CH-3012 Bern, Switzerland. [Bracinik, J.; Charlton, D. G.; Collins, N. J.; Curtis, C. J.; Hadley, D. R.; Harrison, K.; Hawkes, C. M.; Hillier, S. J.; Lilley, J. N.; Martin, T. A.; Palmer, J. D.; Slater, M.; Thomas, J. P.; Thompson, P. D.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Wilson, J. A.] Univ Birmingham, Sch Phys & Astron, Birmingham B15 2TT, W Midlands, England. [Akdogan, T.; Arik, M.; Becerici, N.; Istin, S.; Rador, T.] Bogazici Univ, Fac Sci, Dept Phys, TR-80815 Bebek, Turkey. [Cetin, S. A.] Dogus Univ, Fac Arts & Sci, Dept Phys, TR-34722 Istanbul, Turkey. [Bcddall, A. J.; Beddall, A.; Bingul, A.; Diblen, F.] Gaziantep Univ, Dept Engn Phys, Fac Engn, TR-27310 Sehitkamil, Gaziantep, Turkey. Istanbul Tech Univ, Fac Arts & Sci, Dept Phys, TR-34469 Istanbul, Turkey. [Antonelli, S.; Bellagamba, L.; Bertin, A.; Bindi, M.; Boscherini, D.; Bruni, A.; Bruni, G.; Bruschi, M.; Caforio, D.; Ciocca, C.; Corradi, M.; De Castro, S.; Di Sipio, R.; Fabbri, L.; Giacobbe, B.; Giusti, P.; Massa, I.; Piccinini, M.; Polini, A.; Rinaldi, L.; Sbarra, C.; Sbrizzi, A.; Semprini-Cesari, N.; Spighi, R.; Valentinetti, S.; Villa, M.; Vitale, A.; Zoccoli, A.] INFN Sez Bologna, IT-40127 Bologna, Italy. [Antonelli, S.; Bertin, A.; Bindi, M.; Caforio, D.; Ciocca, C.; De Castro, S.; Di Sipio, R.; Fabbri, L.; Massa, I.; Piccinini, M.; Sbarra, C.; Sbrizzi, A.; Semprini-Cesari, N.; Valentinetti, S.; Villa, M.; Vitale, A.; Zoccoli, A.] Univ Bologna, Dipartimento Fis, IT-40127 Bologna, Italy. [Alhroob, M.; Arutinov, D.; Barbero, M.; Bartsch, D.; Brock, I.; Cristinziani, M.; Desch, K.; Fleischmann, S.; Gaycken, G.; Geich-Gimbel, Ch.; Gonella, L.; Hemperek, T.; Huegging, F.; Karagounis, M.; Khoriauli, G.; Koevesarki, P.; Kostyukhin, V. V.; Kroseberg, J.; Krueger, H.; Lehmacher, M.; Loddenkoetter, T.; Masetti, L.; Moeser, N.; Mueller, K.; Nanava, G.; Nattermann, T.; Nderitu, S. K.; Nuncio-Quiroz, A. -E.; Hanninger, G. Nunes; Prabhu, R.; Psoroulas, S.; Radics, B.; Ruwiedel, C.; Schmieden, K.; Schmitz, M.; Ta, D.; Tsung, J. -W.; Uhlenbrock, M.; Vlasov, N.; Vogel, A.; von Toerne, E.; Wermes, N.; Wienemann, P.; Zendler, C.; Zimmermann, R.; Zimmermann, S.] Univ Bonn, Inst Phys, D-53115 Bonn, Germany. [Ahlen, S. P.; Butler, J. M.; Harrington, R. D.; Love, J.; Nation, N. R.; Shank, J. T.; Yan, Z.; Youssef, S. P.] Boston Univ, Dept Phys, Boston, MA 02215 USA. [Aefsky, S.; Amelung, C.; Bensinger, J. R.; Blocker, C.; Dushkin, A.; Hashemi, K.; Kirsch, L. E.; Mladenov, D.; Pomeroy, D.; Wellenstein, H.] Brandeis Univ, Dept Phys, Waltham, MA 02454 USA. [Caloba, L. P.; Cerqueira, A. S.; Coura Torres, R.; do Vale, M. A. B.; Maidantchik, C.; Marroquim, F.; Nepomuceno, A. A.; Perantoni, M.; Seixas, J. M.] Univ Fed Rio de Janeiro, COPPE EE IF, BR-21945970 Rio De Janeiro, Brazil. Univ Sao Paulo, Inst Fis, BR-05508900 Sao Paulo, Brazil. [Adams, D. L.; Assamagan, K.; Baker, M. D.; Begel, M.; Caballero, J.; Chen, H.; Tcherniatine, V.; Salgado, P. E. De Castro Faria; Deng, W.; Dhullipudi, R.; Ernst, M.; Gadfort, T.; Gibbard, B.; Gordon, H. A.; Greenwood, Z. D.; Klimentov, A.; Lanni, F.; Le Vine, M.; Lissauer, D.; Lynn, D.; Ma, H.; Maeno, T.; Majewski, S.; Misawa, S.; Nevski, P.; Damazio, D. Oliveira; Paige, E.; Panitkin, S.; Park, W.; Patwa, A.; Pleier, M. -A.; Polychronakos, V.; Potekhin, M.; Protopopescu, S.; Purohit, M.; Radeka, V.; Rajagopalan, S.; Redlinger, G.; Rescia, S.; Sawyer, L.; Smirnov, Y.; Snyder, S.; Sondericker, J.; Steinberg, P.; Takai, H.; Tarrade, F.; Trivedi, A.; Undrus, A.; Wenaus, T.; White, S.; Ye, S.; Yu, D.] Brookhaven Natl Lab, Dept Phys, RHIC & ATLAS Comp Facil, Upton, NY 11973 USA. [Alexa, C.; Badescu, E.; Boldea, V.; Caprini, I.; Caprini, M.; Caramarcu, C.; Chesneanu, D.; Constantinescu, S.; Dita, R.; Dita, S.; Micu, L.; Pantea, D.; Popeneciu, G. A.; Rotaru, M.; Stoicea, G.] Natl Inst Phys & Nucl Engn, R-077125 Bucharest, Romania. [Darlea, G. L.] Univ Politehn Bucuresti, Sect 6, Bucharest 060042, Romania. W Univ Timisoara, Timisoara, Romania. [Gonzalez Silva, M. L.; Piegaia, R.; Romeo, G.] Univ Buenos Aires, FCEyN, Dto Fis, RA-1428 Buenos Aires, DF, Argentina. [Barber, T.; Barlow, N.; Batley, J. R.; Brochu, F. M.; Carter, J. R.; Chapman, J. D.; Cowden, C.; French, S. T.; Frost, J. A.; Hill, J. C.; Lester, C. G.; Moeller, V.; Parker, M. A.; Phillips, A. W.; Robinson, D.; Ward, C. P.; White, M. J.] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England. [Archambault, J. P.; Asner, D.; Heelan, L.; Khakzad, M.; Liu, C.; Oakham, F. G.; Vincter, M. G.; Whalen, K.] Carleton Univ, Dept Phys, Ottawa, ON K1S 5B6, Canada. [Anderson, K. J.; Boveia, A.; Canelli, E.; Choudalakis, G.; Costin, T.; Dunford, M.; Feng, E. J.; Gardner, R. W.; Gupta, A.; Hurwitz, M.; Plante, I. Jen-La; Kapliy, A.; Mambelli, M.; Melachrinos, C.; Merritt, F. S.; Onyisi, P. U. E.; Oreglia, M. J.; Pilcher, J. E. J.; Shochet, M. J.; Tuggle, J. M.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Diaz, M. A.; Panes, B.; Quinonez, F.; Maltrana, D. Romero; Urrejola, R.] Pontificia Univ Catolica Chile, Fac Fis, Dept Fis, Santiago 22, Chile. [Brooks, W. K.; Kuleshov, S.; Oyarzun, A.; Pezoa, R.; Prokoshin, F.] Univ Tecn Federico Santa Maria, Dept Fis, Valparaiso, Chile. [Bai, Y.; Jin, S.; Lu, F.; Ouyang, Q.; Shan, L. Y.] Chinese Acad Sci, Inst High Energy Phys, CN-100049 Beijing, Peoples R China. [Gong, C.; Han, L.; Jiang, Y.; Liu, M.; Liu, Y.; Zhao, Z.] Univ Sci & Technol China, Dept Modern Phys, CN-230026 Hefei, Anhui, Peoples R China. [Chen, S.; Qi, M.; Zhong, J.] Nanjing Univ, Dept Phys, Nanjing 210093, Jiangsu, Peoples R China. [Feng, C.; Ge, P.; Miao, J.; Sun, X. H.; Zhan, Z.; Zhang, X.; Zhu, C. G.] Shandong Univ, High Energy Phys Grp, CN-250100 Jinan, Shandong, Peoples R China. [Busato, E.; Calvet, D.; Cinca, D.; Febbraro, R.; Ghodbane, N.; Guicheney, C.; Pallin, D.; Podlyski, F.; Santoni, C.; Says, L. P.; Vazeille, F.; Viret, S.] Univ Clermont Ferrand, Clermont Univ, CNRS, Lab Phys Corpusculaire,IN2P3, FR-63177 Aubiere, France. [Angerami, A.; Brooijmans, G.; Caughron, S.; Cooke, M.; Copic, K.; Grau, N.; Gray, H. M.; Hughes, E. W.; Mateos, D. Lopez; Marshall, Z.; Parsons, J. A.; Penson, A.; Perez, K.; Reale, V. Perez; Spano, F.; Tuts, P. M.; Urbaniec, D.; Williams, E.; Wulf, E.; Zhou, N.; Zivkovic, L.] Columbia Univ, Nevis Lab, Irvington, NY 10533 USA. [Dam, M.; Facius, K.; Hansen, J. R.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Heisterkamp, S.; Jakobsen, S.; Jez, P.; Lundquist, J.; Mackeprang, R.; Petersen, T. C.; Simonyan, M.; Xella, S.] Univ Copenhagen, Niels Bohr Inst, DK-2100 Copenhagen 0, Denmark. [Adorisio, C.; Capua, M.; Crosetti, G.; La Rotonda, L.; Mastroberardino, A.; Morello, G.; Salvatore, D.; Schioppa, M.; Susinno, G.; Tassi, E.] INFN Grp Coll Cosenza, IT-87036 Arcavacata Di Rende, Italy. [Adorisio, C.; Capua, M.; Crosetti, G.; La Rotonda, L.; Mastroberardino, A.; Morello, G.; Salvatore, D.; Schioppa, M.; Susinno, G.; Tassi, E.] Univ Calabria, Dipartimento Fis, IT-87036 Arcavacata Di Rende, Italy. [Bold, T.; Dabrowski, W.; Dwuznik, M.; Grabowska-Bold, I.; Kisielewska, D.; Koperny, S.; Kowalski, T. Z.; Mindur, B.; Toczek, B.] AGH Univ Sci & Technol, FPACS, Fac Phys & Appl Comp Sci, PL-30059 Krakow, Poland. [Banas, E.; de Renstrom, P. A. Bruckman; Gornicki, E.; Hajduk, Z.; Iwanski, W.; Kaczmarska, A.; Korcyl, K.; Malecki, Pa.; Malecki, P.; Olszewski, A.; Olszowska, J.; Richter-Was, E.; Szymocha, T.; Trzupek, A.; Wolter, M. W.; Wosiek, B. K.; Zemla, A.] Polish Acad Sci, Henryk Niewodniczanski Inst Nucl Phys, PL-31342 Krakow, Poland. [Daya, R. K.; Yagci, K. Dindar; Firan, A.; Goldin, D.; Hadavand, H. K.; Hoffman, J.; Howe, T.; Ilchenko, Y.; Ishmukhametov, R.; Joffe, D.; Kasmi, A.; Kehoe, R.; Liang, Z.; Liu, T.; Renkel, P.; Rios, R. R.; Stroynowski, R.; Ye, J.] So Methodist Univ, Dept Phys, Dallas, TX 75275 USA. [Ahsan, M.; Galyaev, E.; Izen, J. M.; Lou, X.; Reeves, K.] Univ Texas Dallas, Richardson, TX 75080 USA. [Antunovic, B.; Bechtle, P.; Kuutmann, E. Bergeaas; Boehler, M.; Brandt, G.; Brunet, S.; Cote, D.; Ehrenfeld, W.; Ferrara, V.; Fischer, G.; Glazov, A.; Goebel, M.; Fajardo, L. S. Gomez; Gosdzik, B.; Gregor, I. M.; Haller, J.; Hiller, K. H.; Husemann, U.; Johnert, S.; Kama, S.; Katzy, J.; Koeneke, K.; Kono, T.; Kostka, P.; Kowalski, H.; Li, S.; Lobodzinska, E.; Ludwig, D.; Maettig, S.; Mamuzic, J.; Medinnis, M.; Mehlhase, S.; Moenig, K.; Naumann, T.; Notz, D.; Nozicka, M.; Petschull, D.; Placakyte, R.; Qin, Z.; Stelzer, H. J.; Terwort, M.; Wildt, M. A.; Zhu, H.] DESY, D-22603 Hamburg, Germany. [Bunse, M.; Goessling, C.; Hirsch, F.; Klingenberg, R.; Muenstermann, D.; Reisinger, I.; Walbersloh, J.] TU Dortmund, DE-44221 Dortmund, Germany. [Goepfert, T.; Kar, D.; Kobel, M.; Leonhardt, K.; Ludwig, A.; Mader, W. F.; Prudent, X.; Schaarschmidt, J.; Schumacher, J. W.; Schwierz, R.; Seifert, F.; Steinbach, P.; Straessner, A.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01069 Dresden, Germany. [Benjamin, P. P.; Bocci, A.; Ebenstein, W. L.; Fowler, A. J.; Klinkby, E. B.; Ko, B. R.; Oh, S. H.; Wang, C.; Yamaoka, J.] Duke Univ, Dept Phys, Durham, NC 27708 USA. [Buckley, A. G.; Clark, P. J.; Wynne, B. M.] Univ Edinburgh, Sch Phys & Astron, Edinburgh EH9 3JZ, Midlothian, Scotland. [Griesmayer, E.] Fachhsch Wiener Neustadt, AT-2700 Wiener Neustadt, Austria. [Annovi, A.; Antonelli, M.; Beretta, M.; Bilokon, H.; Cerutti, F.; Chiarella, V.; Curatolo, M.; Esposito, B.; Ferrer, M. L.; Gatti, C.; Laurelli, P.; Maccarrone, G.; Martini, A.; Miscetti, S.; Nicoletti, G.; Salvucci, A.; Sansoni, A.; Testa, M.; Vilucchi, E.; Wen, M.; Zambrano, V.] INFN Lab Nazl Frascati, IT-00044 Frascati, Italy. [Abdelalim, A. A.; Alexandre, G.; Backes, M.; Bell, P. J.; Bell, W. H.; Berglund, E.; Blondel, A.; Bucci, F.; Clark, A.; Dao, V.; Ferrere, D.; Gadomski, S.; Navarro, J. E. Garcia; Gonzalez-Sevilla, S.; Goulette, M. P.; Hamilton, A.; Lister, A.; Latour, B. Martin Dit; Herrera, C. Mora; Pasztor, G.; Pohl, M.; Robichaud-Veronneau, A.; Rosselet, L.; Urquijo, P.; Wu, X.] Univ Geneva, Sect Phys, CH-1211 Geneva 4, Switzerland. [Barberis, D.; Beccherle, R.; Coccaro, A.; Cornelissen, T.; Darbo, G.; Gagliardi, G.; Gemme, C.; Morettini, P.; Osculati, B.; Parodi, F.; Rossi, L. P.; Schiavi, C.] INFN Sez Genova, IT-16146 Genoa, Italy. [Barberis, D.; Coccaro, A.; Cornelissen, T.; Gagliardi, G.; Osculati, B.; Parodi, F.; Schiavi, C.] Univ Genoa, Dipartimento Fis, IT-16146 Genoa, Italy. [Chikovani, L.; Djobava, T.; Khubua, J.; Magradze, E.; Mchedlidze, G.; Mosidze, M.; Tsiskaridze, V.; Tskhadadze, E. G.] Georgian Acad Sci, Inst Phys, GE-380077 Tbilisi, Rep of Georgia. [Chikovani, L.; Djobava, T.; Khubua, J.; Magradze, E.; Mchedlidze, G.; Mosidze, M.; Tsiskaridze, V.; Tskhadadze, E. G.] Tbilisi State Univ, HEP Inst, GE-380086 Tbilisi, Rep of Georgia. [Astvatsatourov, A.; Dueren, M.; Stenzel, H.] Univ Giessen, Inst Phys 2, D-35392 Giessen, Germany. [Allwood-Spiers, S. E.; Bates, R. L.; Britton, D.; Bussey, P.; Buttar, C. M.; Collins-Tooth, C.; D'Auria, S.; Doherty, T.; Doyle, A. T.; Ferrag, S.; Kenyon, M.; McGlone, H.; Moraes, A.; O'Shea, V.; Barrera, C. Oropeza; Robson, A.; Saxon, D. H.; Smith, K. M.; St Denis, R. D.; Steele, G.; Stewart, G. A.; Thompson, A. S.; Wraight, K.; Wright, C.] Univ Glasgow, Dept Phys & Astron, Glasgow G12 8QQ, Lanark, Scotland. [Ay, C.; Blumenschein, U.; Brandt, O.; Erdmann, J.; Fayette, F.; Grosse-Knetter, J.; Henrichs, A.; Hensel, C.; Keil, M.; Klute, M.; Kohn, F.; Krieger, N.; Kroeninger, K.; Meyer, J.; Morel, J.; Park, S. J.; Quadt, A.; Shabalina, E.; Uhrmacher, M.; Weingarten, J.] Univ Gottingen, Inst Phys 2, D-37077 Gottingen, Germany. [Albrand, S.; Clement, B.; Collot, J.; Crepe-Renaudin, S.; Delsart, P. A.; Donini, J. J.; Hostachy, J. -Y.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Polci, F.; Stark, J.; Trocme, B.; Wang, J.] Univ Grenoble 1, CNRS, IN2P3, Lab Phys Subatom & Cosmol,INPG, FR-38026 Grenoble, France. [Addy, T. N.; Harvey, A.; McFarlane, K. W.; Shin, T.; Vassilakopoulos, V. I.] Hampton Univ, Dept Phys, Hampton, VA 23668 USA. [da Costa, J. Barreiro Guimaraes; Belloni, A.; Black, K. M.; Brandenburg, G. W.; Franklin, M.; Huth, J.; Jeanty, L.; Kagan, M.; Kashif, L.; Outschoorn, V. Martinez; Mills, C. M.; Moed, S.; Morii, M.; Oliver, J.; Prasad, S.; Smith, B. C.; della Porta, G. Zevi] Harvard Univ, Lab Particle Phys & Cosmol, Cambridge, MA 02138 USA. [Andrei, V.; Childers, J. T.; Dietzsch, T. A.; Hanke, P.; Henke, M.; Khomich, A.; Kluge, E. -E.; Lendermann, V.; Meier, K.; Mueller, F.; Poddar, S.; Ruehr, F.; Schultz-Coulon, H. -C.; Stamen, R.; Weber, P.; Wessels, M.] Heidelberg Univ, Kirchhoff Inst Phys, D-69120 Heidelberg, Germany. [Radescu, V.; Schaetzel, S.] Inst Phys, D-69120 Heidelberg, Germany. [Kugel, A.; Maenner, R.; Schroer, N.] Heidelberg Univ, ZITI, Lehrstuhl Informat 5, DE-68131 Mannheim, Germany. [Ohsugi, T.] Hiroshima Univ, Fac Sci, Higashihiroshima, JP Hiroshima 7398526, Japan. [Nagasaka, Y.] Hiroshima Inst Technol, Fac Appl Informat Sci, Hiroshima, JP Hiroshima 7315193, Japan. [Cwetanski, P.; Egorov, K.; Evans, H.; Gagnon, P.; Jain, V.; Lowe, A. J.; Luehring, F.; Marino, C. P.; Ogren, H.; Penwell, J.; Price, D.; Whittington, D.] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. [Epp, B.; Girtler, P.; Jussel, P.; Kneringer, E.; Kuhn, D.; Rudolph, G.] Inst Astro & Teilchenphys, A-6020 Innsbruck, Austria. [Behera, P. K.; Limper, M.; Mallik, U.; Pahl, C.; Schreiner, A.; Zaidan, R.] Univ Iowa, Iowa City, IA 52242 USA. [Cochran, J.; Lebedev, A.; Mete, A. S.; Meyer, W. T.; Nelson, A.; Ruiz-Martinez, A.; Triplett, N.; Yamamoto, K.] Iowa State Univ, Ames High Energy Phys Grp, Dept Phys & Astron, Ames, IA 50011 USA. [Aleksandrov, I. N.; Baranov, S.; Barashkou, A.; Bardin, D. Y.; Bednyakov, V. A.; Boyko, I. R.; Budagov, I. A.; Chelkov, G. A.; Cheplakov, A.; Chepurnov, V. F.; Chizhov, V.; Dedovich, D. V.; Demichev, M.; Glonti, G. L.; Gostkin, M. I.; Grigalashvili, N.; Gusakov, Y.; Kalinovskaya, L. V.; Kazarinov, M. Y.; Kekelidze, G. D.; Kharchenko, D.; Khovanskiy, N.; Khramov, E.; Kolesnikov, V.; Kotov, V. M.; Kruchonak, U.; Krumshteyn, Z. V.; Kukhtin, V.; Ladygin, E.; Lazarev, A. B.; Malyukov, S.; Manjavidze, I. D.; Minashvili, I. A.; Mineev, M.; Nikolaev, K.; Olchevski, A. G.; Peshekhonov, V. D.; Romanov, V. M.; Rumyantsev, L.; Rusakovich, N. A.; Sadykov, R.; Sisakyan, A. N.; Topilin, N. D.; Vinogradov, V. B.; Zhemchugov, A.] Joint Inst Nucl Res Dubna, Joint Inst Nucl Res, RU-141980 Dubna, Moscow Region, Russia. [Amako, K.; Arai, Y.; Ikegami, Y.; Ikeno, M.; Ishino, M.; Iwasaki, H.; Kanzaki, J.; Kohriki, T.; Kondo, T.; Makida, Y.; Nagano, K.; Nozaki, M.; Odaka, S.; Ozone, K.; Sasaki, O.; Suzuki, Y.; Tanaka, S.; Terada, S.; Tojo, J.; Tokushuku, K.; Tsuno, S.; Unno, Y.; Yamamoto, A.; Yasu, Y.] KEK, High Energy Accelerator Res Org, Tsukuba, Ibaraki 3050801, Japan. [Hayakawa, T.; Homma, Y.; Hori, T.; Ishikawa, A.; Kawagoe, K.; Kiyamura, H.; Kurashige, H.; Matsushita, T.; Nakatsuka, H.; Nishiyama, T.; Ochi, A.; Okada, S.; Omachi, C.; Takeda, H.; Yamazaki, Y.] Kobe Univ, Grad Sch Sci, Nada Ku, Jp Kobe 6578501, Japan. [Sasao, N.] Kyoto Univ, Fac Sci, Sakyou Ku, Kyoto 6068502, Japan. [Takashima, R.] Kyoto Univ, Fushimi Ku, Kyoto 6128522, Japan. [Anduaga, X. S.; Dova, M. T.; Monticelli, F.; Tripiana, M. F.] Univ Nacl La Plata, Dept Fis, FCE, IFLP CONICET UNLP, RA-1900 La Plata, Buenos Aires, Argentina. [Borissov, G.; Bouhova-Thacker, E. V.; Catmore, J. R.; Cheatham, S.; Chilingarov, A.; Davidson, R.; De Mora, L.; Fox, H.; Henderson, R. C. W.; Hughes, G.; Jones, R. W. L.; Kartvelishvili, V.; Long, R. E.; Love, P. A.; Smizanska, M.; Walder, J.] Univ Lancaster, Dept Phys, Lancaster LA1 4YB, England. [Bianco, M.; Borjanovic, I.; Cataldi, G.; Chiodini, G.; Crupi, R.; Gorini, E.; Guida, A.; Perrino, R.; Primavera, M.; Spagnolo, S.; Ventura, A.] INFN Sez Lecce, IT-73100 Lecce, Italy. [Bianco, M.; Crupi, R.; Gorini, E.; Guida, A.; Spagnolo, S.; Ventura, A.] Univ Salento, Dipartimento Fis, IT-73100 Lecce, Italy. [Allport, P. P.; Austin, N.; Burdin, S.; D'Onofrio, M.; Dervan, P.; Greenshaw, T.; Gwilliam, C. B.; Hayward, H. S.; Jackson, J. N.; Jones, T. J.; King, B. T.; Klein, M.; Klein, U.; Kluge, T.; Kretzschmar, J.; Laycock, P.; Leney, K. J. C.; Maxfield, S. J.; Mehta, A.; Migas, S.; Prichard, P. M.; Vankov, P.; Vossebeld, J. H.; Wiglesworth, C.; Wrona, B.] Univ Liverpool, Oliver Lodge Lab, Liverpool L69 3BX, Merseyside, England. [Cindro, V.; Dolenc, I.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Macek, B.; Mandic, I.; Mijovic, L.; Mikuz, M.] Jozef Stefan Inst, SI-1000 Ljubljana, Slovenia. [Cindro, V.; Dolenc, I.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Macek, B.; Mandic, I.; Mijovic, L.; Mikuz, M.] Univ Ljubljana, Dept Phys, SI-1000 Ljubljana, Slovenia. [Adragna, P.; Beck, G. A.; Carter, A. A.; Cerrito, L.; Cooper, B. D.; Eisenhandler, E.; Ellis, K.; Landon, M. P. J.; Lloyd, S. L.; Martin, A. J.; Morris, J. D.; Poll, J.; Rizvi, E.; Stevenson, K.] Queen Mary Univ London, Dept Phys, London E1 4NS, England. [Alam, M. A.; Berry, T.; Boisvert, V.; Cooper-Smith, N. J.; Cowan, G.; Edwards, C. A.; Martin, T. Fonseca; George, S.; Goncalo, R.; Green, B.; Misiejuk, A.; Tamsett, M. C.; Teixeira-Dias, P.] Univ London, Dept Phys, Egham TW20 0EX, Surrey, England. [Asquith, L.; Baker, S.; Bernius, C.; Boeser, S.; Butterworth, J. M.; Byatt, T.; Campanelli, M.; Christidi, I. A.; Davison, A. R.; Dean, S.; Konstantinidis, N.; Monk, J.; Nash, M.; Nurse, E.; Ozcan, V. E.; Richards, A.; Robinson, J. E. M.; Sherwood, P.; Siegert, F.; Simmons, B.; Taylor, C.; Waugh, B. M.] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Beau, T.; Bordoni, S.; Calderini, G.; Cavalleri, P.; Chareyre, E.; De Cecco, S.; Derue, F.; Krasny, M. W.; Lacour, D.; Laforge, B.; Le Dortz, O.; Lellouch, J.; Marchiori, G.; Nikolic-Audit, I.; Ridel, M.; Roos, L.; Schwemling, Ph.; Trincaz-Duvoid, S.; Trinh, T. N.; Vannucci, F.; Yuan, L.] Univ Paris 07, Univ Paris 06, CNRS, Lab Phys Nucl & Hautes Energies,IN2P3, FR-75252 Paris 05, France. [Akesson, T. P. A.; Alonso, A.; Boelaert, N.; Groth-Jensen, J.; Hedberg, V.; Jarlskog, G.; Ji, W.; Lundberg, B.; Lytken, E.; Mjornmark, J. U.; Smirnova, O.] Lund Univ, Inst Fys, Nat Vetenskapliga Fak, SE-22100 Lund, Sweden. [Barreiro, F.; Cantero, J.; Del Peso, J.; Gabaldon, C.; Glasman, C.; Lagouri, T.; March, L.; Nebot, E.; Terron, J.] Univ Autonoma Madrid, Fac Ciencias, Dept Fis Teor, ES-28049 Madrid, Spain. [Aharrouche, M.; Bendel, M.; Blum, W.; Buescher, V.; Eckweiler, S.; Edmonds, K.; Ellinghaus, F.; Ertel, E.; Fiedler, F.; Fleckner, J.; Goerioger, C.; Groll, M.; Handel, C.; Hohlfeld, M.; Kawamura, G.; Kleinknecht, K.; Koenig, S.; Koepke, L.; Neusiedl, A.; Sander, H. G.; Schaefer, U.; Schmitt, C.; Schroeder, C.; Siragusa, G.; Tapprogge, S.; Anh, T. Vu; Wicke, D.] Johannes Gutenberg Univ Mainz, Inst Phys, DE-55099 Mainz, Germany. [Almond, J.; Ask, S.; Brown, G.; Chavda, V.; Cox, B. E.; Da Via, C.; Forti, A.; Freestone, J.; Head, S. J.; Jones, G.; Keates, J. R.; Kelly, M.; Kolya, S. D.; Lane, J. L.; Loebinger, F. K.; Martyniuk, A. C.; Masik, J.; Miyagawa, P. S.; Oh, A.; Owen, M.; Pater, J. R.; Pilkington, A. D.; Potter, K. P.; Schwanenberger, C.; Snow, S. W.; Thompson, R. J.; Watts, S.; Wengler, T.; Yang, U. K.] Univ Manchester, Sch Phys & Astron, Manchester M13 9PL, Lancs, England. [Aoun, S.; Bee, C.; Clemens, J. C.; Coadou, Y.; Djama, F.; Feligioni, L.; Hoffmann, D.; Hubaut, F.; Kuna, M.; Lapoire, C.; Le Guirriec, E.; Leveque, J.; Monnier, E.; Odier, J.; Petit, E.; Pralavorio, P.; Rozanov, A.; Talby, M.; Tisserant, S.; Toth, J.; Touchard, F.; Vacavant, L.; Zhang, H.] Aix Marseille Univ, CPPM, CNRS, IN2P3, Marseille, France. [Brau, B.; Colon, G.; Dallapiccola, C.; Meade, A.; Moyse, E. J. W.; Thompson, E. N.; van Eldik, N.; Willocq, S.; Woudstra, M. J.] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA. [Corriveau, F.; Dufour, M. -A.; Guler, H.; Klemetti, M.; Mc Donald, J.; Potter, C. T.; Robertson, S. H.; Rios, C. Santamarina; Schram, M.; Vachon, B.; Warburton, A.] McGill Univ, High Energy Phys Grp, Montreal, PQ H3A 2T8, Canada. [Barberio, E. L.; Davey, W.; Davidson, N.; Felzmann, C. U.; Limosani, A.; Morley, A. K.; Phan, A.; Sevior, M. E.; Shao, Q. T.; Taylor, G. N.] Univ Melbourne, Sch Phys, Au Parkville, Vic 3010, Australia. [Armbruster, A. J.; Chapman, J. W.; Cirilli, M.; Dai, T.; Diehl, E. B.; Eppig, A.; Ferretti, C.; Goldfarb, S.; Levin, D.; Li, X.; Liu, H.; Liu, J. B.; Mc Kee, S. P.; Neal, H. A.; Panikashvili, N.; Purdham, J.; Qian, J.; Scheirich, D.; Strandberg, J.; Thun, R. P.; Wilson, A.; Yang, H.; Zhou, B.] Univ Michigan, Dept Phys, Randall Lab 2477, Ann Arbor, MI 48109 USA. [Abolins, M.; Brock, R.; Bromberg, C.; Di Mattia, A.; Ermoline, I.; Hauser, R.; Heim, S.; Holzbauer, J. L.; Huston, J.; Koll, J.; Linnemann, J. T.; Mangeard, P. S.; Martin, B.; Pope, B. G.; Richards, R. A.; Ryan, P.; Schwienhorst, R.; Tollefson, K.] Michigan State Univ, Dept Phys & Astron, High Energy Phys Grp, E Lansing, MI 48824 USA. [Alimonti, G.; Andreazza, A.; Banfi, D.; Besana, M. I.; Carminati, L.; Cavalli, D.; Citterio, M.; Costa, G.; Dell'Asta, L.; Fanti, M.; Giugni, D.; Lari, T.; Lazzaro, A.; Mandelli, L.; Mazzanti, M.; Meroni, C.; Montesano, S.; Perini, L.; Pizio, C.; Ragusa, F.; Resconi, S.; Tartarelli, G. F.; Troncon, C.] INFN Sez Milano, IT-20133 Milan, Italy. [Andreazza, A.; Banfi, D.; Besana, M. I.; Carminati, L.; Dell'Asta, L.; Fanti, M.; Lazzaro, A.; Montesano, S.; Perini, L.; Pizio, C.; Ragusa, F.] Univ Milan, Dipartimento Fis, IT-20133 Milan, Italy. [Bogouch, A.; Kulchitsky, Y.; Kurochkin, Y. A.; Satsounkevitch, I.; Tsiareshka, P. V.] Natl Acad Sci Belarus, BI Stepanov Phys Inst, Minsk 220072, Byelarus. [Gilewsky, V.; Starovoitov, P.] NC PHEP BSU, Natl Sci & Educ Ctr Particle & High Energy Phys, Minsk 220040, Byelarus. [Taylor, F. E.] MIT, Dept Phys, Cambridge, MA 02139 USA. [Azuelos, G.; Banerjee, P.; Bouchami, J.; Davies, M.; Ferland, J.; Gutierrez, A.; Lebel, C.; Leroy, C.; Goia, J. A. Macana; Martin, J. P.] Univ Montreal, Grp Particle Phys, Montreal, PQ H3C 3J7, Canada. [Akimov, A. V.; Baranov, S. P.; Gavrilenko, I. L.; Kayumov, F.; Komar, A. A.; Konovalov, S. P.; Mouraviev, S. V.; Nechaeva, P.; Shmeleva, A.; Snesarev, A. A.; Sulin, V. V.; Tikhomirov, V. O.; Vasilyeva, L.] Acad Sci, PN Lebedev Phys Inst, RU-117924 Moscow, Russia. [Artamonov, A.; Khovanskiy, V.; Shatalov, P. B.; Tsukerman, I. I.] ITEP, RU-117218 Moscow, Russia. [Belotskiy, K.; Bondarenko, V. G.; Bulekov, O.; Dolgoshein, B. A.; Kantserov, V. A.; Mashinistov, R.; Morozov, S. V.; Romaniouk, A.; Smirnov, S. Yu.] Moscow Engn & Phys Inst MEPhI, RU-115409 Moscow, Russia. [Gladilin, L. K.; Grishkevich, Y. V.; Kramarenko, V. A.; Rud, V. I.; Sivoklokov, S. Yu.; Smirnova, L. N.] Moscow MV Lomonosov State Univ, Skobeltsyn Inst Nucl Phys MSU SINP, Moscow 119991, Russia. [Biebel, O.; Calfayan, P.; de Graat, J.; Duckeck, G.; Ebke, J.; Elmsheuser, J.; Engl, A.; Galea, C.; Genest, M. H.; Hertenberger, R.; Kummer, C.; Legger, F.; Lichtnecker, M.; Mameghani, R.; Mueller, T. A.; Nunnemann, T.; Rauscher, F.; Ruckert, B.; Sanders, M. P.; Schaile, D.; Serfon, C.; Walker, R.; Zhuang, X.] Univ Munich, Fak Phys, DE-85748 Garching, Germany. [Barillari, T.; Beimforde, M.; Bethke, S.; Cortiana, G.; D'Orazio, A.; Dannheim, D.; Dubbert, J.; Ehrich, T.; Flowerdew, M. J.; Giovannini, P.; Goettfert, T.; Groh, M.; Haefner, P.; Haertel, R.; Horvat, S.; Jantsch, A.; Kaiser, S.; Kiryunin, A. E.; Kluth, S.; Kortner, O.; Kotov, S.; Kroha, H.; Macchiolo, A.; Menke, S.; Mohrdieck-Moeck, S.; Moser, H. G.; Nisius, R.; Oberlack, H.; Pataraia, S.; Pospelov, G. E.; Potrap, I. N.; Rauter, E.; Richter, R.; Salihagic, D.; Schacht, P.; Schieck, J.; Seuster, R.; Stonjek, S.; von der Schmitt, H.; von Loeben, J.; Zhuravlov, V.] Max Planck Inst Phys & Astrophys, Werner Heisenberg Inst, D-80805 Munich, Germany. [Shimojima, M.] Nagasaki Inst Appl Sci, Jp Nagasaki 8510193, Japan. [Hasegawa, S.; Itoh, Y.; Ohshima, T.; Okumura, Y.; Sugimoto, T.; Takahashi, Y.; Tomoto, M.] Nagoya Univ, Grad Sch Sci, Chikusa Ku, Nagoya, Aichi 4648602, Japan. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Capasso, L.; Carlino, G.; Chiefari, G.; Conventi, F.; de Asmundis, R.; Della Pietra, M.; della Volpe, D.; Doria, A.; Giordano, R.; Iacobucci, G.; Izzo, V.; Merola, L.; Musto, E.; Patricelli, S.; Sekhniaidze, G.] INFN Sez Napoli, IT-80126 Naples, Italy. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Capasso, L.; Chiefari, G.; della Volpe, D.; Giordano, R.; Merola, L.; Musto, E.; Patricelli, S.] Univ Naples Federico II, Dipartimento Sci Fisiche, IT-80126 Naples, Italy. [Gorelov, I.; Hoeferkamp, M. R.; Metcalfe, J.; Seidel, S. C.; Toms, K.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. [Consonni, M.; De Groot, N.; Filthaut, F.; Jansen, E.; Klok, P. F.; Konig, A. C.; Koetsveld, F.; Raas, M.] Radboud Univ Nijmegen NIKHEF, Dept Expt High Energy Phys, NL-6525 AJ Nijmegen, Netherlands. [Bentvelsen, S.; Bobbink, G. J.; Bos, K.; Boterenbrood, H.; Colijn, A. P.; de Jong, P.; Doxiadis, A.; Ferrari, P.; Garitaonandia, H.; Gosselink, M.; Hartjes, F.; Hessey, N. P.; Igonkina, O.; Kayl, M. S.; Klous, S.; Kluit, P.; Koffeman, E.; Koutsman, A.; Lee, H.; Liebig, W.; Mechnich, J.; Mussche, I.; Ottersbach, J. P.; Rijpstra, M.; Ruckstuhl, N.; Salamanna, G.; Sandstroem, R.; Snuverink, J.; Tsiakiris, M.; Turlay, E.; van der Graaf, H.; van der Kraaij, E.; van der Poel, E.; van Kesteren, Z.; van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Vreeswijk, M.] Nikhef Natl Inst Subatom Phys, NL-1098 XG Amsterdam, Netherlands. [Bentvelsen, S.; Bobbink, G. J.; Bos, K.; Boterenbrood, H.; Colijn, A. P.; de Jong, P.; Doxiadis, A.; Ferrari, P.; Garitaonandia, H.; Gosselink, M.; Hartjes, F.; Hessey, N. P.; Igonkina, O.; Kayl, M. S.; Klous, S.; Kluit, P.; Koffeman, E.; Koutsman, A.; Lee, H.; Liebig, W.; Mechnich, J.; Mussche, I.; Ottersbach, J. P.; Rijpstra, M.; Ruckstuhl, N.; Salamanna, G.; Sandstroem, R.; Snuverink, J.; Tsiakiris, M.; Turlay, E.; van der Graaf, H.; van der Kraaij, E.; van der Poel, E.; van Kesteren, Z.; van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Vreeswijk, M.] Univ Amsterdam, NL-1098 XG Amsterdam, Netherlands. [Kazanin, V. A.; Kotov, K. Y.; Malyshev, V.; Maslennikov, A. L.; Orlov, I.; Peleganchuk, S. V.; Schamov, A. G.; Skovpen, K.; Soukharev, A.; Talyshev, A.; Tikhonov, V. A.; Zaytsev, A.] Budker Inst Nucl Phys BINP, RU-630090 Novosibirsk, Russia. [Budick, B.; Casadei, D.; Cranmer, K.; Djilkibaev, R.; Konoplich, R.; Krasznahorkay, A.; Mincer, A. I.; Nemethy, P.; Neves, R. M.; Shibata, A.; Zhao, L.] NYU, Dept Phys, New York, NY 10003 USA. [Fernando, W.; Fisher, M. J.; Gan, K. K.; Kagan, H.; Kass, R. D.; Loureiro, K. F.; Moss, J.; Rahimi, A. M.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.] Okayama Univ, Fac Sci, Okayama 7008530, Japan. [Abbott, B.; Gutierrez, P.; Huang, G. S.; Jana, D. K.; Meera-Lebbai, R.; Saleem, M. S.; Severini, H.; Skubic, P.; Snow, J.; Strauss, M.] Univ Oklahoma, Homer L Dodge Dept Phys & Astron, Norman, OK 73019 USA. [Abi, B.; Khanov, A.; Rizatdinova, F.] Oklahoma State Univ, Dept Phys, Stillwater, OK 74078 USA. [Kocnar, A.] Palacky Univ, Olomouc 77207, Czech Republic. [Brau, J. E.; Ptacek, E.; Reinsch, A.; Robinson, M.; Searcy, J.; Shamim, M.; Sinev, N. B.; Strom, D. M.; Torrence, E.] Univ Oregon, Ctr High Energy Phys, Eugene, OR 97403 USA. [Abreu, H.; Arnault, C.; Barrillon, P.; Benoit, M.; Bernat, P.; Binet, S.; Blanchard, J. -B.; Bourdarios, C.; Collard, C.; De Regie, J. B. De Vivie; Diglio, S.; Dudziak, F.; Duflot, L.; Escalier, M.; Fayard, L.; Fournier, D.; Heller, M.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Kado, M.; Lounis, A.; Makovec, N.; Matricon, P.; Niedercorn, F.; Perus, P.; Poggioli, L.; Puzo, P.; Rousseau, D.; Ruan, X.; Rybkin, G.; Schaffer, A. C.; Serin, L.; Simion, S.; Tanaka, R.; Vukotic, I.; Wicek, F.; Zerwas, D.] Univ Paris 11, CNRS, IN2P3, LAL, F-91405 Orsay, France. [Hanagaki, K.; Hirose, M.; Meguro, T. M.; Nomachi, M.; Sugaya, Y.; Uchida, K.] Osaka Univ, Grad Sch Sci, Toyonaka, Osaka 5600043, Japan. [Bugge, L.; Buran, T.; Cameron, D.; Gjelsten, B. K.; Lund, E.; Ould-Saada, F.; Pajchel, K.; Pylypchenko, Y.; Read, A. L.; Rohne, O.; Samset, B. H.; Stapnes, S.; Strandlie, A.; Taga, A.] Univ Oslo, Dept Phys, NO-0316 Oslo 3, Norway. [Abdesselam, A.; Barr, A. J.; Beauchemin, P. H.; Buchanan, J.; Cooper-Sarkar, A. M.; Dehchar, M.; Doglioni, C.; Farrington, S. M.; Ferrando, J.; Fiascaris, M.; Gallas, E. J.; Gibson, S. M.; Gilbert, L. M.; Gwenlan, C.; Issever, C.; Unel, M. Karagoz; Kirsch, G. P.; Larner, A.; Mattravers, C.; Mermod, P.; Nickerson, R. B.; Tseng, J. C. -L.; Vickey, T.; Viehhauser, G. H. A.; Wastie, R.; Weidberg, A. R.; Whitehead, S. R.] Univ Oxford, Dept Phys, Oxford OX1 3RH, England. [Bellomo, M.; Conta, C.; Ferrari, R.; Franchino, S.; Fraternali, M.; Gaudio, G.; Goggi, V.; Lanza, A.; Livan, M.; Negri, A.; Polesello, G.; Rebuzzi, D. M.; Rimoldi, A.; Uslenghi, M.; Vercesi, V.] INFN Sez Pavia, IT-27100 Pavia, Italy. [Conta, C.; Franchino, S.; Fraternali, M.; Goggi, V.; Livan, M.; Negri, A.; Rebuzzi, D. M.; Rimoldi, A.; Uslenghi, M.] Univ Pavia, Dipartimento Fis Nucl & Teor, IT-27100 Pavia, Italy. [Alison, J.; Degenhardt, J.; Donega, M.; Fratina, S.; Hance, M.; Hines, E.; Jackson, B.; Keener, P. T.; Kroll, J.; Kunkle, J.; LeGeyt, B. C.; Lipeles, E.; Martin, F. F.; Newcomer, F. M.; Olivito, D.; Ospanov, R.; Reece, R.; Stahlman, J.; Thomson, E.; Van Berg, R.; Wagner, P.; Williams, H. H.] Univ Penn, Dept Phys, High Energy Phys Grp, Philadelphia, PA 19104 USA. [Fedin, O. L.; Gratchev, V.; Maleev, V. P.; Ryabov, Y. F.; Schegelsky, V. A.; Sedykh, E.; Seliverstov, D. M.] Petersburg Nucl Phys Inst, RU-188300 Gatchina, Russia. [Cascella, M.; Cavasinni, V.; Del Prete, T.; Dotti, A.; Francavilla, P.; Giangiobbe, V.; Roda, C.; Sarri, F.; Zenonos, Z.] INFN Sez Pisa, IT-56127 Pisa, Italy. [Cascella, M.; Cavasinni, V.; Del Prete, T.; Dotti, A.; Francavilla, P.; Giangiobbe, V.; Roda, C.; Sarri, F.; Zenonos, Z.] Univ Pisa, Dipartimento Fis E Fermi, IT-56127 Pisa, Italy. [Boudreau, J.; Boulahouache, C.; Cleland, W.; Kittelmann, T.; Mueller, J.; Paolone, V.; Prieur, D.; Savinov, V.; Tsulaia, V.; Wendler, S.; Yoosoofmiya, R.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Amorim, A.; Anjos, N.; Benincasa, G. P.; Carvalho, J.; Conde Muino, P.; Do Valle Wemans, A.; Fernandes, B.; Fiolhais, M. C. N.; Gomes, A.; Jorge, P. M.; Lopes, L.; Machado Miguens, J.; Magalhaes Martins, P. J.; Maio, A.; Maneira, J.; Morais, A.; Oliveira, M.; Onofre, A.; Palma, A.; Pina, J.; Pinto, B.; Saraiva, J. G.; Silva, J.; Soares, M.; Veloso, F.; Wolters, H.] Lab Instrumentacao & Fis Expt Particulas LIP, P-1000149 Lisbon, Portugal. [Aguilar-Saavedra, J. A.; Castro, N. F.] Univ Granada, Dept Fis Teor & Cosmos, E-18071 Granada, Spain. [Aguilar-Saavedra, J. A.; Castro, N. F.] CAFPE, E-18071 Granada, Spain. [Bazalova, M.; Bohm, J.; Chudoba, J.; Gallus, P.; Gunther, J.; Havranek, M.; Juranek, V.; Kepka, O.; Kupco, A.; Kus, V.; Lipinsky, L.; Lokajicek, M.; Marcisovsky, M.; Mikestikova, M.; Myska, M.; Nemecek, S.; Panuskova, M.; Popule, J.; Ruzicka, P.; Schovancova, J.; Sicho, P.; Sluka, T.; Staroba, P.; Stastny, J.; Tasevsky, M.; Tic, T.; Tomasek, L.; Tomasek, M.; Vrba, V.] Acad Sci Czech Republic, Inst Phys, CZ-18221 Prague 8, Czech Republic. [Davidek, T.; Dolejsi, J.; Dolezal, Z.; Drasal, Z.; Kodys, P.; Leitner, R.; Novakova, J.; Reznicek, P.; Spousta, M.; Strachota, P.; Suk, M.; Sykora, T.; Tas, P.; Valkar, S.; Vorobel, V.] Charles Univ Prague, Inst Particle & Nucl Phys, Fac Math & Phys, CZ-180008 Prague 8, Czech Republic. [Augsten, K.; Holy, T.; Horazdovsky, T.; Hubacek, Z.; Jakubek, J.; Kohout, Z.; Kral, V.; Krejci, F.; Pospisil, S.; Simak, V.; Slavicek, T.; Smolek, K.; Sodomka, J.; Solar, M.; Solc, J.; Sopko, V.; Sopko, B.; Stekl, I.; Turecek, D.; Vacek, V.; Vlasak, M.; Vokac, P.] Czech Tech Univ, CZ-16635 Prague 6, Czech Republic. [Borisov, A.; Denisov, S. P.; Fakhrutdinov, R. M.; Fenyuk, A. B.; Ivashin, A. V.; Kabachenko, V. V.; Karyukhin, A. N.; Korotkov, V. A.; Kozhin, A. S.; Makouski, M.; Minaenko, A. A.; Myagkov, A. G.; Solodkov, A. A.; Solovyanov, O. V.; Starchenko, E. A.; Zaitsev, A. M.; Zenin, O.] State Res Ctr, Inst High Energy Phys, Protvino 142281, Moscow Region, Russia. [Adye, T.; Baines, J. I.; Barnett, B. M.; Burke, S.; Dallison, S. J.; Dewhurst, A.; Emeliyanov, D.; Gallop, B. J.; Gee, C. N. P.; Haywood, S. J.; Kirk, J.; Mattravers, C.; McCubbin, N. A.; McMahon, S. J.; Middleton, R. P.; Murray, W. J.; Nash, M.; Qian, W.; Sankey, D. P. C.; Scott, W. G.; Strube, J.; Tyndel, M.; Villani, E. G.; Weber, M.; Wickens, F. J.; Wielers, M.] Rutherford Appleton Lab, Sci & Technol Facil Council, UK TI RAL Tier 1, Didcot OX11 0QX, Oxon, England. [Benslama, K.; Kalinowski, A.; Ming, Y.; Ortega, E. O.] Univ Regina, Dept Phys, Regina, SK S4S 0A2, Canada. [Tanaka, S.] Ritsumeikan Univ, Jp Kusatsu, Shiga 5258577, Japan. [Anulli, F'.; Bagnaia, P.; Biglietti, M.; Bini, C.; Borroni, S.; Ciapetti, G.; De Pedis, D.; De Salvo, A.; De Zorzi, G.; Di Domenico, A.; Dionisi, C.; Falciano, S.; Gauzzi, P.; Gentile, S.; Giagu, S.; Lacava, F.; Luci, C.; Luminari, L.; Maiani, C.; Marzano, F.; Mirabelli, G.; Nisati, A.; Pasqualucci, E.; Petrolo, E.; Pontecorvo, L.; Rescigno, M.; Camillocci, E. Solfaroli; Spila, F.; Valente, P.; Vari, R.; Veneziano, S.; Zanello, L.] INFN Sez Roma I, IT-00185 Rome, Italy. [Bagnaia, P.; Biglietti, M.; Bini, C.; Borroni, S.; Ciapetti, G.; De Zorzi, G.; Di Domenico, A.; Dionisi, C.; Gauzzi, P.; Gentile, S.; Giagu, S.; Lacava, F.; Luci, C.; Maiani, C.; Camillocci, E. Solfaroli; Spila, F.; Zanello, L.] Univ Roma La Sapienza, Dipartimento Fis, IT-00185 Rome, Italy. [Aielli, G.; Camarri, P.; Cardarelli, R.; Cattani, G.; Di Ciaccio, A.; Di Nardo, R.; Di Simone, A.; Liberti, B.; Marchese, F.; Salamon, A.; Santonico, R.] INFN Sez Roma Tor Vergata, IT-00133 Rome, Italy. [Aielli, G.; Camarri, P.; Cattani, G.; Di Ciaccio, A.; Di Nardo, R.; Di Simone, A.; Marchese, F.; Santonico, R.] Univ Roma Tor Vergata, Dipartimento Fis, IT-00133 Rome, Italy. [Baroncelli, A.; Branchini, P.; Ceradini, F.; Di Luise, S.; Farilla, A.; Graziani, E.; Iodice, M.; Orestano, D.; Passeri, A.; Pastore, F.; Petrucci, F.; Ruggieri, F.; Stanescu, C.] INFN Sez Roma Tre, IT-00146 Rome, Italy. [Ceradini, F.; Di Luise, S.; Orestano, D.; Pastore, F.; Petrucci, F.] Univ Roma Tre, Dipartimento Fis, IT-00146 Rome, Italy. [Benchekroun, D.; Chafaq, A.; Gouighri, M.; Goujdami, D.; Hoummada, A.] Univ Hassan 2, Fac Sci Ain Chock, RUPHE, Ma Casablanca, Russia. Ctr Natl Energie Sci Tech Nucl CNESTEN, Rabat 10001, Morocco. [Derkaoui, J. E.] Univ Mohamed Premier, Fac Sci, LPTPM, Oujda 60000, Morocco. [El Moursli, R. Cherkaoui; Ghazlane, H.] Univ Mohammed 5, Fac Sci, Rabat 10000, Morocco. [Bachacou, H.; Bauer, F.; Besson, N.; Boonekamp, M.; Chevalier, L.; Chevallier, F.; Ernwein, J.; Etienvre, A. I.; Formica, A.; Gautard, V.; Guyot, C.; Hassani, S.; Kozanecki, W.; Lancon, E.; Laporte, J. F.; Le Menedeu, E.; Legendre, M.; Lenzi, B.; Mansoulie, B.; Marzin, A.; Meyer, J. -P.; Mountricha, E.; Nicolaidou, R.; Ouraou, A.; Ponsot, P.; Resende, B.; Royon, C. R.; Schune, Ph.; Schwindling, J.] Ctr Etud Saclay, CEA, DSM IRFU, FR-91191 Gif Sur Yvette, France. [Bangert, A.; Chouridou, S.; Fowler, K.; Grillo, A. A.; Hansl-Kozanecka, T.; Hare, G. A.; Litke, A. M.; Lockman, W. S.; Manning, P. M.; Mitrevski, J.; Nielsen, J.; Sadrozinski, H. F. -W.; Schumm, B. A.; Seiden, A.; Spencer, E.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Daly, C. H.; Goussiou, A. G.; Griffiths, J.; Harris, O. M.; Lubatti, H. J.; Policicchio, A.; Rosati, S.; Rothberg, J.; Twomey, M. S.; Ventura, D.; Watts, G.; Zhao, T.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Anastopoulos, C.; Costanzo, D.; Donszelmann, T. Cuhadar; Dawson, I.; Duxfield, R.; Hodgkinson, M. C.; Hodgson, P.; Johansson, P.; Korolkova, E. V.; Mayne, A.; Nicolas, L.; Owen, S.; Paganis, E.; Shaw, K.; Sutton, M. R.; Tovey, D. R.; Tsionou, D.; Xu, D.] Univ Sheffield, Dept Phys & Astron, Sheffield S3 7RH, S Yorkshire, England. [Hasegawa, Y.; Ohshita, H.; Takeshita, T.] Shinshu Univ, Dept Phys, Fac Sci, Matsumoto, Jp Nagano 3908621, Japan. [Buchholz, P.; Fleck, I.; Grybel, K.; Ibragimov, I.; Rammes, M.; Sipica, V.; Stahl, T.; Walkowiak, W.; Werthenbach, U.; Ziolkowski, M.] Univ Siegen, Fachbereich Phys, D-57068 Siegen, Germany. [Godfrey, J.; Komaragiri, J. R.; O'Neil, D. C.; Petteni, M.; Schouten, D.; Spreitzer, T.; Stelzer, B.; Vetterli, M. C.] Simon Fraser Univ, Dept Phys, Ca Burnaby, BC V5A 1S6, Canada. [Aracena, I.; Asai, M.; Barklow, T.; Bartoldus, R.; Bawa, H. S.; Butler, B.; Gao, Y. S.; Grenier, P.; Haas, A.; Hansson, P.; Horn, C.; Jackson, P.; Kim, P. C.; Kocian, M.; Miller, D. W.; Mount, R.; Nelson, T. K.; Salnikov, A.; Schwartzman, A.; Silverstein, D.; Smith, D.; Su, D.; Wilson, M. G.; Wittgen, M.; Wright, D.; Young, C.] SLAC Natl Accelerator Lab, Stanford, CA 94309 USA. [Batkova, L.; Federic, P.; Lovas, L.; Pecsy, M.; Stavina, P.; Sykora, I.; Tokar, S.; Zenis, T.] Comenius Univ, Fac Math Phys & Informat, SK-84248 Bratislava, Slovakia. [Antos, J.; Bruncko, D.; Ferencei, J.; Kladiva, E.; Strizenec, P.] Slovak Acad Sci, Dept Subnucl Phys, Inst Expt Phys, SK-04353 Kosice, Slovakia. [Asman, B.; Bohm, C.; Clement, C.; Eriksson, D.; Gellerstedt, K.; Hellman, S.; Hillert, S.; Johansen, M.; Johansson, K. E.; Jon-And, K.; Milstead, D. A.; Moa, T.; Nordkvist, B.; Ohm, C. C.; Sellden, B.; Silverstein, S. B.; Sjoelin, J.; Tylmad, M.; Yang, Z.] Stockholm Univ, Dept Phys, SE-10691 Stockholm, Sweden. [Asman, B.; Clement, C.; Gellerstedt, K.; Hellman, S.; Hillert, S.; Johansen, M.; Jon-And, K.; Milstead, D. A.; Moa, T.; Nordkvist, B.; Ohm, C. C.; Sjoelin, J.; Tylmad, M.; Yang, Z.] Oskar Klein Ctr, SE-10691 Stockholm, Sweden. [Grahn, K. -J.; Lund-Jensen, B.] Royal Inst Technol KTH, Dept Phys, SE-10691 Stockholm, Sweden. [Ahmad, A.; Caputo, R.; Deluca, C.; DeWilde, B.; Engelmann, R.; Farley, J.; Goodson, J. J.; Grassi, V.; Gray, J. A.; Grimm, K.; Hobbs, J.; Jia, J.; Khodinov, A.; McCarthy, R. L.; Rijssenbeek, M.; Schamberger, R. D.; Tsybychev, D.; Yurkewicz, A.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [De Santo, A.; Potter, C. J.; Salvatore, F.] Univ Sussex, Dept Phys & Astron, Brighton BN1 9QH, E Sussex, England. [Lee, J. S. H.; Peak, L. S.; Saavedra, A. F.; Varvell, K. E.; Waugh, A. T.] Univ Sydney, Sch Phys, Au Sydney, NSW 2006, Australia. [Chu, M. L.; Hou, S.; Lee, S. C.; Liang, Z.; Lin, S. C.; Liu, D.; Mazini, R.; Meng, Z.; Ren, Z. L.; Soh, D. A.; Teng, P. K.; Wang, S. M.; Zhong, J.; Zhou, Y.] Acad Sinica, Inst Phys, TW-11529 Taipei, Taiwan. [Harpaz, S. Behar; Ben Ami, S.; Bressler, S.; Hershenhorn, A. D.; Kajomovitz, E.; Rozen, Y.; Tarem, S.; Tennenbaum-Katan, Y. D.; Vallecorsa, S.] Technion Israel Inst Technol, Dept Phys, IL-32000 Technion, Haifa, Israel. [Abramowicz, H.; Alexander, G.; Amram, N.; Bella, G.; Benary, O.; Benhammou, Y.; Brodet, E.; Etzion, E.; Gershon, A.; Ginzburg, J.; Guttman, N.; Hod, N.; Kreisel, A.; Mahalalel, Y.; Munwes, Y.; Oren, Y.; Reinherz-Aronis, E.; Silver, Y.; Soffer, A.; Urkovsky, E.] Tel Aviv Univ, Raymond & Beverly Sackler Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Iliadis, D.; Kordas, K.; Nomidis, I.; Petridou, C.; Sampsonidis, D.] Aristotle Univ Thessaloniki, Dept Phys, Fac Sci, Div Nucl & Particle Phys, GR-54124 Thessaloniki, Greece. [Akimoto, G.; Asai, S.; Azuma, Y.; Dohmae, T.; Isobe, T.; Kanaya, N.; Kaneda, M.; Kataoka, Y.; Kawamoto, T.; Kessoku, K.; Kobayashi, T.; Kubota, T.; Mashimo, T.; Masubuchi, T.; Matsunaga, H.; Nakamura, K.; Oda, S.; Okuyama, T.; Sakamoto, H.; Suzuki, T.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamamoto, S.; Yamamura, T.; Yamazaki, T.] Univ Tokyo, Int Ctr Elementary Particle Phys, Jp Tokyo 1130033, Japan. [Akimoto, G.; Asai, S.; Azuma, Y.; Dohmae, T.; Isobe, T.; Kanaya, N.; Kaneda, M.; Kataoka, Y.; Kawamoto, T.; Kessoku, K.; Kobayashi, T.; Kubota, T.; Mashimo, T.; Masubuchi, T.; Matsunaga, H.; Nakamura, K.; Oda, S.; Okuyama, T.; Sakamoto, H.; Suzuki, T.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamamoto, S.; Yamamura, T.; Yamazaki, T.] Dept Phys, Bunkyo Ku, Jp Tokyo 1130033, Japan. [Bratzler, U.; Fukunaga, C.] Tokyo Metropolitan Univ, Grad Sch Sci & Technol, Hachioji, Tokyo 1920397, Japan. [Jinnouchi, O.] Tokyo Inst Technol, Meguro Ku, Tokyo 1528551, Japan. [Bain, T.; Beare, B.; Brelier, B.; Montero, S. Carron; Cheung, S. L.; Deviveiros, P. O.; Dhaliwal, S.; Farooque, T.; Fatholahzadeh, B.; Gibson, A.; Guo, B.; Knecht, N. S.; Krieger, P.; Orr, R. S.; Rezvani, R.; Rosenbaum, G. A.; Sandhu, P.; Savard, P.; Sinervo, P.; Tardif, D.; Teuscher, R. J.; Thompson, P. D.; Trischuk, W.] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada. [Azuelos, G.; Canepa, A.; Caron, B.; Chekulaev, S. V.; Fortin, D.; Gingrich, D. M.; Kurchaninov, L. L.; Nugent, I. M.; Oakham, F. G.; Oram, C. J.; Savard, P.; Stelzer-Chilton, O.; Tafirout, R.; Trigger, I. M.; Vetterli, M. C.] TRIUMF, ATLAS Canada Tier Data Ctr 1, Vancouver, BC V6T 2A3, Canada. [Idarraga, J.; Taylor, W.] York Univ, Dept Phys & Astron, Toronto, ON M3J 1P3, Canada. [Hara, K.; Kim, S. H.; Kurata, M.; Nagai, K.; Ukegawa, F.; Yamada, M.] Univ Tsukuba, Inst Pure & Appl Sci, Tsukuba, JP Ibaraki 3058571, Japan. [Hamilton, S.; Napier, A.; Rolli, S.; Sliwa, K.; Todorova-Nova, S.] Tufts Univ, Ctr Sci & Technol, Medford, MA 02155 USA. [Losada, M.; Mendoza Navas, L.; Moreno, D.; Navarro, G.; Roa Romero, D. A.; Rodriguez, D.] Univ Antonio Narino, Ctr Invest, Bogota, Colombia. [Avolio, G.; Benedict, B. H.; Bold, T.; Bondioli, M.; Ciobotaru, M. D.; Corso-Radu, A.; Deng, J.; Dobson, M.; Eschrich, I. Gough; Grabowska-Bold, I.; Kolos, S.; Lankford, A. J.; Garcia, R. Murillo; Okawa, H.; Porter, R.; Schernau, M.; Stancu, S. N.; Taffard, A.; Toggerson, B.; Unel, G.; Werth, M.; Whiteson, D.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Acharya, B. S.; Cauz, D.; Cobal, M.; De Sanctis, U.; Del Papa, C.; Giordani, M. P.; Luisa, L.; Pinamonti, M.; Suruliz, K.] INFN Grp Coll Udine, IT-34014 Trieste, Italy. [Acharya, B. S.; Suruliz, K.] Abdus Salaam Int Ctr Theoret Phys, IT-34014 Trieste, Italy. [Cauz, D.; Cobal, M.; De Sanctis, U.; Del Papa, C.; Giordani, M. P.; Luisa, L.; Pinamonti, M.] Univ Udine, Dipartimento Fis, IT-33100 Udine, Italy. [Benekos, N.; Coggeshall, J.; Cortes-Gonzalez, A.; Errede, D.; Errede, S.; Khandanyan, H.; Lie, K.; Liss, T. M.; McCarn, A.; Neubauer, M. S.; Sfyrla, A.; Vichou, I.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Belanger-Champagne, C.; Brenner, R.; Buszello, C. P.; Coniavitis, E.; Ekelof, T.; Ellert, M.; Ferrari, A.; Flechl, M.] Uppsala Univ, Dept Phys & Astron, SE-5120 Uppsala, Sweden. [Amoros, G.; Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Escobar, C.; Ferrer, A.; Fuster, J.; Garcia, C.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Minano, M.; Mitsou, V. A.; Moles-Valls, R.; Moreno Llacer, M.; Oliver Garcia, E.; Perez Garcia-Estan, M. T.; Ros, E.; Salt, J.; Solans, C. A.; Sanchez, J.; Torro Pastor, E.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.; Wildauer, A.] Inst Fis Corpuscular IFIC Ctr Mixto UVEG CSIC, ES-46071 Valencia, Spain. [Amoros, G.; Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Escobar, C.; Ferrer, A.; Fuster, J.; Garcia, C.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Minano, M.; Mitsou, V. A.; Moles-Valls, R.; Moreno Llacer, M.; Oliver Garcia, E.; Perez Garcia-Estan, M. T.; Ros, E.; Salt, J.; Solans, C. A.; Sanchez, J.; Torro Pastor, E.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.; Wildauer, A.] Univ Valencia, Dept Fis At Mol & Nucl, Barcelona 08193, Spain. [Amoros, G.; Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Escobar, C.; Ferrer, A.; Fuster, J.; Garcia, C.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Minano, M.; Mitsou, V. A.; Moles-Valls, R.; Moreno Llacer, M.; Oliver Garcia, E.; Perez Garcia-Estan, M. T.; Ros, E.; Salt, J.; Solans, C. A.; Sanchez, J.; Torro Pastor, E.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.; Wildauer, A.] Inst Microelect Barcelona IMB CNM CSIC, Barcelona 08193, Spain. [Axen, D.; Gay, C.; Loh, C. W.; Mills, W. J.; Muir, A.] Univ British Columbia, Dept Phys, Ca Vancouver, BC V6T 1Z1, Canada. [Astbury, A.; Banerjee, S.; Bansal, V.; Berghaus, F.; Courneyea, L.; Fincke-Keeler, M.; Ince, T.; Keeler, R.; Kowalewski, R.; Lefebvre, M.; Lessard, J. -R.; McPherson, R. A.; Plamondon, M.; Poffenberger, P.; Sobie, R.; Taylor, R. P.] Univ Victoria, Dept Phys & Astron, Victoria, BC V8W 3P6, Canada. [Yorita, K.] Waseda Univ, WISE, Shinjuku Ku, Tokyo 1698555, Japan. [Alon, R.; Duchovni, E.; Gabizon, O.; Gross, E.; Klier, A.; Lellouch, D.; Levinson, L. J.; Mikenberg, G.; Milov, A.; Milstein, D.; Silbert, O.; Smakhtin, V.; Vitells, O.] Weizmann Inst Sci, Dept Particle Phys, IL-76100 Rehovot, Israel. [Asfandiyarov, R.; Montoya, G. D. Carrillo; Hernandez, A. M. Castaneda; Castaneda-Miranda, E.; Chen, X.; Dos Anjos, A.; Fang, Y.; Castillo, L. R. Flores; Gutzwiller, O.; Jared, R. C.; Cheong, A. Leung Fook; Li, H.; Ma, L. L.; Garcia, B. R. Mellado; Pan, Y. B.; Morales, M. I. Pedraza; Peng, H.; Poveda, J.; Quayle, W. B.; Sarangi, T.; Wang, H.; Wiedenmann, W.; Wu, S. L.; Xu, N.; Zhu, Y.; Zobernig, G.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Fleischmann, P.; Meyer, J.; Redelbach, A.; Stroehmer, R.; Trefzger, T.; Verducci, M.] Univ Wurzburg, Inst Phys, D-97074 Wurzburg, Germany. [Barisonzi, M.; Becks, K. H.; Boek, J.; Braun, H. M.; Dopke, J.; Flick, T.; Glitza, K. W.; Gorfine, G.; Hamacher, K.; Harenberg, T.; Henss, T.; Hirschbuehl, D.; Kalinin, S.; Kersten, S.; Kind, P.; Kuhl, T.; Lenz, T.; Lenzen, G.; Maettig, P.; Mechtel, M.; Sandhoff, M.; Sandvoss, S.; Sanny, B.; Schroers, M.; Schultes, J.; Voss, T. T.; Zeitnitz, C.] Berg Univ Wuppertal, Fachbereich C, D-42097 Wuppertal, Germany. [Adelman, J.; Atoian, G.; Auerbach, B.; Baker, O. K.; Almenar, C. Cuenca; Czyczula, Z.; Demers, S.; Golling, T.; Hsu, P. J.; Issakov, V.; Kaplan, B.; Kastoryano, M.; Lockwitz, S.; Loginov, A.; Martin, A. J.; Poblaguev, A.; Thioye, M.; Tipton, P.; Wall, R.; Zeller, M.] Yale Univ, Dept Phys, New Haven, CT 06520 USA. [Hakobyan, H.] Yerevan Phys Inst, AM-375036 Yerevan, Armenia. Forschungszentrum Karlsruhe, GridKA Tier FZK 1, Steinbuch Ctr Comp SCC, D-76344 Eggenstein Leopoldshafen, Germany. Univ Autonoma Barcelona UAB, E-08193 Bellaterra, Spain. [Biscarat, C.; Cogneras, E.; Rahal, G.] CNRS, IN2P3, Ctr Calcul, F-69622 Villeurbanne, France. INFN CNAF, I-40127 Bologna, Italy. NORDUnet AS, Nord Data Grid Facil, DK-2770 Kastrup, Denmark. SARA Reken Netwerkdiensten, NL-1098 XG Amsterdam, Netherlands. Acad Sinica, Inst Phys, Acad Sinica Grid Comp, Taipei 11529, Taiwan. [Conventi, F.; Della Pietra, M.] Univ Napoli Parthenope, IT-80133 Naples, Italy. [Dhullipudi, R.; Greenwood, Z. D.; Sawyer, L.] Louisiana Tech Univ, Ruston, LA 71272 USA. [Gao, Y. S.] Calif State Univ Fresno, Dept Phys, Fresno, CA 93740 USA. [Gray, H. M.; Mateos, D. Lopez; Marshall, Z.; Perez, K.] CALTECH, Dept Phys, Pasadena, CA 91125 USA. [Haller, J.; Kono, T.; Terwort, M.; Wildt, M. A.] Univ Hamburg, Inst Expt Phys, D-22761 Hamburg, Germany. [Liang, Z.; Soh, D. A.] Sun Yat Sen Univ, Sch Phys & Engn, Guangzhou, Guangdong, Peoples R China. [Liu, D.; Meng, Z.] Shandong Univ, Sch Phys, Jinan 250100, Peoples R China. [Park, W.; Purohit, M.; Trivedi, A.] Univ S Carolina, Dept Phys & Astron, Columbia, SC 29208 USA. [Pasztor, G.; Toth, J.] KFKI Res Inst Particle & Nucl Phys, Budapest, Hungary. [Richter-Was, E.] Jagiellonian Univ, Inst Phys, Krakow, Poland. RP Aad, G (reprint author), Univ Freiburg, Fak Math & Phys, Hermann Herder Str 3, D-79104 Freiburg, Germany. RI Riu, Imma/L-7385-2014; Aguilar Saavedra, Juan Antonio/F-1256-2016; Leyton, Michael/G-2214-2016; Casado, Pilar/H-1484-2015; Mashinistov, Ruslan/M-8356-2015; Mikestikova, Marcela/H-1996-2014; Chudoba, Jiri/G-7737-2014; Lei, Xiaowen/O-4348-2014; Ventura, Andrea/A-9544-2015; Villaplana Perez, Miguel/B-2717-2015; Mir, Lluisa-Maria/G-7212-2015; Wemans, Andre/A-6738-2012; Kartvelishvili, Vakhtang/K-2312-2013; Dawson, Ian/K-6090-2013; O'Shea, Val/G-1279-2010; Staroba, Pavel/G-8850-2014; Lokajicek, Milos/G-7800-2014; Kupco, Alexander/G-9713-2014 OI Riu, Imma/0000-0002-3742-4582; Aguilar Saavedra, Juan Antonio/0000-0002-5475-8920; Leyton, Michael/0000-0002-0727-8107; Casado, Pilar/0000-0002-0394-5646; Mashinistov, Ruslan/0000-0001-7925-4676; Mikestikova, Marcela/0000-0003-1277-2596; Lei, Xiaowen/0000-0002-2564-8351; Ventura, Andrea/0000-0002-3368-3413; Villaplana Perez, Miguel/0000-0002-0048-4602; Mir, Lluisa-Maria/0000-0002-4276-715X; Wemans, Andre/0000-0002-9669-9500; O'Shea, Val/0000-0001-7183-1205; NR 24 TC 0 Z9 0 U1 0 U2 13 PU SPRINGER-VERLAG BERLIN PI BERLIN PA HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY BN 978-3-642-22115-6 PY 2010 BP 101 EP 142 D2 10.1007/978-3-642-22116-3 PG 42 WC Instruments & Instrumentation; Physics, Particles & Fields SC Instruments & Instrumentation; Physics GA BAF48 UT WOS:000304018500004 ER PT B AU Aad, G Abbott, B Abdallah, J Abdelalim, AA Abdesselam, A Abdinov, O Abi, B Abolins, M Abramowicz, H Abreu, H Acharya, BS Adams, DL Addy, TN Adelman, J Adorisio, C Adragna, P Adye, T Aefsky, S Aguilar-Saavedra, JA Aharrouche, M Ahlen, SP Ahles, E Ahmad, A Ahmed, H Ahsan, M Aielli, G Akdogan, T Akesson, TPA Akimoto, G Akimov, AV Aktas, A Alam, MS Alam, MA Albrand, S Aleksa, M Aleksandrov, IN Alexa, C Alexander, G Alexandre, G Alexopoulos, T Alhroob, M Aliev, M Alimonti, G Alison, J Aliyev, M Allport, PP Allwood-Spiers, SE Almond, J Aloisio, A Alon, R Alonso, A Alviggi, MG Amako, K Amelung, C Amorim, A Amoros, G Amram, N Anastopoulos, C Andeen, T Anders, CF Anderson, KJ Andreazza, A Andrei, V Anduaga, XS Angerami, A Anghinolfi, F Anjos, N Annovi, A Antonaki, A Antonelli, M Antonelli, S Antos, J Antunovic, B Anulli, F Aoun, S Arabidze, G Aracena, I Arai, Y Arce, ATH Archambault, JP Arfaoui, S Arguin, JF Argyropoulos, T Arik, M Armbruster, AJ Arnaez, O Arnault, C Artamonov, A Arutinov, D Asai, M Asai, S Asfandiyarov, R Ask, S Asman, B Asner, D Asquith, L Assamagan, K Astbury, A Astvatsatourov, A Atoian, G Auerbach, B Augsten, K Aurousseau, M Austin, N Avolio, G Avramidou, R Axen, D Ay, C Azuelos, G Azuma, Y Baak, MA Bach, AM Bachacou, H Bachas, K Backes, M Badescu, E Bagnaia, P Bai, V Bain, T Baines, JT Baker, OK Baker, MD Baker, S Pedrosa, FBD Banas, E Banerjee, P Banerjee, S Banfi, D Bangert, A Bansal, V Baranov, SP Baranov, S Barashkou, A Barber, T Barberio, EL Barberis, D Barbero, M Bardin, DY Barillari, T Barisonzi, M Barklow, T Barlow, N Barnett, BM Barnett, RM Baroncelli, A Barr, AJ Barreiro, F da Costa, JBG Barrillon, P Bartoldus, R Bartsch, D Bates, RL Batkova, L Batley, JR Battaglia, A Battistin, M Bauer, F Bawa, HS Bazalova, M Beare, B Beau, T Beauchemin, PH Beccherle, R Becerici, N Bechtle, P Beck, GA Beck, HP Beckingham, M Becks, KH Beddall, AJ Beddall, A Bednyakov, VA Bee, C Begel, M Harpaz, SB Behera, PK Beimforde, M Belanger-Champagne, C Bell, PJ Bell, WH Bella, G Bellagamba, L Bellina, F Bellomo, M Belloni, A Belotskiy, K Beltramello, O Ben Ami, S Benary, O Benchekroun, D Bendel, M Benedict, BH Benekos, N Benhammou, Y Benincasa, GP Benjamin, DP Benoit, M Bensinger, JR Benslama, K Bentvelsen, S Beretta, M Berge, D Kuutmann, EB Berger, N Berghaus, F Berglund, E Beringer, J Bernat, P Bernhard, R Bernius, C Berry, T Bertin, A Besana, MI Besson, N Bethke, S Bianchi, RM Bianco, M Biebel, O Biesiada, J Biglietti, M Bilokon, H Bindi, M Binet, S Bingul, A Bini, C Biscarat, C Bitenc, U Black, KM Blair, RE Blanchard, JB Blanchot, G Blocker, C Blondel, A Blum, W Blumenschein, U Bobbink, GJ Bocci, A Boehler, M Boek, J Boelaert, N Boeser, S Bogaerts, JA Bogouch, A Bohm, C Bohm, J Boisvert, V Bold, T Boldea, V Bondarenko, VG Bondioli, M Boonekamp, M Bordoni, S Borer, C Borisov, A Borissov, G Borjanovic, I Borroni, S Bos, K Boscherini, D Bosman, M Boterenbrood, H Bouchami, J Boudreau, J Bouhova-Thacker, EV Boulahouache, C Bourdarios, C Boveia, A Boyd, J Boyko, IR Bozovic-Jelisavcic, I Bracinik, JJ Braem, A Branchini, P Branclenburg, GW Brandt, A Brandt, G Brandt, O Bratzler, U Brau, B Brau, JE Braun, HM Brelier, B Bremer, J Brenner, R Bressler, S Britton, D Brochu, FM Brock, I Brock, R Brodet, E Bromberg, C Brooijmans, G Brooks, WK Brown, G de Renstrom, PAB Bruncko, D Bruneliere, R Brunet, S Bruni, A Bruni, G Bruschi, M Bucci, F Buchanan, J Buchholz, P Buckley, AG Budagov, IA Budick, B Buescher, V Bugge, L Bulekov, O Bunse, M Buran, T Burckhart, H Burdin, S Burgess, T Burke, S Busato, E Bussey, P Buszello, CP Butin, F Butler, B Butler, JM Buttar, CM Butterworth, JM Byatt, T Caballero, J Urban, SC Caforio, D Cakir, O Calafiura, P Calderini, G Calfayan, P Calkins, R Caloba, LP Calvet, D Camarri, P Cameron, D Campana, S Campanelli, M Canale, V Canelli, F Canepa, A Cantero, J Capasso, L Garrido, MDMC Caprini, I Caprini, M Capua, M Caputo, R Caramarcu, C Cardarelli, R Carli, T Carlino, G Carminati, L Caron, B Caron, S Montoya, GDC Montero, SC Carter, AA Carter, JR Carvalho, J Casadei, D Casado, MP Cascella, M Hernandez, AMC Castaneda-Miranda, E Gimenez, VC Castro, NF Cataldi, G Catinaccio, A Catmore, JR Cattai, A Cattani, G Caughron, S Cauz, D Cavalleri, P Cavalli, D Cavalli-Sforza, M Cavasinni, V Ceradini, F Cerqueira, AS Cerri, A Cerrito, L Cerutti, F Cetin, SA Chafaq, A Chakraborty, D Chan, K Chapman, JD Chapman, JW Chareyre, E Charlton, DG Chavda, V Cheatham, S Chekanov, S Chekulaev, SV Chelkov, GA Chen, H Chen, S Chen, X Cheplakov, A Chepurnov, VF El Moursli, RC Tcherniatine, V Chesneanu, D Cheu, E Cheung, SL Chevalier, L Chevallier, F Chiarella, V Chiefari, G Chikovani, L Childers, JT Chilingarov, A Chiodini, G Chizhov, V Choudalakis, G Chouridou, S Christidi, IA Christov, A Chromek-Burckhart, D Chu, ML Chudoba, J Ciapetti, G Ciftci, AK Ciftci, R Cinca, D Cindro, V Ciobotaru, MD Ciocca, C Ciocio, A Cirilli, M Citterio, M Clark, A Clark, PJ Cleland, W Clemens, JC Clement, B Clement, C Coadou, Y Cobal, M Coccaro, A Cochran, J Coggeshall, J Cogneras, E Colijn, AP Collard, C Collins, NJ Collins-Tooth, C Collot, J Colon, G Muino, PC Coniavitis, E Consonni, M Constantinescu, S Conta, C Conventi, F Cooke, M Cooper, BD Cooper-Sarkar, AM Cooper-Smith, NJ Copic, K Cornelissen, T Corradi, M Corriveau, F Corso-Radu, A Cortes-Gonzalez, A Cortiana, G Costa, G Costa, MJ Costanzo, D Costin, T Cote, D Torres, RC Courneyea, L Cowan, G Cowden, C Cox, BE Cranmer, K Cranshaw, J Cristinziani, M Crosetti, G Crupi, R Crepe-Renaudin, S Almenar, CC Donszelmann, TC Curatolo, M Curtis, CJ Cwetanski, P Czyczula, Z D'Auria, S D'Onofrio, M D'Orazio, A Da Via, C Dabrowski, W Dai, T Dallapiccola, C Dallison, SJ Daly, CH Dam, M Danielsson, HO Dannheim, D Dao, V Darbo, G Darlea, GL Davey, W Davidek, T Davidson, N Davidson, R Davies, M Davison, AR Dawson, I Daya, RK De, K de Asmundis, R De Castro, S Salgado, PEDF De Cecco, S de Graat, J De Groot, N de Jong, P De Mora, L Branco, MD De Pedis, D De Salvo, A De Sanctis, U De Santo, A De Regie, JBD De Zorzi, G Dean, S Dedovich, DV Degenhardt, J Dehchar, M Del Papa, C Del Peso, J Del Prete, T Dell'Acqua, A Dell'Asta, L Della Pietra, M della Volpe, D Delmastro, M Delsart, PA Deluca, C Demers, S Demichev, M Demirkoz, B Deng, J Deng, W Denisov, SP Derkaoui, JE Derue, F Dervan, P Desch, K Deviveiros, PO Dewhurst, A DeWilde, B Dhaliwal, S Dhullipudi, R Di Ciaccio, A Di Ciaccio, L Di Mattia, A Di Domenico, A Di Girolamo, A Di Girolamo, B Di Luise, S Di Nardo, R Di Simone, A Di Sipio, R Diaz, MA Diblen, F Diehl, EB Dietrich, J Dietzsch, TA Diglio, S Yagci, KD Dingfelder, J Dionisi, C Dita, R Dita, S Dittus, F Djama, F Djilkibaev, R Djobava, T do Vale, MAB Wemans, ADV Doan, TKO Dobos, D Dobson, E Dobson, M Doglioni, C Doherty, T Dolejsi, J Dolenc, I Dolezal, Z Dolgoshein, BA Dohmae, T Donega, M Donini, J Dopke, J Doria, A Dos Anjos, A Dotti, A Dova, MT Doxiadis, A Doyle, AT Drasal, Z Dris, M Dubbert, J Duchovni, E Duckeck, G Dudarev, A Dudziak, F Duhrssen, M Duflot, L Dufour, MA Dunford, M Yildiz, HD Dushkin, A Duxfield, R Dwuznik, M Duren, M Ebenstein, WL Ebke, J Eckweiler, S Edmonds, K Edwards, CA Egorov, K Ehrenfeld, W Ehrich, T Eifert, T Eigen, G Einsweiler, K Eisenhandler, E Ekelof, T El Kacimi, M Ellert, M Elles, S Ellinghaus, F Ellis, K Ellis, N Elmsheuser, J Elsing, M Emeliyanov, D Engelmann, R Engl, A Epp, B Eppig, A Erdmann, J Ereditato, A Eriksson, D Ermoline, I Ernst, J Ernst, M Ernwein, J Errede, D Errede, S Ertel, E Escalier, M Escobar, C Curull, XE Esposito, B Etienvre, AI Etzion, E Evans, H Fabbri, L Fabre, C Facius, K Fakhrutdinov, RM Falciano, S Fang, Y Fanti, M Farbin, A Farilla, A Farley, J Farooque, T Farrington, SM Farthouat, P Fassnacht, P Fassouliotis, D Fatholahzadeh, B Fayard, L Fayette, F Febbraro, R Federic, P Fedin, OL Fedorko, W Feligioni, L Felzmann, CU Feng, C Feng, EJ Fenyuk, AB Ferencei, J Ferland, J Fernandes, B Fernando, W Ferrag, S Ferrando, J Ferrara, V Ferrari, A Ferrari, P Ferrari, R Ferrer, A Ferrer, ML Ferrere, D Ferretti, C Fiascaris, M Fiedler, F Filipcic, A Filippas, A Filthaut, F Fincke-Keeler, M Fiolhais, MCN Fiorini, L Firan, A Fischer, G Fisher, MJ Flechl, M Fleck, I Fleckner, J Fleischmann, P Fleischmann, S Flick, T Castillo, LRF Flowerdew, MJ Martin, TF Formica, A Forti, A Fortin, D Fournier, D Fowler, AJ Fowler, K Fox, H Francavilla, P Franchino, S Francis, D Franklin, M Franz, S Fraternal, M Fratina, S Freestone, J French, ST Froeschl, R Froidevaux, D Frost, JA Fukunaga, C Torregrosa, EF Fuster, J Gabaldon, C Gabizon, O Gadfort, T Gadomski, S Gagliardi, G Gagnon, P Galea, C Gallas, EJ Gallas, MV Gallo, V Gallop, BJ Gallus, P Galyaev, E Gan, KK Gao, YS Gaponenko, A Garcia-Sciveres, M Garcia, C Navarro, JEG Gardner, RW Garelli, N Garitaonandia, H Garonne, V Gatti, C Gaudio, G Gautard, V Gauzzi, P Gavrilenko, IL Gay, C Gaycken, G Gazis, EN Ge, P Gee, CNP Geich-Gimbel, C Gellerstedt, K Gemme, C Genest, MH Gentile, S Georgatos, F George, S Gershon, A Ghazlane, H Ghodbane, N Giacobbe, B Giagu, S Giakoumopoulou, V Giangiobbe, V Gianotti, F Gibbard, B Gibson, A Gibson, SM Gilbert, LM Gilchriese, M Gilewsky, V Gingrich, DM Ginzburg, J Giokaris, N Giordani, MP Giordano, R Giorgi, FM Giovannini, P Giraud, PF Girtler, P Giugni, D Giusti, P Gjelsten, BK Gladilin, LK Glasman, C Glazov, A Glitza, KW Glonti, GL Godfrey, J Godlewski, JJ Goebel, M Gopfert, T Goeringer, C Gossling, C Gottfert, T Goggi, V Goldfarb, S Goldin, D Golling, T Gomes, A Fajardo, LSG Goncalo, R Gonella, L Gong, C de la Hoz, SG Silva, MLG Gonzalez-Sevilla, S Goodson, JJ Goossens, L Gordon, HA Gorelov, I Gorfine, G Gorini, B Gorini, E Gorisek, A Gornicki, E Gosdzik, B Gosselink, M Gostkin, MI Eschrich, IG Gouighri, M Goujdami, D Goulette, MP Goussiou, AG Goy, C Grabowska-Bold, I Grafstrom, P Grahn, KJ Crancagnolo, S Grassi, V Gratchev, V Grau, N Gray, HM Gray, JA Graziani, E Green, B Greenshaw, T Greenwood, ZD Gregor, IM Grenier, P Griesmayer, E Griffiths, J Grigalashvili, N Grillo, AA Grimm, K Grinstein, S Grishkevich, YV Groh, M Groll, M Gross, E Grosse-Knetter, J Groth-Jensen, J Grybel, K Guicheney, C Guida, A Guillemin, T Guler, H Gunther, J Guo, B Gupta, A Gusakov, Y Gutierrez, A Gutierrez, P Guttman, N Guizwiller, O Guyot, C Gwenlan, C Gwilliam, CB Haas, A Haas, S Haber, C Hadavand, HK Hadley, DR Haefner, P Hartel, R Hajduk, Z Hakobyan, H Haller, J Hamacher, K Hamilton, A Hamilton, S Han, L Hanagaki, K Hance, M Handel, C Hanke, P Hansen, JR Hansen, JB Hansen, JD Hansen, PH Hansl-Kozanecka, T Hansson, P Hara, K Hare, GA Harenberg, T Harrington, RD Harris, OM Harrison, K Hartert, J Hartjes, F Harvey, A Hasegawa, S Hasegawa, Y Hashemi, K Hassani, S Haug, S Hauschild, M Hauser, R Havranek, M Hawkes, CM Hawkings, RJ Hayakawa, T Hayward, HS Haywood, SJ Head, SJ Hedberg, V Heelan, L Heim, S Heinemann, B Heisterkamp, S Helary, L Heller, M Hellman, S Helsens, C Hemperek, T Henderson, RCW Henke, M Henrichs, A Correia, AMH Henrot-Versille, S Hensel, C Henss, T Jimenez, YH Hershenhorn, AD Herten, G Hertenberger, R Hervas, L Hessey, NP Higon-Rodriguez, E Hill, JC Hiller, KH Hillert, S Hillier, SJ Hinchliffe, I Hines, E Hirose, M Hirsch, F Hirschbuehl, D Hobbs, J Hod, N Hodgkinson, MC Hodgson, P Hoecker, A Hoeferkamp, MR Hoffman, J Hoffmann, D Hohlfeld, M Holy, T Holzbauer, JLJ Homma, Y Horazdovsky, T Hori, T Horn, C Horner, S Horvat, S Hostachy, JY Hou, S Hoummada, A Howe, T Hrivnac, J Hryn'ova, T Hsu, PJ Hsu, SC Huang, GS Hubacek, Z Hubaut, F Huegging, F Hughes, EW Hughes, G Hurwitz, M Husemann, U Huseynov, N Huston, J Huth, J Iacobucci, G Iakovidis, G Ibragimov, I Iconomidou-Fayard, L Idarraga, J Iengo, P Igonkina, O Ikegami, Y Ikeno, M Ilchenko, Y Iliadis, D Ince, T Ioannou, P Iodice, M Quiles, AI Ishikawa, A Ishino, M Ishmukhametov, R Isobe, T Issakov, V Issever, C Istin, S Itoh, Y Ivashin, AV Iwanski, W Iwasaki, H Izen, JM Izzo, V Jackson, B Jackson, JN Jackson, P Jaekel, MR Jain, V Jakobs, K Jakobsen, S Jakubek, J Jana, DK Jansen, E Jantsch, A Janus, M Jared, RC Jarlskog, G Jeanty, L Plante, IJL Jenni, P Jez, P Jezequel, S Ji, W Jia, J Jiang, Y Belenguer, MJ Jin, S Jinnouchi, O Joffe, D Johansen, M Johansson, KE Johansson, P Johnert, S Johns, KA Jon-And, K Jones, G Jones, RWL Jones, TJ Jorge, PM Joseph, J Juranek, V Jussel, R Kabachenko, VV Kaci, M Kaczmarska, A Kado, M Kagan, H Kagan, M Kaiser, S Kajomovitz, E Kalinin, S Kalinovskaya, LV Kalinowski, A Kama, S Kanaya, N Kaneda, M Kantserov, VA Kanzaki, J Kaplan, B Kapliy, A Kaplon, J Kar, D Karagounis, M Unel, MK Kartvelishvili, V Karyukhin, AN Kashif, L Kasmi, A Kass, RD Kastanas, A Kastoryano, M Kataoka, M Kataoka, Y Katsoufis, E Katzy, J Kaushik, V Kawagoe, K Kawamoto, T Kawamura, G Kayl, MS Kayumov, F Kazanin, VA Kazarinov, MY Keates, JR Keeler, R Keener, PT Kehoe, R Keil, M Kekelidze, GD Kelly, M Kenyon, M Kepka, O Kerschen, N Kersevan, BP Kersten, S Kessoku, K Khakzad, M Khalil-zada, F Khandanyan, H Khanov, A Kharchenko, D Khodinov, A Khomich, A Khoriauli, G Khovanskiy, N Khovanskiy, V Khramov, E Khubua, J Kim, H Kim, MS Kim, PC Kim, SH Kind, O Kind, P King, BT Kirk, J Kirsch, GP Kirsch, LE Kiryunin, AE Kisielewska, D Kittelmann, T Kiyamura, H Kladiva, E Klein, M Klein, U Kleinknecht, K Klemetti, M Klier, A Klimentov, A Klingenberg, R Klinkby, EB Klioutchnikova, T Klok, PF Klous, S Kluge, EE Kluge, T Kluit, P Klute, M Kluth, S Knecht, NS Kneringer, E Ko, BR Kobayashi, T Kobel, M Koblitz, B Kocian, M Kocnar, A Kodys, P Koneke, K Konig, AC Koenig, S Kopke, L Koetsveld, E Koevesarki, P Koffas, T Koffeman, E Kohn, F Kohout, Z Kohriki, T Kolanoski, H Kolesnikov, V Koletsou, I Koll, J Kollar, D Kolos, S Kolya, SD Komar, AA Komaragiri, JR Kondo, T Kono, T Konoplich, R Konovalov, SP Konstantinidis, N Koperny, S Korcyl, K Kordas, K Korn, A Korolkov, I Korolkova, EV Korotkov, VA Kortner, O Kostka, P Kostyukhin, VV Kotov, S Kotov, VM Kotov, KY Kourkoumelis, C Koutsman, A Kowalewski, R Kowalski, H Kowalski, TZ Kozanecki, W Kozhin, AS Kral, V Kramarenko, VA Kramberger, G Krasny, MW Krasznahorkay, A Kreisel, A Krejci, F Kretzschmar, J Krieger, N Krieger, P Kroeninger, K Kroha, H Kroll, J Kroseberg, J Krstic, J Kruchonak, U Kruger, H Krumshteyn, ZV Kubota, T Kuehn, S Kugel, A Kuhl, T Kuhn, D Kukhtin, V Kulchitsky, Y Kuleshov, S Kummer, C Kuna, M Kunkle, J Kupco, A Kurashige, H Kurata, M Kurchaninov, LL Kurochkin, YA Kus, V Kwee, R La Rotonda, L Labbe, J Lacasta, C Lacava, F Lacker, H Lacour, D Lacuesta, VR Ladygin, E Lafaye, R Laforge, B Lagouri, T Lai, S Lamanna, M Lampen, CL Lampl, W Lancon, E Landgraf, U Landon, MPJ Lane, JL Lankford, AJ Lanni, F Lantzsch, K Lanza, A Laplace, S Lapoire, C Laporte, JF Lari, T Larner, A Lassnig, M Laurelli, P Lavrijsen, W Laycock, P Lazarev, AB Lazzaro, A Le Dortz, O Le Guirriec, E Le Menedeu, E Le Vine, M Lebedev, A Lebel, C LeCompte, T Ledroit-Guillon, F Lee, H Lee, JSH Lee, SC Lefebvre, M Legendre, M LeGeyt, BC Legger, F Leggett, C Lehmacher, M Miotto, GL Lei, X Leitner, R Lellouch, D Lellouch, J Lendermann, V Leney, KJC Lenz, T Lenzen, G Lenzi, B Leonhardt, K Leroy, C Lessard, JR Lester, CG Cheong, ALF Leveque, J Levin, D Levinson, LJ Leyton, M Li, H Li, S Li, X Liang, Z Liang, Z Liberti, B Lichard, P Lichtnecker, M Lie, K Liebig, W Lilley, JN Lim, H Limosani, A Limper, M Lin, SC Linnemann, JT Lipeles, E Lipinsky, L Lipniacka, A Liss, TM Lissauer, D Lister, A Litke, AM Liu, C Liu, D Liu, H Liu, JB Liu, M Liu, T Liu, Y Livan, M Lleres, A Lloyd, SL Lobodzinska, E Loch, P Lockman, WS Lockwitz, S Loddenkoetter, T Loebinger, FK Loginov, A Loh, CW Lohse, T Lohwasser, K Lokajicek, M Long, RE Lopes, L Mateos, DL Losada, M Loscutoff, P Lou, X Lounis, A Loureiro, KF Lovas, L Love, J Love, PA Lowe, AJ Lu, F Lubatti, HJ Luci, C Lucotte, A Ludwig, A Ludwig, D Ludwig, I Luehring, F Luisa, L Lumb, D Luminari, L Lund, E Lund-Jensen, B Lundberg, B Lundberg, J Lundquist, J Lynn, D Lys, J Lytken, E Ma, H Ma, LL Goia, JAM Maccarrone, G Macchiolo, A Macek, B Miguens, JM Mackeprang, R Madaras, RJ Mader, WF Maenner, R Maeno, T Mattig, P Mattig, S Martins, PJM Magradze, E Mahalalel, Y Mahboubi, K Mahmood, A Maiani, C Maidantchik, C Maio, A Majewski, S Makida, Y Makouski, M Makovec, N Malecki, P Malecki, P Maleev, VP Malek, F Mallik, U Malon, D Maltezos, S Malyshev, V Malyukov, S Lambelli, M Mameghani, R Mamuzic, J Mandelli, L Mandic, I Mandrysch, R Maneira, J Mangeard, PS Manjavidze, ID Manning, PM Manousakis-Katsikakis, A Mansoulie, B Mapelli, A Mapelli, L March, L Marchand, JF Marchese, F Marchiori, G Marcisovsky, M Marino, CP Marroquim, F Marshall, Z Marti-Garcia, S Martin, AJ Martin, AJ Martin, B Martin, B Martin, FF Martin, JP Martin, TA Latour, BMD Martinez, M Outschoorn, VM Martini, A Martyniuk, AC Marzano, F Marzin, A Masetti, L Mashimo, T Mashinistov, R Masik, J Maslennikov, AL Massa, I Massol, N Mastroberardino, A Masubuchi, T Matricon, P Matsunaga, H Matsushita, T Mattravers, C Maxfield, SJ Mayne, A Mazini, R Mazur, M Mazzanti, M McDonald, J McKee, SP McCarn, A McCarthy, RL McCubbin, NA McFarlane, KW McGlone, H Mchedlidze, G McMahon, SJ McPherson, RA Meade, A Mechnich, J Mechtel, M Medinnis, M Meera-Lebbai, R Meguro, TM Mehlhase, S Mehta, A Meier, K Meirose, B Melachrinos, C Garcia, BRM Navas, LM Meng, Z Menke, S Meoni, E Mermod, P Merola, L Meroni, C Merritt, FS Messina, AM Melcalfe, J Mete, AS Meyer, JP Meyer, J Meyer, J Meyer, TC Meyer, WT Miao, J Michal, S Micu, L Middleton, RP Migas, S Mijovic, L Mikenberg, G Mikestikova, M Mikuz, M Miller, DW Mills, WJ Mills, CM Milov, A Milstead, DA Milstein, D Minaenko, AA Minano, M Minashvili, IA Mincer, AI Mindur, B Mineev, M Ming, Y Mir, LM Mirabelli, G Misawa, S Miscetti, S Misiejuk, A Mitrevski, J Mitsou, VA Miyagawa, PS Mjornmark, JU Mladenov, D Moa, T Moed, S Moeller, V Monig, K Moser, N Mohr, W Mohrdieck-Mock, S Moles-Valls, R Molina-Perez, J Monk, J Monnier, E Montesano, S Monticelli, E Moore, RW Herrera, CM Moraes, A Morais, A Morel, J Morello, G Moreno, F Llacer, MM Morettini, P Morii, M Morley, AK Mornacchi, G Morozov, SV Morris, JD Moser, HG Mosidze, M Moss, J Mount, R Mountricha, E Mouraviev, SV Moyse, EJW Mudrinic, M Mueller, F Mueller, J Mueller, K Muller, TA Muenstermann, D Muir, A Munwes, Y Garcia, RM Murray, WJ Mussche, I Musto, E Myagkov, AG Myska, M Nadal, J Nagai, K Nagano, K Nagasaka, Y Nairz, AM Nakamura, K Nakano, I Nakatsuka, H Nanava, G Napier, A Nash, M Nation, NR Nattermann, T Naumann, T Navarro, G Nderitu, SK Neal, HA Nebot, E Nechaeva, P Negri, A Negri, G Nelson, A Nelson, TK Nemecek, S Nemethy, P Nepomuceno, AA Nessi, M Neubauer, MS Neusiedl, A Neves, RM Nevski, P Newcomer, FM Nickerson, RB Nicolaidou, R Nicolas, L Nicoletti, G Nicquevert, B Niedercorn, F Nielsen, J Nikiforov, A Nikolaev, K Nikolic-Audit, I Nikolopoulos, K Nilsen, H Nilsson, P Nisati, A Nishiyama, T Nisius, R Nodulman, L Nomachi, M Nomidis, I Nordberg, M Nordkvist, B Notz, D Novakova, J Nozaki, M Nozicka, M Nugent, IM Nuncio-Quiroz, AE Hanninger, GN Nunnemann, T Nurse, E O'Neil, DC O'Shea, V Oakham, FG Oberlack, H Ochi, A Oda, S Odaka, S Odier, J Ogren, H Oh, A Oh, SH Ohm, CC Ohshima, T Ohshita, H Ohsugi, T Okada, S Okawa, H Okumura, Y Okuyama, T Olchevski, AG Oliveira, M Damazio, DO Oliver, J Garcia, EO Olivito, D Olszewski, A Olszowska, J Omachi, C Onofre, A Onyisi, PUE Oram, CJ Oreglia, MJ Oren, Y Orestano, D Orlov, I Barrera, CO Orr, RS Ortega, EO Osculati, B Ospanov, R Osuna, C Ottersbach, JP Ould-Saada, F Ouraou, A Ouyang, Q Owen, M Owen, S Oyarzun, A Ozcan, VE Ozone, K Ozturk, N Pages, AP Aranda, CP Paganis, E Pahl, C Paige, F Pajchel, K Palestini, S Pallin, D Palma, A Palmer, JD Pan, YB Panagiotopoulou, E Panes, B Panikashvili, N Panitkin, S Pantea, D Panuskova, M Paolone, V Papadopoulou, TD Park, SJ Park, W Parker, MA Parker, SI Parodi, F Parsons, JA Parzefall, U Pasqualucci, E Passeri, A Pastore, F Pastore, F Pasztor, G Pataraia, S Pater, JR Patricelli, S Patwa, A Pauly, T Peak, LS Pecsy, M Morales, MIP Peleganchuk, SV Peng, H Penson, A Penwell, J Perantoni, M Perez, K Codina, EP Garcia-Estan, MTP Reale, VP Perini, L Pernegger, H Perrino, R Persembe, S Perus, P Peshekhonov, VD Petersen, BA Petersen, TC Petit, E Petridou, C Petrolo, E Petrucci, F Petschull, D Petteni, M Pezoa, R Phan, A Phillips, AW Piacquadio, G Piccinini, M Piegaia, R Pilcher, JE Pilkington, AD Pina, J Pinamonti, M Pinfold, JL Pinto, B Pizio, C Placakyte, R Plamondon, M Pleier, MA Poblaguev, A Poddar, S Podlyski, F Poffenberger, P Poggioli, L Pohl, M Polci, F Polesello, G Policicchio, A Polini, A Poll, J Polychronakos, V Pomeroy, D Pommes, K Ponsot, P Pontecorvo, L Pope, BG Popeneciu, GA Popovic, DS Poppleton, A Popule, J Bueso, XP Porter, R Pospelov, GE Pospisil, S Potekhin, M Potrap, IN Potter, CJ Potter, CT Potter, KP Poulard, G Poveda, J Prabhu, R Pralavorio, P Prasad, S Pravahan, R Pribyl, L Price, D Price, LE Prichard, PM Prieur, D Primavera, M Prokofiev, K Prokoshin, F Protopopescu, S Proudfoot, J Prudent, X Przysiezniak, H Psoroulas, S Ptacek, E Puigdengoles, C Purdham, J Purohit, M Puzo, P Pylypchenko, Y Qi, M Qian, J Qian, W Qin, Z Quadt, A Quarrie, DR Quayle, WB Quinonez, F Raas, M Radeka, V Radescu, V Radics, B Rador, T Ragusa, F Rahal, G Rahimi, AM Rajagopalan, S Rammensee, M Rammes, M Rauscher, F Rauter, E Raymond, M Read, AL Rebuzzi, DM Redelbach, A Redlinger, G Reece, R Reeves, K Reinherz-Aronis, E Reinsch, A Reisinger, I Reljic, D Rembser, C Ren, ZL Renkel, P Rescia, S Rescigno, M Resconi, S Resende, B Reznicek, P Rezvani, R Richards, A Richards, RA Richter, R Richter-Was, E Ridel, M Rijpstra, M Rijssenbeek, M Rimoldi, A Rinaldi, L Rios, RR Riu, I Rizatdinova, F Rizvi, E Romero, DAR Robertson, SH Robichaud-Veronneau, A Robinson, D Robinson, JEM Robinson, M Robson, A de Lima, JGR Roda, C Dos Santos, DR Rodriguez, D Garcia, YR Roe, S Rohne, O Rojo, V Rolli, S Romaniouk, A Romanov, VM Romeo, G Maltrana, DR Roos, L Ros, E Rosati, S Rosenbaum, GA Rosselet, L Rossetti, V Rossi, LP Rotaru, M Rothberg, J Rousseau, D Royon, CR Rozanov, A Rozen, Y Ruan, X Ruckert, B Ruckstuhl, N Rud, VI Rudolph, G Ruhr, F Ruggieri, F Ruiz-Martinez, A Rumyantsev, L Rurikova, Z Rusakovich, NA Rutherfoord, JP Ruwiedel, C Ruzicka, P Ryabov, YF Ryan, P Rybkin, G Rzaeva, S Saavedra, AF Sadrozinski, HEW Sadykov, R Sakamoto, H Salamanna, G Salamon, A Saleem, MS Salihagic, D Salnikov, A Salt, J Ferrando, BMS Salvatore, D Salvatore, F Salvucci, A Salzburger, A Sampsonidis, D Samset, BH Sandaker, H Sander, HG Sanders, MP Sandhoff, M Sandhu, P Sandstroem, R Sandvoss, S Sankey, DPC Sanny, B Sansoni, A Rios, CS Santoni, C Santonico, R Saraiva, JG Sarangi, T Sarkisyan-Grinbaum, E Sarri, F Sasaki, O Sasao, N Satsounkevitch, I Sauvage, G Savard, P Savine, AY Savinov, V Sawyer, L Saxon, DH Says, LP Sbarra, C Sbrizzi, A Scannicchio, DA Schaarschmidt, J Schacht, P Schafer, U Schaetzel, S Schaffer, AC Schaile, D Schamberger, RD Schamov, AG Schegelsky, VA Scheirich, D Schernau, M Scherzer, MI Schiavi, C Schieck, J Schloppa, M Schlenker, S Schmidt, E Schmieden, K Schmitt, C Schmitz, M Schott, M Schouten, D Schovancova, J Schram, M Schreiner, A Schroeder, C Schroer, N Schroers, M Schultes, J Schultz-Coulon, HC Schumacher, JW Schumacher, M Schumm, BA Schune, P Schwanenberger, C Schwartzman, A Schwemling, P Schwienhorst, R Schwierz, R Schwindling, J Scott, WG Searcy, J Sedykh, E Segura, E Seidel, SC Seiden, A Seifert, F Seixas, JM Sekhniaidze, G Seliverstov, DM Sellden, B Semprini-Cesari, N Serfon, C Serin, L Seuster, R Severini, H Sevior, ME Sfyrla, A Shabalina, E Shamim, M Shan, LY Shank, JT Shao, QT Shapiro, M Shatalov, PB Shaw, K Sherman, D Sherwood, P Shibata, A Shimojima, M Shin, T Shmeleva, A Shochet, MJ Shupe, MA Sicho, P Sidoti, A Siegert, F Siegrist, J Sijacki, D Silbert, O Silva, J Silver, Y Silverstein, D Silverstein, SB Simak, V Simic, L Simion, S Simmons, B Simonyan, M Sinervo, P Sinev, NB Sipica, V Siragusa, G Sisakyan, AN Sivoklokov, SY Sjoelin, J Sjursen, TB Skovpen, K Skubic, P Slater, M Slavicek, T Sliwa, K Sloper, J Sluka, T Smakhtin, V Smirnov, SY Smirnov, Y Smirnova, LN Smirnova, O Smith, BC Smith, D Smith, KM Smizanska, M Smolek, K Snesarev, AA Snow, SW Snow, J Snuverink, J Snyder, S Soares, M Sobie, R Sodomka, J Soffer, A Solans, CA Solar, M Solc, J Camillocci, ES Solodkov, AA Solovyanov, OV Soluk, R Sondericker, J Sopko, V Sopko, B Sosebee, M Soukharev, A Spagnolo, S Spano, F Spencer, E Spighi, R Spigo, G Spila, F Spiwoks, R Spousta, M Spreitzer, T Spurlock, B St Denis, RD Stahl, T Stahlman, J Stamen, R Stancu, SN Stanecka, E Stanek, RW Stanescu, C Stapnes, S Starchenko, EA Stark, J Staroba, P Starovoitov, P Stastny, J Stavina, P Stavropoulos, G Steele, G Steinbach, P Steinberg, P Stekl, I Stelzer, B Stelzer, HJ Stelzer-Chilton, O Stenzel, H Stevenson, K Stewart, GA Stockton, MC Stoerig, K Stoicea, G Stonjek, S Strachota, P Stradling, AR Straessner, A Strandberg, J Strandberg, S Strandlie, A Strauss, M Strizenec, P Strohmer, R Strom, DM Stroynowski, R Strube, J Stugu, B Soh, DA Su, D Sugaya, Y Sugimoto, T Suhr, C Suk, M Sulin, VV Sultansoy, S Sumida, T Sun, XH Sundermann, JE Suruliz, K Sushkov, S Susinno, G Sutton, MR Suzuki, T Suzuki, Y Sykora, I Sykora, T Szymocha, T Sanchez, J Ta, D Tackmann, K Taffard, A Tafirout, R Taga, A Takahashi, Y Takai, H Takashima, R Takeda, H Takeshita, T Talby, M Talyshev, A Tamsett, MC Tanaka, J Tanaka, R Tanaka, S Tanaka, S Tapprogge, S Tardif, D Tarem, S Tarrade, F Tartarelli, GF Tas, P Tasevsky, M Tassi, E Tatarkhanov, M Taylor, C Taylor, FE Taylor, GN Taylor, RP Taylor, W Teixeira-Dias, P Ten Kate, H Teng, PK Tennenbaum-Katan, YD Terada, S Terashi, K Terron, J Terwort, M Testa, M Teuscher, RJ Thioye, M Thoma, S Thomas, JP Thompson, EN Thompson, PD Thompson, PD Thompson, RJ Thompson, AS Thomson, E Thun, RP Tic, T Tikhomirov, VO Tikhonov, VA Tipton, P Viegas, FJTA Tisserant, S Toczek, B Todorov, T Todorova-Nova, S Toggerson, B Tojo, J Tokar, S Tokushuku, K Tollefson, K Tomasek, L Tomasek, M Tomoto, M Tompkins, L Toms, K Tonoyan, A Topfel, C Topilin, ND Torrence, E Pastor, ET Toth, J Touchard, F Tovey, DR Trefzger, T Tremblet, L Tricoli, A Trigger, IM Trincaz-Duvoid, S Trinh, TN Tripiana, MF Triplett, N Trischuk, W Trivedi, A Trocme, B Troncon, C Trzupek, A Tsarouchas, C Tseng, JCL Tsiakiris, M Tsiareshka, PV Tsionou, D Tsipolitis, G Tsiskaridze, V Tskhadadze, EG Tsukerman, II Tsulaia, V Tsung, JW Tsuno, S Tsybychev, D Tuggle, JM Turecek, D Cakir, IT Tuirlay, E Tuts, PM Twomey, MS Tyimadab, M Tyndel, M Uchida, K Ueda, I Ugland, M Uhlenbrock, M Uhrmacher, M Ukegawa, F Unal, G Undrus, A Unel, G Unno, Y Urbaniec, D Urkovsky, E Urquijo, P Urrejola, P Usai, G Uslenghi, M Vacavant, L Vacek, V Vachon, B Vahsen, S Valente, P Valentinetti, S Valkar, S Gallego, EV Vallecorsa, S Ferrer, JAV Van Berg, R van der Graaf, H van der Kraaij, E van der Poel, E van der Ster, D van Eldik, N Van Gemmeren, P van Kesteren, Z van Vulpen, I Vandelli, W Vaniachine, A Vankov, P Vannucci, F Vari, R Varnes, EW Varouchas, D Vartapetian, A Varvell, KE Vasilyeva, L Vassilakopoulos, VI Vazeille, F Vellidis, C Veloso, F Veneziano, S Ventura, A Ventura, D Venturi, M Venturi, N Vercesi, V Verducci, M Verkerke, W Vermeulen, JC Vetterli, MC Vichou, I Vickey, T Viehhauser, GHA Villa, M Villani, EG Perez, MV Vilucchi, E Vincter, MG Vinek, E Vinogradov, VB Viret, S Virzi, J Vitale, A Vitells, O Vivarelli, I Vaque, FV Vlachos, S Vlasak, M Vlasov, N Vogel, A Vokac, P Volpi, M von der Schmitt, H von Loeben, J von Radziewski, H von Toerne, E Vorobel, V Vorwerk, V Vos, M Voss, R Voss, TT Vossebeld, JH Vranjes, N Milosavljevic, MV Vrba, V Vreeswijk, M Anh, TV Vudragovic, D Vuillermet, R Vukotic, I Wagner, P Walbersloh, J Walder, J Walker, R Walkowiak, W Wall, R Wang, C Wang, H Wang, J Wang, SM Warburton, A Ward, CP Warsinsky, M Wastie, R Watkins, PM Watson, AT Watson, MF Watts, G Watts, S Waugh, AT Waugh, IM Weber, MD Weber, M Weber, MS Weber, P Weidberg, AR Weingarten, J Weiser, C Wellenstein, H Wells, PS Wen, M Wenaus, T Wendler, S Wengler, T Wenig, S Wermes, N Werner, M Werner, P Werth, M Werthenbach, U Wessels, M Whalen, K White, A White, MJ White, S Whitehead, SR Whiteson, D Whittington, D Wicek, F Wicke, D Wickens, FJ Wiedenmann, W Wielers, M Wienemann, P Wiglesworth, C Wiik, LAM Wildauer, A Wildt, MA Wilkens, HG Williams, E Williams, HH Willocq, S Wilson, JA Wilson, MG Wilson, A Wingerter-Seez, I Winklmeier, F Wittgen, M Wolter, MW Wolters, H Wosiek, BK Wotschack, J Woudstra, MJ Wraight, K Wright, C Wright, D Wrona, B Wu, SL Wu, X Wulf, E Wynne, BM Xaplanteris, L Xella, S Xie, S Xu, D Xu, N Yamada, M Yamamoto, A Yamamoto, K Yamamoto, S Yamamura, T Yamaoka, J Yamazaki, T Yamazaki, Y Yan, Z Yang, H Yang, UK Yang, Z Yao, WM Yao, Y Yasu, Y Ye, J Ye, S Yilmaz, M Yoosoofmiya, R Yorita, K Yoshida, R Young, C Youssef, SP Yu, D Yu, J Yuan, L Yurkewicz, A Zaidan, R Zaitsev, AM Zajacova, Z Zambrano, V Zanello, L Zaytsev, A Zeitnitz, C Zeller, M Zemla, A Zendler, C Zenin, O Zenis, T Zenonos, Z Zenz, S Zerwas, D della Porta, GZ Zhan, Z Zhang, H Zhang, J Zhang, Q Zhang, X Zhao, L Zhao, T Zhao, Z Zhemchugov, A Zhong, J Zhou, B Zhou, N Zhou, Y Zhu, CG Zhu, H Zhu, Y Zhuang, X Zhuravlov, V Zimmermann, R Zimmermann, S Zimmermann, S Ziolkowski, M Zivkovic, L Zobernig, G Zoccoli, A zur Nedden, M Zutshi, V AF Aad, G. Abbott, B. Abdallah, J. Abdelalim, A. A. Abdesselam, A. Abdinov, O. Abi, B. Abolins, M. Abramowicz, H. Abreu, H. Acharya, B. S. Adams, D. L. Addy, T. N. Adelman, J. Adorisio, C. Adragna, P. Adye, T. Aefsky, S. Aguilar-Saavedra, J. A. Aharrouche, M. Ahlen, S. P. Ahles, E. Ahmad, A. Ahmed, H. Ahsan, M. Aielli, G. Akdogan, T. Akesson, T. P. A. Akimoto, G. Akimov, A. V. Aktas, A. Alam, M. S. Alam, M. A. Albrand, S. Aleksa, M. Aleksandrov, I. N. Alexa, C. Alexander, G. Alexandre, G. Alexopoulos, T. Alhroob, M. Aliev, M. Alimonti, G. Alison, J. Aliyev, M. Allport, P. P. Allwood-Spiers, S. E. Almond, J. Aloisio, A. Alon, R. Alonso, A. Alviggi, M. G. Amako, K. Amelung, C. Amorim, A. Amoros, G. Amram, N. Anastopoulos, C. Andeen, T. Anders, C. F. Anderson, K. J. Andreazza, A. Andrei, V. Anduaga, X. S. Angerami, A. Anghinolfi, F. Anjos, N. Annovi, A. Antonaki, A. Antonelli, M. Antonelli, S. Antos, J. Antunovic, B. Anulli, F. Aoun, S. Arabidze, G. Aracena, I. Arai, Y. Arce, A. T. H. Archambault, J. P. Arfaoui, S. Arguin, J. -F. Argyropoulos, T. Arik, M. Armbruster, A. J. Arnaez, O. Arnault, C. Artamonov, A. Arutinov, D. Asai, M. Asai, S. Asfandiyarov, R. Ask, S. Asman, B. Asner, D. Asquith, L. Assamagan, K. Astbury, A. Astvatsatourov, A. Atoian, G. Auerbach, B. Augsten, K. Aurousseau, M. Austin, N. Avolio, G. Avramidou, R. Axen, D. Ay, C. Azuelos, G. Azuma, Y. Baak, M. A. Bach, A. M. Bachacou, H. Bachas, K. Backes, M. Badescu, E. Bagnaia, P. Bai, V. Bain, T. Baines, J. T. Baker, O. K. Baker, M. D. Baker, S. Pedrosa, F. Baltasar Dos Santos Banas, E. Banerjee, P. Banerjee, S. Banfi, D. Bangert, A. Bansal, V. Baranov, S. P. Baranov, S. Barashkou, A. Barber, T. Barberio, E. L. Barberis, D. Barbero, M. Bardin, D. Y. Barillari, T. Barisonzi, M. Barklow, T. Barlow, N. Barnett, B. M. Barnett, R. M. Baroncelli, A. Barr, A. J. Barreiro, F. da Costa, J. Barreiro Guimaraes Barrillon, P. Bartoldus, R. Bartsch, D. Bates, R. L. Batkova, L. Batley, J. R. Battaglia, A. Battistin, M. Bauer, F. Bawa, H. S. Bazalova, M. Beare, B. Beau, T. Beauchemin, P. H. Beccherle, R. Becerici, N. Bechtle, P. Beck, G. A. Beck, H. P. Beckingham, M. Becks, K. H. Beddall, A. J. Beddall, A. Bednyakov, V. A. Bee, C. Begel, M. Harpaz, S. Behar Behera, P. K. Beimforde, M. Belanger-Champagne, C. Bell, P. J. Bell, W. H. Bella, G. Bellagamba, L. Bellina, F. Bellomo, M. Belloni, A. Belotskiy, K. Beltramello, O. Ben Ami, S. Benary, O. Benchekroun, D. Bendel, M. Benedict, B. H. Benekos, N. Benhammou, Y. Benincasa, G. P. Benjamin, D. P. Benoit, M. Bensinger, J. R. Benslama, K. Bentvelsen, S. Beretta, M. Berge, D. Kuutmann, E. Bergeaas Berger, N. Berghaus, F. Berglund, E. Beringer, J. Bernat, P. Bernhard, R. Bernius, C. Berry, T. Bertin, A. Besana, M. I. Besson, N. Bethke, S. Bianchi, R. M. Bianco, M. Biebel, O. Biesiada, J. Biglietti, M. Bilokon, H. Bindi, M. Binet, S. Bingul, A. Bini, C. Biscarat, C. Bitenc, U. Black, K. M. Blair, R. E. Blanchard, J. -B. Blanchot, G. Blocker, C. Blondel, A. Blum, W. Blumenschein, U. Bobbink, G. J. Bocci, A. Boehler, M. Boek, J. Boelaert, N. Boeser, S. Bogaerts, J. A. Bogouch, A. Bohm, C. Bohm, J. Boisvert, V. Bold, T. Boldea, V. Bondarenko, V. G. Bondioli, M. Boonekamp, M. Bordoni, S. Borer, C. Borisov, A. Borissov, G. Borjanovic, I. Borroni, S. Bos, K. Boscherini, D. Bosman, M. Boterenbrood, H. Bouchami, J. Boudreau, J. Bouhova-Thacker, E. V. Boulahouache, C. Bourdarios, C. Boveia, A. Boyd, J. Boyko, I. R. Bozovic-Jelisavcic, I. Bracinik, J. J. Braem, A. Branchini, P. Branclenburg, G. W. Brandt, A. Brandt, G. Brandt, O. Bratzler, U. Brau, B. Brau, J. E. Braun, H. M. Brelier, B. Bremer, J. Brenner, R. Bressler, S. Britton, D. Brochu, F. M. Brock, I. Brock, R. Brodet, E. Bromberg, C. Brooijmans, G. Brooks, W. K. Brown, G. de Renstrom, P. A. Bruckman Bruncko, D. Bruneliere, R. Brunet, S. Bruni, A. Bruni, G. Bruschi, M. Bucci, F. Buchanan, J. Buchholz, P. Buckley, A. G. Budagov, I. A. Budick, B. Buescher, V. Bugge, L. Bulekov, O. Bunse, M. Buran, T. Burckhart, H. Burdin, S. Burgess, T. Burke, S. Busato, E. Bussey, P. Buszello, C. P. Butin, F. Butler, B. Butler, J. M. Buttar, C. M. Butterworth, J. M. Byatt, T. Caballero, J. Cabrera Urban, S. Caforio, D. Cakir, O. Calafiura, P. Calderini, G. Calfayan, P. Calkins, R. Caloba, L. P. Calvet, D. Camarri, P. Cameron, D. Campana, S. Campanelli, M. Canale, V. Canelli, F. Canepa, A. Cantero, J. Capasso, L. Garrido, M. D. M. Capeans Caprini, I. Caprini, M. Capua, M. Caputo, R. Caramarcu, C. Cardarelli, R. Carli, T. Carlino, G. Carminati, L. Caron, B. Caron, S. Montoya, G. D. Carrillo Montero, S. Carron Carter, A. A. Carter, J. R. Carvalho, J. Casadei, D. Casado, M. P. Cascella, M. Hernandez, A. M. Castaneda Castaneda-Miranda, E. Castillo Gimenez, V. Castro, N. F. Cataldi, G. Catinaccio, A. Catmore, J. R. Cattai, A. Cattani, G. Caughron, S. Cauz, D. Cavalleri, P. Cavalli, D. Cavalli-Sforza, M. Cavasinni, V. Ceradini, F. Cerqueira, A. S. Cerri, A. Cerrito, L. Cerutti, F. Cetin, S. A. Chafaq, A. Chakraborty, D. Chan, K. Chapman, J. D. Chapman, J. W. Chareyre, E. Charlton, D. G. Chavda, V. Cheatham, S. Chekanov, S. Chekulaev, S. V. Chelkov, G. A. Chen, H. Chen, S. Chen, X. Cheplakov, A. Chepurnov, V. F. El Moursli, R. Cherkaoui Tcherniatine, V. Chesneanu, D. Cheu, E. Cheung, S. L. Chevalier, L. Chevallier, F. Chiarella, V. Chiefari, G. Chikovani, L. Childers, J. T. Chilingarov, A. Chiodini, G. Chizhov, V. Choudalakis, G. Chouridou, S. Christidi, I. A. Christov, A. Chromek-Burckhart, D. Chu, M. L. Chudoba, J. Ciapetti, G. Ciftci, A. K. Ciftci, R. Cinca, D. Cindro, V. Ciobotaru, M. D. Ciocca, C. Ciocio, A. Cirilli, M. Citterio, M. Clark, A. Clark, P. J. Cleland, W. Clemens, J. C. Clement, B. Clement, C. Coadou, Y. Cobal, M. Coccaro, A. Cochran, J. Coggeshall, J. Cogneras, E. Colijn, A. P. Collard, C. Collins, N. J. Collins-Tooth, C. Collot, J. Colon, G. Conde Muino, P. Coniavitis, E. Consonni, M. Constantinescu, S. Conta, C. Conventi, F. Cooke, M. Cooper, B. D. Cooper-Sarkar, A. M. Cooper-Smith, N. J. Copic, K. Cornelissen, T. Corradi, M. Corriveau, F. Corso-Radu, A. Cortes-Gonzalez, A. Cortiana, G. Costa, G. Costa, M. J. Costanzo, D. Costin, T. Cote, D. Coura Torres, R. Courneyea, L. Cowan, G. Cowden, C. Cox, B. E. Cranmer, K. Cranshaw, J. Cristinziani, M. Crosetti, G. Crupi, R. Crepe-Renaudin, S. Almenar, C. Cuenca Donszelmann, T. Cuhadar Curatolo, M. Curtis, C. J. Cwetanski, P. Czyczula, Z. D'Auria, S. D'Onofrio, M. D'Orazio, A. Da Via, C. Dabrowski, W. Dai, T. Dallapiccola, C. Dallison, S. J. Daly, C. H. Dam, M. Danielsson, H. O. Dannheim, D. Dao, V. Darbo, G. Darlea, G. L. Davey, W. Davidek, T. Davidson, N. Davidson, R. Davies, M. Davison, A. R. Dawson, I. Daya, R. K. De, K. de Asmundis, R. De Castro, S. Salgado, P. E. De Castro Faria De Cecco, S. de Graat, J. De Groot, N. de Jong, P. De Mora, L. Branco, M. De Oliveira De Pedis, D. De Salvo, A. De Sanctis, U. De Santo, A. De Regie, J. B. De Vivie De Zorzi, G. Dean, S. Dedovich, D. V. Degenhardt, J. Dehchar, M. Del Papa, C. Del Peso, J. Del Prete, T. Dell'Acqua, A. Dell'Asta, L. Della Pietra, M. della Volpe, D. Delmastro, M. Delsart, P. A. Deluca, C. Demers, S. Demichev, M. Demirkoz, B. Deng, J. Deng, W. Denisov, S. P. Derkaoui, J. E. Derue, F. Dervan, P. Desch, K. Deviveiros, P. O. Dewhurst, A. DeWilde, B. Dhaliwal, S. Dhullipudi, R. Di Ciaccio, A. Di Ciaccio, L. Di Mattia, A. Di Domenico, A. Di Girolamo, A. Di Girolamo, B. Di Luise, S. Di Nardo, R. Di Simone, A. Di Sipio, R. Diaz, M. A. Diblen, F. Diehl, E. B. Dietrich, J. Dietzsch, T. A. Diglio, S. Yagci, K. Dindar Dingfelder, J. Dionisi, C. Dita, R. Dita, S. Dittus, F. Djama, F. Djilkibaev, R. Djobava, T. do Vale, M. A. B. Do Valle Wemans, A. Doan, T. K. O. Dobos, D. Dobson, E. Dobson, M. Doglioni, C. Doherty, T. Dolejsi, J. Dolenc, I. Dolezal, Z. Dolgoshein, B. A. Dohmae, T. Donega, M. Donini, J. Dopke, J. Doria, A. Dos Anjos, A. Dotti, A. Dova, M. T. Doxiadis, A. Doyle, A. T. Drasal, Z. Dris, M. Dubbert, J. Duchovni, E. Duckeck, G. Dudarev, A. Dudziak, F. Duehrssen, M. Duflot, L. Dufour, M. -A. Dunford, M. Yildiz, H. Duran Dushkin, A. Duxfield, R. Dwuznik, M. Dueren, M. Ebenstein, W. L. Ebke, J. Eckweiler, S. Edmonds, K. Edwards, C. A. Egorov, K. Ehrenfeld, W. Ehrich, T. Eifert, T. Eigen, G. Einsweiler, K. Eisenhandler, E. Ekelof, T. El Kacimi, M. Ellert, M. Elles, S. Ellinghaus, F. Ellis, K. Ellis, N. Elmsheuser, J. Elsing, M. Emeliyanov, D. Engelmann, R. Engl, A. Epp, B. Eppig, A. Erdmann, J. Ereditato, A. Eriksson, D. Ermoline, I. Ernst, J. Ernst, M. Ernwein, J. Errede, D. Errede, S. Ertel, E. Escalier, M. Escobar, C. Espinal Curull, X. Esposito, B. Etienvre, A. I. Etzion, E. Evans, H. Fabbri, L. Fabre, C. Facius, K. Fakhrutdinov, R. M. Falciano, S. Fang, Y. Fanti, M. Farbin, A. Farilla, A. Farley, J. Farooque, T. Farrington, S. M. Farthouat, P. Fassnacht, P. Fassouliotis, D. Fatholahzadeh, B. Fayard, L. Fayette, F. Febbraro, R. Federic, P. Fedin, O. L. Fedorko, W. Feligioni, L. Felzmann, C. U. Feng, C. Feng, E. J. Fenyuk, A. B. Ferencei, J. Ferland, J. Fernandes, B. Fernando, W. Ferrag, S. Ferrando, J. Ferrara, V. Ferrari, A. Ferrari, P. Ferrari, R. Ferrer, A. Ferrer, M. L. Ferrere, D. Ferretti, C. Fiascaris, M. Fiedler, F. Filipcic, A. Filippas, A. Filthaut, F. Fincke-Keeler, M. Fiolhais, M. C. N. Fiorini, L. Firan, A. Fischer, G. Fisher, M. J. Flechl, M. Fleck, I. Fleckner, J. Fleischmann, P. Fleischmann, S. Flick, T. Castillo, L. R. Flores Flowerdew, M. J. Martin, T. Fonseca Formica, A. Forti, A. Fortin, D. Fournier, D. Fowler, A. J. Fowler, K. Fox, H. Francavilla, P. Franchino, S. Francis, D. Franklin, M. Franz, S. Fraternal, M. Fratina, S. Freestone, J. French, S. T. Froeschl, R. Froidevaux, D. Frost, J. A. Fukunaga, C. Torregrosa, E. Fullana Fuster, J. Gabaldon, C. Gabizon, O. Gadfort, T. Gadomski, S. Gagliardi, G. Gagnon, P. Galea, C. Gallas, E. J. Gallas, M. V. Gallo, V. Gallop, B. J. Gallus, P. Galyaev, E. Gan, K. K. Gao, Y. S. Gaponenko, A. Garcia-Sciveres, M. Garcia, C. Navarro, J. E. Garcia Gardner, R. W. Garelli, N. Garitaonandia, H. Garonne, V. Gatti, C. Gaudio, G. Gautard, V. Gauzzi, P. Gavrilenko, I. L. Gay, C. Gaycken, G. Gazis, E. N. Ge, P. Gee, C. N. P. Geich-Gimbel, Ch. Gellerstedt, K. Gemme, C. Genest, M. H. Gentile, S. Georgatos, F. George, S. Gershon, A. Ghazlane, H. Ghodbane, N. Giacobbe, B. Giagu, S. Giakoumopoulou, V. Giangiobbe, V. Gianotti, F. Gibbard, B. Gibson, A. Gibson, S. M. Gilbert, L. M. Gilchriese, M. Gilewsky, V. Gingrich, D. M. Ginzburg, J. Giokaris, N. Giordani, M. P. Giordano, R. Giorgi, F. M. Giovannini, P. Giraud, P. F. Girtler, P. Giugni, D. Giusti, P. Gjelsten, B. K. Gladilin, L. K. Glasman, C. Glazov, A. Glitza, K. W. Glonti, G. L. Godfrey, J. Godlewski, J. J. Goebel, M. Goepfert, T. Goeringer, C. Goessling, C. Goettfert, T. Goggi, V. Goldfarb, S. Goldin, D. Golling, T. Gomes, A. Fajardo, L. S. Gomez Goncalo, R. Gonella, L. Gong, C. Gonzalez de la Hoz, S. Gonzalez Silva, M. L. Gonzalez-Sevilla, S. Goodson, J. J. Goossens, L. Gordon, H. A. Gorelov, I. Gorfine, G. Gorini, B. Gorini, E. Gorisek, A. Gornicki, E. Gosdzik, B. Gosselink, M. Gostkin, M. I. Eschrich, I. Gough Gouighri, M. Goujdami, D. Goulette, M. P. Goussiou, A. G. Goy, C. Grabowska-Bold, I. Grafstroem, P. Grahn, K. -J. Crancagnolo, S. Grassi, V. Gratchev, V. Grau, N. Gray, H. M. Gray, J. A. Graziani, E. Green, B. Greenshaw, T. Greenwood, Z. D. Gregor, I. M. Grenier, P. Griesmayer, E. Griffiths, J. Grigalashvili, N. Grillo, A. A. Grimm, K. Grinstein, S. Grishkevich, Y. V. Groh, M. Groll, M. Gross, E. Grosse-Knetter, J. Groth-Jensen, J. Grybel, K. Guicheney, C. Guida, A. Guillemin, T. Guler, H. Gunther, J. Guo, B. Gupta, A. Gusakov, Y. Gutierrez, A. Gutierrez, P. Guttman, N. Guizwiller, O. Guyot, C. Gwenlan, C. Gwilliam, C. B. Haas, A. Haas, S. Haber, C. Hadavand, H. K. Hadley, D. R. Haefner, P. Haertel, R. Hajduk, Z. Hakobyan, H. Haller, J. Hamacher, K. Hamilton, A. Hamilton, S. Han, L. Hanagaki, K. Hance, M. Handel, C. Hanke, P. Hansen, J. R. Hansen, J. B. Hansen, J. D. Hansen, P. H. Hansl-Kozanecka, T. Hansson, P. Hara, K. Hare, G. A. Harenberg, T. Harrington, R. D. Harris, O. M. Harrison, K. Hartert, J. Hartjes, F. Harvey, A. Hasegawa, S. Hasegawa, Y. Hashemi, K. Hassani, S. Haug, S. Hauschild, M. Hauser, R. Havranek, M. Hawkes, C. M. Hawkings, R. J. Hayakawa, T. Hayward, H. S. Haywood, S. J. Head, S. J. Hedberg, V. Heelan, L. Heim, S. Heinemann, B. Heisterkamp, S. Helary, L. Heller, M. Hellman, S. Helsens, C. Hemperek, T. Henderson, R. C. W. Henke, M. Henrichs, A. Correia, A. M. Henriques Henrot-Versille, S. Hensel, C. Henss, T. Hernandez Jimenez, Y. Hershenhorn, A. D. Herten, G. Hertenberger, R. Hervas, L. Hessey, N. P. Higon-Rodriguez, E. Hill, J. C. Hiller, K. H. Hillert, S. Hillier, S. J. Hinchliffe, I. Hines, E. Hirose, M. Hirsch, F. Hirschbuehl, D. Hobbs, J. Hod, N. Hodgkinson, M. C. Hodgson, P. Hoecker, A. Hoeferkamp, M. R. Hoffman, J. Hoffmann, D. Hohlfeld, M. Holy, T. Holzbauer, J. L. J. Homma, Y. Horazdovsky, T. Hori, T. Horn, C. Horner, S. Horvat, S. Hostachy, J. -Y. Hou, S. Hoummada, A. Howe, T. Hrivnac, J. Hryn'ova, T. Hsu, P. J. Hsu, S. -C. Huang, G. S. Hubacek, Z. Hubaut, F. Huegging, F. Hughes, E. W. Hughes, G. Hurwitz, M. Husemann, U. Huseynov, N. Huston, J. Huth, J. Iacobucci, G. Iakovidis, G. Ibragimov, I. Iconomidou-Fayard, L. Idarraga, J. Iengo, P. Igonkina, O. Ikegami, Y. Ikeno, M. Ilchenko, Y. Iliadis, D. Ince, T. Ioannou, P. Iodice, M. Irles Quiles, A. Ishikawa, A. Ishino, M. Ishmukhametov, R. Isobe, T. Issakov, V. Issever, C. Istin, S. Itoh, Y. Ivashin, A. V. Iwanski, W. Iwasaki, H. Izen, J. M. Izzo, V. Jackson, B. Jackson, J. N. Jackson, P. Jaekel, M. R. Jain, V. Jakobs, K. Jakobsen, S. Jakubek, J. Jana, D. K. Jansen, E. Jantsch, A. Janus, M. Jared, R. C. Jarlskog, G. Jeanty, L. Plante, I. Jen-La Jenni, P. Jez, P. Jezequel, S. Ji, W. Jia, J. Jiang, Y. Belenguer, M. Jimenez Jin, S. Jinnouchi, O. Joffe, D. Johansen, M. Johansson, K. E. Johansson, P. Johnert, S. Johns, K. A. Jon-And, K. Jones, G. Jones, R. W. L. Jones, T. J. Jorge, P. M. Joseph, J. Juranek, V. Jussel, R. Kabachenko, V. V. Kaci, M. Kaczmarska, A. Kado, M. Kagan, H. Kagan, M. Kaiser, S. Kajomovitz, E. Kalinin, S. Kalinovskaya, L. V. Kalinowski, A. Kama, S. Kanaya, N. Kaneda, M. Kantserov, V. A. Kanzaki, J. Kaplan, B. Kapliy, A. Kaplon, J. Kar, D. Karagounis, M. Unel, M. Karagoz Kartvelishvili, V. Karyukhin, A. N. Kashif, L. Kasmi, A. Kass, R. D. Kastanas, A. Kastoryano, M. Kataoka, M. Kataoka, Y. Katsoufis, E. Katzy, J. Kaushik, V. Kawagoe, K. Kawamoto, T. Kawamura, G. Kayl, M. S. Kayumov, F. Kazanin, V. A. Kazarinov, M. Y. Keates, J. R. Keeler, R. Keener, P. T. Kehoe, R. Keil, M. Kekelidze, G. D. Kelly, M. Kenyon, M. Kepka, O. Kerschen, N. Kersevan, B. P. Kersten, S. Kessoku, K. Khakzad, M. Khalil-zada, F. Khandanyan, H. Khanov, A. Kharchenko, D. Khodinov, A. Khomich, A. Khoriauli, G. Khovanskiy, N. Khovanskiy, V. Khramov, E. Khubua, J. Kim, H. Kim, M. S. Kim, P. C. Kim, S. H. Kind, O. Kind, P. King, B. T. Kirk, J. Kirsch, G. P. Kirsch, L. E. Kiryunin, A. E. Kisielewska, D. Kittelmann, T. Kiyamura, H. Kladiva, E. Klein, M. Klein, U. Kleinknecht, K. Klemetti, M. Klier, A. Klimentov, A. Klingenberg, R. Klinkby, E. B. Klioutchnikova, T. Klok, P. F. Klous, S. Kluge, E. -E. Kluge, T. Kluit, P. Klute, M. Kluth, S. Knecht, N. S. Kneringer, E. Ko, B. R. Kobayashi, T. Kobel, M. Koblitz, B. Kocian, M. Kocnar, A. Kodys, P. Koeneke, K. Konig, A. C. Koenig, S. Koepke, L. Koetsveld, E. Koevesarki, P. Koffas, T. Koffeman, E. Kohn, F. Kohout, Z. Kohriki, T. Kolanoski, H. Kolesnikov, V. Koletsou, I. Koll, J. Kollar, D. Kolos, S. Kolya, S. D. Komar, A. A. Komaragiri, J. R. Kondo, T. Kono, T. Konoplich, R. Konovalov, S. P. Konstantinidis, N. Koperny, S. Korcyl, K. Kordas, K. Korn, A. Korolkov, I. Korolkova, E. V. Korotkov, V. A. Kortner, O. Kostka, P. Kostyukhin, V. V. Kotov, S. Kotov, V. M. Kotov, K. Y. Kourkoumelis, C. Koutsman, A. Kowalewski, R. Kowalski, H. Kowalski, T. Z. Kozanecki, W. Kozhin, A. S. Kral, V. Kramarenko, V. A. Kramberger, G. Krasny, M. W. Krasznahorkay, A. Kreisel, A. Krejci, F. Kretzschmar, J. Krieger, N. Krieger, P. Kroeninger, K. Kroha, H. Kroll, J. Kroseberg, J. Krstic, J. Kruchonak, U. Krueger, H. Krumshteyn, Z. V. Kubota, T. Kuehn, S. Kugel, A. Kuhl, T. Kuhn, D. Kukhtin, V. Kulchitsky, Y. Kuleshov, S. Kummer, C. Kuna, M. Kunkle, J. Kupco, A. Kurashige, H. Kurata, M. Kurchaninov, L. L. Kurochkin, Y. A. Kus, V. Kwee, R. La Rotonda, L. Labbe, J. Lacasta, C. Lacava, F. Lacker, H. Lacour, D. Lacuesta, V. R. Ladygin, E. Lafaye, R. Laforge, B. Lagouri, T. Lai, S. Lamanna, M. Lampen, C. L. Lampl, W. Lancon, E. Landgraf, U. Landon, M. P. J. Lane, J. L. Lankford, A. J. Lanni, F. Lantzsch, K. Lanza, A. Laplace, S. Lapoire, C. Laporte, J. F. Lari, T. Larner, A. Lassnig, M. Laurelli, P. Lavrijsen, W. Laycock, P. Lazarev, A. B. Lazzaro, A. Le Dortz, O. Le Guirriec, E. Le Menedeu, E. Le Vine, M. Lebedev, A. Lebel, C. LeCompte, T. Ledroit-Guillon, F. Lee, H. Lee, J. S. H. Lee, S. C. Lefebvre, M. Legendre, M. LeGeyt, B. C. Legger, F. Leggett, C. Lehmacher, M. Miotto, G. Lehmann Lei, X. Leitner, R. Lellouch, D. Lellouch, J. Lendermann, V. Leney, K. J. C. Lenz, T. Lenzen, G. Lenzi, B. Leonhardt, K. Leroy, C. Lessard, J. -R. Lester, C. G. Cheong, A. Leung Fook Leveque, J. Levin, D. Levinson, L. J. Leyton, M. Li, H. Li, S. Li, X. Liang, Z. Liang, Z. Liberti, B. Lichard, P. Lichtnecker, M. Lie, K. Liebig, W. Lilley, J. N. Lim, H. Limosani, A. Limper, M. Lin, S. C. Linnemann, J. T. Lipeles, E. Lipinsky, L. Lipniacka, A. Liss, T. M. Lissauer, D. Lister, A. Litke, A. M. Liu, C. Liu, D. Liu, H. Liu, J. B. Liu, M. Liu, T. Liu, Y. Livan, M. Lleres, A. Lloyd, S. L. Lobodzinska, E. Loch, P. Lockman, W. S. Lockwitz, S. Loddenkoetter, T. Loebinger, F. K. Loginov, A. Loh, C. W. Lohse, T. Lohwasser, K. Lokajicek, M. Long, R. E. Lopes, L. Mateos, D. Lopez Losada, M. Loscutoff, P. Lou, X. Lounis, A. Loureiro, K. F. Lovas, L. Love, J. Love, P. A. Lowe, A. J. Lu, F. Lubatti, H. J. Luci, C. Lucotte, A. Ludwig, A. Ludwig, D. Ludwig, I. Luehring, F. Luisa, L. Lumb, D. Luminari, L. Lund, E. Lund-Jensen, B. Lundberg, B. Lundberg, J. Lundquist, J. Lynn, D. Lys, J. Lytken, E. Ma, H. Ma, L. L. Goia, J. A. Macana Maccarrone, G. Macchiolo, A. Macek, B. Machado Miguens, J. Mackeprang, R. Madaras, R. J. Mader, W. F. Maenner, R. Maeno, T. Maettig, P. Maettig, S. Magalhaes Martins, P. J. Magradze, E. Mahalalel, Y. Mahboubi, K. Mahmood, A. Maiani, C. Maidantchik, C. Maio, A. Majewski, S. Makida, Y. Makouski, M. Makovec, N. Malecki, Pa. Malecki, P. Maleev, V. P. Malek, F. Mallik, U. Malon, D. Maltezos, S. Malyshev, V. Malyukov, S. Lambelli, M. Mameghani, R. Mamuzic, J. Mandelli, L. Mandic, I. Mandrysch, R. Maneira, J. Mangeard, P. S. Manjavidze, I. D. Manning, P. M. Manousakis-Katsikakis, A. Mansoulie, B. Mapelli, A. Mapelli, L. March, L. Marchand, J. F. Marchese, F. Marchiori, G. Marcisovsky, M. Marino, C. P. Marroquim, F. Marshall, Z. Marti-Garcia, S. Martin, A. J. Martin, A. J. Martin, B. Martin, B. Martin, F. F. Martin, J. P. Martin, T. A. Latour, B. Martin Dit Martinez, M. Outschoorn, V. Martinez Martini, A. Martyniuk, A. C. Marzano, F. Marzin, A. Masetti, L. Mashimo, T. Mashinistov, R. Masik, J. Maslennikov, A. L. Massa, I. Massol, N. Mastroberardino, A. Masubuchi, T. Matricon, P. Matsunaga, H. Matsushita, T. Mattravers, C. Maxfield, S. J. Mayne, A. Mazini, R. Mazur, M. Mazzanti, M. McDonald, J. McKee, S. P. McCarn, A. McCarthy, R. L. McCubbin, N. A. McFarlane, K. W. McGlone, H. Mchedlidze, G. McMahon, S. J. McPherson, R. A. Meade, A. Mechnich, J. Mechtel, M. Medinnis, M. Meera-Lebbai, R. Meguro, T. M. Mehlhase, S. Mehta, A. Meier, K. Meirose, B. Melachrinos, C. Garcia, B. R. Mellado Navas, L. Mendoza Meng, Z. Menke, S. Meoni, E. Mermod, P. Merola, L. Meroni, C. Merritt, F. S. Messina, A. M. Melcalfe, J. Mete, A. S. Meyer, J. -P. Meyer, J. Meyer, J. Meyer, T. C. Meyer, W. T. Miao, J. Michal, S. Micu, L. Middleton, R. P. Migas, S. Mijovic, L. Mikenberg, G. Mikestikova, M. Mikuz, M. Miller, D. W. Mills, W. J. Mills, C. M. Milov, A. Milstead, D. A. Milstein, D. Minaenko, A. A. Minano, M. Minashvili, I. A. Mincer, A. I. Mindur, B. Mineev, M. Ming, Y. Mir, L. M. Mirabelli, G. Misawa, S. Miscetti, S. Misiejuk, A. Mitrevski, J. Mitsou, V. A. Miyagawa, P. S. Mjornmark, J. U. Mladenov, D. Moa, T. Moed, S. Moeller, V. Moenig, K. Moeser, N. Mohr, W. Mohrdieck-Moeck, S. Moles-Valls, R. Molina-Perez, J. Monk, J. Monnier, E. Montesano, S. Monticelli, E. Moore, R. W. Herrera, C. Mora Moraes, A. Morais, A. Morel, J. Morello, G. Moreno, Ft Moreno Llacer, M. Morettini, P. Morii, M. Morley, A. K. Mornacchi, G. Morozov, S. V. Morris, J. D. Moser, H. G. Mosidze, M. Moss, J. Mount, R. Mountricha, E. Mouraviev, S. V. Moyse, E. J. W. Mudrinic, M. Mueller, F. Mueller, J. Mueller, K. Mueller, T. A. Muenstermann, D. Muir, A. Munwes, Y. Garcia, R. Murillo Murray, W. J. Mussche, I. Musto, E. Myagkov, A. G. Myska, M. Nadal, J. Nagai, K. Nagano, K. Nagasaka, Y. Nairz, A. M. Nakamura, K. Nakano, I. Nakatsuka, H. Nanava, G. Napier, A. Nash, M. Nation, N. R. Nattermann, T. Naumann, T. Navarro, G. Nderitu, S. K. Neal, H. A. Nebot, E. Nechaeva, P. Negri, A. Negri, G. Nelson, A. Nelson, T. K. Nemecek, S. Nemethy, P. Nepomuceno, A. A. Nessi, M. Neubauer, M. S. Neusiedl, A. Neves, R. M. Nevski, P. Newcomer, F. M. Nickerson, R. B. Nicolaidou, R. Nicolas, L. Nicoletti, G. Nicquevert, B. Niedercorn, F. Nielsen, J. Nikiforov, A. Nikolaev, K. Nikolic-Audit, I. Nikolopoulos, K. Nilsen, H. Nilsson, P. Nisati, A. Nishiyama, T. Nisius, R. Nodulman, L. Nomachi, M. Nomidis, I. Nordberg, M. Nordkvist, B. Notz, D. Novakova, J. Nozaki, M. Nozicka, M. Nugent, I. M. Nuncio-Quiroz, A. -E. Hanninger, G. Nunes Nunnemann, T. Nurse, E. O'Neil, D. C. O'Shea, V. Oakham, F. G. Oberlack, H. Ochi, A. Oda, S. Odaka, S. Odier, J. Ogren, H. Oh, A. Oh, S. H. Ohm, C. C. Ohshima, T. Ohshita, H. Ohsugi, T. Okada, S. Okawa, H. Okumura, Y. Okuyama, T. Olchevski, A. G. Oliveira, M. Damazio, D. Oliveira Oliver, J. Oliveira Garcia, E. Olivito, D. Olszewski, A. Olszowska, J. Omachi, C. Onofre, A. Onyisi, P. U. E. Oram, C. J. Oreglia, M. J. Oren, Y. Orestano, D. Orlov, I. Barrera, C. Oropeza Orr, R. S. Ortega, E. O. Osculati, B. Ospanov, R. Osuna, C. Ottersbach, J. P. Ould-Saada, F. Ouraou, A. Ouyang, Q. Owen, M. Owen, S. Oyarzun, A. Ozcan, V. E. Ozone, K. Ozturk, N. Pacheco Pages, A. Padilla Aranda, C. Paganis, E. Pahl, C. Paige, F. Pajchel, K. Palestini, S. Pallin, D. Palma, A. Palmer, J. D. Pan, Y. B. Panagiotopoulou, E. Panes, B. Panikashvili, N. Panitkin, S. Pantea, D. Panuskova, M. Paolone, V. Papadopoulou, Th. D. Park, S. J. Park, W. Parker, M. A. Parker, S. I. Parodi, F. Parsons, J. A. Parzefall, U. Pasqualucci, E. Passeri, A. Pastore, F. Pastore, Fr. Pasztor, G. Pataraia, S. Pater, J. R. Patricelli, S. Patwa, A. Pauly, T. Peak, L. S. Pecsy, M. Morales, M. I. Pedraza Peleganchuk, S. V. Peng, H. Penson, A. Penwell, J. Perantoni, M. Perez, K. Perez Codina, E. Perez Garcia-Estan, M. T. Reale, V. Perez Perini, L. Pernegger, H. Perrino, R. Persembe, S. Perus, P. Peshekhonov, V. D. Petersen, B. A. Petersen, T. C. Petit, E. Petridou, C. Petrolo, E. Petrucci, F. Petschull, D. Petteni, M. Pezoa, R. Phan, A. Phillips, A. W. Piacquadio, G. Piccinini, M. Piegaia, R. Pilcher, J. E. Pilkington, A. D. Pina, J. Pinamonti, M. Pinfold, J. L. Pinto, B. Pizio, C. Placakyte, R. Plamondon, M. Pleier, M. -A. Poblaguev, A. Poddar, S. Podlyski, F. Poffenberger, P. Poggioli, L. Pohl, M. Polci, F. Polesello, G. Policicchio, A. Polini, A. Poll, J. Polychronakos, V. Pomeroy, D. Pommes, K. Ponsot, P. Pontecorvo, L. Pope, B. G. Popeneciu, G. A. Popovic, D. S. Poppleton, A. Popule, J. Bueso, X. Portell Porter, R. Pospelov, G. E. Pospisil, S. Potekhin, M. Potrap, I. N. Potter, C. J. Potter, C. T. Potter, K. P. Poulard, G. Poveda, J. Prabhu, R. Pralavorio, P. Prasad, S. Pravahan, R. Pribyl, L. Price, D. Price, L. E. Prichard, P. M. Prieur, D. Primavera, M. Prokofiev, K. Prokoshin, F. Protopopescu, S. Proudfoot, J. Prudent, X. Przysiezniak, H. Psoroulas, S. Ptacek, E. Puigdengoles, C. Purdham, J. Purohit, M. Puzo, P. Pylypchenko, Y. Qi, M. Qian, J. Qian, W. Qin, Z. Quadt, A. Quarrie, D. R. Quayle, W. B. Quinonez, F. Raas, M. Radeka, V. Radescu, V. Radics, B. Rador, T. Ragusa, F. Rahal, G. Rahimi, A. M. Rajagopalan, S. Rammensee, M. Rammes, M. Rauscher, F. Rauter, E. Raymond, M. Read, A. L. Rebuzzi, D. M. Redelbach, A. Redlinger, G. Reece, R. Reeves, K. Reinherz-Aronis, E. Reinsch, A. Reisinger, I. Reljic, D. Rembser, C. Ren, Z. L. Renkel, P. Rescia, S. Rescigno, M. Resconi, S. Resende, B. Reznicek, P. Rezvani, R. Richards, A. Richards, R. A. Richter, R. Richter-Was, E. Ridel, M. Rijpstra, M. Rijssenbeek, M. Rimoldi, A. Rinaldi, L. Rios, R. R. Riu, I. Rizatdinova, F. Rizvi, E. Roa Romero, D. A. Robertson, S. H. Robichaud-Veronneau, A. Robinson, D. Robinson, J. E. M. Robinson, M. Robson, A. de Lima, J. G. Rocha Roda, C. Dos Santos, D. Roda Rodriguez, D. Garcia, Y. Rodriguez Roe, S. Rohne, O. Rojo, V. Rolli, S. Romaniouk, A. Romanov, V. M. Romeo, G. Maltrana, D. Romero Roos, L. Ros, E. Rosati, S. Rosenbaum, G. A. Rosselet, L. Rossetti, V. Rossi, L. P. Rotaru, M. Rothberg, J. Rousseau, D. Royon, C. R. Rozanov, A. Rozen, Y. Ruan, X. Ruckert, B. Ruckstuhl, N. Rud, V. I. Rudolph, G. Ruehr, F. Ruggieri, F. Ruiz-Martinez, A. Rumyantsev, L. Rurikova, Z. Rusakovich, N. A. Rutherfoord, J. P. Ruwiedel, C. Ruzicka, P. Ryabov, Y. F. Ryan, P. Rybkin, G. Rzaeva, S. Saavedra, A. F. Sadrozinski, H. E-W. Sadykov, R. Sakamoto, H. Salamanna, G. Salamon, A. Saleem, M. S. Salihagic, D. Salnikov, A. Salt, J. Ferrando, B. M. Salvachua Salvatore, D. Salvatore, F. Salvucci, A. Salzburger, A. Sampsonidis, D. Samset, B. H. Sandaker, H. Sander, H. G. Sanders, M. P. Sandhoff, M. Sandhu, P. Sandstroem, R. Sandvoss, S. Sankey, D. P. C. Sanny, B. Sansoni, A. Rios, C. Santamarina Santoni, C. Santonico, R. Saraiva, J. G. Sarangi, T. Sarkisyan-Grinbaum, E. Sarri, F. Sasaki, O. Sasao, N. Satsounkevitch, I. Sauvage, G. Savard, P. Savine, A. Y. Savinov, V. Sawyer, L. Saxon, D. H. Says, L. P. Sbarra, C. Sbrizzi, A. Scannicchio, D. A. Schaarschmidt, J. Schacht, P. Schaefer, U. Schaetzel, S. Schaffer, A. C. Schaile, D. Schamberger, R. D. Schamov, A. G. Schegelsky, V. A. Scheirich, D. Schernau, M. Scherzer, M. I. Schiavi, C. Schieck, J. Schloppa, M. Schlenker, S. Schmidt, E. Schmieden, K. Schmitt, C. Schmitz, M. Schott, M. Schouten, D. Schovancova, J. Schram, M. Schreiner, A. Schroeder, C. Schroer, N. Schroers, M. Schultes, J. Schultz-Coulon, H. -C. Schumacher, J. W. Schumacher, M. Schumm, B. A. Schune, Ph. Schwanenberger, C. Schwartzman, A. Schwemling, Ph. Schwienhorst, R. Schwierz, R. Schwindling, J. Scott, W. G. Searcy, J. Sedykh, E. Segura, E. Seidel, S. C. Seiden, A. Seifert, F. Seixas, J. M. Sekhniaidze, G. Seliverstov, D. M. Sellden, B. Semprini-Cesari, N. Serfon, C. Serin, L. Seuster, R. Severini, H. Sevior, M. E. Sfyrla, A. Shabalina, E. Shamim, M. Shan, L. Y. Shank, J. T. Shao, Q. T. Shapiro, M. Shatalov, P. B. Shaw, K. Sherman, D. Sherwood, P. Shibata, A. Shimojima, M. Shin, T. Shmeleva, A. Shochet, M. J. Shupe, M. A. Sicho, P. Sidoti, A. Siegert, F. Siegrist, J. Sijacki, Dj. Silbert, O. Silva, J. Silver, Y. Silverstein, D. Silverstein, S. B. Simak, V. Simic, Lj. Simion, S. Simmons, B. Simonyan, M. Sinervo, P. Sinev, N. B. Sipica, V. Siragusa, G. Sisakyan, A. N. Sivoklokov, S. Yu. Sjoelin, J. Sjursen, T. B. Skovpen, K. Skubic, P. Slater, M. Slavicek, T. Sliwa, K. Sloper, J. Sluka, T. Smakhtin, V. Smirnov, S. Yu. Smirnov, Y. Smirnova, L. N. Smirnova, O. Smith, B. C. Smith, D. Smith, K. M. Smizanska, M. Smolek, K. Snesarev, A. A. Snow, S. W. Snow, J. Snuverink, J. Snyder, S. Soares, M. Sobie, R. Sodomka, J. Soffer, A. Solans, C. A. Solar, M. Solc, J. Camillocci, E. Solfaroli Solodkov, A. A. Solovyanov, O. V. Soluk, R. Sondericker, J. Sopko, V. Sopko, B. Sosebee, M. Soukharev, A. Spagnolo, S. Spano, F. Spencer, E. Spighi, R. Spigo, G. Spila, F. Spiwoks, R. Spousta, M. Spreitzer, T. Spurlock, B. St Denis, R. D. Stahl, T. Stahlman, J. Stamen, R. Stancu, S. N. Stanecka, E. Stanek, R. W. Stanescu, C. Stapnes, S. Starchenko, E. A. Stark, J. Staroba, P. Starovoitov, P. Stastny, J. Stavina, P. Stavropoulos, G. Steele, G. Steinbach, P. Steinberg, P. Stekl, I. Stelzer, B. Stelzer, H. J. Stelzer-Chilton, O. Stenzel, H. Stevenson, K. Stewart, G. A. Stockton, M. C. Stoerig, K. Stoicea, G. Stonjek, S. Strachota, P. Stradling, A. R. Straessner, A. Strandberg, J. Strandberg, S. Strandlie, A. Strauss, M. Strizenec, P. Stroehmer, R. Strom, D. M. Stroynowski, R. Strube, J. Stugu, B. Soh, D. A. Su, D. Sugaya, Y. Sugimoto, T. Suhr, C. Suk, M. Sulin, V. V. Sultansoy, S. Sumida, T. Sun, X. H. Sundermann, J. E. Suruliz, K. Sushkov, S. Susinno, G. Sutton, M. R. Suzuki, T. Suzuki, Y. Sykora, I. Sykora, T. Szymocha, T. Sanchez, J. Ta, D. Tackmann, K. Taffard, A. Tafirout, R. Taga, A. Takahashi, Y. Takai, H. Takashima, R. Takeda, H. Takeshita, T. Talby, M. Talyshev, A. Tamsett, M. C. Tanaka, J. Tanaka, R. Tanaka, S. Tanaka, S. Tapprogge, S. Tardif, D. Tarem, S. Tarrade, F. Tartarelli, G. F. Tas, P. Tasevsky, M. Tassi, E. Tatarkhanov, M. Taylor, C. Taylor, F. E. Taylor, G. N. Taylor, R. P. Taylor, W. Teixeira-Dias, P. Ten Kate, H. Teng, P. K. Tennenbaum-Katan, Y. D. Terada, S. Terashi, K. Terron, J. Terwort, M. Testa, M. Teuscher, R. J. Thioye, M. Thoma, S. Thomas, J. P. Thompson, E. N. Thompson, P. D. Thompson, P. D. Thompson, R. J. Thompson, A. S. Thomson, E. Thun, R. P. Tic, T. Tikhomirov, V. O. Tikhonov, V. A. Tipton, P. Viegas, F. J. Tique Aires Tisserant, S. Toczek, B. Todorov, T. Todorova-Nova, S. Toggerson, B. Tojo, J. Tokar, S. Tokushuku, K. Tollefson, K. Tomasek, L. Tomasek, M. Tomoto, M. Tompkins, L. Toms, K. Tonoyan, A. Topfel, C. Topilin, N. D. Torrence, E. Torro Pastor, E. Toth, J. Touchard, F'. Tovey, D. R. Trefzger, T. Tremblet, L. Tricoli, A. Trigger, I. M. Trincaz-Duvoid, S. Trinh, T. N. Tripiana, M. F. Triplett, N. Trischuk, W. Trivedi, A. Trocme, B. Troncon, C. Trzupek, A. Tsarouchas, C. Tseng, J. C. -L. Tsiakiris, M. Tsiareshka, P. V. Tsionou, D. Tsipolitis, G. Tsiskaridze, V. Tskhadadze, E. G. Tsukerman, I. I. Tsulaia, V. Tsung, J. -W. Tsuno, S. Tsybychev, D. Tuggle, J. M. Turecek, D. Cakir, I. Turk Tuirlay, E. Tuts, P. M. Twomey, M. S. Tyimadab, M. Tyndel, M. Uchida, K. Ueda, I. Ugland, M. Uhlenbrock, M. Uhrmacher, M. Ukegawa, F. Unal, G. Undrus, A. Unel, G. Unno, Y. Urbaniec, D. Urkovsky, E. Urquijo, P. Urrejola, P. Usai, G. Uslenghi, M. Vacavant, L. Vacek, V. Vachon, B. Vahsen, S. Valente, P. Valentinetti, S. Valkar, S. Valladolid Gallego, E. Vallecorsa, S. Valls Ferrer, J. A. Van Berg, R. van der Graaf, H. van der Kraaij, E. van der Poel, E. van der Ster, D. van Eldik, N. Van Gemmeren, P. van Kesteren, Z. van Vulpen, I. Vandelli, W. Vaniachine, A. Vankov, P. Vannucci, F'. Vari, R. Varnes, E. W. Varouchas, D. Vartapetian, A. Varvell, K. E. Vasilyeva, L. Vassilakopoulos, V. I. Vazeille, F. Vellidis, C. Veloso, F. Veneziano, S. Ventura, A. Ventura, D. Venturi, M. Venturi, N. Vercesi, V. Verducci, M. Verkerke, W. Vermeulen, J. C. Vetterli, M. C. Vichou, I. Vickey, T. Viehhauser, G. H. A. Villa, M. Villani, E. G. Villaplana Perez, M. Vilucchi, E. Vincter, M. G. Vinek, E. Vinogradov, V. B. Viret, S. Virzi, J. Vitale, A. Vitells, O. Vivarelli, I. Vives Vaque, F. Vlachos, S. Vlasak, M. Vlasov, N. Vogel, A. Vokac, P. Volpi, M. von der Schmitt, H. von Loeben, J. von Radziewski, H. von Toerne, E. Vorobel, V. Vorwerk, V. Vos, M. Voss, R. Voss, T. T. Vossebeld, J. H. Vranjes, N. Milosavljevic, M. Vranjes Vrba, V. Vreeswijk, M. Anh, T. Vu Vudragovic, D. Vuillermet, R. Vukotic, I. Wagner, P. Walbersloh, J. Walder, J. Walker, R. Walkowiak, W. Wall, R. Wang, C. Wang, H. Wang, J. Wang, S. M. Warburton, A. Ward, C. P. Warsinsky, M. Wastie, R. Watkins, P. M. Watson, A. T. Watson, M. F. Watts, G. Watts, S. Waugh, A. T. Waugh, I. M. Weber, M. D. Weber, M. Weber, M. S. Weber, P. Weidberg, A. R. Weingarten, J. Weiser, C. Wellenstein, H. Wells, P. S. Wen, M. Wenaus, T. Wendler, S. Wengler, T. Wenig, S. Wermes, N. Werner, M. Werner, P. Werth, M. Werthenbach, U. Wessels, M. Whalen, K. White, A. White, M. J. White, S. Whitehead, S. R. Whiteson, D. Whittington, D. Wicek, F. Wicke, D. Wickens, F. J. Wiedenmann, W. Wielers, M. Wienemann, P. Wiglesworth, C. Wiik, L. A. M. Wildauer, A. Wildt, M. A. Wilkens, H. G. Williams, E. Williams, H. H. Willocq, S. Wilson, J. A. Wilson, M. G. Wilson, A. Wingerter-Seez, I. Winklmeier, F. Wittgen, M. Wolter, M. W. Wolters, H. Wosiek, B. K. Wotschack, J. Woudstra, M. J. Wraight, K. Wright, C. Wright, D. Wrona, B. Wu, S. L. Wu, X. Wulf, E. Wynne, B. M. Xaplanteris, L. Xella, S. Xie, S. Xu, D. Xu, N. Yamada, M. Yamamoto, A. Yamamoto, K. Yamamoto, S. Yamamura, T. Yamaoka, J. Yamazaki, T. Yamazaki, Y. Yan, Z. Yang, H. Yang, U. K. Yang, Z. Yao, W. -M. Yao, Y. Yasu, Y. Ye, J. Ye, S. Yilmaz, M. Yoosoofmiya, R. Yorita, K. Yoshida, R. Young, C. Youssef, S. P. Yu, D. Yu, J. Yuan, L. Yurkewicz, A. Zaidan, R. Zaitsev, A. M. Zajacova, Z. Zambrano, V. Zanello, L. Zaytsev, A. Zeitnitz, C. Zeller, M. Zemla, A. Zendler, C. Zenin, O. Zenis, T. Zenonos, Z. Zenz, S. Zerwas, D. della Porta, G. Zevi Zhan, Z. Zhang, H. Zhang, J. Zhang, Q. Zhang, X. Zhao, L. Zhao, T. Zhao, Z. Zhemchugov, A. Zhong, J. Zhou, B. Zhou, N. Zhou, Y. Zhu, C. G. Zhu, H. Zhu, Y. Zhuang, X. Zhuravlov, V. Zimmermann, R. Zimmermann, S. Zimmermann, S. Ziolkowski, M. Zivkovic, L. Zobernig, G. Zoccoli, A. zur Nedden, M. Zutshi, V. CA ATLAS Collaboration GP ATLAS Collaboration CERN TI The ATLAS Simulation Infrastructure SO PERFORMANCE OF THE ATLAS DECTECTOR LA English DT Article; Book Chapter ID HIGH-ENERGY PHYSICS; MONTE-CARLO; TILE CALORIMETER; EVENT; LIBRARY; PARTON AB The simulation software for the ATLAS Experiment at the Large Hadron Collider is being used for large-scale production of events on the LHC Computing Grid. This simulation requires many components, from the generators that simulate particle collisions, through packages simulating the response of the various detectors and triggers. All of these components come together under the ATLAS simulation infrastructure. In this paper, that infrastructure is discussed, including that supporting the detector description, interfacing the event generation, and combining the GEANT4 simulation of the response of the individual detectors. Also described are the tools allowing the software validation, performance testing, and the validation of the simulated output against known physics processes. C1 [Aad, G.; Ahles, E.; Aktas, A.; Anders, C. F.; Beckingham, M.; Bernhard, R.; Bianchi, R. M.; Bitenc, U.; Bruneliere, R.; Caron, S.; Christov, A.; Dietrich, J.; Dingfelder, J.; Hartert, J.; Herten, G.; Horner, S.; Jakobs, K.; Janus, M.; Kuehn, S.; Lai, S.; Landgraf, U.; Lohwasser, K.; Ludwig, I.; Lumb, D.; Mahboubi, K.; Mazur, M.; Meirose, B.; Mohr, W.; Nilsen, H.; Parzefall, U.; Bueso, X. Portell; Rammensee, M.; Rurikova, Z.; Schmidt, E.; Schumacher, M.; Stoerig, K.; Sundermann, J. E.; Thoma, S.; Venturi, M.; Vivarelli, I.; von Radziewski, H.; Warsinsky, M.; Weiser, C.; Werner, M.; Wiik, L. A. M.; Xie, S.; Zimmermann, S.] Univ Freiburg, Fak Math & Phys, D-79104 Freiburg, Germany. [Aleksa, M.; Andeen, T.; Anghinolfi, F.; Arfaoui, S.; Baak, M. A.; Bachas, K.; Pedrosa, F. Baltasar Dos Santos; Battistin, M.; Bellina, F.; Beltramello, O.; Berge, D.; Blanchot, G.; Bogaerts, J. A.; Bogouch, A.; Boyd, J.; Braem, A.; Bremer, J.; Burckhart, H.; Butin, F.; Campana, S.; Garrido, M. D. M. Capeans; Carli, T.; Catinaccio, A.; Cattai, A.; Cerri, A.; Chromek-Burckhart, D.; Dallison, S. J.; Danielsson, H. O.; Branco, M. De Oliveira; Dell'Acqua, A.; Delmastro, M.; Di Domenico, A.; Di Girolamo, A.; Dittus, F.; Dobos, D.; Dobson, E.; Dudarev, A.; Duehrssen, M.; Eifert, T.; Ellis, N.; Elsing, M.; Fabre, C.; Farthouat, P.; Fassnacht, P.; Fedorko, W.; Francis, D.; Franz, S.; Froeschl, R.; Froidevaux, D.; Gallas, M. V.; Garelli, N.; Garonne, V.; Gianotti, F.; Giraud, P. F.; Godlewski, J. J.; Goossens, L.; Gorini, B.; Grafstroem, P.; Haas, S.; Hauschild, M.; Hawkings, R. J.; Correia, A. M. Henriques; Hervas, L.; Hoecker, A.; Issakov, V.; Jaekel, M. R.; Jenni, P.; Belenguer, M. Jimenez; Kaplon, J.; Kerschen, N.; Klioutchnikova, T.; Koblitz, B.; Koffas, T.; Kollar, D.; Lamanna, M.; Lantzsch, K.; Lassnig, M.; Miotto, G. Lehmann; Lichard, P.; Lundberg, J.; Mapelli, A.; Mapelli, L.; Martin, B.; Messina, A. M.; Meyer, T. C.; Michal, S.; Molina-Perez, J.; Mornacchi, G.; Nairz, A. M.; Negri, G.; Nessi, M.; Nicquevert, B.; Nordberg, M.; Palestini, S.; Pastore, Fr.; Pauly, T.; Pernegger, H.; Petersen, B. A.; Piacquadio, G.; Pommes, K.; Poppleton, A.; Poulard, G.; Pribyl, L.; Prokofiev, K.; Raymond, M.; Rembser, C.; Dos Santos, D. Roda; Roe, S.; Salzburger, A.; Scannicchio, D. A.; Schlenker, S.; Schott, M.; Sherman, D.; Sloper, J.; Spigo, G.; Spiwoks, R.; Stanecka, E.; Stockton, M. C.; Sumida, T.; Tackmann, K.; Ten Kate, H.; Viegas, F. J. Tique Aires; Tremblet, L.; Tricoli, A.; Unal, G.; van der Ster, D.; Vandelli, W.; Vinek, E.; Voss, R.; Vuillermet, R.; Wells, P. S.; Wenig, S.; Werner, P.; Wilkens, H. G.; Winklmeier, F.; Wotschack, J.; Zajacova, Z.] CERN, CH-1211 Geneva 23, Switzerland. [Alam, M. S.; Ernst, J.; Mahmood, A.; Rojo, V.] SUNY Albany, Albany, NY 12222 USA. [Ahmed, H.; Caron, B.; Chan, K.; Gingrich, D. M.; Kim, M. S.; Moore, R. W.; Pinfold, J. L.; Soluk, R.] Univ Alberta, Dept Phys, Ctr Particle Phys, Edmonton, AB T6G 2G7, Canada. [Cakir, O.; Ciftci, A. K.; Ciftci, R.; Persembe, S.] Ankara Univ, Dept Phys, Fac Sci, TR-061000 Ankara, Turkey. [Yildiz, H. Duran] Dumlupinar Univ, Fac Arts & Sci, Dept Phys, Kutahya, Turkey. [Yilmaz, M.] Gazi Univ, Fac Arts & Sci, Dept Phys, TR-06500 Ankara, Turkey. [Sultansoy, S.] TOBB Univ Econ & Technol, Fac Arts & Sci, Div Phys, TR-06560 Ankara, Turkey. [Cakir, I. Turk] Turkish Atom Energy Commiss, TR-06530 Ankara, Turkey. [Arnaez, O.; Aurousseau, M.; Berger, N.; Di Ciaccio, L.; Doan, T. K. O.; El Kacimi, M.; Elles, S.; Goy, C.; Guillemin, T.; Helary, L.; Hryn'ova, T.; Iengo, P.; Jezequel, S.; Kataoka, M.; Koletsou, I.; Labbe, J.; Lafaye, R.; Laplace, S.; Marchand, J. F.; Massol, N.; Przysiezniak, H.; Sauvage, G.; Todorov, T.; Wingerter-Seez, I.] Univ Savoie, LAPP, CNRS, IN2P3, Annecy Le Vieux, France. [Blair, R. E.; Chekanov, S.; Cranshaw, J.; Torregrosa, E. Fullana; LeCompte, T.; Lim, H.; Malon, D.; Nodulman, L.; Price, L. E.; Proudfoot, J.; Ferrando, B. M. Salvachua; Stanek, R. W.; Van Gemmeren, P.; Vaniachine, A.; Yoshida, R.; Zhang, J.; Zhang, Q.] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Cheu, E.; Johns, K. A.; Kaushik, V.; Lampen, C. L.; Lampl, W.; Lei, X.; Loch, P.; Rutherfoord, J. P.; Savine, A. Y.; Shupe, M. A.; Varnes, E. W.] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. [Brandt, A.; De, K.; Farbin, A.; Kim, H.; Nilsson, P.; Ozturk, N.; Pravahan, R.; Sarkisyan-Grinbaum, E.; Sosebee, M.; Spurlock, B.; Stradling, A. R.; Usai, G.; Vartapetian, A.; White, A.; Yu, J.] Univ Texas Arlington, Dept Phys, Arlington, TX 76019 USA. [Antonaki, A.; Arabidze, G.; Fassouliotis, D.; Giakoumopoulou, V.; Giokaris, N.; Ioannou, P.; Kourkoumelis, C.; Manousakis-Katsikakis, A.; Nikolopoulos, K.; Vellidis, C.] Univ Athens, Dept Phys, GR-15771 Athens, Greece. [Alexopoulos, T.; Argyropoulos, T.; Avramidou, R.; Dris, M.; Filippas, A.; Gazis, E. N.; Georgatos, F.; Iakovidis, G.; Katsoufis, E.; Maltezos, S.; Panagiotopoulou, E.; Papadopoulou, Th. D.; Tsarouchas, C.; Tsipolitis, G.; Vlachos, S.; Xaplanteris, L.] Natl Tech Univ Athens, Dept Phys, Iroon Polytech 9, Zografos 15780, Greece. [Abdinov, O.; Aliyev, M.; Huseynov, N.; Khalil-zada, F.; Rzaeva, S.] Azerbaijan Acad Sci, Inst Phys, Baku 143, Azerbaijan. [Abdallah, J.; Bosman, M.; Casado, M. P.; Cavalli-Sforza, M.; Demirkoz, B.; Espinal Curull, X.; Fiorini, L.; Grinstein, S.; Helsens, C.; Korolkov, I.; Martinez, M.; Meoni, E.; Mir, L. M.; Nadal, J.; Osuna, C.; Pacheco Pages, A.; Padilla Aranda, C.; Perez Codina, E.; Puigdengoles, C.; Riu, I.; Rossetti, V.; Segura, E.; Sushkov, S.; Vives Vaque, F.; Volpi, M.; Vorwerk, V.] Univ Autonoma Barcelona, IFAE, Inst Fis Altes Energies, Bellaterra 08193, Barcelona, Spain. [Krstic, J.; Popovic, D. S.; Reljic, D.; Sijacki, Dj.; Simic, Lj.; Vranjes, N.; Milosavljevic, M. Vranjes; Vudragovic, D.] Univ Belgrade, Inst Phys, Belgrade 11001, Serbia. [Bozovic-Jelisavcic, I.; Mudrinic, M.] Vinca Inst Nucl Sci, Belgrade 11001, Serbia. [Burgess, T.; Eigen, G.; Kastanas, A.; Lipniacka, A.; Sandaker, H.; Sjursen, T. B.; Stugu, B.; Tonoyan, A.; Ugland, M.] Univ Bergen, Dept Phys & Technol, N-5007 Bergen, Norway. [Arce, A. T. H.; Arguin, J. -F.; Bach, A. M.; Barnett, R. M.; Beringer, J.; Biesiada, J.; Calafiura, P.; Ciocio, A.; Einsweiler, K.; Gaponenko, A.; Garcia-Sciveres, M.; Gilchriese, M.; Haber, C.; Heinemann, B.; Hinchliffe, I.; Hsu, S. -C.; Joseph, J.; Korn, A.; Lavrijsen, W.; Leggett, C.; Leyton, M.; Loscutoff, P.; Lys, J.; Madaras, R. J.; Parker, S. I.; Quarrie, D. R.; Scherzer, M. I.; Shapiro, M.; Siegrist, J.; Stavropoulos, G.; Strandberg, S.; Tatarkhanov, M.; Tompkins, L.; Vahsen, S.; Varouchas, D.; Virzi, J.; Yao, W. -M.; Yao, Y.; Zenz, S.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA 94720 USA. [Aliev, M.; Giorgi, F. M.; Crancagnolo, S.; Kind, O.; Kolanoski, H.; Kwee, R.; Lacker, H.; Lohse, T.; Mandrysch, R.; Nikiforov, A.; Garcia, Y. Rodriguez; Sidoti, A.; zur Nedden, M.] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany. [Battaglia, A.; Beck, H. P.; Borer, C.; Ereditato, A.; Gallo, V.; Haug, S.; Topfel, C.; Venturi, N.; Weber, M. D.; Weber, M. S.] Univ Bern, Albert Einstein Ctr Fundamental Phys, High Energy Phys Lab, CH-3012 Bern, Switzerland. [Bracinik, J. J.; Charlton, D. G.; Collins, N. J.; Curtis, C. J.; Hadley, D. R.; Harrison, K.; Hawkes, C. M.; Hillier, S. J.; Lilley, J. N.; Martin, T. A.; Palmer, J. D.; Slater, M.; Thomas, J. P.; Thompson, P. D.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Wilson, J. A.] Univ Birmingham, Sch Phys & Astron, Birmingham B15 2TT, W Midlands, England. [Akdogan, T.; Arik, M.; Becerici, N.; Istin, S.] Bogazici Univ, Fac Sci, Dept Phys, TR-80815 Bebek, Turkey. [Cetin, S. A.] Dogus Univ, Fac Arts & Sci, Dept Phys, TR-34722 Istanbul, Turkey. [Beddall, A. J.; Beddall, A.; Bingul, A.; Diblen, F.] Gaziantep Univ, Dept Engn Phys, Fac Engn, TR-27310 Sehitkamil, Gaziantep, Turkey. Istanbul Tech Univ, Fac Arts & Sci, Dept Phys, TR-34469 Istanbul, Turkey. [Antonelli, S.; Bellagamba, L.; Bertin, A.; Bindi, M.; Boscherini, D.; Bruni, A.; Bruni, G.; Bruschi, M.; Caforio, D.; Ciocca, C.; Corradi, M.; De Castro, S.; Di Sipio, R.; Fabbri, L.; Giacobbe, B.; Giusti, P.; Massa, I.; Piccinini, M.; Polini, A.; Rinaldi, L.; Sbarra, C.; Sbrizzi, A.; Semprini-Cesari, N.; Spighi, R.; Valentinetti, S.; Villa, M.; Vitale, A.; Zoccoli, A.] INFN Sez Bologna, I-40127 Bologna, Italy. [Antonelli, S.; Bertin, A.; Bindi, M.; Caforio, D.; Ciocca, C.; De Castro, S.; Di Sipio, R.; Fabbri, L.; Massa, I.; Piccinini, M.; Sbarra, C.; Sbrizzi, A.; Semprini-Cesari, N.; Valentinetti, S.; Villa, M.; Vitale, A.; Zoccoli, A.] Univ Bologna, Dipartimento Fis, I-40127 Bologna, Italy. [Alhroob, M.; Arutinov, D.; Barbero, M.; Bartsch, D.; Brock, I.; Cristinziani, M.; Desch, K.; Fleischmann, S.; Gaycken, G.; Geich-Gimbel, Ch.; Gonella, L.; Hemperek, T.; Huegging, F.; Karagounis, M.; Khoriauli, G.; Koevesarki, P.; Kostyukhin, V. V.; Kroseberg, J.; Krueger, H.; Lehmacher, M.; Loddenkoetter, T.; Masetti, L.; Moeser, N.; Mueller, K.; Nanava, G.; Nattermann, T.; Nderitu, S. K.; Nuncio-Quiroz, A. -E.; Hanninger, G. Nunes; Prabhu, R.; Psoroulas, S.; Radics, B.; Ruwiedel, C.; Schmieden, K.; Schmitz, M.; Ta, D.; Tsung, J. -W.; Uhlenbrock, M.; Vlasov, N.; Vogel, A.; von Toerne, E.; Wermes, N.; Wienemann, P.; Zendler, C.; Zimmermann, R.; Zimmermann, S.] Univ Bonn, Inst Phys, D-53115 Bonn, Germany. [Ahlen, S. P.; Butler, J. M.; Harrington, R. D.; Love, J.; Nation, N. R.; Shank, J. T.; Yan, Z.; Youssef, S. P.] Boston Univ, Dept Phys, Boston, MA 02215 USA. [Aefsky, S.; Amelung, C.; Bensinger, J. R.; Blocker, C.; Dushkin, A.; Hashemi, K.; Kirsch, L. E.; Mladenov, D.; Pomeroy, D.; Wellenstein, H.] Brandeis Univ, Dept Phys, Waltham, MA 02454 USA. [Caloba, L. P.; Cerqueira, A. S.; Coura Torres, R.; do Vale, M. A. B.; Maidantchik, C.; Marroquim, F.; Nepomuceno, A. A.; Perantoni, M.; Seixas, J. M.] Univ Fed Rio de Janeiro, COPPE EE IF, BR-21945970 Rio De Janeiro, Brazil. Univ Sao Paulo, Inst Fis, BR-05508900 Sao Paulo, Brazil. [Adams, D. L.; Assamagan, K.; Baker, M. D.; Begel, M.; Caballero, J.; Chen, H.; Tcherniatine, V.; Salgado, P. E. De Castro Faria; Deng, W.; Dhullipudi, R.; Ernst, M.; Gadfort, T.; Gibbard, B.; Gordon, H. A.; Greenwood, Z. D.; Klimentov, A.; Lanni, F.; Le Vine, M.; Lissauer, D.; Lynn, D.; Ma, H.; Maeno, T.; Majewski, S.; Misawa, S.; Nevski, P.; Damazio, D. Oliveira; Paige, F.; Panitkin, S.; Park, W.; Patwa, A.; Pleier, M. -A.; Polychronakos, V.; Potekhin, M.; Protopopescu, S.; Purohit, M.; Radeka, V.; Rajagopalan, S.; Redlinger, G.; Rescia, S.; Sawyer, L.; Smirnov, Y.; Snyder, S.; Sondericker, J.; Steinberg, P.; Takai, H.; Tarrade, F.; Trivedi, A.; Undrus, A.; Wenaus, T.; White, S.; Ye, S.; Yu, D.] Brookhaven Natl Lab, Dept Phys, RHIC & ATLAS Comp Facil, Upton, NY 11973 USA. [Alexa, C.; Badescu, E.; Boldea, V.; Caprini, I.; Caprini, M.; Caramarcu, C.; Chesneanu, D.; Constantinescu, S.; Dita, R.; Dita, S.; Micu, L.; Pantea, D.; Popeneciu, G. A.; Rotaru, M.; Stoicea, G.] Natl Inst Phys & Nucl Engn, Bucharest 077125, Romania. [Darlea, G. L.] Univ Politehn Bucuresti, Sect 6, Bucharest 060042, Romania. W Univ Timisoara, Timisoara, Romania. [Gonzalez Silva, M. L.; Piegaia, R.; Romeo, G.] Univ Buenos Aires, FCEyN, Dto Fis, RA-1428 Buenos Aires, DF, Argentina. [Barber, T.; Barlow, N.; Batley, J. R.; Brochu, F. M.; Carter, J. R.; Chapman, J. D.; Cowden, C.; French, S. T.; Frost, J. A.; Hill, J. C.; Lester, C. G.; Moeller, V.; Parker, M. A.; Phillips, A. W.; Robinson, D.; Ward, C. P.; White, M. J.] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England. [Archambault, J. P.; Asner, D.; Heelan, L.; Khakzad, M.; Liu, C.; Oakham, F. G.; Vincter, M. G.; Whalen, K.] Carleton Univ, Dept Phys, Ottawa, ON K1S 5B6, Canada. [Anderson, K. J.; Boveia, A.; Canelli, F.; Choudalakis, G.; Costin, T.; Dunford, M.; Feng, E. J.; Gardner, R. W.; Gupta, A.; Hurwitz, M.; Plante, I. Jen-La; Kapliy, A.; Lambelli, M.; Melachrinos, C.; Merritt, F. S.; Onyisi, P. U. E.; Oreglia, M. J.; Pilcher, J. E.; Shochet, M. J.; Tuggle, J. M.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Diaz, M. A.; Panes, B.; Quinonez, F.; Maltrana, D. Romero; Urrejola, P.] Pontificia Univ Catolica Chile, Fac Fis, Dept Fis, Santiago 22, Chile. [Brooks, W. K.; Kuleshov, S.; Oyarzun, A.; Pezoa, R.; Prokoshin, F.] Univ Tecn Federico Santa Maria, Dept Fis, Valparaiso, Chile. [Bai, V.; Jin, S.; Lu, F.; Ouyang, Q.; Shan, L. Y.] Chinese Acad Sci, Inst High Energy Phys, Beijing 100049, Peoples R China. [Gong, C.; Han, L.; Jiang, Y.; Liu, M.; Liu, Y.; Zhao, Z.] Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Anhui, Peoples R China. [Chen, S.; Qi, M.] Nanjing Univ, Dept Phys, Nanjing 210093, Jiangsu, Peoples R China. [Feng, C.; Ge, P.; Miao, J.; Sun, X. H.; Zhan, Z.; Zhang, X.; Zhu, C. G.] Shandong Univ, High Energy Phys Grp, Jinan 250100, Shandong, Peoples R China. [Busato, E.; Calvet, D.; Cinca, D.; Febbraro, R.; Ghodbane, N.; Guicheney, C.; Pallin, D.; Podlyski, F.; Santoni, C.; Says, L. P.; Vazeille, F.; Viret, S.] Univ Clermont Ferrand, Clermont Univ, CNRS, Lab Phys Corpusculaire,IN2P3, F-63177 Clermont Ferrand, France. [Angerami, A.; Brooijmans, G.; Caughron, S.; Cooke, M.; Copic, K.; Grau, N.; Gray, H. M.; Hughes, E. W.; Mateos, D. Lopez; Marshall, Z.; Parsons, J. A.; Penson, A.; Perez, K.; Reale, V. Perez; Spano, F.; Tuts, P. M.; Urbaniec, D.; Williams, E.; Wulf, E.; Zhou, N.; Zivkovic, L.] Columbia Univ, Nevis Lab, Irvington, NY 10533 USA. [Dam, M.; Facius, K.; Hansen, J. R.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Heisterkamp, S.; Jakobsen, S.; Jez, P.; Lundquist, J.; Mackeprang, R.; Petersen, T. C.; Simonyan, M.; Xella, S.] Univ Copenhagen, Niels Bohr Inst, DK-2100 Copenhagen 0, Denmark. [Adorisio, C.; Capua, M.; Crosetti, G.; La Rotonda, L.; Mastroberardino, A.; Morello, G.; Salvatore, D.; Schloppa, M.; Susinno, G.; Tassi, E.] INFN Grp Coll Cosenza, I-87036 Arcavacata Di Rende, Italy. [Adorisio, C.; Capua, M.; Crosetti, G.; La Rotonda, L.; Mastroberardino, A.; Morello, G.; Salvatore, D.; Schloppa, M.; Susinno, G.; Tassi, E.] Univ Calabria, Dipartimento Fis, I-87036 Arcavacata Di Rende, Italy. [Dabrowski, W.; Dwuznik, M.; Grabowska-Bold, I.; Kisielewska, D.; Koperny, S.; Kowalski, T. Z.; Mindur, B.; Toczek, B.] AGH Univ Sci & Technol, Fac Phys & Appl Comp Sci, PL-30059 Krakow, Poland. [Banas, E.; de Renstrom, P. A. Bruckman; Gornicki, E.; Hajduk, Z.; Iwanski, W.; Kaczmarska, A.; Korcyl, K.; Malecki, Pa.; Malecki, P.; Olszewski, A.; Olszowska, J.; Richter-Was, E.; Szymocha, T.; Trzupek, A.; Wolter, M. W.; Wosiek, B. K.; Zemla, A.] Polish Acad Sci, Henryk Niewodniczanski Inst Nucl Phys, PL-31342 Krakow, Poland. [Daya, R. K.; Yagci, K. Dindar; Firan, A.; Goldin, D.; Hadavand, H. K.; Hoffman, J.; Howe, T.; Ilchenko, Y.; Ishmukhametov, R.; Joffe, D.; Kasmi, A.; Kehoe, R.; Liang, Z.; Liu, T.; Renkel, P.; Rios, R. R.; Stroynowski, R.; Ye, J.] So Methodist Univ, Dept Phys, Dallas, TX 75275 USA. [Ahsan, M.; Galyaev, E.; Izen, J. M.; Lou, X.; Reeves, K.] Univ Texas Dallas, Richardson, TX 75080 USA. [Antunovic, B.; Bechtle, P.; Kuutmann, E. Bergeaas; Boehler, M.; Brandt, G.; Brunet, S.; Cote, D.; Ehrenfeld, W.; Ferrara, V.; Fischer, G.; Glazov, A.; Goebel, M.; Fajardo, L. S. Gomez; Gosdzik, B.; Gregor, I. M.; Haller, J.; Hiller, K. H.; Husemann, U.; Johnert, S.; Kama, S.; Katzy, J.; Koeneke, K.; Kono, T.; Kostka, P.; Kowalski, H.; Li, S.; Lobodzinska, E.; Ludwig, D.; Maettig, S.; Mamuzic, J.; Medinnis, M.; Mehlhase, S.; Moenig, K.; Naumann, T.; Notz, D.; Nozicka, M.; Petschull, D.; Placakyte, R.; Qin, Z.; Stelzer, H. J.; Terwort, M.; Wildt, M. A.; Zhu, H.] DESY, D-22603 Hamburg, Germany. [Bunse, M.; Goessling, C.; Hirsch, F.; Klingenberg, R.; Muenstermann, D.; Reisinger, I.; Walbersloh, J.] TU Dortmund, D-44221 Dortmund, Germany. [Goepfert, T.; Kar, D.; Kobel, M.; Leonhardt, K.; Ludwig, A.; Mader, W. F.; Prudent, X.; Schaarschmidt, J.; Schumacher, J. W.; Schwierz, R.; Seifert, F.; Steinbach, P.; Straessner, A.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01069 Dresden, Germany. [Benjamin, D. P.; Bocci, A.; Ebenstein, W. L.; Fowler, A. J.; Klinkby, E. B.; Ko, B. R.; Oh, S. H.; Wang, C.; Yamaoka, J.] Duke Univ, Dept Phys, Durham, NC 27708 USA. [Buckley, A. G.; Clark, P. J.; Wynne, B. M.] Univ Edinburgh, Sch Phys & Astron, Edinburgh EH9 3JZ, Midlothian, Scotland. [Griesmayer, E.] Fachhsch Wiener Neustadt, A-2700 Wiener Neustadt, Austria. [Annovi, A.; Antonelli, M.; Beretta, M.; Bilokon, H.; Cerutti, F.; Chiarella, V.; Curatolo, M.; Esposito, B.; Ferrer, M. L.; Gatti, C.; Laurelli, P.; Maccarrone, G.; Martini, A.; Miscetti, S.; Nicoletti, G.; Salvucci, A.; Sansoni, A.; Testa, M.; Vilucchi, E.; Wen, M.; Zambrano, V.] INFN Lab Nazl Frascati, I-00044 Frascati, Italy. [Abdelalim, A. A.; Alexandre, G.; Backes, M.; Bell, P. J.; Bell, W. H.; Berglund, E.; Blondel, A.; Bucci, F.; Clark, A.; Dao, V.; Ferrere, D.; Gadomski, S.; Navarro, J. E. Garcia; Gonzalez-Sevilla, S.; Goulette, M. P.; Hamilton, A.; Lister, A.; Latour, B. Martin Dit; Herrera, C. Mora; Pasztor, G.; Pohl, M.; Robichaud-Veronneau, A.; Rosselet, L.; Urquijo, P.; Wu, X.] Univ Geneva, Sect Phys, CH-1211 Geneva 4, Switzerland. [Barberis, D.; Beccherle, R.; Coccaro, A.; Cornelissen, T.; Darbo, G.; Gagliardi, G.; Gemme, C.; Morettini, P.; Osculati, B.; Parodi, F.; Rossi, L. P.; Schiavi, C.] INFN Sez Genova, I-16146 Genoa, Italy. [Barberis, D.; Coccaro, A.; Cornelissen, T.; Gagliardi, G.; Osculati, B.; Parodi, F.; Schiavi, C.] Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy. [Chikovani, L.; Djobava, T.; Khubua, J.; Magradze, E.; Mchedlidze, G.; Mosidze, M.; Tsiskaridze, V.; Tskhadadze, E. G.] Georgian Acad Sci, Inst Phys, GE-380077 Tbilisi, Rep of Georgia. [Chikovani, L.; Djobava, T.; Khubua, J.; Magradze, E.; Mchedlidze, G.; Mosidze, M.; Tsiskaridze, V.; Tskhadadze, E. G.] Tbilisi State Univ, HEP Inst, GE-380086 Tbilisi, Rep of Georgia. [Astvatsatourov, A.; Dueren, M.; Stenzel, H.] Univ Giessen, Inst Phys 2, D-35392 Giessen, Germany. [Allwood-Spiers, S. E.; Bates, R. L.; Britton, D.; Bussey, P.; Buttar, C. M.; Collins-Tooth, C.; D'Auria, S.; Doherty, T.; Doyle, A. T.; Ferrag, S.; Kenyon, M.; McGlone, H.; Moraes, A.; O'Shea, V.; Barrera, C. Oropeza; Robson, A.; Saxon, D. H.; Smith, K. M.; St Denis, R. D.; Steele, G.; Stewart, G. A.; Thompson, A. S.; Wraight, K.; Wright, C.] Univ Glasgow, Dept Phys & Astron, Glasgow G12 8QQ, Lanark, Scotland. [Ay, C.; Blumenschein, U.; Brandt, O.; Erdmann, J.; Fayette, F.; Grosse-Knetter, J.; Henrichs, A.; Hensel, C.; Keil, M.; Klute, M.; Kohn, F.; Krieger, N.; Kroeninger, K.; Meyer, J.; Morel, J.; Park, S. J.; Quadt, A.; Shabalina, E.; Uhrmacher, M.; Weingarten, J.] Univ Gottingen, Inst Phys 2, D-37077 Gottingen, Germany. [Albrand, S.; Clement, B.; Collot, J.; Crepe-Renaudin, S.; Delsart, P. A.; Donini, J.; Hostachy, J. -Y.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Polci, F.; Stark, J.; Trocme, B.; Wang, J.] Univ Grenoble 1, Lab Phys Subatom & Cosmol, INPG, CNRS,IN2P3, F-38026 Grenoble, France. [Addy, T. N.; Harvey, A.; McFarlane, K. W.; Schreiner, A.; Shin, T.; Vassilakopoulos, V. I.] Hampton Univ, Dept Phys, Hampton, VA 23668 USA. [da Costa, J. Barreiro Guimaraes; Belloni, A.; Black, K. M.; Branclenburg, G. W.; Franklin, M.; Huth, J.; Jeanty, L.; Kagan, M.; Kashif, L.; Outschoorn, V. Martinez; Mills, C. M.; Moed, S.; Morii, M.; Oliver, J.; Prasad, S.; Smith, B. C.; Wingerter-Seez, I.; della Porta, G. Zevi] Harvard Univ, Lab Particle Phys & Cosmol, Cambridge, MA 02138 USA. [Andrei, V.; Childers, J. T.; Dietzsch, T. A.; Hanke, P.; Henke, M.; Khomich, A.; Kluge, E. -E.; Lendermann, V.; Meier, K.; Mueller, F.; Poddar, S.; Ruehr, F.; Schultz-Coulon, H. -C.; Stamen, R.; Weber, P.; Wessels, M.; Wingerter-Seez, I.] Heidelberg Univ, Kirchhoff Inst Phys, D-69120 Heidelberg, Germany. [Radescu, V.; Schaetzel, S.] Inst Phys, D-69120 Heidelberg, Germany. [Kugel, A.; Maenner, R.; Schroer, N.] Heidelberg Univ, Lehrstuhl Informat 5, ZITI, D-68131 Mannheim, Germany. [Ohsugi, T.] Hiroshima Univ, Fac Sci, Higashihiroshima, Hiroshima 7398526, Japan. [Nagasaka, Y.] Hiroshima Inst Technol, Fac Appl Informat Sci, Hiroshima 7315193, Japan. [Cwetanski, P.; Egorov, K.; Evans, H.; Gagnon, P.; Jain, V.; Lowe, A. J.; Luehring, F.; Marino, C. P.; Ogren, H.; Penwell, J.; Price, D.; Whittington, D.] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. [Epp, B.; Girtler, P.; Jussel, R.; Kneringer, E.; Kuhn, D.; Rudolph, G.] Inst Astro & Teilchenphys, A-6020 Innsbruck, Austria. [Behera, P. K.; Limper, M.; Mallik, U.; Pahl, C.; Zaidan, R.] Univ Iowa, Iowa City, IA 52242 USA. [Cochran, J.; Lebedev, A.; Mete, A. S.; Meyer, W. T.; Nelson, A.; Ruiz-Martinez, A.; Triplett, N.; Yamamoto, K.] Iowa State Univ, Ames High Energy Phys Grp, Dept Phys & Astron, Ames, IA 50011 USA. [Aleksandrov, I. N.; Baranov, S.; Barashkou, A.; Bardin, D. Y.; Bednyakov, V. A.; Boyko, I. R.; Budagov, I. A.; Chelkov, G. A.; Cheplakov, A.; Chepurnov, V. F.; Chizhov, V.; Dedovich, D. V.; Demichev, M.; Glonti, G. L.; Gostkin, M. I.; Grigalashvili, N.; Gusakov, Y.; Kalinovskaya, L. V.; Kazarinov, M. Y.; Kekelidze, G. D.; Kharchenko, D.; Khovanskiy, N.; Khramov, E.; Kolesnikov, V.; Kotov, V. M.; Kruchonak, U.; Krumshteyn, Z. V.; Kukhtin, V.; Ladygin, E.; Lazarev, A. B.; Malyukov, S.; Manjavidze, I. D.; Minashvili, I. A.; Mineev, M.; Nikolaev, K.; Olchevski, A. G.; Peshekhonov, V. D.; Romanov, V. M.; Rumyantsev, L.; Rusakovich, N. A.; Sadykov, R.; Sisakyan, A. N.; Topilin, N. D.; Vinogradov, V. B.; Zhemchugov, A.] Joint Inst Nucl Res, Dubna 141980, Moscow Region, Russia. [Amako, K.; Arai, Y.; Ikegami, Y.; Ikeno, M.; Ishino, M.; Iwasaki, H.; Kanzaki, J.; Kohriki, T.; Kondo, T.; Makida, Y.; Nagano, K.; Nozaki, M.; Odaka, S.; Ozone, K.; Sasaki, O.; Suzuki, Y.; Tanaka, S.; Terada, S.; Tojo, J.; Tokushuku, K.; Tsuno, S.; Unno, Y.; Yamamoto, A.; Yasu, Y.] KEK, High Energy Accelerator Res Org, Tsukuba, Ibaraki 3050801, Japan. [Hayakawa, T.; Homma, Y.; Hori, T.; Ishikawa, A.; Kawagoe, K.; Kiyamura, H.; Kurashige, H.; Matsushita, T.; Nakatsuka, H.; Nishiyama, T.; Ochi, A.; Okada, S.; Omachi, C.; Takeda, H.; Yamazaki, Y.] Kobe Univ, Grad Sch Sci, Nada Ku, Kobe, Hyogo 6578501, Japan. [Sasao, N.] Kyoto Univ, Fac Sci, Sakyou Ku, Kyoto 6068502, Japan. [Takashima, R.] Kyoto Univ, Fushimi Ku, Kyoto 6128522, Japan. [Anduaga, X. S.; Dova, M. T.; Monticelli, E.; Tripiana, M. F.] Univ Nacl La Plata, FCE, Dept Fis, IFLP CONICET UNLP, RA-1900 La Plata, Buenos Aires, Argentina. [Borissov, G.; Bouhova-Thacker, E. V.; Catmore, J. R.; Cheatham, S.; Chilingarov, A.; Davidson, R.; De Mora, L.; Fox, H.; Henderson, R. C. W.; Hughes, G.; Jones, R. W. L.; Kartvelishvili, V.; Long, R. E.; Love, P. A.; Smizanska, M.; Walder, J.] Univ Lancaster, Dept Phys, Lancaster LA1 4YB, England. [Bianco, M.; Borjanovic, I.; Cataldi, G.; Chiodini, G.; Crupi, R.; Gorini, E.; Guida, A.; Perrino, R.; Primavera, M.; Spagnolo, S.; Ventura, A.] INFN Sez Lecce, I-73100 Lecce, Italy. [Bianco, M.; Crupi, R.; Gorini, E.; Guida, A.; Spagnolo, S.; Ventura, A.] Univ Salento, Dipartimento Fis, I-73100 Lecce, Italy. [Allport, P. P.; Austin, N.; Burdin, S.; D'Onofrio, M.; Dervan, P.; Greenshaw, T.; Gwilliam, C. B.; Hayward, H. S.; Jackson, J. N.; Jones, T. J.; King, B. T.; Klein, M.; Klein, U.; Kluge, T.; Kretzschmar, J.; Laycock, P.; Leney, K. J. C.; Maxfield, S. J.; Mehta, A.; Migas, S.; Prichard, P. M.; Vankov, P.; Vossebeld, J. H.; Wiglesworth, C.; Wrona, B.] Univ Liverpool, Oliver Lodge Lab, Liverpool L69 3BX, Merseyside, England. [Cindro, V.; Dolenc, I.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Macek, B.; Mandic, I.; Mijovic, L.; Mikuz, M.] Jozef Stefan Inst, Ljubljana 1000, Slovenia. [Cindro, V.; Dolenc, I.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Macek, B.; Mandic, I.; Mijovic, L.; Mikuz, M.] Univ Ljubljana, Dept Phys, Ljubljana 1000, Slovenia. [Adragna, P.; Beck, G. A.; Carter, A. A.; Cerrito, L.; Cooper, B. D.; Eisenhandler, E.; Ellis, K.; Landon, M. P. J.; Lloyd, S. L.; Martin, A. J.; Morris, J. D.; Poll, J.; Rizvi, E.; Stevenson, K.] Queen Mary Univ London, Dept Phys, London E1 4NS, England. [Alam, M. A.; Berry, T.; Boisvert, V.; Cooper-Smith, N. J.; Cowan, G.; Edwards, C. A.; Martin, T. Fonseca; George, S.; Goncalo, R.; Green, B.; Misiejuk, A.; Tamsett, M. C.; Teixeira-Dias, P.] Univ London, Dept Phys, Egham TW20 0EX, Surrey, England. [Asquith, L.; Baker, S.; Bernius, C.; Boeser, S.; Butterworth, J. M.; Byatt, T.; Campanelli, M.; Christidi, I. A.; Davison, A. R.; Dean, S.; Konstantinidis, N.; Monk, J.; Nash, M.; Nurse, E.; Ozcan, V. E.; Richards, A.; Robinson, J. E. M.; Sherwood, P.; Siegert, F.; Simmons, B.; Taylor, C.; Waugh, I. M.] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Beau, T.; Bordoni, S.; Calderini, G.; Cavalleri, P.; Chareyre, E.; De Cecco, S.; Derue, F.; Krasny, M. W.; Lacour, D.; Laforge, B.; Le Dortz, O.; Lellouch, J.; Marchiori, G.; Nikolic-Audit, I.; Ridel, M.; Roos, L.; Schwemling, Ph.; Trincaz-Duvoid, S.; Trinh, T. N.; Vannucci, F'.; Yuan, L.] Univ Paris 07, Univ Paris 06, CNRS, Lab Phys Nucl & Hautes Energies,IN2P3, F-75252 Paris 05, France. [Akesson, T. P. A.; Alonso, A.; Boelaert, N.; Groth-Jensen, J.; Hedberg, V.; Jarlskog, G.; Ji, W.; Lundberg, B.; Lytken, E.; Mjornmark, J. U.; Smirnova, O.] Lund Univ, Inst Fys, Nat Vetenskapliga Fak, S-22100 Lund, Sweden. [Barreiro, F.; Cantero, J.; Del Peso, J.; Gabaldon, C.; Glasman, C.; Lagouri, T.; March, L.; Nebot, E.; Terron, J.] Univ Autonoma Madrid, Dept Fis Teor, Fac Ciencias, E-28049 Madrid, Spain. [Aharrouche, M.; Bendel, M.; Blum, W.; Buescher, V.; Eckweiler, S.; Edmonds, K.; Ellinghaus, F.; Ertel, E.; Fiedler, F.; Fleckner, J.; Goeringer, C.; Groll, M.; Handel, C.; Hohlfeld, M.; Kawamura, G.; Kleinknecht, K.; Koenig, S.; Koepke, L.; Neusiedl, A.; Sander, H. G.; Schaefer, U.; Schmitt, C.; Schroeder, C.; Siragusa, G.; Tapprogge, S.; Anh, T. Vu; Wicke, D.] Johannes Gutenberg Univ Mainz, Inst Phys, D-55099 Mainz, Germany. [Almond, J.; Ask, S.; Brown, G.; Chavda, V.; Cox, B. E.; Da Via, C.; Forti, A.; Freestone, J.; Head, S. J.; Jones, G.; Keates, J. R.; Kelly, M.; Kolya, S. D.; Lane, J. L.; Loebinger, F. K.; Martyniuk, A. C.; Masik, J.; Miyagawa, P. S.; Oh, A.; Owen, M.; Pater, J. R.; Pilkington, A. D.; Potter, K. P.; Schwanenberger, C.; Snow, S. W.; Thompson, R. J.; Watts, S.; Wengler, T.; Yang, U. K.] Univ Manchester, Sch Phys & Astron, Manchester M13 9PL, Lancs, England. [Aoun, S.; Bee, C.; Clemens, J. C.; Coadou, Y.; Djama, F.; Feligioni, L.; Hoffmann, D.; Hubaut, F.; Kuna, M.; Lapoire, C.; Le Guirriec, E.; Leveque, J.; Monnier, E.; Odier, J.; Petit, E.; Pralavorio, P.; Rozanov, A.; Talby, M.; Tisserant, S.; Toth, J.; Touchard, F'.; Vacavant, L.; Zhang, H.] Aix Marseille Univ, CPPM, CNRS, IN2P3, Marseille, France. [Brau, B.; Colon, G.; Dallapiccola, C.; Meade, A.; Moyse, E. J. W.; Thompson, E. N.; van Eldik, N.; Willocq, S.; Woudstra, M. J.] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA. [Corriveau, F.; Dufour, M. -A.; Guler, H.; Klemetti, M.; McDonald, J.; Potter, C. T.; Robertson, S. H.; Rios, C. Santamarina; Schram, M.; Vachon, B.; Warburton, A.] McGill Univ, High Energy Phys Grp, Montreal, PQ H3A 2T8, Canada. [Barberio, E. L.; Davey, W.; Davidson, N.; Felzmann, C. U.; Limosani, A.; Morley, A. K.; Phan, A.; Sevior, M. E.; Shao, Q. T.; Taylor, G. N.] Univ Melbourne, Sch Phys, Parkville, Vic 3010, Australia. [Armbruster, A. J.; Chapman, J. W.; Cirilli, M.; Dai, T.; Diehl, E. B.; Eppig, A.; Ferretti, C.; Goldfarb, S.; Levin, D.; Li, X.; Liu, H.; Liu, J. B.; McKee, S. P.; Neal, H. A.; Panikashvili, N.; Purdham, J.; Qian, J.; Scheirich, D.; Strandberg, J.; Thun, R. P.; Wilson, A.; Yang, H.; Zhou, B.] Univ Michigan, Dept Phys, Randall Lab 2477, Ann Arbor, MI 48109 USA. [Abolins, M.; Brock, R.; Bromberg, C.; Di Luise, S.; Ermoline, I.; Hauser, R.; Heim, S.; Holzbauer, J. L. J.; Huston, J.; Koll, J.; Linnemann, J. T.; Mangeard, P. S.; Martin, B.; Pope, B. G.; Richards, R. A.; Ryan, P.; Schwienhorst, R.; Tollefson, K.] Michigan State Univ, Dept Phys & Astron, High Energy Phys Grp, E Lansing, MI 48824 USA. [Alimonti, G.; Andreazza, A.; Banfi, D.; Besana, M. I.; Carminati, L.; Cavalli, D.; Citterio, M.; Costa, G.; Dell'Asta, L.; Fanti, M.; Giugni, D.; Lari, T.; Lazzaro, A.; Mandelli, L.; Mazzanti, M.; Meroni, C.; Montesano, S.; Perini, L.; Pizio, C.; Ragusa, F.; Resconi, S.; Tartarelli, G. F.; Troncon, C.] INFN Sez Milano, I-20133 Milan, Italy. [Andreazza, A.; Banfi, D.; Besana, M. I.; Carminati, L.; Dell'Asta, L.; Fanti, M.; Lazzaro, A.; Montesano, S.; Perini, L.; Pizio, C.; Ragusa, F.] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. [Bogouch, A.; Kulchitsky, Y.; Kurochkin, Y. A.; Satsounkevitch, I.; Tsiareshka, P. V.] Natl Acad Sci Belarus, BI Stepanov Phys Inst, Minsk 220072, Byelarus. [Gilewsky, V.; Starovoitov, P.] NC PHEP BSU, Natl Sci & Educ Ctr Particle & High Energy Phys, Minsk 220040, Byelarus. [Taylor, F. E.] MIT, Dept Phys, Cambridge, MA 02139 USA. [Azuelos, G.; Banerjee, P.; Bouchami, J.; Davies, M.; Ferland, J.; Gutierrez, A.; Lebel, C.; Leroy, C.; Goia, J. A. Macana; Martin, J. P.] Univ Montreal, Grp Particle Phys, Montreal, PQ H3C 3J7, Canada. [Akimov, A. V.; Baranov, S. P.; Gavrilenko, I. L.; Kayumov, F.; Komar, A. A.; Konovalov, S. P.; Mouraviev, S. V.; Nechaeva, P.; Shmeleva, A.; Snesarev, A. A.; Sulin, V. V.; Tikhomirov, V. O.; Vasilyeva, L.] Acad Sci, PN Lebedev Phys Inst, Moscow 117924, Russia. [Artamonov, A.; Khovanskiy, V.; Shatalov, P. B.; Tsukerman, I. I.] Inst Theoret & Expt Phys ITEP, Moscow 117218, Russia. [Belotskiy, K.; Bondarenko, V. G.; Bulekov, O.; Dolgoshein, B. A.; Kantserov, V. A.; Mashinistov, R.; Morozov, S. V.; Romaniouk, A.; Smirnov, S. Yu.] Moscow Engn & Phys Inst MEPhI, Moscow 115409, Russia. [Gladilin, L. K.; Grishkevich, Y. V.; Kramarenko, V. A.; Rud, V. I.; Sivoklokov, S. Yu.; Smirnova, L. N.] Moscow MV Lomonosov State Univ, Skobeltsyn Inst Nucl Phys MSU SINP, Moscow 119991, Russia. [Biebel, O.; Calfayan, P.; de Graat, J.; Duckeck, G.; Ebke, J.; Elmsheuser, J.; Engl, A.; Galea, C.; Genest, M. H.; Hertenberger, R.; Kummer, C.; Legger, F.; Lichtnecker, M.; Mameghani, R.; Mueller, T. A.; Nunnemann, T.; Rauscher, F.; Ruckert, B.; Sanders, M. P.; Schaile, D.; Serfon, C.; Walker, R.; Zhuang, X.] Univ Munich, Fak Phys, D-85748 Garching, Germany. [Barillari, T.; Beimforde, M.; Bethke, S.; Cortiana, G.; D'Orazio, A.; Dannheim, D.; Dubbert, J.; Ehrich, T.; Flowerdew, M. J.; Giovannini, P.; Goettfert, T.; Groh, M.; Haefner, P.; Haertel, R.; Horvat, S.; Jantsch, A.; Kaiser, S.; Kiryunin, A. E.; Kluth, S.; Kortner, O.; Kotov, S.; Kroha, H.; Macchiolo, A.; Menke, S.; Mohrdieck-Moeck, S.; Moser, H. G.; Nisius, R.; Oberlack, H.; Pataraia, S.; Pospelov, G. E.; Potrap, I. N.; Rauter, E.; Richter, R.; Salihagic, D.; Schacht, P.; Schieck, J.; Seuster, R.; Stonjek, S.; von der Schmitt, H.; von Loeben, J.; Zhuravlov, V.] Max Planck Inst Phys & Astrophys, Werner Heisenberg Inst, D-80805 Munich, Germany. [Shimojima, M.] Nagasaki Inst Appl Sci, Nagasaki 8510193, Japan. [Hasegawa, S.; Itoh, Y.; Ohshima, T.; Okumura, Y.; Sugimoto, T.; Takahashi, Y.; Tomoto, M.] Nagoya Univ, Grad Sch Sci, Chikusa Ku, Nagoya, Aichi 4648602, Japan. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Capasso, L.; Carlino, G.; Chiefari, G.; Conventi, F.; de Asmundis, R.; Della Pietra, M.; della Volpe, D.; Doria, A.; Giordano, R.; Iacobucci, G.; Izzo, V.; Merola, L.; Musto, E.; Patricelli, S.; Sekhniaidze, G.] INFN Sez Napoli, I-80126 Naples, Italy. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Capasso, L.; Chiefari, G.; della Volpe, D.; Giordano, R.; Merola, L.; Musto, E.; Patricelli, S.] Univ Naples Federico II, Dipartimento Sci Fisiche, I-80126 Naples, Italy. [Gorelov, I.; Hoeferkamp, M. R.; Melcalfe, J.; Seidel, S. C.; Toms, K.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. [Consonni, M.; De Groot, N.; Filthaut, F.; Jansen, E.; Klok, P. F.; Konig, A. C.; Koetsveld, E.; Raas, M.] Radboud Univ Nijmegen NIKHEF, Dept Expt High Energy Phys, NL-6525 AJ Nijmegen, Netherlands. [Bentvelsen, S.; Bobbink, G. J.; Bos, K.; Boterenbrood, H.; Colijn, A. P.; de Jong, P.; Doxiadis, A.; Ferrari, P.; Garitaonandia, H.; Gosselink, M.; Hartjes, F.; Hessey, N. P.; Igonkina, O.; Kayl, M. S.; Klous, S.; Kluit, P.; Koffeman, E.; Koutsman, A.; Lee, H.; Liebig, W.; Mechnich, J.; Mussche, I.; Ottersbach, J. P.; Rijpstra, M.; Ruckstuhl, N.; Salamanna, G.; Sandstroem, R.; Snuverink, J.; Tsiakiris, M.; Tuirlay, E.; van der Graaf, H.; van der Kraaij, E.; van der Poel, E.; van Kesteren, Z.; van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Vreeswijk, M.] Nikhef Natl Inst Subat Phys, NL-1098 XG Amsterdam, Netherlands. [Bentvelsen, S.; Bobbink, G. J.; Bos, K.; Boterenbrood, H.; Colijn, A. P.; de Jong, P.; Doxiadis, A.; Ferrari, P.; Garitaonandia, H.; Gosselink, M.; Hartjes, F.; Hessey, N. P.; Igonkina, O.; Kayl, M. S.; Klous, S.; Kluit, P.; Koffeman, E.; Koutsman, A.; Lee, H.; Liebig, W.; Mechnich, J.; Mussche, I.; Ottersbach, J. P.; Rijpstra, M.; Ruckstuhl, N.; Salamanna, G.; Sandstroem, R.; Snuverink, J.; Tsiakiris, M.; Tuirlay, E.; van der Graaf, H.; van der Kraaij, E.; van der Poel, E.; van Kesteren, Z.; van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Vreeswijk, M.] Univ Amsterdam, NL-1098 XG Amsterdam, Netherlands. [Kazanin, V. A.; Kotov, K. Y.; Malyshev, V.; Maslennikov, A. L.; Orlov, I.; Peleganchuk, S. V.; Schamov, A. G.; Skovpen, K.; Soukharev, A.; Talyshev, A.; Tikhonov, V. A.; Zaytsev, A.] Budker Inst Nucl Phys BINP, Novosibirsk 630090, Russia. [Budick, B.; Casadei, D.; Cranmer, K.; Djilkibaev, R.; Konoplich, R.; Krasznahorkay, A.; Mincer, A. I.; Nemethy, P.; Neves, R. M.; Shibata, A.; Zhao, L.] NYU, Dept Phys, New York, NY 10003 USA. [Fernando, W.; Fisher, M. J.; Gan, K. K.; Kagan, H.; Kass, R. D.; Loureiro, K. F.; Moss, J.; Rahimi, A. M.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.] Okayama Univ, Fac Sci, Okayama 7008530, Japan. [Abbott, B.; Gutierrez, P.; Huang, G. S.; Jana, D. K.; Meera-Lebbai, R.; Saleem, M. S.; Severini, H.; Skubic, P.; Snow, J.; Strauss, M.] Univ Oklahoma, Homer L Dodge Dept Phys & Astron, Norman, OK 73019 USA. [Abi, B.; Khanov, A.; Rizatdinova, F.] Oklahoma State Univ, Dept Phys, Stillwater, OK 74078 USA. [Kocnar, A.] Palacky Univ, Olomouc 77207, Czech Republic. [Brau, J. E.; Ptacek, E.; Reinsch, A.; Robinson, M.; Searcy, J.; Shamim, M.; Sinev, N. B.; Strom, D. M.; Torrence, E.] Univ Oregon, Ctr High Energy Phys, Eugene, OR 97403 USA. [Abreu, H.; Arnault, C.; Barrillon, P.; Benoit, M.; Bernat, P.; Binet, S.; Blanchard, J. -B.; Bourdarios, C.; Collard, C.; De Regie, J. B. De Vivie; Diglio, S.; Dudziak, F.; Duflot, L.; Escalier, M.; Fayard, L.; Fournier, D.; Heller, M.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Kado, M.; Lounis, A.; Makovec, N.; Matricon, P.; Niedercorn, F.; Perus, P.; Poggioli, L.; Puzo, P.; Rousseau, D.; Ruan, X.; Rybkin, G.; Schaffer, A. C.; Serin, L.; Simion, S.; Tanaka, R.; Vukotic, I.; Wicek, F.; Wingerter-Seez, I.; Zerwas, D.] Univ Paris 11, CNRS, IN2P3, LAL, F-91405 Orsay, France. [Hanagaki, K.; Hirose, M.; Meguro, T. M.; Nomachi, M.; Sugaya, Y.; Uchida, K.] Osaka Univ, Grad Sch Sci, Toyonaka, Osaka 5600043, Japan. [Bugge, L.; Buran, T.; Cameron, D.; Gjelsten, B. K.; Lund, E.; Ould-Saada, F.; Pajchel, K.; Pylypchenko, Y.; Read, A. L.; Rohne, O.; Samset, B. H.; Stapnes, S.; Strandlie, A.; Taga, A.] Univ Oslo, Dept Phys, N-0316 Oslo 3, Norway. [Abdesselam, A.; Barr, A. J.; Beauchemin, P. H.; Buchanan, J.; Cooper-Sarkar, A. M.; Dehchar, M.; Doglioni, C.; Farrington, S. M.; Ferrando, J.; Fiascaris, M.; Gallas, E. J.; Gibson, S. M.; Gilbert, L. M.; Gwenlan, C.; Issever, C.; Unel, M. Karagoz; Kirsch, G. P.; Larner, A.; Mattravers, C.; Mermod, P.; Nickerson, R. B.; Tseng, J. C. -L.; Vickey, T.; Viehhauser, G. H. A.; Wastie, R.; Weidberg, A. R.; Whitehead, S. R.; Wingerter-Seez, I.] Univ Oxford, Dept Phys, Oxford OX1 3RH, England. [Bellomo, M.; Conta, C.; Ferrari, R.; Franchino, S.; Fraternal, M.; Gaudio, G.; Goggi, V.; Lanza, A.; Livan, M.; Negri, A.; Polesello, G.; Rebuzzi, D. M.; Rimoldi, A.; Uslenghi, M.; Vercesi, V.] INFN Sez Pavia, I-27100 Pavia, Italy. [Conta, C.; Franchino, S.; Fraternal, M.; Goggi, V.; Livan, M.; Negri, A.; Rebuzzi, D. M.; Rimoldi, A.; Uslenghi, M.] Univ Pavia, Dipartimento Fis Nucl & Teor, I-27100 Pavia, Italy. [Alison, J.; Degenhardt, J.; Donega, M.; Fratina, S.; Hance, M.; Hines, E.; Jackson, B.; Keener, P. T.; Kroll, J.; Kunkle, J.; LeGeyt, B. C.; Lipeles, E.; Martin, F. F.; Newcomer, F. M.; Olivito, D.; Ospanov, R.; Reece, R.; Stahlman, J.; Thomson, E.; Van Berg, R.; Wagner, P.; Williams, H. H.] Univ Penn, Dept Phys, High Energy Phys Grp, Philadelphia, PA 19104 USA. [Fedin, O. L.; Gratchev, V.; Kolos, S.; Maleev, V. P.; Ryabov, Y. F.; Schegelsky, V. A.; Sedykh, E.; Seliverstov, D. M.] Petersburg Nucl Phys Inst, Gatchina 188300, Russia. [Cascella, M.; Cavasinni, V.; Del Prete, T.; Dotti, A.; Francavilla, P.; Giangiobbe, V.; Roda, C.; Sarri, F.; Zenonos, Z.] INFN Sez Pisa, I-56127 Pisa, Italy. [Cascella, M.; Cavasinni, V.; Del Prete, T.; Dotti, A.; Francavilla, P.; Giangiobbe, V.; Roda, C.; Sarri, F.; Zenonos, Z.] Univ Pisa, Dipartimento Fis E Fermi, I-56127 Pisa, Italy. [Boudreau, J.; Boulahouache, C.; Cleland, W.; Kittelmann, T.; Mueller, J.; Paolone, V.; Prieur, D.; Savinov, V.; Tsulaia, V.; Wendler, S.; Yoosoofmiya, R.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Amorim, A.; Anjos, N.; Benincasa, G. P.; Carvalho, J.; Conde Muino, P.; Do Valle Wemans, A.; Fernandes, B.; Fiolhais, M. C. N.; Gomes, A.; Jorge, P. M.; Lopes, L.; Machado Miguens, J.; Magalhaes Martins, P. J.; Maio, A.; Maneira, J.; Morais, A.; Oliveira, M.; Onofre, A.; Palma, A.; Pina, J.; Pinto, B.; Saraiva, J. G.; Silva, J.; Soares, M.; Veloso, F.; Wolters, H.] Lab Instrumentacao & Fis Expt Particulas LIP, P-1000149 Lisbon, Portugal. [Aguilar-Saavedra, J. A.; Castro, N. F.] Univ Granada, Dept Fis Teor & Cosmos, E-18071 Granada, Spain. [Aguilar-Saavedra, J. A.; Castro, N. F.] CAFPE, Granada 18071, Spain. [Bazalova, M.; Bohm, J.; Chudoba, J.; Gallus, P.; Gunther, J.; Havranek, M.; Juranek, V.; Kepka, O.; Kupco, A.; Kus, V.; Lipinsky, L.; Lokajicek, M.; Marcisovsky, M.; Mikestikova, M.; Myska, M.; Nemecek, S.; Panuskova, M.; Popule, J.; Ruzicka, P.; Schovancova, J.; Sicho, P.; Sluka, T.; Staroba, P.; Stastny, J.; Tasevsky, M.; Tic, T.; Tomasek, L.; Tomasek, M.; Vrba, V.] Acad Sci Czech Republic, Inst Phys, Prague 18221 8, Czech Republic. [Davidek, T.; Dolejsi, J.; Dolezal, Z.; Drasal, Z.; Kodys, P.; Leitner, R.; Novakova, J.; Reznicek, P.; Spousta, M.; Strachota, P.; Suk, M.; Sykora, T.; Tas, P.; Valkar, S.; Vorobel, V.] Charles Univ Prague, Fac Math & Phys, Inst Particle & Nucl Phys, CR-18000 Prague 8, Czech Republic. [Augsten, K.; Holy, T.; Horazdovsky, T.; Hubacek, Z.; Jakubek, J.; Kohout, Z.; Kral, V.; Krejci, F.; Pospisil, S.; Simak, V.; Slavicek, T.; Smolek, K.; Sodomka, J.; Solar, M.; Solc, J.; Sopko, V.; Sopko, B.; Stekl, I.; Turecek, D.; Vacek, V.; Vlasak, M.; Vokac, P.] Czech Tech Univ, CR-16635 Prague 6, Czech Republic. [Borisov, A.; Denisov, S. P.; Fakhrutdinov, R. M.; Fenyuk, A. B.; Ivashin, A. V.; Kabachenko, V. V.; Karyukhin, A. N.; Korotkov, V. A.; Kozhin, A. S.; Makouski, M.; Minaenko, A. A.; Myagkov, A. G.; Solodkov, A. A.; Solovyanov, O. V.; Starchenko, E. A.; Zaitsev, A. M.; Zenin, O.] State Res Ctr, Inst High Energy Phys, Protvino 142281, Moscow Region, Russia. [Adye, T.; Baines, J. T.; Barnett, B. M.; Burke, S.; Dallison, S. J.; Dewhurst, A.; Emeliyanov, D.; Gallop, B. J.; Gee, C. N. P.; Haywood, S. J.; Kirk, J.; McCubbin, N. A.; McMahon, S. J.; Middleton, R. P.; Murray, W. J.; Qian, W.; Sankey, D. P. C.; Scott, W. G.; Strube, J.; Tyndel, M.; Villani, E. G.; Weber, M.; Wickens, F. J.; Wielers, M.] Rutherford Appleton Lab, Sci & Technol Facil Council, UK T1 RAL Tier 1, Didcot OX11 0QX, Oxon, England. [Benslama, K.; Kalinowski, A.; Ming, Y.; Ortega, E. O.] Univ Regina, Dept Phys, Regina, SK S4S 0A2, Canada. [Tanaka, S.] Ritsumeikan Univ, Shiga 5258577, Japan. [Anulli, F.; Bagnaia, P.; Biglietti, M.; Bini, C.; Borroni, S.; Ciapetti, G.; De Pedis, D.; De Salvo, A.; De Zorzi, G.; Di Mattia, A.; Dionisi, C.; Falciano, S.; Gauzzi, P.; Gentile, S.; Giagu, S.; Lacava, F.; Luci, C.; Luminari, L.; Maiani, C.; Marzano, F.; Mirabelli, G.; Nisati, A.; Pasqualucci, E.; Petrolo, E.; Pontecorvo, L.; Rescigno, M.; Camillocci, E. Solfaroli; Spila, F.; Valente, P.; Vari, R.; Veneziano, S.; Zanello, L.] INFN Sez Roma I, I-00185 Rome, Italy. [Bagnaia, P.; Biglietti, M.; Bini, C.; Borroni, S.; Ciapetti, G.; De Zorzi, G.; Di Mattia, A.; Dionisi, C.; Gauzzi, P.; Gentile, S.; Giagu, S.; Lacava, F.; Luci, C.; Maiani, C.; Camillocci, E. Solfaroli; Spila, F.; Zanello, L.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Aielli, G.; Camarri, P.; Cardarelli, R.; Cattani, G.; Di Ciaccio, A.; Di Nardo, R.; Di Simone, A.; Liberti, B.; Marchese, F.; Salamon, A.; Santonico, R.] INFN Sez Roma Tor Vergata, I-00133 Rome, Italy. [Aielli, G.; Camarri, P.; Cattani, G.; Di Ciaccio, A.; Di Nardo, R.; Di Simone, A.; Marchese, F.; Santonico, R.] Univ Roma Tor Vergata, Dipartimento Fis, I-00133 Rome, Italy. [Baroncelli, A.; Branchini, P.; Ceradini, F.; Di Girolamo, B.; Farilla, A.; Graziani, E.; Iodice, M.; Orestano, D.; Passeri, A.; Pastore, F.; Petrucci, F.; Ruggieri, F.; Stanescu, C.] INFN Sez Roma Tre, I-00146 Rome, Italy. [Ceradini, F.; Di Girolamo, B.; Orestano, D.; Pastore, F.; Petrucci, F.] Univ Roma Tre, Dipartimento Fis, I-00146 Rome, Italy. [Benchekroun, D.; Chafaq, A.; Gouighri, M.; Goujdami, D.; Hoummada, A.] Univ Hassan 2, Reseau Univ Phys Hautes Energies RUPHE, Fac Sci Ain Chock, Casablanca, Morocco. Ctr Natl Energie Sci Tech Nucl CNESTEN, Rabat 10001, Morocco. [Derkaoui, J. E.] Univ Mohamed Premier, LPTPM, Fac Sci, Oujda 60000, Morocco. [El Moursli, R. Cherkaoui; Ghazlane, H.] Univ Mohammed 5, Fac Sci, Rabat 10000, Morocco. [Bachacou, H.; Bauer, F.; Besson, N.; Boonekamp, M.; Chevalier, L.; Chevallier, F.; Ernwein, J.; Etienvre, A. I.; Formica, A.; Gautard, V.; Guyot, C.; Hassani, S.; Kozanecki, W.; Lancon, E.; Laporte, J. F.; Le Menedeu, E.; Legendre, M.; Lenzi, B.; Mansoulie, B.; Marzin, A.; Meyer, J. -P.; Mountricha, E.; Nicolaidou, R.; Ouraou, A.; Ponsot, P.; Resende, B.; Royon, C. R.; Schune, Ph.; Schwindling, J.] Ctr Etud Saclay, CEA, DSM IRFU, F-91191 Gif Sur Yvette, France. [Bangert, A.; Chouridou, S.; Fowler, K.; Grillo, A. A.; Hansl-Kozanecka, T.; Hare, G. A.; Litke, A. M.; Lockman, W. S.; Manning, P. M.; Mitrevski, J.; Nielsen, J.; Sadrozinski, H. E-W.; Schumm, B. A.; Seiden, A.; Spencer, E.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Daly, C. H.; Goussiou, A. G.; Griffiths, J.; Harris, O. M.; Lubatti, H. J.; Policicchio, A.; Rosati, S.; Rothberg, J.; Twomey, M. S.; Ventura, D.; Watts, G.; Zhao, T.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Anastopoulos, C.; Costanzo, D.; Donszelmann, T. Cuhadar; Dawson, I.; Duxfield, R.; Hodgkinson, M. C.; Hodgson, P.; Johansson, P.; Korolkova, E. V.; Mayne, A.; Nicolas, L.; Owen, S.; Paganis, E.; Shaw, K.; Sutton, M. R.; Tovey, D. R.; Tsionou, D.; Xu, D.] Univ Sheffield, Dept Phys & Astron, Sheffield S3 7RH, S Yorkshire, England. [Hasegawa, Y.; Ohshita, H.; Takeshita, T.] Shinshu Univ, Dept Phys, Fac Sci, Matsumoto, Nagano 3908621, Japan. [Buchholz, P.; Fleck, I.; Grybel, K.; Ibragimov, I.; Rammes, M.; Sipica, V.; Stahl, T.; Walkowiak, W.; Werthenbach, U.; Ziolkowski, M.] Univ Siegen, Fachbereich Phys, D-57068 Siegen, Germany. [Godfrey, J.; Komaragiri, J. R.; O'Neil, D. C.; Petteni, M.; Schouten, D.; Spreitzer, T.; Stelzer, B.; Vetterli, M. C.] Simon Fraser Univ, Dept Phys, Burnaby, BC V5A 1S6, Canada. [Aracena, I.; Asai, M.; Barklow, T.; Bartoldus, R.; Bawa, H. S.; Butler, B.; Gao, Y. S.; Grenier, P.; Haas, A.; Hansson, P.; Horn, C.; Jackson, P.; Kim, P. C.; Kocian, M.; Miller, D. W.; Mount, R.; Nelson, T. K.; Salnikov, A.; Schwartzman, A.; Silverstein, D.; Smith, D.; Su, D.; Wilson, M. G.; Wittgen, M.; Wright, D.; Young, C.] SLAC Natl Accelerator Lab, Stanford, CA 94309 USA. [Batkova, L.; Federic, P.; Lovas, L.; Pecsy, M.; Stavina, P.; Sykora, I.; Tokar, S.; Zenis, T.] Comenius Univ, Fac Math Phys & Informat, Bratislava 84248, Slovakia. [Antos, J.; Bruncko, D.; Ferencei, J.; Kladiva, E.; Strizenec, P.] Slovak Acad Sci, Inst Expt Phys, Dept Subnucl Phys, Kosice 04353, Slovakia. [Asman, B.; Bohm, C.; Clement, C.; Eriksson, D.; Gellerstedt, K.; Hellman, S.; Hillert, S.; Johansen, M.; Johansson, K. E.; Jon-And, K.; Milstead, D. A.; Moa, T.; Nordkvist, B.; Ohm, C. C.; Sellden, B.; Silverstein, S. B.; Sjoelin, J.; Tyimadab, M.; Yang, Z.] Stockholm Univ, Dept Phys, S-10691 Stockholm, Sweden. [Asman, B.; Clement, C.; Gellerstedt, K.; Hellman, S.; Hillert, S.; Johansen, M.; Jon-And, K.; Milstead, D. A.; Moa, T.; Nordkvist, B.; Ohm, C. C.; Sjoelin, J.; Tyimadab, M.; Yang, Z.] Oskar Klein Ctr, S-10691 Stockholm, Sweden. [Grahn, K. -J.; Lund-Jensen, B.] Royal Inst Technol KTH, Dept Phys, S-10691 Stockholm, Sweden. [Ahmad, A.; Caputo, R.; Deluca, C.; DeWilde, B.; Engelmann, R.; Farley, J.; Goodson, J. J.; Grassi, V.; Gray, J. A.; Grimm, K.; Hobbs, J.; Jia, J.; Khodinov, A.; McCarthy, R. L.; Rijssenbeek, M.; Schamberger, R. D.; Tsybychev, D.; Yurkewicz, A.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [De Santo, A.; Potter, C. J.; Salvatore, F.] Univ Sussex, Dept Phys & Astron, Brighton BN1 9QH, E Sussex, England. [Lee, J. S. H.; Peak, L. S.; Saavedra, A. F.; Varvell, K. E.; Waugh, A. T.] Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia. [Chu, M. L.; Hou, S.; Lee, S. C.; Liang, Z.; Lin, S. C.; Liu, D.; Mazini, R.; Meng, Z.; Ren, Z. L.; Soh, D. A.; Teng, P. K.; Wang, S. M.; Zhong, J.; Zhou, Y.] Acad Sinica, Inst Phys, Acad Sinica Grid Comp, Taipei 11529, Taiwan. [Harpaz, S. Behar; Ben Ami, S.; Bressler, S.; Hershenhorn, A. D.; Kajomovitz, E.; Rozen, Y.; Tarem, S.; Tennenbaum-Katan, Y. D.; Vallecorsa, S.] Technion Israel Inst Technol, Dept Phys, IL-32000 Technion, Haifa, Israel. [Abramowicz, H.; Alexander, G.; Amram, N.; Bella, G.; Benary, O.; Benhammou, Y.; Brodet, E.; Etzion, E.; Gershon, A.; Ginzburg, J.; Guttman, N.; Hod, N.; Kreisel, A.; Mahalalel, Y.; Munwes, Y.; Oren, Y.; Reinherz-Aronis, E.; Silver, Y.; Soffer, A.; Urkovsky, E.] Tel Aviv Univ, Raymond & Beverly Sackler Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Iliadis, D.; Kordas, K.; Nomidis, I.; Petridou, C.; Sampsonidis, D.] Aristotle Univ Thessaloniki, Fac Sci, Dept Phys, Div Nucl & Particle Phys, Thessaloniki 54124, Greece. [Akimoto, G.; Asai, S.; Azuma, Y.; Dohmae, T.; Isobe, T.; Kanaya, N.; Kaneda, M.; Kataoka, Y.; Kawamoto, T.; Kessoku, K.; Kobayashi, T.; Kubota, T.; Mashimo, T.; Masubuchi, T.; Matsunaga, H.; Nakamura, K.; Oda, S.; Okuyama, T.; Sakamoto, H.; Suzuki, T.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamamoto, S.; Yamamura, T.; Yamazaki, T.] Univ Tokyo, Int Ctr Elementary Particle Phys, Tokyo 1130033, Japan. [Akimoto, G.; Asai, S.; Azuma, Y.; Dohmae, T.; Isobe, T.; Kanaya, N.; Kaneda, M.; Kataoka, Y.; Kawamoto, T.; Kessoku, K.; Kobayashi, T.; Kubota, T.; Mashimo, T.; Masubuchi, T.; Matsunaga, H.; Nakamura, K.; Oda, S.; Okuyama, T.; Sakamoto, H.; Suzuki, T.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamamoto, S.; Yamamura, T.; Yamazaki, T.] Dept Phys, Bunkyo Ku, Tokyo 1130033, Japan. [Bratzler, U.; Fukunaga, C.] Tokyo Metropolitan Univ, Grad Sch Sci & Technol, Hachioji, Tokyo 1920397, Japan. [Jinnouchi, O.] Tokyo Inst Technol, Meguro Ku, Tokyo 1528551, Japan. [Bain, T.; Beare, B.; Brelier, B.; Montero, S. Carron; Cheung, S. L.; Deviveiros, P. O.; Dhaliwal, S.; Farooque, T.; Fatholahzadeh, B.; Gibson, A.; Guo, B.; Knecht, N. S.; Krieger, P.; Orr, R. S.; Rezvani, R.; Rosenbaum, G. A.; Sandhu, P.; Savard, P.; Sinervo, P.; Tardif, D.; Teuscher, R. J.; Thompson, P. D.; Trischuk, W.] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada. [Azuelos, G.; Canepa, A.; Caron, B.; Chekulaev, S. V.; Fortin, D.; Gingrich, D. M.; Kurchaninov, L. L.; Nugent, I. M.; Oakham, F. G.; Oram, C. J.; Savard, P.; Stelzer-Chilton, O.; Tafirout, R.; Trigger, I. M.; Vetterli, M. C.] TRIUMF, ATLAS Canada Tier Data Ctr 1, Vancouver, BC V6T 2A3, Canada. [Idarraga, J.; Taylor, W.] York Univ, Dept Phys & Astron, Toronto, ON M3J 1P3, Canada. [Hara, K.; Kim, S. H.; Kurata, M.; Nagai, K.; Ukegawa, F.; Yamada, M.] Univ Tsukuba, Inst Pure & Appl Sci, Tsukuba, Ibaraki 3058571, Japan. [Hamilton, S.; Napier, A.; Rolli, S.; Sliwa, K.; Todorova-Nova, S.] Tufts Univ, Ctr Sci & Technol, Medford, MA 02155 USA. [Grabowska-Bold, I.; Losada, M.; Navas, L. Mendoza; Moreno, Ft; Navarro, G.; Roa Romero, D. A.; Rodriguez, D.] Univ Antonio Narino, Ctr Invest, Bogota, Colombia. [Avolio, G.; Benedict, B. H.; Bold, T.; Bondioli, M.; Ciobotaru, M. D.; Corso-Radu, A.; Deng, J.; Dobson, M.; Eschrich, I. Gough; Kolos, S.; Lankford, A. J.; Garcia, R. Murillo; Okawa, H.; Porter, R.; Schernau, M.; Stancu, S. N.; Taffard, A.; Toggerson, B.; Unel, G.; Werth, M.; Whiteson, D.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Acharya, B. S.; Cauz, D.; Cobal, M.; De Sanctis, U.; Del Papa, C.; Giordani, M. P.; Luisa, L.; Pinamonti, M.; Suruliz, K.] INFN Grp Coll Udine, I-34014 Trieste, Italy. [Acharya, B. S.; Suruliz, K.] Abdus Salaam Int Ctr Theoret Phys, I-34014 Trieste, Italy. [Cauz, D.; Cobal, M.; De Sanctis, U.; Del Papa, C.; Giordani, M. P.; Luisa, L.; Pinamonti, M.] Univ Udine, Dipartimento Fis, I-33100 Udine, Italy. [Benekos, N.; Coggeshall, J.; Cortes-Gonzalez, A.; Errede, D.; Errede, S.; Khandanyan, H.; Lie, K.; Liss, T. M.; McCarn, A.; Neubauer, M. S.; Sfyrla, A.; Vichou, I.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Belanger-Champagne, C.; Brenner, R.; Buszello, C. P.; Coniavitis, E.; Ekelof, T.; Ellert, M.; Ferrari, A.; Flechl, M.] Uppsala Univ, Dept Phys & Astron, S-75120 Uppsala, Sweden. [Amoros, G.; Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Escobar, C.; Ferrer, A.; Fuster, J.; Garcia, C.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Minano, M.; Mitsou, V. A.; Moles-Valls, R.; Moreno Llacer, M.; Oliveira Garcia, E.; Perez Garcia-Estan, M. T.; Ros, E.; Salt, J.; Solans, C. A.; Sanchez, J.; Torro Pastor, E.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.; Wildauer, A.] Inst Fis Corpuscular IFIC Ctr Mixto UVEG CSIC, Valencia 46071, Spain. [Amoros, G.; Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Escobar, C.; Ferrer, A.; Fuster, J.; Garcia, C.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Minano, M.; Mitsou, V. A.; Moles-Valls, R.; Moreno Llacer, M.; Oliveira Garcia, E.; Perez Garcia-Estan, M. T.; Ros, E.; Salt, J.; Solans, C. A.; Sanchez, J.; Torro Pastor, E.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.; Wildauer, A.] Univ Valencia, Dept Fis At Mol & Nucl, Barcelona 08193, Spain. [Amoros, G.; Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Escobar, C.; Ferrer, A.; Fuster, J.; Garcia, C.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Minano, M.; Mitsou, V. A.; Moles-Valls, R.; Moreno Llacer, M.; Oliveira Garcia, E.; Perez Garcia-Estan, M. T.; Ros, E.; Salt, J.; Solans, C. A.; Sanchez, J.; Torro Pastor, E.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.; Wildauer, A.] Inst Microelect Barcelona IMB CNM CSIC, Barcelona 08193, Spain. [Axen, D.; Gay, C.; Loh, C. W.; Mills, W. J.; Muir, A.] Univ British Columbia, Dept Phys, Vancouver, BC V6T 1Z1, Canada. [Astbury, A.; Banerjee, S.; Bansal, V.; Berghaus, F.; Courneyea, L.; Fincke-Keeler, M.; Ince, T.; Keeler, R.; Kowalewski, R.; Lefebvre, M.; Lessard, J. -R.; McPherson, R. A.; Plamondon, M.; Poffenberger, P.; Sobie, R.; Taylor, R. P.] Univ Victoria, Dept Phys & Astron, Victoria, BC V8W 3P6, Canada. [Yorita, K.] Waseda Univ, WISE, Shinjuku Ku, Tokyo 1698555, Japan. [Alon, R.; Duchovni, E.; Gabizon, O.; Gross, E.; Klier, A.; Lellouch, D.; Levinson, L. J.; Mikenberg, G.; Milov, A.; Milstein, D.; Silbert, O.; Smakhtin, V.; Vitells, O.] Weizmann Inst Sci, Dept Particle Phys, IL-76100 Rehovot, Israel. [Asfandiyarov, R.; Montoya, G. D. Carrillo; Hernandez, A. M. Castaneda; Castaneda-Miranda, E.; Chen, X.; Dos Anjos, A.; Fang, Y.; Castillo, L. R. Flores; Guizwiller, O.; Jared, R. C.; Cheong, A. Leung Fook; Li, H.; Ma, L. L.; Garcia, B. R. Mellado; Pan, Y. B.; Morales, M. I. Pedraza; Peng, H.; Poveda, J.; Quayle, W. B.; Sarangi, T.; Wang, H.; Wiedenmann, W.; Wu, S. L.; Xu, N.; Zhu, Y.; Zobernig, G.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Fleischmann, P.; Meyer, J.; Redelbach, A.; Stroehmer, R.; Trefzger, T.; Verducci, M.] Univ Wurzburg, Inst Phys, D-97074 Wurzburg, Germany. [Barisonzi, M.; Becks, K. H.; Boek, J.; Braun, H. M.; Dopke, J.; Flick, T.; Glitza, K. W.; Gorfine, G.; Hamacher, K.; Harenberg, T.; Henss, T.; Hirschbuehl, D.; Kalinin, S.; Kersten, S.; Kind, P.; Kuhl, T.; Lenz, T.; Lenzen, G.; Maettig, P.; Mechtel, M.; Sandhoff, M.; Sandvoss, S.; Sanny, B.; Schroers, M.; Schultes, J.; Voss, T. T.; Zeitnitz, C.] Berg Univ Wuppertal, Fachbereich C, D-42097 Wuppertal, Germany. [Adelman, J.; Atoian, G.; Auerbach, B.; Baker, O. K.; Almenar, C. Cuenca; Czyczula, Z.; Demers, S.; Golling, T.; Hsu, P. J.; Issakov, V.; Kaplan, B.; Kastoryano, M.; Lockwitz, S.; Loginov, A.; Martin, A. J.; Poblaguev, A.; Thioye, M.; Tipton, P.; Wall, R.; Zeller, M.] Yale Univ, Dept Phys, New Haven, CT 06520 USA. [Hakobyan, H.] Yerevan Phys Inst, Yerevan 375036, Armenia. Forschungszentrum Karlsruhe, Steinbuch Ctr Comp SCC, GridKA Tier FZK 1, D-76344 Eggenstein Leopoldshafen, Germany. Univ Autonoma Barcelona, Port Informacio Cient PIC, Bellaterra 08193, Spain. [Biscarat, C.; Cogneras, E.; Rahal, G.] Univ Lyon 1, CNRS, Ctr Calcul, IN2P3, F-69622 Villeurbanne, France. INFN CNAF, I-40127 Bologna, Italy. NORDUnet AS, Nord Data Grid Facil, DK-2770 Kastrup, Denmark. SARA Reken Netwerkdiensten, NL-1098 XG Amsterdam, Netherlands. [Conventi, F.; Della Pietra, M.] Univ Napoli Parthenope, I-80133 Naples, Italy. [Dhullipudi, R.; Greenwood, Z. D.; Sawyer, L.] Louisiana Tech Univ, Ruston, LA 71272 USA. [Gao, Y. S.] Calif State Univ Fresno, Dept Phys, Fresno, CA 93740 USA. [Gray, H. M.; Mateos, D. Lopez; Marshall, Z.; Perez, K.] CALTECH, Dept Phys, Pasadena, CA 91125 USA. [Haller, J.; Kono, T.] Univ Hamburg, Inst Expt Phys, D-22761 Hamburg, Germany. [Liang, Z.] Sun Yat Sen Univ, Sch Phys & Engn, Guangzhou, Guangdong, Peoples R China. [Liu, D.; Meng, Z.] Shandong Univ, Sch Phys, Jinan 250100, Peoples R China. [Park, W.; Purohit, M.; Trivedi, A.] Univ S Carolina, Dept Phys & Astron, Columbia, SC 29208 USA. [Pasztor, G.; Toth, J.] KFKI Res Inst Particle & Nucl Phys, Budapest, Hungary. [Richter-Was, E.] Jagiellonian Univ, Inst Phys, Krakow, Poland. [Soh, D. A.] Sun Yat Sen Univ, Sch Phys & Engn, Kaohsiung, Taiwan. RP Aad, G (reprint author), Univ Freiburg, Fak Math & Phys, Hermann Herder Str 3, D-79104 Freiburg, Germany. RI Mikestikova, Marcela/H-1996-2014; Chudoba, Jiri/G-7737-2014; Lei, Xiaowen/O-4348-2014; Ventura, Andrea/A-9544-2015; Villaplana Perez, Miguel/B-2717-2015; Mir, Lluisa-Maria/G-7212-2015; Wemans, Andre/A-6738-2012; Kartvelishvili, Vakhtang/K-2312-2013; Dawson, Ian/K-6090-2013; O'Shea, Val/G-1279-2010; Staroba, Pavel/G-8850-2014; Lokajicek, Milos/G-7800-2014; Kupco, Alexander/G-9713-2014; Riu, Imma/L-7385-2014; Aguilar Saavedra, Juan Antonio/F-1256-2016; Leyton, Michael/G-2214-2016; Casado, Pilar/H-1484-2015; Canelli, Florencia/O-9693-2016; Mashinistov, Ruslan/M-8356-2015 OI Mikestikova, Marcela/0000-0003-1277-2596; Lei, Xiaowen/0000-0002-2564-8351; Ventura, Andrea/0000-0002-3368-3413; Villaplana Perez, Miguel/0000-0002-0048-4602; Mir, Lluisa-Maria/0000-0002-4276-715X; Wemans, Andre/0000-0002-9669-9500; O'Shea, Val/0000-0001-7183-1205; Riu, Imma/0000-0002-3742-4582; Aguilar Saavedra, Juan Antonio/0000-0002-5475-8920; Leyton, Michael/0000-0002-0727-8107; Casado, Pilar/0000-0002-0394-5646; Canelli, Florencia/0000-0001-6361-2117; Mashinistov, Ruslan/0000-0001-7925-4676 NR 125 TC 0 Z9 0 U1 0 U2 13 PU SPRINGER-VERLAG BERLIN PI BERLIN PA HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY BN 978-3-642-22115-6 PY 2010 BP 143 EP 194 D2 10.1007/978-3-642-22116-3 PG 52 WC Instruments & Instrumentation; Physics, Particles & Fields SC Instruments & Instrumentation; Physics GA BAF48 UT WOS:000304018500005 ER PT B AU Aad, G Abbott, B Abdallah, J Abdelalim, AA Abdesselam, A Abdinov, O Abi, B Abolins, M Abramowicz, H Abreu, H Acharya, BS Adams, DL Addy, TN Adelman, J Adorisio, C Adragna, P Adye, T Aefsky, S Aguiar-Saavedra, JA Aharrouche, M Ahlen, SP Ahles, F Ahmad, A Ahsan, M Aielli, G Akdogan, T Akesson, TPA Akimoto, G Akimov, AV Aktas, A Alam, MS Alam, MA Albrand, S Aleksa, M Aleksandrov, IN Alexa, C Alexander, G Alexandre, G Alexopoulos, T Alhroob, M Aliev, M Alimonti, G Alison, J Aliyev, M Allport, PP Allwood-Spiers, SE Almond, J Aloisio, A Alon, R Alonso, A Alviggi, MG Amako, K Amelung, C Amorim, A Amoros, G Amram, N Anastopoulos, C Andeen, T Anders, CF Anderson, KJ Andreazza, A Andrei, V Anduaga, XS Angerami, A Anghinolfi, F Anjos, N Annovi, A Antonaki, A Antonelli, M Antonelli, S Antos, J Antunovic, B Anulli, F Aoun, S Arabidze, G Aracena, I Arai, Y Arce, ATH Archambault, JP Arfaoui, S Arguin, JF Argyropoulos, T Arik, M Armbruster, AJ Arnaez, O Arnault, C Artamonov, A Arutinov, D Asai, M Asai, S Asfandiyarov, R Ask, S Asman, B Asner, D Asquith, L Assamagan, K Astvatsatourov, A Atoian, G Auerbach, B Augsten, K Aurousseau, M Austin, N Avolio, G Avramidou, R Ay, C Azuelos, G Azuma, Y Baak, MA Bach, AM Bachacou, H Bachas, K Backes, M Badescu, E Bagnaia, P Bai, Y Bain, T Baines, JT Baker, OK Baker, MD Aker, S Pedrosa, FBD Banas, E Banerjee, P Banerjee, S Banfi, D Bangert, A Bansal, V Baranov, SP Barashkou, A Barber, T Barberio, EL Barberis, D Barbero, M Bardin, DY Barillari, T Barisonzi, M Barklow, T Barlow, N Barnett, BM Barnett, RM Baroncelli, A Barr, AJ Barreiro, F da Costa, JBG Barrillon, P Bartoldus, R Bartsch, D Bates, RL Batkova, L Batley, JR Battaglia, A Battistin, M Bauer, F Bawa, HS Bazalova, M Beare, B Beau, T Beauchemin, PH Beccherle, R Bechtle, P Beck, GA Beck, HP Beckingham, M Becks, KH Beddall, AJ Beddall, A Bednyakov, VA Bee, C Begel, M Harpaz, SB Behera, PK Beimforde, M Belanger-Champagne, C Bell, PJ Bell, WH Bella, G Bellagamba, L Bellina, F Bellomo, M Belloni, A Belotskiy, K Beltramello, O Ben Ami, S Benary, O Benchekroun, D Bendel, M Benedict, BH Benekos, N Benhammou, Y Benjamin, DP Benoit, M Bensinger, JR Benslama, K Bentvelsen, S Beretta, M Berge, D Kuutmann, EB Berger, N Berghaus, F Berglund, E Beringer, J Bernat, P Bernhard, R Bernius, C Berry, T Bertin, A Besana, MI Besson, N Bethke, S Bianchi, RM Bianco, M Biebel, O Biesiada, J Biglietti, M Bilokon, H Bindi, M Bingul, A Bini, C Biscarat, C Bitenc, U Black, KM Blair, RE Blanchard, JB Blanchot, G Blocker, C Blondel, A Blum, W Blumenschein, U Bobbink, GJ Bocci, A Boehler, M Boek, J Boelaert, N Boser, S Bogaerts, JA Bogouch, A Bohm, C Bohm, J Boisvert, V Bold, T Boldea, V Bondarenko, VG Bondioli, M Boonekamp, M Bordoni, S Borer, C Borisov, A Borissov, G Borjanovic, I Borroni, S Bos, K Boscherini, D Bosman, M Boterenbrood, H Bouchami, J Boudreau, J Bouhova-Thacker, EV Boulahouache, C Bourdarios, C Boveia, A Boyd, J Boyko, IR Bozovic-Jelisavcic, I Bracinik, J Braem, A Branchini, P Brandt, A Brandt, G Brandt, O Ratzler, U Brau, B Brau, JE Braun, HM Brelier, B Bremer, J Brenner, R Bressler, S Britton, D Brochu, FM Brock, I Brock, R Brodet, E Bromberg, C Brooijmans, G Brooks, WK Brown, G de Renstrom, PAB Bruncko, D Bruneliere, R Brunet, S Bruni, A Bruni, G Bruschi, M Bucci, F Buchanan, J Buchholz, P Buckley, AG Budagov, IA Budick, B Buscher, V Bugge, L Bulekov, O Bunse, M Buran, T Burckhart, H Burdin, S Burgess, T Burke, S Busato, E Bussey, P Buszello, CP Butin, F Butler, B Butler, JM Buttar, CM Butterworth, JM Byatt, T Caballero, J Urban, SC Caforio, D Cakir, O Calafiura, P Calderini, G Calfayan, P Calkins, R Caloba, LP Calvet, D Camarri, P Cameron, D Campana, S Campanelli, M Canale, V Canelli, F Canepa, A Cantero, J Capasso, L Garrido, MDMC Caprini, I Caprini, M Capua, M Caputo, R Caramarcu, C Cardarelli, R Carli, T Carlino, G Carminati, L Caron, B Caron, S Montoya, GDC Montero, SC Carter, AA Carter, JR Carvalho, J Casadei, D Casado, MP Cascella, M Hernandez, AMC Castaneda-Miranda, E Gimenez, VC Castro, NF Cataldi, G Catinaccio, A Catmore, JR Cattai, A Cattani, G Caughron, S Cavalleri, P Cavalli, D Cavalli-Sforza, M Cavasinni, V Ceradini, F Cerqueira, AS Cerri, A Cerrito, L Cerutti, F Cetin, SA Chafaq, A Chakraborty, D Chan, K Chapman, JD Chapman, JW Chareyre, E Charlton, DG Chavda, V Cheatham, S Chekanov, S Chekulaev, SV Chelkov, GA Chen, H Chen, S Chen, X Cheplakov, A Chepurnov, VF El Moursli, RC Tcherniatine, V Chesneanu, D Cheu, E Cheung, SL Chevalier, L Chevallier, F Chiefari, G Chikovani, L Childers, JT Chilingarov, A Chiodini, G Chizhov, V Choudalakis, G Chouridou, S Christidi, IA Christov, A Chromek-Burckhart, D Chu, ML Chudoba, J Ciapetti, G Ciftci, AK Ciftci, R Cinca, D Cindro, V Ciobotaru, MD Ciocca, C Ciocio, A Cirilli, M Clark, A Clark, PJ Cleland, W Clemens, JC Clement, B Clement, C Coadou, Y Cobal, M Coccaro, A Cochran, J Coggeshall, J Cogneras, E Colijn, AP Collard, C Collins, NJ Collins-Tooth, C Collot, J Colon, G Muino, PC Coniavitis, E Conidi, MC Consonni, M Constantinescu, S Conta, C Conventi, F Cooke, M Cooper, BD Cooper-Sarkar, AM Cooper-Smith, NJ Copic, K Cornelissen, T Corradi, M Corriveau, F Corso-Radu, A Cortes-Gonzalez, A Cortiana, G Costa, G Costa, MJ Costanzo, D Costin, T Cote, D Torres, RC Courneyea, L Cowan, G Cowden, C Cox, BE Cranmer, K Cranshaw, J Cristinziani, M Crosetti, G Crupi, R Crepe-Renaudin, S Almenar, CC Donszelmann, TC Curatolo, M Curtis, CJ Cwetanski, P Czyczula, Z D'Auria, S D'Onofrio, M D'Orazio, A Da Via, C Dabrowski, W Dai, T Dallapiccola, C Dallison, SJ Daly, CH Dam, M Danielsson, HO Dannheim, D Dao, V Darbo, G Darlea, GL Davey, W Davidek, T Davidson, N Davidson, R Davies, M Davison, AR Dawson, I Daya, RK De, K de Asmundis, R De Castro, S Salgado, PEDF De Cecco, S de Graat, J De Groot, N de Jong, P De Mora, L Branco, MD De Pedis, D De Salvo, A De Sanctis, U De Santo, A De Regie, JBD Dean, S Dedovich, DV Degenhardt, J Dehchar, M Del Papa, C Del Peso, J Del Prete, T Dell'Acqua, A Dell'Asta, L Della Pietra, M della Volpe, D Delmastro, M Delsart, PA Deluca, C Demers, S Demichev, M Demirkoz, B Deng, J Deng, W Denisov, SP Derkaoui, JE Derue, F Dervan, P Desch, K Deviveiros, PO Dewhurst, A DeWilde, B Dhaliwal, S Dhullipudi, R Di Ciaccio, A Di Ciaccio, L Di Girolamo, A Di Girolamo, B Di Luise, S Di Mattia, A Di Nardo, R Di Simone, A Di Sipio, R Diaz, MA Diblen, F Diehl, EB Dietrich, J Dietzsch, TA Diglio, S Yagci, KD Dingfelder, J Dionisi, C Dita, P Dita, S Dittus, F Djama, F Djilkibaev, R Djobava, T do Vale, MAB Wemans, AD Doan, TKO Dobos, D Dobson, E Dobson, M Doglioni, C Doherty, T Dolejsi, J Dolenc, I Dolezal, Z Dolgoshein, BA Dohmae, T Donega, M Donini, J Dopke, J Doria, A Dos Anjos, A Dotti, A Dova, MT Doxiadis, A Doyle, AT Drasal, Z Dris, M Dubbert, J Duchovni, E Duckeck, G Dudarev, A Dudziak, F Duhrssen, M Duflot, L Dufour, MA Dunford, M Yildiz, HD Duxfield, R Dwuznik, M Duren, M Ebenstein, WL Ebke, J Eckweiler, S Edmonds, K Edwards, CA Egorov, K Ehrenfeld, W Ehrich, T Eifert, T Eigen, G Einsweiler, K Eisenhandler, E Ekelof, T El Kacimi, M Ellert, M Elles, S Ellinghaus, F Ellis, K Ellis, N Elmsheuser, J Elsing, M Emeliyanov, D Engelmann, R Engl, A Epp, B Eppig, A Erdmann, J Ereditato, A Eriksson, D Ermoline, I Ernst, J Ernst, M Ernwein, J Errede, D Errede, S Ertel, E Escalier, M Escobar, C Curull, XE Esposito, B Etienvre Etzion, E Evans, H Fabbri, L Fabre, C Facius, K Fakhrutdinov, RM Falciano, S Fang, Y Fanti, M Farbin, A Farilla, A Farley, J Farooque, T Farrington, SM Farthouat, P Fassnacht, P Fassouliotis, D Fatholahzadeh, B Fayard, L Fayette, F Febbraro, R Federic, P Fedin, OL Fedorko, W Feligioni, L Felzmann, CU Feng, C Feng, EJ Fenyuk, AB Ferencei, J Ferland, J Fernandes, B Fernando, W Ferrag, S Ferrando, J Ferrara, V Ferrari, A Ferrari, P Ferrari, R Ferrer, A Ferrer, ML Ferrere, D Ferretti, C Fiascaris, M Fiedler, F Filipcic, A Filippas, A Filthaut, F Fincke-Keeler, M Fiolhais, MCN Fiorini, L Firan, A Fischer, G Fisher, MJ Flechl, M Fleck, I Fleckner, J Fleischmann, P Fleischmann, S Flick, T Castillo, LRF Flowerdew, MJ Martin, TF Fopma, J Formica, A Forti, A Fortin, D Fournier, D Fowler, AJ Fowler, K Fox, H Francavilla, P Franchino, S Francis, D Franklin, M Franz, S Fraternali, M Fratina, S Freestone, J French, ST Froeschl, R Froidevaux, D Frost, JA Fukunaga, C Torregrosa, EF Fuster, J Gabaldon, C Gabizon, O Gadfort, T Gadomski, S Gagliardi, G Gagnon, P Galea, C Gallas, EJ Gallo, V Gallop, BJ Gallus, P Galyaev, E Gan, KK Gao, YS Gaponenko, A Garcia-Sciveres, M Garcia, C Navarro, IEG Gardner, RW Garelli, N Garitaonandia, H Garonne, V Gatti, C Gaudio, G Gautard, V Gauzzi, P Gavrilenko, IL Gay, C Gaycken, G Gazis, EN Ge, P Gee, CNP Geich-Gimbel, C Gellerstedt, K Gemme, C Genest, MH Gentile, S Georgatos, F George, S Gershon, A Ghazlane, H Ghodbane, N Giacobbe, B Giagu, S Giakoumopoulou, V Giangiobbe, V Gianotti, F Gibbard, B Gibson, A Gibson, SM Gilbert, LM Gilchriese, M Gilewsky, V Gingrich, DM Ginzburg, J Giokaris, N Giordani, MP Giordano, R Giorgi, FM Giovannini, P Giraud, PF Girtler, P Giugni, D Giusti, P Gjelsten, BK Gladilin, LK Glasman, C Glazov, A Glitza, KW Glonti, GL Godfrey, J Godlewski, J Goebel, M Gopfert, T Goeringer, C Gossling, C Gottfert, T Goggi, V Goldfarb, S Goldin, D Golling, T Gomes, A Fajardo, LSG Goncalo, R Gonella, L Gong, C de la Hoz, SG Silva, MLG Gonzalez-Sevilla, S Goodson, JJ Goossens, L Gordon, HA Gorelov, I Gorfine, G Gorini, B Gorini, E Gorisek, A Gornicki, E Gosdzik, B Gosselink, M Gostkin, MI Eschrich, IG Gouighri, M Goujdami, D Goulette, MP Goussiou, AG Goy, C Grabowska-Bold, I Grafstrom, P Grahn, KJ Grancagnolo, S Grassi, V Gratchev, V Grau, N Gray, HM Gray, JA Graziani, E Green, B Greenshaw, T Greenwood, ZD Gregor, IM Grenier, P Griesmayer, E Griffiths, J Grigalashvili, N Grillo, AA Grimm, K Grinstein, S Grishkevich, YV Groh, M Groll, M Gross, E Grosse-Knetter, J Groth-Jensen, J Grybel, K Guicheney, C Guida, A Guillemin, T Guler, H Gunther, J Guo, B Gurriana, L Gusakov, Y Gutierrez, A Gutierrez, P Guttman, N Gutzwiller, O Guyot, C Gwenlan, C Gwilliam, CB Haas, A Haas, S Haber, C Hadavand, HK Hadley, DR Haefner, R Haider, S Hajduk, Z Hakobyan, H Haller, J Hamacher, K Hamilton, A Hamilton, S Han, L Hanagaki, K Hance, M Handel, C Hanke, P Hansen, JR Hansen, JB Hansen, JD Hansen, PH Hansl-Kozanecka, T Hansson, P Hara, K Hare, GA Harenberg, T Harrington, RD Harris, OM Harrison, K Hartert, J Hartjes, F Harvey, A Hasegawa, S Hasegawa, Y Hassani, S Haug, S Hauschild, M Hauser, R Havranek, M Hawkes, CM Hawkings, RJ Hayakawa, T Hayward, HS Haywood, SJ Head, SJ Hedberg, V Heelan, L Heim, S Heinemann, B Heisterkamp, S Helary, L Heller, M Hellman, S Helsens, C Hemperek, T Henderson, RCW Henke, M Henrichs, A Correia, AMH Henrot-Versille, S Hensel, C Henss, T Jimenez, YH Hershenhorn, AD Herten, G Hertenberger, R Hervas, L Hessey, NP Higon-Rodriguez, E Hill, JC Hiller, KH Hillert, S Hillier, SJ Hinchliffe, I Hines, E Hirose, M Hirsch, F Hirschbuehl, D Hobbs, J Hod, N Hodgkinson, MC Hodgson, P Hoecker, A Hoeferkamp, MR Hoffman, J Hoffmann, I Hohlfeld, M Hollander, D Holy, T Holzbauer, JL Homma, Y Horazdovsky, T Hori, T Horn, C Horner, S Horvat, S Hostachy, JY Hou, S Hoummada, A Howe, T Hrivnac, J Hryn'ova, T Hsu, PJ Hsu, SC Huang, GS Hubacek, Z Hubaut, F Huegging, F Huffman, TB Hughes, EW Hughes, G Hurwitz, M Husemann, U Huseynov, N Huston, J Huth, J Iacobucci, G Iakovidis, G Ibragimov, I Iconomidou-Fayard, L Idarraga, J Iengo, P Igonkina, O Ikegami, Y Ikeno, M Ilchenko, Y Iliadis, I Ince, T Ioannou, P Iodice, M Quiles, AI Ishikawa, A Ishino, M Ishmukhametov, R Isobe, T Issever, C Istin, S Itoh, Y Ivashin, AV Iwanski, W Iwasaki, H Izen, JM Izzo, V Jackson, B Jackson, JN Jackson, P Jackel, MR Jain, V Jakobs, K Jakobsen, S Jakubek, J Jana, DK Jankowski, E Jansen, E Jantsch, A Janus, M Jarlskog, G Jeanty, L Plante, IJL Jenni, P Jez, P Jezequel, S Ji, W Jia, J Jiang, Y Belenguer, MJ Jin, S Jinnouchi, O Joffe, D Johansen, M Johansson, KE Johansson, P Johnert, S Johns, KA Jon-And, K Jones, G Jones, RWL Jones, TJ Jorge, PM Joseph, J Juranek, V Jussel, P Kabachenko, VV Kaci, M Kaczmarska, A Kado, M Kagan, H Kagan, M Kaiser, S Kajomovitz, E Kalinin, S Kalinovskaya, LV Kama, S Kanaya, N Kaneda, M Kantserov, VA Kanzaki, J Kaplan, B Kapliy, A Kaplon, J Kar, D Karagounis, M Unel, MK Karnevskiy, M Kartvelishvili, V Karyukhin, AN Kashif, L Kasmi, A Kass, RD Kastanas, A Kastoryano, M Kataoka, M Kataoka, Y Katsoufis, E Katzy, J Kaushik, V Kawagoe, K Kawamoto, T Kawamura, G Kayl, MS Kayumov, F Kazanin, VA Kazarinov, MY Keates, JR Keeler, R Keener, PT Kehoe, R Keil, M Kekelidze, GD Kelly, M Kenyon, M Kepka, O Kerschen, N Kersevan, BP Kersten, S Kessoku, K Khakzad, M Khalil-zada, F Khandanyan, H Khanov, A Kharchenko, D Khodinov, A Khomich, A Khoriauli, G Khovanskiy, N Khovanskiy, V Khramov, E Khubua, J Kim, H Kim, MS Kim, PC Kim, SH Kind, O Kind, P King, BT Kirk, J Kirsch, GP Kirsch, LE Kiryunin, AE Kisielewska, D Kittelmann, T Kiyamura, H Kladiva, E Klein, M Klein, U Kleinknecht, K Klemetti, M Klier, A Klimentov, A Klingenberg, R Klinkby, EB Klioutchnikova, T Klok, PF Klous, S Kluge, EE Kluge, T Kluit, P Klute, M Kluth, S Knecht, NS Kneringer, E Ko, BR Kobayashi, T Kobel, M Koblitz, B Kocian, M Kocnar, A Kodys, P Koneke, K Konig, AC Koenig, S Kopke, L Koetsveld, F Koevesarki, P Koffas, T Koffeman, E Kohn, F Kohout, Z Kohriki, T Kolanoski, H Kolesnikov, V Koletsou, I Koll, J Kollar, D Kolos, S Kolya, SD Komar, AA Komaragiri, JR Kondo, T Kono, T Konoplich, R Konovalov, SP Konstantinidis, N Koperny, S Korcyl, K Kordas, K Korn, A Korolkov, I Korolkova, EV Korotkov, VA Kortner, O Kostka, P Kostyukhin, VV Kotov, S Kotov, VM Kotov, KY Kourkoumelis, C Koutsman, A Kowalewski, R Kowalski, H Kowalski, TZ Kozanecki, W Kozhin, AS Kral, V Kramarenko, VA Kramberger, G Krasny, MW Krasznahorkay, A Kraus, J Kreisel, A Krejci, F Kretzschmar, J Krieger, N Krieger, P Kroeninger, K Kroha, H Kroll, J Kroseberg, J Krstic, J Kruchonak, U Kruger, H Krumshteyn, ZV Kubota, T Kuehn, S Kugel, A Kuhl, T Kuhn, D Kukhtin, V Kulchitsky, Y Kuleshov, S Kummer, C Kuna, M Kunkle, J Kupco, A Kurashige, H Kurata, M Kurochkin, YA Kus, V Kwee, R La Rosa, A La Rotonda, L Labbe, J Lacasta, C Lacava, F Lacker, H Lacour, D Lacuesta, VR Ladygin, E Lafaye, R Laforge, B Lagouri, T Lai, S Lamanna, M Lampen, CL Lampl, W Lancon, E Landgraf, U Landon, MPJ Lane, JL Lankford, AJ Lanni, F Lantzsch, K Lanza, A Laplace, S Lapoire, C Laporte, JF Lari, T Larner, A Lassnig, M Laurelli, P Lavrijsen, W Laycock, P Lazarev, AB Lazzaro, A Le Dortz, O Le Guirriec, E Le Menedeu, E Lebedev, A Lebel, C LeCompte, T Ledroit-Guillon, F Lee, H Lee, JSH Lee, SC Lefebvre, M Legendre, M LeGeyt, BC Legger, F Leggett, C Lehmacher, M Miotto, GL Lei, X Leitner, R Lellouch, D Lellouch, J Lendermann, V Leney, KJC Lenz, T Lenzen, G Lenzi, B Leonhardt, K Leroy, C Lessard, JR Lester, CG Cheong, ALF Leveque, J Levin, D Levinson, LJ Leyton, M Li, H Li, X Liang, Z Liang, Z Liberti, B Lichard, P Lichtnecker, M Lie, K Liebig, W Lilley, JN Limosani, A Limper, M Lin, SC Linnemann, JT Lipeles, E Lipinsky, L Lipniacka, A Liss, TM Lissauer, D Lister, A Litke, AM Liu, C Liu, D Liu, H Liu, JB Liu, M Liu, T Liu, Y Livan, M Lleres, A Lloyd, SL Lobodzinska, E Loch, P Lockman, WS Lockwitz, S Loddenkoetter, T Loebinger, FK Loginov, A Loh, CW Lohse, T Lohwasser, K Lokajicek, M Long, RE Lopes, L Mateos, DL Losada, M Loscutoff, P Lou, X Lounis, A Loureiro, KF Lovas, L Love, J Love, PA Lowe, AJ Lu, F Lubatti, HJ Luci, C Lucotte, A Ludwig, A Ludwig, D Ludwig, I Luehring, F Lumb, D Luminari, L Lund, E Lund-Jensen, B Lundberg, B Lundberg, J Lundquist, J Lynn, D Lys, J Lytken, E Ma, H Ma, LL Goia, JAM Maccarrone, G Macchiolo, A Macek, B Miguens, JM Mackeprang, R Madaras, RJ Mader, WF Maenner, R Maeno, T Mattig, P Mattig, S Martins, PJM Magradze, E Mahalalel, Y Mahboubi, K Mahmood, A Maiani, C Maidantchik, C Maio, A Majewski, S Makida, Y Makouski, M Makovec, N Malecki, P Malecki, P Maleev, VP Malek, F Mallik, U Malon, D Maltezos, S Malyshev, V Malyukov, S Mambelli, M Mameghani, R Mamuzic, J Mandelli, L Mandic, I Mandrysch, R Maneira, J Mangeard, PS de Andrade, LM Manjavidze, ID Manning, PM Manousakis-Katsikakis, A Mansoulie, B Mapelli, A Mapelli, L March, L Marchand, JF Marchese, F Marchiori, G Marcisovsky, M Marino, CP Marroquim, F Marshall, Z Marti-Garcia, S Martin, AJ Martin, AJ Martin, B Martin, B Martin, FF Martin, JP Martin, TA Latour, BMD Martinez, M Outschoorn, VM Martyniuk, AC Marzano, F Marzin, A Masetti, L Mashimo, T Mashinistov, R Masik, J Maslennikov, AL Massa, I Massol, N Mastroberardino, A Masubuchi, T Matricon, P Matsunaga, H Matsushita, T Mattravers, C Maxfield, SJ Mayne, A Azini, R Mazur, M Mc Donald, J Mc Kee, SP McCarn, A McCarthy, RL McCubbin, NA McFarlane, KW McGlone, H Mchedlidze, G McMahon, SJ McPherson, RA Meade, A Mechnich, J Mechtel, M Medinnis, M Meera-Lebbai, R Meguro, TM Mehlhase, S Mehta, A Meier, K Meirose, B Melachrinos, C Garcia, BRM Navas, LM Meng, Z Menke, S Meoni, E Mermod, P Merola, L Meroni, C Merritt, FS Messina, AM Metcalfe, J Mete, AS Meyer, JP Meyer, J Meyer, J Meyer, TC Meyer, WT Miao, J Michal, S Micu, L Middleton, RP Migas, S Mijovic, L Mikenberg, G Mikestikova, M Mikuz, M Miller, DW Miller, M Mills, WJ Mills, CM Milov, A Milstead, DA Milstein, D Minaenko, AA Minano, M Minashvili, IA Mincer, AI Mindur, B Mineev, M Ming, Y Mir, LM Mirabelli, G Misawa, S Misiejuk, A Mitrevski, J Mitsou, VA Miyagawa, PS Mjornmark, JU Moa, T Moed, S Moeller, V Monig, K Moser, N Mohr, W Mohrdieck-Mock, S Moles-Valls, R Molina-Perez, J Monk, J Monnier, E Montesano, S Monticelli, F Moore, RW Herrera, CM Moraes, A Morais, A Morel, J Morello, G Moreno, D Llacer, MM Morettini, P Morii, M Morley, AK Mornacchi, G Morozov, SV Morris, JD Moser, HG Mosidze, M Moss, J Mount, R Mountricha, E Mouraviev, SV Moyse, EJW Mudrinic, M Mueller, F Mueller, J Mueller, K Muller, TA Muenstermann, D Muir, A Munwes, Y Garcia, RM Murray, WJ Mussche, I Musto, E Myagkov, AG Myska, M Nadal, J Nagai, K Nagano, K Nagasaka, Y Nairz, AM Nakamura, K Nakano, I Nakatsuka, H Nanava, G Napier, A Nash, M Nation, NR Nattermann, T Naumann, T Navarro, G Nderitu, SK Neal, HA Nebot, E Nechaeva, P Negri, A Negri, G Nelson, A Nelson, TK Nemecek, S Nemethy, P Nepomuceno, AA Nessi, M Neubauer, MS Neusiedl, A Neves, RM Nevski, P Newcomer, FM Nickerson, RB Nicolaidou, R Nicolas, L Nicoletti, G Nicquevert, B Niedercorn, F Nielsen, J Nikiforov, A Nikolaev, K Nikolic-Audit, I Nikolopoulos, K Nilsen, H Nilsson, P Nisati, A Nishiyama, T Nisius, R Nodulman, L Nomachi, M Nomidis, I Nordberg, M Nordkvist, B Notz, D Novakova, J Nozaki, M Nozicka, M Nugent, IM Nuncio-Quiroz, AE Hanninger, GN Nunnemann, T Nurse, E O'Neil, DC O'Shea, V Oakham, EG Oberlack, H Ochi, A Oda, S Odaka, S Odier, J Ogren, H Oh, A Oh, SH Ohm, CC Ohshima, T Ohshita, H Ohsugi, T Okada, S Okawa, H Okumura, Y Okuyama, T Olchevski, AG Oliveira, M Damazio, DO Garcia, EO Olivito, D Olszewski, A Olszowska, J Omachi, C Onofre, A Onyisi, PUE Oram, CJ Oreglia, MJ Oren, Y Orestano, D Orlov, I Barrera, CO Orr, RS Ortega, EO Osculati, B Ospanov, R Osuna, C Ottersbach, JP Ould-Saada, E Ouraou, A Ouyang, Q Owen, M Owen, S Oyarzun, A Ozcan, VE Ozone, K Ozturk, N Pages, AP Aranda, CP Paganis, E Pahl, C Paige, F Pajchel, K Palestini, S Pallin, D Palma, A Palmer, JD Pan, YB Panagiotopoulou, E Panes, B Panikashvili, N Panitkin, S Pantea, D Panuskova, M Paolone, V Papadopoulou, TD Park, SJ Park, W Parker, MA Parodi, F Parsons, JA Parzefall, U Pasqualucci, E Passeri, A Pastore, F Pastore, F Pasztor, G Pataraia, S Pater, JR Patricelli, S Pauly, T Peak, LS Pecsy, M Morales, MIP Peleganchuk, SV Peng, H Penson, A Penwell, J Perantoni, M Perez, K Codina, EP Garcia-Estan, MTP Reale, VP Perini, L Pernegger, H Perrino, R Persembe, S Perus, P Peshekhonov, VD Petersen, BA Petersen, TC Petit, E Petridou, C Petrolo, E Petrucci, F Petschull, D Petteni, M Pezoa, R Phan, A Phillips, AW Piacquadio, G Piccinini, M Piegaia, R Pilcher, JE Pilkington, AD Pina, J Pinamonti, M Pinfold, JL Pinto, B Pizio, C Placakyte, R Plamondon, M Pleier, MA Poblaguev, A Poddar, S Podlyski, F Poggioli, L Pohl, M Polci, F Polesello, G Policicchio, A Polini, A Poll, J Polychronakos, V Pomeroy, D Pommes, K Ponsot, P Pontecorvo, L Pope, BG Popeneciu, GA Popovic, DS Poppleton, A Popule, J Bueso, XP Porter, R Pospelov, GE Pospisil, S Potekhin, M Potrap, IN Potter, CJ Potter, CT Potter, KP Poulard, G Poveda, J Prabhu, R Pralavorio, P Prasad, S Pravahan, R Pribyl, L Price, D Price, LE Prichard, PM Prieur, D Primavera, M Prokofiev, K Prokoshin, F Protopopescu, S Proudfoot, J Prudent, X Przysiezniak, H Psoroulas, S Ptacek, E Purdham, J Purohit, M Puzo, P Pylypchenko, Y Qi, M Qian, J Qian, W Qin, Z Quadt, A Quarrie, DR Quayle, WB Quinonez, F Raas, M Radeka, V Radescu, V Radics, B Rador, T Ragusa, F Rahal, G Rahimi, AM Rajagopalan, S Rammensee, M Rammes, M Rauscher, F Rauter, E Raymond, M Read, AL Rebuzzi, DM Redelbach, A Redlinger, G Reece, R Reeves, K Reinherz-Aronis, E Reinsch, A Reisinger, I Reljic, D Rembser, C Ren, ZL Renkel, P Rescia, S Rescigno, M Resconi, S Resende, B Reznicek, P Rezvani, R Ribeiro, N Richards, A Richter, R Richter-Was, E Ridel, M Rijpstra, M Rijssenbeek, M Rimoldi, A Rinaldi, L Rios, RR Riu, I Rizatdinova, F Rizvi, E Romero, DAR Robertson, SH Robichaud-Veronneau, A Robinson, D Robinson, JEM Robinson, M Robson, A de Lima, JGR Roda, C Dos Santos, DR Rodriguez, D Garcia, YR Roe, S Rohne, O Rojo, V Rolli, S Romaniouk, A Romanov, VM Romeo, G Maltrana, DR Roos, L Ros, E Rosati, S Rosenbaum, GA Rosselet, L Rossetti, V Rossi, LP Rotaru, M Rothberg, J Rousseau, D Royon, CR Rozanov, A Rozen, Y Ruan, X Ruckert, B Ruckstuhl, N Rud, VI Rudolph, G Ruhr, F Ruggieri, F Ruiz-Martinez, A Rumyantsev, L Rurikova, Z Rusakovich, NA Rutherfoord, JP Ruwiedel, C Ruzicka, P Ryabov, YF Ryan, P Rybkin, G Rzaeva, S Saavedra, AF Sadrozinski, HFW Sadykov, R Tehrani, FS Sakamoto, H Salamanna, G Salamon, A Saleem, MS Salihagic, D Salnikov, A Salt, J Ferrando, BMS Salvatore, D Salvatore, F Salvucci, A Salzburger, A Sampsonidis, D Samset, BH Sandaker, H Sander, HG Sanders, MP Sandhoff, M Sandhu, P Sandstroem, R Sandvoss, S Sankey, DPC Sanny, B Sansoni, A Rios, CS Santoni, C Santonico, R Saraiva, JG Sarangi, T Sarkisyan-Grinbaum, E Sarri, F Sasaki, O Sasao, N Satsounkevitch, I Sauvage, G Savard, P Savine, AY Savinov, V Sawyer, L Saxon, DH Says, LP Sbarra, C Sbrizzi, A Scannicchio, DA Schaarschmidt, J Schacht, P Schafer, U Schaetzel, S Schaffer, AC Schaile, D Schamberger, RD Schamov, AG Scharf, V Schegelsky, VA Scheirich, D Schernau, M Scherzer, MI Schiavi, C Schieck, J Schioppa, M Schlenker, S Schmidt, E Schmieden, K Schmitt, C Schmitz, M Schonig, A Schott, M Schouten, D Schovancova, J Schram, M Schreiner, A Schroeder, C Schroer, N Schroers, M Schultes, J Schultz-Coulon, HC Schumacher, JW Schumacher, M Schumm, BA Schune, P Schwanenberger, C Schwartzman, A Schwemling, P Schwienhorst, R Schwierz, R Schwindling, J Scott, WG Searcy, J Sedykh, E Segura, E Seidel, SC Seiden, A Seifert, F Seixas, JM Sekhniaidze, G Seliverstov, DM Sellden, B Semprini-Cesari, N Serfon, C Serin, L Seuster, R Severini, H Sevior, ME Sfyrla, A Shabalina, E Shamim, M Shan, LY Shank, JT Shao, QT Shapiro, M Shatalov, PB Shaw, K Sherman, D Sherwood, P Shibata, A Shimojima, M Shin, T Shmeleva, A Shochet, MJ Shupe, MA Sicho, P Sidoti, A Siegert, F Siegrist, J Sijacki, D Silbert, O Silva, J Silver, Y Silverstein, D Silverstein, SB Simak, V Simic, L Simion, S Simmons, B Simonyan, M Sinervo, P Sinev, NB Sipica, V Siragusa, G Sisakyan, AN Sivoklokov, SY Sjoelin, J Sjursen, TB Skovpen, K Skubic, P Slater, M Slavicek, T Sliwa, K Sloper, J Smakhtin, V Smirnov, SY Smirnov, Y Smirnova, LN Smirnova, O Smith, BC Smith, D Smith, KM Smizanska, M Smolek, K Snesarev, AA Snow, SW Snow, J Snuverink, J Snyder, S Soares, M Sobie, R Sodomka, J Soffer, A Solans, CA Solar, M Solc, J Camillocci, ES Solodkov, AA Solovyanov, OV Sondericker, J Sopko, V Sopko, B Sosebee, M Soukharev, A Spagnolo, S Spano, F Spighi, R Spigo, G Spila, F Spiwoks, R Spousta, M Spreitzer, T Spurlock, B St Denis, RD Stahl, T Stahlman, JJ Stamen, R Stancu, SN Stanecka, E Stanek, RW Stanescu, C Stapnes, S Starchenko, EA Stark, J Staroba, P Starovoitov, P Stastny, J Stavina, P Steele, G Steinbach, P Steinberg, P Stekl, I Stelzer, B Stelzer, HJ Stelzer-Chilton, O Stenzel, H Stevenson, K Stewart, GA Stockton, MC Stoerig, K Stoicea, G Stonjek, S Strachota, P Stradling, AR Straessner, A Strandberg, J Strandberg, S Strandlie, A Strauss, M Strizenec, P Strohmer, R Strom, DM Stroynowski, R Strube, J Stugu, B Sturm, R Soh, DA Su, D Sugaya, Y Sugimoto, T Suhr, C Suk, M Sulin, VV Sultansov, S Sumida, T Sun, XH Sundermann, JE Suruliz, K Sushkov, S Susinno, G Sutton, MR Suzuki, T Suzuki, Y Sykora, I Sykora, T Szymocha, T Sanchez, J Ta, D Tackmann, K Taffard, A Tafirout, R Taga, A Takahashi, Y Takai, H Takashima, R Takeda, H Takeshita, T Talby, M Talyshev, A Tamsett, MC Tanaka, J Tanaka, R Tanaka, S Tanaka, S Tapprogge, S Tardif, D Tarem, S Tarrade, F Tartarelli, GF Tas, P Tasevsky, M Tassi, E Tatarkhanov, M Taylor, C Taylor, FE Taylor, GN Taylor, RP Taylor, W Teixeira-Dias, P Ten Kate, H Teng, PK Tennenbaum-Katan, YD Terada, S Terashi, K Terron, J Terwort, M Testa, M Teuscher, RJ Therhaag, J Thioye, M Thoma, S Thomas, JP Thompson, EN Thompson, PD Thompson, PD Thompson, RJ Thompson, AS Thomson, E Thun, RP Tic, T Tikhomirov, VO Tikhonov, VA Tipton, P Viegas, FJTA Tisserant, S Toczek, B Todorov, T Todorova-Nova, S Toggerson, B Tojo, J Tokar, S Tokushuku, K Tollefson, K Tomasek, L Tomasek, M Tomoto, M Tompkins, L Toms, K Tonoyan, A Topfel, C Topilin, ND Torchiani, I Torrence, E Pastor, ET Toth, J Touchard, F Tovey, DR Trefzger, T Tremblet, L Tricoli, A Trigger, IM Trincaz-Duvoid, S Trinh, TN Tripiana, MF Triplett, N Trischuk, W Trivedi, A Trocme, B Troncon, C Trzupek, A Tsarouchas, C Tseng, JCL Tsiakiris, M Tsiareshka, PV Tsionou, D Tsipolitis, G Tsiskaridze, V Tskhadadze, EG Tsukerman, L Tsulaia, V Tsung, JW Tsuno, S Tsybychev, D Tuggle, JM Tunnell, CD Turecek, D Cakir, IT Turlay, E Tuts, PM Twomey, MS Tylmad, M Tyndel, M Uchida, K Ueda, I Ueno, R Ugland, M Uhlenbrock, M Uhrmacher, M Ukegawa, F Unal, G Undrus, A Unel, G Unno, Y Urbaniec, D Urkovsky, E Urquijo, P Urrejola, P Usai, G Uslenghi, M Vacavant, L Vacek, V Vachon, B Vahsen, S Valente, P Valentinetti, S Valero, A Valkar, S Gallego, EV Vallecorsa, S Ferrer, JAV Van Berg, R van der Graaf, H van der Kraaij, E van der Poel, E van der Ster, D van Eldik, N van Gemmeren, P van Kesteren, Z van Vulpen, I Vandelli, W Vaniachine, A Vankov, P Vannucci, F Vari, R Varnes, EW Varouchas, D Vartapetian, A Varvell, KE Vasilyeva, L Vassilakopoulos, VI Vazeille, F Vellidis, C Veloso, F Veneziano, S Ventura, A Ventura, D Venturi, M Venturi, N Vercesi, V Verducci, M Verkerke, W Vermeulen, JC Vetterli, MC Vichou, I Vickey, T Viehhauser, GHA Villa, M Villani, EG Perez, MV Vilucchi, E Vincter, MG Vinek, E Vinogradov, VB Viret, S Virzi, J Vitale, A Vitells, O Vivarelli, I Vaque, FV Vlachos, S Vlasak, M Vlasov, N Vogel, A Vokac, P Volpi, M von der Schmitt, H von Loeben, J von Radziewski, H von Toerne, E Vorobel, V Vorwerk, V Vos, M Voss, R Voss, TT Vossebeld, JH Vranjes, N Milosavljevic, MV Vrba, V Vreeswijk, M Anh, TV Vudragovic, D Vuillermet, R Vukotic, I Wagner, P Walbersloh, J Walder, J Walker, R Walkowiak, W Wall, R Wang, C Wang, H Wang, J Wang, SM Warburton, A Ward, CP Warsinsky, M Wastie, R Watkins, PM Watson, AT Watson, MF Watts, G Watts, S Waugh, AT Waugh, BM Weber, MD Weber, M Weber, MS Weber, P Weidberg, AR Weingarten, J Weiser, C Wellenstein, H Wells, PS Wenaus, T Wendler, S Weng, Z Wengler, T Wenig, S Wermes, N Werner, M Werner, P Werth, M Werthenbach, U Wessels, M Whalen, K White, A White, MJ White, S Whitehead, SR Whiteson, D Whittington, D Wicek, F Wicke, D Wickens, FJ Wiedenmann, W Wielers, M Wienemann, P Wiglesworth, C Wiik, LAM Wildauer, A Wildt, MA Wilkens, HG Williams, E Williams, HH Willocq, S Wilson, JA Wilson, MG Wilson, A Wingerter-Seez, I Winklmeier, F Wittgen, M Wolter, MW Wolters, H Wosiek, BK Wotschack, J Woudstra, MJ Wraight, K Wright, C Wright, D Wrona, B Wu, SL Wu, X Wulf, E Wynne, BM Xaplanteris, L Xella, S Xie, S Xu, D Xu, N Yamada, M Yamamoto, A Yamamoto, K Yamamoto, S Yamamura, T Yamaoka, J Yamazaki, T Yamazaki, Y Yan, Z Yang, H Yang, UK Yang, Z Yao, WM Yao, Y Yasu, Y Ye, J Ye, S Yilmaz, M Yoosoofmiya, R Yorita, K Yoshida, R Young, C Youssef, SP Yu, D Yu, J Yuan, L Yurkewicz, A Zaidan, R Zaitsev, AM Zajacova, Z Zambrano, V Zanello, L Zaytsev, A Zeitnitz, C Zeller, M Zemla, A Zendler, C Zenin, O Zenis, T Zenonos, Z Zenz, S Zerwas, D della Porta, GZ Zhan, Z Zhang, H Zhang, J Zhang, Q Zhang, X Zhao, L Zhao, T Zhao, Z Zhemchugov, A Zhong, J Zhou, B Zhou, N Zhou, Y Zhu, CG Zhu, H Zhu, Y Zhuang, X Zhuravlov, V Zimmermann, R Zimmermann, S Zimmermann, S Ziolkowski, M Zivkovic, L Zobernig, G Zoccoli, A zur Nedden, M Zutshi, V AF Aad, G. Abbott, B. Abdallah, J. Abdelalim, A. A. Abdesselam, A. Abdinov, O. Abi, B. Abolins, M. Abramowicz, H. Abreu, H. Acharya, B. S. Adams, D. L. Addy, T. N. Adelman, J. Adorisio, C. Adragna, P. Adye, T. Aefsky, S. Aguiar-Saavedra, J. A. Aharrouche, M. Ahlen, S. P. Ahles, F. Ahmad, A. Ahsan, M. Aielli, G. Akdogan, T. Akesson, T. P. A. Akimoto, G. Akimov, A. V. Aktas, A. Alam, M. S. Alam, M. A. Albrand, S. Aleksa, M. Aleksandrov, I. N. Alexa, C. Alexander, G. Alexandre, G. Alexopoulos, T. Alhroob, M. Aliev, M. Alimonti, G. Alison, J. Aliyev, M. Allport, P. P. Allwood-Spiers, S. E. Almond, J. Aloisio, A. Alon, R. Alonso, A. Alviggi, M. G. Amako, K. Amelung, C. Amorim, A. Amoros, G. Amram, N. Anastopoulos, C. Andeen, T. Anders, C. F. Anderson, K. J. Andreazza, A. Andrei, V. Anduaga, X. S. Angerami, A. Anghinolfi, F. Anjos, N. Annovi, A. Antonaki, A. Antonelli, M. Antonelli, S. Antos, J. Antunovic, B. Anulli, F. Aoun, S. Arabidze, G. Aracena, I. Arai, Y. Arce, A. T. H. Archambault, J. P. Arfaoui, S. Arguin, J. -F. Argyropoulos, T. Arik, M. Armbruster, A. J. Arnaez, O. Arnault, C. Artamonov, A. Arutinov, D. Asai, M. Asai, S. Asfandiyarov, R. Ask, S. Asman, B. Asner, D. Asquith, L. Assamagan, K. Astvatsatourov, A. Atoian, G. Auerbach, B. Augsten, K. Aurousseau, M. Austin, N. Avolio, G. Avramidou, R. Ay, C. Azuelos, G. Azuma, Y. Baak, M. A. Bach, A. M. Bachacou, H. Bachas, K. Backes, M. Badescu, E. Bagnaia, P. Bai, Y. Bain, T. Baines, J. T. Baker, O. K. Baker, M. D. Aker, S. Pedrosa, F. Baltasar Dos Santos Banas, E. Banerjee, P. Banerjee, S. Banfi, D. Bangert, A. Bansal, V. Baranov, S. P. Barashkou, A. Barber, T. Barberio, E. L. Barberis, D. Barbero, M. Bardin, D. Y. Barillari, T. Barisonzi, M. Barklow, T. Barlow, N. Barnett, B. M. Barnett, R. M. Baroncelli, A. Barr, A. J. Barreiro, F. da Costa, J. Barreiro Guimaraes Barrillon, P. Bartoldus, R. Bartsch, D. Bates, R. L. Batkova, L. Batley, J. R. Battaglia, A. Battistin, M. Bauer, F. Bawa, H. S. Bazalova, M. Beare, B. Beau, T. Beauchemin, P. H. Beccherle, R. Bechtle, P. Beck, G. A. Beck, H. P. Beckingham, M. Becks, K. H. Beddall, A. J. Beddall, A. Bednyakov, V. A. Bee, C. Begel, M. Harpaz, S. Behar Behera, P. K. Beimforde, M. Belanger-Champagne, C. Bell, P. J. Bell, W. H. Bella, G. Bellagamba, L. Bellina, F. Bellomo, M. Belloni, A. Belotskiy, K. Beltramello, O. Ben Ami, S. Benary, O. Benchekroun, D. Bendel, M. Benedict, B. H. Benekos, N. Benhammou, Y. Benjamin, D. P. Benoit, M. Bensinger, J. R. Benslama, K. Bentvelsen, S. Beretta, M. Berge, D. Kuutmann, E. Bergeaas Berger, N. Berghaus, F. Berglund, E. Beringer, J. Bernat, P. Bernhard, R. Bernius, C. Berry, T. Bertin, A. Besana, M. I. Besson, N. Bethke, S. Bianchi, R. M. Bianco, M. Biebel, O. Biesiada, J. Biglietti, M. Bilokon, H. Bindi, M. Bingul, A. Bini, C. Biscarat, C. Bitenc, U. Black, K. M. Blair, R. E. Blanchard, J. -B. Blanchot, G. Blocker, C. Blondel, A. Blum, W. Blumenschein, U. Bobbink, G. J. Bocci, A. Boehler, M. Boek, J. Boelaert, N. Boeser, S. Bogaerts, J. A. Bogouch, A. Bohm, C. Bohm, J. Boisvert, V. Bold, T. Boldea, V. Bondarenko, V. G. Bondioli, M. Boonekamp, M. Bordoni, S. Borer, C. Borisov, A. Borissov, G. Borjanovic, I. Borroni, S. Bos, K. Boscherini, D. Bosman, M. Boterenbrood, H. Bouchami, J. Boudreau, J. Bouhova-Thacker, E. V. Boulahouache, C. Bourdarios, C. Boveia, A. Boyd, J. Boyko, I. R. Bozovic-Jelisavcic, I. Bracinik, J. Braem, A. Branchini, P. Brandt, A. Brandt, G. Brandt, O. Ratzler, U. Brau, B. Brau, J. E. Braun, H. M. Brelier, B. Bremer, J. Brenner, R. Bressler, S. Britton, D. Brochu, F. M. Brock, I. Brock, R. Brodet, E. Bromberg, C. Brooijmans, G. Brooks, W. K. Brown, G. de Renstrom, P. A. Bruckman Bruncko, D. Bruneliere, R. Brunet, S. Bruni, A. Bruni, G. Bruschi, M. Bucci, F. Buchanan, J. Buchholz, P. Buckley, A. G. Budagov, I. A. Budick, B. Buescher, V. Bugge, L. Bulekov, O. Bunse, M. Buran, T. Burckhart, H. Burdin, S. Burgess, T. Burke, S. Busato, E. Bussey, P. Buszello, C. P. Butin, F. Butler, B. Butler, J. M. Buttar, C. M. Butterworth, J. M. Byatt, T. Caballero, J. Cabrera Urban, S. Caforio, D. Cakir, O. Calafiura, P. Calderini, G. Calfayan, P. Calkins, R. Caloba, L. P. Calvet, D. Camarri, P. Cameron, D. Campana, S. Campanelli, M. Canale, V. Canelli, F. Canepa, A. Cantero, J. Capasso, L. Garrido, M. D. M. Capeans Caprini, I. Caprini, M. Capua, M. Caputo, R. Caramarcu, C. Cardarelli, R. Carli, T. Carlino, G. Carminati, L. Caron, B. Caron, S. Montoya, G. D. Carrillo Montero, S. Carron Carter, A. A. Carter, J. R. Carvalho, J. Casadei, D. Casado, M. P. Cascella, M. Hernandez, A. M. Castaneda Castaneda-Miranda, E. Castillo Gimenez, V. Castro, N. F. Cataldi, G. Catinaccio, A. Catmore, J. R. Cattai, A. Cattani, G. Caughron, S. Cavalleri, P. Cavalli, D. Cavalli-Sforza, M. Cavasinni, V. Ceradini, F. Cerqueira, A. S. Cerri, A. Cerrito, L. Cerutti, F. Cetin, S. A. Chafaq, A. Chakraborty, D. Chan, K. Chapman, J. D. Chapman, J. W. Chareyre, E. Charlton, D. G. Chavda, V. Cheatham, S. Chekanov, S. Chekulaev, S. V. Chelkov, G. A. Chen, H. Chen, S. Chen, X. Cheplakov, A. Chepurnov, V. F. El Moursli, R. Cherkaoui Tcherniatine, V. Chesneanu, D. Cheu, E. Cheung, S. L. Chevalier, L. Chevallier, F. Chiefari, G. Chikovani, L. Childers, J. T. Chilingarov, A. Chiodini, G. Chizhov, V. Choudalakis, G. Chouridou, S. Christidi, I. A. Christov, A. Chromek-Burckhart, D. Chu, M. L. Chudoba, J. Ciapetti, G. Ciftci, A. K. Ciftci, R. Cinca, D. Cindro, V. Ciobotaru, M. D. Ciocca, C. Ciocio, A. Cirilli, M. Clark, A. Clark, P. J. Cleland, W. Clemens, J. C. Clement, B. Clement, C. Coadou, Y. Cobal, M. Coccaro, A. Cochran, J. Coggeshall, J. Cogneras, E. Colijn, A. P. Collard, C. Collins, N. J. Collins-Tooth, C. Collot, J. Colon, G. Conde Muino, P. Coniavitis, E. Conidi, M. C. Consonni, M. Constantinescu, S. Conta, C. Conventi, F. Cooke, M. Cooper, B. D. Cooper-Sarkar, A. M. Cooper-Smith, N. J. Copic, K. Cornelissen, T. Corradi, M. Corriveau, F. Corso-Radu, A. Cortes-Gonzalez, A. Cortiana, G. Costa, G. Costa, M. J. Costanzo, D. Costin, T. Cote, D. Coura Torres, R. Courneyea, L. Cowan, G. Cowden, C. Cox, B. E. Cranmer, K. Cranshaw, J. Cristinziani, M. Crosetti, G. Crupi, R. Crepe-Renaudin, S. Almenar, C. Cuenca Donszelmann, T. Cuhadar Curatolo, M. Curtis, C. J. Cwetanski, P. Czyczula, Z. D'Auria, S. D'Onofrio, M. D'Orazio, A. Da Via, C. Dabrowski, W. Dai, T. Dallapiccola, C. Dallison, S. J. Daly, C. H. Dam, M. Danielsson, H. O. Dannheim, D. Dao, V. Darbo, G. Darlea, G. L. Davey, W. Davidek, T. Davidson, N. Davidson, R. Davies, M. Davison, A. R. Dawson, I. Daya, R. K. De, K. de Asmundis, R. De Castro, S. Salgado, P. E. De Castro Faria De Cecco, S. de Graat, J. De Groot, N. de Jong, P. De Mora, L. Branco, M. De Oliveira De Pedis, D. De Salvo, A. De Sanctis, U. De Santo, A. De Regie, J. B. De Vivie Dean, S. Dedovich, D. V. Degenhardt, J. Dehchar, M. Del Papa, C. Del Peso, J. Del Prete, T. Dell'Acqua, A. Dell'Asta, L. Della Pietra, M. della Volpe, D. Delmastro, M. Delsart, P. A. Deluca, C. Demers, S. Demichev, M. Demirkoz, B. Deng, J. Deng, W. Denisov, S. P. Derkaoui, J. E. Derue, F. Dervan, P. Desch, K. Deviveiros, P. O. Dewhurst, A. DeWilde, B. Dhaliwal, S. Dhullipudi, R. Di Ciaccio, A. Di Ciaccio, L. Di Girolamo, A. Di Girolamo, B. Di Luise, S. Di Mattia, A. Di Nardo, R. Di Simone, A. Di Sipio, R. Diaz, M. A. Diblen, F. Diehl, E. B. Dietrich, J. Dietzsch, T. A. Diglio, S. Yagci, K. Dindar Dingfelder, J. Dionisi, C. Dita, P. Dita, S. Dittus, F. Djama, F. Djilkibaev, R. Djobava, T. do Vale, M. A. B. Do Valle Wemans, A. Doan, T. K. O. Dobos, D. Dobson, E. Dobson, M. Doglioni, C. Doherty, T. Dolejsi, J. Dolenc, I. Dolezal, Z. Dolgoshein, B. A. Dohmae, T. Donega, M. Donini, J. Dopke, J. Doria, A. Dos Anjos, A. Dotti, A. Dova, M. T. Doxiadis, A. Doyle, A. T. Drasal, Z. Dris, M. Dubbert, J. Duchovni, E. Duckeck, G. Dudarev, A. Dudziak, F. Duehrssen, M. Duflot, L. Dufour, M. -A. Dunford, M. Yildiz, H. Duran Duxfield, R. Dwuznik, M. Dueren, M. Ebenstein, W. L. Ebke, J. Eckweiler, S. Edmonds, K. Edwards, C. A. Egorov, K. Ehrenfeld, W. Ehrich, T. Eifert, T. Eigen, G. Einsweiler, K. Eisenhandler, E. Ekelof, T. El Kacimi, M. Ellert, M. Elles, S. Ellinghaus, F. Ellis, K. Ellis, N. Elmsheuser, J. Elsing, M. Emeliyanov, D. Engelmann, R. Engl, A. Epp, B. Eppig, A. Erdmann, J. Ereditato, A. Eriksson, D. Ermoline, I. Ernst, J. Ernst, M. Ernwein, J. Errede, D. Errede, S. Ertel, E. Escalier, M. Escobar, C. Espinal Curull, X. Esposito, B. Etienvre Etzion, E. Evans, H. Fabbri, L. Fabre, C. Facius, K. Fakhrutdinov, R. M. Falciano, S. Fang, Y. Fanti, M. Farbin, A. Farilla, A. Farley, J. Farooque, T. Farrington, S. M. Farthouat, P. Fassnacht, P. Fassouliotis, D. Fatholahzadeh, B. Fayard, L. Fayette, F. Febbraro, R. Federic, P. Fedin, O. L. Fedorko, W. Feligioni, L. Felzmann, C. U. Feng, C. Feng, E. J. Fenyuk, A. B. Ferencei, J. Ferland, J. Fernandes, B. Fernando, W. Ferrag, S. Ferrando, J. Ferrara, V. Ferrari, A. Ferrari, P. Ferrari, R. Ferrer, A. Ferrer, M. L. Ferrere, D. Ferretti, C. Fiascaris, M. Fiedler, F. Filipcic, A. Filippas, A. Filthaut, F. Fincke-Keeler, M. Fiolhais, M. C. N. Fiorini, L. Firan, A. Fischer, G. Fisher, M. J. Flechl, M. Fleck, I. Fleckner, J. Fleischmann, P. Fleischmann, S. Flick, T. Castillo, L. R. Flores Flowerdew, M. J. Martin, T. Fonseca Fopma, J. Formica, A. Forti, A. Fortin, D. Fournier, D. Fowler, A. J. Fowler, K. Fox, H. Francavilla, P. Franchino, S. Francis, D. Franklin, M. Franz, S. Fraternali, M. Fratina, S. Freestone, J. French, S. T. Froeschl, R. Froidevaux, D. Frost, J. A. Fukunaga, C. Torregrosa, E. Fullana Fuster, J. Gabaldon, C. Gabizon, O. Gadfort, T. Gadomski, S. Gagliardi, G. Gagnon, P. Galea, C. Gallas, E. J. Gallo, V. Gallop, B. J. Gallus, P. Galyaev, E. Gan, K. K. Gao, Y. S. Gaponenko, A. Garcia-Sciveres, M. Garcia, C. Navarro, I. E. Garcia Gardner, R. W. Garelli, N. Garitaonandia, H. Garonne, V. Gatti, C. Gaudio, G. Gautard, V. Gauzzi, P. Gavrilenko, I. L. Gay, C. Gaycken, G. Gazis, E. N. Ge, P. Gee, C. N. P. Geich-Gimbel, Ch. Gellerstedt, K. Gemme, C. Genest, M. H. Gentile, S. Georgatos, F. George, S. Gershon, A. Ghazlane, H. Ghodbane, N. Giacobbe, B. Giagu, S. Giakoumopoulou, V. Giangiobbe, V. Gianotti, F. Gibbard, B. Gibson, A. Gibson, S. M. Gilbert, L. M. Gilchriese, M. Gilewsky, V. Gingrich, D. M. Ginzburg, J. Giokaris, N. Giordani, M. P. Giordano, R. Giorgi, F. M. Giovannini, P. Giraud, P. F. Girtler, P. Giugni, D. Giusti, P. Gjelsten, B. K. Gladilin, L. K. Glasman, C. Glazov, A. Glitza, K. W. Glonti, G. L. Godfrey, J. Godlewski, J. Goebel, M. Goepfert, T. Goeringer, C. Goessling, C. Goettfert, T. Goggi, V. Goldfarb, S. Goldin, D. Golling, T. Gomes, A. Fajardo, L. S. Gomez Goncalo, R. Gonella, L. Gong, C. Gonzalez de la Hoz, S. Gonzalez Silva, M. L. Gonzalez-Sevilla, S. Goodson, J. J. Goossens, L. Gordon, H. A. Gorelov, I. Gorfine, G. Gorini, B. Gorini, E. Gorisek, A. Gornicki, E. Gosdzik, B. Gosselink, M. Gostkin, M. I. Eschrich, I. Gough Gouighri, M. Goujdami, D. Goulette, M. P. Goussiou, A. G. Goy, C. Grabowska-Bold, I. Grafstroem, P. Grahn, K. -J. Grancagnolo, S. Grassi, V. Gratchev, V. Grau, N. Gray, H. M. Gray, J. A. Graziani, E. Green, B. Greenshaw, T. Greenwood, Z. D. Gregor, I. M. Grenier, P. Griesmayer, E. Griffiths, J. Grigalashvili, N. Grillo, A. A. Grimm, K. Grinstein, S. Grishkevich, Y. V. Groh, M. Groll, M. Gross, E. Grosse-Knetter, J. Groth-Jensen, J. Grybel, K. Guicheney, C. Guida, A. Guillemin, T. Guler, H. Gunther, J. Guo, B. Gurriana, L. Gusakov, Y. Gutierrez, A. Gutierrez, P. Guttman, N. Gutzwiller, O. Guyot, C. Gwenlan, C. Gwilliam, C. B. Haas, A. Haas, S. Haber, C. Hadavand, H. K. Hadley, D. R. Haefner, R. Haider, S. Hajduk, Z. Hakobyan, H. Haller, J. Hamacher, K. Hamilton, A. Hamilton, S. Han, L. Hanagaki, K. Hance, M. Handel, C. Hanke, P. Hansen, J. R. Hansen, J. B. Hansen, J. D. Hansen, P. H. Hansl-Kozanecka, T. Hansson, P. Hara, K. Hare, G. A. Harenberg, T. Harrington, R. D. Harris, O. M. Harrison, K. Hartert, J. Hartjes, F. Harvey, A. Hasegawa, S. Hasegawa, Y. Hassani, S. Haug, S. Hauschild, M. Hauser, R. Havranek, M. Hawkes, C. M. Hawkings, R. J. Hayakawa, T. Hayward, H. S. Haywood, S. J. Head, S. J. Hedberg, V. Heelan, L. Heim, S. Heinemann, B. Heisterkamp, S. Helary, L. Heller, M. Hellman, S. Helsens, C. Hemperek, T. Henderson, R. C. W. Henke, M. Henrichs, A. Correia, A. M. Henriques Henrot-Versille, S. Hensel, C. Henss, T. Hernandez Jimenez, Y. Hershenhorn, A. D. Herten, G. Hertenberger, R. Hervas, L. Hessey, N. P. Higon-Rodriguez, E. Hill, J. C. Hiller, K. H. Hillert, S. Hillier, S. J. Hinchliffe, I. Hines, E. Hirose, M. Hirsch, F. Hirschbuehl, D. Hobbs, J. Hod, N. Hodgkinson, M. C. Hodgson, P. Hoecker, A. Hoeferkamp, M. R. Hoffman, J. Hoffmann, I. Hohlfeld, M. Hollander, D. Holy, T. Holzbauer, J. L. Homma, Y. Horazdovsky, T. Hori, T. Horn, C. Horner, S. Horvat, S. Hostachy, J. -Y. Hou, S. Hoummada, A. Howe, T. Hrivnac, J. Hryn'ova, T. Hsu, P. J. Hsu, S. -C. Huang, G. S. Hubacek, Z. Hubaut, F. Huegging, F. Huffman, T. B. Hughes, E. W. Hughes, G. Hurwitz, M. Husemann, U. Huseynov, N. Huston, J. Huth, J. Iacobucci, G. Iakovidis, G. Ibragimov, I. Iconomidou-Fayard, L. Idarraga, J. Iengo, P. Igonkina, O. Ikegami, Y. Ikeno, M. Ilchenko, Y. Iliadis, I. Ince, T. Ioannou, P. Iodice, M. Irles Quiles, A. Ishikawa, A. Ishino, M. Ishmukhametov, R. Isobe, T. Issever, C. Istin, S. Itoh, Y. Ivashin, A. V. Iwanski, W. Iwasaki, H. Izen, J. M. Izzo, V. Jackson, B. Jackson, J. N. Jackson, P. Jackel, M. R. Jain, V. Jakobs, K. Jakobsen, S. Jakubek, J. Jana, D. K. Jankowski, E. Jansen, E. Jantsch, A. Janus, M. Jarlskog, G. Jeanty, L. Plante, I. Jen-La Jenni, P. Jez, P. Jezequel, S. Ji, W. Jia, J. Jiang, Y. Belenguer, M. Jimenez Jin, S. Jinnouchi, O. Joffe, D. Johansen, M. Johansson, K. E. Johansson, P. Johnert, S. Johns, K. A. Jon-And, K. Jones, G. Jones, R. W. L. Jones, T. J. Jorge, P. M. Joseph, J. Juranek, V. Jussel, P. Kabachenko, V. V. Kaci, M. Kaczmarska, A. Kado, M. Kagan, H. Kagan, M. Kaiser, S. Kajomovitz, E. Kalinin, S. Kalinovskaya, L. V. Kama, S. Kanaya, N. Kaneda, M. Kantserov, V. A. Kanzaki, J. Kaplan, B. Kapliy, A. Kaplon, J. Kar, D. Karagounis, M. Unel, M. Karagoz Karnevskiy, M. Kartvelishvili, V. Karyukhin, A. N. Kashif, L. Kasmi, A. Kass, R. D. Kastanas, A. Kastoryano, M. Kataoka, M. Kataoka, Y. Katsoufis, E. Katzy, J. Kaushik, V. Kawagoe, K. Kawamoto, T. Kawamura, G. Kayl, M. S. Kayumov, F. Kazanin, V. A. Kazarinov, M. Y. Keates, J. R. Keeler, R. Keener, P. T. Kehoe, R. Keil, M. Kekelidze, G. D. Kelly, M. Kenyon, M. Kepka, O. Kerschen, N. Kersevan, B. P. Kersten, S. Kessoku, K. Khakzad, M. Khalil-zada, F. Khandanyan, H. Khanov, A. Kharchenko, D. Khodinov, A. Khomich, A. Khoriauli, G. Khovanskiy, N. Khovanskiy, V. Khramov, E. Khubua, J. Kim, H. Kim, M. S. Kim, P. C. Kim, S. H. Kind, O. Kind, P. King, B. T. Kirk, J. Kirsch, G. P. Kirsch, L. E. Kiryunin, A. E. Kisielewska, D. Kittelmann, T. Kiyamura, H. Kladiva, E. Klein, M. Klein, U. Kleinknecht, K. Klemetti, M. Klier, A. Klimentov, A. Klingenberg, R. Klinkby, E. B. Klioutchnikova, T. Klok, P. F. Klous, S. Kluge, E. -E. Kluge, T. Kluit, P. Klute, M. Kluth, S. Knecht, N. S. Kneringer, E. Ko, B. R. Kobayashi, T. Kobel, M. Koblitz, B. Kocian, M. Kocnar, A. Kodys, P. Koeneke, K. Konig, A. C. Koenig, S. Koepke, L. Koetsveld, F. Koevesarki, P. Koffas, T. Koffeman, E. Kohn, F. Kohout, Z. Kohriki, T. Kolanoski, H. Kolesnikov, V. Koletsou, I. Koll, J. Kollar, D. Kolos, S. Kolya, S. D. Komar, A. A. Komaragiri, J. R. Kondo, T. Kono, T. Konoplich, R. Konovalov, S. P. Konstantinidis, N. Koperny, S. Korcyl, K. Kordas, K. Korn, A. Korolkov, I. Korolkova, E. V. Korotkov, V. A. Kortner, O. Kostka, P. Kostyukhin, V. V. Kotov, S. Kotov, V. M. Kotov, K. Y. Kourkoumelis, C. Koutsman, A. Kowalewski, R. Kowalski, H. Kowalski, T. Z. Kozanecki, W. Kozhin, A. S. Kral, V. Kramarenko, V. A. Kramberger, G. Krasny, M. W. Krasznahorkay, A. Kraus, J. Kreisel, A. Krejci, F. Kretzschmar, J. Krieger, N. Krieger, P. Kroeninger, K. Kroha, H. Kroll, J. Kroseberg, J. Krstic, J. Kruchonak, U. Krueger, H. Krumshteyn, Z. V. Kubota, T. Kuehn, S. Kugel, A. Kuhl, T. Kuhn, D. Kukhtin, V. Kulchitsky, Y. Kuleshov, S. Kummer, C. Kuna, M. Kunkle, J. Kupco, A. Kurashige, H. Kurata, M. Kurochkin, Y. A. Kus, V. Kwee, R. La Rosa, A. La Rotonda, L. Labbe, J. Lacasta, C. Lacava, F. Lacker, H. Lacour, D. Lacuesta, V. R. Ladygin, E. Lafaye, R. Laforge, B. Lagouri, T. Lai, S. Lamanna, M. Lampen, C. L. Lampl, W. Lancon, E. Landgraf, U. Landon, M. P. J. Lane, J. L. Lankford, A. J. Lanni, F. Lantzsch, K. Lanza, A. Laplace, S. Lapoire, C. Laporte, J. F. Lari, T. Larner, A. Lassnig, M. Laurelli, P. Lavrijsen, W. Laycock, P. Lazarev, A. B. Lazzaro, A. Le Dortz, O. Le Guirriec, E. Le Menedeu, E. Lebedev, A. Lebel, C. LeCompte, T. Ledroit-Guillon, F. Lee, H. Lee, J. S. H. Lee, S. C. Lefebvre, M. Legendre, M. LeGeyt, B. C. Legger, F. Leggett, C. Lehmacher, M. Miotto, G. Lehmann Lei, X. Leitner, R. Lellouch, D. Lellouch, J. Lendermann, V. Leney, K. J. C. Lenz, T. Lenzen, G. Lenzi, B. Leonhardt, K. Leroy, C. Lessard, J. -R. Lester, C. G. Cheong, A. Leung Fook Leveque, J. Levin, D. Levinson, L. J. Leyton, M. Li, H. Li, X. Liang, Z. Liang, Z. Liberti, B. Lichard, P. Lichtnecker, M. Lie, K. Liebig, W. Lilley, J. N. Limosani, A. Limper, M. Lin, S. C. Linnemann, J. T. Lipeles, E. Lipinsky, L. Lipniacka, A. Liss, T. M. Lissauer, D. Lister, A. Litke, A. M. Liu, C. Liu, D. Liu, H. Liu, J. B. Liu, M. Liu, T. Liu, Y. Livan, M. Lleres, A. Lloyd, S. L. Lobodzinska, E. Loch, P. Lockman, W. S. Lockwitz, S. Loddenkoetter, T. Loebinger, F. K. Loginov, A. Loh, C. W. Lohse, T. Lohwasser, K. Lokajicek, M. Long, R. E. Lopes, L. Mateos, D. Lopez Losada, M. Loscutoff, P. Lou, X. Lounis, A. Loureiro, K. F. Lovas, L. Love, J. Love, P. A. Lowe, A. J. Lu, F. Lubatti, H. J. Luci, C. Lucotte, A. Ludwig, A. Ludwig, D. Ludwig, I. Luehring, F. Lumb, D. Luminari, L. Lund, E. Lund-Jensen, B. Lundberg, B. Lundberg, J. Lundquist, J. Lynn, D. Lys, J. Lytken, E. Ma, H. Ma, L. L. Goia, J. A. Macana Maccarrone, G. Macchiolo, A. Macek, B. Machado Miguens, J. Mackeprang, R. Madaras, R. J. Mader, W. F. Maenner, R. Maeno, T. Maettig, P. Maettig, S. Magalhaes Martins, P. J. Magradze, E. Mahalalel, Y. Mahboubi, K. Mahmood, A. Maiani, C. Maidantchik, C. Maio, A. Majewski, S. Makida, Y. Makouski, M. Makovec, N. Malecki, Pa. Malecki, P. Maleev, V. P. Malek, F. Mallik, U. Malon, D. Maltezos, S. Malyshev, V. Malyukov, S. Mambelli, M. Mameghani, R. Mamuzic, J. Mandelli, L. Mandic, I. Mandrysch, R. Maneira, J. Mangeard, P. S. Manhaes de Andrade Filho, L. Manjavidze, I. D. Manning, P. M. Manousakis-Katsikakis, A. Mansoulie, B. Mapelli, A. Mapelli, L. March, L. Marchand, J. F. Marchese, F. Marchiori, G. Marcisovsky, M. Marino, C. P. Marroquim, F. Marshall, Z. Marti-Garcia, S. Martin, A. J. Martin, A. J. Martin, B. Martin, B. Martin, F. F. Martin, J. P. Martin, T. A. Latour, B. Martin Dit Martinez, M. Outschoorn, V. Martinez Martyniuk, A. C. Marzano, F. Marzin, A. Masetti, L. Mashimo, T. Mashinistov, R. Masik, J. Maslennikov, A. L. Massa, I. Massol, N. Mastroberardino, A. Masubuchi, T. Matricon, P. Matsunaga, H. Matsushita, T. Mattravers, C. Maxfield, S. J. Mayne, A. Azini, R. Mazur, M. Mc Donald, J. Mc Kee, S. P. McCarn, A. McCarthy, R. L. McCubbin, N. A. McFarlane, K. W. McGlone, H. Mchedlidze, G. McMahon, S. J. McPherson, R. A. Meade, A. Mechnich, J. Mechtel, M. Medinnis, M. Meera-Lebbai, R. Meguro, T. M. Mehlhase, S. Mehta, A. Meier, K. Meirose, B. Melachrinos, C. Garcia, B. R. Mellado Mendoza Navas, L. Meng, Z. Menke, S. Meoni, E. Mermod, P. Merola, L. Meroni, C. Merritt, F. S. Messina, A. M. Metcalfe, J. Mete, A. S. Meyer, J. -P. Meyer, J. Meyer, J. Meyer, T. C. Meyer, W. T. Miao, J. Michal, S. Micu, L. Middleton, R. P. Migas, S. Mijovic, L. Mikenberg, G. Mikestikova, M. Mikuz, M. Miller, D. W. Miller, M. Mills, W. J. Mills, C. M. Milov, A. Milstead, D. A. Milstein, D. Minaenko, A. A. Minano, M. Minashvili, I. A. Mincer, A. I. Mindur, B. Mineev, M. Ming, Y. Mir, L. M. Mirabelli, G. Misawa, S. Misiejuk, A. Mitrevski, J. Mitsou, V. A. Miyagawa, P. S. Mjornmark, J. U. Moa, T. Moed, S. Moeller, V. Moenig, K. Moeser, N. Mohr, W. Mohrdieck-Moeck, S. Moles-Valls, R. Molina-Perez, J. Monk, J. Monnier, E. Montesano, S. Monticelli, F. Moore, R. W. Herrera, C. Mora Moraes, A. Morais, A. Morel, J. Morello, G. Moreno, D. Moreno Llacer, M. Morettini, P. Morii, M. Morley, A. K. Mornacchi, G. Morozov, S. V. Morris, J. D. Moser, H. G. Mosidze, M. Moss, J. Mount, R. Mountricha, E. Mouraviev, S. V. Moyse, E. J. W. Mudrinic, M. Mueller, F. Mueller, J. Mueller, K. Mueller, T. A. Muenstermann, D. Muir, A. Munwes, Y. Garcia, R. Murillo Murray, W. J. Mussche, I. Musto, E. Myagkov, A. G. Myska, M. Nadal, J. Nagai, K. Nagano, K. Nagasaka, Y. Nairz, A. M. Nakamura, K. Nakano, I. Nakatsuka, H. Nanava, G. Napier, A. Nash, M. Nation, N. R. Nattermann, T. Naumann, T. Navarro, G. Nderitu, S. K. Neal, H. A. Nebot, E. Nechaeva, P. Negri, A. Negri, G. Nelson, A. Nelson, T. K. Nemecek, S. Nemethy, P. Nepomuceno, A. A. Nessi, M. Neubauer, M. S. Neusiedl, A. Neves, R. M. Nevski, P. Newcomer, F. M. Nickerson, R. B. Nicolaidou, R. Nicolas, L. Nicoletti, G. Nicquevert, B. Niedercorn, F. Nielsen, J. Nikiforov, A. Nikolaev, K. Nikolic-Audit, I. Nikolopoulos, K. Nilsen, H. Nilsson, P. Nisati, A. Nishiyama, T. Nisius, R. Nodulman, L. Nomachi, M. Nomidis, I. Nordberg, M. Nordkvist, B. Notz, D. Novakova, J. Nozaki, M. Nozicka, M. Nugent, I. M. Nuncio-Quiroz, A. -E. Hanninger, G. Nunes Nunnemann, T. Nurse, E. O'Neil, D. C. O'Shea, V. Oakham, E. G. Oberlack, H. Ochi, A. Oda, S. Odaka, S. Odier, J. Ogren, H. Oh, A. Oh, S. H. Ohm, C. C. Ohshima, T. Ohshita, H. Ohsugi, T. Okada, S. Okawa, H. Okumura, Y. Okuyama, T. Olchevski, A. G. Oliveira, M. Damazio, D. Oliveira Oliveira Garcia, E. Olivito, D. Olszewski, A. Olszowska, J. Omachi, C. Onofre, A. Onyisi, P. U. E. Oram, C. J. Oreglia, M. J. Oren, Y. Orestano, D. Orlov, I. Barrera, C. Oropeza Orr, R. S. Ortega, E. O. Osculati, B. Ospanov, R. Osuna, C. Ottersbach, J. P. Ould-Saada, E. Ouraou, A. Ouyang, Q. Owen, M. Owen, S. Oyarzun, A. Ozcan, V. E. Ozone, K. Ozturk, N. Pacheco Pages, A. Padilla Aranda, C. Paganis, E. Pahl, C. Paige, F. Pajchel, K. Palestini, S. Pallin, D. Palma, A. Palmer, J. D. Pan, Y. B. Panagiotopoulou, E. Panes, B. Panikashvili, N. Panitkin, S. Pantea, D. Panuskova, M. Paolone, V. Papadopoulou, Th. D. Park, S. J. Park, W. Parker, M. A. Parodi, F. Parsons, J. A. Parzefall, U. Pasqualucci, E. Passeri, A. Pastore, F. Pastore, Fr. Pasztor, G. Pataraia, S. Pater, J. R. Patricelli, S. Pauly, T. Peak, L. S. Pecsy, M. Morales, M. I. Pedraza Peleganchuk, S. V. Peng, H. Penson, A. Penwell, J. Perantoni, M. Perez, K. Perez Codina, E. Perez Garcia-Estan, M. T. Reale, V. Perez Perini, L. Pernegger, H. Perrino, R. Persembe, S. Perus, P. Peshekhonov, V. D. Petersen, B. A. Petersen, T. C. Petit, E. Petridou, C. Petrolo, E. Petrucci, F. Petschull, D. Petteni, M. Pezoa, R. Phan, A. Phillips, A. W. Piacquadio, G. Piccinini, M. Piegaia, R. Pilcher, J. E. Pilkington, A. D. Pina, J. Pinamonti, M. Pinfold, J. L. Pinto, B. Pizio, C. Placakyte, R. Plamondon, M. Pleier, M. -A. Poblaguev, A. Poddar, S. Podlyski, F. Poggioli, L. Pohl, M. Polci, F. Polesello, G. Policicchio, A. Polini, A. Poll, J. Polychronakos, V. Pomeroy, D. Pommes, K. Ponsot, P. Pontecorvo, L. Pope, B. G. Popeneciu, G. A. Popovic, D. S. Poppleton, A. Popule, J. Bueso, X. Portell Porter, R. Pospelov, G. E. Pospisil, S. Potekhin, M. Potrap, I. N. Potter, C. J. Potter, C. T. Potter, K. P. Poulard, G. Poveda, J. Prabhu, R. Pralavorio, P. Prasad, S. Pravahan, R. Pribyl, L. Price, D. Price, L. E. Prichard, P. M. Prieur, D. Primavera, M. Prokofiev, K. Prokoshin, F. Protopopescu, S. Proudfoot, J. Prudent, X. Przysiezniak, H. Psoroulas, S. Ptacek, E. Purdham, J. Purohit, M. Puzo, P. Pylypchenko, Y. Qi, M. Qian, J. Qian, W. Qin, Z. Quadt, A. Quarrie, D. R. Quayle, W. B. Quinonez, F. Raas, M. Radeka, V. Radescu, V. Radics, B. Rador, T. Ragusa, F. Rahal, G. Rahimi, A. M. Rajagopalan, S. Rammensee, M. Rammes, M. Rauscher, F. Rauter, E. Raymond, M. Read, A. L. Rebuzzi, D. M. Redelbach, A. Redlinger, G. Reece, R. Reeves, K. Reinherz-Aronis, E. Reinsch, A. Reisinger, I. Reljic, D. Rembser, C. Ren, Z. L. Renkel, P. Rescia, S. Rescigno, M. Resconi, S. Resende, B. Reznicek, P. Rezvani, R. Ribeiro, N. Richards, A. Richter, R. Richter-Was, E. Ridel, M. Rijpstra, M. Rijssenbeek, M. Rimoldi, A. Rinaldi, L. Rios, R. R. Riu, I. Rizatdinova, F. Rizvi, E. Roa Romero, D. A. Robertson, S. H. Robichaud-Veronneau, A. Robinson, D. Robinson, J. E. M. Robinson, M. Robson, A. de Lima, J. G. Rocha Roda, C. Dos Santos, D. Roda Rodriguez, D. Garcia, Y. Rodriguez Roe, S. Rohne, O. Rojo, V. Rolli, S. Romaniouk, A. Romanov, V. M. Romeo, G. Maltrana, D. Romero Roos, L. Ros, E. Rosati, S. Rosenbaum, G. A. Rosselet, L. Rossetti, V. Rossi, L. P. Rotaru, M. Rothberg, J. Rousseau, D. Royon, C. R. Rozanov, A. Rozen, Y. Ruan, X. Ruckert, B. Ruckstuhl, N. Rud, V. I. Rudolph, G. Ruehr, F. Ruggieri, F. Ruiz-Martinez, A. Rumyantsev, L. Rurikova, Z. Rusakovich, N. A. Rutherfoord, J. P. Ruwiedel, C. Ruzicka, P. Ryabov, Y. F. Ryan, P. Rybkin, G. Rzaeva, S. Saavedra, A. F. Sadrozinski, H. F. -W. Sadykov, R. Tehrani, F. Safai Sakamoto, H. Salamanna, G. Salamon, A. Saleem, M. S. Salihagic, D. Salnikov, A. Salt, J. Ferrando, B. M. Salvachua Salvatore, D. Salvatore, F. Salvucci, A. Salzburger, A. Sampsonidis, D. Samset, B. H. Sandaker, H. Sander, H. G. Sanders, M. P. Sandhoff, M. Sandhu, P. Sandstroem, R. Sandvoss, S. Sankey, D. P. C. Sanny, B. Sansoni, A. Rios, C. Santamarina Santoni, C. Santonico, R. Saraiva, J. G. Sarangi, T. Sarkisyan-Grinbaum, E. Sarri, F. Sasaki, O. Sasao, N. Satsounkevitch, I. Sauvage, G. Savard, P. Savine, A. Y. Savinov, V. Sawyer, L. Saxon, D. H. Says, L. P. Sbarra, C. Sbrizzi, A. Scannicchio, D. A. Schaarschmidt, J. Schacht, P. Schaefer, U. Schaetzel, S. Schaffer, A. C. Schaile, D. Schamberger, R. D. Schamov, A. G. Scharf, V. Schegelsky, V. A. Scheirich, D. Schernau, M. Scherzer, M. I. Schiavi, C. Schieck, J. Schioppa, M. Schlenker, S. Schmidt, E. Schmieden, K. Schmitt, C. Schmitz, M. Schoenig, A. Schott, M. Schouten, D. Schovancova, J. Schram, M. Schreiner, A. Schroeder, C. Schroer, N. Schroers, M. Schultes, J. Schultz-Coulon, H. -C. Schumacher, J. W. Schumacher, M. Schumm, B. A. Schune, Ph. Schwanenberger, C. Schwartzman, A. Schwemling, Ph. Schwienhorst, R. Schwierz, R. Schwindling, J. Scott, W. G. Searcy, J. Sedykh, E. Segura, E. Seidel, S. C. Seiden, A. Seifert, F. Seixas, J. M. Sekhniaidze, G. Seliverstov, D. M. Sellden, B. Semprini-Cesari, N. Serfon, C. Serin, L. Seuster, R. Severini, H. Sevior, M. E. Sfyrla, A. Shabalina, E. Shamim, M. Shan, L. Y. Shank, J. T. Shao, Q. T. Shapiro, M. Shatalov, P. B. Shaw, K. Sherman, D. Sherwood, P. Shibata, A. Shimojima, M. Shin, T. Shmeleva, A. Shochet, M. J. Shupe, M. A. Sicho, P. Sidoti, A. Siegert, F. Siegrist, J. Sijacki, Dj. Silbert, O. Silva, J. Silver, Y. Silverstein, D. Silverstein, S. B. Simak, V. Simic, Lj. Simion, S. Simmons, B. Simonyan, M. Sinervo, P. Sinev, N. B. Sipica, V. Siragusa, G. Sisakyan, A. N. Sivoklokov, S. Yu. Sjoelin, J. Sjursen, T. B. Skovpen, K. Skubic, P. Slater, M. Slavicek, T. Sliwa, K. Sloper, J. Smakhtin, V. Smirnov, S. Yu. Smirnov, Y. Smirnova, L. N. Smirnova, O. Smith, B. C. Smith, D. Smith, K. M. Smizanska, M. Smolek, K. Snesarev, A. A. Snow, S. W. Snow, J. Snuverink, J. Snyder, S. Soares, M. Sobie, R. Sodomka, J. Soffer, A. Solans, C. A. Solar, M. Solc, J. Camillocci, E. Solfaroli Solodkov, A. A. Solovyanov, O. V. Sondericker, J. Sopko, V. Sopko, B. Sosebee, M. Soukharev, A. Spagnolo, S. Spano, F. Spighi, R. Spigo, G. Spila, F. Spiwoks, R. Spousta, M. Spreitzer, T. Spurlock, B. St Denis, R. D. Stahl, T. Stahlman, J. J. Stamen, R. Stancu, S. N. Stanecka, E. Stanek, R. W. Stanescu, C. Stapnes, S. Starchenko, E. A. Stark, J. Staroba, P. Starovoitov, P. Stastny, J. Stavina, P. Steele, G. Steinbach, P. Steinberg, P. Stekl, I. Stelzer, B. Stelzer, H. J. Stelzer-Chilton, O. Stenzel, H. Stevenson, K. Stewart, G. A. Stockton, M. C. Stoerig, K. Stoicea, G. Stonjek, S. Strachota, P. Stradling, A. R. Straessner, A. Strandberg, J. Strandberg, S. Strandlie, A. Strauss, M. Strizenec, P. Stroehmer, R. Strom, D. M. Stroynowski, R. Strube, J. Stugu, B. Sturm, R. Soh, D. A. Su, D. Sugaya, Y. Sugimoto, T. Suhr, C. Suk, M. Sulin, V. V. Sultansov, S. Sumida, T. Sun, X. H. Sundermann, J. E. Suruliz, K. Sushkov, S. Susinno, G. Sutton, M. R. Suzuki, T. Suzuki, Y. Sykora, I. Sykora, T. Szymocha, T. Sanchez, J. Ta, D. Tackmann, K. Taffard, A. Tafirout, R. Taga, A. Takahashi, Y. Takai, H. Takashima, R. Takeda, H. Takeshita, T. Talby, M. Talyshev, A. Tamsett, M. C. Tanaka, J. Tanaka, R. Tanaka, S. Tanaka, S. Tapprogge, S. Tardif, D. Tarem, S. Tarrade, F. Tartarelli, G. F. Tas, P. Tasevsky, M. Tassi, E. Tatarkhanov, M. Taylor, C. Taylor, F. E. Taylor, G. N. Taylor, R. P. Taylor, W. Teixeira-Dias, P. Ten Kate, H. Teng, P. K. Tennenbaum-Katan, Y. D. Terada, S. Terashi, K. Terron, J. Terwort, M. Testa, M. Teuscher, R. J. Therhaag, J. Thioye, M. Thoma, S. Thomas, J. P. Thompson, E. N. Thompson, P. D. Thompson, P. D. Thompson, R. J. Thompson, A. S. Thomson, E. Thun, R. P. Tic, T. Tikhomirov, V. O. Tikhonov, V. A. Tipton, P. Viegas, F. J. Tique Aires Tisserant, S. Toczek, B. Todorov, T. Todorova-Nova, S. Toggerson, B. Tojo, J. Tokar, S. Tokushuku, K. Tollefson, K. Tomasek, L. Tomasek, M. Tomoto, M. Tompkins, L. Toms, K. Tonoyan, A. Topfel, C. Topilin, N. D. Torchiani, I. Torrence, E. Torro Pastor, E. Toth, J. Touchard, F. Tovey, D. R. Trefzger, T. Tremblet, L. Tricoli, A. Trigger, I. M. Trincaz-Duvoid, S. Trinh, T. N. Tripiana, M. F. Triplett, N. Trischuk, W. Trivedi, A. Trocme, B. Troncon, C. Trzupek, A. Tsarouchas, C. Tseng, J. C. -L. Tsiakiris, M. Tsiareshka, P. V. Tsionou, D. Tsipolitis, G. Tsiskaridze, V. Tskhadadze, E. G. Tsukerman, Li. Tsulaia, V. Tsung, J. -W. Tsuno, S. Tsybychev, D. Tuggle, J. M. Tunnell, C. D. Turecek, D. Cakir, I. Turk Turlay, E. Tuts, P. M. Twomey, M. S. Tylmad, M. Tyndel, M. Uchida, K. Ueda, I. Ueno, R. Ugland, M. Uhlenbrock, M. Uhrmacher, M. Ukegawa, F. Unal, G. Undrus, A. Unel, G. Unno, Y. Urbaniec, D. Urkovsky, E. Urquijo, P. Urrejola, P. Usai, G. Uslenghi, M. Vacavant, L. Vacek, V. Vachon, B. Vahsen, S. Valente, P. Valentinetti, S. Valero, A. Valkar, S. Valladolid Gallego, E. Vallecorsa, S. Valls Ferrer, J. A. Van Berg, R. van der Graaf, H. van der Kraaij, E. van der Poel, E. van der Ster, D. van Eldik, N. van Gemmeren, P. van Kesteren, Z. van Vulpen, I. Vandelli, W. Vaniachine, A. Vankov, P. Vannucci, F. Vari, R. Varnes, E. W. Varouchas, D. Vartapetian, A. Varvell, K. E. Vasilyeva, L. Vassilakopoulos, V. I. Vazeille, F. Vellidis, C. Veloso, F. Veneziano, S. Ventura, A. Ventura, D. Venturi, M. Venturi, N. Vercesi, V. Verducci, M. Verkerke, W. Vermeulen, J. C. Vetterli, M. C. Vichou, I. Vickey, T. Viehhauser, G. H. A. Villa, M. Villani, E. G. Villaplana Perez, M. Vilucchi, E. Vincter, M. G. Vinek, E. Vinogradov, V. B. Viret, S. Virzi, J. Vitale, A. Vitells, O. Vivarelli, I. Vives Vaque, F. Vlachos, S. Vlasak, M. Vlasov, N. Vogel, A. Vokac, P. Volpi, M. von der Schmitt, H. von Loeben, J. von Radziewski, H. von Toerne, E. Vorobel, V. Vorwerk, V. Vos, M. Voss, R. Voss, T. T. Vossebeld, J. H. Vranjes, N. Milosavljevic, M. Vranjes Vrba, V. Vreeswijk, M. Anh, T. Vu Vudragovic, D. Vuillermet, R. Vukotic, I. Wagner, P. Walbersloh, J. Walder, J. Walker, R. Walkowiak, W. Wall, R. Wang, C. Wang, H. Wang, J. Wang, S. M. Warburton, A. Ward, C. P. Warsinsky, M. Wastie, R. Watkins, P. M. Watson, A. T. Watson, M. F. Watts, G. Watts, S. Waugh, A. T. Waugh, B. M. Weber, M. D. Weber, M. Weber, M. S. Weber, P. Weidberg, A. R. Weingarten, J. Weiser, C. Wellenstein, H. Wells, P. S. Wenaus, T. Wendler, S. Weng, Z. Wengler, T. Wenig, S. Wermes, N. Werner, M. Werner, P. Werth, M. Werthenbach, U. Wessels, M. Whalen, K. White, A. White, M. J. White, S. Whitehead, S. R. Whiteson, D. Whittington, D. Wicek, F. Wicke, D. Wickens, F. J. Wiedenmann, W. Wielers, M. Wienemann, P. Wiglesworth, C. Wiik, L. A. M. Wildauer, A. Wildt, M. A. Wilkens, H. G. Williams, E. Williams, H. H. Willocq, S. Wilson, J. A. Wilson, M. G. Wilson, A. Wingerter-Seez, I. Winklmeier, F. Wittgen, M. Wolter, M. W. Wolters, H. Wosiek, B. K. Wotschack, J. Woudstra, M. J. Wraight, K. Wright, C. Wright, D. Wrona, B. Wu, S. L. Wu, X. Wulf, E. Wynne, B. M. Xaplanteris, L. Xella, S. Xie, S. Xu, D. Xu, N. Yamada, M. Yamamoto, A. Yamamoto, K. Yamamoto, S. Yamamura, T. Yamaoka, J. Yamazaki, T. Yamazaki, Y. Yan, Z. Yang, H. Yang, U. K. Yang, Z. Yao, W-M. Yao, Y. Yasu, Y. Ye, J. Ye, S. Yilmaz, M. Yoosoofmiya, R. Yorita, K. Yoshida, R. Young, C. Youssef, S. P. Yu, D. Yu, J. Yuan, L. Yurkewicz, A. Zaidan, R. Zaitsev, A. M. Zajacova, Z. Zambrano, V. Zanello, L. Zaytsev, A. Zeitnitz, C. Zeller, M. Zemla, A. Zendler, C. Zenin, O. Zenis, T. Zenonos, Z. Zenz, S. Zerwas, D. della Porta, G. Zevi Zhan, Z. Zhang, H. Zhang, J. Zhang, Q. Zhang, X. Zhao, L. Zhao, T. Zhao, Z. Zhemchugov, A. Zhong, J. Zhou, B. Zhou, N. Zhou, Y. Zhu, C. G. Zhu, H. Zhu, Y. Zhuang, X. Zhuravlov, V. Zimmermann, R. Zimmermann, S. Zimmermann, S. Ziolkowski, M. Zivkovic, L. Zobernig, G. Zoccoli, A. zur Nedden, M. Zutshi, V. CA ATLAS Collaboration GP ATLAS Collaboration CERN TI Readiness of the ATLAS Tile Calorimeter for LHC collisions SO PERFORMANCE OF THE ATLAS DECTECTOR LA English DT Article; Book Chapter ID MAGNETIC-FIELDS; SCINTILLATORS; PERFORMANCE; SYSTEM AB The Tile hadronic calorimeter of the ATLAS detector has undergone extensive testing in the experimental hall since its installation in late 2005. The readout, control and calibration systems have been fully operational since 2007 and the detector has successfully collected data from the LHC single beams in 2008 and first collisions in 2009. This paper gives an overview of the Tile Calorimeter performance as measured using random triggers, calibration data, data from cosmic ray muons and single beam data. The detector operation status, noise characteristics and performance of the calibration systems are presented, as well as the validation of the timing and energy calibration carried out with minimum ionising cosmic ray muons data. The calibration systems' precision is well below the design value of 1%. The determination of the global energy scale was performed with an uncertainty of 4%. C1 [Aad, G.; Ahles, F.; Aktas, A.; Anders, C. F.; Beckingham, M.; Bernhard, R.; Bianchi, R. M.; Bitenc, U.; Bruneliere, R.; Caron, S.; Christov, A.; Dietrich, J.; Dingfelder, J.; Flechl, M.; Hartert, J.; Herten, G.; Horner, S.; Jakobs, K.; Janus, M.; Kuehn, S.; Lai, S.; Landgraf, U.; Lohwasser, K.; Ludwig, I.; Lumb, D.; Mahboubi, K.; Mazur, M.; Meirose, B.; Mohr, W.; Nilsen, H.; Parzefall, U.; Bueso, X. Portell; Rammensee, M.; Rurikova, Z.; Schmidt, E.; Schumacher, M.; Stoerig, K.; Sundermann, J. E.; Thoma, S.; Venturi, M.; Vivarelli, I.; von Radziewski, H.; Warsinsky, M.; Weiser, C.; Werner, M.; Wiik, L. A. M.; Xie, S.; Zimmermann, S.] Univ Freiburg, Fak Math & Phys, D-79104 Freiburg, Germany. [Aleksa, M.; Andeen, T.; Anghinolfi, F.; Arfaoui, S.; Baak, M. A.; Bachas, K.; Pedrosa, F. Baltasar Dos Santos; Battistin, M.; Bellina, F.; Beltramello, O.; Berge, D.; Blanchot, G.; Bogaerts, J. A.; Bogouch, A.; Boyd, J.; Braem, A.; Bremer, J.; Burckhart, H.; Butin, F.; Campana, S.; Garrido, M. D. M. Capeans; Carli, T.; Catinaccio, A.; Cattai, A.; Cerri, A.; Chromek-Burckhart, D.; Cote, D.; Dallison, S. J.; Danielsson, H. O.; Branco, M. De Oliveira; Dell'Acqua, A.; Delmastro, M.; Di Girolamo, A.; Di Girolamo, B.; Dittus, F.; Dobos, D.; Dobson, E.; Dudarev, A.; Duehrssen, M.; Eifert, T.; Ellis, N.; Elsing, M.; Fabre, C.; Farthouat, P.; Fassnacht, P.; Fedorko, W.; Francis, D.; Franz, S.; Froeschl, R.; Froidevaux, D.; Garelli, N.; Garonne, V.; Gianotti, F.; Godlewski, J.; Goossens, L.; Gorini, B.; Grafstroem, P.; Haas, S.; Haider, S.; Hauschild, M.; Hawkings, R. J.; Correia, A. M. Henriques; Hervas, L.; Hoecker, A.; Jackel, M. R.; Jenni, P.; Belenguer, M. Jimenez; Kaplon, J.; Kerschen, N.; Klioutchnikova, T.; Koblitz, B.; Koffas, T.; Kollar, D.; La Rosa, A.; Lamanna, M.; Lantzsch, K.; Lassnig, M.; Miotto, G. Lehmann; Lichard, P.; Lundberg, J.; Mapelli, A.; Mapelli, L.; Martin, B.; Messina, A. M.; Meyer, T. C.; Michal, S.; Molina-Perez, J.; Mornacchi, G.; Nairz, A. M.; Negri, G.; Nessi, M.; Nicquevert, B.; Nordberg, M.; Palestini, S.; Pastore, Fr.; Pauly, T.; Pernegger, H.; Petersen, B. A.; Piacquadio, G.; Pommes, K.; Poppleton, A.; Poulard, G.; Pribyl, L.; Prokofiev, K.; Raymond, M.; Rembser, C.; Dos Santos, D. Roda; Roe, S.; Salzburger, A.; Scannicchio, D. A.; Schlenker, S.; Schott, M.; Sherman, D.; Sloper, J.; Spigo, G.; Spiwoks, R.; Stanecka, E.; Stockton, M. C.; Sumida, T.; Tackmann, K.; Ten Kate, H.; Viegas, F. J. Tique Aires; Torchiani, I.; Tremblet, L.; Tricoli, A.; Unal, G.; van der Ster, D.; Vandelli, W.; Vinek, E.; Voss, R.; Vuillermet, R.; Wells, P. S.; Wenig, S.; Werner, P.; Wilkens, H. G.; Winklmeier, F.; Wotschack, J.; Zajacova, Z.] CERN, CH-1211 Geneva 23, Switzerland. [Alam, M. S.; Ernst, J.; Mahmood, A.; Rojo, V.] SUNY Albany, Albany, NY 12222 USA. [Caron, B.; Chan, K.; Gingrich, D. M.; Kim, M. S.; Moore, R. W.; Pinfold, J. L.] Univ Alberta, Dept Phys, Ctr Particle Phys, Edmonton, AB T6G 2G7, Canada. [Cakir, O.; Ciftci, A. K.; Ciftci, R.; Persembe, S.] Ankara Univ, Dept Phys, Fac Sci, TR-061000 Ankara, Turkey. [Yildiz, H. Duran] Dumlupinar Univ, Fac Arts & Sci, Dept Phys, Kutahya, Turkey. [Yilmaz, M.] Gazi Univ, Fac Arts & Sci, Dept Phys, TR-06500 Ankara, Turkey. [Sultansov, S.] TOBB Univ Econ & Technol, Fac Arts & Sci, Div Phys, TR-06560 Ankara, Turkey. [Cakir, I. Turk] Turkish Atom Energy Commiss, TR-06530 Ankara, Turkey. [Arnaez, O.; Aurousseau, M.; Berger, N.; Di Ciaccio, L.; Doan, T. K. O.; El Kacimi, M.; Elles, S.; Goy, C.; Guillemin, T.; Helary, L.; Hryn'ova, T.; Iengo, P.; Jezequel, S.; Kataoka, M.; Koletsou, I.; Labbe, J.; Lafaye, R.; Laplace, S.; Marchand, J. F.; Massol, N.; Przysiezniak, H.; Sauvage, G.; Todorov, T.; Wingerter-Seez, I.] Univ Savoie, LAPP, CNRS, IN2P3, Annecy Le Vieux, France. [Blair, R. E.; Chekanov, S.; Cranshaw, J.; Torregrosa, E. Fullana; LeCompte, T.; Malon, D.; Nodulman, L.; Price, L. E.; Proudfoot, J.; Ferrando, B. M. Salvachua; Stanek, R. W.; van Gemmeren, P.; Vaniachine, A.; Yoshida, R.; Zhang, J.; Zhang, Q.] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Cheu, E.; Johns, K. A.; Kaushik, V.; Lampen, C. L.; Lampl, W.; Lei, X.; Loch, P.; Rutherfoord, J. P.; Savine, A. Y.; Shupe, M. A.; Varnes, E. W.] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. [Brandt, A.; De, K.; Farbin, A.; Kim, H.; Nilsson, P.; Ozturk, N.; Pravahan, R.; Sarkisyan-Grinbaum, E.; Sosebee, M.; Spurlock, B.; Stradling, A. R.; Usai, G.; Vartapetian, A.; White, A.; Yu, J.] Univ Texas Arlington, Dept Phys, Arlington, TX 76019 USA. [Antonaki, A.; Arabidze, G.; Fassouliotis, D.; Giakoumopoulou, V.; Giokaris, N.; Ioannou, P.; Kourkoumelis, C.; Manousakis-Katsikakis, A.; Nikolopoulos, K.; Vellidis, C.] Univ Athens, Dept Phys, GR-15771 Athens, Greece. [Alexopoulos, T.; Argyropoulos, T.; Avramidou, R.; Dris, M.; Filippas, A.; Gazis, E. N.; Georgatos, F.; Iakovidis, G.; Katsoufis, E.; Maltezos, S.; Panagiotopoulou, E.; Papadopoulou, Th. D.; Tsarouchas, C.; Tsipolitis, G.; Vlachos, S.; Xaplanteris, L.] Natl Tech Univ Athens, Dept Phys, Iroon Polytech 9, GR-15780 Zografos, Greece. [Abdinov, O.; Aliyev, M.; Huseynov, N.; Khalil-zada, F.; Rzaeva, S.] Azerbaijan Acad Sci, Inst Phys, AZ-143 Baku, Azerbaijan. [Abdallah, J.; Bosman, M.; Casado, M. P.; Cavalli-Sforza, M.; Conidi, M. C.; Demirkoz, B.; Espinal Curull, X.; Fiorini, L.; Grinstein, S.; Helsens, C.; Korolkov, I.; Martinez, M.; Meoni, E.; Mir, L. M.; Nadal, J.; Osuna, C.; Pacheco Pages, A.; Padilla Aranda, C.; Perez Codina, E.; Riu, I.; Rossetti, V.; Segura, E.; Sushkov, S.; Vives Vaque, F.; Volpi, M.; Vorwerk, V.] Univ Autonoma Barcelona, Inst Fis Altes Energies, IFAE, ES-08193 Bellaterra, Barcelona, Spain. [Borjanovic, I.; Krstic, J.; Popovic, D. S.; Reljic, D.; Sijacki, Dj.; Simic, Lj.; Vranjes, N.; Milosavljevic, M. Vranjes; Vudragovic, D.] Univ Belgrade, Inst Phys, Belgrade 11001, Serbia. [Bozovic-Jelisavcic, I.; Mudrinic, M.] Vinca Inst Nucl Sci, Belgrade 11000, Serbia. [Burgess, T.; Eigen, G.; Kastanas, A.; Lipniacka, A.; Sandaker, H.; Sjursen, T. B.; Stugu, B.; Tonoyan, A.; Ugland, M.] Univ Bergen, Dept Phys & Technol, NO-5007 Bergen, Norway. [Arguin, J. -F.; Bach, A. M.; Barnett, R. M.; Beringer, J.; Biesiada, J.; Calafiura, P.; Ciocio, A.; Einsweiler, K.; Gaponenko, A.; Garcia-Sciveres, M.; Gilchriese, M.; Haber, C.; Heinemann, B.; Hinchliffe, I.; Hsu, S. -C.; Joseph, J.; Korn, A.; Lavrijsen, W.; Leggett, C.; Loscutoff, P.; Lys, J.; Madaras, R. J.; Quarrie, D. R.; Scherzer, M. I.; Shapiro, M.; Siegrist, J.; Strandberg, S.; Tatarkhanov, M.; Tompkins, L.; Vahsen, S.; Varouchas, D.; Virzi, J.; Yao, W-M.; Yao, Y.; Zenz, S.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA 94720 USA. [Aliev, M.; Giorgi, F. M.; Grancagnolo, S.; Kind, O.; Kolanoski, H.; Kwee, R.; Lacker, H.; Leyton, M.; Lohse, T.; Mandrysch, R.; Nikiforov, A.; Garcia, Y. Rodriguez; Sidoti, A.; zur Nedden, M.] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany. [Battaglia, A.; Beck, H. P.; Borer, C.; Ereditato, A.; Gallo, V.; Haug, S.; Topfel, C.; Venturi, N.; Weber, M. D.; Weber, M. S.] Univ Bern, Instein Ctr Fundamental Phys, CH-3012 Bern, Switzerland. [Bracinik, J.; Charlton, D. G.; Collins, N. J.; Curtis, C. J.; Hadley, D. R.; Harrison, K.; Hawkes, C. M.; Hillier, S. J.; Lilley, J. N.; Martin, T. A.; Palmer, J. D.; Slater, M.; Thomas, J. P.; Thompson, P. D.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Wilson, J. A.] Univ Birmingham, Sch Phys & Astron, Birmingham B15 2TT, W Midlands, England. [Akdogan, T.; Arik, M.; Istin, S.; Rador, T.] Bogazici Univ, Dept Phys, Fac Sci, TR-80815 Bebek, Turkey. [Cetin, S. A.] Dogus Univ, Fac Arts & Sci, Dept Phys, TR-34722 Istanbul, Turkey. [Beddall, A. J.; Beddall, A.; Bingul, A.; Diblen, F.] Gaziantep Univ, Dept Engn Phys, Fac Engn, TR-27310 Sehitkamil, Gaziantep, Turkey. Istanbul Tech Univ, Fac Arts & Sci, Dept Phys, TR-34469 Istanbul, Turkey. [Antonelli, S.; Bellagamba, L.; Bertin, A.; Bindi, M.; Boscherini, D.; Bruni, A.; Bruni, G.; Bruschi, M.; Caforio, D.; Ciocca, C.; Corradi, M.; De Castro, S.; Di Sipio, R.; Fabbri, L.; Giacobbe, B.; Giusti, P.; Massa, I.; Piccinini, M.; Polini, A.; Rinaldi, L.; Sbarra, C.; Sbrizzi, A.; Semprini-Cesari, N.; Spighi, R.; Valentinetti, S.; Villa, M.; Vitale, A.; Zoccoli, A.] INFN Sez Bologna, IT-40127 Bologna, Italy. [Antonelli, S.; Bertin, A.; Bindi, M.; Caforio, D.; Ciocca, C.; De Castro, S.; Di Sipio, R.; Fabbri, L.; Massa, I.; Piccinini, M.; Sbarra, C.; Sbrizzi, A.; Semprini-Cesari, N.; Valentinetti, S.; Vitale, A.; Zoccoli, A.] Univ Bologna, Dipartimento Fis, IT-40127 Bologna, Italy. [Alhroob, M.; Arutinov, D.; Barbero, M.; Bartsch, D.; Brock, I.; Cristinziani, M.; Desch, K.; Fleischmann, S.; Gaycken, G.; Geich-Gimbel, Ch.; Gonella, L.; Hemperek, T.; Huegging, F.; Ince, T.; Karagounis, M.; Khoriauli, G.; Koevesarki, P.; Kostyukhin, V. V.; Kroseberg, J.; Krueger, H.; Lehmacher, M.; Loddenkoetter, T.; Masetti, L.; Moeser, N.; Mueller, K.; Nanava, G.; Nattermann, T.; Nderitu, S. K.; Nuncio-Quiroz, A. -E.; Hanninger, G. Nunes; Prabhu, R.; Psoroulas, S.; Radics, B.; Ruwiedel, C.; Schmieden, K.; Schmitz, M.; Ta, D.; Therhaag, J.; Tsung, J. -W.; Uhlenbrock, M.; Vlasov, N.; Vogel, A.; von Toerne, E.; Wermes, N.; Wienemann, P.; Zendler, C.; Zimmermann, R.; Zimmermann, S.] Univ Bonn, Inst Phys, D-53115 Bonn, Germany. [Ahlen, S. P.; Butler, J. M.; Harrington, R. D.; Love, J.; Nation, N. R.; Shank, J. T.; Yan, Z.; Youssef, S. P.] Boston Univ, Dept Phys, Boston, MA 02215 USA. [Aefsky, S.; Amelung, C.; Bensinger, J. R.; Blocker, C.; Kirsch, L. E.; Pomeroy, D.; Wellenstein, H.] Brandeis Univ, Dept Phys, Waltham, MA 02454 USA. [Caloba, L. P.; Cerqueira, A. S.; Coura Torres, R.; do Vale, M. A. B.; Maidantchik, C.; Manhaes de Andrade Filho, L.; Marroquim, F.; Nepomuceno, A. A.; Perantoni, M.; Seixas, J. M.] Univ Fed Rio de Janeiro, COPPE EE IF, BR-21945970 Rio De Janeiro, Brazil. Univ Sao Paulo, Inst Fis, BR-05508900 Sao Paulo, Brazil. [Adams, D. L.; Assamagan, K.; Baker, M. D.; Begel, M.; Caballero, J.; Chen, H.; Tcherniatine, V.; Salgado, P. E. De Castro Faria; Deng, W.; Dhullipudi, R.; Ernst, M.; Gadfort, T.; Gibbard, B.; Gordon, H. A.; Greenwood, Z. D.; Klimentov, A.; Lanni, F.; Lissauer, D.; Lynn, D.; Ma, H.; Maeno, T.; Majewski, S.; Misawa, S.; Nevski, P.; Damazio, D. Oliveira; Paige, F.; Panitkin, S.; Park, W.; Pleier, M. -A.; Polychronakos, V.; Potekhin, M.; Protopopescu, S.; Purohit, M.; Radeka, V.; Rajagopalan, S.; Redlinger, G.; Rescia, S.; Sawyer, L.; Smirnov, Y.; Snyder, S.; Sondericker, J.; Steinberg, P.; Takai, H.; Tarrade, F.; Trivedi, A.; Undrus, A.; Wenaus, T.; White, S.; Ye, S.; Yu, D.] Brookhaven Natl Lab, Dept Phys, RHIC & ATLAS Comp Facil, Upton, NY 11973 USA. [Alexa, C.; Badescu, E.; Boldea, V.; Caprini, I.; Caprini, M.; Caramarcu, C.; Chesneanu, D.; Constantinescu, S.; Dita, P.; Dita, S.; Micu, L.; Pantea, D.; Popeneciu, G. A.; Rotaru, M.; Stoicea, G.] Natl Inst Phys & Nucl Engn, R-077125 Bucharest, Romania. [Darlea, G. L.] Univ Politehn Bucuresti, Sect 6, Bucharest 060042, Romania. W Univ Timisoara, Timisoara, Romania. [Gonzalez Silva, M. L.; Piegaia, R.; Romeo, G.] Univ Buenos Aires, Dto Fis, FCEyN, RA-1428 Buenos Aires, DF, Argentina. [Barber, T.; Barlow, N.; Batley, J. R.; Brochu, F. M.; Carter, J. R.; Chapman, J. D.; Cowden, C.; French, S. T.; Frost, J. A.; Hill, J. C.; Lester, C. G.; Moeller, V.; Parker, M. A.; Phillips, A. W.; Robinson, D.; Ward, C. P.; White, M. J.] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England. [Archambault, J. P.; Asner, D.; Heelan, L.; Khakzad, M.; Liu, C.; Oakham, E. G.; Ueno, R.; Vincter, M. G.; Whalen, K.] Carleton Univ, Dept Phys, Ottawa, ON K1S 5B6, Canada. [Anderson, K. J.; Boveia, A.; Canelli, F.; Choudalakis, G.; Costin, T.; Dunford, M.; Feng, E. J.; Gardner, R. W.; Hollander, D.; Hurwitz, M.; Plante, I. Jen-La; Kapliy, A.; Mambelli, M.; Melachrinos, C.; Merritt, F. S.; Miller, M.; Onyisi, P. U. E.; Oreglia, M. J.; Pilcher, J. E.; Shochet, M. J.; Tuggle, J. M.; Tunnell, C. D.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Diaz, M. A.; Panes, B.; Quinonez, F.; Maltrana, D. Romero; Urrejola, P.] Pontificia Univ Catolica Chile, Fac Fis, Dept Fis, Santiago 22, Chile. [Brooks, W. K.; Kuleshov, S.; Oyarzun, A.; Pezoa, R.; Prokoshin, F.] Univ Tecn Federico Santa Maria, Dept Fis, Valparaiso, Chile. [Bai, Y.; Jin, S.; Lu, F.; Ouyang, Q.; Shan, L. Y.] Chinese Acad Sci, Inst High Energy Phys, CN-100049 Beijing, Peoples R China. [Gong, C.; Han, L.; Jiang, Y.; Liu, M.; Liu, Y.; Zhao, Z.] Univ Sci & Technol China, Dept Modern Phys, CN-230026 Hefei, Anhui, Peoples R China. [Chen, S.; Qi, M.] Nanjing Univ, Dept Phys, Nanjing 210093, Jiangsu, Peoples R China. [Feng, C.; Ge, P.; Miao, J.; Sun, X. H.; Zhan, Z.; Zhang, X.; Zhu, C. G.] Shandong Univ, High Energy Phys Grp, CN-250100 Jinan, Shandong, Peoples R China. [Busato, E.; Calvet, D.; Cinca, D.; Febbraro, R.; Ghodbane, N.; Guicheney, C.; Pallin, D.; Podlyski, F.; Santoni, C.; Says, L. P.; Vazeille, F.; Viret, S.] Univ Clermont Ferrand, Clermont Univ, Lab Phys Corpusculaire, CNRS,IN2P3, FR-63177 Aubiere, France. [Angerami, A.; Brooijmans, G.; Caughron, S.; Cooke, M.; Copic, K.; Grau, N.; Gray, H. M.; Hughes, E. W.; Mateos, D. Lopez; Marshall, Z.; Parsons, J. A.; Penson, A.; Perez, K.; Reale, V. Perez; Spano, F.; Tuts, P. M.; Urbaniec, D.; Williams, E.; Wulf, E.; Zhou, N.; Zivkovic, L.] Columbia Univ, Nevis Lab, Irvington, NY 10533 USA. [Dam, M.; Facius, K.; Hansen, J. R.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Heisterkamp, S.; Jakobsen, S.; Jez, P.; Lundquist, J.; Mackeprang, R.; Petersen, T. C.; Simonyan, M.; Xella, S.] Univ Copenhagen, Niels Bohr Inst, DK-2100 Copenhagen 0, Denmark. [Adorisio, C.; Capua, M.; Crosetti, G.; La Rotonda, L.; Mastroberardino, A.; Morello, G.; Salvatore, D.; Schioppa, M.; Susinno, G.; Tassi, E.] INFN Grp Coll Cosenza, IT-87036 Arcavacata Di Rende, Italy. [Adorisio, C.; Capua, M.; Crosetti, G.; La Rotonda, L.; Mastroberardino, A.; Morello, G.; Salvatore, D.; Schioppa, M.; Susinno, G.; Tassi, E.] Univ Calabria, Dipartimento Fis, IT-87036 Arcavacata Di Rende, Italy. [Dabrowski, W.; Dwuznik, M.; Grabowska-Bold, I.; Kisielewska, D.; Koperny, S.; Kowalski, T. Z.; Mindur, B.; Toczek, B.] AGH Univ Sci & Technol, Fac Phys & Appl Comp Sci, PL-30059 Krakow, Poland. [Banas, E.; de Renstrom, P. A. Bruckman; Gornicki, E.; Hajduk, Z.; Iwanski, W.; Kaczmarska, A.; Korcyl, K.; Malecki, Pa.; Malecki, P.; Olszewski, A.; Olszowska, J.; Richter-Was, E.; Szymocha, T.; Trzupek, A.; Wolter, M. W.; Wosiek, B. K.; Zemla, A.] Polish Acad Sci, Henryk Niewodniczanski Inst Nucl Phys, PL-31342 Krakow, Poland. [Daya, R. K.; Yagci, K. Dindar; Firan, A.; Goldin, D.; Hadavand, H. K.; Hoffman, J.; Howe, T.; Ilchenko, Y.; Ishmukhametov, R.; Joffe, D.; Kasmi, A.; Kehoe, R.; Liang, Z.; Liu, T.; Renkel, P.; Rios, R. R.; Stroynowski, R.; Ye, J.] So Methodist Univ, Dept Phys, Dallas, TX 75275 USA. [Ahsan, M.; Galyaev, E.; Izen, J. M.; Lou, X.; Reeves, K.] Univ Texas Dallas, Richardson, TX 75080 USA. [Antunovic, B.; Bechtle, P.; Kuutmann, E. Bergeaas; Boehler, M.; Brandt, G.; Brunet, S.; Ehrenfeld, W.; Ferrara, V.; Fischer, G.; Glazov, A.; Goebel, M.; Fajardo, L. S. Gomez; Gosdzik, B.; Gregor, I. M.; Haller, J.; Hiller, K. H.; Husemann, U.; Johnert, S.; Kama, S.; Karnevskiy, M.; Katzy, J.; Koeneke, K.; Kono, T.; Kostka, P.; Kowalski, H.; Lobodzinska, E.; Ludwig, D.; Maettig, S.; Mamuzic, J.; Medinnis, M.; Mehlhase, S.; Moenig, K.; Naumann, T.; Notz, D.; Nozicka, M.; Petschull, D.; Placakyte, R.; Qin, Z.; Stelzer, H. J.; Terwort, M.; Wildt, M. A.; Zhu, H.] DESY, D-15738 Zeuthen, Germany. [Bunse, M.; Goessling, C.; Hirsch, F.; Klingenberg, R.; Muenstermann, D.; Reisinger, I.; Walbersloh, J.] TU Dortmund, DE-44221 Dortmund, Germany. [Goepfert, T.; Kar, D.; Kobel, M.; Leonhardt, K.; Ludwig, A.; Mader, W. F.; Prudent, X.; Schaarschmidt, J.; Schumacher, J. W.; Schwierz, R.; Seifert, F.; Steinbach, P.; Straessner, A.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01069 Dresden, Germany. [Arce, A. T. H.; Benjamin, D. P.; Bocci, A.; Ebenstein, W. L.; Fowler, A. J.; Klinkby, E. B.; Ko, B. R.; Oh, S. H.; Wang, C.; Yamaoka, J.] Duke Univ, Dept Phys, Durham, NC 27708 USA. [Buckley, A. G.; Clark, P. J.; Wynne, B. M.] Univ Edinburgh, Sch Phys & Astron, Edinburgh EH9 3JZ, Midlothian, Scotland. [Griesmayer, E.] Fachhsch Wiener Neustadt, AT-2700 Wiener Neustadt, Austria. [Annovi, A.; Antonelli, M.; Beretta, M.; Bilokon, H.; Cerutti, F.; Curatolo, M.; Esposito, B.; Ferrer, M. L.; Gatti, C.; Laurelli, P.; Maccarrone, G.; Nicoletti, G.; Salvucci, A.; Sansoni, A.; Testa, M.; Vilucchi, E.; Zambrano, V.] INFN Lab Nazl Frascati, IT-00044 Frascati, Italy. [Abdelalim, A. A.; Alexandre, G.; Backes, M.; Bell, P. J.; Bell, W. H.; Berglund, E.; Blondel, A.; Bucci, F.; Clark, A.; Dao, V.; Ferrere, D.; Gadomski, S.; Navarro, I. E. Garcia; Gonzalez-Sevilla, S.; Goulette, M. P.; Hamilton, A.; Lister, A.; Latour, B. Martin Dit; Herrera, C. Mora; Pasztor, G.; Pohl, M.; Robichaud-Veronneau, A.; Rosselet, L.; Urquijo, P.; Wu, X.] Univ Geneva, Sect Phys, CH-1211 Geneva 4, Switzerland. [Barberis, D.; Beccherle, R.; Coccaro, A.; Cornelissen, T.; Darbo, G.; Gagliardi, G.; Gemme, C.; Morettini, P.; Osculati, B.; Parodi, F.; Rossi, L. P.; Schiavi, C.] INFN Sez Genova, IT-16146 Genoa, Italy. [Barberis, D.; Coccaro, A.; Cornelissen, T.; Gagliardi, G.; Osculati, B.; Parodi, F.; Schiavi, C.] Univ Genoa, Dipartimento Fis, IT-16146 Genoa, Italy. [Chikovani, L.; Djobava, T.; Khubua, J.; Magradze, E.; Mchedlidze, G.; Mosidze, M.; Tsiskaridze, V.; Tskhadadze, E. G.] Georgian Acad Sci, Inst Phys, GE-380077 Tbilisi, Rep of Georgia. [Chikovani, L.; Djobava, T.; Khubua, J.; Magradze, E.; Mchedlidze, G.; Mosidze, M.; Tsiskaridze, V.; Tskhadadze, E. G.] Tbilisi State Univ, HEP Inst, GE-380086 Tbilisi, Rep of Georgia. [Astvatsatourov, A.; Dueren, M.; Stenzel, H.] Univ Giessen, Inst Phys 2, D-35392 Giessen, Germany. [Allwood-Spiers, S. E.; Bates, R. L.; Britton, D.; Bussey, P.; Buttar, C. M.; Collins-Tooth, C.; D'Auria, S.; Doherty, T.; Doyle, A. T.; Ferrag, S.; Kenyon, M.; McGlone, H.; Moraes, A.; O'Shea, V.; Barrera, C. Oropeza; Robson, A.; Saxon, D. H.; Smith, K. M.; St Denis, R. D.; Steele, G.; Stewart, G. A.; Thompson, A. S.; Wraight, K.; Wright, C.] Univ Glasgow, Dept Phys & Astron, Glasgow G12 8QQ, Lanark, Scotland. [Ay, C.; Blumenschein, U.; Brandt, O.; Erdmann, J.; Fayette, F.; Grosse-Knetter, J.; Henrichs, A.; Hensel, C.; Keil, M.; Klute, M.; Kohn, F.; Krieger, N.; Kroeninger, K.; Meyer, J.; Morel, J.; Park, S. J.; Quadt, A.; Shabalina, E.; Uhrmacher, M.; Weingarten, J.] Univ Gottingen, Inst Phys 2, D-37077 Gottingen, Germany. [Albrand, S.; Clement, B.; Collot, J.; Crepe-Renaudin, S.; Delsart, P. A.; Donini, J.; Hostachy, J. -Y.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Polci, F.; Stark, J.; Trocme, B.; Wang, J.] Univ Grenoble 1, CNRS, INPG, Lab Phys Subatom & Cosmol,IN2P3, FR-38026 Grenoble, France. [Addy, T. N.; Harvey, A.; McFarlane, K. W.; Shin, T.; Vassilakopoulos, V. I.] Hampton Univ, Dept Phys, Hampton, VA 23668 USA. [da Costa, J. Barreiro Guimaraes; Belloni, A.; Black, K. M.; Franklin, M.; Huth, J.; Jeanty, L.; Kagan, M.; Kashif, L.; Outschoorn, V. Martinez; Mills, C. M.; Moed, S.; Morii, M.; Prasad, S.; Smith, B. C.; della Porta, G. Zevi] Harvard Univ, Lab Particle Phys & Cosmol, Cambridge, MA 02138 USA. [Andrei, V.; Childers, J. T.; Dietzsch, T. A.; Hanke, P.; Henke, M.; Khomich, A.; Kluge, E. -E.; Lendermann, V.; Meier, K.; Mueller, F.; Poddar, S.; Ruehr, F.; Scharf, V.; Schultz-Coulon, H. -C.; Stamen, R.; Weber, P.; Wessels, M.] Heidelberg Univ, Kirchhoff Inst Phys, D-69120 Heidelberg, Germany. [Radescu, V.; Schaetzel, S.; Schoenig, A.] Inst Phys, D-69120 Heidelberg, Germany. [Kugel, A.; Maenner, R.; Schroer, N.] Heidelberg Univ, Lehrstuhl Informat 5, ZITI, DE-68131 Mannheim, Germany. [Ohsugi, T.] Hiroshima Univ, Fac Sci, Higashihiroshima, Jp Hiroshima 7398526, Japan. [Nagasaka, Y.] Hiroshima Inst Technol, Fac Appl Informat Sci, Hiroshima 7315193, Japan. [Cwetanski, P.; Egorov, K.; Evans, H.; Gagnon, P.; Jain, V.; Lowe, A. J.; Luehring, F.; Marino, C. P.; Ogren, H.; Penwell, J.; Price, D.; Whittington, D.] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. [Epp, B.; Girtler, P.; Jussel, P.; Kneringer, E.; Kuhn, D.; Rudolph, G.] Inst Astro & Teilchenphys, A-6020 Innsbruck, Austria. [Behera, P. K.; Limper, M.; Mallik, U.; Pahl, C.; Schreiner, A.; Zaidan, R.] Univ Iowa, Iowa City, IA 52242 USA. [Cochran, J.; Lebedev, A.; Mete, A. S.; Meyer, W. T.; Nelson, A.; Ruiz-Martinez, A.; Triplett, N.; Yamamoto, K.] Iowa State Univ, Ames High Energy Phys Grp, Dept Phys & Astron, Ames, IA 50011 USA. [Aleksandrov, I. N.; Barashkou, A.; Bardin, D. Y.; Bednyakov, V. A.; Boyko, I. R.; Budagov, I. A.; Chelkov, G. A.; Cheplakov, A.; Chepurnov, V. F.; Chizhov, V.; Dedovich, D. V.; Demichev, M.; Glonti, G. L.; Gostkin, M. I.; Grigalashvili, N.; Gusakov, Y.; Kalinovskaya, L. V.; Kazarinov, M. Y.; Kekelidze, G. D.; Kharchenko, D.; Khovanskiy, N.; Khramov, E.; Kolesnikov, V.; Kotov, V. M.; Kruchonak, U.; Krumshteyn, Z. V.; Kukhtin, V.; Ladygin, E.; Lazarev, A. B.; Malyukov, S.; Manjavidze, I. D.; Minashvili, I. A.; Mineev, M.; Nikolaev, K.; Olchevski, A. G.; Peshekhonov, V. D.; Romanov, V. M.; Rumyantsev, L.; Rusakovich, N. A.; Sadykov, R.; Sisakyan, A. N.; Topilin, N. D.; Vinogradov, V. B.; Zhemchugov, A.] Joint Inst Nucl Res Dubna, Joint Inst Nucl Res, RU-141980 Dubna, Moscow Region, Russia. [Amako, K.; Arai, Y.; Ikegami, Y.; Ikeno, M.; Ishino, M.; Iwasaki, H.; Kanzaki, J.; Kohriki, T.; Kondo, T.; Makida, Y.; Nagano, K.; Nozaki, M.; Odaka, S.; Ozone, K.; Sasaki, O.; Suzuki, Y.; Tanaka, S.; Terada, S.; Tojo, J.; Tokushuku, K.; Tsuno, S.; Unno, Y.; Yamamoto, A.; Yasu, Y.] KEK, High Energy Accelerator Res Org, Tsukuba, Ibaraki 3050801, Japan. [Hayakawa, T.; Homma, Y.; Hori, T.; Ishikawa, A.; Kawagoe, K.; Kiyamura, H.; Kurashige, H.; Matsushita, T.; Nakatsuka, H.; Nishiyama, T.; Ochi, A.; Okada, S.; Omachi, C.; Takeda, H.; Yamazaki, Y.] Kobe Univ, Grad Sch Sci, Nada Ku, Jp Kobe 6578501, Japan. [Sasao, N.] Kyoto Univ, Fac Sci, Sakyou Ku, Kyoto 6068502, Japan. [Takashima, R.] Kyoto Univ, Fushimi Ku, Kyoto 6128522, Japan. [Anduaga, X. S.; Dova, M. T.; Monticelli, F.; Tripiana, M. F.] Univ Nacl La Plata, Dept Fis, FCE, IFLP CONICET UNLP, RA-1900 La Plata, Buenos Aires, Argentina. [Borissov, G.; Bouhova-Thacker, E. V.; Catmore, J. R.; Cheatham, S.; Chilingarov, A.; Davidson, R.; De Mora, L.; Fox, H.; Henderson, R. C. W.; Hughes, G.; Jones, R. W. L.; Kartvelishvili, V.; Long, R. E.; Love, P. A.; Smizanska, M.; Walder, J.] Univ Lancaster, Dept Phys, Lancaster LA1 4YB, England. [Bianco, M.; Cataldi, G.; Chiodini, G.; Crupi, R.; Gorini, E.; Guida, A.; Perrino, R.; Primavera, M.; Spagnolo, S.; Ventura, A.] INFN Sez Lecce, IT-73100 Lecce, Italy. [Bianco, M.; Crupi, R.; Gorini, E.; Guida, A.; Spagnolo, S.; Ventura, A.] Univ Salento, Dipartimento Fis, IT-73100 Lecce, Italy. [Allport, P. P.; Austin, N.; Burdin, S.; D'Onofrio, M.; Dervan, P.; Godlewski, J.; Greenshaw, T.; Gwilliam, C. B.; Hayward, H. S.; Jackson, J. N.; Jones, T. J.; King, B. T.; Klein, M.; Klein, U.; Kluge, T.; Kretzschmar, J.; Laycock, P.; Leney, K. J. C.; Maxfield, S. J.; Mehta, A.; Migas, S.; Prichard, P. M.; Vankov, P.; Vossebeld, J. H.; Wiglesworth, C.; Wrona, B.] Univ Liverpool, Oliver Lodge Lab, Liverpool L69 3BX, Merseyside, England. [Cindro, V.; Dolenc, I.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Macek, B.; Mandic, I.; Mijovic, L.; Mikuz, M.] Jozef Stefan Inst, SI-1000 Ljubljana, Slovenia. [Cindro, V.; Dolenc, I.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Macek, B.; Mandic, I.; Mijovic, L.; Mikuz, M.] Univ Ljubljana, Dept Phys, SI-1000 Ljubljana, Slovenia. [Adragna, P.; Beck, G. A.; Carter, A. A.; Cerrito, L.; Cooper, B. D.; Eisenhandler, E.; Ellis, K.; Landon, M. P. J.; Lloyd, S. L.; Martin, A. J.; Morris, J. D.; Poll, J.; Rizvi, E.; Stevenson, K.] Queen Mary Univ London, Dept Phys, London E1 4NS, England. [Alam, M. A.; Berry, T.; Boisvert, V.; Cooper-Smith, N. J.; Cowan, G.; Edwards, C. A.; Martin, T. Fonseca; George, S.; Goncalo, R.; Green, B.; Misiejuk, A.; Tamsett, M. C.; Teixeira-Dias, P.] Univ London, Dept Phys, Egham TW20 0EX, Surrey, England. [Asquith, L.; Aker, S.; Bernius, C.; Boeser, S.; Butterworth, J. M.; Byatt, T.; Campanelli, M.; Christidi, I. A.; Davison, A. R.; Dean, S.; Jansen, E.; Konstantinidis, N.; Monk, J.; Nash, M.; Nurse, E.; Ozcan, V. E.; Richards, A.; Robinson, J. E. M.; Sherwood, P.; Siegert, F.; Simmons, B.; Taylor, C.; Waugh, B. M.] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Beau, T.; Bordoni, S.; Calderini, G.; Cavalleri, P.; Chareyre, E.; De Cecco, S.; Derue, F.; Krasny, M. W.; Lacour, D.; Laforge, B.; Le Dortz, O.; Lellouch, J.; Marchiori, G.; Nikolic-Audit, I.; Ridel, M.; Roos, L.; Schwemling, Ph.; Trincaz-Duvoid, S.; Trinh, T. N.; Vannucci, F.; Yuan, L.] Univ Paris 07, Univ Paris 06, CNRS, Lab Phys Nucl & Hautes Energies,IN2P3, FR-75252 Paris 05, France. [Akesson, T. P. A.; Alonso, A.; Boelaert, N.; Groth-Jensen, J.; Hedberg, V.; Jarlskog, G.; Ji, W.; Lundberg, B.; Lytken, E.; Mjornmark, J. U.; Smirnova, O.] Lund Univ, Inst Fys, Nat Vetenskapliga Fak, SE-22100 Lund, Sweden. [Barreiro, F.; Cantero, J.; Del Peso, J.; Gabaldon, C.; Glasman, C.; Lagouri, T.; March, L.; Nebot, E.; Terron, J.] Univ Autonoma Madrid, Fac Ciencias, Dept Fis Teor, ES-28049 Madrid, Spain. [Aharrouche, M.; Bendel, M.; Blum, W.; Buescher, V.; Eckweiler, S.; Edmonds, K.; Ellinghaus, F.; Ertel, E.; Fiedler, F.; Fleckner, J.; Goeringer, C.; Groll, M.; Handel, C.; Hohlfeld, M.; Kawamura, G.; Kleinknecht, K.; Koenig, S.; Koepke, L.; Neusiedl, A.; Sander, H. G.; Schaefer, U.; Schmitt, C.; Schroeder, C.; Siragusa, G.; Tapprogge, S.; Anh, T. Vu; Wicke, D.] Johannes Gutenberg Univ Mainz, Inst Phys, DE-55099 Mainz, Germany. [Almond, J.; Ask, S.; Brown, G.; Chavda, V.; Cox, B. E.; Da Via, C.; Forti, A.; Freestone, J.; Head, S. J.; Jones, G.; Keates, J. R.; Kelly, M.; Kolya, S. D.; Lane, J. L.; Loebinger, F. K.; Martyniuk, A. C.; Masik, J.; Miyagawa, P. S.; Oh, A.; Owen, M.; Pater, J. R.; Pilkington, A. D.; Potter, K. P.; Schwanenberger, C.; Snow, S. W.; Thompson, R. J.; Watts, S.; Wengler, T.; Yang, U. K.] Univ Manchester, Sch Phys & Astron, Manchester M13 9PL, Lancs, England. [Aoun, S.; Bee, C.; Clemens, J. C.; Coadou, Y.; Djama, F.; Feligioni, L.; Hoffmann, I.; Hubaut, F.; Kuna, M.; Lapoire, C.; Le Guirriec, E.; Leveque, J.; Monnier, E.; Odier, J.; Petit, E.; Pralavorio, P.; Rozanov, A.; Talby, M.; Tisserant, S.; Toth, J.; Touchard, F.; Vacavant, L.; Zhang, H.] Aix Marseille Univ, CPPM, CNRS, IN2P3, Marseille, France. [Brau, B.; Colon, G.; Dallapiccola, C.; Meade, A.; Moyse, E. J. W.; Thompson, E. N.; van Eldik, N.; Willocq, S.; Woudstra, M. J.] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA. [Corriveau, F.; Dufour, M. -A.; Guler, H.; Klemetti, M.; Mc Donald, J.; Potter, C. T.; Robertson, S. H.; Rios, C. Santamarina; Schram, M.; Vachon, B.; Warburton, A.] McGill Univ, High Energy Phys Grp, Montreal, PQ H3A 2T8, Canada. [Barberio, E. L.; Davey, W.; Davidson, N.; Felzmann, C. U.; Limosani, A.; Morley, A. K.; Phan, A.; Sevior, M. E.; Shao, Q. T.; Taylor, G. N.] Univ Melbourne, Sch Phys, Au Parkville, Vic 3010, Australia. [Armbruster, A. J.; Chapman, J. W.; Cirilli, M.; Dai, T.; Diehl, E. B.; Eppig, A.; Ferretti, C.; Goldfarb, S.; Levin, D.; Li, X.; Liu, H.; Liu, J. B.; Mc Kee, S. P.; Neal, H. A.; Panikashvili, N.; Purdham, J.; Qian, J.; Scheirich, D.; Strandberg, J.; Thun, R. P.; Wilson, A.; Yang, H.; Zhou, B.] Univ Michigan, Dept Phys, Randall Lab 2477, Ann Arbor, MI 48109 USA. [Abolins, M.; Brock, R.; Bromberg, C.; Di Mattia, A.; Ermoline, I.; Hauser, R.; Heim, S.; Holzbauer, J. L.; Huston, J.; Koll, J.; Kraus, J.; Linnemann, J. T.; Mangeard, P. S.; Martin, B.; Pope, B. G.; Ryan, P.; Schwienhorst, R.; Tollefson, K.] Michigan State Univ, Dept Phys & Astron, High Energy Phys Grp, E Lansing, MI 48824 USA. [Alimonti, G.; Andreazza, A.; Banfi, D.; Besana, M. I.; Carminati, L.; Cavalli, D.; Costa, G.; Dell'Asta, L.; Fanti, M.; Giugni, D.; Lari, T.; Lazzaro, A.; Mandelli, L.; Meroni, C.; Montesano, S.; Perini, L.; Pizio, C.; Ragusa, F.; Resconi, S.; Tartarelli, G. F.; Troncon, C.] INFN Sez Milano, IT-20133 Milan, Italy. [Andreazza, A.; Banfi, D.; Besana, M. I.; Carminati, L.; Dell'Asta, L.; Fanti, M.; Lazzaro, A.; Montesano, S.; Perini, L.; Pizio, C.; Ragusa, F.] Univ Milan, Dipartimento Fis, IT-20133 Milan, Italy. [Bogouch, A.; Kulchitsky, Y.; Kurochkin, Y. A.; Satsounkevitch, I.; Tsiareshka, P. V.] Natl Acad Sci Belarus, BI Stepanov Phys Inst, Minsk 220072, Byelarus. [Gilewsky, V.; Starovoitov, P.] NC PHEP BSU, Natl Sci & Educ Ctr Particle & High Energy Phys, Minsk 220040, Byelarus. [Taylor, F. E.] MIT, Dept Phys, Cambridge, MA 02139 USA. [Azuelos, G.; Banerjee, P.; Bouchami, J.; Davies, M.; Ferland, J.; Gutierrez, A.; Lebel, C.; Leroy, C.; Goia, J. A. Macana; Martin, J. P.] Univ Montreal, Grp Particle Phys, Montreal, PQ H3C 3J7, Canada. [Akimov, A. V.; Baranov, S. P.; Gavrilenko, I. L.; Kayumov, F.; Komar, A. A.; Konovalov, S. P.; Mouraviev, S. V.; Nechaeva, P.; Shmeleva, A.; Snesarev, A. A.; Sulin, V. V.; Tikhomirov, V. O.; Vasilyeva, L.] Acad Sci, PN Lebedev Phys Inst, RU-117924 Moscow, Russia. [Artamonov, A.; Khovanskiy, V.; Shatalov, P. B.; Tsukerman, Li.] ITEP, RU-117218 Moscow, Russia. [Belotskiy, K.; Bondarenko, V. G.; Bulekov, O.; Dolgoshein, B. A.; Kantserov, V. A.; Mashinistov, R.; Morozov, S. V.; Romaniouk, A.; Smirnov, S. Yu.] Moscow Engn & Phys Inst MEPhI, RU-115409 Moscow, Russia. [Gladilin, L. K.; Grishkevich, Y. V.; Kramarenko, V. A.; Rud, V. I.; Sivoklokov, S. Yu.; Smirnova, L. N.] Moscow MV Lomonosov State Univ, Skobeltsyn Inst Nucl Phys MSU SINP, Moscow 119991, Russia. [Biebel, O.; Calfayan, P.; de Graat, J.; Duckeck, G.; Ebke, J.; Elmsheuser, J.; Engl, A.; Galea, C.; Genest, M. H.; Hertenberger, R.; Kummer, C.; Legger, F.; Lichtnecker, M.; Mameghani, R.; Mueller, T. A.; Nunnemann, T.; Rauscher, F.; Ruckert, B.; Sanders, M. P.; Schaile, D.; Serfon, C.; Walker, R.; Zhuang, X.] Univ Munich, Fak Phys, DE-85748 Garching, Germany. [Barillari, T.; Beimforde, M.; Bethke, S.; Cortiana, G.; D'Orazio, A.; Dannheim, D.; Dubbert, J.; Ehrich, T.; Flowerdew, M. J.; Giovannini, P.; Goettfert, T.; Groh, M.; Haefner, R.; Horvat, S.; Jantsch, A.; Kaiser, S.; Kiryunin, A. E.; Kluth, S.; Kortner, O.; Kotov, S.; Kroha, H.; Macchiolo, A.; Menke, S.; Mohrdieck-Moeck, S.; Moser, H. G.; Nisius, R.; Oberlack, H.; Pataraia, S.; Pospelov, G. E.; Potrap, I. N.; Rauter, E.; Richter, R.; Salihagic, D.; Schacht, P.; Schieck, J.; Seuster, R.; Stonjek, S.; von der Schmitt, H.; von Loeben, J.; Zhuravlov, V.] Max Planck Inst Phys & Astrophys, Werner Heisenberg Inst, D-80805 Munich, Germany. [Shimojima, M.] Nagasaki Inst Appl Sci, Jp Nagasaki 8510193, Japan. [Hasegawa, S.; Itoh, Y.; Ohshima, T.; Okumura, Y.; Sugimoto, T.; Takahashi, Y.; Tomoto, M.] Nagoya Univ, Grad Sch Sci, Chikusa Ku, Nagoya, Aichi 4648602, Japan. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Capasso, L.; Carlino, G.; Chiefari, G.; Conventi, F.; de Asmundis, R.; Della Pietra, M.; della Volpe, D.; Doria, A.; Giordano, R.; Iacobucci, G.; Izzo, V.; Merola, L.; Musto, E.; Patricelli, S.; Sekhniaidze, G.] INFN Sez Napoli, IT-80126 Naples, Italy. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Capasso, L.; Chiefari, G.; della Volpe, D.; Giordano, R.; Merola, L.; Musto, E.; Patricelli, S.] Univ Naples Federico II, Dipartimento Sci Fisiche, IT-80126 Naples, Italy. [Gorelov, I.; Hoeferkamp, M. R.; Metcalfe, J.; Seidel, S. C.; Toms, K.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. [Consonni, M.; De Groot, N.; Filthaut, F.; Klok, P. F.; Konig, A. C.; Koetsveld, F.; Raas, M.] Radboud Univ Nijmegen N1KHEF, Dept Expt High Energy Phys, NL-6525 AJ Nijmegen, Netherlands. [Bentvelsen, S.; Bobbink, G. J.; Bos, K.; Boterenbrood, H.; Colijn, A. P.; de Jong, P.; Doxiadis, A.; Ferrari, P.; Garitaonandia, H.; Gosselink, M.; Hartjes, F.; Hessey, N. P.; Igonkina, O.; Kayl, M. S.; Klous, S.; Kluit, P.; Koffeman, E.; Koutsman, A.; Lee, H.; Liebig, W.; Mechnich, J.; Mussche, I.; Ottersbach, J. P.; Rijpstra, M.; Ruckstuhl, N.; Salamanna, G.; Sandstroem, R.; Snuverink, J.; Tsiakiris, M.; Turlay, E.; van der Graaf, H.; van der Kraaij, E.; van der Poel, E.; van Kesteren, Z.; van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Vreeswijk, M.] Nikhef Natl Inst Subatom Phys, NL-1098 XG Amsterdam, Netherlands. [Bentvelsen, S.; Bobbink, G. J.; Bos, K.; Boterenbrood, H.; Colijn, A. P.; de Jong, P.; Doxiadis, A.; Ferrari, P.; Garitaonandia, H.; Gosselink, M.; Hartjes, F.; Hessey, N. P.; Igonkina, O.; Kayl, M. S.; Klous, S.; Kluit, P.; Koffeman, E.; Koutsman, A.; Lee, H.; Liebig, W.; Mechnich, J.; Mussche, I.; Ottersbach, J. P.; Rijpstra, M.; Ruckstuhl, N.; Salamanna, G.; Sandstroem, R.; Snuverink, J.; Tsiakiris, M.; Turlay, E.; van der Graaf, H.; van der Kraaij, E.; van der Poel, E.; van Kesteren, Z.; van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Vreeswijk, M.] Univ Amsterdam, NL-1098 XG Amsterdam, Netherlands. [Calkins, R.; Chakraborty, D.; de Lima, J. G. Rocha; Suhr, C.; Zutshi, V.] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. [Kazanin, V. A.; Kotov, K. Y.; Malyshev, V.; Maslennikov, A. L.; Orlov, I.; Peleganchuk, S. V.; Schamov, A. G.; Skovpen, K.; Soukharev, A.; Talyshev, A.; Tikhonov, V. A.; Zaytsev, A.] Budker Inst Nucl Phys BINP, RU-630090 Novosibirsk, Russia. [Budick, B.; Casadei, D.; Cranmer, K.; Djilkibaev, R.; Konoplich, R.; Krasznahorkay, A.; Mincer, A. I.; Nemethy, P.; Neves, R. M.; Shibata, A.; Zhao, L.] NYU, Dept Phys, New York, NY 10003 USA. [Fernando, W.; Fisher, M. J.; Gan, K. K.; Kagan, H.; Kass, R. D.; Loureiro, K. F.; Moss, J.; Rahimi, A. M.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.] Okayama Univ, Fac Sci, Okayama 7008530, Japan. [Abbott, B.; Gutierrez, P.; Huang, G. S.; Jana, D. K.; Meera-Lebbai, R.; Saleem, M. S.; Severini, H.; Skubic, P.; Snow, J.; Strauss, M.] Univ Oklahoma, Homer L Dodge Dept Phys & Astron, Norman, OK 73019 USA. [Abi, B.; Khanov, A.; Rizatdinova, F.] Oklahoma State Univ, Dept Phys, Stillwater, OK 74078 USA. [Kocnar, A.] Palacky Univ, Olomouc 77207, Czech Republic. [Brau, J. E.; Ptacek, E.; Reinsch, A.; Robinson, M.; Searcy, J.; Shamim, M.; Sinev, N. B.; Strom, D. M.; Torrence, E.] Univ Oregon, Ctr High Energy Phys, Eugene, OR 97403 USA. [Abreu, H.; Arnault, C.; Barrillon, P.; Benoit, M.; Bernat, P.; Blanchard, J. -B.; Bourdarios, C.; Collard, C.; De Regie, J. B. De Vivie; Diglio, S.; Dudziak, F.; Duflot, L.; Escalier, M.; Fayard, L.; Fournier, D.; Heller, M.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Kado, M.; Lounis, A.; Makovec, N.; Matricon, P.; Niedercorn, F.; Perus, P.; Poggioli, L.; Puzo, P.; Rousseau, D.; Ruan, X.; Rybkin, G.; Schaffer, A. C.; Serin, L.; Simion, S.; Tanaka, R.; Vukotic, I.; Wicek, F.; Zerwas, D.] Univ Paris 11, CNRS, IN2P3, LAL, F-91405 Orsay, France. [Hanagaki, K.; Hirose, M.; Meguro, T. M.; Nomachi, M.; Sugaya, Y.; Uchida, K.] Osaka Univ, Grad Sch Sci, Toyonaka, Osaka 5600043, Japan. [Bugge, L.; Buran, T.; Cameron, D.; Gjelsten, B. K.; Lund, E.; Ould-Saada, E.; Pajchel, K.; Pylypchenko, Y.; Read, A. L.; Rohne, O.; Samset, B. H.; Stapnes, S.; Strandlie, A.; Taga, A.] Univ Oslo, Dept Phys, NO-0316 Oslo 3, Norway. [Abdesselam, A.; Barr, A. J.; Beauchemin, P. H.; Buchanan, J.; Cooper-Sarkar, A. M.; Dehchar, M.; Doglioni, C.; Farrington, S. M.; Ferrando, J.; Fiascaris, M.; Fopma, J.; Gallas, E. J.; Gibson, S. M.; Gilbert, L. M.; Gwenlan, C.; Huffman, T. B.; Issever, C.; Unel, M. Karagoz; Kirsch, G. P.; Larner, A.; Mattravers, C.; Mermod, P.; Nickerson, R. B.; Tseng, J. C. -L.; Vickey, T.; Viehhauser, G. H. A.; Wastie, R.; Weidberg, A. R.; Whitehead, S. R.] Univ Oxford, Dept Phys, Oxford OX1 3RH, England. [Bellomo, M.; Conta, C.; Ferrari, R.; Franchino, S.; Fraternali, M.; Gaudio, G.; Goggi, V.; Lanza, A.; Livan, M.; Negri, A.; Polesello, G.; Rebuzzi, D. M.; Rimoldi, A.; Uslenghi, M.; Vercesi, V.] INFN Sez Pavia, IT-27100 Pavia, Italy. [Conta, C.; Franchino, S.; Fraternali, M.; Goggi, V.; Livan, M.; Negri, A.; Rebuzzi, D. M.; Rimoldi, A.; Uslenghi, M.] Univ Pavia, Dipartimento Fis Nucl & Teor, IT-27100 Pavia, Italy. [Alison, J.; Degenhardt, J.; Donega, M.; Fratina, S.; Hance, M.; Hines, E.; Jackson, B.; Keener, P. T.; Kroll, J.; Kunkle, J.; LeGeyt, B. C.; Lipeles, E.; Martin, F. F.; Newcomer, F. M.; Olivito, D.; Ospanov, R.; Reece, R.; Stahlman, J. J.; Thomson, E.; Van Berg, R.; Wagner, P.; Williams, H. H.] Univ Penn, Dept Phys, High Energy Phys Grp, Philadelphia, PA 19104 USA. [Fedin, O. L.; Gratchev, V.; Kolos, S.; Maleev, V. P.; Ryabov, Y. F.; Schegelsky, V. A.; Sedykh, E.; Seliverstov, D. M.] Petersburg Nucl Phys Inst, RU-188300 Gatchina, Russia. [Cascella, M.; Cavasinni, V.; Del Prete, T.; Dotti, A.; Francavilla, P.; Giangiobbe, V.; Roda, C.; Sarri, F.; Zenonos, Z.] INFN Sez Pisa, IT-56127 Pisa, Italy. [Cascella, M.; Cavasinni, V.; Del Prete, T.; Dotti, A.; Francavilla, P.; Giangiobbe, V.; Roda, C.; Sarri, F.; Zenonos, Z.] Univ Pisa, Dipartimento Fis E Fermi, IT-56127 Pisa, Italy. [Boudreau, J.; Boulahouache, C.; Cleland, W.; Kittelmann, T.; Mueller, J.; Paolone, V.; Prieur, D.; Savinov, V.; Tsulaia, V.; Wendler, S.; Yoosoofmiya, R.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Amorim, A.; Anjos, N.; Carvalho, J.; Conde Muino, P.; Do Valle Wemans, A.; Fernandes, B.; Fiolhais, M. C. N.; Gomes, A.; Gurriana, L.; Jorge, P. M.; Lopes, L.; Machado Miguens, J.; Magalhaes Martins, P. J.; Maio, A.; Maneira, J.; Morais, A.; Oliveira, M.; Onofre, A.; Palma, A.; Pina, J.; Pinto, B.; Ribeiro, N.; Saraiva, J. G.; Silva, J.; Soares, M.; Veloso, F.; Wolters, H.] Lab Instrumentacao & Fis Expt Particulas LIP, P-1000149 Lisbon, Portugal. [Aguiar-Saavedra, J. A.; Castro, N. F.] Univ Granada, Dept Fis Teor & Cosmos, E-18071 Granada, Spain. [Aguiar-Saavedra, J. A.; Castro, N. F.] CAFPE, E-18071 Granada, Spain. [Bazalova, M.; Bohm, J.; Chudoba, J.; Gallus, P.; Gunther, J.; Havranek, M.; Juranek, V.; Kepka, O.; Kupco, A.; Kus, V.; Lipinsky, L.; Lokajicek, M.; Marcisovsky, M.; Mikestikova, M.; Myska, M.; Nemecek, S.; Panuskova, M.; Popule, J.; Ruzicka, P.; Schovancova, J.; Sicho, P.; Staroba, P.; Stastny, J.; Tasevsky, M.; Tic, T.; Tomasek, L.; Tomasek, M.; Vrba, V.] Acad Sci Czech Republic, Inst Phys, CZ-18221 Prague 8, Czech Republic. [Davidek, T.; Dolejsi, J.; Dolezal, Z.; Drasal, Z.; Kodys, P.; Leitner, R.; Novakova, J.; Reznicek, P.; Spousta, M.; Strachota, P.; Suk, M.; Sykora, T.; Tas, P.; Valkar, S.; Vorobel, V.] Charles Univ Prague, Inst Particle & Nucl Phys, Fac Math & Phys, CZ-18000 Prague 8, Czech Republic. [Augsten, K.; Holy, T.; Horazdovsky, T.; Hubacek, Z.; Jakubek, J.; Kohout, Z.; Kral, V.; Krejci, F.; Pospisil, S.; Simak, V.; Slavicek, T.; Smolek, K.; Sodomka, J.; Solar, M.; Solc, J.; Sopko, V.; Sopko, B.; Stekl, I.; Turecek, D.; Vacek, V.; Vlasak, M.; Vokac, P.] Czech Tech Univ, CZ-16635 Prague 6, Czech Republic. [Borisov, A.; Denisov, S. P.; Fakhrutdinov, R. M.; Fenyuk, A. B.; Ivashin, A. V.; Kabachenko, V. V.; Karyukhin, A. N.; Korotkov, V. A.; Kozhin, A. S.; Makouski, M.; Minaenko, A. A.; Myagkov, A. G.; Solodkov, A. A.; Solovyanov, O. V.; Starchenko, E. A.; Zaitsev, A. M.; Zenin, O.] State Res Ctr, Inst High Energy Phys, Protvino 142281, Moscow Region, Russia. [Adye, T.; Baines, J. T.; Barnett, B. M.; Burke, S.; Dallison, S. J.; Dewhurst, A.; Emeliyanov, D.; Gallop, B. J.; Gee, C. N. P.; Haywood, S. J.; Kirk, J.; McCubbin, N. A.; McMahon, S. J.; Middleton, R. P.; Murray, W. J.; Qian, W.; Sankey, D. P. C.; Scott, W. G.; Strube, J.; Tyndel, M.; Villani, E. G.; Weber, M.; Wickens, F. J.; Wielers, M.] Rutherford Appleton Lab, Sci & Technol Facil Council, UK T1 RAL Tier 1, Didcot OX11 0QX, Oxon, England. [Benslama, K.; Ming, Y.; Ortega, E. O.] Univ Regina, Dept Phys, Regina, SK S4S 0A2, Canada. [Tanaka, S.] Ritsumeikan Univ, Jp Kusatsu, Shiga 5258577, Japan. [Anulli, F.; Bagnaia, P.; Biglietti, M.; Bini, C.; Borroni, S.; Ciapetti, G.; De Pedis, D.; De Salvo, A.; Dionisi, C.; Falciano, S.; Gauzzi, P.; Gentile, S.; Giagu, S.; Lacava, F.; Luci, C.; Luminari, L.; Maiani, C.; Marzano, F.; Mirabelli, G.; Nisati, A.; Pasqualucci, E.; Petrolo, E.; Pontecorvo, L.; Rescigno, M.; Tehrani, F. Safai; Camillocci, E. Solfaroli; Spila, F.; Valente, P.; Vari, R.; Veneziano, S.; Zanello, L.] INFN Sez Roma I, IT-00185 Rome, Italy. [Bagnaia, P.; Biglietti, M.; Bini, C.; Borroni, S.; Ciapetti, G.; Dionisi, C.; Gauzzi, P.; Gentile, S.; Giagu, S.; Lacava, F.; Luci, C.; Maiani, C.; Tehrani, F. Safai; Camillocci, E. Solfaroli; Spila, F.; Zanello, L.] Univ Roma La Sapienza, Dipartimento Fis, IT-00185 Rome, Italy. [Aielli, G.; Camarri, P.; Cardarelli, R.; Cattani, G.; Di Ciaccio, A.; Di Nardo, R.; Di Simone, A.; Liberti, B.; Marchese, F.; Salamon, A.; Santonico, R.] INFN Sez Roma Tor Vergata, IT-00133 Rome, Italy. [Aielli, G.; Camarri, P.; Cattani, G.; Di Ciaccio, A.; Di Nardo, R.; Di Simone, A.; Marchese, F.; Santonico, R.] Univ Roma Tor Vergata, Dipartimento Fis, IT-00133 Rome, Italy. [Baroncelli, A.; Branchini, P.; Ceradini, F.; Di Luise, S.; Farilla, A.; Graziani, E.; Iodice, M.; Orestano, D.; Passeri, A.; Pastore, F.; Petrucci, F.; Ruggieri, F.; Stanescu, C.] INFN Sez Roma Tre, IT-00146 Rome, Italy. [Ceradini, F.; Di Luise, S.; Orestano, D.; Pastore, F.; Petrucci, F.] Univ Roma Tre, Dipartimento Fis, IT-00146 Rome, Italy. Ctr Natl Encrgie Sci Tech Nucl CNESTEN, Rabat 10001, Morocco. [Derkaoui, J. E.] Univ Mohamed Premier, Fac Sci, LPTPM, Oujda 60000, Morocco. [El Moursli, R. Cherkaoui; Ghazlane, H.] Univ Mohammed 5, Fac Sci, Rabat 10000, Morocco. [Bachacou, H.; Bauer, F.; Besson, N.; Boonekamp, M.; Chevalier, L.; Chevallier, F.; Ernwein, J.; Etienvre; Formica, A.; Gautard, V.; Giraud, P. F.; Guyot, C.; Hassani, S.; Kozanecki, W.; Lancon, E.; Laporte, J. F.; Le Menedeu, E.; Legendre, M.; Lenzi, B.; Mansoulie, B.; Marzin, A.; Meyer, J. -P.; Mountricha, E.; Nicolaidou, R.; Ouraou, A.; Ponsot, P.; Resende, B.; Royon, C. R.; Schune, Ph.; Schwindling, J.] Ctr Etud Saclay, CEA, DSM IRFU, FR-91191 Gif Sur Yvette, France. [Bangert, A.; Chouridou, S.; Fowler, K.; Grillo, A. A.; Hansl-Kozanecka, T.; Hare, G. A.; Litke, A. M.; Lockman, W. S.; Manning, P. M.; Mitrevski, J.; Nielsen, J.; Sadrozinski, H. F. -W.; Schumm, B. A.; Seiden, A.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Daly, C. H.; Goussiou, A. G.; Griffiths, J.; Harris, O. M.; Lubatti, H. J.; Policicchio, A.; Rosati, S.; Rothberg, J.; Twomey, M. S.; Ventura, D.; Watts, G.; Zhao, T.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Anastopoulos, C.; Costanzo, D.; Donszelmann, T. Cuhadar; Dawson, I.; Duxfield, R.; Hodgkinson, M. C.; Hodgson, P.; Johansson, P.; Korolkova, E. V.; Mayne, A.; Nicolas, L.; Owen, S.; Paganis, E.; Shaw, K.; Sutton, M. R.; Tovey, D. R.; Tsionou, D.; Xu, D.] Univ Sheffield, Dept Phys & Astron, Sheffield S3 7RH, S Yorkshire, England. [Hasegawa, Y.; Ohshita, H.; Takeshita, T.] Shinshu Univ, Dept Phys, Fac Sci, Matsumoto, JP Nagano 3908621, Japan. [Buchholz, P.; Fleck, I.; Grybel, K.; Ibragimov, I.; Rammes, M.; Sipica, V.; Stahl, T.; Walkowiak, W.; Werthenbach, U.; Ziolkowski, M.] Univ Siegen, Fachbereich Phys, D-57068 Siegen, Germany. [Godfrey, J.; Komaragiri, J. R.; O'Neil, D. C.; Petteni, M.; Schouten, D.; Spreitzer, T.; Stelzer, B.; Vetterli, M. C.] Simon Fraser Univ, Dept Phys, Ca Burnaby, BC V5A 1S6, Canada. [Aracena, I.; Asai, M.; Barklow, T.; Bartoldus, R.; Bawa, H. S.; Butler, B.; Gao, Y. S.; Grenier, P.; Haas, A.; Hansson, P.; Horn, C.; Jackson, P.; Kim, P. C.; Kocian, M.; Miller, D. W.; Mount, R.; Nelson, T. K.; Salnikov, A.; Schwartzman, A.; Silverstein, D.; Smith, D.; Su, D.; Wilson, M. G.; Wittgen, M.; Wright, D.; Young, C.] SLAC Natl Accelerator Lab, Stanford, CA 94309 USA. [Batkova, L.; Federic, P.; Lovas, L.; Pecsy, M.; Stavina, P.; Sykora, I.; Tokar, S.; Zenis, T.] Comenius Univ, Fac Math Phys & Informat, SK-84248 Bratislava, Slovakia. [Antos, J.; Bruncko, D.; Ferencei, J.; Kladiva, E.; Strizenec, P.] Slovak Acad Sci, Dept Subnucl Phys, Inst Expt Phys, SK-04353 Kosice, Slovakia. Univ Johannesburg, Dept Phys, ZA-2006 Johannesburg, South Africa. Univ Witwatersrand, Sch Phys, ZA-2050 Johannesburg, South Africa. [Asman, B.; Bohm, C.; Clement, C.; Eriksson, D.; Gellerstedt, K.; Hellman, S.; Hillert, S.; Johansen, M.; Johansson, K. E.; Jon-And, K.; Milstead, D. A.; Moa, T.; Nordkvist, B.; Ohm, C. C.; Sellden, B.; Silverstein, S. B.; Sjoelin, J.; Tylmad, M.; Yang, Z.] Stockholm Univ, Dept Phys, SE-10691 Stockholm, Sweden. [Asman, B.; Clement, C.; Gellerstedt, K.; Hellman, S.; Hillert, S.; Johansen, M.; Jon-And, K.; Milstead, D. A.; Moa, T.; Nordkvist, B.; Ohm, C. C.; Sjoelin, J.; Tylmad, M.; Yang, Z.] Oskar Klein Ctr, SE-10691 Stockholm, Sweden. [Grahn, K. -J.; Lund-Jensen, B.] Royal Inst Technol KTH, Dept Phys, SE-10691 Stockholm, Sweden. [Ahmad, A.; Caputo, R.; Deluca, C.; DeWilde, B.; Engelmann, R.; Farley, J.; Goodson, J. J.; Grassi, V.; Gray, J. A.; Grimm, K.; Hobbs, J.; Jia, J.; Khodinov, A.; McCarthy, R. L.; Rijssenbeek, M.; Schamberger, R. D.; Tsybychev, D.; Yurkewicz, A.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [De Santo, A.; Potter, C. J.; Salvatore, F.] Univ Sussex, Dept Phys & Astron, Brighton BN1 9QH, E Sussex, England. [Lee, J. S. H.; Peak, L. S.; Saavedra, A. F.; Varvell, K. E.; Waugh, A. T.] Univ Sydney, Sch Phys, Au Sydney, NSW 2006, Australia. [Chu, M. L.; Hou, S.; Lee, S. C.; Liang, Z.; Lin, S. C.; Liu, D.; Azini, R.; Meng, Z.; Ren, Z. L.; Soh, D. A.; Teng, P. K.; Wang, S. M.; Weng, Z.; Zhong, J.; Zhou, Y.] Acad Sinica, Inst Phys, TW-11529 Taipei, Taiwan. [Harpaz, S. Behar; Ben Ami, S.; Bressler, S.; Hershenhorn, A. D.; Kajomovitz, E.; Rozen, Y.; Tarem, S.; Tennenbaum-Katan, Y. D.; Vallecorsa, S.] Technion Israel Inst Technol, Dept Phys, IL-32000 Technion, Haifa, Israel. [Abramowicz, H.; Alexander, G.; Amram, N.; Bella, G.; Benary, O.; Benhammou, Y.; Brodet, E.; Etzion, E.; Gershon, A.; Ginzburg, J.; Guttman, N.; Hod, N.; Kreisel, A.; Mahalalel, Y.; Munwes, Y.; Oren, Y.; Reinherz-Aronis, E.; Silver, Y.; Soffer, A.; Urkovsky, E.] Tel Aviv Univ, Raymond & Beverly Sackler Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Iliadis, I.; Kordas, K.; Nomidis, I.; Petridou, C.; Sampsonidis, D.] Aristotle Univ Thessaloniki, Div Nucl & Particle Phys, Fac Sci, Dept Phys, GR-54124 Thessaloniki, Greece. [Akimoto, G.; Asai, S.; Azuma, Y.; Dohmae, T.; Isobe, T.; Kanaya, N.; Kaneda, M.; Kataoka, Y.; Kawamoto, T.; Kessoku, K.; Kobayashi, T.; Kubota, T.; Mashimo, T.; Masubuchi, T.; Matsunaga, H.; Nakamura, K.; Oda, S.; Okuyama, T.; Sakamoto, H.; Suzuki, T.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamamoto, S.; Yamamura, T.; Yamazaki, T.] Univ Tokyo, Int Ctr Elementary Particle Phys, Jp Tokyo 1130033, Japan. [Akimoto, G.; Asai, S.; Azuma, Y.; Dohmae, T.; Isobe, T.; Kanaya, N.; Kaneda, M.; Kataoka, Y.; Kawamoto, T.; Kessoku, K.; Kobayashi, T.; Kubota, T.; Mashimo, T.; Masubuchi, T.; Matsunaga, H.; Nakamura, K.; Oda, S.; Okuyama, T.; Sakamoto, H.; Suzuki, T.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamamoto, S.; Yamamura, T.; Yamazaki, T.] Dept Phys, Bunkyo Ku, Jp Tokyo 1130033, Japan. [Ratzler, U.; Fukunaga, C.] Tokyo Metropolitan Univ, Grad Sch Sci & Technol, Hachioji, Tokyo 1920397, Japan. [Jinnouchi, O.] Tokyo Inst Technol, Meguro Ku, Tokyo 1528551, Japan. [Bain, T.; Beare, B.; Brelier, B.; Montero, S. Carron; Cheung, S. L.; Deviveiros, P. O.; Dhaliwal, S.; Farooque, T.; Fatholahzadeh, B.; Gibson, A.; Guo, B.; Jankowski, E.; Knecht, N. S.; Krieger, P.; Orr, R. S.; Rezvani, R.; Rosenbaum, G. A.; Sandhu, P.; Savard, P.; Sinervo, P.; Tardif, D.; Teuscher, R. J.; Thompson, P. D.; Trischuk, W.] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada. [Azuelos, G.; Canepa, A.; Caron, B.; Chekulaev, S. V.; Fortin, D.; Gingrich, D. M.; Nugent, I. M.; Oakham, E. G.; Oram, C. J.; Savard, P.; Stelzer-Chilton, O.; Tafirout, R.; Trigger, I. M.; Vetterli, M. C.] TRIUMF, ATLAS Canada Tier Data Ctr 1, Vancouver, BC V6T 2A3, Canada. [Idarraga, J.; Taylor, W.] York Univ, Dept Phys & Astron, Toronto, ON M3J 1P3, Canada. [Hara, K.; Kim, S. H.; Kurata, M.; Nagai, K.; Ukegawa, F.; Yamada, M.] Univ Tsukuba, Inst Pure & Appl Sci, Tsukuba, JP Ibaraki 3058571, Japan. [Hamilton, S.; Napier, A.; Rolli, S.; Sliwa, K.; Todorova-Nova, S.] Tufts Univ, Ctr Sci & Technol, Medford, MA 02155 USA. [Losada, M.; Mendoza Navas, L.; Moreno, D.; Navarro, G.; Roa Romero, D. A.; Rodriguez, D.] Univ Antonio Narino, Ctr Invest, Bogota, Colombia. [Avolio, G.; Benedict, B. H.; Bold, T.; Bondioli, M.; Ciobotaru, M. D.; Corso-Radu, A.; Deng, J.; Dobson, M.; Eschrich, I. Gough; Grabowska-Bold, I.; Kolos, S.; Lankford, A. J.; Garcia, R. Murillo; Okawa, H.; Porter, R.; Schernau, M.; Stancu, S. N.; Taffard, A.; Toggerson, B.; Unel, G.; Werth, M.; Whiteson, D.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Acharya, B. S.; Cobal, M.; De Sanctis, U.; Del Papa, C.; Giordani, M. P.; Pinamonti, M.; Suruliz, K.] INFN Grp Coll Udine, IT-34014 Trieste, Italy. [Acharya, B. S.; Suruliz, K.] Abdus Salaam Int Ctr Theoret Phys, IT-34014 Trieste, Italy. [Cobal, M.; De Sanctis, U.; Del Papa, C.; Giordani, M. P.; Pinamonti, M.] Univ Udine, Dipartimento Fis, IT-33100 Udine, Italy. [Benekos, N.; Coggeshall, J.; Cortes-Gonzalez, A.; Errede, D.; Errede, S.; Khandanyan, H.; Lie, K.; Liss, T. M.; McCarn, A.; Neubauer, M. S.; Sfyrla, A.; Vichou, I.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Belanger-Champagne, C.; Brenner, R.; Buszello, C. P.; Coniavitis, E.; Ekelof, T.; Ellert, M.; Ferrari, A.] Uppsala Univ, Dept Phys & Astron, SE-75120 Uppsala, Sweden. [Amoros, G.; Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Escobar, C.; Ferrer, A.; Fuster, J.; Garcia, C.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Minano, M.; Mitsou, V. A.; Moles-Valls, R.; Moreno Llacer, M.; Oliveira Garcia, E.; Perez Garcia-Estan, M. T.; Ros, E.; Salt, J.; Solans, C. A.; Sanchez, J.; Torro Pastor, E.; Valero, A.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.; Wildauer, A.] Inst Fis Corpuscular IFIC Ctr Mixto UVEG CSIC, ES-46071 Valencia, Spain. [Amoros, G.; Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Escobar, C.; Ferrer, A.; Fuster, J.; Garcia, C.; Godlewski, J.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Minano, M.; Mitsou, V. A.; Moles-Valls, R.; Moreno Llacer, M.; Oliveira Garcia, E.; Perez Garcia-Estan, M. T.; Ros, E.; Salt, J.; Solans, C. A.; Sanchez, J.; Torro Pastor, E.; Valero, A.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.; Wildauer, A.] Univ Valencia, Dept Ing Elect, Dept Fis At Mol & Nucl, Bellaterra 08193, Spain. [Amoros, G.; Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Escobar, C.; Ferrer, A.; Fuster, J.; Garcia, C.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Minano, M.; Mitsou, V. A.; Moles-Valls, R.; Moreno Llacer, M.; Oliveira Garcia, E.; Perez Garcia-Estan, M. T.; Ros, E.; Salt, J.; Solans, C. A.; Sanchez, J.; Torro Pastor, E.; Valero, A.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.; Wildauer, A.] Inst Microelect Barcelona IMB CNM CSIC, Bellaterra 08193, Spain. [Gay, C.; Loh, C. W.; Mills, W. J.; Muir, A.] Univ British Columbia, Dept Phys, Ca Vancouver, BC V6T 1Z1, Canada. [Banerjee, S.; Bansal, V.; Berghaus, F.; Courneyea, L.; Fincke-Keeler, M.; Keeler, R.; Kowalewski, R.; Lefebvre, M.; Lessard, J. -R.; McPherson, R. A.; Plamondon, M.; Sobie, R.; Taylor, R. P.] Univ Victoria, Dept Phys & Astron, Victoria, BC V8W 3P6, Canada. [Yorita, K.] Waseda Univ, WISE, Shinjuku Ku, Tokyo 1698555, Japan. [Alon, R.; Duchovni, E.; Gabizon, O.; Gross, E.; Klier, A.; Lellouch, D.; Levinson, L. J.; Mikenberg, G.; Milov, A.; Milstein, D.; Silbert, O.; Smakhtin, V.; Vitells, O.] Weizmann Inst Sci, Dept Particle Phys, IL-76100 Rehovot, Israel. [Asfandiyarov, R.; Montoya, G. D. Carrillo; Hernandez, A. M. Castaneda; Castaneda-Miranda, E.; Chen, X.; Dos Anjos, A.; Fang, Y.; Castillo, L. R. Flores; Gutzwiller, O.; Cheong, A. Leung Fook; Li, H.; Ma, L. L.; Garcia, B. R. Mellado; Pan, Y. B.; Morales, M. I. Pedraza; Peng, H.; Poveda, J.; Quayle, W. B.; Sarangi, T.; Wang, H.; Wiedenmann, W.; Wu, S. L.; Xu, N.; Zhu, Y.; Zobernig, G.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Fleischmann, P.; Meyer, J.; Redelbach, A.; Stroehmer, R.; Trefzger, T.; Verducci, M.] Univ Wurzburg, Inst Phys, D-97074 Wurzburg, Germany. [Barisonzi, M.; Becks, K. H.; Boek, J.; Braun, H. M.; Dopke, J.; Flick, T.; Glitza, K. W.; Gorfine, G.; Hamacher, K.; Harenberg, T.; Henss, T.; Hirschbuehl, D.; Kalinin, S.; Kersten, S.; Kind, P.; Kuhl, T.; Lenz, T.; Lenzen, G.; Maettig, P.; Mechtel, M.; Sandhoff, M.; Sandvoss, S.; Sanny, B.; Schroers, M.; Schultes, J.; Sturm, R.; Voss, T. T.; Zeitnitz, C.] Berg Univ Wuppertal, Fachbereich C, D-42097 Wuppertal, Germany. [Adelman, J.; Atoian, G.; Auerbach, B.; Baker, O. K.; Almenar, C. Cuenca; Czyczula, Z.; Demers, S.; Golling, T.; Hsu, P. J.; Kaplan, B.; Kastoryano, M.; Lockwitz, S.; Loginov, A.; Martin, A. J.; Poblaguev, A.; Thioye, M.; Tipton, P.; Wall, R.; Zeller, M.] Yale Univ, Dept Phys, New Haven, CT 06520 USA. [Hakobyan, H.] Yerevan Phys Inst, AM-375036 Yerevan, Armenia. Forschungszentrum Karlsruhe, Steinbuch Ctr Comp SCC, GridKA Tier FZK 1, D-76344 Eggenstein Leopoldshafen, Germany. Univ Autonoma Barcelona, Port Informacio Cient PIC, E-08193 Barcelona, Spain. [Biscarat, C.; Cogneras, E.; Rahal, G.] CNRS, Ctr Calcul, IN2P3, F-69622 Villeurbanne, France. INFN CNAF, I-40127 Bologna, Italy. NORDUnet AS, Nord Data Grid Facil, DK-2770 Kastrup, Denmark. SARA Reken Netwerkdiensten, NL-1098 XG Amsterdam, Netherlands. Acad Sinica, Inst Phys, Acad Sinica Grid Comp, Taipei 11529, Taiwan. [Amorim, A.; Cirilli, M.; Gomes, A.; Jorge, P. M.; Lopes, L.; Machado Miguens, J.; Maio, A.; Morais, A.; Palma, A.; Pina, J.; Pinto, B.; Saraiva, J. G.] Univ Lisbon, Fac Ciencias, P-1699 Lisbon, Portugal. [Carvalho, J.; Fiolhais, M. C. N.; Magalhaes Martins, P. J.; Oliveira, M.] Univ Coimbra, Dept Phys, P-3000 Coimbra, Portugal. [Conventi, F.; Della Pietra, M.] Univ Napoli Parthenope, IT-80133 Naples, Italy. [Dhullipudi, R.] Louisiana Tech Univ, Ruston, LA 71272 USA. [Gao, Y. S.] Calif State Univ Fresno, Fresno, CA 93740 USA. [Gomes, A.; Maio, A.; Pina, J.; Saraiva, J. G.; Silva, J.] Univ Lisbon, Ctr Fis Nucl, P-1699 Lisbon, Portugal. [Gray, H. M.; Mateos, D. Lopez; Marshall, Z.; Perez, K.] CALTECH, Pasadena, CA 91125 USA. [Greenwood, Z. D.; Sawyer, L.] Louisiana Tech Univ, Ruston, LA 71270 USA. [Haller, J.; Terwort, M.; Wildt, M. A.] Univ Hamburg, Inst Expt Phys, Hamburg, Germany. [Kono, T.] Univ Hamburg, Inst Expt Phys, D-22761 Hamburg, Germany. [Liang, Z.; Soh, D. A.] Sun Yat Sen Univ, Sch Phys & Engn, Guangzhou, Guangdong, Peoples R China. [Liu, D.; Meng, Z.; Omachi, C.] Shandong Univ, Sch Phys, Jinan 250100, Peoples R China. [Onofre, A.] Univ Minho, Dept Fis, P-4719 Braga, Portugal. [Pasztor, G.; Toth, J.] KFKI Res Inst Particle & Nucl Phys, Budapest, Hungary. [Purohit, M.] Univ S Carolina, Dept Phys & Astron, Columbia, SC 29208 USA. [Richter-Was, E.] Jagiellonian Univ, Inst Phys, Krakow, Poland. [Weng, Z.] Sun Yat Sen Univ, Guangzhou 510275, Guangdong, Peoples R China. RP Aad, G (reprint author), Univ Freiburg, Fak Math & Phys, Hermann Herder Str 3, D-79104 Freiburg, Germany. RI Riu, Imma/L-7385-2014; Leyton, Michael/G-2214-2016; Casado, Pilar/H-1484-2015; Canelli, Florencia/O-9693-2016; Mashinistov, Ruslan/M-8356-2015; Mikestikova, Marcela/H-1996-2014; Chudoba, Jiri/G-7737-2014; Lei, Xiaowen/O-4348-2014; Ventura, Andrea/A-9544-2015; Villaplana Perez, Miguel/B-2717-2015; Wemans, Andre/A-6738-2012; Kartvelishvili, Vakhtang/K-2312-2013; Dawson, Ian/K-6090-2013; O'Shea, Val/G-1279-2010; Staroba, Pavel/G-8850-2014; Lokajicek, Milos/G-7800-2014; Kupco, Alexander/G-9713-2014; Mir, Lluisa-Maria/G-7212-2015 OI Riu, Imma/0000-0002-3742-4582; Leyton, Michael/0000-0002-0727-8107; Casado, Pilar/0000-0002-0394-5646; Canelli, Florencia/0000-0001-6361-2117; Mashinistov, Ruslan/0000-0001-7925-4676; Mikestikova, Marcela/0000-0003-1277-2596; Lei, Xiaowen/0000-0002-2564-8351; Ventura, Andrea/0000-0002-3368-3413; Villaplana Perez, Miguel/0000-0002-0048-4602; Wemans, Andre/0000-0002-9669-9500; O'Shea, Val/0000-0001-7183-1205; Mir, Lluisa-Maria/0000-0002-4276-715X NR 27 TC 0 Z9 0 U1 0 U2 13 PU SPRINGER-VERLAG BERLIN PI BERLIN PA HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY BN 978-3-642-22115-6 PY 2010 BP 195 EP 238 D2 10.1007/978-3-642-22116-3 PG 44 WC Instruments & Instrumentation; Physics, Particles & Fields SC Instruments & Instrumentation; Physics GA BAF48 UT WOS:000304018500006 ER PT B AU Aad, G Abbott, B Abdallah, J Abdelalim, AA Abdesselam, A Abdinov, O Abi, B Abolins, M Abramowicz, H Abreu, H Acharya, BS Adams, DL Addy, TN Adelman, J Adomeit, S Adragna, P Adye, T Aefsky, S Aguilar-Saavedra, JA Aharrouche, M Ahlen, SP Ahles, F Ahmad, A Ahsan, M Aielli, G Akdogan, T Akesson, TPA Akimoto, G Akimov, AV Aktas, A Alam, MS Alam, MA Albrand, S Aleksa, M Aleksandrov, IN Alexa, C Alexander, G Alexandre, G Alexopoulos, T Alhroob, M Aliev, M Alimonti, G Alison, J Aliyev, M Allport, PP Allwood-Spiers, SE Almond, J Aloisio, A Alon, R Alonso, A Alviggi, MG Amako, K Amelung, C Amorim, A Amoros, G Amram, N Anastopoulos, C Andeen, T Anders, CF Anderson, KJ Andreazza, A Andrei, V Anduaga, XS Angerami, A Anghinolfi, F Anjos, N Annovi, A Antonaki, A Antonelli, M Antonelli, S Antos, J Antunovic, B Anulli, F Aoun, S Arabidze, G Aracena, I Arai, Y Arce, ATH Archambault, JP Arfaoui, S Arguin, JF Argyropoulos, T Arik, M Armbruster, AJ Arnaez, O Arnault, C Artamonov, A Arutinov, D Asai, M Asai, S Silva, J Asfandiyarov, R Ask, S Asman, B Asner, D Asquith, L Assamagan, K Astvatsatourov, A Atoian, G Auerbach, B Augsten, K Aurousseau, M Austin, N Avolio, G Avramidou, R Ay, C Azuelos, G Azuma, Y Baak, MA Bach, AM Bachacou, H Bachas, K Backes, M Badescu, E Bagnaia, P Bai, Y Bain, T Baines, JT Baker, OK Baker, MD Baker, S Pedrosa, FBD Banas, E Banerjee, P Banerjee, S Banfi, D Bangert, A Bansal, V Baranov, SP Barashkou, A Barber, T Barberio, EL Barberis, D Barbero, M Bardin, DY Barillari, T Barisonzi, M Barklow, T Barlow, N Barnett, BM Barnett, RM Baroncelli, A Barr, AJ Barreiro, F da Costa, JBG Barrillon, P Bartoldus, R Bartsch, D Bates, RL Batkova, L Batley, JR Battaglia, A Battistin, M Bauer, F Bawa, HS Beare, B Beau, T Beauchemin, P Beccherle, R Bechtle, P Beck, GA Beck, HP Beckingham, M Becks, KH Beddall, AJ Beddall, A Bednyakov, VA Bee, C Begel, M Harpaz, SB Behera, PK Beimforde, M Belanger-Champagne, C Bell, PJ Bell, WH Bella, G Bellagambala, L Bellina, F Bellomo, M Belloni, A Belotskiy, K Beltramello, O Ben Ami, S Benary, O Benchekroun, D Bendel, M Benedict, BH Benekos, N Benhammou, Y Benjamin, DP Benoit, M Bensinger, JR Benslama, K Bentvelsen, S Beretta, M Berge, D Kuutmann, EB Berger, N Berghaus, F Berglund, E Beringer, J Bernat, P Bernhard, R Bernius, C Berry, T Bertin, A Besana, MI Besson, N Bethke, S Bianchi, RM Bianco, M Biebel, O Biesiada, J Biglietti, M Bilokon, H Bindi, M Bingul, A Bini, C Biscarat, C Bitenc, U Black, KM Blair, RE Blanchard, JB Blanchot, G Blocker, C Blondel, A Blum, W Blumenschein, U Bobbink, GJ Bocci, A Boehler, M Boek, J Boelaert, N Boser, S Bogaerts, JA Bogouch, A Bohm, C Boisvert, V Bold, T Boldea, V Bondioli, M Boonekamp, M Bordoni, S Borer, C Borisov, A Borissov, G Borjanovic, I Borroni, S Bos, K Boscherini, D Bosman, M Boterenbrood, H Bouchami, J Boudreau, J Bouhova-Thacker, EV Boulahouache, C Bourdarios, C Boveia, A Boyd, J Boyko, IR Bozovic-Jelisavcic, I Bracinik, J Braem, A Branchini, P Brandt, A Brandt, G Brandt, O Bratzler, U Brau, B Brau, JE Braun, HM Brelier, B Bremer, J Brenner, R Bressler, S Britton, D Brochu, FM Brock, I Brock, R Brodet, E Brooijmans, G Brooks, WK Brown, G de Renstrom, PAB Bruncko, D Bruneliere, R Brunet, S Bruni, A Bruni, G Bruschi, M Bucci, F Buchanan, J Buchholz, P Buckley, AG Budagov, IA Budick, B Buscher, V Bugge, L Bulekov, O Bunse, M Buran, T Burckhart, H Burdin, S Burgess, T Burke, S Busato, E Bussey, P Buszello, CF Butin, F Butler, B Butler, JM Buttar, CM Butterworth, JM Byatt, T Caballero, J Urban, SC Caforio, D Cakir, O Calafiura, R Calderini, G Calfayan, P Calkins, R Caloba, LP Calvet, D Camarri, P Cameron, D Campana, S Campanelli, M Canale, V Canelli, F Canepa, A Cantero, J Capasso, L Garrido, MDMC Caprini, I Caprini, M Capua, M Caputo, R Caramarcu, C Cardarelli, R Carli, T Carlino, G Carminati, L Caron, B Caron, S Montoya, GDC Montero, SC Carter, AA Carter, JR Carvalho, J Casadei, D Casado, MP Cascella, M Hernandez, AMC Castaneda-Miranda, E Gimenez, VC Castro, NF Cataldi, G Catinaccio, A Catmore, JR Cattai, A Cattani, G Caughron, S Cavalleri, P Cavalli, D Cavalli-Sforza, M Cavasinni, V Ceradini, F Cerqueira, AS Cerri, A Cerrito, L Cerutti, F Cetin, SA Chafaq, A Chakraborty, D Chan, K Chapman, JD Chapman, JW Chareyre, E Charlton, DG Chavda, V Cheatham, S Chekanov, S Chekulaev, SV Chelkov, GA Chen, H Chen, S Chen, X Cheplakov, A Chepurnov, VF El Moursli, RC Tcherniatine, V Chesneanu, D Cheu, E Cheung, SL Chevalier, L Chevallier, F Chiefari, G Chikovani, L Childers, JT Chilingarov, A Chiodini, G Chizhov, MV Choudalakis, G Chouridou, S Christidi, IA Christov, A Chromek-Burckhart, D Chu, ML Chudoba, J Ciapetti, G Ciftci, AK Ciftci, R Cinca, D Cindro, V Ciobotaru, MD Ciocca, C Ciocio, A Cirilli, M Clark, A Clark, PJ Cleland, W Clemens, JC Clement, B Clement, C Coadou, Y Cobal, M Coccaro, A Cochran, J Coggeshall, J Cogneras, E Colijn, AP Collard, C Collins, NJ Collins-Tooth, C Collot, J Colon, G Muino, PC Coniavitis, E Conidi, MC Consonni, M Constantinescu, S Conta, C Conventi, F Cooke, M Cooper, BD Cooper-Sarkar, AM Cooper-Smith, NJ Copic, K Cornelissen, T Corradi, M Corriveau, F Corso-Radu, A Cortes-Gonzalez, A Cortiana, G Costa, G Costa, MJ Costanzo, D Costin, T Cote, D Torres, RC Courneyea, L Cowan, G Cowden, C Cox, BE Cranmer, K Cranshaw, J Cristinziani, M Crosetti, G Crupi, R Crepe-Renaudin, S Almenar, CC Donszelmann, TC Curatolo, M Curtis, CJ Cwetanski, P Czyczula, Z D'Auria, S D'Onofrio, M D'Orazio, A Da Via, C Dabrowski, W Dai, T Dallapiccola, C Dallison, SJ Daly, CH Dam, M Danielson, HO Dannheim, D Dao, V Darbo, G Darlea, GL Davey, W Davidek, T Davidson, N Davidson, R Davies, M Davison, AR Dawson, I Daya, RK De, K de Asmundis, R De Castro, S Salgado, PEDF De Cecco, S de Graat, J De Groot, N de Jong, P De Mora, L Branco, MD De Pedis, D De Salvo, A De Sanctis, U De Santo, A De Regie, JBD Dean, S Dedovich, DV Degenhardt, J Dehchar, M Del Papa, C Del Peso, J Del Prete, T Dell'Acqua, A Dell'Asta, L Della Pietra, M della Volpe, D Delmastro, M Delsart, PA Deluca, C Demers, S Demichev, M Demirkoz, B Deng, J Deng, W Denisov, SP Derkaoui, JE Derue, F Dervan, P Desch, K Deviveiros, PO Dewhurst, A DeWilde, B Dhaliwal, S Dhullipudi, R Di Ciaccio, A Di Ciaccio, L Di Girolamo, A Di Girolamo, B Di Luise, S Di Mattia, A Di Nardo, R Di Simone, A Di Sipio, R Diaz, MA Diblen, F Diehl, EB Dietrich, J Dietzsch, TA Diglio, S Yagci, KD Dingfelder, J Dionisi, C Dita, P Dita, S Dittus, F Djama, F Djilkibaev, R Djobava, T do Vale, MAB Doan, TKO Dobos, D Dobson, E Dobson, M Doglioni, C Doherty, T Dolejsi, J Dolenc, I Dolezal, Z Dolgoshein, BA Dohmae, T Donega, M Donini, J Dopke, J Doria, A Dotti, A Dova, MT Doxiadis, AD Doyle, AT Drasal, Z Dris, M Dubbert, J Dube, S Duchovni, E Duckeck, G Dudarev, A Dudziak, F Duhrssen, M Duflot, L Dufour, MA Dunford, M Yildiz, HD Duxfield, R Dwuznik, M Duren, M Ebke, J Eckweiler, S Edmonds, K Edwards, CA Egorov, K Ehrenfeld, W Ehrich, T Eifert, T Eigen, G Einsweiler, K Eisenhandler, E Ekelof, T El Kacimi, M Ellert, M Elles, S Ellinghaus, F Ellis, K Ellis, N Elmsheuser, J Elsing, M Emeliyanov, D Engelmann, R Engl, A Epp, B Eppig, A Erdmann, J Ereditato, A Eriksson, D Ernst, J Ernst, M Ernwein, J Errede, D Errede, S Ertel, E Escalier, M Escobar, C Curull, XE Esposito, B Etienvre, AI Etzion, E Evans, H Fabbri, L Fabre, C Facius, K Fakhrutdinov, RM Falciano, S Fang, Y Fanti, M Farbin, A Farilla, A Farley, J Farooque, T Farrington, SM Farthouat, P Fassnacht, P Fassouliotis, D Fatholahzadeh, B Fayard, L Febbraro, R Federic, P Fedin, OL Fedorko, W Feligioni, L Felzmann, CU Feng, C Feng, EJ Fenyuk, AB Ferencei, J Ferland, J Fernandes, B Fernando, W Ferrag, S Ferrando, J Ferrara, V Ferrari, A Ferrari, P Ferrari, R Ferrer, A Ferrer, ML Ferrere, D Ferretti, C Fiascaris, M Fiedler, F Filipcic, A Filippas, A Filthaut, F Fincke-Keeler, M Fiolhais, MCN Fiorini, L Firan, A Fischer, G Fisher, MJ Flechl, M Fleck, I Fleckner, J Fleischmann, P Fleischmann, S Flick, T Castillo, LRF Flowerdew, MJ Martin, TF Fopma, J Formica, A Forti, A Fortin, D Fournier, D Fowler, AJ Fowler, K Fox, H Francavilla, P Franchino, S Francis, D Franklin, M Franz, S Fraternali, M Fratina, S Freestone, J French, ST Froeschl, R Froidevaux, D Frost, JA Fukunaga, C Torregrosa, EF Fuster, J Gabaldon, C Gabizon, O Gadfort, T Gadomski, S Gagliardi, G Gagnon, P Galea, C Gallas, EJ Gallo, V Gallop, BJ Gallus, P Galyaev, E Gan, KK Gao, YS Gaponenko, A Garcia-Sciveres, M Garcia, C Navarro, JEG Gardner, RW Garelli, N Garitaonandia, H Garonne, V Gatti, C Gaudio, G Gauzzi, P Gavrilenko, IL Gay, C Gaycken, G Gazis, EN Ge, P Gee, CNP Geich-Gimbel, C Gellerstedt, K Gemme, C Genest, MH Gentile, S Georgatos, F George, S Gershon, A Ghazlane, H Ghodbane, N Giacobbe, B Giagu, S Giakoumopoulou, V Giangiobbe, V Gianotti, F Gibbard, B Gibson, A Gibson, SM Gilbert, LM Gilchriese, M Gilewsky, V Gingrich, DM Ginzburg, J Giokaris, N Giordani, MP Giordano, R Giorgi, FM Giovannini, P Giraud, PF Giugni, D Giusti, P Gjelsten, BK Gladilin, LK Glasman, C Glazov, A Glitza, KW Glonti, GL Godfrey, J Godlewski, J Goebel, M Gopfert, T Goeringer, C Gossling, C Gottfert, T Goldfarb, S Goldin, D Golling, T Gomes, A Fajardo, LSG Goncalo, R Gonella, L Gong, C de la Hoz, SG Silva, MLG Gonzalez-Sevilla, S Goodson, JJ Goossens, L Gordon, HA Gorelov, I Gorfine, G Gorini, B Gorini, E Gorisek, A Gornicki, E Gosdzik, B Gosselink, M Gostkin, MI Eschrich, IG Gouighri, M Goujdami, D Goulette, MP Goussiou, AG Goy, C Grabowska-Bold, I Grafstrom, P Grahn, KJ Grancagnolo, S Grassi, V Gratchev, V Grau, N Gray, HM Gray, JA Graziani, E Green, B Greenshaw, T Greenwood, ZD Gregor, IM Grenier, P Griesmayer, E Griffiths, J Grigalashvili, N Grillo, AA Grimm, K Grinstein, S Grishkevich, YV Groh, M Groll, M Gross, E Grosse-Knetter, J Groth-Jensen, J Grybel, K Guicheney, C Guida, A Guillemin, T Guler, H Gunther, J Guo, B Gusakov, Y Gutierrez, A Gutierrez, P Guttman, N Gutzwiller, O Guyot, C Gwenlan, C Gwilliam, CB Haas, A Haas, S Haber, C Hadavand, HK Hadley, DR Haefner, P Haider, S Hajduk, Z Hakobyan, H Haller, J Hamacher, K Hamilton, A Hamilton, S Han, L Hanagaki, K Hance, M Handel, C Hanke, P Hansen, JR Hansen, JB Hansen, JD Hansen, PH Hansson, P Hara, K Hare, GA Harenberg, T Harrington, RD Harris, OM Harrison, K Hartert, J Hartjes, F Harvey, A Hasegawa, S Hasegawa, Y Hassani, S Haug, S Hauschild, M Hauser, R Havranek, M Hawkes, CM Hawkings, RJ Hayakawa, T Hayward, HS Haywood, SJ Head, SJ Hedberg, V Heelan, L Heim, S Heinemann, B Heisterkamp, S Helary, L Heller, M Hellman, S Helsens, C Hemperek, T Henderson, RCW Henke, M Henrichs, A Correia, AMH Henrot-Versille, S Hensel, C Henss, T Jimenez, YH Hershenhorn, AD Herten, G Hertenberger, R Hervas, L Hessey, NP Higon-Rodriguez, E Hill, JC Hiller, KH Hillert, S Hillier, SJ Hinchliffe, I Hines, E Hirose, M Hirsch, F Hirschbuehl, D Hobbs, J Hod, N Hodgkinson, MC Hodgson, P Hoecker, A Hoeferkamp, MR Hoffman, J Hoffmann, D Hohlfeld, M Holy, T Holzbauer, JL Homma, Y Horazdovsky, T Horn, C Horner, S Hostachy, JY Hou, S Hoummada, A Howe, T Hrivnac, J Hryn'ova, T Hsu, PJ Hsu, SC Huang, GS Hubacek, Z Hubaut, F Huegging, F Huffman, TB Hughes, EW Hughes, G Huhtinen, M Hurwitz, M Husemann, U Huseynov, N Huston, J Huth, J Iacobucci, G Iakovidis, G Ibragimov, I Iconomidou-Fayard, L Idarraga, J Iengo, P Igonkina, O Ikegami, Y Ikeno, M Ilchenko, Y Iliadis, D Ince, T Ioannou, P Iodice, M Quiles, AI Ishikawa, A Ishino, M Ishmukhametov, R Isobe, T Issever, C Istin, S Itoh, Y Ivashin, AV Iwanski, W Iwasaki, H Izen, JM Izzo, V Jackson, B Jackson, JN Jackson, P Jaekel, MR Jain, V Jakobs, K Jakobsen, S Jakubek, J Jana, DK Jankowski, E Jansen, E Jantsch, A Janus, M Jarlskog, G Jeanty, L Plante, IJL Jenni, P Jez, P Jezequel, S Ji, W Jia, J Jiang, Y Belenguer, MJ Jin, S Jinnouchi, O Joffe, D Johansen, M Johansson, KE Johansson, P Johnert, S Johns, KA Jon-And, K Jones, G Jones, RWL Jones, TJ Jorge, PM Joseph, J Juranek, V Jussel, P Kabachenko, VV Kaci, M Kaczmarska, A Kado, M Kagan, H Kagan, M Kaiser, S Kajomovitz, E Kalinin, S Kalinovskaya, LV Kama, S Kanaya, N Kaneda, M Kantserov, VA Kanzaki, J Kaplan, B Kapliy, A Kaplon, J Kar, D Karagounis, M Karagoz, M Karnevskiy, M Kartvelishvili, V Karyukhin, AN Kashil, L Kasmi, A Kass, RD Kastanas, A Kataoka, M Kataoka, Y Katsoufis, E Katzy, J Kaushik, V Kawagoe, K Kawamoto, T Kawamura, G Kayl, MS Kazanin, VA Kazarinov, MY Keates, JR Keeler, R Kehoe, R Keil, M Kekelidze, CD Kelly, M Kenyon, M Kepka, O Kerschen, N Kersevan, BP Kersten, S Kessoku, K Khakzad, M Khalil-zada, F Khandanyan, H Khanov, A Kharchenko, D Khodinov, A Khomich, A Khoriauli, G Khovanskiy, N Khovanskiy, V Khramov, E Khubua, J Kim, H Kim, MS Kim, PC Kim, SH Kind, O King, BT King, M Kirk, J Kirsch, GP Kirsch, LE Kiryunin, AE Kisielewska, D Kittelmann, T Kladiva, E Klein, M Klein, U Kleinknecht, K Klemetti, M Klier, A Klimentov, A Klingenberg, R Klinkby, EB Klioutchnikova, T Klok, PF Klous, S Kluge, EE Kluge, T Kluit, P Kluth, S Knecht, NS Kneringer, E Ko, BR Kobayashi, T Kobel, M Koblitz, B Kocian, M Kocnar, A Kodys, P Koneke, K Konig, AC Koenig, S Kopke, L Koetsveld, F Koevesarki, P Koffas, T Koffeman, E Kohn, F Kohout, Z Kohriki, T Koi, T Kolanoski, H Kolesnikov, V Koletsou, I Koll, J Kollar, D Kolya, SD Komar, AA Komaragiri, JR Kondo, T Kono, T Konoplich, R Konstantinidis, N Koperny, S Korcyl, K Kordas, K Korn, A Korolkov, I Korolkova, EV Korotkov, VA Kortner, O Kortner, S Kostka, P Kostyukhin, VV Kotov, S Kotov, VM Kourkoumelis, C Koutsman, A Kowalewski, R Kowalski, TZ Kozanecki, W Kozhin, AS Kral, V Kramarenko, VA Kramberger, G Krasny, MW Krasznahorkay, A Kraus, J Kraus, JK Kreisel, A Krejci, F Kretzchmar, J Krieger, N Krieger, P Kroeninger, K Kroha, H Kroll, J Kroseberg, J Krstic, J Kruchonak, U Kruger, H Krumshteyn, ZV Kruth, A Kubota, T Kuehn, S Kugel, A Kuhl, T Kuhn, D Kukhtin, V Kulchitsky, Y Kuleshov, S Kummer, C Kuna, M Kunkle, J Kupco, A Kurashige, H Kurata, M Kurochkin, YA Kus, V Kuze, M Kwee, R La Rosa, A La Rotonda, L Labbe, J Lacasta, C Lacava, F Lacker, H Lacour, D Lacuesta, VR Ladygin, E Lafaye, R Laforge, B Lagouri, T Lai, S Lamanna, M Lampen, CL Lampl, W Lancon, E Landgraf, U Landon, MPJ Lane, JL Lankford, AJ Lanni, F Lantzsch, K Lanza, A Laplace, S Lapoire, C Laporte, JF Lari, T Larner, A Lassnig, M Laurelli, P Lavrijsen, W Laycock, P Lazarev, AB Lazzaro, A Le Dortz, O Le Guirriec, E Le Menedeu, E Lebedev, A Lebel, C LeCompte, T Ledroit-Guillon, F Lee, H Lee, JSH Lee, SC Lefebvre, M Legendre, M LeGeyt, BC Legger, F Leggett, C Lehmacher, M Miotto, GL Lei, X Leitner, R Lellouch, D Lellouch, J Lendermann, V Leney, KJC Lenz, T Lenzen, G Lenzi, B Leonhardt, K Leroy, C Lessard, JR Lester, CC Cheong, ALF Leveque, J Levin, D Levinson, LJ Leyton, M Li, H Li, X Liang, Z Liang, Z Liberti, B Lichard, P Lichtnecker, M Lie, K Liebig, W Lilley, JN Limosani, A Limper, M Lin, SC Linnemann, JT Lipeles, E Lipinsky, L Lipniacka, A Liss, TM Lissauer, D Lister, A Litke, AM Liu, C Liu, D Liu, H Liu, JB Liu, M Liu, Y Livan, M Lleres, A Lloyd, SL Lobodzinska, E Loch, P Lockman, WS Lockwitz, S Loddenkoetter, T Loebinger, FK Loginov, A Loh, CW Lohse, T Lohwasser, K Lokajicek, M Long, RE Lopes, L Mateos, DL Losada, M Loscutoff, P Lou, X Lounis, A Loureiro, KF Lovas, L Love, J Love, PA Lowe, AJ Lu, F Lubatti, HJ Luci, C Lucotte, A Ludwig, A Ludwig, D Ludwig, I Luehring, F Lumb, D Luminari, L Lund, E Lund-Jensen, B Lundberg, B Lundberg, J Lundquist, J Lynn, D Lys, J Lytken, E Ma, H Ma, LL Goia, JAM Maccarrone, G Macchiolo, A Macek, B Miguens, JM Mackeprang, R Madaras, RJ Mader, WF Maenner, R Maeno, T Mattig, P Mattig, S Martins, PJM Magradze, E Mahalalel, Y Mahboubi, K Mahmood, C Maiani, A Maidantchik, C Maio, A Majewski, S Makida, Y Makouski, M Makovec, N Mal, P Malecki, P Malecki, P Maleev, VP Malek, F Mallik, U Malon, D Maltezos, S Malyshev, V Malyukov, S Mameghani, R Mamuzic, J Mandelli, L Mandic, I Mandrysch, R Maneira, J Mangeard, PS Manjavidze, ID Mann, A Manning, PM Manousakis-Katsikakis, A Mansoulie, B Mapelli, A Mapelli, L March, L Marchand, JF Marchese, F Marchiori, G Marcisovsky, M Marino, CP Marroquim, F Marshall, Z Marti-Garcia, S Martin, AJ Martin, B Martin, B Martin, FF Martin, JP Martin, TA Latour, BMD Martinez, M Outschoorn, VM Martyniuk, AC Marzano, F Marzin, A Masetti, L Mashimo, T Mashinistov, R Masik, J Maslennikov, AL Massa, I Massol, N Mastroberardino, A Masubuchi, T Matricon, P Matsunaga, H Matsushita, T Mattravers, C Maxfield, SJ Mayne, A Mazini, R Mazur, M Mc Kee, SP McCarn, A McCarthy, RL McCubbin, NA McFarlane, KW McGlone, H Mchedlidze, G McMahon, SJ McPherson, RA Meade, A Mechnich, J Mechtel, M Medinnis, M Meera-Lebbai, R Meguro, T Mehlhase, S Mehta, A Meier, K Meirose, B Melachrinos, C Garcia, BRM Navas, LM Meng, Z Menke, S Meoni, E Mermod, P Merola, L Meroni, C Merritt, FS Messina, AM Metcalfe, J Mete, AS Meyer, JP Meyer, J Meyer, J Meyer, TC Meyer, WT Miao, J Michal, S Micu, L Middleton, RP Migas, S Mijovic, L Mikenberg, G Mikestikova, M Mikuz, M Miller, DW Mills, WJ Mills, C Milov, A Milstead, DA Milstein, D Minaenko, AA Minano, M Minashvili, IA Mincer, AI Mindur, B Mineev, M Ming, Y Mir, LM Mirabelli, G Misawa, S Misiejuk, A Mitrevski, J Mitsou, VA Mitsui, S Miyagawa, PS Miyazaki, K Mjornmark, JU Moa, T Moeller, V Monig, K Moser, N Mohr, W Mohrdieck-Mock, S Moles-Valls, R Molina-Perez, J Monk, J Monnier, E Montesano, S Monticelli, F Moore, RW Herrera, CM Moraes, A Morais, A Morel, J Morello, G Moreno, D Llacer, MM Morettini, P Morii, M Morley, AK Mornacchi, G Morris, JD Moser, HG Mosidze, M Moss, J Mount, R Mountricha, E Mouraviev, SV Moyse, EJW Mudrinic, M Mueller, F Mueller, J Mueller, K Muller, TA Muenstermann, D Muir, A Munwes, Y Murray, WJ Mussche, I Musto, E Myagkov, AG Myska, M Nadal, J Nagai, K Nagano, K Nagasaka, Y Nairz, AM Nakamura, K Nakano, I Nanava, G Napier, A Nash, M Nation, NR Nattermann, T Naumann, T Navarro, G Nderitu, SK Neal, HA Nebot, E Nechaeva, P Negri, A Negri, G Nelson, A Nelson, S Nelson, TK Nemecek, S Nemethy, P Nepomuceno, AA Nessi, M Neubauer, MS Neusiedl, A Neves, RM Nevski, P Nickerson, RB Nicolaidou, R Nicolas, L Nicoletti, G Nicquevert, B Niedercorn, F Nielsen, J Nikiforov, A Nikolaev, K Nikolic-Audit, I Nikolopoulos, K Nilsen, H Nilsson, P Nisati, A Nishiyama, T Nisius, R Nodulman, L Nomachi, M Nomidis, I Nordberg, M Nordkvist, B Notz, D Novakova, J Nozaki, M Nozicka, M Nugent, IM Nuncio-Quiroz, AE Hanninger, GN Nunnemann, T Nurse, E O'Neil, DC O'Shea, V Oakham, EG Oberlack, H Ochi, A Oda, S Odaka, S Odier, J Ogren, H Oh, A Oh, SH Ohm, CC Ohshima, T Ohsugi, T Okada, S Okawa, H Okumura, Y Okuyama, T Olchevski, AG Oliveira, M Damazio, DO Garcia, EO Olivito, D Olszewski, A Olszowska, J Omachi, C Onofre, A Onyisi, PUE Oram, CJ Oreglia, MJ Oren, Y Orestano, D Orlov, I Barrera, CO Orr, RS Ortega, EO Osculati, B Ospanov, R Osuna, C Garzon, GOY Ottersbach, JP Ould-Saada, F Ouraou, A Ouyang, Q Owen, M Owen, S Oyarzun, A Ozcan, VE Ozturk, N Pages, AP Aranda, CP Paganis, E Paige, F Pajchel, K Palestini, S Pallin, D Palma, A Palmer, JD Pan, YB Panagiotopoulou, E Panes, B Panikashvili, N Panitkin, S Pantea, D Panuskova, M Paolone, V Papadopoulou, TD Park, SJ Park, W Parker, MA Parodi, F Parsons, JA Parzefall, U Pasqualucci, E Passeri, A Pastore, F Pastore, F Pasztor, G Pataraia, S Patel, N Pater, JR Patricelli, S Pauly, T Pecsy, M Morales, MIP Peleganchuk, SV Peng, H Penson, A Penwell, J Perantoni, M Perez, K Codina, EP Garcia-Estan, MTP Reale, VP Perini, L Pernegger, H Perrino, R Persembe, S Perus, P Peshekhonov, VD Petersen, BA Petersen, TC Petit, E Petridou, C Petrolo, E Petrucci, F Petschull, D Petteni, M Pezoa, R Pfeifer, B Phan, A Phillips, AW Piacquadio, G Piccaro, E Piceinini, M Piegaia, R Pilcher, JE Pilkington, AD Pina, J Pinamonti, M Pinfold, JL Pinto, B Pizio, C Placakyte, R Plamondon, M Pleier, MA Poblaguev, A Poddar, S Podlyski, F Poggioli, L Pohl, M Polci, F Polesello, G Policicchio, A Polini, A Poll, J Polychronakos, V Pomeroy, D Pommes, K Pontecorvo, L Pope, BG Popeneciu, GA Popovic, DS Poppleton, A Bueso, XP Porter, R Pospelov, GE Pospisil, S Potekhin, M Potrap, IN Potter, CJ Potter, CT Potter, KP Poulard, G Poveda, J Prabhu, R Pralavorio, P Prasad, S Pravahan, R Pribyl, L Price, D Price, LE Prichard, PM Prieur, D Primavera, M Prokofiev, K Prokoshin, F Protopopescu, S Proudfoot, J Prudent, X Przysiezniak, H Psoroulas, S Ptacek, E Purdham, J Purohit, M Puzo, P Pylypchenko, Y Qian, J Qian, W Qin, Z Quadt, A Quarrie, DR Quayle, WB Quinonez, F Raas, M Radeka, V Radescu, V Radics, B Rador, T Ragusa, F Rahal, G Rahimi, AM Rajagopalan, S Rammensee, M Rammes, M Rauscher, F Rauter, E Raymond, M Read, AL Rebuzzi, DM Redelbach, A Redlinger, G Reece, R Reeves, K Reinherz-Aronis, E Reinschi, A Reisinger, I Reljic, D Rembser, C Ren, ZL Renkel, P Rescia, S Rescigno, M Resconi, S Resende, B Reznicek, P Rezvani, R Richards, A Richter, R Richter-Was, E Ridel, M Rijpstra, M Rijssenbeek, M Rimoldi, A Rinaldi, L Rios, RR Riu, I Rizatdinova, F Rizvi, E Romero, DAR Robertson, SH Robichaud-Veronneau, A Robinson, D Robinson, JEM Robinson, M Robson, A de Lima, JGR Roda, C Dos Santos, DR Rodriguez, D Garcia, YR Roe, S Rohne, O Rojo, V Rolli, S Romaniouk, A Romanov, VM Romeo, G Maltrana, DR Roos, L Ros, E Rosati, S Rosenbaum, GA Rosselet, L Rossetti, V Rossi, LP Rotaru, M Rothberg, J Rousseau, D Royon, CR Rozanov, A Rozen, Y Ruan, X Ruckert, B Ruckstuhl, N Rud, VI Rudolph, G Ruhr, F Ruggieri, F Ruiz-Martinez, A Rumyantsev, L Rurikova, Z Rusakovich, NA Rutherfoord, JP Ruwiedel, C Ruzicka, P Ryabov, YF Ryan, P Rybkin, G Rzaeva, S Saavedra, AF Sadrozinski, HFW Sadykov, R Tehrani, FS Sakamoto, H Salamanna, G Salamon, A Saleem, M Salihagic, D Salnikov, A Salt, J Ferrando, BMS Salvatore, D Salvatore, F Salvucci, A Salzburger, A Sampsonidis, D Samset, BH Sandaker, H Sander, HG Sanders, MP Sandhoff, M Sandhu, R Sandstroem, R Sandvoss, S Sankey, DPC Sansoni, A Rios, CS Santoni, C Santonico, R Saraiva, JG Sarangi, T Sarkisyan-Grinbaum, E Sarri, F Sasaki, O Sasao, N Satsounkevitch, I Sauvage, G Savard, P Savine, AY Savinov, V Sawyer, L Saxon, DH Says, LP Sbarra, C Sbrizzi, A Scannicchio, DA Schaarschmidt, J Schacht, P Schafer, U Schaetzel, S Schaffer, AC Schaile, D Schamberger, RD Schamov, AG Scharf, V Schegelsky, VA Scheirich, D Schernau, M Scherzer, MI Schiavi, C Schieck, J Schioppa, M Schlenker, S Schmidt, E Sehmieden, K Schmitt, C Schmitz, M Schoning, A Sehott, M Schouten, D Schovancova, J Schram, M Schreiner, A Schroeder, C Schroer, N Schroers, M Schultes, J Schultz-Coulon, HC Schumacher, JW Schumacher, M Schumm, BA Schune, P Schwanenberger, C Schwartzman, A Schwemling, P Schwienhorst, R Schwierz, R Schwindling, J Scott, WG Searcy, J Sedykh, E Segura, E Seidel, SC Seiden, A Seifert, F Seixas, JM Sekhniaidze, G Seliverstov, DM Sellden, B Semprini-Cesari, N Serfon, C Serin, L Seuster, R Severini, H Sevior, ME Sfyrla, A Shabalina, E Shamim, M Shan, LY Shank, JT Shao, QT Shapiro, M Shatalov, PB Shaw, K Sherman, D Sherwood, P Shibata, A Shimojima, M Shin, T Shmeleva, A Shochet, MJ Shupe, MA Sicho, P Sidoti, A Siegert, F Siegrist, J Sijacki, D Silbert, O Silver, Y Silverstein, D Silverstein, SB Simak, V Simic, L Simion, S Simmons, B Simonyan, M Sinervo, P Sinev, NB Sipica, V Siragusa, G Sisakyan, AN Sivoklokov, SY Sjolin, J Sjursen, TB Skovpen, K Skubic, P Slater, M Slavicek, T Sliwa, K Sloper, J Smakhtin, V Smirnov, SY Smirnov, Y Smirnova, LN Smirnova, O Smith, BC Smith, D Smith, KM Smizanska, M Smolek, K Snesarev, AA Snow, SW Snow, J Snuverink, J Snyder, S Soares, M Sobie, R Sodomka, J Soffer, A Solans, CA Solar, M Solc, J Camillocci, ES Solodkov, AA Solovyanov, OV Sondericker, J Sopko, V Sopko, B Sosebee, M Soukharev, A Spagnolo, S Spano, F Spighi, R Spigo, G Spila, F Spiwoks, R Spousta, M Spurlock, B St Denis, RD Stahl, T Stahlman, J Stamen, R Stanecka, E Stanek, RW Stanescu, C Stapnes, S Starchenko, EA Stark, J Staroba, P Starovoitov, P Stavina, P Steele, G Steinbach, P Steinberg, P Stekl, I Stelzer, B Stelzer, HJ Stelzer-Chilton, O Stenzel, H Stevenson, K Stewart, GA Stockton, MC Stoerig, K Stoicea, G Stonjek, S Strachota, P Stradling, AR Straessner, A Strandberg, J Strandberg, S Strandlie, A Strang, M Strauss, M Strizenec, P Strohmer, R Strom, DM Stroynowski, R Strube, J Stugu, B Sturm, P Soh, DA Su, D Sugaya, Y Sugimoto, T Suhr, C Suita, K Suk, M Sulin, VV Sultansoy, S Sumida, T Sun, X Sundermann, JE Suruliz, K Sushkov, S Susinno, G Sutton, MR Suzuki, Y Sykora, I Sykora, T Szymocha, T Sanchez, J Ta, D Tackmann, K Tafard, A Tafirout, R Taga, A Takahashi, I Takai, H Takashima, R Takeda, H Takeshita, T Talby, M Talyshev, A Tamsett, MC Tanaka, J Tanaka, R Tanaka, S Tanaka, S Tani, K Tapprogge, S Tardif, D Tarem, S Tarrade, F Tartarelli, GF Tas, P Tasevsky, M Tassi, E Tatarkhanov, M Taylor, C Taylor, FE Taylor, GN Taylor, W Castanheira, MTD Teixeira-Dias, P Ten Kate, H Teng, PK Tennenbaum-Katan, YD Terada, S Terashi, K Terron, J Terwort, M Testa, M Teuscher, RJ Therhaag, J Thioye, M Thoma, S Thomas, JP Thompson, EN Thompson, PD Thompson, PD Thompson, RJ Thompson, AS Thomson, E Thun, RP Tic, T Tikhomirov, VO Tikhonov, YA Tipton, P Viegas, FJTA Tisserant, S Toczek, B Todorov, T Todorova-Nova, S Toggerson, B Tojo, J Tokar, S Tokunaga, K Tokushuku, K Tollefson, K Tomoto, M Tompkins, L Toms, K Tonoyan, A Topfel, C Topilin, ND Torchiani, I Torrence, E Pastor, ET Toth, J Touchard, F Tovey, DR Trefzger, T Tremblet, L Tricoli, A Trigger, IM Trincaz-Duvoid, S Trinh, TN Tripiana, MF Triplett, N Trischuk, W Trivedi, A Trocme, B Troncon, C Trzupek, A Tsarouchas, C Tseng, JCL Tsiakiris, M Tsiareshka, PV Tsionou, D Tsipolitis, G Tsiskaridze, V Tskhadadze, EG Tsukerman, II Tsulaia, V Tsung, JW Tsuno, S Tsybychev, D Tuggle, JM Turecek, D Cakir, IT Turlay, E Tuts, PM Twomey, MS Tylmad, M Tyndel, M Uchida, K Ueda, I Ueno, R Ugland, M Uhlenbrock, M Uhrmacher, M Ukegawa, F Unal, G Undrus, A Unel, G Unno, Y Urbaniec, D Urkovsky, E Urquijo, P Urrejola, P Usai, G Uslenghi, M Vacavant, L Vacek, V Vachon, B Valisen, S Valente, P Valentinetti, S Valkar, S Gallego, EV Vallecorsa, S Ferrer, JAV van der Graaf, H van der Kraaij, E van der Poel, E van der Ster, D van Eldik, N van Gemmeren, P van Kesteren, Z van Vulpen, I Vandelli, W Vaniachine, A Vankov, P Vannucci, F Vari, R Varnes, EW Varouchas, D Vartapetian, A Varvell, KE Vassilakopoulos, VI Vazeille, F Vellidis, C Veloso, F Veneziano, S Ventura, A Ventura, D Venturi, M Venturi, N Vercesi, V Verducci, M Verkerke, W Vermeulen, JC Vetterli, MC Vichou, I Vickey, T Viehhauser, GHA Villa, M Villani, EG Perez, MV Vilucchi, E Vincter, MG Vinek, E Vinogradov, VB Viret, S Virzi, J Vitale, A Vitells, O Vivarelli, I Vaque, EV Vlachos, S Vlasak, M Vlasov, N Vogel, A Vokac, P Volpi, M von der Schmitt, H von Loeben, J von Radziewski, H von Toerne, E Vorobel, V Vorwerk, V Vos, M Voss, R Voss, TT Vossebeld, JH Vranjes, N Milosavljevic, MV Vrba, V Vreeswijk, M Anh, TV Vudragovic, D Vuillermet, R Vukotic, I Wagner, P Walbersloh, J Walder, J Walker, R Walkowiak, W Wall, R Wang, C Wang, H Wang, J Wang, SM Warburton, A Ward, CP Warsinsky, M Wastie, R Watkins, PM Watson, AT Watson, MF Watts, G Watts, S Waugh, AT Waugh, BM Weber, MD Weber, M Weber, MS Weber, P Weidberg, AR Weingarten, J Weiser, C Wellenstein, H Wells, PS Wenaus, T Wendler, S Weng, Z Wengler, T Wenig, S Wermes, N Werner, M Werner, P Werth, M Werthenbach, U Wessels, M Whalen, K White, A White, MJ White, S Whitehead, SR Whiteson, D Whittington, D Wicek, F Wicke, D Wickens, FJ Wiedenmann, W Wielers, M Wienemann, P Wiglesworth, C Wiik, LAM Wildauer, A Wildt, MA Wilkens, HG Williams, E Williams, HH Willocq, S Wilson, JA Wilson, MG Wilson, A Wingerter-Seez, I Winklmeier, F Wittgen, M Wolter, MW Wolters, H Wosiek, BK Wotschack, J Woudstra, MJ Wraight, K Wright, C Wright, D Wrona, B Wu, SL Wu, X Wulf, E Wynne, BM Xaplanteris, L Xella, S Xie, S Xu, D Yamada, M Yamamoto, A Yamamoto, K Yamamoto, S Yamamura, T Yamaoka, J Yamazaki, T Yamazaki, Y Yan, Z Yang, H Yang, UK Yang, Z Yao, WM Yao, Y Yasu, Y Ye, J Ye, S Yilmaz, M Yoosoofmiya, R Yorita, K Yoshida, R Young, C Youssef, SP Yu, D Yu, J Yuan, L Yurkewicz, A Zaidan, R Zaitsev, AM Zajacova, Z Zambrano, V Zanello, L Zaytsev, A Zeitnitz, C Zeller, M Zemla, A Zendler, C Zenin, O Zenis, T Zenonos, Z Zenz, S Zerwas, D della Porta, GZ Zhan, Z Zhang, H Zhang, J Zhang, Q Zhang, X Zhao, L Zhao, T Zhao, Z Zhemchugov, A Zhong, J Zhou, B Zhou, N Zhou, Y Zhu, CC Zhu, H Zhu, Y Zhuang, X Zhuravlov, V Zimmermann, R Zimmermann, S Zimmermann, S Ziolkowski, M Zivkovic, L Zobernig, G Zoccoli, A zur Nedden, M Zutshi, V AF Aad, G. Abbott, B. Abdallah, J. Abdelalim, A. A. Abdesselam, A. Abdinov, O. Abi, B. Abolins, M. Abramowicz, H. Abreu, H. Acharya, B. S. Adams, D. L. Addy, T. N. Adelman, J. Adomeit, S. Adragna, P. Adye, T. Aefsky, S. Aguilar-Saavedra, J. A. Aharrouche, M. Ahlen, S. P. Ahles, F. Ahmad, A. Ahsan, M. Aielli, G. Akdogan, T. Akesson, T. P. A. Akimoto, G. Akimov, A. V. Aktas, A. Alam, M. S. Alam, M. A. Albrand, S. Aleksa, M. Aleksandrov, I. N. Alexa, C. Alexander, G. Alexandre, G. Alexopoulos, T. Alhroob, M. Aliev, M. Alimonti, G. Alison, J. Aliyev, M. Allport, P. P. Allwood-Spiers, S. E. Almond, J. Aloisio, A. Alon, R. Alonso, A. Alviggi, M. G. Amako, K. Amelung, C. Amorim, A. Amoros, G. Amram, N. Anastopoulos, C. Andeen, T. Anders, C. F. Anderson, K. J. Andreazza, A. Andrei, V. Anduaga, X. S. Angerami, A. Anghinolfi, F. Anjos, N. Annovi, A. Antonaki, A. Antonelli, M. Antonelli, S. Antos, J. Antunovic, B. Anulli, F. Aoun, S. Arabidze, G. Aracena, I. Arai, Y. Arce, A. T. H. Archambault, J. P. Arfaoui, S. Arguin, J. -F. Argyropoulos, T. Arik, M. Armbruster, A. J. Arnaez, O. Arnault, C. Artamonov, A. Arutinov, D. Asai, M. Asai, S. Silva, J. Asfandiyarov, R. Ask, S. Asman, B. Asner, D. Asquith, L. Assamagan, K. Astvatsatourov, A. Atoian, G. Auerbach, B. Augsten, K. Aurousseau, M. Austin, N. Avolio, G. Avramidou, R. Ay, C. Azuelos, G. Azuma, Y. Baak, M. A. Bach, A. M. Bachacou, H. Bachas, K. Backes, M. Badescu, E. Bagnaia, P. Bai, Y. Bain, T. Baines, J. T. Baker, O. K. Baker, M. D. Baker, S. Pedrosa, F. Baltasar Dos Santos Banas, E. Banerjee, P. Banerjee, Sw. Banfi, D. Bangert, A. Bansal, V. Baranov, S. P. Barashkou, A. Barber, T. Barberio, E. L. Barberis, D. Barbero, M. Bardin, D. Y. Barillari, T. Barisonzi, M. Barklow, T. Barlow, N. Barnett, B. M. Barnett, R. M. Baroncelli, A. Barr, A. J. Barreiro, F. da Costa, J. Barreiro Guimaraes Barrillon, P. Bartoldus, R. Bartsch, D. Bates, R. L. Batkova, L. Batley, J. R. Battaglia, A. Battistin, M. Bauer, F. Bawa, H. S. Beare, B. Beau, T. Beauchemin, Ph. Beccherle, R. Bechtle, P. Beck, G. A. Beck, H. P. Beckingham, M. Becks, K. H. Beddall, A. J. Beddall, A. Bednyakov, V. A. Bee, C. Begel, M. Harpaz, S. Behar Behera, P. K. Beimforde, M. Belanger-Champagne, C. Bell, P. J. Bell, W. H. Bella, G. Bellagambala, L. Bellina, F. Bellomo, M. Belloni, A. Belotskiy, K. Beltramello, O. Ben Ami, S. Benary, O. Benchekroun, D. Bendel, M. Benedict, B. H. Benekos, N. Benhammou, Y. Benjamin, D. P. Benoit, M. Bensinger, J. R. Benslama, K. Bentvelsen, S. Beretta, M. Berge, D. Kuutmann, E. Bergeaas Berger, N. Berghaus, F. Berglund, E. Beringer, J. Bernat, P. Bernhard, R. Bernius, C. Berry, T. Bertin, A. Besana, M. I. Besson, N. Bethke, S. Bianchi, R. M. Bianco, M. Biebel, O. Biesiada, J. Biglietti, M. Bilokon, H. Bindi, M. Bingul, A. Bini, C. Biscarat, C. Bitenc, U. Black, K. M. Blair, R. E. Blanchard, J. -B. Blanchot, G. Blocker, C. Blondel, A. Blum, W. Blumenschein, U. Bobbink, G. J. Bocci, A. Boehler, M. Boek, J. Boelaert, N. Boeser, S. Bogaerts, J. A. Bogouch, A. Bohm, C. Boisvert, V. Bold, T. Boldea, V. Bondioli, M. Boonekamp, M. Bordoni, S. Borer, C. Borisov, A. Borissov, G. Borjanovic, I. Borroni, S. Bos, K. Boscherini, D. Bosman, M. Boterenbrood, H. Bouchami, J. Boudreau, J. Bouhova-Thacker, E. V. Boulahouache, C. Bourdarios, C. Boveia, A. Boyd, J. Boyko, I. R. Bozovic-Jelisavcic, I. Bracinik, J. Braem, A. Branchini, P. Brandt, A. Brandt, G. Brandt, O. Bratzler, U. Brau, B. Brau, J. E. Braun, H. M. Brelier, B. Bremer, J. Brenner, R. Bressler, S. Britton, D. Brochu, F. M. Brock, I. Brock, R. Brodet, E. Brooijmans, G. Brooks, W. K. Brown, G. de Renstrom, P. A. Bruckman Bruncko, D. Bruneliere, R. Brunet, S. Bruni, A. Bruni, G. Bruschi, M. Bucci, F. Buchanan, J. Buchholz, P. Buckley, A. G. Budagov, I. A. Budick, B. Buescher, V. Bugge, L. Bulekov, O. Bunse, M. Buran, T. Burckhart, H. Burdin, S. Burgess, T. Burke, S. Busato, E. Bussey, P. Buszello, C. F. Butin, F. Butler, B. Butler, J. M. Buttar, C. M. Butterworth, J. M. Byatt, T. Caballero, J. Cabrera Urban, S. Caforio, D. Cakir, O. Calafiura, R. Calderini, G. Calfayan, P. Calkins, R. Caloba, L. P. Calvet, D. Camarri, P. Cameron, D. Campana, S. Campanelli, M. Canale, V. Canelli, F. Canepa, A. Cantero, J. Capasso, L. Garrido, M. D. M. Capeans Caprini, I. Caprini, M. Capua, M. Caputo, R. Caramarcu, C. Cardarelli, R. Carli, T. Carlino, G. Carminati, L. Caron, B. Caron, S. Montoya, G. D. Carrillo Montero, S. Carron Carter, A. A. Carter, J. R. Carvalho, J. Casadei, D. Casado, M. P. Cascella, M. Hernandez, A. M. Castaneda Castaneda-Miranda, E. Castillo Gimenez, V. Castro, N. F. Cataldi, G. Catinaccio, A. Catmore, J. R. Cattai, A. Cattani, G. Caughron, S. Cavalleri, P. Cavalli, D. Cavalli-Sforza, M. Cavasinni, V. Ceradini, F. Cerqueira, A. S. Cerri, A. Cerrito, L. Cerutti, F. Cetin, S. A. Chafaq, A. Chakraborty, D. Chan, K. Chapman, J. D. Chapman, J. W. Chareyre, E. Charlton, D. G. Chavda, V. Cheatham, S. Chekanov, S. Chekulaev, S. V. Chelkov, G. A. Chen, H. Chen, S. Chen, X. Cheplakov, A. Chepurnov, V. F. El Moursli, R. Cherkaoui Tcherniatine, V. Chesneanu, D. Cheu, E. Cheung, S. L. Chevalier, L. Chevallier, F. Chiefari, G. Chikovani, L. Childers, J. T. Chilingarov, A. Chiodini, G. Chizhov, M. V. Choudalakis, G. Chouridou, S. Christidi, I. A. Christov, A. Chromek-Burckhart, D. Chu, M. L. Chudoba, J. Ciapetti, G. Ciftci, A. K. Ciftci, R. Cinca, D. Cindro, V. Ciobotaru, M. D. Ciocca, C. Ciocio, A. Cirilli, M. Clark, A. Clark, P. J. Cleland, W. Clemens, J. C. Clement, B. Clement, C. Coadou, Y. Cobal, M. Coccaro, A. Cochran, J. Coggeshall, J. Cogneras, E. Colijn, A. P. Collard, C. Collins, N. J. Collins-Tooth, C. Collot, J. Colon, G. Conde Muino, P. Coniavitis, E. Conidi, M. C. Consonni, M. Constantinescu, S. Conta, C. Conventi, F. Cooke, M. Cooper, B. D. Cooper-Sarkar, A. M. Cooper-Smith, N. J. Copic, K. Cornelissen, T. Corradi, M. Corriveau, F. Corso-Radu, A. Cortes-Gonzalez, A. Cortiana, G. Costa, G. Costa, M. J. Costanzo, D. Costin, T. Cote, D. Coura Torres, R. Courneyea, L. Cowan, G. Cowden, C. Cox, B. E. Cranmer, K. Cranshaw, J. Cristinziani, M. Crosetti, G. Crupi, R. Crepe-Renaudin, S. Almenar, C. Cuenca Donszelmann, T. Cuhadar Curatolo, M. Curtis, C. J. Cwetanski, P. Czyczula, Z. D'Auria, S. D'Onofrio, M. D'Orazio, A. Da Via, C. Dabrowski, W. Dai, T. Dallapiccola, C. Dallison, S. J. Daly, C. H. Dam, M. Danielson, H. O. Dannheim, D. Dao, V. Darbo, G. Darlea, G. L. Davey, W. Davidek, T. Davidson, N. Davidson, R. Davies, M. Davison, A. R. Dawson, I. Daya, R. K. De, K. de Asmundis, R. De Castro, S. Salgado, P. E. De Castro Faria De Cecco, S. de Graat, J. De Groot, N. de Jong, P. De Mora, L. Branco, M. De Oliveira De Pedis, D. De Salvo, A. De Sanctis, U. De Santo, A. De Regie, J. B. De Vivie Dean, S. Dedovich, D. V. Degenhardt, J. Dehchar, M. Del Papa, C. Del Peso, J. Del Prete, T. Dell'Acqua, A. Dell'Asta, L. Della Pietra, M. della Volpe, D. Delmastro, M. Delsart, P. A. Deluca, C. Demers, S. Demichev, M. Demirkoz, B. Deng, J. Deng, W. Denisov, S. P. Derkaoui, J. E. Derue, F. Dervan, P. Desch, K. Deviveiros, P. O. Dewhurst, A. DeWilde, B. Dhaliwal, S. Dhullipudi, R. Di Ciaccio, A. Di Ciaccio, L. Di Girolamo, A. Di Girolamo, B. Di Luise, S. Di Mattia, A. Di Nardo, R. Di Simone, A. Di Sipio, R. Diaz, M. A. Diblen, F. Diehl, E. B. Dietrich, J. Dietzsch, T. A. Diglio, S. Yagci, K. Dindar Dingfelder, J. Dionisi, C. Dita, P. Dita, S. Dittus, F. Djama, F. Djilkibaev, R. Djobava, T. do Vale, M. A. B. Doan, T. K. O. Dobos, D. Dobson, E. Dobson, M. Doglioni, C. Doherty, T. Dolejsi, J. Dolenc, I. Dolezal, Z. Dolgoshein, B. A. Dohmae, T. Donega, M. Donini, J. Dopke, J. Doria, A. Dotti, A. Dova, M. T. Doxiadis, A. D. Doyle, A. T. Drasal, Z. Dris, M. Dubbert, J. Dube, S. Duchovni, E. Duckeck, G. Dudarev, A. Dudziak, F. Duehrssen, M. Duflot, L. Dufour, M. -A. Dunford, M. Yildiz, H. Duran Duxfield, R. Dwuznik, M. Dueren, M. Ebke, J. Eckweiler, S. Edmonds, K. Edwards, C. A. Egorov, K. Ehrenfeld, W. Ehrich, T. Eifert, T. Eigen, G. Einsweiler, K. Eisenhandler, E. Ekelof, T. El Kacimi, M. Ellert, M. Elles, S. Ellinghaus, F. Ellis, K. Ellis, N. Elmsheuser, J. Elsing, M. Emeliyanov, D. Engelmann, R. Engl, A. Epp, B. Eppig, A. Erdmann, J. Ereditato, A. Eriksson, D. Ernst, J. Ernst, M. Ernwein, J. Errede, D. Errede, S. Ertel, E. Escalier, M. Escobar, C. Espinal Curull, X. Esposito, B. Etienvre, A. I. Etzion, E. Evans, H. Fabbri, L. Fabre, C. Facius, K. Fakhrutdinov, R. M. Falciano, S. Fang, Y. Fanti, M. Farbin, A. Farilla, A. Farley, J. Farooque, T. Farrington, S. M. Farthouat, P. Fassnacht, P. Fassouliotis, D. Fatholahzadeh, B. Fayard, L. Febbraro, R. Federic, P. Fedin, O. L. Fedorko, W. Feligioni, L. Felzmann, C. U. Feng, C. Feng, E. J. Fenyuk, A. B. Ferencei, J. Ferland, J. Fernandes, B. Fernando, W. Ferrag, S. Ferrando, J. Ferrara, V. Ferrari, A. Ferrari, P. Ferrari, R. Ferrer, A. Ferrer, M. L. Ferrere, D. Ferretti, C. Fiascaris, M. Fiedler, F. Filipcic, A. Filippas, A. Filthaut, F. Fincke-Keeler, M. Fiolhais, M. C. N. Fiorini, L. Firan, A. Fischer, G. Fisher, M. J. Flechl, M. Fleck, I. Fleckner, J. Fleischmann, P. Fleischmann, S. Flick, T. Castillo, L. R. Flores Flowerdew, M. J. Martin, T. Fonseca Fopma, J. Formica, A. Forti, A. Fortin, D. Fournier, D. Fowler, A. J. Fowler, K. Fox, H. Francavilla, P. Franchino, S. Francis, D. Franklin, M. Franz, S. Fraternali, M. Fratina, S. Freestone, J. French, S. T. Froeschl, R. Froidevaux, D. Frost, J. A. Fukunaga, C. Torregrosa, E. Fullana Fuster, J. Gabaldon, C. Gabizon, O. Gadfort, T. Gadomski, S. Gagliardi, G. Gagnon, P. Galea, C. Gallas, E. J. Gallo, V. Gallop, B. J. Gallus, P. Galyaev, E. Gan, K. K. Gao, Y. S. Gaponenko, A. Garcia-Sciveres, M. Garcia, C. Navarro, J. E. Garcia Gardner, R. W. Garelli, N. Garitaonandia, H. Garonne, V. Gatti, C. Gaudio, G. Gauzzi, P. Gavrilenko, I. L. Gay, C. Gaycken, G. Gazis, E. N. Ge, P. Gee, C. N. P. Geich-Gimbel, Ch. Gellerstedt, K. Gemme, C. Genest, M. H. Gentile, S. Georgatos, F. George, S. Gershon, A. Ghazlane, H. Ghodbane, N. Giacobbe, B. Giagu, S. Giakoumopoulou, V. Giangiobbe, V. Gianotti, F. Gibbard, B. Gibson, A. Gibson, S. M. Gilbert, L. M. Gilchriese, M. Gilewsky, V. Gingrich, D. M. Ginzburg, J. Giokaris, N. Giordani, M. P. Giordano, R. Giorgi, F. M. Giovannini, P. Giraud, P. F. Giugni, D. Giusti, P. Gjelsten, B. K. Gladilin, L. K. Glasman, C. Glazov, A. Glitza, K. W. Glonti, G. L. Godfrey, J. Godlewski, J. Goebel, M. Goepfert, T. Goeringer, C. Goessling, C. Goettfert, T. Goldfarb, S. Goldin, D. Golling, T. Gomes, A. Fajardo, L. S. Gomez Goncalo, R. Gonella, L. Gong, C. Gonzalez de la Hoz, S. Gonzalez Silva, M. L. Gonzalez-Sevilla, S. Goodson, J. J. Goossens, L. Gordon, H. A. Gorelov, I. Gorfine, G. Gorini, B. Gorini, E. Gorisek, A. Gornicki, E. Gosdzik, B. Gosselink, M. Gostkin, M. I. Eschrich, I. Gough Gouighri, M. Goujdami, D. Goulette, M. P. Goussiou, A. G. Goy, C. Grabowska-Bold, I. Grafstroem, P. Grahn, K. -J. Grancagnolo, S. Grassi, V. Gratchev, V. Grau, N. Gray, H. M. Gray, J. A. Graziani, E. Green, B. Greenshaw, T. Greenwood, Z. D. Gregor, I. M. Grenier, P. Griesmayer, E. Griffiths, J. Grigalashvili, N. Grillo, A. A. Grimm, K. Grinstein, S. Grishkevich, Y. V. Groh, M. Groll, M. Gross, E. Grosse-Knetter, J. Groth-Jensen, J. Grybel, K. Guicheney, C. Guida, A. Guillemin, T. Guler, H. Gunther, J. Guo, B. Gusakov, Y. Gutierrez, A. Gutierrez, P. Guttman, N. Gutzwiller, O. Guyot, C. Gwenlan, C. Gwilliam, C. B. Haas, A. Haas, S. Haber, C. Hadavand, H. K. Hadley, D. R. Haefner, P. Haider, S. Hajduk, Z. Hakobyan, H. Haller, J. Hamacher, K. Hamilton, A. Hamilton, S. Han, L. Hanagaki, K. Hance, M. Handel, C. Hanke, P. Hansen, J. R. Hansen, J. B. Hansen, J. D. Hansen, P. H. Hansson, P. Hara, K. Hare, G. A. Harenberg, T. Harrington, R. D. Harris, O. M. Harrison, K. Hartert, J. Hartjes, F. Harvey, A. Hasegawa, S. Hasegawa, Y. Hassani, S. Haug, S. Hauschild, M. Hauser, R. Havranek, M. Hawkes, C. M. Hawkings, R. J. Hayakawa, T. Hayward, H. S. Haywood, S. J. Head, S. J. Hedberg, V. Heelan, L. Heim, S. Heinemann, B. Heisterkamp, S. Helary, L. Heller, M. Hellman, S. Helsens, C. Hemperek, T. Henderson, R. C. W. Henke, M. Henrichs, A. Correia, A. M. Henriques Henrot-Versille, S. Hensel, C. Henss, T. Hernandez Jimenez, Y. Hershenhorn, A. D. Herten, G. Hertenberger, R. Hervas, L. Hessey, N. P. Higon-Rodriguez, E. Hill, J. C. Hiller, K. H. Hillert, S. Hillier, S. J. Hinchliffe, I. Hines, E. Hirose, M. Hirsch, F. Hirschbuehl, D. Hobbs, J. Hod, N. Hodgkinson, M. C. Hodgson, P. Hoecker, A. Hoeferkamp, M. R. Hoffman, J. Hoffmann, D. Hohlfeld, M. Holy, T. Holzbauer, J. L. Homma, Y. Horazdovsky, T. Horn, C. Horner, S. Hostachy, J. -Y. Hou, S. Hoummada, A. Howe, T. Hrivnac, J. Hryn'ova, T. Hsu, P. J. Hsu, S. -C. Huang, G. S. Hubacek, Z. Hubaut, F. Huegging, F. Huffman, T. B. Hughes, E. W. Hughes, G. Huhtinen, M. Hurwitz, M. Husemann, U. Huseynov, N. Huston, J. Huth, J. Iacobucci, G. Iakovidis, G. Ibragimov, I. Iconomidou-Fayard, L. Idarraga, J. Iengo, P. Igonkina, O. Ikegami, Y. Ikeno, M. Ilchenko, Y. Iliadis, D. Ince, T. Ioannou, P. Iodice, M. Irles Quiles, A. Ishikawa, A. Ishino, M. Ishmukhametov, R. Isobe, T. Issever, C. Istin, S. Itoh, Y. Ivashin, A. V. Iwanski, W. Iwasaki, H. Izen, J. M. Izzo, V. Jackson, B. Jackson, J. N. Jackson, P. Jaekel, M. R. Jain, V. Jakobs, K. Jakobsen, S. Jakubek, J. Jana, D. K. Jankowski, E. Jansen, E. Jantsch, A. Janus, M. Jarlskog, G. Jeanty, L. Plante, I. Jen-La Jenni, P. Jez, P. Jezequel, S. Ji, W. Jia, J. Jiang, Y. Belenguer, M. Jimenez Jin, S. Jinnouchi, O. Joffe, D. Johansen, M. Johansson, K. E. Johansson, P. Johnert, S. Johns, K. A. Jon-And, K. Jones, G. Jones, R. W. L. Jones, T. J. Jorge, P. M. Joseph, J. Juranek, V. Jussel, P. Kabachenko, V. V. Kaci, M. Kaczmarska, A. Kado, M. Kagan, H. Kagan, M. Kaiser, S. Kajomovitz, E. Kalinin, S. Kalinovskaya, L. V. Kama, S. Kanaya, N. Kaneda, M. Kantserov, V. A. Kanzaki, J. Kaplan, B. Kapliy, A. Kaplon, J. Kar, D. Karagounis, M. Karagoz, M. Karnevskiy, M. Kartvelishvili, V. Karyukhin, A. N. Kashil, L. Kasmi, A. Kass, R. D. Kastanas, A. Kataoka, M. Kataoka, Y. Katsoufis, E. Katzy, J. Kaushik, V. Kawagoe, K. Kawamoto, T. Kawamura, G. Kayl, M. S. Kazanin, V. A. Kazarinov, M. Y. Keates, J. R. Keeler, R. Kehoe, R. Keil, M. Kekelidze, C. D. Kelly, M. Kenyon, M. Kepka, O. Kerschen, N. Kersevan, B. P. Kersten, S. Kessoku, K. Khakzad, M. Khalil-zada, F. Khandanyan, H. Khanov, A. Kharchenko, D. Khodinov, A. Khomich, A. Khoriauli, G. Khovanskiy, N. Khovanskiy, V. Khramov, E. Khubua, J. Kim, H. Kim, M. S. Kim, P. C. Kim, S. H. Kind, O. King, B. T. King, M. Kirk, J. Kirsch, G. P. Kirsch, L. E. Kiryunin, A. E. Kisielewska, D. Kittelmann, T. Kladiva, E. Klein, M. Klein, U. Kleinknecht, K. Klemetti, M. Klier, A. Klimentov, A. Klingenberg, R. Klinkby, E. B. Klioutchnikova, T. Klok, P. F. Klous, S. Kluge, E. -E. Kluge, T. Kluit, P. Kluth, S. Knecht, N. S. Kneringer, E. Ko, B. R. Kobayashi, T. Kobel, M. Koblitz, B. Kocian, M. Kocnar, A. Kodys, P. Koeneke, K. Konig, A. C. Koenig, S. Koepke, L. Koetsveld, F. Koevesarki, P. Koffas, T. Koffeman, E. Kohn, F. Kohout, Z. Kohriki, T. Koi, T. Kolanoski, H. Kolesnikov, V. Koletsou, I. Koll, J. Kollar, D. Kolya, S. D. Komar, A. A. Komaragiri, J. R. Kondo, T. Kono, T. Konoplich, R. Konstantinidis, N. Koperny, S. Korcyl, K. Kordas, K. Korn, A. Korolkov, I. Korolkova, E. V. Korotkov, V. A. Kortner, O. Kortner, S. Kostka, P. Kostyukhin, V. V. Kotov, S. Kotov, V. M. Kourkoumelis, C. Koutsman, A. Kowalewski, R. Kowalski, T. Z. Kozanecki, W. Kozhin, A. S. Kral, V. Kramarenko, V. A. Kramberger, G. Krasny, M. W. Krasznahorkay, A. Kraus, J. Kraus, J. K. Kreisel, A. Krejci, F. Kretzchmar, J. Krieger, N. Krieger, P. Kroeninger, K. Kroha, H. Kroll, J. Kroseberg, J. Krstic, J. Kruchonak, U. Krueger, H. Krumshteyn, Z. V. Kruth, A. Kubota, T. Kuehn, S. Kugel, A. Kuhl, T. Kuhn, D. Kukhtin, V. Kulchitsky, Y. Kuleshov, S. Kummer, C. Kuna, M. Kunkle, J. Kupco, A. Kurashige, H. Kurata, M. Kurochkin, Y. A. Kus, V. Kuze, M. Kwee, R. La Rosa, A. La Rotonda, L. Labbe, J. Lacasta, C. Lacava, F. Lacker, H. Lacour, D. Lacuesta, V. R. Ladygin, E. Lafaye, R. Laforge, B. Lagouri, T. Lai, S. Lamanna, M. Lampen, C. L. Lampl, W. Lancon, E. Landgraf, U. Landon, M. P. J. Lane, J. L. Lankford, A. J. Lanni, F. Lantzsch, K. Lanza, A. Laplace, S. Lapoire, C. Laporte, J. F. Lari, T. Larner, A. Lassnig, M. Laurelli, P. Lavrijsen, W. Laycock, P. Lazarev, A. B. Lazzaro, A. Le Dortz, O. Le Guirriec, E. Le Menedeu, E. Lebedev, A. Lebel, C. LeCompte, T. Ledroit-Guillon, F. Lee, H. Lee, J. S. H. Lee, S. C. Lefebvre, M. Legendre, M. LeGeyt, B. C. Legger, F. Leggett, C. Lehmacher, M. Miotto, G. Lehmann Lei, X. Leitner, R. Lellouch, D. Lellouch, J. Lendermann, V. Leney, K. J. C. Lenz, T. Lenzen, G. Lenzi, B. Leonhardt, K. Leroy, C. Lessard, J. -R. Lester, C. C. Cheong, A. Leung Fook Leveque, J. Levin, D. Levinson, L. J. Leyton, M. Li, H. Li, X. Liang, Z. Liang, Z. Liberti, B. Lichard, P. Lichtnecker, M. Lie, K. Liebig, W. Lilley, J. N. Limosani, A. Limper, M. Lin, S. C. Linnemann, J. T. Lipeles, E. Lipinsky, L. Lipniacka, A. Liss, T. M. Lissauer, D. Lister, A. Litke, A. M. Liu, C. Liu, D. Liu, H. Liu, J. B. Liu, M. Liu, Y. Livan, M. Lleres, A. Lloyd, S. L. Lobodzinska, E. Loch, P. Lockman, W. S. Lockwitz, S. Loddenkoetter, T. Loebinger, F. K. Loginov, A. Loh, C. W. Lohse, T. Lohwasser, K. Lokajicek, M. Long, R. E. Lopes, L. Mateos, D. Lopez Losada, M. Loscutoff, P. Lou, X. Lounis, A. Loureiro, K. F. Lovas, L. Love, J. Love, P. A. Lowe, A. J. Lu, F. Lubatti, H. J. Luci, C. Lucotte, A. Ludwig, A. Ludwig, D. Ludwig, I. Luehring, F. Lumb, D. Luminari, L. Lund, E. Lund-Jensen, B. Lundberg, B. Lundberg, J. Lundquist, J. Lynn, D. Lys, J. Lytken, E. Ma, H. Ma, L. L. Goia, J. A. Macana Maccarrone, G. Macchiolo, A. Macek, B. Machado Miguens, J. Mackeprang, R. Madaras, R. J. Mader, W. F. Maenner, R. Maeno, T. Maettig, P. Maettig, S. Magalhaes Martins, P. J. Magradze, E. Mahalalel, Y. Mahboubi, K. Mahmood, C. Maiani, A. Maidantchik, C. Maio, A. Majewski, S. Makida, Y. Makouski, M. Makovec, N. Mal, P. Malecki, Pa. Malecki, P. Maleev, V. P. Malek, F. Mallik, U. Malon, D. Maltezos, S. Malyshev, V. Malyukov, S. Mameghani, R. Mamuzic, J. Mandelli, L. Mandic, I. Mandrysch, R. Maneira, J. Mangeard, P. S. Manjavidze, I. D. Mann, A. Manning, P. M. Manousakis-Katsikakis, A. Mansoulie, B. Mapelli, A. Mapelli, L. March, L. Marchand, J. F. Marchese, F. Marchiori, G. Marcisovsky, M. Marino, C. P. Marroquim, F. Marshall, Z. Marti-Garcia, S. Martin, A. J. Martin, B. Martin, B. Martin, F. F. Martin, J. P. Martin, T. A. Latour, B. Martin Dit Martinez, M. Outschoorn, V. Martinez Martyniuk, A. C. Marzano, F. Marzin, A. Masetti, L. Mashimo, T. Mashinistov, R. Masik, J. Maslennikov, A. L. Massa, I. Massol, N. Mastroberardino, A. Masubuchi, T. Matricon, P. Matsunaga, H. Matsushita, T. Mattravers, C. Maxfield, S. J. Mayne, A. Mazini, R. Mazur, M. Mc Kee, S. P. McCarn, A. McCarthy, R. L. McCubbin, N. A. McFarlane, K. W. McGlone, H. Mchedlidze, G. McMahon, S. J. McPherson, R. A. Meade, A. Mechnich, J. Mechtel, M. Medinnis, M. Meera-Lebbai, R. Meguro, T. Mehlhase, S. Mehta, A. Meier, K. Meirose, B. Melachrinos, C. Garcia, B. R. Mellado Mendoza Navas, L. Meng, Z. Menke, S. Meoni, E. Mermod, P. Merola, L. Meroni, C. Merritt, F. S. Messina, A. M. Metcalfe, J. Mete, A. S. Meyer, J. -P. Meyer, J. Meyer, J. Meyer, T. C. Meyer, W. T. Miao, J. Michal, S. Micu, L. Middleton, R. P. Migas, S. Mijovic, L. Mikenberg, G. Mikestikova, M. Mikuz, M. Miller, D. W. Mills, W. J. Mills, C. Milov, A. Milstead, D. A. Milstein, D. Minaenko, A. A. Minano, M. Minashvili, I. A. Mincer, A. I. Mindur, B. Mineev, M. Ming, Y. Mir, L. M. Mirabelli, G. Misawa, S. Misiejuk, A. Mitrevski, J. Mitsou, V. A. Mitsui, S. Miyagawa, P. S. Miyazaki, K. Mjornmark, J. U. Moa, T. Moeller, V. Moenig, K. Moeser, N. Mohr, W. Mohrdieck-Moeck, S. Moles-Valls, R. Molina-Perez, J. Monk, J. Monnier, E. Montesano, S. Monticelli, F. Moore, R. W. Herrera, C. Mora Moraes, A. Morais, A. Morel, J. Morello, G. Moreno, D. Moreno Llacer, M. Morettini, P. Morii, M. Morley, A. K. Mornacchi, G. Morris, J. D. Moser, H. G. Mosidze, M. Moss, J. Mount, R. Mountricha, E. Mouraviev, S. V. Moyse, E. J. W. Mudrinic, M. Mueller, F. Mueller, J. Mueller, K. Mueller, T. A. Muenstermann, D. Muir, A. Munwes, Y. Murray, W. J. Mussche, I. Musto, E. Myagkov, A. G. Myska, M. Nadal, J. Nagai, K. Nagano, K. Nagasaka, Y. Nairz, A. M. Nakamura, K. Nakano, I. Nanava, G. Napier, A. Nash, M. Nation, N. R. Nattermann, T. Naumann, T. Navarro, G. Nderitu, S. K. Neal, H. A. Nebot, E. Nechaeva, P. Negri, A. Negri, G. Nelson, A. Nelson, S. Nelson, T. K. Nemecek, S. Nemethy, P. Nepomuceno, A. A. Nessi, M. Neubauer, M. S. Neusiedl, A. Neves, R. M. Nevski, P. Nickerson, R. B. Nicolaidou, R. Nicolas, L. Nicoletti, G. Nicquevert, B. Niedercorn, F. Nielsen, J. Nikiforov, A. Nikolaev, K. Nikolic-Audit, I. Nikolopoulos, K. Nilsen, H. Nilsson, P. Nisati, A. Nishiyama, T. Nisius, R. Nodulman, L. Nomachi, M. Nomidis, I. Nordberg, M. Nordkvist, B. Notz, D. Novakova, J. Nozaki, M. Nozicka, M. Nugent, I. M. Nuncio-Quiroz, A. -E. Hanninger, G. Nunes Nunnemann, T. Nurse, E. O'Neil, D. C. O'Shea, V. Oakham, E. G. Oberlack, H. Ochi, A. Oda, S. Odaka, S. Odier, J. Ogren, H. Oh, A. Oh, S. H. Ohm, C. C. Ohshima, T. Ohsugi, T. Okada, S. Okawa, H. Okumura, Y. Okuyama, T. Olchevski, A. G. Oliveira, M. Damazio, D. Oliveira Oliver Garcia, E. Olivito, D. Olszewski, A. Olszowska, J. Omachi, C. Onofre, A. Onyisi, P. U. E. Oram, C. J. Oreglia, M. J. Oren, Y. Orestano, D. Orlov, I. Barrera, C. Oropeza Orr, R. S. Ortega, E. O. Osculati, B. Ospanov, R. Osuna, C. Otero y Garzon, G. Ottersbach, J. P. Ould-Saada, F. Ouraou, A. Ouyang, Q. Owen, M. Owen, S. Oyarzun, A. Ozcan, V. E. Ozturk, N. Pacheco Pages, A. Padilla Aranda, C. Paganis, E. Paige, F. Pajchel, K. Palestini, S. Pallin, D. Palma, A. Palmer, J. D. Pan, Y. B. Panagiotopoulou, E. Panes, B. Panikashvili, N. Panitkin, S. Pantea, D. Panuskova, M. Paolone, V. Papadopoulou, Th. D. Park, S. J. Park, W. Parker, M. A. Parodi, F. Parsons, J. A. Parzefall, U. Pasqualucci, E. Passeri, A. Pastore, F. Pastore, Fr. Pasztor, G. Pataraia, S. Patel, N. Pater, J. R. Patricelli, S. Pauly, T. Pecsy, M. Morales, M. I. Pedraza Peleganchuk, S. V. Peng, H. Penson, A. Penwell, J. Perantoni, M. Perez, K. Perez Codina, E. Perez Garcia-Estan, M. T. Reale, V. Perez Perini, L. Pernegger, H. Perrino, R. Persembe, S. Perus, P. Peshekhonov, V. D. Petersen, B. A. Petersen, T. C. Petit, E. Petridou, C. Petrolo, E. Petrucci, F. Petschull, D. Petteni, M. Pezoa, R. Pfeifer, B. Phan, A. Phillips, A. W. Piacquadio, G. Piccaro, E. Piceinini, M. Piegaia, R. Pilcher, J. E. Pilkington, A. D. Pina, J. Pinamonti, M. Pinfold, J. L. Pinto, B. Pizio, C. Placakyte, R. Plamondon, M. Pleier, M. -A. Poblaguev, A. Poddar, S. Podlyski, F. Poggioli, L. Pohl, M. Polci, F. Polesello, G. Policicchio, A. Polini, A. Poll, J. Polychronakos, V. Pomeroy, D. Pommes, K. Pontecorvo, L. Pope, B. G. Popeneciu, G. A. Popovic, D. S. Poppleton, A. Bueso, X. Porten Porter, R. Pospelov, G. E. Pospisil, S. Potekhin, M. Potrap, I. N. Potter, C. J. Potter, C. T. Potter, K. P. Poulard, G. Poveda, J. Prabhu, R. Pralavorio, P. Prasad, S. Pravahan, R. Pribyl, L. Price, D. Price, L. E. Prichard, P. M. Prieur, D. Primavera, M. Prokofiev, K. Prokoshin, F. Protopopescu, S. Proudfoot, J. Prudent, X. Przysiezniak, H. Psoroulas, S. Ptacek, E. Purdham, J. Purohit, M. Puzo, P. Pylypchenko, Y. Qian, J. Qian, W. Qin, Z. Quadt, A. Quarrie, D. R. Quayle, W. B. Quinonez, F. Raas, M. Radeka, V. Radescu, V. Radics, B. Rador, T. Ragusa, F. Rahal, G. Rahimi, A. M. Rajagopalan, S. Rammensee, M. Rammes, M. Rauscher, F. Rauter, E. Raymond, M. Read, A. L. Rebuzzi, D. M. Redelbach, A. Redlinger, G. Reece, R. Reeves, K. Reinherz-Aronis, E. Reinschi, A. Reisinger, I. Reljic, D. Rembser, C. Ren, Z. L. Renkel, P. Rescia, S. Rescigno, M. Resconi, S. Resende, B. Reznicek, P. Rezvani, R. Richards, A. Richter, R. Richter-Was, E. Ridel, M. Rijpstra, M. Rijssenbeek, M. Rimoldi, A. Rinaldi, L. Rios, R. R. Riu, I. Rizatdinova, F. Rizvi, E. Roa Romero, D. A. Robertson, S. H. Robichaud-Veronneau, A. Robinson, D. Robinson, J. E. M. Robinson, M. Robson, A. de Lima, J. G. Rocha Roda, C. Dos Santos, D. Roda Rodriguez, D. Garcia, Y. Rodriguez Roe, S. Rohne, O. Rojo, V. Rolli, S. Romaniouk, A. Romanov, V. M. Romeo, G. Maltrana, D. Romero Roos, L. Ros, E. Rosati, S. Rosenbaum, G. A. Rosselet, L. Rossetti, V. Rossi, L. P. Rotaru, M. Rothberg, J. Rousseau, D. Royon, C. R. Rozanov, A. Rozen, Y. Ruan, X. Ruckert, B. Ruckstuhl, N. Rud, V. I. Rudolph, G. Ruehr, F. Ruggieri, F. Ruiz-Martinez, A. Rumyantsev, L. Rurikova, Z. Rusakovich, N. A. Rutherfoord, J. P. Ruwiedel, C. Ruzicka, P. Ryabov, Y. F. Ryan, P. Rybkin, G. Rzaeva, S. Saavedra, A. F. Sadrozinski, H. F-W. Sadykov, R. Tehrani, F. Safai Sakamoto, H. Salamanna, G. Salamon, A. Saleem, M. Salihagic, D. Salnikov, A. Salt, J. Ferrando, B. M. Salvachua Salvatore, D. Salvatore, F. Salvucci, A. Salzburger, A. Sampsonidis, D. Samset, B. H. Sandaker, H. Sander, H. G. Sanders, M. P. Sandhoff, M. Sandhu, R. Sandstroem, R. Sandvoss, S. Sankey, D. P. C. Sansoni, A. Rios, C. Santamarina Santoni, C. Santonico, R. Saraiva, J. G. Sarangi, T. Sarkisyan-Grinbaum, E. Sarri, F. Sasaki, O. Sasao, N. Satsounkevitch, I. Sauvage, G. Savard, P. Savine, A. Y. Savinov, V. Sawyer, L. Saxon, D. H. Says, L. P. Sbarra, C. Sbrizzi, A. Scannicchio, D. A. Schaarschmidt, J. Schacht, P. Schaefer, U. Schaetzel, S. Schaffer, A. C. Schaile, D. Schamberger, R. D. Schamov, A. G. Scharf, V. Schegelsky, V. A. Scheirich, D. Schernau, M. Scherzer, M. I. Schiavi, C. Schieck, J. Schioppa, M. Schlenker, S. Schmidt, E. Sehmieden, K. Schmitt, C. Schmitz, M. Schoening, A. Sehott, M. Schouten, D. Schovancova, J. Schram, M. Schreiner, A. Schroeder, C. Schroer, N. Schroers, M. Schultes, J. Schultz-Coulon, H. -C. Schumacher, J. W. Schumacher, M. Schumm, B. A. Schune, Ph. Schwanenberger, C. Schwartzman, A. Schwemling, Ph. Schwienhorst, R. Schwierz, R. Schwindling, J. Scott, W. G. Searcy, J. Sedykh, E. Segura, E. Seidel, S. C. Seiden, A. Seifert, F. Seixas, J. M. Sekhniaidze, G. Seliverstov, D. M. Sellden, B. Semprini-Cesari, N. Serfon, C. Serin, L. Seuster, R. Severini, H. Sevior, M. E. Sfyrla, A. Shabalina, E. Shamim, M. Shan, L. Y. Shank, J. T. Shao, Q. T. Shapiro, M. Shatalov, P. B. Shaw, K. Sherman, D. Sherwood, P. Shibata, A. Shimojima, M. Shin, T. Shmeleva, A. Shochet, M. J. Shupe, M. A. Sicho, P. Sidoti, A. Siegert, F. Siegrist, J. Sijacki, Dj. Silbert, O. Silver, Y. Silverstein, D. Silverstein, S. B. Simak, V. Simic, Lj. Simion, S. Simmons, B. Simonyan, M. Sinervo, P. Sinev, N. B. Sipica, V. Siragusa, G. Sisakyan, A. N. Sivoklokov, S. Yu. Sjolin, J. Sjursen, T. B. Skovpen, K. Skubic, P. Slater, M. Slavicek, T. Sliwa, K. Sloper, J. Smakhtin, V. Smirnov, S. Yu. Smirnov, Y. Smirnova, L. N. Smirnova, O. Smith, B. C. Smith, D. Smith, K. M. Smizanska, M. Smolek, K. Snesarev, A. A. Snow, S. W. Snow, J. Snuverink, J. Snyder, S. Soares, M. Sobie, R. Sodomka, J. Soffer, A. Solans, C. A. Solar, M. Solc, J. Camillocci, E. Solfaroli Solodkov, A. A. Solovyanov, O. V. Sondericker, J. Sopko, V. Sopko, B. Sosebee, M. Soukharev, A. Spagnolo, S. Spano, F. Spighi, R. Spigo, G. Spila, F. Spiwoks, R. Spousta, M. Spurlock, B. St Denis, R. D. Stahl, T. Stahlman, J. Stamen, R. Stanecka, E. Stanek, R. W. Stanescu, C. Stapnes, S. Starchenko, E. A. Stark, J. Staroba, P. Starovoitov, P. Stavina, P. Steele, G. Steinbach, P. Steinberg, P. Stekl, I. Stelzer, B. Stelzer, H. J. Stelzer-Chilton, O. Stenzel, H. Stevenson, K. Stewart, G. A. Stockton, M. C. Stoerig, K. Stoicea, G. Stonjek, S. Strachota, P. Stradling, A. R. Straessner, A. Strandberg, J. Strandberg, S. Strandlie, A. Strang, M. Strauss, M. Strizenec, P. Stroehmer, R. Strom, D. M. Stroynowski, R. Strube, J. Stugu, B. Sturm, P. Soh, D. A. Su, D. Sugaya, Y. Sugimoto, T. Suhr, C. Suita, K. Suk, M. Sulin, V. V. Sultansoy, S. Sumida, T. Sun, X. Sundermann, J. E. Suruliz, K. Sushkov, S. Susinno, G. Sutton, M. R. Suzuki, Y. Sykora, I. Sykora, T. Szymocha, T. Sanchez, J. Ta, D. Tackmann, K. Tafard, A. Tafirout, R. Taga, A. Takahashi, I. Takai, H. Takashima, R. Takeda, H. Takeshita, T. Talby, M. Talyshev, A. Tamsett, M. C. Tanaka, J. Tanaka, R. Tanaka, S. Tanaka, S. Tani, K. Tapprogge, S. Tardif, D. Tarem, S. Tarrade, F. Tartarelli, G. F. Tas, P. Tasevsky, M. Tassi, E. Tatarkhanov, M. Taylor, C. Taylor, F. E. Taylor, G. N. Taylor, W. Castanheira, M. Teixeira Dias Teixeira-Dias, P. Ten Kate, H. Teng, P. K. Tennenbaum-Katan, Y. D. Terada, S. Terashi, K. Terron, J. Terwort, M. Testa, M. Teuscher, R. J. Therhaag, J. Thioye, M. Thoma, S. Thomas, J. P. Thompson, E. N. Thompson, P. D. Thompson, P. D. Thompson, R. J. Thompson, A. S. Thomson, E. Thun, R. P. Tic, T. Tikhomirov, V. O. Tikhonov, Y. A. Tipton, P. Viegas, F. J. Tique Aires Tisserant, S. Toczek, B. Todorov, T. Todorova-Nova, S. Toggerson, B. Tojo, J. Tokar, S. Tokunaga, K. Tokushuku, K. Tollefson, K. Tomoto, M. Tompkins, L. Toms, K. Tonoyan, A. Topfel, C. Topilin, N. D. Torchiani, I. Torrence, E. Torro Pastor, E. Toth, J. Touchard, F. Tovey, D. R. Trefzger, T. Tremblet, L. Tricoli, A. Trigger, I. M. Trincaz-Duvoid, S. Trinh, T. N. Tripiana, M. F. Triplett, N. Trischuk, W. Trivedi, A. Trocme, B. Troncon, C. Trzupek, A. Tsarouchas, C. Tseng, J. C-L. Tsiakiris, M. Tsiareshka, P. V. Tsionou, D. Tsipolitis, G. Tsiskaridze, V. Tskhadadze, E. G. Tsukerman, I. I. Tsulaia, V. Tsung, J. -W. Tsuno, S. Tsybychev, D. Tuggle, J. M. Turecek, D. Cakir, I. Turk Turlay, E. Tuts, P. M. Twomey, M. S. Tylmad, M. Tyndel, M. Uchida, K. Ueda, I. Ueno, R. Ugland, M. Uhlenbrock, M. Uhrmacher, M. Ukegawa, F. Unal, G. Undrus, A. Unel, G. Unno, Y. Urbaniec, D. Urkovsky, E. Urquijo, P. Urrejola, P. Usai, G. Uslenghi, M. Vacavant, L. Vacek, V. Vachon, B. Valisen, S. Valente, P. Valentinetti, S. Valkar, S. Valladolid Gallego, E. Vallecorsa, S. Valls Ferrer, J. A. van der Graaf, H. van der Kraaij, E. van der Poel, E. van der Ster, D. van Eldik, N. van Gemmeren, P. van Kesteren, Z. van Vulpen, I. Vandelli, W. Vaniachine, A. Vankov, P. Vannucci, F. Vari, R. Varnes, E. W. Varouchas, D. Vartapetian, A. Varvell, K. E. Vassilakopoulos, V. I. Vazeille, F. Vellidis, C. Veloso, F. Veneziano, S. Ventura, A. Ventura, D. Venturi, M. Venturi, N. Vercesi, V. Verducci, M. Verkerke, W. Vermeulen, J. C. Vetterli, M. C. Vichou, I. Vickey, T. Viehhauser, G. H. A. Villa, M. Villani, E. G. Villaplana Perez, M. Vilucchi, E. Vincter, M. G. Vinek, E. Vinogradov, V. B. Viret, S. Virzi, J. Vitale, A. Vitells, O. Vivarelli, I. Vives Vaque, E. Vlachos, S. Vlasak, M. Vlasov, N. Vogel, A. Vokac, P. Volpi, M. von der Schmitt, H. von Loeben, J. von Radziewski, H. von Toerne, E. Vorobel, V. Vorwerk, V. Vos, M. Voss, R. Voss, T. T. Vossebeld, J. H. Vranjes, N. Milosavljevic, M. Vranjes Vrba, V. Vreeswijk, M. Anh, T. Vu Vudragovic, D. Vuillermet, R. Vukotic, I. Wagner, P. Walbersloh, J. Walder, J. Walker, R. Walkowiak, W. Wall, R. Wang, C. Wang, H. Wang, J. Wang, S. M. Warburton, A. Ward, C. P. Warsinsky, M. Wastie, R. Watkins, P. M. Watson, A. T. Watson, M. F. Watts, G. Watts, S. Waugh, A. T. Waugh, B. M. Weber, M. D. Weber, M. Weber, M. S. Weber, P. Weidberg, A. R. Weingarten, J. Weiser, C. Wellenstein, H. Wells, P. S. Wenaus, T. Wendler, S. Weng, Z. Wengler, T. Wenig, S. Wermes, N. Werner, M. Werner, P. Werth, M. Werthenbach, U. Wessels, M. Whalen, K. White, A. White, M. J. White, S. Whitehead, S. R. Whiteson, D. Whittington, D. Wicek, F. Wicke, D. Wickens, F. J. Wiedenmann, W. Wielers, M. Wienemann, P. Wiglesworth, C. Wiik, L. A. M. Wildauer, A. Wildt, M. A. Wilkens, H. G. Williams, E. Williams, H. H. Willocq, S. Wilson, J. A. Wilson, M. G. Wilson, A. Wingerter-Seez, I. Winklmeier, F. Wittgen, M. Wolter, M. W. Wolters, H. Wosiek, B. K. Wotschack, J. Woudstra, M. J. Wraight, K. Wright, C. Wright, D. Wrona, B. Wu, S. L. Wu, X. Wulf, E. Wynne, B. M. Xaplanteris, L. Xella, S. Xie, S. Xu, D. Yamada, M. Yamamoto, A. Yamamoto, K. Yamamoto, S. Yamamura, T. Yamaoka, J. Yamazaki, T. Yamazaki, Y. Yan, Z. Yang, H. Yang, U. K. Yang, Z. Yao, W. -M. Yao, Y. Yasu, Y. Ye, J. Ye, S. Yilmaz, M. Yoosoofmiya, R. Yorita, K. Yoshida, R. Young, C. Youssef, S. P. Yu, D. Yu, J. Yuan, L. Yurkewicz, A. Zaidan, R. Zaitsev, A. M. Zajacova, Z. Zambrano, V. Zanello, L. Zaytsev, A. Zeitnitz, C. Zeller, M. Zemla, A. Zendler, C. Zenin, O. Zenis, T. Zenonos, Z. Zenz, S. Zerwas, D. della Porta, G. Zevi Zhan, Z. Zhang, H. Zhang, J. Zhang, Q. Zhang, X. Zhao, L. Zhao, T. Zhao, Z. Zhemchugov, A. Zhong, J. Zhou, B. Zhou, N. Zhou, Y. Zhu, C. C. Zhu, H. Zhu, Y. Zhuang, X. Zhuravlov, V. Zimmermann, R. Zimmermann, S. Zimmermann, S. Ziolkowski, M. Zivkovic, L. Zobernig, G. Zoccoli, A. zur Nedden, M. Zutshi, V. CA ATLAS Collaboration GP ATLAS Collaboration CERN TI Studies of the performance of the ATLAS detector using cosmic-ray muons SO PERFORMANCE OF THE ATLAS DECTECTOR LA English DT Article; Book Chapter ID CALORIMETER AB Muons from cosmic-ray interactions in the atmosphere provide a high-statistics source of particles that can be used to study the performance and calibration of the ATLAS detector. Cosmic-ray mons can penetrate to the cavern and deposit energy in all detector subsystems. Such events have played an important role in the commissioning of the detector since the start of the installation phase in 2005 and were particularly important for understanding the detector performance in the time prior to the arrival of the first LHC beams. Global cosmic-ray runs were undertaken in both 2008 and 2009 and these data have been used through to the early phases of collision data-taking as a tool for calibration, alignment and detector monitoring. These large datasets have also been used for detector performance studies, including investigations that rely on the combined performance of different subsystems. This paper presents the results of performance studies related to combined tracking, lepton identification and the reconstruction of jets and missing transverse energy. Results are compared to expectations based on a cosmic-ray event generator and a full simulation of the detector response. C1 [Aad, G.; Ahles, F.; Aktas, A.; Anders, C. F.; Beckingham, M.; Bernhard, R.; Bianchi, R. M.; Bitenc, U.; Bruneliere, R.; Caron, S.; Christov, A.; Dietrich, J.; Dingfelder, J.; Flechl, M.; Hartert, J.; Herten, G.; Horner, S.; Jakobs, K.; Janus, M.; Kuehn, S.; Lai, S.; Landgraf, U.; Lohwasser, K.; Ludwig, I.; Lumb, D.; Mahboubi, K.; Mazur, M.; Meirose, B.; Mohr, W.; Nilsen, H.; Parzefall, U.; Pfeifer, B.; Bueso, X. Porten; Rammensee, M.; Rurikova, Z.; Schmidt, E.; Schumacher, M.; Stoerig, K.; Sundermann, J. E.; Thoma, S.; Venturi, M.; Vivarelli, I.; von Radziewski, H.; Warsinsky, M.; Weiser, C.; Werner, M.; Wiik, L. A. M.; Xie, S.; Zimmermann, S.] Univ Freiburg, Fak Math & Phys, D-79104 Freiburg, Germany. [Alam, M. S.; Ernst, J.; Mahmood, C.; Rojo, V.] SUNY Albany, Albany, NY 12222 USA. [Caron, B.; Chan, K.; Gingrich, D. M.; Kim, M. S.; Moore, R. W.; Pinfold, J. L.] Univ Alberta, Dept Phys, Ctr Particle Phys, Edmonton, AB T6G 2G7, Canada. [Cakir, O.; Ciftci, A. K.; Ciftci, R.; Persembe, S.] Ankara Univ, Dept Phys, Fac Sci, TR-061000 Ankara, Turkey. [Yildiz, H. Duran] Dumlupinar Univ, Fac Arts & Sci, Dept Phys, Kutahya, Turkey. [Yilmaz, M.] Gazi Univ, Fac Arts & Sci, Dept Phys, TR-06500 Ankara, Turkey. [Sultansoy, S.] TOBB Univ Econ & Technol, Fac Arts & Sci, Div Phys, TR-06560 Ankara, Turkey. [Cakir, I. Turk] Turkish Atom Energy Commiss, TR-06530 Ankara, Turkey. [Arnaez, O.; Aurousseau, M.; Berger, N.; Di Ciaccio, L.; Doan, T. K. O.; El Kacimi, M.; Elles, S.; Goy, C.; Guillemin, T.; Helary, L.; Hryn'ova, T.; Ibragimov, I.; Iengo, P.; Jezequel, S.; Kataoka, M.; Koletsou, I.; Labbe, J.; Lafaye, R.; Laplace, S.; Massol, N.; Przysiezniak, H.; Sauvage, G.; Todorov, T.; Wingerter-Seez, I.] Univ Savoie, LAPP, CNRS, IN2P3, Annecy Le Vieux, France. [Blair, R. E.; Chekanov, S.; Cranshaw, J.; Torregrosa, E. Fullana; LeCompte, T.; Malon, D.; Nodulman, L.; Price, L. E.; Proudfoot, J.; Ferrando, B. M. Salvachua; Stanek, R. W.; van Gemmeren, P.; Vaniachine, A.; Yoshida, R.; Zhang, J.; Zhang, Q.] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Cheu, E.; Johns, K. A.; Kaushik, V.; Lampen, C. L.; Lampl, W.; Lei, X.; Loch, P.; Mal, P.; Rutherfoord, J. P.; Savine, A. Y.; Shupe, M. A.; Varnes, E. W.] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. [Brandt, A.; De, K.; Farbin, A.; Kim, H.; Nilsson, P.; Ozturk, N.; Pravahan, R.; Sarkisyan-Grinbaum, E.; Sosebee, M.; Spurlock, B.; Stradling, A. R.; Usai, G.; Vartapetian, A.; White, A.; Yu, J.] Univ Texas Arlington, Dept Phys, Arlington, TX 76019 USA. [Antonaki, A.; Arabidze, G.; Fassouliotis, D.; Giakoumopoulou, V.; Giokaris, N.; Ioannou, P.; Kourkoumelis, C.; Manousakis-Katsikakis, A.; Nikolopoulos, K.; Vellidis, C.] Univ Athens, Dept Phys, GR-15771 Athens, Greece. [Alexopoulos, T.; Argyropoulos, T.; Avramidou, R.; Dris, M.; Filippas, A.; Gazis, E. N.; Georgatos, F.; Iakovidis, G.; Katsoufis, E.; Maltezos, S.; Panagiotopoulou, E.; Papadopoulou, Th. D.; Tsarouchas, C.; Tsipolitis, G.; Vlachos, S.; Xaplanteris, L.] Natl Tech Univ Athens, Dept Phys, Iroon Polytech 9, GR-15780 Zografos, Greece. [Abdinov, O.; Aliyev, M.; Huseynov, N.; Khalil-zada, F.; Rzaeva, S.] Azerbaijan Acad Sci, Inst Phys, AZ-143 Baku, Azerbaijan. [Abdallah, J.; Bosman, M.; Casado, M. P.; Cavalli-Sforza, M.; Conidi, M. C.; Demirkoz, B.; Espinal Curull, X.; Fiorini, L.; Grinstein, S.; Helsens, C.; Korolkov, I.; Martinez, M.; Meoni, E.; Mir, L. M.; Nadal, J.; Osuna, C.; Pacheco Pages, A.; Padilla Aranda, C.; Perez Codina, E.; Riu, I.; Rossetti, V.; Segura, E.; Sushkov, S.; Vives Vaque, E.; Volpi, M.; Vorwerk, V.] Univ Autonoma Barcelona, Inst Fis Altes Energies, IFAE, ES-08193 Bellaterra, Barcelona, Spain. [Borjanovic, I.; Krstic, J.; Popovic, D. S.; Reljic, D.; Sijacki, Dj.; Simic, Lj.; Vranjes, N.; Milosavljevic, M. Vranjes; Vudragovic, D.] Univ Belgrade, Inst Phys, Belgrade 11001, Serbia. [Bozovic-Jelisavcic, I.; Mudrinic, M.] Vinca Inst Nucl Sci, Belgrade 11000, Serbia. [Burgess, T.; Eigen, G.; Kastanas, A.; Lipniacka, A.; Sandaker, H.; Sjursen, T. B.; Stugu, B.; Tonoyan, A.; Ugland, M.] Univ Bergen, Dept Phys & Technol, NO-5007 Bergen, Norway. [Arguin, J. -F.; Bach, A. M.; Barnett, R. M.; Beringer, J.; Biesiada, J.; Calafiura, R.; Ciocio, A.; Dube, S.; Einsweiler, K.; Gaponenko, A.; Garcia-Sciveres, M.; Gilchriese, M.; Haber, C.; Heinemann, B.; Hinchliffe, I.; Hsu, S. -C.; Joseph, J.; Korn, A.; Lavrijsen, W.; Leggett, C.; Loscutoff, P.; Lys, J.; Madaras, R. J.; Quarrie, D. R.; Scherzer, M. I.; Shapiro, M.; Siegrist, J.; Strandberg, S.; Tatarkhanov, M.; Tompkins, L.; Valisen, S.; Varouchas, D.; Virzi, J.; Yao, W. -M.; Yao, Y.; Zenz, S.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA 94720 USA. [Aliev, M.; Giorgi, F. M.; Grancagnolo, S.; Kind, O.; Kolanoski, H.; Kwee, R.; Lacker, H.; Leyton, M.; Lohse, T.; Mandrysch, R.; Nikiforov, A.; Garcia, Y. Rodriguez; Sidoti, A.; zur Nedden, M.] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany. [Battaglia, A.; Beck, H. P.; Borer, C.; Ereditato, A.; Gallo, V.; Haug, S.; Topfel, C.; Venturi, N.; Weber, M. D.; Weber, M. S.] Univ Bern, Albert Einstein Ctr Fundamental Phys, High Energy Phys Lab, CH-3012 Bern, Switzerland. [Bracinik, J.; Charlton, D. G.; Collins, N. J.; Curtis, C. J.; Hadley, D. R.; Harrison, K.; Hawkes, C. M.; Head, S. J.; Hillier, S. J.; Lilley, J. N.; Martin, T. A.; Palmer, J. D.; Slater, M.; Thomas, J. P.; Thompson, P. D.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Wilson, J. A.] Univ Birmingham, Sch Phys & Astron, Birmingham B15 2TT, W Midlands, England. [Akdogan, T.; Arik, M.; Istin, S.; Rador, T.] Bogazici Univ, Fac Sci, Dept Phys, TR-80815 Bebek, Turkey. [Cetin, S. A.] Dogus Univ, Fac Arts & Sci, Dept Phys, TR-34722 Istanbul, Turkey. [Beddall, A. J.; Beddall, A.; Bingul, A.; Diblen, F.] Gaziantep Univ, Dept Engn Phys, Fac Engn, TR-27310 Sehitkamil, Gaziantep, Turkey. Istanbul Tech Univ, Fac Arts & Sci, Dept Phys, TR-34469 Istanbul, Turkey. [Antonelli, S.; Bertin, A.; Bindi, M.; Caforio, D.; Ciocca, C.; De Castro, S.; Di Sipio, R.; Fabbri, L.; Massa, I.; Piceinini, M.; Sbarra, C.; Sbrizzi, A.; Semprini-Cesari, N.; Valentinetti, S.; Villa, M.; Vitale, A.; Zoccoli, A.] Univ Bologna, Dipartimento Fis, IT-40127 Bologna, Italy. [Antonelli, S.; Bellagambala, L.; Bertin, A.; Bindi, M.; Boscherini, D.; Bruni, A.; Bruni, G.; Bruschi, M.; Caforio, D.; Ciocca, C.; Corradi, M.; De Castro, S.; Di Sipio, R.; Fabbri, L.; Giacobbe, B.; Giusti, P.; Massa, I.; Piceinini, M.; Polini, A.; Rinaldi, L.; Sbarra, C.; Sbrizzi, A.; Semprini-Cesari, N.; Spighi, R.; Valentinetti, S.; Villa, M.; Vitale, A.; Zoccoli, A.] INFN Sez Bologna, IT-40127 Bologna, Italy. [Alhroob, M.; Arutinov, D.; Barbero, M.; Bartsch, D.; Brock, I.; Cristinziani, M.; Desch, K.; Fleischmann, S.; Gaycken, G.; Geich-Gimbel, Ch.; Gonella, L.; Hemperek, T.; Huegging, F.; Ince, T.; Karagounis, M.; Khoriauli, G.; Koevesarki, P.; Kostyukhin, V. V.; Kraus, J. K.; Kroseberg, J.; Krueger, H.; Kruth, A.; Lehmacher, M.; Loddenkoetter, T.; Moeser, N.; Mueller, K.; Nanava, G.; Nattermann, T.; Nderitu, S. K.; Nuncio-Quiroz, A. -E.; Hanninger, G. Nunes; Prabhu, R.; Psoroulas, S.; Radics, B.; Ruwiedel, C.; Sehmieden, K.; Schmitz, M.; Ta, D.; Therhaag, J.; Tsung, J. -W.; Uhlenbrock, M.; Vlasov, N.; Vogel, A.; von Toerne, E.; Wermes, N.; Wienemann, P.; Zendler, C.; Zimmermann, R.; Zimmermann, S.] Univ Bonn, Inst Phys, D-53115 Bonn, Germany. [Ahlen, S. P.; Butler, J. M.; Harrington, R. D.; Love, J.; Nation, N. R.; Shank, J. T.; Yan, Z.; Youssef, S. P.] Boston Univ, Dept Phys, Boston, MA 02215 USA. [Aefsky, S.; Amelung, C.; Bensinger, J. R.; Blocker, C.; Kirsch, L. E.; Pomeroy, D.; Wellenstein, H.] Brandeis Univ, Dept Phys, Waltham, MA 02454 USA. [Caloba, L. P.; Cerqueira, A. S.; Coura Torres, R.; do Vale, M. A. B.; Maidantchik, C.; Marroquim, F.; Nepomuceno, A. A.; Perantoni, M.; Seixas, J. M.] Univ Fed Rio de Janeiro, COPPE EE IF, BR-21945970 Rio De Janeiro, Brazil. Univ Sao Paulo, Inst Fis, BR-05508900 Sao Paulo, Brazil. [Adams, D. L.; Assamagan, K.; Baker, M. D.; Begel, M.; Caballero, J.; Chen, H.; Tcherniatine, V.; Salgado, P. E. De Castro Faria; Deng, W.; Dhullipudi, R.; Ernst, M.; Gadfort, T.; Gibbard, B.; Gordon, H. A.; Greenwood, Z. D.; Klimentov, A.; Lanni, F.; Lissauer, D.; Lynn, D.; Ma, H.; Maeno, T.; Majewski, S.; Misawa, S.; Nevski, P.; Damazio, D. Oliveira; Paige, F.; Panitkin, S.; Park, W.; Pleier, M. -A.; Polychronakos, V.; Potekhin, M.; Protopopescu, S.; Purohit, M.; Radeka, V.; Rajagopalan, S.; Redlinger, G.; Rescia, S.; Sawyer, L.; Smirnov, Y.; Snyder, S.; Sondericker, J.; Steinberg, P.; Takai, H.; Tarrade, F.; Trivedi, A.; Undrus, A.; Wenaus, T.; White, S.; Ye, S.; Yu, D.] Brookhaven Natl Lab, Dept Phys, RHIC & ATLAS Comp Facil, Upton, NY 11973 USA. [Alexa, C.; Badescu, E.; Boldea, V.; Caprini, I.; Caprini, M.; Caramarcu, C.; Chesneanu, D.; Constantinescu, S.; Dita, P.; Dita, S.; Micu, L.; Pantea, D.; Popeneciu, G. A.; Rotaru, M.; Stoicea, G.] Natl Inst Phys & Nucl Engn, R-077125 Bucharest, Romania. [Darlea, G. L.] Univ Politehn Bucuresti, Sect 6, Bucharest 060042, Romania. W Univ Timisoara, Timisoara, Romania. [Gonzalez Silva, M. L.; Otero y Garzon, G.; Piegaia, R.; Romeo, G.] Univ Buenos Aires, FCEyN, Dto Fis, RA-1428 Buenos Aires, DF, Argentina. [Barber, T.; Barlow, N.; Batley, J. R.; Brochu, F. M.; Carter, J. R.; Chapman, J. D.; Cowden, C.; French, S. T.; Frost, J. A.; Hill, J. C.; Lester, C. C.; Moeller, V.; Parker, M. A.; Phillips, A. W.; Robinson, D.; Ward, C. P.; White, M. J.] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England. [Archambault, J. P.; Asner, D.; Heelan, L.; Khakzad, M.; Liu, C.; Oakham, E. G.; Ueno, R.; Vincter, M. G.; Whalen, K.] Carleton Univ, Dept Phys, Ottawa, ON K1S 5B6, Canada. [Aleksa, M.; Andeen, T.; Anghinolfi, F.; Arfaoui, S.; Baak, M. A.; Bachas, K.; Pedrosa, F. Baltasar Dos Santos; Battistin, M.; Bellina, F.; Beltramello, O.; Berge, D.; Blanchot, G.; Bogaerts, J. A.; Boyd, J.; Braem, A.; Bremer, J.; Burckhart, H.; Butin, F.; Campana, S.; Garrido, M. D. M. Capeans; Carli, T.; Catinaccio, A.; Cattai, A.; Cerri, A.; Chromek-Burckhart, D.; Cote, D.; Danielson, H. O.; Branco, M. De Oliveira; Dell'Acqua, A.; Delmastro, M.; Di Girolamo, A.; Di Girolamo, B.; Dittus, F.; Dobos, D.; Dobson, E.; Dudarev, A.; Duehrssen, M.; Eifert, T.; Ellis, N.; Elsing, M.; Fabre, C.; Farthouat, P.; Fassnacht, P.; Fedorko, W.; Francis, D.; Franz, S.; Froeschl, R.; Froidevaux, D.; Garelli, N.; Garonne, V.; Gianotti, F.; Goossens, L.; Gorini, B.; Grafstroem, P.; Haas, S.; Haider, S.; Hauschild, M.; Hawkings, R. J.; Correia, A. M. Henriques; Hervas, L.; Hoecker, A.; Huhtinen, M.; Ibragimov, I.; Jaekel, M. R.; Jenni, P.; Belenguer, M. Jimenez; Kaplon, J.; Kerschen, N.; Klioutchnikova, T.; Koblitz, B.; Koffas, T.; Kollar, D.; La Rosa, A.; Lamanna, M.; Lantzsch, K.; Lassnig, M.; Miotto, G. Lehmann; Lichard, P.; Lundberg, J.; Mapelli, A.; Mapelli, L.; Marchand, J. F.; Martin, B.; Messina, A. M.; Meyer, T. C.; Michal, S.; Molina-Perez, J.; Mornacchi, G.; Nairz, A. M.; Negri, G.; Nessi, M.; Nicquevert, B.; Nordberg, M.; Palestini, S.; Pastore, Fr.; Pauly, T.; Pernegger, H.; Petersen, B. A.; Piacquadio, G.; Pommes, K.; Poppleton, A.; Poulard, G.; Pribyl, L.; Prokofiev, K.; Raymond, M.; Rembser, C.; Dos Santos, D. Roda; Roe, S.; Salzburger, A.; Scannicchio, D. A.; Schlenker, S.; Sehott, M.; Sfyrla, A.; Sherman, D.; Sloper, J.; Spigo, G.; Spiwoks, R.; Stanecka, E.; Stockton, M. C.; Sumida, T.; Tackmann, K.; Ten Kate, H.; Viegas, F. J. Tique Aires; Torchiani, I.; Tremblet, L.; Tricoli, A.; Unal, G.; van der Ster, D.; Vandelli, W.; Vinek, E.; Voss, R.; Vuillermet, R.; Wells, P. S.; Wenig, S.; Werner, P.; Wilkens, H. G.; Winklmeier, F.; Wotschack, J.; Zajacova, Z.] CERN, CH-1211 Geneva 23, Switzerland. [Anderson, K. J.; Boveia, A.; Canelli, F.; Choudalakis, G.; Costin, T.; Dunford, M.; Feng, E. J.; Gardner, R. W.; Hurwitz, M.; Plante, I. Jen-La; Kapliy, A.; Melachrinos, C.; Merritt, F. S.; Onyisi, P. U. E.; Oreglia, M. J.; Pilcher, J. E.; Shochet, M. J.; Tuggle, J. M.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Diaz, M. A.; Panes, B.; Quinonez, F.; Maltrana, D. Romero; Urrejola, P.] Pontificia Univ Catolica Chile, Fac Fis, Dept Fis, Santiago 22, Chile. [Brooks, W. K.; Kuleshov, S.; Oyarzun, A.; Pezoa, R.; Prokoshin, F.] Univ Tecn Federico Santa Maria, Dept Fis, Valparaiso, Chile. [Bai, Y.; Jin, S.; Lu, F.; Ouyang, Q.; Shan, L. Y.] Chinese Acad Sci, Inst High Energy Phys, CN-100049 Beijing, Peoples R China. [Gong, C.; Han, L.; Jiang, Y.; Liu, M.; Liu, Y.; Zhao, Z.] Univ Sci & Technol China, Dept Modern Phys, CN-230026 Hefei, Anhui, Peoples R China. [Chen, S.] Nanjing Univ, Dept Phys, CN-210093 Nanjing, Jiangsu, Peoples R China. [Feng, C.; Ge, P.; Miao, J.; Sun, X.; Zhan, Z.; Zhang, X.; Zhu, C. C.] Shandong Univ, High Energy Phys Grp, CN-250100 Jinan, Shandong, Peoples R China. [Busato, E.; Calvet, D.; Cinca, D.; Febbraro, R.; Ghodbane, N.; Guicheney, C.; Pallin, D.; Podlyski, F.; Santoni, C.; Says, L. P.; Vazeille, F.; Viret, S.] Univ Clermont Ferrand, Clermont Univ, CNRS, Lab Phys Corpusculaire,IN2P3, FR-63177 Aubiere, France. [Angerami, A.; Brooijmans, G.; Caughron, S.; Cooke, M.; Copic, K.; Grau, N.; Gray, H. M.; Hughes, E. W.; Mateos, D. Lopez; Marshall, Z.; Parsons, J. A.; Penson, A.; Perez, K.; Reale, V. Perez; Spano, F.; Tuts, P. M.; Urbaniec, D.; Williams, E.; Wulf, E.; Zhou, N.; Zivkovic, L.] Columbia Univ, Nevis Lab, Irvington, NY 10533 USA. [Dam, M.; Facius, K.; Hansen, J. R.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Heisterkamp, S.; Jakobsen, S.; Jez, P.; Lundquist, J.; Mackeprang, R.; Petersen, T. C.; Simonyan, M.; Xella, S.] Univ Copenhagen, Niels Bohr Inst, DK-2100 Copenhagen 0, Denmark. [Capua, M.; Crosetti, G.; La Rotonda, L.; Mastroberardino, A.; Morello, G.; Salvatore, D.; Schioppa, M.; Susinno, G.; Tassi, E.] INFN Grp Coll Cosenza, IT-87036 Arcavacata Di Rende, Italy. [Capua, M.; Crosetti, G.; La Rotonda, L.; Mastroberardino, A.; Morello, G.; Salvatore, D.; Schioppa, M.; Susinno, G.; Tassi, E.] Univ Calabria, Dipartimento Fis, IT-87036 Arcavacata Di Rende, Italy. [Bold, T.; Dabrowski, W.; Dwuznik, M.; Grabowska-Bold, I.; Kisielewska, D.; Koperny, S.; Kowalski, T. Z.; Mindur, B.; Toczek, B.] AGH Univ Sci & Technol, Fac Phys & Appl Comp Sci, PL-30059 Krakow, Poland. [Banas, E.; de Renstrom, P. A. Bruckman; Gornicki, E.; Hajduk, Z.; Iwanski, W.; Kaczmarska, A.; Korcyl, K.; Malecki, Pa.; Malecki, P.; Olszewski, A.; Olszowska, J.; Richter-Was, E.; Szymocha, T.; Trzupek, A.; Wolter, M. W.; Wosiek, B. K.; Zemla, A.] Polish Acad Sci, Henryk Niewodniczanski Inst Nucl Phys, PL-31342 Krakow, Poland. [Daya, R. K.; Yagci, K. Dindar; Firan, A.; Goldin, D.; Hadavand, H. K.; Hoffman, J.; Howe, T.; Ilchenko, Y.; Ishmukhametov, R.; Joffe, D.; Kasmi, A.; Kehoe, R.; Liang, Z.; Renkel, P.; Rios, R. R.; Stroynowski, R.; Ye, J.] So Methodist Univ, Dept Phys, Dallas, TX 75275 USA. [Ahsan, M.; Galyaev, E.; Izen, J. M.; Lou, X.; Reeves, K.] Univ Texas Dallas, Richardson, TX 75080 USA. [Antunovic, B.; Bechtle, P.; Kuutmann, E. Bergeaas; Boehler, M.; Brandt, G.; Brunet, S.; Ehrenfeld, W.; Ferrara, V.; Fischer, G.; Glazov, A.; Goebel, M.; Fajardo, L. S. Gomez; Gosdzik, B.; Gregor, I. M.; Haller, J.; Hiller, K. H.; Husemann, U.; Johnert, S.; Kama, S.; Karnevskiy, M.; Katzy, J.; Koeneke, K.; Kono, T.; Kostka, P.; Lobodzinska, E.; Ludwig, D.; Maettig, S.; Mamuzic, J.; Medinnis, M.; Mehlhase, S.; Moenig, K.; Naumann, T.; Notz, D.; Nozicka, M.; Petschull, D.; Placakyte, R.; Qin, Z.; Stelzer, H. J.; Terwort, M.; Wildt, M. A.; Zhu, H.] DESY, D-22603 Hamburg, Germany. [Bunse, M.; Goessling, C.; Hirsch, F.; Klingenberg, R.; Muenstermann, D.; Reisinger, I.; Walbersloh, J.] TU Dortmund, DE-44221 Dortmund, Germany. [Goepfert, T.; Kar, D.; Kobel, M.; Leonhardt, K.; Ludwig, A.; Mader, W. F.; Prudent, X.; Schaarschmidt, J.; Schumacher, J. W.; Schwierz, R.; Seifert, F.; Steinbach, P.; Straessner, A.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01069 Dresden, Germany. [Arce, A. T. H.; Benjamin, D. P.; Bocci, A.; Fowler, A. J.; Klinkby, E. B.; Ko, B. R.; Oh, S. H.; Wang, C.; Yamaoka, J.] Duke Univ, Dept Phys, Durham, NC 27708 USA. [Buckley, A. G.; Clark, P. J.; Wynne, B. M.] Univ Edinburgh, Sch Phys & Astron, Edinburgh EH9 3JZ, Midlothian, Scotland. [Griesmayer, E.] Fachhsch Wiener Neustadt, AT-2700 Wiener Neustadt, Austria. [Annovi, A.; Antonelli, M.; Beretta, M.; Bilokon, H.; Cerutti, F.; Curatolo, M.; Esposito, B.; Ferrer, M. L.; Gatti, C.; Laurelli, P.; Maccarrone, G.; Nicoletti, G.; Salvucci, A.; Sansoni, A.; Testa, M.; Vilucchi, E.; Zambrano, V.] INFN Lab Nazl Frascati, IT-00044 Frascati, Italy. [Abdelalim, A. A.; Alexandre, G.; Backes, M.; Bell, P. J.; Bell, W. H.; Berglund, E.; Blondel, A.; Bucci, F.; Clark, A.; Dao, V.; Ferrere, D.; Gadomski, S.; Navarro, J. E. Garcia; Gonzalez-Sevilla, S.; Goulette, M. P.; Hamilton, A.; Lister, A.; Latour, B. Martin Dit; Herrera, C. Mora; Pasztor, G.; Pohl, M.; Robichaud-Veronneau, A.; Rosselet, L.; Urquijo, P.; Wu, X.] Univ Geneva, Sect Phys, CH-1211 Geneva 4, Switzerland. [Barberis, D.; Beccherle, R.; Coccaro, A.; Cornelissen, T.; Darbo, G.; Gagliardi, G.; Gemme, C.; Morettini, P.; Osculati, B.; Parodi, F.; Rossi, L. P.; Schiavi, C.] INFN Sez Genova, IT-16146 Genoa, Italy. [Barberis, D.; Coccaro, A.; Cornelissen, T.; Gagliardi, G.; Osculati, B.; Parodi, F.; Schiavi, C.] Univ Genoa, Dipartimento Fis, IT-16146 Genoa, Italy. [Chikovani, L.; Djobava, T.; Khubua, J.; Magradze, E.; Mchedlidze, G.; Mosidze, M.; Tsiskaridze, V.; Tskhadadze, E. G.] Georgian Acad Sci, Inst Phys, GE-380077 Tbilisi, Rep of Georgia. [Chikovani, L.; Djobava, T.; Khubua, J.; Magradze, E.; Mchedlidze, G.; Mosidze, M.; Tsiskaridze, V.; Tskhadadze, E. G.] Tbilisi State Univ, HEP Inst, GE-380086 Tbilisi, Rep of Georgia. [Astvatsatourov, A.; Dueren, M.; Stenzel, H.] Univ Giessen, Inst Phys 2, D-35392 Giessen, Germany. [Allwood-Spiers, S. E.; Bates, R. L.; Britton, D.; Bussey, P.; Buttar, C. M.; Collins-Tooth, C.; D'Auria, S.; Doherty, T.; Doyle, A. T.; Ferrag, S.; Kenyon, M.; McGlone, H.; Moraes, A.; O'Shea, V.; Barrera, C. Oropeza; Robson, A.; Saxon, D. H.; Smith, K. M.; St Denis, R. D.; Steele, G.; Stewart, G. A.; Thompson, A. S.; Wraight, K.; Wright, C.] Univ Glasgow, Dept Phys & Astron, Glasgow G12 8QQ, Lanark, Scotland. [Ay, C.; Blumenschein, U.; Brandt, O.; Erdmann, J.; Grosse-Knetter, J.; Henrichs, A.; Hensel, C.; Keil, M.; Kohn, F.; Krieger, N.; Kroeninger, K.; Mann, A.; Meyer, J.; Morel, J.; Park, S. J.; Quadt, A.; Shabalina, E.; Uhrmacher, M.; Weber, P.; Weingarten, J.] Univ Gottingen, Inst Phys 2, D-37077 Gottingen, Germany. [Albrand, S.; Clement, B.; Collot, J.; Crepe-Renaudin, S.; Delsart, P. A.; Donini, J.; Hostachy, J. -Y.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Polci, F.; Stark, J.; Trocme, B.; Wang, J.] Univ Grenoble 1, CNRS, IN2P3, Lab Phys Subatom & Cosmol,INPG, FR-38026 Grenoble, France. [Addy, T. N.; Harvey, A.; McFarlane, K. W.; Shin, T.; Vassilakopoulos, V. I.] Hampton Univ, Dept Phys, Hampton, VA 23668 USA. [da Costa, J. Barreiro Guimaraes; Belloni, A.; Black, K. M.; Franklin, M.; Huth, J.; Jeanty, L.; Kagan, M.; Kashil, L.; Outschoorn, V. Martinez; Mills, C.; Morii, M.; Prasad, S.; Smith, B. C.; della Porta, G. Zevi] Harvard Univ, Lab Particle Phys & Cosmol, Cambridge, MA 02138 USA. [Andrei, V.; Childers, J. T.; Dietzsch, T. A.; Hanke, P.; Henke, M.; Khomich, A.; Kluge, E. -E.; Lendermann, V.; Meier, K.; Mueller, F.; Poddar, S.; Ruehr, F.; Scharf, V.; Schultz-Coulon, H. -C.; Stamen, R.; Wessels, M.] Heidelberg Univ, Kirchhoff Inst Phys, D-69120 Heidelberg, Germany. [Radescu, V.; Schaetzel, S.; Schoening, A.] Inst Phys, D-69120 Heidelberg, Germany. [Kugel, A.; Maenner, R.; Schroer, N.] Heidelberg Univ, Lehrstuhl Informat 5, ZITI, DE-68131 Mannheim, Germany. [Ohsugi, T.] Hiroshima Univ, Fac Sci, Higashihiroshima, Hiroshima 7398526, Japan. [Nagasaka, Y.] Hiroshima Inst Technol, Fac Appl Informat Sci, Hiroshima 7315193, Japan. [Cwetanski, P.; Egorov, K.; Evans, H.; Gagnon, P.; Jain, V.; Lowe, A. J.; Luehring, F.; Marino, C. P.; Ogren, H.; Penwell, J.; Price, D.; Whittington, D.] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. [Epp, B.; Jussel, P.; Kneringer, E.; Kuhn, D.; Rudolph, G.] Inst Astro & Teilchenphys, A-6020 Innsbruck, Austria. [Behera, P. K.; Limper, M.; Mallik, U.; Schreiner, A.; Zaidan, R.] Univ Iowa, Iowa City, IA 52242 USA. [Cochran, J.; Lebedev, A.; Mete, A. S.; Meyer, W. T.; Nelson, A.; Ruiz-Martinez, A.; Triplett, N.; Yamamoto, K.] Iowa State Univ, Ames High Energy Phys Grp, Dept Phys & Astron, Ames, IA 50011 USA. [Aleksandrov, I. N.; Barashkou, A.; Bardin, D. Y.; Bednyakov, V. A.; Boyko, I. R.; Budagov, I. A.; Chelkov, G. A.; Cheplakov, A.; Chepurnov, V. F.; Chizhov, M. V.; Dedovich, D. V.; Demichev, M.; Glonti, G. L.; Gostkin, M. I.; Grigalashvili, N.; Gusakov, Y.; Ibragimov, I.; Kalinovskaya, L. V.; Kazarinov, M. Y.; Kekelidze, C. D.; Kharchenko, D.; Khovanskiy, N.; Khramov, E.; Kolesnikov, V.; Kotov, V. M.; Kruchonak, U.; Krumshteyn, Z. V.; Kukhtin, V.; Ladygin, E.; Lazarev, A. B.; Malyukov, S.; Manjavidze, I. D.; Minashvili, I. A.; Mineev, M.; Nikolaev, K.; Olchevski, A. G.; Peshekhonov, V. D.; Romanov, V. M.; Rumyantsev, L.; Rusakovich, N. A.; Sadykov, R.; Sisakyan, A. N.; Topilin, N. D.; Vinogradov, V. B.; Zhemchugov, A.] JINR, RU-141980 Dubna, Moscow Region, Russia. [Amako, K.; Arai, Y.; Ikegami, Y.; Ikeno, M.; Ishino, M.; Iwasaki, H.; Kanzaki, J.; Kohriki, T.; Kondo, T.; Makida, Y.; Nagano, K.; Nozaki, M.; Odaka, S.; Sasaki, O.; Suzuki, Y.; Tanaka, S.; Terada, S.; Tojo, J.; Tokushuku, K.; Tsuno, S.; Unno, Y.; Yamamoto, A.; Yasu, Y.] KEK, High Energy Accelerator Res Org, Tsukuba, Ibaraki 3050801, Japan. [Hayakawa, T.; Homma, Y.; Ishikawa, A.; Kawagoe, K.; King, M.; Kurashige, H.; Matsushita, T.; Miyazaki, K.; Nishiyama, T.; Ochi, A.; Okada, S.; Omachi, C.; Suita, K.; Takeda, H.; Tani, K.; Tokunaga, K.; Yamazaki, Y.] Kobe Univ, Grad Sch Sci, Nada Ku, Kobe, Hyogo 6578501, Japan. [Sasao, N.] Kyoto Univ, Fac Sci, Sakyou Ku, Kyoto 6068502, Japan. [Takashima, R.] Kyoto Univ, Fushimi Ku, Kyoto 6128522, Japan. [Anduaga, X. S.; Dova, M. T.; Monticelli, F.; Tripiana, M. F.] Univ Nacl La Plata, Dept Fis, FCE, IFLP CONICET UNLP, RA-1900 La Plata, Buenos Aires, Argentina. [Borissov, G.; Bouhova-Thacker, E. V.; Catmore, J. R.; Cheatham, S.; Chilingarov, A.; Davidson, R.; De Mora, L.; Fox, H.; Henderson, R. C. W.; Hughes, G.; Jones, R. W. L.; Kartvelishvili, V.; Long, R. E.; Love, P. A.; Smizanska, M.; Walder, J.] Univ Lancaster, Dept Phys, Lancaster LA1 4YB, England. [Bianco, M.; Cataldi, G.; Chiodini, G.; Crupi, R.; Gorini, E.; Guida, A.; Perrino, R.; Primavera, M.; Spagnolo, S.; Ventura, A.] INFN Sez Lecce, IT-73100 Lecce, Italy. [Bianco, M.; Crupi, R.; Gorini, E.; Guida, A.; Spagnolo, S.; Ventura, A.] Univ Salento, Dipartimento Fis, IT-73100 Lecce, Italy. [Allport, P. P.; Austin, N.; Burdin, S.; D'Onofrio, M.; Dervan, P.; Greenshaw, T.; Gwilliam, C. B.; Hayward, H. S.; Jackson, J. N.; Jones, T. J.; King, B. T.; Klein, M.; Klein, U.; Kluge, T.; Kretzchmar, J.; Laycock, P.; Leney, K. J. C.; Maxfield, S. J.; Mehta, A.; Migas, S.; Prichard, P. M.; Vankov, P.; Vossebeld, J. H.; Wiglesworth, C.; Wrona, B.] Univ Liverpool, Oliver Lodge Lab, Liverpool L69 3BX, Merseyside, England. [Cindro, V.; Dolenc, I.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Macek, B.; Mandic, I.; Mijovic, L.; Mikuz, M.] Jozef Stefan Inst, SI-1000 Ljubljana, Slovenia. [Cindro, V.; Dolenc, I.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Macek, B.; Mandic, I.; Mijovic, L.; Mikuz, M.] Univ Ljubljana, Dept Phys, SI-1000 Ljubljana, Slovenia. [Adragna, P.; Beck, G. A.; Carter, A. A.; Cerrito, L.; Cooper, B. D.; Eisenhandler, E.; Ellis, K.; Landon, M. P. J.; Lloyd, S. L.; Martin, A. J.; Morris, J. D.; Piccaro, E.; Poll, J.; Rizvi, E.; Stevenson, K.; Castanheira, M. Teixeira Dias] Queen Mary Univ London, Dept Phys, London E1 4NS, England. [Alam, M. A.; Berry, T.; Boisvert, V.; Cooper-Smith, N. J.; Cowan, G.; Edwards, C. A.; Martin, T. Fonseca; George, S.; Goncalo, R.; Green, B.; Misiejuk, A.; Tamsett, M. C.; Teixeira-Dias, P.] Univ London, Dept Phys, Egham TW20 0EX, Surrey, England. [Asquith, L.; Baker, S.; Bernius, C.; Boeser, S.; Butterworth, J. M.; Byatt, T.; Campanelli, M.; Christidi, I. A.; Davison, A. R.; Dean, S.; Jansen, E.; Konstantinidis, N.; Monk, J.; Nash, M.; Nurse, E.; Ozcan, V. E.; Richards, A.; Robinson, J. E. M.; Sherwood, P.; Siegert, F.; Simmons, B.; Taylor, C.; Waugh, B. M.] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Beau, T.; Bordoni, S.; Calderini, G.; Cavalleri, P.; Chareyre, E.; De Cecco, S.; Derue, F.; Krasny, M. W.; Lacour, D.; Laforge, B.; Le Dortz, O.; Lellouch, J.; Marchiori, G.; Nikolic-Audit, I.; Ridel, M.; Roos, L.; Schwemling, Ph.; Trincaz-Duvoid, S.; Trinh, T. N.; Vannucci, F.; Yuan, L.] Univ Paris 07, Univ Paris 06, CNRS, Lab Phys Nucl & Hautes Energies,IN2P3, FR-75252 Paris 05, France. [Akesson, T. P. A.; Alonso, A.; Boelaert, N.; Groth-Jensen, J.; Hedberg, V.; Jarlskog, G.; Ji, W.; Lundberg, B.; Lytken, E.; Mjornmark, J. U.; Smirnova, O.] Lund Univ, Inst Fys, SE-22100 Lund, Sweden. [Barreiro, F.; Cantero, J.; Del Peso, J.; Gabaldon, C.; Glasman, C.; Lagouri, T.; March, L.; Nebot, E.; Terron, J.] Univ Autonoma Madrid, Dept Fis Teor, Fac Ciencias, ES-28049 Madrid, Spain. [Aharrouche, M.; Bendel, M.; Blum, W.; Buescher, V.; Eckweiler, S.; Edmonds, K.; Ellinghaus, F.; Ertel, E.; Fiedler, F.; Fleckner, J.; Goeringer, C.; Groll, M.; Handel, C.; Hohlfeld, M.; Kawamura, G.; Kleinknecht, K.; Koenig, S.; Koepke, L.; Masetti, L.; Moreno, D.; Neusiedl, A.; Sander, H. G.; Schaefer, U.; Schmitt, C.; Schroeder, C.; Siragusa, G.; Tapprogge, S.; Anh, T. Vu; Wicke, D.] Johannes Gutenberg Univ Mainz, Inst Phys, DE-55099 Mainz, Germany. [Almond, J.; Ask, S.; Brown, G.; Chavda, V.; Cox, B. E.; Da Via, C.; Forti, A.; Freestone, J.; Jones, G.; Keates, J. R.; Kelly, M.; Kolya, S. D.; Lane, J. L.; Loebinger, F. K.; Martyniuk, A. C.; Masik, J.; Miyagawa, P. S.; Oh, A.; Owen, M.; Pater, J. R.; Pilkington, A. D.; Potter, K. P.; Schwanenberger, C.; Snow, S. W.; Thompson, R. J.; Watts, S.; Wengler, T.; Yang, U. K.] Univ Manchester, Sch Phys & Astron, Manchester M13 9PL, Lancs, England. [Aoun, S.; Bee, C.; Clemens, J. C.; Coadou, Y.; Djama, F.; Feligioni, L.; Hoffmann, D.; Hubaut, F.; Kuna, M.; Lapoire, C.; Le Guirriec, E.; Leveque, J.; Monnier, E.; Odier, J.; Petit, E.; Pralavorio, P.; Rozanov, A.; Talby, M.; Tisserant, S.; Toth, J.; Touchard, F.; Vacavant, L.; Zhang, H.] Aix Marseille Univ, CPPM, CNRS, IN2P3, Marseille, France. [Brau, B.; Colon, G.; Dallapiccola, C.; Meade, A.; Moyse, E. J. W.; Thompson, E. N.; van Eldik, N.; Willocq, S.; Woudstra, M. J.] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA. [Corriveau, F.; Dufour, M. -A.; Guler, H.; Klemetti, M.; Potter, C. T.; Robertson, S. H.; Rios, C. Santamarina; Schram, M.; Vachon, B.; Warburton, A.] McGill Univ, High Energy Phys Grp, Montreal, PQ H3A 2T8, Canada. [Barberio, E. L.; Davey, W.; Davidson, N.; Felzmann, C. U.; Limosani, A.; Morley, A. K.; Phan, A.; Sevior, M. E.; Shao, Q. T.; Taylor, G. N.] Univ Melbourne, Sch Phys, Au Parkville, Vic 3010, Australia. [Armbruster, A. J.; Chapman, J. W.; Cirilli, M.; Dai, T.; Diehl, E. B.; Eppig, A.; Ferretti, C.; Goldfarb, S.; Levin, D.; Li, X.; Liu, H.; Liu, J. B.; Mc Kee, S. P.; Neal, H. A.; Panikashvili, N.; Purdham, J.; Qian, J.; Scheirich, D.; Strandberg, J.; Thun, R. P.; Wilson, A.; Yang, H.; Zhou, B.] Univ Michigan, Randall Lab 2477, Dept Phys, Ann Arbor, MI 48109 USA. [Abolins, M.; Brock, R.; Di Mattia, A.; Hauser, R.; Heim, S.; Holzbauer, J. L.; Huston, J.; Koll, J.; Kraus, J.; Linnemann, J. T.; Mangeard, P. S.; Martin, B.; Pope, B. G.; Ryan, P.; Schwienhorst, R.; Tollefson, K.] Michigan State Univ, Dept Phys & Astron, High Energy Phys Grp, E Lansing, MI 48824 USA. [Alimonti, G.; Andreazza, A.; Banfi, D.; Besana, M. I.; Carminati, L.; Cavalli, D.; Costa, G.; Dell'Asta, L.; Fanti, M.; Giugni, D.; Lari, T.; Lazzaro, A.; Mandelli, L.; Meroni, C.; Montesano, S.; Perini, L.; Pizio, C.; Ragusa, F.; Resconi, S.; Tartarelli, G. F.; Troncon, C.] INFN Sez Milano, IT-20133 Milan, Italy. [Andreazza, A.; Banfi, D.; Besana, M. I.; Carminati, L.; Dell'Asta, L.; Fanti, M.; Lazzaro, A.; Montesano, S.; Perini, L.; Pizio, C.; Ragusa, F.] Univ Milan, Dipartimento Fis, IT-20133 Milan, Italy. [Bogouch, A.; Kulchitsky, Y.; Kurochkin, Y. A.; Satsounkevitch, I.; Tsiareshka, P. V.] Natl Acad Sci Belarus, BI Stepanov Phys Inst, Minsk 220072, Byelarus. [Gilewsky, V.; Starovoitov, P.] NC PHEP BSU, Natl Sci & Educ Ctr Particle & High Energy Phys, Minsk 220040, Byelarus. [Taylor, F. E.] MIT, Dept Phys, Cambridge, MA 02139 USA. [Azuelos, G.; Banerjee, P.; Bouchami, J.; Davies, M.; Ferland, J.; Gutierrez, A.; Lebel, C.; Leroy, C.; Goia, J. A. Macana; Martin, J. P.] Univ Montreal, Grp Particle Phys, Montreal, PQ H3C 3J7, Canada. [Akimov, A. V.; Baranov, S. P.; Gavrilenko, I. L.; Komar, A. A.; Mouraviev, S. V.; Nechaeva, P.; Shmeleva, A.; Snesarev, A. A.; Sulin, V. V.; Tikhomirov, V. O.] Acad Sci, PN Lebedev Phys Inst, RU-117924 Moscow, Russia. [Artamonov, A.; Khovanskiy, V.; Shatalov, P. B.; Tsukerman, I. I.] Inst Theoret & Expt Phys ITEP, RU-117218 Moscow, Russia. [Belotskiy, K.; Bulekov, O.; Dolgoshein, B. A.; Kantserov, V. A.; Mashinistov, R.; Romaniouk, A.; Smirnov, S. Yu.] Moscow Engn & Phys Inst MEPhI, RU-115409 Moscow, Russia. [Gladilin, L. K.; Grishkevich, Y. V.; Kramarenko, V. A.; Rud, V. I.; Sivoklokov, S. Yu.; Smirnova, L. N.] Moscow MV Lomonosov State Univ, Skobeltsyn Inst Nucl Phys MSU SINP, Moscow 119991, Russia. [Adomeit, S.; Biebel, O.; Calfayan, P.; de Graat, J.; Duckeck, G.; Ebke, J.; Elmsheuser, J.; Engl, A.; Galea, C.; Genest, M. H.; Hertenberger, R.; Kummer, C.; Legger, F.; Lichtnecker, M.; Mameghani, R.; Mueller, T. A.; Nunnemann, T.; Rauscher, F.; Ruckert, B.; Sanders, M. P.; Schaile, D.; Serfon, C.; Walker, R.; Zhuang, X.] Univ Munich, Fak Phys, DE-85748 Garching, Germany. [Barillari, T.; Beimforde, M.; Bethke, S.; Cortiana, G.; D'Orazio, A.; Dannheim, D.; Dubbert, J.; Ehrich, T.; Flowerdew, M. J.; Giovannini, P.; Goettfert, T.; Groh, M.; Haefner, P.; Jantsch, A.; Kaiser, S.; Kiryunin, A. E.; Kluth, S.; Kortner, O.; Kortner, S.; Kotov, S.; Kroha, H.; Macchiolo, A.; Menke, S.; Mohrdieck-Moeck, S.; Moser, H. G.; Nisius, R.; Oberlack, H.; Pataraia, S.; Pospelov, G. E.; Potrap, I. N.; Rauter, E.; Richter, R.; Salihagic, D.; Schacht, P.; Schieck, J.; Seuster, R.; Stonjek, S.; von der Schmitt, H.; von Loeben, J.; Zhuravlov, V.] Max Planck Inst Phys & Astrophys, Werner Heisenberg Inst, D-80805 Munich, Germany. [Shimojima, M.] Nagasaki Inst Appl Sci, Nagasaki 8510193, Japan. [Hasegawa, S.; Itoh, Y.; Ohshima, T.; Okumura, Y.; Sugimoto, T.; Takahashi, I.; Tomoto, M.] Nagoya Univ, Grad Sch Sci, Chikusa Ku, Nagoya, Aichi 4648602, Japan. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Capasso, L.; Carlino, G.; Chiefari, G.; Conventi, F.; de Asmundis, R.; Della Pietra, M.; della Volpe, D.; Doria, A.; Giordano, R.; Iacobucci, G.; Izzo, V.; Merola, L.; Musto, E.; Patricelli, S.; Sekhniaidze, G.] INFN Sez Napoli, IT-80126 Naples, Italy. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Capasso, L.; Chiefari, G.; della Volpe, D.; Giordano, R.; Merola, L.; Musto, E.; Patricelli, S.] Univ Naples Federico II, Dipartimento Sci Fisiche, IT-80126 Naples, Italy. [Gorelov, I.; Hoeferkamp, M. R.; Metcalfe, J.; Seidel, S. C.; Toms, K.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. [Consonni, M.; De Groot, N.; Filthaut, F.; Klok, P. F.; Konig, A. C.; Koetsveld, F.; Raas, M.] Radboud Univ Nijmegen NIKHEF, Dept Expt High Energy Phys, NL-6525 AJ Nijmegen, Netherlands. [Bentvelsen, S.; Bobbink, G. J.; Bos, K.; Boterenbrood, H.; Colijn, A. P.; de Jong, P.; Doxiadis, A. D.; Ferrari, P.; Garitaonandia, H.; Gosselink, M.; Hartjes, F.; Hessey, N. P.; Igonkina, O.; Kayl, M. S.; Klous, S.; Kluit, P.; Koffeman, E.; Koutsman, A.; Lee, H.; Liebig, W.; Mechnich, J.; Mussche, I.; Ottersbach, J. P.; Rijpstra, M.; Ruckstuhl, N.; Salamanna, G.; Sandstroem, R.; Snuverink, J.; Tsiakiris, M.; Turlay, E.; van der Graaf, H.; van der Kraaij, E.; van der Poel, E.; van Kesteren, Z.; van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Vreeswijk, M.] Nikhef Natl Inst Subatom Phys, NL-1098 XG Amsterdam, Netherlands. [Bentvelsen, S.; Bobbink, G. J.; Bos, K.; Boterenbrood, H.; Colijn, A. P.; de Jong, P.; Doxiadis, A. D.; Ferrari, P.; Garitaonandia, H.; Gosselink, M.; Hartjes, F.; Hessey, N. P.; Igonkina, O.; Kayl, M. S.; Klous, S.; Kluit, P.; Koffeman, E.; Koutsman, A.; Lee, H.; Liebig, W.; Mechnich, J.; Mussche, I.; Ottersbach, J. P.; Rijpstra, M.; Ruckstuhl, N.; Salamanna, G.; Sandstroem, R.; Snuverink, J.; Tsiakiris, M.; Turlay, E.; van der Graaf, H.; van der Kraaij, E.; van der Poel, E.; van Kesteren, Z.; van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Vreeswijk, M.] Univ Amsterdam, NL-1098 XG Amsterdam, Netherlands. [Calkins, R.; Chakraborty, D.; de Lima, J. G. Rocha; Suhr, C.; Zutshi, V.] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. [Kazanin, V. A.; Malyshev, V.; Maslennikov, A. L.; Orlov, I.; Peleganchuk, S. V.; Schamov, A. G.; Skovpen, K.; Soukharev, A.; Talyshev, A.; Tikhonov, Y. A.; Zaytsev, A.] Budker Inst Nucl Phys BINP, RU-630090 Novosibirsk, Russia. [Budick, B.; Casadei, D.; Cranmer, K.; Djilkibaev, R.; Konoplich, R.; Krasznahorkay, A.; Mincer, A. I.; Nemethy, P.; Neves, R. M.; Shibata, A.; Zhao, L.] NYU, Dept Phys, New York, NY 10003 USA. [Fernando, W.; Fisher, M. J.; Gan, K. K.; Kagan, H.; Kass, R. D.; Loureiro, K. F.; Moss, J.; Rahimi, A. M.; Strang, M.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.] Okayama Univ, Fac Sci, Okayama 7008530, Japan. [Abbott, B.; Gutierrez, P.; Huang, G. S.; Jana, D. K.; Meera-Lebbai, R.; Saleem, M.; Severini, H.; Skubic, P.; Snow, J.; Strauss, M.] Univ Oklahoma, Homer L Dodge Dept Phys & Astron, Norman, OK 73019 USA. [Abi, B.; Khanov, A.; Rizatdinova, F.] Oklahoma State Univ, Dept Phys, Stillwater, OK 74078 USA. [Kocnar, A.] Palacky Univ, Olomouc 77207, Czech Republic. [Brau, J. E.; Ptacek, E.; Reinschi, A.; Robinson, M.; Searcy, J.; Shamim, M.; Sinev, N. B.; Strom, D. M.; Torrence, E.] Univ Oregon, Ctr High Energy Phys, Eugene, OR 97403 USA. [Abreu, H.; Arnault, C.; Barrillon, P.; Benoit, M.; Bernat, P.; Blanchard, J. -B.; Bourdarios, C.; Collard, C.; De Regie, J. B. De Vivie; Diglio, S.; Dudziak, F.; Duflot, L.; Escalier, M.; Fayard, L.; Fournier, D.; Heller, M.; Henrot-Versille, S.; Hrivnac, J.; Ibragimov, I.; Iconomidou-Fayard, L.; Kado, M.; Lounis, A.; Makovec, N.; Matricon, P.; Niedercorn, F.; Perus, P.; Poggioli, L.; Puzo, P.; Rousseau, D.; Ruan, X.; Rybkin, G.; Schaffer, A. C.; Serin, L.; Simion, S.; Tanaka, R.; Tonoyan, A.; Vukotic, I.; Wicek, F.; Zerwas, D.] Univ Paris 11, CNRS, LAL, IN2P3, F-91405 Orsay, France. [Hanagaki, K.; Hirose, M.; Meguro, T.; Nomachi, M.; Sugaya, Y.; Uchida, K.] Osaka Univ, Grad Sch Sci, Toyonaka, Osaka 5600043, Japan. [Bugge, L.; Buran, T.; Cameron, D.; Gjelsten, B. K.; Lund, E.; Ould-Saada, F.; Pajchel, K.; Pylypchenko, Y.; Read, A. L.; Rohne, O.; Samset, B. H.; Stapnes, S.; Strandlie, A.; Taga, A.] Univ Oslo, Dept Phys, NO-0316 Oslo 3, Norway. [Abdesselam, A.; Barr, A. J.; Beauchemin, Ph.; Buchanan, J.; Cooper-Sarkar, A. M.; Dehchar, M.; Doglioni, C.; Farrington, S. M.; Ferrando, J.; Fiascaris, M.; Fopma, J.; Gallas, E. J.; Gibson, S. M.; Gilbert, L. M.; Gwenlan, C.; Huffman, T. B.; Issever, C.; Karagoz, M.; Kirsch, G. P.; Larner, A.; Mattravers, C.; Mermod, P.; Nickerson, R. B.; Tseng, J. C-L.; Vickey, T.; Viehhauser, G. H. A.; Wastie, R.; Weidberg, A. R.; Whitehead, S. R.] Univ Oxford, Dept Phys, Oxford OK1 3RH, England. [Bellomo, M.; Conta, C.; Ferrari, R.; Franchino, S.; Fraternali, M.; Gaudio, G.; Lanza, A.; Livan, M.; Negri, A.; Polesello, G.; Rebuzzi, D. M.; Rimoldi, A.; Uslenghi, M.; Vercesi, V.] INFN Sez Pavia, IT-27100 Pavia, Italy. [Conta, C.; Franchino, S.; Fraternali, M.; Livan, M.; Negri, A.; Rebuzzi, D. M.; Rimoldi, A.; Uslenghi, M.] Univ Pavia, Dipartimento Fis Nucl & Teor, IT-27100 Pavia, Italy. [Alison, J.; Degenhardt, J.; Donega, M.; Fratina, S.; Hance, M.; Hines, E.; Jackson, B.; Kroll, J.; Kunkle, J.; LeGeyt, B. C.; Lipeles, E.; Martin, F. F.; Olivito, D.; Ospanov, R.; Reece, R.; Stahlman, J.; Thomson, E.; Wagner, P.; Williams, H. H.] Univ Penn, Dept Phys, High Energy Phys Grp, Philadelphia, PA 19104 USA. [Fedin, O. L.; Gratchev, V.; Maleev, V. P.; Ryabov, Y. F.; Schegelsky, V. A.; Sedykh, E.; Seliverstov, D. M.] Petersburg Nucl Phys Inst, RU-188300 Gatchina, Russia. [Cascella, M.; Cavasinni, V.; Del Prete, T.; Dotti, A.; Francavilla, P.; Giangiobbe, V.; Roda, C.; Sarri, F.; Zenonos, Z.] INFN Sez Pisa, IT-56127 Pisa, Italy. [Cascella, M.; Cavasinni, V.; Del Prete, T.; Dotti, A.; Francavilla, P.; Giangiobbe, V.; Roda, C.; Sarri, F.; Zenonos, Z.] Univ Pisa, Dipartimento Fis E Fermi, IT-56127 Pisa, Italy. [Boudreau, J.; Boulahouache, C.; Cleland, W.; Kittelmann, T.; Mueller, J.; Paolone, V.; Prieur, D.; Savinov, V.; Tsulaia, V.; Wendler, S.; Yoosoofmiya, R.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Amorim, A.; Anjos, N.; Silva, J.; Carvalho, J.; Conde Muino, P.; Fernandes, B.; Fiolhais, M. C. N.; Gomes, A.; Jorge, P. M.; Lopes, L.; Machado Miguens, J.; Magalhaes Martins, P. J.; Maio, A.; Maneira, J.; Morais, A.; Oliveira, M.; Onofre, A.; Palma, A.; Pina, J.; Pinto, B.; Saraiva, J. G.; Soares, M.; Veloso, F.; Wolters, H.] Lab Instrumentacao & Fis Expt Particulas LIP, P-1000149 Lisbon, Portugal. [Aguilar-Saavedra, J. A.; Castro, N. F.] Univ Granada, Dept Fis Teor & Cosmos, E-18071 Granada, Spain. [Aguilar-Saavedra, J. A.; Castro, N. F.] CAFPE, E-18071 Granada, Spain. [Chudoba, J.; Gallus, P.; Gunther, J.; Havranek, M.; Juranek, V.; Kepka, O.; Kupco, A.; Kus, V.; Lipinsky, L.; Lokajicek, M.; Marcisovsky, M.; Mikestikova, M.; Myska, M.; Nemecek, S.; Panuskova, M.; Ruzicka, P.; Schovancova, J.; Sicho, P.; Staroba, P.; Tasevsky, M.; Tic, T.; Vrba, V.] Acad Sci Czech Republic, Inst Phys, CZ-18221 Prague 8, Czech Republic. [Davidek, T.; Dolejsi, J.; Dolezal, Z.; Drasal, Z.; Kodys, P.; Leitner, R.; Novakova, J.; Reznicek, P.; Spousta, M.; Strachota, P.; Suk, M.; Sykora, T.; Tas, P.; Valkar, S.; Vorobel, V.] Charles Univ Prague, Inst Particle & Nucl Phys, Fac Math & Phys, CZ-18000 Prague 8, Czech Republic. [Gallus, P.; Havranek, M.; Marcisovsky, M.; Myska, M.; Ruzicka, P.] Czech Tech Univ, Fac Nucl Sci & Phys Engn, CZ-16635 Prague 6, Czech Republic. [Borisov, A.; Denisov, S. P.; Fakhrutdinov, R. M.; Fenyuk, A. B.; Ivashin, A. V.; Kabachenko, V. V.; Karyukhin, A. N.; Korotkov, V. A.; Kozhin, A. S.; Makouski, M.; Minaenko, A. A.; Myagkov, A. G.; Solodkov, A. A.; Solovyanov, O. V.; Starchenko, E. A.; Zaitsev, A. M.; Zenin, O.] State Res Ctr, Inst High Energy Phys, Protvino 142281, Moscow Region, Russia. [Adye, T.; Baines, J. T.; Barnett, B. M.; Burke, S.; Dallison, S. J.; Dewhurst, A.; Emeliyanov, D.; Gallop, B. J.; Gee, C. N. P.; Haywood, S. J.; Kirk, J.; McCubbin, N. A.; McMahon, S. J.; Middleton, R. P.; Murray, W. J.; Qian, W.; Sankey, D. P. C.; Scott, W. G.; Strube, J.; Tyndel, M.; Villani, E. G.; Weber, M.; Wickens, F. J.; Wielers, M.] Rutherford Appleton Lab, Sci & Technol Facil Council, UK T1 RAL Tier 1, Didcot OX11 0QX, Oxon, England. [Benslama, K.; Ming, Y.; Ortega, E. O.] Univ Regina, Dept Phys, Regina, SK S4S 0A2, Canada. [Tanaka, S.] Ritsumeikan Univ, Jp Kusatsu, Shiga 5258577, Japan. [Anulli, F.; Bagnaia, P.; Biglietti, M.; Bini, C.; Borroni, S.; Ciapetti, G.; De Pedis, D.; De Salvo, A.; Dionisi, C.; Falciano, S.; Gauzzi, P.; Gentile, S.; Giagu, S.; Lacava, F.; Luci, C.; Luminari, L.; Maiani, A.; Marzano, F.; Mirabelli, G.; Nisati, A.; Pasqualucci, E.; Petrolo, E.; Pontecorvo, L.; Rescigno, M.; Tehrani, F. Safai; Camillocci, E. Solfaroli; Spila, F.; Valente, P.; Vari, R.; Veneziano, S.; Zanello, L.] INFN Sez Roma I, IT-00185 Rome, Italy. [Bagnaia, P.; Biglietti, M.; Bini, C.; Borroni, S.; Ciapetti, G.; Dionisi, C.; Gauzzi, P.; Gentile, S.; Giagu, S.; Lacava, F.; Luci, C.; Maiani, A.; Tehrani, F. Safai; Camillocci, E. Solfaroli; Spila, F.; Zanello, L.] Univ Roma La Sapienza, Dipartimento Fis, IT-00185 Rome, Italy. [Aielli, G.; Camarri, P.; Cardarelli, R.; Cattani, G.; Di Ciaccio, A.; Di Nardo, R.; Di Simone, A.; Liberti, B.; Marchese, F.; Salamon, A.; Santonico, R.] INFN Sez Roma Tor Vergata, IT-00133 Rome, Italy. [Aielli, G.; Camarri, P.; Cattani, G.; Di Ciaccio, A.; Di Nardo, R.; Di Simone, A.; Marchese, F.; Santonico, R.] Univ Roma Tor Vergata, Dipartimento Fis, IT-00133 Rome, Italy. [Baroncelli, A.; Branchini, P.; Ceradini, F.; Di Luise, S.; Farilla, A.; Graziani, E.; Iodice, M.; Orestano, D.; Passeri, A.; Pastore, F.; Petrucci, F.; Ruggieri, F.; Stanescu, C.] INFN Sez Roma Tre, IT-00146 Rome, Italy. [Ceradini, F.; Di Luise, S.; Orestano, D.; Pastore, F.; Petrucci, F.] Univ Roma Tre, Dipartimento Fis, IT-00146 Rome, Italy. [Benchekroun, D.; Chafaq, A.; Gouighri, M.; Goujdami, D.; Hoummada, A.] Univ Hassan 2, Reseau Univ Phys Hautes Energies RUPHE, Fac Sci Ain Chock, Ma Casablanca, Morocco. Ctr Natl Energie Sci Tech Nucl CNESTEN, Rabat 10001, Morocco. [Derkaoui, J. E.] Univ Mohamed Premier, LPTPM, Fac Sci, Oujda 60000, Morocco. [El Moursli, R. Cherkaoui; Ghazlane, H.] Univ Mohammed 5, Fac Sci, Rabat 10000, Morocco. [Bachacou, H.; Bauer, F.; Besson, N.; Boonekamp, M.; Chevalier, L.; Chevallier, F.; Ernwein, J.; Etienvre, A. I.; Formica, A.; Giraud, P. F.; Guyot, C.; Hassani, S.; Kozanecki, W.; Lancon, E.; Laporte, J. F.; Le Menedeu, E.; Legendre, M.; Lenzi, B.; Mansoulie, B.; Marzin, A.; Meyer, J. -P.; Mountricha, E.; Nicolaidou, R.; Ouraou, A.; Resende, B.; Royon, C. R.; Schune, Ph.; Schwindling, J.] Ctr Etud Saclay, CEA, DSM IRFU, FR-91191 Gif Sur Yvette, France. [Bangert, A.; Chouridou, S.; Fowler, K.; Grillo, A. A.; Hare, G. A.; Litke, A. M.; Lockman, W. S.; Manning, P. M.; Mitrevski, J.; Nielsen, J.; Sadrozinski, H. F-W.; Schumm, B. A.; Seiden, A.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Daly, C. H.; Goussiou, A. G.; Griffiths, J.; Harris, O. M.; Lubatti, H. J.; Policicchio, A.; Rosati, S.; Rothberg, J.; Twomey, M. S.; Ventura, D.; Verducci, M.; Watts, G.; Zhao, T.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Anastopoulos, C.; Costanzo, D.; Donszelmann, T. Cuhadar; Dawson, I.; Duxfield, R.; Hodgkinson, M. C.; Hodgson, P.; Johansson, P.; Korolkova, E. V.; Mayne, A.; Nicolas, L.; Owen, S.; Paganis, E.; Shaw, K.; Sutton, M. R.; Tovey, D. R.; Tsionou, D.; Xu, D.] Univ Sheffield, Dept Phys & Astron, Sheffield S3 7RH, S Yorkshire, England. [Hasegawa, Y.; Takeshita, T.] Shinshu Univ, Dept Phys, Fac Sci, Matsumoto, JP Nagano 3908621, Japan. [Buchholz, P.; Fleck, I.; Grybel, K.; Ibragimov, I.; Rammes, M.; Sipica, V.; Stahl, T.; Walkowiak, W.; Werthenbach, U.; Ziolkowski, M.] Univ Siegen, Fachbereich Phys, D-57068 Siegen, Germany. [Godfrey, J.; Godlewski, J.; Komaragiri, J. R.; O'Neil, D. C.; Petteni, M.; Schouten, D.; Stelzer, B.; Vetterli, M. C.] Simon Fraser Univ, Dept Phys, Burnaby, BC V5A 1S6, Canada. [Aracena, I.; Asai, M.; Barklow, T.; Bartoldus, R.; Bawa, H. S.; Butler, B.; Gao, Y. S.; Grenier, P.; Haas, A.; Hansson, P.; Horn, C.; Jackson, P.; Kim, P. C.; Kocian, M.; Koi, T.; Miller, D. W.; Mount, R.; Nelson, S.; Nelson, T. K.; Salnikov, A.; Schwartzman, A.; Silverstein, D.; Smith, D.; Su, D.; Wilson, M. G.; Wittgen, M.; Wright, D.; Young, C.] SLAC Natl Accelerator Lab, Stanford, CA 94309 USA. [Batkova, L.; Federic, P.; Lovas, L.; Pecsy, M.; Stavina, P.; Sykora, I.; Zenis, T.] Comenius Univ, Fac Math Phys & Informat, SK-84248 Bratislava, Slovakia. [Antos, J.; Bruncko, D.; Ferencei, J.; Kladiva, E.; Strizenec, P.] Slovak Acad Sci, Inst Expt Phys, Dept Subnucl Phys, SK-04353 Kosice, Slovakia. Univ Johannesburg, Dept Phys, ZA-2006 Johannesburg, South Africa. Univ Witwatersrand, Sch Phys, ZA-2050 Johannesburg, South Africa. [Asman, B.; Bohm, C.; Clement, C.; Eriksson, D.; Gellerstedt, K.; Hellman, S.; Hillert, S.; Johansen, M.; Johansson, K. E.; Jon-And, K.; Milstead, D. A.; Moa, T.; Nordkvist, B.; Ohm, C. C.; Sellden, B.; Silverstein, S. B.; Sjolin, J.; Tylmad, M.; Yang, Z.] Stockholm Univ, Dept Phys, SE-10691 Stockholm, Sweden. [Asman, B.; Clement, C.; Gellerstedt, K.; Hellman, S.; Hillert, S.; Johansen, M.; Jon-And, K.; Milstead, D. A.; Moa, T.; Nordkvist, B.; Ohm, C. C.; Sjolin, J.; Tylmad, M.; Yang, Z.] Oskar Klein Ctr, SE-10691 Stockholm, Sweden. [Grahn, K. -J.; Lund-Jensen, B.] Royal Inst Technol KTH, Dept Phys, SE-10691 Stockholm, Sweden. [Ahmad, A.; Caputo, R.; Deluca, C.; DeWilde, B.; Engelmann, R.; Farley, J.; Goodson, J. J.; Grassi, V.; Gray, J. A.; Grimm, K.; Hobbs, J.; Jia, J.; Khodinov, A.; McCarthy, R. L.; Rijssenbeek, M.; Schamberger, R. D.; Tsybychev, D.; Yurkewicz, A.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [De Santo, A.; Potter, C. J.; Salvatore, F.] Univ Sussex, Dept Phys & Astron, Brighton BN1 9QH, E Sussex, England. [Lee, J. S. H.; Patel, N.; Saavedra, A. F.; Varvell, K. E.; Waugh, A. T.] Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia. [Chu, M. L.; Hou, S.; Lee, S. C.; Liang, Z.; Lin, S. C.; Liu, D.; Mazini, R.; Meng, Z.; Ren, Z. L.; Soh, D. A.; Teng, P. K.; Wang, S. M.; Weng, Z.; Zhong, J.; Zhou, Y.] Acad Sinica, Inst Phys, TW-11529 Taipei, Taiwan. [Harpaz, S. Behar; Ben Ami, S.; Bressler, S.; Hershenhorn, A. D.; Kajomovitz, E.; Rozen, Y.; Tarem, S.; Tennenbaum-Katan, Y. D.; Vallecorsa, S.] Technion Israel Inst Technol, Dept Phys, IL-32000 Technion, IL Haifa, Israel. [Abramowicz, H.; Alexander, G.; Amram, N.; Bella, G.; Benary, O.; Benhammou, Y.; Brodet, E.; Etzion, E.; Gershon, A.; Ginzburg, J.; Guttman, N.; Hod, N.; Kreisel, A.; Mahalalel, Y.; Munwes, Y.; Oren, Y.; Reinherz-Aronis, E.; Silver, Y.; Soffer, A.; Urkovsky, E.] Tel Aviv Univ, Raymond & Beverly Sackler Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Iliadis, D.; Kordas, K.; Nomidis, I.; Petridou, C.; Sampsonidis, D.] Aristotle Univ Thessaloniki, Dept Phys, Div Nucl & Particle Phys, Fac Sci, GR-54124 Thessaloniki, Greece. [Akimoto, G.; Asai, S.; Azuma, Y.; Dohmae, T.; Isobe, T.; Kanaya, N.; Kaneda, M.; Kataoka, Y.; Kawamoto, T.; Kessoku, K.; Kobayashi, T.; Kubota, T.; Mashimo, T.; Masubuchi, T.; Matsunaga, H.; Nakamura, K.; Oda, S.; Okuyama, T.; Sakamoto, H.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamamoto, S.; Yamamura, T.; Yamazaki, T.] Univ Tokyo, Int Ctr Elementary Particle Phys, Jp Tokyo 1130033, Japan. [Akimoto, G.; Asai, S.; Azuma, Y.; Dohmae, T.; Isobe, T.; Kanaya, N.; Kaneda, M.; Kataoka, Y.; Kawamoto, T.; Kessoku, K.; Kobayashi, T.; Kubota, T.; Mashimo, T.; Masubuchi, T.; Matsunaga, H.; Nakamura, K.; Oda, S.; Okuyama, T.; Sakamoto, H.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamamoto, S.; Yamamura, T.; Yamazaki, T.] Dept Phys, Bunkyo Ku, Jp Tokyo 1130033, Japan. [Bratzler, U.; Fukunaga, C.] Tokyo Metropolitan Univ, Grad Sch Sci & Technol, Hachioji, Tokyo 1920397, Japan. [Jinnouchi, O.; Kuze, M.] Tokyo Inst Technol, Meguro Ku, Tokyo 1528551, Japan. [Bain, T.; Beare, B.; Brelier, B.; Montero, S. Carron; Cheung, S. L.; Deviveiros, P. O.; Dhaliwal, S.; Farooque, T.; Fatholahzadeh, B.; Gibson, A.; Guo, B.; Jankowski, E.; Knecht, N. S.; Krieger, P.; Orr, R. S.; Rezvani, R.; Rosenbaum, G. A.; Sandhu, R.; Savard, P.; Sinervo, P.; Tardif, D.; Teuscher, R. J.; Thompson, P. D.; Trischuk, W.] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada. [Azuelos, G.; Canepa, A.; Caron, B.; Chekulaev, S. V.; Fortin, D.; Gingrich, D. M.; Nugent, I. M.; Oakham, E. G.; Oram, C. J.; Savard, P.; Stelzer-Chilton, O.; Tafirout, R.; Trigger, I. M.; Vetterli, M. C.] TRIUMF, ATLAS Canada Tier Data Ctr 1, Vancouver, BC V6T 2A3, Canada. [Idarraga, J.; Taylor, W.] York Univ, Dept Phys & Astron, Toronto, ON M3J 1P3, Canada. [Hara, K.; Kim, S. H.; Kurata, M.; Mitsui, S.; Nagai, K.; Ukegawa, F.; Yamada, M.] Univ Tsukuba, Inst Pure & Appl Sci, Tsukuba, JP Ibaraki 3058571, Japan. [Hamilton, S.; Napier, A.; Rolli, S.; Sliwa, K.; Todorova-Nova, S.] Tufts Univ, Ctr Sci & Technol, Medford, MA 02155 USA. [Losada, M.; Mendoza Navas, L.; Navarro, G.; Roa Romero, D. A.; Rodriguez, D.] Univ Antonio Narino, Ctr Invest, Bogota, Colombia. [Avolio, G.; Benedict, B. H.; Bold, T.; Bondioli, M.; Ciobotaru, M. D.; Corso-Radu, A.; Deng, J.; Dobson, M.; Eschrich, I. Gough; Grabowska-Bold, I.; Lankford, A. J.; Okawa, H.; Porter, R.; Schernau, M.; Tafard, A.; Toggerson, B.; Unel, G.; Werth, M.; Whiteson, D.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Acharya, B. S.; Cobal, M.; De Sanctis, U.; Del Papa, C.; Pinamonti, M.; Suruliz, K.] INFN Grp Coll Udine, IT-33100 Udine, Italy. [Acharya, B. S.; Suruliz, K.] Abdus Salaam Int Ctr Theoret Phys, IT-34014 Trieste, Italy. [Cobal, M.; De Sanctis, U.; Del Papa, C.; Giordani, M. P.; Pinamonti, M.] Univ Udine, Dipartimento Fis, IT-33100 Udine, Italy. [Benekos, N.; Coggeshall, J.; Cortes-Gonzalez, A.; Errede, D.; Errede, S.; Khandanyan, H.; Lie, K.; Liss, T. M.; McCarn, A.; Neubauer, M. S.; Vichou, I.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Belanger-Champagne, C.; Brenner, R.; Buszello, C. F.; Coniavitis, E.; Ekelof, T.; Ellert, M.; Ferrari, A.] Uppsala Univ, Dept Phys & Astron, SE-75120 Uppsala, Sweden. [Amoros, G.; Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Escobar, C.; Ferrer, A.; Fuster, J.; Garcia, C.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Minano, M.; Mitsou, V. A.; Moles-Valls, R.; Moreno Llacer, M.; Oliver Garcia, E.; Perez Garcia-Estan, M. T.; Ros, E.; Salt, J.; Solans, C. A.; Sanchez, J.; Torro Pastor, E.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.; Wildauer, A.] Inst Fis Corpuscular IFIC Ctr Mixto UVEG CSIC, ES-46071 Valencia, Spain. [Amoros, G.; Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Escobar, C.; Ferrer, A.; Fuster, J.; Garcia, C.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Minano, M.; Mitsou, V. A.; Moles-Valls, R.; Moreno Llacer, M.; Oliver Garcia, E.; Perez Garcia-Estan, M. T.; Ros, E.; Salt, J.; Solans, C. A.; Sanchez, J.; Torro Pastor, E.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.; Wildauer, A.] Univ Valencia, Dept Ing Elect, Dept Fis At Mol & Nucl, Bellaterra 08193, Spain. [Amoros, G.; Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Escobar, C.; Ferrer, A.; Fuster, J.; Garcia, C.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Minano, M.; Mitsou, V. A.; Moles-Valls, R.; Moreno Llacer, M.; Oliver Garcia, E.; Perez Garcia-Estan, M. T.; Ros, E.; Salt, J.; Solans, C. A.; Sanchez, J.; Torro Pastor, E.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.; Wildauer, A.] Inst Microelect Barcelona IMB CNM CSIC, Bellaterra 08193, Spain. [Gay, C.; Loh, C. W.; Mills, W. J.; Muir, A.] Univ British Columbia, Dept Phys, Ca Vancouver, BC V6T 1Z1, Canada. [Banerjee, Sw.; Bansal, V.; Berghaus, F.; Courneyea, L.; Fincke-Keeler, M.; Keeler, R.; Kowalewski, R.; Lefebvre, M.; Lessard, J. -R.; McPherson, R. A.; Plamondon, M.; Sobie, R.] Univ Victoria, Dept Phys & Astron, Victoria, BC V8W 3P6, Canada. [Yorita, K.] Waseda Univ, WISE, Shinjuku Ku, Tokyo 1698555, Japan. [Alon, R.; Duchovni, E.; Gabizon, O.; Gross, E.; Klier, A.; Lellouch, D.; Levinson, L. J.; Mikenberg, G.; Milov, A.; Milstein, D.; Silbert, O.; Smakhtin, V.; Vitells, O.] Weizmann Inst Sci, Dept Particle Phys, IL-76100 Rehovot, Israel. [Asfandiyarov, R.; Montoya, G. D. Carrillo; Hernandez, A. M. Castaneda; Castaneda-Miranda, E.; Chen, X.; Fang, Y.; Castillo, L. R. Flores; Gutzwiller, O.; Cheong, A. Leung Fook; Li, H.; Ma, L. L.; Garcia, B. R. Mellado; Pan, Y. B.; Morales, M. I. Pedraza; Peng, H.; Poveda, J.; Quayle, W. B.; Sarangi, T.; Wang, H.; Wiedenmann, W.; Wu, S. L.; Zhu, Y.; Zobernig, G.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Fleischmann, P.; Meyer, J.; Redelbach, A.; Stroehmer, R.; Trefzger, T.] Univ Wurzburg, Inst Phys, D-97074 Wurzburg, Germany. [Barisonzi, M.; Becks, K. H.; Boek, J.; Braun, H. M.; Dopke, J.; Flick, T.; Glitza, K. W.; Gorfine, G.; Hamacher, K.; Harenberg, T.; Henss, T.; Hirschbuehl, D.; Kalinin, S.; Kersten, S.; Kuhl, T.; Lenz, T.; Lenzen, G.; Maettig, P.; Mechtel, M.; Sandhoff, M.; Sandvoss, S.; Schroers, M.; Schultes, J.; Sturm, P.; Voss, T. T.; Zeitnitz, C.] Berg Univ Wuppertal, Fachbereich C, D-42097 Wuppertal, Germany. [Adelman, J.; Atoian, G.; Auerbach, B.; Baker, O. K.; Almenar, C. Cuenca; Czyczula, Z.; Demers, S.; Golling, T.; Hsu, P. J.; Kaplan, B.; Lockwitz, S.; Loginov, A.; Poblaguev, A.; Thioye, M.; Tipton, P.; Wall, R.; Zeller, M.] Yale Univ, Dept Phys, New Haven, CT 06520 USA. [Hakobyan, H.] Yerevan Phys Inst, AM-375036 Yerevan, Armenia. Forschungszentrurn Karlsruhe GmbH, GridKA Tier FZK 1, Steinbuch Ctr Comp SCC, D-76344 Eggenstein Leopoldshafen, Germany. Univ Autonoma Barcelona, Port Informacio Cient PIC, E-08193 Bellaterra, Spain. [Biscarat, C.; Cogneras, E.; Rahal, G.] Univ Lyon 1, CNRS, Ctr Calcul, IN2P3, F-69622 Villeurbanne, France. INFN CNAF, I-40127 Bologna, Italy. NORDUnet AS, Nord Data Grid Facil, DK-2770 Kastrup, Denmark. SARA Reken Netwerkdiensten, NL-1098 XG Amsterdam, Netherlands. Acad Sinica, Inst Phys, Acad Sinica Grid Comp, Taipei 11529, Taiwan. [Aguilar-Saavedra, J. A.; Castro, N. F.] LIP, Lisbon, Portugal. [Amorim, A.; Gomes, A.; Guler, H.; Jorge, P. M.; Lopes, L.; Machado Miguens, J.; Maio, A.; Morais, A.; Palma, A.; Pina, J.; Pinto, B.; Saraiva, J. G.] Univ Lisbon, Fac Ciencias, P-1699 Lisbon, Portugal. [Silva, J.; Gomes, A.; Maio, A.; Pina, J.; Saraiva, J. G.] Univ Lisbon, Ctr Fis Nucl, P-1699 Lisbon, Portugal. [Carvalho, J.; Fiolhais, M. C. N.; Magalhaes Martins, P. J.; Oliveira, M.; Wolters, H.] Univ Coimbra, Dept Phys, P-3000 Coimbra, Portugal. [Conventi, F.; Della Pietra, M.] Univ Napoli Parthenope, IT-80133 Naples, Italy. [Corriveau, F.; McPherson, R. A.; Robertson, S. H.; Sobie, R.; Teuscher, R. J.] Inst Particle Phys IPP, Toronto, ON, Canada. [Dhullipudi, R.] Louisiana Tech Univ, Ruston, LA 71272 USA. [Gao, Y. S.] Calif State Univ Fresno, Fresno, CA 93740 USA. [Gray, H. M.; Mateos, D. Lopez; Marshall, Z.; Perez, K.] CALTECH, Pasadena, CA 91125 USA. [Greenwood, Z. D.] Louisiana Tech Univ, Ruston, LA 71270 USA. [Haller, J.; Kono, T.; Terwort, M.; Wildt, M. A.] Univ Hamburg, Inst Expt Phys, D-22761 Hamburg, Germany. [Liang, Z.] Sun Yat Sen Univ, Sch Phys & Engn, Guangzhou, Guangdong, Peoples R China. [Liu, D.; Meng, Z.] Shandong Univ, Sch Phys, Jinan 250100, Peoples R China. [Onofre, A.] Univ Minho, Dept Fis, P-4719 Braga, Portugal. [Purohit, M.] Univ S Carolina, Dept Phys & Astron, Columbia, SC 29208 USA. [Pasztor, G.; Toth, J.] KFKI Res Inst Particle & Nucl Phys, Budapest, Hungary. [Richter-Was, E.] Jagiellonian Univ, Inst Phys, Krakow, Poland. [Sawyer, L.] Louisiana Tech Univ, Ruston, LA 71270 USA. [Soh, D. A.; Weng, Z.] Sun Yat Sen Univ, Sch Phys & Engn, Kaohsiung, Taiwan. RP Aad, G (reprint author), Univ Freiburg, Fak Math & Phys, Hermann Herder Str 3, D-79104 Freiburg, Germany. RI Aguilar Saavedra, Juan Antonio/F-1256-2016; Leyton, Michael/G-2214-2016; Casado, Pilar/H-1484-2015; Canelli, Florencia/O-9693-2016; Mashinistov, Ruslan/M-8356-2015; Lei, Xiaowen/O-4348-2014; Ventura, Andrea/A-9544-2015; Villaplana Perez, Miguel/B-2717-2015; Mir, Lluisa-Maria/G-7212-2015; Riu, Imma/L-7385-2014; Kartvelishvili, Vakhtang/K-2312-2013; Dawson, Ian/K-6090-2013; O'Shea, Val/G-1279-2010; Staroba, Pavel/G-8850-2014; Lokajicek, Milos/G-7800-2014; Kupco, Alexander/G-9713-2014; Mikestikova, Marcela/H-1996-2014; Chudoba, Jiri/G-7737-2014 OI Aguilar Saavedra, Juan Antonio/0000-0002-5475-8920; Leyton, Michael/0000-0002-0727-8107; Casado, Pilar/0000-0002-0394-5646; Canelli, Florencia/0000-0001-6361-2117; Mashinistov, Ruslan/0000-0001-7925-4676; Lei, Xiaowen/0000-0002-2564-8351; Ventura, Andrea/0000-0002-3368-3413; Villaplana Perez, Miguel/0000-0002-0048-4602; Mir, Lluisa-Maria/0000-0002-4276-715X; Riu, Imma/0000-0002-3742-4582; O'Shea, Val/0000-0001-7183-1205; Mikestikova, Marcela/0000-0003-1277-2596; NR 27 TC 0 Z9 0 U1 0 U2 15 PU SPRINGER-VERLAG BERLIN PI BERLIN PA HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY BN 978-3-642-22115-6 PY 2010 BP 239 EP 274 D2 10.1007/978-3-642-22116-3 PG 36 WC Instruments & Instrumentation; Physics, Particles & Fields SC Instruments & Instrumentation; Physics GA BAF48 UT WOS:000304018500007 ER PT S AU Esser, R Levey, R McPherson, B O'Dowd, W Litynski, J Plasynski, S AF Esser, R. Levey, R. McPherson, B. O'Dowd, W. Litynski, J. Plasynski, S. BE Vining, BA Pickering, SC TI Preparing for a carbon constrained world; overview of the United States regional carbon sequestration partnerships programme and its Southwest Regional Partnership SO PETROLEUM GEOLOGY: FROM MATURE BASINS TO NEW FRONTIERS - PROCEEDINGS OF THE 7TH PETROLEUM GEOLOGY CONFERENCE, VOLS 1 AND 2 SE Petroleum Geology Conference Proceedings LA English DT Proceedings Paper CT 7th Petroleum Geology Conference (PGC) CY MAR 30-APR 02, 2009 CL London, ENGLAND SP BG Grp, BGS, BP, Centrica Energy, Chevron, ConocoPhillips, ExxonMobil, Hardy Oil & Gas Plc, Hess, Maersk, MND Explorat & Prod, Nexen, Petro-Canada, PA Resources, Schlumberger, Serica Energy, Sonangol Gas Nat, StatoilHydro, Venture Prod Plc DE CO2; sequestration; EOR; ECBM; geological storage; saline aquifer; fossil fuel; global warming; greenhouse gas AB The Southwest Carbon Partnership (SWP), one of seven United States Department of Energy-funded Regional Carbon Sequestration Partnerships, has been tasked with assessing the CO2 sequestration potential within the southwestern United States. Carbon dioxide is considered a 'greenhouse' gas and is emitted, in large volumes, by the burning of fossil fuels and other industrial processes. CO2 capture from point source emitters and subsequent geological sequestration is being considered as a viable short-to intermediate-range mitigation option to combat the phenomena of global warming. Significant fossil fuel reserves and consumers exist within the seven member states of the SWP and, as such, the Partnership is dedicating a large amount of resources to the challenges posed by large-scale CO2 sequestration. Three distinct phases of work have been or will be performed by the SWP: a Characterization Phase to identify carbon capture and sequestration potential; a Validation Phase to test small-scale field injection of CO2; and a Deployment Phase to test commercial-scale field injection of CO2. Each phase presents challenges and opportunities to the refinement of the best approach to safe and efficient geological storage of CO2 within the SW region of the United States. C1 [Esser, R.; Levey, R.; McPherson, B.] Univ Utah, Energy & Geosci Inst, 423 Wakara Way,Suite 300, Salt Lake City, UT 84108 USA. [McPherson, B.] Univ Utah, Dept Civil & Environm Engn, Salt Lake City, UT 84112 USA. [O'Dowd, W.; Litynski, J.; Plasynski, S.] Natl Energy Technol Lab, US Dept Energy, Pittsburgh, PA 15236 USA. RP Esser, R (reprint author), Univ Utah, Energy & Geosci Inst, 423 Wakara Way,Suite 300, Salt Lake City, UT 84108 USA. EM resser@egi.utah.edu NR 8 TC 0 Z9 0 U1 0 U2 1 PU GEOLOGICAL SOC PUBLISHING HOUSE PI BATH PA UNIT 7, BRASSMILL ENTERPRISE CTR, BRASSMILL LANE, BATH BA1 3JN, AVON, ENGLAND SN 2047-9921 BN 978-1-86239-298-4 J9 PETROL GEOL CONF P PY 2010 BP 1189 EP 1195 DI 10.1144/0071189 PG 7 WC Engineering, Petroleum; Geology SC Engineering; Geology GA BB6YZ UT WOS:000345155100088 ER PT J AU Thanos, PK Ivanov, I Robinson, JK Michaelides, M Wang, GJ Swanson, JM Newcorn, JH Volkow, ND AF Thanos, Panayotis K. Ivanov, Iliyan Robinson, John K. Michaelides, Michael Wang, Gene-Jack Swanson, James M. Newcorn, Jeffrey H. Volkow, Nora D. TI Dissociation between spontaneously hypertensive (SHR) and Wistar-Kyoto (WKY) rats in baseline performance and methylphenidate response on measures of attention, impulsivity and hyperactivity in a Visual Stimulus Position Discrimination Task SO PHARMACOLOGY BIOCHEMISTRY AND BEHAVIOR LA English DT Article DE Attention deficit; Hyperactivity; Impulsive; Psychostimulant; Learning ID DEFICIT/HYPERACTIVITY DISORDER AD/HD; ANIMAL-MODEL; SIGNAL-DETECTION; UNITED-STATES; ADHD; BEHAVIOR; AMPHETAMINE; CHILDREN; PREVALENCE; VALIDATION AB The spontaneously hypertensive rat (SHR) is a widely accepted rodent model of Attention Deficit/Hyperactivity Disorder (ADHD), and methylphenidate (MP) is a central nervous system stimulant that has been shown to have a dose-related positive effect on attention task performance in humans with ADHD. The current study was undertaken to compare SHR to its typical control strain, Wistar-Kyoto (WKY) rats, on the performance of a Visual Stimulus Position Discrimination Task (VSPDT) as well as of the responsiveness of the two rat strains to MP treatment. The rats were initially trained on the VSPDT, in which a light cue was presented randomly at three different cue-light intervals (1s, 300 ms and 100 ms) over one of two levers, and presses on the lever corresponding to the light cue were reinforced with a food pellet. Once rats reached stable performance, the treatment phase of the study began, during which they received daily intraperitoneal (IP) injections of saline, 2 mg/kg. 5 mg/kg, and 10 mg/kg of MP in a randomized order immediately prior to being tested on the VSPDT. Baseline performance accuracy on the VSPDT did not differ between the groups. Furthermore, a striking strain dissociation was evident in the response of the two strains to treatment; VSPDT performance was substantially disrupted by the 5 and 10 mg/kg dose in the WKY rats but only mildly in the SHR rats. Response omissions were also increased only in WKY rats. Finally, both strains had increased locomotor activity in the operant chamber following NIP treatment. These findings point to an important difference in response tendency to MP in the two strains that supports a view that a critical difference between these strains may suggest neurochemical and neuroadaptive differences associated with the behavioral impairments of ADHD. (C) 2009 Published by Elsevier Inc. C1 [Thanos, Panayotis K.; Volkow, Nora D.] Brookhaven Natl Lab, Behav Pharmacol & Neuroimaging Lab, Dept Med, Upton, NY 11973 USA. [Thanos, Panayotis K.; Robinson, John K.; Michaelides, Michael] SUNY Stony Brook, Dept Psychol, Biopsychol Area, Stony Brook, NY 11794 USA. [Ivanov, Iliyan] Mt Sinai Sch Med, Dept Psychiat, New York, NY USA. [Swanson, James M.; Newcorn, Jeffrey H.] Univ Calif Irvine, Irvine, CA USA. RP Thanos, PK (reprint author), Brookhaven Natl Lab, Behav Pharmacol & Neuroimaging Lab, Dept Med, Upton, NY 11973 USA. EM thanos@bnl.gov RI Michaelides, Michael/K-4736-2013; OI Michaelides, Michael/0000-0003-0398-4917; Newcorn, Jeffrey /0000-0001-8993-9337 FU NIAAA Intramural Research [AA11034, AA07574, AA07611]; NIDA/AACAP [PA-00-003] FX This work was Supported by the NIAAA Intramural Research Program (AA11034, AA07574, and AA07611), and NIDA/AACAP K 23 (PA-00-003). NR 45 TC 18 Z9 19 U1 0 U2 2 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0091-3057 J9 PHARMACOL BIOCHEM BE JI Pharmacol. Biochem. Behav. PD JAN PY 2010 VL 94 IS 3 BP 374 EP 379 DI 10.1016/j.pbb.2009.09.019 PG 6 WC Behavioral Sciences; Neurosciences; Pharmacology & Pharmacy SC Behavioral Sciences; Neurosciences & Neurology; Pharmacology & Pharmacy GA 551RK UT WOS:000274226500007 PM 19818805 ER PT J AU Salje, EKH AF Salje, E. K. H. TI On the dynamics of ferroelastic domain boundaries under thermal and elastic forcing SO PHASE TRANSITIONS LA English DT Article ID CONSERVED ORDER PARAMETERS; KINETIC RATE LAWS; HIGH-TC SUPERCONDUCTORS; X-RAY-DIFFRACTION; PHASE-TRANSITIONS; PATTERN-FORMATION; COMPUTER-SIMULATION; MESOSCOPIC STRUCTURES; DISORDERED-SYSTEMS; ALKALI FELDSPARS AB Experimental observations and some theoretical models for the propagation of ferroelastic domain boundaries and phase fronts are reviewed. While the static configurations of domains and domain walls are reasonably well understood in ferroelastics (and specifically in shape memory alloys), one finds that the dynamic features have been less thoroughly investigated. In most cases, a smooth movement of domain walls in the ballistic limit is observed, accelerated propagation seems not to exist in the time and space limits of most experiments. Pattern formation occurs when the local order parameter is conserved over a length scale which is different from the ferroelastic correlation length. Currently, only few spiky elastic measurements and domain wall jamming in ferroelastics have been reported. Emphasis is given to disordered systems in which the occurrence of 'jerky elasticity' can be expected. C1 [Salje, E. K. H.] Univ Cambridge, Dept Earth Sci, Cambridge CB2 3EQ, England. [Salje, E. K. H.] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. RP Salje, EKH (reprint author), Univ Cambridge, Dept Earth Sci, Downing St, Cambridge CB2 3EQ, England. EM es10002@cam.ac.uk RI Salje, Ekhard/M-2931-2013 OI Salje, Ekhard/0000-0002-8781-6154 NR 91 TC 6 Z9 6 U1 0 U2 14 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 0141-1594 EI 1029-0338 J9 PHASE TRANSIT JI Phase Transit. PY 2010 VL 83 IS 9 BP 657 EP 669 AR PII 924030158 DI 10.1080/01411594.2010.494565 PG 13 WC Crystallography; Physics, Condensed Matter SC Crystallography; Physics GA 648XN UT WOS:000281728800003 ER PT J AU Moelans, N Spaepen, F Wollants, P AF Moelans, N. Spaepen, F. Wollants, P. TI Grain growth in thin films with a fibre texture studied by phase-field simulations and mean field modelling SO PHILOSOPHICAL MAGAZINE LA English DT Article DE phase-field model; anisotropy; grain growth; polycrystalline thin film; texture; grain boundary engineering ID MONTE-CARLO-SIMULATION; BOUNDARY-CHARACTER-DISTRIBUTION; COMPUTER-SIMULATION; MICROSTRUCTURE EVOLUTION; TILT BOUNDARIES; ENERGY; MOBILITY; RECRYSTALLIZATION; ELECTROMIGRATION; MIGRATION AB The evolution of fibre textured structures is simulated in two dimensions using a generalised phase field model assuming two forms for the misorientation dependence of the grain boundary energy. In each case, a steady-state regime is reached after a finite amount of grain growth, where the number and length weighted misorientation distribution functions (MDF) are constant in time, and the mean grain area A as a function of time t follows a power growth law A - A(0) = kt(n) with n close to 1 and A(0) the initial mean grain area. The final shape of the MDF and value of the prefactor k in the power growth law clearly correlate with the misorientation dependence of the grain boundary energy. Furthermore, a mean field approach is worked out to predict the growth exponent for systems with non-uniform grain boundary energy. The conclusions from the mean field approach are consistent with the simulation results. In previous studies on grain growth in anisotropic fibre textured systems, this steady-state regime was often not reached, which resulted in wrong conclusions on the growth exponent n and evolution of the MDF. C1 [Moelans, N.; Spaepen, F.; Wollants, P.] Katholieke Univ Leuven, Dept Met & Mat Engn, B-3001 Louvain, Belgium. [Moelans, N.] Lawrence Livermore Natl Lab, Condensed Matter & Mat Div, Livermore, CA 94551 USA. Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA. RP Moelans, N (reprint author), Katholieke Univ Leuven, Dept Met & Mat Engn, Kasteelpk Arenberg 44,Bus 2450, B-3001 Louvain, Belgium. EM nele.moelans@mtm.kuleuven.be RI Moelans, Nele/A-3165-2013 OI Moelans, Nele/0000-0003-3361-2954 NR 54 TC 8 Z9 8 U1 2 U2 16 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OR14 4RN, OXON, ENGLAND SN 1478-6435 EI 1478-6443 J9 PHILOS MAG JI Philos. Mag. PY 2010 VL 90 IS 1-4 BP 501 EP 523 DI 10.1080/14786430902998129 PG 23 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering; Physics, Applied; Physics, Condensed Matter SC Materials Science; Metallurgy & Metallurgical Engineering; Physics GA 556FX UT WOS:000274576500028 ER PT J AU Lebensohn, RA Hartley, CS Tome, CN Castelnau, O AF Lebensohn, Ricardo A. Hartley, Craig S. Tome, Carlos N. Castelnau, Olivier TI Modeling the mechanical response of polycrystals deforming by climb and glide SO PHILOSOPHICAL MAGAZINE LA English DT Article DE constitutive equations; creep; micromechanics; plasticity of crystals; texture ID DISCRETE DISLOCATION DYNAMICS; OLIVINE SINGLE-CRYSTALS; HIGH-TEMPERATURE CREEP; SELF-CONSISTENT; UPPER-MANTLE; PLASTIC-DEFORMATION; TEXTURE DEVELOPMENT; GRAIN INTERACTIONS; IRRADIATION CREEP; SIMULATION AB This paper presents a crystallographically-based constitutive model of a single crystal deforming by climb and glide. The proposed constitutive law is an extension of the rate-sensitivity approach for single crystal plasticity by dislocation glide. Based on this description at single crystal level, a homogenization-based polycrystal model for aggregates deforming in a climb-controlled thermal creep regime is developed. To illustrate the capabilities of the proposed model, we present calculations of effective behavior of olivine and texture evolution of aluminum at warm temperature and low strain rate. In both cases, the addition of climb as a complementary single-crystal deformation mechanism improves the polycrystal model predictions. C1 [Lebensohn, Ricardo A.; Tome, Carlos N.] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. [Hartley, Craig S.] El Arroyo Enterprises LLC, Sedona, AZ 86336 USA. [Castelnau, Olivier] Univ Paris 13, Lab Proprietes Mecan & Thermodynam Mat, F-93430 Villetaneuse, France. RP Lebensohn, RA (reprint author), Los Alamos Natl Lab, Div Mat Sci & Technol, MS G755, Los Alamos, NM 87545 USA. EM lebenso@lanl.gov RI Lebensohn, Ricardo/A-2494-2008; castelnau, olivier/E-7789-2011; Tome, Carlos/D-5058-2013 OI Lebensohn, Ricardo/0000-0002-3152-9105; castelnau, olivier/0000-0001-7422-294X; FU Nuclear Energy Advanced Modeling and Simulation (NEAMS) (USA) [LA0915010909]; [ANR-08-BLAN-00238-02] FX This work was supported by Nuclear Energy Advanced Modeling and Simulation (NEAMS) under the Advance Fuel Cycle Initiative (AFCI) Program, Project #LA0915010909 (USA). OC acknowledges partial funding from ANR-08-BLAN-00238-02 (France). The authors wish to thank John Hirth and Tom Arsenlis for fruitful discussions. NR 61 TC 19 Z9 19 U1 1 U2 20 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 1478-6435 J9 PHILOS MAG JI Philos. Mag. PY 2010 VL 90 IS 5 BP 567 EP 583 DI 10.1080/14786430903213320 PG 17 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering; Physics, Applied; Physics, Condensed Matter SC Materials Science; Metallurgy & Metallurgical Engineering; Physics GA 556FZ UT WOS:000274576700032 ER PT J AU Mendelev, MI Bokstein, BS AF Mendelev, Mikhail I. Bokstein, Boris S. TI Molecular dynamics study of self-diffusion in Zr SO PHILOSOPHICAL MAGAZINE LA English DT Article DE molecular dynamics simulations; point defects; diffusion; zirconium ID AB-INITIO; METALS; SIMULATION; ZIRCONIUM; AL AB We employed a recently developed semi-empirical Zr potential to determine the diffusivities in hcp and bcc Zr via molecular dynamics simulation. The point defect concentration was determined directly from molecular dynamics (MD) simulation rather than from theoretical methods using T = 0 calculations. Our MD simulation indicates that the diffusion proceeds via the interstitial mechanism in hcp Zr, and both vacancy and interstitial mechanisms contribute to diffusivity in bcc Zr. The agreement with the experimental data is excellent for hcp Zr and rather good for bcc Zr at high temperatures, but there is considerable disagreement at low temperatures. C1 [Mendelev, Mikhail I.] Ames Lab, Ames, IA 50011 USA. [Bokstein, Boris S.] Moscow State Inst Steel & Alloys, Dept Phys Chem, Moscow 119049, Russia. RP Mendelev, MI (reprint author), Ames Lab, Ames, IA 50011 USA. EM mendelev@ameslab.gov FU Department of Energy, Office of Basic Energy Sciences [DE-AC02-07CH11358]; Ministry of Education [02.513.11.3402]; RFBR [08.03.00498] FX Work at the Ames Laboratory was supported by the Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-07CH11358. Work at MISIS was supported by the Ministry of Education under the contract No. 02.513.11.3402 and by RFBR under grant No. 08.03.00498. MIM gratefully acknowledge useful discussions with Dr. R. T. Ott. NR 20 TC 16 Z9 16 U1 3 U2 16 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 1478-6435 J9 PHILOS MAG JI Philos. Mag. PY 2010 VL 90 IS 5 BP 637 EP 654 DI 10.1080/14786430903219020 PG 18 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering; Physics, Applied; Physics, Condensed Matter SC Materials Science; Metallurgy & Metallurgical Engineering; Physics GA 556FZ UT WOS:000274576700037 ER PT J AU Osetsky, Y Scattergood, R Serra, A Stoller, R AF Osetsky, Yuri Scattergood, Ron Serra, Anna Stoller, Roger TI Elasticity to Atomistics: Predictive Modeling of Defect Behavior Symposium within MMM4 (October 2008) Dedicated to David Bacon PREFACE SO PHILOSOPHICAL MAGAZINE LA English DT Editorial Material C1 [Osetsky, Yuri; Stoller, Roger] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Scattergood, Ron] N Carolina State Univ, Raleigh, NC 27695 USA. [Serra, Anna] Tech Univ Catalonia, Barcelona, Spain. RP Osetsky, Y (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RI Stoller, Roger/H-4454-2011; OI Osetskiy, Yury/0000-0002-8109-0030 NR 0 TC 0 Z9 0 U1 0 U2 8 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 1478-6435 J9 PHILOS MAG JI Philos. Mag. PY 2010 VL 90 IS 7-8 SI SI BP 803 EP 804 DI 10.1080/14786430903236040 PG 2 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering; Physics, Applied; Physics, Condensed Matter SC Materials Science; Metallurgy & Metallurgical Engineering; Physics GA 582YT UT WOS:000276638200001 ER PT J AU Calder, AF Bacon, DJ Barashev, AV Osetsky, YN AF Calder, A. F. Bacon, D. J. Barashev, A. V. Osetsky, Yu. N. TI On the origin of large interstitial clusters in displacement cascades SO PHILOSOPHICAL MAGAZINE LA English DT Article DE radiation damage; displacement cascade; self-interstitial atom cluster; shock wave; molecular dynamics ID MOLECULAR-DYNAMICS SIMULATION; X-RAY SCATTERING; COMPUTER-SIMULATION; ALPHA-IRON; DEFECT PRODUCTION; FE-CR; DAMAGE; METALS; COPPER; CU AB Displacement cascades with wide ranges of primary knock-on atom (PKA) energy and mass in iron were simulated using molecular dynamics. New visualisation techniques are introduced to show how the shock-front dynamics and internal structure of a cascade develop over time. These reveal that the nature of the final damage is determined early on in the cascade process. We define a zone (termed 'spaghetti') in which atoms are moved to new lattice sites and show how it is created by a supersonic shock-front expanding from the primary recoil event. A large cluster of self-interstitial atoms can form on the periphery of the spaghetti if a hypersonic recoil creates damage with a supersonic shock ahead of the main supersonic front. When the two fronts meet, the main one injects atoms into the low-density core of the other: these become interstitial atoms during the rapid recovery of the surrounding crystal. The hypersonic recoil occurs in less than 0.1 ps after the primary recoil and the interstitial cluster is formed before the onset of the thermal spike phase of the cascade process. The corresponding number of vacancies is then formed in the spaghetti core as the crystal cools, i.e. at times one to two orders of magnitude longer. By using the spaghetti zone to define cascade volume, the energy density of a cascade is shown to be almost independent of the PKA mass. This throws into doubt the conventional energy-density interpretation of an increased defect yield with increasing PKA mass in ion irradiation. C1 [Calder, A. F.; Bacon, D. J.; Barashev, A. V.] Univ Liverpool, Dept Engn, Liverpool L69 3GH, Merseyside, England. [Osetsky, Yu. N.] Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN 37831 USA. RP Calder, AF (reprint author), Univ Liverpool, Dept Engn, Brownlow Hill, Liverpool L69 3GH, Merseyside, England. EM afcalder@liv.ac.uk OI Osetskiy, Yury/0000-0002-8109-0030 FU UK Engineering and Physical Sciences Research Council [GR/S81162/01]; Division of Materials Sciences and Engineering and the Office of Fusion Energy Sciences; U.S. Department of Energy [DE-AC05-00OR2272] FX The research was supported by grant GR/S81162/01 from the UK Engineering and Physical Sciences Research Council, and partly by the Division of Materials Sciences and Engineering and the Office of Fusion Energy Sciences, U.S. Department of Energy, under contract DE-AC05-00OR22725 with UT-Battelle, LLC. NR 40 TC 50 Z9 50 U1 2 U2 24 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OR14 4RN, OXON, ENGLAND SN 1478-6435 EI 1478-6443 J9 PHILOS MAG JI Philos. Mag. PY 2010 VL 90 IS 7-8 SI SI BP 863 EP 884 DI 10.1080/14786430903117141 PG 22 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering; Physics, Applied; Physics, Condensed Matter SC Materials Science; Metallurgy & Metallurgical Engineering; Physics GA 582YT UT WOS:000276638200005 ER PT J AU Heinisch, HL Gao, F Kurtz, RJ AF Heinisch, H. L. Gao, F. Kurtz, R. J. TI Atomic-scale modeling of interactions of helium, vacancies and helium-vacancy clusters with screw dislocations in alpha-iron SO PHILOSOPHICAL MAGAZINE LA English DT Article DE helium; dislocations; modeling; molecular dynamics; iron-based alloys ID EDGE DISLOCATIONS; HE INTERSTITIALS; GRAIN-BOUNDARIES; FE; FUSION; STABILITY; CASCADES; STRESS; GROWTH; STEEL AB The interactions of He and vacancy defects with < 111 > screw dislocations in alpha-Fe were modeled using molecular statics, molecular dynamics and transition state energy determinations. The formation energies and binding energies of interstitial He atoms, vacancies and He-vacancy clusters near and within dislocations in alpha-Fe were determined at various locations relative to the dislocation core. Using the dimer transition state method, the migration energies and trajectories of the He and vacancy defects near and within the screw dislocation were also determined. Both interstitial He atoms and single vacancies are attracted to and trapped in the dislocation core region, and they both migrate along the dislocation line with a migration energy of about 0.4 eV, which is about half the migration energy of vacancies in the perfect crystal and about five times the migration energy for interstitial He in the perfect crystal. Divacancies and He-divacancy complexes have migration properties within the dislocation core that are similar to those in the perfect crystal, although the stability of these defects within the dislocation may be somewhat less than in the perfect crystal. C1 [Heinisch, H. L.; Gao, F.; Kurtz, R. J.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Heinisch, HL (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM hl.heinisch@pnl.gov RI Gao, Fei/H-3045-2012 FU US Department of Energy, Office of Fusion Energy Sciences [DE-AC05-76RLO1830] FX This work was supported by the US Department of Energy, Office of Fusion Energy Sciences under contract DE-AC05-76RLO1830. NR 27 TC 14 Z9 14 U1 1 U2 25 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 1478-6435 J9 PHILOS MAG JI Philos. Mag. PY 2010 VL 90 IS 7-8 SI SI BP 885 EP 895 DI 10.1080/14786430903294932 PG 11 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering; Physics, Applied; Physics, Condensed Matter SC Materials Science; Metallurgy & Metallurgical Engineering; Physics GA 582YT UT WOS:000276638200006 ER PT J AU Barashev, AV Golubov, SI Osetsky, YN Stoller, RE AF Barashev, A. V. Golubov, S. I. Osetsky, Yu. N. Stoller, R. E. TI Reaction kinetics of non-localised particle-trap complexes SO PHILOSOPHICAL MAGAZINE LA English DT Article DE transition state theory; dissociation reactions; complexes; edge dislocations; metals ID MOLECULAR-DYNAMICS; DISPLACEMENT CASCADES; DISLOCATION LOOPS; COPPER; IRRADIATION; DIFFUSION; IRON AB The classical transition state theory for calculating complex dissociation rates requires separation of time scales. It is shown here that this condition is satisfied for complexes with long-range interaction, such as an edge dislocation and a cluster of self-interstitial atoms in metallic materials. Hence, one can apply the equations for first-order reactions with a rescaled mean dissociation time and the cross-section of complex formation. The rescaling coefficient is the Eyring transmission coefficient. A general expression for this coefficient through the first two moments of the distribution function of dissociation times is derived. It is shown that it is equal to unity if the dividing surface between 'bound' and 'free' states is defined as that where the interaction energy is equal to the thermal energy. C1 [Barashev, A. V.] Univ Liverpool, Dept Engn, Liverpool L69 3GH, Merseyside, England. [Golubov, S. I.; Osetsky, Yu. N.; Stoller, R. E.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Golubov, S. I.] Univ Tennessee, Ctr Mat Proc, Knoxville, TN 37996 USA. RP Barashev, AV (reprint author), Univ Liverpool, Dept Engn, Brownlow Hill, Liverpool L69 3GH, Merseyside, England. EM a.barashev@liv.ac.uk RI Stoller, Roger/H-4454-2011; OI Osetskiy, Yury/0000-0002-8109-0030 FU UK Engineering and Physical Sciences Research Council; Division on Materials Sciences and Engineering; Office of Fusion Energy Sciences; US Department of Energy [DE-AC05-00OR22 725] FX AVB acknowledges a research grant from the UK Engineering and Physical Sciences Research Council. Research at ORNL was sponsored by the Division on Materials Sciences and Engineering (RES and YNO) and the Office of Fusion Energy Sciences (SIG), US Department of Energy, under contract no. DE-AC05-00OR22 725 with UT-Battelle, LLC. NR 20 TC 1 Z9 1 U1 0 U2 5 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OR14 4RN, OXON, ENGLAND SN 1478-6435 EI 1478-6443 J9 PHILOS MAG JI Philos. Mag. PY 2010 VL 90 IS 7-8 SI SI BP 897 EP 906 DI 10.1080/14786430903190825 PG 10 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering; Physics, Applied; Physics, Condensed Matter SC Materials Science; Metallurgy & Metallurgical Engineering; Physics GA 582YT UT WOS:000276638200007 ER PT J AU Barashev, AV Golubov, SI Osetsky, YN Stoller, RE AF Barashev, A. V. Golubov, S. I. Osetsky, Yu. N. Stoller, R. E. TI Dissociation of migrating particle from trap with long-range interaction field SO PHILOSOPHICAL MAGAZINE LA English DT Article DE lattice defects; reaction-diffusion theory; defect complexes; dissociation ID IRRADIATION-PRODUCED DEFECTS; COMPUTER-SIMULATION; ALPHA-FE; DISLOCATIONS; NUCLEATION; VACANCIES; VOIDS; IRON AB Some lattice defects, such as dislocations, interact with migrating species, e. g. vacancies, interstitial atoms and their clusters, via long-range strain fields. An equation for the mean dissociation time of a migrating particle from a trap is derived in terms of the potential well function for the interaction energy. The distribution of dissociation times is studied by the Monte Carlo method, and the problem of particle exchange between spatially separated traps is considered. C1 [Barashev, A. V.] Univ Liverpool, Dept Engn, Liverpool L69 3GH, Merseyside, England. [Golubov, S. I.; Osetsky, Yu. N.; Stoller, R. E.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Golubov, S. I.] Univ Tennessee, Ctr Mat Proc, Knoxville, TN 37901 USA. RP Barashev, AV (reprint author), Univ Liverpool, Dept Engn, Brownlow Hill, Liverpool L69 3GH, Merseyside, England. EM a.barashev@liv.ac.uk RI Stoller, Roger/H-4454-2011; OI Osetskiy, Yury/0000-0002-8109-0030 FU UK Engineering and Physical Sciences Research Council; Division on Materials Sciences and Engineering; Office of Fusion Energy Sciences; US Department of Energy [DE-AC05-00OR22 725] FX A.V.B. acknowledges a research grant from the UK Engineering and Physical Sciences Research Council. Research at ORNL was sponsored by the Division on Materials Sciences and Engineering (R.E.S. and Y.N.O.) and the Office of Fusion Energy Sciences (S.I.G.), US Department of Energy, under contract no. DE-AC05-00OR22 725 with UT-Battelle, LLC. NR 15 TC 1 Z9 1 U1 0 U2 3 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 1478-6435 J9 PHILOS MAG JI Philos. Mag. PY 2010 VL 90 IS 7-8 SI SI BP 907 EP 921 DI 10.1080/14786430903193258 PG 15 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering; Physics, Applied; Physics, Condensed Matter SC Materials Science; Metallurgy & Metallurgical Engineering; Physics GA 582YT UT WOS:000276638200008 ER PT J AU Stoller, RE Golubov, SI Kamenski, PJ Seletskaia, T Osetsky, YN AF Stoller, R. E. Golubov, S. I. Kamenski, P. J. Seletskaia, T. Osetsky, Yu. N. TI Implementation of a new Fe-He three-body interatomic potential for molecular dynamics simulations SO PHILOSOPHICAL MAGAZINE LA English DT Article DE bubbles; helium effects; irradiated materials; microstructure; multiscale modeling; iron; helium ID MICROSTRUCTURAL EVOLUTION; HELIUM; ALLOY AB A recently developed interatomic potential for He-Fe interactions includes a three-body term to stabilize the interstitial He defect in the tetrahedral position in the Fe bcc matrix and provides simultaneous agreement with the forces and energies of different atomic configurations as computed by first principles. This term makes a significant contribution to the static and dynamic properties of He in Fe. The implementation of this potential for atomistic simulations using molecular dynamics (MD) presented certain challenges which are discussed here to facilitate its further use in materials research, particularly to investigate the behavior of iron-based alloys that may be employed in fusion energy systems. Detailed results of an MD study comparing the new potential and alternate He-Fe pair potentials with different iron matrix potentials have been presented elsewhere to illustrate the impact of the He-Fe potential on He diffusion, helium clustering and the dynamics of He-vacancy clusters. C1 [Stoller, R. E.; Golubov, S. I.; Seletskaia, T.; Osetsky, Yu. N.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Golubov, S. I.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Kamenski, P. J.] Univ Wisconsin, Dept Mat Sci & Engn, Madison, WI 53706 USA. RP Stoller, RE (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. EM rkn@ornl.gov RI Stoller, Roger/H-4454-2011; OI Osetskiy, Yury/0000-0002-8109-0030 FU Division of Materials Sciences; Engineering and the Office of Fusion Energy Sciences; US Department of Energy [DE-AC05-00OR22725] FX Research sponsored by the Division of Materials Sciences (RES, TS, and YNO) and Engineering and the Office of Fusion Energy Sciences (SIG, PJK), US Department of Energy, under contract DE-AC05-00OR22725 with UT-Battelle, LLC. NR 15 TC 19 Z9 19 U1 1 U2 14 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 1478-6435 J9 PHILOS MAG JI Philos. Mag. PY 2010 VL 90 IS 7-8 SI SI BP 923 EP 934 DI 10.1080/14786430903298768 PG 12 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering; Physics, Applied; Physics, Condensed Matter SC Materials Science; Metallurgy & Metallurgical Engineering; Physics GA 582YT UT WOS:000276638200009 ER PT J AU Stewart, DM Osetsky, YN Stoller, RE Golubov, SI Seletskaia, T Kamenski, PJ AF Stewart, D. M. Osetsky, Yu. N. Stoller, R. E. Golubov, S. I. Seletskaia, T. Kamenski, P. J. TI Atomistic studies of helium defect properties in bcc iron: Comparison of He-Fe potentials SO PHILOSOPHICAL MAGAZINE LA English DT Article DE defect properties; interatomic potential; radiation damage ID AB-INITIO; ALPHA-FE; METALS; DISLOCATIONS; FUSION AB In the fusion irradiation environment, helium created by transmutation will play an important role in the response of structural materials to neutron radiation damage. Atomistic simulations have been carried out using a new three-body He-Fe interatomic potential and the results have been compared to those obtained using two He-Fe pair potentials. In simulations with the three-body potential, helium interstitials are very mobile and multiple He interstitials can coalesce to form interstitial clusters which are also mobile. The He interstitial cluster binding energy is in good agreement with DFT calculations. If the He cluster is sufficiently large, it can create additional free volume by ejecting an Fe interstitial atom, creating a Frenkel pair. The corresponding vacancy is incorporated into the existing He cluster, and the resulting helium-vacancy cluster is not mobile. The ejected self-interstitial atom is mobile, but is trapped by the He-vacancy cluster. If additional helium atoms join a He-vacancy cluster, more Fe interstitials can be ejected and they are observed to form small interstitial clusters (nascent dislocation loop). Although multiple helium atoms can be trapped in a single vacancy, a vacancy containing only a small number of helium atoms can recombine with an Fe interstitial to recreate a helium interstitial cluster. The He binding energy with one of the He-Fe pair potentials (Wilson's) is much higher, leading to more rapid He clustering and Frenkel pair formation. Very little He clustering occurs with the second He-Fe pair potential. C1 [Stewart, D. M.; Osetsky, Yu. N.; Stoller, R. E.; Golubov, S. I.; Seletskaia, T.; Kamenski, P. J.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Stewart, D. M.; Golubov, S. I.] Univ Tennessee, Ctr Mat Proc, Knoxville, TN 37996 USA. [Kamenski, P. J.] Univ Wisconsin, Dept Mat Sci & Engn, Madison, WI 53706 USA. RP Stewart, DM (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. EM stewartdm@ornl.gov RI Stoller, Roger/H-4454-2011; OI Osetskiy, Yury/0000-0002-8109-0030 FU Office of Fusion Energy Sciences; Division of Materials Sciences and Engineering; US Department of Energy [DE-AC05-00OR22725] FX Research sponsored by the Office of Fusion Energy Sciences (DMS, SIG, PJK) and the Division of Materials Sciences and Engineering (YNO, RES, TS), US Department of Energy, under contract DE-AC05-00OR22725 with UT-Battelle, LLC. NR 19 TC 28 Z9 28 U1 3 U2 36 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 1478-6435 J9 PHILOS MAG JI Philos. Mag. PY 2010 VL 90 IS 7-8 SI SI BP 935 EP 944 DI 10.1080/14786430903270650 PG 10 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering; Physics, Applied; Physics, Condensed Matter SC Materials Science; Metallurgy & Metallurgical Engineering; Physics GA 582YT UT WOS:000276638200010 ER PT J AU Osetsky, YN Bacon, DJ AF Osetsky, Yu. N. Bacon, D. J. TI Atomic-scale mechanisms of void hardening in bcc and fcc metals SO PHILOSOPHICAL MAGAZINE LA English DT Article DE voids; iron; copper; dislocations; molecular dynamics; yield stress ID MOLECULAR-DYNAMICS SIMULATIONS; ALPHA-IRON; LEVEL AB Strengthening due to voids can be a significant effect of radiation damage in metals, but treatment of this by elasticity theory of dislocations is difficult when the mechanisms controlling the obstacle strength are atomic in nature. Results are reported of atomic-scale modelling to compare edge dislocation-void interaction in fcc copper and bcc iron. Voids of up to 6 nm diameter in iron and 8 nm diameter in copper were studied over the temperature range 0 to 600 K at different applied strain rates. Voids in iron are strong obstacles, for the dislocation has to adopt a dipole-like configuration at the void before breaking away. The dipole unzips at the critical stress when the dislocation is able to climb by absorbing vacancies and leave the void surface. Dislocation dissociation into Shockley partials in copper prevents dislocation climb and affects the strength of small and large voids differently. Small voids are much weaker obstacles than those in iron because the partials break from a void individually. Large voids are at least as strong as those in iron, but the controlling mechanism depends on temperature. C1 [Osetsky, Yu. N.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Bacon, D. J.] Univ Liverpool, Dept Engn, Liverpool L69 3GH, Merseyside, England. RP Osetsky, YN (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, POB 2008, Oak Ridge, TN 37831 USA. EM yri@ornl.gov OI Osetskiy, Yury/0000-0002-8109-0030 FU Division of Materials Sciences and Engineering, US Department of Energy; UK Engineering and Physical Sciences Research Council [GR/S81162/01]; European Commission [F160-CT-2003-508840] FX This work was supported by the Division of Materials Sciences and Engineering, US Department of Energy under contract with UT-Battelle, LLC; grant GR/S81162/01 from the UK Engineering and Physical Sciences Research Council; and grant F160-CT-2003-508840 ('PERFECT') under programme EURATOM FP-6 of the European Commission. NR 21 TC 39 Z9 39 U1 3 U2 50 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 1478-6435 J9 PHILOS MAG JI Philos. Mag. PY 2010 VL 90 IS 7-8 SI SI BP 945 EP 961 DI 10.1080/14786430903164580 PG 17 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering; Physics, Applied; Physics, Condensed Matter SC Materials Science; Metallurgy & Metallurgical Engineering; Physics GA 582YT UT WOS:000276638200011 ER PT J AU Yang, JB Nagai, Y Hasegawa, M Osetsky, YN AF Yang, J. B. Nagai, Y. Hasegawa, M. Osetsky, Yu. N. TI Atomic scale modeling of {110} twist grain boundaries in alpha-iron: Structure and energy properties SO PHILOSOPHICAL MAGAZINE LA English DT Article DE misfit dislocation; boundary energy; dislocation theory; grain boundary structure ID DISLOCATION NETWORKS; VORONOI POLYHEDRA; METALS; DYNAMICS; SLIP AB Atomic scale modeling was used to study the structure and energy of {110} twist grain boundaries (TWGBs) with various coincidence-site-lattice misorientations in alpha-iron. The small angle {110} TWGB contains a hexagonal dislocation network of two sets of 1/2 < 111 > and one set of < 001 > dislocation segments. The < 001 > segments are almost pure screw dislocations and the angle between the two 1/2 < 111 > segments varies from 83 to 109 degrees for the rotation angle from 0.25 to 5.40 degrees. This TWGB dislocation structure agrees well with an experimental observation that was not explained adequately so far. The large-angle TWGBs consist of periodic patterns rather than a dislocation network. The variation of the boundary energy with the rotation angle can be well fitted to the Read-Shockley equation in the low-angle range. An apparent cusp in the curve of the boundary energy against the rotation angle has been found and discussed. C1 [Yang, J. B.; Hasegawa, M.] Tohoku Univ, Inst Mat Res, Sendai, Miyagi 9808577, Japan. [Nagai, Y.; Hasegawa, M.] Tohoku Univ, Inst Mat Res, Oarai Ctr, Oarai, Ibaraki 3111313, Japan. [Osetsky, Yu. N.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Yang, JB (reprint author), Tohoku Univ, Inst Mat Res, Sendai, Miyagi 9808577, Japan. EM yjbjp@imr.tohoku.ac.jp RI Nagai, Yasuyoshi/A-8995-2011; yang, jinbo/C-3299-2015 OI yang, jinbo/0000-0002-6501-7626 FU Ministry of Education, Science and Culture [17002009, 18686077, 15106015]; Division of Materials Sciences and Engineering, US Department of Energy FX The authors gratefully acknowledge SR11000 supercomputing resources from the Center for Computational Materials Science of the Institute for Materials Research, Tohoku University. This work was partially supported by Grant-in-Aids for Scientific Research of the Ministry of Education, Science and Culture (Nos. 17002009, 18686077 and 15106015) and by the Division of Materials Sciences and Engineering, US Department of Energy with UT-Battelle, LLC. NR 20 TC 10 Z9 10 U1 3 U2 23 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 1478-6435 J9 PHILOS MAG JI Philos. Mag. PY 2010 VL 90 IS 7-8 SI SI BP 991 EP 1000 DI 10.1080/14786430903154086 PG 10 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering; Physics, Applied; Physics, Condensed Matter SC Materials Science; Metallurgy & Metallurgical Engineering; Physics GA 582YT UT WOS:000276638200014 ER PT J AU Monnet, G Osetsky, YN Bacon, DJ AF Monnet, G. Osetsky, Yu. N. Bacon, D. J. TI Mesoscale thermodynamic analysis of atomic-scale dislocation-obstacle interactions simulated by molecular dynamics SO PHILOSOPHICAL MAGAZINE LA English DT Article DE atomistic simulation; dislocation dynamics; dislocation interactions; dislocation theory; irradiation effects; thermal activation of deformation ID FREE-ENERGY DIFFERENCES; PLASTIC-DEFORMATION; SINGLE-CRYSTALS; ALPHA-IRON; NONEQUILIBRIUM MEASUREMENTS; COMPUTER-SIMULATION; TEMPERATURE; STRESS; METALS; GLIDE AB Given the time and length scales in molecular dynamics (MD) simulations of dislocation-defect interactions, quantitative MD results cannot be used directly in larger scale simulations or compared directly with experiment. A method to extract fundamental quantities from MD simulations is proposed here. The first quantity is a critical stress defined to characterise the obstacle resistance. This mesoscopic parameter, rather than the obstacle 'strength' designed for a point obstacle, is to be used for an obstacle of finite size. At finite temperature, our analyses of MD simulations allow the activation energy to be determined as a function of temperature. The results confirm the proportionality between activation energy and temperature that is frequently observed by experiment. By coupling the data for the activation energy and the critical stress as functions of temperature, we show how the activation energy can be deduced at a given value of the critical stress. C1 [Monnet, G.] EDF R&D, Dept MMC, Moret Sur Loing, France. [Osetsky, Yu. N.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN USA. [Bacon, D. J.] Univ Liverpool, Dept Engn, Liverpool L69 3BX, Merseyside, England. RP Monnet, G (reprint author), EDF R&D, Dept MMC, Moret Sur Loing, France. EM ghiath.monnet@edf.fr OI Monnet, Ghiath/0000-0001-5989-7084; Osetskiy, Yury/0000-0002-8109-0030 FU Division of Materials Sciences and Engineering and the Office of Basic Energy Sciences, US Department of Energy; UK Engineering and Physical Sciences Research Council [FI60-CT-2003-208840, GR/S81162/01] FX This work was partially supported by the Division of Materials Sciences and Engineering and the Office of Basic Energy Sciences, US Department of Energy, under contract with UT-Battelle, LLC. It was also supported by the European project PERFECT (FI60-CT-2003-208840 and by grant GR/S81162/01 from the UK Engineering and Physical Sciences Research Council. NR 36 TC 12 Z9 12 U1 1 U2 21 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 1478-6435 J9 PHILOS MAG JI Philos. Mag. PY 2010 VL 90 IS 7-8 SI SI BP 1001 EP 1018 DI 10.1080/14786430903117133 PG 18 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering; Physics, Applied; Physics, Condensed Matter SC Materials Science; Metallurgy & Metallurgical Engineering; Physics GA 582YT UT WOS:000276638200015 ER PT J AU Terentyev, D Bacon, DJ Osetsky, YN AF Terentyev, D. Bacon, D. J. Osetsky, Yu. N. TI Reactions between a 1/2 < 111 > screw dislocation and < 100 > interstitial dislocation loops in alpha-iron modelled at atomic scale SO PHILOSOPHICAL MAGAZINE LA English DT Article DE iron; neutron irradiation damage; interstitial dislocation loops; screw dislocation; dislocation-loop interaction; molecular dynamics; strengthening mechanism ID MOLECULAR-DYNAMICS SIMULATIONS; EDGE DISLOCATION; BCC FE; IRRADIATION; CLUSTERS; METALS AB Interstitial dislocation loops with Burgers vector of < 100 > type are observed in alpha-iron irradiated by neutrons or heavy ions, and their population increases with increasing temperature. Their effect on motion of a 1/2 < 111 > edge dislocation was reported earlier [1]. Results are presented of a molecular dynamics study of interactions between a 1/2 < 111 > screw dislocation and < 100 > loops in iron at temperature in the range 100 to 600 K. A variety of reaction mechanisms and outcomes are observed and classified in terms of the resulting dislocation configuration and the maximum stress required for the dislocation to break away. The highest obstacle resistance arises when the loop is absorbed to form a helical turn on the screw dislocation line, for the dislocation cannot glide away until the turn closes and a loop is released with the same Burgers vector as the line. Other than one situation found, in which no dislocation-loop reaction occurs, the weakest obstacle strength is found when the original < 100 > loop is restored at the end of the reaction. The important role of the cross-slip and the influence of model boundary conditions are emphasised and demonstrated by examples. C1 [Terentyev, D.] CEN SCK, RMO Dept, B-2400 Mol, Belgium. [Bacon, D. J.] Univ Liverpool, Dept Engn, Liverpool L69 3GH, Merseyside, England. [Osetsky, Yu. N.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Terentyev, D (reprint author), CEN SCK, RMO Dept, Boeretang 200, B-2400 Mol, Belgium. EM dterenty@sckcen.be OI Osetskiy, Yury/0000-0002-8109-0030 FU European Fusion Development Agreement (EFDA); UK Engineering and Physical Sciences Research Council [GR/S81162/01]; European Commission [F160-CT-2003-508840]; Division of Materials Sciences and Engineering and the Office of Fusion Energy Sciences, U.S. Department of Energy [DE-AC05-00OR22725] FX This work was carried out within the framework of the European Fusion Development Agreement (EFDA). It was also supported by grant GR/S81162/01 from the UK Engineering and Physical Sciences Research Council; grant F160-CT-2003-508840 ('PERFECT') under programme EURATOM FP-6 of the European Commission; and partly by the Division of Materials Sciences and Engineering and the Office of Fusion Energy Sciences, U.S. Department of Energy, under contract DE-AC05-00OR22725 with UT-Battelle, LLC. DT thanks EDF for use of high performance computing facilities. NR 20 TC 18 Z9 18 U1 5 U2 33 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 1478-6435 J9 PHILOS MAG JI Philos. Mag. PY 2010 VL 90 IS 7-8 SI SI BP 1019 EP 1033 DI 10.1080/14786430903019073 PG 15 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering; Physics, Applied; Physics, Condensed Matter SC Materials Science; Metallurgy & Metallurgical Engineering; Physics GA 582YT UT WOS:000276638200016 ER PT J AU Bud'ko, SL Ni, N Canfield, PC AF Bud'ko, Sergey L. Ni, Ni Canfield, Paul C. TI Anisotropic thermal expansion of AEFe(2)As(2) (AE = Ba, Sr, Ca) single crystals SO PHILOSOPHICAL MAGAZINE LA English DT Article DE iron-arsenides; thermal expansion; anisotropy; structural phase transition AB We report anisotropic thermal expansion of the parent, AEFe(2)As(2) (AE = Ba, Sr, and Ca), compounds. Above the structural/antiferromagnetic phase transition anisotropy of the thermal expansion coefficients is observed, with the coefficient along the a-axis being significantly smaller than the coefficient for the c-axis. The high temperature (200K <= T <= 300 K) coefficients themselves have similar values for the compounds studied. The sharp anomalies associated with the structural/antiferromagnetic phase transitions are clearly seen in the thermal expansion measurements. For all three pure compounds, the 'average' a-value increases and the c-lattice parameter decreases on warming through the transition, with the smallest change in the lattice parameters observed for SrFe2As2. The data are in general agreement with the literature data from X-ray and neutron diffraction experiments. C1 [Bud'ko, Sergey L.] US DOE, Ames Lab, Ames, IA 50011 USA. Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. RP Bud'ko, SL (reprint author), US DOE, Ames Lab, Ames, IA 50011 USA. EM budko@ameslab.gov RI Canfield, Paul/H-2698-2014 FU US Department of Energy [DE-AC02-07CH11358] FX This is work is published by permission of the US Department of Energy under Contract No. DE-AC02-07CH11358. The US Government retains for itself, and others acting on its behalf, a paid-up, non-exclusive, and irrevocable worldwide licence in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the government.; Work at the Ames Laboratory was supported by the US Department of Energy-Basic Energy Sciences under Contract No. DE-AC02-07CH11358. We are indebted to George M. Schmiedeshoff for his help in establishing the dilatometry technique in the Ames Laboratory Novel Materials and Ground States Group and for much propitious advice. We thank Andreas Kreyssig and Shibabrata Nandi for useful discussions and Jiaqiang Yan for help in synthesis. NR 27 TC 11 Z9 11 U1 0 U2 14 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 1478-6435 J9 PHILOS MAG JI Philos. Mag. PY 2010 VL 90 IS 9 BP 1219 EP 1227 DI 10.1080/14786430903325041 PG 9 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering; Physics, Applied; Physics, Condensed Matter SC Materials Science; Metallurgy & Metallurgical Engineering; Physics GA 582YU UT WOS:000276638300009 ER PT J AU Murphy, ST Gilbert, CA Smith, R Mitchell, TE Grimes, RW AF Murphy, S. T. Gilbert, C. A. Smith, R. Mitchell, T. E. Grimes, R. W. TI Non-stoichiometry in MgAl2O4 spinel SO PHILOSOPHICAL MAGAZINE LA English DT Article DE non-stoichiometry; spinel; atomistic simulation; defect structures ID MAGNESIUM ALUMINATE SPINEL; CRYSTALS; IRRADIATION; SYSTEM; DAMAGE; ION AB Stoichiometric magnesium aluminate spinel, MgAl2O4, contains equimolar proportions of Al2O3 and MgO. Spinel can, however, exhibit significant deviations from this stoichiometric composition. There is considerable disagreement concerning which species compensate for either excess Al2O3 or MgO non-stoichiometry. Here, we use empirical and quantum mechanical (density functional theory) atomistic simulation techniques to investigate the defect chemistry accommodating non-stoichiometry. The incorporation of excess Al2O3 was found to be a lower energy process than the solution of excess MgO. Elevated magnesium and aluminium cation vacancy defect concentrations are predicted in Al2O3 rich spinels, whilst MgO excess is facilitated by a combination of oxygen vacancy and magnesium interstitial defects. C1 [Murphy, S. T.; Grimes, R. W.] Univ London Imperial Coll Sci Technol & Med, Dept Mat, London SW7 2AZ, England. [Gilbert, C. A.; Smith, R.] Univ Loughborough, Dept Math Sci, Loughborough LE11 3TU, Leics, England. [Mitchell, T. E.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Grimes, RW (reprint author), Univ London Imperial Coll Sci Technol & Med, Dept Mat, London SW7 2AZ, England. EM r.grimes@ic.ac.uk RI Murphy, Samuel/E-9574-2011; Smith, Roger/C-2550-2013 FU UKERC FX This work was carried out as part of the UKERC materials programme. Computational resources were provided by the Imperial College High Performance Computing Service (http://www.imperial.ac.uk/ict/services/teaching-andresearchservices/hig hperformancecomputing). NR 27 TC 11 Z9 11 U1 3 U2 21 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 1478-6435 J9 PHILOS MAG JI Philos. Mag. PY 2010 VL 90 IS 10 BP 1297 EP 1305 DI 10.1080/14786430903341402 PG 9 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering; Physics, Applied; Physics, Condensed Matter SC Materials Science; Metallurgy & Metallurgical Engineering; Physics GA 582YV UT WOS:000276638400004 ER PT J AU Field, DP Magid, KR Mastorakos, IN Florando, JN Lassila, DH Morris, JW AF Field, D. P. Magid, K. R. Mastorakos, I. N. Florando, J. N. Lassila, D. H. Morris, J. W., Jr. TI Mesoscale strain measurement in deformed crystals: A comparison of X-ray microdiffraction with electron backscatter diffraction SO PHILOSOPHICAL MAGAZINE LA English DT Article DE electron backscatter diffraction; synchrotron source; X-ray microdiffraction; residual stress measurement; dislocation density ID DISLOCATION DENSITY; PLASTIC-DEFORMATION; SINGLE-CRYSTALS; RESOLUTION; MICROSCOPY; SIMULATIONS; PATTERNS; ALUMINUM AB Mapping of residual stresses at the mesoscale is increasingly practical thanks to technological developments in electron backscatter diffraction (EBSD) and X-ray microdiffraction using high brilliance synchrotron sources. An analysis is presented of a Cu single crystal deformed in compression to about 10% macroscopic strain. Local orientation measurements were made on sectioned and polished specimens using EBSD and X-ray microdiffraction. In broad strokes, the results are similar to each other with orientations being observed that are on the order of 5 degrees misoriented from that of the original crystallite. At the fine scale it is apparent that the X-ray technique can distinguish features in the structure that are much finer in detail than those observed using EBSD even though the spatial resolution of EBSD is superior to that of X-ray diffraction by approximately two orders of magnitude. The results are explained by the sensitivity of the EBSD technique to the specimen surface condition. Dislocation dynamics simulations show that there is a relaxation of the dislocation structure near the free surface of the specimen that extends approximately 650 angstrom into the specimen. The high spatial resolution of the EBSD technique is detrimental in this respect as the information volume extends only 200 angstrom or so into the specimen. The X-rays probe a volume on the order of 2 mu m in diameter, thus measuring the structure that is relatively unaffected by the near-surface relaxation. C1 [Field, D. P.; Mastorakos, I. N.] Washington State Univ, Sch Mech & Mat Engn, Pullman, WA 99164 USA. [Magid, K. R.] ETH, Lab Nanomet, Dept Mat, CH-8093 Zurich, Switzerland. [Florando, J. N.; Lassila, D. H.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Morris, J. W., Jr.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. RP Field, DP (reprint author), Washington State Univ, Sch Mech & Mat Engn, Pullman, WA 99164 USA. EM dfield@wsu.edu RI Field, David/D-5216-2012 OI Field, David/0000-0001-9415-0795 FU University of California, Lawrence Livermore National Laboratory [W-7405-Eng-48]; US Department of Energy [DE-AC02-05CH11231] FX This work was partially performed under the auspices of the US Department of Energy by University of California, Lawrence Livermore National Laboratory under Contract W-7405-Eng-48. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under Contract No. DE-AC02-05CH11231 at Lawrence Berkeley National Laboratory. NR 32 TC 17 Z9 17 U1 0 U2 10 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 1478-6435 J9 PHILOS MAG JI Philos. Mag. PY 2010 VL 90 IS 11 BP 1451 EP 1464 DI 10.1080/14786430903397297 PG 14 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering; Physics, Applied; Physics, Condensed Matter SC Materials Science; Metallurgy & Metallurgical Engineering; Physics GA 582YY UT WOS:000276638700005 ER PT J AU Bhattacharyya, D Mara, NA Dickerson, P Hoagland, RG Misra, A AF Bhattacharyya, D. Mara, N. A. Dickerson, P. Hoagland, R. G. Misra, A. TI A transmission electron microscopy study of the deformation behavior underneath nanoindents in nanoscale Al-TiN multilayered composites SO PHILOSOPHICAL MAGAZINE LA English DT Article DE multilayer; nanocomposite; nanoindentation; nanomechanics; transmission electron microscopy; focused ion beam ID METAL-CERAMIC COMPOSITES; MECHANICAL-PROPERTIES; STABILITY; HARDNESS AB Nanoscale multilayered Al-TiN composites were deposited using the dc magnetron sputtering technique in two different layer thickness ratios, Al : TiN = 1 : 1 and Al : TiN = 9 : 1. The Al layer thickness varied from 2 nm to 450 nm. The hardness of the samples was tested by nanoindentation using a Berkovich tip. Cross-sectional transmission electron microscopy (TEM) was carried out on samples extracted with focused ion beam from below the nanoindents. The results of the hardness tests on the Al-TiN multilayers with two different thickness ratios are presented, together with observations from the cross-sectional TEM studies of the regions underneath the indents. These studies revealed remarkable strength in the multilayers, as well as some very interesting deformation behavior in the TiN layers at extremely small length scales, where the hard TiN layers undergo co-deformation with the Al layers. C1 [Bhattacharyya, D.; Misra, A.] Los Alamos Natl Lab, MPA CINT, Los Alamos, NM 87544 USA. [Mara, N. A.; Dickerson, P.] Los Alamos Natl Lab, Met Grp, Los Alamos, NM 87544 USA. [Hoagland, R. G.] Los Alamos Natl Lab, Struct Property Relat Grp, Los Alamos, NM 87544 USA. RP Bhattacharyya, D (reprint author), Los Alamos Natl Lab, MPA CINT, Los Alamos, NM 87544 USA. EM dhriti@lanl.gov RI Misra, Amit/H-1087-2012; Hoagland, Richard/G-9821-2012; Mara, Nathan/J-4509-2014; OI Mara, Nathan/0000-0002-9135-4693 FU Office of Basic Energy Sciences of the Department of Energy, United States Government FX The authors would like to acknowledge the support of the Office of Basic Energy Sciences of the Department of Energy, United States Government. The help and technical expertise of J.K. Baldwin in the deposition of the thin films is also gratefully acknowledged. Darrick Williams is acknowledged for his help with some XRD measurements. The authors would also like to thank Prof. J.P. Hirth for many helpful discussions. NR 20 TC 23 Z9 23 U1 3 U2 17 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OR14 4RN, OXON, ENGLAND SN 1478-6435 EI 1478-6443 J9 PHILOS MAG JI Philos. Mag. PY 2010 VL 90 IS 13 BP 1711 EP 1724 AR PII 921454962 DI 10.1080/14786430903459691 PG 14 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering; Physics, Applied; Physics, Condensed Matter SC Materials Science; Metallurgy & Metallurgical Engineering; Physics GA 596HH UT WOS:000277675300003 ER PT J AU Barashev, AV Golubov, SI AF Barashev, A. V. Golubov, S. I. TI On the onset of void ordering in metals under neutron or heavy-ion irradiation SO PHILOSOPHICAL MAGAZINE LA English DT Article DE void swelling; void lattice; displacement cascade; interstitial cluster ID CASCADE-DAMAGE CONDITIONS; GLISSILE INTERSTITIAL CLUSTERS; ONE-DIMENSIONAL DIFFUSION; BUBBLE-LATTICE FORMATION; PURE COPPER; DISPLACEMENT CASCADES; MOLECULAR-DYNAMICS; DEFECT PRODUCTION; MECHANISM; ACCUMULATION AB Formation of void lattices is observed in a number of metals and alloys under high-energy particle bombardment. The conditions were derived for destabilisation of homogeneous void arrangement using an approach developed for the description of lane formation in pedestrian crowds. The model is based on the Foreman's mechanism of void alignment due to one-dimensionally migrating clusters of self-interstitial atoms. The results show that spatial correlations between voids should exist above some very small size, unless correlations with other defects prevail. It is shown that spatial correlations of voids with dislocations and second-phase precipitates should also evolve and provide a powerful driving force for further swelling. C1 [Barashev, A. V.] Univ Liverpool, Dept Engn, Liverpool L69 3GH, Merseyside, England. [Golubov, S. I.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Golubov, S. I.] Univ Tennessee, Ctr Mat Proc, Knoxville, TN 37996 USA. RP Barashev, AV (reprint author), Univ Liverpool, Dept Engn, Brownlow Hill, Liverpool L69 3GH, Merseyside, England. EM a.barashev@liv.ac.uk FU UK Engineering and the Physical Sciences Research Council; EU [FP 7]; Office of Fusion Energy Sciences U. S. Department of Energy [DE-AC05-00OR22725] FX The authors express their gratitude to Dr B. N. Singh (RisO National Laboratory, Denmark), Dr H. Trinkaus (Forschungscentrum Julich, Germany), and Drs S.J. Zinkle, R. E. Stoller and Yu. N. Osetsky (Oak Ridge National Laboratory, USA) for careful reading and useful discussions of the manuscript. The research was sponsored by a research grant from the UK Engineering and the Physical Sciences Research Council and by EU-funded project FP 7 GetMat (A. V. B) and by the Office of Fusion Energy Sciences U. S. Department of Energy, under contract DE-AC05-00OR22725 with UT-Battelle, LLC (SI.G). NR 50 TC 6 Z9 6 U1 0 U2 7 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OR14 4RN, OXON, ENGLAND SN 1478-6435 EI 1478-6443 J9 PHILOS MAG JI Philos. Mag. PY 2010 VL 90 IS 13 BP 1787 EP 1797 AR PII 920064096 DI 10.1080/14786430903482735 PG 11 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering; Physics, Applied; Physics, Condensed Matter SC Materials Science; Metallurgy & Metallurgical Engineering; Physics GA 596HH UT WOS:000277675300008 ER PT J AU Beyerlein, IJ Capolungo, L Marshall, PE McCabe, RJ Tome, CN AF Beyerlein, I. J. Capolungo, L. Marshall, P. E. McCabe, R. J. Tome, C. N. TI Statistical analyses of deformation twinning in magnesium SO PHILOSOPHICAL MAGAZINE LA English DT Article DE statistics; hcp; grain size; twinning; magnesium alloys; polycrystalline metals ID GRAIN-SIZE; SINGLE-CRYSTALS; STRUCTURAL INTERPRETATION; ZINC CRYSTALS; TWINS; SLIP; NUCLEATION; TEMPERATURE; GROWTH; METALS AB To extract quantitative and meaningful relationships between material microstructure and deformation twinning in magnesium, we conduct a statistical analysis on large data sets generated by electron backscattering diffraction (EBSD). The analyses show that not all grains of similar orientation and grain size form twins, and twinning does not occur exclusively in grains with high twin Schmid factors or in the relatively large grains of the sample. The number of twins per twinned grain increases with grain area, but twin thickness and the fraction of grains with at least one visible twin are independent of grain area. On the other hand, an analysis of twin pairs joined at a boundary indicates that grain boundary misorientation angle strongly influences twin nucleation and growth. These results question the use of deterministic rules for twin nucleation and Hall-Petch laws for size effects on twinning. Instead, they encourage an examination of the defect structures of grain boundaries and their role in twin nucleation and growth. C1 [Beyerlein, I. J.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Capolungo, L.; Marshall, P. E.; McCabe, R. J.; Tome, C. N.] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. RP Beyerlein, IJ (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. EM irene@lanl.gov RI Tome, Carlos/D-5058-2013; Beyerlein, Irene/A-4676-2011; OI McCabe, Rodney /0000-0002-6684-7410 FU Office of Basic Energy Sciences [W-7405-ENG-36] FX This material is published by permission of the Office of Basic Energy Sciences under Contract No. W-7405-ENG-36. NR 49 TC 144 Z9 146 U1 10 U2 87 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 1478-6435 J9 PHILOS MAG JI Philos. Mag. PY 2010 VL 90 IS 16 BP 2161 EP 2190 DI 10.1080/14786431003630835 PG 30 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering; Physics, Applied; Physics, Condensed Matter SC Materials Science; Metallurgy & Metallurgical Engineering; Physics GA 596HL UT WOS:000277675700003 ER PT J AU Cole, DR Chialvo, AA Rother, G Vlcek, L Cummings, PT AF Cole, D. R. Chialvo, A. A. Rother, G. Vlcek, L. Cummings, P. T. TI Supercritical fluid behavior at nanoscale interfaces: Implications for CO2 sequestration in geologic formations SO PHILOSOPHICAL MAGAZINE LA English DT Article DE geologic sequestration; nanostructures; supercritical CO2; adsorption; integral equation calculation; molecular dynamics ID MOLECULAR-DYNAMICS SIMULATION; MONTE-CARLO-SIMULATION; CARBON-DIOXIDE FLUID; ADSORPTION-ISOTHERMS; NEUTRON-SCATTERING; MECHANICAL COMPACTION; CRITICAL-TEMPERATURE; COMPUTER-SIMULATION; MESOPOROUS SILICAS; SEALING CAPACITY AB Injection of CO2 into subsurface geologic formations has been identified as a key strategy for mitigating the impact of anthropogenic emissions of CO2. A key aspect of this process is the prevention of leakage from the host formation by an effective cap or seal rock which has low porosity and permeability characteristics. Shales comprise the majority of cap rocks encountered in subsurface injection sites with pore sizes typically less than 100 nm and whose surface chemistries are dominated by quartz (SiO2) and clays. We report the behavior of pure CO2 interacting with simple substrates, i.e. SiO2 and muscovite, that act as proxies for more complex mineralogical systems. Modeling of small-angle neutron scattering (SANS) data taken from CO2-silica aerogel (95% porosity; 7 nm pores) interactions indicates the presence of fluid depletion for conditions above the critical density. A theoretical framework, i.e. integral equation approximation (IEA), is presented that describes the fundamental behavior of near-critical adsorption onto a non-confining substrate that is consistent with SANS experimental results. Structural and dynamic behavior for supercritical CO2 interaction with muscovite (KAl2Si3AlO10(OH)2) was assessed by classical molecular dynamics (CMD). These results indicate the development of distinct layers of CO2 within slit pores, reduced mobility by one to two orders of magnitude compared to bulk CO2 depending on pore size and formation of bonds between CO2 oxygens and H from muscovite hydroxyls. Analysis of simple, well-characterized fluid-substrate systems can provide details on the thermodynamic, structural and dynamic properties of CO2 at conditions relevant to sequestration. C1 [Cole, D. R.; Chialvo, A. A.; Rother, G.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. [Vlcek, L.; Cummings, P. T.] Vanderbilt Univ, Dept Chem Engn, Nashville, TN 37235 USA. [Vlcek, L.] Acad Sci Czech Republic, Inst Chem Proc Fundamentals, CR-16502 Prague 6, Czech Republic. RP Cole, DR (reprint author), Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. EM coledr@ornl.gov RI Rother, Gernot/B-7281-2008; Cummings, Peter/B-8762-2013; Vlcek, Lukas/N-7090-2013; OI Rother, Gernot/0000-0003-4921-6294; Cummings, Peter/0000-0002-9766-2216; Vlcek, Lukas/0000-0003-4782-7702; Chialvo, Ariel/0000-0002-6091-4563 FU Office of Basic Energy Sciences; ORNL [DE-AC05-00OR22725] FX Support for this work comes from the US Department of Energy through projects funded by the Office of Basic Energy Sciences: GRS (Section 3) from 'Structure and Dynamics of Earth Materials, Interfaces and Reactions' (FWP ERKCC72) and DRC (Section 1, 2, 3, 5), AAC (Section 4.1) and LV (Section 4.2) from ORNL's part of the LBNL 'Center for Nanoscale Control of Geologic CO2' (FWP ERKCC67) under contract DE-AC05-00OR22725 to Oak Ridge National Laboratory, managed and operated by UT-Battelle, LLC. We thank two anonymous reviewers for their helpful comments and suggestions that improved this paper. NR 109 TC 61 Z9 61 U1 1 U2 75 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 1478-6435 J9 PHILOS MAG JI Philos. Mag. PY 2010 VL 90 IS 17-18 BP 2339 EP 2363 AR PII 920636807 DI 10.1080/14786430903559458 PG 25 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering; Physics, Applied; Physics, Condensed Matter SC Materials Science; Metallurgy & Metallurgical Engineering; Physics GA 602UE UT WOS:000278163500005 ER PT J AU Farrow, A Laird, C AF Farrow, Adam Laird, Campbell TI Precipitation in solution-treated aluminium-4 wt% copper under cyclic strain SO PHILOSOPHICAL MAGAZINE LA English DT Article DE precipitation; aluminium alloys; cyclic strain; texture; vacancies; strain-assisted precipitation ID NUCLEATION; DIFFUSION; FATIGUE; ALLOY AB Solution-treated Al-4wt% Cu was strain-cycled at ambient temperature and above, and the precipitation and deformation behaviours investigated by TEM. Anomalously rapid growth of precipitates appears to have been facilitated by a vacancy super-saturation generated by cyclic strain and the presence of continually refreshed dislocation density to provide heterogeneous nucleation sites. Crystallographic texture appears to be responsible for latent hardening in specimens tested at room temperature. Increasing temperatures lead to a gradual hardening throughout life due to precipitation. Specimens machined at 45 degrees from the rolling direction, which exhibit rapid precipitation hardening, show greater texture hardening due to increased axial stress required to cut precipitates in specimens. In the temperature range 100-200 degrees C, precipitation of Theta '' is suppressed by cyclic strain, and precipitation of Theta' promoted. The rapid growth of precipitates generated by cyclic strain operates with diminishing effect at higher temperatures due to faster recovery of non-equilibrium vacancy concentrations. Theta' precipitates generated under cyclic strain are smaller and more finely dispersed than those produced via quench-ageing due to heterogeneous nucleation on dislocations and possess a low aspect ratio and rounded edges of the broad faces caused by the introduction of ledges into the growing precipitates by dislocation cutting. Frequency effects indicate that dislocation action is responsible for the observed reduction in aspect ratio. Accelerated formation of grain-boundary precipitates appears partially responsible for rapid inter-granular fatigue failure at elevated temperatures, resulting in coexistent fatigue striations and ductile dimples on the fracture surface. C1 [Farrow, Adam] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Laird, Campbell] Univ Penn, Philadelphia, PA 19104 USA. RP Farrow, A (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM afarrow@lanl.gov FU US Government [DE-AC52-C6NA25396] FX This material is published by permission of the US Government under Contract No. DE-AC52-C6NA25396. The US Government retains for itself, and others acting on its behalf, a paid-up, non-exclusive, and irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government. NR 18 TC 5 Z9 5 U1 1 U2 8 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 1478-6435 J9 PHILOS MAG JI Philos. Mag. PY 2010 VL 90 IS 26 BP 3549 EP 3566 DI 10.1080/14786435.2010.491809 PG 18 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering; Physics, Applied; Physics, Condensed Matter SC Materials Science; Metallurgy & Metallurgical Engineering; Physics GA 635QX UT WOS:000280672300003 ER PT J AU Sharafat, S El-Azab, A Kubin, L Zinkle, S Huang, HC AF Sharafat, Shahram El-Azab, Anter Kubin, Ladislas Zinkle, Steve Huang, Hanchen TI Collective behavior of complex dislocation structures SO PHILOSOPHICAL MAGAZINE LA English DT Editorial Material C1 [Sharafat, Shahram] Univ Calif Los Angeles, Dept Mech & Aerosp Engn, Los Angeles, CA 90095 USA. [El-Azab, Anter] Florida State Univ, Dept Computat Sci, Tallahassee, FL 32306 USA. [El-Azab, Anter] Florida State Univ, Mat Sci Program, Tallahassee, FL 32306 USA. [Kubin, Ladislas] CNRS, ONERA, Lab Etud Microstruct, F-75700 Paris, France. [Zinkle, Steve] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN USA. [Huang, Hanchen] Univ Connecticut, Dept Mech Engn, Storrs, CT 06269 USA. RP Sharafat, S (reprint author), Univ Calif Los Angeles, Dept Mech & Aerosp Engn, Los Angeles, CA 90095 USA. RI Huang, Hanchen/A-9323-2008; OI Zinkle, Steven/0000-0003-2890-6915 NR 0 TC 1 Z9 1 U1 0 U2 10 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 1478-6435 J9 PHILOS MAG JI Philos. Mag. PY 2010 VL 90 IS 27-28 BP 3617 EP 3619 AR PII 925633092 DI 10.1080/14786435.2010.511778 PG 3 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering; Physics, Applied; Physics, Condensed Matter SC Materials Science; Metallurgy & Metallurgical Engineering; Physics GA 637LN UT WOS:000280819300001 ER PT J AU Mendelev, MI Kramer, MJ Ott, RT Sordelet, DJ Besser, MF Kreyssig, A Goldman, AI Wessels, V Sahu, KK Kelton, KF Hyers, RW Canepari, S Rogers, JR AF Mendelev, M. I. Kramer, M. J. Ott, R. T. Sordelet, D. J. Besser, M. F. Kreyssig, A. Goldman, A. I. Wessels, V. Sahu, K. K. Kelton, K. F. Hyers, R. W. Canepari, S. Rogers, J. R. TI Experimental and computer simulation determination of the structural changes occurring through the liquid-glass transition in Cu-Zr alloys SO PHILOSOPHICAL MAGAZINE LA English DT Article DE molecular dynamics simulation; X-ray diffraction; liquid metal; amorphous alloy; liquid-glass transition ID BULK METALLIC-GLASS; X-RAY-DIFFRACTION; LOCAL ATOMIC ARRANGEMENTS; INTERATOMIC POTENTIALS; POLYTETRAHEDRAL MATERIALS; MOLECULAR-DYNAMICS; FREE-VOLUME; TRANSFORMATIONS AB Molecular dynamics (MD) simulations were performed of the structural changes occurring through the liquid-glass transition in Cu-Zr alloys. The total scattering functions (TSF), and their associated primary diffuse scattering peak positions (Kp), heights (Kh) and full-widths at half maximum (KFWHM) were used as metrics to compare the simulations to high-energy X-ray scattering data. The residuals of difference between the model and experimental TSFs are 0.03 for the liquids and about 0.07 for the glasses. Over the compositional range studied, Zr1-xCux (0.1 x 0.9), Kp, Kh and KFWHM show a strong dependence on composition and temperature. The simulation and experimental data correlate well between each other. MD simulation revealed that the Cu-Zr bonds undergo the largest changes during cooling of the liquid, whereas the Cu-Cu bonds change the least. Changes in the partial-pair correlations are more readily seen in the second and third shells. The Voronoi polyhedra (VP) in glasses are dominated by only a few select types that are compositionally dependent. The relative concentrations of the dominant VPs rapidly change in their relative proportion in the deeply undercooled liquid. The experimentally determined region of best glass formability, xCu 65%, shows the largest temperature dependent changes for the deeply undercooled liquid in the MD simulation. This region also exhibits very strong temperature dependence for the diffusivity and the total energy of the system. These data point to a strong topological change in the best glass-forming alloys and a concurrent change in the VP chemistry in the deeply undercooled liquid. C1 [Mendelev, M. I.; Kramer, M. J.; Ott, R. T.; Sordelet, D. J.; Besser, M. F.; Kreyssig, A.; Goldman, A. I.] US DOE, Ames Lab, Ames, IA 50011 USA. [Mendelev, M. I.; Kramer, M. J.; Ott, R. T.; Sordelet, D. J.; Besser, M. F.; Kreyssig, A.; Goldman, A. I.] Iowa State Univ, Ames, IA 50011 USA. [Wessels, V.; Sahu, K. K.; Kelton, K. F.] Washington Univ, Dept Phys, St Louis, MO 63130 USA. [Hyers, R. W.; Canepari, S.] Univ Massachusetts, Amherst, MA 01003 USA. [Rogers, J. R.] NASA, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA. RP Mendelev, MI (reprint author), US DOE, Ames Lab, Ames, IA 50011 USA. EM mendelev@ameslab.gov RI Hyers, Robert/G-3755-2010 FU Department of Energy, Office of Basic Energy Sciences [DE-AC02-07CH11358]; US Department of Energy, Office of Science, Basic Energy Sciences [DE-AC02-06CH11357]; US Department of Energy [DE-AC02-07CH11358]; National Science Foundation [DMR-0606065, DMR-0856199]; NASA [NNX07AK27G] FX Work at the Ames Laboratory was supported by the Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-07CH11358. The high-energy X-ray work at the MUCAT sector of the APS was supported by the US Department of Energy, Office of Science, Basic Energy Sciences under Contract No. DE-AC02-06CH11357. Ames Laboratory is operated for the US Department of Energy by Iowa State University under Contract No. DE-AC02-07CH11358. The work at Washington University was partially supported by the National Science Foundation under Grant Nos. DMR-0606065 and DMR-0856199, and by NASA under Contract No. NNX07AK27G. NR 42 TC 29 Z9 29 U1 0 U2 26 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 1478-6435 J9 PHILOS MAG JI Philos. Mag. PY 2010 VL 90 IS 29 BP 3795 EP 3815 AR PII 923939337 DI 10.1080/14786435.2010.494585 PG 21 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering; Physics, Applied; Physics, Condensed Matter SC Materials Science; Metallurgy & Metallurgical Engineering; Physics GA 641YC UT WOS:000281167800002 ER PT J AU Golovchak, R Shpotyuk, O Mccloy, JS Riley, BJ Windisch, CF Sundaram, SK Kovalskiy, A Jain, H AF Golovchak, R. Shpotyuk, O. Mccloy, J. S. Riley, B. J. Windisch, C. F. Sundaram, S. K. Kovalskiy, A. Jain, H. TI Structural model of homogeneous As-S glasses derived from Raman spectroscopy and high-resolution XPS SO PHILOSOPHICAL MAGAZINE LA English DT Article DE chalcogenide glass; Raman spectroscopy; X-ray photoelectron spectroscopy; structure; quasi-tetrahedral unit ID DIFFERENTIAL SCANNING CALORIMETRY; CHALCOGENIDE GLASSES; ARSENIC SULFIDE; INTERMEDIATE; SELENIUM; VALENCE; ORDER; STATE AB The structure of homogeneous bulk AsxS100-x (25 x 42) glasses, prepared by the conventional rocking-melting-quenching method, was investigated using high-resolution X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy. It is shown that the main building blocks of their glass networks are regular AsS3/2 pyramids and sulfur chains. In the S-rich domain, the existence of quasi-tetrahedral (QT) S = As(S1/2)3 units is deduced from XPS data, but with a concentration not exceeding 3-5% of total atomic sites. Therefore, QT units do not appear as primary building blocks of the glass backbone in these materials, and an optimally-constrained network may not be an appropriate description for glasses when x 40. It is shown that, in contrast to Se-based glasses, the 'chain-crossing' model is only partially applicable to sulfide glasses. C1 [Golovchak, R.; Shpotyuk, O.] Lviv Sci Res Inst Mat SRC Carat, UA-79031 Lvov, Ukraine. [Shpotyuk, O.] Inst Phys Jan Dlugosz Univ, PL-42200 Czestochowa, Poland. [Mccloy, J. S.; Riley, B. J.; Windisch, C. F.; Sundaram, S. K.] Pacific NW Natl Lab, Richland, WA 99354 USA. [Kovalskiy, A.; Jain, H.] Lehigh Univ, Dept Mat Sci & Engn, Bethlehem, PA 18015 USA. RP Golovchak, R (reprint author), Lviv Sci Res Inst Mat SRC Carat, 202 Stryjska Str, UA-79031 Lvov, Ukraine. EM golovchak@novas.lviv.ua RI Shpotyuk, Oleh/A-2332-2012; Golovchak, Roman/A-4098-2009; McCloy, John/D-3630-2013; Kovalskiy, Andriy/A-8566-2008; OI McCloy, John/0000-0001-7476-7771; Kovalskiy, Andriy/0000-0002-5014-2467; Riley, Brian/0000-0002-7745-6730 FU NSF [DMR-0409588, DMR-0844014] FX The authors thank Dr. A.C. Miller (Lehigh University) for help with X-ray photoelectron Science Foundation (NSF Grant No. DMR-0409588 and DMR-0844014), for his Research Exchange visit to Lehigh University through the International Materials Institute for New Functionality in Glass (IMI-NFG). NR 36 TC 25 Z9 25 U1 0 U2 18 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OR14 4RN, OXON, ENGLAND SN 1478-6435 EI 1478-6443 J9 PHILOS MAG JI Philos. Mag. PY 2010 VL 90 IS 34 BP 4489 EP 4501 AR PII 926881734 DI 10.1080/14786435.2010.510455 PG 13 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering; Physics, Applied; Physics, Condensed Matter SC Materials Science; Metallurgy & Metallurgical Engineering; Physics GA 659SD UT WOS:000282586300002 ER PT J AU Yao, Z Jenkins, ML Hernandez-Mayoral, M Kirk, MA AF Yao, Z. Jenkins, M. L. Hernandez-Mayoral, M. Kirk, M. A. TI The temperature dependence of heavy-ion damage in iron: A microstructural transition at elevated temperatures SO PHILOSOPHICAL MAGAZINE LA English DT Article; Proceedings Paper CT Conference on Electron microscopy and diffraction of defects, nanostructures, interfaces and amorphous materials CY SEP 07-07, 2009 CL Oxford, ENGLAND DE radiation damage; in situ electron microscopy; defect analysis; microstructural characterisation ID DISLOCATION LOOPS; IRRADIATION DAMAGE; THIN-FOILS; ALPHA-IRON; FE; ALLOYS; SIMULATIONS; EVOLUTION AB A transition is reported in the dislocation microstructure of pure Fe produced by heavy-ion irradiation of thin foils, which took place between irradiation temperatures (Tirr) of 300 degrees C and 500 degrees C. At Tirr 400 degrees C, the microstructure was dominated by round or irregular non-edge dislocation loops of interstitial nature and with Burgers vectors b = 1/2 < 111 >, although interstitial < 100 > loops were also present; at 500 degrees C only rectilinear pure-edge < 100 > loops occurred. At intermediate temperatures there was a gradual transition between the two types of microstructure. At temperatures just below 500 degrees C, mobile 1/2 < 111 > loops were seen to be subsumed by sessile < 100 > loops. A possible explanation of these observations is given. C1 [Kirk, M. A.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Yao, Z.; Jenkins, M. L.] Univ Oxford, Dept Mat, Oxford OX1 3PH, England. [Hernandez-Mayoral, M.] CIEMAT, Div Mat, E-28040 Madrid, Spain. [Kirk, M. A.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Jenkins, ML (reprint author), Univ Oxford, Dept Mat, Parks Rd, Oxford OX1 3PH, England. EM mike.jenkins@materials.ox.ac.uk RI Hernandez Mayoral, Mercedes/F-8985-2016 OI Hernandez Mayoral, Mercedes/0000-0003-4504-7577 FU US DOE Office of Science [DE-AC02-06CH11357]; UKAEA, Culham Science Centre FX We thank Dr A. Liu and P. Baldo of the Argonne National Laboratory for their help in using this facility. The IVEM-Tandem Facility (within the Electron Microscopy Center at ANL) is supported by the US DOE Office of Science and operated under contract no. DE-AC02-06CH11357 by UChicago Argonne, LLC. We are grateful to Dr S. L. Dudarev and Dr S. P. Fitzgerald for helpful discussions. We thank B. Miller, D. Graham, and Prof. I. M. Robertson (UIUC) for help with Video 4. Part of this work was funded by the UKAEA, Culham Science Centre. NR 23 TC 36 Z9 36 U1 0 U2 23 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OR14 4RN, OXON, ENGLAND SN 1478-6435 EI 1478-6443 J9 PHILOS MAG JI Philos. Mag. PY 2010 VL 90 IS 35-36 BP 4623 EP 4634 AR PII 922221082 DI 10.1080/14786430903430981 PG 12 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering; Physics, Applied; Physics, Condensed Matter SC Materials Science; Metallurgy & Metallurgical Engineering; Physics GA 669AL UT WOS:000283318700004 ER PT J AU Spence, JCH Vecchione, T Weierstall, U AF Spence, J. C. H. Vecchione, T. Weierstall, U. TI A coherent photofield electron source for fast diffractive and point-projection imaging SO PHILOSOPHICAL MAGAZINE LA English DT Article; Proceedings Paper CT Conference on Electron microscopy and diffraction of defects, nanostructures, interfaces and amorphous materials CY SEP 07-07, 2009 CL Oxford, ENGLAND DE fast imaging; femtosecond source; photofield emission; field emission; laser; holography ID FIELD-EMISSION; X-RAY; CRYSTAL LATTICES; MICROSCOPY; ENERGY; DYNAMICS; LIMITATIONS; BRIGHTNESS AB Prospects for high-resolution imaging at femtosecond speeds using electron diffractive imaging are reviewed in the context of recent achievements using free-electron X-ray lasers. The conflict between Coulomb interactions and the spatial coherence of electron beams is identified as a limiting factor. Experimental results showing the performance of a milliwatt laser-driven fast photofield GaAs electron emitter are presented, including emission current and measured energy spread for various laser energies illuminating the electron emission tip. Band-bending below the Fermi level, due to penetration of the tip field into the emitter, is found to limit the emission energy spread by thermalizing the electrons. Because of the absence of beam crossovers and consequent Coulomb interactions, the point-projection photofield emission microscope with its high spatial coherence is suggested as a method for obtaining femtosecond images at high resolution from atomic processes, which may be triggered repetitively. The incorporation of a photofield emitter into a microwave pulse compression gun is discussed, as is the use of electron photofield emission from semiconductor donor states. C1 [Spence, J. C. H.; Weierstall, U.] Arizona State Univ, Dept Phys, Tempe, AZ 85287 USA. [Vecchione, T.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Spence, JCH (reprint author), Arizona State Univ, Dept Phys, Tempe, AZ 85287 USA. EM spence@asu.edu RI Weierstall, Uwe/B-3568-2011 FU NNSA FX We are grateful to Profs N. Browning, A. Schroeder and A. Howie for many useful discussions. We thank Dr G. Hembree for assistance with experimental design and many suggestions. Supported by an award from NNSA. NR 45 TC 8 Z9 8 U1 0 U2 7 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OR14 4RN, OXON, ENGLAND SN 1478-6435 EI 1478-6443 J9 PHILOS MAG JI Philos. Mag. PY 2010 VL 90 IS 35-36 BP 4691 EP 4702 AR PII 921906758 DI 10.1080/14786431003630868 PG 12 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering; Physics, Applied; Physics, Condensed Matter SC Materials Science; Metallurgy & Metallurgical Engineering; Physics GA 669AL UT WOS:000283318700009 ER PT J AU Rajulapati, KV Biener, MM Biener, J Hodge, AM AF Rajulapati, K. V. Biener, M. M. Biener, J. Hodge, A. M. TI Temperature dependence of the plastic flow behavior of tantalum SO PHILOSOPHICAL MAGAZINE LETTERS LA English DT Article DE nanoindentation; thermal activation; plastic flow; BCC; single crystal ID STRAIN GRADIENT PLASTICITY; DISLOCATION NUCLEATION; INCIPIENT PLASTICITY; YIELD-POINT; BCC METALS; NANOINDENTATION; DEFORMATION; MECHANISMS; CRYSTALS; STRENGTH AB Nanoindention has been used to study the plastic flow behavior of bcc Ta(001) in the temperature range 25-200 degrees C. Most notably, it is found that the shape of the load-displacement curves changes with increasing temperature. Only one large discontinuity marking the onset of plasticity is observed in room-temperature experiments, whereas multiple pop-ins separated by elastic reloading segments were observed at 200 degrees C. Detailed analysis of the load-displacement curves indicates that the lattice resistance decreases with increasing temperature, consistent with the mobilization of screw dislocations by thermal activation. Contributions from the oxide layer and/or thermal drift can be excluded. C1 [Rajulapati, K. V.; Hodge, A. M.] Univ So Calif, Dept Aerosp & Mech Engn, Los Angeles, CA 90089 USA. [Biener, M. M.; Biener, J.] Lawrence Livermore Natl Lab, Nanoscale Synth & Characterizat Lab, Livermore, CA 94550 USA. RP Hodge, AM (reprint author), Univ So Calif, Dept Aerosp & Mech Engn, Los Angeles, CA 90089 USA. EM ahodge@usc.edu FU U. S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX The authors gratefully acknowledge USC start-up funds. Part of this work was performed under the auspices of the U. S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 30 TC 13 Z9 13 U1 1 U2 22 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 0950-0839 J9 PHIL MAG LETT JI Philos. Mag. Lett. PY 2010 VL 90 IS 1 BP 35 EP 42 DI 10.1080/09500830903356893 PG 8 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering; Physics, Applied; Physics, Condensed Matter SC Materials Science; Metallurgy & Metallurgical Engineering; Physics GA 545SM UT WOS:000273757100004 ER PT J AU Tuncer, E Vaia, RA Arlen, M AF Tuncer, Enis Vaia, Richard A. Arlen, Michael TI Percolation in a nanotube-polymer system and its lumped-circuit modeling SO PHILOSOPHICAL MAGAZINE LETTERS LA English DT Article DE nanocomposite; nanotubes; impedance networks; electromagnetic properties; percolation ID SPECTRAL DENSITY REPRESENTATION; DIELECTRIC MIXTURES; THERMOPLASTIC POLYURETHANE; ELECTRICAL-PROPERTIES; RELAXATION-TIMES; COMPOSITES; CONDUCTIVITY; NANOCOMPOSITES; MICROSTRUCTURE; DEFORMATION AB Electrical properties of composites composed of polyurethane polymer and multi-walled nanotubes are reported. Samples with different nanotube volume fractions are prepared, and an impedance spectroscopy technique in the frequency range from 10 mHz to 10 MHz is used to characterize the properties of the samples. It is observed that the resistivity of the mixture can be varied widely, from &Sim10 M&UOmegam to &Sim1 &UOmegam, just by slightly altering the volume fraction of nanotubes. A lumped-circuit model illustrated that the micro-scale morphology between nanotube-clusters influences the resistive relaxation in the composite system. The investigations show that the presented binary mixture has a potential to be utilized in conductive electrical components (flexible electrodes), electromagnetic shielding, and electrostatic and field grading materials for electronic and high voltage insulation technologies. C1 [Tuncer, Enis] Oak Ridge Natl Lab, Div Fus Energy, Appl Superconduct Grp, Oak Ridge, TN 37831 USA. [Vaia, Richard A.; Arlen, Michael] USAF, Res Lab, AFRL RXBN, Wright Patterson AFB, OH 45433 USA. RP Tuncer, E (reprint author), Oak Ridge Natl Lab, Div Fus Energy, Appl Superconduct Grp, POB 2008,MS 6122, Oak Ridge, TN 37831 USA. EM tuncere@ornl.gov OI Tuncer, Enis/0000-0002-9324-4324 FU US Department of Energy [DE-AC05-00OR22725] FX This material is published by permission of the US Department of Energy under Contract No. DE-AC05-00OR22725. NR 47 TC 1 Z9 1 U1 1 U2 2 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 0950-0839 J9 PHIL MAG LETT JI Philos. Mag. Lett. PY 2010 VL 90 IS 9 BP 663 EP 675 AR PII 922904979 DI 10.1080/09500839.2010.493532 PG 13 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering; Physics, Applied; Physics, Condensed Matter SC Materials Science; Metallurgy & Metallurgical Engineering; Physics GA 619VP UT WOS:000279458700005 ER PT J AU Mazin, II Balatsky, AV AF Mazin, I. I. Balatsky, A. V. TI Superconductivity in Ca-intercalated bilayer graphene SO PHILOSOPHICAL MAGAZINE LETTERS LA English DT Article DE carbon thin films; carbon-based materials; superconductivity ID C6CA AB Recent observation of proximity effect [H. B. Heersche, P. Jarillo-Herrero, J.B. Oostinga, L. M. K. Vandersypen, and A. F. Morpurgo, Nature, bf 446 (2007) p. 05555.] has ignited interest in superconductivity in graphene and its derivatives. We consider Ca-intercalated graphene bilayer and argue that it is a superconductor, and likely with a sizeable T(c). We find substantial and suggestive similarities between Ca-intercalated bilayer (C(6)CaC(6)), and CaC(6), an established superconductor with T(c) = 11.5 K. In particular, the nearly free electron band, proven to be instrumental for superconductivity in intercalated graphites, does cross the chemical potential in (C(6)CaC(6)), despite the twice smaller doping level, satisfying the so-called "Cambridge criterion". Calculated properties of zone-center phonons are very similar to those of CaC(6). This suggests that the critical temperature would probably be on the same scale as in CaC(6). C1 [Balatsky, A. V.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Mazin, I. I.] USN, Res Lab, Washington, DC 20375 USA. [Balatsky, A. V.] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. RP Balatsky, AV (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. EM avb@lanl.gov FU US DoE BES; LDRD at Los Alamos FX We are grateful to I. Lukyanchuk and T. Wehling for useful discussions. This work was supported by US DoE BES and LDRD at Los Alamos. NR 21 TC 16 Z9 16 U1 5 U2 30 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 0950-0839 J9 PHIL MAG LETT JI Philos. Mag. Lett. PY 2010 VL 90 IS 10 BP 731 EP 738 DI 10.1080/09500839.2010.487473 PG 8 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering; Physics, Applied; Physics, Condensed Matter SC Materials Science; Metallurgy & Metallurgical Engineering; Physics GA 635QE UT WOS:000280670400005 ER PT J AU Schneider, AS Clark, BG Frick, CP Gruber, PA Arzt, E AF Schneider, A. S. Clark, B. G. Frick, C. P. Gruber, P. A. Arzt, E. TI Effect of pre-straining on the size effect in molybdenum pillars SO PHILOSOPHICAL MAGAZINE LETTERS LA English DT Article DE micropillar compression; bcc Mo; pre-straining ID CENTERED CUBIC METALS; SINGLE-CRYSTALS; UNIAXIAL COMPRESSION; FCC METALS; DEFORMATION; SIMULATIONS; STRENGTH; BCC; MICROPILLARS; NANOPILLARS AB The effect of prior deformation on mechanical behavior as a function of size is investigated for body-centered cubic (bcc) molybdenum (Mo) pillars. Experiments were performed using focused ion beam (FIB) manufactured [0 0 1] and [2 3 5] Mo micro/nanopillars, which were compressed, re-FIB machined, and compressed again. Unlike in bulk materials, pre-straining has a negligible effect on stress-strain behavior of the pillars, suggesting that dislocation storage does not occur in small-scale bcc specimens. The prevailing mechanism behind the size effect is attributed to dislocation nucleation mechanisms. C1 [Schneider, A. S.] Max Planck Inst Met Res, D-70569 Stuttgart, Germany. [Schneider, A. S.; Arzt, E.] INM Leibniz Inst New Mat, D-66123 Saarbrucken, Germany. [Schneider, A. S.; Arzt, E.] Univ Saarland, D-66123 Saarbrucken, Germany. [Clark, B. G.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Frick, C. P.] Univ Wyoming, Dept Mech Engn, Laramie, WY 82071 USA. [Gruber, P. A.] Karlsruhe Inst Technol, Izbs Inst Reliabil Components & Syst, D-76131 Karlsruhe, Germany. RP Schneider, AS (reprint author), Max Planck Inst Met Res, Heisenbergstr 3, D-70569 Stuttgart, Germany. EM andreas.schneider@inm-gmbh.de RI Arzt, Eduard/B-5282-2008 NR 35 TC 16 Z9 16 U1 0 U2 15 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 0950-0839 J9 PHIL MAG LETT JI Philos. Mag. Lett. PY 2010 VL 90 IS 11 BP 841 EP 849 AR PII 926505498 DI 10.1080/09500839.2010.508445 PG 9 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering; Physics, Applied; Physics, Condensed Matter SC Materials Science; Metallurgy & Metallurgical Engineering; Physics GA 646YR UT WOS:000281582200007 ER PT S AU Peters, DW Davids, P Wendt, JR Cruz-Cabrer, AA Kemme, SA Samora, S AF Peters, David W. Davids, Paul Wendt, Joel R. Cruz-Cabrer, Alvaro A. Kemme, Shanalyn A. Samora, Sally BE Adibi, A Lin, SY Scherer, A TI Metamaterial-inspired high-absorption surfaces for thermal infrared applications SO PHOTONIC AND PHONONIC CRYSTAL MATERIALS AND DEVICES X SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Photonic and Phononic Crystal Materials and Devices X CY JAN 26-28, 2010 CL San Francisco, CA SP SPIE DE infrared; detector; absorber; frequency selective surface; metamaterial AB We present design, fabrication, and characterization results of a highly absorptive surface in the thermal infrared that draws on concepts from the frequency selective surface and metamaterials communities. At normal incidence this optically thin surface has an absorption of over 99%. Furthermore, it has a broad angular range (over 90% absorption at 60 degrees from normal). The simple structure is composed of a reflective metal layer, a roughly quarter-wave layer of lossy dielectric, and a top metal layer that is patterned with an array of subwavelength apertures. The design of the aperture allows spectral and angular control of the absorption/emission band. We will present simulation and measured results. Change in waveband and polarization could easily be changed from pixel to pixel in a focal plane array. C1 [Peters, David W.; Davids, Paul; Wendt, Joel R.; Cruz-Cabrer, Alvaro A.; Kemme, Shanalyn A.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Peters, DW (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM dwpeter@sandia.gov RI Davids, Paul/D-1550-2010 NR 2 TC 7 Z9 7 U1 0 U2 6 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-8005-7 J9 PROC SPIE PY 2010 VL 7609 AR 76091C DI 10.1117/12.842191 PG 7 WC Crystallography; Optics SC Crystallography; Optics GA BRW44 UT WOS:000283790200026 ER PT J AU Marois, C Macintosh, B AF Marois, Christian Macintosh, Bruce TI The Search for Other Earths (vol 43, pg 40, 2009) SO PHOTONICS SPECTRA LA English DT Correction C1 [Macintosh, Bruce] Lawrence Livermore Natl Lab, Livermore, CA USA. NR 1 TC 0 Z9 0 U1 1 U2 1 PU LAURIN PUBL CO INC PI PITTSFIELD PA BERKSHIRE COMMON PO BOX 1146, PITTSFIELD, MA 01202 USA SN 0731-1230 J9 PHOTONIC SPECTRA JI Photon. Spect. PD JAN PY 2010 VL 44 IS 1 BP 12 EP 12 PG 1 WC Optics SC Optics GA 549MI UT WOS:000274053100005 ER PT S AU Wang, Q Page, M Iwaniczko, E Xu, YQ Hasoon, F AF Wang, Qi Page, Matthew Iwaniczko, Eugene Xu, Yueqin Hasoon, Falah BE Tao, M Chang, P Kakimoto, K Sunkara, M Brownson, J Claeys, C Rajeshwar, K Yang, D TI Light Management for Efficient Crystalline Si Heterojunction Solar Cells SO PHOTOVOLTAICS FOR THE 21ST CENTURY 5 SE ECS Transactions LA English DT Proceedings Paper CT Symposium on Photovoltaics for the 21st Century 5 held during the 216th Meeting of the Electrochemical-Society (ECS) CY OCT 04-09, 2009 CL Vienna, AUSTRIA SP Electrochem Soc (ECS), Florida Energy Ctr, Energy Technol, Dielect Sci & Technol, Elect & Photon AB High efficiency crystalline Si heterojunction solar cells have been achieved with an independently-confirmed efficiency of 19.3% on a ptype silicon wafer. The hydrogenated amorphous silicon (a-Si:H) emitter and back contact were deposited using high-rate hot-wire chemical vapor deposition. This high efficiency cell has an open circuit voltage of 0.678 V, fill factor of 78.6%, and short circuit current density of 36.2 mA/cm(2). Improved surface texturing, surface cleaning, back contacts, indium tin oxide (ITO) thickness, and surface passivation all contribute to the high efficiency. The high open circuit voltage results from the good amorphous Si surface passivation with a minority carrier lifetime of similar to 1 ms. Light management was applied to further improve the cell performance. ITO layer was optimized to maximize the current collection. This layer acts as a transparent contact layer to the emitter as well as a single anti-reflectance layer to minimize the optical loss due to reflection. C1 [Wang, Qi; Page, Matthew; Iwaniczko, Eugene; Xu, Yueqin; Hasoon, Falah] NCPV, Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Wang, Q (reprint author), NCPV, Natl Renewable Energy Lab, Golden, CO 80401 USA. NR 10 TC 0 Z9 0 U1 1 U2 3 PU ELECTROCHEMICAL SOC INC PI PENNINGTON PA 65 S MAIN ST, PENNINGTON, NJ 08534-2839 USA SN 1938-5862 BN 978-1-56677-782-7 J9 ECS TRANSACTIONS PY 2010 VL 25 IS 15 BP 11 EP 17 PG 7 WC Electrochemistry; Energy & Fuels; Physics, Applied SC Electrochemistry; Energy & Fuels; Physics GA BCC78 UT WOS:000309742100002 ER PT J AU Frauenfelder, H AF Frauenfelder, Hans TI Proteins, supercooled liquids, and glasses: A micro-review SO PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES LA English DT Article; Proceedings Paper CT International Conference on Frontiers of Quantum and Mesoscopic Thermodynamics (FQMT '08) CY JUL 28-AUG 02, 2008 CL Prague, CZECH REPUBLIC DE Conformational substates; Energy landscape; Hierarchy; alpha and beta fluctuations ID ENERGY LANDSCAPES; LIGAND-BINDING; DYNAMICS; SOLVENT; MYOGLOBIN; KINETICS; MOTIONS; FLUCTUATIONS; VISCOSITY; MODEL AB Proteins are complex systems that connect biology, biophysics, chemistry, and physics, and even mathematics. They share similarities with supercooled liquids and glasses, such as frustration, the existence of an energy landscape, and at least two types of fluctuations. Proteins are, however, far more complex and have functions that are essential for life. The study of the physics of proteins is much younger than the corresponding study of glasses and thus glasses and supercooled liquids can provide suggestions of what to look for in proteins. The present micro-review presents concepts that are common to proteins, supercooled liquids, and glasses and omits details that can be found in the original papers. Published by Elsevier B.V. C1 Los Alamos Natl Lab, Los Alamos, NM 87574 USA. RP Frauenfelder, H (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87574 USA. EM Frauenfelder@lanl.gov NR 23 TC 5 Z9 5 U1 1 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1386-9477 J9 PHYSICA E JI Physica E PD JAN PY 2010 VL 42 IS 3 BP 662 EP 665 DI 10.1016/j.physe.2009.08.005 PG 4 WC Nanoscience & Nanotechnology; Physics, Condensed Matter SC Science & Technology - Other Topics; Physics GA 561DA UT WOS:000274954500079 ER PT J AU Aggarwal, KM Keenan, FP Heeter, RF AF Aggarwal, K. M. Keenan, F. P. Heeter, R. F. TI Energy levels, radiative rates and electron impact excitation rates for transitions in Li-like N V, F VII, Ne VIII and Na IX SO PHYSICA SCRIPTA LA English DT Article ID OSCILLATOR-STRENGTHS; EMISSION-LINES; AR-XVI; IONS; REGION; XXIV; XXVI; IRON; XII AB In this paper, we report calculations of energy levels, radiative rates and electron impact excitation rates for transitions in Li-like N V, F VII, Ne VIII and Na IX. The general-purpose relativistic atomic structure package (GRASP) is adopted for calculating energy levels and radiative rates, while for determining the collision strengths and subsequently the excitation rates, the Dirac atomic R-matrix code (DARC) and the flexible atomic code (FAC) are used. Oscillator strengths, radiative rates and line strengths are reported for all E1, E2, M1 and M2 transitions among the lowest 24 levels of N V, F VII, Ne VIII and Na IX. Collision strengths have been averaged over a Maxwellian velocity distribution and the effective collision strengths so obtained are reported over a wide temperature range below 10(6.6) K. Additionally, lifetimes are also reported for all calculated levels of the above four ions. C1 [Aggarwal, K. M.; Keenan, F. P.] Queens Univ Belfast, Astrophys Res Ctr, Sch Math & Phys, Belfast BT7 1NN, Antrim, North Ireland. [Heeter, R. F.] Lawrence Livermore Natl Lab, Phys & Adv Technol Directorate, Livermore, CA 94550 USA. RP Aggarwal, KM (reprint author), Queens Univ Belfast, Astrophys Res Ctr, Sch Math & Phys, Belfast BT7 1NN, Antrim, North Ireland. EM K.Aggarwal@qub.ac.uk FU Engineering and Physical Sciences; Science and Technology Facilities Councils of the United Kingdom; William Penney Fellowship FX This work was financed by the Engineering and Physical Sciences and Science and Technology Facilities Councils of the United Kingdom, and FPK is grateful to AWE Aldermaston for the award of a William Penney Fellowship. We thank Dr P H Norrington for providing his revised GRASP and DARC codes prior to publication. NR 20 TC 8 Z9 8 U1 1 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0031-8949 J9 PHYS SCRIPTA JI Phys. Scr. PD JAN PY 2010 VL 81 IS 1 AR 015303 DI 10.1088/0031-8949/81/01/015303 PG 16 WC Physics, Multidisciplinary SC Physics GA 610PX UT WOS:000278747400014 ER PT J AU Clementson, J Beiersdorfer, P Brown, GV Gu, MF AF Clementson, J. Beiersdorfer, P. Brown, G. V. Gu, M. F. TI Spectroscopy of M-shell x-ray transitions in Zn-like through Co-like W SO PHYSICA SCRIPTA LA English DT Article ID LASER-PRODUCED PLASMAS; BEAM ION-TRAP; CHARGED TUNGSTEN IONS; NI-LIKE IONS; ISOELECTRONIC SEQUENCE; ATOMIC SPECTRA; ENERGY-LEVELS; DIAGNOSTICS; LINES; IDENTIFICATION AB The M-shell x-ray emission of highly charged tungsten ions has been investigated at the Livermore electron beam ion trap facility. Using the SuperEBIT electron beam ion trap and a NASA x-ray calorimeter array, transitions connecting to levels of the ground configurations in the 1500-3600 eV spectral range of zinc-like W(44+) through cobalt-like W(47+) have been measured. The measured spectra are compared with theoretical line positions and emissivities calculated using the FAC code. C1 [Clementson, J.; Beiersdorfer, P.; Brown, G. V.; Gu, M. F.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Clementson, J.] Lund Univ, Dept Phys, SE-22100 Lund, Sweden. RP Clementson, J (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM clementson@llnl.gov FU United States Department of Energy [DE-AC52-07NA-27344] FX This work was performed under the auspices of the United States Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA-27344. The authors would like to acknowledge assistance with the experiment from Phil D'Antonio, Ed Magee, Dr Daniel Thorn, and Professor Elmar Trabert. Joel Clementson would like to thank Dr Hans Lundberg, Dr Sven Huldt and Professor Sune Svanberg for their support. NR 44 TC 42 Z9 42 U1 1 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0031-8949 J9 PHYS SCRIPTA JI Phys. Scr. PD JAN PY 2010 VL 81 IS 1 AR 015301 DI 10.1088/0031-8949/81/01/015301 PG 8 WC Physics, Multidisciplinary SC Physics GA 610PX UT WOS:000278747400012 ER PT J AU Liu, H Liu, YM Li, T Wang, SM Zhu, SN Zhang, X AF Liu, H. Liu, Y. M. Li, T. Wang, S. M. Zhu, S. N. Zhang, X. TI Coupled magnetic plasmons in metamaterials (vol 246, pg 1397, 2009) SO PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS LA English DT Correction C1 [Liu, H.; Li, T.; Wang, S. M.; Zhu, S. N.] Nanjing Univ, Dept Phys, Nanjing 210093, Peoples R China. [Liu, Y. M.; Zhang, X.] Univ Calif Berkeley, Nanoscale Sci & Engn Ctr, Berkeley, CA 94720 USA. [Zhang, X.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Liu, H (reprint author), Nanjing Univ, Dept Phys, Nanjing 210093, Peoples R China. EM liuhui@nju.edu.cn NR 7 TC 0 Z9 0 U1 0 U2 5 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 0370-1972 J9 PHYS STATUS SOLIDI B JI Phys. Status Solidi B-Basic Solid State Phys. PD JAN PY 2010 VL 247 IS 1 BP 225 EP 225 DI 10.1002/pssb.200945397 PG 1 WC Physics, Condensed Matter SC Physics GA 550BT UT WOS:000274102800032 ER PT S AU Gonzalez, D Lozano, JG Herrera, M Browning, ND Ruffenach, S Briot, O Garcia, R AF Gonzalez, David Lozano, Juan G. Herrera, Miriam Browning, Nigel D. Ruffenach, Sandra Briot, Olivier Garcia, Rafael BE Briot, O TI Natural oxidation of InN quantum dots: the role of cubic InN SO PHYSICA STATUS SOLIDI C: CURRENT TOPICS IN SOLID STATE PHYSICS, VOL 7, NO 1 SE Physica Status Solidi C-Current Topics in Solid State Physics LA English DT Proceedings Paper CT Symposium on Group III Nitride Semiconductors held at the 2009 EMRS Spring Meeting CY JUN 08-12, 2009 CL Strasbourg, FRANCE SP European Mat Res Soc ID BAND-GAP; INDIUM NITRIDE AB The natural aging process occured in indium nitride quantum dots (QDs) heterostructures as a consequence of exposure to the atmosphere has been studied by means of transmission electron microscopy and electron beam related techniques. The comparison between GaN-capped and uncapped InN QDs kept at room conditions during 36 months indicates the structural changes that take place. While the capping layer seems to act in a protective way avoiding any change in the QDs, the uncapped structures suffer a series of phase transformations, where the original wurtzite structure is replaced by a layer of cubic phases. The main constituent of this layer is shown to be bcc-In2O3 formed by the substitution of the nitrogen atoms by oxygen from the atmosphere. This supposes a transformation from a hexagonal to a cubic structure, explained by the existence of an oxygen-rich cubic InN acting as an intermediate phase. The difference in the formation enthalpy between the original and the final product, together with the good match between the crystals would explain this transformation that shows the high instability of InN at environmental conditions. (C) 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim C1 [Gonzalez, David; Lozano, Juan G.; Herrera, Miriam; Garcia, Rafael] Univ Cadiz, Dept Ciencia Mat & Ingn Met & Quim Inorgan, Apdo 40, E-11510 Puerto Real, Cadiz, Spain. [Browning, Nigel D.] Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA. [Browning, Nigel D.] Lawrence Livermore Natl Lab, Chem Mat & Life Sci, Livermore, CA 94550 USA. [Ruffenach, Sandra; Briot, Olivier] Univ Montpellier 2, CNRS, Grp Etudes Semicond, UMR 5650, F-34095 Montpellier, France. RP Gonzalez, D (reprint author), Univ Cadiz, Dept Ciencia Mat & Ingn Met & Quim Inorgan, Apdo 40, E-11510 Puerto Real, Cadiz, Spain. EM david.gonzalez@uca.es; juangabriel.lozano@uca.es RI Gonzalez, David/F-4253-2012; OI Gonzalez, David/0000-0001-6879-444X; Herrera Collado, Miriam/0000-0002-2325-5941; Garcia Roja, Rafael/0000-0003-2867-7016; Browning, Nigel/0000-0003-0491-251X NR 7 TC 0 Z9 0 U1 0 U2 7 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PAPPELALLEE 3, W-69469 WEINHEIM, GERMANY SN 1862-6351 J9 PHYS STATUS SOLIDI C PY 2010 VL 7 IS 1 BP 9 EP 12 DI 10.1002/pssc.200982624 PG 4 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Science & Technology - Other Topics; Materials Science; Physics GA BPW18 UT WOS:000280141000001 ER PT S AU Chang, CY Lo, CF Ren, F Pearton, SJ Kravchenko, II Dabiran, AM Cui, B Chow, PP AF Chang, C. Y. Lo, C. F. Ren, F. Pearton, S. J. Kravchenko, I. I. Dabiran, A. M. Cui, B. Chow, P. P. BE Bhattacharya, P Mishra, UK Keller, S Dora, Y TI Normally-on/off AlN/GaN high electron mobility transistors SO PHYSICA STATUS SOLIDI C: CURRENT TOPICS IN SOLID STATE PHYSICS, VOL 7, NO 10 SE Physica Status Solidi C-Current Topics in Solid State Physics LA English DT Proceedings Paper CT 36th International Symposium on Compound Semiconductors (ISCS) CY AUG 30-SEP 02, 2009 CL Santa Barbara, CA DE AlN/GaN; on/off HEMTs; MBE; transconductance; gate characteristics ID HIGH BREAKDOWN VOLTAGE; ALGAN/GAN HEMTS; GANHEMTS; HFETS AB We report on the novel normally-on/off AlN/GaN high electron mobility transistors (HEMTs) grown by plasma-assisted molecular beam epitaxy. With simple oxygen exposure, the threshold voltage can be tuned from -2.76 V to +1.13 V depending on the treatment time. The gate current was reduced and current-voltage curves show metal-oxide semiconductor diode-like characteristics after oxygen plasma exposure. The extrinsic transconductance of HEMTs decrease with increasing oxygen plasma exposure time due to the thicker Al oxide formed on the gate area. The unity current gain cut-off frequency, f(T), and maximum frequency of oscillation, f(max), were 20.4 GHz and 36.5 GHz, respectively for an enhancement-mode HEMT with the gate dimension of 0.4 x 100 mu m(2). (C) 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim C1 [Chang, C. Y.; Lo, C. F.; Ren, F.] Univ Florida, Dept Chem Engn, Gainesville, FL 32611 USA. [Pearton, S. J.] Univ Florida, Dept Mat Sci Engn, Gainesville, FL 32611 USA. [Kravchenko, I. I.] Oak Ridge Natl Lab, Oak Ridge, TN 37830 USA. [Dabiran, A. M.; Cui, B.; Chow, P. P.] SVT Assoc Inc, Eden Prairie, MA 55344 USA. RP Ren, F (reprint author), Univ Florida, Dept Chem Engn, Gainesville, FL 32611 USA. EM fren@che.ufl.edu RI Kravchenko, Ivan/K-3022-2015 OI Kravchenko, Ivan/0000-0003-4999-5822 FU NASA [NNX09CA76C]; Scientific User Facilities Division; Office of Basic Energy Sciences; U.S. Department of Energy FX The work at SVTA was partially supported by NASA Grant No. NNX09CA76C. A portion of this research at Oak Ridge National Laboratorys Center for Nanophase Materials Sciences was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. NR 19 TC 2 Z9 2 U1 2 U2 8 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PAPPELALLEE 3, W-69469 WEINHEIM, GERMANY SN 1862-6351 J9 PHYS STATUS SOLIDI C PY 2010 VL 7 IS 10 DI 10.1002/pssc.200983901 PG 4 WC Physics, Applied SC Physics GA BZG63 UT WOS:000301542300015 ER PT S AU Yan, BJ Jiang, CS Yan, YF Sivec, L Yang, J Guha, S Al-Jassim, MM AF Yan, Baojie Jiang, Chun-Sheng Yan, Yanfa Sivec, Laura Yang, Jeffrey Guha, Subhendu Al-Jassim, M. M. BE Schropp, REI TI Effect of hydrogen dilution profiling on the microscopic structure of amorphous and nanocrystalline silicon mixed-phase solar cells SO PHYSICA STATUS SOLIDI C - CURRENT TOPICS IN SOLID STATE PHYSICS, VOL 7 NO 3-4 SE Physica Status Solidi C-Current Topics in Solid State Physics LA English DT Proceedings Paper CT 23rd International Conference on Amorphous and Nanocrystalline Semiconductors (ICANS23) CY AUG 23-28, 2009 CL Utrecht, NETHERLANDS ID MICROCRYSTALLINE SILICON AB Microscopic structure and solar cell performance in hydrogenated mixed-phase thin film silicon (Si: H) solar cells are studied. The samples were made with RF glow discharge with different hydrogen dilution profiles. The material properties were measured with Raman, X-TEM, AFM, and C-AFM. Several interesting phenomena are observed. First, the cone-structured nanocrystalline aggregations were formed when a constant hydrogen dilution was used. Second, no uniform block-like (or cylinder-like) structured nanocrystalline clusters were observed even when hydrogen dilution profiling was optimized for this purpose. Instead, tree-like structured nanocrystalline clusters were formed and embedded in the intrinsic layer. Third, the magnitude of light-induced V-oc increase was reduced by hydrogen dilution profiling. When the dilution profiling was sufficiently steep, no light-induced V-oc increase was observed. Instead, the V-oc decreased after light-soaking regardless of the crystalline volume fraction. In addition, AFM and C-AFM showed that this type of mixed-phase material has hill-like surface structure, where the hills correspond to nanocrystalline clusters. The local current density in hill-like areas was much higher in the samples made with constant hydrogen dilution than those using hydrogen dilution profiling. For the samples with a very steep hydrogen dilution profiling, the local forward current density is very low. Based on our previous model, the light-induced V-oc increase depends on the formation of the current path in the nanocrystalline cluster areas. When a steep hydrogen dilution profiling is used, the tree-like nanocrystalline clusters are isolated and embedded in the intrinsic layer, therefore, no high current paths are formed and no light-induced V-oc increase is observed. (C) 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim C1 [Yan, Baojie; Sivec, Laura; Yang, Jeffrey; Guha, Subhendu] United Solar Ovon LLC, 1100 W Maple Rd, Troy, MI 48084 USA. [Jiang, Chun-Sheng; Yan, Yanfa; Al-Jassim, M. M.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Yan, BJ (reprint author), United Solar Ovon LLC, 1100 W Maple Rd, Troy, MI 48084 USA. EM byan@uni-solar.com RI jiang, chun-sheng/F-7839-2012 FU US DOE [DE-FC36-07 GO 17053]; United Solar at NREL [DOE-AC36-08 GO 28308] FX We thank Kirstin Alberi at NREL for Raman analyses. This work was supported by US DOE under SAI Program Contract No. DE-FC36-07 GO 17053 at United Solar and under Contract No. DOE-AC36-08 GO 28308 at NREL. NR 13 TC 2 Z9 2 U1 0 U2 2 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PAPPELALLEE 3, W-69469 WEINHEIM, GERMANY SN 1862-6351 J9 PHYS STATUS SOLIDI C PY 2010 VL 7 IS 3-4 BP 513 EP 516 DI 10.1002/pssc.200982768 PG 4 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Physics, Applied SC Engineering; Science & Technology - Other Topics; Physics GA BTL35 UT WOS:000287213400003 ER PT S AU Mahan, AH Dabney, MS Parilla, PA Ginley, DS AF Mahan, A. H. Dabney, M. S. Parilla, P. A. Ginley, D. S. BE Schropp, REI TI The effect of the film H content on the crystallization of laser processed and thermally annealed HWCVD a-Si:H SO PHYSICA STATUS SOLIDI C - CURRENT TOPICS IN SOLID STATE PHYSICS, VOL 7 NO 3-4 SE Physica Status Solidi C-Current Topics in Solid State Physics LA English DT Proceedings Paper CT 23rd International Conference on Amorphous and Nanocrystalline Semiconductors (ICANS23) CY AUG 23-28, 2009 CL Utrecht, NETHERLANDS ID AMORPHOUS-SILICON FILMS; POLYCRYSTALLINE SILICON; EXCIMER-LASER; INDUCED NUCLEATION; GRAIN NUCLEATION; GROWTH; GLASS AB We demonstrate the use of laser processing to affect the nucleation of crystallites in thermally annealed HWCVD a-Si:H thin films. The influence of film H content is investigated by XRD measurements during in situ 600 degrees C thermal anneal on both as grown films and on films that have been laser irradiated. All laser irradiated films show a reduced incubation time (tau(o)) for crystallization compared to as-grown films, with the largest differences exhibited for samples with higher film H. We show that a recently developed model for a nucleation center in a-Si:H can be used to explain how the film H content affects this change in to and also predict the magnitude of this change with laser processing. (C) 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim C1 [Mahan, A. H.; Dabney, M. S.; Parilla, P. A.; Ginley, D. S.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Mahan, AH (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM harv.mahan@nrel.gov NR 13 TC 1 Z9 1 U1 0 U2 2 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PAPPELALLEE 3, W-69469 WEINHEIM, GERMANY SN 1610-1634 J9 PHYS STATUS SOLIDI C PY 2010 VL 7 IS 3-4 BP 596 EP 599 DI 10.1002/pssc.200982706 PG 4 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Physics, Applied SC Engineering; Science & Technology - Other Topics; Physics GA BTL35 UT WOS:000287213400023 ER PT S AU Fong, CY Shauhgnessy, M Snow, R Yang, LH AF Fong, C. Y. Shauhgnessy, M. Snow, R. Yang, L. H. BE Schropp, REI TI Theoretical investigations of defects in a Si-based digital ferromagnetic heterostructure - a spintronic material SO PHYSICA STATUS SOLIDI C - CURRENT TOPICS IN SOLID STATE PHYSICS, VOL 7 NO 3-4 SE Physica Status Solidi C-Current Topics in Solid State Physics LA English DT Proceedings Paper CT 23rd International Conference on Amorphous and Nanocrystalline Semiconductors (ICANS23) CY AUG 23-28, 2009 CL Utrecht, NETHERLANDS ID HALF-METAL; PSEUDOPOTENTIALS; SUPERLATTICES AB We investigate the effects of two different forms of defects on the half-metallic properties of the Mn/Si digital ferromagnetic heterostructure (DFH) (PRL 96, 027211 (2006)) using first principles algorithm based on density functional theory. The half metallicity is retained when the delta-layer of the Mn atoms has 25% imperfection and even a vacancy. The cruc ial properties of the DFH are robust against 25% defects. (C) 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim C1 [Fong, C. Y.; Shauhgnessy, M.; Snow, R.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Yang, L. H.] Lawrence Livermore Natl Lab, Div H, Livermore, CA 94550 USA. RP Fong, CY (reprint author), Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. EM fong@solid.physics.ucdavis.edu NR 18 TC 2 Z9 2 U1 0 U2 6 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PAPPELALLEE 3, W-69469 WEINHEIM, GERMANY SN 1862-6351 J9 PHYS STATUS SOLIDI C PY 2010 VL 7 IS 3-4 BP 747 EP 749 DI 10.1002/pssc.200982696 PG 3 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Physics, Applied SC Engineering; Science & Technology - Other Topics; Physics GA BTL35 UT WOS:000287213400060 ER PT S AU Li, XN Kanevce, A Li, JV Repins, I AF Li, Xiaonan Kanevce, Ana Li, Jian V. Repins, Ingrid BE Toropov, A Ivanov, S TI The impact of front contact ZnO:Al/Zn(1-x)Mg(x)O layer on Cu(In,Ga)Se(2) thin-film solar cells SO PHYSICA STATUS SOLIDI C: CURRENT TOPICS IN SOLID STATE PHYSICS, VOL 7 NO 6 SE Physica Status Solidi C-Current Topics in Solid State Physics LA English DT Proceedings Paper CT 14th International Conference on II-VI Compounds CY AUG 23-28, 2009 CL Ioffe Physcio Techn Inst Russian Acad Sci, St Petersburg, RUSSIA SP Russian Corporat Nano Technol, Global Sci & Technol, RIBER, AIXTRON, Ioffe Physico Techn Inst HO Ioffe Physcio Techn Inst Russian Acad Sci DE ZnO; ZnMgO; sputtering; transmittance; solar cells AB We studied the impact of the front-window layer on Cu(In,Ga)Se(2) (CIGS) solar cells. A bi-layer structure of ZnO:Al/ZnO was used as a standard front-window layer, and a replacement of ZnO by Zn(1-x)Mg(x)O was analyzed. A numerical simulation was performed to understand the device characterization results. The results clearly indicate that any variation on the front-window layer and deposition condition impacts the underlying CdS/CIGS junction. Therefore, it is important to carefully choose the component of the front-window layer and sputtering parameters to protect the junction formation. With careful front-window layer design and modeling, an optimized device performance with a Zn(1-x)Mg(x)O layer has been achieved. (C) 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim C1 [Li, Xiaonan; Kanevce, Ana; Li, Jian V.; Repins, Ingrid] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Li, XN (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM xiaonan.li@nrel.gov RI Li, Jian/B-1627-2016 NR 10 TC 4 Z9 4 U1 0 U2 16 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PAPPELALLEE 3, W-69469 WEINHEIM, GERMANY SN 1610-1634 J9 PHYS STATUS SOLIDI C PY 2010 VL 7 IS 6 BP 1703 EP 1705 DI 10.1002/pssc.200983225 PG 3 WC Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Materials Science; Physics GA BSE94 UT WOS:000284309400079 ER PT S AU Liliental-Weber, Z Hawkridge, ME Wang, X Yoshikawa, A AF Liliental-Weber, Z. Hawkridge, M. E. Wang, X. Yoshikawa, A. BA Park, SJ BF Park, SJ TI Structural differences in Mg-doped InN - indication of polytypism SO PHYSICA STATUS SOLIDI C: CURRENT TOPICS IN SOLID STATE PHYSICS, VOL 7, NO 7-8 SE Physica Status Solidi C-Current Topics in Solid State Physics LA English DT Proceedings Paper CT 8th International Conference on Nitride Semiconductors (ICNS) CY OCT 18-23, 2009 CL Jeju, SOUTH KOREA SP Asian Off Aerosp Res & Dev, Off Naval Res Global, AF Off Sci Res, US Army Int Technol Ctr Pacific, Minist Knowledge Economy, Korean Fed Sci & Technol Soc, Korea Tourism Org, Jeju Tourism Org, Samsung LED Co Ltd, Veeco Korea Inc, AIXTRON, Cree Inc, SYSNEX Co Ltd, LG Innotek Co Ltd, Seoul Semicond Inc, Elect & Telecommun Res Inst, Korea Photon Technol Inst, World Class Univ Program, Chonbuk Natl Univ, Gwangju Inst Sci & Technol, Seoul Natl Univ, Natl Core Res Ctr Extreme Light Applicat DE InN; MBE; doping; dislocations; structure; TEM ID MOLECULAR-BEAM EPITAXY; FUNDAMENTAL-BAND GAP; STACKING-FAULTS; CRYSTALS AB Transmission Electron Microscopy shows that the InN samples doped with either increasing or constant Mg concentration follow a cation or anion substrate polarity. In-polar samples change growth polarity when the Mg concentration is >10(19) cm(-3). N-polar samples have much higher density of planar defects than In-polar samples and their presence leads to a decrease in dislocation density. In the N-polar samples equally spaced planar defects are observed for Mg concentration >10(19) cm(-3). Three different polytypes (2H, 3C and 4H) were observed in this type of samples. A band of planar defects with thick layers of a cubic material (3C) is observed for Mg concentration >10(20) cm(-3). At this Mg concentration only n-type conductivity was reported earlier. (C) 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim C1 [Liliental-Weber, Z.; Hawkridge, M. E.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA. [Wang, X.] Peking Univ, Sch Phys, State Key Lab Artificial Microstruc & Mesoscop, Beijing 100871, Peoples R China. [Yoshikawa, A.] Chiba Univ, Chiba 2638522, Japan. RP Liliental-Weber, Z (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM Z_Liliental-Weber@lbl.gov RI Liliental-Weber, Zuzanna/H-8006-2012; Wang, Xinqiang/B-8798-2013 FU U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231 NR 22 TC 5 Z9 5 U1 1 U2 8 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PAPPELALLEE 3, W-69469 WEINHEIM, GERMANY SN 1862-6351 J9 PHYS STATUS SOLIDI C PY 2010 VL 7 IS 7-8 DI 10.1002/pssc.200983623 PG 4 WC Physics, Multidisciplinary SC Physics GA BZH01 UT WOS:000301587600086 ER PT S AU Olea, J Yu, KM Walukiewicz, W Gonzalez-Diaz, G AF Olea, Javier Yu, Kin Man Walukiewicz, Wladek Gonzalez-Diaz, German BA Park, SJ BF Park, SJ TI Hall mobilities in GaNxAs1-x SO PHYSICA STATUS SOLIDI C: CURRENT TOPICS IN SOLID STATE PHYSICS, VOL 7, NO 7-8 SE Physica Status Solidi C-Current Topics in Solid State Physics LA English DT Proceedings Paper CT 8th International Conference on Nitride Semiconductors (ICNS) CY OCT 18-23, 2009 CL Jeju, SOUTH KOREA SP Asian Off Aerosp Res & Dev, Off Naval Res Global, AF Off Sci Res, US Army Int Technol Ctr Pacific, Minist Knowledge Economy, Korean Fed Sci & Technol Soc, Korea Tourism Org, Jeju Tourism Org, Samsung LED Co Ltd, Veeco Korea Inc, AIXTRON, Cree Inc, SYSNEX Co Ltd, LG Innotek Co Ltd, Seoul Semicond Inc, Elect & Telecommun Res Inst, Korea Photon Technol Inst, World Class Univ Program, Chonbuk Natl Univ, Gwangju Inst Sci & Technol, Seoul Natl Univ, Natl Core Res Ctr Extreme Light Applicat DE GaNAs; OMVPE; doping; Hall mobility; carrier scattering ID ELECTRON EFFECTIVE-MASS; NITROGEN; SEMICONDUCTORS; TRANSPORT; ALLOYS AB In this work we report a systematic study of the electron and hole mobilities of GaNxAs1-x alloys with different dopants (Zn, Te) and carrier concentrations (10(17)-10(19) cm(-3)). We found a very slight reduction of the hole mobility in p-GaNxAs1-x compared to p-GaAs, indicating that for small N contents (similar to 1.6%) the valence band is not affected by the N incorporation. In a striking contrast, incorporation of even small amounts of N leads to an abrupt reduction of the electron mobility in n-GaNxAs1-x. We further show that the processes that limit the mobility in GaNxAs1-x can be explained by the band broadening and the random field scatterings. Considering these two scattering mechanisms we calculated the dependence of electron mobilities on electron concentration as well as on N composition in GaNxAs(1-x). The calculations agree reasonably well with experiment data of maximum electron mobilities with alloy composition. (C) 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim C1 [Olea, Javier; Gonzalez-Diaz, German] Univ Complutense Madrid, Fac Ciencias Fis, Dpto Fis Aplicada 3, E-28040 Madrid, Spain. [Yu, Kin Man; Walukiewicz, Wladek] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Olea, J (reprint author), Univ Complutense Madrid, Fac Ciencias Fis, Dpto Fis Aplicada 3, E-28040 Madrid, Spain. EM oleaariza@fis.ucm.es; kmyu@lbl.gov OI Yu, Kin Man/0000-0003-1350-9642 NR 26 TC 1 Z9 1 U1 2 U2 10 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PAPPELALLEE 3, W-69469 WEINHEIM, GERMANY SN 1862-6351 J9 PHYS STATUS SOLIDI C PY 2010 VL 7 IS 7-8 DI 10.1002/pssc.200983569 PG 4 WC Physics, Multidisciplinary SC Physics GA BZH01 UT WOS:000301587600045 ER PT S AU Yu, KM Novikov, SV Broesler, R Staddon, CR Hawkridge, M Liliental-Weber, Z Demchenko, I Denlinger, JD Kao, VM Luckert, F Martin, RW Walukiewicz, W Foxon, CT AF Yu, K. M. Novikov, S. V. Broesler, R. Staddon, C. R. Hawkridge, M. Liliental-Weber, Z. Demchenko, I. Denlinger, J. D. Kao, V. M. Luckert, F. Martin, R. W. Walukiewicz, W. Foxon, C. T. BA Park, SJ BF Park, SJ TI Non-equilibrium GaNAs alloys with band gap ranging from 0.8-3.4 eV SO PHYSICA STATUS SOLIDI C: CURRENT TOPICS IN SOLID STATE PHYSICS, VOL 7, NO 7-8 SE Physica Status Solidi C-Current Topics in Solid State Physics LA English DT Proceedings Paper CT 8th International Conference on Nitride Semiconductors (ICNS) CY OCT 18-23, 2009 CL Jeju, SOUTH KOREA SP Asian Off Aerosp Res & Dev, Off Naval Res Global, AF Off Sci Res, US Army Int Technol Ctr Pacific, Minist Knowledge Economy, Korean Fed Sci & Technol Soc, Korea Tourism Org, Jeju Tourism Org, Samsung LED Co Ltd, Veeco Korea Inc, AIXTRON, Cree Inc, SYSNEX Co Ltd, LG Innotek Co Ltd, Seoul Semicond Inc, Elect & Telecommun Res Inst, Korea Photon Technol Inst, World Class Univ Program, Chonbuk Natl Univ, Gwangju Inst Sci & Technol, Seoul Natl Univ, Natl Core Res Ctr Extreme Light Applicat DE GaNAs; MBE; structure; morphology; optical properties; band structure ID HYBRIDIZATION; DEPENDENCE; STATES AB A new alloy system, the GaN1-xAsx alloys in the whole composition range was successfully synthesized using the non-equilibrium low temperature molecular beam epitaxy method. The alloys are amorphous in the composition range of 0.17 < x < 0.75 and crystalline outside this region. The amorphous films have smooth morphology, homogeneous composition and sharp, well defined optical absorption edges. The bandgap energy varies in a broad energy range from similar to 3.4 eV in GaN to similar to 0.8 eV at x similar to 0.85. The reduction of the band gap can be attributed primarily to the downward movement of the conduction band for alloys with x > 0.2, and to the upward movement of the valence band for alloys with x < 0.2. (C) 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim C1 [Yu, K. M.; Broesler, R.; Hawkridge, M.; Liliental-Weber, Z.; Kao, V. M.; Walukiewicz, W.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA. [Novikov, S. V.; Staddon, C. R.; Foxon, C. T.] Univ Nottingham, Sch Phys & Astron, Nottingham NG7 2RD, England. [Broesler, R.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Demchenko, I.; Denlinger, J. D.] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Demchenko, I.] Univ Nevada, Dept Chem, Las Vegas, NV 89154 USA. [Demchenko, I.] Polish Acad Sci, Inst Phys, PL-02668 Warsaw, Poland. [Luckert, F.; Martin, R. W.] Univ Strathclyde, SUPA, Dept Phys, Glasgow G4 0NG, Lanark, Scotland. RP Yu, KM (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM kmyu@lbl.gov RI Liliental-Weber, Zuzanna/H-8006-2012; Yu, Kin Man/J-1399-2012; martin, rob/A-7127-2010; OI Yu, Kin Man/0000-0003-1350-9642; martin, rob/0000-0002-6119-764X; Novikov, Sergei/0000-0002-3725-2565 FU U.S. Department of Energy [DE-AC02-05CH11231]; University of Nottingham; EPSRC [EP/G007160/1, EP/D051487/1] FX This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. The work at the University of Nottingham was undertaken with support from the EPSRC (EP/G007160/1 and EP/D051487/1). NR 8 TC 12 Z9 12 U1 0 U2 3 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PAPPELALLEE 3, W-69469 WEINHEIM, GERMANY SN 1862-6351 J9 PHYS STATUS SOLIDI C PY 2010 VL 7 IS 7-8 DI 10.1002/pssc.200983430 PG 3 WC Physics, Multidisciplinary SC Physics GA BZH01 UT WOS:000301587600031 ER PT J AU Hansen, HA Man, IC Studt, F Abild-Pedersen, F Bligaard, T Rossmeisl, J AF Hansen, Heine A. Man, Isabela C. Studt, Felix Abild-Pedersen, Frank Bligaard, Thomas Rossmeisl, Jan TI Electrochemical chlorine evolution at rutile oxide (110) surfaces SO PHYSICAL CHEMISTRY CHEMICAL PHYSICS LA English DT Article ID IMPLANTED TITANIUM ELECTRODES; DENSITY-FUNCTIONAL THEORY; TRANSITION-METAL OXIDE; OXYGEN REDUCTION; HETEROGENEOUS CATALYSIS; ION-IMPLANTATION; ANODIC EVOLUTION; DEACON PROCESS; HCL OXIDATION; RUO2 AB Based on density functional theory (DFT) calculations we study the electrochemical chlorine evolution reaction on rutile (110) oxide surfaces. First we construct the Pourbaix surface diagram for IrO(2) and RuO(2), and from this we find the chlorine evolution reaction intermediates and identify the lowest overpotential at which all elementary reaction steps in the chlorine evolution reaction are downhill in free energy. This condition is then used as a measure for catalytic activity. Linear scaling relations between the binding energies of the intermediates and the oxygen binding energies at cus-sites are established for MO(2) (M being Ir, Ru, Pt, Ti). The linear relations form the basis for constructing a generalized surface phase diagram where two parameters, the potential and the binding energy of oxygen, are needed to determine the surface composition. We calculate the catalytic activity as function of the oxygen binding energy, giving rise to a Sabatier volcano. By combining the surface phase diagram and the volcano describing the catalytic activity, we find that the reaction mechanism differs depending on catalyst material. The flexibility in reaction path means that the chlorine evolution activity is high for a wide range of oxygen binding energies. We find that the required overpotential for chlorine evolution is lower than the overpotential necessary for oxygen evolution. C1 [Hansen, Heine A.; Studt, Felix; Abild-Pedersen, Frank; Bligaard, Thomas; Rossmeisl, Jan] Tech Univ Denmark, Ctr Atom Scale Mat Design, Dept Phys, DK-2800 Lyngby, Denmark. [Man, Isabela C.; Studt, Felix; Abild-Pedersen, Frank] Computat Mat Design ApS, DK-2800 Lyngby, Denmark. [Bligaard, Thomas] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Rossmeisl, J (reprint author), Tech Univ Denmark, Ctr Atom Scale Mat Design, Dept Phys, Bldg 307, DK-2800 Lyngby, Denmark. RI Rossmeisl, Jan/A-5714-2011; Bligaard, Thomas/A-6161-2011; Man, Isabela Costinela/C-3981-2012; Hansen, Heine/G-3044-2013; Abild-Pedersen, Frank/C-3248-2014; Studt, Felix/C-7874-2017 OI Rossmeisl, Jan/0000-0001-7749-6567; Bligaard, Thomas/0000-0001-9834-9179; Hansen, Heine/0000-0001-7551-9470; Abild-Pedersen, Frank/0000-0002-1911-074X; FU Danish Center for Scientific Computing [HDW-1103-06]; European Commission [MRTNCT-2006-032474]; Danish Council for Strategic Research though the HyCycle Center [2104-07-0041] FX The authors thank Prof. M. T. M. Koper for useful discussions. The Center for Atomic-scale Materials Design is funded by the Lundbeck Foundation. This work was supported by the Danish Center for Scientific Computing through Grant No. HDW-1103-06, the European Commission (Marie Curie Research Training Network MRTNCT-2006-032474) and The Danish Council for Strategic Research though the HyCycle Center (No. 2104-07-0041). NR 42 TC 84 Z9 86 U1 7 U2 99 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1463-9076 J9 PHYS CHEM CHEM PHYS JI Phys. Chem. Chem. Phys. PY 2010 VL 12 IS 1 BP 283 EP 290 DI 10.1039/b917459a PG 8 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 530KG UT WOS:000272589000032 PM 20024470 ER PT J AU Malardier-Jugroot, C Bowron, DT Soper, AK Johnson, ME Head-Gordon, T AF Malardier-Jugroot, Cecile Bowron, Daniel T. Soper, Alan K. Johnson, Margaret E. Head-Gordon, Teresa TI Structure and water dynamics of aqueous peptide solutions in the presence of co-solvents SO PHYSICAL CHEMISTRY CHEMICAL PHYSICS LA English DT Article ID ELASTIC NEUTRON-SCATTERING; PROTEIN DENATURANTS; HYDRATION DYNAMICS; DIMETHYL-SULFOXIDE; HOFMEISTER SERIES; MIXTURES; IONS; ASSOCIATION; DIFFRACTION; GUANIDINIUM AB We perform neutron diffraction and quasi-elastic neutron scattering (QENS) to probe hydration water structure, and dynamics down to supercooled temperatures, of a concentrated amphiphilic peptide system with the co-solvents glycerol and dimethyl sulfoxide. We find that the kosmotropic co-solvent glycerol preserves the hydration structure near the peptide that is observed in the water solvent alone, that in turn preserves the dynamical temperature trends of two water relaxation processes-one corresponding to a localized relaxation process of the peptide bound surface water and a second relaxation process of the outer hydration layers. By contrast the chaotropic co-solvent, by disrupting the hydration layer near the peptide surface, eliminates the inner hydration layer relaxation process induced by the peptide, to show a single time scale for translational water dynamics. C1 [Johnson, Margaret E.; Head-Gordon, Teresa] Univ Calif Berkeley, UCSF, Joint Grad Grp Bioengn, Berkeley, CA 94720 USA. [Malardier-Jugroot, Cecile] Royal Mil Coll Canada, Dept Chem & Chem Engn, Kingston, ON K7K 7B4, Canada. [Bowron, Daniel T.; Soper, Alan K.] Rutherford Appleton Lab, ISIS Facil, STFC, Didcot OX11 0QX, Oxon, England. [Johnson, Margaret E.; Head-Gordon, Teresa] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA. [Johnson, Margaret E.; Head-Gordon, Teresa] Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Head-Gordon, T (reprint author), Univ Calif Berkeley, UCSF, Joint Grad Grp Bioengn, Berkeley, CA 94720 USA. EM TLHead-Gordon@lbl.gov RI Head-Gordon, Teresa/E-5818-2011; Johnson, Margaret/M-4708-2016 OI Bowron, Daniel/0000-0002-4557-1929; Johnson, Margaret/0000-0001-9881-291X FU National Science Foundation [DMR-0086210]; National Institute of Standards and Technology, US Department of Commerce FX We gratefully acknowledge the support of the Department of Energy, Condensed Phase and Interfacial Molecular Science Program, DE-AC02-05CH11231. We are grateful to J. R. D. Copley, Craig Brown, and Timothy Jenkins for generous support and discussion. This work utilized facilities supported in part by the National Science Foundation under Agreement No. DMR-0086210. We acknowledge the support of the National Institute of Standards and Technology, US Department of Commerce, in providing the neutron research facilities used in this work. Certain commercial materials are identified in this paper to foster understanding. Such identification does not imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the materials or equipment identified are necessarily the best available for the purpose. NR 44 TC 22 Z9 22 U1 1 U2 22 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1463-9076 J9 PHYS CHEM CHEM PHYS JI Phys. Chem. Chem. Phys. PY 2010 VL 12 IS 2 BP 382 EP 392 DI 10.1039/b915346b PG 11 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 534DG UT WOS:000272875100011 PM 20023816 ER PT J AU Johnson, ME Malardier-Jugroot, C Head-Gordon, T AF Johnson, Margaret E. Malardier-Jugroot, Cecile Head-Gordon, Teresa TI Effects of co-solvents on peptide hydration water structure and dynamics SO PHYSICAL CHEMISTRY CHEMICAL PHYSICS LA English DT Article ID PROTEIN GLASS-TRANSITION; NEUTRON-SCATTERING; MOLECULAR-DYNAMICS; SUPERCOOLED WATER; MODEL; RELAXATION; GLYCEROL; STABILITY; MIXTURES; ASSOCIATION AB We evaluate the molecular response of hydration water as a function of temperature and proximity to the surface of the peptide N-acetyl-leucine-methylamide (NALMA) when in the presence of the kosmotrope co-solvent glycerol or the chaotrope co-solvent dimethyl sulfoxide (DMSO), using molecular dynamics simulation with a polarizable force field. These detailed microscopic studies complement established thermodynamic analysis on the role of co-solvents in shifting the equilibrium for proteins away from or towards the native folded state. We find that the structure of the water at the peptide interfaces reflects an increase in hydration number in the glycerol solution and a decrease in hydration numbers in the DMSO solution. While the water dynamics around NALMA in the presence of both co-solvents is slower than that observed with the water solvent alone, in the DMSO mixture we no longer measure a separation in water motion time scales at low temperatures as is seen in the pure water solvent, but rather one single relaxation time. In the glycerol, however, we do observe a separation of time scales at low temperatures, supporting the hypothesis that hydration water near a hydrophobic solute evolves on a separate time scale than the extensive hydrogen-bonding network of more bulk-like water. Our simulation studies highlight the differences in the two co-solvent solutions due to the relative frequency of water contacts with the hydrophobic vs. hydrophilic peptide surface, and direct water interactions with the co-solvents. C1 [Johnson, Margaret E.; Head-Gordon, Teresa] Univ Calif Berkeley, UCSF, Joint Grad Grp Bioengn, Berkeley, CA 94720 USA. [Johnson, Margaret E.; Head-Gordon, Teresa] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA. [Johnson, Margaret E.; Head-Gordon, Teresa] Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Malardier-Jugroot, Cecile] Royal Mil Coll Canada, Dept Chem & Chem Engn, Kingston, ON K7K 7B4, Canada. RP Johnson, ME (reprint author), Univ Calif Berkeley, UCSF, Joint Grad Grp Bioengn, Berkeley, CA 94720 USA. EM johnsonme@niddk.nih.gov RI Head-Gordon, Teresa/E-5818-2011; Johnson, Margaret/M-4708-2016 OI Johnson, Margaret/0000-0001-9881-291X FU National Science Foundation Cyberinfrastructure Program; NERSC FX We gratefully acknowledge the support of the National Science Foundation Cyberinfrastructure Program and NERSC for computational resources. NR 55 TC 30 Z9 30 U1 1 U2 21 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1463-9076 J9 PHYS CHEM CHEM PHYS JI Phys. Chem. Chem. Phys. PY 2010 VL 12 IS 2 BP 393 EP 405 DI 10.1039/b915888j PG 13 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 534DG UT WOS:000272875100012 PM 20023817 ER PT J AU Hardacre, C Holbrey, JD Mullan, CL Nieuwenhuyzen, M Youngs, TGA Bowron, DT Teat, SJ AF Hardacre, Christopher Holbrey, John D. Mullan, Claire L. Nieuwenhuyzen, Mark Youngs, Tristan G. A. Bowron, Daniel T. Teat, Simon J. TI Solid and liquid charge-transfer complex formation between 1-methylnaphthalene and 1-alkyl-cyanopyridinium bis{(trifluoromethyl)sulfonyl}imide ionic liquids SO PHYSICAL CHEMISTRY CHEMICAL PHYSICS LA English DT Article ID 1,3-DIMETHYLIMIDAZOLIUM CHLORIDE; DEEP DESULFURIZATION; NEUTRON-DIFFRACTION; MOLECULAR-DYNAMICS; SIMULATION; EXTRACTION; MIXTURES; SALTS; SOLVATION; SELECTION AB Liquid charge-transfer (CT) complexes were observed to form on contacting electron-rich aromatics with electron withdrawing group appended 1-alkyl-4-cyanopyridinium ionic liquids (ILs). Cooling below the melting point of the ionic liquid resulted in crystallisation of ionic liquid from the complex for 2-cyano and 3-cyano pyridinium isomers and in the formation of a 1 : 1 IL : aromatic crystalline CT-complex with the 4-cyanopyridinium isomer. The liquid structure of a 1 : 1 mixture of 1-methyl-4-cyanopyridinium bis{(trifluoromethyl)sulfonyl} imide with 1-methylnaphthalene has been probed by neutron diffraction experiments and molecular dynamics simulations. A high degree of correlation between the experimental data and the simulations was found with a significant displacement of the anions from around the cation by the aromatic species and the resulting structure having pi-pi stacks between the cations and the aromatic. C1 [Hardacre, Christopher; Holbrey, John D.; Mullan, Claire L.; Nieuwenhuyzen, Mark; Youngs, Tristan G. A.] Queens Univ Belfast, Sch Chem & Chem Engn, Sch Math & Phys, QUILL Ctr, Belfast BT9 5AG, Antrim, North Ireland. [Bowron, Daniel T.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Teat, Simon J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Hardacre, C (reprint author), Queens Univ Belfast, Sch Chem & Chem Engn, Sch Math & Phys, QUILL Ctr, Belfast BT9 5AG, Antrim, North Ireland. EM c.hardacre@qub.ac.uk OI Holbrey, John/0000-0002-3084-8438; Bowron, Daniel/0000-0002-4557-1929; Hardacre, Christopher/0000-0001-7256-6765 FU BP; QUILL; EPSRC [EP/D029538/1]; Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231] FX The authors gratefully acknowledge BP, QUILL and the EPSRC (Portfolio Partnership Scheme, Grant EP/D029538/1) for funding. We also thank the STFC and Advanced Light Source for beamtime. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 49 TC 25 Z9 25 U1 0 U2 23 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1463-9076 J9 PHYS CHEM CHEM PHYS JI Phys. Chem. Chem. Phys. PY 2010 VL 12 IS 8 BP 1842 EP 1853 DI 10.1039/b921160h PG 12 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 553ZK UT WOS:000274405100024 PM 20145851 ER PT J AU Ali, M Kumar, V Baker, SN Baker, GA Pandey, S AF Ali, Maroof Kumar, Vinod Baker, Sheila N. Baker, Gary A. Pandey, Siddharth TI J-aggregation of ionic liquid solutions of meso-tetrakis(4-sulfonatophenyl)porphyrin SO PHYSICAL CHEMISTRY CHEMICAL PHYSICS LA English DT Review ID TIME-RESOLVED FLUORESCENCE; PHOTOINDUCED ELECTRON-TRANSFER; WATER-SOLUBLE PORPHYRIN; SODIUM DODECYL-SULFATE; 1-BUTYL-3-METHYLIMIDAZOLIUM HEXAFLUOROPHOSPHATE; PHOTOPHYSICAL PROPERTIES; ZWITTERIONIC SURFACTANT; SUBSTITUTED PORPHYRINS; PHOTODYNAMIC THERAPY; OPTICAL NONLINEARITY AB The title porphyrin was dissolved in the hydrophilic ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate, [bmim][BF4], and triggered to assemble into J-aggregates by the addition of incremental volumes of water containing various amounts of acid (0.1, 0.2, or 1.0 M HCl). In contrast to recent studies, the current investigation is unique in that it centers on media that contain a predominant ionic liquid component (2.9-5.4 M [bmim][BF4]), as opposed to an aqueous electrolyte containing a small fraction of ionic liquid as dissociated solute. Complex aggregation and underlying photophysical behavior are revealed from absorption spectroscopy, steady-state fluorescence, and resonance light scattering studies. Upon addition of aqueous HCl, the efficient formation of H4TPPS2- J-aggregates from the diprotonated form of meso-tetrakis(4-sulfonatophenyl)porphyrin (H2TPPS4-) occurs in [bmim][BF4]-rich media in a manner highly dependent upon the acidity, TPPS concentration, and solvent composition. The unique features of TPPS aggregation in this ionic liquid were elucidated, including the surprising disassembly of J-aggregates at higher aqueous contents, and our results are described qualitatively in terms of the molecular exciton theory. Finally, the potential of this system for the optical sensing of water at a sensitivity below 0.5 wt% is demonstrated. Overall, our findings accentuate how little is known about functional self-assembly within ionic liquids and suggest a number of avenues for exploring this completely untouched research landscape. C1 [Ali, Maroof; Kumar, Vinod; Pandey, Siddharth] Indian Inst Technol Delhi, Dept Chem, New Delhi 110016, India. [Baker, Sheila N.; Baker, Gary A.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. RP Pandey, S (reprint author), Indian Inst Technol Delhi, Dept Chem, New Delhi 110016, India. EM sipandey@chemistry.iitd.ac.in RI Ali, Maroof/A-3204-2014; Baker, Gary/H-9444-2016 OI Baker, Gary/0000-0002-3052-7730 FU Department of Science and Technology (DST), Government of India [SR/S1/PC-16/2008]; UGC, India; CSIR, India FX This work was generously funded by a grant to SP from the Department of Science and Technology (DST), Government of India (grant no. SR/S1/PC-16/2008). MA and VK would like to thank UGC, India and CSIR, India, respectively, for fellowships. NR 111 TC 28 Z9 28 U1 5 U2 66 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1463-9076 EI 1463-9084 J9 PHYS CHEM CHEM PHYS JI Phys. Chem. Chem. Phys. PY 2010 VL 12 IS 8 BP 1886 EP 1894 DI 10.1039/b920500d PG 9 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 553ZK UT WOS:000274405100029 PM 20145856 ER PT J AU Villa, A Wang, D Su, DS Veith, GM Prati, L AF Villa, Alberto Wang, Di Su, Dangsheng Veith, Gabriel M. Prati, Laura TI Using supported Au nanoparticles as starting material for preparing uniform Au/Pd bimetallic catalysts SO PHYSICAL CHEMISTRY CHEMICAL PHYSICS LA English DT Article ID LIQUID-PHASE OXIDATION; SOLVENT-FREE OXIDATION; SELECTIVE OXIDATION; HYDROGEN-PEROXIDE; PALLADIUM-GOLD; PD CATALYSTS; GLYCEROL; SIZE; CARBON; ALCOHOLS AB One of the best methods for producing bulk homogeneous (composition) supported bimetallic AuPd clusters involves the immobilization of a protected Au seed followed by the addition of Pd. This paper investigates the importance of this gold seed in controlling the resulting bimetallic AuPd clusters structures, sizes and catalytic activities by investigating three different gold seeds. Uniform Au-Pd alloy were obtained when a steric/electrostatic protecting group, poly(vinyl alcohol) (PVA), was used to form the gold clusters on activated carbon (AC). In contrast Au/AC precursors prepared using Au nanoparticles with only electrostatic stabilization (tetrakis(hydroxypropyl) phosphonium chloride (THPC)), or no stabilization (magnetron sputtering) produced inhomogeneous alloys and segregation of the gold and palladium. The uniform alloyed catalyst (Pd@Au(PVA)/AC) is the most active and selective catalyst, while the inhomogenous catalysts are less active and selective. Further study of the PVA protected Au clusters revealed that the amount of PVA used is also critical for the preparation of uniform alloyed catalyst, their stability, and their catalytic activity. C1 [Wang, Di; Su, Dangsheng] Max Planck Soc, Fritz Haber Inst, Dept Inorgan Chem, D-14195 Berlin, Germany. [Villa, Alberto; Prati, Laura] Univ Milan, Dipartimento Chim Inorgan Met Organ & Analit, I-20133 Milan, Italy. [Veith, Gabriel M.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Su, DS (reprint author), Max Planck Soc, Fritz Haber Inst, Dept Inorgan Chem, Faradayweg 4-6, D-14195 Berlin, Germany. EM dangsheng@fhi-berlin.mpg.de; Laura.Prati@unimi.it RI Villa, Alberto/H-7355-2013; Prati, Laura/Q-3970-2016; OI Villa, Alberto/0000-0001-8656-6256; Prati, Laura/0000-0002-8227-9505; Wang, Di/0000-0001-9817-7047 FU Division of Materials Sciences and Engineering, U.S. Department of Energy; Oak Ridge National Laboratory; Fondazione Cariplo FX A portion of this research (G.M.V.) was sponsored by the Division of Materials Sciences and Engineering, U.S. Department of Energy, Oak Ridge National Laboratory. Fondazione Cariplo is gratefully acknowledged for financial support. NR 38 TC 33 Z9 33 U1 2 U2 59 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1463-9076 J9 PHYS CHEM CHEM PHYS JI Phys. Chem. Chem. Phys. PY 2010 VL 12 IS 9 BP 2183 EP 2189 DI 10.1039/b919322g PG 7 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 556WB UT WOS:000274622900017 PM 20165767 ER PT J AU Bravaya, KB Kostko, O Ahmed, M Krylov, AI AF Bravaya, Ksenia B. Kostko, Oleg Ahmed, Musahid Krylov, Anna I. TI The effect of pi-stacking, H-bonding, and electrostatic interactions on the ionization energies of nucleic acid bases: adenine-adenine, thymine-thymine and adenine-thymine dimers SO PHYSICAL CHEMISTRY CHEMICAL PHYSICS LA English DT Article ID DENSITY-FUNCTIONAL THEORY; EXCITED-STATE DYNAMICS; MOLECULAR-ORBITAL CALCULATIONS; PROTON-TRANSFER PROCESSES; COUPLED-CLUSTER METHODS; CENTER-DOT-THYMINE; AB-INITIO; CHARGE-TRANSFER; RADICAL CATIONS; PHOTOELECTRON-SPECTROSCOPY AB A combined theoretical and experimental study of the ionized dimers of thymine and adenine, TT, AA, and AT, is presented. Experimentally observed and computed adiabatic and vertical ionization energies (IEs) for monomers and dimers as well as thresholds for the appearance of the protonated species are reported and analyzed. Non-covalent interactions strongly affect the observed IEs. The magnitude and the nature of the effect is different for different isomers of the dimers. The computations reveal that for TT, the largest changes in vertical IEs (0.4 eV) relative to the monomer occur in asymmetric H-bonded and symmetric p-stacked isomers, whereas in the lowest-energy symmetric H-bonded dimer the shift in IEs is much smaller (0.2 eV). The origin of the shift and the character of the ionized states is different in asymmetric H-bonded and symmetric stacked isomers. In the former, the initial hole is localized on one of the fragments, and the shift is due to the electrostatic stabilization of the positive charge of the ionized fragment by the dipole moment of the neutral fragment. In the latter, the hole is delocalized, and the change in IE is proportional to the overlap of the fragments' MOs. Relative to TT, the shifts in AA and AT are much smaller due to a less efficient overlap, smaller dipole of A and the large energy gap between ionized states of A and T monomers in the case of AT dimer. The ionization of the H-bonded dimers results in barrierless (or nearly barrierless) proton transfer, whereas the pi-stacked dimers relax to structures with the hole stabilized by the delocalization or electrostatic interactions. C1 [Bravaya, Ksenia B.; Krylov, Anna I.] Univ So Calif, Dept Chem, Los Angeles, CA 90089 USA. [Kostko, Oleg; Ahmed, Musahid] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Krylov, AI (reprint author), Univ So Calif, Dept Chem, Los Angeles, CA 90089 USA. EM krylov@usc.edu RI Ahmed, Musahid/A-8733-2009; Kostko, Oleg/A-3693-2010; Kostko, Oleg/B-3822-2009 OI Kostko, Oleg/0000-0003-2068-4991 FU National Science Foundation through the CRIF: CRF [CHE-0625419, 0624602, 0625237]; Director, Office of Energy Research, Office of Basic Energy Sciences, Chemical Sciences Division of the US Department of Energy [DE-AC02-05CH11231] FX This work is conducted under auspices of the iOpenShell Center for Computational Studies of Electronic Structure and Spectroscopy of Open-Shell and Electronically Excited Species supported by the National Science Foundation through the CRIF: CRF CHE-0625419 + 0624602 + 0625237 grant. O. K. and M. A. acknowledge support by the Director, Office of Energy Research, Office of Basic Energy Sciences, Chemical Sciences Division of the US Department of Energy under contract No. DE-AC02-05CH11231. We are grateful to Vadim Mozhayskiy for creation of the cover art accompanying this paper. NR 87 TC 55 Z9 55 U1 0 U2 42 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1463-9076 J9 PHYS CHEM CHEM PHYS JI Phys. Chem. Chem. Phys. PY 2010 VL 12 IS 10 BP 2292 EP 2307 DI 10.1039/b919930f PG 16 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 560RQ UT WOS:000274920200004 PM 20449342 ER PT J AU Kostko, O Bravaya, K Krylov, A Ahmed, M AF Kostko, Oleg Bravaya, Ksenia Krylov, Anna Ahmed, Musahid TI Ionization of cytosine monomer and dimer studied by VUV photoionization and electronic structure calculations SO PHYSICAL CHEMISTRY CHEMICAL PHYSICS LA English DT Article ID NUCLEIC-ACID BASES; DENSITY-FUNCTIONAL THEORY; RESONANCE LASER SPECTROSCOPY; COUPLED-CLUSTER METHODS; INDUCED PROTON-TRANSFER; AB-INITIO; GAS-PHASE; HYDRATED ADENINE; POTENTIAL-ENERGY; FREE NUCLEOBASES AB We report a combined theoretical and experimental study of ionization of cytosine monomers and dimers. Gas-phase molecules are generated by thermal vaporization of cytosine followed by expansion of the vapor in a continuous supersonic jet seeded in Ar. The resulting species are investigated by single photon ionization with tunable vacuum-ultraviolet (VUV) synchrotron radiation and mass analyzed using reflectron mass spectrometry. Energy onsets for the measured photoionization efficiency (PIE) spectra are 8.60 +/- 0.05 eV and 7.6 +/- 0.1 eV for the monomer and the dimer, respectively, and provide an estimate for the adiabatic ionization energies (AIE). The first AIE and the ten lowest vertical ionization energies (VIEs) for selected isomers of cytosine dimer computed using equation-of-motion coupled-cluster (EOM-IP-CCSD) method are reported. The comparison of the computed VIEs with the derivative of the PIE spectra suggests that multiple isomers of the cytosine dimer are present in the molecular beam. The calculations reveal that the large red shift (0.7 eV) of the first IE of the lowest-energy cytosine dimer is due to strong inter-fragment electrostatic interactions, i.e., the hole localized on one of the fragments is stabilized by the dipole moment of the other. A sharp rise in the protonated cytosine ion (CH(+)) signal at 9.20 +/- 0.05 eV is ascribed to the formation of protonated cytosine by dissociation of the ionized dimers. The dominant role of this channel is supported by the computed energy thresholds for the CH(+) appearance and the barrierless or nearly barrierless ionization-induced proton transfer observed for five isomers of the dimer. C1 [Bravaya, Ksenia; Krylov, Anna] Univ So Calif, Dept Chem, Los Angeles, CA 90089 USA. [Kostko, Oleg; Ahmed, Musahid] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Krylov, A (reprint author), Univ So Calif, Dept Chem, Los Angeles, CA 90089 USA. EM krylov@usc.edu; mahmed@lbl.gov RI Ahmed, Musahid/A-8733-2009; Kostko, Oleg/A-3693-2010; Kostko, Oleg/B-3822-2009 OI Kostko, Oleg/0000-0003-2068-4991 FU National Science Foundation [CHE-0625419, 0624602, 0625237]; U.S. Department of Energy [DE-AC02-05CH11231] FX This work is conducted under auspices of the iOpenShell Center for Computational Studies of Electronic Structure and Spectroscopy of Open-Shell and Electronically Excited Species supported by the National Science Foundation through the CRIF:CRF CHE-0625419 + 0624602 + 0625237 grant. M. R. and O.K. are supported by the Director, Office of Energy Research, Office of Basic Energy Sciences, Chemical Sciences Division of the U.S. Department of Energy under contract No. DE-AC02-05CH11231. NR 69 TC 45 Z9 45 U1 2 U2 30 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1463-9076 J9 PHYS CHEM CHEM PHYS JI Phys. Chem. Chem. Phys. PY 2010 VL 12 IS 12 BP 2860 EP 2872 DI 10.1039/b921498d PG 13 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 566PS UT WOS:000275385700009 PM 20449376 ER PT J AU White, CE Provis, JL Proffen, T Riley, DP van Deventer, JSJ AF White, Claire E. Provis, John L. Proffen, Thomas Riley, Daniel P. van Deventer, Jannie S. J. TI Combining density functional theory (DFT) and pair distribution function (PDF) analysis to solve the structure of metastable materials: the case of metakaolin SO PHYSICAL CHEMISTRY CHEMICAL PHYSICS LA English DT Article ID MULLITE REACTION SERIES; X-RAY-DIFFRACTION; KAOLINITE-MULLITE; ALUMINOSILICATE GLASSES; THERMAL TRANSFORMATION; OUTSTANDING PROBLEMS; ZEOLITE; NMR; SPECTROSCOPY; CONCRETE AB Understanding the atomic structure of complex metastable (including glassy) materials is of great importance in research and industry, however, such materials resist solution by most standard techniques. Here, a novel technique combining thermodynamics and local structure is presented to solve the structure of the metastable aluminosilicate material metakaolin (calcined kaolinite) without the use of chemical constraints. The structure is elucidated by iterating between least-squares real-space refinement using neutron pair distribution function data, and geometry optimisation using density functional modelling. The resulting structural representation is both energetically feasible and in excellent agreement with experimental data. This accurate structural representation of metakaolin provides new insight into the local environment of the aluminium atoms, with evidence of the existence of tri-coordinated aluminium. By the availability of this detailed chemically feasible atomic description, without the need to artificially impose constraints during the refinement process, there exists the opportunity to tailor chemical and mechanical processes involving metakaolin and other complex metastable materials at the atomic level to obtain optimal performance at the macro-scale. C1 [White, Claire E.; Provis, John L.; van Deventer, Jannie S. J.] Univ Melbourne, Dept Chem & Biomol Engn, Melbourne, Vic 3010, Australia. [Proffen, Thomas] Los Alamos Natl Lab, Manuel Lujan Jr Neutron Scattering Ctr, Los Alamos, NM 87545 USA. [Riley, Daniel P.] Univ Melbourne, Dept Mech Engn, Melbourne, Vic 3010, Australia. RP Provis, JL (reprint author), Univ Melbourne, Dept Chem & Biomol Engn, Melbourne, Vic 3010, Australia. EM jprovis@unimelb.edu.au RI White, Claire/A-1722-2011; Lujan Center, LANL/G-4896-2012; Provis, John/A-7631-2008; Proffen, Thomas/B-3585-2009 OI White, Claire/0000-0002-4800-7960; Provis, John/0000-0003-3372-8922; Proffen, Thomas/0000-0002-1408-6031 FU Australian Research Council (ARC); DOE [DE-AC52-06NA2539] FX This work was funded in part by the Australian Research Council (ARC) (including some funding via the Particulate Fluids Processing Centre, a Special Research Centre of the ARC), and in part by a studentship paid to Claire White by the Centre for Sustainable Resource Processing via the Geopolymer Alliance. The density functional modelling work was supported by an award under the Merit Allocation Scheme on the NCI National Facility at the ANU. Travel funding for the experimental work conducted at Los Alamos National Laboratory was provided through the ANSTO Access to Major Research Facilities Program. We thank Dr Hyunjeong Kim (LANL) for assistance on the NPDF beamline, Prof. Don Kearley (ANSTO) for useful discussions regarding density functional modelling, and Dr Kia Wallwork (Australian Synchrotron) for assistance in collecting the X-ray powder diffraction data. The PDF work was carried out on NPDF at the Lujan Center at Los Alamos Neutron Science Center, funded by DOE Offce of Basic Energy Sciences. Los Alamos National Laboratory is operated by Los Alamos National Security LLC under DOE Contract DE-AC52-06NA25396. The upgrade of NPDF has been funded by the NSF through grant DMR 00-76488. X-Ray diffraction data were collected on the Powder Diffraction beamline (10BM1) at the Australian Synchrotron, Victoria, Australia. The views expressed herein are those of the authors and are not necessarily those of the owner or operator of the Australian Synchrotron. NR 32 TC 44 Z9 44 U1 3 U2 27 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1463-9076 J9 PHYS CHEM CHEM PHYS JI Phys. Chem. Chem. Phys. PY 2010 VL 12 IS 13 BP 3239 EP 3245 DI 10.1039/b922993k PG 7 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 570VJ UT WOS:000275706100022 PM 20237714 ER PT J AU Franco, R Jacobsen, JL Wang, HR Wang, ZC Istvan, K Schore, NE Song, YJ Medforth, CJ Shelnutt, JA AF Franco, Ricardo Jacobsen, John L. Wang, Haorong Wang, Zhongchun Istvan, Krisztina Schore, Neil E. Song, Yujiang Medforth, Craig J. Shelnutt, John A. TI Molecular organization in self-assembled binary porphyrin nanotubes revealed by resonance Raman spectroscopy SO PHYSICAL CHEMISTRY CHEMICAL PHYSICS LA English DT Article ID J-AGGREGATE; METALLIZATION; UROPORPHYRIN; COMPLEXES; NANORODS; FILMS; NANOSHEETS; SPECTRA AB Porphyrin nanotubes were formed by the ionic self-assembly of tetrakis(4-sulfonatophenyl) porphyrin diacid (H(4)TPPS(4)(2-)) and Sn(IV) tetra(4-pyridyl) porphyrin (Sn(OH )(X)TPyP(4+/5+) [X = OH(-) or H(2)O]) at pH 2.0. As reported previously, the tubes are hollow as revealed by transmission electron microscopy, approximately 60 nm in diameter, and can be up to several micrometres long. The absorption spectrum of the porphyrin nanotubes presents monomer-like Soret bands, as well as two additional red-shifted bands characteristic of porphyrin J-aggregates (offset face-to-face stacks). To elucidate the origin of the J-aggregate bands and the internal interactions of the porphyrins, the resonance Raman spectra have been obtained for the porphyrin nanotubes with excitations near resonance with the Soret J-aggregate band and the monomer-like bands. The resonance Raman data reveal that the Sn porphyrins are not electronically coupled to the J-aggregates within the tubes, which are formed exclusively by H(4)TPPS(4)(2-). This suggests that the internal structure of the nanotubes has H(4)TPPS(4)(2-) in aggregates that are similar to the widely studied H(4)TPPS(4)(2-) self-aggregates and that are segregated from the Sn porphyrins. Possible internal structures of the nanotubes and mechanisms for their formation are discussed. C1 [Franco, Ricardo; Istvan, Krisztina] Univ Nova Lisboa, Dept Quim, REQUIMTE, Fac Ciencias & Tecnol, P-2829516 Caparica, Portugal. [Jacobsen, John L.; Schore, Neil E.] Univ Calif Davis, Dept Chem, Davis, CA 95616 USA. [Wang, Haorong; Wang, Zhongchun; Song, Yujiang; Medforth, Craig J.; Shelnutt, John A.] Sandia Natl Labs, Adv Mat Lab, Albuquerque, NM 87185 USA. [Medforth, Craig J.] Univ New Mexico, Dept Chem & Nucl Engn, Albuquerque, NM 87106 USA. [Shelnutt, John A.] Univ Georgia, Dept Chem, Athens, GA 30602 USA. RP Franco, R (reprint author), Univ Nova Lisboa, Dept Quim, REQUIMTE, Fac Ciencias & Tecnol, P-2829516 Caparica, Portugal. EM r.franco@dq.fct.unl.pt; jasheln@unm.edu RI Franco, Ricardo/C-5247-2008; Shelnutt, John/A-9987-2009; Song, Yujiang/A-8700-2009; Medforth, Craig/D-8210-2013; Caparica, cqfb_staff/H-2611-2013; REQUIMTE, AL/H-9106-2013; Chaves, Pedro/K-1288-2013; REQUIMTE, FMN/M-5611-2013; REQUIMTE, UCIBIO/N-9846-2013 OI Franco, Ricardo/0000-0002-5139-2871; Shelnutt, John/0000-0001-7368-582X; Medforth, Craig/0000-0003-3046-4909; FU United States Department of Energy [DEAC04-94AL85000]; Laboratory Directed Research and Development program at Sandia National Laboratories; U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering. FLAD (Luso-American Foundation, Portugal) FX Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DEAC04-94AL85000. Research supported by the Laboratory Directed Research and Development program at Sandia National Laboratories and the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering. FLAD (Luso-American Foundation, Portugal) is gratefully acknowledged for financial support of this work. NR 34 TC 25 Z9 25 U1 3 U2 33 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1463-9076 J9 PHYS CHEM CHEM PHYS JI Phys. Chem. Chem. Phys. PY 2010 VL 12 IS 16 BP 4072 EP 4077 DI 10.1039/b926068d PG 6 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 580SI UT WOS:000276469600014 PM 20379498 ER PT J AU Ebata, T Hontama, N Inokuchi, Y Haino, T Apra, E Xantheas, SS AF Ebata, Takayuki Hontama, Naoya Inokuchi, Yoshiya Haino, Takeharu Apra, Edoardo Xantheas, Sotiris S. TI Encapsulation of Ar-n complexes by calix[4]arene: endo- vs. exo-complexes SO PHYSICAL CHEMISTRY CHEMICAL PHYSICS LA English DT Article ID DER-WAALS COMPLEXES; CENTER-DOT-AR; VIBRATIONAL SPECTROSCOPY; 2-PHOTON IONIZATION; MASS-SPECTROMETRY; BENZENE-ARGON; BASIS-SETS; PHENOL; ENERGY; CALIXARENES AB The structure of the calix[4]arene(C4A)-Ar-n complexes has been investigated by laser induced fluorescence spectroscopy, mass-selected resonant two-color two-photon ionization (2C-R2PI) spectroscopy, fragment detected IR photodissociation (FDIRPD) spectroscopy, and high level first principles electronic structure calculations at the MP2 and CCSD(T) levels of theory. C4A has a very high ability to form van der Waals complexes with rare gas atoms. For the C4A-Ar dimer two isomers are observed. A major species shows a 45 cm(-1) red-shift of its band origin with respect to the monomer, while that of a minor species is 60 cm(-1). The binding energy of the major species is determined to be in the range of 350-2250 cm(-1) from 2C-R2PI spectroscopy and FDIRPD spectroscopy. Two isomers are also identified in the quantum chemical calculations, depending on whether the Ar atom resides inside (endo) or outside (exo) the C4A. We propose a scheme to derive CCSD(T)/Complete Basis Set (CBS) quality binding energies for the C4A-Ar complex based on CCSD( T) calculations with smaller basis sets and the ratio of CCSD(T)/MP2 energies for the smaller model systems benzene-Ar and phenol-Ar, for which the CCSD( T) level of theory converges to the experimentally determined binding energies. Our best computed estimates for the binding energies of the C4A-Ar endo- and endo- complexes at the CCSD(T)/CBS level of theory are 1560 cm(-1) and 510 cm(-1), respectively. For the C4A-Ar-2 trimer the calculations support the existence of two nearly isoenergetic isomers: one is the {2:0} endo- complex, in which the Ar2 dimer is encapsulated inside the C4A cavity, and the other is the {1:1} endo-exo-complex, in which one Ar resides inside and the other outside the C4A cavity. However, the experimental evidence strongly suggests that the observed species is the {2:0} endo- complex. The endo structural motif is also suggested for the larger C4A-Ar-n complexes because of the observed systematic red-shifts of the complexes with the number of bound Ar atoms suggesting that the Ar-n complex is encapsulated inside the C4A cavity. The formation of the endo- complex structures is attributed to the anisotropy of the interaction with C4A during the complex formation in the expansion region. C1 [Ebata, Takayuki; Hontama, Naoya; Inokuchi, Yoshiya; Haino, Takeharu] Hiroshima Univ, Grad Sch Sci, Dept Chem, Higashihiroshima 7398526, Japan. [Apra, Edoardo] Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA. [Xantheas, Sotiris S.] Pacific NW Natl Lab, Div Chem & Mat Sci, Richland, WA 99352 USA. RP Ebata, T (reprint author), Hiroshima Univ, Grad Sch Sci, Dept Chem, Higashihiroshima 7398526, Japan. EM tebata@hiroshima-u.ac.jp RI Apra, Edoardo/F-2135-2010; Haino, Takeharu/F-2015-2010; Inokuchi, Yoshiya/D-4681-2013; Xantheas, Sotiris/L-1239-2015 OI Apra, Edoardo/0000-0001-5955-0734; Haino, Takeharu/0000-0002-0945-2893; Inokuchi, Yoshiya/0000-0001-7959-5315; FU Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, US Department of Energy [DE-AC05-00OR22725]; JSPS [18205003]; MEXT [477] FX Part of this work was supported by the Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, US Department of Energy. Battelle operates the Pacific Northwest National Laboratory for the U.S. Department of Energy. This research was performed in part using the Molecular Science Computing Facility (MSCF) in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research. Additional computer resources were provided at the National Center for Computational Sciences at Oak Ridge National Laboratory, which is supported by the Office of Science of the U. S. Department of Energy under Contract No. DE-AC05-00OR22725. T. E. acknowledges JSPS for the support through a Grant-in-Aid project (No. 18205003) and MEXT for the support through a Grant-in-Aid for the Scientific Research on Priority Area "Molecular Science for Supra Functional Systems'' (No. 477). NR 45 TC 6 Z9 6 U1 1 U2 8 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1463-9076 J9 PHYS CHEM CHEM PHYS JI Phys. Chem. Chem. Phys. PY 2010 VL 12 IS 18 BP 4569 EP 4579 DI 10.1039/b927441c PG 11 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 589MU UT WOS:000277153800006 PM 20428536 ER PT J AU Tian, YH Huang, JS Kertesz, M AF Tian, Yong-Hui Huang, Jingsong Kertesz, Miklos TI Fluxional sigma-bonds of 2,5,8-tri-tert-butyl-1,3-diazaphenalenyl dimers: stepwise [3,3], [5,5] and [7,7] sigmatropic rearrangements via pi-dimer intermediates SO PHYSICAL CHEMISTRY CHEMICAL PHYSICS LA English DT Article ID UNRESTRICTED HARTREE-FOCK; DENSITY-FUNCTIONAL THEORY; POTENTIAL-ENERGY CURVES; C-C BOND; COPE REARRANGEMENT; ELECTRONIC-STRUCTURE; NONCOVALENT INTERACTIONS; THERMOCHEMICAL KINETICS; SQUID MEASUREMENTS; CRYSTAL-STRUCTURES AB Inspired by experimental evidence of the thermally accessible pi-dimer of the title compound, DAzPh (7), we propose that the sigma-dimer (8) can undergo a variety of sigma-bond shifts representing very unusual multi-faceted fluxional bonding between two neutral pi-radicals. In this paper, we present a theoretical study of the sigmatropic rearrangement of the DAzPh sigma-dimers. Out of the six sigma-bonded tautomers three are competitive: a degenerate pair resulting from a [ 5,5] sigmatropic rearrangement and a non-degenerate product of a [ 3,3] sigmatropic rearrangement with barriers of 10.21 kcal mol(-1) and 10.00 kcal mol(-1), respectively. Both of these rearrangements occur stepwise through a pi-dimer intermediate (9), which is 1.33 kcal mol(-1) higher in energy than the sigma-dimer (8). These data are consistent with optical and paramagnetic susceptibility experiments and offer a natural interpretation for the unusual C-C contact distance of 2.153 angstrom obtained by X-ray diffraction by Morita et al. Another new sigma-dimer (15) with a different dipole-dipole stacking pattern is predicted, the energy of which is very close to that of 8, and is likely to be isolable under suitable conditions. The new sigma-dimer (15) is expected to undergo stepwise [ 7,7] sigmatropic rearrangement. Thus we observed a complete spectrum of sigmatropic rearrangement reactions in these DAzPh dimers. The pi-dimers 4, 9 and 17 show decreasing order of SOMO-SOMO splittings consistent with the UV-vis absorbance. The calculated paramagnetism is in good agreement with experiments providing further evidence for the presented interpretation of fluxional bonding in the DAzPh sigma-dimers. C1 [Tian, Yong-Hui; Kertesz, Miklos] Georgetown Univ, Dept Chem, Washington, DC 20057 USA. [Huang, Jingsong] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Kertesz, M (reprint author), Georgetown Univ, Dept Chem, 37th & O St, Washington, DC 20057 USA. EM Kertesz@georgetown.edu RI Huang, Jingsong/A-2789-2008; Tian, Yong-Hui/H-2448-2012; Kertesz, Miklos/E-7122-2010 OI Huang, Jingsong/0000-0001-8993-2506; Kertesz, Miklos/0000-0002-7930-3260 FU U. S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering [DE-FG02-07ER46472] FX Research is supported by the U. S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award No. DE-FG02-07ER46472. Support by GridChem is acknowledged for computer time. We thank Georgetown University's Advanced Research Computing Group for their assistance. NR 60 TC 16 Z9 16 U1 3 U2 12 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1463-9076 J9 PHYS CHEM CHEM PHYS JI Phys. Chem. Chem. Phys. PY 2010 VL 12 IS 19 BP 5084 EP 5093 DI 10.1039/b925259b PG 10 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 592EM UT WOS:000277359300023 PM 20445911 ER PT J AU Cain, JP Gassman, PL Wang, H Laskin, A AF Cain, Jeremy P. Gassman, Paul L. Wang, Hai Laskin, Alexander TI Micro-FTIR study of soot chemical composition-evidence of aliphatic hydrocarbons on nascent soot surfaces SO PHYSICAL CHEMISTRY CHEMICAL PHYSICS LA English DT Article ID PREMIXED ETHYLENE FLAMES; PARTICLE-SIZE DISTRIBUTION; ANGLE NEUTRON-SCATTERING; RAMAN MICROSPECTROSCOPIC ANALYSIS; ORGANIC FUNCTIONAL-GROUPS; ELECTRON-SPIN-RESONANCE; INVERSE DIFFUSION FLAME; OXYGEN-ARGON FLAME; HEXANE SOOT; IR SPECTROSCOPY AB Previous studies suggest that soot formed in premixed flat flames can contain a substantial amount of aliphatic compounds. Presence of these compounds may affect the kinetics of soot mass growth and oxidation in a way that is currently not understood. Using an infrared spectrometer coupled to a microscope (micro-FTIR), we examined the composition of soot sampled from a set of ethylene-argon-oxygen flames recently characterized (A. D. Abid, et al. Combust. Flame, 2008, 154, 775-788), all with an equivalence ratio phi = 2.07 but varying in maximum flame temperatures. Soot was sampled at three distances above the burner surface using a probe sampling technique and deposited on silicon nitride thin film substrates using a cascade impactor. Spectra were taken and analyses performed for samples collected on the lowest five impactor stages with the cut-off sizes of D-50 = 10, 18, 32, 56 and 100 nm. The micro-FTIR spectra revealed the presence of aliphatic C-H, aromatic C-H and various oxygenated functional groups, including carbonyl (C=O), C-O-C and C-OH groups. Spectral analyses were made to examine variations of these functional groups with flame temperature, sampling position and particle size. Results indicate that increases in flame temperature leads to higher contents of non-aromatic functionalities. Functional group concentrations were found to be ordered as follows: [C=O] < [C=O] < [aliphatic C-H]. Aliphatic C-H was found to exist in significant quantities, with very little oxygenated groups present. The ratio of these chemical functionalities to aromatic C-H remains constant for particle sizes spanning 10-100 nm. The results confirm a previous experimental finding: a significant amount of aliphatic compounds is present in nascent soot formed in the flames studied, especially towards larger distances above the burner surface. C1 [Cain, Jeremy P.; Wang, Hai] Univ So Calif, Dept Aerosp & Mech Engn, Los Angeles, CA 90089 USA. [Gassman, Paul L.; Laskin, Alexander] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. RP Wang, H (reprint author), Univ So Calif, Dept Aerosp & Mech Engn, Los Angeles, CA 90089 USA. EM haiw@usc.edu; Alexander.Laskin@pnl.gov RI Wang, Hai/A-1292-2009; Laskin, Alexander/I-2574-2012 OI Wang, Hai/0000-0001-6507-5503; Laskin, Alexander/0000-0002-7836-8417 FU National Aeronautics and Space Administration [NNG06GE89G, NNG06GI51G]; Strategic Environmental Research and Developmental Program; National Science Foundation [CBET 0651990]; DOE's Office of Biological and Environmental Research; US Department of Energy [DE-AC06-76RL0 1830] FX We acknowledge support provided by the National Aeronautics and Space Administration (grants NNG06GE89G and NNG06GI51G). The work at USC was also partially supported by the Strategic Environmental Research and Developmental Program and by the National Science Foundation (CBET 0651990). Experiments and FTIR analysis were performed at EMSL, a national scientific user facility sponsored by the DOE's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL). PNNL is operated by the US Department of Energy by Battelle Memorial Institute under contract No. DE-AC06-76RL0 1830. NR 99 TC 86 Z9 91 U1 4 U2 44 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1463-9076 EI 1463-9084 J9 PHYS CHEM CHEM PHYS JI Phys. Chem. Chem. Phys. PY 2010 VL 12 IS 20 BP 5206 EP 5218 DI 10.1039/b924344e PG 13 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 596MP UT WOS:000277689500004 PM 21491682 ER PT J AU Feng, G Huang, JS Sumpter, BG Meunier, V Qiao, R AF Feng, Guang Huang, Jingsong Sumpter, Bobby G. Meunier, Vincent Qiao, Rui TI Structure and dynamics of electrical double layers in organic electrolytes SO PHYSICAL CHEMISTRY CHEMICAL PHYSICS LA English DT Article ID ELECTROCHEMICAL DOUBLE-LAYER; MOLECULAR SIMULATION; CARBON MATERIALS; NONAQUEOUS ELECTROLYTE; GAMMA-BUTYROLACTONE; ACTIVATED CARBONS; IONIC LIQUIDS; FORCE-FIELD; CAPACITORS; MODEL AB The organic electrolyte of tetraethylammonium tetrafluoroborate (TEABF(4)) in the aprotic solvent of acetonitrile (ACN) is widely used in electrochemical systems such as electrochemical capacitors. In this paper, we examine the solvation of TEA(+) and BF(4)(-) in ACN, and the structure, capacitance, and dynamics of the electrical double layers (EDLs) in the TEABF(4)-ACN electrolyte using molecular dynamics simulations complemented with quantum density functional theory calculations. The solvation of TEA(+) and BF(4)(-) ions is found to be much weaker than that of small inorganic ions in aqueous solutions, and the ACN molecules in the solvation shell of both types of ions show only weak packing and orientational ordering. These solvation characteristics are caused by the large size, charge delocalization, and irregular shape (in the case of TEA(+) cation) of the ions. Near neutral electrodes, the double-layer structure in the organic electrolyte exhibits a rich organization: the solvent shows strong layering and orientational ordering, ions are significantly contact-adsorbed on the electrode, and alternating layers of cations/anions penetrate ca. 1.1 nm into the bulk electrolyte. The significant contact adsorption of ions and the alternating layering of cation/anion are new features found for EDLs in organic electrolytes. These features essentially originate from the fact that van der Waals interactions between organic ions and the electrode are strong and the partial desolvation of these ions occurs easily, as a result of the large size of the organic ions. Near charged electrodes, distinct counter-ion concentration peaks form, and the ion distribution cannot be described by the Helmholtz model or the Helmholtz + Poisson-Boltzmann model. This is because the number of counter-ions adsorbed on the electrode exceeds the number of electrons on the electrode, and the electrode is over-screened in parts of the EDL. The computed capacitances of the EDLs are in good agreement with that inferred from experimental measurements. Both the rotations (ACN only) and translations of interfacial ACN and ions are found to slow down as the electrode is electrified. We also observe an asymmetrical dependence of these motions on the sign of the electrode charge. The rotation/diffusion of ACN and the diffusion of ions in the region beyond the first ACN or ion layer differ only weakly from those in the bulk. C1 [Feng, Guang; Qiao, Rui] Clemson Univ, Coll Engn & Sci, Clemson, SC 29634 USA. [Huang, Jingsong; Sumpter, Bobby G.; Meunier, Vincent] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Qiao, R (reprint author), Clemson Univ, Coll Engn & Sci, Clemson, SC 29634 USA. EM rqiao@clemson.edu RI Huang, Jingsong/A-2789-2008; Qiao, Rui/B-2350-2009; Feng, Guang/D-8989-2011; Meunier, Vincent/F-9391-2010; Sumpter, Bobby/C-9459-2013; OI Huang, Jingsong/0000-0001-8993-2506; Qiao, Rui/0000-0001-5219-5530; Meunier, Vincent/0000-0002-7013-179X; Sumpter, Bobby/0000-0001-6341-0355; Feng, Guang/0000-0001-6659-9181 FU NSF [CBET-0756496]; U.S. Department of Energy [DEAC05-00OR22725] FX The authors thank the Clemson-CCIT office for providing computer time. The Clemson authors acknowledge support from NSF under grant No. CBET-0756496. R.Q. was partly supported by an appointment to the HERE program for faculty at the Oak Ridge National Laboratory (ORNL) administered by ORISE. The authors at ORNL gratefully acknowledge the support from the Laboratory Directed Research and Development Program of ORNL and from U.S. Department of Energy under Contract No. DEAC05-00OR22725 with UT-Battelle, LLC at ORNL. NR 69 TC 39 Z9 39 U1 7 U2 76 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1463-9076 J9 PHYS CHEM CHEM PHYS JI Phys. Chem. Chem. Phys. PY 2010 VL 12 IS 20 BP 5468 EP 5479 DI 10.1039/c000451k PG 12 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 596MP UT WOS:000277689500031 PM 20467670 ER PT J AU Rehr, JJ Kas, JJ Vila, FD Prange, MP Jorissen, K AF Rehr, John J. Kas, Joshua J. Vila, Fernando D. Prange, Micah P. Jorissen, Kevin TI Parameter-free calculations of X-ray spectra with FEFF9 SO PHYSICAL CHEMISTRY CHEMICAL PHYSICS LA English DT Article ID ABSORPTION FINE-STRUCTURE; DEBYE-WALLER FACTORS; NEAR-EDGE STRUCTURE; AB-INITIO; XANES SPECTRA; ELECTRON-GAS; SCATTERING; ENERGY; SINGLE; PHOTOABSORPTION AB We briefly review our implementation of the real-space Green's function (RSGF) approach for calculations of X-ray spectra, focusing on recently developed parameter free models for dominant many-body effects. Although the RSGF approach has been widely used both for near edge (XANES) and extended (EXAFS) ranges, previous implementations relied on semi-phenomenological methods, e. g., the plasmon-pole model for the self-energy, the final-state rule for screened core hole effects, and the correlated Debye model for vibrational damping. Here we describe how these approximations can be replaced by efficient ab initio models including a many-pole model of the self-energy, inelastic losses and multiple-electron excitations; a linear response approach for the core hole; and a Lanczos approach for Debye-Waller effects. We also discuss the implementation of these models and software improvements within the FEFF9 code, together with a number of examples. C1 [Rehr, John J.; Kas, Joshua J.; Vila, Fernando D.; Jorissen, Kevin] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Prange, Micah P.] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA. [Prange, Micah P.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Rehr, JJ (reprint author), Univ Washington, Dept Phys, Seattle, WA 98195 USA. OI Jorissen, Kevin/0000-0002-7005-0914 FU DOE [DE-FG03-97ER45623, DE-FG02-04ER1599]; NIH NCRR BTP [RR-01209]; F.W.O.-Vlaanderen-Flanders FX We wish to thank A. Ankudinov, D. Bitseff, C. Chantler, X. Gonze, H. Ebert, G. Hug, M. Jaouen, H. Krappe, M. Newville, C. Powell, G. Rivas, H. Rossner, E. Shirley, A. Soininen, C. Hebert, Y. Takimoto and others for helpful comments, suggestions and contributions. This work is supported in part by the DOE Grant DE-FG03-97ER45623 (JJR, JKK), DE-FG02-04ER1599 (FDV), NIH NCRR BTP Grant RR-01209 (JJK), the F.W.O.-Vlaanderen-Flanders (KJ), and was facilitated by the DOE Computational Materials Science Network. NR 95 TC 249 Z9 252 U1 14 U2 91 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1463-9076 EI 1463-9084 J9 PHYS CHEM CHEM PHYS JI Phys. Chem. Chem. Phys. PY 2010 VL 12 IS 21 BP 5503 EP 5513 DI 10.1039/b926434e PG 11 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 599PV UT WOS:000277926500002 PM 20445945 ER PT J AU Wyrzgol, SA Schafer, S Lee, S Lee, B Di Vece, M Li, XB Seifert, S Winans, RE Stutzmann, M Lercher, JA Vajda, S AF Wyrzgol, Sonja A. Schaefer, Susanne Lee, Sungsik Lee, Byeongdu Di Vece, Marcel Li, Xuebing Seifert, Soenke Winans, Randall E. Stutzmann, Martin Lercher, Johannes A. Vajda, Stefan TI Combined TPRx, in situ GISAXS and GIXAS studies of model semiconductor-supported platinum catalysts in the hydrogenation of ethene SO PHYSICAL CHEMISTRY CHEMICAL PHYSICS LA English DT Article ID RAY-ABSORPTION-SPECTROSCOPY; ETHYLENE HYDROGENATION; UBER MISCHSALZKONTAKTE; OXIDATION REACTION; SURFACE SCIENCE; GOLD CLUSTERS; SHAPE CHANGES; NANOPARTICLES; SIZE; STABILITY AB The preparation, characterization and catalytic reactivity of a GaN supported Pt catalyst in the hydrogenation of ethene are presented in this feature article, highlighting the use of in situ characterization of the material properties during sample handling and catalysis by combining temperature programmed reaction with in situ grazing incidence small-angle X-ray scattering and X-ray absorption spectroscopy. The catalysts are found to be sintering resistant at elevated temperatures as well as during reduction and hydrogenation reactions. In contrast to Pt particles of approximately 7 nm diameter, smaller particles of 1.8 nm in size are found to dynamically adapt their shape and oxidation state to the changes in the reaction environment. These smaller Pt particles also showed an initial deactivation in ethene hydrogenation, which is paralleled by the change in the particle shape. The subtle temperature-dependent X-ray absorbance of the 1.8 nm sized Pt particles indicates that subtle variations in the electronic structure induced by the state of reduction by electron tunnelling over the Schottky barrier between the Pt particles and the GaN support can be monitored. C1 [Wyrzgol, Sonja A.; Li, Xuebing; Lercher, Johannes A.] Tech Univ Munich, Dept Chem, D-85747 Garching, Germany. [Wyrzgol, Sonja A.; Schaefer, Susanne; Li, Xuebing; Stutzmann, Martin; Lercher, Johannes A.] Tech Univ Munich, Catalysis Res Ctr, D-85747 Garching, Germany. [Schaefer, Susanne; Stutzmann, Martin] Tech Univ Munich, Walter Schottky Inst, D-85747 Garching, Germany. [Lee, Sungsik; Vajda, Stefan] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Lee, Byeongdu; Seifert, Soenke; Winans, Randall E.] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA. [Di Vece, Marcel; Vajda, Stefan] Yale Univ, Dept Chem Engn, New Haven, CT 06520 USA. [Vajda, Stefan] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. RP Lercher, JA (reprint author), Tech Univ Munich, Dept Chem, Lichtenbergstr 4, D-85747 Garching, Germany. EM johannes.lercher@ch.tum.de; vajda@anl.gov RI Stutzmann, Martin/B-1480-2012; Di Vece, Marcel/N-6957-2016 OI Stutzmann, Martin/0000-0002-0068-3505; Lee, Byeongdu/0000-0003-2514-8805; Di Vece, Marcel/0000-0002-0041-4348 FU Deutsche Forschungsgemeinschaft (DFG) through TUM International Graduate School of Science and Engineering (IGSSE); US Department of Energy [DE-AC-0206CH11357]; Air Force Office of Scientific Research FX The work at the Technische Universitat Munchen (TUM) was supported by Deutsche Forschungsgemeinschaft (DFG) through the TUM International Graduate School of Science and Engineering (IGSSE). TEM and AFM analysis was performed at the Laboratory of Electron microscopy, Department of Chemistry, Technische Universitat Munchen. The work at the Argonne National Laboratory was supported by the US Department of Energy, BES-Chemical Sciences and BES-Scientific User Facilities under Contract DE-AC-0206CH11357 with UChicago Argonne, LLC, Operator of Argonne National Laboratory. MDV and SV gratefully acknowledge the support by the Air Force Office of Scientific Research. NR 62 TC 24 Z9 24 U1 0 U2 32 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1463-9076 J9 PHYS CHEM CHEM PHYS JI Phys. Chem. Chem. Phys. PY 2010 VL 12 IS 21 BP 5585 EP 5595 DI 10.1039/b926493k PG 11 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 599PV UT WOS:000277926500009 PM 20424733 ER PT J AU Guo, N Fingland, BR Williams, WD Kispersky, VF Jelic, J Delgass, WN Ribeiro, FH Meyer, RJ Miller, JT AF Guo, Neng Fingland, Bradley R. Williams, W. Damion Kispersky, Vincent F. Jelic, Jelena Delgass, W. Nicholas Ribeiro, Fabio H. Meyer, Randall J. Miller, Jeffrey T. TI Determination of CO, H2O and H-2 coverage by XANES and EXAFS on Pt and Au during water gas shift reaction SO PHYSICAL CHEMISTRY CHEMICAL PHYSICS LA English DT Article ID RAY-ABSORPTION SPECTRA; SUPPORTED METAL-CATALYSTS; HYDROGEN ADSORPTION; PARTICLE-SIZE; GOLD CATALYSTS; ELECTRONIC-STRUCTURE; PALLADIUM CATALYSTS; AU/CEO2 CATALYSTS; ADSORBED CO; TEMPERATURE AB The turn-over-rate (TOR) for the water gas shift (WGS) reaction at 200 degrees C, 7% CO, 9% CO2, 22% H2O, 37% H-2 and balance Ar, of 1.4 nm Au/Al2O3 is approximately 20 times higher than that of 1.6 nm Pt/Al2O3. Operando EXAFS experiments at both the Au and Pt L-3 edges reveal that under reaction conditions, the catalysts are fully metallic. In the absence of adsorbates, the metal-metal bond distances of Pt and Au catalysts are 0.07 angstrom and 0.13 angstrom smaller than those of bulk Pt and Au foils, respectively. Adsorption of H-2 or CO on the Pt catalysts leads to significantly longer Pt-Pt bond distances; while there is little change in Au-Au bond distance with adsorbates. Adsorption of CO, H-2 and H2O leads to changes in the XANES spectra that can be used to determine the surface coverage of each adsorbate under reaction conditions. During WGS, the coverage of CO, H2O, and H-2 are obtained by the linear combination fitting of the difference XANES, or Delta XANES, spectra. Pt catalysts adsorb CO, H-2, and H2O more strongly than the Au, in agreement with the lower CO reaction order and higher reaction temperatures. C1 [Guo, Neng; Miller, Jeffrey T.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Fingland, Bradley R.; Williams, W. Damion; Kispersky, Vincent F.; Delgass, W. Nicholas; Ribeiro, Fabio H.] Purdue Univ, Dept Chem Engn, W Lafayette, IN 47907 USA. [Jelic, Jelena; Meyer, Randall J.] Univ Illinois, Dept Chem Engn, Chicago, IL 60607 USA. RP Miller, JT (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. EM millerjt@anl.gov RI ID, MRCAT/G-7586-2011; Guo, Neng/A-3223-2013; OI Ribeiro, Fabio/0000-0001-7752-461X FU U.S. Department of Energy, Office of Science, and Office of Basic Energy Sciences [DE-AC02-06CH11357]; Department of Energy; MRCAT member institutions; Department of Energy, Office of Basic Energy Sciences, Chemical Sciences [DE-FG02-03ER15408]; Department of Energy, Office of Basic Energy Sciences, Catalysis Science [DE-FG02-03ER15466] FX Use of the Advanced Photon Source is supported by the U.S. Department of Energy, Office of Science, and Office of Basic Energy Sciences, under Contract DE-AC02-06CH11357. MRCAT operations are supported by the Department of Energy and the MRCAT member institutions. Partial support from the Department of Energy, Office of Basic Energy Sciences, Chemical Sciences, under grant DE-FG02-03ER15408 and Catalysis Science Grant No. DE-FG02-03ER15466 is gratefully acknowledged. We also thank Professor Suljo Linic and Mr. Hongliang Xin from University of Michigan for their advice on CASTEP. NR 66 TC 39 Z9 39 U1 5 U2 70 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1463-9076 EI 1463-9084 J9 PHYS CHEM CHEM PHYS JI Phys. Chem. Chem. Phys. PY 2010 VL 12 IS 21 BP 5678 EP 5693 DI 10.1039/c000240m PG 16 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 599PV UT WOS:000277926500018 PM 20442915 ER PT J AU Chen, YS Xie, C Li, Y Song, CS Bolin, TB AF Chen, Yongsheng Xie, Chao Li, Yan Song, Chunshan Bolin, Trudy B. TI Sulfur poisoning mechanism of steam reforming catalysts: an X-ray absorption near edge structure (XANES) spectroscopic study SO PHYSICAL CHEMISTRY CHEMICAL PHYSICS LA English DT Article ID FUEL-CELLS; LOW-TEMPERATURE; JET FUELS; DEACTIVATION; ADSORPTION; DEPOSITION; CONVERSION AB The present XANES study aims at elucidating the roles of carbon deposits and metal sulfides in the catalyst deactivation in steam reforming reactions with the presence of sulfur. CeO(2)-Al(2)O(3)-supported Ni and Rh-based catalysts were tested in steam reforming of liquid hydrocarbon fuel containing 350 ppm sulfur for H(2) production at 800 degrees C. The Rh catalyst demonstrated much better sulfur tolerance than the Ni catalyst. XANES revealed that there are various sulfur species (metal sulfide, sulfonate, sulfate and organic sulfide) on the used Ni and Rh catalysts. Metal sulfide and organic sulfide are the dominant sulfur species on the Ni catalyst whereas sulfonate and sulfate predominate on the Rh catalyst. Meanwhile organic sulfide and sulfate are also observed on the support alone. Furthermore, there are more carbon deposits formed in the presence of sulfur on both catalysts. More carboxyl groups occur on the carbon deposits formed on the same catalyst when there is no sulfur in the fuel. From correlation analysis of the amounts of nickel sulfide and carbon deposits along with the relative catalytic activity loss, we conclude that sulfur causes the initial deactivation of the Ni catalyst by metal sulfide formation in the first few hours while build-up of carbon deposits contributes mainly to the subsequent deactivation. C1 [Chen, Yongsheng; Li, Yan; Song, Chunshan] Penn State Univ, EMS Energy Inst, Dept Energy & Mineral Engn, University Pk, PA 16802 USA. [Xie, Chao] Penn State Univ, EMS Energy Inst, Dept Mat Sci & Engn, University Pk, PA 16802 USA. [Bolin, Trudy B.] Argonne Natl Lab, Adv Photon Source, XOR 9BM, Argonne, IL 60439 USA. RP Chen, YS (reprint author), Penn State Univ, EMS Energy Inst, Dept Energy & Mineral Engn, University Pk, PA 16802 USA. EM yzc2@psu.edu; csong@psu.edu RI Song, Chunshan/B-3524-2008; Xie, Chao/J-3681-2014; Chen, Yongsheng/P-4800-2014 OI Song, Chunshan/0000-0003-2344-9911; FU US Office of Naval Research through an ONR NAVSEA [N00014-06-1-0320]; US Department of Energy National Energy Technology Laboratory [DE-FE0000458]; Office of Basic Energy Sciences of the US Dept. of Energy [DE-AC02-06CH11357, DE-AC02-98CH10886]; National Science Foundation Division of Materials Research FX The authors would like to thank Dr Ezana Negusse for the help with carbon XANES measurements. This work was supported in part by the US Office of Naval Research through an ONR NAVSEA grant N00014-06-1-0320 and by the US Department of Energy National Energy Technology Laboratory under grant DE-FE0000458. Sulfur XANES work at the CMC Beamlines is supported in part by the Office of Basic Energy Sciences of the US Dept. of Energy and by the National Science Foundation Division of Materials Research. Use of the Advanced Photon Source is supported by the Office of Basic Energy Sciences of the US Department of Energy under Contract No. DE-AC02-06CH11357. Carbon XANES work on U4B Beamline at the National Synchrotron Light Source (Brookhaven National Laboratories) was supported by the US Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. NR 24 TC 34 Z9 35 U1 2 U2 29 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1463-9076 J9 PHYS CHEM CHEM PHYS JI Phys. Chem. Chem. Phys. PY 2010 VL 12 IS 21 BP 5707 EP 5711 DI 10.1039/b925910b PG 5 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 599PV UT WOS:000277926500021 PM 20431820 ER PT J AU Lyubinetsky, I Deskins, NA Du, YG Vestergaard, EK Kim, DJ Dupuis, M AF Lyubinetsky, Igor Deskins, N. Aaron Du, Yingge Vestergaard, Ebbe K. Kim, Dong Jun Dupuis, Michel TI Adsorption states and mobility of trimethylacetic acid molecules on reduced TiO2(110) surface SO PHYSICAL CHEMISTRY CHEMICAL PHYSICS LA English DT Article ID TUNNELING MICROSCOPIC OBSERVATION; FORMIC-ACID; RUTILE TIO2(110); DISSOCIATIVE ADSORPTION; ISONICOTINIC-ACID; PSEUDOPOTENTIALS; DECOMPOSITION; DEHYDRATION; DYNAMICS; ACETATE AB Combined scanning tunneling microscopy (STM), X-rays photoelectron spectroscopy (XPS) and density functional theory (DFT) studies have probed the bonding configurations and mobility of trimethylacetic acid (TMAA) molecules on the TiO2(110) surface at RT. Upon TMAA dissociation through deprotonation, two distinctly different types of stable chemisorption configurations of the carboxylate group (TMA) have been identified according to their position and appearance in STM images. In configuration A, two carboxylate O atoms bond to two Ti4+ cations, while in configuration B one O atom fills the bridging oxygen vacancy (V-O) with the other O bounded at an adjacent regular Ti4+ site. Calculated adsorption energies for the configurations A and B are comparable at 1.28 and 1.36 eV, respectively. DFT results also show that TMA may rotate at RT about its O atom that filled the V-O (in configuration B), with a rotation barrier of similar to 0.65 eV. Both the observation of the constant initial sticking coefficient and preference for TMAA molecules to dissociate at selective sites indicate that TMAA adsorption is mediated by a mobile precursor state. Several possible molecular (physisorbed) states of TMAA have indeed been identified by DFT, all being highly mobile at RT. In contrast, the TMA diffusion in the chemisorbed (dissociative) state is a very slow with a calculated barrier of 1.09 eV for diffusion along the Ti row. C1 [Lyubinetsky, Igor; Du, Yingge] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. [Lyubinetsky, Igor; Deskins, N. Aaron; Du, Yingge; Kim, Dong Jun; Dupuis, Michel] Pacific NW Natl Lab, Inst Interfacial Catalysis, Richland, WA 99352 USA. [Deskins, N. Aaron; Kim, Dong Jun; Dupuis, Michel] Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Richland, WA 99352 USA. [Vestergaard, Ebbe K.] Univ Washington, Dept Chem, Seattle, WA 98195 USA. RP Lyubinetsky, I (reprint author), Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. EM igor.lyubinetsky@pnl.gov; michel.dupuis@pnl.gov RI Deskins, Nathaniel/H-3954-2012 FU U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Division of Chemical Sciences FX The authors would like to thank M. Henderson, Z. Dohnalek, and C. Campbell for stimulating discussions. This work was supported by the U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Division of Chemical Sciences, and performed at the EMSL, W.R. Wiley Environmental Molecular Science Laboratory, a DOE User Facility sponsored by the Office of Biological and Environmental Research. NR 44 TC 19 Z9 19 U1 2 U2 26 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1463-9076 J9 PHYS CHEM CHEM PHYS JI Phys. Chem. Chem. Phys. PY 2010 VL 12 IS 23 BP 5986 EP 5992 DI 10.1039/b921921h PG 7 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 605RL UT WOS:000278364600006 PM 20490397 ER PT J AU Du, YG Deskins, NA Zhang, ZR Dohnalek, Z Dupuis, M Lyubinetsky, I AF Du, Yingge Deskins, Nathaniel A. Zhang, Zhenrong Dohnalek, Zdenek Dupuis, Michel Lyubinetsky, Igor TI Formation of O adatom pairs and charge transfer upon O-2 dissociation on reduced TiO2(110) SO PHYSICAL CHEMISTRY CHEMICAL PHYSICS LA English DT Article ID SCANNING-TUNNELING-MICROSCOPY; MOLECULAR-OXYGEN; SURFACE-DEFECTS; DENSITY; STATE; PSEUDOPOTENTIALS; PHOTOCATALYSIS; SEMICONDUCTOR; ADSORPTION; REACTIVITY AB Scanning tunneling microscopy and density functional theory have been used to investigate the details of O-2 dissociation leading to the formation of oxygen adatom (O-a) pairs at terminal Ti sites. An intermediate, metastable O-a-O-a configuration with two nearest-neighbor O atoms is observed after O-2 dissociation at 300 K. The nearest-neighbor O-a pairs are destabilized by Coulomb repulsion of charged O-a's and separate further along the Ti row into energetically more favorable second-nearest neighbor configuration. The potential energy profile calculated for O-2 dissociation on Ti rows and following O-a's separation strongly supports the experimental observations. Furthermore, our results suggest that the itinerant electrons associated with the O vacancies (V-O) are being utilized in the O-2 dissociation process at the Ti row. Experimentally this is supported by the observation that not all V-O's can be healed by O-2 exposure at 300 K, as some V-O's becoming less reactive due to supplying certain charge to O-a's. Further, theoretical results show that at least two oxygen vacancies per O-2 molecule are required in order for the O-2 dissociation at the Ti row to become viable. C1 [Du, Yingge; Lyubinetsky, Igor] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. [Du, Yingge; Deskins, Nathaniel A.; Zhang, Zhenrong; Dohnalek, Zdenek; Dupuis, Michel; Lyubinetsky, Igor] Pacific NW Natl Lab, Inst Interfacial Catalysis, Richland, WA 99352 USA. [Deskins, Nathaniel A.; Zhang, Zhenrong; Dohnalek, Zdenek; Dupuis, Michel] Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Richland, WA 99352 USA. RP Lyubinetsky, I (reprint author), Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. EM igor.lyubinetsky@pnl.gov RI Deskins, Nathaniel/H-3954-2012; OI Zhang, Zhenrong/0000-0003-3969-2326; Dohnalek, Zdenek/0000-0002-5999-7867 FU U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Division of Chemical Sciences; Office of Biological and Environmental Research FX We would like to thank M. A. Henderson, R. Rousseau, G. A. Kimmel, and N. G. Petrik for stimulating discussions. This work was supported by the U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Division of Chemical Sciences, and performed at the W. R. Wiley Environmental Molecular Science Laboratory (EMSL), a DOE User Facility sponsored by the Office of Biological and Environmental Research. We also acknowledge the Molecular Science Computing Facility located at the EMSL and the National Energy Research Scientific Computing Center in Berkeley, CA, for providing computational resources. NR 47 TC 61 Z9 61 U1 3 U2 31 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1463-9076 J9 PHYS CHEM CHEM PHYS JI Phys. Chem. Chem. Phys. PY 2010 VL 12 IS 24 BP 6337 EP 6344 DI 10.1039/c000250j PG 8 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 608MN UT WOS:000278588500005 PM 20532418 ER PT J AU Leone, SR Ahmed, M Wilson, KR AF Leone, Stephen R. Ahmed, Musahid Wilson, Kevin R. TI Chemical dynamics, molecular energetics, and kinetics at the synchrotron SO PHYSICAL CHEMISTRY CHEMICAL PHYSICS LA English DT Article ID VACUUM-ULTRAVIOLET PHOTOIONIZATION; PHENYLALANINE-GLYCINE-GLYCINE; ADVANCED LIGHT-SOURCE; MASS-SPECTROMETRY; HIGH-RESOLUTION; PRODUCT DETECTION; BIOLOGICAL NANOPARTICLES; ALKYLPEROXY RADICALS; COMBUSTION CHEMISTRY; IONIZATION ENERGIES AB Scientists at the Chemical Dynamics Beamline of the Advanced Light Source in Berkeley are continuously reinventing synchrotron investigations of physical chemistry and chemical physics with vacuum ultraviolet light. One of the unique aspects of a synchrotron for chemical physics research is the widely tunable vacuum ultraviolet light that permits threshold ionization of large molecules with minimal fragmentation. This provides novel opportunities to assess molecular energetics and reaction mechanisms, even beyond simple gas phase molecules. In this perspective, significant new directions utilizing the capabilities at the Chemical Dynamics Beamline are presented, along with an outlook for future synchrotron and free electron laser science in chemical dynamics. Among the established and emerging fields of investigations are cluster and biological molecule spectroscopy and structure, combustion flame chemistry mechanisms, radical kinetics and product isomer dynamics, aerosol heterogeneous chemistry, planetary and interstellar chemistry, and secondary neutral ion-beam desorption imaging of biological matter and materials chemistry. C1 [Leone, Stephen R.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Leone, Stephen R.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Ahmed, Musahid; Wilson, Kevin R.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Leone, SR (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM srl@berkeley.edu RI Ahmed, Musahid/A-8733-2009 FU Office of Energy Research, Office of Basic Energy Sciences, Chemical Sciences Division of the U.S. Department of Energy [DE-AC02-05CH11231]; National Aeronautics and Space Administration [NNX09AB60G]; National Science Foundation; Air Force Office of Scientific Research; Keck Foundation; National Security Science and Engineering Faculty Fellowship FX The authors gratefully acknowledge support from the Director, Office of Energy Research, Office of Basic Energy Sciences, Chemical Sciences Division of the U.S. Department of Energy under contract No. DE-AC02-05CH11231. The support of planetary atmosphere research by the National Aeronautics and Space Administration (Grant No. NNX09AB60G) is gratefully acknowledged. Leone gratefully acknowledges additional support for his research in related areas of investigation from the National Science Foundation, the Air Force Office of Scientific Research, the Keck Foundation, and the National Security Science and Engineering Faculty Fellowship program. NR 88 TC 36 Z9 36 U1 5 U2 50 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1463-9076 J9 PHYS CHEM CHEM PHYS JI Phys. Chem. Chem. Phys. PY 2010 VL 12 IS 25 BP 6564 EP 6578 DI 10.1039/c001707h PG 15 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 611NW UT WOS:000278824400002 PM 20419177 ER PT J AU Leung, K Budzien, JL AF Leung, Kevin Budzien, Joanne L. TI Ab initio molecular dynamics simulations of the initial stages of solid-electrolyte interphase formation on lithium ion battery graphitic anodes SO PHYSICAL CHEMISTRY CHEMICAL PHYSICS LA English DT Article ID DENSITY-FUNCTIONAL THEORY; ETHYLENE CARBONATE; LI-ION; REDUCTION-MECHANISMS; PROPYLENE CARBONATE; SURFACE-CHEMISTRY; PERFORMANCE; MIXTURES; SOLVENTS; CELLS AB The decomposition of ethylene carbonate (EC) during the initial growth of solid-electrolyte interphase (SEI) films at the solvent graphitic anode interface is critical to lithium ion battery operations. Ab initio molecular dynamics simulations of explicit liquid EC/graphite interfaces are conducted to study these electrochemical reactions. We show that carbon edge terminations are crucial at this stage, and that achievable experimental conditions can lead to surprisingly fast EC breakdown mechanisms, yielding decomposition products seen in experiments but not previously predicted. C1 [Leung, Kevin] Sandia Natl Labs, Surface & Interface Sci Dept, Albuquerque, NM 87185 USA. [Budzien, Joanne L.] Frostburg State Univ, Dept Phys & Engn, Frostburg, MD 21532 USA. RP Leung, K (reprint author), Sandia Natl Labs, Surface & Interface Sci Dept, MS 1415, Albuquerque, NM 87185 USA. EM kleung@sandia.gov RI Budzien, Joanne/E-8315-2011 NR 35 TC 84 Z9 84 U1 10 U2 87 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1463-9076 J9 PHYS CHEM CHEM PHYS JI Phys. Chem. Chem. Phys. PY 2010 VL 12 IS 25 BP 6583 EP 6586 DI 10.1039/b925853a PG 4 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 611NW UT WOS:000278824400004 PM 20502786 ER PT J AU Pang, Y Fleming, GR AF Pang, Yoonsoo Fleming, Graham R. TI Branching relaxation pathways from the hot S-2 state of 8 '-apo-beta-caroten-8 '-al SO PHYSICAL CHEMISTRY CHEMICAL PHYSICS LA English DT Article ID RESOLVED ABSORPTION-SPECTROSCOPY; ENERGY-GAP LAW; EXCITED-STATE; BETA-CAROTENE; FLUORESCENCE SPECTROSCOPY; RADIATIONLESS TRANSITIONS; EXCITATION RELAXATION; TRANSIENT ABSORPTION; ULTRAFAST DYNAMICS; RAMAN-SPECTROSCOPY AB We present infrared and visible transient absorption measurements of 8'-apo-beta-caroten-8'-al following one-photon excitation at 405 nm. An excess vibrational energy of similar to 4000 cm(-1) in the S-2 state is created with 405 nm excitation. Relaxation from this vibronic region shows distinct relaxation pathways from those observed for 490 nm excitation which excites S-2 near its origin. Infrared and visible transient absorption measurements show long-lived transient signals that persist longer than 1 ns. These transient spectra are identical to those observed in previous two-photon excitation measurements at 1275 nm. Our results are consistent with at least two minima on the S-1 surface and a branched decay from hot S-2 molecules to at least two of these minima. C1 [Pang, Yoonsoo; Fleming, Graham R.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Pang, Yoonsoo; Fleming, Graham R.] Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Fleming, GR (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM GRFleming@lbl.gov RI Pang, Yoonsoo/G-9879-2012 OI Pang, Yoonsoo/0000-0002-7291-232X FU National Science Foundation [CHE 0706468] FX This research is based on work supported by the National Science Foundation under award CHE 0706468. NR 44 TC 13 Z9 13 U1 0 U2 3 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1463-9076 EI 1463-9084 J9 PHYS CHEM CHEM PHYS JI Phys. Chem. Chem. Phys. PY 2010 VL 12 IS 25 BP 6782 EP 6788 DI 10.1039/c001322f PG 7 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 611NW UT WOS:000278824400029 PM 20448869 ER PT J AU de Jong, WA Bylaska, E Govind, N Janssen, CL Kowalski, K Muller, T Nielsen, IMB van Dam, HJJ Veryazov, V Lindh, R AF de Jong, Wibe A. Bylaska, Eric Govind, Niranjan Janssen, Curtis L. Kowalski, Karol Mueller, Thomas Nielsen, Ida M. B. van Dam, Hubertus J. J. Veryazov, Valera Lindh, Roland TI Utilizing high performance computing for chemistry: parallel computational chemistry SO PHYSICAL CHEMISTRY CHEMICAL PHYSICS LA English DT Article ID COUPLED-CLUSTER THEORY; PLESSET PERTURBATION-THEORY; ELECTRONIC-STRUCTURE CALCULATIONS; SELF-CONSISTENT-FIELD; FULL CONFIGURATION-INTERACTION; DENSITY-FUNCTIONAL CALCULATIONS; TOTAL-ENERGY CALCULATIONS; UNITARY-GROUP APPROACH; AUGMENTED-WAVE METHOD; AUXILIARY BASIS-SETS AB Parallel hardware has become readily available to the computational chemistry research community. This perspective will review the current state of parallel computational chemistry software utilizing high-performance parallel computing platforms. Hardware and software trends and their effect on quantum chemistry methodologies, algorithms, and software development will also be discussed. C1 [de Jong, Wibe A.; Bylaska, Eric; Govind, Niranjan; Kowalski, Karol; van Dam, Hubertus J. J.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Veryazov, Valera] Lund Univ, S-22100 Lund, Sweden. [Janssen, Curtis L.; Nielsen, Ida M. B.] Sandia Natl Labs, Livermore, CA 94550 USA. [Mueller, Thomas] Forschungszentrum Julich, Julich Supercomp Ctr, Inst Adv Simulat, D-52425 Julich, Germany. [Lindh, Roland] Uppsala Univ, SE-75120 Uppsala, Sweden. RP de Jong, WA (reprint author), Pacific NW Natl Lab, POB 999, Richland, WA 99352 USA. EM bert.dejong@pnl.gov; roland.lindh@kvac.uu.se RI DE JONG, WIBE/A-5443-2008; Govind, Niranjan/D-1368-2011; Lindh, Roland/F-3471-2012; OI DE JONG, WIBE/0000-0002-7114-8315; Lindh, Roland/0000-0001-7567-8295; van Dam, Hubertus Johannes Jacobus/0000-0002-0876-3294 FU Department of Energy's Office of Biological and Environmental Research [DE-AC05-76RL01830]; Swedish Research Council; Lund University, Sweden; Sandia National Laboratories; Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy [DE-AC04-94-AL85000]; Extreme Scale Computing Initiative, a Laboratory Directed Research and Development Program at Pacific Northwest National Laboratory; DOE ASCR; John-von-Neumann Institute FX This work was done in part using EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory, operated for the U.S. Department of Energy by Battelle under contract DE-AC05-76RL01830. Part of the funding for this work was provided by the Department of Energy Office of Basic Energy Science. VV and RL thank the Swedish Research Council directly and through the Linnaeus Center of Excellence on Organizing Molecular Matter at Lund University, Sweden, for financial support. CJ and IN acknowledge support from Sandia National Laboratories, a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC04-94-AL85000. KK and EJB acknowledge support from the Extreme Scale Computing Initiative, a Laboratory Directed Research and Development Program at Pacific Northwest National Laboratory. EJB acknowledges support from DOE ASCR petascale tools program and he would like to thank Scott Baden for his help in developing parallel algorithms. TM acknowledges support by the John-von-Neumann Institute for Computing at the Research Centre Julich. NR 268 TC 39 Z9 39 U1 0 U2 26 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1463-9076 EI 1463-9084 J9 PHYS CHEM CHEM PHYS JI Phys. Chem. Chem. Phys. PY 2010 VL 12 IS 26 BP 6896 EP 6920 DI 10.1039/c002859b PG 25 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 614ZK UT WOS:000279098300001 PM 20532308 ER PT J AU Wang, C Wang, GF van der Vliet, D Chang, KC Markovic, NM Stamenkovic, VR AF Wang, Chao Wang, Guofeng van der Vliet, Dennis Chang, Kee-Chul Markovic, Nenad M. Stamenkovic, Vojislav R. TI Monodisperse Pt3Co nanoparticles as electrocatalyst: the effects of particle size and pretreatment on electrocatalytic reduction of oxygen SO PHYSICAL CHEMISTRY CHEMICAL PHYSICS LA English DT Article ID EMBEDDED-ATOM POTENTIALS; MONTE-CARLO SIMULATIONS; CO ALLOY CATALYSTS; PEM FUEL-CELLS; NANOCRYSTALS; PLATINUM; SEGREGATION; SUPERLATTICES; ELECTRODES; NI AB Monodisperse Pt3Co nanoparticles have been synthesized with size control via an organic solvothermal approach. The obtained nanoparticles were incorporated into a carbon matrix and applied as electrocatalysts for the oxygen reduction reaction to investigate the effects of particle size and pretreatment on their catalytic performance. It has been found that the optimal conditions for maximum mass activity were with particles of similar to 4.5 nm and a mild annealing temperature of about 500 degrees C. While the particle size effect can be correlated to the average surface coordination number, Monte Carlo simulations have been introduced to depict the nanoparticle structure and segregation pro. le, which revealed that the annealing temperature has a direct influence on the particle surface relaxation, segregation and adsorption/catalytic properties. The obtained fundamental understanding of activity enhancement in Pt-bimetallic alloy catalysts could be utilized to guide the development of advanced nanomaterials for catalytic applications. C1 [Wang, Chao; van der Vliet, Dennis; Chang, Kee-Chul; Markovic, Nenad M.; Stamenkovic, Vojislav R.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Wang, Guofeng] Indiana Univ Purdue Univ, Dept Mech Engn, Indianapolis, IN 46202 USA. RP Stamenkovic, VR (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM vrstamenkovic@anl.gov RI Wang, Chao/F-4558-2012; Chang, Kee-Chul/O-9938-2014; van der Vliet, Dennis/P-2983-2015 OI Wang, Chao/0000-0001-7398-2090; Chang, Kee-Chul/0000-0003-1775-2148; van der Vliet, Dennis/0000-0002-2524-527X FU University of Chicago [DE-AC02-06CH11357]; Argonne, LLC [DE-AC02-06CH11357]; U.S. Department of Energy, Office of Basic Energy Science [DE-PS02-09ER09-01] FX The work was supported by the contract (DE-AC02-06CH11357) between the University of Chicago and Argonne, LLC, and the US Department of Energy. The electron microscopy was accomplished at the Electron Microscopy Center for Materials Research at Argonne National Laboratory. G. Wang acknowledges the funding support from Catalysis Science Program, U.S. Department of Energy, Office of Basic Energy Science (DE-PS02-09ER09-01). NR 47 TC 80 Z9 81 U1 4 U2 75 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1463-9076 J9 PHYS CHEM CHEM PHYS JI Phys. Chem. Chem. Phys. PY 2010 VL 12 IS 26 BP 6933 EP 6939 DI 10.1039/c000822b PG 7 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 614ZK UT WOS:000279098300005 PM 20526494 ER PT J AU Wang, CM Luo, HM Li, HR Dai, S AF Wang, Congmin Luo, Huimin Li, Haoran Dai, Sheng TI Direct UV-spectroscopic measurement of selected ionic-liquid vapors SO PHYSICAL CHEMISTRY CHEMICAL PHYSICS LA English DT Article ID TEMPERATURE MOLTEN-SALTS; AB-INITIO CALCULATIONS; VAPORIZATION ENTHALPY; ALUMINUM-CHLORIDE; GAS-PHASE; ABSORPTION-SPECTRUM; IMIDAZOLIUM; SOLVENT; COMPLEXES; CATALYSIS AB The hallmark of ionic liquids lies in their negligible vapor pressure. This ultralow vapor pressure makes it difficult to conduct the direct spectroscopic measurement of ionic-liquid vapors. In fact, there have been no electronic spectroscopic data currently available for ionic-liquid vapors. This deficiency significantly hampers the fundamental understanding of the unique molecular structures of ionic liquids. Herein, the UV absorption spectra of eight ionic liquids, such as 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([Bmim(+)] [Tf(2)N(-)]) and 1-ethyl-3-methylimidazolium bis(perfluoroethylsulfonyl)imide ([Emim(+)][beti(-)]) in the vapor phase in a distillation-like environment, were measured through a high-temperature spectroscopic technique to. fill this knowledge gap. Two strong absorption peaks of the [Bmim(+)][Tf(2)N(-)] vapor lie at 202 and 211 nm, slightly different from those of the neat [Bmim(+)][Tf(2)N(-)] thin film and its solution in water. Based on the quantitative determination of the vapor absorption spectra as a function of temperature, the vaporization enthalpies of these ionic liquids vapors were measured and found to be in good agreement with the corresponding literature values. This in situ method opens up a new avenue to study the nature of ionic-liquid vapors and to determine the vaporization enthalpies of ionic liquids. C1 [Wang, Congmin; Dai, Sheng] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. [Wang, Congmin; Li, Haoran] Zhejiang Univ, Dept Chem, Hangzhou 310027, Peoples R China. [Luo, Huimin] Oak Ridge Natl Lab, Nucl Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Dai, S (reprint author), Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. EM dais@ornl.gov RI Wang, Congmin/I-7889-2013; Dai, Sheng/K-8411-2015 OI Dai, Sheng/0000-0002-8046-3931 FU Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, US Department of Energy; National Natural Science Foundation of China [20976151, 20773109] FX This work was supported by the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, US Department of Energy. C. W. also gratefully acknowledges the support of the National Natural Science Foundation of China (No. 20976151, No. 20773109). NR 62 TC 42 Z9 44 U1 4 U2 28 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1463-9076 J9 PHYS CHEM CHEM PHYS JI Phys. Chem. Chem. Phys. PY 2010 VL 12 IS 26 BP 7246 EP 7250 DI 10.1039/c001101k PG 5 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 614ZK UT WOS:000279098300040 PM 20505888 ER PT J AU Ishizaki, A Calhoun, TR Schlau-Cohen, GS Fleming, GR AF Ishizaki, Akihito Calhoun, Tessa R. Schlau-Cohen, Gabriela S. Fleming, Graham R. TI Quantum coherence and its interplay with protein environments in photosynthetic electronic energy transfer SO PHYSICAL CHEMISTRY CHEMICAL PHYSICS LA English DT Article ID LIGHT-HARVESTING-COMPLEX; GREEN SULFUR BACTERIA; FMO ANTENNA COMPLEXES; VIBRATIONAL-RELAXATION; BROWNIAN OSCILLATOR; ANGSTROM RESOLUTION; EXCITATION TRANSFER; INTEGRAL APPROACH; ROOM-TEMPERATURE; SPECTRAL DENSITY AB Recent experiments suggest that electronic energy transfer in photosynthetic pigment-protein complexes involves long-lived quantum coherence among electronic excitations of pigments. [Engel et al., Nature, 2007, 446, 782-786.] The observation has led to the suggestion that quantum coherence might play a significant role in achieving the remarkable efficiency of photosynthetic light harvesting. At the same time, the observation has raised questions regarding the role of the surrounding protein in protecting the quantum coherence. In this Perspective, we provide an overview of recent experimental and theoretical investigations of photosynthetic electronic energy transfer paying particular attention to the underlying mechanisms of long-lived quantum coherence and its non-Markovian interplay with the protein environment. C1 [Ishizaki, Akihito; Calhoun, Tessa R.; Schlau-Cohen, Gabriela S.; Fleming, Graham R.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Ishizaki, Akihito; Calhoun, Tessa R.; Schlau-Cohen, Gabriela S.; Fleming, Graham R.] Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Fleming, GR (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM GRFleming@lbl.gov RI Ishizaki, Akihito/A-7069-2010 OI Ishizaki, Akihito/0000-0002-0246-4461 FU Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]; Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, U.S. Department of Energy [DE-AC03-76SF000098]; Japan Society for the Promotion of Science FX This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract. DE-AC02-05CH11231 and by the Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, U.S. Department of Energy under contract DE-AC03-76SF000098. A.I. is grateful for Postdoctoral Fellowship for Research Abroad by the Japan Society for the Promotion of Science. NR 126 TC 168 Z9 168 U1 5 U2 61 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1463-9076 J9 PHYS CHEM CHEM PHYS JI Phys. Chem. Chem. Phys. PY 2010 VL 12 IS 27 BP 7319 EP 7337 DI 10.1039/c003389h PG 19 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 620QN UT WOS:000279514500002 PM 20544102 ER PT J AU Shao, LH Biener, J Kramer, D Viswanath, RN Baumann, TF Hamza, AV Weissmuller, J AF Shao, Li-Hua Biener, Juergen Kramer, Dominik Viswanath, Raghavan N. Baumann, Theodore F. Hamza, Alex V. Weissmueller, Joerg TI Electrocapillary maximum and potential of zero charge of carbon aerogel SO PHYSICAL CHEMISTRY CHEMICAL PHYSICS LA English DT Article ID ELECTRICAL DOUBLE-LAYER; SURFACE-STRESS; GRAPHITE-ELECTRODES; DIFFERENTIAL CAPACITANCE; PYROLYTIC-GRAPHITE; NANOPOROUS GOLD; PLATINUM; IONS; ELECTROSORPTION; DEIONIZATION AB We present an electrochemical study of carbon aerogel (CA) in aqueous sodium fluoride solutions, focusing on the comparison of two quantities that are related to the potential of zero charge (pzc): the capacitance minimum and the 'electrocapillary maximum' of the surface forces. Capacitance minima are well resolved in our samples. Their potential emerges reproducibly as around 90 mV (vs. Ag/AgCl in KCl), similar to the value, 70 mV, of bulk glassy carbon which we use for comparison, and similar to previous reported pzc values for carbon materials. Significantly, no electrocapillary maximum is found in this potential range. This demonstrates that the pzc does not necessarily coincide with the potential of the maximum of surface stress. We also determined the area-specific capacitances, c(a) = 2.8 mu F cm(-2), which agrees well with reports for the basal-plane of graphite single crystals. Our experiments yield large reversible strain amplitudes, up to 0.45%. C1 [Shao, Li-Hua; Kramer, Dominik; Viswanath, Raghavan N.; Weissmueller, Joerg] Karlsruhe Inst Technol, Inst Nanotechnol, Karlsruhe, Germany. [Biener, Juergen; Baumann, Theodore F.; Hamza, Alex V.] Lawrence Livermore Natl Lab, Livermore, CA USA. [Shao, Li-Hua; Weissmueller, Joerg] Univ Saarland, Saarbrucken, Germany. RP Shao, LH (reprint author), Karlsruhe Inst Technol, Inst Nanotechnol, Karlsruhe, Germany. EM Lihua.Shao@kit.edu RI Weissmuller, Jorg/C-3967-2009; OI Weissmuller, Jorg/0000-0002-8958-4414; Kramer, Dominik/0000-0002-9761-0627 FU Deutsche Forschungsgemeinschaft (CFN Karlsruhe); U.S. DOE by LLNL [DE-AC52-07NA27344] FX Discussions with D. Kolb and support by Deutsche Forschungsgemeinschaft (CFN Karlsruhe) are gratefully acknowledged. Work at LLNL was performed under the auspices of the U.S. DOE by LLNL under Contract DE-AC52-07NA27344. NR 35 TC 18 Z9 18 U1 3 U2 22 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1463-9076 J9 PHYS CHEM CHEM PHYS JI Phys. Chem. Chem. Phys. PY 2010 VL 12 IS 27 BP 7580 EP 7587 DI 10.1039/b916331j PG 8 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 620QN UT WOS:000279514500030 PM 20523922 ER PT J AU Zhou, YG Xiao-Dong, J Wang, ZG Xiao, HY Gao, F Zu, XT AF Zhou, Y. G. Xiao-Dong, J. Wang, Z. G. Xiao, H. Y. Gao, F. Zu, X. T. TI Electronic and magnetic properties of metal-doped BN sheet: A first-principles study SO PHYSICAL CHEMISTRY CHEMICAL PHYSICS LA English DT Article AB The electronic and magnetic properties of a BN sheet doped with 3d transition metals (Fe, Co and Ni) have been investigated using ab initio calculations. Our calculations show many interesting physical properties in a metal-doped BN sheet. A Fe-doped BN sheet is a half-metal with the magnetic moment of 2.0 mB, and Co-doped BN sheet becomes a narrow-gap semiconductor with a magnetic moment of 1.0 mB. However, no magnetic moment is induced on a Ni-doped BN sheet, which has the same band gap as a pristine BN sheet. Furthermore, Fe atom easily forms an isolated particle on the BN sheet, while Ni and Co atoms are likely to form a sheet-supported metal nanotemplate. These results are useful for spintronics application and could help in the development of magnetic nanotructures and metallic nanotemplate at room temperature. C1 [Zhou, Y. G.; Wang, Z. G.; Xiao, H. Y.; Zu, X. T.] Univ Elect Sci & Technol China, Dept Appl Phys, Chengdu 610054, Peoples R China. [Xiao-Dong, J.] China Acad Engn Phys, Res Ctr Laser Fus, Mianyang 621900, Peoples R China. [Gao, F.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Gao, F (reprint author), Pacific NW Natl Lab, MS K8-93,POB 999, Richland, WA 99352 USA. EM Fei.Gao@pnl.gov; xtzu@uestc.edu.cn RI Xiao, Haiyan/A-1450-2012; Gao, Fei/H-3045-2012; Wang, Zhiguo/B-7132-2009 FU NSAF Joint Foundation of China [10376006]; Sichuan Young Scientists Foundation [03ZQ026-059]; SRF; Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, US Department of Energy [DE-AC05-76RL01830] FX This study was financially supported by the NSAF Joint Foundation of China (10376006), the Sichuan Young Scientists Foundation (03ZQ026-059) and the Project-sponsored by SRF for ROCS, SEM. F. Gao was supported by the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, US Department of Energy under Contract DE-AC05-76RL01830. NR 17 TC 28 Z9 28 U1 2 U2 45 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1463-9076 J9 PHYS CHEM CHEM PHYS JI Phys. Chem. Chem. Phys. PY 2010 VL 12 IS 27 BP 7588 EP 7592 DI 10.1039/b918183k PG 5 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 620QN UT WOS:000279514500031 PM 20526511 ER PT J AU McGrath, MJ Ghogomu, JN Mundy, CJ Kuo, IFW Siepmann, JI AF McGrath, Matthew J. Ghogomu, Julius. N. Mundy, Christopher J. Kuo, I-F Will Siepmann, J. Ilja TI First principles Monte Carlo simulations of aggregation in the vapor phase of hydrogen fluoride SO PHYSICAL CHEMISTRY CHEMICAL PHYSICS LA English DT Article ID EQUATION-OF-STATE; IN-IONIC-SYSTEMS; MOLECULAR-DYNAMICS SIMULATIONS; STRONGLY ASSOCIATING FLUIDS; POTENTIAL-ENERGY SURFACES; DENSITY-FUNCTIONAL THEORY; AB-INITIO CALCULATIONS; HF DIMER; LIQUID WATER; VIBRATIONAL-SPECTRA AB The aggregation of hydrogen fluoride vapor is explored through the use of Monte Carlo simulations employing Kohn-Sham density functional theory with the exchange/correlation functional of Becke-Lee-Yang-Parr to describe the molecular interactions. Canonical ensemble simulations sampling the classical phase space were carried out for a system consisting of ten molecules at constant density (2700 angstrom(3)/molecule) and at three different temperatures (T = 310, 350, and 390 K). Aggregation-volume-bias and con. gurational-bias Monte Carlo approaches (along with pre-sampling with an approximate potential) were employed to increase the sampling efficiency of cluster formation and destruction. A hydrogen-bond analysis shows that about two thirds of the HF molecules are part of small aggregates at 310 K, whereas only about 10% of the molecules are clustered at 390 K. As for other hydrogen-bonding systems, the size distribution exhibits some sensitivity to the criteria used to de. ne a hydrogen bond, but the qualitative features are not affected by these differences. From the temperature dependence of the equilibrium constants, the dimer and trimer aggregation energies (not corrected for nuclear quantum effects) are estimated using a simple distance-based hydrogen-bonding criterion as -13 +/- 3 and -65 +/- 16 kJ mol(-1), respectively, whereas these binding energies are found to be somewhat different for a combined distance-angular criterion with values of -17 +/- 6 and -63 +/- 11 kJ mol(-1), respectively. The strictness of the hydrogen-bonding criterion plays a significant role for the assignment of clusters to linear, cyclic, and branched architectures with the fraction of the latter being drastically reduced for the distance-angular criterion. The average molecular dipole moment increases from 1.85 Debye for isolated molecules to about 2.0 D for dimers to about 2.75 D for larger aggregates, and the H-F bond length shows a concomitant, but smaller increase from about 0.94 to 0.98 angstrom. C1 [McGrath, Matthew J.; Ghogomu, Julius. N.; Siepmann, J. Ilja] Univ Minnesota, Dept Chem, Minneapolis, MN 55455 USA. [McGrath, Matthew J.; Ghogomu, Julius. N.; Siepmann, J. Ilja] Univ Minnesota, Dept Chem Engn & Mat Sci, Minneapolis, MN 55455 USA. [McGrath, Matthew J.; Ghogomu, Julius. N.] Univ Dschang, Dept Chem, Dschang, Cameroon. [McGrath, Matthew J.] Univ Helsinki, Dept Phys, FI-00014 Helsinki, Finland. [Mundy, Christopher J.] Pacific NW Natl Lab, Div Chem & Mat Sci, Richland, WA 99352 USA. [Kuo, I-F Will] Lawrence Livermore Natl Lab, Chem Mat & Life Sci Directorate, Livermore, CA 94550 USA. RP McGrath, MJ (reprint author), Univ Minnesota, Dept Chem, 207 Pleasant St SE, Minneapolis, MN 55455 USA. EM matthew.mcgrath@helsinki.fi FU National Science Foundation [CBET-0756641]; Office of Naval Research [N 00014-05-01-0538]; 3M Foundation; Department of Energy; U.S. Department of Energy's (DOE) Office of Basic Energy Sciences Chemical Sciences, Geosciences, and Biosciences; US Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX Financial support from the National Science Foundation (CBET-0756641), the Office of Naval Research (N 00014-05-01-0538), a 3M Foundation Graduate Fellowship (M.J.M.), and a Department of Energy Computational Science Graduate Fellowship (M.J.M.) are gratefully acknowledged. C.J.M. is supported by the U.S. Department of Energy's (DOE) Office of Basic Energy Sciences Chemical Sciences, Geosciences, and Biosciences program. Part of this work performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. Computer resources were provided by Livermore Computing and the Minnesota Supercomputing Institute. NR 131 TC 11 Z9 11 U1 4 U2 25 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1463-9076 EI 1463-9084 J9 PHYS CHEM CHEM PHYS JI Phys. Chem. Chem. Phys. PY 2010 VL 12 IS 27 BP 7678 EP 7687 DI 10.1039/b924506e PG 10 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 620QN UT WOS:000279514500042 PM 20508885 ER PT J AU Zehr, RT Henderson, MA AF Zehr, Robert T. Henderson, Michael A. TI Thermal chemistry and photochemistry of hexafluoroacetone on rutile TiO2(110) SO PHYSICAL CHEMISTRY CHEMICAL PHYSICS LA English DT Article ID RADICAL EJECTION; ACETONE; TIO2; PHOTODECOMPOSITION; PHOTOOXIDATION; PHOTOCATALYSIS; SURFACES; WATER AB The ultraviolet (UV) photon-induced decomposition of hexafluoroacetone ((CF3)(2)CO; HFA) adsorbed on the rutile TiO2(110) surface was investigated using photon stimulated desorption (PSD) and temperature programmed desorption (TPD). HFA adsorbs both molecularly and dissociatively on the reduced TiO2(110) surface. The initial similar to 0.2 ML (where 1 ML equates to the cation site density of the ideal surface) coverage of HFA thermally decomposes resulting in the formation of adsorbed trifluoroacetate groups, with further HFA exposure resulting in molecular adsorption. No evidence was found for HFA photochemistry on the reduced surface. HFA adsorbed and desorbed molecularly on a pre-oxidized TiO2(110) surface with only a minor amount (similar to 1%) of thermal decomposition in TPD. A new adsorption state at 350 K was assigned to the reversible formation of a photoactive HFA-diolate species [(CF3)(2)COO]. UV irradiation depleted the 350 K state, resulting in evolution of CF3, CO, and CO2 in the gas phase and formation of surface bound trifluoroacetate groups. O-18 isotope scrambling experiments showed that the ejected CO2 was from photodecomposition of the HFA-diolate species while the CO photoproduct was not. These results are in contrast to the photochemical behavior of acetone, butanone and acetaldehyde on TiO2(110), where UV irradiation resulted in the gas phase ejection of one of the carbonyl substituent groups as well as a stoichiometric amount of carboxylate left on the surface. We conclude that fluorination alters the electronic structure of adsorbed carbonyls on TiO2(110) in such a way as to promote complete fragmentation of the adsorbed carbonyl complex to form gas phase CO2 as well as to open up additional photodissociation pathways leading to CO production. C1 [Zehr, Robert T.; Henderson, Michael A.] Pacific NW Natl Lab, Inst Interfacial Catalysis, Richland, WA 99352 USA. RP Henderson, MA (reprint author), Pacific NW Natl Lab, Inst Interfacial Catalysis, POB 999,MS K8-87, Richland, WA 99352 USA. EM ma.henderson@pnl.gov FU U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences; U.S. Department of Energy by the Battelle Memorial Institute [DEAC06-76RLO1830]; Office of Biological and Environmental Research FX Work supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences. Pacific Northwest National Laboratory is a multiprogram national laboratory operated for the U.S. Department of Energy by the Battelle Memorial Institute under contract DEAC06-76RLO1830. The research reported here was performed in the William R. Wiley Environmental Molecular Science Laboratory, a Department of Energy user facility funded by the Office of Biological and Environmental Research. NR 22 TC 12 Z9 12 U1 1 U2 15 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1463-9076 J9 PHYS CHEM CHEM PHYS JI Phys. Chem. Chem. Phys. PY 2010 VL 12 IS 28 BP 8084 EP 8091 DI 10.1039/c003115a PG 8 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 622AA UT WOS:000279627300040 PM 20523937 ER PT J AU Lu, WC Wang, CZ Zhao, LZ Zhang, W Qin, W Ho, KM AF Lu, Wen-Cai Wang, C. Z. Zhao, Li-Zhen Zhang, Wei Qin, Wei Ho, K. M. TI Appearance of bulk-like motifs in Si, Ge, and Al clusters SO PHYSICAL CHEMISTRY CHEMICAL PHYSICS LA English DT Article ID ALUMINUM CLUSTERS; FRAGMENTATION BEHAVIOR; SILICON CLUSTERS; OPTIMIZATION; ALGORITHM; EVOLUTION; AL-77; IONS AB Using a genetic algorithm method to search for low-energy structures, we studied the evolution of structural motifs in Si, Ge, and Al clusters. We were able to observe how bulk-like structural motifs occur in these clusters as the size of the system increases, replacing structural motifs characteristic of clusters at smaller sizes. Si and Ge clusters adopt prolate structures at small sizes. While Si clusters switch to a spherical motif around the size of 30 atoms, Ge clusters exhibit plate-like motifs at the size of 40-atom clusters before transforming into more spherical shapes. For Al clusters, an ordered layered structural motif begins to appear at a relatively small cluster size around 25-27 atoms. C1 [Wang, C. Z.; Ho, K. M.] Iowa State Univ, Ames Lab, US DOE, Ames, IA 50011 USA. [Wang, C. Z.; Ho, K. M.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Lu, Wen-Cai; Zhao, Li-Zhen] Qingdao Univ, Lab Fiber Mat & Modern Text, Growing Base State Key Lab, Qingdao 266071, Shandong, Peoples R China. [Lu, Wen-Cai; Zhao, Li-Zhen] Qingdao Univ, Coll Phys, Qingdao 266071, Shandong, Peoples R China. [Lu, Wen-Cai; Zhang, Wei; Qin, Wei] Jilin Univ, Inst Theoret Chem, State Key Lab Theoret & Computat Chem, Changchun 130021, Jilin, Peoples R China. RP Ho, KM (reprint author), Iowa State Univ, Ames Lab, US DOE, Ames, IA 50011 USA. FU US Department of Energy [DE-AC02-07CH11358]; Office of Basic Energy Sciences; National Natural Science Foundation of China [20773047]; National Energy Research Supercomputing Center (NERSC) FX Ames Laboratory is operated for the US Department of Energy by Iowa State University under Contract No. DE-AC02-07CH11358. This work was also supported by the Director for Energy Research, Office of Basic Energy Sciences including a grant of computer time at the National Energy Research Supercomputing Center (NERSC) in Berkeley. W. C. Lu would like to acknowledge the support by the National Natural Science Foundation of China under Grant No. 20773047. NR 30 TC 11 Z9 11 U1 1 U2 14 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1463-9076 J9 PHYS CHEM CHEM PHYS JI Phys. Chem. Chem. Phys. PY 2010 VL 12 IS 30 BP 8551 EP 8556 DI 10.1039/c004059b PG 6 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 629MY UT WOS:000280205100014 PM 20552120 ER PT J AU Soorkia, S Taatjes, CA Osborn, DL Selby, TM Trevitt, AJ Wilson, KR Leone, SR AF Soorkia, Satchin Taatjes, Craig A. Osborn, David L. Selby, Talitha M. Trevitt, Adam J. Wilson, Kevin R. Leone, Stephen R. TI Direct detection of pyridine formation by the reaction of CH (CD) with pyrrole: a ring expansion reaction SO PHYSICAL CHEMISTRY CHEMICAL PHYSICS LA English DT Article ID ETHYNYL RADICAL C2H; POLYCYCLIC AROMATIC-HYDROCARBONS; TEMPERATURE RATE COEFFICIENTS; TITANS ATMOSPHERE; UNSATURATED-HYDROCARBONS; INTERSTELLAR CLOUDS; PRODUCT DETECTION; ALLENE CH2=C=CH2; ROOM-TEMPERATURE; RATE CONSTANTS AB The reaction of the ground state methylidyne radical CH (X-2 Pi) with pyrrole (C4H5N) has been studied in a slow flow tube reactor using Multiplexed Photoionization Mass Spectrometry coupled to quasi-continuous tunable VUV synchrotron radiation at room temperature (295 K) and 363 K, at 4 Torr (533 Pa). Laser photolysis of bromoform (CHBr3) at 248 nm (KrF excimer laser) is used to produce CH radicals that are free to react with pyrrole molecules in the gaseous mixture. A signal at m/z = 79 (C5H5N) is identified as the product of the reaction and resolved from Br-79 atoms, and the result is consistent with CH addition to pyrrole followed by H-elimination. The photoionization efficiency curve unambiguously identifies m/z = 79 as pyridine. With deuterated methylidyne radicals (CD), the product mass peak is shifted by +1 mass unit, consistent with the formation of C5H4DN and identified as deuterated pyridine (d-pyridine). Within detection limits, there is no evidence that the addition intermediate complex undergoes hydrogen scrambling. The results are consistent with a reaction mechanism that proceeds via the direct CH (CD) cycloaddition or insertion into the five-member pyrrole ring, giving rise to ring expansion, followed by H atom elimination from the nitrogen atom in the intermediate to form the resonance stabilized pyridine (d-pyridine) molecule. Implications to interstellar chemistry and planetary atmospheres, in particular Titan, as well as gas-phase combustion processes, are discussed. C1 [Soorkia, Satchin; Leone, Stephen R.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Soorkia, Satchin; Leone, Stephen R.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Taatjes, Craig A.; Osborn, David L.] Sandia Natl Labs, Combust Res Facil, Livermore, CA 94551 USA. [Selby, Talitha M.] Univ Wisconsin Washington Cty, Dept Chem, W Bend, WI 53905 USA. [Trevitt, Adam J.] Univ Wollongong, Sch Chem, Wollongong, NSW 2522, Australia. [Wilson, Kevin R.; Leone, Stephen R.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Soorkia, S (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM ssoorkia@berkley.edu; srl@berkeley.edu RI Trevitt, Adam/A-2915-2009 OI Trevitt, Adam/0000-0003-2525-3162 FU National Aeronautics and Space Administration [NNX09AB60G]; Division of Chemical Sciences, Geosciences and Biosciences; Office of Basic Energy Sciences; U.S. Department of Energy; National Nuclear Security Administration [DE-AC04-94-AL85000]; Office of Science, Office of Basic Energy Sciences of the U.S. Department of Energy [DE-AC02-05CH11231]; Australian Synchrotron; Federal Government of Australia FX The support of personnel (S.S.) for this research by the National Aeronautics and Space Administration (Grant No. NNX09AB60G) is gratefully acknowledged. We thank Mr Howard Johnsen for excellent technical support. Sandia authors and instrumentation for this work are supported by the Division of Chemical Sciences, Geosciences and Biosciences, the Office of Basic Energy Sciences, the U.S. Department of Energy. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the National Nuclear Security Administration under Contract No. DE-AC04-94-AL85000. The Advanced Light Source and Chemical Sciences Division (K.R.W. and S.R.L.) are supported by the Director, Office of Science, Office of Basic Energy Sciences of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231 at the Lawrence Berkeley National Laboratory. A.J.T. acknowledges travel funding provided by the International Synchrotron Access Program (ISAP) managed by the Australian Synchrotron. The ISAP is funded by a National Collaborative Research Infrastructure Strategy grant provided by the Federal Government of Australia. NR 66 TC 23 Z9 23 U1 3 U2 34 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1463-9076 EI 1463-9084 J9 PHYS CHEM CHEM PHYS JI Phys. Chem. Chem. Phys. PY 2010 VL 12 IS 31 BP 8750 EP 8758 DI 10.1039/c002135k PG 9 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 633PF UT WOS:000280514800009 PM 20463997 ER PT J AU Glezakou, VA Rousseau, R Dang, LX McGrail, BP AF Glezakou, Vassiliki-Alexandra Rousseau, Roger Dang, Liem X. McGrail, B. Peter TI Structure, dynamics and vibrational spectrum of supercritical CO2/H2O mixtures from ab initio molecular dynamics as a function of water cluster formation SO PHYSICAL CHEMISTRY CHEMICAL PHYSICS LA English DT Article ID CARBON-DIOXIDE SYSTEM; SPACE GAUSSIAN PSEUDOPOTENTIALS; MONTE-CARLO-SIMULATION; ORBITAL CALCULATIONS; DENSITY-DEPENDENCE; ORIENTATIONAL CORRELATIONS; INTERNAL-ROTATION; AQUEOUS-SOLUTIONS; SOLID O-2; CO2 AB In this study, we investigate the effect of water-cluster formation in the supercritical (SC) systems CO2/(H2O)(n) as a function of water content using DFT-based molecular dynamics simulations. The dependence of the intermolecular and intramolecular structure and dynamic properties upon water concentration in the supercritical CO2/H2O phase at a density of 0.74 g cm(-3) and temperature of 318.15 K is investigated in detail and compared to previous studies of the pure sc-CO2 system, single D2O in sc-CO2, and Monte-Carlo simulations of a single water molecule in sc-CO2 phase. Analysis of radial and orientational distribution functions of the intermolecular interactions shows that the presence of water molecules does not disturb the previously established distorted T-shaped orientation of CO2 molecules, though there is evidence of perturbation of the second shell structure which enhances the preference for the slipped parallel orientation in this region. There is also evidence of short-lived hydrogen bonds between CO2 and water molecules. For higher water concentrations, water clustering is observed, consistent with the low solubility of water in CO2 under these conditions of temperature and pressure. Finally, the water-water and water-CO2 interactions are discussed and analyzed in terms of the water self-association and thermodynamic quantities derived from the molecular dynamics simulations. C1 [Glezakou, Vassiliki-Alexandra; Dang, Liem X.] Pacific NW Natl Lab, FCSD, Richland, WA 99352 USA. [McGrail, B. Peter] Pacific NW Natl Lab, EED, Richland, WA 99352 USA. RP Glezakou, VA (reprint author), Pacific NW Natl Lab, FCSD, Richland, WA 99352 USA. EM Vanda.Glezakou@pnl.gov RI Rousseau, Roger/C-3703-2014 FU Office of Fossil Energy; Division of Chemical Sciences, Geosciences and Biosciences Office of Basic Energy Sciences, U. S. Department of Energy; Battelle Memorial Institute, Pacific Northwest National Division [DE-AC05-76RL01830] FX The authors wish to thank Dr J. Daschbach for a critical review of the manuscript, and J. Fulton for useful discussions. V.-A. G and R.R. thank Dr S. Balasubramanian for discussions regarding his simulations. All authors gratefully acknowledge support provided in part by the Office of Fossil Energy through the Advanced Capture and Co-sequestration Investigation Project, and in part by the Division of Chemical Sciences, Geosciences and Biosciences Office of Basic Energy Sciences, U. S. Department of Energy. Computational resources were provided by the Molecular Science Computing Facility at PNNL and the National Energy Research Scientific Computing Center at Lawrence Berkeley National Laboratory. This manuscript has been authored by Battelle Memorial Institute, Pacific Northwest National Division, under Contract No. DE-AC05-76RL01830 with the U. S. Department of Energy. NR 81 TC 27 Z9 27 U1 3 U2 34 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1463-9076 J9 PHYS CHEM CHEM PHYS JI Phys. Chem. Chem. Phys. PY 2010 VL 12 IS 31 BP 8759 EP 8771 DI 10.1039/b923306g PG 13 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 633PF UT WOS:000280514800010 PM 20552122 ER PT J AU Krepelova, A Newberg, JT Huthwelker, T Bluhm, H Ammann, M AF Krepelova, Adela Newberg, John T. Huthwelker, Thomas Bluhm, Hendrik Ammann, Markus TI The nature of nitrate at the ice surface studied by XPS and NEXAFS SO PHYSICAL CHEMISTRY CHEMICAL PHYSICS LA English DT Article ID RAY-ABSORPTION-SPECTROSCOPY; HYDROGEN-BOND NETWORK; LIQUID WATER; PHOTOELECTRON-SPECTROSCOPY; DINITROGEN TETROXIDE; OK-EDGE; ADSORPTION; SCATTERING; OXIDATION; NO2 AB Trace contaminants such as strong acids have been suggested to affect the thickness of the quasi-liquid layer at the ice/air interface, which is at the heart of heterogeneous chemical reactions between snowpacks or cirrus clouds and the surrounding air. We used X-ray photoelectron spectroscopy (XPS) and electron yield near edge X-ray absorption fine structure (NEXAFS) spectroscopy at the Advanced Light Source (ALS) to probe the ice surface in the presence of HNO(3) formed from the heterogeneous hydrolysis of NO(2) at 230 K. We studied the nature of the adsorbed species at the ice/vapor interfaces as well as the effect of HNO(3) on the hydrogen bonding environment at the ice surface. The NEXAFS spectrum of ice with adsorbed HNO(3) can be represented as linear combination of the clean ice and nitrate solution spectrum, thus indicating that in the presence of HNO(3) the ice surface consists of a mixture of clean ice and nitrate ions that are coordinated as in a concentrated solution at the same temperature but higher HNO(3) pressures. C1 [Newberg, John T.; Bluhm, Hendrik] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Krepelova, Adela; Ammann, Markus] Paul Scherrer Inst, Lab Radiochem & Environm Chem, CH-5232 Villigen, Switzerland. [Huthwelker, Thomas] Paul Scherrer Inst, Swiss Light Source, CH-5232 Villigen, Switzerland. RP Bluhm, H (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. EM hbluhm@lbl.gov; markus.ammann@psi.ch RI Ammann, Markus/E-4576-2011; Newberg, John/E-8961-2010 OI Ammann, Markus/0000-0001-5922-9000; FU EU; US Department of Energy at the Lawrence Berkeley National Laboratory [DE-AC02-05CH11231] FX We appreciate the support by the EU FP6 project SCOUT-O3. The PSI research commission is acknowledged for its financial support. The ALS and the MES beamline 11.0.2 are supported by the Director, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences and Materials Sciences Division of the US Department of Energy at the Lawrence Berkeley National Laboratory under Contract No. DE-AC02-05CH11231. NR 75 TC 34 Z9 34 U1 1 U2 33 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1463-9076 J9 PHYS CHEM CHEM PHYS JI Phys. Chem. Chem. Phys. PY 2010 VL 12 IS 31 BP 8870 EP 8880 DI 10.1039/c0cp00359j PG 11 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 633PF UT WOS:000280514800022 PM 20532376 ER PT J AU Badaeva, E Albert, VV Kilina, S Koposov, A Sykora, M Tretiak, S AF Badaeva, Ekaterina Albert, Victor V. Kilina, Svetlana Koposov, Alexey Sykora, Milan Tretiak, Sergei TI Effect of deprotonation on absorption and emission spectra of Ru(II)-bpy complexes functionalized with carboxyl groups SO PHYSICAL CHEMISTRY CHEMICAL PHYSICS LA English DT Article ID POLYPYRIDINE-TYPE COMPLEXES; TRANSFER EXCITED-STATES; SENSITIZED SOLAR-CELLS; CHARGE-TRANSFER; BIPYRIDINE LIGANDS; ELECTRON-TRANSFER; ENERGY-TRANSFER; PHOTOPHYSICAL PROPERTIES; RUTHENIUM(II) COMPLEXES; CONTINUUM MODEL AB Changes in the ground and excited state electronic structure of the [Ru(bpy)(3)](2+) (bpy = 2,2'-bipyridine) complex induced by functionalization of bpy ligands with carboxyl and methyl groups in their protonated and deprotonated forms are studied experimentally using absorption and emission spectroscopy and theoretically using density functional theory (DFT) and time dependent DFT (TDDFT). The introduction of the carboxyl groups shifts the metal-to-ligand-charge-transfer (MLCT) absorption and emission bands to lower energies in functionalized complexes. Our calculations show that this red-shift is due to the stabilization of the lowest unoccupied orbitals localized on the substituted ligands, while the energies of the highest occupied orbitals localized on the Ru-center are not significantly affected. Consistent with previously observed trends in optical spectra of related Ru(II) complexes, deprotonation of the carboxyl groups results in a blue shift in the absorption and phosphorescence spectra. The effect originates from interplay of positive and negative solvatochromism in the protonated and deprotonated complexes, respectively. This results in more delocalized character of the electron transition orbitals in the deprotonated species and a strong destabilization of the three lowest unoccupied orbitals localized on the substituted and unsubstituted ligands, all of which contribute to the lowest-energy optical transitions. We also found that owing to the complexity of the excited state potential energy surfaces, the calculated lowest triplet excited state can be either weakly optically allowed (3)MLCT or optically forbidden Ru (3)d-d transition depending on the initial wavefunction guess used in TDDFT calculations. C1 [Badaeva, Ekaterina; Albert, Victor V.; Kilina, Svetlana; Tretiak, Sergei] Los Alamos Natl Lab, Ctr Nonlinear Studies CNLS, Div Theoret, Los Alamos, NM 87545 USA. [Albert, Victor V.] Univ Florida, Dept Chem, Quantum Theory Project, Gainesville, FL 32611 USA. [Albert, Victor V.] Univ Florida, Dept Phys, Quantum Theory Project, Gainesville, FL 32611 USA. [Badaeva, Ekaterina; Albert, Victor V.; Kilina, Svetlana; Tretiak, Sergei] Los Alamos Natl Lab, Ctr Integrated Nanotechnol CINT, Div Theoret, Los Alamos, NM 87545 USA. [Badaeva, Ekaterina] Univ Washington, Seattle, WA 98195 USA. [Koposov, Alexey; Sykora, Milan] Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA. RP Tretiak, S (reprint author), Los Alamos Natl Lab, Ctr Nonlinear Studies CNLS, Div Theoret, Los Alamos, NM 87545 USA. EM skilina@gmail.com; serg@lanl.gov RI Albert, Victor/B-3614-2008; Tretiak, Sergei/B-5556-2009; Koposov, Alexey/R-9423-2016 OI Albert, Victor/0000-0002-0335-9508; Tretiak, Sergei/0000-0001-5547-3647; Koposov, Alexey/0000-0001-5898-3204 FU US Department of Energy [DE-AC52-06NA25396]; Los Alamos LDRD; Center for Integrated Nanotechnology (CINT); Center for Nonlinear Studies (CNLS) FX The authors are grateful to Richard L. Martin, Enrique R. Batista, and Sergei Ivanov for their generous and insightful advice on TDDFT simulations. VA thanks Dmitri Kilin for his gracious support and fruitful discussions regarding the physical properties of metal complexes and semiconductor nanostructures. This work was supported by the US Department of Energy and Los Alamos LDRD funds. Los Alamos National Laboratory is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the US Department of Energy under contract DE-AC52-06NA25396. We acknowledge the support of the Center for Integrated Nanotechnology (CINT) and the Center for Nonlinear Studies (CNLS). NR 64 TC 33 Z9 33 U1 2 U2 25 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1463-9076 J9 PHYS CHEM CHEM PHYS JI Phys. Chem. Chem. Phys. PY 2010 VL 12 IS 31 BP 8902 EP 8913 DI 10.1039/b924910a PG 12 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 633PF UT WOS:000280514800025 PM 20556275 ER PT J AU Krieger, BM Lee, HY Emge, TJ Wishart, JF Castner, EW AF Krieger, Brenna M. Lee, Heather Y. Emge, Thomas J. Wishart, James F. Castner, Edward W., Jr. TI Ionic liquids and solids with paramagnetic anions SO PHYSICAL CHEMISTRY CHEMICAL PHYSICS LA English DT Article ID CRYSTAL-STRUCTURE; TETRABUTYLAMMONIUM TETRACHLOROFERRATE(III); MAGNETIC CHARACTERISTICS; X-RAY; FLUIDS; TETRAHALOGENOFERRATES(III); CATALYST AB Four paramagnetic ionic compounds have been prepared and their magnetic, structural and thermal properties have been investigated. The four compounds are methylbutylpyrrolidinium tetrachloroferrate(III) ([Pyrr(14)](+)/[FeCl(4)](-)), methyltributylammonium tetrachloroferrate(III) ([N(1444)](+)/[FeCl(4)](-)), butylmethylimidazolium tetrachloroferrate(III) ([bmim](+)/[FeCl(4)](-)) and tetrabutylammonium bromotrichloroferrate(III) ([N(4444)](+)/[FeBrCl(3)]-). Temperature-dependent studies of their magnetic behaviors show that all four compounds are paramagnetic at ambient temperatures. Glass transitions are observed for only two of the four compounds, [Pyrr(14)](+)/[FeCl(4)](-) and [bmim](+)/[FeCl(4)](-). Crystal structures for [Pyrr(14)](+)/[FeCl(4)](-) and [N(1444)](+)/[FeCl(4)](-) are compared with the previously reported [N(4444)](+)/[FeBrCl(3)](-). C1 [Krieger, Brenna M.; Lee, Heather Y.; Emge, Thomas J.; Castner, Edward W., Jr.] Rutgers State Univ, Dept Chem & Chem Biol Rutgers, Piscataway, NJ 08854 USA. [Wishart, James F.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. RP Krieger, BM (reprint author), Rutgers State Univ, Dept Chem & Chem Biol Rutgers, Piscataway, NJ 08854 USA. RI Wishart, James/L-6303-2013 OI Wishart, James/0000-0002-0488-7636 FU Douglass College; Rutgers Aresty Research Center; National Science Foundation [CHE-0718391]; Department of Energy; US Department of Energy [DE-AC02-98CH10886]; Division of Chemical Sciences, Geosciences and Biosciences, Office of Basic Energy Sciences FX BMK thanks Douglass College and the Rutgers Aresty Research Center for Undergraduates for funding. We gratefully acknowledge support for this work from the National Science Foundation and the Department of Energy. Work done at Rutgers was supported by National Science Foundation grant number CHE-0718391. Work at Brookhaven was supported under Contract No. DE-AC02-98CH10886 with the US Department of Energy and supported by its Division of Chemical Sciences, Geosciences and Biosciences, Office of Basic Energy Sciences. NR 32 TC 25 Z9 26 U1 2 U2 31 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1463-9076 J9 PHYS CHEM CHEM PHYS JI Phys. Chem. Chem. Phys. PY 2010 VL 12 IS 31 BP 8919 EP 8925 DI 10.1039/b920652n PG 7 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 633PF UT WOS:000280514800027 PM 20563329 ER PT J AU Hoyermann, K Maarfeld, S Nacke, F Nothdurft, J Olzmann, M Wehmeyer, J Welz, O Zeuch, T AF Hoyermann, Karlheinz Maarfeld, Sven Nacke, Frank Nothdurft, Joerg Olzmann, Matthias Wehmeyer, Jens Welz, Oliver Zeuch, Thomas TI Rate coefficients for cycloalkyl plus O reactions and product branching in the decomposition of chemically activated cycloalkoxy radicals: an experimental and theoretical study SO PHYSICAL CHEMISTRY CHEMICAL PHYSICS LA English DT Article ID THERMAL UNIMOLECULAR DECOMPOSITION; OXYGEN-ATOMS; ALKOXY RADICALS; ALKYL RADICALS; AB-INITIO; HYDROCARBON RADICALS; RATE CONSTANTS; GAS-PHASE; KINETICS; MECHANISM AB The kinetics of cycloalkyl + O reactions were studied with respect to their rate coefficients and the product branching ratios from the decomposition of the chemically activated cycloalkoxy radicals. Rate coefficients for the reactions of cyclohexyl (c-C6H11), cycloheptyl (c-C7H13) and cyclooctyl (c-C8H15) radicals with oxygen atoms were determined with an experimental setup consisting of a discharge flow reactor with molecular beam sampling and REMPI/TOF-MS detection. The following rate coefficients were obtained (units: cm(3)/mol(-1) s(-1)): k(c-C6H11 + O) = (1.33 +/- 0.24) x 10(14)(T/298 K)(0.11) (T = 250-600 K), k(c-C7H13 + O) = (1.85 +/- 0.25) x 10(14) (T = 298 K), k(c-C8H15 + O) = (1.56 +/- 0.20) x 10(14)(T/298 K)(0.66+/-0.15) (T = 268-363 K). Stable products were determined by quantitative FTIR spectroscopy. The decomposition of the cycloalkoxy radicals leads besides beta-C-H bond fission (yields: 24% for c-C6H11O, 20-25% for c-C8H15O) mainly to alkyl radicals by ring-opening via beta-C-C bond cleavage. These open-chain alkyl radicals further decompose mainly by beta-C-C bond scission. An increase of the total pressure from 4 mbar to 1 bar had no effect on the product distribution for the reaction c-C6H11 + O, whereas for the reaction c-C8H15 + O further decomposition of the ring-opening product is significantly suppressed at 1 bar. The experimental results on the channel branching and its pressure dependence were rationalized with the statistical rate theory. A comparison of the experimental and modeling results indicates a significant influence of hindered internal rotations (HIRs) on the reactions of the ring-opening products. The harmonic approximation to describe these modes was shown to be inadequate, while a treatment as one-dimensional HIRs led to a significantly improved agreement between experimental and modeling results. Implications of our findings for the formation of secondary organic aerosol and high-temperature combustion are discussed. C1 [Hoyermann, Karlheinz; Maarfeld, Sven; Nacke, Frank; Nothdurft, Joerg; Wehmeyer, Jens; Zeuch, Thomas] Univ Gottingen, Inst Phys Chem, D-37077 Gottingen, Germany. [Olzmann, Matthias; Welz, Oliver] Karlsruher Inst Technol KIT, Inst Phys Chem, D-76131 Karlsruhe, Germany. RP Welz, O (reprint author), Sandia Natl Labs, Combust Res Facil, MS 9055, Livermore, CA 94551 USA. EM oliver.welz@kit.edu; tzeuch1@gwdg.de RI Welz, Oliver/C-1165-2013; Olzmann, Matthias/A-3718-2017 OI Welz, Oliver/0000-0003-1978-2412; Olzmann, Matthias/0000-0002-9932-4261 FU Deutsche Forschungsgemeinschaft [GRK 782, SFB 606]; Fonds der Chemischen Industrie; Karlsruhe Institute of Technology FX Funding by Deutsche Forschungsgemeinschaft (European Graduate School: "Microstructural control in free-radical polymerization", GRK 782: "Spectroscopy and dynamics of molecular chains and coils") and Fonds der Chemischen Industrie is gratefully acknowledged. M.O. thanks Deutsche Forschungsgemeinschaft (SFB 606 Instationare Verbrennung: Transportphanomene, Chemische Reaktionen, Technische Systeme"). O.W. received financial support by the "Concept for the Future" of the Karlsruhe Institute of Technology within the framework of the German Excellence Initiative. NR 64 TC 8 Z9 8 U1 2 U2 16 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1463-9076 J9 PHYS CHEM CHEM PHYS JI Phys. Chem. Chem. Phys. PY 2010 VL 12 IS 31 BP 8954 EP 8968 DI 10.1039/b925920a PG 15 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 633PF UT WOS:000280514800032 PM 20520884 ER PT J AU Rodriguez, JA Stacchiola, D AF Rodriguez, Jose A. Stacchiola, Dario TI Catalysis and the nature of mixed-metal oxides at the nanometer level: special properties of MOx/TiO2(110) {M= V, W, Ce} surfaces SO PHYSICAL CHEMISTRY CHEMICAL PHYSICS LA English DT Article ID GAS SHIFT REACTION; DENSITY-FUNCTIONAL THEORY; IN-SITU CHARACTERIZATION; VANADIUM-OXIDE; ULTRATHIN FILMS; CO OXIDATION; TIO2 110; STRUCTURAL CHARACTERIZATION; ELECTRONIC-STRUCTURE; SUPPORT INTERACTIONS AB To rationalize structure-reactivity relationships for mixed-metal oxide catalysts, well-defined systems are required. Studies involving the deposition of nanoparticles and clusters of VOx, CeOx and WOx on TiO2(110) and other well-defined oxide surfaces have shown novel structures that have special chemical properties. Dimers of vanadia and ceria have been found on TiO2(110), monomers of vanadia on CeO2(111), and (WO3)(3) clusters on TiO2(110). The V=O or W=O groups present in VOx/TiO2(110), VOx/CeO2(111) and WOx/TiO2(110) surfaces dislay a very high activity for the selective oxidation of alkanes and the dehydrogenation of alcohols. The non-typical coordination modes imposed by TiO2(110) on ceria nanoparticles make possible the direct participation of this oxide in catalytic reactions and enhance the dispersion of metals on the titania substrate. Au/CeOx/TiO2(110) surfaces display an extremely high catalytic activity for CO oxidation and the water-gas shift reaction. In general, the chemical behavior of the MOx/TiO2(110) {M = V, Ce or W} surfaces reflects their unique structure at the nanometer level. These simple models can provide a conceptual framework for modifying or controlling the chemical properties of mixed-metal oxides and for engineering industrial catalysts. C1 [Rodriguez, Jose A.; Stacchiola, Dario] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. RP Rodriguez, JA (reprint author), Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. EM rodrigez@bnl.gov RI Stacchiola, Dario/B-1918-2009 OI Stacchiola, Dario/0000-0001-5494-3205 FU US Department of Energy (Chemical Sciences Division) [DE-AC02-98CH10886] FX The work carried out at Brookhaven National Laboratory was supported by the US Department of Energy (Chemical Sciences Division, DE-AC02-98CH10886). NR 82 TC 43 Z9 43 U1 4 U2 63 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1463-9076 EI 1463-9084 J9 PHYS CHEM CHEM PHYS JI Phys. Chem. Chem. Phys. PY 2010 VL 12 IS 33 BP 9557 EP 9565 DI 10.1039/c003665j PG 9 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 639WL UT WOS:000281007200001 PM 20571690 ER PT J AU Wang, JH Zubarev, DY Philpott, MR Vukovic, S Lester, WA Cui, TA Kawazoe, Y AF Wang, Jinhua Zubarev, Dmitry Yu. Philpott, Michael R. Vukovic, Sinisa Lester, William A. Cui, Tian Kawazoe, Yoshiyuki TI Onset of diradical character in small nanosized graphene patches SO PHYSICAL CHEMISTRY CHEMICAL PHYSICS LA English DT Article ID COMPACT EFFECTIVE POTENTIALS; INITIO MOLECULAR-DYNAMICS; DENSITY-FUNCTIONAL THEORY; TOTAL-ENERGY CALCULATIONS; EXPONENT BASIS-SETS; WAVE BASIS-SET; GROUND-STATES; KOHN-SHAM; ELECTRONIC-STRUCTURES; CHEMISTRY AB A family of small graphene patches, i.e., rectangular polyaromatic hydrocarbons (PAHs), that have both zigzag and armchair edges is investigated to establish their ground state electronic structure. Broken symmetry density functional theory (DFT) and plane wave DFT were used to characterize the onset of diradical character via relative energies of open-shell and closed-shell singlet states. The perfect pairing (PP) active space approximation of coupled cluster theory was used to characterize diradical character on the basis of promotion of electrons from occupied to unoccupied molecular orbitals. The role of zigzag and armchair edges in the formation of open-shell singlet states is elucidated. In particular, it is found that elongation of the zigzag edge results in an increase of diradical character whereas elongation of the arm chair edge leads to a decrease of diradical character. Analysis of orbitals from PP calculations suggests that diradical states are formally Mobius aromatic multiconfigurational systems. C1 [Wang, Jinhua; Zubarev, Dmitry Yu.; Philpott, Michael R.; Vukovic, Sinisa; Lester, William A.] Univ Calif Berkeley, Dept Chem, Kenneth S Pitzer Ctr Theoret Chem, Berkeley, CA 94720 USA. [Wang, Jinhua; Cui, Tian] Jilin Univ, State Key Lab Superhard Mat, Changchun 130012, Peoples R China. [Vukovic, Sinisa; Lester, William A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Philpott, Michael R.; Kawazoe, Yoshiyuki] Tohoku Univ, Ctr Computat Mat Sci, Inst Mat Res, Aoba Ku, Sendai, Miyagi 9808577, Japan. RP Lester, WA (reprint author), Univ Calif Berkeley, Dept Chem, Kenneth S Pitzer Ctr Theoret Chem, Berkeley, CA 94720 USA. EM walester@lbl.gov RI Kawazoe, Yoshiyuki/C-2998-2011; Vukovic, Sinisa/J-3106-2013 OI Vukovic, Sinisa/0000-0002-7682-0705 FU Office of Energy Research, Office of Basic Energy Sciences, Chemical Sciences, Geosciences and Biosciences Division of the US Department of Energy [DE-AC03-76F00098]; National Science Foundation [NSF CHE-0809969]; National Basic Research Program of China [2005CB724400]; China Scholarship Council; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231] FX W. A. L. and S. V. were supported by the Director, Office of Energy Research, Office of Basic Energy Sciences, Chemical Sciences, Geosciences and Biosciences Division of the US Department of Energy, under Contract No. DE-AC03-76F00098. D.Y.Z. was supported by the National Science Foundation under Grant No. NSF CHE-0809969. T. C. and J.W. were supported by the National Basic Research Program of China, Grant No. 2005CB724400. J.W. is also a UC Berkeley visitor supported by a stipend from the China Scholarship Council. Vasp calculations were performed on the Hitachi SR11000 supercomputer IMR, Tohoku University, Japan. This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Authors also thank LBNL/NERSC Visualization Group and Dr Prabhat for the assistance with visualization of the results. NR 71 TC 19 Z9 19 U1 1 U2 16 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1463-9076 EI 1463-9084 J9 PHYS CHEM CHEM PHYS JI Phys. Chem. Chem. Phys. PY 2010 VL 12 IS 33 BP 9839 EP 9844 DI 10.1039/c003708g PG 6 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 639WL UT WOS:000281007200035 PM 20532344 ER PT J AU Yang, YX Evans, J Rodriguez, JA White, MG Liu, P AF Yang, Yixiong Evans, Jaime Rodriguez, Jose A. White, Michael G. Liu, Ping TI Fundamental studies of methanol synthesis from CO2 hydrogenation on Cu(111), Cu clusters, and Cu/ZnO(000(1)over-bar) SO PHYSICAL CHEMISTRY CHEMICAL PHYSICS LA English DT Article ID GAS-SHIFT REACTION; DIPPED ADCLUSTER MODEL; SYNTHESIS CATALYSTS; SURFACES; MECHANISM; COPPER; CU(100); REACTIVITY; NANOPARTICLES; ADSORPTION AB A combination of experimental and theoretical methods were employed to investigate the synthesis of methanol via CO2 hydrogenation (CO2 + 3H(2) -> CH3OH + H2O) on Cu(111) and Cu nanoparticle surfaces. High pressure reactivity studies show that Cu nanoparticles supported on a ZnO(000 (1) over bar) single crystal exhibit a higher catalytic activity than the Cu(111) planar surface. Complementary density functional theory (DFT) calculations of methanol synthesis were also performed for a Cu(111) surface and unsupported Cu-29 nanoparticles, and the results support a higher activity for Cu nanoparticles. The DFT calculations show that methanol synthesis on Cu surfaces proceeds through a formate intermediate and the overall reaction rate is limited by both formate and dioxomethylene hydrogenation. Moreover, the superior activity of the nanoparticle is associated with its fluxionality and the presence of low-coordinated Cu sites, which stabilize the key intermediates, e. g. formate and dioxomethylene, and lower the barrier for the rate-limiting hydrogenation process. The reverse water-gas-shift (RWGS) reaction (CO2 + H-2 -> CO + H2O) was experimentally observed to compete with methanol synthesis and was also considered in our DFT calculations. In agreement with experiment, the rate of the RWGS reaction on Cu nanoparticles is estimated to be similar to 2 orders of magnitude faster than methanol synthesis at T = 573 K. The experiments and calculations also indicate that CO produced by the fast RWGS reaction does not undergo subsequent hydrogenation to methanol, but instead simply accumulates as a product. Methanol production from CO hydrogenation via the RWGS pathway is hindered by the first hydrogenation of CO to formyl, which is not stable and prefers to dissociate into CO and H atoms on Cu. Our calculated results suggest that the methanol yield over Cu-based catalysts could be improved by adding dopants or promoters which are able to stabilize formyl species or facilitate the hydrogenation of formate and dioxomethylene. C1 [Rodriguez, Jose A.; White, Michael G.; Liu, Ping] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. [Yang, Yixiong; White, Michael G.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11749 USA. [Evans, Jaime] Cent Univ Venezuela, Fac Ciencias, Caracas 1020, Venezuela. RP Liu, P (reprint author), Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. EM pingliu3@bnl.gov FU Brookhaven National Laboratory under US Department of Energy, Division of Chemical Sciences [DE-AC02-98CH10886] FX This research was carried out at Brookhaven National Laboratory under contract DE-AC02-98CH10886 with the US Department of Energy, Division of Chemical Sciences. The calculations were carried out using computational resources at the Center for Functional Nanomaterials at Brookhaven National Laboratory. NR 53 TC 126 Z9 127 U1 28 U2 234 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1463-9076 J9 PHYS CHEM CHEM PHYS JI Phys. Chem. Chem. Phys. PY 2010 VL 12 IS 33 BP 9909 EP 9917 DI 10.1039/c001484b PG 9 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 639WL UT WOS:000281007200044 PM 20567756 ER PT J AU Kim, KC Allendorf, MD Stavila, V Sholl, DS AF Kim, Ki Chul Allendorf, Mark D. Stavila, Vitalie Sholl, David S. TI Predicting impurity gases and phases during hydrogen evolution from complex metal hydrides using free energy minimization enabled by first-principles calculations SO PHYSICAL CHEMISTRY CHEMICAL PHYSICS LA English DT Article ID JANAF THERMOCHEMICAL TABLES; STORAGE PROPERTIES; MAGNESIUM BOROHYDRIDE; THERMAL-DECOMPOSITION; LITHIUM BOROHYDRIDE; MESOPOROUS CARBON; 3RD EDITION; H SYSTEM; LIBH4; LINH2 AB First-principles calculations represent a potent tool for screening metal hydride mixtures that can reversibly store hydrogen. A number of promising new hydride systems with high hydrogen capacity and favorable thermodynamics have been predicted this way. An important limitation of these studies, however, is the assumption that H-2 is the only gas-phase product of the reaction, which is not always the case. This paper summarizes new theoretical and numerical approaches that can be used to predict thermodynamic equilibria in complex metal hydride systems with competing reaction pathways. We report thermochemical equilibrium calculations using data obtained from density functional theory (DFT) computations to describe the possible occurrence of gas-phase products other than H-2 in three complex hydrides, LiNH2, LiBH4, and Mg(BH4)(2), and mixtures of these with the destabilizing compounds LiH, MgH2, and C. The systems under investigation contain N, C, and/or B and thus have the potential to evolve N-2, NH3, hydrocarbons, and/or boranes as well as H-2. Equilibria as a function of both temperature and total pressure are predicted. The results indicate that significant amounts of these species can form under some conditions. In particular, the thermodynamic model predicts formation of N-2 and NH3 as products of LiNH2 decomposition. Comparison with published experimental data indicates that N-2 formation must be kinetically limited. Our examination of C-containing systems indicates that methane is the stable gas-phase species at low temperatures, not H-2. On the other hand, very low amounts of boranes (primarily BH3) are predicted to form in B-containing systems. C1 [Allendorf, Mark D.; Stavila, Vitalie] Sandia Natl Labs, Livermore, CA 94551 USA. [Kim, Ki Chul; Sholl, David S.] Georgia Inst Technol, Sch Chem & Biomol Engn, Atlanta, GA 30332 USA. RP Allendorf, MD (reprint author), Sandia Natl Labs, POB 969, Livermore, CA 94551 USA. EM mdallen@sandia.gov; david.sholl@chbe.gatech.edu RI Stavila, Vitalie/F-4188-2010; Stavila, Vitalie/B-6464-2008; Kim, Ki Chul/J-5290-2012 OI Stavila, Vitalie/0000-0003-0981-0432; FU US DOE, Office of Energy Efficiency and Renewable Energy in the Fuel Cell Technologies; United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This work was supported by the US DOE, Office of Energy Efficiency and Renewable Energy in the Fuel Cell Technologies Program, and performed in conjunction with the DOE Metal Hydride Center of Excellence. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. NR 75 TC 12 Z9 12 U1 4 U2 45 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1463-9076 J9 PHYS CHEM CHEM PHYS JI Phys. Chem. Chem. Phys. PY 2010 VL 12 IS 33 BP 9918 EP 9926 DI 10.1039/c001657h PG 9 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 639WL UT WOS:000281007200045 PM 20532325 ER PT J AU Petrick, L Destaillats, H Zouev, I Sabach, S Dubowski, Y AF Petrick, Lauren Destaillats, Hugo Zouev, Irena Sabach, Sara Dubowski, Yael TI Sorption, desorption, and surface oxidative fate of nicotine SO PHYSICAL CHEMISTRY CHEMICAL PHYSICS LA English DT Article ID ENVIRONMENTAL TOBACCO-SMOKE; GAS-PHASE OZONE; PRODUCT FORMATION; THERMAL COMFORT; THIRDHAND-SMOKE; VENTILATION; OZONOLYSIS; CHEMISTRY; KINETICS AB Nicotine dynamics in an indoor environment can be greatly affected by building parameters (e. g. relative humidity (RH), air exchange rate (AER), and presence of ozone), as well as surface parameters (e. g. surface area (SA) and polarity). To better understand the indoor fate of nicotine, these parameter effects on its sorption, desorption, and oxidation rates were investigated on model indoor surfaces that included fabrics, wallboard paper, and wood materials. Nicotine sorption under dry conditions was enhanced by higher SA and higher polarity of the substrate. Interestingly, nicotine sorption to cotton and nylon was facilitated by increased RH, while sorption to polyester was hindered by it. Desorption was affected by RH, AER, and surface type. Heterogeneous nicotine-ozone reaction was investigated by Fourier transform infrared spectrometry with attenuated total reflection (FTIR-ATR), and revealed a pseudo first-order surface reaction rate of 0.035 +/- 0.015 min(-1) (at [O(3)] = 6 +/- 0.3 x 10(15) molecules cm(-3)) that was partially inhibited at high RH. Extrapolation to a lower ozone level ([O(3)] = 42 ppb) showed oxidation on the order of 10(-5) min(-1) corresponding to a half-life of 1 week. In addition, similar surface products were identified in dry and high RH using gas chromatography-mass spectrometry (GC-MS). However, FTIR analysis revealed different product spectra for these conditions, suggesting additional unidentified products and association with surface water. Knowing the indoor fate of condensed and gas phase nicotine and its oxidation products will provide a better understanding of nicotine's impact on personal exposures as well as overall indoor air quality. C1 [Petrick, Lauren; Zouev, Irena; Sabach, Sara; Dubowski, Yael] Technion Israel Inst Technol, Fac Civil & Environm Engn, IL-32000 Haifa, Israel. [Destaillats, Hugo] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Destaillats, Hugo] Arizona State Univ, Tempe, AZ USA. RP Dubowski, Y (reprint author), Technion Israel Inst Technol, Fac Civil & Environm Engn, IL-32000 Haifa, Israel. EM yaeld@tx.technion.ac.il RI Destaillats, Hugo/B-7936-2013 FU United States-Israel Binational Sciences Foundation [2006300]; German-Israeli Foundation [2153-1678.3/2006]; UC [16RT-0158] FX This work was funded by the United States-Israel Binational Sciences Foundation (Grant No. 2006300), the German-Israeli Foundation (Grant No. 2153-1678.3/2006), and the UC Tobacco-Related Diseases Research Program (Grant No. 16RT-0158). The authors wish to thank Hodayah Hadar-Abuhatzira (Technion) and X. Song (LBNL) for their experimental help. NR 31 TC 19 Z9 19 U1 2 U2 36 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1463-9076 J9 PHYS CHEM CHEM PHYS JI Phys. Chem. Chem. Phys. PY 2010 VL 12 IS 35 BP 10356 EP 10364 DI 10.1039/c002643c PG 9 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 644DM UT WOS:000281352300028 PM 20582338 ER PT J AU Castiglioni, L Vukovic, S Crider, PE Lester, WA Neumark, DM AF Castiglioni, Luca Vukovic, Sinisa Crider, Paul E. Lester, William A. Neumark, Daniel M. TI Intramolecular competition in the photodissociation of C3D3 radicals at 248 and 193 nm SO PHYSICAL CHEMISTRY CHEMICAL PHYSICS LA English DT Article ID ELECTRONIC-ABSORPTION-SPECTRUM; AROMATIC-HYDROCARBON FORMATION; AB-INITIO; IONIZATION-POTENTIALS; INTERSTELLAR-MEDIUM; WAVE-FUNCTIONS; C3H3 RADICALS; GROUND-STATE; PROPARGYL; ALLENE AB Motivated by recent experimental work, a theoretical study of the photodissociation of perdeuterated propargyl (D2CCD) and propynyl (D3CCC) radicals has been carried out, focusing on the C-C bond cleavage and D-2 loss channels. High-level ab initio calculations were carried out, and RRKM rate constants were calculated for isomerization and dissociation pathways. The resulting reaction barriers, microcanonical rate constants and product branching ratios are consistent with the experimental findings, supporting the overall mechanism of internal conversion followed by statistical dissociation on the ground state surface. We found loose transition states and very low exit barriers for two of the C-C bond cleavage channels and an additional CD2 + CCD channel, which had not been reported previously. Our results probe the extent of propargyl and propynyl isomerization prior to dissociation at 248 and 193 nm and deliver a comprehensive picture of all ongoing molecular dynamics. C1 [Castiglioni, Luca; Vukovic, Sinisa; Crider, Paul E.; Lester, William A.; Neumark, Daniel M.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Castiglioni, Luca; Vukovic, Sinisa; Crider, Paul E.; Lester, William A.; Neumark, Daniel M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Castiglioni, Luca] Paul Scherrer Inst, Gen Energy Dept, CH-5232 Villigen, Switzerland. RP Neumark, DM (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM dneumark@berkeley.edu RI Vukovic, Sinisa/J-3106-2013; Neumark, Daniel/B-9551-2009 OI Vukovic, Sinisa/0000-0002-7682-0705; Neumark, Daniel/0000-0002-3762-9473 FU Office of Basic Energy Sciences, Chemical Sciences Division of the US Department of Energy [DE-AC02-05CH11231]; Swiss National Science Foundation FX This work was supported by the Director, Office of Basic Energy Sciences, Chemical Sciences Division of the US Department of Energy under Contract No. DE-AC02-05CH11231. L. C. gratefully acknowledges the Swiss National Science Foundation for a postdoctoral fellowship. NR 75 TC 3 Z9 3 U1 2 U2 10 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1463-9076 J9 PHYS CHEM CHEM PHYS JI Phys. Chem. Chem. Phys. PY 2010 VL 12 IS 36 BP 10714 EP 10722 DI 10.1039/c0cp00380h PG 9 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 647IZ UT WOS:000281613300007 PM 20714593 ER PT J AU Ji, M Wang, CZ Ho, KM AF Ji, Min Wang, Cai-Zhuang Ho, Kai-Ming TI Comparing efficiencies of genetic and minima hopping algorithms for crystal structure prediction SO PHYSICAL CHEMISTRY CHEMICAL PHYSICS LA English DT Article ID POWDER DIFFRACTION DATA; AB-INITIO LEVEL; GLOBAL OPTIMIZATION; LAMARCKIAN CONCEPTS; ENERGY LANDSCAPE; IMPLEMENTATION; EXPLORATION; SOLIDS AB In this work several crystal structure prediction problems which have been studied by first-principles evolutionary algorithms recently are revisited. We increased the system size to see how the search efficiency changes with respect to problem size. We find that the relative performance and underlying mechanism of genetic algorithms in crystal structure searches for Al(x)Sc(1-x) strongly depend on the system composition as well as the size of the problem. Because of this strong dependence, caution should be taken in generalizing performance comparison from one problem to another even though they may appear to be similar. We also investigate the performance of the search algorithm for crystal structure prediction of boron with and without a priori knowledge of the lattice vectors. The results show that the degree of difficulty increases dramatically if the lattice vectors of the crystal are allowed to vary during the search. Comparison of the minima hopping algorithm with the genetic algorithm at small (<10 atoms) to larger problem sizes is also carried out. At the small sizes we have tested, both methods show comparable efficiency. But at large sizes the genetic algorithm becomes advantageous over minima hopping. C1 [Ji, Min] US DOE, Ames Lab, Ames, IA 50011 USA. Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. RP Ji, M (reprint author), US DOE, Ames Lab, Ames, IA 50011 USA. RI Ji, Min/F-3503-2011 FU Basic Energy Sciences, Office of Science, U.S. Department of Energy [DE-AC02-07CH11358]; National Energy Research Supercomputing Center (NERSC) Berkeley, CA FX This work was supported by Basic Energy Sciences, Office of Science, U.S. Department of Energy, under Contract No. DE-AC02-07CH11358. Support including a grant for computer time at the National Energy Research Supercomputing Center (NERSC) in Berkeley, CA. NR 22 TC 18 Z9 18 U1 1 U2 12 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1463-9076 J9 PHYS CHEM CHEM PHYS JI Phys. Chem. Chem. Phys. PY 2010 VL 12 IS 37 BP 11617 EP 11623 DI 10.1039/c004096g PG 7 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 648XD UT WOS:000281726800047 PM 20714492 ER PT J AU Boscoboinik, JA Calaza, FC Habeeb, Z Bennett, DW Stacchiola, DJ Purino, MA Tysoe, WT AF Boscoboinik, Jorge A. Calaza, Florencia C. Habeeb, Zeesham Bennett, Dennis W. Stacchiola, Dario J. Purino, Martin A. Tysoe, Wilfred T. TI One-dimensional supramolecular surface structures: 1,4-diisocyanobenzene on Au(111) surfaces SO PHYSICAL CHEMISTRY CHEMICAL PHYSICS LA English DT Article ID SCANNING-TUNNELING-MICROSCOPY; ORGANIC COORDINATION CHAINS; SELF-ASSEMBLED MONOLAYERS; 1,4-PHENYLENE DIISOCYANIDE; METAL-SURFACES; ADSORPTION CHARACTERISTICS; MOLECULAR CONDUCTANCE; ELECTRODE SURFACES; METHYL ISOCYANIDE; RAMAN-SCATTERING AB One-dimensional supramolecular structures formed by adsorbing low coverages of 1,4-diisocyanobenzene on Au(111) at room temperature are obtained and imaged by scanning tunneling microscopy (STM) under ultrahigh vacuum (UHV) conditions. The structures originate from step edges or surface defects and arrange predominantly in a straight fashion on the substrate terraces along the < 1 (1) over bar0 > directions. They are proposed to consist of alternating units of 1,4-diisocyanobenzene molecules and gold atoms with a unit cell in registry with the substrate corresponding to four times the lattice interatomic distance. Their long 1-D chains and high thermal stability offer the potential to use them as conductors in nanoelectronic applications. C1 [Boscoboinik, Jorge A.; Habeeb, Zeesham; Bennett, Dennis W.; Tysoe, Wilfred T.] Univ Wisconsin, Dept Chem & Biochem, Milwaukee, WI 53211 USA. [Boscoboinik, Jorge A.; Habeeb, Zeesham; Bennett, Dennis W.; Tysoe, Wilfred T.] Univ Wisconsin, Surface Studies Lab, Milwaukee, WI 53211 USA. [Calaza, Florencia C.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. [Stacchiola, Dario J.] Michigan Technol Univ, Dept Chem, Houghton, MI 49931 USA. [Purino, Martin A.] Univ La Laguna, Inst Univ Bioorgan Antonio Gonzalez, E-38206 Tenerife, Spain. RP Tysoe, WT (reprint author), Univ Wisconsin, Dept Chem & Biochem, Milwaukee, WI 53211 USA. EM wtt@uwm.edu RI Calaza, Florencia/G-4460-2010; Boscoboinik, Jorge/E-8110-2010; Stacchiola, Dario/B-1918-2009; OI Boscoboinik, Jorge/0000-0002-5090-7079; Stacchiola, Dario/0000-0001-5494-3205; Purino, Martin/0000-0001-5288-5216 FU National Science Foundation [CHE 0521328]; European Regional Development Fund [CTQ2008-06806-C02-01/BQU]; Canary Islands Government ACIISI [PI 2007/022]; Programme Alban; European Union [E07D402567AR] FX We gratefully acknowledge support of this work by the National Science Foundation under grant number CHE 0521328. The DFT calculations were supported by the MICIN of Spain, co-financed by the European Regional Development Fund (CTQ2008-06806-C02-01/BQU), the Canary Islands Government ACIISI (PI 2007/022). M. A. P. was supported by the Programme Alban, the European Union Programme of High Level Scholarships for Latin America, scholarship no. E07D402567AR. NR 67 TC 26 Z9 26 U1 4 U2 35 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1463-9076 EI 1463-9084 J9 PHYS CHEM CHEM PHYS JI Phys. Chem. Chem. Phys. PY 2010 VL 12 IS 37 BP 11624 EP 11629 DI 10.1039/c003239e PG 6 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 648XD UT WOS:000281726800048 PM 20714484 ER PT J AU Hansen, N Li, W Law, ME Kasper, T Westmoreland, PR Yang, B Cool, TA Lucassen, A AF Hansen, N. Li, W. Law, M. E. Kasper, T. Westmoreland, P. R. Yang, B. Cool, T. A. Lucassen, A. TI The importance of fuel dissociation and propargyl plus allyl association for the formation of benzene in a fuel-rich 1-hexene flame SO PHYSICAL CHEMISTRY CHEMICAL PHYSICS LA English DT Article ID PHOTOIONIZATION CROSS-SECTIONS; AROMATIC-HYDROCARBON FORMATION; RESONANCE-STABILIZED RADICALS; MASS-SPECTROMETRY; COMBUSTION CHEMISTRY; ALIPHATIC FUELS; LOW-TEMPERATURE; HYDROGEN-ATOMS; PROPANE FLAME; SHOCK-TUBE AB Fuel decomposition and benzene formation processes in a premixed, laminar, low-pressure, fuel-rich flame of 1-hexene (C(6)H(12), CH(2)QCH-CH(2)-CH(2)-CH(2)-CH(3)) are investigated by comparing quantitative mole fraction profiles of flame species with kinetic modeling results. The premixed flame, which is stabilized on a flat-flame burner under a reduced pressure of 30 Torr (= 40 mbar), is analyzed by flame-sampling molecular-beam time-of-flight mass spectrometry which uses photoionization by tunable vacuum-ultraviolet synchrotron radiation. The temperature profile of the flame is measured by OH laser-induced fluorescence. The model calculations include the latest rate coefficients for 1-hexene decomposition (J. H. Kiefer et al., J. Phys. Chem. A, 2009, 113, 13570) and for the propargyl (C(3)H(3)) + allyl (a-C(3)H(5)) reaction (J. A. Miller et al., J. Phys. Chem. A, 2010, 114, 4881). The predicted mole fractions as a function of distance from the burner are acceptable and often even in very good agreement with the experimentally observed profiles, thus allowing an assessment of the importance of various fuel decomposition reactions and benzene formation routes. The results clearly indicate that in contrast to the normal reactions of fuel destruction by radical attack, 1-hexene is destroyed mainly by decomposition via unimolecular dissociation forming allyl (a-C(3)H(5)) and n-propyl (n-C(3)H(7)). Minor fuel-consumption pathways include H-abstraction reactions producing various isomeric C(6)H(11) radicals with subsequent beta-scissions into C(2), C(3), and C(4) intermediates. The reaction path analysis also highlights a significant contribution through the propargyl (C(3)H(3)) + allyl (a-C(3)H(5)) reaction to the formation of benzene. In this flame, benzene is dominantly formed through H-assisted isomerization of fulvene, which itself is almost exclusively produced by the C(3)H(3) + a-C(3)H(5) reaction. C1 [Hansen, N.; Law, M. E.; Kasper, T.] Sandia Natl Labs, Combust Res Facil, Livermore, CA 94551 USA. [Li, W.; Westmoreland, P. R.] N Carolina State Univ, Dept Chem & Biomol Engn, Raleigh, NC 27695 USA. [Yang, B.; Cool, T. A.] Cornell Univ, Sch Appl & Engn Phys, Ithaca, NY 14853 USA. [Lucassen, A.] Univ Bielefeld, Dept Chem, D-33615 Bielefeld, Germany. RP Hansen, N (reprint author), Sandia Natl Labs, Combust Res Facil, Livermore, CA 94551 USA. EM nhansen@sandia.gov RI Yang, Bin/A-7158-2008; Hansen, Nils/G-3572-2012; Lucassen, Arnas/G-3803-2013; Kasper, Tina/A-2975-2017 OI Yang, Bin/0000-0001-7333-0017; Lucassen, Arnas/0000-0003-2967-2030; Kasper, Tina/0000-0003-3993-5316 FU Office of Basic Energy Sciences (BES), U. S. Department of Energy (USDOE) [DE-FG02-91ER14192, DE-FG02-01ER15180, DE-AC02-05CH11231]; DFG [KO 1363/18-3] FX We thank P. Fugazzi and S. Ferrell for technical assistance, J. Miller and K. Kohse-Hoinghaus for helpful discussions, and P. Dagaut for providing his mechanism. This work is supported by the Office of Basic Energy Sciences (BES), U. S. Department of Energy (USDOE), under DE-FG02-91ER14192 (PRW) and DE-FG02-01ER15180 (TAC), and by the DFG under KO 1363/18-3 (AL). Sandia is a multiprogram laboratory operated by Sandia Corporation for NNSA under contract DE-AC04-94-AL85000. The Advanced Light Source is supported by USDOE/BES under DE-AC02-05CH11231. NR 53 TC 30 Z9 31 U1 6 U2 54 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1463-9076 J9 PHYS CHEM CHEM PHYS JI Phys. Chem. Chem. Phys. PY 2010 VL 12 IS 38 BP 12112 EP 12122 DI 10.1039/c0cp00241k PG 11 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 653OX UT WOS:000282103200035 PM 20820554 ER PT J AU El Gabaly, F Grass, M McDaniel, AH Farrow, RL Linne, MA Hussain, Z Bluhm, H Liu, Z McCarty, KF AF El Gabaly, Farid Grass, Michael McDaniel, Anthony H. Farrow, Roger L. Linne, Mark A. Hussain, Zahid Bluhm, Hendrik Liu, Zhi McCarty, Kevin F. TI Measuring individual overpotentials in an operating solid-oxide electrochemical cell SO PHYSICAL CHEMISTRY CHEMICAL PHYSICS LA English DT Article ID RAY PHOTOELECTRON-SPECTROSCOPY; FUEL-CELLS; X-RAY; ELECTRON-SPECTROSCOPY; CATALYTIC-ACTIVITY; OXYGEN REDUCTION; HYDROGEN; FILMS; OXIDATION; BINDING AB We use photo-electrons as a non-contact probe to measure local electrical potentials in a solid-oxide electrochemical cell. We characterize the cell in operando at near-ambient pressure using spatially-resolved X-ray photoemission spectroscopy. The overpotentials at the interfaces between the Ni and Pt electrodes and the yttria-stabilized zirconia (YSZ) electrolyte are directly measured. The method is validated using electrochemical impedance spectroscopy. Using the overpotentials, which characterize the cell's inefficiencies, we compare without ambiguity the electro-catalytic efficiencies of Ni and Pt, finding that on Ni H(2)O splitting proceeds more rapidly than H(2) oxidation, while on Pt, H(2) oxidation proceeds more rapidly than H(2)O splitting. C1 [El Gabaly, Farid; McDaniel, Anthony H.; Farrow, Roger L.; Linne, Mark A.; McCarty, Kevin F.] Sandia Natl Labs, Livermore, CA 94550 USA. [Grass, Michael; Hussain, Zahid; Liu, Zhi] Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. [Bluhm, Hendrik] Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP El Gabaly, F (reprint author), Sandia Natl Labs, Livermore, CA 94550 USA. EM felgaba@sandia.gov; zliu2@lbl.gov RI McCarty, Kevin/F-9368-2012; Liu, Zhi/B-3642-2009 OI McCarty, Kevin/0000-0002-8601-079X; Liu, Zhi/0000-0002-8973-6561 FU U. S. Department of Energy [DE-AC04-94AL85000] FX We thank C. Zhang, S. C. DeCaluwe, and B. W. Eichhorn for stimulating discussions, and G. S. Jackson for comments on this manuscript. This research was supported by the U. S. Department of Energy through the Sandia Laboratory Directed Research and Development program under Contract DE-AC04-94AL85000. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U. S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 44 TC 33 Z9 33 U1 1 U2 22 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1463-9076 J9 PHYS CHEM CHEM PHYS JI Phys. Chem. Chem. Phys. PY 2010 VL 12 IS 38 BP 12138 EP 12145 DI 10.1039/c003581e PG 8 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 653OX UT WOS:000282103200037 PM 20694225 ER PT J AU Xiao, HY Zhang, FX Gao, F Lang, M Ewing, RC Weber, WJ AF Xiao, H. Y. Zhang, F. X. Gao, Fei Lang, M. Ewing, Rodney C. Weber, W. J. TI Zirconate pyrochlores under high pressure SO PHYSICAL CHEMISTRY CHEMICAL PHYSICS LA English DT Article ID WASTE FORM; SM; STABILITY; PLUTONIUM; CRYSTALS; SOLIDS; OXIDES; DAMAGE; LA; GD AB Ab initio total-energy calculations and X-ray diffraction measurements have been combined to study the phase stability of zirconate pyrochlores (A(2)Zr(2)O(7); A = La, Nd and Sm) under pressures up to 50 GPa. Phase transformations to the defect-cotunnite structure are theoretically predicted at pressures of 22, 20 and 18 GPa, in excellent agreement with the experimentally determined values of 21, 22 and 18 GPa for La2Zr2O7, Nd2Zr2O7 and Sm2Zr2O7, respectively. Analysis of the elastic properties indicates that elastic anisotropy may be one of the driving forces for the pressure-induced cubic-to-noncubic phase transformation. C1 [Xiao, H. Y.; Gao, Fei] Pacific NW Natl Lab, Richland, WA 99352 USA. [Zhang, F. X.; Lang, M.; Ewing, Rodney C.] Univ Michigan, Dept Geol Sci, Ann Arbor, MI 48109 USA. [Weber, W. J.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Weber, W. J.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Xiao, HY (reprint author), Pacific NW Natl Lab, POB 999, Richland, WA 99352 USA. RI Weber, William/A-4177-2008; Xiao, Haiyan/A-1450-2012; Lang, Maik/F-9939-2012; Gao, Fei/H-3045-2012; Zhang, Fuxiang/P-7365-2015 OI Weber, William/0000-0002-9017-7365; Zhang, Fuxiang/0000-0003-1298-9795 FU Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, US Department of Energy [DE-AC05-76RL01830, DE-FG02-97ER45656]; Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory FX This research was supported by the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, US Department of Energy under Contract DE-AC05-76RL01830 and Grant DE-FG02-97ER45656. The theoretical research was performed using the supercomputer resources at the Environmental Molecular Sciences Laboratory, a national user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. NR 36 TC 17 Z9 21 U1 3 U2 23 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1463-9076 J9 PHYS CHEM CHEM PHYS JI Phys. Chem. Chem. Phys. PY 2010 VL 12 IS 39 BP 12472 EP 12477 DI 10.1039/c0cp00278j PG 6 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 660LJ UT WOS:000282643900015 PM 20721363 ER PT J AU Greathouse, JA Ockwig, NW Criscenti, LJ Guilinger, TR Pohl, P Allendorf, MD AF Greathouse, Jeffery A. Ockwig, Nathan W. Criscenti, Louise J. Guilinger, T. R. Pohl, Phil Allendorf, Mark D. TI Computational screening of metal-organic frameworks for large-molecule chemical sensing SO PHYSICAL CHEMISTRY CHEMICAL PHYSICS LA English DT Article ID PI-STACKING INTERACTIONS; MONTE-CARLO SIMULATIONS; DYNAMICS SIMULATIONS; FORCE-FIELD; AROMATIC-HYDROCARBONS; METHANE ADSORPTION; CO2 ADSORPTION; DIFFUSION; SEPARATION; IRMOF-1 AB Grand canonical Monte Carlo simulations were performed to identify trends in low-pressure adsorption of a broad range of organic molecules by a set of metal-organic frameworks (MOFs). While previous simulation studies focused on the adsorption of small molecules such as carbon dioxide and methane, we consider more complicated organic molecules relevant to chemical sensing and detection: small aromatics (o-, m-, and p-xylene), polycyclic aromatic hydrocarbons (naphthalene, anthracene, phenanthrene), explosives (TNT and RDX), and chemical warfare agents (GA and VM). The framework materials include several Zn-IRMOFs (IRMOFs 1-3, 7, 8), a Cr-MOF (CrMIL-53lp), and a Cu-MOF (HKUST-1). A wide range of loading pressures is examined, extending from 100 ppm to 10 ppb in air, thus spanning the entire range of conditions relevant to chemical sensing for security, environmental, and industrial process monitoring. Our results are validated by comparing calculated adsorption energies with experimental values, where available. Many of the larger organics are significantly adsorbed by the target MOFs at low pressure, which is consistent with the high isosteric heats of adsorption (12 kcal mol(-1) -49 kcal mol(-1)) computed for these analytes. These adsorption energies are significantly large that interference from atmospheric components should not interfere with chemical detection at low pressures. We show that pi-pi stacking interactions are an important contributor to these high heats of adsorption. CrMIL-53lp shows the highest adsorption energy for all analytes, suggesting that this material may be suitable for detection of low-level organics. At higher loading pressures, the Zn-MOFs show a much higher volumetric uptake than either CrMIL-53lp or HKUST-1 for all types of analyte considered here. Within the Zn-IRMOF series, analyte loading is proportional to accessible free volume, and loading decreases with increasing analyte size due to molecular packing effects. Overall, the results demonstrate that atomistic simulation can be used as an efficient first step in the screening of MOFs for detection of large molecules. For example, at the 10 ppb level, all of the Zn-IRMOFs are able to distinguish between TNT and the structurally similar xylenes. C1 [Greathouse, Jeffery A.; Ockwig, Nathan W.; Criscenti, Louise J.; Guilinger, T. R.; Pohl, Phil] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Allendorf, Mark D.] Sandia Natl Labs, Livermore, CA 94551 USA. RP Greathouse, JA (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM jagreat@sandia.gov FU Sandia National Laboratories; US Department of Energy [DE-AC04-94AL85000] FX This work is supported by Sandia National Laboratories under its Laboratory Directed Research and Development program. Sandia is a multiprogram laboratory operated by Sandia Corp., a Lockheed Martin company, for the US Department of Energy under Contract DE-AC04-94AL85000. NR 66 TC 46 Z9 47 U1 6 U2 127 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1463-9076 J9 PHYS CHEM CHEM PHYS JI Phys. Chem. Chem. Phys. PY 2010 VL 12 IS 39 BP 12621 EP 12629 DI 10.1039/c0cp00092b PG 9 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 660LJ UT WOS:000282643900033 PM 20733979 ER PT J AU Hu, QC Wang, P Laskin, J AF Hu, Qichi Wang, Peng Laskin, Julia TI Effect of the surface on the secondary structure of soft landed peptide ions SO PHYSICAL CHEMISTRY CHEMICAL PHYSICS LA English DT Article ID ASSEMBLED MONOLAYER SURFACES; MASS-SELECTED IONS; REFLECTION-ABSORPTION SPECTROSCOPY; GAS-PHASE HELICES; CONFORMATIONAL-CHANGES; SOLID-SURFACES; IN-SITU; COVALENT IMMOBILIZATION; INDUCED DISSOCIATION; PROTONATED PEPTIDES AB Ion soft landing (SL) enables highly selective modification of substrates for applications in materials science, nanotechnology and biology. Our previous study [P. Wang and J. Laskin, Angew. Chem., Int. Ed., 2008, 47, 6678-6680] showed that SL can be used for preparation of conformation-selected peptide arrays. Here we present a first study of the effect of the surface on the secondary structures of peptides soft-landed onto self-assembled monolayer surfaces (SAMs). Conformations of soft-landed peptide ions were examined using a newly constructed instrument that enables in situ infrared reflection absorption spectroscopy (IRRAS) characterization of surfaces during and after ion deposition. Polyalanine peptides, Ac-A(n)K and Ac-KA(n) (n = 7, 15), that have been extensively studied both in solution and in the gas phase were used as model systems in this study. We demonstrate that physical and chemical properties of SAM surfaces have a strong effect on the conformations of soft-landed peptide ions. For example, deposition of the a-helical [Ac-A(15)K + H](+) ion on the CH(3)-terminated (HSAM) surface results in immobilization of both the alpha- and 3(10)-helical conformations. In contrast, a significant fraction of Ac-A(15)K molecules are present in the beta-sheet conformation on the CF(3)-(FSAM) and COOH-terminated (COOH-SAM) surfaces. We show that the kinetic energy of the polyalanine ion, the charge, and the initial conformation have only a minor effect on the conformation of deposited species suggesting that the interaction between the molecule and the surface plays a major role in determining the secondary structures of immobilized polyalanines. This study demonstrates that SL of mass-selected ions can be utilized for obtaining fundamental understanding of the intrinsic properties of biomolecules and surfaces responsible for conformational changes upon adsorption. C1 [Hu, Qichi; Wang, Peng; Laskin, Julia] Pacific NW Natl Lab, Div Chem & Mat Sci, Richland, WA 99352 USA. RP Laskin, J (reprint author), Pacific NW Natl Lab, Div Chem & Mat Sci, POB 999 K8-88, Richland, WA 99352 USA. EM Julia.Laskin@pnl.gov RI Laskin, Julia/H-9974-2012 OI Laskin, Julia/0000-0002-4533-9644 FU Division of Chemical Sciences, Geosciences and Biosciences; Office of Basic Energy Sciences of the U.S. Department of Energy (DOE); U.S. DOE's Office of Biological and Environmental Research and located at the Pacific Northwest National Laboratory (PNNL) FX This work was supported by the grant from the Division of Chemical Sciences, Geosciences and Biosciences, Office of Basic Energy Sciences of the U.S. Department of Energy (DOE). The work was performed at the W.R. Wiley Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the U.S. DOE's Office of Biological and Environmental Research and located at the Pacific Northwest National Laboratory (PNNL). PNNL is operated by Battelle for the U.S. DOE. The authors thank John Cort and Paul Gassman (PNNL) for technical assistance and helpful discussions. NR 68 TC 19 Z9 19 U1 0 U2 15 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1463-9076 J9 PHYS CHEM CHEM PHYS JI Phys. Chem. Chem. Phys. PY 2010 VL 12 IS 39 BP 12802 EP 12810 DI 10.1039/c0cp00825g PG 9 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 660LJ UT WOS:000282643900053 PM 20820593 ER PT J AU Wittstock, A Biener, J Baumer, M AF Wittstock, Arne Biener, Juergen Baeumer, Marcus TI Nanoporous gold: a new material for catalytic and sensor applications SO PHYSICAL CHEMISTRY CHEMICAL PHYSICS LA English DT Article ID TEMPERATURE CO OXIDATION; THERMAL-DESORPTION MEASUREMENTS; GREEN CHEMISTRY; CARBON-MONOXIDE; SURFACE-STRESS; OXYGEN-CHEMISORPTION; MECHANICAL-BEHAVIOR; INDUCED ADSORPTION; AEROBIC OXIDATION; MOLECULAR-OXYGEN AB Nanostructured materials are governed by their surface chemical properties. This is strikingly reflected by np-Au. This material can be generated by corrosion of bulk Ag-Au alloys. Based on a self-organisation process, a 3 dimensional sponge like gold structure evolves with ligaments in the range of only a few tens of nanometers. Due to its continuous porosity, the material can be penetrated by gases which then adsorb and interact with the surface. In this perspective we will review potential applications of np-Au resulting from this effect, namely heterogeneous gas phase catalysis, surface chemistry driven actuation, and adsorbate controlled stability of the nanostructure. We will summarize the current knowledge about the low temperature oxidation of CO as well as the highly selective oxidation of methanol. Furthermore, we will address the question how surface chemistry can influence the material properties itself. In particular, we will deal with (a) the actuation of np-Au by the reversible oxidation of its surface using ozone and (b) the adsorbate controlled coarsening of ligaments, using annealing experiments under ozone or inert gas atmosphere. C1 [Wittstock, Arne; Baeumer, Marcus] Univ Bremen, Inst Appl & Phys Chem, D-28359 Bremen, Germany. [Biener, Juergen] Lawrence Livermore Natl Lab, Nanoscale Synth & Characterizat Lab, Livermore, CA 94550 USA. RP Wittstock, A (reprint author), Univ Bremen, Inst Appl & Phys Chem, D-28359 Bremen, Germany. EM awittstock@uni-bremen.de RI Baumer, Marcus/S-5441-2016 OI Baumer, Marcus/0000-0002-8620-1764 NR 124 TC 121 Z9 121 U1 14 U2 129 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1463-9076 J9 PHYS CHEM CHEM PHYS JI Phys. Chem. Chem. Phys. PY 2010 VL 12 IS 40 BP 12919 EP 12930 DI 10.1039/c0cp00757a PG 12 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 660KY UT WOS:000282642800003 PM 20820589 ER PT J AU Cao, A Lu, R Veser, G AF Cao, Anmin Lu, Rongwen Veser, Goetz TI Stabilizing metal nanoparticles for heterogeneous catalysis SO PHYSICAL CHEMISTRY CHEMICAL PHYSICS LA English DT Article ID CORE-SHELL NANOPARTICLES; NIAU ALLOY NANOPARTICLES; THERMAL-STABILITY; GOLD NANOPARTICLES; ELECTRON-MICROSCOPY; MESOPOROUS SILICA; PLATINUM NANOPARTICLES; CARBON NANOTUBES; SUPPORTED METAL; LOW-TEMPERATURE AB Metal nanoparticles hold great promise for heterogeneous catalysis due to their high dispersion, large concentration of highly undercoordinated surface sites, and the presence of quantum confinement effects, which can drastically alter their reactivity. However, the poor thermal stability of nano-sized particles limits their use to low temperature conditions and constitutes one of the key hurdles towards industrial application. The present perspective paper briefly reviews the mechanisms underlying nanoparticle sintering, and then gives an overview of emerging approaches towards stabilizing metal nanoparticles for heterogeneous catalysis. We conclude by highlighting the current needs for further developments in the field. C1 [Cao, Anmin; Veser, Goetz] US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. [Cao, Anmin; Veser, Goetz] Univ Pittsburgh, Dept Chem Engn, Pittsburgh, PA 15261 USA. [Lu, Rongwen] Dalian Univ Technol, State Key Lab Fine Chem, Dalian 116012, Peoples R China. RP Veser, G (reprint author), US DOE, Natl Energy Technol Lab, POB 10940, Pittsburgh, PA 15236 USA. EM gveser+@pitt.edu RI Veser, Goetz/I-5727-2013 FU Department of Energy National Energy Technology Laboratory (RDS) [DE-AC26-04NT41817]; Department of Energy-Basic Energy Science [DE-FG02-05ER46233]; National Science Foundation [CTS-0553365]; National Natural Science Foundation of China [20976023]; State Key Laboratory of Fine Chemicals, Dalian University of Technology; University of Pittsburgh's Swanson School of Engineering FX This work was supported by the Department of Energy National Energy Technology Laboratory (RDS contract DE-AC26-04NT41817), by the Department of Energy-Basic Energy Science (DE-FG02-05ER46233), and by the National Science Foundation (CTS-0553365). RL is supported by the National Natural Science Foundation of China (20976023) and the State Key Laboratory of Fine Chemicals, Dalian University of Technology. GV gratefully acknowledges a faculty fellowship from DOE-NETL, and a CNG faculty fellowship of the University of Pittsburgh's Swanson School of Engineering. NR 135 TC 137 Z9 137 U1 18 U2 186 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1463-9076 EI 1463-9084 J9 PHYS CHEM CHEM PHYS JI Phys. Chem. Chem. Phys. PY 2010 VL 12 IS 41 BP 13499 EP 13510 DI 10.1039/c0cp00729c PG 12 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 664OT UT WOS:000282972400016 PM 20820585 ER PT J AU Fillaux, C Guillaumont, D Berthet, JC Copping, R Shuh, DK Tyliszczak, T Den Auwer, C AF Fillaux, Clara Guillaumont, Dominique Berthet, Jean-Claude Copping, Roy Shuh, David K. Tyliszczak, Tolek Den Auwer, Christophe TI Investigating the electronic structure and bonding in uranyl compounds by combining NEXAFS spectroscopy and quantum chemistry SO PHYSICAL CHEMISTRY CHEMICAL PHYSICS LA English DT Article ID X-RAY-ABSORPTION; DENSITY-FUNCTIONAL THEORY; CIS-DIOXIDO URANYL; EQUATORIAL COORDINATION; CONTAINING MOLECULES; CRYSTAL-STRUCTURE; COMPLEXES; APPROXIMATION; ENERGY; EXCITATIONS AB The nature of the reactivity of the "yl" oxygens has been a subject of constant interest for a long time in uranyl chemistry. Thus, the electron-donor ability of the equatorial ligands plays an important role in the nature of the uranyl U=O bond. In this paper, a combination of near-edge X-ray absorption fine structure (NEXAFS) spectroscopy and both ground-state and time-dependent density functional theory (DFT) calculations have been used to examine the effect of equatorial plane ligation on the U=O bonding in two uranyl complexes: [UO(2)(py)(3)I(2)] and [UO(2)(CN)(5)][NEt(4)](3). By coupling experimental data and theory, spectral features observed in the oxygen K-edge NEXAFS spectra have been assigned. Despite the inert character of the U=O bond, we observe that the electron-donating or withdrawing character of the equatorial ligands has a measurable effect on features in the NEXAFS spectra of these species and thereby on the unoccupied molecular orbitals of {UO(2)}(2+). C1 [Fillaux, Clara; Guillaumont, Dominique; Den Auwer, Christophe] CEA, DEN, DRCP, F-30207 Bagnols Sur Ceze, France. [Berthet, Jean-Claude] CEA, CNRS, IRAMIS, UMR SIS2M 3299, F-91191 Gif Sur Yvette, France. [Copping, Roy; Shuh, David K.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Tyliszczak, Tolek] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source Div, Berkeley, CA 94720 USA. RP Fillaux, C (reprint author), CEA, DEN, DRCP, F-30207 Bagnols Sur Ceze, France. EM clara.fillaux@cea.fr RI Guillaumont, Dominique/H-2508-2015 OI Guillaumont, Dominique/0000-0002-9329-5623 FU Groupement National de Recherche PARIS; Office of Science, Office of Basic Energy Sciences, and the Division of Chemical Sciences, Geosciences, and Biosciences of the U.S. Department of Energy at LBNL [DE-AC02-05CH11231] FX The authors gratefully acknowledge Groupement National de Recherche PARIS, for financial support. The NEXAFS at the ALS and research at LBNL was supported by the Director, Office of Science, Office of Basic Energy Sciences, and the Division of Chemical Sciences, Geosciences, and Biosciences of the U.S. Department of Energy at LBNL under Contract No. DE-AC02-05CH11231. NR 52 TC 19 Z9 19 U1 2 U2 29 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1463-9076 J9 PHYS CHEM CHEM PHYS JI Phys. Chem. Chem. Phys. PY 2010 VL 12 IS 42 BP 14253 EP 14262 DI 10.1039/c0cp00386g PG 10 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 668IS UT WOS:000283262400044 PM 20886130 ER PT J AU Thire, N Cireasa, R Blanchet, V Pratt, ST AF Thire, Nicolas Cireasa, Raluca Blanchet, Valerie Pratt, Steven T. TI Time-resolved photoelectron spectroscopy of the CH3I (BE)-E-1 6s [2] state SO PHYSICAL CHEMISTRY CHEMICAL PHYSICS LA English DT Article ID ENHANCED MULTIPHOTON IONIZATION; PUMP-PROBE TECHNIQUE; METHYL-IODIDE; RYDBERG STATES; PREDISSOCIATION DYNAMICS; (B)OVER-TILDE STATE; B-STATE; PHOTODISSOCIATION; MOLECULES; PHOTOIONIZATION AB The predissociation dynamics of the vibrationless level of the 6s (B E-2) Rydberg state of CH3I was studied by femtosecond-resolved velocity map imaging of photoelectrons. By monitoring the decay of the CH3I+ produced by photoionizing the B state, the predissociation lifetime was measured to be 1310 +/- 70 fs. Photoelectron spectra were recorded as a function of the excitation scheme (one or two photons to the B state), and as a function of the ionizing wavelength. All of these photoelectron spectra show a simple time dependence that is consistent with the decay time of the CH3I+ ion signal. The photoelectron angular distributions for the ionization of the B state depend on the excitation scheme and the ionizing wavelength, and show a strong dependence on the vibrational modes excited in the resulting CH3I+. At long delays, the photoelectron spectra are characterized by photoionization of the I(P-2(1/2)) fragment formed by predissociation of the B state. C1 [Thire, Nicolas; Cireasa, Raluca; Blanchet, Valerie] Univ Toulouse, UPS, F-31062 Toulouse, France. [Thire, Nicolas; Cireasa, Raluca; Blanchet, Valerie] IRSAMC, CNRS, Lab Collis Agregats React, F-31062 Toulouse, France. [Pratt, Steven T.] Argonne Natl Lab, Argonne, IL 60439 USA. RP Blanchet, V (reprint author), Univ Toulouse, UPS, 118 Route Narbonne, F-31062 Toulouse, France. EM val@irsamc.ups-tlse.fr RI blanchet, valerie/L-3677-2014 OI blanchet, valerie/0000-0002-6464-3879 FU ANR COCOMOUV; ANR HARMODYN; L'Universite Paul Sabatier; CNRS; US Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences [DE-AC02-06CH11357]; European Union [MOLCOTUV-041732] FX This work was supported financially by the ANR COCOMOUV, the ANR HARMODYN and L'Universite Paul Sabatier via three different BQRs. S. T. P. thanks the CNRS for supporting an invited research position in the LCAR. S. T. P. was also was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences under contract No. DE-AC02-06CH11357. R. C. gratefully acknowledge the European Union for the award of a Intra-European Marie Curie fellowship through the contract MOLCOTUV-041732. We thank Elsa Baynard and Stephane Faure for their expert technical assistance with the femtosecond laser system and LABVIEW acquisition software and to Dr Lionel Poisson for lending us his image analysis software, Labview-pBASEX. NR 34 TC 11 Z9 12 U1 3 U2 25 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1463-9076 J9 PHYS CHEM CHEM PHYS JI Phys. Chem. Chem. Phys. PY 2010 VL 12 IS 48 BP 15644 EP 15652 DI 10.1039/c004220j PG 9 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 687KF UT WOS:000284776700010 PM 20668752 ER PT S AU Hurst, SJ Fry, HC Gosztola, DJ Finkelstein-Shapiro, D Mujica, V Rajh, T AF Hurst, Sarah J. Fry, H. Christopher Gosztola, David J. Finkelstein-Shapiro, Daniel Mujica, Vladimiro Rajh, Tijana BE Prezhdo, OV TI Mechanistic studies into the Raman enhancement of enediol-semiconducting nanoparticle conjugates and their use in biological applications SO PHYSICAL CHEMISTRY OF INTERFACES AND NANOMATERIALS IX SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Physical Chemistry of Interfaces and Nanomaterials IX CY AUG 04-05, 2010 CL San Diego, CA SP SPIE DE nanoparticle; TiO2; peptide; Raman; enediol; biodiagnostics; nanotherapeutic; biomedical ID TIO2 NANOPARTICLES; CHARGE-TRANSFER; ELECTRON-TRANSFER; TITANIUM-DIOXIDE; QUANTUM DOTS; SPECTROSCOPY; SCATTERING; SEQUENCE AB Raman scattering enhancement was observed in systems where different metal oxide semiconductors (TiO2, Fe2O3, ZrO2 and CeO2) were modified with enediol ligands. The intensity of Raman scattering was dependent on laser frequency and correlated with the extinction coefficient of the charge-transfer complex of the enediol ligands and nanoparticles. The intensity and frequency of the Raman bands was found to depend on the chemical composition of the enediol ligand and the chemical composition (and crystallinity) of the nanoparticles. The intensity of the Raman signal depends on the number of surface binding sites, electron density of the ligands and their dipole moment. We also found that Raman scattering is observed for the bioconjugated system, where a peptide is linked to the surface of the particle through a catechol linker. These studies are important since these bioconjugates can be used to form the basis of Raman-based, in vitro and importantly in vivo biodetection, cell labeling and imaging, and nanotherapeutic strategies. C1 [Hurst, Sarah J.; Fry, H. Christopher; Gosztola, David J.; Rajh, Tijana] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. RP Hurst, SJ (reprint author), Argonne Natl Lab, Ctr Nanoscale Mat, 9700 S Cass Ave, Argonne, IL 60439 USA. RI Gosztola, David/D-9320-2011; Petrosko, Sarah/A-3606-2013 OI Gosztola, David/0000-0003-2674-1379; NR 36 TC 0 Z9 0 U1 1 U2 5 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-81948-254-9 J9 PROC SPIE PY 2010 VL 7758 AR 77580E DI 10.1117/12.862931 PG 8 WC Chemistry, Physical; Nanoscience & Nanotechnology; Optics; Physics, Applied SC Chemistry; Science & Technology - Other Topics; Optics; Physics GA BSU41 UT WOS:000285826200006 ER PT J AU Mattson, ED Palmer, CD Smith, RW Flury, M AF Mattson, E. D. Palmer, C. D. Smith, R. W. Flury, M. BE Springman, S Laue, J Seward, L TI Centrifuge techniques and apparatus for transport experiments in porous media SO PHYSICAL MODELLING IN GEOTECHNICS, VOLS. 1 AND 2 LA English DT Proceedings Paper CT 7th International Conference on Physical Modelling in Geotechnics (ICPMG) CY JUN 28-JUL 01, 2010 CL ETH Zurich, Zurich, SWITZERLAND SP Int Soc Soil Mech & Geotechnical Engn, Tech Comm 2 Phys Modelling Geotech, Actidyn, Broadbent, Solexperts, Tekscan, Kanton Zurich, Stadt Zurich HO ETH Zurich ID WATER; FLOW; SOIL AB This paper describes experimental approaches and apparatus that we have developed to study solute and colloid transport in porous media using Idaho National Laboratory's 2-m radius centrifuge. The experimental techniques include water flux scaling with applied acceleration at the top of the column and sub-atmospheric pressure control at the column base, automation of data collection, and remote experimental control over the internet. These apparatus include a constant displacement piston pump, a custom designed liquid fraction collector based on switching valve technology, and modified moisture monitoring equipment. Successful development of these experimental techniques and equipment is illustrated through application to transport of a conservative tracer through unsaturated sand column, with centrifugal acceleration up to 40 g. Development of such experimental equipment that can withstand high accelerations enhances the centrifuge technique to conduct highly controlled unsaturated solute/colloid transport experiments and allows in-flight liquid sample collection of the effluent. C1 [Mattson, E. D.; Palmer, C. D.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. [Smith, R. W.] Univ Idaho, Idaho Falls, ID 83415 USA. [Flury, M.] Washington State Univ, Washington, DC USA. RP Mattson, ED (reprint author), Idaho Natl Lab, Idaho Falls, ID 83415 USA. OI Flury, Markus/0000-0002-3344-3962; Mattson, Earl/0000-0002-2616-0008 FU U.S. Department of Energy, Office of Environmental Management, under DOE Idaho Operations Office [DE-AC07-05ID14517] FX Work supported by the U.S. Department of Energy, Office of Environmental Management, under DOE Idaho Operations Office Contract DE-AC07-05ID14517. NR 13 TC 0 Z9 0 U1 0 U2 2 PU CRC PRESS-TAYLOR & FRANCIS GROUP PI BOCA RATON PA 6000 BROKEN SOUND PARKWAY NW, STE 300, BOCA RATON, FL 33487-2742 USA BN 978-0-203-84262-1 PY 2010 BP 1465 EP 1470 PG 6 WC Geosciences, Multidisciplinary SC Geology GA BB7LF UT WOS:000345701300226 ER PT J AU Clementson, J Beiersdorfer, P Gu, MF AF Clementson, J. Beiersdorfer, P. Gu, M. F. TI X-ray spectroscopy of E2 and M3 transitions in Ni-like W SO PHYSICAL REVIEW A LA English DT Article ID BEAM ION-TRAP; CHARGED TUNGSTEN IONS; ELECTRON-BEAM; WAVELENGTH MEASUREMENTS; ISOELECTRONIC SEQUENCE; FORBIDDEN LINES; ATOMIC SPECTRA; EBIT; DIAGNOSTICS; PLASMAS AB The electric quadrupole (E2) and magnetic octupole (M3) ground-state transitions in Ni-like W(46+) have been measured using high-resolution crystal spectroscopy at the LLNL electron-beam ion trap facility. The lines fall in the soft x-ray region near 7.93 angstrom and were originally observed as an unresolved feature in tokamak plasmas. Using flat ammonium dihydrogen phosphate and quartz crystals, the wavelengths, intensities, and polarizations of the two lines have been measured for various electron-beam energies and compared to intensity and polarization calculations performed using the Flexible Atomic Code (FAC). C1 [Clementson, J.; Beiersdorfer, P.; Gu, M. F.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Clementson, J.] Lund Univ, Dept Phys, SE-22100 Lund, Sweden. RP Clementson, J (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM clementson@llnl.gov FU LLNL Laboratory Directed Research and Development [09-ERD-016] FX This work was performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA-27344 and supported by LLNL Laboratory Directed Research and Development Contract 09-ERD-016. The authorswould like to acknowledge support for the experiment from Dr. Greg Brown, Dr. Hui Chen, Phil D'Antonio, Miriam Frankel, Ed Magee, and Prof. Elmar Trabert. Albert Wynn from FAMU is acknowledged for assistance with the calculations. Joel Clementson would like to thank Dr. Hans Lundberg, Dr. Sven Huldt, and Prof. Sune Svanberg for their support. NR 45 TC 34 Z9 34 U1 1 U2 11 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 J9 PHYS REV A JI Phys. Rev. A PD JAN PY 2010 VL 81 IS 1 AR 012505 DI 10.1103/PhysRevA.81.012505 PG 6 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 548WX UT WOS:000274001500066 ER PT J AU Dandoloff, R Saxena, A Jensen, B AF Dandoloff, Rossen Saxena, Avadh Jensen, Bjorn TI Geometry-induced potential on a two-dimensional section of a wormhole: Catenoid SO PHYSICAL REVIEW A LA English DT Article ID MECHANICS AB We show that a two-dimensional wormhole geometry is equivalent to a catenoid, a minimal surface. We then obtain the curvature-induced geometric potential and show that the ground state with zero energy corresponds to a reflectionless potential. By introducing an appropriate coordinate system we also obtain bound states for different angular momentum channels. Our findings can be realized in suitably bent bilayer graphene sheets with a neck, in a honeycomb lattice with an array of dislocations, or in nanoscale waveguides in the shape of a catenoid. C1 [Dandoloff, Rossen] Univ Cergy Pontoise, Lab Phys Theor & Modelisat, F-95302 Cergy Pontoise, France. [Saxena, Avadh] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Saxena, Avadh] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. [Jensen, Bjorn] Vestfold Univ Coll, Fac Sci & Engn, N-3103 Tonsberg, Norway. RP Dandoloff, R (reprint author), Univ Cergy Pontoise, Lab Phys Theor & Modelisat, F-95302 Cergy Pontoise, France. FU US Department of Energy FX This work was supported in part by the US Department of Energy. NR 16 TC 16 Z9 16 U1 0 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 J9 PHYS REV A JI Phys. Rev. A PD JAN PY 2010 VL 81 IS 1 AR 014102 DI 10.1103/PhysRevA.81.014102 PG 4 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 548WX UT WOS:000274001500158 ER PT J AU Osipov, T Weber, T Rescigno, TN Lee, SY Orel, AE Schoffler, M Sturm, FP Schossler, S Lenz, U Havermeier, T Kuhnel, M Jahnke, T Williams, JB Ray, D Landers, A Dorner, R Belkacem, A AF Osipov, T. Weber, Th. Rescigno, T. N. Lee, S. Y. Orel, A. E. Schoeffler, M. Sturm, F. P. Schoessler, S. Lenz, U. Havermeier, T. Kuehnel, M. Jahnke, T. Williams, J. B. Ray, D. Landers, A. Doerner, R. Belkacem, A. TI Formation of inner-shell autoionizing CO+ states below the CO2+ threshold SO PHYSICAL REVIEW A LA English DT Article ID SPECTROSCOPY; PHOTOIONIZATION; O-2 AB We report a kinematically complete experiment on the production of CO+ autoionizing states following photoionization of carbon monoxide below its vertical double-ionization threshold. Momentum imaging spectroscopy is used to measure the energies and body-frame angular distributions of both photo-and autoionization electrons, as well as the kinetic energy release (KER) of the atomic ions. These data, in combination with ab initio theoretical calculations, provide insight into the nature of the cation states produced and their subsequent dissociation into autoionizing atomic (O*) fragments. C1 [Osipov, T.; Weber, Th.; Rescigno, T. N.; Lee, S. Y.; Schoeffler, M.; Sturm, F. P.; Belkacem, A.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Orel, A. E.] Univ Calif Davis, Dept Appl Sci, Davis, CA 95616 USA. [Sturm, F. P.; Schoessler, S.; Lenz, U.; Havermeier, T.; Kuehnel, M.; Jahnke, T.; Doerner, R.] Goethe Univ Frankfurt, Inst Kernphys, D-60438 Frankfurt, Germany. [Williams, J. B.; Landers, A.] Auburn Univ, Dept Phys, Auburn, AL 36849 USA. [Ray, D.] Kansas State Univ, JR Macdonald Lab, Manhattan, KS 66506 USA. RP Osipov, T (reprint author), Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RI Doerner, Reinhard/A-5340-2008; Landers, Allen/C-1213-2013; Weber, Thorsten/K-2586-2013; Schoeffler, Markus/B-6261-2008 OI Doerner, Reinhard/0000-0002-3728-4268; Weber, Thorsten/0000-0003-3756-2704; Schoeffler, Markus/0000-0001-9214-6848 FU US DOE [DE-AC02-05CH11231]; DAAD; DFG; Humboldt Foundation FX This work as performed under the auspices of the US DOE under Contract No. DE-AC02-05CH11231 and supported by the US DOE Office of Basic Energy Sciences, Division of Chemical Sciences. Support by DAAD and DFG are gratefully acknowledged. M. S. thanks the Humboldt Foundation for financial support. NR 16 TC 10 Z9 10 U1 1 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 J9 PHYS REV A JI Phys. Rev. A PD JAN PY 2010 VL 81 IS 1 AR 011402 DI 10.1103/PhysRevA.81.011402 PG 4 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 548WX UT WOS:000274001500009 ER PT J AU Truong, NX Hilse, P Gode, S Przystawik, A Doppner, T Fennel, T Bornath, T Tiggesbaumker, J Schlanges, M Gerber, G Meiwes-Broer, KH AF Truong, N. X. Hilse, P. Goede, S. Przystawik, A. Doeppner, T. Fennel, Th. Bornath, Th. Tiggesbaeumker, J. Schlanges, M. Gerber, G. Meiwes-Broer, K. H. TI Optimal control of the strong-field ionization of silver clusters in helium droplets SO PHYSICAL REVIEW A LA English DT Article ID INTENSE LASER FIELDS; METAL-CLUSTERS; ATOMIC CLUSTERS; PULSES; EXPLOSIONS; ABSORPTION; EMISSION; DYNAMICS AB Optimal control techniques combined with femtosecond laser pulse shaping are applied to steer and enhance the strong-field induced emission of highly charged atomic ions from silver clusters embedded in helium nanodroplets. With light fields shaped in amplitude and phase we observe a substantial increase of the Ag(q+) yield for q > 10 when compared to bandwidth-limited and optimally stretched pulses. A remarkably simple double-pulse structure, containing a low-intensity prepulse and a stronger main pulse, turns out to produce the highest atomic charge states up to Ag(20+). A negative chirp during the main pulse hints at dynamic frequency locking to the cluster plasmon. A numerical optimal control study on pure silver clusters with a nanoplasma model converges to a similar pulse structure and corroborates that the optimal light field adapts to the resonant excitation of cluster surface plasmons for efficient ionization. C1 [Truong, N. X.; Goede, S.; Przystawik, A.; Doeppner, T.; Fennel, Th.; Bornath, Th.; Tiggesbaeumker, J.; Meiwes-Broer, K. H.] Univ Rostock, Inst Phys, D-18051 Rostock, Germany. [Hilse, P.; Schlanges, M.] Ernst Moritz Arndt Univ Greifswald, Inst Phys, D-17489 Greifswald, Germany. [Gerber, G.] Univ Wurzburg, Inst Phys, D-97074 Wurzburg, Germany. [Doeppner, T.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Truong, NX (reprint author), Univ Rostock, Inst Phys, D-18051 Rostock, Germany. EM josef.tiggesbaeumker@uni-rostock.de FU Deutsche Forschungsgemeinschaft [SFB 652] FX Main parts of the helium droplet machine were provided by J. P. Toennies and his group at the MPI Gottingen. Financial support by the Deutsche Forschungsgemeinschaft within the Sonderforschungsbereich SFB 652 is gratefully acknowledged. NR 35 TC 15 Z9 15 U1 0 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 J9 PHYS REV A JI Phys. Rev. A PD JAN PY 2010 VL 81 IS 1 AR 013201 DI 10.1103/PhysRevA.81.013201 PG 7 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 548WX UT WOS:000274001500079 ER PT J AU Andraka, B McBriarty, ME Rotundu, CR AF Andraka, B. McBriarty, M. E. Rotundu, C. R. TI Low-temperature anomalies in the specific heat of PrOs4Sb12 SO PHYSICAL REVIEW B LA English DT Article ID SPIN-LATTICE-RELAXATION; CAPACITY; BISMUTH; FIELD AB The electronic specific heat of PrOs4Sb12 was measured on different single crystals at temperatures down to 40 mK using a relaxation method. All investigated crystals exhibited a broad shoulder in specific heat near 0.4 K. This anomaly seems to be related to that found previously in Sb nuclear quadrupolar resonance study and possibly in lower critical-field and penetration-depth measurements. The onset of the specific-heat anomaly shows no response to magnetic fields as large as 0.2 T. These results imply a modification of superconducting properties (and normal-state properties) rather than appearance of a new superconducting phase at low temperatures. Our measurement detects low-temperature nuclear specific heat, which we suggest might be due to nuclear quadrupolar specific heat of Pr atoms, frozen in off-center positions. C1 [Andraka, B.; McBriarty, M. E.] Univ Florida, Dept Phys, Gainesville, FL 32611 USA. [Rotundu, C. R.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Andraka, B (reprint author), Univ Florida, Dept Phys, POB 118440, Gainesville, FL 32611 USA. EM andraka@phys.ufl.edu RI McBriarty, Martin/B-9690-2011; OI Rotundu, Costel/0000-0002-1571-8352; McBriarty, Martin/0000-0002-7802-3267 FU U.S. Department of Energy [DE-FG02-99ER45748]; National High Magnetic Field Laboratory; U.S. Department of Energy; National Science Foundation FX The authors thank Y. Takano and P. Kumar for useful discussions. This work has been supported by the U.S. Department of Energy, Grant No. DE-FG02-99ER45748 and the National High Magnetic Field Laboratory, jointly supported by the U.S. Department of Energy and the National Science Foundation. NR 28 TC 2 Z9 2 U1 1 U2 15 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD JAN PY 2010 VL 81 IS 2 AR 024517 DI 10.1103/PhysRevB.81.024517 PG 5 WC Physics, Condensed Matter SC Physics GA 548XC UT WOS:000274002100091 ER PT J AU Busser, CA Martins, GB Ribeiro, LC Vernek, E Anda, EV Dagotto, E AF Buesser, C. A. Martins, G. B. Ribeiro, L. Costa Vernek, E. Anda, E. V. Dagotto, E. TI Numerical analysis of the spatial range of the Kondo effect SO PHYSICAL REVIEW B LA English DT Article ID RENORMALIZATION-GROUP APPROACH; DILUTE MAGNETIC-ALLOYS; STATIC PROPERTIES; SCREENING CLOUD; ANDERSON MODEL; SYSTEMS; RESONANCE; IMPURITY AB The spatial length of the Kondo screening is still a controversial issue related to Kondo physics. While renormalization-group and Bethe-Ansatz solutions have provided detailed information about the thermodynamics of magnetic impurities, they are insufficient to study the effect on the surrounding electrons, i.e., the spatial range of the correlations created by the Kondo effect between the localized magnetic moment and the conduction electrons. The objective of this work is to present a quantitative way of measuring the extension of these correlations by studying their effect directly on the local density of states (LDOS) at arbitrary distances from the impurity. The numerical techniques used, the embedded cluster approximation, the finite-U slave bosons, and numerical renormalization group, calculate the Green's functions in real space. With this information, one can calculate how the local density of states away from the impurity is modified by its presence, below and above the Kondo temperature, and then estimate the range of the disturbances in the noninteracting Fermi sea due to the Kondo effect, and how it changes with the Kondo temperature T(K). The results obtained agree with results obtained through spin-spin correlations, showing that the LDOS captures the phenomenology of the Kondo cloud as well. C1 [Buesser, C. A.; Martins, G. B.] Oakland Univ, Dept Phys, Rochester, MI 48309 USA. [Ribeiro, L. Costa; Anda, E. V.] Pontificia Univ Catolica Rio de Janeiro, Dept Fis, BR-22453900 Rio De Janeiro, RJ, Brazil. [Vernek, E.] Univ Fed Uberlandia, Inst Fis, BR-38400902 Uberlandia, MG, Brazil. [Dagotto, E.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Dagotto, E.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. RP Busser, CA (reprint author), Oakland Univ, Dept Phys, Rochester, MI 48309 USA. RI Vernek, Edson/H-3601-2012; Busser, Carlos/K-1017-2014; Martins, George/C-9756-2012 OI Busser, Carlos/0000-0002-0353-7490; Martins, George/0000-0001-7846-708X FU FAPERJ; CNPq; CAPES; NSF [DMR-0710529, DMR-0706020]; Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, U. S. Department of Energy FX The authors wish to acknowledge fruitful discussions with K. A. Al-Hassanieh, G. Chiappe, E. H. Kim, and especially F. Heidrich-Meisner. E.V.A. thanks the Brazilian agencies FAPERJ, CNPq (CIAM project), and CAPES for financial support. G.B.M. and C.A.B. acknowledge support from NSF under Grant No. DMR-0710529. E. D. is supported by the NSF under Grant No. DMR-0706020 and the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, U. S. Department of Energy. E. V. acknowledges support from CNPq (CIAM project). NR 37 TC 20 Z9 20 U1 0 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JAN PY 2010 VL 81 IS 4 AR 045111 DI 10.1103/PhysRevB.81.045111 PG 13 WC Physics, Condensed Matter SC Physics GA 548XG UT WOS:000274002500042 ER PT J AU Canfield, PC Caudle, ML Ho, CS Kreyssig, A Nandi, S Kim, MG Lin, X Kracher, A Dennis, KW McCallum, RW Goldman, AI AF Canfield, P. C. Caudle, M. L. Ho, C-S. Kreyssig, A. Nandi, S. Kim, M. G. Lin, X. Kracher, A. Dennis, K. W. McCallum, R. W. Goldman, A. I. TI Solution growth of a binary icosahedral quasicrystal of Sc12Zn88 SO PHYSICAL REVIEW B LA English DT Article ID SINGLE-CRYSTALS; APPROXIMANTS; ALLOYS; SYSTEM; YB AB We report the discovery of a binary icosahedral phase in a Sc-Zn alloy obtained through solution-growth, producing millimeter-sized, facetted, single grain quasicrystals that exhibit different growth morphologies, pentagonal dodecahedra, and rhombic triacontahedra, under only marginally different growth conditions. These two morphologies manifest different degrees of quasicrystalline order. The discovery of i-Sc12Zn88 suggests that a re-examination of binary phase diagrams at compositions close to crystalline approximant structures may reveal other binary quasicrystalline phases. C1 [Canfield, P. C.; Ho, C-S.; Kreyssig, A.; Nandi, S.; Kim, M. G.; Lin, X.; Kracher, A.; Dennis, K. W.; McCallum, R. W.; Goldman, A. I.] Iowa State Univ, Ames Lab, US DOE, Ames, IA 50011 USA. [Canfield, P. C.; Caudle, M. L.; Kreyssig, A.; Nandi, S.; Kim, M. G.; Lin, X.; Goldman, A. I.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [McCallum, R. W.] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. RP Canfield, PC (reprint author), Iowa State Univ, Ames Lab, US DOE, Ames, IA 50011 USA. EM canfield@ameslab.gov; goldman@ameslab.gov RI Kim, Min Gyu/B-8637-2012; Canfield, Paul/H-2698-2014 OI Kim, Min Gyu/0000-0001-7676-454X; FU U.S. Department of Energy [DE-AC0207CH11358, DE-AC0206CH11357] FX The authors gratefully acknowledge the assistance of Douglas Robinson with the high-energy x-ray diffraction measurements and Thomas Lograsso, Matthew Kramer, and Patricia Thiel for useful discussions. We acknowledge the Ames Laboratory Materials Preparation Center for the elemental scandium used in this study. Work at the Ames Laboratory was supported by the U.S. Department of Energy, Basic Energy Sciences under Contract No. DE-AC0207CH11358. The use of the Advanced Photon Source was supported by the U.S. DOE under Contract No. DE-AC0206CH11357. NR 22 TC 20 Z9 20 U1 1 U2 12 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD JAN PY 2010 VL 81 IS 2 AR 020201 DI 10.1103/PhysRevB.81.020201 PG 4 WC Physics, Condensed Matter SC Physics GA 548XC UT WOS:000274002100004 ER PT J AU Chmaissem, O Brown, DE Ren, Y Kolesnik, S Mais, J Dabrowski, B AF Chmaissem, O. Brown, D. E. Ren, Y. Kolesnik, S. Mais, J. Dabrowski, B. TI Competing magnetic ground states in the A-site layer-ordered manganite La1-xBa1+xMn2O6 SO PHYSICAL REVIEW B LA English DT Article ID DOPED MANGANITES; PHASE-SEPARATION; THIN-FILMS; CHARGE; FIELD; COEXISTENCE; TRANSITION AB Using neutron and x-ray diffraction, we report the discovery of competing ground states near a multicritical point in A-site layer-ordered La1-xBa1+xMn2O6 materials. We demonstrate the dual effects of deliberate disorder on the system's stability, the freezing of the competing states, and the drastic reduction in magnetic fields required for the suppression of charge-and orbital-ordered phases. Our work suggests that quenched disorder is not the primary reason for phase separation and magnetoresistance and that increased doping leads to electronic phase separation. C1 [Chmaissem, O.; Brown, D. E.; Ren, Y.; Kolesnik, S.; Mais, J.; Dabrowski, B.] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. [Chmaissem, O.; Dabrowski, B.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Ren, Y.] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA. RP Chmaissem, O (reprint author), No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. FU Division of Materials Sciences and Engineering Division of the Office of Basic Energy Sciences, U.S. Department of Energy, Office of Science [DE-AC02-06CH11357]; NSF [DMR-0706610] FX Work at Argonne was supported by the Division of Materials Sciences and Engineering Division of the Office of Basic Energy Sciences, U.S. Department of Energy, Office of Science under Contract No. DE-AC02-06CH11357. Work at NIU was supported by NSF under Grant No. DMR-0706610. NR 45 TC 0 Z9 0 U1 0 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JAN 1 PY 2010 VL 81 IS 1 AR 012407 DI 10.1103/PhysRevB.81.012407 PG 4 WC Physics, Condensed Matter SC Physics GA 600BJ UT WOS:000277958000003 ER PT J AU Christensen, NE Svane, A Laskowski, R Palanivel, B Modak, P Chantis, AN van Schilfgaarde, M Kotani, T AF Christensen, N. E. Svane, A. Laskowski, R. Palanivel, B. Modak, P. Chantis, A. N. van Schilfgaarde, M. Kotani, T. TI Electronic properties of 3R-CuAlO2 under pressure: Three theoretical approaches SO PHYSICAL REVIEW B LA English DT Article ID AB-INITIO; LATTICE-DYNAMICS; BAND THEORY; THIN-FILMS; CUALO2; SEMICONDUCTORS; SPECTRA; TIN AB The pressure variation in the structural parameters, u and c/a, of the delafossite CuAlO2 is calculated within the local-density approximation (LDA). Further, the electronic structures as obtained by different approximations are compared: LDA, LDA+U, and a recently developed "quasiparticle self-consistent GW" (QSGW) approximation. The structural parameters obtained by the LDA agree very well with experiments but, as expected, gaps in the formal band structure are underestimated as compared to optical experiments. The (in LDA too high lying) Cu 3d states can be down shifted by LDA+U. The magnitude of the electric field gradient (EFG) as obtained within the LDA is far too small. It can be "fitted" to experiments in LDA+U but a simultaneous adjustment of the EFG and the gap cannot be obtained with a single U value. QSGW yields reasonable values for both quantities. LDA and QSGW yield significantly different values for some of the band-gap deformation potentials but calculations within both approximations predict that 3R-CuAlO2 remains an indirect-gap semiconductor at all pressures in its stability range 0-36 GPa, although the smallest direct gap has a negative pressure coefficient. C1 [Christensen, N. E.; Svane, A.] Aarhus Univ, Dept Phys & Astron, DK-8000 Aarhus C, Denmark. [Laskowski, R.] Vienna Univ Technol, Inst Mat Chem, A-1060 Vienna, Austria. [Palanivel, B.] Pondicherry Engn Coll, Dept Phys, Pondicherry 605014, India. [Modak, P.] Bhabha Atom Res Ctr, High Pressure Phys Div, Bombay 400085, Maharashtra, India. [Chantis, A. N.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [van Schilfgaarde, M.] Arizona State Univ, Sch Mat, Tempe, AZ 85287 USA. [Kotani, T.] Tottori Univ, Dept Appl Phys & Math, Tottori 6808552, Japan. RP Christensen, NE (reprint author), Aarhus Univ, Dept Phys & Astron, DK-8000 Aarhus C, Denmark. RI kotani, takao/G-4355-2011; OI kotani, takao/0000-0003-1693-7052; Chantis, Athanasios/0000-0001-7933-0579 FU Danish Agency for Science Technology and Innovation [272-06-0432]; Danish Centre for Scientific Computing and the Faculty of Natural Science, Aarhus University FX This work was supported by the Danish Agency for Science Technology and Innovation under Grant No. 272-06-0432. The calculations were carried out at the Centre for Scientific Computing in Aarhus, financed by the Danish Centre for Scientific Computing and the Faculty of Natural Science, Aarhus University. NR 47 TC 28 Z9 29 U1 1 U2 16 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD JAN PY 2010 VL 81 IS 4 AR 045203 DI 10.1103/PhysRevB.81.045203 PG 9 WC Physics, Condensed Matter SC Physics GA 548XG UT WOS:000274002500057 ER PT J AU Daghofer, M Nicholson, A Moreo, A Dagotto, E AF Daghofer, Maria Nicholson, Andrew Moreo, Adriana Dagotto, Elbio TI Three orbital model for the iron-based superconductors SO PHYSICAL REVIEW B LA English DT Article ID HIGH-TEMPERATURE SUPERCONDUCTORS; LAYERED QUATERNARY COMPOUND; PHASE-DIAGRAM; BA0.6K0.4FE2AS2; SPECTROSCOPY; INSTABILITY; SYMMETRY; GAPS AB The theoretical need to study the properties of the Fe-based high-T-c superconductors using reliable many-body techniques has highlighted the importance of determining what is the minimum number of orbital degrees of freedom that will capture the physics of these materials. While the shape of the Fermi surface (FS) obtained with the local-density approximation (LDA) can be reproduced by a two-orbital model, it has been argued that the bands that cross the chemical potential result from the strong hybridization of three of the Fe 3d orbitals. For this reason, a three orbital Hamiltonian for LaOFeAs obtained with the Slater-Koster formalism by considering the hybridization of the As p orbitals with the Fe d(xz), d(yz), and d(xy) orbitals is discussed here. This model reproduces qualitatively the FS shape and orbital composition obtained by LDA calculations for undoped LaOFeAs when four electrons per Fe are considered. Within a mean-field approximation, its magnetic and orbital properties in the undoped case are here described for intermediate values of J/U. Increasing the Coulomb repulsion U at zero temperature, four different regimes are obtained: (1) paramagnetic, (2) magnetic (pi, 0) spin order, (3) the same (pi, 0) spin order but now including orbital order, and finally (4) a magnetic and orbital ordered insulator. The spin-singlet pairing operators allowed by the lattice and orbital symmetries are also constructed. It is found that for pairs of electrons involving up to diagonal nearest-neighbors sites, the only fully gapped and purely intraband spin-singlet pairing operator is given by Delta(k)=f(k)Sigma(alpha)d(k,alpha,up arrow)d(-k,alpha,down arrow) with f(k) = 1 or cos k(x) cos k(y) which would arise only if the electrons in all different orbitals couple with equal strength to the source of pairing. C1 Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Daghofer, M (reprint author), IFW Dresden, POB 270116, D-01171 Dresden, Germany. EM m.daghofer@ifw-dresden.de RI Daghofer, Maria/C-5762-2008 OI Daghofer, Maria/0000-0001-9434-8937 NR 72 TC 130 Z9 130 U1 2 U2 19 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JAN PY 2010 VL 81 IS 1 AR 014511 DI 10.1103/PhysRevB.81.014511 PG 18 WC Physics, Condensed Matter SC Physics GA 548WZ UT WOS:000274001800075 ER PT J AU Dobrich, KM Bostwick, A Rotenberg, E Kaindl, G AF Doebrich, K. M. Bostwick, A. Rotenberg, E. Kaindl, G. TI Change of the Fermi surface of Gd metal upon magnetic ordering as seen via angle-resolved photoelectron spectroscopy SO PHYSICAL REVIEW B LA English DT Article ID ELECTRONIC-STRUCTURE; LANTHANIDE METALS; BAND-STRUCTURE; GADOLINIUM; GD(0001) AB Fermi surface and valence-band structure of Gd metal were studied in a complete Brillouin zone by angle-resolved photoelectron spectroscopy in both the paramagnetic and the ferromagnetic phases, revealing substantial changes upon magnetic ordering. These comprehensive experimental Fermi-surface data represent a reference for various theoretical results and are essential for an improved understanding of the origin of magnetic ordering in lanthanide metals. C1 [Doebrich, K. M.; Kaindl, G.] Free Univ Berlin, Inst Expt Phys, D-14195 Berlin, Germany. [Doebrich, K. M.] Max Born Inst, D-12489 Berlin, Germany. [Bostwick, A.; Rotenberg, E.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Dobrich, KM (reprint author), Free Univ Berlin, Inst Expt Phys, Arnimallee 14, D-14195 Berlin, Germany. RI Rotenberg, Eli/B-3700-2009; Bostwick, Aaron/E-8549-2010 OI Rotenberg, Eli/0000-0002-3979-8844; FU Deutsche Forschungsgemeinschaft [STA 413/3-1]; German Bundesminister fur Bildung und Forschung [05 KS1KEC/2]; U.S. Department of Energy [DEAC0376SF00098] FX The authors acknowledge contributions by Kai Starke (deceased) in the early stages of this work. This work was supported by the Deutsche Forschungsgemeinschaft, Project No. STA 413/3-1, the German Bundesminister fur Bildung und Forschung, Project No. 05 KS1KEC/2, and the U.S. Department of Energy under Contract No. DEAC0376SF00098. NR 19 TC 14 Z9 14 U1 2 U2 14 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JAN PY 2010 VL 81 IS 1 AR 012401 DI 10.1103/PhysRevB.81.012401 PG 4 WC Physics, Condensed Matter SC Physics GA 548WZ UT WOS:000274001800009 ER PT J AU Fang, MG Yang, JH Balakirev, FF Kohama, Y Singleton, J Qian, B Mao, ZQ Wang, HD Yuan, HQ AF Fang, Minghu Yang, Jinhu Balakirev, F. F. Kohama, Y. Singleton, J. Qian, B. Mao, Z. Q. Wang, Hangdong Yuan, H. Q. TI Weak anisotropy of the superconducting upper critical field in Fe1.11Te0.6Se0.4 single crystals SO PHYSICAL REVIEW B LA English DT Article ID LIFEAS AB We have determined the resistive upper critical field H-c2 for single crystals of the superconductor Fe1.11Te0.6Se0.4 using pulsed magnetic fields of up to 60 T. A rather high zero-temperature upper critical field of mu H-0(c2)(0)approximate to 47 T is obtained in spite of the relatively low superconducting transition temperature (T-c approximate to 14 K). Moreover, Hc2 follows an unusual temperature dependence, becoming almost independent of the magnetic field orientation as the temperature T -> 0. We suggest that the isotropic superconductivity in Fe1.11Te0.6Se0.4 is a consequence of its three-dimensional Fermi-surface topology. An analogous result was obtained for (Ba, K)Fe2As2, indicating that all layered iron-based superconductors exhibit generic behavior that is significantly different from that of the "high-Tc" cuprates. C1 [Fang, Minghu; Yang, Jinhu; Wang, Hangdong; Yuan, H. Q.] Zhejiang Univ, Dept Phys, Hangzhou 310027, Zhejiang, Peoples R China. [Balakirev, F. F.; Kohama, Y.; Singleton, J.] Los Alamos Natl Lab, NHMFL, Los Alamos, NM 87545 USA. [Qian, B.; Mao, Z. Q.] Tulane Univ, Dept Phys, New Orleans, LA 70118 USA. RP Yuan, HQ (reprint author), Zhejiang Univ, Dept Phys, Hangzhou 310027, Zhejiang, Peoples R China. EM hqyuan@zju.edu.cn FU National Science Foundation of China; National Basic Research Program of China; PCSIRT of the Ministry of Education of China; Zhejiang Provincial Natural Science Foundation of China; DOE BES; NHMFL-UCGP FX This work was supported by the National Science Foundation of China, the National Basic Research Program of China (973 program), the PCSIRT of the Ministry of Education of China, Zhejiang Provincial Natural Science Foundation of China, the DOE BES program "Science in 100 T" and the NHMFL-UCGP. Work at NHMFL-LANL is performed under the auspices of the National Science Foundation, Department of Energy and State of Florida. NR 30 TC 90 Z9 91 U1 1 U2 27 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD JAN PY 2010 VL 81 IS 2 AR 020509 DI 10.1103/PhysRevB.81.020509 PG 4 WC Physics, Condensed Matter SC Physics GA 548XC UT WOS:000274002100026 ER PT J AU Feygenson, M Kou, A Kreno, LE Tiano, AL Patete, JM Zhang, F Kim, MS Solovyov, V Wong, SS Aronson, MC AF Feygenson, Mikhail Kou, Angela Kreno, Lauren E. Tiano, Amanda L. Patete, Jonathan M. Zhang, Fen Kim, Moo Sung Solovyov, Vyacheslav Wong, Stanislaus S. Aronson, Meigan C. TI Properties of highly crystalline NiO and Ni nanoparticles prepared by high-temperature oxidation and reduction SO PHYSICAL REVIEW B LA English DT Article ID EXCHANGE BIAS; NICKEL-OXIDE; MAGNETIC-PROPERTIES; CHEMICAL-SYNTHESIS; CURIE-TEMPERATURE; PURE NICKEL; FILMS; ANISOTROPY; SIZE; NANOCRYSTALS AB We describe here the use of high-temperature oxidation and reduction to produce highly crystalline nanoparticles of Ni and NiO. Starting with an amorphous Ni powder, we demonstrate that oxidation at 900 degrees C produces faceted NiO nanocrystals with sizes ranging from 20 to 60 nm. High-resolution transmission electron microscopy measurements indicate near-perfect atomic order, truncated by (200) surfaces. Magnetization measurements reveal that the Neel temperature of these NiO nanoparticles is 480 K, substantially reduced by finite-size effects from the bulk value of 523 K. The magnetization of these faceted NiO nanoparticles does not saturate in fields as large as 14 T while a loop offset is observed which increases from 1000 Oe at 300 K to its maximum value of 3500 Oe at 50 K. We have used high-temperature reduction to transform the faceted NiO nanoparticles into highly ordered Ni nanoparticles, with a Curie temperature of 720 K and blocking temperatures in excess of 350 K. Subsequent efforts to reoxidize these Ni nanoparticles into the core-shell morphology found that the Ni nanoparticles are much more resistant to oxidation than the original Ni powder, perhaps due to the relative crystalline perfection of the former. At 800 degrees C, an unusual surface roughening and subsequent instability was observed, where 50-nm-diameter NiO rods grow from the Ni surfaces. We have demonstrated that high-temperature oxidation and reduction in Ni and NiO are both reversible to some extent and are highly effective for creating the highly crystalline nanomaterials required for applications such as exchange-bias devices. C1 [Feygenson, Mikhail; Kou, Angela; Kreno, Lauren E.; Kim, Moo Sung; Solovyov, Vyacheslav; Wong, Stanislaus S.; Aronson, Meigan C.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. [Tiano, Amanda L.; Patete, Jonathan M.; Zhang, Fen; Wong, Stanislaus S.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. [Aronson, Meigan C.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. RP Aronson, MC (reprint author), Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. EM maronson@bnl.gov RI Zhang, Fen/G-5015-2010; Solovyov, Vyacheslav/A-7724-2009; Feygenson, Mikhail /H-9972-2014; OI Feygenson, Mikhail /0000-0002-0316-3265; Solovyov, Vyacheslav/0000-0003-1879-9802 NR 43 TC 38 Z9 38 U1 2 U2 33 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD JAN PY 2010 VL 81 IS 1 AR 014420 DI 10.1103/PhysRevB.81.014420 PG 9 WC Physics, Condensed Matter SC Physics GA 548WZ UT WOS:000274001800062 ER PT J AU Fishman, RS Okamoto, S AF Fishman, Randy S. Okamoto, Satoshi TI Noncollinear magnetic phases of a triangular-lattice antiferromagnet and of doped CuFeO2 SO PHYSICAL REVIEW B LA English DT Article ID FERROELECTRICITY; MULTIFERROICS AB We obtain the noncollinear ground states of a triangular-lattice antiferromagnet with exchange interactions up to third nearest neighbors as a function of the single-ion anisotropy D. At a critical value of D, the collinear up arrow up arrow down arrow down arrow phase transforms into a complex noncollinear phase with odd-order harmonics of the fundamental ordering wavevector Q. The observed elastic peaks at 2 pi x - Q in both Al- and Ga-doped CuFeO2 are explained by a "scalene" distortion of the triangular-lattice produced by the repulsion of neighboring oxygen atoms. C1 [Fishman, Randy S.; Okamoto, Satoshi] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Fishman, RS (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RI Okamoto, Satoshi/G-5390-2011; Fishman, Randy/C-8639-2013 OI Okamoto, Satoshi/0000-0002-0493-7568; FU U.S. Department of Energy FX This research was sponsored by the Division of Materials Sciences and Engineering of the U.S. Department of Energy. NR 28 TC 21 Z9 21 U1 2 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD JAN PY 2010 VL 81 IS 2 AR 020402 DI 10.1103/PhysRevB.81.020402 PG 4 WC Physics, Condensed Matter SC Physics GA 548XC UT WOS:000274002100007 ER PT J AU Gann, RD Cao, JX Wu, RQ Wen, JS Xu, ZJ Gu, GD Yarmoff, JA AF Gann, R. D. Cao, J. X. Wu, R. Q. Wen, Jinsheng Xu, Zhijun Gu, G. D. Yarmoff, J. A. TI Adsorption of iodine and potassium on Bi2Sr2CaCu2O8+delta investigated by low-energy alkali-ion scattering SO PHYSICAL REVIEW B LA English DT Article ID RESONANT CHARGE-TRANSFER; T-C SUPERCONDUCTOR; ELECTRON-MICROSCOPY; MOLECULAR-DYNAMICS; CESIATED SURFACES; ATOMIC-SCALE; NEUTRALIZATION; COLLISIONS; EXCHANGE; LI-7(+) AB The adsorption of K and I on the surface of the high-T-c cuprate BSCCO-2212 is investigated with low-energy (0.8 to 2 keV) Na+ ion scattering and density functional theory (DFT). Samples were cleaved in ultrahigh vacuum and charge-resolved spectra of the scattered ions were collected with time-of-flight. The spectra contain a single peak representing Na scattered from Bi, as the clean surfaces are terminated by BiO. The neutralization of scattered Na depends on the local potential above the target site, and the angular dependence indicates that the clean surface has an inhomogeneous potential. Neutralization is dependent on the coverage of I, but independent of K adsorption. DFT suggests high-symmetry sites for the adsorption of both I and K, and that the potential above the Bi sites is altered by I by an amount consistent with the experimental findings, while the potential is not affected by K adsorption. DFT also enables an experimental determination of the "freezing distance," which is the effective point beyond which charge exchange does not occur, to be 1.6 +/- 0.1 angstrom from the outermost Bi layer. C1 [Gann, R. D.; Yarmoff, J. A.] Univ Calif Riverside, Dept Phys, Riverside, CA 92521 USA. [Cao, J. X.; Wu, R. Q.] Univ Calif Irvine, Dept Phys, Irvine, CA 92697 USA. [Wen, Jinsheng; Xu, Zhijun; Gu, G. D.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. RP Yarmoff, JA (reprint author), Univ Calif Riverside, Dept Phys, Riverside, CA 92521 USA. EM yarmoff@ucr.edu RI Wen, Jinsheng/F-4209-2010; xu, zhijun/A-3264-2013; Wu, Ruqian/C-1395-2013; Gu, Genda/D-5410-2013 OI Wen, Jinsheng/0000-0001-5864-1466; xu, zhijun/0000-0001-7486-2015; Wu, Ruqian/0000-0002-6156-7874; Gu, Genda/0000-0002-9886-3255 FU U. S. Army Research Laboratory; U. S. Army Research Office [52723PH]; Department of Energy [DE-AC0298CH10886] FX The authors would like to thank A. N. Pasupathy for his guidance in mounting and cleaving the BSCCO samples and to M. A. Karolewski for his assistance with the scattering simulations. This material is based on work supported by, or in part by, the U. S. Army Research Laboratory and the U. S. Army Research Office under Contract/Grant No. 52723PH. The work at BNL was supported by Department of Energy under contract No. DE-AC0298CH10886. NR 27 TC 4 Z9 4 U1 1 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JAN PY 2010 VL 81 IS 3 AR 035418 DI 10.1103/PhysRevB.81.035418 PG 7 WC Physics, Condensed Matter SC Physics GA 548XE UT WOS:000274002300108 ER PT J AU Glatz, A Beloborodov, IS AF Glatz, Andreas Beloborodov, I. S. TI Single grain heating due to inelastic cotunneling SO PHYSICAL REVIEW B LA English DT Article ID THERMOELECTRIC-MATERIALS; NANOSTRUCTURES; DEVICES AB We study heating effects of a single metallic quantum dot weakly coupled to two leads. The dominant mechanism for heating at low temperatures is due to inelastic electron cotunneling processes. We calculate the grain temperature profile as a function of grain parameters, bias voltage, and time and show that for nanoscale size grains the heating effects are pronounced and easily measurable in experiments. C1 [Glatz, Andreas] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Beloborodov, I. S.] Calif State Univ Northridge, Dept Phys & Astron, Northridge, CA 91330 USA. RP Glatz, A (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. FU Office of Science, U.S. Department of Energy [DE-AC02-06CH11357]; Research Corporation for Science Advancement FX A.G. is grateful to N.M. Chtchelkatchev, K.A. Matveev, and V. M. Vinokur for useful discussions. A.G. was supported by the Office of Science, U.S. Department of Energy under the Contract No. DE-AC02-06CH11357. I.B. was supported by an award from Research Corporation for Science Advancement. NR 21 TC 9 Z9 9 U1 1 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD JAN PY 2010 VL 81 IS 3 AR 033408 DI 10.1103/PhysRevB.81.033408 PG 4 WC Physics, Condensed Matter SC Physics GA 548XE UT WOS:000274002300024 ER PT J AU Haraldsen, JT Fishman, RS AF Haraldsen, Jason T. Fishman, Randy S. TI Control of chirality normal to the interface of hexagonal magnetic and nonmagnetic layers SO PHYSICAL REVIEW B LA English DT Article ID ANISOTROPIC SUPEREXCHANGE INTERACTION; POLARIZED NEUTRON-SCATTERING; WEAK FERROMAGNETISM; SPIN CHIRALITY AB We study the net chirality created by the Dzyaloshinskii-Moriya interaction (DMI) at the boundary between hexagonal layers of magnetic and nonmagnetic materials. It is shown that another mechanism besides elastic torsion is required to understand the change in chirality observed in Dy/Y multilayers during field cooling. This Rapid Communication demonstrates that, due to the overlap between magnetic and nonmagnetic atoms, interfacial steps may produce a DMI normal to the interface in magnetic heterostructures. C1 [Haraldsen, Jason T.; Fishman, Randy S.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Haraldsen, JT (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RI Haraldsen, Jason/B-9809-2012; Fishman, Randy/C-8639-2013 OI Haraldsen, Jason/0000-0002-8641-5412; FU Laboratory Directed Research and Development Program of Oak Ridge National Laboratory; U.S. Department of Energy [DE-AC0500OR22725] FX We would like to acknowledge useful discussions with Z. Zhang. This research was sponsored by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory, managed by UT-Battelle, LLC for the U.S. Department of Energy under Contract No. DE-AC0500OR22725 and by the Division of Materials Science and Engineering and the Division of Scientific User Facilities of the U.S. DOE. NR 28 TC 3 Z9 3 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD JAN PY 2010 VL 81 IS 2 AR 020404 DI 10.1103/PhysRevB.81.020404 PG 4 WC Physics, Condensed Matter SC Physics GA 548XC UT WOS:000274002100009 ER PT J AU Hayward, TJ Bryan, MT Fry, PW Fundi, PM Gibbs, MRJ Allwood, DA Im, MY Fischer, P AF Hayward, T. J. Bryan, M. T. Fry, P. W. Fundi, P. M. Gibbs, M. R. J. Allwood, D. A. Im, M-Y. Fischer, P. TI Direct imaging of domain-wall interactions in Ni80Fe20 planar nanowires SO PHYSICAL REVIEW B LA English DT Article ID X-RAY MICROSCOPY; PROPAGATION; DYNAMICS AB We have investigated magnetostatic interactions between domain walls in Ni80Fe20 planar nanowires using magnetic soft x-ray microscopy and micromagnetic simulations. In addition to significant monopole-like attraction and repulsion effects we observe that there is coupling of the magnetization configurations of the walls. This is explained in terms of an interaction energy that depends not only on the distance between the walls, but also upon their internal magnetization structure. C1 [Hayward, T. J.; Bryan, M. T.; Fundi, P. M.; Gibbs, M. R. J.; Allwood, D. A.] Univ Sheffield, Dept Mat Engn, Sheffield S1 3JD, S Yorkshire, England. [Fry, P. W.] Univ Sheffield, Nanosci & Technol Ctr, Sheffield S3 7HQ, S Yorkshire, England. [Im, M-Y.; Fischer, P.] Univ Calif Berkeley, Lawrence Berkeley Lab, Ctr Xray Opt, Berkeley, CA 94720 USA. RP Hayward, TJ (reprint author), Univ Sheffield, Dept Mat Engn, Sheffield S1 3JD, S Yorkshire, England. RI Fischer, Peter/A-3020-2010; MSD, Nanomag/F-6438-2012 OI Fischer, Peter/0000-0002-9824-9343; FU EPSRC-GB [GR/T02959/01, EP/F024886/1, EP/F069359/1, EP/D056683/1]; U.S. Department of Energy FX This work was supported by EPSRC-GB (Grants No. GR/T02959/01, No. EP/F024886/1, No. EP/F069359/1, and No. EP/D056683/1) and by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy. NR 18 TC 33 Z9 33 U1 1 U2 11 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD JAN PY 2010 VL 81 IS 2 AR 020410 DI 10.1103/PhysRevB.81.020410 PG 4 WC Physics, Condensed Matter SC Physics GA 548XC UT WOS:000274002100015 ER PT J AU Hopkins, PE AF Hopkins, Patrick E. TI Influence of electron-boundary scattering on thermoreflectance calculations after intra- and interband transitions induced by short-pulsed laser absorption SO PHYSICAL REVIEW B LA English DT Article ID OPTICAL-CONSTANTS; TEMPERATURE MEASUREMENT; THERMAL TRANSPORT; METALLIC-FILMS; FERMI-SURFACE; GOLD; MODULATION; GENERATION; DYNAMICS; COPPER AB Ultrashort pulsed lasers are effective tools for use in a wide array of nanoscale applications, ranging from precise machining of nanomaterials, to deposition of nanocomposites, to diagnostics for observations of transport properties on atomistic time and length scales. One critical caveat of these applications is predicting and controlling the temperature of the materials after the absorbed laser pulse. At relatively low absorbed laser powers, the temperature can be determined from the reflected energy from the laser pulse off the sample surface as the reflectivity and the temperature change are linearly related. However, as laser pulses become more powerful, thereby inducing large temperature changes, and as materials continue to decrease in characteristic lengths, thereby causing substrate interference affecting the absorbed energy, the determination of the temperature from reflectance becomes more complicated than the traditionally assumed linear relation. In this work, a reflectance model is developed that accounts for large temperature fluctuations in thin-film metals by utilizing the temperature dependencies of the intraband ("free" electron) and interband ("bound" electron) dielectric functions and multiple reflection theory. Electron-electron, electron-phonon, and electron-substrate scattering are exploited and the change in reflectance as a function of these various scattering events is studied in the case of both intra-and interband excitations. This thermoreflectance model is compared to thermoreflectance data on thin Au films. C1 Sandia Natl Labs, Engn Sci Ctr, Albuquerque, NM 87185 USA. RP Hopkins, PE (reprint author), Sandia Natl Labs, Engn Sci Ctr, POB 5800, Albuquerque, NM 87185 USA. EM pehopki@sandia.gov FU LDRD program office through Sandia National Laboratories; United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX I am greatly appreciative for funding from the LDRD program office through Sandia National Laboratories. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed-Martin Co., for the United States Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. NR 46 TC 13 Z9 13 U1 0 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD JAN PY 2010 VL 81 IS 3 AR 035413 DI 10.1103/PhysRevB.81.035413 PG 7 WC Physics, Condensed Matter SC Physics GA 548XE UT WOS:000274002300103 ER PT J AU Huang, L Wang, CZ Hao, SG Kramer, MJ Ho, KM AF Huang, Li Wang, C. Z. Hao, S. G. Kramer, M. J. Ho, K. M. TI Atomic size and chemical effects on the local order of Zr2M (M=Co, Ni, Cu, and Ag) binary liquids SO PHYSICAL REVIEW B LA English DT Article ID BOND-ORIENTATIONAL ORDER; AUGMENTED-WAVE METHOD; METALLIC GLASSES; ALLOYS; PACKING; CLUSTERS AB First-principles molecular dynamics simulations are performed to investigate the atomic size and chemical effects on the short-range order (SRO) in superheated and undercooled Zr-based metallic liquids, Zr2M (M=Co, Ni, Cu, and Ag). We demonstrate that the local atomic structures in liquids are quite sensitive to the atomic size ratio and the electronic interactions between component elements. The large negative heats of mixing for Zr-M do not favor icosahedral SRO in these binary liquids, contrary to the common belief. Full icosahedral structure units are few in the superheated liquids, although the number of icosahedral clusters increases upon undercooling. Comparing Zr2Co, Zr2Ni, and Zr2Cu, all of which have very similar atomic size ratios, we find that the degree of local icosahedral order increases with decreasing interaction strength between the d electrons in Zr-Co, Zr-Ni, and Zr-Cu. A comparison of Zr2Cu and Zr2Ag alloys shows that the degree of icosahedral order increases much more in Zr2Ag than in Zr2Cu with decreasing temperature. The difference in atomic sizes of Cu and Ag may account for the subtle discrepancy in the evolution of short-range ordering in undercooled Zr2Cu and Zr2Ag liquids. C1 [Huang, Li; Wang, C. Z.; Hao, S. G.; Kramer, M. J.; Ho, K. M.] USDA, Ames Lab, Ames, IA 50011 USA. [Wang, C. Z.; Ho, K. M.] Iowa State Univ, Dept Phys, Ames, IA 50011 USA. [Kramer, M. J.] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. RP Huang, L (reprint author), USDA, Ames Lab, Ames, IA 50011 USA. RI Hao, Shaogang/E-3527-2010 FU U.S. Department of Energy, Basic Energy Sciences; National Energy Research Super-computing Center (NERSC) in Berkeley [DE-AC02-07CH11358] FX Work at Ames Laboratory was supported by the U.S. Department of Energy, Basic Energy Sciences, including a grant of computer time at the National Energy Research Super-computing Center (NERSC) in Berkeley, under Contract No. DE-AC02-07CH11358. NR 34 TC 37 Z9 38 U1 3 U2 34 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JAN PY 2010 VL 81 IS 1 AR 014108 DI 10.1103/PhysRevB.81.014108 PG 10 WC Physics, Condensed Matter SC Physics GA 548WZ UT WOS:000274001800027 ER PT J AU Ji, M Wang, CZ Ho, KM Adhikari, S Hebert, KR AF Ji, Min Wang, Cai-zhuang Ho, Kai-ming Adhikari, Saikat Hebert, Kurt R. TI Statistical model of defects in Al-H system SO PHYSICAL REVIEW B LA English DT Article ID HIGH HYDROGEN PRESSURES; 1ST-PRINCIPLES CALCULATIONS; SUPERABUNDANT VACANCIES; ALUMINUM; SOLUBILITY; METALS; DIFFUSION; HYDRIDE; THERMODYNAMICS; DISSOLUTION AB Vacancy and hydrogen concentrations in Al were determined by first-principles calculations and statistical-mechanics modeling, as functions of temperature and hydrogen chemical potential mu(H). Formation energies of Al vacancies, H interstitials, and H-Al vacancy complexes were obtained from first-principles calculations. The statistical-mechanics model incorporated these energies and included configurational entropy contributions through the grand canonical ensemble. We found that the hydrogen chemical potential under different chemical environments plays an important role in determining the relative equilibrium defect concentrations in the Al-H system. Estimates of the hydrogen chemical potential during hydrogen charging were obtained experimentally. At comparable the calculated concentrations are consistent with these values, along with previously reported measurements of hydrogen concentration. C1 [Ji, Min; Wang, Cai-zhuang; Ho, Kai-ming] US DOE, Ames Lab, Ames, IA 50011 USA. [Ji, Min; Wang, Cai-zhuang; Ho, Kai-ming] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Adhikari, Saikat; Hebert, Kurt R.] Iowa State Univ, Dept Chem & Biol Engn, Ames, IA 50011 USA. RP Ji, M (reprint author), US DOE, Ames Lab, Ames, IA 50011 USA. RI Ji, Min/F-3503-2011 FU Iowa State University [DEAC02-07CH11358]; National Science Foundation [DMR0605957] FX Ames Laboratory is operated for the U. S. Department of Energy by Iowa State University under Contract No. DEAC02-07CH11358. Support for this research was provided by the National Science Foundation (Grant No. DMR0605957). NR 33 TC 23 Z9 23 U1 1 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD JAN PY 2010 VL 81 IS 2 AR 024105 DI 10.1103/PhysRevB.81.024105 PG 4 WC Physics, Condensed Matter SC Physics GA 548XC UT WOS:000274002100032 ER PT J AU Levchenko, A AF Levchenko, Alex TI Transport theory of superconductors with singular interaction corrections SO PHYSICAL REVIEW B LA English DT Article ID FLUCTUATION; TRANSITION AB We study effects of strong fluctuations on the transport properties of superconductors near the classical critical point. In this regime conductivity is set by the delicate interplay of two competing effects. The first is that strong electron-electron interactions in the Cooper channel increase the lifetime of fluctuation Cooper pairs and thus enhance conductivity. On the other hand, quantum pair-breaking effects tend to suppress superconductivity. An interplay between these processes defines new temperature regime, Gi less than or similar to T-T-c/T-c less than or similar to root Gi, where fluctuation induced transport becomes more singular, here Gi is the Ginzburg number. The most singular contributions to the conductivity stem from the dynamic Aslamazov-Larkin term, and interesting Maki-Thompson and interference corrections. The crossover temperature T-c root Gi from weakly to strongly fluctuating regime is generated self-consistently as the result of scattering on dynamic variations in the order parameter. We suggest that the way to probe nonlinear fluctuations in superconductors is by magnetoconductivity measurements in the perpendicular field. C1 Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Levchenko, A (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. FU U.S. Department of Energy [DE-AC02-06CH11357] FX I would like to thank M. Yu. Reizer for numerous valuable discussions and advices. This work at ANL was supported by the U.S. Department of Energy under Contract No. DE-AC02-06CH11357. NR 19 TC 3 Z9 3 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JAN 1 PY 2010 VL 81 IS 1 AR 012507 DI 10.1103/PhysRevB.81.012507 PG 4 WC Physics, Condensed Matter SC Physics GA 600BJ UT WOS:000277958000005 ER PT J AU Levchenko, A AF Levchenko, Alex TI Interaction corrections to tunneling conductance in ballistic superconductors SO PHYSICAL REVIEW B LA English DT Article ID FLUCTUATION; RESISTANCE; TRANSITION AB It is known that in the two-dimensional disordered superconductors electron-electron interactions in the Cooper channel lead to the negative logarithmical in temperature correction to the tunneling conductance, delta(gDOS) proportional to-In(T(c)/T-T(c)), above the critical temperature T(c). Physically this result appears due to the density-of-states suppression by superconductive fluctuations near the Fermi level. It is interesting that the other correction, which accounts for the Maki-Thompson-type interaction of fluctuations, is positive and exhibits strong power law, delta(gMT) proportional to (T(c)/T-T(c))(3), which dominates the logarithmic term in the immediate vicinity of the critical temperature. An interplay between these two contributions determines the zero-bias anomaly in fluctuating superconductors. This Brief Report is devoted to the fate of such interaction corrections in the ballistic superconductors. It turns out that ballistic dynamic fluctuations perturb the single-particle density of states near the Fermi level at the energy scale epsilon similar to root T(c)(T-T(c)), which is different from is an element of similar to T-T(c), relevant in the diffusive case. As the consequence, fluctuation region becomes much broader. In this regime we confirm that correction to the tunneling conductance remains negative and logarithmic not too close to the critical temperature while in the immediate vicinity of the transition we find different power law for the Maki-Thompson contribution, delta(gMT) proportional to(T(c)/T-T(c))(3/2). We suggest that peculiar nonmonotonous temperature dependence of the tunneling conductance may be probed via magnetotunnel experiments. C1 Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Levchenko, A (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. FU U.S. Department of Energy [DE-AC02-06CH11357] FX I would like to thank A. Varlamov for his valuable suggestions and critical comments that shaped this work and for bringing the importance of interacting fluctuations in the ballistic limit to my attention. I am grateful also to M. Norman, M. Kharitonov, and M. Yu. Reizer for the useful discussions. The work at ANL was supported by the U.S. Department of Energy under Contract No. DE-AC02-06CH11357. NR 13 TC 2 Z9 2 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JAN PY 2010 VL 81 IS 1 AR 012501 DI 10.1103/PhysRevB.81.012501 PG 4 WC Physics, Condensed Matter SC Physics GA 548WZ UT WOS:000274001800014 ER PT J AU Li, WL Xia, JS Vicente, C Sullivan, NS Pan, W Tsui, DC Pfeiffer, LN West, KW AF Li, Wanli Xia, J. S. Vicente, C. Sullivan, N. S. Pan, W. Tsui, D. C. Pfeiffer, L. N. West, K. W. TI Crossover from the nonuniversal scaling regime to the universal scaling regime in quantum Hall plateau transitions SO PHYSICAL REVIEW B LA English DT Article ID 2 DIMENSIONS; POTENTIAL FLUCTUATIONS; PERCOLATION; DELOCALIZATION; LOCALIZATION; INSULATOR AB We present in this Brief Report our experimental results on the quantum Hall plateau-to-plateau transition in long-range Coulombic disordered two-dimensional electron systems embedded in the Al(x)Ga(1-x)As-Al(0.32)Ga(0.68)As heterostructures (with x=0% and 0.21%) in a large temperature range from 1.2 K down to 1 mK. In these samples a crossover behavior is observed from the high-temperature, nonuniversal scaling regime to the low-temperature, universal scaling regime, with the temperature exponent kappa changing from kappa = 0.58 to 0.42, respectively. The crossover temperature increases with increasing x, from 120 mK for x=0% to 250 mK for x=0.21%. When the Al concentration reaches x=0.85% at which the short-range random alloy potential dominates the disorder, the crossover temperature is beyond 1.2 K and the universal scaling is observed over two decades of temperature. C1 [Li, Wanli; Tsui, D. C.; Pfeiffer, L. N.; West, K. W.] Princeton Univ, Princeton, NJ 08544 USA. [Xia, J. S.; Vicente, C.; Sullivan, N. S.] Univ Florida, Gainesville, FL 32611 USA. [Xia, J. S.; Vicente, C.; Sullivan, N. S.] Natl High Magnet Field Lab, Tallahassee, FL 32310 USA. [Pan, W.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Li, WL (reprint author), Princeton Univ, Princeton, NJ 08544 USA. EM sciwanli@gmail.com FU NSF; DOE [DE-FG-02-98ER45683]; Division of Material Sciences and Engineering, Office of Basic Energy Sciences, U.S. Department of Energy [DE-AC04-94AL85000] FX This work was supported by the NSF and DOE, and W. L. was supported by the DOE Grant No. DE-FG-02-98ER45683. We thank D. N. Sheng for helpful discussions. Work at Sandia National Laboratories was supported by the Division of Material Sciences and Engineering, Office of Basic Energy Sciences, U.S. Department of Energy under Contract No. DE-AC04-94AL85000. Part of the work was carried out at the NHMFL high B/T facilities. NR 18 TC 19 Z9 19 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JAN PY 2010 VL 81 IS 3 AR 033305 DI 10.1103/PhysRevB.81.033305 PG 4 WC Physics, Condensed Matter SC Physics GA 548XE UT WOS:000274002300013 ER PT J AU Liu, DJ AF Liu, Da-Jiang TI Density functional analysis of key energetics in metal homoepitaxy: Quantum size effects in periodic slab calculations SO PHYSICAL REVIEW B LA English DT Article ID TOTAL-ENERGY CALCULATIONS; THIN-FILM GROWTH; INITIO MOLECULAR-DYNAMICS; WAVE BASIS-SET; AB-INITIO; SELF-DIFFUSION; ADSORBATE INTERACTIONS; ISLAND NUCLEATION; SURFACE-DIFFUSION; ALL-ELECTRON AB Adspecies terrace diffusion barriers, pair interaction energies, and formation energies control island nucleation and growth during deposition and postdeposition coarsening in metal homoepitaxial systems. Thus, accurate theoretical determination of such energies is key for predicting behavior or for interpreting experiments. Often energies are obtained from density-functional theory using slab geometries. However, we find surprisingly strong variation in these energies with slab thickness due to quantum size effects, and also slow convergence to the bulk limit. Thus, many previously reported values deviate significantly from bulk limit, a feature corrected in the current study focusing on Ag and Cu surfaces. C1 Iowa State Univ, Ames Lab, US DOE, Ames, IA 50011 USA. RP Liu, DJ (reprint author), Iowa State Univ, Ames Lab, US DOE, Ames, IA 50011 USA. FU U. S. Department of Energy (USDOE); Basic Energy Sciences-Division of Chemical Sciences; Iowa State University [DE-AC02-07CH11358] FX The author wishes to thank J. W. Evans for extensive discussions and inputs on the implication of the energetics calculated and the manuscript, also G. Kresse and J. Paier for advice on the PAW potentials. This work was supported by the U. S. Department of Energy (USDOE), Basic Energy Sciences-Division of Chemical Sciences. The work was performed at Ames Laboratory which is operated for the USDOE by Iowa State University under Contract No. DE-AC02-07CH11358. Computations were partly performed with NERSC resources. NR 64 TC 21 Z9 21 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JAN PY 2010 VL 81 IS 3 AR 035415 DI 10.1103/PhysRevB.81.035415 PG 10 WC Physics, Condensed Matter SC Physics GA 548XE UT WOS:000274002300105 ER PT J AU MacDougall, GJ Savici, AT Aczel, AA Birgeneau, RJ Kim, H Kim, SJ Ito, T Rodriguez, JA Russo, PL Uemura, YJ Wakimoto, S Wiebe, CR Luke, GM AF MacDougall, G. J. Savici, A. T. Aczel, A. A. Birgeneau, R. J. Kim, H. Kim, S. -J. Ito, T. Rodriguez, J. A. Russo, P. L. Uemura, Y. J. Wakimoto, S. Wiebe, C. R. Luke, G. M. TI Muon spin rotation measurements of heterogeneous field response in overdoped La2-xSrxCuO4 SO PHYSICAL REVIEW B LA English DT Article ID C CUPRATE SUPERCONDUCTORS; INDUCED LOCAL MOMENTS; MAGNETIC-PROPERTIES; ZN-SUBSTITUTION; THALLIUM CUPRATE; PAIR-BREAKING; NMR EVIDENCE; DOPED HOLES; BI2SR2CACU2O8+DELTA; IMPURITIES AB Transverse-field muon spin rotation measurements of overdoped La2-xSrxCuO4 reveal a large broadening of the local magnetic field distribution in response to applied field, persisting to high temperatures. The field response is approximately Curie-Weiss-like in temperature and is largest for the highest doping investigated. Such behavior is contrary to the canonical Fermi-liquid picture commonly associated with the overdoped cuprates and implies extensive heterogeneity in this region of the phase diagram. A possible explanation for the result lies in regions of staggered magnetization about dopant cations, analogous to what is argued to exist in underdoped systems. C1 [MacDougall, G. J.; Aczel, A. A.; Kim, S. -J.; Rodriguez, J. A.; Wiebe, C. R.; Luke, G. M.] McMaster Univ, Dept Phys & Astron, Hamilton, ON L8S 4M1, Canada. [Savici, A. T.; Ito, T.; Russo, P. L.; Uemura, Y. J.; Wiebe, C. R.] Columbia Univ, Dept Phys, New York, NY 10027 USA. [Savici, A. T.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Birgeneau, R. J.; Kim, H.] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada. [Birgeneau, R. J.; Wakimoto, S.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Birgeneau, R. J.; Wakimoto, S.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Ito, T.] Natl Inst Adv Ind Sci & Technol, Tsukuba, Ibaraki 3059562, Japan. [Wakimoto, S.] Japan Atom Energy Agcy, Quantum Beam Sci Directorate, Tokai, Ibaraki 3191195, Japan. [Luke, G. M.] Canadian Inst Adv Res, Toronto, ON M5G 1Z8, Canada. RP MacDougall, GJ (reprint author), Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA. EM macdougallgj@ornl.gov RI Luke, Graeme/A-9094-2010; Savici, Andrei/F-2790-2013; Aczel, Adam/A-6247-2016; OI Savici, Andrei/0000-0001-5127-8967; Aczel, Adam/0000-0003-1964-1943; Luke, Graeme/0000-0003-4762-1173; MacDougall, Gregory/0000-0002-7490-9650 FU NSERC; CIFAR; NSF [DMR-05-02706, DMR-08-06846]; U. S. DOE [DE-AC03-76SF0098] FX The authors would like to acknowledge useful conversations with J. E. Sonier and G. A. Sawatzsky. Work at McMaster was supported by NSERC and CIFAR. Work at Columbia was supported by NSF under Contract No. DMR05-02706 and DMR-08-06846. The work at Lawrence Berkeley Laboratory was supported by the Office of Basic Energy Sciences, U. S. DOE under Contract No. DE-AC03-76SF0098. We appreciate the hospitality and technical assistance of the TRIUMF Centre for Molecular and Materials Science where these experiments were performed. NR 75 TC 8 Z9 8 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JAN PY 2010 VL 81 IS 1 AR 014508 DI 10.1103/PhysRevB.81.014508 PG 7 WC Physics, Condensed Matter SC Physics GA 548WZ UT WOS:000274001800072 ER PT J AU Mayer, MA Stone, PR Miller, N Smith, HM Dubon, OD Haller, EE Yu, KM Walukiewicz, W Liu, X Furdyna, JK AF Mayer, M. A. Stone, P. R. Miller, N. Smith, H. M., III Dubon, O. D. Haller, E. E. Yu, K. M. Walukiewicz, W. Liu, X. Furdyna, J. K. TI Electronic structure of Ga1-xMnxAs analyzed according to hole-concentration-dependent measurements SO PHYSICAL REVIEW B LA English DT Article ID MAGNETIC SEMICONDUCTORS; CAPACITANCE-VOLTAGE; BAND; FERROMAGNETISM; ALLOYS AB We study the effects of variable hole concentration on the transport, thermoelectric, and magnetic properties of Ga1-xMnxAs. The hole concentration in samples with fixed Mn content has been varied using high energy particle irradiation, which introduces donorlike defects that compensate Mn acceptors without changing the concentration of localized Mn spins. As expected, a decrease of the hole concentration results in a reduction of the Curie temperature and an increase in electrical resistivity and thermoelectric power. The mobility and thermopower data are then analyzed in terms of models based on free holes in the valence band and holes localized in a Mn impurity band. The energetic structure of the impurity band is described by the valence-band anticrossing model. We show that the electronic structure provided by the impurity band model is consistent with the experimental results. C1 [Mayer, M. A.; Stone, P. R.; Miller, N.; Smith, H. M., III; Dubon, O. D.; Haller, E. E.; Yu, K. M.; Walukiewicz, W.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Mayer, M. A.; Stone, P. R.; Miller, N.; Smith, H. M., III; Dubon, O. D.; Haller, E. E.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Liu, X.; Furdyna, J. K.] Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA. RP Mayer, MA (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RI Yu, Kin Man/J-1399-2012 OI Yu, Kin Man/0000-0003-1350-9642 FU Director, Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, of the (U.S.) Department of Energy [DE-AC02-05CH11231]; Department of Defense for ND-SEG; National Science Foundation FX We would like to thank Jeff Beeman at LBNL for several irradiations. This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, of the (U.S.) Department of Energy under Contract No. DE-AC02-05CH11231. M.A.M. and N.M. thank the Department of Defense for ND-SEG support and P. R. S. thanks the National Science Foundation for support. NR 43 TC 31 Z9 31 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD JAN PY 2010 VL 81 IS 4 AR 045205 DI 10.1103/PhysRevB.81.045205 PG 9 WC Physics, Condensed Matter SC Physics GA 548XG UT WOS:000274002500059 ER PT J AU McWilliams, RS Eggert, JH Hicks, DG Bradley, DK Celliers, PM Spaulding, DK Boehly, TR Collins, GW Jeanloz, R AF McWilliams, R. S. Eggert, J. H. Hicks, D. G. Bradley, D. K. Celliers, P. M. Spaulding, D. K. Boehly, T. R. Collins, G. W. Jeanloz, R. TI Strength effects in diamond under shock compression from 0.1 to 1 TPa SO PHYSICAL REVIEW B LA English DT Article ID SINGLE-CRYSTAL; THEORETICAL STRENGTH; DYNAMIC COMPRESSION; WAVE COMPRESSION; PHASE-TRANSITION; HIGH-PRESSURES; SILICON; LASER; ALUMINUM; INTERFEROMETER AB A two-wave shock structure-elastic precursor followed by an inelastic compression wave-is observed in single crystal and polycrystalline diamond laser shock compressed to peak stresses as high as 800 GPa. The Hugoniot elastic limits are measured to be 80 (+/-12), 81 (+/-6), and 60 (+/-3) GPa for the < 100 >, < 110 >, and < 111 > orientations of single crystals with the directional dependence attributable to the relative increase in strength under confining stress. These values imply a single crystal yield strength approximately 1/3 of theoretical predictions. The measurements reveal clear deviations from an elastic-plastic response upon dynamic yielding with significant relaxation toward an isotropic stress state for shock stresses of at least 160 GPa. Previously reported signatures of melting at 700-800 GPa along the diamond Hugoniot may be related to the transition from a two-wave to a single-wave structure, supporting the interpretation that melting begins at lower stresses (similar to 600 GPa) with the appearance of an optically reflecting phase of carbon. C1 [McWilliams, R. S.; Spaulding, D. K.; Jeanloz, R.] Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. [McWilliams, R. S.; Eggert, J. H.; Hicks, D. G.; Bradley, D. K.; Celliers, P. M.; Collins, G. W.] Lawrence Livermore Natl Lab, Div Phys, Phys & Life Sci Directorate, Livermore, CA 94550 USA. [Boehly, T. R.] Univ Rochester, Laser Energet Lab, Rochester, NY 14623 USA. RP McWilliams, RS (reprint author), Washington State Univ, Inst Shock Phys, Pullman, WA 99164 USA. EM stewartmcwilliams@gmail.com RI Collins, Gilbert/G-1009-2011; Hicks, Damien/B-5042-2015; McWilliams, R./J-4358-2016 OI Hicks, Damien/0000-0001-8322-9983; NR 74 TC 41 Z9 42 U1 3 U2 23 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JAN PY 2010 VL 81 IS 1 AR 014111 DI 10.1103/PhysRevB.81.014111 PG 19 WC Physics, Condensed Matter SC Physics GA 548WZ UT WOS:000274001800030 ER PT J AU Norman, MR Micklitz, T AF Norman, M. R. Micklitz, T. TI Electronic structure of hyper-kagome Na4Ir3O8 SO PHYSICAL REVIEW B LA English DT Article AB We investigate the electronic structure of the frustrated magnet Na4Ir3O8 using density-functional theory. Due to strong spin-orbit coupling, the hyper-kagome lattice is characterized by a half-filled complex of d states, making it a cubic iridium analog of the high-temperature superconducting cuprates. The implications of our results for this unique material are discussed. C1 [Norman, M. R.; Micklitz, T.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Norman, MR (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. RI Norman, Michael/C-3644-2013 FU U.S. DOE, Office of Science [DE-AC02- 06CH11357] FX Work at Argonne National Laboratory was supported by the U.S. DOE, Office of Science, under Contract No. DE-AC02- 06CH11357. NR 21 TC 23 Z9 23 U1 3 U2 34 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JAN PY 2010 VL 81 IS 2 AR 024428 DI 10.1103/PhysRevB.81.024428 PG 5 WC Physics, Condensed Matter SC Physics GA 588VA UT WOS:000277101300009 ER PT J AU Ogitsu, T Gygi, F Reed, J Udagawa, M Motome, Y Schwegler, E Galli, G AF Ogitsu, Tadashi Gygi, Francois Reed, John Udagawa, Masafumi Motome, Yukitoshi Schwegler, Eric Galli, Giulia TI Geometrical frustration in an elemental solid: An Ising model to explain the defect structure of beta-rhombohedral boron SO PHYSICAL REVIEW B LA English DT Article ID MACROPOLYHEDRAL BORANES; CRYSTAL; ICE AB Recently, it was reported that beta-rhombohedral boron has a negative defect formation energy, which explains the presence of a macroscopic amount (4 at. %) of intrinsic defects. In this work, it is shown that the defects in boron have geometrical frustration described by an antiferromagnetic Ising model on an expanded kagome lattice, which is responsible for the reported macroscopic residual entropy. We suggest that the reported anomalies in the transport properties of beta-boron are due to the hopping of boron atoms between nearly degenerate configurations. C1 [Ogitsu, Tadashi; Reed, John; Schwegler, Eric; Galli, Giulia] Lawrence Livermore Natl Lab, Condensed Matter & Mat Div, Phys & Life Sci Directorate, Livermore, CA 94551 USA. [Gygi, Francois] Lawrence Livermore Natl Lab, Ctr Appl Sci Comp, Livermore, CA 94551 USA. [Gygi, Francois] Univ Calif Davis, Dept Appl Sci, Davis, CA 95616 USA. [Udagawa, Masafumi; Motome, Yukitoshi] Univ Tokyo, Dept Appl Phys, Tokyo 1138656, Japan. [Galli, Giulia] Univ Calif Davis, Dept Chem, Davis, CA 95616 USA. RP Ogitsu, T (reprint author), Lawrence Livermore Natl Lab, Condensed Matter & Mat Div, Phys & Life Sci Directorate, Livermore, CA 94551 USA. EM ogitsu@llnl.gov RI Schwegler, Eric/F-7294-2010; Schwegler, Eric/A-2436-2016 OI Schwegler, Eric/0000-0003-3635-7418 FU U.S. Department of Energy [DE-AC52-07NA27344]; DOE/Scidac [DE-FG0206ER46262] FX We thank Leonardo Spanu (UC Davis) for stimulating discussions and useful suggestions. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344 and partially supported by DOE/Scidac under Grant No. DE-FG0206ER46262. NR 26 TC 24 Z9 24 U1 1 U2 12 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD JAN PY 2010 VL 81 IS 2 AR 020102 DI 10.1103/PhysRevB.81.020102 PG 4 WC Physics, Condensed Matter SC Physics GA 548XC UT WOS:000274002100002 ER PT J AU Petit, L Svane, A Szotek, Z Temmerman, WM Stocks, GM AF Petit, L. Svane, A. Szotek, Z. Temmerman, W. M. Stocks, G. M. TI Electronic structure and ionicity of actinide oxides from first principles SO PHYSICAL REVIEW B LA English DT Article ID SELF-INTERACTION CORRECTION; SPIN-DENSITY APPROXIMATION; PHOTOELECTRON-SPECTROSCOPY; THERMAL-EXPANSION; URANIUM-DIOXIDE; OXYGEN SYSTEM; GROUND-STATE; HARTREE-FOCK; BAND THEORY; UO2 AB The ground-state electronic structures of the actinide oxides AO, A(2)O(3), and AO(2) (A= U, Np, Pu, Am, Cm, Bk, and Cf) are determined from first-principles calculations, using the self-interaction corrected local spin-density approximation. Emphasis is put on the degree of f-electron localization, which for AO(2) and A(2)O(3) is found to follow the stoichiometry, namely, corresponding to A(4+) ions in the dioxide and A(3+) ions in the sesquioxides. In contrast, the A(2+) ionic configuration is not favorable in the monoxides, which therefore become metallic. The energetics of the oxidation and reduction in the actinide dioxides is discussed, and it is found that the dioxide is the most stable oxide for the actinides from Np onward. Our study reveals a strong link between preferred oxidation number and degree of localization which is confirmed by comparing to the ground-state configurations of the corresponding lanthanide oxides. The ionic nature of the actinide oxides emerges from the fact that only those compounds will form where the calculated ground-state valency agrees with the nominal valency expected from a simple charge counting. C1 [Petit, L.; Svane, A.] Aarhus Univ, Dept Phys & Astron, DK-8000 Aarhus C, Denmark. [Petit, L.; Szotek, Z.; Temmerman, W. M.] Daresbury Lab, Warrington WA4 4AD, Cheshire, England. [Stocks, G. M.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Stocks, G. M.] Oak Ridge Natl Lab, Ctr Defect Phys, Oak Ridge, TN 37831 USA. RP Petit, L (reprint author), Aarhus Univ, Dept Phys & Astron, DK-8000 Aarhus C, Denmark. EM leon.petit@stfc.ac.uk RI Petit, Leon/B-5255-2008; Stocks, George Malcollm/Q-1251-2016; OI Stocks, George Malcollm/0000-0002-9013-260X; Petit, Leon/0000-0001-6489-9922 FU US Department of Energy, Office of Basic Energy Sciences FX This research used resources of the Danish Center for Scientific Computing (DCSC) and of the National Energy Research Scientific Computing Center (NERSC). Work of one of us (G. M. S.) is supported by US Department of Energy, Office of Basic Energy Sciences, as part of an Energy Frontier Research Center. We gratefully acknowledge helpful discussions with M. S. S. Brooks. NR 87 TC 74 Z9 76 U1 6 U2 39 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JAN PY 2010 VL 81 IS 4 AR 045108 DI 10.1103/PhysRevB.81.045108 PG 12 WC Physics, Condensed Matter SC Physics GA 548XG UT WOS:000274002500039 ER PT J AU Quan, HT Zhu, JX AF Quan, H. T. Zhu, Jian-Xin TI Interplay between the Fulde-Ferrell-like phase and Larkin-Ovchinnikov phase in the superconducting ring pierced by an Aharonov-Bohm flux SO PHYSICAL REVIEW B LA English DT Article ID FIELD; STATE AB We study the phase diagram of a superconducting ring threaded by an Aharonov-Bohm flux and an in-plane magnetic Zeeman field. The simultaneous presence of both the external flux and the in-plane magnetic field leads to the competition between the Fulde-Ferrell (FF)-like phase and the Larkin-Ovchinnikov (LO) phase. Using the Bogoliubov-de Gennes equation, we investigate the spacial profile of the order parameter. Both the FF-like phase and the LO phase are found to exist stably in this system. The phase boundary is determined by comparing the free energy. The distortion of the phase diagrams due to the mesoscopic effect is also studied. C1 [Quan, H. T.; Zhu, Jian-Xin] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Quan, HT (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RI Quan, Haitao/G-8521-2012; OI Quan, Haitao/0000-0002-4130-2924; Zhu, Jianxin/0000-0001-7991-3918 FU U.S. DOE at LANL [DE-AC52-06NA25396]; LANL LDRD FX One of us (H.T.Q.) thanks Rishi Sharma for stimulating discussions. This work was supported by U.S. DOE at LANL under Contract No. DE-AC52-06NA25396, the U.S. DOE, Office of Science, and the LANL LDRD Program. NR 31 TC 4 Z9 4 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JAN PY 2010 VL 81 IS 1 AR 014518 DI 10.1103/PhysRevB.81.014518 PG 6 WC Physics, Condensed Matter SC Physics GA 548WZ UT WOS:000274001800082 ER PT J AU Reichhardt, C Reichhardt, CJO AF Reichhardt, C. Reichhardt, C. J. Olson TI Switching and jamming transistor effect for vortex matter in honeycomb pinning arrays with ac drives SO PHYSICAL REVIEW B LA English DT Article ID FLUX-LINE-LATTICE; II SUPERCONDUCTORS; PERIODIC MEDIA; LOGARITHMIC INTERACTIONS; COMPUTER-SIMULATION; MAGNETIC DIPOLES; SUBMICRON HOLES; DYNAMIC PHASES; REGULAR ARRAY; PLASTIC-FLOW AB We show that a remarkable variety of dynamical phenomena, including switching, polarization, symmetry locking, and dynamically induced pinning, can occur for vortices in type-II superconductors in the presence of a honeycomb pinning array and an ac or combined ac and dc drive. These effects occur at the second matching field where there are two vortices per pinning site and arise due to the formation of vortex dimer states in the interstitial regions of the honeycomb array. The orientation of the pinned and moving vortex dimers can be controlled externally by the application of a drive. We term this a polarization effect and demonstrate that it can lock or unlock the vortex motion into different symmetry directions of the underlying pinning lattice. If the moving vortices are locked into one direction, the motion can be switched into a different direction by applying an additional bias drive, producing sharp jumps in the transverse and longitudinal velocities. Further, the dc vortex motion in one direction can be controlled directly by application of a force in the perpendicular direction. When the moving dimers reorient, we find a remarkable dynamical pinning effect in which the dimers jam when they become perpendicular to the easy-flow direction of the pinning lattice. Since application of an external field can be used to switch off the vortex flow, we term this a jamming transistor effect. These effects do not occur in triangular pinning arrays due to the lack of the n-merization of the vortices in this case. The switching and dynamical pinning effects demonstrated here may be useful for the creation of new types of fluxtronic devices. C1 [Reichhardt, C.; Reichhardt, C. J. Olson] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Reichhardt, C (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. OI Reichhardt, Cynthia/0000-0002-3487-5089 FU U.S. DOE at LANL [DE-AC52-06NA25396] FX We thank M. Hastings for useful discussions. This work was carried out under the NNSA of the U.S. DOE at LANL under Contract No. DE-AC52-06NA25396. NR 93 TC 7 Z9 7 U1 1 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD JAN PY 2010 VL 81 IS 2 AR 024510 DI 10.1103/PhysRevB.81.024510 PG 19 WC Physics, Condensed Matter SC Physics GA 548XC UT WOS:000274002100084 ER PT J AU Subedi, A Singh, DJ AF Subedi, Alaska Singh, David J. TI Band structure and itinerant magnetism in quantum critical NbFe2 SO PHYSICAL REVIEW B LA English DT Article ID LAVES PHASE-COMPOUNDS; ELECTRONIC-STRUCTURE; SPIN FLUCTUATIONS; WEAK ANTIFERROMAGNETISM; C-14; TIFE2; FERROMAGNETISM; INSTABILITIES; TAFE2; HEAT AB We report first-principles calculations of the band structure and magnetic ordering in the C14 Laves phase compound NbFe2. The magnetism is itinerant in the sense that the moments are highly dependent on ordering. We find an overestimation of the magnetic tendency within the local spin-density approximation, similar to other metals near magnetic quantum critical points. We also find a competition between different magnetic states due to band-structure effects. These lead to competing magnetic tendencies due to competing interlayer interactions, one favoring a ferrimagnetic solution and the other an antiferromagnetic state. While the structure contains Kagome lattice sheets, which could, in principle, lead to strong magnetic frustration, the calculations do not show dominant nearest-neighbor antiferromagnetic interactions within these sheets. These results are discussed in relation to experimental observations. C1 [Subedi, Alaska] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Subedi, Alaska; Singh, David J.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Subedi, A (reprint author), Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. RI Singh, David/I-2416-2012 FU Department of Energy, Division of Materials Sciences and Engineering FX This work was supported by the Department of Energy, Division of Materials Sciences and Engineering. NR 38 TC 20 Z9 20 U1 5 U2 17 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD JAN PY 2010 VL 81 IS 2 AR 024422 DI 10.1103/PhysRevB.81.024422 PG 5 WC Physics, Condensed Matter SC Physics GA 548XC UT WOS:000274002100070 ER PT J AU Valvidares, SM Dorantes-Davila, J Isern, H Ferrer, S Pastor, GM AF Valvidares, S. M. Dorantes-Davila, J. Isern, H. Ferrer, S. Pastor, G. M. TI Interface-driven manipulation of the magnetic anisotropy of ultrathin Co films on Pt(111): Substrate deposition of hydrogen and model calculations SO PHYSICAL REVIEW B LA English DT Article ID X-RAY-DIFFRACTION; PERPENDICULAR ANISOTROPY; SPIN REORIENTATION; SURFACE ANISOTROPY; KERR; REVERSAL; NANOSTRUCTURES; CHEMISORPTION; MULTILAYERS; SUPPRESSION AB The magnetic anisotropy energy (MAE) and the resulting spin-reorientation transitions of Co/Pt(111) ultrathin films are investigated by manipulating the Co/Pt interface with controlled adsorption of hydrogen prior to Co deposition. In situ low-energy electron-diffraction and surface magneto-optical Kerr-effect measurements are performed on Co films grown at low temperatures. The results show that interface H deposition leads to a remarkable change in the magnetization direction from perpendicular to in-plane, even for the thinnest Co films, which is accompanied by an important increase in the coercive force. Layer-resolved self-consistent electronic calculations of the MAE are performed in order to identify the interface contributions responsible for perpendicular magnetic anisotropy (PMA) and to quantify how the MAE depends on various possible adsorbate-induced modifications in the local magnetic moments. The results show that the PMA is quite insensitive to changes in the local magnetic moments at the Co film surface even if they are relatively large. However, the PMA depends crucially on the Co-interface moments, on the Pt-interface moments induced by the proximity to Co, and on the resulting spin-orbit interactions at the Pt atoms. The observed suppression of PMA by interface H adsorption is interpreted as the consequence of the reduction in the interface-Pt moments which, originates either a reduction in the Co-interface moments or at a decoupling of the Pt substrate from the magnetic film. Experiment and theory thus prove the dominant role of the Co-Pt interface MAE on the development of the relative stability of perpendicular and in-plane magnetization directions. The magnetic properties of ultrathin films may thus be tailored to a large extent by adsorbates trapped at 3d-4d or 3d-5d film-substrate interfaces. C1 [Valvidares, S. M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Dorantes-Davila, J.] Univ Autonoma San Luis Potosi, Inst Fis, San Luis Potosi 78000, Mexico. [Isern, H.] European Synchrotron Radiat Facil, F-38043 Grenoble, France. [Ferrer, S.] UAB, ALBA Edifici Ciences, Bellaterra 08193, Spain. [Pastor, G. M.] Univ Kassel, Inst Theoret Phys, D-34132 Kassel, Germany. RP Valvidares, SM (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RI ferrer, salvador/E-9803-2016; Valvidares, Secundino /M-4979-2016 OI ferrer, salvador/0000-0002-3446-8109; Valvidares, Secundino /0000-0003-4895-8114 FU CONACyT-Mexico (Spain) [62292]; DAAD-CONACyT (Spain); ESRF (Spain); MEC (Spain) FX This work was supported in part by CONACyT-Mexico (Grant No. 62292), by the DAAD-CONACyT exchange program PROALMEX, by ESRF, and by MEC (Spain). We thank E. Paiser, L. Petit, T. Dufrane, M. Sanchez del Rio, and V. A. Sole for their technical help, and B. Cowie for the CCD camera used to capture the LEED images. Helpful discussions with N.B. Brookes, I. Popa, C. Quiros, O. Robach, D. Sander, and Y. Souche are gratefully acknowledged. One of the authors (J.D.D.) also thanks J. Renter a and J. C. Sanchez for technical support. NR 59 TC 6 Z9 6 U1 1 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD JAN PY 2010 VL 81 IS 2 AR 024415 DI 10.1103/PhysRevB.81.024415 PG 11 WC Physics, Condensed Matter SC Physics GA 548XC UT WOS:000274002100063 ER PT J AU Vukmirovic, N Stojanovic, VM Vanevic, M AF Vukmirovic, Nenad Stojanovic, Vladimir M. Vanevic, Mihajlo TI Electron-phonon coupling in graphene antidot lattices: An indication of polaronic behavior SO PHYSICAL REVIEW B LA English DT Article ID WALL CARBON NANOTUBES AB We study graphene antidot lattices-superlattices of perforations (antidots) in a graphene sheet-using a model that accounts for the phonon modulation of the pi-electron hopping integrals. We calculate the phonon spectra of selected antidot lattices using two different semiempirical methods. Based on the adopted model, we quantify the nature of charge carriers in the system by computing the quasiparticle weight due to the electron-phonon interaction for an excess electron in the conduction band. We find a very strong phonon-induced renormalization, with the effective electron masses exhibiting nonmonotonic dependence on the superlattice period for a given antidot diameter. Our study provides an indication of polaronic behavior and points to the necessity of taking into account the inelastic degrees of freedom in future studies of transport in graphene antidot lattices. C1 [Vukmirovic, Nenad] Lawrence Berkeley Natl Lab, Computat Res Div, Berkeley, CA 94720 USA. [Stojanovic, Vladimir M.] Univ Basel, Dept Phys, CH-4056 Basel, Switzerland. [Vanevic, Mihajlo] Georgia Inst Technol, Sch Phys, Atlanta, GA 30332 USA. [Vanevic, Mihajlo] Delft Univ Technol, Kavli Inst Nanosci, NL-2628 CJ Delft, Netherlands. RP Vukmirovic, N (reprint author), Lawrence Berkeley Natl Lab, Computat Res Div, Berkeley, CA 94720 USA. EM vladimir.stojanovic@unibas.ch RI Vukmirovic, Nenad/D-9489-2011; Stojanovic, Vladimir/I-8928-2014 OI Vukmirovic, Nenad/0000-0002-4101-1713; Stojanovic, Vladimir/0000-0001-7452-1114 FU Swiss NSF; NCCR Nanoscience FX We thank C. Bruder for useful discussions. V.M.S. acknowledges financial support from the Swiss NSF and the NCCR Nanoscience. NR 47 TC 13 Z9 13 U1 0 U2 14 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JAN PY 2010 VL 81 IS 4 AR 041408 DI 10.1103/PhysRevB.81.041408 PG 4 WC Physics, Condensed Matter SC Physics GA 548XG UT WOS:000274002500024 ER PT J AU Vukmirovic, N Wang, LW AF Vukmirovic, Nenad Wang, Lin-Wang TI Carrier heating in disordered conjugated polymers in electric field SO PHYSICAL REVIEW B LA English DT Article ID ALKYL FUNCTIONAL-GROUP; II FORCE-FIELDS; CHARGE-TRANSPORT; SEMICONDUCTING POLYMERS; ORGANIC SEMICONDUCTORS; EFFECTIVE TEMPERATURE; ALKANE MOLECULES; MOBILITY; DEPENDENCE; TRANSISTORS AB The electric field dependence of charge-carrier transport and the effect of carrier heating in disordered conjugated polymers were investigated. A parameter-free multiscale methodology consisting of classical molecular-dynamics simulation for the generation of the atomic structure, large system electronic structure and electron-phonon coupling constants calculations and the procedure for extracting the bulk polymer mobility was used. The results suggested that the mobility of a fully disordered poly(3-hexylthiophene) (P3HT) polymer increases with electric field which is consistent with the experimental results on samples of regiorandom P3HT and different from the results on more ordered regioregular P3HT polymers, where the opposite trend is often observed at low electric fields. We calculated the electric field dependence of the effective carrier temperature and showed however that the effective temperature cannot be used to replace the joint effect of temperature and electric field, in contrast to previous theoretical results from phenomenological models. Such a difference was traced to originate from the use of simplified Miller-Abrahams hopping rates in phenomenological models in contrast to our considerations that explicitly take into account the electronic state wave functions and the interaction with all phonon modes. C1 [Vukmirovic, Nenad; Wang, Lin-Wang] Lawrence Berkeley Natl Lab, Computat Res Div, Berkeley, CA 94720 USA. RP Vukmirovic, N (reprint author), Lawrence Berkeley Natl Lab, Computat Res Div, Berkeley, CA 94720 USA. EM nvukmirovic@lbl.gov RI Vukmirovic, Nenad/D-9489-2011 OI Vukmirovic, Nenad/0000-0002-4101-1713 FU (U.S.) Department of Energy [DE-AC02-05CH11231] FX This work was supported by the DMS/BES/SC of the (U.S.) Department of Energy under Contract No. DE-AC02-05CH11231. It used the resources of National Energy Research Scientific Computing Center (NERSC). NR 56 TC 11 Z9 11 U1 0 U2 16 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JAN PY 2010 VL 81 IS 3 AR 035210 DI 10.1103/PhysRevB.81.035210 PG 8 WC Physics, Condensed Matter SC Physics GA 548XE UT WOS:000274002300055 ER PT J AU Wilson, SD Rotundu, CR Yamani, Z Valdivia, PN Freelon, B Bourret-Courchesne, E Birgeneau, RJ AF Wilson, Stephen D. Rotundu, C. R. Yamani, Z. Valdivia, P. N. Freelon, B. Bourret-Courchesne, E. Birgeneau, R. J. TI Universal magnetic and structural behaviors in the iron arsenides SO PHYSICAL REVIEW B LA English DT Article ID PHASE-DIAGRAM; SUPERCONDUCTIVITY AB Commonalities among the order parameters of the ubiquitous antiferromagnetism present in the parent compounds of the iron arsenide high-temperature superconductors are explored. Additionally, comparison is made between the well established two-dimensional Heisenberg-Ising magnet, K(2)NiF(4), and iron arsenide systems residing at a critical point whose structural and magnetic phase transitions coincide. In particular, analysis is presented regarding two distinct classes of phase-transition behavior reflected in the development of antiferromagnetic and structural order in the three main classes of iron arsenide superconductors. Two distinct universality classes are mirrored in their magnetic phase transitions which empirically are determined by the proximity of the coupled structural and magnetic phase transitions in these materials. C1 [Wilson, Stephen D.; Rotundu, C. R.; Bourret-Courchesne, E.; Birgeneau, R. J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Yamani, Z.] CNR, Chalk River Labs, Canadian Neutron Beam Ctr, Chalk River, ON K0J 1P0, Canada. [Valdivia, P. N.; Birgeneau, R. J.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Freelon, B.; Birgeneau, R. J.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. RP Wilson, SD (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RI yamani, zahra/B-7892-2012; OI Rotundu, Costel/0000-0002-1571-8352 FU U. S. Department of Energy [DE-AC02-05CH11231, DE-AC03-76SF008] FX We would like to thank P. Dai, S. Li, L. Harriger, J. Zhao, and H. Maeter for providing access to their raw data for our analysis. This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, U. S. Department of Energy under Contracts No. DE-AC02-05CH11231 and No. DE-AC03-76SF008. NR 37 TC 20 Z9 20 U1 1 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JAN PY 2010 VL 81 IS 1 AR 014501 DI 10.1103/PhysRevB.81.014501 PG 7 WC Physics, Condensed Matter SC Physics GA 548WZ UT WOS:000274001800065 ER PT J AU Zhang, J Du, RR Simmons, JA Reno, JL AF Zhang, Jian Du, R. R. Simmons, J. A. Reno, J. L. TI Resistance minimum observed at Landau level filling factor nu=1/2 in ultra high magnetic fields SO PHYSICAL REVIEW B LA English DT Article ID QUANTUM HALL STATE; 2-DIMENSIONAL ELECTRONS; COMPOSITE FERMIONS; LIQUID; TRANSPORT; SYSTEMS; MAGNETORESISTANCE; HETEROSTRUCTURES; PHASES AB We study the magnetotransport near Landau level filling factor nu=1/2 in a gated GaAs-Al(0.3)Ga(0.7)As square quantum well (width 35 nm) in magnetic field up to 45 T and in a temperature (T) range between 50 mK and 1.5 K. The longitudinal resistance at nu=1/2, R(xx)(nu=1/2), exhibits a steep valley that is flanked by a pair of rising resistance peaks in low T. The R(xx)(nu=1/2) shows nonmonotonous dependence on T, with a minimum resistance reached at T similar to 0.5 K. The concomitant Hall resistance R(xy) is not strictly linear with magnetic field and its slope shows a sharp cusp at nu=1/2, indicating a nonclassical Hall effect. The data are characteristic for ultra high field magnetotransport around nu=1/2 in thick, but single-layer, quantum wells. C1 [Zhang, Jian; Du, R. R.] Univ Utah, Dept Phys, Salt Lake City, UT 84112 USA. [Du, R. R.] Rice Univ, Dept Phys & Astron, Houston, TX 77251 USA. [Simmons, J. A.; Reno, J. L.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Zhang, J (reprint author), Univ Utah, Dept Phys, Salt Lake City, UT 84112 USA. FU DOE [DE-FG02-06ER46274]; NSF [DMR-0084173]; State of Florida FX We acknowledge many helpful conversations with D. C. Tsui, H. L. Stormer, W. Pan, C. L. Yang, Y. W. Sue, J. K. Jain, Y. S. Wu, E. H. Rezayi, and X. C. Xie. This work was supported by DOE Grant No. DE-FG02-06ER46274. A portion of this work was performed at the National High Magnetic Field Laboratory, which is supported by NSF Cooperative Agreement No. DMR-0084173, by the State of Florida, and by the DOE. NR 39 TC 2 Z9 2 U1 2 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JAN PY 2010 VL 81 IS 4 AR 041308 DI 10.1103/PhysRevB.81.041308 PG 4 WC Physics, Condensed Matter SC Physics GA 548XG UT WOS:000274002500014 ER PT J AU Blunden, PG Melnitchouk, W Tjon, JA AF Blunden, P. G. Melnitchouk, W. Tjon, J. A. TI Two-photon exchange corrections to the pion form factor SO PHYSICAL REVIEW C LA English DT Article ID RADIATIVE CORRECTIONS; SCATTERING AB We compute two-photon exchange corrections to the electromagnetic form factor of the pion, taking into account the finite size of the pion. Compared to the soft-photon approximation for the infrared-divergent contribution, which neglects hadron structure effects, the corrections are found to be less than or similar to 1% for low Q(2) values (Q(2) < 0.1 GeV(2)) but increase to several percent for Q(2) greater than or similar to 1 GeV(2) at extreme backward angles. C1 [Blunden, P. G.] Univ Manitoba, Dept Phys & Astron, Winnipeg, MB R3T 2N2, Canada. [Blunden, P. G.; Melnitchouk, W.] Jefferson Lab, Newport News, VA 23606 USA. [Tjon, J. A.] Univ Utrecht, Dept Phys, NL-3508 TC Utrecht, Netherlands. RP Blunden, PG (reprint author), Univ Manitoba, Dept Phys & Astron, Winnipeg, MB R3T 2N2, Canada. EM wmelnitc@jlab.org FU Natural Sciences and Engineering Research Council of Canada; US Department of Energy (DOE) [DE-FG02-93ER-40762, DE-AC05-06OR23177] FX We thank J. Arrington, D. Gaskell, and G. Huber for helpful discussions. P. G. B. thanks the Theory Center at Jefferson Lab for support during a sabbatical leave, where this work was performed. This work was supported in part by the Natural Sciences and Engineering Research Council of Canada, US Department of Energy (DOE) Grant No. DE-FG02-93ER-40762, and US DOE Contract No. DE-AC05-06OR23177, under which Jefferson Science Associates, LLC, operates Jefferson Lab. NR 21 TC 9 Z9 9 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD JAN PY 2010 VL 81 IS 1 AR 018202 DI 10.1103/PhysRevC.81.018202 PG 4 WC Physics, Nuclear SC Physics GA 548XI UT WOS:000274002700056 ER PT J AU Chen, JY Zuo, JX Cai, XZ Liu, F Ma, YG Tang, AH AF Chen, J. Y. Zuo, J. X. Cai, X. Z. Liu, F. Ma, Y. G. Tang, A. H. TI Energy dependence of directed flow in Au plus Au collisions from a multiphase transport model SO PHYSICAL REVIEW C LA English DT Article ID HEAVY-ION COLLISIONS; NUCLEUS-NUCLEUS COLLISIONS; ANISOTROPIC FLOWS; PARTICLE-PRODUCTION; RAPIDITY; PARTON AB The directed flow of charged hadron and identified particles has been studied in the framework of a multiphase transport (AMPT) model for (197)Au + (197)Au collisions at root s(NN) = 200, 130, 62.4, 39, 17.2, and 9.2 GeV. The rapidity, centrality, and energy dependence of directed flow for charged particles over a wide rapidity range are presented. The AMPT model gives the correct v(1)(y) slope, as well as its trend as a function of energy, while it underestimates the magnitude. Within the AMPT model, the proton v(1) slope is found to change its sign when the energy increases to 130 GeV-a feature that is consistent with "anti-flow." Hadronic rescattering is found to have little effect on v(1) at top energies currently available at the BNL Relativistic Heavy Ion Collider (RHIC). These studies can help us to understand the collective dynamics early on in relativistic heavy-ion collisions, and they can also be served as references for the RHIC Beam Energy Scan Program. C1 [Chen, J. Y.; Liu, F.] Huazhong Normal Univ CCNU, Inst Particle Phys, Wuhan 430079, Peoples R China. [Chen, J. Y.; Liu, F.] Huazhong Normal Univ, Minist Educ, Key Lab Quark & Lepton Phys, Wuhan 430079, Peoples R China. [Zuo, J. X.] CAS, Inst High Energy Phys, Beijing 100049, Peoples R China. [Cai, X. Z.; Ma, Y. G.] CAS, Shanghai Inst Appl Phys, Shanghai 201800, Peoples R China. [Tang, A. H.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. RP Chen, JY (reprint author), Huazhong Normal Univ CCNU, Inst Particle Phys, Wuhan 430079, Peoples R China. EM chenjy@iopp.ccnu.edu.cn; zuojx@ihep.ac.cn RI Ma, Yu-Gang/M-8122-2013 OI Ma, Yu-Gang/0000-0002-0233-9900 FU National Natural Science Foundation of China [10775058, 10610285]; MOE of China [IRT0624]; MOST of China [2008CB817707]; Chinese Academy of Sciences [KJCX2-YW-A14, KJCX3-SYW-N2] FX The authors greatly thank Zi-Wei Lin and Zhangbu Xu for useful discussions and kindly providing comments on the manuscript. The authors appreciate Matthew Lamont's help with the English. This work was supported in part by the National Natural Science Foundation of China under Grants 10775058 and 10610285, the MOE of China under Grant IRT0624, the MOST of China under Grant 2008CB817707, and the Knowledge Innovation Project of the Chinese Academy of Sciences under Grants KJCX2-YW-A14 and KJCX3-SYW-N2. NR 32 TC 6 Z9 6 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD JAN PY 2010 VL 81 IS 1 AR 014904 DI 10.1103/PhysRevC.81.014904 PG 4 WC Physics, Nuclear SC Physics GA 548XI UT WOS:000274002700040 ER PT J AU Dracoulis, GD Kondev, FG Lane, GJ Byrne, AP Carpenter, MP Janssens, RVF Lauritsen, T Lister, CJ Seweryniak, D Chowdhury, P AF Dracoulis, G. D. Kondev, F. G. Lane, G. J. Byrne, A. P. Carpenter, M. P. Janssens, R. V. F. Lauritsen, T. Lister, C. J. Seweryniak, D. Chowdhury, P. TI Connections between high-K and low-K states in the s-process nucleus Lu-176 SO PHYSICAL REVIEW C LA English DT Article ID ASTROPHYSICAL CONSEQUENCES; NUCLEOSYNTHESIS; TA-180(M) AB Gamma-ray branches that connect high-K states to low-K states in the s-process nucleus Lu-176 were observed, thus providing a link between the 58 Gyr, 7(-) ground state and the 5.3 h, 1(-) isomeric state. High sensitivity and unambiguous placement were achieved through the study of the decay of the 58 mu s K-pi = 14(+) isomer using gamma-gamma-coincidence measurements. The large number of decay paths from the isomer provides a means of populating a broad selection of states from above, resulting, paradoxically, in higher sensitivity than in cases where low-spin input reactions are used. The out-of band decay widths important for excitation processes in stars are quantified. C1 [Dracoulis, G. D.; Lane, G. J.; Byrne, A. P.] Australian Natl Univ, RSPE, Dept Nucl Phys, Canberra, ACT 0200, Australia. [Kondev, F. G.] Argonne Natl Lab, Nucl Engn Div, Argonne, IL 60439 USA. [Carpenter, M. P.; Janssens, R. V. F.; Lauritsen, T.; Lister, C. J.; Seweryniak, D.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Chowdhury, P.] Univ Massachusetts, Dept Phys, Lowell, MA 01854 USA. RP Dracoulis, GD (reprint author), Australian Natl Univ, RSPE, Dept Nucl Phys, GPO Box 4, Canberra, ACT 0200, Australia. RI Lane, Gregory/A-7570-2011; Carpenter, Michael/E-4287-2015 OI Lane, Gregory/0000-0003-2244-182X; Carpenter, Michael/0000-0002-3237-5734 FU Australian Research Council; US Department of Energy, Office of Nuclear Physics [DE-AC02-06CH11357, DE-FG02-94ER40848] FX We thank R. B. Turkentine for producing the target and S. J. Freeman, N. J. Hammond, T. Kibedi, and G. Mukherjee for assistance in the early experiments. GDD acknowledges Phil Walker for a productive suggestion. This work was supported by the Australian Research Council and by the US Department of Energy, Office of Nuclear Physics, under Contract No. DE-AC02-06CH11357 and Grant No. DE-FG02-94ER40848. NR 22 TC 8 Z9 8 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD JAN PY 2010 VL 81 IS 1 AR 011301 DI 10.1103/PhysRevC.81.011301 PG 5 WC Physics, Nuclear SC Physics GA 548XI UT WOS:000274002700001 ER PT J AU Hatarik, R Bernstein, LA Cizewski, JA Bleuel, DL Burke, JT Escher, JE Gibelin, J Goldblum, BL Hatarik, AM Lesher, SR O'Malley, PD Phair, L Rodriguez-Vieitez, E Swan, T Wiedeking, M AF Hatarik, R. Bernstein, L. A. Cizewski, J. A. Bleuel, D. L. Burke, J. T. Escher, J. E. Gibelin, J. Goldblum, B. L. Hatarik, A. M. Lesher, S. R. O'Malley, P. D. Phair, L. Rodriguez-Vieitez, E. Swan, T. Wiedeking, M. TI Benchmarking a surrogate reaction for neutron capture SO PHYSICAL REVIEW C LA English DT Article ID TRANSFER-REACTION TH-232(HE-3; FISSION CROSS-SECTIONS; NUCLEAR-REACTIONS; D,P-GAMMA; GENERATION; PA-233(N; P)PA-234; CLOVER AB (171,173)Yb(d, p gamma) reactions are measured, with the goal of extracting the neutron capture cross-section ratio as a function of the neutron energy using the external surrogate ratio method. The cross-section ratios obtained are compared to the known neutron capture cross sections. Although the Weisskopf-Ewing limit is demonstrated not to apply for these low neutron energies, a prescription for deducing surrogate cross sections is presented. The surrogate cross-section ratios deduced from the (171,173)Yb(d, p gamma) measurements agree with the neutron capture results within 15%. C1 [Hatarik, R.; Cizewski, J. A.; Hatarik, A. M.; O'Malley, P. D.; Swan, T.] Rutgers State Univ, New Brunswick, NJ 08903 USA. [Bernstein, L. A.; Bleuel, D. L.; Burke, J. T.; Escher, J. E.; Lesher, S. R.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Gibelin, J.; Goldblum, B. L.; Phair, L.; Rodriguez-Vieitez, E.; Wiedeking, M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Goldblum, B. L.] Univ Calif Berkeley, Dept Nucl Engn, Berkeley, CA 94720 USA. [Swan, T.] Univ Surrey, Guildford GU2 7XH, Surrey, England. RP Hatarik, R (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM rhatarik@lbl.gov RI Escher, Jutta/E-1965-2013; Burke, Jason/I-4580-2012; OI Rodriguez-Vieitez, Elena/0000-0002-6639-8141 FU US Department of Energy [DE-FG52-03NA00143, DE-AC52-07NA27344, DE-AC02-05CH11231]; US National Science Foundation FX The authors thank the operations staff of the 88-Inch Cyclotron and M. Krticka for advice on DICEBOX calculations. This work was supported in part by the US Department of Energy under Contract Nos. DE-FG52-03NA00143 (Rutgers University), DE-AC52-07NA27344 (Lawrence Livermore National Laboratory), and DE-AC02-05CH11231 (Lawrence Berkeley National Laboratory) and the US National Science Foundation. NR 30 TC 20 Z9 21 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD JAN PY 2010 VL 81 IS 1 AR 011602 DI 10.1103/PhysRevC.81.011602 PG 5 WC Physics, Nuclear SC Physics GA 548XI UT WOS:000274002700003 ER PT J AU Hurst, AM Wu, CY Stoyer, MA Cline, D Hayes, AB Zhu, S Carpenter, MP Abu Saleem, K Ahmad, I Becker, JA Chiara, CJ Greene, JP Janssens, RVF Khoo, TL Kondev, FG Lauritsen, T Lister, CJ Mukherjee, G Rigby, SV Seweryniak, D Stefanescu, I AF Hurst, A. M. Wu, C. Y. Stoyer, M. A. Cline, D. Hayes, A. B. Zhu, S. Carpenter, M. P. Abu Saleem, K. Ahmad, I. Becker, J. A. Chiara, C. J. Greene, J. P. Janssens, R. V. F. Khoo, T. L. Kondev, F. G. Lauritsen, T. Lister, C. J. Mukherjee, G. Rigby, S. V. Seweryniak, D. Stefanescu, I. TI Rotational alignments in Np-235 and the possible role of j(15/2) neutrons SO PHYSICAL REVIEW C LA English DT Article ID HIGH-SPIN STATES; YRAST STATES; OCTUPOLE CORRELATIONS; COULOMB-EXCITATION; ACTINIDE NUCLEI; CRANKING MODEL; HEAVY-NUCLEI; IN-BEAM; BEHAVIOR; TH-232 AB The role j(15/2) neutron orbitals play in the transuranic region of actinides has been studied by exploring gamma-ray transitions between yrast states in Np-235, populated utilizing the nucleon-transfer reaction Np-237(Sn-116,Sn-118). Two rotational sequences, presumably the two signatures of the ground-state band, have been delineated to high spin for the first time, with the alpha = +1/2 and alpha = -1/2 signature partners reaching 49/2(+(h) over bar) (tentatively 53/2(+)(h) over bar) and 47/2(+)(h) over bar (tentatively 51/2(+)(h) over bar), respectively. Definite isotopic assignments for these in-band transitions were established through gamma-ray cross correlations between Np-235 and Sn-118 and events where at least three gamma rays corresponding to neptunium-like particles were detected. These transitions reveal clear upbends in the aligned angular momentum and kinematic moment of inertia plots; such a phenomenon could indicate a strong interaction between an aligned nu j(15/2) configuration crossing the ground-state band in Np-235, which is based on a pi i(13/2) orbital. However, the lack of any signature splitting over the observed frequency range of the Np-235 rotational sequences cannot remove the possibility of a pi h(9/2) assignment for the observed band. The role of the nu j(15/2) and pi i(13/2) alignment mechanisms in the deformed U-Pu region is discussed in light of the current spectroscopic data and in the context of the cranked-shell model. C1 [Hurst, A. M.; Wu, C. Y.; Stoyer, M. A.; Becker, J. A.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Cline, D.; Hayes, A. B.] Univ Rochester, Dept Phys & Astron, Rochester, NY 14627 USA. [Zhu, S.; Carpenter, M. P.; Ahmad, I.; Chiara, C. J.; Greene, J. P.; Janssens, R. V. F.; Khoo, T. L.; Kondev, F. G.; Lauritsen, T.; Lister, C. J.; Seweryniak, D.; Stefanescu, I.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Abu Saleem, K.] Univ Jordan, Dept Phys, Amman 11942, Jordan. [Chiara, C. J.; Kondev, F. G.] Argonne Natl Lab, Nucl Engn Div, Argonne, IL 60439 USA. [Chiara, C. J.; Stefanescu, I.] Univ Maryland, Dept Chem & Biochem, College Pk, MD 20742 USA. [Mukherjee, G.] Bhabha Atom Res Ctr, Ctr Variable Energy Cyclotron, Kolkata 700064, India. [Rigby, S. V.] Univ Liverpool, Oliver Lodge Lab, Liverpool L69 7ZE, Merseyside, England. RP Hurst, AM (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM hurst10@llnl.gov RI Carpenter, Michael/E-4287-2015 OI Carpenter, Michael/0000-0002-3237-5734 FU US Department of Energy [DE-AC52-07NA27344, DE-AC02-06CH11357]; US Air Force Office of Scientific Research; National Science Foundation; Science Foundation; Science and Technology Facilities Council of the United Kingdom FX This work was performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. Work at Argonne National Laboratory is supported by the US Department of Energy, Office of Nuclear Physics, under Contract DE-AC02-06CH11357. Further support was provided by the US Air Force Office of Scientific Research, the National Science Foundation, and the Science Foundation, and the Science and Technology Facilities Council of the United Kingdom. NR 42 TC 4 Z9 4 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 EI 1089-490X J9 PHYS REV C JI Phys. Rev. C PD JAN PY 2010 VL 81 IS 1 AR 014312 DI 10.1103/PhysRevC.81.014312 PG 12 WC Physics, Nuclear SC Physics GA 548XI UT WOS:000274002700024 ER PT J AU Jeschonnek, S Van Orden, JW AF Jeschonnek, Sabine Van Orden, J. W. TI Ejectile polarization for H-2(e,e ' (p)over-right-arrow)n at GeV energies SO PHYSICAL REVIEW C LA English DT Article ID ELECTRON-SCATTERING; NUCLEAR TRANSPARENCIES; RELATIVISTIC A(E; DEUTERON; PROTON; ELECTRODISINTEGRATION; OBSERVABLES; EQUATIONS; SYSTEMS; MODELS AB We perform a fully relativistic calculation of the H-2(e,e'(p) over right arrow )n reaction in the impulse approximation employing the Gross equation to describe the deuteron ground state, and we use the SAID parametrization of the full NN scattering amplitude to describe the final state interactions (FSIs). The formalism for treating the ejectile polarization with a spin projection on an arbitrary axes is discussed. We show results for the six relevant asymmetries and discuss the role of spin-dependent FSI contributions. C1 [Jeschonnek, Sabine] Ohio State Univ, Dept Phys, Lima, OH 45804 USA. [Van Orden, J. W.] Old Dominion Univ, Dept Phys, Norfolk, VA 23529 USA. [Van Orden, J. W.] Jefferson Lab, Newport News, VA 23606 USA. RP Jeschonnek, S (reprint author), Ohio State Univ, Dept Phys, Lima, OH 45804 USA. OI Jeschonnek, Sabine/0000-0002-8603-7589 FU US Department of Energy (DOE) [DE-AC05-84ER40150]; National Science Foundation [PHY-0653312] FX We thank Douglas Higinbotham for discussions on experimental aspects, and for providing us with experimental references. This work was supported in part by funds provided by the US Department of Energy (DOE) under cooperative research Agreement No. DE-AC05-84ER40150 and by the National Science Foundation under Grant No. PHY-0653312. NR 51 TC 13 Z9 13 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD JAN PY 2010 VL 81 IS 1 AR 014008 DI 10.1103/PhysRevC.81.014008 PG 11 WC Physics, Nuclear SC Physics GA 695JJ UT WOS:000285366100002 ER PT J AU Lee, HY Greene, JP Jiang, CL Pardo, RC Rehm, KE Schiffer, JP Wuosmaa, AH Goodman, NJ Lighthall, JC Marley, ST Otsuki, K Patel, N Beard, M Notani, M Tang, XD AF Lee, H. Y. Greene, J. P. Jiang, C. L. Pardo, R. C. Rehm, K. E. Schiffer, J. P. Wuosmaa, A. H. Goodman, N. J. Lighthall, J. C. Marley, S. T. Otsuki, K. Patel, N. Beard, M. Notani, M. Tang, X. D. TI Experimental study of the B-11,B-12(n,gamma) reactions and their influence on r-process nucleosynthesis of light elements SO PHYSICAL REVIEW C LA English DT Article ID OPTICAL-MODEL ANALYSIS; NEUTRINO-DRIVEN WINDS; RADIATIVE-CAPTURE; ASYMMETRIC SUPERNOVAE; SPECTROSCOPIC FACTORS; ENERGY-LEVELS; NUCLEI; STARS; STATES; RANGE AB We have studied the neutron-transfer reactions B-11,B-12(d,p)B-12,B-13 in inverse kinematics to obtain information about the neutron-capture reactions B-11,B-12(n,gamma). These capture reactions are suggested to play a role in seeding r-process nucleosynthesis through the production of light, neutron-rich nuclei. The neutron spectroscopic factors of the states in B-12,B-13 were deduced and the branching ratio of the neutron-unbound state at E-X = 3.389 MeV in B-12 was obtained to provide the ratio of partial widths, Gamma(n)/Gamma(gamma). The reaction rates for B-11,B-12(n,gamma) are estimated for direct captures and resonant captures and compared with previous compilations. The astrophysical implications, especially for neutrino-driven wind models in core-collapse supernovae, are discussed in the r-process network framework using our updated reaction rates. C1 [Lee, H. Y.; Greene, J. P.; Jiang, C. L.; Pardo, R. C.; Rehm, K. E.; Schiffer, J. P.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Wuosmaa, A. H.; Goodman, N. J.; Lighthall, J. C.; Marley, S. T.] Western Michigan Univ, Dept Phys, Kalamazoo, MI 49008 USA. [Otsuki, K.] Gesell Schwerionenforsch mbH, D-64291 Darmstadt, Germany. [Patel, N.] Colorado Sch Mines, Dept Phys, Golden, CO 80401 USA. [Beard, M.; Notani, M.; Tang, X. D.] Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA. [Beard, M.; Notani, M.; Tang, X. D.] Univ Notre Dame, Joint Inst Nucl Astrophys, Notre Dame, IN 46556 USA. RP Lee, HY (reprint author), Los Alamos Natl Lab, LANSCE NS, POB 1663, Los Alamos, NM 87545 USA. EM hylee@lanl.gov RI Tang, Xiaodong /F-4891-2016 FU US Department of Energy, Office of Nuclear Physics [DE-AC02-06CH11357, DE-FG02-04ER41320] FX This work was supported by the US Department of Energy, Office of Nuclear Physics, under Contracts DE-AC02-06CH11357(ANL) and DE-FG02-04ER41320(WMU). NR 40 TC 10 Z9 10 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD JAN PY 2010 VL 81 IS 1 AR 015802 DI 10.1103/PhysRevC.81.015802 PG 8 WC Physics, Nuclear SC Physics GA 548XI UT WOS:000274002700052 ER PT J AU Liao, JF Koch, V AF Liao, Jinfeng Koch, Volker TI Fluidity and supercriticality of the QCD matter created in relativistic heavy ion collisions SO PHYSICAL REVIEW C LA English DT Article ID QUARK-GLUON PLASMA; ELLIPTIC FLOW AB In this paper we discuss the fluidity of the hot and dense QCD matter created in ultrarelativistic heavy ion collisions in comparison with various other fluids and, in particular, suggest its possible supercriticality. After examining the proper way to compare nonrelativistic and relativistic fluids from both thermodynamic and hydrodynamic perspectives, we propose a new fluidity measure that shows certain universality for a remarkable diversity of critical fluids. We then demonstrate that a fluid in its supercritical regime has its fluidity considerably enhanced. This result may suggest a possible relationship between the seemingly good fluidity of the QCD matter produced in heavy ion collisions at a center-of-mass energy of root s = 200A GeV and the supercriticality of this matter with respect to the critical end point on the QCD phase diagram. Based on this observation, we predict an even better fluidity of the matter to be created in heavy ion collisions at Large Hadron Collider energies and the loss of good fluidity at certain, lower beam energy. Finally, based on our criteria, we analyze the suitability of a hydrodynamic description for the fireball evolution in heavy ion collisions at various energies. C1 [Liao, Jinfeng; Koch, Volker] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, Berkeley, CA 94720 USA. RP Liao, JF (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, MS70R0319,1 Cyclotron Rd, Berkeley, CA 94720 USA. EM jliao@lbl.gov; vkoch@lbl.gov FU US Department of Energy [DE-AC02-05CH11231] FX The authors are grateful to Ulrich Heinz, Roy Lacey, Dirk Rischke, Thomas Schaefer, Edward Shuryak, and Nu Xu for valuable communications. The work is supported by the Director, Office of Energy Research, Office of High Energy and Nuclear Physics, Divisions of Nuclear Physics, of the US Department of Energy under Contract No. DE-AC02-05CH11231. NR 65 TC 23 Z9 24 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9985 EI 2469-9993 J9 PHYS REV C JI Phys. Rev. C PD JAN PY 2010 VL 81 IS 1 AR 014902 DI 10.1103/PhysRevC.81.014902 PG 11 WC Physics, Nuclear SC Physics GA 548XI UT WOS:000274002700038 ER PT J AU Liu, SH Hamilton, JH Ramayya, AV Covello, A Gargano, A Itaco, N Stone, NJ Daniel, AV Hwang, JK Luo, YX Rasmussen, JO Ter-Akopian, GM Zhu, SJ Ma, WC AF Liu, S. H. Hamilton, J. H. Ramayya, A. V. Covello, A. Gargano, A. Itaco, N. Stone, N. J. Daniel, A. V. Hwang, J. K. Luo, Y. X. Rasmussen, J. O. Ter-Akopian, G. M. Zhu, S. J. Ma, W. C. TI g-factor and spin-parity assignments of excited states in the N=83 isotones Te-135, I-136, Xe-137, and Cs-138 SO PHYSICAL REVIEW C LA English DT Article ID PRODUCT GAMMA-RAY; ANGULAR-CORRELATIONS; FISSION; NUCLEI AB The g factor of the 15/2(-) state in Xe-137 was measured for the first time by using a newly developed technique for measuring angular correlations with Gammasphere. Spins and parities were assigned to several levels in the N = 83 isotones Te-135, I-136, Xe-137, and Cs-138. The calculated g factor in the shell-model frame is in good agreement with the measured one in the present work. Shell-model calculations also support our spin-parity assignments. C1 [Liu, S. H.; Hamilton, J. H.; Ramayya, A. V.; Daniel, A. V.; Hwang, J. K.; Luo, Y. X.] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA. [Covello, A.; Itaco, N.] Complesso Univ Monte San Angelo, Dipartimento Sci Fis, I-80126 Naples, Italy. [Covello, A.; Gargano, A.; Itaco, N.] Complesso Univ Monte San Angelo, Ist Nazl Fis Nucl, I-80126 Naples, Italy. [Stone, N. J.] Univ Oxford, Dept Phys, Oxford OX1 3PU, England. [Stone, N. J.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Daniel, A. V.; Ter-Akopian, G. M.] Joint Inst Nucl Res, Flerov Lab Nucl React, RU-141980 Dubna, Russia. [Luo, Y. X.; Rasmussen, J. O.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Zhu, S. J.] Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China. [Ma, W. C.] Mississippi State Univ, Dept Phys & Astron, Mississippi State, MS 39762 USA. RP Liu, SH (reprint author), Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA. RI Itaco, Nunzio/C-3838-2009 OI Itaco, Nunzio/0000-0002-9508-2613 FU US Department of Energy [DE-FG05-88ER40407, DE-FG02-95ER40939, DE-FG02-96ER40983, DE-AC03-76SF00098]; National Natural Science Foundation of China [10775078, 10975082]; Major State Basic Research Development Program [2007CB815005] FX The work at Vanderbilt University, Mississippi State University, University of Tennessee, and Lawrence Berkeley National Laboratory is supported by the US Department of Energy under Grant and Contract Nos. DE-FG05-88ER40407, DE-FG02-95ER40939, DE-FG02-96ER40983, and DE-AC03-76SF00098. The work at Tsinghua University is supported by the National Natural Science Foundation of China under Grant Nos. 10775078 and 10975082 and by the Major State Basic Research Development Program under Grant No. 2007CB815005. NR 30 TC 6 Z9 6 U1 0 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD JAN PY 2010 VL 81 IS 1 AR 014316 DI 10.1103/PhysRevC.81.014316 PG 7 WC Physics, Nuclear SC Physics GA 695JJ UT WOS:000285366100005 ER PT J AU Pinto, SA Stadler, A Gross, F AF Pinto, Sergio Alexandre Stadler, Alfred Gross, Franz TI First results for electromagnetic three-nucleon form factors from high-precision two-nucleon interactions SO PHYSICAL REVIEW C LA English DT Article ID ELASTIC ELECTRON-SCATTERING; FEW-BODY PROBLEM; MOMENTUM-TRANSFER; HE-3; EQUATIONS; ENERGY; FORCES AB The electromagnetic form factors of the three-nucleon bound states were calculated in Complete Impulse Approximation in the framework of the Covariant Spectator Theory for the new highprecision two-nucleon interaction models WJC-1 and WJC-2. The calculations use an approximation for the three-nucleon vertex functions with two nucleons off mass shell. The form factors with WJC-2 are close to the ones obtained with the older model W16 and to nonrelativistic potential calculations with lowest-order relativistic corrections, while the form factors with the most precise two-nucleon model WJC-1 exhibit larger differences. These results can be understood when the effect of the different types of pion-nucleon coupling used in the various models is examined. C1 [Pinto, Sergio Alexandre] Univ Lisbon, Ctr Fis Nucl, P-1649003 Lisbon, Portugal. [Stadler, Alfred] Univ Evora, Dept Fis, P-7000671 Evora, Portugal. [Gross, Franz] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. [Gross, Franz] Coll William & Mary, Williamsburg, VA 23187 USA. RP Pinto, SA (reprint author), Univ Lisbon, Ctr Fis Nucl, P-1649003 Lisbon, Portugal. RI Stadler, Alfred/C-5550-2009 OI Stadler, Alfred/0000-0002-9596-0770 FU FEDER [SFRH/BD/8432/2002]; FCT [POCTI/ISFL/2/275]; Jefferson Science Associates, LLC [DE-AC05-06OR23177] FX We thank L. Marcucci for providing the results of the IARC calculations. S. A. P. and A. S. received support from FEDER and FCT under grant Nos. SFRH/BD/8432/2002 and POCTI/ISFL/2/275. F. G. was supported by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177. A. S. thanks the Jefferson Lab Theory Group for its hospitality. NR 25 TC 7 Z9 7 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 EI 1089-490X J9 PHYS REV C JI Phys. Rev. C PD JAN PY 2010 VL 81 IS 1 AR 014007 PG 10 WC Physics, Nuclear SC Physics GA 548XI UT WOS:000274002700060 ER PT J AU Ressler, JJ Caggiano, JA Francy, CJ Peplowski, PN Allmond, JM Beausang, CW Bernstein, LA Bleuel, DL Burke, JT Fallon, P Hecht, AA Jordan, DV Lesher, SR McMahan, MA Palmer, TS Phair, L Scielzo, ND Swearingen, PG Warren, GA Wiedeking, M AF Ressler, J. J. Caggiano, J. A. Francy, C. J. Peplowski, P. N. Allmond, J. M. Beausang, C. W. Bernstein, L. A. Bleuel, D. L. Burke, J. T. Fallon, P. Hecht, A. A. Jordan, D. V. Lesher, S. R. McMahan, M. A. Palmer, T. S. Phair, L. Scielzo, N. D. Swearingen, P. G. Warren, G. A. Wiedeking, M. TI Fission fragment isomers populated via Li-6+Th-232 SO PHYSICAL REVIEW C LA English DT Article ID HEAVY-ION COLLISIONS; TRANSITION-PROBABILITIES; YRAST EXCITATIONS; TE NUCLEI; STATES; IDENTIFICATION; DECAY; PRODUCTS; ISOTOPES; SN-119 AB Short-lived isomers in fission fragments following bombardment of 45-MeV Li-6 on Th-232 were examined. Isomers in the A similar to 95, 122, and 132 mass regions were observed. New isomeric decays were observed in In-121 [T-1/2 = 17(2) mu s], In-123 (T-1/2 greater than or similar to 100 mu s), and Sb-125 [T-1/2 = 25(4) mu s]. These isomers are suggested to arise from nu(h(11/2) circle times d(3/2))(7-) and nu(h(11/2) circle times s(1/2))(5-) neutron core excitations coupling with the valence proton. C1 [Ressler, J. J.; Caggiano, J. A.; Francy, C. J.; Peplowski, P. N.; Jordan, D. V.; Swearingen, P. G.; Warren, G. A.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Francy, C. J.; Palmer, T. S.; Swearingen, P. G.] Oregon State Univ, Dept Nucl Engn, Corvallis, OR 97331 USA. [Allmond, J. M.; Beausang, C. W.] Univ Richmond, Dept Phys, Richmond, VA 23173 USA. [Bernstein, L. A.; Bleuel, D. L.; Burke, J. T.; Lesher, S. R.; Scielzo, N. D.; Wiedeking, M.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Fallon, P.; McMahan, M. A.; Phair, L.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Hecht, A. A.] Univ New Mexico, Dept Nucl Engn, Albuquerque, NM 87131 USA. RP Ressler, JJ (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. RI Ressler, Jennifer Jo/F-2279-2010; Peplowski, Patrick/I-7254-2012; Burke, Jason/I-4580-2012 OI Peplowski, Patrick/0000-0001-7154-8143; FU Department of Energy's NNSA; Office of Nonproliferation Research and Development [NA-22]; US Department of Energy [DE-AC05-76RLO-1830, DE-AC52-07NA27344, DE-AC02-05CH11231] FX The authors thank the 88-Inch Cyclotron operations and facilities staff for the experimental support of this study. We would also like to thank J. Greene of Argonne National Laboratory for the preparation of the 232Th target. We are grateful to the Department of Energy's NNSA, Office of Nonproliferation Research and Development (NA-22), for financial support. This work was performed under the auspices of the US Department of Energy under Contract Nos. DE-AC05-76RLO-1830 (PNNL), DE-AC52-07NA27344 (LLNL), and DE-AC02-05CH11231 (LBNL). NR 64 TC 9 Z9 9 U1 1 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD JAN PY 2010 VL 81 IS 1 AR 014301 DI 10.1103/PhysRevC.81.014301 PG 9 WC Physics, Nuclear SC Physics GA 548XI UT WOS:000274002700013 ER PT J AU Rohozinski, SG Dobaczewski, J Nazarewicz, W AF Rohozinski, S. G. Dobaczewski, J. Nazarewicz, W. TI Self-consistent symmetries in the proton-neutron Hartree-Fock-Bogoliubov approach SO PHYSICAL REVIEW C LA English DT Article ID HIGH-SPIN STATES; MEAN-FIELD; SKYRMES INTERACTION; PAIRING INTERACTION; NUCLEAR-STRUCTURE; ROTATING NUCLEI; DRIP-LINE; DEFORMATIONS; EQUATIONS; BREAKING AB Symmetry properties of densities and mean fields appearing in the nuclear density functional theory with pairing are studied. We consider energy functionals that depend only on local densities and their derivatives. The most important self-consistent symmetries are discussed: spherical, axial, space-inversion, and mirror symmetries. In each case, the consequences of breaking or conserving the time-reversal and/or proton-neutron symmetries are discussed and summarized in a tabulated form, useful in practical applications. Particular attention is paid to the case of broken proton-neutron symmetry, especially in the context of isoscalar pairing. We demonstrate that isoscalar pairing fields have geometrical properties markedly different from those of the usual isovector pairing fields and their theoretical treatment requires great care. C1 [Rohozinski, S. G.; Dobaczewski, J.; Nazarewicz, W.] Univ Warsaw, Inst Theoret Phys, PL-00681 Warsaw, Poland. [Dobaczewski, J.] Univ Jyvaskyla, Dept Phys, FI-40014 Jyvaskyla, Finland. [Nazarewicz, W.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Nazarewicz, W.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. RP Rohozinski, SG (reprint author), Univ Warsaw, Inst Theoret Phys, Ul Hoza 69, PL-00681 Warsaw, Poland. EM jacek.dobaczewski@fuw.edu.pl NR 50 TC 18 Z9 18 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD JAN PY 2010 VL 81 IS 1 AR 014313 DI 10.1103/PhysRevC.81.014313 PG 24 WC Physics, Nuclear SC Physics GA 548XI UT WOS:000274002700025 ER PT J AU Romano, C Danon, Y Block, R Thompson, J Blain, E Bond, E AF Romano, C. Danon, Y. Block, R. Thompson, J. Blain, E. Bond, E. TI Fission fragment mass and energy distributions as a function of incident neutron energy measured in a lead slowing-down spectrometer SO PHYSICAL REVIEW C LA English DT Article ID CROSS-SECTION; U-235(N,F); RESONANCES AB A new method of measuring fission fragment mass and energy distributions as a function of incident neutron energy in the range from below 0.1 eV to 1 keV has been developed. The method involves placing a double-sided Frisch-gridded fission chamber in Rensselaer Polytechnic Institute's lead slowing-down spectrometer (LSDS). The high neutron flux of the LSDS allows for the measurement of the energy-dependent, neutron-induced fission cross sections simultaneously with the mass and kinetic energy of the fission fragments of various small samples. The samples may be isotopes that are not available in large quantities (submicrograms) or with small fission cross sections (microbarns). The fission chamber consists of two anodes shielded by Frisch grids on either side of a single cathode. The sample is located in the center of the cathode and is made by depositing small amounts of actinides on very thin films. The chamber was successfully tested and calibrated using 0.41 +/- 0.04 ng of (252)Cf and the resulting mass distributions were compared to those of previous work. As a proof of concept, the chamber was placed in the LSDS to measure the neutron-induced fission cross section and fragment mass and energy distributions of 25.3 +/- 0.5 mu g of (235)U. Changes in the mass distributions as a function of incident neutron energy are evident and are examined using the multimodal fission mode model. C1 [Romano, C.; Danon, Y.; Block, R.; Thompson, J.; Blain, E.] Rensselaer Polytech Inst, Dept Mech Aerosp & Nucl Engn, Troy, NY 12180 USA. [Bond, E.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Danon, Y (reprint author), Rensselaer Polytech Inst, Dept Mech Aerosp & Nucl Engn, NES 1-25,110 8th St, Troy, NY 12180 USA. EM danony@rpi.edu OI Bond, Evelyn/0000-0001-7335-4086 FU Stewardship Science Academic Alliance [DE-FG03-03NA00079] FX The authors express their appreciation to the Linac staff for their expertise and diligent work in running the Linac during the experiments. The authors also thank the Stewardship Science Academic Alliance for their funding of this research, Grant No. DE-FG03-03NA00079. NR 23 TC 8 Z9 8 U1 1 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD JAN PY 2010 VL 81 IS 1 AR 014607 DI 10.1103/PhysRevC.81.014607 PG 11 WC Physics, Nuclear SC Physics GA 548XI UT WOS:000274002700032 ER PT J AU Sickles, A McCumber, MP Adare, A AF Sickles, Anne McCumber, Michael P. Adare, Andrew TI Extraction of correlated jet pair signals in relativistic heavy ion collisions SO PHYSICAL REVIEW C LA English DT Article ID QUARK-GLUON PLASMA; COLLABORATION; PERSPECTIVE AB Multiparticle correlation techniques are frequently used to study jet shapes and yields in hadronic and nuclear collisions. To date, a standard assumption applied in such analyses is that the observed correlations arise from either jets and associated hard scattering phenomena, or from a background component due to combinatorial pairs connected only through whole event correlations. Within this assumption of two essentially independent sources, a fundamental problem centers around determining the relative contributions of each component. We discuss the methods commonly used to establish the background yield in jet correlation analyses, with a full explanation of the absolute background normalization technique which establishes the background yield without assumptions about the shape of jet correlations. This is especially important in relativistic heavy ion collisions where the jet shapes are significantly distorted from the well separated back-to-back dijets observed in proton-proton collisions. C1 [Sickles, Anne] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [McCumber, Michael P.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Adare, Andrew] Univ Colorado, Dept Phys, Boulder, CO 80309 USA. RP Sickles, A (reprint author), Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. EM anne@bnl.gov FU Division of Nuclear Physics of the US Department of Energy [DE-FG02-00ER41152]; US Department of Energy [DE-AC02-98CH10886, DE-FG02-96ER40988] FX We thank Tom Hemmick with whom some of this work was started, Paul Stankus for the valuable discussions, and Dave Morrison for his helpful comments. A. A. acknowledges funding from the Division of Nuclear Physics of the US Department of Energy under Grant No. DE-FG02-00ER41152. A. S. is supported by the US Department of Energy under Contract No. DE-AC02-98CH10886. M. M. is supported by the US Department of Energy under Grant No. DE-FG02-96ER40988. NR 18 TC 6 Z9 6 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD JAN PY 2010 VL 81 IS 1 AR 014908 DI 10.1103/PhysRevC.81.014908 PG 9 WC Physics, Nuclear SC Physics GA 695JJ UT WOS:000285366100006 ER PT J AU Steppenbeck, D Deacon, AN Freeman, SJ Janssens, RVF Zhu, S Carpenter, MP Chowdhury, P Honma, M Lauritsen, T Lister, CJ Seweryniak, D Smith, JF Tabor, SL Varley, BJ AF Steppenbeck, D. Deacon, A. N. Freeman, S. J. Janssens, R. V. F. Zhu, S. Carpenter, M. P. Chowdhury, P. Honma, M. Lauritsen, T. Lister, C. J. Seweryniak, D. Smith, J. F. Tabor, S. L. Varley, B. J. TI High-spin structures in the neutron-rich isotopes Mn57-60 SO PHYSICAL REVIEW C LA English DT Article ID BETA-DECAY; LEVEL STRUCTURE; MASS; MANGANESE; PARTICLE; NUCLEI; NICKEL; COBALT; MN-58; CA-48 AB Excited states in the neutron-rich isotopes Mn57-60 have been studied with fusion-evaporation reactions induced by Ca-48 beams at 130 MeV on C-13,C-14 targets. Level schemes have been deduced reaching spins of similar to 16 (h) over bar similar to 27 (h) over bar /2 in the odd-odd and odd-even isotopes, respectively. States with natural parity within an fp model space are compared to the predictions of large-scale shell-model calculations using the recently developed GXPF1A effective interaction. Quasirotational structures are evident in all of the isotopes and are discussed in terms of the deformation-driving potential of the nu 1g(9/2) intruder orbital. It is apparent that an enlarged model space, incorporating at least the 1g(9/2) intruder state, is necessary to reproduce the observed experimental systematics in a more satisfactory manner. C1 [Steppenbeck, D.; Deacon, A. N.; Freeman, S. J.; Smith, J. F.; Varley, B. J.] Univ Manchester, Schuster Lab, Manchester M13 9PL, Lancs, England. [Janssens, R. V. F.; Zhu, S.; Carpenter, M. P.; Lauritsen, T.; Lister, C. J.; Seweryniak, D.] Argonne Natl Lab, Argonne, IL 60439 USA. [Chowdhury, P.] Univ Massachusetts, Lowell, MA 01854 USA. [Honma, M.] Univ Aizu, Ctr Math Sci, Fukushima 9658580, Japan. [Tabor, S. L.] Florida State Univ, Dept Phys, Tallahassee, FL 32306 USA. RP Steppenbeck, D (reprint author), RIKEN, Nishina Ctr, 2-1 Hirosawa, Wako, Saitama 3510198, Japan. EM steppenbeck@riken.jp RI Freeman, Sean/B-1280-2010; Carpenter, Michael/E-4287-2015 OI Freeman, Sean/0000-0001-9773-4921; Carpenter, Michael/0000-0002-3237-5734 FU UK Science and Technology Facilities Council (STFC); US Department of Energy; Office of Nuclear Physics [DE-AC02-06CH11357, DE-FG02-94ER40848]; US National Science Foundation [PHY-0139950]; RIKEN; STFC FX This work was supported by the UK Science and Technology Facilities Council (STFC), the US Department of Energy, Office of Nuclear Physics, under Contract Nos. DE-AC02-06CH11357 and DE-FG02-94ER40848, and the US National Science Foundation under Grant PHY-0139950. D. Steppenbeck and A. N. Deacon acknowledge financial support from RIKEN and STFC, respectively. The authors also thank M. Freer at the University of Birmingham for the use of the 14C target. NR 37 TC 20 Z9 21 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD JAN PY 2010 VL 81 IS 1 AR 014305 DI 10.1103/PhysRevC.81.014305 PG 21 WC Physics, Nuclear SC Physics GA 548XI UT WOS:000274002700017 ER PT J AU Swiatecki, WJ Siwek-Wilczynska, K Wilczynski, J AF Swiatecki, W. J. Siwek-Wilczynska, K. Wilczynski, J. TI Reply to "Comment on 'Ratios of disintegration rates for distinct decay modes of an excited nucleus'" SO PHYSICAL REVIEW C LA English DT Editorial Material C1 [Swiatecki, W. J.] Lawrence Berkeley Natl Lab, Div Nucl Sci, Berkeley, CA 94720 USA. [Siwek-Wilczynska, K.] Univ Warsaw, Inst Expt Phys, PL-00681 Warsaw, Poland. [Wilczynski, J.] Andrzej Soltan Inst Nucl Studies, PL-05400 Otwock, Poland. RP Swiatecki, WJ (reprint author), Lawrence Berkeley Natl Lab, Div Nucl Sci, Berkeley, CA 94720 USA. NR 11 TC 2 Z9 2 U1 1 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD JAN PY 2010 VL 81 IS 1 AR 019804 DI 10.1103/PhysRevC.81.019804 PG 2 WC Physics, Nuclear SC Physics GA 695JJ UT WOS:000285366100009 ER PT J AU Typel, S Ropke, G Klahn, T Blaschke, D Wolter, HH AF Typel, S. Roepke, G. Klaehn, T. Blaschke, D. Wolter, H. H. TI Composition and thermodynamics of nuclear matter with light clusters SO PHYSICAL REVIEW C LA English DT Article ID EQUATION-OF-STATE; FINITE-TEMPERATURE; MOTT TRANSITIONS; QUANTUM-THEORY; NEUTRON RADII; NONIDEAL GAS; DENSE MATTER; HOT NUCLEI; PARTICLE; SUPERNOVA AB We investigate nuclear matter at a finite temperature and density, including the formation of light clusters up to the a particle (1 <= A <= 4). The novel feature of this work is to include the formation of clusters as well as their dissolution due to medium effects in a systematic way using two many-body theories: a microscopic quantum statistical (QS) approach and a generalized relativistic mean-field (RMF) model. Nucleons and clusters are modified by medium effects. While the nucleon quasiparticle properties are determined within the RMF model from the scalar and vector self-energies, the cluster binding energies are reduced because of Pauli blocking shifts calculated in the QS approach. Both approaches reproduce the limiting cases of nuclear statistical equilibrium (NSE) at low densities and cluster-free nuclear matter at high densities. The treatment of the cluster dissociation is based on the Mott effect due to Pauli blocking, implemented in slightly different ways in the QS and the generalized RMF approaches. This leads to somewhat different results in the intermediate density range of about 10(-3) to 10(-1) fm(-3), which gives an estimate of the present accuracy of the theoretical predictions. We compare the numerical results of these models for cluster abundances and thermodynamics in the region of medium excitation energies with temperatures T <= 20 MeV and baryon number densities from zero to a few times saturation density. The effects of cluster formation on the liquid-gas phase transition and on the density dependence of the symmetry energy are studied. It is demonstrated that the parabolic approximation for the asymmetry dependence of the nuclear equation of state breaks down at low temperatures and at subsaturation densities because of cluster formation. Comparison is made with other theoretical approaches, in particular, those that are commonly used in astrophysical calculations. The results are relevant for heavy-ion collisions and astrophysical applications. C1 [Typel, S.] Tech Univ Munich, Excellence Cluster Universe, D-85748 Garching, Germany. [Typel, S.] GSI Helmholtzzentrum Schwerionenforsch GmbH, Theorie, D-64291 Darmstadt, Germany. [Roepke, G.] Univ Rostock, Inst Phys, D-18051 Rostock, Germany. [Klaehn, T.] Argonne Natl Lab, Theory Grp, Div Phys, Argonne, IL 60439 USA. [Klaehn, T.; Blaschke, D.] Uniwersytet Wroclawski, Inst Fizyki Teoretycznej, PL-50204 Wroclaw, Poland. [Blaschke, D.] Joint Inst Nucl Res Dubna, Bogoliubov Lab Theoret Phys, Dubna 141980, Russia. [Wolter, H. H.] Univ Munich, Fak Phys, D-85748 Garching, Germany. RP Typel, S (reprint author), Tech Univ Munich, Excellence Cluster Universe, Boltzmannstr 2, D-85748 Garching, Germany. EM s.typel@gsi.de; gerd.roepke@uni-rostock.de; thomas.klaehn@googlemail.com; blaschke@ift.uni.wroc.pl; hermann.wolter@physik.uni-muenchen.de FU DFG; CompStar; European Science Foundation; Department of Energy, Office of Nuclear Physics [DE-AC02-06CH11357]; Polish Ministry for Research and Higher Education [N202 0953 33, N202 2318 37]; Russian Fund for Fundamental Investigations [08-02-01003-a] FX This research was supported by the DFG cluster of excellence "Origin and Structure of the Universe" and by CompStar, a Research Networking Programme of the European Science Foundation. The work of TK was supported by the Department of Energy, Office of Nuclear Physics, Contract DE-AC02-06CH11357. DB acknowledges support from the Polish Ministry for Research and Higher Education under Grants N N202 0953 33 and N N202 2318 37 and from the Russian Fund for Fundamental Investigations under Grant 08-02-01003-a. NR 72 TC 190 Z9 190 U1 3 U2 11 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD JAN PY 2010 VL 81 IS 1 AR 015803 DI 10.1103/PhysRevC.81.015803 PG 22 WC Physics, Nuclear SC Physics GA 548XI UT WOS:000274002700053 ER PT J AU Adamson, P Andreopoulos, C Arms, KE Armstrong, R Auty, DJ Ayres, DS Backhouse, C Barnett, J Barr, G Barrett, WL Becker, BR Bishai, M Blake, A Bock, B Bock, GJ Boehnlein, DJ Bogert, D Bower, C Cavanaugh, S Chapman, JD Cherdack, D Childress, S Choudhary, BC Cobb, JH Coleman, SJ Cronin-Hennessy, D Culling, AJ Danko, IZ de Jong, JK Devenish, NE Diwan, MV Dorman, M Escobar, CO Evans, JJ Falk, E Feldman, GJ Fields, TH Frohne, MV Gallagher, HR Godley, A Goodman, MC Gouffon, P Gran, R Grashorn, EW Grzelak, K Habig, A Harris, D Harris, PG Hartnell, J Hatcher, R Heller, K Himmel, A Holin, A Hylen, J Irwin, GM Isvan, Z Jaffe, DE James, C Jensen, D Kafka, T Kasahara, SMS Koizumi, G Kopp, S Kordosky, M Korman, K Koskinen, DJ Krahn, Z Kreymer, A Lang, K Ling, J Litchfield, PJ Loiacono, L Lucas, P Ma, J Mann, WA Marshak, ML Marshall, JS Mayer, N McGowan, AM Mehdiyev, R Meier, JR Messier, MD Metelko, CJ Michael, DG Miller, KH Mishra, SR Mitchell, J Moore, CD Morfin, J Mualem, L Mufson, S Musser, J Naples, D Nelson, JK Newman, HB Nichol, RJ Nicholls, TC Ochoa-Ricoux, JP Oliver, WP Osiecki, T Ospanov, R Osprey, S Paley, J Patterson, RB Patzak, T Pawloski, G Pearce, GF Peterson, EA Pittam, R Plunkett, RK Rahaman, A Rameika, RA Raufer, TM Rebel, B Reichenbacher, J Rodrigues, PA Rosenfeld, C Rubin, HA Ryabov, VA Sanchez, MC Saoulidou, N Schneps, J Schreiner, P Shanahan, P Smart, W Smith, C Sousa, A Speakman, B Stamoulis, P Strait, M Tagg, N Talaga, RL Thomas, J Thomson, MA Thron, JL Tinti, G Toner, R Tsarev, VA Tzanakos, G Urheim, J Vahle, P Viren, B Watabe, M Weber, A Webb, RC West, N White, C Whitehead, L Wojcicki, SG Wright, DM Yang, T Zois, M Zhang, K Zwaska, R AF Adamson, P. Andreopoulos, C. Arms, K. E. Armstrong, R. Auty, D. J. Ayres, D. S. Backhouse, C. Barnett, J. Barr, G. Barrett, W. L. Becker, B. R. Bishai, M. Blake, A. Bock, B. Bock, G. J. Boehnlein, D. J. Bogert, D. Bower, C. Cavanaugh, S. Chapman, J. D. Cherdack, D. Childress, S. Choudhary, B. C. Cobb, J. H. Coleman, S. J. Cronin-Hennessy, D. Culling, A. J. Danko, I. Z. de Jong, J. K. Devenish, N. E. Diwan, M. V. Dorman, M. Escobar, C. O. Evans, J. J. Falk, E. Feldman, G. J. Fields, T. H. Frohne, M. V. Gallagher, H. R. Godley, A. Goodman, M. C. Gouffon, P. Gran, R. Grashorn, E. W. Grzelak, K. Habig, A. Harris, D. Harris, P. G. Hartnell, J. Hatcher, R. Heller, K. Himmel, A. Holin, A. Hylen, J. Irwin, G. M. Isvan, Z. Jaffe, D. E. James, C. Jensen, D. Kafka, T. Kasahara, S. M. S. Koizumi, G. Kopp, S. Kordosky, M. Korman, K. Koskinen, D. J. Krahn, Z. Kreymer, A. Lang, K. Ling, J. Litchfield, P. J. Loiacono, L. Lucas, P. Ma, J. Mann, W. A. Marshak, M. L. Marshall, J. S. Mayer, N. McGowan, A. M. Mehdiyev, R. Meier, J. R. Messier, M. D. Metelko, C. J. Michael, D. G. Miller, Kw. H. Mishra, S. R. Mitchell, J. Moore, C. D. Morfin, J. Mualem, L. Mufson, S. Musser, J. Naples, D. Nelson, J. K. Newman, H. B. Nichol, R. J. Nicholls, T. C. Ochoa-Ricoux, J. P. Oliver, W. P. Osiecki, T. Ospanov, R. Osprey, S. Paley, J. Patterson, R. B. Patzak, T. Pawloski, G. Pearce, G. F. Peterson, E. A. Pittam, R. Plunkett, R. K. Rahaman, A. Rameika, R. A. Raufer, T. M. Rebel, B. Reichenbacher, J. Rodrigues, P. A. Rosenfeld, C. Rubin, H. A. Ryabov, V. A. Sanchez, M. C. Saoulidou, N. Schneps, J. Schreiner, P. Shanahan, P. Smart, W. Smith, C. Sousa, A. Speakman, B. Stamoulis, P. Strait, M. Tagg, N. Talaga, R. L. Thomas, J. Thomson, M. A. Thron, J. L. Tinti, G. Toner, R. Tsarev, V. A. Tzanakos, G. Urheim, J. Vahle, P. Viren, B. Watabe, M. Weber, A. Webb, R. C. West, N. White, C. Whitehead, L. Wojcicki, S. G. Wright, D. M. Yang, T. Zois, M. Zhang, K. Zwaska, R. CA MINOS Collaboration TI Observation of muon intensity variations by season with the MINOS far detector SO PHYSICAL REVIEW D LA English DT Article ID COLLISIONS; MACRO AB The temperature of the upper atmosphere affects the height of primary cosmic ray interactions and the production of high-energy cosmic ray muons which can be detected deep underground. The MINOS far detector at Soudan, MN, has collected over 67 X 10(6) cosmic ray induced muons. The underground muon rate measured over a period of five years exhibits a 4% peak-to-peak seasonal variation which is highly correlated with the temperature in the upper atmosphere. The coefficient, alpha(T), relating changes in the muon rate to changes in atmospheric temperature was found to be alpha(T) 0: 873 +/- 0: 009(stat) +/- 0.010(syst). Pions and kaons in the primary hadronic interactions of cosmic rays in the atmosphere contribute differently to alpha(T) due to the different masses and lifetimes. This allows the measured value of alpha(T) to be interpreted as a measurement of the K/pi ratio for E-p greater than or similar to 7 TeV of 0.12(-0.05)(+0.07), consistent with the expectation from collider experiments. C1 [Adamson, P.; Bock, G. J.; Boehnlein, D. J.; Bogert, D.; Childress, S.; Choudhary, B. C.; Harris, D.; Hatcher, R.; Hylen, J.; James, C.; Jensen, D.; Koizumi, G.; Kreymer, A.; Lucas, P.; Moore, C. D.; Morfin, J.; Plunkett, R. K.; Rameika, R. A.; Rebel, B.; Saoulidou, N.; Shanahan, P.; Smart, W.; Zwaska, R.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Ayres, D. S.; Fields, T. H.; Goodman, M. C.; McGowan, A. M.; Reichenbacher, J.; Sanchez, M. C.; Talaga, R. L.; Thron, J. L.] Argonne Natl Lab, Argonne, IL 60439 USA. [Stamoulis, P.; Tzanakos, G.; Zois, M.] Univ Athens, Dept Phys, GR-15771 Athens, Greece. [Frohne, M. V.; Schreiner, P.] Benedictine Univ, Dept Phys, Lisle, IL 60532 USA. [Bishai, M.; Diwan, M. V.; Jaffe, D. E.; Viren, B.; Whitehead, L.; Zhang, K.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Himmel, A.; Michael, D. G.; Mualem, L.; Newman, H. B.; Ochoa-Ricoux, J. P.; Patterson, R. B.; Smith, C.] CALTECH, Lauritsen Lab, Pasadena, CA 91125 USA. [Blake, A.; Chapman, J. D.; Culling, A. J.; Marshall, J. S.; Mitchell, J.; Thomson, M. A.; Toner, R.] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England. [Escobar, C. O.] Univ Estadual Campinas, IFGW UNICAMP, BR-13083970 Campinas, SP, Brazil. [Cavanaugh, S.; Feldman, G. J.; Sanchez, M. C.; Sousa, A.] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA. [Frohne, M. V.] Coll Holy Cross, Notre Dame, IN 46556 USA. [de Jong, J. K.; Rubin, H. A.; White, C.] IIT, Div Phys, Chicago, IL 60616 USA. [Armstrong, R.; Bower, C.; Mayer, N.; Messier, M. D.; Mufson, S.; Musser, J.; Paley, J.; Urheim, J.] Indiana Univ, Bloomington, IN 47405 USA. [Dorman, M.; Evans, J. J.; Holin, A.; Kordosky, M.; Koskinen, D. J.; Nichol, R. J.; Thomas, J.; Vahle, P.] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Arms, K. E.; Becker, B. R.; Cronin-Hennessy, D.; Grashorn, E. W.; Heller, K.; Kasahara, S. M. S.; Krahn, Z.; Litchfield, P. J.; Marshak, M. L.; McGowan, A. M.; Meier, J. R.; Miller, Kw. H.; Peterson, E. A.; Speakman, B.; Strait, M.] Univ Minnesota, Minneapolis, MN 55455 USA. [Bock, B.; Gran, R.; Grashorn, E. W.; Habig, A.; Korman, K.; Koskinen, D. J.] Univ Minnesota, Dept Phys, Duluth, MN 55812 USA. [Tagg, N.] Otterbein Coll, Westerville, OH 43081 USA. [Backhouse, C.; Barnett, J.; Barr, G.; Cobb, J. H.; de Jong, J. K.; Evans, J. J.; Grzelak, K.; Osprey, S.; Pittam, R.; Raufer, T. M.; Rodrigues, P. A.; Sousa, A.; Tinti, G.; Weber, A.; West, N.] Univ Oxford, Dept Phys, Oxford OX1 3RH, England. [Danko, I. Z.; Isvan, Z.; Naples, D.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Andreopoulos, C.; Hartnell, J.; Metelko, C. J.; Nicholls, T. C.; Pearce, G. F.; Raufer, T. M.] Rutherford Appleton Lab, Sci & Technol Facil Council, Didcot OX11 0QX, Oxon, England. [Gouffon, P.] Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil. [Godley, A.; Ling, J.; Mishra, S. R.; Rahaman, A.; Rosenfeld, C.] Univ S Carolina, Dept Phys & Astron, Columbia, SC 29208 USA. [Irwin, G. M.; Pawloski, G.; Wojcicki, S. G.; Yang, T.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Auty, D. J.; Devenish, N. E.; Falk, E.; Harris, P. G.; Hartnell, J.; Smith, C.] Univ Sussex, Dept Phys & Astron, Brighton BN1 9QH, E Sussex, England. [Watabe, M.; Webb, R. C.] Texas A&M Univ, Dept Phys, College Stn, TX 77843 USA. [Kopp, S.; Lang, K.; Loiacono, L.; Ma, J.; Mehdiyev, R.; Osiecki, T.; Ospanov, R.] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA. [Cherdack, D.; Gallagher, H. R.; Kafka, T.; Mann, W. A.; Oliver, W. P.; Schneps, J.; Tagg, N.] Tufts Univ, Dept Phys, Medford, MA 02155 USA. [Grzelak, K.] Univ Warsaw, Dept Phys, PL-00681 Warsaw, Poland. [Coleman, S. J.; Kordosky, M.; Nelson, J. K.; Vahle, P.] Coll William & Mary, Dept Phys, Williamsburg, VA 23187 USA. [Barrett, W. L.] Western Washington Univ, Dept Phys, Bellingham, WA 98225 USA. [Patzak, T.] Univ Paris 07, APC, F-75205 Paris 13, France. [Ryabov, V. A.; Tsarev, V. A.] PN Lebedev Phys Inst, Dept Nucl Phys, Moscow 119991, Russia. [Wright, D. M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Adamson, P (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. RI Nichol, Ryan/C-1645-2008; Harris, Philip/I-7419-2012; Tinti, Gemma/I-5886-2013; Ryabov, Vladimir/E-1281-2014; Koskinen, David/G-3236-2014; Evans, Justin/P-4981-2014; Gouffon, Philippe/I-4549-2012; Osprey, Scott/P-6621-2016; Ling, Jiajie/I-9173-2014; Inst. of Physics, Gleb Wataghin/A-9780-2017; OI Hartnell, Jeffrey/0000-0002-1744-7955; Cherdack, Daniel/0000-0002-3829-728X; Weber, Alfons/0000-0002-8222-6681; Harris, Philip/0000-0003-4369-3874; Koskinen, David/0000-0002-0514-5917; Evans, Justin/0000-0003-4697-3337; Gouffon, Philippe/0000-0001-7511-4115; Osprey, Scott/0000-0002-8751-1211; Ling, Jiajie/0000-0003-2982-0670; COLEMAN, STEPHEN/0000-0002-4621-9169; Thomson, Mark/0000-0002-2654-9005 NR 32 TC 25 Z9 25 U1 0 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD JAN PY 2010 VL 81 IS 1 AR 012001 DI 10.1103/PhysRevD.81.012001 PG 9 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 548XJ UT WOS:000274002800004 ER PT J AU Adare, A Afanasiev, S Aidala, C Ajitanand, NN Akiba, Y Al-Bataineh, H Alexander, J Aoki, K Aphecetche, L Armendariz, R Aronson, SH Asai, J Aschenauer, EC Atomssa, ET Averbeck, R Awes, TC Azmoun, B Babintsev, V Bai, M Baksay, G Baksay, L Baldisseri, A Barish, KN Barnes, PD Bassalleck, B Basye, AT Bathe, S Batsouli, S Baublis, V Baumann, C Bazilevsky, A Belikov, S Bennett, R Berdnikov, A Berdnikov, Y Bickley, AA Boissevain, JG Borel, H Boyle, K Brooks, ML Buesching, H Bumazhnov, V Bunce, G Butsyk, S Camacho, CM Campbell, S Chang, BS Chang, WC Charvet, JL Chernichenko, S Chiba, J Chi, CY Chiu, M Choi, IJ Choudhury, RK Chujo, T Chung, P Churyn, A Cianciolo, V Citron, Z Cleven, CR Cole, BA Comets, MP Constantin, P Csanad, M Csorgo, T Dahms, T Dairaku, S Das, K David, G Deaton, MB Dehmelt, K Delagrange, H Denisov, A d'Enterria, D Deshpande, A Desmond, EJ Dietzsch, O Dion, A Donadelli, M Drapier, O Drees, A Drees, KA Dubey, AK Durum, A Dutta, D Dzhordzhadze, V Efremenko, YV Egdemir, J Ellinghaus, F Emam, WS Engelmore, T Enokizono, A En'yo, H Esumi, S Eyser, KO Fadem, B Fields, DE Finger, M Finger, M Fleuret, F Fokin, SL Fraenkel, Z Frantz, JE Franz, A Frawley, AD Fujiwara, K Fukao, Y Fusayasu, T Gadrat, S Garishvili, I Glenn, A Gong, H Gonin, M Gosset, J Goto, Y de Cassagnac, RG Grau, N Greene, SV Perdekamp, MG Gunji, T Gustafsson, HA Hachiya, T Henni, AH Haegemann, C Haggerty, JS Hamagaki, H Han, R Harada, H Hartouni, EP Haruna, K Haslum, E Hayano, R Heffner, M Hemmick, TK Hester, T He, X Hiejima, H Hill, JC Hobbs, R Hohlmann, M Holzmann, W Homma, K Hong, B Horaguchi, T Hornback, D Huang, S Ichihara, T Ichimiya, R Iinuma, H Ikeda, Y Imai, K Imrek, J Inaba, M Inoue, Y Isenhower, D Isenhower, L Ishihara, M Isobe, T Issah, M Isupov, A Ivanischev, D Jacak, BV Jia, J Jin, J Jinnouchi, O Johnson, BM Joo, KS Jouan, D Kajihara, F Kametani, S Kamihara, N Kamin, J Kaneta, M Kang, JH Kanou, H Kapustinsky, J Kawall, D Kazantsev, AV Kempel, T Khanzadeev, A Kijima, KM Kikuchi, J Kim, BI Kim, DH Kim, DJ Kim, E Kim, SH Kinney, E Kiriluk, K Kiss, A Kistenev, E Kiyomichi, A Klay, J Klein-Boesing, C Kochenda, L Kochetkov, V Komkov, B Konno, M Koster, J Kotchetkov, D Kozlov, A Kral, A Kravitz, A Kubart, J Kunde, GJ Kurihara, N Kurita, K Kurosawa, M Kweon, MJ Kwon, Y Kyle, GS Lacey, R Lai, YS Lai, YS Lajoie, JG Layton, D Lebedev, A Lee, DM Lee, KB Lee, MK Lee, T Leitch, MJ Leite, MAL Lenzi, B Liebing, P Liska, T Litvinenko, A Liu, H Liu, MX Li, X Love, B Lynch, D Maguire, CF Makdisi, YI Malakhov, A Malik, MD Manko, VI Mannel, E Mao, Y Masek, L Masui, H Matathias, F McCumber, M McGaughey, PL Means, N Meredith, B Miake, Y Mikes, P Miki, K Miller, TE Milov, A Mioduszewski, S Mishra, M Mitchell, JT Mitrovski, M Mohanty, AK Morino, Y Morreale, A Morrison, DP Moukhanova, TV Mukhopadhyay, D Murata, J Nagamiya, S Nagata, N Nagle, JL Naglis, M Nagy, MI Nakagawa, I Nakamiya, Y Nakamura, T Nakano, K Newby, J Nguyen, M Niita, T Norman, BE Nouicer, R Nyanin, AS O'Brien, E Oda, SX Ogilvie, CA Ohnishi, H Okada, K Oka, M Omiwade, OO Onuki, Y Oskarsson, A Ouchida, M Ozawa, K Pak, R Pal, D Palounek, APT Pantuev, V Papavassiliou, V Park, J Park, WJ Pate, SF Pei, H Peng, JC Pereira, H Peresedov, V Peressounko, DY Pinkenburg, C Purschke, ML Purwar, AK Qu, H Rak, J Rakotozafindrabe, A Ravinovich, I Read, KF Rembeczki, S Reuter, M Reygers, K Riabov, V Riabov, Y Roach, D Roche, G Rolnick, SD Romana, A Rosati, M Rosendahl, SSE Rosnet, P Rukoyatkin, P Ruzicka, P Rykov, VL Sahlmueller, B Saito, N Sakaguchi, T Sakai, S Sakashita, K Sakata, H Samsonov, V Sato, S Sato, T Sawada, S Sedgwick, K Seele, J Seidl, R Semenov, AY Semenov, V Seto, R Sharma, D Shein, I Shevel, A Shibata, TA Shigaki, K Shimomura, M Shoji, K Shukla, P Sickles, A Silva, CL Silvermyr, D Silvestre, C Sim, KS Singh, BK Singh, CP Singh, V Skutnik, S Slunecka, M Soldatov, A Soltz, RA Sondheim, WE Sorensen, SP Sourikova, IV Staley, F Stankus, PW Stenlund, E Stepanov, M Ster, A Stoll, SP Sugitate, T Suire, C Sukhanov, A Sziklai, J Tabaru, T Takagi, S Takagui, EM Taketani, A Tanabe, R Tanaka, Y Tanida, K Tannenbaum, MJ Taranenko, A Tarjan, P Themann, H Thomas, TL Togawa, M Toia, A Tojo, J Tomasek, L Tomita, Y Torii, H Towell, RS Tram, VN Tserruya, I Tsuchimoto, Y Vale, C Valle, H van Hecke, HW Veicht, A Velkovska, J Vertesi, R Vinogradov, AA Virius, M Vrba, V Vznuzdaev, E Wagner, M Walker, D Wang, XR Watanabe, Y Wei, F Wessels, J White, SN Winter, D Woody, CL Wysocki, M Xie, W Yamaguchi, YL Yamaura, K Yang, R Yanovich, A Yasin, Z Ying, J Yokkaichi, S Young, GR Younus, I Yushmanov, E Zajc, WA Zaudtke, O Zhang, C Zhou, S Zimanyi, J Zolin, L AF Adare, A. Afanasiev, S. Aidala, C. Ajitanand, N. N. Akiba, Y. Al-Bataineh, H. Alexander, J. Aoki, K. Aphecetche, L. Armendariz, R. Aronson, S. H. Asai, J. Aschenauer, E. C. Atomssa, E. T. Averbeck, R. Awes, T. C. Azmoun, B. Babintsev, V. Bai, M. Baksay, G. Baksay, L. Baldisseri, A. Barish, K. N. Barnes, P. D. Bassalleck, B. Basye, A. T. Bathe, S. Batsouli, S. Baublis, V. Baumann, C. Bazilevsky, A. Belikov, S. Bennett, R. Berdnikov, A. Berdnikov, Y. Bickley, A. A. Boissevain, J. G. Borel, H. Boyle, K. Brooks, M. L. Buesching, H. Bumazhnov, V. Bunce, G. Butsyk, S. Camacho, C. M. Campbell, S. Chang, B. S. Chang, W. C. Charvet, J. -L. Chernichenko, S. Chiba, J. Chi, C. Y. Chiu, M. Choi, I. J. Choudhury, R. K. Chujo, T. Chung, P. Churyn, A. Cianciolo, V. Citron, Z. Cleven, C. R. Cole, B. A. Comets, M. P. Constantin, P. Csanad, M. Csoergo, T. Dahms, T. Dairaku, S. Das, K. David, G. Deaton, M. B. Dehmelt, K. Delagrange, H. Denisov, A. d'Enterria, D. Deshpande, A. Desmond, E. J. Dietzsch, O. Dion, A. Donadelli, M. Drapier, O. Drees, A. Drees, K. A. Dubey, A. K. Durum, A. Dutta, D. Dzhordzhadze, V. Efremenko, Y. V. Egdemir, J. Ellinghaus, F. Emam, W. S. Engelmore, T. Enokizono, A. En'yo, H. Esumi, S. Eyser, K. O. Fadem, B. Fields, D. E. Finger, M., Jr. Finger, M. Fleuret, F. Fokin, S. L. Fraenkel, Z. Frantz, J. E. Franz, A. Frawley, A. D. Fujiwara, K. Fukao, Y. Fusayasu, T. Gadrat, S. Garishvili, I. Glenn, A. Gong, H. Gonin, M. Gosset, J. Goto, Y. de Cassagnac, R. Granier Grau, N. Greene, S. V. Perdekamp, M. Grosse Gunji, T. Gustafsson, H. -A. Hachiya, T. Henni, A. Hadj Haegemann, C. Haggerty, J. S. Hamagaki, H. Han, R. Harada, H. Hartouni, E. P. Haruna, K. Haslum, E. Hayano, R. Heffner, M. Hemmick, T. K. Hester, T. He, X. Hiejima, H. Hill, J. C. Hobbs, R. Hohlmann, M. Holzmann, W. Homma, K. Hong, B. Horaguchi, T. Hornback, D. Huang, S. Ichihara, T. Ichimiya, R. Iinuma, H. Ikeda, Y. Imai, K. Imrek, J. Inaba, M. Inoue, Y. Isenhower, D. Isenhower, L. Ishihara, M. Isobe, T. Issah, M. Isupov, A. Ivanischev, D. Jacak, B. V. Jia, J. Jin, J. Jinnouchi, O. Johnson, B. M. Joo, K. S. Jouan, D. Kajihara, F. Kametani, S. Kamihara, N. Kamin, J. Kaneta, M. Kang, J. H. Kanou, H. Kapustinsky, J. Kawall, D. Kazantsev, A. V. Kempel, T. Khanzadeev, A. Kijima, K. M. Kikuchi, J. Kim, B. I. Kim, D. H. Kim, D. J. Kim, E. Kim, S. H. Kinney, E. Kiriluk, K. Kiss, A. Kistenev, E. Kiyomichi, A. Klay, J. Klein-Boesing, C. Kochenda, L. Kochetkov, V. Komkov, B. Konno, M. Koster, J. Kotchetkov, D. Kozlov, A. Kral, A. Kravitz, A. Kubart, J. Kunde, G. J. Kurihara, N. Kurita, K. Kurosawa, M. Kweon, M. J. Kwon, Y. Kyle, G. S. Lacey, R. Lai, Y. -S. Lai, Y. S. Lajoie, J. G. Layton, D. Lebedev, A. Lee, D. M. Lee, K. B. Lee, M. K. Lee, T. Leitch, M. J. Leite, M. A. L. Lenzi, B. Liebing, P. Liska, T. Litvinenko, A. Liu, H. Liu, M. X. Li, X. Love, B. Lynch, D. Maguire, C. F. Makdisi, Y. I. Malakhov, A. Malik, M. D. Manko, V. I. Mannel, E. Mao, Y. Masek, L. Masui, H. Matathias, F. McCumber, M. McGaughey, P. L. Means, N. Meredith, B. Miake, Y. Mikes, P. Miki, K. Miller, T. E. Milov, A. Mioduszewski, S. Mishra, M. Mitchell, J. T. Mitrovski, M. Mohanty, A. K. Morino, Y. Morreale, A. Morrison, D. P. Moukhanova, T. V. Mukhopadhyay, D. Murata, J. Nagamiya, S. Nagata, N. Nagle, J. L. Naglis, M. Nagy, M. I. Nakagawa, I. Nakamiya, Y. Nakamura, T. Nakano, K. Newby, J. Nguyen, M. Niita, T. Norman, B. E. Nouicer, R. Nyanin, A. S. O'Brien, E. Oda, S. X. Ogilvie, C. A. Ohnishi, H. Okada, K. Oka, M. Omiwade, O. O. Onuki, Y. Oskarsson, A. Ouchida, M. Ozawa, K. Pak, R. Pal, D. Palounek, A. P. T. Pantuev, V. Papavassiliou, V. Park, J. Park, W. J. Pate, S. F. Pei, H. Peng, J. -C. Pereira, H. Peresedov, V. Peressounko, D. Yu. Pinkenburg, C. Purschke, M. L. Purwar, A. K. Qu, H. Rak, J. Rakotozafindrabe, A. Ravinovich, I. Read, K. F. Rembeczki, S. Reuter, M. Reygers, K. Riabov, V. Riabov, Y. Roach, D. Roche, G. Rolnick, S. D. Romana, A. Rosati, M. Rosendahl, S. S. E. Rosnet, P. Rukoyatkin, P. Ruzicka, P. Rykov, V. L. Sahlmueller, B. Saito, N. Sakaguchi, T. Sakai, S. Sakashita, K. Sakata, H. Samsonov, V. Sato, S. Sato, T. Sawada, S. Sedgwick, K. Seele, J. Seidl, R. Semenov, A. Yu. Semenov, V. Seto, R. Sharma, D. Shein, I. Shevel, A. Shibata, T. -A. Shigaki, K. Shimomura, M. Shoji, K. Shukla, P. Sickles, A. Silva, C. L. Silvermyr, D. Silvestre, C. Sim, K. S. Singh, B. K. Singh, C. P. Singh, V. Skutnik, S. Slunecka, M. Soldatov, A. Soltz, R. A. Sondheim, W. E. Sorensen, S. P. Sourikova, I. V. Staley, F. Stankus, P. W. Stenlund, E. Stepanov, M. Ster, A. Stoll, S. P. Sugitate, T. Suire, C. Sukhanov, A. Sziklai, J. Tabaru, T. Takagi, S. Takagui, E. M. Taketani, A. Tanabe, R. Tanaka, Y. Tanida, K. Tannenbaum, M. J. Taranenko, A. Tarjan, P. Themann, H. Thomas, T. L. Togawa, M. Toia, A. Tojo, J. Tomasek, L. Tomita, Y. Torii, H. Towell, R. S. Tram, V. -N. Tserruya, I. Tsuchimoto, Y. Vale, C. Valle, H. van Hecke, H. W. Veicht, A. Velkovska, J. Vertesi, R. Vinogradov, A. A. Virius, M. Vrba, V. Vznuzdaev, E. Wagner, M. Walker, D. Wang, X. R. Watanabe, Y. Wei, F. Wessels, J. White, S. N. Winter, D. Woody, C. L. Wysocki, M. Xie, W. Yamaguchi, Y. L. Yamaura, K. Yang, R. Yanovich, A. Yasin, Z. Ying, J. Yokkaichi, S. Young, G. R. Younus, I. Yushmanov, E. Zajc, W. A. Zaudtke, O. Zhang, C. Zhou, S. Zimanyi, J. Zolin, L. TI Double-helicity dependence of jet properties from dihadrons in longitudinally polarized p plus p collisions at root s=200 GeV SO PHYSICAL REVIEW D LA English DT Article ID DEEP-INELASTIC-SCATTERING; VIRTUAL COMPTON-SCATTERING; FINAL-STATE INTERACTIONS; PERTURBATION-THEORY; SPIN ASYMMETRIES; QUARK JETS; PROTON; CONSTITUENTS; GLUON AB It has been postulated that partonic orbital angular momentum can lead to a significant double-helicity dependence in the net transverse momentum of Drell-Yan dileptons produced in longitudinally polarized p + p collisions. Analogous effects are also expected for dijet production. If confirmed by experiment, this hypothesis, which is based on semiclassical arguments, could lead to a new approach for studying the contributions of orbital angular momentum to the proton spin. We report the first measurement of the double-helicity dependence of the dijet transverse momentum in longitudinally polarized p + p collisions at root s = 200 GeV from data taken by the PHENIX experiment in 2005 and 2006. The analysis deduces the transverse momentum of the dijet from the widths of the near-and far-side peaks in the azimuthal correlation of the dihadrons. When averaged over the transverse momentum of the triggered particle, the difference of the root mean square of the dijet transverse momentum between like-and unlike-helicity collisions is found to be -37 +/- 88(stat) +/- 14(sys)t MeV/c. C1 [Adare, A.; Bickley, A. A.; Ellinghaus, F.; Glenn, A.; Kinney, E.; Kiriluk, K.; Nagle, J. L.; Seele, J.; Wysocki, M.] Univ Colorado, Boulder, CO 80309 USA. [Basye, A. T.; Deaton, M. B.; Isenhower, D.; Isenhower, L.; Omiwade, O. O.; Towell, R. S.] Abilene Christian Univ, Abilene, TX 79699 USA. [Chang, W. C.] Acad Sinica, Inst Phys, Taipei 11529, Taiwan. [Mishra, M.; Singh, B. K.; Singh, C. P.; Singh, V.] Banaras Hindu Univ, Dept Phys, Varanasi 221005, Uttar Pradesh, India. [Choudhury, R. K.; Dutta, D.; Mohanty, A. K.; Shukla, P.] Bhabha Atom Res Ctr, Bombay 400085, Maharashtra, India. [Bai, M.; Drees, K. A.; Makdisi, Y. I.] Brookhaven Natl Lab, Collider Accelerator Dept, Upton, NY 11973 USA. [Aronson, S. H.; Aschenauer, E. C.; Azmoun, B.; Bazilevsky, A.; Belikov, S.; Buesching, H.; Bunce, G.; David, G.; Desmond, E. J.; Franz, A.; Haggerty, J. S.; Johnson, B. M.; Kistenev, E.; Lynch, D.; Milov, A.; Mioduszewski, S.; Mitchell, J. T.; Morrison, D. P.; Nouicer, R.; O'Brien, E.; Pak, R.; Pinkenburg, C.; Purschke, M. L.; Sakaguchi, T.; Sickles, A.; Sourikova, I. V.; Stoll, S. P.; Sukhanov, A.; Tannenbaum, M. J.; White, S. N.; Woody, C. L.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Barish, K. N.; Bathe, S.; Dzhordzhadze, V.; Emam, W. S.; Eyser, K. O.; Hester, T.; Kotchetkov, D.; Morreale, A.; Rolnick, S. D.; Sedgwick, K.; Seto, R.; Yasin, Z.] Univ Calif Riverside, Riverside, CA 92521 USA. [Finger, M., Jr.; Kubart, J.; Masek, L.; Mikes, P.; Slunecka, M.] Charles Univ Prague, CR-11636 Prague 1, Czech Republic. [Li, X.; Zhou, S.] China Inst Atom Energy, Beijing, Peoples R China. [Gunji, T.; Hamagaki, H.; Hayano, R.; Horaguchi, T.; Isobe, T.; Kajihara, F.; Kametani, S.; Kurihara, N.; Morino, Y.; Oda, S. X.; Ozawa, K.] Univ Tokyo, Grad Sch Sci, Ctr Nucl Study, Bunkyo Ku, Tokyo 1130033, Japan. [Aidala, C.; Chi, C. Y.; Cole, B. A.; d'Enterria, D.; Engelmore, T.; Grau, N.; Jia, J.; Jin, J.; Kravitz, A.; Lai, Y. -S.; Lai, Y. S.; Mannel, E.; Matathias, F.; Winter, D.; Zajc, W. A.] Nevis Labs, Irvington, NY 10533 USA. [Aidala, C.; Chi, C. Y.; Cole, B. A.; d'Enterria, D.; Engelmore, T.; Grau, N.; Jia, J.; Jin, J.; Kravitz, A.; Lai, Y. -S.; Lai, Y. S.; Mannel, E.; Matathias, F.; Winter, D.; Zajc, W. A.] Columbia Univ, New York, NY 10027 USA. [Kral, A.; Liska, T.; Virius, M.] Czech Tech Univ, Prague 16636 6, Czech Republic. [Baldisseri, A.; Borel, H.; Charvet, J. -L.; Gosset, J.; Pereira, H.; Silvestre, C.; Staley, F.] CEA Saclay, F-91191 Gif Sur Yvette, France. [Imrek, J.; Tarjan, P.; Vertesi, R.] Univ Debrecen, H-4010 Debrecen, Hungary. [Csanad, M.; Kiss, A.; Nagy, M. I.] Eotvos Lorand Univ, ELTE, H-1117 Budapest, Hungary. [Baksay, G.; Baksay, L.; Dehmelt, K.; Hohlmann, M.; Rembeczki, S.] Florida Inst Technol, Melbourne, FL 32901 USA. [Das, K.; Deshpande, A.; Frawley, A. D.] Florida State Univ, Tallahassee, FL 32306 USA. [Cleven, C. R.; He, X.; Qu, H.; Ying, J.] Georgia State Univ, Atlanta, GA 30303 USA. [Hachiya, T.; Harada, H.; Haruna, K.; Homma, K.; Kijima, K. M.; Nakamiya, Y.; Nakamura, T.; Ouchida, M.; Sakata, H.; Shigaki, K.; Sugitate, T.; Torii, H.; Tsuchimoto, Y.; Yamaura, K.] Hiroshima Univ, Higashihiroshima 7398526, Japan. [Babintsev, V.; Bumazhnov, V.; Chernichenko, S.; Churyn, A.; Denisov, A.; Durum, A.; Kochetkov, V.; Semenov, V.; Shein, I.; Soldatov, A.; Yanovich, A.] State Res Ctr Russian Federat, Inst High Energy Phys, IHEP Protvino, Protvino 142281, Russia. [Chiu, M.; Perdekamp, M. Grosse; Hiejima, H.; Koster, J.; Layton, D.; Meredith, B.; Peng, J. -C.; Seidl, R.; Veicht, A.; Yang, R.] Univ Illinois, Urbana, IL 61801 USA. [Kubart, J.; Masek, L.; Mikes, P.; Ruzicka, P.; Tomasek, L.; Vrba, V.] Acad Sci Czech Republic, Inst Phys, Prague 18221 8, Czech Republic. [Grau, N.; Hill, J. C.; Kempel, T.; Lajoie, J. G.; Lebedev, A.; Ogilvie, C. A.; Pei, H.; Rosati, M.; Semenov, A. Yu.; Skutnik, S.; Vale, C.; Wei, F.] Iowa State Univ, Ames, IA 50011 USA. [Afanasiev, S.; Finger, M., Jr.; Finger, M.; Isupov, A.; Litvinenko, A.; Malakhov, A.; Peresedov, V.; Rukoyatkin, P.; Slunecka, M.; Zolin, L.] Joint Inst Nucl Res, Dubna 141980, Moscow Region, Russia. [Chiba, J.; Nagamiya, S.; Sato, S.; Sawada, S.] High Energy Accelerator Res Org, KEK, Tsukuba, Ibaraki 3050801, Japan. [Csoergo, T.; Ster, A.; Sziklai, J.; Zimanyi, J.] Hungarian Acad Sci, KFKI Res Inst Particle & Nucl Phys, MTA KFKI RMKI, H-1525 Budapest, Hungary. [Hong, B.; Kim, B. I.; Kweon, M. J.; Lee, K. B.; Park, W. J.; Sim, K. S.] Korea Univ, Seoul 136701, South Korea. [Fokin, S. L.; Kazantsev, A. V.; Manko, V. I.; Moukhanova, T. V.; Nyanin, A. S.; Peressounko, D. Yu.; Vinogradov, A. A.; Yushmanov, E.] IV Kurchatov Atom Energy Inst, Russian Res Ctr, Moscow 123182, Russia. [Aoki, K.; Dairaku, S.; Fukao, Y.; Iinuma, H.; Imai, K.; Saito, N.; Shoji, K.; Togawa, M.; Wagner, M.] Kyoto Univ, Kyoto 6068502, Japan. [Atomssa, E. T.; d'Enterria, D.; Drapier, O.; Fleuret, F.; Gonin, M.; de Cassagnac, R. Granier; Rakotozafindrabe, A.; Romana, A.; Tram, V. -N.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Enokizono, A.; Hartouni, E. P.; Heffner, M.; Klay, J.; Newby, J.; Soltz, R. A.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Aidala, C.; Barnes, P. D.; Boissevain, J. G.; Brooks, M. L.; Butsyk, S.; Camacho, C. M.; Constantin, P.; Kapustinsky, J.; Kunde, G. J.; Lee, D. M.; Leitch, M. J.; Liu, M. X.; McGaughey, P. L.; Norman, B. E.; Palounek, A. P. T.; Purwar, A. K.; Sondheim, W. E.; van Hecke, H. W.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Gadrat, S.; Roche, G.; Rosnet, P.] Univ Clermont Ferrand, CNRS, LPC, IN2P3, F-63177 Aubiere, France. [Gustafsson, H. -A.; Haslum, E.; Oskarsson, A.; Rosendahl, S. S. E.; Stenlund, E.] Lund Univ, Dept Phys, SE-22100 Lund, Sweden. [Aidala, C.; Kawall, D.] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA. [Baumann, C.; Klein-Boesing, C.; Reygers, K.; Sahlmueller, B.; Wessels, J.; Zaudtke, O.] Univ Munster, Inst Kernphys, D-48149 Munster, Germany. [Fadem, B.] Muhlenberg Coll, Allentown, PA 18104 USA. [Joo, K. S.; Kim, D. H.] Myongji Univ, Yongin 449728, Kyonggido, South Korea. [Fusayasu, T.; Tanaka, Y.] Nagasaki Inst Appl Sci, Nagasaki 8510193, Japan. [Bassalleck, B.; Fields, D. E.; Haegemann, C.; Hobbs, R.; Malik, M. D.; Rak, J.; Thomas, T. L.; Younus, I.] Univ New Mexico, Albuquerque, NM 87131 USA. [Al-Bataineh, H.; Armendariz, R.; Kyle, G. S.; Liu, H.; Papavassiliou, V.; Pate, S. F.; Stepanov, M.; Wang, X. R.] New Mexico State Univ, Las Cruces, NM 88003 USA. [Awes, T. C.; Batsouli, S.; Cianciolo, V.; Efremenko, Y. V.; Read, K. F.; Silvermyr, D.; Stankus, P. W.; Young, G. R.; Zhang, C.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Comets, M. P.; Jouan, D.; Suire, C.] Univ Paris 11, CNRS, IN2P3, IPN Orsay, F-91406 Orsay, France. [Han, R.; Mao, Y.] Peking Univ, Beijing 100871, Peoples R China. [Baublis, V.; Ivanischev, D.; Khanzadeev, A.; Kochenda, L.; Komkov, B.; Riabov, V.; Riabov, Y.; Samsonov, V.; Shevel, A.; Vznuzdaev, E.] Petersburg Nucl Phys Inst, Gatchina 188300, Leningrad Reg, Russia. [Akiba, Y.; Aoki, K.; Asai, J.; Dairaku, S.; En'yo, H.; Fujiwara, K.; Fukao, Y.; Goto, Y.; Horaguchi, T.; Ichihara, T.; Ichimiya, R.; Iinuma, H.; Imai, K.; Inoue, Y.; Ishihara, M.; Kametani, S.; Kamihara, N.; Kanou, H.; Kiyomichi, A.; Kurita, K.; Kurosawa, M.; Mao, Y.; Murata, J.; Nakagawa, I.; Nakano, K.; Ohnishi, H.; Onuki, Y.; Rykov, V. L.; Saito, N.; Sakashita, K.; Shibata, T. -A.; Shoji, K.; Taketani, A.; Tanida, K.; Togawa, M.; Tojo, J.; Torii, H.; Wagner, M.; Watanabe, Y.; Yokkaichi, S.] RIKEN Nishina Ctr Accelerator Based Sci, Wako, Saitama 3510198, Japan. [Akiba, Y.; Asai, J.; Bunce, G.; Deshpande, A.; En'yo, H.; Fields, D. E.; Goto, Y.; Perdekamp, M. Grosse; Ichihara, T.; Jinnouchi, O.; Kamihara, N.; Kaneta, M.; Kawall, D.; Liebing, P.; Nakagawa, I.; Okada, K.; Saito, N.; Tabaru, T.; Taketani, A.; Tanida, K.; Watanabe, Y.; Xie, W.; Yokkaichi, S.] Brookhaven Natl Lab, RIKEN BNL Res Ctr, Upton, NY 11973 USA. [Inoue, Y.; Kurita, K.; Murata, J.] Rikkyo Univ, Dept Phys, Toshima Ku, Tokyo 1718501, Japan. [Berdnikov, A.; Berdnikov, Y.] St Petersburg State Polytech Univ, St Petersburg, Russia. [Dietzsch, O.; Donadelli, M.; Leite, M. A. L.; Lenzi, B.; Silva, C. L.; Takagui, E. M.] Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil. [Kim, E.; Lee, T.; Park, J.] Seoul Natl Univ, Syst Elect Lab, Seoul, South Korea. [Ajitanand, N. N.; Alexander, J.; Chung, P.; Holzmann, W.; Issah, M.; Lacey, R.; Mitrovski, M.; Shevel, A.; Taranenko, A.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. [Averbeck, R.; Bennett, R.; Boyle, K.; Butsyk, S.; Campbell, S.; Citron, Z.; Dahms, T.; Deshpande, A.; Dion, A.; Drees, A.; Egdemir, J.; Frantz, J. E.; Gong, H.; Hemmick, T. K.; Jacak, B. V.; Kamin, J.; McCumber, M.; Means, N.; Milov, A.; Nguyen, M.; Pantuev, V.; Reuter, M.; Sickles, A.; Themann, H.; Toia, A.; Walker, D.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Aphecetche, L.; Delagrange, H.; Henni, A. Hadj] Univ Nantes, CNRS, SUBATECH Ecole Mines Nantes, IN2P3, F-44307 Nantes, France. [Garishvili, I.; Hornback, D.; Kwon, Y.; Read, K. F.; Sorensen, S. P.] Univ Tennessee, Knoxville, TN 37996 USA. [Horaguchi, T.; Kanou, H.; Nakano, K.; Sakashita, K.; Shibata, T. -A.] Tokyo Inst Technol, Dept Phys, Meguro Ku, Tokyo 1528551, Japan. [Chujo, T.; Esumi, S.; Ikeda, Y.; Inaba, M.; Konno, M.; Masui, H.; Miake, Y.; Miki, K.; Nagata, N.; Niita, T.; Oka, M.; Sakai, S.; Sato, T.; Shimomura, M.; Takagi, S.; Tanabe, R.; Tomita, Y.] Univ Tsukuba, Inst Phys, Tsukuba, Ibaraki 305, Japan. [Chujo, T.; Greene, S. V.; Huang, S.; Love, B.; Maguire, C. F.; Miller, T. E.; Mukhopadhyay, D.; Pal, D.; Roach, D.; Valle, H.; Velkovska, J.] Vanderbilt Univ, Nashville, TN 37235 USA. [Kametani, S.; Kikuchi, J.; Yamaguchi, Y. L.] Waseda Univ, Adv Res Inst Sci & Engn, Shinjuku Ku, Tokyo 1620044, Japan. [Dubey, A. K.; Fraenkel, Z.; Kozlov, A.; Naglis, M.; Ravinovich, I.; Sharma, D.; Tserruya, I.] Weizmann Inst Sci, IL-76100 Rehovot, Israel. [Chang, B. S.; Choi, I. J.; Kang, J. H.; Kim, D. J.; Kim, S. H.; Kwon, Y.; Lee, M. K.] Yonsei Univ, IPAP, Seoul 120749, South Korea. RP Adare, A (reprint author), Univ Colorado, Boulder, CO 80309 USA. EM jacak@skipper.physics.sunysb.edu RI Semenov, Vitaliy/E-9584-2017; HAMAGAKI, HIDEKI/G-4899-2014; Durum, Artur/C-3027-2014; Sorensen, Soren /K-1195-2016; Yokkaichi, Satoshi/C-6215-2017; Taketani, Atsushi/E-1803-2017; Csanad, Mate/D-5960-2012; Wei, Feng/F-6808-2012; Csorgo, Tamas/I-4183-2012; YANG, BOGEUM/I-8251-2012; Tomasek, Lukas/G-6370-2014; Dahms, Torsten/A-8453-2015; En'yo, Hideto/B-2440-2015; Hayano, Ryugo/F-7889-2012 OI Sorensen, Soren /0000-0002-5595-5643; Taketani, Atsushi/0000-0002-4776-2315; Tomasek, Lukas/0000-0002-5224-1936; Dahms, Torsten/0000-0003-4274-5476; Hayano, Ryugo/0000-0002-1214-7806 NR 45 TC 1 Z9 1 U1 6 U2 15 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD JAN PY 2010 VL 81 IS 1 AR 012002 DI 10.1103/PhysRevD.81.012002 PG 11 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 548XJ UT WOS:000274002800005 ER PT J AU Aguilar-Arevalo, AA Anderson, CE Bazarko, AO Brice, SJ Brown, BC Bugel, L Cao, J Coney, L Conrad, JM Cox, DC Curioni, A Djurcic, Z Finley, DA Fleming, BT Ford, R Garcia, FG Garvey, GT Gonzales, J Grange, J Green, C Green, JA Hart, TL Hawker, E Imlay, R Johnson, RA Karagiorgi, G Kasper, P Katori, T Kobilarcik, T Kourbanis, I Koutsoliotas, S Laird, EM Linden, SK Link, JM Liu, Y Liu, Y Louis, WC Mahn, KBM Marsh, W Mauger, C McGary, VT McGregor, G Metcalf, W Meyers, PD Mills, F Mills, GB Monroe, J Moore, CD Mousseau, J Nelson, RH Nienaber, P Nowak, JA Osmanov, B Ouedraogo, S Patterson, RB Pavlovic, Z Perevalov, D Polly, CC Prebys, E Raaf, JL Ray, H Roe, BP Russell, AD Sandberg, V Schirato, R Schmitz, D Shaevitz, MH Shoemaker, FC Smith, D Soderberg, M Sorel, M Spentzouris, P Spitz, J Stancu, I Stefanski, RJ Sung, M Tanaka, HA Tayloe, R Tzanov, M Van de Water, RG Wascko, MO White, DH Wilking, MJ Yang, HJ Zeller, GP Zimmerman, ED AF Aguilar-Arevalo, A. A. Anderson, C. E. Bazarko, A. O. Brice, S. J. Brown, B. C. Bugel, L. Cao, J. Coney, L. Conrad, J. M. Cox, D. C. Curioni, A. Djurcic, Z. Finley, D. A. Fleming, B. T. Ford, R. Garcia, F. G. Garvey, G. T. Gonzales, J. Grange, J. Green, C. Green, J. A. Hart, T. L. Hawker, E. Imlay, R. Johnson, R. A. Karagiorgi, G. Kasper, P. Katori, T. Kobilarcik, T. Kourbanis, I. Koutsoliotas, S. Laird, E. M. Linden, S. K. Link, J. M. Liu, Y. Liu, Y. Louis, W. C. Mahn, K. B. M. Marsh, W. Mauger, C. McGary, V. T. McGregor, G. Metcalf, W. Meyers, P. D. Mills, F. Mills, G. B. Monroe, J. Moore, C. D. Mousseau, J. Nelson, R. H. Nienaber, P. Nowak, J. A. Osmanov, B. Ouedraogo, S. Patterson, R. B. Pavlovic, Z. Perevalov, D. Polly, C. C. Prebys, E. Raaf, J. L. Ray, H. Roe, B. P. Russell, A. D. Sandberg, V. Schirato, R. Schmitz, D. Shaevitz, M. H. Shoemaker, F. C. Smith, D. Soderberg, M. Sorel, M. Spentzouris, P. Spitz, J. Stancu, I. Stefanski, R. J. Sung, M. Tanaka, H. A. Tayloe, R. Tzanov, M. Van de Water, R. G. Wascko, M. O. White, D. H. Wilking, M. J. Yang, H. J. Zeller, G. P. Zimmerman, E. D. CA MiniBooNE Collaboration TI Measurement of v(mu) and (v)over-bar(mu) induced neutral current single pi(0) production cross sections on mineral oil at E-v similar to O (1 GeV) SO PHYSICAL REVIEW D LA Rumanian DT Article ID COHERENT PI-0 PRODUCTION; ONE-PION PRODUCTION; TRUE ABSORPTION; MUON-NEUTRINO; NUCLEI; SCATTERING; COLLISION AB MiniBooNE reports the first absolute cross sections for neutral current single pi(0) production on CH2 induced by neutrino and antineutrino interactions measured from the largest sets of NC pi(0) events collected to date. The principal result consists of differential cross sections measured as functions of pi(0) momentum and pi(0) angle averaged over the neutrino flux at MiniBooNE. We find total cross sections of (4.76 +/- 0.05(stat) +/- 0.76(sys)) X 10(-40) cm(2)/nucleon at a mean energy of < E-v > = 808 MeV and (1.48 +/- 0.05(stat) +/- 0.23(sys)) X 10(-40) cm(2)/nucleon at a mean energy of < E-v > = 664 MeV for v(mu) and (v) over bar (mu) induced production, respectively. In addition, we have included measurements of the neutrino and antineutrino total cross sections for incoherent exclusive NC 1 pi(0) production corrected for the effects of final state interactions to compare to prior results. C1 [Aguilar-Arevalo, A. A.] Univ Nacl Autonoma Mexico, Inst Ciencias Nucl, Mexico City 04510, DF, Mexico. [Liu, Y.; Perevalov, D.; Stancu, I.] Univ Alabama, Tuscaloosa, AL 35487 USA. [Koutsoliotas, S.] Bucknell Univ, Lewisburg, PA 17837 USA. [Hawker, E.; Johnson, R. A.; Raaf, J. L.] Univ Cincinnati, Cincinnati, OH 45221 USA. [Hart, T. L.; Nelson, R. H.; Tzanov, M.; Wilking, M. J.; Zimmerman, E. D.] Univ Colorado, Boulder, CO 80309 USA. [Bugel, L.; Coney, L.; Djurcic, Z.; Mahn, K. B. M.; Monroe, J.; Schmitz, D.; Shaevitz, M. H.; Sorel, M.] Columbia Univ, New York, NY 10027 USA. [Smith, D.] Embry Riddle Aeronaut Univ, Prescott, AZ 86301 USA. [Brice, S. J.; Brown, B. C.; Finley, D. A.; Ford, R.; Garcia, F. G.; Green, C.; Kasper, P.; Kobilarcik, T.; Kourbanis, I.; Marsh, W.; Mills, F.; Moore, C. D.; Polly, C. C.; Prebys, E.; Russell, A. D.; Spentzouris, P.; Stefanski, R. J.; Zeller, G. P.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Grange, J.; Mousseau, J.; Osmanov, B.; Ray, H.] Univ Florida, Gainesville, FL 32611 USA. [Cox, D. C.; Green, J. A.; Katori, T.; Tayloe, R.] Indiana Univ, Bloomington, IN 47405 USA. [Garvey, G. T.; Gonzales, J.; Green, C.; Green, J. A.; Hawker, E.; Louis, W. C.; Mauger, C.; McGregor, G.; Mills, G. B.; Pavlovic, Z.; Ray, H.; Sandberg, V.; Schirato, R.; Van de Water, R. G.; White, D. H.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Imlay, R.; Metcalf, W.; Nowak, J. A.; Ouedraogo, S.; Sung, M.; Wascko, M. O.] Louisiana State Univ, Baton Rouge, LA 70803 USA. [Conrad, J. M.; Karagiorgi, G.; Katori, T.; McGary, V. T.] MIT, Cambridge, MA 02139 USA. [Cao, J.; Liu, Y.; Roe, B. P.; Yang, H. J.] Univ Michigan, Ann Arbor, MI 48109 USA. [Bazarko, A. O.; Laird, E. M.; Meyers, P. D.; Patterson, R. B.; Shoemaker, F. C.; Tanaka, H. A.] Princeton Univ, Princeton, NJ 08544 USA. [Nienaber, P.] St Marys Univ Minnesota, Winona, MN 55987 USA. [Link, J. M.] Virginia Polytech Inst & State Univ, Blacksburg, VA 24061 USA. [Anderson, C. E.; Curioni, A.; Fleming, B. T.; Linden, S. K.; Soderberg, M.; Spitz, J.] Yale Univ, New Haven, CT 06520 USA. RP Aguilar-Arevalo, AA (reprint author), Univ Nacl Autonoma Mexico, Inst Ciencias Nucl, Mexico City 04510, DF, Mexico. RI Cao, Jun/G-8701-2012; Link, Jonathan/L-2560-2013; Nowak, Jaroslaw/P-2502-2016; Yang, Haijun/O-1055-2015; OI Cao, Jun/0000-0002-3586-2319; Link, Jonathan/0000-0002-1514-0650; Nowak, Jaroslaw/0000-0001-8637-5433; Aguilar-Arevalo, Alexis A./0000-0001-9279-3375 NR 49 TC 71 Z9 71 U1 1 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD JAN PY 2010 VL 81 IS 1 AR 013005 DI 10.1103/PhysRevD.81.013005 PG 14 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 548XJ UT WOS:000274002800011 ER PT J AU Aubert, B Karyotakis, Y Lees, JP Poireau, V Prencipe, E Prudent, X Tisserand, V Tico, JG Grauges, E Martinelli, M Palano, A Pappagallo, M Eigen, G Stugu, B Sun, L Battaglia, M Brown, DN Hooberman, B Kerth, LT Kolomensky, YG Lynch, G Osipenkov, IL Tackmann, K Tanabe, T Hawkes, CM Soni, N Watson, AT Koch, H Schroeder, T Asgeirsson, DJ Hearty, C Mattison, TS McKenna, JA Barrett, M Khan, A Randle-Conde, A Blinov, VE Bukin, AD Buzykaev, AR Druzhinin, VP Golubev, VB Onuchin, AP Serednyakov, SI Skovpen, YI Solodov, EP Todyshev, KY Bondioli, M Curry, S Eschrich, I Kirkby, D Lankford, AJ Lund, P Mandelkern, M Martin, EC Stoker, DP Atmacan, H Gary, JW Liu, F Long, O Vitug, GM Yasin, Z Sharma, V Campagnari, C Hong, TM Kovalskyi, D Mazur, MA Richman, JD Beck, TW Eisner, AM Heusch, CA Kroseberg, J Lockman, WS Martinez, AJ Schalk, T Schumm, BA Seiden, A Winstrom, LO Cheng, CH Doll, DA Echenard, B Fang, F Hitlin, DG Narsky, I Ongmongkolkul, P Piatenko, T Porter, FC Andreassen, R Dubrovin, MS Mancinelli, G Meadows, BT Mishra, K Sokoloff, MD Bloom, PC Ford, WT Gaz, A Hirschauer, JF Nagel, M Nauenberg, U Smith, JG Wagner, SR Ayad, R Toki, WH Feltresi, E Hauke, A Jasper, H Karbach, TM Merkel, J Petzold, A Spaan, B Wacker, K Kobel, MJ Schubert, KR Schwierz, R Bernard, D Latour, E Verderi, M Clark, PJ Playfer, S Watson, JE Andreotti, M Bettoni, D Bozzi, C Calabrese, R Cecchi, A Cibinetto, G Fioravanti, E Franchini, P Luppi, E Munerato, M Negrini, M Petrella, A Piemontese, L Santoro, V Baldini-Ferroli, R Calcaterra, A de Sangro, R Finocchiaro, G Pacetti, S Patteri, P Peruzzi, IM Piccolo, M Rama, M Zallo, A Contri, R Guido, E Lo Vetere, M Monge, MR Passaggio, S Patrignani, C Robutti, E Tosi, S Morii, M Adametz, A Marks, J Schenk, S Uwer, U Bernlochner, FU Lacker, HM Lueck, T Volk, A Dauncey, PD Tibbetts, M Behera, PK Charles, MJ Mallik, U Chen, C Cochran, J Crawley, HB Dong, L Eyges, V Meyer, WT Prell, S Rosenberg, EI Rubin, AE Gao, YY Gritsan, AV Guo, ZJ Arnaud, N Davier, M Derkach, D da Costa, JF Grosdidier, G Le Diberder, F Lepeltier, V Lutz, AM Malaescu, B Roudeau, P Schune, MH Serrano, J Sordini, V Stocchi, A Wormser, G Lange, DJ Wright, DM Bingham, I Burke, JP Chavez, CA Fry, JR Gabathuler, E Gamet, R Hutchcroft, DE Payne, DJ Touramanis, C Bevan, AJ Clarke, CK Di Lodovico, F Sacco, R Sigamani, M Cowan, G Paramesvaran, S Wren, AC Brown, DN Davis, CL Denig, AG Fritsch, M Gradl, W Hafner, A Alwyn, KE Bailey, D Barlow, RJ Jackson, G Lafferty, GD West, TJ Yi, JI Anderson, J Jawahery, A Roberts, DA Simi, G Tuggle, JM Dallapiccola, C Salvati, E Cowan, R Dujmic, D Fisher, PH Henderson, SW Sciolla, G Spitznagel, M Yamamoto, RK Zhao, M Patel, PM Robertson, SH Schram, M Biassoni, P Lazzaro, A Lombardo, V Palombo, F Stracka, S Cremaldi, L Godang, R Kroeger, R Sonnek, P Summers, DJ Zhao, HW Nguyen, X Simard, M Taras, P Nicholson, H De Nardo, G Lista, L Monorchio, D Onorato, G Sciacca, C Raven, G Snoek, HL Jessop, CP Knoepfel, KJ LoSecco, JM Wang, WF Corwin, LA Honscheid, K Kagan, H Kass, R Morris, JP Rahimi, AM Sekula, SJ Blount, NL Brau, J Frey, R Igonkina, O Kolb, JA Lu, M Rahmat, R Sinev, NB Strom, D Strube, J Torrence, E Castelli, G Gagliardi, N Margoni, M Morandin, M Posocco, M Rotondo, M Simonetto, F Stroili, R Voci, C Sanchez, PD Ben-Haim, E Bonneaud, GR Briand, H Chauveau, J Hamon, O Leruste, P Marchiori, G Ocariz, J Perez, A Prendki, J Sitt, S Gladney, L Biasini, M Manoni, E Angelini, C Batignani, G Bettarini, S Calderini, G Carpinelli, M Cervelli, A Forti, F Giorgi, MA Lusiani, A Morganti, M Neri, N Paoloni, E Rizzo, G Walsh, JJ Pegna, DL Lu, C Olsen, J Smith, AJS Telnov, AV Anulli, F Baracchini, E Cavoto, G Faccini, R Ferrarotto, F Ferroni, F Gaspero, M Jackson, PD Gioi, LL Mazzoni, MA Morganti, S Piredda, G Renga, F Voena, C Ebert, M Hartmann, T Schroder, H Waldi, R Adye, T Franek, B Olaiya, EO Wilson, FF Emery, S Esteve, L de Monchenault, GH Kozanecki, W Vasseur, G Yeche, C Zito, M Allen, MT Aston, D Bard, DJ Bartoldus, R Benitez, JF Cenci, R Coleman, JP Convery, MR Dingfelder, JC Dorfan, J Dubois-Felsmann, GP Dunwoodie, W Field, RC Sevilla, MF Fulsom, BG Gabareen, AM Graham, MT Grenier, P Hast, C Innes, WR Kaminski, J Kelsey, MH Kim, H Kim, P Kocian, ML Leith, DWGS Li, S Lindquist, B Luitz, S Luth, V Lynch, HL MacFarlane, DB Marsiske, H Messner, R Muller, DR Neal, H Nelson, S O'Grady, CP Ofte, I Perl, M Ratcliff, BN Roodman, A Salnikov, AA Schindler, RH Schwiening, J Snyder, A Su, D Sullivan, MK Suzuki, K Swain, SK Thompson, JM Va'vra, J Wagner, AP Weaver, M West, CA Wisniewski, WJ Wittgen, M Wright, DH Wulsin, HW Yarritu, AK Young, CC Ziegler, V Chen, XR Liu, H Park, W Purohit, MV White, RM Wilson, JR Bellis, M Burchat, PR Edwards, AJ Miyashita, TS Ahmed, S Alam, MS Ernst, JA Pan, B Saeed, MA Zain, SB Soffer, A Spanier, SM Wogsland, BJ Eckmann, R Ritchie, JL Ruland, AM Schilling, CJ Schwitters, RF Wray, BC Drummond, BW Izen, JM Lou, XC Bianchi, F Gamba, D Pelliccioni, M Bomben, M Bosisio, L Cartaro, C Della Ricca, G Lanceri, L Vitale, L Azzolini, V Lopez-March, N Martinez-Vidal, F Milanes, DA Oyanguren, A Albert, J Banerjee, S Bhuyan, B Choi, HHF Hamano, K King, GJ Kowalewski, R Lewczuk, MJ Nugent, IM Roney, JM Sobie, RJ Gershon, TJ Harrison, PF Ilic, J Latham, TE Mohanty, GB Puccio, EMT Band, HR Chen, X Dasu, S Flood, KT Pan, Y Prepost, R Vuosalo, CO Wu, SL AF Aubert, B. Karyotakis, Y. Lees, J. P. Poireau, V. Prencipe, E. Prudent, X. Tisserand, V. Tico, J. Garra Grauges, E. Martinelli, M. Palano, A. Pappagallo, M. Eigen, G. Stugu, B. Sun, L. Battaglia, M. Brown, D. N. Hooberman, B. Kerth, L. T. Kolomensky, Yu. G. Lynch, G. Osipenkov, I. L. Tackmann, K. Tanabe, T. Hawkes, C. M. Soni, N. Watson, A. T. Koch, H. Schroeder, T. Asgeirsson, D. J. Hearty, C. Mattison, T. S. McKenna, J. A. Barrett, M. Khan, A. Randle-Conde, A. Blinov, V. E. Bukin, A. D. Buzykaev, A. R. Druzhinin, V. P. Golubev, V. B. Onuchin, A. P. Serednyakov, S. I. Skovpen, Yu. I. Solodov, E. P. Todyshev, K. Yu. Bondioli, M. Curry, S. Eschrich, I. Kirkby, D. Lankford, A. J. Lund, P. Mandelkern, M. Martin, E. C. Stoker, D. P. Atmacan, H. Gary, J. W. Liu, F. Long, O. Vitug, G. M. Yasin, Z. Sharma, V. Campagnari, C. Hong, T. M. Kovalskyi, D. Mazur, M. A. Richman, J. D. Beck, T. W. Eisner, A. M. Heusch, C. A. Kroseberg, J. Lockman, W. S. Martinez, A. J. Schalk, T. Schumm, B. A. Seiden, A. Winstrom, L. O. Cheng, C. H. Doll, D. A. Echenard, B. Fang, F. Hitlin, D. G. Narsky, I. Ongmongkolkul, P. Piatenko, T. Porter, F. C. Andreassen, R. Dubrovin, M. S. Mancinelli, G. Meadows, B. T. Mishra, K. Sokoloff, M. D. Bloom, P. C. Ford, W. T. Gaz, A. Hirschauer, J. F. Nagel, M. Nauenberg, U. Smith, J. G. Wagner, S. R. Ayad, R. Toki, W. H. Feltresi, E. Hauke, A. Jasper, H. Karbach, T. M. Merkel, J. Petzold, A. Spaan, B. Wacker, K. Kobel, M. J. Schubert, K. R. Schwierz, R. Bernard, D. Latour, E. Verderi, M. Clark, P. J. Playfer, S. Watson, J. E. Andreotti, M. Bettoni, D. Bozzi, C. Calabrese, R. Cecchi, A. Cibinetto, G. Fioravanti, E. Franchini, P. Luppi, E. Munerato, M. Negrini, M. Petrella, A. Piemontese, L. Santoro, V. Baldini-Ferroli, R. Calcaterra, A. de Sangro, R. Finocchiaro, G. Pacetti, S. Patteri, P. Peruzzi, I. M. Piccolo, M. Rama, M. Zallo, A. Contri, R. Guido, E. Lo Vetere, M. Monge, M. R. Passaggio, S. Patrignani, C. Robutti, E. Tosi, S. Morii, M. Adametz, A. Marks, J. Schenk, S. Uwer, U. Bernlochner, F. U. Lacker, H. M. Lueck, T. Volk, A. Dauncey, P. D. Tibbetts, M. Behera, P. K. Charles, M. J. Mallik, U. Chen, C. Cochran, J. Crawley, H. B. Dong, L. Eyges, V. Meyer, W. T. Prell, S. Rosenberg, E. I. Rubin, A. E. Gao, Y. Y. Gritsan, A. V. Guo, Z. J. Arnaud, N. Davier, M. Derkach, D. da Costa, J. Firmino Grosdidier, G. Le Diberder, F. Lepeltier, V. Lutz, A. M. Malaescu, B. Roudeau, P. Schune, M. H. Serrano, J. Sordini, V. Stocchi, A. Wormser, G. Lange, D. J. Wright, D. M. Bingham, I. Burke, J. P. Chavez, C. A. Fry, J. R. Gabathuler, E. Gamet, R. Hutchcroft, D. E. Payne, D. J. Touramanis, C. Bevan, A. J. Clarke, C. K. Di Lodovico, F. Sacco, R. Sigamani, M. Cowan, G. Paramesvaran, S. Wren, A. C. Brown, D. N. Davis, C. L. Denig, A. G. Fritsch, M. Gradl, W. Hafner, A. Alwyn, K. E. Bailey, D. Barlow, R. J. Jackson, G. Lafferty, G. D. West, T. J. Yi, J. I. Anderson, J. Jawahery, A. Roberts, D. A. Simi, G. Tuggle, J. M. Dallapiccola, C. Salvati, E. Cowan, R. Dujmic, D. Fisher, P. H. Henderson, S. W. Sciolla, G. Spitznagel, M. Yamamoto, R. K. Zhao, M. Patel, P. M. Robertson, S. H. Schram, M. Biassoni, P. Lazzaro, A. Lombardo, V. Palombo, F. Stracka, S. Cremaldi, L. Godang, R. Kroeger, R. Sonnek, P. Summers, D. J. Zhao, H. W. Nguyen, X. Simard, M. Taras, P. Nicholson, H. De Nardo, G. Lista, L. Monorchio, D. Onorato, G. Sciacca, C. Raven, G. Snoek, H. L. Jessop, C. P. Knoepfel, K. J. LoSecco, J. M. Wang, W. F. Corwin, L. A. Honscheid, K. Kagan, H. Kass, R. Morris, J. P. Rahimi, A. M. Sekula, S. J. Blount, N. L. Brau, J. Frey, R. Igonkina, O. Kolb, J. A. Lu, M. Rahmat, R. Sinev, N. B. Strom, D. Strube, J. Torrence, E. Castelli, G. Gagliardi, N. Margoni, M. Morandin, M. Posocco, M. Rotondo, M. Simonetto, F. Stroili, R. Voci, C. Sanchez, P. del Amo Ben-Haim, E. Bonneaud, G. R. Briand, H. Chauveau, J. Hamon, O. Leruste, Ph. Marchiori, G. Ocariz, J. Perez, A. Prendki, J. Sitt, S. Gladney, L. Biasini, M. Manoni, E. Angelini, C. Batignani, G. Bettarini, S. Calderini, G. Carpinelli, M. Cervelli, A. Forti, F. Giorgi, M. A. Lusiani, A. Morganti, M. Neri, N. Paoloni, E. Rizzo, G. Walsh, J. J. Pegna, D. Lopes Lu, C. Olsen, J. Smith, A. J. S. Telnov, A. V. Anulli, F. Baracchini, E. Cavoto, G. Faccini, R. Ferrarotto, F. Ferroni, F. Gaspero, M. Jackson, P. D. Gioi, L. Li Mazzoni, M. A. Morganti, S. Piredda, G. Renga, F. Voena, C. Ebert, M. Hartmann, T. Schroeder, H. Waldi, R. Adye, T. Franek, B. Olaiya, E. O. Wilson, F. F. Emery, S. Esteve, L. de Monchenault, G. Hamel Kozanecki, W. Vasseur, G. Yeche, Ch. Zito, M. Allen, M. T. Aston, D. Bard, D. J. Bartoldus, R. Benitez, J. F. Cenci, R. Coleman, J. P. Convery, M. R. Dingfelder, J. C. Dorfan, J. Dubois-Felsmann, G. P. Dunwoodie, W. Field, R. C. Sevilla, M. Franco Fulsom, B. G. Gabareen, A. M. Graham, M. T. Grenier, P. Hast, C. Innes, W. R. Kaminski, J. Kelsey, M. H. Kim, H. Kim, P. Kocian, M. L. Leith, D. W. G. S. Li, S. Lindquist, B. Luitz, S. Luth, V. Lynch, H. L. MacFarlane, D. B. Marsiske, H. Messner, R. Muller, D. R. Neal, H. Nelson, S. O'Grady, C. P. Ofte, I. Perl, M. Ratcliff, B. N. Roodman, A. Salnikov, A. A. Schindler, R. H. Schwiening, J. Snyder, A. Su, D. Sullivan, M. K. Suzuki, K. Swain, S. K. Thompson, J. M. Va'vra, J. Wagner, A. P. Weaver, M. West, C. A. Wisniewski, W. J. Wittgen, M. Wright, D. H. Wulsin, H. W. Yarritu, A. K. Young, C. C. Ziegler, V. Chen, X. R. Liu, H. Park, W. Purohit, M. V. White, R. M. Wilson, J. R. Bellis, M. Burchat, P. R. Edwards, A. J. Miyashita, T. S. Ahmed, S. Alam, M. S. Ernst, J. A. Pan, B. Saeed, M. A. Zain, S. B. Soffer, A. Spanier, S. M. Wogsland, B. J. Eckmann, R. Ritchie, J. L. Ruland, A. M. Schilling, C. J. Schwitters, R. F. Wray, B. C. Drummond, B. W. Izen, J. M. Lou, X. C. Bianchi, F. Gamba, D. Pelliccioni, M. Bomben, M. Bosisio, L. Cartaro, C. Della Ricca, G. Lanceri, L. Vitale, L. Azzolini, V. Lopez-March, N. Martinez-Vidal, F. Milanes, D. A. Oyanguren, A. Albert, J. Banerjee, Sw. Bhuyan, B. Choi, H. H. F. Hamano, K. King, G. J. Kowalewski, R. Lewczuk, M. J. Nugent, I. M. Roney, J. M. Sobie, R. J. Gershon, T. J. Harrison, P. F. Ilic, J. Latham, T. E. Mohanty, G. B. Puccio, E. M. T. Band, H. R. Chen, X. Dasu, S. Flood, K. T. Pan, Y. Prepost, R. Vuosalo, C. O. Wu, S. L. CA BaBaR Collaboration TI Observation of inclusive D*(+/-) production in the decay of Y(1S) SO PHYSICAL REVIEW D LA English DT Article ID PHYSICS AB We present a study of the inclusive D*(+/-) production in the decay of Y(1S) using (98.6 +/- 0.9) X 10(6) Y(2S) mesons collected with the BABAR detector at the Y(2S) resonance. Using the decay chain Y(2S) -> pi(+)pi Y-(1S), Y(1S) -> D*X-+/-, where X is unobserved, we measure the branching fraction B[Y(1S) -> D*X-+/-] = (2.52 +/- 0.13(stat) +/- 0.15(syst)% and the D*(+/-) momentum distribution in the rest frame of the Y(1S). We find evidence for an excess of D*+/- production over the expected rate from the virtual photon annihilation process Y(1S) -> gamma* -> c (c) over bar -> D*X-+/-. C1 [Aubert, B.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prencipe, E.; Prudent, X.; Tisserand, V.; Sanchez, P. del Amo; Ben-Haim, E.; Bonneaud, G. R.; Briand, H.; Chauveau, J.; Hamon, O.; Leruste, Ph.; Marchiori, G.; Ocariz, J.; Perez, A.; Prendki, J.; Sitt, S.] Univ Savoie, CNRS, IN2P3, LAPP, F-74941 Annecy Le Vieux, France. [Tico, J. Garra; Grauges, E.; Soffer, A.] Univ Barcelona, Fac Fis, Dept ECM, E-08028 Barcelona, Spain. [Martinelli, M.; Palano, A.; Pappagallo, M.] Ist Nazl Fis Nucl, Sez Bari, Dipartimento Fis, I-70126 Bari, Italy. [Martinelli, M.; Palano, A.; Pappagallo, M.] Univ Bari, I-70126 Bari, Italy. [Eigen, G.; Stugu, B.] Univ Bergen, Inst Phys, N-5007 Bergen, Norway. [Sun, L.; Battaglia, M.; Brown, D. N.; Hooberman, B.; Kerth, L. T.; Kolomensky, Yu. G.; Lynch, G.; Osipenkov, I. L.; Tackmann, K.; Tanabe, T.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Sun, L.; Battaglia, M.; Brown, D. N.; Hooberman, B.; Kerth, L. T.; Kolomensky, Yu. G.; Lynch, G.; Osipenkov, I. L.; Tackmann, K.; Tanabe, T.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Hawkes, C. M.; Soni, N.; Watson, A. T.] Univ Birmingham, Birmingham B15 2TT, W Midlands, England. [Koch, H.; Schroeder, T.] Ruhr Univ Bochum, Inst Expt Phys, D-44780 Bochum, Germany. [Asgeirsson, D. J.; Hearty, C.; Mattison, T. S.; McKenna, J. A.] Univ British Columbia, Vancouver, BC V6T 1Z1, Canada. [Barrett, M.; Khan, A.; Randle-Conde, A.] Brunel Univ, Uxbridge UB8 3PH, Middx, England. [Blinov, V. E.; Bukin, A. D.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.] Budker Inst Nucl Phys, Novosibirsk 630090, Russia. [Bondioli, M.; Curry, S.; Eschrich, I.; Kirkby, D.; Lankford, A. J.; Lund, P.; Mandelkern, M.; Martin, E. C.; Stoker, D. P.] Univ Calif Irvine, Irvine, CA 92697 USA. [Atmacan, H.; Gary, J. W.; Liu, F.; Long, O.; Vitug, G. M.; Yasin, Z.] Univ Calif Riverside, Riverside, CA 92521 USA. [Sharma, V.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Campagnari, C.; Hong, T. M.; Kovalskyi, D.; Mazur, M. A.; Richman, J. D.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Beck, T. W.; Eisner, A. M.; Heusch, C. A.; Kroseberg, J.; Lockman, W. S.; Martinez, A. J.; Schalk, T.; Schumm, B. A.; Seiden, A.; Winstrom, L. O.] Univ Calif Santa Cruz, Inst Particle Phys, Santa Cruz, CA 95064 USA. [Cheng, C. H.; Doll, D. A.; Echenard, B.; Fang, F.; Hitlin, D. G.; Narsky, I.; Ongmongkolkul, P.; Piatenko, T.; Porter, F. C.; Andreassen, R.] CALTECH, Pasadena, CA 91125 USA. [Dubrovin, M. S.; Mancinelli, G.; Meadows, B. T.; Mishra, K.; Sokoloff, M. D.; Bloom, P. C.] Univ Cincinnati, Cincinnati, OH 45221 USA. [Ford, W. T.; Gaz, A.; Hirschauer, J. F.; Nagel, M.; Nauenberg, U.; Smith, J. G.; Wagner, S. R.] Univ Colorado, Boulder, CO 80309 USA. [Ayad, R.; Toki, W. H.] Colorado State Univ, Ft Collins, CO 80523 USA. [Feltresi, E.; Hauke, A.; Jasper, H.; Karbach, T. M.; Merkel, J.; Petzold, A.; Spaan, B.; Wacker, K.] Tech Univ Dortmund, Fak Phys, D-44221 Dortmund, Germany. [Kobel, M. J.; Schubert, K. R.; Schwierz, R.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. [Bernard, D.; Latour, E.; Verderi, M.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Clark, P. J.; Playfer, S.; Watson, J. E.] Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. [Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Fioravanti, E.; Franchini, P.; Luppi, E.; Munerato, M.; Negrini, M.; Petrella, A.; Piemontese, L.; Santoro, V.] INFN, Sez Ferrara, Dipartimento Fis, I-44100 Ferrara, Italy. [Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Fioravanti, E.; Franchini, P.; Luppi, E.; Munerato, M.; Negrini, M.; Petrella, A.; Piemontese, L.; Santoro, V.] Univ Ferrara, I-44100 Ferrara, Italy. [Baldini-Ferroli, R.; Calcaterra, A.; de Sangro, R.; Finocchiaro, G.; Pacetti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; Zallo, A.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Contri, R.; Guido, E.; Lo Vetere, M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Tosi, S.] Ist Nazl Fis Nucl, Sez Genova, Dipartimento Fis, I-16146 Genoa, Italy. [Contri, R.; Guido, E.; Lo Vetere, M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Tosi, S.] Univ Genoa, I-16146 Genoa, Italy. [Morii, M.] Harvard Univ, Cambridge, MA 02138 USA. [Adametz, A.; Marks, J.; Schenk, S.; Uwer, U.] Heidelberg Univ, Inst Phys, D-69120 Heidelberg, Germany. [Bernlochner, F. U.; Lacker, H. M.; Lueck, T.; Volk, A.] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany. [Dauncey, P. D.; Tibbetts, M.] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. [Behera, P. K.; Charles, M. J.; Mallik, U.] Univ Iowa, Iowa City, IA 52242 USA. [Chen, C.; Cochran, J.; Crawley, H. B.; Dong, L.; Eyges, V.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Rubin, A. E.] Iowa State Univ, Ames, IA 50011 USA. [Gao, Y. Y.; Gritsan, A. V.; Guo, Z. J.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Arnaud, N.; Davier, M.; Derkach, D.; da Costa, J. Firmino; Grosdidier, G.; Le Diberder, F.; Lepeltier, V.; Lutz, A. M.; Malaescu, B.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wormser, G.] CNRS, Lab Accelerateur Lineaire, IN2P3, F-91898 Orsay, France. [Arnaud, N.; Davier, M.; Derkach, D.; da Costa, J. Firmino; Grosdidier, G.; Le Diberder, F.; Lepeltier, V.; Lutz, A. M.; Malaescu, B.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wormser, G.] Univ Paris 11, F-91898 Orsay, France. [Lange, D. J.; Wright, D. M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Bingham, I.; Burke, J. P.; Chavez, C. A.; Fry, J. R.; Gabathuler, E.; Gamet, R.; Hutchcroft, D. E.; Payne, D. J.; Touramanis, C.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Bevan, A. J.; Clarke, C. K.; Di Lodovico, F.; Sacco, R.; Sigamani, M.] Univ London, London E1 4NS, England. [Cowan, G.; Paramesvaran, S.; Wren, A. C.] Univ London, Royal Holloway & Bedford New Coll, Surrey TW20 0EX, England. [Brown, D. N.; Davis, C. L.] Univ Louisville, Louisville, KY 40292 USA. [Stugu, B.; Denig, A. G.; Fritsch, M.; Gradl, W.; Hafner, A.] Johannes Gutenberg Univ Mainz, Inst Kernphys, D-55099 Mainz, Germany. [Alwyn, K. E.; Bailey, D.; Barlow, R. J.; Jackson, G.; Lafferty, G. D.; West, T. J.; Yi, J. I.] Univ Manchester, Manchester M13 9PL, Lancs, England. [Anderson, J.; Jawahery, A.; Roberts, D. A.; Simi, G.; Tuggle, J. M.] Univ Maryland, College Pk, MD 20742 USA. [Dallapiccola, C.; Salvati, E.] Univ Massachusetts, Amherst, MA 01003 USA. [Cowan, R.; Dujmic, D.; Fisher, P. H.; Henderson, S. W.; Sciolla, G.; Spitznagel, M.; Yamamoto, R. K.; Zhao, M.] MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. [Patel, P. M.; Robertson, S. H.; Schram, M.] McGill Univ, Montreal, PQ H3A 2T8, Canada. [Biassoni, P.; Lazzaro, A.; Lombardo, V.; Palombo, F.; Stracka, S.] Ist Nazl Fis Nucl, Sez Milano, Dipartimento Fis, I-20133 Milan, Italy. [Biassoni, P.; Lazzaro, A.; Lombardo, V.; Palombo, F.; Stracka, S.] Univ Milan, I-20133 Milan, Italy. [Cremaldi, L.; Godang, R.; Kroeger, R.; Sonnek, P.; Summers, D. J.; Zhao, H. W.] Univ Mississippi, University, MS 38677 USA. [Nguyen, X.; Simard, M.; Taras, P.] Univ Montreal, Montreal, PQ H3C 3J7, Canada. [Nicholson, H.] Mt Holyoke Coll, S Hadley, MA 01075 USA. [De Nardo, G.; Lista, L.; Monorchio, D.; Onorato, G.; Sciacca, C.] Ist Nazl Fis Nucl, Sez Napoli, Dipartimento Sci Fis, I-80126 Naples, Italy. [De Nardo, G.; Lista, L.; Monorchio, D.; Onorato, G.; Sciacca, C.] Univ Naples Federico II, I-80126 Naples, Italy. [Raven, G.; Snoek, H. L.] NIKHEF H, Natl Inst Nucl Phys & High Energy Phys, NL-1009 DB Amsterdam, Netherlands. [Jessop, C. P.; Knoepfel, K. J.; LoSecco, J. M.; Wang, W. F.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Corwin, L. A.; Honscheid, K.; Kagan, H.; Kass, R.; Morris, J. P.; Rahimi, A. M.; Sekula, S. J.] Ohio State Univ, Columbus, OH 43210 USA. [Blount, N. L.; Brau, J.; Frey, R.; Igonkina, O.; Kolb, J. A.; Lu, M.; Rahmat, R.; Sinev, N. B.; Strom, D.; Strube, J.; Torrence, E.] Univ Oregon, Eugene, OR 97403 USA. [Castelli, G.; Gagliardi, N.; Margoni, M.; Morandin, M.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.; Voci, C.] Ist Nazl Fis Nucl, Sez Padova, Dipartimento Fis, I-35131 Padua, Italy. [Castelli, G.; Gagliardi, N.; Margoni, M.; Morandin, M.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.; Voci, C.] Univ Padua, I-35131 Padua, Italy. [Aubert, B.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prencipe, E.; Prudent, X.; Tisserand, V.; Sanchez, P. del Amo; Ben-Haim, E.; Bonneaud, G. R.; Briand, H.; Chauveau, J.; Hamon, O.; Leruste, Ph.; Marchiori, G.; Ocariz, J.; Perez, A.; Prendki, J.; Sitt, S.] Univ Paris 07, Univ Paris 06, CNRS, IN2P3,Lab Phys Nucl & Hautes Energies, F-75252 Paris, France. [Gladney, L.] Univ Penn, Philadelphia, PA 19104 USA. [Biasini, M.; Manoni, E.] Ist Nazl Fis Nucl, Sez Perugia, Dipartimento Fis, I-06100 Perugia, Italy. [Biasini, M.; Manoni, E.] Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Calderini, G.; Carpinelli, M.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Morganti, M.; Neri, N.; Paoloni, E.; Rizzo, G.; Walsh, J. J.] Ist Nazl Fis Nucl, Sez Pisa, Dipartimento Fis, I-56127 Pisa, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Calderini, G.; Carpinelli, M.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Morganti, M.; Neri, N.; Paoloni, E.; Rizzo, G.; Walsh, J. J.] Univ Pisa, I-56127 Pisa, Italy. [Pegna, D. Lopes; Lu, C.; Olsen, J.; Smith, A. J. S.; Telnov, A. V.] Princeton Univ, Princeton, NJ 08544 USA. [Anulli, F.; Baracchini, E.; Cavoto, G.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Jackson, P. D.; Gioi, L. Li; Mazzoni, M. A.; Morganti, S.; Piredda, G.; Renga, F.; Voena, C.] Ist Nazl Fis Nucl, Sez Roma, Dipartimento Fis, I-00185 Rome, Italy. [Ebert, M.; Hartmann, T.; Schroeder, H.; Waldi, R.] Univ Rostock, D-18051 Rostock, Germany. [Adye, T.; Franek, B.; Olaiya, E. O.; Wilson, F. F.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Emery, S.; Esteve, L.; de Monchenault, G. Hamel; Kozanecki, W.; Vasseur, G.; Yeche, Ch.; Zito, M.] CEA, SPP, Ctr Saclay, F-91191 Gif Sur Yvette, France. [Allen, M. T.; Aston, D.; Bard, D. J.; Bartoldus, R.; Benitez, J. F.; Cenci, R.; Coleman, J. P.; Convery, M. R.; Dingfelder, J. C.; Dorfan, J.; Dubois-Felsmann, G. P.; Dunwoodie, W.; Field, R. C.; Sevilla, M. Franco; Fulsom, B. G.; Gabareen, A. M.; Graham, M. T.; Grenier, P.; Hast, C.; Innes, W. R.; Kaminski, J.; Kelsey, M. H.; Kim, H.; Kim, P.; Kocian, M. L.; Leith, D. W. G. S.; Li, S.; Lindquist, B.; Luitz, S.; Luth, V.; Lynch, H. L.; MacFarlane, D. B.; Marsiske, H.; Messner, R.; Muller, D. R.; Neal, H.; Nelson, S.; O'Grady, C. P.; Ofte, I.; Perl, M.; Ratcliff, B. N.; Roodman, A.; Salnikov, A. A.; Schindler, R. H.; Schwiening, J.; Snyder, A.; Su, D.; Sullivan, M. K.; Suzuki, K.; Swain, S. K.; Thompson, J. M.; Va'vra, J.; Wagner, A. P.; Weaver, M.; West, C. A.; Wisniewski, W. J.; Wittgen, M.; Wright, D. H.; Wulsin, H. W.; Yarritu, A. K.; Young, C. C.; Ziegler, V.] SLAC Natl Accelerator Lab, Stanford, CA 94309 USA. [Chen, X. R.; Liu, H.; Park, W.; Purohit, M. V.; White, R. M.; Wilson, J. R.] Univ S Carolina, Columbia, SC 29208 USA. [Bellis, M.; Burchat, P. R.; Edwards, A. J.; Miyashita, T. S.] Stanford Univ, Stanford, CA 94305 USA. [Ahmed, S.; Alam, M. S.; Ernst, J. A.; Pan, B.; Saeed, M. A.; Zain, S. B.] SUNY Albany, Albany, NY 12222 USA. [Tico, J. Garra; Grauges, E.; Soffer, A.] Tel Aviv Univ, Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Spanier, S. M.; Wogsland, B. J.] Univ Tennessee, Knoxville, TN 37996 USA. [Eckmann, R.; Ritchie, J. L.; Ruland, A. M.; Schilling, C. J.; Schwitters, R. F.; Wray, B. C.] Univ Texas Austin, Austin, TX 78712 USA. [Drummond, B. W.; Izen, J. M.; Lou, X. C.] Univ Texas Dallas, Richardson, TX 75083 USA. [Bianchi, F.; Gamba, D.; Pelliccioni, M.] Ist Nazl Fis Nucl, Sez Torino, Dipartimento Fis Sperimentale, I-10125 Turin, Italy. [Bianchi, F.; Gamba, D.; Pelliccioni, M.] Univ Turin, I-10125 Turin, Italy. [Bomben, M.; Bosisio, L.; Cartaro, C.; Della Ricca, G.; Lanceri, L.; Vitale, L.] Ist Nazl Fis Nucl, Sez Trieste, Dipartimento Fis, I-34127 Trieste, Italy. [Bomben, M.; Bosisio, L.; Cartaro, C.; Della Ricca, G.; Lanceri, L.; Vitale, L.] Univ Trieste, I-34127 Trieste, Italy. [Azzolini, V.; Lopez-March, N.; Martinez-Vidal, F.; Milanes, D. A.; Oyanguren, A.] Univ Valencia, CSIC, IFIC, E-46071 Valencia, Spain. [Albert, J.; Banerjee, Sw.; Bhuyan, B.; Choi, H. H. F.; Hamano, K.; King, G. J.; Kowalewski, R.; Lewczuk, M. J.; Nugent, I. M.; Roney, J. M.; Sobie, R. J.] Univ Victoria, Victoria, BC V8W 3P6, Canada. [Gershon, T. J.; Harrison, P. F.; Ilic, J.; Latham, T. E.; Mohanty, G. B.; Puccio, E. M. T.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Band, H. R.; Chen, X.; Dasu, S.; Flood, K. T.; Pan, Y.; Prepost, R.; Vuosalo, C. O.; Wu, S. L.] Univ Wisconsin, Madison, WI 53706 USA. Univ Roma La Sapienza, I-00185 Rome, Italy. Univ Sassari, Sassari, Italy. RP Aubert, B (reprint author), Univ Savoie, CNRS, IN2P3, LAPP, F-74941 Annecy Le Vieux, France. RI dong, liaoyuan/A-5093-2015; Rizzo, Giuliana/A-8516-2015; Luppi, Eleonora/A-4902-2015; White, Ryan/E-2979-2015; Neri, Nicola/G-3991-2012; Forti, Francesco/H-3035-2011; Rotondo, Marcello/I-6043-2012; de Sangro, Riccardo/J-2901-2012; Saeed, Mohammad Alam/J-7455-2012; Della Ricca, Giuseppe/B-6826-2013; Negrini, Matteo/C-8906-2014; Patrignani, Claudia/C-5223-2009; Monge, Maria Roberta/G-9127-2012; Oyanguren, Arantza/K-6454-2014; Calabrese, Roberto/G-4405-2015; Martinez Vidal, F*/L-7563-2014; Kolomensky, Yury/I-3510-2015; Lo Vetere, Maurizio/J-5049-2012; Lusiani, Alberto/N-2976-2015; Morandin, Mauro/A-3308-2016; Lusiani, Alberto/A-3329-2016; Stracka, Simone/M-3931-2015; Di Lodovico, Francesca/L-9109-2016; Pappagallo, Marco/R-3305-2016; Calcaterra, Alessandro/P-5260-2015; Frey, Raymond/E-2830-2016 OI Cavoto, Gianluca/0000-0003-2161-918X; Raven, Gerhard/0000-0002-2897-5323; Paoloni, Eugenio/0000-0001-5969-8712; Cibinetto, Gianluigi/0000-0002-3491-6231; dong, liaoyuan/0000-0002-4773-5050; Pacetti, Simone/0000-0002-6385-3508; Rizzo, Giuliana/0000-0003-1788-2866; Faccini, Riccardo/0000-0003-2613-5141; Luppi, Eleonora/0000-0002-1072-5633; White, Ryan/0000-0003-3589-5900; Neri, Nicola/0000-0002-6106-3756; Forti, Francesco/0000-0001-6535-7965; Rotondo, Marcello/0000-0001-5704-6163; de Sangro, Riccardo/0000-0002-3808-5455; Saeed, Mohammad Alam/0000-0002-3529-9255; Della Ricca, Giuseppe/0000-0003-2831-6982; Negrini, Matteo/0000-0003-0101-6963; Patrignani, Claudia/0000-0002-5882-1747; Monge, Maria Roberta/0000-0003-1633-3195; Oyanguren, Arantza/0000-0002-8240-7300; Calabrese, Roberto/0000-0002-1354-5400; Martinez Vidal, F*/0000-0001-6841-6035; Kolomensky, Yury/0000-0001-8496-9975; Lo Vetere, Maurizio/0000-0002-6520-4480; Lusiani, Alberto/0000-0002-6876-3288; Morandin, Mauro/0000-0003-4708-4240; Lusiani, Alberto/0000-0002-6876-3288; Stracka, Simone/0000-0003-0013-4714; Di Lodovico, Francesca/0000-0003-3952-2175; Pappagallo, Marco/0000-0001-7601-5602; Calcaterra, Alessandro/0000-0003-2670-4826; Frey, Raymond/0000-0003-0341-2636 NR 19 TC 5 Z9 5 U1 0 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD JAN PY 2010 VL 81 IS 1 AR 011102 DI 10.1103/PhysRevD.81.011102 PG 8 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 548XJ UT WOS:000274002800002 ER PT J AU Aubin, C Laiho, J Van de Water, RS AF Aubin, C. Laiho, Jack Van de Water, Ruth S. TI Neutral kaon mixing parameter BK from unquenched mixed-action lattice QCD SO PHYSICAL REVIEW D LA English DT Article ID YANG-MILLS THEORY; QUANTUM CHROMODYNAMICS; PERTURBATION-THEORY; CHIRAL FERMIONS; PHYSICS; SCALE AB We calculate the neutral kaon mixing parameter B-K in unquenched lattice QCD using asqtad-improved staggered sea quarks and domain-wall valence quarks. We use the "2 + 1'' flavor gauge configurations generated by the MILC Collaboration, and simulate with multiple valence and sea-quark masses at two lattice spacings of a approximate to 0.12 fm and a approximate to 0.09 fm. We match the lattice determination of B-K to the continuum value using the nonperturbative method of Rome-Southampton, and extrapolate B-K to the continuum and physical quark masses using mixed-action chiral perturbation theory. The "mixed-action'' method enables us to control all sources of systematic uncertainty and therefore to precisely determine B-K; we find a value of B-K((MS) over bar ,NDR)(2 GeV) = 0.527(6)(21), where the first error is statistical and the second is systematic. C1 [Aubin, C.] Coll William & Mary, Dept Phys, Williamsburg, VA 23187 USA. [Laiho, Jack] Washington Univ, Dept Phys, St Louis, MO 63130 USA. [Van de Water, Ruth S.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. RP Aubin, C (reprint author), Coll William & Mary, Dept Phys, Williamsburg, VA 23187 USA. EM caaubin@wm.edu; jlaiho@fnal.gov; ruthv@bnl.gov NR 80 TC 43 Z9 43 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD JAN PY 2010 VL 81 IS 1 AR 014507 DI 10.1103/PhysRevD.81.014507 PG 32 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 548XJ UT WOS:000274002800046 ER PT J AU Berger, EL Jackson, CB Shaughnessy, G AF Berger, Edmond L. Jackson, C. B. Shaughnessy, Gabe TI Characteristics and estimates of double parton scattering at the Large Hadron Collider SO PHYSICAL REVIEW D LA English DT Article ID ROOT S=1.8 TEV; (P)OVER-BAR-P COLLISIONS; MULTIPARTON PROCESSES; JET PRODUCTION; 4-JET EVENTS; TEVATRON; LHC; SIGNALS; PAIR AB We evaluate the kinematic distributions in phase space of 4-parton final-state subprocesses produced by double parton scattering, and we contrast these with the final-state distributions that originate from conventional single parton scattering. Our goal is to establish the distinct topologies of events that arise from these two sources and to provide a methodology for experimental determination of the relative magnitude of the double parton and single parton contributions at Large Hadron Collider energies. We examine two cases in detail, the b (b) over bar jet-jet and the 4 jet final states. After full parton-level simulations, we identify a few variables that separate the two contributions remarkably well, and we suggest their use experimentally for an empirical measurement of the relative cross section. We show that the double parton contribution falls off significantly more rapidly with the transverse momentum p(T)(j1) T of the leading jet, but, up to issues of the relative normalization, may be dominant at modest values of p(T)(j1). C1 [Berger, Edmond L.; Jackson, C. B.] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Shaughnessy, Gabe] Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA. RP Berger, EL (reprint author), Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. EM berger@anl.gov; cb.jackson@mac.com; g-shaughnessy@northwestern.edu FU U. S. Department of Energy [DE-AC0206CH11357, DE-FG02-91ER40684] FX We benefited greatly from discussions with T. LeCompte and from communications with J. Campbell during the early development of this project. We also thank them and J. Qiu for valuable comments and suggestions on an earlier draft of this paper. Research in the High Energy Physics Division at Argonne is supported by the U. S. Department of Energy under Contract No. DE-AC0206CH11357. The research of G. S. at Northwestern is supported by the U. S. Department of Energy under Contract No. DE-FG02-91ER40684. NR 47 TC 46 Z9 46 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD JAN PY 2010 VL 81 IS 1 AR 014014 DI 10.1103/PhysRevD.81.014014 PG 11 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 548XJ UT WOS:000274002800025 ER PT J AU Buckley, MR Spolyar, D Freese, K Hooper, D Murayama, H AF Buckley, Matthew R. Spolyar, Douglas Freese, Katherine Hooper, Dan Murayama, Hitoshi TI High-energy neutrino signatures of dark matter SO PHYSICAL REVIEW D LA English DT Article ID RAY POSITRON FRACTION; TELESCOPE; PROSPECTS; EARTH AB It has been suggested that the excesses of high-energy cosmic ray electrons and positrons seen by PAMELA and the Fermi Gamma Ray Space Telescope are evidence of dark matter annihilation or decay in the Galactic halo. To accommodate these signals however, the final states must be predominantly muons or taus. These leptonic final states will produce neutrinos, which are potentially detectable with the IceCube neutrino observatory. We find that with five years of data, IceCube (supplemented by DeepCore) can significantly constrain the relevant parameter space for both annihilating or decaying dark matter, and may be capable of discovering leptophilic dark matter in the halo of the Milky Way. C1 [Buckley, Matthew R.] CALTECH, Dept Phys, Pasadena, CA 91125 USA. [Spolyar, Douglas; Hooper, Dan] Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, Batavia, IL 60510 USA. [Spolyar, Douglas] Univ Calif Santa Cruz, Dept Phys, Santa Cruz, CA 95064 USA. [Freese, Katherine] Univ Michigan, Dept Phys, Michigan Ctr Theoret Phys, Ann Arbor, MI 48109 USA. [Hooper, Dan] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [Murayama, Hitoshi] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Murayama, Hitoshi] LBNL, Theoret Phys Grp, Berkeley, CA 94720 USA. [Murayama, Hitoshi] Univ Tokyo, IPMU, Kashiwa, Chiba 2778568, Japan. RP Buckley, MR (reprint author), CALTECH, Dept Phys, Pasadena, CA 91125 USA. RI Murayama, Hitoshi/A-4286-2011 FU U.S. Department of Energy [DE-FG0-392-ER40701, DE-AC03-76SF00098]; MCTP via the University of Michigan; National Science Foundation [PHY-0455649, AST-0507117, PHY-04-57315]; GAANN; World Premier International Research Center Initiative (WPI Initiative), MEXT, Japan FX We would like to thank A. Aguirre, P. Gondolo, K. Hoffman, S. Profumo, F. Halzen, I. Mocioiu, and especially Spencer Klein for useful discussions. K. F. is supported by the U. S. Department of Energy and MCTP via the University of Michigan and the National Science Foundation under Grant No. PHY-0455649; D. S. is supported by NSF Grant No. AST-0507117 and GAANN (D. S.); D. H. is supported by the U. S. Department of Energy, including Grant No. DE-FG02-95ER40896, and by NASA Grant No. NAG5-10842; M. R. B. is supported by the Department of Energy, under Grant No. DE-FG0-392-ER40701. H. M. is supported in part by World Premier International Research Center Initiative (WPI Initiative), MEXT, Japan, in part by the U. S. DOE under Contract No. DE-AC03-76SF00098, and in part by the NSF under Grant No. PHY-04-57315. The authors would also like to thank the Aspen Center for Physics for providing a stimulating atmosphere for research and collaboration. D. S. would also like to thank the MCTP. NR 60 TC 18 Z9 18 U1 1 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD JAN PY 2010 VL 81 IS 1 AR 016006 DI 10.1103/PhysRevD.81.016006 PG 7 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 548XJ UT WOS:000274002800065 ER PT J AU Cao, QH Jackson, CB Keung, WY Low, I Shu, J AF Cao, Qing-Hong Jackson, C. B. Keung, Wai-Yee Low, Ian Shu, Jing TI Higgs mechanism and loop-induced decays of a scalar into two Z bosons SO PHYSICAL REVIEW D LA English DT Article ID STANDARD MODEL; COLLIDERS; SECTOR; PAIRS; SPIN AB We discuss general on-shell couplings of a scalar with two Z bosons using an operator analysis. In addition to the operator that originated from the Higgs mechanism, two dimension-five operators, one CP even and one CP odd, are generated only at the loop level. Simple formulas are derived for the differential decay distributions when the Z pair subsequently decays into four leptons by computing the helicity amplitudes, from which it is shown the CP-odd operator merely induces a phase shift in the azimuthal angular distribution between the two decay planes of the Z bosons. We also investigate new physics scenarios giving rise to loop-induced decays of a scalar into the ZZ pair, and argue that the total decay width of such a scalar would be an order-of-magnitude smaller than that of a Higgs boson, should such decays be observed in the early running of the LHC. Therefore, the total decay width alone is a strong indicator of the Higgs nature, or the lack thereof, of a scalar resonance in ZZ final states. In addition, we study the possibility of using the azimuthal angular distribution to disentangle effects among all three operators. C1 [Cao, Qing-Hong; Jackson, C. B.; Low, Ian] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Cao, Qing-Hong] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Keung, Wai-Yee] Univ Illinois, Dept Phys, Chicago, IL 60607 USA. [Low, Ian] Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA. [Shu, Jing] Univ Tokyo, Inst Phys & Math Universe, Chiba 2778568, Japan. RP Cao, QH (reprint author), Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. FU U.S. Department of Energy [DE-AC02-06CH11357, DE-FG02-90ER40560]; MEXT, Japan; Argonne National Laboratory; University of Chicago Joint Theory Institute (JTI) [03921-07-137]; JSPS [21740169] FX This work was supported in part by the U.S. Department of Energy under Contract No. DE-AC02-06CH11357 (Argonne), and by the World Premier International Research Center Initiative (WPI initiative) by MEXT, Japan. Q. H. C. is supported in part by the Argonne National Laboratory and University of Chicago Joint Theory Institute (JTI) Grant No. 03921-07-137, and by the U.S. Department of Energy under Grants No. DE-AC02-06CH11357 and No. DE-FG02-90ER40560. J.S. was also supported by the Grant-in-Aid for scientific research [Young Scientists (B) 21740169] from JSPS. I. L. acknowledges the hospitality of IPMU at the University of Tokyo while part of this work was performed. NR 38 TC 45 Z9 45 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD JAN PY 2010 VL 81 IS 1 AR 015010 DI 10.1103/PhysRevD.81.015010 PG 11 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 548XJ UT WOS:000274002800056 ER PT J AU Carena, M Kong, K Ponton, E Zurita, J AF Carena, Marcela Kong, Kyoungchul Ponton, Eduardo Zurita, Jose TI Supersymmetric Higgs bosons and beyond SO PHYSICAL REVIEW D LA English DT Article ID STANDARD MODEL; RADIATIVE-CORRECTIONS; MASS; MSSM; PHENOMENOLOGY; SECTOR; LEP; UNIFICATION; EXTENSION; BREAKING AB We consider supersymmetric models that include particles beyond the minimal supersymmetric standard model (MSSM) with masses in the TeV range, and that couple significantly to the MSSM Higgs sector. We perform a model-independent analysis of the spectrum and couplings of the MSSM Higgs fields, based on an effective theory of the MSSM degrees of freedom. The tree-level mass of the lightest CP-even state can easily be above the LEP bound of 114 GeV, thus allowing for a relatively light spectrum of superpartners, restricted only by direct searches. The Higgs spectrum and couplings can be significantly modified compared to the MSSM ones, often allowing for interesting new decay modes. We also observe that the gluon fusion production cross section of the SM-like Higgs can be enhanced with respect to both the standard model and the MSSM. C1 [Carena, Marcela; Kong, Kyoungchul; Zurita, Jose] Fermilab Natl Accelerator Lab, Dept Theoret Phys, Batavia, IL 60510 USA. [Carena, Marcela] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Kong, Kyoungchul] SLAC, Dept Theoret Phys, Menlo Pk, CA 94025 USA. [Ponton, Eduardo] Columbia Univ, Dept Phys, New York, NY 10027 USA. [Zurita, Jose] Univ Buenos Aires, Dept Fis, Buenos Aires, Argentina. RP Carena, M (reprint author), Fermilab Natl Accelerator Lab, Dept Theoret Phys, POB 500, Batavia, IL 60510 USA. RI Ponton, Eduardo/I-4125-2013 OI Ponton, Eduardo/0000-0003-3138-1136 NR 69 TC 39 Z9 39 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD JAN PY 2010 VL 81 IS 1 AR 015001 DI 10.1103/PhysRevD.81.015001 PG 27 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 548XJ UT WOS:000274002800047 ER PT J AU Jung, SH Murayama, H Pierce, A Wells, JD AF Jung, Sunghoon Murayama, Hitoshi Pierce, Aaron Wells, James D. TI Top quark forward-backward asymmetry from new t-channel physics SO PHYSICAL REVIEW D LA English DT Article AB Motivated by recent measurements of the top quark forward-backward asymmetry at the Tevatron, we study how t-channel new physics can contribute to a large value. We concentrate on a theory with an Abelian gauge boson that possesses flavor changing couplings between up and top quarks but satisfies flavor physics constraints. Collider constraints are strong, but can be accommodated with the aid of small flavor-diagonal couplings. We find that M-Z' approximate to 160 GeV can yield a total lab-frame asymmetry of similar to 18% without conflicting with other observables. There are implications for future collider searches, including exotic top quark decays, like-sign top quark production, and detailed measurements of the top production cross section. An alternate model with a gauged non-Abelian flavor symmetry has similar phenomenology, but lacks the like-sign top signal. C1 [Jung, Sunghoon; Pierce, Aaron; Wells, James D.] Univ Michigan, Michigan Ctr Theoret Phys, Ann Arbor, MI 48109 USA. [Murayama, Hitoshi] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Murayama, Hitoshi] Univ Calif Berkeley, Lawrence Berkeley Lab, Theoret Phys Grp, Berkeley, CA 94720 USA. [Murayama, Hitoshi] Univ Tokyo, IPMU, Kashiwa, Chiba 2778568, Japan. [Wells, James D.] CERN Theoret Phys PH TH, CH-1211 Geneva 23, Switzerland. RP Jung, SH (reprint author), Univ Michigan, Michigan Ctr Theoret Phys, Ann Arbor, MI 48109 USA. RI Murayama, Hitoshi/A-4286-2011 FU NSF [NSF-PHY-0743315, PHY-04-57315]; DOE; MEXT, Japan FX The authors would like to thank D. Amidei, P. Ko, J. Shao, M. Strassler, D. Whiteson, and members of CERN and KIAS for useful comments. A. P. is supported by NSF CAREER Grant No. NSF-PHY-0743315. A. P. and J. D. W. are supported in part by DOE. H. M. is supported by the World Premier International Research Center Initiative (WPI Initiative), MEXT, Japan, the DOE, and the NSF under Grant No. PHY-04-57315. NR 33 TC 162 Z9 162 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD JAN PY 2010 VL 81 IS 1 AR 015004 DI 10.1103/PhysRevD.81.015004 PG 5 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 548XJ UT WOS:000274002800050 ER PT J AU Upadhye, A Steffen, JH Weltman, A AF Upadhye, A. Steffen, J. H. Weltman, A. TI Constraining chameleon field theories using the GammeV afterglow experiments SO PHYSICAL REVIEW D LA English DT Article ID FINE-STRUCTURE CONSTANT; COSMOLOGY; PARTICLES; SYMMETRY; PHOTON AB The GammeV experiment has constrained the couplings of chameleon scalar fields to matter and photons. Here, we present a detailed calculation of the chameleon afterglow rate underlying these constraints. The dependence of GammeV constraints on various assumptions in the calculation is studied. We discuss the GammeV-CHameleon Afterglow SEarch, a second-generation GammeV experiment, which will improve upon GammeV in several major ways. Using our calculation of the chameleon afterglow rate, we forecast model-independent constraints achievable by GammeV-CHameleon Afterglow SEarch. We then apply these constraints to a variety of chameleon models, including quartic chameleons and chameleon dark energy models. The new experiment will be able to probe a large region of parameter space that is beyond the reach of current tests, such as fifth force searches, constraints on the dimming of distant astrophysical objects, and bounds on the variation of the fine structure constant. C1 [Upadhye, A.] Univ Chicago, Enrico Fermi Inst, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Steffen, J. H.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Weltman, A.] Univ Cambridge, Ctr Math Sci, Dept Appl Math & Theoret Phys, Cambridge CB2 0WA, England. [Weltman, A.] Univ Cape Town, Cosmol & Grav Grp, ZA-7700 Rondebosch, South Africa. RP Upadhye, A (reprint author), Univ Chicago, Enrico Fermi Inst, Kavli Inst Cosmol Phys, 5640 S Ellis Ave, Chicago, IL 60637 USA. FU Kavli Institute for Cosmological Physics (KICP) at the University of Chicago through NSF [PHY-0114422, PHY-0551142]; U.S. Department of Energy [DE-AC02-07CH11359] FX We are grateful to A. Baumbaugh, A. Chou, S. Gubser, C. Hogan, W. Hu, J. Khoury, A. Kusaka, P.O. Mazur, B. Odom, L. Reyes, A. Tolley, R. Tomlin, and W. Wester for many informative discussions. This work was supported by the Kavli Institute for Cosmological Physics (KICP) at the University of Chicago through NSF Grant Nos. PHY-0114422 and PHY-0551142, as well as by the U.S. Department of Energy under Contract No. DE-AC02-07CH11359. J. S. thanks the Brinson Foundation for its generous support. NR 46 TC 31 Z9 31 U1 1 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD JAN PY 2010 VL 81 IS 1 AR 015013 DI 10.1103/PhysRevD.81.015013 PG 18 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 548XJ UT WOS:000274002800059 ER PT J AU Young, RD Thomas, AW AF Young, R. D. Thomas, A. W. TI Octet baryon masses and sigma terms from an SU(3) chiral extrapolation SO PHYSICAL REVIEW D LA English DT Article ID PERTURBATION-THEORY; QCD AB We report an analysis of the impressive new lattice simulation results for octet baryon masses in 2 + 1-flavor QCD. The analysis is based on a low-order expansion about the chiral SU(3) limit in which the symmetry breaking arises from terms linear in the quark masses plus the variation of the Goldstone boson masses in the leading chiral loops. The baryon masses evaluated at the physical light-quark masses are in remarkable agreement with the experimental values, with a model dependence considerably smaller than the rather small statistical uncertainty. From the mass formulas one can evaluate the sigma commutators for all octet baryons. This yields an accurate value for the pion-nucleon sigma commutator. It also yields the first determination of the strangeness sigma term based on 2 + 1-flavor lattice QCD and, in general, the sigma commutators provide a resolution to the difficult issue of fine-tuning the strange-quark mass. C1 [Young, R. D.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Thomas, A. W.] Jefferson Lab, Newport News, VA 23606 USA. [Thomas, A. W.] Coll William & Mary, Williamsburg, VA 23187 USA. [Thomas, A. W.] Univ Adelaide, Ctr Subatom Struct Matter, Adelaide, SA 5005, Australia. [Thomas, A. W.] Univ Adelaide, Sch Chem & Phys, Adelaide, SA 5005, Australia. RP Young, RD (reprint author), Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. RI Thomas, Anthony/G-4194-2012; Young, Ross/H-8207-2012 OI Thomas, Anthony/0000-0003-0026-499X; FU DOE [AC02-06CH11357, DE-AC05-06OR23177] FX We wish to thank J. Arrington, S. Beane, C. Roberts, and J. Zanotti for useful discussions. This work was supported by DOE Contracts No. DE-AC02-06CH11357, under which the University of Chicago Argonne, LLC, operates the Argonne National Laboratory, and No. DE-AC05-06OR23177, under which Jefferson Science Associates, LLC, operates the Jefferson Lab. NR 26 TC 141 Z9 142 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD JAN PY 2010 VL 81 IS 1 AR 014503 DI 10.1103/PhysRevD.81.014503 PG 5 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 548XJ UT WOS:000274002800042 ER PT J AU Chertkov, M Kolokolov, I Lebedev, V AF Chertkov, M. Kolokolov, I. Lebedev, V. TI Universal velocity profile for coherent vortices in two-dimensional turbulence SO PHYSICAL REVIEW E LA English DT Article ID INVERSE ENERGY CASCADE AB Two-dimensional turbulence generated in a finite box produces large-scale coherent vortices coexisting with small-scale fluctuations. We present a rigorous theory explaining the eta=1/4 scaling in the V proportional to r(-n) law of the velocity spatial profile within a vortex, where r is the distance from the vortex center. This scaling, consistent with earlier numerical and laboratory measurements, is universal in its independence of details of the small-scale injection of turbulent fluctuations and details of the shape of the box. C1 [Chertkov, M.; Kolokolov, I.; Lebedev, V.] LANL, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. [Chertkov, M.; Kolokolov, I.; Lebedev, V.] LANL, Div Theoret, Los Alamos, NM 87545 USA. [Kolokolov, I.; Lebedev, V.] LD Landau Theoret Phys Inst, Moscow 119334, Russia. RP Chertkov, M (reprint author), LANL, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. RI Chertkov, Michael/O-8828-2015; OI Chertkov, Michael/0000-0002-6758-515X; Kolokolov, Igor/0000-0002-7961-8588 FU U. S. Department of Energy at Los Alamos National Laboratory [DE-AC52-06NA25396]; RFBR [09-02-01346-a]; FTP FX The work at LANL was carried out under the auspices of the National Nuclear Security Administration of the U. S. Department of Energy at Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396. The work of I. K. and V.L. was partially supported by RFBR under Grant No. 09-02-01346-a and FTP "Kadry." NR 24 TC 4 Z9 4 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD JAN PY 2010 VL 81 IS 1 AR 015302 DI 10.1103/PhysRevE.81.015302 PN 2 PG 4 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 548XP UT WOS:000274003500004 PM 20365424 ER PT J AU Humrickhouse, PW Sharpe, JP Corradini, ML AF Humrickhouse, Paul W. Sharpe, J. Phil Corradini, Michael L. TI Comparison of hyperelastic models for granular materials SO PHYSICAL REVIEW E LA English DT Article ID STRESS-RESPONSE FUNCTION; SMALL-STRAIN STIFFNESS; ELASTICITY; SAND; PRESSURE; SOILS; ANISOTROPY; BEHAVIOR; PACKING; TESTS AB Three recently proposed hyperelastic models for granular materials are compared with experiment data. Though all three are formulated to give elastic moduli that are power law functions of the mean stress, they have rather different dependencies on individual stresses, and generally differ from well established experimental forms. Predicted static stress distributions are in qualitative agreement with experiments, but do not differ greatly from isotropic linear elasticity, and similarly fail to account for variability in experiment data that presumably occurs due to a preparation dependence of granular materials. C1 [Humrickhouse, Paul W.; Sharpe, J. Phil] Idaho Natl Lab, Fus Safety Program, Idaho Falls, ID 83415 USA. [Humrickhouse, Paul W.; Corradini, Michael L.] Univ Wisconsin, Dept Engn Phys, Madison, WI 53706 USA. RP Humrickhouse, PW (reprint author), Idaho Natl Lab, Fus Safety Program, POB 1625, Idaho Falls, ID 83415 USA. EM paul.humrickhouse@inl.gov FU Battelle Energy Alliance; U. S. Department of Energy [DE-AC07-05ID14517] FX This paper has been authored under Battelle Energy Alliance, LLC under Contract No. DE-AC07-05ID14517 with the U. S. Department of Energy. NR 55 TC 10 Z9 11 U1 0 U2 10 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD JAN PY 2010 VL 81 IS 1 AR 011303 DI 10.1103/PhysRevE.81.011303 PN 1 PG 12 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 548XN UT WOS:000274003300049 PM 20365364 ER PT J AU Leshchiner, A Thrasher, M Mineev-Weinstein, MB Swinney, HL AF Leshchiner, Alexander Thrasher, Matthew Mineev-Weinstein, Mark B. Swinney, Harry L. TI Harmonic moment dynamics in Laplacian growth SO PHYSICAL REVIEW E LA English DT Article ID DIFFUSION-LIMITED AGGREGATION; HELE-SHAW CELL; PATTERN-FORMATION; INTERFACE DYNAMICS; DOMAINS; STABILITY; EQUATIONS; LIQUID; FLUID AB Harmonic moments are integrals of integer powers of z=x+iy over a domain. Here, the domain is an exterior of a bubble of air growing in an oil layer between two horizontal closely spaced plates. Harmonic moments are a natural basis for such Laplacian growth phenomena because, unlike other representations, these moments linearize the zero surface tension problem [S. Richardson, J. Fluid Mech. 56, 609 (1972)], so that all moments except the lowest one (the area of the bubble) are conserved in time. In our experiments, we directly determine the harmonic moments and show that for nonzero surface tension, all moments (except the lowest one) decay in time rather than exhibiting the divergences of other representations. Further, we derive an expression that relates the derivative of the k(th) harmonic moment M(k) to measurable quantities (surface tension, viscosity, the distance between the plates, and a line integral over the contour encompassing the growing bubble). The laboratory observations are in good accord with the expression we derive for dM(k)/dt, which is proportional to the surface tension; thus in the zero surface tension limit, the moments (above k=0) are all conserved, in accord with Richardson's theory. In addition, from the measurements of the time evolution of the harmonic moments we obtain a value for the surface tension that is within 20% of the accepted value. In conclusion, our analysis and laboratory observations demonstrate that an interface dynamics description in terms of harmonic moments is physically realizable and robust. C1 [Leshchiner, Alexander; Thrasher, Matthew; Swinney, Harry L.] Univ Texas Austin, Ctr Nonlinear Dynam, Austin, TX 78712 USA. [Leshchiner, Alexander; Thrasher, Matthew; Swinney, Harry L.] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA. [Mineev-Weinstein, Mark B.] Los Alamos Natl Lab, Div Appl Phys, Los Alamos, NM 87545 USA. RP Leshchiner, A (reprint author), Univ Texas Austin, Ctr Nonlinear Dynam, Austin, TX 78712 USA. EM swinney@chaos.utexas.edu FU American Chemical Society Petroleum Research Fund; LDRD at Los Alamos National Laboratory [20070083ER] FX We thank O. Praud for developing the method for maintaining an approximate n-fold symmetry of a bubble (Sec. IV B), and we thank Dmitry Leshchiner for helpful discussions. Acknowledgment is made to the Donors of the American Chemical Society Petroleum Research Fund for support of this research. This work was also supported in part by the LDRD under Grant No. 20070083ER at Los Alamos National Laboratory. NR 37 TC 16 Z9 16 U1 1 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD JAN PY 2010 VL 81 IS 1 AR 016206 DI 10.1103/PhysRevE.81.016206 PN 2 PG 9 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 548XP UT WOS:000274003500023 PM 20365445 ER PT J AU Mertens, FG Quintero, NR Bishop, AR AF Mertens, Franz G. Quintero, Niurka R. Bishop, A. R. TI Nonlinear Schrodinger equation with spatiotemporal perturbations SO PHYSICAL REVIEW E LA English DT Article ID LENGTH-SCALE COMPETITION; PARAMETRICALLY DRIVEN; STABILITY-CRITERION; PULSE-PROPAGATION; AC-DRIVEN; SOLITONS; WAVE; EXISTENCE; EVOLUTION; DYNAMICS AB We investigate the dynamics of solitons of the cubic nonlinear Schrodinger equation (NLSE) with the following perturbations: nonparametric spatiotemporal driving of the form f(x, t) = a exp[iK(t)x], damping, and a linear term which serves to stabilize the driven soliton. Using the time evolution of norm, momentum and energy, or, alternatively, a Lagrangian approach, we develop a collective-coordinate-theory which yields a set of ordinary differential equations (ODEs) for our four collective coordinates. These ODEs are solved analytically and numerically for the case of a constant, spatially periodic force f(x). The soliton position exhibits oscillations around a mean trajectory with constant velocity. This means that the soliton performs, on the average, a unidirectional motion although the spatial average of the force vanishes. The amplitude of the oscillations is much smaller than the period of f(x). In order to find out for which regions the above solutions are stable, we calculate the time evolution of the soliton momentum P(t) and the soliton velocity V(t) : This is a parameter representation of a curve P(V) which is visited by the soliton while time evolves. Our conjecture is that the soliton becomes unstable, if this curve has a branch with negative slope. This conjecture is fully confirmed by our simulations for the perturbed NLSE. Moreover, this curve also yields a good estimate for the soliton lifetime: the soliton lives longer, the shorter the branch with negative slope is. C1 [Mertens, Franz G.] Univ Bayreuth, Inst Phys, D-95440 Bayreuth, Germany. [Quintero, Niurka R.] Univ Seville, Dept Fis Aplicada 1, EUP, Seville 41011, Spain. [Bishop, A. R.] Los Alamos Natl Lab, Theoret Div & Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. RP Mertens, FG (reprint author), Univ Bayreuth, Inst Phys, D-95440 Bayreuth, Germany. RI Quintero, Niurka/J-7550-2013 OI Quintero, Niurka/0000-0003-3503-3040 FU IMUS; University of Seville; Ministerio de Educacion y Ciencia (MEC, Spain) [FIS2008-02380/FIS]; Junta de Andalucia [FQM207, FQM-00481, P06-FQM-01735] FX We thank Yuri Gaididei (Kiev) and Igor Barashenkov (Cape Town) for very useful discussions on this work. F. G. M. acknowledges the hospitality of the University of Sevilla and of the Theoretical Division and Center for Nonlinear Studies at Los Alamos Laboratory. Work at Los Alamos is supported by the USDOE. F.G.M. acknowledges financial support from IMUS and from University of Seville (Plan Propio). N.R.Q. acknowledges financial support by the Ministerio de Educacion y Ciencia (MEC, Spain) through Grant No. FIS2008-02380/FIS, and by the Junta de Andalucia under the Projects No. FQM207, No. FQM-00481, and No. P06-FQM-01735. NR 32 TC 18 Z9 18 U1 0 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD JAN PY 2010 VL 81 IS 1 AR 016608 DI 10.1103/PhysRevE.81.016608 PN 2 PG 11 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 548XP UT WOS:000274003500062 PM 20365492 ER PT J AU Mikaelian, KO AF Mikaelian, Karnig O. TI Analytic approach to nonlinear hydrodynamic instabilities driven by time-dependent accelerations SO PHYSICAL REVIEW E LA English DT Article ID RICHTMYER-MESHKOV INSTABILITY; RAYLEIGH-TAYLOR INSTABILITY; FLUIDS AB We extend our earlier model for Rayleigh-Taylor and Richtmyer-Meshkov instabilities to the more general class of hydrodynamic instabilities driven by a time-dependent acceleration g(t). Explicit analytic solutions for linear as well as nonlinear amplitudes are obtained for several g(t)s by solving a Schrodinger-like equation d(2)eta/dt(2)-g(t)kA eta=0, where A is the Atwood number and k is the wave number of the perturbation amplitude eta(t). In our model a simple transformation k -> k(L) and A -> A(L) connects the linear to the nonlinear amplitudes: eta(nonlinear) (k, A) similar to (1/k(L))ln eta(linear) (k(L), A(L)). The model is found to be in very good agreement with direct numerical simulations. Bubble amplitudes for a variety of accelerations are seen to scale with s defined by s = integral root g(t)dt, while spike amplitudes prefer scaling with displacement Delta x=integral[integral g(t)dt]dt. C1 Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Mikaelian, KO (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. FU (U.S.) Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX This work was performed under the auspices of the (U.S.) Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. NR 34 TC 11 Z9 11 U1 2 U2 16 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD JAN PY 2010 VL 81 IS 1 AR 016325 DI 10.1103/PhysRevE.81.016325 PN 2 PG 16 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 589WZ UT WOS:000277186200010 PM 20365478 ER PT J AU Reed, EJ Maiti, A Fried, LE AF Reed, Evan J. Maiti, Amitesh Fried, Laurence E. TI Anomalous sound propagation and slow kinetics in dynamically compressed amorphous carbon SO PHYSICAL REVIEW E LA English DT Article ID FUSED-SILICA; SHOCK-WAVE; DIAMOND AB We have performed molecular-dynamics simulations of dynamic compression waves propagating through amorphous carbon using the Tersoff potential and find that a variety of dynamic compression features appear for two different initial densities. These features include steady elastic shocks, steady chemically reactive shocks, unsteady elastic waves, and unsteady chemically reactive waves. We show how these features can be distinguished by analyzing time-dependent propagation speeds, time-dependent sound speeds, and comparison to multiscale shock technique (MSST) simulations. Understanding such features is a key challenge in quasi-isentropic experiments involving phase transformations. In addition to direct simulations of dynamic compression, we employ the MSST and find agreement with the direct method for this system for the shocks observed. We show how the MSST can be extended to include explicit material viscosity and demonstrate on an amorphous Lennard-Jones system. C1 [Reed, Evan J.; Maiti, Amitesh; Fried, Laurence E.] Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA 94550 USA. RP Reed, EJ (reprint author), Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA 94550 USA. EM reed23@llnl.gov RI Fried, Laurence/L-8714-2014 OI Fried, Laurence/0000-0002-9437-7700 FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. NR 31 TC 11 Z9 11 U1 1 U2 12 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD JAN PY 2010 VL 81 IS 1 AR 016607 DI 10.1103/PhysRevE.81.016607 PN 2 PG 9 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 548XP UT WOS:000274003500061 PM 20365491 ER PT J AU Adderley, PA Clark, J Grames, J Hansknecht, J Surles-Law, K Machie, D Poelker, M Stutzman, ML Suleiman, R AF Adderley, P. A. Clark, J. Grames, J. Hansknecht, J. Surles-Law, K. Machie, D. Poelker, M. Stutzman, M. L. Suleiman, R. TI Load-locked dc high voltage GaAs photogun with an inverted-geometry ceramic insulator SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article ID POLARIZED ELECTRON SOURCE; PHOTOCATHODES; GUN AB A new dc high voltage spin-polarized photoelectron gun has been constructed that employs a compact inverted-geometry ceramic insulator. Photogun performance at 100 kV bias voltage is summarized. C1 [Adderley, P. A.; Clark, J.; Grames, J.; Hansknecht, J.; Surles-Law, K.; Machie, D.; Poelker, M.; Stutzman, M. L.; Suleiman, R.] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. RP Poelker, M (reprint author), Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. EM poelker@jlab.org FU SCT Ceramics FX We thank Fay Hannon of the Jefferson Lab Free Electron Laser Group for providing an electrostatic field gradient map and undergraduate student Melissa Ricketts (University of California, Merced) for making the outgassing measurement of the new gun high voltage chamber. We also thank SCT Ceramics for their enthusiastic support of this project. NR 23 TC 21 Z9 21 U1 2 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD JAN PY 2010 VL 13 IS 1 AR 010101 DI 10.1103/PhysRevSTAB.13.010101 PG 7 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 550SR UT WOS:000274150500001 ER PT J AU Chuvatin, AS Kantsyrev, VL Rudakov, LI Cuneo, ME Astanovitskiy, AL Presura, R Safronova, AS Cline, W Williamson, KM Shrestha, I Osborne, GC LeGalloudec, B Nalajala, V Pointon, TD Mikkelson, KA AF Chuvatin, A. S. Kantsyrev, V. L. Rudakov, L. I. Cuneo, M. E. Astanovitskiy, A. L. Presura, R. Safronova, A. S. Cline, W. Williamson, K. M. Shrestha, I. Osborne, G. C. LeGalloudec, B. Nalajala, V. Pointon, T. D. Mikkelson, K. A. TI Operation of a load current multiplier on a nanosecond mega-ampere pulse forming line generator SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article AB We investigate the operation of a load current multiplier (LCM) on a pulse-forming-line nanosecond pulse-power generator. Potential benefits of using the LCM technique on such generators are studied analytically for a simplified case. A concrete LCM design on the Zebra accelerator (1.9 Ohm, similar to 1 MA, 100 ns) is described. This design is demonstrated experimentally with high-voltage power pulses having a rise time of dozens of nanoseconds. Higher currents and magnetic energies were observed in constant-inductance solid-state loads when a better generator-to-load energy coupling was achieved. The load current on Zebra was increased from the nominal 0.8-0.9 MA up to about 1.6 MA. This result was obtained without modifying the generator energetics or architecture and it is in good agreement with the presented numerical simulations. Validation of the LCM technique at a nanosecond time scale is of importance for the high-energy-density physics research. C1 [Chuvatin, A. S.] Ecole Polytech, Plasma Phys Lab, F-91128 Palaiseau, France. [Kantsyrev, V. L.; Astanovitskiy, A. L.; Presura, R.; Safronova, A. S.; Cline, W.; Williamson, K. M.; Shrestha, I.; Osborne, G. C.; LeGalloudec, B.; Nalajala, V.] Univ Nevada Reno, Reno, NV 89557 USA. [Rudakov, L. I.] Icarus Res Inc, Bethesda, MD 20824 USA. [Cuneo, M. E.; Pointon, T. D.; Mikkelson, K. A.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Chuvatin, AS (reprint author), Ecole Polytech, Plasma Phys Lab, F-91128 Palaiseau, France. FU Sandia National Laboratories under DOE/SNL [681371, 686929, 530307]; CNRS, France; DOE/DGA-SNL/CEG; DOE under NNSA [DE-FC52-06NA27586, DE-FC52-06NA27588, DE-FC52-06NA27616]; United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX We thank Dr. J.L. Porter for support of this work. We would like to thank the referee for helpful discussions. This work is supported by Sandia National Laboratories under DOE/SNL Contracts No. 681371, No. 686929, and No. 530307, by CNRS, France, by DOE/DGA-SNL/CEG agreement, by DOE under NNSA Cooperative Agreements No. DE-FC52-06NA27586, No. DE-FC52-06NA27588, and in part by No. DE-FC52-06NA27616. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. NR 12 TC 15 Z9 15 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD JAN PY 2010 VL 13 IS 1 AR 010401 DI 10.1103/PhysRevSTAB.13.010401 PG 8 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 550SR UT WOS:000274150500002 ER PT J AU Hahn, H AF Hahn, H. TI Matrix solution for the wall impedance of infinitely long multilayer circular beam tubes SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article ID INTENSE COASTING BEAMS; RESISTIVE INSTABILITIES; PARTICLE ACCELERATORS AB The coupling impedance of beam tubes is a long-standing important topic for particle accelerators that many authors have addressed. The present study was initiated in view of a specific problem, but its novel approach is broadly applicable to the longitudinal and transverse coupling impedances of coated beam tubes or multilayer tubes. The matrix method presented here derives the wall impedance by treating the radial wave propagation of the beam-excited electromagnetic fields in full analogy to longitudinal transmission lines. Starting from the Maxwell equations, the radially transverse magnetic field components are described for monopole and dipole modes by a 2 X 2 matrix. Assuming isotropic material properties within one layer, the transverse field components at the inner boundary of a layer uniquely are determined by matrix transfer of the field components at its outer boundary. By imposing power-flow constraints on the matrix, wave impedance mapping and field matching between layers is enforced and replaced by matrix multiplication. The longitudinal and transverse coupling impedances are derived from the wall impedance at the innermost boundary, and the different procedures for its determination are discussed. The matrix method is demonstrated via selected yet representative examples of the well-documented cases of a stainless-steel tube, and of a graphite collimator. C1 Brookhaven Natl Lab, Collider Accelerator Dept, Upton, NY 11973 USA. RP Hahn, H (reprint author), Brookhaven Natl Lab, Collider Accelerator Dept, Upton, NY 11973 USA. FU U.S. DOE [DE-AC02-98CH10886] FX This work was supported by Brookhaven Science Associates, LLC, under Contract No. DE-AC02-98CH10886 with the U.S. DOE. NR 27 TC 6 Z9 6 U1 1 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD JAN PY 2010 VL 13 IS 1 AR 012002 DI 10.1103/PhysRevSTAB.13.012002 PG 12 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 550SR UT WOS:000274150500008 ER PT J AU Liu, Z Nassiri, A AF Liu, Z. Nassiri, A. TI Novel superconducting rf structure for ampere-class beam current for multi-GeV energy recovery linacs SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article AB Future ampere-class energy recovery linacs (ERLs) based on superconducting technology demand efficient damping of the higher-order modes in the superconducting radio-frequency (SRF) accelerating structures to achieve stable beam operation in multipass, multibeam ERLs. We propose a new and novel SRF structure that is extremely efficient in damping the higher-order modes of SRF structures for ERLs. Initial simulation results indicate extremely good and efficient damping of the dipole and the quadrupole modes that determine the beam breakup threshold of the superconducting structures. The proposed new structure has the added benefit of having simpler fabrication steps with potential fabrication cost savings. C1 [Liu, Z.] Peking Univ, Inst Heavy Ion Phys, Beijing 100871, Peoples R China. [Liu, Z.; Nassiri, A.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Liu, Z (reprint author), Peking Univ, Inst Heavy Ion Phys, Beijing 100871, Peoples R China. FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; China Scholarship Council FX This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. Z. Liu was sponsored by the China Scholarship Council. NR 19 TC 3 Z9 3 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD JAN PY 2010 VL 13 IS 1 AR 012001 DI 10.1103/PhysRevSTAB.13.012001 PG 8 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 550SR UT WOS:000274150500007 ER PT J AU Rose, DV Welch, DR Madrid, EA Miller, CL Clark, RE Stygar, WA Savage, ME Rochau, GA Bailey, JE Nash, TJ Sceiford, ME Struve, KW Corcoran, PA Whitney, BA AF Rose, D. V. Welch, D. R. Madrid, E. A. Miller, C. L. Clark, R. E. Stygar, W. A. Savage, M. E. Rochau, G. A. Bailey, J. E. Nash, T. J. Sceiford, M. E. Struve, K. W. Corcoran, P. A. Whitney, B. A. TI Three-dimensional electromagnetic model of the pulsed-power Z-pinch accelerator SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article ID RECYCLABLE TRANSMISSION-LINE; DRIVEN HOHLRAUMS; DENSITY; PHYSICS; SYSTEM; WATER; FLOW; FACILITY; SWITCH AB A three-dimensional, fully electromagnetic model of the principal pulsed-power components of the 26-MA ZR accelerator [D.H. McDaniel et al., in Proceedings of the 5th International Conference on Dense Z-Pinches (AIP, New York, 2002), p. 23] has been developed. This large-scale simulation model tracks the evolution of electromagnetic waves through the accelerator's intermediate-storage capacitors, laser-triggered gas switches, pulse-forming lines, water switches, triplate transmission lines, and water convolute to the vacuum insulator stack. The insulator-stack electrodes are coupled to a transmission-line circuit model of the four-level magnetically insulated vacuum-transmission-line section and double-post-hole convolute. The vacuum-section circuit model is terminated by a one-dimensional self-consistent dynamic model of an imploding z-pinch load. The simulation results are compared with electrical measurements made throughout the ZR accelerator, and are in good agreement with the data, especially for times until peak load power. This modeling effort demonstrates that 3D electromagnetic models of large-scale, multiple-module, pulsed-power accelerators are now computationally tractable. This, in turn, presents new opportunities for simulating the operation of existing pulsed-power systems used in a variety of high-energy-density-physics and radiographic applications, as well as even higher-power next-generation accelerators before they are constructed. C1 [Rose, D. V.; Welch, D. R.; Madrid, E. A.; Miller, C. L.; Clark, R. E.] Voss Sci LLC, Albuquerque, NM 87108 USA. [Stygar, W. A.; Savage, M. E.; Rochau, G. A.; Bailey, J. E.; Nash, T. J.; Sceiford, M. E.; Struve, K. W.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Corcoran, P. A.; Whitney, B. A.] L 3 Commun, San Leandro, CA 94577 USA. RP Rose, DV (reprint author), Voss Sci LLC, Albuquerque, NM 87108 USA. EM David.Rose@vosssci.com FU United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX The authors would very much like to thank D. Artery, G. Donovan, M. Jones, K. LeChien, R. Leeper, G. Leifeste, F. Long, M. Lopez, J. Lott, K. Matzen, R. McKee, J. Mills, J. Moore, C. Mostrom, J. Porter, M. Sceiford, L. Schneider, S. Speas, B. Stoltzfus, T. Wagoner, and J. Woodworth for invaluable contributions. The LSP simulations were carried out on large-scale parallel computer systems at Voss Scientific and Sandia National Laboratories. The authors thank all of the computer systems support staff for their outstanding efforts to enable the completion of the numerical simulations. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed-Martin company, for the United States Department of Energy's National Nuclear Security Administration, under Contract No. DE-AC04-94AL85000. NR 78 TC 25 Z9 27 U1 1 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD JAN PY 2010 VL 13 IS 1 AR 010402 DI 10.1103/PhysRevSTAB.13.010402 PG 12 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 550SR UT WOS:000274150500003 ER PT J AU Minch, R Dubrovinsky, L Kurnosov, A Ehm, L Knorr, K Depmeier, W AF Minch, Robert Dubrovinsky, Leonid Kurnosov, Alexandr Ehm, Lars Knorr, Karsten Depmeier, Wulf TI Raman spectroscopic study of PbCO3 at high pressures and temperatures SO PHYSICS AND CHEMISTRY OF MINERALS LA English DT Article DE Cerussite; Raman spectroscopy; High pressure; High temperature; Phase transition ID POST-ARAGONITE PHASE; CRYSTAL-STRUCTURE; EARTHS MANTLE; CACO3; STORAGE; TRANSITION; STABILITY; CARBONATE; CERUSSITE; SPECTRA AB Cerussite (PbCO3) has been investigated by high-pressure and high-temperature Raman spectroscopy up to pressures of 17.2 GPa and temperatures of 723 K. Two pressure induced phase transitions were observed at about 8.0(2) and 16.0(2) GPa, respectively. The post-aragonite transition (PbCO3-II) at 8.0(2) GPa is accompanied by softening of the v (2)-out-of-plane mode of the CO (3) (2-) group and disappearance of the B-1g (v (4)-in-plane band of the CO (3) (2-) group) mode. Stronger shifts of the carbonate group modes after the phase transition suggest that the new structure is more compressible. The formation of a second high-pressure polymorph begins at about 10 GPa. It is accompanied by the occurrence of three new bands at different pressures and splitting of the v (1)-symmetric C-O stretching mode of the CO (3) (2-) group. The transitions are reversible on pressure release. A semi-quantitative phase diagram for PbCO3 as a function of pressure and temperature is proposed. C1 [Minch, Robert; Depmeier, Wulf] CAU Kiel, Inst Geowissensch, D-24098 Kiel, Germany. [Dubrovinsky, Leonid; Kurnosov, Alexandr] Univ Bayreuth, Bayer Geoinst, D-95220 Bayreuth, Germany. [Ehm, Lars] SUNY Stony Brook, Inst Mineral Phys, Stony Brook, NY 11794 USA. [Ehm, Lars] Brookhaven Natl Lab, Upton, NY 11973 USA. [Knorr, Karsten] Bruker AXS GmbH, XRD Mkt, D-76187 Karlsruhe, Germany. RP Minch, R (reprint author), CAU Kiel, Inst Geowissensch, Olshaussenstr 40, D-24098 Kiel, Germany. EM robert@min.uni-kiel.de FU Deutsche Forschungsgemeinschaft [KN 507/5-1] FX This research was supported by the Deutsche Forschungsgemeinschaft under project number KN 507/5-1 in the framework of the priority program: "Synthesis, 'in situ' characterization and quantum mechanical modeling of Earth Materials, oxides, carbides and nitrides at extremely high pressures and temperatures". NR 25 TC 12 Z9 12 U1 5 U2 34 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0342-1791 J9 PHYS CHEM MINER JI Phys. Chem. Miner. PD JAN PY 2010 VL 37 IS 1 BP 45 EP 56 DI 10.1007/s00269-009-0308-0 PG 12 WC Materials Science, Multidisciplinary; Mineralogy SC Materials Science; Mineralogy GA 537AU UT WOS:000273086000004 ER PT J AU Baer, DR Grosz, AE Ilton, ES Krupka, KM Liu, J Penn, RL Pepin, A AF Baer, D. R. Grosz, A. E. Ilton, E. S. Krupka, K. M. Liu, J. Penn, R. L. Pepin, A. TI Separation, characterization and initial reaction studies of magnetite particles from Hanford sediments SO PHYSICS AND CHEMISTRY OF THE EARTH LA English DT Article; Proceedings Paper CT 12th International Conference on Chemistry and Migration Behaviour of Actinides and Fission Products in the Geosphere CY SEP 20-25, 2009 CL Kennewick, WA DE Hanford sediment; Natural magnetite; Sorption; Uranium ID REDUCTION; U(VI); SORPTION; SURFACE; CR(VI); PH AB Magnetic and density separation methods have been applied to composite sediment samples from the Hanford formation from sediment recovered during drilling of an uncontaminated borehole located near the 200 West Area of the Hanford Site in southeastern Washington State. This paper describes the results of using those separation methods and from the characterization and initial reactivity measurements on a highly magnetic fraction isolated from that sediment. X-ray diffraction (XRD) analysis of the highly magnetic sediment fraction indicates that this material contains predominantly magnetite (Fe(3)O(4)). Particle morphology observed by scanning electron microscopy (SEM) and compositions determined energy dispersive spectroscopy (EDS) are consistent with this identification. Analyses by X-ray photoelectron spectroscopy (XPS) indicates that there is a thin coating on the particles that are likely a type of aluminosilicate. This highly magnetic fraction of material is not reactive with indigo carmine, an organic redox probe molecule that was shown to readily react with synthetic magnetite. Because of the limited amounts of material readily available, initial tests have been conducted that demonstrate the ability to complete U(VI) sorption on individual particles (nominally similar to 100 mu m in size) of the isolated sediment and to remove and mount these individual particles for analysis of the concentration and chemical state of the sorbed U species using small area XPS. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Baer, D. R.; Ilton, E. S.; Krupka, K. M.; Liu, J.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Penn, R. L.; Pepin, A.] Univ Minnesota, Minneapolis, MN USA. [Grosz, A. E.] US Geol Survey, Reston, VA 22092 USA. RP Baer, DR (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM don.baer@pnl.gov RI Liu, Juan/D-2273-2013; Baer, Donald/J-6191-2013; Liu, Juan/G-6035-2016 OI Baer, Donald/0000-0003-0875-5961; NR 26 TC 8 Z9 8 U1 0 U2 11 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1474-7065 J9 PHYS CHEM EARTH JI Phys. Chem. Earth PY 2010 VL 35 IS 6-8 BP 233 EP 241 DI 10.1016/j.pce.2010.04.010 PG 9 WC Geosciences, Multidisciplinary; Meteorology & Atmospheric Sciences; Water Resources SC Geology; Meteorology & Atmospheric Sciences; Water Resources GA 633VQ UT WOS:000280535300004 ER PT J AU Felmy, AR Cantrell, KJ Conradson, SD AF Felmy, Andrew R. Cantrell, Kirk J. Conradson, Steven D. TI Plutonium contamination issues in Hanford soils and sediments: Discharges from the Z-Plant (PFP) complex SO PHYSICS AND CHEMISTRY OF THE EARTH LA English DT Article; Proceedings Paper CT 12th International Conference on Chemistry and Migration Behaviour of Actinides and Fission Products in the Geosphere CY SEP 20-25, 2009 CL Kennewick, WA DE Plutonium; Geochemistry; Transport; Complexation; Subsurface; Hanford ID BEHAVIOR; SITE AB Beginning in 1945, weapons production activities at the Hanford Nuclear Reservation resulted in the discharge of large quantities of Pu and other transuranic elements to the subsurface. The vast majority of the transuranics was disposed in the Hanford central plateau (200 areas) predominately associated with activities at the Z-Plant (Plutonium Finishing Plant) complex. In the past Pu and Am migrated deep into the subsurface at certain locations, although Pu and other transuranics are not currently being detected in significant concentration in any associated groundwaters. Evaluation of the chemical form of the transuranics in the subsurface along with determining the mechanism(s) of the past subsurface migration is important in establishing strategies for long-term site management practices. Unfortunately, the chemical form of the transuranics in the deep subsurface sediments and the past mechanism of vertical migration remain largely unknown. However, initial studies performed as part of this research indicate that the chemical form of Pu can vary from disposal site to disposal site depending upon the waste type and the chemical form can also differ between surface sediments and deep subsurface sediments at the same site. This paper present a summary of the different waste types and locations where transuranics were disposed, the factors that could have lead to subsurface migration via different transport vectors, the information currently available on the chemical form of Pu in the subsurface, and a summary of current research needs. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Felmy, Andrew R.; Cantrell, Kirk J.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Conradson, Steven D.] Los Alamos Natl Lab, Los Alamos, NM USA. RP Felmy, AR (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM ar.felmy@pnl.gov NR 17 TC 13 Z9 13 U1 4 U2 19 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1474-7065 J9 PHYS CHEM EARTH JI Phys. Chem. Earth PY 2010 VL 35 IS 6-8 BP 292 EP 297 DI 10.1016/j.pce.2010.03.034 PG 6 WC Geosciences, Multidisciplinary; Meteorology & Atmospheric Sciences; Water Resources SC Geology; Meteorology & Atmospheric Sciences; Water Resources GA 633VQ UT WOS:000280535300013 ER PT J AU Gephart, RE AF Gephart, Roy E. TI A short history of waste management at the Hanford Site SO PHYSICS AND CHEMISTRY OF THE EARTH LA English DT Article; Proceedings Paper CT 12th International Conference on Chemistry and Migration Behaviour of Actinides and Fission Products in the Geosphere CY SEP 20-25, 2009 CL Kennewick, WA DE Radioactive waste; Hanford Site; Manhattan Project; Cleanup ID VADOSE ZONE AB The world's first full-scale nuclear reactors and chemical reprocessing plants built at the Hanford Site in the desert of southeastern Washington State produced two-thirds of the plutonium generated in the United States for nuclear weapons. Operating these facilities also created large volumes of radioactive and chemical waste, some of which was released into the environment exposing people who lived downwind and downstream. Hanford now contains the largest accumulation of nuclear waste in the Western Hemisphere. Hanford's last reactor shut down in 1987 followed by closure of the last reprocessing plant in 1990. Today, Hanford's only mission is cleanup. Most onsite radioactive waste and nuclear material lingers inside underground tanks or storage facilities. About half of the chemical waste remains in tanks while the rest persists in the soil, groundwater, and burial grounds. Six million dollars each day, or nearly two billion dollars each year, are spent on waste management and cleanup activities. There is significant uncertainty in how long cleanup will take, how much it will cost, and what risks will remain for future generations. This paper summarizes portions of the waste management history of the Hanford Site published in the book "Hanford: A Conversation about Nuclear Waste and Cleanup." (Gephart, 2003). (C) 2010 Elsevier Ltd. All rights reserved. C1 Pacific NW Natl Lab, Richland, WA 99352 USA. RP Gephart, RE (reprint author), Pacific NW Natl Lab, POB 999,MSIN K6-84, Richland, WA 99352 USA. EM roy.gephart@pnl.gov NR 47 TC 14 Z9 14 U1 8 U2 38 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1474-7065 J9 PHYS CHEM EARTH JI Phys. Chem. Earth PY 2010 VL 35 IS 6-8 BP 298 EP 306 DI 10.1016/j.pce.2010.03.032 PG 9 WC Geosciences, Multidisciplinary; Meteorology & Atmospheric Sciences; Water Resources SC Geology; Meteorology & Atmospheric Sciences; Water Resources GA 633VQ UT WOS:000280535300014 ER PT S AU Rangan, S Bersch, E Bartynski, RA Garfunkel, E Vescovo, E AF Rangan, S. Bersch, E. Bartynski, R. A. Garfunkel, E. Vescovo, E. BE Kar, S VanElshocht, S Misra, D Houssa, M Landheer, D Kita, K TI Electron Spectroscopic Measurements of Band Alignment in Metal/Oxide/Semiconductor Stacks SO PHYSICS AND TECHNOLOGY OF HIGH-K MATERIALS 8 SE ECS Transactions LA English DT Proceedings Paper CT 8th International Symposium on High Dielectric Constant and Other Dielectric Materials for Nanoelectronics and Photonics CY OCT 11-15, 2010 CL Las Vegas, NV SP Electrochem Soc (ECS), Dielectr Sci & Technol Div, Electrochem Soc (ECS), Elect & Photon Div ID GAP STATES; METAL; SEMICONDUCTOR AB Valence and conduction band edges of ultra-thin oxides (SiO2, HfO2, Hf0.7Si0.3O2 and Al2O3 grown on silicon) and their shifts upon sequential metallization with three metals (Ru, Ti and Al) have been measured using synchrotron radiation-excited x-ray photoemission, ultra-violet photoemission and inverse photoemission. From these techniques, the offsets between the valence and conduction band edges of the oxides and the metal gate Fermi edge have been directly measured. Upon metallization, consistent shifts of the oxides band edges and core levels are measured, due to the creation of interface dipoles at the metal/oxide interfaces. Using the energy gap, the electron affinity of the oxides and the metal work functions that have been directly measured on these samples, the experimental band offsets are compared to those predicted by the induced gap states model. C1 [Rangan, S.; Bersch, E.; Bartynski, R. A.] Rutgers State Univ, Dept Phys & Astron, POB 849, Piscataway, NJ 08854 USA. [Garfunkel, E.] Rutgers State Univ, Dept Chem & Chem Biol, Piscataway, NJ 08854 USA. [Vescovo, E.] Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA. RP Rangan, S (reprint author), Rutgers State Univ, Dept Phys & Astron, POB 849, Piscataway, NJ 08854 USA. FU U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE- AC02- 98CH10886] FX The authors acknowledge the generous support of the Semiconductor Research Corporation and the National Science Foundation. We are grateful for the beam time allocation at the NSLS. The National Synchrotron Light Source, Brookhaven National Laboratory, is supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE- AC02- 98CH10886. NR 20 TC 0 Z9 0 U1 0 U2 4 PU ELECTROCHEMICAL SOC INC PI PENNINGTON PA 65 S MAIN ST, PENNINGTON, NJ 08534-2839 USA SN 1938-5862 BN 978-1-60768-172-4 J9 ECS TRANSACTIONS PY 2010 VL 33 IS 3 BP 267 EP 279 DI 10.1149/1.3481614 PG 13 WC Electrochemistry; Engineering, Electrical & Electronic; Materials Science, Multidisciplinary SC Electrochemistry; Engineering; Materials Science GA BDH96 UT WOS:000313332400029 ER PT J AU Dimonte, G Ramaprabhu, P AF Dimonte, Guy Ramaprabhu, P. TI Simulations and model of the nonlinear Richtmyer-Meshkov instability SO PHYSICS OF FLUIDS LA English DT Article DE bubbles; flow instability; flow simulation ID RAYLEIGH-TAYLOR; PERTURBATION-THEORY; SHOCK-WAVE; GROWTH; FLUIDS; ACCELERATION; DEPENDENCE; STABILITY; DRIVEN; LAWS AB The nonlinear evolution of the Richtmyer-Meshkov (RM) instability is investigated using numerical simulations with the FLASH code in two dimensions. The purpose of the simulations is to develop an empirical nonlinear model of the RM instability that is applicable to inertial confinement fusion (ICF) and ejecta formation, namely, at large Atwood number A and scaled initial amplitude kh(o) (k equivalent to wave number) of the perturbation. The FLASH code is first validated with a variety of RM experiments that evolve well into the nonlinear regime. They reveal that bubbles stagnate when they grow by an increment of 2/k and that spikes accelerate for A>0.5 due to higher harmonics that focus them. These results are then compared with a variety of nonlinear models that are based on potential flow. We find that the models agree with simulations for moderate values of A < 0.9 and kh(o)< 1, but not for the larger values that characterize ICF and ejecta formation. We thus develop a new nonlinear empirical model that captures the simulation results consistent with potential flow for a broader range of A and kh(o). Our hope is that such empirical models concisely capture the RM simulations and inspire more rigorous solutions. C1 [Dimonte, Guy] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Ramaprabhu, P.] Univ N Carolina, Charlotte, NC 28223 USA. RP Dimonte, G (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. FU Los Alamos National Laboratory [DE-AC52-06NA2-5396] FX We would like to thank A. Calder, K. Mikaelian, O. Sadot, A. L. Velikovich, and J. G. Wouchuk for many useful discussions and A. Dhotre for assistance with the simulations. The FLASH software used in this work was developed in part by the DOE-sponsored ASC/Alliance Center for Astrophysical Thermonuclear Flashes at the University of Chicago. The PARAMESH software was developed at the NASA Goddard Space Flight Center under the HPCC and ESTO/CT projects. This work was performed for the U. S. Department of Energy by Los Alamos National Laboratory under Contract No. DE-AC52-06NA2-5396. NR 48 TC 33 Z9 33 U1 3 U2 30 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-6631 J9 PHYS FLUIDS JI Phys. Fluids PD JAN PY 2010 VL 22 IS 1 AR 014104 DI 10.1063/1.3276269 PG 17 WC Mechanics; Physics, Fluids & Plasmas SC Mechanics; Physics GA 551BN UT WOS:000274180800018 ER PT J AU Birn, J Hesse, M AF Birn, J. Hesse, M. TI Energy release and transfer in guide field reconnection SO PHYSICS OF PLASMAS LA English DT Article DE magnetic reconnection; plasma magnetohydrodynamics; plasma simulation ID COLLISIONLESS MAGNETIC RECONNECTION AB Properties of energy release and transfer by magnetic reconnection in the presence of a guide field are investigated on the basis of 2.5-dimensional magnetohydrodynamic (MHD) and particle-in-cell (PIC) simulations. Two initial configurations are considered: a plane current sheet with a uniform guide field of 80% of the reconnecting magnetic field component and a force-free current sheet in which the magnetic field strength is constant but the field direction rotates by 180 degrees through the current sheet. The onset of reconnection is stimulated by localized, temporally limited compression. Both MHD and PIC simulations consistently show that the outgoing energy fluxes are dominated by (redirected) Poynting flux and enthalpy flux, whereas bulk kinetic energy flux and heat flux (in the PIC simulation) are small. The Poynting flux is mainly associated with the magnetic energy of the guide field which is carried from inflow to outflow without much alteration. The conversion of annihilated magnetic energy to enthalpy flux (that is, thermal energy) stems mainly from the fact that the outflow occurs into a closed field region governed by approximate force balance between Lorentz and pressure gradient forces. Therefore, the energy converted from magnetic to kinetic energy by Lorentz force acceleration becomes immediately transferred to thermal energy by the work done by the pressure gradient force. Strong similarities between late stages of MHD and PIC simulations result from the fact that conservation of mass and entropy content and footpoint displacement of magnetic flux tubes, imposed in MHD, are also approximately satisfied in the PIC simulations. C1 [Birn, J.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Hesse, M.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Birn, J (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87545 USA. EM jbirn@lanl.gov RI Hesse, Michael/D-2031-2012; NASA MMS, Science Team/J-5393-2013 OI NASA MMS, Science Team/0000-0002-9504-5214 FU NASA's MMS/SMART program FX This work was performed under the auspices of the U. S. Department of Energy, supported by NASA's Heliophysics Theory, Living With a Star, and SR&T Programs, and through a grant from NASA's MMS/SMART program. NR 21 TC 13 Z9 13 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD JAN PY 2010 VL 17 IS 1 AR 012109 DI 10.1063/1.3299388 PG 11 WC Physics, Fluids & Plasmas SC Physics GA 551BF UT WOS:000274179600013 ER PT J AU Davidson, RC AF Davidson, Ronald C. TI Announcement: The 2009 James Clerk Maxwell Prize for Plasma Physics SO PHYSICS OF PLASMAS LA English DT Biographical-Item DE Tokamak devices C1 Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Davidson, RC (reprint author), Princeton Plasma Phys Lab, James Forrestal Campus,POB 451, Princeton, NJ 08543 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD JAN PY 2010 VL 17 IS 1 AR 010201 DI 10.1063/1.3273205 PG 2 WC Physics, Fluids & Plasmas SC Physics GA 551BF UT WOS:000274179600001 ER PT J AU Goldston, RJ AF Goldston, Robert J. TI Downstream heat flux profile versus midplane T profile in tokamaks SO PHYSICS OF PLASMAS LA English DT Article DE fusion reactor divertors; plasma boundary layers; plasma temperature; thermal diffusion; Tokamak devices ID DIVERTOR PLASMAS; TRANSPORT; WIDTH; MODE AB The relationship between the midplane scrape-off-layer (SOL) electron temperature profile and the parallel heat flux profile at the divertor in tokamaks is investigated. A model is applied that takes into account anisotropic thermal diffusion in rectilinear geometry with constant density. Eigenmode analysis is applied to the simplified problem with rectangular geometry and constant, but highly anisotropic, thermal diffusivities. A nonlinear solution is also found for the more realistic problem with anisotropically temperature-dependent thermal diffusivities. Numerical solutions are developed for both cases, with spatially dependent heat flux emerging from the plasma, and geometry that includes a model for the divertor leg. For both constant and temperature-dependent thermal diffusivities, it is found that, below about one-half of its peak, the heat flux profile shape at the divertor, compared to the midplane temperature profile shape, is robustly described by the scaling of the simplest two-point model. However, the physical processes are not those assumed in the simplest two-point model, nor is the numerical coefficient relating q(vertical bar vertical bar div) to T(mp)chi(vertical bar vertical bar mp)/L(vertical bar vertical bar) as predicted in that model. For realistic parameters, the peak in the heat flux, moreover, can be reduced by a factor of 2 or more relative to the two-point model scaling that fits the remaining profile. For temperature profiles in the SOL region above the x-point set by marginal stability, the heat flux profile to the divertor can be largely decoupled from the prediction of the two-point model. These results suggest opportunities and caveats for data interpretation and possibly favorable outcomes for divertor configurations with extended field lines. C1 Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Goldston, RJ (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. FU U. S. DOE [DE-AC02-09CH11] FX This work was supported by U. S. DOE under Contract No. DE-AC02-09CH11. NR 22 TC 10 Z9 10 U1 2 U2 4 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD JAN PY 2010 VL 17 IS 1 AR 012503 DI 10.1063/1.3280011 PG 15 WC Physics, Fluids & Plasmas SC Physics GA 551BF UT WOS:000274179600023 ER PT J AU Hayes, AC Bradley, PA Grim, GP Jungman, G Wilhelmy, JB AF Hayes, A. C. Bradley, P. A. Grim, G. P. Jungman, Gerard Wilhelmy, J. B. TI Reaction-in-flight neutrons as a signature for shell mixing in National Ignition Facility capsules SO PHYSICS OF PLASMAS LA English DT Article DE fusion reactor fuel; fusion reactor theory; mixing; plasma density; plasma diagnostics; plasma inertial confinement; plasma simulation; plasma temperature ID INERTIAL CONFINEMENT FUSION; TARGETS; DENSITY; NIF AB Analytic calculations and results from computational simulations are presented that suggest that reaction-in-flight (RIF) neutrons can be used to diagnose mixing of the ablator shell material into the fuel in deuterium-tritium (DT) capsules designed for the National Ignition Facility (NIF) [J. A. Paisner, J. D. Boyes, S. A. Kumpan, W. H. Lowdermilk, and M. S. Sorem, Laser Focus World 30, 75 (1994)]. Such mixing processes in NIF capsules are of fundamental physical interest and can have important effects on capsule performance, quenching the total thermonuclear yield. The sensitivity of RIF neutrons to hydrodynamical mixing arises through the dependence of RIF production on charged-particle stopping lengths in the mixture of DT fuel and ablator material. Since the stopping power in the plasma is a sensitive function of the electron temperature and density, it is also sensitive to mix. RIF production scales approximately inversely with the degree of mixing taking place, and the ratio of RIF to down-scattered neutrons provides a measure of the mix fraction and/or the mixing length. For sufficiently high-yield capsules, where spatially resolved RIF images may be possible, neutron imaging could be used to map RIF images into detailed mix images. C1 [Hayes, A. C.; Bradley, P. A.; Grim, G. P.; Jungman, Gerard; Wilhelmy, J. B.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Hayes, AC (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. OI Bradley, Paul/0000-0001-6229-6677 NR 22 TC 5 Z9 5 U1 0 U2 3 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD JAN PY 2010 VL 17 IS 1 AR 012705 DI 10.1063/1.3274947 PG 6 WC Physics, Fluids & Plasmas SC Physics GA 551BF UT WOS:000274179600031 ER PT J AU Michta, D Graziani, F Luu, T Pruet, J AF Michta, David Graziani, Frank Luu, Thomas Pruet, Jason TI Effects of nonequilibrium particle distributions in deuterium-tritium burning SO PHYSICS OF PLASMAS LA English DT Article DE bremsstrahlung; Compton effect; deuterium; Fokker-Planck equation; plasma confinement; tritium ID PLASMA; IGNITION; SIMULATION; TARGETS; PELLETS; FUSION; MODEL AB The effects of nonequilibrium particle distributions resulting from rapid deuterium-tritium burning in plasmas are investigated using a Fokker-Planck code that incorporates small-angle Coulomb scattering, bremsstrahlung, Compton scattering, and light-ion fusion. For inertial confinement fusion environments, it is found that deviations away from Maxwellian distributions for either deuterium or tritium ions are small and result in 1% changes in the energy production rates. The deuterium and tritium effective temperatures are not equal, but differ by only about 2.5% near the time of peak burn rate. Simulations with high Z (Xe) dopants show that the dopant temperature closely tracks that of the fuel. On the other hand, fusion product ion distributions are highly non-Maxwellian, and careful treatments of energy-exchange between these ions and other particles is important for determining burn rates. C1 [Michta, David] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Graziani, Frank; Luu, Thomas; Pruet, Jason] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Michta, D (reprint author), Univ Calif Berkeley, Berkeley, CA 94720 USA. EM dmichta@berkeley.edu; graziani1@llnl.gov; tluu@llnl.gov; pruet1@llnl.gov FU U.S. Department of Energy [DE-AC52-07NA27344] FX We thank Des Pilkington for useful comments and insightful critiques of this manuscript. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. NR 25 TC 7 Z9 7 U1 0 U2 8 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD JAN PY 2010 VL 17 IS 1 AR 012707 DI 10.1063/1.3276103 PG 12 WC Physics, Fluids & Plasmas SC Physics GA 551BF UT WOS:000274179600033 ER PT J AU Robey, HF Boehly, TR Olson, RE Nikroo, A Celliers, PM Landen, OL Meyerhofer, DD AF Robey, H. F. Boehly, T. R. Olson, R. E. Nikroo, A. Celliers, P. M. Landen, O. L. Meyerhofer, D. D. TI Experimental validation of a diagnostic technique for tuning the fourth shock timing on National Ignition Facility SO PHYSICS OF PLASMAS LA English DT Article DE plasma diagnostics; plasma shock waves; plasma simulation ID INDIRECT-DRIVE TARGETS; LASER AB Capsule implosions on the National Ignition Facility (NIF) [Lindl , Phys. Plasmas 11, 339 (2004)] will be driven with a carefully tailored sequence of four shock waves that must be timed to very high precision in order to keep the fuel on a low adiabat. The Hohlraum conditions present during the first three shocks allow for a very accurate and direct diagnosis of the strength and timing of each individual shock by velocity interferometry. Experimental validation of this diagnostic technique on the OMEGA Laser Facility [Boehly , Opt. Commun. 133, 495 (1997)] has been reported in [Boehly , Phys. Plasmas 16, 056302 (2009)]. The Hohlraum environment present during the launch and propagation of the final shock, by contrast, is much more severe and will not permit diagnosis by the same technique. A new, closely related technique has been proposed for measuring and tuning the strength and timing of the fourth shock. Experiments to test this technique under NIF-relevant conditions have also been performed on OMEGA. The result of these experiments and a comparison to numerical simulations is presented, validating this concept. C1 [Robey, H. F.; Celliers, P. M.; Landen, O. L.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Boehly, T. R.; Meyerhofer, D. D.] Laser Energet Lab, Rochester, NY 14645 USA. [Olson, R. E.] Sandia Natl Labs, Albuquerque, NM 87123 USA. [Nikroo, A.] Gen Atom, San Diego, CA 92186 USA. RP Robey, HF (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. FU Lawrence Livermore National Security, LLC, (LLNS) [DE-AC52-07NA27344] FX This work was performed under the auspices of the Lawrence Livermore National Security, LLC, (LLNS) under Contract No. DE-AC52-07NA27344. NR 14 TC 16 Z9 17 U1 0 U2 1 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD JAN PY 2010 VL 17 IS 1 AR 012703 DI 10.1063/1.3276154 PG 8 WC Physics, Fluids & Plasmas SC Physics GA 551BF UT WOS:000274179600029 ER PT J AU Ryutov, DD Umansky, MV AF Ryutov, D. D. Umansky, M. V. TI Ion drifts in a snowflake divertor SO PHYSICS OF PLASMAS LA English DT Article DE fusion reactor divertors ID TOKAMAK PLASMA EDGE; X-POINT AB Prompt losses of ions having turning points in the vicinity of the poloidal field null of a snowflake divertor are analyzed. Classification of the ion trajectories is presented. It is concluded that prompt losses in a snowflake affect a broader zone than in the standard X-point divertor. The size of the phase-space "hole" produced by prompt losses is evaluated. C1 [Ryutov, D. D.; Umansky, M. V.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Ryutov, DD (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. FU [DE-AC52-07NA27344] FX The authors are grateful to I. Joseph, T. Rognlien, and X. Xu for helpful comments. Prepared by LLNL under Contract No. DE-AC52-07NA27344. NR 7 TC 9 Z9 9 U1 0 U2 1 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD JAN PY 2010 VL 17 IS 1 AR 014501 DI 10.1063/1.3275789 PG 4 WC Physics, Fluids & Plasmas SC Physics GA 551BF UT WOS:000274179600048 ER PT J AU Schmit, PF Fisch, NJ AF Schmit, P. F. Fisch, N. J. TI Direct-current-like phase space manipulation using chirped alternating current fields SO PHYSICS OF PLASMAS LA English DT Article DE phase space methods; plasma accelerators; plasma transport processes; plasma waves ID INDUCED ELECTRON ACCELERATION; ADIABATIC-INVARIANT; PARTICLES; PLASMA; SEPARATRIX; DYNAMICS; WAVES AB Waves in plasmas can accelerate particles that are resonant with the wave. A dc electric field also accelerates particles, but without a resonance discrimination, which makes the acceleration mechanism profoundly different. Whereas wave-particle acceleration mechanisms have been widely discussed in the literature, this work discusses the direct analogy between wave acceleration and dc field acceleration in a particular parameter regime explored in previous works. Apart from the academic interest of this correspondence, there may be practical advantages in using waves to mimic dc electric fields, for example, in driving plasma current with high efficiency. C1 [Schmit, P. F.; Fisch, N. J.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Schmit, PF (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. FU U.S. DOE [DE-AC02-76-CH03073]; National Defense Science and Engineering Graduate Fellowship FX The authors would like to thank Lazar Friedland, Pavel Khain, Jonathan Wurtele, and Ilya Dodin for useful discussions. This work was supported by U.S. DOE Contract No. DE-AC02-76-CH03073. One of us (P.F.S.) was supported by the National Defense Science and Engineering Graduate Fellowship. NR 35 TC 2 Z9 2 U1 0 U2 1 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD JAN PY 2010 VL 17 IS 1 AR 013105 DI 10.1063/1.3298860 PG 10 WC Physics, Fluids & Plasmas SC Physics GA 551BF UT WOS:000274179600039 ER PT S AU Frauenfelder, H AF Frauenfelder, Hans BA Frauenfelder, H BF Frauenfelder, H BE Chan, SS Chan, WS TI The Hierarchy of Living Things SO PHYSICS OF PROTEINS: AN INTRODUCTION TO BIOLOGICAL PHYSICS AND MOLECULAR BIOPHYSICS SE Biological and Medical Physics Biomedical Engineering LA English DT Article; Book Chapter C1 Los Alamos Natl Lab, Div Theory, Los Alamos, NM 87545 USA. RP Frauenfelder, H (reprint author), Los Alamos Natl Lab, Div Theory, POB 1663, Los Alamos, NM 87545 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU SPRINGER PI NEW YORK PA 233 SPRING STREET, NEW YORK, NY 10013, UNITED STATES SN 1618-7210 BN 978-1-4419-1043-1 J9 BIOL MED PHYS BIOMED JI Biol. Med. Phys. Biomed. Eng. PY 2010 BP 5 EP 7 DI 10.1007/978-1-4419-1044-8_1 D2 10.1007/978-1-4419-1044-8 PG 3 WC Biology; Biophysics; Engineering, Biomedical SC Life Sciences & Biomedicine - Other Topics; Biophysics; Engineering GA BPV72 UT WOS:000280110700001 ER PT S AU Frauenfelder, H AF Frauenfelder, Hans BA Frauenfelder, H BF Frauenfelder, H BE Chan, SS Chan, WS TI Information and Function SO PHYSICS OF PROTEINS: AN INTRODUCTION TO BIOLOGICAL PHYSICS AND MOLECULAR BIOPHYSICS SE Biological and Medical Physics Biomedical Engineering LA English DT Article; Book Chapter C1 Los Alamos Natl Lab, Div Theory, Los Alamos, NM 87545 USA. RP Frauenfelder, H (reprint author), Los Alamos Natl Lab, Div Theory, POB 1663, Los Alamos, NM 87545 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU SPRINGER PI NEW YORK PA 233 SPRING STREET, NEW YORK, NY 10013, UNITED STATES SN 1618-7210 BN 978-1-4419-1043-1 J9 BIOL MED PHYS BIOMED JI Biol. Med. Phys. Biomed. Eng. PY 2010 BP 9 EP 11 DI 10.1007/978-1-4419-1044-8_2 D2 10.1007/978-1-4419-1044-8 PG 3 WC Biology; Biophysics; Engineering, Biomedical SC Life Sciences & Biomedicine - Other Topics; Biophysics; Engineering GA BPV72 UT WOS:000280110700002 ER PT S AU Frauenfelder, H AF Frauenfelder, Hans BA Frauenfelder, H BF Frauenfelder, H BE Chan, SS Chan, WS TI Biomolecules, Spin Glasses, Glasses, and Solids (R. H. Austin) SO PHYSICS OF PROTEINS: AN INTRODUCTION TO BIOLOGICAL PHYSICS AND MOLECULAR BIOPHYSICS SE Biological and Medical Physics Biomedical Engineering LA English DT Article; Book Chapter C1 Los Alamos Natl Lab, Div Theory, Los Alamos, NM 87545 USA. RP Frauenfelder, H (reprint author), Los Alamos Natl Lab, Div Theory, POB 1663, Los Alamos, NM 87545 USA. NR 5 TC 0 Z9 0 U1 0 U2 0 PU SPRINGER PI NEW YORK PA 233 SPRING STREET, NEW YORK, NY 10013, UNITED STATES SN 1618-7210 BN 978-1-4419-1043-1 J9 BIOL MED PHYS BIOMED JI Biol. Med. Phys. Biomed. Eng. PY 2010 BP 13 EP 17 DI 10.1007/978-1-4419-1044-8_3 D2 10.1007/978-1-4419-1044-8 PG 5 WC Biology; Biophysics; Engineering, Biomedical SC Life Sciences & Biomedicine - Other Topics; Biophysics; Engineering GA BPV72 UT WOS:000280110700003 ER PT S AU Frauenfelder, H AF Frauenfelder, Hans BA Frauenfelder, H BF Frauenfelder, H BE Chan, SS Chan, WS TI Proteins SO PHYSICS OF PROTEINS: AN INTRODUCTION TO BIOLOGICAL PHYSICS AND MOLECULAR BIOPHYSICS SE Biological and Medical Physics Biomedical Engineering LA English DT Article; Book Chapter ID MASS-SPECTROMETRY; MYOGLOBIN; EVOLUTION; GENE C1 Los Alamos Natl Lab, Div Theory, Los Alamos, NM 87545 USA. RP Frauenfelder, H (reprint author), Los Alamos Natl Lab, Div Theory, POB 1663, Los Alamos, NM 87545 USA. NR 25 TC 0 Z9 0 U1 0 U2 0 PU SPRINGER PI NEW YORK PA 233 SPRING STREET, NEW YORK, NY 10013, UNITED STATES SN 1618-7210 BN 978-1-4419-1043-1 J9 BIOL MED PHYS BIOMED JI Biol. Med. Phys. Biomed. Eng. PY 2010 BP 19 EP + DI 10.1007/978-1-4419-1044-8_4 D2 10.1007/978-1-4419-1044-8 PG 17 WC Biology; Biophysics; Engineering, Biomedical SC Life Sciences & Biomedicine - Other Topics; Biophysics; Engineering GA BPV72 UT WOS:000280110700004 ER PT S AU Frauenfelder, H AF Frauenfelder, Hans BA Frauenfelder, H BF Frauenfelder, H BE Chan, SS Chan, WS TI Nucleic Acids SO PHYSICS OF PROTEINS: AN INTRODUCTION TO BIOLOGICAL PHYSICS AND MOLECULAR BIOPHYSICS SE Biological and Medical Physics Biomedical Engineering LA English DT Article; Book Chapter ID DNA C1 Los Alamos Natl Lab, Div Theory, Los Alamos, NM 87545 USA. RP Frauenfelder, H (reprint author), Los Alamos Natl Lab, Div Theory, POB 1663, Los Alamos, NM 87545 USA. NR 17 TC 0 Z9 0 U1 0 U2 0 PU SPRINGER PI NEW YORK PA 233 SPRING STREET, NEW YORK, NY 10013, UNITED STATES SN 1618-7210 BN 978-1-4419-1043-1 J9 BIOL MED PHYS BIOMED JI Biol. Med. Phys. Biomed. Eng. PY 2010 BP 37 EP + DI 10.1007/978-1-4419-1044-8_5 D2 10.1007/978-1-4419-1044-8 PG 10 WC Biology; Biophysics; Engineering, Biomedical SC Life Sciences & Biomedicine - Other Topics; Biophysics; Engineering GA BPV72 UT WOS:000280110700005 ER PT S AU Frauenfelder, H AF Frauenfelder, Hans BA Frauenfelder, H BF Frauenfelder, H BE Chan, SS Chan, WS TI The Genetic Code SO PHYSICS OF PROTEINS: AN INTRODUCTION TO BIOLOGICAL PHYSICS AND MOLECULAR BIOPHYSICS SE Biological and Medical Physics Biomedical Engineering LA English DT Article; Book Chapter C1 Los Alamos Natl Lab, Div Theory, Los Alamos, NM 87545 USA. RP Frauenfelder, H (reprint author), Los Alamos Natl Lab, Div Theory, POB 1663, Los Alamos, NM 87545 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU SPRINGER PI NEW YORK PA 233 SPRING STREET, NEW YORK, NY 10013, UNITED STATES SN 1618-7210 BN 978-1-4419-1043-1 J9 BIOL MED PHYS BIOMED JI Biol. Med. Phys. Biomed. Eng. PY 2010 BP 49 EP 52 DI 10.1007/978-1-4419-1044-8_6 D2 10.1007/978-1-4419-1044-8 PG 4 WC Biology; Biophysics; Engineering, Biomedical SC Life Sciences & Biomedicine - Other Topics; Biophysics; Engineering GA BPV72 UT WOS:000280110700006 ER PT S AU Frauenfelder, H AF Frauenfelder, Hans BA Frauenfelder, H BF Frauenfelder, H BE Chan, SS Chan, WS TI Lipids and Membranes SO PHYSICS OF PROTEINS: AN INTRODUCTION TO BIOLOGICAL PHYSICS AND MOLECULAR BIOPHYSICS SE Biological and Medical Physics Biomedical Engineering LA English DT Article; Book Chapter ID PROTEIN INTERACTIONS C1 Los Alamos Natl Lab, Div Theory, Los Alamos, NM 87545 USA. RP Frauenfelder, H (reprint author), Los Alamos Natl Lab, Div Theory, POB 1663, Los Alamos, NM 87545 USA. NR 9 TC 0 Z9 0 U1 0 U2 0 PU SPRINGER PI NEW YORK PA 233 SPRING STREET, NEW YORK, NY 10013, UNITED STATES SN 1618-7210 BN 978-1-4419-1043-1 J9 BIOL MED PHYS BIOMED JI Biol. Med. Phys. Biomed. Eng. PY 2010 BP 53 EP + DI 10.1007/978-1-4419-1044-8_7 D2 10.1007/978-1-4419-1044-8 PG 6 WC Biology; Biophysics; Engineering, Biomedical SC Life Sciences & Biomedicine - Other Topics; Biophysics; Engineering GA BPV72 UT WOS:000280110700007 ER PT S AU Frauenfelder, H AF Frauenfelder, Hans BA Frauenfelder, H BF Frauenfelder, H BE Chan, SS Chan, WS TI The Secondary Structure SO PHYSICS OF PROTEINS: AN INTRODUCTION TO BIOLOGICAL PHYSICS AND MOLECULAR BIOPHYSICS SE Biological and Medical Physics Biomedical Engineering LA English DT Article; Book Chapter C1 Los Alamos Natl Lab, Div Theory, Los Alamos, NM 87545 USA. RP Frauenfelder, H (reprint author), Los Alamos Natl Lab, Div Theory, POB 1663, Los Alamos, NM 87545 USA. NR 8 TC 0 Z9 0 U1 0 U2 0 PU SPRINGER PI NEW YORK PA 233 SPRING STREET, NEW YORK, NY 10013, UNITED STATES SN 1618-7210 BN 978-1-4419-1043-1 J9 BIOL MED PHYS BIOMED JI Biol. Med. Phys. Biomed. Eng. PY 2010 BP 65 EP 73 DI 10.1007/978-1-4419-1044-8_8 D2 10.1007/978-1-4419-1044-8 PG 9 WC Biology; Biophysics; Engineering, Biomedical SC Life Sciences & Biomedicine - Other Topics; Biophysics; Engineering GA BPV72 UT WOS:000280110700008 ER PT S AU Frauenfelder, H AF Frauenfelder, Hans BA Frauenfelder, H BF Frauenfelder, H BE Chan, SS Chan, WS TI Tertiary Structure of Proteins SO PHYSICS OF PROTEINS: AN INTRODUCTION TO BIOLOGICAL PHYSICS AND MOLECULAR BIOPHYSICS SE Biological and Medical Physics Biomedical Engineering LA English DT Article; Book Chapter ID ENERGY LANDSCAPE THEORY; PRINCIPLES C1 Los Alamos Natl Lab, Div Theory, Los Alamos, NM 87545 USA. RP Frauenfelder, H (reprint author), Los Alamos Natl Lab, Div Theory, POB 1663, Los Alamos, NM 87545 USA. NR 13 TC 1 Z9 1 U1 0 U2 0 PU SPRINGER PI NEW YORK PA 233 SPRING STREET, NEW YORK, NY 10013, UNITED STATES SN 1618-7210 BN 978-1-4419-1043-1 J9 BIOL MED PHYS BIOMED JI Biol. Med. Phys. Biomed. Eng. PY 2010 BP 75 EP 81 DI 10.1007/978-1-4419-1044-8_9 D2 10.1007/978-1-4419-1044-8 PG 7 WC Biology; Biophysics; Engineering, Biomedical SC Life Sciences & Biomedicine - Other Topics; Biophysics; Engineering GA BPV72 UT WOS:000280110700009 ER PT S AU Frauenfelder, H AF Frauenfelder, Hans BA Frauenfelder, H BF Frauenfelder, H BE Chan, SS Chan, WS TI Myoglobin and Hemoglobin SO PHYSICS OF PROTEINS: AN INTRODUCTION TO BIOLOGICAL PHYSICS AND MOLECULAR BIOPHYSICS SE Biological and Medical Physics Biomedical Engineering LA English DT Article; Book Chapter C1 Los Alamos Natl Lab, Div Theory, Los Alamos, NM 87545 USA. RP Frauenfelder, H (reprint author), Los Alamos Natl Lab, Div Theory, POB 1663, Los Alamos, NM 87545 USA. NR 7 TC 0 Z9 0 U1 0 U2 0 PU SPRINGER PI NEW YORK PA 233 SPRING STREET, NEW YORK, NY 10013, UNITED STATES SN 1618-7210 BN 978-1-4419-1043-1 J9 BIOL MED PHYS BIOMED JI Biol. Med. Phys. Biomed. Eng. PY 2010 BP 83 EP 91 DI 10.1007/978-1-4419-1044-8_10 D2 10.1007/978-1-4419-1044-8 PG 9 WC Biology; Biophysics; Engineering, Biomedical SC Life Sciences & Biomedicine - Other Topics; Biophysics; Engineering GA BPV72 UT WOS:000280110700010 ER PT S AU Frauenfelder, H AF Frauenfelder, Hans BA Frauenfelder, H BF Frauenfelder, H BE Chan, SS Chan, WS TI Conformational Substates SO PHYSICS OF PROTEINS: AN INTRODUCTION TO BIOLOGICAL PHYSICS AND MOLECULAR BIOPHYSICS SE Biological and Medical Physics Biomedical Engineering LA English DT Article; Book Chapter ID X-RAY CRYSTALLOGRAPHY; PROTEIN; DYNAMICS; RELAXATION; TEMPERATURES; BIOMOLECULES; DIFFRACTION; MYOGLOBIN; GLASSES C1 Los Alamos Natl Lab, Div Theory, Los Alamos, NM 87545 USA. RP Frauenfelder, H (reprint author), Los Alamos Natl Lab, Div Theory, POB 1663, Los Alamos, NM 87545 USA. NR 26 TC 1 Z9 1 U1 0 U2 1 PU SPRINGER PI NEW YORK PA 233 SPRING STREET, NEW YORK, NY 10013, UNITED STATES SN 1618-7210 BN 978-1-4419-1043-1 J9 BIOL MED PHYS BIOMED JI Biol. Med. Phys. Biomed. Eng. PY 2010 BP 97 EP 112 DI 10.1007/978-1-4419-1044-8_11 D2 10.1007/978-1-4419-1044-8 PG 16 WC Biology; Biophysics; Engineering, Biomedical SC Life Sciences & Biomedicine - Other Topics; Biophysics; Engineering GA BPV72 UT WOS:000280110700011 ER PT S AU Frauenfelder, H AF Frauenfelder, Hans BA Frauenfelder, H BF Frauenfelder, H BE Chan, SS Chan, WS TI The Organization of the Energy Landscape SO PHYSICS OF PROTEINS: AN INTRODUCTION TO BIOLOGICAL PHYSICS AND MOLECULAR BIOPHYSICS SE Biological and Medical Physics Biomedical Engineering LA English DT Article; Book Chapter ID PROTEINS; DYNAMICS; MYOGLOBIN C1 Los Alamos Natl Lab, Div Theory, Los Alamos, NM 87545 USA. RP Frauenfelder, H (reprint author), Los Alamos Natl Lab, Div Theory, POB 1663, Los Alamos, NM 87545 USA. NR 15 TC 0 Z9 0 U1 0 U2 1 PU SPRINGER PI NEW YORK PA 233 SPRING STREET, NEW YORK, NY 10013, UNITED STATES SN 1618-7210 BN 978-1-4419-1043-1 J9 BIOL MED PHYS BIOMED JI Biol. Med. Phys. Biomed. Eng. PY 2010 BP 113 EP 124 DI 10.1007/978-1-4419-1044-8_12 D2 10.1007/978-1-4419-1044-8 PG 12 WC Biology; Biophysics; Engineering, Biomedical SC Life Sciences & Biomedicine - Other Topics; Biophysics; Engineering GA BPV72 UT WOS:000280110700012 ER PT S AU Frauenfelder, H AF Frauenfelder, Hans BA Frauenfelder, H BF Frauenfelder, H BE Chan, SS Chan, WS TI Reaction Theory SO PHYSICS OF PROTEINS: AN INTRODUCTION TO BIOLOGICAL PHYSICS AND MOLECULAR BIOPHYSICS SE Biological and Medical Physics Biomedical Engineering LA English DT Article; Book Chapter ID LONG-TIME MEMORY; CHEMICAL-REACTIONS; QUANTUM-THEORY; ACTIVATED EVENTS; CONDENSED PHASES; LOW-TEMPERATURES; CARBON-MONOXIDE; BROWNIAN-MOTION; LIGAND-BINDING; HEME-PROTEINS C1 Los Alamos Natl Lab, Div Theory, Los Alamos, NM 87545 USA. RP Frauenfelder, H (reprint author), Los Alamos Natl Lab, Div Theory, POB 1663, Los Alamos, NM 87545 USA. NR 56 TC 0 Z9 0 U1 0 U2 0 PU SPRINGER PI NEW YORK PA 233 SPRING STREET, NEW YORK, NY 10013, UNITED STATES SN 1618-7210 BN 978-1-4419-1043-1 J9 BIOL MED PHYS BIOMED JI Biol. Med. Phys. Biomed. Eng. PY 2010 BP 125 EP 155 DI 10.1007/978-1-4419-1044-8_13 D2 10.1007/978-1-4419-1044-8 PG 31 WC Biology; Biophysics; Engineering, Biomedical SC Life Sciences & Biomedicine - Other Topics; Biophysics; Engineering GA BPV72 UT WOS:000280110700013 ER PT S AU Frauenfelder, H AF Frauenfelder, Hans BA Frauenfelder, H BF Frauenfelder, H BE Chan, SS Chan, WS TI Supercooled Liquids and Glasses SO PHYSICS OF PROTEINS: AN INTRODUCTION TO BIOLOGICAL PHYSICS AND MOLECULAR BIOPHYSICS SE Biological and Medical Physics Biomedical Engineering LA English DT Article; Book Chapter ID THERMAL-CONDUCTIVITY; STRUCTURAL GLASSES; AMORPHOUS SOLIDS; FORMING LIQUIDS; VISCOUS-LIQUIDS; TRANSITION; TEMPERATURE; DYNAMICS; HEAT; RELAXATION C1 Los Alamos Natl Lab, Div Theory, Los Alamos, NM 87545 USA. RP Frauenfelder, H (reprint author), Los Alamos Natl Lab, Div Theory, POB 1663, Los Alamos, NM 87545 USA. NR 44 TC 0 Z9 0 U1 0 U2 1 PU SPRINGER PI NEW YORK PA 233 SPRING STREET, NEW YORK, NY 10013, UNITED STATES SN 1618-7210 BN 978-1-4419-1043-1 J9 BIOL MED PHYS BIOMED JI Biol. Med. Phys. Biomed. Eng. PY 2010 BP 157 EP 169 DI 10.1007/978-1-4419-1044-8_14 D2 10.1007/978-1-4419-1044-8 PG 13 WC Biology; Biophysics; Engineering, Biomedical SC Life Sciences & Biomedicine - Other Topics; Biophysics; Engineering GA BPV72 UT WOS:000280110700014 ER PT S AU Frauenfelder, H AF Frauenfelder, Hans BA Frauenfelder, H BF Frauenfelder, H BE Chan, SS Chan, WS TI Protein Dynamics SO PHYSICS OF PROTEINS: AN INTRODUCTION TO BIOLOGICAL PHYSICS AND MOLECULAR BIOPHYSICS SE Biological and Medical Physics Biomedical Engineering LA English DT Article; Book Chapter ID INELASTIC NEUTRON-SCATTERING; SLOW CONFORMATIONAL-CHANGES; ENERGY LANDSCAPE; FLUCTUATION SPECTROSCOPY; STRUCTURAL FLUCTUATIONS; FUNCTIONAL TRANSITIONS; MOSSBAUER-SPECTROSCOPY; CHEMICAL-REACTIONS; GLOBULAR PROTEIN; HYDRATION-SHELL C1 Los Alamos Natl Lab, Div Theory, Los Alamos, NM 87545 USA. RP Frauenfelder, H (reprint author), Los Alamos Natl Lab, Div Theory, POB 1663, Los Alamos, NM 87545 USA. NR 71 TC 0 Z9 0 U1 0 U2 0 PU SPRINGER PI NEW YORK PA 233 SPRING STREET, NEW YORK, NY 10013, UNITED STATES SN 1618-7210 BN 978-1-4419-1043-1 J9 BIOL MED PHYS BIOMED JI Biol. Med. Phys. Biomed. Eng. PY 2010 BP 175 EP + DI 10.1007/978-1-4419-1044-8_15 D2 10.1007/978-1-4419-1044-8 PG 22 WC Biology; Biophysics; Engineering, Biomedical SC Life Sciences & Biomedicine - Other Topics; Biophysics; Engineering GA BPV72 UT WOS:000280110700015 ER PT S AU Frauenfelder, H AF Frauenfelder, Hans BA Frauenfelder, H BF Frauenfelder, H BE Chan, SS Chan, WS TI Protein Quantum Dynamics? (R. H. Austin) SO PHYSICS OF PROTEINS: AN INTRODUCTION TO BIOLOGICAL PHYSICS AND MOLECULAR BIOPHYSICS SE Biological and Medical Physics Biomedical Engineering LA English DT Article; Book Chapter ID FAR-INFRARED PERTURBATION; ACETANILIDE; SOLITONS; MYOGLOBIN; MODES C1 Los Alamos Natl Lab, Div Theory, Los Alamos, NM 87545 USA. RP Frauenfelder, H (reprint author), Los Alamos Natl Lab, Div Theory, POB 1663, Los Alamos, NM 87545 USA. NR 21 TC 0 Z9 0 U1 0 U2 1 PU SPRINGER PI NEW YORK PA 233 SPRING STREET, NEW YORK, NY 10013, UNITED STATES SN 1618-7210 BN 978-1-4419-1043-1 J9 BIOL MED PHYS BIOMED JI Biol. Med. Phys. Biomed. Eng. PY 2010 BP 199 EP 208 DI 10.1007/978-1-4419-1044-8_16 D2 10.1007/978-1-4419-1044-8 PG 10 WC Biology; Biophysics; Engineering, Biomedical SC Life Sciences & Biomedicine - Other Topics; Biophysics; Engineering GA BPV72 UT WOS:000280110700016 ER PT S AU Frauenfelder, H AF Frauenfelder, Hans BA Frauenfelder, H BF Frauenfelder, H BE Chan, SS Chan, WS TI Creative Homework: Dynamics and Function SO PHYSICS OF PROTEINS: AN INTRODUCTION TO BIOLOGICAL PHYSICS AND MOLECULAR BIOPHYSICS SE Biological and Medical Physics Biomedical Engineering LA English DT Article; Book Chapter ID LIGAND MIGRATION; HUMAN NEUROGLOBIN; PROTEIN DYNAMICS; STRUCTURAL DYNAMICS; TEMPERATURE-DEPENDENCE; ENERGY LANDSCAPES; CONFORMATIONAL RELAXATION; DERIVATIVE SPECTROSCOPY; MURINE NEUROGLOBIN; MOLECULAR-DYNAMICS C1 Los Alamos Natl Lab, Div Theory, Los Alamos, NM 87545 USA. RP Frauenfelder, H (reprint author), Los Alamos Natl Lab, Div Theory, POB 1663, Los Alamos, NM 87545 USA. NR 89 TC 0 Z9 0 U1 0 U2 2 PU SPRINGER PI NEW YORK PA 233 SPRING STREET, NEW YORK, NY 10013, UNITED STATES SN 1618-7210 BN 978-1-4419-1043-1 J9 BIOL MED PHYS BIOMED JI Biol. Med. Phys. Biomed. Eng. PY 2010 BP 209 EP 236 DI 10.1007/978-1-4419-1044-8_17 D2 10.1007/978-1-4419-1044-8 PG 28 WC Biology; Biophysics; Engineering, Biomedical SC Life Sciences & Biomedicine - Other Topics; Biophysics; Engineering GA BPV72 UT WOS:000280110700017 ER PT S AU Frauenfelder, H AF Frauenfelder, Hans BA Frauenfelder, H BF Frauenfelder, H BE Chan, SS Chan, WS TI Chemical Forces SO PHYSICS OF PROTEINS: AN INTRODUCTION TO BIOLOGICAL PHYSICS AND MOLECULAR BIOPHYSICS SE Biological and Medical Physics Biomedical Engineering LA English DT Article; Book Chapter ID HYDROPHOBIC INTERACTIONS; PROTEINS C1 Los Alamos Natl Lab, Div Theory, Los Alamos, NM 87545 USA. RP Frauenfelder, H (reprint author), Los Alamos Natl Lab, Div Theory, POB 1663, Los Alamos, NM 87545 USA. NR 21 TC 0 Z9 0 U1 0 U2 0 PU SPRINGER PI NEW YORK PA 233 SPRING STREET, NEW YORK, NY 10013, UNITED STATES SN 1618-7210 BN 978-1-4419-1043-1 J9 BIOL MED PHYS BIOMED JI Biol. Med. Phys. Biomed. Eng. PY 2010 BP 243 EP 256 DI 10.1007/978-1-4419-1044-8_18 D2 10.1007/978-1-4419-1044-8 PG 14 WC Biology; Biophysics; Engineering, Biomedical SC Life Sciences & Biomedicine - Other Topics; Biophysics; Engineering GA BPV72 UT WOS:000280110700018 ER PT S AU Frauenfelder, H AF Frauenfelder, Hans BA Frauenfelder, H BF Frauenfelder, H BE Chan, SS Chan, WS TI Acids and Bases for Physicists SO PHYSICS OF PROTEINS: AN INTRODUCTION TO BIOLOGICAL PHYSICS AND MOLECULAR BIOPHYSICS SE Biological and Medical Physics Biomedical Engineering LA English DT Article; Book Chapter C1 Los Alamos Natl Lab, Div Theory, Los Alamos, NM 87545 USA. RP Frauenfelder, H (reprint author), Los Alamos Natl Lab, Div Theory, POB 1663, Los Alamos, NM 87545 USA. NR 4 TC 0 Z9 0 U1 0 U2 0 PU SPRINGER PI NEW YORK PA 233 SPRING STREET, NEW YORK, NY 10013, UNITED STATES SN 1618-7210 BN 978-1-4419-1043-1 J9 BIOL MED PHYS BIOMED JI Biol. Med. Phys. Biomed. Eng. PY 2010 BP 257 EP 261 DI 10.1007/978-1-4419-1044-8_19 D2 10.1007/978-1-4419-1044-8 PG 5 WC Biology; Biophysics; Engineering, Biomedical SC Life Sciences & Biomedicine - Other Topics; Biophysics; Engineering GA BPV72 UT WOS:000280110700019 ER PT S AU Frauenfelder, H AF Frauenfelder, Hans BA Frauenfelder, H BF Frauenfelder, H BE Chan, SS Chan, WS TI Thermodynamics for Physicists SO PHYSICS OF PROTEINS: AN INTRODUCTION TO BIOLOGICAL PHYSICS AND MOLECULAR BIOPHYSICS SE Biological and Medical Physics Biomedical Engineering LA English DT Article; Book Chapter ID FLUCTUATIONS C1 Los Alamos Natl Lab, Div Theory, Los Alamos, NM 87545 USA. RP Frauenfelder, H (reprint author), Los Alamos Natl Lab, Div Theory, POB 1663, Los Alamos, NM 87545 USA. NR 14 TC 0 Z9 0 U1 0 U2 1 PU SPRINGER PI NEW YORK PA 233 SPRING STREET, NEW YORK, NY 10013, UNITED STATES SN 1618-7210 BN 978-1-4419-1043-1 J9 BIOL MED PHYS BIOMED JI Biol. Med. Phys. Biomed. Eng. PY 2010 BP 263 EP 277 DI 10.1007/978-1-4419-1044-8_20 D2 10.1007/978-1-4419-1044-8 PG 15 WC Biology; Biophysics; Engineering, Biomedical SC Life Sciences & Biomedicine - Other Topics; Biophysics; Engineering GA BPV72 UT WOS:000280110700020 ER PT S AU Frauenfelder, H AF Frauenfelder, Hans BA Frauenfelder, H BF Frauenfelder, H BE Chan, SS Chan, WS TI Quantum Chemistry for Physicists SO PHYSICS OF PROTEINS: AN INTRODUCTION TO BIOLOGICAL PHYSICS AND MOLECULAR BIOPHYSICS SE Biological and Medical Physics Biomedical Engineering LA English DT Article; Book Chapter C1 Los Alamos Natl Lab, Div Theory, Los Alamos, NM 87545 USA. RP Frauenfelder, H (reprint author), Los Alamos Natl Lab, Div Theory, POB 1663, Los Alamos, NM 87545 USA. NR 14 TC 0 Z9 0 U1 0 U2 0 PU SPRINGER PI NEW YORK PA 233 SPRING STREET, NEW YORK, NY 10013, UNITED STATES SN 1618-7210 BN 978-1-4419-1043-1 J9 BIOL MED PHYS BIOMED JI Biol. Med. Phys. Biomed. Eng. PY 2010 BP 279 EP + DI 10.1007/978-1-4419-1044-8_21 D2 10.1007/978-1-4419-1044-8 PG 28 WC Biology; Biophysics; Engineering, Biomedical SC Life Sciences & Biomedicine - Other Topics; Biophysics; Engineering GA BPV72 UT WOS:000280110700021 ER PT S AU Frauenfelder, H AF Frauenfelder, Hans BA Frauenfelder, H BF Frauenfelder, H BE Chan, SS Chan, WS TI Energy Levels from Nuclei to Proteins SO PHYSICS OF PROTEINS: AN INTRODUCTION TO BIOLOGICAL PHYSICS AND MOLECULAR BIOPHYSICS SE Biological and Medical Physics Biomedical Engineering LA English DT Article; Book Chapter C1 Los Alamos Natl Lab, Div Theory, Los Alamos, NM 87545 USA. RP Frauenfelder, H (reprint author), Los Alamos Natl Lab, Div Theory, POB 1663, Los Alamos, NM 87545 USA. NR 2 TC 0 Z9 0 U1 0 U2 0 PU SPRINGER PI NEW YORK PA 233 SPRING STREET, NEW YORK, NY 10013, UNITED STATES SN 1618-7210 BN 978-1-4419-1043-1 J9 BIOL MED PHYS BIOMED JI Biol. Med. Phys. Biomed. Eng. PY 2010 BP 309 EP 313 DI 10.1007/978-1-4419-1044-8_22 D2 10.1007/978-1-4419-1044-8 PG 5 WC Biology; Biophysics; Engineering, Biomedical SC Life Sciences & Biomedicine - Other Topics; Biophysics; Engineering GA BPV72 UT WOS:000280110700022 ER PT S AU Frauenfelder, H AF Frauenfelder, Hans BA Frauenfelder, H BF Frauenfelder, H BE Chan, SS Chan, WS TI Interaction of Radiation with Molecules SO PHYSICS OF PROTEINS: AN INTRODUCTION TO BIOLOGICAL PHYSICS AND MOLECULAR BIOPHYSICS SE Biological and Medical Physics Biomedical Engineering LA English DT Article; Book Chapter C1 Los Alamos Natl Lab, Div Theory, Los Alamos, NM 87545 USA. RP Frauenfelder, H (reprint author), Los Alamos Natl Lab, Div Theory, POB 1663, Los Alamos, NM 87545 USA. NR 7 TC 0 Z9 0 U1 0 U2 0 PU SPRINGER PI NEW YORK PA 233 SPRING STREET, NEW YORK, NY 10013, UNITED STATES SN 1618-7210 BN 978-1-4419-1043-1 J9 BIOL MED PHYS BIOMED JI Biol. Med. Phys. Biomed. Eng. PY 2010 BP 315 EP + DI 10.1007/978-1-4419-1044-8_23 D2 10.1007/978-1-4419-1044-8 PG 6 WC Biology; Biophysics; Engineering, Biomedical SC Life Sciences & Biomedicine - Other Topics; Biophysics; Engineering GA BPV72 UT WOS:000280110700023 ER PT S AU Frauenfelder, H AF Frauenfelder, Hans BA Frauenfelder, H BF Frauenfelder, H BE Chan, SS Chan, WS TI Water (R. H. Austin) SO PHYSICS OF PROTEINS: AN INTRODUCTION TO BIOLOGICAL PHYSICS AND MOLECULAR BIOPHYSICS SE Biological and Medical Physics Biomedical Engineering LA English DT Article; Book Chapter C1 Los Alamos Natl Lab, Div Theory, Los Alamos, NM 87545 USA. RP Frauenfelder, H (reprint author), Los Alamos Natl Lab, Div Theory, POB 1663, Los Alamos, NM 87545 USA. NR 15 TC 0 Z9 0 U1 0 U2 1 PU SPRINGER PI NEW YORK PA 233 SPRING STREET, NEW YORK, NY 10013, UNITED STATES SN 1618-7210 BN 978-1-4419-1043-1 J9 BIOL MED PHYS BIOMED JI Biol. Med. Phys. Biomed. Eng. PY 2010 BP 323 EP 339 DI 10.1007/978-1-4419-1044-8_24 D2 10.1007/978-1-4419-1044-8 PG 17 WC Biology; Biophysics; Engineering, Biomedical SC Life Sciences & Biomedicine - Other Topics; Biophysics; Engineering GA BPV72 UT WOS:000280110700024 ER PT S AU Frauenfelder, H AF Frauenfelder, Hans BA Frauenfelder, H BF Frauenfelder, H BE Chan, SS Chan, WS TI Scattering of Photons: X-Ray Diffraction SO PHYSICS OF PROTEINS: AN INTRODUCTION TO BIOLOGICAL PHYSICS AND MOLECULAR BIOPHYSICS SE Biological and Medical Physics Biomedical Engineering LA English DT Article; Book Chapter ID 3-DIMENSIONAL FOURIER SYNTHESIS; SYNCHROTRON-RADIATION; LAUE DIFFRACTION; RESOLUTION; CRYSTALS C1 Los Alamos Natl Lab, Div Theory, Los Alamos, NM 87545 USA. RP Frauenfelder, H (reprint author), Los Alamos Natl Lab, Div Theory, POB 1663, Los Alamos, NM 87545 USA. NR 37 TC 0 Z9 0 U1 0 U2 0 PU SPRINGER PI NEW YORK PA 233 SPRING STREET, NEW YORK, NY 10013, UNITED STATES SN 1618-7210 BN 978-1-4419-1043-1 J9 BIOL MED PHYS BIOMED JI Biol. Med. Phys. Biomed. Eng. PY 2010 BP 341 EP + DI 10.1007/978-1-4419-1044-8_25 D2 10.1007/978-1-4419-1044-8 PG 21 WC Biology; Biophysics; Engineering, Biomedical SC Life Sciences & Biomedicine - Other Topics; Biophysics; Engineering GA BPV72 UT WOS:000280110700025 ER PT S AU Frauenfelder, H AF Frauenfelder, Hans BA Frauenfelder, H BF Frauenfelder, H BE Chan, SS Chan, WS TI Electronic Excitations SO PHYSICS OF PROTEINS: AN INTRODUCTION TO BIOLOGICAL PHYSICS AND MOLECULAR BIOPHYSICS SE Biological and Medical Physics Biomedical Engineering LA English DT Article; Book Chapter ID MODULATION FLUOROMETRY; MULTIFREQUENCY PHASE; FLUORESCENCE; SPECTROSCOPY; TRYPTOPHAN; PROTEINS; MOTIONS C1 Los Alamos Natl Lab, Div Theory, Los Alamos, NM 87545 USA. RP Frauenfelder, H (reprint author), Los Alamos Natl Lab, Div Theory, POB 1663, Los Alamos, NM 87545 USA. NR 22 TC 0 Z9 0 U1 0 U2 0 PU SPRINGER PI NEW YORK PA 233 SPRING STREET, NEW YORK, NY 10013, UNITED STATES SN 1618-7210 BN 978-1-4419-1043-1 J9 BIOL MED PHYS BIOMED JI Biol. Med. Phys. Biomed. Eng. PY 2010 BP 363 EP 376 DI 10.1007/978-1-4419-1044-8_26 D2 10.1007/978-1-4419-1044-8 PG 14 WC Biology; Biophysics; Engineering, Biomedical SC Life Sciences & Biomedicine - Other Topics; Biophysics; Engineering GA BPV72 UT WOS:000280110700026 ER PT S AU Frauenfelder, H AF Frauenfelder, Hans BA Frauenfelder, H BF Frauenfelder, H BE Chan, SS Chan, WS TI Vibrations SO PHYSICS OF PROTEINS: AN INTRODUCTION TO BIOLOGICAL PHYSICS AND MOLECULAR BIOPHYSICS SE Biological and Medical Physics Biomedical Engineering LA English DT Article; Book Chapter ID HEMOGLOBIN; SCATTERING C1 Los Alamos Natl Lab, Div Theory, Los Alamos, NM 87545 USA. RP Frauenfelder, H (reprint author), Los Alamos Natl Lab, Div Theory, POB 1663, Los Alamos, NM 87545 USA. NR 21 TC 0 Z9 0 U1 0 U2 0 PU SPRINGER PI NEW YORK PA 233 SPRING STREET, NEW YORK, NY 10013, UNITED STATES SN 1618-7210 BN 978-1-4419-1043-1 J9 BIOL MED PHYS BIOMED JI Biol. Med. Phys. Biomed. Eng. PY 2010 BP 377 EP + DI 10.1007/978-1-4419-1044-8_27 D2 10.1007/978-1-4419-1044-8 PG 15 WC Biology; Biophysics; Engineering, Biomedical SC Life Sciences & Biomedicine - Other Topics; Biophysics; Engineering GA BPV72 UT WOS:000280110700027 ER PT S AU Frauenfelder, H AF Frauenfelder, Hans BA Frauenfelder, H BF Frauenfelder, H BE Chan, SS Chan, WS TI The Nucleus as a Probe (C. E. Schulz) SO PHYSICS OF PROTEINS: AN INTRODUCTION TO BIOLOGICAL PHYSICS AND MOLECULAR BIOPHYSICS SE Biological and Medical Physics Biomedical Engineering LA English DT Article; Book Chapter C1 Los Alamos Natl Lab, Div Theory, Los Alamos, NM 87545 USA. RP Frauenfelder, H (reprint author), Los Alamos Natl Lab, Div Theory, POB 1663, Los Alamos, NM 87545 USA. NR 9 TC 0 Z9 0 U1 0 U2 0 PU SPRINGER PI NEW YORK PA 233 SPRING STREET, NEW YORK, NY 10013, UNITED STATES SN 1618-7210 BN 978-1-4419-1043-1 J9 BIOL MED PHYS BIOMED JI Biol. Med. Phys. Biomed. Eng. PY 2010 BP 393 EP + DI 10.1007/978-1-4419-1044-8_28 D2 10.1007/978-1-4419-1044-8 PG 22 WC Biology; Biophysics; Engineering, Biomedical SC Life Sciences & Biomedicine - Other Topics; Biophysics; Engineering GA BPV72 UT WOS:000280110700028 ER PT S AU Frauenfelder, H AF Frauenfelder, Hans BA Frauenfelder, H BF Frauenfelder, H BE Chan, SS Chan, WS TI Nuclear Magnetic Resonance and Molecular Structure Dynamics (R. H. Austin) SO PHYSICS OF PROTEINS: AN INTRODUCTION TO BIOLOGICAL PHYSICS AND MOLECULAR BIOPHYSICS SE Biological and Medical Physics Biomedical Engineering LA English DT Article; Book Chapter ID PROTEIN DYNAMICS; NMR METHODS; CATALYSIS C1 Los Alamos Natl Lab, Div Theory, Los Alamos, NM 87545 USA. RP Frauenfelder, H (reprint author), Los Alamos Natl Lab, Div Theory, POB 1663, Los Alamos, NM 87545 USA. NR 17 TC 0 Z9 0 U1 0 U2 0 PU SPRINGER PI NEW YORK PA 233 SPRING STREET, NEW YORK, NY 10013, UNITED STATES SN 1618-7210 BN 978-1-4419-1043-1 J9 BIOL MED PHYS BIOMED JI Biol. Med. Phys. Biomed. Eng. PY 2010 BP 417 EP + DI 10.1007/978-1-4419-1044-8_29 D2 10.1007/978-1-4419-1044-8 PG 19 WC Biology; Biophysics; Engineering, Biomedical SC Life Sciences & Biomedicine - Other Topics; Biophysics; Engineering GA BPV72 UT WOS:000280110700029 ER PT S AU Frauenfelder, H AF Frauenfelder, Hans BA Frauenfelder, H BF Frauenfelder, H BE Chan, SS Chan, WS TI Neutron Diffraction SO PHYSICS OF PROTEINS: AN INTRODUCTION TO BIOLOGICAL PHYSICS AND MOLECULAR BIOPHYSICS SE Biological and Medical Physics Biomedical Engineering LA English DT Article; Book Chapter ID PROTEIN CRYSTALLOGRAPHY C1 Los Alamos Natl Lab, Div Theory, Los Alamos, NM 87545 USA. RP Frauenfelder, H (reprint author), Los Alamos Natl Lab, Div Theory, POB 1663, Los Alamos, NM 87545 USA. NR 9 TC 0 Z9 0 U1 0 U2 0 PU SPRINGER PI NEW YORK PA 233 SPRING STREET, NEW YORK, NY 10013, UNITED STATES SN 1618-7210 BN 978-1-4419-1043-1 J9 BIOL MED PHYS BIOMED JI Biol. Med. Phys. Biomed. Eng. PY 2010 BP 437 EP + DI 10.1007/978-1-4419-1044-8_30 D2 10.1007/978-1-4419-1044-8 PG 4 WC Biology; Biophysics; Engineering, Biomedical SC Life Sciences & Biomedicine - Other Topics; Biophysics; Engineering GA BPV72 UT WOS:000280110700030 ER PT S AU Banerjee, D Nayak, JK Venugopalan, R AF Banerjee, Debasish Nayak, Jajati K. Venugopalan, Raju BE Sarkar, S Satz, H Sinha, B TI Two Introductory Lectures on High-Energy QCD and Heavy-Ion Collisions SO PHYSICS OF THE QUARK-GLUON PLASMA: INTRODUCTORY LECTURES SE Lecture Notes in Physics LA English DT Article; Book Chapter ID COLOR GLASS CONDENSATE; DEEP-INELASTIC-SCATTERING; NUCLEUS-NUCLEUS COLLISIONS; WEIZSACKER-WILLIAMS FIELDS; NONLINEAR GLUON EVOLUTION; STRONG EXTERNAL SOURCES; QUARK PAIR PRODUCTION; PLUS AU COLLISIONS; LARGE RAPIDITY GAP; HIGH-DENSITY QCD AB These introductory lectures present a broad overview of the physics of high parton densities in QCD and its application to our understanding of the early time dynamics in heavy-ion collisions. C1 [Banerjee, Debasish] Tata Inst Fundamental Res, Dept Theoret Phys, Bombay 400005, Maharashtra, India. [Nayak, Jajati K.] Bhabha Atom Res Ctr, Ctr Variable Energy Cyclotron, Div Theoret Phys, Kolkata 700064, W Bengal, India. [Venugopalan, Raju] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Banerjee, D (reprint author), Tata Inst Fundamental Res, Dept Theoret Phys, Homi Bhabha Rd, Bombay 400005, Maharashtra, India. EM debasish@theory.tifr.res.in; jajati-quark@veccal.ernet.in; raju@bnl.gov NR 176 TC 1 Z9 1 U1 0 U2 0 PU SPRINGER-VERLAG BERLIN PI BERLIN PA HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY SN 0075-8450 BN 978-3-642-02285-2 J9 LECT NOTES PHYS PY 2010 VL 785 BP 105 EP 137 DI 10.1007/978-3-642-02286-9_3 D2 10.1007/978-3-642-02286-9 PG 33 WC Physics, Fluids & Plasmas; Physics, Particles & Fields SC Physics GA BMT09 UT WOS:000273520800003 ER PT S AU Brasoveanu, T Kharzeev, D Martinez, M AF Brasoveanu, Theodor Kharzeev, Dmitri Martinez, Mauricio BE Sarkar, S Satz, H Sinha, B TI In Search of the QCD-Gravity Correspondence SO PHYSICS OF THE QUARK-GLUON PLASMA: INTRODUCTORY LECTURES SE Lecture Notes in Physics LA English DT Article; Book Chapter ID BROKEN SCALE INVARIANCE; ABELIAN GAUGE-THEORIES; QUARK-GLUON PLASMA; GLUODYNAMICS; CONFINEMENT; ANOMALIES; PHYSICS; DILATON; POINT; FIELD AB Quantum chromodynamics (QCD) is the fundamental theory of strong interactions. It describes the behavior of quarks and gluons which are the smallest known constituents of nuclear matter. The difficulties in solving the theory at low energies in the strongly interacting, non-perturbative regime have left unanswered many important questions in QCD, such as the nature of confinement or the mechanism of hadronization. In these lectures oriented toward the students we introduce two classes of dualities that attempt to reproduce many of the features of QCD, while making the treatment at strong coupling more tractable: (1) the AdS/CFT correspondence between a specific class of string theories and a conformal field theory and (2) an effective low-energy theory of QCD dual to classical QCD on a curved conformal gravitational background. The hope is that by applying these dualities to the evaluation of various properties of the strongly interacting matter produced in heavy-ion collisions, one can understand how QCD behaves at strong coupling. We give an outline of the applications, with emphasis on two transport coefficients of QCD matter - shear and bulk viscosities. C1 [Brasoveanu, Theodor] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. [Kharzeev, Dmitri] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Martinez, Mauricio] Goethe Univ Frankfurt, Helmholtz Res Sch, D-6000 Frankfurt, Germany. [Martinez, Mauricio] Goethe Univ Frankfurt, Otto Stern Sch, D-6000 Frankfurt, Germany. RP Brasoveanu, T (reprint author), Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. EM tbrasove@princeton.edu; kharzeev@bnl.gov; guerrero@fias.uni-frankfurt.de OI Martinez Guerrero, Mauricio/0000-0003-2343-738X NR 73 TC 3 Z9 4 U1 0 U2 1 PU SPRINGER-VERLAG BERLIN PI BERLIN PA HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY SN 0075-8450 BN 978-3-642-02285-2 J9 LECT NOTES PHYS PY 2010 VL 785 BP 341 EP 369 DI 10.1007/978-3-642-02286-9_10 D2 10.1007/978-3-642-02286-9 PG 29 WC Physics, Fluids & Plasmas; Physics, Particles & Fields SC Physics GA BMT09 UT WOS:000273520800010 ER PT J AU Crease, RP AF Crease, Robert P. TI Critical Point Priority battles SO PHYSICS WORLD LA English DT Editorial Material C1 [Crease, Robert P.] SUNY Stony Brook, Dept Physiol, Stony Brook, NY 11794 USA. [Crease, Robert P.] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Crease, RP (reprint author), SUNY Stony Brook, Dept Physiol, Stony Brook, NY 11794 USA. EM rcrease@notes.cc.sunysb.edu NR 0 TC 0 Z9 0 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0953-8585 J9 PHYS WORLD JI Phys. World PD JAN PY 2010 VL 23 IS 1 BP 19 EP 19 PG 1 WC Physics, Multidisciplinary SC Physics GA 548RA UT WOS:000273982700015 ER PT J AU Christensen, U Alonso-Simon, A Scheller, HV Willats, WGT Harholt, J AF Christensen, Ulla Alonso-Simon, Ana Scheller, Henrik V. Willats, William G. T. Harholt, Jesper TI Characterization of the primary cell walls of seedlings of Brachypodium distachyon - A potential model plant for temperate grasses SO PHYTOCHEMISTRY LA English DT Article DE Brachypodium distachyon; Hordeum vulgare; Triticum aestivum; Poales; Poaceae; Cell walls; (1,3;1,4)-beta-D-glucans; Arabinoxylan; Ferulic acid; p-Coumaric acid; Hydroxycinnamate dimers ID MIXED-LINKAGE; BARLEY; POLYSACCHARIDES; BIOSYNTHESIS; ARABIDOPSIS; SYSTEM; UNIQUE; (1,3/1,4)-BETA-D-GLUCANS; HEMICELLULOSE; DOMESTICATION AB The genome of Brachypodium distachyon, also known as purple false brome, was fully sequenced in 2008 largely in response to the demand for a model plant for temperate grasses. A comparative study of the primary cell walls of seedlings of B. distachyon, Hordeum vulgare and Triticum aestivum was carried out. The cell walls of the three species were characterized by similar relative levels of, and developmental changes in, hemicelluloses. The occurrence of (1,3;1,4)-beta-D-glucans was correlated with phases of growth involving cell elongation. Expression profiling of the genes involved in (1,3;1,4)-beta-D-glucan synthesis (cellulose synthase-like F family (CSLF), CSLH and a putative synthase gene CSLJ) did not show a transcriptional regulation that corresponded to the abundance of (1,3;1,4)-beta-D-glucans. CSLF6 transcripts were similarly highly expressed in all three grasses, and were much more abundant than any of the other transcripts. The CSLH transcript was relatively abundant in B. distachyon but almost undetectable in the other species. The deposition of arabinoxylans increased steadily during seedling growth in all three grasses, but they became less substituted and more cross-linked into the wall matrix during cell maturation. Moreover, arabinoxylans in B. distachyon differed from the two other grasses in having a lower degree of arabinose substitution, a higher percentage of ferulic acid in form of dimers and a larger proportion of ester-linked p-coumaric acid. (C) 2009 Elsevier Ltd. All rights reserved. C1 [Christensen, Ulla; Harholt, Jesper] Univ Copenhagen, Fac Life Sci, Dept Plant Biol & Biotechnol, VKR Ctr ProAct Plants, DK-1871 Frederiksberg C, Denmark. [Alonso-Simon, Ana; Willats, William G. T.] Univ Copenhagen, Fac Life Sci, Dept Plant Mol Biol, VKR Ctr ProAct Plants, DK-2200 Copenhagen, Denmark. [Scheller, Henrik V.] Joint BioEnergy Inst, Lawrence Berkeley Natl Lab, Feedstocks Div, Emeryville, CA 94608 USA. RP Harholt, J (reprint author), Univ Copenhagen, Fac Life Sci, Dept Plant Biol & Biotechnol, VKR Ctr ProAct Plants, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark. EM jesh@life.ku.dk RI Scheller, Henrik/A-8106-2008; Harholt, Jesper/F-3760-2011; Harholt, Jesper/F-6865-2014; OI Scheller, Henrik/0000-0002-6702-3560; Harholt, Jesper/0000-0002-7984-0066; Willats, William/0000-0003-2064-4025 FU US Department of Energy [DE-AC02-05CH11231]; Lawrence Berkeley National Laboratory; Danish Villum Kann Rasmussen Foundation; Danish Natural Science Research Council; Danish Food Industry Agency FX Andrezej Argalski, Ilona Pisarczyk and Simone Hoogen are thanked for design of BdCSLF6, TaCSLF3, TaCSLF6 and TaCSLF8 primers and Dr. John Vogel is thanked for supplying B. distactryon seeds and for sharing knowledge of the CSLJ phylogeny. Excellent technical assistance was provided by Hong Olsen and Louise Nancke. This work was supported by the US Department of Energy, Office of Science, Office of Biological and Environmental Research, through contract DE-AC02-05CH11231 between Lawrence Berkeley National Laboratory and the US Department of Energy; the Danish Villum Kann Rasmussen Foundation; the Danish Natural Science Research Council, and the Danish Food Industry Agency. NR 47 TC 27 Z9 29 U1 2 U2 27 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0031-9422 J9 PHYTOCHEMISTRY JI Phytochemistry PD JAN PY 2010 VL 71 IS 1 BP 62 EP 69 DI 10.1016/j.phytochem.2009.09.019 PG 8 WC Biochemistry & Molecular Biology; Plant Sciences SC Biochemistry & Molecular Biology; Plant Sciences GA 553NM UT WOS:000274374100008 PM 19828160 ER PT S AU Roelof, EC Krimigis, SM Mitchell, DG Decker, RB Richardson, JD Gruntman, M Funsten, HO AF Roelof, E. C. Krimigis, S. M. Mitchell, D. G. Decker, R. B. Richardson, J. D. Gruntman, M. Funsten, H. O. BE LeRoux, JA Florinski, V Zank, GP Coates, AJ TI Implications of Generalized Rankine-Hugoniot Conditions for the PUI Population at the Voyager 2 Termination Shock SO PICKUP IONS THROUGHOUT THE HELIOSPHERE AND BEYOND SE AIP Conference Proceedings LA English DT Proceedings Paper CT 9th Annual International Astrophysics Conference CY MAR 14-19, 2010 CL Maui, HI SP Ctr Space Plasma & Aeronom Res DE Heliospheric termination shock; Rankine-Hugoniot conditions; Non-thermal plasma ID SOLAR-WIND; OUTER HELIOSPHERE; IONS; HELIOSHEATH; IBEX AB The Rankine-Hugoniot (R-H) jump conditions at the heliospheric termination shock provide a means of knitting together the in situ measurements from Voyager 2 (VGR2) with the remote sensing of the heliosheath plasma via energetic neutral atom (ENA) imaging by IBEX and Cassini/INCA. The VGR2 instrument suite has a gap (similar to 1-30 keV) in the ion measurements. While the ENA images (0.2-6 keV and 5-55 key) fill the VGR2 gap in the pixel containing the VGR2 spacecraft, they do so only in the sense that they provide the ion intensity integrated along the radial line of sight throughout the entire heliosheath. The synthesis we attempt is further complicated by the observational results from all three spacecraft that the non-thermal component of the ion pressure dominates that of the thermal component. We therefore have developed (and applied) a generalized formulation of the R-H conditions that does not invoke an equation of state, but rather can directly ingest the instrumentally-measured non-thermal spectrum. The result is an estimate that the ratio (upstream/downstream) of the non-thermal pressure is similar to 43%, confirming anew that the termination shock (at least at VGR2) is strongly mediated by non-thermal ions. C1 [Roelof, E. C.; Krimigis, S. M.; Mitchell, D. G.; Decker, R. B.] Johns Hopkins Univ, Appl Phys Lab, Johns Hopkins Rd, Laurel, MD 20723 USA. [Krimigis, S. M.] Acad Athens, Off Space Res & Technol, Athens, Greece. [Richardson, J. D.] MIT, Kavli Inst Astrophys & Space Res, Cambridge, MA 02139 USA. [Gruntman, M.] Univ Southern Calif, Dept Astronaut Engn, Los Angeles, CA 90089 USA. [Funsten, H. O.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Roelof, EC (reprint author), Johns Hopkins Univ, Appl Phys Lab, Johns Hopkins Rd, Laurel, MD 20723 USA. RI Gruntman, Mike/A-5426-2008; OI Gruntman, Mike/0000-0002-0830-010X; Funsten, Herbert/0000-0002-6817-1039 FU ECR; SMK; DGM; RBD; Cassini/MIMI; NASA Office of Space Science [NAS5 - 97271]; NASA/Goddard Space Flight Center; Johns Hopkins University; NASA [NNX07AB02G]; Voyager Interstellar Mission; NASA IBEX Mission; International Space Science Institute in Bern, Switzerland FX This research was supported in part as follows for ECR, SMK, DGM, and RBD: Cassini/MIMI, NASA Office of Space Science, under task order 003 of contract NAS5 - 97271 between NASA/Goddard Space Flight Center and Johns Hopkins University; Voyager Interstellar Mission under NASA Contact NNX07AB02G between NASA/Goddard Space Flight Center and Johns Hopkins University. JDR also was also partially supported by the Voyager Interstellar Mission, and MG, HOF, and ECR were partially supported by the NASA IBEX Mission. This research benefited from discussions that were held at the meetings of the International Team devoted to understanding the E - 5 tails and anomalous cosmic rays that has been sponsored by the International Space Science Institute in Bern, Switzerland. NR 12 TC 10 Z9 10 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-0857-9 J9 AIP CONF PROC PY 2010 VL 1302 BP 133 EP + PG 2 WC Astronomy & Astrophysics; Physics, Applied SC Astronomy & Astrophysics; Physics GA BTG72 UT WOS:000286910100020 ER PT S AU Karimabadi, H Roytershteyn, V Daughton, W Gosling, JT Scudder, J AF Karimabadi, H. Roytershteyn, V. Daughton, W. Gosling, J. T. Scudder, J. BE LeRoux, JA Florinski, V Zank, GP Coates, AJ TI Why Is Reconnection in the Solar Wind so Different than in Other Environments? SO PICKUP IONS THROUGHOUT THE HELIOSPHERE AND BEYOND SE AIP Conference Proceedings LA English DT Proceedings Paper CT 9th Annual International Astrophysics Conference CY MAR 14-19, 2010 CL Maui, HI SP Ctr Space Plasma & Aeronom Res DE Magnetic reconnection; solar wind; exhaust; fossil site ID MAGNETIC RECONNECTION AB Studies of reconnection in the solar wind led by Gosling and collaborators have revealed surprising results that are posing serious challenges to current theoretical understanding of the reconnection process. These include presence of prolonged quasi-steady reconnection, low magnetic shear angles, and no substantial particle acceleration. Here we put forth the conjecture that many of the solar wind exhaust events may be fossil sites. We explore the viability of this possibility using full particle simulations. C1 [Karimabadi, H.] Univ Calif San Diego, Dept Elect & Comp Engn, La Jolla, CA 92093 USA. [Roytershteyn, V.; Daughton, W.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Gosling, J. T.] Univ Colorado, Atmospher & Space Phys Lab, Boulder, CO 80303 USA. [Scudder, J.] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA. RP Karimabadi, H (reprint author), Univ Calif San Diego, Dept Elect & Comp Engn, La Jolla, CA 92093 USA. RI Daughton, William/L-9661-2013; OI Roytershteyn, Vadim/0000-0003-1745-7587 FU NASA; NSF-GEM [ATM-0802380] FX This work was supported by the NASA Heliophysics Theory Program and NSF-GEM under Grant No. ATM-0802380. Simulations were performed on NASAs Pleiades and NSF supported Kraken supercomputer. NR 14 TC 0 Z9 0 U1 1 U2 3 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-0857-9 J9 AIP CONF PROC PY 2010 VL 1302 BP 198 EP + PG 2 WC Astronomy & Astrophysics; Physics, Applied SC Astronomy & Astrophysics; Physics GA BTG72 UT WOS:000286910100029 ER PT S AU Omidi, N Russell, CT Tokar, RL Farrell, WM Kurth, WS Gurnett, DA Jia, YD Leisner, JS AF Omidi, N. Russell, C. T. Tokar, R. L. Farrell, W. M. Kurth, W. S. Gurnett, D. A. Jia, Y. D. Leisner, J. S. BE LeRoux, JA Florinski, V Zank, GP Coates, AJ TI Hybrid Simulations of Plasma-Neutral-Dust Interactions at Enceladus SO PICKUP IONS THROUGHOUT THE HELIOSPHERE AND BEYOND SE AIP Conference Proceedings LA English DT Proceedings Paper CT 9th Annual International Astrophysics Conference CY MAR 14-19, 2010 CL Maui, HI SP Ctr Space Plasma & Aeronom Res DE Enceladus; massloading; numerical modeling; dusty plasmas ID ATMOSPHERE AB Through ejection from its southern hemisphere, Enceladus is a dominant source of neutral gas and dust in Saturn's inner magnetosphere. The interaction of the corotating plasma with the gas and dust modifies the plasma environment around Enceladus. We use 3-D hybrid (kinetic ions, fluid electrons) simulations to examine the effects of gas and dust on the nature of the interaction region and use Cassini observations to constrain their properties. C1 [Omidi, N.] Solana Sci Inc, Solana Beach, CA 92075 USA. [Russell, C. T.; Jia, Y. D.] Univ Calif Los Angeles, IGPP, Los Angeles, CA 90095 USA. [Tokar, R. L.] Los Alamos Natl Lab, Los Alamos, NM 87544 USA. [Farrell, W. M.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Kurth, W. S.; Gurnett, D. A.; Leisner, J. S.] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA. RP Omidi, N (reprint author), Solana Sci Inc, Solana Beach, CA 92075 USA. RI Farrell, William/I-4865-2013; OI Kurth, William/0000-0002-5471-6202 FU NASA [NNX07AJ07G, 1356500]; University of Iowa through the Jet Propulsion Laboratory FX This work was supported by NASA grant NNX07AJ07G and NASA Contract 1356500 to the University of Iowa through the Jet Propulsion Laboratory. NR 11 TC 1 Z9 1 U1 1 U2 1 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-0857-9 J9 AIP CONF PROC PY 2010 VL 1302 BP 237 EP + PG 2 WC Astronomy & Astrophysics; Physics, Applied SC Astronomy & Astrophysics; Physics GA BTG72 UT WOS:000286910100034 ER PT B AU Narayanan, M Schwartz, RW Navapan-Traiphol, N AF Narayanan, M. Schwartz, R. W. Navapan-Traiphol, N. BE Nelson, WG TI STRESS ENGINEERED PIEZOELECTRIC COMPOSITES SO PIEZOELECTRIC MATERIALS: STRUCTURE, PROPERTIES AND APPLICATIONS SE Materials Science and Technologies LA English DT Article; Book Chapter ID LEAD-ZIRCONATE-TITANATE; RAINBOW ACTUATORS; BIASED ACTUATORS; SOFT PZT; FERROELECTRIC CERAMICS; CURVED ACTUATOR; DEFORMATION CHARACTERISTICS; PERFORMANCE EVALUATION; UNIAXIAL-STRESS; LAYER AB Stress-biased piezoelectric composites represent a family of piezoelectric ceramic-based actuators and transducers that offer a variety of performance advantages compared to more traditional unimorph devices. In this chapter, the history, fabrication, performance attributes and potential applications for these devices are discussed. The devices are typically fabricated using piezoelectric and elastic layers at temperatures between 150 and 300 degrees C. The different coefficients of thermal expansion of the layers typically result in doming of the composite during cooling and the development of an in-situ stress-profile across the piezoelectric layer. These characteristics increase the robustness of the composite devices and may enhance domain wall motion contributions to piezoelectric response, yielding high electromechanical deformation. To date, a variety of composite devices based on different layers, processing strategies, and design philosophies have been developed to take advantage of these characteristics. Potential applications for the devices are also discussed, as are the underlying aspects of the devices that contribute to their performance. C1 [Narayanan, M.] Argonne Natl Lab, Argonne, IL 60439 USA. [Schwartz, R. W.] Missouri Univ Sci & Technol, Rolla, MO USA. [Navapan-Traiphol, N.] Chulalongkorn Univ, Bangkok, Thailand. RP Narayanan, M (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. NR 94 TC 0 Z9 0 U1 0 U2 0 PU NOVA SCIENCE PUBLISHERS, INC PI HAUPPAUGE PA 400 OSER AVE, STE 1600, HAUPPAUGE, NY 11788-3635 USA BN 978-1-60876-272-9 J9 MATER SCI TECHNOL PY 2010 BP 37 EP 77 PG 41 WC Materials Science, Ceramics; Materials Science, Characterization & Testing SC Materials Science GA BPZ61 UT WOS:000280440100002 ER PT S AU Mayer, L Boss, A Nelson, AF AF Mayer, Lucio Boss, Alan Nelson, Andrew F. BE Haghighipour, N TI Gravitational Instability in Binary Protoplanetary Disks SO PLANETS IN BINARY STAR SYSTEMS SE Astrophysics and Space Science Library LA English DT Article; Book Chapter ID GIANT PLANET FORMATION; SMOOTHED PARTICLE HYDRODYNAMICS; UNSTABLE PROTOSTELLAR DISKS; NONUNIFORM SOLAR NEBULA; THERMAL REGULATION; ACCRETION DISCS; GASEOUS DISKS; STELLAR MULTIPLICITY; CIRCUMSTELLAR DISKS; RADIATIVE-TRANSFER C1 [Mayer, Lucio] Univ Zurich, Inst Theoret Phys, CH-8001 Zurich, Switzerland. [Mayer, Lucio] ETH, Inst Astron, CH-8092 Zurich, Switzerland. [Boss, Alan] Carnegie Inst Washington, Washington, DC 20005 USA. [Nelson, Andrew F.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Mayer, L (reprint author), Univ Zurich, Inst Theoret Phys, Schonberggasse 9, CH-8001 Zurich, Switzerland. EM lucio@phys.ethz.ch; boss@dtm.ciw.edu; andy.nelson@lanl.gov NR 98 TC 5 Z9 5 U1 0 U2 0 PU SPRINGER PI DORDRECHT PA PO BOX 17, 3300 AA DORDRECHT, NETHERLANDS SN 0067-0057 BN 978-90-481-8686-0 J9 ASTROPHYS SPACE SC L PY 2010 VL 366 BP 195 EP 238 DI 10.1007/978-90-481-8687-7_8 D2 10.1007/978-90-481-8687-7 PG 44 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA BPL93 UT WOS:000279187800008 ER PT S AU Sokhansanj, S Mani, S Igathinathane, C Tagore, S AF Sokhansanj, Shahab Mani, Sudhagar Igathinathane, Cannayen Tagore, Sam BE Mascia, PN Scheffran, J Widholm, JM TI Heat and Power Production from Stover for Corn Ethanol Plants SO PLANT BIOTECHNOLOGY FOR SUSTAINABLE PRODUCTION OF ENERGY AND CO-PRODUCTS SE Biotechnology in Agriculture and Forestry LA English DT Article; Book Chapter ID BIOMASS; SYSTEMS; PELLETS C1 [Sokhansanj, Shahab] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. [Sokhansanj, Shahab; Igathinathane, Cannayen] Univ British Columbia, Dept Chem & Biol Engn, Vancouver, BC V6T 1Z3, Canada. [Mani, Sudhagar] Univ Georgia, Driftmier Engn Ctr, Athens, GA 30602 USA. [Tagore, Sam] US DOE, Off Biomass Program, Washington, DC 20585 USA. RP Sokhansanj, S (reprint author), Oak Ridge Natl Lab, Div Environm Sci, POB 2008, Oak Ridge, TN 37831 USA. EM sokhansanjs@ornl.gov RI Mani, Sudhagar/A-4315-2010 NR 31 TC 0 Z9 0 U1 0 U2 1 PU SPRINGER-VERLAG BERLIN PI BERLIN PA HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY SN 0934-943X BN 978-3-642-13439-5 J9 BIOTECH AGR FOREST JI Biotechnol. Agric. For. PY 2010 VL 66 BP 345 EP 362 DI 10.1007/978-3-642-13440-1_13 D2 10.1007/978-3-642-13440-1 PG 18 WC Agronomy; Biotechnology & Applied Microbiology; Forestry SC Agriculture; Biotechnology & Applied Microbiology; Forestry GA BRF06 UT WOS:000282537800013 ER PT S AU Wang, M AF Wang, Michael BE Mascia, PN Scheffran, J Widholm, JM TI Life-Cycle Analysis of Biofuels SO PLANT BIOTECHNOLOGY FOR SUSTAINABLE PRODUCTION OF ENERGY AND CO-PRODUCTS SE Biotechnology in Agriculture and Forestry LA English DT Article; Book Chapter ID GREENHOUSE-GAS EMISSIONS; ETHANOL; ENERGY; SUGARCANE C1 Argonne Natl Lab, Ctr Transportat Res, Argonne, IL 60439 USA. RP Wang, M (reprint author), Argonne Natl Lab, Ctr Transportat Res, 9700 S Cass Ave, Argonne, IL 60439 USA. EM mqwang@anl.gov NR 26 TC 2 Z9 3 U1 0 U2 2 PU SPRINGER-VERLAG BERLIN PI BERLIN PA HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY SN 0934-943X BN 978-3-642-13439-5 J9 BIOTECH AGR FOREST JI Biotechnol. Agric. For. PY 2010 VL 66 BP 385 EP 408 DI 10.1007/978-3-642-13440-1_15 D2 10.1007/978-3-642-13440-1 PG 24 WC Agronomy; Biotechnology & Applied Microbiology; Forestry SC Agriculture; Biotechnology & Applied Microbiology; Forestry GA BRF06 UT WOS:000282537800015 ER PT J AU Carey, AM Scheckel, KG Lombi, E Newville, M Choi, Y Norton, GJ Charnock, JM Feldmann, J Price, AH Meharg, AA AF Carey, Anne-Marie Scheckel, Kirk G. Lombi, Enzo Newville, Matt Choi, Yongseong Norton, Gareth J. Charnock, John M. Feldmann, Joerg Price, Adam H. Meharg, Andrew A. TI Grain Unloading of Arsenic Species in Rice SO PLANT PHYSIOLOGY LA English DT Article ID ORYZA-SATIVA L.; HELIANTHUS-ANNUUS; DIETARY EXPOSURE; PADDY RICE; ACCUMULATION; PLANTS; TRANSLOCATION; SPECIATION; WHEAT; CONTAMINATION AB Rice (Oryza sativa) is the staple food for over half the world's population yet may represent a significant dietary source of inorganic arsenic (As), a nonthreshold, class 1 human carcinogen. Rice grain As is dominated by the inorganic species, and the organic species dimethylarsinic acid (DMA). To investigate how As species are unloaded into grain rice, panicles were excised during grain filling and hydroponically pulsed with arsenite, arsenate, glutathione-complexed As, or DMA. Total As concentrations in flag leaf, grain, and husk, were quantified by inductively coupled plasma mass spectroscopy and As speciation in the fresh grain was determined by x-ray absorption near-edge spectroscopy. The roles of phloem and xylem transport were investigated by applying a +/- stem-girdling treatment to a second set of panicles, limiting phloem transport to the grain in panicles pulsed with arsenite or DMA. The results demonstrate that DMA is translocated to the rice grain with over an order magnitude greater efficiency than inorganic species and is more mobile than arsenite in both the phloem and the xylem. Phloem transport accounted for 90% of arsenite, and 55% of DMA, transport to the grain. Synchrotron x-ray fluorescence mapping and fluorescence microtomography revealed marked differences in the pattern of As unloading into the grain between DMA and arsenite-challenged grain. Arsenite was retained in the ovular vascular trace and DMA dispersed throughout the external grain parts and into the endosperm. This study also demonstrates that DMA speciation is altered in planta, potentially through complexation with thiols. C1 [Carey, Anne-Marie; Norton, Gareth J.; Price, Adam H.; Meharg, Andrew A.] Univ Aberdeen, Inst Biol & Environm Sci, Aberdeen AB24 3UU, Scotland. [Scheckel, Kirk G.] US EPA, Natl Risk Management Res Lab, Cincinnati, OH 45224 USA. [Lombi, Enzo] Univ S Australia, Ctr Environm Risk Assessment & Remediat, SA-5095 Mawson Lakes, SA, Australia. [Lombi, Enzo] Cooperat Res Ctr Contaminat Assessment & Remediat, Salisbury, SA 5106, Australia. [Newville, Matt; Choi, Yongseong] Argonne Natl Lab, GSECARS Adv Photon Source, Argonne, IL 60439 USA. [Charnock, John M.] Univ Manchester, Ctr Mol Environm Sci, Manchester M13 9PL, Lancs, England. [Charnock, John M.] Res Councils Daresbury Lab, Council Cent Lab, Warrington WA4 4AD, Cheshire, England. [Feldmann, Joerg] Univ Aberdeen, Dept Chem, Aberdeen AB24 3TU, Scotland. RP Meharg, AA (reprint author), Univ Aberdeen, Inst Biol & Environm Sci, Aberdeen AB24 3UU, Scotland. EM a.meharg@abdn.ac.uk RI Feldmann, Jorg/B-8079-2011; Price, Adam/A-2465-2010; Norton, Gareth/D-7512-2012; Scheckel, Kirk/C-3082-2009; Lombi, Enzo/F-3860-2013; Meharg, Andrew/F-8182-2014; OI Scheckel, Kirk/0000-0001-9326-9241; Lombi, Enzo/0000-0003-3384-0375; Meharg, Andrew/0000-0003-2019-0449; Carey, Anne-Marie/0000-0001-6409-6580; Norton, Gareth/0000-0003-4560-170X; Feldmann, Joerg/0000-0002-0524-8254 FU Biotechnology and Biological Sciences Research Council; National Science Foundation-Earth Sciences [EAR-0622171]; Department of Energy-Geosciences [DE-FG02-94ER14466]; U.S. Department of Energy-Basic Energy Sciences; Natural Sciences and Engineering Research Council; University of Washington; Simon Fraser University; Advanced Photon Source; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; U.S. Environmental Protection Agency, through its Office of Research and Development FX This work was supported by a Biotechnology and Biological Sciences Research Council Doctoral Training Grant. Portions of this work were performed at GeoSoilEnviroCARS (sector 13) and PNC/XOR (sector 20), at the Advanced Photon Source, Argonne National Laboratory. GeoSoilEnviro Consortium for Advanced Radiation Sources is supported by the National Science Foundation-Earth Sciences (grant no. EAR-0622171) and Department of Energy-Geosciences (grant no. DE-FG02-94ER14466). Pacific Northwest Consortium Collaborative Access Team Advanced Photon Source, Sector 20 facilities at the Advanced Photon Source, and research at these facilities, are supported by the U.S. Department of Energy-Basic Energy Sciences, a major facilities access grant from the Natural Sciences and Engineering Research Council, the University of Washington, Simon Fraser University, and the Advanced Photon Source. Use of the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences (under contract no. DE-AC02-06CH11357). The U.S. Environmental Protection Agency, through its Office of Research and Development, funded and managed a portion of the research; it has not been subject to Agency review and, therefore, does not necessarily reflect the views of the Agency, no official product endorsement should be inferred. NR 38 TC 88 Z9 92 U1 7 U2 53 PU AMER SOC PLANT BIOLOGISTS PI ROCKVILLE PA 15501 MONONA DRIVE, ROCKVILLE, MD 20855 USA SN 0032-0889 J9 PLANT PHYSIOL JI Plant Physiol. PD JAN PY 2010 VL 152 IS 1 BP 309 EP 319 DI 10.1104/pp.109.146126 PG 11 WC Plant Sciences SC Plant Sciences GA 537XQ UT WOS:000273148100024 PM 19880610 ER PT S AU Majeski, R AF Majeski, R. BE Benkadda, S TI Liquid Metal Walls, Lithium, And Low Recycling Boundary Conditions In Tokamaks SO PLASMA INTERACTION IN CONTROLLED FUSION DEVICES SE AIP Conference Proceedings LA English DT Proceedings Paper CT 3rd ITER International Summer School CY JUN 22-26, 2009 CL Aix en Provence, FRANCE SP Univ Provence, ITER org, CNRS, CEA, MEXT, French Minis Foreign Affairs, Region PACA, Conseil Gen Bouches Rhone, Inst Polit Sci Aix en Provence DE Liquid metals; Plasma-facing components; Plasma-material interactions; Lithium ID FUSION TEST REACTOR; LIMITER; SURFACE; PLASMA; EDGE; TRANSPORT; ALLOYS; LOAD; FTU AB At present, the only solid material believed to be a viable option for plasma-facing components (PFCs) in a fusion reactor is tungsten. Operated at the lower temperatures typical of present-day fusion experiments, tungsten is known to suffer from surface degradation during long-term exposure to helium-containing plasmas, leading to reduced thermal conduction to the bulk, and enhanced erosion. Existing alloys are also quite brittle at temperatures under 700 degrees C. However, at a sufficiently high operating temperature (700 - 1000 degrees C), tungsten is self-annealing and it is expected that surface damage will be reduced to the point where tungsten PFCs will have an acceptable lifetime in a reactor environment. The existence of only one potentially viable option for solid PFCs, though, constitutes one of the most significant restrictions on design space for DEMO and follow-on fusion reactors. In contrast, there are several candidates for liquid metal-based PFCs, including gallium, tin, lithium, and tin-lithium eutectics. We will discuss options for liquid metal walls in tokamaks, looking at both high and low recycling materials. We will then focus in particular on one of the candidate liquids, lithium. Lithium is known to have a high chemical affinity for hydrogen, and has been shown in test stands(1) and fusion experiments(2,3) to produce a low recycling surface, especially when liquid. Because it is also low-Z and is usable in a tokamak over a reasonable temperature range (200 400 degrees C), it has been now been used as a PFC in several confinement experiments (TFTR, T11-M, CDX-U, NSTX, FTU, and TJ-II), with favorable results. The consequences of substituting low recycling walls for the traditional high recycling variety on tokamak equilibria are very extensive. We will discuss some of the expected modifications, briefly reviewing experimental results, and comparing the results to expectations. C1 Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Majeski, R (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. NR 40 TC 4 Z9 4 U1 2 U2 10 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-0781-7 J9 AIP CONF PROC PY 2010 VL 1237 BP 122 EP 137 DI 10.1063/1.3447987 PG 16 WC Physics, Applied SC Physics GA BRE16 UT WOS:000282468800009 ER PT J AU Ding, S Kaye, SM Bell, RE Kaita, R Kugel, H LeBlanc, BP Paul, S Wan, B AF Ding, S. Kaye, S. M. Bell, R. E. Kaita, R. Kugel, H. LeBlanc, B. P. Paul, S. Wan, B. TI Characteristics of energy transport of Li-conditioned and non-Li-conditioned plasmas in the National Spherical Torus Experiment (NSTX) SO PLASMA PHYSICS AND CONTROLLED FUSION LA English DT Article ID FUSION TEST REACTOR; LITHIUM; TOKAMAKS; SURFACE; CONFINEMENT; INJECTION; DIVERTOR; IMPACT; TFTR AB The transport properties of National Spherical Torus Experiment (NSTX) plasmas obtained during the 2008 experimental campaign have been studied and are reported here. Transport trends and dependences have been isolated, and it is found that both electron and ion energy transport coefficients have strong dependences on local values of n del T, which in turn is strongly dependent on local current density profile. Without identifying this dependence, it is difficult to identify others, such as the dependence of transport coefficients on B-p (or q), I-p and P-heat. In addition, a comparison between discharges with and without lithium wall conditioning has been made. While the trends in the two sets of data are similar, the thermal transport loss, especially in the electron channel, is found to strongly depend on the amount of lithium deposited, decreasing by up to 50% of its no-lithium value. C1 [Ding, S.; Wan, B.] Chinese Acad Sci, Inst Plasma Phys, Hefei 230031, Anhui, Peoples R China. [Kaye, S. M.; Bell, R. E.; Kaita, R.; Kugel, H.; LeBlanc, B. P.; Paul, S.] Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Ding, S (reprint author), Chinese Acad Sci, Inst Plasma Phys, POB 1126, Hefei 230031, Anhui, Peoples R China. EM skaye@pppl.gov FU Chinese National Natural Science Foundation [10725523]; Chinese Ministry of Science and Technology [2007DFA01290]; US Department of Energy [DE-AC02-09CH11466] FX This work was supported by the Chinese National Natural Science Foundation Contract No 10725523, the Chinese Ministry of Science and Technology Contract No 2007DFA01290 and the US Department of Energy Contract No DE-AC02-09CH11466. NR 32 TC 12 Z9 12 U1 2 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0741-3335 J9 PLASMA PHYS CONTR F JI Plasma Phys. Control. Fusion PD JAN PY 2010 VL 52 IS 1 AR 015001 DI 10.1088/0741-3335/52/1/015001 PG 13 WC Physics, Fluids & Plasmas SC Physics GA 544FT UT WOS:000273639600002 ER PT J AU Shelkovenko, TA Pikuz, SA McBride, RD Knapp, PF Wilhelm, G Sinars, DB Hammer, DA Orlov, NY AF Shelkovenko, T. A. Pikuz, S. A. McBride, R. D. Knapp, P. F. Wilhelm, G. Sinars, D. B. Hammer, D. A. Orlov, N. Yu. TI Symmetric multilayer megampere X-pinch SO PLASMA PHYSICS REPORTS LA English DT Article ID PULSED-POWER GENERATOR; RAY RADIOGRAPHY; EXPLODING WIRES; PLASMA; RADIATION; EMISSION; POINT; DENSE; SUBMICROSECOND; DYNAMICS AB Raising the power of X-ray emission from an X-pinch by increasing the pinch current to the megampere level requires the corresponding increase in the initial linear mass of the load. This can be achieved by increasing either the number of wires or their diameter. In both cases, special measures should be undertaken to prevent the formation of a complicated configuration with an uncontrolled spatial structure in the region of wire crossing, because such a structure breaks the symmetry of the neck formed in the crossing region, destabilizes plasma formation, and degrades X-ray generation. To improve the symmetry of the wire crossing region, X-pinch configurations with a regular multilayer arrangement of wires in this region were proposed and implemented. The results of experiments with various symmetric X-pinch configurations on the COBRA facility at currents of similar to 1MA are presented. It is shown that an X-pinch with a symmetric crossing region consisting of several layers of wires made of different materials can be successfully used in megampere facilities. The most efficient combinations of wires in symmetric multilayer X-pinches are found in which only one hot spot forms and that are characterized by a high and stable soft X-ray yield. C1 [Shelkovenko, T. A.; Pikuz, S. A.] Russian Acad Sci, PN Lebedev Phys Inst, Moscow 119991, Russia. [McBride, R. D.; Sinars, D. B.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Knapp, P. F.; Wilhelm, G.; Hammer, D. A.] Cornell Univ, Ithaca, NY 14853 USA. [Orlov, N. Yu.] Russian Acad Sci, Joint Inst High Temp, Moscow 127412, Russia. RP Shelkovenko, TA (reprint author), Russian Acad Sci, PN Lebedev Phys Inst, Leninskii Pr 53, Moscow 119991, Russia. RI Pikuz, Sergey/M-8231-2015; Shelkovenko, Tatiana/M-8254-2015 FU US Department of Energy [NNSA DOE DE-FC03-02NA00057]; Russian Foundation for Basic Research [08-02-00993, 09-02-00715] FX This study was supported in part by the US Department of Energy (grant no. NNSA DOE DE-FC03-02NA00057) and the Russian Foundation for Basic Research (project nos. 08-02-00993 and 09-02-00715). NR 47 TC 10 Z9 10 U1 0 U2 4 PU MAIK NAUKA/INTERPERIODICA/SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013-1578 USA SN 1063-780X J9 PLASMA PHYS REP+ JI Plasma Phys. Rep. PD JAN PY 2010 VL 36 IS 1 BP 50 EP 66 DI 10.1134/S1063780X10010046 PG 17 WC Physics, Fluids & Plasmas SC Physics GA 550PT UT WOS:000274141100004 ER PT S AU Ryutov, DD AF Ryutov, D. D. BE Bertin, G DeLuca, F Lodato, G Pozzoli, R Rome, M TI Constraints on the Photon Mass from the Galactic Magnetic Field Structure SO PLASMAS IN THE LABORATORY AND IN THE UNIVERSE: INTERACTIONS, PATTERNS, AND TURBULENCE SE AIP Conference Proceedings LA English DT Proceedings Paper CT International Symposium Plasmas in the Laboratory and in the Universe: Interactions, Patterns and Turbulence CY DEC 01-04, 2009 CL Societa Casino, Como, ITALY SP Univ Milan, Dept Phys, Ctr Cultura Sci Alessandro Volta HO Societa Casino DE Proca model; photon mass; galactic magnetic field ID PHYSICS; LIMITS AB The most efficient way to constrain the photon mass (m(ph)) is related to observations of large-scale magnetic fields in space physics and astrophysics. This approach is based on the change in the Ampere law caused by the finite m(ph). In 1990s, a consistent set of MHD equations allowing for the finite m(ph) has been written and later used to analyze the solar wind data from the Voyager 1 and 2 missions. This lead to an estimate m(ph) <1.5x10(-51) g, the value currently recommended by the bi-annual compendium of the Particle Data Group. The further progress in constraining the photon mass may come from considering the dynamics of large-scale magnetic fields in astrophysics, in particular, the magnetic field of galaxies. The paper is concerned with related opportunities and challenges, including the problem posed by the simultaneous presence of large-scale and much stronger small-scale magnetic fields. Effects of recycling of the interstellar plasma involving dense molecular clouds, protostars and supernovae explosions are discussed. Possible approaches to pushing the upper bound to a limit well below 10(-51) g are discussed. C1 Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Ryutov, DD (reprint author), Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94551 USA. NR 27 TC 0 Z9 0 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-0787-9 J9 AIP CONF PROC PY 2010 VL 1242 BP 1 EP 10 DI 10.1063/1.3460125 PG 10 WC Physics, Applied; Physics, Fluids & Plasmas SC Physics GA BSA03 UT WOS:000284019000001 ER PT S AU Li, YF Wang, ZH Hou, LJ Jiang, K Wu, DJ Thomas, HM Morfill, GE AF Li, Yang-Fang Wang, Zhehui Hou, Lujing Jiang, Ke Wu, De-Jin Thomas, Hubertus M. Morfill, Gregor E. BE Bertin, G DeLuca, F Lodato, G Pozzoli, R Rome, M TI Oblique interactions of dust density waves SO PLASMAS IN THE LABORATORY AND IN THE UNIVERSE: INTERACTIONS, PATTERNS, AND TURBULENCE SE AIP Conference Proceedings LA English DT Proceedings Paper CT International Symposium Plasmas in the Laboratory and in the Universe: Interactions, Patterns and Turbulence CY DEC 01-04, 2009 CL Societa Casino, Como, ITALY SP Univ Milan, Dept Phys, Ctr Cultura Sci Alessandro Volta HO Societa Casino DE dust density wave; wave-interaction; wave-coupling; ion streaming instability ID CURRENT GLOW-DISCHARGE; ACOUSTIC-WAVES; PLASMAS; INSTABILITY AB Self-excited dust density waves (DDWs) are studied in a striped electrode device. In addition to the usual perpendicularly (with respect to the electrode) propagating DDWs, which have been frequently observed in dusty plasma experiments on the ground, a low-frequency oblique mode is also observed. This low-frequency oblique DDW has a frequency much lower than the dust plasma frequency and its spontaneous excitation is observed even with a very low dust density. It is found that the low-frequency oblique mode can exist either separately or together with the usual perpendicular mode. In the latter case, a new mode arises as a result of the interactions between the perpendicular and the oblique modes. The experiments show that these three modes satisfy the wave coupling conditions in both the frequencies and the wave-vectors. C1 [Li, Yang-Fang; Hou, Lujing; Jiang, Ke; Thomas, Hubertus M.; Morfill, Gregor E.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Li, Yang-Fang; Wu, De-Jin] Chinese Acad Sci, Purple Mountain Observ, Nanjing 210008, Peoples R China. [Wang, Zhehui] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Li, YF (reprint author), Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. NR 18 TC 0 Z9 0 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-0787-9 J9 AIP CONF PROC PY 2010 VL 1242 BP 312 EP + PG 2 WC Physics, Applied; Physics, Fluids & Plasmas SC Physics GA BSA03 UT WOS:000284019000033 ER PT S AU Nam, SH Taylor, AJ Efimov, A AF Nam, Sung Hyun Taylor, Antoinette J. Efimov, Anatoly BE Stockman, MI TI Singularity and Dirac dynamics in periodic plasmonic nanostructures SO PLASMONICS: METALLIC NANOSTRUCTURES AND THEIR OPTICAL PROPERTIES VIII SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Plasmonics: Metallic Nanostructures and Their Optical Properties VIII CY AUG 01-05, 2010 CL San Diego, CA SP SPIE DE surface plasmon polaritons; singularity; Dirac dynamics; conical diffraction AB We present the formation of a singularity in k-space from a periodic metal-dielectric nanostructure. The singularity originates from the balance between alternating normal and anomalous coupling. By employing the formalism of Dirac dynamics for relativistic quantum particles, we theoretically describe propagation dynamics of surface plasmon polaritons and demonstrate a strong diffraction anomaly (conical-like diffraction) near the singular point. C1 [Nam, Sung Hyun; Taylor, Antoinette J.; Efimov, Anatoly] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Mat Phys & Applicat Div, Los Alamos, NM 87545 USA. RP Nam, SH (reprint author), Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Mat Phys & Applicat Div, POB 1663, Los Alamos, NM 87545 USA. OI Efimov, Anatoly/0000-0002-5559-4147 NR 14 TC 0 Z9 0 U1 0 U2 2 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-81948-253-2 J9 PROC SPIE PY 2010 VL 7757 AR 77572H DI 10.1117/12.861102 PG 7 WC Chemistry, Physical; Nanoscience & Nanotechnology; Optics SC Chemistry; Science & Technology - Other Topics; Optics GA BSU51 UT WOS:000285828300034 ER PT J AU Daidone, I Neuweiler, H Doose, S Sauer, M Smith, JC AF Daidone, Isabella Neuweiler, Hannes Doose, Soeren Sauer, Markus Smith, Jeremy C. TI Hydrogen-Bond Driven Loop-Closure Kinetics in Unfolded Polypeptide Chains SO PLOS COMPUTATIONAL BIOLOGY LA English DT Article ID INTRAMOLECULAR CONTACT FORMATION; FLUORESCENCE CORRELATION SPECTROSCOPY; MOLECULAR-DYNAMICS SIMULATIONS; PROTEIN-FOLDING DYNAMICS; SPEED LIMIT; HYDROPHOBIC COLLAPSE; ENERGY-TRANSFER; PEPTIDE; SOLVENT; FORCE AB Characterization of the length dependence of end-to-end loop-closure kinetics in unfolded polypeptide chains provides an understanding of early steps in protein folding. Here, loop-closure in poly-glycine-serine peptides is investigated by combining single-molecule fluorescence spectroscopy with molecular dynamics simulation. For chains containing more than 10 peptide bonds loop-closing rate constants on the 20-100 nanosecond time range exhibit a power-law length dependence. However, this scaling breaks down for shorter peptides, which exhibit slower kinetics arising from a perturbation induced by the dye reporter system used in the experimental setup. The loop-closure kinetics in the longer peptides is found to be determined by the formation of intra-peptide hydrogen bonds and transient beta-sheet structure, that accelerate the search for contacts among residues distant in sequence relative to the case of a polypeptide chain in which hydrogen bonds cannot form. Hydrogen-bond-driven polypeptide-chain collapse in unfolded peptides under physiological conditions found here is not only consistent with hierarchical models of protein folding, that highlights the importance of secondary structure formation early in the folding process, but is also shown to speed up the search for productive folding events. C1 [Daidone, Isabella; Smith, Jeremy C.] Univ Heidelberg, Interdisciplinary Ctr Sci Comp, Heidelberg, Germany. [Daidone, Isabella] Univ Aquila, Dipartimento Chim Ingn Chim & Mat, Coppito, Italy. [Neuweiler, Hannes; Doose, Soeren; Sauer, Markus] Univ Bielefeld, Bielefeld, Germany. [Neuweiler, Hannes] MRC, Ctr Prot Engn, Cambridge, England. [Smith, Jeremy C.] Univ Tennessee, Oak Ridge Natl Lab, Ctr Biophys Mol, Oak Ridge, TN USA. RP Daidone, I (reprint author), Univ Heidelberg, Interdisciplinary Ctr Sci Comp, Heidelberg, Germany. EM Isabella.Daidone@iwr.uni-heidelberg.de; smithjc@ornl.gov RI smith, jeremy/B-7287-2012; Sauer, Markus/C-4378-2017 OI smith, jeremy/0000-0002-2978-3227; Sauer, Markus/0000-0002-1692-3219 FU Marie Curie Intra-European; Deutsche Forschungsgemeinschaft [SFB 613]; U. S. Department of Energy FX Isabella Daidone was funded by an individual Marie Curie Intra-European-Fellowship. Hannes Neuweiler, Soren Doose and Markus Sauer acknowledge financial support by the "Deutsche Forschungsgemeinschaft" Grant SFB 613. Jeremy C. Smith acknowledges a Laboratory Directed Research and Development grant from the U. S. Department of Energy. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 70 TC 22 Z9 22 U1 1 U2 19 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA SN 1553-734X J9 PLOS COMPUT BIOL JI PLoS Comput. Biol. PD JAN PY 2010 VL 6 IS 1 AR e1000645 DI 10.1371/journal.pcbi.1000645 PG 9 WC Biochemical Research Methods; Mathematical & Computational Biology SC Biochemistry & Molecular Biology; Mathematical & Computational Biology GA 551SX UT WOS:000274231500017 PM 20098498 ER PT J AU Neher, RA Leitner, T AF Neher, Richard A. Leitner, Thomas TI Recombination Rate and Selection Strength in HIV Intra-patient Evolution SO PLOS COMPUTATIONAL BIOLOGY LA English DT Article ID HUMAN-IMMUNODEFICIENCY-VIRUS; NATURAL-SELECTION; IN-VIVO; DNA-SEQUENCES; ENVELOPE GENE; TYPE-1; DYNAMICS; CELLS; HUMAN-IMMUNODEFICIENCY-VIRUS-1; SUBSTITUTIONS AB The evolutionary dynamics of HIV during the chronic phase of infection is driven by the host immune response and by selective pressures exerted through drug treatment. To understand and model the evolution of HIV quantitatively, the parameters governing genetic diversification and the strength of selection need to be known. While mutation rates can be measured in single replication cycles, the relevant effective recombination rate depends on the probability of coinfection of a cell with more than one virus and can only be inferred from population data. However, most population genetic estimators for recombination rates assume absence of selection and are hence of limited applicability to HIV, since positive and purifying selection are important in HIV evolution. Yet, little is known about the distribution of selection differentials between individual viruses and the impact of single polymorphisms on viral fitness. Here, we estimate the rate of recombination and the distribution of selection coefficients from time series sequence data tracking the evolution of HIV within single patients. By examining temporal changes in the genetic composition of the population, we estimate the effective recombination to be rho = 1.4 +/- 0.6x10(-5) recombinations per site and generation. Furthermore, we provide evidence that the selection coefficients of at least 15% of the observed non-synonymous polymorphisms exceed 0.8% per generation. These results provide a basis for a more detailed understanding of the evolution of HIV. A particularly interesting case is evolution in response to drug treatment, where recombination can facilitate the rapid acquisition of multiple resistance mutations. With the methods developed here, more precise and more detailed studies will be possible as soon as data with higher time resolution and greater sample sizes are available. C1 [Neher, Richard A.] Univ Calif Santa Barbara, Kavli Inst Theoret Phys, Santa Barbara, CA 93106 USA. [Leitner, Thomas] Los Alamos Natl Lab, Los Alamos, NM USA. RP Neher, RA (reprint author), Univ Calif Santa Barbara, Kavli Inst Theoret Phys, Santa Barbara, CA 93106 USA. EM neher@kitp.ucsb.edu OI Neher, Richard/0000-0003-2525-1407 FU National Science Foundation [PHY05-51164]; LANL LDRD-DR [X9R8]; Harvey L. Karp Discovery Award FX This work was supported by the National Science Foundation through Grant PHY05-51164, a LANL LDRD-DR grant (X9R8), and a Harvey L. Karp Discovery Award to RAN. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 46 TC 69 Z9 70 U1 0 U2 11 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA SN 1553-734X J9 PLOS COMPUT BIOL JI PLoS Comput. Biol. PD JAN PY 2010 VL 6 IS 1 AR e1000660 DI 10.1371/journal.pcbi.1000660 PG 7 WC Biochemical Research Methods; Mathematical & Computational Biology SC Biochemistry & Molecular Biology; Mathematical & Computational Biology GA 551SX UT WOS:000274231500030 PM 20126527 ER PT J AU Lusk, RW Eisen, MB AF Lusk, Richard W. Eisen, Michael B. TI Evolutionary Mirages: Selection on Binding Site Composition Creates the Illusion of Conserved Grammars in Drosophila Enhancers SO PLOS GENETICS LA English DT Article ID DNA LOSS; GENOME SIZE; TRANSCRIPTIONAL ENHANCERS; ZYGOTIC GENOME; DELETIONS; MELANOGASTER; EMBRYO; STRIPE; ENHANCEOSOMES; SEGMENTATION AB The clustering of transcription factor binding sites in developmental enhancers and the apparent preferential conservation of clustered sites have been widely interpreted as proof that spatially constrained physical interactions between transcription factors are required for regulatory function. However, we show here that selection on the composition of enhancers alone, and not their internal structure, leads to the accumulation of clustered sites with evolutionary dynamics that suggest they are preferentially conserved. We simulated the evolution of idealized enhancers from Drosophila melanogaster constrained to contain only a minimum number of binding sites for one or more factors. Under this constraint, mutations that destroy an existing binding site are tolerated only if a compensating site has emerged elsewhere in the enhancer. Overlapping sites, such as those frequently observed for the activator Bicoid and repressor Kruppel, had significantly longer evolutionary half-lives than isolated sites for the same factors. This leads to a substantially higher density of overlapping sites than expected by chance and the appearance that such sites are preferentially conserved. Because D. melanogaster (like many other species) has a bias for deletions over insertions, sites tended to become closer together over time, leading to an overall clustering of sites in the absence of any selection for clustered sites. Since this effect is strongest for the oldest sites, clustered sites also incorrectly appear to be preferentially conserved. Following speciation, sites tend to be closer together in all descendent species than in their common ancestors, violating the common assumption that shared features of species' genomes reflect their ancestral state. Finally, we show that selection on binding site composition alone recapitulates the observed number of overlapping and closely neighboring sites in real D. melanogaster enhancers. Thus, this study calls into question the common practice of inferring "cis-regulatory grammars" from the organization and evolutionary dynamics of developmental enhancers. C1 [Lusk, Richard W.; Eisen, Michael B.] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Eisen, Michael B.] Ernest Orlando Lawrence Berkeley Natl Lab, Genom Div, Berkeley, CA USA. [Eisen, Michael B.] Univ Calif Berkeley, Calif Inst Quantitat Biosci, Berkeley, CA 94720 USA. [Eisen, Michael B.] Univ Calif Berkeley, Howard Hughes Med Inst, Berkeley, CA 94720 USA. RP Lusk, RW (reprint author), Univ Calif Berkeley, Dept Mol & Cell Biol, 229 Stanley Hall, Berkeley, CA 94720 USA. EM mbeisen@berkeley.edu RI Phelps, Steve/H-2263-2011; OI Eisen, Michael/0000-0002-7528-738X FU National Human Genome Research Institute [HG002779]; National Science Foundation FX This work was supported by National Human Genome Research Institute grant HG002779 to MBE. RWL was supported by a National Science Foundation graduate fellowship. MBE is an investigator of the Howard Hughes Medical Institite. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 41 TC 45 Z9 45 U1 0 U2 3 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA SN 1553-7390 J9 PLOS GENET JI PLoS Genet. PD JAN PY 2010 VL 6 IS 1 AR e1000829 DI 10.1371/journal.pgen.1000829 PG 8 WC Genetics & Heredity SC Genetics & Heredity GA 551GF UT WOS:000274194300035 PM 20107516 ER PT J AU Diamond, DL Syder, AJ Jacobs, JM Sorensen, CM Walters, KA Proll, SC McDermott, JE Gritsenko, MA Zhang, QB Zhao, R Metz, TO Camp, DG Waters, KM Smith, RD Rice, CM Katze, MG AF Diamond, Deborah L. Syder, Andrew J. Jacobs, Jon M. Sorensen, Christina M. Walters, Kathie-Anne Proll, Sean C. McDermott, Jason E. Gritsenko, Marina A. Zhang, Qibin Zhao, Rui Metz, Thomas O. Camp, David G., II Waters, Katrina M. Smith, Richard D. Rice, Charles M. Katze, Michael G. TI Temporal Proteome and Lipidome Profiles Reveal Hepatitis C Virus-Associated Reprogramming of Hepatocellular Metabolism and Bioenergetics SO PLOS PATHOGENS LA English DT Article ID ENDOPLASMIC-RETICULUM STRESS; LOW-DENSITY LIPOPROTEINS; FATTY-ACID SYNTHESIS; MASS-SPECTROMETRY; IN-VIVO; RNA REPLICATION; LIQUID-CHROMATOGRAPHY; SOFTWARE PACKAGE; HCV REPLICATION; GENE-EXPRESSION AB Proteomic and lipidomic profiling was performed over a time course of acute hepatitis C virus (HCV) infection in cultured Huh-7.5 cells to gain new insights into the intracellular processes influenced by this virus. Our proteomic data suggest that HCV induces early perturbations in glycolysis, the pentose phosphate pathway, and the citric acid cycle, which favor host biosynthetic activities supporting viral replication and propagation. This is followed by a compensatory shift in metabolism aimed at maintaining energy homeostasis and cell viability during elevated viral replication and increasing cellular stress. Complementary lipidomic analyses identified numerous temporal perturbations in select lipid species ( e. g. phospholipids and sphingomyelins) predicted to play important roles in viral replication and downstream assembly and secretion events. The elevation of lipotoxic ceramide species suggests a potential link between HCV-associated biochemical alterations and the direct cytopathic effect observed in this in vitro system. Using innovative computational modeling approaches, we further identified mitochondrial fatty acid oxidation enzymes, which are comparably regulated during in vitro infection and in patients with histological evidence of fibrosis, as possible targets through which HCV regulates temporal alterations in cellular metabolic homeostasis. C1 [Diamond, Deborah L.; Walters, Kathie-Anne; Proll, Sean C.; Katze, Michael G.] Univ Washington, Sch Med, Dept Microbiol, Seattle, WA 98195 USA. [Syder, Andrew J.; Rice, Charles M.] Rockefeller Univ, Lab Virol & Infect Dis, Ctr Study Hepatitis C, New York, NY 10021 USA. [Jacobs, Jon M.; Sorensen, Christina M.; Gritsenko, Marina A.; Zhang, Qibin; Zhao, Rui; Metz, Thomas O.; Camp, David G., II; Smith, Richard D.] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. [Katze, Michael G.] Univ Washington, Washington Natl Primate Res Ctr, Seattle, WA 98195 USA. RP Diamond, DL (reprint author), Univ Washington, Sch Med, Dept Microbiol, Seattle, WA 98195 USA. EM ddiamond@u.washington.edu RI Smith, Richard/J-3664-2012; OI Smith, Richard/0000-0002-2381-2349; McDermott, Jason/0000-0003-2961-2572; Metz, Tom/0000-0001-6049-3968 FU National Institute on Drug Abuse [1P30DA01562501]; PHS [R01CA57073, U19AI040034]; Greenberg Medical Institute; Starr Foundation; National Center for Research Resources [RR018522]; NRSA Fellowship [DK70497]; Canadian Association for Study of Liver Disease Fellowship FX This work was supported by the National Institute on Drug Abuse grant 1P30DA01562501 to M. G. K. and PHS grants R01CA57073, U19AI040034, the Greenberg Medical Institute and the Starr Foundation to C. M. R. Portions of this research were supported through the National Center for Research Resources (RR018522) to R. D. S. A.J.S. was supported by NRSA Fellowship DK70497. K. A. W. was supported by a Canadian Association for Study of Liver Disease Fellowship. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 67 TC 173 Z9 174 U1 8 U2 29 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA SN 1553-7366 J9 PLOS PATHOG JI PLoS Pathog. PD JAN PY 2010 VL 6 IS 1 AR e1000719 DI 10.1371/journal.ppat.1000719 PG 18 WC Microbiology; Parasitology; Virology SC Microbiology; Parasitology; Virology GA 551RQ UT WOS:000274227100010 PM 20062526 ER PT J AU Klatt, NR Shudo, E Ortiz, AM Engram, JC Paiardini, M Lawson, B Miller, MD Else, J Pandrea, I Estes, JD Apetrei, C Schmitz, JE Ribeiro, RM Perelson, AS Silvestri, G AF Klatt, Nichole R. Shudo, Emi Ortiz, Alex M. Engram, Jessica C. Paiardini, Mirko Lawson, Benton Miller, Michael D. Else, James Pandrea, Ivona Estes, Jacob D. Apetrei, Cristian Schmitz, Joern E. Ribeiro, Ruy M. Perelson, Alan S. Silvestri, Guido TI CD8+Lymphocytes Control Viral Replication in SIVmac239-Infected Rhesus Macaques without Decreasing the Lifespan of Productively Infected Cells SO PLOS PATHOGENS LA English DT Article ID SIMIAN-IMMUNODEFICIENCY-VIRUS; CD8(+) T-CELLS; HIV-1 INFECTION; TYPE-1 INFECTION; SOOTY MANGABEYS; ANTIRETROVIRAL THERAPY; AIDS PATHOGENESIS; VACCINE DESIGN; CLEARANCE RATE; NK CELLS AB While CD8+ T cells are clearly important in controlling virus replication during HIV and SIV infections, the mechanisms underlying this antiviral effect remain poorly understood. In this study, we assessed the in vivo effect of CD8+ lymphocyte depletion on the lifespan of productively infected cells during chronic SIVmac239 infection of rhesus macaques. We treated two groups of animals that were either CD8+ lymphocyte-depleted or controls with antiretroviral therapy, and used mathematical modeling to assess the lifespan of infected cells either in the presence or absence of CD8+ lymphocytes. We found that, in both early (day 57 post-SIV) and late (day 177 post-SIV) chronic SIV infection, depletion of CD8+ lymphocytes did not result in a measurable increase in the lifespan of either short-or long-lived productively infected cells in vivo. This result indicates that the presence of CD8+ lymphocytes does not result in a noticeably shorter lifespan of productively SIV-infected cells, and thus that direct cell killing is unlikely to be the main mechanism underlying the antiviral effect of CD8+ T cells in SIV-infected macaques with high virus replication. C1 [Klatt, Nichole R.; Ortiz, Alex M.; Engram, Jessica C.; Paiardini, Mirko; Silvestri, Guido] Univ Penn, Dept Pathol & Lab Med, Philadelphia, PA 19104 USA. [Klatt, Nichole R.; Lawson, Benton; Else, James; Silvestri, Guido] Emory Univ, Yerkes Natl Primate Res Ctr, Atlanta, GA 30322 USA. [Shudo, Emi; Ribeiro, Ruy M.; Perelson, Alan S.] Los Alamos Natl Lab, Los Alamos, NM USA. [Miller, Michael D.] Gilead Sci Inc, Foster City, CA 94404 USA. [Pandrea, Ivona; Apetrei, Cristian] Tulane Univ, Tulane Natl Primate Res Ctr, New Orleans, LA 70118 USA. [Pandrea, Ivona; Apetrei, Cristian] Tulane Univ, Tulane Hlth Sci Ctr, New Orleans, LA 70118 USA. [Estes, Jacob D.] Sci Applicat Int Corp Frederick Inc, Natl Canc Inst, AIDS & Canc Virus Program, Frederick, MD USA. [Schmitz, Joern E.] Harvard Univ, Beth Israel Deaconess Med Ctr, Sch Med, Boston, MA 02215 USA. RP Klatt, NR (reprint author), Univ Penn, Dept Pathol & Lab Med, Philadelphia, PA 19104 USA. EM gsilvest@mail.med.upenn.edu OI Ribeiro, Ruy/0000-0002-3988-8241 FU NIH [AI66998, AI28433, RR06555, P20-RR18754, AI065335, RR-00165]; U.S. Department of Energy [AC52-06NA25396] FX This work was supported by NIH grants AI66998 (to GS), AI28433, RR06555, and P20-RR18754 (to ASP), AI065335 (to JES), and RR-00165 (Yerkes National Primate Research Center). Portions of this work were done under the auspices of the U.S. Department of Energy under contract DE-AC52-06NA25396. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 55 TC 84 Z9 85 U1 0 U2 8 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA SN 1553-7366 J9 PLOS PATHOG JI PLoS Pathog. PD JAN PY 2010 VL 6 IS 1 AR e1000747 DI 10.1371/journal.ppat.1000747 PG 11 WC Microbiology; Parasitology; Virology SC Microbiology; Parasitology; Virology GA 551RQ UT WOS:000274227100036 PM 20126441 ER PT S AU Kassianov, E Ovchinnikov, M Berg, LK Flynn, C AF Kassianov, Evgueni Ovchinnikov, Mikhail Berg, Larry K. Flynn, Connor BE Mishchenko, MI Yatskiv, YS Rosenbush, VK Videen, G TI Aerosol retrievals under partly cloudy conditions: challenges and perspectives SO POLARIMETRIC DETECTION, CHARACTERIZATION, AND REMOTE SENSING SE NATO Science for Peace and Security Series C-Environmental Security LA English DT Proceedings Paper CT NATO Advanced Study Institute on Special Detection Technique (Polarimetry) and Remote Sensing CY SEP 12-25, 2010 CL Kyiv, UKRAINE SP NATO, ASI DE aerosol retrieval; broken clouds; spectral reflectance; surface albedo; aircraft- and satellite based observations; in situ measurements; model simulations ID GROUND-BASED MEASUREMENTS; OPTICAL DEPTH; LIGHT-SCATTERING; HISTORICAL-PERSPECTIVE; RADIATIVE-TRANSFER; CONVECTIVE CLOUDS; IN-SITU; A-TRAIN; MODEL; PRECIPITATION AB There are many interesting and intriguing features of aerosols near clouds - many of which can be quite engaging, as well as being useful and climate-related. Exploring aerosols by means of remote sensing, in situ observations, and numerical modeling has piqued our curiosity and led to improved insights into the nature of aerosol and clouds and their complex relationship. This chapter conveys the outstanding issues of cloudy-sky aerosol retrievals and outlines fruitful connections between the remote sensing of important climate-related aerosol properties and other research areas such as in situ measurements and model simulations. The chapter focuses mostly on treating inverse problems in the context of passive satellite remote sensing and how they can improve our understanding of the cloud-aerosol interactions. The presentation covers basics of the inverse-problem theory, reviews available approaches, and discusses their applications to partly cloudy situations. C1 [Kassianov, Evgueni; Ovchinnikov, Mikhail; Berg, Larry K.; Flynn, Connor] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Kassianov, E (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM Evgueni.Kassianov@pnl.gov RI Berg, Larry/A-7468-2016 OI Berg, Larry/0000-0002-3362-9492 NR 109 TC 0 Z9 0 U1 1 U2 1 PU SPRINGER PI DORDRECHT PA PO BOX 17, 3300 AA DORDRECHT, NETHERLANDS SN 1871-4668 BN 978-94-007-1635-3 J9 NATO SCI PEACE SECUR JI NATO Sci. Peace Secur. Ser. C- Environ. Secur. PY 2010 BP 205 EP 232 PG 28 WC Remote Sensing; Spectroscopy SC Remote Sensing; Spectroscopy GA BVW19 UT WOS:000292941200009 ER PT S AU Bland, SR Detlefs, B Wilkins, SB Beale, TAW Mazzoli, C Joly, Y Hatton, PD Lorenzo, JE Brown, SD Brabers, VAM AF Bland, S. R. Detlefs, B. Wilkins, S. B. Beale, T. A. W. Mazzoli, C. Joly, Y. Hatton, P. D. Lorenzo, J. E. Brown, S. D. Brabers, V. A. M. BE Bruckel, T Schweika, W Tonnerre, JM TI Resonant x-ray scattering and full polarisation analysis of forbidden half-integer reflections in magnetite SO POLARIZED NEUTRONS AND SYNCHROTRON X-RAYS FOR MAGNETISM CONFERENCE 2009 SE Journal of Physics Conference Series LA English DT Proceedings Paper CT 2nd Workshop on Polarized Neutrons and Synchrotron X-Rays for Magnetism CY AUG 02-05, 2009 CL Bonn, GERMANY SP Julich Ctr Neutron Sci, LOT Oriel Gruppe Europa, Swiss Neutronics, Huber Diffract & Positioning Equipment, Oxford Diffract, DENEX ID LOW-TEMPERATURES; VERWEY TRANSITION AB Magnetite is one of the oldest known magnetic materials, but questions still surround both its crystal and electronic structures at low temperature. The most debated of these low temperature properties regard the presence, or lack of, of charge and orbital order. Using resonant x-ray diffraction at the iron K-edge to probe the long range order present on the iron sites, we have studied (0 0 2n+1/2)c type reflections. By using the technique of full linear polarisation, we have shown that the key features of the reflections can be described merely using the simplified Pmca structure, without invoking orbital order. C1 [Bland, S. R.; Beale, T. A. W.; Hatton, P. D.] Univ Durham, Dept Phys, Durham DH1 3LE, England. [Detlefs, B.; Mazzoli, C.; Brown, S. D.] European Synchrotron Radiat Facil, F-38043 Grenoble, France. [Wilkins, S. B.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. [Joly, Y.; Lorenzo, J. E.] CNRS, Lab Cristallograph, F-38042 Grenoble, France. [Brabers, V. A. M.] Eindhoven Univ Technol, Dept Phys, NL-5600 MB Eindhoven, Netherlands. RP Bland, SR (reprint author), Univ Durham, Dept Phys, Durham DH1 3LE, England. EM p.d.hatton@durham.ac.uk RI Detlefs, Blanka/C-9249-2009; Mazzoli, Claudio/J-4360-2012; Hatton, Peter/J-8445-2014 FU Office of Science, U.S. Department of Energy [DE-AC02-98CH10886]; STFC; EPSRC-funded XMaS beamline at the ESRF FX The authors wish to thank the ESRF and ID 20 for the beamtime and experimental support. SRB and PDH would like to thank EPSRC for funding. The work at Brookhaven National Laboratory is supported by the Office of Science, U.S. Department of Energy, under contract no. DE-AC02-98CH10886. TAWB and PDH would like to thank STFC for financial support. Part of this work was performed on the EPSRC-funded XMaS beamline at the ESRF, directed by M.J. Cooper and C.A. Lucas. We are grateful to the beam line team of S.D. Brown, P. Normile, O. Bikondoa, L. Bouchenoire and P. Thompson for their invaluable assistance, and to S. Beaufoy and J. Kervin for additional support. NR 30 TC 0 Z9 0 U1 1 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1742-6588 J9 J PHYS CONF SER PY 2010 VL 211 AR UNSP 012009 DI 10.1088/1742-6596/211/1/012009 PG 5 WC Physics, Applied; Physics, Multidisciplinary SC Physics GA BRK46 UT WOS:000282910300009 ER PT S AU Borup, RL Mukundan, R AF Borup, Rodney L. Mukundan, Rangachary BE Gasteiger, HA Weber, A Strasser, P Edmundson, M Lamy, C Darling, R Uchida, H Schmidt, TJ Shirvanian, P Buchi, FN Mantz, R Zawodzinski, T Ramani, V Fuller, T Inaba, M Jones, D Narayanan, SR TI PEM Fuel Cell Degradation SO POLYMER ELECTROLYTE FUEL CELLS 10, PTS 1 AND 2 SE ECS Transactions LA English DT Proceedings Paper CT 10th Polymer Electrolyte Fuel Cells Symposium (PEFC) Conducted Under the Auspices of the 218th Meeting of the Electrocehmical-Society (ECS) CY OCT, 2010 CL Las Vegas, NV SP Electrochem Soc (ECS), Energy Technol (ETD), Phys & Analyt Electrochem (PAED), Battery (BATT), Ind Electrochem & Electrochem Engn (IEEE), Asahi Kasei E-Mat Corp, Ion Power Inc, UTC Power Corp, Umicore, Tokuyama Corp, Toyota Motor Eng & Mfg N Amer, Pine Res Instruments, Tanaka Kikinzoku Kogyo K K AB The durability of PEM fuel cells is a major barrier to the commercialization of these systems for stationary and transportation power applications. While significant progress has been made in understanding degradation mechanisms and improving materials, further improvements in durability are required to meet commercialization targets. Catalyst and electrode durability remains a primary degradation mode, with much work reported on understanding how the catalyst and electrode structure degrades. Accelerated Stress Tests (ASTs) are used to rapidly evaluate component degradation, however the results are sometimes easy, and other times difficult to correlate. Tests that were developed to accelerate degradation of single components are shown to also affect other component's degradation modes. Non-ideal examples of this include ASTs examining catalyst degradation performances losses due to catalyst degradation do not always well correlate with catalyst surface area and also lead to losses in mass transport. C1 [Borup, Rodney L.; Mukundan, Rangachary] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Borup, RL (reprint author), Los Alamos Natl Lab, MS D429,MPA-11, Los Alamos, NM 87545 USA. OI Mukundan, Rangachary/0000-0002-5679-3930 NR 8 TC 14 Z9 14 U1 0 U2 6 PU ELECTROCHEMICAL SOC INC PI PENNINGTON PA 65 S MAIN ST, PENNINGTON, NJ 08534-2839 USA SN 1938-5862 BN 978-1-56677-820-6 J9 ECS TRANSACTIONS PY 2010 VL 33 IS 1 BP 17 EP 26 DI 10.1149/1.3484497 PG 10 WC Electrochemistry; Energy & Fuels; Polymer Science SC Electrochemistry; Energy & Fuels; Polymer Science GA BDH94 UT WOS:000313331100002 ER PT S AU Berliba-Vera, EK Delariva, AT Atanassov, P Datye, AK Garzon, FH AF Berliba-Vera, E. K. Delariva, A. T. Atanassov, P. Datye, A. K. Garzon, F. H. BE Gasteiger, HA Weber, A Strasser, P Edmundson, M Lamy, C Darling, R Uchida, H Schmidt, TJ Shirvanian, P Buchi, FN Mantz, R Zawodzinski, T Ramani, V Fuller, T Inaba, M Jones, D Narayanan, SR TI Nucleation of Platinum on Carbon Blacks SO POLYMER ELECTROLYTE FUEL CELLS 10, PTS 1 AND 2 SE ECS Transactions LA English DT Proceedings Paper CT 10th Polymer Electrolyte Fuel Cells Symposium (PEFC) Conducted Under the Auspices of the 218th Meeting of the Electrochemical-Society (ECS) CY OCT, 2010 CL Las Vegas, NV SP Electrochem Soc (ECS), Energy Technol (ETD), Phys & Analyt Electrochem (PAED), Battery (BATT), Ind Electrochem & Electrochem Engn, Asahi Kasei E-Mat Corp, Ion Power Inc, UTC Power Corp, Umicore, Tokuyama Corp, Toyota Motor Eng & Mfg N Amer, Pine Res Instruments, Tanaka Kikinzoku Kogyo K K AB One of the outstanding challenges in the wider deployment of PEMFCs is improving the utilization of Pt. While decreasing particle size improves accessibility of the Pt, it also destabilizes the Pt particles and leads to dissolution/re-precipitation and rapid grain growth. A parameter that is as yet poorly characterized is the number of nucleation sites on the carbon support. Increased nucleation site density could provide a valuable approach to improve Pt utilization. In this work, nucleation density was characterized by determining the number of particles per nm(2). A range of metal loadings were explored to investigate their effect on the number of Pt particles on three types of carbon support (Vulcan XC 72, Vulcan XC 72R, and Norit SX-1G). It was concluded that the number of nucleation sites is relatively constant over the Vulcan family of carbon supports. However, activated carbons such as Norit SX-1G show much higher nucleation density. C1 [Berliba-Vera, E. K.; Delariva, A. T.; Atanassov, P.; Datye, A. K.] Univ New Mexico, Dept Chem & Nucl Engn, Albuquerque, NM 87131 USA. [Garzon, F. H.] Los Alamos Natl Labs, Los Alamos, NM 87545 USA. RP Berliba-Vera, EK (reprint author), Univ New Mexico, Dept Chem & Nucl Engn, Albuquerque, NM 87131 USA. OI Datye, Abhaya/0000-0002-7126-8659 FU DOE-EERE Office of Fuel Cell Technology; NSF; NASA FX Financial support from DOE-EERE Office of Fuel Cell Technology is gratefully acknowledged. The work made use of the facilities of the Center of Emerging Energy Technologies (CEET), the Center for Microengineered Materials (CMEM) and the electron microscopy facilities in the Earth and Planetary Sciences department at UNM which is supported by NSF and NASA. NR 6 TC 0 Z9 0 U1 0 U2 3 PU ELECTROCHEMICAL SOC INC PI PENNINGTON PA 65 S MAIN ST, PENNINGTON, NJ 08534-2839 USA SN 1938-5862 BN 978-1-56677-820-6 J9 ECS TRANSACTIONS PY 2010 VL 33 IS 1 BP 73 EP + DI 10.1149/1.3484503 PG 2 WC Electrochemistry; Energy & Fuels; Polymer Science SC Electrochemistry; Energy & Fuels; Polymer Science GA BDH94 UT WOS:000313331100008 ER PT S AU Bult, J Dameron, A Pylypenko, S Engtrakul, C Bochert, C Chen, L Leong, G Frisco, S Simpson, L Dinh, HN Pivovar, B AF Bult, J. Dameron, A. Pylypenko, S. Engtrakul, C. Bochert, C. Chen, L. Leong, G. Frisco, S. Simpson, L. Dinh, H. N. Pivovar, B. BE Gasteiger, HA Weber, A Strasser, P Edmundson, M Lamy, C Darling, R Uchida, H Schmidt, TJ Shirvanian, P Buchi, FN Mantz, R Zawodzinski, T Ramani, V Fuller, T Inaba, M Jones, D Narayanan, SR TI Atomic Layer Deposition of Platinum onto Functionalized Aligned MWNT Arrays for Fuel Cell Electrode Application SO POLYMER ELECTROLYTE FUEL CELLS 10, PTS 1 AND 2 SE ECS Transactions LA English DT Proceedings Paper CT 10th Polymer Electrolyte Fuel Cells Symposium (PEFC) Conducted Under the Auspices of the 218th Meeting of the Electrochemical-Society (ECS) CY OCT, 2010 CL Las Vegas, NV SP Electrochem Soc (ECS), Energy Technol (ETD), Phys & Analyt Electrochem (PAED), Battery (BATT), Ind Electrochem & Electrochem Engn, Asahi Kasei E-Mat Corp, Ion Power Inc, UTC Power Corp, Umicore, Tokuyama Corp, Toyota Motor Eng & Mfg N Amer, Pine Res Instruments, Tanaka Kikinzoku Kogyo K K AB High aspect ratio materials, such as carbon nanotubes (CNTs), provide unique opportunities and advantages as catalyst support materials in fuel cells. In particular, CNTs are highly conductive and corrosion resistant; properties which represent limitations for current carbon supports. While most advanced catalysts research focuses on the production of small nanoparticles to increase the percent of surface accessible Pt; here, we specifically attempt to conformally coat Pt in thin layers onto CNT arrays. We present our work on modifying CNT surfaces inside high-density, surface-bound aligned CNT arrays (aspect ratio similar to 1:750) with non-toxic gas phase chemistries. The number of nucleation sites and the onset of growth of Pt by ALD can be tuned by using Ar plasma, O-2 plasma and chemical functionalization. This, in turn, affects the uniformity of the Pt ALD coating down the length of the tubes within the CNT array. C1 [Bult, J.; Dameron, A.; Pylypenko, S.; Engtrakul, C.; Leong, G.; Frisco, S.; Simpson, L.; Dinh, H. N.; Pivovar, B.] Natl Renewable Energy Lab, 1617 Cole Blvd, Golden, CO 80401 USA. [Pylypenko, S.; Engtrakul, C.; Chen, L.] Colorado Sch Mines, Colorado Springs, CO 80401 USA. [Chen, L.] Rensselaer Polytechn Inst, Rensselaer Nanotechnol Ctr, Troy, NY 12180 USA. RP Bult, J (reprint author), Natl Renewable Energy Lab, 1617 Cole Blvd, Golden, CO 80401 USA. FU U.S. Department of Energy with the National Renewable Energy Laboratory [DE-AC36-08-G028308] FX The authors thank the DOE-EERE Fuel Cell Technologies programs for support through the U.S. Department of Energy Contract No. DE-AC36-08-G028308 with the National Renewable Energy Laboratory. NR 8 TC 3 Z9 3 U1 0 U2 8 PU ELECTROCHEMICAL SOC INC PI PENNINGTON PA 65 S MAIN ST, PENNINGTON, NJ 08534-2839 USA SN 1938-5862 BN 978-1-56677-820-6 J9 ECS TRANSACTIONS PY 2010 VL 33 IS 1 BP 89 EP + DI 10.1149/1.3484505 PG 2 WC Electrochemistry; Energy & Fuels; Polymer Science SC Electrochemistry; Energy & Fuels; Polymer Science GA BDH94 UT WOS:000313331100010 ER PT S AU Ramanathan, M Li, B Greeley, J Prakash, J AF Ramanathan, M. Li, B. Greeley, J. Prakash, J. BE Gasteiger, HA Weber, A Strasser, P Edmundson, M Lamy, C Darling, R Uchida, H Schmidt, TJ Shirvanian, P Buchi, FN Mantz, R Zawodzinski, T Ramani, V Fuller, T Inaba, M Jones, D Narayanan, SR TI Microstructure - ORR Activity Relationships in Pd3M (M = Cu, Ni, Fe) Electrocatalysts Synthesized at Various Temperatures SO POLYMER ELECTROLYTE FUEL CELLS 10, PTS 1 AND 2 SE ECS Transactions LA English DT Proceedings Paper CT 10th Polymer Electrolyte Fuel Cells Symposium (PEFC) Conducted Under the Auspices of the 218th Meeting of the Electrochemical-Society (ECS) CY OCT, 2010 CL Las Vegas, NV SP Electrochem Soc (ECS), Energy Technol (ETD), Phys & Analyt Electrochem (PAED), Battery (BATT), Ind Electrochem & Electrochem Engn, Asahi Kasei E-Mat Corp, Ion Power Inc, UTC Power Corp, Umicore, Tokuyama Corp, Toyota Motor Eng & Mfg N Amer, Pine Res Instruments, Tanaka Kikinzoku Kogyo K K ID OXYGEN REDUCTION REACTION; THERMODYNAMIC GUIDELINES; ALLOY ELECTROCATALYSTS; BIMETALLIC CATALYSTS; DESIGN; ORIGIN AB The oxygen binding energy (BEO), considered to be an important descriptor for ORR catalytic activity on transition metal alloys, was calculated using ab initio Density Functional theory calculations to probe the ORR activity of Pd3M/C (M = Fe,Ni,Cu) alloys. Variations in BEO with binding site were ascribed to changes in ORR activity due to varying catalytic surfaces developed at different annealing temperatures. Relative binding energies of *O and *OH predicted higher ORR activity for Pd3Cu on bulk surfaces and for Pd3Fe on Pd skin surfaces when compared to pure Pd. Pd3M/C (M = Fe,Ni,Cu) electrocatalysts were synthesized at temperatures from 300 to 800 degrees C and the electrochemical surfaces were characterized by Cyclic Voltammetry. Typical rotating disk currents for Pd3M alloys showed higher ORR activity for Pd3Fe/C and Pd3Cu/C annealed at higher temperatures. Koutechy-Levich Plots for Pd3Fe/C and Pd3Cu/C showed four electron transfer for oxygen reduction and better kinetic parameters than Pd. C1 [Ramanathan, M.; Li, B.; Prakash, J.] IIT, Ctr Electrochem Sci & Engn, Dept Chem & Biol Engn, Chicago, IL 60616 USA. [Greeley, J.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. RP Ramanathan, M (reprint author), IIT, Ctr Electrochem Sci & Engn, Dept Chem & Biol Engn, Chicago, IL 60616 USA. OI Ramanathan, Mayandi/0000-0002-8957-8989 NR 15 TC 3 Z9 3 U1 3 U2 12 PU ELECTROCHEMICAL SOC INC PI PENNINGTON PA 65 S MAIN ST, PENNINGTON, NJ 08534-2839 USA SN 1938-5862 BN 978-1-56677-820-6 J9 ECS TRANSACTIONS PY 2010 VL 33 IS 1 BP 181 EP + DI 10.1149/1.3484515 PG 2 WC Electrochemistry; Energy & Fuels; Polymer Science SC Electrochemistry; Energy & Fuels; Polymer Science GA BDH94 UT WOS:000313331100020 ER PT S AU Coombs, S Dameron, A Engtrakul, C Pylypenko, S Lee, J Olson, TS Bochert, C Gennett, T Simpson, L Pivovar, B Dinh, HN AF Coombs, Sidney Dameron, Arrelaine Engtrakul, Chaiwat Pylypenko, Svitlana Lee, Jinsuk Olson, Tim S. Bochert, Chris Gennett, Thomas Simpson, Lin Pivovar, Bryan Dinh, Huyen N. BE Gasteiger, HA Weber, A Strasser, P Edmundson, M Lamy, C Darling, R Uchida, H Schmidt, TJ Shirvanian, P Buchi, FN Mantz, R Zawodzinski, T Ramani, V Fuller, T Inaba, M Jones, D Narayanan, SR TI The Influence of Surfaces and Deposition Processes on Pt Structure and Properties SO POLYMER ELECTROLYTE FUEL CELLS 10, PTS 1 AND 2 SE ECS Transactions LA English DT Proceedings Paper CT 10th Polymer Electrolyte Fuel Cells Symposium (PEFC) Conducted Under the Auspices of the 218th Meeting of the Electrocehmical-Society (ECS) CY OCT, 2010 CL Las Vegas, NV SP Electrochem Soc (ECS), Energy Technol (ETD), Phys & Analyt Electrochem (PAED), Battery (BATT), Ind Electrochem & Electrochem Engn (IEEE), Asahi Kasei E-Mat Corp, Ion Power Inc, UTC Power Corp, Umicore, Tokuyama Corp, Toyota Motor Eng & Mfg N Amer, Pine Res Instruments, Tanaka Kikinzoku Kogyo K K ID OXYGEN REDUCTION REACTION; O TRANSPARENT CONDUCTORS; FUEL-CELLS; CATALYSTS; MECHANISM; STABILITY AB Transparent conductive oxides (TCOs), In-Zn-O (IZO) and Ga-Zn-O (GZO), on glass are used as model substrates to study the effect of surface treatments and deposition processes on Pt growth and nanostructure. The TCO type and surface treatments appear to affect Pt nucleation and growth. Ar and O-2 plasma surface treatments significantly lowered the contact angle of water measured on TCOs compared to trimethylaluminum surface treatment and samples without surface treatment. Annealing TCO samples in oxygen resulted in lower IZO conductivity and higher contact angle; while annealing in vacuum or hydrogen resulted in increased carbon on the surface, which appears to be related to higher water contact angles and higher conductivity. Higher amounts of zinc and carbon (probably due to contamination from the annealing chamber) on the IZO surface seem to correlate with lower water contact angles and lower conductivity. C1 [Coombs, Sidney; Dameron, Arrelaine; Engtrakul, Chaiwat; Pylypenko, Svitlana; Lee, Jinsuk; Olson, Tim S.; Bochert, Chris; Gennett, Thomas; Simpson, Lin; Pivovar, Bryan; Dinh, Huyen N.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Coombs, S (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. NR 6 TC 1 Z9 1 U1 0 U2 1 PU ELECTROCHEMICAL SOC INC PI PENNINGTON PA 65 S MAIN ST, PENNINGTON, NJ 08534-2839 USA SN 1938-5862 BN 978-1-56677-820-6 J9 ECS TRANSACTIONS PY 2010 VL 33 IS 1 BP 221 EP 228 DI 10.1149/1.3484519 PG 8 WC Electrochemistry; Energy & Fuels; Polymer Science SC Electrochemistry; Energy & Fuels; Polymer Science GA BDH94 UT WOS:000313331100024 ER PT S AU Pylypenko, S Queen, A Neyerlin, KC Olson, T Dameron, A O'Neill, K Ginley, D Gorman, B Kocha, S Dinh, HN Gennett, T O'Hayre, R AF Pylypenko, S. Queen, A. Neyerlin, K. C. Olson, T. Dameron, A. O'Neill, K. Ginley, D. Gorman, B. Kocha, S. Dinh, H. N. Gennett, T. O'Hayre, R. BE Gasteiger, HA Weber, A Strasser, P Edmundson, M Lamy, C Darling, R Uchida, H Schmidt, TJ Shirvanian, P Buchi, FN Mantz, R Zawodzinski, T Ramani, V Fuller, T Inaba, M Jones, D Narayanan, SR TI The Role of Nitrogen Doping on Durability in the Pt-Ru/HOPG System SO POLYMER ELECTROLYTE FUEL CELLS 10, PTS 1 AND 2 SE ECS Transactions LA English DT Proceedings Paper CT 10th Polymer Electrolyte Fuel Cells Symposium (PEFC) Conducted Under the Auspices of the 218th Meeting of the Electrochemical-Society (ECS) CY OCT, 2010 CL Las Vegas, NV SP Electrochem Soc (ECS), Energy Technol (ETD), Phys & Analyt Electrochem (PAED), Battery (BATT), Ind Electrochem & Electrochem Engn, Asahi Kasei E-Mat Corp, Ion Power Inc, UTC Power Corp, Umicore, Tokuyama Corp, Toyota Motor Eng & Mfg N Amer, Pine Res Instruments, Tanaka Kikinzoku Kogyo K K ID OXYGEN REDUCTION REACTION; METHANOL OXIDATION; CATALYTIC CATHODE; CARBON NANOTUBES; ENHANCEMENT; GRAPHITE; PEMFC AB This study investigates the role of the nitrogen doping on the durability of Pt-Ru metal nanophase catalysts supported on highly-oriented pyrolytic graphite (HOPG) substrates. The effect of the ion dose during N-2 low ion energy implantation on the degree of the HOPG modification and levels of nitrogen doping are evaluated using X-ray photoelectron and Raman spectroscopy. Pt-Ru catalyst metal was deposited onto unmodified and N-implanted HOPG substrates using microwave and magnetron sputtering deposition routes, resulting in deposition either with or without preferential nucleation in the defect-sites. The role of the nitrogen on improved bonding between catalyst and support is evident from the microscopic evaluation of substrates after potential cycling. C1 [Pylypenko, S.; Queen, A.; Gorman, B.; O'Hayre, R.] Colorado Sch Mines, Dept Met & Mat Engn, Golden, CO 80401 USA. [Pylypenko, S.; Neyerlin, K. C.; Olson, T.; Dameron, A.; O'Neill, K.; Ginley, D.; Kocha, S.; Dinh, H. N.; Gennett, T.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Pylypenko, S (reprint author), Colorado Sch Mines, Dept Met & Mat Engn, Golden, CO 80401 USA. RI O'Hayre, Ryan/A-8183-2009 FU U.S. Department of Energy with the National Renewable Energy Laboratory [DEAC36-08-G028308]; Army Research Office [W911NF-09-1-0528]; NREL FX This work was supported by the U.S. Department of Energy under Contract No. DEAC36-08-G028308 with the National Renewable Energy Laboratory and the Army Research Office under grant #W911NF-09-1-0528. The authors acknowledge G. Zito, John Chandler and Electron Microscopy Laboratory at CSM for assistance with SEM and TEM analysis; Karren More for assistance and access to Hitachi HF-3300 TEM/STEM at ORNL under the ORNL SHaRE program; Sally Asher and Surface Analysis group at NREL for support and access to Kratos NOVA XPS. NR 16 TC 3 Z9 3 U1 0 U2 9 PU ELECTROCHEMICAL SOC INC PI PENNINGTON PA 65 S MAIN ST, PENNINGTON, NJ 08534-2839 USA SN 1938-5862 BN 978-1-56677-820-6 J9 ECS TRANSACTIONS PY 2010 VL 33 IS 1 BP 351 EP + DI 10.1149/1.3484533 PG 2 WC Electrochemistry; Energy & Fuels; Polymer Science SC Electrochemistry; Energy & Fuels; Polymer Science GA BDH94 UT WOS:000313331100038 ER PT S AU Fairweather, J Li, B Mukundan, R Fenton, J Borup, R AF Fairweather, Joseph Li, Bo Mukundan, Rangachary Fenton, James Borup, Rodney BE Gasteiger, HA Weber, A Strasser, P Edmundson, M Lamy, C Darling, R Uchida, H Schmidt, TJ Shirvanian, P Buchi, FN Mantz, R Zawodzinski, T Ramani, V Fuller, T Inaba, M Jones, D Narayanan, SR TI In Situ and Ex Situ Characterization of Carbon Corrosion in PEMFCs SO POLYMER ELECTROLYTE FUEL CELLS 10, PTS 1 AND 2 SE ECS Transactions LA English DT Proceedings Paper CT 10th Polymer Electrolyte Fuel Cells Symposium (PEFC) Conducted Under the Auspices of the 218th Meeting of the Electrochemical-Society (ECS) CY OCT, 2010 CL Las Vegas, NV SP Electrochem Soc (ECS), Energy Technol (ETD), Phys & Analyt Electrochem (PAED), Battery (BATT), Ind Electrochem & Electrochem Engn, Asahi Kasei E-Mat Corp, Ion Power Inc, UTC Power Corp, Umicore, Tokuyama Corp, Toyota Motor Eng & Mfg N Amer, Pine Res Instruments, Tanaka Kikinzoku Kogyo K K ID FUEL-CELLS; DEGRADATION AB Carbon corrosion is an important degradation mechanism that impairs PEMFC performance through destruction of catalyst connectivity, collapse of pore structure, and loss of hydrophobic character. In this study, carbon corrosion was quantified in situ by measurement of carbon dioxide in fuel cell exhaust gases through non-dispersive infrared spectroscopy (NDIR). Performance degradation was also studied by a DOE protocol for catalyst support accelerated stress testing. Finally, changes in gas diffusion layer and microporous layer carbon surfaces were observed through an ex situ aging procedure. C1 [Fairweather, Joseph; Li, Bo; Mukundan, Rangachary; Borup, Rodney] Los Alamos Natl Lab, POB 1663,MS D429, Los Alamos, NM 87544 USA. [Fenton, James] Florida Solar Energy Ctr, Cocoa, FL 32922 USA. RP Fairweather, J (reprint author), Los Alamos Natl Lab, POB 1663,MS D429, Los Alamos, NM 87544 USA. OI Mukundan, Rangachary/0000-0002-5679-3930 FU Fuel Cell Technologies program at the U.S. Department of Energy - Energy Efficiency and Renewable Energy; technology development manager Nancy Garland FX Contact angle measurements were performed by Chris Rulison at Augustine Scientific (Newbury, OH). This work was supported by the Fuel Cell Technologies program at the U.S. Department of Energy - Energy Efficiency and Renewable Energy. The authors would like to acknowledge the support of the technology development manager Nancy Garland. NR 11 TC 11 Z9 11 U1 0 U2 2 PU ELECTROCHEMICAL SOC INC PI PENNINGTON PA 65 S MAIN ST, PENNINGTON, NJ 08534-2839 USA SN 1938-5862 BN 978-1-56677-820-6 J9 ECS TRANSACTIONS PY 2010 VL 33 IS 1 BP 433 EP + DI 10.1149/1.3484542 PG 3 WC Electrochemistry; Energy & Fuels; Polymer Science SC Electrochemistry; Energy & Fuels; Polymer Science GA BDH94 UT WOS:000313331100047 ER PT S AU Ding, ZF Johnston, CM Zelenay, P AF Ding, Zhongfen Johnston, Christina M. Zelenay, Piotr BE Gasteiger, HA Weber, A Strasser, P Edmundson, M Lamy, C Darling, R Uchida, H Schmidt, TJ Shirvanian, P Buchi, FN Mantz, R Zawodzinski, T Ramani, V Fuller, T Inaba, M Jones, D Narayanan, SR TI A Simple Synthesis Method for Sulfur-Free N-Fe-C Catalyst with High ORR Activity SO POLYMER ELECTROLYTE FUEL CELLS 10, PTS 1 AND 2 SE ECS Transactions LA English DT Proceedings Paper CT 10th Polymer Electrolyte Fuel Cells Symposium (PEFC) Conducted Under the Auspices of the 218th Meeting of the Electrocehmical-Society (ECS) CY OCT, 2010 CL Las Vegas, NV SP Electrochem Soc (ECS), Energy Technol (ETD), Phys & Analyt Electrochem (PAED), Battery (BATT), Ind Electrochem & Electrochem Engn (IEEE), Asahi Kasei E-Mat Corp, Ion Power Inc, UTC Power Corp, Umicore, Tokuyama Corp, Toyota Motor Eng & Mfg N Amer, Pine Res Instruments, Tanaka Kikinzoku Kogyo K K ID CONDUCTING POLYMER NANOSTRUCTURES; OXYGEN REDUCTION; MOLECULAR-WEIGHT; POLYANILINE; INTERMEDIATE; ELECTROLYTE; ANILINE AB To try to deconvolute factors affecting the activity and durability of nitrogen-metal-carbon (N-M-C) type non-precious catalysts for oxygen reduction reaction (ORR), N-M-C catalysts based on iron chloride, polyaniline (PANT) and Ketj en-black carbon were synthesized under different conditions. The catalysts were characterized electrochemically and tested as cathodes for hydrogen fuel cells. PANT is usually oxidatively polymerized using ammonium persulfate (APS). To eliminate sulfur in the synthesized catalysts, a simple synthesis method using iron(III) chloride as oxidant for aniline polymerization was developed. Two different aniline polymerization conditions led to very different product morphologies. When synthesized at low initial proton concentration, the final product was composed of dense, micrometer-sized particles. A decomposable salt was found to prohibit PANT cross-linking during the drying and annealing process, leading to a porous product. The porous catalyst has much higher ORR activity than the dense product presumably due to more accessible active sites. When synthesized at high proton concentration, the catalyst appeared to be porous even before addition of the decomposable salt. In this case, treatment with the decomposable salt did not significantly increase the porosity as observed by SEM or electrochemical activity as measured by RDE. However, fuel cell testing on air indicates that the salt treatment improves mass transfer in the cathode layer. The catalyst synthesized using this simple method has ORR activity comparable to the state-of-the-art PANT-derived catalyst synthesized in a much more complicated procedure. The fact that sulfur sources are completely eliminated in the synthesis suggests that sulfur is not necessary for the ORR catalysis activity. C1 [Ding, Zhongfen; Johnston, Christina M.; Zelenay, Piotr] Los Alamos Natl Lab, Mat Phys & Applicat Div, Los Alamos, NM 87545 USA. RP Ding, ZF (reprint author), Los Alamos Natl Lab, Mat Phys & Applicat Div, POB 1663, Los Alamos, NM 87545 USA. NR 21 TC 4 Z9 4 U1 2 U2 22 PU ELECTROCHEMICAL SOC INC PI PENNINGTON PA 65 S MAIN ST, PENNINGTON, NJ 08534-2839 USA SN 1938-5862 BN 978-1-56677-820-6 J9 ECS TRANSACTIONS PY 2010 VL 33 IS 1 BP 565 EP 577 DI 10.1149/1.3484553 PG 13 WC Electrochemistry; Energy & Fuels; Polymer Science SC Electrochemistry; Energy & Fuels; Polymer Science GA BDH94 UT WOS:000313331100058 ER PT S AU Goenaga, G Ma, SQ Yuan, SW Liu, DJ AF Goenaga, Gabriel Ma, Shengqian Yuan, Shengwen Liu, Di-Jia BE Gasteiger, HA Weber, A Strasser, P Edmundson, M Lamy, C Darling, R Uchida, H Schmidt, TJ Shirvanian, P Buchi, FN Mantz, R Zawodzinski, T Ramani, V Fuller, T Inaba, M Jones, D Narayanan, SR TI NEW APPROACHES TO NON-PGM ELECTROCATALYSTS USING POROUS FRAMEWORK MATERIALS SO POLYMER ELECTROLYTE FUEL CELLS 10, PTS 1 AND 2 SE ECS Transactions LA English DT Proceedings Paper CT 10th Polymer Electrolyte Fuel Cells Symposium (PEFC) Conducted Under the Auspices of the 218th Meeting of the Electrocehmical-Society (ECS) CY OCT, 2010 CL Las Vegas, NV SP Electrochem Soc (ECS), Energy Technol (ETD), Phys & Analyt Electrochem (PAED), Battery (BATT), Ind Electrochem & Electrochem Engn (IEEE), Asahi Kasei E-Mat Corp, Ion Power Inc, UTC Power Corp, Umicore, Tokuyama Corp, Toyota Motor Eng & Mfg N Amer, Pine Res Instruments, Tanaka Kikinzoku Kogyo K K ID FUEL-CELL CATHODE; REDUCTION; OXYGEN; CATALYSTS AB The catalytic oxygen reduction reaction (ORR) at the cathode is a critical process to proton exchange membrane fuel cell (PEMFC) operation. The current catalyst materials of choice are platinum group metals (PGMs) with high costs and limited reserves. Reported herein are our recent efforts in developing non-PGM electrocatalyst materials using rational design and synthesis. A variety of porous organic materials were developed as the catalyst precursors for preparing of ORR catalysts with high surface area and active site density free of carbon support. Electrocatalytic activities and physical properties of the new catalysts were investigated by various techniques in the process of understanding of the active site formation. C1 [Goenaga, Gabriel; Ma, Shengqian; Yuan, Shengwen; Liu, Di-Jia] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. RP Goenaga, G (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM djliu@anl.gov RI Ma, Shengqian/B-4022-2012 OI Ma, Shengqian/0000-0002-1897-7069 NR 9 TC 25 Z9 26 U1 5 U2 27 PU ELECTROCHEMICAL SOC INC PI PENNINGTON PA 65 S MAIN ST, PENNINGTON, NJ 08534-2839 USA SN 1938-5862 BN 978-1-56677-820-6 J9 ECS TRANSACTIONS PY 2010 VL 33 IS 1 BP 579 EP 586 DI 10.1149/1.3484554 PG 8 WC Electrochemistry; Energy & Fuels; Polymer Science SC Electrochemistry; Energy & Fuels; Polymer Science GA BDH94 UT WOS:000313331100059 ER PT S AU Ding, ZF Kim, DS Labouriau, A Kim, YS AF Ding, Zhongfen Kim, Dae Sik Labouriau, Andrea Kim, Yu Seung BE Gasteiger, HA Weber, A Strasser, P Edmundson, M Lamy, C Darling, R Uchida, H Schmidt, TJ Shirvanian, P Buchi, FN Mantz, R Zawodzinski, T Ramani, V Fuller, T Inaba, M Jones, D Narayanan, SR TI Synthesis of Benzimidazole-tethered Perfluoropolymer/Perfluoromacromolecules for High Temperature Fuel Cell Applications SO POLYMER ELECTROLYTE FUEL CELLS 10, PTS 1 AND 2 SE ECS Transactions LA English DT Proceedings Paper CT 10th Polymer Electrolyte Fuel Cells Symposium (PEFC) Conducted Under the Auspices of the 218th Meeting of the Electrochemical-Society (ECS) CY OCT, 2010 CL Las Vegas, NV SP Electrochem Soc (ECS), Energy Technol (ETD), Phys & Analyt Electrochem (PAED), Battery (BATT), Ind Electrochem & Electrochem Engn, Asahi Kasei E-Mat Corp, Ion Power Inc, UTC Power Corp, Umicore, Tokuyama Corp, Toyota Motor Eng & Mfg N Amer, Pine Res Instruments, Tanaka Kikinzoku Kogyo K K ID POLY(ETHER ETHER KETONE); PROTON-CONDUCTING POLYMERS; ACID DOPED POLYBENZIMIDAZOLE; BLEND MEMBRANES; PHOSPHORIC-ACID; EXCHANGE MEMBRANES; SIDE-GROUPS; ELECTROLYTE; IMIDAZOLE; POLY(4-VINYLIMIDAZOLE) AB Fuel cells running at high temperatures have the advantage of higher energy efficiency, simpler water management and enhanced CO tolerance etc. However, Nafion (R) loses proton conductivity at high temperatures (ca. >100 degrees C) due to water evaporation. Heterocyclic structures such as imidazole (Im) and benzimidazole (BIm) groups can replace water as proton carriers at high temperatures. Polybenzimidazole and Im, or BIm tethered hydrocarbon polymer are promising candidates for high temperature membranes. However, most of these polymers have very rigid backbone structure, which limits the application of these materials as ionomers in the electrodes as it is very hard for the rigid polymer chains to reorganize into efficient H+/e/gas conducting active sites. In this study, we synthesized benzimidazole (BIm) tethered perfluoropolymers (PF) or perfluoromacromolecules to be used as ionomers for electrode binder. The synthesized BIm-PF and Im-PF have PF flexible chain structure of both the backbones and side chains. The solubility of these BIm-tethered perfluoromaterials is very limited. C1 [Ding, Zhongfen; Kim, Dae Sik; Kim, Yu Seung] Los Alamos Natl Lab, Mat Phys & Applicat Div, POB 1663, Los Alamos, NM 87545 USA. [Labouriau, Andrea] Los Alamos Natl Lab, Mat Sci & Technol Div, Los Alamos, NM 87545 USA. RP Ding, ZF (reprint author), Los Alamos Natl Lab, Mat Phys & Applicat Div, POB 1663, Los Alamos, NM 87545 USA. OI Labouriau, Andrea/0000-0001-8033-9132 FU US DOE Fuel Cell Technologies Program, Technology Development Manager, Dr. Nancy Garland FX The authors thank Prof. John Kerr (LBNL) for useful discussion. The authors also thank US DOE Fuel Cell Technologies Program, Technology Development Manager, Dr. Nancy Garland, for financial support. NR 47 TC 0 Z9 0 U1 1 U2 8 PU ELECTROCHEMICAL SOC INC PI PENNINGTON PA 65 S MAIN ST, PENNINGTON, NJ 08534-2839 USA SN 1938-5862 BN 978-1-56677-820-6 J9 ECS TRANSACTIONS PY 2010 VL 33 IS 1 BP 659 EP + DI 10.1149/1.3484562 PG 4 WC Electrochemistry; Energy & Fuels; Polymer Science SC Electrochemistry; Energy & Fuels; Polymer Science GA BDH94 UT WOS:000313331100067 ER PT S AU Gervais, M Miller, AD Kerr, JB AF Gervais, M. Miller, A. D. Kerr, J. B. BE Gasteiger, HA Weber, A Strasser, P Edmundson, M Lamy, C Darling, R Uchida, H Schmidt, TJ Shirvanian, P Buchi, FN Mantz, R Zawodzinski, T Ramani, V Fuller, T Inaba, M Jones, D Narayanan, SR TI Ionomers with Highly Fluorinated Side Chains for Use in Battery and Fuel Cell Applications SO POLYMER ELECTROLYTE FUEL CELLS 10, PTS 1 AND 2 SE ECS Transactions LA English DT Proceedings Paper CT 10th Polymer Electrolyte Fuel Cells Symposium (PEFC) Conducted Under the Auspices of the 218th Meeting of the Electrocehmical-Society (ECS) CY OCT, 2010 CL Las Vegas, NV SP Electrochem Soc (ECS), Energy Technol (ETD), Phys & Analyt Electrochem (PAED), Battery (BATT), Ind Electrochem & Electrochem Engn (IEEE), Asahi Kasei E-Mat Corp, Ion Power Inc, UTC Power Corp, Umicore, Tokuyama Corp, Toyota Motor Eng & Mfg N Amer, Pine Res Instruments, Tanaka Kikinzoku Kogyo K K ID ANIONIC-POLYMERIZATION; TRIISOBUTYLALUMINUM; MEMBRANES; POLYMERS; SYSTEMS; SALTS AB Polymers with pendant double bonds were synthesized by functionalization of a ready backbone with polysulfone or through polymerization of monomers that contain a relatively unreactive double bond under the polymerization reaction conditions. Styrene-based monomer and epoxides were polymerized through an anionic mechanism leading to polymers with polydispersity indexes of 1.23 and 1.21 respectively. Fluorinated lithium salts were linked to the polymers through platinum-catalyzed hydrosilylation of the pendant double bonds prior to an ion-exchange with an acid. The conductivities of the resulting ionomers were measured giving a maximum conductivity of 3 mS/cm for a polysulfone functionalized with a fluorinated sulfonimide C1 [Gervais, M.; Miller, A. D.; Kerr, J. B.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Gervais, M (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. NR 15 TC 2 Z9 2 U1 1 U2 3 PU ELECTROCHEMICAL SOC INC PI PENNINGTON PA 65 S MAIN ST, PENNINGTON, NJ 08534-2839 USA SN 1938-5862 BN 978-1-56677-820-6 J9 ECS TRANSACTIONS PY 2010 VL 33 IS 1 BP 683 EP 691 DI 10.1149/1.3484564 PG 9 WC Electrochemistry; Energy & Fuels; Polymer Science SC Electrochemistry; Energy & Fuels; Polymer Science GA BDH94 UT WOS:000313331100069 ER PT S AU Kim, DS Guiver, M McGrath, JE Pivovar, BS Kim, YS AF Kim, Dae Sik Guiver, Michael McGrath, James E. Pivovar, Bryan S. Kim, Yu Seung BE Gasteiger, HA Weber, A Strasser, P Edmundson, M Lamy, C Darling, R Uchida, H Schmidt, TJ Shirvanian, P Buchi, FN Mantz, R Zawodzinski, T Ramani, V Fuller, T Inaba, M Jones, D Narayanan, SR TI Molecular Design Aspect of Sulfonated Polymers for Direct Methanol Fuel Cells SO POLYMER ELECTROLYTE FUEL CELLS 10, PTS 1 AND 2 SE ECS Transactions LA English DT Proceedings Paper CT 10th Polymer Electrolyte Fuel Cells Symposium (PEFC) Conducted Under the Auspices of the 218th Meeting of the Electrochemical-Society (ECS) CY OCT, 2010 CL Las Vegas, NV SP Electrochem Soc (ECS), Energy Technol (ETD), Phys & Analyt Electrochem (PAED), Battery (BATT), Ind Electrochem & Electrochem Engn, Asahi Kasei E-Mat Corp, Ion Power Inc, UTC Power Corp, Umicore, Tokuyama Corp, Toyota Motor Eng & Mfg N Amer, Pine Res Instruments, Tanaka Kikinzoku Kogyo K K ID PROTON-EXCHANGE MEMBRANES; POLY(ETHER ETHER KETONE); COPOLYMERS; ELECTROLYTE; CONDUCTIVITY; SULFONE)S; WATER AB Molecular structural effects of sulfonated polymers for direct methanol fuel cells (DMFCs) are investigated using a length scale parameter, Percent Conducting Volume (PCV). Sulfonated polymers were categorized based on molecular composition (nanometer length scale) and polymer architecture (sub micrometer length scale) and plotted methanol permeability as a function of PCV and molecular structure. Polymers having functional group such as base moiety, hydrogen bonding, or cross-linking agent showed the least methanol permeability while fluorinated polymers showed the highest methanol permeability at a given PCV. DMFC performance of selected sulfonated polymers is presented in order to support the analysis. C1 [Kim, Dae Sik; Kim, Yu Seung] Los Alamos Natl Lab, Sensors & Electrochem Devices Grp, POB 1663, Los Alamos, NM 87545 USA. [Guiver, Michael] CNR, Inst Chem Proc & Environm Technol, Ottawa, ON, Canada. [McGrath, James E.] Virginia Polytech Inst & State Univ, Macromol & Interfaces Inst, Blacksburg, VA 24061 USA. [Pivovar, Bryan S.] Hydrogen Technol Syst Ctr, Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Kim, DS (reprint author), Los Alamos Natl Lab, Sensors & Electrochem Devices Grp, POB 1663, Los Alamos, NM 87545 USA. RI Guiver, Michael/I-3248-2016 OI Guiver, Michael/0000-0003-2619-6809 NR 18 TC 9 Z9 9 U1 1 U2 5 PU ELECTROCHEMICAL SOC INC PI PENNINGTON PA 65 S MAIN ST, PENNINGTON, NJ 08534-2839 USA SN 1938-5862 BN 978-1-56677-820-6 J9 ECS TRANSACTIONS PY 2010 VL 33 IS 1 BP 711 EP + DI 10.1149/1.3484566 PG 2 WC Electrochemistry; Energy & Fuels; Polymer Science SC Electrochemistry; Energy & Fuels; Polymer Science GA BDH94 UT WOS:000313331100071 ER PT S AU Li, B Kim, YS Mukundan, R Wilson, MS Welch, C Fenton, J Borup, RL AF Li, Bo Kim, Yu Seung Mukundan, Rangachary Wilson, Mahlon S. Welch, Cynthia Fenton, James Borup, Rodney L. BE Gasteiger, HA Weber, A Strasser, P Edmundson, M Lamy, C Darling, R Uchida, H Schmidt, TJ Shirvanian, P Buchi, FN Mantz, R Zawodzinski, T Ramani, V Fuller, T Inaba, M Jones, D Narayanan, SR TI Mixed Hydrocarbon/Fluoropolymer Membrane/Ionomer MEAs for Durablity Studies SO POLYMER ELECTROLYTE FUEL CELLS 10, PTS 1 AND 2 SE ECS Transactions LA English DT Proceedings Paper CT 10th Polymer Electrolyte Fuel Cells Symposium (PEFC) Conducted Under the Auspices of the 218th Meeting of the Electrochemical-Society (ECS) CY OCT, 2010 CL Las Vegas, NV SP Electrochem Soc (ECS), Energy Technol (ETD), Phys & Analyt Electrochem (PAED), Battery (BATT), Ind Electrochem & Electrochem Engn, Asahi Kasei E-Mat Corp, Ion Power Inc, UTC Power Corp, Umicore, Tokuyama Corp, Toyota Motor Eng & Mfg N Amer, Pine Res Instruments, Tanaka Kikinzoku Kogyo K K ID PROTON-EXCHANGE MEMBRANES; ELECTROLYTE FUEL-CELLS; POLYMER ELECTROLYTE; NAFION CONTENT; PFSA IONOMERS; PERFORMANCE; DEGRADATION; CATALYST; PEMFCS; TEMPERATURE AB The durability of polymer electrolyte membrane (PEM) fuel cells is a major barrier to the commercialization of these systems for stationary and transportation power applications. Commercial viability depends on improving the durability of the fuel cell components to increase the system reliability. The aim of this work is to separate ionomer degradation from membrane degradation via mixed membrane / ionomer MEA experiments. The challenges of mixed MEA fabrication due to the incompatibility of the membrane and the electrode are addressed. OCV accelerated testing experiments (AST) were performed. Development of in situ diagnostics and unique experiments to characterize the performance and properties of the ionomer in the electrode as a function of time are reported. These measurements, along with extensive ex situ and post-mortem characterization, can delineate the degradation mechanisms in order to develop more durable fuel cells and fuel cell components. C1 [Li, Bo; Kim, Yu Seung; Mukundan, Rangachary; Wilson, Mahlon S.; Welch, Cynthia; Borup, Rodney L.] Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. [Fenton, James] Florida Solar Energy Ctr, Cocoa, FL 32922 USA. RP Li, B (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. OI Welch, Cynthia/0000-0002-4638-6434; Wilson, Mahlon/0000-0002-5944-2650; Mukundan, Rangachary/0000-0002-5679-3930 FU DOE EERE Funding; Fuel Cell Technologies Program, Technology Development Manager Nancy Garland. FX This work was supported by the DOE EERE Funding, Fuel Cell Technologies Program, Technology Development Manager Nancy Garland. NR 25 TC 1 Z9 1 U1 1 U2 8 PU ELECTROCHEMICAL SOC INC PI PENNINGTON PA 65 S MAIN ST, PENNINGTON, NJ 08534-2839 USA SN 1938-5862 BN 978-1-56677-820-6 J9 ECS TRANSACTIONS PY 2010 VL 33 IS 1 BP 913 EP + DI 10.1149/1.3484585 PG 3 WC Electrochemistry; Energy & Fuels; Polymer Science SC Electrochemistry; Energy & Fuels; Polymer Science GA BDH94 UT WOS:000313331100090 ER PT S AU Mukundan, R Davey, JR Fairweather, JD Spernjak, D Spendelow, J Hussey, DS Jacobson, DL Wilde, P Schweiss, R Borup, RL AF Mukundan, Rangachary Davey, John R. Fairweather, Joseph D. Spernjak, Dusan Spendelow, Jacob Hussey, Daniel. S. Jacobson, David L. Wilde, Peter Schweiss, Ruediger Borup, Rod L. BE Gasteiger, HA Weber, A Strasser, P Edmundson, M Lamy, C Darling, R Uchida, H Schmidt, TJ Shirvanian, P Buchi, FN Mantz, R Zawodzinski, T Ramani, V Fuller, T Inaba, M Jones, D Narayanan, SR TI Effect of Hydrophilic Treatment of Microporous Layer on Fuel Cell Performance SO POLYMER ELECTROLYTE FUEL CELLS 10, PTS 1 AND 2 SE ECS Transactions LA English DT Proceedings Paper CT 10th Polymer Electrolyte Fuel Cells Symposium (PEFC) Conducted Under the Auspices of the 218th Meeting of the Electrochemical-Society (ECS) CY OCT, 2010 CL Las Vegas, NV SP Electrochem Soc (ECS), Energy Technol (ETD), Phys & Analyt Electrochem (PAED), Battery (BATT), Ind Electrochem & Electrochem Engn, Asahi Kasei E-Mat Corp, Ion Power Inc, UTC Power Corp, Umicore, Tokuyama Corp, Toyota Motor Eng & Mfg N Amer, Pine Res Instruments, Tanaka Kikinzoku Kogyo K K ID DIFFUSION AB The gas diffusion layer in a polymer electrolyte fuel cell is the component primarily responsible for effective water management under a wide variety of conditions. The incorporation of hydrophilic alumosilicate fibers in the microporous layer leads to an improvement in the fuel cell performance associated with a decrease in the mass transport resistance especially under high RH operation. This improvement in performance is obtained without sacrificing performance under low RH conditions. The alumosilicate fibers create domains that wick liquid water away from the catalyst layer. The improved mass transport performance is corroborated by AC impedance and neutron radiography analysis and is consistent with an increase in the average pore diameter inside the microporous layer. C1 [Mukundan, Rangachary; Davey, John R.; Fairweather, Joseph D.; Spernjak, Dusan; Spendelow, Jacob; Borup, Rod L.] Los Alamos Natl Lab LANL, MS D429, Los Alamos, NM 87545 USA. [Hussey, Daniel. S.; Jacobson, David L.] Natl Inst Stand & Technol, Bureau Drive, MS 100 USA. [Wilde, Peter; Schweiss, Ruediger] SGL Technol GmbH, DE-86405 Meitingen, Germany. RP Mukundan, R (reprint author), Los Alamos Natl Lab LANL, MS D429, Los Alamos, NM 87545 USA. OI Mukundan, Rangachary/0000-0002-5679-3930 FU Fuel Cell Technologies program at the U.S. Department of Energy - Energy Efficiency and Renewable Energy; U.S. Department of Commerce; NIST Ionizing Radiation Division; Director's Office of NIST; NIST Center for Neutron Research; Department of Energy through interagency [DE-AI0101EE50660] FX This work was supported by the Fuel Cell Technologies program at the U.S. Department of Energy - Energy Efficiency and Renewable Energy. The authors would like to acknowledge the support of the technology development manager Nancy Garland. This work was also supported by the U.S. Department of Commerce, the NIST Ionizing Radiation Division, the Director's Office of NIST, the NIST Center for Neutron Research, and the Department of Energy through interagency agreement no. DE-AI0101EE50660. NR 6 TC 10 Z9 10 U1 0 U2 2 PU ELECTROCHEMICAL SOC INC PI PENNINGTON PA 65 S MAIN ST, PENNINGTON, NJ 08534-2839 USA SN 1938-5862 BN 978-1-56677-820-6 J9 ECS TRANSACTIONS PY 2010 VL 33 IS 1 BP 1109 EP + DI 10.1149/1.3484604 PG 2 WC Electrochemistry; Energy & Fuels; Polymer Science SC Electrochemistry; Energy & Fuels; Polymer Science GA BDH94 UT WOS:000313331100109 ER PT S AU Dursch, T Radke, CJ Weber, AZ AF Dursch, Thomas Radke, C. J. Weber, Adam Z. BE Gasteiger, HA Weber, A Strasser, P Edmundson, M Lamy, C Darling, R Uchida, H Schmidt, TJ Shirvanian, P Buchi, FN Mantz, R Zawodzinski, T Ramani, V Fuller, T Inaba, M Jones, D Narayanan, SR TI Ice Formation in Gas-Diffusion Layers SO POLYMER ELECTROLYTE FUEL CELLS 10, PTS 1 AND 2 SE ECS Transactions LA English DT Proceedings Paper CT 10th Polymer Electrolyte Fuel Cells Symposium (PEFC) Conducted Under the Auspices of the 218th Meeting of the Electrocehmical-Society (ECS) CY OCT, 2010 CL Las Vegas, NV SP Electrochem Soc (ECS), Energy Technol (ETD), Phys & Analyt Electrochem (PAED), Battery (BATT), Ind Electrochem & Electrochem Engn (IEEE), Asahi Kasei E-Mat Corp, Ion Power Inc, UTC Power Corp, Umicore, Tokuyama Corp, Toyota Motor Eng & Mfg N Amer, Pine Res Instruments, Tanaka Kikinzoku Kogyo K K ID PEM FUEL-CELL; MODEL AB Under sub-freezing conditions, ice forms in the gas-diffusion layer (GDL) of a proton exchange membrane fuel cell (PEMFC) drastically reducing cell performance. Although a number of strategies exist to prevent ice formation, there is little fundamental understanding of the mechanisms of freezing within PEMFC components. Differential scanning calorimetry (DSC) is used to elucidate the effects of hydrophobicity (Teflon (R) loading) and water saturation on the rate of ice formation within three commercial GDLs. We find that as the Teflon (R) loading increases, the crystallization temperature decreases due to a change in internal ice/substrate contact angle, as well as the attainable level of water saturation. Classical nucleation theory predicts the correct trend in freezing temperature with Teflon (R) loading. C1 [Dursch, Thomas; Radke, C. J.; Weber, Adam Z.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Dursch, T (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. OI Weber, Adam/0000-0002-7749-1624 NR 11 TC 0 Z9 0 U1 0 U2 3 PU ELECTROCHEMICAL SOC INC PI PENNINGTON PA 65 S MAIN ST, PENNINGTON, NJ 08534-2839 USA SN 1938-5862 BN 978-1-56677-820-6 J9 ECS TRANSACTIONS PY 2010 VL 33 IS 1 BP 1143 EP 1150 DI 10.1149/1.3484608 PG 8 WC Electrochemistry; Energy & Fuels; Polymer Science SC Electrochemistry; Energy & Fuels; Polymer Science GA BDH94 UT WOS:000313331100113 ER PT S AU Sun, CN More, KL Zawodzinski, TA AF Sun, Che-Nan More, Karren L. Zawodzinski, Thomas A. BE Gasteiger, HA Weber, A Strasser, P Edmundson, M Lamy, C Darling, R Uchida, H Schmidt, TJ Shirvanian, P Buchi, FN Mantz, R Zawodzinski, T Ramani, V Fuller, T Inaba, M Jones, D Narayanan, SR TI Investigation of Transport Properties, Microstructure, and Thermal Behavior of PEFC Catalyst Layers SO POLYMER ELECTROLYTE FUEL CELLS 10, PTS 1 AND 2 SE ECS Transactions LA English DT Proceedings Paper CT 10th Polymer Electrolyte Fuel Cells Symposium (PEFC) Conducted Under the Auspices of the 218th Meeting of the Electrochemical-Society (ECS) CY OCT, 2010 CL Las Vegas, NV SP Electrochem Soc (ECS), Energy Technol (ETD), Phys & Analyt Electrochem (PAED), Battery (BATT), Ind Electrochem & Electrochem Engn, Asahi Kasei E-Mat Corp, Ion Power Inc, UTC Power Corp, Umicore, Tokuyama Corp, Toyota Motor Eng & Mfg N Amer, Pine Res Instruments, Tanaka Kikinzoku Kogyo K K ID FUEL-CELLS; MEMBRANES; WATER; PERFORMANCE AB Several experimental techniques have been used to characterize the properties of ionomer in PFEC catalyst layers (CLs). NMR methods have been applied to determine the water motions at long-range (diffusion) and short-range (relaxation) in CLs. Our preliminary results suggest that the water diffusion in the ionomer phase is affected by the amount of catalyst particles (Pt/C) present in CLs. To further assess the factor(s) that might influence water diffusion in CLs, Transmission Electron Microscopy (TEM) has been conducted to investigate the dispersion of ionomer and catalyst particles in CLs. The composition effect on the CL structure will be discussed. In addition, thermal properties of CLs have been studied by modulated differential scanning calorimetry (MDSC) in an attempt to reveal polymer-Pt/C interactions. When compared with the thermal behavior of bulk Nafion (Nafion-112), additional features are observed in the MDSC 'kinetic' component during heating process. The nature of this feature is currently under investigation. C1 [Sun, Che-Nan; Zawodzinski, Thomas A.] Univ Tennessee, Dept Chem & Biomol Engn, Knoxville, TN 37996 USA. [More, Karren L.; Zawodzinski, Thomas A.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Sun, CN (reprint author), Univ Tennessee, Dept Chem & Biomol Engn, Knoxville, TN 37996 USA. RI Sun, Che-Nan/I-3871-2013; More, Karren/A-8097-2016 OI More, Karren/0000-0001-5223-9097 NR 8 TC 7 Z9 7 U1 0 U2 7 PU ELECTROCHEMICAL SOC INC PI PENNINGTON PA 65 S MAIN ST, PENNINGTON, NJ 08534-2839 USA SN 1938-5862 BN 978-1-56677-820-6 J9 ECS TRANSACTIONS PY 2010 VL 33 IS 1 BP 1207 EP + DI 10.1149/1.3484614 PG 2 WC Electrochemistry; Energy & Fuels; Polymer Science SC Electrochemistry; Energy & Fuels; Polymer Science GA BDH94 UT WOS:000313331100119 ER PT S AU Stuckey, PA Pietrasz, P Zawodzinski, TA AF Stuckey, P. A. Pietrasz, P. Zawodzinski, T. A. BE Gasteiger, HA Weber, A Strasser, P Edmundson, M Lamy, C Darling, R Uchida, H Schmidt, TJ Shirvanian, P Buchi, FN Mantz, R Zawodzinski, T Ramani, V Fuller, T Inaba, M Jones, D Narayanan, SR TI Normal Pulse Voltammetry: in situ Kinetic Analysis of Proton Exchange Membrane Fuel Cells SO POLYMER ELECTROLYTE FUEL CELLS 10, PTS 1 AND 2 SE ECS Transactions LA English DT Proceedings Paper CT 10th Polymer Electrolyte Fuel Cells Symposium (PEFC) Conducted Under the Auspices of the 218th Meeting of the Electrochemical-Society (ECS) CY OCT, 2010 CL Las Vegas, NV SP Electrochem Soc (ECS), Energy Technol (ETD), Phys & Analyt Electrochem (PAED), Battery (BATT), Ind Electrochem & Electrochem Engn, Asahi Kasei E-Mat Corp, Ion Power Inc, UTC Power Corp, Umicore, Tokuyama Corp, Toyota Motor Eng & Mfg N Amer, Pine Res Instruments, Tanaka Kikinzoku Kogyo K K AB Normal pulse voltammetry (NPV) is applied to operating proton exchange membrane fuel cells (PEMFCs) using a high current potentiostat. Kinetic information including the Tafel slope and exchange current density for the oxygen reduction reaction (ORR) is directly extracted from the steady state voltammetric response obtained from the NPV experiment. Temperature, relative humidity, and conditioning potential are varied independently to observe their effect on the PEMFC through the Tafel slope calculation. This NPV technique provides kinetic information previously collected through ex situ techniques such as rotating disc electrodes. The ability to probe in situ the kinetic effects of catalysts within operational PEMFCs has never been proposed in this detail. NPV measurements take less than 30 seconds to conduct thus making the process simple and efficient. The observed Tafel slope is about 60mV/decade for oxide covered platinum and 120mV/decade for oxide free platinum. C1 [Stuckey, P. A.; Pietrasz, P.] Case Western Reserve Univ, Dept Chem Engn, Cleveland, OH 44106 USA. [Stuckey, P. A.; Zawodzinski, T. A.] Univ Tennessee, Dept Chem & Biomol Engn, Knoxville, TN 37996 USA. [Stuckey, P. A.; Zawodzinski, T. A.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Stuckey, PA (reprint author), Case Western Reserve Univ, Dept Chem Engn, Cleveland, OH 44106 USA. FU U.S. DOE Office of Fuel Cell Technology; Los Alamos National Lab FX We thank Bill Eggers at Bio-Logic USA for providing a high current potentiostat and fuel cell test station. Funding for this work was provided by an ARO MURI project and by the U.S. DOE Office of Fuel Cell Technology under a subcontract from Los Alamos National Lab. NR 20 TC 1 Z9 1 U1 0 U2 8 PU ELECTROCHEMICAL SOC INC PI PENNINGTON PA 65 S MAIN ST, PENNINGTON, NJ 08534-2839 USA SN 1938-5862 BN 978-1-56677-820-6 J9 ECS TRANSACTIONS PY 2010 VL 33 IS 1 BP 1309 EP + DI 10.1149/1.3484623 PG 3 WC Electrochemistry; Energy & Fuels; Polymer Science SC Electrochemistry; Energy & Fuels; Polymer Science GA BDH94 UT WOS:000313331100128 ER PT S AU Xu, F Zhang, HY Ho, D Ilavsky, J Justics, M Petrache, H Stanciu, L Xie, J AF Xu, Fan Zhang, HangYu Ho, Derek Ilavsky, Jan Justics, Matt Petrache, Horia Stanciu, Lia Xie, Jian BE Gasteiger, HA Weber, A Strasser, P Edmundson, M Lamy, C Darling, R Uchida, H Schmidt, TJ Shirvanian, P Buchi, FN Mantz, R Zawodzinski, T Ramani, V Fuller, T Inaba, M Jones, D Narayanan, SR TI Investigation of Catalyst Ink Dispersion Using Small Angle X-ray and Small Angle Neutron Scattering SO POLYMER ELECTROLYTE FUEL CELLS 10, PTS 1 AND 2 SE ECS Transactions LA English DT Proceedings Paper CT 10th Polymer Electrolyte Fuel Cells Symposium (PEFC) Conducted Under the Auspices of the 218th Meeting of the Electrochemical-Society (ECS) CY OCT, 2010 CL Las Vegas, NV SP Electrochem Soc (ECS), Energy Technol (ETD), Phys & Analyt Electrochem (PAED), Battery (BATT), Ind Electrochem & Electrochem Engn, Asahi Kasei E-Mat Corp, Ion Power Inc, UTC Power Corp, Umicore, Tokuyama Corp, Toyota Motor Eng & Mfg N Amer, Pine Res Instruments, Tanaka Kikinzoku Kogyo K K AB One of the major aims of this investigation is to fill the gap of the micro-structural organization of ionomer particles and Pt/C aggregates dispersed in a catalyst ink. The dispersion of Nafion (R) ionomer particles and Pt/C catalyst aggregates in liquid media was studied using ultra small angle x-ray scattering (USAXS) and cryogenic TEM technologies. A systematic approach was taken to study the dispersion of each component (i.e. ionomer particles and Pt/C aggregates) first, then the combination, last the catalyst ink. A multiple curve fitting was used to extract the particle size, size distribution and geometry from scattering data. The results suggest that the particle size, size distribution and geometry of each system are not uniform, rather, vary significantly. The results also indicate that interaction among components (i.e. ionomer particles and Pt/C aggregates) exists. The cryogenic TEM, by which the size and geometry of particles in a liquid can be directly observed, was used to validate the scattering results, which shows the excellent agreement. Based on this study, a methodology of analyzing dispersion of Pt/C particles, Nafion particles in a catalyst ink has been developed and it can serve as a powerful tool for making a desired catalyst ink which is the crtical step for making rational designed MEA C1 [Xu, Fan; Xie, Jian] Lugar Ctr Renewable Energy, Dept Mech Engn, Indiana, PA USA. [Zhang, HangYu; Stanciu, Lia] Univ Purdue Univ Indianapolis IUPUI, Indianapolis, IN USA. [Ho, Derek] Purdue Univ, Weldon Sch Biomed Engn, Indiana, PA 47907 USA. [Ilavsky, Jan] NIST, Div Polymers, Gaithersburg, MD 20899 USA. [Justics, Matt; Petrache, Horia] Argonne Natl Lab, X Ray Sci Div, Argonne, IL 60439 USA. Indiana Univ Purdue Univ Indianapolis IUPUI, Dept Phys, Indiana, PA USA. [Stanciu, Lia] Purdue Univ, Sch Mat Engn, Indiana, PA 47907 USA. RP Xu, F (reprint author), Lugar Ctr Renewable Energy, Dept Mech Engn, Indiana, PA USA. NR 8 TC 1 Z9 1 U1 1 U2 1 PU ELECTROCHEMICAL SOC INC PI PENNINGTON PA 65 S MAIN ST, PENNINGTON, NJ 08534-2839 USA SN 1938-5862 BN 978-1-56677-820-6 J9 ECS TRANSACTIONS PY 2010 VL 33 IS 1 BP 1335 EP + DI 10.1149/1.3484625 PG 2 WC Electrochemistry; Energy & Fuels; Polymer Science SC Electrochemistry; Energy & Fuels; Polymer Science GA BDH94 UT WOS:000313331100130 ER PT S AU Gostick, JT Gunterman, HP Kienitz, BW Newman, JS MacDowell, AA Weber, AZ AF Gostick, J. T. Gunterman, H. P. Kienitz, B. W. Newman, J. S. MacDowell, A. A. Weber, A. Z. BE Gasteiger, HA Weber, A Strasser, P Edmundson, M Lamy, C Darling, R Uchida, H Schmidt, TJ Shirvanian, P Buchi, FN Mantz, R Zawodzinski, T Ramani, V Fuller, T Inaba, M Jones, D Narayanan, SR TI Tomographic Imaging of Water Injection and Withdrawal in PEMFC Gas Diffusion Layers SO POLYMER ELECTROLYTE FUEL CELLS 10, PTS 1 AND 2 SE ECS Transactions LA English DT Proceedings Paper CT 10th Polymer Electrolyte Fuel Cells Symposium (PEFC) Conducted Under the Auspices of the 218th Meeting of the Electrochemical-Society (ECS) CY OCT, 2010 CL Las Vegas, NV SP Electrochem Soc (ECS), Energy Technol (ETD), Phys & Analyt Electrochem (PAED), Battery (BATT), Ind Electrochem & Electrochem Engn, Asahi Kasei E-Mat Corp, Ion Power Inc, UTC Power Corp, Umicore, Tokuyama Corp, Toyota Motor Eng & Mfg N Amer, Pine Res Instruments, Tanaka Kikinzoku Kogyo K K ID X-RAY MICROTOMOGRAPHY; CAPILLARY-PRESSURE; FUEL-CELLS; QUANTIFICATION AB X-ray computed tomography was used to visualize the water configurations inside gas diffusion layers for various applied capillary pressures, corresponding to both water invasion and withdrawal. A specialized sample holder was developed to allow capillary pressure control on the small-scale samples required. Tests were performed on GDL specimens with and without hydrophobic treatments. C1 [Gostick, J. T.] McGill Univ, Dept Chem Engn, Montreal, PQ H3A 2T5, Canada. [Gunterman, H. P.; Newman, J. S.] Univ Calif, Dept Chem Engn, Berkeley, CA 94720 USA. [Kienitz, B. W.; MacDowell, A. A.; Weber, A. Z.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Gostick, JT (reprint author), McGill Univ, Dept Chem Engn, Montreal, PQ H3A 2T5, Canada. OI Kienitz, Brian/0000-0002-0648-0303; Weber, Adam/0000-0002-7749-1624 FU Assistant Secretary for Energy Efficiency and Renewable Energy; Office of Fuel Cell Technologies; U. S. Department of Energy [DE-ACO2-05CH11231]; Director, Office of Science; Office of Basic Energy Sciences; U.S. Department of Energy [DEACO2-05CH11231] FX This work was funded by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Fuel Cell Technologies, of the U. S. Department of Energy under contract number DE-ACO2-05CH11231. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DEACO2-05CH11231. NR 14 TC 9 Z9 9 U1 0 U2 4 PU ELECTROCHEMICAL SOC INC PI PENNINGTON PA 65 S MAIN ST, PENNINGTON, NJ 08534-2839 USA SN 1938-5862 BN 978-1-56677-820-6 J9 ECS TRANSACTIONS PY 2010 VL 33 IS 1 BP 1407 EP + DI 10.1149/1.3484632 PG 2 WC Electrochemistry; Energy & Fuels; Polymer Science SC Electrochemistry; Energy & Fuels; Polymer Science GA BDH94 UT WOS:000313331100137 ER PT S AU Mishler, J Wang, Y Mukundan, R Borup, R Hussey, DS Jacobson, DL AF Mishler, Jeffrey Wang, Yun Mukundan, Rangachary Borup, Rodney Hussey, Daniel S. Jacobson, David L. BE Gasteiger, HA Weber, A Strasser, P Edmundson, M Lamy, C Darling, R Uchida, H Schmidt, TJ Shirvanian, P Buchi, FN Mantz, R Zawodzinski, T Ramani, V Fuller, T Inaba, M Jones, D Narayanan, SR TI In-situ Investigation of Water Distribution in Polymer Electrolyte Fuel Cell Using Neutron Radiography SO POLYMER ELECTROLYTE FUEL CELLS 10, PTS 1 AND 2 SE ECS Transactions LA English DT Proceedings Paper CT 10th Polymer Electrolyte Fuel Cells Symposium (PEFC) Conducted Under the Auspices of the 218th Meeting of the Electrochemical-Society (ECS) CY OCT, 2010 CL Las Vegas, NV SP Electrochem Soc (ECS), Energy Technol (ETD), Phys & Analyt Electrochem (PAED), Battery (BATT), Ind Electrochem & Electrochem Engn, Asahi Kasei E-Mat Corp, Ion Power Inc, UTC Power Corp, Umicore, Tokuyama Corp, Toyota Motor Eng & Mfg N Amer, Pine Res Instruments, Tanaka Kikinzoku Kogyo K K ID 2-PHASE TRANSPORT; DIFFUSION LAYER; MEDIA; PEFCS; FLOW AB This paper investigates the water content within operating polymer electrolyte membrane (PEM) fuel cells using neutron radiography. We consider fuel cells with various PTFE loadings in their gas diffusion layers (GDL) and microporous layers (MPL), and examine the impacts of MPL/GDL properties on the liquid water behavior and fuel cell performance. Fuel cells are tested at both dry and fully hydrated conditions with different serpentine flow fields. Water contents in the projected areas of channel and land regions are probed. The fuel cell may be subject to more flooding at low current-density operation. Both MPL and GDL wetting properties have substantial impacts on the water content in fuel cell. Cell performance also varies on different scenarios of the MPL/GDL wetting properties. A quad-serpentine channel flow field exhibits higher water content without remarkable change in performance at low current densities. Liquid water profile along the channel is presented and on-set clearly indicated. C1 [Mishler, Jeffrey; Wang, Yun] Univ Calif Irvine, Dept Mech & Aerosp Engn, Renewable Energy Resources Lab, Irvine, CA 92697 USA. [Mukundan, Rangachary; Borup, Rodney] LANL, MS D429, Los Alamos, NM 87545 USA. [Hussey, Daniel S.] Ctr Neutron Res, Natl Inst Stand & Technol NIST, Gaithersburg, MD 100 USA. RP Mishler, J (reprint author), Univ Calif Irvine, Dept Mech & Aerosp Engn, Renewable Energy Resources Lab, Irvine, CA 92697 USA. OI Mukundan, Rangachary/0000-0002-5679-3930 FU U.S. Department of Energy (DOE); Fuel Cell Technologies (Technology Development Manager: Nancy Garland); U.S. Department of Commerce; NIST Ionizing Radiation Division; Director's Office of NIST; NIST Center for Neutron Research; Department of Energy [DE-AI01-01EE50660] FX This work was supported by the U.S. Department of Energy (DOE) Fuel Cell Technologies (Technology Development Manager: Nancy Garland). This work was also supported by the U.S. Department of Commerce, the NIST Ionizing Radiation Division, the Director's Office of NIST, the NIST Center for Neutron Research, and the Department of Energy through interagency agreement no. DE-AI01-01EE50660. We also thank Peter Wilde of SGL Group for providing the GDL materials. NR 18 TC 0 Z9 0 U1 0 U2 0 PU ELECTROCHEMICAL SOC INC PI PENNINGTON PA 65 S MAIN ST, PENNINGTON, NJ 08534-2839 USA SN 1938-5862 BN 978-1-56677-820-6 J9 ECS TRANSACTIONS PY 2010 VL 33 IS 1 BP 1443 EP + DI 10.1149/1.3484636 PG 3 WC Electrochemistry; Energy & Fuels; Polymer Science SC Electrochemistry; Energy & Fuels; Polymer Science GA BDH94 UT WOS:000313331100141 ER PT S AU Spernjak, D Mukherjee, PP Mukundan, R Davey, J Hussey, DS Jacobson, DL Borup, RL AF Spernjak, Dusan Mukherjee, Partha P. Mukundan, Rangachary Davey, John Hussey, Daniel S. Jacobson, David L. Borup, Rodney L. BE Gasteiger, HA Weber, A Strasser, P Edmundson, M Lamy, C Darling, R Uchida, H Schmidt, TJ Shirvanian, P Buchi, FN Mantz, R Zawodzinski, T Ramani, V Fuller, T Inaba, M Jones, D Narayanan, SR TI Measurement of Water Content in Polymer Electrolyte Membranes using High Resolution Neutron Imaging SO POLYMER ELECTROLYTE FUEL CELLS 10, PTS 1 AND 2 SE ECS Transactions LA English DT Proceedings Paper CT 10th Polymer Electrolyte Fuel Cells Symposium (PEFC) Conducted Under the Auspices of the 218th Meeting of the Electrochemical-Society (ECS) CY OCT, 2010 CL Las Vegas, NV SP Electrochem Soc (ECS), Energy Technol (ETD), Phys & Analyt Electrochem (PAED), Battery (BATT), Ind Electrochem & Electrochem Engn, Asahi Kasei E-Mat Corp, Ion Power Inc, UTC Power Corp, Umicore, Tokuyama Corp, Toyota Motor Eng & Mfg N Amer, Pine Res Instruments, Tanaka Kikinzoku Kogyo K K AB Sufficient water content within a polymer electrolyte membrane (PEM) is necessary for adequate ionic conductivity. Membrane hydration is therefore a fundamental requirement for fuel cell operation. The hydration state of the membrane affects the water transport within, as both the diffusion coefficient and electro-osmotic drag depend on the water content. Membrane's water uptake is conventionally measured ex situ by weighing free-swelling samples equilibrated at controlled water activity. In the present study, water profiles in Nafion membranes were measured using high-resolution neutron imaging. The state-of-the-art, 13 mu m resolution neutron detector is capable of resolving water distributions across N1120, N1110 and N117 membranes. It provides a means to measure the water uptake and transport properties of fuel cell membranes in situ. C1 [Spernjak, Dusan; Mukundan, Rangachary; Davey, John; Borup, Rodney L.] Los Alamos Natl Lab, MS D429,MPA-11, Los Alamos, NM 87545 USA. [Mukherjee, Partha P.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Hussey, Daniel S.; Jacobson, David L.] Ctr Neutron Res, NIST, Gaithersburg, MD 20899 USA. RP Spernjak, D (reprint author), Los Alamos Natl Lab, MS D429,MPA-11, Los Alamos, NM 87545 USA. OI Mukundan, Rangachary/0000-0002-5679-3930 NR 4 TC 13 Z9 13 U1 0 U2 1 PU ELECTROCHEMICAL SOC INC PI PENNINGTON PA 65 S MAIN ST, PENNINGTON, NJ 08534-2839 USA SN 1938-5862 BN 978-1-56677-820-6 J9 ECS TRANSACTIONS PY 2010 VL 33 IS 1 BP 1451 EP + DI 10.1149/1.3484637 PG 2 WC Electrochemistry; Energy & Fuels; Polymer Science SC Electrochemistry; Energy & Fuels; Polymer Science GA BDH94 UT WOS:000313331100142 ER PT S AU Mukherjee, PP Shim, E Mukundan, R Borup, RL AF Mukherjee, Partha P. Shim, Eunkyoung Mukundan, Rangachary Borup, Rodney L. BE Gasteiger, HA Weber, A Strasser, P Edmundson, M Lamy, C Darling, R Uchida, H Schmidt, TJ Shirvanian, P Buchi, FN Mantz, R Zawodzinski, T Ramani, V Fuller, T Inaba, M Jones, D Narayanan, SR TI Digital Volume Imaging of the PEFC Gas Diffusion Layer SO POLYMER ELECTROLYTE FUEL CELLS 10, PTS 1 AND 2 SE ECS Transactions LA English DT Proceedings Paper CT 10th Polymer Electrolyte Fuel Cells Symposium (PEFC) Conducted Under the Auspices of the 218th Meeting of the Electrochemical-Society (ECS) CY OCT, 2010 CL Las Vegas, NV SP Electrochem Soc (ECS), Energy Technol (ETD), Phys & Analyt Electrochem (PAED), Battery (BATT), Ind Electrochem & Electrochem Engn, Asahi Kasei E-Mat Corp, Ion Power Inc, UTC Power Corp, Umicore, Tokuyama Corp, Toyota Motor Eng & Mfg N Amer, Pine Res Instruments, Tanaka Kikinzoku Kogyo K K ID FUEL-CELLS AB The gas diffusion layer (GDL) plays a key role in the overall performance/durability of a polymer electrolyte fuel cell (PEFC). Of profound importance, especially in the context of water management and flooding phenomena, is the influence of the underlying pore morphology and wetting characteristics of the GDL microstructure. In this article, we present the digital volumetric imaging (DVI) technique in order to generate the 3-D carbon paper GDL microstructure. The internal pore structure and the local microstructural variations in terms of fiber alignment and fiber/binder distributions are investigated using the several 3-D thin sections of the sample obtained from DVI. C1 [Mukherjee, Partha P.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Mukherjee, Partha P.; Mukundan, Rangachary; Borup, Rodney L.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Shim, Eunkyoung] North Carolina State Univ, Nonwovens Inst, Raleigh, NC 27695 USA. RP Mukherjee, PP (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. OI Mukundan, Rangachary/0000-0002-5679-3930; Shim, Eunkyoung/0000-0001-9982-0743 FU US Department of Energy (DOE); Energy Efficiency and Renewable Energy (EERE); uel Cell Technologies Program (Program Manager: Nancy Garland) FX This work was supported by US Department of Energy (DOE), Energy Efficiency and Renewable Energy (EERE) Fuel Cell Technologies Program (Program Manager: Nancy Garland). NR 16 TC 2 Z9 2 U1 0 U2 2 PU ELECTROCHEMICAL SOC INC PI PENNINGTON PA 65 S MAIN ST, PENNINGTON, NJ 08534-2839 USA SN 1938-5862 BN 978-1-56677-820-6 J9 ECS TRANSACTIONS PY 2010 VL 33 IS 1 BP 1483 EP + DI 10.1149/1.3484641 PG 2 WC Electrochemistry; Energy & Fuels; Polymer Science SC Electrochemistry; Energy & Fuels; Polymer Science GA BDH94 UT WOS:000313331100146 ER PT S AU Olapade, PO Mukundan, R Davey, JR Borup, RL Meyers, JP AF Olapade, Peter O. Mukundan, Rangachary Davey, John R. Borup, Rodney L. Meyers, Jeremy P. BE Gasteiger, HA Weber, A Strasser, P Edmundson, M Lamy, C Darling, R Uchida, H Schmidt, TJ Shirvanian, P Buchi, FN Mantz, R Zawodzinski, T Ramani, V Fuller, T Inaba, M Jones, D Narayanan, SR TI Modeling the Dynamic Behavior of Proton-Exchange Membrane Fuel Cell SO POLYMER ELECTROLYTE FUEL CELLS 10, PTS 1 AND 2 SE ECS Transactions LA English DT Proceedings Paper CT 10th Polymer Electrolyte Fuel Cells Symposium (PEFC) Conducted Under the Auspices of the 218th Meeting of the Electrochemical-Society (ECS) CY OCT, 2010 CL Las Vegas, NV SP Electrochem Soc (ECS), Energy Technol (ETD), Phys & Analyt Electrochem (PAED), Battery (BATT), Ind Electrochem & Electrochem Engn, Asahi Kasei E-Mat Corp, Ion Power Inc, UTC Power Corp, Umicore, Tokuyama Corp, Toyota Motor Eng & Mfg N Amer, Pine Res Instruments, Tanaka Kikinzoku Kogyo K K ID 3-DIMENSIONAL COMPUTATIONAL ANALYSIS; GAS-DIFFUSION MEDIA; WATER TRANSPORT; TRANSIENTS; PROPERTY; PEMFC AB A two-phase transient model that incorporates the permanent hysteresis observed in the experimentally measured capillary pressure of GDL has been developed. The model provides an explanation for the difference in time constants between membrane hydration and dehydration observed in the HER experiments. When there is liquid water at the cathode catalyst layer, the time constant of the water content in the membrane is closely tied to that of liquid water saturation in the cathode catalyst layer, as the vapor is already saturated. The water content in the membrane will not reach steady state as long as the liquid water flow in the cathode catalyst layer is not at steady state. Also, increased resistance to proton transport in the membrane is observed when the cell voltage is stepped down to a low value, with a corresponding large increase in current. C1 [Olapade, Peter O.; Meyers, Jeremy P.] Univ Texas Austin, Dept Mech Engn, Austin, TX 78712 USA. [Olapade, Peter O.; Mukundan, Rangachary; Davey, John R.; Borup, Rodney L.] Los Alamos Natl Lab, Sensors & Elect Devices Grp, Los Alamos, NM 87545 USA. RP Olapade, PO (reprint author), Univ Texas Austin, Dept Mech Engn, Austin, TX 78712 USA. OI Mukundan, Rangachary/0000-0002-5679-3930 NR 20 TC 0 Z9 0 U1 0 U2 1 PU ELECTROCHEMICAL SOC INC PI PENNINGTON PA 65 S MAIN ST, PENNINGTON, NJ 08534-2839 USA SN 1938-5862 BN 978-1-56677-820-6 J9 ECS TRANSACTIONS PY 2010 VL 33 IS 1 BP 1561 EP + DI 10.1149/1.3484647 PG 2 WC Electrochemistry; Energy & Fuels; Polymer Science SC Electrochemistry; Energy & Fuels; Polymer Science GA BDH94 UT WOS:000313331100152 ER PT S AU Wang, Y Chen, KS AF Wang, Yun Chen, Ken S. BE Gasteiger, HA Weber, A Strasser, P Edmundson, M Lamy, C Darling, R Uchida, H Schmidt, TJ Shirvanian, P Buchi, FN Mantz, R Zawodzinski, T Ramani, V Fuller, T Inaba, M Jones, D Narayanan, SR TI Elucidating through-Plane Liquid Water Profile in a Polymer Electrolyte Membrane Fuel Cell SO POLYMER ELECTROLYTE FUEL CELLS 10, PTS 1 AND 2 SE ECS Transactions LA English DT Proceedings Paper CT 10th Polymer Electrolyte Fuel Cells Symposium (PEFC) Conducted Under the Auspices of the 218th Meeting of the Electrochemical-Society (ECS) CY OCT, 2010 CL Las Vegas, NV SP Electrochem Soc (ECS), Energy Technol (ETD), Phys & Analyt Electrochem (PAED), Battery (BATT), Ind Electrochem & Electrochem Engn, Asahi Kasei E-Mat Corp, Ion Power Inc, UTC Power Corp, Umicore, Tokuyama Corp, Toyota Motor Eng & Mfg N Amer, Pine Res Instruments, Tanaka Kikinzoku Kogyo K K ID 2-PHASE FLOW; DIFFUSION MEDIA; CATHODE; TRANSPORT; MODEL; MULTICOMPONENT; PERFORMANCE AB In this paper, a numerical model incorporating micro-porous layers (MPLs) is presented for simulating water transport within the gas diffusion layers (GDLs) and MPLs as well as across their interfaces in a polymer electrolyte membrane (PEM) fuel cell. One-dimensional analysis is conducted to investigate the impacts of MPL and GDL properties on the liquid-water profile across the anode GDL-MPL and cathode MPL-GDL regions. Furthermore, two-dimensional numerical simulations that take MPLs into account are also carried out to elucidate liquid water transport, particularly through-plane liquid-water profile in a PEM fuel cell. Results from case studies are presented. C1 [Wang, Yun] Univ Calif Irvine, Renewable Energy Resources Lab, Irvine, CA 92697 USA. [Chen, Ken S.] Engn Sci Ctr, Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Wang, Y (reprint author), Univ Calif Irvine, Renewable Energy Resources Lab, Irvine, CA 92697 USA. FU Sandia National Laboratories; United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX Funding support of this work was provided by Sandia National Laboratories. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 30 TC 0 Z9 0 U1 0 U2 1 PU ELECTROCHEMICAL SOC INC PI PENNINGTON PA 65 S MAIN ST, PENNINGTON, NJ 08534-2839 USA SN 1938-5862 BN 978-1-56677-820-6 J9 ECS TRANSACTIONS PY 2010 VL 33 IS 1 BP 1605 EP + DI 10.1149/1.3484650 PG 2 WC Electrochemistry; Energy & Fuels; Polymer Science SC Electrochemistry; Energy & Fuels; Polymer Science GA BDH94 UT WOS:000313331100155 ER PT S AU Wang, HL Coombs, S Macomber, C O'Neill, K Bender, G Pivovar, B Dinh, HN AF Wang, Heli Coombs, Sidney Macomber, Clay O'Neill, Kevin Bender, Guido Pivovar, Bryan Dinh, Huyen N. BE Gasteiger, HA Weber, A Strasser, P Edmundson, M Lamy, C Darling, R Uchida, H Schmidt, TJ Shirvanian, P Buchi, FN Mantz, R Zawodzinski, T Ramani, V Fuller, T Inaba, M Jones, D Narayanan, SR TI Evaluating Polymeric Materials as Potential Sources of PEMFC System Contaminants SO POLYMER ELECTROLYTE FUEL CELLS 10, PTS 1 AND 2 SE ECS Transactions LA English DT Proceedings Paper CT 10th Polymer Electrolyte Fuel Cells Symposium (PEFC) Conducted Under the Auspices of the 218th Meeting of the Electrocehmical-Society (ECS) CY OCT, 2010 CL Las Vegas, NV SP Electrochem Soc (ECS), Energy Technol (ETD), Phys & Analyt Electrochem (PAED), Battery (BATT), Ind Electrochem & Electrochem Engn (IEEE), Asahi Kasei E-Mat Corp, Ion Power Inc, UTC Power Corp, Umicore, Tokuyama Corp, Toyota Motor Eng & Mfg N Amer, Pine Res Instruments, Tanaka Kikinzoku Kogyo K K AB The cost and durability of polymer electrolyte membrane fuel cell (PEMFC) systems have limited their deployment. The relative cost of the balance of plant (BOP) has risen in importance with decreasing fuel cell stack cost. Lowering costs of PEMFC system components require the understanding of potential contaminants from these materials. System contaminants have received very limited attention publicly. We here present ex-situ leaching tests with materials that could be considered as gasket materials to quickly screen BOP component materials. Aliquots of the leachant solutions were collected periodically and analyzed (pH, conductivity, etc.) to identify and quantify contaminants. The influence of the leachant on the electrochemical performance of Pt was also investigated. C1 [Wang, Heli; Coombs, Sidney; Macomber, Clay; O'Neill, Kevin; Bender, Guido; Pivovar, Bryan; Dinh, Huyen N.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Wang, HL (reprint author), Natl Renewable Energy Lab, 1617 Cole Blvd, Golden, CO 80401 USA. NR 12 TC 6 Z9 6 U1 0 U2 1 PU ELECTROCHEMICAL SOC INC PI PENNINGTON PA 65 S MAIN ST, PENNINGTON, NJ 08534-2839 USA SN 1938-5862 BN 978-1-56677-820-6 J9 ECS TRANSACTIONS PY 2010 VL 33 IS 1 BP 1617 EP 1625 DI 10.1149/1.3484651 PG 9 WC Electrochemistry; Energy & Fuels; Polymer Science SC Electrochemistry; Energy & Fuels; Polymer Science GA BDH94 UT WOS:000313331100156 ER PT S AU Macomber, CS Wang, HL O'Neill, K Coombs, S Bender, G Pivovar, B Dinh, HN AF Macomber, Clay S. Wang, Heli O'Neill, Kevin Coombs, Sidney Bender, Guido Pivovar, Bryan Dinh, Huyen N. BE Gasteiger, HA Weber, A Strasser, P Edmundson, M Lamy, C Darling, R Uchida, H Schmidt, TJ Shirvanian, P Buchi, FN Mantz, R Zawodzinski, T Ramani, V Fuller, T Inaba, M Jones, D Narayanan, SR TI Characterizing Polymeric Leachants for Potential System Contaminants of Fuel Cells SO POLYMER ELECTROLYTE FUEL CELLS 10, PTS 1 AND 2 SE ECS Transactions LA English DT Proceedings Paper CT 10th Polymer Electrolyte Fuel Cells Symposium (PEFC) Conducted Under the Auspices of the 218th Meeting of the Electrocehmical-Society (ECS) CY OCT, 2010 CL Las Vegas, NV SP Electrochem Soc (ECS), Energy Technol (ETD), Phys & Analyt Electrochem (PAED), Battery (BATT), Ind Electrochem & Electrochem Engn (IEEE), Asahi Kasei E-Mat Corp, Ion Power Inc, UTC Power Corp, Umicore, Tokuyama Corp, Toyota Motor Eng & Mfg N Amer, Pine Res Instruments, Tanaka Kikinzoku Kogyo K K AB The role of system contaminants in the performance degradation of Proton Exchange Membrane (PEM) fuel cells has been underappreciated to date. This work seeks to identify potential contaminants of system components with the ultimate goal of tying contaminant exposure to performance and durability After aging of select polymers in solution, leachant samples were qualitatively identified via GCMS and FTIR-ATR. Total Organic Carbon (TOC) content quantitatively provided information relative to contaminant level extracted from polymeric samples. Results will be presented focusing on SBR rubber and neoprene. Qualitative concentration vs. time charts elucidate leachant evolution, showing among other things potential chemical degradation in solution. C1 [Macomber, Clay S.; Wang, Heli; O'Neill, Kevin; Coombs, Sidney; Bender, Guido; Pivovar, Bryan; Dinh, Huyen N.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Macomber, CS (reprint author), Natl Renewable Energy Lab, 1617 Cole Blvd, Golden, CO 80401 USA. NR 9 TC 11 Z9 11 U1 0 U2 0 PU ELECTROCHEMICAL SOC INC PI PENNINGTON PA 65 S MAIN ST, PENNINGTON, NJ 08534-2839 USA SN 1938-5862 BN 978-1-56677-820-6 J9 ECS TRANSACTIONS PY 2010 VL 33 IS 1 BP 1637 EP 1643 DI 10.1149/1.3484653 PG 7 WC Electrochemistry; Energy & Fuels; Polymer Science SC Electrochemistry; Energy & Fuels; Polymer Science GA BDH94 UT WOS:000313331100158 ER PT S AU Kim, DS Kim, YS AF Kim, D. S. Kim, Y. S. BE Gasteiger, HA Weber, A Strasser, P Edmundson, M Lamy, C Darling, R Uchida, H Schmidt, TJ Shirvanian, P Buchi, FN Mantz, R Zawodzinski, T Ramani, V Fuller, T Inaba, M Jones, D Narayanan, SR TI Anion Conducting Polyaromatics having Guanidine Base SO POLYMER ELECTROLYTE FUEL CELLS 10, PTS 1 AND 2 SE ECS Transactions LA English DT Proceedings Paper CT 10th Polymer Electrolyte Fuel Cells Symposium (PEFC) Conducted Under the Auspices of the 218th Meeting of the Electrochemical-Society (ECS) CY OCT, 2010 CL Las Vegas, NV SP Electrochem Soc (ECS), Energy Technol (ETD), Phys & Analyt Electrochem (PAED), Battery (BATT), Ind Electrochem & Electrochem Engn, Asahi Kasei E-Mat Corp, Ion Power Inc, UTC Power Corp, Umicore, Tokuyama Corp, Toyota Motor Eng & Mfg N Amer, Pine Res Instruments, Tanaka Kikinzoku Kogyo K K ID ALKALINE POLYMER ELECTROLYTE; PROTON-EXCHANGE MEMBRANES; FUEL-CELL APPLICATIONS; TRANSESTERIFICATION; HYDROXIDE; IONOMER AB A guanidine based poly(arylene ether sulfone)s (PAES-TMG) membrane was synthesized from the poly(arylene ether sulfone)s having activated fluorine group and tetramethylguanidine (TMG) without chloromethylation and/or bromination. The methylated PAES-TMG membranes do not have beta-hydrogen, and TMG groups have high basicity (pKa = 13.6), which may reduce the potential of degradation due to E-2 and S(N)2 reaction. The membrane showed the good stability in alkaline conditions (0.5M NaOH boiling temperature for 2hr, 80 degrees C for 382hr). The OH- conductivities before and after NaOH test at 80 degrees C for 382hr are 0.036 S/cm, and 0.023S/cm, respectively. The conductivity after exposure to ambient air is 0.019S/cm (sigma HCO3-) at 80 degrees C. C1 [Kim, D. S.; Kim, Y. S.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Kim, DS (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. NR 25 TC 6 Z9 6 U1 1 U2 7 PU ELECTROCHEMICAL SOC INC PI PENNINGTON PA 65 S MAIN ST, PENNINGTON, NJ 08534-2839 USA SN 1938-5862 BN 978-1-56677-820-6 J9 ECS TRANSACTIONS PY 2010 VL 33 IS 1 BP 1867 EP 1874 DI 10.1149/1.3484678 PG 8 WC Electrochemistry; Energy & Fuels; Polymer Science SC Electrochemistry; Energy & Fuels; Polymer Science GA BDH94 UT WOS:000313331100183 ER PT S AU Devarakonda, MN Holladay, JD Brooks, KP Rassat, SD Herling, DR AF Devarakonda, M. N. Holladay, J. D. Brooks, K. P. Rassat, S. D. Herling, D. R. BE Gasteiger, HA Weber, A Strasser, P Edmundson, M Lamy, C Darling, R Uchida, H Schmidt, TJ Shirvanian, P Buchi, FN Mantz, R Zawodzinski, T Ramani, V Fuller, T Inaba, M Jones, D Narayanan, SR TI Dynamic Modeling and Simulation Based Analysis of an Ammonia Borane (AB) Reactor System for Hydrogen Storage SO POLYMER ELECTROLYTE FUEL CELLS 10, PTS 1 AND 2 SE ECS Transactions LA English DT Proceedings Paper CT 10th Polymer Electrolyte Fuel Cells Symposium (PEFC) Conducted Under the Auspices of the 218th Meeting of the Electrocehmical-Society (ECS) CY OCT, 2010 CL Las Vegas, NV SP Electrochem Soc (ECS), Energy Technol (ETD), Phys & Analyt Electrochem (PAED), Battery (BATT), Ind Electrochem & Electrochem Engn (IEEE), Asahi Kasei E-Mat Corp, Ion Power Inc, UTC Power Corp, Umicore, Tokuyama Corp, Toyota Motor Eng & Mfg N Amer, Pine Res Instruments, Tanaka Kikinzoku Kogyo K K ID HIERARCHICAL METHODOLOGY AB Research on ammonia borane (AB, NH3BH3) has shown it to be a promising material for chemical hydrogen storage in PEM fuel cell applications. AB was selected by DOE's Hydrogen Storage Engineering Center of Excellence (HSECoE) as the initial chemical hydride of study because of its high hydrogen storage capacity (up to 19.6% by weight for the release of three molar equivalents of hydrogen gas) and its stability under typical ambient conditions. A model of a bead reactor system which includes feed and product tanks, hot and cold augers, a ballast tank/reactor, a H-2 burner and a radiator was developed to study AB system performance in an automotive application and estimate the energy, mass, and volume requirements for this off-board regenerable hydrogen storage material. Preliminary system simulation results for a start-up case and for a transient drive cycle indicate appropriate trends in the reactor system dynamics. A new controller was developed and validated in simulation for a couple of H-2 demand cases. C1 [Devarakonda, M. N.; Holladay, J. D.; Brooks, K. P.; Rassat, S. D.; Herling, D. R.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Devarakonda, MN (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. NR 10 TC 2 Z9 2 U1 1 U2 5 PU ELECTROCHEMICAL SOC INC PI PENNINGTON PA 65 S MAIN ST, PENNINGTON, NJ 08534-2839 USA SN 1938-5862 BN 978-1-56677-820-6 J9 ECS TRANSACTIONS PY 2010 VL 33 IS 1 BP 1959 EP 1972 DI 10.1149/1.3484687 PG 14 WC Electrochemistry; Energy & Fuels; Polymer Science SC Electrochemistry; Energy & Fuels; Polymer Science GA BDH94 UT WOS:000313331100192 ER PT J AU Zhang, F Ilavsky, J AF Zhang, Fan Ilavsky, Jan TI Ultra-Small-Angle X-ray Scattering of Polymers SO POLYMER REVIEWS LA English DT Review DE ultra-small-angle X-ray scattering; small angle X-ray scattering; polymers; colloids ID SALT CONCENTRATION-DEPENDENCE; ISOTACTIC POLY(METHYL METHACRYLATE); SINGLE-WALLED NANOTUBES; RADIATION-DAMAGE; INTERPARTICLE DISTANCE; COLLOIDAL DISPERSIONS; IN-SITU; MECHANICAL-PROPERTIES; CARBON AEROGELS; NANOSTRUCTURE EVOLUTION AB Ultra-small-angle X-ray scattering (USAXS) is capable of probing structural inhomogeneities in the size range of 1 to 1000 nm. Recent developments of X-ray sources and optics make USAXS increasingly relevant to polymer research. In this review, we examine the current technical state of USAXS instrumentation, and briefly introduce the method of data reduction and analysis. We emphasize USAXS's application in areas such as polymer nanocomposites, polymer gels and solutions, polymer blends, polymer micelles and microemulsions, and colloidal sciences. Finally, we predict more USAXS studies on polymeric systems, especially those with large-scale structures or hierarchical microstructures. C1 [Ilavsky, Jan] Argonne Natl Lab, Adv Photon Source, Xray Sci Div, Argonne, IL 60439 USA. [Zhang, Fan] Natl Inst Stand & Technol, Mat Sci & Engn Lab, Gaithersburg, MD 20899 USA. [Zhang, Fan] No Illinois Univ, Dept Phys, De Kalb, IL USA. RP Ilavsky, J (reprint author), Argonne Natl Lab, Adv Photon Source, Xray Sci Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM ilavsky@aps.anl.gov RI Zhang, Fan/A-6133-2010; Ilavsky, Jan/D-4521-2013; USAXS, APS/D-4198-2013 OI Ilavsky, Jan/0000-0003-1982-8900; FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX Research at the Advanced Photon Source, Argonne National Laboratory is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract No. DE-AC02-06CH11357. NR 186 TC 19 Z9 19 U1 4 U2 44 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 325 CHESTNUT ST, SUITE 800, PHILADELPHIA, PA 19106 USA SN 1558-3724 J9 POLYM REV JI Polym. Rev. PY 2010 VL 50 IS 1 BP 59 EP 90 AR PII 919458384 DI 10.1080/15583720903503486 PG 32 WC Polymer Science SC Polymer Science GA 562CN UT WOS:000275027000004 ER PT S AU Mukhopadhyay, S AF Mukhopadhyay, Sumit BE Vafai, K TI A Coupled Multiphase Fluid Flow And Heat And Vapor Transport Model For Air-Gap Membrane Distillation SO POROUS MEDIA AND ITS APPLICATIONS IN SCIENCE, ENGINEERING AND INDUSTRY SE AIP Conference Proceedings LA English DT Proceedings Paper CT 3rd International Conference on Porous Media and its Applications in Science, Engineering and Industry CY JUN 20-25, 2010 CL Montecatini, ITALY SP Natl Sci Fdn, Engn Conferences Int DE Membrane distillation; desalination; porous medium flow; multiphase flow and transport; multicomponent diffusion; mathematical modeling ID DESALINATION; DIFFUSION AB Membrane distillation (MD) is emerging as a viable desalination technology because of its low energy requirements that can be provided from low-grade, waste heat and because it causes less fouling. In MD, desalination is accomplished by transporting water vapour through a porous hydrophobic membrane. The vapour transport process is governed by the vapour pressure difference between the two sides of a membrane. A variety of configurations have been tested to impose this vapour pressure gradient, however, the air-gap membrane distillation (AGMD) has been found to be the most efficient. The separation mechanism of AGMD and its overall efficiency is based on vapour-liquid equilibrium (VLE). At present, little knowledge is available about the optimal design of such a transmembrane VLE-based evaporation, and subsequent condensation processes. While design parameters for MD have evolved mostly through experimentations, a comprehensive mathematical model is yet to be developed. This is primarily because the coupling and non-linearity of the equations, the interactions between the flow, heat and mass transport regimes, and the complex geometries involved pose a challenging modelling and simulation problem. Yet a comprehensive mathematical model is needed for systematic evaluation of the processes, design parameterization, and performance prediction. This paper thus presents a coupled fluid flow, heat and mass transfer model to investigate the main processes and parameters affecting the performance of an AGMD. C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Mukhopadhyay, S (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. NR 14 TC 0 Z9 0 U1 0 U2 2 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-0803-6 J9 AIP CONF PROC PY 2010 VL 1254 BP 109 EP 114 DI 10.1063/1.3453795 PG 6 WC Physics, Applied SC Physics GA BRL12 UT WOS:000282998600018 ER PT B AU Hofmeyr, S Iancu, C Blagojevic, F AF Hofmeyr, Steven Iancu, Costin Blagojevic, Filip GP ACM TI Load Balancing on Speed SO PPOPP 2010: PROCEEDINGS OF THE 2010 ACM SIGPLAN SYMPOSIUM ON PRINCIPLES AND PRACTICE OF PARALLEL PROGRAMMING LA English DT Proceedings Paper CT 15th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming CY JAN 09-14, 2010 CL Indian Inst Sci, Bangalore, INDIA SP ACM SIGPLAN HO Indian Inst Sci DE Parallel Programming; Operating System; Load Balancing; Speed Balancing; Multicore; Multisocket AB To fully exploit multicore processors, applications are expected to provide a large degree of thread-level parallelism. While adequate for low core counts and their typical workloads, the current load balancing support in operating systems may not be able to achieve efficient hardware utilization for parallel workloads. Balancing run queue length globally ignores the needs of parallel applications where threads are required to make equal progress. In this paper we present a load balancing technique designed specifically for parallel applications running on multicore systems. Instead of balancing run queue length, our algorithm balances the time a thread has executed on "faster" and "slower" cores. We provide a user level implementation of speed balancing on UMA and NUMA multisocket architectures running Linux and discuss behavior across a variety of workloads, usage scenarios and programming models. Our results indicate that speed balancing when compared to the native LIMY load balancing improves performance and provides good petformance isolation in all cases considered. Speed balancing is also able to provide comparable or better performance than DWRR, a fair multi-processor scheduling implementation inside the Linux kernel. Furthermore., parallel application petformance is often determined by the implementation of synchronization operations and speed balancing alleviates the need for tuning the implementations of such primitives. C1 [Hofmeyr, Steven; Iancu, Costin; Blagojevic, Filip] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Hofmeyr, S (reprint author), Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM shofmeyr@lbl.goy; cciancu@lbl.goy; fblagojevic@lbl.goy NR 32 TC 7 Z9 10 U1 0 U2 0 PU ASSOC COMPUTING MACHINERY PI NEW YORK PA 1515 BROADWAY, NEW YORK, NY 10036-9998 USA BN 978-1-60558-708-0 PY 2010 BP 147 EP 157 DI 10.1145/1693453.1693475 PG 11 WC Computer Science, Software Engineering; Computer Science, Theory & Methods SC Computer Science GA BTJ71 UT WOS:000287116900017 ER PT J AU Jones, JF Kast, BA Bailar, JM AF Jones, James F. (Red) Kast, Brain A. Bailar, James M. TI Development of a spring loaded micro-pivot bearing SO PRECISION ENGINEERING-JOURNAL OF THE INTERNATIONAL SOCIETIES FOR PRECISION ENGINEERING AND NANOTECHNOLOGY LA English DT Article DE Micro-assembly; Heterogeneous MEMS; Micro-bearing ID MICROGRIPPER; SENSOR AB Ratchet and pawl mechanisms have been used for centuries in timing escapements and many other devices. As these devices are driven to ever-smaller dimensions, friction and other micro-forces become highly influential on device operation and reliability. This paper describes the design and assembly of a zero-friction, spring-loaded pivot bearing for possible replacement of the standard spring and rotational bearing in ratchet and pawl mechanisms. Three issues are discussed: development of a closed-form solution that relates bearing geometry and material properties to rotational spring rate, a macro-scale pivot bearing prototype to validate the closed-form solution, and the use of a micro-assembly workstation to assemble an ultra-miniature bearing comprised of micro-scale components. (C) 2009 Elsevier Inc. All rights reserved. C1 [Jones, James F. (Red); Kast, Brain A.; Bailar, James M.] Sandia Natl Labs, Intelligent Syst & Cybernet Grp, Albuquerque, NM 87123 USA. RP Jones, JF (reprint author), Sandia Natl Labs, Intelligent Syst & Cybernet Grp, 1515 Eubank SE, Albuquerque, NM 87123 USA. EM redjone@sandia.gov FU United States Department of Energy [DE-AC04-94AL85000] FX Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. NR 24 TC 1 Z9 1 U1 1 U2 4 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0141-6359 J9 PRECIS ENG JI Precis. Eng.-J. Int. Soc. Precis. Eng. Nanotechnol. PD JAN PY 2010 VL 34 IS 1 BP 180 EP 185 DI 10.1016/j.precisioneng.2009.06.002 PG 6 WC Engineering, Multidisciplinary; Engineering, Manufacturing; Nanoscience & Nanotechnology; Instruments & Instrumentation SC Engineering; Science & Technology - Other Topics; Instruments & Instrumentation GA 525OV UT WOS:000272226700025 ER PT S AU Miller, MK Hoelzer, DT Russell, KF AF Miller, Michael K. Hoelzer, David T. Russell, Kaye F. BE Nie, JF Morton, A TI Towards Radiation Tolerant Nanostructured Ferritic Alloys SO PRICM 7, PTS 1-3 SE Materials Science Forum LA English DT Proceedings Paper CT 7th Pacific Rim International Conference on Advanced Materials and Processing CY AUG 02-06, 2010 CL Cairns, AUSTRALIA SP Chinese Soc Metals, Japan Inst Metals, Korean Inst Metals & Mat, Mat Australia, Minerals, Met & Mat Soc DE Radiation; nanostructured ferritic alloys; radiation tolerant; atom probe tomography ID STEEL; IRRADIATION; STABILITY AB The high temperature and irradiation response of a new class of nanostructured ferritic alloys have been investigated by atom probe tomography. These materials are candidate materials for use in the extreme environments that will be present in the next generation of power generating systems. Atom probe tomography has revealed that the yttria powder is forced into solid solution during the mechanical alloying process andsubsequently 2-nm-diameter Ti-, Y- and O-enriched nanoclusters are formedduring the extrusion process. These nanoclusters have been shown to be remarkably stable during isothermal annealing treatments up to 0.92 of the melting temperature and during proton irradiation up to 3 displacements per atom. No significant difference in sizes, compositions and number densities of the nanoclusters was also observed between the unirradiated and proton irradiated conditions. The grain boundaries were found to have high number densities of nanoclusters as well as chromium and tungsten segregation which pin the grain boundary to minimize creep and grain growth. C1 [Miller, Michael K.; Hoelzer, David T.; Russell, Kaye F.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Miller, MK (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, POB 2008, Oak Ridge, TN 37831 USA. EM millermk@ornl.gov RI Hoelzer, David/L-1558-2016 NR 17 TC 16 Z9 16 U1 0 U2 6 PU TRANS TECH PUBLICATIONS LTD PI DURNTEN-ZURICH PA KREUZSTRASSE 10, 8635 DURNTEN-ZURICH, SWITZERLAND SN 0255-5476 J9 MATER SCI FORUM PY 2010 VL 654-656 BP 23 EP 28 DI 10.4028/www.scientific.net/MSF.654-656.23 PN 1-3 PG 6 WC Materials Science, Ceramics; Materials Science, Multidisciplinary; Materials Science, Coatings & Films; Materials Science, Composites SC Materials Science GA BSQ15 UT WOS:000285374600005 ER PT S AU Gray, GT Livescu, V Cerreta, EK AF Gray, George T., III Livescu, Veronica Cerreta, Ellen K. BE Nie, JF Morton, A TI Defect and Damage Evolution Quantification in Dynamically-Deformed Metals using Orientation-Imaging Microscopy SO PRICM 7, PTS 1-3 SE Materials Science Forum LA English DT Proceedings Paper CT 7th Pacific Rim International Conference on Advanced Materials and Processing CY AUG 02-06, 2010 CL Cairns, AUSTRALIA SP Chinese Soc Metals, Japan Inst Metals, Korean Inst Metals & Mat, Mat Australia, Minerals, Metals & Mat Soc DE Spallation; dynamic damage evolution; electron back-scatter diffraction; Cu; Ta ID PRESSURE; FRACTURE AB Orientation-imaging microscopy offers unique capabilities to quantify the defects and damage evolution occurring in metals following dynamic and shock loading. Examples of the quantification of the types of deformation twins activated, volume fraction of twinning, and damage evolution as a function of shock loading in Ta are presented. Electron back-scatter diffraction (EBSD) examination of the damage evolution in sweeping-detonation-wave shock loading to study spallation in Cu is also presented. C1 [Gray, George T., III; Livescu, Veronica; Cerreta, Ellen K.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Gray, GT (reprint author), Los Alamos Natl Lab, MailStop G755, Los Alamos, NM 87545 USA. EM rusty@lanl.gov; vlivescu@lanl.gov; ecerreta@lanl.gov NR 9 TC 1 Z9 1 U1 1 U2 6 PU TRANS TECH PUBLICATIONS LTD PI STAFA-ZURICH PA LAUBLSRUTISTR 24, CH-8717 STAFA-ZURICH, SWITZERLAND SN 0255-5476 J9 MATER SCI FORUM PY 2010 VL 654-656 BP 2297 EP 2302 DI 10.4028/www.scientific.net/MSF.654-656.2297 PN 1-3 PG 6 WC Materials Science, Ceramics; Materials Science, Multidisciplinary; Materials Science, Coatings & Films; Materials Science, Composites SC Materials Science GA BSQ15 UT WOS:000285374600564 ER PT S AU Bent, R Van Hentenryck, P AF Bent, Russell Van Hentenryck, Pascal BE Cohen, D TI Spatial, Temporal, and Hybrid Decompositions for Large-Scale Vehicle Routing with Time Windows SO PRINCIPLES AND PRACTICE OF CONSTRAINT PROGRAMMING-CP 2010 SE Lecture Notes in Computer Science LA English DT Proceedings Paper CT 16th Annual International Conference on the Principles and Practice of Constraint Programming CY SEP 06-10, 2010 CL St Andrews, SCOTLAND SP 4C, Cork Constraint Computat Ctr, Assoc Constraint Programming, Google, EMEA Univ Programs, IBM Res, Cornell Univ, Inst Computat Sustainabil, Natl Informat & Communicat Technol, Ecole Polytechn, Optimisat Sustainable Dev, Swedish Inst Comp Sci ID VARIABLE NEIGHBORHOOD SEARCH; LOCAL SEARCH; EVOLUTION STRATEGIES; ALGORITHM; POPMUSIC; SOLVE AB This paper studies the use of decomposition techniques to quickly find high-quality solutions to large-scale vehicle routing problems with time windows. It considers an adaptive decomposition scheme which iteratively decouples a routing problem based on the current solution. Earlier work considered vehicle-based decompositions that partitions the vehicles across the subproblems. The subproblems can then be optimized independently and merged easily. This paper argues that vehicle-based decompositions, although very effective on various problem classes also have limitations. In particular, they do not accommodate temporal decompositions and may produce spatial decompositions that are not focused enough. This paper then proposes customer-based decompositions which generalize vehicle-based decouplings and allows for focused spatial and temporal decompositions. Experimental results on class R2 of the extended Solomon benchmarks demonstrates the benefits of the customer-based adaptive decomposition scheme and its spatial, temporal, and hybrid instantiations. In particular, they show that customer-based decompositions bring significant benefits over large neighborhood search in contrast to vehicle-based decompositions. C1 [Bent, Russell] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Van Hentenryck, Pascal] Brown Univ, Providence, RI 02912 USA. RP Bent, R (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87545 USA. NR 29 TC 7 Z9 7 U1 0 U2 3 PU SPRINGER-VERLAG BERLIN PI BERLIN PA HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY SN 0302-9743 BN 978-3-642-15395-2 J9 LECT NOTES COMPUT SC PY 2010 VL 6308 BP 99 EP + PG 3 WC Computer Science, Theory & Methods SC Computer Science GA BTC72 UT WOS:000286485800011 ER PT J AU Hodak, M Bernholc, J AF Hodak, Miroslav Bernholc, Jerzy TI Insights into prion protein function from atomistic simulations SO PRION LA English DT Article DE prion; PrP; copper; attachment; function; ab initio; DFT ID C-TERMINAL DOMAIN; SUPEROXIDE-DISMUTASE ACTIVITY; COPPER-BINDING SITES; MOLECULAR-DYNAMICS; OCTAREPEAT DOMAIN; FULL-LENGTH; CU(II) BINDING; EPR PARAMETERS; METAL-BINDING; N-TERMINUS AB Computer simulations are a powerful tool for studies of biological systems. They have often been used to study prion protein (PrP), a protein responsible for neurodegenerative diseases, which include "mad cow disease" in cattle and Creutzfeldt-Jacob disease in humans. An important aspect of the prion protein is its interaction with copper ion, which is thought to be relevant for PrP's yet undetermined function and also potentially play a role in prion diseases. For studies of copper attachment to the prion protein, computer simulations have often been used to complement experimental data and to obtain binding structures of Cu-PrP complexes. This paper summarizes the results of recent ab initio calculations of copper-prion protein interactions focusing on the recently discovered concentration-dependent binding modes in the octare-peat region of this protein. In addition to determining the binding structures, computer simulations were also used to make predictions about PrP's function and the role of copper in prion diseases. The results demonstrate the predictive power and applicability of ab initio simulations for studies of metal-biomolecular complexes. C1 [Hodak, Miroslav; Bernholc, Jerzy] N Carolina State Univ, Ctr High Performance Simulat, Raleigh, NC 27695 USA. [Hodak, Miroslav; Bernholc, Jerzy] N Carolina State Univ, Dept Phys, Raleigh, NC 27695 USA. [Bernholc, Jerzy] Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN USA. RP Bernholc, J (reprint author), N Carolina State Univ, Ctr High Performance Simulat, Raleigh, NC 27695 USA. EM bernholc@ncsu.edu NR 66 TC 10 Z9 10 U1 1 U2 9 PU LANDES BIOSCIENCE PI AUSTIN PA 1806 RIO GRANDE ST, AUSTIN, TX 78702 USA SN 1933-6896 J9 PRION JI Prion PD JAN-MAR PY 2010 VL 4 IS 1 BP 13 EP 19 PG 7 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 589UY UT WOS:000277180900003 PM 20118658 ER PT J AU Ayzatskiy, MI Dovbnya, AN Tenishev, AE Torgovkin, AV Uvarov, VL Shevchenko, VA Shramenko, BI Ehst, D AF Ayzatskiy, M. I. Dovbnya, A. N. Tenishev, A. Eh. Torgovkin, A. V. Uvarov, V. L. Shevchenko, V. A. Shramenko, B. I. Ehst, D. TI ESTIMATION OF RADIATION RISKS UNDER PHOTONUCLEAR PRODUCTION OF Cu-67 AND Mo-99 ISOTOPES SO PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY LA English DT Article AB The activated bremsstrahlung converter and isotopic target are the main sources of radiation hazard in the isotope production at electron accelerators. In experiments at the NSC KIPT accelerators KUT-30 and LU-40m, intended to produce Mo-99 and Cu-67 isotopes in the targets based on natural Mo and Zn, the output devices were exposed to radiation. Induced activities of the tantalum converter, of targets and cooling water were measured. The exposure dose rates provided by each element and the activity decrease after the exposure were determined. C1 [Ayzatskiy, M. I.; Dovbnya, A. N.; Tenishev, A. Eh.; Torgovkin, A. V.; Uvarov, V. L.; Shevchenko, V. A.; Shramenko, B. I.] Kharkov Phys & Technol Inst, Natl Sci Ctr, UA-310108 Kharkov, Ukraine. [Ehst, D.] Argonne Natl Lab, Argonne, IL 60439 USA. RP Ayzatskiy, MI (reprint author), Kharkov Phys & Technol Inst, Natl Sci Ctr, UA-310108 Kharkov, Ukraine. EM bshram@kipt.kharkov.ua FU STCU [P228] FX The work has been done partially due STCU grant #P228. NR 12 TC 0 Z9 0 U1 0 U2 2 PU KHARKOV INST PHYSICS & TECHNOLOGY PI KHARKOV PA NATL SCIENCE CTR, 1 AKADEMICHESKAYA ST, KHARKOV, 61108, UKRAINE SN 1562-6016 J9 PROBL ATOM SCI TECH JI Probl. At. Sci. Tech. PY 2010 IS 3 BP 130 EP 134 PG 5 WC Nuclear Science & Technology; Physics, Fluids & Plasmas; Physics, Nuclear; Physics, Particles & Fields SC Nuclear Science & Technology; Physics GA 618WP UT WOS:000279387100031 ER PT J AU Aizatsky, NI Diky, NP Dovbnya, AN Ehst, D Lyashko, YV Nikiforov, VI Tenishev, AE Torgovkin, AV Uvarov, VL Shevchenko, VA Shramenko, BI AF Aizatsky, N. I. Diky, N. P. Dovbnya, A. N. Ehst, D. Lyashko, Yu. V. Nikiforov, V. I. Tenishev, A. Eh. Torgovkin, A. V. Uvarov, V. L. Shevchenko, V. A. Shramenko, B. I. TI Mo-99 AND Cu-67 ISOTOPE YIELDS UNDER PRODUCTION CONDITIONS OF NSC KIPT ELECTRON ACCELERATOR KUT-30 SO PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY LA English DT Article AB Computer simulation has been used to determine the Mo-99 and Cu-67 isotope yields, as well as the radiation power absorbed in technological natural Mo- and Zn-based targets of different mass and geometry, and also, the power absorbed in a tantalum converter versus the converter thickness and spatial-energy characteristics of the electron beam from the accelerator KUT-30 (energy up to 45 MeV, average beam current up to 300 mu A). The results of experimental studies are in good agreement with the simulation data. C1 [Aizatsky, N. I.; Diky, N. P.; Dovbnya, A. N.; Lyashko, Yu. V.; Nikiforov, V. I.; Tenishev, A. Eh.; Torgovkin, A. V.; Uvarov, V. L.; Shevchenko, V. A.; Shramenko, B. I.] Kharkov Phys & Technol Inst, Natl Sci Ctr, UA-310108 Kharkov, Ukraine. [Ehst, D.] Argonne Natl Lab, Argonne, IL 60439 USA. RP Aizatsky, NI (reprint author), Kharkov Phys & Technol Inst, Natl Sci Ctr, UA-310108 Kharkov, Ukraine. EM uvarov@kipt.kharkov.ua FU STCU [P228] FX The work has been done partially due to STCU Grant #P228. NR 9 TC 1 Z9 1 U1 0 U2 1 PU KHARKOV INST PHYSICS & TECHNOLOGY PI KHARKOV PA NATL SCIENCE CTR, 1 AKADEMICHESKAYA ST, KHARKOV, 61108, UKRAINE SN 1562-6016 J9 PROBL ATOM SCI TECH JI Probl. At. Sci. Tech. PY 2010 IS 2 BP 140 EP 144 PG 5 WC Nuclear Science & Technology; Physics, Fluids & Plasmas; Physics, Nuclear; Physics, Particles & Fields SC Nuclear Science & Technology; Physics GA 581NH UT WOS:000276529900033 ER PT B AU Grosse-Kunstleve, RW Moriarty, NW Adams, PD AF Grosse-Kunstleve, Ralf W. Moriarty, Nigel W. Adams, Paul D. GP ASME TI TORSION ANGLE REFINEMENT AND DYNAMICS AS A TOOL TO AID CRYSTALLOGRAPHIC STRUCTURE DETERMINATION SO PROCEEDINGS OF ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, VOL 4, PTS A-C LA English DT Proceedings Paper CT ASME International Design Engineering Technical Conferences/Computers and Information in Engineering Conference CY AUG 30-SEP 02, 2009 CL San Diego, CA SP ASME, Design Engn Div, ASME, Comp & Informat Engn Div ID MOLECULAR-DYNAMICS; MINIMIZATION; ALGORITHM; SOFTWARE AB Crystallographic methods using experimental diffraction data have produced about 85% of the macromolecular structures in the Protein Data Bank. Before deposition, nearly all crystal structures are refined with gradient-driven optimization techniques. Refinement is typically performed with iterative local optimization methods. A common problem is convergence to local minima. Reparameterization of the model in torsion angle space reduces the number of parameters. This in itself can help to escape from local minima. Combination with rigid-body dynamics algorithms results in an important tool for sampling conformational space. This paper presents the torsion angle refinement and dynamics algorithms implemented for the phenix.refine program and the results of various tests. C1 [Grosse-Kunstleve, Ralf W.; Moriarty, Nigel W.; Adams, Paul D.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Grosse-Kunstleve, RW (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. NR 20 TC 0 Z9 0 U1 0 U2 0 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4901-9 PY 2010 BP 1477 EP 1485 PG 9 WC Computer Science, Interdisciplinary Applications; Engineering, Mechanical SC Computer Science; Engineering GA BUU39 UT WOS:000290371601017 ER PT B AU Mayes, RL Arviso, M AF Mayes, Randy L. Arviso, Michael BE Sas, P Bergen, B TI Design Studies for the Transmission Simulator Method of Experimental Dynamic Substructuring SO PROCEEDINGS OF ISMA2010 - INTERNATIONAL CONFERENCE ON NOISE AND VIBRATION ENGINEERING INCLUDING USD2010 LA English DT Proceedings Paper CT International Conference on Noise and Vibration Engineering (ISMA)/Conference of USD CY SEP 20-22, 2010 CL Leuven, BELGIUM SP Dept Mech Engn, Katholieke Univ Leuven AB In recent years, a successful method for generating experimental dynamic substructures has been developed using an instrumented fixture, the transmission simulator. The transmission simulator method solves many of the problems associated with experimental substructuring. These solutions effectively address: 1. rotation and moment estimation at connection points; 2. providing substructure Ritz vectors that adequately span the connection motion space; and 3. adequately addressing multiple and continuous attachment locations. However, the transmission simulator method may fail if the transmission simulator is poorly designed. Four areas of the design addressed here are: 1. designating response sensor locations; 2. designating force input locations; 3. physical design of the transmission simulator; and 4. modal test design. In addition to the transmission simulator design investigations, a review of the theory with an example problem is presented. C1 [Mayes, Randy L.; Arviso, Michael] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Mayes, RL (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM rlmayes@sandia.gov NR 3 TC 0 Z9 0 U1 0 U2 0 PU KATHOLIEKE UNIV LEUVEN, DEPT WERKTUIGKUNDE PI HEVERLEE PA CELESTIJNENLAAN 300B, HEVERLEE, B-3001, BELGIUM BN 978-90-73802-87-2 PY 2010 BP 1929 EP 1938 PG 10 WC Engineering, Mechanical SC Engineering GA BZT50 UT WOS:000302905400143 ER PT J AU Xu, SH Jiang, H Lau, FCM AF Xu, Songhua Jiang, Hao Lau, Francis C. M. BE Bui, T Jarke, M Phuaphanthong, T TI Observing Facial Expressions and Gaze Positions for Personalized Webpage Recommendation SO PROCEEDINGS OF THE 12TH INTERNATIONAL CONFERENCE ON ELECTRONIC COMMERCE: ROADMAP FOR THE FUTURE OF ELECTRONIC BUSINESS LA English DT Proceedings Paper CT 12th International Conference on Electronic Commerce (ICEC) CY AUG 02-04, 2010 CL Campus Univ Hawaii, Honolulu, HI SP Assoc Comp Machinery (ACM) HO Campus Univ Hawaii DE Web content recommendation; personalized recommendation; facial expression; eye-tracking; implicit user feedback AB We propose a new method for personalized webpage recommendation. The method is capable of inferring a user's personal reading interest distribution according to implicit user feedbacks coming from the user's past online reading activities. With the inferred user reading interest distribution, we can recommend webpages in a search result set to a user in a personalized way. Our method is featured by its novel approach to observe the facial expressions and gaze positions of a user during the user's online reading activities as two types of implicit user feedbacks for estimating the user's reading interest distribution. To capture these implicit user feedbacks, we use an ordinary web camera and a customized web browser in the setup. The setup allows us to measure the distribution of the reading time a user spends in his or her reading activities over materials of different contents. With all the captured information, our method then estimates a user's reading interest distribution by finding correlations between the implicit feedbacks of a user with the contents of the read materials. Given the estimated user reading interest distribution, our algorithm can further predict the user's potential reading interest in any new webpage. Consequently, our algorithm can produce a personalized webpage recommendation for all the result webpages in an online search session. We compared the performance of our method with that of several mainstream commercial search engines as well as a recent personalized webpage ranking algorithm. The comparison results clearly show the superiority of our new method for personalized webpage recommendation. C1 [Xu, Songhua] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Jiang, Hao; Lau, Francis C. M.] Univ Hong Kong, Dept Comp Sci, Kowloon, Hong Kong, Peoples R China. RP Xu, SH (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. NR 32 TC 3 Z9 3 U1 0 U2 0 PU ASSOC COMPUTING MACHINERY PI NEW YORK PA 1515 BROADWAY, NEW YORK, NY 10036-9998 USA BN 978-1-4503-1427-5 PY 2010 BP 78 EP 87 PG 10 WC Computer Science, Information Systems SC Computer Science GA BDC50 UT WOS:000312604900010 ER PT B AU Goyal, KK Carson, PH AF Goyal, Kapil K. Carson, Peter H. GP ASME TI IMPROVED PRACTICES FOR PACKAGING TRANSURANIC WASTE AT LOS ALAMOS NATIONAL LABORATORY (LA-UR-09-03293) SO PROCEEDINGS OF THE 12TH INTERNATIONAL CONFERENCE ON ENVIRONMENTAL REMEDIATION AND RADIOACTIVE WASTE MANAGEMENT 2009, VOL 1 LA English DT Proceedings Paper CT 12th International Conference on Environmental Remediation and Radioactive Waste Management CY OCT 11-15, 2009 CL Liverpool, ENGLAND AB Transuranic (TRU) waste leaving the Plutonium Facility at Los Alamos National Laboratory (LANL) is packaged using LANL's waste acceptance criteria for onsite storage. Before shipment to the Waste Isolation Pilot Plant (WIPP) in southeastern New Mexico, each payload container is subject to rigorous characterization to ensure compliance with WIPP waste acceptance criteria and Department of Transportation regulations. Techniques used for waste characterization include nondestructive examination by WIPP-certified real-time radiography (RTR) and nondestructive assay (NDA) of containers, as well as headspacc gas sampling to ensure that hydrogen and other flammable gases remain at safe levels during transport. These techniques are performed under a rigorous quality assurance program to confirm that results are accurate and reproducible. If containers are deemed problematic, corrective action is implemented before they are shipped to WIPP. A defensive approach was used for many years to minimize the number of problematic drums. However, based on review of data associated with headspace gas sampling, NDA and RTR results, and enhanced coordination with the entities responsible for waste certification, many changes have been implemented to facilitate packaging of TRU waste drums with higher isotopic loading at the Plutonium Facility at an unprecedented rate while ensuring compliance with waste acceptance criteria. This paper summarizes the details of technical changes and related administrative coordination activities, such as information sharing among the certification entities, generators, waste packagers, and shippers. It discusses the results of all such cumulative changes that have been implemented at the Plutonium Facility and gives readers a preview of what LANL has accomplished to expeditiously certify and dispose of newly generated TRU waste. C1 [Goyal, Kapil K.; Carson, Peter H.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Goyal, KK (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87545 USA. NR 3 TC 0 Z9 0 U1 0 U2 0 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4407-6 PY 2010 BP 107 EP 111 PG 5 WC Engineering, Environmental; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA BVE92 UT WOS:000291331600014 ER PT B AU Williamson, MJ Sindelar, RL AF Williamson, Mark J. Sindelar, Robert L. GP ASME TI CHARACTERIZATION OF A FE- BASED ALLOY SYSTEM FOR AN AFCI METALLIC WASTE FORM SO PROCEEDINGS OF THE 12TH INTERNATIONAL CONFERENCE ON ENVIRONMENTAL REMEDIATION AND RADIOACTIVE WASTE MANAGEMENT 2009, VOL 1 LA English DT Proceedings Paper CT 12th International Conference on Environmental Remediation and Radioactive Waste Management CY OCT 11-15, 2009 CL Liverpool, ENGLAND AB The AFCI waste management program aims to provide a minimum volume stable waste form for high level radioactive waste from the various process streams. The AFCI Integrated Waste Management Strategy document has identified a Fe-Zr metallic waste form (MWF) as the baseline alloy for disposal of Tc metal, undissolved solids, and TRUEX fission product wastes. Several candidate alloys have been fabricated using vacuum induction melting to investigate the limits of waste loading as a function of Fe and Zr content. Additional melts have been produced to investigate source material composition. These alloys have been characterized using SEM/EDS and XRD. Phase assemblage and specie partitioning of Re metal (surrogate for Tc) and noble metal FP elements into the phases is reported. C1 [Williamson, Mark J.; Sindelar, Robert L.] Savannah River Natl Lab, Aiken, SC USA. RP Williamson, MJ (reprint author), Savannah River Natl Lab, Aiken, SC USA. NR 2 TC 0 Z9 0 U1 0 U2 0 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4407-6 PY 2010 BP 545 EP 547 PG 3 WC Engineering, Environmental; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA BVE92 UT WOS:000291331600072 ER PT B AU Peters, TB Pokier, MR Fondeur, FF Nash, CA Hobbs, DT Fink, SD AF Peters, T. B. Pokier, M. R. Fondeur, F. F. Nash, C. A. Hobbs, D. T. Fink, S. D. GP ASME TI SEPARATION OF FISSION PRODUCTS AND ACTINIDES FROM SAVANNAH RIVER SITE HIGH-LEVEL NUCLEAR WASTES SO PROCEEDINGS OF THE 12TH INTERNATIONAL CONFERENCE ON ENVIRONMENTAL REMEDIATION AND RADIOACTIVE WASTE MANAGEMENT 2009, VOL 1 LA English DT Proceedings Paper CT 12th International Conference on Environmental Remediation and Radioactive Waste Management CY OCT 11-15, 2009 CL Liverpool, ENGLAND DE cesium; strontium; plutonium; neptunium; uranium; solvent extraction; adsorption; ion exchange AB Separation methods for the pretreatment of the liquid fraction of high-level nuclear waste (HLW) at the Savannah River Site (SRS) include solvent extraction for the separation of cesium and adsorption/ion exchange for the removal of strontium and alpha-emitting actinides. The solvent extraction process, referred to as Caustic Side Solvent Extraction or CSSX, uses a calixarene extractant in combination with phase modifiers in a hydrocarbon diluent. Monosodium titanatc (MST), a hydrous metal oxide, is the baseline material for the removal of strontium and alpha-emitting radionuclides (principally (238)Pu, (239)Pu, (240)Pu and (237)Np). Two pretreatment facilities, the Modular Caustic Side Solvent Extraction Unit (MCU) and the Actinide Removal Process (ARP) facility began radioactive operations at SRS in 2008. Together these facilities can treat approximately 4 million liters of waste per year. The same separation processes are also planned for the much larger Salt Waste Processing Facility (SWPF). The SWPF, which has a design throughput of about 27 million liters per year, is scheduled to begin radioactive operations in 2013. This paper presents an overview of the separation processes as well as recent research and development activities aimed at improving separation performance in the pretreatment facilities. C1 [Peters, T. B.; Pokier, M. R.; Fondeur, F. F.; Nash, C. A.; Hobbs, D. T.; Fink, S. D.] Savannah River Nucl Solut LLC, Savannah River Natl Lab, Aiken, SC 29808 USA. RP Peters, TB (reprint author), Savannah River Nucl Solut LLC, Savannah River Natl Lab, Aiken, SC 29808 USA. NR 9 TC 0 Z9 0 U1 0 U2 5 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4407-6 PY 2010 BP 601 EP 610 PG 10 WC Engineering, Environmental; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA BVE92 UT WOS:000291331600079 ER PT B AU Marra, J Stefanovsky, S Lebedev, V Suntsov, D AF Marra, James Stefanovsky, Sergey Lebedev, Vladimir Suntsov, Dmitriy GP ASME TI THE RESULTS OF TESTING TO EVALUATE CRYSTAL FORMATION AND SETTLING IN THE COLD CRUCIBLE INDUCTION MELTER SO PROCEEDINGS OF THE 12TH INTERNATIONAL CONFERENCE ON ENVIRONMENTAL REMEDIATION AND RADIOACTIVE WASTE MANAGEMENT 2009, VOL 1 LA English DT Proceedings Paper CT 12th International Conference on Environmental Remediation and Radioactive Waste Management CY OCT 11-15, 2009 CL Liverpool, ENGLAND AB The Cold Crucible Induction Melter (CCIM) technology offers the potential to increase waste loading for High Level Waste (HLW) glasses leading to significant improvements in waste throughput rates compared to the reference Joule Heated Melter (JHM). Prior to implementation of a CCIM in a production facility it is necessary to better understand processing constraints associated with the CCIM. The glass liquidus temperature requirement and tolerance to crystal formation for processing in the CCIM is an open issue. Testing was conducted to evaluate crystal formation and crystal settling during processing in the CCIM to gain insight into the effects on processing. A high aluminum/high iron content glass composition with known crystal formation tendencies was selected for testing. A continuous melter test was conducted for approximately 51 hours. To evaluate crystal formation, glass samples were obtained from pours and from glass receipt canisters where the glass melt had varying residence time in the melter. Additionally, upon conclusion of the testing, glass samples from the bottom of the melter were obtained to assess the degree of crystal settling. Glass samples were characterized in an attempt to determine quantitative fractions of crystals in the glass matrix. Crystal identity and relative composition were determined using a combination of x-ray diffraction (XRD) and scanning electron microscopy coupled with energy dispersive spectroscopy (SEM/EDS). Select samples were also analyzed by digesting the glass and determining the composition using inductively coupled atomic emission spectroscopy (ICP-AES). There was evidence of crystal formation (primarily spinets) in the melt and during cooling of the collected glass. There was evidence of crystal settling in the melt over the duration of the melter campaign. C1 [Marra, James] Savannah River Natl Lab, Aiken, SC USA. RP Marra, J (reprint author), Savannah River Natl Lab, Aiken, SC USA. NR 10 TC 0 Z9 0 U1 0 U2 0 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4407-6 PY 2010 BP 851 EP 857 PG 7 WC Engineering, Environmental; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA BVE92 UT WOS:000291331600112 ER PT B AU Van Camp, SG Deiters, MG Stevenson, JS Jamison, TP AF Van Camp, Scott G. Deiters, Michael G. Stevenson, Jeremy S. Jamison, Timothy P. GP ASME TI IMPLEMENTATION OF THE BEST IN CLASS PROJECT MANAGEMEMENT AND CONTRACT MANAGEMENT INITIATIVE AT THE DEPARTMENT OF ENERGY'S OFFICE OF ENVIRONMENTAL MANAGEMENT SO PROCEEDINGS OF THE 12TH INTERNATIONAL CONFERENCE ON ENVIRONMENTAL REMEDIATION AND RADIOACTIVE WASTE MANAGEMENT 2009, VOL 2 LA English DT Proceedings Paper CT 12th International Conference on Environmental Remediation and Radioactive Waste Management CY OCT 11-15, 2009 CL Liverpool, ENGLAND AB Since its creation in 1989, the Department of Energy (DOE), Office of Environmental Management (EM) has struggled with a legacy of inadequate project management and contract management. This has been manifested in recurring scope changes, cost overruns and schedule delays, and has been documented in multiple internal and external reviews. EM has committed itself to improving project performance and undertaken a number of proactive management initiatives including the development of a "Best in Class" Project Management and Contract Management organization (i.e., the BICPM Initiative). During 2007, EM assessed the status of project management and contract management at 15 EM sites. These assessments evaluated strengths and weaknesses in 12 key project management capabilities and three contract management benchmarks. The January 2008 Compilation Assessment Report showed that EM faces significant challenges in its mission execution due to staffing shortages, project and contract management integration, insufficient project-oriented culture, and lack of a clear role for Headquarters in BICPM. EM then formulated a strategy to meet their objectives in the March 2008 Corporate Implementation Plan. It summarizes BICPM efforts, introduces the vision for BICPM, identifies the strategy for achieving BICPM, and describes a process for implementing BICPM. That is, it acts as a roadmap to address EM's challenges. It also documents 18 Recommended Priority Actions (RPAs) that are the key to correcting these challenges. These RPAs provide a clear path forward that can be communicated to the entire EM organization and provide the foundation upon which a BICPM culture can be built. EM has since gained considerable momentum and progress towards institutionalizing BICPM. This paper provides a discussion of the BICPM Initiative and its implementation. C1 [Van Camp, Scott G.] US DOE, Off Environm Management, Washington, DC 20585 USA. RP Van Camp, SG (reprint author), US DOE, Off Environm Management, Washington, DC 20585 USA. NR 2 TC 0 Z9 0 U1 0 U2 6 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4408-3 PY 2010 BP 777 EP 785 PG 9 WC Engineering, Environmental; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA BVE91 UT WOS:000291330400094 ER PT J AU El-Kady, I Su, MF Reinke, CM Goettler, D Leseman, Z Olsson, R AF El-Kady, I. Su, M. F. Reinke, C. M. Goettler, D. Leseman, Z. Olsson, R. GP Int Inst Acoust & Vibrat TI Physical Origins, Implications and Applications of Tailored Phononic Bandgaps SO PROCEEDINGS OF THE 17TH INTERNATIONAL CONGRESS ON SOUND AND VIBRATION LA English DT Proceedings Paper CT 17th International Congress on Sound and Vibration (ICSV) CY JUL 18-22, 2010 CL Cairo, EGYPT SP Int Inst Acoust & Vibrat, Acoust Soc Egypt, Ain Shams Univ, Nile Univ, Int Union Theoret & Appl Mech, Amer Soc MechEngineers Int, Inst Mech Engineers ID ELASTIC-WAVES C1 [El-Kady, I.; Reinke, C. M.; Olsson, R.] Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. [El-Kady, I.; Su, M. F.; Goettler, D.; Leseman, Z.] Univ New Mexico, Elect & Comp Engn, Albuquerque, NM 87131 USA. RP El-Kady, I (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM ielkady@sandia.gov NR 10 TC 0 Z9 0 U1 0 U2 0 PU INT INST ACOUSTICS & VIBRATION PI AUBURN PA AUBURN UNIV, MECHANICAL ENGINEERING DEPT, 270 ROSS HALL, AUBURN, AL 36849 USA PY 2010 PG 2 WC Acoustics; Engineering, Mechanical SC Acoustics; Engineering GA BG8NB UT WOS:000392489203106 ER PT S AU Elwasif, WR Bernholdt, DE Shet, AG Foley, SS Bramley, R Batchelor, DB Berry, LA AF Elwasif, Wael R. Bernholdt, David E. Shet, Aniruddha G. Foley, Samantha S. Bramley, Randall Batchelor, Donald B. Berry, Lee A. BE Danelutto, M Bourgeois, J Gross, T TI The Design and Implementation of the SWIM Integrated Plasma Simulator SO PROCEEDINGS OF THE 18TH EUROMICRO CONFERENCE ON PARALLEL, DISTRIBUTED AND NETWORK-BASED PROCESSING SE Euromicro Conference on Parallel Distributed and Network-Based Processing LA English DT Proceedings Paper CT 18th Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP) CY FEB 17-19, 2010 CL Univ Pisa, Dept Comp Sci, Pisa, ITALY SP IEEE Comp Soc, Euromicro HO Univ Pisa, Dept Comp Sci ID TOKAMAKS; TRANSPORT; PROJECT; SYSTEM AB As computing capabilities have increased, the coupling of computational models has become an increasingly viable and therefore important way of improving the physical fidelity of simulations. Applications currently using some form of multi-code or multi-component coupling include climate modeling, rocket simulations, and chemistry. In recent years, the plasma physics community has also begun to pursue integrated multi-physics simulations for space weather and fusion energy applications. Such model coupling generally exposes new issues in the physical, mathematical, and computational aspects of the problem. This paper focuses on the computational aspects of one such effort, detailing the design, and implementation of the Integrated Plasma Simulator (IPS) for the Center for Simulation of Wave Interactions with Magnetohydrodynamics (SWIM). The IPS framework focuses on maximizing flexibility for the creators of loosely-coupled component-based simulations, and provides services for execution coordination, resource management, data management, and inter-component communication. It also serves as a proving ground for a concurrent "multi-tasking" execution model to improve resource utilization, and application-level fault tolerance. We also briefly describe how the IPS has been applied to several problems of interest to the fusion community. C1 [Elwasif, Wael R.; Bernholdt, David E.; Shet, Aniruddha G.] Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA. [Foley, Samantha S.; Bramley, Randall] Indiana Univ, Dept Comp Sci, Bloomington, IN 47405 USA. [Batchelor, Donald B.; Berry, Lee A.] Oak Ridge Natl Lab, Fus Energy Div, Oak Ridge, TN 37831 USA. RP Elwasif, WR (reprint author), Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA. EM elwasifwr@ornl.gov; bernholdtde@ornl.gov; shetag@ornl.gov; ssfoley@indiana.edu; bramley@indiana.edu; batchelordb@ornl.gov; berryla@ornl.gov FU U.S. Department of Energy, Offices of Fusion Energy Sciences and Advanced Scientific Computing Research; ORNL Postmasters Research Participation Program - ORNL; U.S. Department of Energy [DE-AC05-00OR22725, DE-AC05-00OR22750]; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work has been supported by the U.S. Department of Energy, Offices of Fusion Energy Sciences and Advanced Scientific Computing Research, and by the ORNL Postmasters Research Participation Program which is sponsored by ORNL and administered jointly by ORNL and by the Oak Ridge Institute for Science and Education (ORISE). ORNL is managed by UT-Battelle, LLC for the U.S. Department of Energy under Contract No. DE-AC05-00OR22725. ORISE is managed by Oak Ridge Associated Universities for the U.S. Department of Energy under Contract No. DE-AC05-00OR22750.; This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 24 TC 4 Z9 4 U1 0 U2 0 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1264 USA SN 1066-6192 BN 978-0-7695-3939-3 J9 EUROMICRO WORKSHOP P PY 2010 BP 419 EP 427 DI 10.1109/PDP.2010.63 PG 9 WC Computer Science, Theory & Methods SC Computer Science GA BG9ZJ UT WOS:000394371800056 ER PT S AU Cummings, J Lofstead, J Schwan, K Sim, A Shoshani, A Docan, C Parashar, M Klasky, S Podhorszki, N Barreto, R AF Cummings, Julian Lofstead, Jay Schwan, Karsten Sim, Alexander Shoshani, Arie Docan, Ciprian Parashar, Manish Klasky, Scott Podhorszki, Norbert Barreto, Roselyne BE Danelutto, M Bourgeois, J Gross, T TI EFFIS: an End-to-end Framework for Fusion Integrated Simulation SO PROCEEDINGS OF THE 18TH EUROMICRO CONFERENCE ON PARALLEL, DISTRIBUTED AND NETWORK-BASED PROCESSING SE Euromicro Conference on Parallel Distributed and Network-Based Processing LA English DT Proceedings Paper CT 18th Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP) CY FEB 17-19, 2010 CL Univ Pisa, Dept Comp Sci, Pisa, ITALY SP IEEE Comp Soc, Euromicro HO Univ Pisa, Dept Comp Sci DE fusion simulation; code integration; computational framework; leadership class computing ID MANAGEMENT; PEDESTAL; TOKAMAKS; WORKFLOW AB The purpose of the Fusion Simulation Project is to develop a predictive capability for integrated modeling of magnetically confined burning plasmas. In support of this mission, the Center for Plasma Edge Simulation has developed an End-to-end Framework for Fusion Integrated Simulation (EFFIS) that combines critical computer science technologies in an effective manner to support leadership class computing and the coupling of complex plasma physics models. We describe here the main components of EFFIS and how they are being utilized to address our goal of integrated predictive plasma edge simulation. C1 [Cummings, Julian] CALTECH, Ctr Adv Comp Res, Pasadena, CA 91125 USA. [Lofstead, Jay; Schwan, Karsten] Georgia Inst Technol, Coll Comp, Atlanta, GA 30332 USA. [Sim, Alexander; Shoshani, Arie] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Docan, Ciprian; Parashar, Manish] Rutgers State Univ, Dept Elect & Comp Engn, Piscataway, NJ 08854 USA. [Klasky, Scott; Podhorszki, Norbert; Barreto, Roselyne] Oak Ridge Natl Lab, Oak Ridge, TN 37830 USA. RP Cummings, J (reprint author), CALTECH, Ctr Adv Comp Res, Pasadena, CA 91125 USA. EM cummings@cacr.caltech.edu FU Office of Fusion Energy Sciences; Office of Advanced Scientific Computing Research within the US Department of Energy FX This work is part of the ongoing research activities within the Center for Plasma Edge Simulation, a SciDAC Fusion Simulation Prototype center that is supported by the Office of Fusion Energy Sciences and the Office of Advanced Scientific Computing Research within the US Department of Energy. We are grateful to the National Center for Computational Science at Oak Ridge National Laboratory and the National Energy Research Scientific Computing Center at Lawrence Berkeley National Laboratory for access to and support of their computing resources. We would especially like to thank NCCS system administrators Sergey Shpanskiy and Josh Lothian for their ongoing support in installing and maintaining the services we need for our framework. NR 18 TC 4 Z9 4 U1 0 U2 0 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1264 USA SN 1066-6192 BN 978-0-7695-3939-3 J9 EUROMICRO WORKSHOP P PY 2010 BP 428 EP 434 DI 10.1109/PDP.2010.97 PG 7 WC Computer Science, Theory & Methods SC Computer Science GA BG9ZJ UT WOS:000394371800057 ER PT S AU Cary, JR Hakim, A Miah, M Kruger, S Pletzer, A Shasharina, S Vadlamani, S Pankin, A Cohen, R Epperly, T Rognlien, T Groebner, R Balay, S McInnes, L Zhang, H AF Cary, John R. Hakim, Ammar Miah, Mahmood Kruger, Scott Pletzer, Alexander Shasharina, Svetlana Vadlamani, Srinath Pankin, Alexei Cohen, Ronald Epperly, Tom Rognlien, Tom Groebner, Richard Balay, Satish McInnes, Lois Zhang, Hong BE Danelutto, M Bourgeois, J Gross, T TI FACETS - a Framework for Parallel Coupling of Fusion Components SO PROCEEDINGS OF THE 18TH EUROMICRO CONFERENCE ON PARALLEL, DISTRIBUTED AND NETWORK-BASED PROCESSING SE Euromicro Conference on Parallel Distributed and Network-Based Processing LA English DT Proceedings Paper CT 18th Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP) CY FEB 17-19, 2010 CL Univ Pisa, Dept Comp Sci, Pisa, ITALY SP IEEE Comp Soc, Euromicro HO Univ Pisa, Dept Comp Sci DE integrated fusion modeling; components; framework; coupling AB Coupling separately developed codes offers an attractive method for increasing the accuracy and fidelity of the computational models. Examples include the earth sciences and fusion integrated modeling. This paper describes the Framework Application for Core-Edge Transport Simulations (FACETS). C1 [Cary, John R.; Hakim, Ammar; Miah, Mahmood; Kruger, Scott; Pletzer, Alexander; Shasharina, Svetlana; Vadlamani, Srinath] Tech X Corp, Boulder, CO 80303 USA. [Pankin, Alexei] Lehigh Univ, Bethlehem, PA 18015 USA. [Cohen, Ronald; Epperly, Tom; Rognlien, Tom] Lawrence Livermore Natl Lab, Livermore, CA USA. [Groebner, Richard] Gen Atom, San Diego, CA USA. [Balay, Satish; McInnes, Lois; Zhang, Hong] Argonne Natl Lab, Argonne, IL 60439 USA. RP Cary, JR (reprint author), Tech X Corp, Boulder, CO 80303 USA. FU DOE [DE-FC02-07ER54907, DE-FG02-05ER84192]; Tech-X Corporation; U.S. Department of Energy [DE-AC52-07NA27344] FX This project was supported by DOE grants DE-FC02-07ER54907, DE-FG02-05ER84192 and Tech-X Corporation. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 3 TC 1 Z9 1 U1 0 U2 0 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1264 USA SN 1066-6192 BN 978-0-7695-3939-3 J9 EUROMICRO WORKSHOP P PY 2010 BP 435 EP 442 DI 10.1109/PDP.2010.83 PG 8 WC Computer Science, Theory & Methods SC Computer Science GA BG9ZJ UT WOS:000394371800058 ER PT S AU Baker, CG Heroux, MA Edwards, HC Williams, AB AF Baker, Christopher G. Heroux, Michael A. Edwards, H. Carter Williams, Alan B. BE Danelutto, M Bourgeois, J Gross, T TI A Light-weight API for Portable Multicore Programming SO PROCEEDINGS OF THE 18TH EUROMICRO CONFERENCE ON PARALLEL, DISTRIBUTED AND NETWORK-BASED PROCESSING SE Euromicro Conference on Parallel Distributed and Network-Based Processing LA English DT Proceedings Paper CT 18th Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP) CY FEB 17-19, 2010 CL Univ Pisa, Dept Comp Sci, Pisa, ITALY SP IEEE Comp Soc, Euromicro HO Univ Pisa, Dept Comp Sci AB Multicore nodes have become ubiquitous in just a few years. At the same time, writing portable parallel software for multicore nodes is extremely challenging. Widely available programming models such as OpenMP and Pthreads are not useful for devices such as graphics cards, and more flexible programming models such as RapidMind are only available commercially. OpenCL represents the first truly portable standard, but its availability is limited. In the presence of such transition, we have developed a minimal application programming interface (API) for multicore nodes that allows us to write portable parallel linear algebra software that can use any of the aforementioned programming models and any future standard models. We utilize C++ template meta-programming to enable users to write parallel kernels that can be executed on a variety of node types, including Cell, GPUs and multicore CPUs. The support for a parallel node is provided by implementing a Node object, according to the requirements specified by the API. This ability to provide custom support for particular node types gives developers a level of control not allowed by the current slate of proprietary parallel programming APIs. We demonstrate implementations of the API for a simple vector dot-product on sequential CPU, multicore CPU and GPU nodes. C1 [Baker, Christopher G.] Oak Ridge Natl Lab, Comp Engn & Energy Sci, Oak Ridge, TN 37830 USA. [Heroux, Michael A.] Sandia Natl Labs, Scalable Algorithms, Albuquerque, NM 87185 USA. [Edwards, H. Carter; Williams, Alan B.] Sandia Natl Labs, Computat Simulat Infrastruct, Albuquerque, NM 87185 USA. RP Baker, CG (reprint author), Oak Ridge Natl Lab, Comp Engn & Energy Sci, Oak Ridge, TN 37830 USA. EM bakercg@ornl.gov; maherou@sandia.gov; hcedwar@sandia.gov; william@sandia.gov NR 3 TC 4 Z9 4 U1 0 U2 0 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1264 USA SN 1066-6192 BN 978-0-7695-3939-3 J9 EUROMICRO WORKSHOP P PY 2010 BP 601 EP 606 DI 10.1109/PDP.2010.49 PG 6 WC Computer Science, Theory & Methods SC Computer Science GA BG9ZJ UT WOS:000394371800081 ER PT B AU Mills, GB AF Mills, Geoffrey B. CA MiniBooNE Collaboration BE Kieda, DB Gondolo, P TI Nus and Anti-nus from MiniBooNE: Searching for the Shadow of the Ghost SO PROCEEDINGS OF THE 2009 SNOWBIRD PARTICLE ASTROPHYSICS AND COSMOLOGY WORKSHOP (SNOWPAC 2009) SE Astronomical Society of the Pacific Conference Series LA English DT Proceedings Paper CT Snowbird Particle Astrophysics and Cosmology Workshop (SNOWPAC 2009) CY FEB 01-07, 2009 CL Snowbird, UT ID OSCILLATIONS AB The latest results from MiniBooNE, the short baseline neutrino experiment operating on the 8 GeV booster's neutrino beam line (the BNB) at Fermi lab, are discussed. The standard three active generation model of neutrino oscillations is now grounded firmly by experimental data. Studying the properties of neutrinos at the few percent level and below may uncover new properties of neutrinos and their oscillations and provide a path to physics beyond the standard neutrino model. C1 [Mills, Geoffrey B.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Mills, GB (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. NR 20 TC 0 Z9 0 U1 0 U2 0 PU ASTRONOMICAL SOC PACIFIC PI SAN FRANCISCO PA 390 ASHTON AVE, SAN FRANCISCO, CA 94112 USA BN 978-1-58381-732-2 J9 ASTR SOC P PY 2010 VL 426 BP 52 EP 59 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA BTR15 UT WOS:000287835400007 ER PT B AU Fryer, CL AF Fryer, Chris L. BE Kieda, DB Gondolo, P TI Neutrino Probe Comparisons of Supernovae as a Function of Redshift SO PROCEEDINGS OF THE 2009 SNOWBIRD PARTICLE ASTROPHYSICS AND COSMOLOGY WORKSHOP (SNOWPAC 2009) SE Astronomical Society of the Pacific Conference Series LA English DT Proceedings Paper CT Snowbird Particle Astrophysics and Cosmology Workshop (SNOWPAC 2009) CY FEB 01-07, 2009 CL Snowbird, UT ID COLLAPSE; STARS; MASS AB We compare aspects of supernova explosions produced in the current epoch against those produced in the first round of star formation. Although the total final mass of stars can change dramatically between these two epochs due to different mass-loss rates from winds, their cores remain very similar. The core structure is more sensitive to the stellar evolution code than it is to the amount of metals. As such, current stellar models produce supernovae from first stars that look very similar to that of stars produced in the current epoch. The neutrino signal, a powerful probe of the inner core, is identical to the few percent level for both star formation epochs. A change in the neutrino signal in the supernova population between these two star formation epochs will only arise if the initial mass function is altered. C1 [Fryer, Chris L.] Los Alamos Natl Lab, CCS 2, Los Alamos, NM 87545 USA. RP Fryer, CL (reprint author), Los Alamos Natl Lab, CCS 2, Los Alamos, NM 87545 USA. NR 10 TC 0 Z9 0 U1 0 U2 0 PU ASTRONOMICAL SOC PACIFIC PI SAN FRANCISCO PA 390 ASHTON AVE, SAN FRANCISCO, CA 94112 USA BN 978-1-58381-732-2 J9 ASTR SOC P PY 2010 VL 426 BP 60 EP 67 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA BTR15 UT WOS:000287835400008 ER PT B AU Caceres, G AF Caceres, Gabriel BE Kieda, DB Gondolo, P TI Explaining the WMAP Haze with Neutralino Dark Matter SO PROCEEDINGS OF THE 2009 SNOWBIRD PARTICLE ASTROPHYSICS AND COSMOLOGY WORKSHOP (SNOWPAC 2009) SE Astronomical Society of the Pacific Conference Series LA English DT Proceedings Paper CT Snowbird Particle Astrophysics and Cosmology Workshop (SNOWPAC 2009) CY FEB 01-07, 2009 CL Snowbird, UT ID MICROWAVE-ANISOTROPY-PROBE; EMISSION AB It has been argued that the anomalous emission from the region around the Galactic Center observed by WMAP, known as the WMAP Haze, may be the synchrotron emission from relativistic electrons and positrons produced in dark matter annihilations. In particular, the angular distribution, spectrum, and intensity of the observed emission are consistent with the signal expected to result from a WIMP with an electroweak-scale mass and an annihilation cross section near the value predicted for a thermal relic. Here we revisit this signal within the context of supersymmetry and evaluate the parameter space of the Constrained Minimal Supersymmetric Standard Model. We find that over much of the supersymmetric parameter space the lightest neutralino is predicted to possess the properties required to generate the WMAP Haze. In particular, the focus point, A-funnel, and bulk regions typically predict a neutralino with a mass, annihilation cross section, and dominant annihilation modes that are within the range required to produce the observed features of the WMAP Haze. The stau-coannihilation region, in contrast, is disfavored as an explanation for the origin of this signal. If the WMAP Haze is indeed produced by annihilating neutralinos, prospects for future detection seem promising. C1 Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. RP Caceres, G (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. NR 11 TC 0 Z9 0 U1 0 U2 0 PU ASTRONOMICAL SOC PACIFIC PI SAN FRANCISCO PA 390 ASHTON AVE, SAN FRANCISCO, CA 94112 USA BN 978-1-58381-732-2 J9 ASTR SOC P PY 2010 VL 426 BP 79 EP 86 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA BTR15 UT WOS:000287835400010 ER PT S AU Lang, SB Lashley, JC Modic, KA Fisher, RA Zhu, WM Ye, ZG AF Lang, S. B. Lashley, J. C. Modic, K. A. Fisher, R. A. Zhu, W. M. Ye, Z. G. GP IEEE TI Specific heat of a Ferroelectric PZT Ceramic at the Morphotropic Phase Boundary SO PROCEEDINGS OF THE 2010 IEEE INTERNATIONAL CONFERENCE ON SOLID DIELECTRICS (ICSD 2010) SE IEEE International Conference on Solid Dielectrics-ICSD LA English DT Proceedings Paper CT International Conference on Solid Dielectrics ICSD CY JUL 04-09, 2010 CL Univ Potsdam, Potsdam, GERMANY SP IEEE, Dielect & Elect Insulation Soc (DEIS), Univ Potsdam, Inst Phys & Astronomy, Applied Condensed-Matter Phys HO Univ Potsdam ID CAPACITY AB Ferroelectric ceramic materials have a wide range of applications because of their piezoelectric and pyroelectric properties. One of their most important physical properties is the specific heat. In this study, the specific heats of a series of lead-zirconate-titanate (PZT) compositions in the vicinity of the morphotropic phase boundary (MPB) were measured. The temperature range was from 1.8 to 300 K. It is believed that these are the lowest temperature measurements ever made on PZT. Differences between the specific heats of the different compositions were very small. However, the calculated Debye temperatures were slightly different. The results are useful in computing design parameters for technical devices. C1 [Lang, S. B.] Ben Gurion Univ Negev, Dept Chem Engn, IL-84105 Beer Sheva, Israel. [Lashley, J. C.; Modic, K. A.] Los Alamos Natl Lab, Los Alamos, NM USA. [Fisher, R. A.] Lawrence Berkeley Natl Lab, Berkeley, CA USA. [Zhu, W. M.; Ye, Z. G.] Simon Fraser Univ, Dept Chem, Burnaby, BC, Canada. [Zhu, W. M.; Ye, Z. G.] Simon Fraser Univ, 4D Labs, Burnaby, BC, Canada. RP Lang, SB (reprint author), Ben Gurion Univ Negev, Dept Chem Engn, IL-84105 Beer Sheva, Israel. EM lang@bgu.ac.il RI Lang, Sidney/F-1308-2012 NR 8 TC 0 Z9 0 U1 0 U2 4 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 1553-5282 BN 978-1-4244-7944-3 J9 IEEE INT C SOL DIEL PY 2010 PG 3 WC Engineering, Electrical & Electronic SC Engineering GA BTM90 UT WOS:000287375600075 ER PT J AU Levin, TJ Thomas, VM Lee, AJ AF Levin, Todd J. Thomas, Valerie M. Lee, Audrey J. GP IEEE TI A MARKAL Model of State Electricity Generation SO PROCEEDINGS OF THE 2010 IEEE INTERNATIONAL SYMPOSIUM ON SUSTAINABLE SYSTEMS AND TECHNOLOGY (ISSST) LA English DT Proceedings Paper CT 2010 IEEE International Symposium on Sustainable Systems and Technology CY MAY 17-19, 2010 CL Arlington, VA SP IEEE DE MARKAL; energy policy; electricity generation portfolio; energy efficiency; Georgia ID SECTOR; CHINA AB We present a least-cost linear-optimization model of electricity generation using MARKAL that can be applied at the level of an individual state. Our methodology is applied to a case study of the state of Georgia and used to analyze the evolution of its electricity generation portfolio under different efficiency scenarios. C1 [Levin, Todd J.; Thomas, Valerie M.] Georgia Inst Technol, Sch Ind & Syst Engn, Atlanta, GA 30332 USA. Georgia Inst Technol, Sch Publ Policy, Atlanta, GA 30332 USA. [Lee, Audrey J.] US DOE, Off Policy & Int Affairs, Washington, DC 20585 USA. RP Levin, TJ (reprint author), Georgia Inst Technol, Sch Ind & Syst Engn, Atlanta, GA 30332 USA. EM todd.levin@gatech.edu; valerie.thomas@isye.gatech.edu; audrey.lee@hq.doe.gov NR 20 TC 0 Z9 0 U1 0 U2 2 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1264 USA BN 978-1-4244-7093-8 PY 2010 PG 5 WC Computer Science, Hardware & Architecture; Engineering, Environmental; Engineering, Electrical & Electronic SC Computer Science; Engineering GA BTN72 UT WOS:000287418200079 ER PT J AU Sanchez, M Matthews, S Weber, C AF Sanchez, Marla Matthews, Scott Weber, Chris GP IEEE TI Improving Methods to Estimate Energy and Carbon Footprints of Global Telecommunications SO PROCEEDINGS OF THE 2010 IEEE INTERNATIONAL SYMPOSIUM ON SUSTAINABLE SYSTEMS AND TECHNOLOGY (ISSST) LA English DT Proceedings Paper CT 2010 IEEE International Symposium on Sustainable Systems and Technology CY MAY 17-19, 2010 CL Arlington, VA SP IEEE DE telecommunications; life cycle carbon; energy AB Companies are increasingly estimating and reporting their greenhouse gas emissions (GHGs) for voluntary and mandatory purposes. This paper includes a review of the quality of company GHG reporting for the global telecommunications sector. We find that company emissions vary significantly, from 3 metric tons CO2 equivalent per million dollars operating revenue (MTCO(2)e/$M) to 215 MTCO(2)e/$M. We find that company reported emissions can also vary significantly annually (over 50% in some cases). Some of this variance is due to boundary issues, exclusion of in-scope emissions, unit conversion issues, and differences in electricity GHG intensity. We also find that focusing on Scope 1 and Scope 2 emissions may distort a company's GHG estimates by ignoring Scope 3 emissions, which are likely a significant part of its overall GHG footprint. We end by offering recommendations on improving reporting methods. C1 [Sanchez, Marla] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Matthews, Scott; Weber, Chris] Carnegie Mellon Univ, Dept Engn & Publ Policy, Pittsburgh, PA 15213 USA. RP Sanchez, M (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. EM mcsanchez@lbl.gov; hsm@cmu.edu; clweber@andrew.cmu.edu NR 15 TC 0 Z9 0 U1 0 U2 2 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1264 USA BN 978-1-4244-7093-8 PY 2010 PG 6 WC Computer Science, Hardware & Architecture; Engineering, Environmental; Engineering, Electrical & Electronic SC Computer Science; Engineering GA BTN72 UT WOS:000287418200081 ER PT S AU Chan, WKV Son, YJ Macal, CM AF Chan, Wai Kin Victor Son, Young-Jun Macal, Charles M. BE Johansson, B Jain, S MontoyaTorres, J Hugan, J Yucesan, E TI AGENT-BASED SIMULATION TUTORIAL - SIMULATION OF EMERGENT BEHAVIOR AND DIFFERENCES BETWEEN AGENT-BASED SIMULATION AND DISCRETE-EVENT SIMULATION SO PROCEEDINGS OF THE 2010 WINTER SIMULATION CONFERENCE SE Winter Simulation Conference Proceedings LA English DT Proceedings Paper CT 2010 Winter Simulation Conference CY DEC 05-08, 2010 CL Baltimore, MD SP IEEE, ASA, ACM/SIGSIM, IEEE/SMC, IIE, INFORMS-SIM, NIST, SCS ID DECISION FIELD-THEORY; ENVIRONMENT; NETWORK AB This tutorial demonstrates the use of agent-based simulation (ABS) in modeling emergent behaviors. We first introduce key concepts of ABS by using two simple examples: the Game of Life and the Boids models. We illustrate agent-based modeling issues and simulation of emergent behaviors by using examples in social networks, auction-type markets, emergency evacuation, crowd behavior under normal situations, biology, material science, chemistry, and archaeology. Finally, we discuss the relationship between ABS and other simulation methodologies and outline some research challenges in ABS. C1 [Chan, Wai Kin Victor] Rensselaer Polytech Inst, Dept Ind & Syst Engn, Troy, NY 12180 USA. [Son, Young-Jun] Univ Arizona, Dept Syst & Ind Engn, Tucson, AZ 85721 USA. [Macal, Charles M.] Argonne Natl Lab, Ctr Complex Adapt Syst Simulat, Decis & Informat Sci Div, Argonne, IL 60439 USA. RP Chan, WKV (reprint author), Rensselaer Polytech Inst, Dept Ind & Syst Engn, Troy, NY 12180 USA. EM chanw@rpi.edu; son@sie.arizona.edu; macal@anl.gov FU National Science Foundation [CMMI-0644959]; U.S. Department of Energy [DE-AC02-06CH11357] FX Some of the work presented in this paper was partially supported by the National Science Foundation through grant CMMI-0644959. This work was also partially supported by the U.S. Department of Energy under contract number DE-AC02-06CH11357. We thank Dr. Averill Law for discussions on the relationship between ABS and other simulation approaches. NR 47 TC 26 Z9 28 U1 1 U2 14 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 0891-7736 BN 978-1-4244-9864-2 J9 WINT SIMUL C PROC PY 2010 BP 135 EP 150 DI 10.1109/WSC.2010.5679168 PG 16 WC Computer Science, Interdisciplinary Applications; Engineering, Manufacturing; Mathematical & Computational Biology; Operations Research & Management Science; Mathematics, Applied SC Computer Science; Engineering; Mathematical & Computational Biology; Operations Research & Management Science; Mathematics GA BTS41 UT WOS:000287976700014 ER PT S AU Macal, CM North, MJ AF Macal, Charles M. North, Michael J. BE Johansson, B Jain, S MontoyaTorres, J Hugan, J Yucesan, E TI TOWARD TEACHING AGENT-BASED SIMULATION SO PROCEEDINGS OF THE 2010 WINTER SIMULATION CONFERENCE SE Winter Simulation Conference Proceedings LA English DT Proceedings Paper CT 2010 Winter Simulation Conference CY DEC 05-08, 2010 CL Baltimore, MD SP IEEE, ASA, ACM/SIGSIM, IEEE/SMC, IIE, INFORMS-SIM, NIST, SCS AB Agent-based simulation (ABS) is a relatively recent modeling technique that is being widely used to model complex adaptive systems by many disciplines. Few full length courses exist on agent-based modeling and a standard curriculum has not yet been established, but there is considerable demand to include ABS into simulation courses. Modelers often come to agent-based simulation by way of self-study or attendance at tutorials and short courses. Although there is substantial overlap, there are many aspects of ABS that differ from discrete-event simulation ( DES) and System Dynamics (SD), including applicable problem domains, disciplines and backgrounds of students, and the underpinnings of its computational implementation. These factors make ABS difficult to include as an incremental add-on to existing simulation courses. This paper reports on some approaches to teaching the modeling of complex systems and agent-based simulation that the authors have used in a range of classes and workshops. C1 [Macal, Charles M.; North, Michael J.] Argonne Natl Lab, Ctr Complex Adapt Agent Syst Simulat CAS2, Argonne, IL 60439 USA. RP Macal, CM (reprint author), Argonne Natl Lab, Ctr Complex Adapt Agent Syst Simulat CAS2, 9700 S Cass Ave, Argonne, IL 60439 USA. EM macal@anl.gov; north@anl.gov NR 13 TC 7 Z9 7 U1 0 U2 5 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 0891-7736 BN 978-1-4244-9864-2 J9 WINT SIMUL C PROC PY 2010 BP 268 EP 277 DI 10.1109/WSC.2010.5679158 PG 10 WC Computer Science, Interdisciplinary Applications; Engineering, Manufacturing; Mathematical & Computational Biology; Operations Research & Management Science; Mathematics, Applied SC Computer Science; Engineering; Mathematical & Computational Biology; Operations Research & Management Science; Mathematics GA BTS41 UT WOS:000287976700024 ER PT S AU Macal, CM AF Macal, Charles M. BE Johansson, B Jain, S MontoyaTorres, J Hugan, J Yucesan, E TI TO AGENT-BASED SIMULATION FROM SYSTEM DYNAMICS SO PROCEEDINGS OF THE 2010 WINTER SIMULATION CONFERENCE SE Winter Simulation Conference Proceedings LA English DT Proceedings Paper CT 2010 Winter Simulation Conference CY DEC 05-08, 2010 CL Baltimore, MD SP IEEE, ASA, ACM/SIGSIM, IEEE/SMC, IIE, INFORMS-SIM, NIST, SCS ID DIFFERENTIAL-EQUATIONS; MODELS AB Agent-based simulation (ABS) is a recent modeling technique that is being widely used in modeling complex social systems. Forrester's System Dynamics (SD) is another longstanding technique for modeling social systems. Several classical models of systems, such as the Kermack-McKendrick model of epidemiology, the Lotka-Volterra equations for modeling predator-prey relationships, and the Bass model for innovation diffusion are formulated as systems of differential equations and have corresponding System Dynamics representations as difference equations. The ABS and SD modeling approaches take fundamentally different perspectives when modeling a system, which can be characterized as bottom-up (ABS) versus top-down (SD). Yet many systems can be equivalently modeled by either approach. In this paper, we present a formal specification for SD and ABS models, use the specification to derive equivalent ABS representations, and present an example of an SIR epidemic model having SD and ABS counterparts. C1 Argonne Natl Lab, Ctr Complex Adapt Agent Syst Simulat CAS2, Argonne, IL 60439 USA. RP Macal, CM (reprint author), Argonne Natl Lab, Ctr Complex Adapt Agent Syst Simulat CAS2, 9700 S Cass Ave, Argonne, IL 60439 USA. EM macal@anl.gov NR 25 TC 9 Z9 9 U1 0 U2 5 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 0891-7736 BN 978-1-4244-9864-2 J9 WINT SIMUL C PROC PY 2010 BP 371 EP 382 DI 10.1109/WSC.2010.5679148 PG 12 WC Computer Science, Interdisciplinary Applications; Engineering, Manufacturing; Mathematical & Computational Biology; Operations Research & Management Science; Mathematics, Applied SC Computer Science; Engineering; Mathematical & Computational Biology; Operations Research & Management Science; Mathematics GA BTS41 UT WOS:000287976700033 ER PT S AU Carothers, CD Perumalla, KS AF Carothers, Christopher D. Perumalla, Kalyan S. BE Johansson, B Jain, S MontoyaTorres, J Hugan, J Yucesan, E TI ON DECIDING BETWEEN CONSERVATIVE AND OPTIMISTIC APPROACHES ON MASSIVELY PARALLEL PLATFORMS SO PROCEEDINGS OF THE 2010 WINTER SIMULATION CONFERENCE SE Winter Simulation Conference Proceedings LA English DT Proceedings Paper CT 2010 Winter Simulation Conference CY DEC 05-08, 2010 CL Baltimore, MD SP IEEE, ASA, ACM/SIGSIM, IEEE/SMC, IIE, INFORMS-SIM, NIST, SCS ID VIRTUAL TIME; SIMULATION AB Over 5000 publications on parallel discrete event simulation (PDES) have appeared in the literature to date. Nevertheless, few articles have focused on empirical studies of PDES performance on large supercomputer-based systems. This gap is bridged here, by undertaking a parameterized performance study on thousands of processor cores of a Blue Gene supercomputing system. In contrast to theoretical insights from analytical studies, our study is based on actual implementation in software, incurring the actual messaging and computational overheads for both conservative and optimistic synchronization approaches of PDES. Complex and counter-intuitive effects are uncovered and analyzed, with different event timestamp distributions and available levels of concurrency in the synthetic benchmark models. The results are intended to provide guidance to the PDES community in terms of how the synchronization protocols behave at high processor core counts using a state-of-the-art supercomputing systems. C1 [Carothers, Christopher D.] Rensselaer Polytech Inst, Dept Comp Sci, 110 8th St, Troy, NY 12180 USA. [Perumalla, Kalyan S.] Oak Ridge Natl Lab, Comp Sci & Engn Div, Oak Ridge, TN 37831 USA. RP Carothers, CD (reprint author), Rensselaer Polytech Inst, Dept Comp Sci, 110 8th St, Troy, NY 12180 USA. EM chrisc@cs.rpi.edu; perumallaks@ornl.gov OI Perumalla, Kalyan/0000-0002-7458-0832 FU Laboratory Directed Research and Development Program of the Oak Ridge National Laboratory; UT-Battelle, LLC [DE-AC05-00OR22725]; US Department of Energy FX Blue Gene/L computational resources were provided by the Center for Computational Nanotechnology Innovations (CCNI) at Rensselaer Polytechnic Institute. Additionally, this paper has been partly supported by research sponsored by the Laboratory Directed Research and Development Program of the Oak Ridge National Laboratory, and co-authored by UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the U.S. Department of Energy. Accordingly, the United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. NR 26 TC 12 Z9 13 U1 0 U2 3 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 0891-7736 BN 978-1-4244-9864-2 J9 WINT SIMUL C PROC PY 2010 BP 678 EP 687 DI 10.1109/WSC.2010.5679119 PG 10 WC Computer Science, Interdisciplinary Applications; Engineering, Manufacturing; Mathematical & Computational Biology; Operations Research & Management Science; Mathematics, Applied SC Computer Science; Engineering; Mathematical & Computational Biology; Operations Research & Management Science; Mathematics GA BTS41 UT WOS:000287976700060 ER PT S AU Santhi, N Yan, GH Eidenbenz, S AF Santhi, Nandakishore Yan, Guanhua Eidenbenz, Stephan BE Johansson, B Jain, S MontoyaTorres, J Hugan, J Yucesan, E TI CYBERSIM: GEOGRAPHIC, TEMPORAL, AND ORGANIZATIONAL DYNAMICS OF MALWARE PROPAGATION SO PROCEEDINGS OF THE 2010 WINTER SIMULATION CONFERENCE SE Winter Simulation Conference Proceedings LA English DT Proceedings Paper CT 2010 Winter Simulation Conference CY DEC 05-08, 2010 CL Baltimore, MD SP IEEE, ASA, ACM/SIGSIM, IEEE/SMC, IIE, INFORMS-SIM, NIST, SCS AB Cyber-infractions into a nation's strategic security envelope pose a constant and daunting challenge. We present the modular CyberSim tool which has been developed in response to the need to realistically simulate at a national level, software vulnerabilities and resulting malware propagation in online social networks. CyberSim suite (a) can generate realistic scale-free networks from a database of geo-coordinated computers to closely model social networks arising from personal and business email contacts and online communities; (b) maintains for each host a list of installed software, along with the latest published vulnerabilities; (c) allows to designate initial nodes where malware gets introduced; (d) simulates using distributed discrete event-driven technology, the spread of malware exploiting a specific vulnerability, with packet delay and user online behavior models; (e) provides a graphical visualization of spread of infection, its severity, businesses affected etc to the analyst. We present sample simulations on a national level network with millions of computers. C1 [Santhi, Nandakishore; Yan, Guanhua; Eidenbenz, Stephan] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Santhi, N (reprint author), Los Alamos Natl Lab, Mail Stop B256, Los Alamos, NM 87545 USA. EM nsanthi@lanl.gov; ghyan@lanl.gov; eidenben@lanl.gov OI Santhi, Nandakishore/0000-0002-4755-7821 NR 19 TC 1 Z9 1 U1 0 U2 1 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 0891-7736 BN 978-1-4244-9864-2 J9 WINT SIMUL C PROC PY 2010 BP 2876 EP 2887 DI 10.1109/WSC.2010.5678982 PG 12 WC Computer Science, Interdisciplinary Applications; Engineering, Manufacturing; Mathematical & Computational Biology; Operations Research & Management Science; Mathematics, Applied SC Computer Science; Engineering; Mathematical & Computational Biology; Operations Research & Management Science; Mathematics GA BTS41 UT WOS:000287976703006 ER PT S AU Portante, EC Kavicky, JA Folga, SF Craig, BA Talaber, LE Wulfkuhle, GR AF Portante, Edgar C. Kavicky, James A. Folga, Stephen F. Craig, Brian A. Talaber, Leah E. Wulfkuhle, Gustav R. BE Johansson, B Jain, S MontoyaTorres, J Hugan, J Yucesan, E TI SIMULATING THE SEISMIC PERFORMANCE OF A LARGE-SCALE ELECTRIC NETWORK IN THE US MIDWEST SO PROCEEDINGS OF THE 2010 WINTER SIMULATION CONFERENCE SE Winter Simulation Conference Proceedings LA English DT Proceedings Paper CT 2010 Winter Simulation Conference CY DEC 05-08, 2010 CL Baltimore, MD SP IEEE, ASA, ACM/SIGSIM, IEEE/SMC, IIE, INFORMS-SIM, NIST, SCS AB This paper summarizes the methodology and simulation tools used by Argonne National Laboratory to examine the impact that a high-intensity New Madrid seismic event could have on local electric assets and the performance of surrounding regional electric networks. Local impacts are expressed in terms of the number of assets (under various equipment categories) most likely to be damaged. The total megawatt equivalent of damage-prone power plants is assessed, as is an estimate of power flows that could be disrupted. Damage functions and fragility curves are employed to identify specific electric assets that could be affected. The potential of large-scale electric system collapse is explored via a series of network simulations. The methodology employs two models, the FEMA-developed HAZUS MH-MR3 and Argonne-developed EPfast tool for simulating uncontrolled islanding in electric systems. The models are described, and their complementary roles are discussed. C1 [Portante, Edgar C.; Kavicky, James A.; Folga, Stephen F.; Craig, Brian A.; Talaber, Leah E.] Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. RP Portante, EC (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM ecportante@anl.gov; kavicky@anl.gov; sfolga@anl.gov; bcraig@anl.gov; ltalaber@anl.gov; Gustav.Wulfkuhle@dhs.gov FU Argonne's Infrastructure Assurance Center (IAC); FEMA Region V Disaster Operation Division; computer and MATLAB FX The authors wish to acknowledge the contributions of the following organizations: Argonnes Infrastructure Assurance Center (IAC) for providing technical and logistical support and the FEMA Region V Disaster Operation Division for providing the hazard data and funds for the project. Special thanks go Jim Peerenboom and Ron Fisher of IAC for facilitating administrative approval during the various phases of the project. The authors also wish to thank the following Argonne personnel for providing needed computer and MATLAB support: Pamela Sydelko, Charles Macal, and Dan Miller. Appreciation also goes to Michael McLamore for coordinating the meetings with EN Engineering to obtain estimates of procurement times for replacing pertinent electric assets. NR 6 TC 1 Z9 1 U1 0 U2 1 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 0891-7736 BN 978-1-4244-9864-2 J9 WINT SIMUL C PROC PY 2010 BP 3482 EP 3493 DI 10.1109/WSC.2010.5679037 PG 12 WC Computer Science, Interdisciplinary Applications; Engineering, Manufacturing; Mathematical & Computational Biology; Operations Research & Management Science; Mathematics, Applied SC Computer Science; Engineering; Mathematical & Computational Biology; Operations Research & Management Science; Mathematics GA BTS41 UT WOS:000287976703055 ER PT S AU Bajdich, M Kolorenc, J Mitas, L Reynolds, PJ AF Bajdich, M. Kolorenc, J. Mitas, L. Reynolds, P. J. BE Landau, DP Lewis, SP Schuttler, HB TI Pairing in Cold Atoms and other Applications for Quantum Monte Carlo methods SO PROCEEDINGS OF THE 22TH WORKSHOP ON COMPUTER SIMULATION STUDIES IN CONDENSED MATTER PHYSICS (CSP 2009) SE Physics Procedia LA English DT Proceedings Paper CT 22nd Workshop on Computer Simulation Studies in Condensed-Matter Physics CY FEB 23-27, 2009 CL Athens, GA ID BODY WAVE-FUNCTIONS; GROUND-STATE; RANDOM-WALK; PSEUDOPOTENTIAL CALCULATIONS; SUPERFLUID; SYMMETRY; SIMULATIONS; MOLECULES; ENERGIES; GAS AB We discuss the importance of the fermion nodes for the quantum Monte Carlo (QMC) methods and find two cases of the exact nodes. We describe the structure of the generalized pairing wave functions in Pfaffian antisymmetric form and demonstrate their equivalency with certain class of configuration interaction wave functions. We present the QMC calculations of a model fermion system at unitary limit. We find the system to have the energy of E = 0.425E(free) and the condensate fraction of alpha = 0.48. Further we also perform the QMC calculations of the potential energy surface and the electric dipole moment along that surface of the LiSr molecule. We estimate the vibrationally averaged dipole moment to be < D >(nu=0) = -0.4(2). C1 [Kolorenc, J.; Mitas, L.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Bajdich, M.; Kolorenc, J.; Mitas, L.] North Carolina State Univ, Ctr High Perfomance Simulat, Raleigh, NC 27695 USA. [Bajdich, M.; Kolorenc, J.; Mitas, L.] North Carolina State Univ, Dept Phys, Raleigh, NC 27695 USA. [Reynolds, P. J.] US ARO, Div Phys, Durham, NC 27703 USA. [Reynolds, P. J.] US ARO, Phys Sci Deirctorate, Durham, NC 27703 USA. RP Bajdich, M (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. EM bajdichm@ornl.gov RI Kolorenc, Jindrich/G-5405-2014 OI Kolorenc, Jindrich/0000-0003-2627-8302 FU NSF [DMR-0121361, EAR-0530110]; DOE Endstation [DE-FG05-08OR23336]; PAMS NCSU; NCSA facilities as well the INCITE allocation at ORNL FX We gratefully acknowledge the support by NSF Grants No. DMR-0121361 and EAR-0530110, DOE Endstation grant DE-FG05-08OR23336 and the computer time at PAMS NCSU and NCSA facilities as well the INCITE allocation at ORNL. NR 51 TC 2 Z9 2 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA SARA BURGERHARTSTRAAT 25, PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1875-3892 J9 PHYSCS PROC PY 2010 VL 3 IS 3 BP 1397 EP 1410 DI 10.1016/j.phpro.2010.01.199 PG 14 WC Computer Science, Interdisciplinary Applications; Physics, Applied; Physics, Condensed Matter SC Computer Science; Physics GA BNZ95 UT WOS:000275985200003 ER PT S AU Cooper, VR Kong, L Langreth, DC AF Cooper, V. R. Kong, L. Langreth, D. C. BE Landau, DP Lewis, SP Schuttler, HB TI Computing dispersion interactions in density functional theory SO PROCEEDINGS OF THE 22TH WORKSHOP ON COMPUTER SIMULATION STUDIES IN CONDENSED MATTER PHYSICS (CSP 2009) SE Physics Procedia LA English DT Proceedings Paper CT 22nd Workshop on Computer Simulation Studies in Condensed-Matter Physics CY FEB 23-27, 2009 CL Athens, GA ID CRYSTAL-STRUCTURE PREDICTION; ADAPTED PERTURBATION-THEORY; KOHN-SHAM ORBITALS; SMALL ORGANIC-MOLECULES; DER-WAALS COMPLEXES; QUANTUM MONTE-CARLO; INTERACTION ENERGIES; BASE-PAIRS; BLIND TEST; STATIC POLARIZABILITIES AB In this article techniques for including dispersion interactions within density functional theory are examined. In particular comparisons are made between four popular methods: dispersion corrected DFT, pseudopotential correction schemes, symmetry adapted perturbation theory, and a non-local density functional-the so called Rutgers-Chalmers van der Waals density functional (vdW-DF). The S22 benchmark data set is used to evaluate the relative accuracy of these methods and factors such as scalability and transferability are also discussed. We demonstrate that vdW-DF presents an excellent compromise between computational speed and accuracy and lends most easily to full scale application in solid materials. This claim is supported through a brief discussion of a recent large scale application to H-2 in a prototype metal organic framework material (MOF), Zn2BDC2TED. The vdW-DF shows overwhelming promise for first-principles studies of physisorbed molecules in porous extended systems; thereby having broad applicability for studies as diverse as molecular adsorption and storage, battery technology, catalysis and gas separations. C1 [Cooper, V. R.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Cooper, V. R.; Kong, L.; Langreth, D. C.] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA. RP Cooper, VR (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. EM coopervr@ornl.gov RI Cooper, Valentino /A-2070-2012 OI Cooper, Valentino /0000-0001-6714-4410 NR 80 TC 25 Z9 25 U1 1 U2 17 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA SARA BURGERHARTSTRAAT 25, PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1875-3892 J9 PHYSCS PROC PY 2010 VL 3 IS 3 BP 1417 EP 1430 DI 10.1016/j.phpro.2010.01.201 PG 14 WC Computer Science, Interdisciplinary Applications; Physics, Applied; Physics, Condensed Matter SC Computer Science; Physics GA BNZ95 UT WOS:000275985200005 ER PT B AU Erdemir, A Eryilmaz, OL Urgen, M Kazmanli, MK Ezirmik, V AF Erdemir, A. Eryilmaz, O. L. Urgen, M. Kazmanli, M. K. Ezirmik, V. GP ASME TI DESIGN OF NOVEL NANOCOMPOSITE NITRIDE COATINGS FOR SEVERE TRIBOLOGICAL APPLICATIONS SO PROCEEDINGS OF THE ASME 10TH BIENNIAL CONFERENCE ON ENGINEERING SYSTEMS DESIGN AND ANALYSIS, 2010, VOL 1 LA English DT Proceedings Paper CT 10th ASME Biennial Conference on Engineering Systems Design and Analysis CY JUL 12-24, 2010 CL Istanbul, TURKEY SP ASME, Petroleum Div ID CRYSTAL-CHEMICAL APPROACH; LUBRICATION AB Nanocomposite coatings have lately been attracting a lot of attention mainly because of their superior mechanical and tribological properties even under very severe operating conditions (such as high loads, speeds, temperatures, starved or marginal lubrication, etc.). These coatings may consist of multiple crystalline and/or amorphous phases that make them truly composite and hence multi-functional. In this paper, we primarily focus on the chemical and structural design of such coatings for superior friction and wear properties under lubricated sliding conditions that are typical of various engine applications. As an innovative approach for the design of such coatings, we employed a crystal-chemical model that can be very useful for the selection of right kinds of coating ingredients that are essential for their unique structures and superior property and performance characteristics under severe tribological conditions. Novel MoNx-Cu coatings produced according to this model could provide friction coefficients as low as 0.04 under boundary lubricated sliding regimes and they could not be scuffed or worn through under the heaviest loading conditions of a block-on-ring test machine. C1 [Erdemir, A.; Eryilmaz, O. L.] Argonne Natl Lab, Div Energy Syst, Argonne, IL 60439 USA. RP Erdemir, A (reprint author), Argonne Natl Lab, Div Energy Syst, 9700 S Cass Ave, Argonne, IL 60439 USA. EM erdemir@anl.gov; Eryilmaz@anl.gov; urgen@itu.edu.tr; Kazmanli@itu.edu.tr; ezirmik@atauni.edu.tr RI Urgen, Mustafa/D-5422-2014; Kazmanli, Kursat/O-2062-2013 OI Urgen, Mustafa/0000-0003-3549-0049; NR 5 TC 0 Z9 0 U1 0 U2 2 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4915-6 PY 2010 BP 665 EP 669 PG 5 WC Energy & Fuels; Engineering, Biomedical; Engineering, Mechanical SC Energy & Fuels; Engineering GA BVC19 UT WOS:000291013100084 ER PT B AU Li, Y Colby, JA Kelley, N Thresher, R Jonkman, B Hughes, S AF Li, Ye Colby, Jonathan A. Kelley, Neil Thresher, Robert Jonkman, Bonnie Hughes, Scott GP ASME TI INFLOW MEASUREMENT IN A TIDAL STRAIT FOR DEPLOYING TIDAL CURRENT TURBINES-LESSONS, OPPORTUNITIES AND CHALLENGES SO PROCEEDINGS OF THE ASME 29TH INTERNATIONAL CONFERENCE ON OCEAN, OFFSHORE AND ARCTIC ENGINEERING 2010, VOL 3 LA English DT Proceedings Paper CT 29th ASME International Conference on Ocean, Offshore and Arctic Engineering CY JUN 06-11, 2010 CL Shanghai, PEOPLES R CHINA SP ASME, Ocean, Offshore, & Arctic Engn Div DE Tidal energy; tidal current turbine; inflow measurement; Acoustic Doppler Current Profiler; river test ID VELOCITY AB Tidal energy has received increasing attention over the past decade. This increasing focus on capturing the energy from tidal currents has brought about the development of many designs for tidal current turbines. Several of these turbines are progressing rapidly from design to prototype and pre-commercial stages. As these systems near commercial development, it becomes increasingly important that their performance be validated through laboratory tests (e.g., towing tank tests) and sea tests. Several different turbine configurations have been tested recently. The test results show significant differences in turbine performance between laboratory tests, numerical simulations, and sea tests. Although the mean velocity of the current is highly predictable, evidence suggests a critical factor in these differences is the unsteady inflow. To understand the physics and the effect of the inflow on turbine performance and reliability, Verdant Power (Verdant) and the National Renewable Energy Laboratory (NREL) have engaged in a partnership to address the engineering challenges facing marine current turbines. As part of this effort, Verdant deployed Acoustic Doppler Current Profiler (ADCP) equipment to collect data from a kinetic hydropower system (KHPS) installation at the Roosevelt Island Tidal Energy (RITE) project in the East River in New York City. The ADCP collected data for a little more than one year, and this data is critical for properly defining the operating environment needed for marine systems. This paper summarizes the Verdant-NREL effort to study inflow data provided by the fixed, bottom-mounted ADCP instrumentation and how the data is processed using numerical tools. It briefly reviews previous marine turbine tests and inflow measurements, provides background information from the RITE project, and describes the test turbine design and instrumentation setup. This paper also provides an analysis of the measured time domain data and a detailed discussion of shear profiling, turbulence intensity, and time-dependent fluctuations of the inflow. The paper concludes with suggestions for future work. The analysis provided in this paper will benefit future turbine operation studies. In addition, this study, as well as future studies in this topic area, will be beneficial to environmental policy makers and fishing communities. C1 [Li, Ye; Kelley, Neil; Thresher, Robert; Jonkman, Bonnie; Hughes, Scott] Natl Renewable Energy Lab, Golden, CO USA. RP Li, Y (reprint author), Natl Renewable Energy Lab, Golden, CO USA. NR 16 TC 0 Z9 0 U1 1 U2 3 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4911-8 PY 2010 BP 569 EP 576 PG 8 WC Engineering, Marine; Engineering, Civil; Engineering, Mechanical SC Engineering GA BUX07 UT WOS:000290556500069 ER PT B AU Zhang, QH AF Zhang, Qinghai GP ASME TI A HYBRID FRAMEWORK FOR FREE-SURFACE FLOWS WITH IRREGULAR SOLID BOUNDARIES SO PROCEEDINGS OF THE ASME 29TH INTERNATIONAL CONFERENCE ON OCEAN, OFFSHORE AND ARCTIC ENGINEERING, 2010, VOL 6 LA English DT Proceedings Paper CT 29th ASME International Conference on Ocean, Offshore and Arctic Engineering CY JUN 06-11, 2010 CL Shanghai, PEOPLES R CHINA SP ASME, Ocean, Offshore, & Arctic Engn Div ID NAVIER-STOKES EQUATIONS; PARTIAL-DIFFERENTIAL-EQUATIONS; TIME-DEPENDENT BOUNDARY; INITIAL-STAGES; HEAT-EQUATION; 2ND-ORDER; DOMAINS; WAVES AB The author presents a hybrid continuum-particle framework (HyPAM) consisting of three components. The first is a second-order interface tracking method: the Polygonal Area Mapping (PAM) method [Zhang and Liu 2008. J. Comput. Phys. 227(8)4063-4088], which represents material areas explicitly as piecewise polygons and utilizes polygon-clipping algorithms from computational geometry. In addition to its mesh-topology independence, the PAM method is free of numerical diffusion and tracks interfaces with or without singularities naturally and accurately. Both numerical experiments and theoretical analyses show that the PAM method is superior to existing VOF methods. The second component is a hybrid formulation for free-surface flows [Zhang and Liu 2009. J. Commit. Phys. 228(4):1312-1342]. A graph-based algorithm decomposes the water phase into a continuum zone and a particle zone, where the Euler equations and the free fall of rigid bodies are used as the governing equations, respectively and separately. The third component is the Explicit Jump Approximation (EJA) method for handling irregular solid boundaries in viscous flows [Zhang and Liu 2010. I Comput. Phys. in press]. An analysis shows that the widely-used linear and quadratic ghost-cell approaches (GCA) are inconsistent and first-order accurate, respectively. As a remedy, the jump corrections at the solid-fluid interface are explicitly approximated and incorporated into the discretization of the Laplacian operator to obtain second-order convergence. Further developments of HyPAM include a fourth-order Navier-Stokes solver with adaptive mesh refinement (AMR), incorporating a particle method, and multi-material three-dimensional intetface tracking. C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Appl Numer Algorithms Grp, Berkeley, CA 94720 USA. RP Zhang, QH (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Appl Numer Algorithms Grp, Berkeley, CA 94720 USA. EM QHZhang@lbl.gov RI Zhang, Qinghai/A-3637-2009 OI Zhang, Qinghai/0000-0002-3655-4190 NR 30 TC 0 Z9 0 U1 0 U2 2 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4914-9 PY 2010 BP 707 EP 716 PG 10 WC Engineering, Ocean; Engineering, Mechanical; Materials Science, Multidisciplinary SC Engineering; Materials Science GA BVA87 UT WOS:000290917700080 ER PT B AU Colella, WG AF Colella, Whitney G. GP ASME TI OPTIMIZING OPERATION OF STATIONARY FUEL CELL SYSTEMS (FCS) WITHIN DISTRICT COOLING AND HEATING NETWORKS SO PROCEEDINGS OF THE ASME 8TH INTERNATIONAL CONFERENCE ON FUEL CELL SCIENCE, ENGINEERING, AND TECHNOLOGY 2010, VOL 1 LA English DT Proceedings Paper CT 8th International Conference on Fuel Cell Science, Engineering, and Technology CY JUN 14-16, 2010 CL Brooklyn, NY SP ASME, Adv Energy Syst Div DE combined cooling; heating; and electric power (CCHP); fuel cell system (FCS); global warming; greenhouse gas emissions (GHG); cooling-to-heat ratio; variable heat-to-power ratio; load following; financial; carbon dioxide emissions (CO(2)) environment; and costs AB We evaluate innovative design, installation, and control strategies for generating combined cooling, heating, and electric power (CCHP) with fuel cell systems (FCS). The addition of an absorptive cooling cycle allows unrecovered FCS heat to be converted into cooling power, such as for airconditioning. For example, unrecovered low temperature (80-160 degrees C) heat can be used to drive absorption chillers to create a chilled water stream to cool building spaces. Compared with separate devices that individually generate electricity, heat, and cooling power, such CCHP FCS can reduce feedstock fuel consumption and the resulting greenhouse gas emissions (GHG) by at least 30%. We develop economic and environmental models that optimize the installed capacity of CCHP FCS to minimize either global carbon dioxide (CO(2)) emissions or global energy costs. Our models evaluate innovative engineering design, installation, and control strategies not commonly pursued by industry, and identify strategies most beneficial for reducing CO(2) emissions or costs. Our models minimize costs for building owners consuming cooling power, electricity, and heat by changing the installed capacity of the FCS and by changing FCS operating strategies. Our models optimize for a particular location, climatic region, building load curve set, FCS type, and competitive environment. Our models evaluate the benefits and drawbacks of pursuing more innovative FCS operating strategies; these include 1) connecting FCS to distribution networks for cooling power, heat, and electricity; 2) implementing a variable heat-to-power ratio, to intentionally produce additional heat to meet higher heat demands; 3) designing in the ability to tune the quantity of cooling power from the absorption chiller compared with the amount of recoverable heat from the FCS; and 4) employing the ability to load-follow demand for cooling, heat, or electricity. We base our datum design conditions on measured data describing generator performance in-use, and on measured data describing real-time electricity, heating, and cooling demand over time. A unique feature of our data sets is that the space cooling demand is directly measured and distinguishable from electricity demand (unlike as with standard air conditioning systems). We report results for optimal installed capacities and optimal FCS operating strategies. We generalize these results so that they are applicable to a wide-range of environments throughout the world. C1 Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Colella, WG (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM wgcolel@sandia.gov NR 3 TC 1 Z9 1 U1 2 U2 3 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4404-5 PY 2010 BP 263 EP 285 PG 23 WC Electrochemistry; Energy & Fuels; Engineering, Mechanical SC Electrochemistry; Energy & Fuels; Engineering GA BVB68 UT WOS:000290976400035 ER PT B AU Tucker, D Manivannan, A Haynes, D Abernathy, H Miller, N Wynne, K Matos, A AF Tucker, David Manivannan, Ayyakkannu Haynes, Dan Abernathy, Harry Miller, Nick Wynne, Karon Matos, Angines GP ASME TI Evaluating Methods for Infiltration of LSCF Cathodes with Mixed Electric/Ionic Conductors for Improved Oxygen Exchange SO PROCEEDINGS OF THE ASME 8TH INTERNATIONAL CONFERENCE ON FUEL CELL SCIENCE, ENGINEERING, AND TECHNOLOGY 2010, VOL 1 LA English DT Proceedings Paper CT 8th International Conference on Fuel Cell Science, Engineering, and Technology CY JUN 14-16, 2010 CL Brooklyn, NY SP ASME, Adv Energy Syst Div AB Infiltration methods for improving lanthanum strontium cobalt ferrite (LSCF) cathode performance through catalyst surface modification were evaluated at the U.S. Department of Energy, National Energy Technology Laboratory. Infiltration of mixed conductors into LSCF cathodes of solid oxide fuel cells promises a low cost method of improving oxygen exchange and performance in these materials at lower temperatures. LSCF cathodes on Nickel-Yttria Stabilized Zirconia (Ni-YSZ) anode supported cells were infiltrated with strontium-doped lanthanum zirconate (LSZ) pyrochlores using two methods. An aqueous solution of nitrate salts was vacuum infiltrated into the cathodes of anode supported button cells, and the cells were heated to form the pyrochlore phase in-situ. This was compared to the efficacy of infiltrating a suspension of pyrochlore nanoparticles. Different dispersants were used to prepare the nanoparticle suspensions at varying concentrations and pH levels, and the results are compared. C1 [Tucker, David; Manivannan, Ayyakkannu; Haynes, Dan; Abernathy, Harry; Miller, Nick] US DOE, Natl Energy Technol Lab, Morgantown, WV 26507 USA. RP Tucker, D (reprint author), US DOE, Natl Energy Technol Lab, 3610 Collins Ferry Rd, Morgantown, WV 26507 USA. NR 5 TC 1 Z9 1 U1 0 U2 5 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4404-5 PY 2010 BP 305 EP 309 PG 5 WC Electrochemistry; Energy & Fuels; Engineering, Mechanical SC Electrochemistry; Energy & Fuels; Engineering GA BVB68 UT WOS:000290976400038 ER PT B AU Siefert, N Shekhawat, D Gemmen, R Robey, E Bergen, R Haynes, D Moore, K Williams, M Smith, M AF Siefert, Nicholas Shekhawat, Dushyant Gemmen, Randall Robey, Edward Bergen, Richard Haynes, Daniel Moore, Kevin Williams, Mark Smith, Mark GP ASME TI Operation of a Solid Oxide Fuel Cell on Biodiesel with a Partial Oxidation Reformer SO PROCEEDINGS OF THE ASME 8TH INTERNATIONAL CONFERENCE ON FUEL CELL SCIENCE, ENGINEERING, AND TECHNOLOGY 2010, VOL 1 LA English DT Proceedings Paper CT 8th International Conference on Fuel Cell Science, Engineering, and Technology CY JUN 14-16, 2010 CL Brooklyn, NY SP ASME, Adv Energy Syst Div ID CATALYTIC PARTIAL OXIDATION; AUXILIARY POWER UNITS; LONG-HAUL TRUCKS; PYROCHLORES; PROSPECTS; RH AB The National Energy Technology Laboratory's Office of Research & Development (NETL/ORD) has successfully demonstrated the operation of a solid oxide fuel cell (SOFC) using reformed biodiesel. The biodiesel for the project was produced and characterized by West Virginia State University (WVSU). This project had two main aspects: 1) demonstrate a catalyst formulation on monolith for biodiesel fuel reforming; and 2) establish SOFC stack test stand capabilities. Both aspects have been completed successfully. For the first aspect, in-house patented catalyst specifications were developed, fabricated and tested. Parametric reforming studies of biofuels provided data on fuel composition, catalyst degradation, syngas composition, and operating parameters required for successful reforming and integration with the SOFC test stand. For the second aspect, a stack test fixture (STF) for standardized testing, developed by Pacific Northwest National Laboratory (PNNL) and Lawrence Berkeley National Laboratory (LBNL) for the Solid Energy Conversion Alliance (SECA) Program, was engineered and constructed at NETL. To facilitate the demonstration of the STF, NETL employed H.C. Starck Ceramics GmbH & Co. (Germany) anode supported solid oxide cells. In addition, anode supported cells, SS441 end plates, and cell frames were transferred from PNNL to NETL The stack assembly and conditioning procedures, including stack welding and sealing, contact paste application, binder burn-out, seal-setting, hot standby, and other stack assembly and conditioning methods were transferred to NETL. In the future, fuel cell stacks provided by SECA or other developers could be tested at the STF to validate SOFC performance on various fuels. The STF operated on hydrogen for over 1000 hrs before switching over to reformed biodiesel for 100 hrs of operation. Combining these first two aspects led to demonstrating the biodiesel syngas in the STF. A reformer was built and used to convert 0.5 ml/min of biodiesel into mostly hydrogen and carbon monoxide (syngas.) The syngas was fed to the STF and fuel cell stack. The results presented in this experimental report document one of the first times a SOFC has been operated on syngas from reformed biodiesel. C1 [Siefert, Nicholas; Shekhawat, Dushyant; Gemmen, Randall] US DOE, Natl Energy Technol Lab, Morgantown, WV USA. RP Siefert, N (reprint author), US DOE, Natl Energy Technol Lab, Morgantown, WV USA. EM randall.gemmen@netl.doe.gov NR 17 TC 1 Z9 1 U1 0 U2 3 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4404-5 PY 2010 BP 371 EP 376 PG 6 WC Electrochemistry; Energy & Fuels; Engineering, Mechanical SC Electrochemistry; Energy & Fuels; Engineering GA BVB68 UT WOS:000290976400048 ER PT B AU Sohal, MS O'Brien, JE Stoots, CM Sharma, VI Yildiz, B Virkar, A AF Sohal, M. S. O'Brien, J. E. Stoots, C. M. Sharma, V. I. Yildiz, B. Virkar, A. GP ASME TI DEGRADATION ISSUES IN SOLID OXIDE CELLS DURING HIGH TEMPERATURE ELECTROLYSIS SO PROCEEDINGS OF THE ASME 8TH INTERNATIONAL CONFERENCE ON FUEL CELL SCIENCE, ENGINEERING, AND TECHNOLOGY 2010, VOL 1 LA English DT Proceedings Paper CT 8th International Conference on Fuel Cell Science, Engineering, and Technology CY JUN 14-16, 2010 CL Brooklyn, NY SP ASME, Adv Energy Syst Div ID STABILIZED ZIRCONIA; NUCLEAR-ENERGY; HYDROGEN; STACKS AB Idaho National Laboratory (INL) is performing high-temperature electrolysis (HTE) research to generate hydrogen using solid oxide electrolysis cells (SOECs). The project goals are to address the technical and degradation issues associated with the SOECs. This paper provides a summary of ongoing INL and INL-sponsored activities aimed at addressing SOEC degradation. These activities include stack testing, post-test examination, degradation modeling, and issues that need to be addressed in the future. Major degradation issues relating to solid oxide fuel cells (SOFC) are relatively better understood than those for SOECs. Some of the degradation mechanisms in SOFCs include contact problems between adjacent cell components, microstructural deterioration (coarsening) of the porous electrodes, and blocking of the reaction sites within the electrodes. Contact problems include delamination of an electrode from the electrolyte, growth of a poorly (electronically) conducting oxide layer between the metallic interconnect plates and the electrodes, and lack of contact between the interconnect and the electrode. INL's test results on HTE using solid oxide cells do not provide clear evidence as to whether different events lead to similar or drastically different electrochemical degradation mechanisms. Post-test examination of the SOECs showed that the hydrogen electrode and interconnect get partially oxidized and become nonconductive. This is most likely caused by the hydrogen stream composition and flow rate during cooldown. The oxygen electrode side of the stacks seemed to be responsible for the observed degradation because of large areas of electrode delamination. Based on the oxygen electrode appearance, the degradation of these stacks was largely controlled by the oxygen electrode delamination rate. Virkar et al. [19-22] have developed a SOEC model based on concepts in local thermodynamic equilibrium in systems otherwise in global thermodynamic nonequilibrium. This model is under continued development. It shows that electronic conduction through the electrolyte, however small, must be taken into account for determining local oxygen chemical potential within the electrolyte. The chemical potential within the electrolyte may lie out of bounds in relation to values at the electrodes in the electrolyzer mode. Under certain conditions, high pressures can develop in the electrolyte just under the oxygen electrode (anode)/electrolyte interface, leading to electrode delamination. This theory is being further refined and tested by introducing some electronic conduction in the electrolyte. C1 [Sohal, M. S.; O'Brien, J. E.; Stoots, C. M.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Sohal, MS (reprint author), Idaho Natl Lab, Idaho Falls, ID 83415 USA. NR 21 TC 1 Z9 1 U1 1 U2 9 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4404-5 PY 2010 BP 377 EP 387 PG 11 WC Electrochemistry; Energy & Fuels; Engineering, Mechanical SC Electrochemistry; Energy & Fuels; Engineering GA BVB68 UT WOS:000290976400049 ER PT B AU Chen, KS Carnes, B Jiang, FM Luo, G Wang, CY AF Chen, Ken S. Carnes, Brian Jiang, Fangming Luo, Gang Wang, Chao-Yang GP ASME TI TOWARD DEVELOPING A COMPUTATIONAL CAPABILITY FOR PEM FUEL CELL DESIGN AND OPTIMIZATION SO PROCEEDINGS OF THE ASME 8TH INTERNATIONAL CONFERENCE ON FUEL CELL SCIENCE, ENGINEERING, AND TECHNOLOGY 2010, VOL 1 LA English DT Proceedings Paper CT 8th International Conference on Fuel Cell Science, Engineering, and Technology CY JUN 14-16, 2010 CL Brooklyn, NY SP ASME, Adv Energy Syst Div ID LIQUID WATER TRANSPORT; GAS-DIFFUSION LAYER; POLYMER-ELECTROLYTE MEMBRANES; DIRECT NUMERICAL-SIMULATION; INTERDIGITATED FLOW-FIELDS; LARGE-SCALE SIMULATION; LOW-HUMIDITY OPERATION; 2-PHASE FLOW; MATHEMATICAL-MODEL; CATALYST-LAYER AB In this paper, we report the progress made in our project recently funded by the US Department of Energy (DOE) toward developing a computational capability, which includes a two-phase, three-dimensional PEM (polymer electrolyte membrane) fuel cell model and its coupling with DAKOTA (a design and optimization toolkit developed and being enhanced by Sandia National Laboratories). We first present a brief literature survey in which the prominent/notable PEM fuel cell models developed by various researchers or groups are reviewed. Next, we describe the two-phase, three-dimensional PEM fuel cell model being developed, tested, and later validated by experimental data. Results from case studies are presented to illustrate the utility of our comprehensive, integrated cell model. The coupling between the PEM fuel cell model and DAKOTA is briefly discussed. Our efforts in this DOE-funded project are focused on developing a validated computational capability that can be employed for PEM fuel cell design and optimization. C1 [Chen, Ken S.; Carnes, Brian] Sandia Natl Labs, Engn Sci Ctr, Albuquerque, NM 87185 USA. RP Chen, KS (reprint author), Sandia Natl Labs, Engn Sci Ctr, POB 5800, Albuquerque, NM 87185 USA. NR 156 TC 0 Z9 0 U1 1 U2 4 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4404-5 PY 2010 BP 445 EP 454 PG 10 WC Electrochemistry; Energy & Fuels; Engineering, Mechanical SC Electrochemistry; Energy & Fuels; Engineering GA BVB68 UT WOS:000290976400056 ER PT B AU Carnes, B Chen, KS Jiang, FM Luo, G Wang, CY AF Carnes, Brian Chen, Ken S. Jiang, Fangming Luo, Gang Wang, Chao-Yang GP ASME TI SYSTEMATIC PARAMETER ESTIMATION AND SENSITIVITY ANALYSIS USING A MULTIDIMENSIONAL PEMFC MODEL COUPLED WITH DAKOTA SO PROCEEDINGS OF THE ASME 8TH INTERNATIONAL CONFERENCE ON FUEL CELL SCIENCE, ENGINEERING, AND TECHNOLOGY 2010, VOL 1 LA English DT Proceedings Paper CT 8th International Conference on Fuel Cell Science, Engineering, and Technology CY JUN 14-16, 2010 CL Brooklyn, NY SP ASME, Adv Energy Syst Div ID ELECTROLYTE FUEL-CELLS; OPTIMIZATION AB Current computational models for proton exchange membrane fuel cells (PEMFCs) include a large number of parameters such as boundary conditions, material properties, and numerous parameters used in sub-models for membrane transport, two-phase flow and electrochemistry. In order to successfully use a computational PEMFC model in design and optimization, it is important to identify critical parameters under a wide variety of operating conditions, such as relative humidity, current load, temperature, etc. Moreover, when experimental data is available in the form of polarization curves or local distribution of current and reactant/product species (e.g., O2, H2O concentrations), critical parameters can be estimated in order to enable the model to better fit the data. Sensitivity analysis and parameter estimation are typically performed using manual adjustment of parameters, which is also common in parameter studies. We present work to demonstrate a systematic approach based on using a widely available toolkit developed at Sandia called DAKOTA that supports many kinds of design studies, such as sensitivity analysis as well as optimization and uncertainty quantification. In the present work, we couple a multidimensional PEMFC model (which is being developed, tested and later validated in a joint effort by a team from Penn State Univ. and Sandia National Laboratories) with DAKOTA through the mapping of model parameters to system responses. Using this interface, we demonstrate the efficiency of performing simple parameter studies as well as identifying critical parameters using sensitivity analysis. Finally, we show examples of optimization and parameter estimation using the automated capability in DAKOTA. C1 [Carnes, Brian; Chen, Ken S.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Carnes, B (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. NR 11 TC 0 Z9 0 U1 0 U2 2 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4404-5 PY 2010 BP 455 EP 461 PG 7 WC Electrochemistry; Energy & Fuels; Engineering, Mechanical SC Electrochemistry; Energy & Fuels; Engineering GA BVB68 UT WOS:000290976400057 ER PT B AU Mukherjee, PP Mukundan, R Borup, RL AF Mukherjee, Partha P. Mukundan, Rangachary Borup, Rodney L. GP ASME TI MODELING OF DURABILITY EFFECT ON THE FLOODING BEHAVIOR IN THE PEFC GAS DIFFUISON LAYER SO PROCEEDINGS OF THE ASME 8TH INTERNATIONAL CONFERENCE ON FUEL CELL SCIENCE, ENGINEERING, AND TECHNOLOGY 2010, VOL 1 LA English DT Proceedings Paper CT 8th International Conference on Fuel Cell Science, Engineering, and Technology CY JUN 14-16, 2010 CL Brooklyn, NY SP ASME, Adv Energy Syst Div ID ELECTROLYTE FUEL-CELLS; DIFFUSION MEDIUM; CATHODE; FLOWS AB The gas diffusion layer (GDL) plays a critical role in the overall performance of a polymer electrolyte fuel cell (PEFC), especially in the mass transport control regime due to suboptimal liquid water transport. Liquid water blocks the porous pathways in the catalyst layer and gas diffusion layer thereby causing hindered oxygen transport from the channel to the active reaction sites. This phenomenon is known as "flooding" and is perceived as the primary mechanism leading to the limiting current behavior in the cell performance. The pore morphology and wetting characteristics of the cathode GDL are of paramount importance in the effective PEFC water management. Typical beginning-of-life GDLs exhibit hydrophobic characteristics, which facilities liquid water transport and hence reduces flooding. Experimental data, however, suggest that the GDL loses hydrophobicity over prolonged PEFC operation and becomes prone to enhanced flooding. In this work, we present a pore-scale modeling framework to study the structure-wettability-durability interplay in the context of flooding behavior in the PEFC GDL. C1 [Mukherjee, Partha P.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Mukherjee, PP (reprint author), Oak Ridge Natl Lab, POB 2008,MS 6164, Oak Ridge, TN 37831 USA. NR 18 TC 0 Z9 0 U1 1 U2 2 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4404-5 PY 2010 BP 683 EP 688 PG 6 WC Electrochemistry; Energy & Fuels; Engineering, Mechanical SC Electrochemistry; Energy & Fuels; Engineering GA BVB68 UT WOS:000290976400085 ER EF