FN Thomson Reuters Web of Science™ VR 1.0 PT J AU Baek, SH Curro, NJ Klimczuk, T Sakai, H Bauer, ED Ronning, F Thompson, JD AF Baek, S. -H. Curro, N. J. Klimczuk, T. Sakai, H. Bauer, E. D. Ronning, F. Thompson, J. D. TI Hybridization-driven gap in U3Bi4Ni3: A Bi-209 NMR/NQR study SO PHYSICAL REVIEW B LA English DT Article DE bismuth alloys; hyperfine interactions; Knight shift; Kondo effect; nickel alloys; nuclear quadrupole resonance; spin-lattice relaxation; uranium alloys ID SEMICONDUCTING PROPERTIES; HEAVY-FERMION; CE3BI4PT3; SMB6; CU AB We report Bi-209 nuclear-magnetic-resonance and nuclear-quadrupole-resonance measurements on a single crystal of the Kondo insulator U3Bi4Ni3. The Bi-209 nuclear-spin-lattice relaxation rate (T-1(-1)) shows activated behavior and is well fit by a spin gap of 220 K. The Bi-209 Knight shift (K) exhibits a strong temperature dependence arising from 5f electrons, in which K is negative at high temperatures and increases as the temperature is lowered. Below 50 K, K shows a broad maximum and decreases slightly upon further cooling. Our data provide insight into the evolution of the hyperfine fields in a fully gapped Kondo insulator based on 5f electron hybridization. C1 [Baek, S. -H.; Klimczuk, T.; Sakai, H.; Bauer, E. D.; Ronning, F.; Thompson, J. D.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Klimczuk, T.] Gdansk Univ Technol, Fac Appl Phys & Math, PL-80952 Gdansk, Poland. [Sakai, H.] Japan Atom Energy Agcy, Adv Sci Res Ctr, Tokai, Ibaraki 3191195, Japan. RP Baek, SH (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. RI Bauer, Eric/D-7212-2011; Klimczuk, Tomasz/M-1716-2013; Baek, Seung-Ho/F-4733-2011; Curro, Nicholas/D-3413-2009 OI Klimczuk, Tomasz/0000-0003-2602-5049; Baek, Seung-Ho/0000-0002-0059-8255; Curro, Nicholas/0000-0001-7829-0237 NR 21 TC 4 Z9 4 U1 2 U2 13 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAY PY 2009 VL 79 IS 19 AR 195120 DI 10.1103/PhysRevB.79.195120 PG 4 WC Physics, Condensed Matter SC Physics GA 451WJ UT WOS:000266501300049 ER PT J AU Baranov, NV Proshkin, AV Czternasty, C Meissner, M Podlesnyak, A Podgornykh, SM AF Baranov, N. V. Proshkin, A. V. Czternasty, C. Meissner, M. Podlesnyak, A. Podgornykh, S. M. TI Butterflylike specific heat, magnetocaloric effect, and itinerant metamagnetism in (Er,Y)Co-2 compounds SO PHYSICAL REVIEW B LA English DT Article DE Curie temperature; entropy; erbium compounds; magnetocaloric effects; metamagnetism; specific heat; spin fluctuations; yttrium compounds ID HIGH MAGNETIC-FIELDS; ELECTRON METAMAGNETISM; SPIN FLUCTUATIONS; RCO(2) COMPOUNDS; RCO2 COMPOUNDS; TRANSITION; TEMPERATURE; CAPACITY; SYSTEM; ERCO2 AB The field-induced first-order phase transition in (Er1-xYx)Co-2 with the yttrium concentration x=0.45 is observed to be accompanied by a butterflylike behavior and significant irreversibility of the specific heat. The coefficient gamma of the T-linear specific heat decreases by similar to 48% under application and removal of a magnetic field up to 20 kOe. This behavior is attributed to the itinerant electron metamagnetism of Co 3d electrons. The isothermal magnetic entropy change Delta S-m in Er0.55Y0.45Co2 includes a large contribution associated with spin fluctuations induced by the f-d exchange interaction in the hybridized 3d-5d-electron subsystem. These spin fluctuations are suggested to contribute substantially to the magnetocaloric effect of the RCo2 type compounds. The maximal Delta S-m value observed for ErCo2 just above the Curie temperature is ascribed to the closeness of the T-C value to the spin-fluctuation temperature T-sf of itinerant Co 3d electrons. The nonmonotonous change in Delta S-m with the Curie temperature of (R1-xRxCo2)-Co-' compounds is explained by the temperature variation in the spin-fluctuation contribution to the magnetocaloric effect. C1 [Baranov, N. V.; Proshkin, A. V.] Russian Acad Sci, Inst Met Phys, Ekaterinburg 620219, Russia. [Baranov, N. V.; Proshkin, A. V.; Podgornykh, S. M.] Ural State Univ, Inst Phys & Appl Math, Ekaterinburg 620083, Russia. [Czternasty, C.; Meissner, M.] Helmholtz Zentrum Berlin, D-14109 Berlin, Germany. [Podlesnyak, A.] Oak Ridge Natl Lab, Spallat Neutron Source, Oak Ridge, TN 37831 USA. RP Baranov, NV (reprint author), Russian Acad Sci, Inst Met Phys, Ekaterinburg 620219, Russia. EM nikolai.baranov@usu.ru RI Podlesnyak, Andrey/A-5593-2013; Podgornykh, Sergey/J-3583-2013; Proshkin, Alexey/J-7180-2013; C, Y/G-5456-2010; Baranov, Nikolai/J-5042-2013 OI Podlesnyak, Andrey/0000-0001-9366-6319; Podgornykh, Sergey/0000-0002-4942-4862; Proshkin, Alexey/0000-0002-2631-6834; Baranov, Nikolai/0000-0002-9720-5314 FU RAS [01.2.006 13391]; Department of Energy [DE-AC05-00OR22725] FX This work was supported by the RAS Program (Project No. 01.2.006 13391). ORNL/SNS is managed by UT-Battelle, LLC, for the U. S. Department of Energy under Contract No. DE-AC05-00OR22725. NR 53 TC 12 Z9 12 U1 4 U2 31 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAY PY 2009 VL 79 IS 18 AR 184420 DI 10.1103/PhysRevB.79.184420 PG 9 WC Physics, Condensed Matter SC Physics GA 451WI UT WOS:000266501200073 ER PT J AU Bartal, G Lerosey, G Zhang, X AF Bartal, Guy Lerosey, Geoffroy Zhang, Xiang TI Subwavelength dynamic focusing in plasmonic nanostructures using time reversal SO PHYSICAL REVIEW B LA English DT Article DE focusing; nanostructured materials; periodic structures; plasmonics ID DIFFRACTION LIMIT; OPTICAL SUPERLENS; SCATTERING; REFRACTION; ARRAYS; LIGHT AB We employ time reversal for deep subwavelength focusing in plasmonic periodic nanostructures. The strong anisotropy enables propagating modes with very large transverse wave vector and moderate propagation constant, facilitating transformation of diffraction-limited plane waves to high-K Bloch waves in the plasmonic nanostructure. Time reversal is used to excite the waves in the nanostructure at the exact amplitude and phase to focus the incident light to dimensions well below the diffraction limit at any point in the structure, exemplifying a true subdiffractional confinement and resolution. C1 [Bartal, Guy; Lerosey, Geoffroy; Zhang, Xiang] Univ Calif Berkeley, NSF, NSEC, Berkeley, CA 94720 USA. [Zhang, Xiang] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Sci Mat, Berkeley, CA 94720 USA. RP Zhang, X (reprint author), Univ Calif Berkeley, NSF, NSEC, 5130 Etcheverry Hall, Berkeley, CA 94720 USA. EM xzhang@me.berkeley.edu RI Zhang, Xiang/F-6905-2011 FU DARPA [HR0011-05-3-0002]; U.S. Army Research Office (ARO) MURI program [50432-PH-MUR]; NSF [CMMI-0751621] FX This work is supported by DARPA (Agreement No. HR0011-05-3-0002), the U.S. Army Research Office (ARO) MURI program 50432-PH-MUR, and the NSF under Grant No. CMMI-0751621. The authors thank Rupert Oulton and David Pile for stimulating discussions. NR 31 TC 44 Z9 44 U1 2 U2 13 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD MAY PY 2009 VL 79 IS 20 AR 201103 DI 10.1103/PhysRevB.79.201103 PG 4 WC Physics, Condensed Matter SC Physics GA 451WL UT WOS:000266501500003 ER PT J AU Begtrup, GE Gannett, W Meyer, JC Yuzvinsky, TD Ertekin, E Grossman, JC Zettl, A AF Begtrup, Gavi E. Gannett, Will Meyer, Jannik C. Yuzvinsky, Thomas D. Ertekin, Elif Grossman, Jeffrey C. Zettl, Alex TI Facets of nanotube synthesis: High-resolution transmission electron microscopy study and density functional theory calculations SO PHYSICAL REVIEW B LA English DT Article DE carbon nanotubes; catalysts; density functional theory; diffusion; iron; nanotechnology; transmission electron microscopy ID AUGMENTED-WAVE METHOD; CARBON; GROWTH; SCALE; IRON AB We report the presence of catalytically active facets on iron nanocrystals during carbon nanotube synthesis. Using real-time in situ high-resolution transmission electron microscopy, we observe the facets' formation and interaction with carbon feedstock and are able to infer carbon diffusion across the catalyst surface facilitating nanotube formation. The observations are supported by density functional theory calculations. C1 [Begtrup, Gavi E.; Gannett, Will; Meyer, Jannik C.; Yuzvinsky, Thomas D.; Zettl, Alex] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Begtrup, Gavi E.; Gannett, Will; Meyer, Jannik C.; Yuzvinsky, Thomas D.; Zettl, Alex] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Yuzvinsky, Thomas D.; Grossman, Jeffrey C.; Zettl, Alex] Ctr Integrated Nanomech Syst, Berkeley, CA 94720 USA. [Ertekin, Elif; Grossman, Jeffrey C.] Berkeley Nanosci & Nanoengn Inst, Berkeley, CA 94720 USA. RP Begtrup, GE (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. RI Meyer, Jannik/H-8541-2012; Ertekin, Elif/D-6764-2013; Zettl, Alex/O-4925-2016; OI Meyer, Jannik/0000-0003-4023-0778; Zettl, Alex/0000-0001-6330-136X; Yuzvinsky, Thomas/0000-0001-5708-2877 FU (U. S.) Department of Energy [DE-AC02-05CH11231]; Miller Institute for Basic Research in Science; NSF; Focus Center Research Program on Materials, Structures, and Devices FX This work was supported by the Director, Office of Energy Research, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the (U. S.) Department of Energy under Contract No. DE-AC02-05CH11231. A. Z. acknowledges support from the Miller Institute for Basic Research in Science. W. G. acknowledges support from the NSF Integrative Graduate Education and Research Traineeship (IGERT) Program. J. C. G. and E. E. acknowledge funding by the Focus Center Research Program on Materials, Structures, and Devices (FCRP/MSD). Computations were performed at the National Energy Research Scientific Computing Center. NR 18 TC 23 Z9 24 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAY PY 2009 VL 79 IS 20 AR 205409 DI 10.1103/PhysRevB.79.205409 PG 6 WC Physics, Condensed Matter SC Physics GA 451WL UT WOS:000266501500090 ER PT J AU Caruso, AN Pokhodnya, KI Shum, WW Ching, WY Anderson, B Bremer, MT Vescovo, E Rulis, P Epstein, AJ Miller, JS AF Caruso, A. N. Pokhodnya, Konstantin I. Shum, William W. Ching, W. Y. Anderson, Bridger Bremer, M. T. Vescovo, E. Rulis, Paul Epstein, A. J. Miller, Joel S. TI Direct evidence of electron spin polarization from an organic-based magnet: [Fe-II(TCNE)(NCMe)(2)][(FeCl4)-Cl-III] SO PHYSICAL REVIEW B LA English DT Article DE ab initio calculations; antiferromagnetic materials; density functional theory; electron spin polarisation; exchange interactions (electron); Fermi level; magnetic semiconductors; organic semiconductors; photoemission ID MOLECULE-BASED MAGNETS; SPINTRONICS; PHOTOEMISSION; TRANSITION; FILMS AB Direct evidence of an organic-based magnet with a finite electron spin polarization at the Fermi edge is shown from spin-resolved photoemission of the [Fe-II(TCNE)(NCMe)(2)][(FeCl4)-Cl-III] organic-based magnet. The 23% majority-based spin polarization at the Fermi edge is observed at 80 K in zero applied field. Ab initio calculations at the density functional level (0 K) are in accord with a semiconductor with 100% majority-based electron spin polarization at the band edges, commensurate with our experimental results and model prediction for a half-semiconductor. Organic-based magnets may prove to be important for realizing polarized electron injection into semiconductors for magnetoelectronic applications. C1 [Caruso, A. N.; Ching, W. Y.; Rulis, Paul] Univ Missouri, Dept Phys, Kansas City, MO 64110 USA. [Pokhodnya, Konstantin I.; Shum, William W.; Miller, Joel S.] Univ Utah, Dept Chem, Salt Lake City, UT 84112 USA. [Pokhodnya, Konstantin I.; Anderson, Bridger; Bremer, M. T.] N Dakota State Univ, Ctr Nanoscale Sci & Engn, Fargo, ND 58102 USA. [Pokhodnya, Konstantin I.; Epstein, A. J.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Pokhodnya, Konstantin I.; Epstein, A. J.] Ohio State Univ, Dept Chem, Columbus, OH 43210 USA. [Vescovo, E.] Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA. EM carusoan@umkc.edu RI Ching, Wai-Yim/B-4686-2009 OI Ching, Wai-Yim/0000-0001-7738-8822 FU NSF [EPS-0447679]; DOE [DE-FG02-86ER45271, DE-FG02-84DR45170, DE-FG02-01ER45931]; AFOSR [F49620-03-1-01-75] FX This work was supported in part by the NSF (Contract No. EPS-0447679), the DOE (Contracts No. DE-FG02-86ER45271, No. DE-FG02-84DR45170, and No. DE-FG02-01ER45931), and the AFOSR (Contract No. F49620-03-1-01-75). NR 31 TC 8 Z9 8 U1 0 U2 10 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAY PY 2009 VL 79 IS 19 AR 195202 DI 10.1103/PhysRevB.79.195202 PG 5 WC Physics, Condensed Matter SC Physics GA 451WJ UT WOS:000266501300063 ER PT J AU Chanier, T Virot, F Hayn, R AF Chanier, T. Virot, F. Hayn, R. TI Chemical trend of exchange coupling in diluted magnetic II-VI semiconductors: Ab initio calculations SO PHYSICAL REVIEW B LA English DT Article DE cobalt; conduction bands; exchange interactions (electron); ferromagnetic materials; II-VI semiconductors; impurities; localised states; magneto-optical effects; manganese; photoemission; semiconductor doping; semimagnetic semiconductors; wide band gap semiconductors; zinc compounds ID DOPED ZNO; FERROMAGNETISM; METAL; SCATTERING; MN; SYSTEMS; ENERGY; FILMS AB We have calculated the chemical trend of magnetic exchange parameters (J(dd), N alpha, and N beta) of Zn-based II-VI semiconductors ZnA (A=O, S, Se, and Te) doped with Co or Mn. We show that a proper treatment of electron correlations by the local spin-density approximation (LSDA)+U method leads to good agreement between experimental and theoretical values of the nearest-neighbor exchange coupling J(dd) between localized 3d spins in contrast to the LSDA method. The exchange couplings between localized spins and doped electrons in the conduction band N alpha are in good agreement with experiment as well. But the values for N beta (coupling to doped holes in the valence band) indicate a crossover from weak coupling (for A=Te and Se) to strong coupling (for A=O) and a localized hole state in ZnO:Mn. This hole localization explains the apparent discrepancy between photoemission and magneto-optical data for ZnO:Mn. C1 [Chanier, T.; Virot, F.; Hayn, R.] Fac Sci & Tech St Jerome, Inst Mat Microelect & Nanosci Provence, F-13397 Marseille 20, France. [Chanier, T.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Chanier, T (reprint author), Fac Sci & Tech St Jerome, Inst Mat Microelect & Nanosci Provence, Case 142, F-13397 Marseille 20, France. RI Virot, Francois/H-4079-2012; Chanier, Thomas/F-2768-2011 OI Chanier, Thomas/0000-0002-8222-2154 FU [14182XB] FX We thank Anatole Stepanov, Sergei Ryabchenko, and Roman Kuzian for useful discussions. Financial support from the "Dnipro" program (Grant No. 14182XB) is gratefully acknowledged. NR 54 TC 36 Z9 36 U1 1 U2 12 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAY PY 2009 VL 79 IS 20 AR 205204 DI 10.1103/PhysRevB.79.205204 PG 8 WC Physics, Condensed Matter SC Physics GA 451WL UT WOS:000266501500051 ER PT J AU Cheng, XM Buchanan, KS Divan, R Guslienko, KY Keavney, DJ AF Cheng, X. M. Buchanan, K. S. Divan, R. Guslienko, K. Y. Keavney, D. J. TI Nonlinear vortex dynamics and transient domains in ferromagnetic disks SO PHYSICAL REVIEW B LA English DT Article DE iron alloys; magnetic relaxation; magnetisation; micromagnetics; nickel alloys; photoelectron microscopy; polarisation; vortices AB We report a time-resolved imaging and micromagnetic simulation study of the relaxation dynamics of a magnetic vortex in the nonlinear regime. We use time-resolved photoemission electron microscopy and micromagnetic calculations to examine the emergence of nonlinear vortex dynamics in patterned Ni(80)Fe(20) disks in the limit of long field pulses. We show for core shifts beyond similar to 20%-25% of the disk radius, the initial motion is characterized by distortions of the vortex, a transient cross-tie wall state, and instabilities in the core polarization that influence the core trajectories. C1 [Cheng, X. M.; Keavney, D. J.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Buchanan, K. S.] Colorado State Univ, Dept Phys, Ft Collins, CO 80523 USA. [Buchanan, K. S.; Divan, R.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Guslienko, K. Y.] Univ Basque Country, Dept Mat Phys, San Sebastian 20080, Spain. RP Cheng, XM (reprint author), Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RI Cheng, Xuemei/D-2388-2010; OI Cheng, Xuemei/0000-0001-6670-4316; Buchanan, Kristen/0000-0003-0879-0038 FU U. S. Department of Energy [DE-AC02-06CH11357]; Ikerbasque Science Foundation FX The use of the Advanced Photon Source and the Center for Nanoscale Materials at Argonne National Laboratory was supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract No. DE-AC02-06CH11357. K. Y. G. acknowledges support by the Ikerbasque Science Foundation. NR 25 TC 22 Z9 22 U1 0 U2 14 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAY PY 2009 VL 79 IS 17 AR 172411 DI 10.1103/PhysRevB.79.172411 PG 4 WC Physics, Condensed Matter SC Physics GA 451WH UT WOS:000266501100017 ER PT J AU Cooper, VR Rabe, KM AF Cooper, Valentino R. Rabe, Karin M. TI Enhancing piezoelectricity through polarization-strain coupling in ferroelectric superlattices SO PHYSICAL REVIEW B LA English DT Article DE ab initio calculations; barium compounds; density functional theory; dielectric polarisation; ferroelectric materials; lead compounds; piezoelectricity; superlattices ID ENHANCEMENT AB Short-period ferroelectric/ferroelectric PbTiO3 (PTO)/BaTiO3 (BTO) superlattices are studied using density functional theory. Contrary to the trends in paraelectric/ferroelectric superlattices the polarization remains nearly constant for PTO concentrations below 50%. In addition, a significant decrease in the c/a ratio below the PTO values was observed. Using a first-principles superlattice model we predict an enhancement in the d(33) piezoelectric coefficient peaking at similar to 75% PTO concentration due to the different polarization-strain coupling in PTO and BTO layers. Further analysis reveals that these trends are bulk properties which are a consequence of the reduced P brought about by the polarization saturation in the BTO layers. C1 [Cooper, Valentino R.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Rabe, Karin M.] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA. RP Cooper, VR (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. EM coopervr@ornl.gov RI Cooper, Valentino /A-2070-2012 OI Cooper, Valentino /0000-0001-6714-4410 FU ONR [N0014-00-1-0261]; DOE, Division of Materials Sciences and Engineering FX We would like to thank David Vanderbilt and Scott Beckman for valuable discussions. This work was supported by ONR (Grant No. N0014-00-1-0261). Part of this work was carried out at the Aspen Center for Physics. Work at ORNL was supported by DOE, Division of Materials Sciences and Engineering. NR 21 TC 17 Z9 17 U1 4 U2 25 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD MAY PY 2009 VL 79 IS 18 AR 180101 DI 10.1103/PhysRevB.79.180101 PG 4 WC Physics, Condensed Matter SC Physics GA 451WI UT WOS:000266501200001 ER PT J AU Del Genio, CI Trenkler, J Bassler, KE Wochner, P Haeffner, DR Reiter, GF Bai, JM Moss, SC AF Del Genio, Charo I. Trenkler, Johann Bassler, Kevin E. Wochner, Peter Haeffner, Dean R. Reiter, George F. Bai, Jianming Moss, Simon C. TI Depth-dependent critical behavior in V2H SO PHYSICAL REVIEW B LA English DT Article DE critical phenomena; dislocation density; order-disorder transformations; vanadium compounds; X-ray scattering ID 2 LENGTH SCALES; X-RAY-SCATTERING; CRITICAL FLUCTUATIONS; NEUTRON-SCATTERING; PHASE-TRANSITIONS; SRTIO3; ORIGIN; DIFFRACTION; HOLMIUM AB Using x-ray diffuse scattering, we investigate the critical behavior of an order-disorder phase transition in a defective "skin layer" of V2H. In the skin layer, there exist walls of dislocation lines oriented normal to the surface. The density of dislocation lines within a wall decreases continuously with depth. We find that, because of this inhomogeneous distribution of defects, the transition effectively occurs at a depth-dependent local critical temperature. A depth-dependent scaling law is proposed to describe the corresponding critical ordering behavior. C1 [Del Genio, Charo I.; Trenkler, Johann; Bassler, Kevin E.; Reiter, George F.; Moss, Simon C.] Univ Houston, Dept Phys, Houston, TX 77204 USA. [Del Genio, Charo I.; Bassler, Kevin E.; Moss, Simon C.] Univ Houston, Texas Ctr Superconduct, Houston, TX 77204 USA. [Trenkler, Johann; Wochner, Peter] Max Planck Inst Met Res, D-70569 Stuttgart, Germany. [Haeffner, Dean R.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Bai, Jianming] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Del Genio, CI (reprint author), Univ Houston, Dept Phys, 617 Sci & Res 1,4800 Calhoun Rd, Houston, TX 77204 USA. RI Del Genio, Charo/F-7249-2010; Bai, Jianming/O-5005-2015 OI Del Genio, Charo/0000-0001-9958-017X; FU NSF [DMR-0427538]; U. S. DOE, BES-DMS [W-31-109-ENG38] FX The authors would like to thank R. Hempelmann for loading the crystal used in these experiments and D. Lott, H. D. Carstanjen, P. C. Chow, D. De Fontaine, J. W. Cahn, and R. Barabash for help in the experiment or fruitful discussions. Furthermore, we thank G. Srajer and the beamline personnel at the APS at Argonne National Laboratory for assistance during the experiment. The work of C. I. D. G. and K. E. B. was supported by the NSF through Grant No. DMR-0427538. S. C. M. gratefully acknowledges the support of the Texas Center for Superconductivity of the University of Houston (TSuH).The Advanced Photon Source is supported by the U. S. DOE, BES-DMS, under Contract No. W-31-109-ENG38. NR 24 TC 2 Z9 2 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAY PY 2009 VL 79 IS 18 AR 184113 DI 10.1103/PhysRevB.79.184113 PG 4 WC Physics, Condensed Matter SC Physics GA 451WI UT WOS:000266501200042 ER PT J AU Densmore, JM Das, P Rovira, K Blasius, TD DeBeer-Schmitt, L Jenkins, N Paul, DM Dewhurst, CD Bud'ko, SL Canfield, PC Eskildsen, MR AF Densmore, J. M. Das, P. Rovira, K. Blasius, T. D. DeBeer-Schmitt, L. Jenkins, N. Paul, D. McK. Dewhurst, C. D. Bud'ko, S. L. Canfield, P. C. Eskildsen, M. R. TI Small-angle neutron scattering study of the vortex lattice in superconducting LuNi2B2C SO PHYSICAL REVIEW B LA English DT Article DE boron compounds; flux-line lattice; lutetium compounds; neutron diffraction; nickel compounds ID FLUX-LINE-LATTICE; MAGNETIC-FIELD DISTRIBUTION; II SUPERCONDUCTORS; MIXED-STATE; SINGLE-CRYSTALS; TEMPERATURE; YNI2B2C; CORE; TRANSITION; DEPENDENCE AB We present studies of the magnetic field distribution around the vortices in LuNi2B2C. Small-angle neutron scattering measurements of the vortex lattice (VL) in this material were extended to unprecedentedly large values of the scattering vector q, obtained both by using high magnetic fields to decrease the VL spacing and by using higher order reflections. A square VL, oriented with the nearest-neighbor direction along the crystalline [110] direction, was observed up to the highest measured field. The first-order VL form factor, parallel to F(q(10))parallel to, was found to decrease exponentially with increasing magnetic field. Measurements of the higher-order form factors, parallel to F(q(hk))parallel to, reveal a significant in-plane anisotropy and also allow for a real-space reconstruction of the VL field distribution. C1 [Densmore, J. M.; Das, P.; Rovira, K.; Blasius, T. D.; DeBeer-Schmitt, L.; Eskildsen, M. R.] Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA. [Jenkins, N.] Univ Geneva, DPMC, CH-1211 Geneva 4, Switzerland. [Paul, D. McK.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Dewhurst, C. D.] Inst Max Von Laue Paul Langevin, F-38042 Grenoble, France. [Bud'ko, S. L.; Canfield, P. C.] Iowa State Univ, Dept Phys, Ames, IA 50011 USA. [Bud'ko, S. L.; Canfield, P. C.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Rovira, K.] Florida Int Univ, Dept Phys, Miami, FL 33199 USA. [Blasius, T. D.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. RP Densmore, JM (reprint author), Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA. EM eskildsen@nd.edu RI Eskildsen, Morten/E-7779-2011; Das, Pinaki/C-2877-2012; Densmore, John/G-1228-2011; Canfield, Paul/H-2698-2014; DeBeer-Schmitt, Lisa/I-3313-2015 OI Densmore, John/0000-0003-2388-1413; DeBeer-Schmitt, Lisa/0000-0001-9679-3444 FU National Science Foundation [DMR-0804887, PHY-0552843]; Alfred P. Sloan Foundation; Department of Energy, Basic Energy Sciences [DE-AC02-07CH11358] FX We are grateful to Kazushige Machida, Masanori Ichioka, and Vladimir Kogan for stimulating discussions, and to Hazuki Kawano- Furukawa and Seiko Ohira- Kawamura for discussing their data on YNi2B2C with us prior to publication. This work was supported by the National Science Foundation through Grants No. DMR-0804887 (J.M.D. and M.R.E) and No. PHY-0552843 (K. R. and T. D. B.). M. R. E. acknowledges support by the Alfred P. Sloan Foundation. Work at the Ames Laboratory was supported by the Department of Energy, Basic Energy Sciences under Contract No. DE-AC02-07CH11358. NR 46 TC 10 Z9 10 U1 0 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAY PY 2009 VL 79 IS 17 AR 174522 DI 10.1103/PhysRevB.79.174522 PG 7 WC Physics, Condensed Matter SC Physics GA 451WH UT WOS:000266501100112 ER PT J AU Du, MH Singh, DJ AF Du, Mao-Hua Singh, David J. TI Hydrogen in anion vacancies of semiconductors SO PHYSICAL REVIEW B LA English DT Article DE density functional theory; Fermi level; hydrogen; II-VI semiconductors; impurities; vacancies (crystal); wide band gap semiconductors; zinc compounds ID BONDS; GAN AB Density-functional calculations show that, depending on the anion size, hydrogen in anion vacancies of various II-VI semiconductors can be either twofold or fourfold coordinated and has either amphoteric or shallow donor character. In general, the multicoordination of hydrogen in an anion vacancy is the indication of an anionic H, H(-) ion, in the relatively ionic environment. In more covalent semiconductors, H would form a single cation-H bond in the anion vacancy. C1 [Du, Mao-Hua] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. Oak Ridge Natl Lab, Ctr Radiat Detect Mat & Syst, Oak Ridge, TN 37831 USA. RP Du, MH (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RI Du, Mao-Hua/B-2108-2010; Singh, David/I-2416-2012 OI Du, Mao-Hua/0000-0001-8796-167X; NR 29 TC 12 Z9 12 U1 0 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAY PY 2009 VL 79 IS 20 AR 205201 DI 10.1103/PhysRevB.79.205201 PG 6 WC Physics, Condensed Matter SC Physics GA 451WL UT WOS:000266501500049 ER PT J AU Fister, TT Nagle, KP Vila, FD Seidler, GT Hamner, C Cross, JO Rehr, JJ AF Fister, Timothy T. Nagle, Kenneth P. Vila, Fernando D. Seidler, Gerald T. Hamner, Christopher Cross, Julie O. Rehr, John J. TI Intermediate-range order in water ices: Nonresonant inelastic x-ray scattering measurements and real-space full multiple scattering calculations SO PHYSICAL REVIEW B LA English DT Article DE ab initio calculations; electronic structure; ice; Raman spectra; water; X-ray absorption spectra; X-ray scattering ID DENSITY-FUNCTIONAL THEORY; HYDROGEN-BOND NETWORK; ABSORPTION FINE-STRUCTURE; LIQUID WATER; RAMAN-SCATTERING; PHOTOELECTRON-SPECTROSCOPY; EXCITATION SPECTROSCOPY; ELECTRONIC-STRUCTURE; LOCAL-STRUCTURE; HIGH-PRESSURE AB We report measurements of the nonresonant inelastic x-ray scattering (NRIXS) from the O 1s orbitals in ice Ih, and also report calculations of the corresponding spectra for ice Ih and several other phases of water ice. We find that the intermediate-energy fine structure may be calculated well using an ab initio real-space full multiple scattering approach and that it provides a strong fingerprint of the intermediate-range order for some ice phases. Both experiment and theory find that the intermediate-range fine structure, unlike the near-edge structure, is independent of momentum transfer (q) to very high q. These results have important consequences for future NRIXS measurements of high-pressure phases of ice. C1 [Fister, Timothy T.; Nagle, Kenneth P.; Vila, Fernando D.; Seidler, Gerald T.; Hamner, Christopher; Rehr, John J.] Univ Washington, Dept Phys, Seattle, WA 98105 USA. [Fister, Timothy T.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Hamner, Christopher] Washington State Univ, Dept Phys & Astron, Pullman, WA 99164 USA. RP Seidler, GT (reprint author), Univ Washington, Dept Phys, Seattle, WA 98105 USA. EM seidler@phys.washington.edu RI Seidler, Gerald/I-6974-2012 FU DOE; Basic Energy Science; Office of Science [DE-FGE03-97ER45628, W-31-109-ENG-38]; ONR [N00014-05-1-0843, DE-FG03-97ER5623]; NIH NCRR BTP [RR-01209]; Summer Research Institute Program at the Pacific Northwest National Laboratory; DOE Basic Energy Science, Office of Science [DE-FG03-97ER45629]; University of Washington; Natural Sciences and Engineering Research Council of Canad FX This research was supported by DOE, Basic Energy Science, Office of Science, Contracts No. DE-FGE03-97ER45628 and No. W-31-109-ENG-38, ONR Grant No. N00014-05-1-0843, Grant No. DE-FG03-97ER5623, NIH NCRR BTP Grant No. RR-01209 and the Summer Research Institute Program at the Pacific Northwest National Laboratory. The operation of Sector 20 PNC-CAT/XOR is supported by DOE Basic Energy Science, Office of Science, Contract No. DE-FG03-97ER45629, the University of Washington, and grants from the Natural Sciences and Engineering Research Council of Canada. Use of the Advanced Photon Source was supported by the U. S. Department of Energy, Basic Energy Sciences, Office of Science, under Contract No. W-31-109-Eng-38. We thank Aleksi Soininen, Ed Stern, Josh Kas, and Micah Prange for stimulating discussions. NR 108 TC 20 Z9 20 U1 0 U2 10 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD MAY PY 2009 VL 79 IS 17 AR 174117 DI 10.1103/PhysRevB.79.174117 PG 7 WC Physics, Condensed Matter SC Physics GA 451WH UT WOS:000266501100043 ER PT J AU Guo, HZ Gupta, A Varela, M Pennycook, S Zhang, JD AF Guo, Haizhong Gupta, Arunava Varela, Maria Pennycook, Stephen Zhang, Jiandi TI Local valence and magnetic characteristics of La2NiMnO6 SO PHYSICAL REVIEW B LA English DT Article DE Curie temperature; electron energy loss spectra; ferromagnetism; lanthanum compounds; magnetic circular dichroism; magnetic epitaxial layers; scanning-transmission electron microscopy; superexchange interactions; X-ray absorption spectra ID RAY CIRCULAR-DICHROISM; PEROVSKITES AB Epitaxial thin films of ordered double perovskite La2NiMnO6 have been studied by a combination of high-resolution scanning transmission electron microscopy, quantitative electron energy loss spectroscopy, x-ray absorption spectroscopy, and x-ray magnetic circular dichroism (XMCD) spectroscopy. Our results show the nominal oxidation states of Ni and Mn ions to be Ni2+ and Mn4+ thus the ferromagnetism in ground state is mainly due to Ni2+-O-Mn4+ superexchange interactions. In addition, short-range ferromagnetic correlations are observed above the Curie temperature (T-C similar to 280 K) from XMCD measurement, which are likely induced by antisite defects against long-range ordering of the Ni/Mn sublattice. The XMCD results also demonstrate that the Ni2+ and Mn4+ ions are ferromagnetically aligned but exhibit large differences in the spin and orbital contributions to their effective magnetic moments. C1 [Gupta, Arunava] Univ Alabama, Dept Chem, Tuscaloosa, AL 35487 USA. [Varela, Maria; Pennycook, Stephen] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Guo, Haizhong; Zhang, Jiandi] Florida Int Univ, Dept Phys, Miami, FL 33199 USA. [Gupta, Arunava] Univ Alabama, Ctr Mat Informat Technol, Tuscaloosa, AL 35487 USA. RP Guo, HZ (reprint author), Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA. EM jiandiz@lsu.edu RI Guo, Haizhong/C-9817-2011; Varela, Maria/H-2648-2012; Varela, Maria/E-2472-2014 OI Varela, Maria/0000-0002-6582-7004 FU NSF [DMR-0346826]; ONR [N000140610226]; NSF NIRT [CMS-0609377]; Office of Basic Energy Sciences, Division of Materials Sciences and Engineering FX This work was supported by NSF under Grant No. DMR-0346826, ONR under Grant No. N000140610226, and NSF NIRT under Grant No. CMS-0609377. The research at ORNL was sponsored by the Office of Basic Energy Sciences, Division of Materials Sciences and Engineering. The authors thank Y. Takamura for helping us in the XAS and XMCD measurements and J. Luck for specimen preparation for STEM. NR 28 TC 26 Z9 26 U1 1 U2 26 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAY PY 2009 VL 79 IS 17 AR 172402 DI 10.1103/PhysRevB.79.172402 PG 4 WC Physics, Condensed Matter SC Physics GA 451WH UT WOS:000266501100008 ER PT J AU Khasanov, R Kondo, T Strassle, S Heron, DOG Kaminski, A Keller, H Lee, SL Takeuchi, T AF Khasanov, R. Kondo, Takeshi Straessle, S. Heron, D. O. G. Kaminski, A. Keller, H. Lee, S. L. Takeuchi, Tsunehiro TI Zero-field superfluid density in a d-wave superconductor evaluated from muon-spin-rotation experiments in the vortex state SO PHYSICAL REVIEW B LA English DT Article DE bismuth compounds; d-wave superconductivity; high-temperature superconductors; lanthanum compounds; lead compounds; mixed state; muon probes; strontium compounds ID II SUPERCONDUCTORS; PENETRATION DEPTH; DEPENDENCE; TEMPERATURE; BI2.15SR1.85CACU2O8+DELTA; YBA2CU3O6.95; CROSSOVER; SYMMETRY; LATTICE AB We present an approach that allows the reconstruction of the zero-field magnetic penetration depth lambda(0) based on the results of muon-spin-rotation (mu SR) experiments conducted in a superconductor in the vortex state. It was successfully applied to describe the mu SR experiments in optimally doped (BiPb)(2)(SrLa)(2)CuO6+delta (OP Bi2201). We found that in unconventional d-wave superconductors (such as OP Bi2201) only at relatively low magnetic fields [B/B-c2 less than or similar to 10(-3); B-c2 is the upper critical field] the effective penetration depth lambda(eff), obtained in mu SR experiment, is a good measure of lambda(0). The high-field data need to be evaluated accounting for both the nonlinear and the nonlocal corrections. C1 [Khasanov, R.] Paul Scherrer Inst, Lab Muon Spin Spect, CH-5232 Villigen, Switzerland. [Kondo, Takeshi; Kaminski, A.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Kondo, Takeshi; Kaminski, A.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Kondo, Takeshi; Takeuchi, Tsunehiro] Nagoya Univ, Dept Crystalline Mat Sci, Nagoya, Aichi 4648603, Japan. [Straessle, S.; Keller, H.] Univ Zurich, Inst Phys, CH-8057 Zurich, Switzerland. [Heron, D. O. G.; Lee, S. L.] Univ St Andrews, Sch Phys & Astron, St Andrews KY16 9SS, Fife, Scotland. [Takeuchi, Tsunehiro] Nagoya Univ, EcoTopia Sci Inst, Nagoya, Aichi 4648603, Japan. RP Khasanov, R (reprint author), Paul Scherrer Inst, Lab Muon Spin Spect, CH-5232 Villigen, Switzerland. EM rustem.khasanov@psi.ch RI Lee, Stephen/G-9791-2016; Kondo, Takeshi/H-2680-2016; OI Lee, Stephen/0000-0002-2020-3310; Khasanov, Rustem/0000-0002-4768-5524 FU Department of Energy, Basic Energy Sciences [DE-AC02-07CH11358]; Swiss National Foundation (SNF) FX This work was performed at the Swiss Muon Source (S mu S), Paul Scherrer Institute (PSI, Switzerland). Work at the Ames Laboratory was supported by the Department of Energy, Basic Energy Sciences under Contract No. DE-AC02-07CH11358. The financial support of the Swiss National Foundation (SNF) is gratefully acknowledged. NR 32 TC 8 Z9 8 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAY PY 2009 VL 79 IS 18 AR 180507 DI 10.1103/PhysRevB.79.180507 PG 4 WC Physics, Condensed Matter SC Physics GA 451WI UT WOS:000266501200025 ER PT J AU Khomyakov, PA Giovannetti, G Rusu, PC Brocks, G van den Brink, J Kelly, PJ AF Khomyakov, P. A. Giovannetti, G. Rusu, P. C. Brocks, G. van den Brink, J. Kelly, P. J. TI First-principles study of the interaction and charge transfer between graphene and metals SO PHYSICAL REVIEW B LA English DT Article DE charge exchange; chemisorption; density functional theory; doping; electron transport theory; Fermi level; graphene; work function ID MASSLESS DIRAC FERMIONS; AUGMENTED-WAVE METHOD; SCHOTTKY-BARRIER; WORK FUNCTION; GRAPHITE; CARBON; SURFACES; JUNCTION; FILMS AB Measuring the transport of electrons through a graphene sheet necessarily involves contacting it with metal electrodes. We study the adsorption of graphene on metal substrates using first-principles calculations at the level of density-functional theory. The bonding of graphene to Al, Ag, Cu, Au, and Pt (111) surfaces is so weak that its unique "ultrarelativistic" electronic structure is preserved. The interaction does, however, lead to a charge transfer that shifts the Fermi level by up to 0.5 eV with respect to the conical points. The crossover from p-type to n-type doping occurs for a metal with a work function similar to 5.4 eV, a value much larger than the work function of free-standing graphene, 4.5 eV. We develop a simple analytical model that describes the Fermi-level shift in graphene in terms of the metal substrate work function. Graphene interacts with and binds more strongly to Co, Ni, Pd, and Ti. This chemisorption involves hybridization between graphene p(z) states and metal d states that opens a band gap in graphene, and reduces its work function considerably. The supported graphene is effectively n-type doped because in a current-in-plane device geometry the work-function lowering will lead to electrons being transferred to the unsupported part of the graphene sheet. C1 [Khomyakov, P. A.; Giovannetti, G.; Rusu, P. C.; Brocks, G.; Kelly, P. J.] Univ Twente, Fac Sci & Technol, NL-7500 AE Enschede, Netherlands. [Giovannetti, G.; van den Brink, J.] Leiden Univ, Inst Lorentz Theoret Phys, NL-2300 RA Leiden, Netherlands. [van den Brink, J.] Radboud Univ Nijmegen, Inst Mol & Mat, NL-6525 AJ Nijmegen, Netherlands. [van den Brink, J.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [van den Brink, J.] Stanford Univ, Stanford Synchrotron Radiat Lab, Stanford, CA 94305 USA. [Khomyakov, P. A.; Giovannetti, G.; Rusu, P. C.; Brocks, G.; Kelly, P. J.] Univ Twente, MESA Inst Nanotechnol, NL-7500 AE Enschede, Netherlands. RP Khomyakov, PA (reprint author), Univ Twente, Fac Sci & Technol, POB 217, NL-7500 AE Enschede, Netherlands. RI van den Brink, Jeroen/E-5670-2011; Kelly, Paul/G-4210-2010; Khomyakov, Petr/L-4550-2013; Giovannetti, Gianluca/L-4339-2013; Brocks, Geert/B-7919-2015 OI van den Brink, Jeroen/0000-0001-6594-9610; Kelly, Paul/0000-0001-9040-1868; NR 71 TC 546 Z9 548 U1 65 U2 505 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAY PY 2009 VL 79 IS 19 AR 195425 DI 10.1103/PhysRevB.79.195425 PG 12 WC Physics, Condensed Matter SC Physics GA 451WJ UT WOS:000266501300124 ER PT J AU Li, JY Jensen, TBS Andersen, NH Zarestky, JL McCallum, RW Chung, JH Lynn, JW Vaknin, D AF Li, Jiying Jensen, Thomas B. S. Andersen, Niels H. Zarestky, Jerel L. McCallum, R. William Chung, Jae-Ho Lynn, Jeffrey W. Vaknin, David TI Tweaking the spin-wave dispersion and suppressing the incommensurate phase in LiNiPO4 by iron substitution SO PHYSICAL REVIEW B LA English DT Article DE commensurate-incommensurate transformations; energy gap; exchange interactions (electron); frustration; Heisenberg model; iron compounds; lithium compounds; magnetic structure; magnetic transitions; neutron diffraction; nickel compounds; spin Hamiltonians; spin waves ID INELASTIC NEUTRON-SCATTERING; WEAK FERROMAGNETISM; MAGNETIC-PROPERTIES; ANTIFERROMAGNETISM; TRANSFORMATION; ANISOTROPY AB Elastic and inelastic neutron-scattering studies of Li(Ni1-xFex)PO4 single crystals reveal anomalous spin-wave dispersions along the crystallographic direction parallel to the characteristic wave vector of the magnetic incommensurate phase. The anomalous spin-wave dispersion (magnetic soft mode) indicates the instability of the Ising-type ground state that eventually evolves into the incommensurate phase as the temperature is raised. The pure LiNiPO4 system (x=0) undergoes a first-order magnetic phase transition from a long-range incommensurate phase to an antiferromagnetic (AFM) ground state at T-N=20.8 K. At 20% Fe concentrations, although the AFM ground state is to a large extent preserved as that of the pure system, the phase transition is second order, and the incommensurate phase is completely suppressed. Analysis of the dispersion curves using a Heisenberg spin Hamiltonian that includes interplane and in-plane nearest- and next-nearest-neighbor couplings reveals frustration due to strong competing interactions between nearest- and next-nearest-neighbor sites, consistent with the observed incommensurate structure. The Fe substitution only slightly lowers the extent of the frustration, sufficient to suppress the incommensurate phase. An energy gap in the dispersion curves gradually decreases with the increase in Fe content from similar to 2 meV for the pure system (x=0) to similar to 0.9 meV for x=0.2. C1 [Li, Jiying; Zarestky, Jerel L.; McCallum, R. William; Vaknin, David] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Li, Jiying; Zarestky, Jerel L.; Vaknin, David] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Li, Jiying; Lynn, Jeffrey W.] Natl Inst Stand & Technol, Ctr Neutron Res, Gaithersburg, MD 20899 USA. [Li, Jiying] Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA. [Jensen, Thomas B. S.; Andersen, Niels H.] Tech Univ Denmark, Mat Res Div, Riso DTU, DK-4000 Roskilde, Denmark. [McCallum, R. William] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. [Chung, Jae-Ho] Korea Univ, Dept Phys, Seoul 136713, South Korea. RP Vaknin, D (reprint author), Iowa State Univ, Ames Lab, Ames, IA 50011 USA. EM vaknin@ameslab.gov RI Andersen, Niels/A-3872-2012; Vaknin, David/B-3302-2009 OI Vaknin, David/0000-0002-0899-9248 NR 37 TC 9 Z9 9 U1 0 U2 11 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAY PY 2009 VL 79 IS 17 AR 174435 DI 10.1103/PhysRevB.79.174435 PG 7 WC Physics, Condensed Matter SC Physics GA 451WH UT WOS:000266501100088 ER PT J AU Li, SL Chen, Y Chang, S Lynn, JW Li, LJ Luo, YK Cao, GH Xu, ZA Dai, PC AF Li, Shiliang Chen, Ying Chang, Sung Lynn, Jeffrey W. Li, Linjun Luo, Yongkang Cao, Guanghan Xu, Zhu'an Dai, Pengcheng TI Spin gap and magnetic resonance in superconducting BaFe1.9Ni0.1As2 SO PHYSICAL REVIEW B LA English DT Article DE antiferrimagnetism; arsenic alloys; barium alloys; iron alloys; magnetic resonance; neutron spectra; nickel alloys; photoemission; superconducting energy gap; superconducting materials ID IRON-BASED SUPERCONDUCTORS; TEMPERATURE SUPERCONDUCTOR; NEUTRON-SCATTERING; BA0.6K0.4FE2AS2; EXCITATIONS; SPECTRA AB We use neutron spectroscopy to determine the nature of the magnetic excitations in superconducting BaFe1.9Ni0.1As2(T-c=20 K). Above T-c the excitations are gapless and centered at the commensurate antiferromagnetic wave vector of the parent compound, while the intensity exhibits a sinusoidal modulation along the c axis. As the superconducting state is entered a spin gap gradually opens, whose magnitude tracks the T dependence of the superconducting gap as observed by angle-resolved photoemission. Both the spin-gap and magnetic-resonance energies are temperature and wave-vector dependent, but their ratio is the same within uncertainties. These results suggest that the spin resonance is a singlet-triplet excitation related to electron pairing and superconductivity. C1 [Li, Shiliang; Dai, Pengcheng] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Chen, Ying; Chang, Sung; Lynn, Jeffrey W.] Natl Inst Stand & Technol, NIST Ctr Neutron Res, Gaithersburg, MD 20899 USA. [Li, Linjun; Luo, Yongkang; Cao, Guanghan; Xu, Zhu'an] Zhejiang Univ, Dept Phys, Hangzhou 310027, Peoples R China. [Dai, Pengcheng] Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA. RP Li, SL (reprint author), Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. EM daip@ornl.gov RI Li, Shiliang/B-9379-2009; Cao, Guanghan/C-4753-2008; Dai, Pengcheng /C-9171-2012 OI Dai, Pengcheng /0000-0002-6088-3170 FU U.S. DOE BES [DE-FG02-05ER46202]; NSF [DMR-0756568, DMR-0454672] FX We thank Songxue Chi, Jun Zhao, and Leland Harriger for coaligning some of the single crystals used in the present experiment. This work is supported by the U.S. DOE BES under Grant No. DE-FG02-05ER46202, NSF under Grant No. DMR-0756568, and in part by the U. S. DOE, Division of Scientific User Facilities. The work at Zhejiang University is supported by the NSF of China. This work utilized facilities supported in part by the National Science Foundation under Agreement No. DMR-0454672. NR 35 TC 56 Z9 56 U1 0 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAY PY 2009 VL 79 IS 17 AR 174527 DI 10.1103/PhysRevB.79.174527 PG 5 WC Physics, Condensed Matter SC Physics GA 451WH UT WOS:000266501100117 ER PT J AU Luo, JW Franceschetti, A Zunger, A AF Luo, J. W. Franceschetti, A. Zunger, A. TI Nonmonotonic size dependence of the dark/bright exciton splitting in GaAs nanocrystals SO PHYSICAL REVIEW B LA English DT Article DE Brillouin zones; conduction bands; exchange interactions (electron); excitons; gallium arsenide; III-V semiconductors; pseudopotential methods; wave functions ID HOLE EXCHANGE INTERACTION; CDSE QUANTUM DOTS; FINE-STRUCTURE; CONFINEMENT; DARK; SILICON; STATES; INP AB The dark/bright exciton splitting Delta(X) in semiconductor nanocrystals is usually caused by electron-hole exchange interactions. Since the electron-hole wave-function overlap is enhanced by quantum confinement, it is generally assumed that Delta(X) increases monotonically as the quantum-dot size decreases. Using atomistic pseudopotential calculations, we show that in GaAs nanocrystals Delta(X) scales nonmonotonically with the nanocrystal size. By analyzing the nanocrystal wave functions in terms of contributions from different k points in the bulk Brillouin zone, we identify the origin of such nonmonotonic behavior in a transition of the lowest conduction-band wave function from Gamma like to X like as the nanocrystal radius decreases below 19 A. The nonmonotonicity arises because the long-range component of the electron-hole exchange interaction all but vanishes when the electron wave function becomes X like. We also show that the direct/indirect transition induced in GaAs nanocrystals by external pressure results in a sudden reduction in Delta(X). C1 [Luo, J. W.; Franceschetti, A.; Zunger, A.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Luo, JW (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM alex_zunger@nrel.gov RI LUO, JUN-WEI/A-8491-2010; Zunger, Alex/A-6733-2013; LUO, JUNWEI/B-6545-2013 FU U.S. Department of Energy, Office of Science, Basic Energy Sciences [DE-AC36-08GO28308] FX This work was funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences under Contract No. DE-AC36-08GO28308 to NREL. NR 17 TC 11 Z9 11 U1 0 U2 16 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAY PY 2009 VL 79 IS 20 AR 201301 DI 10.1103/PhysRevB.79.201301 PG 4 WC Physics, Condensed Matter SC Physics GA 451WL UT WOS:000266501500012 ER PT J AU Magyar, RJ AF Magyar, R. J. TI Ground and excited-state fermions in a one-dimensional double-well: Exact and density-functional solutions SO PHYSICAL REVIEW B LA English DT Article DE density functional theory; eigenvalues and eigenfunctions; excited states; fermions; ground states; Hubbard model; hydrogen neutral molecules; one-dimensional conductivity ID ELECTRON-GAS; SYSTEMS; MODEL AB Two of the most popular quantum-mechanical models of interacting fermions are compared to each other and to potentially exact solutions for a pair of contact-interacting fermions trapped in a one-dimensional (1D) double-well potential, a model of atoms in a quasi-1D optical lattice, or electrons of a hydrogen molecule in a strong magnetic field. An exact few-body Hamiltonian is solved numerically in momentum space yielding a highly correlated eigenspectrum. Additionally, approximate ground-state energies are obtained using both density-functional theory (DFT) functional and two-site Hubbard models. A 1D adiabatic local-density approximation kernel is constructed for use in time-dependent density-functional theory (TDDFT) and the resulting excited-state spectrum is compared to the exact and Hubbard results. DFT is shown to give accurate results for wells with small separations but fails to describe localization of opposite spin fermions to different sites. A locally cognizant density functional based on an effective local fermion number would provide a solution to this problem, and an approximate treatment presented here compares favorably to the exact and Hubbard results. The TDDFT excited-state spectrum is accurate in the small parameter regime with nonadiabatic effects accounting for any deviations. As expected, the ground-state Hubbard model outperforms DFT at large separations but breaks down at intermediate separations due to improper scaling to the united-atom limit. At strong coupling, both Hubbard and TDDFT methods fail to capture the appropriate energetics. C1 [Magyar, R. J.] Natl Inst Stand & Technol, Gaithersburg, MD 20899 USA. RP Magyar, RJ (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. NR 27 TC 9 Z9 9 U1 1 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD MAY PY 2009 VL 79 IS 19 AR 195127 DI 10.1103/PhysRevB.79.195127 PG 14 WC Physics, Condensed Matter SC Physics GA 451WJ UT WOS:000266501300056 ER PT J AU McQueen, TM Klimczuk, T Williams, AJ Huang, Q Cava, RJ AF McQueen, T. M. Klimczuk, T. Williams, A. J. Huang, Q. Cava, R. J. TI Stoichiometry, spin fluctuations, and superconductivity in LaNiPO SO PHYSICAL REVIEW B LA English DT Article DE band structure; fluctuations in superconductors; lanthanum compounds; nickel compounds; specific heat; spin fluctuations; stoichiometry ID LAYERED QUATERNARY COMPOUND; CRYSTAL-STRUCTURE; MAGNETIC-PROPERTIES; PHASE-DIAGRAM; HEAT AB Superconductivity in LaNiPO is disrupted by small (similar to 5%) amounts of nonstoichiometry on the lanthanum site, even though the electronic contribution to the heat capacity increases with increasing nonstoichiometry. All samples also exhibit specific-heat anomalies consistent with the presence of ferromagnetic spin fluctuations (T(sf)approximate to 14 K). Comparison of layered nickel phosphide and nickel borocarbide superconductors reveals different structure-property correlations in the two families. C1 [McQueen, T. M.; Williams, A. J.; Cava, R. J.] Princeton Univ, Dept Chem, Princeton, NJ 08544 USA. [Klimczuk, T.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Klimczuk, T.] Gdansk Univ Technol, Fac Appl Phys & Math, PL-80952 Gdansk, Poland. [Huang, Q.] Natl Inst Stand & Technol, NIST Ctr Neutron Res, Gaithersburg, MD 20899 USA. RP McQueen, TM (reprint author), Princeton Univ, Dept Chem, Princeton, NJ 08544 USA. RI Klimczuk, Tomasz/M-1716-2013 OI Klimczuk, Tomasz/0000-0003-2602-5049 FU National Science Foundation Graduate Research Program; Department of Energy, Division of Basic Energy Sciences [DE-FG02-98ER45706] FX T. M. M. gratefully acknowledges support of the National Science Foundation Graduate Research Program. The work at Princeton was supported by the Department of Energy, Division of Basic Energy Sciences, under Grant No. DE-FG02-98ER45706. NR 34 TC 10 Z9 10 U1 3 U2 20 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAY PY 2009 VL 79 IS 17 AR 172502 DI 10.1103/PhysRevB.79.172502 PG 4 WC Physics, Condensed Matter SC Physics GA 451WH UT WOS:000266501100020 ER PT J AU Moore, RG Lumsden, MD Stone, MB Zhang, JD Chen, Y Lynn, JW Jin, R Mandrus, D Plummer, EW AF Moore, R. G. Lumsden, M. D. Stone, M. B. Zhang, Jiandi Chen, Y. Lynn, J. W. Jin, R. Mandrus, D. Plummer, E. W. TI Phonon softening and anomalous mode near the x(c)=0.5 quantum critical point in Ca2-xSrxRuO4 SO PHYSICAL REVIEW B LA English DT Article DE calcium compounds; critical points; doping; phonon dispersion relations; soft modes; solid-state phase transformations; strontium compounds ID STRUCTURAL PHASE-TRANSITIONS; MOTT TRANSITION; SOFT-PHONON; LA2CUO4; SUPERCONDUCTIVITY; CA2-XSR(X)RUO4; SR2IRO4 AB Inelastic neutron scattering is used to measure the temperature-dependent phonon dispersion in Ca2-xSrxRuO4 (x=0.4,0.6). The in-plane Sigma(4) octahedral tilt mode softens significantly at the zone boundary of the high-temperature tetragonal (HTT) I4(1)/acd structure as the temperature approaches the transition to a low-temperature orthorhombic (LTO) Pbca phase. This behavior is similar to that in La2CuO4, but an inelastic feature that is not found in the cuprate is present. An anomalous phonon mode is observed at energy transfers greater than the Sigma(4), albeit with similar dispersion. This anomalous phonon mode never softens below similar to 5 meV, even for temperatures below the HTT-LTO transition. This mode is attributed to the presence of intrinsic structural disorder within the I4(1)/acd tetragonal structure of the doped ruthenate. C1 [Lumsden, M. D.; Stone, M. B.] Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA. [Zhang, Jiandi] Florida Int Univ, Dept Phys, Miami, FL 33199 USA. [Chen, Y.; Lynn, J. W.] Natl Inst Stand & Technol, NIST Ctr Neutron Res, Gaithersburg, MD 20899 USA. [Jin, R.; Mandrus, D.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Moore, R. G.; Jin, R.; Mandrus, D.; Plummer, E. W.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. RP Moore, RG (reprint author), SLAC Natl Accelerator Lab, Stanford Synchrotron Radiat Lightsource, Menlo Pk, CA 94025 USA. RI Stone, Matthew/G-3275-2011; Mandrus, David/H-3090-2014; Lumsden, Mark/F-5366-2012 OI Stone, Matthew/0000-0001-7884-9715; Lumsden, Mark/0000-0002-5472-9660 FU NSF [DMR-0346826, DMR-0353108, DMR-0451163]; DOE [DE-FG02-04ER46125]; DOE DMS; ORAU faculty summer research program; Scientific User Facilities Division, Office of Basic Energy Sciences, DOE; Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, DOE [DE-AC05-00OR22725] FX We thank I. A. Sergienko for helpful discussions. This work was supported by NSF Grants No. DMR-0346826, No. DMR-0353108, and No. DMR-0451163; DOE Grant No. DE-FG02-04ER46125; DOE DMS; and ORAU faculty summer research program. A portion of this research at Oak Ridge National Laboratory's High Flux Isotope Reactor was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, DOE. The work at Oak Ridge National Laboratory was supported through the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, DOE, under Contract No. DE-AC05-00OR22725. NR 25 TC 0 Z9 0 U1 3 U2 17 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAY PY 2009 VL 79 IS 17 AR 172301 DI 10.1103/PhysRevB.79.172301 PG 4 WC Physics, Condensed Matter SC Physics GA 451WH UT WOS:000266501100005 ER PT J AU Nath, R Singh, Y Johnston, DC AF Nath, R. Singh, Yogesh Johnston, D. C. TI Magnetic, thermal, and transport properties of layered arsenides BaRu2As2 and SrRu2As2 SO PHYSICAL REVIEW B LA English DT Article DE barium compounds; electrical resistivity; magnetic susceptibility; magnetic transitions; ruthenium compounds; specific heat; strontium compounds; superconducting materials ID QUATERNARY COMPOUND; SUPERCONDUCTIVITY; EARTH AB The magnetic, thermal, and transport properties of polycrystalline BaRu2As2 and SrRu2As2 samples with the ThCr2Si2 structure were investigated by means of magnetic susceptibility chi(T), electrical resistivity rho(T), and heat capacity C-p(T) measurements. The temperature (T) dependence of rho indicates metallic character for both compounds with residual resistivity ratios rho(310 K)/rho(2 K) of 17 and 5 for the Ba and Sr compounds, respectively. The C-p(T) results reveal a low-T Sommerfeld coefficient gamma=4.9(1) and 4.1(1) mJ/mol K-2 and Debye temperature Theta(D)=271(7) and 271(4) K for the Ba and Sr compounds, respectively. The chi(T) was found to be diamagnetic with a small absolute value for both compounds. No transitions were found for BaRu2As2 above 1.8 K. The chi(T) data for SrRu2As2 exhibit a cusp at similar to 200 K, possibly an indication of a structural and/or magnetic transition. We discuss the properties of BaRu2As2 and SrRu2As2 in the context of other ThCr2Si2-type and ZrCuSiAs-type transition metal pnictides. C1 [Nath, R.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. RP Nath, R (reprint author), Iowa State Univ, Ames Lab, Ames, IA 50011 USA. RI Nath, Ramesh/C-9345-2011; singh, yogesh/F-7160-2016 FU Department of Energy-Basic Energy Sciences [DE-AC02-07CH11358.] FX Work at the Ames Laboratory was supported by the Department of Energy-Basic Energy Sciences under Contract No. DE-AC02-07CH11358. NR 45 TC 23 Z9 23 U1 4 U2 25 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAY PY 2009 VL 79 IS 17 AR 174513 DI 10.1103/PhysRevB.79.174513 PG 6 WC Physics, Condensed Matter SC Physics GA 451WH UT WOS:000266501100103 ER PT J AU Pieper, O Lake, B Daoud-Aladine, A Reehuis, M Prokes, K Klemke, B Kiefer, K Yan, JQ Niazi, A Johnston, DC Honecker, A AF Pieper, O. Lake, B. Daoud-Aladine, A. Reehuis, M. Prokes, K. Klemke, B. Kiefer, K. Yan, J. Q. Niazi, A. Johnston, D. C. Honecker, A. TI Magnetic structure and interactions in the quasi-one-dimensional antiferromagnet CaV2O4 SO PHYSICAL REVIEW B LA English DT Article DE antiferrimagnetism; calcium compounds; exchange interactions (electron); frustration; magnetic structure; neutron diffraction; thermomagnetic effects ID DIFFRACTION; VANADITE AB CaV2O4 is a spin-1 antiferromagnet, where the magnetic vanadium ions have an orbital degree of freedom and are arranged on quasi-one-dimensional zigzag chains. The first- and second-neighbor vanadium separations are approximately equal suggesting frustrated antiferromagnetic exchange interactions. High-temperature susceptibility and single-crystal neutron-diffraction measurements are used to deduce the dominant exchange paths and orbital configurations. The results suggest that at high temperatures CaV2O4 behaves as a Haldane chain, but at low temperatures, it is a spin-1 ladder. These two magnetic structures are explained by different orbital configurations and show how orbital ordering can drive a system from one exotic spin Hamiltonian to another. C1 [Pieper, O.; Lake, B.; Reehuis, M.; Prokes, K.; Klemke, B.; Kiefer, K.] Helmholtz Zentrum Berlin Mat & Energie HZB, D-14109 Berlin, Germany. [Pieper, O.; Lake, B.] Tech Univ Berlin, Inst Festkorperphys, D-10623 Berlin, Germany. [Daoud-Aladine, A.] Rutherford Appleton Lab, ISIS Facil, Didcot OX11 0QX, Oxon, England. [Reehuis, M.] Max Planck Inst Festkorperforsch, D-70569 Stuttgart, Germany. [Yan, J. Q.; Niazi, A.; Johnston, D. C.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Yan, J. Q.; Niazi, A.; Johnston, D. C.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Honecker, A.] Univ Gottingen, Inst Theoret Phys, D-37077 Gottingen, Germany. RP Pieper, O (reprint author), Helmholtz Zentrum Berlin Mat & Energie HZB, Glienicker Str 100, D-14109 Berlin, Germany. EM oliver.pieper@helmholtz-berlin.de RI Honecker, Andreas/A-7941-2008; Kiefer, Klaus/J-3544-2013; Klemke, Bastian/J-4746-2013; Prokes, Karel/J-5438-2013; Reehuis, Manfred/J-3383-2013 OI Honecker, Andreas/0000-0001-6383-3200; Kiefer, Klaus/0000-0002-5178-0495; Lake, Bella/0000-0003-0034-0964; Klemke, Bastian/0000-0003-4560-6025; Prokes, Karel/0000-0002-7034-1738; Reehuis, Manfred/0000-0002-6461-4074 FU Deutsche Forschungsgemeinschaft [UL 164/4, HO 2325/4-1]; U. S. DOE [DE-AC02-07CH11358] FX We thank D. Khomskii and P. G. Radealli for their advice and R. J. McQueeney for supporting the crystal growth. M. R. and A. H. acknowledge funding from Deutsche Forschungsgemeinschaft (Grants No. UL 164/4 and No. HO 2325/4-1). Work at Ames was supported by the U. S. DOE (Contract No. DE-AC02-07CH11358). NR 26 TC 17 Z9 17 U1 3 U2 31 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAY PY 2009 VL 79 IS 18 AR 180409 DI 10.1103/PhysRevB.79.180409 PG 4 WC Physics, Condensed Matter SC Physics GA 451WI UT WOS:000266501200014 ER PT J AU Pirogov, AN Park, JG Ermolenko, AS Korolev, AV Kuchin, AG Lee, S Choi, YN Park, J Ranot, M Yi, J Gerasimov, EG Dorofeev, YA Vokhmyanin, AP Podlesnyak, AA Swainson, IP AF Pirogov, A. N. Park, J. -G. Ermolenko, A. S. Korolev, A. V. Kuchin, A. G. Lee, Seongsu Choi, Y. N. Park, Junghwan Ranot, Mahipal Yi, Junghwan Gerasimov, E. G. Dorofeev, Yu. A. Vokhmyanin, A. P. Podlesnyak, A. A. Swainson, I. P. TI TbxEr1-xNi5 compounds: An ideal model system for competing Ising-XY anisotropy energies SO PHYSICAL REVIEW B LA English DT Article DE doping profiles; erbium alloys; Ising model; magnetic anisotropy; magnetic moments; magnetic structure; magnetic susceptibility; magnetic transitions; neutron diffraction; nickel alloys; space groups; specific heat; terbium alloys; X-Y model ID MAGNETIC PHASE-TRANSITIONS; RANDOMLY MIXED MAGNETS; MULTICRITICAL POINTS; NEUTRON-DIFFRACTION; SPIN ANISOTROPIES; ORDER PARAMETERS; SINGLE-CRYSTAL; RANDOM MIXTURE; ALLOYS; DIAGRAMS AB We have studied TbxEr1-xNi5 (x=0, 0.1, 0.2, 0.3, 0.4, 0.6, 0.8, 0.925, and 1.0) compounds by using several experimental techniques such as ac-susceptibility, heat-capacity, and neutron-diffraction measurements. All the compounds are found to crystallize in the CaCu5-type structure with space group P6/mmm. The a axis shows a linear increase with Tb concentration, whereas the c axis remains almost unchanged over the whole doping range. Our neutron-diffraction studies revealed that samples for 0 <= x <= 0.8 have a commensurate magnetic structure with k=0, whereas the two samples on the Tb-rich phase (x=0.925 and 1.0) have an incommensurate structure. Of particular interest is that individual Tb and Er moments keep their mutually orthogonal arrangement seen at the end-member compositions over the whole doping range, due to very strong magnetic anisotropy of single-ion nature. We have established a complete magnetic x-T phase diagram of TbxEr1-xNi5 to find that two straight lines of the ordering of the Tb and Er subsystems are persistently seen, which intersect at a tetracritical point. C1 [Pirogov, A. N.; Park, J. -G.; Lee, Seongsu; Park, Junghwan; Ranot, Mahipal; Yi, Junghwan] Sungkyunkwan Univ, Dept Phys, Suwon 440746, South Korea. [Pirogov, A. N.; Ermolenko, A. S.; Korolev, A. V.; Kuchin, A. G.; Gerasimov, E. G.; Dorofeev, Yu. A.; Vokhmyanin, A. P.] Russian Acad Sci, Inst Met Phys, Ekaterinburg 620041, Russia. [Park, J. -G.; Park, Junghwan] Sungkyunkwan Univ, Dept Energy Sci, Suwon 440746, South Korea. [Park, J. -G.] Seoul Natl Univ, Ctr Strongly Correlated Mat Res, Seoul 151712, South Korea. [Lee, Seongsu; Choi, Y. N.] Korea Atom Energy Res Inst, Div Neutron Sci, Taejon 305600, South Korea. [Podlesnyak, A. A.] Swiss Fed Inst Technol, Neutron Scattering Lab, CH-5232 Villigen, Switzerland. [Podlesnyak, A. A.] Paul Scherrer Inst, CH-5232 Villigen, Switzerland. [Podlesnyak, A. A.] Oak Ridge Natl Lab, Spallat Neutron Source, Oak Ridge, TN 37831 USA. [Swainson, I. P.] Chalk River Labs, NRC, Chalk River, ON K0J 1J0, Canada. RP Pirogov, AN (reprint author), Sungkyunkwan Univ, Dept Phys, Suwon 440746, South Korea. EM pirogov05@gmail.com; jgpark@skku.edu RI Podlesnyak, Andrey/A-5593-2013; Gerasimov, Evgeny/J-3599-2013; Ermolenko, Alexander/J-3529-2013; Vokhmyanin, Alexandr/J-5536-2013; Pirogov, Alexander/K-8115-2013; Park, Je Geun/K-8571-2013; Kuchin, Anatoly/L-1388-2013; Alexander, Korolev/K-3036-2013 OI Podlesnyak, Andrey/0000-0001-9366-6319; Gerasimov, Evgeny/0000-0002-1975-705X; Ermolenko, Alexander/0000-0003-0422-3271; Vokhmyanin, Alexandr/0000-0001-6076-4668; Pirogov, Alexander/0000-0001-7321-1245; Kuchin, Anatoly/0000-0002-8216-5276; Alexander, Korolev/0000-0002-5104-3997 FU RAS Program [01.2.006 13394]; Quantum physics of condensed matter [13/24]; SCOPES 2005-2008 [IB7420-110849]; Korea Research Foundation [KRF-2008-220-C00012]; Korea Science and Engineering Foundation [R17-2008-033-01000-0, R31-2008-000-10029-0]; CNRF project. Experiments at the KAERI; U.S. Department of Energy [DE-AC05-00OR22725] FX We acknowledge K. A. McEwen for useful comments. Work at the Institute of Metal Physics was performed with supports of RAS Program (Project No. 01.2.006 13394),Quantum physics of condensed matter (Project No. 13/24), and SCOPES 2005-2008 (Grant No. IB7420-110849). Work at SungKyunKwan University was supported by the Korea Research Foundation (Grant No. KRF-2008-220-C00012), the Korea Science and Engineering Foundation (Grants No. R17-2008-033-01000-0 and No. R31-2008-000-10029-0), and the CNRF project. Experiments at the KAERI were carried out through Neutron Science 21 program. ORNL/SNS is managed by UT-Battlelle, LLC, for the U.S. Department of Energy under Contract No. DE-AC05-00OR22725. NR 40 TC 11 Z9 11 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAY PY 2009 VL 79 IS 17 AR 174412 DI 10.1103/PhysRevB.79.174412 PG 9 WC Physics, Condensed Matter SC Physics GA 451WH UT WOS:000266501100065 ER PT J AU Qi, YN Zhu, JX Ting, CS AF Qi, Yunong Zhu, Jian-Xin Ting, C. S. TI Validity of the equation-of-motion approach to the Kondo problem in the large-N limit SO PHYSICAL REVIEW B LA English DT Article DE Anderson model; exchange interactions (electron); Green's function methods; Kondo effect; magnetic impurities; spin-orbit interactions ID DILUTE MAGNETIC-ALLOYS; DEGENERATE ANDERSON MODEL; RENORMALIZATION-GROUP APPROACH; SELF-CONSISTENT SOLUTION; NARROW CONDUCTION BANDS; LOCALIZED CORRELATIONS; STATIC PROPERTIES; FIELD; SUSCEPTIBILITY; EXPANSION AB The Anderson impurity model for Kondo problem is investigated for arbitrary spin-orbital degeneracy N of the magnetic impurity by the equation-of-motion method (EOM). By employing a different decoupling scheme, a set of self-consistent equations for the one-particle Green's function is derived and numerically solved in the large-N approximation. For the particle-hole symmetric Anderson model with finite Coulomb interaction U, we show that the Kondo resonance at the impurity site exists for all N >= 2. The approach removes the pathology in the standard EOM for N=2 and has the same level of applicability as noncrossing approximation. For N=2, an exchange field splits the Kondo resonance into only two peaks as predicted by a more rigorous numerical renormalization-group method. The temperature dependence of the Kondo resonance peak is also discussed. C1 [Qi, Yunong; Ting, C. S.] Univ Houston, Texas Ctr Superconduct, Houston, TX 77204 USA. [Zhu, Jian-Xin] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Qi, YN (reprint author), Univ Houston, Texas Ctr Superconduct, Houston, TX 77204 USA. EM yqi@mail.uh.edu; jxzhu@lanl.gov; csting@mail.uh.edu OI Zhu, Jianxin/0000-0001-7991-3918 NR 30 TC 10 Z9 10 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAY PY 2009 VL 79 IS 20 AR 205110 DI 10.1103/PhysRevB.79.205110 PG 5 WC Physics, Condensed Matter SC Physics GA 451WL UT WOS:000266501500037 ER PT J AU Reboredo, FA Hood, RQ Kent, PRC AF Reboredo, F. A. Hood, R. Q. Kent, P. R. C. TI Self-healing diffusion quantum Monte Carlo algorithms: Direct reduction of the fermion sign error in electronic structure calculations SO PHYSICAL REVIEW B LA English DT Article DE band structure; fermion systems; ground states; Monte Carlo methods; wave functions ID WAVE-FUNCTIONS; MOLECULES; SYSTEMS; GAS AB We develop a formalism and present an algorithm for optimization of the trial wave function used in fixed-node diffusion quantum Monte Carlo (DMC) methods. The formalism is based on the DMC mixed estimator of the ground-state probability density. We take advantage of a basic property of the walker configuration distribution generated in a DMC calculation, to (i) project out a multideterminant expansion of the fixed-node ground-state wave function and (ii) to define a cost function that relates the fixed-node ground-state and the noninteracting trial wave functions. We show that (a) locally smoothing out the kink of the fixed-node ground-state wave function at the node generates a new trial wave function with better nodal structure and (b) we argue that the noise in the fixed-node wave function resulting from finite sampling plays a beneficial role, allowing the nodes to adjust toward the ones of the exact many-body ground state in a simulated annealing-like process. Based on these principles, we propose a method to improve both single determinant and multideterminant expansions of the trial wave function. The method can be generalized to other wave-function forms such as pfaffians. We test the method in a model system where benchmark configuration-interaction calculations can be performed and most components of the Hamiltonian are evaluated analytically. Comparing the DMC calculations with the exact solutions, we find that the trial wave function is systematically improved. The overlap of the optimized trial wave function and the exact ground state converges to 100% even starting from wave functions orthogonal to the exact ground state. Similarly, the DMC total energy and density converges to the exact solutions for the model. In the optimization process we find an optimal noninteracting nodal potential of density-functional-like form whose existence was predicted in a previous publication [Phys. Rev. B 77, 245110 (2008)]. Tests of the method are extended to a model system with a conventional Coulomb interaction where we show we can obtain the exact Kohn-Sham effective potential from the DMC data. C1 [Reboredo, F. A.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Hood, R. Q.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Kent, P. R. C.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Reboredo, FA (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RI Kent, Paul/A-6756-2008; Reboredo, Fernando/B-8391-2009 OI Kent, Paul/0000-0001-5539-4017; FU Division of Materials Sciences; Division of Scientific User Facilities U. S. Department of Energy; U. S. Department of Energy [DE-AC52-07NA27344] FX Research performed at the Materials Science and Technology Division and the Center of Nanophase Material Sciences at Oak Ridge National Laboratory was sponsored by the Division of Materials Sciences and the Division of Scientific User Facilities U. S. Department of Energy. This work was performed under the auspices of the U. S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. The authors would like thank J. Kim for discussions and C. Umrigar for clarifications related to the use of Eq. (19). NR 35 TC 18 Z9 18 U1 1 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD MAY PY 2009 VL 79 IS 19 AR 195117 DI 10.1103/PhysRevB.79.195117 PG 15 WC Physics, Condensed Matter SC Physics GA 451WJ UT WOS:000266501300046 ER PT J AU Sacchetti, A Condron, CL Gvasaliya, SN Pfuner, F Lavagnini, M Baldini, M Toney, MF Merlini, M Hanfland, M Mesot, J Chu, JH Fisher, IR Postorino, P Degiorgi, L AF Sacchetti, A. Condron, C. L. Gvasaliya, S. N. Pfuner, F. Lavagnini, M. Baldini, M. Toney, M. F. Merlini, M. Hanfland, M. Mesot, J. Chu, J. -H. Fisher, I. R. Postorino, P. Degiorgi, L. TI Pressure-induced quenching of the charge-density-wave state in rare-earth tritellurides observed by x-ray diffraction SO PHYSICAL REVIEW B LA English DT Article DE cerium alloys; charge density waves; high-pressure effects; lanthanum alloys; lattice constants; tellurium alloys; X-ray diffraction AB We report an x-ray diffraction study on the charge-density-wave (CDW) LaTe(3) and CeTe(3) compounds as a function of pressure. We extract the lattice constants and the CDW modulation wave vector. We observe that the intensity of the CDW satellite peaks tend to zero with increasing pressure, thus providing direct evidence for a pressure-induced quenching of the CDW phase. Our findings further support the equivalence between chemical and applied pressures in RTe(3), put forward by our previous optical investigations, but reveal some subtle differences. We offer a possible explanation for these differences. C1 [Sacchetti, A.; Pfuner, F.; Lavagnini, M.; Degiorgi, L.] ETH, Festkorperphys Lab, CH-8093 Zurich, Switzerland. [Condron, C. L.; Toney, M. F.] Stanford Linear Accelerator Ctr, Stanford Synchrotron Radiat Lab, Menlo Pk, CA 94025 USA. [Gvasaliya, S. N.; Mesot, J.] ETH, Neutron Scattering Lab, CH-5232 Villigen, Switzerland. [Gvasaliya, S. N.; Mesot, J.] Paul Scherrer Inst, CH-5232 Villigen, Switzerland. [Baldini, M.; Postorino, P.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Baldini, M.; Postorino, P.] Univ Roma La Sapienza, CNR, INFM Coherentia, I-00185 Rome, Italy. [Merlini, M.; Hanfland, M.] European Synchrotron Radiat Facil, F-38043 Grenoble, France. [Chu, J. -H.; Fisher, I. R.] Stanford Univ, Geballe Lab Adv Mat, Stanford, CA 94305 USA. [Chu, J. -H.; Fisher, I. R.] Stanford Univ, Dept Appl Phys, Stanford, CA 94305 USA. RP Sacchetti, A (reprint author), ETH, Festkorperphys Lab, CH-8093 Zurich, Switzerland. FU Swiss National Foundation for the Scientific Research; NCCR MaNEP pool; (U.S.) Department of Energy, Office of Basic Energy Sciences [DE-AC02-76SF00515] FX The authors wish to thank R. Monnier for fruitful discussions. This work was supported by the Swiss National Foundation for the Scientific Research as well as by the NCCR MaNEP pool and also by the (U.S.) Department of Energy, Office of Basic Energy Sciences under Contract No. DE-AC02-76SF00515. Portions of this research were carried out at the Stanford Synchrotron Radiation Laboratory, a national user facility operated by Stanford University on behalf of the U. S. Department of Energy, Office of Basic Energy Sciences. NR 20 TC 18 Z9 18 U1 4 U2 15 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAY PY 2009 VL 79 IS 20 AR 201101 DI 10.1103/PhysRevB.79.201101 PG 4 WC Physics, Condensed Matter SC Physics GA 451WL UT WOS:000266501500001 ER PT J AU Sasmal, K Lv, B Tang, ZJ Chen, F Xue, YY Lorenz, B Guloy, AM Chu, CW AF Sasmal, K. Lv, B. Tang, Z. J. Chen, F. Xue, Y. Y. Lorenz, B. Guloy, A. M. Chu, C. W. TI Unusual doping dependence of superconductivity in NayFeAs SO PHYSICAL REVIEW B LA English DT Article DE annealing; arsenic alloys; doping; iron alloys; sodium alloys; stoichiometry; superconducting materials; superconducting transitions AB Superconductivity and phase relationships were explored in the Na-Fe-As system. The PbFCl-type 111 phase is stable only within a Na stoichiometry range of 1.00 to similar to 0.85, and exhibits bulk superconductivity within an even narrower range around 0.90 in Na0.9FeAs. In particular, stoichiometric NaFeAs is not a bulk superconductor. The onset of the superconducting transition varies in a totally different way and the highest T-c occurs in multiphase samples with a nominal composition of Na:Fe:As=0.5:1:1, where the superconductive volume-fraction is almost zero. Such doping dependency is rather surprising and in disagreement with most expectations. C1 [Sasmal, K.; Chen, F.; Xue, Y. Y.; Lorenz, B.; Chu, C. W.] Univ Houston, Dept Phys, Houston, TX 77204 USA. [Sasmal, K.; Lv, B.; Tang, Z. J.; Chen, F.; Xue, Y. Y.; Lorenz, B.; Guloy, A. M.; Chu, C. W.] Univ Houston, TCSUH, Houston, TX 77204 USA. [Lv, B.; Tang, Z. J.; Guloy, A. M.] Univ Houston, Dept Chem, Houston, TX 77204 USA. [Chu, C. W.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Chu, C. W.] Hong Kong Univ Sci & Technol, Hong Kong, Hong Kong, Peoples R China. RP Sasmal, K (reprint author), Univ Houston, Dept Phys, Houston, TX 77204 USA. RI Lv, Bing/E-3485-2010 FU T. L. L. Temple Foundation; John J. and Rebecca Moores Endowment; State of Texas through the Texas Center for Superconductivity; U.S. Air Force Office of Scientific Research; Lawrence Berkeley Laboratory; Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering of the U.S. Department of Energy [DE-AC03-76SF00098]; NSF [CHE-0616805]; Robert A. Welch Foundation FX This work is supported in part by the T. L. L. Temple Foundation, the John J. and Rebecca Moores Endowment, the State of Texas through the Texas Center for Superconductivity, the U.S. Air Force Office of Scientific Research, and at Lawrence Berkeley Laboratory by the Director, Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098. A. M. G., Z.T. and B. L. acknowledge the support from the NSF (Grant No. CHE-0616805) and the Robert A. Welch Foundation. NR 16 TC 19 Z9 19 U1 3 U2 19 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAY PY 2009 VL 79 IS 18 AR 184516 DI 10.1103/PhysRevB.79.184516 PG 5 WC Physics, Condensed Matter SC Physics GA 451WI UT WOS:000266501200101 ER PT J AU Sefat, AS Bud'ko, SL Canfield, PC AF Sefat, Athena S. Bud'ko, Sergey L. Canfield, Paul C. TI Properties of RRe2Al10 (R=Y, Gd-Lu) crystals SO PHYSICAL REVIEW B LA English DT Article DE aluminium alloys; antiferromagnetic materials; crystal growth from solution; crystal symmetry; dysprosium alloys; erbium alloys; ferromagnetic materials; gadolinium alloys; high-temperature effects; holmium alloys; lutetium alloys; magnetic moments; magnetic susceptibility; magnetisation; paramagnetism; rhenium alloys; specific heat; terbium alloys; thulium alloys; X-ray diffraction; ytterbium alloys; yttrium alloys ID PARAMAGNETIC-SUSCEPTIBILITY; CACR2AL10-TYPE STRUCTURE; MAGNETIC-PROPERTIES; RMN4AL8; FIELD; HEAT; SPIN; PR; MN; LA AB Large single crystals of rare-earth rhenium aluminide RRe2Al10, with R=Y, and Gd-Lu were grown out of an Al-rich solution. Single crystal x-ray diffraction data confirmed the orthorhombic Cmcm structure for all members: R=Gd-Dy with TbRe2Al10-structure type (formula unit per cell Z=8); R=Y, and Ho-Lu with LuRe2Al10-structure type (Z=12). There is no evidence of a localized 3d electron moment in R=Y and Lu; R=Yb is nonmagnetic down to 1.8 K, but develops an enhanced electronic specific heat of similar to 95 mJ mol(-1) K-2. Ordering temperatures range from ferromagnetic order in R=Gd with T-c=7.2(1) K, antiferromagnetic order in R=Tb at T-N=5.0(3) K, to R=Dy, Ho, and Er giving magnetic ordering temperatures of T-mag=1.7(1), <= 0.4, and 1.1(2) K, respectively. All compounds have effective moments close in value to that of free R3+ at high temperatures. C1 [Sefat, Athena S.; Bud'ko, Sergey L.; Canfield, Paul C.] Iowa State Univ, Dept Phys & Astron, Ames Lab, Ames, IA 50011 USA. RP Sefat, AS (reprint author), Iowa State Univ, Dept Phys & Astron, Ames Lab, Ames, IA 50011 USA. RI Canfield, Paul/H-2698-2014; Sefat, Athena/R-5457-2016 OI Sefat, Athena/0000-0002-5596-3504 NR 20 TC 3 Z9 3 U1 0 U2 10 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAY PY 2009 VL 79 IS 17 AR 174429 DI 10.1103/PhysRevB.79.174429 PG 11 WC Physics, Condensed Matter SC Physics GA 451WH UT WOS:000266501100082 ER PT J AU Shu, L MacLaughlin, DE Beyermann, WP Heffner, RH Morris, GD Bernal, OO Callaghan, FD Sonier, JE Yuhasz, WM Frederick, NA Maple, MB AF Shu, Lei MacLaughlin, D. E. Beyermann, W. P. Heffner, R. H. Morris, G. D. Bernal, O. O. Callaghan, F. D. Sonier, J. E. Yuhasz, W. M. Frederick, N. A. Maple, M. B. TI Penetration depth, multiband superconductivity, and absence of muon-induced perturbation in superconducting PrOs4Sb12 SO PHYSICAL REVIEW B LA English DT Article DE antimony alloys; heavy fermion superconductors; muon probes; osmium alloys; penetration depth (superconductivity); praseodymium alloys ID CRYSTAL ELECTRIC-FIELD; SPIN-ROTATION; II SUPERCONDUCTORS; MAGNETIC-FIELD; PRNI5; SR; EXCITATIONS; STATE; MU(+); NMR AB Transverse-field muon spin rotation (TF-mu SR) experiments in the heavy-fermion superconductor PrOs4Sb12(T-c=1.85 K) suggest that the superconducting penetration depth lambda(T) is temperature independent at low temperatures, consistent with a gapped quasiparticle excitation spectrum. In contrast, radio frequency inductive measurements yield a stronger temperature dependence of lambda(T), indicative of point nodes in the gap. Muon Knight-shift measurements in the normal state of PrOs4Sb12 suggest that the perturbing effect of the muon charge on the neighboring Pr3+ crystalline electric field is negligibly small and therefore is unlikely to cause the difference between the TF-mu SR and rf results. The discrepancy appears to be related to multiband superconductivity in PrOs4Sb12. C1 [Shu, Lei; MacLaughlin, D. E.; Beyermann, W. P.] Univ Calif Riverside, Dept Phys, Riverside, CA 92521 USA. [Heffner, R. H.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Morris, G. D.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Bernal, O. O.] Calif State Univ Los Angeles, Dept Phys & Astron, Los Angeles, CA 90032 USA. [Callaghan, F. D.; Sonier, J. E.] Simon Fraser Univ, Dept Phys, Burnaby, BC V5A 1S6, Canada. [Shu, Lei; Yuhasz, W. M.; Frederick, N. A.; Maple, M. B.] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA. [Yuhasz, W. M.; Frederick, N. A.; Maple, M. B.] Univ Calif San Diego, Inst Pure & Appl Phys Sci, La Jolla, CA 92093 USA. RP Shu, L (reprint author), Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA. RI Yuhasz, William/C-9418-2009; Shu, Lei/E-7524-2012 FU U. S. NSF [0422674, 0604015, 0335173]; Canadian NSERC; CIAR (Burnaby); (U.S.) DOE [DE-FG-02-04ER46105] FX We are grateful for technical assistance from the TRIUMF Centre for Molecular and Materials Science during the experiments. This work was supported in part by the U. S. NSF under Grant Nos. 0422674 (Riverside), 0604015 (Los Angeles ), and 0335173 (SanDiego), by the Canadian NSERC and CIAR (Burnaby), and by the (U.S.) DOE under Grant No. DE-FG-02-04ER46105 (San Diego). Work at Los Alamos was performed under the auspices of the (U.S.) DOE. NR 59 TC 17 Z9 17 U1 1 U2 16 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAY PY 2009 VL 79 IS 17 AR 174511 DI 10.1103/PhysRevB.79.174511 PG 10 WC Physics, Condensed Matter SC Physics GA 451WH UT WOS:000266501100101 ER PT J AU Singh, DJ AF Singh, D. J. TI Properties of KCo2As2 and alloys with Fe and Ru: Density functional calculations SO PHYSICAL REVIEW B LA English DT Article DE arsenic alloys; cobalt alloys; density functional theory; electronic structure; Fermi surface; iron alloys; potassium alloys; ruthenium alloys; superconductivity ID BAAL4 THCR2SI2 STRUCTURE; UNIT-CELL DIMENSIONS; RARE-EARTH PHASES; IRON; SUPERCONDUCTIVITY; SILICON; COBALT AB Electronic-structure calculations are presented for KCo2As2 and alloys with KFe2As2 and KRu2As2. These materials show electronic structures characteristic of coherent alloys with a similar Fermi surface structure to that of the Fe-based superconductors when the d-electron count is near 6 per transition metal. However, they are less magnetic than the corresponding Fe compounds. These results are discussed in relation to superconductivity. C1 Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Singh, DJ (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RI Singh, David/I-2416-2012 FU Department of Energy, Division of Materials Sciences and Engineering FX This work was supported by the Department of Energy, Division of Materials Sciences and Engineering. NR 29 TC 15 Z9 15 U1 5 U2 24 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAY PY 2009 VL 79 IS 17 AR 174520 DI 10.1103/PhysRevB.79.174520 PG 4 WC Physics, Condensed Matter SC Physics GA 451WH UT WOS:000266501100110 ER PT J AU Steger, M Yang, A Karaiskaj, D Thewalt, MLW Haller, EE Ager, JW Cardona, M Riemann, H Abrosimov, NV Gusev, AV Bulanov, AD Kaliteevskii, AK Godisov, ON Becker, P Pohl, HJ AF Steger, M. Yang, A. Karaiskaj, D. Thewalt, M. L. W. Haller, E. E. Ager, J. W., III Cardona, M. Riemann, H. Abrosimov, N. V. Gusev, A. V. Bulanov, A. D. Kaliteevskii, A. K. Godisov, O. N. Becker, P. Pohl, H. -J. TI Shallow impurity absorption spectroscopy in isotopically enriched silicon SO PHYSICAL REVIEW B LA English DT Article DE binding energy; boron; elemental semiconductors; excited states; ground states; impurity absorption spectra; impurity states; infrared spectra; phosphorus; silicon; spectral line breadth; spectral line broadening ID PRECISE DETERMINATION; EXCITATION-SPECTRA; HIGH-RESOLUTION; SINGLE-CRYSTAL; PHONON; STATES; DONORS; SI-28; LINES; PHOTOLUMINESCENCE AB Inhomogeneous broadening due to isotopic randomness in natural Si has been shown to cause a broadening of many of the ground-state to excited-state infrared-absorption transitions of the shallow donor phosphorus and acceptor boron. Previously, it had been thought that the observed linewidths of shallow impurity transitions in silicon were at their fundamental lifetime limit. We report improved high-resolution infrared-absorption studies of these transitions in new samples of isotopically enriched (28)Si, (29)Si, and (30)Si. Some of the transitions in (28)Si show the narrowest linewidths ever reported for shallow donor and acceptor absorption transitions, and many higher excited states are now observed. The improved samples of (29)Si and (30)Si result in revised values for the dependence of shallow donor and acceptor binding energies on the average Si mass. C1 [Steger, M.; Yang, A.; Karaiskaj, D.; Thewalt, M. L. W.] Simon Fraser Univ, Dept Phys, Burnaby, BC V5A 1S6, Canada. [Haller, E. E.; Ager, J. W., III] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Cardona, M.] Max Planck Inst Festkorperforsch, D-70569 Stuttgart, Germany. [Riemann, H.; Abrosimov, N. V.] IKZ, D-12489 Berlin, Germany. [Gusev, A. V.; Bulanov, A. D.] RAS, IChHPS, Nizhnii Novgorod 603000, Russia. [Kaliteevskii, A. K.; Godisov, O. N.] Sci & Tech Ctr Centrotech, St Petersburg 198096, Russia. [Becker, P.] Phys Tech Bundesanstalt, D-38116 Braunschweig, Germany. [Pohl, H. -J.] VITCON Projectconsult GmbH, D-07743 Jena, Germany. [Haller, E. E.; Ager, J. W., III] LBNL, Berkeley, CA 94720 USA. RP Steger, M (reprint author), Simon Fraser Univ, Dept Phys, Burnaby, BC V5A 1S6, Canada. EM thewalt@sfu.ca OI Ager, Joel/0000-0001-9334-9751 FU NSERC FX We acknowledge NSERC for financial support, and thank B. Pajot for several useful discussions. NR 29 TC 22 Z9 22 U1 2 U2 14 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAY PY 2009 VL 79 IS 20 AR 205210 DI 10.1103/PhysRevB.79.205210 PG 7 WC Physics, Condensed Matter SC Physics GA 451WL UT WOS:000266501500057 ER PT J AU Swanson, M Haraldsen, JT Fishman, RS AF Swanson, M. Haraldsen, J. T. Fishman, R. S. TI Critical anisotropies of a geometrically frustrated triangular-lattice antiferromagnet SO PHYSICAL REVIEW B LA English DT Article DE antiferromagnetic materials; copper compounds; exchange interactions (electron); frustration; ground states; magnetic anisotropy; magnetic transitions; spin waves ID HEISENBERG-ANTIFERROMAGNET; PHASE-DIAGRAM; CUFEO2; STATE AB This work examines the critical anisotropy required for the local stability of the collinear ground states of a geometrically frustrated triangular-lattice antiferromagnet (TLA). Using a Holstein-Primakoff expansion, we calculate the spin-wave frequencies for the one-, two-, three-, four-, and eight-sublattice (SL) ground states of a TLA with up to third neighbor interactions. Local stability requires that all spin-wave frequencies are real and positive. The two-, four-, and eight-SL phases break up into several regions where the critical anisotropy is a different function of the exchange parameters. We find that the critical anisotropy is a continuous function everywhere except across the two-SL/three-SL and three-SL/four-SL phase boundaries, where the three-SL phase has the higher critical anisotropy. C1 [Swanson, M.; Haraldsen, J. T.; Fishman, R. S.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Swanson, M.] N Dakota State Univ, Fargo, ND 58105 USA. RP Swanson, M (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RI Haraldsen, Jason/B-9809-2012; Fishman, Randy/C-8639-2013 OI Haraldsen, Jason/0000-0002-8641-5412; NR 19 TC 11 Z9 11 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAY PY 2009 VL 79 IS 18 AR 184413 DI 10.1103/PhysRevB.79.184413 PG 6 WC Physics, Condensed Matter SC Physics GA 451WI UT WOS:000266501200066 ER PT J AU Tanatar, MA Kreyssig, A Nandi, S Ni, N Bud'ko, SL Canfield, PC Goldman, AI Prozorov, R AF Tanatar, M. A. Kreyssig, A. Nandi, S. Ni, N. Bud'ko, S. L. Canfield, P. C. Goldman, A. I. Prozorov, R. TI Direct imaging of the structural domains in the iron pnictides AFe(2)As(2) (A=Ca,Sr,Ba) SO PHYSICAL REVIEW B LA English DT Article DE arsenic alloys; barium alloys; calcium alloys; crystal structure; high-temperature superconductors; iron alloys; magnetic transitions; optical microscopy; solid-state phase transformations; strontium alloys; superconducting transition temperature; twinning; X-ray diffraction ID SUPERCONDUCTIVITY; YBA2CU3O7-X AB The parent compounds of recently discovered iron-arsenide superconductors, AFe(2)As(2) with alkaline earth A=Ca,Sr,Ba, undergo simultaneous structural and magnetic phase transitions at a temperature T-SM. Using a combination of polarized light microscopy and spatially resolved high-energy synchrotron x-ray diffraction we show that the orthorhombic distortion leads to the formation of 45 degrees-type structural domains in all parent compounds. Domains penetrate through the sample thickness in the c direction and are not affected by crystal imperfections such as growth terraces. The domains form regular stripe patterns in the plane with a characteristic dimension of 10-50 mu m. The direction of the stripes is fixed with respect to the tetragonal (100) and (010) directions but can change by 90 degrees on thermal cycling through the transition. This domain pattern may have profound implications for intrinsic disorder and anisotropy of iron arsenides. C1 [Tanatar, M. A.; Kreyssig, A.; Nandi, S.; Ni, N.; Bud'ko, S. L.; Canfield, P. C.; Goldman, A. I.; Prozorov, R.] Ames Lab, Ames, IA 50011 USA. [Kreyssig, A.; Nandi, S.; Ni, N.; Bud'ko, S. L.; Canfield, P. C.; Goldman, A. I.; Prozorov, R.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. RP Prozorov, R (reprint author), Ames Lab, Ames, IA 50011 USA. EM prozorov@ameslab.gov RI Prozorov, Ruslan/A-2487-2008; Canfield, Paul/H-2698-2014 OI Prozorov, Ruslan/0000-0002-8088-6096; FU Department of Energy-Basic Energy Sciences [DEAC02-07CH11358]; U. S. DOE [DEAC02-06CH11357]; Alfred P. Sloan Foundation FX We thank Doug Robinson for the support of the high-energy x-ray measurements. Work at the Ames Laboratory and at the MUCAT sector was supported by the Department of Energy-Basic Energy Sciences under Contract No. DEAC02-07CH11358. The use of the Advanced Photon Source was supported by the U. S. DOE under Contract No. DEAC02-06CH11357. M. A. T. acknowledges continuing cross-appointment with the Institute of Surface Chemistry, National Ukrainian Academy of Sciences. R. P. acknowledges support from Alfred P. Sloan Foundation. NR 26 TC 96 Z9 96 U1 1 U2 18 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD MAY PY 2009 VL 79 IS 18 AR 180508 DI 10.1103/PhysRevB.79.180508 PG 4 WC Physics, Condensed Matter SC Physics GA 451WI UT WOS:000266501200026 ER PT J AU Tiago, ML Reboredo, FA AF Tiago, Murilo L. Reboredo, Fernando A. TI Controlling the gap of fullerene microcrystals by applying pressure: Role of many-body effects SO PHYSICAL REVIEW B LA English DT Article DE energy gap; excited states; excitons; fullerene compounds; high-pressure effects; many-body problems; optical constants ID SOLID C-60; OPTICAL-SPECTRA; DOPED C-60; EXCITATIONS; CUBANE; SUPERCONDUCTIVITY; CARBON; PHASE; C60 AB We studied theoretically the optical properties of C(60) fullerene microcrystals as a function of hydrostatic pressure with first-principles many-body theories. Calculations of the electronic properties were done in the GW approximation. We computed electronic excited states in the crystal by diagonalizing the Bethe-Salpeter equation. Our results confirmed the existence of bound excitons in the crystal. Both the electronic gap and optical gap decrease continuously and nonlinearly as pressure of up to 6 GPa is applied. As a result, the absorption spectrum shows strong redshift. We also obtained that "negative" pressure shows the opposite behavior: the gaps increase and the optical spectrum shifts toward the blue end of the spectrum. Negative pressure can be realized by adding cubane (C(8)H(8)) or other molecules with similar size to the interstitials of the microcrystal. For the moderate lattice distortions studied here, we found that the optical properties of fullerene microcrystals with intercalated cubane are similar to the ones of an expanded undoped microcrystal. Based on these findings, we propose doped C(60) as an active element in piezo-optical devices. C1 [Tiago, Murilo L.; Reboredo, Fernando A.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Tiago, ML (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RI Reboredo, Fernando/B-8391-2009 FU National Energy Research Scientific Computing Center FX We would like to thank E. Schwegler, T. Oguitsu, and H. Whitley for discussions. Research sponsored by the Division of Materials Sciences and Engineering BES, U. S. DOE under contract with UT- Battelle, LLC. Computational support was provided by the National Energy Research Scientific Computing Center. NR 33 TC 3 Z9 3 U1 1 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAY PY 2009 VL 79 IS 19 AR 195410 DI 10.1103/PhysRevB.79.195410 PG 7 WC Physics, Condensed Matter SC Physics GA 451WJ UT WOS:000266501300109 ER PT J AU van Heumen, E Muhlethaler, E Kuzmenko, AB Eisaki, H Meevasana, W Greven, M van der Marel, D AF van Heumen, E. Muhlethaler, E. Kuzmenko, A. B. Eisaki, H. Meevasana, W. Greven, M. van der Marel, D. TI Optical determination of the relation between the electron-boson coupling function and the critical temperature in high-T-c cuprates SO PHYSICAL REVIEW B LA English DT Article DE boson systems; carrier density; electron-phonon interactions; high-temperature superconductors; optical conductivity; phase diagrams; superconducting transition temperature ID NORMAL-STATE; SUPERCONDUCTORS; CONDUCTIVITY; BI2SR2CACU2O8+DELTA; SPECTRA; METALS AB We take advantage of the connection between the free-carrier optical conductivity and the glue function in the normal state, to reconstruct from the infrared optical conductivity the glue spectrum of ten different high-T-c cuprates revealing a robust peak in the 50-60 meV range and a broad continuum at higher energies for all measured charge-carrier concentrations and temperatures up to 290 K. We observe that the strong-coupling formalism accounts fully for the known strong temperature dependence of the optical spectra of the high-T-c cuprates, except for strongly underdoped samples. We observe a correlation between the doping trend of the experimental glue spectra and the critical temperature. The data obtained on the overdoped side of the phase diagram conclusively exclude the electron-phonon coupling as the main source of superconducting pairing. C1 [van Heumen, E.; Muhlethaler, E.; Kuzmenko, A. B.; van der Marel, D.] Univ Geneva, Dept Phys Mat Condensee, CH-1211 Geneva 4, Switzerland. [Eisaki, H.] AIST, Nanoelect Res Inst, Tsukuba, Ibaraki 3058568, Japan. [Meevasana, W.; Greven, M.] Stanford Univ, Dept Appl Phys Sci, Stanford, CA 94305 USA. [Meevasana, W.; Greven, M.] Stanford Univ, Stanford Synchrotron Radiat Lab, Stanford, CA 94305 USA. RP van Heumen, E (reprint author), Univ Geneva, Dept Phys Mat Condensee, Quai Ernest Ansermet 24, CH-1211 Geneva 4, Switzerland. RI van der Marel, Dirk/G-4618-2012 OI van der Marel, Dirk/0000-0001-5266-9847 NR 32 TC 73 Z9 73 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAY PY 2009 VL 79 IS 18 AR 184512 DI 10.1103/PhysRevB.79.184512 PG 7 WC Physics, Condensed Matter SC Physics GA 451WI UT WOS:000266501200097 ER PT J AU Wilkins, SB Di Matteo, S Beale, TAW Joly, Y Mazzoli, C Hatton, PD Bencok, P Yakhou, F Brabers, VAM AF Wilkins, S. B. Di Matteo, S. Beale, T. A. W. Joly, Y. Mazzoli, C. Hatton, P. D. Bencok, P. Yakhou, F. Brabers, V. A. M. TI Critical reexamination of resonant soft x-ray Bragg forbidden reflections in magnetite SO PHYSICAL REVIEW B LA English DT Article DE crystal structure; iron compounds; X-ray diffraction; X-ray scattering ID VERWEY TRANSITION; CHARGE; SUPERCONDUCTORS; SCATTERING; DICHROISM AB Magnetite, Fe(3)O(4), displays a highly complex low-temperature crystal structure that may be charge and orbitally ordered. Many of the recent experimental claims of such ordering rely on resonant soft x-ray diffraction at the oxygen K and iron L edges. We have reexamined this system and undertaken soft x-ray diffraction experiments on a high-quality single crystal. Contrary to previous claims in the literature, we show that the intensity observed at the Bragg forbidden (001/2)(c) reflection can be explained purely in terms of the low-temperature structural displacements around the resonant atoms. This does not necessarily mean that magnetite is not charge or orbitally ordered but rather that the present sensitivity of resonant soft x-ray experiments does not allow conclusive demonstration of such ordering. C1 [Wilkins, S. B.] Brookhaven Natl Lab, Dept Condensed Matter Phys & Mat Sci, Upton, NY 11973 USA. [Di Matteo, S.] Univ Rennes 1, Equipe Phys Surfaces & Interfaces, Inst Phys Rennes, CNRS,UMR 6251, F-35042 Rennes, France. [Beale, T. A. W.; Hatton, P. D.] Univ Durham, Dept Phys, Durham DH1 3LE, England. [Joly, Y.] CNRS, Inst Neel, F-38042 Grenoble 09, France. [Joly, Y.] Univ Grenoble 1, F-38042 Grenoble 09, France. [Mazzoli, C.; Bencok, P.; Yakhou, F.] European Synchrotron Radiat Facil, F-38043 Grenoble 9, France. [Brabers, V. A. M.] Eindhoven Univ Technol, Dept Phys, NL-5600 MB Eindhoven, Netherlands. RP Wilkins, SB (reprint author), Brookhaven Natl Lab, Dept Condensed Matter Phys & Mat Sci, Upton, NY 11973 USA. RI Mazzoli, Claudio/J-4360-2012; Hatton, Peter/J-8445-2014 FU (U.S.) Department of Energy [DE-AC02-98CH1-886]; EPSRC-GB FX Work at Brookhaven was supported by the (U.S.) Department of Energy under Contract No. DE-AC02-98CH1-886. S. B. W. would like to thank J.P. Hill for critical reading of the manuscript and S. R. Bland for helpful discussions. P. D. H. wishes to acknowledge EPSRC-GB for support. NR 21 TC 17 Z9 17 U1 3 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAY PY 2009 VL 79 IS 20 AR 201102 DI 10.1103/PhysRevB.79.201102 PG 4 WC Physics, Condensed Matter SC Physics GA 451WL UT WOS:000266501500002 ER PT J AU Wilson, SD Yamani, Z Rotundu, CR Freelon, B Bourret-Courchesne, E Birgeneau, RJ AF Wilson, Stephen D. Yamani, Z. Rotundu, C. R. Freelon, B. Bourret-Courchesne, E. Birgeneau, R. J. TI Neutron diffraction study of the magnetic and structural phase transitions in BaFe2As2 SO PHYSICAL REVIEW B LA English DT Article DE antiferromagnetic materials; arsenic alloys; barium alloys; iron alloys; Ising model; magnetic structure; magnetic transitions; neutron diffraction ID HIGH-TEMPERATURE SUPERCONDUCTIVITY; DENSITY-WAVE ORDER; ISING-MODEL; ZERO-FIELD; DIAGRAM AB We present the results of an investigation of both the magnetic and structural phase transitions in a high quality single crystalline sample of the undoped iron pnictide compound BaFe2As2. Both phase transitions are characterized via neutron diffraction measurements which reveal simultaneous, continuous magnetic and structural orderings with no evidence of hysteresis, consistent with a single second-order phase transition. The onset of long-range antiferromagnetic order can be described by a simple power-law dependence phi(T)(2)proportional to(1-T/T-N)(2 beta) with beta=0.103 +/- 0.018; a value near the beta=0.125 expected for a two-dimensional Ising system. Biquadratic coupling between the structural and magnetic order parameters is also inferred along with evidence of three-dimensional critical scattering in this system. C1 [Wilson, Stephen D.; Rotundu, C. R.; Bourret-Courchesne, E.; Birgeneau, R. J.] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Yamani, Z.] CNR, Canadian Neutron Beam Ctr, Chalk River Labs, Chalk River, ON K0J 1P0, Canada. [Freelon, B.; Birgeneau, R. J.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. RP Wilson, SD (reprint author), Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RI yamani, zahra/B-7892-2012; OI Rotundu, Costel/0000-0002-1571-8352 FU Office of Science, Office of Basic Energy Sciences, U.S. Department of Energy [DE-AC02-05CH11231, DE-AC03-76SF008] FX We would like to thank A. Aharony and C. W. Garland for helpful communications. This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, U.S. Department of Energy under Contract No. DE-AC02-05CH11231 and Office of Basic Energy Sciences U. S. DOE under Contract No. DE-AC03-76SF008. NR 48 TC 84 Z9 85 U1 1 U2 20 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAY PY 2009 VL 79 IS 18 AR 184519 DI 10.1103/PhysRevB.79.184519 PG 10 WC Physics, Condensed Matter SC Physics GA 451WI UT WOS:000266501200104 ER PT J AU Xue, Y Zhang, Y Zhang, PH AF Xue, Yu Zhang, Yong Zhang, Peihong TI Theory of the color change of NaxWO3 as a function of Na-charge doping SO PHYSICAL REVIEW B LA English DT Article DE colour; doping profiles; sodium compounds ID SODIUM-TUNGSTEN BRONZES; OPTICAL-PROPERTIES; THIN-FILMS; WO3; ENERGY; ELECTROCHROMISM; PSEUDOPOTENTIALS; SPECTROSCOPY; MECHANISM; TRIOXIDE AB We report theoretical investigations of the coloration of WO3 upon charge insertion using sodium tungsten bronze (NaxWO3) as a model system. Our results explain well the systematic color change of NaxWO3 from dark blue to violet, red-orange, and finally to golden yellow as sodium concentration x increases from 0.3 to unity. Proper accounts for both the interband and the intraband contributions to the optical response are found to be very important for a detailed understanding of the coloration mechanism in this system. C1 [Xue, Yu; Zhang, Peihong] SUNY Buffalo, Dept Phys, Buffalo, NY 14260 USA. [Zhang, Yong] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Xue, Y (reprint author), SUNY Buffalo, Dept Phys, Buffalo, NY 14260 USA. RI Zhang, Peihong/D-2787-2012 FU National Science Foundation [CBET-0844720]; UB 2020 Interdisciplinary Research Development Fund (IRDF); Center for Computational Research at the University at Buffalo, SUNY FX We thank M. D. Jones for his assistance in coding. This work was supported in part by the National Science Foundation under Grant No. CBET-0844720, and by the UB 2020 Interdisciplinary Research Development Fund (IRDF). We acknowledge the computational support provided by the Center for Computational Research at the University at Buffalo, SUNY. NR 35 TC 10 Z9 10 U1 4 U2 31 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAY PY 2009 VL 79 IS 20 AR 205113 DI 10.1103/PhysRevB.79.205113 PG 4 WC Physics, Condensed Matter SC Physics GA 451WL UT WOS:000266501500040 ER PT J AU Zeng, ZH Da Silva, JLF Deng, HQ Li, WX AF Zeng, Zhen-Hua Da Silva, Juarez L. F. Deng, Hui-Qiu Li, Wei-Xue TI Density functional theory study of the energetics, electronic structure, and core-level shifts of NO adsorption on the Pt(111) surface SO PHYSICAL REVIEW B LA English DT Article DE adsorption; charge exchange; core levels; density functional theory; nitrogen compounds; platinum; pseudopotential methods; vibrational modes; work function ID GENERALIZED-GRADIENT-APPROXIMATION; AUGMENTED-WAVE METHOD; MINIMUM ENERGY PATHS; ELASTIC BAND METHOD; MOLECULAR ADSORPTION; ORDERED STRUCTURES; SITE PREFERENCE; METAL-SURFACES; SADDLE-POINTS; SPIN-DENSITY AB In this work, we report a first-principles investigation of the energetics, structures, electronic properties, and core-level shifts of NO adsorption on the Pt(111) surface. Our calculations are based on density functional theory within the framework of the ultrasoft pseudopotential plane-wave and the all-electron projected augmented-wave methods. We found that at 0.25, 0.50, and 0.75 monolayer, NO adsorbs preferentially in the fcc, fcc+top, and fcc+top+hcp sites, respectively. The geometric parameters, adsorption energies, vibrational frequencies, and work-function changes are in good agreement with the experimental data. The interaction between NO and Pt(111) was found to follow a donation-back-donation process, in which the NO sigma states donate electrons to the substrate Pt d states, while the substrate Pt d states back donate to the NO pi states. Though there is an overall net charge transfer from the substrate to the NO adsorbate regardless of the adsorption sites and coverages, the spatial redistribution of the transferred electron is site dependent. The charge accumulation for NO in the top sites occurs closer to the surface than NO in the hollow sites, which results in the reduction of the Pt(111) surface work function for the top NO but an increase for the hollow NO. The core-level shifts of the topmost surface Pt atoms coordinated with top and hollow NO molecules at different coverages are in excellent agreement with experiments. In contrast, the N 1s core-level shifts between top and hollow NO (similar to 0.7 eV) deviated significantly from the zero shift found in experiments. Our analysis indicates that the difference may come from the thermal vibration and rotation of adsorbed NO on the Pt(111) surface. C1 [Da Silva, Juarez L. F.] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Zeng, Zhen-Hua; Li, Wei-Xue] Chinese Acad Sci, Dalian Inst Chem Phys, State Key Lab Catalysis, Dalian 116023, Peoples R China. [Zeng, Zhen-Hua; Li, Wei-Xue] Chinese Acad Sci, Dalian Inst Chem Phys, Ctr Theoret & Computat Chem, Dalian 116023, Peoples R China. [Zeng, Zhen-Hua] Chinese Acad Sci, Grad Sch, Beijing 100039, Peoples R China. [Deng, Hui-Qiu] Hunan Univ, Dept Appl Phys, Changsha 410082, Hunan, Peoples R China. RP Da Silva, JLF (reprint author), Natl Renewable Energy Lab, 1617 Cole Blvd, Golden, CO 80401 USA. RI Li, Wei-Xue/A-1414-2011; Deng, Huiqiu/A-9530-2009; Da Silva, Juarez L. F./D-1779-2011; Zeng, Zhenhua/E-1795-2012 OI Deng, Huiqiu/0000-0001-8986-104X; Da Silva, Juarez L. F./0000-0003-0645-8760; Zeng, Zhenhua/0000-0002-3087-8581 NR 79 TC 30 Z9 30 U1 4 U2 32 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD MAY PY 2009 VL 79 IS 20 AR 205413 DI 10.1103/PhysRevB.79.205413 PG 13 WC Physics, Condensed Matter SC Physics GA 451WL UT WOS:000266501500094 ER PT J AU Zhang, LJ Singh, DJ AF Zhang, Lijun Singh, D. J. TI Electronic structure of Ba(Fe,Ru)(2)As-2 and Sr(Fe,Ir)(2)As-2 alloys SO PHYSICAL REVIEW B LA English DT Article DE arsenic alloys; band structure; barium alloys; density functional theory; Fermi level; iridium alloys; iron alloys; ruthenium alloys; strontium alloys; superconducting materials ID SUPERCONDUCTIVITY AB The electronic structures of Ba(Fe,Ru)(2)As-2 and Sr(Fe,Ir)(2)As-2 are investigated using density functional calculations. We find that these systems behave as coherent alloys from the electronic structure point of view. In particular, the isoelectronic substitution of Fe by Ru does not provide doping but rather suppresses the spin-density wave characteristic of the pure Fe compound by a reduction in the Stoner enhancement and an increase in the bandwidth due to hybridization involving Ru. The electronic structure near the Fermi level otherwise remains quite similar to that of BaFe2As2. The behavior of the Ir alloy is similar except that in this case there is additional electron doping. C1 [Zhang, Lijun; Singh, D. J.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Zhang, LJ (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RI Zhang, Lijun/F-7710-2011; Singh, David/I-2416-2012 FU Department of Energy, Division of Materials Sciences and Engineering FX We are grateful for helpful discussions and assistance from A. Subedi. This work was supported by the Department of Energy, Division of Materials Sciences and Engineering. NR 31 TC 33 Z9 33 U1 1 U2 16 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAY PY 2009 VL 79 IS 17 AR 174530 DI 10.1103/PhysRevB.79.174530 PG 5 WC Physics, Condensed Matter SC Physics GA 451WH UT WOS:000266501100120 ER PT J AU Allmond, JM Bernstein, LA Beausang, CW Phair, L Bleuel, DL Burke, JT Escher, JE Evans, KE Goldblum, BL Hatarik, R Jeppesen, HB Lesher, SR McMahan, MA Rasmussen, JO Scielzo, ND Wiedeking, M AF Allmond, J. M. Bernstein, L. A. Beausang, C. W. Phair, L. Bleuel, D. L. Burke, J. T. Escher, J. E. Evans, K. E. Goldblum, B. L. Hatarik, R. Jeppesen, H. B. Lesher, S. R. McMahan, M. A. Rasmussen, J. O. Scielzo, N. D. Wiedeking, M. TI Relative U-235(n,gamma) and (n,f) cross sections from U-235(d,p gamma) and (d,pf) SO PHYSICAL REVIEW C LA English DT Article ID TRANSFER-REACTION TH-232(HE-3; GENERATION; SURROGATE; PA-233(N; P)PA-234; CAPTURE; CLOVER AB The internal surrogate ratio method allows for the determination of an unknown cross section, such as (n,gamma), relative to a better-known cross section, such as (n,f), by measuring the relative exit-channel probabilities of a surrogate reaction that proceeds through the same compound nucleus. The validity of the internal surrogate ratio method is tested by comparing the relative gamma and fission exit-channel probabilities of a U-236(*) compound nucleus, formed in the U-235(d,p) reaction, to the known U-235(n,gamma) and (n,f) cross sections. A model-independent method for measuring the gamma-channel yield is presented and used. C1 [Allmond, J. M.; Beausang, C. W.] Univ Richmond, Dept Phys, Richmond, VA 23173 USA. [Bernstein, L. A.; Bleuel, D. L.; Burke, J. T.; Escher, J. E.; Lesher, S. R.; Scielzo, N. D.; Wiedeking, M.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Phair, L.; Hatarik, R.; Jeppesen, H. B.; McMahan, M. A.; Rasmussen, J. O.; Wiedeking, M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, Berkeley, CA 94720 USA. [Evans, K. E.; Goldblum, B. L.] Univ Calif Berkeley, Dept Nucl Engn, Berkeley, CA 94720 USA. [Hatarik, R.] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA. RP Allmond, JM (reprint author), Univ Richmond, Dept Phys, Richmond, VA 23173 USA. RI Escher, Jutta/E-1965-2013; Burke, Jason/I-4580-2012; OI Allmond, James Mitchell/0000-0001-6533-8721 FU National Science Foundation; US Department of Energy [DE-FG52-06NA26206, DE-FG02-05ER41379]; Lawrence Livermore National Laboratory [W-7405-Eng-48, DE-AC52-07NA27344]; Lawrence Berkeley National Laboratory [DE-AC02-05CH11231]; Rutgers University [DE-FG52-03NA00143] FX The authors thank the 88-Inch Cyclotron operations and facilities staff for their help in performing this experiment and I. Y. Lee for useful discussions concerning the data analysis. This work was performed under the auspices of the National Science Foundation and the US Department of Energy by the University of Richmond under Grants DE-FG52-06NA26206 and DE-FG02-05ER41379, Lawrence Livermore National Laboratory under Contracts W-7405-Eng-48 and DE-AC52-07NA27344, Lawrence Berkeley National Laboratory under Contract DE-AC02-05CH11231, and Rutgers University under Contract DE-FG52-03NA00143. NR 30 TC 28 Z9 29 U1 0 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD MAY PY 2009 VL 79 IS 5 AR 054610 DI 10.1103/PhysRevC.79.054610 PG 9 WC Physics, Nuclear SC Physics GA 451WN UT WOS:000266501700059 ER PT J AU Chae, KY Bardayan, DW Blackmon, JC Chipps, KA Hatarik, R Jones, KL Kozub, RL Liang, JF Matei, C Moazen, BH Nesaraja, CD O'Malley, PD Pain, SD Pittman, ST Smith, MS AF Chae, K. Y. Bardayan, D. W. Blackmon, J. C. Chipps, K. A. Hatarik, R. Jones, K. L. Kozub, R. L. Liang, J. F. Matei, C. Moazen, B. H. Nesaraja, C. D. O'Malley, P. D. Pain, S. D. Pittman, S. T. Smith, M. S. TI Constraint on the astrophysical Ne-18(alpha,p)Na-21 reaction rate through a Mg-24(p,t)Mg-22 measurement SO PHYSICAL REVIEW C LA English DT Article ID X-RAY-BURSTS; MG-22 AB The Ne-18(alpha,p)Na-21 reaction plays a crucial role in the (alpha,p) process, which leads to the rapid proton capture process in x-ray bursts. The reaction rate depends upon properties of Mg-22 levels above the alpha threshold at 8.14 MeV. Despite recent studies of these levels, only the excitation energies are known for most with no constraints on the spins. We have studied the Mg-24(p,t)Mg-22 reaction at the Oak Ridge National Laboratory (ORNL) Holifield Radioactive Ion Beam Facility (HRIBF), and by measuring the angular distributions of outgoing tritons, we provide some of the first experimental constraints on the spins of astrophysically important Ne-18(alpha,p)Na-21 resonances. C1 [Chae, K. Y.; Jones, K. L.; Moazen, B. H.; Nesaraja, C. D.; Pittman, S. T.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Bardayan, D. W.; Blackmon, J. C.; Liang, J. F.; Nesaraja, C. D.; Smith, M. S.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. [Chipps, K. A.] Colorado Sch Mines, Dept Phys, Golden, CO 80401 USA. [Hatarik, R.; O'Malley, P. D.; Pain, S. D.] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA. [Kozub, R. L.] Tennessee Technol Univ, Dept Phys, Cookeville, TN 38505 USA. [Matei, C.] Oak Ridge Associated Univ, Oak Ridge, TN 37831 USA. RP Chae, KY (reprint author), Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. RI Jones, Katherine/B-8487-2011; Pain, Steven/E-1188-2011; Matei, Catalin/B-2586-2008 OI Jones, Katherine/0000-0001-7335-1379; Pain, Steven/0000-0003-3081-688X; Matei, Catalin/0000-0002-2254-3853 FU National Science Foundation [PHY-00-98800]; US Department of Energy [DE-FG02-96ER40983]; University of Tennessee [DE-AC05-00OR22725] FX The authors thank B. Oginni and S. M. Grimes for help with running the Hauser- Feshbach code. This work was supported in part by the National Science Foundation under Contract NSF-PHY-00-98800; the US Department of Energy under Contract DE-FG02-96ER40983 with University of Tennessee and Contract DE-AC05-00OR22725 with ORNL. NR 20 TC 16 Z9 17 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD MAY PY 2009 VL 79 IS 5 AR 055804 DI 10.1103/PhysRevC.79.055804 PG 5 WC Physics, Nuclear SC Physics GA 451WN UT WOS:000266501700092 ER PT J AU Close, FE Melnitchouk, W AF Close, F. E. Melnitchouk, W. TI Duality in semi-inclusive pion electroproduction SO PHYSICAL REVIEW C LA English DT Article ID QUARK-HADRON DUALITY; CONSTITUENT QUARKS; FORM-FACTORS; MODEL; SCATTERING; BARYONS; PROTON AB We explore quark-hadron duality in semi-inclusive pion electroproduction on proton and neutron targets. Using the spin-flavor symmetric quark model, we compute ratios of pi(+) and pi(-) cross sections for both unpolarized and polarized scattering and discuss realizations of duality in several symmetry-breaking scenarios. The model calculations allow one to understand some of the key features of recent data on semi-inclusive pion production at low energies. C1 [Close, F. E.] Univ Oxford, Rudolf Peierls Ctr Theoret Phys, Oxford OX1 3NP, England. [Melnitchouk, W.] Jefferson Lab, Newport News, VA 23606 USA. RP Close, FE (reprint author), Univ Oxford, Rudolf Peierls Ctr Theoret Phys, 1 Keble Rd, Oxford OX1 3NP, England. NR 30 TC 8 Z9 8 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD MAY PY 2009 VL 79 IS 5 AR 055202 DI 10.1103/PhysRevC.79.055202 PG 9 WC Physics, Nuclear SC Physics GA 451WN UT WOS:000266501700080 ER PT J AU Crawford, HL Mantica, PF Berryman, JS Broda, R Fornal, B Hoffman, CR Hoteling, N Janssens, RVF Lenzi, SM Pereira, J Stoker, JB Tabor, SL Walters, WB Wang, X Zhu, S AF Crawford, H. L. Mantica, P. F. Berryman, J. S. Broda, R. Fornal, B. Hoffman, C. R. Hoteling, N. Janssens, R. V. F. Lenzi, S. M. Pereira, J. Stoker, J. B. Tabor, S. L. Walters, W. B. Wang, X. Zhu, S. TI Low-energy structure of Mn-61 populated following beta decay of Cr-61 SO PHYSICAL REVIEW C LA English DT Article ID NEUTRON-RICH ISOTOPES; SHAPE TRANSITION; NUCLEI; DEFORMATION; ZIRCONIUM; GERMANIUM; REGION; BEAMS; IRON; MASS AB beta decay of the Cr-61(37) ground state has been studied. A new half-life of 233 +/- 11 ms has been deduced, and seven delayed gamma rays have been assigned to the daughter Mn-61(36). The low-energy level structure of Mn-61(36) is similar to that of the less neutron-rich Mn-57,Mn-59 nuclei. The odd-A(25)Mn isotopes follow the systematic trend in the yrast states of the even-even, Z+1 Fe-26 isotopes, and not that of the Z-1 Cr-24 isotopes, where a possible onset of collectivity has been suggested to occur already at N=36. C1 [Crawford, H. L.; Mantica, P. F.; Berryman, J. S.; Stoker, J. B.] Michigan State Univ, Dept Chem, E Lansing, MI 48824 USA. [Crawford, H. L.; Mantica, P. F.; Berryman, J. S.; Pereira, J.; Stoker, J. B.] Michigan State Univ, Natl Superconducting Cyclotron Lab, E Lansing, MI 48824 USA. [Broda, R.; Fornal, B.] Polish Acad Sci, Inst Nucl Phys, PL-31342 Krakow, Poland. [Hoffman, C. R.; Tabor, S. L.] Florida State Univ, Dept Phys & Astron, Tallahassee, FL 32306 USA. [Hoteling, N.; Janssens, R. V. F.; Wang, X.; Zhu, S.] Argonne Natl Lab, Div Phys, Argonne, IL 60429 USA. [Hoteling, N.; Walters, W. B.] Univ Maryland, Dept Chem & Biochem, College Pk, MD 20742 USA. [Lenzi, S. M.] Univ Padua, Dept Phys, I-35131 Padua, Italy. [Lenzi, S. M.] Natl Inst Nucl Phys, Padova Sect, I-35131 Padua, Italy. [Pereira, J.] Michigan State Univ, Joint Inst Nucl Astrophys, E Lansing, MI 48824 USA. [Wang, X.] Univ Notre Dame, Dept Phys, South Bend, IN 46556 USA. RP Crawford, HL (reprint author), Michigan State Univ, Dept Chem, E Lansing, MI 48824 USA. RI Crawford, Heather/E-2208-2011; Lenzi, Silvia/I-6750-2012 FU National Science Foundation [PHY-06-06007]; US Department of Energy; Office of Nuclear Physics [DE-AC02-06CH11357, DE-FG02-94ER40834]; Polish Academy of Sciences [1PO3B 059 29]; Natural Science and Engineering Research Council (NSERC) of Canada FX The authors thank the NSCL operations staff for providing the primary and secondary beams for this experiment and the NSCL. group for assistance in setting up the Ge detectors from SeGA. This work was supported in part by the National Science Foundation, Grant PHY-06-06007; the US Department of Energy, Office of Nuclear Physics, under Contracts DE-AC02-06CH11357 and DE-FG02-94ER40834; and the Polish Academy of Sciences, Grant 1PO3B 059 29. H. L. C. acknowledges support from the Natural Science and Engineering Research Council (NSERC) of Canada. NR 41 TC 11 Z9 11 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD MAY PY 2009 VL 79 IS 5 AR 054320 DI 10.1103/PhysRevC.79.054320 PG 7 WC Physics, Nuclear SC Physics GA 451WN UT WOS:000266501700037 ER PT J AU El-Bennich, B Lacombe, M Loiseau, B Wycech, S AF El-Bennich, B. Lacombe, M. Loiseau, B. Wycech, S. TI Paris NN potential constrained by recent antiprotonic-atom data and np total cross sections SO PHYSICAL REVIEW C LA English DT Article ID NUCLEON INTERACTION; LEVEL SHIFTS; LOW-ENERGY; SCATTERING; PROTONIUM; HYDROGEN AB We report on an updated Paris NN optical potential. The long- and intermediate-range real parts are obtained by G-parity transformation of the Paris NN potential based on a theoretical dispersion-relation treatment of the correlated and uncorrelated two-pion exchange. The short-range imaginary potential parametrization results from the calculation of the NN annihilation box diagram into two mesons with a nucleon-antinucleon intermediate state in the crossed channel. The parametrized real and imaginary short range parts are determined by fitting not only the existing experimental data included in the 1999 version of the Paris NN potential, but also the recent antiprotonic-hydrogen data and np total cross sections. The description of these new observables is improved. Only this readjusted potential generates an isospin zero (1)S(0), 52 MeV broad quasibound state at 4.8 MeV below the threshold. Recent BES data on J/psi decays could support the existence of such a state. C1 [El-Bennich, B.; Lacombe, M.; Loiseau, B.] Univ Paris 06, CNRS, Theory Grp, Lab Phys Nucl & Hautes Energies,IN2P3, F-75252 Paris, France. [El-Bennich, B.; Lacombe, M.; Loiseau, B.] Univ Paris Diderot, CNRS, Theory Grp, Lab Phys Nucl & Hautes Energies,IN2P3, F-75252 Paris, France. [El-Bennich, B.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Wycech, S.] Soltan Inst Nucl Studies, PL-00681 Warsaw, Poland. RP El-Bennich, B (reprint author), Univ Paris 06, CNRS, Theory Grp, Lab Phys Nucl & Hautes Energies,IN2P3, 4 Pl Jussieu, F-75252 Paris, France. FU Department of Energy; Office of Nuclear Physics [DEAC02- 06CH11357]; IN2P3-Polish Laboratory Convention [05-115] FX We acknowledge useful discussions on quasibound states and resonances with B. Moussallam. We also thank J.-P. Dedonder and O. Leitner for helpful comments. M. L. and B. L. are grateful for valuable exchanges with Yupeng Yan. This work was supported in part by the Department of Energy, Office of Nuclear Physics, Contract No. DEAC02- 06CH11357. This research was also performed in the framework of the IN2P3-Polish Laboratory Convention (Collaboration No. 05-115). NR 24 TC 23 Z9 23 U1 1 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD MAY PY 2009 VL 79 IS 5 AR 054001 DI 10.1103/PhysRevC.79.054001 PG 9 WC Physics, Nuclear SC Physics GA 451WN UT WOS:000266501700009 ER PT J AU Gavin, S McLerran, L Moschelli, G AF Gavin, Sean McLerran, Larry Moschelli, George TI Long range correlations and the soft ridge in relativistic nuclear collisions SO PHYSICAL REVIEW C LA English DT Article ID TRANSVERSE-MOMENTUM; ANGULAR-CORRELATIONS; AU COLLISIONS; MODEL; DEPENDENCE; 2-PARTICLE; RHIC/LHC; HADRONS AB Relativistic Heavy Ion Collider experiments exhibit correlations peaked in relative azimuthal angle and extended in rapidity. Called the ridge, this peak occurs both with and without a jet trigger. We argue that the untriggered ridge arises when particles formed by flux tubes in an early Glasma stage later manifest transverse flow. Combining a blast wave model of flow fixed by single-particle spectra with a simple description of the Glasma, we find excellent agreement with current data. C1 [Gavin, Sean; Moschelli, George] Wayne State Univ, Dept Phys & Astron, Detroit, MI 48202 USA. [McLerran, Larry] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [McLerran, Larry] Brookhaven Natl Lab, Brookhaven Res Ctr, RIKEN, Upton, NY 11973 USA. RP Gavin, S (reprint author), Wayne State Univ, Dept Phys & Astron, 666 W Hancock, Detroit, MI 48202 USA. FU US NSF PECASE/CAREER [PHY-0348559]; US DOE [DE-AC0298CH10886] FX S. G. thanks the nuclear theory groups at Brookhaven and University of Minnesota for their hospitality. We thank M. Baker, R. Bellwied, C. De Silva, A. Dumitru, F. Gelis, J. Kapusta, L. Ray, T. Springer, P. Sorenson, P. Steinberg, R. Venugopalan, and S. Voloshin. This work was supported in part by US NSF PECASE/CAREER Grant PHY-0348559 (S. G. and G. M.) and US DOE Contract No. DE-AC0298CH10886 (L. M.). NR 37 TC 107 Z9 108 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9985 EI 2469-9993 J9 PHYS REV C JI Phys. Rev. C PD MAY PY 2009 VL 79 IS 5 AR 051902 DI 10.1103/PhysRevC.79.051902 PG 4 WC Physics, Nuclear SC Physics GA 451WN UT WOS:000266501700008 ER PT J AU Gu, L Zhu, SJ Hamilton, JH Ramayya, AV Hwang, JK Liu, SH Wang, JG Luo, YX Rasmussen, JO Lee, IY Che, XL Ding, HB Li, K Xu, Q Yang, YY Ma, WC AF Gu, L. Zhu, S. J. Hamilton, J. H. Ramayya, A. V. Hwang, J. K. Liu, S. H. Wang, J. G. Luo, Y. X. Rasmussen, J. O. Lee, I. Y. Che, X. L. Ding, H. B. Li, K. Xu, Q. Yang, Y. Y. Ma, W. C. TI Collective band structures in neutron-rich Tc-106,Tc-107 SO PHYSICAL REVIEW C LA English DT Article ID ROTATIONAL BANDS; DEFORMATION; FISSION; NUCLEI; IDENTIFICATION; EVOLUTION; ISOTOPES; REGION; MO-106; STATES AB The high spin states of neutron-rich Tc-106,Tc-107 nuclei have been reinvestigated by observing prompt gamma rays from the spontaneous fission of Cf-252. In Tc-106, a previously known collective band is expanded, and a new collective band is identified. In Tc-107, a collective band based on the pi 5/2(-)[303] orbital is confirmed and extended. Inconsistencies in the configuration assignments for positive parity bands in Tc-105,Tc-107 in the previous reports are clarified. The spins and parities as well as the configurations for the two bands in Tc-106 are assigned according to the angular momentum alignments and g-factor calculations. Other characteristics for the observed bands are discussed. C1 [Gu, L.; Zhu, S. J.; Wang, J. G.; Che, X. L.; Ding, H. B.; Xu, Q.; Yang, Y. Y.] Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China. [Zhu, S. J.; Hamilton, J. H.; Ramayya, A. V.; Hwang, J. K.; Liu, S. H.; Luo, Y. X.; Li, K.] Vanderbilt Univ, Dept Phys, Nashville, TN 37235 USA. [Luo, Y. X.; Rasmussen, J. O.; Lee, I. Y.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Ma, W. C.] Mississippi State Univ, Dept Phys, Mississippi State, MS 39762 USA. RP Gu, L (reprint author), Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China. EM zhushj@mail.tsinghua.edu.cn RI Gu, Lin/F-3980-2010 FU National Natural Science Foundation of China [10775078, 10575057]; Major State Basic Research Development Program [2007CB815005]; Special Program of Higher Education Science Foundation [20070003149]; Vanderbilt University, Mississippi State University; Lawrence Berkeley National Laboratory; US Department of Energy [DE-FG05-88ER40407, FG02-95ER40939, DE-AC03-76SF00098] FX The work at Tsinghua University was supported by the National Natural Science Foundation of China under Grant Nos. 10775078 and 10575057, the Major State Basic Research Development Program under Grand No. 2007CB815005, and the Special Program of Higher Education Science Foundation under Grant No. 20070003149. The work at Vanderbilt University, Mississippi State University, and Lawrence Berkeley National Laboratory was supported by the US Department of Energy under Grant and Contract Nos. DE-FG05-88ER40407, FG02-95ER40939,and DE-AC03-76SF00098, respectively. NR 29 TC 5 Z9 5 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD MAY PY 2009 VL 79 IS 5 AR 054317 DI 10.1103/PhysRevC.79.054317 PG 8 WC Physics, Nuclear SC Physics GA 451WN UT WOS:000266501700034 ER PT J AU Guiseppe, VE Devlin, M Elliott, SR Fotiades, N Hime, A Mei, DM Nelson, RO Perepelitsa, DV AF Guiseppe, V. E. Devlin, M. Elliott, S. R. Fotiades, N. Hime, A. Mei, D. -M. Nelson, R. O. Perepelitsa, D. V. TI Neutron inelastic scattering and reactions in natural Pb as a background in neutrinoless double-beta-decay experiments SO PHYSICAL REVIEW C LA English DT Article ID CROSS-SECTIONS; MASS; GERMANIUM; ENERGIES; GE-76 AB Inelastic neutron scattering and reactions on Pb isotopes can result in gamma rays near the signature end-point energy in a number of beta beta isotopes. In particular, there are gamma-ray transitions in (206,207,208)Pb that might produce energy deposits at the (76)GeQ(beta beta) in Ge detectors used for 0 nu beta beta searches. The levels that produce these gamma rays can be excited by (n,n(')gamma) or (n,xn gamma) reactions, but the cross sections are small and previously unmeasured. This work uses the pulsed neutron beam at the Los Alamos Neutron Science Center to directly measure reactions of interest to beta beta-decay experiments. The cross section on (nat)Pb to produce the 2041-keV gamma ray from (206)Pb is measured to be 3.6 +/- 0.7 (stat.) +/- 0.3 (syst.) mb at approximate to 9.6 MeV. The cross section on (nat)Pb to produce the 3061,3062-keV gamma rays from (207)Pb and (208)Pb is measured to be 3.9 +/- 0.8 (stat.) +/- 0.4 (syst.) mb at the same energy. We report cross sections or place upper limits on the cross sections for exciting some other levels in Pb that have transition energies corresponding to Q(beta beta) in other beta beta isotopes. C1 [Guiseppe, V. E.; Devlin, M.; Elliott, S. R.; Fotiades, N.; Hime, A.; Nelson, R. O.; Perepelitsa, D. V.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Mei, D. -M.] Univ S Dakota, Dept Earth Sci & Phys, Vermillion, SD 57069 USA. RP Guiseppe, VE (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM guiseppe@lanl.gov RI Devlin, Matthew/B-5089-2013 OI Devlin, Matthew/0000-0002-6948-2154 FU Laboratory Directed Research and Development; National Science Foundation [0758120]; US Department of Energy [DE-AC52-06NA25396] FX This work was supported in part by Laboratory Directed Research and Development at Los Alamos National Laboratory and National Science Foundation Grant 0758120. This work benefited from the use of the Los Alamos Neutron Science Center, funded by the US Department of Energy under Contract DE-AC52-06NA25396. We thank Toshihiko Kawano for discussions related to the use of TALYS. NR 31 TC 15 Z9 15 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD MAY PY 2009 VL 79 IS 5 AR 054604 DI 10.1103/PhysRevC.79.054604 PG 7 WC Physics, Nuclear SC Physics GA 451WN UT WOS:000266501700053 ER PT J AU Guzey, V Thomas, AW Tsushima, K AF Guzey, V. Thomas, A. W. Tsushima, K. TI Medium modifications of the bound nucleon generalized parton distributions and the quark contribution to the spin sum rule SO PHYSICAL REVIEW C LA English DT Article ID BETA-DECAY; EMC AB We estimate the nuclear medium modifications of the quark contribution to the bound nucleon spin sum rule, J(q*), as well the separate helicity, Delta Sigma(*), and the angular momentum, L(q*), contributions to J(q*). For the calculation of the bound nucleon generalized parton distributions (GPDs), we use as input the bound nucleon elastic form factors predicted in the quark-meson coupling model. Our model for the bound nucleon GPDs is relevant for incoherent deeply virtual Compton scattering (DVCS) with nuclear targets. We find that the medium modifications increase J(q*) and L(q*) and decrease Delta Sigma(*) compared to the free nucleon case. The effect is large and increases with increasing nuclear density rho. For instance, at rho=rho(0)=0.15 fm(-3),J(q*) increases by 7%, L(q*) increases by 20%, and Delta Sigma(*) decreases by 17%. These in-medium modifications of the bound nucleon spin properties are a general feature of relativistic mean-field quark models and may be understood qualitatively in terms of the enhancement of the lower component of the quark Dirac spinor in the nuclear medium. C1 [Guzey, V.; Thomas, A. W.; Tsushima, K.] Thomas Jefferson Natl Accelerator Facil, Ctr Theory, Newport News, VA 23606 USA. [Thomas, A. W.] Coll William & Mary, Williamsburg, VA 23178 USA. [Tsushima, K.] Thomas Jefferson Natl Accelerator Facil, EBAC, Newport News, VA 23606 USA. RP Guzey, V (reprint author), Thomas Jefferson Natl Accelerator Facil, Ctr Theory, Newport News, VA 23606 USA. EM vguzey@jlab.org; awthomas@jlab.org; tsushima@jlab.org RI Thomas, Anthony/G-4194-2012; OI Thomas, Anthony/0000-0003-0026-499X; Guzey, Vadim/0000-0002-2393-8507 FU Jefferson Science Associates, LLC [DE-AC05-06OR23177] FX This work was authored by Jefferson Science Associates, LLC, under US DOE Contract DE-AC05-06OR23177. NR 39 TC 2 Z9 2 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD MAY PY 2009 VL 79 IS 5 AR 055205 DI 10.1103/PhysRevC.79.055205 PG 6 WC Physics, Nuclear SC Physics GA 451WN UT WOS:000266501700083 ER PT J AU Randrup, J AF Randrup, Jorgen TI Phase transition dynamics for baryon-dense matter SO PHYSICAL REVIEW C LA English DT Article ID ENERGY; DECOMPOSITION; LATTICE; QCD AB We construct a simple two-phase equation of state intended to resemble that of compressed baryon-rich matter and then introduce a gradient term in the compressional energy density to take account of finite-range effects in nonuniform configurations. With this model we study the interface between the two coexisting phases and obtain estimates for the associated interface tension. Subsequently, we incorporate the finite-range equation of state into ideal or viscous fluid dynamics and derive the collective dispersion relation for the mechanically unstable modes of bulk matter in the spinodal region of the thermodynamic phase diagram. Combining these results with time scales extracted from existing dynamical transport simulations, we discuss the prospects for spinodal phase separation to occur in nuclear collisions. We argue that these can be optimized by a careful tuning of the collision energy to maximize the time spent by the bulk of the system inside the mechanically unstable spinodal region of the phase diagram. Our specific numerical estimates suggest cautious optimism that this phenomenon may in fact occur, though a full dynamical simulation is needed for a detailed assessment. C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, Berkeley, CA 94720 USA. RP Randrup, J (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA. NR 23 TC 56 Z9 59 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9985 EI 2469-9993 J9 PHYS REV C JI Phys. Rev. C PD MAY PY 2009 VL 79 IS 5 AR 054911 DI 10.1103/PhysRevC.79.054911 PG 13 WC Physics, Nuclear SC Physics GA 451WN UT WOS:000266501700075 ER PT J AU Tang, ZB Xu, YC Ruan, LJ van Buren, G Wang, FQ Xu, ZB AF Tang, Zebo Xu, Yichun Ruan, Lijuan van Buren, Gene Wang, Fuqiang Xu, Zhangbu TI Spectra and radial flow in relativistic heavy ion collisions with Tsallis statistics in a blast-wave description SO PHYSICAL REVIEW C LA English DT Article ID QUARK-GLUON PLASMA; TRANSVERSE-MOMENTUM; NUCLEAR COLLISIONS; AU+AU COLLISIONS; D+AU COLLISIONS; COLLABORATION; DISTRIBUTIONS; FLUCTUATIONS; MATTER; P+P AB We have implemented the Tsallis statistics in a Blast-Wave model (TBW) and applied it to midrapidity transverse-momentum spectra of identified particles measured at BNL Relativistic Heavy Ion Collider (RHIC). This new TBW function fits the RHIC data very well for p(T)< 3 GeV/c. We observed that the collective flow velocity starts from zero in p+p and peripheral Au+Au collisions and grows to 0.470 +/- 0.009c in central Au+Au collisions. The resulting (q-1) parameter, which characterizes the degree of nonequilibrium in a system, indicates an evolution from a highly nonequilibrated system in p+p collisions toward an almost thermalized system in central Au+Au collisions. The temperature and collective velocity are well described by a quadratic dependence on (q-1). Two sets of parameters in our TBW are required to describe the meson and baryon groups separately in p+p collisions while one set appears to fit all spectra in central Au+Au collisions. C1 [Tang, Zebo; Xu, Yichun] Univ Sci & Technol China, Hefei 230026, Peoples R China. [Ruan, Lijuan; van Buren, Gene; Xu, Zhangbu] Brookhaven Natl Lab, Upton, NY 11973 USA. [Wang, Fuqiang] Purdue Univ, W Lafayette, IN 47907 USA. RP Tang, ZB (reprint author), Univ Sci & Technol China, Hefei 230026, Peoples R China. EM xzb@bnl.gov RI Tang, Zebo/A-9939-2014 OI Tang, Zebo/0000-0002-4247-0081 FU US DOEOffice of Science [DE-FG02-88ER40412, DE-AC02-98CH10886]; National Natural Science Foundation of China [10610286, 10610285, 10475071, 10575101, 10805046]; Knowledge Innovation Project; Chinese Academy of Sciences [KJCX2-YW-A14] FX The authors thank Drs. Aihong Tang, Bedanga Mohanty, James Dunlop, Paul Sorensen, Hank Crawford, and Mike Lisa for valuable discussions. We thank the STAR Collaboration and the RCF at BNL for their support. This work was supported in part by the Offices of NP and HEP within the US DOEOffice of Science under Contracts DE-FG02-88ER40412 and DE-AC02-98CH10886. Authors Yichun Xu and Zebo Tang are supported in part by the National Natural Science Foundation of China under Grants 10610286 (10610285), 10475071, 10575101, and 10805046 and the Knowledge Innovation Project of the Chinese Academy of Sciences under Grant KJCX2-YW-A14. Lijuan Ruan is supported in part by the Battelle Memorial Institute and Stony Brook University. Zhangbu Xu is supported in part by the PECASE Grant. NR 50 TC 64 Z9 65 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD MAY PY 2009 VL 79 IS 5 AR 051901 DI 10.1103/PhysRevC.79.051901 PG 5 WC Physics, Nuclear SC Physics GA 451WN UT WOS:000266501700007 ER PT J AU Tjon, JA Blunden, PG Melnitchouk, W AF Tjon, J. A. Blunden, P. G. Melnitchouk, W. TI Detailed analysis of two-boson exchange in parity-violating e-p scattering SO PHYSICAL REVIEW C LA English DT Article ID RADIATIVE-CORRECTIONS; NEUTRAL-CURRENT; FORM-FACTORS AB We present a comprehensive study of two-boson exchange (TBE) corrections in parity-violating electron-proton elastic scattering. Within a hadronic framework, we compute contributions from box (and crossed box) diagrams in which the intermediate states are described by nucleons and Delta baryons. The Delta contribution is found to be much smaller than the nucleon one at backward angles (small epsilon), but becomes dominant in the forward scattering limit (epsilon -> 1), where the nucleon contribution vanishes. The dependence of the corrections on the input hadronic form factors is small for Q(2)less than or similar to 1 GeV2, but becomes significant at larger Q(2). We compute the nucleon and Delta TBE corrections relevant for recent and planned parity-violating experiments, with the total corrections ranging from -1% for forward angles to 1-2% at backward kinematics. C1 [Tjon, J. A.] Univ Utrecht, Dept Phys, NL-3508 TC Utrecht, Netherlands. [Blunden, P. G.] Univ Manitoba, Dept Phys & Astron, Winnipeg, MB R3T 2N2, Canada. [Melnitchouk, W.] Jefferson Lab, Newport News, VA 23606 USA. RP Tjon, JA (reprint author), Univ Utrecht, Dept Phys, NL-3508 TC Utrecht, Netherlands. FU DOE; [DE-AC05-06OR23177] FX We are grateful to O. Lalakulich, V. Pascalutsa, and E. Paschos for helpful discussions and communications. W.M. is supported by DOE Contract DE-AC05-06OR23177, under which Jefferson Science Associates, LLC, operates Jefferson Lab. NR 42 TC 30 Z9 30 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 EI 1089-490X J9 PHYS REV C JI Phys. Rev. C PD MAY PY 2009 VL 79 IS 5 AR 055201 DI 10.1103/PhysRevC.79.055201 PG 12 WC Physics, Nuclear SC Physics GA 451WN UT WOS:000266501700079 ER PT J AU Aaltonen, T Adelman, J Akimoto, T Gonzalez, BA Amerio, S Amidei, D Anastassov, A Annovi, A Antos, J Apollinari, G Apresyan, A Arisawa, T Artikov, A Ashmanskas, W Attal, A Aurisano, A Azfar, F Badgett, W Barbaro-Galtieri, A Barnes, VE Barnett, BA Barria, P Bartsch, V Bauer, G Beauchemin, PH Bedeschi, F Beecher, D Behari, S Bellettini, G Bellinger, J Benjamin, D Beretvas, A Beringer, J Bhatti, A Binkley, M Bisello, D Bizjak, I Blair, RE Blocker, C Blumenfeld, B Bocci, A Bodek, A Boisvert, V Bolla, G Bortoletto, D Boudreau, J Boveia, A Brau, B Bridgeman, A Brigliadori, L Bromberg, C Brubaker, E Budagov, J Budd, HS Budd, S Burke, S Burkett, K Busetto, G Bussey, P Buzatu, A Byrum, KL Cabrera, S Calancha, C Campanelli, M Campbell, M Canelli, F Canepa, A Carls, B Carlsmith, D Carosi, R Carrillo, S Carron, S Casal, B Casarsa, M Castro, A Catastini, P Cauz, D Cavaliere, V Cavalli-Sforza, M Cerri, A Cerrito, L Chang, SH Chen, YC Chertok, M Chiarelli, G Chlachidze, G Chlebana, F Cho, K Chokheli, D Chou, JP Choudalakis, G Chuang, SH Chung, K Chung, WH Chung, YS Chwalek, T Ciobanu, CI Ciocci, MA Clark, A Clark, D Compostella, G Convery, ME Conway, J Cordelli, M Cortiana, G Cox, CA Cox, DJ Crescioli, F Almenar, CC Cuevas, J Culbertson, R Cully, JC Dagenhart, D Datta, M Davies, T de Barbaro, P De Cecco, S Deisher, A De Lorenzo, G Dell'Orso, M Deluca, C Demortier, L Deng, J Deninno, M Derwent, PF Di Canto, A di Giovanni, GP Dionisi, C Di Ruzza, B Dittmann, JR D'Onofrio, M Donati, S Dong, P Donini, J Dorigo, T Dube, S Efron, J Elagin, A Erbacher, R Errede, D Errede, S Eusebi, R Fang, HC Farrington, S Fedorko, WT Feild, RG Feindt, M Fernandez, JP Ferrazza, C Field, R Flanagan, G Forrest, R Frank, MJ Franklin, M Freeman, JC Furic, I Gallinaro, M Galyardt, J Garberson, F Garcia, JE Garfinkel, AF Garosi, P Genser, K Gerberich, H Gerdes, D Gessler, A Giagu, S Giakoumopoulou, V Giannetti, P Gibson, K Gimmell, JL Ginsburg, CM Giokaris, N Giordani, M Giromini, P Giunta, M Giurgiu, G Glagolev, V Glenzinski, D Gold, M Goldschmidt, N Golossanov, A Gomez, G Gomez-Ceballos, G Goncharov, M Gonzalez, O Gorelov, I Goshaw, AT Goulianos, K Gresele, A Grinstein, S Grosso-Pilcher, C Group, RC Grundler, U da Costa, JG Gunay-Unalan, Z Haber, C Hahn, K Hahn, SR Halkiadakis, E Han, BY Han, JY Happacher, F Hara, K Hare, D Hare, M Harper, S Harr, RF Harris, RM Hartz, M Hatakeyama, K Hays, C Heck, M Heijboer, A Heinrich, J Henderson, C Herndon, M Heuser, J Hewamanage, S Hidas, D Hill, CS Hirschbuehl, D Hocker, A Hou, S Houlden, M Hsu, SC Huffman, BT Hughes, RE Husemann, U Hussein, M Huston, J Incandela, J Introzzi, G Iori, M Ivanov, A James, E Jang, D Jayatilaka, B Jeon, EJ Jha, MK Jindariani, S Johnson, W Jones, M Joo, KK Jun, SY Jung, JE Junk, TR Kamon, T Kar, D Karchin, PE Kato, Y Kephart, R Ketchum, W Keung, J Khotilovich, V Kilminster, B Kim, DH Kim, HS Kim, HW Kim, JE Kim, MJ Kim, SB Kim, SH Kim, YK Kimura, N Kirsch, L Klimenko, S Knuteson, B Ko, BR Kondo, K Kong, DJ Konigsberg, J Korytov, A Kotwal, AV Kraus, JA Kreps, M Kroll, J Krop, D Krumnack, N Kruse, M Krutelyov, V Kubo, T Kuhr, T Kulkarni, NP Kurata, M Kwang, S Laasanen, AT Lami, S Lammel, S Lancaster, M Lander, RL Lannon, K Lath, A Latino, G Lazzizzera, I LeCompte, T Lee, E Lee, HS Lee, SW Leone, S Lewis, JD Lin, CS Linacre, J Lindgren, M Lipeles, E Lister, A Litvintsev, DO Liu, C Liu, T Lockyer, NS Loginov, A Loreti, M Lovas, L Lucchesi, D Luci, C Lueck, J Lujan, P Lukens, P Lungu, G Lyons, L Lys, J Lysak, R MacQueen, D Madrak, R Maeshima, K Makhoul, K Maki, T Maksimovic, P Malde, S Malik, S Manca, G Manousakis-Katsikakis, A Margaroli, F Marino, C Marino, CP Martin, A Martin, V Martinez, M Martinez-Ballarin, R Maruyama, T Mastrandrea, P Masubuchi, T Mathis, M Mattson, ME Mazzanti, P McFarland, KS McIntyre, P McNulty, R Mehta, A Mehtala, P Menzione, A Merkel, P Mesropian, C Miao, T Miladinovic, N Miller, R Mills, C Milnik, M Mitra, A Mitselmakher, G Miyake, H Moggi, N Moon, CS Moore, R Morello, MJ Morlock, J Fernandez, PM Mulmenstadt, J Mukherjee, A Muller, T Mumford, R Murat, P Mussini, M Nachtman, J Nagai, Y Nagano, A Naganoma, J Nakamura, K Nakano, I Napier, A Necula, V Nett, J Neu, C Neubauer, MS Neubauer, S Nielsen, J Nodulman, I Norman, M Norniella, O Nurse, E Oakes, L Oh, SH Oh, YD Oksuzian, I Okusawa, T Orava, R Osterberg, K Griso, SP Palencia, E Papadimitriou, V Papaikonomou, A Paramonov, AA Parks, B Pashapour, S Patrick, J Pauletta, G Paulini, M Paus, C Peiffer, T Pellett, DE Penzo, A Phillips, TJ Piacentino, G Pianori, E Pinera, L Pitts, K Plager, C Pondrom, L Poukhov, O Pounder, N Prakoshyn, F Pronko, A Proudfoot, J Ptohos, F Pueschel, E Punzi, G Pursley, J Rademacker, J Rahaman, A Ramakrishnan, V Ranjan, N Redondo, I Renton, P Renz, M Rescigno, M Richter, S Rimondi, F Ristori, L Robson, A Rodrigo, T Rodriguez, T Rogers, E Rolli, S Roser, R Rossi, M Rossin, R Roy, P Ruiz, A Russ, J Rusu, V Rutherford, B Saarikko, H Safonov, A Sakumoto, WK Salto, O Santi, L Sarkar, S Sartori, L Sato, K Savoy-Navarro, A Schlabach, P Schmidt, A Schmidt, EE Schmidt, MA Schmidt, MP Schmitt, M Schwarz, T Scodellaro, L Scribano, A Scuri, F Sedov, A Seidel, S Seiya, Y Semenov, A Sexton-Kennedy, L Sforza, F Sfyrla, A Shalhout, SZ Shears, T Shepard, PF Shimojima, M Shiraishi, S Shochet, M Shon, Y Shreyber, I Sinervo, P Sisakyan, A Slaughter, AJ Slaunwhite, J Sliwa, K Smith, JR Snider, FD Snihur, R Soha, A Somalwar, S Sorin, V Spreitzer, T Squillacioti, P Stanitzki, M Denis, RS Stelzer, B Stelzer-Chilton, O Stentz, D Strologas, J Strycker, GL Suh, JS Sukhanov, A Suslov, I Suzuki, T Taffard, A Takashima, R Takeuchi, Y Tanaka, R Tecchio, M Teng, PK Terashi, K Thom, J Thompson, AS Thompson, GA Thomson, E Tipton, P Ttito-Guzman, P Tkaczyk, S Toback, D Tokar, S Tollefson, K Tomura, T Tonelli, D Torre, S Torretta, D Totaro, P Tourneur, S Trovato, M Tsai, SY Tu, Y Turini, N Ukegawa, F Vallecorsa, S van Remortel, N Varganov, A Vataga, E Vazquez, F Velev, G Vellidis, C Vidal, M Vidal, R Vila, I Vilar, R Vine, T Vogel, M Volobouev, I Volpi, G Wagner, P Wagner, RG Wagner, RL Wagner, W Wagner-Kuhr, J Wakisaka, T Wallny, R Wang, SM Warburton, A Waters, D Weinberger, M Weinelt, J Wester, WC Whitehouse, B Whiteson, D Wicklund, AB Wicklund, E Wilbur, S Williams, G Williams, HH Wilson, P Winer, BL Wittich, P Wolbers, S Wolfe, C Wright, T Wu, X Wurthwein, F Xie, S Yagil, A Yamamoto, K Yamaoka, J Yang, UK Yang, YC Yao, WM Yeh, GP Yoh, J Yorita, K Yoshida, T Yu, GB Yu, I Yu, SS Yun, JC Zanello, L Zanetti, A Zhang, X Zheng, Y Zucchelli, S AF Aaltonen, T. Adelman, J. Akimoto, T. Gonzalez, B. Alvarez Amerio, S. Amidei, D. Anastassov, A. Annovi, A. Antos, J. Apollinari, G. Apresyan, A. Arisawa, T. Artikov, A. Ashmanskas, W. Attal, A. Aurisano, A. Azfar, F. Badgett, W. Barbaro-Galtieri, A. Barnes, V. E. Barnett, B. A. Barria, P. Bartsch, V. Bauer, G. Beauchemin, P. -H. Bedeschi, F. Beecher, D. Behari, S. Bellettini, G. Bellinger, J. Benjamin, D. Beretvas, A. Beringer, J. Bhatti, A. Binkley, M. Bisello, D. Bizjak, I. Blair, R. E. Blocker, C. Blumenfeld, B. Bocci, A. Bodek, A. Boisvert, V. Bolla, G. Bortoletto, D. Boudreau, J. Boveia, A. Brau, B. Bridgeman, A. Brigliadori, L. Bromberg, C. Brubaker, E. Budagov, J. Budd, H. S. Budd, S. Burke, S. Burkett, K. Busetto, G. Bussey, P. Buzatu, A. Byrum, K. L. Cabrera, S. Calancha, C. Campanelli, M. Campbell, M. Canelli, F. Canepa, A. Carls, B. Carlsmith, D. Carosi, R. Carrillo, S. Carron, S. Casal, B. Casarsa, M. Castro, A. Catastini, P. Cauz, D. Cavaliere, V. Cavalli-Sforza, M. Cerri, A. Cerrito, L. Chang, S. H. Chen, Y. C. Chertok, M. Chiarelli, G. Chlachidze, G. Chlebana, F. Cho, K. Chokheli, D. Chou, J. P. Choudalakis, G. Chuang, S. H. Chung, K. Chung, W. H. Chung, Y. S. Chwalek, T. Ciobanu, C. I. Ciocci, M. A. Clark, A. Clark, D. Compostella, G. Convery, M. E. Conway, J. Cordelli, M. Cortiana, G. Cox, C. A. Cox, D. J. Crescioli, F. Almenar, C. Cuenca Cuevas, J. Culbertson, R. Cully, J. C. Dagenhart, D. Datta, M. Davies, T. de Barbaro, P. De Cecco, S. Deisher, A. De Lorenzo, G. Dell'Orso, M. Deluca, C. Demortier, L. Deng, J. Deninno, M. Derwent, P. F. Di Canto, A. di Giovanni, G. P. Dionisi, C. Di Ruzza, B. Dittmann, J. R. D'Onofrio, M. Donati, S. Dong, P. Donini, J. Dorigo, T. Dube, S. Efron, J. Elagin, A. Erbacher, R. Errede, D. Errede, S. Eusebi, R. Fang, H. C. Farrington, S. Fedorko, W. T. Feild, R. G. Feindt, M. Fernandez, J. P. Ferrazza, C. Field, R. Flanagan, G. Forrest, R. Frank, M. J. Franklin, M. Freeman, J. C. Furic, I. Gallinaro, M. Galyardt, J. Garberson, F. Garcia, J. E. Garfinkel, A. F. Garosi, P. Genser, K. Gerberich, H. Gerdes, D. Gessler, A. Giagu, S. Giakoumopoulou, V. Giannetti, P. Gibson, K. Gimmell, J. L. Ginsburg, C. M. Giokaris, N. Giordani, M. Giromini, P. Giunta, M. Giurgiu, G. Glagolev, V. Glenzinski, D. Gold, M. Goldschmidt, N. Golossanov, A. Gomez, G. Gomez-Ceballos, G. Goncharov, M. Gonzalez, O. Gorelov, I. Goshaw, A. T. Goulianos, K. Gresele, A. Grinstein, S. Grosso-Pilcher, C. Group, R. C. Grundler, U. da Costa, J. Guimaraes Gunay-Unalan, Z. Haber, C. Hahn, K. Hahn, S. R. Halkiadakis, E. Han, B. -Y. Han, J. Y. Happacher, F. Hara, K. Hare, D. Hare, M. Harper, S. Harr, R. F. Harris, R. M. Hartz, M. Hatakeyama, K. Hays, C. Heck, M. Heijboer, A. Heinrich, J. Henderson, C. Herndon, M. Heuser, J. Hewamanage, S. Hidas, D. Hill, C. S. Hirschbuehl, D. Hocker, A. Hou, S. Houlden, M. Hsu, S. -C. Huffman, B. T. Hughes, R. E. Husemann, U. Hussein, M. Huston, J. Incandela, J. Introzzi, G. Iori, M. Ivanov, A. James, E. Jang, D. Jayatilaka, B. Jeon, E. J. Jha, M. K. Jindariani, S. Johnson, W. Jones, M. Joo, K. K. Jun, S. Y. Jung, J. E. Junk, T. R. Kamon, T. Kar, D. Karchin, P. E. Kato, Y. Kephart, R. Ketchum, W. Keung, J. Khotilovich, V. Kilminster, B. Kim, D. H. Kim, H. S. Kim, H. W. Kim, J. E. Kim, M. J. Kim, S. B. Kim, S. H. Kim, Y. K. Kimura, N. Kirsch, L. Klimenko, S. Knuteson, B. Ko, B. R. Kondo, K. Kong, D. J. Konigsberg, J. Korytov, A. Kotwal, A. V. Kraus, J. A. Kreps, M. Kroll, J. Krop, D. Krumnack, N. Kruse, M. Krutelyov, V. Kubo, T. Kuhr, T. Kulkarni, N. P. Kurata, M. Kwang, S. Laasanen, A. T. Lami, S. Lammel, S. Lancaster, M. Lander, R. L. Lannon, K. Lath, A. Latino, G. Lazzizzera, I. LeCompte, T. Lee, E. Lee, H. S. Lee, S. W. Leone, S. Lewis, J. D. Lin, C. -S. Linacre, J. Lindgren, M. Lipeles, E. Lister, A. Litvintsev, D. O. Liu, C. Liu, T. Lockyer, N. S. Loginov, A. Loreti, M. Lovas, L. Lucchesi, D. Luci, C. Lueck, J. Lujan, P. Lukens, P. Lungu, G. Lyons, L. Lys, J. Lysak, R. MacQueen, D. Madrak, R. Maeshima, K. Makhoul, K. Maki, T. Maksimovic, P. Malde, S. Malik, S. Manca, G. Manousakis-Katsikakis, A. Margaroli, F. Marino, C. Marino, C. P. Martin, A. Martin, V. Martinez, M. Martinez-Ballarin, R. Maruyama, T. Mastrandrea, P. Masubuchi, T. Mathis, M. Mattson, M. E. Mazzanti, P. McFarland, K. S. McIntyre, P. McNulty, R. Mehta, A. Mehtala, P. Menzione, A. Merkel, P. Mesropian, C. Miao, T. Miladinovic, N. Miller, R. Mills, C. Milnik, M. Mitra, A. Mitselmakher, G. Miyake, H. Moggi, N. Moon, C. S. Moore, R. Morello, M. J. Morlock, J. Fernandez, P. Movilla Mulmenstadt, J. Mukherjee, A. Muller, Th. Mumford, R. Murat, P. Mussini, M. Nachtman, J. Nagai, Y. Nagano, A. Naganoma, J. Nakamura, K. Nakano, I. Napier, A. Necula, V. Nett, J. Neu, C. Neubauer, M. S. Neubauer, S. Nielsen, J. Nodulman, I. Norman, M. Norniella, O. Nurse, E. Oakes, L. Oh, S. H. Oh, Y. D. Oksuzian, I. Okusawa, T. Orava, R. Osterberg, K. Griso, S. Pagan Palencia, E. Papadimitriou, V. Papaikonomou, A. Paramonov, A. A. Parks, B. Pashapour, S. Patrick, J. Pauletta, G. Paulini, M. Paus, C. Peiffer, T. Pellett, D. E. Penzo, A. Phillips, T. J. Piacentino, G. Pianori, E. Pinera, L. Pitts, K. Plager, C. Pondrom, L. Poukhov, O. Pounder, N. Prakoshyn, F. Pronko, A. Proudfoot, J. Ptohos, F. Pueschel, E. Punzi, G. Pursley, J. Rademacker, J. Rahaman, A. Ramakrishnan, V. Ranjan, N. Redondo, I. Renton, P. Renz, M. Rescigno, M. Richter, S. Rimondi, F. Ristori, L. Robson, A. Rodrigo, T. Rodriguez, T. Rogers, E. Rolli, S. Roser, R. Rossi, M. Rossin, R. Roy, P. Ruiz, A. Russ, J. Rusu, V. Rutherford, B. Saarikko, H. Safonov, A. Sakumoto, W. K. Salto, O. Santi, L. Sarkar, S. Sartori, L. Sato, K. Savoy-Navarro, A. Schlabach, P. Schmidt, A. Schmidt, E. E. Schmidt, M. A. Schmidt, M. P. Schmitt, M. Schwarz, T. Scodellaro, L. Scribano, A. Scuri, F. Sedov, A. Seidel, S. Seiya, Y. Semenov, A. Sexton-Kennedy, L. Sforza, F. Sfyrla, A. Shalhout, S. Z. Shears, T. Shepard, P. F. Shimojima, M. Shiraishi, S. Shochet, M. Shon, Y. Shreyber, I. Sinervo, P. Sisakyan, A. Slaughter, A. J. Slaunwhite, J. Sliwa, K. Smith, J. R. Snider, F. D. Snihur, R. Soha, A. Somalwar, S. Sorin, V. Spreitzer, T. Squillacioti, P. Stanitzki, M. Denis, R. St. Stelzer, B. Stelzer-Chilton, O. Stentz, D. Strologas, J. Strycker, G. L. Suh, J. S. Sukhanov, A. Suslov, I. Suzuki, T. Taffard, A. Takashima, R. Takeuchi, Y. Tanaka, R. Tecchio, M. Teng, P. K. Terashi, K. Thom, J. Thompson, A. S. Thompson, G. A. Thomson, E. Tipton, P. Ttito-Guzman, P. Tkaczyk, S. Toback, D. Tokar, S. Tollefson, K. Tomura, T. Tonelli, D. Torre, S. Torretta, D. Totaro, P. Tourneur, S. Trovato, M. Tsai, S. -Y. Tu, Y. Turini, N. Ukegawa, F. Vallecorsa, S. van Remortel, N. Varganov, A. Vataga, E. Vazquez, F. Velev, G. Vellidis, C. Vidal, M. Vidal, R. Vila, I. Vilar, R. Vine, T. Vogel, M. Volobouev, I. Volpi, G. Wagner, P. Wagner, R. G. Wagner, R. L. Wagner, W. Wagner-Kuhr, J. Wakisaka, T. Wallny, R. Wang, S. M. Warburton, A. Waters, D. Weinberger, M. Weinelt, J. Wester, W. C., III Whitehouse, B. Whiteson, D. Wicklund, A. B. Wicklund, E. Wilbur, S. Williams, G. Williams, H. H. Wilson, P. Winer, B. L. Wittich, P. Wolbers, S. Wolfe, C. Wright, T. Wu, X. Wuerthwein, F. Xie, S. Yagil, A. Yamamoto, K. Yamaoka, J. Yang, U. K. Yang, Y. C. Yao, W. M. Yeh, G. P. Yoh, J. Yorita, K. Yoshida, T. Yu, G. B. Yu, I. Yu, S. S. Yun, J. C. Zanello, L. Zanetti, A. Zhang, X. Zheng, Y. Zucchelli, S. TI Measurement of the b-hadron production cross section using decays to mu(-DX)-X-0 final states in p(p)over-bar collisions at root s=1.96 TeV SO PHYSICAL REVIEW D LA English DT Article ID BOTTOM-QUARK PRODUCTION; BRANCHING FRACTIONS; ROOT-S; MESONS AB We report a measurement of the production cross section for b hadrons in p (p) over bar collisions at root s = 1.96 TeV. Using a data sample derived from an integrated luminosity of 83 pb(-1) collected with the upgraded Collider Detector (CDF II) at the Fermilab Tevatron, we analyze b hadrons, H-b, partially reconstructed in the semileptonic decay mode H-b -> mu(-DX)-X-0. Our measurement of the inclusive production cross section for b hadrons with transverse momentum p(T) > 9 GeV/c and rapidity vertical bar y vertical bar < 0.6 is sigma 1.30 mu b +/- 0.05 mu b(stat) +/- 0.14 mu b(syst) +/- 0.07 mu b(B), where the uncertainties are statistical, systematic, and from branching fractions, respectively. The differential cross sections d sigma/dp(T) are found to be in good agreement with recent measurements of the Hb cross section and well described by fixed-order next-to-leading logarithm predictions. C1 [Aaltonen, T.; Maki, T.; Mehtala, P.; Orava, R.; Osterberg, K.; Saarikko, H.; van Remortel, N.] Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. [Aaltonen, T.; Maki, T.; Mehtala, P.; Orava, R.; Osterberg, K.; Saarikko, H.; van Remortel, N.] Helsinki Inst Phys, FIN-00014 Helsinki, Finland. [Chen, Y. C.; Hou, S.; Martin, V.; Mitra, A.; Teng, P. K.; Tsai, S. -Y.; Wang, S. M.] Acad Sinica, Inst Phys, Taipei 11529, Taiwan. [Blair, R. E.; Byrum, K. L.; LeCompte, T.; Nodulman, I.; Proudfoot, J.; Wagner, R. G.; Wicklund, A. B.] Argonne Natl Lab, Argonne, IL 60439 USA. [Giakoumopoulou, V.; Giokaris, N.; Manousakis-Katsikakis, A.; Vellidis, C.] Univ Athens, GR-15771 Athens, Greece. [Attal, A.; Cavalli-Sforza, M.; De Lorenzo, G.; Deluca, C.; D'Onofrio, M.; Martinez, M.; Salto, O.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. [Dittmann, J. R.; Frank, M. J.; Hewamanage, S.; Krumnack, N.] Baylor Univ, Waco, TX 76798 USA. [Brigliadori, L.; Castro, A.; Deninno, M.; Jha, M. K.; Mazzanti, P.; Moggi, N.; Mussini, M.; Rimondi, F.; Zucchelli, S.] Ist Nazl Fis Nucl, I-40127 Bologna, Italy. [Brigliadori, L.; Castro, A.; Mussini, M.; Rimondi, F.; Zucchelli, S.] Univ Bologna, I-40127 Bologna, Italy. [Blocker, C.; Clark, D.; Kirsch, L.; Miladinovic, N.] Brandeis Univ, Waltham, MA 02254 USA. [Chertok, M.; Conway, J.; Cox, C. A.; Cox, D. J.; Almenar, C. Cuenca; Erbacher, R.; Forrest, R.; Ivanov, A.; Johnson, W.; Lander, R. L.; Lister, A.; Pellett, D. E.; Schwarz, T.; Smith, J. R.; Soha, A.] Univ Calif Davis, Davis, CA 95616 USA. [Dong, P.; Plager, C.; Wallny, R.; Zheng, Y.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Norman, M.; Wuerthwein, F.; Yagil, A.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Boveia, A.; Brau, B.; Garberson, F.; Hill, C. S.; Incandela, J.; Krutelyov, V.; Rossin, R.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Gonzalez, B. Alvarez; Casal, B.; Cuevas, J.; Gomez, G.; Rodrigo, T.; Ruiz, A.; Scodellaro, L.; Vila, I.; Vilar, R.] Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain. [Chung, K.; Galyardt, J.; Jang, D.; Jun, S. Y.; Paulini, M.; Pueschel, E.; Russ, J.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Adelman, J.; Brubaker, E.; Canelli, F.; Fedorko, W. T.; Grosso-Pilcher, C.; Ketchum, W.; Kim, Y. K.; Krop, D.; Kwang, S.; Lee, H. S.; Paramonov, A. A.; Schmidt, M. A.; Shiraishi, S.; Shochet, M.; Wilbur, S.; Wolfe, C.; Yang, U. K.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Antos, J.; Lovas, L.; Lysak, R.; Tokar, S.] Inst Expt Phys, Kosice 04001, Slovakia. [Antos, J.; Lovas, L.; Lysak, R.; Tokar, S.] Comenius Univ, Bratislava 84248, Slovakia. [Artikov, A.; Budagov, J.; Chokheli, D.; Glagolev, V.; Poukhov, O.; Prakoshyn, F.; Semenov, A.; Sisakyan, A.; Suslov, I.] Joint Inst Nucl Res, RU-141980 Dubna, Russia. [Benjamin, D.; Bocci, A.; Cabrera, S.; Deng, J.; Goshaw, A. T.; Hidas, D.; Jayatilaka, B.; Ko, B. R.; Kotwal, A. V.; Kruse, M.; Necula, V.; Oh, S. H.; Phillips, T. J.; Yamaoka, J.] Duke Univ, Durham, NC 27708 USA. [Apollinari, G.; Ashmanskas, W.; Badgett, W.; Beretvas, A.; Binkley, M.; Burke, S.; Burkett, K.; Canelli, F.; Casarsa, M.; Chlachidze, G.; Chlebana, F.; Convery, M. E.; Culbertson, R.; Dagenhart, D.; Datta, M.; Derwent, P. F.; Eusebi, R.; Freeman, J. C.; Genser, K.; Ginsburg, C. M.; Glenzinski, D.; Golossanov, A.; Group, R. C.; Hahn, S. R.; Harris, R. M.; Hocker, A.; James, E.; Jindariani, S.; Junk, T. R.; Kephart, R.; Kilminster, B.; Lammel, S.; Lewis, J. D.; Lindgren, M.; Litvintsev, D. O.; Liu, T.; Lukens, P.; Madrak, R.; Maeshima, K.; Miao, T.; Moore, R.; Fernandez, P. Movilla; Mukherjee, A.; Murat, P.; Nachtman, J.; Palencia, E.; Papadimitriou, V.; Patrick, J.; Pronko, A.; Ptohos, F.; Roser, R.; Rusu, V.; Rutherford, B.; Sato, K.; Schlabach, P.; Schmidt, E. E.; Sexton-Kennedy, L.; Slaughter, A. J.; Snider, F. D.; Thom, J.; Tkaczyk, S.; Tonelli, D.; Torretta, D.; Velev, G.; Vidal, R.; Wagner, R. L.; Wester, W. C., III; Wicklund, E.; Wilson, P.; Wittich, P.; Wolbers, S.; Yeh, G. P.; Yoh, J.; Yu, S. S.; Yun, J. C.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Carrillo, S.; Field, R.; Furic, I.; Goldschmidt, N.; Kar, D.; Klimenko, S.; Konigsberg, J.; Korytov, A.; Mitselmakher, G.; Oksuzian, I.; Pinera, L.; Sukhanov, A.; Vazquez, F.] Univ Florida, Gainesville, FL 32611 USA. [Annovi, A.; Cordelli, M.; Giromini, P.; Happacher, F.; Kim, M. J.; Torre, S.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Clark, A.; Garcia, J. E.; Vallecorsa, S.; Wu, X.] Univ Geneva, CH-1211 Geneva 4, Switzerland. [Bussey, P.; Davies, T.; Martin, V.; Robson, A.; Denis, R. St.; Thompson, A. S.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. [Chou, J. P.; Franklin, M.; Grinstein, S.; da Costa, J. Guimaraes; Mills, C.] Harvard Univ, Cambridge, MA 02138 USA. [Bridgeman, A.; Budd, S.; Errede, D.; Errede, S.; Gerberich, H.; Grundler, U.; Kraus, J. A.; Marino, C. P.; Neubauer, M. S.; Norniella, O.; Pitts, K.; Rogers, E.; Sfyrla, A.; Taffard, A.; Thompson, G. A.; Zhang, X.] Univ Illinois, Urbana, IL 61801 USA. [Barnett, B. A.; Behari, S.; Blumenfeld, B.; Giurgiu, G.; Maksimovic, P.; Mathis, M.; Mumford, R.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Chwalek, T.; Feindt, M.; Gessler, A.; Heck, M.; Heuser, J.; Hirschbuehl, D.; Kreps, M.; Kuhr, T.; Lueck, J.; Marino, C.; Milnik, M.; Morlock, J.; Muller, Th.; Neubauer, S.; Papaikonomou, A.; Peiffer, T.; Renz, M.; Richter, S.; Schmidt, A.; Wagner, W.; Wagner-Kuhr, J.; Weinelt, J.] Univ Karlsruhe, Inst Expt Kernphys, D-76128 Karlsruhe, Germany. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Kyungpook Natl Univ, Ctr High Energy Phys, Taegu 702701, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Seoul Natl Univ, Seoul 151742, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Sungkyunkwan Univ, Suwon 440746, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Korea Inst Sci & Technol Informat, Taejon 305806, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Chonnam Natl Univ, Kwangju 500757, South Korea. [Barbaro-Galtieri, A.; Beringer, J.; Cerri, A.; Deisher, A.; Fang, H. C.; Haber, C.; Hsu, S. -C.; Lin, C. -S.; Lujan, P.; Lys, J.; Mulmenstadt, J.; Nielsen, J.; Volobouev, I.; Yao, W. M.] Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Houlden, M.; Manca, G.; McNulty, R.; Mehta, A.; Shears, T.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Bartsch, V.; Beecher, D.; Bizjak, I.; Cerrito, L.; Lancaster, M.; Malik, S.; Nurse, E.; Vine, T.; Waters, D.] UCL, London WC1E 6BT, England. [Calancha, C.; Fernandez, J. P.; Gonzalez, O.; Martinez-Ballarin, R.; Redondo, I.; Ttito-Guzman, P.; Vidal, M.] Ctr Invest Energet Medioambientales & Tecnol, E-28040 Madrid, Spain. [Bauer, G.; Choudalakis, G.; Gomez-Ceballos, G.; Goncharov, M.; Hahn, K.; Henderson, C.; Knuteson, B.; Makhoul, K.; Paus, C.; Xie, S.] MIT, Cambridge, MA 02139 USA. [Beauchemin, P. -H.; Buzatu, A.; Carron, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] McGill Univ, Inst Particle Phys, Montreal, PQ H3A 2T8, Canada. [Beauchemin, P. -H.; Buzatu, A.; Carron, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada. [Beauchemin, P. -H.; Buzatu, A.; Carron, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] Univ Toronto, Toronto, ON M5S 1A7, Canada. [Beauchemin, P. -H.; Buzatu, A.; Carron, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Amidei, D.; Campbell, M.; Carls, B.; Cully, J. C.; Gerdes, D.; Strycker, G. L.; Tecchio, M.; Varganov, A.; Wright, T.] Univ Michigan, Ann Arbor, MI 48109 USA. [Bromberg, C.; Campanelli, M.; Gunay-Unalan, Z.; Hussein, M.; Huston, J.; Miller, R.; Sorin, V.; Tollefson, K.] Michigan State Univ, E Lansing, MI 48824 USA. [Shreyber, I.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Gold, M.; Gorelov, I.; Seidel, S.; Strologas, J.; Vogel, M.] Univ New Mexico, Albuquerque, NM 87131 USA. [Anastassov, A.; Schmitt, M.; Stentz, D.] Northwestern Univ, Evanston, IL 60208 USA. [Efron, J.; Hughes, R. E.; Lannon, K.; Parks, B.; Slaunwhite, J.; Winer, B. L.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.; Takashima, R.; Tanaka, R.] Okayama Univ, Okayama 7008530, Japan. [Kato, Y.; Okusawa, T.; Seiya, Y.; Wakisaka, T.; Yamamoto, K.; Yoshida, T.] Osaka City Univ, Osaka 588, Japan. [Azfar, F.; Farrington, S.; Harper, S.; Hays, C.; Huffman, B. T.; Linacre, J.; Lyons, L.; Malde, S.; Oakes, L.; Pounder, N.; Rademacker, J.; Renton, P.] Univ Oxford, Oxford OX1 3RH, England. [Amerio, S.; Bisello, D.; Busetto, G.; Compostella, G.; Cortiana, G.; Donini, J.; Dorigo, T.; Gresele, A.; Lazzizzera, I.; Loreti, M.; Lucchesi, D.; Griso, S. Pagan] Ist Nazl Fis Nucl, Sez Padova Trento, I-35131 Padua, Italy. [Amerio, S.; Bisello, D.; Busetto, G.; Cortiana, G.; Gresele, A.; Lazzizzera, I.; Loreti, M.; Lucchesi, D.; Griso, S. Pagan] Univ Padua, I-35131 Padua, Italy. [Ciobanu, C. I.; di Giovanni, G. P.; Savoy-Navarro, A.; Tourneur, S.] Univ Paris 06, LPNHE, IN2P3, CNRS,UMR7585, F-75252 Paris, France. [Canepa, A.; Heijboer, A.; Heinrich, J.; Keung, J.; Kroll, J.; Lipeles, E.; Lockyer, N. S.; Neu, C.; Pianori, E.; Rodriguez, T.; Thomson, E.; Tu, Y.; Wagner, P.; Whiteson, D.; Williams, H. H.] Univ Penn, Philadelphia, PA 19104 USA. [Barria, P.; Bedeschi, F.; Bellettini, G.; Carosi, R.; Catastini, P.; Cavaliere, V.; Chiarelli, G.; Ciocci, M. A.; Crescioli, F.; Dell'Orso, M.; Di Canto, A.; Donati, S.; Ferrazza, C.; Flanagan, G.; Garosi, P.; Giannetti, P.; Giunta, M.; Introzzi, G.; Lami, S.; Latino, G.; Leone, S.; Menzione, A.; Morello, M. J.; Piacentino, G.; Punzi, G.; Ristori, L.; Sartori, L.; Scribano, A.; Scuri, F.; Sforza, F.; Squillacioti, P.; Trovato, M.; Turini, N.; Vataga, E.; Volpi, G.] Ist Nazl Fis Nucl, I-56127 Pisa, Italy. [Bellettini, G.; Crescioli, F.; Dell'Orso, M.; Di Canto, A.; Donati, S.; Punzi, G.; Sforza, F.; Volpi, G.] Univ Pisa, I-56127 Pisa, Italy. [Barria, P.; Catastini, P.; Cavaliere, V.; Ciocci, M. A.; Garosi, P.; Latino, G.; Scribano, A.; Squillacioti, P.; Turini, N.] Univ Siena, I-56127 Pisa, Italy. [Ferrazza, C.; Trovato, M.; Vataga, E.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Boudreau, J.; Gibson, K.; Hartz, M.; Liu, C.; Rahaman, A.; Shepard, P. F.] Univ Pittsburgh, Pittsburgh, PA 15260 USA. [Apresyan, A.; Barnes, V. E.; Bolla, G.; Bortoletto, D.; Garfinkel, A. F.; Jones, M.; Laasanen, A. T.; Margaroli, F.; Merkel, P.; Ranjan, N.; Sedov, A.] Purdue Univ, W Lafayette, IN 47907 USA. [Bodek, A.; Boisvert, V.; Budd, H. S.; Chung, Y. S.; de Barbaro, P.; Gimmell, J. L.; Han, B. -Y.; Han, J. Y.; McFarland, K. S.; Sakumoto, W. K.; Yu, G. B.] Univ Rochester, Rochester, NY 14627 USA. [Bhatti, A.; Demortier, L.; Goulianos, K.; Hatakeyama, K.; Lungu, G.; Mesropian, C.; Terashi, K.] Rockefeller Univ, New York, NY 10021 USA. [De Cecco, S.; Dionisi, C.; Gallinaro, M.; Giagu, S.; Iori, M.; Luci, C.; Mastrandrea, P.; Rescigno, M.; Sarkar, S.; Zanello, L.] Ist Nazl Fis Nucl, I-00185 Rome, Italy. [Dionisi, C.; Giagu, S.; Iori, M.; Luci, C.; Sarkar, S.; Zanello, L.] Univ Roma La Sapienza, I-00185 Rome, Italy. [Chuang, S. H.; Dube, S.; Halkiadakis, E.; Hare, D.; Lath, A.; Somalwar, S.] Rutgers State Univ, Piscataway, NJ 08855 USA. [Aurisano, A.; Elagin, A.; Kamon, T.; Khotilovich, V.; Lee, E.; Lee, S. W.; McIntyre, P.; Safonov, A.; Toback, D.; Weinberger, M.] Texas A&M Univ, College Stn, TX 77843 USA. [Cauz, D.; Di Ruzza, B.; Giordani, M.; Pauletta, G.; Penzo, A.; Rossi, M.; Santi, L.; Totaro, P.; Zanetti, A.] Ist Nazl Fis Nucl Trieste Udine, I-33100 Udine, Italy. [Cauz, D.; Di Ruzza, B.; Giordani, M.; Pauletta, G.; Penzo, A.; Rossi, M.; Santi, L.; Totaro, P.; Zanetti, A.] Ist Nazl Fis Nucl Trieste Udine, I-34100 Trieste, Italy. [Cauz, D.; Di Ruzza, B.; Giordani, M.; Pauletta, G.; Santi, L.; Totaro, P.] Univ Trieste Udine, I-33100 Udine, Italy. [Cauz, D.; Di Ruzza, B.; Giordani, M.; Pauletta, G.; Santi, L.; Totaro, P.] Univ Trieste Udine, I-34100 Trieste, Italy. [Akimoto, T.; Hara, K.; Kim, S. H.; Kimura, N.; Kubo, T.; Kurata, M.; Maruyama, T.; Masubuchi, T.; Miyake, H.; Nagai, Y.; Nagano, A.; Naganoma, J.; Nakamura, K.; Shimojima, M.; Suzuki, T.; Takeuchi, Y.; Tomura, T.; Ukegawa, F.] Univ Tsukuba, Tsukuba, Ibaraki 305, Japan. [Hare, M.; Napier, A.; Rolli, S.; Sliwa, K.; Whitehouse, B.] Tufts Univ, Medford, MA 02155 USA. [Arisawa, T.; Kondo, K.; Yorita, K.] Waseda Univ, Tokyo 169, Japan. [Harr, R. F.; Karchin, P. E.; Kulkarni, N. P.; Mattson, M. E.; Shalhout, S. Z.] Wayne State Univ, Detroit, MI 48201 USA. [Bellinger, J.; Carlsmith, D.; Chung, W. H.; Herndon, M.; Nett, J.; Pondrom, L.; Pursley, J.; Ramakrishnan, V.; Shon, Y.] Univ Wisconsin, Madison, WI 53706 USA. [Feild, R. G.; Husemann, U.; Loginov, A.; Martin, A.; Schmidt, M. P.; Stanitzki, M.; Tipton, P.] Yale Univ, New Haven, CT 06520 USA. RP Aaltonen, T (reprint author), Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. RI Grinstein, Sebastian/N-3988-2014; Paulini, Manfred/N-7794-2014; Russ, James/P-3092-2014; unalan, zeynep/C-6660-2015; Cabrera Urban, Susana/H-1376-2015; Garcia, Jose /H-6339-2015; ciocci, maria agnese /I-2153-2015; Cavalli-Sforza, Matteo/H-7102-2015; Muelmenstaedt, Johannes/K-2432-2015; Introzzi, Gianluca/K-2497-2015; Gorelov, Igor/J-9010-2015; Canelli, Florencia/O-9693-2016; Ruiz, Alberto/E-4473-2011; Robson, Aidan/G-1087-2011; De Cecco, Sandro/B-1016-2012; manca, giulia/I-9264-2012; Amerio, Silvia/J-4605-2012; Punzi, Giovanni/J-4947-2012; Annovi, Alberto/G-6028-2012; Ivanov, Andrew/A-7982-2013; Warburton, Andreas/N-8028-2013; Kim, Soo-Bong/B-7061-2014; Lysak, Roman/H-2995-2014; Moon, Chang-Seong/J-3619-2014; Scodellaro, Luca/K-9091-2014 OI Grinstein, Sebastian/0000-0002-6460-8694; Paulini, Manfred/0000-0002-6714-5787; Russ, James/0000-0001-9856-9155; unalan, zeynep/0000-0003-2570-7611; ciocci, maria agnese /0000-0003-0002-5462; Muelmenstaedt, Johannes/0000-0003-1105-6678; Introzzi, Gianluca/0000-0002-1314-2580; Gorelov, Igor/0000-0001-5570-0133; Canelli, Florencia/0000-0001-6361-2117; Ruiz, Alberto/0000-0002-3639-0368; Punzi, Giovanni/0000-0002-8346-9052; Annovi, Alberto/0000-0002-4649-4398; Ivanov, Andrew/0000-0002-9270-5643; Warburton, Andreas/0000-0002-2298-7315; Moon, Chang-Seong/0000-0001-8229-7829; Scodellaro, Luca/0000-0002-4974-8330 FU U. S. Department of Energy; National Science Foundation; Italian Istituto Nazionale di Fisica Nucleare; Ministry of Education, Culture, Sports, Science and Technology of Japan; Natural Sciences and Engineering Research Council of Canada; National Science Council of the Republic of China; Swiss National Science Foundation; A. P. Sloan Foundation; the Bundesministerium fur Bildung und Forschung, Germany; Korean Science and Engineering Foundation; Korean Research Foundation; Science and Technology Facilities Council and the Royal Society, UK; Institut National de Physique Nucleaire et Physique des Particules/CNRS; Russian Foundation for Basic Research; the Ministerio de Ciencia e Innovacion; Programa Consolider-Ingenio 2010, Spain; Slovak RD Agency; Academy of Finland FX We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the U. S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A. P. Sloan Foundation; the Bundesministerium fur Bildung und Forschung, Germany; the Korean Science and Engineering Foundation and the Korean Research Foundation; the Science and Technology Facilities Council and the Royal Society, UK; the Institut National de Physique Nucleaire et Physique des Particules/CNRS; the Russian Foundation for Basic Research; the Ministerio de Ciencia e Innovacion, and Programa Consolider-Ingenio 2010, Spain; the Slovak R&D Agency; and the Academy of Finland. NR 49 TC 21 Z9 21 U1 1 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD MAY PY 2009 VL 79 IS 9 AR 092003 DI 10.1103/PhysRevD.79.092003 PG 21 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 451WO UT WOS:000266501800007 ER PT J AU Abbasi, R Abdou, Y Ackermann, M Adams, J Ahlers, M Andeen, K Auffenberg, J Bai, X Baker, M Barwick, SW Bay, R Alba, JLB Beattie, K Bechet, S Becker, JK Becker, KH Benabderrahmane, ML Berdermann, J Berghaus, P Berley, D Bernardini, E Bertrand, D Besson, DZ Bissok, M Blaufuss, E Boersma, DJ Bohm, C Bolmont, J Boser, S Botner, O Bradley, L Braun, J Breder, D Burgess, T Castermans, T Chirkin, D Christy, B Clem, J Cohen, S Cowen, DF D'Agostino, MV Danninger, M Day, CT De Clercq, C Demirors, L Depaepe, O Descamps, F Desiati, P de Vries-Uiterweerd, G DeYoung, T Diaz-Velez, JC Dreyer, J Dumm, JP Duvoort, MR Edwards, WR Ehrlich, R Eisch, J Ellsworth, RW Engdegard, O Euler, S Evenson, PA Fadiran, O Fazely, AR Feusels, T Filimonov, K Finley, C Foerster, MM Fox, BD Franckowiak, A Franke, R Gaisser, TK Gallagher, J Ganugapati, R Gerhardt, L Gladstone, L Goldschmidt, A Goodman, JA Gozzini, R Grant, D Griesel, T Gross, A Grullon, S Gunasingha, RM Gurtner, M Ha, C Hallgren, A Halzen, F Han, K Hanson, K Hasegawa, Y Heise, J Helbing, K Herquet, P Hickford, S Hill, GC Hoffman, KD Hoshina, K Hubert, D Huelsnitz, W Hulss, JP Hulth, PO Hultqvist, K Hussain, S Imlay, RL Inaba, M Ishihara, A Jacobsen, J Japaridze, GS Johansson, H Joseph, JM Kampert, KH Kappes, A Karg, T Karle, A Kelley, JL Kenny, P Kiryluk, J Kislat, F Klein, SR Klepser, S Knops, S Kohnen, G Kolanoski, H Kopke, L Kowalski, M Kowarik, T Krasberg, M Kuehn, K Kuwabara, T Labare, M Laihem, K Landsman, H Lauer, R Leich, H Lennarz, D Lucke, A Lundberg, J Lunemann, J Madsen, J Majumdar, P Maruyama, R Mase, K Matis, HS McParland, CP Meagher, K Merck, M Meszaros, P Middell, E Milke, N Miyamoto, H Mohr, A Montaruli, T Morse, R Movit, SM Munich, K Nahnhauer, R Nam, JW Niessen, P Nygren, DR Odrowski, S Olivas, A Olivo, M Ono, M Panknin, S Patton, S de los Heros, CP Petrovic, J Piegsa, A Pieloth, D Pohl, AC Porrata, R Potthoff, N Price, PB Prikockis, M Przybylski, GT Rawlins, K Redl, P Resconi, E Rhode, W Ribordy, M Rizzo, A Rodrigues, JP Roth, P Rothmaier, F Rott, C Roucelle, C Rutledge, D Ryckbosch, D Sander, HG Sarkar, S Satalecka, K Schlenstedt, S Schmidt, T Schneider, D Schukraft, A Schulz, O Schunck, M Seckel, D Semburg, B Seo, SH Sestayo, Y Seunarine, S Silvestri, A Slipak, A Spiczak, GM Spiering, C Stanev, T Stephens, G Stezelberger, T Stokstad, RG Stoufer, MC Stoyanov, S Strahler, EA Straszheim, T Sulanke, KH Sullivan, GW Swillens, Q Taboada, I Tarasova, O Tepe, A Ter-Antonyan, S Terranova, C Tilav, S Tluczykont, M Toale, PA Tosi, D Turcan, D van Eijndhoven, N Vandenbroucke, J Van Overloop, A Voigt, B Walck, C Waldenmaier, T Walter, M Wendt, C Westerhoff, S Whitehorn, N Wiebusch, CH Wiedemann, A Wikstrom, G Williams, DR Wischnewski, R Wissing, H Woschnagg, K Xu, XW Yodh, G Yoshida, S AF Abbasi, R. Abdou, Y. Ackermann, M. Adams, J. Ahlers, M. Andeen, K. Auffenberg, J. Bai, X. Baker, M. Barwick, S. W. Bay, R. Alba, J. L. Bazo Beattie, K. Bechet, S. Becker, J. K. Becker, K. -H. Benabderrahmane, M. L. Berdermann, J. Berghaus, P. Berley, D. Bernardini, E. Bertrand, D. Besson, D. Z. Bissok, M. Blaufuss, E. Boersma, D. J. Bohm, C. Bolmont, J. Boeser, S. Botner, O. Bradley, L. Braun, J. Breder, D. Burgess, T. Castermans, T. Chirkin, D. Christy, B. Clem, J. Cohen, S. Cowen, D. F. D'Agostino, M. V. Danninger, M. Day, C. T. De Clercq, C. Demiroers, L. Depaepe, O. Descamps, F. Desiati, P. de Vries-Uiterweerd, G. DeYoung, T. Diaz-Velez, J. C. Dreyer, J. Dumm, J. P. Duvoort, M. R. Edwards, W. R. Ehrlich, R. Eisch, J. Ellsworth, R. W. Engdegard, O. Euler, S. Evenson, P. A. Fadiran, O. Fazely, A. R. Feusels, T. Filimonov, K. Finley, C. Foerster, M. M. Fox, B. D. Franckowiak, A. Franke, R. Gaisser, T. K. Gallagher, J. Ganugapati, R. Gerhardt, L. Gladstone, L. Goldschmidt, A. Goodman, J. A. Gozzini, R. Grant, D. Griesel, T. Gross, A. Grullon, S. Gunasingha, R. M. Gurtner, M. Ha, C. Hallgren, A. Halzen, F. Han, K. Hanson, K. Hasegawa, Y. Heise, J. Helbing, K. Herquet, P. Hickford, S. Hill, G. C. Hoffman, K. D. Hoshina, K. Hubert, D. Huelsnitz, W. Huelss, J. -P. Hulth, P. O. Hultqvist, K. Hussain, S. Imlay, R. L. Inaba, M. Ishihara, A. Jacobsen, J. Japaridze, G. S. Johansson, H. Joseph, J. M. Kampert, K. -H. Kappes, A. Karg, T. Karle, A. Kelley, J. L. Kenny, P. Kiryluk, J. Kislat, F. Klein, S. R. Klepser, S. Knops, S. Kohnen, G. Kolanoski, H. Koepke, L. Kowalski, M. Kowarik, T. Krasberg, M. Kuehn, K. Kuwabara, T. Labare, M. Laihem, K. Landsman, H. Lauer, R. Leich, H. Lennarz, D. Lucke, A. Lundberg, J. Luenemann, J. Madsen, J. Majumdar, P. Maruyama, R. Mase, K. Matis, H. S. McParland, C. P. Meagher, K. Merck, M. Meszaros, P. Middell, E. Milke, N. Miyamoto, H. Mohr, A. Montaruli, T. Morse, R. Movit, S. M. Muenich, K. Nahnhauer, R. Nam, J. W. Niessen, P. Nygren, D. R. Odrowski, S. Olivas, A. Olivo, M. Ono, M. Panknin, S. Patton, S. de los Heros, C. Perez Petrovic, J. Piegsa, A. Pieloth, D. Pohl, A. C. Porrata, R. Potthoff, N. Price, P. B. Prikockis, M. Przybylski, G. T. Rawlins, K. Redl, P. Resconi, E. Rhode, W. Ribordy, M. Rizzo, A. Rodrigues, J. P. Roth, P. Rothmaier, F. Rott, C. Roucelle, C. Rutledge, D. Ryckbosch, D. Sander, H. -G. Sarkar, S. Satalecka, K. Schlenstedt, S. Schmidt, T. Schneider, D. Schukraft, A. Schulz, O. Schunck, M. Seckel, D. Semburg, B. Seo, S. H. Sestayo, Y. Seunarine, S. Silvestri, A. Slipak, A. Spiczak, G. M. Spiering, C. Stanev, T. Stephens, G. Stezelberger, T. Stokstad, R. G. Stoufer, M. C. Stoyanov, S. Strahler, E. A. Straszheim, T. Sulanke, K. -H. Sullivan, G. W. Swillens, Q. Taboada, I. Tarasova, O. Tepe, A. Ter-Antonyan, S. Terranova, C. Tilav, S. Tluczykont, M. Toale, P. A. Tosi, D. Turcan, D. van Eijndhoven, N. Vandenbroucke, J. Van Overloop, A. Voigt, B. Walck, C. Waldenmaier, T. Walter, M. Wendt, C. Westerhoff, S. Whitehorn, N. Wiebusch, C. H. Wiedemann, A. Wikstrom, G. Williams, D. R. Wischnewski, R. Wissing, H. Woschnagg, K. Xu, X. W. Yodh, G. Yoshida, S. CA IceCube Collaboration TI Determination of the atmospheric neutrino flux and searches for new physics with AMANDA-II SO PHYSICAL REVIEW D LA English DT Article ID LORENTZ INVARIANCE VIOLATION; QUANTUM DECOHERENCE; CONFIDENCE-INTERVALS; SMALL SIGNALS; OSCILLATIONS; TELESCOPE; GRAVITY; SENSITIVITY; SCATTERING; GENERATOR AB The AMANDA-II detector, operating since 2000 in the deep ice at the geographic South Pole, has accumulated a large sample of atmospheric muon neutrinos in the 100 GeV to 10 TeV energy range. The zenith angle and energy distribution of these events can be used to search for various phenomenological signatures of quantum gravity in the neutrino sector, such as violation of Lorentz invariance or quantum decoherence. Analyzing a set of 5511 candidate neutrino events collected during 1387 days of livetime from 2000 to 2006, we find no evidence for such effects and set upper limits on violation of Lorentz invariance and quantum decoherence parameters using a maximum likelihood method. Given the absence of evidence for new flavor-changing physics, we use the same methodology to determine the conventional atmospheric muon neutrino flux above 100 GeV. C1 [Williams, D. R.] Univ Alabama, Dept Phys & Astron, Tuscaloosa, AL 35487 USA. [Rawlins, K.] Univ Alaska, Dept Phys & Astron, Anchorage, AK 99508 USA. [Fadiran, O.; Japaridze, G. S.] Clark Atlanta Univ, CTSPS, Atlanta, GA 30314 USA. [Taboada, I.] Georgia Inst Technol, Sch Phys, Atlanta, GA 30332 USA. [Fazely, A. R.; Gunasingha, R. M.; Imlay, R. L.; Ter-Antonyan, S.; Xu, X. W.] Southern Univ, Dept Phys, Baton Rouge, LA 70813 USA. [Bay, R.; D'Agostino, M. V.; Filimonov, K.; Gerhardt, L.; Kiryluk, J.; Klein, S. R.; Porrata, R.; Price, P. B.; Vandenbroucke, J.; Woschnagg, K.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Beattie, K.; Day, C. T.; Edwards, W. R.; Gerhardt, L.; Goldschmidt, A.; Joseph, J. M.; Kiryluk, J.; Klein, S. R.; Matis, H. S.; McParland, C. P.; Nygren, D. R.; Patton, S.; Przybylski, G. T.; Stezelberger, T.; Stokstad, R. G.; Stoufer, M. C.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Franckowiak, A.; Kolanoski, H.; Kowalski, M.; Lucke, A.; Mohr, A.; Panknin, S.; Waldenmaier, T.] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany. [Bechet, S.; Bertrand, D.; Labare, M.; Petrovic, J.; Swillens, Q.] Univ Libre Bruxelles, Sci Fac CP230, B-1050 Brussels, Belgium. [De Clercq, C.; Depaepe, O.; Hubert, D.; Rizzo, A.] Vrije Univ Brussels, Dienst ELEM, B-1050 Brussels, Belgium. [Hasegawa, Y.; Inaba, M.; Ishihara, A.; Mase, K.; Miyamoto, H.; Ono, M.; Yoshida, S.] Chiba Univ, Dept Phys, Chiba 2638522, Japan. [Adams, J.; Danninger, M.; Gross, A.; Han, K.; Hickford, S.; Seunarine, S.] Univ Canterbury, Dept Phys & Astron, Christchurch 1, New Zealand. [Berley, D.; Blaufuss, E.; Christy, B.; Ehrlich, R.; Ellsworth, R. W.; Goodman, J. A.; Hoffman, K. D.; Huelsnitz, W.; Meagher, K.; Olivas, A.; Redl, P.; Roth, P.; Schmidt, T.; Straszheim, T.; Sullivan, G. W.; Turcan, D.; Wissing, H.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [Kuehn, K.; Rott, C.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Becker, J. K.; Dreyer, J.; Milke, N.; Muenich, K.; Rhode, W.; Wiedemann, A.] TU Dortmund Univ, Dept Phys, D-44221 Dortmund, Germany. [Abdou, Y.; Descamps, F.; de Vries-Uiterweerd, G.; Feusels, T.; Ryckbosch, D.; Van Overloop, A.] Univ Ghent, Dept Subatom & Radiat Phys, B-9000 Ghent, Belgium. [Gross, A.; Odrowski, S.; Resconi, E.; Roucelle, C.; Schulz, O.; Sestayo, Y.] Max Planck Inst Kernphys, D-69177 Heidelberg, Germany. [Barwick, S. W.; Nam, J. W.; Silvestri, A.; Yodh, G.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Demiroers, L.; Ribordy, M.; Terranova, C.] Ecole Polytech Fed Lausanne, High Energy Phys Lab, CH-1015 Lausanne, Switzerland. [Besson, D. Z.; Kenny, P.] Univ Kansas, Dept Phys & Astron, Lawrence, KS 66045 USA. [Gallagher, J.] Univ Wisconsin, Dept Astron, Madison, WI 53706 USA. [Abbasi, R.; Andeen, K.; Baker, M.; Berghaus, P.; Boersma, D. J.; Braun, J.; Chirkin, D.; Desiati, P.; Diaz-Velez, J. C.; Dumm, J. P.; Eisch, J.; Finley, C.; Ganugapati, R.; Gladstone, L.; Grullon, S.; Halzen, F.; Hanson, K.; Hill, G. C.; Hoshina, K.; Jacobsen, J.; Kappes, A.; Karle, A.; Kelley, J. L.; Krasberg, M.; Landsman, H.; Maruyama, R.; Merck, M.; Montaruli, T.; Morse, R.; Rodrigues, J. P.; Schneider, D.; Strahler, E. A.; Wendt, C.; Westerhoff, S.; Whitehorn, N.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Gozzini, R.; Griesel, T.; Koepke, L.; Kowarik, T.; Luenemann, J.; Piegsa, A.; Rothmaier, F.; Sander, H. -G.] Johannes Gutenberg Univ Mainz, Inst Phys, D-55099 Mainz, Germany. [Castermans, T.; Herquet, P.; Kohnen, G.] Univ Mons, B-7000 Mons, Belgium. [Bai, X.; Clem, J.; Cohen, S.; Evenson, P. A.; Gaisser, T. K.; Hussain, S.; Kuwabara, T.; Niessen, P.; Seckel, D.; Stanev, T.; Stoyanov, S.; Tilav, S.] Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA. [Madsen, J.; Spiczak, G. M.] Univ Wisconsin, Dept Phys, River Falls, WI 54022 USA. [Bohm, C.; Burgess, T.; Hulth, P. O.; Hultqvist, K.; Johansson, H.; Nygren, D. R.; Seo, S. H.; Walck, C.; Wikstrom, G.] Stockholm Univ, Dept Phys, SE-10691 Stockholm, Sweden. [Cowen, D. F.; Meszaros, P.; Movit, S. M.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Bradley, L.; Cowen, D. F.; DeYoung, T.; Foerster, M. M.; Fox, B. D.; Grant, D.; Ha, C.; Meszaros, P.; Prikockis, M.; Rutledge, D.; Slipak, A.; Stephens, G.; Toale, P. A.] Penn State Univ, Dept Phys, University Pk, PA 16802 USA. [Botner, O.; Engdegard, O.; Hallgren, A.; Lundberg, J.; Olivo, M.; de los Heros, C. Perez; Pohl, A. C.] Uppsala Univ, Dept Phys & Astron, S-75120 Uppsala, Sweden. [Duvoort, M. R.; Heise, J.; van Eijndhoven, N.] Utrecht Univ SRON, Dept Phys & Astron, NL-3584 CC Utrecht, Netherlands. [Auffenberg, J.; Becker, K. -H.; Breder, D.; Gurtner, M.; Helbing, K.; Kampert, K. -H.; Karg, T.; Potthoff, N.; Semburg, B.; Tepe, A.] Univ Gesamthsch Wuppertal, Dept Phys, D-42119 Wuppertal, Germany. [Ackermann, M.; Alba, J. L. Bazo; Benabderrahmane, M. L.; Berdermann, J.; Bernardini, E.; Bolmont, J.; Boeser, S.; Franke, R.; Kislat, F.; Klepser, S.; Lauer, R.; Leich, H.; Majumdar, P.; Middell, E.; Nahnhauer, R.; Pieloth, D.; Satalecka, K.; Schlenstedt, S.; Spiering, C.; Sulanke, K. -H.; Tarasova, O.; Tluczykont, M.; Tosi, D.; Voigt, B.; Walter, M.; Wischnewski, R.] DESY, D-15735 Zeuthen, Germany. [Bissok, M.; Euler, S.; Huelss, J. -P.; Knops, S.; Laihem, K.; Lennarz, D.; Schukraft, A.; Schunck, M.; Wiebusch, C. H.; Wissing, H.] Univ Aachen, Rhein Westfal TH Aachen, Inst Phys 3, D-52056 Aachen, Germany. [Taboada, I.] Georgia Inst Technol, Ctr Relativist Astrophys, Atlanta, GA 30332 USA. [Kuehn, K.; Rott, C.] Ohio State Univ, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Bai, X.; Clem, J.; Cohen, S.; Evenson, P. A.; Gaisser, T. K.; Hussain, S.; Kuwabara, T.; Niessen, P.; Seckel, D.; Stanev, T.; Stoyanov, S.; Tilav, S.] Univ Delaware, Bartol Res Inst, Newark, DE 19716 USA. [Ahlers, M.; Sarkar, S.] Univ Oxford, Dept Phys, Oxford OX1 3NP, England. RP Kelley, JL (reprint author), Univ Wisconsin, Dept Phys, 1150 Univ Ave, Madison, WI 53706 USA. EM jkelley@icecube.wisc.edu RI Wiebusch, Christopher/G-6490-2012; Kowalski, Marek/G-5546-2012; Botner, Olga/A-9110-2013; Hallgren, Allan/A-8963-2013; Tjus, Julia/G-8145-2012; Auffenberg, Jan/D-3954-2014; Maruyama, Reina/A-1064-2013; Sarkar, Subir/G-5978-2011 OI Ter-Antonyan, Samvel/0000-0002-5788-1369; Schukraft, Anne/0000-0002-9112-5479; Perez de los Heros, Carlos/0000-0002-2084-5866; Hubert, Daan/0000-0002-4365-865X; Benabderrahmane, Mohamed Lotfi/0000-0003-4410-5886; Wiebusch, Christopher/0000-0002-6418-3008; Auffenberg, Jan/0000-0002-1185-9094; Maruyama, Reina/0000-0003-2794-512X; Sarkar, Subir/0000-0002-3542-858X NR 88 TC 52 Z9 52 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD MAY PY 2009 VL 79 IS 10 AR 102005 DI 10.1103/PhysRevD.79.102005 PG 15 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 451WP UT WOS:000266501900011 ER PT J AU Abraham, J Abreu, P Aglietta, M Aguirre, C Ahn, EJ Allard, D Allekotte, I Allen, J Allison, P Alvarez-Muniz, J Ambrosio, M Anchordoqui, L Andringa, S Anzalone, A Aramo, C Argiro, S Arisaka, K Arneodo, F Arqueros, F Asch, T Asorey, H Assis, P Aublin, J Ave, M Avila, G Backer, T Badagnani, D Barber, KB Barbosa, AF Barroso, SLC Baughman, B Bauleo, P Beatty, JJ Beau, T Becker, BR Becker, KH Belletoile, A Bellido, JA BenZvi, S Berat, C Bernardini, P Bertou, X Biermann, PL Billoir, P Blanch-Bigas, O Blanco, F Bleve, C Blumer, H Bohacova, M Bonifazi, C Bonino, R Brack, J Brogueira, P Brown, WC Bruijn, R Buchholz, P Bueno, A Burton, RE Busca, NG Caballero-Mora, KS Caramete, L Caruso, R Carvalho, W Castellina, A Catalano, O Cazon, L Cester, R Chauvin, J Chiavassa, A Chinellato, JA Chou, A Chudoba, J Chye, J Clay, RW Colombo, E Conceicao, R Connolly, B Contreras, F Coppens, J Cordier, A Cotti, U Coutu, S Covault, CE Creusot, A Criss, A Cronin, J Curutiu, A Dagoret-Campagne, S Daumiller, K Dawson, BR de Almeida, RM De Domenico, M De Donato, C de Jong, SJ De La Vega, G de Mello, WJM de Mello Neto, JRT De Mitri, I de Souza, V Decerprit, G del Peral, L Deligny, O Della Selva, A Delle Fratte, C Dembinski, H Di Giulio, C Diaz, JC Diep, PN Dobrigkeit, C D'Olivo, JC Dong, PN Dornic, D Dorofeev, A dos Anjos, JC Dova, MT D'Urso, D Dutan, I DuVernois, MA Engel, R Erdmann, M Escobar, CO Etchegoyen, A Luis, PFS Falcke, H Farrar, G Fauth, AC Fazzini, N Ferrer, F Ferrero, A Fick, B Filevich, A Filipcic, A Fleck, I Fliescher, S Fracchiolla, CE Fraenkel, ED Fulgione, W Gamarra, RF Gambetta, S Garcia, B Gamez, DG Garcia-Pinto, D Garrido, X Gelmini, G Gemmeke, H Ghia, PL Giaccari, U Giller, M Glass, H Goggin, LM Gold, MS Golup, G Albarracin, FG Berisso, MG Goncalves, P do Amaral, MG Gonzalez, D Gonzalez, JG Gora, D Gorgi, A Gouffon, P Grebe, S Grigat, M Grillo, AF Guardincerri, Y Guarino, F Guedes, GP Gutierrez, J Hague, JD Halenka, V Hansen, P Harari, D Harmsma, S Harton, JL Haungs, A Healy, MD Hebbeker, T Hebrero, G Heck, D Hojvat, C Holmes, VC Homola, P Horandel, JR Horneffer, A Hrabovsky, M Huege, T Hussain, M Iarlori, M Insolia, A Ionita, F Italiano, A Jiraskova, S Kaducak, M Kampert, KH Karova, T Kasper, P Kegl, B Keilhauer, B Kemp, E Kieckhafer, RM Klages, HO Kleifges, M Kleinfeller, J Knapik, R Knapp, J Koang, DH Krieger, A Kromer, O Kruppke, D Kuempel, D Kunka, N Kusenko, A La Rosa, G Lachaud, C Lago, BL Leao, MSAB Lebrun, D Lebrun, P Lee, J de Oliveira, MAL Lemiere, A Letessier-Selvon, A Leuthold, M Lhenry-Yvon, I Lopez, R Aguera, AL Bahilo, JL Lucero, A Garcia, RL Maccarone, MC Macolino, C Maldera, S Mandat, D Mantsch, P Mariazzi, AG Maris, IC Falcon, HRM Martello, D Martinez, J Bravo, OM Mathes, HJ Matthews, J Matthews, JAJ Matthiae, G Maurizio, D Mazur, PO McEwen, M McNeil, RR Medina-Tanco, G Melissas, M Melo, D Menichetti, E Menshikov, A Meyhandan, R Micheletti, MI Miele, G Miller, W Miramonti, L Mollerach, S Monasor, M Ragaigne, DM Montanet, F Morales, B Morello, C Moreno, JC Morris, C Mostafa, M Mueller, S Muller, MA Mussa, R Navarra, G Navarro, JL Navas, S Necesal, P Nellen, L Newman-Holmes, C Newton, D Nhung, PT Nierstenhoefer, N Nitz, D Nosek, D Nozka, L Oehlschlager, J Olinto, A Olmos-Gilbaja, VM Ortiz, M Ortolani, F Pacheco, N Selmi-Dei, DP Palatka, M Pallotta, J Parente, G Parizot, E Parlati, S Pastor, S Patel, M Paul, T Pavlidou, V Payet, K Pech, M Pekala, J Pelayo, R Pepe, IM Perrone, L Pesce, R Petermann, E Petrera, S Petrinca, P Petrolini, A Petrov, Y Petrovic, J Pfendner, C Pichel, A Piegaia, R Pierog, T Pimenta, M Pinto, T Pirronello, V Pisanti, O Platino, M Pochon, J Ponce, VH Pontz, M Privitera, P Prouza, M Quel, EJ Rautenberg, J Ravignani, D Redondo, A Reucroft, S Revenu, B Rezende, FAS Ridky, J Riggi, S Risse, M Riviere, C Rizi, V Robledo, C Rodriguez, G Martino, JR Rojo, JR Rodriguez-Cabo, I Rodriguez-Frias, MD Ros, G Rosado, J Roth, M Rouille-d'Orfeuil, B Roulet, E Rovero, AC Salamida, F Salazar, H Salina, G Sanchez, F Santander, M Santo, CE Santos, EM Sarazin, F Sarkar, S Sato, R Scharf, N Scherini, V Schieler, H Schiffer, P Schmidt, A Schmidt, F Schmidt, T Scholten, O Schoorlemmer, H Schovancova, J Schovanek, P Schroeder, F Schulte, S Schussler, F Schuster, D Sciutto, SJ Scuderi, M Segreto, A Semikoz, D Settimo, M Shellard, RC Sidelnik, I Siffert, BB De Grande, NS Smialkowski, A Smida, R Smith, BE Snow, GR Sommers, P Sorokin, J Spinka, H Squartini, R Strazzeri, E Stutz, A Suarez, F Suomijarvi, T Supanitsky, AD Sutherland, MS Swain, J Szadkowski, Z Tamashiro, A Tamburro, A Tarutina, T Tascau, O Tcaciuc, R Tcherniakhovski, D Thao, NT Thomas, D Ticona, R Tiffenberg, J Timmermans, C Tkaczyk, W Peixoto, CJT Tome, B Tonachini, A Torres, I Travnicek, P Tridapalli, DB Tristram, G Trovato, E Tuci, V Tueros, M Ulrich, R Unger, M Urban, M Galicia, JFV Valino, I Valore, L van den Berg, AM van Elewyck, V Vazquez, RA Veberic, D Velarde, A Venters, T Verzi, V Videla, M Villasenor, L Vorobiov, S Voyvodic, L Wahlberg, H Wahrlich, P Wainberg, O Warner, D Watson, AA Westerhoff, S Whelan, BJ Wieczorek, G Wiencke, L Wilczynska, B Wilczynski, H Wileman, C Winnick, MG Wu, H Wundheiler, B Younk, P Yuan, G Zas, E Zavrtanik, D Zavrtanik, M Zaw, I Zepeda, A Ziolkowski, M AF Abraham, J. Abreu, P. Aglietta, M. Aguirre, C. Ahn, E. J. Allard, D. Allekotte, I. Allen, J. Allison, P. Alvarez-Muniz, J. Ambrosio, M. Anchordoqui, L. Andringa, S. Anzalone, A. Aramo, C. Argiro, S. Arisaka, K. Arneodo, F. Arqueros, F. Asch, T. Asorey, H. Assis, P. Aublin, J. Ave, M. Avila, G. Baecker, T. Badagnani, D. Barber, K. B. Barbosa, A. F. Barroso, S. L. C. Baughman, B. Bauleo, P. Beatty, J. J. Beau, T. Becker, B. R. Becker, K. H. Belletoile, A. Bellido, J. A. BenZvi, S. Berat, C. Bernardini, P. Bertou, X. Biermann, P. L. Billoir, P. Blanch-Bigas, O. Blanco, F. Bleve, C. Bluemer, H. Bohacova, M. Bonifazi, C. Bonino, R. Brack, J. Brogueira, P. Brown, W. C. Bruijn, R. Buchholz, P. Bueno, A. Burton, R. E. Busca, N. G. Caballero-Mora, K. S. Caramete, L. Caruso, R. Carvalho, W. Castellina, A. Catalano, O. Cazon, L. Cester, R. Chauvin, J. Chiavassa, A. Chinellato, J. A. Chou, A. Chudoba, J. Chye, J. Clay, R. W. Colombo, E. Conceicao, R. Connolly, B. Contreras, F. Coppens, J. Cordier, A. Cotti, U. Coutu, S. Covault, C. E. Creusot, A. Criss, A. Cronin, J. Curutiu, A. Dagoret-Campagne, S. Daumiller, K. Dawson, B. R. de Almeida, R. M. De Domenico, M. De Donato, C. de Jong, S. J. De La Vega, G. de Mello, W. J. M., Jr. de Mello Neto, J. R. T. De Mitri, I. de Souza, V. Decerprit, G. del Peral, L. Deligny, O. Della Selva, A. Delle Fratte, C. Dembinski, H. Di Giulio, C. Diaz, J. C. Diep, P. N. Dobrigkeit, C. D'Olivo, J. C. Dong, P. N. Dornic, D. Dorofeev, A. dos Anjos, J. C. Dova, M. T. D'Urso, D. Dutan, I. DuVernois, M. A. Engel, R. Erdmann, M. Escobar, C. O. Etchegoyen, A. San Luis, P. Facal Falcke, H. Farrar, G. Fauth, A. C. Fazzini, N. Ferrer, F. Ferrero, A. Fick, B. Filevich, A. Filipcic, A. Fleck, I. Fliescher, S. Fracchiolla, C. E. Fraenkel, E. D. Fulgione, W. Gamarra, R. F. Gambetta, S. Garcia, B. Garcia Gamez, D. Garcia-Pinto, D. Garrido, X. Gelmini, G. Gemmeke, H. Ghia, P. L. Giaccari, U. Giller, M. Glass, H. Goggin, L. M. Gold, M. S. Golup, G. Gomez Albarracin, F. Gomez Berisso, M. Goncalves, P. do Amaral, M. Goncalves Gonzalez, D. Gonzalez, J. G. Gora, D. Gorgi, A. Gouffon, P. Grebe, S. Grigat, M. Grillo, A. F. Guardincerri, Y. Guarino, F. Guedes, G. P. Gutierrez, J. Hague, J. D. Halenka, V. Hansen, P. Harari, D. Harmsma, S. Harton, J. L. Haungs, A. Healy, M. D. Hebbeker, T. Hebrero, G. Heck, D. Hojvat, C. Holmes, V. C. Homola, P. Hoerandel, J. R. Horneffer, A. Hrabovsky, M. Huege, T. Hussain, M. Iarlori, M. Insolia, A. Ionita, F. Italiano, A. Jiraskova, S. Kaducak, M. Kampert, K. H. Karova, T. Kasper, P. Kegl, B. Keilhauer, B. Kemp, E. Kieckhafer, R. M. Klages, H. O. Kleifges, M. Kleinfeller, J. Knapik, R. Knapp, J. Koang, D. -H. Krieger, A. Kroemer, O. Kruppke, D. Kuempel, D. Kunka, N. Kusenko, A. La Rosa, G. Lachaud, C. Lago, B. L. Leao, M. S. A. B. Lebrun, D. Lebrun, P. Lee, J. Leigui de Oliveira, M. A. Lemiere, A. Letessier-Selvon, A. Leuthold, M. Lhenry-Yvon, I. Lopez, R. Lopez Agueera, A. Lozano Bahilo, J. Lucero, A. Luna Garcia, R. Maccarone, M. C. Macolino, C. Maldera, S. Mandat, D. Mantsch, P. Mariazzi, A. G. Maris, I. C. Marquez Falcon, H. R. Martello, D. Martinez, J. Martinez Bravo, O. Mathes, H. J. Matthews, J. Matthews, J. A. J. Matthiae, G. Maurizio, D. Mazur, P. O. McEwen, M. McNeil, R. R. Medina-Tanco, G. Melissas, M. Melo, D. Menichetti, E. Menshikov, A. Meyhandan, R. Micheletti, M. I. Miele, G. Miller, W. Miramonti, L. Mollerach, S. Monasor, M. Ragaigne, D. Monnier Montanet, F. Morales, B. Morello, C. Moreno, J. C. Morris, C. Mostafa, M. Mueller, S. Muller, M. A. Mussa, R. Navarra, G. Navarro, J. L. Navas, S. Necesal, P. Nellen, L. Newman-Holmes, C. Newton, D. Nhung, P. T. Nierstenhoefer, N. Nitz, D. Nosek, D. Nozka, L. Oehlschlaeger, J. Olinto, A. Olmos-Gilbaja, V. M. Ortiz, M. Ortolani, F. Pacheco, N. Selmi-Dei, D. Pakk Palatka, M. Pallotta, J. Parente, G. Parizot, E. Parlati, S. Pastor, S. Patel, M. Paul, T. Pavlidou, V. Payet, K. Pech, M. Pekala, J. Pelayo, R. Pepe, I. M. Perrone, L. Pesce, R. Petermann, E. Petrera, S. Petrinca, P. Petrolini, A. Petrov, Y. Petrovic, J. Pfendner, C. Pichel, A. Piegaia, R. Pierog, T. Pimenta, M. Pinto, T. Pirronello, V. Pisanti, O. Platino, M. Pochon, J. Ponce, V. H. Pontz, M. Privitera, P. Prouza, M. Quel, E. J. Rautenberg, J. Ravignani, D. Redondo, A. Reucroft, S. Revenu, B. Rezende, F. A. S. Ridky, J. Riggi, S. Risse, M. Riviere, C. Rizi, V. Robledo, C. Rodriguez, G. Martino, J. Rodriguez Rodriguez Rojo, J. Rodriguez-Cabo, I. Rodriguez-Frias, M. D. Ros, G. Rosado, J. Roth, M. Rouille-d'Orfeuil, B. Roulet, E. Rovero, A. C. Salamida, F. Salazar, H. Salina, G. Sanchez, F. Santander, M. Santo, C. E. Santos, E. M. Sarazin, F. Sarkar, S. Sato, R. Scharf, N. Scherini, V. Schieler, H. Schiffer, P. Schmidt, A. Schmidt, F. Schmidt, T. Scholten, O. Schoorlemmer, H. Schovancova, J. Schovanek, P. Schroeder, F. Schulte, S. Schuessler, F. Schuster, D. Sciutto, S. J. Scuderi, M. Segreto, A. Semikoz, D. Settimo, M. Shellard, R. C. Sidelnik, I. Siffert, B. B. Smetniansky De Grande, N. Smialkowski, A. Smida, R. Smith, B. E. Snow, G. R. Sommers, P. Sorokin, J. Spinka, H. Squartini, R. Strazzeri, E. Stutz, A. Suarez, F. Suomijaervi, T. Supanitsky, A. D. Sutherland, M. S. Swain, J. Szadkowski, Z. Tamashiro, A. Tamburro, A. Tarutina, T. Tascau, O. Tcaciuc, R. Tcherniakhovski, D. Thao, N. T. Thomas, D. Ticona, R. Tiffenberg, J. Timmermans, C. Tkaczyk, W. Peixoto, C. J. Todero Tome, B. Tonachini, A. Torres, I. Travnicek, P. Tridapalli, D. B. Tristram, G. Trovato, E. Tuci, V. Tueros, M. Ulrich, R. Unger, M. Urban, M. Valdes Galicia, J. F. Valino, I. Valore, L. van den Berg, A. M. van Elewyck, V. Vazquez, R. A. Veberic, D. Velarde, A. Venters, T. Verzi, V. Videla, M. Villasenor, L. Vorobiov, S. Voyvodic, L. Wahlberg, H. Wahrlich, P. Wainberg, O. Warner, D. Watson, A. A. Westerhoff, S. Whelan, B. J. Wieczorek, G. Wiencke, L. Wilczynska, B. Wilczynski, H. Wileman, C. Winnick, M. G. Wu, H. Wundheiler, B. Younk, P. Yuan, G. Zas, E. Zavrtanik, D. Zavrtanik, M. Zaw, I. Zepeda, A. Ziolkowski, M. CA Pierre Auger Collaboration TI Limit on the diffuse flux of ultrahigh energy tau neutrinos with the surface detector of the Pierre Auger Observatory SO PHYSICAL REVIEW D LA English DT Article ID ACTIVE GALACTIC NUCLEI; COSMIC-RAYS; AIR-SHOWERS; PERFORMANCE; ASTROPHYSICS; OSCILLATIONS; PROPAGATION; TELESCOPES; SPECTRUM; SEARCH AB Data collected at the Pierre Auger Observatory are used to establish an upper limit on the diffuse flux of tau neutrinos in the cosmic radiation. Earth-skimming nu(tau) may interact in the Earth's crust and produce a tau lepton by means of charged-current interactions. The tau lepton may emerge from the Earth and decay in the atmosphere to produce a nearly horizontal shower with a typical signature, a persistent electromagnetic component even at very large atmospheric depths. The search procedure to select events induced by tau decays against the background of normal showers induced by cosmic rays is described. The method used to compute the exposure for a detector continuously growing with time is detailed. Systematic uncertainties in the exposure from the detector, the analysis, and the involved physics are discussed. No tau neutrino candidates have been found. For neutrinos in the energy range 2x10(17) eV < E-nu < 2x10(19) eV, assuming a diffuse spectrum of the form E-nu(-2), data collected between 1 January 2004 and 30 April 2008 yield a 90% confidence-level upper limit of E(nu)(2)dN(nu tau)/dE(nu)< 9x10(-8) GeV cm(-2) s(-1) sr(-1). C1 [Allekotte, I.; Asorey, H.; Bertou, X.; Golup, G.; Gomez Berisso, M.; Harari, D.; Mollerach, S.; Pochon, J.; Ponce, V. H.; Roulet, E.] CNEA UNCuyo CONICET, Ctr Atom Bariloche, San Carlos De Bariloche, Rio Negro, Argentina. [Colombo, E.; Etchegoyen, A.; Ferrero, A.; Filevich, A.; Gamarra, R. F.; Krieger, A.; Micheletti, M. I.; Platino, M.; Ravignani, D.; Sidelnik, I.; Smetniansky De Grande, N.; Suarez, F.; Wainberg, O.; Wundheiler, B.] Comis Nacl Energia Atom CONICET UTN FRBA, Ctr Atom Constituyentes, Buenos Aires, DF, Argentina. [Guardincerri, Y.; Piegaia, R.; Tiffenberg, J.] Univ Buenos Aires, FCEyN, Dept Fis, RA-1053 Buenos Aires, DF, Argentina. [Badagnani, D.; Dova, M. T.; Gomez Albarracin, F.; Hansen, P.; Mariazzi, A. G.; Moreno, J. C.; Sciutto, S. J.; Tarutina, T.; Tueros, M.; Wahlberg, H.] Univ Nacl La Plata, IFLP, La Plata, Buenos Aires, Argentina. [Pichel, A.; Rovero, A. C.; Tamashiro, A.] Consejo Nacl Invest Cient & Tecn, Inst Astron & Fis Espacio, RA-1033 Buenos Aires, DF, Argentina. [Abraham, J.; De La Vega, G.; Garcia, B.; Videla, M.] UTN FRM CONICET CNEA, Observ Meteorol Parque Gral San Martin, Mendoza, Argentina. [Contreras, F.; Rodriguez Rojo, J.; Santander, M.; Sato, R.; Squartini, R.] Pierre Auger So Observ, Malargue, Argentina. [Avila, G.] Pierre Auger So Observ & Comis Nacl Energia Atom, Malargue, Argentina. [Barber, K. B.; Bellido, J. A.; Clay, R. W.; Dawson, B. R.; Holmes, V. C.; Sorokin, J.; Wahrlich, P.; Whelan, B. J.; Winnick, M. G.] Univ Adelaide, Adelaide, SA, Australia. [Aguirre, C.] Univ Catolica Bolivia, La Paz, Bolivia. [Barbosa, A. F.; Bonifazi, C.; dos Anjos, J. C.; Rezende, F. A. S.; Shellard, R. C.] Ctr Brasileiro Pesquisas Fis, Rio De Janeiro, Brazil. [Fracchiolla, C. E.; Shellard, R. C.] Pontificia Univ Catolica Rio de Janeiro, Rio De Janeiro, Brazil. [Carvalho, W.; de Souza, V.; Gouffon, P.; Tridapalli, D. B.] Univ Sao Paulo, Inst Fis, BR-01498 Sao Paulo, Brazil. [Chinellato, J. A.; de Almeida, R. M.; de Mello, W. J. M., Jr.; Dobrigkeit, C.; Escobar, C. O.; Fauth, A. C.; Kemp, E.; Muller, M. A.; Selmi-Dei, D. Pakk; Peixoto, C. J. Todero] Univ Estadual Campinas, IFGW, Campinas, SP, Brazil. [Guedes, G. P.] Univ Estadual Feira de Santana, Santana, Brazil. [Barroso, S. L. C.] Univ Estadual Sudoeste Bahia, Vitoria Da Conquista, BA, Brazil. [Pepe, I. M.] Univ Fed Bahia, Salvador, BA, Brazil. [Leao, M. S. A. B.; Leigui de Oliveira, M. A.] Univ Fed ABC, Santo Andre, SP, Brazil. [de Mello Neto, J. R. T.; Lago, B. L.; Santos, E. M.; Siffert, B. B.] Univ Fed Rio de Janeiro, Inst Fis, Rio De Janeiro, Brazil. [do Amaral, M. Goncalves] Univ Fed Fluminense, Inst Fis, BR-24020 Niteroi, RJ, Brazil. [Nosek, D.] Charles Univ Prague, Fac Math & Phys, Inst Particle & Nucl Phys, Prague, Czech Republic. [Bohacova, M.; Chudoba, J.; Hrabovsky, M.; Karova, T.; Mandat, D.; Necesal, P.; Nozka, L.; Palatka, M.; Pech, M.; Prouza, M.; Ridky, J.; Schovancova, J.; Schovanek, P.; Smida, R.; Travnicek, P.] Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic. [Halenka, V.; Hrabovsky, M.] Palacky Univ, CR-77147 Olomouc, Czech Republic. [Deligny, O.; Dornic, D.; Ghia, P. L.; Lemiere, A.; Lhenry-Yvon, I.; Suomijaervi, T.; van Elewyck, V.] Univ Paris 11, CNRS, IN2P3, Inst Phys Nucl Orsay IPNO, F-91405 Orsay, France. [Allard, D.; Beau, T.; Busca, N. G.; Decerprit, G.; Lachaud, C.; Parizot, E.; Rouille-d'Orfeuil, B.; Semikoz, D.; Tristram, G.] Univ Paris 07, CNRS, IN2P3, Lab AstroParticule & Cosmol APC, Paris, France. [Cordier, A.; Dagoret-Campagne, S.; Garrido, X.; Kegl, B.; Ragaigne, D. Monnier; Strazzeri, E.; Urban, M.; Wu, H.] Univ Paris 11, CNRS, IN2P3, Accelerateur Lineaire Lab, F-91405 Orsay, France. [Aublin, J.; Billoir, P.; Blanch-Bigas, O.; Bonifazi, C.; Letessier-Selvon, A.] Univ Paris 06, Lab Phys Nucl & Hautes Energies LPNHE, Paris 05, France. [Belletoile, A.; Berat, C.; Chauvin, J.; Koang, D. -H.; Lebrun, D.; Montanet, F.; Payet, K.; Riviere, C.; Stutz, A.] Univ Grenoble 1, CNRS, IN2P3, LPSC,INPG, Grenoble, France. [Revenu, B.] SUBATECH, Nantes, France. [Becker, K. H.; Kampert, K. H.; Kruppke, D.; Kuempel, D.; Nierstenhoefer, N.; Rautenberg, J.; Risse, M.; Scherini, V.; Tascau, O.] Berg Univ Wuppertal, Wuppertal, Germany. [Bluemer, H.; Daumiller, K.; Engel, R.; Garrido, X.; Haungs, A.; Heck, D.; Huege, T.; Keilhauer, B.; Klages, H. O.; Kleinfeller, J.; Mathes, H. J.; Mueller, S.; Oehlschlaeger, J.; Pierog, T.; Roth, M.; Schieler, H.; Schroeder, F.; Schuessler, F.; Ulrich, R.; Unger, M.] Forschungszentrum Karlsruhe, Inst Kernphys, D-76021 Karlsruhe, Germany. [Asch, T.; Gemmeke, H.; Kleifges, M.; Kroemer, O.; Kunka, N.; Menshikov, A.; Schmidt, A.; Tcherniakhovski, D.] Forschungszentrum Karlsruhe, Inst Prozessdatenverarbeitung & Elekt, Karlsruhe, Germany. [Biermann, P. L.; Caramete, L.; Curutiu, A.; Dutan, I.] Max Planck Inst Radioastron, D-5300 Bonn, Germany. [Dembinski, H.; Erdmann, M.; Fliescher, S.; Grigat, M.; Hebbeker, T.; Leuthold, M.; Scharf, N.; Schiffer, P.; Schulte, S.] Univ Aachen, Rhein Westfal TH Aachen, Phys Inst A 3, D-5100 Aachen, Germany. [Bluemer, H.; Caballero-Mora, K. S.; Gonzalez, D.; Gora, D.; Maris, I. C.; Melissas, M.; Schmidt, T.; Tamburro, A.] Univ Karlsruhe TH, Inst Expt Kernphys, Karlsruhe, Germany. [Baecker, T.; Buchholz, P.; Fleck, I.; Grebe, S.; Pontz, M.; Tcaciuc, R.; Ziolkowski, M.] Univ Siegen, Siegen, Germany. [Gambetta, S.; Pesce, R.; Petrolini, A.] Dipartimento Fis Univ, Genoa, Italy. [Iarlori, M.; Macolino, C.; Petrera, S.; Rizi, V.; Salamida, F.] Univ Aquila, I-67100 Laquila, Italy. [De Donato, C.; Miramonti, L.] Univ Milan, Milan, Italy. [Bernardini, P.; Bleve, C.; De Mitri, I.; Giaccari, U.; Martello, D.; Perrone, L.; Settimo, M.] Univ Salento, Dipartimento Fis, Lecce, Italy. [Ambrosio, M.; Aramo, C.; Della Selva, A.; D'Urso, D.; Guarino, F.; Miele, G.; Pisanti, O.; Valore, L.] Univ Naples Federico II, Naples, Italy. [Delle Fratte, C.; Di Giulio, C.; Matthiae, G.; Ortolani, F.; Petrinca, P.; Rodriguez, G.; Salina, G.; Tuci, V.; Verzi, V.] Univ Roma Tor Vergata, I-00173 Rome, Italy. [Caruso, R.; De Domenico, M.; Insolia, A.; Italiano, A.; Pirronello, V.; Riggi, S.; Martino, J. Rodriguez; Scuderi, M.; Trovato, E.] Univ Catania, Catania, Italy. [Caruso, R.; De Domenico, M.; Insolia, A.; Italiano, A.; Pirronello, V.; Riggi, S.; Martino, J. Rodriguez; Scuderi, M.; Trovato, E.] Sezione Ist Nazl Fis Nucl, Catania, Italy. [Anzalone, A.; Catalano, O.; La Rosa, G.; Maccarone, M. C.; Segreto, A.] Ist Astrofis Spaziale & Fis Cosm Palermo INAF, Palermo, Italy. [Aglietta, M.; Bonino, R.; Castellina, A.; Chiavassa, A.; Fulgione, W.; Ghia, P. L.; Gorgi, A.; Lucero, A.; Maldera, S.; Morello, C.; Navarra, G.] Univ Turin, Ist Fis Spazio Interplanetario, Turin, Italy. [Arneodo, F.; Grillo, A. F.; Parlati, S.] INFN, Lab Nazl Gran Sasso, Laquila, Italy. [Lopez, R.; Martinez Bravo, O.; Robledo, C.; Salazar, H.; Torres, I.] Benemerita Univ Autonoma Puebla, Puebla, Mexico. [Luna Garcia, R.; Martinez, J.] IPN, Ctr Invest Computo, Mexico City 07738, DF, Mexico. [Zepeda, A.] CINVESTAV, IPN, Ctr Invest & Estudios Avanzados, Mexico City 14000, DF, Mexico. [Zepeda, A.] Inst Nacl Astrofis Opt & Electr, Puebla, Mexico. [Pelayo, R.] IPN, Unidad Profes Interdisciplinaria Ingn & Tecnol Av, Mexico City 07738, DF, Mexico. [Cotti, U.; Marquez Falcon, H. R.; Villasenor, L.] Univ Michoacana, Morelia, Michoacan, Mexico. [D'Olivo, J. C.; Medina-Tanco, G.; Morales, B.; Nellen, L.; Sanchez, F.; Supanitsky, A. D.; Valdes Galicia, J. F.] Univ Nacl Autonoma Mexico, Mexico City 04510, DF, Mexico. [Coppens, J.; de Jong, S. J.; Falcke, H.; Grebe, S.; Hoerandel, J. R.; Horneffer, A.; Jiraskova, S.; Schoorlemmer, H.; Timmermans, C.] Radboud Univ Nijmegen, IMAPP, Nijmegen, Netherlands. [Fraenkel, E. D.; Harmsma, S.; Meyhandan, R.; Scholten, O.; van den Berg, A. M.] Univ Groningen, Kernfys Versneller Inst, Groningen, Netherlands. [Coppens, J.; Harmsma, S.; Petrovic, J.; Schoorlemmer, H.; Timmermans, C.] NIKHEF, Amsterdam, Netherlands. [Falcke, H.] ASTRON, Dwingeloo, Netherlands. [Gora, D.; Homola, P.; Pekala, J.; Wilczynska, B.; Wilczynski, H.] Inst Nucl Phys PAN, Krakow, Poland. [Giller, M.; Smialkowski, A.; Szadkowski, Z.; Tkaczyk, W.; Wieczorek, G.] Univ Lodz, PL-90131 Lodz, Poland. [Abreu, P.; Andringa, S.; Assis, P.; Brogueira, P.; Conceicao, R.; Goncalves, P.; Pimenta, M.; Santo, C. E.; Tome, B.] Inst Super Tecn, Lisbon, Portugal. [Filipcic, A.; Veberic, D.; Zavrtanik, D.; Zavrtanik, M.] Jozef Stefan Inst, Ljubljana, Slovenia. [Creusot, A.; Filipcic, A.; Hussain, M.; Veberic, D.; Vorobiov, S.; Zavrtanik, D.; Zavrtanik, M.] Univ Nova Gorica, Lab Astroparticle Phys, Nova Gorica, Slovenia. [Pastor, S.; Pinto, T.] Univ Valencia, CSIC, Inst Fis Corpuscular, Valencia, Spain. [Arqueros, F.; Blanco, F.; Garcia-Pinto, D.; Monasor, M.; Ortiz, M.; Ros, G.; Rosado, J.] Univ Complutense Madrid, Madrid, Spain. [del Peral, L.; Gutierrez, J.; Hebrero, G.; McEwen, M.; Pacheco, N.; Redondo, A.; Rodriguez-Frias, M. D.; Ros, G.] Univ Alcala De Henares, Madrid, Spain. [Bueno, A.; Garcia Gamez, D.; Gonzalez, J. G.; Lozano Bahilo, J.; Navarro, J. L.; Navas, S.] Univ Granada, Granada, Spain. [Alvarez-Muniz, J.; San Luis, P. Facal; Lopez Agueera, A.; Olmos-Gilbaja, V. M.; Parente, G.; Rodriguez-Cabo, I.; Valino, I.; Vazquez, R. A.; Zas, E.] Univ Santiago de Compostela, Santiago De Compostela, Spain. [Spinka, H.] Argonne Natl Lab, Argonne, IL 60439 USA. [Burton, R. E.; Covault, C. E.; Ferrer, F.] Case Western Reserve Univ, Cleveland, OH 44106 USA. [Sarazin, F.; Schuster, D.; Wiencke, L.] Colorado Sch Mines, Golden, CO 80401 USA. [Bauleo, P.; Brack, J.; Harton, J. L.; Knapik, R.; Mostafa, M.; Petrov, Y.; Thomas, D.; Warner, D.; Younk, P.] Colorado State Univ, Ft Collins, CO 80523 USA. [Brown, W. C.] Colorado State Univ, Pueblo, CO USA. [Ahn, E. J.; Chou, A.; Fazzini, N.; Glass, H.; Hojvat, C.; Kaducak, M.; Kasper, P.; Lebrun, P.; Mantsch, P.; Mazur, P. O.; Newman-Holmes, C.; Spinka, H.; Voyvodic, L.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Dorofeev, A.; Gonzalez, J. G.; Matthews, J.; McNeil, R. R.; Yuan, G.] Louisiana State Univ, Baton Rouge, LA 70803 USA. [Chye, J.; Diaz, J. C.; Fick, B.; Kieckhafer, R. M.; Nitz, D.] Michigan Technol Univ, Houghton, MI 49931 USA. [Allen, J.; Chou, A.; Farrar, G.; Zaw, I.] NYU, New York, NY USA. [Paul, T.; Reucroft, S.; Swain, J.] Northeastern Univ, Boston, MA 02115 USA. [Allison, P.; Baughman, B.; Beatty, J. J.; Morris, C.; Sutherland, M. S.] Ohio State Univ, Columbus, OH 43210 USA. [Bellido, J. A.; Coutu, S.; Criss, A.; Sommers, P.] Penn State Univ, University Pk, PA 16802 USA. [Matthews, J.] Southern Univ, Baton Rouge, LA USA. [Arisaka, K.; Gelmini, G.; Healy, M. D.; Kusenko, A.; Lee, J.] Univ Calif Los Angeles, Los Angeles, CA USA. [Ave, M.; Bohacova, M.; Cazon, L.; Cronin, J.; San Luis, P. Facal; Ionita, F.; Olinto, A.; Pavlidou, V.; Privitera, P.; Schmidt, F.; Venters, T.; Wundheiler, B.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [DuVernois, M. A.] Univ Hawaii, Honolulu, HI USA. [Petermann, E.; Snow, G. R.] Univ Nebraska, Lincoln, NE USA. [Becker, B. R.; Gold, M. S.; Hague, J. D.; Matthews, J. A. J.; Miller, W.] Univ New Mexico, Albuquerque, NM USA. [Connolly, B.] Univ Penn, Philadelphia, PA 19104 USA. [BenZvi, S.; Pfendner, C.; Westerhoff, S.] Univ Wisconsin, Madison, WI USA. [Anchordoqui, L.; Goggin, L. M.] Univ Wisconsin, Milwaukee, WI 53201 USA. [Diep, P. N.; Dong, P. N.; Nhung, P. T.; Thao, N. T.] Inst Nucl Sci & Technol INST, Hanoi, Vietnam. [Bruijn, R.; Knapp, J.; Newton, D.; Patel, M.; Smith, B. E.; Watson, A. A.; Wileman, C.] Univ Leeds, Sch Phys & Astron, Leeds LS2 9JT, W Yorkshire, England. [Sarkar, S.] Univ Oxford, Rudolf Peierls Ctr Theoret Phys, Oxford, England. [Bueno, A.; Garcia Gamez, D.; Gonzalez, J. G.; Lozano Bahilo, J.; Navarro, J. L.; Navas, S.] CAFPE, Granada, Spain. [Abreu, P.; Andringa, S.; Assis, P.; Brogueira, P.; Conceicao, R.; Goncalves, P.; Pimenta, M.; Santo, C. E.; Tome, B.] LIP, P-1000 Lisbon, Portugal. [Aglietta, M.; Argiro, S.; Bonino, R.; Castellina, A.; Cester, R.; Chiavassa, A.; Fulgione, W.; Ghia, P. L.; Gorgi, A.; Lucero, A.; Maldera, S.; Maurizio, D.; Melo, D.; Menichetti, E.; Morello, C.; Mussa, R.; Navarra, G.; Tonachini, A.] Sezione Ist Nazl Fis Nucl, Turin, Italy. [Delle Fratte, C.; Di Giulio, C.; Matthiae, G.; Ortolani, F.; Petrinca, P.; Rodriguez, G.; Salina, G.; Tuci, V.; Verzi, V.] Sezione Ist Nazl Fis Nucl, Rome, Italy. [Ambrosio, M.; Aramo, C.; Della Selva, A.; D'Urso, D.; Guarino, F.; Miele, G.; Pisanti, O.; Valore, L.] Sezione Ist Nazl Fis Nucl, Naples, Italy. [Bernardini, P.; Bleve, C.; De Mitri, I.; Giaccari, U.; Martello, D.; Perrone, L.; Settimo, M.] Sezione Ist Nazl Fis Nucl, Lecce, Italy. [De Donato, C.; Miramonti, L.] Sezione Ist Nazl Fis Nucl, Milan, Italy. [Iarlori, M.; Macolino, C.; Petrera, S.; Rizi, V.; Salamida, F.] INFN, Laquila, Italy. [Gambetta, S.; Pesce, R.; Petrolini, A.] Ist Nazl Fis Nucl, I-16146 Genoa, Italy. [Aublin, J.; Billoir, P.; Blanch-Bigas, O.; Bonifazi, C.; Letessier-Selvon, A.] Univ Paris 07, Lab Phys & Hautes Energies LPNHE, Paris 05, France. [Badagnani, D.; Dova, M. T.; Gomez Albarracin, F.; Hansen, P.; Mariazzi, A. G.; Moreno, J. C.; Pichel, A.; Sciutto, S. J.; Tarutina, T.; Tueros, M.; Wahlberg, H.] Consejo Nacl Invest Cient & Tecn, La Plata, Buenos Aires, Argentina. [Allekotte, I.; Asorey, H.; Bertou, X.; Golup, G.; Gomez Berisso, M.; Harari, D.; Mollerach, S.; Pochon, J.; Ponce, V. H.; Roulet, E.] CNEA UNCuyo CONICET, Inst Balseiro, San Carlos De Bariloche, Rio Negro, Argentina. RP Abraham, J (reprint author), CNEA UNCuyo CONICET, Ctr Atom Bariloche, San Carlos De Bariloche, Rio Negro, Argentina. RI Arneodo, Francesco/E-5061-2015; Bueno, Antonio/F-3875-2015; Parente, Gonzalo/G-8264-2015; Alvarez-Muniz, Jaime/H-1857-2015; Rosado, Jaime/K-9109-2014; Valino, Ines/J-8324-2012; Carvalho Jr., Washington/H-9855-2015; Navas, Sergio/N-4649-2014; De Donato, Cinzia/J-9132-2015; Martello, Daniele/J-3131-2012; Insolia, Antonio/M-3447-2015; Ros, German/L-4764-2014; Ridky, Jan/H-6184-2014; Chudoba, Jiri/G-7737-2014; Pech, Miroslav/G-5760-2014; Todero Peixoto, Carlos Jose/G-3873-2012; Garcia Pinto, Diego/J-6724-2014; Pastor, Sergio/J-6902-2014; Tome, Bernardo/J-4410-2013; Espirito Santo, Maria Catarina/L-2341-2014; Pimenta, Mario/M-1741-2013; Di Giulio, Claudio/B-3319-2015; Pavlidou, Vasiliki/C-2944-2011; Anjos, Joao/C-8335-2013; Schussler, Fabian/G-5313-2013; Nierstenhofer, Nils/H-3699-2013; Goncalves, Patricia /D-8229-2013; Prouza, Michael/F-8514-2014; Mandat, Dusan/G-5580-2014; Bohacova, Martina/G-5898-2014; Nozka, Libor/G-5550-2014; Cazon, Lorenzo/G-6921-2014; Schovanek, Petr/G-7117-2014; Travnicek, Petr/G-8814-2014; Smida, Radomir/G-6314-2014; de souza, Vitor/D-1381-2012; Shellard, Ronald/G-4825-2012; Petrolini, Alessandro/H-3782-2011; Miele, Gennaro/F-3628-2010; Muller, Marcio Aparecido/H-9112-2012; fulgione, walter/I-5232-2012; D'Urso, Domenico/I-5325-2012; Bleve, Carla/J-2521-2012; Brogueira, Pedro/K-3868-2012; Chinellato, Jose Augusto/I-7972-2012; Tamburro, Alessio/A-5703-2013; Falcke, Heino/H-5262-2012; Arneodo, Francesco/B-8076-2013; De Domenico, Manlio/D-1966-2009; Kemp, Ernesto/H-1502-2011; Chiavassa, Andrea/A-7597-2012; Verzi, Valerio/B-1149-2012; Chinellato, Carola Dobrigkeit /F-2540-2011; Dias, Sandra/F-8134-2010; Dutan, Ioana/C-2337-2011; Caramete, Laurentiu/C-2328-2011; Venters, Tonia/D-2936-2012; Fauth, Anderson/F-9570-2012; Aramo, Carla/D-4317-2011; Pesce, Roberto/G-5791-2011; Assis, Pedro/D-9062-2013; Arqueros, Fernando/K-9460-2014; Conceicao, Ruben/L-2971-2014; Beatty, James/D-9310-2011; Guarino, Fausto/I-3166-2012; Bonino, Raffaella/S-2367-2016; Rodriguez Frias, Maria /A-7608-2015; Inst. of Physics, Gleb Wataghin/A-9780-2017; De Mitri, Ivan/C-1728-2017; Rodriguez Fernandez, Gonzalo/C-1432-2014; Nosek, Dalibor/F-1129-2017; de Mello Neto, Joao/C-5822-2013; Fulgione, Walter/C-8255-2016; De Domenico, Manlio/B-5826-2014; Lozano-Bahilo, Julio/F-4881-2016; ORTOLANI, FABRIZIO/F-7271-2016; scuderi, mario/O-7019-2014; zas, enrique/I-5556-2015; Sarkar, Subir/G-5978-2011; Moura Santos, Edivaldo/K-5313-2016; Gouffon, Philippe/I-4549-2012; de Almeida, Rogerio/L-4584-2016; Abreu, Pedro/L-2220-2014 OI Arneodo, Francesco/0000-0002-1061-0510; Bueno, Antonio/0000-0002-7439-4247; Parente, Gonzalo/0000-0003-2847-0461; Alvarez-Muniz, Jaime/0000-0002-2367-0803; Rosado, Jaime/0000-0001-8208-9480; Valino, Ines/0000-0001-7823-0154; Carvalho Jr., Washington/0000-0002-2328-7628; Navas, Sergio/0000-0003-1688-5758; De Donato, Cinzia/0000-0002-9725-1281; Martello, Daniele/0000-0003-2046-3910; Insolia, Antonio/0000-0002-9040-1566; Ros, German/0000-0001-6623-1483; Ridky, Jan/0000-0001-6697-1393; Todero Peixoto, Carlos Jose/0000-0003-3669-8212; Garcia Pinto, Diego/0000-0003-1348-6735; Tome, Bernardo/0000-0002-7564-8392; Espirito Santo, Maria Catarina/0000-0003-1286-7288; Pimenta, Mario/0000-0002-2590-0908; Di Giulio, Claudio/0000-0002-0597-4547; Pavlidou, Vasiliki/0000-0002-0870-1368; Schussler, Fabian/0000-0003-1500-6571; Goncalves, Patricia /0000-0003-2042-3759; Prouza, Michael/0000-0002-3238-9597; Cazon, Lorenzo/0000-0001-6748-8395; Shellard, Ronald/0000-0002-2983-1815; Petrolini, Alessandro/0000-0003-0222-7594; Miele, Gennaro/0000-0002-2028-0578; D'Urso, Domenico/0000-0002-8215-4542; Brogueira, Pedro/0000-0001-6069-4073; Chinellato, Jose Augusto/0000-0002-3240-6270; Falcke, Heino/0000-0002-2526-6724; Arneodo, Francesco/0000-0002-1061-0510; Chinellato, Carola Dobrigkeit /0000-0002-1236-0789; Fauth, Anderson/0000-0001-7239-0288; Garcia, Beatriz/0000-0003-0919-2734; Dembinski, Hans/0000-0003-3337-3850; Del Peral, Luis/0000-0003-2580-5668; Coutu, Stephane/0000-0003-2923-2246; Rizi, Vincenzo/0000-0002-5277-6527; Horandel, Jorg/0000-0001-6604-547X; Mussa, Roberto/0000-0002-0294-9071; Ulrich, Ralf/0000-0002-2535-402X; Segreto, Alberto/0000-0001-7341-6603; Knapp, Johannes/0000-0003-1519-1383; Petrera, Sergio/0000-0002-6029-1255; Bonino, Raffaella/0000-0002-4264-1215; Andringa, Sofia/0000-0002-6397-9207; Mantsch, Paul/0000-0002-8382-7745; Anzalone, Anna/0000-0003-1849-198X; Maccarone, Maria Concetta/0000-0001-8722-0361; Kothandan, Divay/0000-0001-9048-7518; Castellina, Antonella/0000-0002-0045-2467; Yuan, Guofeng/0000-0002-1907-8815; de Jong, Sijbrand/0000-0002-3120-3367; La Rosa, Giovanni/0000-0002-3931-2269; Salamida, Francesco/0000-0002-9306-8447; Catalano, Osvaldo/0000-0002-9554-4128; Navarro Quirante, Jose Luis/0000-0002-9915-1735; Aglietta, Marco/0000-0001-8354-5388; Asorey, Hernan/0000-0002-4559-8785; Gomez Berisso, Mariano/0000-0001-5530-0180; Aramo, Carla/0000-0002-8412-3846; maldera, simone/0000-0002-0698-4421; Ravignani, Diego/0000-0001-7410-8522; Matthews, James/0000-0002-1832-4420; Assis, Pedro/0000-0001-7765-3606; Arqueros, Fernando/0000-0002-4930-9282; Conceicao, Ruben/0000-0003-4945-5340; Beatty, James/0000-0003-0481-4952; Guarino, Fausto/0000-0003-1427-9885; Rodriguez Frias, Maria /0000-0002-2550-4462; De Mitri, Ivan/0000-0002-8665-1730; Rodriguez Fernandez, Gonzalo/0000-0002-4683-230X; Nosek, Dalibor/0000-0001-6219-200X; de Mello Neto, Joao/0000-0002-3234-6634; Fulgione, Walter/0000-0002-2388-3809; De Domenico, Manlio/0000-0001-5158-8594; Lozano-Bahilo, Julio/0000-0003-0613-140X; ORTOLANI, FABRIZIO/0000-0003-4527-1843; scuderi, mario/0000-0001-9026-5317; zas, enrique/0000-0002-4430-8117; Sarkar, Subir/0000-0002-3542-858X; Moura Santos, Edivaldo/0000-0002-2818-8813; Gouffon, Philippe/0000-0001-7511-4115; de Almeida, Rogerio/0000-0003-3104-2724; Abreu, Pedro/0000-0002-9973-7314 NR 79 TC 81 Z9 81 U1 0 U2 33 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD MAY PY 2009 VL 79 IS 10 AR 102001 DI 10.1103/PhysRevD.79.102001 PG 15 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 451WP UT WOS:000266501900007 ER PT J AU Alekseev, IG Bravar, A Bunce, G Dhawan, S Eyser, KO Gill, R Haeberli, W Huang, H Jinnouchi, O Kponou, A Makdisi, Y Nakagawa, I Nass, A Okada, H Saito, N Stephenson, EJ Svirida, DN Wise, T Wood, J Zelenski, A AF Alekseev, I. G. Bravar, A. Bunce, G. Dhawan, S. Eyser, K. O. Gill, R. Haeberli, W. Huang, H. Jinnouchi, O. Kponou, A. Makdisi, Y. Nakagawa, I. Nass, A. Okada, H. Saito, N. Stephenson, E. J. Svirida, D. N. Wise, T. Wood, J. Zelenski, A. TI Measurements of single and double spin asymmetry in pp elastic scattering in the CNI region with a polarized atomic hydrogen gas jet target SO PHYSICAL REVIEW D LA English DT Article ID INTERSECTING STORAGE-RINGS; PROTON-PROTON SCATTERING; DELTA-SIGMA-T; TOTAL CROSS-SECTION; SMALL-ANGLE PPBAR; HIGH-ENERGIES; IMPACT-PICTURE; HADRONIC INTERFERENCE; SLOPE PARAMETER; ROOT-S=200 GEV AB Precise measurements of the single spin asymmetry AN, and the double spin asymmetry ANN, in proton-proton (pp) elastic scattering in the region of four-momentum transfer squared 0.001 < -t < 0.032 (GeV/c)(2) have been performed using a polarized atomic hydrogen gas jet target and the Relativistic Heavy Ion Collider (RHIC) polarized proton beam. We present measurements of A(N) and A(NN) at center-of-mass energies root s = 6.8 and 13.7 GeV. These spin-dependent observables are sensitive to the poorly known hadronic spin-dependent amplitudes. Comparing A(N) at different energies, a root s dependence of the hadronic single spin-flip amplitude is suggested. A hadronic double spin-flip amplitude from the A(NN) data is consistent with zero within a 2-sigma level. We also present Delta(sigma T), estimated from the measured A(NN) data. The results for Delta(sigma T) are consistent with zero. Our results provide significant constraints toward a comprehensive understanding of the reaction mechanism for pp elastic scattering. C1 [Bunce, G.; Jinnouchi, O.] RIKEN, BNL Res Ctr, Upton, NY 11973 USA. [Stephenson, E. J.] Indiana Univ Cyclotron Facil, Bloomington, IN 47408 USA. [Alekseev, I. G.; Svirida, D. N.] ITEP, Moscow 117259, Russia. [Nakagawa, I.; Okada, H.; Saito, N.] RIKEN, Wako, Saitama 3510198, Japan. SUNY Stony Brook, Stony Brook, NY 11794 USA. [Haeberli, W.; Wise, T.] Univ Wisconsin, Madison, WI 53706 USA. [Dhawan, S.] Yale Univ, New Haven, CT 06520 USA. [Eyser, K. O.] Univ Calif Riverside, Riverside, CA 92521 USA. [Okada, H.; Saito, N.] Kyoto Univ, Sakyo Ku, Kyoto 6068502, Japan. [Bravar, A.; Bunce, G.; Gill, R.; Huang, H.; Kponou, A.; Makdisi, Y.; Nass, A.; Wood, J.; Zelenski, A.] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Okada, H (reprint author), KEK, Tsukuba, Ibaraki 3050831, Japan. EM hiromi@post.kek.jp RI Alekseev, Igor/J-8070-2014; Svirida, Dmitry/R-4909-2016 OI Alekseev, Igor/0000-0003-3358-9635; FU U.S. DOE [DE-AC02-98CH10886, W-31-109-ENG-38, DE-FG0288ER40438]; NSF [PHY-0100348]; RIKEN, Japan FX We would like to thank the Instrumentation Division and Collider Accelerator Department at BNL for their work on the silicon detectors, electronics, and the RHIC polarized proton beam. We also would like to thank T. L. Trueman for useful discussions. This work is performed under the auspices of U.S. DOE Contract No. DE-AC02-98CH10886 and No. W-31-109-ENG-38, DOE Grant No. DE-FG0288ER40438, NSF Grant No. PHY-0100348, and with support from RIKEN, Japan. NR 62 TC 13 Z9 13 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD MAY PY 2009 VL 79 IS 9 AR 094014 DI 10.1103/PhysRevD.79.094014 PG 18 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 451WO UT WOS:000266501800033 ER PT J AU Artamonov, AV Bassalleck, B Bhuyan, B Blackmore, EW Bryman, DA Chen, S Chiang, IH Christidi, IA Cooper, PS Diwan, MV Frank, JS Fujiwara, T Hu, J Ives, J Jaffe, DE Kabe, S Kettell, SH Khabibullin, MM Khotjantsev, AN Kitching, P Kobayashi, M Komatsubara, TK Konaka, A Kozhevnikov, AP Kudenko, YG Kushnirenko, A Landsberg, LG Lewis, B Li, KK Littenberg, LS Macdonald, JA Mildenberger, J Mineev, OV Miyajima, M Mizouchi, K Mukhin, VA Muramatsu, N Nakano, T Nomachi, M Nomura, T Numao, T Obraztsov, VF Omata, K Patalakha, DI Petrenko, SV Poutissou, R Ramberg, EJ Redlinger, G Sato, T Sekiguchi, T Shinkawa, T Strand, RC Sugimoto, S Tamagawa, Y Tschirhart, R Tsunemi, T Vavilov, DV Viren, B Wang, Z Yershov, NV Yoshimura, Y Yoshioka, T AF Artamonov, A. V. Bassalleck, B. Bhuyan, B. Blackmore, E. W. Bryman, D. A. Chen, S. Chiang, I. -H. Christidi, I. -A. Cooper, P. S. Diwan, M. V. Frank, J. S. Fujiwara, T. Hu, J. Ives, J. Jaffe, D. E. Kabe, S. Kettell, S. H. Khabibullin, M. M. Khotjantsev, A. N. Kitching, P. Kobayashi, M. Komatsubara, T. K. Konaka, A. Kozhevnikov, A. P. Kudenko, Yu. G. Kushnirenko, A. Landsberg, L. G. Lewis, B. Li, K. K. Littenberg, L. S. Macdonald, J. A. Mildenberger, J. Mineev, O. V. Miyajima, M. Mizouchi, K. Mukhin, V. A. Muramatsu, N. Nakano, T. Nomachi, M. Nomura, T. Numao, T. Obraztsov, V. F. Omata, K. Patalakha, D. I. Petrenko, S. V. Poutissou, R. Ramberg, E. J. Redlinger, G. Sato, T. Sekiguchi, T. Shinkawa, T. Strand, R. C. Sugimoto, S. Tamagawa, Y. Tschirhart, R. Tsunemi, T. Vavilov, D. V. Viren, B. Wang, Zhe Yershov, N. V. Yoshimura, Y. Yoshioka, T. CA E949 Collaboration TI Study of the decay K+ -> pi(+) nu(nu)over-bar in the momentum region 140 < P-pi < 199 MeV/c SO PHYSICAL REVIEW D LA English DT Article ID ENDCAP PHOTON DETECTOR; GAUGE-THEORIES; 500 MHZ; RARE K; SEARCH; MODEL; PHYSICS AB Experiment E949 at Brookhaven National Laboratory has observed three new events consistent with the decay K+ -> pi(+) nu(nu) over bar in the pion momentum region 140 < P-pi < 199 MeV/c in an exposure of 1.71 x 10(12) stopped kaons with an estimated total background of 0.93 +/- 0.17(stat)(-0.24)(+0.32) (syst) events. This brings the total number of observed K+ -> pi(+)nu(nu) over bar events to seven. Combining this observation with previous results, assuming the pion spectrum predicted by the standard model, results in a branching ratio of B(K+ -> pi(+)nu(nu) over bar) = 1.73(+1.15)(-1.05) x 10(-10). An interpretation of the results for alternative models of the decay K+ -> pi(+) + nothing is also presented. C1 [Artamonov, A. V.; Kozhevnikov, A. P.; Landsberg, L. G.; Mukhin, V. A.; Obraztsov, V. F.; Patalakha, D. I.; Petrenko, S. V.; Vavilov, D. V.] Inst High Energy Phys, Protvino 142280, Moscow Region, Russia. [Bassalleck, B.; Lewis, B.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. [Bhuyan, B.; Chiang, I. -H.; Diwan, M. V.; Frank, J. S.; Jaffe, D. E.; Kettell, S. H.; Li, K. K.; Littenberg, L. S.; Redlinger, G.; Strand, R. C.; Viren, B.; Wang, Zhe] Brookhaven Natl Lab, Upton, NY 11973 USA. [Blackmore, E. W.; Chen, S.; Hu, J.; Konaka, A.; Macdonald, J. A.; Mildenberger, J.; Numao, T.; Poutissou, R.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Bryman, D. A.; Ives, J.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada. [Chen, S.; Wang, Zhe] Tsinghua Univ, Dept Engn Phys, Beijing 100084, Peoples R China. [Christidi, I. -A.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Cooper, P. S.; Kushnirenko, A.; Ramberg, E. J.; Tschirhart, R.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Fujiwara, T.; Mizouchi, K.; Nomura, T.] Kyoto Univ, Dept Phys, Sakyo Ku, Kyoto 6068502, Japan. [Kabe, S.; Kobayashi, M.; Komatsubara, T. K.; Omata, K.; Sato, T.; Sekiguchi, T.; Sugimoto, S.; Tsunemi, T.; Yoshimura, Y.; Yoshioka, T.] High Energy Accelerator Res Org, Tsukuba, Ibaraki 3050801, Japan. [Khabibullin, M. M.; Khotjantsev, A. N.; Kudenko, Yu. G.; Mineev, O. V.; Yershov, N. V.] Russian Acad Sci, Inst Nucl Res, Moscow 117312, Russia. [Kitching, P.] Univ Alberta, Ctr Subatom Res, Edmonton, AB T6G 2N5, Canada. [Miyajima, M.; Tamagawa, Y.] Univ Fukui, Dept Appl Phys, Fukui 9108507, Japan. [Muramatsu, N.; Nakano, T.] Osaka Univ, Nucl Phys Res Ctr, Osaka 5670047, Japan. [Nomachi, M.] Osaka Univ, Nucl Studies Lab, Osaka 5600043, Japan. [Shinkawa, T.] Natl Def Acad, Dept Appl Phys, Kanagawa 2398686, Japan. RP Artamonov, AV (reprint author), Inst High Energy Phys, Protvino 142280, Moscow Region, Russia. RI Khabibullin, Marat/O-1076-2013 FU U.S. Department of Energy, the Ministry of Education, Culture, Sports, Science and Technology of Japan; Natural Sciences and Engineering Research Council; National Research Council of Canada; Russian Federation State Scientific Center Institute for High Energy Physics; Ministry of Science and Education of the Russian Federation; Chinese Ministry of Education FX We gratefully acknowledge the support and efforts of the BNL Collider-Accelerator Department for the high quality K+ beam delivered. We also recognize the substantial contributions made by the participants of E787 without which this work would not have been feasible, as well as the excellent technical and engineering support provided by all collaborating institutions including P. Bichoneau, R. Bula, M. Burke, M. Constable, H. Coombes, J. Cracco, A. Daviel, H. Diaz, C. Donahue, E. Garber, C. Lim, A. Mango, G. Munoz, H. Ratzke, H. Sauter, W. Smith, E. Stein, and A. Stillman, This research was supported in part by the U.S. Department of Energy, the Ministry of Education, Culture, Sports, Science and Technology of Japan through the Japan-U.S. Cooperative Research Program in High Energy Physics and under Grant-in-Aids for Scientific Research, the Natural Sciences and Engineering Research Council and the National Research Council of Canada, the Russian Federation State Scientific Center Institute for High Energy Physics, and the Ministry of Science and Education of the Russian Federation. S. Chen was also supported by the Program for New Century Excellent Talents in University from the Chinese Ministry of Education. NR 61 TC 96 Z9 96 U1 0 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD MAY PY 2009 VL 79 IS 9 AR 092004 DI 10.1103/PhysRevD.79.092004 PG 27 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 451WO UT WOS:000266501800008 ER PT J AU Arvanitaki, A Dimopoulos, S Dubovsky, S Graham, PW Harnik, R Rajendran, S AF Arvanitaki, Asimina Dimopoulos, Savas Dubovsky, Sergei Graham, Peter W. Harnik, Roni Rajendran, Surjeet TI Astrophysical probes of unification SO PHYSICAL REVIEW D LA English DT Article ID DARK-MATTER HALOS; CP INVARIANCE; GAMMA-RAYS; GALAXIES; SUPERSYMMETRY; PARTICLES; LITHIUM; STARS AB Traditional ideas for testing unification involve searching for the decay of the proton and its branching modes. We point out that several astrophysical experiments are now reaching sensitivities that allow them to explore supersymmetric unified theories. In these theories the electroweak-mass dark matter particle can decay, just like the proton, through dimension 6 operators with lifetime similar to 10(26) s. Interestingly, this time scale is now being investigated in several experiments including ATIC, PAMELA, HESS, and Fermi. Positive evidence for such decays may be opening our first direct window to physics at the supersymmetric unification scale of M(GUT)similar to 10(16) GeV, as well as the TeV scale. Moreover, in the same supersymmetric unified theories, dimension 5 operators can lead a weak-scale superparticle to decay with a lifetime of similar to 100 s. Such decays are recorded by a change in the primordial light element abundances and may well explain the present discord between the measured Li abundances and standard big bang nucleosynthesis, opening another window to unification. These theories make concrete predictions for the spectrum and signatures at the LHC as well as Fermi. C1 [Arvanitaki, Asimina] Univ Calif Berkeley, Berkeley Ctr Theoret Phys, Berkeley, CA 94720 USA. [Arvanitaki, Asimina] Univ Calif Berkeley, Lawrence Berkeley Lab, Theoret Phys Grp, Berkeley, CA 94720 USA. [Dimopoulos, Savas; Dubovsky, Sergei; Graham, Peter W.; Harnik, Roni; Rajendran, Surjeet] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Dubovsky, Sergei] Russian Acad Sci, Inst Nucl Res, Moscow 117312, Russia. [Rajendran, Surjeet] Stanford Univ, SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. RP Arvanitaki, A (reprint author), Univ Calif Berkeley, Berkeley Ctr Theoret Phys, Berkeley, CA 94720 USA. OI Graham, Peter/0000-0002-1600-1601 FU NSF [PHY-0503584] FX We would like to thank Nima Arkani-Hamed, Douglas Finkbeiner, Raphael Flauger, Stefan Funk, Lawrence Hall, David Jackson, Karsten Jedamzik, Graham Kribs, John March-Russell, Igor Moskalenko, Peter Michelson, Hitoshi Murayama, Michele Papucci, Stuart Raby, Graham Ross, Martin Schmaltz, Philip Schuster, Natalia Toro, Jay Wacker, Robert Wagoner, and Neal Weiner for valuable discussions. P. W. G. acknowledges the hospitality of the Institute for Advanced Study and was partially supported by NSF Grant No. PHY-0503584. NR 78 TC 97 Z9 98 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD MAY PY 2009 VL 79 IS 10 AR 105022 DI 10.1103/PhysRevD.79.105022 PG 35 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 451WP UT WOS:000266501900105 ER PT J AU Aubert, B Bona, M Karyotakis, Y Lees, JP Poireau, V Prencipe, E Prudent, X Tisserand, V Tico, JG Grauges, E Lopez, L Palano, A Pappagallo, M Eigen, G Stugu, B Sun, L Abrams, GS Battaglia, M Brown, DN Jacobsen, RG Kerth, LT Kolomensky, YG Lynch, G Osipenkov, IL Ronan, MT Tackmann, K Tanabe, T Hawkes, CM Soni, N Watson, AT Koch, H Schroeder, T Asgeirsson, DJ Fulsom, BG Hearty, C Mattison, TS McKenna, JA Barrett, M Khan, A Blinov, VE Bukin, AD Buzykaev, AR Druzhinin, VP Golubev, VB Onuchin, AP Serednyakov, SI Skovpen, YI Solodov, EP Todyshev, KY Bondioli, M Curry, S Eschrich, I Kirkby, D Lankford, AJ Lund, P Mandelkern, M Martin, EC Stoker, DP Abachi, S Buchanan, C Atmacan, H Gary, JW Liu, F Long, O Vitug, GM Yasin, Z Zhang, L Sharma, V Campagnari, C Hong, TM Kovalskyi, D Mazur, MA Richman, JD Beck, TW Eisner, AM Flacco, CJ Heusch, CA Kroseberg, J Lockman, WS Martinez, AJ Schalk, T Schumm, BA Seiden, A Wilson, MG Winstrom, LO Cheng, CH Doll, DA Echenard, B Fang, F Hitlin, DG Narsky, I Piatenko, T Porter, FC Andreassen, R Mancinelli, G Meadows, BT Mishra, K Sokoloff, MD Bloom, PC Ford, WT Gaz, A Hirschauer, JF Nagel, M Nauenberg, U Smith, JG Wagner, SR Ayad, R Soffer, A Toki, WH Wilson, RJ Feltresi, E Hauke, A Jasper, H Karbach, M Merkel, J Petzold, A Spaan, B Wacker, K Kobel, MJ Nogowski, R Schubert, KR Schwierz, R Volk, A Bernard, D Bonneaud, GR Latour, E Verderi, M Clark, PJ Playfer, S Watson, JE Andreotti, M Bettoni, D Bozzi, C Calabrese, R Cecchi, A Cibinetto, G Franchini, P Luppi, E Negrini, M Petrella, A Piemontese, L Santoro, V Baldini-Ferroli, R Calcaterra, A de Sangro, R Finocchiaro, G Pacetti, S Patteri, P Peruzzi, IM Piccolo, M Rama, M Zallo, A Buzzo, A Contri, R Lo Vetere, M Macri, MM Monge, MR Passaggio, S Patrignani, C Robutti, E Santroni, A Tosi, S Chaisanguanthum, KS Morii, M Adametz, A Marks, J Schenk, S Uwer, U Klose, V Lacker, HM Bard, DJ Dauncey, PD Tibbetts, M Behera, PK Chai, X Charles, MJ Mallik, U Cochran, J Crawley, HB Dong, L Meyer, WT Prell, S Rosenberg, EI Rubin, AE Gao, YY Gritsan, AV Guo, ZJ Lae, CK Arnaud, N Bequilleux, J D'Orazio, A Davier, M da Costa, JF Grosdidier, G Le Diberder, F Lepeltier, V Lutz, AM Pruvot, S Roudeau, P Schune, MH Serrano, J Sordini, V Stocchi, A Wormser, G Lange, DJ Wright, DM Bingham, I Burke, JP Chavez, CA Fry, JR Gabathuler, E Gamet, R Hutchcroft, DE Payne, DJ Touramanis, C Bevan, AJ Clarke, CK Di Lodovico, F Sacco, R Sigamani, M Cowan, G Paramesvaran, S Wren, AC Brown, DN Davis, CL Denig, AG Fritsch, M Gradl, W Alwyn, KE Bailey, D Barlow, RJ Jackson, G Lafferty, GD West, TJ Yi, JI Anderson, J Chen, C Jawahery, A Roberts, DA Simi, G Tuggle, JM Dallapiccola, C Li, X Salvati, E Saremi, S Cowan, R Dujmic, D Fisher, PH Henderson, SW Sciolla, G Spitznagel, M Taylor, F Yamamoto, RK Zhao, M Patel, PM Robertson, SH Lazzaro, A Lombardo, V Palombo, F Bauer, JM Cremaldi, L Godang, R Kroeger, R Summers, DJ Zhao, HW Simard, M Taras, P Nicholson, H De Nardo, G Lista, L Monorchio, D Onorato, G Sciacca, C Raven, G Snoek, HL Jessop, CP Knoepfel, KJ LoSecco, JM Wang, WF Corwin, LA Honscheid, K Kagan, H Kass, R Morris, JP Rahimi, AM Regensburger, JJ Sekula, SJ Wong, QK Blount, NL Brau, J Frey, R Igonkina, O Kolb, JA Lu, M Rahmat, R Sinev, NB Strom, D Strube, J Torrence, E Castelli, G Gagliardi, N Margoni, M Morandin, M Posocco, M Rotondo, M Simonetto, F Stroili, R Voci, C Sanchez, PD Ben-Haim, E Briand, H Calderini, G Chauveau, J Hamon, O Leruste, P Ocariz, J Perez, A Prendki, J Sitt, S Gladney, L Biasini, M Manoni, E Angelini, C Batignani, G Bettarini, S Carpinelli, M Cervelli, A Forti, F Giorgi, MA Lusiani, A Marchiori, G Morganti, M Neri, N Paoloni, E Rizzo, G Walsh, JJ Pegna, DL Lu, C Olsen, J Smith, AJS Telnov, AV Anulli, F Baracchini, E Cavoto, G Faccini, R Ferrarotto, F Ferroni, F Gaspero, M Jackson, PD Gioi, LL Mazzoni, MA Morganti, S Piredda, G Renga, F Voena, C Ebert, M Hartmann, T Schroder, H Waldi, R Adye, T Franek, B Olaiya, EO Wilson, FF Emery, S Escalier, M Esteve, L de Monchenault, GH Kozanecki, W Vasseur, G Yeche, C Zito, M Chen, XR Liu, H Park, W Purohit, MV White, RM Wilson, JR Allen, MT Aston, D Bartoldus, R Benitez, JF Cenci, R Coleman, JP Convery, MR Dingfelder, JC Dorfan, J Dubois-Felsmann, GP Dunwoodie, W Field, RC Gabareen, AM Graham, MT Grenier, P Hast, C Innes, WR Kaminski, J Kelsey, MH Kim, H Kim, P Kocian, ML Leith, DWGS Li, S Lindquist, B Luitz, S Luth, V Lynch, HL MacFarlane, DB Marsiske, H Messner, R Muller, DR Neal, H Nelson, S O'Grady, CP Ofte, I Perl, M Ratcliff, BN Roodman, A Salnikov, AA Schindler, RH Schwiening, J Snyder, A Su, D Sullivan, MK Suzuki, K Swain, SK Thompson, JM Va'vra, J Wagner, AP Weaver, M West, CA Wisniewski, WJ Wittgen, M Wright, DH Wulsin, HW Yarritu, AK Yi, K Young, CC Ziegler, V Burchat, PR Edwards, AJ Miyashita, TS Ahmed, S Alam, MS Ernst, JA Pan, B Saeed, MA Zain, SB Spanier, SM Wogsland, BJ Eckmann, R Ritchie, JL Ruland, AM Schilling, CJ Schwitters, RF Drummond, BW Izen, JM Lou, XC Bianchi, F Gamba, D Pelliccioni, M Bomben, M Bosisio, L Cartaro, C Della Ricca, G Lanceri, L Vitale, L Azzolini, V Lopez-March, N Martinez-Vidal, F Milanes, DA Oyanguren, A Albert, J Banerjee, S Bhuyan, B Choi, HHF Hamano, K Kowalewski, R Lewczuk, MJ Nugent, IM Roney, JM Sobie, RJ Gershon, TJ Harrison, PF Ilic, J Latham, TE Mohanty, GB Band, HR Chen, X Dasu, S Flood, KT Pan, Y Prepost, R Vuosalo, CO Wu, SL AF Aubert, B. Bona, M. Karyotakis, Y. Lees, J. P. Poireau, V. Prencipe, E. Prudent, X. Tisserand, V. Tico, J. Garra Grauges, E. Lopez, L. Palano, A. Pappagallo, M. Eigen, G. Stugu, B. Sun, L. Abrams, G. S. Battaglia, M. Brown, D. N. Jacobsen, R. G. Kerth, L. T. Kolomensky, Yu. G. Lynch, G. Osipenkov, I. L. Ronan, M. T. Tackmann, K. Tanabe, T. Hawkes, C. M. Soni, N. Watson, A. T. Koch, H. Schroeder, T. Asgeirsson, D. J. Fulsom, B. G. Hearty, C. Mattison, T. S. McKenna, J. A. Barrett, M. Khan, A. Blinov, V. E. Bukin, A. D. Buzykaev, A. R. Druzhinin, V. P. Golubev, V. B. Onuchin, A. P. Serednyakov, S. I. Skovpen, Yu. I. Solodov, E. P. Todyshev, K. Yu. Bondioli, M. Curry, S. Eschrich, I. Kirkby, D. Lankford, A. J. Lund, P. Mandelkern, M. Martin, E. C. Stoker, D. P. Abachi, S. Buchanan, C. Atmacan, H. Gary, J. W. Liu, F. Long, O. Vitug, G. M. Yasin, Z. Zhang, L. Sharma, V. Campagnari, C. Hong, T. M. Kovalskyi, D. Mazur, M. A. Richman, J. D. Beck, T. W. Eisner, A. M. Flacco, C. J. Heusch, C. A. Kroseberg, J. Lockman, W. S. Martinez, A. J. Schalk, T. Schumm, B. A. Seiden, A. Wilson, M. G. Winstrom, L. O. Cheng, C. H. Doll, D. A. Echenard, B. Fang, F. Hitlin, D. G. Narsky, I. Piatenko, T. Porter, F. C. Andreassen, R. Mancinelli, G. Meadows, B. T. Mishra, K. Sokoloff, M. D. Bloom, P. C. Ford, W. T. Gaz, A. Hirschauer, J. F. Nagel, M. Nauenberg, U. Smith, J. G. Wagner, S. R. Ayad, R. Soffer, A. Toki, W. H. Wilson, R. J. Feltresi, E. Hauke, A. Jasper, H. Karbach, M. Merkel, J. Petzold, A. Spaan, B. Wacker, K. Kobel, M. J. Nogowski, R. Schubert, K. R. Schwierz, R. Volk, A. Bernard, D. Bonneaud, G. R. Latour, E. Verderi, M. Clark, P. J. Playfer, S. Watson, J. E. Andreotti, M. Bettoni, D. Bozzi, C. Calabrese, R. Cecchi, A. Cibinetto, G. Franchini, P. Luppi, E. Negrini, M. Petrella, A. Piemontese, L. Santoro, V. Baldini-Ferroli, R. Calcaterra, A. de Sangro, R. Finocchiaro, G. Pacetti, S. Patteri, P. Peruzzi, I. M. Piccolo, M. Rama, M. Zallo, A. Buzzo, A. Contri, R. Lo Vetere, M. Macri, M. M. Monge, M. R. Passaggio, S. Patrignani, C. Robutti, E. Santroni, A. Tosi, S. Chaisanguanthum, K. S. Morii, M. Adametz, A. Marks, J. Schenk, S. Uwer, U. Klose, V. Lacker, H. M. Bard, D. J. Dauncey, P. D. Tibbetts, M. Behera, P. K. Chai, X. Charles, M. J. Mallik, U. Cochran, J. Crawley, H. B. Dong, L. Meyer, W. T. Prell, S. Rosenberg, E. I. Rubin, A. E. Gao, Y. Y. Gritsan, A. V. Guo, Z. J. Lae, C. K. Arnaud, N. Bequilleux, J. D'Orazio, A. Davier, M. da Costa, J. Firmino Grosdidier, G. Le Diberder, F. Lepeltier, V. Lutz, A. M. Pruvot, S. Roudeau, P. Schune, M. H. Serrano, J. Sordini, V. Stocchi, A. Wormser, G. Lange, D. J. Wright, D. M. Bingham, I. Burke, J. P. Chavez, C. A. Fry, J. R. Gabathuler, E. Gamet, R. Hutchcroft, D. E. Payne, D. J. Touramanis, C. Bevan, A. J. Clarke, C. K. Di Lodovico, F. Sacco, R. Sigamani, M. Cowan, G. Paramesvaran, S. Wren, A. C. Brown, D. N. Davis, C. L. Denig, A. G. Fritsch, M. Gradl, W. Alwyn, K. E. Bailey, D. Barlow, R. J. Jackson, G. Lafferty, G. D. West, T. J. Yi, J. I. Anderson, J. Chen, C. Jawahery, A. Roberts, D. A. Simi, G. Tuggle, J. M. Dallapiccola, C. Li, X. Salvati, E. Saremi, S. Cowan, R. Dujmic, D. Fisher, P. H. Henderson, S. W. Sciolla, G. Spitznagel, M. Taylor, F. Yamamoto, R. K. Zhao, M. Patel, P. M. Robertson, S. H. Lazzaro, A. Lombardo, V. Palombo, F. Bauer, J. M. Cremaldi, L. Godang, R. Kroeger, R. Summers, D. J. Zhao, H. W. Simard, M. Taras, P. Nicholson, H. De Nardo, G. Lista, L. Monorchio, D. Onorato, G. Sciacca, C. Raven, G. Snoek, H. L. Jessop, C. P. Knoepfel, K. J. LoSecco, J. M. Wang, W. F. Corwin, L. A. Honscheid, K. Kagan, H. Kass, R. Morris, J. P. Rahimi, A. M. Regensburger, J. J. Sekula, S. J. Wong, Q. K. Blount, N. L. Brau, J. Frey, R. Igonkina, O. Kolb, J. A. Lu, M. Rahmat, R. Sinev, N. B. Strom, D. Strube, J. Torrence, E. Castelli, G. Gagliardi, N. Margoni, M. Morandin, M. Posocco, M. Rotondo, M. Simonetto, F. Stroili, R. Voci, C. Sanchez, P. del Amo Ben-Haim, E. Briand, H. Calderini, G. Chauveau, J. Hamon, O. Leruste, Ph. Ocariz, J. Perez, A. Prendki, J. Sitt, S. Gladney, L. Biasini, M. Manoni, E. Angelini, C. Batignani, G. Bettarini, S. Carpinelli, M. Cervelli, A. Forti, F. Giorgi, M. A. Lusiani, A. Marchiori, G. Morganti, M. Neri, N. Paoloni, E. Rizzo, G. Walsh, J. J. Pegna, D. Lopes Lu, C. Olsen, J. Smith, A. J. S. Telnov, A. V. Anulli, F. Baracchini, E. Cavoto, G. Faccini, R. Ferrarotto, F. Ferroni, F. Gaspero, M. Jackson, P. D. Gioi, L. Li Mazzoni, M. A. Morganti, S. Piredda, G. Renga, F. Voena, C. Ebert, M. Hartmann, T. Schroeder, H. Waldi, R. Adye, T. Franek, B. Olaiya, E. O. Wilson, F. F. Emery, S. Escalier, M. Esteve, L. de Monchenault, G. Hamel Kozanecki, W. Vasseur, G. Yeche, Ch. Zito, M. Chen, X. R. Liu, H. Park, W. Purohit, M. V. White, R. M. Wilson, J. R. Allen, M. T. Aston, D. Bartoldus, R. Benitez, J. F. Cenci, R. Coleman, J. P. Convery, M. R. Dingfelder, J. C. Dorfan, J. Dubois-Felsmann, G. P. Dunwoodie, W. Field, R. C. Gabareen, A. M. Graham, M. T. Grenier, P. Hast, C. Innes, W. R. Kaminski, J. Kelsey, M. H. Kim, H. Kim, P. Kocian, M. L. Leith, D. W. G. S. Li, S. Lindquist, B. Luitz, S. Luth, V. Lynch, H. L. MacFarlane, D. B. Marsiske, H. Messner, R. Muller, D. R. Neal, H. Nelson, S. O'Grady, C. P. Ofte, I. Perl, M. Ratcliff, B. N. Roodman, A. Salnikov, A. A. Schindler, R. H. Schwiening, J. Snyder, A. Su, D. Sullivan, M. K. Suzuki, K. Swain, S. K. Thompson, J. M. Va'vra, J. Wagner, A. P. Weaver, M. West, C. A. Wisniewski, W. J. Wittgen, M. Wright, D. H. Wulsin, H. W. Yarritu, A. K. Yi, K. Young, C. C. Ziegler, V. Burchat, P. R. Edwards, A. J. Miyashita, T. S. Ahmed, S. Alam, M. S. Ernst, J. A. Pan, B. Saeed, M. A. Zain, S. B. Spanier, S. M. Wogsland, B. J. Eckmann, R. Ritchie, J. L. Ruland, A. M. Schilling, C. J. Schwitters, R. F. Drummond, B. W. Izen, J. M. Lou, X. C. Bianchi, F. Gamba, D. Pelliccioni, M. Bomben, M. Bosisio, L. Cartaro, C. Della Ricca, G. Lanceri, L. Vitale, L. Azzolini, V. Lopez-March, N. Martinez-Vidal, F. Milanes, D. A. Oyanguren, A. Albert, J. Banerjee, Sw. Bhuyan, B. Choi, H. H. F. Hamano, K. Kowalewski, R. Lewczuk, M. J. Nugent, I. M. Roney, J. M. Sobie, R. J. Gershon, T. J. Harrison, P. F. Ilic, J. Latham, T. E. Mohanty, G. B. Band, H. R. Chen, X. Dasu, S. Flood, K. T. Pan, Y. Prepost, R. Vuosalo, C. O. Wu, S. L. CA BaBar Collaboration TI Measurement of the semileptonic decays (B)over-bar -> D tau(-)(nu)over-bar(tau) and (B)over-bar -> D*tau(-)(nu)over-bar(tau) SO PHYSICAL REVIEW D LA English DT Article ID B-MESON DECAYS; FORM-FACTORS; BRANCHING RATIO; PARTICLE PHYSICS; HEAVY MESONS; MODEL AB We present measurements of the semileptonic decays B- -> D-0 tau(-)(nu) over bar (tau), B- -> D*(0)tau(-)(nu) over bar tau, (B) over bar (0) -> D+tau(-)(nu) over bar (tau), and (B) over bar (0) -> D*(+)tau(-)(nu) over bar (tau), which are sensitive to non-standard model amplitudes in certain scenarios. The data sample consists of 232 x 10(6) Y(4S) -> B (B) over bar decays collected with the BABAR detector at the PEP-II e(+)e(-) squared to distinguish signalcollider. We select events with a D or D* meson and a light lepton (l = e or mu) recoiling against a fully reconstructed B meson. We perform a fit to the joint distribution of lepton momentum and missing mass (B) over bar -> D-(*())tau(-)(nu) over bar (tau) events from the backgrounds, predominantly R(D*) equivalent to B((B) over bar -> D*tau(-)(nu) over bar (tau))/B((B) over bar -> D*l(-)(nu) over bar (l)) and, from a combined fit to B- and (B) over bar (0) channels, obtain the results R(D) = (41.6 +/- 11.7 +/- 5.2)% and R(D*) = (29.7 +/- 5.6 +/- 1.8)%, where the uncertainties are statistical and systematic. Normalizing to measured B- -> D-(*()0)l(-)(nu) over bar (l) branching fractions, we obtain B((B) over bar -> D tau(-)(nu) over bar (tau)) = (0.86 +/- 0.24 +/- 0.06)% and B((B) over bar -> D*tau(-)(nu) over bar (tau)) = (1.62 +/- 0.31 +/- 0.10 +/- 0.05)%, where the additional third uncertainty is from the normalization mode. We also present, for the first time, distributions of the lepton momentum vertical bar P-l*vertical bar, and the squared momentum transfer, q(2). C1 [Aubert, B.; Bona, M.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prencipe, E.; Prudent, X.; Tisserand, V.] CNRS, IN2P3, Phys Particules Lab, F-74941 Annecy Le Vieux, France. [Aubert, B.; Bona, M.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prencipe, E.; Prudent, X.; Tisserand, V.] Univ Savoie, F-74941 Annecy Le Vieux, France. [Tico, J. Garra; Grauges, E.] Univ Barcelona, Fac Fis, Dept ECM, E-08028 Barcelona, Spain. [Lopez, L.; Palano, A.; Pappagallo, M.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Lopez, L.; Palano, A.; Pappagallo, M.] Univ Bari, Dipartmento Fis, I-70126 Bari, Italy. [Eigen, G.; Stugu, B.; Sun, L.] Univ Bergen, Inst Phys, N-5007 Bergen, Norway. [Abrams, G. S.; Battaglia, M.; Brown, D. N.; Jacobsen, R. G.; Kerth, L. T.; Kolomensky, Yu. G.; Lynch, G.; Osipenkov, I. L.; Ronan, M. T.; Tackmann, K.; Tanabe, T.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Hawkes, C. M.; Soni, N.; Watson, A. T.] Univ Birmingham, Birmingham B15 2TT, W Midlands, England. [Koch, H.; Schroeder, T.] Ruhr Univ Bochum, Inst Expt Phys 1, D-44780 Bochum, Germany. [Asgeirsson, D. J.; Fulsom, B. G.; Hearty, C.; Mattison, T. S.; McKenna, J. A.] Univ British Columbia, Vancouver, BC V6T 1Z1, Canada. [Barrett, M.; Khan, A.] Brunel Univ, Uxbridge UB8 3PH, Middx, England. [Blinov, V. E.; Bukin, A. D.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.] Budker Inst Nucl Phys, Novosibirsk 630090, Russia. [Bondioli, M.; Curry, S.; Eschrich, I.; Kirkby, D.; Lankford, A. J.; Lund, P.; Mandelkern, M.; Martin, E. C.; Stoker, D. P.] Univ Calif Irvine, Irvine, CA 92697 USA. [Abachi, S.; Buchanan, C.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Atmacan, H.; Gary, J. W.; Liu, F.; Long, O.; Vitug, G. M.; Yasin, Z.; Zhang, L.] Univ Calif Riverside, Riverside, CA 92521 USA. [Sharma, V.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Campagnari, C.; Hong, T. M.; Kovalskyi, D.; Mazur, M. A.; Richman, J. D.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Beck, T. W.; Eisner, A. M.; Flacco, C. J.; Heusch, C. A.; Kroseberg, J.; Lockman, W. S.; Martinez, A. J.; Schalk, T.; Schumm, B. A.; Seiden, A.; Wilson, M. G.; Winstrom, L. O.] Univ Calif Santa Cruz, Inst Particle Phys, Santa Cruz, CA 95064 USA. [Cheng, C. H.; Doll, D. A.; Echenard, B.; Fang, F.; Hitlin, D. G.; Narsky, I.; Piatenko, T.; Porter, F. C.] CALTECH, Pasadena, CA 91125 USA. [Andreassen, R.; Mancinelli, G.; Meadows, B. T.; Mishra, K.; Sokoloff, M. D.] Univ Cincinnati, Cincinnati, OH 45221 USA. [Bloom, P. C.; Ford, W. T.; Gaz, A.; Hirschauer, J. F.; Nagel, M.; Nauenberg, U.; Smith, J. G.; Wagner, S. R.] Univ Colorado, Boulder, CO 80309 USA. [Ayad, R.; Soffer, A.; Toki, W. H.; Wilson, R. J.] Colorado State Univ, Ft Collins, CO 80523 USA. [Feltresi, E.; Hauke, A.; Jasper, H.; Karbach, M.; Merkel, J.; Petzold, A.; Spaan, B.; Wacker, K.] Tech Univ, Fak Phys, D-44221 Dortmund, Germany. [Kobel, M. J.; Nogowski, R.; Schubert, K. R.; Schwierz, R.; Volk, A.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. [Bernard, D.; Bonneaud, G. R.; Latour, E.; Verderi, M.] Ecole Polytech, Lab Leprince Ringuet, CNRS, IN2P3, F-91128 Palaiseau, France. [Clark, P. J.; Playfer, S.; Watson, J. E.] Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. [Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Franchini, P.; Luppi, E.; Negrini, M.; Petrella, A.; Piemontese, L.; Santoro, V.] Ist Nazl Fis Nucl, Sez Ferrara, I-44100 Ferrara, Italy. [Andreotti, M.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Franchini, P.; Luppi, E.; Negrini, M.; Petrella, A.; Santoro, V.] Univ Ferrara, Dipartimento Fis, I-44100 Ferrara, Italy. [Baldini-Ferroli, R.; Calcaterra, A.; de Sangro, R.; Finocchiaro, G.; Pacetti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; Zallo, A.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Buzzo, A.; Contri, R.; Lo Vetere, M.; Macri, M. M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Santroni, A.; Tosi, S.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Contri, R.; Lo Vetere, M.; Monge, M. R.; Patrignani, C.; Santroni, A.; Tosi, S.] Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy. [Chaisanguanthum, K. S.; Morii, M.] Harvard Univ, Cambridge, MA 02138 USA. [Adametz, A.; Marks, J.; Schenk, S.; Uwer, U.] Heidelberg Univ, Inst Phys, D-69120 Heidelberg, Germany. [Klose, V.; Lacker, H. M.] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany. [Bard, D. J.; Dauncey, P. D.; Tibbetts, M.] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. [Behera, P. K.; Chai, X.; Charles, M. J.; Mallik, U.] Univ Iowa, Iowa City, IA 52242 USA. [Cochran, J.; Crawley, H. B.; Dong, L.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Rubin, A. E.] Iowa State Univ, Ames, IA 50011 USA. [Gao, Y. Y.; Gritsan, A. V.; Guo, Z. J.; Lae, C. K.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Arnaud, N.; Bequilleux, J.; D'Orazio, A.; Davier, M.; da Costa, J. Firmino; Grosdidier, G.; Le Diberder, F.; Lepeltier, V.; Lutz, A. M.; Pruvot, S.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wormser, G.] CNRS, IN2P3, Lab Accelerateur Lineaire, F-91898 Orsay, France. [Arnaud, N.; Bequilleux, J.; D'Orazio, A.; Davier, M.; da Costa, J. Firmino; Grosdidier, G.; Le Diberder, F.; Lepeltier, V.; Lutz, A. M.; Pruvot, S.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wormser, G.] Univ Paris 11, Ctr Sci Orsay, F-91898 Orsay, France. [Lange, D. J.; Wright, D. M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Bingham, I.; Burke, J. P.; Chavez, C. A.; Fry, J. R.; Gabathuler, E.; Gamet, R.; Hutchcroft, D. E.; Payne, D. J.; Touramanis, C.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Bevan, A. J.; Clarke, C. K.; Di Lodovico, F.; Sacco, R.; Sigamani, M.] Univ London, London E1 4NS, England. [Cowan, G.; Paramesvaran, S.; Wren, A. C.] Univ London, Royal Holloway & Bedford New Coll, Egham TW20 0EX, Surrey, England. [Brown, D. N.; Davis, C. L.] Univ Louisville, Louisville, KY 40292 USA. [Denig, A. G.; Fritsch, M.; Gradl, W.] Johannes Gutenberg Univ Mainz, Inst Kernphys, D-55099 Mainz, Germany. [Alwyn, K. E.; Bailey, D.; Barlow, R. J.; Jackson, G.; Lafferty, G. D.; West, T. J.; Yi, J. I.] Univ Manchester, Manchester M13 9PL, Lancs, England. [Anderson, J.; Chen, C.; Jawahery, A.; Roberts, D. A.; Simi, G.; Tuggle, J. M.] Univ Maryland, College Pk, MD 20742 USA. [Dallapiccola, C.; Li, X.; Salvati, E.; Saremi, S.] Univ Massachusetts, Amherst, MA 01003 USA. [Cowan, R.; Dujmic, D.; Fisher, P. H.; Henderson, S. W.; Sciolla, G.; Spitznagel, M.; Taylor, F.; Yamamoto, R. K.; Zhao, M.] MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. [Patel, P. M.; Robertson, S. H.] McGill Univ, Montreal, PQ H3A 2T8, Canada. [Lazzaro, A.; Lombardo, V.; Palombo, F.] Ist Nazl Fis Nucl, Sez Milano, I-20133 Milan, Italy. [Lazzaro, A.; Palombo, F.] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. [Bauer, J. M.; Cremaldi, L.; Godang, R.; Kroeger, R.; Summers, D. J.; Zhao, H. W.] Univ Mississippi, University, MS 38677 USA. [Simard, M.; Taras, P.] Univ Montreal, Montreal, PQ H3C 3J7, Canada. [Nicholson, H.] Mt Holyoke Coll, S Hadley, MA 01075 USA. [De Nardo, G.; Lista, L.; Monorchio, D.; Onorato, G.; Sciacca, C.] Ist Nazl Fis Nucl, Sez Napoli, I-80126 Naples, Italy. [De Nardo, G.; Monorchio, D.; Onorato, G.; Sciacca, C.] Univ Naples Federico II, Dipartimento Sci Fis, I-80126 Naples, Italy. [Raven, G.; Snoek, H. L.] Natl Inst Nucl Phys & High Energy Phys, NIKHEF, NL-1009 DB Amsterdam, Netherlands. [Jessop, C. P.; Knoepfel, K. J.; LoSecco, J. M.; Wang, W. F.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Corwin, L. A.; Honscheid, K.; Kagan, H.; Kass, R.; Morris, J. P.; Rahimi, A. M.; Regensburger, J. J.; Sekula, S. J.; Wong, Q. K.] Ohio State Univ, Columbus, OH 43210 USA. [Blount, N. L.; Brau, J.; Frey, R.; Igonkina, O.; Kolb, J. A.; Lu, M.; Rahmat, R.; Sinev, N. B.; Strom, D.; Strube, J.; Torrence, E.] Univ Oregon, Eugene, OR 97403 USA. [Castelli, G.; Gagliardi, N.; Margoni, M.; Morandin, M.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.; Voci, C.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Castelli, G.; Gagliardi, N.; Margoni, M.; Simonetto, F.; Stroili, R.; Voci, C.] Univ Padua, Dipartimento Fis, I-35131 Padua, Italy. [Sanchez, P. del Amo; Ben-Haim, E.; Briand, H.; Calderini, G.; Chauveau, J.; Hamon, O.; Leruste, Ph.; Ocariz, J.; Perez, A.; Prendki, J.; Sitt, S.] Univ Paris 07, Univ Paris 06, CNRS, IN2P3,Lab Phys Nucl & Hautes Energies, F-75252 Paris, France. [Gladney, L.] Univ Penn, Philadelphia, PA 19104 USA. [Biasini, M.; Manoni, E.] Ist Nazl Fis Nucl, Sez Perugia, I-06100 Perugia, Italy. [Peruzzi, I. M.; Biasini, M.; Manoni, E.] Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Marchiori, G.; Morganti, M.; Neri, N.; Paoloni, E.; Rizzo, G.; Walsh, J. J.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Marchiori, G.; Morganti, M.; Neri, N.; Paoloni, E.; Rizzo, G.] Univ Pisa, Dipartimento Fis, I-56127 Pisa, Italy. [Lusiani, A.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Pegna, D. Lopes; Lu, C.; Olsen, J.; Smith, A. J. S.; Telnov, A. V.] Princeton Univ, Princeton, NJ 08544 USA. [Anulli, F.; Baracchini, E.; Cavoto, G.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Jackson, P. D.; Gioi, L. Li; Mazzoni, M. A.; Morganti, S.; Piredda, G.; Renga, F.; Voena, C.] Ist Nazl Fis Nucl, Sez Roma, I-00185 Rome, Italy. [Baracchini, E.; Faccini, R.; Ferroni, F.; Gaspero, M.; Renga, F.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Ebert, M.; Hartmann, T.; Schroeder, H.; Waldi, R.] Univ Rostock, D-18051 Rostock, Germany. [Adye, T.; Franek, B.; Olaiya, E. O.; Wilson, F. F.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Emery, S.; Escalier, M.; Esteve, L.; de Monchenault, G. Hamel; Kozanecki, W.; Vasseur, G.; Yeche, Ch.; Zito, M.] CEA, SPP, Ctr Saclay, F-91191 Gif Sur Yvette, France. [Chen, X. R.; Liu, H.; Park, W.; Purohit, M. V.; White, R. M.; Wilson, J. R.] Univ S Carolina, Columbia, SC 29208 USA. [Allen, M. T.; Aston, D.; Bartoldus, R.; Benitez, J. F.; Cenci, R.; Coleman, J. P.; Convery, M. R.; Dingfelder, J. C.; Dorfan, J.; Dubois-Felsmann, G. P.; Dunwoodie, W.; Field, R. C.; Gabareen, A. M.; Graham, M. T.; Grenier, P.; Hast, C.; Innes, W. R.; Kaminski, J.; Kelsey, M. H.; Kim, H.; Kim, P.; Kocian, M. L.; Leith, D. W. G. S.; Li, S.; Lindquist, B.; Luitz, S.; Luth, V.; Lynch, H. L.; MacFarlane, D. B.; Marsiske, H.; Messner, R.; Muller, D. R.; Neal, H.; Nelson, S.; O'Grady, C. P.; Ofte, I.; Perl, M.; Ratcliff, B. N.; Roodman, A.; Salnikov, A. A.; Schindler, R. H.; Schwiening, J.; Snyder, A.; Su, D.; Sullivan, M. K.; Suzuki, K.; Swain, S. K.; Thompson, J. M.; Va'vra, J.; Wagner, A. P.; Weaver, M.; West, C. A.; Wisniewski, W. J.; Wittgen, M.; Wright, D. H.; Wulsin, H. W.; Yarritu, A. K.; Yi, K.; Young, C. C.; Ziegler, V.] Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. [Burchat, P. R.; Edwards, A. J.; Miyashita, T. S.] Stanford Univ, Stanford, CA 94305 USA. [Ahmed, S.; Alam, M. S.; Ernst, J. A.; Pan, B.; Saeed, M. A.; Zain, S. B.] SUNY Albany, Albany, NY 12222 USA. [Spanier, S. M.; Wogsland, B. J.] Univ Tennessee, Knoxville, TN 37996 USA. [Eckmann, R.; Ritchie, J. L.; Ruland, A. M.; Schilling, C. J.; Schwitters, R. F.] Univ Texas Austin, Austin, TX 78712 USA. [Drummond, B. W.; Izen, J. M.; Lou, X. C.] Univ Texas Dallas, Richardson, TX 75083 USA. [Bianchi, F.; Gamba, D.; Pelliccioni, M.] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy. [Bianchi, F.; Gamba, D.; Pelliccioni, M.] Univ Torino, Dipartimento Fis Sperimentale, I-10125 Turin, Italy. [Bomben, M.; Bosisio, L.; Cartaro, C.; Della Ricca, G.; Lanceri, L.; Vitale, L.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Bomben, M.; Bosisio, L.; Cartaro, C.; Della Ricca, G.; Lanceri, L.; Vitale, L.] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. [Azzolini, V.; Lopez-March, N.; Martinez-Vidal, F.; Milanes, D. A.; Oyanguren, A.] Univ Valencia, CSIC, IFIC, E-46071 Valencia, Spain. [Albert, J.; Banerjee, Sw.; Bhuyan, B.; Choi, H. H. F.; Hamano, K.; Kowalewski, R.; Lewczuk, M. J.; Nugent, I. M.; Roney, J. M.; Sobie, R. J.] Univ Victoria, Victoria, BC V8W 3P6, Canada. [Gershon, T. J.; Harrison, P. F.; Ilic, J.; Latham, T. E.; Mohanty, G. B.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Band, H. R.; Chen, X.; Dasu, S.; Flood, K. T.; Pan, Y.; Prepost, R.; Vuosalo, C. O.; Wu, S. L.] Univ Wisconsin, Madison, WI 53706 USA. [Carpinelli, M.] Univ Sassari, I-07100 Sassari, Italy. RP Aubert, B (reprint author), CNRS, IN2P3, Phys Particules Lab, F-74941 Annecy Le Vieux, France. RI Calabrese, Roberto/G-4405-2015; Martinez Vidal, F*/L-7563-2014; Kolomensky, Yury/I-3510-2015; Lo Vetere, Maurizio/J-5049-2012; Lusiani, Alberto/N-2976-2015; Morandin, Mauro/A-3308-2016; Lusiani, Alberto/A-3329-2016; Di Lodovico, Francesca/L-9109-2016; Pappagallo, Marco/R-3305-2016; Calcaterra, Alessandro/P-5260-2015; Frey, Raymond/E-2830-2016; Monge, Maria Roberta/G-9127-2012; Oyanguren, Arantza/K-6454-2014; Luppi, Eleonora/A-4902-2015; White, Ryan/E-2979-2015; Patrignani, Claudia/C-5223-2009; Neri, Nicola/G-3991-2012; Forti, Francesco/H-3035-2011; Rotondo, Marcello/I-6043-2012; de Sangro, Riccardo/J-2901-2012; Saeed, Mohammad Alam/J-7455-2012; Della Ricca, Giuseppe/B-6826-2013; Negrini, Matteo/C-8906-2014 OI Raven, Gerhard/0000-0002-2897-5323; Calabrese, Roberto/0000-0002-1354-5400; Martinez Vidal, F*/0000-0001-6841-6035; Kolomensky, Yury/0000-0001-8496-9975; Lo Vetere, Maurizio/0000-0002-6520-4480; Lusiani, Alberto/0000-0002-6876-3288; Morandin, Mauro/0000-0003-4708-4240; Lusiani, Alberto/0000-0002-6876-3288; Di Lodovico, Francesca/0000-0003-3952-2175; Pappagallo, Marco/0000-0001-7601-5602; Calcaterra, Alessandro/0000-0003-2670-4826; Frey, Raymond/0000-0003-0341-2636; Monge, Maria Roberta/0000-0003-1633-3195; Oyanguren, Arantza/0000-0002-8240-7300; Luppi, Eleonora/0000-0002-1072-5633; White, Ryan/0000-0003-3589-5900; Patrignani, Claudia/0000-0002-5882-1747; Neri, Nicola/0000-0002-6106-3756; Forti, Francesco/0000-0001-6535-7965; Rotondo, Marcello/0000-0001-5704-6163; de Sangro, Riccardo/0000-0002-3808-5455; Saeed, Mohammad Alam/0000-0002-3529-9255; Della Ricca, Giuseppe/0000-0003-2831-6982; Negrini, Matteo/0000-0003-0101-6963 FU US Department of Energy and National Science Foundation; Natural Sciences and Engineering Research Council (Canada); Commissariat a l'Energie Atomique and Institut National de Physique Nucleaire et de Physique des Particules (France); Bundesministerium fur Bildung und Forschung and Deutsche Forschungsgemeinschaft (Germany); Istituto Nazionale di Fisica Nucleare (Italy); Foundation for Fundamental Research on Matter (The Netherlands); Research Council of Norway; Ministry of Education and Science of the Russian Federation; Ministerio de Educacion y Ciencia (Spain); Science and Technology Facilities Council (United Kingdom); Marie-Curie IEF program (European Union); A. P. Sloan Foundation FX We are grateful for the extraordinary contributions of our PEP-II colleagues in achieving the excellent luminosity and machine conditions that have made this work possible. The success of this project also relies critically on the expertise and dedication of the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and the kind hospitality extended to them. This work is supported by the US Department of Energy and National Science Foundation, the Natural Sciences and Engineering Research Council (Canada), the Commissariat a l'Energie Atomique and Institut National de Physique Nucleaire et de Physique des Particules (France), the Bundesministerium fur Bildung und Forschung and Deutsche Forschungsgemeinschaft (Germany), the Istituto Nazionale di Fisica Nucleare (Italy), the Foundation for Fundamental Research on Matter (The Netherlands), the Research Council of Norway, the Ministry of Education and Science of the Russian Federation, Ministerio de Educacion y Ciencia (Spain), and the Science and Technology Facilities Council (United Kingdom). Individuals have received support from the Marie-Curie IEF program (European Union) and the A. P. Sloan Foundation. NR 51 TC 29 Z9 29 U1 0 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD MAY PY 2009 VL 79 IS 9 AR 092002 DI 10.1103/PhysRevD.79.092002 PG 27 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 451WO UT WOS:000266501800006 ER PT J AU Aubert, B Karyotakis, Y Lees, JP Poireau, V Prencipe, E Prudent, X Tisserand, V Tico, JG Grauges, E Lopez, L Palano, A Pappagallo, M Eigen, G Stugu, B Sun, L Battaglia, M Brown, DN Kerth, LT Kolomensky, YG Lynch, G Osipenkov, IL Tackmann, K Tanabe, T Hawkes, CM Soni, N Watson, AT Koch, H Schroeder, T Asgeirsson, DJ Fulsom, BG Hearty, C Mattison, TS McKenna, JA Barrett, M Khan, A Randle-Conde, A Blinov, VE Bukin, AD Buzykaev, AR Druzhinin, VP Golubev, VB Onuchin, AP Serednyakov, SI Skovpen, YI Solodov, EP Todyshev, KY Bondioli, M Curry, S Eschrich, I Kirkby, D Lankford, AJ Lund, P Mandelkern, M Martin, EC Stoker, DP Abachi, S Buchanan, C Atmacan, H Gary, JW Liu, F Long, O Vitug, GM Yasin, Z Zhang, L Sharma, V Campagnari, C Hong, TM Kovalskyi, D Mazur, MA Richman, JD Beck, TW Eisner, AM Heusch, CA Kroseberg, J Lockman, WS Martinez, AJ Schalk, T Schumm, BA Seiden, A Winstrom, LO Cheng, CH Doll, DA Echenard, B Fang, F Hitlin, DG Narsky, I Piatenko, T Porter, FC Andreassen, R Mancinelli, G Meadows, BT Mishra, K Sokoloff, MD Bloom, PC Ford, WT Gaz, A Hirschauer, JF Nagel, M Nauenberg, U Smith, JG Wagner, SR Ayad, R Soffer, A Toki, WH Wilson, RJ Feltresi, E Hauke, A Jasper, H Karbach, M Merkel, J Petzold, A Spaan, B Wacker, K Kobel, MJ Nogowski, R Schubert, KR Schwierz, R Volk, A Bernard, D Bonneaud, GR Latour, E Verderi, M Clark, PJ Playfer, S Watson, JE Andreotti, M Bettoni, D Bozzi, C Calabrese, R Cecchi, A Cibinetto, G Franchini, P Luppi, E Negrini, M Petrella, A Piemontese, L Santoro, V Baldini-Ferroli, R Calcaterra, A de Sangro, R Finocchiaro, G Pacetti, S Patteri, P Peruzzi, IM Piccolo, M Rama, M Zallo, A Contri, R Guido, E Lo Vetere, M Monge, MR Passaggio, S Patrignani, C Robutti, E Tosi, S Chaisanguanthum, KS Morii, M Adametz, A Marks, J Schenk, S Uwer, U Bernlochner, FU Klose, V Lacker, HM Bard, DJ Dauncey, PD Tibbetts, M Behera, PK Chai, X Charles, MJ Mallik, U Cochran, J Crawley, HB Dong, L Meyer, WT Prell, S Rosenberg, EI Rubin, AE Gao, YY Gritsan, AV Guo, ZJ Arnaud, N Bequilleux, J D'Orazio, A Davier, M da Costa, JF Grosdidier, G Le Diberder, F Lepeltier, V Lutz, AM Pruvot, S Roudeau, P Schune, MH Serrano, J Sordini, V Stocchi, A Wormser, G Lange, DJ Wright, DM Bingham, I Burke, JP Chavez, CA Fry, JR Gabathuler, E Gamet, R Hutchcroft, DE Payne, DJ Touramanis, C Bevan, AJ Clarke, CK Di Lodovico, F Sacco, R Sigamani, M Cowan, G Paramesvaran, S Wren, AC Brown, DN Davis, CL Denig, AG Fritsch, M Gradl, W Hafner, A Alwyn, KE Bailey, D Barlow, RJ Jackson, G Lafferty, GD West, TJ Yi, JI Anderson, J Chen, C Jawahery, A Roberts, DA Simi, G Tuggle, JM Dallapiccola, C Salvati, E Saremi, S Cowan, R Dujmic, D Fisher, PH Henderson, SW Sciolla, G Spitznagel, M Yamamoto, RK Zhao, M Patel, PM Robertson, SH Schram, M Lazzaro, A Lombardo, V Palombo, F Stracka, S Bauer, JM Cremaldi, L Godang, R Kroeger, R Summers, DJ Zhao, HW Simard, M Taras, P Nicholson, H De Nardo, G Lista, L Monorchio, D Onorato, G Sciacca, C Raven, G Snoek, HL Jessop, CP Knoepfel, KJ LoSecco, JM Wang, WF Corwin, LA Honscheid, K Kagan, H Kass, R Morris, JP Rahimi, AM Regensburger, JJ Sekula, SJ Wong, QK Blount, NL Brau, J Frey, R Igonkina, O Kolb, JA Lu, M Rahmat, R Sinev, NB Strom, D Strube, J Torrence, E Castelli, G Gagliardi, N Margoni, M Morandin, M Posocco, M Rotondo, M Simonetto, F Stroili, R Voci, C Sanchez, PD Ben-Haim, E Briand, H Chauveau, J Hamon, O Leruste, P Ocariz, J Perez, A Prendki, J Sitt, S Gladney, L Biasini, M Manoni, E Angelini, C Batignani, G Bettarini, S Calderini, G Carpinelli, M Cervelli, A Forti, F Giorgi, MA Lusiani, A Marchiori, G Morganti, M Neri, N Paoloni, E Rizzo, G Walsh, JJ Pegna, DL Lu, C Olsen, J Smith, AJS Telnov, AV Anulli, F Baracchini, E Cavoto, G Faccini, R Ferrarotto, F Ferroni, F Gaspero, M Jackson, PD Gioi, LL Mazzoni, MA Morganti, S Piredda, G Renga, F Voena, C Ebert, M Hartmann, T Schroder, H Waldi, R Adye, T Franek, B Olaiya, EO Wilson, FF Emery, S Esteve, L de Monchenault, GH Kozanecki, W Vasseur, G Yeche, C Zito, M Chen, XR Liu, H Park, W Purohit, MV White, RM Wilson, JR Allen, MT Aston, D Bartoldus, R Benitez, JF Cenci, R Coleman, JP Convery, MR Dingfelder, JC Dorfan, J Dubois-Felsmann, GP Dunwoodie, W Field, RC Gabareen, AM Graham, MT Grenier, P Hast, C Innes, WR Kaminski, J Kelsey, MH Kim, H Kim, P Kocian, ML Leith, DWGS Li, S Lindquist, B Luitz, S Luth, V Lynch, HL MacFarlane, DB Marsiske, H Messner, R Muller, DR Neal, H Nelson, S O'Grady, CP Ofte, I Perl, M Ratcliff, BN Roodman, A Salnikov, AA Schindler, RH Schwiening, J Snyder, A Su, D Sullivan, MK Suzuki, K Swain, SK Thompson, JM Va'vra, J Wagner, AP Weaver, M West, CA Wisniewski, WJ Wittgen, M Wright, DH Wulsin, HW Yarritu, AK Yi, K Young, CC Ziegler, V Burchat, PR Edwards, AJ Miyashita, TS Ahmed, S Alam, MS Ernst, JA Pan, B Saeed, MA Zain, SB Spanier, SM Wogsland, BJ Eckmann, R Ritchie, JL Ruland, AM Schilling, CJ Schwitters, RF Drummond, BW Izen, JM Lou, XC Bianchi, F Gamba, D Pelliccioni, M Bomben, M Bosisio, L Cartaro, C Della Ricca, G Lanceri, L Vitale, L Azzolini, V Lopez-March, N Martinez-Vidal, F Milanes, DA Oyanguren, A Albert, J Banerjee, S Bhuyan, B Choi, HHF Hamano, K King, GJ Kowalewski, R Lewczuk, MJ Nugent, IM Roney, JM Sobie, RJ Gershon, TJ Harrison, PF Ilic, J Latham, TE Mohanty, GB Puccio, EMT Band, HR Chen, X Dasu, S Flood, KT Pan, Y Prepost, R Vuosalo, CO Wu, SL AF Aubert, B. Karyotakis, Y. Lees, J. P. Poireau, V. Prencipe, E. Prudent, X. Tisserand, V. Tico, J. Garra Grauges, E. Lopez, L. Palano, A. Pappagallo, M. Eigen, G. Stugu, B. Sun, L. Battaglia, M. Brown, D. N. Kerth, L. T. Kolomensky, Yu. G. Lynch, G. Osipenkov, I. L. Tackmann, K. Tanabe, T. Hawkes, C. M. Soni, N. Watson, A. T. Koch, H. Schroeder, T. Asgeirsson, D. J. Fulsom, B. G. Hearty, C. Mattison, T. S. McKenna, J. A. Barrett, M. Khan, A. Randle-Conde, A. Blinov, V. E. Bukin, A. D. Buzykaev, A. R. Druzhinin, V. P. Golubev, V. B. Onuchin, A. P. Serednyakov, S. I. Skovpen, Yu. I. Solodov, E. P. Todyshev, K. Yu. Bondioli, M. Curry, S. Eschrich, I. Kirkby, D. Lankford, A. J. Lund, P. Mandelkern, M. Martin, E. C. Stoker, D. P. Abachi, S. Buchanan, C. Atmacan, H. Gary, J. W. Liu, F. Long, O. Vitug, G. M. Yasin, Z. Zhang, L. Sharma, V. Campagnari, C. Hong, T. M. Kovalskyi, D. Mazur, M. A. Richman, J. D. Beck, T. W. Eisner, A. M. Heusch, C. A. Kroseberg, J. Lockman, W. S. Martinez, A. J. Schalk, T. Schumm, B. A. Seiden, A. Winstrom, L. O. Cheng, C. H. Doll, D. A. Echenard, B. Fang, F. Hitlin, D. G. Narsky, I. Piatenko, T. Porter, F. C. Andreassen, R. Mancinelli, G. Meadows, B. T. Mishra, K. Sokoloff, M. D. Bloom, P. C. Ford, W. T. Gaz, A. Hirschauer, J. F. Nagel, M. Nauenberg, U. Smith, J. G. Wagner, S. R. Ayad, R. Soffer, A. Toki, W. H. Wilson, R. J. Feltresi, E. Hauke, A. Jasper, H. Karbach, M. Merkel, J. Petzold, A. Spaan, B. Wacker, K. Kobel, M. J. Nogowski, R. Schubert, K. R. Schwierz, R. Volk, A. Bernard, D. Bonneaud, G. R. Latour, E. Verderi, M. Clark, P. J. Playfer, S. Watson, J. E. Andreotti, M. Bettoni, D. Bozzi, C. Calabrese, R. Cecchi, A. Cibinetto, G. Franchini, P. Luppi, E. Negrini, M. Petrella, A. Piemontese, L. Santoro, V. Baldini-Ferroli, R. Calcaterra, A. de Sangro, R. Finocchiaro, G. Pacetti, S. Patteri, P. Peruzzi, I. M. Piccolo, M. Rama, M. Zallo, A. Contri, R. Guido, E. Lo Vetere, M. Monge, M. R. Passaggio, S. Patrignani, C. Robutti, E. Tosi, S. Chaisanguanthum, K. S. Morii, M. Adametz, A. Marks, J. Schenk, S. Uwer, U. Bernlochner, F. U. Klose, V. Lacker, H. M. Bard, D. J. Dauncey, P. D. Tibbetts, M. Behera, P. K. Chai, X. Charles, M. J. Mallik, U. Cochran, J. Crawley, H. B. Dong, L. Meyer, W. T. Prell, S. Rosenberg, E. I. Rubin, A. E. Gao, Y. Y. Gritsan, A. V. Guo, Z. J. Arnaud, N. Bequilleux, J. D'Orazio, A. Davier, M. da Costa, J. Firmino Grosdidier, G. Le Diberder, F. Lepeltier, V. Lutz, A. M. Pruvot, S. Roudeau, P. Schune, M. H. Serrano, J. Sordini, V. Stocchi, A. Wormser, G. Lange, D. J. Wright, D. M. Bingham, I. Burke, J. P. Chavez, C. A. Fry, J. R. Gabathuler, E. Gamet, R. Hutchcroft, D. E. Payne, D. J. Touramanis, C. Bevan, A. J. Clarke, C. K. Di Lodovico, F. Sacco, R. Sigamani, M. Cowan, G. Paramesvaran, S. Wren, A. C. Brown, D. N. Davis, C. L. Denig, A. G. Fritsch, M. Gradl, W. Hafner, A. Alwyn, K. E. Bailey, D. Barlow, R. J. Jackson, G. Lafferty, G. D. West, T. J. Yi, J. I. Anderson, J. Chen, C. Jawahery, A. Roberts, D. A. Simi, G. Tuggle, J. M. Dallapiccola, C. Salvati, E. Saremi, S. Cowan, R. Dujmic, D. Fisher, P. H. Henderson, S. W. Sciolla, G. Spitznagel, M. Yamamoto, R. K. Zhao, M. Patel, P. M. Robertson, S. H. Schram, M. Lazzaro, A. Lombardo, V. Palombo, F. Stracka, S. Bauer, J. M. Cremaldi, L. Godang, R. Kroeger, R. Summers, D. J. Zhao, H. W. Simard, M. Taras, P. Nicholson, H. De Nardo, G. Lista, L. Monorchio, D. Onorato, G. Sciacca, C. Raven, G. Snoek, H. L. Jessop, C. P. Knoepfel, K. J. LoSecco, J. M. Wang, W. F. Corwin, L. A. Honscheid, K. Kagan, H. Kass, R. Morris, J. P. Rahimi, A. M. Regensburger, J. J. Sekula, S. J. Wong, Q. K. Blount, N. L. Brau, J. Frey, R. Igonkina, O. Kolb, J. A. Lu, M. Rahmat, R. Sinev, N. B. Strom, D. Strube, J. Torrence, E. Castelli, G. Gagliardi, N. Margoni, M. Morandin, M. Posocco, M. Rotondo, M. Simonetto, F. Stroili, R. Voci, C. Sanchez, P. del Amo Ben-Haim, E. Briand, H. Chauveau, J. Hamon, O. Leruste, Ph. Ocariz, J. Perez, A. Prendki, J. Sitt, S. Gladney, L. Biasini, M. Manoni, E. Angelini, C. Batignani, G. Bettarini, S. Calderini, G. Carpinelli, M. Cervelli, A. Forti, F. Giorgi, M. A. Lusiani, A. Marchiori, G. Morganti, M. Neri, N. Paoloni, E. Rizzo, G. Walsh, J. J. Pegna, D. Lopes Lu, C. Olsen, J. Smith, A. J. S. Telnov, A. V. Anulli, F. Baracchini, E. Cavoto, G. Faccini, R. Ferrarotto, F. Ferroni, F. Gaspero, M. Jackson, P. D. Gioi, L. Li Mazzoni, M. A. Morganti, S. Piredda, G. Renga, F. Voena, C. Ebert, M. Hartmann, T. Schroeder, H. Waldi, R. Adye, T. Franek, B. Olaiya, E. O. Wilson, F. F. Emery, S. Esteve, L. de Monchenault, G. Hamel Kozanecki, W. Vasseur, G. Yeche, Ch. Zito, M. Chen, X. R. Liu, H. Park, W. Purohit, M. V. White, R. M. Wilson, J. R. Allen, M. T. Aston, D. Bartoldus, R. Benitez, J. F. Cenci, R. Coleman, J. P. Convery, M. R. Dingfelder, J. C. Dorfan, J. Dubois-Felsmann, G. P. Dunwoodie, W. Field, R. C. Gabareen, A. M. Graham, M. T. Grenier, P. Hast, C. Innes, W. R. Kaminski, J. Kelsey, M. H. Kim, H. Kim, P. Kocian, M. L. Leith, D. W. G. S. Li, S. Lindquist, B. Luitz, S. Luth, V. Lynch, H. L. MacFarlane, D. B. Marsiske, H. Messner, R. Muller, D. R. Neal, H. Nelson, S. O'Grady, C. P. Ofte, I. Perl, M. Ratcliff, B. N. Roodman, A. Salnikov, A. A. Schindler, R. H. Schwiening, J. Snyder, A. Su, D. Sullivan, M. K. Suzuki, K. Swain, S. K. Thompson, J. M. Va'vra, J. Wagner, A. P. Weaver, M. West, C. A. Wisniewski, W. J. Wittgen, M. Wright, D. H. Wulsin, H. W. Yarritu, A. K. Yi, K. Young, C. C. Ziegler, V. Burchat, P. R. Edwards, A. J. Miyashita, T. S. Ahmed, S. Alam, M. S. Ernst, J. A. Pan, B. Saeed, M. A. Zain, S. B. Spanier, S. M. Wogsland, B. J. Eckmann, R. Ritchie, J. L. Ruland, A. M. Schilling, C. J. Schwitters, R. F. Drummond, B. W. Izen, J. M. Lou, X. C. Bianchi, F. Gamba, D. Pelliccioni, M. Bomben, M. Bosisio, L. Cartaro, C. Della Ricca, G. Lanceri, L. Vitale, L. Azzolini, V. Lopez-March, N. Martinez-Vidal, F. Milanes, D. A. Oyanguren, A. Albert, J. Banerjee, Sw. Bhuyan, B. Choi, H. H. F. Hamano, K. King, G. J. Kowalewski, R. Lewczuk, M. J. Nugent, I. M. Roney, J. M. Sobie, R. J. Gershon, T. J. Harrison, P. F. Ilic, J. Latham, T. E. Mohanty, G. B. Puccio, E. M. T. Band, H. R. Chen, X. Dasu, S. Flood, K. T. Pan, Y. Prepost, R. Vuosalo, C. O. Wu, S. L. CA BABAR Collaboration TI Exclusive initial-state-radiation production of the D(D)over-bar, D*(D)over-bar and D*(D)over-bar* systems SO PHYSICAL REVIEW D LA English DT Article ID Y(4260); CHARMONIUM; BABAR AB We perform a study of the exclusive production of in initial-state-radiation events, from e(+)e(-) annihilations at a center-of-mass energy near 10.58 GeV, to search for charmonium and possible new resonances. The data sample corresponds to an integrated luminosity of 384 fb(-1) and was recorded by the BABAR experiment at the PEP-II storage rings. The D (D) over bar, D*(D) over bar, D*(D) over bar* mass spectra show clear evidence of several psi resonances. However, there is no evidence for Y(4260) -> D*(D) over bar or Y(4260) -> D*(D) over bar*. C1 [Aubert, B.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prencipe, E.; Prudent, X.; Tisserand, V.] Univ Savoie, Lab Annecy Le Vieux Phys Particules, CNRS, IN2P3, F-74941 Annecy Le Vieux, France. [Tico, J. Garra; Grauges, E.] Univ Barcelona, Fac Fis, Dept ECM, E-08028 Barcelona, Spain. [Lopez, L.; Palano, A.; Pappagallo, M.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Lopez, L.; Palano, A.; Pappagallo, M.] Univ Bari, Dipartmento Fis, I-70126 Bari, Italy. [Eigen, G.; Stugu, B.; Sun, L.] Univ Bergen, Inst Phys, N-5007 Bergen, Norway. [Battaglia, M.; Brown, D. N.; Kerth, L. T.; Kolomensky, Yu. G.; Lynch, G.; Osipenkov, I. L.; Tackmann, K.; Tanabe, T.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Hawkes, C. M.; Soni, N.; Watson, A. T.] Univ Birmingham, Birmingham B15 2TT, W Midlands, England. [Koch, H.; Schroeder, T.] Ruhr Univ Bochum, Inst Expt Phys 1, D-44780 Bochum, Germany. [Asgeirsson, D. J.; Fulsom, B. G.; Hearty, C.; Mattison, T. S.; McKenna, J. A.] Univ British Columbia, Vancouver, BC V6T 1Z1, Canada. [Barrett, M.; Khan, A.; Randle-Conde, A.] Brunel Univ, Uxbridge UB8 3PH, Middx, England. [Blinov, V. E.; Bukin, A. D.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.] Budker Inst Nucl Phys, Novosibirsk 630090, Russia. [Bondioli, M.; Curry, S.; Eschrich, I.; Kirkby, D.; Lankford, A. J.; Lund, P.; Mandelkern, M.; Martin, E. C.; Stoker, D. P.] Univ Calif Irvine, Irvine, CA 92697 USA. [Abachi, S.; Buchanan, C.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Atmacan, H.; Gary, J. W.; Liu, F.; Long, O.; Vitug, G. M.; Yasin, Z.; Zhang, L.] Univ Calif Riverside, Riverside, CA 92521 USA. [Sharma, V.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Campagnari, C.; Hong, T. M.; Kovalskyi, D.; Mazur, M. A.; Richman, J. D.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Beck, T. W.; Eisner, A. M.; Heusch, C. A.; Kroseberg, J.; Lockman, W. S.; Martinez, A. J.; Schalk, T.; Schumm, B. A.; Seiden, A.; Winstrom, L. O.] Univ Calif Santa Cruz, Inst Particle Phys, Santa Cruz, CA 95064 USA. [Cheng, C. H.; Doll, D. A.; Echenard, B.; Fang, F.; Hitlin, D. G.; Narsky, I.; Piatenko, T.; Porter, F. C.] CALTECH, Pasadena, CA 91125 USA. [Andreassen, R.; Mancinelli, G.; Meadows, B. T.; Mishra, K.; Sokoloff, M. D.] Univ Cincinnati, Cincinnati, OH 45221 USA. [Bloom, P. C.; Ford, W. T.; Gaz, A.; Hirschauer, J. F.; Nagel, M.; Nauenberg, U.; Smith, J. G.; Wagner, S. R.] Univ Colorado, Boulder, CO 80309 USA. [Ayad, R.; Soffer, A.; Toki, W. H.; Wilson, R. J.] Colorado State Univ, Ft Collins, CO 80523 USA. [Feltresi, E.; Hauke, A.; Jasper, H.; Karbach, M.; Merkel, J.; Petzold, A.; Spaan, B.; Wacker, K.] Tech Univ, Fak Phys, D-44221 Dortmund, Germany. [Kobel, M. J.; Nogowski, R.; Schubert, K. R.; Schwierz, R.; Volk, A.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. [Bernard, D.; Bonneaud, G. R.; Latour, E.; Verderi, M.] Ecole Polytech, Lab Leprince Ringuet, CNRS, IN2P3, F-91128 Palaiseau, France. [Clark, P. J.; Playfer, S.; Watson, J. E.] Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. [Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Franchini, P.; Luppi, E.; Negrini, M.; Petrella, A.; Piemontese, L.; Santoro, V.] Ist Nazl Fis Nucl, Sez Ferrara, I-44100 Ferrara, Italy. [Andreotti, M.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Franchini, P.; Luppi, E.; Negrini, M.; Petrella, A.; Santoro, V.] Univ Ferrara, Dipartimento Fis, I-44100 Ferrara, Italy. [Baldini-Ferroli, R.; Calcaterra, A.; de Sangro, R.; Finocchiaro, G.; Pacetti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; Zallo, A.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Contri, R.; Lo Vetere, M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Tosi, S.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Contri, R.; Lo Vetere, M.; Monge, M. R.; Patrignani, C.; Tosi, S.] Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy. [Chaisanguanthum, K. S.; Morii, M.] Harvard Univ, Cambridge, MA 02138 USA. [Adametz, A.; Marks, J.; Schenk, S.; Uwer, U.] Univ Heidelberg, Inst Phys, D-69120 Heidelberg, Germany. [Bernlochner, F. U.; Klose, V.; Lacker, H. M.] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany. [Bard, D. J.; Dauncey, P. D.; Tibbetts, M.] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. [Behera, P. K.; Chai, X.; Charles, M. J.; Mallik, U.] Univ Iowa, Iowa City, IA 52242 USA. [Cochran, J.; Crawley, H. B.; Dong, L.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Rubin, A. E.] Iowa State Univ, Ames, IA 50011 USA. [Gao, Y. Y.; Gritsan, A. V.; Guo, Z. J.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Arnaud, N.; Bequilleux, J.; D'Orazio, A.; Davier, M.; da Costa, J. Firmino; Grosdidier, G.; Le Diberder, F.; Lepeltier, V.; Lutz, A. M.; Pruvot, S.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wormser, G.] CNRS, IN2P3, Lab Accelerateur Lineaire, F-91898 Orsay, France. [Arnaud, N.; Bequilleux, J.; D'Orazio, A.; Davier, M.; da Costa, J. Firmino; Grosdidier, G.; Le Diberder, F.; Lepeltier, V.; Lutz, A. M.; Pruvot, S.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wormser, G.] Univ Paris 11, Ctr Sci Orsay, F-91898 Orsay, France. [Wright, D. M.; Bingham, I.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Bingham, I.; Burke, J. P.; Chavez, C. A.; Fry, J. R.; Gabathuler, E.; Gamet, R.; Hutchcroft, D. E.; Payne, D. J.; Touramanis, C.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Bevan, A. J.; Clarke, C. K.; Di Lodovico, F.; Sacco, R.; Sigamani, M.] Univ London, London E1 4NS, England. [Cowan, G.; Paramesvaran, S.; Wren, A. C.] Univ London Royal Holloway & Bedford New Coll, Egham TW20 0EX, Surrey, England. [Brown, D. N.; Davis, C. L.] Univ Louisville, Louisville, KY 40292 USA. [Denig, A. G.; Fritsch, M.; Gradl, W.; Hafner, A.] Johannes Gutenberg Univ Mainz, Inst Kernphys, D-55099 Mainz, Germany. [Alwyn, K. E.; Bailey, D.; Barlow, R. J.; Jackson, G.; Lafferty, G. D.; West, T. J.; Yi, J. I.] Univ Manchester, Manchester M13 9PL, Lancs, England. [Anderson, J.; Chen, C.; Jawahery, A.; Roberts, D. A.; Simi, G.; Tuggle, J. M.] Univ Maryland, College Pk, MD 20742 USA. [Dallapiccola, C.; Salvati, E.; Saremi, S.] Univ Massachusetts, Amherst, MA 01003 USA. [Cowan, R.; Dujmic, D.; Fisher, P. H.; Henderson, S. W.; Sciolla, G.; Spitznagel, M.; Yamamoto, R. K.; Zhao, M.] MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. [Patel, P. M.; Robertson, S. H.; Schram, M.] McGill Univ, Montreal, PQ H3A 2T8, Canada. [Lazzaro, A.; Lombardo, V.; Palombo, F.] Ist Nazl Fis Nucl, Sez Milano, I-20133 Milan, Italy. [Lazzaro, A.; Palombo, F.] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. [Bauer, J. M.; Cremaldi, L.; Godang, R.; Kroeger, R.; Summers, D. J.; Zhao, H. W.] Univ Mississippi, University, MS 38677 USA. [Simard, M.; Taras, P.] Univ Montreal, Montreal, PQ H3C 3J7, Canada. [Nicholson, H.] Mt Holyoke Coll, S Hadley, MA 01075 USA. [De Nardo, G.; Lista, L.; Monorchio, D.; Onorato, G.; Sciacca, C.] Ist Nazl Fis Nucl, Sez Napoli, I-80126 Naples, Italy. [De Nardo, G.; Monorchio, D.; Onorato, G.; Sciacca, C.] Univ Naples Federico 2, Dipartimento Sci Fis, I-80126 Naples, Italy. [Raven, G.; Snoek, H. L.] Natl Inst Nucl Phys & High Energy Phys, NIKHEF, NL-1009 DB Amsterdam, Netherlands. [Jessop, C. P.; Knoepfel, K. J.; LoSecco, J. M.; Wang, W. F.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Corwin, L. A.; Honscheid, K.; Kagan, H.; Kass, R.; Morris, J. P.; Rahimi, A. M.; Regensburger, J. J.; Sekula, S. J.; Wong, Q. K.] Ohio State Univ, Columbus, OH 43210 USA. [Blount, N. L.; Brau, J.; Frey, R.; Igonkina, O.; Kolb, J. A.; Lu, M.; Rahmat, R.; Sinev, N. B.; Strom, D.; Strube, J.; Torrence, E.] Univ Oregon, Eugene, OR 97403 USA. [Castelli, G.; Gagliardi, N.; Margoni, M.; Morandin, M.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.; Voci, C.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Castelli, G.; Gagliardi, N.; Margoni, M.; Simonetto, F.; Stroili, R.; Voci, C.] Univ Padua, Dipartimento Fis, I-35131 Padua, Italy. [Sanchez, P. del Amo; Ben-Haim, E.; Briand, H.; Chauveau, J.; Hamon, O.; Leruste, Ph.; Ocariz, J.; Perez, A.; Prendki, J.; Sitt, S.; Calderini, G.] Univ Paris 07, Univ Paris 06, CNRS, IN2P3,Lab Phys Nucl & Hautes Energies, F-75252 Paris, France. [Gladney, L.] Univ Penn, Philadelphia, PA 19104 USA. [Biasini, M.; Manoni, E.] Ist Nazl Fis Nucl, Sez Perugia, I-06100 Perugia, Italy. [Peruzzi, I. M.; Biasini, M.; Manoni, E.] Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Calderini, G.; Carpinelli, M.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Marchiori, G.; Morganti, M.; Neri, N.; Paoloni, E.; Rizzo, G.; Walsh, J. J.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Calderini, G.; Carpinelli, M.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Marchiori, G.; Morganti, M.; Neri, N.; Paoloni, E.; Rizzo, G.] Univ Pisa, Dipartimento Fis, I-56127 Pisa, Italy. [Lusiani, A.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Pegna, D. Lopes; Lu, C.; Olsen, J.; Smith, A. J. S.; Telnov, A. V.] Princeton Univ, Princeton, NJ 08544 USA. [Anulli, F.; Baracchini, E.; Cavoto, G.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Jackson, P. D.; Gioi, L. Li; Mazzoni, M. A.; Morganti, S.; Piredda, G.; Renga, F.; Voena, C.] Ist Nazl Fis Nucl, Sez Roma, I-00185 Rome, Italy. [Baracchini, E.; Faccini, R.; Ferroni, F.; Gaspero, M.; Renga, F.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Ebert, M.; Hartmann, T.; Schroeder, H.; Waldi, R.] Univ Rostock, D-18051 Rostock, Germany. [Adye, T.; Franek, B.; Olaiya, E. O.; Wilson, F. F.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Emery, S.; Esteve, L.; de Monchenault, G. Hamel; Kozanecki, W.; Vasseur, G.; Yeche, Ch.; Zito, M.] CEA, SPP, Ctr Saclay, F-91191 Gif Sur Yvette, France. [Chen, X. R.; Liu, H.; Park, W.; Purohit, M. V.; White, R. M.; Wilson, J. R.] Univ S Carolina, Columbia, SC 29208 USA. [Allen, M. T.; Aston, D.; Bartoldus, R.; Benitez, J. F.; Cenci, R.; Coleman, J. P.; Convery, M. R.; Dingfelder, J. C.; Dorfan, J.; Dubois-Felsmann, G. P.; Dunwoodie, W.; Field, R. C.; Gabareen, A. M.; Graham, M. T.; Grenier, P.; Hast, C.; Innes, W. R.; Kaminski, J.; Kelsey, M. H.; Kim, H.; Kim, P.; Kocian, M. L.; Leith, D. W. G. S.; Li, S.; Lindquist, B.; Luitz, S.; Luth, V.; Lynch, H. L.; MacFarlane, D. B.; Marsiske, H.; Messner, R.; Muller, D. R.; Neal, H.; Nelson, S.; O'Grady, C. P.; Ofte, I.; Perl, M.; Ratcliff, B. N.; Roodman, A.; Salnikov, A. A.; Schindler, R. H.; Schwiening, J.; Snyder, A.; Su, D.; Sullivan, M. K.; Suzuki, K.; Swain, S. K.; Thompson, J. M.; Va'vra, J.; Wagner, A. P.; Weaver, M.; West, C. A.; Wisniewski, W. J.; Wittgen, M.; Wright, D. H.; Wulsin, H. W.; Yarritu, A. K.; Yi, K.; Young, C. C.; Ziegler, V.] SLAC Natl Accelerator Lab, Stanford, CA 94309 USA. [Burchat, P. R.; Edwards, A. J.; Miyashita, T. S.] Stanford Univ, Stanford, CA 94305 USA. [Ahmed, S.; Alam, M. S.; Ernst, J. A.; Pan, B.; Saeed, M. A.; Zain, S. B.] SUNY Albany, Albany, NY 12222 USA. [Spanier, S. M.; Wogsland, B. J.] Univ Tennessee, Knoxville, TN 37996 USA. [Eckmann, R.; Ritchie, J. L.; Ruland, A. M.; Schilling, C. J.; Schwitters, R. F.] Univ Texas Austin, Austin, TX 78712 USA. [Drummond, B. W.; Izen, J. M.; Lou, X. C.] Univ Texas Dallas, Richardson, TX 75083 USA. [Bianchi, F.; Gamba, D.; Pelliccioni, M.] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy. [Bianchi, F.; Gamba, D.; Pelliccioni, M.] Univ Torino, Dipartimento Fis Sperimentale, I-10125 Turin, Italy. [Bomben, M.; Bosisio, L.; Cartaro, C.; Della Ricca, G.; Lanceri, L.; Vitale, L.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Bomben, M.; Bosisio, L.; Cartaro, C.; Della Ricca, G.; Lanceri, L.; Vitale, L.] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. [Azzolini, V.; Lopez-March, N.; Martinez-Vidal, F.; Milanes, D. A.; Oyanguren, A.] Univ Valencia, CSIC, IFIC, E-46071 Valencia, Spain. [Gershon, T. J.; Harrison, P. F.; Ilic, J.; Latham, T. E.; Mohanty, G. B.; Puccio, E. M. T.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Band, H. R.; Chen, X.; Dasu, S.; Flood, K. T.; Pan, Y.; Prepost, R.; Vuosalo, C. O.; Wu, S. L.] Univ Wisconsin, Madison, WI 53706 USA. [Carpinelli, M.] Univ Sassari, I-07100 Sassari, Italy. [Albert, J.; Banerjee, Sw.; Bhuyan, B.; Choi, H. H. F.; Hamano, K.; King, G. J.; Kowalewski, R.; Lewczuk, M. J.; Nugent, I. M.; Roney, J. M.; Sobie, R. J.] Univ Victoria, Victoria, BC V8W 3P6, Canada. RP Aubert, B (reprint author), Univ Savoie, Lab Annecy Le Vieux Phys Particules, CNRS, IN2P3, F-74941 Annecy Le Vieux, France. RI Frey, Raymond/E-2830-2016; White, Ryan/E-2979-2015; Calabrese, Roberto/G-4405-2015; Martinez Vidal, F*/L-7563-2014; Kolomensky, Yury/I-3510-2015; Lo Vetere, Maurizio/J-5049-2012; Lusiani, Alberto/N-2976-2015; Morandin, Mauro/A-3308-2016; Lusiani, Alberto/A-3329-2016; Stracka, Simone/M-3931-2015; Di Lodovico, Francesca/L-9109-2016; Pappagallo, Marco/R-3305-2016; Calcaterra, Alessandro/P-5260-2015; Della Ricca, Giuseppe/B-6826-2013; Negrini, Matteo/C-8906-2014; Monge, Maria Roberta/G-9127-2012; Oyanguren, Arantza/K-6454-2014; Bellini, Fabio/D-1055-2009; Luppi, Eleonora/A-4902-2015; Patrignani, Claudia/C-5223-2009; Neri, Nicola/G-3991-2012; Forti, Francesco/H-3035-2011; Rotondo, Marcello/I-6043-2012; de Sangro, Riccardo/J-2901-2012; Saeed, Mohammad Alam/J-7455-2012 OI Frey, Raymond/0000-0003-0341-2636; Cavoto, Gianluca/0000-0003-2161-918X; Raven, Gerhard/0000-0002-2897-5323; White, Ryan/0000-0003-3589-5900; Calabrese, Roberto/0000-0002-1354-5400; Martinez Vidal, F*/0000-0001-6841-6035; Kolomensky, Yury/0000-0001-8496-9975; Lo Vetere, Maurizio/0000-0002-6520-4480; Lusiani, Alberto/0000-0002-6876-3288; Morandin, Mauro/0000-0003-4708-4240; Lusiani, Alberto/0000-0002-6876-3288; Stracka, Simone/0000-0003-0013-4714; Di Lodovico, Francesca/0000-0003-3952-2175; Pappagallo, Marco/0000-0001-7601-5602; Calcaterra, Alessandro/0000-0003-2670-4826; Della Ricca, Giuseppe/0000-0003-2831-6982; Negrini, Matteo/0000-0003-0101-6963; Monge, Maria Roberta/0000-0003-1633-3195; Oyanguren, Arantza/0000-0002-8240-7300; Bellini, Fabio/0000-0002-2936-660X; Luppi, Eleonora/0000-0002-1072-5633; Patrignani, Claudia/0000-0002-5882-1747; Neri, Nicola/0000-0002-6106-3756; Forti, Francesco/0000-0001-6535-7965; Rotondo, Marcello/0000-0001-5704-6163; de Sangro, Riccardo/0000-0002-3808-5455; Saeed, Mohammad Alam/0000-0002-3529-9255 FU U. S. Department of Energy and National Science Foundation; Natural Sciences and Engineering Research Council (Canada); Commissariat a l'Energie Atomique and Institut National de Physique Nucleaire et de Physique des Particules (France); Bundesministerium fur Bildung und Forschung and Deutsche Forschungsgemeinschaft (Germany); Istituto Nazionale di Fisica Nucleare (Italy); Foundation for Fundamental Research on Matter (The Netherlands); Research Council of Norway; Ministry of Education and Science of the Russian Federation, Ministerio de Educacion y Ciencia (Spain); Science and Technology Facilities Council (United Kingdom); Marie Curie IEF program (European Union); A. P. Sloan Foundation FX We are grateful for the extraordinary contributions of our PEP-II colleagues in achieving the excellent luminosity and machine conditions that have made this work possible. The success of this project also relies critically on the expertise and dedication of the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and the kind hospitality extended to them. This work is supported by the U. S. Department of Energy and National Science Foundation, the Natural Sciences and Engineering Research Council (Canada), the Commissariat a l'Energie Atomique and Institut National de Physique Nucleaire et de Physique des Particules (France), the Bundesministerium fur Bildung und Forschung and Deutsche Forschungsgemeinschaft (Germany), the Istituto Nazionale di Fisica Nucleare (Italy), the Foundation for Fundamental Research on Matter (The Netherlands), the Research Council of Norway, the Ministry of Education and Science of the Russian Federation, Ministerio de Educacion y Ciencia (Spain), and the Science and Technology Facilities Council (United Kingdom). Individuals have received support from the Marie Curie IEF program (European Union) and the A. P. Sloan Foundation. NR 24 TC 33 Z9 33 U1 0 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD MAY PY 2009 VL 79 IS 9 AR 092001 DI 10.1103/PhysRevD.79.092001 PG 13 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 451WO UT WOS:000266501800005 ER PT J AU Aubert, B Karyotakis, Y Lees, JP Poireau, V Prencipe, E Prudent, X Tisserand, V Tico, J Grauges, E Martinelli, M Palano, A Pappagallo, M Eigen, G Stugu, B Sun, L Battaglia, M Brown, DN Kerth, LT Kolomensky, YG Lynch, G Osipenkov, IL Tackmann, K Tanabe, T Hawkes, CM Soni, N Watson, AT Koch, H Schroeder, T Asgeirsson, DJ Fulsom, BG Hearty, C Mattison, TS McKenna, JA Barrett, M Khan, A Randle-Conde, A Blinov, VE Bukin, AD Buzykaev, AR Druzhinin, VP Golubev, VB Onuchin, AP Serednyakov, SI Skovpen, YI Solodov, EP Todyshev, KY Bondioli, M Curry, S Eschrich, I Kirkby, D Lankford, AJ Lund, P Mandelkern, M Martin, EC Stoker, DP Abachi, S Buchanan, C Atmacan, H Gary, JW Liu, F Long, O Vitug, GM Yasin, Z Zhang, L Sharma, V Campagnari, C Hong, TM Kovalskyi, D Mazur, MA Richman, JD Beck, TW Eisner, AM Heusch, CA Kroseberg, J Lockman, WS Martinez, AJ Schalk, T Schumm, BA Seiden, A Wang, L Winstrom, LO Cheng, CH Doll, DA Echenard, B Fang, F Hitlin, DG Narsky, I Piatenko, T Porter, FC Andreassen, R Mancinelli, G Meadows, BT Mishra, K Sokoloff, MD Bloom, PC Ford, WT Gaz, A Hirschauer, JF Nagel, M Nauenberg, U Smith, JG Wagner, SR Ayad, R Soffer, A Toki, WH Wilson, RJ Feltresi, E Hauke, A Jasper, H Karbach, TM Merkel, J Petzold, A Spaan, B Wacker, K Kobel, MJ Nogowski, R Schubert, KR Schwierz, R Volk, A Bernard, D Bonneaud, GR Latour, E Verderi, M Clark, PJ Playfer, S Watson, JE Andreotti, M Bettoni, D Bozzi, C Calabrese, R Cecchi, A Cibinetto, G Fioravanti, E Franchini, P Luppi, E Munerato, M Negrini, M Petrella, A Piemontese, L Santoro, V Baldini-Ferroli, R Calcaterra, A de Sangro, R Finocchiaro, G Pacetti, S Patteri, P Peruzzi, IM Piccolo, M Rama, M Zallo, A Contri, R Guido, E Vetere, M Monge, MR Passaggio, S Patrignani, C Robutti, E Tosi, S Chaisanguanthum, KS Morii, M Adametz, A Marks, J Schenk, S Uwer, U Bernlochner, FU Klose, V Lacker, HM Bard, DJ Dauncey, PD Tibbetts, M Behera, PK Charles, MJ Mallik, U Cochran, J Crawley, HB Dong, L Eyges, V Meyer, WT Prell, S Rosenberg, EI Rubin, AE Gao, YY Gritsan, AV Guo, ZJ Arnaud, N Bequilleux, J D'Orazio, A Davier, M Derkach, D da Costa, JF Grosdidier, G Diberder, F Lepeltier, V Lutz, AM Malaescu, B Pruvot, S Roudeau, P Schune, MH Serrano, J Sordini, V Stocchi, A Wormser, G Lange, DJ Wright, DM Bingham, I Burke, JP Chavez, CA Fry, JR Gabathuler, E Gamet, R Hutchcroft, DE Payne, DJ Touramanis, C Bevan, AJ Clarke, CK Lodovico, F Sacco, R Sigamani, M Cowan, G Paramesvaran, S Wren, AC Brown, DN Davis, CL Denig, AG Fritsch, M Gradl, W Hafner, A Alwyn, KE Bailey, D Barlow, RJ Jackson, G Lafferty, GD West, TJ Yi, JI Anderson, J Chen, C Jawahery, A Roberts, DA Simi, G Tuggle, JM Dallapiccola, C Salvati, E Saremi, S Cowan, R Dujmic, D Fisher, PH Henderson, SW Sciolla, G Spitznagel, M Yamamoto, RK Zhao, M Patel, PM Robertson, SH Schram, M Lazzaro, A Lombardo, V Palombo, F Stracka, S Bauer, JM Cremaldi, L Godang, R Kroeger, R Sonnek, P Summers, DJ Zhao, HW Simard, M Taras, P Nicholson, H Nardo, G Lista, L Monorchio, D Onorato, G Sciacca, C Raven, G Snoek, HL Jessop, CP Knoepfel, KJ LoSecco, JM Wang, WF Corwin, LA Honscheid, K Kagan, H Kass, R Morris, JP Rahimi, AM Regensburger, JJ Sekula, SJ Wong, QK Blount, NL Brau, J Frey, R Igonkina, O Kolb, JA Lu, M Rahmat, R Sinev, NB Strom, D Strube, J Torrence, E Castelli, G Gagliardi, N Margoni, M Morandin, M Posocco, M Rotondo, M Simonetto, F Stroili, R Voci, C Sanchez, PD Ben-Haim, E Briand, H Chauveau, J Hamon, O Leruste, P Marchiori, G Ocariz, J Perez, A Prendki, J Sitt, S Gladney, L Biasini, M Manoni, E Angelini, C Batignani, G Bettarini, S Calderini, G Carpinelli, M Cervelli, A Forti, F Giorgi, MA Lusiani, A Morganti, M Neri, N Paoloni, E Rizzo, G Walsh, JJ Pegna, DL Lu, C Olsen, J Smith, AJS Telnov, AV Anulli, F Baracchini, E Cavoto, G Faccini, R Ferrarotto, F Ferroni, F Gaspero, M Jackson, PD Gioi, L Mazzoni, MA Morganti, S Piredda, G Renga, F Voena, C Ebert, M Hartmann, T Schroder, H Waldi, R Adye, T Franek, B Olaiya, EO Wilson, FF Emery, S Esteve, L de Monchenault, GH Kozanecki, W Vasseur, G Yeche, C Zito, M Allen, MT Aston, D Bartoldus, R Benitez, JF Cenci, R Coleman, JP Convery, MR Dingfelder, JC Dorfan, J Dubois-Felsmann, GP Dunwoodie, W Field, RC Gabareen, AM Graham, MT Grenier, P Hast, C Innes, WR Kaminski, J Kelsey, MH Kim, H Kim, P Kocian, ML Leith, DWGS Li, S Lindquist, B Luitz, S Luth, V Lynch, HL MacFarlane, DB Marsiske, H Messner, R Muller, DR Neal, H Nelson, S O'Grady, CP Ofte, I Perl, M Ratcliff, BN Roodman, A Salnikov, AA Schindler, RH Schwiening, J Snyder, A Su, D Sullivan, MK Suzuki, K Swain, SK Thompson, JM Va'vra, J Wagner, AP Weaver, M West, CA Wisniewski, WJ Wittgen, M Wright, DH Wulsin, HW Yarritu, AK Yi, K Young, CC Ziegler, V Chen, XR Liu, H Park, W Purohit, MV White, RM Wilson, JR Burchat, PR Edwards, AJ Miyashita, TS Ahmed, S Alam, MS Ernst, JA Pan, B Saeed, MA Zain, SB Spanier, SM Wogsland, BJ Eckmann, R Ritchie, JL Ruland, AM Schilling, CJ Schwitters, RF Wray, BC Drummond, BW Izen, JM Lou, XC Bianchi, F Gamba, D Pelliccioni, M Bomben, M Bosisio, L Cartaro, C Ricca, G Lanceri, L Vitale, L Azzolini, V Lopez-March, N Martinez-Vidal, F Milanes, DA Oyanguren, A Albert, J Banerjee, S Bhuyan, B Choi, HHF Hamano, K King, GJ Kowalewski, R Lewczuk, MJ Nugent, IM Roney, JM Sobie, RJ Gershon, TJ Harrison, PF Ilic, J Latham, TE Mohanty, GB Puccio, EMT Band, HR Chen, X Dasu, S Flood, KT Pan, Y Prepost, R Vuosalo, CO Wu, SL AF Aubert, B. Karyotakis, Y. Lees, J. P. Poireau, V. Prencipe, E. Prudent, X. Tisserand, V. Garra Tico, J. Grauges, E. Martinelli, M. Palano, A. Pappagallo, M. Eigen, G. Stugu, B. Sun, L. Battaglia, M. Brown, D. N. Kerth, L. T. Kolomensky, Yu. G. Lynch, G. Osipenkov, I. L. Tackmann, K. Tanabe, T. Hawkes, C. M. Soni, N. Watson, A. T. Koch, H. Schroeder, T. Asgeirsson, D. J. Fulsom, B. G. Hearty, C. Mattison, T. S. McKenna, J. A. Barrett, M. Khan, A. Randle-Conde, A. Blinov, V. E. Bukin, A. D. Buzykaev, A. R. Druzhinin, V. P. Golubev, V. B. Onuchin, A. P. Serednyakov, S. I. Skovpen, Yu. I. Solodov, E. P. Todyshev, K. Yu. Bondioli, M. Curry, S. Eschrich, I. Kirkby, D. Lankford, A. J. Lund, P. Mandelkern, M. Martin, E. C. Stoker, D. P. Abachi, S. Buchanan, C. Atmacan, H. Gary, J. W. Liu, F. Long, O. Vitug, G. M. Yasin, Z. Zhang, L. Sharma, V. Campagnari, C. Hong, T. M. Kovalskyi, D. Mazur, M. A. Richman, J. D. Beck, T. W. Eisner, A. M. Heusch, C. A. Kroseberg, J. Lockman, W. S. Martinez, A. J. Schalk, T. Schumm, B. A. Seiden, A. Wang, L. Winstrom, L. O. Cheng, C. H. Doll, D. A. Echenard, B. Fang, F. Hitlin, D. G. Narsky, I. Piatenko, T. Porter, F. C. Andreassen, R. Mancinelli, G. Meadows, B. T. Mishra, K. Sokoloff, M. D. Bloom, P. C. Ford, W. T. Gaz, A. Hirschauer, J. F. Nagel, M. Nauenberg, U. Smith, J. G. Wagner, S. R. Ayad, R. Soffer, A. Toki, W. H. Wilson, R. J. Feltresi, E. Hauke, A. Jasper, H. Karbach, T. M. Merkel, J. Petzold, A. Spaan, B. Wacker, K. Kobel, M. J. Nogowski, R. Schubert, K. R. Schwierz, R. Volk, A. Bernard, D. Bonneaud, G. R. Latour, E. Verderi, M. Clark, P. J. Playfer, S. Watson, J. E. Andreotti, M. Bettoni, D. Bozzi, C. Calabrese, R. Cecchi, A. Cibinetto, G. Fioravanti, E. Franchini, P. Luppi, E. Munerato, M. Negrini, M. Petrella, A. Piemontese, L. Santoro, V. Baldini-Ferroli, R. Calcaterra, A. de Sangro, R. Finocchiaro, G. Pacetti, S. Patteri, P. Peruzzi, I. M. Piccolo, M. Rama, M. Zallo, A. Contri, R. Guido, E. Lo Vetere, M. Monge, M. R. Passaggio, S. Patrignani, C. Robutti, E. Tosi, S. Chaisanguanthum, K. S. Morii, M. Adametz, A. Marks, J. Schenk, S. Uwer, U. Bernlochner, F. U. Klose, V. Lacker, H. M. Bard, D. J. Dauncey, P. D. Tibbetts, M. Behera, P. K. Charles, M. J. Mallik, U. Cochran, J. Crawley, H. B. Dong, L. Eyges, V. Meyer, W. T. Prell, S. Rosenberg, E. I. Rubin, A. E. Gao, Y. Y. Gritsan, A. V. Guo, Z. J. Arnaud, N. Bequilleux, J. D'Orazio, A. Davier, M. Derkach, D. da Costa, J. Firmino Grosdidier, G. Le Diberder, F. Lepeltier, V. Lutz, A. M. Malaescu, B. Pruvot, S. Roudeau, P. Schune, M. H. Serrano, J. Sordini, V. Stocchi, A. Wormser, G. Lange, D. J. Wright, D. M. Bingham, I. Burke, J. P. Chavez, C. A. Fry, J. R. Gabathuler, E. Gamet, R. Hutchcroft, D. E. Payne, D. J. Touramanis, C. Bevan, A. J. Clarke, C. K. Di Lodovico, F. Sacco, R. Sigamani, M. Cowan, G. Paramesvaran, S. Wren, A. C. Brown, D. N. Davis, C. L. Denig, A. G. Fritsch, M. Gradl, W. Hafner, A. Alwyn, K. E. Bailey, D. Barlow, R. J. Jackson, G. Lafferty, G. D. West, T. J. Yi, J. I. Anderson, J. Chen, C. Jawahery, A. Roberts, D. A. Simi, G. Tuggle, J. M. Dallapiccola, C. Salvati, E. Saremi, S. Cowan, R. Dujmic, D. Fisher, P. H. Henderson, S. W. Sciolla, G. Spitznagel, M. Yamamoto, R. K. Zhao, M. Patel, P. M. Robertson, S. H. Schram, M. Lazzaro, A. Lombardo, V. Palombo, F. Stracka, S. Bauer, J. M. Cremaldi, L. Godang, R. Kroeger, R. Sonnek, P. Summers, D. J. Zhao, H. W. Simard, M. Taras, P. Nicholson, H. De Nardo, G. Lista, L. Monorchio, D. Onorato, G. Sciacca, C. Raven, G. Snoek, H. L. Jessop, C. P. Knoepfel, K. J. LoSecco, J. M. Wang, W. F. Corwin, L. A. Honscheid, K. Kagan, H. Kass, R. Morris, J. P. Rahimi, A. M. Regensburger, J. J. Sekula, S. J. Wong, Q. K. Blount, N. L. Brau, J. Frey, R. Igonkina, O. Kolb, J. A. Lu, M. Rahmat, R. Sinev, N. B. Strom, D. Strube, J. Torrence, E. Castelli, G. Gagliardi, N. Margoni, M. Morandin, M. Posocco, M. Rotondo, M. Simonetto, F. Stroili, R. Voci, C. Sanchez, P. del Amo Ben-Haim, E. Briand, H. Chauveau, J. Hamon, O. Leruste, Ph. Marchiori, G. Ocariz, J. Perez, A. Prendki, J. Sitt, S. Gladney, L. Biasini, M. Manoni, E. Angelini, C. Batignani, G. Bettarini, S. Calderini, G. Carpinelli, M. Cervelli, A. Forti, F. Giorgi, M. A. Lusiani, A. Morganti, M. Neri, N. Paoloni, E. Rizzo, G. Walsh, J. J. Pegna, D. Lopes Lu, C. Olsen, J. Smith, A. J. S. Telnov, A. V. Anulli, F. Baracchini, E. Cavoto, G. Faccini, R. Ferrarotto, F. Ferroni, F. Gaspero, M. Jackson, P. D. Li Gioi, L. Mazzoni, M. A. Morganti, S. Piredda, G. Renga, F. Voena, C. Ebert, M. Hartmann, T. Schroder, H. Waldi, R. Adye, T. Franek, B. Olaiya, E. O. Wilson, F. F. Emery, S. Esteve, L. de Monchenault, G. Hamel Kozanecki, W. Vasseur, G. Yeche, Ch. Zito, M. Allen, M. T. Aston, D. Bartoldus, R. Benitez, J. F. Cenci, R. Coleman, J. P. Convery, M. R. Dingfelder, J. C. Dorfan, J. Dubois-Felsmann, G. P. Dunwoodie, W. Field, R. C. Gabareen, A. M. Graham, M. T. Grenier, P. Hast, C. Innes, W. R. Kaminski, J. Kelsey, M. H. Kim, H. Kim, P. Kocian, M. L. Leith, D. W. G. S. Li, S. Lindquist, B. Luitz, S. Luth, V. Lynch, H. L. MacFarlane, D. B. Marsiske, H. Messner, R. Muller, D. R. Neal, H. Nelson, S. O'Grady, C. P. Ofte, I. Perl, M. Ratcliff, B. N. Roodman, A. Salnikov, A. A. Schindler, R. H. Schwiening, J. Snyder, A. Su, D. Sullivan, M. K. Suzuki, K. Swain, S. K. Thompson, J. M. Va'vra, J. Wagner, A. P. Weaver, M. West, C. A. Wisniewski, W. J. Wittgen, M. Wright, D. H. Wulsin, H. W. Yarritu, A. K. Yi, K. Young, C. C. Ziegler, V. Chen, X. R. Liu, H. Park, W. Purohit, M. V. White, R. M. Wilson, J. R. Burchat, P. R. Edwards, A. J. Miyashita, T. S. Ahmed, S. Alam, M. S. Ernst, J. A. Pan, B. Saeed, M. A. Zain, S. B. Spanier, S. M. Wogsland, B. J. Eckmann, R. Ritchie, J. L. Ruland, A. M. Schilling, C. J. Schwitters, R. F. Wray, B. C. Drummond, B. W. Izen, J. M. Lou, X. C. Bianchi, F. Gamba, D. Pelliccioni, M. Bomben, M. Bosisio, L. Cartaro, C. Della Ricca, G. Lanceri, L. Vitale, L. Azzolini, V. Lopez-March, N. Martinez-Vidal, F. Milanes, D. A. Oyanguren, A. Albert, J. Banerjee, Sw. Bhuyan, B. Choi, H. H. F. Hamano, K. King, G. J. Kowalewski, R. Lewczuk, M. J. Nugent, I. M. Roney, J. M. Sobie, R. J. Gershon, T. J. Harrison, P. F. Ilic, J. Latham, T. E. Mohanty, G. B. Puccio, E. M. T. Band, H. R. Chen, X. Dasu, S. Flood, K. T. Pan, Y. Prepost, R. Vuosalo, C. O. Wu, S. L. CA BABAR Collaboration TI Search for the rare leptonic decays B+ -> l(+) nu(l) (l = e, mu) SO PHYSICAL REVIEW D LA English DT Article AB We have performed a search for the rare leptonic decays B+ -> l(+) nu(l)(l = e, mu), using data collected at the Upsilon(4S) resonance by the BABAR detector at the PEP-II storage ring. In a sample of 468 x 10(6) B (B) over bar pairs we find no evidence for a signal and set an upper limit on the branching fractions B(B+ -> mu(+)nu(mu)) < 1.0 x 10(-6) and B(B+ -> e(+) nu(e)) < 1.9 x 10(-6) at the 90% confidence level, using a Bayesian approach. C1 [Aubert, B.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prencipe, E.; Prudent, X.; Tisserand, V.] Univ Savoie, LAPP, CNRS, IN2P3, F-74941 Annecy Le Vieux, France. [Garra Tico, J.; Grauges, E.] Univ Barcelona, Fac Fis, Dept ECM, E-08028 Barcelona, Spain. [Martinelli, M.; Palano, A.; Pappagallo, M.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Martinelli, M.; Palano, A.; Pappagallo, M.] Univ Bari, Dipartmento Fis, I-70126 Bari, Italy. [Eigen, G.; Stugu, B.; Sun, L.] Univ Bergen, Inst Phys, N-5007 Bergen, Norway. [Battaglia, M.; Brown, D. N.; Kerth, L. T.; Kolomensky, Yu. G.; Lynch, G.; Osipenkov, I. L.; Tackmann, K.; Tanabe, T.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Hawkes, C. M.; Soni, N.; Watson, A. T.] Univ Birmingham, Birmingham B15 2TT, W Midlands, England. [Koch, H.; Schroeder, T.] Ruhr Univ Bochum, Inst Expt Phys 1, D-44780 Bochum, Germany. [Asgeirsson, D. J.; Fulsom, B. G.; Hearty, C.; Mattison, T. S.; McKenna, J. A.] Univ British Columbia, Vancouver, BC V6T 1Z1, Canada. [Barrett, M.; Khan, A.; Randle-Conde, A.] Brunel Univ, Uxbridge UB8 3PH, Middx, England. [Blinov, V. E.; Bukin, A. D.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.; Bondioli, M.; Curry, S.; Eschrich, I.; Kirkby, D.; Lankford, A. J.; Lund, P.; Mandelkern, M.; Stoker, D. P.; Martinez, A. J.] Budker Inst Nucl Phys, Novosibirsk 630090, Russia. [Bondioli, M.; Curry, S.; Eschrich, I.; Kirkby, D.; Lankford, A. J.; Lund, P.; Mandelkern, M.; Martin, E. C.; Stoker, D. P.] Univ Calif Irvine, Irvine, CA 92697 USA. [Abachi, S.; Buchanan, C.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Atmacan, H.; Gary, J. W.; Liu, F.; Long, O.; Vitug, G. M.; Yasin, Z.; Zhang, L.] Univ Calif Riverside, Riverside, CA 92521 USA. [Sharma, V.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Campagnari, C.; Hong, T. M.; Kovalskyi, D.; Mazur, M. A.; Richman, J. D.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Beck, T. W.; Eisner, A. M.; Heusch, C. A.; Kroseberg, J.; Lockman, W. S.; Martinez, A. J.; Schalk, T.; Schumm, B. A.; Seiden, A.; Wang, L.; Winstrom, L. O.] Univ Calif Santa Cruz, Inst Particle Phys, Santa Cruz, CA 95064 USA. [Cheng, C. H.; Doll, D. A.; Echenard, B.; Fang, F.; Hitlin, D. G.; Narsky, I.; Piatenko, T.; Porter, F. C.] CALTECH, Pasadena, CA 91125 USA. [Andreassen, R.; Mancinelli, G.; Meadows, B. T.; Mishra, K.; Sokoloff, M. D.] Univ Cincinnati, Cincinnati, OH 45221 USA. [Bloom, P. C.; Ford, W. T.; Gaz, A.; Hirschauer, J. F.; Nagel, M.; Nauenberg, U.; Smith, J. G.; Wagner, S. R.] Univ Colorado, Boulder, CO 80309 USA. [Ayad, R.; Soffer, A.; Toki, W. H.; Wilson, R. J.] Colorado State Univ, Ft Collins, CO 80523 USA. [Feltresi, E.; Hauke, A.; Jasper, H.; Karbach, T. M.; Merkel, J.; Petzold, A.; Spaan, B.; Wacker, K.] Tech Univ Denmark, Fak Phys, D-44221 Dortmund, Germany. [Kobel, M. J.; Nogowski, R.; Schubert, K. R.; Schwierz, R.; Volk, A.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-010602 Dresden, Germany. [Bernard, D.; Bonneaud, G. R.; Latour, E.; Verderi, M.] Ecole Polytech, CNRS, Lab Leprince Ringuet, IN2P3, F-91128 Palaiseau, France. [Clark, P. J.; Playfer, S.; Watson, J. E.] Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. [Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Fioravanti, E.; Franchini, P.; Luppi, E.; Munerato, M.; Negrini, M.; Petrella, A.; Piemontese, L.; Santoro, V.] Ist Nazl Fis Nucl, Sez Ferrara, I-44100 Ferrara, Italy. [Andreotti, M.; Bettoni, D.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Fioravanti, E.; Franchini, P.; Luppi, E.; Munerato, M.; Negrini, M.; Petrella, A.; Santoro, V.] Univ Ferrara, Dipartmento Fis, I-44100 Ferrara, Italy. [Baldini-Ferroli, R.; Calcaterra, A.; de Sangro, R.; Finocchiaro, G.; Pacetti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; Zallo, A.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Contri, R.; Guido, E.; Lo Vetere, M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Tosi, S.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Contri, R.; Guido, E.; Lo Vetere, M.; Monge, M. R.; Patrignani, C.; Tosi, S.] Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy. [Chaisanguanthum, K. S.; Morii, M.] Harvard Univ, Cambridge, MA 02138 USA. [Adametz, A.; Marks, J.; Schenk, S.; Uwer, U.] Heidelberg Univ, Inst Phys, D-69120 Heidelberg, Germany. [Bernlochner, F. U.; Klose, V.; Lacker, H. M.] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany. [Bard, D. J.; Dauncey, P. D.; Tibbetts, M.] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. [Behera, P. K.; Charles, M. J.; Mallik, U.] Univ Iowa, Iowa City, IA 52242 USA. [Cochran, J.; Crawley, H. B.; Dong, L.; Eyges, V.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Rubin, A. E.] Iowa State Univ, Ames, IA 50011 USA. [Gao, Y. Y.; Gritsan, A. V.; Guo, Z. J.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Arnaud, N.; Bequilleux, J.; D'Orazio, A.; Davier, M.; Derkach, D.; da Costa, J. Firmino; Grosdidier, G.; Le Diberder, F.; Lepeltier, V.; Lutz, A. M.; Malaescu, B.; Pruvot, S.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wormser, G.] CNRS, Lab Accelerateur Lineaire, IN2P3, F-91898 Orsay, France. [Lange, D. J.; Wright, D. M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Bingham, I.; Burke, J. P.; Chavez, C. A.; Fry, J. R.; Gabathuler, E.; Gamet, R.; Hutchcroft, D. E.; Payne, D. J.; Touramanis, C.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Bevan, A. J.; Clarke, C. K.; Di Lodovico, F.; Sacco, R.; Sigamani, M.] Univ London, London E1 4NS, England. [Cowan, G.; Paramesvaran, S.; Wren, A. C.] Univ London Royal Holloway & Bedford New Coll, Egham TW20 0EX, Surrey, England. [Brown, D. N.; Davis, C. L.] Univ Louisville, Louisville, KY 40292 USA. [Denig, A. G.; Fritsch, M.; Gradl, W.; Hafner, A.] Johannes Gutenberg Univ Mainz, Inst Kernphys, D-55099 Mainz, Germany. [Alwyn, K. E.; Bailey, D.; Barlow, R. J.; Jackson, G.; Lafferty, G. D.; West, T. J.; Yi, J. I.] Univ Manchester, Manchester M13 9PL, Lancs, England. [Anderson, J.; Chen, C.; Jawahery, A.; Roberts, D. A.; Simi, G.; Tuggle, J. M.] Univ Maryland, College Pk, MD 20742 USA. [Dallapiccola, C.; Salvati, E.; Saremi, S.] Univ Massachusetts, Amherst, MA 01003 USA. [Cowan, R.; Dujmic, D.; Fisher, P. H.; Henderson, S. W.; Sciolla, G.; Spitznagel, M.; Yamamoto, R. K.; Zhao, M.] MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. [Patel, P. M.; Robertson, S. H.; Schram, M.] McGill Univ, Montreal, PQ H3A 2T8, Canada. [Lazzaro, A.; Lombardo, V.; Palombo, F.; Stracka, S.] Ist Nazl Fis Nucl, Sez Milano, I-20133 Milan, Italy. [Lazzaro, A.; Lombardo, V.; Palombo, F.; Stracka, S.] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. [Bauer, J. M.; Cremaldi, L.; Godang, R.; Kroeger, R.; Sonnek, P.; Summers, D. J.; Zhao, H. W.] Univ Mississippi, University, MS 38677 USA. [Simard, M.; Taras, P.] Univ Montreal, Montreal, PQ H3C 3J7, Canada. [Nicholson, H.] Mt Holyoke Coll, S Hadley, MA 01075 USA. [De Nardo, G.; Lista, L.; Monorchio, D.; Onorato, G.; Sciacca, C.] Ist Nazl Fis Nucl, Sez Napoli, I-80126 Naples, Italy. [De Nardo, G.; Lista, L.; Monorchio, D.; Onorato, G.; Sciacca, C.] Univ Naples Federico II, Dipartimento Sci Fis, I-80126 Naples, Italy. [Raven, G.; Snoek, H. L.; Jessop, C. P.] NIKHEF, Natl Inst Nucl Phys & High Energy Phys, NL-1009 DB Amsterdam, Netherlands. [Jessop, C. P.; Knoepfel, K. J.; LoSecco, J. M.; Wang, W. F.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Corwin, L. A.; Honscheid, K.; Kagan, H.; Kass, R.; Morris, J. P.; Rahimi, A. M.; Regensburger, J. J.; Sekula, S. J.; Wong, Q. K.] Ohio State Univ, Columbus, OH 43210 USA. [Blount, N. L.; Brau, J.; Frey, R.; Igonkina, O.; Kolb, J. A.; Rahmat, R.; Sinev, N. B.; Strom, D.; Strube, J.; Torrence, E.; Lu, C.] Univ Oregon, Eugene, OR 97403 USA. [Strom, D.; Castelli, G.; Gagliardi, N.; Margoni, M.; Morandin, M.; Posocco, M.; Rotondo, M.; Simonetto, F.; Voci, C.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Castelli, G.; Gagliardi, N.; Margoni, M.; Simonetto, F.; Stroili, R.; Voci, C.] Univ Padua, Dipartimento Fis, I-35131 Padua, Italy. [Sanchez, P. del Amo; Ben-Haim, E.; Briand, H.; Chauveau, J.; Hamon, O.; Leruste, Ph.; Marchiori, G.; Ocariz, J.; Perez, A.; Prendki, J.; Sitt, S.] Univ Paris 06, Univ Paris 07, Lab Phys Nucl & Hautes Energies, IN2P3,CNRS, F-75252 Paris, France. [Gladney, L.] Univ Penn, Philadelphia, PA 19104 USA. [Biasini, M.; Manoni, E.] Ist Nazl Fis Nucl, Sez Perugia, I-06100 Perugia, Italy. [Biasini, M.; Manoni, E.] Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Calderini, G.; Carpinelli, M.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Neri, N.; Paoloni, E.; Rizzo, G.; Walsh, J. J.; Morganti, S.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Calderini, G.; Carpinelli, M.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Morganti, M.; Neri, N.; Paoloni, E.; Rizzo, G.] Univ Pisa, Dipartimento Fis, I-56127 Pisa, Italy. [Pegna, D. Lopes; Lu, C.; Olsen, J.; Smith, A. J. S.; Telnov, A. V.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Anulli, F.; Baracchini, E.; Cavoto, G.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Jackson, P. D.; Li Gioi, L.; Mazzoni, M. A.; Morganti, S.; Piredda, G.; Renga, F.; Voena, C.] Princeton Univ, Princeton, NJ 08544 USA. [Baracchini, E.; Faccini, R.; Ferroni, F.; Gaspero, M.; Renga, F.] Ist Nazl Fis Nucl, Sez Roma, I-00185 Rome, Italy. [Baracchini, E.; Faccini, R.; Ferroni, F.; Gaspero, M.; Renga, F.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Ebert, M.; Hartmann, T.; Schroder, H.; Waldi, R.; Adye, T.] Univ Rostock, D-18051 Rostock, Germany. [Adye, T.; Franek, B.; Olaiya, E. O.; Wilson, F. F.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Emery, S.; Esteve, L.; de Monchenault, G. Hamel; Kozanecki, W.; Vasseur, G.; Yeche, Ch.; Zito, M.] CEA, Ctr Saclay, SPP, F-91191 Gif Sur Yvette, France. [Allen, M. T.; Aston, D.; Bartoldus, R.; Benitez, J. F.; Cenci, R.; Coleman, J. P.; Convery, M. R.; Dingfelder, J. C.; Dorfan, J.; Dubois-Felsmann, G. P.; Dunwoodie, W.; Field, R. C.; Gabareen, A. M.; Graham, M. T.; Grenier, P.; Hast, C.; Innes, W. R.; Kaminski, J.; Kelsey, M. H.; Kim, H.; Kim, P.; Kocian, M. L.; Leith, D. W. G. S.; Li, S.; Lindquist, B.; Luitz, S.; Luth, V.; Lynch, H. L.; MacFarlane, D. B.; Marsiske, H.; Messner, R.; Muller, D. R.; Neal, H.; Nelson, S.; O'Grady, C. P.; Ofte, I.; Perl, M.; Ratcliff, B. N.; Roodman, A.; Salnikov, A. A.; Schindler, R. H.; Schwiening, J.; Snyder, A.; Su, D.; Sullivan, M. K.; Suzuki, K.; Swain, S. K.; Thompson, J. M.; Va'vra, J.; Wagner, A. P.; Weaver, M.; West, C. A.; Wisniewski, W. J.; Wittgen, M.; Wright, D. H.; Wulsin, H. W.; Yarritu, A. K.; Yi, K.; Young, C. C.; Ziegler, V.] Stanford Linear Accelerator Ctr, Natl Accelerator Lab, Stanford, CA 94309 USA. [Chen, X. R.; Liu, H.; Park, W.; Purohit, M. V.; White, R. M.; Wilson, J. R.] Univ S Carolina, Columbia, SC 29208 USA. [Burchat, P. R.; Edwards, A. J.; Miyashita, T. S.] Stanford Univ, Stanford, CA 94305 USA. [Ahmed, S.; Alam, M. S.; Ernst, J. A.; Saeed, M. A.; Zain, S. B.; Pan, Y.] SUNY Albany, Albany, NY 12222 USA. [Spanier, S. M.; Wogsland, B. J.] Univ Tennessee, Knoxville, TN 37996 USA. [Eckmann, R.; Ritchie, J. L.; Ruland, A. M.; Schilling, C. J.; Schwitters, R. F.; Wray, B. C.] Univ Texas Austin, Austin, TX 78712 USA. [Drummond, B. W.; Izen, J. M.; Lou, X. C.] Univ Texas Dallas, Richardson, TX 75083 USA. [Bianchi, F.; Gamba, D.; Pelliccioni, M.] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy. [Bianchi, F.; Gamba, D.; Pelliccioni, M.] Univ Turin, Dipartimento Fis Sperimentale, I-10125 Turin, Italy. [Bomben, M.; Bosisio, L.; Cartaro, C.; Della Ricca, G.; Lanceri, L.; Vitale, L.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Bomben, M.; Bosisio, L.; Cartaro, C.; Della Ricca, G.; Lanceri, L.; Vitale, L.] Univ Trieste, Dipartmento Fis, I-34127 Trieste, Italy. [Azzolini, V.; Lopez-March, N.; Martinez-Vidal, F.; Milanes, D. A.; Oyanguren, A.] Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. Univ Sassari, I-07100 Sassari, Italy. [Azzolini, V.; Lopez-March, N.; Martinez-Vidal, F.; Milanes, D. A.; Oyanguren, A.] Univ Valencia, CSIC, IFIC, E-46071 Valencia, Spain. [Albert, J.; Banerjee, Sw.; Bhuyan, B.; Choi, H. H. F.; Hamano, K.; King, G. J.; Kowalewski, R.; Lewczuk, M. J.; Nugent, I. M.; Roney, J. M.; Sobie, R. J.] Univ Victoria, Victoria, BC V8W 3P6, Canada. [Gershon, T. J.; Harrison, P. F.; Ilic, J.; Latham, T. E.; Mohanty, G. B.; Puccio, E. M. T.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Band, H. R.; Chen, X.; Dasu, S.; Flood, K. T.; Pan, Y.; Prepost, R.; Vuosalo, C. O.; Wu, S. L.] Univ Wisconsin, Madison, WI 53706 USA. [Battaglia, M.; Brown, D. N.; Kerth, L. T.; Kolomensky, Yu. G.; Lynch, G.; Osipenkov, I. L.; Tackmann, K.; Tanabe, T.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Arnaud, N.; Bequilleux, J.; D'Orazio, A.; Davier, M.; Derkach, D.; da Costa, J. Firmino; Grosdidier, G.; Le Diberder, F.; Lepeltier, V.; Lutz, A. M.; Malaescu, B.; Pruvot, S.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wormser, G.] Univ Paris 11, Ctr Sci Orsay, F-91898 Orsay, France. RP Aubert, B (reprint author), Univ Savoie, LAPP, CNRS, IN2P3, F-74941 Annecy Le Vieux, France. RI Martinez Vidal, F*/L-7563-2014; Kolomensky, Yury/I-3510-2015; Lo Vetere, Maurizio/J-5049-2012; Lusiani, Alberto/N-2976-2015; Lusiani, Alberto/A-3329-2016; Morandin, Mauro/A-3308-2016; Stracka, Simone/M-3931-2015; Della Ricca, Giuseppe/B-6826-2013; Di Lodovico, Francesca/L-9109-2016; Pappagallo, Marco/R-3305-2016; Calcaterra, Alessandro/P-5260-2015; Frey, Raymond/E-2830-2016; Oyanguren, Arantza/K-6454-2014; Luppi, Eleonora/A-4902-2015; White, Ryan/E-2979-2015; Calabrese, Roberto/G-4405-2015; Patrignani, Claudia/C-5223-2009; Neri, Nicola/G-3991-2012; Forti, Francesco/H-3035-2011; Rotondo, Marcello/I-6043-2012; de Sangro, Riccardo/J-2901-2012; Saeed, Mohammad Alam/J-7455-2012; Negrini, Matteo/C-8906-2014; Monge, Maria Roberta/G-9127-2012 OI Strube, Jan/0000-0001-7470-9301; Chen, Chunhui /0000-0003-1589-9955; Raven, Gerhard/0000-0002-2897-5323; Hamel de Monchenault, Gautier/0000-0002-3872-3592; Lanceri, Livio/0000-0001-8220-3095; Ebert, Marcus/0000-0002-3014-1512; Corwin, Luke/0000-0001-7143-3821; Sciacca, Crisostomo/0000-0002-8412-4072; Adye, Tim/0000-0003-0627-5059; Lafferty, George/0000-0003-0658-4919; Martinelli, Maurizio/0000-0003-4792-9178; Wilson, Robert/0000-0002-8184-4103; Martinez Vidal, F*/0000-0001-6841-6035; Kolomensky, Yury/0000-0001-8496-9975; Lo Vetere, Maurizio/0000-0002-6520-4480; Lusiani, Alberto/0000-0002-6876-3288; Lusiani, Alberto/0000-0002-6876-3288; Morandin, Mauro/0000-0003-4708-4240; Stracka, Simone/0000-0003-0013-4714; Della Ricca, Giuseppe/0000-0003-2831-6982; Di Lodovico, Francesca/0000-0003-3952-2175; Pappagallo, Marco/0000-0001-7601-5602; Calcaterra, Alessandro/0000-0003-2670-4826; Frey, Raymond/0000-0003-0341-2636; Oyanguren, Arantza/0000-0002-8240-7300; Luppi, Eleonora/0000-0002-1072-5633; White, Ryan/0000-0003-3589-5900; Calabrese, Roberto/0000-0002-1354-5400; Patrignani, Claudia/0000-0002-5882-1747; Neri, Nicola/0000-0002-6106-3756; Forti, Francesco/0000-0001-6535-7965; Rotondo, Marcello/0000-0001-5704-6163; de Sangro, Riccardo/0000-0002-3808-5455; Saeed, Mohammad Alam/0000-0002-3529-9255; Negrini, Matteo/0000-0003-0101-6963; Monge, Maria Roberta/0000-0003-1633-3195 FU DOE; NSF (USA); NSERC (Canada); CEA; CNRS-IN2P3 (France); BMBF; DFG (Germany); INFN (Italy); FOM (The Netherlands); NFR (Norway); MES (Russia); MEC (Spain); STFC ( United Kingdom); Marie Curie EIF (European Union); A. P. Sloan Foundation FX We are grateful for the excellent luminosity and machine conditions provided by our PEP-II colleagues and for the substantial dedicated effort from the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and kind hospitality. This work is supported by DOE and NSF (USA), NSERC (Canada), CEA and CNRS-IN2P3 (France), BMBF and DFG (Germany), INFN (Italy), FOM (The Netherlands), NFR (Norway), MES (Russia), MEC (Spain), and STFC (United Kingdom). Individuals have received support from the Marie Curie EIF (European Union) and the A. P. Sloan Foundation. NR 21 TC 8 Z9 8 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD MAY PY 2009 VL 79 IS 9 AR 091101 DI 10.1103/PhysRevD.79.091101 PG 9 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 451WO UT WOS:000266501800001 ER PT J AU Bai, Y Han, ZY AF Bai, Yang Han, Zhenyu TI Unified dark matter model in a singlet extension of the universal extra dimension model SO PHYSICAL REVIEW D LA English DT Article DE cosmic ray energy spectra; cosmology; dark matter; electrons; galaxies; neutrinos; standard model ID ENERGIES; HIGGS AB We propose a dark matter model with standard model singlet extension of the universal extra dimension model to explain the recent observations of ATIC, PPB-BETS, PAMELA, and DAMA. Other than the standard model fields propagating in the bulk of a five-dimensional space, one fermion field and one scalar field are introduced and both are standard model singlets. The zero mode of the new fermion is identified as the right-handed neutrino, while its first Klein-Kaluza (KK) mode is the lightest KK-odd particle and the dark matter candidate. The cosmic ray spectra from ATIC and PPB-BETS determine the dark matter particle mass and hence the fifth dimension compactification scale to be 1.0-1.6 TeV. The zero mode of the singlet scalar field with a mass below 1 GeV provides an attractive force between dark matter particles, which allows a Sommerfeld enhancement to boost the annihilation cross section in the Galactic halo to explain the PAMELA data. The DAMA annual modulation results are explained by coupling the same scalar field to the electron via a higher-dimensional operator. We analyze the model parameter space that can satisfy the dark matter relic abundance and accommodate all the dark matter detection experiments. We also consider constraints from the diffuse extragalactic gamma-ray background, which can be satisfied if the dark matter particle and the first KK mode of the scalar field have highly degenerate masses. C1 [Bai, Yang] Fermilab Natl Accelerator Lab, Dept Theoret Phys, Batavia, IL 60510 USA. [Han, Zhenyu] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. RP Bai, Y (reprint author), Fermilab Natl Accelerator Lab, Dept Theoret Phys, Batavia, IL 60510 USA. EM bai@fnal.gov; zhenyuhan@physics.ucdavis.edu FU United States Department of Energy [DE-FG03-91ER40674]; LLC [DE-AC02-07CH11359]; United States Department of Energy FX Many thanks to Patrick Fox for interesting discussions and Marco Cirelli for useful correspondences. Z. H. is supported in part by the United States Department of Energy Grant No. DE-FG03-91ER40674. Fermilab is operated by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the United States Department of Energy. NR 57 TC 20 Z9 20 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD MAY PY 2009 VL 79 IS 9 AR 095023 DI 10.1103/PhysRevD.79.095023 PG 8 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 451WO UT WOS:000266501800080 ER PT J AU Carena, M Medina, AD Shah, NR Wagner, CEM AF Carena, Marcela Medina, Anibal D. Shah, Nausheen R. Wagner, Carlos E. M. TI Gauge-Higgs unification, neutrino masses, and dark matter in warped extra dimensions SO PHYSICAL REVIEW D LA English DT Article ID RANDALL-SUNDRUM MODEL; FERMION MASSES; HIERARCHY; SYMMETRY; FIELDS; SCATTERING; MECHANISM; ENERGIES; GEOMETRY; S-1/Z(2) AB Gauge-Higgs unification in warped extra dimensions provides an attractive solution to the hierarchy problem. The extension of the standard model gauge symmetry to SO(5)xU(1)(X) allows the incorporation of the custodial symmetry SU(2)(R) plus a Higgs boson doublet with the right quantum numbers under the gauge group. In the minimal model, the Higgs mass is in the range 110-150 GeV, while a light Kaluza-Klein excitation of the top quark appears in the spectrum, providing agreement with precision electroweak measurements and a possible test of the model at a high luminosity LHC. The extension of the model to the lepton sector has several interesting features. We discuss the conditions necessary to obtain realistic charged lepton and neutrino masses. After the addition of an exchange symmetry in the bulk, we show that the odd neutrino Kaluza-Klein modes provide a realistic dark-matter candidate, with a mass of the order of 1 TeV, which will be probed by direct dark-matter detection experiments in the near future. C1 [Carena, Marcela] Fermilab Natl Accelerator Lab, Dept Theoret Phys, Batavia, IL 60510 USA. [Carena, Marcela; Shah, Nausheen R.; Wagner, Carlos E. M.] Univ Chicago, Enrico Fermi Inst, Dept Phys, Chicago, IL 60637 USA. [Wagner, Carlos E. M.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Medina, Anibal D.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Wagner, Carlos E. M.] Argonne Natl Lab, HEP Div, Argonne, IL 60439 USA. RP Carena, M (reprint author), Fermilab Natl Accelerator Lab, Dept Theoret Phys, POB 500, Batavia, IL 60510 USA. OI Medina, Anibal/0000-0003-3662-4352 NR 69 TC 28 Z9 28 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD MAY PY 2009 VL 79 IS 9 AR 096010 DI 10.1103/PhysRevD.79.096010 PG 23 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 451WO UT WOS:000266501800092 ER PT J AU Csaki, C Heinonen, J Hubisz, J Shirman, Y AF Csaki, Csaba Heinonen, Johannes Hubisz, Jay Shirman, Yuri TI Odd decays from even anomalies: Gauge mediation signatures without supersymmetry SO PHYSICAL REVIEW D LA English DT Article ID PARTICLE PHYSICS; BREAKING; BOSON; AXION; MODEL; SPIN; LHC AB We analyze the theory and phenomenology of anomalous global chiral symmetries in the presence of an extra dimension. We propose a simple extension of the standard model in 5D whose signatures closely resemble those of supersymmetry with gauge mediation, and we suggest a novel scalar dark matter candidate. C1 [Csaki, Csaba; Heinonen, Johannes] Cornell Univ, Newman Lab Elementary Particle Phys, Inst High Energy Phenomenol, Ithaca, NY 14853 USA. [Hubisz, Jay] Argonne Natl Lab, Argonne, IL 60439 USA. [Hubisz, Jay] Syracuse Univ, Dept Phys, Syracuse, NY 13244 USA. [Shirman, Yuri] Univ Calif Irvine, Dept Phys, Irvine, CA 92697 USA. RP Csaki, C (reprint author), Cornell Univ, Newman Lab Elementary Particle Phys, Inst High Energy Phenomenol, Ithaca, NY 14853 USA. EM csaki@cornell.edu; jh337@cornell.edu; jhubisz@physics.syr.edu; yshirman@uci.edu FU NSF [PHY-0355005, PHYa0653656]; DOE [DE-AC02-06CH11357]; Syracuse University College of Arts and Sciences FX We thank Jonathan Feng, Gero von Gersdorff, Mark Trodden, Itay Yavin, and Kathryn Zurek for useful discussions and the Kavli Institute for Theoretical Physics at Santa Barbara for their hospitality while this work was initiated. We also thank Hsin-Chia Cheng for reading this manuscript prior to submission and K. C. Kong for pointing out a mistake in the relic density calculation in the first version of this paper. The work of C. C. is supported in part by the NSF under Grant No. PHY-0355005 and by a U.S.-Israeli BSF grant. J. He. was supported in part by the NSF under Grant No. PHY-0355005. J. Hu. was supported at Argonne National Laboratory under DOE Contract No. DE-AC02-06CH11357, and by the Syracuse University College of Arts and Sciences. Y.S. was supported in part by the NSF under Grant No. PHYa0653656. NR 60 TC 4 Z9 4 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD MAY PY 2009 VL 79 IS 10 AR 105016 DI 10.1103/PhysRevD.79.105016 PG 13 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 451WP UT WOS:000266501900099 ER PT J AU Davoudiasl, H Huber, P AF Davoudiasl, Hooman Huber, Patrick TI Thermal production of axions in the Earth SO PHYSICAL REVIEW D LA English DT Article ID INVISIBLE AXION; CP CONSERVATION; CONSTRAINTS; MANTLE; CORE AB We estimate the production rate of axion-type particles in the core of the Earth, at a temperature T approximate to 5000 K. We constrain thermal geo-axion emission by demanding a core-cooling rate less than O(100) K/Gyr, as suggested by geophysics. This yields a "nonstellar" (unaffected by extreme stellar temperatures or densities) bound on the axion-electron (ae) fine structure constant, alpha(ae)less than or similar to 10(-18), stronger than the existing accelerator (vacuum) bound by 4 orders of magnitude. We consider the prospects for measuring the geo-axion flux through conversion into photons in a geoscope; such measurements can further constrain alpha(ae). C1 [Davoudiasl, Hooman] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Huber, Patrick] Virginia Tech, Dept Phys, IPNAS, Blacksburg, VA 24061 USA. RP Davoudiasl, H (reprint author), Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. EM hooman@bnl.gov; pahuber@vt.edu FU U. S. Department of Energy [DE-AC02-98CH10886] FX We would like to thank G. Khodaparast, S. King, and Y. Semertzidis for useful discussions. The work of H. D. is supported in part by the U. S. Department of Energy underContract No. DE-AC02-98CH10886. NR 33 TC 1 Z9 1 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD MAY PY 2009 VL 79 IS 9 AR 095024 DI 10.1103/PhysRevD.79.095024 PG 5 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 451WO UT WOS:000266501800081 ER PT J AU Dawson, S Yan, WB AF Dawson, Sally Yan, Wenbin TI Hiding the Higgs boson with multiple scalars SO PHYSICAL REVIEW D LA English DT Article ID STANDARD MODEL; RADIATIVE-CORRECTIONS; ONE-LOOP; PHYSICS AB We consider models with multiple Higgs scalar gauge singlets and the resulting restrictions on the parameters from precision electroweak measurements. In these models, the scalar singlets mix with the SU(2)(L) Higgs doublet, potentially leading to reduced couplings of the scalars to fermions and gauge bosons relative to the standard model Higgs boson couplings. Such models can make the Higgs sector difficult to explore at the LHC. We emphasize the new physics resulting from the addition of at least two scalar Higgs singlets. C1 [Dawson, Sally] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Yan, Wenbin] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. RP Dawson, S (reprint author), Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. EM dawson@bnl.gov; wenbin.yan@stonybrook.edu OI Dawson, Sally/0000-0002-5598-695X FU U.S. Department of Energy [DE-AC02-98CH10886] FX The work of S. D. is supported by the U.S. Department of Energy under Grant No. DE-AC02-98CH10886. NR 32 TC 30 Z9 30 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD MAY PY 2009 VL 79 IS 9 AR 095002 DI 10.1103/PhysRevD.79.095002 PG 7 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 451WO UT WOS:000266501800059 ER PT J AU Deka, M Streuer, T Doi, T Dong, SJ Draper, T Liu, KF Mathur, N Thomas, AW AF Deka, M. Streuer, T. Doi, T. Dong, S. J. Draper, T. Liu, K. F. Mathur, N. Thomas, A. W. TI Moments of nucleon's parton distribution for the sea and valence quarks from lattice QCD SO PHYSICAL REVIEW D LA English DT Article ID CHIRAL PERTURBATION-THEORY; DEEP-INELASTIC SCATTERING; FORM-FACTOR; WILSON FERMIONS; ANTIQUARK ASYMMETRY; SYMMETRY-BREAKING; MATRIX-ELEMENTS; STRANGE SEA; OPERATORS; REPRESENTATIONS AB We extend the study of lowest moments, < x > and < x(2)>, of the parton distribution function of the nucleon to include those of the sea quarks; this entails a disconnected insertion calculation in lattice QCD. This is carried out on a 16(3) x 24 quenched lattice with Wilson fermion. The quark loops are calculated with Z(2) noise vectors and unbiased subtractions, and multiple nucleon sources are employed to reduce the statistical errors. We obtain 5 sigma signals for < x > for the u, d, and s quarks, but < x(2)> i is consistent with zero within errors. We provide results for both the connected and disconnected insertions. The perturbatively renormalized < x > for the strange quark at mu = 2 GeV is < x >(s+(s) over bar) = 0.027 +/- 0.006 which is consistent with the experimental result. The ratio of < x > for s vs u/d in the disconnected insertion with quark loops is calculated to be 0.88 +/- 0.07. This is about twice as large as the phenomenologically fitted < x >(s+($) over bar)/< x >((u) over bar)+< x >((d) over bar) from experiments where (u) over bar and (d) over bar include both the connected and disconnected insertion parts. We discuss the source and implication of this difference. C1 [Deka, M.; Doi, T.; Dong, S. J.; Draper, T.; Liu, K. F.] Univ Kentucky, Dept Phys & Astron, Lexington, KY 40506 USA. [Streuer, T.] Univ Regensburg, Inst Theoret Phys, D-93040 Regensburg, Germany. [Mathur, N.] Tata Inst Fundamental Res, Dept Theoret Phys, Mumbai 40005, Maharashtra, India. [Thomas, A. W.] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. RP Deka, M (reprint author), Univ Kentucky, Dept Phys & Astron, Lexington, KY 40506 USA. EM mpdeka@pa.uky.edu RI Thomas, Anthony/G-4194-2012 OI Thomas, Anthony/0000-0003-0026-499X NR 83 TC 24 Z9 24 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD MAY PY 2009 VL 79 IS 9 AR 094502 DI 10.1103/PhysRevD.79.094502 PG 32 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 451WO UT WOS:000266501800051 ER PT J AU Detmold, W Tiburzi, BC Walker-Loud, A AF Detmold, W. Tiburzi, B. C. Walker-Loud, A. TI Extracting electric polarizabilities from lattice QCD SO PHYSICAL REVIEW D LA English DT Article ID MAGNETIC-FIELDS; MASSES; LOOPS AB Charged and neutral, pion and kaon electric polarizabilities are extracted from lattice QCD using an ensemble of anisotropic gauge configurations with dynamical clover fermions. We utilize classical background fields to access the polarizabilities from two-point correlation functions. Uniform background fields are achieved by quantizing the electric field strength with the proper treatment of boundary flux. These external fields, however, are implemented only in the valence quark sector. A novel method to extract charge particle polarizabilities is successfully demonstrated for the first time. C1 [Detmold, W.; Walker-Loud, A.] Coll William & Mary, Dept Phys, Williamsburg, VA 23187 USA. [Detmold, W.] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. [Tiburzi, B. C.] Univ Maryland, Dept Phys, Maryland Ctr Fundamental Phys, College Pk, MD 20742 USA. RP Detmold, W (reprint author), Coll William & Mary, Dept Phys, Williamsburg, VA 23187 USA. EM wdetmold@wm.edu; bctiburz@umd.edu; walkloud@wm.edu OI Tiburzi, Brian/0000-0001-8696-2902; Detmold, William/0000-0002-0400-8363 FU U.S. Department of Energy [DE-AC05-06OR-23177, DE-FG02-93ER-40762, DE-FG0207ER-41527]; Jefferson Science Associates, LLC FX These calculations were performed using the CHROMA software suite [36] on the computing clusters at Jefferson Laboratory. Time on the clusters was awarded through the USQCD collaboration, and made possible by the SciDAC Initiative. This work is supported in part by Jefferson Science Associates, LLC under U. S. Department of Energy contract No. DE-AC05-06OR-23177 (W. D.). Additional support provided by the U.S. Department of Energy, under Grants No. DE-FG02-04ER-41302 (W. D.), No. DE-FG02-93ER-40762 (B. C. T.), and No. DE-FG0207ER-41527 (A. W.-L.). NR 36 TC 28 Z9 28 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD MAY PY 2009 VL 79 IS 9 AR 094505 DI 10.1103/PhysRevD.79.094505 PG 12 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 451WO UT WOS:000266501800054 ER PT J AU Dudek, JJ Edwards, RG Thomas, CE AF Dudek, Jozef J. Edwards, Robert G. Thomas, Christopher E. TI Exotic and excited-state radiative transitions in charmonium from lattice QCD SO PHYSICAL REVIEW D LA English DT Article ID MODEL; DECAYS; J/PSI AB We compute, for the first time using lattice QCD methods, charmonium radiative transition rates involving states of high spin and exotics. Utilizing a large basis of interpolating fields we are able to project out various excited-state contributions to three-point correlators computed on quenched anisotropic lattices. In the first lattice QCD calculation of the exotic 1(-+) eta(c1) radiative decay, we find a large partial width Gamma(eta(c1) -> J/psi gamma) similar to 100 keV. We find clear signals for electric dipole and magnetic quadrupole transition form factors in chi(c2) -> J/psi gamma, calculated for the first time in this framework, and study transitions involving excited psi and chi(c1,2) states. We calculate hindered magnetic dipole transition widths without the sensitivity to assumptions made in model studies and find statistically significant signals, including a nonexotic vector hybrid candidate Y(hyb?) -> eta(c)gamma. As well as comparison to experimental data, we discuss in some detail the phenomenology suggested by our results and the extent to which it mirrors that of quark-potential models, and make suggestions for the interpretation of our results involving exotic quantum numbered states. C1 [Dudek, Jozef J.; Edwards, Robert G.; Thomas, Christopher E.] Jefferson Lab, Newport News, VA 23606 USA. [Dudek, Jozef J.] Old Dominion Univ, Dept Phys, Norfolk, VA 23529 USA. RP Dudek, JJ (reprint author), Jefferson Lab, 12000 Jefferson Ave, Newport News, VA 23606 USA. EM dudek@jlab.org NR 34 TC 61 Z9 61 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD MAY PY 2009 VL 79 IS 9 AR 094504 DI 10.1103/PhysRevD.79.094504 PG 19 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 451WO UT WOS:000266501800053 ER PT J AU El-Bennich, B Furman, A Kaminski, R Lesniak, L Loiseau, B Moussallam, B AF El-Bennich, B. Furman, A. Kaminski, R. Lesniak, L. Loiseau, B. Moussallam, B. TI CP violation and kaon-pion interactions in B -> K pi(+)pi(-) decays SO PHYSICAL REVIEW D LA English DT Article ID CHIRAL PERTURBATION-THEORY; LOW-ENERGY EXPANSION; FORM-FACTORS; 11 GEV/C; QCD FACTORIZATION; K SCATTERING; SUM-RULES; SYMMETRY; LATTICE; BOSON AB We study CP violation and the contribution of the strong kaon-pion interactions in the three-body B -> K pi(+)pi(-) decays. We extend our recent work on the effect of the two-pion S- and P-wave interactions to that of the corresponding kaon-pion ones. The weak amplitudes have a first term derived in QCD factorization and a second one as a phenomenological contribution added to the QCD penguin amplitudes. The effective QCD coefficients include the leading order contributions plus next-to-leading order vertex and penguins corrections. The matrix elements of the transition to the vacuum of the kaon-pion pairs, appearing naturally in the factorization formulation, are described by the strange K pi scalar (S-wave) and vector (P-wave) form factors. These are determined from Muskhelishvili-Omnes coupled channel equations using experimental kaon-pion T-matrix elements, together with chiral symmetry and asymptotic QCD constraints. From the scalar form factor study, the modulus of the K-0*(1430)decay constant is found to be (32 +/- 5) MeV. The additional phenomenological amplitudes are fitted to reproduce the K pi effective mass and helicity angle distributions, the B -> K*(892)pi branching ratios and the CP asymmetries of the recent data from Belle and BABAR collaborations. We use also the new measurement by the BABAR group of the phase difference between the B-0 and (B) over bar (0) decay amplitudes to K*(892)pi. Our predicted B-+/- -> K-0*(1430)pi(+/-), K-0*(1430) -> K-+/-pi(-/+) branching fraction, equal to (11.6 +/- 0.6) x 10(-6), is smaller than the result of the analyzes of both collaborations. For the neutral B0 decays, the predicted value is (11.1 +/- 0.5) x 10(-6). In order to reduce the large systematic uncertainties in the experimental determination of the B -> K-0*(1430)pi branching fractions, a new parametrization is proposed. It is based on the K pi scalar form factor, well constrained by theory and experiments other than those of B decays. C1 [El-Bennich, B.; Loiseau, B.] Univ Paris 06, Lab Phys Nucl & Hautes Energies, CNRS, IN2P3,Grp Theorie, F-75252 Paris, France. [El-Bennich, B.; Loiseau, B.] Univ Paris 07, Lab Phys Nucl & Hautes Energies, CNRS, IN2P3,Grp Theorie, F-75252 Paris, France. [El-Bennich, B.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Kaminski, R.; Lesniak, L.] Polish Acad Sci, Henryk Niewodniczanski Inst Nucl Phys, Div Theoret Phys, PL-31342 Krakow, Poland. [Moussallam, B.] Univ Paris 11, Inst Phys Nucl, CNRS, Grp Phys Theor,IN2P3, F-91406 Orsay, France. RP El-Bennich, B (reprint author), Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. NR 82 TC 45 Z9 45 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD MAY PY 2009 VL 79 IS 9 AR 094005 DI 10.1103/PhysRevD.79.094005 PG 28 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 451WO UT WOS:000266501800024 ER PT J AU Gelis, F Lappi, T Venugopalan, R AF Gelis, Francois Lappi, Tuomas Venugopalan, Raju TI High energy factorization in nucleus-nucleus collisions. III. Long range rapidity correlations SO PHYSICAL REVIEW D LA English DT Article ID COLOR GLASS CONDENSATE; GLUON DISTRIBUTION-FUNCTIONS; RENORMALIZATION-GROUP; TRANSVERSE-MOMENTUM; PERTURBATIVE QCD; SMALL-X; EVOLUTION; EQUATION; FEATURES; POMERON AB We obtain a novel result in QCD for long range rapidity correlations between gluons produced in the collision of saturated high energy hadrons or nuclei. This result, obtained in a high energy factorization framework, provides strong justification for the Glasma flux tube picture of coherent strong color fields. Our formalism can be applied to "near side ridge'' events at the Relativistic Heavy Ion Collider and in future studies of long range rapidity correlations at the LHC. C1 [Gelis, Francois] CERN, PH TH, Div Theory, CH-1211 Geneva 23, Switzerland. [Gelis, Francois; Lappi, Tuomas] CEA Saclay, DSM,URA 2306, CNRS, Inst Phys Theor, F-91191 Gif Sur Yvette, France. [Venugopalan, Raju] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. RP Gelis, F (reprint author), CERN, PH TH, Div Theory, Case C01600, CH-1211 Geneva 23, Switzerland. FU U. S. Department of Energy [DE-AC02-98CH10886]; Agence Nationale de la Recherche via the programme [ANR-06-BLAN-0285-01] FX We thank the Center for Theoretical Sciences of the Tata Institute for Fundamental Research for their support during the program "Initial Conditions in Heavy Ion Collisions.'' R.V.'s research is supported by the U. S. Department of Energy under DOE Contract No. DE-AC02-98CH10886. F.G.' s work is supported in part by Agence Nationale de la Recherche via the programme ANR-06-BLAN-0285-01. NR 38 TC 57 Z9 58 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD MAY PY 2009 VL 79 IS 9 AR 094017 DI 10.1103/PhysRevD.79.094017 PG 7 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 451WO UT WOS:000266501800036 ER PT J AU Harnik, R Kribs, GD AF Harnik, Roni Kribs, Graham D. TI Effective theory of Dirac dark matter SO PHYSICAL REVIEW D LA English DT Article ID COSMIC-RAY ELECTRONS; EARLY UNIVERSE; POSITRONS; ENERGY; SUPERSYMMETRY; SPECTRA; MASS AB A stable Dirac fermion with four-fermion interactions to leptons suppressed by a scale Lambda similar to 1 TeV is shown to provide a viable candidate for dark matter. The thermal relic abundance matches cosmology, while nuclear recoil direct detection bounds are automatically avoided in the absence of (large) couplings to quarks. The annihilation cross section in the early Universe is the same as the annihilation in our Galactic neighborhood. This allows Dirac fermion dark matter to naturally explain the positron ratio excess observed by PAMELA with a minimal boost factor, given present astrophysical uncertainties. We use the GALPROP program for propagation of signal and background; we discuss in detail the uncertainties resulting from the propagation parameters and, more importantly, the injected spectra. Fermi/GLAST has an opportunity to see a feature in the gamma-ray spectrum at the mass of the Dirac fermion. The excess observed by ATIC/PPB-BETS may also be explained with Dirac dark matter that is heavy. A super-symmetric model with a Dirac bino provides a viable UV model of the effective theory. The dominance of the leptonic operators, and thus the observation of an excess in positrons and not in antiprotons, is naturally explained by the large hypercharge and low mass of sleptons as compared with squarks. Minimizing the boost factor implies the right- handed selectron is the lightest slepton, which is characteristic of our model. Selectrons (or sleptons) with mass less than a few hundred GeV are an inescapable consequence awaiting discovery at the LHC. C1 [Harnik, Roni] Stanford Univ, Dept Phys, SITP, Stanford, CA 94305 USA. [Kribs, Graham D.] Univ Oregon, Dept Phys, Eugene, OR 97403 USA. [Kribs, Graham D.] Univ Oregon, Inst Theoret Sci, Eugene, OR 97403 USA. [Harnik, Roni] Stanford Univ, SLAC, Menlo Pk, CA 94025 USA. RP Harnik, R (reprint author), Stanford Univ, Dept Phys, SITP, Stanford, CA 94305 USA. FU Department of Energy [DE-AC02-76SF00515, DE-FG02-96ER40969] FX The authors thank I. Moskalenko and A. Strong for help in understanding the physics and output of their GALPROP program; J. Schombert for teaching us how to read FITS files; and N. Weiner for useful discussions at an early stage in the project. The authors also thank the Aspen Center for Physics where this work was initiated. This work was supported in part by the Department of Energy under Grant Nos. DE-AC02-76SF00515 (R.H.) and DE-FG02-96ER40969 (G.D.K.). NR 76 TC 61 Z9 61 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD MAY PY 2009 VL 79 IS 9 AR 095007 DI 10.1103/PhysRevD.79.095007 PG 11 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 451WO UT WOS:000266501800064 ER PT J AU Hooper, D Zurek, KM AF Hooper, Dan Zurek, Kathryn M. TI PAMELA and ATIC signals from Kaluza-Klein dark matter SO PHYSICAL REVIEW D LA English DT Article ID RAY POSITRON FRACTION; ELECTRONS; ENERGIES AB We study the possibility that Kaluza-Klein dark matter in a model with one universal extra dimension is responsible for the recent observations of the PAMELA and ATIC experiments. In this model, the dark matter particles annihilate largely to charged leptons, which enables them to produce a spectrum of cosmic ray electrons and positrons consistent with the PAMELA and ATIC measurements. To normalize to the observed signal, however, large boost factors (similar to 10(3)) are required. Despite these large boost factors and significant annihilation to hadronic modes (35%), we find that the constraints from cosmic ray antiproton measurements can be satisfied. Relic abundance considerations in this model force us to consider a rather specific range of masses (approximately 600-900 GeV) which is very similar to the range required to generate the ATIC spectral feature. The results presented here can also be used as a benchmark for model-independent constraints on dark matter annihilation to hadronic modes. C1 [Hooper, Dan; Zurek, Kathryn M.] Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, Batavia, IL 60510 USA. [Hooper, Dan] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [Zurek, Kathryn M.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. RP Hooper, D (reprint author), Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, POB 500, Batavia, IL 60510 USA. FU U. S. Department of Energy [DE-FG02-95ER40896]; NASA [NAG5-10842] FX We would like to thank Joakim Edsjo for his help with DARKSUSY. This work has been supported by the U. S. Department of Energy Grant No. DE-FG02-95ER40896 and by NASA Grant No. NAG5-10842. NR 44 TC 43 Z9 43 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD MAY PY 2009 VL 79 IS 10 AR 103529 DI 10.1103/PhysRevD.79.103529 PG 5 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 451WP UT WOS:000266501900049 ER PT J AU Hooper, D Stebbins, A Zurek, KM AF Hooper, Dan Stebbins, Albert Zurek, Kathryn M. TI Excesses in cosmic ray positron and electron spectra from a nearby clump of neutralino dark matter SO PHYSICAL REVIEW D LA English DT Article ID EGRET OBSERVATIONS; EMISSION AB In this letter, we suggest that a nearby clump of 600-1000 GeV neutralinos may be responsible for the excesses recently observed in the cosmic ray positron and electron spectra by the PAMELA and ATIC experiments. Although neutralino dark matter annihilating throughout the halo of the Milky Way is predicted to produce a softer spectrum than is observed, and violate constraints from cosmic ray antiproton measurements, a large nearby (within 1-2 kiloparsecs of the Solar System) clump of annihilating neutralinos can lead to a spectrum which is consistent with PAMELA and ATIC, while also producing an acceptable antiproton flux. Furthermore, the presence of a large dark matter clump can potentially accommodate the very large annihilation rate required to produce the PAMELA and ATIC signals. We estimate the probability of a sufficiently large clump being present to be similar to 10(-3) or less. C1 [Hooper, Dan; Stebbins, Albert; Zurek, Kathryn M.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Hooper, Dan] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. RP Hooper, D (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. FU US Department of Energy [DE-FG02-95ER40896]; NASA [NAG5-10842] FX This work has been supported by the US Department of Energy, including grant DE-FG02-95ER40896, and by NASA grant NAG5-10842. NR 40 TC 68 Z9 68 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD MAY PY 2009 VL 79 IS 10 AR 103513 DI 10.1103/PhysRevD.79.103513 PG 5 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 451WP UT WOS:000266501900033 ER PT J AU Ibe, M Murayama, H Yanagida, TT AF Ibe, Masahiro Murayama, Hitoshi Yanagida, T. T. TI Breit-Wigner enhancement of dark matter annihilation SO PHYSICAL REVIEW D LA English DT Article ID ABUNDANCES; ENERGIES AB We point out that annihilation of dark matter in the galactic halo can be enhanced relative to that in the early Universe due to a Breit-Wigner tail, if the dark matter annihilates through a pole just below the threshold. This provides a new explanation to the "boost factor" which is suggested by the recent data of the PAMELA, ATIC and PPB-BETS cosmic ray experiments. C1 [Ibe, Masahiro] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. [Murayama, Hitoshi; Yanagida, T. T.] Univ Tokyo, Inst Phys & Math Universe, Kashiwa, Chiba 2778568, Japan. [Murayama, Hitoshi] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Murayama, Hitoshi] Univ Calif Berkeley, Lawrence Berkeley Lab, Theoret Phys Grp, Berkeley, CA 94720 USA. [Yanagida, T. T.] Univ Tokyo, Dept Phys, Tokyo 1130033, Japan. RP Ibe, M (reprint author), SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. RI Yanagida, Tsutomu/A-4394-2011; Murayama, Hitoshi/A-4286-2011 FU U. S. Department of Energy [DE-AC02-76SF00515]; MEXT, Japan; U.S. DOE [DE-AC03-76SF00098]; NSF [PHY-04-57315] FX The work of M. I. was supported by the U.S. Department of Energy under Contract No. DE-AC02-76SF00515. The work of H. M. and T. T. Y. was supported in part by World Premier International Research Center Initiative (WPI Initiative), MEXT, Japan. The work of H. M. was also supported in part by the U.S. DOE under Contract No. DE-AC03-76SF00098, and in part by the NSF under Grant No. PHY-04-57315. NR 15 TC 118 Z9 119 U1 1 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD MAY PY 2009 VL 79 IS 9 AR 095009 DI 10.1103/PhysRevD.79.095009 PG 5 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 451WO UT WOS:000266501800066 ER PT J AU Martin, SP AF Martin, Stephen P. TI Nonuniversal gaugino masses from nonsinglet F-terms in nonminimal unified models SO PHYSICAL REVIEW D LA English DT Article ID GRAND-UNIFICATION; SUPERSYMMETRIC SU(5); PROTON-DECAY; SCALE; GUTS; PREDICTIONS; NATURALNESS; SPECTRUM; SO(10) AB In phenomenological studies of low-energy supersymmetry, running gaugino masses are often taken to be equal near the scale of apparent gauge coupling unification. However, many known mechanisms can avoid this universality, even in models with unified gauge interactions. One example is an F-term vacuum expectation value that is a singlet under the standard model gauge group but transforms nontrivially in the symmetric product of two adjoint representations of a group that contains the standard model gauge group. Here, I compute the ratios of gaugino masses that follow from F-terms in nonsinglet representations of SO(10) and E(6) and their subgroups, extending well-known results for SU(5). The SO(10) results correct some long-standing errors in the literature. C1 [Martin, Stephen P.] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. [Martin, Stephen P.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. RP Martin, SP (reprint author), No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. FU National Science Foundation [PHY-0757325] FX This work was supported in part by National Science Foundation Grant No. PHY-0757325. NR 55 TC 76 Z9 76 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD MAY PY 2009 VL 79 IS 9 AR 095019 DI 10.1103/PhysRevD.79.095019 PG 7 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 451WO UT WOS:000266501800076 ER PT J AU Quigg, C Shrock, R AF Quigg, Chris Shrock, Robert TI Gedanken worlds without Higgs fields: QCD-induced electroweak symmetry breaking SO PHYSICAL REVIEW D LA English DT Review ID CHIRAL PERTURBATION-THEORY; PROTON MASS DIFFERENCE; MODEL PADE CALCULATION; REAL SCALAR FIELD; WEAK INTERACTIONS; STANDARD MODEL; SIGMA-MODEL; BOSON MASS; BROKEN SYMMETRIES; TECHNICOLOR THEORIES AB To illuminate how electroweak symmetry breaking shapes the physical world, we investigate toy models in which no Higgs fields or other constructs are introduced to induce spontaneous symmetry breaking. Two models incorporate the standard SU(3)(c)circle times SU(2)(L)circle times U(1)(Y) gauge symmetry and fermion content similar to that of the standard model. The first class-like the standard electroweak theory-contains no bare mass terms, so the spontaneous breaking of chiral symmetry within quantum chromodynamics is the only source of electroweak symmetry breaking. The second class adds bare fermion masses sufficiently small that QCD remains the dominant source of electroweak symmetry breaking and the model can serve as a well-behaved low-energy effective field theory to energies somewhat above the hadronic scale. A third class of models is based on the left-right-symmetric SU(3)(c)circle times SU(2)(L)circle times SU(2)(R)circle times U(1) gauge group. In a fourth class of models, built on SU(4)(PS)circle times SU(2)(L)circle times SU(2)(R) gauge symmetry, the lepton number is treated as a fourth color and the color gauge group is enlarged to the SU(4)(PS) of Pati and Salam (PS). Many interesting characteristics of the models stem from the fact that the effective strength of the weak interactions is much closer to that of the residual strong interactions than in the real world. The Higgs-free models not only provide informative contrasts to the real world, but also lead us to consider intriguing issues in the application of field theory to the real world. C1 [Quigg, Chris] Fermilab Natl Accelerator Lab, Dept Theoret Phys, Batavia, IL 60510 USA. [Quigg, Chris] Univ Karlsruhe, Inst Theoret Teilchenphys, D-76128 Karlsruhe, Germany. [Shrock, Robert] SUNY Stony Brook, CN Yang Inst Theoret Phys, Stony Brook, NY 11794 USA. RP Quigg, C (reprint author), Fermilab Natl Accelerator Lab, Dept Theoret Phys, POB 500, Batavia, IL 60510 USA. NR 140 TC 18 Z9 18 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD MAY PY 2009 VL 79 IS 9 AR 096002 DI 10.1103/PhysRevD.79.096002 PG 20 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 451WO UT WOS:000266501800084 ER PT J AU Shifman, M Unsal, M AF Shifman, M. Unsal, Mithat TI Yang-Mills theories with chiral matter at strong coupling SO PHYSICAL REVIEW D LA English DT Article ID LARGE-N EXPANSION; FIELD-THEORIES; GAUGE-THEORIES; LATTICE; CONDENSATE; SYMMETRY; MODEL AB Strong coupling dynamics of Yang-Mills theories with chiral fermion content remained largely elusive despite much effort over the years. In this work, we propose a dynamical framework in which we can address nonperturbative properties of chiral, nonsupersymmetric gauge theories, in particular, chiral quiver theories on S(1)xR(3). Double-trace deformations are used to stabilize the center-symmetric vacuum. This allows one to smoothly connect small-r(S(1)) to large-r(S(1)) physics (R(4) is the limiting case) where the double-trace deformations are switched off. In particular, the occurrence of the mass gap in the gauge sector and linear confinement due to bions are analytically demonstrated. We find the pattern of the chiral symmetry realization which depends on the structure of the monopole-ring operators, a novel class of topological excitations. The deformed chiral theory, unlike the undeformed one, satisfies volume independence down to arbitrarily small volumes (a working Eguchi-Kawai reduction) in the large N limit. This equivalence may open new perspectives on strong coupling chiral gauge theories on R(4). C1 [Shifman, M.] Univ Minnesota, William I Fine Theoret Phys Inst, Minneapolis, MN 55455 USA. [Shifman, M.] Univ Paris 11, Phys Theor Lab, CNRS, Unite Mixte Rech,UMR 8627, F-91405 Orsay, France. [Unsal, Mithat] Stanford Univ, SLAC, Menlo Pk, CA 94025 USA. [Unsal, Mithat] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. RP Shifman, M (reprint author), Univ Minnesota, William I Fine Theoret Phys Inst, Minneapolis, MN 55455 USA. FU DOE [DE-FG02-94ER40823]; Chaire Internationalle de Recherche Blaise Pascal de l'Etat et de la Regoin d'Ille-de-France, geree par la Fondation de l'Ecole Normale Superieure; U.S. Department of Energy [DE-AC02-76SF00515] FX We thank E. Poppitz for sharing with us his unpublished notes on chiral determinants, and useful remarks on the paper. M. S. is grateful to G. Korchemsky and A. Vainshtein for discussions. M. U. thanks S. Dimopoulos, M. Peskin, E. Poppitz, and M. Golterman for illuminating conversations about chiral gauge theories. We thank the Galileo Galilei Institute for Theoretical Physics in Florence for their hospitality and INFN for partial support at the final stages of this work. The work of M. S. is supported in part by DOE Grant No. DE-FG02-94ER40823 and by Chaire Internationalle de Recherche Blaise Pascal de l'Etat et de la Regoin d'Ille-de-France, geree par la Fondation de l'Ecole Normale Superieure. The work of M. U. is supported by the U.S. Department of Energy Grant No. DE-AC02-76SF00515. NR 43 TC 11 Z9 11 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD MAY PY 2009 VL 79 IS 10 AR 105010 DI 10.1103/PhysRevD.79.105010 PG 19 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 451WP UT WOS:000266501900093 ER PT J AU Smith, CJ Fuller, GM Smith, MS AF Smith, Christel J. Fuller, George M. Smith, Michael S. TI Big bang nucleosynthesis with independent neutrino distribution functions SO PHYSICAL REVIEW D LA English DT Article ID WEAK-INTERACTION RATES; INTERMEDIATE-MASS NUCLEI; PROBE WMAP OBSERVATIONS; DECAYING DARK-MATTER; PRIMORDIAL NUCLEOSYNTHESIS; STERILE NEUTRINOS; EARLY UNIVERSE; X-RAY; TAU-NEUTRINOS; OSCILLATIONS AB We have performed new big bang nucleosynthesis calculations, which employ arbitrarily specified, time-dependent neutrino and antineutrino distribution functions for each of up to four neutrino flavors. We self-consistently couple these distributions to the thermodynamics, the expansion rate, and scale factor-time/temperature relationship, as well as to all relevant weak, electromagnetic, and strong nuclear reaction processes in the early Universe. With this approach, we can treat any scenario in which neutrino or antineutrino spectral distortion might arise. These scenarios might include, for example, decaying particles, active-sterile neutrino oscillations, and active-active neutrino oscillations in the presence of significant lepton numbers. Our calculations allow lepton numbers and sterile neutrinos to be constrained with observationally determined primordial helium and deuterium abundances. We have modified a standard big bang nucleosynthesis code to perform these calculations and have made it available to the community. C1 [Smith, Christel J.; Fuller, George M.] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA. [Smith, Michael S.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. RP Smith, CJ (reprint author), Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA. FU U.S. DOE [DE-AC05-00OR22725]; NSF [PHY-0653626]; UC/LANL CARE grant at UCSD FX We would like to acknowledge discussions with Chad Kishimoto and Kevork Abazajian. ORNL is managed by UT-Battelle, LLC, for the U.S. DOE under Contract No. DE-AC05-00OR22725. The work of G. M. F. and C. J. S. was supported in part by NSF Grant No. PHY-0653626 and a UC/LANL CARE grant at UCSD. NR 73 TC 15 Z9 15 U1 2 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD MAY PY 2009 VL 79 IS 10 AR 105001 DI 10.1103/PhysRevD.79.105001 PG 10 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 451WP UT WOS:000266501900084 ER PT J AU Vogelsang, W Yuan, F AF Vogelsang, Werner Yuan, Feng TI Next-to-leading order calculation of the single transverse spin asymmetry in the Drell-Yan process SO PHYSICAL REVIEW D LA English DT Article ID DEEP-INELASTIC SCATTERING; FINAL-STATE INTERACTIONS; STRUCTURE-FUNCTION G2(X; PARTON DISTRIBUTIONS; QUANTUM CHROMODYNAMICS; HADRONIC SCATTERING; EVOLUTION-EQUATIONS; POLARIZED NUCLEON; POWER CORRECTIONS; HIGHER-TWIST AB We calculate the next-to-leading order perturbative QCD corrections to the transverse momentum weighted single transverse spin asymmetry in Drell-Yan lepton pair production in hadronic collisions. We identify the splitting function relevant for the scale evolution of the twist-three quark-gluon correlation function. We comment on the consequences of our results for phenomenology. C1 [Vogelsang, Werner] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Yuan, Feng] Lawrence Berkeley Natl Lab, Div Nucl Sci, Berkeley, CA 94720 USA. [Yuan, Feng] Brookhaven Natl Lab, RIKEN, BNL Res Ctr, Upton, NY 11973 USA. RP Vogelsang, W (reprint author), Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. EM vogelsan@quark.phy.bnl.gov; fyuan@quark.phy.bnl.gov RI Yuan, Feng/N-4175-2013 FU U.S. Department of Energy [DE-AC0205CH11231, DE-AC02-98CH10886]; RIKEN, Brookhaven National Laboratory FX We thank Zhongbo Kang, Jianwei Qiu, and Jian Zhou for useful comments and valuable discussions. W. V. is grateful to V. Braun, M. Diehl, and D. Muller for useful discussions. This work was supported in part by the U.S. Department of Energy under grant Contract No. DE-AC0205CH11231. F. Y. and W. V. thank RIKEN, Brookhaven National Laboratory and the U. S. Department of Energy (Contract No. DE-AC02-98CH10886) for providing the facilities essential for the completion of their work. NR 56 TC 52 Z9 52 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD MAY PY 2009 VL 79 IS 9 AR 094010 DI 10.1103/PhysRevD.79.094010 PG 10 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 451WO UT WOS:000266501800029 ER PT J AU Wang, P Leinweber, DB Thomas, AW Young, RD AF Wang, P. Leinweber, D. B. Thomas, A. W. Young, R. D. TI Chiral extrapolation of octet-baryon charge radii SO PHYSICAL REVIEW D LA English DT Article ID ELECTROMAGNETIC FORM-FACTORS; PERTURBATION-THEORY; QUARK-MODEL; NUCLEON; LATTICE; CONVERGENCE; COVARIANT; SYMMETRY AB The charge radii of octet-baryons obtained in quenched lattice-QCD calculations are extrapolated within heavy-baryon chiral perturbation theory. Finite-range regularization is applied to improve the convergence of the chiral expansion and to provide estimates of quenching artifacts. Lattice values of quark distribution radii and baryon charge radii for m(pi)(2) in the range (0.1,0.7) GeV2 are described very well with finite-range regularization. Upon estimating corrections for both finite-volume and quenching effects, the obtained charge radii of the proton, neutron and Sigma(-) are in good agreement with experimental measurements. The predicted charge radii of the remaining octet-baryons have not yet been measured and present a challenge to future experiments. C1 [Wang, P.; Thomas, A. W.] Jefferson Lab, Newport News, VA 23606 USA. [Leinweber, D. B.] Univ Adelaide, Special Res Ctr Subatom Struct Matter CSSM, Adelaide, SA 5005, Australia. [Leinweber, D. B.] Univ Adelaide, Dept Phys, Adelaide, SA 5005, Australia. [Thomas, A. W.] Coll William & Mary, Dept Phys, Williamsburg, VA 23187 USA. [Young, R. D.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. RP Wang, P (reprint author), Jefferson Lab, 12000 Jefferson Ave, Newport News, VA 23606 USA. RI Thomas, Anthony/G-4194-2012; Young, Ross/H-8207-2012; Leinweber, Derek/J-6705-2013 OI Thomas, Anthony/0000-0003-0026-499X; Leinweber, Derek/0000-0002-4745-6027 FU Australian Partnership for Advanced Computing (APAC); eResearch South Australia for supercomputer; Australian Research Council; U.S. DOE [DE-AC05-06OR23177] FX We thank the Australian Partnership for Advanced Computing (APAC) and eResearch South Australia for supercomputer support enabling this project. This work is supported by the Australian Research Council and by U.S. DOE Contract No. DE-AC05-06OR23177, under which Jefferson Science Associates, LLC operates Jefferson Laboratory, and Contract No. DE-AC02-06CH11357, under which UChicago Argonne, LLC operates Argonne National Laboratory. NR 53 TC 34 Z9 34 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD MAY PY 2009 VL 79 IS 9 AR 094001 DI 10.1103/PhysRevD.79.094001 PG 12 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 451WO UT WOS:000266501800020 ER PT J AU Yamazaki, T AF Yamazaki, Takeshi TI On-shell Delta I=3/2 kaon weak matrix elements with nonzero total momentum SO PHYSICAL REVIEW D LA English DT Article ID CHIRAL PERTURBATION-THEORY; PION-SCATTERING LENGTH; QUANTUM-FIELD THEORIES; TO-LEADING ORDER; LATTICE CALCULATION; ANISOTROPIC LATTICES; FINAL-STATE; ONE-LOOP; FERMIONS; DECAYS AB We present our results for the on-shell Delta I=3/2 kaon decay matrix elements using domain wall fermions and the DBW2 gauge action at one coarse lattice spacing corresponding to a(-1)=1.31 GeV in the quenched approximation. The on-shell matrix elements are evaluated in two different frames: the center-of-mass frame and nonzero total-momentum frame. We employ the formula proposed by Lellouch and Luscher in the center-of-mass frame, and its extension for a nonzero total-momentum frame to extract the infinite volume, on-shell, center- of-mass frame decay amplitudes. We determine the decay amplitude at the physical pion mass and momentum from the chiral extrapolation and an interpolation of the relative momentum using the results calculated in the two frames. We have obtained ReA(2) = 1.66(23)((+48)(-03)) x ((+53)(-0)) x 10(-8) GeV and ImA(2) = -1.181(26)((+141)(-014)) ((+44)(-0)) x 10(-12) GeV at the physical point, using the data at the relatively large pion mass, m(pi) > 0.35 GeV. The first error is statistic, and the second and third are systematic. The second error is estimated with several fits of the chiral extrapolation including the (quenched) chiral perturbation formula at next to leading order using only lighter pion masses. The third one is estimated with an analysis using the lattice dispersion relation. The result of ReA(2) is reasonably consistent with experiment. C1 [Yamazaki, Takeshi] Univ Connecticut, Dept Phys, Storrs, CT 06269 USA. [Yamazaki, Takeshi] Brookhaven Natl Lab, RIKEN, BNL Res Ctr, Upton, NY 11973 USA. RP Yamazaki, T (reprint author), Kyoto Univ, Yukawa Inst Theoret Phys, Kyoto 6068502, Japan. NR 70 TC 3 Z9 3 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD MAY PY 2009 VL 79 IS 9 AR 094506 DI 10.1103/PhysRevD.79.094506 PG 24 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 451WO UT WOS:000266501800055 ER PT J AU Daligault, J Dimonte, G AF Daligault, Jerome Dimonte, Guy TI Correlation effects on the temperature-relaxation rates in dense plasmas SO PHYSICAL REVIEW E LA English DT Article DE hydrogen; molecular dynamics method; plasma density; plasma interactions; plasma temperature ID CONDUCTIVITIES; HYDROGEN; LIQUIDS; STATE AB We present a model for the rate of temperature relaxation between electrons and ions in plasmas. The model includes self-consistently the effects of particle screening, electron degeneracy, and correlations between electrons and ions. We successfully validate the model over a wide range of plasma coupling against molecular-dynamics simulations of classical plasmas of like-charged electrons and ions. We present calculations of the relaxation rates in dense hydrogen and show that, while electron-ion correlation effects are indispensable in classical, like-charged plasmas at any density and temperature, quantum diffraction effects prevail over electron-ion correlation effects in dense hydrogen plasmas. C1 [Daligault, Jerome; Dimonte, Guy] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Daligault, J (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87545 USA. EM daligaul@lanl.gov NR 30 TC 29 Z9 29 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD MAY PY 2009 VL 79 IS 5 AR 056403 DI 10.1103/PhysRevE.79.056403 PG 14 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 451WE UT WOS:000266500800064 PM 19518572 ER PT J AU Lane, JMD Ismail, AE Chandross, M Lorenz, CD Grest, GS AF Lane, J. Matthew D. Ismail, Ahmed E. Chandross, Michael Lorenz, Christian D. Grest, Gary S. TI Forces between functionalized silica nanoparticles in solution SO PHYSICAL REVIEW E LA English DT Article DE coatings; flocculation; liquid theory; molecular dynamics method; nanoparticles; phase separation; polymers; silicon compounds; surfactants; water ID MOLECULAR-DYNAMICS SIMULATION; POLY(ETHYLENE OXIDE); QUANTUM-CHEMISTRY; SHEAR; SURFACE; LIQUID; WATER AB To prevent the flocculation and phase separation of nanoparticles in solution, nanoparticles are often functionalized with short chain surfactants. Here we present fully atomistic molecular dynamics simulations which characterize how these functional coatings affect the interactions between nanoparticles and with the surrounding solvent. For 5-nm-diameter silica nanoparticles coated with poly(ethylene oxide) (PEO) oligomers in water, we determined the hydrodynamic drag on two approaching nanoparticles moving through solvent and on a single nanoparticle as it approaches a planar surface. In most circumstances, macroscale fluid theory accurately predicts the drag on these nanoscale particles. Good agreement is seen with Brenner's analytical solutions for wall separations larger than the soft nanoparticle radius. For two approaching coated nanoparticles, the solvent-mediated (velocity independent) and lubrication (velocity-dependent) forces are purely repulsive and do not exhibit force oscillations that are typical of uncoated rigid spheres. C1 [Lane, J. Matthew D.; Ismail, Ahmed E.; Chandross, Michael; Grest, Gary S.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Lorenz, Christian D.] Kings Coll London, Mat Res Grp, London WC2R 2LS, England. RP Lane, JMD (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. RI Ismail, Ahmed/B-7790-2009; Lorenz, Christian/A-6996-2017 OI Ismail, Ahmed/0000-0001-9929-5598; Lorenz, Christian/0000-0003-1028-4804 FU Laboratory Directed Research and Development; Sandia Corporation; Lockheed Martin Co.; United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX The authors thank Frank van Swol and Burkhard Dunweg for useful discussions. We thank the New Mexico Computing Application Center (NMCAC) for generous allocation of computer time. This work is supported by the Laboratory Directed Research and Development program at Sandia National Laboratories. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Co., for the United States Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. NR 28 TC 29 Z9 29 U1 2 U2 40 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD MAY PY 2009 VL 79 IS 5 AR 050501 DI 10.1103/PhysRevE.79.050501 PG 4 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 451WD UT WOS:000266500700010 PM 19518405 ER PT J AU Mamontov, E Vlcek, L Wesolowski, DJ Cummings, PT Rosenqvist, J Wang, W Cole, DR Anovitz, LM Gasparovic, G AF Mamontov, Eugene Vlcek, Lukas Wesolowski, David J. Cummings, Peter T. Rosenqvist, Joergen Wang, Wei Cole, David R. Anovitz, Lawrence M. Gasparovic, Goran TI Suppression of the dynamic transition in surface water at low hydration levels: A study of water on rutile SO PHYSICAL REVIEW E LA English DT Article DE molecular dynamics method; solvation; surface waves (fluid); titanium compounds; water ID BACKSCATTERING NEUTRON SPECTROSCOPY; MOLECULAR-DYNAMICS; PROTEIN HYDRATION; CONFINED WATER; DIELECTRIC-RELAXATION; SILICA MATRICES; SCATTERING; CROSSOVER; LYSOZYME; SYSTEMS AB Our quasielastic neutron-scattering experiments and molecular-dynamics simulations probing surface water on rutile (TiO2) have demonstrated that a sufficiently high hydration level is a prerequisite for the temperature-dependent crossover in the nanosecond dynamics of hydration water. Below the monolayer coverage of mobile surface water, a weak temperature dependence of the relaxation times with no apparent crossover is observed. We associate the dynamic crossover with interlayer jumps of the mobile water molecules, which become possible only at a sufficiently high hydration level. C1 [Mamontov, Eugene] Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA. [Vlcek, Lukas; Cummings, Peter T.] Vanderbilt Univ, Dept Chem Engn, Nashville, TN 37235 USA. [Wesolowski, David J.; Rosenqvist, Joergen; Cole, David R.; Anovitz, Lawrence M.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. [Cummings, Peter T.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Wang, Wei] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. [Gasparovic, Goran] NIST, Ctr Neutron Res, Gaithersburg, MD 20899 USA. [Gasparovic, Goran] Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA. RP Mamontov, E (reprint author), Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA. RI Wang, Wei/B-5924-2012; Cummings, Peter/B-8762-2013; Vlcek, Lukas/N-7090-2013; Mamontov, Eugene/Q-1003-2015; Anovitz, Lawrence/P-3144-2016 OI Cummings, Peter/0000-0002-9766-2216; Vlcek, Lukas/0000-0003-4782-7702; Mamontov, Eugene/0000-0002-5684-2675; Anovitz, Lawrence/0000-0002-2609-8750 FU U. S. DOE, BES, Division of Chemical Sciences, Geosciences, and Biosciences [ERKCC41]; Oak Ridge National Laboratory; U. S. DOE [DE-AC05-00OR22725] FX The authors are thankful to K. W. Herwig and M. Zamponi for critical reading of the paper. We used the resource of the Computing Center for Research and Education at Vanderbilt University and the Institutional Computational Cluster at ORNL's Chemical Sciences Division. This work was supported by the U. S. DOE, BES, Division of Chemical Sciences, Geosciences, and Biosciences through the project "Nanoscale Complexity at the Oxide/Water Interface" (Project No. ERKCC41) and by Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U. S. DOE under Contract No. DE-AC05-00OR22725. NR 48 TC 39 Z9 39 U1 4 U2 20 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 EI 1550-2376 J9 PHYS REV E JI Phys. Rev. E PD MAY PY 2009 VL 79 IS 5 AR 051504 DI 10.1103/PhysRevE.79.051504 PN 1 PG 6 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 451WD UT WOS:000266500700064 PM 19518459 ER PT J AU Wallace, DC Chisolm, ED Bock, N AF Wallace, Duane C. Chisolm, Eric D. Bock, Nicolas TI Improved model for the transit entropy of monatomic liquids SO PHYSICAL REVIEW E LA English DT Article DE ab initio calculations; copper; density functional theory; entropy; liquid theory; melting; sodium; vibrational modes ID INITIO MOLECULAR-DYNAMICS; HIGH PRESSURES; ALKALI-METALS; DEGREES C; COMPRESSIBILITY; TEMPERATURES; VELOCITY; SODIUM; SOUND; DENSITIES AB In the original formulation of vibration-transit (V-T) theory for monatomic liquid dynamics, the transit contribution to entropy was taken to be a universal constant, calibrated to the constant-volume entropy of melting. This model suffers two deficiencies: (a) it does not account for experimental entropy differences of +/- 2% among elemental liquids and (b) it implies a value of zero for the transit contribution to internal energy. The purpose of this paper is to correct these deficiencies. To this end, the V-T equation for entropy is fitted to an overall accuracy of +/- 0.1% to the available experimental high-temperature entropy data for elemental liquids. The theory contains two nuclear motion contributions: (a) the dominant vibrational contribution S(vib)(T/theta(0)), where T is temperature and theta(0) is the vibrational characteristic temperature, and (b) the transit contribution S(tr)(T/theta(tr)), where theta(tr) is a scaling temperature for each liquid. The appearance of a common functional form of S(tr) for all the liquids studied is a property of the experimental data, when analyzed via the V-T formula. The resulting S(tr) implies the correct transit contribution to internal energy. The theoretical entropy of melting is derived in a single formula applying to normal and anomalous melting alike. An ab initio calculation of theta(0), based on density-functional theory, is reported for liquid Na and Cu. Comparison of these calculations with the above analysis of experimental entropy data provides verification of V-T theory. In view of the present results, techniques currently being applied in ab initio simulations of liquid properties can be employed to advantage in the further testing and development of V-T theory. C1 [Wallace, Duane C.; Chisolm, Eric D.; Bock, Nicolas] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Wallace, DC (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. NR 55 TC 6 Z9 6 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD MAY PY 2009 VL 79 IS 5 AR 051201 DI 10.1103/PhysRevE.79.051201 PG 7 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 451WD UT WOS:000266500700046 PM 19518441 ER PT J AU Chan, TL Wang, CZ Ho, KM Chelikowsky, JR AF Chan, T. -L. Wang, C. Z. Ho, K. M. Chelikowsky, James R. TI Efficient First-Principles Simulation of Noncontact Atomic Force Microscopy for Structural Analysis SO PHYSICAL REVIEW LETTERS LA English DT Article ID TOTAL-ENERGY CALCULATIONS; TIO2(110) SURFACE; SI(111); RESOLUTION; IMAGE AB We propose an efficient scheme to simulate noncontact atomic force microscopy images by using first-principles self-consistent potential from the sample as input without explicit modeling of the atomic force microscopy tip. Our method is applied to various types of semiconductor surfaces including Si(111)-(7 x 7), TiO2(110)-(1 x 1), Ag/Si(111)-(root 3 x root 3)R30 degrees, and Ge/Si(105)-(1 x 2) surfaces. We obtain good agreement with experimental results and previous theoretical studies, and our method can aid in identifying different structural models for surface reconstruction. C1 [Chan, T. -L.; Chelikowsky, James R.] Univ Texas Austin, Inst Computat Engn & Sci, Ctr Computat Mat, Austin, TX 78712 USA. [Chan, T. -L.; Wang, C. Z.; Ho, K. M.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Chan, T. -L.; Wang, C. Z.; Ho, K. M.] Iowa State Univ, Ames Lab, US DOE, Ames, IA 50011 USA. RP Chan, TL (reprint author), Univ Texas Austin, Inst Computat Engn & Sci, Ctr Computat Mat, Austin, TX 78712 USA. RI Chan, Tzu-Liang/C-3260-2015; OI Chan, Tzu-Liang/0000-0002-9655-0917; Wang, Chong/0000-0003-4489-4344 FU Director for Energy Research; Office of Basic Energy Sciences; National Energy Research Scientific Computing Center and the Texas Advanced Computing Center; National Science Foundation [DMR-0551195]; U. S. DOE [DE-FG02-06ER46286, DE-FG02-06ER15760] FX Ames Laboratory is operated for the U. S. DOE by Iowa State University under Contract No. DE-AC02-07CH11358. This work was supported by the Director for Energy Research, Office of Basic Energy Sciences including a grant of computer time at the National Energy Research Scientific Computing Center and the Texas Advanced Computing Center. T. L. C. and J. R. C. acknowledge support from the National Science Foundation under DMR-0551195 and the U. S. DOE under DE-FG02-06ER46286 and DE-FG02-06ER15760. NR 35 TC 14 Z9 14 U1 1 U2 28 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAY 1 PY 2009 VL 102 IS 17 AR 176101 DI 10.1103/PhysRevLett.102.176101 PG 4 WC Physics, Multidisciplinary SC Physics GA 443ZC UT WOS:000265948300036 PM 19518799 ER PT J AU Hoblit, S Sandorfi, AM Ardashev, K Bade, C Bartalini, O Blecher, M Caracappa, A D'Angelo, A d'Angelo, A Di Salvo, R Fantini, A Gibson, C Gluckler, H Hicks, K Honig, A Kageya, T Khandaker, M Kistner, OC Kizilgul, S Kucuker, S Lehmann, A Lowry, M Lucas, M Mahon, J Miceli, L Moricciani, D Norum, B Pap, M Preedom, B Seyfarth, H Schaerf, C Stroher, H Thorn, CE Whisnant, CS Wang, K Wei, X AF Hoblit, S. Sandorfi, A. M. Ardashev, K. Bade, C. Bartalini, O. Blecher, M. Caracappa, A. D'Angelo, A. d'Angelo, A. Di Salvo, R. Fantini, A. Gibson, C. Glueckler, H. Hicks, K. Honig, A. Kageya, T. Khandaker, M. Kistner, O. C. Kizilgul, S. Kucuker, S. Lehmann, A. Lowry, M. Lucas, M. Mahon, J. Miceli, L. Moricciani, D. Norum, B. Pap, M. Preedom, B. Seyfarth, H. Schaerf, C. Stroeher, H. Thorn, C. E. Whisnant, C. S. Wang, K. Wei, X. TI Measurements of HD(gamma,pi) and Implications for the Convergence of the Gerasimov-Drell-Hern Integral SO PHYSICAL REVIEW LETTERS LA English DT Article ID SUM-RULE; MAGNETIC MOMENTS; PHOTOPRODUCTION; DEUTERON; NUCLEI AB We report new measurements of inclusive pi production from frozen-spin HD for polarized photon beams covering the Delta(1232) resonance. These provide data simultaneously on both H and D with nearly complete angular distributions of the spin-difference cross sections entering the Gerasimov-Drell-Hearn (GDH) sum rule. Recent results from Mainz and Bonn exceed the GDH prediction for the proton by 22 mu b, suggesting as yet unmeasured high-energy components. Our pi(0) data reveal a different angular dependence than assumed in Mainz analyses and integrate to a value that is 18 mu b lower, suggesting a more rapid convergence. Our results for deuterium are somewhat lower than published data, considerably more precise, and generally lower than available calculations. C1 [Hoblit, S.; Ardashev, K.; Norum, B.; Wang, K.] Univ Virginia, Dept Phys, Charlottesville, VA 22901 USA. [Hoblit, S.; Sandorfi, A. M.; Caracappa, A.; Kistner, O. C.; Lowry, M.; Miceli, L.; Thorn, C. E.; Wei, X.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Ardashev, K.; Gibson, C.; Lehmann, A.; Preedom, B.] Univ S Carolina, Dept Phys, Columbia, SC 29208 USA. [Bade, C.; Hicks, K.; Kizilgul, S.; Lucas, M.; Mahon, J.] Ohio Univ, Dept Phys, Athens, OH 45701 USA. [Bartalini, O.; D'Angelo, A.; d'Angelo, A.; Di Salvo, R.; Fantini, A.; Moricciani, D.; Schaerf, C.] Univ Roma Tor Vergata, Rome, Italy. [Bartalini, O.; D'Angelo, A.; d'Angelo, A.; Di Salvo, R.; Fantini, A.; Moricciani, D.; Schaerf, C.] Ist Nazl Fis Nucl, Sez Roma2, Rome, Italy. [Blecher, M.; Kageya, T.] Virginia Polytech Inst & State Univ, Dept Phys, Blacksburg, VA 24061 USA. [Glueckler, H.; Pap, M.; Stroeher, H.] Forschungszentrum Julich, D-52425 Julich, Germany. [Honig, A.] Syracuse Univ, Dept Phys, Syracuse, NY 13210 USA. [Khandaker, M.] Norfolk State Univ, Norfolk & Jefferson Lab, Newport News, VA 23606 USA. [Whisnant, C. S.] James Madison Univ, Harrisonburg, VA 22807 USA. RP Hoblit, S (reprint author), Univ Virginia, Dept Phys, Charlottesville, VA 22901 USA. EM hoblit@bnl.gov; sandorfi@jlab.org RI Fantini, Alessia/J-2478-2012; moricciani, dario/C-5002-2014; D'Angelo, Annalisa/A-2439-2012; OI Fantini, Alessia/0000-0002-4643-4731; moricciani, dario/0000-0002-1737-8857; D'Angelo, Annalisa/0000-0003-3050-4907; Di Salvo, Rachele/0000-0002-2162-714X FU U. S. Department of Energy [DE-AC02-98-CH10886]; Istituto Nazionale di Fisica Nucleare, Italy; U. S. National Science Foundation FX This work was supported by the U. S. Department of Energy under Contract No. DE-AC02-98-CH10886, by the Istituto Nazionale di Fisica Nucleare, Italy, and by the U. S. National Science Foundation. We are indebted to Mr. F. Lincoln for his technical assistance. We thank Doctors C. Commeaux, J.-P. Didelez, and G. Rouille for their collaboration during the early stages of HD target development. One of us (A. M. S.) would like to thank Doctors A. Fix and H. Arenhovel for supplying their deuteron calculations. NR 22 TC 17 Z9 17 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAY 1 PY 2009 VL 102 IS 17 AR 172002 DI 10.1103/PhysRevLett.102.172002 PG 5 WC Physics, Multidisciplinary SC Physics GA 443ZC UT WOS:000265948300010 PM 19518773 ER PT J AU Kofu, M Ueda, H Nojiri, H Oshima, Y Zenmoto, T Rule, KC Gerischer, S Lake, B Batista, CD Ueda, Y Lee, SH AF Kofu, M. Ueda, H. Nojiri, H. Oshima, Y. Zenmoto, T. Rule, K. C. Gerischer, S. Lake, B. Batista, C. D. Ueda, Y. Lee, S. -H. TI Magnetic-Field Induced Phase Transitions in a Weakly Coupled s=1/2 Quantum Spin Dimer System Ba3Cr2O8 SO PHYSICAL REVIEW LETTERS LA English DT Article ID BOSE-EINSTEIN CONDENSATION; CRITICAL-POINT; TLCUCL3; STATES; ESR AB By using bulk magnetization, electron spin resonance (ESR), heat capacity, and neutron scattering techniques, we characterize the thermodynamic and quantum phase diagrams of Ba3Cr2O8. Our ESR measurements indicate that the low field paramagnetic ground state is a mixed state of the singlet and the S-z=0 triplet for H perpendicular to c. This suggests the presence of an intradimer Dzyaloshinsky-Moriya (DM) interaction with a DM vector perpendicular to the c axis. C1 [Kofu, M.; Lee, S. -H.] Univ Virginia, Dept Phys, Charlottesville, VA 22904 USA. [Ueda, H.; Ueda, Y.] Univ Tokyo, Inst Solid State Phys, Kashiwa, Chiba 2778581, Japan. [Nojiri, H.; Oshima, Y.; Zenmoto, T.] Tohoku Univ, Inst Mat Res, Sendai, Miyagi 9800821, Japan. [Rule, K. C.; Gerischer, S.; Lake, B.] Helmholtz Zentrum Berlin, D-14109 Berlin, Germany. [Lake, B.] Tech Univ Berlin, Inst Festkorperphys, D-10623 Berlin, Germany. [Batista, C. D.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Kofu, M (reprint author), Univ Virginia, Dept Phys, Charlottesville, VA 22904 USA. EM shlee@virginia.edu RI Nojiri, Hiroyuki/B-3688-2011; Oshima, Yugo/H-1031-2013; Batista, Cristian/J-8008-2016; OI Oshima, Yugo/0000-0001-9822-8262; Lake, Bella/0000-0003-0034-0964 FU U. S. DOE [DE-FG0207ER46384]; ICC-IMR [KAKENHI20244052] FX We thank M. Tachiki, S. Haas, Y. B. Kim, S. Ishihara, and O. Nohadni for helpful discussions, and C. Stock and V. G. Sakai for crystal alignment for neutron scattering measurements. Work at the University of Virginia was supported by the U. S. DOE through DE-FG0207ER46384. S.- H. L. thanks the WPI- Advanced Institute for Materials Research at Tohoku University for their hospitality during his stay when this work was partially done. H. N. was supported by ICC-IMR and KAKENHI20244052. NR 21 TC 23 Z9 23 U1 3 U2 26 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAY 1 PY 2009 VL 102 IS 17 AR 177204 DI 10.1103/PhysRevLett.102.177204 PG 4 WC Physics, Multidisciplinary SC Physics GA 443ZC UT WOS:000265948300060 PM 19518823 ER PT J AU Langner, MC Kantner, CLS Chu, YH Martin, LM Yu, P Seidel, J Ramesh, R Orenstein, J AF Langner, M. C. Kantner, C. L. S. Chu, Y. H. Martin, L. M. Yu, P. Seidel, J. Ramesh, R. Orenstein, J. TI Observation of Ferromagnetic Resonance in SrRuO3 by the Time-Resolved Magneto-Optical Kerr Effect SO PHYSICAL REVIEW LETTERS LA English DT Article ID SPIN-WAVES; MAGNETIZATION; DYNAMICS; BEHAVIOR AB We report the observation of ferromagnetic resonance (FMR) in SrRuO3 using the time-resolved magneto-optical Kerr effect. The FMR oscillations in the time-domain appear in response to a sudden, optically induced change in the direction of easy-axis anisotropy. The high FMR frequency, 250 GHz, and large Gilbert damping parameter, alpha approximate to 1, are consistent with strong spin-orbit coupling. We find that the parameters associated with the magnetization dynamics, including alpha, have a nonmonotonic temperature dependence, suggestive of a link to the anomalous Hall effect. C1 [Langner, M. C.; Kantner, C. L. S.; Yu, P.; Ramesh, R.; Orenstein, J.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Langner, M. C.; Kantner, C. L. S.; Martin, L. M.; Orenstein, J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Chu, Y. H.; Seidel, J.; Ramesh, R.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. RP Langner, MC (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. RI Ying-Hao, Chu/A-4204-2008; Martin, Lane/H-2409-2011; Yu, Pu/F-1594-2014; Orenstein, Joseph/I-3451-2015 OI Ying-Hao, Chu/0000-0002-3435-9084; Martin, Lane/0000-0003-1889-2513; FU U. S. Department of Energy; Office of Science; National Science Council FX This research is supported by the U. S. Department of Energy, Office of Science. Y. H. C. acknowledges the support of the National Science Council, R. O. C. NR 26 TC 24 Z9 25 U1 7 U2 38 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAY 1 PY 2009 VL 102 IS 17 AR 177601 DI 10.1103/PhysRevLett.102.177601 PG 4 WC Physics, Multidisciplinary SC Physics GA 443ZC UT WOS:000265948300070 PM 19518833 ER PT J AU Robel, I Gresback, R Kortshagen, U Schaller, RD Klimov, VI AF Robel, Istvan Gresback, Ryan Kortshagen, Uwe Schaller, Richard D. Klimov, Victor I. TI Universal Size-Dependent Trend in Auger Recombination in Direct-Gap and Indirect-Gap Semiconductor Nanocrystals SO PHYSICAL REVIEW LETTERS LA English DT Article ID MULTIPLE EXCITON GENERATION; QUANTUM DOTS; OPTICAL NONLINEARITIES; SILICON NANOCRYSTALS; CARRIER DYNAMICS; BAND; EMISSION; GAIN; PBSE AB We report the first experimental observation of a striking convergence of Auger recombination rates in nanocrystals of both direct- (InAs, PbSe, CdSe) and indirect-gap (Ge) semiconductors, which is in contrast to a dramatic difference (by up to 4-5 orders of magnitude) in the Auger decay rates in respective bulk solids. To rationalize this finding, we invoke the effect of confinement-induced mixing between states with different translational momenta, which diminishes the impact of the bulk-semiconductor band structure on multiexciton interactions in nanocrystalline materials. C1 [Robel, Istvan; Schaller, Richard D.; Klimov, Victor I.] Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA. [Gresback, Ryan; Kortshagen, Uwe] Univ Minnesota, Dept Mech Engn, Minneapolis, MN 55455 USA. RP Robel, I (reprint author), Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA. EM rdsx@lanl.gov; klimov@lanl.gov RI Robel, Istvan/D-4124-2011; Gresback, Ryan/A-6785-2013; Kortshagen, Uwe/B-8744-2016; OI Robel, Istvan/0000-0002-9738-7728; Kortshagen, Uwe/0000-0001-5944-3656; Klimov, Victor/0000-0003-1158-3179 FU MRSEC Program of the National Science Foundation [DMR-0212302, DMR-0819885]; Office of Basic Energy Sciences; U. S. Department of Energy (DOE); Los Alamos LDRD funds; DOE Center for Integrated Nanotechnologies FX This work was supported by the Office of Basic Energy Sciences, U. S. Department of Energy ( DOE) and Los Alamos LDRD funds and is part of the user program of the DOE Center for Integrated Nanotechnologies. R. G. and U. K. acknowledge partial support by the MRSEC Program of the National Science Foundation (DMR-0212302 and DMR-0819885). NR 30 TC 120 Z9 121 U1 6 U2 54 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAY 1 PY 2009 VL 102 IS 17 AR 177404 DI 10.1103/PhysRevLett.102.177404 PG 4 WC Physics, Multidisciplinary SC Physics GA 443ZC UT WOS:000265948300068 PM 19518831 ER PT J AU Sitte, M Rosch, A Meyer, JS Matveev, KA Garst, M AF Sitte, M. Rosch, A. Meyer, J. S. Matveev, K. A. Garst, M. TI Emergent Lorentz Symmetry with Vanishing Velocity in a Critical Two-Subband Quantum Wire SO PHYSICAL REVIEW LETTERS LA English DT Article AB We consider a quantum wire with two subbands of spin-polarized electrons in the presence of strong interactions. We focus on the quantum phase transition when the second subband starts to get filled as a function of gate voltage. Performing a one-loop renormalization group analysis of the effective Hamiltonian, we identify the critical fixed-point theory as a conformal field theory having an enhanced SU(2) symmetry and central charge 3/2. While the fixed point is Lorentz invariant, the effective "speed of light" nevertheless vanishes at low energies due to marginally irrelevant operators leading to a diverging critical specific heat coefficient. C1 [Sitte, M.; Rosch, A.; Garst, M.] Univ Cologne, Inst Theoret Phys, D-50937 Cologne, Germany. [Meyer, J. S.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Matveev, K. A.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Sitte, M (reprint author), Univ Cologne, Inst Theoret Phys, Zulpicher Str 77, D-50937 Cologne, Germany. RI Rosch, Achim/A-2962-2009; Sitte, Matthias/F-8658-2011; Garst, Markus/B-6740-2012; Meyer, Julia/G-4690-2016 OI Rosch, Achim/0000-0002-6586-5721; Sitte, Matthias/0000-0001-6004-7861; Garst, Markus/0000-0001-5390-3316; FU DFG [SFB 608]; U. S. Department of Energy, Office of Science [DE-AC02-06CH11357, E-FG02-07ER46424] FX We thank N. Andrei, L. Balents, T. Senthil, and M. Vojta for useful discussions. This work was supported by the DFG through SFB 608 and by the U. S. Department of Energy, Office of Science, under Contracts No. DE-AC02-06CH11357 and No. DE-FG02-07ER46424. NR 10 TC 18 Z9 18 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAY 1 PY 2009 VL 102 IS 17 AR 176404 DI 10.1103/PhysRevLett.102.176404 PG 4 WC Physics, Multidisciplinary SC Physics GA 443ZC UT WOS:000265948300041 PM 19518804 ER PT J AU Anderson, OA LoDestro, LL AF Anderson, O. A. LoDestro, L. L. TI Exact solution of the envelope equations for a matched quadrupole-focused beam in the zero space-charge limit SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article AB The Kapchinskij-Vladimirskij equations are widely used to study the evolution of the beam envelopes in a periodic system of quadrupole focusing cells. In this paper, we analyze the case of a matched beam. Our model is analogous to that used by Courant and Snyder [E. D. Courant and H. S. Snyder, Ann. Phys. (Paris) 3, 1 ( 1958)], who obtained a first-order approximate solution for a synchrotron. Here, we treat a linear machine and obtain an exact solution. The model uses a full occupancy, piecewise-constant focusing function and neglects space charge. There are solutions in an infinite number of bands as the focus strength is increased. All these bands are stable. Our explicit results for the phase advance sigma and the envelopes a(z) and b(z) are exact for all phase advances except multiples of 180 degrees, where the behavior is singular. We find that the peak envelope size is minimized for sigma similar to 81 degrees. Actual operation in the higher bands would require very large, very accurate field strengths and would produce significantly larger envelope excursions. If such operation were found to be feasible, there would be interesting applications which we discuss. C1 [Anderson, O. A.] LBNL, Berkeley, CA 94720 USA. [LoDestro, L. L.] LLNL, Livermore, CA 94551 USA. RP Anderson, OA (reprint author), LBNL, Berkeley, CA 94720 USA. FU U.S. Department of Energy [DE-AC02-05CH11231] FX We thank S. M. Lund for many useful comments and editing help, E. P. Lee for suggestions on an early version, and the referees for improving the final product. This work was supported in part by the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 14 TC 0 Z9 0 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD MAY PY 2009 VL 12 IS 5 AR 054201 DI 10.1103/PhysRevSTAB.12.054201 PG 7 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 454QP UT WOS:000266697700014 ER PT J AU Chung, M Gilson, EP Davidson, RC Efthimion, PC Majeski, R AF Chung, Moses Gilson, Erik P. Davidson, Ronald C. Efthimion, Philip C. Majeski, Richard TI Experimental investigation of random noise-induced beam degradation in high-intensity accelerators using a linear Paul trap SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article ID HALO FORMATION; SIMULATOR EXPERIMENT; PROPAGATION AB A random noise-induced beam degradation that could affect intense beam transport over long propagation distances has been experimentally investigated by making use of the transverse beam dynamics equivalence between an alternating-gradient focusing system and a linear Paul trap system. For the present study, machine imperfections in the quadrupole focusing lattice are considered, which are emulated by adding small random noise on the voltage waveform of the quadrupole electrodes in the Paul trap. It is observed that externally driven noise continuously increases the rms radius, transverse emittance, and nonthermal tail of the trapped charge bunch almost linearly with the duration of the noise. The combined effects of collective modes and colored noise are also investigated and compared with numerical simulations. C1 [Chung, Moses] Fermilab Natl Accelerator Lab, Accelerator Phys Ctr, Batavia, IL 60510 USA. [Gilson, Erik P.; Davidson, Ronald C.; Efthimion, Philip C.; Majeski, Richard] Princeton Univ, Plasma Phys Lab, Princeton, NJ 08543 USA. RP Chung, M (reprint author), Fermilab Natl Accelerator Lab, Accelerator Phys Ctr, POB 500, Batavia, IL 60510 USA. FU U.S. Department of Energy FX This research was supported by the U.S. Department of Energy. The authors would like to thank Andy Carpe for his excellent technical support, and Mikhail Dorf for useful discussions regarding the WARP simulations. The research was carried out at Plasma Physics Laboratory while the corresponding author (Moses Chung) was at Princeton University. NR 37 TC 3 Z9 3 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD MAY PY 2009 VL 12 IS 5 AR 054203 DI 10.1103/PhysRevSTAB.12.054203 PG 11 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 454QP UT WOS:000266697700016 ER PT J AU Jeon, D Groening, L Franchetti, G AF Jeon, D. Groening, L. Franchetti, G. TI Fourth order resonance of a high intensity linear accelerator SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article ID HALO FORMATION AB It is discovered that, for a high intensity beam, the 4 sigma = 360 degrees (or 4 nu = 1) resonance of a linear accelerator is manifested through the octupolar term of space charge potential when the depressed phase advance per cell sigma is close to and below 90 degrees but no resonance effect is observed when sigma is just above 90 degrees. To verify that this is a resonance, a frequency analysis is performed and a study of resonance crossing from above and from below the resonance is conducted. It is observed that this fourth order resonance is dominating over the better known envelope instability and practically replacing it. The simulation study shows a clear emittance growth by this resonance and its stop band. A proposal to GSI was made to perform an experiment to measure the stop band of this resonance using the UNILAC. The experiment confirmed this resonance and will be published in a separate paper. C1 [Jeon, D.] Oak Ridge Natl Lab, SNS, Oak Ridge, TN 37831 USA. [Groening, L.; Franchetti, G.] GSI, Darmstadt, Germany. RP Jeon, D (reprint author), Oak Ridge Natl Lab, SNS, Oak Ridge, TN 37831 USA. EM jeond@ornl.gov RI Jeon, Dong-O/S-2137-2016 OI Jeon, Dong-O/0000-0001-6482-5878 FU EU-FP6 CARE-HIPPI [RII3-CT-2003-506395]; SNS; U.S. Department of Energy [DE-AC05-00OR22725] FX This work is a result of the collaboration between GSI-FAIR and SNS. The authors would like to express their gratitude to Professor I. Hofmann for his advice and comments. One of the authors (D.J.) is grateful for the hospitality of GSI and the partial support through the EU-FP6 CARE-HIPPI (Contract No. RII3-CT-2003-506395). He also is very grateful for the support of the SNS management. SNS is managed by UT-Battelle, LLC, under Contract No. DE-AC05-00OR22725 for the U.S. Department of Energy. NR 15 TC 13 Z9 13 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD MAY PY 2009 VL 12 IS 5 AR 054204 DI 10.1103/PhysRevSTAB.12.054204 PG 5 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 454QP UT WOS:000266697700017 ER PT J AU Kim, AA Mazarakis, MG Sinebryukhov, VA Kovalchuk, BM Visir, VA Volkov, SN Bayol, F Bastrikov, AN Durakov, VG Frolov, SV Alexeenko, VM McDaniel, DH Fowler, WE LeChien, K Olson, C Stygar, WA Struve, KW Porter, J Gilgenbach, RM AF Kim, A. A. Mazarakis, M. G. Sinebryukhov, V. A. Kovalchuk, B. M. Visir, V. A. Volkov, S. N. Bayol, F. Bastrikov, A. N. Durakov, V. G. Frolov, S. V. Alexeenko, V. M. McDaniel, D. H. Fowler, W. E. LeChien, K. Olson, C. Stygar, W. A. Struve, K. W. Porter, J. Gilgenbach, R. M. TI Development and tests of fast 1-MA linear transformer driver stages SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article AB In this article we present the design and test results of the most powerful, fast linear transformer driver (LTD) stage developed to date. This 1-MA LTD stage consists of 40 parallel RLC (resistor R, inductor L, and capacitor C) circuits called "bricks'' that are triggered simultaneously; it is able to deliver similar to 1 MA current pulse with a rise time of similar to 100 ns into the similar to 0.1-Ohm matched load. The electrical behavior of the stage can be predicted by using a simple RLC circuit, thus simplifying the designing of various LTD-based accelerators. Five 1-MA LTD stages assembled in series into a module have been successfully tested with both resistive and vacuum electron-beam diode loads. C1 [Kim, A. A.; Sinebryukhov, V. A.; Kovalchuk, B. M.; Visir, V. A.; Volkov, S. N.; Bastrikov, A. N.; Durakov, V. G.; Frolov, S. V.; Alexeenko, V. M.] Russian Acad Sci, Inst High Current Elect, Tomsk 634055, Russia. [Mazarakis, M. G.; McDaniel, D. H.; Fowler, W. E.; LeChien, K.; Olson, C.; Stygar, W. A.; Struve, K. W.; Porter, J.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Bayol, F.] Int Technol High Pulsed Power, F-46500 Thegra, France. [Gilgenbach, R. M.] Univ Michigan, Ann Arbor, MI 48109 USA. RP Kim, AA (reprint author), Russian Acad Sci, Inst High Current Elect, Tomsk 634055, Russia. NR 25 TC 59 Z9 83 U1 0 U2 14 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD MAY PY 2009 VL 12 IS 5 AR 050402 DI 10.1103/PhysRevSTAB.12.050402 PG 10 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 454QP UT WOS:000266697700004 ER PT J AU Kirby, N Blumenfeld, I Clayton, CE Decker, FJ Hogan, MJ Huang, C Ischebeck, R Iverson, RH Joshi, C Katsouleas, T Lu, W Marsh, KA Martins, SF Mori, WB Muggli, P Oz, E Siemann, RH Walz, DR Zhou, M AF Kirby, N. Blumenfeld, I. Clayton, C. E. Decker, F. J. Hogan, M. J. Huang, C. Ischebeck, R. Iverson, R. H. Joshi, C. Katsouleas, T. Lu, W. Marsh, K. A. Martins, S. F. Mori, W. B. Muggli, P. Oz, E. Siemann, R. H. Walz, D. R. Zhou, M. TI Transverse emittance and current of multi-GeV trapped electrons in a plasma wakefield accelerator SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article ID LASER WAKEFIELD; BEAMS AB Multi-GeV trapped electron bunches in a plasma wakefield accelerator (PWFA) are observed with normalized transverse emittance divided by peak current, epsilon(N,x)/I(t), below the level of 0.2 mu m/kA. A theoretical model of the trapped electron emittance, developed here, indicates that emittance scales inversely with the square root of the plasma density in the nonlinear "bubble'' regime of the PWFA. This model and simulations indicate that the observed values of epsilon(N,x)/I(t) result from multi-GeV trapped electron bunches with emittances of a few mu m and multi-kA peak currents. C1 [Kirby, N.; Blumenfeld, I.; Decker, F. J.; Hogan, M. J.; Ischebeck, R.; Iverson, R. H.; Siemann, R. H.; Walz, D. R.] SLAC, Menlo Pk, CA 94025 USA. [Clayton, C. E.; Huang, C.; Joshi, C.; Lu, W.; Marsh, K. A.; Mori, W. B.; Zhou, M.] Univ Calif Los Angeles, Los Angeles, CA 90095 USA. [Katsouleas, T.; Muggli, P.; Oz, E.] Univ So Calif, Los Angeles, CA 90089 USA. RP Kirby, N (reprint author), SLAC, Menlo Pk, CA 94025 USA. RI Lu, Wei/F-2504-2016 FU Department of Energy [DE-AC02-76SF00515, DE-FG02-93ER40745, DE-FG03-92ER40727, DE-FG52-06NA26195, DE-FC02-07ER41500, DE-FG02-03ER54721, DE-FG02-92ER40727]; National Science Foundation [NSF-Phy-0321345]; FCT (Portugal) FX The authors would like to thank Melissa Berry and Professor Alexander Chao. The Dawson cluster (UCLA) produced the OSIRIS simulations. This work was supported by Department of Energy Contracts No. DE-AC02-76SF00515, No. DE-FG02-93ER40745, No. DE-FG03-92ER40727, No. DE-FG52-06NA26195, No. DE-FC02-07ER41500, No. DE-FG02-03ER54721, No. DE-FG02-92ER40727, National Science Foundation Grant No. NSF-Phy-0321345, and by FCT (Portugal). NR 26 TC 11 Z9 11 U1 2 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD MAY PY 2009 VL 12 IS 5 AR 051302 DI 10.1103/PhysRevSTAB.12.051302 PG 5 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 454QP UT WOS:000266697700011 ER PT J AU Liu, WM Gai, W AF Liu, Wanming Gai, Wei TI Wakefield generation by a relativistic ring beam in a coaxial two-channel dielectric loaded structure SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article AB In this paper, we give a complete analytical solution for wakefields generated by an azimuthally symmetric ring beam propagating in a coaxial two-channel dielectric structure. This wakefield can be used to accelerate a witness beam in the central channel. The ratio of the peak accelerating field in the center channel to the decelerating field in the ring channel (defined as transformer ratio R) is also derived. We find that, by appropriate choice of parameters, R can be much greater than 2, the limiting value for collinear wakefield accelerators. C1 [Liu, Wanming; Gai, Wei] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. RP Liu, WM (reprint author), Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. FU High Energy Physics Division, DOE [DE-AC02-06CH11357] FX We would like to thank Dr. Jay Hirshfield of Yale University for suggesting the coaxial dielectric wakefield experiment and bringing it to our attention. This work is supported by the High Energy Physics Division, DOE under Contract No. DE-AC02-06CH11357. NR 13 TC 9 Z9 9 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD MAY PY 2009 VL 12 IS 5 AR 051301 DI 10.1103/PhysRevSTAB.12.051301 PG 6 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 454QP UT WOS:000266697700010 ER PT J AU Lumpkin, AH Dejus, RJ Sereno, NS AF Lumpkin, A. H. Dejus, R. J. Sereno, N. S. TI Coherent optical transition radiation and self-amplified spontaneous emission generated by chicane-compressed electron beams (vol 12, 040704, 2009) SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Correction C1 [Dejus, R. J.] Argonne Natl Lab, Argonne, IL 60439 USA. NR 1 TC 0 Z9 0 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD MAY PY 2009 VL 12 IS 5 AR 059901 DI 10.1103/PhysRevSTAB.12.059901 PG 1 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 454QP UT WOS:000266697700018 ER PT J AU Mazarakis, MG Fowler, WE Kim, AA Sinebryukhov, VA Rogowski, ST Sharpe, RA McDaniel, DH Olson, CL Porter, JL Struve, KW Stygar, WA Woodworth, JR AF Mazarakis, Michael G. Fowler, William E. Kim, Alexander A. Sinebryukhov, Vadim A. Rogowski, Sonrisa T. Sharpe, Robin A. McDaniel, Dillon H. Olson, Craig L. Porter, John L. Struve, Kenneth W. Stygar, William A. Woodworth, Joseph R. TI High current, 0.5-MA, fast, 100-ns, linear transformer driver experiments SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article AB The linear transformer driver (LTD) is a new method for constructing high current, high-voltage pulsed accelerators. The salient feature of the approach is switching and inductively adding the pulses at low voltage straight out of the capacitors through low inductance transfer and soft iron core isolation. Sandia National Laboratories are actively pursuing the development of a new class of accelerator based on the LTD technology. Presently, the high current LTD experimental research is concentrated on two aspects: first, to study the repetition rate capabilities, reliability, reproducibility of the output pulses, switch prefires, jitter, electrical power and energy efficiency, and lifetime measurements of the cavity active components; second, to study how a multicavity linear array performs in a voltage adder configuration relative to current transmission, energy and power addition, and wall plug to output pulse electrical efficiency. Here we report the repetition rate and lifetime studies performed in the Sandia High Current LTD Laboratory. We first utilized the prototype similar to 0.4-MA, LTD I cavity which could be reliably operated up to +/-90-kV capacitor charging. Later we obtained an improved 0.5-MA, LTD II version that can be operated at +/-100 kV maximum charging voltage. The experimental results presented here were obtained with both cavities and pertain to evaluating the maximum achievable repetition rate and LTD cavity performance. The voltage adder experiments with a series of double sized cavities (1 MA, +/-100 kV) will be reported in future publications. C1 [Mazarakis, Michael G.; Fowler, William E.; Rogowski, Sonrisa T.; Sharpe, Robin A.; McDaniel, Dillon H.; Olson, Craig L.; Porter, John L.; Struve, Kenneth W.; Stygar, William A.; Woodworth, Joseph R.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Kim, Alexander A.; Sinebryukhov, Vadim A.] HCEI, Tomsk, Russia. RP Mazarakis, MG (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. NR 20 TC 43 Z9 58 U1 0 U2 13 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD MAY PY 2009 VL 12 IS 5 AR 050401 DI 10.1103/PhysRevSTAB.12.050401 PG 10 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 454QP UT WOS:000266697700003 ER PT J AU Pozdeyev, E Rodriguez, JA Marti, F York, RC AF Pozdeyev, E. Rodriguez, J. A. Marti, F. York, R. C. TI Longitudinal beam dynamics studies with space charge in small isochronous ring SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article AB Studies of the longitudinal beam dynamics in the small isochronous ring (SIR) at Michigan State University revealed a fast, space-charge driven instability that did not fit the model of the negative mass instability. The observed beam behavior can be explained by the transverse horizontal component of the coherent space- charge force and its effect on the longitudinal motion. This force effectively modifies the slip factor, shifting the isochronous point and enhancing the negative mass instability. This paper presents results of numerical and experimental studies of the longitudinal beam dynamics in SIR and proposes a simple analytical model explaining these results. C1 [Pozdeyev, E.] BNL, Upton, NY 11973 USA. [Rodriguez, J. A.] CERN, Geneva, Switzerland. [Marti, F.; York, R. C.] MSU, NSCL, Lansing, MI 48824 USA. RP Pozdeyev, E (reprint author), BNL, Upton, NY 11973 USA. EM pozdeyev@bnl.gov NR 6 TC 8 Z9 8 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD MAY PY 2009 VL 12 IS 5 AR 054202 DI 10.1103/PhysRevSTAB.12.054202 PG 9 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 454QP UT WOS:000266697700015 ER PT J AU Wang, X Muggli, P Katsouleas, T Joshi, C Mori, WB Ischebeck, R Hogan, MJ AF Wang, X. Muggli, P. Katsouleas, T. Joshi, C. Mori, W. B. Ischebeck, R. Hogan, M. J. TI Optimization of positron trapping and acceleration in an electron-beam-driven plasma wakefield accelerator SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article AB Positron trapping and acceleration in a plasma wake using a four-bunch scheme [X. Wang et al., Phys. Rev. Lett. 101, 124801 (2008)] is numerically investigated through 2D particle-in-cell simulations. This scheme that integrates positron generation, trapping, and acceleration into a single stage is a promising approach for investigating positron acceleration in an electron-beam-driven wake. It consists of a plasma with an embedded thin foil target into which two closely spaced electron beams are shot. The first beam creates a region for accelerating and focusing positrons and the second beam provides positrons to be accelerated. Some of the outstanding issues related to the quality of the accelerated positron beam load are discussed as a function of the beam and plasma parameters. Simulations show that a large number of positrons (10(7)-10(8)) can be trapped when the plasma wake is modestly nonlinear, and the positron-generating foil target must be immersed into the plasma. Beam loading can reduce the energy spread of the positron beam load. The quality of the positron beam load is not very sensitive to the exact bunch spacing between the drive electron bunch and the positron beam load. C1 [Wang, X.; Muggli, P.; Katsouleas, T.] Univ So Calif, Los Angeles, CA 90089 USA. [Joshi, C.; Mori, W. B.] Univ Calif Los Angeles, Los Angeles, CA 90095 USA. [Ischebeck, R.; Hogan, M. J.] Stanford Linear Accelerator Ctr, Stanford, CA 94025 USA. RP Wang, X (reprint author), Univ So Calif, Los Angeles, CA 90089 USA. FU Department of Energy [DE-FC02-01ER41192, DE-AC02-76SF00515, DE-FG03-92ER40745, DE-FG52-06NA26195, DE-FG0392ER40727, DE-AC-0376SF0098, DE-FG02-03ER54721]; National Science Foundation [ECS-9632735, DMS-9722121, PHY-0078715] FX This work was supported by Department of Energy Contracts No. DE-FC02-01ER41192, No. DE-AC02-76SF00515 (SLAC), No. DE-FG03-92ER40745, No. DE-FG52-06NA26195, No. DE-FG0392ER40727, No. DE-AC-0376SF0098, No. DE-FG02-03ER54721, and National Science Foundation Grants No. ECS-9632735, No. DMS-9722121, and No. PHY-0078715. Simulations were done at the USC Center for High Performance Computing and Communications (HPCC). Useful discussions with the members of the E-167 collaboration at SLAC are greatly acknowledged. NR 25 TC 5 Z9 5 U1 1 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD MAY PY 2009 VL 12 IS 5 AR 051303 DI 10.1103/PhysRevSTAB.12.051303 PG 8 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 454QP UT WOS:000266697700012 ER PT J AU Connington, K Kang, QJ Viswanathan, H Abdel-Fattah, A Chen, SY AF Connington, Kevin Kang, Qinjun Viswanathan, Hari Abdel-Fattah, Amr Chen, Shiyi TI Peristaltic particle transport using the lattice Boltzmann method SO PHYSICS OF FLUIDS LA English DT Article DE lattice Boltzmann methods; multiphase flow; peristaltic flow; pipe flow ID NAVIER-STOKES EQUATION; PARTICULATE SUSPENSIONS; NUMERICAL SIMULATIONS; SOLID PARTICLES; REYNOLDS-NUMBER; FLOW; MOTION; FLUID; CHANNEL; WALLS AB Peristaltic transport refers to a class of internal fluid flows where the periodic deformation of flexible containing walls elicits a non-negligible fluid motion. It is a mechanism used to transport fluid and immersed solid particles in a tube or channel when it is ineffective or impossible to impose a favorable pressure gradient or desirous to avoid contact between the transported mixture and mechanical moving parts. Peristaltic transport occurs in many physiological situations and has myriad industrial applications. We focus our study on the peristaltic transport of a macroscopic particle in a two-dimensional channel using the lattice Boltzmann method. We systematically investigate the effect of variation of the relevant dimensionless parameters of the system on the particle transport. We find, among other results, a case where an increase in Reynolds number can actually lead to a slight increase in particle transport, and a case where, as the wall deformation increases, the motion of the particle becomes non-negative only. We examine the particle behavior when the system exhibits the peculiar phenomenon of fluid trapping. Under these circumstances, the particle may itself become trapped where it is subsequently transported at the wave speed, which is the maximum possible transport in the absence of a favorable pressure gradient. Finally, we analyze how the particle presence affects stress, pressure, and dissipation in the fluid in hopes of determining preferred working conditions for peristaltic transport of shear-sensitive particles. We find that the levels of shear stress are most hazardous near the throat of the channel. We advise that shear-sensitive particles should be transported under conditions where trapping occurs as the particle is typically situated in a region of innocuous shear stress levels. C1 [Connington, Kevin; Chen, Shiyi] Johns Hopkins Univ, Dept Mech Engn, Baltimore, MD 21218 USA. [Connington, Kevin; Kang, Qinjun; Viswanathan, Hari; Abdel-Fattah, Amr] Los Alamos Natl Lab, Div Earth & Environm Sci, Los Alamos, NM 87545 USA. [Chen, Shiyi] Peking Univ, CoE, Beijing, Peoples R China. [Chen, Shiyi] Peking Univ, CCSE, Beijing, Peoples R China. RP Connington, K (reprint author), Johns Hopkins Univ, Dept Mech Engn, Baltimore, MD 21218 USA. EM kconnin1@jhu.edu RI Chen, Shiyi/A-3234-2010; Kang, Qinjun/A-2585-2010 OI Kang, Qinjun/0000-0002-4754-2240 NR 56 TC 20 Z9 20 U1 1 U2 21 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-6631 J9 PHYS FLUIDS JI Phys. Fluids PD MAY PY 2009 VL 21 IS 5 AR 053301 DI 10.1063/1.3111782 PG 16 WC Mechanics; Physics, Fluids & Plasmas SC Mechanics; Physics GA 451WB UT WOS:000266500500019 ER PT J AU Cook, AW AF Cook, Andrew W. TI Enthalpy diffusion in multicomponent flows SO PHYSICS OF FLUIDS LA English DT Article DE combustion; diffusion; enthalpy; Navier-Stokes equations; turbulence ID RAYLEIGH-TAYLOR INSTABILITY; RICHTMYER-MESHKOV INSTABILITY; EFFECTIVE BINARY DIFFUSION; GAS-MIXTURES; NUMERICAL-SIMULATION; SHOCK-WAVES; RESOLUTION; CONSISTENT; DYNAMICS; SCHEMES AB The enthalpy diffusion flux in the multicomponent energy equation is a well-known yet frequently neglected term. It accounts for energy changes associated with compositional changes resulting from species diffusion. The term prevents local violations of the entropy condition in flows where significant mixing occurs between species of dissimilar molecular weight. In simulations of nonpremixed combustion, omission of the enthalpy flux can lead to anomalous temperature gradients, which may cause mixing regions to exceed ignition conditions. The term can also play a role in generating acoustic noise in turbulent mixing layers. Euler solvers that rely on numerical diffusion to blend fluids at the grid scale cannot reliably predict temperatures in mixing regions. On the other hand, Navier-Stokes solvers that incorporate enthalpy diffusion can provide much more accurate results. In constructing turbulence closures for high Reynolds number mixing, the same turbulent diffusion model that appears in the species mass transport equation should also appear in the energy equation as part of a "turbulent enthalpy diffusion;" otherwise the energy and species transport equations will not be consistent. C1 Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Cook, AW (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. EM awcook@llnl.gov NR 49 TC 37 Z9 37 U1 0 U2 10 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-6631 EI 1089-7666 J9 PHYS FLUIDS JI Phys. Fluids PD MAY PY 2009 VL 21 IS 5 AR 055109 DI 10.1063/1.3139305 PG 16 WC Mechanics; Physics, Fluids & Plasmas SC Mechanics; Physics GA 451WB UT WOS:000266500500040 ER PT J AU Bailey, JE Rochau, GA Mancini, RC Iglesias, CA MacFarlane, JJ Golovkin, IE Blancard, C Cosse, P Faussurier, G AF Bailey, J. E. Rochau, G. A. Mancini, R. C. Iglesias, C. A. MacFarlane, J. J. Golovkin, I. E. Blancard, C. Cosse, Ph. Faussurier, G. TI Experimental investigation of opacity models for stellar interior, inertial fusion, and high energy density plasmas SO PHYSICS OF PLASMAS LA English DT Article DE opacity; plasma inertial confinement; plasma light propagation; plasma transport processes; stellar internal processes; Z pinch ID X-RAY RESPONSE; ABSORPTION-SPECTROSCOPY; RADIATIVE ACCELERATIONS; SOLAR ABUNDANCES; CONSTRAINED SAMPLES; PHOTOGRAPHIC FILMS; THIN FOILS; Z PINCHES; HELIOSEISMOLOGY; ALUMINUM AB Theoretical opacities are required for calculating energy transport in plasmas. In particular, understanding stellar interiors, inertial fusion, and Z pinches depends on the opacities of mid-atomic-number elements over a wide range of temperatures. The 150-300 eV temperature range is particularly interesting. The opacity models are complex and experimental validation is crucial. For example, solar models presently disagree with helioseismology and one possible explanation is inadequate theoretical opacities. Testing these opacities requires well-characterized plasmas at temperatures high enough to produce the ion charge states that exist in the sun. Typical opacity experiments heat a sample using x rays and measure the spectrally resolved transmission with a backlight. The difficulty grows as the temperature increases because the heating x-ray source must supply more energy and the backlight must be bright enough to overwhelm the plasma self-emission. These problems can be overcome with the new generation of high energy density (HED) facilities. For example, recent experiments at Sandia's Z facility [M. K. Matzen , Phys. Plasmas 12, 055503 (2005)] measured the transmission of a mixed Mg and Fe plasma heated to 156 +/- 6 eV. This capability will also advance opacity science for other HED plasmas. This tutorial reviews experimental methods for testing opacity models, including experiment design, transmission measurement methods, accuracy evaluation, and plasma diagnostics. The solar interior serves as a focal problem and Z facility experiments illustrate the techniques. C1 [Bailey, J. E.; Rochau, G. A.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Mancini, R. C.] Univ Nevada, Reno, NV 89557 USA. [Iglesias, C. A.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [MacFarlane, J. J.; Golovkin, I. E.] Prism Computat Sci, Madison, WI 53703 USA. [Blancard, C.; Cosse, Ph.; Faussurier, G.] DIF, DAM, CEA, F-91297 Arpajon, France. RP Bailey, JE (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. NR 99 TC 66 Z9 68 U1 2 U2 19 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2009 VL 16 IS 5 AR 058101 DI 10.1063/1.3089604 PG 16 WC Physics, Fluids & Plasmas SC Physics GA 451WC UT WOS:000266500600140 ER PT J AU Bhattacharjee, A Davidson, RC AF Bhattacharjee, Amitava Davidson, Ronald C. TI Foreword to Special Issue: Papers from the 50th Annual Meeting of the APS Division of Plasma Physics, Dallas, Texas, 2008 SO PHYSICS OF PLASMAS LA English DT Editorial Material DE plasma AB The year 2008 marked the 50th Anniversary of the Division of Plasma Physics (DPP) of the American Physical Society. This Special Issue presents many of the Review, Tutorial, and Invited papers that were presented at the 2008 Annual Meeting of the DPP, which was held 17-21 November, in Dallas, Texas. We are very pleased that many of the speakers have submitted an archival-quality version of their presentation for peer review and publication in Physics of Plasmas. C1 [Bhattacharjee, Amitava] Univ New Hampshire, Inst Study Earth Oceans & Space, Durham, NH 03824 USA. [Bhattacharjee, Amitava] Univ New Hampshire, Dept Phys, Durham, NH 03824 USA. [Davidson, Ronald C.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Bhattacharjee, A (reprint author), Univ New Hampshire, Inst Study Earth Oceans & Space, Durham, NH 03824 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2009 VL 16 IS 5 AR 055301 DI 10.1063/1.3127488 PG 1 WC Physics, Fluids & Plasmas SC Physics GA 451WC UT WOS:000266500600078 ER PT J AU Boehly, TR Munro, D Celliers, PM Olson, RE Hicks, DG Goncharov, VN Collins, GW Robey, HF Hu, SX Morozas, JA Sangster, TC Landen, OL Meyerhofer, DD AF Boehly, T. R. Munro, D. Celliers, P. M. Olson, R. E. Hicks, D. G. Goncharov, V. N. Collins, G. W. Robey, H. F. Hu, S. X. Morozas, J. A. Sangster, T. C. Landen, O. L. Meyerhofer, D. D. TI Demonstration of the shock-timing technique for ignition targets on the National Ignition Facility SO PHYSICS OF PLASMAS LA English DT Article; Proceedings Paper CT 50th Annual Meeting of the Division of Plasma Physics of the American-Physical-Society CY FEB 01, 2008 CL Dallas, TX SP Amer Phys Soc, Div Plasma Phys DE explosions; plasma inertial confinement; plasma shock waves ID DRIVEN AB A high-performance inertial confinement fusion capsule is compressed by multiple shock waves before it implodes. To minimize the entropy acquired by the fuel, the strength and timing of those shock waves must be accurately controlled. Ignition experiments at the National Ignition Facility (NIF) will employ surrogate targets designed to mimic ignition targets while making it possible to measure the shock velocities inside the capsule. A series of experiments on the OMEGA laser facility [Boehly , Opt. Commun. 133, 495 (1997)] validated those targets and the diagnostic techniques proposed. Quartz was selected for the diagnostic window and shock-velocity measurements were demonstrated in Hohlraum targets heated to 180 eV. Cryogenic experiments using targets filled with liquid deuterium further demonstrated the entire timing technique in a Hohlraum environment. Direct-drive cryogenic targets with multiple spherical shocks were used to further validate this technique, including convergence effects at relevant pressures (velocities) and sizes. These results provide confidence that shock velocity and timing can be measured in NIF ignition targets, allowing these critical parameters to be optimized. C1 [Boehly, T. R.; Goncharov, V. N.; Hu, S. X.; Morozas, J. A.; Sangster, T. C.; Meyerhofer, D. D.] Univ Rochester, Laser Energet Lab, New York, NY 14645 USA. [Munro, D.; Celliers, P. M.; Hicks, D. G.; Collins, G. W.; Robey, H. F.; Landen, O. L.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Olson, R. E.] Sandia Natl Labs, Albuquerque, NM 87123 USA. [Goncharov, V. N.; Meyerhofer, D. D.] Univ Rochester, Dept Mech Engn, New York, NY 14645 USA. [Meyerhofer, D. D.] Univ Rochester, Dept Phys & Astron, New York, NY 14645 USA. RP Boehly, TR (reprint author), Univ Rochester, Laser Energet Lab, New York, NY 14645 USA. RI Hu, Suxing/A-1265-2007; Collins, Gilbert/G-1009-2011; Goncharov, Valeri/H-4471-2011; Hicks, Damien/B-5042-2015 OI Hu, Suxing/0000-0003-2465-3818; Hicks, Damien/0000-0001-8322-9983 NR 18 TC 61 Z9 64 U1 0 U2 7 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2009 VL 16 IS 5 AR 056302 DI 10.1063/1.3078422 PG 9 WC Physics, Fluids & Plasmas SC Physics GA 451WC UT WOS:000266500600115 ER PT J AU Chang, CS Ku, S Diamond, PH Lin, Z Parker, S Hahm, TS Samatova, N AF Chang, C. S. Ku, S. Diamond, P. H. Lin, Z. Parker, S. Hahm, T. S. Samatova, N. TI Compressed ion temperature gradient turbulence in diverted tokamak edge SO PHYSICS OF PLASMAS LA English DT Article; Proceedings Paper CT 50th Annual Meeting of the Division of Plasma Physics of the American-Physical-Society CY FEB 01, 2008 CL Dallas, TX SP Amer Phys Soc, Div Plasma Phys DE plasma boundary layers; plasma density; plasma instability; plasma simulation; plasma toroidal confinement; plasma transport processes; plasma turbulence; Tokamak devices ID GYROKINETIC PARTICLE SIMULATION; POLOIDAL ELECTRIC-FIELD; NEOCLASSICAL TRANSPORT; ZONAL FLOWS; PLASMA; GEOMETRY; ROTATION AB It is found from a heat-flux-driven full-f gyrokinetic particle simulation that there is ion temperature gradient (ITG) turbulence across an entire L-mode-like edge density pedestal in a diverted tokamak plasma in which the ion temperature gradient is mild without a pedestal structure, hence the normalized ion temperature gradient parameter eta(i)=(d log T(i)/dr)/(d log n/dr) varies strongly from high (>4 at density pedestal top/shoulder) to low (< 2 in the density slope) values. Variation of density and eta(i) is in the same scale as the turbulence correlation length, compressing the turbulence in the density slope region. The resulting ion thermal flux is on the order of experimentally inferred values. The present study strongly suggests that a localized estimate of the ITG-driven chi(i) will not be valid due to the nonlocal dynamics of the compressed turbulence in an L-mode-type density slope. While the thermal transport and the temperature profile saturate quickly, the ExB rotation shows a longer time damping during the turbulence. In addition, a radially in-out mean potential variation is observed. C1 [Chang, C. S.; Ku, S.] NYU, Courant Inst Math Sci, New York, NY 10012 USA. [Chang, C. S.] Korea Adv Inst Sci & Technol, Dept Phys, Taejon 305701, South Korea. [Diamond, P. H.] Univ Calif San Diego, Ctr Astrophys & Space Sci, La Jolla, CA 92093 USA. [Diamond, P. H.] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA. [Lin, Z.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Parker, S.] Univ Colorado, Boulder, CO 80309 USA. [Hahm, T. S.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Samatova, N.] N Carolina State Univ, Raleigh, NC 27695 USA. [Samatova, N.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Chang, CS (reprint author), NYU, Courant Inst Math Sci, 251 Mercer St, New York, NY 10012 USA. EM cschang@cims.nyu.edu RI Ku, Seung-Hoe/D-2315-2009 OI Ku, Seung-Hoe/0000-0002-9964-1208 NR 39 TC 37 Z9 37 U1 2 U2 11 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2009 VL 16 IS 5 AR 056108 DI 10.1063/1.3099329 PG 11 WC Physics, Fluids & Plasmas SC Physics GA 451WC UT WOS:000266500600101 ER PT J AU Choi, M Chan, VS Berry, LA Jaeger, EF Green, D Bonoli, P Wright, J AF Choi, M. Chan, V. S. Berry, L. A. Jaeger, E. F. Green, D. Bonoli, P. Wright, J. CA RF SciDAC Team TI Comparison of the Monte Carlo ion cyclotron heating model with the full-wave linear absorption model SO PHYSICS OF PLASMAS LA English DT Article DE Monte Carlo methods; plasma electromagnetic wave propagation; plasma simulation; plasma waves ID PLASMAS; TOKAMAK AB To fully account for the wave-particle interaction physics in ion cyclotron resonant frequency (ICRF) heating experiment, finite orbit effects and non-Maxwellian distribution have to be self-consistently coupled with full-wave solutions. For this purpose, the five-dimensional Monte Carlo code ORBIT-RF [M. Choi , Phys. Plasmas 12, 1 (2005)] is being coupled with the two-dimensional full-wave code AORSA [E. F. Jaeger , Phys. Plasmas 13, 056101 (2006)] to iteratively evolve the ion distribution in four-dimensional spatial velocity space that is used to update the dielectric tensor in AORSA for evaluating the full-wave fields. In this paper, it is demonstrated that using the full-wave fields from a Maxwellian dielectric tensor in AORSA and confining the resonant ions to their initial orbits in ORBIT-RF, ORBIT-RF largely reproduces the AORSA linear wave absorption profiles for fundamental and higher harmonic ICRF heating. An exception is an observed inward shift in the ORBIT-RF absorption peak for high harmonics near the magnetic axis compared with that of AORSA, which can be attributed to a finite orbit width effect. The success of this verification supports the validity of the Monte Carlo wave-particle interaction model and the readiness of the iterative coupling between ORBIT-RF and AORSA for an improved modeling of ICRF heating experiments. C1 [Choi, M.; Chan, V. S.] Gen Atom Co, San Diego, CA 92186 USA. [Berry, L. A.; Jaeger, E. F.; Green, D.] Oak Ridge Natl Lab, Oak Ridge, TN 37830 USA. [Bonoli, P.; Wright, J.] MIT, Cambridge, MA 02139 USA. RP Choi, M (reprint author), Gen Atom Co, POB 85608, San Diego, CA 92186 USA. FU U.S. Department of Energy [DE-FG03-95ER54309, DE-AC05-00OR22725] FX This work was supported in part by the U.S. Department of Energy under Grant Nos. DE-FG03-95ER54309 and DE-AC05-00OR22725. The authors would like to thank Professor M. Porkolab at MIT for his many discussions. NR 18 TC 7 Z9 7 U1 0 U2 2 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2009 VL 16 IS 5 AR 052513 DI 10.1063/1.3138745 PG 8 WC Physics, Fluids & Plasmas SC Physics GA 451WC UT WOS:000266500600038 ER PT J AU Edlund, EM Porkolab, M Kramer, GJ Lin, L Lin, Y Wukitch, SJ AF Edlund, E. M. Porkolab, M. Kramer, G. J. Lin, L. Lin, Y. Wukitch, S. J. TI Phase contrast imaging measurements of reversed shear Alfven eigenmodes during sawteeth in Alcator C-Mod SO PHYSICS OF PLASMAS LA English DT Article; Proceedings Paper CT 50th Annual Meeting of the Division of Plasma Physics of the American-Physical-Society CY FEB 01, 2008 CL Dallas, TX SP Amer Phys Soc, Div Plasma Phys ID SAFETY-FACTOR PROFILE; TOKAMAK; WAVES; PLASMAS; JET AB Reversed shear Alfven eigenmodes (RSAEs) have been observed with the phase contrast imaging diagnostic and Mirnov coils during the sawtooth cycle in Alcator C-mod [M. Greenwald et al., Nucl. Fusion 45, S109 (2005)] plasmas with minority ion-cyclotron resonance heating. Both down-chirping RSAEs and up-chirping RSAEs have been observed during the sawtooth cycle. Experimental measurements of the spatial structure of the RSAEs are compared to theoretical models based on the code NOVA [C. Z. Cheng and M. S. Chance, J. Comput. Phys. 71, 124 (1987)] and used to derive constraints on the q profile. It is shown that the observed RSAEs can be understood by assuming a reversed shear q profile (up chirping) or a q profile with a local maximum (down chirping) with q approximate to 1. (C) 2009 American Institute of Physics. [DOI: 10.1063/1.3086869] C1 [Edlund, E. M.; Porkolab, M.; Lin, L.; Lin, Y.; Wukitch, S. J.] MIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA. [Kramer, G. J.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Edlund, EM (reprint author), MIT, Plasma Sci & Fus Ctr, 77 Massachusetts Ave, Cambridge, MA 02139 USA. RI Lin, Liang/H-2255-2011 NR 34 TC 7 Z9 7 U1 0 U2 4 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2009 VL 16 IS 5 AR 056106 DI 10.1063/1.3086869 PG 8 WC Physics, Fluids & Plasmas SC Physics GA 451WC UT WOS:000266500600099 ER PT J AU Egedal, J Daughton, W Drake, JF Katz, N Le, A AF Egedal, J. Daughton, W. Drake, J. F. Katz, N. Le, A. TI Formation of a localized acceleration potential during magnetic reconnection with a guide field SO PHYSICS OF PLASMAS LA English DT Article DE magnetic reconnection ID PARTICLE-ACCELERATION; ISLANDS AB Magnetic reconnection near the surface of the sun and in the Earth's magnetotail is associated with the production of highly energetic electrons. Direct acceleration in the reconnection electric field has been proposed as a possible mechanism for energizing these electrons. Here, however, we use kinetic simulations of guide-field reconnection to show that in two-dimensional (2D) reconnection the parallel electric field, E(parallel to) in the reconnection region is localized and its structure does not permit significant energization of the electrons. Rather, a large fraction of the electrons become trapped due to a sign reversal in E(parallel to), imposing strict constraints on their motions and energizations. Given these new results, simple 2D models, which invoke direct acceleration for energizing electrons during a single encounter with a reconnection region, need to be revised. C1 [Egedal, J.; Katz, N.; Le, A.] MIT, Cambridge, MA 02139 USA. [Drake, J. F.] Univ Maryland, College Pk, MD 20742 USA. [Daughton, W.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Egedal, J (reprint author), MIT, 77 Massachusetts Ave, Cambridge, MA 02139 USA. RI Daughton, William/L-9661-2013 FU DOE Junior Faculty [DE-FG02-06ER54878] FX This work was funded in part by DOE Junior Faculty Grant No. DE-FG02-06ER54878. NR 16 TC 33 Z9 33 U1 2 U2 8 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2009 VL 16 IS 5 AR 050701 DI 10.1063/1.3130732 PG 4 WC Physics, Fluids & Plasmas SC Physics GA 451WC UT WOS:000266500600001 ER PT J AU Ernst, DR Lang, J Nevins, WM Hoffman, M Chen, Y Dorland, W Parker, S AF Ernst, D. R. Lang, J. Nevins, W. M. Hoffman, M. Chen, Y. Dorland, W. Parker, S. TI Role of zonal flows in trapped electron mode turbulence through nonlinear gyrokinetic particle and continuum simulation SO PHYSICS OF PLASMAS LA English DT Article; Proceedings Paper CT 50th Annual Meeting of the Division of Plasma Physics of the American-Physical-Society CY FEB 01, 2008 CL Dallas, TX SP Amer Phys Soc, Div Plasma Phys DE plasma flow; plasma instability; plasma kinetic theory; plasma nonlinear processes; plasma simulation; plasma turbulence ID INTERNAL TRANSPORT BARRIER; ALCATOR-C-MOD; TOKAMAK; PLASMAS; INSTABILITY; GENERATION; STABILITY AB Trapped electron mode (TEM) turbulence exhibits a rich variety of collisional and zonal flow physics. This work explores the parametric variation of zonal flows and underlying mechanisms through a series of linear and nonlinear gyrokinetic simulations, using both particle-in-cell and continuum methods. A new stability diagram for electron modes is presented, identifying a critical boundary at eta(e)=1, separating long and short wavelength TEMs. A novel parity test is used to separate TEMs from electron temperature gradient driven modes. A nonlinear scan of eta(e) reveals fine scale structure for eta(e)greater than or similar to 1, consistent with linear expectation. For eta(e)< 1, zonal flows are the dominant saturation mechanism, and TEM transport is insensitive to eta(e). For eta(e)>1, zonal flows are weak, and TEM transport falls inversely with a power law in eta(e). The role of zonal flows appears to be connected to linear stability properties. Particle and continuum methods are compared in detail over a range of eta(e)=d ln T(e)/d ln n(e) values from zero to five. Linear growth rate spectra, transport fluxes, fluctuation wavelength spectra, zonal flow shearing spectra, and correlation lengths and times are in close agreement. In addition to identifying the critical parameter eta(e) for TEM zonal flows, this paper takes a challenging step in code verification, directly comparing very different methods of simulating simultaneous kinetic electron and ion dynamics in TEM turbulence. C1 [Ernst, D. R.] MIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA. [Lang, J.; Chen, Y.; Parker, S.] Univ Colorado, Ctr Integrated Plasma Studies, Boulder, CO 80309 USA. [Nevins, W. M.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Hoffman, M.] Missouri Univ Sci & Technol, Dept Phys, Rolla, MO 65409 USA. [Hoffman, M.] Missouri Univ Sci & Technol, Dept Nucl Engn, Rolla, MO 65409 USA. [Dorland, W.] Univ Maryland, Inst Res Elect & Appl Phys, Dept Phys, College Pk, MD 20742 USA. [Dorland, W.] Univ Maryland, Ctr Sci Computat & Math Modelling, College Pk, MD 20742 USA. RP Ernst, DR (reprint author), MIT, Plasma Sci & Fus Ctr, 167 Albany St,NW16-258, Cambridge, MA 02139 USA. EM dernst@psfc.mit.edu RI Ernst, Darin/A-1487-2010; Dorland, William/B-4403-2009 OI Ernst, Darin/0000-0002-9577-2809; Dorland, William/0000-0003-2915-724X NR 28 TC 29 Z9 29 U1 0 U2 2 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2009 VL 16 IS 5 AR 055906 DI 10.1063/1.3116282 PG 7 WC Physics, Fluids & Plasmas SC Physics GA 451WC UT WOS:000266500600093 ER PT J AU Fournier, KB Satcher, JH May, MJ Poco, JF Sorce, CM Colvin, JD Hansen, SB MacLaren, SA Moon, SJ Davis, JF Girard, F Villette, B Primout, M Babonneau, D Coverdale, CA Beutler, DE AF Fournier, K. B. Satcher, J. H. May, M. J. Poco, J. F. Sorce, C. M. Colvin, J. D. Hansen, S. B. MacLaren, S. A. Moon, S. J. Davis, J. F. Girard, F. Villette, B. Primout, M. Babonneau, D. Coverdale, C. A. Beutler, D. E. TI Absolute x-ray yields from laser-irradiated germanium-doped low-density aerogels SO PHYSICS OF PLASMAS LA English DT Article DE aerogels; electron density; plasma density; plasma heating by laser; plasma instability; plasma X-ray sources ID NATIONAL-IGNITION-FACILITY; CONVERSION EFFICIENCY; OMEGA LASER; PLASMAS; SYSTEM; TARGETS AB The x-ray yields from laser-irradiated germanium-doped ultra-low-density aerogel plasmas have been measured in the energy range from sub-keV to approximate to 15 keV at the OMEGA laser facility at the Laboratory for Laser Energetics, University of Rochester. The targets' x-ray yields have been studied for variation in target size, aerogel density, laser pulse length, and laser intensity. For targets that result in plasmas with electron densities in the range of approximate to 10% of the critical density for 3 omega light, one can expect 10-11 J/sr of x rays with energies above 9 keV, and 600-800 J/sr for energies below 3.5 keV. In addition to the x-ray spectral yields, the x-ray temporal waveforms have been measured and it is observed that the emitted x rays generally follow the delivered laser power, with late-time enhancements of emitted x-ray power correlated with hydrodynamic compression of the hot plasma. Further, the laser energy reflected from the target by plasma instabilities is found to be 2%-7% of the incident energy for individual beam intensities approximate to 10(14)-10(15) W/cm(2). The propagation of the laser heating in the target volume has been characterized with two-dimensional imaging. Source-region heating is seen to be correlated with the temporal profile of the emitted x-ray power. C1 [Fournier, K. B.; Satcher, J. H.; May, M. J.; Poco, J. F.; Sorce, C. M.; Colvin, J. D.; Hansen, S. B.; MacLaren, S. A.; Moon, S. J.; Davis, J. F.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Girard, F.; Villette, B.; Primout, M.; Babonneau, D.] CEA DAM, F-91297 Ile De France, Arpajon, France. [Coverdale, C. A.; Beutler, D. E.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Davis, J. F.] Alme & Associates, Alexandria, VA 22303 USA. RP Fournier, KB (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. EM fournier2@llnl.gov; JDavis@aol.com; frederic.girard@cea.fr; bruno.villette@cea.fr; cacover@sandia.gov FU U.S. Department of Energy [DE-AC52-07NA27344, DE-AC049-4AL8500]; Defense Threat Redution Agency FX The authors would like to thank the entire crew at the OMEGA laser for their expert operation of the laser and help setting up these experiments. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the U. S. Department of Energy under Contract No. DE-AC049-4AL8500. This work was also supported by the Defense Threat Redution Agency under the IACROs "Laser Plasma Radiation Source Development and Evaluation," "Studies of Phenomenology of Radiation Effects Science Using Laser Plasma Radiation Sources," and "Research Program for Cold X-Ray Testing Using Laser Plasma Radiation Sources." NR 35 TC 34 Z9 34 U1 1 U2 7 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2009 VL 16 IS 5 AR 052703 DI 10.1063/1.3140041 PG 13 WC Physics, Fluids & Plasmas SC Physics GA 451WC UT WOS:000266500600042 ER PT J AU Garofalo, AM Solomon, WM Lanctot, M Burrell, KH DeBoo, JC deGrassie, JS Jackson, GL Park, JK Reimerdes, H Schaffer, MJ Strait, EJ AF Garofalo, A. M. Solomon, W. M. Lanctot, M. Burrell, K. H. DeBoo, J. C. deGrassie, J. S. Jackson, G. L. Park, J. -K. Reimerdes, H. Schaffer, M. J. Strait, E. J. TI Plasma rotation driven by static nonresonant magnetic fields SO PHYSICS OF PLASMAS LA English DT Article; Proceedings Paper CT 50th Annual Meeting of the Division of Plasma Physics of the American-Physical-Society CY FEB 01, 2008 CL Dallas, TX SP Amer Phys Soc, Div Plasma Phys DE plasma density; plasma flow; plasma temperature; Tokamak devices ID TOROIDAL-MOMENTUM DISSIPATION; RESISTIVE WALL MODES; NEOCLASSICAL TRANSPORT; POLOIDAL ROTATION; TOKAMAK PLASMA; ASPECT RATIO; HIGH-BETA; DIII-D; CONFINEMENT; STABILIZATION AB Recent experiments in high temperature DIII-D tokamak [J. L. Luxon, Nucl. Fusion 42, 64 (2002)] plasmas reported the first observation of plasma acceleration driven by the application of static nonresonant magnetic fields (NRMFs), with resulting improvement in the global energy confinement time. Although the braking effect of static magnetic field asymmetries is well known, recent theory [A. J. Cole , Phys. Rev. Lett. 99, 065001 (2007)] predicts that in some circumstances they lead instead to an increase in rotation frequency toward a "neoclassical offset" rate in a direction opposed to the plasma current. We report the first experimental confirmation of this surprising result. The measured NRMF torque shows a strong dependence on both plasma density and temperature, above expectations from neoclassical theory. The consistency between theory and experiment improves with modifications to the expression of the NRMF torque accounting for a significant role of the plasma response to the external field and for the beta dependence of the plasma response, although some discrepancy remains. The magnitude and direction of the observed offset rotation associated with the NRMF torque are consistent with neoclassical theory predictions. The offset rotation rate is about 1% of the Alfven frequency or more than double the rotation needed for stable operation at high beta(N) above the n=1 no-wall kink limit in DIII-D. C1 [Garofalo, A. M.; Burrell, K. H.; DeBoo, J. C.; deGrassie, J. S.; Jackson, G. L.; Schaffer, M. J.; Strait, E. J.] Gen Atom Co, San Diego, CA 92186 USA. [Lanctot, M.; Reimerdes, H.] Columbia Univ, New York, NY 10027 USA. [Solomon, W. M.; Park, J. -K.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Garofalo, AM (reprint author), Gen Atom Co, POB 85608, San Diego, CA 92186 USA. RI Lanctot, Matthew J/O-4979-2016; OI Lanctot, Matthew J/0000-0002-7396-3372; Solomon, Wayne/0000-0002-0902-9876 NR 32 TC 29 Z9 29 U1 0 U2 3 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2009 VL 16 IS 5 AR 056119 DI 10.1063/1.3129164 PG 10 WC Physics, Fluids & Plasmas SC Physics GA 451WC UT WOS:000266500600112 ER PT J AU Girard, F Primout, M Villette, B Stemmler, P Jacquet, L Babonneau, D Fournier, KB AF Girard, F. Primout, M. Villette, B. Stemmler, Ph. Jacquet, L. Babonneau, D. Fournier, K. B. TI Titanium and germanium lined hohlraums and halfraums as multi-keV x-ray radiators SO PHYSICS OF PLASMAS LA English DT Article DE plasma confinement; plasma production by laser; plasma X-ray sources ID NATIONAL-IGNITION-FACILITY; LASER-PRODUCED PLASMAS; CONVERSION EFFICIENCY; ENERGY-LEVELS AB As multi-keV x-ray radiators, hohlraums and halfraums with inner walls coated with metallic materials (called liner) have been tested for the first time with laser as the energy drive. For titanium, conversion efficiencies (CEs) are up to similar to 14% for emission into 4 pi, integrating between 4.6 and 6.5 keV when a large diameter hohlraum is used. Germanium CE is similar to 0.8% into 4 pi between 9 and 13 keV. The highest CEs have been obtained with a 1 ns squared pulse and phase plates giving laser absorption near 99%. These high CEs are due to long-lasting, good plasma conditions for multi-keV x-ray production maintained by plasma confinement inside the plastic cylinder and plasma collision leading to a burst of x rays at a time that depends on target size. As photon emitters at 4.7 keV, titanium-lined hohlraums are the most efficient solid targets and data are close to CEs for gas targets, which are considered as the upper limit for x-ray yields since their low density allows good laser absorption and low kinetics losses. As 10.3 keV x-ray emitters, exploded germanium foils give best results one order of magnitude more efficient than thick targets; doped aerogels and lined hohlraums give similar yields, about three times lower than those from exploded foils. C1 [Girard, F.; Primout, M.; Villette, B.; Stemmler, Ph.; Jacquet, L.; Babonneau, D.] DIF, DAM, CEA, F-91297 Arpajon, France. [Fournier, K. B.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Girard, F (reprint author), DIF, DAM, CEA, F-91297 Arpajon, France. NR 36 TC 25 Z9 26 U1 0 U2 5 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2009 VL 16 IS 5 AR 052704 DI 10.1063/1.3130263 PG 11 WC Physics, Fluids & Plasmas SC Physics GA 451WC UT WOS:000266500600043 ER PT J AU Gorelenkov, NN Van Zeeland, MA Berk, HL Crocker, NA Darrow, D Fredrickson, E Fu, GY Heidbrink, WW Menard, J Nazikian, R AF Gorelenkov, N. N. Van Zeeland, M. A. Berk, H. L. Crocker, N. A. Darrow, D. Fredrickson, E. Fu, G. -Y. Heidbrink, W. W. Menard, J. Nazikian, R. TI Beta-induced Alfven-acoustic eigenmodes in National Spherical Torus Experiment and DIII-D driven by beam ions SO PHYSICS OF PLASMAS LA English DT Article; Proceedings Paper CT 50th Annual Meeting of the Division of Plasma Physics of the American-Physical-Society CY FEB 01, 2008 CL Dallas, TX SP Amer Phys Soc, Div Plasma Phys DE dispersion relations; eigenvalues and eigenfunctions; plasma Alfven waves; plasma instability; plasma kinetic theory; plasma toroidal confinement; Tokamak devices ID TOROIDAL PLASMAS; D TOKAMAK; KINETIC-THEORY; MODES; INSTABILITIES; PREDICTIONS; WAVES; FLOWS; JET AB Kinetic theory and experimental observations of a special class of energetic particle driven instabilities called here beta-induced Alfven-acoustic eigenmodes (BAAEs) are reported confirming, previous results [N. N. Gorelenkov , Plasma Phys. Controlled Fusion 49, B371 (2007)]. The kinetic theory is based on the ballooning dispersion relation where the drift frequency effects are retained. BAAE gaps are recovered in kinetic theory. It is shown that the observed certain low-frequency instabilities on DIII-D [J. L. Luxon, Nucl. Fusion 42, 614 (2002)] and National Spherical Torus Experiment [M. Ono, S. M. Kaye, Y.-K. M. Peng , Nucl. Fusion 40, 557 (2000)] are consistent with their identification as BAAEs. BAAEs deteriorate the fast ion confinement in DIII-D and can have a similar effect in next-step fusion plasmas, especially if excited together with multiple global toroidicity-induced shear Alfven eigenmode instabilities. BAAEs can also be used to diagnose safety factor profiles, a technique known as magnetohydrodynamic spectroscopy. C1 [Gorelenkov, N. N.; Darrow, D.; Fredrickson, E.; Fu, G. -Y.; Menard, J.; Nazikian, R.] Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Van Zeeland, M. A.] Gen Atom Co, San Diego, CA 92186 USA. [Berk, H. L.] Univ Texas Austin, Inst Fus Studies, Austin, TX 78712 USA. [Crocker, N. A.] Univ Calif Los Angeles, Inst Plasma & Fus Res, Los Angeles, CA 90095 USA. [Heidbrink, W. W.] Univ Calif Irvine, Irvine, CA 92697 USA. RP Gorelenkov, NN (reprint author), Princeton Univ, Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. EM ngorelen@pppl.gov OI Menard, Jonathan/0000-0003-1292-3286 NR 28 TC 41 Z9 44 U1 0 U2 9 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2009 VL 16 IS 5 AR 056107 DI 10.1063/1.3097920 PG 9 WC Physics, Fluids & Plasmas SC Physics GA 451WC UT WOS:000266500600100 ER PT J AU Herrmann, HW Langenbrunner, JR Mack, JM Cooley, JH Wilson, DC Evans, SC Sedillo, TJ Kyrala, GA Caldwell, SE Young, CS Nobile, A Wermer, J Paglieri, S McEvoy, AM Kim, Y Batha, SH Horsfield, CJ Drew, D Garbett, W Rubery, M Glebov, VY Roberts, S Frenje, JA AF Herrmann, H. W. Langenbrunner, J. R. Mack, J. M. Cooley, J. H. Wilson, D. C. Evans, S. C. Sedillo, T. J. Kyrala, G. A. Caldwell, S. E. Young, C. S. Nobile, A. Wermer, J. Paglieri, S. McEvoy, A. M. Kim, Y. Batha, S. H. Horsfield, C. J. Drew, D. Garbett, W. Rubery, M. Glebov, V. Yu. Roberts, S. Frenje, J. A. TI Anomalous yield reduction in direct-drive deuterium/tritium implosions due to He-3 addition SO PHYSICS OF PLASMAS LA English DT Article; Proceedings Paper CT 50th Annual Meeting of the Division of Plasma Physics of the American-Physical-Society CY NOV 17-21, 2008 CL Dallas, TX SP Amer Phys Soc, Div Plasma Phys DE explosions; helium; plasma inertial confinement; plasma production; plasma shock waves ID BURN HISTORY; FUSION; GAMMA; DETECTORS; TARGETS; ENERGY; OMEGA AB Glass capsules were imploded in direct drive on the OMEGA laser [Boehly , Opt. Commun. 133, 495 (1997)] to look for anomalous degradation in deuterium/tritium (DT) yield and changes in reaction history with He-3 addition. Such anomalies have previously been reported for D/He-3 plasmas but had not yet been investigated for DT/He-3. Anomalies such as these provide fertile ground for furthering our physics understanding of inertial confinement fusion implosions and capsule performance. Anomalous degradation in the compression component of yield was observed, consistent with the "factor of 2" degradation previously reported by Massachusetts Institute of Technology (MIT) at a 50% He-3 atom fraction in D-2 using plastic capsules [Rygg, Phys. Plasmas 13, 052702 (2006)]. However, clean calculations (i.e., no fuel-shell mixing) predict the shock component of yield quite well, contrary to the result reported by MIT but consistent with Los Alamos National Laboratory results in D-2/He-3 [Wilson , J. Phys.: Conf. Ser. 112, 022015 (2008)]. X-ray imaging suggests less-than-predicted compression of capsules containing He-3. Leading candidate explanations are poorly understood equation of state for gas mixtures and unanticipated particle pressure variation with increasing He-3 addition. C1 [Herrmann, H. W.; Langenbrunner, J. R.; Mack, J. M.; Cooley, J. H.; Wilson, D. C.; Evans, S. C.; Sedillo, T. J.; Kyrala, G. A.; Caldwell, S. E.; Young, C. S.; Nobile, A.; Wermer, J.; Paglieri, S.; McEvoy, A. M.; Kim, Y.; Batha, S. H.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Horsfield, C. J.; Drew, D.; Garbett, W.; Rubery, M.] Atom Weap Estab, Aldermaston RG7 4PR, England. [Glebov, V. Yu.; Roberts, S.] Univ Rochester, Laser Energet Lab, Rochester, NY 14623 USA. [Frenje, J. A.] MIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA. RP Herrmann, HW (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM herrmann@lanl.gov NR 20 TC 23 Z9 23 U1 0 U2 7 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2009 VL 16 IS 5 AR 056312 DI 10.1063/1.3141062 PG 9 WC Physics, Fluids & Plasmas SC Physics GA 451WC UT WOS:000266500600125 ER PT J AU Holcomb, CT Ferron, JR Luce, TC Petrie, TW Politzer, PA Challis, C DeBoo, JC Doyle, EJ Greenfield, CM Groebner, RJ Groth, M Hyatt, AW Jackson, GL Kessel, C La Haye, RJ Makowski, MA McKee, GR Murakami, M Osborne, TH Park, JM Prater, R Porter, GD Reimerdes, H Rhodes, TL Shafer, MW Snyder, PB Turnbull, AD West, WP AF Holcomb, C. T. Ferron, J. R. Luce, T. C. Petrie, T. W. Politzer, P. A. Challis, C. DeBoo, J. C. Doyle, E. J. Greenfield, C. M. Groebner, R. J. Groth, M. Hyatt, A. W. Jackson, G. L. Kessel, C. La Haye, R. J. Makowski, M. A. McKee, G. R. Murakami, M. Osborne, T. H. Park, J. -M. Prater, R. Porter, G. D. Reimerdes, H. Rhodes, T. L. Shafer, M. W. Snyder, P. B. Turnbull, A. D. West, W. P. TI Optimizing stability, transport, and divertor operation through plasma shaping for steady-state scenario development in DIII-D SO PHYSICS OF PLASMAS LA English DT Article; Proceedings Paper CT 50th Annual Meeting of the Division of Plasma Physics of the American-Physical-Society CY FEB 01, 2008 CL Dallas, TX SP Amer Phys Soc, Div Plasma Phys DE plasma density; plasma instability; plasma magnetohydrodynamics; plasma toroidal confinement; plasma transport processes; Tokamak devices ID H-MODE PEDESTAL; D TOKAMAK; CONFINEMENT; INJECTION; EDGE; CODE AB Recent studies on the DIII-D tokamak [J. L. Luxon, Nucl. Fusion 42, 614 (2002)] have elucidated key aspects of the dependence of stability, confinement, and density control on the plasma magnetic configuration, leading to the demonstration of nearly noninductive operation for >1 s with pressure 30% above the ideal no-wall stability limit. Achieving fully noninductive tokamak operation requires high pressure, good confinement, and density control through divertor pumping. Plasma geometry affects all of these. Ideal magnetohydrodynamics modeling of external kink stability suggests that it may be optimized by adjusting the shape parameter known as squareness (zeta). Optimizing kink stability leads to an increase in the maximum stable pressure. Experiments confirm that stability varies strongly with zeta, in agreement with the modeling. Optimization of kink stability via zeta is concurrent with an increase in the H-mode edge pressure pedestal stability. Global energy confinement is optimized at the lowest zeta tested, with increased pedestal pressure and lower core transport. Adjusting the magnetic divertor balance about a double-null configuration optimizes density control for improved noninductive auxiliary current drive. The best density control is obtained with a slight imbalance toward the divertor opposite the ion grad(B) drift direction, consistent with modeling of these effects. These optimizations have been combined to achieve noninductive current fractions near unity for over 1 s with normalized pressure of 3.5 65%, and a normalized confinement factor of H(98(y,2))approximate to 1.5. C1 [Holcomb, C. T.; Groth, M.; Makowski, M. A.; Porter, G. D.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Ferron, J. R.; Luce, T. C.; Petrie, T. W.; Politzer, P. A.; DeBoo, J. C.; Greenfield, C. M.; Groebner, R. J.; Hyatt, A. W.; Jackson, G. L.; La Haye, R. J.; Osborne, T. H.; Prater, R.; Snyder, P. B.; Turnbull, A. D.; West, W. P.] Gen Atom Co, San Diego, CA 92186 USA. [Challis, C.] UKAEA Euratom Fus Assoc, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England. [Doyle, E. J.; Rhodes, T. L.] Univ Calif Los Angeles, Los Angeles, CA 90095 USA. [Kessel, C.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [McKee, G. R.; Shafer, M. W.] Univ Wisconsin, Madison, WI 53706 USA. [Murakami, M.; Park, J. -M.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Reimerdes, H.] Columbia Univ, New York, NY 10027 USA. RP Holcomb, CT (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RI Groth, Mathias/G-2227-2013 NR 44 TC 25 Z9 25 U1 0 U2 5 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2009 VL 16 IS 5 AR 056116 DI 10.1063/1.3125934 PG 9 WC Physics, Fluids & Plasmas SC Physics GA 451WC UT WOS:000266500600109 ER PT J AU Hooper, EB Romero-Talamas, CA LoDestro, LL Wood, RD McLean, HS AF Hooper, E. B. Romero-Talamas, C. A. LoDestro, L. L. Wood, R. D. McLean, H. S. TI Aspect-ratio effects in the driven, flux-core spheromak SO PHYSICS OF PLASMAS LA English DT Article DE magnetic reconnection; plasma instability; plasma magnetohydrodynamics; plasma simulation; plasma toroidal confinement; stochastic processes ID TILTING INSTABILITY; HELICITY INJECTION; MAGNETIC HELICITY; SPHEX SPHEROMAK; GUN-DRIVEN; SUSTAINMENT; RELAXATION; PLASMA AB Resistive magnetohydrodynamic simulations are used to evaluate the effects of the aspect ratio A (length to radius ratio) in a spheromak driven by coaxial helicity injection. The simulations are benchmarked against the Sustained Spheromak Physics Experiment (SSPX) [R. D. Wood , Nucl. Fusion 45, 1582 (2005)]. Amplification of the bias ("gun") poloidal flux is fitted well by a linear dependence (insensitive to A) on the ratio of gun current and bias flux above a threshold dependent on A. For low flux amplifications in the simulations, the n=1 mode is coherent and the mean-field geometry looks like a tilted spheromak. Because the mode has relatively large amplitude the field lines are open everywhere, allowing helicity penetration. Strongly driven helicity injection at A <= 1.4 in simulations generates reconnection events which generate cathode-voltage spikes, relaxation of the symmetry-breaking modes, and open, stochastic magnetic field lines; this state is characteristic of SSPX. The time sequences of these events suggest that they are representative of a chaotic process. Near the spheromak tilt-mode limit, A approximate to 1.67 for a cylindrical flux conserver, the tilt approaches 90 degrees; reconnection events are not generated up to the strongest drives simulated. Implications for spheromak experiments are discussed. C1 [Hooper, E. B.; Romero-Talamas, C. A.; LoDestro, L. L.; Wood, R. D.; McLean, H. S.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Hooper, EB (reprint author), Lawrence Livermore Natl Lab, POB 808, Livermore, CA 94551 USA. EM hooper1@llnl.gov FU Department of Energy [DE-AC03-76SF00098]; U.S. Department of Energy [W7405-ENG-48, DE-AC5207NA27344] FX We thank the SSPX experimental team for their extensive efforts during the operation of the experiments. Stimulating discussions with B. I. Cohen are gratefully acknowledged, as is C. R. Sovinec's help with the NIMROD code and spheromak physics, in general. The visualization in this work was made possible by the help of Brian Nelson at the PSI Center, University of Washington, who prepared the python code scripts which converted the NIMROD output into the proper format for VISIT. Brad Whitlock of LLNL provided much-needed consulting guidance on the use of VISIT, and W. H. Meyer of LLNL installed and debugged the code on a local computer system and provided important support as needed. The simulations made use of resources at the National Energy Research Supercomputer Center under Department of Energy Contract No. DE-AC03-76SF00098. The work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract Nos. W7405-ENG-48 and DE-AC5207NA27344. NR 29 TC 1 Z9 1 U1 0 U2 1 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2009 VL 16 IS 5 AR 052506 DI 10.1063/1.3134064 PG 9 WC Physics, Fluids & Plasmas SC Physics GA 451WC UT WOS:000266500600031 ER PT J AU Hurricane, OA Hansen, JF Robey, HF Remington, BA Bono, MJ Harding, EC Drake, RP Kuranz, CC AF Hurricane, O. A. Hansen, J. F. Robey, H. F. Remington, B. A. Bono, M. J. Harding, E. C. Drake, R. P. Kuranz, C. C. TI A high energy density shock driven Kelvin-Helmholtz shear layer experiment SO PHYSICS OF PLASMAS LA English DT Article; Proceedings Paper CT 50th Annual Meeting of the Division of Plasma Physics of the American-Physical-Society CY FEB 01, 2008 CL Dallas, TX SP Amer Phys Soc, Div Plasma Phys DE bubbles; flow instability; plasma flow; plasma instability; plasma shock waves; plasma turbulence; supersonic flow; vortices ID EXPERIMENTAL ASTROPHYSICS; SUPERNOVA HYDRODYNAMICS; LASER; INSTABILITIES; SIMULATION; PLASMAS; SYSTEM; MIX AB Radiographic data from a novel and highly successful high energy density Kelvin-Helmholtz (KH) instability experiment is presented along with synapses of the theory and simulation behind the target design. Data on instability growth are compared to predictions from simulation and theory. The key role played by baroclinic vorticity production in the functioning of the target and the key design parameters are also discussed. The data show the complete evolution of large distinct KH eddies, from formation to turbulent break-up. Unexpectedly, low density bubbles comparable to the vortex size are observed forming in the free-stream region above each vortex at late time. These bubbles have the appearance of localized shocks, possibly supporting a theoretical fluid dynamics conjecture about the existence of supersonic bubbles over the vortical structure [transonic convective Mach numbers, D. Papamoschou and A. Roshko, J. Fluid Mech. 197, 453 (1988)] that support localized shocks (shocklets) not extending into the free stream (P. E. Dimotakis, Proceedings of the 22nd Fluid Dynamics, Plasma Dynamics and Lasers Conference, 1991, Paper No. AIAA 91-1724). However, it is also possible that these low density bubbles are the result of a cavitationlike effect. Hypothesis that may explain the appearance of low density bubbles will be discussed. C1 [Hurricane, O. A.; Hansen, J. F.; Robey, H. F.; Remington, B. A.; Bono, M. J.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Harding, E. C.; Drake, R. P.; Kuranz, C. C.] Univ Michigan, Dept Atmospher Ocean & Space Sci, Ann Arbor, MI 48109 USA. RP Hurricane, OA (reprint author), Lawrence Livermore Natl Lab, POB 808, Livermore, CA 94551 USA. EM hurricane1@llnl.gov OI Drake, R Paul/0000-0002-5450-9844 NR 35 TC 28 Z9 28 U1 2 U2 11 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2009 VL 16 IS 5 AR 056305 DI 10.1063/1.3096790 PG 9 WC Physics, Fluids & Plasmas SC Physics GA 451WC UT WOS:000266500600118 ER PT J AU Joseph, I AF Joseph, Ilon TI Driving toroidally asymmetric current through the tokamak scrape-off layer. II. Magnetic field structure and spectrum SO PHYSICS OF PLASMAS LA English DT Article DE fusion reactor divertors; fusion reactor theory; plasma boundary layers; plasma instability; plasma magnetohydrodynamics; plasma toroidal confinement; plasma transport processes; Tokamak devices ID PEELING-BALLOONING MODES; DIII-D; PLASMA CONVECTION; DIVERTOR; PERTURBATIONS; TRANSPORT; DISCHARGES; STABILITY; SURFACES; ITER AB The structure of the magnetic field perturbations due to nonaxisymmetric field-aligned currents in the tokamak scrape-off layer (SOL) are analytically calculated near the X-point. Paper I [I. Joseph , Phys. Plasmas 16, 052510 (2009)] demonstrated that biasing divertor target plates in a toroidally asymmetric fashion can generate an appreciable toroidally asymmetric parallel current density in the SOL along the separatrix. Here, the magnetic field perturbation caused by a SOL current channel of finite width and stepwise constant amplitude at the target plate is derived. Flux expansion amplifies the magnetic perturbation near the X-point, while phase interference causes the SOL amplitude to be reduced at large toroidal mode number. Far enough from the current channel, the magnetic field can be approximated as arising from a surface current near the separatrix with differing amplitudes in the SOL and the divertor leg. The perturbation spectrum and resonant components of this field are computed analytically asymptotically close to the separatrix in magnetic flux coordinates. The size of the stochastic layer due to the applied perturbation that would result without self-consistent plasma shielding is also estimated. If enough resonant field is generated, control of the edge pressure gradient may allow stabilization of edge localized modes. C1 Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Joseph, I (reprint author), Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94551 USA. EM joseph5@llnl.gov NR 34 TC 5 Z9 5 U1 1 U2 4 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2009 VL 16 IS 5 AR 052511 DI 10.1063/1.3134584 PG 15 WC Physics, Fluids & Plasmas SC Physics GA 451WC UT WOS:000266500600036 ER PT J AU Joseph, I Cohen, RH Ryutov, DD AF Joseph, Ilon Cohen, Ronald H. Ryutov, Dmitri D. TI Driving toroidally asymmetric current through the tokamak scrape-off layer. I. Potential for edge localized mode suppression SO PHYSICS OF PLASMAS LA English DT Article DE plasma boundary layers; plasma density; plasma instability; plasma magnetohydrodynamics; plasma simulation; plasma toroidal confinement; plasma transport processes; Tokamak devices ID RESONANT MAGNETIC PERTURBATIONS; PEELING-BALLOONING MODES; DIII-D TOKAMAK; PLASMA CONVECTION; PARTICLE CONTROL; CHAPTER 4; DIVERTOR; STABILITY; PHYSICS; TRANSPORT AB A potential technique for suppressing edge localized modes is theoretically analyzed. Recent experiments have shown that externally generated resonant magnetic perturbations (RMPs) can stabilize edge localized modes (ELMs) by modifying the density profile [T. E. Evans , Nat. Phys. 2, 419 (2006); Y. Liang , Phys. Rev. Lett. 98, 265004 (2007)]. Driving toroidally asymmetric current internally through the scrape-off layer (SOL) plasma itself can also generate RMPs that are close to the required threshold for ELM control. Ion saturation current densities can be achieved by producing potential differences on the order of the electron temperature. Although the threshold is uncertain in future devices, if driven coherently through the SOL, the upper limit for the resulting perturbation field would exceed the present experimental threshold. This analysis provides the tools required for estimating the magnitude of the coherent SOL current and RMP generated via toroidally asymmetric biasing of the target. Flux expansion increases the perturbation near the X-point, while phase interference due to the shearing of field lines near the X-point reduces the amplitude of the effective SOL perturbation and makes the result sensitive to both toroidal mode number n and the phasing at the target plate. If the current density driven at the target plate decays radially, the amplitude over the useful coherence width of the current profile will be reduced. The RMP can still exceed the present threshold at low n if the radial location and width of the biasing region are optimally chosen. C1 [Joseph, Ilon; Cohen, Ronald H.; Ryutov, Dmitri D.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Joseph, I (reprint author), Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94551 USA. EM joseph5@llnl.gov FU U.S. Department of Energy at Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX The authors would like to thank T. D. Rognlien for providing access to UEDGE divertor physics modeling results for ITER and for valuable discussions that led to great improvements in the manuscript. We would also like to thank the referee for valuable suggestions that contributed to improving the clarity and content of the paper and for urging us to treat the effects of phase interference more completely. This work was performed under the auspices of the U.S. Department of Energy at Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. NR 50 TC 7 Z9 7 U1 1 U2 7 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2009 VL 16 IS 5 AR 052510 DI 10.1063/1.3134580 PG 14 WC Physics, Fluids & Plasmas SC Physics GA 451WC UT WOS:000266500600035 ER PT J AU Kritcher, AL Neumayer, P Castor, J Doppner, T Falcone, RW Landen, OL Lee, HJ Lee, RW Holst, B Redmer, R Morse, EC Ng, A Pollaine, S Price, D Glenzer, SH AF Kritcher, A. L. Neumayer, P. Castor, J. Doeppner, T. Falcone, R. W. Landen, O. L. Lee, H. J. Lee, R. W. Holst, B. Redmer, R. Morse, E. C. Ng, A. Pollaine, S. Price, D. Glenzer, S. H. TI Ultrafast K alpha x-ray Thomson scattering from shock compressed lithium hydride SO PHYSICS OF PLASMAS LA English DT Article; Proceedings Paper CT 50th Annual Meeting of the Division of Plasma Physics of the American-Physical-Society CY FEB 01, 2008 CL Dallas, TX SP Amer Phys Soc, Div Plasma Phys DE heating; lithium compounds; plasmons; shock wave effects; Thomson effect; X-ray scattering ID NATIONAL-IGNITION-FACILITY; EQUATION-OF-STATE; DENSE-PLASMAS; HIGH-PRESSURE; LASER; LIQUID; PHOTOABSORPTION; TEMPERATURE; DEUTERIUM; HYDROGEN AB Spectrally and temporally resolved x-ray Thomson scattering using ultrafast Ti K alpha x rays has provided experimental validation for modeling of the compression and heating of shocked matter. The coalescence of two shocks launched into a solid density LiH target by a shaped 6 ns heater beam was observed from rapid heating to temperatures of 2.2 eV, enabling tests of shock timing models. Here, the temperature evolution of the target at various times during shock progression was characterized from the intensity of the elastic scattering component. The observation of scattering from plasmons, electron plasma oscillations, at shock coalescence indicates a transition to a dense metallic plasma state in LiH. From the frequency shift of the measured plasmon feature the electron density was directly determined with high accuracy, providing a material compression of a factor of 3 times solid density. The quality of data achieved in these experiments demonstrates the capability for single shot dynamic characterization of dense shock compressed matter. The conditions probed in this experiment are relevant for the study of the physics of planetary formation and to characterize inertial confinement fusion targets for experiments such as on the National Ignition Facility, Lawrence Livermore National Laboratory. C1 [Kritcher, A. L.; Neumayer, P.; Castor, J.; Doeppner, T.; Landen, O. L.; Lee, R. W.; Ng, A.; Pollaine, S.; Price, D.; Glenzer, S. H.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Kritcher, A. L.; Morse, E. C.] Univ Calif Berkeley, Dept Nucl Engn, Berkeley, CA 94709 USA. [Falcone, R. W.; Lee, H. J.; Lee, R. W.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94709 USA. [Holst, B.; Redmer, R.] Univ Rostock, Inst Phys, D-18051 Rostock, Germany. RP Kritcher, AL (reprint author), Lawrence Livermore Natl Lab, L-399,POB 808, Livermore, CA 94551 USA. RI Holst, Bastian/D-2217-2011; Redmer, Ronald/F-3046-2013 OI Holst, Bastian/0000-0002-2369-3730; NR 44 TC 6 Z9 6 U1 0 U2 3 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2009 VL 16 IS 5 AR 056308 DI 10.1063/1.3099316 PG 8 WC Physics, Fluids & Plasmas SC Physics GA 451WC UT WOS:000266500600121 ER PT J AU Krstic, PS Schultz, DR AF Krstic, P. S. Schultz, D. R. TI Mean free paths and elastic and related transport cross sections for neutrals and singly charged ions of Li, Be, and B in hydrogen plasmas SO PHYSICS OF PLASMAS LA English DT Article DE plasma ID SLOW COLLISIONS; 1ST WALL; TOKAMAK; SCATTERING; MOLECULES; COATINGS; RELEVANT; DIVERTOR; EDGE AB The mean free paths are computed from the momentum transfer cross sections associated with collisions of protons with Li, Be, and B and for Li, Li+, Be+, and B+ colliding with atomic hydrogen, for center of mass energies between 0.0001 and 10 000 eV. The elastic and viscosity cross sections are also calculated for these collision systems. A fully quantum mechanical approach has been used up to 100 eV along with a more approximate, quasiclassical method between similar to 0.1 and 10 000 eV. C1 [Krstic, P. S.; Schultz, D. R.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. RP Krstic, PS (reprint author), Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. FU U.S. Department of Energy; Office of Fusion Energy Sciences, through Oak Ridge National Laboratory [DE-AC05-00OR22725] FX This work was supported by the U.S. Department of Energy, Office of Fusion Energy Sciences, through Oak Ridge National Laboratory which is managed by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725. NR 31 TC 9 Z9 9 U1 0 U2 10 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2009 VL 16 IS 5 AR 053503 DI 10.1063/1.3126549 PG 6 WC Physics, Fluids & Plasmas SC Physics GA 451WC UT WOS:000266500600057 ER PT J AU Kuranz, CC Drake, RP Grosskopf, MJ Budde, A Krauland, C Marion, DC Visco, AJ Ditmar, JR Robey, HF Remington, BA Miles, AR Cooper, ABR Sorce, C Plewa, T Hearn, NC Killebrew, KL Knauer, JP Arnett, D Donajkowski, T AF Kuranz, C. C. Drake, R. P. Grosskopf, M. J. Budde, A. Krauland, C. Marion, D. C. Visco, A. J. Ditmar, J. R. Robey, H. F. Remington, B. A. Miles, A. R. Cooper, A. B. R. Sorce, C. Plewa, T. Hearn, N. C. Killebrew, K. L. Knauer, J. P. Arnett, D. Donajkowski, T. TI Three-dimensional blast-wave-driven Rayleigh-Taylor instability and the effects of long-wavelength modes SO PHYSICS OF PLASMAS LA English DT Article; Proceedings Paper CT 50th Annual Meeting of the Division of Plasma Physics of the American-Physical-Society CY NOV 17-21, 2008 CL Dallas, TX SP Amer Phys Soc, Div Plasma Phys DE explosions; helium; hydrogen; plasma production by laser; plasma shock waves; plasma simulation; Rayleigh-Taylor instability ID 2-DIMENSIONAL SIMULATIONS; HYDRODYNAMICS CODE; SUPERNOVA-REMNANTS; EARLY EVOLUTION; LIGHT-CURVE; SN-1987A; GROWTH; ASTROPHYSICS; SYSTEM; LASERS AB This paper describes experiments exploring the three-dimensional (3D) Rayleigh-Taylor instability at a blast-wave-driven interface. This experiment is well scaled to the He/H interface during the explosion phase of SN1987A. In the experiments, similar to 5 kJ of energy from the Omega laser was used to create a planar blast wave in a plastic disk, which is accelerated into a lower-density foam. These circumstances induce the Richtmyer-Meshkov instability and, after the shock passes the interface, the system quickly becomes dominated by the Rayleigh-Taylor instability. The plastic disk has an intentional pattern machined at the plastic/foam interface. This perturbation is 3D with a basic structure of two orthogonal sine waves with a wavelength of 71 mu m and an amplitude of 2.5 mu m. Additional long-wavelength modes with a wavelength of either 212 or 424 mu m are added onto the single-mode pattern. The addition of the long-wavelength modes was motivated by the results of previous experiments where material penetrated unexpectedly to the shock front, perhaps due to an unintended structure. The current experiments and simulations were performed to explore the effects of this unintended structure; however, we were unable to reproduce the previous results. C1 [Kuranz, C. C.; Drake, R. P.; Grosskopf, M. J.; Budde, A.; Krauland, C.; Marion, D. C.; Visco, A. J.; Ditmar, J. R.] Univ Michigan, Ann Arbor, MI 48109 USA. [Robey, H. F.; Remington, B. A.; Miles, A. R.; Cooper, A. B. R.; Sorce, C.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Plewa, T.] Florida State Univ, Dept Comp Sci, Tallahassee, FL 32306 USA. [Hearn, N. C.] Univ Chicago, ASC Flash Ctr, Chicago, IL 60637 USA. [Killebrew, K. L.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Knauer, J. P.] Univ Rochester, Laser Energet Lab, Rochester, NY USA. [Arnett, D.] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. [Donajkowski, T.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Kuranz, CC (reprint author), Univ Michigan, Ann Arbor, MI 48109 USA. RI Plewa, Tomasz/C-1470-2010; OI Plewa, Tomasz/0000-0002-1762-2565; Drake, R Paul/0000-0002-5450-9844 NR 43 TC 18 Z9 19 U1 1 U2 13 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2009 VL 16 IS 5 AR 056310 DI 10.1063/1.3099320 PG 10 WC Physics, Fluids & Plasmas SC Physics GA 451WC UT WOS:000266500600123 ER PT J AU Lei, AL Tanaka, KA Kodama, R Adumi, K Habara, H Kitagawa, Y Kondo, K Matsuoka, T Tanimoto, T Yabuuchi, T Mima, K Nagai, K Nagatomo, H Norimatsu, T Sawai, K Suzuki, K Yu, W Xu, H Yang, XQ Cao, LH Cai, HB Sentoku, Y Pukhov, A Kumar, R Snavely, R Freeman, R Yu, M Zheng, J AF Lei, A. L. Tanaka, K. A. Kodama, R. Adumi, K. Habara, H. Kitagawa, Y. Kondo, K. Matsuoka, T. Tanimoto, T. Yabuuchi, T. Mima, K. Nagai, K. Nagatomo, H. Norimatsu, T. Sawai, K. Suzuki, K. Yu, Wei Xu, Han Yang, X. Q. Cao, L. H. Cai, H. B. Sentoku, Y. Pukhov, A. Kumar, R. Snavely, R. Freeman, R. Yu, Min Zheng, J. TI Study of ultraintense laser propagation in overdense plasmas for fast ignition SO PHYSICS OF PLASMAS LA English DT Article; Proceedings Paper CT 50th Annual Meeting of the Division of Plasma Physics of the American-Physical-Society CY FEB 01, 2008 CL Dallas, TX SP Amer Phys Soc, Div Plasma Phys DE electron beams; laser fusion; plasma heating by laser; plasma light propagation; plasma simulation; relativistic plasmas ID UNDERDENSE; PULSES; OSAKA AB Laser plasma interactions in a relativistic regime relevant to the fast ignition in inertial confinement fusion have been investigated. Ultraintense laser propagation in preformed plasmas and hot electron generation are studied. The experiments are performed using a 100 TW 0.6 ps laser and a 20 TW 0.6 ps laser synchronized by a long pulse laser. In the study, a self-focused ultraintense laser beam propagates along its axis into an overdense plasma with peak density 10(22)/cm(3). Channel formation in the plasma is observed. The laser transmission in the overdense plasma depends on the position of its focus and can take place in plasmas with peak densities as high as 5x10(22)/cm(3). The hot electron beams produced by the laser-plasma interaction have a divergence angle of similar to 30 degrees, which is smaller than that from laser-solid interactions. For deeper penetration of the laser light into the plasma, the use of multiple short pulse lasers is proposed. The latter scheme is investigated using particle-in-cell simulation. It is found that when the pulse duration and the interval between the pulses are appropriate, the laser pulse train can channel into the plasma deeper than a single longer pulse laser of similar peak intensity and total energy. C1 [Lei, A. L.; Yu, Wei; Xu, Han; Yang, X. Q.] Chinese Acad Sci, Shanghai Inst Opt & Fine Mech, Shanghai 201800, Peoples R China. [Lei, A. L.; Tanaka, K. A.; Kodama, R.; Adumi, K.; Habara, H.; Kitagawa, Y.; Kondo, K.; Matsuoka, T.; Tanimoto, T.; Yabuuchi, T.] Osaka Univ, Grad Sch Engn, Suita, Osaka 5650871, Japan. [Lei, A. L.; Tanaka, K. A.; Kodama, R.; Adumi, K.; Habara, H.; Kitagawa, Y.; Kondo, K.; Matsuoka, T.; Tanimoto, T.; Yabuuchi, T.; Mima, K.; Nagai, K.; Nagatomo, H.; Norimatsu, T.; Sawai, K.; Suzuki, K.; Cai, H. B.] Osaka Univ, Inst Laser Engn, Suita, Osaka 5650871, Japan. [Cao, L. H.; Cai, H. B.] Inst Appl Phys & Computat Math, Beijing 100088, Peoples R China. [Sentoku, Y.] Univ Nevada, NTF MS372, Dept Phys, Reno, NV 89506 USA. [Pukhov, A.] Univ Dusseldorf, Inst Theoret Phys 1, D-40225 Dusseldorf, Germany. [Kumar, R.] Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India. [Snavely, R.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Freeman, R.] Ohio State Univ, Coll Math & Phys Sci, Columbus, OH 43210 USA. [Yu, Min] Zhejiang Univ, Inst Fus Theory & Simulat, Hangzhou 310027, Peoples R China. [Zheng, J.] Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Anhui, Peoples R China. RP Lei, AL (reprint author), Chinese Acad Sci, Shanghai Inst Opt & Fine Mech, Shanghai 201800, Peoples R China. RI Sentoku, Yasuhiko/P-5419-2014; Nagai, Keiji/E-5155-2014; Norimatsu, Takayoshi/I-5710-2015; pukhov, alexander/C-8082-2016; Mima, Kunioki/H-9014-2016; Kodama, Ryosuke/G-2627-2016 NR 33 TC 16 Z9 16 U1 0 U2 7 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2009 VL 16 IS 5 AR 056307 DI 10.1063/1.3101912 PG 6 WC Physics, Fluids & Plasmas SC Physics GA 451WC UT WOS:000266500600120 ER PT J AU Li, CK Seguin, FH Frenje, JA Manuel, M Casey, D Sinenian, N Petrasso, RD Amendt, PA Landen, OL Rygg, JR Town, RPJ Betti, R Delettrez, J Knauer, JP Marshall, F Meyerhofer, DD Sangster, TC Shvarts, D Smalyuk, VA Soures, JM Back, CA Kilkenny, JD Nikroo, A AF Li, C. K. Seguin, F. H. Frenje, J. A. Manuel, M. Casey, D. Sinenian, N. Petrasso, R. D. Amendt, P. A. Landen, O. L. Rygg, J. R. Town, R. P. J. Betti, R. Delettrez, J. Knauer, J. P. Marshall, F. Meyerhofer, D. D. Sangster, T. C. Shvarts, D. Smalyuk, V. A. Soures, J. M. Back, C. A. Kilkenny, J. D. Nikroo, A. TI Proton radiography of dynamic electric and magnetic fields in laser-produced high-energy-density plasmas SO PHYSICS OF PLASMAS LA English DT Article; Proceedings Paper CT 50th Annual Meeting of the Division of Plasma Physics of the American-Physical-Society CY FEB 01, 2008 CL Dallas, TX SP Amer Phys Soc, Div Plasma Phys DE corona; explosions; plasma inertial confinement; plasma production by laser ID CONFINEMENT-FUSION PLASMAS; RECONNECTION; IMPLOSIONS; COMPRESSION; IRRADIATION; PERFORMANCE; INSTABILITY; UNIFORMITY; TRANSPORT; TARGETS AB Time-gated, monoenergetic-proton radiography provides unique measurements of the electric (E) and magnetic (B) fields produced in laser-foil interactions and during the implosion of inertial-confinement-fusion capsules. These experiments resulted in the first observations of several new and important features: (1) observations of the generation, decay dynamics, and instabilities of megagauss B fields in laser-driven planar plastic foils, (2) the observation of radial E fields inside an imploding capsule, which are initially directed inward, reverse direction during deceleration, and are likely related to the evolution of the electron pressure gradient, and (3) the observation of many radial filaments with complex electromagnetic field striations in the expanding coronal plasmas surrounding the capsule. The physics behind and implications of such observed fields are discussed. C1 [Li, C. K.; Seguin, F. H.; Frenje, J. A.; Manuel, M.; Casey, D.; Sinenian, N.; Petrasso, R. D.] MIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA. [Amendt, P. A.; Landen, O. L.; Rygg, J. R.; Town, R. P. J.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Betti, R.; Delettrez, J.; Knauer, J. P.; Marshall, F.; Meyerhofer, D. D.; Sangster, T. C.; Shvarts, D.; Smalyuk, V. A.; Soures, J. M.] Univ Rochester, Laser Energet Lab, Rochester, NY 14623 USA. [Betti, R.; Meyerhofer, D. D.] Univ Rochester, Dept Mech Engn Phys & Astron, Rochester, NY 14623 USA. [Shvarts, D.] Negev & Ben Gurion Univ Negev, NRCN, IL-84015 Beer Sheva, Israel. [Back, C. A.; Kilkenny, J. D.; Nikroo, A.] Gen Atom Co, San Diego, CA 92186 USA. RP Li, CK (reprint author), MIT, Plasma Sci & Fus Ctr, 77 Massachusetts Ave, Cambridge, MA 02139 USA. EM li@psfc.mit.edu RI Manuel, Mario/L-3213-2015 OI Manuel, Mario/0000-0002-5834-1161 NR 41 TC 18 Z9 21 U1 1 U2 6 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2009 VL 16 IS 5 AR 056304 DI 10.1063/1.3096781 PG 6 WC Physics, Fluids & Plasmas SC Physics GA 451WC UT WOS:000266500600117 ER PT J AU Liu, YQ Chapman, IT Chu, MS Reimerdes, H Villone, F Albanese, R Ambrosino, G Garofalo, AM Gimblett, CG Hastie, RJ Hender, TC Jackson, GL La Haye, RJ Okabayashi, M Pironti, A Portone, A Rubinacci, G Strait, EJ AF Liu, Yueqiang Chapman, I. T. Chu, M. S. Reimerdes, H. Villone, F. Albanese, R. Ambrosino, G. Garofalo, A. M. Gimblett, C. G. Hastie, R. J. Hender, T. C. Jackson, G. L. La Haye, R. J. Okabayashi, M. Pironti, A. Portone, A. Rubinacci, G. Strait, E. J. TI Progress in physics and control of the resistive wall mode in advanced tokamaks SO PHYSICS OF PLASMAS LA English DT Article; Proceedings Paper CT 50th Annual Meeting of the Division of Plasma Physics of the American-Physical-Society CY FEB 01, 2008 CL Dallas, TX SP Amer Phys Soc, Div Plasma Phys ID ROTATIONAL STABILIZATION; STABILITY; PLASMAS; SHEAR; FEEDBACK; KINK; ITER AB Self-consistent computations are carried out to study the stability of the resistive wall mode (RWM) in DIII-D [J. L. Luxon, Nucl. Fusion 42, 614 (2002)] plasmas with slow plasma rotation, using the hybrid kinetic-magnetohydrodynamic code MARS-K [Y. Q. Liu et al., Phys. Plasmas 15, 112503 (2008)]. Based on kinetic resonances between the mode and the thermal particle toroidal precession drifts, the self-consistent modeling predicts less stabilization of the mode compared to perturbative approaches, and with the DIII-D experiments. A simple analytic model is proposed to explain the MARS-K results, which also gives a qualitative interpretation of the recent experimental results observed in JT-60U [S. Takeji et al., Nucl. Fusion 42, 5 (2002)]. Our present analysis does not include the kinetic contribution from hot ions, which may give additional damping on the mode. The effect of particle collision is not included either. Using the CARMA code [R. Albanese et al., IEEE Trans. Magn. 44, 1654 (2008)], a stability and control analysis is performed for the RWM in ITER [R. Aymar et al., Plasma Phys. Controlled Fusion 44, 519 (2002)] steady state advanced plasmas, taking into account the influence of three-dimensional conducting structures. [DOI: 10.1063/1.3123388] C1 [Liu, Yueqiang; Chapman, I. T.; Gimblett, C. G.; Hastie, R. J.; Hender, T. C.] UKAEA Euratom Fus Assoc, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England. [Chu, M. S.; Garofalo, A. M.; Jackson, G. L.; La Haye, R. J.; Strait, E. J.] Gen Atom Co, San Diego, CA 92186 USA. [Reimerdes, H.] Columbia Univ, New York, NY 10027 USA. [Villone, F.; Ambrosino, G.; Pironti, A.] Univ Cassino, DAEIMI, ENEA CREATE, I-03043 Cassino, FR, Italy. [Albanese, R.; Rubinacci, G.] Univ Naples Federico 2, ENEA CREATE, I-80125 Naples, Italy. [Okabayashi, M.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Portone, A.] Fus Energy, Barcelona 08019, Spain. RP Liu, YQ (reprint author), UKAEA Euratom Fus Assoc, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England. EM yueqiang.liu@ukaea.org.uk RI Albanese, Raffaele/B-5394-2016; OI Albanese, Raffaele/0000-0003-4586-8068; Ambrosino, Giuseppe/0000-0002-2549-2772 NR 39 TC 38 Z9 40 U1 1 U2 6 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2009 VL 16 IS 5 AR 056113 DI 10.1063/1.3123388 PG 12 WC Physics, Fluids & Plasmas SC Physics GA 451WC UT WOS:000266500600106 ER PT J AU Maqueda, RJ Maingi, R AF Maqueda, R. J. Maingi, R. CA NSTX team, TI Primary edge localized mode filament structure in the National Spherical Torus Experiment SO PHYSICS OF PLASMAS LA English DT Article; Proceedings Paper CT 50th Annual Meeting of the Division of Plasma Physics of the American-Physical-Society CY FEB 01, 2008 CL Dallas, TX SP Amer Phys Soc, Div Plasma Phys DE filamentation instability; plasma diagnostics; plasma magnetohydrodynamics; plasma toroidal confinement; plasma turbulence ID SCRAPE-OFF LAYER; ASDEX UPGRADE; ELMS; MAST; NSTX; TRANSPORT; TURBULENCE; STABILITY; PEDESTAL; JET AB Edge localized modes (ELMs) are routinely seen in the National Spherical Torus Experiment (NSTX) [M. Ono, Nucl. Fusion 40, 557 (2000)]. These unstable modes give rise to plasma filaments that burst radially outward during the nonlinear phase of the instability, moving across flux surfaces into the scrape-off layer. Fast-frame visible imaging is used in NSTX to study the evolution and characteristics of the post-ELM filaments. These edge filaments, which are well aligned with the local magnetic field, are seen to evolve from a perturbation of the edge that within 40-50 mu s develops into the relatively high density/temperature primary filaments. The distribution of primary filaments in toroidal angle is seen to agree with a random model with moderate average toroidal mode numbers. At the same time, gas puff imaging shows that the perturbation of the edge leading to the burst of the ELM into the scrape-off layer is characterized by a broadband increase in fluctuations at much smaller poloidal wavelengths (lambda(pol)similar to 2-12 cm). These two measurements suggest that early development of turbulence may play a role in the development of primary ELM filamentation. C1 [Maqueda, R. J.] Nova Photon Inc, Princeton, NJ 08540 USA. [Maingi, R.] Oak Ridge Natl Lab, Oak Ridge, TN 37830 USA. RP Maqueda, RJ (reprint author), Nova Photon Inc, Princeton, NJ 08540 USA. NR 29 TC 24 Z9 24 U1 1 U2 7 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2009 VL 16 IS 5 AR 056117 DI 10.1063/1.3085798 PG 7 WC Physics, Fluids & Plasmas SC Physics GA 451WC UT WOS:000266500600110 ER PT J AU McDevitt, CJ Diamond, PH Gurcan, OD Hahm, TS AF McDevitt, C. J. Diamond, P. H. Guercan, Oe. D. Hahm, T. S. TI A novel mechanism for exciting intrinsic toroidal rotation SO PHYSICS OF PLASMAS LA English DT Article DE convection; phase space methods; plasma flow; plasma toroidal confinement; plasma turbulence ID DRIFT-WAVE TURBULENCE; GYROKINETIC EQUATIONS; TRANSPORT BARRIERS; MOMENTUM; TOKAMAKS; PLASMAS; FLOWS; VELOCITY; FIELD; MODE AB Beginning from a phase space conserving gyrokinetic formulation, a systematic derivation of parallel momentum conservation uncovers two physically distinct mechanisms by which microturbulence may drive intrinsic rotation. The first mechanism, which emanates from ExB convection of parallel momentum, has already been analyzed [O. D. Gurcan , Phys. Plasmas 14, 042306 (2007); R. R. Dominguez and G. M. Staebler, Phys. Fluids B 5, 3876 (1993)] and was shown to follow from radial electric field shear induced symmetry breaking of the spectrally averaged parallel wave number. Thus, this mechanism is most likely active in regions with steep pressure gradients or strong poloidal flow shear. The second mechanism uncovered, which appears in the gyrokinetic formulation through the parallel nonlinearity, emerges due to charge separation induced by the polarization drift. This novel means of driving intrinsic rotation, while nominally higher order in an expansion of the mode frequency divided by the ion cyclotron frequency, does not depend on radial electric field shear. Thus, while the magnitude of the former mechanism is strongly reduced in regions of weak radial electric field shear, this mechanism remains unabated and is thus likely relevant in complementary regimes. C1 [McDevitt, C. J.; Diamond, P. H.] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA. [Hahm, T. S.] Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Guercan, Oe. D.] CEA Cadarache, F-13108 St Paul Les Durance, France. [McDevitt, C. J.; Diamond, P. H.] Univ Calif San Diego, Ctr Astrophys & Space Sci, La Jolla, CA 92093 USA. RP McDevitt, CJ (reprint author), Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA. EM cmcdevitt@ucsd.edu RI Gurcan, Ozgur/A-1362-2013; OI Gurcan, Ozgur/0000-0002-2278-1544; McDevitt, Christopher/0000-0002-3674-2909 NR 47 TC 32 Z9 32 U1 0 U2 3 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2009 VL 16 IS 5 AR 052302 DI 10.1063/1.3122048 PG 12 WC Physics, Fluids & Plasmas SC Physics GA 451WC UT WOS:000266500600018 ER PT J AU Park, JK Boozer, AH Menard, JE Garofalo, AM Schaffer, MJ Hawryluk, RJ Kaye, SM Gerhardt, SP Sabbagh, SA AF Park, Jong-kyu Boozer, Allen H. Menard, Jonathan E. Garofalo, Andrea M. Schaffer, Michael J. Hawryluk, Richard J. Kaye, Stanley M. Gerhardt, Stefan P. Sabbagh, Steve A. CA NSTX Team TI Importance of plasma response to nonaxisymmetric perturbations in tokamaks SO PHYSICS OF PLASMAS LA English DT Article; Proceedings Paper CT 50th Annual Meeting of the Division of Plasma Physics of the American-Physical-Society CY FEB 01, 2008 CL Dallas, TX SP Amer Phys Soc, Div Plasma Phys ID RESONANT MAGNETIC PERTURBATIONS; TOROIDAL-MOMENTUM DISSIPATION; BANANA-DRIFT TRANSPORT; DIII-D; DIFFUSION; GEOMETRY; SYSTEMS; PHYSICS; FIELDS; MODES AB Tokamaks are sensitive to deviations from axisymmetry as small as delta B/B(0) similar to 10(-4). These nonaxisymmetric perturbations greatly modify plasma confinement and performance by either destroying magnetic surfaces with subsequent locking or deforming magnetic surfaces with associated nonambipolar transport. The Ideal Perturbed Equilibrium Code (IPEC) calculates ideal perturbed equilibria and provides important basis for understanding the sensitivity of tokamak plasmas to perturbations. IPEC calculations indicate that the ideal plasma response, or equivalently the effect by ideally perturbed plasma currents, is essential to explain locking experiments on National Spherical Torus eXperiment (NSTX) and DIII-D. The ideal plasma response is also important for neoclassical toroidal viscosity (NTV) in nonambipolar transport. The consistency between NTV theory and magnetic braking experiments on NSTX and DIII-D can be improved when the variation in the field strength in IPEC is coupled with generalized NTV theory. These plasma response effects will be compared with the previous vacuum superpositions to illustrate the importance. However, plasma response based on ideal perturbed equilibria is still not sufficiently accurate to predict the details of NTV transport and can be inconsistent when currents associated with a toroidal torque become comparable to ideal perturbed currents. (C) 2009 American Institute of Physics. [DOI: 10.1063/1.3122862] C1 [Park, Jong-kyu; Menard, Jonathan E.; Hawryluk, Richard J.; Kaye, Stanley M.; Gerhardt, Stefan P.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Boozer, Allen H.; Sabbagh, Steve A.] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA. [Garofalo, Andrea M.; Schaffer, Michael J.] Gen Atom Co, San Diego, CA 92186 USA. RP Park, JK (reprint author), Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RI Sabbagh, Steven/C-7142-2011; OI Menard, Jonathan/0000-0003-1292-3286 NR 49 TC 48 Z9 48 U1 2 U2 12 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2009 VL 16 IS 5 AR 056115 DI 10.1063/1.3122862 PG 11 WC Physics, Fluids & Plasmas SC Physics GA 451WC UT WOS:000266500600108 ER PT J AU Podesta, M Heidbrink, WW Liu, D Ruskov, E Bell, RE Darrow, DS Fredrickson, ED Gorelenkov, NN Kramer, GJ LeBlanc, BP Medley, SS Roquemore, AL Crocker, NA Kubota, S Yuh, H AF Podesta, M. Heidbrink, W. W. Liu, D. Ruskov, E. Bell, R. E. Darrow, D. S. Fredrickson, E. D. Gorelenkov, N. N. Kramer, G. J. LeBlanc, B. P. Medley, S. S. Roquemore, A. L. Crocker, N. A. Kubota, S. Yuh, H. TI Experimental studies on fast-ion transport by Alfven wave avalanches on the National Spherical Torus Experiment SO PHYSICS OF PLASMAS LA English DT Article; Proceedings Paper CT 50th Annual Meeting of the Division of Plasma Physics of the American-Physical-Society CY FEB 01, 2008 CL Dallas, TX SP Amer Phys Soc, Div Plasma Phys DE plasma Alfven waves; plasma magnetohydrodynamic waves; plasma toroidal confinement; plasma transport processes ID TOROIDAL PLASMAS; PHYSICS; NSTX; PREDICTIONS; INSTABILITY; SIMULATION; EIGENMODES; SYSTEMS AB Fast-ion transport induced by Alfven eigenmodes (AEs) is studied in beam-heated plasmas on the National Spherical Torus Experiment [Ono , Nucl. Fusion 40, 557 (2000)] through space, time, and energy resolved measurements of the fast-ion population. Fast-ion losses associated with multiple toroidicity-induced AEs (TAEs), which interact nonlinearly and terminate in avalanches, are characterized. A depletion of the energy range >20 keV, leading to sudden drops of up to 40% in the neutron rate over 1 ms, is observed over a broad spatial range. It is shown that avalanches lead to a relaxation of the fast-ion profile, which in turn reduces the drive for the instabilities. The measured radial eigenmode structure and frequency of TAEs are compared with the predictions from a linear magnetohydrodynamics stability code. The partial disagreement suggests that nonlinearities may compromise a direct comparison between experiment and linear theory. C1 [Podesta, M.; Heidbrink, W. W.; Liu, D.; Ruskov, E.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Bell, R. E.; Darrow, D. S.; Fredrickson, E. D.; Gorelenkov, N. N.; Kramer, G. J.; LeBlanc, B. P.; Medley, S. S.; Roquemore, A. L.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Crocker, N. A.; Kubota, S.] Univ Calif Los Angeles, Los Angeles, CA 90095 USA. [Yuh, H.] Nova Photon, Princeton, NJ 08543 USA. RP Podesta, M (reprint author), Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. EM mpodesta@pppl.gov RI Liu, Deyong/Q-2797-2015 OI Liu, Deyong/0000-0001-9174-7078 NR 34 TC 37 Z9 37 U1 0 U2 3 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2009 VL 16 IS 5 AR 056104 DI 10.1063/1.3080724 PG 8 WC Physics, Fluids & Plasmas SC Physics GA 451WC UT WOS:000266500600097 ER PT J AU Qin, H Davidson, RC AF Qin, Hong Davidson, Ronald C. TI A physical parametrization of coupled transverse dynamics based on generalized Courant-Snyder theory and its applications SO PHYSICS OF PLASMAS LA English DT Article DE particle accelerators; particle beam dynamics; transfer function matrices ID HARMONIC-OSCILLATOR; INVARIANT AB A physical parametrization of coupled transverse dynamics is developed by generalizing the Courant-Snyder (CS) theory for one degree of freedom to the case of coupled transverse dynamics with two degrees of freedom. The four basic components of the original CS theory, i.e., the envelope equation, phase advance, transfer matrix, and CS invariant, all have their counterparts with remarkably similar expressions in the generalized theory. Applications of the new theory are given. It is discovered that the stability of coupled dynamics is completely determined by the generalized phase advance. C1 [Qin, Hong; Davidson, Ronald C.] Princeton Univ, Plasma Phys Lab, Princeton, NJ 08543 USA. RP Qin, H (reprint author), Princeton Univ, Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. NR 19 TC 13 Z9 13 U1 0 U2 5 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2009 VL 16 IS 5 AR 050705 DI 10.1063/1.3142472 PG 4 WC Physics, Fluids & Plasmas SC Physics GA 451WC UT WOS:000266500600005 ER PT J AU Raitses, Y Smirnov, A Fisch, NJ AF Raitses, Y. Smirnov, A. Fisch, N. J. TI Effects of enhanced cathode electron emission on Hall thruster operation SO PHYSICS OF PLASMAS LA English DT Article; Proceedings Paper CT 50th Annual Meeting of the Division of Plasma Physics of the American-Physical-Society CY FEB 01, 2008 CL Dallas, TX SP Amer Phys Soc, Div Plasma Phys DE aerospace propulsion; plasma accelerators ID STATIONARY PLASMA THRUSTER; CROSS-FIELD TRANSPORT; MODEL; FLOW; WALL; ION AB Interesting discharge phenomena are observed that have to do with the interaction between the magnetized Hall thruster plasma and the neutralizing cathode. The steady-state parameters of a highly ionized thruster discharge are strongly influenced by the electron supply from the cathode. The enhancement of the cathode electron emission above its self-sustained level affects the discharge current and leads to a dramatic reduction in the plasma divergence and a suppression of large amplitude, low frequency discharge current oscillations usually related to an ionization instability. These effects correlate strongly with the reduction in the voltage drop in the region with the fringing magnetic field between the thruster channel and the cathode. The measured changes in the plasma properties suggest that the electron emission affects the electron cross-field transport in the thruster discharge. These trends are generalized for Hall thrusters of various configurations. C1 [Raitses, Y.; Smirnov, A.; Fisch, N. J.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Raitses, Y (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. EM yraitses@pppl.gov NR 41 TC 21 Z9 21 U1 0 U2 4 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2009 VL 16 IS 5 AR 057106 DI 10.1063/1.3131282 PG 11 WC Physics, Fluids & Plasmas SC Physics GA 451WC UT WOS:000266500600139 ER PT J AU Sanchez, R Newman, DE Leboeuf, JN Carreras, BA Decyk, VK AF Sanchez, R. Newman, D. E. Leboeuf, J. -N. Carreras, B. A. Decyk, V. K. TI On the nature of radial transport across sheared zonal flows in electrostatic ion-temperature-gradient gyrokinetic tokamak plasma turbulence SO PHYSICS OF PLASMAS LA English DT Article; Proceedings Paper CT 50th Annual Meeting of the Division of Plasma Physics of the American-Physical-Society CY NOV 17-21, 2008 CL Dallas, TX SP Amer Phys Soc, Div Plasma Phys DE flow simulation; plasma flow; plasma simulation; plasma turbulence; shear turbulence; Tokamak devices ID SELF-ORGANIZED CRITICALITY; PARTICLE SIMULATION-MODEL; DRIVEN TURBULENCE; ANOMALOUS DIFFUSION; RANDOM-WALKS; CONFINEMENT; DYNAMICS; PARADIGM; DEVICES; FUSION AB It is argued that the usual understanding of the suppression of radial turbulent transport across a sheared zonal flow based on a reduction in effective transport coefficients is, by itself, incomplete. By means of toroidal gyrokinetic simulations of electrostatic, ion-temperature-gradient turbulence, it is found instead that the character of the radial transport is altered fundamentally by the presence of a sheared zonal flow, changing from diffusive to anticorrelated and subdiffusive. Furthermore, if the flows are self-consistently driven by the turbulence via the Reynolds stresses (in contrast to being induced externally), radial transport becomes non-Gaussian as well. These results warrant a reevaluation of the traditional description of radial transport across sheared flows in tokamaks via effective transport coefficients, suggesting that such description is oversimplified and poorly captures the underlying dynamics, which may in turn compromise its predictive capabilities. C1 [Sanchez, R.] Oak Ridge Natl Lab, Div Fus Energy, Oak Ridge, TN 37831 USA. [Newman, D. E.] Univ Alaska, Dept Phys, Fairbanks, AK 99775 USA. [Leboeuf, J. -N.] JNL Sci Inc, Casa Grande, AZ 85294 USA. [Carreras, B. A.] BACV Solut Inc, Oak Ridge, TN 37830 USA. [Decyk, V. K.] Univ Calif Los Angeles, Los Angeles, CA 90095 USA. RP Sanchez, R (reprint author), Oak Ridge Natl Lab, Div Fus Energy, Oak Ridge, TN 37831 USA. EM sanchezferlr@ornl.gov NR 46 TC 15 Z9 15 U1 0 U2 2 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2009 VL 16 IS 5 AR 055905 DI 10.1063/1.3129727 PG 11 WC Physics, Fluids & Plasmas SC Physics GA 451WC UT WOS:000266500600092 ER PT J AU Sefkow, AB Davidson, RC Gilson, EP Kaganovich, ID Anders, A Coleman, JE Leitner, M Lidia, SM Roy, PK Seidl, PA Waldron, WL Yu, SS Welch, DR AF Sefkow, A. B. Davidson, R. C. Gilson, E. P. Kaganovich, I. D. Anders, A. Coleman, J. E. Leitner, M. Lidia, S. M. Roy, P. K. Seidl, P. A. Waldron, W. L. Yu, S. S. Welch, D. R. TI Simulations and experiments of intense ion beam current density compression in space and time SO PHYSICS OF PLASMAS LA English DT Article; Proceedings Paper CT 50th Annual Meeting of the Division of Plasma Physics of the American-Physical-Society CY NOV 17-21, 2008 CL Dallas, TX SP Amer Phys Soc, Div Plasma Phys DE ion density; plasma density; plasma simulation; space charge ID INERTIAL-CONFINEMENT-FUSION; TRANSPORT; NEUTRALIZATION; PROPAGATION; DESIGN; MATTER AB The Heavy Ion Fusion Science Virtual National Laboratory has achieved 60-fold longitudinal pulse compression of ion beams on the Neutralized Drift Compression Experiment (NDCX) [P. K. Roy , Phys. Rev. Lett. 95, 234801 (2005)]. To focus a space-charge-dominated charge bunch to sufficiently high intensities for ion-beam-heated warm dense matter and inertial fusion energy studies, simultaneous transverse and longitudinal compression to a coincident focal plane is required. Optimizing the compression under the appropriate constraints can deliver higher intensity per unit length of accelerator to the target, thereby facilitating the creation of more compact and cost-effective ion beam drivers. The experiments utilized a drift region filled with high-density plasma in order to neutralize the space charge and current of an similar to 300 keV K+ beam and have separately achieved transverse and longitudinal focusing to a radius < 2 mm and pulse duration < 5 ns, respectively. Simulation predictions and recent experiments demonstrate that a strong solenoid (B-z < 100 kG) placed near the end of the drift region can transversely focus the beam to the longitudinal focal plane. This paper reports on simulation predictions and experimental progress toward realizing simultaneous transverse and longitudinal charge bunch focusing. The proposed NDCX-II facility would capitalize on the insights gained from NDCX simulations and measurements in order to provide a higher-energy (>2 MeV) ion beam user-facility for warm dense matter and inertial fusion energy-relevant target physics experiments. C1 [Sefkow, A. B.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Davidson, R. C.; Kaganovich, I. D.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Gilson, E. P.; Anders, A.; Coleman, J. E.; Leitner, M.; Lidia, S. M.; Roy, P. K.; Seidl, P. A.; Waldron, W. L.; Yu, S. S.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Welch, D. R.] Voss Sci, Albuquerque, NM 87108 USA. RP Sefkow, AB (reprint author), Sandia Natl Labs, Albuquerque, NM 87185 USA. RI Anders, Andre/B-8580-2009 OI Anders, Andre/0000-0002-5313-6505 NR 36 TC 8 Z9 8 U1 0 U2 6 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2009 VL 16 IS 5 AR 056701 DI 10.1063/1.3078424 PG 11 WC Physics, Fluids & Plasmas SC Physics GA 451WC UT WOS:000266500600127 ER PT J AU Sefkow, AB Cohen, SA AF Sefkow, Adam B. Cohen, Samuel A. TI Particle-in-cell modeling of magnetized argon plasma flow through small mechanical apertures SO PHYSICS OF PLASMAS LA English DT Article DE argon; plasma devices; plasma flow; plasma heating; plasma simulation ID ACOUSTIC DOUBLE-LAYERS; ION; PARALLEL; VELOCITY AB Motivated by observations of supersonic argon-ion flow generated by linear helicon-heated plasma devices, a three-dimensional particle-in-cell (PIC) code is used to study whether stationary electrostatic layers form near mechanical apertures intersecting the flow of magnetized plasma. By self-consistently evaluating the temporal evolution of the plasma in the vicinity of the aperture, the PIC simulations characterize the roles of the imposed aperture and applied magnetic field on ion acceleration. The PIC model includes ionization of a background neutral-argon population by thermal and superthermal electrons, the latter found upstream of the aperture. Near the aperture, a transition from a collisional to a collisionless regime occurs. Perturbations of density and potential, with millimeter wavelengths and consistent with ion acoustic waves, propagate axially. An ion acceleration region of length similar to 200 lambda(D,e)-300 lambda(D,e) forms at the location of the aperture and is found to be an electrostatic double layer, with axially separated regions of net positive and negative charge. Reducing the aperture diameter or increasing its length increases the double layer strength. C1 [Sefkow, Adam B.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Cohen, Samuel A.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Sefkow, AB (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. FU United States Department of Energy [DE-AC02-76-CHO-3073] FX Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. This work was supported in part through the Princeton Plasma Physics Laboratory by the United States Department of Energy Contract No. DE-AC02-76-CHO-3073. The authors would like to acknowledge R. C. Davidson, M. C. Herrmann, and E. Scime for support, X. Sun and A. Keesee for experimental work, I. D. Kaganovich for helpful feedback and suggestions, and D. R. Welch for LSP code information. NR 28 TC 5 Z9 5 U1 1 U2 6 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2009 VL 16 IS 5 AR 053501 DI 10.1063/1.3119902 PG 13 WC Physics, Fluids & Plasmas SC Physics GA 451WC UT WOS:000266500600055 ER PT J AU Shadwick, BA Schroeder, CB Esarey, E AF Shadwick, B. A. Schroeder, C. B. Esarey, E. TI Nonlinear laser energy depletion in laser-plasma accelerators SO PHYSICS OF PLASMAS LA English DT Article; Proceedings Paper CT 50th Annual Meeting of the Division of Plasma Physics of the American-Physical-Society CY FEB 01, 2008 CL Dallas, TX SP Amer Phys Soc, Div Plasma Phys DE plasma accelerators; plasma light propagation; plasma waves; red shift ID WAKE-FIELD GENERATION; ELECTRON-BEAMS; PUMP DEPLETION; PULSES; WAVE AB Energy depletion of intense, short-pulse lasers via excitation of plasma waves is investigated numerically and analytically. The evolution of a resonant laser pulse proceeds in two phases. In the first phase, the pulse steepens, compresses, and frequency redshifts as energy is deposited in the plasma. The second phase of evolution occurs after the pulse reaches a minimum length at which point the pulse rapidly lengthens, losing resonance with the plasma. Expressions for the rate of laser energy loss and rate of laser redshifting are derived and are found to be in excellent agreement with the direct numerical solution of the laser field evolution coupled to the plasma response. Both processes are shown to have the same characteristic length scale. In the high intensity limit, for nearly resonant Gaussian laser pulses, this scale length is shown to be independent of laser intensity. C1 [Shadwick, B. A.] Univ Nebraska, Dept Phys & Astron, Lincoln, NE 68588 USA. [Schroeder, C. B.; Esarey, E.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Shadwick, BA (reprint author), Univ Nebraska, Dept Phys & Astron, Lincoln, NE 68588 USA. EM shadwick@mailaps.org OI Schroeder, Carl/0000-0002-9610-0166 NR 19 TC 45 Z9 45 U1 2 U2 7 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2009 VL 16 IS 5 AR 056704 DI 10.1063/1.3124185 PG 8 WC Physics, Fluids & Plasmas SC Physics GA 451WC UT WOS:000266500600130 ER PT J AU Shelkovenko, TA Pikuz, SA McBride, RD Knapp, PF Wilhelm, H Hammer, DA Sinars, DB AF Shelkovenko, T. A. Pikuz, S. A. McBride, R. D. Knapp, P. F. Wilhelm, H. Hammer, D. A. Sinars, D. B. TI Nested multilayered X pinches for generators with mega-ampere current level SO PHYSICS OF PLASMAS LA English DT Article DE pinch effect; plasma X-ray sources ID RAY SOURCE; DYNAMICS; ARRAY; WIRES AB A symmetric X pinch configuration that is conducive to using large numbers of wires on >= 1 MA pulsed power generators has been tested at 1 MA. Using an initial configuration of wires before their twisting, similar to nested cylindrical wire arrays, enables a geometrically simple, compact, multilayer wire configuration at the X pinch crossing region. Multilayer X pinches with the same or different materials in the inner and outer wire layers were tested. Optimization resulted in X pinch radiation sources with peak power comparable to the most successful single layer X pinch, but with a compact, single bright X radiation source more reliably obtained using the nested configuration. C1 [Shelkovenko, T. A.; Pikuz, S. A.; McBride, R. D.; Knapp, P. F.; Wilhelm, H.; Hammer, D. A.] Cornell Univ, Plasma Studies Lab, Ithaca, NY 14853 USA. [Sinars, D. B.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Shelkovenko, TA (reprint author), Cornell Univ, Plasma Studies Lab, Ithaca, NY 14853 USA. RI Pikuz, Sergey/M-8231-2015; Shelkovenko, Tatiana/M-8254-2015 FU National Nuclear Security Administration under DOE [DE-FC03-02NA00057]; Sandia National Laboratories FX This work was partially supported by the Stewardship Sciences Academic Alliances program of the National Nuclear Security Administration under DOE Cooperative Agreement No. DE-FC03-02NA00057 and by Laboratory Directed Research and Development funds at Sandia National Laboratories. NR 27 TC 12 Z9 12 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2009 VL 16 IS 5 AR 050702 DI 10.1063/1.3132611 PG 4 WC Physics, Fluids & Plasmas SC Physics GA 451WC UT WOS:000266500600002 ER PT J AU Shivamoggi, BK AF Shivamoggi, Bhimsen K. TI Parker problem in Hall magnetohydrodynamics SO PHYSICS OF PLASMAS LA English DT Article DE plasma magnetohydrodynamics; plasma toroidal confinement ID MAGNETIC RECONNECTION; CURRENT SHEETS; TEARING MODE; FIELDS AB The Parker problem in Hall magnetohydrodynamics (MHD) is considered. Poloidal shear superposed on the toroidal ion flow associated with the Hall effect is incorporated. This is found to lead to a triple deck structure for the Parker problem in Hall MHD, with the magnetic field falling off in the intermediate Hall-resistive region more steeply (like 1/x(3)) than that (like 1/x) in the outer ideal MHD region. C1 [Shivamoggi, Bhimsen K.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Shivamoggi, Bhimsen K.] Univ Cent Florida, Orlando, FL 32816 USA. RP Shivamoggi, BK (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. NR 18 TC 1 Z9 1 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2009 VL 16 IS 5 AR 052111 DI 10.1063/1.3140055 PG 4 WC Physics, Fluids & Plasmas SC Physics GA 451WC UT WOS:000266500600016 ER PT J AU Shvets, G Polomarov, O Khudik, V Siemon, C Kaganovich, I AF Shvets, Gennady Polomarov, Oleg Khudik, Vladimir Siemon, Carl Kaganovich, Igor TI Nonlinear evolution of the Weibel instability of relativistic electron beams SO PHYSICS OF PLASMAS LA English DT Article; Proceedings Paper CT 50th Annual Meeting of the Division of Plasma Physics of the American-Physical-Society CY FEB 01, 2008 CL Dallas, TX SP Amer Phys Soc, Div Plasma Phys DE plasma instability; plasma nonlinear processes; plasma simulation; plasma-beam interactions; relativistic electron beams ID COLLISIONLESS SHOCKS; MAGNETIC-FIELDS; ELECTROMAGNETIC INSTABILITIES; 2-STREAM INSTABILITY; ION-BEAM; PLASMA; IGNITION; FILAMENTATION; GENERATION; SIMULATION AB Physics of the long-term evolution of the Weibel instability (WI) of an electron beam propagating through the plasma is described. Several phenomena occurring during the WI are identified: (i) the exponential growth stage resulting in beam breakup into small current filaments; (ii) merger of the small filaments and beam particles' trapping inside them; (iii) filaments' compression and expulsion of the ambient plasma from the filaments; (iv) formation of high-current filaments and their merger. It is shown that during the final stage these beam filaments can carry super-Alfvenic currents and form hollow current density profiles similar to the Hammer-Rostoker equilibrium. This explains why the initially increasing magnetic field energy eventually decreases during the late stage of the instability. Different computational approaches to modeling both collisionless and collisional WI are also described. C1 [Shvets, Gennady; Khudik, Vladimir; Siemon, Carl] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA. [Shvets, Gennady; Khudik, Vladimir; Siemon, Carl] Univ Texas Austin, Inst Fus Studies, Austin, TX 78712 USA. [Polomarov, Oleg] Univ Rochester, Laser Energet Lab, Fus Sci Ctr, Rochester, NY 14623 USA. [Kaganovich, Igor] Princeton Univ, Plasma Phys Lab, Princeton, NJ 08543 USA. RP Shvets, G (reprint author), Univ Texas Austin, Dept Phys, Austin, TX 78712 USA. NR 34 TC 12 Z9 12 U1 0 U2 2 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2009 VL 16 IS 5 AR 056303 DI 10.1063/1.3093477 PG 10 WC Physics, Fluids & Plasmas SC Physics GA 451WC UT WOS:000266500600116 ER PT J AU Simakov, AN Chacon, L AF Simakov, Andrei N. Chacon, L. TI Quantitative analytical model for magnetic reconnection in Hall magnetohydrodynamics SO PHYSICS OF PLASMAS LA English DT Article; Proceedings Paper CT 50th Annual Meeting of the Division of Plasma Physics of the American-Physical-Society CY FEB 01, 2008 CL Dallas, TX SP Amer Phys Soc, Div Plasma Phys DE diffusion; magnetic reconnection; plasma magnetohydrodynamics; plasma transport processes ID COALESCENCE INSTABILITY; LARGE SYSTEMS; COLLISIONLESS; ISLANDS; PLASMAS; DIFFUSION; DRIVEN AB Magnetic reconnection is of fundamental importance for laboratory and naturally occurring plasmas. Reconnection usually develops on time scales which are much shorter than those associated with classical collisional dissipation processes, and which are not fully understood. While such dissipation-independent (or "fast") reconnection rates have been observed in particle and Hall magnetohydrodynamics (MHD) simulations and predicted analytically in electron MHD, a quantitative analytical theory of fast reconnection valid for arbitrary ion inertial lengths d(i) has been lacking. Here we propose such a theory without a guide field. The theory describes two-dimensional magnetic field diffusion regions, provides expressions for the reconnection rates, and derives a formal criterion for fast reconnection in terms of dissipation parameters and d(i). It also demonstrates that both open X-point and elongated diffusion regions allow dissipation-independent reconnection and reveals a possibility of strong dependence of the reconnection rates on d(i). C1 [Simakov, Andrei N.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Chacon, L.] Oak Ridge Natl Lab, Div Fus Energy, Oak Ridge, TN 37831 USA. RP Simakov, AN (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. OI Simakov, Andrei/0000-0001-7064-9153 NR 49 TC 10 Z9 10 U1 1 U2 3 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2009 VL 16 IS 5 AR 055701 DI 10.1063/1.3077269 PG 10 WC Physics, Fluids & Plasmas SC Physics GA 451WC UT WOS:000266500600080 ER PT J AU Valanju, PM Kotschenreuther, M Mahajan, SM Canik, J AF Valanju, P. M. Kotschenreuther, M. Mahajan, S. M. Canik, J. TI Super-X divertors and high power density fusion devices SO PHYSICS OF PLASMAS LA English DT Article; Proceedings Paper CT 50th Annual Meeting of the Division of Plasma Physics of the American-Physical-Society CY NOV 17-21, 2008 CL Dallas, TX SP Amer Phys Soc, Div Plasma Phys DE fusion reactor divertors; plasma temperature; plasma toroidal confinement ID PHYSICS; TOKAMAK; PLASMA AB The Super-X Divertor (SXD), a robust axisymmetric redesign of the divertor magnetic geometry that can allow a fivefold increase in the core power density of toroidal fusion devices, is presented. With small changes in poloidal coils and currents for standard divertors, the SXD allows the largest divertor plate radius inside toroidal field coils. This increases the plasma-wetted area by 2-3 times over all flux-expansion-only methods (e.g., plate near main X point, plate tilting, X divertor, and snowflake), decreases parallel heat flux and hence plasma temperature at plate, and increases connection length by 2-5 times. Examples of high-power-density fusion devices enabled by SXD are discussed; the most promising near-term device is a 100 MW modular compact fusion neutron source "battery" small enough to fit inside a conventional fission blanket. C1 [Valanju, P. M.; Kotschenreuther, M.; Mahajan, S. M.] Univ Texas Austin, Inst Fus Studies, Austin, TX 78712 USA. [Canik, J.] Oak Ridge Natl Lab, Oak Ridge, TN 37830 USA. RP Valanju, PM (reprint author), Univ Texas Austin, Inst Fus Studies, Austin, TX 78712 USA. EM pvalanju@mail.utexas.edu OI Canik, John/0000-0001-6934-6681 NR 25 TC 81 Z9 82 U1 5 U2 24 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2009 VL 16 IS 5 AR 056110 DI 10.1063/1.3110984 PG 7 WC Physics, Fluids & Plasmas SC Physics GA 451WC UT WOS:000266500600103 ER PT J AU Yuh, HY Levinton, FM Bell, RE Hosea, JC Kaye, SM LeBlanc, BP Mazzucato, E Peterson, JL Smith, DR Candy, J Waltz, RE Domier, CW Luhmann, NC Lee, W Park, HK AF Yuh, H. Y. Levinton, F. M. Bell, R. E. Hosea, J. C. Kaye, S. M. LeBlanc, B. P. Mazzucato, E. Peterson, J. L. Smith, D. R. Candy, J. Waltz, R. E. Domier, C. W. Luhmann, N. C., Jr. Lee, W. Park, H. K. TI Internal transport barriers in the National Spherical Torus Experiment SO PHYSICS OF PLASMAS LA English DT Article; Proceedings Paper CT 50th Annual Meeting of the Division of Plasma Physics of the American-Physical-Society CY FEB 01, 2008 CL Dallas, TX SP Amer Phys Soc, Div Plasma Phys DE diffusion; discharges (electric); plasma diagnostics; plasma heating; plasma instability; plasma production; plasma temperature; plasma toroidal confinement; plasma transport processes; plasma turbulence ID SCATTERING SYSTEM; ASPECT RATIO; SHEAR; TURBULENCE; TOKAMAKS; NSTX; OPERATION; PLASMA AB In the National Spherical Torus Experiment [M. Ono , Nucl. Fusion 41, 1435 (2001)], internal transport barriers (ITBs) are observed in reversed (negative) shear discharges where diffusivities for electron and ion thermal channels and momentum are reduced. While neutral beam heating can produce ITBs in both electron and ion channels, high harmonic fast wave heating can also produce electron ITBs (e-ITBs) under reversed magnetic shear conditions without momentum input. Interestingly, the location of the e-ITB does not necessarily match that of the ion ITB (i-ITB). The e-ITB location correlates best with the magnetic shear minima location determined by motional Stark effect constrained equilibria, whereas the i-ITB location better correlates with the location of maximum ExB shearing rate. Measured electron temperature gradients in the e-ITB can exceed critical gradients for the onset of electron thermal gradient microinstabilities calculated by linear gyrokinetic codes. A high-k microwave scattering diagnostic shows locally reduced density fluctuations at wave numbers characteristic of electron turbulence for discharges with strongly negative magnetic shear versus weakly negative or positive magnetic shear. Reductions in fluctuation amplitude are found to be correlated with the local value of magnetic shear. These results are consistent with nonlinear gyrokinetic simulations predicting a reduction in electron turbulence under negative magnetic shear conditions despite exceeding critical gradients. C1 [Yuh, H. Y.; Levinton, F. M.] Nova Photon Inc, Princeton, NJ 08540 USA. [Bell, R. E.; Hosea, J. C.; Kaye, S. M.; LeBlanc, B. P.; Mazzucato, E.; Peterson, J. L.; Smith, D. R.] Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Candy, J.] Gen Atom Co, San Diego, CA 92186 USA. [Domier, C. W.; Luhmann, N. C., Jr.] Univ Calif Davis, Davis, CA 95616 USA. [Lee, W.; Park, H. K.] POSTECH, Pohang 790784, South Korea. RP Yuh, HY (reprint author), Nova Photon Inc, Princeton, NJ 08540 USA. EM hyuh@pppl.gov NR 23 TC 27 Z9 27 U1 1 U2 4 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD MAY PY 2009 VL 16 IS 5 AR 056120 DI 10.1063/1.3129163 PG 9 WC Physics, Fluids & Plasmas SC Physics GA 451WC UT WOS:000266500600113 ER PT J AU Lunine, JI Macintosh, B Peale, S AF Lunine, Jonathan I. Macintosh, Bruce Peale, Stanton TI The detection and characterization of exoplanets SO PHYSICS TODAY LA English DT Article ID PLANETS; SPACE C1 [Lunine, Jonathan I.] Univ Arizona, Tucson, AZ 85721 USA. [Macintosh, Bruce] Lawrence Livermore Natl Lab, Livermore, CA USA. [Peale, Stanton] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. RP Lunine, JI (reprint author), Univ Arizona, Tucson, AZ 85721 USA. NR 17 TC 5 Z9 5 U1 0 U2 1 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0031-9228 J9 PHYS TODAY JI Phys. Today PD MAY PY 2009 VL 62 IS 5 BP 46 EP 51 PG 6 WC Physics, Multidisciplinary SC Physics GA 442DY UT WOS:000265821400021 ER PT J AU Murray, C AF Murray, Cherry TI Accelerating into the future SO PHYSICS WORLD LA English DT Editorial Material C1 Lawrence Livermore Natl Lab, Amer Phys Soc, Livermore, CA 94550 USA. RP Murray, C (reprint author), Lawrence Livermore Natl Lab, Amer Phys Soc, Livermore, CA 94550 USA. EM camurray@llnl.gov NR 0 TC 0 Z9 0 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0953-8585 J9 PHYS WORLD JI Phys. World PD MAY PY 2009 VL 22 IS 5 BP 16 EP 17 PG 2 WC Physics, Multidisciplinary SC Physics GA 443LG UT WOS:000265910700023 ER PT J AU Crease, RP AF Crease, Robert P. TI Critical Point 'Two cultures' turns 50 SO PHYSICS WORLD LA English DT Editorial Material C1 [Crease, Robert P.] SUNY Stony Brook, Dept Philosophy, Stony Brook, NY 11790 USA. [Crease, Robert P.] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Crease, RP (reprint author), SUNY Stony Brook, Dept Philosophy, Stony Brook, NY 11790 USA. EM rcrease@notes.cc.sunysb.edu NR 0 TC 0 Z9 0 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8585 J9 PHYS WORLD JI Phys. World PD MAY PY 2009 VL 22 IS 5 BP 19 EP 19 PG 1 WC Physics, Multidisciplinary SC Physics GA 443LG UT WOS:000265910700024 ER PT J AU Blank, JG Green, S Blake, D Valley, JW Kita, NT Treiman, A Dobson, PF AF Blank, J. G. Green, Sj. Blake, D. Valley, J. W. Kita, N. T. Treiman, A. Dobson, P. F. TI An alkaline spring system within the Del Puerto Ophiolite (California, USA): A Mars analog site SO PLANETARY AND SPACE SCIENCE LA English DT Article; Proceedings Paper CT Symposium on Exploring Mars and its Earth Analogues CY JUN 19-23, 2007 CL Trento, ITALY DE Mars analog; Dolomite; Alkaline springs; Biosignature ID OXYGEN-ISOTOPE FRACTIONATION; 16S RIBOSOMAL-RNA; MODERN MARINE STROMATOLITES; LITHIFIED MICRITIC LAMINAE; MARTIAN METEORITE ALH84001; SULFATE-REDUCING BACTERIA; ALLAN HILLS 84001; MERIDIANI-PLANUM; GEOCHEMICAL EVIDENCE; DOLOMITE FORMATION AB Mars appears to have experienced little compositional differentiation of primitive lithosphere, and thus much of the surface of Mars is covered by mafic lavas. On Earth, mafic and ultramafic rocks present in ophiolites, oceanic crust and upper mantle that have been obducted onto land, are therefore good analogs for Mars. The characteristic mineralogy, aqueous geochemistry, and microbial communities of cold-water alkaline springs associated with these mafic and ultramafic rocks represent a particularly compelling analog for potential life-bearing systems. Serpentinization, the reaction of water with mafic minerals Such as olivine and pyroxene, yields fluids with unusual chemistry (Mg-OH and Ca-OH waters with pH values up to similar to 12), as well as heat and hydrogen gas that can sustain subsurface, chemosynthetic ecosystems. The recent observation of seeps from pole-facing crater and canyon walls in the higher Martian latitudes supports the hypothesis that even present conditions might allow for a rock-hosted chemosynthetic biosphere in near-surface regions of the Martian crust. The generation of methane within a zone of active serpentinization, through either abiogenic or biogenic processes, could account for the presence of methane detected in the Martian atmosphere. For all of these reasons, studies of terrestrial alkaline springs associated with mafic and ultramafic rocks are particularly timely. This study focuses on the alkaline Adobe Springs, emanating from mafic and ultramafic rocks of the California Coast Range, where a community of novel bacteria is associated with the precipitation of Mg-Ca carbonate cements. The carbonates may serve as a biosignature that could be used in the search for evidence of life on Mars. (C) 2008 Elsevier Ltd. All rights reserved. C1 [Blank, J. G.] SETI Inst, Mountain View, CA 94043 USA. [Blank, J. G.; Green, Sj.; Blake, D.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Valley, J. W.; Kita, N. T.] Univ Wisconsin, Dept Geol & Geophys, Madison, WI 53706 USA. [Treiman, A.] Lunar & Planetary Inst, Houston, TX 77058 USA. [Dobson, P. F.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Blank, JG (reprint author), SETI Inst, 515 N Whisman Rd, Mountain View, CA 94043 USA. EM jblank@seti.org RI Valley, John/B-3466-2011; Green, Stefan/C-8980-2011; Dobson, Patrick/D-8771-2015; Kita, Noriko/H-8035-2016 OI Green, Stefan/0000-0003-2781-359X; Valley, John/0000-0003-3530-2722; Dobson, Patrick/0000-0001-5031-8592; Kita, Noriko/0000-0002-0204-0765 NR 84 TC 34 Z9 37 U1 0 U2 20 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0032-0633 J9 PLANET SPACE SCI JI Planet Space Sci. PD MAY PY 2009 VL 57 IS 5-6 BP 533 EP 540 DI 10.1016/j.pss.2008.11.018 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 456QX UT WOS:000266863400003 ER PT J AU Crombe, K Andrew, Y Biewer, TM Blanco, E de Vries, PC Giroud, C Hawkes, NC Meigs, A Tala, T von Hellermann, M Zastrow, KD AF Crombe, K. Andrew, Y. Biewer, T. M. Blanco, E. de Vries, P. C. Giroud, C. Hawkes, N. C. Meigs, A. Tala, T. von Hellermann, M. Zastrow, K-D CA JET EFDA Contributors TI Radial electric field in JET advanced tokamak scenarios with toroidal field ripple SO PLASMA PHYSICS AND CONTROLLED FUSION LA English DT Article ID JOINT EUROPEAN TORUS; TRANSPORT BARRIERS; TURBULENCE AB A dedicated campaign has been run on JET to study the effect of toroidal field (TF) ripple on plasma performance. Radial electric field measurements from experiments on a series of plasmas with internal transport barriers (ITBs) and different levels of ripple amplitude are presented. They have been calculated from charge exchange measurements of impurity ion temperature, density and rotation velocity profiles, using the force balance equation. The ion temperature and the toroidal and poloidal rotation velocities are compared in plasmas with both reversed and optimized magnetic shear profiles. Poloidal rotation velocity (v(theta)) in the ITB region is measured to be of the order of a few tens of km s(-1), significantly larger than the neoclassical predictions. Increasing levels of the TF ripple are found to decrease the ion temperature gradient in the ITB region, a measure for the quality of the ITB, and the maximum value of v(theta) is reduced. The poloidal rotation term dominates in the calculations of the total radial electric field (E(r)), with the largest gradient in E(r) measured in the radial region coinciding with the ITB. C1 JET EFDA, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England. [Andrew, Y.; de Vries, P. C.; Giroud, C.; Hawkes, N. C.; Meigs, A.; Zastrow, K-D] UKAEA Euratom Fus Assoc, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England. [Biewer, T. M.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Blanco, E.] Asociac EURATOM CIEMAT, Lab Nacl Fus, Madrid, Spain. [Tala, T.] Assoc EURATOM Tekes, VTT Tech Res Ctr Finland, FIN-02044 Espoo, Finland. [von Hellermann, M.] EURATOM, FOM Inst Plasma Phys Rijnhuizen, NL-3430 BE Nieuwegein, Netherlands. EM Kristel.Crombe@jet.uk RI Blanco, Emilio/F-8893-2016; OI Blanco, Emilio/0000-0002-1323-7547; Biewer, Theodore/0000-0001-7456-3509 NR 15 TC 10 Z9 11 U1 2 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0741-3335 J9 PLASMA PHYS CONTR F JI Plasma Phys. Control. Fusion PD MAY PY 2009 VL 51 IS 5 AR 055005 DI 10.1088/0741-3335/51/5/055005 PG 11 WC Physics, Fluids & Plasmas SC Physics GA 438VQ UT WOS:000265584300005 ER PT J AU Sattin, F Agostini, M Scarin, P Vianello, N Cavazzana, R Marrelli, L Serianni, G Zweben, SJ Maqueda, RJ Yagi, Y Sakakita, H Koguchi, H Kiyama, S Hirano, Y Terry, JL AF Sattin, F. Agostini, M. Scarin, P. Vianello, N. Cavazzana, R. Marrelli, L. Serianni, G. Zweben, S. J. Maqueda, R. J. Yagi, Y. Sakakita, H. Koguchi, H. Kiyama, S. Hirano, Y. Terry, J. L. TI On the statistics of edge fluctuations: comparative study between various fusion devices SO PLASMA PHYSICS AND CONTROLLED FUSION LA English DT Article ID SCRAPE-OFF-LAYER; ALCATOR-C-MOD; SELF-ORGANIZED CRITICALITY; RFX-MOD; SPHERICAL TORUS; TPE-RX; TURBULENCE; TRANSPORT; PLASMAS; INTERMITTENCY AB In this paper we present a statistical study of edge fluctuations taken with the gas puffing imaging (GPI) diagnostics. We carry out a comparison of GPI signal from an extensive database including four devices (two tokamaks and two reversed field pinches). The data are analysed in terms of their statistical moments Skewness and Kurtosis, as done in B Labit et al (2007 Phys. Rev. Lett. 98 255002). The data align along parabolic curves, although different from machine to machine, with some spread around the best-fitting curve. A discussion about the meaning of the parabolic trend as well as the departure of real data from it is provided. A phenomenological model is finally provided, attempting to accommodate experimental evidence. C1 [Sattin, F.; Agostini, M.; Scarin, P.; Vianello, N.; Cavazzana, R.; Marrelli, L.; Serianni, G.] Assoc EURATOM ENEA Fus, Consorzio RFX, Padua, Italy. [Zweben, S. J.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Maqueda, R. J.] Nova Photon, Princeton, NJ 08540 USA. [Yagi, Y.; Sakakita, H.; Koguchi, H.; Kiyama, S.; Hirano, Y.] Natl Inst Adv Ind Sci & Technol, Tsukuba, Ibaraki 3058568, Japan. [Terry, J. L.] Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA. RP Sattin, F (reprint author), Assoc EURATOM ENEA Fus, Consorzio RFX, Corso Stati Uniti 4, Padua, Italy. RI Sattin, Fabio/B-5620-2013; Marrelli, Lionello/G-4451-2013; Vianello, Nicola/B-6323-2008; OI Marrelli, Lionello/0000-0001-5370-080X; Vianello, Nicola/0000-0003-4401-5346; AGOSTINI, MATTEO/0000-0002-3823-1002 FU European Communities; Ministry of Education, Culture, Sports, Science and Technology FX This work was supported by the European Communities under the contract of Association between EURATOM/ENEA. The views and opinions expressed herein do not necessarily reflect those of the European Commission. The TPE-RX program was financially supported by the Budget for Nuclear Research of the Ministry of Education, Culture, Sports, Science and Technology, based on the screening and counselling of the Atomic Energy Commission. S Cappello read the manuscript and provided several useful suggestions. NR 48 TC 22 Z9 22 U1 2 U2 10 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0741-3335 J9 PLASMA PHYS CONTR F JI Plasma Phys. Control. Fusion PD MAY PY 2009 VL 51 IS 5 AR 055013 DI 10.1088/0741-3335/51/5/055013 PG 11 WC Physics, Fluids & Plasmas SC Physics GA 438VQ UT WOS:000265584300013 ER PT J AU Simakov, AN AF Simakov, Andrei N. TI A drift-ordered short mean-free path description of a partially ionized magnetized plasma SO PLASMA PHYSICS AND CONTROLLED FUSION LA English DT Article ID ION FLOW SHEAR; COLLISIONAL PLASMA; NEUTRAL DIFFUSION; FLUID EQUATIONS; TRANSPORT; EDGE; TOKAMAK; FIELD; GAS; ROTATION AB Neutral particles that are present at the edge of plasma magnetic confinement devices can play an important role in energy and momentum transport, and their effects should be accounted for. This work uses the drift ordering to derive a closed fluid description for a collisional, magnetized, partially ionized plasma. Charge-exchange, ionization and recombination processes are taken into account. It is assumed that electron distribution function is unaffected by atomic processes, so that electron-ion momentum and energy exchange are described by the usual expressions for a fully ionized plasma, and that neutral neutral collisions are unimportant. The collisional fluid equations derived herein generalize the drift-ordered description of a fully ionized collisional plasma (Catto P J et al 2004 Phys. Plasmas 1190), agree with the MHD-ordered description of a partially ionized plasma (Helander P et al 1994 Phys. Plasmas 1 3174) in the large-flow limit and can be used to describe both turbulent and collisional behavior of a partially ionized plasma. C1 Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Simakov, AN (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. OI Simakov, Andrei/0000-0001-7064-9153 NR 32 TC 1 Z9 1 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0741-3335 J9 PLASMA PHYS CONTR F JI Plasma Phys. Control. Fusion PD MAY PY 2009 VL 51 IS 5 AR 055006 DI 10.1088/0741-3335/51/5/055006 PG 17 WC Physics, Fluids & Plasmas SC Physics GA 438VQ UT WOS:000265584300006 ER PT J AU West, WP Groth, M Hyatt, AW Jackson, GL Wade, MR Greenfield, CM Politzer, PA AF West, W. P. Groth, M. Hyatt, A. W. Jackson, G. L. Wade, M. R. Greenfield, C. M. Politzer, P. A. TI The maintenance of good wall conditions and high performance operation on DIII-D over extended periods without boronization SO PLASMA PHYSICS AND CONTROLLED FUSION LA English DT Article ID TOKAMAK OPERATION; PARTICLE CONTROL; DIVERTOR; CONFINEMENT; PLASMAS; ITER AB High performance plasmas and daily reference shots (DRSs) with both L-mode and H-mode phases were used to demonstrate the maintenance of good wall conditions over similar to 7000 s of plasma operation in DIII-D with no intervening boronizations or high temperature bakes during each of the 2006 and 2007 campaigns. High performance discharges with high normalized beta and confinement factor and good density control over the duration of the high-power beam injection period were very repeatable over the course of these campaigns. High performance operation was also demonstrated after a six week entry vent followed by the standard high temperature bake at 350 degrees C and plasma conditioning, but prior to a boronization. Over the 2006 and 2007 campaigns, the DRS database indicated little to no secular increase in impurity content. Oxygen content and nickel line emission were higher after the entry vent, but were still minor contributors to plasma contamination compared with carbon. Because DIII-D has a plasma facing surface that is >95% graphite, we take this as a demonstration that erosion of boronization films used for wall conditioning will not be a limitation to establishing long-pulse high performance discharges in the new generation of superconducting tokamaks if graphite is used as the primary plasma facing material. C1 [West, W. P.; Hyatt, A. W.; Jackson, G. L.; Wade, M. R.; Greenfield, C. M.; Politzer, P. A.] Gen Atom Co, San Diego, CA 92186 USA. [Groth, M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP West, WP (reprint author), Gen Atom Co, POB 85608, San Diego, CA 92186 USA. RI Groth, Mathias/G-2227-2013 NR 23 TC 0 Z9 0 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0741-3335 J9 PLASMA PHYS CONTR F JI Plasma Phys. Control. Fusion PD MAY PY 2009 VL 51 IS 5 AR 055014 DI 10.1088/0741-3335/51/5/055014 PG 12 WC Physics, Fluids & Plasmas SC Physics GA 438VQ UT WOS:000265584300014 ER PT J AU Wang, CJ Srivastava, N Scherrer, S Jang, PR Dibble, TS Duan, YX AF Wang, Chuji Srivastava, Nimisha Scherrer, Susan Jang, Ping-Rey Dibble, Theodore S. Duan, Yixiang TI Optical diagnostics of a low power-low gas flow rates atmospheric-pressure argon plasma created by a microwave plasma torch SO PLASMA SOURCES SCIENCE & TECHNOLOGY LA English DT Article ID CAVITY RINGDOWN SPECTROSCOPY; INDUCTIVELY-COUPLED PLASMAS; STATE DISTRIBUTION FUNCTION; DIODE-LASER ABSORPTION; THOMSON SCATTERING; EMISSION-SPECTROSCOPY; ISOTOPIC MEASUREMENTS; DOWN SPECTROSCOPY; ELECTRON-DENSITY; AIR PLASMA AB We employ a suite of optical techniques, namely, visual imaging, optical emission spectroscopy and cavity ringdown spectroscopy (CRDS), to characterize a low power, low gas flow rates, atmospheric-pressure argon microwave induced plasma. The plasma is created by a microwave plasma torch, which is excited by a 2.45 GHz microwave with powers ranging from 60 to 120W. A series of plasma images captured in a time-resolution range of as fine as 10 mu s shows that the converging point is actually a time- averaged visual effect and the converging point does not exist when the plasma is visualized under high time resolution, e. g. < 2 ms. Simulations of the emission spectra of OH, N-2 and N-2(+) in the range 200-450 nm enable the plasma electronic excitation temperature (T-exc) to be determined at 8000-9000 K, while the vibrational temperature (T-v), the rotational temperature (T-r) and the gas temperature (T-g) at different locations along the axis of the plasma column are all determined to be in the range 1800-2200 K. Thermal equilibrium properties of the plasma are discussed. OH radical concentrations along the plasma column axis are measured by CRDS and the concentrations are in the range 1.6 x 10(13)-3.0 x 10(14) cm(-3) with the highest density at the tail of the plasma column. The upper limit of electron density ne is estimated to be 5.0 x 10(14) cm(-3) from the Lorentzian component of the broadened lineshape obtained by ringdown spectral scans of the rovibrational line S-21 of the OH A-X (0-0) band. C1 [Wang, Chuji; Srivastava, Nimisha; Scherrer, Susan; Jang, Ping-Rey] Mississippi State Univ, Dept Phys & Astron, Starkville, MS 39759 USA. [Wang, Chuji; Srivastava, Nimisha; Scherrer, Susan; Jang, Ping-Rey] Mississippi State Univ, Inst Clean Energy Technol, Starkville, MS 39759 USA. [Dibble, Theodore S.] SUNY Coll Environm Sci & Forestry, Dept Chem, Syracuse, NY 13210 USA. [Duan, Yixiang] Los Alamos Natl Lab, C ACS, Los Alamos, NM 87545 USA. RP Wang, CJ (reprint author), Mississippi State Univ, Dept Phys & Astron, POB 5167, Mississippi State, MS 39762 USA. EM cw175@msstate.edu RI Dibble, Theodore/D-1341-2012; OI Dibble, Theodore/0000-0002-0023-8233 FU National Science Foundation [CTS-0626302] FX This work is supported by the National Science Foundation through grant #CTS-0626302. NR 61 TC 20 Z9 20 U1 1 U2 26 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0963-0252 EI 1361-6595 J9 PLASMA SOURCES SCI T JI Plasma Sources Sci. Technol. PD MAY PY 2009 VL 18 IS 2 AR 025030 DI 10.1088/0963-0252/18/2/025030 PG 11 WC Physics, Fluids & Plasmas SC Physics GA 438UL UT WOS:000265580800033 ER PT J AU Wood, N Bhattacharya, T Keele, BF Giorgi, E Liu, M Gaschen, B Daniels, M Ferrari, G Haynes, BF McMichael, A Shaw, GM Hahn, BH Korber, B Seoighe, C AF Wood, Natasha Bhattacharya, Tanmoy Keele, Brandon F. Giorgi, Elena Liu, Michael Gaschen, Brian Daniels, Marcus Ferrari, Guido Haynes, Barton F. McMichael, Andrew Shaw, George M. Hahn, Beatrice H. Korber, Bette Seoighe, Cathal TI HIV Evolution in Early Infection: Selection Pressures, Patterns of Insertion and Deletion, and the Impact of APOBEC SO PLOS PATHOGENS LA English DT Article ID HUMAN-IMMUNODEFICIENCY-VIRUS; AMINO-ACID SITES; NEUTRALIZING ANTIBODY-RESPONSES; DETECTING POSITIVE SELECTION; CYTOTOXIC T-LYMPHOCYTES; IN-VIVO; ENVELOPE GLYCOPROTEIN; STATISTICAL-METHODS; ADAPTIVE EVOLUTION; LIKELIHOOD MODELS AB The pattern of viral diversification in newly infected individuals provides information about the host environment and immune responses typically experienced by the newly transmitted virus. For example, sites that tend to evolve rapidly across multiple early-infection patients could be involved in enabling escape from common early immune responses, could represent adaptation for rapid growth in a newly infected host, or could represent reversion from less fit forms of the virus that were selected for immune escape in previous hosts. Here we investigated the diversification of HIV-1 env coding sequences in 81 very early B subtype infections previously shown to have resulted from transmission or expansion of single viruses (n = 78) or two closely related viruses (n = 3). In these cases, the sequence of the infecting virus can be estimated accurately, enabling inference of both the direction of substitutions as well as distinction between insertion and deletion events. By integrating information across multiple acutely infected hosts, we find evidence of adaptive evolution of HIV-1 env and identify a subset of codon sites that diversified more rapidly than can be explained by a model of neutral evolution. Of 24 such rapidly diversifying sites, 14 were either i) clustered and embedded in CTL epitopes that were verified experimentally or predicted based on the individual's HLA or ii) in a nucleotide context indicative of APOBEC-mediated G-to-A substitutions, despite having excluded heavily hypermutated sequences prior to the analysis. In several cases, a rapidly evolving site was embedded both in an APOBEC motif and in a CTL epitope, suggesting that APOBEC may facilitate early immune escape. Ten rapidly diversifying sites could not be explained by CTL escape or APOBEC hypermutation, including the most frequently mutated site, in the fusion peptide of gp41. We also examined the distribution, extent, and sequence context of insertions and deletions, and we provide evidence that the length variation seen in hypervariable loop regions of the envelope glycoprotein is a consequence of selection and not of mutational hotspots. Our results provide a detailed view of the process of diversification of HIV-1 following transmission, highlighting the role of CTL escape and hypermutation in shaping viral evolution during the establishment of new infections. C1 [Wood, Natasha; Seoighe, Cathal] Univ Cape Town, Inst Infect Dis & Mol Med, ZA-7925 Cape Town, South Africa. [Wood, Natasha; Seoighe, Cathal] Ctr High Performance Comp, Cape Town, South Africa. [Bhattacharya, Tanmoy; Giorgi, Elena; Gaschen, Brian; Daniels, Marcus; Korber, Bette] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM USA. [Bhattacharya, Tanmoy; Korber, Bette] Santa Fe Inst, Santa Fe, NM 87501 USA. [Keele, Brandon F.; Shaw, George M.; Hahn, Beatrice H.] Univ Alabama, Birmingham, NM USA. [Giorgi, Elena] Univ Massachusetts, Dept Math & Stat, Amherst, MA 01003 USA. [Liu, Michael; McMichael, Andrew] Univ Oxford, John Radcliffe Hosp, Weatherall Inst Mol Med, Oxford OX3 9DU, England. [Ferrari, Guido; Haynes, Barton F.] Duke Univ, Durham, NC USA. [Seoighe, Cathal] Natl Univ Ireland Univ Coll Galway, Sch Math Stat & Appl Math, Galway, Ireland. RP Wood, N (reprint author), Univ Cape Town, Inst Infect Dis & Mol Med, ZA-7925 Cape Town, South Africa. EM cseoighe@gmail.com RI Bhattacharya, Tanmoy/J-8956-2013; Ferrari, Guido/A-6088-2015; OI Bhattacharya, Tanmoy/0000-0002-1060-652X; Korber, Bette/0000-0002-2026-5757 FU National Institutes of Health to the Center for HIV/AIDS Vaccine Immunology (CHAVI); NIH [AI67854, AI27767]; Bill & Melinda Gates Foundation [37874]; UAB Center for AIDS Research FX This work was supported by a grant from the National Institutes of Health to the Center for HIV/AIDS Vaccine Immunology (CHAVI), by grants from the NIH (AI67854, AI27767), the Bill & Melinda Gates Foundation (#37874), and by sequencing core facilities of the UAB Center for AIDS Research. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 65 TC 97 Z9 98 U1 1 U2 3 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA SN 1553-7366 J9 PLOS PATHOG JI PLoS Pathog. PD MAY PY 2009 VL 5 IS 5 AR e1000414 DI 10.1371/journal.ppat.1000414 PG 16 WC Microbiology; Parasitology; Virology SC Microbiology; Parasitology; Virology GA 459FH UT WOS:000267085800041 PM 19424423 ER PT J AU Ingersoll, DT AF Ingersoll, D. T. TI Deliberately small reactors and the second nuclear era SO PROGRESS IN NUCLEAR ENERGY LA English DT Review DE Small medium reactors; Deliberately small reactors; Second nuclear era; Nuclear renaissance; New reactor designs AB Smaller sized nuclear reactors were instrumental during the pioneering days of commercial nuclear power to facilitate the development and demonstration of early reactor technologies and to establish operational experience for the fledgling nuclear power industry. As the U.S. embarks on its "second nuclear era," the question becomes: Will smaller sized plants have a significant role in meeting the nation's needs for electricity and other energy demands? A brief review of our nuclear history is presented relative to plant size considerations, followed by a review of several commonly cited benefits of small reactors. Several "deliberately small" designs currently being developed in the U.S. are briefly described, as well as some of the technical and institutional challenges faced by these designs. Deliberately small reactors offer substantial benefits in safety. security, operational flexibilities and economics, and they are well positioned to figure prominently in the second nuclear era. (C) 2009 Elsevier Ltd. All rights reserved. C1 Oak Ridge Natl Lab, Nucl Technol Programs Off, Oak Ridge, TN 37831 USA. RP Ingersoll, DT (reprint author), Oak Ridge Natl Lab, Nucl Technol Programs Off, POB 2008, Oak Ridge, TN 37831 USA. EM ingersolldt@ornl.gov FU DOE Office of Nuclear Energy; Global Nuclear Energy Partnership program FX The author would like to thank the many supporters and developers of SMRs who provided information and graphics for this paper, and also Gary Mays, Don Williams, and Brad Williams for their thoughtful review and comments on the draft manuscript. The author especially wishes to thank Robert Price and the DOE Office of Nuclear Energy for the opportunity to lead the Grid-Appropriate Reactor program element within the Global Nuclear Energy Partnership program. The personal contacts and technical content of that assignment contributed greatly to the perspectives shared in this paper, and solidified the author's passion for deliberately small reactors. NR 32 TC 90 Z9 92 U1 4 U2 27 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0149-1970 J9 PROG NUCL ENERG JI Prog. Nucl. Energy PD MAY-JUL PY 2009 VL 51 IS 4-5 BP 589 EP 603 DI 10.1016/j.pnucene.2009.01.003 PG 15 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 438QI UT WOS:000265570100001 ER PT J AU Wilson, WB Perry, RT Chariton, WS Parish, TA AF Wilson, W. B. Perry, R. T. Chariton, W. S. Parish, T. A. TI Sources: A code for calculating (alpha, n), spontaneous fission, and delayed neutron sources and spectra SO PROGRESS IN NUCLEAR ENERGY LA English DT Article DE Alpha reactions; Spontaneous fission; Delayed neutrons; Actinide isotopes; Neutron production ID LIGHT-ELEMENTS; BOMBARDMENT; PARTICLES; YIELDS AB SOURCES is a computer code that determines neutron production rates and spectra from (alpha, n) reactions, spontaneous fission, and delayed neutron emission due to the decay of radionuclides in homogeneous media, interface problems, and three-region interface problems. The code is also capable of calculating the neutron production rates due to (alpha, n) reactions induced by a monoenergetic beam of alpha particles incident on a slab of target material. The (alpha, n) spectra are calculated using an assumed isotropic angular distribution in the center-of-mass system with a library of 107 nuclide decay alpha-particle spectra, 24 sets of measured and/or evaluated (alpha, n) cross sections and product nuclide level branching fractions, and functional alpha particle stopping cross sections for Z < 106. Spontaneous fission sources and spectra are calculated with evaluated half-life, spontaneous fission branching, and Watt spectrum parameters for 44 actinides. The delayed neutron spectra are taken from an evaluated library of 105 precursors. The code outputs the magnitude and spectra of the resultant neutron sources. It also provides an analysis of the contributions to that source by each nuclide in the problem. Published by Elsevier Ltd. C1 [Wilson, W. B.; Perry, R. T.; Chariton, W. S.; Parish, T. A.] Los Alamos Natl Lab, Los Alamos, NM 87544 USA. RP Perry, RT (reprint author), Los Alamos Natl Lab, Box 1663, Los Alamos, NM 87544 USA. EM rtperry@lanl.gov FU Los Alamos National Laboratory FX The present version of SOURCES would not be possible without the contributions of many people. The authors acknowledge E. D. Arthur, M. Bozoian, T. H. Brown, J. Devaney, T. R. England, G. P. Estes, D. G. Madland, J. A. Sattelberger, Erik Shores, and J. E. Stewart, all from the Los Alamos National Laboratory, for their contributions to the development of the code. NR 35 TC 6 Z9 6 U1 0 U2 7 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0149-1970 J9 PROG NUCL ENERG JI Prog. Nucl. Energy PD MAY-JUL PY 2009 VL 51 IS 4-5 BP 608 EP 613 DI 10.1016/j.pnucene.2008.11.007 PG 6 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 438QI UT WOS:000265570100003 ER PT J AU Zhang, J Kapernick, R AF Zhang, J. Kapernick, R. TI Oxygen chemistry in liquid sodium-potassium systems SO PROGRESS IN NUCLEAR ENERGY LA English DT Article DE Liquid sodium/NaK; Coolant; Oxygen chemistry; Corrosion ID ALKALI-METALS; THERMODYNAMIC PROPERTIES; STRUCTURAL-MATERIALS; STAINLESS-STEEL; TERNARY OXIDES; ALLOYS; CORROSION; SOLUBILITY; COMPATIBILITY; IMPURITIES AB Oxygen is one of the main contaminates when using an alkali metal as a coolant in a nuclear reactor system. Some oxygen will be present in the coolant at the start of operation, and during normal operation some oxygen may diffuse through the clad into the coolant. Assuming UO(2) fuel, a breach of the cladding of one or more fuel pins, and with the coolant contacting the fuel pellets, the oxygen level in the coolant can increase. The present study examines oxygen chemistry in liquid NaK by extending the existing knowledge of oxygen chemistry in liquid sodium, New explanations and correlations for the formation of oxygen compounds in the liquid metal have been developed. This study includes the effect of oxygen level, measurement and control methods, and the effects of oxygen and oxygen compounds on the compatibility between the liquid and the structural materials. (C) 2009 Elsevier Ltd. All rights reserved. C1 [Zhang, J.; Kapernick, R.] Los Alamos Natl Lab, Decis & Applicat Div, Los Alamos, NM 87544 USA. RP Zhang, J (reprint author), Los Alamos Natl Lab, Decis & Applicat Div, POB 1663, Los Alamos, NM 87544 USA. EM jszhang@lanl.gov RI Zhang, Jinsuo/H-4717-2012 OI Zhang, Jinsuo/0000-0002-3412-7769 NR 33 TC 4 Z9 4 U1 0 U2 7 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0149-1970 J9 PROG NUCL ENERG JI Prog. Nucl. Energy PD MAY-JUL PY 2009 VL 51 IS 4-5 BP 614 EP 623 DI 10.1016/j.pnucene.2008.12.001 PG 10 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 438QI UT WOS:000265570100004 ER PT J AU Kiss, C Temirov, J Chasteen, L Waldo, GS Bradbury, ARM AF Kiss, Csaba Temirov, Jamshid Chasteen, Leslie Waldo, Geoffrey S. Bradbury, Andrew R. M. TI Directed evolution of an extremely stable fluorescent protein SO PROTEIN ENGINEERING DESIGN & SELECTION LA English DT Article DE directed evolution; fluorescent protein; thermostability ID SENSITIVE FOLDING MUTATIONS; THERMOSTABLE ALPHA-AMYLASE; P22 TAILSPIKE PROTEIN; IN-VITRO EVOLUTION; GLOBAL SUPPRESSORS; THERMAL-STABILITY; SURFACE DISPLAY; BETA-LACTAMASE; DOMAIN; STABILIZATION AB In this paper we describe the evolution of eCGP123, an extremely stable green fluorescent protein based on a previously described fluorescent protein created by consensus engineering (CGP: consensus green protein). eCGP123 could not be denatured by a standard thermal melt, preserved almost full fluorescence after overnight incubation at 80 degrees C and possessed a free energy of denaturation of 12.4 kcal/mol. It was created from CGP by a recursive process involving the sequential introduction of three destabilizing heterologous inserts, evolution to overcome the destabilization and finally 'removal' of the destabilizing insert by gene synthesis. We believe that this approach may be generally applicable to the stabilization of other proteins. C1 [Kiss, Csaba; Temirov, Jamshid; Chasteen, Leslie; Waldo, Geoffrey S.; Bradbury, Andrew R. M.] Los Alamos Natl Lab, Biosci Div, Los Alamos, NM USA. RP Bradbury, ARM (reprint author), Los Alamos Natl Lab, Biosci Div, Los Alamos, NM USA. EM amb@lanl.gov OI Bradbury, Andrew/0000-0002-5567-8172 FU LANL lab directed research funds (LDRD-DR); DOE GTL FX A. R. M. B. is grateful to LANL lab directed research funds (LDRD-DR) and the DOE GTL program for funding. NR 62 TC 29 Z9 29 U1 0 U2 5 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 1741-0126 J9 PROTEIN ENG DES SEL JI Protein Eng. Des. Sel. PD MAY PY 2009 VL 22 IS 5 BP 313 EP 323 DI 10.1093/protein/gzp006 PG 11 WC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology GA 434LV UT WOS:000265277100004 PM 19364809 ER PT J AU Boschek, CB Apiyo, DO Soares, TA Engelmann, HE Pefaur, NB Straatsma, TP Baird, CL AF Boschek, Curt B. Apiyo, David O. Soares, Thereza A. Engelmann, Heather E. Pefaur, Noah B. Straatsma, Tjerk P. Baird, Cheryl L. TI Engineering an ultra-stable affinity reagent based on Top7 SO PROTEIN ENGINEERING DESIGN & SELECTION LA English DT Article DE engineering affinity; molecular dynamics simulations; protein scaffold; protein stability; Top7 ID MOLECULAR-DYNAMICS SIMULATIONS; SITE-DIRECTED MUTAGENESIS; MONOCLONAL-ANTIBODY; BINDING-PROTEINS; CD4; DESIGN; ACTIVATION; DIVERSITY; STABILITY; DOMAINS AB Antibodies are widely used for diagnostic and therapeutic applications because of their sensitive and specific recognition of a wide range of targets; however, their application is limited by their structural complexity. More demanding applications require greater stability than can be achieved by immunoglobulin-based reagents. Highly stable, protein-based affinity reagents are being investigated for this role with the goal of identifying a suitable scaffold that can attain specificity and sensitivity similar to that of antibodies while performing under conditions where antibodies fail. We have engineered Top7-025EFa highly stable, computationally designed protein-025EFto specifically bind human CD4 by inserting a peptide sequence derived from a CD4-specific antibody. Molecular dynamics simulations were used to evaluate the structural effect of the peptide insertion at a specific site within Top7 and suggest that this Top7 variant retains conformational stability over 100 degrees C. This engineered protein specifically binds CD4 and, consistent with simulations, is extremely resistant to thermal and chemical denaturation-025EFretaining its secondary structure up to at least 95 degrees C and requiring 6 M guanidine to completely unfold. This CD4-specific protein demonstrates the functionality of Top7 as a viable scaffold for use as a general affinity reagent which could serve as a robust and inexpensive alternative to antibodies. C1 [Boschek, Curt B.; Apiyo, David O.; Engelmann, Heather E.; Pefaur, Noah B.; Baird, Cheryl L.] Pacific NW Natl Lab, Cell Biol & Biochem Grp, Richland, WA 99352 USA. [Soares, Thereza A.; Straatsma, Tjerk P.] Pacific NW Natl Lab, Computat Biol & Bioinformat Grp, Richland, WA 99352 USA. RP Baird, CL (reprint author), Pacific NW Natl Lab, Cell Biol & Biochem Grp, POB 999,MS K4-12, Richland, WA 99352 USA. EM cheryl.baird@pnl.gov RI Baird, Cheryl/F-6569-2011; Soares, Thereza/G-1065-2010 OI Soares, Thereza/0000-0002-5891-6906 FU Department of Energy's Office of Biological and Environmental Research located at Pacific Northwest National Laboratory; United States Department of Energy (Laboratory Directed Research and Development) FX This work was supported by the United States Department of Energy (Laboratory Directed Research and Development). NR 40 TC 14 Z9 14 U1 0 U2 5 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 1741-0126 J9 PROTEIN ENG DES SEL JI Protein Eng. Des. Sel. PD MAY PY 2009 VL 22 IS 5 BP 325 EP 332 DI 10.1093/protein/gzp007 PG 8 WC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology GA 434LV UT WOS:000265277100005 PM 19321520 ER PT J AU Gassman, NR Ho, SO Korlann, Y Chiang, J Wu, Y Perry, LJ Kim, Y Weiss, S AF Gassman, Natalie R. Ho, Sam On Korlann, You Chiang, Janet Wu, Yim Perry, L. Jeanne Kim, Younggyu Weiss, Shimon TI In vivo assembly and single-molecule characterization of the transcription machinery from Shewanella oneidensis MR-1 SO PROTEIN EXPRESSION AND PURIFICATION LA English DT Article DE Shewanella oneidensis; RNA polymerase; sigma Factor; Co-overexpression; Single-molecule spectroscopy; Alternating-laser excitation ID COLI RNA-POLYMERASE; ALTERNATING-LASER EXCITATION; ESCHERICHIA-COLI; SIGMA(70) SUBUNIT; STRUCTURAL BASIS; GENOME SEQUENCE; LAC PROMOTER; DNA COMPLEX; INITIATION; GENE AB Harnessing the new bioremediation and biotechnology applications offered by the dissimilatory metal-reducing bacteria, Shewanella oneidensis MR-1, requires a clear understanding of its transcription machinery, a pivotal component in maintaining vitality and in responding to various conditions, including starvation and environmental stress. Here, we have reconstituted the S. oneidensis RNA polymerase (RNAP) core in vivo by generating a co-overexpression construct that produces a long polycistronic mRNA encoding all of the core subunits (alpha, beta, beta', and omega) and verified that this reconstituted core is capable of forming fully functional holoenzymes with the S. oneidensis sigma factors sigma(70), sigma(38), sigma(32), and sigma(24). Further, to demonstrate the applications for this reconstituted core, we report the application of single-molecule fluorescence resonance energy transfer (smFRET) assays to monitor the mechanisms of transcription by the S. oneidensis sigma(70)-RNAP holoenyzme. These results show that the reconstituted transcription machinery from S. oneidensis, like its Escherichia coli counterpart, "scrunches" the DNA into its active center during initial transcription, and that as the holoenzyme transitions into elongation, the release of sigma(70) is non-obligatory. (C) 2009 Published by Elsevier Inc. C1 [Gassman, Natalie R.; Ho, Sam On; Korlann, You; Kim, Younggyu; Weiss, Shimon] Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90095 USA. [Wu, Yim; Perry, L. Jeanne] Univ Calif Los Angeles, DOE, Inst Proteom & Genom, Los Angeles, CA 90095 USA. [Weiss, Shimon] Univ Calif Los Angeles, Dept Physiol, Los Angeles, CA 90095 USA. [Weiss, Shimon] Univ Calif Los Angeles, Calif Nanosyst Inst, Los Angeles, CA 90095 USA. RP Kim, Y (reprint author), Univ Calif Los Angeles, Dept Chem & Biochem, 607 Charles E Young Dr E, Los Angeles, CA 90095 USA. EM ykim@chem.ucla.edu; sweiss@chem.ucla.edu RI weiss, shimon/B-4164-2009; OI weiss, shimon/0000-0002-0720-5426; Gassman, Natalie/0000-0002-8488-2332 FU Department of Energy [FG03-02ER63339]; NIH [GM069709-01] FX We thank Dr. M. Uljana Mayer Dr. Liang Shi for providing the S. oneidensis RNAP subunits clones, and Dr. Mayer, Devdoot Majumdar, and Yuval Ebenstein for critical reading of the article; the Dr. Jay D. Gralla group for help with the radioactive transcription assays; Irina Sorokina for helpful discussion of the MALDI-MS data. We also acknowledge the Shewanella Federation for helpful discussions. This work was supported by Department of Energy Grant FG03-02ER63339 and NIH Grant GM069709-01 to S.W. NR 69 TC 4 Z9 4 U1 0 U2 5 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 1046-5928 EI 1096-0279 J9 PROTEIN EXPRES PURIF JI Protein Expr. Purif. PD MAY PY 2009 VL 65 IS 1 BP 66 EP 76 DI 10.1016/j.pep.2008.11.013 PG 11 WC Biochemical Research Methods; Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology GA 416LU UT WOS:000264008400009 PM 19111618 ER PT J AU Fleissner, MR Cascio, D Hubbell, WL AF Fleissner, Mark R. Cascio, Duilio Hubbell, Wayne L. TI Structural origin of weakly ordered nitroxide motion in spin-labeled proteins SO PROTEIN SCIENCE LA English DT Article DE site-directed Spin Labeling; nitroxide anisotropic motion; nitroxide crystal structures ID SIDE-CHAIN STRUCTURE; T4 LYSOZYME; ALPHA-HELIX; EPR-SPECTRA; DYNAMICS; ACTIVATION; BINDING; CONFORMATIONS; DETERMINANTS; MUTAGENESIS AB A disulfide-linked nitroxide side chain (R1) used in site-directed spin labeling of proteins often exhibits an EPR spectrum characteristic of a weakly ordered z-axis anisotropic motion at topographically diverse surface sites, including those on helices, loops and edge strands of beta-sheets. To elucidate the origin of this motion, the first crystal structures of R1 that display simple z-axis anisotropic motion at solvent-exposed helical sites ( 131 and 151) and a loop site ( 82) in T4 lysozyme have been determined. Structures of 131R1 and 151R1 determined at cryogenic or ambient temperature reveal an intraresidue C(alpha)-H center dot center dot center dot S(delta) interaction that immobilizes the disulfide group, consistent with a model in which the internal motions of R1 are dominated by rotations about the two terminal bonds ( Columbus, Kalai, Jeko, Hideg, and Hubbell, Biochemistry 2001; 40: 3828-3846). Remarkably, the 131R1 side chain populates two rotamers equally, but the EPR spectrum reflects a single dominant dynamic population, showing that the two rotamers have similar internal motion determined by the common disulfide-backbone interaction. The anisotropic motion for loop residue 82R1 is also accounted for by a common disulfide-backbone interaction, showing that the interaction does not require a specific secondary structure. If the above observations prove to be general, then significant variations in order and rate for R1 at noninteracting solvent-exposed helical and loop sites can be assigned to backbone motion because the internal motion is essentially constant. C1 [Hubbell, Wayne L.] Univ Calif Los Angeles, Sch Med, Jules Stein Eye Inst, Los Angeles, CA 90095 USA. [Fleissner, Mark R.; Hubbell, Wayne L.] Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90095 USA. [Cascio, Duilio] Univ Calif Los Angeles, UCLA DOE Inst Genom & Prote, Los Angeles, CA 90095 USA. RP Hubbell, WL (reprint author), Univ Calif Los Angeles, Sch Med, Jules Stein Eye Inst, Los Angeles, CA 90095 USA. EM hubbellw@jsei.ucla.edu FU NEI NIH HHS [5T32EY007026, R01 EY005216, R01 EY005216-29, EY05216]; NIGMS NIH HHS [GM07185] NR 55 TC 58 Z9 58 U1 0 U2 10 PU JOHN WILEY & SONS INC PI HOBOKEN PA 111 RIVER ST, HOBOKEN, NJ 07030 USA SN 0961-8368 J9 PROTEIN SCI JI Protein Sci. PD MAY PY 2009 VL 18 IS 5 BP 893 EP 908 DI 10.1002/pro.96 PG 16 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 442PK UT WOS:000265852900004 PM 19384990 ER PT J AU Xu, JC Crowley, MF Smith, JC AF Xu, Jiancong Crowley, Michael F. Smith, Jeremy C. TI Building a foundation for structure-based cellulosome design for cellulosic ethanol: Insight into cohesin-dockerin complexation from computer simulation SO PROTEIN SCIENCE LA English DT Article DE cellulosic ethanol; cellulosome; cohesin-dockerin; principal component analysis; free energy perturbation; adaptive biasing force; potential of mean force ID ALPHA-HELIX DIPOLE; MOLECULAR-DYNAMICS SIMULATIONS; FREE-ENERGY CALCULATIONS; BINDING FREE-ENERGY; CLOSTRIDIUM-THERMOCELLUM; CRYSTAL-STRUCTURE; COLLECTIVE MOTIONS; DOMAIN; PROTEIN; CELLULOLYTICUM AB The organization and assembly of the cellulosome, an extracellular multienzyme complex produced by anaerobic bacteria, is mediated by the high-affinity interaction of cohesin domains from scaffolding proteins with dockerins of cellulosomal enzymes. We have performed molecular dynamics simulations and free energy calculations on both the wild type (WT) and D39N mutant of the C. thermocellum Type I cohesin-dockerin complex in aqueous solution. The D39N mutation has been experimentally demonstrated to disrupt cohesin-dockerin binding. The present MD simulations indicate that the substitution triggers significant protein flexibility and causes a major change of the hydrogen-bonding network in the recognition strips-the conserved loop regions previously proposed to be involved in binding-through electrostatic and salt-bridge interactions between beta-strands 3 and 5 of the cohesin and alpha-helix 3 of the dockerin. The mutation-induced subtle disturbance in the local hydrogen-bond network is accompanied by conformational rearrangements of the protein side chains and bound water molecules. Additional free energy perturbation calculations of the D39N mutation provide differences in the cohesin-dockerin binding energy, thus offering a direct, quantitative comparison with experiments. The underlying molecular mechanism of cohesin-dockerin complexation is further investigated through the free energy profile, that is, potential of mean force (PMF) calculations of WT cohesin-dockerin complex. The PMF shows a high-free energy barrier against the dissociation and reveals a stepwise pattern involving both the central beta-sheet interface and its adjacent solvent-exposed loop/turn regions clustered at both ends of the beta-barrel structure. C1 [Xu, Jiancong; Smith, Jeremy C.] Oak Ridge Natl Lab, Ctr Biophys Mol, Oak Ridge, TN 37830 USA. [Xu, Jiancong; Crowley, Michael F.; Smith, Jeremy C.] Oak Ridge Natl Lab, BioEnergy Sci Ctr, Oak Ridge, TN 37830 USA. [Crowley, Michael F.] Natl Renewable Energy Lab, Chem & Biosci Ctr, Golden, CO 80401 USA. RP Xu, JC (reprint author), Oak Ridge Natl Lab, Ctr Biophys Mol, Bldg 6011,MS6309,1 Bethel Valley Rd, Oak Ridge, TN 37830 USA. EM xuj1@ornl.gov RI smith, jeremy/B-7287-2012; crowley, michael/A-4852-2013 OI smith, jeremy/0000-0002-2978-3227; crowley, michael/0000-0001-5163-9398 NR 48 TC 11 Z9 11 U1 1 U2 15 PU JOHN WILEY & SONS INC PI HOBOKEN PA 111 RIVER ST, HOBOKEN, NJ 07030 USA SN 0961-8368 J9 PROTEIN SCI JI Protein Sci. PD MAY PY 2009 VL 18 IS 5 BP 949 EP 959 DI 10.1002/pro.105 PG 11 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 442PK UT WOS:000265852900008 PM 19384997 ER PT J AU Afshar, S Sawaya, MR Morrison, SL AF Afshar, Sepideh Sawaya, Michael R. Morrison, Sherie L. TI Structure of a mutant human purine nucleoside phosphorylase with the prodrug, 2-fluoro-2 '-deoxyadenosine and the cytotoxic drug, 2-fluoroadenine SO PROTEIN SCIENCE LA English DT Article DE purine nucleoside phosphorylase; X-Ray structure; enzyme substrate specificity; S(N)1 mechanism; cancer therapy; immunogenicity; prodrug; cytotoxic drug ID CATALYTIC MECHANISM; SPECIFICITY; REFINEMENT; SOFTWARE; MODELS AB A double mutant of human purine nucleoside phosphorylase (hDM) with the amino acid mutations Glu201Gln: Asn243Asp cleaves adenosine-based prodrugs to their corresponding cytotoxic drugs. When fused to an anti-tumor targeting component, hDM is targeted to tumor cells, where it effectively catalyzes phosphorolysis of the prodrug, 2-fluoro-20-deoxyadenosine (F-dAdo) to the cytotoxic drug, 2-fluoroadenine (F-Ade). This cytotoxicity should be restricted only to the tumor microenvironment, because the endogenously expressed wild type enzyme cannot use adenosine-based prodrugs as substrates. To gain insight into the interaction of hDM with F-dAdo, we have determined the crystal structures of hDM with F-dAdo and F-Ade. The structures reveal that despite the two mutations, the overall fold of hDM is nearly identical to the wild type enzyme. Importantly, the residues Gln201 and Asp243 introduced by the mutation form hydrogen bond contacts with F-dAdo that result in its binding and catalysis. Comparison of substrate and product complexes suggest that the side chains of Gln201 and Asp243 as well as the purine base rotate during catalysis possibly facilitating cleavage of the glycosidic bond. The two structures suggest why hDM, unlike the wild-type enzyme, can utilize F-dAdo as substrate. More importantly, they provide a critical foundation for further optimization of cleavage of adenosine-based prodrugs, such as F-dAdo by mutants of human purine nucleoside phosphorylase. C1 [Afshar, Sepideh; Morrison, Sherie L.] Univ Calif Los Angeles, UCLA DOE Inst Genom & Prote, Dept Microbiol Mol Genet & Immunol, Los Angeles, CA 90095 USA. [Sawaya, Michael R.] Univ Calif Los Angeles, UCLA DOE Inst Genom & Prote, Howard Hughes Med Inst, Los Angeles, CA 90095 USA. RP Afshar, S (reprint author), Univ Calif Los Angeles, UCLA DOE Inst Genom & Prote, Dept Microbiol Mol Genet & Immunol, MIMG 615 Charles E Young E 247 BSRB, Los Angeles, CA 90095 USA. EM sepideha@ucla.edu OI Sawaya, Michael/0000-0003-0874-9043 FU National Center for Research Resources at the National Institutes of Health [RR-15301] FX The authors thank Duilio Cascio for technical advice and UCLA-DOE Technology Center for use of its crystallization and X-ray diffraction facilities. This work is based upon research conducted at the Northeastern Collaborative Access Team beamlines of the Advanced Photon Source, which is supported by award RR-15301 from the National Center for Research Resources at the National Institutes of Health. NR 20 TC 8 Z9 8 U1 0 U2 2 PU JOHN WILEY & SONS INC PI HOBOKEN PA 111 RIVER ST, HOBOKEN, NJ 07030 USA SN 0961-8368 J9 PROTEIN SCI JI Protein Sci. PD MAY PY 2009 VL 18 IS 5 BP 1107 EP 1114 DI 10.1002/pro.91 PG 8 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 442PK UT WOS:000265852900023 PM 19388075 ER PT J AU Whitford, PC Noel, JK Gosavi, S Schug, A Sanbonmatsu, KY Onuchic, JN AF Whitford, Paul C. Noel, Jeffrey K. Gosavi, Shachi Schug, Alexander Sanbonmatsu, Kevin Y. Onuchic, Jose N. TI An all-atom structure-based potential for proteins: Bridging minimal models with all-atom empirical forcefields SO PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS LA English DT Article DE energy landscape theory; protein folding; structure-based model; all-atom model; side chain packing ID FREE-ENERGY LANDSCAPE; MOLECULAR-DYNAMICS SIMULATIONS; SIDE-CHAIN PACKING; FOLDING FUNNELS; CONFORMATIONAL TRANSITIONS; TRP-CAGE; TOPOLOGICAL FRUSTRATION; FUNCTIONAL TRANSITIONS; ADENYLATE KINASE; FRAGMENT-B AB Protein dynamics take place on many time and length scales. Coarse-grained structure-based (G (o) over bar) models utilize the funneled energy landscape theory of protein folding to provide an understanding of both long time and long length scale dynamics. All-atom empirical forcefields with explicit solvent can elucidate our understanding of short time dynamics with high energetic and structural resolution. Thus, structure-based models with atomic details included can be used to bridge our understanding between these two approaches. We report on the robustness of folding mechanisms in one such all-atom model. Results for the B domain of Protein A, the SH3 domain of C-Src Kinase, and Chymotrypsin Inhibitor 2 are reported. The interplay between side chain packing and backbone folding is explored. We also compare this model to a C. structure-based model and an all-atom empirical forcefield. Key findings include: (1) backbone collapse is accompanied by partial side chain packing in a cooperative transition and residual side chain packing occurs gradually with decreasing temperature, (2) folding mechanisms are robust to variations of the energetic parameters, (3) protein folding free-energy barriers can be manipulated through parametric modifications, (4) the global folding mechanisms in a C. model and the all-atom model agree, although differences can be attributed to energetic heterogeneity in the all-atom model, and (5) proline residues have significant effects on folding mechanisms, independent of isomerization effects. Because this structure-based model has atomic resolution, this work lays the foundation for future studies to probe the contributions of specific energetic factors on protein folding and function. C1 [Whitford, Paul C.; Noel, Jeffrey K.; Gosavi, Shachi; Schug, Alexander; Onuchic, Jose N.] Univ Calif San Diego, Ctr Theoret Biol Phys, La Jolla, CA 92093 USA. [Whitford, Paul C.; Noel, Jeffrey K.; Gosavi, Shachi; Schug, Alexander; Onuchic, Jose N.] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA. [Sanbonmatsu, Kevin Y.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Onuchic, JN (reprint author), Univ Calif San Diego, Ctr Theoret Biol Phys, 9500 Gilman Dr, La Jolla, CA 92093 USA. EM jonuchic@ctbp.ucsd.edu FU NIGMS NIH HHS [R01-GM072686, R01 GM072686, R01 GM072686-06, T32 GM008326, T32 GM008326-16, T32 GM008326-19, T32GM08326] NR 76 TC 149 Z9 150 U1 4 U2 35 PU WILEY-LISS PI HOBOKEN PA DIV JOHN WILEY & SONS INC, 111 RIVER ST, HOBOKEN, NJ 07030 USA SN 0887-3585 J9 PROTEINS JI Proteins PD MAY 1 PY 2009 VL 75 IS 2 BP 430 EP 441 DI 10.1002/prot.22253 PG 12 WC Biochemistry & Molecular Biology; Biophysics SC Biochemistry & Molecular Biology; Biophysics GA 418SP UT WOS:000264169400015 PM 18837035 ER PT J AU Boulet, SL Grosse, SD Honein, MA Correa-Villasenor, A AF Boulet, Sheree L. Grosse, Scott D. Honein, Margaret A. Correa-Villasenor, Adolfo TI Children with Orofacial Clefts: Health-Care Use and Costs Among a Privately Insured Population SO PUBLIC HEALTH REPORTS LA English DT Article ID BIRTH-DEFECTS; UNITED-STATES; PALATE; LIP; CLASSIFICATION; EXPENDITURES; INFANTS AB Objectives. Orofacial clefts are common birth defects that often require multiple surgeries and medical treatments during childhood. We used health-care insurance claims data to estimate health-care expenditures for infants and children <= 10 years of age with an orofacial cleft. Methods. The data were derived from the 2000-2004 MarketScan (R) Commercial Claims and Encounters databases, which include person-specific information on health-care use, expenditures, and enrollment for approximately 50 large employers, health plans, and government and public organizations. Health insurance claims data from 821,619 children <= 10 years of age enrolled in employer-sponsored plans during 2004 were analyzed. Expenditures for inpatient admissions, outpatient services, and prescription drug claims were calculated for children with and those without an orofacial cleft. Results. The difference in annual mean costs (i.e., incremental costs) between children aged 0 through 10 years with an orofacial cleft and those without an orofacial cleft was $13,405. The mean and median costs for children <= 10 years of age with an orofacial cleft were eight times higher than for children of the same age without an orofacial cleft. Mean costs for infants with a cleft and another major, unrelated defect were 25 times higher than those for an infant without a cleft, and five times higher than for infants with an isolated cleft. Conclusion. These findings document substantially elevated medical care costs for privately insured children with an orofacial cleft. Additional study of the economic burden associated with this condition should include a broader range of economic costs. C1 [Boulet, Sheree L.; Grosse, Scott D.; Honein, Margaret A.; Correa-Villasenor, Adolfo] Ctr Dis Control & Prevent, Natl Ctr Birth Defects & Dev Disabil, Atlanta, GA 30333 USA. [Boulet, Sheree L.] Oak Ridge Inst Sci & Educ, Oak Ridge, TN USA. RP Boulet, SL (reprint author), Ctr Dis Control & Prevent, Natl Ctr Birth Defects & Dev Disabil, 1600 Clifton Rd,MS-E86, Atlanta, GA 30333 USA. EM sboulet@cdc.gov FU National Center on Birth Defects and Developmental Disabilities; Centers for Disease Control and Prevention (CDC); U.S. Department of Energy and CDC FX This research was supported in part by an appointment to the Research Participation Program at the National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention (CDC), administered by the Oak Ridge Institute for Science and Education through an interagency agreement between the U.S. Department of Energy and CDC. NR 23 TC 38 Z9 38 U1 0 U2 1 PU ASSOC SCHOOLS PUBLIC HEALTH PI WASHINGTON PA 1101 15TH ST NW, STE 910, WASHINGTON, DC 20005 USA SN 0033-3549 J9 PUBLIC HEALTH REP JI Public Health Rep. PD MAY-JUN PY 2009 VL 124 IS 3 BP 447 EP 453 PG 7 WC Public, Environmental & Occupational Health SC Public, Environmental & Occupational Health GA 428OD UT WOS:000264857000015 PM 19445422 ER PT J AU Engel, S Lease, HM McDowell, NG Corbett, AH Wolf, BO AF Engel, Sophia Lease, Hilary M. McDowell, Nate G. Corbett, Alyssa H. Wolf, Blair O. TI The use of tunable diode laser absorption spectroscopy for rapid measurements of the delta C-13 of animal breath for physiological and ecological studies SO RAPID COMMUNICATIONS IN MASS SPECTROMETRY LA English DT Article ID CARBON-ISOTOPE RATIOS; METABOLIC SUBSTRATE USE; LEAF-RESPIRED CO2; EXHALED CO2; DIET; FRACTIONATION; HUMMINGBIRDS; ECOSYSTEM; TURNOVER; FLUXES AB In this study we introduce the use of tunable diode laser absorption spectroscopy (TDLAS) as a technique for making measurements of the delta C-13 of animal 'breath' in near real time. The carbon isotope ratios (delta C-13) of breath CO2 trace the carbon source of the materials being metabolized, which can provide insight into the use of specific food resources, e.g. those derived from plants using C-3 versus C-4 or CAM photosynthetic pathways. For physiological studies, labeled substrates and breath analyses provide direct evidence of specific physiological (e.g. fermentative digestion) or enzymatic (e.g. sucrase activity) processes. Although potentially very informative, this approach has rarely been taken in animal physiological or ecological research. In this study we quantify the utilization of different plant resources (photosynthetic types - C-3 or C-4) in arthropod herbivores by measuring the delta C-13 of their 'breath' and comparing it with bulk tissue values. We show that breath delta C-13 values are highly correlated with bulk tissues and for insect herbivores reflect their dietary guild, in our case C-3-specialists, C-4-specialists, or generalists. TDLAS has a number of advantages that will make it an important tool for physiologists, ecologists and behaviorists: it is non-invasive, fast, very sensitive, accurate, works on animals of a wide range of body sizes, per-sample costs are small, and it is potentially field-deployable. Copyright (C) 2009 John Wiley & Sons, Ltd. C1 [Engel, Sophia; Lease, Hilary M.; Wolf, Blair O.] Univ New Mexico, Dept Biol, Albuquerque, NM 87131 USA. [McDowell, Nate G.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Corbett, Alyssa H.] Tufts Univ, Dept Biol, Medford, MA 02155 USA. RP Engel, S (reprint author), Univ New Mexico, Dept Biol, MSC03 2020, Albuquerque, NM 87131 USA. EM sengel@unm.edu; wolf@unm.edu FU National Science Foundation [DEB-0213659]; Max Planck Institute for Ornithology, Germany [DEB-0620482] FX We thank Karen Brown, Chris Bickford, Heath Powers and Clif Meyer for technical assistance with TDLAS, and Viorel Atudorei for analyzing the tissue samples. Dave Lightfoot helped us identify the grasshopper species. Dave Hanson helped us improve an earlier version of this manuscript. This paper is based on work supported by the National Science Foundation under Grant No. DEB-0213659 to B. O. Wolf, a REU supplement to Grant No. DEB-0620482 to the Sevilleta LTER, a fellowship from the Max Planck Institute for Ornithology, Germany, to S. Engel, a Laboratory Directed Research and Development grant to N.G. McDowell, and an Institute of Geophysics and Planetary Physics grant to N. G. McDowell. NR 23 TC 15 Z9 15 U1 2 U2 14 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0951-4198 J9 RAPID COMMUN MASS SP JI Rapid Commun. Mass Spectrom. PD MAY PY 2009 VL 23 IS 9 BP 1281 EP 1286 DI 10.1002/rcm.4004 PG 6 WC Biochemical Research Methods; Chemistry, Analytical; Spectroscopy SC Biochemistry & Molecular Biology; Chemistry; Spectroscopy GA 438FW UT WOS:000265542300009 PM 19306281 ER PT J AU Van Berkel, GJ Kertesz, V AF Van Berkel, Gary J. Kertesz, Vilmos TI Electrochemically initiated tagging of thiols using an electrospray ionization based liquid microjunction surface sampling probe two-electrode cell SO RAPID COMMUNICATIONS IN MASS SPECTROMETRY LA English DT Article ID MASS-SPECTROMETRY SYSTEM; THIN TISSUE-SECTIONS; PROTEIN-ANALYSIS; CYSTEINE RESIDUES; ION-SOURCE; NANOSPRAY; DEVICE; TAGS; MS AB This paper reports on the conversion of a liquid microjunction surface sampling probe (LMJ-SSP) into a two-electrode electrochemical cell using a conductive sample surface and the probe as the two electrodes with an appropriate battery powered circuit. With this LMJ-SSP, two-electrode cell arrangement, tagging of analyte thiol functionalities (in this case peptide cysteine residues) with hydroquinone tags was initiated electrochemically using a hydroquinone-doped solution when the analyte either was initially in solution or was sampled from a surface. Efficient tagging (similar to 90%), at flow rates of 5-10 mu L/min, could be achieved for up to at least two cysteines on a peptide. The high tagging efficiency observed was explained with a simple kinetic model. In general, the incorporation of a two-electrode electrochemical cell, or other multiple electrode arrangement, into the LMJ-SSP is expected to add to the versatility of this approach for surface sampling and ionization coupled with mass spectrometric detection. Published in 2009 by John Wiley & Sons, Ltd. C1 [Van Berkel, Gary J.; Kertesz, Vilmos] Oak Ridge Natl Lab, Div Chem Sci, Organ & Biol Mass Spectrometry Grp, Oak Ridge, TN 37831 USA. RP Van Berkel, GJ (reprint author), Oak Ridge Natl Lab, Div Chem Sci, Organ & Biol Mass Spectrometry Grp, Oak Ridge, TN 37831 USA. EM vanberkelgj@ornl.gov RI Kertesz, Vilmos/M-8357-2016 OI Kertesz, Vilmos/0000-0003-0186-5797 FU Cooperative Research and Development Agreement (CRADA) [ORNL02-0662]; Division of Chemical Sciences, Geosciences, and Biosciences; United States Department of Energy [DE-AC05-00OIZ22725]; U.S. Government [DE-AC05-00OR22725] FX The Microionspray II used to fabricate the LMJ-SSP was provided through a Cooperative Research and Development Agreement (CRADA) with MDS Sciex (ORNL02-0662). This research was supported by the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, United States Department of Energy under Contract DE-AC05-00OIZ22725 with ORNL, managed and operated by UT-Battelle, LLC. This manuscript has been authored by a contractor of the U.S. Government under contract No. DE-AC05-00OR22725. Accordingly, the U. S. Government retains a paid-up, nonexclusive, irrevocable, worldwide license to publish or reproduce the published form of this contribution, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, or allow others to do so, for U.S. Government purposes. NR 29 TC 19 Z9 19 U1 0 U2 9 PU JOHN WILEY & SONS LTD PI CHICHESTER PA THE ATRIUM, SOUTHERN GATE, CHICHESTER PO19 8SQ, W SUSSEX, ENGLAND SN 0951-4198 J9 RAPID COMMUN MASS SP JI Rapid Commun. Mass Spectrom. PD MAY PY 2009 VL 23 IS 9 BP 1380 EP 1386 DI 10.1002/rcm.4014 PG 7 WC Chemistry, Analytical; Spectroscopy SC Chemistry; Spectroscopy GA 438FW UT WOS:000265542300020 PM 19337980 ER PT J AU Atwood, CL Kelly, DL AF Atwood, Corwin L. Kelly, Dana L. TI The binomial failure rate common-cause model with WinBUGS SO RELIABILITY ENGINEERING & SYSTEM SAFETY LA English DT Article DE BFR; Bayesian estimation; Failure on demand; Standby failures; Staggered testing AB The binomial failure rate (BFR) common-cause model was introduced in the 1970s, but has not been used much recently. it turns out to be very easy to use with WinBUGS, a free, widely used Markov chain Monte Carlo (MCMC) program for Bayesian estimation. This fact recommends it in situations when failure data are available, especially when few failures have been observed. This article explains how to use it both for standby equipment that may fail to operate when demanded and for running equipment that may fail at random times. Example analyses are given and discussed. (C) 2008 Elsevier Ltd. All rights reserved. C1 [Atwood, Corwin L.] Statwood Consulting, Silver Spring, MD 20910 USA. [Kelly, Dana L.] Idaho Natl Lab, Idaho Falls, ID USA. RP Atwood, CL (reprint author), Statwood Consulting, 2905 Covington Rd, Silver Spring, MD 20910 USA. EM cory@statwoodconsulting.com; Dana.Kelly@inl.gov NR 10 TC 3 Z9 3 U1 4 U2 10 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0951-8320 J9 RELIAB ENG SYST SAFE JI Reliab. Eng. Syst. Saf. PD MAY PY 2009 VL 94 IS 5 BP 990 EP 999 DI 10.1016/j.ress.2008.11.007 PG 10 WC Engineering, Industrial; Operations Research & Management Science SC Engineering; Operations Research & Management Science GA 424CE UT WOS:000264542300012 ER PT J AU Yefremenko, V Gordiyenko, E Shustakova, G Fomenko, Y Datesman, A Wang, G Pearson, J Cohen, EEW Novosad, V AF Yefremenko, V. Gordiyenko, E. Shustakova, G. Fomenko, Yu. Datesman, A. Wang, G. Pearson, J. Cohen, E. E. W. Novosad, V. TI A broadband imaging system for research applications SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article DE cadmium compounds; II-VI semiconductors; infrared detectors; infrared imaging; mercury compounds; mirrors; photodetectors AB We have developed a compact, computer-piloted, high sensitivity broadband imaging system for laboratory research that is compatible with various detectors. Mirror optics allow application from the visible to the far infrared spectral range. A prototype tested in conjunction with a mercury cadmium telluride detector exhibits a peak detectivity of 6.7x10(10) cm Hz(1/2)/W at a wavelength of 11.8 mu m. Temperature and spatial resolutions of 0.06 K and 1.6 mrad, respectively, were demonstrated. C1 [Yefremenko, V.; Datesman, A.; Wang, G.; Pearson, J.; Novosad, V.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Gordiyenko, E.; Shustakova, G.; Fomenko, Yu.] B Verkin Inst Low Temp Phys & Engn, UA-61103 Kharkov, Ukraine. [Shustakova, G.; Cohen, E. E. W.] Univ Chicago, Dept Med, Chicago, IL 60637 USA. RP Novosad, V (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM novosad@anl.gov RI Novosad, Valentyn/C-2018-2014; Novosad, V /J-4843-2015 FU Office of Science and Office of Basic Energy Sciences of the U.S. Department of Energy [DE-AC02-06CH11357]; NIH "Functional Infrared Imaging Predicts Radiation Mucositis" [1R21CA125000-01A1] FX The work at Argonne National Laboratory was supported by Office of Science and Office of Basic Energy Sciences of the U.S. Department of Energy, under Contract No. DE-AC02-06CH11357. Partial funding was provided by NIH "Functional Infrared Imaging Predicts Radiation Mucositis," Grant No. 1R21CA125000-01A1. NR 8 TC 2 Z9 2 U1 0 U2 1 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD MAY PY 2009 VL 80 IS 5 AR 056104 DI 10.1063/1.3124796 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 451AG UT WOS:000266442500057 PM 19485541 ER PT J AU Botello-Zubiate, ME Santillan, C Ayala-Valenzuela, OE Matute-Aquino, JA Jaime, M AF Botello-Zubiate, M. E. Santillan, C. Ayala-Valenzuela, O. E. Matute-Aquino, J. A. Jaime, M. TI Comparative study of ferromagnetic superconductors (Ru1-xNbxSr2Eu1.4Ce0.6Cu2O10) by different preparation methods SO REVISTA MEXICANA DE FISICA LA English DT Article; Proceedings Paper CT 17th International Materials Research Congress CY AUG 17-21, 2008 CL Cancun, MEXICO SP Mexican Mat Res Soc, Natl Assoc Corros Engn DE Ferromagnetic superconductors; resistance; critical magnetic field ID RUSR2EU1.5CE0.5CU2O10-DELTA AB Polycrystalline ferromagnetic superconducting samples of rutheno-cuprates with chemical formula Ru1-xNbxSr2Eu1.4Ce0.6Cu2O10-delta (x = 0, 0.2, 0.4, 0.6, 0.8 and 1) were prepared by two different routes. An almost pure Ru-1222 type phase with a small amount of the Ru-2116 or Ru-1212 phases in some of the samples were determined. Randomly oriented particles in laminates form with a length and width of a few micrometers together with agglomerates were observed. Particle size distributions, average particle sizes porosity and final density depends on the processing route. Critical magnetic fields, intra- and inter-grain transition temperatures are functions of sample composition and processing route. C1 [Botello-Zubiate, M. E.; Santillan, C.; Ayala-Valenzuela, O. E.; Matute-Aquino, J. A.] Complejo Ind Chihuahua, Ctr Invest Mat Avanzados SC, Chihuahua 31109, Mexico. [Jaime, M.] Los Alamos Natl Lab, Natl High Magnet Field Lab MS E536, Los Alamos, NM 87545 USA. RP Botello-Zubiate, ME (reprint author), Complejo Ind Chihuahua, Ctr Invest Mat Avanzados SC, Miguel Cervantes 120, Chihuahua 31109, Mexico. RI Jaime, Marcelo/F-3791-2015 OI Jaime, Marcelo/0000-0001-5360-5220 NR 6 TC 1 Z9 1 U1 0 U2 0 PU SOC MEXICANA FISICA PI COYOACAN PA APARTADO POSTAL 70-348, COYOACAN 04511, MEXICO SN 0035-001X J9 REV MEX FIS JI Rev. Mex. Fis. PD MAY PY 2009 VL 55 IS 1 SU S BP 118 EP 122 PG 5 WC Physics, Multidisciplinary SC Physics GA 449JI UT WOS:000266326400029 ER PT J AU Hunt, B Pratt, E Gadagkar, V Yamashita, M Balatsky, AV Davis, JC AF Hunt, B. Pratt, E. Gadagkar, V. Yamashita, M. Balatsky, A. V. Davis, J. C. TI Evidence for a Superglass State in Solid He-4 SO SCIENCE LA English DT Article ID BOSE-EINSTEIN CONDENSATION; SUPERSOLIDITY; SUPERFLUID; CRYSTALS; HELIUM AB Although solid helium-4 (He-4) may be a supersolid, it also exhibits many phenomena unexpected in that context. We studied relaxation dynamics in the resonance frequency f(T) and dissipation D(T) of a torsional oscillator containing solid He-4. With the appearance of the "supersolid" state, the relaxation times within f(T) and D(T) began to increase rapidly together. More importantly, the relaxation processes in both D(T) and a component of f(T) exhibited a complex synchronized ultraslow evolution toward equilibrium. Analysis using a generalized rotational susceptibility revealed that, while exhibiting these apparently glassy dynamics, the phenomena were quantitatively inconsistent with a simple excitation freeze-out transition because the variation in f was far too large. One possibility is that amorphous solid He-4 represents a new form of supersolid in which dynamical excitations within the solid control the superfluid phase stiffness. C1 [Hunt, B.; Pratt, E.; Gadagkar, V.; Yamashita, M.; Davis, J. C.] Cornell Univ, Dept Phys, Atom & Solid State Phys Lab, Ithaca, NY 14853 USA. [Yamashita, M.] Kyoto Univ, Dept Phys, Kyoto 6068502, Japan. [Balatsky, A. V.] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Div T, Los Alamos, NM 87545 USA. [Davis, J. C.] Univ St Andrews, Scottish Univ Phys Alliance, Sch Phys & Astron, St Andrews KY16 9SS, Fife, Scotland. RP Davis, JC (reprint author), Cornell Univ, Dept Phys, Atom & Solid State Phys Lab, Ithaca, NY 14853 USA. EM jcdavis@ccmr.cornell.edu RI YAMASHITA, MINORU/D-6556-2011; Pratt, Ethan/E-8714-2011; Hunt, Benjamin/C-3395-2017 OI Hunt, Benjamin/0000-0002-5008-8042 FU NSF [DM-0434801, DMR-0806629]; Cornell University; Natural Sciences and Engineering Research Council of Canada; Japan Society for the Promotion of Science; U.S. Department of Energy FX We acknowledge and thank J. Beamish, M. W. H. Chan, A. Clark, A. Dorsey, M. Graf, E. Mueller, S. Nagel, M. Paalanen, R. E. Packard, J. Parpia, J. D. Reppy, A. S. Rittner, J. Saunders, J. P. Sethna, and Wm. Vinen for helpful discussions and communications. These studies were initiated under NSF grant DM-0434801 and are now partially supported under grant DMR-0806629 and by Cornell University; B.H. acknowledges support by the Natural Sciences and Engineering Research Council of Canada. M.Y. acknowledges support from the Japan Society for the Promotion of Science. Work at Los Alamos was supported by the U.S. Department of Energy. NR 32 TC 105 Z9 105 U1 1 U2 9 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD MAY 1 PY 2009 VL 324 IS 5927 BP 632 EP 636 DI 10.1126/science.1169512 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 439DW UT WOS:000265608800041 PM 19407201 ER PT J AU Shukla, AK Baeslack, WA AF Shukla, A. K. Baeslack, W. A., III TI Study of process/structure/property relationships in friction stir welded thin sheet Al-Cu-Li alloy SO SCIENCE AND TECHNOLOGY OF WELDING AND JOINING LA English DT Article DE Friction stir welding; Al-Cu-Mg; Microstructure; TEM; Thin sheet ID FOIL THICKNESS; MICROSTRUCTURE; EVOLUTION; ALUMINUM; TEM AB Microstructure evolution in friction stir welds produced in artificially aged Al-4Cu-1Li-0.36Mg-0.14Zr-0.28Ag alloy over a range of process parameters was studied using transmission electron microscopy. Process parameters did not have a major effect on the weld microstructure and mechanical properties. The stir zone exhibited an appreciable decrease in hardness relative to the unaffected base metal due to dissolution of T(1) and theta' precipitates. The heat affected zone exhibited almost complete dissolution of theta' precipitates and partial dissolution of T(1) precipitates. The effect of process conditions on T(1) precipitate density in the heat affected zone was studied and it was found that dissolution was experienced at lower tool rotation speed to traverse rate ratios, while welds produced at higher tool rotation speed to traverse rate ratios experienced both dissolution and growth of T(1) precipitates. The results obtained on this thin sheet aluminium alloy were compared to those of friction stir welds produced in thicker sections of the same alloy. C1 [Shukla, A. K.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Baeslack, W. A., III] Case Western Reserve Univ, Cleveland, OH 44106 USA. RP Shukla, AK (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. EM akshukla@lbl.gov NR 22 TC 12 Z9 14 U1 4 U2 12 PU MANEY PUBLISHING PI LEEDS PA STE 1C, JOSEPHS WELL, HANOVER WALK, LEEDS LS3 1AB, W YORKS, ENGLAND SN 1362-1718 J9 SCI TECHNOL WELD JOI JI Sci. Technol. Weld. Join. PD MAY PY 2009 VL 14 IS 4 BP 376 EP 387 DI 10.1179/136217109X412409 PG 12 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 461HT UT WOS:000267256200014 ER PT J AU Cosovic, V Talijan, N Grujic, A Stajic-Trosic, J Zak, T Lee, Z Radmilovic, V AF Cosovic, V. Talijan, N. Grujic, A. Stajic-Trosic, J. Zak, T. Lee, Z. Radmilovic, V. TI Study of Nd-Fe-B Alloys with Nonstoichiometric Nd Content in Optimal Magnetic State SO SCIENCE OF SINTERING LA English DT Article DE Rapid quenched Nd-Fe-B alloys; Nonstoichiometric Nd content; Phase composition; Grain size; Magnetic properties ID PHASE-COMPOSITION AB Characterization of two rapid-quenched Nd-Fe-B alloys with nonstoichiometric Nd content in the optimized magnetic state was carried out using the X-ray diffractometry (XRD), Fe-57 Mossbauer spectroscopic phase analysis (MS), electron microscopy (TEM), high resolution TEM (HREM) and Superconducting Quantum Interference Device (SQUID) magnetometer. The experimental results demonstrate the fundamental difference in the structure and magnetic properties of the two investigated alloys in the optimized magnetic state. The Nd-Fe-B alloy with the reduced Nd content (Nd4.5Fe77B18.5) was found to have the nanocomposite structure of Fe3B/Nd2Fe14B and partly alpha-Fe/Nd2Fe14B, with mean grain size below 30 nm. On the other side, the overstoichiometric Nd14Fe79B7 alloy has almost a monophase structure with the dominant content of the hard magnetic phase Nd2Fe14B (up to 95 wt. %) and a mean crystallite size about 60 nm, as determined by XRD and TEM analysis. The results of magnetic measurements on SQUID magnetometer also suggest the nanocomposite structure of the Nd-low alloy and nanocrystalline decoupled structure of the Nd-rich alloy after the optimal heat treatment. C1 [Cosovic, V.; Talijan, N.; Grujic, A.; Stajic-Trosic, J.] Inst Chem Technol & Met, Belgrade 11000, Serbia. [Zak, T.] Inst Phys Mat AS CR, Brno, Czech Republic. [Lee, Z.; Radmilovic, V.] Univ Calif Berkeley, Lawrence Berkeley Lab, Natl Ctr Electron Microscopy, Berkeley, CA 94720 USA. RP Talijan, N (reprint author), Inst Chem Technol & Met, Njegoseva 12, Belgrade 11000, Serbia. EM ntalijan@tmf.bg.ac.rs RI Lee, Zonghoon/G-1474-2011; Zak, Tomas/G-1454-2014 OI Lee, Zonghoon/0000-0003-3246-4072; FU Ministry of Science of the Republic of Serbia [OI 142035B]; National Center for Electron Microscopy, Lawrence Berkeley Lab; U.S. Department of Energy [DE-AC02-05CH11231] FX The presented work has been supported by the Ministry of Science of the Republic of Serbia under Project OI 142035B. The authors acknowledge support of the National Center for Electron Microscopy, Lawrence Berkeley Lab, which is supported by the U.S. Department of Energy under Contract # DE-AC02-05CH11231. NR 17 TC 0 Z9 0 U1 0 U2 5 PU INT INST SCIENCE SINTERING (I I S S) PI BELGRADE PA C/O ITN SANU, KNEZ MIHAILOVA 35/IV, PO BOX 315, 11000 BELGRADE, YUGOSLAVIA SN 0350-820X J9 SCI SINTER JI Sci. Sinter. PD MAY-AUG PY 2009 VL 41 IS 2 BP 211 EP 220 DI 10.2298/SOS0902209C PG 10 WC Materials Science, Ceramics; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 517DA UT WOS:000271592200012 ER PT J AU Dougherty, LM Gray, GT Cerreta, EK McCabe, RJ Field, RD Bingert, JF AF Dougherty, L. M. Gray, G. T., III Cerreta, E. K. McCabe, R. J. Field, R. D. Bingert, J. F. TI Rare twin linked to high-pressure phase transition in iron SO SCRIPTA MATERIALIA LA English DT Article DE Ferritic steels; Electron backscattering diffraction (EBSD); Transmission electron microscopy (TEM); Martensitic phase transformation; Dynamic phenomena ID X-RAY-DIFFRACTION; INNER-CORE; SHOCK; DEFORMATION; TRANSFORMATIONS; ALLOYS AB At approximately 13 GPa, body-centered cubic alpha-iron undergoes a fully reversible, pressure-induced phase transition into hexagonal close-packed epsilon-iron. Microstructural evidence of this phase transition has been identified in the fully reverted alpha-iron as a large number of {332}< 113 > twins found primarily as secondary twins within {112}< 111 > primary twins. The {332}< 113 > twins were produced during high-pressure shock-loading of 1018 steel at a peak pressure above the alpha-epsilon phase transition pressure. The twins were identified using electron backscattered diffraction and transmission electron microscopy. Published by Elsevier Ltd. on behalf of Acta Materialia Inc. C1 [Dougherty, L. M.; Gray, G. T., III; Cerreta, E. K.; McCabe, R. J.; Field, R. D.; Bingert, J. F.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Dougherty, LM (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87545 USA. EM lmdough@lanl.gov OI McCabe, Rodney /0000-0002-6684-7410 FU United States Department of Energy; Department of Defense (DoD) Joint Munitions Technology Development Program FX This work was funded by the United States Department of Energy and Department of Defense (DoD) Joint Munitions Technology Development Program. The authors thank C.P. Trujillo and P.A. Papin for their assistance with the experiments in this research. NR 22 TC 8 Z9 10 U1 1 U2 19 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6462 J9 SCRIPTA MATER JI Scr. Mater. PD MAY PY 2009 VL 60 IS 9 BP 772 EP 775 DI 10.1016/j.scriptamat.2009.01.014 PG 4 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 426TF UT WOS:000264730000010 ER PT J AU Won, J Valdez, JA Naito, M Ishimaru, M Sickafus, KE AF Won, Jonghan Valdez, James A. Naito, Muneyuki Ishimaru, Manabu Sickafus, Kurt E. TI Transmission electron microscopy study of an electron-beam-induced phase transformation of niobium nitride SO SCRIPTA MATERIALIA LA English DT Article DE Niobium nitride; Phase transformation; Electron irradiation; Transmission electron microscopy; Order-disorder ID ION IRRADIATION; CRYSTAL-STRUCTURE; RADIATION-DAMAGE; CERAMICS; DISORDER; DY2O3 AB Tetragonal gamma-NbN(1-x) was irradiated with 300 keV electrons at room temperature to fluences from 1.8 x 10(24)-5.4 x 10(26) e/m(2). The superlattice structure in gamma-NbN(1-x) was observed using transmission electron microscopy and found to disappear at a fluence of 5.4 x 10(26) e/m(2). During this process, displaced nitrogen atoms occupy vacant sites on the nitrogen sublattice. The final structure is a delta-phase (B1) structure. A randomized arrangement of N vacancies is responsible for the observed gamma -> delta transformation. Published by Elsevier Ltd. on behalf of Acta Materialia Inc. C1 [Won, Jonghan; Valdez, James A.; Sickafus, Kurt E.] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. [Naito, Muneyuki; Ishimaru, Manabu] Osaka Univ, Inst Sci & Ind Res, Osaka 5670047, Japan. RP Won, J (reprint author), Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. EM jhwon@lanl.gov OI won, Jonghan/0000-0002-7612-1322 FU U.S. Department of Energy (DOE), Office of Basic Sciences, Division of Materials Sciences and Engineering FX This research was supported by the U.S. Department of Energy (DOE), Office of Basic Sciences, Division of Materials Sciences and Engineering. NR 33 TC 2 Z9 2 U1 0 U2 5 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6462 J9 SCRIPTA MATER JI Scr. Mater. PD MAY PY 2009 VL 60 IS 9 BP 799 EP 802 DI 10.1016/j.scriptamat.2009.01.023 PG 4 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 426TF UT WOS:000264730000017 ER PT J AU Hulbert, DM Anders, A Andersson, J Lavernia, EJ Mukherjee, AK AF Hulbert, Dustin M. Anders, Andre Andersson, Joakim Lavernia, Enrique J. Mukherjee, Amiya K. TI A discussion on the absence of plasma in spark plasma sintering SO SCRIPTA MATERIALIA LA English DT Article DE Spark plasma sintering; Theory; Nanocrystalline materials; Ceramics; Metal and alloys ID ARC CATHODE SPOTS; SINTERING/SYNTHESIS PROCESS; FUNDAMENTAL INVESTIGATIONS; RANDOM-WALK; VACUUM; NOISE; CONSOLIDATION; GROWTH; FIELD AB Spark plasma sintering (SPS) is a remarkable method for synthesizing and consolidating a large variety of both novel and traditional materials. A number of mechanisms have been proposed to account for the enhanced sintering abilities of the SPS process. Of these mechanisms, one commonly put forth, and the one that draws the most controversy, involves the presence of momentary plasma generated between particles. This experimental study and subsequent discussion advocates the absence of plasma during SPS. (C) 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Hulbert, Dustin M.; Lavernia, Enrique J.; Mukherjee, Amiya K.] Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA. [Anders, Andre; Andersson, Joakim] Univ Calif Berkeley, Lawrence Berkeley Lab, Plasma Applicat Grp, Berkeley, CA 94720 USA. RP Mukherjee, AK (reprint author), Univ Calif Davis, Dept Chem Engn & Mat Sci, 1 Shields Ave, Davis, CA 95616 USA. EM akmukherjee@ucdavis.edu RI Andersson, Joakim/A-3017-2009; Lavernia, Enrique/I-6472-2013; Anders, Andre/B-8580-2009 OI Andersson, Joakim/0000-0003-2991-1927; Lavernia, Enrique/0000-0003-2124-8964; Anders, Andre/0000-0002-5313-6505 FU Office of Naval Research [N0001403-1-0148, N00014-07-1-0745, N00014-08-10405]; Army Research Office [W911NF-04-1-0348]; US Department of Energy [DE-AC02-05CH1123] FX This work was supported by the Office of Naval Research under Dr. Larry Kabacoff (Grants # N0001403-1-0148, # N00014-07-1-0745 and # N00014-08-10405) and the Army Research Office under Dr. Sheldon Cytron (Grant # W911NF-04-1-0348). The authors thank Phil Landenla from Ocean Optics for experimental assistance. The work by the Berkeley Lab employees was supported by the US Department of Energy (Contract # DE-AC02-05CH1123 NR 18 TC 88 Z9 91 U1 0 U2 35 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6462 J9 SCRIPTA MATER JI Scr. Mater. PD MAY PY 2009 VL 60 IS 10 BP 835 EP 838 DI 10.1016/j.scriptamat.2008.12.059 PG 4 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 432YN UT WOS:000265170400001 ER PT J AU Desai, TG Uberuaga, BP AF Desai, Tapan G. Uberuaga, Blas P. TI Stress-induced phase transformation in nanocrystalline UO2 SO SCRIPTA MATERIALIA LA English DT Article DE Heterogeneous nucleation of phase transformations; Nanocrystalline microstructure; Simulation; Fluorite ID MOLECULAR-DYNAMICS SIMULATION; AUGMENTED-WAVE METHOD; NUCLEATION; TRANSITION AB We report a stress-induced phase transformation in stoichiometric UO2 from fluorite to alpha-PbO2 structure using molecular dynamics (MD) simulations and density functional theory (DFT) calculations. MD simulations, performed on nanocrystalline microstructure under constant-stress tensile loading conditions, reveal a heterogeneous nucleation of alpha-PbO2 phase at the grain boundaries followed by the growth of this phase towards the interior of the grain. The DFT calculations confirm the existence of the alpha-PbO2 structure, showing that it is energetically favored under tensile loading conditions. (C) 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Desai, Tapan G.] Idaho Natl Lab, Dept Mat Sci & Engn, Idaho Falls, ID 83415 USA. [Uberuaga, Blas P.] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. RP Desai, TG (reprint author), Idaho Natl Lab, Dept Mat Sci & Engn, Idaho Falls, ID 83415 USA. EM tapan.desai@inl.gov FU US Department of Energy (DOE) Idaho Operations Office [DE-AC07-051D14 517V]; DOE/BES; DOE, Global Nuclear Energy Partnership; Office of Basic Energy Sciences; US DOE [DE-AC52-06NA25396] FX T.G.D. was sponsored through the INL Laboratory Directed Research and Development program under the US Department of Energy (DOE) Idaho Operations Office Contract No. DE-AC07-051D14 517V, as well as the DOE/BES funded Computational Materials Science Network (CMSN) project on "Multiscale simulation of thermo-mechanical processes irradiated fission-reactor materials". B.P.U. acknowledges support from the DOE, Global Nuclear Energy Partnership and the Office of Basic Energy Sciences. Los Alamos National Laboratory is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the US DOE under Contract DE-AC52-06NA25396. We are also grateful for discussions with Dieter Wolf (INL), Paul Millett (INL), Richard Hoagland (LANL) and Kurt Sickafus (LANL). NR 25 TC 14 Z9 14 U1 0 U2 14 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6462 J9 SCRIPTA MATER JI Scr. Mater. PD MAY PY 2009 VL 60 IS 10 BP 878 EP 881 DI 10.1016/j.scriptamat.2009.01.041 PG 4 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 432YN UT WOS:000265170400012 ER PT J AU Qu, J Blau, PJ Howe, JY Meyer, HM AF Qu, Jun Blau, Peter J. Howe, Jane Y. Meyer, Harry M., III TI Oxygen diffusion enables anti-wear boundary film formation on titanium surfaces in zinc-dialkyl-dithiophosphate (ZDDP)-containing lubricants SO SCRIPTA MATERIALIA LA English DT Article DE Titanium alloys; Wear; Oxygen diffusion; ZDDP; Boundary film ID IRON-OXIDE; FRICTION; ALLOYS; WEAR; TRIBOFILM; ZDDP AB This paper reports a wear reduction by up to six orders of magnitude for Ti-6Al-4V alloy when treated by an oxygen diffusion (OD) process and subsequently tested in a zinc-dialkyl-dithiophosphate (ZDDP)-containing lubricant. In addition to case hardening, it is discovered that OD enables the formation of an anti-wear boundary film on the titanium surface. Transmission electron microscopy and surface chemical analyses revealed that this boundary film has a two-layer structure comprising an amorphous oxide interlayer and a ZDDP-based top film with complex compounds. (C) 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Qu, Jun; Blau, Peter J.; Howe, Jane Y.; Meyer, Harry M., III] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Qu, J (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, 1 Bethel Valley Rd,POB 2008,MS-6063, Oak Ridge, TN 37831 USA. EM qujn@ornl.gov RI Howe, Jane/G-2890-2011; OI Qu, Jun/0000-0001-9466-3179 FU Heavy Vehicle Propulsion Materials Program; High Temperature Materials Laboratory User Program; DOE/EERE Office of Vehicle Technologies [DE-AC05-00OR22725]; UT-Battelle, LLC; SHaRE User Facility; Division of Scientific User Facilities, DOE Office of Basic Energy Sciences FX The authors thank L.R. Walker and Dr. H. Xu from ORNL for microprobe elemental mapping and hardness measurements, respectively. Research was sponsored by the Heavy Vehicle Propulsion Materials Program and the High Temperature Materials Laboratory User Program, DOE/EERE Office of Vehicle Technologies, under Contract DE-AC05-00OR22725 with UT-Battelle, LLC. A portion of this research was supported by the SHaRE User Facility, which is sponsored by the Division of Scientific User Facilities, DOE Office of Basic Energy Sciences. NR 17 TC 16 Z9 17 U1 4 U2 12 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6462 J9 SCRIPTA MATER JI Scr. Mater. PD MAY PY 2009 VL 60 IS 10 BP 886 EP 889 DI 10.1016/j.scriptamat.2009.02.009 PG 4 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 432YN UT WOS:000265170400014 ER PT J AU Clarke, AJ Field, RD Dickerson, PO McCabe, RJ Swadener, JG Hackenberg, RE Thoma, DJ AF Clarke, A. J. Field, R. D. Dickerson, P. O. McCabe, R. J. Swadener, J. G. Hackenberg, R. E. Thoma, D. J. TI A microcompression study of shape-memory deformation in U-13 at.% Nb SO SCRIPTA MATERIALIA LA English DT Article DE Shape memory alloys (SMAs); Microcompression testing; Electron backscattering diffraction (EBSD); Transmission electron microscopy (TEM) ID ALLOYS; PLASTICITY; URANIUM AB Microcompression specimens, 10-15 mu m in diameter by 20-30 mu m in height, were produced from individual parent grains in a polycrystalline U-13 at.%Nb shape-memory alloy using the focused ion beam technique. The specimens were tested in a nanoindentation instrument with a flat diamond tip to investigate stress-strain behavior as a function of crystallographic orientation. The results are in qualitative agreement with a single-crystal accommodation strain (Bain strain) model of the shape-memory effect for this alloy. (C) 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Clarke, A. J.; Field, R. D.; Dickerson, P. O.; McCabe, R. J.; Swadener, J. G.; Hackenberg, R. E.; Thoma, D. J.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Field, RD (reprint author), Los Alamos Natl Lab, Mail Stop G 770, Los Alamos, NM 87545 USA. EM rdfield@lanl.gov OI Hackenberg, Robert/0000-0002-0380-5723; McCabe, Rodney /0000-0002-6684-7410; Swadener, John G/0000-0001-5493-3461 FU US Department of Energy [DE-AC52-06NA25396] FX The authors wish to thank Ann Marie Kelly for assistance with metallographic preparation of the specimens, Pallas Papin for electron microprobe analysis and Martin Koby for the ICP-MS analysis. Larry Hults and Tim Tucker are also acknowledged for their assistance with heat treatments of the specimens. This work was performed under contract number DE-AC52-06NA25396 with the US Department of Energy. NR 15 TC 9 Z9 10 U1 1 U2 17 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6462 J9 SCRIPTA MATER JI Scr. Mater. PD MAY PY 2009 VL 60 IS 10 BP 890 EP 892 DI 10.1016/j.scriptamat.2009.02.003 PG 3 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 432YN UT WOS:000265170400015 ER PT J AU Chilton, L Walsh, S AF Chilton, Lawrence Walsh, Stephen TI Detection of Gaseous Plumes using Basis Vectors SO SENSORS LA English DT Review DE Plumes; detection; LWIR; basis vectors; generalized least squares ID HYPERSPECTRAL IMAGERY AB Detecting and identifying weak gaseous plumes using thermal imaging data is complicated by many factors. There are several methods currently being used to detect plumes. They can be grouped into two categories: those that use a chemical spectral library and those that don't. The approaches that use chemical libraries include physics-based least squares methods (matched filter). They are "optimal" only if the plume chemical is actually in the search library but risk missing chemicals not in the library. The methods that don't use a chemical spectral library are based on a statistical or data analytical transformation applied to the data. These include principle components, independent components, entropy, Fourier transform, and others. These methods do not explicitly take advantage of the physics of the signal formulation process and therefore don't exploit all available information in the data. This paper describes generalized least squares detection using gas spectra, presents a new detection method using basis vectors, and compares detection images resulting from applying both methods to synthetic hyperspectral data. C1 [Chilton, Lawrence; Walsh, Stephen] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Chilton, L (reprint author), Pacific NW Natl Lab, POB 999, Richland, WA 99352 USA. EM lawrence.chilton@pnl.gov; stephen.walsh@pnl.gov OI Walsh, Stephen/0000-0002-0505-648X FU US Department of Energy [DAC05-76RL01830] FX This work was supported by the United States National Nuclear Security Administration's Office of Nonproliferation Research and Development and conducted at the US Department of Energy's Pacific Northwest National Laboratory. The laboratory is operated by Battelle Memorial Institute for the US Department of Energy under Contract DAC05-76RL01830. NR 13 TC 2 Z9 2 U1 1 U2 2 PU MOLECULAR DIVERSITY PRESERVATION INTERNATIONAL-MDPI PI BASEL PA KANDERERSTRASSE 25, CH-4057 BASEL, SWITZERLAND SN 1424-8220 J9 SENSORS-BASEL JI Sensors PD MAY PY 2009 VL 9 IS 5 BP 3205 EP 3217 DI 10.3390/s90503205 PG 13 WC Chemistry, Analytical; Electrochemistry; Instruments & Instrumentation SC Chemistry; Electrochemistry; Instruments & Instrumentation GA 450DL UT WOS:000266381100003 PM 22412306 ER PT J AU McFarlane, KJ Schoenholtz, SH Powers, RF AF McFarlane, Karis J. Schoenholtz, Stephen H. Powers, Robert F. TI Plantation Management Intensity Affects Belowground Carbon and Nitrogen Storage in Northern California SO SOIL SCIENCE SOCIETY OF AMERICA JOURNAL LA English DT Article ID LOBLOLLY-PINE PLANTATION; DOUGLAS-FIR STANDS; REPEATED UREA FERTILIZATION; ORGANIC-MATTER FRACTIONS; FINE-ROOT DYNAMICS; SOIL CARBON; PONDEROSA PINE; FOREST-SOIL; NUTRIENT AVAILABILITY; LITTER DECOMPOSITION AB Belowground C and N storage is important in maintaining forest productivity and to CO(2) sequestration. How these pools respond to management is poorly understood. We investigated effects of repeated applications of complete fertilizer and competing vegetation control with herbicides on C and N storage in forest-floor, fine-root, and mineral-soil C and N pools to 1-m depth at three Pinus ponderosa P Lawson & C. Lawson var. ponderosa plantations across a site quality gradient in northern California. Belowground C pools without treatment were 66, 153, and 199 Mg C ha(-1) for the low-, intermediate-, and high-quality sites, respectively, and N pools were 5.1, 6.7, and 6.5 Mg N ha(-1), respectively. Treatments increased tree-bole volume at 20 yr as much as 400%, while changes in C and N pools belowground were less dramatic. Herbicide treatment increased forest-floor C pools 35% at the poorer quality site. Fertilization increased forest-floor C and N storage 46 to 106% at all sites. Fertilization decreased fine-root C pools at 0 to 0.3 m at the most productive site 43% and increased this N pool 43% at the least productive site, but did not influence fine-root pools to 1 m. Fertilization increased mineral-soil C pools on lower quality sites, resulting in 12 to 57% more belowground C storage. At the intermediate site, fertilization increased total belowground N storage 12%. Results of this study suggest that the major sequestration mechanism up to this point in stand development is through gains in tree biomass rather than storage in fine roots and soil belowground. C1 [McFarlane, Karis J.] Oregon State Univ, Dep Forest Eng Resources & Management, Corvallis, OR 97330 USA. [Schoenholtz, Stephen H.] Virginia Polytech Inst & State Univ, Virginia Water Resources Res Ctr, Blacksburg, VA 24061 USA. [Powers, Robert F.] US Forest Serv, USDA, Pacific SW Res Stn, Redding, CA 96002 USA. RP McFarlane, KJ (reprint author), Lawrence Livermore Natl Lab, Ctr Accelerator Mass Spectrometry, POB 808,L-397, Livermore, CA 94551 USA. EM mcfarlane3@llnl.gov OI McFarlane, Karis/0000-0001-6390-7863 FU U.S. Department of Energy by University of California, Lawrence Livermore National Laboratory [W-7405-Eng-48] FX We thank Dave Young and Bert Spear for their assistance in the field. Chris Gerig and Erin Heim also helped with fieldwork and processed samples. David Myrold, Steve Perakis, and Glen Murphy edited early versions of this manuscript, and Alan Stangenberger supplied trs with unpublished, archived soil bulk density data from the University of California, Berkeley. Three anonymous reviewers provided comments and suggestions that greatly improved this manuscript. 'l'his study was supported by the National Fire Plan, the Sierra-Cascade Intensive Forest Management Research Cooperative, and Sierra Pacific Industries. This work was performed under the auspices of the U.S. Department of Energy by University of California, Lawrence Livermore National Laboratory under Contract W-7405-Eng-48. The use of trade, firm, or corporation names in this publication is for the convenience of the reader. Such use does not constitute an official endorsement or approval by the U.S. Government of any product or service to the exclusion of others that may be suitable. NR 79 TC 15 Z9 15 U1 0 U2 10 PU SOIL SCI SOC AMER PI MADISON PA 677 SOUTH SEGOE ROAD, MADISON, WI 53711 USA SN 0361-5995 J9 SOIL SCI SOC AM J JI Soil Sci. Soc. Am. J. PD MAY-JUN PY 2009 VL 73 IS 3 BP 1020 EP 1032 DI 10.2136/sssaj2008.0158 PG 13 WC Soil Science SC Agriculture GA 439IX UT WOS:000265621900036 ER PT J AU Ahrenkiel, RK Johnston, SW AF Ahrenkiel, R. K. Johnston, S. W. TI An optical technique for measuring surface recombination velocity SO SOLAR ENERGY MATERIALS AND SOLAR CELLS LA English DT Article DE Silicon photovoltaics; Recombination velocity; Carrier lifetime; Characterization ID SEMI-INFINITE SEMICONDUCTOR; CARRIER LIFETIME; BULK LIFETIME AB The surface recombination velocity is a critical parameter in silicon device applications including solar cells. In this work, we developed and applied a contactless optical/radio-frequency technique to provide quick, contactless measurement of the Surface recombination velocity. The basic technique is to probe the excess carrier lifetime in the surface and bulk regions of a semiconductor wafer by varying the excitation wavelength. Here. we have derived a theoretical functional model that describes the experimental photoconductive transient. A curve fitting procedure provides a determination for both the bulk recombination lifetime and the surface recombination velocity. Published by Elsevier B.V. C1 [Ahrenkiel, R. K.] Colorado Sch Mines Met & Mat Engn, Golden, CO 80401 USA. [Ahrenkiel, R. K.; Johnston, S. W.] Natl Renewable Energy Lab, Golden, CO USA. RP Ahrenkiel, RK (reprint author), Colorado Sch Mines Met & Mat Engn, 1500 Illinois St,Hill Hall,Room 309, Golden, CO 80401 USA. EM richard_ahrenkiel@nrel.gov FU US DOE [DE-AC36-99-G010337] FX This work was supported by US DOE Contract no. DE-AC36-99-G010337. NR 12 TC 19 Z9 19 U1 0 U2 14 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0927-0248 J9 SOL ENERG MAT SOL C JI Sol. Energy Mater. Sol. Cells PD MAY PY 2009 VL 93 IS 5 BP 645 EP 649 DI 10.1016/j.solmat.2008.12.028 PG 5 WC Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied SC Energy & Fuels; Materials Science; Physics GA 436DF UT WOS:000265392100018 ER PT J AU Lavraud, B Gosling, JT Rouillard, AP Fedorov, A Opitz, A Sauvaud, JA Foullon, C Dandouras, I Genot, V Jacquey, C Louarn, P Mazelle, C Penou, E Phan, TD Larson, DE Luhmann, JG Schroeder, P Skoug, RM Steinberg, JT Russell, CT AF Lavraud, B. Gosling, J. T. Rouillard, A. P. Fedorov, A. Opitz, A. Sauvaud, J. -A. Foullon, C. Dandouras, I. Genot, V. Jacquey, C. Louarn, P. Mazelle, C. Penou, E. Phan, T. D. Larson, D. E. Luhmann, J. G. Schroeder, P. Skoug, R. M. Steinberg, J. T. Russell, C. T. TI Observation of a Complex Solar Wind Reconnection Exhaust from Spacecraft Separated by over 1800 R-E SO SOLAR PHYSICS LA English DT Article DE Magnetic reconnection; Solar wind; Suprathermal electrons; Strahl; Halo; Heliospheric current sheet; Magnetic topology ID INTERPLANETARY MAGNETIC-FIELD; DAYSIDE MAGNETOPAUSE; EARTHS MAGNETOPAUSE; CURRENT SHEET; PITCH-ANGLE; ELECTRON; EVENTS; PLASMA; SIGNATURES; TOPOLOGY AB We analyze Wind, ACE, and STEREO (ST-A and ST-B) plasma and magnetic field data in the vicinity of the heliospheric current sheet (HCS) crossed by all spacecraft between 22:15 UT on 31 March and 01:25 UT on 1 April 2007 corresponding to its observation at ST-A and ST-B, which were separated by over 1800 R (E) (or over 1200 R (E) across the Sun -aEuro parts per thousand Earth line). Although only Wind and ACE provided good ion flow data in accord with a solar wind magnetic reconnection exhaust at the HCS, the magnetic field bifurcation typical of such exhausts was clearly observed at all spacecraft. They also all observed unambiguous strahl mixing within the exhaust, consistent with the sunward flow deflection observed at Wind and ACE and thus with the formation of closed magnetic field lines within the exhaust with both ends attached to the Sun. The strong dawnward flow deflection in the exhaust is consistent with the exhaust and X-line orientations obtained from minimum variance analysis at each spacecraft so that the X-line is almost along the GSE Z-axis and duskward of all the spacecraft. The observation of strahl mixing in extended and intermittent layers outside the exhaust by ST-A and ST-B is consistent with the formation of electron separatrix layers surrounding the exhaust. This event also provides further evidence that balanced parallel and antiparallel suprathermal electron fluxes are not a necessary condition for identification of closed field lines in the solar wind. In the present case the origin of the imbalance simply is the mixing of strahls of substantially different strengths from a different solar source each side of the HCS. The inferred exhaust orientations and distances of each spacecraft relative to the X-line show that the exhaust was likely nonplanar, following the Parker spiral orientation. Finally, the separatrix layers and exhausts properties at each spacecraft suggest that the magnetic reconnection X-line location and/or reconnection rate were variable in both space and time at such large scales. C1 [Lavraud, B.; Fedorov, A.; Opitz, A.; Sauvaud, J. -A.; Dandouras, I.; Genot, V.; Jacquey, C.; Louarn, P.; Mazelle, C.; Penou, E.] Univ Toulouse UPS, Ctr Etud Spatiale Rayonnements, F-31028 Toulouse 4, France. [Lavraud, B.; Fedorov, A.; Opitz, A.; Sauvaud, J. -A.; Dandouras, I.; Genot, V.; Jacquey, C.; Louarn, P.; Mazelle, C.; Penou, E.] CNRS, UMR 5187, Toulouse, France. [Gosling, J. T.] Univ Colorado, Atmospher & Space Phys Lab, Boulder, CO 80309 USA. [Rouillard, A. P.] Univ Southampton, Sch Phys & Astron, Space Environm Phys Grp, Southampton, Hants, England. [Foullon, C.] Univ Coll London, Mullard Space Sci Lab, Dorking RH5 6NT, Surrey, England. [Phan, T. D.; Larson, D. E.; Luhmann, J. G.; Schroeder, P.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Skoug, R. M.; Steinberg, J. T.] Los Alamos Natl Lab, Los Alamos, NM USA. [Russell, C. T.] Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Los Angeles, CA 90024 USA. RP Lavraud, B (reprint author), Univ Toulouse UPS, Ctr Etud Spatiale Rayonnements, 9 Ave Colonel Roche, F-31028 Toulouse 4, France. EM Benoit.Lavraud@cesr.fr RI Foullon, Claire/A-3539-2009; Russell, Christopher/E-7745-2012 OI Dandouras, Iannis/0000-0002-7121-1118; Foullon, Claire/0000-0002-2532-9684; Russell, Christopher/0000-0003-1639-8298 FU UK Science and Technology Facilities Council (STFC) FX The authors are grateful to the STEREO, ACE, and Wind instrument teams and the CDAWeb for providing part of the data. C. F. acknowledges financial support from the UK Science and Technology Facilities Council (STFC) on the MSSL Rolling Grant. NR 40 TC 19 Z9 20 U1 0 U2 3 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0038-0938 J9 SOL PHYS JI Sol. Phys. PD MAY PY 2009 VL 256 IS 1-2 BP 379 EP 392 DI 10.1007/s11207-009-9341-x PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 438OC UT WOS:000265563900022 ER PT J AU Pierrard, V Goldstein, J Andre, N Jordanova, VK Kotova, GA Lemaire, JF Liemohn, MW Matsui, H AF Pierrard, Viviane Goldstein, Jerry Andre, Nicolas Jordanova, Vania K. Kotova, Galina A. Lemaire, Joseph F. Liemohn, Mike W. Matsui, Hiroshi TI Recent Progress in Physics-Based Models of the Plasmasphere SO SPACE SCIENCE REVIEWS LA English DT Review DE Plasmasphere; Models; Fluid; Kinetic; CLUSTER; IMAGE ID WAVE-PARTICLE INTERACTIONS; MAGNETOSPHERIC ELECTRIC-FIELDS; LIGHT-ION TROUGH; ASYMMETRIC RING CURRENT; COLD DENSE-PLASMA; H+ POLAR WIND; MAGNETIC-FIELD; OUTER MAGNETOSPHERE; TRANSPORT-EQUATIONS; LATITUDE IONOSPHERE AB We describe recent progress in physics-based models of the plasmasphere using the fluid and the kinetic approaches. Global modeling of the dynamics and influence of the plasmasphere is presented. Results from global plasmasphere simulations are used to understand and quantify (i) the electric potential pattern and evolution during geomagnetic storms, and (ii) the influence of the plasmasphere on the excitation of electromagnetic ion cyclotron (EMIC) waves and precipitation of energetic ions in the inner magnetosphere. The interactions of the plasmasphere with the ionosphere and the other regions of the magnetosphere are pointed out. We show the results of simulations for the formation of the plasmapause and discuss the influence of plasmaspheric wind and of ultra low frequency (ULF) waves for transport of plasmaspheric material. Theoretical models used to describe the electric field and plasma distribution in the plasmasphere are presented. Model predictions are compared to recent Cluster and Image observations, but also to results of earlier models and satellite observations. C1 [Pierrard, Viviane; Lemaire, Joseph F.] Belgian Inst Space Aeron IASB BIRA, B-1180 Brussels, Belgium. [Pierrard, Viviane; Lemaire, Joseph F.] CSR, Louvain, Belgium. [Goldstein, Jerry] SW Res Inst, Space Sci & Engn Div, San Antonio, TX USA. [Andre, Nicolas] ESTEC ESA, RSSD, Noordwijk, Netherlands. [Jordanova, Vania K.] Los Alamos Natl Lab, Los Alamos, NM USA. [Kotova, Galina A.] Russian Acad Sci, Space Res Inst RSSI, Moscow, Russia. [Liemohn, Mike W.] Univ Michigan, Dept Atmospher Ocean & Space Sci, Ann Arbor, MI 48109 USA. [Matsui, Hiroshi] Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA. RP Pierrard, V (reprint author), Belgian Inst Space Aeron IASB BIRA, 3 Ave Circulaire, B-1180 Brussels, Belgium. EM viviane.pierrard@oma.be; jgoldstein@swri.edu; nandre@rssd.esa.int; vania@lanl.gov; kotova@iki.rssi.ru; lemaire@astr.ucl.ac.be; liemohn@umich.edu; hiroshi.matsui@unh.edu RI Liemohn, Michael/H-8703-2012; OI Liemohn, Michael/0000-0002-7039-2631; Pierrard, Viviane/0000-0001-5014-7682; Jordanova, Vania/0000-0003-0475-8743 NR 190 TC 22 Z9 22 U1 0 U2 4 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0038-6308 J9 SPACE SCI REV JI Space Sci. Rev. PD MAY PY 2009 VL 145 IS 1-2 BP 193 EP 229 DI 10.1007/s11214-008-9480-7 PG 37 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 457FT UT WOS:000266914600007 ER PT J AU Williams, PT AF Williams, Paul T. TI Reduction in Incident Stroke Risk With Vigorous Physical Activity Evidence From 7.7-Year Follow-Up of the National Runners' Health Study SO STROKE LA English DT Article DE physical activity; prevention; cerebrovascular disease ID ASSOCIATION; EXERCISE AB Background and Purpose-The purpose of this study was to assess the dose-response relationship between vigorous physical activity (running distance, km/d) and the participant-reported physician-diagnosed stroke. Methods-Age-adjusted survival analysis of 29 279 men and 12 123 women followed prospectively for 7.7 years. Results-One hundred men and 19 women reported incident strokes. Per km/d run, the age-and smoking-adjusted risk for stroke decreased 12% in men (P=0.0007), and 11% in men and women combined (P=0.001), which remained significant when further adjusted for baseline diabetes, hypercholesterolemia, hypertension, and BMI (8% and 7% reduction per km/d run, respectively, P=0.03). Men and women who ran >= 2 km/d (ie, exceeded the recommended AHA/CDC and NIH guideline activity level) had significantly lower risk than those who ran less (P=0.05), and those who ran >= 4 km/d had significantly lower risk than those who ran 2 to 3.9 km/d (P=0.02). Men and women who ran >= 8 km/d were at 60% lower risk than those who ran >= 2 km/d (P=0.002). Conclusions-The risk for incident stroke is substantially reduced in those who exceed the guideline physical activity level, which cannot be attributed to less hypertension, diabetes, hypercholesterolemia, or body weight. (Stroke. 2009; 40: 1921-1923.) C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Donner Lab, Div Life Sci, Berkeley, CA 94720 USA. RP Williams, PT (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Donner Lab, Div Life Sci, Berkeley, CA 94720 USA. EM ptwilliams@lbl.gov FU Institute of Aging [AG032004]; Institute of Diabetes and Digestive and Kidney Diseases of the National Institutes of Health [DK-066738]; Ernest Orlando Lawrence Berkeley National Laboratory [DE-AC03-76SF00098] FX This research was supported in part by grants AG032004 from the Institute of Aging, and DK-066738 from the Institute of Diabetes and Digestive and Kidney Diseases of the National Institutes of Health and was conducted at the Ernest Orlando Lawrence Berkeley National Laboratory (Department of Energy DE-AC03-76SF00098 to the University of California). NR 6 TC 26 Z9 27 U1 0 U2 4 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA SN 0039-2499 J9 STROKE JI Stroke PD MAY PY 2009 VL 40 IS 5 BP 1921 EP 1923 DI 10.1161/STROKEAHA.108.535427 PG 3 WC Clinical Neurology; Peripheral Vascular Disease SC Neurosciences & Neurology; Cardiovascular System & Cardiology GA 438UB UT WOS:000265579800063 PM 19299640 ER PT J AU Nguyen, DN Grilli, F Ashworth, SP Willis, JO AF Nguyen, Doan N. Grilli, Francesco Ashworth, Stephen P. Willis, Jeffrey O. TI AC loss study of antiparallel connected YBCO coated conductors SO SUPERCONDUCTOR SCIENCE & TECHNOLOGY LA English DT Article ID FAULT CURRENT LIMITER; TRANSPORT CURRENT LOSSES; MAGNETIC-FIELDS; HTS TAPES; SUPERCONDUCTORS; SUBSTRATE; COILS AB Some applications of high temperature superconducting conductors require a non-inductive winding, which may be constructed from antiparallel connected YBCO (yttrium barium copper oxide) tapes. In the case of AC applications, this antiparallel winding changes the AC losses from that of an isolated conductor. This study focuses on the effect of the spatial separation and misalignment between conductors on their AC loss behavior for YBCO conductors on both rolling assisted biaxially textured substrate (RABiTS) and ion beam assisted deposition templates in an effort to fully understand the behavior of these conductors in real world applications. For RABiTS samples, the study was carried out for all three possible configurations (the so-called back-to-back, front-to-front and same-way configurations) to clarify the effect of the ferromagnetic substrate on the AC loss behavior in these conductor configurations. Numerical simulations were also employed in some cases to compare with and elucidate experimental observations. C1 [Nguyen, Doan N.; Ashworth, Stephen P.; Willis, Jeffrey O.] Los Alamos Natl Lab, Superconduct Technol Ctr, Los Alamos, NM 87545 USA. [Grilli, Francesco] Ecole Polytech, Montreal, PQ H3C 3A7, Canada. [Grilli, Francesco] Forschungszentrum Karlsruhe, ITP, Karlsruhe, Germany. RP Nguyen, DN (reprint author), Los Alamos Natl Lab, Superconduct Technol Ctr, POB 1663, Los Alamos, NM 87545 USA. EM doan@lanl.gov RI Nguyen, Doan/F-3148-2010 FU US Department of Energy (DoE); Mathematics of Information Technology and Complex System (MITACS) network (Canada) FX The authors wish to thank SuperPower and American Superconductor Corporation for providing high-performance coated conductors for these measurements. This work was supported mainly by the US Department of Energy (DoE) and partially by Mathematics of Information Technology and Complex System (MITACS) network (Canada). NR 27 TC 29 Z9 29 U1 1 U2 11 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-2048 J9 SUPERCOND SCI TECH JI Supercond. Sci. Technol. PD MAY PY 2009 VL 22 IS 5 AR 055014 DI 10.1088/0953-2048/22/5/055014 PG 9 WC Physics, Applied; Physics, Condensed Matter SC Physics GA 435NK UT WOS:000265350400015 ER PT J AU Hamilton, JC Wolfer, WG AF Hamilton, J. C. Wolfer, W. G. TI Theories of surface elasticity for nanoscale objects SO SURFACE SCIENCE LA English DT Article DE Surface stress; Nanostructures; Surface elasticity; Semi-empirical models; Model calculations ID STRESS; RECONSTRUCTIONS; INTERFACE; CRYSTALS; METALS; STRAIN; FILMS; MODEL AB The emergence of nanotechnology has driven recent interest in systems having surface atoms as a significant fraction of all atoms present, in particular nano-sheets (ultra-thin slabs), nano-wires, and nano-particles. In these systems, the bulk (i.e. non-surface region or interior) is typically strained in response to the stress of the surface. This elastic strain of the bulk in turn changes the surface lattice constants. Since the bulk and the surface are coupled, the problem must be solved self-consistently. Solving this problem requires a quantitative model of the surface elastic properties which are different from the bulk. In this paper we consider various models that have been proposed for surface elasticity. Our goal is to elucidate the relationship between two contrasting approaches: (1) the Shuttleworth equation which defines a surface stress based on the strain derivative of the surface energy and (2) the Gurtin-Murdoch (GM) theory which considers the surface layer as a membrane with residual strain and with elastic constants different from the bulk. The GM theory is analogous to the 2-D Frenkel-Kontorova (FK) model and can be used to obtain quantitative parameters for the FK model. We present an embedded atom method calculation of the surface elastic constants of Cu(111) using the GM theory with the surface represented by a membrane one atomic layer thick. This quantitative approach describes the elastic properties of surfaces in a physically appealing way. just as the bulk elastic constants provide direct information regarding the stress/strain relationship in a bulk material, the surface elastic constants provide similar information for a surface monolayer. This theory will allow elasticity analysis and atomistic calculations of properties of nano-scale objects. (C) 2009 Elsevier B.V. All rights reserved. C1 [Hamilton, J. C.] Sandia Natl Labs, Livermore, CA 94550 USA. [Wolfer, W. G.] Ktech Corp Inc, Albuquerque, NM 87185 USA. RP Hamilton, JC (reprint author), Sandia Natl Labs, MS 9161, Livermore, CA 94550 USA. EM jchamil@sandia.gov FU US Department of Energy, Basic Energy Sciences, Division of Materials Science [DE-AC04-94AL85000] FX We wish to acknowledge helpful discussions with N.C. Bartelt and K.F. McCarty. This work was supported by the US Department of Energy, Basic Energy Sciences, Division of Materials Science, under Contract No. DE-AC04-94AL85000. NR 21 TC 13 Z9 14 U1 1 U2 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0039-6028 J9 SURF SCI JI Surf. Sci. PD MAY 1 PY 2009 VL 603 IS 9 BP 1284 EP 1291 DI 10.1016/j.susc.2009.03.017 PG 8 WC Chemistry, Physical; Physics, Condensed Matter SC Chemistry; Physics GA 453KZ UT WOS:000266610700020 ER PT J AU Zhou, QL Birkholzer, JT Tsang, CF AF Zhou, Quanlin Birkholzer, Jens T. Tsang, Chin-Fu TI A Semi-Analytical Solution for Large-Scale Injection-Induced Pressure Perturbation and Leakage in a Laterally Bounded Aquifer-Aquitard System SO TRANSPORT IN POROUS MEDIA LA English DT Article DE Analytical solution; Pressure perturbation; Leakage; Groundwater flow; Pumping test ID PUMPING-INDUCED LEAKAGE; NUMERICAL INVERSION; LAPLACE TRANSFORMS; WELL; DISCHARGE; STORAGE; FLOW AB A number of (semi-)analytical solutions are available to drawdown analysis and leakage estimation of shallow aquifer-aquitard systems. These solutions assume that the systems are laterally infinite. When a large-scale pumping from (or injection into) an aquifer-aquitard system of lower specific storativity occurs, induced pressure perturbation (or hydraulic head drawdown/rise) may reach the lateral boundary of the aquifer. We developed semi-analytical solutions to address the induced pressure perturbation and vertical leakage in a "laterally bounded" system consisting of an aquifer and an overlying/underlying aquitard. A one-dimensional radial flow equation for the aquifer was coupled with a one-dimensional vertical flow equation for the aquitard, with a no-flow condition imposed on the outer radial boundary. Analytical solutions were obtained for (1) the Laplace-transform hydraulic head drawdown/rise in the aquifer and in the aquitard, (2) the Laplace-transform rate and volume of leakage through the aquifer-aquitard interface integrated up to an arbitrary radial distance, (3) the transformed total leakage rate and volume for the entire interface, and (4) the transformed horizontal flux at any radius. The total leakage rate and volume depend only on the hydrogeologic properties and thicknesses of the aquifer and aquitard, as well as the duration of pumping or injection. It was proven that the total leakage rate and volume are independent of the aquifer's radial extent and wellbore radius. The derived analytical solutions for bounded systems are the generalized solutions of infinite systems. Laplace-transform solutions were numerically inverted to obtain the hydraulic head drawdown/rise, leakage rate, leakage volume, and horizontal flux for given hydrogeologic and geometric conditions of the aquifer-aquitard system, as well as injection/pumping scenarios. Application to a large-scale injection-and-storage problem in a bounded system was demonstrated. C1 [Zhou, Quanlin; Birkholzer, Jens T.; Tsang, Chin-Fu] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Zhou, QL (reprint author), 1 Cyclotron Rd, Berkeley, MS USA. EM qzhou@lbl.gov RI Zhou, Quanlin/B-2455-2009; Birkholzer, Jens/C-6783-2011 OI Zhou, Quanlin/0000-0001-6780-7536; Birkholzer, Jens/0000-0002-7989-1912 FU Lawrence Berkeley National Laboratory (LBNL) [DE-AC02-05CH11231] FX The authors wish to thank George Moridis at Lawrence Berkeley National Laboratory (LBNL) for his careful internal review of the manuscript. Thanks are also due to two anonymous reviewers for their constructive suggestions for improving the quality of the manuscript. This work was funded by the Assistant Secretary for Fossil Energy, Office of Sequestration, Hydrogen, and Clean Coal Fuels, National Energy Technology Laboratory, of the U. S. Department of Energy, and by Lawrence Berkeley National Laboratory under Contract No. DE-AC02-05CH11231. NR 27 TC 25 Z9 25 U1 0 U2 12 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0169-3913 J9 TRANSPORT POROUS MED JI Transp. Porous Media PD MAY PY 2009 VL 78 IS 1 BP 127 EP 148 DI 10.1007/s11242-008-9290-0 PG 22 WC Engineering, Chemical SC Engineering GA 430EZ UT WOS:000264972900007 ER PT J AU Ahmed, A Bahadur, S Russell, AM Cook, BA AF Ahmed, A. Bahadur, S. Russell, A. M. Cook, B. A. TI Belt abrasion resistance and cutting tool studies on new ultra-hard boride materials SO TRIBOLOGY INTERNATIONAL LA English DT Article DE Boride composites; Abrasive wear; Cutting tool wear ID SILICON-NITRIDE; STRENGTH; CERAMICS AB Composites of AlMgB(14) with 0, 30, and 70 wt% of TiB(2) were prepared by mechanical alloying and hot pressing. The composites' belt abrasion resistance and cutting tool performance were measured by gravimetric analysis of material removal at varying loads and cutting speeds. AlMgB(14)-70 wt% TiB(2) composites had high hardness and fracture toughness and the highest abrasive resistance of the three compositions. Cutting tool performance of AlMgB(14)-70 wt% TiB(2) showed low wear due to chipping and little reaction with the Ti-6Al-4V work-piece. Subsurface damage and adhesion of the work-piece onto the tool material were gauged by SEM. (C) 2008 Elsevier Ltd. All rights reserved. C1 [Bahadur, S.] Iowa State Univ, Dept Mech Engn, Ames, IA 50011 USA. [Ahmed, A.] Godrej Castlemaine, Symantec Inc, Pune 411001, Maharashtra, India. [Russell, A. M.; Cook, B. A.] Iowa State Univ, Ames Lab, US DOE, Ames, IA 50011 USA. [Russell, A. M.] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. RP Bahadur, S (reprint author), Iowa State Univ, Dept Mech Engn, 106 Nucl Engn Bldg, Ames, IA 50011 USA. EM bahadur@iastate.edu OI Russell, Alan/0000-0001-5264-0104 FU US National Science Foundation [CMS-0307094]; US Department of Energy [W-7405-Eng-82] FX The support for this work was provided by the US National Science Foundation under Grant no. CMS-0307094. The material processing and SEM studies were performed at Ames Laboratory under Contract no., W-7405-Eng-82 with the US Department of Energy. The authors thank Joel Harringa for his guidance on material processing and analysis, Justin Peters for his help with the preparation of specimens and SEM work, and Paul Dreher of TIMET for supplying the Ti-6Al-4V turning work-piece. NR 16 TC 11 Z9 15 U1 1 U2 9 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0301-679X J9 TRIBOL INT JI Tribol. Int. PD MAY PY 2009 VL 42 IS 5 BP 706 EP 713 DI 10.1016/j.triboint.2008.10.013 PG 8 WC Engineering, Mechanical SC Engineering GA 429FB UT WOS:000264905200014 ER PT J AU Ramachandra, R Griffin, B Joy, D AF Ramachandra, Ranjan Griffin, Brendan Joy, David TI A model of secondary electron imaging in the helium ion scanning microscope SO ULTRAMICROSCOPY LA English DT Article DE Secondary electrons; Helium ions; Scanning microscopy ID AMORPHOUS TARGETS; SOLID-SURFACES; CLEAN METALS; EMISSION; BOMBARDMENT; ANGLE; DEPENDENCE; PROJECTILE; YIELD AB A combination of the 'semi-empirical' model for secondary electron production and the TRIM routines which describe ion stopping power, scattering, and transport, has been used to construct a Monte Carlo simulation (IONiSE) that can quantitatively interpret the generation of secondary electrons (SE) from materials by fast helium ions. This approach requires that the parameters of the semi-empirical model be determined by fitting to experimental yield data but has the merit that, unlike more fundamental models, it can be applied with equal ease to both pure elements and complex compounds. The application of the model to predict the topographic yield variation of helium generated SE as a function of energy and material, and to investigate the ratio between SE generated by incident and backscattered ions, is demonstrated. (C) 2009 Elsevier B.V. All rights reserved. C1 [Ramachandra, Ranjan; Joy, David] Univ Tennessee, Knoxville, TN 37996 USA. [Griffin, Brendan] Univ Western Australia, Perth, WA 6009, Australia. [Griffin, Brendan; Joy, David] Oak Ridge Natl Lab, Ctr NanoPhase Mat Sci, Oak Ridge, TN 37831 USA. RP Joy, D (reprint author), Univ Tennessee, Knoxville, TN 37996 USA. EM djoy@utk.edu RI Griffin, Brendan/D-5686-2011 FU SRCIGRC [1778.001] FX Portions of this work are based on the TRIM and SRIM codes and their associated databases (www.srim.org). The authors are also grateful to Clarke Fenner, John Notte, and Bill Thompson of Zeiss SIVIT for their enthusiastic interest and assistance; and to Drs. John VillarrUbbia, Andras Vlaclar, and Scott Wight (NIST); Professor David Bell (Harvard); Dr. Joe Michael (Sandia National Laboratory); Dr. Lucille Giannuzzi (FEI): and Dr. Harry M Meyer III (ORNL) for valuable discussions. This work was partially supported by SRCIGRC under Project ' 1778.001, Program Manager Dr. Dan Herr. NR 37 TC 67 Z9 67 U1 2 U2 39 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0304-3991 J9 ULTRAMICROSCOPY JI Ultramicroscopy PD MAY PY 2009 VL 109 IS 6 BP 748 EP 757 DI 10.1016/j.ultramic.2009.01.013 PG 10 WC Microscopy SC Microscopy GA 442CC UT WOS:000265816400007 PM 19269097 ER PT J AU Nellis, SR Yoon, H Werth, CJ Oostrom, M Valocchi, AJ AF Nellis, Scott R. Yoon, Hongkyu Werth, Charles J. Oostrom, Mart Valocchi, Albert J. TI Surface and Interfacial Properties of Nonaqueous-Phase Liquid Mixtures Released to the Subsurface at the Hanford Site SO VADOSE ZONE JOURNAL LA English DT Article ID HETEROGENEOUS POROUS-MEDIA; ACID SOLUTION CHEMISTRY; CARBON-TETRACHLORIDE; ORGANIC-ACID; TRANSPORT-PROPERTIES; TENSION; WATER; FLOW; IMBIBITION; ALCOHOLS AB Surface and interfacial tensions are key parameters affecting nonaqueous-phase liquid (NAPL) movement and redistribution in the subsurface after spill events. In this study, the impact of major additive components on surface and interfacial tensions for organic mixtures and wastewater was investigated. Organic mixture and wastewater compositions were based on CCl(4) mixtures released at the U. S. Department of Energy's Hanford site, where CCl(4) was discharged simultaneously with dibutyl butyl phosphonate, tributyl phosphate, dibutyl phosphate, and a machining lard oil. A considerable amount of wastewater consisting primarily of nitrates and metal salts was also discharged. The measured tension values revealed that the addition of these additive components caused a significant lowering of the interfacial tension with water or wastewater and the surface tension of the wastewater phase in equilibrium with the organic mixtures, compared with pure CCl(4), but had minimal effect on the surface tension of the NAPL itself. These results led to large differences in spreading coefficients for several mixtures, where the additives caused both a higher (more spreading) initial spreading coefficient and a lower (less spreading) equilibrium spreading coefficient. This indicates that if these mixtures migrate into uncontaminated areas, they will tend to spread quickly but will form a higher residual NAPL saturation on after equilibrium than pure CCl(4). Withtime, CCl(4) probably volatilizes more rapidly than other components in the originally disposed mixtures and the lard oil and phosphates would become more concentrated in the remaining NAPL, resulting in a lower interfacial tension for the mixture. These results show that the behavior of organic chemical mixtures should be accounted for in flow and transport models. C1 [Nellis, Scott R.; Yoon, Hongkyu; Werth, Charles J.; Valocchi, Albert J.] Univ Illinois, Dept Civil & Environm Engn, Urbana, IL 61801 USA. [Oostrom, Mart] Pacific NW Natl Lab, Energy & Environm Directorate, Hydrol Grp, Richland, WA 99354 USA. RP Yoon, H (reprint author), Univ Illinois, Dept Civil & Environm Engn, 205 N Mathews Ave, Urbana, IL 61801 USA. EM hyoon3@illinois.edu FU U.S. Department of Energy (DOE) [DE-FG02-06ER64207, DE-AC06-76RLO 1830] FX This work was primarily supported by the Office of Science (BER), U.S. Department of Energy (DOE), Environmental Remediation Sciences Program, Grant no. DE-FG02-06ER64207. Some of the experiments were performed with support from the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the DOE's Office of Biological and Environmental Research and located at the Pacific Northwest National Laboratory (PNNL). The PNNL is operated by the Battelle Memorial Institute for the DOE under Contract DE-AC06-76RLO 1830. Scientists interested in conducting experimental work in the EMSL are encouraged to contact M. Oostrom (mart.oostrom@pnl.gov). NR 52 TC 5 Z9 7 U1 1 U2 3 PU SOIL SCI SOC AMER PI MADISON PA 677 SOUTH SEGOE ROAD, MADISON, WI 53711 USA SN 1539-1663 J9 VADOSE ZONE J JI Vadose Zone J. PD MAY PY 2009 VL 8 IS 2 BP 343 EP 351 DI 10.2136/vzj2008.0104 PG 9 WC Environmental Sciences; Soil Science; Water Resources SC Environmental Sciences & Ecology; Agriculture; Water Resources GA 448YE UT WOS:000266297100007 ER PT J AU Stauffer, PH Vrugt, JA Turin, HJ Gable, CW Soll, WE AF Stauffer, Philip H. Vrugt, Jasper A. Turin, H. Jake Gable, Carl W. Soll, Wendy E. TI Untangling Diffusion from Advection in Unsaturated Porous Media: Experimental Data, Modeling, and Parameter Uncertainty SO VADOSE ZONE JOURNAL LA English DT Article ID VAPOR-PHASE DIFFUSION; YUCCA MOUNTAIN; BUSTED-BUTTE; TRANSPORT; NEVADA; TRACER; SOILS; TUFFS; ZONE; FLOW AB We conducted a series of experimental and modeling tests using data from the Busted Butte Unsaturated Zone Transport Test. First, we conducted a suite of reactive (e. g., Li), nonreactive (Br), and colloidal tracer experiments. These tracers were injected for 190 d from two point sources at rates of 1 and 8 mL/h, respectively. We then used a numerical simulator (FEHM), populated with laboratory-measured hydrologic properties, to verify that our conceptual model of the tracer test yielded a good fit to the tracer breakthrough data. Additionally, we used the AMALGAM-SO and SCEM-UA search algorithms to find optimal parameter estimates in our conceptual model and estimate their (nonlinear) uncertainty. To this end, the FEHM model was executed more than 50,000times using parallel computing on a distributed computer cluster. The experimental and modeling results show that (i) no breakthrough of colloids was observed, low breakthroughs of Li were found, and significant and rapid breakthrough of Br was measured, (ii) measured hydraulic parameters from rock core samples provide a relatively accurate description of flow and transport at the scale and flow rates of the Busted Butte test, and (iii) the Millington-Quirk model of diffusion as a function of volumetric water content can fit the experimental breakthrough data well; however, (iv) a constant diffusion model with a much lower effective diffusion coefficient also fits the data well, and (v) numerous different optimized parameter combinations exist that fit the observed Br data acceptably well. This implies that one should be particularly careful in assigning values of the unsaturated subsurface flow and transport parameters without recourse to examining both parameter and model formulation uncertainty. C1 [Stauffer, Philip H.; Vrugt, Jasper A.; Turin, H. Jake; Gable, Carl W.; Soll, Wendy E.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Stauffer, PH (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM stauffer@lanl.gov RI Vrugt, Jasper/C-3660-2008; Stauffer, Philip/A-1384-2009; Gable, Carl/B-4689-2011; OI Stauffer, Philip/0000-0002-6976-221X; Gable, Carl/0000-0001-7063-0815 NR 46 TC 6 Z9 6 U1 0 U2 3 PU SOIL SCI SOC AMER PI MADISON PA 677 SOUTH SEGOE ROAD, MADISON, WI 53711 USA SN 1539-1663 J9 VADOSE ZONE J JI Vadose Zone J. PD MAY PY 2009 VL 8 IS 2 BP 510 EP 522 DI 10.2136/vzj2008.0055 PG 13 WC Environmental Sciences; Soil Science; Water Resources SC Environmental Sciences & Ecology; Agriculture; Water Resources GA 448YE UT WOS:000266297100023 ER PT J AU Denmirkanli, DI Molz, FJ Kaplan, DI Fjeld, RA AF Denmirkanli, Deniz I. Molz, Fred J. Kaplan, Daniel I. Fjeld, Robert A. TI A Fully Transient Model for Long-Term Plutonium Transport in the Savannah River Site Vadose Zone: Root Water Uptake (vol 7, pg 1099, 2008) SO VADOSE ZONE JOURNAL LA English DT Correction C1 [Denmirkanli, Deniz I.; Molz, Fred J.; Fjeld, Robert A.] Clemson Univ, Dept Environm Engn & Sci, LG Rich Environm Res Lab, Anderson, SC 29625 USA. [Kaplan, Daniel I.] Savannah River Natl Lab, Aiken, SC 29808 USA. RP Molz, FJ (reprint author), Clemson Univ, Dept Environm Engn & Sci, LG Rich Environm Res Lab, 342 Comp Court, Anderson, SC 29625 USA. EM fredi@clemson.edu NR 1 TC 0 Z9 0 U1 0 U2 1 PU SOIL SCI SOC AMER PI MADISON PA 677 SOUTH SEGOE ROAD, MADISON, WI 53711 USA SN 1539-1663 J9 VADOSE ZONE J JI Vadose Zone J. PD MAY PY 2009 VL 8 IS 2 BP 530 EP 530 DI 10.2136/vzj2007.0134er PG 1 WC Environmental Sciences; Soil Science; Water Resources SC Environmental Sciences & Ecology; Agriculture; Water Resources GA 448YE UT WOS:000266297100025 ER PT J AU Gaufin, T Gautam, R Kasheta, M Ribeiro, R Ribka, E Barnes, M Pattison, M Tatum, C MacFarland, J Montefiori, D Kaur, A Pandrea, I Apetrei, C AF Gaufin, Thaidra Gautam, Rajeev Kasheta, Melissa Ribeiro, Ruy Ribka, Erin Barnes, Mary Pattison, Melissa Tatum, Coty MacFarland, Jeanne Montefiori, David Kaur, Amitinder Pandrea, Ivona Apetrei, Cristian TI Limited ability of humoral immune responses in control of viremia during infection with SIVsmmD215 strain SO BLOOD LA English DT Article ID SIMIAN IMMUNODEFICIENCY VIRUS; T-LYMPHOCYTE RESPONSES; AFRICAN-GREEN MONKEYS; RHESUS MACAQUES; NEUTRALIZING ANTIBODIES; HIV-INFECTION; IN-VIVO; MONOCLONAL-ANTIBODIES; PASSIVE IMMUNOTHERAPY; TYPE-1 INFECTION AB We investigated the impact of rhesus macaque (RM) B-cell depletion before inoculation with the isolate SIVsmmD215. Seven RMs were treated every 3 weeks with 50 mg/kg of an anti-CD20 antibody ( rituximab) starting 7 days before inoculation for 2 (n = 4) and 5 ( n = 3) months. Four control animals received no antibody. Three animals were completely depleted of CD20(+) B cells, but 4 were only partially depleted of CD20 cells in the LNs and intestine. The decrease in antibody production was consistent with the efficacy of tissue CD20 depletion. Seroconversion and neutralizing antibody production was significantly delayed in animals showing complete tissue CD20 depletion and remained at low titers in all CD20-depleted RMs. Surprisingly, there was no significant difference in acute or chronic viral loads between CD20-depleted and control animal groups. There was a tendency for lower viral set points in CD20-depleted animals. At 6 weeks after inoculation, cellular immune responses were significantly stronger in CD20-depleted animals than in controls. There was no significant difference in survival between CD20-depleted and control animals. Our data suggest that a deficiency of Ab responses did not markedly affect viral replication or disease progression and that they may be compensated by more robust cellular responses. (Blood. 2009;113:4250-4261) C1 [Gaufin, Thaidra; Gautam, Rajeev; Barnes, Mary; Pattison, Melissa; Tatum, Coty; MacFarland, Jeanne; Apetrei, Cristian] Tulane Natl Primate Res Ctr, Div Microbiol, Covington, LA 70433 USA. [Kasheta, Melissa; Kaur, Amitinder] New England Primate Res Ctr, Div Immunol, Southborough, MA USA. [Ribeiro, Ruy] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Ribka, Erin] Tulane Natl Primate Res Ctr, Div Vet Med, Covington, LA 70433 USA. [Montefiori, David] Duke Univ, Dept Surg, Durham, NC USA. [Pandrea, Ivona] Tulane Natl Primate Res Ctr, Div Comparat Pathol, Covington, LA 70433 USA. [Apetrei, Cristian] Tulane Univ, Sch Publ Hlth, Dept Trop Med, New Orleans, LA 70118 USA. [Pandrea, Ivona] Tulane Univ, Sch Med, Dept Pathol, New Orleans, LA 70118 USA. RP Apetrei, C (reprint author), Tulane Natl Primate Res Ctr, Div Microbiol, 18703 3 Rivers Rd, Covington, LA 70433 USA. EM capetrei@tulane.edu OI Ribeiro, Ruy/0000-0002-3988-8241 FU National Institute of Allergy and Infectious Diseases [R01 AI065325, P20 RR020159, RO1AI064066, R21AI069935, AI30034, P51 RR000164]; National Center for Research Resources, Bethesda, MD FX This work was supported by grants R01 AI065325 and P20 RR020159 ( C. A.), RO1AI064066 and R21AI069935 ( I. P.), AI30034 ( D. M.), and P51 RR000164 ( TNPRC) from the National Institute of Allergy and Infectious Diseases and from the National Center for Research Resources, Bethesda, MD. NR 55 TC 21 Z9 21 U1 1 U2 2 PU AMER SOC HEMATOLOGY PI WASHINGTON PA 1900 M STREET. NW SUITE 200, WASHINGTON, DC 20036 USA SN 0006-4971 J9 BLOOD JI Blood PD APR 30 PY 2009 VL 113 IS 18 BP 4250 EP 4261 DI 10.1182/blood-2008-09-177741 PG 12 WC Hematology SC Hematology GA 442MW UT WOS:000265846300021 PM 19168789 ER PT J AU Nemura, H Ishii, N Aoki, S Hatsuda, T AF Nemura, H. Ishii, N. Aoki, S. Hatsuda, T. TI HYPERON-NUCLEON FORCES CALCULATED FROM LATTICE QCD SO INTERNATIONAL JOURNAL OF MODERN PHYSICS A LA English DT Article; Proceedings Paper CT KGU Yokohama Autumn School of Nuclear Physics CY OCT 09-10, 2008 CL Kanto Gakuin Univ, Kannai Media Ctr, Yokohama, JAPAN SP Kanto Gakuin Univ HO Kanto Gakuin Univ, Kannai Media Ctr DE Lattice QCD calculations; hyperon-nucleon interactions ID SCATTERING; MATRIX AB We study the hyperon-nucleon (YN) forces by using quenched lattice QCD. The Bethe-Salpeter amplitudes are calculated for the lowest scattering state of the systems so as to obtain the YN potentials. The numerical calculation is twofold: (i) The p Xi(0) potentials and scattering lengths are obtained by using lattice QCD with beta = 5.7, the lattice spacing of a = 0.1416(9) fm, on the 32(3) x 32 lattice. Two kinds of ud quark mass are used, corresponding to m(pi) similar or equal to 0.37 GeV and 0.51 GeV. The spatial lattice volume is (4.5 fm)(3). The scattering lengths obtained from Luscher's formula show that the p Xi(0) interactions are both attractive at (1)S(0) and (3)S(1) channels, and the interaction in the 3S1 is more attractive than in the (1)S(0). These attractive forces become stronger as the u, d quark mass decreases. (ii) The p Lambda potentials are calculated. The lattice setup is almost same as the former calculation except for the temporal part. The calculation is performed on 32(3) x 48 lattice. Two kinds of ud quark mass are used, corresponding to m(pi) similar or equal to 0.47 GeV and 0.51 GeV. The lowest scattering energies in the finite lattice volume are calculated. C1 [Nemura, H.] RIKEN, Strangeness Nucl Phys Lab, Nishina Ctr Accelerator Based Sci, Wako, Saitama 3510198, Japan. [Ishii, N.] Univ Tsukuba, Ctr Computat Sci, Tsukuba, Ibaraki 3058571, Japan. [Aoki, S.] Univ Tsukuba, Grad Sch Pure & Appl Sci, Tsukuba, Ibaraki 3058571, Japan. [Aoki, S.] Brookhaven Natl Lab, Riken BNL Res Ctr, Upton, NY 11973 USA. [Hatsuda, T.] Univ Tokyo, Dept Phys, Tokyo 1130033, Japan. RP Nemura, H (reprint author), RIKEN, Strangeness Nucl Phys Lab, Nishina Ctr Accelerator Based Sci, 2-1 Hirosawa, Wako, Saitama 3510198, Japan. EM nemura@riken.jp; ishii@rarfaxp.riken.jp; saoki@het.ph.tsukuba.ac.jp; hatsuda@phys.s.u-tokyo.ac.jp RI Hatsuda, Tetsuo/C-2901-2013 NR 16 TC 0 Z9 0 U1 0 U2 0 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 0217-751X J9 INT J MOD PHYS A JI Int. J. Mod. Phys. A PD APR 30 PY 2009 VL 24 IS 11 BP 2110 EP 2117 PG 8 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 441WX UT WOS:000265802300015 ER PT J AU Cowee, MM Omidi, N Russell, CT Blanco-Cano, X Tokar, RL AF Cowee, M. M. Omidi, N. Russell, C. T. Blanco-Cano, X. Tokar, R. L. TI Determining ion production rates near Saturn's extended neutral cloud from ion cyclotron wave amplitudes SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID DISPERSION; ENCELADUS; PLASMA; TORUS AB Recent Cassini observations of active venting of water molecules from Enceladus indicate that the moon is the primary source of Saturn's extended neutral cloud. Ionization of the neutrals through charge exchange creates a population of newborn ions with a velocity space distribution, which is highly unstable to the generation of electromagnetic ion cyclotron waves. Cassini observed such ion cyclotron waves, finding spatial and temporal variability in the wave amplitudes throughout the extended neutral cloud region. Since the amount of energy in the ion cyclotron waves is proportional to the number of newborn ions generating them, it is possible to infer the ion production rate in the region. To do so, we use two-dimensional electromagnetic hybrid (kinetic ions, fluid electrons) simulations to investigate the growth and nonlinear evolution of ion cyclotron waves. We focus on conditions near Enceladus' L shell and compare the simulated and observed ion cyclotron wave amplitudes to estimate the neutral densities and ion production rates. Our simulation results find a relatively linear relation between ion production rate and quasisteady wave energy level (delta B(2)). For conditions near Enceladus' L shell, we find that water group ion production rates of 0.007-0.014/cc/s (which yield wave amplitudes of similar to 0.1-0.3 nT) are appropriate. For ion production within an annulus volume from 3.9 to 4 R(S), we obtain ion production rates of 3.8 x 10(26) to 7.6 x 10(26) ions/s or 10.2-20.4 kg/s. C1 [Cowee, M. M.; Tokar, R. L.] Los Alamos Natl Lab, Los Alamos, NM 87544 USA. [Omidi, N.] Solana Sci Inc, Solana Beach, CA 92075 USA. [Russell, C. T.] Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Los Angeles, CA 90095 USA. [Blanco-Cano, X.] Univ Nacl Autonoma Mexico, Inst Geofis, Mexico City 04510, DF, Mexico. RP Cowee, MM (reprint author), Los Alamos Natl Lab, Mail Stop D466,Grp ISR-1, Los Alamos, NM 87544 USA. EM mcowee@lanl.gov FU NASA [NNX07AJ07G]; University of California, Los Angeles FX This research was supported by NASA grant NNX07AJ07G to Solana Scientific, Inc. and University of California, Los Angeles. The authors wish to thank to Jared Leisner and Peter Gary for useful discussion. NR 16 TC 16 Z9 16 U1 0 U2 2 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD APR 30 PY 2009 VL 114 AR A04219 DI 10.1029/2008JA013664 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 440CK UT WOS:000265675800001 ER PT J AU Zinkle, SJ Ice, GE Miller, MK Pennycook, SJ Wang, XL AF Zinkle, S. J. Ice, G. E. Miller, M. K. Pennycook, S. J. Wang, X-L. TI Advances in microstructural characterization SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT 13th International Conference on Fusion Reactor Materials (ICFRM-13) CY DEC 10-14, 2007 CL Nice, FRANCE ID TRANSMISSION ELECTRON-MICROSCOPE; ANGLE NEUTRON-SCATTERING; X-RAY-SCATTERING; DIFFRACTION MEASUREMENTS; MARTENSITIC STEELS; RESIDUAL-STRESSES; FERRITIC ALLOYS; SANS DATA; RESOLUTION; TEMPERATURE AB Timely development of materials for the demanding fusion energy environment requires a broad range of advanced scientific tools, including advanced structural characterization methods. The current state-of-the-art and emerging capabilities in electron microscopy, atom probe tomography, neutron scattering and X-ray scattering are reviewed with respect to potential applications in fusion materials research and development. Recent dramatic advances in capabilities in all four of these characterization tools are transforming the spatial precision and quantitative information that can be extracted during structural characterization. Examples include spectroscopic identification of single atoms in bulk materials, three-dimensional mapping of millimeter-scale volumes of materials with nanometer resolution, and high-resolution in situ measurements of internal stress and strain during mechanical testing. (c) 2008 Elsevier B.V. All rights reserved. C1 [Zinkle, S. J.; Ice, G. E.; Miller, M. K.; Pennycook, S. J.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Wang, X-L.] Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA. RP Zinkle, SJ (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, POB 2008, Oak Ridge, TN 37831 USA. EM zinklesj@ornl.gov RI Wang, Xun-Li/C-9636-2010; OI Wang, Xun-Li/0000-0003-4060-8777; Zinkle, Steven/0000-0003-2890-6915 NR 69 TC 7 Z9 7 U1 3 U2 25 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD APR 30 PY 2009 VL 386-88 BP 8 EP 14 DI 10.1016/j.jnucmat.2008.12.302 PG 7 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 450FR UT WOS:000266386900003 ER PT J AU Morishita, K Watanabe, Y Kohyama, A Heinisch, HL Gao, F AF Morishita, K. Watanabe, Y. Kohyama, A. Heinisch, H. L. Gao, F. TI Nucleation and growth of vacancy clusters in beta-SiC during irradiation SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT 13th International Conference on Fusion Reactor Materials (ICFRM-13) CY DEC 10-14, 2007 CL Nice, FRANCE ID SILICON-CARBIDE AB Molecular dynamics and molecular static calculations have been performed using the empirical many-body interatomic potential to obtain the formation and binding energies of relaxed configuration of vacancy clusters in beta-SiC, which are necessary when the nucleation and growth process of clusters is investigated. The formation energy of vacancy clusters in beta-SiC depends on the size, vacancy composition, and vacancy configuration of clusters. When the size and vacancy composition of clusters are given, the vacancy configuration of clusters with the lowest formation energy is primarily given so as to take the smallest number of dangling bonds. Especially when the fraction of the number of silicon vacancies to the number of carbon vacancies in a cluster is quite high or quite low, the formation property of antisite defects in clusters becomes a key factor to determine the stable configuration of clusters. (c) 2008 Elsevier B.V. All rights reserved. C1 [Morishita, K.; Watanabe, Y.; Kohyama, A.] Kyoto Univ, Inst Adv Energy, Kyoto 6110011, Japan. [Heinisch, H. L.; Gao, F.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Morishita, K (reprint author), Kyoto Univ, Inst Adv Energy, Kyoto 6110011, Japan. EM morishita@iae.kyoto-u.ac.jp RI Gao, Fei/H-3045-2012 NR 9 TC 7 Z9 8 U1 0 U2 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD APR 30 PY 2009 VL 386-88 BP 30 EP 32 DI 10.1016/j.jnucmat.2008.12.054 PG 3 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 450FR UT WOS:000266386900008 ER PT J AU Gilbert, MR Yao, Z Kirk, MA Jenkins, ML Dudarev, SL AF Gilbert, M. R. Yao, Z. Kirk, M. A. Jenkins, M. L. Dudarev, S. L. TI Vacancy defects in Fe: Comparison between simulation and experiment SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT 13th International Conference on Fusion Reactor Materials (ICFRM-13) CY DEC 10-14, 2007 CL Nice, FRANCE ID HEAVY-ION IRRADIATIONS; MOLECULAR-DYNAMICS; DISLOCATION LOOPS; DAMAGE EVOLUTION; THIN-FOILS; IRON; ACCUMULATION AB The evolution of radiation damage under heavy-ion irradiation in thin foils of pure bcc Fe has been investigated by simulation and experiment. Simulations showed that vacancy loops are about as mobile as interstitial loops, and can be lost to the surface of a foil. Consistent with this, in situ real-time dynamic observations of the damage evolution showed that loops, many of which are believed to be of vacancy nature, were mobile and were often lost during irradiation. Atomistic simulations of vacancy defects in Fe showed that spherical voids, rather than vacancy loops, represent the lowest energy configurations for clusters of vacancies of any size. The simulations also indicated that the stability of loops strongly varies depending on their size. Closed loops above a critical diameter (similar to 2 nm) are highly metastable due to the difficulty of their transformation into voids. The greater stability of voids explains why the loop yield in Fe and other ferritic materials is very low. (c) 2009 M.R. Gilbert. Published by Elsevier B.V. All rights reserved. C1 [Gilbert, M. R.; Dudarev, S. L.] UKAEA Euratom Fus Assoc, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England. [Gilbert, M. R.; Yao, Z.; Jenkins, M. L.] Univ Oxford, Dept Mat, Oxford OX1 3PH, England. [Kirk, M. A.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Dudarev, S. L.] Univ London Imperial Coll Sci Technol & Med, Dept Phys, London SW7 2AZ, England. RP Gilbert, MR (reprint author), UKAEA Euratom Fus Assoc, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England. EM mark.gilbert@ukaea.org.uk OI Gilbert, Mark/0000-0001-8935-1744 NR 14 TC 16 Z9 17 U1 2 U2 35 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD APR 30 PY 2009 VL 386-88 BP 36 EP 40 DI 10.1016/j.jnucmat.2008.12,055 PG 5 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 450FR UT WOS:000266386900010 ER PT J AU Shcherbakov, EN Kozlov, AV Yagovitin, PI Evseev, MV Kinev, EA Panchenko, VL Isobe, I Sagisaka, M Okita, T Sekimura, N Garner, FA AF Shcherbakov, E. N. Kozlov, A. V. Yagovitin, P. I. Evseev, M. V. Kinev, E. A. Panchenko, V. L. Isobe, I. Sagisaka, M. Okita, T. Sekimura, N. Garner, F. A. TI Influence of damage rate on physical and mechanical properties and swelling of 18Cr-9Ni austenitic steel in the range of 3 x 10(-9) to 4 x 10(-8) dpa/s SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT 13th International Conference on Fusion Reactor Materials (ICFRM-13) CY DEC 10-14, 2007 CL Nice, FRANCE AB The results of the examination of the specimens constructed from the Fe-18Cr-9Ni steel thick-wall pipe irradiated at temperatures 370-375 degrees C to damage rates from 1.5 to 21 dpa at displacement rates from 3 x 10(-9) to 4 x 10(-8) dpa/s are presented. Electrical resistance. elasticity characteristics and radiation swelling of this material under different irradiation conditions were measured. Changes in the microstructure of the steel, in particular, the porosity characteristics dependent on a damage rate are shown. (C) 2009 Published by Elsevier B.V. C1 [Shcherbakov, E. N.; Kozlov, A. V.; Yagovitin, P. I.; Evseev, M. V.; Kinev, E. A.; Panchenko, V. L.] FSUE Inst Nucl Mat, Zarechnyi, Russia. [Isobe, I.; Sagisaka, M.] Nucl Fuels Ltd, Osaka, Japan. [Okita, T.] Univ Tokyo, Tokyo, Japan. [Sekimura, N.; Garner, F. A.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Shcherbakov, EN (reprint author), FSUE Inst Nucl Mat, Zarechnyi, Russia. EM sfti@uraltc.ru NR 5 TC 3 Z9 3 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD APR 30 PY 2009 VL 386-88 BP 152 EP 156 DI 10.1016/j.jnucmat.2008.12.080 PG 5 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 450FR UT WOS:000266386900040 ER PT J AU Neustroev, VS Garner, FA AF Neustroev, V. S. Garner, F. A. TI Severe embrittlement of neutron irradiated austenitic steels arising from high void swelling SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT 13th International Conference on Fusion Reactor Materials (ICFRM-13) CY DEC 10-14, 2007 CL Nice, FRANCE ID ALLOYS AB Data are presented from BOR-60 irradiations showing that significant radiation-induced swelling causes severe embrittlement in austenitic stainless steels, reducing the service life of structural components and introducing limitations on low temperature handling especially. It is shown that the degradation is actually a form of quasi-embrittlement arising from intense flow localization with high levels of localized ductility involving micropore coalescence and void-to-void cracking. Voids initially serve as hardening components whose effect is overwhelmed by the void-induced reduction in shear and Young's moduli at high swelling levels. Thus the alloy appears to soften even as the ductility plunges toward zero on a macroscopic level although a large amount of deformation occurs microscopically at the failure site. Thus the failure is better characterized as "quasi-embrittlement" which is a suppression of uniform deformation. This case should be differentiated from that of real embrittlement which involves the complete suppression of the material's capability for plastic deformation. (C) 2009 Published by Elsevier B.V. C1 [Neustroev, V. S.] FSUE SSC RF Res Inst Atom Reactors, Dimitrovgrad, Russia. [Garner, F. A.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Neustroev, VS (reprint author), FSUE SSC RF Res Inst Atom Reactors, Dimitrovgrad, Russia. EM neustroev@niiar.ru NR 24 TC 7 Z9 7 U1 6 U2 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD APR 30 PY 2009 VL 386-88 BP 157 EP 160 DI 10.1016/j.jnucmat.2008.12.077 PG 4 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 450FR UT WOS:000266386900041 ER PT J AU Ono, K Miyamoto, M Arakawa, K Birtcher, RC AF Ono, Kotaro Miyamoto, Mitsutaka Arakawa, Kazuto Birtcher, R. C. TI Dynamical interaction of helium bubbles with cascade damage in Fe-9Cr ferritic alloy SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT 13th International Conference on Fusion Reactor Materials (ICFRM-13) CY DEC 10-14, 2007 CL Nice, FRANCE ID BEHAVIOR; IONS AB Dynamic interaction of helium bubble with cascade damage in Fe-9Cr ferritic alloy has been studied using in situ irradiation and electron microscopy. During the irradiation of the alloy by 400 keV Fe(+) ions at temperatures where no thermal motion takes place, induced displacement of small helium bubbles was observed: the bubbles underwent sporadic and instant displacement. The displacement was of the order of a few nanometers. The experimentally determined displacement probability of helium bubbles is consistent with the calculated probability of their dynamic interaction with sub-cascades introduced by the irradiation. Furthermore, during the irradiation of the alloy at higher temperatures, both retarded and accelerated Brownian type motions were observed. These results are discussed on the basis of dynamic interaction of helium bubbles with point defects that survive through high-energy self-ion irradiation. (C) 2008 Elsevier B.V. All rights reserved. C1 [Ono, Kotaro; Miyamoto, Mitsutaka] Shimane Univ, Dept Mat Sci, Matsue, Shimane 6908504, Japan. [Arakawa, Kazuto] Osaka Univ, UHV EM Ctr, Suita, Osaka 5650871, Japan. [Birtcher, R. C.] Argonne Natl Lab, MSD, Argonne, IL 60439 USA. RP Ono, K (reprint author), Shimane Univ, Dept Mat Sci, 1060 Nishi Kawatsu, Matsue, Shimane 6908504, Japan. EM k-ono@riko.shimane-u.ac.jp NR 11 TC 3 Z9 4 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD APR 30 PY 2009 VL 386-88 BP 177 EP 180 DI 10.1016/j.jnucmat.2008.12.087 PG 4 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 450FR UT WOS:000266386900046 ER PT J AU Okita, T Sekimura, N Garner, FA AF Okita, T. Sekimura, N. Garner, F. A. TI The conflicting roles of boron on the radiation response of precipitate-forming austenitic alloys at similar to 400 degrees C SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT 13th International Conference on Fusion Reactor Materials (ICFRM-13) CY DEC 10-14, 2007 CL Nice, FRANCE AB The behavior of void swelling at similar to 400 degrees C of model f.c.c. alloy Fe-15Cr-16Ti-0.25Ti-0.05 C doped with boron was examined in the FFTF-MOTA. Boron additions modify the neutron-induced swelling of Fe-15Cr-16Ni-0.25Ti-0.05 C somewhat, but the changes appear to arise primarily from the influence of boron as a chemical species rather than as a source of helium. Boron additions initially depress swelling strongly, but the effect saturates by <100 appm. The reduction in swelling is thought to arise from boron's influence on distribution and precipitation of carbon. As the boron level is raised to significantly larger levels swelling begins to increase, but at a slower rate per boron atom. This subsequent increase is thought to reflect the higher He/dpa ratio generated by the boron, overwhelming the helium produced by (n, alpha) reactions with nickel. (C) 2009 Elsevier B.V. All rights reserved. C1 [Okita, T.; Sekimura, N.] Univ Tokyo, Dept Quantum Engn & Syst Sci, Tokyo, Japan. [Garner, F. A.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Okita, T (reprint author), Univ Tokyo, Dept Quantum Engn & Syst Sci, Tokyo, Japan. EM okita@q.t.u-tokyo.ac.jp NR 4 TC 0 Z9 0 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD APR 30 PY 2009 VL 386-88 BP 185 EP 187 DI 10.1016/j.jnucmat.2008.12.315 PG 3 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 450FR UT WOS:000266386900048 ER PT J AU Klueh, RL Shiba, K Sokolov, MA AF Klueh, R. L. Shiba, K. Sokolov, M. A. TI Embrittlernent of irradiated F82H in the absence of irradiation hardening SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT 13th International Conference on Fusion Reactor Materials (ICFRM-13) CY DEC 10-14, 2007 CL Nice, FRANCE ID ACTIVATION FERRITIC/MARTENSITIC STEELS; CHARPY IMPACT PROPERTIES; FRACTURE-TOUGHNESS; MARTENSITIC STEELS; TENSILE PROPERTIES; BEHAVIOR; HFIR; 9CR-1MOVNB AB Neutron irradiation of 7-12% Cr ferritic/martensitic steels below 425-450 degrees C produces microstructural defects and precipitation that cause an increase in yield stress. This irradiation hardening causes embrittlement, which is observed in a Charpy impact or fracture toughness test as an increase in the ductile-brittle transition temperature. Based on observations that show little change in strength in steels irradiated above 425-450 degrees C, the general conclusion has been that no embrittlement occurs above these temperatures. In a recent study of F82H steel, significant embrittlement was observed after irradiation at 500 degrees C, but no hardening occurred. This embrittlement is apparently due to irradiation-accelerated Laves-phase precipitation. Observations of the embrittlement of F82H in the absence of irradiation hardening have been examined and analyzed with thermal-aging studies and computational thermodynamics calculations to illuminate and understand the embrittlement during irradiation. Published by Elsevier B.V. C1 [Klueh, R. L.; Sokolov, M. A.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Shiba, K.] Japan Atom Energy Agcy, Toki, Ibaraki, Japan. RP Klueh, RL (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM kluehrl@ornl.gov NR 23 TC 9 Z9 10 U1 2 U2 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD APR 30 PY 2009 VL 386-88 BP 191 EP 194 DI 10.1016/j.jnucmat.2008.12.090 PG 4 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 450FR UT WOS:000266386900050 ER PT J AU Kondo, S Katoh, Y Snead, LL AF Kondo, S. Katoh, Y. Snead, L. L. TI Cavity swelling and dislocation evolution in SiC at very high temperatures SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT 13th International Conference on Fusion Reactor Materials (ICFRM-13) CY DEC 10-14, 2007 CL Nice, FRANCE ID SILICON-CARBIDE; NEUTRON-IRRADIATION; MICROSTRUCTURE; BEHAVIOR AB The temperature and fluence dependence of cavity swelling and dislocation development in CVD SiC irradiated with fast neutrons at high temperatures (1050-1460 degrees C, up to 9.6 dpa) were evaluated using transmission electron microscopy. The cavity swelling was very limited below 1300 degrees C (<0.01% at 1300 degrees C, 9.3 dpa). Temperature and fluence dependent swelling became visible above similar to 1400 degrees C. The maximum value of the cavity swelling was 0.25% at 1460 degrees C, 9.6 dpa, but this appeared to be below the peak swelling temperature. Frank loops were the dominant dislocation structure in this temperature regime, and the number density decreased and the size increased with increasing irradiation temperature. The loop microstructures depended less significantly on both the irradiation temperature and fluence below 1200 degrees C. A significant decrease in the number density and increase in the size were observed at 1300-1460 degrees C. Published by Elsevier B.V. C1 [Kondo, S.; Katoh, Y.; Snead, L. L.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37830 USA. RP Kondo, S (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, POB 2008, Oak Ridge, TN 37830 USA. EM kondos1@ornl.gov OI Katoh, Yutai/0000-0001-9494-5862 NR 13 TC 14 Z9 15 U1 2 U2 22 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD APR 30 PY 2009 VL 386-88 BP 222 EP 226 DI 10.1016/j.jnucmat.2008.12.095 PG 5 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 450FR UT WOS:000266386900058 ER PT J AU Wong, KL Lee, HJ Shim, JH Sadigh, B Wirth, BD AF Wong, Kwan L. Lee, Hyon-Jee Shim, Jae-Hyeok Sadigh, Babak Wirth, Brian D. TI Multiscale modeling of point defect interactions in Fe-Cr alloys SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT 13th International Conference on Fusion Reactor Materials (ICFRM-13) CY DEC 10-14, 2007 CL Nice, FRANCE ID TOTAL-ENERGY CALCULATIONS; WAVE BASIS-SET; MOLECULAR-DYNAMICS; IRRADIATION; DIFFUSION; RADIATION; REACTOR; METALS AB Predictive performance models of ferritic/martensitic alloys in fusion neutron irradiation environments require knowledge of point defect interactions with Cr, which can be investigated by a multiscale modeling approach. Molecular dynamics simulations, using Finnis-Sinclair-type potentials, have been used to investigate the interstitial diffusion and reveal that the extremes of attractive and repulsive binding between Cr and interstitials change the characteristics of interstitial migration and the Cr-to-Fe diffusivity ratio. Ab-initio calculations have been performed to determine the vacancy-Cr interactions, and these calculations reveal complex electronic and magnetic interactions between Cr and Fe. The ab-initio values have been used to calculate the Cr-to-Fe diffusivity ratio by a vacancy mechanism using the LeClaire multi-frequency model and a kinetic lattice Monte Carlo model, both of which indicate that Cr diffuses faster than Fe. The modeling results are discussed in the context of the radiation-induced segregation of Cr at grain boundaries in BCC Fe-Cr alloys. (C) 2009 Published by Elsevier B.V. C1 [Wong, Kwan L.; Lee, Hyon-Jee; Shim, Jae-Hyeok; Wirth, Brian D.] Univ Calif Berkeley, Dept Nucl Engn, Berkeley, CA 94720 USA. [Shim, Jae-Hyeok] Korea Adv Inst Sci & Technol, Nanomat Res Ctr, Seoul 136791, South Korea. [Sadigh, Babak] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Wong, KL (reprint author), Univ Calif Berkeley, Dept Nucl Engn, Berkeley, CA 94720 USA. EM kevwong@socrares.berkeley.edu RI Wirth, Brian/O-4878-2015 OI Wirth, Brian/0000-0002-0395-0285 NR 30 TC 15 Z9 15 U1 2 U2 28 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD APR 30 PY 2009 VL 386-88 BP 227 EP 230 DI 10.1016/j.jnucmat.2008.12.092 PG 4 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 450FR UT WOS:000266386900059 ER PT J AU Tanigawa, H Klueh, RL Hashimoto, N Sokolov, MA AF Tanigawa, Hiroyasu Klueh, Ronald L. Hashimoto, Naoyuki Sokolov, Mikhail A. TI Hardening mechanisms of reduced activation ferritic/martensitic steels irradiated at 300 degrees C SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT 13th International Conference on Fusion Reactor Materials (ICFRM-13) CY DEC 10-14, 2007 CL Nice, FRANCE ID FERRITIC STEELS; MICROSTRUCTURE AB It has been reported that reduced-activation ferritic/martensitic steels (RAFMs), such as F82H, ORNL9Cr-2WVTa, and JLF-1 showed a variety of changes in ductile-brittle transition temperature and yield stress after irradiation at 300 degrees C up to 5 dpa, and those differences could not be interpreted solely by the difference of dislocation microstructure induced by irradiation. In this paper, various microstructural analyses on low-temperature irradiated RAFMs were summarized with the emphasis on F82H, and a possible mechanism for the irradiation hardening was suggested. The possible contribution of dislocation channeling structure and back stress were indicated. (C) 2009 Elsevier B.V. All rights reserved. C1 [Tanigawa, Hiroyasu] Japan Atom Energy Agcy, Tokai, Ibaraki 3191195, Japan. [Klueh, Ronald L.; Sokolov, Mikhail A.] Oak Ridge Natl Lab, Oak Ridge, TN USA. [Hashimoto, Naoyuki] Hokkaido Univ, Sapporo, Hokkaido, Japan. RP Tanigawa, H (reprint author), Japan Atom Energy Agcy, 2-4 Shirakata Shirane, Tokai, Ibaraki 3191195, Japan. EM tanigawa.hiroyasu@jaea.go.jp RI HASHIMOTO, Naoyuki/D-6366-2012 NR 16 TC 17 Z9 17 U1 1 U2 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD APR 30 PY 2009 VL 386-88 BP 231 EP 235 DI 10.1016/j.jnucmat.2008.12.094 PG 5 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 450FR UT WOS:000266386900060 ER PT J AU Garner, FA Flinn, JE Hall, MM AF Garner, F. A. Flinn, J. E. Hall, M. M. TI Anisotropic swelling observed during stress-free reirradiation of AISI 304 tubes previously irradiated under stress SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT 13th International Conference on Fusion Reactor Materials (ICFRM-13) CY DEC 10-14, 2007 CL Nice, FRANCE ID CREEP AB A 'history effects' experiment was conducted in EBR-II that involved the reirradiation of AISI 304 cladding and Capsule tubes. It is shown that when irradiated tubes had not previously experienced stress, subsequent irradiation led to additional swelling strains that were isotropically distributed. However, when tubes previously irradiated under a 2:1 biaxial stress were reirradiated without stress the additional swelling strains were not isotropically distributed. The tubes obviously retained a memory of the previous stress state that appears to be attempting to distribute strains in the directions dictated by the previous stress state. It is clear, however, that the memory of that stress state is fading as the anisotropic dislocation microstructure developed during irradiation under stress is replaced by an isotropic dislocation microstructure during subsequent exposure in the absence of stress. It is also shown that once the transient regime of swelling nears completion, further changes in stress state or irradiation temperature have no influence on the swelling rate thereafter. (C) 2008 Elsevier B.V. All rights reserved. C1 [Garner, F. A.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Flinn, J. E.] EBR II Project, Argonne Natl Lab, Idaho Falls, ID USA. [Hall, M. M.] Bechtel Bettis Co, W Mifflin, PA USA. RP Garner, FA (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM frank.garner@dslextreme.com NR 12 TC 5 Z9 6 U1 3 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD APR 30 PY 2009 VL 386-88 BP 249 EP 253 DI 10.1016/j.jnucmat.2008.12.105 PG 5 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 450FR UT WOS:000266386900064 ER PT J AU Gusev, MN Maksimkin, OP Osipov, IS Garner, FA AF Gusev, M. N. Maksimkin, O. P. Osipov, I. S. Garner, F. A. TI Anomalously large deformation of 12Cr18Ni10Ti austenitic steel irradiated to 55 dpa at 310 degrees C in the BN-350 reactor SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT 13th International Conference on Fusion Reactor Materials (ICFRM-13) CY DEC 10-14, 2007 CL Nice, FRANCE AB Whereas most previous irradiation studies conducted at lower neutron exposures in the range 100-400 degrees C have consistently produced strengthening and strongly reduced ductility in stainless steels, it now appears possible that higher exposures may lead to a reversal in ductility loss for some steels. A new radiation-induced phenomenon has been observed in 12Cr18Ni10Ti stainless steel irradiated to 55 dpa. It involves a 'moving wave of plastic deformation' at 20 degrees C that produces 'anomalously' high values of engineering ductility, especially when compared to deformation occurring at lower neutron exposures. Using the technique of digital optical extensometry the 'true stress sigma-true strain epsilon' curves were obtained. It was shown that a moving wave of plastic deformation occurs as a result of an increase in the intensity of strain hardening, d sigma/d epsilon(epsilon). The increase in strain hardening is thought to arise from an irradiation-induced increase in the propensity of the gamma -> alpha martensitic transformation. (C) 2009 Elsevier B.V. All rights reserved. C1 [Gusev, M. N.; Maksimkin, O. P.; Osipov, I. S.] Inst Nucl Phys, Alma Ata, Kazakhstan. [Garner, F. A.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Gusev, MN (reprint author), Inst Nucl Phys, Alma Ata, Kazakhstan. EM gusev.maxim@inp.kz RI Maksimkin, Oleg/M-8820-2015 NR 11 TC 8 Z9 8 U1 1 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD APR 30 PY 2009 VL 386-88 BP 273 EP 276 DI 10.1016/j.jnucmat.2008.12.115 PG 4 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 450FR UT WOS:000266386900070 ER PT J AU McClintock, DA Hoelzer, DT Sokolov, MA Nanstad, RK AF McClintock, D. A. Hoelzer, D. T. Sokolov, M. A. Nanstad, R. K. TI Mechanical properties of neutron irradiated nanostructured ferritic alloy 14YWT SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT 13th International Conference on Fusion Reactor Materials (ICFRM-13) CY DEC 10-14, 2007 CL Nice, FRANCE ID STABILITY; STEEL AB Advanced nanostructured ferritic alloys (NFAs) containing a high density of ultra-fine (2-5 nm) nanoclusters (NCs) enriched in Y, Ti, and O are considered promising candidates for structural components in future nuclear systems. The superior tensile strengths of NFAs relative to conventional oxide dispersion strengthened ferritic alloys are attributed to the high number density of NCs, which may provide effective trapping centers for point defects and transmutation products produced during neutron irradiation. This paper summarizes preliminary tensile and fracture toughness data for an advanced NFA, designated 14YWT, currently being developed at Oak Ridge National Laboratory. For this study, an alloy designated 14WT was manufactured using the same production parameters used to produce 14YWT but without the Y(2)O(3) addition during ball milling required for NC formation in order to quantify the effect of the NCs on mechanical properties. Tensile specimens produced from both alloys were irradiated at 300, 580, and 670 degrees C to 1.5 displacements per atom (dpa), while 14YWT fracture toughness specimens were irradiated at 300 degrees C to 1.5 dpa. Tensile strengths for 14YWT were found to be about two times greater than 14WT for both irradiated and unirradiated conditions, with yield strength for 14YWT decreasing from similar to 1450 MPa at 26 degrees C to similar to 700 MPa at 600 degrees C. Moderate radiation-induced hardening (50-200 MPa) and reduction in ductility was observed for 14YWT for all irradiation conditions and test temperatures. In contrast, 14WT exhibited significant hardening (similar to 250 MPa) for the 300 degrees C irradiated specimens, while almost no hardening was observed for the 580 and 670 degrees C irradiated specimens. Fracture toughness results showed 14YWT in the unirradiated condition had a fracture toughness transition temperature (FTTT) around -150 degrees C and upper-shelf K(JIc) values around 175 MPa root m. Results from irradiated 14YWT fracture toughness tests were found to closely mirror the unirradiated data and no shift in FTTT or decrease in K(JIc) values were observed following neutron irradiation to 1.5 dpa at 300 degrees C. (C) 2009 Elsevier B.V. All rights reserved. C1 [McClintock, D. A.; Hoelzer, D. T.; Sokolov, M. A.; Nanstad, R. K.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [McClintock, D. A.] Univ Texas Austin, Austin, TX 78712 USA. RP McClintock, DA (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, POB 2008,Bldg 4500S,MS 6151, Oak Ridge, TN 37831 USA. EM mcclintockda@ornl.gov RI Hoelzer, David/L-1558-2016; OI McClintock, David/0000-0002-9292-8951 NR 9 TC 44 Z9 44 U1 2 U2 18 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD APR 30 PY 2009 VL 386-88 BP 307 EP 311 DI 10.1016/j.jnucmat.2008.12.104 PG 5 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 450FR UT WOS:000266386900078 ER PT J AU Ando, M Tanigawa, H Wakai, E Stoller, RE AF Ando, M. Tanigawa, H. Wakai, E. Stoller, R. E. TI Effect of two-steps heat treatments on irradiation hardening in F82H irradiated at 573 K SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT 13th International Conference on Fusion Reactor Materials (ICFRM-13) CY DEC 10-14, 2007 CL Nice, FRANCE ID FERRITIC/MARTENSITIC STEEL AB Irradiation hardening and embrittlement due to neutron irradiation around 573 K are the important issues on RAF/M steels. It is expected that the improvement of irradiation hardening might be one of effective ways to control the mechanical properties of RAF/M after irradiation. In this study, the purposes are to investigate the effect of heat treatments on irradiation hardening of irradiated F82H variants and to compare the irradiation hardening based on Delta Hardness with the irradiation hardening obtained by Delta Yield Stress about F82H. Neutron irradiation was performed in HFIR at 573 K. The ion-beam irradiation experiment at similar to 573 K was carried out at the TIARA facility of JAEA. For the results of tensile test and hardness test of F82H and F82H heat treatment variants neutron-irradiated at 573 K, all specimens caused irradiation hardening. The irradiation hardening (Delta Hardness) obtained by hardness test is almost same level for neutron- and ion-irradiated F82H specimens, however irradiation hardening (Delta Yield Stress) of F82H Mod-1 A (two-steps heat treated F82H; high temperature tempering and then low temperature tempering) is smaller than that of F82H. (C) 2009 Elsevier B.V. All rights reserved. C1 [Ando, M.; Tanigawa, H.; Wakai, E.] Japan Atom Energy Agcy, Naka, Ibaraki 3191195, Japan. [Stoller, R. E.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Ando, M (reprint author), Japan Atom Energy Agcy, Naka, Ibaraki 3191195, Japan. EM ando.masami@jaea.go.jp RI Stoller, Roger/H-4454-2011; Wakai, Eiichi/L-1099-2016 NR 7 TC 11 Z9 11 U1 0 U2 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD APR 30 PY 2009 VL 386-88 BP 315 EP 318 DI 10.1016/j.jnucmat.2008.12.123 PG 4 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 450FR UT WOS:000266386900080 ER PT J AU Yamamoto, T Odette, GR Miao, P Edwards, DJ Kurtz, RJ AF Yamamoto, T. Odette, G. R. Miao, P. Edwards, D. J. Kurtz, R. J. TI Helium effects on microstructural evolution in tempered martensitic steels: In situ helium implanter studies in HFIR SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT 13th International Conference on Fusion Reactor Materials (ICFRM-13) CY DEC 10-14, 2007 CL Nice, FRANCE ID RELEVANT HE/DPA RATIOS; DPA RATES; EMBRITTLEMENT; IRRADIATION; TRANSPORT; FATE AB Microstructural evolutions in tempered martensitic steels (TMS) under neutron-irradiation, at fusion relevant He/dpa ratios and dpa rates, were characterized using a novel in situ He-implanter technique. F82H-mod3 was irradiated at 500 degrees C in HFIR to a nominal 9 dpa and 190 or 380 appm He in both in the as-tempered (AT) and 20% cold-worked (CW) conditions. In all cases, a high number density of 1-2 nm He-bubbles were observed, along with fewer but larger approximate to 10 nm void-like faceted cavities. The He-bubbles form preferentially on dislocations and various interfaces. A slightly larger number of smaller He bubbles were observed in the CW condition. The lower He/dpa ratio produced slightly smaller and fewer He-bubbles. Comparisons of these observations to the results in nano-structured ferritic alloy (NFA) MA957 provide additional evidence that TMS may be susceptible to He-embrittlement as well as void swelling at fusion relevant He concentrations, while NFA are much more resistant to these degradation phenomena. (C) 2009 Published by Elsevier B.V. C1 [Yamamoto, T.; Odette, G. R.; Miao, P.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Edwards, D. J.; Kurtz, R. J.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Yamamoto, T (reprint author), Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. EM yamataku@engineering.ucsb.edu NR 14 TC 20 Z9 20 U1 1 U2 20 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD APR 30 PY 2009 VL 386-88 BP 338 EP 341 DI 10.1016/j.jnucmat.2008.12.134 PG 4 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 450FR UT WOS:000266386900085 ER PT J AU Oliver, BM Dai, Y AF Oliver, B. M. Dai, Y. TI Helium and hydrogen measurements on pure materials irradiated in SINQ Target 4 SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT 13th International Conference on Fusion Reactor Materials (ICFRM-13) CY DEC 10-14, 2007 CL Nice, FRANCE ID SYSTEM; METALS; LANSCE AB Several irradiations have been performed in the Swiss Spallation Neutron Source (SINQ) to establish a materials database for mixed proton and neutron fluxes for future spallation neutron and other accelerator sources. Pure metal dosimetry materials from the second irradiation (STIP-II) have been analyzed for their total helium and hydrogen contents and their release characteristics with temperature (TDS). Total helium results are similar to those observed earlier from the first irradiation experiment (STIP-I). with concentrations ranging from similar to 500 to similar to 1000 appm. Hydrogen contents varied over a larger range from similar to 100 to similar to 60000. (3)He/(4)He ratios were generally consistent with expectations, except for Ti, Nb, and Ta which showed lower values due to (3)He from decay of irradiation-generated tritium. Some differences were observed in the hydrogen TDS data for the control and irradiated materials, including some evidence for additional lower-temperature release and for multiple release peaks. Additionally, differences were noted in the releases for irradiated material that been cleaned versus material that had no cleaning. (C) 2009 Elsevier B.V. All rights reserved. C1 [Oliver, B. M.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Dai, Y.] Paul Scherrer Inst, CH-5232 Villigen, Switzerland. RP Oliver, BM (reprint author), Pacific NW Natl Lab, POB 999, Richland, WA 99352 USA. EM brian.oliver@pnl.gov NR 7 TC 1 Z9 1 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD APR 30 PY 2009 VL 386-88 BP 383 EP 386 DI 10.1016/j.jnucmat.2008.12.160 PG 4 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 450FR UT WOS:000266386900097 ER PT J AU Gao, F Heinisch, HL Kurtz, RJ AF Gao, F. Heinisch, H. L. Kurtz, R. J. TI Migration of vacancies, He interstitials and He-vacancy clusters at grain boundaries in alpha-Fe SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT 13th International Conference on Fusion Reactor Materials (ICFRM-13) CY DEC 10-14, 2007 CL Nice, FRANCE ID COMPUTER-SIMULATION; DIMER METHOD; HELIUM; DEFECTS; DISLOCATIONS; DIFFUSION; IRON AB The dinner method for searching transition states has been used to systematically study possible migration paths of vacancies, He interstitials and He-vacancy (He/V) clusters at Sigma 11 < 110 > {323} and Sigma 3 < 110 > {111} grain boundaries (GBs) in alpha-Fe. Vacancies trapped at the GBs diffuse along the GBs with migration energies much less than that within the perfect crystal. Long-time dynamics simulations of diffusion pathways reveal that vacancies migrate one-dimensionally along specific directions in both GBs: directly along close-packed rows in the Sigma 3 GB, and in zigzag paths within the Sigma 11 GB. Also, dimer saddle point searches show that He interstitials can diffuse along the GBs with migration energies of 0.4-0.5 eV, similar to those of individual vacancies at the GBs, and the corresponding mechanisms are determined. The rate-controlling activation energy for migration of a He-divacancy cluster in the GBs determined using the dimer method is about 0.9 eV. This is comparable to the migration energy for a He-divacancy cluster in bulk alpha-Fe. (C) 2009 Elsevier B.V. All rights reserved. C1 [Gao, F.; Heinisch, H. L.; Kurtz, R. J.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Gao, F (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM Fei.Gao@pnl.gov RI Gao, Fei/H-3045-2012 NR 18 TC 23 Z9 23 U1 1 U2 18 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD APR 30 PY 2009 VL 386-88 BP 390 EP 394 DI 10.1016/j.jnucmat.2008.12.159 PG 5 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 450FR UT WOS:000266386900099 ER PT J AU Kurtz, RJ Alamo, A Lucon, E Huang, Q Jitsukawa, S Kimura, A Klueh, RL Odette, GR Petersen, C Sokolov, MA Spatig, P Rensman, JW AF Kurtz, R. J. Alamo, A. Lucon, E. Huang, Q. Jitsukawa, S. Kimura, A. Klueh, R. L. Odette, G. R. Petersen, C. Sokolov, M. A. Spaetig, P. Rensman, J. -W. TI Recent progress toward development of reduced activation ferritic/martensitic steels for fusion structural applications SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT 13th International Conference on Fusion Reactor Materials (ICFRM-13) CY DEC 10-14, 2007 CL Nice, FRANCE ID FATIGUE-OXIDATION INTERACTIONS; CONTAINING MARTENSITIC STEELS; MECHANICAL-PROPERTIES; HOLDING PERIOD; VACUUM VESSEL; HELIUM; IRRADIATION; CREEP; COMPONENTS; ITER AB Significant progress has been achieved in the international research effort on reduced activation ferritic/martensitic steels for fusion structural applications. Because this class of steels is the leading structural material for test blankets in ITER and future fusion power systems, the range of ongoing research activities is extremely broad. Since, it is not possible to discuss all relevant work in this brief review, the objective of this paper is to highlight significant issues that have received recent attention. These include: (1) efforts to measure and understand radiation-induced hardening and embrittlement at temperatures <= 400 degrees C, (2) experiments and modeling to characterize the effects of He on microstructural evolution and mechanical properties, (3) exploration of approaches for increasing the high-temperature (>550 degrees C) creep resistance by introduction of a high-density of nanometer scale dispersoids or precipitates in the microstructure, (4) progress toward structural design criteria to account for loading conditions involving both creep and fatigue, and (5) development of nondestructive examination methods for flaw detection and evaluation. (C) 2009 Elsevier B.V. All rights reserved. C1 [Kurtz, R. J.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Alamo, A.] CEA Saclay, DEN DSOE, F-91191 Gif Sur Yvette, France. [Lucon, E.] CEN SCK, NMS, B-2400 Mol, Belgium. [Huang, Q.] Chinese Acad Sci, Inst Plasma Phys, Hefei 230031, Anhui, Peoples R China. [Jitsukawa, S.] Japan Atom Energy Agcy, Tokyo, Japan. [Kimura, A.] Kyoto Univ, Kyoto, Japan. [Klueh, R. L.; Sokolov, M. A.] Oak Ridge Natl Lab, Oak Ridge, TN USA. [Odette, G. R.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Petersen, C.] FZK IMF, Karlsruhe, Germany. [Spaetig, P.] EPFL, Assoc Euratom Confederat Suisse, CRPP, CH-5232 Villigen, Switzerland. [Rensman, J. -W.] NRG, Petten, Netherlands. RP Kurtz, RJ (reprint author), Pacific NW Natl Lab, POB 999, Richland, WA 99352 USA. EM rj.kurtz@pnl.gov OI Lucon, Enrico/0000-0002-3021-4785 NR 45 TC 61 Z9 63 U1 5 U2 38 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD APR 30 PY 2009 VL 386-88 BP 411 EP 417 DI 10.1016/j.jnucmat.2008.12.323 PG 7 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 450FR UT WOS:000266386900103 ER PT J AU Fukumoto, K Narui, M Matsui, H Nagasaka, T Muroga, T Li, M Hoelzer, DT Zinkle, SJ AF Fukumoto, K. Narui, M. Matsui, H. Nagasaka, T. Muroga, T. Li, M. Hoelzer, D. T. Zinkle, S. J. TI Environmental effects on irradiation creep behavior of highly purified V-4Cr-4Ti alloys (NIFS-Heats) irradiated by neutrons SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT 13th International Conference on Fusion Reactor Materials (ICFRM-13) CY DEC 10-14, 2007 CL Nice, FRANCE ID BIAXIAL THERMAL CREEP; VANADIUM ALLOYS; 700-DEGREES-C; 800-DEGREES-C AB In order to investigate the effect of the environment on the irradiation creep properties of highly purified V-4Cr-4Ti alloys, neutron irradiation experiments with sodium-enclosed irradiation capsules in Joyo and lithium-enclosed irradiation capsules in HFIR-17J were carried out using pressurized creep tubes (PCTs). It was found that the creep strain rate exhibited a linear relationship with the effective stress up to 150 Mpa at 458 and 598 degrees C in the Joyo irradiation experiments. For HFIR-17J irradiation at 425 degrees C, the creep strain rate also exhibited a linear relationship with the effective stress up to 150 Mpa. The activation energy of the irradiation creep and irradiation creep stress factor were estimated to be 46 kJ/mol K and 1-2, respectively. No significant difference in the irradiation creep behavior between liquid-sodium and liquid-lithium environments could be seen. (C) 2008 Elsevier B.V. All rights reserved. C1 [Fukumoto, K.] Univ Fukui, Grad Sch Nucl Power & Energy Safety Engn, Fukui 9108507, Japan. [Narui, M.; Matsui, H.] Tohoku Univ, Inst Mat Res, Sendai, Miyagi 9808577, Japan. [Nagasaka, T.; Muroga, T.] Natl Inst Nat Sci, Natl Inst Fus Sci, Toki, Gifu 5095292, Japan. [Li, M.; Hoelzer, D. T.; Zinkle, S. J.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Fukumoto, K (reprint author), Univ Fukui, Grad Sch Nucl Power & Energy Safety Engn, Bunkyo 2-1-1, Fukui 9108507, Japan. EM fukumoto@mech.fukui-u.ac.jp RI Hoelzer, David/L-1558-2016; OI Zinkle, Steven/0000-0003-2890-6915 NR 12 TC 6 Z9 6 U1 2 U2 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD APR 30 PY 2009 VL 386-88 BP 575 EP 578 DI 10.1016/j.jnucmat.2008.12.180 PG 4 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 450FR UT WOS:000266386900143 ER PT J AU Li, MM Hoelzer, DT Grossbeck, ML Rowcliffe, AF Zinkle, SJ Kurtz, RJ AF Li, Meimei Hoelzer, D. T. Grossbeck, M. L. Rowcliffe, A. F. Zinkle, S. J. Kurtz, R. J. TI Irradiation creep of the US Heat 832665 of V-4Cr-4Ti SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT 13th International Conference on Fusion Reactor Materials (ICFRM-13) CY DEC 10-14, 2007 CL Nice, FRANCE ID VANADIUM-BASE ALLOYS; BIAXIAL THERMAL CREEP; LITHIUM ENVIRONMENT; 800-DEGREES-C; 700-DEGREES-C; BEHAVIOR; TUBES AB The paper presents irradiation creep data for V-4Cr-4Ti irradiated to 3.7 dpa at 425 and 600 degrees C in the HFIR-17J experiment. Creep deformation was characterized by measuring diametral changes of pressurized creep tubes before and after irradiation. It was found that the creep strain rate of the US Heat 832665 of V-4Cr-4Ti exhibited a linear relationship with stress up to similar to 180 MPa at 425 degrees C with a creep coefficient of 2.50 x 10(-6) MPa(-1) dpa(-1). A linear relationship between creep rate and applied stress was observed below similar to 110 MPa at 600 degrees C with a creep coefficient of 5.41 x 10(-6) MPa(-1) dpa(-1); non-linear creep behavior was observed above similar to 110 MPa, and it may not be fully accounted by invoking thermal creep. The bilinear creep behavior observed in the same alloy irradiated in BR-10 was not observed in this study. Published by Elsevier B.V. C1 [Li, Meimei; Hoelzer, D. T.; Rowcliffe, A. F.; Zinkle, S. J.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Grossbeck, M. L.] Univ Tennessee, Dept Nucl Engn, Knoxville, TN 37996 USA. [Kurtz, R. J.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Li, MM (reprint author), Argonne Natl Lab, Nucl Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM mli@anl.gov RI Hoelzer, David/L-1558-2016; OI Zinkle, Steven/0000-0003-2890-6915 NR 26 TC 6 Z9 6 U1 2 U2 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD APR 30 PY 2009 VL 386-88 BP 618 EP 621 DI 10.1016/j.jnucmat.2008.12.220 PG 4 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 450FR UT WOS:000266386900154 ER PT J AU Nozawa, T Hinoki, T Hasegawa, A Kohyama, A Katoh, Y Snead, LL Henager, CH Hegeman, JBJ AF Nozawa, T. Hinoki, T. Hasegawa, A. Kohyama, A. Katoh, Y. Snead, L. L. Henager, C. H., Jr. Hegeman, J. B. J. TI Recent advances and issues in development of silicon carbide composites for fusion applications SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT 13th International Conference on Fusion Reactor Materials (ICFRM-13) CY DEC 10-14, 2007 CL Nice, FRANCE ID DUAL-COOLANT BLANKET; SIC/SIC COMPOSITES; NEUTRON-IRRADIATION; MECHANICAL-PROPERTIES; DISPLACEMENT-REACTIONS; SICF/SIC COMPOSITES; SIC-COMPOSITES; TEMPERATURES; COATINGS; DESIGN AB Radiation-resistant advanced silicon carbide (SiC/SiC) composites have been developed as a promising candidate of the high-temperature operating advanced fusion reactor. With the completion of the 'proof-of-principle' phase in development of 'nuclear-grade' SiC/SiC composites, the R&D on SiC/SiC composites is shifting toward the more pragmatic phase. i.e., industrialization of component manufactures and data-basing. In this paper, recent advances and issues in (1) development of component fabrication technology including joining and functional coating, e.g., a tungsten overcoat as a plasma facing barrier, (2) recent updates in characterization of non-irradiated properties, e.g., strength anisotropy and chemical compatibility with solid lithium-based ceramics and lead-lithium liquid metal breeders, and (3) irradiation effects are specifically reviewed. Importantly high-temperature neutron irradiation effects on microstructural evolution, thermal and electrical conductivities and mechanical properties including the fiber/matrix interfacial strength are specified under various irradiation conditions, indicating seemingly very minor influence on the composite performance in the design temperature range. (c) 2008 Elsevier B.V. All rights reserved. C1 [Nozawa, T.] Japan Atom Energy Agcy, Tokai, Ibaraki 3191195, Japan. [Hinoki, T.; Kohyama, A.] Kyoto Univ, Inst Adv Energy, Kyoto 6110011, Japan. [Hasegawa, A.] Tohoku Univ, Dept Quantum Sci & Energy Engn, Aoba Ku, Sendai, Miyagi 9808579, Japan. [Katoh, Y.; Snead, L. L.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Henager, C. H., Jr.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Hegeman, J. B. J.] NRG Petten, NL-1755 ZG Petten, Netherlands. RP Nozawa, T (reprint author), Japan Atom Energy Agcy, 2-4 Shirakata Shirane, Tokai, Ibaraki 3191195, Japan. EM nozawa.takashi67@jaea.gojp OI Katoh, Yutai/0000-0001-9494-5862; Henager, Chuck/0000-0002-8600-6803 NR 49 TC 79 Z9 81 U1 8 U2 64 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD APR 30 PY 2009 VL 386-88 BP 622 EP 627 DI 10.1016/j.jnucmat.2008.12.305 PG 6 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 450FR UT WOS:000266386900155 ER PT J AU Katoh, Y Kondo, S Snead, LL AF Katoh, Y. Kondo, S. Snead, L. L. TI DC electrical conductivity of silicon carbide ceramics and composites for flow channel insert applications SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT 13th International Conference on Fusion Reactor Materials (ICFRM-13) CY DEC 10-14, 2007 CL Nice, FRANCE ID THERMAL-CONDUCTIVITY; RADIATION-DAMAGE; BLANKET CONCEPT; ISSUES; RESISTIVITY; IRRADIATION; PARAMETERS; GRAPHITE; US AB High purity chemically vapor-deposited silicon carbide (SiC) and 2D continuous SiC fiber, chemically vapor-infiltrated SiC matrix composites with pyrocarbon interphases were examined. Specifically, temperature dependent (RT to 800 degrees C) electrical conductivity and the influence of neutron irradiation were measured. The influence of neutron irradiation on electrical properties appeared very strong for the SiC of this study, typically resulting in orders lower ambient conductivity and steeper temperature dependency of this conductivity. For the 2D composites, through-thickness (normal to the fiber axis') electrical conductivity was dominated by bypass conduction via interphase network at relatively low temperatures, whereas conduction through SiC constituents dominated at higher temperatures. Through-thickness electrical conductivity of neutron-irradiated 2D SiC composites with thin PyC interphase, currently envisioned for flow channel insert application, will likely in the order of 10 S/m at the appropriate operating temperature. Mechanisms of electrical conduction in the composites and irradiation-induced modification of electrical conductivity of the composites and their constituents are discussed. (c) 2008 Elsevier B.V. All rights reserved. C1 [Katoh, Y.; Kondo, S.; Snead, L. L.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Katoh, Y (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. EM katohy@ornl.gov OI Katoh, Yutai/0000-0001-9494-5862 NR 21 TC 28 Z9 29 U1 2 U2 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD APR 30 PY 2009 VL 386-88 BP 639 EP 642 DI 10.1016/j.jnucmat.2008.12.237 PG 4 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 450FR UT WOS:000266386900159 ER PT J AU Isobe, Y Sagisaka, M Garner, FA Fujita, S Okita, T AF Isobe, Y. Sagisaka, M. Garner, F. A. Fujita, S. Okita, T. TI Precipitate evolution in low-nickel austenitic stainless steels during neutron irradiation at very low dose rates SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT 13th International Conference on Fusion Reactor Materials (ICFRM-13) CY DEC 10-14, 2007 CL Nice, FRANCE ID MICROSTRUCTURAL EVOLUTION; BN-350 REACTOR; ALLOYS; DPA AB Neutron-induced microstructural evolution in response to long term irradiation at very low dose rates was studied for a Russian low-nickel austenitic stainless steel designated X18H9 that is analogous to AISI 304. The irradiated samples were obtained from an out-of-core support column for the pressure vessel of the BN-600 fast reactor with doses ranging from 1.7 to 20.5 dpa generated at 3.8 x 10(-9) to 4.3 x 10(-8) dpa/s. The irradiation temperatures were in a very narrow range of 370-375 degrees C. Microstructural observation showed that in addition to voids and dislocations, an unexpectedly high density of small G-phase precipitates was formed that are not usually observed at higher dpa rates in this temperature range. A similar behavior was observed in a Western stainless steel, namely AISI 304 stainless steel, irradiated at similar temperatures and somewhat higher dpa rates in the EBR-II fast reactor, indicating that irradiation at low dpa rates for many years can lead to a different precipitate microstructure and therefore different associated changes in matrix composition than are generated at higher dpa rates. The contribution of such radiation-induced precipitation to changes in electrical resistivity was measured in the X18H9 specimens and was shown to cause significant deviation from predictions based only on void swelling. (c) 2009 Elsevier B.V. All rights reserved. C1 [Isobe, Y.; Sagisaka, M.] Nucl Fuels Ltd, Osaka, Japan. [Garner, F. A.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Fujita, S.; Okita, T.] Univ Tokyo, Tokyo, Japan. RP Isobe, Y (reprint author), Nucl Fuels Ltd, Osaka, Japan. EM isobe@nfi.co.jp NR 23 TC 9 Z9 9 U1 1 U2 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD APR 30 PY 2009 VL 386-88 BP 661 EP 665 DI 10.1016/j.jnucmat.2008.12.255 PG 5 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 450FR UT WOS:000266386900165 ER PT J AU Henager, CH Kurtz, RJ AF Henager, C. H., Jr. Kurtz, R. J. TI Compatibility of interfaces and fibers for SiC-composites in fusion environments SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT 13th International Conference on Fusion Reactor Materials (ICFRM-13) CY DEC 10-14, 2007 CL Nice, FRANCE ID WATER-VAPOR-PRESSURE; SUBCRITICAL CRACK-GROWTH; DEPENDENT FAILURE MECHANISMS; SILICON-CARBIDE COMPOSITES; CERAMIC-MATRIX COMPOSITES; HIGH-TEMPERATURE; ELEVATED-TEMPERATURES; SIC/SIC COMPOSITES; CVISICF/SIC COMPOSITES; PARALINEAR OXIDATION AB The use of SiC-composites in fusion environments is predicated on stability under neutron irradiation, on outstanding high-temperature mechanical properties, and on chemical inertness and corrosion resistance. However, SiC is susceptible to many forms of corrosion in water and in water vapor where silica formation is required as a protective layer because silica forms stable hydroxides that are volatile, even at low temperatures. SiC-composites have an additional concern that fine-grained fibers and weak interfaces provide the required fracture toughness, but these components may also exhibit susceptibility to corrosion that can compromise material properties. In this work we examine and review the compatibility of fibers and interfaces, as well as the SiC matrix. in proposed fusion environments including first wall, tritium breeding, and blanket modules and module coolants. (c) 2009 Elsevier B.V. All rights reserved. C1 [Henager, C. H., Jr.; Kurtz, R. J.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Henager, CH (reprint author), Pacific NW Natl Lab, P8-15,902 Battelle Blvd, Richland, WA 99352 USA. EM chuck.henager@pnl.gov OI Henager, Chuck/0000-0002-8600-6803 NR 51 TC 2 Z9 2 U1 2 U2 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD APR 30 PY 2009 VL 386-88 BP 670 EP 674 DI 10.1016/j.jnucmat.2008.12.333 PG 5 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 450FR UT WOS:000266386900167 ER PT J AU Pint, BA Pawel, SJ Howell, M Moser, JL Garner, GW Santella, ML Tortorelli, PF Wiffen, FW DiStefano, JR AF Pint, B. A. Pawel, S. J. Howell, M. Moser, J. L. Garner, G. W. Santella, M. L. Tortorelli, P. F. Wiffen, F. W. DiStefano, J. R. TI Initial characterization of V-4Cr-4Ti and MHD coatings exposed to flowing Li SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT 13th International Conference on Fusion Reactor Materials (ICFRM-13) CY DEC 10-14, 2007 CL Nice, FRANCE ID LIQUID-METAL BLANKETS; ELECTRICALLY INSULATING COATINGS; VANADIUM ALLOYS; RECENT PROGRESS; FUSION-REACTOR; LITHIUM; COMPATIBILITY AB A mono-metallic V-4Cr-4Ti thermal convection loop was operated in vacuum (similar to 10(-5) Pa) at a maximum Li temperature of 700 degrees C for 2355 h and Li flow rate of 2-3 cm/s. Two-layer, physical vapor deposited Y(2)O(3)-vanadium, electrically insulating coatings on V-4Cr-4Ti substrates as well as tensile and sheet specimens were located in the flow path in the hot and cold legs. After exposure, specimens at the top of the hot leg showed a maximum mass loss equivalent to similar to 1.3 mu m of metal loss. Elsewhere, small mass gains were observed on the majority of specimens resulting in an increase in hardness and room temperature yield stress and a decrease in ductility consistent with the observed uptake of N and C from the Li. Specimens that lost mass showed a decrease in yield stress and hardness. Profilometry showed no significant thickness loss from the coatings. (C) 2008 Elsevier B.V. All rights reserved. C1 [Pint, B. A.; Pawel, S. J.; Howell, M.; Moser, J. L.; Garner, G. W.; Santella, M. L.; Tortorelli, P. F.; Wiffen, F. W.; DiStefano, J. R.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Pint, BA (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, POB 2008, Oak Ridge, TN 37831 USA. EM pintba@ornl.gov RI Pint, Bruce/A-8435-2008; Tortorelli, Peter/E-2433-2011 OI Pint, Bruce/0000-0002-9165-3335; NR 24 TC 8 Z9 8 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD APR 30 PY 2009 VL 386-88 BP 712 EP 715 DI 10.1016/j.jnucmat.2008.12.295 PG 4 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 450FR UT WOS:000266386900178 ER PT J AU Davis, JW Fitzpatrick, BWN Sharpe, JP Haasz, AA AF Davis, J. W. Fitzpatrick, B. W. N. Sharpe, J. P. Haasz, A. A. TI Thermo-oxidation of tokamak carbon dust SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT 13th International Conference on Fusion Reactor Materials (ICFRM-13) CY DEC 10-14, 2007 CL Nice, FRANCE ID DIII-D; FUSION DEVICES; GRAPHITE; EROSION; REMOVAL; PLASMA; TILES AB The oxidation of dust and flakes collected from the DIII-D tokamak, and various commercial dust specimens, has been measured at 350 degrees C and 2.0 kPa O(2) pressure. Following an initial small mass loss, most of the commercial dust specimens showed very little effect due to O(2) exposure. Similarly, dust collected from underneath DIII-D tiles, which is thought to comprise largely Grafoil (TM) particulates, also showed little susceptibility to oxidation at this temperature. However, oxidation of the dust collected from the surfaces has led to similar to 18% mass loss after 8 h: thereafter. little change in mass was observed. This suggests that the surface dust includes some components of different composition and/or structure - possibly fragments of codeposited layers. The oxidation of codeposit flakes scraped from DIII-D upper divertor tiles showed an initial 25% loss in mass due to heating in vacuum, and the gradual loss of 30-38% mass during the subsequent 24 h exposure to O(2). The oxidation of these flakes was much slower than that observed for the oxidation of thinner DIII-D codeposit specimens which were still adhered to the surfaces. This is thought to be related to structural differences. (C) 2009 Elsevier B.V. All rights reserved. C1 [Davis, J. W.; Fitzpatrick, B. W. N.; Haasz, A. A.] Univ Toronto, Inst Aerosp Studies, Toronto, ON M3H 5T6, Canada. [Sharpe, J. P.] INL, Fus Safety Program, Idaho Falls, ID 83415 USA. RP Davis, JW (reprint author), Univ Toronto, Inst Aerosp Studies, 4925 Dufferin St, Toronto, ON M3H 5T6, Canada. EM jwdavis@starfire.utias.utoronto.ca NR 16 TC 4 Z9 4 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD APR 30 PY 2009 VL 386-88 BP 764 EP 767 DI 10.1016/j.jnucmat.2008.12.212 PG 4 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 450FR UT WOS:000266386900191 ER PT J AU Grisolia, C Rosanvallon, S Sharpe, P Winter, J AF Grisolia, C. Rosanvallon, S. Sharpe, Ph. Winter, J. TI Micro-particles in ITER: A comprehensive review SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT 13th International Conference on Fusion Reactor Materials (ICFRM-13) CY DEC 10-14, 2007 CL Nice, FRANCE ID DUST; TOKAMAKS; DIVERTOR; CARBON AB In a fusion reactor like ITER, in-vessel materials are subjected to interactions with the plasma. One of the main consequences of these plasma-material interactions is the creation of co-deposited layers. Due to internal stresses, part of these layers can crack leading to micro particle creation. The purpose of the following paper is to review the Tokamak operation processes which lead to erosion and layer creation. Then, the proportion of these layers that is converted into micro-particles will be evaluated in the case of Tore Supra experiments and extrapolated for ITER. It is major importance to measure the ITER mobilizable dusts present in the Vacuum Vessel and compare the measured quantity with the safety limits. When approaching these limits, removal systems must be used in order to control the in-vessel dust inventory. In the second part of the paper, diagnostics and removal system under development will be presented. (C) 2009 Elsevier B.V. All rights reserved. C1 [Grisolia, C.; Rosanvallon, S.] CEA, EURATOM Assoc, DRFC SIPP, F-13108 St Paul Les Durance, France. [Sharpe, Ph.] Idaho Natl Lab, Idaho Falls, ID USA. [Winter, J.] Ruhr Univ Bochum, Inst Expt Phys 2, D-44780 Bochum, Germany. RP Grisolia, C (reprint author), CEA, EURATOM Assoc, DRFC SIPP, F-13108 St Paul Les Durance, France. EM Christian.grisolia@cea.fr NR 14 TC 5 Z9 5 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD APR 30 PY 2009 VL 386-88 BP 871 EP 873 DI 10.1016/j.jnucmat.2008.12.192 PG 3 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 450FR UT WOS:000266386900218 ER PT J AU Calderoni, P Sharpe, P Nishimura, H Terai, T AF Calderoni, P. Sharpe, P. Nishimura, H. Terai, T. TI Control of molten salt corrosion of fusion structural materials by metallic beryllium SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT 13th International Conference on Fusion Reactor Materials (ICFRM-13) CY DEC 10-14, 2007 CL Nice, FRANCE ID ELEVATED-TEMPERATURE; NEUTRON-IRRADIATION; TRITIUM; FLIBE; REDOX; CHEMISTRY; BREEDER; FLUORIDE AB A series of tests have been performed between 2001 and 2006 at the Safety and Tritium Applied Research facility of the Idaho National Laboratory to demonstrate chemical compatibility between the molten salt flibe (2LiF + BeF(2) in moles) and fusion structural materials once suitable fluoride potential control methods are established. The tests adopted metallic beryllium contact as main fluoride potential control, and the results have been published in recent years. A further step was to expose two specimens of low activation ferritic/martensitic steel 9Cr-2W to static corrosion tests that include an active corrosion agent (hydrofluoric gas) in controlled conditions at 530 degrees C, and the results of the tests are presented in this paper. The results confirmed the expected correlation of the HF recovery with the concentration of metallic impurities dissolved in the salt because of specimen corrosion. The metals concentration dropped to levels close to the detectable limit when the beryllium rod was inserted and increased once the content of excess beryllium in the system had been consumed by HF reduction and specimen corrosion progressed. Metallographic analysis of the samples after 500 h exposure in reactive conditions showed evidence of the formation of unstable chromium oxide layers on the specimen's surface. (C) 2009 Elsevier B.V. All rights reserved. C1 [Calderoni, P.; Sharpe, P.] Idaho Natl Lab, Fus Safety Program, Idaho Falls, ID 83415 USA. [Nishimura, H.] Univ Tokyo, Grad Sch Engn, Nucl Profess Sch, Tokyo, Japan. [Terai, T.] Univ Tokyo, Grad Sch Engn, Dept Nucl Engn & Management, Tokyo, Japan. RP Calderoni, P (reprint author), Idaho Natl Lab, Fus Safety Program, Idaho Falls, ID 83415 USA. EM Pattrick.Calderoni@inl.gov OI Calderoni, Pattrick/0000-0002-2316-6404 NR 15 TC 11 Z9 11 U1 5 U2 16 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD APR 30 PY 2009 VL 386-88 BP 1102 EP 1106 DI 10.1016/j.jnucmat.2008.12.292 PG 5 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 450FR UT WOS:000266386900276 ER PT J AU Zhou, J Kostko, O Nicolas, C Tang, XN Belau, L de Vries, MS Ahmed, M AF Zhou, Jia Kostko, Oleg Nicolas, Christophe Tang, Xiaonan Belau, Leonid de Vries, Mattanjah S. Ahmed, Musahid TI Experimental Observation of Guanine Tautomers with VUV Photoionization SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Letter ID VACUUM-ULTRAVIOLET PHOTOIONIZATION; NUCLEIC-ACID BASES; GAS-PHASE; AB-INITIO; IONIZATION-POTENTIALS; RARE TAUTOMERS; DNA BASES; SYNCHROTRON-RADIATION; LASER SPECTROSCOPY; EXCITED-STATES AB Two methods of preparing guanine in the gas phase, thermal vaporization and laser desorption, have been investigated. The guanine generated by each method is entrained in a molecular beam, single-photon ionized with tunable VUV synchrotron radiation, and analyzed using reflectron mass spectrometry. The recorded photoionization efficiency (PIE) curves show a dramatic difference for experiments performed via thermal vaporization compared to that with laser desorption. The calculated vertical and adiabatic ionization energies for the eight lowest-lying tautomers Of guanine suggest that the experimental observations arise from different tautomers being populated in the two different experimental methods. C1 [Zhou, Jia; Kostko, Oleg; Nicolas, Christophe; Tang, Xiaonan; Belau, Leonid; Ahmed, Musahid] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. [de Vries, Mattanjah S.] Univ Calif Santa Barbara, Dept Chem & Biochem, Santa Barbara, CA 93106 USA. RP Ahmed, M (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM MAhmed@lbl.gov RI Ahmed, Musahid/A-8733-2009; Kostko, Oleg/B-3822-2009; Kostko, Oleg/A-3693-2010 OI Kostko, Oleg/0000-0003-2068-4991; NR 30 TC 25 Z9 25 U1 1 U2 15 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD APR 30 PY 2009 VL 113 IS 17 BP 4829 EP 4832 DI 10.1021/jp811107x PG 4 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 438BB UT WOS:000265529800001 PM 19344111 ER PT J AU Sivaramakrishnan, R Michael, JV AF Sivaramakrishnan, R. Michael, J. V. TI Rate Constants for OH with Selected Large Alkanes: Shock-Tube Measurements and an Improved Group Scheme SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID HYDROGEN-ATOM ABSTRACTION; GAS-PHASE REACTIONS; TEMPERATURE RATE CONSTANTS; TRANSITION-STATE THEORY; RELATIVE RATE CONSTANTS; HYDROXYL RADICALS; RATE COEFFICIENTS; ORGANIC-COMPOUNDS; SMOG CHAMBER; N-NONANE AB High-temperature rate constant experiments oil OH with the five large (C(5)-C(8)) saturated hydrocarbons n-heptane, 2,2,3,3-tetramethylbutane (2,2,33-TMB). n-pentane, n-hexane, and 2,3-dimethylbutane (2,3-DMB) were performed with the reflected-shock-tube technique using multipass absorption spectrometric detection of OH radicals at 308 nm. Single-point determinations at similar to 1200 K oil n-heptane, 2,2,3,3-TMB, n-hexane, and 2,3-DMB were previously reported by Cohen and co-workers; however, the present work Substantially extends the database to both lower and higher temperature. The present experiments span a wide temperature range, 789-1308 K, and represent the first direct measurements of rate constants at T > 800 K for n-pentane. The present work utilized 48 optical passes corresponding to a total path length of similar to 4.2 m. As a result of this increased path length, the high OH concentration detection sensitivity permitted pseudo-first-order analyses for unambiguously measuring rate constants. The experimental results can be expressed in Arrhenius form ill Units of cm(3) molecule(-1) s(-1) as follows: k(OH+n-heptane) = (2.48 +/- 0.17) x 10(-10) exp[(-1927 +/- 69 K)/T] (838-1287 K) k(OH+2,2,3,3-TMB) = (8.26 +/- 0.89) x 10(-11) exp[(-1337 +/- 94 K)/T] (789-1061 K) k(OH+n-pentane) = (1.60 +/- 0.25) x 10(-10) (exp[(-1903 +/- 146 K)/T] (823-1308 K) k(OH+n-hexane) = (2.79 +/- 0.39) x 10(-10) exp[(-2301 +/- 134 K)/T] (798-1299 K) k(OH+2.3-DMB) =(1.27 +/- 0.16) x 10(-10) exp[(-1617 +/- 118 K)/T] (843-1292 K) The available experimental data, along with lower-T determinations, were used to obtain evaluations of the expert mental rate constants over the temperature range from similar to 230 to 1300 K for most of the title reactions. These extended-telllperatUre-range evaluations, given as three-pararneter fits, are as follows: k(OH+n-heptane) = 2.059 x 10(-15)T(1.401) exp(33 K/T) cm(3) molecule(-1) s(-1) (241-1287 K) k(OH+2,2,3,3-TMB) = 6.835 x 10(-17)T(1.886) exp(-365 K/T) cm(3) molecule(-1) s(-1) (290-1180 K) k(OH+n-pentane) = 2.495 x 10(-16)T(1.649) exp(80 K/T) cm(3) molecule(-1) s(-1) (224-1308 K) k(OH+n-hexane) = 3.959 x 10(-18)T(2.218) exp(443 K/T) cm(3) molecule(-1) s(-1) (292-1299 K) k(OH+2,3-DMB) = 2.287 x 10(-17T1.958) exp(365 K/T) cm(3) molecule(-1) s(-1) (220-1292 K) The experimental data and the evaluations obtained for these five larger alkanes in the present work were used along with prior data/evaluations obtained in this laboratory for H abstractions by OH front a series of smaller alkanes (C(3)-C(5)) to devise rate rules for abstractions from various types of primary, secondary, and tertiary H atoms. Specifically, the current scheme was applied with good Success to H abstractions by OH from a series of n-alkanes (n-octane through n-hexadecane). The total rate constants using this group scheme for reactions of OH with selected large alkanes are given as three-parameter fits in this article. The rate constants for the various abstraction channels in any large n-alkane can also be obtained using the groups listed in this article. The present group scheme serves to reduce the uncertainties in rate constants for OH + alkane reactions. C1 [Sivaramakrishnan, R.; Michael, J. V.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. RP Michael, JV (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, D-193,Bldg 200, Argonne, IL 60439 USA. EM jmichael@anl.gov RI SIVARAMAKRISHNAN, RAGHU/C-3481-2008; Michael, Joe/E-3907-2010 OI SIVARAMAKRISHNAN, RAGHU/0000-0002-1867-1254; NR 69 TC 39 Z9 39 U1 5 U2 28 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD APR 30 PY 2009 VL 113 IS 17 BP 5047 EP 5060 DI 10.1021/jp810987u PG 14 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 438BB UT WOS:000265529800031 PM 19348456 ER PT J AU Mayhall, NJ Raghavachari, K Redfern, PC Curtiss, LA AF Mayhall, Nicholas J. Raghavachari, Krishnan Redfern, Paul C. Curtiss, Larry A. TI Investigation of Gaussian4 Theory for Transition Metal Thermochemistry SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID QUADRATIC CONFIGURATION-INTERACTION; GENERALIZED GRADIENT APPROXIMATION; WASTE INCINERATION PROCESSES; DENSITY-FUNCTIONAL THEORIES; 3RD-ROW ATOMS K; ELECTRONIC-STRUCTURE; MOLECULAR-ENERGIES; GAS-PHASE; VOLATILITY CALCULATIONS; PROJECTION OPERATORS AB An investigation of the performance of Gaussian-4 (G4) methods for the prediction of 3d transition metal thermochemistry is presented. Using the recently developed G3Large basis sets for atoms Se-Zn, the G4 and G4(MP2) methods with scalar relativistic effects included are evaluated on a test set of 20 enthalpies of formation of transition metal-containing molecules. The G4(MP2) method is found to perform significantly better than the G4 method. The G4 method fails due to the poor convergence of the Moller-Plesset perturbation theory at fourth-order in one case. The overall error for G4(MP2) of 2.84 kcal/mol is significantly larger than its previously reported performance for molecules containing main-group elements in the G3/05 test set. However, considering the relatively large uncertainties in the experimental enthalpies, the G4(MP2) method performs reasonably well. The performance of other composite methods based on G3 theory [G3(CCSD)//B3LYP and G3(MP2,CCSD)//B3LYP], as well as several density functional methods, are also presented in this paper. The results presented here will assist future development of composite model techniques suitable for use in transition metal-contain in-systems. C1 [Mayhall, Nicholas J.; Raghavachari, Krishnan] Indiana Univ, Dept Chem, Bloomington, IN 47405 USA. [Redfern, Paul C.; Curtiss, Larry A.] Argonne Natl Lab, Div Mat Sci, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Redfern, Paul C.; Curtiss, Larry A.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. RP Raghavachari, K (reprint author), Indiana Univ, Dept Chem, Bloomington, IN 47405 USA. EM kraghava@indiana.edu NR 54 TC 39 Z9 39 U1 0 U2 11 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD APR 30 PY 2009 VL 113 IS 17 BP 5170 EP 5175 DI 10.1021/jp809179q PG 6 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 438BB UT WOS:000265529800048 PM 19341257 ER PT J AU Shetty, AM Wilkins, GMH Nanda, J Solomon, MJ AF Shetty, Abhishek M. Wilkins, Georgina M. H. Nanda, Jagjit Solomon, Michael J. TI Multiangle Depolarized Dynamic Light Scattering of Short Functionalized Single-Walled Carbon Nanotubes SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID ANGLE NEUTRON-SCATTERING; ROTATIONAL DIFFUSION; AQUEOUS DISPERSIONS; SUSPENSIONS; LENGTH; RODS; NETWORKS; SENSORS; WATER; TRANSPARENT AB We introduce the method of multiangle depolarized dynamic light scattering (MA-DDLS) to characterize the length and diameter of covalently functionalized single-walled carbon nanotubes (SWCNTs). MA-DDLS yields simultaneous characterization of the mean translational and rotational diffusivities of dilute solutions of SWCNTs. By using an anisotropic rigid rod model, we uniquely determine the length and diameter of the SWCNTs from the independent measurements of rotational and translational diffusion. The multiangle depolarized light scattering technique is found to be a fast, noninvasive, and reproducible method for identifying the average length and diameter of SWCNTs in solution. C1 [Nanda, Jagjit] Mat & Nanotechnol Dept, Dearborn, MI USA. [Shetty, Abhishek M.; Wilkins, Georgina M. H.; Solomon, Michael J.] Univ Michigan, Dept Chem Engn, Ann Arbor, MI 48109 USA. RP Nanda, J (reprint author), Oak Ridge Natl Lab, MST Div, Oak Ridge, TN USA. EM jagjitn@yahoo.com; mjsolo@umich.edu OI Solomon, Michael/0000-0001-8312-257X NR 55 TC 34 Z9 35 U1 5 U2 26 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD APR 30 PY 2009 VL 113 IS 17 BP 7129 EP 7133 DI 10.1021/jp900731q PG 5 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 438BA UT WOS:000265529700039 ER PT J AU Hyman, MP Lebarbier, VM Wang, Y Datye, AK Vohs, JA AF Hyman, Matthew P. Lebarbier, Vannesa M. Wang, Yong Datye, Abhaya K. Vohs, John A. TI A Comparison of the Reactivity of Pd Supported on ZnO(10(1)over-bar0) and ZnO(0001) SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID SINGLE-CRYSTAL SURFACES; MODEL CATALYSTS; CO ADSORPTION; METHANOL DECOMPOSITION; THERMAL-DESORPTION; PARTICLE-SIZE; FORMIC-ACID; ZNO; HYDROGEN; PD(111) AB The dependence of ZnO surface structure on Pd/ZnO-catalyzed methanol decomposition was investigated by using model catalysts consisting of Pd films and particles on ZnO(10 (1) over bar0) and ZnO(0001) single crystals. XPS Studies showed that vapor-deposited Pd grows two dimensionally at 300 K and agglomerates into particles upon heating. Temperature-programmed desorption (TPD) experiments showed that CO adsorption was weaker on Pd/ZnO(0001) relative to Pd/ZnO(1010) and that PdZn alloy formation was more facile on the ZnO(0001) compared to ZnO(10 (1) over bar0). Large differences in the amount of CO produced during methanol TPD on the Pd/ZnO(0001) and Pd/ZnO(10 (1) over bar0) samples were also observed and attributed to the presence of highly active sites at the Pd-ZnO(0001) interface. Comparisons to high surface area Pd/ZnO catalysts indicate that similar structural effects may also influence their reactivity. C1 [Hyman, Matthew P.; Vohs, John A.] Univ Penn, Dept Chem & Biomol Engn, Philadelphia, PA 19104 USA. [Lebarbier, Vannesa M.; Wang, Yong] Pacific NW Natl Lab, Richland, WA 99354 USA. [Datye, Abhaya K.] Univ New Mexico, Dept Chem & Nucl Engn, Albuquerque, NM 87131 USA. RP Vohs, JA (reprint author), Univ Penn, Dept Chem & Biomol Engn, Philadelphia, PA 19104 USA. EM vohs@seas.upenn.edu RI Wang, Yong/C-2344-2013; OI Datye, Abhaya/0000-0002-7126-8659 FU U.S. Department of Energy [DE-FG02-04ER15605, DE-FG0205ER15712] FX We gratefully acknowledge funding for this work provided by the U.S. Department of Energy (grant nos. DE-FG02-04ER15605 (M.P.H., J.M.V.) and DE-FG0205ER15712 (V.M.L., Y.W., A.K.D.)). NR 55 TC 22 Z9 22 U1 4 U2 22 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD APR 30 PY 2009 VL 113 IS 17 BP 7251 EP 7259 DI 10.1021/jp809934f PG 9 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 438BA UT WOS:000265529700055 ER PT J AU Wang, XX Schwartz, V Clark, JC Ma, XL Overbury, SH Xu, XC Song, CS AF Wang, Xiaoxing Schwartz, Viviane Clark, Jason C. Ma, Xiaoliang Overbury, Steven H. Xu, Xiaochun Song, Chunshan TI Infrared Study of CO2 Sorption over "Molecular Basket" Sorbent Consisting of Polyethylenimine-Modified Mesoporous Molecular Sieve SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID SOLID AMINE SORBENT; CARBON-DIOXIDE; GAS-MIXTURES; NATURAL-GAS; FUNCTIONALIZED SBA-15; HIGH-TEMPERATURES; ACTIVATED CARBON; ADSORPTION; CAPTURE; SEPARATION AB An infrared study has been conducted on CO2 sorption into nanoporous CO2 "molecular basket" sorbents prepared by loading polyethylenimine (PEI) into mesoporous molecular sieve SBA-15. IR results from DRIFTS showed that a part of loaded PEI is anchored on the surface of SBA-15 through the interaction between amine groups and isolated surface silanol groups. Raising the temperature from 25 to 75 degrees C increased the molecular flexibility of PEI loaded in the mesopore channels, which may partly contribute to the increase of CO2 sorption capacity at higher temperatures. CO2 sorption/desorption behavior studied by in situ transmission FTIR showed that CO2 is sorbed on amine sites through the formation of alkylammonium carbamates and absorbed into the multiple layers of PEI located in mesopores of SBA-15. A new observation by in situ IR is that two broad IR bands emerged at 2450 and 2160 cm(-1) with CO2 flowing over PEI(50)/SBA-15, which could be attributed to chemically sorbed CO2 Species on PEI molecules inside the mesopores of SBA-15. The intensities of these two bands also increased with increasing CO, exposure time and with raising CO2 sorption temperature. By comparison of the CO2 sorption rate at 25 and 75 degrees C in terms of differential IR intensities, it was found that CO2 sorption over molecular basket sorbent includes two rate regimes which suggest two distinct steps: rapid sorption on exposed outer surface layers of PEI (controlled by sorption affinity or thermodynamics) and the diffusion and sorption inside the bulk of multiple layers of PEI (controlled by diffusion). The sorption Of CO2 is reversible at 75 degrees C. Comparative IR examination of the CO2 sorption/desorption spectra on dry and prewetted PEI/SBA-15 sorbent revealed that presorbed water does not significantly affect the CO2-amine interaction patterns. C1 [Wang, Xiaoxing; Ma, Xiaoliang; Xu, Xiaochun; Song, Chunshan] Penn State Univ, EMS Energy Inst, Clean Fuels & Catalysis Program, University Pk, PA 16802 USA. [Wang, Xiaoxing; Ma, Xiaoliang; Xu, Xiaochun; Song, Chunshan] Penn State Univ, Dept Energy & Mineral Engn, University Pk, PA 16802 USA. [Schwartz, Viviane; Clark, Jason C.; Overbury, Steven H.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Song, CS (reprint author), Penn State Univ, EMS Energy Inst, Clean Fuels & Catalysis Program, 209 Acad Projects Bldg, University Pk, PA 16802 USA. EM csong@psu.edu RI Song, Chunshan/B-3524-2008; Wang, Xiaoxing/A-5365-2010; Overbury, Steven/C-5108-2016 OI Song, Chunshan/0000-0003-2344-9911; Wang, Xiaoxing/0000-0002-1561-3016; Overbury, Steven/0000-0002-5137-3961 FU Pennsylvania Energy Development Authority; PA Department of Environmental Protection; US Office of Naval Research; U.S. Department of Energy FX The present research is supported in part by the Pennsylvania Energy Development Authority through PA Department of Environmental Protection and by the US Office of Naval Research based on our earlier study funded by US Department of Energy through National Energy Technology Laboratory. The in situ transmission FTIR study at Oak Ridge National Laboratory's Center for Nanophase Materials Sciences was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. The authors wish to thank all of the above government agencies. NR 61 TC 181 Z9 189 U1 11 U2 101 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD APR 30 PY 2009 VL 113 IS 17 BP 7260 EP 7268 DI 10.1021/jp809946y PG 9 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 438BA UT WOS:000265529700056 ER PT J AU Zorn, DD Albao, MA Evans, JW Gordon, MS AF Zorn, Deborah D. Albao, Marvin A. Evans, J. W. Gordon, Mark S. TI Binding and Diffusion of Al Adatoms and Dimers on the Si(100)-2 x 1 Reconstructed Surface: A Hybrid QM/MM Embedded Cluster Study SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID MM3 FORCE-FIELD; SCANNING-TUNNELING-MICROSCOPY; SELF-CONSISTENT-FIELD; LOW-COVERAGE PHASES; AB-INITIO CLUSTER; MOLECULAR-MECHANICS; CYCLOADDITION REACTIONS; ENERGY MINIMIZATION; SI(001) SURFACE; ADSORPTION AB When group III metals are deposited onto the Si(100)-2 x 1 reconstructed surface they are observed to self-assemble into chains of atoms that are one atom high by one atom wide. To better understand this one-dimensional island growth, ab initio electronic structure calculations on the structures of Al atoms on silicon clusters have been performed. Natural orbital occupation numbers show that these systems display significant diradical character, suggesting that a multireference method is needed. A multiconfiguration self-consistent field (MCSCF) calculation with a 6-31G(d) basis set and effective core potentials was used to optimize geometries. The surface integrated molecular orbital molecular mechanics embedded cluster method was used to take the surface chemistry into account, as well as the structure of an extended surface region. Potential energy surfaces for binding of Al adatoms and At-Al dimers on the surface were determined, and the former was used to obtain a preliminary assessment of the surface diffusion of adatoms. Hessians were calculated to characterize stationary points, and improved treatment of dynamic electron correlation was accomplished using multireference second order perturbation theory (MRMP2) single-point energy calculations. Results from the MRMP2//MCSCF embedded cluster calculations are compared with those from QM-only cluster calculations, embedded cluster unrestricted density functional theory calculations, and previous Car-Parrinello DFT studies. C1 [Zorn, Deborah D.; Gordon, Mark S.] US DOE, Ames Lab, Ames, IA 50011 USA. [Zorn, Deborah D.; Gordon, Mark S.] Iowa State Univ, Dept Chem, Ames, IA 50011 USA. [Albao, Marvin A.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Evans, J. W.] Iowa State Univ, Dept Math, Ames, IA 50011 USA. RP Gordon, MS (reprint author), US DOE, Ames Lab, Ames, IA 50011 USA. EM mark@si.msg.chem.iastate.edu FU SciDAC; Chemical Physics Computational Chemistry Programs; Division of Chemical Sciences, Basic Energy Sciences, U.S. Department of Energy (USDOE) [DE-AC02-07CH11358] FX This work was supported by the SciDAC and Chemical Physics Computational Chemistry Programs and Division of Chemical Sciences, Basic Energy Sciences, U.S. Department of Energy (USDOE). The work was performed at Ames Laboratory, which is operated for the USDOE by Iowa State University under Contract no. DE-AC02-07CH11358. The authors also acknowledge Drs. Mike Schmidt and Jamie Rintelman and Professors Cheol Ho Choi and Tim Dudley for many helpful discussions. NR 57 TC 14 Z9 14 U1 2 U2 10 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD APR 30 PY 2009 VL 113 IS 17 BP 7277 EP 7289 DI 10.1021/jp8105937 PG 13 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 438BA UT WOS:000265529700058 ER PT J AU Kim, DH Szanyi, J Kwak, JH Wang, XQ Hanson, JC Engelhard, M Peden, CHF AF Kim, Do Heui Szanyi, Janos Kwak, Ja Hun Wang, Xianqin Hanson, Jonathan C. Engelhard, Mark Peden, Charles H. F. TI Effects of Sulfation Level on the Desulfation Behavior of Presulfated Pt-BaO/Al2O3 Lean NOx Trap Catalysts: A Combined H-2 Temperature-Programmed Reaction, in Situ Sulfur K-Edge X-ray Absorption Near-Edge Spectroscopy, X-ray Photoelectron Spectroscopy, and Time-Resolved X-ray Diffraction Study SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID REDUCTION CATALYST; STORAGE-REDUCTION; REGENERATION; XANES; MECHANISM; BAO/AL2O3; XAFS; BAO AB Desulfation by hydrogen of presulfated Pt (2 wt %)-BaO(20 wt %)/Al2O3 with various sulfur loading (S/Ba = 0. 12, 0.3 1, and 0.62) were investigated by combining H-2 temperature programmed reaction (TPRX), X-ray photoelectron spectroscopy (XPS), in situ sulfur K-edge X-ray absorption near-edge spectroscopy (XANES), and synchrotron time-resolved X-ray diffraction (TRARD) techniques. We find that the amount of HS desorbed during the desulfation in the H-2 TPRX experiments is not proportional to the amount of initial sulfur loading. The results of both in situ sulfur K-edge XANES and TR-XRD show that at low sulfur loadings, sulfates were transformed to a BaS phase and remained in the catalyst rather than being removed as H2S. On the other hand, when the deposited sulfur level exceeded a certain threshold (at least S/Ba = 0.31) sulfates were reduced to form H2S, and the relative amount of the residual sulfide species in the catalyst was much less than at low sulfur loading. Unlike samples with high sulfur loading (e.g., S/Ba = 0.62), H2O did not promote the desulfation for the sample with S/Ba of 0.12, implying that the formed BaS species originating from the reduction of sulfates at low sulfur loading are more stable to hydrolysis. The results of this combined spectroscopy investigation provide clear evidence to show that sulfates at low sulfur loadings are less likely to be removed as H2S and have a greater tendency to be transformed to BaS on the material, leading to the conclusion that desulfation behavior of Pt-BaO/Al2O3 lean NOx trap catalysts is markedly dependent on the sulfation levels. C1 [Kim, Do Heui; Szanyi, Janos; Kwak, Ja Hun; Engelhard, Mark; Peden, Charles H. F.] Pacific NW Natl Lab, Inst Interfacial Catalysis, Richland, WA 99354 USA. [Wang, Xianqin] New Jersey Inst Technol, Dept Chem Biol & Pharmaceut Engn, Newark, NJ 07102 USA. [Hanson, Jonathan C.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. RP Kim, DH (reprint author), Pacific NW Natl Lab, Inst Interfacial Catalysis, Richland, WA 99354 USA. EM do.kim@pnl.gov RI Engelhard, Mark/F-1317-2010; Kwak, Ja Hun/J-4894-2014; Kim, Do Heui/I-3727-2015; Hanson, jonathan/E-3517-2010 FU U.S. Department of Energy (DOE); Office of Science/Basic Energy Sciences [DE-AC02-98CH10886]; U.S. DOE, Office of Energy Efficiency and Renewable Energy/Vehicle Technologies Program; Battelle Memorial Institute [DE-AC06-76RLO 1830]; U.S. DOE, Office of Science/Basic Energy Sciences, Division of Chemical Sciences [DE-AC02-98CH10086] FX The authors would like to thank Dr. Wen Wen, Dr. Khalid Syed, and Nebojsa Marinkovic at the National Synchrotron Light Source (NSLS) for help with the TR-XRD and sulfur K-edge XANES spectroscopy measurements. Use of the NSLS at Brookhaven National Laboratory (BNL), was supported by the U.S. Department of Energy (DOE), Office of Science/Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. The authors also give thanks to Dr. Simon Bare (UOP) for help with the design of our in situ S XANES reactor. Financial support was provided by the U.S. DOE, Office of Energy Efficiency and Renewable Energy/Vehicle Technologies Program. Many of the experiments were performed in the Environmental Molecular Sciences Laboratory (EMSL) at Pacific Northwest National Laboratory (PNNL). The EMSL is a national scientific user facility supported by the U.S. DOE, Office of Science/Biological and Environmental Research. PNNL is a multiprogram national laboratory operated for the U.S. DOE by Battelle Memorial Institute under Contract DE-AC06-76RLO 1830. J.C.H. was supported through Contract DE-AC02-98CH10086 with the U.S. DOE, Office of Science/Basic Energy Sciences, Division of Chemical Sciences. NR 24 TC 15 Z9 15 U1 1 U2 15 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD APR 30 PY 2009 VL 113 IS 17 BP 7336 EP 7341 DI 10.1021/jp900304h PG 6 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 438BA UT WOS:000265529700065 ER PT J AU Starr, DE Weis, C Yamamoto, S Nilsson, A Bluhm, H AF Starr, David E. Weis, Christoph Yamamoto, Susumu Nilsson, Anders Bluhm, Hendrik TI NO2 Adsorption on Ag(100) Supported MgO(100) Thin Films: Controlling the Adsorption State with Film Thickness SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID ULTRATHIN OXIDE-FILMS; LEAN-BURN ENGINE; METAL; CHEMISTRY; MGO; PHOTOEMISSION; SPECTROSCOPY; INTERFACES; SURFACES; CATALYST AB Using photoemission and X-ray absorption spectroscopy, we compare the adsorption properties of NO2 at 300 K on MgO(100)/Ag(100) films with thicknesses varying from 2 to 8 ML and NO2 exposures ranging from 0 L to over 25 000 L. We find that NO2 is stable on 2 ML MgO(100) films, where it is the most abundant adsorbate on the surface (similar to 0.35 ML) for exposures up to at least similar to 25 000 L. At high exposures, NO3 also forms on the surface of 2 ML thick films but is a minority species. In contrast, films thicker than similar to 5 ML show conversion to NO3 beginning already at low exposures. At high exposure to NO2, NO3 is the only species present on the surface. Shifts to lower binding energy of the O 1s spectra with adsorbed species indicate that the NO2 adsorbed on the thin MgO(100) films is likely negatively charged and forms NO2-. A more gradual binding energy shift is observed on thicker films and is likely associated with the slower formation of NO3- Measurements on MgO(1.00) films of various thicknesses indicate that for films thicker than 5 ML, the NO2 adsorption properties are similar and most likely correspond to surfaces of bulk MgO(100). We discuss potential mechanisms for NO2 charging and stabilization on the thin MgO(100) films in the context of recent literature. C1 [Starr, David E.; Bluhm, Hendrik] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Weis, Christoph] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Nilsson, Anders] Stockholm Univ, Albanova Univ Ctr, SE-10691 Stockholm, Sweden. Stanford Synchrotron Radiat Lab, Menlo Pk, CA 94025 USA. RP Bluhm, H (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. EM hbluhm@lbl.gov RI Yamamoto, Susumu/C-1584-2008; Nilsson, Anders/E-1943-2011 OI Yamamoto, Susumu/0000-0002-6116-7993; Nilsson, Anders/0000-0003-1968-8696 FU Office of Science, Biological and Environmental Research, Environmental Remediation Sciences Division (ERSD); U.S. Department of Energy [DE-AC02-05CH11231]; National Science Foundation [CHE-0431425] FX We thank Thomas Risse and Martin Sterrer of the Fritz Haber Institute, Berlin, as well as Miquel Salmeron of Lawrence Berkeley National Laboratory (LBNL) for helpful and insightful discussions. Ed Wong and Tolek Tyliszczak (both LBNL) are acknowledged for their continued support at the beamline. This work was supported by the Office of Science, Biological and Environmental Research, Environmental Remediation Sciences Division (ERSD), U.S. Department of Energy under Contract no. DE-AC02-05CH11231 and by the National Science Foundation under Contract no. CHE-0431425 (Stanford Environmental Molecular Science Institute). NR 39 TC 22 Z9 22 U1 2 U2 12 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD APR 30 PY 2009 VL 113 IS 17 BP 7355 EP 7363 DI 10.1021/jp900410v PG 9 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 438BA UT WOS:000265529700067 ER PT J AU Rodriguez, JA Evans, J Graciani, J Park, JB Liu, P Hrbek, J Sanz, JF AF Rodriguez, Jose A. Evans, Jaime Graciani, Jesus Park, Joon-Bum Liu, Ping Hrbek, Jan Fdez Sanz, Javier TI High Water-Gas Shift Activity in TiO2(110) Supported Cu and Au Nanoparticles: Role of the Oxide and Metal Particle Size SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID TOTAL-ENERGY CALCULATIONS; WAVE BASIS-SET; GOLD NANOPARTICLES; TITANIUM-DIOXIDE; CO OXIDATION; CATALYSTS; SURFACE; DENSITY; MECHANISM; SO2 AB The deposition of Cu and Au nanoparticles on TiO2(110) produces very good catalysts for the WGS. Although bulk metallic gold is not active as a WGS catalyst, Au nanoparticles supported on TiO2 (110) have an activity comparable to that of Cu/ZnO(000 (1) over bar). Cu/TiO2(110) is clearly a better catalyst than Cu/ZnO(000 (1) over bar) or Au/TiO2(110). The catalysts that have the highest activity for the WGS have also the lowest apparent activation energy. On Cu(111) and Cu(100), the aparent activation energies are 18.1 and 15.2 kcal/mol, respectively. The apparent activation energy decreases to 12.4 kcal/mol on Cu/ZnO(000 (1) over bar), 10.2 on Au/TiO2 (110), and 8.3 kcal/mol on Cu/TiO2(110). The Cu <-> titania interactions are substantially stronger than the Au <-> titania interactions. This has an effect on the growth mode of the metals on TiO2(110). In images of scanning tunneling miscroscopy, the average particle size in Cu/TiO2(110) is smaller than that in Au/TiO2(110). The Cu particles are dispersed on the terraces and steps of the oxide surface, whereas the Au particles concentrate on the steps. The morphology of Cu/TiO2(110) favors high catalytic activity. The results of density functional calculations indicate that the metal-oxide interface plays an essential role in the catalysis, helping in the dissociation of water and in the formation of an OCOH intermediate, which decomposes to yield CO2 and hydrogen. C1 [Rodriguez, Jose A.; Graciani, Jesus; Park, Joon-Bum; Liu, Ping; Hrbek, Jan] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. [Evans, Jaime] Cent Univ Venezuela, Fac Ciencias, Caracas 1020A, Venezuela. [Graciani, Jesus; Fdez Sanz, Javier] Univ Seville, Fac Quim, Dept Quim Fis, E-41012 Seville, Spain. RP Rodriguez, JA (reprint author), Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. RI Graciani, Jesus/B-1136-2009; Hrbek, Jan/I-1020-2013 FU Ministerio de Educacion y Ciencia, MEC, from Spain [MAT200804918]; Junta de Andalucia [FQM-132]; U.S. Department of Energy, Division of Chemical Sciences [DE-AC02-98CH10886] FX This work was funded by the Ministerio de Educacion y Ciencia, MEC, from Spain (project MAT200804918), and the Junta de Andalucia (project FQM-132). We also thank the computational resources provided by the Barcelona Supercomputing Center - Centro Nacional de Supercomputacion (Spain) and the computing facilities at the Center for Functional Nanomaterials of Brookhaven National Laboratory. The work done at Brookhaven National Laboratory was supported by the U.S. Department of Energy, Division of Chemical Sciences (DE-AC02-98CH10886). J.E. thanks INTEVEP for a travel grant that made possible a part of this project. NR 44 TC 135 Z9 135 U1 12 U2 118 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD APR 30 PY 2009 VL 113 IS 17 BP 7364 EP 7370 DI 10.1021/jp900483u PG 7 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 438BA UT WOS:000265529700068 ER PT J AU Lee, S Noh, JH Bae, ST Cho, IS Kim, JY Shin, H Lee, JK Jung, HS Hong, KS AF Lee, Sangwook Noh, Jun Hong Bae, Shin-Tae Cho, In-Sun Kim, Jin Young Shin, Hyunho Lee, Jung-Kun Jung, Hyun Suk Hong, Kug Sun TI Indium-Tin-Oxide-Based Transparent Conducting Layers for Highly Efficient Photovoltaic Devices SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID SENSITIZED SOLAR-CELLS; ELECTRICAL-PROPERTIES; THIN-FILMS; ELECTRODE; PHOTOCURRENT; PERFORMANCE; CIRCUIT; LIGHT; PHOTOCATALYSIS; NANOPARTICLES AB Additional hydrogen (H(2)) annealing and subsequent electrochemical treatment are found to make tin-doped indium oxide (ITO)-based photoelectrodes suitable for highly efficient dye sensitized solar cells. The additional H(2) annealing process recovered the electrical conductivity of the ITO film the same as its initial high conductivity, which enhanced the charge collecting property. Moreover, the employment of electrochemical oxidation of TiO(2)/ITO photoelectrode improved the energy conversion efficiency of the ITO-based dye-sensitized solar cells (DSSC), higher than that of a conventional FTO-based DSSC. Electrochemical impedance analysis showed that the H(2) annealing process reduced the internal resistance of the cell, i.e., the resistance of the ITO and the Schottky barrier at the TiO(2)/ITO interface were reduced, and that the electrochemical treatment recovered the diodelike characteristics of the DSSC by retarding back electron transfer from the photoelectrode to the electrolyte. The present work demonstrates that thermally and electrochemically modified ITO-based photoelectrode is another alternative to the conventionally used FTO-based photoelectrode. C1 [Jung, Hyun Suk] Kookmin Univ, Sch Adv Mat Engn, Seoul 136702, South Korea. [Lee, Sangwook; Noh, Jun Hong; Bae, Shin-Tae; Cho, In-Sun; Hong, Kug Sun] Seoul Natl Univ, Sch Mat Sci & Engn, Seoul 151744, South Korea. [Kim, Jin Young] Chem & Biosci Ctr, Natl Renewable Energy Lab, Golden, CO 80401 USA. [Shin, Hyunho] Kangnung Natl Univ, Dept Ceram Engn, Kangnung 210702, South Korea. [Lee, Jung-Kun] Univ Pittsburgh, Dept Mech Engn & Mat Sci, Pittsburgh, PA 15260 USA. RP Jung, HS (reprint author), Kookmin Univ, Sch Adv Mat Engn, Jeongneung Dong, Seoul 136702, South Korea. EM hjung@kookmin.ac.kr; kshongss@plaza.snu.ac.kr RI Jung, Hyun Suk/D-4745-2011; Kim, Jin Young/B-7077-2012; Cho, In Sun/H-6557-2011; Lee, Sangwook/O-9166-2015; Jung, Hyun Suk/H-3659-2015; OI Kim, Jin Young/0000-0001-7728-3182; Lee, Sangwook/0000-0002-3535-0241; Jung, Hyun Suk/0000-0002-7803-6930 FU Korea government (MOST) [R01-2007-000-11075-0]; Korean Government (MOEHRD) [KRF-2007-313-D00345]; ERC Program (CMPS, Center for Materials and Processes of Self-Assembly) of MOST/KOSEF [R11-2005-048-00000-0]; Seoul RBD program [CR070027C092852]; Kookmin University FX This work was supported by the Korea Science and Engineering Foundation (KOSEF) grant funded by the Korea government (MOST) (R01-2007-000-11075-0) (RIAM). The portion of Kookmin University was supported by the Korea Research Foundation Grant funded by the Korean Government (MOEHRD) (KRF-2007-313-D00345), and the ERC Program (CMPS, Center for Materials and Processes of Self-Assembly) of MOST/KOSEF (R11-2005-048-00000-0). This work was also supported by the Seoul R&BD program (CR070027C092852) and the research program 2008 of Kookmin University. NR 38 TC 23 Z9 23 U1 1 U2 11 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD APR 30 PY 2009 VL 113 IS 17 BP 7443 EP 7447 DI 10.1021/jp809011a PG 5 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 438BA UT WOS:000265529700079 ER PT J AU Hu, MZ Easterly, CE AF Hu, Michael Z. Easterly, Clay E. TI A novel thermal electrochemical synthesis method for production of stable colloids of "naked" metal (Ag) nanocrystals SO MATERIALS SCIENCE & ENGINEERING C-BIOMIMETIC AND SUPRAMOLECULAR SYSTEMS LA English DT Article DE Nanocrystals; Metallic nanoparticles; Solution synthesis; Silver; Electrochemical ID MONODISPERSE SILVER NANOPARTICLES; CHEMICAL-REDUCTION METHOD; SELF-ORGANIZATION; PHOTOCHEMICAL REDUCTION; ANTIMICROBIAL ACTIVITY; PHYSICAL-PROPERTIES; OPTICAL-PROPERTIES; PARTICLES; SIZE; MICROEMULSIONS AB This paper describes a novel thermal electrochemical synthesis (TECS) method for producing aqueous solutions (or sols) that contain metal silver nanocrystals as small as a few nanometers. The TECS method requires mild conditions (25 to 100 degrees C, low voltage (I to 50 V DC) on silver electrodes, and water or simple aqueous solutions as the reaction medium. Furthermore, a tubular dialysis membrane that surrounds the electrodes provides favorable conditions for producing nanosized (less than 10 nm) silver nanocrystals. Unlike nanocrystals reported in the literature, our nanocrystals have several unique features: (1) small nanometer-scale size, (2) "nakedness" (i.e., surfaces of metal nanocrystals are free of organic ligands or capping molecules and need no dispersant in synthesis solutions), and (3) colloidal stability in water solutions. It was discovered that silver nanoparticles with initially large size distribution can be homogenized into near-monodispersed colloidal sol by a low-power (less than 15 mW) He-Ne laser exposure treatment. The combination of the TECS technique and the laser treatment could lead to a new technology that produces metal nanoparticles that are naked, colloidally stable, and uniformly sized. In the presence of a stabilizing agent (also a supporting electrolyte) such as polyvinyl alcohol, high yields of silver nanoparticles (less than 100 nm) in the form of thick milky sols are produced. (C) 2009 Published by Elsevier B.V. C1 [Hu, Michael Z.] Oak Ridge Natl Lab, Nucl Sci & Technol Div, Oak Ridge, TN 37831 USA. [Easterly, Clay E.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. RP Hu, MZ (reprint author), Oak Ridge Natl Lab, Nucl Sci & Technol Div, Oak Ridge, TN 37831 USA. EM hum1@ornl.gov OI Hu, Michael/0000-0001-8461-9684 FU U.S. Department of Energy FX We would like to thank Oak Ridge National Laboratory (ORNL) for its financial sponsorship through the Laboratory Directed Research and Development seed money fund and partial funding support from the U.S. Department of Energy Basic Energy Sciences materials chemistry program. We would also like to express our thanks to Cameron Ericson, an intern student from Lawrence University (Appleton, Wisconsin) for some experimental runs. We are also grateful to Lawrence F. Allard Jr. at the ORNL High Temperature Materials Laboratory for its help with electronic microscopy. NR 48 TC 10 Z9 11 U1 2 U2 21 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0928-4931 J9 MAT SCI ENG C-BIO S JI Mater. Sci. Eng. C-Biomimetic Supramol. Syst. PD APR 30 PY 2009 VL 29 IS 3 BP 726 EP 736 DI 10.1016/j.msec.2009.01.018 PG 11 WC Materials Science, Multidisciplinary SC Materials Science GA 452DP UT WOS:000266520400013 ER PT J AU Pastore, S Schiavilla, R Goity, JL AF Pastore, S. Schiavilla, R. Goity, J. L. TI ELECTROMAGNETIC PROCESSES IN chi EFT SO MODERN PHYSICS LETTERS A LA English DT Article ID THERMAL-NEUTRON CAPTURE; NUCLEAR-FORCES; LAGRANGIANS; DEUTERIUM; CURRENTS AB Nuclear electromagnetic currents derived in a chiral-effective-field-theory frame work including explicit nucleons, Delta isobars, and pions upto N(2)LO, i.e. ignoring loop corrections, are used in a study of neutron radiative captures on proton sand deuterons at thermal energies, and of A=2 and 3 nuclei magnetic moments. With the strengths of the Delta-excitation currents determined to reproduce the n-p cross section and isovector combination of the trinucleon magnetic moments, we find that the crosssection and photon circular polarization parameter, measured respectively in n-d and (n) over right arrown-d processes, are significantly under predicted by theory. C1 [Pastore, S.; Schiavilla, R.] Old Dominion Univ, Dept Phys, Norfolk, VA 23529 USA. [Schiavilla, R.; Goity, J. L.] Jefferson Lab, Ctr Theory, Newport News, VA 23606 USA. [Goity, J. L.] Hampton Univ, Dept Phys, Hampton, VA 23668 USA. RP Pastore, S (reprint author), Old Dominion Univ, Dept Phys, Norfolk, VA 23529 USA. EM pastore@jlab.org; schiavil@jlab.org; goity@jlab.org FU U.S. Department of Energy, Office of Nuclear Physics [DE-AC05-06OR23177]; NSF [PHY-0555559]; National Energy Research Supercomputer Center FX We would like to thank E. Epelbaum, L.Girlanda, A. Kievsky, L.E. Marcucci, and M.Viviani for discussions. The work of R.S. is supported by the U.S. Department of Energy, Office of Nuclear Physics, under contract DE-AC05-06OR23177, while that of J.L.G. by NSF grant PHY-0555559. The calculations were made possible by grants of computing time from the National Energy Research Supercomputer Center. NR 19 TC 1 Z9 1 U1 0 U2 0 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 0217-7323 J9 MOD PHYS LETT A JI Mod. Phys. Lett. A PD APR 30 PY 2009 VL 24 IS 11-13 BP 931 EP 936 PG 6 WC Physics, Nuclear; Physics, Particles & Fields; Physics, Mathematical SC Physics GA 445GU UT WOS:000266039300031 ER PT J AU Loiseau, B El-Bennich, B Furman, A Kaminski, R Lesniak, L Moussallam, B AF Loiseau, B. El-Bennich, B. Furman, A. Kaminski, R. Lesniak, L. Moussallam, B. TI pi K INTERACTION EFFECTS ON CP VIOLATION IN B -> K pi(+) pi(-) DECAYS SO MODERN PHYSICS LETTERS A LA English DT Article DE B decays and QCD factorization; strange pi K form factors; CP violation AB We apply QCD factorization to the quasi two-body B -> (K pi)pi decays where the (K pi)(-) pair effective mass is limited to 1.8 GeV. Our strong interaction phases constrained by theory and pi K experimental data yield useful information for studies of CP violation. C1 [Loiseau, B.] Univ Paris 06, LPNHE, IN2P3, CNRS,Grp Theorie, F-75252 Paris, France. [El-Bennich, B.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Kaminski, R.; Lesniak, L.] Henryk Niewodniczanski Inst Nucl Phys, Div Theoret Phys, PL-31342 Krakow, Poland. [Moussallam, B.] Univ Paris 11, Inst Phys Nucl, CNRS, F-91406 Orsay, France. [Loiseau, B.] Univ Paris 07, F-75252 Paris, France. RP Loiseau, B (reprint author), Univ Paris 06, LPNHE, IN2P3, CNRS,Grp Theorie, 4 Pl Jussieu, F-75252 Paris, France. EM loiseau@lpnhe.in2p3.fr FU IN2P3 and Polish Laboratories [08-127]; PAN and CNRS [19481]; Department of Energy, Office of Nuclear Physics [DE-AC02-06CH11357] FX We acknowledge helpful comments from J-P. Dedonder and O.Leitner. This work was supported by the agreements between IN2P3 and Polish Laboratories (collaboration N degrees 08-127), between PAN and CNRS (collaboration N degrees 19481) and by the Department of Energy, Office of Nuclear Physics, contract No. DE-AC02-06CH11357. NR 9 TC 0 Z9 0 U1 0 U2 1 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 0217-7323 J9 MOD PHYS LETT A JI Mod. Phys. Lett. A PD APR 30 PY 2009 VL 24 IS 11-13 BP 960 EP 963 PG 4 WC Physics, Nuclear; Physics, Particles & Fields; Physics, Mathematical SC Physics GA 445GU UT WOS:000266039300037 ER PT J AU Sego, LH Reynolds, MR Woodall, WH AF Sego, Landon H. Reynolds, Marion R., Jr. Woodall, William H. TI Risk-adjusted monitoring of survival times SO STATISTICS IN MEDICINE LA English DT Article DE control chart; CUSUM; monitoring; risk adjustment; survival time ID OUTCOMES; CUSUM; PERFORMANCE; SCHEMES; CHARTS AB We consider the monitoring of surgical outcomes, where each patient has a different risk of post-operative mortality due to risk factors that exist prior to the surgery. We propose a risk-adjusted (RA) survival time CUSUM chart (RAST CUSUM) for monitoring a continuous, time-to-event variable that may be right-censored. Risk adjustment is accomplished using accelerated failure time regression models. We compare the average run length performance of the RAST CUSUM chart with the RA Bernoulli CUSUM chart using data from cardiac surgeries to motivate the details of the comparison. The comparisons show that the RAST CUSUM chart is more efficient at detecting a sudden increase in the odds of mortality than the RA Bernoulli CUSUM chart, especially when the fraction of censored observations is relatively low or when a small increase in the odds of mortality occurs. We also discuss the impact of the amount of training data used to estimate chart parameters as well as the implementation of the RAST CUSUM chart during prospective monitoring. Copyright (C) 2009 John Wiley & Sons, Ltd. C1 [Sego, Landon H.] Pacific NW Natl Lab, Stat & Sensor Analyt Grp, Richland, WA 99352 USA. [Reynolds, Marion R., Jr.; Woodall, William H.] Virginia Polytech Inst & State Univ, Dept Stat, Richland, WA USA. [Reynolds, Marion R., Jr.] Virginia Polytech Inst & State Univ, Dept Forestry, Richland, WA USA. RP Sego, LH (reprint author), POB 999,MS K6-08, Richland, WA 99352 USA. EM Landon.Sego@pnl.gov NR 23 TC 25 Z9 25 U1 0 U2 4 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0277-6715 EI 1097-0258 J9 STAT MED JI Stat. Med. PD APR 30 PY 2009 VL 28 IS 9 BP 1386 EP 1401 DI 10.1002/sim.3546 PG 16 WC Mathematical & Computational Biology; Public, Environmental & Occupational Health; Medical Informatics; Medicine, Research & Experimental; Statistics & Probability SC Mathematical & Computational Biology; Public, Environmental & Occupational Health; Medical Informatics; Research & Experimental Medicine; Mathematics GA 434YG UT WOS:000265309600005 PM 19247982 ER PT J AU Bouree, JE Mahan, AH AF Bouree, Jean-Eric Mahan, A. Harv TI Fifth international conference on hot-wire CVD (Cat-CVD) process Preface SO THIN SOLID FILMS LA English DT Editorial Material C1 [Bouree, Jean-Eric] Ecole Polytech, Phys Interfaces & Couches Minces Lab, F-91128 Palaiseau, France. [Mahan, A. Harv] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Bouree, JE (reprint author), Ecole Polytech, Phys Interfaces & Couches Minces Lab, F-91128 Palaiseau, France. EM jean-eric.bouree@polytechnique.edu; harv_mahan@nrel.gov NR 0 TC 1 Z9 1 U1 0 U2 1 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0040-6090 J9 THIN SOLID FILMS JI Thin Solid Films PD APR 30 PY 2009 VL 517 IS 12 BP 3413 EP 3414 DI 10.1016/j.tsf.2009.01.016 PG 2 WC Materials Science, Multidisciplinary; Materials Science, Coatings & Films; Physics, Applied; Physics, Condensed Matter SC Materials Science; Physics GA 448YB UT WOS:000266296800001 ER PT J AU Martin, IT Branz, HM Stradins, P Young, DL Reedy, RC Teplin, CW AF Martin, Ina T. Branz, Howard M. Stradins, Paul Young, David L. Reedy, Robert C. Teplin, Charles W. TI Doping of high-quality epitaxial silicon grown by hot-wire chemical vapor deposition near 700 degrees C SO THIN SOLID FILMS LA English DT Article; Proceedings Paper CT 5th International Conference on Hot-Wire CVD (Cat-CVD) Process CY AUG 20-24, 2008 CL Massachusetts Inst Technol, Cambridge, MA HO Massachusetts Inst Technol DE Hot-wire; Mobility; Silicon; Epitaxy; Hall; Doping; SIMS; Photovoltaics ID ION-ASSISTED DEPOSITION; FILM SOLAR-CELLS; POLYCRYSTALLINE SILICON; TEMPERATURE; BORON AB We demonstrate that epitaxial layers with a wide range of controllable dopant densities (7 x 10(15)-3 x 10(18)/cm(3) and 10(17)-10(18)/cm(3) for n-type and p-type, respectively) can be grown on wafer substrates at 700 +/- 25 degrees C by hot-wire chemical vapor deposition. Phosphorus from PH(3) is incorporated into the film more efficiently than silicon from SiH(4), leading to efficient doping. Comparison of Hall carrier concentrations to secondary ion mass spectrometry atomic dopant concentration shows that all incorporated dopants are electrically active. The Hall measurements also reveal that the electron mobility in the P-doped films is close to the impurity-scattering limit for crystal Si wafers at room temperature, indicating that our deposited epitaxial materials are high quality. (C) 2009 Elsevier B.V. All rights reserved. C1 [Martin, Ina T.; Branz, Howard M.; Stradins, Paul; Young, David L.; Reedy, Robert C.; Teplin, Charles W.] Natl Renewable Energy Lab, Natl Ctr Photovolta, Golden, CO 80401 USA. RP Martin, IT (reprint author), Natl Renewable Energy Lab, Natl Ctr Photovolta, Golden, CO 80401 USA. EM Ina_Martin@nrel.gov RI Martin, Ina/J-9484-2012 NR 13 TC 18 Z9 18 U1 0 U2 8 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0040-6090 J9 THIN SOLID FILMS JI Thin Solid Films PD APR 30 PY 2009 VL 517 IS 12 BP 3496 EP 3498 DI 10.1016/j.tsf.2009.01.059 PG 3 WC Materials Science, Multidisciplinary; Materials Science, Coatings & Films; Physics, Applied; Physics, Condensed Matter SC Materials Science; Physics GA 448YB UT WOS:000266296800022 ER PT J AU Mahan, AH Xu, Y Gedvilas, LM Williamson, DL AF Mahan, A. H. Xu, Y. Gedvilas, L. M. Williamson, D. L. TI A direct correlation between film structure and solar cell efficiency for HWCVD amorphous silicon germanium alloys SO THIN SOLID FILMS LA English DT Article; Proceedings Paper CT 5th International Conference on Hot-Wire CVD (Cat-CVD) Process CY AUG 20-24, 2008 CL Massachusetts Inst Technol, Cambridge, MA HO Massachusetts Inst Technol DE Amorphous silicon germanium; Hot wire CVD; H bonding; Solar cells ID SIGE-H ALLOYS; HOT-WIRE; MICROSTRUCTURE; DEPOSITION AB The film structure and H bonding of high deposition rate a-SiGe:H i-layers, deposited by HWCVD and containing similar to 40 at.% Ge, have been investigated using deposition conditions which replicate those used in n-i-p solar cell devices. Increasing the germane source gas depletion in HWCVD causes not only a decrease in solar cell efficiency from 8.64% to less than 7.0%, but also an increase in both the i-layer H preferential attachment ratio (PA) and the film microstructure fraction (R*). Measurements of the XRD medium range order over a wide range of germane depletion indicate that this order is already optimum for the HWCVD i-layers, suggesting that energetic bombardment of a-SiGe:H films may not always be necessary to achieve well ordered films. Preliminary structural comparisons are also made between HWCVD and PECVD device layers. (C) 2009 Elsevier B.V. All rights reserved. C1 [Mahan, A. H.; Xu, Y.; Gedvilas, L. M.] NREL, Golden, CO 80401 USA. [Williamson, D. L.] Colorado Sch Mines, Dept Phys, Golden, CO 80401 USA. RP Mahan, AH (reprint author), NREL, 1617 Cole Blvd, Golden, CO 80401 USA. EM harv_mahan@nrel.gov NR 19 TC 9 Z9 9 U1 0 U2 11 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0040-6090 J9 THIN SOLID FILMS JI Thin Solid Films PD APR 30 PY 2009 VL 517 IS 12 BP 3532 EP 3535 DI 10.1016/j.tsf.2009.01.073 PG 4 WC Materials Science, Multidisciplinary; Materials Science, Coatings & Films; Physics, Applied; Physics, Condensed Matter SC Materials Science; Physics GA 448YB UT WOS:000266296800031 ER PT J AU Wang, Q AF Wang, Qi TI Hot-wire CVD amorphous Si materials for solar cell application SO THIN SOLID FILMS LA English DT Article; Proceedings Paper CT 5th International Conference on Hot-Wire CVD (Cat-CVD) Process CY AUG 20-24, 2008 CL Massachusetts Inst Technol, Cambridge, MA HO Massachusetts Inst Technol DE HWCVD; a-Si:H; Solar cell; Thin film ID CHEMICAL-VAPOR-DEPOSITION; LOW H-CONTENT; SILICON; MICROCRYSTALLINE; TEMPERATURE AB Hydrogenated amorphous silicon (a-Si:H) thin films and their application to solar cells fabricated using the hot-wire chemical vapor deposition (HWCVD) or (CAT)-CVD will be reviewed. This review will focus on the comparison to the standard plasma enhance (PE) CVD in the terms of deposition technique, film properties, and solar cell performance. The advantages of using HWCVD for a-Si:H solar cell research as well as the criteria for industry's adaptation of this technique for mass production will be addressed. (C) 2009 Published by Elsevier B.V. C1 Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Wang, Q (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM qi_wang@nrel.gov NR 16 TC 16 Z9 23 U1 1 U2 7 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0040-6090 J9 THIN SOLID FILMS JI Thin Solid Films PD APR 30 PY 2009 VL 517 IS 12 BP 3570 EP 3574 DI 10.1016/j.tsf.2009.01.072 PG 5 WC Materials Science, Multidisciplinary; Materials Science, Coatings & Films; Physics, Applied; Physics, Condensed Matter SC Materials Science; Physics GA 448YB UT WOS:000266296800041 ER PT J AU Lee, SH Deshpande, R Benhammou, D Parilla, PA Mahan, AH Dillon, AC AF Lee, Se-Hee Deshpande, Rohit Benhammou, Daniel Parilla, Phil A. Mahan, A. Harv Dillon, Anne C. TI Metal oxide nanoparticles for advanced energy applications SO THIN SOLID FILMS LA English DT Article; Proceedings Paper CT 5th International Conference on Hot-Wire CVD (Cat-CVD) Process CY AUG 20-24, 2008 CL Massachusetts Inst Technol, Cambridge, MA HO Massachusetts Inst Technol DE Hot-wire chemical vapor deposition; Molybdenum oxide nanoparticles; Lithium-ion battery ID CHEMICAL-VAPOR-DEPOSITION; HIGH-DENSITY; NANOTUBES AB Hot-wire chemical vapor deposition (HWCVD) has been employed as an economically scalable method for the deposition of crystalline molybdenum oxide nanoparticles at high density. Under optimal synthesis conditions, only crystalline nanostructures with a smallest dimension of similar to 3-50 nm are observed with extensive transmission electron microscopy analyses. The incorporation of crystalline molybdenum oxide nanoparticles into battery electrodes has led to profound advancements in state-of-the-art negative electrodes (anodes) in lithium-ion batteries. The nanoparticle materials exhibit a high rate capability as anticipated for the reduced solid-state Li-ion diffusion length. (C) 2009 Elsevier B.V. All rights reserved. C1 [Lee, Se-Hee; Benhammou, Daniel] Univ Colorado, Dept Mech Engn, Boulder, CO 80309 USA. [Deshpande, Rohit; Parilla, Phil A.; Mahan, A. Harv; Dillon, Anne C.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Lee, SH (reprint author), Univ Colorado, Dept Mech Engn, Boulder, CO 80309 USA. EM sehee.lee@colorado.edu RI Lee, Sehee/A-5989-2011 NR 8 TC 11 Z9 13 U1 0 U2 8 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0040-6090 J9 THIN SOLID FILMS JI Thin Solid Films PD APR 30 PY 2009 VL 517 IS 12 BP 3591 EP 3595 DI 10.1016/j.tsf.2009.01.061 PG 5 WC Materials Science, Multidisciplinary; Materials Science, Coatings & Films; Physics, Applied; Physics, Condensed Matter SC Materials Science; Physics GA 448YB UT WOS:000266296800047 ER PT J AU White, CM Gillaspie, DT Whitney, E Lee, SH Dillon, AC AF White, Christine M. Gillaspie, Dane T. Whitney, Erin Lee, Se-Hee Dillon, Anne C. TI Flexible electrochromic devices based on crystalline WO3 nanostructures produced with hot-wire chemical vapor deposition SO THIN SOLID FILMS LA English DT Article; Proceedings Paper CT 5th International Conference on Hot-Wire CVD (Cat-CVD) Process CY AUG 20-24, 2008 CL Massachusetts Inst Technol, Cambridge, MA HO Massachusetts Inst Technol DE Hot-wire chemical vapor deposition; Tungsten oxide nanoparticles; Flexible electrochromic devices; Polymer substrate ID TUNGSTEN-OXIDE NANOPARTICLES; THIN-FILMS AB Crystalline WO3 nanoparticles are employed in the development of flexible electrochromic (EC) devices. The nanoparticles are synthesized at high-density with a hot-wire chemical vapor deposition process where the hot filament provides the source of the tungsten metal. Polyethylene terephthalate coated with indium tin oxide is employed as a transparent flexible substrate. A simple electrophoresis technique is employed to deposit the WO3 nanoparticles on the polymer, resulting in a uniform thin film. The EC performance is optimized for WO3 particles that were baked at similar to 300 degrees C for 2 h prior to electrode fabrication. The transmittance is modulated between similar to 94% and similar to 28% without degradation for 100 cycles. (C) 2009 Elsevier B.V. All rights reserved. C1 [White, Christine M.; Gillaspie, Dane T.; Whitney, Erin; Dillon, Anne C.] Natl Renewable Energy Lab, Golden, CO USA. [White, Christine M.; Lee, Se-Hee] Univ Colorado, Dept Mech Engn, Boulder, CO 80309 USA. RP Dillon, AC (reprint author), Natl Renewable Energy Lab, 1617 Cole Blvd, Golden, CO USA. EM anne_dillon@nrel.gov RI Lee, Sehee/A-5989-2011; Gillaspie, Dane/E-2731-2010 NR 13 TC 51 Z9 51 U1 1 U2 27 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0040-6090 J9 THIN SOLID FILMS JI Thin Solid Films PD APR 30 PY 2009 VL 517 IS 12 BP 3596 EP 3599 DI 10.1016/j.tsf.2009.01.033 PG 4 WC Materials Science, Multidisciplinary; Materials Science, Coatings & Films; Physics, Applied; Physics, Condensed Matter SC Materials Science; Physics GA 448YB UT WOS:000266296800048 ER PT J AU She, X Flytzani-Stephanopoulos, M Wang, C Wang, Y Peden, CHF AF She, X. Flytzani-Stephanopoulos, M. Wang, C. Wang, Y. Peden, C. H. F. TI SO2-induced stability of Ag-alumina catalysts in the SCR of NO with methane SO APPLIED CATALYSIS B-ENVIRONMENTAL LA English DT Article DE Silver catalyst; Alumina; Sintering; Dispersion; SO2; SCR of NO; CH4; NOx reduction ID SUPPORTED SILVER CATALYSTS; REDUCTION; FILMS; DIFFUSION; OXIDATION; HYDROCARBONS; ENVIRONMENTS; BEHAVIOR AB We report on a stabilization effect on the structure and activity of Ag/Al2O3 for the selective catalytic reduction (SCR) of NOx with CH4 imparted by the presence of SO2 in the exhaust gas mixture. The reaction is carried out at temperature above 600 degrees C to keep the surface partially free of sulfates. In SO2-free gases, catalyst deactivation is fast and measurable at these temperatures. Time-resolved TEM analyses of used samples have determined that deactivation is due to sintering of silver from well-dispersed clusters to nanoparticles to micrometer-size particles with time-on-stream at 625 degrees C. However, sintering of silver was dramatically suppressed by the presence of SO2 in the reaction gas mixture. The structural stabilization by SO2 was accompanied by stable catalyst activity for the NO reduction to N-2. The direct oxidation of methane was suppressed, thus the methane selectivity was improved in SO2-laden gas mixtures. In tests with high-content silver alumina with some of the silver present in metallic form, an increase in the SCR activity was found in SO2-containing gas mixtures. This is attributed to redispersion of the silver particles by SO2 an unexpected finding. The catalyst performance was reversible over many cycles of operation at 625 degrees C with the SO2 switched on and off in the gas mixture. (C) 2008 Elsevier B.V. All rights reserved. C1 [She, X.; Flytzani-Stephanopoulos, M.] Tufts Univ, Dept Biol & Chem Engn, Medford, MA 02155 USA. [She, X.; Wang, C.; Wang, Y.; Peden, C. H. F.] Pacific NW Natl Lab, Inst Interfacial Catalysis, Richland, WA 99352 USA. RP Flytzani-Stephanopoulos, M (reprint author), Tufts Univ, Dept Biol & Chem Engn, Medford, MA 02155 USA. EM maria.flytzani-stephanopoulos@tufts.edu RI Wang, Yong/C-2344-2013; OI Peden, Charles/0000-0001-6754-9928 FU National Science Foundation [0304515]; DOE Office of Biological and Environmental Research FX This work was funded by the National Science Foundation, NIRT grant 0304515. We gratefully acknowledge the assistance of Dr. Yong Zhang of the Materials Science and Engineering Center at MIT with the TEM measurements. Part of the experiments in this work, including some of the catalyst-pretreatments, TEM and XRD measurements, were performed in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the DOE Office of Biological and Environmental Research, and located at Pacific Northwest National Laboratory. NR 24 TC 17 Z9 18 U1 1 U2 14 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0926-3373 J9 APPL CATAL B-ENVIRON JI Appl. Catal. B-Environ. PD APR 29 PY 2009 VL 88 IS 1-2 BP 98 EP 105 DI 10.1016/j.apcatb.2008.09.015 PG 8 WC Chemistry, Physical; Engineering, Environmental; Engineering, Chemical SC Chemistry; Engineering GA 444MM UT WOS:000265985100009 ER PT J AU Sun, LL Yi, W Wang, L Shu, JF Sinogeikin, S Meng, Y Shen, G Bai, LG Li, YC Liu, J Mao, HK Mao, WL AF Sun, Liling Yi, Wei Wang, Lin Shu, Jinfu Sinogeikin, Stas Meng, Yue Shen, Guoyin Bai, Ligang Li, Yanchuan Liu, Jing Mao, Ho-kwang Mao, Wendy L. TI X-ray diffraction studies and equation of state of methane at 202 GPa SO CHEMICAL PHYSICS LETTERS LA English DT Article ID HIGH-PRESSURE; SOLID METHANE; ROOM-TEMPERATURE; GIANT PLANETS; VOYAGER-2; INTERIORS; CRYSTAL AB Solid methane (CH(4)) was compressed up to 202 GPa at 300 K in a diamond-anvil cell. The crystal structure and equation of state over this entire range were determined from angle dispersive X-ray diffraction results. CH(4) undergoes phase transitions from rhombohedral to a simple cubic phase at 19 GPa and from simple cubic to a higher pressure cubic phase at approximately 94 GPa. This higher pressure cubic phase was stable to the maximum pressure investigated. Combined with previous optical measurements, it was found that at room temperature compressed CH(4) remains an insulator with cubic structure to 202 GPa. (C) 2009 Elsevier B. V. All rights reserved. C1 [Sun, Liling; Shu, Jinfu; Mao, Ho-kwang] Carnegie Inst Washington, Geophys Lab, Washington, DC 20015 USA. [Sun, Liling; Yi, Wei] Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China. [Sun, Liling; Yi, Wei] Chinese Acad Sci, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China. [Wang, Lin; Sinogeikin, Stas; Meng, Yue; Shen, Guoyin; Mao, Ho-kwang] Argonne Natl Lab, Adv Photon Source, High Pressure Collaborat Access Team, Argonne, IL 60439 USA. [Bai, Ligang; Li, Yanchuan; Liu, Jing] Chinese Acad Sci, Inst High Energy Phys, Beijing 100039, Peoples R China. [Mao, Wendy L.] Stanford Univ, Dept Geog & Environm Sci, Stanford, CA 94305 USA. [Mao, Wendy L.] Natl Accelerator Ctr, SLAC, Photon Sci Dept, Menlo Pk, CA 94025 USA. RP Sun, LL (reprint author), Carnegie Inst Washington, Geophys Lab, 5251 Broad Branch Rd NW, Washington, DC 20015 USA. EM llsun@aphy.iphy.ac.cn; h.mao@gl.ciw.edu RI Mao, Wendy/D-1885-2009; Shen, Guoyin/D-6527-2011; Yi, Wei/A-1748-2012; WANG, LIN/G-7884-2012; Bai, Ligang/E-9371-2015 FU National Science Foundation of China [50571111, 10874230]; Ministry of Science and Technology of China [2005CB724400]; Department of Energy (DOE) [DE-AC02-76SF00515]; NASA [PGG-NNX08AL27G]; NSF [DMR-0821584]; DOE-BES [DE-AC02-06CH11357]; DOE-NNSA; W. M. Keck Foundation FX The authors thank the National Science Foundation of China for its support of this research through Grant Nos. 50571111 and 10874230. This work was also supported by the Ministry of Science and Technology of China (2005CB724400), and was supported by the Department of Energy (DOE) through the Stanford Institute for Materials & Energy Science DE-AC02-76SF00515, NASA PG&G-NNX08AL27G, and NSF DMR-0821584. This work was performed at HPCAT (Sector 16), APS, ANL. HPCAT is supported by DOE-BES, DOE-NNSA, NSF, and the W. M. Keck Foundation. APS is supported by DOE-BES, under Contract No. DE-AC02-06CH11357. NR 17 TC 21 Z9 21 U1 2 U2 18 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0009-2614 J9 CHEM PHYS LETT JI Chem. Phys. Lett. PD APR 29 PY 2009 VL 473 IS 1-3 BP 72 EP 74 DI 10.1016/j.cplett.2009.03.072 PG 3 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 434JK UT WOS:000265270800014 ER PT J AU Bauer, AL Beauchemin, CAA Perelson, AS AF Bauer, Amy L. Beauchemin, Catherine A. A. Perelson, Alan S. TI Agent-based modeling of host-pathogen systems: The successes and challenges SO INFORMATION SCIENCES LA English DT Review DE Agent-based model; Host-pathogen dyamics; Artificial immune system; Multiscale; Tumor growth; Tuberculosis; Acute inflammation; Sensitivity analysis ID NON-SELF DISCRIMINATION; CELLULAR-AUTOMATON MODEL; SHAPE-SPACE MODEL; A VIRUS-INFECTION; H TH GENESIS; IMMUNE-SYSTEM; LYMPH-NODES; IN-VITRO; SPATIAL HETEROGENEITY; COMPUTERIZED MODEL AB Agent-based models have been employed to describe numerous processes in immunology. Simulations based on these types of models have been used to enhance out understanding of immunology and disease pathology. We review various agent-based models relevant to host-pathogen systems and discuss their contributions to our understanding of biological processes. We then point out some limitations and challenges of agent-based models and encourage efforts towards reproducibility and model validation. (c) 2008 Elsevier Inc. All rights reserved. C1 [Beauchemin, Catherine A. A.; Perelson, Alan S.] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. [Bauer, Amy L.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Beauchemin, Catherine A. A.] Ryerson Univ, Dept Phys, Toronto, ON, Canada. RP Perelson, AS (reprint author), Los Alamos Natl Lab, Ctr Nonlinear Studies, MS-K710, Los Alamos, NM 87545 USA. EM asp@lanl.gov RI Beauchemin, Catherine/G-4619-2011; Barley, Kamal/F-9579-2011 OI Beauchemin, Catherine/0000-0003-0599-0069; Barley, Kamal/0000-0003-1874-9813 FU US Department of Energy [DE-AC52-06NA25396]; NIH [AI28433, RR06555, P01-AI071195, NOI-A150020, A173607]; UNM/LANL joint Science and Technology Laboratory FX Portions of this work were done under the auspices of the US Department of Energy under contract DE-AC52-06NA25396 and supported by NIH Grants AI28433, RR06555, P01-AI071195, and NOI-A150020 (ASP), and the UNM/LANL joint Science and Technology Laboratory and NIH Grant R21-A173607 (CAAB). NR 108 TC 75 Z9 75 U1 2 U2 43 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0020-0255 J9 INFORM SCIENCES JI Inf. Sci. PD APR 29 PY 2009 VL 179 IS 10 BP 1379 EP 1389 DI 10.1016/j.ins.2008.11.012 PG 11 WC Computer Science, Information Systems SC Computer Science GA 431RA UT WOS:000265079600002 PM 20161146 ER PT J AU Souvatzis, P Bjorkman, T Eriksson, O Andersson, P Katsnelson, MI Rudin, SP AF Souvatzis, P. Bjorkman, T. Eriksson, O. Andersson, P. Katsnelson, M. I. Rudin, S. P. TI Dynamical stabilization of the body centered cubic phase in lanthanum and thorium by phonon-phonon interaction SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article ID CRYSTAL-STRUCTURE; ACTINIDES; PLUTONIUM; CONSTANTS; PICTURE; LA AB A recently developed self-consistent ab initio lattice dynamical method has been applied to the high temperature body centered cubic (bcc) phase of La and Th, which are dynamically unstable at low temperatures. The bcc phase of these metals is found to be stabilized by phonon-phonon interactions. The calculated high temperature phonon frequencies for La are found to be in good agreement with the corresponding experimental data. C1 [Souvatzis, P.; Rudin, S. P.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Bjorkman, T.; Eriksson, O.] Uppsala Univ, Dept Phys, SE-75121 Uppsala, Sweden. [Andersson, P.] Swedish Def Res Agcy, FOI, SE-16490 Stockholm, Sweden. [Katsnelson, M. I.] Radboud Univ Nijmegen, Inst Mol & Mat, NL-6525 ED Nijmegen, Netherlands. RP Souvatzis, P (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. EM petros.souvatzis@gmail.com RI Bjorkman, Torbjorn/B-9844-2012; Katsnelson, Mikhail/D-4359-2012; Eriksson, Olle/E-3265-2014 OI Bjorkman, Torbjorn/0000-0002-1154-9846; Eriksson, Olle/0000-0001-5111-1374 FU Department of Energy [DE-AC52-06NA25396] FX The Department of Energy supported this work under Contract No. DE-AC52-06NA25396. NR 23 TC 11 Z9 11 U1 0 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD APR 29 PY 2009 VL 21 IS 17 AR 175402 DI 10.1088/0953-8984/21/17/175402 PG 4 WC Physics, Condensed Matter SC Physics GA 427LD UT WOS:000264779900015 PM 21825417 ER PT J AU Bowers, MJ McBride, JR Garrett, MD Sammons, JA Dukes, AD Schreuder, MA Watt, TL Lupini, AR Pennycook, SJ Rosenthal, SJ AF Bowers, Michael J., II McBride, James R. Garrett, Maria D. Sammons, Jessica A. Dukes, Albert D., III Schreuder, Michael A. Watt, Tony L. Lupini, Andrew R. Pennycook, Stephen J. Rosenthal, Sandra J. TI Structure and Ultrafast Dynamics of White-Light-Emitting CdSe Nanocrystals SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID FLUORESCENCE UP-CONVERSION; SEMICONDUCTOR QUANTUM DOTS; CARRIER DYNAMICS; ELECTRONIC-STRUCTURE; SIZE; SPECTROSCOPY; EMISSION; NANORODS; CLUSTERS; SURFACE AB White-light emission from ultrasmall CdSe nanocrystals offers an alternative approach to the realization of solid-state lighting as an appealing technology for consumers. Unfortunately, their extremely small size limits the feasibility of traditional methods for nanocrystal characterization. This paper reports the first images of their structure, which were obtained using aberration-corrected atomic number contrast scanning transmission electron microscopy (Z-STEM). With subangstrom resolution, Z-STEM is one of the few available methods that can be used to directly image the nanocrystal's structure. The initial images suggest that they are crystalline and approximately four lattice planes in diameter. In addition to the structure, for the first time, the exciton dynamics were measured at different wavelengths of the white-light spectrum using ultrafast fluorescence upconversion spectroscopy. The data suggest that a myriad of trap states are responsible for the broad-spectrum emission. It is hoped that the information presented here will provide a foundation for the future development and improvement of white-light-emitting nanocrystals. C1 [Bowers, Michael J., II; McBride, James R.; Garrett, Maria D.; Sammons, Jessica A.; Dukes, Albert D., III; Schreuder, Michael A.; Watt, Tony L.; Rosenthal, Sandra J.] Vanderbilt Univ, Dept Chem, Nashville, TN 37235 USA. [Rosenthal, Sandra J.] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA. [Rosenthal, Sandra J.] Vanderbilt Univ, Dept Pharmacol, Nashville, TN 37235 USA. [Rosenthal, Sandra J.] Vanderbilt Univ, Dept Chem & Biomol Engn, Nashville, TN 37235 USA. [Lupini, Andrew R.; Pennycook, Stephen J.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Rosenthal, SJ (reprint author), Vanderbilt Univ, Dept Chem, Box 1583, Nashville, TN 37235 USA. EM Sandra.j.rosenthal@vanderbilt.edu RI McBride, James/D-2934-2012 OI McBride, James/0000-0003-0161-7283 FU U.S. Department of Energy [DEFG0202ER45957] FX Funding was provided by the U.S. Department of Energy (DEFG0202ER45957). NR 24 TC 49 Z9 49 U1 1 U2 34 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD APR 29 PY 2009 VL 131 IS 16 BP 5730 EP + DI 10.1021/ja900529h PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA 437BH UT WOS:000265460200008 PM 19341271 ER PT J AU Komanicky, V Iddir, H Chang, KC Menzel, A Karapetrov, G Hennessy, D Zapol, P You, H AF Komanicky, Vladimir Iddir, Hakim Chang, Kee-Chul Menzel, Andreas Karapetrov, Goran Hennessy, Daniel Zapol, Peter You, Hoydoo TI Shape-Dependent Activity of Platinum Array Catalyst SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID OXYGEN REDUCTION; NANOPARTICLES; SURFACES; ELECTROOXIDATION; KINETICS AB We produced millions of morphologically identical platinum catalyst nanoparticles in the form of ordered arrays epitaxially grown on (111), (100), and (110) strontium titanate substrates using electron beam lithography. The ability to design, produce, and characterize the catalyst nanoparticles allowed us to relate microscopic morphologies with macroscopic catalytic reactivities. We evaluated the activity of three different arrays containing different ratios of (111) and (100) facets for an oxygen-reduction reaction, the most important reaction for fuel cells. Increased catalytic activity of the arrays points to a possible cooperative interplay between facets with different affinities to oxygen. We suggest that the surface area of (100) facets is one of the key factors governing catalyst performance in the electrochemical reduction of oxygen molecules. C1 [Komanicky, Vladimir; Iddir, Hakim; Chang, Kee-Chul; Menzel, Andreas; Karapetrov, Goran; Hennessy, Daniel; You, Hoydoo] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Komanicky, Vladimir] Safarik Univ, Fac Sci, Kosice 04154, Slovakia. [Komanicky, Vladimir] SAS, Inst Expt Phys, Kosice 04154, Slovakia. [Menzel, Andreas] Paul Scherrer Inst, CH-5232 Villigen, Switzerland. RP You, H (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM vladimir.komanicky@upjs.sk; hyou@anl.gov RI Hennessy, Daniel/A-6203-2011; Menzel, Andreas/C-4388-2012; Zapol, Peter/G-1810-2012; Chang, Kee-Chul/O-9938-2014; You, Hoydoo/A-6201-2011; Karapetrov, Goran/C-2840-2008 OI Menzel, Andreas/0000-0002-0489-609X; Zapol, Peter/0000-0003-0570-9169; Chang, Kee-Chul/0000-0003-1775-2148; You, Hoydoo/0000-0003-2996-9483; Karapetrov, Goran/0000-0003-1113-0137 FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX We thank Leonidas Ocola and Ralu Divan for their help during array nanofabrication. This work and use of the Advanced Photon Source, the Center for Nanoscale Materials and the Electron Microscopy Center for Materials Research were supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 11 TC 86 Z9 87 U1 3 U2 56 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD APR 29 PY 2009 VL 131 IS 16 BP 5732 EP + DI 10.1021/ja900459w PG 3 WC Chemistry, Multidisciplinary SC Chemistry GA 437BH UT WOS:000265460200009 PM 19348484 ER PT J AU Tsung, CK Kuhn, JN Huang, WY Aliaga, C Hung, LI Somorjai, GA Yang, PD AF Tsung, Chia-Kuang Kuhn, John N. Huang, Wenyu Aliaga, Cesar Hung, Ling-I Somorjai, Gabor A. Yang, Peidong TI Sub-10 nm Platinum Nanocrystals with Size and Shape Control: Catalytic Study for Ethylene and Pyrrole Hydrogenation SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID SUM-FREQUENCY GENERATION; SINGLE-CRYSTAL SURFACES; MESOPOROUS SBA-15 SILICA; WET CHEMICAL SYNTHESIS; VIBRATIONAL SPECTROSCOPY; HIGH-PRESSURES; BENZENE HYDROGENATION; C-6 HYDROCARBONS; GOLD NANORODS; ASPECT-RATIO AB Platinum nanocubes and nanopolyhedra with tunable size from 5 to 9 nm were synthesized by controlling the reducing rate of metal precursor ions in a one-pot polyol synthesis. A two-stage process is proposed for the simultaneous control of size and shape. In the first stage, the oxidation state of the metal ion precursors determined the nucleation rate and consequently the number of nuclei. The reaction temperature controlled the shape in the second stage by regulation of the growth kinetics. These well-defined nanocrystals were loaded into MCF-17 mesoporous silica for examination of catalytic properties. Pt loadings and dispersions of the supported catalysts were determined by elemental analysis (ICP-MS) and H(2) chemisorption isotherms, respectively. Ethylene hydrogenation rates over the Pt nanocrystals were independent of both size and shape and comparable to Pt single crystals. For pyrrole hydrogenation, the nanocubes enhanced ring-opening ability and thus showed a higher selectivity to n-butylamine as compared to nanopolyhedra. C1 [Tsung, Chia-Kuang; Kuhn, John N.; Huang, Wenyu; Aliaga, Cesar; Hung, Ling-I; Somorjai, Gabor A.; Yang, Peidong] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Tsung, Chia-Kuang; Kuhn, John N.; Huang, Wenyu; Aliaga, Cesar; Hung, Ling-I; Somorjai, Gabor A.; Yang, Peidong] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem, Berkeley, CA 94720 USA. [Tsung, Chia-Kuang; Kuhn, John N.; Huang, Wenyu; Aliaga, Cesar; Hung, Ling-I; Somorjai, Gabor A.; Yang, Peidong] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Hung, Ling-I] Ind Technol Res Inst, Mat Lab, Hsinchu 310, Taiwan. [Hung, Ling-I] Ind Technol Res Inst, Chem Lab, Hsinchu 310, Taiwan. RP Somorjai, GA (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM somorjai@berkeley.edu; p_yang@berkeley.edu RI Huang, Wenyu/L-3784-2014 OI Huang, Wenyu/0000-0003-2327-7259 FU U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geological and Biosciences, and Division of Materials Sciences and Engineering of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. We also thank the Molecular Foundry of the Lawrence Berkeley National Laboratory for use of their facilities and Professor A. Paul Alivisatos for use of the TEM. NR 42 TC 304 Z9 307 U1 26 U2 280 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD APR 29 PY 2009 VL 131 IS 16 BP 5816 EP 5822 DI 10.1021/ja809936n PG 7 WC Chemistry, Multidisciplinary SC Chemistry GA 437BH UT WOS:000265460200030 PM 19341296 ER PT J AU Hariharan, M Zheng, Y Long, H Zeidan, TA Schatz, GC Vura-Weis, J Wasielewski, MR Zuo, XB Tiede, DM Lewis, FD AF Hariharan, Mahesh Zheng, Yan Long, Hai Zeidan, Tarek A. Schatz, George C. Vura-Weis, Josh Wasielewski, Michael R. Zuo, Xiaobing Tiede, David M. Lewis, Frederick D. TI Hydrophobic Dimerization and Thermal Dissociation of Perylenediimide-Linked DNA Hairpins SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID PI-PI INTERACTIONS; BISIMIDE DYES; BUILDING-BLOCKS; MELTING TEMPERATURE; CIRCULAR-DICHROISM; HIGHLY FLUORESCENT; AQUEOUS-SOLUTION; DIMERS; WATER; DIIMIDE AB The structure and properties of hairpin-forming bis(oligonucleotide) conjugates possessing perylenediimide (PDI) chromophores as hairpin linkers have been investigated using a combination of spectroscopic and computational methods. These conjugates exist predominantly as monomer hairpins at room temperature in the absence of added salt and as head-to-head hairpin dimers in the presence of >50 mM NaCl. The hairpin dimer structure is consistent with the results of small-angle X-ray scattering in aqueous solution and molecular dynamics simulation. The structure of the nonconjugated PDI dimer in water is investigated using potential of mean force calculations. The salt dependence is attributed to increased cation condensation in the hairpin dimer vs monomer. Upon heating at low salt concentrations, the hairpin dimer undergoes sequential dissociation to form the monomer hairpin followed by conversion to a random coil structure; whereas at high salt concentrations both dissociation processes occur over the same temperature range. The monomer and dimer hairpins have distinct spectroscopic properties both in the ground state and excited singlet state. The UV and CD spectra provide evidence for electronic interaction between PDI and the adjacent base pair. Low fluorescence quantum yields are observed for both the monomer and dimer. The transient absorption spectrum of the dimer undergoes time-dependent spectral changes attributed to a change in the PDI-PDI torsional angle from ca. 20 degrees in the Franck-Condon singlet state to ca. 0 degrees in the relaxed singlet state, a process which occurs within ca. 40 ps. C1 [Hariharan, Mahesh; Zheng, Yan; Long, Hai; Zeidan, Tarek A.; Schatz, George C.; Vura-Weis, Josh; Wasielewski, Michael R.; Zuo, Xiaobing; Tiede, David M.; Lewis, Frederick D.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. [Wasielewski, Michael R.; Zuo, Xiaobing; Tiede, David M.] Argonne Natl Lab, Div Chem, Argonne, IL 60439 USA. RP Lewis, FD (reprint author), Northwestern Univ, Dept Chem, 2145 Sheridan Rd, Evanston, IL 60208 USA. EM fdl@northwestern.edu RI Zuo, Xiaobing/F-1469-2010; Long, Hai/C-5838-2015; OI Zuo, Xiaobing/0000-0002-0134-4804 FU National Science Foundation [CHE-0628130]; Office of Basic Energy Sciences, DOE [DE-AC02-06CH11357] FX This research is supported by a grant from the National Science Foundation, Collaborative Research in Chemistry for the project DNA Photonics (CHE-0628130 to G.C.S., F.D.L., and M.R.W.). D.M.T. and X.Z. and the X-ray scattering experiments at the Advanced Photon Source, beamline 12-ID were supported by the Office of Basic Energy Sciences, DOE under Contract No. DE-AC02-06CH11357. The authors gratefully acknowledge Dr. Soenke Seifert for his expert help in setting up the X-ray scattering measurements. NR 55 TC 50 Z9 50 U1 1 U2 20 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD APR 29 PY 2009 VL 131 IS 16 BP 5920 EP 5929 DI 10.1021/ja900347t PG 10 WC Chemistry, Multidisciplinary SC Chemistry GA 437BH UT WOS:000265460200041 PM 19382814 ER PT J AU Yang, JY Bullock, RM Shaw, WJ Twamley, B Fraze, K DuBois, MR DuBois, DL AF Yang, Jenny Y. Bullock, R. Morris Shaw, Wendy J. Twamley, Brendan Fraze, Kendra DuBois, M. Rakowski DuBois, Daniel L. TI Mechanistic Insights into Catalytic H-2 Oxidation by Ni Complexes Containing a Diphosphine Ligand with a Positioned Amine Base SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID COUPLED ELECTRON-TRANSFER; PENDANT NITROGEN BASES; ELECTROCATALYTIC HYDROGEN EVOLUTION; 2ND COORDINATION SPHERE; FE-ONLY HYDROGENASE; MOLECULAR CATALYSTS; IRON(II) COMPLEXES; PROTON RELAYS; ACTIVE-SITE; LOW OVERPOTENTIALS AB The mixed-ligand complex [Ni(dppp)(p(2)(Ph)N(2)(Bz))](BF4)(2), 3, (whem (P2N2Bz)-N-Ph is 1,5-dibenzyl-3,7-diplienyl-1,5-diaza-3,7-diphosphacyclooctane and dppp is 1, 3-bis(diphenylphosphino)propane) has been synthesized. Treatment of this complex with H-2 and triethylamine results in the formation of the NO complex, Ni(dppp)((P2N2Bz)-N-Ph), 4, whose structure has been determined by a single-crystal X-ray diffraction study. Heterolytic cleavage of H-2 by 3 at room temperature forms [HNi(dppp)((P2NBz)-N-Ph(mu-H)N-Bz)](BF4)(2), 5a, in which one proton interacts with two nitrogen atoms of the cyclic diphosphine ligand and a hydride ligand is bound to nickel. Two intermediates are observed for this reaction using low-temperature NMR spectroscopy. One species is a dihydride, [(H)(2)Ni(dppp)((P2N2Bz)-N-Ph)](BF4)(2), 5b, and the other is [Ni(dppp) ((P2N2H2)-N-Ph-H-Bz)](BF4)(2), 5c, in which both protons are bound to the N atoms in an endo geometry with respect to nickel. These two species interconvert via a rapid and reversible intramolecular proton exchange between nickel and the nitrogen atoms of the diphosphine ligand. Complex 3 is a catalyst for the electrochemical oxidation of H-2 in Vie presence of base, and new insights into the mechanism derived from low-temperature NMR and thermodynamic studies are presented. A comparison of the rate and thermodynamics of H-2 addition for this complex to related catalysts studied previously indicates that for Ni-II complexes containing two diphosphine ligands, the activation of H-2 is favored by the presence of two positioned pendant bases. C1 [Yang, Jenny Y.; Bullock, R. Morris; Shaw, Wendy J.; Twamley, Brendan; Fraze, Kendra; DuBois, M. Rakowski; DuBois, Daniel L.] Pacific NW Natl Lab, Div Chem & Mat Sci, Richland, WA 99352 USA. RP DuBois, DL (reprint author), Pacific NW Natl Lab, Div Chem & Mat Sci, Richland, WA 99352 USA. EM daniel.dubois@pnl.gov RI Bullock, R. Morris/L-6802-2016 OI Bullock, R. Morris/0000-0001-6306-4851 FU Office of Basic Energy Sciences of the Department of Energy FX This work was supported by the Chemical Sciences program of the Office of Basic Energy Sciences of the Department of Energy. The Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy. The Bruker (Siemens) SMART APEX diffraction facility was established at the University of Idaho with the assistance of the NSF-EPSCoR program and the M. J. Murdock Charitable Trust, Vancouver, WA. NR 49 TC 97 Z9 97 U1 3 U2 29 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD APR 29 PY 2009 VL 131 IS 16 BP 5935 EP 5945 DI 10.1021/ja900483x PG 11 WC Chemistry, Multidisciplinary SC Chemistry GA 437BH UT WOS:000265460200043 PM 19341269 ER PT J AU Zhang, Q Saraf, LV Smitha, JR Jha, P Hua, F AF Zhang, Q. Saraf, L. V. Smitha, J. R. Jha, P. Hua, F. TI An invisible bend sensor based on porous crosslinked polyelectrolyte film SO SENSORS AND ACTUATORS A-PHYSICAL LA English DT Article DE Electrostatic self-assembly; Porous polymeric film; Ultrathin elastomer; Tunneling current; Invisible sensor ID THIN-FILM; WEAK POLYELECTROLYTES; MULTILAYER FILMS; POLYMER; POLYCATION; POLYANION; DEVICE AB This paper reports the fabrication and electromechanical characterization of a thin porous polyelectrolyte film and its application in an invisible bending transducer. The porous film consists of 10 bilayers of polycation and polyanion that are adsorbed using electrostatic self-assembly (ESA). Such porous film can be thermally crosslinked. The size of the pores on top surface is adjustable and can be covered up by a type of Na(+)-montmorillonite nanosheet whose size is comparable to those of the pores. As a result, the sealed top surface can be coated by metal for an electrode. After such polymeric film is integrated into a sandwich structure that was designed for a bend sensor, it can perform as an ultrathin piece of elastomer. It is found that the bending of the substrate resulted in the increasing of the current. It is hypothesized that the tunneling current through the thin polymeric film changes when the film is compressed by bending. Finite element simulation corroborates the existence of strain concentration especially near two ends of the polymer film and the shoulder of the bottom electrode. (C) 2009 Elsevier B.V. All rights reserved. C1 [Zhang, Q.; Smitha, J. R.; Jha, P.; Hua, F.] Clarkson Univ, Dept Elect & Comp Engn, Potsdam, NY 13699 USA. [Saraf, L. V.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Hua, F (reprint author), Clarkson Univ, Dept Elect & Comp Engn, Potsdam, NY 13699 USA. EM fhua@clarkson.edu FU Environmental Molecular Sciences Laboratory; Department of Energy's Office of Biological and Environmental Research; Pacific Northwest National Laboratory; University of Illinois at UrbanaChampaign FX The authors would like to thank the National Center for Supercomputing Applications at the University of Illinois at UrbanaChampaign for providing computational and software resources and support. NR 26 TC 4 Z9 4 U1 1 U2 13 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0924-4247 J9 SENSOR ACTUAT A-PHYS JI Sens. Actuator A-Phys. PD APR 29 PY 2009 VL 151 IS 2 BP 154 EP 158 DI 10.1016/j.sna.2009.02.034 PG 5 WC Engineering, Electrical & Electronic; Instruments & Instrumentation SC Engineering; Instruments & Instrumentation GA 444EX UT WOS:000265964600010 ER PT J AU Ma, BW Woo, CH Miyamoto, Y Frechet, JMJ AF Ma, Biwu Woo, Claire H. Miyamoto, Yoshikazu Frechet, Jean M. J. TI Solution Processing of a Small Molecule, Subnaphthalocyanine, for Efficient Organic Photovoltaic Cells SO CHEMISTRY OF MATERIALS LA English DT Article ID SOLAR-CELLS; SUBPHTHALOCYANINES; POLYMER; HETEROJUNCTIONS AB Solution processing of the small molecule subnaphthalocyanine (SubNc) is carried out for the first time to form an electron-donor layer in efficient planar heterojunction organic photovoltaic cells (OPVs). Due to their unique properties, including high solubility, low tendency to aggregate, and strong light absorption in the visible light region, we are able to prepare amorphous SubNc films with high charge-transporting and light-harvesting properties via simple solution casting. By using SubNc as the donor and C(60) as the acceptor, we have demonstrated a planar heterojunction OPV with a power conversion efficiency of 1.5%, which represents one of the highest efficiencies for planar heterojunction OPVs based on solution processable small molecules to date. This work clearly shows that solution processing of light-harvesting small molecules has great potential in low-cost thin-film photovoltaic cells. Also SubNc and its derivatives are promising new-generation materials for OPVs. C1 [Ma, Biwu; Miyamoto, Yoshikazu; Frechet, Jean M. J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Woo, Claire H.; Miyamoto, Yoshikazu; Frechet, Jean M. J.] Univ Calif Berkeley, Coll Chem, Berkeley, CA 94720 USA. RP Ma, BW (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM BWMa@lbl.gov RI Ma, Biwu/B-6943-2012; OI Frechet, Jean /0000-0001-6419-0163 FU Office of Science; Office of Basic Energy Sciences; U.S. Department of Energy [DE-AC02-05, CH 11231]; National Science Foundation; JSR Corporation [CM900005G] FX This work was supported by the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under contract No. DE-AC02-05 CH 11231. C.H. W. thanks the National Science Foundation for a Graduate Research Fellowship. Y.M. thanks JSR Corporation for support. CM900005G NR 29 TC 59 Z9 60 U1 2 U2 27 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 J9 CHEM MATER JI Chem. Mat. PD APR 28 PY 2009 VL 21 IS 8 BP 1413 EP 1417 DI 10.1021/cm900005g PG 5 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 436KG UT WOS:000265412400003 ER PT J AU Nyman, M Shea-Rohwer, LE Martin, JE Provencio, P AF Nyman, May Shea-Rohwer, Lauren E. Martin, James E. Provencio, Paula TI Nano-YAG:Ce Mechanisms of Growth and Epoxy-Encapsulation SO CHEMISTRY OF MATERIALS LA English DT Article ID LIGHT-EMITTING-DIODES; SOLID-STATE; SPRAY-PYROLYSIS; PHOSPHOR; PHOTOLUMINESCENCE; ENHANCEMENT; POWDERS AB We have investigated the mechanism of nano-YAG:Ce growth in butanediol and glycol solvents. The static autoclave and low synthesis temperature (225 degrees C) that we employed provided conditions of slow growth in which we were able to observe an intermediate phase, a butanediol-intercalated layered alumina. This phase serves to passivate the surface in nano-YAG:Ce precipitates and thus contributes to increasing the quantum yield of YAG:Ce by diminishing surface effects such as Ce oxidation. While neat 1,4-butanediol results in precipitation of the nano-YAG:Ce, a mixture of 1,4-butanediol and diethylene glycol stabilizes a transparent colloid. We attribute this to higher solubility of the layered alumina intermediate in the solvent mixture and, thus, more homogeneous nucleation of the nano-YAG:Ce compared to heterogeneous nucleation in the neat 1,4-butanediol. However, the trade-off is slightly lower quantum yield in the transparent colloid, since the nano-YAG:Ce is not as thoroughly surface-passivated. With the transparent colloid, we were able to encapsulate the nano-YAG:Ce into a transparent epoxy dome that may be utilized in solid-state devices. C1 [Nyman, May; Shea-Rohwer, Lauren E.; Martin, James E.; Provencio, Paula] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Shea-Rohwer, LE (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM leshea@sandia.gov FU United States Department of Energy National Energy Technology Laboratory [DE-PS26-06NT42942]; Lockheed-Martin Company; United States Department of Energy [DE-AC04-94AL85000] FX This work was funded by a grant from the United States Department of Energy National Energy Technology Laboratory (DE-PS26-06NT42942). Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the United States Department of Energy under Contract No. DE-AC04-94AL85000. NR 20 TC 57 Z9 58 U1 5 U2 40 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 J9 CHEM MATER JI Chem. Mat. PD APR 28 PY 2009 VL 21 IS 8 BP 1536 EP 1542 DI 10.1021/cm803137h PG 7 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 436KG UT WOS:000265412400020 ER PT J AU Coe, JD Sewell, TD Shaw, MS AF Coe, Joshua D. Sewell, Thomas D. Shaw, M. Sam TI Optimal sampling efficiency in Monte Carlo simulation with an approximate potential SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID DENSITY-FUNCTIONAL THEORY; PROTON-TRANSFER REACTIONS; 1ST PRINCIPLES; MOLECULAR-DYNAMICS; MARKOV-CHAINS; LIQUID WATER; FLUID; EQUILIBRIA; ENSEMBLE; SUMMATION AB Building on the work of Iftimie et al. [J. Chem. Phys. 113, 4852 (2000)] and Gelb [J. Chem. Phys. 118, 7747 (2003)], Boltzmann sampling of an approximate potential (the "reference" system) is used to build a Markov chain in the isothermal-isobaric ensemble. At the end points of the chain, the energy is evaluated at a more accurate level (the "full" system) and a composite move encompassing all of the intervening steps is accepted on the basis of a modified Metropolis criterion. For reference system chains of sufficient length, consecutive full energies are statistically decorrelated and thus far fewer are required to build ensemble averages with a given variance. Without modifying the original algorithm, however, the maximum reference chain length is too short to decorrelate full configurations without dramatically lowering the acceptance probability of the composite move. This difficulty stems from the fact that the reference and full potentials sample different statistical distributions. By manipulating the thermodynamic variables characterizing the reference system (pressure and temperature, in this case), we maximize the average acceptance probability of composite moves, lengthening significantly the random walk between consecutive full energy evaluations. In this manner, the number of full energy evaluations needed to precisely characterize equilibrium properties is dramatically reduced. The method is applied to a model fluid, but implications for sampling high-dimensional systems with ab initio or density functional theory potentials are discussed. (C) 2009 American Institute of Physics. [DOI: 10.1063/1.3116788] C1 [Coe, Joshua D.; Shaw, M. Sam] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Sewell, Thomas D.] Univ Missouri, Dept Chem, Columbia, MO 65211 USA. RP Coe, JD (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. EM jcoe@lanl.gov FU Los Alamos National Laboratory (LANL); National Nuclear Security Administration (NNSA); LANL Laboratory Directed Research and Development (LDRD) [W911NF-05-1-0265]; Los Alamos National Security; U. S. Department of Energy [DEAC52-06NA25396] FX J. D. C. thanks the Office of the Director at Los Alamos National Laboratory (LANL) for support in the form of a Director's Postdoctoral Fellowship. M. S. S. is supported by the LANL High Explosives Project of the National Nuclear Security Administration (NNSA) Advanced Strategic Com- puting Program (HE-ASC). T. D. S. is supported by the LANL Laboratory Directed Research and Development (LDRD) Program and by the Army Research Office under Grant No. W911NF-05-1-0265. LANL is operated by Los Alamos National Security L. L. C. under the auspices of the NNSA and the U. S. Department of Energy, under Contract No. DEAC52-06NA25396. NR 54 TC 10 Z9 10 U1 0 U2 5 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD APR 28 PY 2009 VL 130 IS 16 AR 164104 DI 10.1063/1.3116788 PG 12 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 456XD UT WOS:000266885200005 PM 19405558 ER PT J AU Jacobson, MZ Streets, DG AF Jacobson, Mark Z. Streets, David G. TI Influence of future anthropogenic emissions on climate, natural emissions, and air quality SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Review ID TROPOSPHERIC OZONE; SIZE DISTRIBUTIONS; COALESCENCE EFFICIENCIES; STOMATAL CONDUCTANCE; SULFUR EMISSIONS; NOX PRODUCTION; GLOBAL-MODEL; BLACK CARBON; GATOR-GCMM; CHEMISTRY AB This study examines the effects of future anthropogenic emissions on climate, and the resulting feedback to natural emissions and air quality. Speciated sector- and region-specific 2030 emission factors were developed to produce gas and particle emission inventories that followed Special Report on Emission Scenarios (SRES) A1B and B1 emission trajectories. Current and future climate model simulations were run, in which anthropogenic emission changes affected climate, which fed back to natural emissions from lightning (NO, NO2, HONO, HNO3, N2O, H2O2, HO2, CO), soils (dust, bacteria, NO, N2O, H-2, CH4, H2S, DMS, OCS, CS2), the ocean (bacteria, sea spray, DMS, N2O, H-2, CH4), vegetation (pollen, spores, isoprene, monoterpenes, methanol, other VOCs), and photosynthesis/respiration. New methods were derived to calculate lightning flash rates as a function of size-resolved collisions and other physical principles and pollen, spore, and bacteria emissions. Although the B1 scenario was "cleaner'' than the A1B scenario, global warming increased more in the B1 scenario because much A1B warming was masked by additional reflective aerosol particles. Thus neither scenario is entirely beneficial from a climate and health perspective, and the best control measure is to reduce warming gases and warming/cooling particles together. Lightning emissions declined by similar to 3% in the B1 scenario and similar to 12% in the A1B scenario as the number of ice crystals, thus charge-separating bounceoffs, decreased. Net primary production increased by similar to 2% in both scenarios. Emissions of isoprene and monoterpenes increased by similar to 1% in the A1B scenario and 4-5% in the B1 scenario. Near-surface ozone increased by similar to 14% in the A1B scenario and similar to 4% in the B1 scenario, reducing ambient isoprene in the latter case. Gases from soils increased in both scenarios due to higher temperatures. Near-surface PM2.5 mass increased by similar to 2% in the A1B scenario and decreased by similar to 2% in the B1 scenario. The resulting 1.4% higher aerosol optical depths (AODs) in the A1B scenario decreased ocean wind speeds and thus ocean sea spray and bacteria emissions; similar to 5% lower AODs in the B1 scenario had the opposite effect. C1 [Jacobson, Mark Z.] Stanford Univ, Dept Civil & Environm Engn, Stanford, CA 94305 USA. [Streets, David G.] Argonne Natl Lab, Decis & Informat Sci Div, Argonne, IL 60439 USA. RP Jacobson, MZ (reprint author), Stanford Univ, Dept Civil & Environm Engn, Yang & Yamazaki Environm & Energy Bldg,Room 397, Stanford, CA 94305 USA. EM jacobson@stanford.edu; dstreets@anl.gov OI Streets, David/0000-0002-0223-1350 FU NASA [NNG04GE93G, NNG04GJ89G, NNX07AN25G]; US EPA [RD-83337101-O] FX This work was supported by NASA grants NNG04GE93G, NNG04GJ89G, and NNX07AN25G and US EPA grant RD-83337101-O. We also thank Cristina L. Archer, John Ten Hoeve, Jordan Wilkerson, and Mark W. Govett for some data sets and the NASA High-End Computing Program for computer time. NR 110 TC 53 Z9 53 U1 8 U2 78 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD APR 28 PY 2009 VL 114 AR D08118 DI 10.1029/2008JD011476 PG 21 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 439ZM UT WOS:000265667200010 ER PT J AU Persoon, AM Gurnett, DA Santolik, O Kurth, WS Faden, JB Groene, JB Lewis, GR Coates, AJ Wilson, RJ Tokar, RL Wahlund, JE Moncuquet, M AF Persoon, A. M. Gurnett, D. A. Santolik, O. Kurth, W. S. Faden, J. B. Groene, J. B. Lewis, G. R. Coates, A. J. Wilson, R. J. Tokar, R. L. Wahlund, J. -E. Moncuquet, M. TI A diffusive equilibrium model for the plasma density in Saturn's magnetosphere SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID ROTATION PERIOD; VOYAGER-2; ELECTRONS; IONS AB Electron density measurements have been obtained by the Cassini Radio and Plasma Wave Science (RPWS) instrument for more than 50 passes through Saturn's inner magnetosphere from 30 June 2004 to 30 September 2007. The electron densities are derived from RPWS measurements of the upper hybrid resonance frequency and span latitudes up to 35 degrees and L values from 3.6 to 10. The electron density measurements are combined with ion anisotropy measurements from the Cassini Plasma Spectrometer (CAPS) and electron temperature measurements from the RPWS and CAPS to develop a diffusive equilibrium model for the distribution of water group ions, hydrogen ions, and electrons in the inner region of Saturn's magnetosphere. The model uses an analytical solution of the field-aligned force equation, including the ambipolar electric field, to determine the equatorial ion densities and scale heights as a function of L. Density contour plots for water group ions, hydrogen ions, and electrons are presented. C1 [Persoon, A. M.; Gurnett, D. A.; Kurth, W. S.; Faden, J. B.; Groene, J. B.] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA. [Santolik, O.] Inst Atmospher Phys, Prague 14131 4, Czech Republic. [Lewis, G. R.; Coates, A. J.] Univ Coll London, Mullard Space Sci Lab, Dorking RH5 6NT, Surrey, England. [Wilson, R. J.; Tokar, R. L.] Los Alamos Natl Lab, Space & Atmospher Sci Grp, Los Alamos, NM 87545 USA. [Wahlund, J. -E.] Swedish Inst Space Phys, SE-75121 Uppsala, Sweden. [Moncuquet, M.] Observ Paris, Lab Etud Spatiales & Instrumentat Astrophys, F-92195 Meudon, France. [Santolik, O.] Charles Univ Prague, Fac Math & Phys, Prague, Czech Republic. RP Persoon, AM (reprint author), Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA. EM ann-persoon@uiowa.edu RI Coates, Andrew/C-2396-2008; Wilson, Rob/C-2689-2009; Santolik, Ondrej/F-7766-2014; OI Coates, Andrew/0000-0002-6185-3125; Wilson, Rob/0000-0001-9276-2368; Kurth, William/0000-0002-5471-6202 FU NASA [1279973]; NASA/JPL [1243218]; CAPS investigation FX The Cassini radio and plasma wave research at the University of Iowa is supported by NASA through JPL contract 1279973. We thank the CAPS and ELS operations teams at SwRI and MSSL, the ion mass spectrometer team at Los Alamos under the auspices of the U. S. DOE, STFC for financial support in the U. K., and NASA/ JPL contract 1243218 for financial support of the CAPS investigation. NR 37 TC 59 Z9 60 U1 0 U2 4 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD APR 28 PY 2009 VL 114 AR A04211 DI 10.1029/2008JA013912 PG 19 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 440CI UT WOS:000265675600006 ER PT J AU Hakel, P Mancini, RC Abdallah, J Sherrill, ME Zhang, HL AF Hakel, P. Mancini, R. C. Abdallah, J. Sherrill, M. E. Zhang, H. L. TI X-ray line polarization spectroscopy of Li-like Si satellite line spectra SO JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS LA English DT Article ID LASER-PRODUCED PLASMAS; FE; EXCITATION; HELIUM; CODE AB We apply the magnetic-sublevel atomic kinetics model POLAR to the calculation of polarization properties of satellite lines in Li-like Si driven by subpicosecond-duration laser pulses. We identify spectral lines whose polarization can serve as a marker of plasma anisotropy due to anisotropy in the electron distribution function. We also discuss the utility and limitations of our current theoretical approach and point out possible future improvements and directions. C1 [Hakel, P.; Mancini, R. C.] Univ Nevada, Dept Phys, Reno, NV 89557 USA. [Abdallah, J.; Sherrill, M. E.; Zhang, H. L.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Hakel, P (reprint author), Univ Nevada, Dept Phys, Reno, NV 89557 USA. FU NSHE; Los Alamos National Laboratory; US Department of Energy [DE-AC52-06NA25396] FX This work was supported by the NSHE and Los Alamos National Laboratory, operated by Los Alamos National Security LLC under contract DE-AC52-06NA25396 from the US Department of Energy (NNSA). NR 31 TC 10 Z9 10 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-4075 J9 J PHYS B-AT MOL OPT JI J. Phys. B-At. Mol. Opt. Phys. PD APR 28 PY 2009 VL 42 IS 8 AR 085701 DI 10.1088/0953-4075/42/8/085701 PG 5 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 430ZN UT WOS:000265031200025 ER PT J AU van Tilborg, J Allison, TK Wright, TW Hertlein, MP Falcone, RW Liu, Y Merdji, H Belkacem, A AF van Tilborg, J. Allison, T. K. Wright, T. W. Hertlein, M. P. Falcone, R. W. Liu, Y. Merdji, H. Belkacem, A. TI Femtosecond isomerization dynamics in the ethylene cation measured in an EUV-pump NIR-probe configuration SO JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS LA English DT Article ID CONICAL INTERSECTIONS; MOLECULAR-DYNAMICS; AB-INITIO; REGION; STATES; PHOTOIONIZATION; PHOTOCHEMISTRY; ACETYLENE; VALENCE; C2H4 AB Dynamics in the excited ethylene cation C(2)H(4)(+) lead to isomerization to the ethylidene configuration (HC-CH(3))(+), which is predicted to be a transient configuration for electronic relaxation. With an intense femtosecond extreme ultraviolet pump pulse to populate the excited state, and a near infrared probe pulse to produce the fragments CH(+) and CH(3)(+) (which provides a direct signature of ethylidene), we measure optimum fragment yields at a probe delay of 80 fs. Also, an H(2)-stretch transient configuration, yielding H(2)(+) upon probing, is found to succeed the ethylidene configuration. We find that a simple single- or double-decay model does not match the data, and we present a modified model (introduction of an isomerization delay of 50 +/- 25 fs) that does provide agreement. C1 [van Tilborg, J.; Allison, T. K.; Wright, T. W.; Hertlein, M. P.; Falcone, R. W.; Liu, Y.; Belkacem, A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Merdji, H.] CEA Saclay, Serv Photons Atomes & Mol, F-91191 Gif Sur Yvette, France. RP van Tilborg, J (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. EM JvanTilborg@lbl.gov FU DOE Office of Basic Energy Sciences, Chemical Sciences Division [DE-AC02-05CH11231, DE-FG52-06NA26212]; UC Berkeley's France-Berkeley fund FX We thank T Osipov, F Salmassi and A Aquila for their assistance. This work was performed under the auspices of the US Department of Energy and was supported by the DOE Office of Basic Energy Sciences, Chemical Sciences Division under contract no. DE-AC02-05CH11231. T K Allison was supported by the DOE SSAA under grant no. DE-FG52-06NA26212. We also acknowledge financial support from UC Berkeley's France-Berkeley fund. NR 22 TC 13 Z9 13 U1 3 U2 10 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0953-4075 J9 J PHYS B-AT MOL OPT JI J. Phys. B-At. Mol. Opt. Phys. PD APR 28 PY 2009 VL 42 IS 8 AR 081002 DI 10.1088/0953-4075/42/8/081002 PG 5 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 430ZN UT WOS:000265031200002 ER PT J AU Ismail, AE Grest, GS Heine, DR Stevens, MJ Tsige, M AF Ismail, Ahmed E. Grest, Gary S. Heine, David R. Stevens, Mark J. Tsige, Mesfin TI Interfacial Structure and Dynamics of Siloxane Systems: PDMS-Vapor and PDMS-Water SO MACROMOLECULES LA English DT Article ID INITIO FORCE-FIELD; MOLECULAR-DYNAMICS; SURFACE-TENSION; PERFLUORINATED ALKANES; DIFFUSION-COEFFICIENTS; QUANTUM-CHEMISTRY; SMALL PENETRANTS; GLASSY-POLYMERS; POLY(DIMETHYLSILOXANE); SIMULATION AB Using a fully atomistic force field for polydimethylsiloxane developed by Smith et al. [J. Phys. Chem. B 2004, 108, 20340], we study the interfacial properties of polydimethylsiloxane (PDMS) as well as its interactions with water. We determine the surface tension of methyl- and hydroxyl-terminated PDMS chains with lengths between 20 and 100 repeat units and find good agreement between simulation results and experimental observations. The width of the polymer liquid-vapor interface is shown to depend on both molecular weight and temperature. The surface tension and contact angle are determined for the PDMS-water binary system using several different geometries and calculation methods. At 300 K, the surface tension of roughly 41 mN/m and contact angle of approximate to 108 degrees for chains with 100 repeat units are in excellent agreement with experimental data. The width of the interface in both the PDMS and water layers increases with temperature, although the computed widths are significantly smaller than the liquid-vapor widths of the individual liquids. The diffusion constant measured for low concentrations of water molecules permeating through PDMS shows a wide degree of variation as a result of "caging" effects caused by local density inhomogeneities. At larger concentrations, aggregation of the water molecules leads to phase separation. Finally, the degrees of alignment of the methyl groups and siloxane backbones at the interface are found to decrease with temperature but are augmented in the presence of an interface with water. C1 [Ismail, Ahmed E.; Grest, Gary S.; Heine, David R.; Stevens, Mark J.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Tsige, Mesfin] So Illinois Univ, Dept Phys, Carbondale, IL 62901 USA. RP Ismail, AE (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM aismail@sandia.gov RI Ismail, Ahmed/B-7790-2009 OI Ismail, Ahmed/0000-0001-9929-5598 FU Lockheed Martin Company, for the United States Department of Energy [DE-AC04-94AL85000] FX Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract DE-AC04-94AL85000. NR 59 TC 25 Z9 25 U1 5 U2 50 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0024-9297 J9 MACROMOLECULES JI Macromolecules PD APR 28 PY 2009 VL 42 IS 8 BP 3186 EP 3194 DI 10.1021/ma802805y PG 9 WC Polymer Science SC Polymer Science GA 436JW UT WOS:000265411400043 ER PT J AU Harada, Y Li, H Li, HL Lennarz, WJ AF Harada, Yoichiro Li, Hua Li, Huilin Lennarz, William J. TI Oligosaccharyltransferase directly binds to ribosome at a location near the translocon-binding site SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE electron microscopy; glycoprotein biosynthesis; multicomponent complexes ID PROTEIN-CONDUCTING CHANNEL; ENDOPLASMIC-RETICULUM MEMBRANE; ACTIVITY IN-VIVO; SACCHAROMYCES-CEREVISIAE; TRANSFERASE COMPLEX; ANGSTROM RESOLUTION; MAMMALIAN RIBOSOME; NASCENT CHAINS; RIBOPHORIN-I; YEAST AB Oligosaccharyltransferase (OT) transfers high mannose-type glycans to the nascent polypeptides that are translated by the membrane-bound ribosome and translocated into the lumen of the endoplasmic reticulum through the Sec61 translocon complex. In this article, we show that purified ribosomes and OT can form a binary complex with a stoichiometry of approximate to 1 to 1 in the presence of detergent. We present evidence that OT may bind to the large ribosomal subunit near the site where nascent polypeptides exit. We further show that OT and the Sec61 complex can simultaneously bind to ribosomes in vitro. Based on existing data and our findings, we propose that cotranslational translocation and N-glycosylation of nascent polypeptides are mediated by a ternary supramolecular complex consisting of OT, the Sec61 complex, and ribosomes. C1 [Harada, Yoichiro; Li, Huilin; Lennarz, William J.] SUNY Stony Brook, Dept Biochem & Cell Biol, Stony Brook, NY 11794 USA. [Li, Hua; Li, Huilin] Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. RP Lennarz, WJ (reprint author), SUNY Stony Brook, Dept Biochem & Cell Biol, Stony Brook, NY 11794 USA. EM wlennarz@notes.cc.sunysb.edu FU National Institute of Health [GM33185]; Brookhaven National Laboratory Laboratory-Directed Research and Development [06-60]; National Institutes of Health [GM74985] FX We thank Dr. Daisuke Kohda (Kyushu University, Fukuoka, Japan) for providing TAMRA-Arg-Asn-Ala-Thr-Ala-Arg-COOH peptide; Drs. Hermann Schindelin (University of Wuburg, Wuzburg, Germany), Neta Dean, Gang Zhao, Guangtao Li, and Hideyuki Takeuchi (Stony Brook University, New York) for useful discussions; and Dr. Toshi Tsukiyama (Fred Hutchinson Cancer Research Center, Seattle) for 3FLAG-KANMX6 plasmid. This work was partially supported by National Institute of Health Grant GM33185 (to W. J. L), Brookhaven National Laboratory Laboratory-Directed Research and Development Grant 06-60 (to Huilin Li), and National Institutes of Health Grant GM74985 (to Huilin Li). NR 43 TC 29 Z9 30 U1 1 U2 5 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD APR 28 PY 2009 VL 106 IS 17 BP 6945 EP 6949 DI 10.1073/pnas.0812489106 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 438VS UT WOS:000265584500016 PM 19365066 ER PT J AU Hitomi, K DiTacchio, L Arvai, AS Yamamoto, J Kim, ST Todo, T Tainer, JA Iwai, S Panda, S Getzoff, ED AF Hitomi, Kenichi DiTacchio, Luciano Arvai, Andrew S. Yamamoto, Junpei Kim, Sang-Tae Todo, Takeshi Tainer, John A. Iwai, Shigenori Panda, Satchidananda Getzoff, Elizabeth D. TI Functional motifs in the (6-4) photolyase crystal structure make a comparative framework for DNA repair photolyases and clock cryptochromes SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE blue-light photoreceptor; circadian clock; electron transfer; flavoprotein; FAD ID BLUE-LIGHT PHOTORECEPTOR; MAMMALIAN CIRCADIAN CLOCK; ESCHERICHIA-COLI; ARABIDOPSIS-THALIANA; NUCLEAR-LOCALIZATION; ACTIVE-SITE; DROSOPHILA; PROTEINS; COFACTOR; FAMILY AB Homologous flavoproteins from the photolyase (PHR)/cryptochrome (CRY) family use the FAD cofactor in PHRs to catalyze DNA repair and in CRYs to tune the circadian clock and control development. To help address how PHR/CRY members achieve these diverse functions, we determined the crystallographic structure of Arabidopsis thaliana (6-4) PHR (UVR3), which is strikingly (>65%) similar in sequence to human circadian clock CRYs. The structure reveals a substrate-binding cavity specific for the UV-induced DNA lesion, (6-4) photoproduct, and cofactor binding sites different from those of bacterial PHRs and consistent with distinct mechanisms for activities and regulation. Mutational analyses were combined with this prototypic structure for the (6-4) PHR/clock CRY cluster to identify structural and functional motifs: phosphate-binding and Pro-Lys-Leu protrusion motifs constricting access to the substrate-binding cavity above FAD, sulfur loop near the external end of the Trp electron-transfer pathway, and previously undefined C-terminal helix. Our results provide a detailed, unified framework for investigations of (6-4) PHRs and the mammalian CRYs. Conservation of key residues and motifs controlling FAD access and activities suggests that regulation of FAD redox properties and radical stability is essential not only for (6-4) photoproduct DNA repair, but also for circadian clock-regulating CRY functions. The structural and functional results reported here elucidate archetypal relationships within this flavoprotein family and suggest how PHRs and CRYs use local residue and cofactor tuning, rather than larger structural modifications, to achieve their diverse functions encompassing DNA repair, plant growth and development, and circadian clock regulation. C1 [Hitomi, Kenichi; Arvai, Andrew S.; Tainer, John A.; Getzoff, Elizabeth D.] Scripps Res Inst, Dept Mol Biol, La Jolla, CA 92037 USA. [Hitomi, Kenichi; Arvai, Andrew S.; Tainer, John A.; Getzoff, Elizabeth D.] Scripps Res Inst, Skaggs Inst Chem Biol, La Jolla, CA 92037 USA. [Hitomi, Kenichi; Yamamoto, Junpei; Iwai, Shigenori] Osaka Univ, Grad Sch Engn Sci, Osaka 5608531, Japan. [Hitomi, Kenichi; Tainer, John A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA. [DiTacchio, Luciano; Panda, Satchidananda] Salk Inst Biol Studies, Regulatory Biol Lab, La Jolla, CA 92037 USA. [Kim, Sang-Tae; Todo, Takeshi] Kyoto Univ, Ctr Radiat Biol, Kyoto 6068501, Japan. RP Getzoff, ED (reprint author), Scripps Res Inst, Dept Mol Biol, 10666 N Torrey Pines Rd, La Jolla, CA 92037 USA. EM edg@scripps.edu RI DiTacchio, Luciano/D-6341-2011; Panda, Satchidananda/J-6891-2012 OI DiTacchio, Luciano/0000-0001-9570-7348; FU U.S. Department of Energy Program Integrated Diffraction Analysis Technologies [DE-AC02-05CH11231]; National Institutes of Health [GM37684, GM046312, EY016807, 1F32GM082083-01]; Pew Scholars; Asahi Glass Foundation; Human Frontier Science Program; Japan Society for the Promotion of Science fellowships; Skaggs Institute for Chemical Biology FX We thank Dr. H. Nakamura for modeling advice; H. Le, E. Sato, C. Hitomi, and Drs. M. Ariyoshi and Y. Fujiwara for technical assistance; Drs. T. Ishikawa, S. Nakajima, and K. Yamamoto for UVR3 sequence information and help with repair assays; Dr. T. Oyama for the cDNA library; Drs. D. Shin, J. Huffman, and J. Tubbs for manuscript suggestions; and the Advanced Light Source, which is supported by U.S. Department of Energy Program Integrated Diffraction Analysis Technologies under Contract DE-AC02-05CH11231, for X-ray data collection facilities. This work was supported by National Institutes of Health Grants GM37684 (to E. D. G.), GM046312 (to J. A. T.), EY016807 (to S. P.), and 1F32GM082083-01 (to L. D.), Pew Scholars (S. P.), Asahi Glass Foundation (S. I.), Human Frontier Science Program (S. I. and J. A. T.), the Japan Society for the Promotion of Science fellowships (to K. H. and J. Y.), and The Skaggs Institute for Chemical Biology (K. H.). NR 55 TC 64 Z9 68 U1 2 U2 17 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD APR 28 PY 2009 VL 106 IS 17 BP 6962 EP 6967 DI 10.1073/pnas.0809180106 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 438VS UT WOS:000265584500019 PM 19359474 ER PT J AU Chambers, M Verduzco, R Gleeson, JT Sprunt, S Jakli, A AF Chambers, Martin Verduzco, Rafael Gleeson, James T. Sprunt, Samuel Jakli, Antal TI Calamitic Liquid-Crystalline Elastomers Swollen in Bent-Core Liquid-Crystal Solvents SO ADVANCED MATERIALS LA English DT Article ID NEMATIC ELASTOMERS; MONOMERS AB The swelling of calamitic liquid crystal elastomers (LCEs) with bent-core mesogens is investigated in the isotropic phase of both materials. The swelling magnitude and dynamics are determined and fitted with a dual exponential. The host LCEs imbibe bent-core molecules up to 30-40 mol%. The swollen elastomers exhibit nematic phases, with some possessing a lower temperature smectic phase. C1 [Chambers, Martin; Jakli, Antal] Kent State Univ, Inst Liquid Crystal, Kent, OH 44240 USA. [Chambers, Martin; Gleeson, James T.; Sprunt, Samuel] Kent State Univ, Dept Phys, Kent, OH 44240 USA. [Verduzco, Rafael] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37830 USA. RP Chambers, M (reprint author), Kent State Univ, Inst Liquid Crystal, Kent, OH 44240 USA. EM mchambers@ijs.si RI Gleeson, James/B-9208-2008 FU NSF [DMR 0606357, DMR-0606160]; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy; ONR [N00014-07-1-0440] FX The liquid crystal elastomer system used in this study was provided by the Slobodan Zurner group ofjozef Stefan Institute and the New Liquid Crystal Materials Facility (http://nlcmf.Ici.kent.edu) supported by the NSF (DMR 0606357), the Ohio Department of Development, Kent State University, and AlphaMicron, Inc. A portion of this work was performed at Oak Ridge National Laboratory's Center for Nanophase Materials Sciences, which is sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. The authors would like to acknowledge support from ONR (N00014-07-1-0440) and NSF (DMR-0606160). NR 29 TC 17 Z9 17 U1 2 U2 21 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 0935-9648 J9 ADV MATER JI Adv. Mater. PD APR 27 PY 2009 VL 21 IS 16 BP 1622 EP + DI 10.1002/adma.200802739 PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 443ZX UT WOS:000265950500017 ER PT J AU Choi, H Borondics, F Siegel, DA Zhou, SY Martin, MC Lanzara, A Kaindl, RA AF Choi, H. Borondics, F. Siegel, D. A. Zhou, S. Y. Martin, M. C. Lanzara, A. Kaindl, R. A. TI Broadband electromagnetic response and ultrafast dynamics of few-layer epitaxial graphene SO APPLIED PHYSICS LETTERS LA English DT Article DE buffer layers; electromagnetism; electron-hole recombination; epitaxial layers; graphene; high-speed optical techniques; infrared spectra; monolayers; optical conductivity; photoexcitation; terahertz wave spectra ID SILICON-CARBIDE; SPECTROSCOPY; SUBSTRATE AB We study the broadband optical conductivity and ultrafast carrier dynamics of epitaxial graphene in the few-layer limit. Equilibrium spectra of nominally buffer, monolayer, and multilayer graphene exhibit significant terahertz and near-infrared absorption, consistent with a model of intra- and interband transitions in a dense Dirac electron plasma. Nonequilibrium terahertz transmission changes after photoexcitation are shown to be dominated by excess hole carriers, with a 1.2 ps monoexponential decay that reflects the minority-carrier recombination time. C1 [Choi, H.; Siegel, D. A.; Zhou, S. Y.; Lanzara, A.; Kaindl, R. A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Borondics, F.; Martin, M. C.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. [Siegel, D. A.; Zhou, S. Y.; Lanzara, A.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. RP Choi, H (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RI Zhou, Shuyun/A-5750-2009; Borondics, Ferenc/A-7616-2008; OI Borondics, Ferenc/0000-0001-9975-4301 FU DOE Office of Basic Energy Sciences [DE-AC02-05CH11231]; Rosztoczy Foundation FX This work was supported by the DOE Office of Basic Energy Sciences, Contract DE-AC02-05CH11231. F.B. acknowledges a scholarship of the Rosztoczy Foundation. NR 24 TC 148 Z9 150 U1 10 U2 91 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD APR 27 PY 2009 VL 94 IS 17 AR 172102 DI 10.1063/1.3122348 PG 3 WC Physics, Applied SC Physics GA 440ZP UT WOS:000265738700033 ER PT J AU Hawkridge, ME Liliental-Weber, Z Kim, HJ Choi, S Yoo, D Ryou, JH Dupuis, RD AF Hawkridge, M. E. Liliental-Weber, Z. Kim, H. J. Choi, S. Yoo, D. Ryou, J. -H. Dupuis, R. D. TI Erratic dislocations within funnel defects in AlN templates for AlGaN epitaxial layer growth SO APPLIED PHYSICS LETTERS LA English DT Article DE aluminium compounds; dislocations; electro-optical effects; epitaxial growth; gallium compounds; III-V semiconductors; impurities; MOCVD; phase separation; semiconductor epitaxial layers; semiconductor growth; transmission electron microscopy ID SAPPHIRE; FILMS; GAN AB We report our transmission electron microscopy observations of erratic dislocation behavior within funnel-like defects on top of AlN templates filled with AlGaN from an overlying epitaxial layer. This dislocation behavior is observed in material where phase separation is also observed. Several bare AlN templates were examined to determine the formation mechanism of the funnels. Our results suggest that they are formed prior to epitaxial layer deposition due to the presence of impurities during template regrowth. We discuss the erratic dislocation behavior in relation to the presence of the phase-separated material and the possible effects of these defects on the optoelectronic properties. C1 [Hawkridge, M. E.; Liliental-Weber, Z.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Kim, H. J.; Choi, S.; Yoo, D.; Ryou, J. -H.; Dupuis, R. D.] Georgia Inst Technol, Ctr Compound Semicond, Atlanta, GA 30332 USA. [Kim, H. J.; Choi, S.; Yoo, D.; Ryou, J. -H.; Dupuis, R. D.] Georgia Inst Technol, Sch Elect & Comp Engn, Atlanta, GA 30332 USA. RP Hawkridge, ME (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, 1 Cyclotron Rd,MS 62R0209-213, Berkeley, CA 94720 USA. EM mehawkridge@lbl.gov RI Liliental-Weber, Zuzanna/H-8006-2012 FU Georgia Institute of Technology [R7776S2, FA8718-07-C-0002]; U.S. Department of Energy [DE-AC02-05CH11231]; National Center for Electron Microscopy, Lawrence Berkeley National Laboratory FX This work was supported by the Georgia Institute of Technology Contract No. R7776S2 (under the DARPA DU-VAP Program Contract No. FA8718-07-C-0002) through the U.S. Department of Energy under Contract No. DE-AC02-05CH11231 and was performed at the National Center for Electron Microscopy, Lawrence Berkeley National Laboratory. NR 20 TC 4 Z9 4 U1 0 U2 7 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD APR 27 PY 2009 VL 94 IS 17 AR 171912 DI 10.1063/1.3129870 PG 3 WC Physics, Applied SC Physics GA 440ZP UT WOS:000265738700031 ER PT J AU Keavney, DJ Cheng, XM Buchanan, KS AF Keavney, D. J. Cheng, X. M. Buchanan, K. S. TI Polarity reversal of a magnetic vortex core by a unipolar, nonresonant in-plane pulsed magnetic field SO APPLIED PHYSICS LETTERS LA English DT Article DE ferromagnetic materials; magnetisation; micromagnetics; Permalloy; spin systems; vortices; X-ray photoelectron spectra AB We report the polarity reversal of a magnetic vortex core using a nonresonant in-plane pulsed magnetic field of arbitrary waveform studied using time-resolved x-ray photoemission electron microscopy and micromagnetic simulations. The imaging and simulations show that a 5 mT pulse, higher than the critical field for nonlinear effects, effectively leads to the randomization of the vortex core polarity. The micromagnetic simulations further show that the onset of stochastic core polarity randomization does not necessarily coincide with the critical reversal field, leading to a field window for predictable core reversal. C1 [Keavney, D. J.; Cheng, X. M.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Buchanan, K. S.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Buchanan, K. S.] Colorado State Univ, Dept Phys, Ft Collins, CO 80523 USA. RP Cheng, XM (reprint author), Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. EM xmcheng@aps.anl.gov RI Cheng, Xuemei/D-2388-2010; OI Cheng, Xuemei/0000-0001-6670-4316; Buchanan, Kristen/0000-0003-0879-0038 FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX Use of the Advanced Photon Source and the Center for Nanoscale Materials at Argonne National Laboratory is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 11 TC 14 Z9 14 U1 0 U2 10 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD APR 27 PY 2009 VL 94 IS 17 AR 172506 DI 10.1063/1.3111430 PG 3 WC Physics, Applied SC Physics GA 440ZP UT WOS:000265738700045 ER PT J AU Kraessig, B Dunford, RW Kanter, EP Landahl, EC Southworth, SH Young, L AF Kraessig, Bertold Dunford, R. W. Kanter, E. P. Landahl, E. C. Southworth, S. H. Young, L. TI A simple cross-correlation technique between infrared and hard x-ray pulses SO APPLIED PHYSICS LETTERS LA English DT Article DE fluorescence; krypton; optical pulse generation; photoionisation; X-ray absorption; X-ray emission spectra AB We report a gas phase technique to establish the temporal overlap of ultrafast infrared laser and hard x-ray pulses. We use tunnel ionization of a closed shell atom in the strong field at the focus of an infrared laser beam to open a distinct x-ray absorption resonance channel with a clear fluorescence signature. The technique has an intrinsic response of a few femtoseconds and is nondestructive to the two beams. It provides a step-functionlike cross-correlation result. The details of the transient provide a diagnostic of the temporal overlap of the two pulses. C1 [Kraessig, Bertold; Dunford, R. W.; Kanter, E. P.; Landahl, E. C.; Southworth, S. H.; Young, L.] Argonne Natl Lab, Argonne, IL 60439 USA. RP Kraessig, B (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM kraessig@anl.gov RI Landahl, Eric/A-1742-2010 FU Chemical Sciences, Geosciences, and Biosciences Division; Office of Basic Energy Sciences, Office of Science, U. S. Department of Energy [DE-AC02-06CH11357] FX This work was supported by the Chemical Sciences, Geosciences, and Biosciences Division, (and also in the case of the Advanced Photon Source) the Office of Basic Energy Sciences, Office of Science, U. S. Department of Energy under Contract No. DE-AC02-06CH11357. NR 18 TC 6 Z9 6 U1 0 U2 7 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD APR 27 PY 2009 VL 94 IS 17 AR 171113 DI 10.1063/1.3125256 PG 3 WC Physics, Applied SC Physics GA 440ZP UT WOS:000265738700013 ER PT J AU Li, TL Lee, JH Gao, YF Pharr, GM Huang, M Tsui, TY AF Li, T. L. Lee, J. H. Gao, Y. F. Pharr, G. M. Huang, M. Tsui, T. Y. TI Geometric effects on dislocation nucleation in strained electronics SO APPLIED PHYSICS LETTERS LA English DT Article DE dislocation loops; dislocation nucleation; integrated circuits; nanoelectronics; slip ID MASK-EDGE DEFECTS; TANGENTIAL CONTACT; ADHESIVE CONTACT; MICRO-PLASTICITY; SURFACE STEPS; SILICON; STRESS; MODULUS; GROWTH; SI AB Dislocation loops may be nucleated from sharp geometric features in strained micro- and nano-electronic devices. This process is investigated by a dissipative cohesive interface model which treats the dislocation core as a continuous, inhomogeneous lattice slip field. As a representative example, we calculate the critical external stress for dislocation nucleation from the edges/corners of a rectangular stress-free Si(3)N(4) pad on a Si substrate as a function of geometric parameters such as the length-to-height ratio and the three-dimensional shape of the pad. The shapes of the dislocations are also simulated. C1 [Li, T. L.; Lee, J. H.; Gao, Y. F.; Pharr, G. M.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Gao, Y. F.] Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN 37831 USA. [Pharr, G. M.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Huang, M.] GE Global Res Ctr, Niskayuna, NY 12309 USA. [Tsui, T. Y.] Univ Waterloo, Dept Chem Engn, Waterloo, ON N2L 3G1, Canada. RP Li, TL (reprint author), Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. EM ygao7@utk.edu RI Li, Tianlei/F-8865-2010; Gao, Yanfei/F-9034-2010; Lee, Jin Haeng/E-2457-2011; Huang, Min/B-9269-2008 OI Li, Tianlei/0000-0003-1962-9290; Gao, Yanfei/0000-0003-2082-857X; Huang, Min/0000-0002-1282-1573 FU National Science Foundation; Center for Materials Processing; Joint Institute of Advanced Materials at the University of Tennessee; Korean Government (MOEHRD) [KRF-352-D00001]; Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, U. S. Department of Energy [DE-AC05-00OR22725] FX The authors acknowledge support from the National Science Foundation, the Center for Materials Processing, and the Joint Institute of Advanced Materials at the University of Tennessee. J.H.L. was partially supported by the Korea Research Foundation Grant (Grant No. KRF-352-D00001) funded by the Korean Government (MOEHRD). Research at the Oak Ridge National Laboratory was sponsored by the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, U. S. Department of Energy, under Contract No. DE-AC05-00OR22725 with UT-Battelle, LLC. NR 31 TC 7 Z9 7 U1 0 U2 7 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD APR 27 PY 2009 VL 94 IS 17 AR 171905 DI 10.1063/1.3126520 PG 3 WC Physics, Applied SC Physics GA 440ZP UT WOS:000265738700024 ER PT J AU Obukhov, Y Pelekhov, DV Nazaretski, E Movshovich, R Hammel, PC AF Obukhov, Yu. Pelekhov, D. V. Nazaretski, E. Movshovich, R. Hammel, P. C. TI Effect of localized magnetic field on the uniform ferromagnetic resonance mode in a thin film SO APPLIED PHYSICS LETTERS LA English DT Article DE ferromagnetic resonance; ferromagnetism; magnetic force microscopy; magnetic moments; magnetic thin films; magnetisation; micromagnetics AB We theoretically analyze the influence of the micromagnetic probe used in ferromagnetic resonance force microscopy (FMRFM) on the ferromagnetic resonance (FMR) modes in a thin ferromagnetic film. Our analysis of the FMRFM force response reveals three regimes defined by the extent to which the probe perturbs the uniform FMR mode. With closer approach, the FMRFM force grows more slowly because the strengthening probe field suppresses the FMR response. Our analysis agrees well with experimental data and provides theoretical foundations for FMRFM imaging. C1 [Obukhov, Yu.; Pelekhov, D. V.; Hammel, P. C.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Nazaretski, E.; Movshovich, R.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Obukhov, Y (reprint author), Ohio State Univ, Dept Phys, 174 W 18th Ave, Columbus, OH 43210 USA. EM oboukhov@mps.ohio-state.edu; hammel@mps.ohio-state.edu RI Hammel, P Chris/O-4845-2014 OI Hammel, P Chris/0000-0002-4138-4798 FU U.S. Department of Energy [DE-FG02-03ER46054] FX This work was supported by the U.S. Department of Energy through Grant No. DE-FG02-03ER46054. Work at Los Alamos National Laboratory was performed under the auspices of the U.S. Department of Energy. NR 11 TC 5 Z9 5 U1 0 U2 5 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD APR 27 PY 2009 VL 94 IS 17 AR 172508 DI 10.1063/1.3123264 PG 3 WC Physics, Applied SC Physics GA 440ZP UT WOS:000265738700047 ER PT J AU Wei, HX Qin, QH Wen, ZC Han, XF Zhang, XG AF Wei, H. X. Qin, Q. H. Wen, Z. C. Han, X. F. Zhang, X. -G. TI Magnetic tunnel junction sensor with Co/Pt perpendicular anisotropy ferromagnetic layer SO APPLIED PHYSICS LETTERS LA English DT Article DE cobalt; ferromagnetic materials; magnetic anisotropy; magnetic sensors; magnetic tunnelling; magnetoresistance; platinum ID MAGNETORESISTANCE SENSOR; FIELD AB Linear magnetoresistance is an important attribute for magnetic sensor design in space applications, three-dimensional detection of the magnetic field, and high field measurements. Here we demonstrate that a large linear magnetoresistance of up to 22% can be achieved in a magnetic tunnel junction that consists of two ferromagnetic layers, one with out of plane and one with in-plane magnetic anisotropy. The tunneling magnetoresistance with the electrical current perpendicular to the film plane and the magnetic configuration of the device are analyzed. C1 [Wei, H. X.; Qin, Q. H.; Wen, Z. C.; Han, X. F.] Chinese Acad Sci, State Key Lab Magnetism, Beijing Natl Lab Condensed Matter Phys, Inst Phys, Beijing 100190, Peoples R China. [Zhang, X. -G.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci & Comp Sci, Oak Ridge, TN 37831 USA. [Zhang, X. -G.] Oak Ridge Natl Lab, Div Math, Oak Ridge, TN 37831 USA. RP Han, XF (reprint author), Chinese Acad Sci, State Key Lab Magnetism, Beijing Natl Lab Condensed Matter Phys, Inst Phys, Beijing 100190, Peoples R China. EM hxwei@aphy.iphy.ac.cn; xfhan@aphy.iphy.ac.cn; xgz@ornl.gov RI Qin, Qihang/E-7266-2012; OI Wen, Zhenchao/0000-0001-7496-1339 FU Ministry of Science and Technology (MOST) [2006CB932200, 2009CB929203]; National Natural Science Foundation (NSFC) [10874225, 50721001, 60871048]; NSFC-The Royal Society (U. K.); NSFC-Australia DEST; K. C. Wong Education Foundation, Hong Kong; U. S. Department of Energy FX The project was supported by the State Key Project of Fundamental Research of Ministry of Science and Technology (MOST, Grant Nos. 2006CB932200 and 2009CB929203) and National Natural Science Foundation (NSFC, Grant Nos. 10874225, 50721001, and 60871048). X. F. H. thanks the partial support of the international joint projects of NSFC-The Royal Society (U. K.) and NSFC-Australia DEST and the partial support by K. C. Wong Education Foundation, Hong Kong. A portion of this research at ORNL's CNMS was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U. S. Department of Energy. NR 10 TC 26 Z9 26 U1 1 U2 17 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD APR 27 PY 2009 VL 94 IS 17 AR 172902 DI 10.1063/1.3126064 PG 3 WC Physics, Applied SC Physics GA 440ZP UT WOS:000265738700054 ER PT J AU Wong-Ng, W Otani, M Levin, I Schenck, P Yang, Z Liu, G Cook, LP Feenstra, R Zhang, W Rupich, MW AF Wong-Ng, W. Otani, M. Levin, I. Schenck, P. Yang, Z. Liu, G. Cook, L. P. Feenstra, R. Zhang, W. Rupich, M. W. TI A phase relation study of Ba-Y-Cu-O coated-conductor films using the combinatorial approach SO APPLIED PHYSICS LETTERS LA English DT Article DE annealing; barium compounds; flux pinning; high-temperature superconductors; reaction kinetics; superconducting thin films; yttrium compounds ID THIN-FILMS; SUPERCONDUCTORS; DEPOSITION; PROGRESS; GROWTH; SYSTEM AB Phase relationships in bulk and thin film Ba-Y-Cu-O high-T(c) superconductor system were determined at processing conditions relevant for industrial production of coated conductors. Our results demonstrated that the absence of BaY(2)CuO(5) (which has a critical effect on flux pinning) at 735 degrees C-a typical temperature employed in production of coated conductors-in thin films processed in situ from the BaF(2) precursor is caused by the sluggish reaction kinetics rather than by the presence of fluorine in the system. Thermodynamic calculations combined with annealing experiments confirmed that BaY(2)CuO(5) is thermodynamically stable but forms at temperatures higher than 735 degrees C. C1 [Wong-Ng, W.; Otani, M.; Levin, I.; Schenck, P.; Yang, Z.; Liu, G.; Cook, L. P.] NIST, Div Ceram, Mat Sci & Engn Lab, Gaithersburg, MD 20899 USA. [Feenstra, R.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Zhang, W.; Rupich, M. W.] Amer Superconductor Corp, Westborough, MA 01581 USA. RP Wong-Ng, W (reprint author), NIST, Div Ceram, Mat Sci & Engn Lab, Gaithersburg, MD 20899 USA. EM winnie.wong-ng@nist.gov RI Levin, Igor/F-8588-2010 FU U.S. Department of Energy FX This work was partially supported by the U.S. Department of Energy. NR 21 TC 4 Z9 5 U1 0 U2 7 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD APR 27 PY 2009 VL 94 IS 17 AR 171910 DI 10.1063/1.3127222 PG 3 WC Physics, Applied SC Physics GA 440ZP UT WOS:000265738700029 ER PT J AU Schober, D Smith, B Lewis, SE Kusnierczyk, W Lomax, J Mungall, C Taylor, CF Rocca-Serra, P Sansone, SA AF Schober, Daniel Smith, Barry Lewis, Suzanna E. Kusnierczyk, Waclaw Lomax, Jane Mungall, Chris Taylor, Chris F. Rocca-Serra, Philippe Sansone, Susanna-Assunta TI Survey-based naming conventions for use in OBO Foundry ontology development SO BMC BIOINFORMATICS LA English DT Article ID BIO-ONTOLOGIES; NOMENCLATURE AB Background: A wide variety of ontologies relevant to the biological and medical domains are available through the OBO Foundry portal, and their number is growing rapidly. Integration of these ontologies, while requiring considerable effort, is extremely desirable. However, heterogeneities in format and style pose serious obstacles to such integration. In particular, inconsistencies in naming conventions can impair the readability and navigability of ontology class hierarchies, and hinder their alignment and integration. While other sources of diversity are tremendously complex and challenging, agreeing a set of common naming conventions is an achievable goal, particularly if those conventions are based on lessons drawn from pooled practical experience and surveys of community opinion. Results: We summarize a review of existing naming conventions and highlight certain disadvantages with respect to general applicability in the biological domain. We also present the results of a survey carried out to establish which naming conventions are currently employed by OBO Foundry ontologies and to determine what their special requirements regarding the naming of entities might be. Lastly, we propose an initial set of typographic, syntactic and semantic conventions for labelling classes in OBO Foundry ontologies. Conclusion: Adherence to common naming conventions is more than just a matter of aesthetics. Such conventions provide guidance to ontology creators, help developers avoid flaws and inaccuracies when editing, and especially when interlinking, ontologies. Common naming conventions will also assist consumers of ontologies to more readily understand what meanings were intended by the authors of ontologies used in annotating bodies of data. C1 [Schober, Daniel; Lomax, Jane; Taylor, Chris F.; Rocca-Serra, Philippe; Sansone, Susanna-Assunta] EBI, EMBL, Cambridge CB10 1SD, England. [Schober, Daniel] Univ Med Ctr, Inst Med Biometry & Med Informat IMBI, D-79104 Freiburg, Germany. [Smith, Barry] SUNY Buffalo, Dept Philosophy, Buffalo, NY 14260 USA. [Smith, Barry] SUNY Buffalo, Ctr Excellence Bioinformat & Life Sci, Buffalo, NY 14260 USA. [Lewis, Suzanna E.; Mungall, Chris] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley Bioinformat & Ontol Project, Berkeley, CA 94720 USA. [Kusnierczyk, Waclaw] Norwegian Univ Sci & Technol, NTNU, Dept Informat & Comp Sci, N-7034 Trondheim, Norway. [Taylor, Chris F.] NERC Environm Bioinformat Ctr NEBC, Oxford OX1 3SR, England. RP Sansone, SA (reprint author), EBI, EMBL, Wellcome Trust Genome Campus, Cambridge CB10 1SD, England. EM schober@imbi.uni-freiburg.de; phismith@buffalo.edu; suzi@berkeleybop.org; Waclaw.Marcin.Kusnierczyk@idi.ntnu.no; jane@ebi.ac.uk; cjm@fruitfly.org; chris.taylor@ebi.uk; rocca@ebi.ac.uk; sansone@ebi.ac.uk RI Smith, Barry/A-9525-2011; OI Smith, Barry/0000-0003-1384-116X; Lomax, Jane/0000-0001-8865-4321; Lewis, Suzanna/0000-0002-8343-612X FU Biotechnology and Biological Sciences Research Council [BB/E025080/1, BB/D524283/1]; NHGRI NIH HHS [1 U 54 HG004028, U54 HG004028] NR 23 TC 26 Z9 26 U1 1 U2 2 PU BIOMED CENTRAL LTD PI LONDON PA CURRENT SCIENCE GROUP, MIDDLESEX HOUSE, 34-42 CLEVELAND ST, LONDON W1T 4LB, ENGLAND SN 1471-2105 J9 BMC BIOINFORMATICS JI BMC Bioinformatics PD APR 27 PY 2009 VL 10 AR 125 DI 10.1186/1471-2105-10-125 PG 9 WC Biochemical Research Methods; Biotechnology & Applied Microbiology; Mathematical & Computational Biology SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology; Mathematical & Computational Biology GA 453JE UT WOS:000266605900001 PM 19397794 ER PT J AU Ribaudo, T Shaner, EA Howard, SS Gmachl, C Wang, XJ Choa, FS Wasserman, D AF Ribaudo, T. Shaner, E. A. Howard, S. S. Gmachl, C. Wang, X. J. Choa, F. -S. Wasserman, D. TI Active Control and Spatial Mapping of Mid-Infrared Propagating Surface Plasmons SO OPTICS EXPRESS LA English DT Article ID EXTRAORDINARY OPTICAL-TRANSMISSION; SUBWAVELENGTH HOLE ARRAYS; THIN METAL-FILMS; LOSS MECHANISMS; LIGHT; APERTURES AB Periodic arrays of subwavelength apertures in metal films have been shown to exhibit strongly enhanced transmission at wavelengths determined by the periodicity of the film as well as the optical properties of the metal and surrounding dielectric material. Here we investigate the coupling between such a grating and a Quantum Cascade Laser. By actively tuning the optical properties of our grating, we control the coupling of laser light to the plasmonic structure, switching our grating from a predominantly transmitting state to a state that allows coupling to propagating surface waves, which can then be imaged on the metallic surface. (C) 2009 Optical Society of America C1 [Ribaudo, T.; Wasserman, D.] Univ Massachusetts, Dept Phys, Lowell, MA 01854 USA. [Shaner, E. A.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Howard, S. S.; Gmachl, C.] Princeton Univ, Dept Elect Engn, Princeton, NJ 08544 USA. [Wang, X. J.] Adtech Opt Inc, City Of Industry, CA 91748 USA. [Choa, F. -S.] Univ Maryland Baltimore Cty, Dept CSEE, Baltimore, MD 21250 USA. RP Wasserman, D (reprint author), Univ Massachusetts, Dept Phys, 1 Univ Ave, Lowell, MA 01854 USA. EM daniel_wasserman@uml.edu RI Wasserman, Daniel/D-3913-2011; Howard, Scott/D-2900-2011 OI Howard, Scott/0000-0003-3246-6799 FU United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX The authors would like to thank L. Cheng and D. Bethke for laser overgrowth and sample fabrication assistance, respectively. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 31 TC 11 Z9 11 U1 1 U2 5 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD APR 27 PY 2009 VL 17 IS 9 BP 7019 EP 7024 DI 10.1364/OE.17.007019 PG 6 WC Optics SC Optics GA 450DR UT WOS:000266381700013 PM 19399076 ER PT J AU Chow, WW Wieczorek, S AF Chow, Weng W. Wieczorek, Sebastian TI Using chaos for remote sensing of laser radiation SO OPTICS EXPRESS LA English DT Article ID SEMICONDUCTOR-LASER; OPTICAL-INJECTION; DYNAMICS; SUBJECT; SIGNAL AB An idea is proposed for detecting a weak laser signal from a remote source in the presence of strong background noise. The scheme exploits dynamical nonlinearities arising from heterodyning signal and reference fields inside an active reference laser cavity. This paper shows that for certain reference laser configurations, the resulting bifurcations in the reference laser may be used as warning of irradiation by a laser source. (c) 2009 Optical Society of America C1 [Chow, Weng W.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Wieczorek, Sebastian] Univ Exeter, Math Res Inst, Exeter EX4 4QF, Devon, England. [Chow, Weng W.] Texas A&M Univ, Inst Quantum Studies, College Stn, TX 77843 USA. [Chow, Weng W.] Texas A&M Univ, Dept Phys, College Stn, TX 77843 USA. RP Chow, WW (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM wwchow@sandia.gov FU United States Department of Energy's Laboratory Directed Research and Development (LDRD) FX The work is supported by the United States Department of Energy's Laboratory Directed Research and Development (LDRD) program at Sandia National Laboratories and by the Alexander von Humboldt Foundation. NR 20 TC 8 Z9 8 U1 0 U2 1 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD APR 27 PY 2009 VL 17 IS 9 BP 7491 EP 7504 DI 10.1364/OE.17.007491 PG 14 WC Optics SC Optics GA 450DR UT WOS:000266381700064 PM 19399127 ER PT J AU Choi, H Pile, DFP Nam, S Bartal, G Zhang, X AF Choi, Hyeunseok Pile, David F. P. Nam, Sunghyun Bartal, Guy Zhang, Xiang TI Compressing surface plasmons for nano-scale optical focusing SO OPTICS EXPRESS LA English DT Article ID WAVE-GUIDES; POLARITONS; SUPERLENS; FIELD; BEAM AB A major challenge in optics is how to deliver and concentrate light from the micron-scale into the nano-scale. Light can not be guided, by conventional mechanisms, with optical beam sizes significantly smaller than its wavelength due to the diffraction limit. On the other hand, focusing of light into very small volumes beyond the diffraction limit can be achieved by exploiting the wavelength scalability of surface plasmon polaritons. By slowing down an optical wave and shrinking its wavelength during its propagation, optical energy can be compressed and concentrated down to nanometer scale, namely, nanofocusing. Here, we experimentally demonstrate and quantitatively measure the nanofocusing of surface plasmon polaritons in tapered metallic V-grooves down to the deep sub-wavelength scale - lambda/40 at wavelength of 1.5 micron - with almost 50% power efficiency. (c) 2009 Optical Society of America C1 [Choi, Hyeunseok; Pile, David F. P.; Nam, Sunghyun; Bartal, Guy; Zhang, Xiang] Univ Calif Berkeley, NSF Nanoscale Sci & Engn Ctr, Berkeley, CA 94720 USA. [Zhang, Xiang] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Zhang, X (reprint author), Univ Calif Berkeley, NSF Nanoscale Sci & Engn Ctr, 5130 Etcheverry Hall, Berkeley, CA 94720 USA. EM xiang@berkeley.edu RI Zhang, Xiang/F-6905-2011; OI Pile, David/0000-0001-9961-1319 FU DARPA [HR0011-05-3-0002 a]; NSF Nanoscale Science and Technology Center (NSEC) [CMMI-0751621]; Korea Research Foundation Grant funded by the Korean Government (MOEHRD, Basic Research Promotion Fund) [KRF-2006-352-D00020] FX This work was supported by DARPA under grant HR0011-05-3-0002 and NSF Nanoscale Science and Technology Center (NSEC) under award number CMMI-0751621. H. Choi was supported by the Korea Research Foundation Grant funded by the Korean Government (MOEHRD, Basic Research Promotion Fund) (KRF-2006-352-D00020). NR 29 TC 84 Z9 84 U1 3 U2 39 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD APR 27 PY 2009 VL 17 IS 9 BP 7519 EP 7524 DI 10.1364/OE.17.007519 PG 6 WC Optics SC Optics GA 450DR UT WOS:000266381700066 PM 19399129 ER PT J AU de Florian, D Grazzini, M AF de Florian, Daniel Grazzini, Massimiliano TI Higgs production through gluon fusion: Updated cross sections at the Tevatron and the LHC SO PHYSICS LETTERS B LA English DT Article ID FINITE-TOP-MASS; BOSON PRODUCTION; PARTON DISTRIBUTIONS; HADRON COLLIDERS; NNLO; QCD; ORDER AB We present updated predictions for the total cross section for Higgs boson production by gluon-gluon fusion in hadron collisions. Our calculation includes the most advanced theoretical information available at present for this observable: soft-gluon resummation up to next-to-next-to-leading logarithmic accuracy, the exact treatment of the bottom-quark contribution tip to next-to-leading order, and two-loop electroweak effects. We adopt the most recent parametrization of parton distribution functions at next-to-next-to-leading order, and we evaluate the corresponding uncertainties. In comparison with our previous central predictions, at the Tevatron the difference ranges from +9% for m(H) = 115 GeV to -9% for m(H) = 200 GeV. At the LHC the cross section is instead significantly increased. The effect goes from +30% for m(H) = 115 GeV to +9% for m(H) = 300 GeV, and is mostly due to the new parton distribution functions. We also provide new predictions for the LHC at root s = 10 TeV. (C) 2009 Elsevier B.V. All rights reserved. C1 [de Florian, Daniel] Univ Buenos Aires, FCEYN, Dept Fis, RA-1428 Buenos Aires, DF, Argentina. [de Florian, Daniel] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Grazzini, Massimiliano] Univ Florence, Ist Nazl Fis Nucl, Sez Firenze, I-50019 Florence, Italy. [Grazzini, Massimiliano] Univ Florence, Dipartimento Fis, I-50019 Florence, Italy. RP de Florian, D (reprint author), Univ Buenos Aires, FCEYN, Dept Fis, Pabello 1 Ciudad Univ, RA-1428 Buenos Aires, DF, Argentina. EM deflo@df.uba.ar; grazzini@fi.infn.it RI de Florian, Daniel/B-6902-2011 OI de Florian, Daniel/0000-0002-3724-0695 FU ANPCYT; UBA-CyT; CONICET; US Department of Energy [DE-AC02-98CH10886] FX We thank Babis Anastasiou and Christian Sturm for useful discussions. We are grateful to Stefano Catani for helpful discussions and comments on the manuscript. The work of D.deF. was partially supported by ANPCYT, UBA-CyT and CONICET. D.deF. is grateful to the US Department of Energy (Contract No. DE-AC02-98CH10886) for providing the facilities essential for the completion of his work. NR 27 TC 144 Z9 144 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 EI 1873-2445 J9 PHYS LETT B JI Phys. Lett. B PD APR 27 PY 2009 VL 674 IS 4-5 BP 291 EP 294 DI 10.1016/j.physletb.2009.03.033 PG 4 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 439JD UT WOS:000265622500009 ER PT J AU Zhang, B Chen, G Liang, YL Xu, P AF Zhang, Bin Chen, Gang Liang, Yilin Xu, Ping TI Structural and electrochemical properties of LiNi0.5Mn0.5-xAlxO2 (x=0, 0.02, 0.05, 0.08, and 0.1) cathode materials for lithium-ion batteries SO SOLID STATE IONICS LA English DT Article DE LiNi0.5Mn0.5O2; Aluminum substitution; Layered structure; Cathode material; Lithium ion battery ID NICKEL MANGANESE OXIDES; LI-ION; COPRECIPITATION METHOD; COBALT SUBSTITUTION; ELECTRODE MATERIALS; PERFORMANCE; BEHAVIOR; AL; INTERCALATION; CELLS AB Layered LiNi0.5Mn0.5-xAlxO2 (x = 0, 0.02, 0.05, 0.08, and 0.1) series cathode materials for lithium-ion batteries were synthesized by a combination technique of co-precipitation and solid-state reaction, and the structural, morphological, and electrochemical properties were examined by XRD, FT-IR, XPS, SEM, CV, EIS, and charge-discharge tests. It is proven that the aliovalent substitution of Al for Mn promoted the formation of LiNi0.5Mn0.5-xAlxO2 structures and induced an increase in the average oxidation number of Ni, thereby leading to the shrinkage of the lattice volume. Among the LiNi0.5Mn0.5-xAlxO2 materials, the material with x = 0.05 shows the best cyclability and rate ability, with discharge capacities of 219,169,155, and 129 mAh g(-1) at 10, 100, 200, and 400 MA g(-1) current density respectively. Cycled under 40 mA g(-1) in 2.8-4.6 V, LiNi0.5Mn0.45Al0.05O2 shows the highest discharge capacity of about 199 mAh g(-1) for the first cycle, and 179 mAh g(-1) after 40 cycles, with a capacity retention of 90%. EIS analyses of the electrode materials at pristine state and state after first charge to 4.6 V indicate that the observed higher current rate capability of LiNi0.5Mn0.45Al0.05O2 can be understood due to the better charge transfer kinetics. (C) 2009 Elsevier B.V. All rights reserved. C1 [Zhang, Bin; Chen, Gang; Liang, Yilin; Xu, Ping] Harbin Inst Technol, Dept Chem, Harbin 150001, Peoples R China. [Xu, Ping] Los Alamos Natl Lab, C PCS, Los Alamos, NM 87545 USA. RP Chen, G (reprint author), Harbin Inst Technol, Dept Chem, Harbin 150001, Peoples R China. EM gchen@hit.edu.cn; pingxu1980@hotmail.com RI Xu, Ping/I-1910-2013; zhou, yansong/J-8476-2013; Chen, Gang/B-5073-2016; Zhou, Yansong/K-6291-2015 OI Xu, Ping/0000-0002-1516-4986; Zhou, Yansong/0000-0003-1369-8324 FU National Science Foundation of China [20571019] FX This work was supported by the National Science Foundation of China (Project No.20571019). The Project was sponsored by SRF for ROCS, SEM and the Project-sponsored by SRF for ROCS, HIT. P. Xu thanks helpful discussions with Dr. Darrick Williams and Dr. Hsing-Lin Wang about the XRD. NR 48 TC 23 Z9 26 U1 4 U2 54 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-2738 J9 SOLID STATE IONICS JI Solid State Ion. PD APR 27 PY 2009 VL 180 IS 4-5 BP 398 EP 404 DI 10.1016/j.ssi.2009.01.009 PG 7 WC Chemistry, Physical; Physics, Condensed Matter SC Chemistry; Physics GA 443ED UT WOS:000265892100017 ER PT J AU Riesen, R Brightwell, R Bridges, PG Hudson, T Maccabe, AB Widener, PM Ferreira, K AF Riesen, Rolf Brightwell, Ron Bridges, Patrick G. Hudson, Trammell Maccabe, Arthur B. Widener, Patrick M. Ferreira, Kurt TI Designing and implementing lightweight kernels for capability computing SO CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE LA English DT Article DE parallel computing; operating systems ID PERFORMANCE; SUPPORT; MODEL AB In the early 1990s, researchers at Sandia National Laboratories and the University of New Mexico began development of customized system software for massively parallel 'capability' computing platforms. These lightweight kernels have proven to be essential for delivering the full power of the underlying hardware to applications. This claim is underscored by the success of several supercomputers, including the Intel Paragon, Intel Accelerated Strategic Computing Initiative Red, and the Cray XT series of systems, each having established a new standard for high-performance computing upon introduction. In this paper, we describe our approach to lightweight compute node kernel design and discuss the design principles that have guided several generations of implementation and deployment. A broad strategy of operating system specialization has led to a focus on user-level resource management, deterministic behavior, and scalable system services. The relative importance of each of these areas has changed over the years in response to changes in applications and hardware and system architecture. We detail our approach and the associated principles, describe how our application of these principles has changed over time, and provide design and performance comparisons to contemporaneous supercomputing operating systems. Copyright (C) 2008 John Wiley & Sons, Ltd. C1 [Bridges, Patrick G.; Maccabe, Arthur B.; Widener, Patrick M.] Univ New Mexico, Dept Comp Sci, Albuquerque, NM 87131 USA. [Riesen, Rolf; Brightwell, Ron; Ferreira, Kurt] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Hudson, Trammell] OS Res, Washington, DC 20036 USA. RP Bridges, PG (reprint author), Univ New Mexico, Dept Comp Sci, Albuquerque, NM 87131 USA. EM bridges@cs.unm.edu FU United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX Contract/grant sponsor: United States Department of Energy's National Nuclear Security Administration; contract/grant number: DE-AC04-94AL85000 NR 35 TC 7 Z9 7 U1 0 U2 2 PU JOHN WILEY & SONS LTD PI CHICHESTER PA THE ATRIUM, SOUTHERN GATE, CHICHESTER PO19 8SQ, W SUSSEX, ENGLAND SN 1532-0626 J9 CONCURR COMP-PRACT E JI Concurr. Comput.-Pract. Exp. PD APR 25 PY 2009 VL 21 IS 6 BP 793 EP 817 DI 10.1002/cpe.1361 PG 25 WC Computer Science, Software Engineering; Computer Science, Theory & Methods SC Computer Science GA 428MM UT WOS:000264852400004 ER PT J AU Easterling, DR Wehner, MF AF Easterling, David R. Wehner, Michael F. TI Is the climate warming or cooling? SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article AB Numerous websites, blogs and articles in the media have claimed that the climate is no longer warming, and is now cooling. Here we show that periods of no trend or even cooling of the globally averaged surface air temperature are found in the last 34 years of the observed record, and in climate model simulations of the 20(th) and 21(st) century forced with increasing greenhouse gases. We show that the climate over the 21(st) century can and likely will produce periods of a decade or two where the globally averaged surface air temperature shows no trend or even slight cooling in the presence of longer-term warming. Citation: Easterling, D. R., and M. F. Wehner (2009), Is the climate warming or cooling?, Geophys. Res. Lett., 36, L08706, doi: 10.1029/2009GL037810. C1 [Easterling, David R.] NOAA, Natl Climat Data Ctr, Asheville, NC 28801 USA. [Wehner, Michael F.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Easterling, DR (reprint author), NOAA, Natl Climat Data Ctr, 151 Pattom Ave, Asheville, NC 28801 USA. EM david.easterling@noaa.gov; mfwehner@lbl.gov FU Climate Change Prediction Program; Office of Science; U.S. Department of Energy; Office of Biological and Environmental Sciences; U.S. Department of Energy [DE-AI02-96ER62276] FX We acknowledge the modeling groups, the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and the World Climate Research Program's (WCRP) Working Group on Coupled Modeling (WGCM) for their roles in making available the WCRP CMIP3 multi-model dataset. Support of this dataset and support for this analysis is provided by the Climate Change Prediction Program, Office of Science, and the U.S. Department of Energy. Additional support to DRE was provided by the Office of Biological and Environmental Sciences, U.S. Department of Energy under Interagency Agreement DE-AI02-96ER62276. NR 6 TC 193 Z9 210 U1 7 U2 78 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD APR 25 PY 2009 VL 36 AR L08706 DI 10.1029/2009GL037810 PG 3 WC Geosciences, Multidisciplinary SC Geology GA 438CT UT WOS:000265534200004 ER PT J AU Daniel, WB Ecke, RE Subramanian, G Koch, DL AF Daniel, W. Brent Ecke, Robert E. Subramanian, G. Koch, Donald L. TI Clusters of sedimenting high-Reynolds-number particles SO JOURNAL OF FLUID MECHANICS LA English DT Article ID DRIVEN GRAVITY CURRENTS; NEWTONIAN FLUID; SPHERE; TRANSITION; WAKE C1 [Subramanian, G.] Jawaharlal Nehru Ctr Adv Sci Res, Engn Mech Unit, Bangalore 560064, Karnataka, India. [Daniel, W. Brent; Ecke, Robert E.] Los Alamos Natl Lab, Ctr Nonlinear Studies & Condensed Matter & Therma, Los Alamos, NM 87545 USA. [Koch, Donald L.] Cornell Univ, Sch Chem & Biomol Engn, Ithaca, NY 14853 USA. RP Subramanian, G (reprint author), Jawaharlal Nehru Ctr Adv Sci Res, Engn Mech Unit, Bangalore 560064, Karnataka, India. EM sganesh@jncasr.ac.in OI Ecke, Robert/0000-0001-7772-5876 FU NSF [CBET-0730579] FX This work was Supported by NSF grant CBET-0730579. NR 19 TC 6 Z9 6 U1 1 U2 7 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0022-1120 J9 J FLUID MECH JI J. Fluid Mech. PD APR 25 PY 2009 VL 625 BP 371 EP 385 DI 10.1017/S002211200900620X PG 15 WC Mechanics; Physics, Fluids & Plasmas SC Mechanics; Physics GA 441WO UT WOS:000265801400014 ER PT J AU Fan, GJ Li, L Yang, B Choo, H Liaw, PK Saleh, TA Clausen, B Brown, DW AF Fan, G. J. Li, L. Yang, Bin Choo, H. Liaw, P. K. Saleh, T. A. Clausen, B. Brown, D. W. TI In situ neutron-diffraction study of tensile deformation of a bulk nanocrystalline alloy SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING LA English DT Article DE Plastic deformation; Nanocrystalline materials; Neutron-diffraction ID SEVERE PLASTIC-DEFORMATION; NANOSTRUCTURED MATERIALS; GRAIN-GROWTH; THIN-FILMS; STRESS; BEHAVIOR; NICKEL; TEMPERATURE; DUCTILITY; STRENGTH AB In situ neutron-diffraction technique has been employed to study the uniaxial tensile deformation of a bulk nanocrystalline Ni-Fe alloy. In contrast to an increase in the full-width half-maximum (FWHM) of the neutron-diffraction patterns for the coarse-grained Ni, the FWHM for the nanocrystalline Ni-Fe alloy decreases with increasing the plastic strain, epsilon(p). The deformation with epsilon(p) < 1.5% did not introduce a residual lattice strain and a texture in the nanocrystalline Ni-Fe alloy, which were otherwise developed in the coarse-grained Ni. (C) 2008 Elsevier B.V. All rights reserved. C1 [Fan, G. J.; Li, L.; Choo, H.; Liaw, P. K.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Yang, Bin] Univ Sci & Technol Beijing, State Key Lab Adv Met & Mat, Beijing 100083, Peoples R China. [Saleh, T. A.; Clausen, B.; Brown, D. W.] Los Alamos Natl Lab, Los Alamos Neutron Sci Ctr, Los Alamos, NM 87545 USA. RP Fan, GJ (reprint author), Smith Int Inc, MegaDiamond, 275 W 2230 N, Provo, UT 84604 USA. EM gfan@smith.com RI Choo, Hahn/A-5494-2009; Clausen, Bjorn/B-3618-2015; OI Choo, Hahn/0000-0002-8006-8907; Clausen, Bjorn/0000-0003-3906-846X; Saleh, Tarik/0000-0003-2108-4293 FU National Science Foundation (NSF); International Materials Institutes (IMI) Program [DMR-0231320] FX This work was supported by the National Science Foundation (NSF) International Materials Institutes (IMI) Program (DMR-0231320). The authors thank the valuable discussion with Prof. Y.D. Wang of Northeastern University, China. NR 30 TC 8 Z9 8 U1 1 U2 13 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0921-5093 EI 1873-4936 J9 MAT SCI ENG A-STRUCT JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. PD APR 25 PY 2009 VL 506 IS 1-2 BP 187 EP 190 DI 10.1016/j.msea.2008.11.054 PG 4 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 425EY UT WOS:000264621000028 ER PT J AU Abazov, VM Abbott, B Abolins, M Acharya, BS Adams, M Adams, T Aguilo, E Ahsan, M Alexeev, GD Alkhazov, G Alton, A Alverson, G Alves, GA Anastasoaie, M Ancu, LS Andeen, T Andrieu, B Anzelc, MS Aoki, M Arnoud, Y Arov, M Arthaud, M Askew, A Asman, B Jesus, ACSA Atramentov, O Avila, C Badaud, F Bagby, L Baldin, B Bandurin, DV Banerjee, P Banerjee, S Barberis, E Barfuss, AF Bargassa, P Baringer, P Barreto, J Bartlett, JF Bassler, U Bauer, D Beale, S Bean, A Begalli, M Begel, M Belanger-Champagne, C Bellantoni, L Bellavance, A Benitez, JA Beri, SB Bernardi, G Bernhard, R Bertram, I Besancon, M Beuselinck, R Bezzubov, VA Bhat, PC Bhatnagar, V Blazey, G Blekman, F Blessing, S Bloom, K Boehnlein, A Boline, D Bolton, TA Boos, EE Borissov, G Bose, T Brandt, A Brock, R Brooijmans, G Bross, A Brown, D Bu, XB Buchanan, NJ Buchholz, D Buehler, M Buescher, V Bunichev, V Burdin, S Burnett, TH Buszello, CP Calfayan, P Calvet, S Cammin, J Carrasco-Lizarraga, MA Carrera, E Carvalho, W Casey, BCK Castilla-Valdez, H Chakrabarti, S Chakraborty, D Chan, KM Chandra, A Cheu, E Cho, DK Choi, S Choudhary, B Christofek, L Christoudias, T Cihangir, S Claes, D Clutter, J Cooke, M Cooper, WE Corcoran, M Couderc, F Cousinou, MC Crepe-Renaudin, S Cuplov, V Cutts, D Cwiok, M da Motta, H Das, A Davies, G De, K de Jong, SJ De La Cruz-Burelo, E Martins, CDO De Vaughan, K Deliot, F Demarteau, M Demina, R Denisov, D Denisov, SP Desai, S Diehl, HT Diesburg, M Dominguez, A Dorland, T Dubey, A Dudko, LV Duflot, L Dugad, SR Duggan, D Duperrin, A Dutt, S Dyer, J Dyshkant, A Eads, M Edmunds, D Ellison, J Elvira, VD Enari, Y Eno, S Ermolov, P Evans, H Evdokimov, A Evdokimov, VN Ferapontov, AV Ferbel, T Fiedler, F Filthaut, F Fisher, W Fisk, HE Fortner, M Fox, H Fu, S Fuess, S Gadfort, T Galea, CF Garcia, C Garcia-Bellido, A Gavrilov, V Gay, P Geist, W Geng, W Gerber, CE Gershtein, Y Gillberg, D Ginther, G Gomez, B Goussiou, A Grannis, PD Greenlee, H Greenwood, ZD Gregores, EM Grenier, G Gris, P Grivaz, JF Grohsjean, A Grunendahl, S Grunewald, MW Guo, F Guo, J Gutierrez, G Gutierrez, P Haas, A Hadley, NJ Haefner, P Hagopian, S Haley, J Hall, I Hall, RE Han, L Harder, K Harel, A Hauptman, JM Hays, J Hebbeker, T Hedin, D Hegeman, JG Heinson, AP Heintz, U Hensel, C Herner, K Hesketh, G Hildreth, MD Hirosky, R Hoang, T Hobbs, JD Hoeneisen, B Hohlfeld, M Hossain, S Houben, P Hu, Y Hubacek, Z Hynek, V Iashvili, I Illingworth, R Ito, AS Jabeen, S Jaffre, M Jain, S Jakobs, K Jarvis, C Jesik, R Johns, K Johnson, C Johnson, M Johnston, D Jonckheere, A Jonsson, P Juste, A Kajfasz, E Karmanov, D Kasper, PA Katsanos, I Kaushik, V Kehoe, R Kermiche, S Khalatyan, N Khanov, A Kharchilava, A Kharzheev, YN Khatidze, D Kim, TJ Kirby, MH Kirsch, M Klima, B Kohli, JM Konrath, JP Kozelov, AV Kraus, J Kuhl, T Kumar, A Kupco, A Kurca, T Kuzmin, VA Kvita, J Lacroix, F Lam, D Lammers, S Landsberg, G Lebrun, P Lee, WM Leflat, A Lellouch, J Li, J Li, L Li, QZ Lietti, SM Lim, JK Lima, JGR Lincoln, D Linnemann, J Lipaev, VV Lipton, R Liu, Y Liu, Z Lobodenko, A Lokajicek, M Love, P Lubatti, HJ Luna-Garcia, R Lyon, AL Maciel, AKA Mackin, D Madaras, RJ Mattig, P Magerkurth, A Mal, PK Malbouisson, HB Malik, S Malyshev, VL Maravin, Y Martin, B McCarthy, R Meijer, MM Melnitchouk, A Mendoza, L Mercadante, PG Merkin, M Merritt, KW Meyer, A Meyer, J Mitrevski, J Mommsen, RK Mondal, NK Moore, RW Moulik, T Muanza, GS Mulhearn, M Mundal, O Mundim, L Nagy, E Naimuddin, M Narain, M Neal, HA Negret, JP Neustroev, P Nilsen, H Nogima, H Novaes, SF Nunnemann, T O'Neil, DC Obrant, G Ochando, C Onoprienko, D Oshima, N Osman, N Osta, J Otec, R Garzon, GJOY Owen, M Padley, P Pangilinan, M Parashar, N Park, SJ Park, SK Parsons, J Partridge, R Parua, N Patwa, A Pawloski, G Penning, B Perfilov, M Peters, K Peters, Y Petroff, P Petteni, M Piegaia, R Piper, J Pleier, MA Podesta-Lerma, PLM Podstavkov, VM Pogorelov, Y Pol, ME Polozov, P Pope, BG Popov, AV Potter, C da Silva, WLP Prosper, HB Protopopescu, S Qian, J Quadt, A Quinn, B Rakitine, A Rangel, MS Ranjan, K Ratoff, PN Renkel, P Rich, P Rijssenbeek, M Ripp-Baudot, I Rizatdinova, F Robinson, S Rodrigues, RF Rominsky, M Royon, C Rubinov, P Ruchti, R Safronov, G Sajot, G Sanchez-Hernandez, A Sanders, MP Sanghi, B Savage, G Sawyer, L Scanlon, T Schaile, D Schamberger, RD Scheglov, Y Schellman, H Schliephake, T Schlobohm, S Schwanenberger, C Schwartzman, A Schwienhorst, R Sekaric, J Severini, H Shabalina, E Shamim, M Shary, V Shchukin, AA Shivpuri, RK Siccardi, V Simak, V Sirotenko, V Skubic, P Slattery, P Smirnov, D Snow, GR Snow, J Snyder, S Soldner-Rembold, S Sonnenschein, L Sopczak, A Sosebee, M Soustruznik, K Spurlock, B Stark, J Stolin, V Stoyanova, DA Strandberg, J Strandberg, S Strang, MA Strauss, E Strauss, M Strohmer, R Strom, D Stutte, L Sumowidagdo, S Svoisky, P Sznajder, A Tanasijczuk, A Taylor, W Tiller, B Tissandier, F Titov, M Tokmenin, VV Torchiani, I Tsybychev, D Tuchming, B Tully, C Tuts, PM Unalan, R Uvarov, L Uvarov, S Uzunyan, S Vachon, B van den Berg, PJ Van Kooten, R van Leeuwen, WM Varelas, N Varnes, EW Vasilyev, IA Verdier, P Vertogradov, LS Verzocchi, M Vilanova, D Villeneuve-Seguier, F Vint, P Vokac, P Voutilainen, M Wagner, R Wahl, HD Wang, MHLS Warchol, J Watts, G Wayne, M Weber, G Weber, M Welty-Rieger, L Wenger, A Wermes, N Wetstein, M White, A Wicke, D Williams, MRJ Wilson, GW Wimpenny, SJ Wobisch, M Wood, DR Wyatt, TR Xie, Y Xu, C Yacoob, S Yamada, R Yang, WC Yasuda, T Yatsunenko, YA Yin, H Yip, K Yoo, HD Youn, SW Yu, J Zeitnitz, C Zelitch, S Zhao, T Zhou, B Zhu, J Zielinski, M Zieminska, D Zieminski, A Zivkovic, L Zutshi, V Zverev, EG AF Abazov, V. M. Abbott, B. Abolins, M. Acharya, B. S. Adams, M. Adams, T. Aguilo, E. Ahsan, M. Alexeev, G. D. Alkhazov, G. Alton, A. Alverson, G. Alves, G. A. Anastasoaie, M. Ancu, L. S. Andeen, T. Andrieu, B. Anzelc, M. S. Aoki, M. Arnoud, Y. Arov, M. Arthaud, M. Askew, A. Asman, B. Jesus, A. C. S. Assis Atramentov, O. Avila, C. Badaud, F. Bagby, L. Baldin, B. Bandurin, D. V. Banerjee, P. Banerjee, S. Barberis, E. Barfuss, A. -F. Bargassa, P. Baringer, P. Barreto, J. Bartlett, J. F. Bassler, U. Bauer, D. Beale, S. Bean, A. Begalli, M. Begel, M. Belanger-Champagne, C. Bellantoni, L. Bellavance, A. Benitez, J. A. Beri, S. B. Bernardi, G. Bernhard, R. Bertram, I. Besancon, M. Beuselinck, R. Bezzubov, V. A. Bhat, P. C. Bhatnagar, V. Blazey, G. Blekman, F. Blessing, S. Bloom, K. Boehnlein, A. Boline, D. Bolton, T. A. Boos, E. E. Borissov, G. Bose, T. Brandt, A. Brock, R. Brooijmans, G. Bross, A. Brown, D. Bu, X. B. Buchanan, N. J. Buchholz, D. Buehler, M. Buescher, V. Bunichev, V. Burdin, S. Burnett, T. H. Buszello, C. P. Calfayan, P. Calvet, S. Cammin, J. Carrasco-Lizarraga, M. A. Carrera, E. Carvalho, W. Casey, B. C. K. Castilla-Valdez, H. Chakrabarti, S. Chakraborty, D. Chan, K. M. Chandra, A. Cheu, E. Cho, D. K. Choi, S. Choudhary, B. Christofek, L. Christoudias, T. Cihangir, S. Claes, D. Clutter, J. Cooke, M. Cooper, W. E. Corcoran, M. Couderc, F. Cousinou, M. -C. Crepe-Renaudin, S. Cuplov, V. Cutts, D. Cwiok, M. da Motta, H. Das, A. Davies, G. De, K. de Jong, S. J. De La Cruz-Burelo, E. Martins, C. De Oliveira De Vaughan, K. Deliot, F. Demarteau, M. Demina, R. Denisov, D. Denisov, S. P. Desai, S. Diehl, H. T. Diesburg, M. Dominguez, A. Dorland, T. Dubey, A. Dudko, L. V. Duflot, L. Dugad, S. R. Duggan, D. Duperrin, A. Dutt, S. Dyer, J. Dyshkant, A. Eads, M. Edmunds, D. Ellison, J. Elvira, V. D. Enari, Y. Eno, S. Ermolov, P. Evans, H. Evdokimov, A. Evdokimov, V. N. Ferapontov, A. V. Ferbel, T. Fiedler, F. Filthaut, F. Fisher, W. Fisk, H. E. Fortner, M. Fox, H. Fu, S. Fuess, S. Gadfort, T. Galea, C. F. Garcia, C. Garcia-Bellido, A. Gavrilov, V. Gay, P. Geist, W. Geng, W. Gerber, C. E. Gershtein, Y. Gillberg, D. Ginther, G. Gomez, B. Goussiou, A. Grannis, P. D. Greenlee, H. Greenwood, Z. D. Gregores, E. M. Grenier, G. Gris, Ph. Grivaz, J. -F. Grohsjean, A. Gruenendahl, S. Gruenewald, M. W. Guo, F. Guo, J. Gutierrez, G. Gutierrez, P. Haas, A. Hadley, N. J. Haefner, P. Hagopian, S. Haley, J. Hall, I. Hall, R. E. Han, L. Harder, K. Harel, A. Hauptman, J. M. Hays, J. Hebbeker, T. Hedin, D. Hegeman, J. G. Heinson, A. P. Heintz, U. Hensel, C. Herner, K. Hesketh, G. Hildreth, M. D. Hirosky, R. Hoang, T. Hobbs, J. D. Hoeneisen, B. Hohlfeld, M. Hossain, S. Houben, P. Hu, Y. Hubacek, Z. Hynek, V. Iashvili, I. Illingworth, R. Ito, A. S. Jabeen, S. Jaffre, M. Jain, S. Jakobs, K. Jarvis, C. Jesik, R. Johns, K. Johnson, C. Johnson, M. Johnston, D. Jonckheere, A. Jonsson, P. Juste, A. Kajfasz, E. Karmanov, D. Kasper, P. A. Katsanos, I. Kaushik, V. Kehoe, R. Kermiche, S. Khalatyan, N. Khanov, A. Kharchilava, A. Kharzheev, Y. N. Khatidze, D. Kim, T. J. Kirby, M. H. Kirsch, M. Klima, B. Kohli, J. M. Konrath, J. -P. Kozelov, A. V. Kraus, J. Kuhl, T. Kumar, A. Kupco, A. Kurca, T. Kuzmin, V. A. Kvita, J. Lacroix, F. Lam, D. Lammers, S. Landsberg, G. Lebrun, P. Lee, W. M. Leflat, A. Lellouch, J. Li, J. Li, L. Li, Q. Z. Lietti, S. M. Lim, J. K. Lima, J. G. R. Lincoln, D. Linnemann, J. Lipaev, V. V. Lipton, R. Liu, Y. Liu, Z. Lobodenko, A. Lokajicek, M. Love, P. Lubatti, H. J. Luna-Garcia, R. Lyon, A. L. Maciel, A. K. A. Mackin, D. Madaras, R. J. Maettig, P. Magerkurth, A. Mal, P. K. Malbouisson, H. B. Malik, S. Malyshev, V. L. Maravin, Y. Martin, B. McCarthy, R. Meijer, M. M. Melnitchouk, A. Mendoza, L. Mercadante, P. G. Merkin, M. Merritt, K. W. Meyer, A. Meyer, J. Mitrevski, J. Mommsen, R. K. Mondal, N. K. Moore, R. W. Moulik, T. Muanza, G. S. Mulhearn, M. Mundal, O. Mundim, L. Nagy, E. Naimuddin, M. Narain, M. Neal, H. A. Negret, J. P. Neustroev, P. Nilsen, H. Nogima, H. Novaes, S. F. Nunnemann, T. O'Neil, D. C. Obrant, G. Ochando, C. Onoprienko, D. Oshima, N. Osman, N. Osta, J. Otec, R. Otero y Garzon, G. J. Owen, M. Padley, P. Pangilinan, M. Parashar, N. Park, S. -J. Park, S. K. Parsons, J. Partridge, R. Parua, N. Patwa, A. Pawloski, G. Penning, B. Perfilov, M. Peters, K. Peters, Y. Petroff, P. Petteni, M. Piegaia, R. Piper, J. Pleier, M. -A. Podesta-Lerma, P. L. M. Podstavkov, V. M. Pogorelov, Y. Pol, M. -E. Polozov, P. Pope, B. G. Popov, A. V. Potter, C. da Silva, W. L. Prado Prosper, H. B. Protopopescu, S. Qian, J. Quadt, A. Quinn, B. Rakitine, A. Rangel, M. S. Ranjan, K. Ratoff, P. N. Renkel, P. Rich, P. Rijssenbeek, M. Ripp-Baudot, I. Rizatdinova, F. Robinson, S. Rodrigues, R. F. Rominsky, M. Royon, C. Rubinov, P. Ruchti, R. Safronov, G. Sajot, G. Sanchez-Hernandez, A. Sanders, M. P. Sanghi, B. Savage, G. Sawyer, L. Scanlon, T. Schaile, D. Schamberger, R. D. Scheglov, Y. Schellman, H. Schliephake, T. Schlobohm, S. Schwanenberger, C. Schwartzman, A. Schwienhorst, R. Sekaric, J. Severini, H. Shabalina, E. Shamim, M. Shary, V. Shchukin, A. A. Shivpuri, R. K. Siccardi, V. Simak, V. Sirotenko, V. Skubic, P. Slattery, P. Smirnov, D. Snow, G. R. Snow, J. Snyder, S. Soeldner-Rembold, S. Sonnenschein, L. Sopczak, A. Sosebee, M. Soustruznik, K. Spurlock, B. Stark, J. Stolin, V. Stoyanova, D. A. Strandberg, J. Strandberg, S. Strang, M. A. Strauss, E. Strauss, M. Stroehmer, R. Strom, D. Stutte, L. Sumowidagdo, S. Svoisky, P. Sznajder, A. Tanasijczuk, A. Taylor, W. Tiller, B. Tissandier, F. Titov, M. Tokmenin, V. V. Torchiani, I. Tsybychev, D. Tuchming, B. Tully, C. Tuts, P. M. Unalan, R. Uvarov, L. Uvarov, S. Uzunyan, S. Vachon, B. van den Berg, P. J. Van Kooten, R. van Leeuwen, W. M. Varelas, N. Varnes, E. W. Vasilyev, I. A. Verdier, P. Vertogradov, L. S. Verzocchi, M. Vilanova, D. Villeneuve-Seguier, F. Vint, P. Vokac, P. Voutilainen, M. Wagner, R. Wahl, H. D. Wang, M. H. L. S. Warchol, J. Watts, G. Wayne, M. Weber, G. Weber, M. Welty-Rieger, L. Wenger, A. Wermes, N. Wetstein, M. White, A. Wicke, D. Williams, M. R. J. Wilson, G. W. Wimpenny, S. J. Wobisch, M. Wood, D. R. Wyatt, T. R. Xie, Y. Xu, C. Yacoob, S. Yamada, R. Yang, W. -C. Yasuda, T. Yatsunenko, Y. A. Yin, H. Yip, K. Yoo, H. D. Youn, S. W. Yu, J. Zeitnitz, C. Zelitch, S. Zhao, T. Zhou, B. Zhu, J. Zielinski, M. Zieminska, D. Zieminski, A. Zivkovic, L. Zutshi, V. Zverev, E. G. CA D0 Collabroation TI Evidence of WW and WZ Production with lepton plus jets Final States in pp Collisions at root s=1.96 TeV SO PHYSICAL REVIEW LETTERS LA English DT Article ID BOSON AB We present first evidence for WW+WZ production in lepton+jets final states at a hadron collider. The data correspond to 1.07 fb(-1) of integrated luminosity collected with the D0 detector at the Fermilab Tevatron in pp collisions at root s=1.96 TeV. The observed cross section for WW+WZ production is 20.2 +/- 4.5 pb, consistent with the standard model and more precise than previous measurements in fully leptonic final states. The probability that background fluctuations alone produce this excess is < 5.4x10(-6), which corresponds to a significance of 4.4 standard deviations. C1 [Piegaia, R.; Tanasijczuk, A.] Univ Buenos Aires, Buenos Aires, DF, Argentina. [Alves, G. A.; Barreto, J.; da Motta, H.; Maciel, A. K. A.; Pol, M. -E.; Rangel, M. S.] Ctr Brasileiro Pesquisas Fis, LAFEX, Rio De Janeiro, Brazil. [Jesus, A. C. S. Assis; Begalli, M.; Carvalho, W.; Martins, C. De Oliveira; Malbouisson, H. B.; Mundim, L.; Nogima, H.; da Silva, W. L. Prado; Rodrigues, R. F.; Sznajder, A.] Univ Estado Rio de Janeiro, BR-20550011 Rio De Janeiro, Brazil. [Gregores, E. M.] Univ Fed ABC, Santo Andre, Brazil. [Lietti, S. M.; Mercadante, P. G.; Novaes, S. F.] Univ Estadual Paulista, Inst Fis Teor, BR-01405 Sao Paulo, Brazil. [Aguilo, E.; Beale, S.; Gillberg, D.; Liu, Z.; Moore, R. W.; O'Neil, D. C.; Potter, C.; Taylor, W.; Vachon, B.] Univ Alberta, Edmonton, AB, Canada. [Aguilo, E.; Beale, S.; Gillberg, D.; Liu, Z.; Moore, R. W.; O'Neil, D. C.; Potter, C.; Taylor, W.; Vachon, B.] Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada. [Aguilo, E.; Beale, S.; Gillberg, D.; Liu, Z.; Moore, R. W.; O'Neil, D. C.; Potter, C.; Taylor, W.; Vachon, B.] York Univ, Toronto, ON M3J 2R7, Canada. [Aguilo, E.; Beale, S.; Gillberg, D.; Liu, Z.; Moore, R. W.; O'Neil, D. C.; Potter, C.; Taylor, W.; Vachon, B.] McGill Univ, Montreal, PQ, Canada. [Bu, X. B.; Han, L.; Liu, Y.; Yin, H.] Univ Sci & Technol China, Hefei 230026, Peoples R China. [Avila, C.; Gomez, B.; Mendoza, L.; Negret, J. P.] Univ Los Andes, Bogota, Colombia. [Hynek, V.; Kvita, J.; Soustruznik, K.] Charles Univ Prague, Ctr Particle Phys, Prague, Czech Republic. [Hubacek, Z.; Otec, R.; Simak, V.; Vokac, P.] Czech Tech Univ, CR-16635 Prague, Czech Republic. [Kupco, A.; Lokajicek, M.] Acad Sci Czech Republic, Inst Phys, Ctr Particle Phys, Prague, Czech Republic. [Hoeneisen, B.] Univ San Francisco Quito, Quito, Ecuador. [Badaud, F.; Gay, P.; Gris, Ph.; Lacroix, F.; Tissandier, F.] Univ Clermont Ferrand, LPC, CNRS, IN2P3, Clermont Ferrand, France. [Arnoud, Y.; Crepe-Renaudin, S.; Martin, B.; Sajot, G.; Stark, J.] Univ Grenoble 1, CNRS, LPSC, Inst Natl Polytech Grenoble,IN2P3, Grenoble, France. [Barfuss, A. -F.; Cousinou, M. -C.; Duperrin, A.; Geng, W.; Kajfasz, E.; Kermiche, S.; Muanza, G. S.; Nagy, E.] Aix Marseille Univ, CPPM, CNRS, IN2P3, Marseille, France. [Calvet, S.; Duflot, L.; Grivaz, J. -F.; Jaffre, M.; Ochando, C.; Petroff, P.] Univ Paris 11, CNRS, LAL, IN2P3, F-91405 Orsay, France. [Andrieu, B.; Bernardi, G.; Lellouch, J.; Sanders, M. P.; Sonnenschein, L.] Univ Paris 06, CNRS, LPNHE, IN2P3, Paris, France. [Andrieu, B.; Bernardi, G.; Lellouch, J.; Sanders, M. P.; Sonnenschein, L.] Univ Paris 07, CNRS, LPNHE, IN2P3, Paris, France. [Arthaud, M.; Bassler, U.; Besancon, M.; Couderc, F.; Deliot, F.; Royon, C.; Shary, V.; Titov, M.; Tuchming, B.; Vilanova, D.] SPP, CEA, Irfu, Saclay, France. [Geist, W.; Ripp-Baudot, I.; Siccardi, V.] Univ Strasbourg, CNRS, IPHC, IN2P3, Strasbourg, France. [Grenier, G.; Kurca, T.; Lebrun, P.; Verdier, P.] Univ Lyon 1, IPNL, CNRS, IN2P3, F-69622 Villeurbanne, France. [Grenier, G.; Kurca, T.; Lebrun, P.; Verdier, P.] Univ Lyon, Lyon, France. [Hebbeker, T.; Kirsch, M.; Meyer, A.] Rhein Westfal TH Aachen, Phys Inst A 3, Aachen, Germany. [Buescher, V.; Hensel, C.; Hohlfeld, M.; Meyer, J.; Mundal, O.; Park, S. -J.; Pleier, M. -A.; Quadt, A.; Wermes, N.] Univ Bonn, Inst Phys, D-5300 Bonn, Germany. [Bernhard, R.; Jakobs, K.; Konrath, J. -P.; Nilsen, H.; Penning, B.; Torchiani, I.; Wenger, A.] Univ Freiburg, Inst Phys, Freiburg, Germany. [Fiedler, F.; Kuhl, T.; Weber, M.] Johannes Gutenberg Univ Mainz, Inst Phys, D-6500 Mainz, Germany. [Calfayan, P.; Grohsjean, A.; Haefner, P.; Nunnemann, T.; Schaile, D.; Stroehmer, R.; Tiller, B.] Univ Munich, Munich, Germany. [Maettig, P.; Peters, Y.; Schliephake, T.; Wicke, D.; Zeitnitz, C.] Univ Wuppertal, Fachbereich Phys, Wuppertal, Germany. [Beri, S. B.; Bhatnagar, V.; Dutt, S.; Kohli, J. M.] Panjab Univ, Chandigarh 160014, India. [Choudhary, B.; Dubey, A.; Ranjan, K.] Univ Delhi, Delhi 110007, India. [Acharya, B. S.; Banerjee, P.; Banerjee, S.; Dugad, S. R.; Mondal, N. K.] Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India. [Cwiok, M.; Gruenewald, M. W.] Univ Coll Dublin, Dublin 2, Ireland. [Kim, T. J.; Lim, J. K.; Park, S. K.] Korea Univ, Korea Detector Lab, Seoul, South Korea. [Choi, S.] Sungkyunkwan Univ, Suwon, South Korea. [Carrasco-Lizarraga, M. A.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Luna-Garcia, R.; Podesta-Lerma, P. L. M.; Sanchez-Hernandez, A.] CINVESTAV, Mexico City 14000, DF, Mexico. [Hegeman, J. G.; Houben, P.; van den Berg, P. J.; van Leeuwen, W. M.] NIKHEF, FOM Inst, Amsterdam, Netherlands. [Hegeman, J. G.; Houben, P.; van den Berg, P. J.; van Leeuwen, W. M.] Univ Amsterdam, NIKHEF, Amsterdam, Netherlands. [Anastasoaie, M.; Ancu, L. S.; de Jong, S. J.; Filthaut, F.; Galea, C. F.; Meijer, M. M.; Svoisky, P.] Radboud Univ Nijmegen, NIKHEF, NL-6525 ED Nijmegen, Netherlands. [Abazov, V. M.; Alexeev, G. D.; Kharzheev, Y. N.; Malyshev, V. L.; Tokmenin, V. V.; Vertogradov, L. S.; Yatsunenko, Y. A.] Joint Inst Nucl Res, Dubna, Russia. [Gavrilov, V.; Polozov, P.; Safronov, G.; Stolin, V.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Boos, E. E.; Bunichev, V.; Dudko, L. V.; Ermolov, P.; Karmanov, D.; Kuzmin, V. A.; Leflat, A.; Merkin, M.; Perfilov, M.; Zverev, E. G.] Moscow MV Lomonosov State Univ, Moscow, Russia. [Bezzubov, V. A.; Denisov, S. P.; Evdokimov, V. N.; Kozelov, A. V.; Lipaev, V. V.; Popov, A. V.; Shchukin, A. A.; Stoyanova, D. A.; Vasilyev, I. A.] Inst High Energy Phys, Protvino, Russia. [Alkhazov, G.; Lobodenko, A.; Neustroev, P.; Obrant, G.; Scheglov, Y.; Uvarov, L.; Uvarov, S.] Petersburg Nucl Phys Inst, St Petersburg, Russia. [Asman, B.; Belanger-Champagne, C.; Strandberg, S.] Lund Univ, Lund, Sweden. [Asman, B.; Belanger-Champagne, C.; Strandberg, S.] Royal Inst Technol, Stockholm, Sweden. [Asman, B.; Belanger-Champagne, C.; Strandberg, S.] Stockholm Univ, S-10691 Stockholm, Sweden. [Asman, B.; Belanger-Champagne, C.; Strandberg, S.] Uppsala Univ, Uppsala, Sweden. [Bertram, I.; Borissov, G.; Burdin, S.; Fox, H.; Love, P.; Rakitine, A.; Ratoff, P. N.; Sopczak, A.; Williams, M. R. J.] Univ Lancaster, Lancaster, England. [Bauer, D.; Beuselinck, R.; Blekman, F.; Buszello, C. P.; Davies, G.; Hays, J.; Jesik, R.; Jonsson, P.; Osman, N.; Petteni, M.; Robinson, S.; Scanlon, T.; Villeneuve-Seguier, F.; Vint, P.] Univ London Imperial Coll Sci Technol & Med, London, England. [Hall, R. E.] Calif State Univ Fresno, Fresno, CA 93740 USA. [Chandra, A.; Ellison, J.; Heinson, A. P.; Li, L.; Wimpenny, S. J.] Univ Calif Riverside, Riverside, CA 92521 USA. [Adams, T.; Askew, A.; Atramentov, O.; Blessing, S.; Buchanan, N. J.; Carrera, E.; Duggan, D.; Gershtein, Y.; Hagopian, S.; Hoang, T.; Prosper, H. B.; Sekaric, J.; Sumowidagdo, S.; Wahl, H. D.] Florida State Univ, Tallahassee, FL 32306 USA. [Aoki, M.; Bagby, L.; Baldin, B.; Bartlett, J. F.; Bellantoni, L.; Bellavance, A.; Bhat, P. C.; Boehnlein, A.; Bross, A.; Casey, B. C. K.; Cihangir, S.; Cooke, M.; Cooper, W. E.; Demarteau, M.; Denisov, D.; Desai, S.; Diehl, H. T.; Diesburg, M.; Elvira, V. D.; Fisher, W.; Fisk, H. E.; Fu, S.; Fuess, S.; Greenlee, H.; Gruenendahl, S.; Gutierrez, G.; Illingworth, R.; Ito, A. S.; Johnson, M.; Jonckheere, A.; Juste, A.; Kasper, P. A.; Khalatyan, N.; Klima, B.; Lee, W. M.; Li, Q. Z.; Lincoln, D.; Lipton, R.; Lyon, A. L.; Merritt, K. W.; Naimuddin, M.; Oshima, N.; Otero y Garzon, G. J.; Podstavkov, V. M.; Rubinov, P.; Sanghi, B.; Savage, G.; Sirotenko, V.; Stutte, L.; Verzocchi, M.; Wang, M. H. L. S.; Weber, M.; Yamada, R.; Yasuda, T.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Adams, M.; Chakraborty, D.; Gerber, C. E.; Shabalina, E.; Varelas, N.] Univ Illinois, Chicago, IL 60607 USA. [Blazey, G.; Dyshkant, A.; Fortner, M.; Hedin, D.; Lima, J. G. R.; Uzunyan, S.; Zutshi, V.] No Illinois Univ, De Kalb, IL 60115 USA. [Andeen, T.; Anzelc, M. S.; Buchholz, D.; Kirby, M. H.; Schellman, H.; Strom, D.; Yacoob, S.; Youn, S. W.] Northwestern Univ, Evanston, IL 60208 USA. [Evans, H.; Parua, N.; Van Kooten, R.; Welty-Rieger, L.; Zieminska, D.; Zieminski, A.] Indiana Univ, Bloomington, IN 47405 USA. [Chan, K. M.; Hildreth, M. D.; Lam, D.; Osta, J.; Pogorelov, Y.; Ruchti, R.; Smirnov, D.; Warchol, J.; Wayne, M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Parashar, N.] Purdue Univ Calumet, Hammond, IN 46323 USA. [Hauptman, J. M.] Iowa State Univ, Ames, IA 50011 USA. [Baringer, P.; Bean, A.; Clutter, J.; Moulik, T.; Wilson, G. W.] Univ Kansas, Lawrence, KS 66045 USA. [Ahsan, M.; Bandurin, D. V.; Bolton, T. A.; Cuplov, V.; Ferapontov, A. V.; Maravin, Y.; Onoprienko, D.; Shamim, M.] Kansas State Univ, Manhattan, KS 66506 USA. [Arov, M.; Greenwood, Z. D.; Sawyer, L.; Wobisch, M.] Louisiana Tech Univ, Ruston, LA 71272 USA. [Eno, S.; Ferbel, T.; Hadley, N. J.; Jarvis, C.; Wetstein, M.] Univ Maryland, College Pk, MD 20742 USA. [Boline, D.; Cho, D. K.; Heintz, U.; Jabeen, S.] Boston Univ, Boston, MA 02215 USA. [Alverson, G.; Barberis, E.; Hesketh, G.; Wood, D. R.] Northeastern Univ, Boston, MA 02115 USA. [Alton, A.; Magerkurth, A.; Neal, H. A.; Qian, J.; Strandberg, J.; Xu, C.; Zhou, B.] Univ Michigan, Ann Arbor, MI 48109 USA. [Abolins, M.; Benitez, J. A.; Brock, R.; Dyer, J.; Edmunds, D.; Geng, W.; Hall, I.; Kraus, J.; Linnemann, J.; Piper, J.; Pope, B. G.; Schwienhorst, R.; Unalan, R.] Michigan State Univ, E Lansing, MI 48824 USA. [Melnitchouk, A.; Quinn, B.] Univ Mississippi, University, MS 38677 USA. [Bloom, K.; Claes, D.; De Vaughan, K.; Dominguez, A.; Eads, M.; Johnston, D.; Malik, S.; Snow, G. R.; Voutilainen, M.] Univ Nebraska, Lincoln, NE 68588 USA. [Haley, J.; Schwartzman, A.; Tully, C.; Wagner, R.] Princeton Univ, Princeton, NJ 08544 USA. [Iashvili, I.; Kharchilava, A.; Kumar, A.; Strang, M. A.] SUNY Buffalo, Buffalo, NY 14260 USA. [Brooijmans, G.; Gadfort, T.; Haas, A.; Johnson, C.; Katsanos, I.; Khatidze, D.; Lammers, S.; Mitrevski, J.; Mulhearn, M.; Parsons, J.; Tuts, P. M.; Zivkovic, L.] Columbia Univ, New York, NY 10027 USA. [Cammin, J.; Demina, R.; Ferbel, T.; Garcia, C.; Garcia-Bellido, A.; Ginther, G.; Harel, A.; Slattery, P.; Zielinski, M.] Univ Rochester, Rochester, NY 14627 USA. [Chakrabarti, S.; Grannis, P. D.; Guo, F.; Guo, J.; Herner, K.; Hobbs, J. D.; Hu, Y.; McCarthy, R.; Rijssenbeek, M.; Schamberger, R. D.; Strauss, E.; Tsybychev, D.; Zhu, J.] SUNY Stony Brook, Stony Brook, NY 11794 USA. [Begel, M.; Evdokimov, A.; Patwa, A.; Protopopescu, S.; Snyder, S.; Yip, K.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Snow, J.] Langston Univ, Langston, OK 73050 USA. [Abbott, B.; Gutierrez, P.; Hossain, S.; Jain, S.; Rominsky, M.; Severini, H.; Skubic, P.; Strauss, M.] Univ Oklahoma, Norman, OK 73019 USA. [Khanov, A.; Rizatdinova, F.] Oklahoma State Univ, Stillwater, OK 74078 USA. [Bose, T.; Christoudias, T.; Cutts, D.; Enari, Y.; Landsberg, G.; Narain, M.; Pangilinan, M.; Partridge, R.; Xie, Y.; Yoo, H. D.] Brown Univ, Providence, RI 02912 USA. [Brandt, A.; De, K.; Kaushik, V.; Li, J.; Sosebee, M.; Spurlock, B.; White, A.; Yu, J.] Univ Texas Arlington, Arlington, TX 76019 USA. [Kehoe, R.; Renkel, P.] So Methodist Univ, Dallas, TX 75275 USA. [Bargassa, P.; Corcoran, M.; Mackin, D.; Padley, P.; Pawloski, G.] Rice Univ, Houston, TX 77005 USA. [Brown, D.; Buehler, M.; Hirosky, R.; Zelitch, S.] Univ Virginia, Charlottesville, VA 22901 USA. [Burnett, T. H.; Dorland, T.; Goussiou, A.; Lubatti, H. J.; Mal, P. K.; Schlobohm, S.; Watts, G.; Zhao, T.] Univ Washington, Seattle, WA 98195 USA. [Madaras, R. J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Harder, K.; Mommsen, R. K.; Owen, M.; Peters, K.; Rich, P.; Schwanenberger, C.; Soeldner-Rembold, S.; Wyatt, T. R.; Yang, W. -C.] Univ Manchester, Manchester, Lancs, England. [Cheu, E.; Das, A.; Johns, K.; Varnes, E. W.] Univ Arizona, Tucson, AZ 85721 USA. RP Abazov, VM (reprint author), Univ Buenos Aires, Buenos Aires, DF, Argentina. RI Mercadante, Pedro/K-1918-2012; Mundim, Luiz/A-1291-2012; Yip, Kin/D-6860-2013; Fisher, Wade/N-4491-2013; Shivpuri, R K/A-5848-2010; Gutierrez, Phillip/C-1161-2011; bu, xuebing/D-1121-2012; Leflat, Alexander/D-7284-2012; Dudko, Lev/D-7127-2012; Perfilov, Maxim/E-1064-2012; Boos, Eduard/D-9748-2012; Merkin, Mikhail/D-6809-2012; Novaes, Sergio/D-3532-2012; De, Kaushik/N-1953-2013; Ancu, Lucian Stefan/F-1812-2010; Alves, Gilvan/C-4007-2013; Deliot, Frederic/F-3321-2014; Sharyy, Viatcheslav/F-9057-2014; Lokajicek, Milos/G-7800-2014; Kupco, Alexander/G-9713-2014; Kozelov, Alexander/J-3812-2014; Christoudias, Theodoros/E-7305-2015; KIM, Tae Jeong/P-7848-2015; Guo, Jun/O-5202-2015; Sznajder, Andre/L-1621-2016; Li, Liang/O-1107-2015 OI Mundim, Luiz/0000-0001-9964-7805; Yip, Kin/0000-0002-8576-4311; Dudko, Lev/0000-0002-4462-3192; Novaes, Sergio/0000-0003-0471-8549; De, Kaushik/0000-0002-5647-4489; Ancu, Lucian Stefan/0000-0001-5068-6723; Sharyy, Viatcheslav/0000-0002-7161-2616; Christoudias, Theodoros/0000-0001-9050-3880; KIM, Tae Jeong/0000-0001-8336-2434; Guo, Jun/0000-0001-8125-9433; Sznajder, Andre/0000-0001-6998-1108; Li, Liang/0000-0001-6411-6107 FU DOE; NSF ( USA); CEA; FASI; Rosatom; RFBR ( Russia); CNPq; FAPERJ; FAPESP; FUNDUNESP ( Brazil); DAE; DST ( India); Colciencias ( Colombia); CONACyT ( Mexico); KRF; KOSEF ( Korea); CONICET; UBACyT ( Argentina); FOM ( The Netherlands); STFC; MSMT; GACR ( Czech Republic); CRC Program; CFI; NSERC; WestGrid Project ( Canada); BMBF; DFG ( Germany); SFI ( Ireland); The Swedish Research Council ( Sweden); CAS; CNSF ( China); Alexander von Humboldt Foundation ( Germany); [CNRS/IN2P3] FX We thank the staffs at Fermilab and collaborating institutions, and acknowledge support from the DOE and NSF ( USA); CEA and CNRS/IN2P3 ( France); FASI, Rosatom and RFBR ( Russia); CNPq, FAPERJ, FAPESP and FUNDUNESP ( Brazil); DAE and DST ( India); Colciencias ( Colombia); CONACyT ( Mexico); KRF and KOSEF ( Korea); CONICET and UBACyT ( Argentina); FOM ( The Netherlands); STFC ( United Kingdom); MSMT and GACR ( Czech Republic); CRC Program, CFI, NSERC and WestGrid Project ( Canada); BMBF and DFG ( Germany); SFI ( Ireland); The Swedish Research Council ( Sweden); CAS and CNSF ( China); and the Alexander von Humboldt Foundation ( Germany). NR 28 TC 19 Z9 19 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD APR 24 PY 2009 VL 102 IS 16 AR 161801 DI 10.1103/PhysRevLett.102.161801 PG 7 WC Physics, Multidisciplinary SC Physics GA 437IC UT WOS:000265479300012 ER PT J AU Abazov, VM Abbott, B Abolins, M Acharya, BS Adams, M Adams, T Aguilo, E Ahsan, M Alexeev, GD Alkhazov, G Alton, A Alverson, G Alves, GA Anastasoaie, M Ancu, LS Andeen, T Andrieu, B Anzelc, MS Aoki, M Arnoud, Y Arov, M Arthaud, M Askew, A Asman, B Jesus, ACSA Atramentov, O Avila, C Badaud, F Bagby, L Baldin, B Bandurin, DV Banerjee, P Banerjee, S Barberis, E Barfuss, AF Bargassa, P Baringer, P Barreto, J Bartlett, JF Bassler, U Bauer, D Beale, S Bean, A Begalli, M Begel, M Belanger-Champagne, C Bellantoni, L Bellavance, A Benitez, JA Beri, SB Bernardi, G Bernhard, R Bertram, I Besancon, M Beuselinck, R Bezzubov, VA Bhat, PC Bhatnagar, V Biscarat, C Blazey, G Blekman, F Blessing, S Bloom, K Boehnlein, A Boline, D Bolton, TA Boos, EE Borissov, G Bose, T Brandt, A Brock, R Brooijmans, G Bross, A Brown, D Bu, XB Buchanan, NJ Buchholz, D Buehler, M Buescher, V Bunichev, V Burdin, S Burnett, TH Buszello, CP Butler, JM Calfayan, P Calvet, S Cammin, J Carrasco-Lizarraga, MA Carrera, E Carvalho, W Casey, BCK Castilla-Valdez, H Chakrabarti, S Chakraborty, D Chan, KM Chandra, A Cheu, E Chevallier, F Cho, DK Choi, S Choudhary, B Christofek, L Christoudias, T Cihangir, S Claes, D Clutter, J Cooke, M Cooper, WE Corcoran, M Couderc, F Cousinou, MC Crepe-Renaudin, S Cuplov, V Cutts, D Cwiok, M da Motta, H Das, A Davies, G De, K de Jong, SJ De La Cruz-Burelo, E Martins, CDO De Vaughan, K Deliot, F Demarteau, M Demina, R Denisov, D Denisov, SP Desai, S Diehl, HT Diesburg, M Dominguez, A Dorland, T Dubey, A Dudko, LV Duflot, L Dugad, SR Duggan, D Duperrin, A Dyer, J Dyshkant, A Eads, M Edmunds, D Ellison, J Elvira, VD Enari, Y Eno, S Ermolov, P Evans, H Evdokimov, A Evdokimov, VN Ferapontov, AV Ferbel, T Fiedler, F Filthaut, F Fisher, W Fisk, HE Fortner, M Fox, H Fu, S Fuess, S Gadfort, T Galea, CF Garcia, C Garcia-Bellido, A Gavrilov, V Gay, P Geist, W Geng, W Gerber, CE Gershtein, Y Gillberg, D Ginther, G Gomez, B Goussiou, A Grannis, PD Greenlee, H Greenwood, ZD Gregores, EM Grenier, G Gris, P Grivaz, JF Grohsjean, A Grunendahl, S Grunewald, MW Guo, F Guo, J Gutierrez, G Gutierrez, P Haas, A Hadley, NJ Haefner, P Hagopian, S Haley, J Hall, I Hall, RE Han, L Harder, K Harel, A Hauptman, JM Hays, J Hebbeker, T Hedin, D Hegeman, JG Heinson, AP Heintz, U Hensel, C Herner, K Hesketh, G Hildreth, MD Hirosky, R Hobbs, JD Hoeneisen, B Hohlfeld, M Hossain, S Houben, P Hu, Y Hubacek, Z Hynek, V Iashvili, I Illingworth, R Ito, AS Jabeen, S Jaffre, M Jain, S Jakobs, K Jarvis, C Jesik, R Johns, K Johnson, C Johnson, M Johnston, D Jonckheere, A Jonsson, P Juste, A Kajfasz, E Karmanov, D Kasper, PA Katsanos, I Kau, D Kaushik, V Kehoe, R Kermiche, S Khalatyan, N Khanov, A Kharchilava, A Kharzheev, YM Khatidze, D Kim, TJ Kirby, MH Kirsch, M Klima, B Kohli, JM Konrath, JP Kozelov, AV Kraus, J Kuhl, T Kumar, A Kupco, A Kurca, T Kuzmin, VA Kvita, J Lacroix, F Lam, D Lammers, S Landsberg, G Lebrun, P Lee, WM Leflat, A Lellouch, J Li, J Li, L Li, QZ Lietti, SM Lim, JK Lima, JGR Lincoln, D Linnemann, J Lipaev, VV Lipton, R Liu, Y Liu, Z Lobodenko, A Lokajicek, M Love, P Lubatti, HJ Luna-Garcia, R Lyon, AL Maciel, AKA Mackin, D Madaras, RJ Mattig, P Magass, C Magerkurth, A Mal, PK Malbouisson, HB Malik, S Malyshev, VL Maravin, Y Martin, B McCarthy, R Meijer, MM Melnitchouk, A Mendoza, L Mercadante, PG Merkin, M Merritt, KW Meyer, A Meyer, J Mitrevski, J Mommsen, RK Mondal, NK Moore, RW Moulik, T Muanza, GS Mulhearn, M Mundal, O Mundim, L Nagy, E Naimuddin, M Narain, M Naumann, NA Neal, HA Negret, JP Neustroev, P Nilsen, H Nogima, H Novaes, SF Nunnemann, T O'Dell, V O'Neil, DC Obrant, G Ochando, C Onoprienko, D Oshima, N Osman, N Osta, J Otec, R Garzon, GJOY Owen, M Padley, P Pangilinan, M Parashar, N Park, SJ Park, SK Parsons, J Partridge, R Parua, N Patwa, A Pawloski, G Penning, B Perfilov, M Peters, K Peters, Y Petroff, P Petteni, M Piegaia, R Piper, J Pleier, MA Podesta-Lerma, PLM Podstavkov, VM Pogorelov, Y Pol, ME Polozov, P Pope, BG Popov, AV Potter, C da Silva, WLP Prosper, HB Protopopescu, S Qian, J Quadt, A Quinn, B Rakitine, A Rangel, MS Ranjan, K Ratoff, PN Renkel, P Rich, P Rijssenbeek, M Ripp-Baudot, I Rizatdinova, F Robinson, S Rodrigues, RF Rominsky, M Royon, C Rubinov, P Ruchti, R Safronov, G Sajot, G Sanchez-Hernandez, A Sanders, MP Sanghi, B Savage, G Sawyer, L Scanlon, T Schaile, D Schamberger, RD Scheglov, Y Schellman, H Schliephake, T Schlobohm, S Schwanenberger, C Schwartzman, A Schwienhorst, R Sekaric, J Severini, H Shabalina, E Shamim, M Shary, V Shchukin, AA Shivpuri, RK Siccardi, V Simak, V Sirotenko, V Skubic, P Slattery, P Smirnov, D Snow, GR Snow, J Snyder, S Soldner-Rembold, S Sonnenschein, L Sopczak, A Sosebee, M Soustruznik, K Spurlock, B Stark, J Stolin, V Stoyanova, DA Strandberg, J Strandberg, S Strang, MA Strauss, E Strauss, M Strohmer, R Strom, D Stutte, L Sumowidagdo, S Svoisky, P Sznajder, A Tanasijczuk, A Taylor, W Tiller, B Tissandier, F Titov, M Tokmenin, VV Torchiani, I Tsybychev, D Tuchming, B Tully, C Tuts, PM Unalan, R Uvarov, L Uvarov, S Uzunyan, S Vachon, B van den Berg, PJ Van Kooten, R van Leeuwen, WM Varelas, N Varnes, EW Vasilyev, IA Verdier, P Vertogradov, LS Verzocchi, M Vilanova, D Villeneuve-Seguier, F Vint, P Vokac, P Voutilainen, M Wagner, R Wahl, HD Wang, MHLS Warchol, J Watts, G Wayne, M Weber, G Weber, M Welty-Rieger, L Wenger, A Wermes, N Wetstein, M White, A Wicke, D Williams, M Wilson, GW Wimpenny, SJ Wobisch, M Wood, DR Wyatt, TR Xie, Y Xu, C Yacoob, S Yamada, R Yang, WC Yasuda, T Yatsunenko, YA Yin, H Yip, K Yoo, HD Youn, SW Yu, J Zeitnitz, C Zelitch, S Zhao, T Zhou, B Zhu, J Zielinski, M Zieminska, D Zieminski, A Zivkovic, L Zutshi, V Zverev, EG AF Abazov, V. M. Abbott, B. Abolins, M. Acharya, B. S. Adams, M. Adams, T. Aguilo, E. Ahsan, M. Alexeev, G. D. Alkhazov, G. Alton, A. Alverson, G. Alves, G. A. Anastasoaie, M. Ancu, L. S. Andeen, T. Andrieu, B. Anzelc, M. S. Aoki, M. Arnoud, Y. Arov, M. Arthaud, M. Askew, A. Asman, B. Jesus, A. C. S. Assis Atramentov, O. Avila, C. Badaud, F. Bagby, L. Baldin, B. Bandurin, D. V. Banerjee, P. Banerjee, S. Barberis, E. Barfuss, A. -F. Bargassa, P. Baringer, P. Barreto, J. Bartlett, J. F. Bassler, U. Bauer, D. Beale, S. Bean, A. Begalli, M. Begel, M. Belanger-Champagne, C. Bellantoni, L. Bellavance, A. Benitez, J. A. Beri, S. B. Bernardi, G. Bernhard, R. Bertram, I. Besancon, M. Beuselinck, R. Bezzubov, V. A. Bhat, P. C. Bhatnagar, V. Biscarat, C. Blazey, G. Blekman, F. Blessing, S. Bloom, K. Boehnlein, A. Boline, D. Bolton, T. A. Boos, E. E. Borissov, G. Bose, T. Brandt, A. Brock, R. Brooijmans, G. Bross, A. Brown, D. Bu, X. B. Buchanan, N. J. Buchholz, D. Buehler, M. Buescher, V. Bunichev, V. Burdin, S. Burnett, T. H. Buszello, C. P. Butler, J. M. Calfayan, P. Calvet, S. Cammin, J. Carrasco-Lizarraga, M. A. Carrera, E. Carvalho, W. Casey, B. C. K. Castilla-Valdez, H. Chakrabarti, S. Chakraborty, D. Chan, K. M. Chandra, A. Cheu, E. Chevallier, F. Cho, D. K. Choi, S. Choudhary, B. Christofek, L. Christoudias, T. Cihangir, S. Claes, D. Clutter, J. Cooke, M. Cooper, W. E. Corcoran, M. Couderc, F. Cousinou, M. -C. Crepe-Renaudin, S. Cuplov, V. Cutts, D. Cwiok, M. da Motta, H. Das, A. Davies, G. De, K. de Jong, S. J. De La Cruz-Burelo, E. Martins, C. De Oliveira De Vaughan, K. Deliot, F. Demarteau, M. Demina, R. Denisov, D. Denisov, S. P. Desai, S. Diehl, H. T. Diesburg, M. Dominguez, A. Dorland, T. Dubey, A. Dudko, L. V. Duflot, L. Dugad, S. R. Duggan, D. Duperrin, A. Dyer, J. Dyshkant, A. Eads, M. Edmunds, D. Ellison, J. Elvira, V. D. Enari, Y. Eno, S. Ermolov, P. Evans, H. Evdokimov, A. Evdokimov, V. N. Ferapontov, A. V. Ferbel, T. Fiedler, F. Filthaut, F. Fisher, W. Fisk, H. E. Fortner, M. Fox, H. Fu, S. Fuess, S. Gadfort, T. Galea, C. F. Garcia, C. Garcia-Bellido, A. Gavrilov, V. Gay, P. Geist, W. Geng, W. Gerber, C. E. Gershtein, Y. Gillberg, D. Ginther, G. Gomez, B. Goussiou, A. Grannis, P. D. Greenlee, H. Greenwood, Z. D. Gregores, E. M. Grenier, G. Gris, Ph. Grivaz, J. -F. Grohsjean, A. Gruenendahl, S. Gruenewald, M. W. Guo, F. Guo, J. Gutierrez, G. Gutierrez, P. Haas, A. Hadley, N. J. Haefner, P. Hagopian, S. Haley, J. Hall, I. Hall, R. E. Han, L. Harder, K. Harel, A. Hauptman, J. M. Hays, J. Hebbeker, T. Hedin, D. Hegeman, J. G. Heinson, A. P. Heintz, U. Hensel, C. Herner, K. Hesketh, G. Hildreth, M. D. Hirosky, R. Hobbs, J. D. Hoeneisen, B. Hohlfeld, M. Hossain, S. Houben, P. Hu, Y. Hubacek, Z. Hynek, V. Iashvili, I. Illingworth, R. Ito, A. S. Jabeen, S. Jaffre, M. Jain, S. Jakobs, K. Jarvis, C. Jesik, R. Johns, K. Johnson, C. Johnson, M. Johnston, D. Jonckheere, A. Jonsson, P. Juste, A. Kajfasz, E. Karmanov, D. Kasper, P. A. Katsanos, I. Kau, D. Kaushik, V. Kehoe, R. Kermiche, S. Khalatyan, N. Khanov, A. Kharchilava, A. Kharzheev, Y. M. Khatidze, D. Kim, T. J. Kirby, M. H. Kirsch, M. Klima, B. Kohli, J. M. Konrath, J. -P. Kozelov, A. V. Kraus, J. Kuhl, T. Kumar, A. Kupco, A. Kurca, T. Kuzmin, V. A. Kvita, J. Lacroix, F. Lam, D. Lammers, S. Landsberg, G. Lebrun, P. Lee, W. M. Leflat, A. Lellouch, J. Li, J. Li, L. Li, Q. Z. Lietti, S. M. Lim, J. K. Lima, J. G. R. Lincoln, D. Linnemann, J. Lipaev, V. V. Lipton, R. Liu, Y. Liu, Z. Lobodenko, A. Lokajicek, M. Love, P. Lubatti, H. J. Luna-Garcia, R. Lyon, A. L. Maciel, A. K. A. Mackin, D. Madaras, R. J. Maettig, P. Magass, C. Magerkurth, A. Mal, P. K. Malbouisson, H. B. Malik, S. Malyshev, V. L. Maravin, Y. Martin, B. McCarthy, R. Meijer, M. M. Melnitchouk, A. Mendoza, L. Mercadante, P. G. Merkin, M. Merritt, K. W. Meyer, A. Meyer, J. Mitrevski, J. Mommsen, R. K. Mondal, N. K. Moore, R. W. Moulik, T. Muanza, G. S. Mulhearn, M. Mundal, O. Mundim, L. Nagy, E. Naimuddin, M. Narain, M. Naumann, N. A. Neal, H. A. Negret, J. P. Neustroev, P. Nilsen, H. Nogima, H. Novaes, S. F. Nunnemann, T. O'Dell, V. O'Neil, D. C. Obrant, G. Ochando, C. Onoprienko, D. Oshima, N. Osman, N. Osta, J. Otec, R. Otero y Garzon, G. J. Owen, M. Padley, P. Pangilinan, M. Parashar, N. Park, S. -J. Park, S. K. Parsons, J. Partridge, R. Parua, N. Patwa, A. Pawloski, G. Penning, B. Perfilov, M. Peters, K. Peters, Y. Petroff, P. Petteni, M. Piegaia, R. Piper, J. Pleier, M. -A. Podesta-Lerma, P. L. M. Podstavkov, V. M. Pogorelov, Y. Pol, M. -E. Polozov, P. Pope, B. G. Popov, A. V. Potter, C. da Silva, W. L. Prado Prosper, H. B. Protopopescu, S. Qian, J. Quadt, A. Quinn, B. Rakitine, A. Rangel, M. S. Ranjan, K. Ratoff, P. N. Renkel, P. Rich, P. Rijssenbeek, M. Ripp-Baudot, I. Rizatdinova, F. Robinson, S. Rodrigues, R. F. Rominsky, M. Royon, C. Rubinov, P. Ruchti, R. Safronov, G. Sajot, G. Sanchez-Hernandez, A. Sanders, M. P. Sanghi, B. Savage, G. Sawyer, L. Scanlon, T. Schaile, D. Schamberger, R. D. Scheglov, Y. Schellman, H. Schliephake, T. Schlobohm, S. Schwanenberger, C. Schwartzman, A. Schwienhorst, R. Sekaric, J. Severini, H. Shabalina, E. Shamim, M. Shary, V. Shchukin, A. A. Shivpuri, R. K. Siccardi, V. Simak, V. Sirotenko, V. Skubic, P. Slattery, P. Smirnov, D. Snow, G. R. Snow, J. Snyder, S. Soeldner-Rembold, S. Sonnenschein, L. Sopczak, A. Sosebee, M. Soustruznik, K. Spurlock, B. Stark, J. Stolin, V. Stoyanova, D. A. Strandberg, J. Strandberg, S. Strang, M. A. Strauss, E. Strauss, M. Stroehmer, R. Strom, D. Stutte, L. Sumowidagdo, S. Svoisky, P. Sznajder, A. Tanasijczuk, A. Taylor, W. Tiller, B. Tissandier, F. Titov, M. Tokmenin, V. V. Torchiani, I. Tsybychev, D. Tuchming, B. Tully, C. Tuts, P. M. Unalan, R. Uvarov, L. Uvarov, S. Uzunyan, S. Vachon, B. van den Berg, P. J. Van Kooten, R. van Leeuwen, W. M. Varelas, N. Varnes, E. W. Vasilyev, I. A. Verdier, P. Vertogradov, L. S. Verzocchi, M. Vilanova, D. Villeneuve-Seguier, F. Vint, P. Vokac, P. Voutilainen, M. Wagner, R. Wahl, H. D. Wang, M. H. L. S. Warchol, J. Watts, G. Wayne, M. Weber, G. Weber, M. Welty-Rieger, L. Wenger, A. Wermes, N. Wetstein, M. White, A. Wicke, D. Williams, M. Wilson, G. W. Wimpenny, S. J. Wobisch, M. Wood, D. R. Wyatt, T. R. Xie, Y. Xu, C. Yacoob, S. Yamada, R. Yang, W. -C. Yasuda, T. Yatsunenko, Y. A. Yin, H. Yip, K. Yoo, H. D. Youn, S. W. Yu, J. Zeitnitz, C. Zelitch, S. Zhao, T. Zhou, B. Zhu, J. Zielinski, M. Zieminska, D. Zieminski, A. Zivkovic, L. Zutshi, V. Zverev, E. G. CA D0 Collaboration TI Search for Long-Lived Charged Massive Particles with the D0 Detector SO PHYSICAL REVIEW LETTERS LA English DT Article ID CHARGINOS AB We search for long-lived charged massive particles using 1.1 fb(-1) of data collected by the D0 detector at the Fermilab Tevatron pp Collider. Time-of-flight information is used to search for pair produced long-lived tau sleptons, gauginolike charginos, and Higgsino-like charginos. We find no evidence of a signal and set 95% C.L. cross section upper limits for staus, which vary from 0.31 to 0.04 pb for stau masses between 60 and 300 GeV. We also set lower mass limits of 206 GeV (171 GeV) for pair produced charged gauginos (Higgsinos). C1 [Piegaia, R.; Tanasijczuk, A.] Univ Buenos Aires, Buenos Aires, DF, Argentina. [Alves, G. A.; Barreto, J.; da Motta, H.; Maciel, A. K. A.; Pol, M. -E.; Rangel, M. S.] Ctr Brasileiro Pesquisas Fis, LAFEX, Rio De Janeiro, Brazil. [Jesus, A. C. S. Assis; Begalli, M.; Carvalho, W.; Martins, C. De Oliveira; Malbouisson, H. B.; Mundim, L.; Nogima, H.; da Silva, W. L. Prado; Rodrigues, R. F.; Sznajder, A.] Univ Estado Rio de Janeiro, BR-20550011 Rio De Janeiro, Brazil. [Gregores, E. M.] Univ Fed ABC, Santo Andre, Brazil. [Lietti, S. M.; Mercadante, P. G.; Novaes, S. F.] Univ Estadual Paulista, Inst Fis Teor, BR-01405 Sao Paulo, Brazil. [Aguilo, E.; Beale, S.; Gillberg, D.; Liu, Z.; Moore, R. W.; O'Neil, D. C.; Potter, C.; Taylor, W.; Vachon, B.] Univ Alberta, Edmonton, AB, Canada. [Aguilo, E.; Beale, S.; Gillberg, D.; Liu, Z.; Moore, R. W.; O'Neil, D. C.; Potter, C.; Taylor, W.; Vachon, B.] Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada. [Aguilo, E.; Beale, S.; Gillberg, D.; Liu, Z.; Moore, R. W.; O'Neil, D. C.; Potter, C.; Taylor, W.; Vachon, B.] York Univ, Toronto, ON M3J 2R7, Canada. [Aguilo, E.; Beale, S.; Gillberg, D.; Liu, Z.; Moore, R. W.; O'Neil, D. C.; Potter, C.; Taylor, W.; Vachon, B.] McGill Univ, Montreal, PQ, Canada. [Bu, X. B.; Han, L.; Liu, Y.; Yin, H.] Univ Sci & Technol China, Hefei 230026, Peoples R China. [Avila, C.; Gomez, B.; Mendoza, L.; Negret, J. P.] Univ Los Andes, Bogota, Colombia. [Hynek, V.; Kvita, J.; Soustruznik, K.] Charles Univ Prague, Ctr Particle Phys, Prague, Czech Republic. [Hubacek, Z.; Otec, R.; Simak, V.; Vokac, P.] Czech Tech Univ, CR-16635 Prague, Czech Republic. [Kupco, A.; Lokajicek, M.] Acad Sci Czech Republic, Inst Phys, Ctr Particle Phys, Prague, Czech Republic. [Hoeneisen, B.] Univ San Francisco Quito, Quito, Ecuador. [Badaud, F.; Gay, P.; Gris, Ph.; Lacroix, F.; Tissandier, F.] Univ Clermont Ferrand, LPC, CNRS, IN2P3, Clermont Ferrand, France. [Arnoud, Y.; Chevallier, F.; Crepe-Renaudin, S.; Martin, B.; Sajot, G.; Stark, J.] Univ Grenoble 1, CNRS, LPSC, Inst Natl Polytech Grenoble,IN2P3, Grenoble, France. [Barfuss, A. -F.; Cousinou, M. -C.; Duperrin, A.; Geng, W.; Kajfasz, E.; Kermiche, S.; Muanza, G. S.; Nagy, E.] Aix Marseille Univ, CPPM, CNRS, IN2P3, Marseille, France. [Calvet, S.; Duflot, L.; Grivaz, J. -F.; Jaffre, M.; Ochando, C.; Petroff, P.] Univ Paris 11, CNRS, LAL, IN2P3, F-91405 Orsay, France. [Andrieu, B.; Bernardi, G.; Lellouch, J.; Sanders, M. P.; Sonnenschein, L.] Univ Paris 06, CNRS, LPNHE, IN2P3, Paris, France. [Andrieu, B.; Bernardi, G.; Lellouch, J.; Sanders, M. P.; Sonnenschein, L.] Univ Paris 07, CNRS, LPNHE, IN2P3, Paris, France. [Arthaud, M.; Bassler, U.; Besancon, M.; Chakrabarti, S.; Couderc, F.; Deliot, F.; Royon, C.; Shary, V.; Titov, M.; Tuchming, B.; Vilanova, D.] SPP, CEA, Irfu, Saclay, France. [Geist, W.; Ripp-Baudot, I.; Siccardi, V.] Univ Strasbourg, CNRS, IPHC, IN2P3, Strasbourg, France. [Biscarat, C.; Grenier, G.; Kurca, T.; Lebrun, P.; Verdier, P.] Univ Lyon 1, CNRS, IPNL, IN2P3, F-69622 Villeurbanne, France. [Grenier, G.; Kurca, T.; Lebrun, P.; Verdier, P.] Univ Lyon, Lyon, France. [Hebbeker, T.; Kirsch, M.; Magass, C.; Meyer, A.] Rhein Westfal TH Aachen, Phys Inst A 3, Aachen, Germany. [Buescher, V.; Hensel, C.; Hohlfeld, M.; Meyer, J.; Mundal, O.; Park, S. -J.; Pleier, M. -A.; Quadt, A.; Wermes, N.] Univ Bonn, Inst Phys, D-5300 Bonn, Germany. [Bernhard, R.; Jakobs, K.; Konrath, J. -P.; Nilsen, H.; Penning, B.; Torchiani, I.; Wenger, A.] Univ Freiburg, Inst Phys, Freiburg, Germany. [Fiedler, F.; Kuhl, T.; Weber, M.] Johannes Gutenberg Univ Mainz, Inst Phys, D-6500 Mainz, Germany. [Calfayan, P.; Grohsjean, A.; Haefner, P.; Nunnemann, T.; Schaile, D.; Stroehmer, R.; Tiller, B.] Univ Munich, Munich, Germany. [Maettig, P.; Peters, Y.; Schliephake, T.; Wicke, D.; Zeitnitz, C.] Univ Wuppertal, Fachbereich Phys, Wuppertal, Germany. [Beri, S. B.; Bhatnagar, V.; Kohli, J. M.] Panjab Univ, Chandigarh 160014, India. [Choudhary, B.; Dubey, A.; Ranjan, K.] Univ Delhi, Delhi 110007, India. [Acharya, B. S.; Banerjee, P.; Banerjee, S.; Dugad, S. R.; Mondal, N. K.] Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India. [Cwiok, M.; Gruenewald, M. W.] Univ Coll Dublin, Dublin 2, Ireland. [Kim, T. J.; Lim, J. K.; Park, S. K.] Korea Univ, Korea Detector Lab, Seoul, South Korea. [Choi, S.] Sungkyunkwan Univ, Suwon, South Korea. [Carrasco-Lizarraga, M. A.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Luna-Garcia, R.; Podesta-Lerma, P. L. M.; Sanchez-Hernandez, A.] CINVESTAV, Mexico City 14000, DF, Mexico. [Hegeman, J. G.; Houben, P.; van den Berg, P. J.; van Leeuwen, W. M.] NIKHEF, FOM Inst, Amsterdam, Netherlands. [Hegeman, J. G.; Houben, P.; van den Berg, P. J.; van Leeuwen, W. M.] Univ Amsterdam, NIKHEF, Amsterdam, Netherlands. [Anastasoaie, M.; Ancu, L. S.; de Jong, S. J.; Filthaut, F.; Galea, C. F.; Meijer, M. M.; Naumann, N. A.; Svoisky, P.] Radboud Univ Nijmegen, NIKHEF, NL-6525 ED Nijmegen, Netherlands. [Abazov, V. M.; Alexeev, G. D.; Kharzheev, Y. M.; Malyshev, V. L.; Tokmenin, V. V.; Vertogradov, L. S.; Yatsunenko, Y. A.] Joint Inst Nucl Res, Dubna, Russia. [Gavrilov, V.; Polozov, P.; Safronov, G.; Stolin, V.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Boos, E. E.; Bunichev, V.; Dudko, L. V.; Ermolov, P.; Karmanov, D.; Kuzmin, V. A.; Leflat, A.; Merkin, M.; Perfilov, M.; Zverev, E. G.] Moscow MV Lomonosov State Univ, Moscow, Russia. [Bezzubov, V. A.; Denisov, S. P.; Evdokimov, V. N.; Kozelov, A. V.; Lipaev, V. V.; Popov, A. V.; Shchukin, A. A.; Stoyanova, D. A.; Vasilyev, I. A.] Inst High Energy Phys, Protvino, Russia. [Alkhazov, G.; Lobodenko, A.; Neustroev, P.; Obrant, G.; Scheglov, Y.; Uvarov, L.; Uvarov, S.] Petersburg Nucl Phys Inst, St Petersburg, Russia. [Asman, B.; Belanger-Champagne, C.; Strandberg, S.] Lund Univ, Lund, Sweden. [Asman, B.; Belanger-Champagne, C.; Strandberg, S.] Royal Inst Technol, Stockholm, Sweden. [Asman, B.; Belanger-Champagne, C.; Strandberg, S.] Stockholm Univ, S-10691 Stockholm, Sweden. [Asman, B.; Belanger-Champagne, C.; Strandberg, S.] Uppsala Univ, Uppsala, Sweden. [Bertram, I.; Borissov, G.; Burdin, S.; Fox, H.; Love, P.; Rakitine, A.; Ratoff, P. N.; Sopczak, A.; Williams, M.] Univ Lancaster, Lancaster, England. [Bauer, D.; Beuselinck, R.; Blekman, F.; Buszello, C. P.; Davies, G.; Hays, J.; Jesik, R.; Jonsson, P.; Osman, N.; Petteni, M.; Robinson, S.; Scanlon, T.; Villeneuve-Seguier, F.; Vint, P.] Univ London Imperial Coll Sci Technol & Med, London, England. [Harder, K.; Mommsen, R. K.; Owen, M.; Peters, K.; Rich, P.; Schwanenberger, C.; Soeldner-Rembold, S.; Wyatt, T. R.; Yang, W. -C.] Univ Manchester, Manchester, Lancs, England. [Cheu, E.; Das, A.; Johns, K.; Varnes, E. W.] Univ Arizona, Tucson, AZ 85721 USA. [Madaras, R. J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Hall, R. E.] Calif State Univ Fresno, Fresno, CA 93740 USA. [Chandra, A.; Ellison, J.; Heinson, A. P.; Li, L.; Wimpenny, S. J.] Univ Calif Riverside, Riverside, CA 92521 USA. [Adams, T.; Askew, A.; Atramentov, O.; Blessing, S.; Buchanan, N. J.; Carrera, E.; Duggan, D.; Gershtein, Y.; Hagopian, S.; Kau, D.; Prosper, H. B.; Sekaric, J.; Sumowidagdo, S.; Wahl, H. D.] Florida State Univ, Tallahassee, FL 32306 USA. [Aoki, M.; Bagby, L.; Baldin, B.; Bartlett, J. F.; Bellantoni, L.; Bellavance, A.; Bhat, P. C.; Boehnlein, A.; Bross, A.; Casey, B. C. K.; Cihangir, S.; Cooke, M.; Cooper, W. E.; Demarteau, M.; Denisov, D.; Desai, S.; Diehl, H. T.; Diesburg, M.; Elvira, V. D.; Fisher, W.; Fisk, H. E.; Fu, S.; Fuess, S.; Greenlee, H.; Gruenendahl, S.; Gutierrez, G.; Illingworth, R.; Ito, A. S.; Johnson, M.; Jonckheere, A.; Juste, A.; Kasper, P. A.; Khalatyan, N.; Klima, B.; Lee, W. M.; Li, Q. Z.; Lincoln, D.; Lipton, R.; Lyon, A. L.; Merritt, K. W.; Naimuddin, M.; O'Dell, V.; Oshima, N.; Otero y Garzon, G. J.; Podstavkov, V. M.; Rubinov, P.; Sanghi, B.; Savage, G.; Sirotenko, V.; Stutte, L.; Verzocchi, M.; Wang, M. H. L. S.; Weber, M.; Yamada, R.; Yasuda, T.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Adams, M.; Gerber, C. E.; Shabalina, E.; Varelas, N.] Univ Illinois, Chicago, IL 60607 USA. [Blazey, G.; Dyshkant, A.; Fortner, M.; Hedin, D.; Lima, J. G. R.; Uzunyan, S.; Zutshi, V.] No Illinois Univ, De Kalb, IL 60115 USA. [Andeen, T.; Anzelc, M. S.; Buchholz, D.; Kirby, M. H.; Schellman, H.; Strom, D.; Yacoob, S.; Youn, S. W.] Northwestern Univ, Evanston, IL 60208 USA. [Evans, H.; Parua, N.; Van Kooten, R.; Welty-Rieger, L.; Zieminska, D.; Zieminski, A.] Indiana Univ, Bloomington, IN 47405 USA. [Chan, K. M.; Hildreth, M. D.; Lam, D.; Osta, J.; Pogorelov, Y.; Ruchti, R.; Smirnov, D.; Warchol, J.; Wayne, M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Parashar, N.] Purdue Univ Calumet, Hammond, IN 46323 USA. [Hauptman, J. M.] Iowa State Univ, Ames, IA 50011 USA. [Baringer, P.; Bean, A.; Clutter, J.; Moulik, T.; Wilson, G. W.] Univ Kansas, Lawrence, KS 66045 USA. [Ahsan, M.; Bandurin, D. V.; Bolton, T. A.; Cuplov, V.; Ferapontov, A. V.; Maravin, Y.; Onoprienko, D.; Shamim, M.] Kansas State Univ, Manhattan, KS 66506 USA. [Arov, M.; Greenwood, Z. D.; Sawyer, L.; Wobisch, M.] Louisiana Tech Univ, Ruston, LA 71272 USA. [Eno, S.; Hadley, N. J.; Jarvis, C.; Wetstein, M.] Univ Maryland, College Pk, MD 20742 USA. [Boline, D.; Butler, J. M.; Cho, D. K.; Heintz, U.; Jabeen, S.] Boston Univ, Boston, MA 02215 USA. [Alverson, G.; Barberis, E.; Hesketh, G.; Wood, D. R.] Northeastern Univ, Boston, MA 02115 USA. [Alton, A.; Magerkurth, A.; Neal, H. A.; Qian, J.; Strandberg, J.; Xu, C.; Zhou, B.] Univ Michigan, Ann Arbor, MI 48109 USA. [Abolins, M.; Benitez, J. A.; Brock, R.; Dyer, J.; Edmunds, D.; Geng, W.; Hall, I.; Kraus, J.; Linnemann, J.; Piper, J.; Pope, B. G.; Schwienhorst, R.; Unalan, R.] Michigan State Univ, E Lansing, MI 48824 USA. [Melnitchouk, A.; Quinn, B.] Univ Mississippi, University, MS 38677 USA. [Bloom, K.; Claes, D.; De Vaughan, K.; Dominguez, A.; Eads, M.; Johnston, D.; Malik, S.; Snow, G. R.; Voutilainen, M.] Univ Nebraska, Lincoln, NE 68588 USA. [Haley, J.; Schwartzman, A.; Tully, C.; Wagner, R.] Princeton Univ, Princeton, NJ 08544 USA. [Iashvili, I.; Kharchilava, A.; Kumar, A.; Strang, M. A.] SUNY Buffalo, Buffalo, NY 14260 USA. [Brooijmans, G.; Gadfort, T.; Haas, A.; Johnson, C.; Katsanos, I.; Khatidze, D.; Lammers, S.; Mitrevski, J.; Mulhearn, M.; Parsons, J.; Tuts, P. M.; Zivkovic, L.] Columbia Univ, New York, NY 10027 USA. [Cammin, J.; Demina, R.; Ferbel, T.; Garcia, C.; Garcia-Bellido, A.; Ginther, G.; Harel, A.; Slattery, P.; Zielinski, M.] Univ Rochester, Rochester, NY 14627 USA. [Grannis, P. D.; Guo, F.; Guo, J.; Herner, K.; Hobbs, J. D.; Hu, Y.; McCarthy, R.; Rijssenbeek, M.; Schamberger, R. D.; Strauss, E.; Tsybychev, D.; Zhu, J.] SUNY Stony Brook, Stony Brook, NY 11794 USA. [Begel, M.; Evdokimov, A.; Patwa, A.; Protopopescu, S.; Snyder, S.; Yip, K.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Snow, J.] Langston Univ, Langston, OK 73050 USA. [Abbott, B.; Gutierrez, P.; Hossain, S.; Jain, S.; Rominsky, M.; Severini, H.; Skubic, P.; Strauss, M.] Univ Oklahoma, Norman, OK 73019 USA. [Khanov, A.; Rizatdinova, F.] Oklahoma State Univ, Stillwater, OK 74078 USA. [Bose, T.; Christoudias, T.; Cutts, D.; Enari, Y.; Landsberg, G.; Narain, M.; Pangilinan, M.; Partridge, R.; Xie, Y.; Yoo, H. D.] Brown Univ, Providence, RI 02912 USA. [Brandt, A.; De, K.; Kaushik, V.; Li, J.; Sosebee, M.; Spurlock, B.; White, A.; Yu, J.] Univ Texas Arlington, Arlington, TX 76019 USA. [Kehoe, R.; Renkel, P.] So Methodist Univ, Dallas, TX 75275 USA. [Bargassa, P.; Corcoran, M.; Mackin, D.; Padley, P.; Pawloski, G.] Rice Univ, Houston, TX 77005 USA. [Brown, D.; Buehler, M.; Hirosky, R.; Zelitch, S.] Univ Virginia, Charlottesville, VA 22901 USA. [Burnett, T. H.; Dorland, T.; Goussiou, A.; Lubatti, H. J.; Mal, P. K.; Schlobohm, S.; Watts, G.; Zhao, T.] Univ Washington, Seattle, WA 98195 USA. RP Abazov, VM (reprint author), Univ Buenos Aires, Buenos Aires, DF, Argentina. RI Bargassa, Pedrame/O-2417-2016; Li, Liang/O-1107-2015; Juste, Aurelio/I-2531-2015; De, Kaushik/N-1953-2013; Ancu, Lucian Stefan/F-1812-2010; Alves, Gilvan/C-4007-2013; Deliot, Frederic/F-3321-2014; Sharyy, Viatcheslav/F-9057-2014; Lokajicek, Milos/G-7800-2014; Kupco, Alexander/G-9713-2014; Kozelov, Alexander/J-3812-2014; Christoudias, Theodoros/E-7305-2015; KIM, Tae Jeong/P-7848-2015; Guo, Jun/O-5202-2015; Sznajder, Andre/L-1621-2016; Shivpuri, R K/A-5848-2010; Mercadante, Pedro/K-1918-2012; Yip, Kin/D-6860-2013; Mundim, Luiz/A-1291-2012; Fisher, Wade/N-4491-2013; Gutierrez, Phillip/C-1161-2011; bu, xuebing/D-1121-2012; Dudko, Lev/D-7127-2012; Leflat, Alexander/D-7284-2012; Perfilov, Maxim/E-1064-2012; Boos, Eduard/D-9748-2012; Merkin, Mikhail/D-6809-2012; Novaes, Sergio/D-3532-2012 OI Filthaut, Frank/0000-0003-3338-2247; Naumann, Axel/0000-0002-4725-0766; Belanger-Champagne, Camille/0000-0003-2368-2617; Begel, Michael/0000-0002-1634-4399; Haas, Andrew/0000-0002-4832-0455; Williams, Mark/0000-0001-5448-4213; Weber, Michele/0000-0002-2770-9031; Grohsjean, Alexander/0000-0003-0748-8494; Melnychuk, Oleksandr/0000-0002-2089-8685; Bassler, Ursula/0000-0002-9041-3057; Qian, Jianming/0000-0003-4813-8167; Madaras, Ronald/0000-0001-7399-2993; Evans, Harold/0000-0003-2183-3127; Malik, Sudhir/0000-0002-6356-2655; Blazey, Gerald/0000-0002-7435-5758; Wahl, Horst/0000-0002-1345-0401; Gershtein, Yuri/0000-0002-4871-5449; Weber, Gernot/0000-0003-4199-1640; Bean, Alice/0000-0001-5967-8674; Bargassa, Pedrame/0000-0001-8612-3332; Carrera, Edgar/0000-0002-0857-8507; Li, Liang/0000-0001-6411-6107; Sawyer, Lee/0000-0001-8295-0605; Hedin, David/0000-0001-9984-215X; Juste, Aurelio/0000-0002-1558-3291; de Jong, Sijbrand/0000-0002-3120-3367; Landsberg, Greg/0000-0002-4184-9380; Blessing, Susan/0000-0002-4455-7279; Duperrin, Arnaud/0000-0002-5789-9825; Hoeneisen, Bruce/0000-0002-6059-4256; Blekman, Freya/0000-0002-7366-7098; Beuselinck, Raymond/0000-0003-2613-7446; Heinson, Ann/0000-0003-4209-6146; grannis, paul/0000-0003-4692-2142; De, Kaushik/0000-0002-5647-4489; Ancu, Lucian Stefan/0000-0001-5068-6723; Sharyy, Viatcheslav/0000-0002-7161-2616; Christoudias, Theodoros/0000-0001-9050-3880; KIM, Tae Jeong/0000-0001-8336-2434; Guo, Jun/0000-0001-8125-9433; Sznajder, Andre/0000-0001-6998-1108; Yip, Kin/0000-0002-8576-4311; Mundim, Luiz/0000-0001-9964-7805; Dudko, Lev/0000-0002-4462-3192; Novaes, Sergio/0000-0003-0471-8549 FU DOE; NSF ( U. S. A.); CEA; CNRS/IN2P3; FASI; Rosatom; RFBR ( Russia); CNPq; FAPERJ; FAPESP; FUNDUNESP ( Brazil); DAE; DST ( India); Colciencias ( Colombia); CONACyT ( Mexico); KRF; KOSEF ( Korea); CONICET; UBACyT ( Argentina); FOM ( The Netherlands); STFC ( United Kingdom); MSMT; GACR ( Czech Republic); CRC Program; CFI; NSERC; WestGrid Project ( Canada); BMBF; DFG ( Germany); SFI ( Ireland); The Swedish Research Council (Sweden); CAS; CNSF ( China); Alexander von Humboldt Foundation ( Germany) FX We thank the staffs at Fermilab and collaborating institutions, and acknowledge support from the DOE and NSF ( U. S. A.); CEA and CNRS/IN2P3 ( France); FASI, Rosatom, and RFBR ( Russia); CNPq, FAPERJ, FAPESP, and FUNDUNESP ( Brazil); DAE and DST ( India); Colciencias ( Colombia); CONACyT ( Mexico); KRF and KOSEF ( Korea); CONICET and UBACyT ( Argentina); FOM ( The Netherlands); STFC ( United Kingdom); MSMT and GACR ( Czech Republic); CRC Program, CFI, NSERC, and WestGrid Project ( Canada); BMBF and DFG ( Germany); SFI ( Ireland); The Swedish Research Council ( Sweden); CAS and CNSF ( China); and the Alexander von Humboldt Foundation ( Germany). NR 18 TC 45 Z9 45 U1 0 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD APR 24 PY 2009 VL 102 IS 16 AR 161802 DI 10.1103/PhysRevLett.102.161802 PG 7 WC Physics, Multidisciplinary SC Physics GA 437IC UT WOS:000265479300013 ER PT J AU Aubert, B Bona, M Karyotakis, Y Lees, JP Poireau, V Prencipe, E Prudent, X Tisserand, V Tico, JG Grauges, E Lopez, L Palano, A Pappagallo, M Eigen, G Stugu, B Sun, L Abrams, GS Battaglia, M Brown, DN Cahn, RN Jacobsen, RG Kerth, LT Kolomensky, YG Lynch, G Osipenkov, IL Ronan, MT Tackmann, K Tanabe, T Hawkes, CM Soni, N Watson, AT Koch, H Schroeder, T Walker, D Asgeirsson, DJ Fulsom, BG Hearty, C Mattison, TS McKenna, JA Barrett, M Khan, A Blinov, VE Bukin, AD Buzykaev, AR Druzhinin, VP Golubev, VB Onuchin, AP Serednyakov, SI Skovpen, YI Solodov, EP Todyshev, KY Bondioli, M Curry, S Eschrich, I Kirkby, D Lankford, AJ Lund, P Mandelkern, M Martin, EC Stoker, DP Abachi, S Buchanan, C Gary, JW Liu, F Long, O Shen, BC Vitug, GM Yasin, Z Zhang, L Sharma, V Campagnari, C Hong, TM Kovalskyi, D Mazur, MA Richman, JD Beck, TW Eisner, AM Flacco, CJ Heusch, CA Kroseberg, J Lockman, WS Martinez, AJ Schalk, T Schumm, BA Seiden, A Wilson, MG Winstrom, LO Cheng, CH Doll, DA Echenard, B Fang, F Hitlin, DG Narsky, I Piatenko, T Porter, FC Andreassen, R Mancinelli, G Meadows, BT Mishra, K Sokoloff, MD Bloom, PC Ford, WT Gaz, A Hirschauer, JF Nagel, M Nauenberg, U Smith, JG Ulmer, KA Wagner, SR Ayad, R Soffer, A Toki, WH Wilson, RJ Altenburg, DD Feltresi, E Hauke, A Jasper, H Karbach, M Merkel, J Petzold, A Spaan, B Wacker, K Kobel, MJ Mader, WF Nogowski, R Schubert, KR Schwierz, R Volk, A Bernard, D Bonneaud, GR Latour, E Verderi, M Clark, PJ Playfer, S Watson, JE Andreotti, M Bettoni, D Bozzi, C Calabrese, R Cecchi, A Cibinetto, G Franchini, P Luppi, E Negrini, M Petrella, A Piemontese, L Santoro, V Baldini-Ferroli, R Calcaterra, A de Sangro, R Finocchiaro, G Pacetti, S Patteri, P Peruzzi, IM Piccolo, M Rama, M Zallo, A Buzzo, A Contri, R Lo Vetere, M Macri, MM Monge, MR Passaggio, S Patrignani, C Robutti, E Santroni, A Tosi, S Chaisanguanthum, KS Morii, M Adametz, A Marks, J Schenk, S Uwer, U Klose, V Lacker, HM Bard, DJ Dauncey, PD Nash, JA Tibbetts, M Behera, PK Chai, X Charles, MJ Mallik, U Cochran, J Crawley, HB Dong, L Meyer, WT Prell, S Rosenberg, EI Rubin, AE Gao, YY Gritsan, AV Guo, ZJ Lae, CK Arnaud, N Bequilleux, J D'Orazio, A Davier, M da Costa, JF Grosdidier, G Hocker, A Lepeltier, V Le Diberder, F Lutz, AM Pruvot, S Roudeau, P Schune, MH Serrano, J Sordini, V Stocchi, A Wormser, G Lange, DJ Wright, DM Bingham, I Burke, JP Chavez, CA Fry, JR Gabathuler, E Gamet, R Hutchcroft, DE Payne, DJ Touramanis, C Bevan, AJ Clarke, CK George, KA Di Lodovico, F Sacco, R Sigamani, M Cowan, G Flaecher, HU Hopkins, DA Paramesvaran, S Salvatore, F Wren, AC Brown, DN Davis, CL Denig, AG Fritsch, M Gradl, W Schott, G Alwyn, KE Bailey, D Barlow, RJ Chia, YM Edgar, CL Jackson, G Lafferty, GD West, TJ Yi, JI Anderson, J Chen, C Jawahery, A Roberts, DA Simi, G Tuggle, JM Dallapiccola, C Li, X Salvati, E Saremi, S Cowan, R Dujmic, D Fisher, PH Sciolla, G Spitznagel, M Taylor, F Yamamoto, RK Zhao, M Patel, PM Robertson, SH Lazzaro, A Lombardo, V Palombo, F Bauer, JM Cremaldi, L Godang, R Kroeger, R Sanders, DA Summers, DJ Zhao, HW Simard, M Taras, P Viaud, FB Nicholson, H De Nardo, G Lista, L Monorchio, D Onorato, G Sciacca, C Raven, G Snoek, HL Jessop, CP Knoepfel, KJ LoSecco, JM Wang, WF Benelli, G Corwin, LA Honscheid, K Kagan, H Kass, R Morris, JP Rahimi, AM Regensburger, JJ Sekula, SJ Wong, QK Blount, NL Brau, J Frey, R Igonkina, O Kolb, JA Lu, M Rahmat, R Sinev, NB Strom, D Strube, J Torrence, E Castelli, G Gagliardi, N Margoni, M Morandin, M Posocco, M Rotondo, M Simonetto, F Stroili, R Voci, C Sanchez, PD Ben-Haim, E Briand, H Calderini, G Chauveau, J David, P Del Buono, L Hamon, O Leruste, P Ocariz, J Perez, A Prendki, J Sitt, S Gladney, L Biasini, M Covarelli, R Manoni, E Angelini, C Batignani, G Bettarini, S Carpinelli, M Cervelli, A Forti, F Giorgi, MA Lusiani, A Marchiori, G Morganti, M Neri, N Paoloni, E Rizzo, G Walsh, JJ Pegna, DL Lu, C Olsen, J Smith, AJS Telnov, AV Anulli, F Baracchini, E Cavoto, G del Re, D Di Marco, E Faccini, R Ferrarotto, F Ferroni, F Gaspero, M Jackson, PD Gioi, LL Mazzoni, MA Morganti, S Piredda, G Polci, F Renga, F Voena, C Ebert, M Hartmann, T Schroder, H Waldi, R Adye, T Franek, B Olaiya, EO Wilson, FF Emery, S Escalier, M Esteve, L Ganzhur, SF de Monchenault, GH Kozanecki, W Vasseur, G Yeche, C Zito, M Chen, XR Liu, H Park, W Purohit, MV White, RM Wilson, JR Allen, MT Aston, D Bartoldus, R Bechtle, P Benitez, JF Cenci, R Coleman, JP Convery, MR Dingfelder, JC Dorfan, J Dubois-Felsmann, GP Dunwoodie, W Field, RC Gabareen, AM Gowdy, SJ Graham, MT Grenier, P Hast, C Innes, WR Kaminski, J Kelsey, MH Kim, H Kim, P Kocian, ML Leith, DWGS Li, S Lindquist, B Luitz, S Luth, V Lynch, HL MacFarlane, DB Marsiske, H Messner, R Muller, DR Neal, H Nelson, S O'Grady, CP Ofte, I Perazzo, A Perl, M Ratcliff, BN Roodman, A Salnikov, AA Schindler, RH Schwiening, J Snyder, A Su, D Sullivan, MK Suzuki, K Swain, SK Thompson, JM Va'vra, J Wagner, AP Weaver, M West, CA Wisniewski, WJ Wittgen, M Wright, DH Wulsin, HW Yarritu, AK Yi, K Young, CC Ziegler, V Burchat, PR Edwards, AJ Majewski, SA Miyashita, TS Petersen, BA Wilden, L Ahmed, S Alam, MS Ernst, JA Pan, B Saeed, MA Zain, SB Spanier, SM Wogsland, BJ Eckmann, R Ritchie, JL Ruland, AM Schilling, CJ Schwitters, RF Drummond, BW Izen, JM Lou, XC Bianchi, F Gamba, D Pelliccioni, M Bomben, M Bosisio, L Cartaro, C Della Ricca, G Lanceri, L Vitale, L Azzolini, V Lopez-March, N Martinez-Vidal, F Milanes, DA Oyanguren, A Albert, J Banerjee, S Bhuyan, B Choi, HHF Hamano, K Kowalewski, R Lewczuk, MJ Nugent, IM Roney, JM Sobie, RJ Gershon, TJ Harrison, PF Ilic, J Latham, TE Mohanty, GB Band, HR Chen, X Dasu, S Flood, KT Pan, Y Pierini, M Prepost, R Vuosalo, CO Wu, SL AF Aubert, B. Bona, M. Karyotakis, Y. Lees, J. P. Poireau, V. Prencipe, E. Prudent, X. Tisserand, V. Tico, J. Garra Grauges, E. Lopez, L. Palano, A. Pappagallo, M. Eigen, G. Stugu, B. Sun, L. Abrams, G. S. Battaglia, M. Brown, D. N. Cahn, R. N. Jacobsen, R. G. Kerth, L. T. Kolomensky, Yu. G. Lynch, G. Osipenkov, I. L. Ronan, M. T. Tackmann, K. Tanabe, T. Hawkes, C. M. Soni, N. Watson, A. T. Koch, H. Schroeder, T. Walker, D. Asgeirsson, D. J. Fulsom, B. G. Hearty, C. Mattison, T. S. McKenna, J. A. Barrett, M. Khan, A. Blinov, V. E. Bukin, A. D. Buzykaev, A. R. Druzhinin, V. P. Golubev, V. B. Onuchin, A. P. Serednyakov, S. I. Skovpen, Yu. I. Solodov, E. P. Todyshev, K. Yu. Bondioli, M. Curry, S. Eschrich, I. Kirkby, D. Lankford, A. J. Lund, P. Mandelkern, M. Martin, E. C. Stoker, D. P. Abachi, S. Buchanan, C. Gary, J. W. Liu, F. Long, O. Shen, B. C. Vitug, G. M. Yasin, Z. Zhang, L. Sharma, V. Campagnari, C. Hong, T. M. Kovalskyi, D. Mazur, M. A. Richman, J. D. Beck, T. W. Eisner, A. M. Flacco, C. J. Heusch, C. A. Kroseberg, J. Lockman, W. S. Martinez, A. J. Schalk, T. Schumm, B. A. Seiden, A. Wilson, M. G. Winstrom, L. O. Cheng, C. H. Doll, D. A. Echenard, B. Fang, F. Hitlin, D. G. Narsky, I. Piatenko, T. Porter, F. C. Andreassen, R. Mancinelli, G. Meadows, B. T. Mishra, K. Sokoloff, M. D. Bloom, P. C. Ford, W. T. Gaz, A. Hirschauer, J. F. Nagel, M. Nauenberg, U. Smith, J. G. Ulmer, K. A. Wagner, S. R. Ayad, R. Soffer, A. Toki, W. H. Wilson, R. J. Altenburg, D. D. Feltresi, E. Hauke, A. Jasper, H. Karbach, M. Merkel, J. Petzold, A. Spaan, B. Wacker, K. Kobel, M. J. Mader, W. F. Nogowski, R. Schubert, K. R. Schwierz, R. Volk, A. Bernard, D. Bonneaud, G. R. Latour, E. Verderi, M. Clark, P. J. Playfer, S. Watson, J. E. Andreotti, M. Bettoni, D. Bozzi, C. Calabrese, R. Cecchi, A. Cibinetto, G. Franchini, P. Luppi, E. Negrini, M. Petrella, A. Piemontese, L. Santoro, V. Baldini-Ferroli, R. Calcaterra, A. de Sangro, R. Finocchiaro, G. Pacetti, S. Patteri, P. Peruzzi, I. M. Piccolo, M. Rama, M. Zallo, A. Buzzo, A. Contri, R. Lo Vetere, M. Macri, M. M. Monge, M. R. Passaggio, S. Patrignani, C. Robutti, E. Santroni, A. Tosi, S. Chaisanguanthum, K. S. Morii, M. Adametz, A. Marks, J. Schenk, S. Uwer, U. Klose, V. Lacker, H. M. Bard, D. J. Dauncey, P. D. Nash, J. A. Tibbetts, M. Behera, P. K. Chai, X. Charles, M. J. Mallik, U. Cochran, J. Crawley, H. B. Dong, L. Meyer, W. T. Prell, S. Rosenberg, E. I. Rubin, A. E. Gao, Y. Y. Gritsan, A. V. Guo, Z. J. Lae, C. K. Arnaud, N. Bequilleux, J. D'Orazio, A. Davier, M. da Costa, J. Firmino Grosdidier, G. Hoecker, A. Lepeltier, V. Le Diberder, F. Lutz, A. M. Pruvot, S. Roudeau, P. Schune, M. H. Serrano, J. Sordini, V. Stocchi, A. Wormser, G. Lange, D. J. Wright, D. M. Bingham, I. Burke, J. P. Chavez, C. A. Fry, J. R. Gabathuler, E. Gamet, R. Hutchcroft, D. E. Payne, D. J. Touramanis, C. Bevan, A. J. Clarke, C. K. George, K. A. Di Lodovico, F. Sacco, R. Sigamani, M. Cowan, G. Flaecher, H. U. Hopkins, D. A. Paramesvaran, S. Salvatore, F. Wren, A. C. Brown, D. N. Davis, C. L. Denig, A. G. Fritsch, M. Gradl, W. Schott, G. Alwyn, K. E. Bailey, D. Barlow, R. J. Chia, Y. M. Edgar, C. L. Jackson, G. Lafferty, G. D. West, T. J. Yi, J. I. Anderson, J. Chen, C. Jawahery, A. Roberts, D. A. Simi, G. Tuggle, J. M. Dallapiccola, C. Li, X. Salvati, E. Saremi, S. Cowan, R. Dujmic, D. Fisher, P. H. Sciolla, G. Spitznagel, M. Taylor, F. Yamamoto, R. K. Zhao, M. Patel, P. M. Robertson, S. H. Lazzaro, A. Lombardo, V. Palombo, F. Bauer, J. M. Cremaldi, L. Godang, R. Kroeger, R. Sanders, D. A. Summers, D. J. Zhao, H. W. Simard, M. Taras, P. Viaud, F. B. Nicholson, H. De Nardo, G. Lista, L. Monorchio, D. Onorato, G. Sciacca, C. Raven, G. Snoek, H. L. Jessop, C. P. Knoepfel, K. J. LoSecco, J. M. Wang, W. F. Benelli, G. Corwin, L. A. Honscheid, K. Kagan, H. Kass, R. Morris, J. P. Rahimi, A. M. Regensburger, J. J. Sekula, S. J. Wong, Q. K. Blount, N. L. Brau, J. Frey, R. Igonkina, O. Kolb, J. A. Lu, M. Rahmat, R. Sinev, N. B. Strom, D. Strube, J. Torrence, E. Castelli, G. Gagliardi, N. Margoni, M. Morandin, M. Posocco, M. Rotondo, M. Simonetto, F. Stroili, R. Voci, C. Sanchez, P. del Amo Ben-Haim, E. Briand, H. Calderini, G. Chauveau, J. David, P. Del Buono, L. Hamon, O. Leruste, Ph. Ocariz, J. Perez, A. Prendki, J. Sitt, S. Gladney, L. Biasini, M. Covarelli, R. Manoni, E. Angelini, C. Batignani, G. Bettarini, S. Carpinelli, M. Cervelli, A. Forti, F. Giorgi, M. A. Lusiani, A. Marchiori, G. Morganti, M. Neri, N. Paoloni, E. Rizzo, G. Walsh, J. J. Pegna, D. Lopes Lu, C. Olsen, J. Smith, A. J. S. Telnov, A. V. Anulli, F. Baracchini, E. Cavoto, G. del Re, D. Di Marco, E. Faccini, R. Ferrarotto, F. Ferroni, F. Gaspero, M. Jackson, P. D. Gioi, L. Li Mazzoni, M. A. Morganti, S. Piredda, G. Polci, F. Renga, F. Voena, C. Ebert, M. Hartmann, T. Schroeder, H. Waldi, R. Adye, T. Franek, B. Olaiya, E. O. Wilson, F. F. Emery, S. Escalier, M. Esteve, L. Ganzhur, S. F. de Monchenault, G. Hamel Kozanecki, W. Vasseur, G. Yeche, Ch. Zito, M. Chen, X. R. Liu, H. Park, W. Purohit, M. V. White, R. M. Wilson, J. R. Allen, M. T. Aston, D. Bartoldus, R. Bechtle, P. Benitez, J. F. Cenci, R. Coleman, J. P. Convery, M. R. Dingfelder, J. C. Dorfan, J. Dubois-Felsmann, G. P. Dunwoodie, W. Field, R. C. Gabareen, A. M. Gowdy, S. J. Graham, M. T. Grenier, P. Hast, C. Innes, W. R. Kaminski, J. Kelsey, M. H. Kim, H. Kim, P. Kocian, M. L. Leith, D. W. G. S. Li, S. Lindquist, B. Luitz, S. Luth, V. Lynch, H. L. MacFarlane, D. B. Marsiske, H. Messner, R. Muller, D. R. Neal, H. Nelson, S. O'Grady, C. P. Ofte, I. Perazzo, A. Perl, M. Ratcliff, B. N. Roodman, A. Salnikov, A. A. Schindler, R. H. Schwiening, J. Snyder, A. Su, D. Sullivan, M. K. Suzuki, K. Swain, S. K. Thompson, J. M. Va'vra, J. Wagner, A. P. Weaver, M. West, C. A. Wisniewski, W. J. Wittgen, M. Wright, D. H. Wulsin, H. W. Yarritu, A. K. Yi, K. Young, C. C. Ziegler, V. Burchat, P. R. Edwards, A. J. Majewski, S. A. Miyashita, T. S. Petersen, B. A. Wilden, L. Ahmed, S. Alam, M. S. Ernst, J. A. Pan, B. Saeed, M. A. Zain, S. B. Spanier, S. M. Wogsland, B. J. Eckmann, R. Ritchie, J. L. Ruland, A. M. Schilling, C. J. Schwitters, R. F. Drummond, B. W. Izen, J. M. Lou, X. C. Bianchi, F. Gamba, D. Pelliccioni, M. Bomben, M. Bosisio, L. Cartaro, C. Della Ricca, G. Lanceri, L. Vitale, L. Azzolini, V. Lopez-March, N. Martinez-Vidal, F. Milanes, D. A. Oyanguren, A. Albert, J. Banerjee, Sw. Bhuyan, B. Choi, H. H. F. Hamano, K. Kowalewski, R. Lewczuk, M. J. Nugent, I. M. Roney, J. M. Sobie, R. J. Gershon, T. J. Harrison, P. F. Ilic, J. Latham, T. E. Mohanty, G. B. Band, H. R. Chen, X. Dasu, S. Flood, K. T. Pan, Y. Pierini, M. Prepost, R. Vuosalo, C. O. Wu, S. L. CA BABAR Collaboration TI Measurement of B -> X gamma Decays and Determination of |V-td/V-ts| SO PHYSICAL REVIEW LETTERS LA English DT Article ID B-DECAYS; SUPERSYMMETRY; PHYSICS; MODEL AB Using a sample of 383x10(6) BB events collected by the BABAR experiment, we measure sums of seven exclusive final states B -> X-d(s)gamma, where X-d(X-s) is a nonstrange (strange) charmless hadronic system in the mass range 0.6-1.8 GeV/c(2). After correcting for unmeasured decay modes in this mass range, we obtain a branching fraction for b -> d gamma of (7.2 +/- 2.7(stat)+/- 2.3(syst))x10(-6). Taking the ratio of X-d to X-s we find Gamma(b -> d gamma)/Gamma(b -> s gamma)=0.033 +/- 0.013(stat)+/- 0.009(syst), from which we determine |V-td/V-ts|=0.177 +/- 0.043. C1 [Aubert, B.; Bona, M.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prencipe, E.; Prudent, X.; Tisserand, V.] CNRS, Phys Particules Lab, IN2P3, F-74941 Annecy Le Vieux, France. [Tico, J. Garra; Grauges, E.] Univ Barcelona, Fac Fis, Dept ECM, E-08028 Barcelona, Spain. [Lopez, L.; Palano, A.; Pappagallo, M.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Lopez, L.; Palano, A.; Pappagallo, M.] Univ Bari, Dipartmento Fis, I-70126 Bari, Italy. [Eigen, G.; Stugu, B.; Sun, L.] Univ Bergen, Inst Phys, N-5007 Bergen, Norway. [Abrams, G. S.; Battaglia, M.; Brown, D. N.; Cahn, R. N.; Jacobsen, R. G.; Kerth, L. T.; Kolomensky, Yu. G.; Lynch, G.; Osipenkov, I. L.; Ronan, M. T.; Tackmann, K.; Tanabe, T.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Hawkes, C. M.; Soni, N.; Watson, A. T.] Univ Birmingham, Birmingham B15 2TT, W Midlands, England. [Koch, H.; Schroeder, T.] Ruhr Univ Bochum, Inst Expt Phys 1, D-44780 Bochum, Germany. [Walker, D.] Univ Bristol, Bristol BS8 1TL, Avon, England. [Asgeirsson, D. J.; Fulsom, B. G.; Hearty, C.; Mattison, T. S.; McKenna, J. A.] Univ British Columbia, Vancouver, BC V6T 1Z1, Canada. [Barrett, M.; Khan, A.] Brunel Univ, Uxbridge UB8 3PH, Middx, England. [Blinov, V. E.; Bukin, A. D.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.] Budker Inst Nucl Phys, Novosibirsk 630090, Russia. [Bondioli, M.; Curry, S.; Eschrich, I.; Kirkby, D.; Lankford, A. J.; Lund, P.; Mandelkern, M.; Martin, E. C.; Stoker, D. P.] Univ Calif Irvine, Irvine, CA 92697 USA. [Abachi, S.; Buchanan, C.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Gary, J. W.; Liu, F.; Long, O.; Shen, B. C.; Vitug, G. M.; Yasin, Z.; Zhang, L.] Univ Calif Riverside, Riverside, CA 92521 USA. [Sharma, V.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Campagnari, C.; Hong, T. M.; Kovalskyi, D.; Mazur, M. A.; Richman, J. D.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Beck, T. W.; Eisner, A. M.; Flacco, C. J.; Heusch, C. A.; Kroseberg, J.; Lockman, W. S.; Martinez, A. J.; Schalk, T.; Schumm, B. A.; Seiden, A.; Wilson, M. G.; Winstrom, L. O.] Univ Calif Santa Cruz, Inst Particle Phys, Santa Cruz, CA 95064 USA. [Cheng, C. H.; Doll, D. A.; Echenard, B.; Fang, F.; Hitlin, D. G.; Narsky, I.; Piatenko, T.; Porter, F. C.] CALTECH, Pasadena, CA 91125 USA. [Andreassen, R.; Mancinelli, G.; Meadows, B. T.; Mishra, K.; Sokoloff, M. D.] Univ Cincinnati, Cincinnati, OH 45221 USA. [Bloom, P. C.; Ford, W. T.; Gaz, A.; Hirschauer, J. F.; Nagel, M.; Nauenberg, U.; Smith, J. G.; Ulmer, K. A.; Wagner, S. R.] Univ Colorado, Boulder, CO 80309 USA. [Ayad, R.; Soffer, A.; Toki, W. H.; Wilson, R. J.] Colorado State Univ, Ft Collins, CO 80523 USA. [Altenburg, D. D.; Feltresi, E.; Hauke, A.; Jasper, H.; Karbach, M.; Merkel, J.; Petzold, A.; Spaan, B.; Wacker, K.] Tech Univ Dortmund, Fak Phys, D-44221 Dortmund, Germany. [Kobel, M. J.; Mader, W. F.; Nogowski, R.; Schubert, K. R.; Schwierz, R.; Volk, A.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. [Bernard, D.; Bonneaud, G. R.; Latour, E.; Verderi, M.] Ecole Polytech, Lab Leprincce Ringuet, CNRS, IN2P3, F-91128 Palaiseau, France. [Clark, P. J.; Playfer, S.; Watson, J. E.] Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. [Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Franchini, P.; Luppi, E.; Negrini, M.; Petrella, A.; Piemontese, L.; Santoro, V.] Ist Nazl Fis Nucl, Sez Ferrara, I-44100 Ferrara, Italy. [Andreotti, M.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Franchini, P.; Luppi, E.; Negrini, M.; Petrella, A.; Santoro, V.] Univ Ferrara, Dipartimento Fis, I-44100 Ferrara, Italy. [Baldini-Ferroli, R.; Calcaterra, A.; de Sangro, R.; Finocchiaro, G.; Pacetti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; Zallo, A.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Buzzo, A.; Contri, R.; Lo Vetere, M.; Macri, M. M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Santroni, A.; Tosi, S.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Contri, R.; Lo Vetere, M.; Monge, M. R.; Patrignani, C.; Santroni, A.; Tosi, S.] Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy. [Chaisanguanthum, K. S.; Morii, M.] Harvard Univ, Cambridge, MA 02138 USA. [Adametz, A.; Marks, J.; Schenk, S.; Uwer, U.] Heidelberg Univ, Inst Phys, D-69120 Heidelberg, Germany. [Klose, V.; Lacker, H. M.] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany. [Bard, D. J.; Dauncey, P. D.; Nash, J. A.; Tibbetts, M.] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. [Behera, P. K.; Chai, X.; Charles, M. J.; Mallik, U.] Univ Iowa, Iowa City, IA 52242 USA. [Cochran, J.; Crawley, H. B.; Dong, L.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Rubin, A. E.] Iowa State Univ, Ames, IA 50011 USA. [Gao, Y. Y.; Gritsan, A. V.; Guo, Z. J.; Lae, C. K.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Arnaud, N.; Bequilleux, J.; D'Orazio, A.; Davier, M.; da Costa, J. Firmino; Grosdidier, G.; Hoecker, A.; Lepeltier, V.; Le Diberder, F.; Lutz, A. M.; Pruvot, S.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wormser, G.] CNRS, Lab Accelerateur Lineaire, IN2P3, F-91898 Orsay, France. [Arnaud, N.; Bequilleux, J.; D'Orazio, A.; Davier, M.; da Costa, J. Firmino; Grosdidier, G.; Hoecker, A.; Lepeltier, V.; Le Diberder, F.; Lutz, A. M.; Pruvot, S.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wormser, G.] Univ Paris 11, Ctr Sci Orsay, F-91898 Orsay, France. [Lange, D. J.; Wright, D. M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Bingham, I.; Burke, J. P.; Chavez, C. A.; Fry, J. R.; Gabathuler, E.; Gamet, R.; Hutchcroft, D. E.; Payne, D. J.; Touramanis, C.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Bevan, A. J.; Clarke, C. K.; George, K. A.; Di Lodovico, F.; Sacco, R.; Sigamani, M.] Univ London, London E1 4NS, England. [Cowan, G.; Flaecher, H. U.; Hopkins, D. A.; Paramesvaran, S.; Salvatore, F.; Wren, A. C.] Univ London Royal Holloway & Bedford New Coll, Egham TW20 0EX, Surrey, England. [Brown, D. N.; Davis, C. L.] Univ Louisville, Louisville, KY 40292 USA. [Denig, A. G.; Fritsch, M.; Gradl, W.; Schott, G.] Johannes Gutenberg Univ Mainz, Inst Kernphys, D-55099 Mainz, Germany. [Alwyn, K. E.; Bailey, D.; Barlow, R. J.; Chia, Y. M.; Edgar, C. L.; Jackson, G.; Lafferty, G. D.; West, T. J.; Yi, J. I.] Univ Manchester, Manchester M13 9PL, Lancs, England. [Anderson, J.; Chen, C.; Jawahery, A.; Roberts, D. A.; Simi, G.; Tuggle, J. M.] Univ Maryland, College Pk, MD 20742 USA. [Dallapiccola, C.; Li, X.; Salvati, E.; Saremi, S.] Univ Massachusetts, Amherst, MA 01003 USA. [Cowan, R.; Dujmic, D.; Fisher, P. H.; Sciolla, G.; Spitznagel, M.; Taylor, F.; Yamamoto, R. K.; Zhao, M.] MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. [Patel, P. M.; Robertson, S. H.] McGill Univ, Montreal, PQ H3A 2T8, Canada. [Lazzaro, A.; Lombardo, V.; Palombo, F.] Ist Nazl Fis Nucl, Sez Milano, I-20133 Milan, Italy. [Lazzaro, A.; Palombo, F.] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. [Bauer, J. M.; Cremaldi, L.; Godang, R.; Kroeger, R.; Sanders, D. A.; Summers, D. J.; Zhao, H. W.] Univ Mississippi, University, MS 38677 USA. [Simard, M.; Taras, P.; Viaud, F. B.] Univ Montreal, Montreal, PQ H3C 3J7, Canada. [Nicholson, H.] Mt Holyoke Coll, S Hadley, MA 01075 USA. [De Nardo, G.; Lista, L.; Monorchio, D.; Onorato, G.; Sciacca, C.] Ist Nazl Fis Nucl, Sez Napoli, I-80126 Naples, Italy. [De Nardo, G.; Monorchio, D.; Onorato, G.; Sciacca, C.] Univ Naples Federico II, Dipartimento Sci Fisiche, I-80126 Naples, Italy. [Raven, G.; Snoek, H. L.] Natl Inst Nucl Phys & High Energy Phys, NIKHEF, NL-1009 DB Amsterdam, Netherlands. [Jessop, C. P.; Knoepfel, K. J.; LoSecco, J. M.; Wang, W. F.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Benelli, G.; Corwin, L. A.; Honscheid, K.; Kagan, H.; Kass, R.; Morris, J. P.; Rahimi, A. M.; Regensburger, J. J.; Sekula, S. J.; Wong, Q. K.] Ohio State Univ, Columbus, OH 43210 USA. [Blount, N. L.; Brau, J.; Frey, R.; Igonkina, O.; Kolb, J. A.; Lu, M.; Rahmat, R.; Sinev, N. B.; Strom, D.; Strube, J.; Torrence, E.] Univ Oregon, Eugene, OR 97403 USA. [Castelli, G.; Gagliardi, N.; Margoni, M.; Morandin, M.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.; Voci, C.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Castelli, G.; Gagliardi, N.; Margoni, M.; Simonetto, F.; Stroili, R.; Voci, C.] Univ Padua, Dipartimento Fis, I-35131 Padua, Italy. [Sanchez, P. del Amo; Ben-Haim, E.; Briand, H.; Calderini, G.; Chauveau, J.; David, P.; Del Buono, L.; Hamon, O.; Leruste, Ph.; Ocariz, J.; Perez, A.; Prendki, J.; Sitt, S.] Univ Paris 07, Univ Paris 06, CNRS, IN2P3,Lab Phys Nucl & Hautes Energies, F-75252 Paris, France. [Gladney, L.] Univ Penn, Philadelphia, PA 19104 USA. [Biasini, M.; Covarelli, R.; Manoni, E.] Ist Nazl Fis Nucl, Sez Perugia, I-06100 Perugia, Italy. [Biasini, M.; Covarelli, R.; Manoni, E.] Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Marchiori, G.; Morganti, M.; Neri, N.; Paoloni, E.; Rizzo, G.; Walsh, J. J.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Marchiori, G.; Morganti, M.; Neri, N.; Paoloni, E.; Rizzo, G.] Univ Pisa, Dipartimento Fis, I-56127 Pisa, Italy. [Lusiani, A.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Pegna, D. Lopes; Lu, C.; Olsen, J.; Smith, A. J. S.; Telnov, A. V.] Princeton Univ, Princeton, NJ 08544 USA. [Anulli, F.; Baracchini, E.; Cavoto, G.; del Re, D.; Di Marco, E.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Jackson, P. D.; Gioi, L. Li; Mazzoni, M. A.; Morganti, S.; Piredda, G.; Polci, F.; Renga, F.; Voena, C.] Ist Nazl Fis Nucl, Sez Roma, I-00185 Rome, Italy. [Baracchini, E.; del Re, D.; Di Marco, E.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Polci, F.; Renga, F.; Voena, C.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Ebert, M.; Hartmann, T.; Schroeder, H.; Waldi, R.] Univ Rostock, D-18051 Rostock, Germany. [Adye, T.; Franek, B.; Olaiya, E. O.; Wilson, F. F.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Emery, S.; Escalier, M.; Esteve, L.; Ganzhur, S. F.; de Monchenault, G. Hamel; Kozanecki, W.; Vasseur, G.; Yeche, Ch.; Zito, M.] Ctr Saclay, CEA, Irfu, F-91191 Gif Sur Yvette, France. [Chen, X. R.; Liu, H.; Park, W.; Purohit, M. V.; White, R. M.; Wilson, J. R.] Univ S Carolina, Columbia, SC 29208 USA. [Allen, M. T.; Aston, D.; Bartoldus, R.; Bechtle, P.; Benitez, J. F.; Cenci, R.; Coleman, J. P.; Convery, M. R.; Dingfelder, J. C.; Dorfan, J.; Dubois-Felsmann, G. P.; Dunwoodie, W.; Field, R. C.; Gabareen, A. M.; Gowdy, S. J.; Graham, M. T.; Grenier, P.; Hast, C.; Innes, W. R.; Kaminski, J.; Kelsey, M. H.; Kim, H.; Kim, P.; Kocian, M. L.; Leith, D. W. G. S.; Li, S.; Lindquist, B.; Luitz, S.; Luth, V.; Lynch, H. L.; MacFarlane, D. B.; Marsiske, H.; Messner, R.; Muller, D. R.; Neal, H.; Nelson, S.; O'Grady, C. P.; Ofte, I.; Perazzo, A.; Perl, M.; Ratcliff, B. N.; Roodman, A.; Salnikov, A. A.; Schindler, R. H.; Schwiening, J.; Snyder, A.; Su, D.; Sullivan, M. K.; Suzuki, K.; Swain, S. K.; Thompson, J. M.; Va'vra, J.; Wagner, A. P.; Weaver, M.; West, C. A.; Wisniewski, W. J.; Wittgen, M.; Wright, D. H.; Wulsin, H. W.; Yarritu, A. K.; Yi, K.; Young, C. C.; Ziegler, V.] Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. [Burchat, P. R.; Edwards, A. J.; Majewski, S. A.; Miyashita, T. S.; Petersen, B. A.; Wilden, L.] Stanford Univ, Stanford, CA 94305 USA. [Ahmed, S.; Alam, M. S.; Ernst, J. A.; Pan, B.; Saeed, M. A.; Zain, S. B.] SUNY Albany, Albany, NY 12222 USA. [Spanier, S. M.; Wogsland, B. J.] Univ Tennessee, Knoxville, TN 37996 USA. [Eckmann, R.; Ritchie, J. L.; Ruland, A. M.; Schilling, C. J.; Schwitters, R. F.] Univ Texas Austin, Austin, TX 78712 USA. [Drummond, B. W.; Izen, J. M.; Lou, X. C.] Univ Texas Dallas, Richardson, TX 75083 USA. [Bianchi, F.; Gamba, D.; Pelliccioni, M.] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy. [Bianchi, F.; Gamba, D.; Pelliccioni, M.] Univ Turin, Dipartimento Fis Sperimentale, I-10125 Turin, Italy. [Bomben, M.; Bosisio, L.; Cartaro, C.; Della Ricca, G.; Lanceri, L.; Vitale, L.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Bomben, M.; Bosisio, L.; Cartaro, C.; Della Ricca, G.; Lanceri, L.; Vitale, L.] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. [Azzolini, V.; Lopez-March, N.; Martinez-Vidal, F.; Milanes, D. A.; Oyanguren, A.] Univ Valencia, IFIC, CSIC, E-46071 Valencia, Spain. [Albert, J.; Banerjee, Sw.; Bhuyan, B.; Choi, H. H. F.; Hamano, K.; Kowalewski, R.; Lewczuk, M. J.; Nugent, I. M.; Roney, J. M.; Sobie, R. J.] Univ Victoria, Victoria, BC V8W 3P6, Canada. [Gershon, T. J.; Harrison, P. F.; Ilic, J.; Latham, T. E.; Mohanty, G. B.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Band, H. R.; Chen, X.; Dasu, S.; Flood, K. T.; Pan, Y.; Pierini, M.; Prepost, R.; Vuosalo, C. O.; Wu, S. L.] Univ Wisconsin, Madison, WI 53706 USA. [Carpinelli, M.] Univ Sassari, I-07100 Sassari, Italy. RP Aubert, B (reprint author), CNRS, Phys Particules Lab, IN2P3, F-74941 Annecy Le Vieux, France. RI Oyanguren, Arantza/K-6454-2014; Luppi, Eleonora/A-4902-2015; White, Ryan/E-2979-2015; Calabrese, Roberto/G-4405-2015; Patrignani, Claudia/C-5223-2009; Neri, Nicola/G-3991-2012; Forti, Francesco/H-3035-2011; Rotondo, Marcello/I-6043-2012; de Sangro, Riccardo/J-2901-2012; Saeed, Mohammad Alam/J-7455-2012; Negrini, Matteo/C-8906-2014; Monge, Maria Roberta/G-9127-2012; Rizzo, Giuliana/A-8516-2015; dong, liaoyuan/A-5093-2015; Martinez Vidal, F*/L-7563-2014; Kolomensky, Yury/I-3510-2015; Lo Vetere, Maurizio/J-5049-2012; Lusiani, Alberto/N-2976-2015; Morandin, Mauro/A-3308-2016; Lusiani, Alberto/A-3329-2016; Della Ricca, Giuseppe/B-6826-2013; Di Lodovico, Francesca/L-9109-2016; Pappagallo, Marco/R-3305-2016; Calcaterra, Alessandro/P-5260-2015; Frey, Raymond/E-2830-2016; OI Oyanguren, Arantza/0000-0002-8240-7300; Luppi, Eleonora/0000-0002-1072-5633; White, Ryan/0000-0003-3589-5900; Calabrese, Roberto/0000-0002-1354-5400; Patrignani, Claudia/0000-0002-5882-1747; Neri, Nicola/0000-0002-6106-3756; Forti, Francesco/0000-0001-6535-7965; Rotondo, Marcello/0000-0001-5704-6163; de Sangro, Riccardo/0000-0002-3808-5455; Saeed, Mohammad Alam/0000-0002-3529-9255; Negrini, Matteo/0000-0003-0101-6963; Monge, Maria Roberta/0000-0003-1633-3195; Chen, Chunhui /0000-0003-1589-9955; Raven, Gerhard/0000-0002-2897-5323; Pacetti, Simone/0000-0002-6385-3508; Covarelli, Roberto/0000-0003-1216-5235; Rizzo, Giuliana/0000-0003-1788-2866; Carpinelli, Massimo/0000-0002-8205-930X; Sciacca, Crisostomo/0000-0002-8412-4072; Adye, Tim/0000-0003-0627-5059; Lafferty, George/0000-0003-0658-4919; Faccini, Riccardo/0000-0003-2613-5141; Wilson, Robert/0000-0002-8184-4103; Strube, Jan/0000-0001-7470-9301; Paoloni, Eugenio/0000-0001-5969-8712; Corwin, Luke/0000-0001-7143-3821; Bettarini, Stefano/0000-0001-7742-2998; Lanceri, Livio/0000-0001-8220-3095; Ebert, Marcus/0000-0002-3014-1512; Cibinetto, Gianluigi/0000-0002-3491-6231; dong, liaoyuan/0000-0002-4773-5050; Martinez Vidal, F*/0000-0001-6841-6035; Kolomensky, Yury/0000-0001-8496-9975; Lo Vetere, Maurizio/0000-0002-6520-4480; Lusiani, Alberto/0000-0002-6876-3288; Morandin, Mauro/0000-0003-4708-4240; Lusiani, Alberto/0000-0002-6876-3288; Della Ricca, Giuseppe/0000-0003-2831-6982; Di Lodovico, Francesca/0000-0003-3952-2175; Pappagallo, Marco/0000-0001-7601-5602; Calcaterra, Alessandro/0000-0003-2670-4826; Frey, Raymond/0000-0003-0341-2636; Hamel de Monchenault, Gautier/0000-0002-3872-3592 FU DOE and NSF ( USA); NSERC ( Canada); CEA; BMBF; DFG ( Germany); INFN ( Italy),; FOM ( The Netherlands); NFR ( Norway); MES ( Russia); MEC ( Spain); STFC ( United Kingdom); Marie Curie EIF ( European Union); A. P. Sloan Foundation; [CNRS-IN2P3] FX We are grateful for the excellent luminosity and machine conditions provided by our PEP-II colleagues, and for the substantial dedicated effort from the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and kind hospitality. This work is supported by DOE and NSF ( USA), NSERC ( Canada), CEA and CNRS-IN2P3 ( France), BMBF and DFG ( Germany), INFN ( Italy), FOM ( The Netherlands), NFR ( Norway), MES ( Russia), MEC ( Spain), and STFC ( United Kingdom). Individuals have received support from the Marie Curie EIF ( European Union) and the A. P. Sloan Foundation. NR 18 TC 5 Z9 5 U1 0 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD APR 24 PY 2009 VL 102 IS 16 AR 161803 DI 10.1103/PhysRevLett.102.161803 PG 7 WC Physics, Multidisciplinary SC Physics GA 437IC UT WOS:000265479300014 ER PT J AU Becher, T Neubert, M AF Becher, Thomas Neubert, Matthias TI Infrared Singularities of Scattering Amplitudes in Perturbative QCD SO PHYSICAL REVIEW LETTERS LA English DT Article ID ABELIAN GAUGE-THEORIES; JET CROSS-SECTIONS; MASS SINGULARITIES; GLUON SCATTERING; QUARK SCATTERING; LEADING ORDER; WILSON LOOPS; 2-LOOP; RENORMALIZATION; EXPONENTIATION AB An exact formula is derived for the infrared singularities of dimensionally regularized scattering amplitudes in massless QCD with an arbitrary number of loops and legs. It is based on the conjecture that the anomalous-dimension matrix of n-jet operators in soft-collinear effective theory is fully determined by three functions of alpha(s), which can be extracted from known perturbative results for the quark and gluon form factors. This allows us to predict the three-loop coefficients of all 1/epsilon(k) poles for arbitrary n-parton scattering amplitudes, generalizing existing two-loop results. C1 [Becher, Thomas] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Neubert, Matthias] Johannes Gutenberg Univ Mainz, Inst Phys THEP, D-55099 Mainz, Germany. RP Becher, T (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. FU U.S. DOE [DE-AC02-76CH03000] FX We are grateful to N. Arkani-Hamed, L. Dixon, and J. Maldacena for useful comments. T. B. was supported by the U.S. DOE under Grant No. DE-AC02-76CH03000. Fermilab is operated by the Fermi Research Alliance under contract with the DOE. NR 44 TC 118 Z9 118 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD APR 24 PY 2009 VL 102 IS 16 AR 162001 DI 10.1103/PhysRevLett.102.162001 PG 4 WC Physics, Multidisciplinary SC Physics GA 437IC UT WOS:000265479300015 PM 19518699 ER PT J AU da Silva, LGGVD Sandler, N Simon, P Ingersent, K Ulloa, SE AF Dias da Silva, Luis G. G. V. Sandler, Nancy Simon, Pascal Ingersent, Kevin Ulloa, Sergio E. TI Tunable Pseudogap Kondo Effect and Quantum Phase Transitions in Aharonov-Bohm Interferometers SO PHYSICAL REVIEW LETTERS LA English DT Article ID GAPLESS FERMI SYSTEMS; RENORMALIZATION-GROUP; MAGNETIC-IMPURITIES; ANDERSON; DOT; INTERFERENCE; DETECTOR AB We study two quantum dots embedded in the arms of an Aharonov-Bohm ring threaded by a magnetic flux. This system can be described by an effective one-impurity Anderson model with an energy- and flux-dependent density of states. For specific values of the flux, this density of states vanishes at the Fermi energy, yielding a controlled realization of the pseudogap Kondo effect. The conductance and transmission phase shifts reflect a nontrivial interplay between wave interference and interactions, providing clear signatures of quantum phase transitions between Kondo and non-Kondo ground states. C1 [Dias da Silva, Luis G. G. V.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Dias da Silva, Luis G. G. V.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Sandler, Nancy; Ulloa, Sergio E.] Ohio Univ, Dept Phys & Astron, Nanoscale & Quantum Phenomena Inst, Athens, OH 45701 USA. [Simon, Pascal] CNRS, Lab Phys & Modelisat Milieux Condenses, F-38042 Grenoble, France. [Simon, Pascal] Univ Grenoble 1, F-38042 Grenoble, France. [Simon, Pascal] Univ Paris 11, CNRS, UMR 8502, Phys Solides Lab, F-91405 Orsay, France. [Ingersent, Kevin] Univ Florida, Dept Phys, Gainesville, FL 32611 USA. RP da Silva, LGGVD (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. EM diasdasilval@ornl.gov RI Ulloa, Sergio/F-4621-2011; Dias da Silva, Luis/D-8381-2013; Sandler, Nancy/F-6532-2016; OI Ulloa, Sergio/0000-0002-3091-4984; Dias da Silva, Luis/0000-0002-8156-9463; Sandler, Nancy/0000-0001-7288-6339; Ingersent, Kevin/0000-0001-7071-5800 FU NSF-DMR [0312939, 0710540, 0336431, 0304314, 0710581, 0706020] FX We acknowledge support under NSF-DMR Grants No. 0312939 and No. 0710540 (University of Florida), No. 0336431, No. 0304314, and No. 0710581 (Ohio University), and No. 0706020 (University of Tennessee/ORNL). NR 36 TC 21 Z9 21 U1 1 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD APR 24 PY 2009 VL 102 IS 16 AR 166806 DI 10.1103/PhysRevLett.102.166806 PG 4 WC Physics, Multidisciplinary SC Physics GA 437IC UT WOS:000265479300057 PM 19518741 ER PT J AU Edlund, EM Porkolab, M Kramer, GJ Lin, L Lin, Y Wukitch, SJ AF Edlund, E. M. Porkolab, M. Kramer, G. J. Lin, L. Lin, Y. Wukitch, S. J. TI Observation of Reversed Shear Alfven Eigenmodes between Sawtooth Crashes in the Alcator C-Mod Tokamak SO PHYSICAL REVIEW LETTERS LA English DT Article ID AXISYMMETRICAL TOROIDAL PLASMAS; PROFILE; JT-60U AB Groups of frequency chirping modes observed between sawtooth crashes in the Alcator C-Mod tokamak are interpreted as reversed shear Alfven eigenmodes near the q=1 surface. These modes indicate that a reversed shear q profile is generated during the relaxation phase of the sawtooth cycle. Two important parameters, q(min) and its radial position, are deduced from comparisons of measured density fluctuations with calculations from the ideal MHD code NOVA. These studies provide valuable constraints for further modeling of the sawtooth cycle. C1 [Edlund, E. M.; Porkolab, M.; Lin, L.; Lin, Y.; Wukitch, S. J.] MIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA. [Kramer, G. J.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Edlund, EM (reprint author), MIT, Plasma Sci & Fus Ctr, 77 Massachusetts Ave, Cambridge, MA 02139 USA. RI Lin, Yijun/B-5711-2009; Lin, Liang/H-2255-2011 FU U. S. DOE [DE-FC02-99-ER54512, DE-FC02-04ER54698] FX We thank the Alcator C-Mod team for their support of these experiments. We also acknowledge the contributions of Jesus Ramos, Peter Catto, Per Helander, and Chuck Kessel for the valuable discussions of our modeling and neoclassical transport theory. This work supported by the U. S. DOE under Contracts No. DE-FC02-99-ER54512 and No. DE-FC02-04ER54698. NR 24 TC 14 Z9 14 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD APR 24 PY 2009 VL 102 IS 16 AR 165003 DI 10.1103/PhysRevLett.102.165003 PG 4 WC Physics, Multidisciplinary SC Physics GA 437IC UT WOS:000265479300035 PM 19518719 ER PT J AU Horava, P AF Horava, Petr TI Spectral Dimension of the Universe in Quantum Gravity at a Lifshitz Point SO PHYSICAL REVIEW LETTERS LA English DT Article AB We extend the definition of "spectral dimension" d(s) (usually defined for fractal and lattice geometries) to theories in spacetimes with anisotropic scaling. We show that in gravity with dynamical critical exponent z in D+1 dimensions, the spectral dimension of spacetime is d(s)=1+D/z. In the case of gravity in 3+1 dimensions with z=3 in the UV which flows to z=1 in the IR, the spectral dimension changes from d(s)=4 at large scales to d(s)=2 at short distances. Remarkably, this is the behavior found numerically by Ambjorn et al. in their causal dynamical triangulations approach to quantum gravity. C1 [Horava, Petr] Univ Calif Berkeley, Berkeley Ctr Theoret Phys, Berkeley, CA 94720 USA. [Horava, Petr] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Phys, Berkeley, CA 94720 USA. RP Horava, P (reprint author), Univ Calif Berkeley, Berkeley Ctr Theoret Phys, Berkeley, CA 94720 USA. FU NSF [PHY-0555662]; DOE [DE-AC0376SF00098]; BCTP FX This work has been supported in part by NSF Grant No. PHY-0555662, U. S. DOE Grant No. DE-AC0376SF00098, and the BCTP. NR 26 TC 363 Z9 363 U1 1 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD APR 24 PY 2009 VL 102 IS 16 AR 161301 DI 10.1103/PhysRevLett.102.161301 PG 4 WC Physics, Multidisciplinary SC Physics GA 437IC UT WOS:000265479300009 PM 19518693 ER PT J AU Liu, C Kondo, T Ni, N Palczewski, AD Bostwick, A Samolyuk, GD Khasanov, R Shi, M Rotenberg, E Bud'ko, SL Canfield, PC Kaminski, A AF Liu, Chang Kondo, Takeshi Ni, Ni Palczewski, A. D. Bostwick, A. Samolyuk, G. D. Khasanov, R. Shi, M. Rotenberg, E. Bud'ko, S. L. Canfield, P. C. Kaminski, A. TI Three- to Two-Dimensional Transition of the Electronic Structure in CaFe2As2: A Parent Compound for an Iron Arsenic High-Temperature Superconductor SO PHYSICAL REVIEW LETTERS LA English DT Article ID GAPS AB We use angle-resolved photoemission spectroscopy (ARPES) to study the electronic properties of CaFe2As2-parent compound of a pnictide superconductor. We find that the structural and magnetic transition is accompanied by a three- to two-dimensional (3D-2D) crossover in the electronic structure. Above the transition temperature (T-s) Fermi surfaces around Gamma and X points are cylindrical and quasi 2D. Below T-s, the Gamma pocket forms a 3D ellipsoid, while the X pocket remains quasi 2D. This finding strongly suggests that low dimensionality plays an important role in understanding the superconducting mechanism in pnictides. C1 [Liu, Chang; Kondo, Takeshi; Ni, Ni; Palczewski, A. D.; Samolyuk, G. D.; Bud'ko, S. L.; Canfield, P. C.; Kaminski, A.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Bostwick, A.; Rotenberg, E.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. [Khasanov, R.] Paul Scherrer Inst, Lab Muon Spin Spect, CH-5232 Villigen, Switzerland. [Shi, M.] Paul Scherrer Inst, Swiss Light Source, CH-5232 Villigen, Switzerland. RP Liu, C (reprint author), Iowa State Univ, Ames Lab, Ames, IA 50011 USA. RI Rotenberg, Eli/B-3700-2009; Bostwick, Aaron/E-8549-2010; Canfield, Paul/H-2698-2014; Kondo, Takeshi/H-2680-2016; OI Rotenberg, Eli/0000-0002-3979-8844; Khasanov, Rustem/0000-0002-4768-5524 FU Department of Energy - Basic Energy Sciences [DE-AC02-07CH11358]; US DOE [DE-AC03-76SF00098.] FX We thank J. Schmalian, M. A. Tanatar, and Rafael Fernandes for insightful discussions and staff at SLS and ALS for excellent instrumentation support. Ames Laboratory was supported by the Department of Energy - Basic Energy Sciences under Contract No. DE-AC02-07CH11358. ALS is operated by the US DOE under Contract No. DE-AC03-76SF00098. NR 34 TC 66 Z9 66 U1 4 U2 32 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD APR 24 PY 2009 VL 102 IS 16 AR 167004 DI 10.1103/PhysRevLett.102.167004 PG 4 WC Physics, Multidisciplinary SC Physics GA 437IC UT WOS:000265479300063 PM 19518747 ER PT J AU Lotay, G Woods, PJ Seweryniak, D Carpenter, MP Janssens, RVF Zhu, S AF Lotay, G. Woods, P. J. Seweryniak, D. Carpenter, M. P. Janssens, R. V. F. Zhu, S. TI Identification of Key Astrophysical Resonances Relevant for the Al-26g(p,gamma)Si-27 Reaction in Wolf-Rayet Stars, AGB stars, and Classical Novae SO PHYSICAL REVIEW LETTERS LA English DT Article ID PROTON THRESHOLD STATES; EARLY SOLAR-SYSTEM; AL-26; FE-60; EMISSION; SI-27 AB A gamma-ray spectroscopy study of Al-26g+p resonant states in Si-27 is presented. Excitation energies were measured with improved precision and first spin-parity assignments made for excited states in Si-27 above the proton threshold. The results indicate the presence of low-lying resonances with l(p)=0 and l(p)=2 captures that could strongly influence the Al-26g(p,gamma)Si-27 reaction rate at low stellar temperatures, found in low-mass asymptotic giant branch (AGB), intermediate-mass AGB, super AGB, and Wolf-Rayet stars. C1 [Lotay, G.; Woods, P. J.] Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. [Seweryniak, D.; Carpenter, M. P.; Janssens, R. V. F.; Zhu, S.] Argonne Natl Lab, Argonne, IL 60439 USA. RP Lotay, G (reprint author), Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. RI Carpenter, Michael/E-4287-2015 OI Carpenter, Michael/0000-0002-3237-5734 FU U.S. DOE, Office of Nuclear Physics [DE-AC02-06CH11357] FX The work was supported by the U.S. DOE, Office of Nuclear Physics, Contract No. DE-AC02-06CH11357. NR 24 TC 22 Z9 22 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD APR 24 PY 2009 VL 102 IS 16 AR 162502 DI 10.1103/PhysRevLett.102.162502 PG 4 WC Physics, Multidisciplinary SC Physics GA 437IC UT WOS:000265479300019 PM 19518703 ER PT J AU Garcia-Barriocanal, J Rivera-Calzada, A Varela, M Sefrioui, Z Iborra, E Leon, C Pennycook, SJ Santamaria, J AF Garcia-Barriocanal, J. Rivera-Calzada, A. Varela, M. Sefrioui, Z. Iborra, E. Leon, C. Pennycook, S. J. Santamaria, J. TI Response to Comment on "Colossal Ionic Conductivity at Interfaces of Epitaxial ZrO2:Y2O3/SrTiO3 Heterostructures" SO SCIENCE LA English DT Editorial Material AB Guo suggests that the reported ionic conductivity of ZrO2:Y2O3/SrTiO3 heterostructures might be due to the electronic conductivity from the SrTiO3. We point out shortcomings in his reasoning and underscore that our results show that any electronic contribution to the conductance is at least three orders of magnitude lower than the ionic contribution determined by ac methods. C1 [Garcia-Barriocanal, J.; Rivera-Calzada, A.; Sefrioui, Z.; Leon, C.; Santamaria, J.] Univ Complutense Madrid, Grp Fis Mat Complejos, E-28040 Madrid, Spain. [Varela, M.; Pennycook, S. J.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Iborra, E.] Univ Politecn Madrid, Escuela Tecn Super Ingenieros Telecomunicac, E-28040 Madrid, Spain. RP Santamaria, J (reprint author), Univ Complutense Madrid, Grp Fis Mat Complejos, E-28040 Madrid, Spain. EM jacsan@fis.ucm.es RI Leon, Carlos/A-5587-2008; Varela, Maria/H-2648-2012; Varela, Maria/E-2472-2014; Iborra, Enrique/A-4148-2016; Santamaria, Jacobo/N-8783-2016; Sefrioui, Zouhair/C-2728-2017 OI Leon, Carlos/0000-0002-3262-1843; Varela, Maria/0000-0002-6582-7004; Iborra, Enrique/0000-0002-1385-1379; Santamaria, Jacobo/0000-0003-4594-2686; Sefrioui, Zouhair/0000-0002-6703-3339 NR 4 TC 16 Z9 16 U1 7 U2 68 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD APR 24 PY 2009 VL 324 IS 5926 DI 10.1126/science.1169018 PG 1 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 436JU UT WOS:000265411200026 ER PT J AU Miao, YQ Wang, H Shao, YY Tang, ZW Wang, J Lin, YH AF Miao, Yuqing Wang, Hua Shao, Yuyan Tang, Zhiwen Wang, Jun Lin, Yuehe TI Layer-by-layer assembled hybrid film of carbon nanotubes/iron oxide nanocrystals for reagentless electrochemical detection of H2O2 SO SENSORS AND ACTUATORS B-CHEMICAL LA English DT Article DE Carbon nanotube; Magnetic nanocystals; Peroxidase mimetics; H2O2 ID BIOMEDICAL APPLICATIONS; MAGNETIC NANOPARTICLES; MODIFIED ELECTRODE; GLUCOSE DETECTION; THIONINE; BIOSENSOR; FE3O4; SURFACE AB A new approach to construct a reagentless electrochemical H2O2 sensor is described. Iron oxide magnetic nanocystals (IOMNs), as peroxidase mimetics, were assembled to form a multilayer structure through the layer-by-layer (LBL) method. Polythionin (PTh) was first electrodeposited onto the glassy carbon electrode (GCE) surface to introduce amino groups. Carboxyl functionalized multi-walled carbon nanotubes (MWCNTs), amino functionalized IOMNs, and thionin monomers were alternatively anchored onto a polythionin-functionalized GCE surface in order by carbodiimide or glutaraldehyde chemistry. The resulting multilayer construction with three layers of IOMNs and thionin mediator exhibits excellent electrochemical response to the reduction of H2O2, whereas such a modified electrode with one layer construction only yields a slight response to H2O2 of the same concentration. The tethered MWCNTs enlarge the amount of immobilized ICMNs and effectively shuttle electrons between the electrode and the thionin. The calibration plot is linear over the wide H2O2 concentration range from 0.099 to 6.54 mM, with a detection limit of 53.6 mu M. (C) 2008 Elsevier B.V. All rights reserved. C1 [Miao, Yuqing] Zhejiang Normal Univ, Inst Phys Chem, Zhejiang Key Lab React Chem Solid Surfaces, Jinhua 321004, Peoples R China. [Miao, Yuqing; Wang, Hua; Shao, Yuyan; Tang, Zhiwen; Wang, Jun; Lin, Yuehe] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Miao, YQ (reprint author), Zhejiang Normal Univ, Inst Phys Chem, Zhejiang Key Lab React Chem Solid Surfaces, Jinhua 321004, Peoples R China. EM biosensors@zjnu.cn; Yuehe.Lin@pnl.gov RI Shao, Yuyan/A-9911-2008; Lin, Yuehe/D-9762-2011 OI Shao, Yuyan/0000-0001-5735-2670; Lin, Yuehe/0000-0003-3791-7587 FU National Natural Science Foundation of China [90406016]; LDRD program at Pacific Northwest National Laboratory (PNNL); U.S. Department of Energy (DOE) [DE-AC05-76RL01830] FX This material is based upon work funded partially by the National Natural Science Foundation of China (Grant No. 90406016) and partially by a LDRD program at Pacific Northwest National Laboratory (PNNL). The work was performed at the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the U.S. Department of Energy (DOE) and located at PNNL. PNNL is operated by Battelle for DOE under Contract DE-AC05-76RL01830. NR 23 TC 29 Z9 32 U1 2 U2 29 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0925-4005 J9 SENSOR ACTUAT B-CHEM JI Sens. Actuator B-Chem. PD APR 24 PY 2009 VL 138 IS 1 BP 182 EP 188 DI 10.1016/j.snb.2008.12.045 PG 7 WC Chemistry, Analytical; Electrochemistry; Instruments & Instrumentation SC Chemistry; Electrochemistry; Instruments & Instrumentation GA 439VU UT WOS:000265656300029 ER PT J AU Mayer, AC Toney, MF Scully, SR Rivnay, J Brabec, CJ Scharber, M Koppe, M Heeney, M McCulloch, I McGehee, MD AF Mayer, A. C. Toney, Michael F. Scully, Shawn R. Rivnay, Jonathan Brabec, Christoph J. Scharber, Marcus Koppe, Marcus Heeney, Martin McCulloch, Iain McGehee, Michael D. TI Bimolecular Crystals of Fullerenes in Conjugated Polymers and the Implications of Molecular Mixing for Solar Cells SO ADVANCED FUNCTIONAL MATERIALS LA English DT Article ID THIN-FILMS; PHOTOVOLTAIC CELLS; CARRIER MOBILITY; POLYTHIOPHENE; PERFORMANCE; MORPHOLOGY; BLENDS; OXIDE AB The performance of polymer:fullerene bulk heterojunction solar cells is heavily influenced by the interpenetrating nanostructure formed by the two semiconductors because the size of the phases, the nature of the interface, and molecular packing affect exciton dissociation, recombination, and charge transport. Here, X-ray diffraction is used to demonstrate the formation of stable, well-ordered bimolecular crystals of fullerene intercalated between the side-chains of the semiconducting polymer poly(2,5-bis(3-tetradecylthiophen-2-yl)thieno[3,2-b]thiophene. It is shown that fullerene intercalation is general and is likely to occur in blends with both amorphous and semicrystalline polymers when there is enough free volume between the side-chains to accommodate the fullerene molecule. These findings offer explanations for why luminescence is completely quenched in crystals much larger than exciton diffusion lengths, how the hole mobility of poly(2-methoxy-5-(3',7'dimethyloxy)-p-phylene vinylene) increases by over 2 orders of magnitude when blended with fullerene derivatives, and why large-scale phase separation occurs in some polymer:fullerene blend ratios while thermodynamically stable mixing on the molecular scale occurs for others. Furthermore, it is shown that intercalation of fullerenes between side chains mostly determines the optimum polymer:fullerene blending ratios. These discoveries suggest a method of intentionally designing bimolecular crystals and tuning their properties to create novel materials for photovoltaic and other applications. C1 [Mayer, A. C.; Scully, Shawn R.; Rivnay, Jonathan; McGehee, Michael D.] Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA. [Toney, Michael F.] Stanford Synchrotron Radiat Lab, Menlo Pk, CA 94025 USA. [Brabec, Christoph J.; Scharber, Marcus; Koppe, Marcus] Konarka Technol Austria, A-4040 Linz, Austria. [Heeney, Martin] Univ London, Dept Mat, London E1 4NS, England. [McCulloch, Iain] Univ London Imperial Coll Sci Technol & Med, Dept Chem, London SW7 2AZ, England. RP Mayer, AC (reprint author), Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA. EM mmcgehee@stanford.edu RI Brabec, Christoph/N-1897-2013; Heeney, Martin/O-1916-2013; Scharber, Markus Clark/N-4450-2016; OI Heeney, Martin/0000-0001-6879-5020; Brabec, Christoph J./0000-0002-9440-0253 NR 27 TC 288 Z9 291 U1 7 U2 114 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 1616-301X J9 ADV FUNCT MATER JI Adv. Funct. Mater. PD APR 23 PY 2009 VL 19 IS 8 BP 1173 EP 1179 DI 10.1002/adfm.200801684 PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 442QM UT WOS:000265855700004 ER PT J AU Romo-Herrera, JM Cullen, DA Cruz-Silva, E Ramirez, D Sumpter, BG Meunier, V Terrones, H Smith, DJ Terrones, M AF Romo-Herrera, Jose M. Cullen, David A. Cruz-Silva, Eduardo Ramirez, Daniel Sumpter, Bobby G. Meunier, V. Terrones, Humberto Smith, David J. Terrones, Mauricio TI The Role of Sulfur in the Synthesis of Novel Carbon Morphologies: From Covalent Y-Junctions to Sea-Urchin-Like Structures SO ADVANCED FUNCTIONAL MATERIALS LA English DT Article ID FLOATING CATALYST METHOD; VAPOR-PHASE; NANOTUBES; FIBERS; NANOFIBERS; DEPOSITION; PRECURSORS; PYROLYSIS; MECHANISM AB A detailed characterization, using high resolution electron microscopy/microanalysis (SEM, TEM, HRTEM, and EDX), reveals tubular carbon nanostructures exhibiting complex and fascinating morphologies. The materials were obtained by sulfur-assisted chemical vapor deposition. It is demonstrated that S not only acts on the catalyst, but also can be detected in the carbon lattice of the nanostructures. The experimental data presented here confirms the critical role of S, which is responsible for inducing curvature and therefore influencing the final carbon nanostructure morphology. In particular, different types of covalent Y-junctions of CNTs and even sea urchin-like nanostructures were produced and their experimental conditions are listed and discussed. C1 [Romo-Herrera, Jose M.; Cullen, David A.; Cruz-Silva, Eduardo; Ramirez, Daniel; Terrones, Mauricio] IPICyT, LINAN, San Luis Potosi 78216, Mexico. [Cullen, David A.; Smith, David J.] Arizona State Univ, Sch Mat, Tempe, AZ 85287 USA. [Romo-Herrera, Jose M.; Cruz-Silva, Eduardo; Ramirez, Daniel; Terrones, Humberto; Terrones, Mauricio] IPICyT, Adv Mat Dept, San Luis Potosi 78216, Mexico. [Cullen, David A.; Smith, David J.] Arizona State Univ, Dept Phys, Tempe, AZ 85287 USA. [Sumpter, Bobby G.; Meunier, V.] Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA. [Sumpter, Bobby G.; Meunier, V.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Romo-Herrera, JM (reprint author), IPICyT, LINAN, Camino Presa San lose 2055,Col Lomas 4 Secc, San Luis Potosi 78216, Mexico. EM mterrones@titan.ipicyt.edu.mx RI Cruz-Silva, Eduardo/B-7003-2009; Meunier, Vincent/F-9391-2010; Sumpter, Bobby/C-9459-2013; Terrones, Mauricio/B-3829-2014; Cullen, David/A-2918-2015 OI Cruz-Silva, Eduardo/0000-0003-2877-1598; Meunier, Vincent/0000-0002-7013-179X; Sumpter, Bobby/0000-0001-6341-0355; Cullen, David/0000-0002-2593-7866 NR 25 TC 27 Z9 27 U1 1 U2 21 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 1616-301X J9 ADV FUNCT MATER JI Adv. Funct. Mater. PD APR 23 PY 2009 VL 19 IS 8 BP 1193 EP 1199 DI 10.1002/adfm.200800931 PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 442QM UT WOS:000265855700007 ER PT J AU Cook, BA Kramer, MJ Harringa, JL Han, MK Chung, DY Kanatzidis, MG AF Cook, Bruce A. Kramer, Matthew J. Harringa, Joel L. Han, Mi-Kyung Chung, Duck-Young Kanatzidis, Mercouri G. TI Analysis of Nanostructuring in High Figure-of-Merit Ag1-xPbmSbTe2+m Thermoelectric Materials SO ADVANCED FUNCTIONAL MATERIALS LA English DT Article ID QUANTUM-DOT SUPERLATTICE; SILICON-GERMANIUM ALLOYS; THERMAL-CONDUCTIVITY; TRANSPORT-PROPERTIES; AGPBMSBTE2+M; PERFORMANCE; GLASSES; DEVICES AB Thermoelectric materials. based on. quaternary compounds Ag1-xPbmSbTe2+m exhibit high dimensionless figure-of-merit values, ranging from 1.5 to 1.7 at 700 K. The primary factor contributing to the High figure of merit is a low lattice thermal conductivity, achieved through nanostructuring during melt solidification. As a.consequence of nucleation and growth of a second phase; coherent nanoscale inclusions form throughout the material, which are believed to result in scattering of acoustic phonons while causing only minimal scattering of charge carriers. Here, characterization of the nanosized inclusions in Ag0.53Pb18Sb1.2Te20 that shows a strong tendency for crystallographic orientation along the {001} planes, with a high degree of lattice strain at the interface, consistent with a coherent interfacial boundary is reported. The inclusions are enriched in Ag relative to the matrix, and seem to adopt a cubic, 96 atom per unit cell Ag2Te phase based on the Ti2Ni type structure. In-situ high-temperature synchrotron radiation diffraction studies indicated that the inclusions remain thermally stable to at least 800 K. C1 [Cook, Bruce A.; Harringa, Joel L.] Iowa State Univ, Ames Lab, Mat & Engn Phys Program, Ames, IA 50011 USA. [Han, Mi-Kyung; Kanatzidis, Mercouri G.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. [Chung, Duck-Young; Kanatzidis, Mercouri G.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Cook, BA (reprint author), Iowa State Univ, Ames Lab, Mat & Engn Phys Program, Ames, IA 50011 USA. EM m-kanatzidis@northwestern.edu FU Office of Naval Research [N00014-05-IP-20065, N00014-03-1-0789]; US Department of Energy, Office of Science, Basic Energy Sciences [DE-AC02-06CH11357] FX This project was supported by the Office of Naval Research, contract no. N00014-05-IP-20065, and N00014-03-1-0789 (MURI) monitored by Dr. Mihal Gross. This manuscript has been authored by Iowa State University of Science and Technology under Contract No. DE-AC02-07CH11358 with the U.S. Department of Energy. The high-energy X-ray work at the Midwest Universities Collaborative Access Team sector of the APS was supported by the US Department of Energy, Office of Science, Basic Energy Sciences under Contract No. DE-AC02-06CH11357. The authors wish to thank E. Timm and H. Schock of Michigan State University for providing a specimen for this study and to M. Gross for her suggestion to apply amorphous carbon to the high-temperature TEM foils. NR 32 TC 62 Z9 62 U1 3 U2 30 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1616-301X J9 ADV FUNCT MATER JI Adv. Funct. Mater. PD APR 23 PY 2009 VL 19 IS 8 BP 1254 EP 1259 DI 10.1002/adfm.200801284 PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 442QM UT WOS:000265855700016 ER PT J AU Gee, MW Dohrmann, CR Key, SW Wall, WA AF Gee, M. W. Dohrmann, C. R. Key, S. W. Wall, W. A. TI A uniform nodal strain tetrahedron with isochoric stabilization SO INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING LA English DT Article DE uniform strain; tetrahedra elements; finite elements; stabilization; finite elasticity ID FINITE-ELEMENT; FORMULATION AB A stabilized node-based uniform strain tetrahedral element is presented and analyzed for finite deformation elasticity. The element is based on linear interpolation of a classical displacement-based tetrahedral element formulation but applies nodal averaging of the deformation gradient to improve mechanical behavior, especially in the regime of near-incompressibility where classical linear tetrahedral elements perform very poorly. This uniform strain approach adopted here exhibits spurious modes as has been previously reported in the literature. We present a new type of stabilization exploiting the circumstance that the instability in the formulation is related to the isochoric strain energy contribution only and we therefore present a stabilization based on an isochoric-volumetric splitting of the stress tensor. We demonstrate that by stabilizing the isochoric energy contributions only, reintroduction of volumetric locking through the stabilization can be avoided. The isochoric-volumetric splitting can be applied for all types of materials with only minor restrictions and leads to a formulation that demonstrates impressive performance in examples provided. Copyright (C) 2008 John Wiley & Sons, Ltd. C1 [Gee, M. W.; Wall, W. A.] Tech Univ Munich, Chair Computat Mech, D-85747 Garching, Germany. [Dohrmann, C. R.] Sandia Natl Labs, Struct Dynam Dept, Albuquerque, NM 87185 USA. [Key, S. W.] Sandia Natl Labs, Engn & Mfg Dept, Albuquerque, NM 87185 USA. RP Gee, MW (reprint author), Tech Univ Munich, Chair Computat Mech, Boltzmannstr 15, D-85747 Garching, Germany. EM gee@lnm.mw.tum.de RI Gee, Michael/G-1490-2012; Wall, Wolfgang/I-3787-2012 OI Wall, Wolfgang/0000-0001-7419-3384 FU United States Department of Energy [DE-AC04-94-AL85000] FX Contract/grant sponsor: United States Department of Energy; contract/grant number: DE-AC04-94-AL85000 NR 13 TC 26 Z9 26 U1 0 U2 9 PU JOHN WILEY & SONS LTD PI CHICHESTER PA THE ATRIUM, SOUTHERN GATE, CHICHESTER PO19 8SQ, W SUSSEX, ENGLAND SN 0029-5981 J9 INT J NUMER METH ENG JI Int. J. Numer. Methods Eng. PD APR 23 PY 2009 VL 78 IS 4 BP 429 EP 443 DI 10.1002/nme.2493 PG 15 WC Engineering, Multidisciplinary; Mathematics, Interdisciplinary Applications SC Engineering; Mathematics GA 434YS UT WOS:000265310800003 ER PT J AU Yu, HG Francisco, JS AF Yu, Hua-Gen Francisco, Joseph S. TI Theoretical Study of the Reaction of CH3 with HOCO Radicals SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID POTENTIAL-ENERGY SURFACE; CO REACTANT COMPLEX; CORRELATED MOLECULAR CALCULATIONS; INITIO QUANTUM SCATTERING; COUPLED-CLUSTER METHODS; GAUSSIAN-BASIS SETS; AB-INITIO; RATE CONSTANTS; PRESSURE RANGE; TEMPERATURE-DEPENDENCE AB The reaction of HOCO radicals with CH3 radicals is examined using the coupled cluster method to locate and optimize the critical points on the ground-state potential energy surface. The results show that the CH3 + HOCO reaction can produce both the H2O + CH2CO and the CH4 + CO2 products through acetic acid and enediol intermediates. Direct ab initio dynamics calculations determine the thermal rate coefficients to be k(T/K) = 3.24 x 10(-11)T(0.1024) in cm(3).molec(-1).s(-1) at T <= 1000 K for the overall reaction. In addition, the product branching ratio of (H2O + CH2CO) to (CH4 + CO2) is predicted to be R-H2O/CH4(T/K) = 1.52 + (1.95 X 10(-4))T using RRKM theory. Both the thermal rate coefficients and the product branching ratios are weakly temperature dependent. C1 [Francisco, Joseph S.] Purdue Univ, Dept Chem, W Lafayette, IN 47907 USA. [Yu, Hua-Gen] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. RP Francisco, JS (reprint author), Purdue Univ, Dept Chem, W Lafayette, IN 47907 USA. EM francisc@purdue.edu RI Yu, Hua-Gen/N-7339-2015 FU Brookhaven National Laboratory [DE-AC02-98CH10886]; National Energy Research Scientific Computing Center (NERSC) FX This work was performed at Brookhaven National Laboratory under contract no. DE-AC02-98CH10886 with the U.S. Department of Energy and supported by its Division of Chemical Sciences, Office of Basic Energy Sciences. Some calculations were carried out at the National Energy Research Scientific Computing Center (NERSC) at Lawrence Berkeley National Laboratory. NR 75 TC 10 Z9 10 U1 1 U2 8 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD APR 23 PY 2009 VL 113 IS 16 BP 3844 EP 3849 DI 10.1021/jp809730j PG 6 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 435ZU UT WOS:000265383200018 PM 19203198 ER PT J AU Zhai, HJ Wang, B Huang, X Wang, LS AF Zhai, Hua-Jin Wang, Bin Huang, Xin Wang, Lai-Sheng TI Probing the Electronic and Structural Properties of the Niobium Trimer Cluster and Its Mono- and Dioxides: Nb3On- and Nb3On (n=0-2) SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID TRANSITION-METAL OXIDE; DENSITY-FUNCTIONAL CALCULATIONS; AB-INITIO CALCULATIONS; PHOTOELECTRON-SPECTROSCOPY; BASIS-SETS; IONIZATION-POTENTIALS; CATALYTIC ACTIVATION; PRIMARY ALCOHOLS; NB(110) SURFACE; IRON CLUSTERS AB We report a photoelectron spectroscopy and density functional theory (DFT) study on the electronic and structural properties of Nb-3(-), Nb3O-, Nb3O2-, and the corresponding neutrals. Well-resolved photoelectron spectra are obtained for the anion clusters at different photon energies and are compared with DFT calculations to elucidate their structures and chemical bonding. We find that Nb-3(-) possesses a C-2v((3)A(2)) structure, and Nb-3 is a scalene C-s ((2)A '') triangle. Both Nb3O- and Nb3O are found to have C-2v structures, in which the O atom bridges two Nb atoms in a Nb-3 triangle. The ground-state of Nb3O2- is found surprisingly to be a low symmetry C-1 ((1)A) structure, which contains a bridging and a terminal O atom. Molecular orbital analyses are carried out to understand the structures and bonding of the three clusters and provide insights into the sequential oxidation from Nb-3(-) to Nb3O2-. The terminal Nb=O unit is common in niobia catalysts, and the Nb3O2- cluster with a Nb=O unit may be viewed as a molecular model for the catalytic sites or the initial oxidation of a Nb surface. C1 [Wang, Bin; Huang, Xin] Fuzhou Univ, Dept Chem, Fuzhou 350108, Fujian, Peoples R China. [Wang, Bin; Huang, Xin] State Key Lab Struct Chem, Fuzhou 350002, Fujian, Peoples R China. [Zhai, Hua-Jin; Wang, Lai-Sheng] Washington State Univ, Dept Phys, Richland, WA 99354 USA. [Zhai, Hua-Jin; Wang, Lai-Sheng] Pacific NW Natl Lab, Div Chem & Mat Sci, Richland, WA 99352 USA. RP Huang, X (reprint author), Fuzhou Univ, Dept Chem, Fuzhou 350108, Fujian, Peoples R China. EM xhuang@fzu.edu.cn; ls.wang@pnl.gov FU Chemical Sciences, Geosciences, and Biosciences Division; Office of Basic Energy Sciences, U.S. Department of Energy (DOE) [DE-FG02-03ER 15481]; Natural Science Foundation of China [20641004, 20771026]; Natural Science Foundation of Fujian Province of China [2008J0151] FX The experimental work was supported by the Chemical Sciences, Geosciences, and Biosciences Division, Office of Basic Energy Sciences, U.S. Department of Energy (DOE), under grant No. DE-FG02-03ER 15481 (catalysis center program) and performed at the W. R. Wiley Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by DOE's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory, operated for DOE by Battelle. X.H. gratefully acknowledges support from the Natural Science Foundation of China (20641004 and 20771026) and the Natural Science Foundation of Fujian Province of China (No. 2008J0151). NR 73 TC 43 Z9 43 U1 4 U2 16 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD APR 23 PY 2009 VL 113 IS 16 BP 3866 EP 3875 DI 10.1021/jp809945n PG 10 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 435ZU UT WOS:000265383200020 PM 19371107 ER PT J AU Shuford, KL Meyer, KA Li, CC Cho, SO Whitten, WB Shaw, RW AF Shuford, Kevin L. Meyer, Kent A. Li, Cuncheng Cho, Sung Oh Whitten, William B. Shaw, Robert W. TI Computational and Experimental Evaluation of Nanoparticle Coupling SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID ENHANCED RAMAN-SCATTERING; DISCRETE-DIPOLE APPROXIMATION; PLASMON RESONANCES; GOLD NANOPARTICLES; COLLOIDAL SOLUTION; OPTICAL-PROPERTIES; SURFACE; SPECTROSCOPY; MOLECULES; NANOSTRUCTURES AB We present theoretical and experimental studies on the optical properties of dimers composed of octahedron-shaped, gold nanoparticles. The experimental measurements show that the photoluminescence varies quite dramatically as two octahedra are brought into close proximity. AFM images and optical emission have been recorded for dimers in uncoupled and strongly coupled configurations. The former displays a single emission peak, while the latter shows two peaks with the new feature at longer wavelengths. Calculations indicate that the red-shifted peak originates from a strongly coupled plasmon state that oscillates along the extended axis of the dimer. Theoretically, we investigate the distances over which the dimers couple and find this to be particularly plasmon mode dependent. The anisotropic morphology and sharp apexes contribute significantly to the orientational dependence of the interparticle couplings and field properties. C1 [Shuford, Kevin L.; Meyer, Kent A.; Whitten, William B.; Shaw, Robert W.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. [Li, Cuncheng; Cho, Sung Oh] Korea Adv Inst Sci & Technol, Dept Nucl & Quantum Engn, Taejon 305701, South Korea. RP Shuford, KL (reprint author), Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. EM shufordkl@ornl.gov RI Cho, Sung Oh/C-1603-2011; Shuford, Kevin/L-2435-2014 FU Division of Chemical Sciences, Biosciences, and Geosciences, Office of Basic Energy Sciences, U.S. Department of Energy [DE-AC05-00OR22725]; Korean government (MOST) FX We are delighted to contribute to this issue honoring the life and work of George C. Schatz. One of us (K.L.S.) had the pleasure of working with George as a postdoctoral associate for three wonderful years at Northwestern University. This was a period of huge growth scientifically and personally for me, and I attribute this to the constant guidance and encouragement received. George's kind nature and towering intellect are a joy to all that know him.; This research was supported by the Division of Chemical Sciences, Biosciences, and Geosciences, Office of Basic Energy Sciences, U.S. Department of Energy under contract DE-AC05-00OR22725 with Oak Ridge National Laboratory, managed and operated by UT-Battelle, LLC. SOC was supported by a Korea Science and Engineering Foundation (KOSEF) grant funded by the Korean government (MOST). NR 25 TC 8 Z9 8 U1 1 U2 14 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD APR 23 PY 2009 VL 113 IS 16 BP 4009 EP 4014 DI 10.1021/jp810398s PG 6 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 435ZU UT WOS:000265383200038 PM 19209878 ER PT J AU Martinson, ABF Goes, MS Fabregat-Santiago, F Bisquert, J Pellin, MJ Hupp, JT AF Martinson, Alex B. F. Goes, Marcio S. Fabregat-Santiago, Francisco Bisquert, Juan Pellin, Michael J. Hupp, Joseph T. TI Electron Transport in Dye-Sensitized Solar Cells Based on ZnO Nanotubes: Evidence for Highly Efficient Charge Collection and Exceptionally Rapid Dynamics SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID ATOMIC LAYER DEPOSITION; IMPEDANCE SPECTROSCOPY; OXIDE-FILMS; TIO2; RECOMBINATION; SEMICONDUCTORS; CONVERSION; DENSITY; CAPACITANCE; DIFFUSION AB Dye-sensitized solar cells based on ordered arrays of polycrystalline ZnO nanotubes, 64 mu m in length, are shown to exhibit efficient electron collection over the entire photoanode array length. Electrochemical impedance spectroscopy, open-circuit photovoltage decay analysis, and incident-photon-to-current efficiency spectra are used to quantify charge transport and lifetimes. Despite the relatively thick photoanode, the charge extraction time is found to be faster than observed in traditional TiO(2) nanoparticle photoanodes. If the extraction dynamics are interpreted as diffusive, effective electron diffusion coefficients of up to 0.4 cm(2) s(-1) are obtained, making these pseudo-ID photoanodes the fastest reported for an operating DSC to date. Rapid electron collection is of practical significance because it should enable alternative redox shuttles, which display relatively fast electron-interception dynamics, to be employed without significant loss of photocurrent. C1 [Goes, Marcio S.; Fabregat-Santiago, Francisco; Bisquert, Juan] Univ Jaume 1, Dept Fis, Castellon de La Plana 12071, Spain. [Martinson, Alex B. F.; Pellin, Michael J.; Hupp, Joseph T.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. [Martinson, Alex B. F.; Pellin, Michael J.; Hupp, Joseph T.] Northwestern Univ, Argonne NW Solar Energy Res Ctr, Evanston, IL 60208 USA. [Martinson, Alex B. F.; Pellin, Michael J.; Hupp, Joseph T.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Goes, Marcio S.] Univ Estadual Paulista, Dept Fisicoquim, Inst Quim Araraquara, BR-14800900 Araraquara, SP, Brazil. RP Bisquert, J (reprint author), Univ Jaume 1, Dept Fis, Av Sos Baynat S-N, Castellon de La Plana 12071, Spain. EM bisquert@fca.uji.es; j-hupp@northwestern.edu RI Pellin, Michael/B-5897-2008; Sousa Goes, Marcio/E-5009-2012; Hupp, Joseph/K-8844-2012; Bisquert, Juan/O-2543-2013; Fabregat-Santiago, Francisco/K-9679-2014; OI Pellin, Michael/0000-0002-8149-9768; Hupp, Joseph/0000-0003-3982-9812; Bisquert, Juan/0000-0003-4987-4887; Fabregat-Santiago, Francisco/0000-0002-7503-1245; Martinson, Alex/0000-0003-3916-1672 FU U.S. Department of Energy, Basic Energy Sciences Program [DE-FG02-87ER13808]; U.S. Department of Energy [W-31-109-ENG-38]; Ministerio de Ciencia e Innovacion [MAT2007-62982, HOPE CSD2007-00007]; CNPq - Brasil [201516/2007-1] FX We dedicate this paper to our friend and Colleague George Schatz on the occasion of his 60th birthday. The work at Northwestern is supported by the U.S. Department of Energy, Basic Energy Sciences Program, under Grant No. DE-FG02-87ER13808. Work at Argonne is supported by the U.S. Department of Energy, BES-Materials Sciences, under Contract No. W-31-109-ENG-38. Work at Universitat Jaume I is supported by Ministerio de Ciencia e Innovacion under Project Nos. MAT2007-62982 and HOPE CSD2007-00007 (Consolider-Ingenio 2010). M.S.G. thanks CNPq - Brasil for the fellowship (201516/2007-1). NR 44 TC 192 Z9 193 U1 4 U2 85 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD APR 23 PY 2009 VL 113 IS 16 BP 4015 EP 4021 DI 10.1021/jp810406q PG 7 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 435ZU UT WOS:000265383200039 PM 19371110 ER PT J AU Takahashi, LK Zhou, J Wilson, KR Leone, SR Ahmed, M AF Takahashi, Lynelle K. Zhou, Jia Wilson, Kevin R. Leone, Stephen R. Ahmed, Musahid TI Imaging with Mass Spectrometry: A Secondary Ion and VUV-Photoionization Study of Ion-Sputtered Atoms and Clusters from GaAs and Au SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID POST-IONIZATION; TOF-SIMS; ELECTRONIC-STRUCTURES; LASER POSTIONIZATION; HIGH-RESOLUTION; METAL-CLUSTERS; ENERGY; SILVER; GOLD; BOMBARDMENT AB A new mass spectrometry surface imaging method is presented in which ion-sputtered neutrals are postionized by wavelength-tunable vacuum ultraviolet (VUV) light from a synchrotron source. Mass spectra and signal counts of the photoionized neutrals from GaAs (100) and Au are compared to those of the secondary ions. While clusters larger than dimers are more efficiently detected as secondary ions, certain species, such as As(2), Au, and Au(2), are more efficiently detected through the neutral channel. Continuously tuning the photon wavelength allows photoionization efficiency (PIE) curves to be obtained for sputtered As(m) (m = 1,2) and Au(n) (n = 1-4). From the observed ionization thresholds, sputtered neutral As and An show no clear evidence of electronic excitation, while neutral clusters have photoionization onsets shifted to lower energies by similar to 0.3 eV. These shifts are attributed to unresolved vibrational and rotational excitations. High-spatial resolution chemical imaging with synchrotron VUV postionization is demonstrated at two different photon energies using a copper TEM grid embedded in indium. The resulting images are used to illustrate the use of tunable VUV light for verifying mass peak assignments by exploiting the unique wavelength-dependent PIE of each sputtered neutral species. This capability is valuable for identifying compounds when imaging chemically complex systems with mass spectrometry-based techniques. C1 [Takahashi, Lynelle K.; Zhou, Jia; Wilson, Kevin R.; Leone, Stephen R.; Ahmed, Musahid] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Takahashi, Lynelle K.; Leone, Stephen R.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Leone, Stephen R.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. RP Ahmed, M (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. EM mahmed@lbl.gov RI Ahmed, Musahid/A-8733-2009 FU Office of Energy Research, Office of Basic Energy Sciences, and Chemical Sciences Division of the U.S. Department of Energy [DE-AC02-05CH11231] FX Several authors (S.R.L., K.R.W., M.A.) have benefitted enormously from highly productive collaborations and joint mentoring of students with George Schatz over the years. Special thanks go to Leonid Belau, Andreas Wucher, Joe Kazole, and Nicholas Winograd for their initial experimental work with synchrotron VUV postionization, to Monroe Thomas for his extensive help in Coupling the TOF.SIMS 5 to the beamline, and to ION-TOF Inc. for their ongoing cooperation and support. We would also like to thank Oleg Kostko for taking measurements for our light wavelength calibrations, Hendrik, Bluhm and Yaroslav Romanyuk for providing the samples on short notice, and Ricardo Metz for helpful discussions about vibrational temperatures. This work was supported by the Director, Office of Energy Research, Office of Basic Energy Sciences, and Chemical Sciences Division of the U.S. Department of Energy under contract no. DE-AC02-05CH11231. S.R.L. gratefully acknowledges the support of a Morris Belkin Visiting Professorship at the Weizmann Institute of Science. NR 48 TC 17 Z9 17 U1 0 U2 14 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD APR 23 PY 2009 VL 113 IS 16 BP 4035 EP 4044 DI 10.1021/jp810408v PG 10 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 435ZU UT WOS:000265383200042 PM 19371112 ER PT J AU Long, H King, PW Ghirardi, ML Kim, K AF Long, Hai King, Paul W. Ghirardi, Maria L. Kim, Kwiseon TI Hydrogenase/Ferredoxin Charge-Transfer Complexes: Effect of Hydrogenase Mutations on the Complex Association SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID CHLAMYDOMONAS-REINHARDTII CULTURES; MOLECULAR-DYNAMICS; BROWNIAN DYNAMICS; GREEN-ALGA; FERREDOXIN-NADP(+) REDUCTASE; METABOLIC PATHWAYS; GENE-EXPRESSION; PHOTOPRODUCTION; ENERGY; H-2 AB The [FeFe]-hydrogenases in the green alga Chlamydomonas reinhardtii utilize photogenerated electrons to reduce protons into hydrogen gas. The electrons are supplied from photosystem I and transferred to the [FeFe]hydrogenase through specific hydrogenase-ferredoxin association. To understand how structural and kinetic factors control the association better, we used Brownian dynamics simulation methods to simulate the charge-transfer complex formation between both native and in silico mutants of the [FeFe]-hydrogenase HYDA2 and the [2Fe2S]-ferredoxin FDX1 from C. reinhardtii. The chances in binding free energy between different HYDA2 mutants and the native FDX1 were calculated by the free-energy perturbation method. Within the limits of our current models, we found that two HYDA2 mutations, T99K(H) and D102K(H), led to lower binding free energies and higher association rate with FDX1 and are thus promising targets for improving hydrogen production rates in engineered organisms. C1 [Long, Hai; King, Paul W.; Ghirardi, Maria L.; Kim, Kwiseon] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Kim, K (reprint author), Natl Renewable Energy Lab, 1617 Cole Blvd, Golden, CO 80401 USA. EM kwiseon-kim@nrel.gov RI King, Paul/D-9979-2011; Long, Hai/C-5838-2015 OI King, Paul/0000-0001-5039-654X; FU U.S. Department of Energy's National Renewable Energy Laboratory (NREL) FX We thank Jordi Cohen and Professor Klaus Schulten for the modified NAMD FEP codes and Dr. Christopher Chang for providing us with the charge and force field parameters of the metalloclusters. This work was supported by the Laboratory-Directed Research and Development Program of the U.S. Department of Energy's National Renewable Energy Laboratory (NREL). Computing resources at the NREL Scientific Computing Center were used in this work. NR 40 TC 16 Z9 17 U1 0 U2 17 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD APR 23 PY 2009 VL 113 IS 16 BP 4060 EP 4067 DI 10.1021/jp810409z PG 8 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 435ZU UT WOS:000265383200044 PM 19317477 ER PT J AU Kim, HS Stair, PC AF Kim, Hack-Sung Stair, Peter C. TI Resonance Raman Spectroscopic Study of Alumina-Supported Vanadium Oxide Catalysts with 220 and 287 nm Excitation SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID X-RAY-ABSORPTION; DIFFUSE-REFLECTANCE SPECTROSCOPY; SCCC-MO-CALCULATIONS; VIBRATIONAL-SPECTRA; MOLECULAR-STRUCTURE; GAMMA-ALUMINA; LASER RAMAN; OXIDATIVE DEHYDROGENATION; INFRARED-SPECTROSCOPY; INORGANIC-CHEMISTRY AB We present detailed resonance Raman spectroscopic results excited at 220 and 287 nm for alumina-supported VOx catalysts. The anharmonic constant, harmonic wavenumber, anharmonic force constant, bond dissociation energy, and bond length chance in the excited state for double bonded V=O and single bonded V-O were obtained from fundamental and overtone frequencies. Totally symmetric and nontotally symmetric modes could be discerned and assigned on the basis of the overtone and combination progressions found in the resonance Raman spectra. Selective resonance enhancement of two different vibrational modes with two different excitation wavelengths was observed. This allowed us to establish a linear relationship between charge transfer energy and VO bond length and, consequently, to assign the higher-energy charge transfer band centered around 210-250 nm in the UV-vis spectra to the V=O transition. C1 [Stair, Peter C.] Northwestern Univ, Dept Chem, Ctr Catalysis & Surface Sci, Evanston, IL 60208 USA. Northwestern Univ, Inst Catalysis & Energy Proc, Evanston, IL 60208 USA. Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. RP Stair, PC (reprint author), Northwestern Univ, Dept Chem, Ctr Catalysis & Surface Sci, Evanston, IL 60208 USA. EM pstair@northwestern.edu FU U.S. Department of Energy, BES-Chemical Sciences [W-31-109-ENG-38] FX H.-S.K. thanks Dr. Zili Wit for supplying the samples used in the published paper. "This work was performed at Argonne National Laboratory supported by the U.S. Department of Energy, BES-Chemical Sciences under contract W-31-109-ENG-38. NR 98 TC 23 Z9 23 U1 3 U2 18 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD APR 23 PY 2009 VL 113 IS 16 BP 4346 EP 4355 DI 10.1021/jp811019c PG 10 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 435ZU UT WOS:000265383200079 PM 19256473 ER PT J AU Nome, RA Guffey, MJ Scherer, NF Gray, SK AF Nome, Rene A. Guffey, Mason J. Scherer, Norbert F. Gray, Stephen K. TI Plasmonic Interactions and Optical Forces between Au Bipyramidal Nanoparticle Dimers SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID NEAR-FIELD; DIPOLE APPROXIMATION; METAL NANOPARTICLES; GOLD NANORODS; PARTICLES; RESONANCES; MONOLAYERS; SCATTERING; DISTANCE; SINGLE AB Interparticle forces that can be driven by applied (optical) fields could lead to the formation of new particle arrangements when assembled in arrays. Furthermore, the potentially large interactions and large local fields associated with plasmon excitations in anisotropic nanoparticles can lead to enhanced nonlinear responses and applications for sensing. These and other applications would benefit from simulations of spectra and forces arising from plasmonic interactions. We present the results of rigorous three-dimensional, finite-difference, time-domain calculations of near- and far-field properties of pairs of Au bipyramidal nanoparticles in three different configurations: side-by-side, head-to-tail, and face-on. The absorption and scattering spectra depend strongly on the geometry as well as on the interparticle separation, as intuitively expected from a dipole coupling picture. Bipyramidal dimers in head-to-tail and face-on geometries exhibit an increasingly red-shifted (longitudinal) plasmon resonance with decreasing separation, whereas side-by-side dimers exhibit a blue shift. Large resonant field enhancements at the gap between particles in a head-to-tail configuration indicate the strong coupling of plasmonic modes. The Maxwell stress tensor formalism is employed to calculate the optical force one particle exerts on the other. Both significant attraction and weak repulsion can be obtained, depending on the relative arrangement of the particles. The force between bipyramids in the head-to-tail configuration can be greater than 10 times the force between pairs of Au nanospheres with the same volume. Experimental linear scattering spectra of particles trapped using the plasmon-resonance-based optical trapping method are found to be consistent with two particles trapped in the side-by-side configuration. C1 [Gray, Stephen K.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Guffey, Mason J.; Scherer, Norbert F.] Univ Chicago, Dept Chem, James Franck Inst, Chicago, IL 60637 USA. [Nome, Rene A.; Scherer, Norbert F.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. RP Gray, SK (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. EM gray@tcg.anl.gov RI Nome, Rene/E-6714-2012 FU U.S. Department of Energy, Office of Science, Offices of Basic Energy Sciences [DE-AC02-06CH11357]; National Science Foundation [CHE-0317009] FX We thank Gary Wiederrecht for insightful conversations, Tom Spears for his role in building the femtosecond laser system, and Tae-Woo Lee and Mingzhao Liu for assistance with the FDTD calculations. Work at Argonne National Laboratory was supported by the U.S. Department of Energy, Office of Science, Offices of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NFS was supported by the National Science Foundation (CHE-0317009). NR 42 TC 40 Z9 41 U1 0 U2 41 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD APR 23 PY 2009 VL 113 IS 16 BP 4408 EP 4415 DI 10.1021/jp811068j PG 8 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 435ZU UT WOS:000265383200087 PM 19267445 ER PT J AU Selllevag, SR Georgievskii, Y Miller, JA AF Selllevag, Stig R. Georgievskii, Yuri Miller, James A. TI Kinetics of the Gas-Phase Recombination Reaction of Hydroxyl Radicals to Form Hydrogen Peroxide SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID CORRELATED MOLECULAR CALCULATIONS; INDUCED FLUORESCENCE MEASUREMENTS; POTENTIAL-ENERGY SURFACE; TRANSITION-STATE THEORY; RATE CONSTANTS K(E,J); HIGH-PRESSURE RANGE; GAUSSIAN-BASIS SETS; METHANOL DECOMPOSITION; TURBINE CONDITIONS; CHEMICAL-KINETICS AB The potential energy hypersurface (PES) of the reaction OH + OH (+M) -> H2O2 (+M) has been investigated at the CASPT2/aug-cc-pVDZ and CASPT2/aug-cc-pVTZ levels of theory. The PES is characterized by a barrier below the energy of the reactants and a hydrogen-bonded adduct formed by the OH radicals. On the basis of the potential energy hypersurface obtained, the high-pressure limiting rate coefficient (L) of the reaction was calculated using variable reaction coordinate transition-state theory, classical trajectory simulations, and a two-transition-state model. Over the temperature range of 200-3000 K, k(infinity)(T) = 9.3 x 10(-9)T(-1.040) exp(3.5/T) + 1.13 x 10(-12) T-0.313 exp(84/T) cm(3) molecule(-1) s(-1) is reported. Available experimental data on the pressure dependence of the reaction with He and Ar as bath gases were analyzed using a two-dimensional master equation. Over the temperature range of 200-3000 K, the following low-pressure limiting rate coefficient (k(0)) and center broadening factor (F-cent) were obtained for He as the bath gas: k(0)(T) = 4.4 x 10(-20)T(-4.30) exp(-340/T) cm(6) molecule(-2) s(-1) and F-cent = 0.54. For the dissociation of H2O2 in Ar, the following values are reported over the temperature range of 500-3000 K: k(0)(T) = 1.4 x 10(8)T(-4.57) exp(-26322/T) cm(3) molecule(-1) s(-1) and F-cent = 0.55. The calculations describe all experimental data well, except the observations at 210 K for the reaction with He as the bath gas. C1 [Georgievskii, Yuri; Miller, James A.] Sandia Natl Labs, Combust Res Facil, Livermore, CA 94551 USA. [Selllevag, Stig R.] SINTEF Energy Res, N-7465 Trondheim, Norway. RP Selllevag, SR (reprint author), Univ Oslo, Ctr Mat Sci & Nanotechnol, POB 1126 Blindern, N-0318 Oslo, Norway. EM s.r.sellevag@kjemi.uio.no; jamille@sandia.gov FU Research Council of Norway [173826/130] FX This work was supported by the Research Council of Norway under Contract No. 173826/130. The Norwegian Metacenter for Computational Science (Notur) is acknowledged for grants of computing time. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94-AL85000. The authors are grateful to Dr. Stephen J. Klippenstein and Dr. Ahren W. Jasper for helpful discussions. Professors Jorgen Troe and V. G. Ushakov are acknowledged for making their paper available prior to publication. NR 70 TC 19 Z9 19 U1 2 U2 25 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD APR 23 PY 2009 VL 113 IS 16 BP 4457 EP 4467 DI 10.1021/jp8110524 PG 11 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 435ZU UT WOS:000265383200094 PM 19371118 ER PT J AU Mielke, SL Schwenke, DW Schatz, GC Garrett, BC Peterson, KA AF Mielke, Steven L. Schwenke, David W. Schatz, George C. Garrett, Bruce C. Peterson, Kirk A. TI Functional Representation for the Born-Oppenheimer Diagonal Correction and Born-Huang Adiabatic Potential Energy Surfaces for Isotopomers of H-3 SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID TRANSITION-STATE THEORY; MECHANICAL REACTIVE SCATTERING; ATOM TRANSFER-REACTIONS; WAVE-FUNCTIONS; VARIATIONAL METHOD; HYDROGEN MOLECULE; H+H-2 REACTION; BASIS-SETS; APPROXIMATION; DYNAMICS AB Multireference configuration interaction (MRCI) calculations of the Born-Oppenheimer diagonal correction (BODC) for H-3 were performed at 1397 symmetry-unique configurations using the Handy-Yamaguchi-Schaefer approach; isotopic substitution leads to 4041 symmetry-unique configurations for the DH2 mass combination. These results were then fit to a functional form that permits calculation of the BODC for any combination of isotopes. Mean unsigned fitting errors on a test grid of configurations not included in the fitting process were 0.14, 0.12, and 0.65 cm(-1) for the H-3, DH2, and MuH(2) isotopomers, respectively. This representation can be combined with any Born-Oppenheimer potential energy surface (PES) to yield Born-Huang (BH) PESs; herein, we choose the CCI potential energy surface, the uncertainties of which (similar to 0.01 kcal/mol) are much smaller than the magnitude of the BODC. Fortran routines to evaluate these BH surfaces are provided. Variational transition state theory calculations are presented comparing thermal rate constants for reactions on the BO and BH surfaces to provide an initial estimate of the significance of the diagonal correction for the dynamics. C1 [Mielke, Steven L.; Schatz, George C.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. [Schwenke, David W.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Garrett, Bruce C.] Pacific NW Natl Lab, Chem & Mat Sci Div, Richland, WA 99352 USA. [Peterson, Kirk A.] Washington State Univ, Dept Chem, Pullman, WA 99164 USA. RP Mielke, SL (reprint author), Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. EM slmielke@gmail.com RI Garrett, Bruce/F-8516-2011; Mielke, Steven/B-7533-2008; schwenke, david/I-3564-2013 OI Mielke, Steven/0000-0002-1938-7503; NR 64 TC 25 Z9 25 U1 1 U2 13 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD APR 23 PY 2009 VL 113 IS 16 BP 4479 EP 4488 DI 10.1021/jp8110887 PG 10 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 435ZU UT WOS:000265383200096 PM 19290604 ER PT J AU Kilin, DS Tsemekhman, KL Kilina, SV Balatsky, AV Prezhdo, OV AF Kilin, Dmitri S. Tsemekhman, Kiril L. Kilina, Svetlana V. Balatsky, Alexander V. Prezhdo, Oleg V. TI Photoinduced Conductivity of a Porphyrin-Gold Composite Nanowire SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID DENSITY-FUNCTIONAL THEORY; SCANNING-TUNNELING-MICROSCOPY; PBSE QUANTUM-DOT; AB-INITIO; ELECTRONIC EXCITATIONS; SEMICONDUCTOR CLUSTERS; DNA-MOLECULES; NANOPARTICLES; CONDUCTANCE; SURFACE AB Negatively charged phosphine groups on the backbone of DNA are known to attract gold nanoclusters from a colloid, assembling the clusters at fixed intervals. Bridging these intervals with porphyrin-dye linkers forms an infinite conducting chain, a quantum wire whose carrier mobility can be enhanced by photoexcitation. The resulting nanoassembly can be used as a gate: a wire with a controllable conductivity. The electronic structure of the porphyrin-gold wire is studied here by density functional theory, and the conductivity of the system is determined as a function of the photoexcitation energy. Photoexcitations of the dye are found to enhance the wire conductivity by orders of magnitude. C1 [Prezhdo, Oleg V.] Univ Washington, Dept Chem, Seattle, WA 98195 USA. [Kilin, Dmitri S.] Univ Florida, Dept Chem, Quantum Theory Project, Gainesville, FL 32611 USA. [Kilin, Dmitri S.] Univ Florida, Dept Phys, Quantum Theory Project, Gainesville, FL 32611 USA. [Kilina, Svetlana V.; Balatsky, Alexander V.] Los Alamos Natl Lab, CINT, Los Alamos, NM 87545 USA. [Kilina, Svetlana V.; Balatsky, Alexander V.] Los Alamos Natl Lab, T Div, Los Alamos, NM 87545 USA. RP Prezhdo, OV (reprint author), Univ Washington, Dept Chem, Seattle, WA 98195 USA. EM prezhdo@u.washington.edu RI Kilin, Dmitri/C-7545-2009 FU NSF [CHE-0701517, DOE DE-FG02-05ER15755, ACS-PRF 46772-AC6]; DOE FX The funding was provided by grants from NSF CHE-0701517, DOE DE-FG02-05ER15755 and ACS-PRF 46772-AC6 to O.V.P. Work at Los Alamos was supported by DOE. NR 84 TC 28 Z9 28 U1 1 U2 11 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD APR 23 PY 2009 VL 113 IS 16 BP 4549 EP 4556 DI 10.1021/jp811169c PG 8 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 435ZU UT WOS:000265383200102 PM 19278216 ER PT J AU Garand, E Buchachenko, AA Yacovitch, TI Szczesniak, MM Chalasinski, G Neumark, DM AF Garand, Etienne Buchachenko, Alexei A. Yacovitch, Tara I. Szczesniak, Malgorzata M. Chalasinski, Grzegorz Neumark, Daniel M. TI Study of ArO- and ArO via Slow Photoelectron Velocity-Map Imaging Spectroscopy and Ab Initio Calculations SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID RARE-GAS OXIDES; KINETIC-ENERGY SPECTROSCOPY; QUANTUM-MECHANICAL TREATMENT; LYING ELECTRONIC STATES; LOWEST EXCITED-STATES; NEGATIVE-IONS; PHOTODETACHMENT SPECTROSCOPY; WEAK-INTERACTIONS; ATOM COLLISIONS; CROSS-SECTIONS AB The high-resolution photoelectron spectrum of ArO- was obtained using slow electron velocity-map imaging (SEVI). The SEVI spectrum reveals well-resolved vibrational transitions between multiple electronic states of ArO- and ArO, both of which are open-shell species. These transitions occur within the broad envelope of previous lower resolution photoelectron spectra. Detailed assignments are made by comparison with theoretical simulations based on high level ab initio calculations and an atoms-in-molecule model that accounts for spin-orbit coupling in the anion and neutral. The adiabatic electron affinity of ArO is found to be 12481 +/- 2 cm(-1). Several ArO- and ArO vibrational frequencies and excited-state term energies are accurately determined from the analysis of the experimental spectra and are found to be in excellent agreement with the calculated values. C1 [Buchachenko, Alexei A.] Moscow MV Lomonosov State Univ, Dept Chem, Lab Mol Struct & Quantum Mech, Moscow 119991, Russia. [Garand, Etienne; Yacovitch, Tara I.; Neumark, Daniel M.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Szczesniak, Malgorzata M.; Chalasinski, Grzegorz] Oakland Univ, Dept Chem, Rochester, MI 48309 USA. [Chalasinski, Grzegorz] Univ Warsaw, Fac Chem, PL-02093 Warsaw, Poland. [Neumark, Daniel M.] Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Buchachenko, AA (reprint author), Moscow MV Lomonosov State Univ, Dept Chem, Lab Mol Struct & Quantum Mech, Moscow 119991, Russia. EM alexei@classic.chem.msu.su RI Neumark, Daniel/B-9551-2009; Buchachenko, Alexei/C-8452-2012; OI Neumark, Daniel/0000-0002-3762-9473; Buchachenko, Alexei/0000-0003-0701-5531; Garand, Etienne/0000-0001-5062-5453 FU Air Force Office of Scientific Research [F4962003-1-0085]; National Science Foundation [CHE-0719260]; Russian Basic Research Fund [08-03-00414]; National Science and Engineering Research Council of Canada (NSERC); Fonds Quebecois de la Recherche sur la Nature et les Technologies (FQRNT) FX We thank Dr. Andrey Stolyarov for useful comments concerning the normalization of the bound-free spectra. This work was supported by the Air Force Office of Scientific Research under Grant No. F4962003-1-0085 (D.M.N.), the National Science Foundation under Grant No. CHE-0719260 (M.M.S. and G.C.), and the Russian Basic Research Fund under Project No. 08-03-00414 (A.A.B.). E.G. thanks the National Science and Engineering Research Council of Canada (NSERC) for a post graduate scholarship, and T.I.Y. thanks. the Fonds Quebecois de la Recherche sur la Nature et les Technologies (FQRNT) for a master's scholarship. NR 41 TC 5 Z9 5 U1 1 U2 13 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD APR 23 PY 2009 VL 113 IS 16 BP 4631 EP 4638 DI 10.1021/jp8113682 PG 8 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 435ZU UT WOS:000265383200111 PM 19371122 ER PT J AU Juan, ML Plain, J Bachelot, R Vial, A Royer, P Gray, SK Montgomery, JM Wiederrecht, GP AF Juan, Mathieu L. Plain, Jerome Bachelot, Renaud Vial, Alexandre Royer, Pascal Gray, Stephen K. Montgomery, Jason M. Wiederrecht, Gary P. TI Plasmonic Electromagnetic Hot Spots Temporally Addressed by Photoinduced Molecular Displacement SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID ENHANCED RAMAN-SCATTERING; POLYMER-FILMS; RESONANCE SPECTROSCOPY; SURFACE; NANOPARTICLES; SENSITIVITY; GRATINGS; MOTIONS; SERS AB We report the observation of temporally varying electromagnetic hot spots in plasmonic nanostructures. Changes in the field amplitude, position, and spatial features are induced by embedding plasmonic silver nanorods in the photoresponsive azo-polymer. This polymer undergoes cis-trans isomerization and wormlike transport within resonant optical fields, producing a time-varying local dielectric environment that alters the locations where electromagnetic hot spots are produced. Finite-difference time-domain and Monte Carlo simulations that model the induced field and corresponding material response are presented to aid in the interpretation of the experimental results. Evidence for propagating plasmons induced at the ends of the rods is also presented. C1 [Juan, Mathieu L.; Plain, Jerome; Bachelot, Renaud; Vial, Alexandre; Royer, Pascal] Univ Technol Troyes, CNRS, ICD, Lab Nanotechnol & Instrumentat Opt,FRE 2848, Troyes, France. [Wiederrecht, Gary P.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Gray, Stephen K.; Montgomery, Jason M.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. RP Plain, J (reprint author), Univ Technol Troyes, CNRS, ICD, Lab Nanotechnol & Instrumentat Opt,FRE 2848, BP 2060, Troyes, France. EM jerome.plain@utt.fr RI Plain, Jerome/A-2888-2009; Juan, Mathieu/C-6331-2008; Vial, Alexandre/I-7894-2012; Bachelot, Renaud/M-6888-2015 OI Juan, Mathieu/0000-0002-2740-8001; Vial, Alexandre/0000-0002-7701-0413; FU European Social Fund; Conseil General de I'Aube (distric grant); ANR (2007 Photohybrid); Region Champagne-Ardennes [E2007-08052]; U.S. Department of Energy [DE-AC02-06CH11357] FX One of the authors' Ph.D. research (M.J.) is supported by the European Social Fund and the Conseil General de I'Aube (distric grant). This work was financially supported by the ANR (2007 Photohybrid) and the Region Champagne-Ardennes (Project E2007-08052). Use of the Center for Nanoscale Materials and work at Argonne National Laboratory were supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Science, under Contract No. DE-AC02-06CH11357. NR 23 TC 18 Z9 18 U1 0 U2 12 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD APR 23 PY 2009 VL 113 IS 16 BP 4647 EP 4651 DI 10.1021/jp8114435 PG 5 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 435ZU UT WOS:000265383200113 PM 19296647 ER PT J AU Dawes, R Wagner, AF Thompson, DL AF Dawes, Richard Wagner, Albert F. Thompson, Donald L. TI Ab Initio Wavenumber Accurate Spectroscopy: (CH2)-C-1 and HCN Vibrational Levels on Automatically Generated IMLS Potential Energy Surfaces SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID CONFIGURATION-INTERACTION CALCULATIONS; DISCRETE-VARIABLE REPRESENTATIONS; FOURIER-TRANSFORM SPECTRA; OPTICAL DOUBLE-RESONANCE; NEURAL-NETWORKS; SINGLET METHYLENE; ABSORPTION-SPECTROSCOPY; 1S CORRELATION; CH2; STATE AB We report here calculated J = 0 vibrational frequencies for (CH2)-C-1 and HCN with root-mean-square error relative to available measurements of 2.0 cm(-1) and 3.2 cm(-1), respectively. These results are obtained with DVR calculations with a dense grid on ab initio potential energy surfaces (PESs). The ab initio electronic structure calculations employed are Davidson-corrected MRCI calculations with double-, triple-, and quadruple-zeta basis sets extrapolated to the complete basis set (CBS) limit. In the (CH2)-C-1 case, Full Cl tests of the Davidson correction at small basis set levels lead to a scaling of the correction with the bend angle that can be profitably applied at the CBS limit. Core-valence corrections are added derived from CCSD(T) calculations with and without frozen cores. Relativistic and non-Born-Oppenheimer corrections are available for HCN and were applied. CBS limit CCSD(T) and CASPT2 calculations with the same basis sets were also tried for HCN. The CCSD(T) results are noticeably less accurate than the MRCI results while the CASPT2 results are much poorer. The PESs were generated automatically using the local interpolative moving least-squares method (L-IMLS). A general triatomic code is described where the L-IMLS method is interfaced with several common electronic structure packages. All PESs were computed with this code running in parallel on eight processors. The L-IMLS method provides global and local fitting error measures important in automatically growing the PES from initial ab initio seed points. The reliability of this approach was tested for (CH2)-C-1 by comparing DVR-calculated vibrational levels on an L-IMLS ab initio surface with levels generated by an explicit ab initio calculation at each DVR grid point. For all levels (similar to 200) below 20 000 cm(-1), the mean unsigned difference between the levels of these two calculations was 0.1 cm(-1), consistent with the L-IMLS estimated mean unsigned fitting error of 0.3 cm(-1). All L-IMLS PESs used in this work have comparable mean unsigned fitting errors, implying that fitting errors have a negligible role in the final errors of the computed vibrational levels with experiment. Less than 500 ab initio calculations of the energy and gradients are required to achieve this level of accuracy. C1 [Dawes, Richard; Thompson, Donald L.] Univ Missouri, Dept Chem, Columbia, MO 65211 USA. [Wagner, Albert F.] Argonne Natl Lab, Div Chem, Argonne, IL 60439 USA. RP Thompson, DL (reprint author), Univ Missouri, Dept Chem, Columbia, MO 65211 USA. EM thompsondon@missouri.edu RI Dawes, Richard/C-6344-2015 FU U.S. Department of Energy [W-31-109-Eng-38, DE-FG02-01ER15231] FX We acknowledge very helpful discussions with Kirk Peterson (Washington State University) that clarified the limitations of different electronic structure methods. We acknowledge helpful discussions with Lawrence Harding and Michael Minkoff (Argonne National Laboratory) in the course of this work. This work was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Office of Science, U.S. Department of Energy under Contract No. W-31-109-Eng-38 (Argonne) and Contract No. DE-FG02-01ER15231 (UM). NR 86 TC 37 Z9 37 U1 1 U2 31 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD APR 23 PY 2009 VL 113 IS 16 BP 4709 EP 4721 DI 10.1021/jp900409r PG 13 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 435ZU UT WOS:000265383200121 PM 19371124 ER PT J AU Arantes, JT Lima, MP Fazzio, A Xiang, H Wei, SH Dalpian, GM AF Arantes, J. T. Lima, M. P. Fazzio, A. Xiang, H. Wei, Su-Huai Dalpian, G. M. TI Effects of Side-Chain and Electron Exchange Correlation on the Band Structure of Perylene Diimide Liquid Crystals: A Density Functional Study SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID THIN-FILM TRANSISTORS; CHANNEL ORGANIC SEMICONDUCTORS; FIELD-EFFECT TRANSISTOR; CHARGE-TRANSPORT; OPTOELECTRONIC PROPERTIES; TOTAL-ENERGY; DERIVATIVES; MOLECULES; GATE; PSEUDOPOTENTIALS AB The structural and electronic properties of perylene diimide liquid crystal PPEEB are studied using ab initio methods based on the density functional theory (I)FT). Using available experimental crystallographic data as a guide, we propose a detailed structural model for the packing of solid PPEEB. We find that due to the localized nature of the band edge wave function, theoretical approaches beyond the standard method, such as hybrid functional (PBE0), are required to correctly characterize the band structure of this material. Moreover, unlike previous assumptions, we observe the formation of hydrogen bonds between the side chains of different molecules, which leads to a dispersion of the energy levels. This result indicates that the side chains of the molecular crystal not only are responsible for its structural conformation but also can be used for tuning the electronic and optical properties of these materials. C1 [Arantes, J. T.; Fazzio, A.; Dalpian, G. M.] Univ Fed ABC, Ctr Ciencias Nat & Humanas, Santo Andre, SP, Brazil. [Arantes, J. T.; Fazzio, A.; Dalpian, G. M.] Univ Sao Paulo, Santo Andre, SP, Brazil. [Lima, M. P.] Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil. [Xiang, H.; Wei, Su-Huai] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Dalpian, GM (reprint author), Univ Fed ABC, Ctr Ciencias Nat & Humanas, Santo Andre, SP, Brazil. EM gustavo.dalpian@ufabc.edu.br RI Xiang, Hongjun/A-4076-2008; Arantes, Jeverson Teodoro/C-3372-2012; Dalpian, Gustavo/B-9746-2008; Xiang, Hongjun/I-4305-2016; OI Arantes, Jeverson Teodoro/0000-0003-0954-5632; Dalpian, Gustavo/0000-0001-5561-354X; Xiang, Hongjun/0000-0002-9396-3214; Lima, Matheus/0000-0001-5389-7649 FU FAPESP; CNPq; U.S. Department of Energy, Office of Science, Basic Energy Sciences [DE-AC36-08GO28308] FX G.M.D. and S.H.W. thank Pierre Carrier and Brian Gregg for fruitful discussions in the initial stages of this project. We thank G. Kresse for providing us the VASP 5.1 code. The work in Brazil was partially funded by the Brazilian agencies FAPESP and CNPq. In the U.S., this work was funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, under Contract No. DE-AC36-08GO28308 to NREL. NR 53 TC 8 Z9 8 U1 2 U2 16 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD APR 23 PY 2009 VL 113 IS 16 BP 5376 EP 5380 DI 10.1021/jp8101018 PG 5 WC Chemistry, Physical SC Chemistry GA 434IT UT WOS:000265269100006 PM 19368408 ER PT J AU Shkrob, IA Wishart, JF AF Shkrob, Ilya A. Wishart, James F. TI Charge Trapping in Imidazolium Ionic Liquids SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Review ID SENSITIZED SOLAR-CELLS; SUPERCRITICAL CARBON-DIOXIDE; DENSITY-FUNCTIONAL THEORY; PULSE-RADIOLYSIS; SOLVATED ELECTRON; METHYLTRIBUTYLAMMONIUM BIS(TRIFLUOROMETHYLSULFONYL)IMIDE; REACTION-KINETICS; HYDRATED ELECTRON; RESONANCE RAMAN; RELAXATION DYNAMICS AB Room-temperature ionic liquids (ILs) are a promising class of solvents for applications ranging from photovoltaics to solvent extractions. Some of these applications involve the exposure of the ILs to ionizing radiation, which stimulates interest in their radiation and photo- chemistry. In the case of ILs consisting of 1,3-dialkylimidazolium cations and hydrophobic anions, ionization, charge transfer and redox reactions yield charge-trapped species thought to be radicals resulting from neutralization of the constituent ions. Using computational chemistry methods and the recent results on electron spin resonance (ESR) and transient absorption spectroscopy of the ionized ILs, we argue that electron localization in the imidazolium ILs yields a gauche dimer radical cation with the elongated C(2)-C(2) bond. This species is shown to absorb in the near-infrared and the visible regions and accounts for the observed ESR spectra. We suggest that the excess electron in these aromatic ILs is localized as such a dimeric ion, and consider the chemical implications of this attribution. We also suggest that three-electron N-N bonding with the formation of a dimer radical anion occurs for amide anions, such as dicyanamide, when the parent anion traps holes; steric hindrance prevents the analogous reaction for bis(triflyl)amide anion. For another anion of practical importance, bis(oxalato)borate, a pathway involving the elimination of CO2 is suggested. Together, these results indicate the unanticipated tendency of the ILs to localize primary charges as radical ions as opposed to neutral radicals. Thus, it appears that secondary chemistry in the ionized ILs may be dominated by radical ion reactions, similarly to the previously. studied conventional organic liquids, depending on the composition of the IL. C1 [Shkrob, Ilya A.] Argonne Natl Lab, Div Chem, Argonne, IL 60439 USA. [Wishart, James F.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. RP Shkrob, IA (reprint author), Argonne Natl Lab, Div Chem, 9700 S Cass Ave, Argonne, IL 60439 USA. EM shkrob@anl.gov; wishart@bnl.gov RI Wishart, James/L-6303-2013 OI Wishart, James/0000-0002-0488-7636 FU US-DOE [DE-AC-02-06CH11357, DE-AC-02-98CH10886] FX The authors thank S. E. Bradforth, P. Pieniazek, A.-N. Unterreiner, J. R. Miller, D. M. Bartels, R. A. Crowell, M. L. Dietz, K. Takahashi, and R. Katoh for many useful discussions and communication of their unpublished results, and T. Szreder and A. M. Funston, for assistance with the pulse radiolysis experiments at LEAF. The work at Argonne was supported by the Office of Science, Division of Chemical Sciences, US-DOE, under contract No. DE-AC-02-06CH11357. The work at Brookhaven is supported by the Office of Science, Division of Chemical Sciences, US-DOE, under contract DEAC02-98CH10886. NR 107 TC 55 Z9 56 U1 7 U2 70 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD APR 23 PY 2009 VL 113 IS 16 BP 5582 EP 5592 DI 10.1021/jp811495e PG 11 WC Chemistry, Physical SC Chemistry GA 434IT UT WOS:000265269100030 PM 19323543 ER PT J AU Wang, LQ Karkamkar, A Autrey, T Exarhos, GJ AF Wang, Li-Qiong Karkamkar, Abhi Autrey, Tom Exarhos, Gregory J. TI Hyperpolarized Xe-129 NMR Investigation of Ammonia Borane in Mesoporous Silica SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID NUCLEAR-MAGNETIC-RESONANCE; HYDROGEN STORAGE PROPERTIES; THERMAL-DECOMPOSITION; CHEMICAL-SHIFT; SIZE; KINETICS; RELEASE; MAS AB Hyperpolarized (HP) Xe-129 NMR was used to probe the porosity of mesoporous silica (MCM) infused with ammonia borane (AB). Variable-temperature HP Xe-129 NMR measurements have been systematically carried out on a series of MCM-41 materials with AB loading ranging from 33 to 75 wt % (1:2 to 3:1 AB:MCM). Three distinct types of pore environments are clearly evident: pristine mesopores, pores coated with AB inside the meso-channels, and interparticle spacing formed from AB aggregates outside the meso-channels. We found similarly uniform coating of AB on mesoporous silica channels with 1:2 and 1: 1 AB:MCM loading (ratio of weight percent). When the loading of AB to MCM is greater than 1: 1, AB starts to aggregate outside the meso-channels. Further increases in loading (>= 3: 1) result in the formation of partially blocked meso-channels as a result of excessive AB. The detailed information obtained from this study on how supported AB resides in nanoporous channels and how it evolves with the increase of AB loading is helpful for the rational design of novel materials with optimal hydrogen storage and release properties. C1 [Wang, Li-Qiong; Karkamkar, Abhi; Autrey, Tom; Exarhos, Gregory J.] Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Richland, WA 99354 USA. RP Wang, LQ (reprint author), Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Richland, WA 99354 USA. EM lq.wang@pnl.gov FU Materials Sciences and Engineering Division; Office of Basic Energy Sciences; U.S. Department of Energy (US DOE) [DE-AC06-76RL0 1830]; Chemical Science Division FX The HP 129Xe NMR work was supported by the Materials Sciences and Engineering Division, Office of Basic Energy Sciences, U.S. Department of Energy (US DOE). The synthesis effort was supported by the Chemical Science Division, Office of Basic Energy Sciences, U.S. Department of Energy (US DOE). Pacific Northwest National Laboratory (PNNL) is a multi-program national laboratory operated for the USDOE by Battelle Memorial Institute under Contract DE-AC06-76RL0 1830. NR 31 TC 23 Z9 23 U1 1 U2 11 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD APR 23 PY 2009 VL 113 IS 16 BP 6485 EP 6490 DI 10.1021/jp810994p PG 6 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 435ZV UT WOS:000265383300021 ER PT J AU Wang, LQ Wang, DH Liu, J Exarhos, GJ Pawsey, S Moudrakovski, I AF Wang, Li-Qiong Wang, Donghai Liu, Jun Exarhos, Gregory J. Pawsey, Shane Moudrakovski, Igor TI Probing Porosity and Pore Interconnectivity in Crystalline Mesoporous TiO2 Using Hyperpolarized Xe-129 NMR SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID RUTILE TIO2; IONIC LIQUID; XENON; TITANIA; EXCHANGE; SPECTROSCOPY; ADSORPTION; CATALYSTS; ZEOLITES; DYNAMICS AB Hyperpolarized (HP) Xe-129 NMR was used to probe the porosity and interconnectivity of pores in crystalline mesoporous TiO2. We have demonstrated that HP Xe-129 NMR can be used to differentiate between similar sized pores within different crystalline phases. Pores of 4 nm size resident in mixed anatase and rutile mesoporous TiO2 phases were identified. Complementary to other pore characterization techniques, HP Xe-129 NMR is able to probe the interconnectivity between pores present in these different phases. The cross peaks in 2D exchange (EXSY) NMR spectra between the signals of xenon in two types of pores are visible on millisecond timescale, indicating substantial pore interconnectivity. The obtained information on porosity and interconnectivity is important for the understanding of ion transport mechanisms in mesoporous TiO2 anode materials. C1 [Wang, Li-Qiong; Wang, Donghai; Liu, Jun; Exarhos, Gregory J.] Pacific NW Natl Lab, Fundamental Sci Div, Richland, WA 99354 USA. [Pawsey, Shane; Moudrakovski, Igor] Natl Res Council Canada, Steacie Inst Mol Sci, Ottawa, ON K1A 0R6, Canada. RP Wang, LQ (reprint author), Pacific NW Natl Lab, Fundamental Sci Div, Richland, WA 99354 USA. EM lq.wang@pnl.gov RI Wang, Donghai/L-1150-2013 OI Wang, Donghai/0000-0001-7261-8510 FU U.S. Department of Energy (US DOE) [DE-AC06-76RL0 1830]; Department of Energy's Office of Biological and Environmental Research FX HP 129Xe NMR work was supported by Materials Sciences and Engineering Division, Office of Basic Energy Sciences, U.S. Department of Energy (US DOE). The synthesis effort was conducted under the Laboratory Directed Research and Development Program (LDRD) at Pacific Northwest National Laboratory (PNNL). TEM investigation was performed in the EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. PNNL is a multiprogram national laboratory operated for the USDOE by Battelle Memorial Institute under Contract DE-AC06-76RL0 1830. NR 40 TC 8 Z9 8 U1 1 U2 7 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD APR 23 PY 2009 VL 113 IS 16 BP 6577 EP 6583 DI 10.1021/jp809740e PG 7 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 435ZV UT WOS:000265383300035 ER PT J AU Johnson, JC Reilly, TH Kanarr, AC van de Lagemaat, J AF Johnson, Justin C. Reilly, Thomas H., III Kanarr, Allison C. van de Lagemaat, Jao TI The Ultrafast Photophysics of Pentacene Coupled to Surface Plasmon Active Nanohole Films SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID MULTIPLE EXCITON GENERATION; TETRACENE CRYSTALS; TRIPLET EXCITONS; QUANTUM DOTS; SOLAR-CELLS; THIN-FILMS; FLUORESCENCE; SPECTROSCOPY; NANOPARTICLES; ENHANCEMENT AB Pentacene, a model organic semiconductor, is shown to couple with surface plasmon (SP) active silver nanohole films to produce enhanced excited-state absorption. In addition, the dynamics of triplet formation and decay on a subpicosecond time scale are altered due to the coupling of the excited state with the resonant SP, possibly involving the interplay between singlet fission and triplet-triplet annihilation. Shifting the resonance of the SP with respect to the pentacene excitations and introducing a dielectric spacer between pentacene and metal lead to changes in the spectra and dynamics that can be explained qualitatively. These results are compared with recent literature reports of molecule/plasmon hybridization and are placed in context with efforts to utilize SPs for enhanced solar energy conversion. C1 [Kanarr, Allison C.] Univ Colorado, Dept Chem & Biochem, Boulder, CO 80309 USA. [Johnson, Justin C.; Reilly, Thomas H., III; van de Lagemaat, Jao] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Johnson, JC (reprint author), Natl Renewable Energy Lab, 1617 Cole Blvd, Golden, CO 80401 USA. EM Justin_Johnson@nrel.gov RI van de Lagemaat, Jao/J-9431-2012 FU U.S. Department-of Energy [DE-AC36-08GO28308]; National Renewable Energy Laboratory FX We thank David Jonas for insightful comments. T.R., J.L., A.K., and J.C.J. are supported by a grant from the Laboratory Directed Research and Development program at NREL. J.C.J. also acknowledges support from the Hydrogen Fuel Initiative of the Department of Energy, Office of Science, Basic Energy Sciences. J.L. acknowledges the Photochemistry and Radiation Research Program of the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences. This work was supported by the U.S. Department-of Energy under Contract No. DE-AC36-08GO28308 with the National Renewable Energy Laboratory. NR 42 TC 23 Z9 23 U1 2 U2 24 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD APR 23 PY 2009 VL 113 IS 16 BP 6871 EP 6877 DI 10.1021/jp901419s PG 7 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 435ZV UT WOS:000265383300073 ER PT J AU Lee, S Noh, JH Han, HS Yim, DK Kim, DH Lee, JK Kim, JY Jung, HS Hong, KS AF Lee, Sangwook Noh, Jun Hong Han, Hyun Soo Yim, Dong Kyun Kim, Dong Hoe Lee, Jung-Kun Kim, Jin Young Jung, Hyun Suk Hong, Kug Sun TI Nb-Doped TiO2: A New Compact Layer Material for TiO2 Dye-Sensitized Solar Cells SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID TRANSPARENT CONDUCTING OXIDE; ELECTRICAL-IMPEDANCE; ELECTRODE; PERFORMANCE; EFFICIENCY; CONVERSION; FILMS; NANOPARTICLES; SUBSTRATE; TRANSPORT AB A Nb-doped TiO2 (NTO) thin film was deposited on a fluorine-doped tin oxide (FTO) electrode by pulsed laser deposition (PLD) and its application as a new compact layer material for dye-sensitized solar cells (DSSCs) was investigated.. On the basis of the investigation of the dark current, open circuit voltage (V-oc) decay, current-voltage (I-V) characteristics, and electrochemical impedance spectra (EIS), it was found that the NTO layer functioned as both a blocking layer and an ancillary transparent conducting oxide (TCO) layer. As a blocking layer, the NTO layer suppressed the charge recombination from TCO to the electrolyte. In addition, as an ancillary TCO layer, the NTO layer reduced the interfacial resistance between the TiO2 layer and TCO by forming an ohmic contact. As a result, the overall energy conversion efficiency of the DSSC incorporating the NTO layer was enhanced by 21.2% compared to that with the bare FTO substrate and 4.1 % compared to that with the undoped TiO2 layer, owing to the enhanced charge transfer and collection characteristics of the NTO layer. Our results demonstrated that NTO is a promising alternative to the conventional TiO2 compact layer in highly efficient DSSCs. C1 [Kim, Jin Young] Natl Renewable Energy Lab, Chem & Biosci Ctr, Golden, CO 80401 USA. [Lee, Jung-Kun] Univ Pittsburgh, Dept Mech Engn & Mat Sci, Pittsburgh, PA 15260 USA. [Jung, Hyun Suk] Kookmin Univ, Sch Adv Mat Engn, Seoul 136702, South Korea. [Lee, Sangwook; Noh, Jun Hong; Han, Hyun Soo; Yim, Dong Kyun; Kim, Dong Hoe; Hong, Kug Sun] Seoul Natl Univ, Sch Mat Sci & Engn, Seoul 151744, South Korea. RP Kim, JY (reprint author), Natl Renewable Energy Lab, Chem & Biosci Ctr, Golden, CO 80401 USA. EM jinyoung_kim@nrel.gov; hjung@kookmin.ac.kr; kshongss@plaza.snu.ac.kr RI Jung, Hyun Suk/D-4745-2011; Kim, Jin Young/B-7077-2012; Lee, Sangwook/O-9166-2015; Jung, Hyun Suk/H-3659-2015 OI Kim, Jin Young/0000-0001-7728-3182; Lee, Sangwook/0000-0002-3535-0241; FU U.S. Department of Energy [DE-AC36-08GO28308]; Korea government (MOST) [R01-2007-000-11075-0, KRF-2007-313-D00345, R01-2008-000-20581-0]; Seoul RBD Program [CR070027C092852]; Kookmin University FX This research was funded by the U.S. Department of Energy under contract no. DE-AC36-08GO28308 with the National Renewable Energy Laboratory (J.Y.K.) and supported by the Korea Science and Engineering Foundation (KOSEF) grant funded by the Korea government (MOST) (R01-2007-000-11075-0) (RIAM). The work at Kookmin University was supported by the Korea Research Foundation Grant funded by the Korean Government (MOEHRD) (KRF-2007-313-D00345 & R01-2008-000-20581-0) and the Seoul R&BD Program (CR070027C092852). This work was also supported by the research program 2009 of Kookmin University. NR 27 TC 140 Z9 142 U1 8 U2 145 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD APR 23 PY 2009 VL 113 IS 16 BP 6878 EP 6882 DI 10.1021/jp9002017 PG 5 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 435ZV UT WOS:000265383300074 ER PT J AU Woyke, T Xie, G Copeland, A Gonzalez, JM Han, C Kiss, H Saw, JH Senin, P Yang, C Chatterji, S Cheng, JF Eisen, JA Sieracki, ME Stepanauskas, R AF Woyke, Tanja Xie, Gary Copeland, Alex Gonzalez, Jose M. Han, Cliff Kiss, Hajnalka Saw, Jimmy H. Senin, Pavel Yang, Chi Chatterji, Sourav Cheng, Jan-Fang Eisen, Jonathan A. Sieracki, Michael E. Stepanauskas, Ramunas TI Assembling the Marine Metagenome, One Cell at a Time SO PLOS ONE LA English DT Article AB The difficulty associated with the cultivation of most microorganisms and the complexity of natural microbial assemblages, such as marine plankton or human microbiome, hinder genome reconstruction of representative taxa using cultivation or metagenomic approaches. Here we used an alternative, single cell sequencing approach to obtain high-quality genome assemblies of two uncultured, numerically significant marine microorganisms. We employed fluorescence-activated cell sorting and multiple displacement amplification to obtain hundreds of micrograms of genomic DNA from individual, uncultured cells of two marine flavobacteria from the Gulf of Maine that were phylogenetically distant from existing cultured strains. Shotgun sequencing and genome finishing yielded 1.9 Mbp in 17 contigs and 1.5 Mbp in 21 contigs for the two flavobacteria, with estimated genome recoveries of about 91% and 78%, respectively. Only 0.24% of the assembling sequences were contaminants and were removed from further analysis using rigorous quality control. In contrast to all cultured strains of marine flavobacteria, the two single cell genomes were excellent Global Ocean Sampling (GOS) metagenome fragment recruiters, demonstrating their numerical significance in the ocean. The geographic distribution of GOS recruits along the Northwest Atlantic coast coincided with ocean surface currents. Metabolic reconstruction indicated diverse potential energy sources, including biopolymer degradation, proteorhodopsin photometabolism, and hydrogen oxidation. Compared to cultured relatives, the two uncultured flavobacteria have small genome sizes, few non-coding nucleotides, and few paralogous genes, suggesting adaptations to narrow ecological niches. These features may have contributed to the abundance of the two taxa in specific regions of the ocean, and may have hindered their cultivation. We demonstrate the power of single cell DNA sequencing to generate reference genomes of uncultured taxa from a complex microbial community of marine bacterioplankton. A combination of single cell genomics and metagenomics enabled us to analyze the genome content, metabolic adaptations, and biogeography of these taxa. RP Woyke, T (reprint author), US DOE, Joint Genome Inst, Walnut Creek, CA USA. EM rstepanauskas@bigelow.org RI Saw, Jimmy/A-9972-2009; Gonzalez, Jose/C-3333-2013; OI Saw, Jimmy/0000-0001-8353-3854; Gonzalez, Jose/0000-0002-9926-3323; Senin, Pavel/0000-0001-5517-7768; Eisen, Jonathan A./0000-0002-0159-2197; Stepanauskas, Ramunas/0000-0003-4458-3108 NR 55 TC 187 Z9 198 U1 5 U2 77 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD APR 23 PY 2009 VL 4 IS 4 AR e5299 DI 10.1371/journal.pone.0005299 PG 10 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 437VE UT WOS:000265514200012 PM 19390573 ER PT J AU Shen, TY Gnanakaran, S AF Shen, Tongye Gnanakaran, S. TI The Stability of Cellulose: A Statistical Perspective from a Coarse-Grained Model of Hydrogen-Bond Networks SO BIOPHYSICAL JOURNAL LA English DT Article ID NEUTRON FIBER DIFFRACTION; SYNCHROTRON X-RAY; 2-DIMENSIONAL CORRELATION SPECTROSCOPY; TEMPERATURE-DEPENDENT CHANGES; I-BETA-CELLULOSE; CRYSTAL-STRUCTURE; INFRARED-SPECTROSCOPY; MOLECULAR-DYNAMICS; SYSTEM AB A critical roadblock to the production of biofuels from lignocellulosic biomass is the efficient degradation of crystalline microfibrils of cellulose to glucose. A microscopic understanding of how different physical conditions affect the overall stability of the crystalline structure of microfibrils could facilitate the design of more effective protocols for their degradation. One of the essential physical interactions that stabilizes microfibrils is a network of hydrogen (H) bonds: both intrachain H-bonds between neighboring monomers of a single cellulose polymer chain and interchain H-bonds between adjacent chains. We construct a statistical mechanical model of cellulose assembly at the resolution of explicit hydrogen-bond networks. Using the transfer matrix method, the partition function and the subsequent statistical properties are evaluated. With the help of this lattice-based model, we capture the plasticity of the H-bond network in cellulose due to frustration and redundancy in the placement of H-bonds. This plasticity is responsible for the stability of cellulose over a wide range of temperatures. Stable intrachain and interchain H-bonds are identified as a function of temperature that could possibly be manipulated toward rational destruction of crystalline cellulose. C1 [Shen, Tongye; Gnanakaran, S.] Los Alamos Natl Lab, Theoret Biol & Biophys Grp, Los Alamos, NM 87545 USA. [Shen, Tongye] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. RP Gnanakaran, S (reprint author), Los Alamos Natl Lab, Theoret Biol & Biophys Grp, Los Alamos, NM 87545 USA. EM gnana@lanl.gov RI Shen, Tongye/A-9718-2008; OI Shen, Tongye/0000-0003-1495-3104; Gnanakaran, S/0000-0002-9368-3044 FU United States Department of Energy and Center for Nonlinear Studies FX This work was supported in parts by an LANL-LDRD grant from the United States Department of Energy and Center for Nonlinear Studies. NR 32 TC 37 Z9 37 U1 2 U2 16 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 0006-3495 J9 BIOPHYS J JI Biophys. J. PD APR 22 PY 2009 VL 96 IS 8 BP 3032 EP 3040 DI 10.1016/j.bpj.2008.12.3953 PG 9 WC Biophysics SC Biophysics GA 450BX UT WOS:000266377100007 PM 19383449 ER PT J AU Bai, F Lo, CJ Berry, RM Xing, JH AF Bai, Fan Lo, Chien-Jung Berry, Richard M. Xing, Jianhua TI Model Studies of the Dynamics of Bacterial Flagellar Motors SO BIOPHYSICAL JOURNAL LA English DT Article ID TORQUE-SPEED RELATIONSHIP; ESCHERICHIA-COLI; ROTARY MOTOR; GENERATING UNITS; CRYSTAL-STRUCTURE; MOLECULAR MOTOR; DRIVEN; ROTOR; VIBRIO; FORCE AB The bacterial flagellar motor is a rotary molecular machine that rotates the helical filaments that propel swimming bacteria. Extensive experimental and theoretical studies exist on the structure, assembly, energy input, power generation, and switching mechanism of the motor. In a previous article, we explained the general physics underneath the observed torque-speed curves with a simple two-state Fokker-Planck model. Here, we further analyze that model, showing that 1), the model predicts that the two components of the ion motive force can affect the motor dynamics differently, in agreement with latest experiments; 2), with explicit consideration of the stator spring, the model also explains the lack of dependence of the zero-load speed on stator number in the proton motor, as recently observed; and 3), the model reproduces the stepping behavior of the motor even with the existence of the stator springs and predicts the dwell-time distribution. The predicted stepping behavior of motors with two stators is discussed, and we suggest future experimental procedures for verification. C1 [Xing, Jianhua] Univ Calif & Lawrence Livermore Natl Lab, Chem Mat & Life Sci Directorate, Livermore, CA USA. [Bai, Fan; Lo, Chien-Jung; Berry, Richard M.] Univ Oxford, Dept Phys, Clarendon Lab, Oxford OX1 3PU, England. [Xing, Jianhua] Virginia Polytech Inst & State Univ, Dept Biol Sci, Blacksburg, VA 24061 USA. RP Xing, JH (reprint author), Univ Calif & Lawrence Livermore Natl Lab, Chem Mat & Life Sci Directorate, Livermore, CA USA. EM jxing@vt.edu RI Xing, Jianhua/A-8101-2012 OI Xing, Jianhua/0000-0002-3700-8765 FU U.S. Department of Energy by the University of Caliform; Lawrence Livennore National Laboratory [W-7405-Eng-48]; Wellcome Trust VIP research FX F.B. is supported by the Wellcome Trust VIP research funding. C.-J.L thanks the Swire Group/ORS for financial suppon. J.X. was initially supported by a Lawrence Livermore National Laboratory Directed Research and Development grant. This work was partly performed Linder the auspices of the U.S. Department of Energy by the University of Califorma, Lawrence Livennore National Laboratory, under contract No. W-7405-Eng-48. NR 50 TC 16 Z9 17 U1 0 U2 8 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 0006-3495 J9 BIOPHYS J JI Biophys. J. PD APR 22 PY 2009 VL 96 IS 8 BP 3154 EP 3167 DI 10.1016/j.bpj.2009.01.023 PG 14 WC Biophysics SC Biophysics GA 450BX UT WOS:000266377100018 PM 19383460 ER PT J AU Allen, JE Gardner, SN Vitalis, EA Slezak, TR AF Allen, Jonathan E. Gardner, Shea N. Vitalis, Elizabeth A. Slezak, Tom R. TI Conserved amino acid markers from past influenza pandemic strains SO BMC MICROBIOLOGY LA English DT Article ID A VIRUSES; H5N1 VIRUS; TRANSMISSION; THAILAND; GENOME; ASIA AB Background: Finding the amino acid mutations that affect the severity of influenza infections remains an open and challenging problem. Of special interest is better understanding how current circulating influenza strains could evolve into a new pandemic strain. Influenza proteomes from distinct viral phenotype classes were searched for class specific amino acid mutations conserved in past pandemics, using reverse engineered linear classifiers. Results: Thirty-four amino acid markers associated with host specificity and high mortality rate were found. Some markers had little impact on distinguishing the functional classes by themselves, however in combination with other mutations they improved class prediction. Pairwise combinations of influenza genomes were checked for reassortment and mutation events needed to acquire the pandemic conserved markers. Evolutionary pathways involving H1N1 human and swine strains mixed with avian strains show the potential to acquire the pandemic markers with a double reassortment and one or two amino acid mutations. Conclusion: The small mutation combinations found at multiple protein positions associated with viral phenotype indicate that surveillance tools could monitor genetic variation beyond single point mutations to track influenza strains. Finding that certain strain combinations have the potential to acquire pandemic conserved markers through a limited number of reassortment and mutation events illustrates the potential for reassortment and mutation events to lead to new circulating influenza strains. C1 [Allen, Jonathan E.; Gardner, Shea N.; Vitalis, Elizabeth A.; Slezak, Tom R.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Allen, JE (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. EM allen99@llnl.gov; gardner26@llnl.gov; vitalis1@llnl.gov; slezak1@llnl.gov FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX JEA was supported in part by an IC Postdoctoral fellowship. We thank Stephen P. Velsko for valuable discussions. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 30 TC 22 Z9 22 U1 0 U2 2 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1471-2180 J9 BMC MICROBIOL JI BMC Microbiol. PD APR 22 PY 2009 VL 9 AR 77 DI 10.1186/1471-2180-9-77 PG 10 WC Microbiology SC Microbiology GA 455XB UT WOS:000266800800002 PM 19386124 ER PT J AU Lee, WS Vishik, IM Lu, DH Shen, ZX AF Lee, W. S. Vishik, I. M. Lu, D. H. Shen, Z-X TI A brief update of angle-resolved photoemission spectroscopy on a correlated electron system SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article; Proceedings Paper CT 25th International Conference on Low Temperature Physics (LT25) CY AUG 06-13, 2008 CL Leiden Inst Phys, Kamerlingh Onnes Lab, Amsterdam, NETHERLANDS HO Leiden Inst Phys, Kamerlingh Onnes Lab ID HIGH-TEMPERATURE SUPERCONDUCTORS; ENERGY-GAP; TUNNELING SPECTROSCOPY; UNDERDOPED BI2212; PSEUDOGAP; BI2SR2CACU2O8+DELTA; DEPENDENCE; STATE AB In this paper, we briefly summarize the capabilities of state-of-the-art angle-resolved photoemission spectroscopy (ARPES) in the field of experimental condensed matter physics. Due to the advancement of the detector technology and the high flux light sources, ARPES has become a powerful tool to study the low energy excitations of solids, especially those novel quantum materials in which many-body physics are at play. To benchmark today's state-of-the-art ARPES technique, we demonstrate that the precision of today's ARPES has advanced to a regime comparable to the bulk-sensitive de Haas-van Alphen (dHvA) measurements. Finally, as an example of new discoveries driven by the advancement of the ARPES technique, we summarize some of our recent ARPES measurements on underdoped high-T-c superconducting cuprates, which have provided further insight into the complex pseudogap problem. C1 [Lee, W. S.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. Stanford Univ, Stanford Synchrotron Radiat Lab, Stanford, CA 94305 USA. RP Lee, WS (reprint author), Stanford Univ, Dept Phys, Stanford, CA 94305 USA. NR 26 TC 10 Z9 10 U1 0 U2 12 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 EI 1361-648X J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD APR 22 PY 2009 VL 21 IS 16 AR 164217 DI 10.1088/0953-8984/21/16/164217 PG 7 WC Physics, Condensed Matter SC Physics GA 426ZH UT WOS:000264746900020 PM 21825397 ER PT J AU Okawa, D Pastine, SJ Zettl, A Frechet, JMJ AF Okawa, David Pastine, Stefan J. Zettl, Alex Frechet, Jean M. J. TI Surface Tension Mediated Conversion of Light to Work SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID AUTONOMOUS MOVEMENT; THERMAL-GRADIENTS; SOLAR-ENERGY; WATER; PARTICLES; DROPLETS; MOTIONS AB As energy demands increase, new, more direct, energy collection and utilization processes must be explored. We present a system that intrinsically combines the absorption of sunlight. with the production of useful work in the form of locomotion of objects on liquids. Focused sunlight is locally absorbed by a nanostructured composite, creating a thermal surface tension gradient and, subsequently, motion. Controlled linear motion and rotational motion are demonstrated. The system is scale independent, with remotely powered and controlled motion shown for objects in the milligram to tens of grams range. C1 [Okawa, David; Pastine, Stefan J.; Frechet, Jean M. J.] Univ Calif Berkeley, Coll Chem, Berkeley, CA 94720 USA. [Okawa, David; Zettl, Alex] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Zettl, Alex; Frechet, Jean M. J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Frechet, JMJ (reprint author), Univ Calif Berkeley, Coll Chem, Berkeley, CA 94720 USA. EM frechet@berkeley.edu RI Zettl, Alex/O-4925-2016; OI Zettl, Alex/0000-0001-6330-136X; Frechet, Jean /0000-0001-6419-0163 FU U.S. Department of Energy [DE-AC02-05CH11231]; National Institute of General Medical Sciences [F32GM078780] FX The authors acknowledge financial support from the Director, Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. The project described (S.J.P.) was also supported by Award Number F32GM078780 from the National Institute of General Medical Sciences. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institute of General Medical Sciences or the National Institutes of Health. D.O. and A.Z. received financial support from the Sea Change Foundation. We thank Mark Llorente for the production of VANTs, Brian Kessler for helpful discussions, and the Miller Institute (Professorship for AZ). NR 28 TC 47 Z9 47 U1 8 U2 27 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD APR 22 PY 2009 VL 131 IS 15 BP 5396 EP + DI 10.1021/ja900130n PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA 434IJ UT WOS:000265268100016 PM 20560635 ER PT J AU Todorov, I Chung, DY Malliakas, CD Li, QA Bakas, T Douvalis, A Trimarchi, G Gray, K Mitchell, JF Freeman, AJ Kanatzidis, MG AF Todorov, Iliya Chung, Duck Young Malliakas, Christos D. Li, Quing'an Bakas, Thomas Douvalis, Alexios Trimarchi, Giancarlo Gray, Kenneth Mitchell, John F. Freeman, Arthur J. Kanatzidis, Mercouri G. TI CaFe4As3: A Metallic Iron Arsenide with Anisotropic Magnetic and Charge-Transport Properties SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID SUPERCONDUCTIVITY AB The iron arsenide CaFe4As3 features a three-dimensional network derived from intergrown Fe2As2 layers and Ca ions in channels. Complex magnetic interactions between Fe atoms give rise to unexpected transitions and novel direction-dependent magnetic behavior. C1 [Todorov, Iliya; Chung, Duck Young; Li, Quing'an; Gray, Kenneth; Mitchell, John F.; Kanatzidis, Mercouri G.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Malliakas, Christos D.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. [Bakas, Thomas; Douvalis, Alexios] Univ Ioannina, Dept Phys, GR-45110 Ioannina, Greece. [Trimarchi, Giancarlo; Freeman, Arthur J.] Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA. RP Kanatzidis, MG (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM m-kanatzidis@northwestern.edu RI Li, Qingan/L-3778-2013; Trimarchi, Giancarlo/A-8225-2010 OI Trimarchi, Giancarlo/0000-0002-0365-3221 FU U.S. Department of Energy, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX This project was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract DE-AC02-06CH11357. We thank Dr. M. Pissas, NRCPS "Demokritos", Athens, for the magnetic susceptibility measurements on the polycrystalline sample. NR 16 TC 23 Z9 23 U1 4 U2 16 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD APR 22 PY 2009 VL 131 IS 15 BP 5405 EP + DI 10.1021/ja900534h PG 5 WC Chemistry, Multidisciplinary SC Chemistry GA 434IJ UT WOS:000265268100019 PM 19334680 ER PT J AU Manaa, MR Reed, EJ Fried, LE Goldman, N AF Manaa, M. Riad Reed, Evan J. Fried, Laurence E. Goldman, Nir TI Nitrogen-Rich Heterocycles as Reactivity Retardants in Shocked Insensitive Explosives SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID DETONATION; CHARGE; NITROMETHANE; MOLECULES; IMPACT; SOOT AB We report the first quantum-based multiscale simulations to study the reactivity of shocked perfect crystals of the insensitive energetic material triaminotrinitrobenzene (TATB). Tracking chemical transformations of TATB experiencing overdriven shock speeds of 9 km/s for up to 0.43 ns and 10 km/s for up to 0.2 ns reveal high concentrations of nitrogen-rich heterocyclic clusters. Further reactivity of TATE; toward the final decomposition products of fluid N-2 and solid carbon is inhibited due to the formation of these heterocycles. bur results thus suggest a new mechanism for carbon-rich explosive materials that precedes the slow diffusion-limited process of forming the bulk solid from carbon clusters and provide fundamental insight at the atomistic level into the long reaction zone of shocked TATB. C1 [Manaa, M. Riad; Reed, Evan J.; Fried, Laurence E.; Goldman, Nir] Lawrence Livermore Natl Lab, Energet Mat Ctr, Livermore, CA 94551 USA. RP Manaa, MR (reprint author), Lawrence Livermore Natl Lab, Energet Mat Ctr, POB 808, Livermore, CA 94551 USA. EM manaa1@llnl.gov RI Fried, Laurence/L-8714-2014 OI Fried, Laurence/0000-0002-9437-7700 FU U.S. Department of Energy Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX This work performed under the auspices of the U.S. Department of Energy Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. NR 30 TC 71 Z9 75 U1 6 U2 25 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD APR 22 PY 2009 VL 131 IS 15 BP 5483 EP 5487 DI 10.1021/ja808196e PG 5 WC Chemistry, Multidisciplinary SC Chemistry GA 434IJ UT WOS:000265268100030 PM 19323461 ER PT J AU Kwon, KY Pawin, G Wong, KL Peters, E Kim, D Hong, S Rahman, TS Marsella, M Bartels, L AF Kwon, Ki-Young Pawin, Greg Wong, Kin L. Peters, Eric Kim, Daeho Hong, Sampyo Rahman, Talat S. Marsella, Michael Bartels, Ludwig TI H-Atom Position as Pattern-Determining Factor in Arenethiol Films SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID SCANNING-TUNNELING-MICROSCOPY; SELF-ASSEMBLED MONOLAYERS; CENTER-DOT-F; HYDROGEN-BONDS; SUPRAMOLECULAR NANOSTRUCTURES; MOLECULAR-DYNAMICS; AU(111) SURFACE; METAL-SURFACE; CU(111); ENERGY AB The evolution of a low coverage of benzenethiol molecules on Cu(111) during annealing shows the prevalence of S center dot center dot center dot H hydrogen bonds involving hydrogen atoms in the ortho position. The row and pattern formation of (methylated) anthracenethiols indicates intermolecular interactions in which hydrogen atoms at the terminal position of the aromatic moiety dominate. In combination, this leads to the notion that pattern formation in classes of arenethiol molecules is each governed by optimization of the intermolecular interactions of the hydrogen atom at one particular position on the arene. This may provide a general guiding principle for the design of arenethiol films. C1 [Kwon, Ki-Young; Pawin, Greg; Wong, Kin L.; Peters, Eric; Kim, Daeho; Marsella, Michael; Bartels, Ludwig] Univ Calif Riverside, Pierce Hall Dept Chem, Riverside, CA 92521 USA. [Kwon, Ki-Young] Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Pawin, Greg; Wong, Kin L.] Univ Calif Los Angeles, Dept Chem, Los Angeles, CA 90095 USA. [Pawin, Greg; Wong, Kin L.] Univ Calif Los Angeles, Dept Elect Engn, Los Angeles, CA 90095 USA. [Hong, Sampyo; Rahman, Talat S.] Univ Cent Florida, Dept Phys, Orlando, FL 32816 USA. RP Bartels, L (reprint author), Univ Calif Riverside, Pierce Hall Dept Chem, Riverside, CA 92521 USA. EM Ludwig.Bartels@ucr.edu RI Wong, Kin/F-6907-2011; bartelsdoe, ludwig/F-8008-2011; Kim, Daeho/D-4353-2011; Bartels, Ludwig/C-2764-2008 OI Wong, Kin/0000-0001-6776-3852; Kim, Daeho/0000-0003-4242-316X; FU U.S. Department of Energy [DE-FG02-03ER15464, DE-FG02-07ER15842]; U.S. National Science Foundation [0647152] FX This work was supported by the U.S. Department of Energy under grants DE-FG02-03ER15464 (Bartels)/DE-FG02-07ER15842 (Rahman) and the U.S. National Science Foundation 0647152 (Bartels/Marsella). Computational resources were made available by the San Diego Supercomputer Center. NR 41 TC 10 Z9 10 U1 0 U2 9 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD APR 22 PY 2009 VL 131 IS 15 BP 5540 EP 5545 DI 10.1021/ja809417k PG 6 WC Chemistry, Multidisciplinary SC Chemistry GA 434IJ UT WOS:000265268100037 PM 19331392 ER PT J AU Balhorn, R Hok, S DeNardo, S Natarajan, A Mirick, G Corzett, M DeNardo, G AF Balhorn, Rod Hok, Saphon DeNardo, Sally Natarajan, Arutselvan Mirick, Gary Corzett, Michele DeNardo, Gerald TI Hexa-arginine enhanced uptake and residualization of selective high affinity ligands by Raji lymphoma cells SO MOLECULAR CANCER LA English DT Article ID NON-HODGKINS-LYMPHOMA; ELECTRON-EMITTING RADIONUCLIDES; MONOCLONAL-ANTIBODY; CANCER-THERAPY; DRUG-DELIVERY; IN-VITRO; INTRACELLULAR DELIVERY; PENETRATING PEPTIDES; GENE DELIVERY; RICH PEPTIDES AB Background: A variety of arginine-rich peptide sequences similar to those found in viral proteins have been conjugated to other molecules to facilitate their transport into the cytoplasm and nucleus of targeted cells. The selective high affinity ligand (SHAL) (DvLPBaPPP)(2)LLDo, which was developed to bind only to cells expressing HLA-DR10, has been conjugated to one of these peptide transduction domains, hexa-arginine, to assess the impact of the peptide on SHAL uptake and internalization by Raji cells, a B-cell lymphoma. Results: An analog of the SHAL (DvLPBaPPP)(2)LLDo containing a hexa-arginine peptide was created by adding six D-arginine residues sequentially to a lysine inserted in the SHAL's linker. SHAL binding, internalization and residualization by Raji cells expressing HLA-DR10 were examined using whole cell binding assays and confocal microscopy. Raji cells were observed to bind two fold more (111)In-labeled hexa-arginine SHAL analog than Raji cells treated with the parent SHAL. Three fold more hexa-arginine SHAL remained associated with the Raji cells after washing, suggesting that the peptide also enhanced residualization of the (111)In transported into cells. Confocal microscopy showed both SHALs localized in the cytoplasm of Raji cells, whereas a fraction of the hexa-arginine SHAL localized in the nucleus. Conclusion: The incorporation of a hexa-D-arginine peptide into the linker of the SHAL (DvLPBaPPP)(2)LLDo enhanced both the uptake and residualization of the SHAL analog by Raji cells. In contrast to the abundant cell surface binding observed with Lym-1 antibody, the majority of (DvLPBaPPP)(2)LArg6AcLLDo and the parent SHAL were internalized. Some of the internalized hexa-arginine SHAL analog was also associated with the nucleus. These results demonstrate that several important SHAL properties, including uptake, internalization, retention and possibly intracellular distribution, can be enhanced or modified by conjugating the SHALs to a short polypeptide. C1 [Balhorn, Rod] Lawrence Livermore Natl Lab, Dept Appl Sci, Livermore, CA 94551 USA. [Balhorn, Rod; Hok, Saphon; Corzett, Michele] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [DeNardo, Sally; Natarajan, Arutselvan; Mirick, Gary; DeNardo, Gerald] Univ Calif Davis, Med Ctr, Sacramento, CA 95816 USA. RP Balhorn, R (reprint author), Lawrence Livermore Natl Lab, Dept Appl Sci, Hertz Hall,POB 751, Livermore, CA 94551 USA. EM rodbalhorn@hughes.net; hok2@llnl.gov; sjdenardo@ucdavis.edu; arutselvan.natarajan@ucdmc.ucdavis.edu; Gary.Mirick@sbcglobal.net; corzett1@llnl.gov; gldenardo@ucdavis.edu FU National Cancer Institute [PO1-CA47829]; Lawrence Livermore National Laboratory; Lawrence Livermore National Security, LLC; U. S. Department of Energy, National Nuclear Security Administration [DE-AC52-07NA27344] FX This work was supported by the National Cancer Institute PO1-CA47829. Lawrence Livermore National Laboratory is operated by Lawrence Livermore National Security, LLC, for the U. S. Department of Energy, National Nuclear Security Administration under Contract DE-AC52-07NA27344. NR 50 TC 1 Z9 1 U1 0 U2 5 PU BIOMED CENTRAL LTD PI LONDON PA CURRENT SCIENCE GROUP, MIDDLESEX HOUSE, 34-42 CLEVELAND ST, LONDON W1T 4LB, ENGLAND SN 1476-4598 J9 MOL CANCER JI Mol. Cancer PD APR 22 PY 2009 VL 8 AR 25 DI 10.1186/1476-4598-8-25 PG 9 WC Biochemistry & Molecular Biology; Oncology SC Biochemistry & Molecular Biology; Oncology GA 449IB UT WOS:000266323000001 PM 19383174 ER PT J AU Raman, B Pan, C Hurst, GB Rodriguez, M McKeown, CK Lankford, PK Samatova, NF Mielenz, JR AF Raman, Babu Pan, Chongle Hurst, Gregory B. Rodriguez, Miguel, Jr. McKeown, Catherine K. Lankford, Patricia K. Samatova, Nagiza F. Mielenz, Jonathan R. TI Impact of Pretreated Switchgrass and Biomass Carbohydrates on Clostridium thermocellum ATCC 27405 Cellulosome Composition: A Quantitative Proteomic Analysis SO PLOS ONE LA English DT Article AB Background: Economic feasibility and sustainability of lignocellulosic ethanol production requires the development of robust microorganisms that can efficiently degrade and convert plant biomass to ethanol. The anaerobic thermophilic bacterium Clostridium thermocellum is a candidate microorganism as it is capable of hydrolyzing cellulose and fermenting the hydrolysis products to ethanol and other metabolites. C. thermocellum achieves efficient cellulose hydrolysis using multiprotein extracellular enzymatic complexes, termed cellulosomes. Methodology/Principal Findings: In this study, we used quantitative proteomics (multidimensional LC-MS/MS and N-15-metabolic labeling) to measure relative changes in levels of cellulosomal subunit proteins (per CipA scaffoldin basis) when C. thermocellum ATCC 27405 was grown on a variety of carbon sources [dilute-acid pretreated switchgrass, cellobiose, amorphous cellulose, crystalline cellulose (Avicel) and combinations of crystalline cellulose with pectin or xylan or both]. Cellulosome samples isolated from cultures grown on these carbon sources were compared to N-15 labeled cellulosome samples isolated from crystalline cellulose-grown cultures. In total from all samples, proteomic analysis identified 59 dockerin-and 8 cohesin-module containing components, including 16 previously undetected cellulosomal subunits. Many cellulosomal components showed differential protein abundance in the presence of non-cellulose substrates in the growth medium. Cellulosome samples from amorphous cellulose, cellobiose and pretreated switchgrass-grown cultures displayed the most distinct differences in composition as compared to cellulosome samples from crystalline cellulose-grown cultures. While Glycoside Hydrolase Family 9 enzymes showed increased levels in the presence of crystalline cellulose, and pretreated switchgrass, in particular, GH5 enzymes showed increased levels in response to the presence of cellulose in general, amorphous or crystalline. Conclusions/Significance: Overall, the quantitative results suggest a coordinated substrate-specific regulation of cellulosomal subunit composition in C. thermocellum to better suit the organism's needs for growth under different conditions. To date, this study provides the most comprehensive comparison of cellulosomal compositional changes in C. thermocellum in response to different carbon sources. Such studies are vital to engineering a strain that is best suited to grow on specific substrates of interest and provide the building blocks for constructing designer cellulosomes with tailored enzyme composition for industrial ethanol production. RP Raman, B (reprint author), Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. EM mielenzjr@ornl.gov OI Hurst, Gregory/0000-0002-7650-8009 NR 58 TC 132 Z9 134 U1 3 U2 39 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD APR 22 PY 2009 VL 4 IS 4 AR e5271 DI 10.1371/journal.pone.0005271 PG 13 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 437VB UT WOS:000265513900014 PM 19384422 ER PT J AU Gee, GW Newman, BD Green, SR Meissner, R Rupp, H Zhang, ZF Keller, JM Waugh, WJ van der Velde, M Salazar, J AF Gee, G. W. Newman, B. D. Green, S. R. Meissner, R. Rupp, H. Zhang, Z. F. Keller, J. M. Waugh, W. J. van der Velde, M. Salazar, J. TI Passive wick fluxmeters: Design considerations and field applications SO WATER RESOURCES RESEARCH LA English DT Article ID MEASURING WATER FLUX; ZERO-TENSION PAN; VADOSE ZONE; COLLECTION EFFICIENCY; LEACHATE COLLECTION; CAPILLARY SAMPLERS; NUMERICAL-ANALYSIS; FIBERGLASS WICKS; SUCTION PLATES; SOIL AB Optimization of water use in agriculture and quantification of percolation from landfills and watersheds require reliable estimates of vadose zone water fluxes. Current technology is limited primarily to lysimeters, which directly measure water flux but are expensive and may in some way disrupt flow, causing errors in the measured drainage. We report on design considerations and field tests of an alternative approach, passive wick fluxmeters, which use a control tube to minimize convergent or divergent flow. Design calculations with a quasi-three-dimensional model illustrate how convergence and divergence can be minimized for a range of soil and climatic conditions under steady state and transient fluxes using control tubes of varying heights. There exists a critical recharge rate for a given wick length, where the fluxmeter collection efficiency is 100% regardless of the height of the control tube. Otherwise, convergent or divergent flow will occur, especially when the control tube height is small. While divergence is eliminated in coarse soils using control tubes, it is reduced but not eliminated in finer soils, particularly for fluxes < 100 mm/a. Passive wick fluxmeters were tested in soils ranging from nonvegetated semiarid settings in the United States to grasslands in Germany and rain-fed crops in New Zealand and the South Pacific. Where side-by-side comparisons of drainage were made between passive wick fluxmeters and conventional lysimeters in the United States and Germany, agreement was very good. In semiarid settings, drainage was found to depend upon precipitation distribution, surface soil, topographic relief, and the type and amount of vegetation. In Washington State, United States, soil texture dominated all factors controlling drainage from test landfill covers. As expected, drainage was greatest (> 60% annual precipitation) from gravel surfaces and least (no drainage) from silt loam soils. In Oregon and New Mexico, United States, and in New Zealand, drainage showed substantial spatial variability. The New Mexico tests were located in semiarid canyon bottom terraces, with flash flood prone locations having extremely high drainage/precipitation ratios. In the wettest environments, drainage was found to be closely linked to the rate and duration of precipitation events. C1 [Gee, G. W.; Zhang, Z. F.] Pacific NW Natl Lab, Div Energy & Environm, Hydrol Grp, Richland, WA 99352 USA. [Green, S. R.] HortResearch, Sustainable Land Use, Palmerston North 4442, New Zealand. [Keller, J. M.] GeoSyst Anal Inc, Hood River, OR 97031 USA. [Meissner, R.; Rupp, H.] UFZ Helmholtz Ctr Environm Res, Dept Soil Phys, D-39615 Falkenberg, Germany. [Newman, B. D.] IAEA, Isotope Hydrol Sect, A-1400 Vienna, Austria. [Salazar, J.] Los Alamos Natl Lab, Div Earth & Environm Sci, Los Alamos, NM 87545 USA. [van der Velde, M.] Inst Environm & Sustainabil, European Commiss, Joint Res Ctr, I-21020 Ispra, Italy. [Waugh, W. J.] SM Stoller Corp, Grand Junction, CO 81503 USA. RP Gee, GW (reprint author), Pacific NW Natl Lab, Div Energy & Environm, Hydrol Grp, Richland, WA 99352 USA. EM glendon.gee@pnl.gov RI van der Velde, Marijn/B-3305-2009; Green, Steve/I-3938-2013; OI Green, Steve/0000-0002-4020-3430; Zhang, Fred/0000-0001-8676-6426 FU U.S. Department of Energy [DE-AC06-76RL01830] FX This work was performed as part of the Hanford Remediation Closure project for the Richland Operations Office of the U.S. Department of Energy under contract DE-AC06-76RL01830. We acknowledge our collaborators, A. Anandacoomaraswamy and his staff at the Tea Research Institute, Talawakele, Sri Lanka, and the Environmental Group, Hort Research Group, Palmerston North, New Zealand. We also acknowledge the generous support from two commercial water fluxmeter suppliers, Decagon Devices, Pullman, Washington, United States www. decagon. com), and Sledge Sales, Dayton, Oregon, United States http://sledgesales.com), who provided test instruments and have been willing to modify equipment as designs and applications have evolved. Funding for the Los Alamos study was provided by the Los Alamos National Laboratory Environmental Restoration Project, and we thank Danny Katzman for his support. We also wish to acknowledge Marvin Gard, Bob Gray, and Tracy Schofield for their assistance in the field. Funding for the Oregon study was provided by the U. S. Department of Energy Office of Legacy Management. NR 48 TC 21 Z9 21 U1 5 U2 20 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0043-1397 J9 WATER RESOUR RES JI Water Resour. Res. PD APR 22 PY 2009 VL 45 AR W04420 DI 10.1029/2008WR007088 PG 18 WC Environmental Sciences; Limnology; Water Resources SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water Resources GA 438EX UT WOS:000265539800003 ER PT J AU Herbst, RW Guce, A Bryngelson, PA Higgins, KA Ryan, KC Cabelli, DE Garman, SC Maroney, MJ AF Herbst, Robert W. Guce, Abigail Bryngelson, Peter A. Higgins, Khadine A. Ryan, Kelly C. Cabelli, Diane E. Garman, Scott C. Maroney, Michael J. TI Role of Conserved Tyrosine Residues in NiSOD Catalysis: A Case of Convergent Evolution SO BIOCHEMISTRY LA English DT Article ID MANGANESE SUPEROXIDE-DISMUTASE; LOW-TEMPERATURE THERMOCHROMISM; ACTIVE-SITE; ESCHERICHIA-COLI; REACTION-MECHANISM; STRUCTURAL INVESTIGATIONS; CRYSTAL-STRUCTURE; NICKEL-COMPLEXES; GLUTAMATE BRIDGE; METAL-COMPLEXES AB Superoxide dismutases rely on protein structural elements to adjust the redox potential of the metallocenter to an optimum value near 300 mV (vs NHE), to provide a source of protons for catalysis, and to control the access of anions to the active site. These aspects of the catalytic mechanism are examined herein for recombinant preparations of the nickel-dependent SOD (NiSOD) from Streptomyces coelicolor and for a series of mutants that affect a key tyrosine residue, Tyr9 (Y9F-, Y62F-, Y9F/Y62F-, and D3A-NiSOD). Structural aspects of the nickel sites are examined by a combination of EPR and X-ray absorption spectroscopies, and by single-crystal X-ray diffraction at similar to 1.9 angstrom resolution in the case of Y917- and D3A-NiSODs. The functional effects of the mutations are examined by kinetic studies employing pulse radiolytic generation of O(2)(-) and by redox titrations. These studies reveal that although the structure of the nickel center in NiSOD is unique, the ligand environment is designed to optimize the redox potential at 290 mV and results in the oxidation of 50% of the nickel centers in the oxidized hexamer. Kinetic investigations show that all of the mutant proteins have considerable activity. In the case of Y9F-NiSOD, the enzyme exhibits saturation behavior that is not observed in wild-type (WT) NiSOD and suggests that release of peroxide is inhibited. The crystal structure of Y9F-NiSOD reveals an anion binding site that is occupied by either Cl(-) or Br(-) and is located close to but not within bonding distance of the nickel center. The structure of D3A-NiSOD reveals that in addition to affecting the interaction between subunits, this mutation repositions Tyr9 and leads to altered chemistry with peroxide. Comparisons with Mn(SOD) and Fe(SOD) reveal that although different strategies for adjusting the redox potential and supply of protons are employed, NiSOD has evolved a similar strategy for controlling the access of anions to the active site. C1 [Herbst, Robert W.; Guce, Abigail; Bryngelson, Peter A.; Higgins, Khadine A.; Ryan, Kelly C.; Garman, Scott C.; Maroney, Michael J.] Univ Massachusetts, Dept Chem, Amherst, MA 01003 USA. [Garman, Scott C.] Univ Massachusetts, Dept Biochem & Mol Biol, Amherst, MA 01003 USA. [Cabelli, Diane E.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. RP Garman, SC (reprint author), Univ Massachusetts, Dept Chem, Amherst, MA 01003 USA. EM mmaroney@chemistry.umass.edu FU National Science Foundation [MCB-0321482, CHE-0809188]; University of Massachusetts; Charles H. Hood Foundation; U.S. Department of Energy; Division of Materials Sciences and Division of Chemical Sciences; U.S. Department of Energy [DE-AC02-98CH 10886] FX This work was Supported by National Science Foundation Grants MCB-0321482 and CHE-0809188 to M.J.M. S.C.G. acknowledges the University of Massachusetts and the Charles H. Hood Foundation for support. The U.S. Department of Energy, Division of Materials Sciences and Division of Chemical Sciences, supported XAS and X-ray diffraction data collection at the National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory. The National Institutes of Health supports beamlines X313 and X6A at NSLS. Pulse radiolysis studies were funded under Contract DE-AC02-98CH 10886 with the U.S. Department of Energy. NR 74 TC 38 Z9 38 U1 1 U2 11 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0006-2960 J9 BIOCHEMISTRY-US JI Biochemistry PD APR 21 PY 2009 VL 48 IS 15 BP 3354 EP 3369 DI 10.1021/bi802029t PG 16 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 432YL UT WOS:000265170200012 PM 19183068 ER PT J AU Heroux, A Bozinovski, DM Valley, MP Fitzpatrick, PF Orville, AM AF Heroux, Annie Bozinovski, Dragana M. Valley, Michael P. Fitzpatrick, Paul F. Orville, Allen M. TI Crystal Structures of Intermediates in the Nitroalkane Oxidase Reaction SO BIOCHEMISTRY LA English DT Article ID ACYL-COA DEHYDROGENASE; FAD-CONTAINING FORM; FUSARIUM-OXYSPORUM; SUBSTRATE-SPECIFICITY; MECHANISM; FLAVIN; CHAIN; ACTIVATION; MUTATION; COMPLEX AB The flavoenzyme nitroalkane oxidase is a member of the acyl-CoA dehydrogenase superfamily. Nitroalkane oxidase catalyzes the oxidation of neutral nitroalkanes to nitrite and the corresponding aldehydes or ketones. Crystal structures to 2.2 angstrom resolution or better of enzyme complexes with bound substrates and of a trapped substrate-flavin adduct are described. The D402N enzyme has no detectable activity with neutral nitroalkanes [Valley, M. P., and Fitzpatrick, P. F. (2003) J. Am. Chem. Soc. 125, 8738-8739]. The structure of the D402N enzyme crystallized in the presence of 1-nitrohexane or 1-nitrooctane shows the presence of the substrate in the binding site. The aliphatic chain of the substrate extends into a tunnel leading to the enzyme surface. The oxygens of the substrate nitro group interact both with amino acid residues and with the 2'-hydroxyl of the FAD. When nitroalkane oxidase oxidizes nitroalkanes in the presence of cyanide, an electrophilic flavin imine intermediate can be trapped [Valley, M. P., Tichy, S. E., and Fitzpatrick, P. F. (2005) J. Am. Chem. Soc. 127, 2062-2066]. The structure of the enzyme trapped with cyanide during oxidation of 1-nitrohexane shows the presence of the modified flavin. A continuous hydrogen bond network connects the nitrogen of the CN-hexyl-FAD through the FAD 2'-hydroxyl to a chain of water molecules extending to the protein surface. Together, our complementary approaches provide strong evidence that the flavin cofactor is in the appropriate oxidation state and correlates well with the putative intermediate state observed within each of the crystal structures. Consequently, these results provide important structural descriptions of several steps along the nitroalkane oxidase reaction cycle. C1 [Bozinovski, Dragana M.; Valley, Michael P.; Fitzpatrick, Paul F.] Texas A&M Univ, Dept Biochem & Biophys, College Stn, TX 77843 USA. [Fitzpatrick, Paul F.] Texas A&M Univ, Dept Chem, College Stn, TX 77843 USA. [Heroux, Annie; Orville, Allen M.] Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. RP Fitzpatrick, PF (reprint author), Univ Texas Hlth Sci Ctr San Antonio, Dept Biochem, MC 7760, San Antonio, TX 78229 USA. EM fitzpatrick@biochem.uthscsa.edu; amorv@bnl.gov FU National Institutes of Health [GM058698]; The Welch Foundation [A-1245]; A.M.O. from the Offices of Biological and Environmental Research; U.S. Department of Energy; National Center for Research Resources [2 P41 RR012408]; National Institutes of Health; Use of the National Synchrotron Light Source at Brookhaven National Laboratory; U.S. Department of Energy Office of Basic Energy Sciences [DE-AC02-98CH 10886] FX This research was Supported in part by grants to P.F.F. from the National Institutes of Health (GM058698) and The Welch Foundation (A-1245) and to A.M.O. from the Offices of Biological and Environmental Research, U.S. Department of Energy, the National Center for Research Resources (2 P41 RR012408) of the National Institutes of Health, and the U.S. Department of Energy. Use of the National Synchrotron Light Source at Brookhaven National Laboratory was supported by the U.S. Department of Energy Office of Basic Energy Sciences, under Contract DE-AC02-98CH 10886. NR 24 TC 16 Z9 17 U1 0 U2 6 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0006-2960 J9 BIOCHEMISTRY-US JI Biochemistry PD APR 21 PY 2009 VL 48 IS 15 BP 3407 EP 3416 DI 10.1021/bi8023042 PG 10 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 432YL UT WOS:000265170200017 PM 19265437 ER PT J AU Perry, JJP Hearn, AS Cabelli, DE Nick, HS Tainer, JA Silverman, DN AF Perry, J. Jefferson P. Hearn, Amy S. Cabelli, Diane E. Nick, Harry S. Tainer, John A. Silverman, David N. TI Contribution of Human Manganese Superoxide Dismutase Tyrosine 34 to Structure and Catalysis SO BIOCHEMISTRY LA English DT Article ID AMYOTROPHIC-LATERAL-SCLEROSIS; ACTIVE-SITE; THERMUS-THERMOPHILUS; TETRAMERIC INTERFACE; DIMERIC INTERFACE; AQUEOUS-SOLUTIONS; CRYSTAL-STRUCTURE; PULSE-RADIOLYSIS; PROSTATE-CANCER; GLUTAMINE 143 AB Superoxide dismutase (SOD) enzymes are critical in controlling levels of reactive oxygen species (ROS) that are linked to aging, cancer, and neurodegenerative disease. Superoxide (O(2)(center dot-)) produced during respiration is removed by the product of the SOD2 gene, the homotetrameric manganese superoxide dismutase (MnSOD). Here, we examine the structural and catalytic roles of the highly conserved active-site residue Tyr34, based upon structure-function studies of MnSOD enzymes with mutations at this site. Substitution of Tyr34 with five different amino acids retained the active-site protein structure and assembly but caused a substantial decrease in the catalytic rate constant for the reduction of superoxide. The rate constant for formation of the product inhibition complex also decreases but to a much lesser extent, resulting in a net increase in the level of product inhibited form of the mutant enzymes. Comparisons of crystal structures and catalytic rates also suggest that one mutation, Y34V, interrupts the hydrogen-bonded network, which is associated with a rapid dissociation of the product-inhibited complex. Notably, with three of the Tyr34 mutants, we also observe an intermediate in catalysis, which has not been reported previously. Thus, these mutants establish a means of trapping a catalytic intermediate that promises to help elucidate the mechanism of catalysis. C1 [Perry, J. Jefferson P.; Tainer, John A.] Scripps Res Inst, Dept Mol Biol, La Jolla, CA 92037 USA. [Perry, J. Jefferson P.] Amrita Univ, Sch Biotechnol, Kollam 690525, Kerala, India. [Tainer, John A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Mol Biol, Berkeley, CA 94720 USA. [Cabelli, Diane E.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. [Hearn, Amy S.; Nick, Harry S.] Univ Florida, Dept Neurosci, Gainesville, FL 32510 USA. [Silverman, David N.] Univ Florida, Dept Pharmacol, Gainesville, FL 32610 USA. RP Perry, JJP (reprint author), Scripps Res Inst, Dept Mol Biol, 10666 N Torrey Pines Rd, La Jolla, CA 92037 USA. EM jjperry@scripps.edu; silvrmn@ufl.edu FU National Institutes of Health [GM54903] FX This work was supported by National Institutes of Health Grant GM54903 to D.N.S. NR 56 TC 27 Z9 30 U1 2 U2 15 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0006-2960 J9 BIOCHEMISTRY-US JI Biochemistry PD APR 21 PY 2009 VL 48 IS 15 BP 3417 EP 3424 DI 10.1021/bi8023288 PG 8 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 432YL UT WOS:000265170200018 PM 19265433 ER PT J AU Agrelo, R Souabni, A Novatchkova, M Haslinger, C Leeb, M Komnenovic, V Kishimoto, H Gresh, L Kohwi-Shigematsu, T Kenner, L Wutz, A AF Agrelo, Ruben Souabni, Abdallah Novatchkova, Maria Haslinger, Christian Leeb, Martin Komnenovic, Vukoslav Kishimoto, Hiroyuki Gresh, Lionel Kohwi-Shigematsu, Terumi Kenner, Lukas Wutz, Anton TI SATB1 Defines the Developmental Context for Gene Silencing by Xist in Lymphoma and Embryonic Cells SO DEVELOPMENTAL CELL LA English DT Article ID X-CHROMOSOME INACTIVATION; MAR-BINDING PROTEIN; STEM-CELLS; HISTONE MACROH2A1; EXPRESSION; DIFFERENTIATION; MAINTENANCE; INITIATION; LOCALIZATION; PROPAGATION AB The noncoding Xist RNA triggers silencing of one of the two female X chromosomes during X inactivation in mammals. Gene silencing by Xist is restricted to a special developmental context in early embryos and specific hematopoietic precursors. Here, we show that Xist can initiate silencing in a lymphoma model. We identify the special AT-rich binding protein SATB1 as an essential silencing factor. Loss of SATB1 in tumor cells abrogates the silencing function of Xist. In lymphocytes Xist localizes along SATB1-organized chromatin and SATB1 and Xist influence each other's pattern of localization. SATB1 and its homolog SATB2 are expressed during the initiation window for X inactivation in ES cells. Importantly, viral expression of SATB1 or SATB2 enables gene silencing by Xist in embryonic fibroblasts, which normally do not provide an initiation context. Thus, our data establish SATB1 as a crucial silencing factor contributing to the initiation of X inactivation. C1 [Agrelo, Ruben; Souabni, Abdallah; Novatchkova, Maria; Leeb, Martin; Komnenovic, Vukoslav; Kishimoto, Hiroyuki; Gresh, Lionel; Wutz, Anton] Res Inst Mol Pathol, A-1030 Vienna, Austria. [Haslinger, Christian] Boehringer Ingelheim Austria, A-1121 Vienna, Austria. [Kohwi-Shigematsu, Terumi] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA. [Kenner, Lukas] Inst Klin Pathol, A-1090 Vienna, Austria. [Kenner, Lukas] LBI CR, A-1090 Vienna, Austria. RP Wutz, A (reprint author), Res Inst Mol Pathol, Dr Bohr Gasse 7, A-1030 Vienna, Austria. EM wutz@imp.univie.ac.at RI Leeb, Martin/N-3861-2015; OI Gresh, Lionel/0000-0002-2333-1748; Leeb, Martin/0000-0001-5114-4782; Kenner, Lukas/0000-0003-2184-1338 FU Vienna Science and Technology Fund (WWTF); Boehringer Ingelheim; Austrian Science Fund (FWF) FX We thank Gabi Stengl for FACS analysis, Pavel Pasierbek for help with miroscopy, Johannes Tkadletz for figure preparation, Andreas Bichl and Denise Imre for maintenance of the mouse colony, and Erwin F. Wagner, Denise Barlow, and Joseph Penninger for critically reading the mansucript. We thank Masaru Miyano for thymic cell preparations. This research was supported by a grant from the Vienna Science and Technology Fund (WWTF), by the IMP through Boehringer Ingelheim, and the Austrian Science Fund (FWF). The IMP is funded in part through Boehringer Ingelheim and C.H. is employed by Boehringer Ingelheim. NR 45 TC 125 Z9 130 U1 0 U2 9 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 1534-5807 J9 DEV CELL JI Dev. Cell PD APR 21 PY 2009 VL 16 IS 4 BP 507 EP 516 DI 10.1016/j.devcel.2009.03.006 PG 10 WC Cell Biology; Developmental Biology SC Cell Biology; Developmental Biology GA 437EX UT WOS:000265470400007 PM 19386260 ER PT J AU Ho, PJ Miller, MR Santra, R AF Ho, Phay J. Miller, Michelle R. Santra, Robin TI Field-free molecular alignment for studies using x-ray pulses from a synchrotron radiation source SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article DE dichroism; molecular orientation; synchrotron radiation; X-ray absorption; X-ray scattering ID POLARIZED INELASTIC-SCATTERING; NONRESONANT LASER FIELDS; ABSORPTION FINE-STRUCTURE; RAMAN-SPECTROSCOPY; K EDGE; DIATOMIC-MOLECULES; ALIGNING MOLECULES; PENDULAR STATES; WAVE-PACKETS; DIFFRACTION AB A short, intense laser pulse may be employed to create a spatially aligned molecular sample that persists after the laser pulse is over. We theoretically investigate whether this impulsive molecular alignment technique may be exploited for experiments using x-ray pulses from a third-generation synchrotron radiation facility. Using a linear rigid rotor model, the alignment dynamics of model molecular systems with systematically increasing size is calculated utilizing both a quantum density matrix formalism and a classical ensemble method. For each system, the alignment dynamics obtained for a 95 ps laser is compared with that obtained for a 10 ps laser pulse. The average degree of alignment after the laser pulse, as calculated quantum mechanically, increases with the size of the molecule. This effect is quantitatively reproduced by the classical calculations. The average degree of impulsive alignment is high enough to induce a pronounced linear dichroism in resonant x-ray absorption using the intense 100 ps x-ray pulses currently available. However, for structural studies based on elastic x-ray scattering, bright x-ray pulses with a duration of 1 ps or shorter will be required in order to make full use of impulsive molecular alignment. C1 [Ho, Phay J.; Santra, Robin] Argonne Natl Lab, Argonne, IL 60439 USA. [Miller, Michelle R.] Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA. [Santra, Robin] Univ Chicago, Dept Phys, Chicago, IL 60637 USA. RP Ho, PJ (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM rsantra@anl.gov RI Santra, Robin/E-8332-2014 OI Santra, Robin/0000-0002-1442-9815 FU Office of Basic Energy Sciences, Office of Science, US Department of Energy [DE-AC02-06CH11357] FX We thank Elliot Kanter, Stephen Southworth, and Linda Young for discussions. This work was supported by the Office of Basic Energy Sciences, Office of Science, US Department of Energy, under Contract No. DE-AC02-06CH11357. M. M. would like to thank Argonne National Laboratory and the US Department of Energy, Office of Science for creating, organizing, and funding the Science Undergraduate Laboratory Internship program. NR 78 TC 7 Z9 7 U1 0 U2 2 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD APR 21 PY 2009 VL 130 IS 15 AR 154310 DI 10.1063/1.3120608 PG 9 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 437KL UT WOS:000265486300023 PM 19388749 ER PT J AU Voulgarakis, NK Rasmussen, KO Welch, PM AF Voulgarakis, N. K. Rasmussen, K. O. Welch, P. M. TI Dendrimers as synthetic gene vectors: Cell membrane attachment SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article DE biomembranes; cellular biophysics; DNA; genetics; molecular biophysics ID ATOMIC-FORCE MICROSCOPY; POLY(AMIDOAMINE) DENDRIMERS; MOLECULAR-DYNAMICS; PAMAM DENDRIMERS; CHARGED SURFACE; PORE FORMATION; DRUG-DELIVERY; ADSORPTION; POLYELECTROLYTES; MODEL AB We present molecular-level simulations of dendrimer/DNA complexes in the presence of a model cell membrane. We determine the required conditions for the complex to arrive intact at the membrane, and the lifetime of the complex as it resides attached to the membrane. Our simulations directly pertain to critical issues arising in emerging gene delivery therapeutic applications, where a molecular carrier is required to deliver DNA segments to the interior of living cells. C1 Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. RP Voulgarakis, NK (reprint author), Univ Calif Berkeley, Dept Chem Engn, 101A Gilman Hall, Berkeley, CA 94720 USA. EM nvoul@berkeley.edu RI Rasmussen, Kim/B-5464-2009; Voulgarakis, Nikolaos/A-8711-2010; OI Rasmussen, Kim/0000-0002-4029-4723; Welch, Paul/0000-0001-5614-2065 FU U. S. Department of Energy Office of Biological and Environmental Research [SCFY081004] FX This work was carried out under the auspices of the National Nuclear Security Administration of the U. S. Department of Energy at the Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396. This work is supported by the U. S. Department of Energy Office of Biological and Environmental Research under work proposal number SCFY081004. NR 30 TC 17 Z9 17 U1 1 U2 11 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD APR 21 PY 2009 VL 130 IS 15 AR 155101 DI 10.1063/1.3109902 PG 5 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 437KL UT WOS:000265486300043 PM 19388769 ER PT J AU Zhang, LN Singh, S Tian, CS Shen, YR Wu, Y Shannon, MA Brinker, CJ AF Zhang, Luning Singh, Seema Tian, Chuanshan Shen, Y. Ron Wu, Yan Shannon, Mark A. Brinker, C. Jeffery TI Nanoporous silica-water interfaces studied by sum-frequency vibrational spectroscopy SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article DE adsorption; atomic force microscopy; fractals; liquid structure; nanoporous materials; pH; silicon compounds; surface charging; thin films; water ID ATOMIC-FORCE MICROSCOPE; MESOPOROUS THIN-FILMS; SUPERHYDROPHOBIC STATES; PROTON TRANSPORT; SOLID-SURFACES; GENERATION; CHARGE; DESALINATION; CALIBRATION; TRANSITION AB Using sum-frequency vibrational spectroscopy, we found that water structure at nanoporous silica/water interfaces depended on the nanoporous film structure. For a periodic, self-assembled nanoporous film with monosized 2 nm pores occupying 20% of the top surface area, the surface vibrational spectrum was dominated by water in contact with silica, bare or covered by silane, at the top surface. It resembled the spectral characteristic of the hydrophilic water/silica or the hydrophobic water/silane interface. For a fractal nanoporous film with pores ranging from 5 to 50 nm in size occupying 90% of the top surface, the spectrum for a trimethyl silane-coated superhydrophobic porous film resembled largely that of a water/air interface. Only when the silane was completely removed would the spectrum revert to that characteristic of a hydrophilic water/silica interface. The surface charging behaviors of the bare nanoporous films in water with different pH were monitored by spectroscopic measurements and atomic force microscopy force measurements. The point of zero charge for the periodic porous film is around pH 2, similar to that of the flat silica surface. The point of zero charge could only be determined to be pH < 6 for the fractal porous film because the thin fractal solid network limited the amount of surface charge and therefore, the accuracy of the measurements. C1 [Zhang, Luning; Tian, Chuanshan; Shen, Y. Ron] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Singh, Seema; Brinker, C. Jeffery] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Wu, Yan; Shannon, Mark A.] Univ Illinois, Dept Mech Sci & Engn, Urbana, IL 61801 USA. [Brinker, C. Jeffery] Univ New Mexico, Dept Chem & Nucl Engn, Albuquerque, NM 87131 USA. RP Shen, YR (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. EM luning.zhang@sri.com; seesing@sandia.gov; yrshen@calmail.berkeley.edu FU NSF Science and Technology Center of Advanced Materials for Purification of Water with Systems [CTS-0120978]; Office of Science, U. S. Department of Energy; Sandia National Laboratory; Air Force Office of Scientific Research; LUNA Innovations FX This work was supported by the NSF Science and Technology Center of Advanced Materials for Purification of Water with Systems (Water CAMPWS; Grant No. CTS-0120978). C.J.B. and S. S. acknowledge the support from Office of Science, U. S. Department of Energy, LDRD program of Sandia National Laboratory, Air Force Office of Scientific Research, and LUNA Innovations. NR 56 TC 22 Z9 22 U1 3 U2 40 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD APR 21 PY 2009 VL 130 IS 15 AR 154702 DI 10.1063/1.3118906 PG 10 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 437KL UT WOS:000265486300039 PM 19388765 ER PT J AU Colaco, R Serro, AP Eryilmaz, OL Erdemir, A AF Colaco, R. Serro, A. P. Eryilmaz, O. L. Erdemir, A. TI Micro-to-nano triboactivity of hydrogenated DLC films SO JOURNAL OF PHYSICS D-APPLIED PHYSICS LA English DT Article ID ATOMIC-FORCE MICROSCOPE; CARBON COATINGS; WEAR; NANOINDENTATION; TRIBOLOGY; FRICTION; SCALE; TIP AB In this paper, we present the results of a systematic study directed toward submicrometric scale triboactivity of a range of hydrogenated diamond-like-carbon (H: DLC) films derived from source gases with different hydrogen-to-carbon ratios. The H: DLC films were deposited on Si substrates in a plasma enhanced chemical vapour deposition system. Specifically, we produced three kinds of H: DLC films, using pure acetylene, pure methane and 25% methane +75% hydrogen as the precursor source gases. Samples were subjected to wettability and depth sensing ultramicroindentation tests, and micro-to-nanoscale friction and wear studies using a nanotribometer and an atomic force microscope. The results of our study revealed a very close correlation between the wettability and the tribo-mechanical response of the H: DLC films at micro-to-nanoscales and their hydrogen-to-carbon ratio, i.e. lower hydrogen-to-carbon ratio leads to higher hardness (H) and lower water contact angles. Moreover, our results indicated a strong correlation between the hardness of the films and the threshold for severe wear damage. This threshold can be expressed by the ratio between the average Hertzian contact stress and the hardness which, in this study, is close to unity. C1 [Colaco, R.] Univ Tecn Lisboa, Inst Super Tecn, Dept Mat Engn, P-1049001 Lisbon, Portugal. [Colaco, R.] Univ Tecn Lisboa, Inst Super Tecn, ICEMS, P-1049001 Lisbon, Portugal. [Serro, A. P.] Inst Super Tecn, CQE, P-1049001 Lisbon, Portugal. [Serro, A. P.] Inst Super Ciencias Saude Egas Moniz, P-2829511 Caparica, Portugal. [Eryilmaz, O. L.; Erdemir, A.] Argonne Natl Lab, Div Energy Syst, Argonne, IL 60439 USA. RP Colaco, R (reprint author), Univ Tecn Lisboa, Inst Super Tecn, Dept Mat Engn, Av Rovisco Pais, P-1049001 Lisbon, Portugal. RI Colaco, Rogerio/B-5432-2013; Serro, Ana /H-7797-2012; OI Colaco, Rogerio/0000-0001-7374-6741; Serro, Ana /0000-0002-6179-9296; Colaco, Rogerio/0000-0002-5529-1621 FU Portuguese Foundation for Science and Technology [PTDC/CTM68142/2006]; US Department of Energy; Office of Energy Efficiency and Renewable Energy; Freedom Car and Vehicle Technology Program [DE-AC02-06CH11357] FX The authors would like to thank the Portuguese Foundation for Science and Technology (FCT - Project Nanoffawn, PTDC/CTM68142/2006) and the US Department of Energy, Office of Energy Efficiency and Renewable Energy, Freedom Car and Vehicle Technology Program (Contract No DE-AC02-06CH11357) for the financial support. The authors would also like to thank the European Science Foundation (ESF) scientific program 'NATRIBO'. NR 23 TC 9 Z9 9 U1 1 U2 13 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0022-3727 J9 J PHYS D APPL PHYS JI J. Phys. D-Appl. Phys. PD APR 21 PY 2009 VL 42 IS 8 AR 085307 DI 10.1088/0022-3727/42/8/085307 PG 8 WC Physics, Applied SC Physics GA 434AT UT WOS:000265248300061 ER PT J AU Kucheyev, SO Azarov, AY Titov, AI Karaseov, PA Kuchumova, TM AF Kucheyev, S. O. Azarov, A. Yu Titov, A. I. Karaseov, P. A. Kuchumova, T. M. TI Energy spike effects in ion-bombarded GaN SO JOURNAL OF PHYSICS D-APPLIED PHYSICS LA English DT Article ID IMPLANTED GAN; DAMAGE BUILDUP; COLLISION CASCADES; GALLIUM NITRIDE; HEAVY-IONS; TEMPERATURE; ACCUMULATION; AMORPHIZATION; IRRADIATION; SILICON AB We study structural disorder in GaN bombarded at room temperature with 1.3 keV amu(-1) PF(n) (n = 0, 2 and 4) cluster ions. Results are compared with our previous studies of irradiation with atomic ions of different masses. An algorithm for cascade density calculations that take into account the formation of subcascades is presented. Quantitative analysis of both new and previous data shows that an increase in the cascade density above a certain critical value results in a rapid increase in the rate of planar amorphization and the rate of damage buildup in the crystal bulk. Both such rates increase with decreasing sample temperature. This threshold-like behaviour suggests an important role of nonlinear energy spikes in the formation of stable implantation disorder in GaN. We also discuss the striking difference between cascade density effects in damage buildup in different semiconductors, including GaN, ZnO and Si. C1 [Kucheyev, S. O.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Azarov, A. Yu; Titov, A. I.; Karaseov, P. A.; Kuchumova, T. M.] St Petersburg State Polytech Univ, Dept Phys Elect, St Petersburg 195251, Russia. RP Kucheyev, SO (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. EM kucheyev@llnl.gov RI Karaseov, Platon/P-6861-2015; Titov, Andrey/A-4608-2017 OI Karaseov, Platon/0000-0003-2511-0188; Titov, Andrey/0000-0003-4933-9534 FU RFFI [06-08-00989, 08-08-00585, 09-08-92657]; US DOE [DE-AC52-07NA27344] FX The authors thank G Li for supplying GaN samples and A Gladkikh for help with data analysis. Work in St Petersburg was supported by the RFFI (grants 06-08-00989, 08-08-00585 and 09-08-92657). Work at LLNL was performed under the auspices of the US DOE by LLNL under Contract DE-AC52-07NA27344. NR 34 TC 18 Z9 18 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0022-3727 J9 J PHYS D APPL PHYS JI J. Phys. D-Appl. Phys. PD APR 21 PY 2009 VL 42 IS 8 AR 085309 DI 10.1088/0022-3727/42/8/085309 PG 10 WC Physics, Applied SC Physics GA 434AT UT WOS:000265248300063 ER PT J AU Lorenz, CD Lane, JMD Chandross, M Stevens, MJ Grest, GS AF Lorenz, Christian D. Lane, J. Matthew D. Chandross, Michael Stevens, Mark J. Grest, Gary S. TI Molecular Dynamics Simulations of Water Confined between Matched Pairs of Hydrophobic and Hydrophilic Self-Assembled Monolayers SO LANGMUIR LA English DT Article ID PHASE-TRANSITIONS; LIQUID WATER; FORCE-FIELD; THIN-LAYERS; SURFACES; FILMS; MEMS; NANOTRIBOLOGY; SILICA; INTERFACE AB We have conducted a molecular dynamics (MD) simulation study of water confined between methyl-terminated and carboxyl-terminated alkylsilane self-assembled monolayers (SAMs) on amorphous silica substrates. In doing so, we have investigated the dynamic and structural behavior of the water molecules when compressed to loads ranging from 20 to 950 MPa for two different amounts of water (27 and 58 water molecules/nm(2)). Within the studied range of loads, we observe that no water molecules penetrate the hydrophobic region of the carboxyl-terminated SAMs. However, we observe that at loads larger than 150 MPa water molecules penetrate the methyl-terminated SAMs and form hydrogen-bonded chains that connect to the bulk water. The diffusion coefficient of the water molecules decreases as the water film becomes thinner and pressure increases. When compared to bulk diffusion coefficients of water molecules at the various loads, we found that the diffusion coefficients for the systems with 27 water molecules/nm(2) are reduced by a factor of 20 at low loads and by a factor of 40 at high loads, while the diffusion coefficients for the systems with 58 water molecules/nm(2) are reduced by a factor of 25 at all loads. C1 [Lorenz, Christian D.] Kings Coll London, Dept Mech Engn, Mat Res Grp, London WC2R 2LS, England. [Lane, J. Matthew D.; Chandross, Michael; Stevens, Mark J.; Grest, Gary S.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Lorenz, CD (reprint author), Kings Coll London, Dept Mech Engn, Mat Res Grp, London WC2R 2LS, England. EM chris.lorenz@kcl.ac.uk RI Lorenz, Christian/A-6996-2017 OI Lorenz, Christian/0000-0003-1028-4804 FU KCL Division of Engineering; United States Department of Energy [DE-AC04-94AL85000.] FX C.L. acknowledges the KCL Division of Engineering Start-Up funds for supporting this project. C.L. also acknowledges the computer resources, technical expertise and assistance provided by the Barcelona Super-computing center - Centro Nacional de Supercomputacion, which was used for some of the simulations. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract DE-AC04-94AL85000. NR 41 TC 12 Z9 13 U1 1 U2 30 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0743-7463 J9 LANGMUIR JI Langmuir PD APR 21 PY 2009 VL 25 IS 8 BP 4535 EP 4542 DI 10.1021/la803940b PG 8 WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 434NP UT WOS:000265281700051 PM 19278251 ER PT J AU Tan, CY AF Tan, C. Y. TI Chromaticity tracking with a phase modulation/demodulation technique in the Tevatron SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Tevatron; Chromaticity tracker; Chromaticity tracking; Tune tracker PLL; Phase modulation; Phase demodulation AB The Tevatron chromaticity tracker (CT) has been successfully commissioned and is now operational. The basic idea behind the CT is that when the phase of the Tevatron RE is slowly modulated, the beam momentum is also modulated. This momentum modulation is coupled transversely via chromaticity to manifest as a phase modulation on the betatron tune. And so by phase demodulating the betatron tune, the chromaticity can be recovered. However, for the phase demodulation to be successful, it is critical that the betatron tune be a coherent signal that can be easily picked up by a phase detector. This is easily done because the Tevatron has a phase locked loop based tune tracker which coherently excites the beam at the betatron tune. (C) 2009 Elsevier B.V. All rights reserved. C1 Fermilab Natl Accelerator Lab, Accelerator Div Tevatron, Batavia, IL 60510 USA. RP Tan, CY (reprint author), Fermilab Natl Accelerator Lab, Accelerator Div Tevatron, MS 341,POB 500, Batavia, IL 60510 USA. EM cytan@fnal.gov NR 6 TC 2 Z9 2 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD APR 21 PY 2009 VL 602 IS 2 BP 352 EP 356 DI 10.1016/j.nima.2009.01.132 PG 5 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 441ZW UT WOS:000265810200009 ER PT J AU Gros, S Hammond, NJ Lister, CJ Chowdhury, P Fischer, SM Freeman, SJ AF Gros, S. Hammond, N. J. Lister, C. J. Chowdhury, P. Fischer, S. M. Freeman, S. J. TI Performance tests of large area position-sensitive planar germanium detectors with conventional and amorphous contacts SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Position sensitive germanium detectors ID SIDED STRIP DETECTOR; GE DETECTORS; GREAT SPECTROMETER; HPGE; SPECTROSCOPY; RESOLUTION; TELESCOPE; SMARTPET; SIMULATIONS AB Large area position-sensitive planar germanium wafers are increasingly being used for a variety of gamma-ray imaging and tracking tasks. Position sensitivity can be achieved through measuring charge collected on orthogonal strip electrodes, and by digital pulse shape analysis. However, the development of this detector technology has been slow, and criteria to measure improved performance have not been well established. We have studied 93 and 88 mill square segmented detectors of 20 mm thickness made with conventional boron and lithium electrodes, and two 100 mm circular segmented detectors of 14 mm thickness with amorphous germanium contacts. We have compared these detectors with a planar detector of 15 mm thickness. Conventional energy resolution tests of individual strips are insufficient to fully categorize the performance of the position sensitive detectors. We propose some basic tests which can rapidly quantify any segmented detector characteristics, and show potential inadequacies which become important when imaging or tracking is attempted. Published by Elsevier B.V. C1 [Gros, S.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Phys, Berkeley, CA 94720 USA. [Gros, S.; Hammond, N. J.; Lister, C. J.; Fischer, S. M.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Chowdhury, P.] Univ Massachusetts Lowell, Dept Phys, Lowell, MA 01854 USA. [Fischer, S. M.] Depaul Univ, Dept Phys, Chicago, IL 60614 USA. [Freeman, S. J.] Univ Manchester, Schuster Lab, Manchester M13 9PL, Lancs, England. RP Gros, S (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Phys, Berkeley, CA 94720 USA. EM sgros@lbl.gov RI Freeman, Sean/B-1280-2010; OI Freeman, Sean/0000-0001-9773-4921; Hammond, Neil/0000-0001-6390-8874 FU US Department of Energy, Office of Nuclear Physics [DE-AC02-06-CH11357] FX We would like to thank Pat Sangsingkeow from AMETEK-ORTEC, Ethan Hull and Dick Pehl from PhD's Inc., and Bernard Phlips and Dick Kroeger from the Naval Research Laboratories for many enlightening discussions on detector properties and performance, and suggestions for system improvements. This research was supported by the US Department of Energy, Office of Nuclear Physics, under contract DE-AC02-06-CH11357. NR 41 TC 8 Z9 8 U1 0 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD APR 21 PY 2009 VL 602 IS 2 BP 467 EP 476 DI 10.1016/j.nima.2008.12.194 PG 10 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 441ZW UT WOS:000265810200026 ER PT J AU Gavron, A Smith, LE Ressler, JJ AF Gavron, A. Smith, L. Eric Ressler, Jennifer J. TI Analysis of spent fuel assemblies using a lead slowing down spectrometer SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Spent fuel measurement; Non-destructive assay ID ASSAY AB We analyze the potential of using Lead Slowing Down Spectrometer technology for assaying spent fuel. This initial Study demonstrates that it may be feasible to design a system that will provide approximately 1% statistical precision in the determination of the (239)Pu concentration in a pressurized water reactor spent-fuel assembly, for intermediate-to-high burnup levels, using commercial neutron Sources, and an array of ultra-high-purity (238)U threshold fission detectors. LSDS technology can also determine the concentration of (241)Pu and (235)U. There is indication that missing pins can be detected, as can asymmetry in the fuel bundle. The analytical model used to perform the viability assessment is described, as are the systematic effects that were not incorporated in this analysis, but could significantly degrade actual performance. These results provide the justification and impetus for the initiation of followup studies that will incorporate the complete Suite of effects that impact the accuracy of LSDS measurements. (C) 2009 Elsevier B.V. All rights reserved, C1 [Gavron, A.] Los Alamos Natl Lab, Los Alamos Neutron Sci Ctr, Los Alamos, NM 87545 USA. [Smith, L. Eric; Ressler, Jennifer J.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Gavron, A (reprint author), Los Alamos Natl Lab, Los Alamos Neutron Sci Ctr, Mail Stop H-845, Los Alamos, NM 87545 USA. EM gavron@lanl.gov RI Ressler, Jennifer Jo/F-2279-2010 NR 15 TC 5 Z9 5 U1 1 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD APR 21 PY 2009 VL 602 IS 2 BP 581 EP 587 DI 10.1016/j.nima.2009.01.017 PG 7 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 441ZW UT WOS:000265810200042 ER PT J AU Menlove, HO Menlove, SH Tobin, SJ AF Menlove, H. O. Menlove, S. H. Tobin, S. J. TI Fissile and fertile nuclear material measurements using a new differential die-away self-interrogation technique SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Spent fuel measurement; Plutonium assay; Differential die-away; Nuclear safeguard; Neutron detector AB This paper presents a new technique for the measurement of fissile and fertile nuclear materials in spent fuel and plutonium-laden materials such as mixed oxide (MOX) fuel. The technique, called differential die-away self-interrogation, is similar to traditional differential die-away analysis, but it does not require a pulsed neutron generator or pulsed beam accelerator, and it can measure the fertile mass in addition to the fissile mass. The new method uses the spontaneous fission neutrons from (244)Cm in spent fuel and (240)Pu effective neutrons in MOX as the "pulsed" neutron source, with an average of similar to 2.7 neutrons per pulse. The time-correlated neutrons from the spontaneous fission and the subsequent induced fissions are analyzed as a function of time to determine the spontaneous fission rate, the induced fast-neutron fissions, and the induced thermal-neutron fissions. The fissile mass is determined from the induced thermal-neutron fissions that are produced by reflected thermal neutrons that originated from the spontaneous fission reaction. The sensitivity of the fissile mass measurement is enhanced by the use of two measurements, with and without a cadmium liner between the sample and a hydrogenous moderator that surrounds the sample. The fertile mass is determined from the multiplicity analysis of the neutrons detected soon after the initial triggering neutron is detected. The method obtains good sensitivity by the optimal design of two different neutron die-away regions: a short die-away for the neutron detector region and a longer die-away for the sample interrogation region. Published by Elsevier B.V. C1 [Menlove, H. O.; Tobin, S. J.] Los Alamos Natl Lab, Nucl Nonproliferat Div, Los Alamos, NM 87545 USA. [Menlove, S. H.] STS, Los Alamos, NM 87544 USA. RP Menlove, HO (reprint author), Los Alamos Natl Lab, Nucl Nonproliferat Div, POB 1663, Los Alamos, NM 87545 USA. EM hmenlove@lanl.gov FU Department of Energy's Office of Nuclear Energy; National Nuclear Security Administration's Office of Nonproliferation and International Security FX The authors would like to acknowledge support from the Department of Energy's Office of Nuclear Energy and the National Nuclear Security Administration's Office of Nonproliferation and International Security. NR 10 TC 11 Z9 11 U1 0 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD APR 21 PY 2009 VL 602 IS 2 BP 588 EP 593 DI 10.1016/j.nima.2009.01.157 PG 6 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 441ZW UT WOS:000265810200043 ER PT J AU Kim, H Kao, CM Xie, Q Chen, CT Zhou, L Tang, F Frisch, H Moses, WW Choong, WS AF Kim, H. Kao, C. M. Xie, Q. Chen, C. T. Zhou, L. Tang, F. Frisch, H. Moses, W. W. Choong, W. S. TI A multi-threshold sampling method for TOF-PET signal processing SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Positron emission tomography; Multi-threshold sampling; Time resolution ID SCINTILLATION PULSES; DETECTORS AB As an approach to realizing all-digital data acquisition for positron emission tomography (PET), we have previously proposed and studied a multi-threshold sampling method to generate samples of a PET event waveform with respect to a few user-defined amplitudes. In this sampling scheme, one can extract both the energy and timing information for an event. In this paper, we report our prototype implementation of this sampling method and the performance results obtained with this prototype. The prototype consists of two Multi-threshold discriminator boards and a time-to-digital converter (TDC) board. Each of the multi-threshold discriminator boards takes one input and provides up to eight threshold levels, which can be defined by users, for sampling the input signal. The TDC board employs the CERN HPTDC chip that determines the digitized times of the leading and failing edges of the discriminator output pulses. We connect our prototype electronics to the outputs of two Hamamatsu R9800 photomultiplier tubes (PMTs) that are individually coupled to a 6.25 x 6.25 x 25 mm(3) LSO crystal. By analyzing waveform samples generated by using four thresholds, we obtain a coincidence timing resolution of about 340 ps and an similar to 18% energy resolution at 511 keV. We are also able to estimate the decay-time constant from the resulting samples and obtain a mean value of 44 ns with an similar to 9 ns FWHM. In comparison, using digitized waveforms obtained at a 20 GSps sampling rate for the same LSO/PMT modules we obtain similar to 300 ps coincidence timing resolution, similar to 14% energy resolution at 511 keV, and similar to 5 ns FWHM for the estimated decay-time constant. Details of the results on the timing and energy resolutions by using the multi-threshold method indicate that it is a promising approach for implementing digital PET data acquisition. (C) 2009 Elsevier B.V. All rights reserved. C1 [Kim, H.; Kao, C. M.; Xie, Q.; Chen, C. T.] Univ Chicago, Dept Radiol, Chicago, IL 60637 USA. [Zhou, L.; Tang, F.; Frisch, H.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Moses, W. W.; Choong, W. S.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Kim, H (reprint author), Univ Chicago, Dept Radiol, Chicago, IL 60637 USA. EM heejongkim@uchicago.edu FU NIBIB NIH HHS [R01 EB006085-02, R01 EB006085-01A2, R01 EB006085-04, T32 EB002103-18, R01 EB006085, R01 EB006085-03, T32 EB002103] NR 10 TC 30 Z9 30 U1 0 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD APR 21 PY 2009 VL 602 IS 2 BP 618 EP 621 DI 10.1016/j.nima.2009.01.100 PG 4 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 441ZW UT WOS:000265810200049 PM 19690623 ER PT J AU Huang, W Wang, LS AF Huang, Wei Wang, Lai-Sheng TI Au-10(-): isomerism and structure-dependent O-2 reactivity SO PHYSICAL CHEMISTRY CHEMICAL PHYSICS LA English DT Article ID GOLD CLUSTERS; PHOTOELECTRON-SPECTROSCOPY; METAL-CLUSTERS; ANIONS; OXYGEN; OXIDATION; CAGES AB Structure isomers of the Au-10 cluster and their chemical reactivity with O-2 are studied using photoelectron spectroscopy under different experimental conditions. In addition to the global minimum triangular D-3h structure, at least three low-lying isomers (X', X '', and X''') are observed distinctly using argon tagging and O-2 titration. The D-3h structure has a very high electron affinity of 3.88 V, whereas the low-lying, isomers have lower electron affinities (2.86, 3.09, and 3.45 eV for X', X '', X''', respectively). It is found that the D-3h global minimum does not react with O2 and can only form a physisorbed Au-10(O-2)(-) van der Waals complex under cold experimental conditions. The three low-lying isomers are reactive with O-2 and can be systematically titrated out of the cluster beam using an O-2-seeded carrier gas, leaving a clean D-3h Au-10(-) beam. C1 [Huang, Wei; Wang, Lai-Sheng] Washington State Univ, Dept Phys, Richland, WA 99354 USA. [Huang, Wei; Wang, Lai-Sheng] Pacific NW Natl Lab, Div Chem & Mat Sci, Richland, WA 99352 USA. RP Wang, LS (reprint author), Washington State Univ, Dept Phys, 2710 Univ Dr, Richland, WA 99354 USA. EM ls.wang@pnl.gov FU National Science Foundation [CHE-0749496] FX This work was supported by the National Science Foundation (CHE-0749496) and performed at the W.R Wiley Environment Molecular Sciences Laboratory, a national scientific user facility sponsored by DOEs Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory, operated for DOE by Battelle. NR 22 TC 39 Z9 39 U1 0 U2 13 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1463-9076 J9 PHYS CHEM CHEM PHYS JI Phys. Chem. Chem. Phys. PD APR 21 PY 2009 VL 11 IS 15 BP 2663 EP 2667 DI 10.1039/b823159a PG 5 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 442IY UT WOS:000265836100011 PM 19421523 ER PT J AU Bischofs, IB Hug, JA Liu, AW Wolf, DM Arkin, AP AF Bischofs, Ilka B. Hug, Joshua A. Liu, Aiwen W. Wolf, Denise M. Arkin, Adam P. TI Complexity in bacterial cell-cell communication: Quorum signal integration and subpopulation signaling in the Bacillus subtilis phosphorelay SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE heterogeneity; Phr; quorum sensing; sporulation; model ID PROTEIN ASPARTATE PHOSPHATASES; SPORULATION GENE-EXPRESSION; SIGMA-H; CIRCUIT; PHR; BISTABILITY; INITIATION; PATHWAYS; SYSTEM; SPO0A AB A common form of quorum sensing in Gram-positive bacteria is mediated by peptides that act as phosphatase regulators (Phr) of receptor aspartyl phosphatases (Raps). In Bacillus subtilis, several Phr signals are integrated in sporulation phosphorelay signal transduction. We theoretically demonstrate that the phosphorelay can act as a computational machine performing a sensitive division operation of kinase-encoded signals by quorum-modulated Rap signals, indicative of cells computing a "food per cell'' estimate to decide whether to enter sporulation. We predict expression from the rapA-phrA operon to bifurcate as relative environmental signals change in a developing population. We experimentally observe that the rapA-phrA operon is heterogeneously induced in sporulating microcolonies. Uninduced cells sporulate rather synchronously early on, whereas the RapA/PhrA subpopulation sporulates less synchronously throughout later stationary phase. Moreover, we show that cells sustain PhrA expression during periods of active growth. Together with the model, these findings suggest that the phosphorelay may normalize environmental signals by the size of the (sub) population actively competing for nutrients (as signaled by PhrA). Generalizing this concept, the various Phrs could facilitate subpopulation communication in dense isogenic communities to control the physiological strategies followed by differentiated subpopulations by interpreting (environmental) signals based on the spatiotemporal community structure. C1 [Bischofs, Ilka B.; Wolf, Denise M.; Arkin, Adam P.] Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Bischofs, Ilka B.; Liu, Aiwen W.; Arkin, Adam P.] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94704 USA. [Hug, Joshua A.] Univ Calif Berkeley, Dept Elect Engn, Berkeley, CA 94704 USA. RP Bischofs, IB (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, 1 Cyclotron Rd,MS Calvin, Berkeley, CA 94720 USA. EM ibbischofs@lbl.gov; aparkin@lbl.gov RI Arkin, Adam/A-6751-2008 OI Arkin, Adam/0000-0002-4999-2931 FU National Institutes of Health [R01 GM073010-01]; Deutsche Forschungsgemeinschaft [BI1213-1] FX We thank D. Lee, Eric Battenberg, and H. Patel for help with image processing; O. Kuipers and G. Price (University of California, Berkeley, CA) for providing strains; G. Price, R. Munch, B. Lazazzera, and A. Grossman for discussions; and A. Deutschbauer, R. Skupsky, and S. Aviran for critical reading of the manuscript. This work was supported by National Institutes of Health Grant R01 GM073010-01 and by the Deutsche Forschungsgemeinschaft through fellowship BI1213-1 (to I. B. B.). NR 33 TC 56 Z9 57 U1 1 U2 20 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD APR 21 PY 2009 VL 106 IS 16 BP 6459 EP 6464 DI 10.1073/pnas.0810878106 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 437SI UT WOS:000265506800009 PM 19380751 ER PT J AU Shvartsburg, AA Noskov, SY Purves, RW Smith, RD AF Shvartsburg, Alexandre A. Noskov, Sergei Y. Purves, Randy W. Smith, Richard D. TI Pendular proteins in gases and new avenues for characterization of macromolecules by ion mobility spectrometry SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE mass spectrometry; protein structure ID IONIZATION MASS-SPECTROMETRY; ELECTROSPRAY-IONIZATION; CYTOCHROME-C; UBIQUITIN CONFORMERS; ELECTRIC-FIELDS; PHASE; SEPARATION; CONFORMATIONS; MS; CHROMATOGRAPHY AB Polar molecules align in electric fields when the dipole energy (proportional to field intensity E x dipole moment p) exceeds the thermal rotational energy. Small molecules have low p and align only at inordinately high E or upon extreme cooling. Many biomacromolecules and ions are strong permanent dipoles that align at E achievable in gases and room temperature. The collision cross-sections of aligned ions with gas molecules generally differ from orientationally averaged quantities, affecting ion mobilities measured in ion mobility spectrometry (IMS). Field asymmetric waveform IMS (FAIMS) separates ions by the difference between mobilities at high and low E and hence can resolve and identify macroion conformers based on the mobility difference between pendular and free rotor states. The exceptional sensitivity of that difference to ion geometry and charge distribution holds the potential for a powerful method for separation and characterization of macromolecular species. Theory predicts that the pendular alignment of ions in gases at any E requires a minimum p that depends on the ion mobility, gas pressure, and temperature. At ambient conditions used in current FAIMS systems, p for realistic ions must exceed approximate to 300-400 Debye. The dipole moments of proteins statistically increase with increasing mass, and such values are typical above approximate to 30 kDa. As expected for the dipole-aligned regime, FAIMS analyses of protein ions and complexes of approximate to 30-130 kDa show an order-of-magnitude expansion of separation space compared with smaller proteins and other ions. C1 [Shvartsburg, Alexandre A.; Smith, Richard D.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. [Purves, Randy W.] Thermo Fisher Sci, San Jose, CA 95134 USA. [Noskov, Sergei Y.] Univ Calgary, Dept Biol Sci, Calgary, AB T2N 1N4, Canada. [Noskov, Sergei Y.] Univ Calgary, Inst Biocomplex & Informat, Calgary, AB T2N 1N4, Canada. RP Shvartsburg, AA (reprint author), Pacific NW Natl Lab, Div Biol Sci, POB 999, Richland, WA 99352 USA. EM alexandre.shvartsburg@pnl.gov RI Noskov, Sergei/B-3654-2010; Smith, Richard/J-3664-2012; OI Smith, Richard/0000-0002-2381-2349; Purves, Randy/0000-0002-1274-837X FU National Institutes of Health; Natural Sciences and Engineering Research Council (Canada); Alberta Heritage Foundation for Medical Research FX We thank Dr. Tadeusz Bryskiewicz for help with data collection, Drs. Keqi Tang and Stephen L. Coy for discussions of pendular alignment of ions in FAIMS, and Jose D. Faraldo-Gomez for help with REMD algorithm. This work was supported by the National Institutes of Health, the Natural Sciences and Engineering Research Council (Canada), and the Alberta Heritage Foundation for Medical Research. NR 49 TC 20 Z9 21 U1 0 U2 19 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD APR 21 PY 2009 VL 106 IS 16 BP 6495 EP 6500 DI 10.1073/pnas.0812318106 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 437SI UT WOS:000265506800015 PM 19351899 ER PT J AU Numano, R Szobota, S Lau, AY Gorostiza, P Volgraf, M Roux, B Trauner, D Isacoff, EY AF Numano, Rika Szobota, Stephanie Lau, Albert Y. Gorostiza, Pau Volgraf, Matthew Roux, Benoit Trauner, Dirk Isacoff, Ehud Y. TI Nanosculpting reversed wavelength sensitivity into a photoswitchable iGluR SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE glutamate receptor; ion channel; optics; photoswitch ID IONOTROPIC GLUTAMATE RECEPTORS; ION CHANNELS; ACETYLCHOLINE-RECEPTOR; OPTICAL SWITCHES; BOUND AGONISTS; REMOTE-CONTROL; K+ CHANNEL; SELECTIVITY; ACTIVATION; MECHANISMS AB Photoswitched tethered ligands (PTLs) can be used to remotely control protein function with light. We have studied the geometric and conformational factors that determine the efficacy of PTL gating in the ionotropic glutamate receptor iGluR6 using a family of photoiosomerizable MAG (maleimide-azobenzene-glutamate) PTLs that covalently attach to the clamshell ligand-binding domain. Experiments and molecular dynamics simulations of the modified proteins show that optical switching depends on 2 factors: (i) the relative occupancy of the binding pocket in the 2 photoisomers of MAG and (ii) the degree of clamshell closure that is possible given the disposition of the MAG linker. A synthesized short version of MAG turns the channel on in either the cis or trans state, depending on the point of attachment. This yin/yang optical control makes it possible for 1 wavelength of light to elicit action potentials in one set of neurons, while deexciting a second set of neurons in the same preparation, whereas a second wavelength has the opposite effect. The ability to generate opposite responses with a single PTL and 2 versions of a target channel, which can be expressed in different cell types, paves the way for engineering opponency in neurons that mediate opposing functions. C1 [Numano, Rika; Szobota, Stephanie; Gorostiza, Pau; Isacoff, Ehud Y.] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Volgraf, Matthew; Trauner, Dirk] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Szobota, Stephanie] Univ Calif Berkeley, Biophys Grad Program, Berkeley, CA 94720 USA. [Numano, Rika] Univ Tokyo, Lab Anim Res Ctr, Inst Med Sci, Minato Ku, Tokyo 1088639, Japan. [Lau, Albert Y.; Roux, Benoit] Univ Chicago, Dept Biochem & Mol Biol, Chicago, IL 60637 USA. [Isacoff, Ehud Y.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat, Berkeley, CA 94720 USA. [Isacoff, Ehud Y.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Phys Biosci, Berkeley, CA 94720 USA. RP Trauner, D (reprint author), Univ Munich, Dept Chem & Biochem, D-81377 Munich, Germany. EM dirk.trauner@cup.uni-muenchen.de; ehud@berkeley.edu RI Gorostiza, Pau/Q-2544-2015 OI Gorostiza, Pau/0000-0002-7268-5577 FU Human Frontiers Science Program [RGP23-2005]; National Institutes of Health (NIH) Nanomedicine Development Center [PN2 EY018241]; Japan Society for the Promotion of Science; Institute of Tokyo Vascular Disease; Generalitat de Catalunya (Nanotechnology Program); Ministerio de Educacion y Ciencia (Spain); Human Frontiers Science Program; Novartis and Roche Biosciences; NIH [GM-62342] FX We thank K. M. Partin for the iGluR6 cDNA, T. Machen for guidance on calcium imaging, and Harald Janovjak for helpful discussion. This work was supported by Human Frontiers Science Program Grant RGP23-2005 and National Institutes of Health (NIH) Nanomedicine Development Center for the Optical Control of Biological Function Grant PN2 EY018241 as well as postdoctoral fellowships from the Japan Society for the Promotion of Science and the Institute of Tokyo Vascular Disease (to R.N.) and the Generalitat de Catalunya (Nanotechnology Program), Ministerio de Educacion y Ciencia (Spain) and the Human Frontiers Science Program (to P. G.). D. T. thanks Novartis and Roche Biosciences for support. A.Y.L and B. R were supported by NIH Grant GM-62342. NR 26 TC 55 Z9 55 U1 0 U2 7 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD APR 21 PY 2009 VL 106 IS 16 BP 6814 EP 6819 DI 10.1073/pnas.0811899106 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 437SI UT WOS:000265506800070 PM 19342491 ER PT J AU Bidkar, RA Tung, RC Alexeenko, AA Sumali, H Raman, A AF Bidkar, Rahul A. Tung, Ryan C. Alexeenko, Alina A. Sumali, Hartono Raman, Arvind TI Unified theory of gas damping of flexible microcantilevers at low ambient pressures SO APPLIED PHYSICS LETTERS LA English DT Article DE Boltzmann equation; cantilevers; damping; elemental semiconductors; Knudsen flow; microfluidics; microsensors; silicon; slip flow ID DEPENDENCE AB Predicting the gas damping of microcantilevers oscillating in different vibration modes in unbounded gas at low pressures is relevant for increasing the sensitivity of microcantilever-based sensors. While existing free-molecular theories are valid only at very high Knudsen numbers, continuum models are valid only at very low Knudsen numbers. We solve the quasisteady Boltzmann equation and compute a closed-form fit for gas damping of rectangular microcantilevers that is valid over four orders of magnitude of Knudsen numbers spanning the free-molecular, the transition, and the low pressure slip flow regimes. Experiments are performed using silicon microcantilevers under controlled pressures to validate the theory. C1 [Bidkar, Rahul A.; Tung, Ryan C.; Raman, Arvind] Purdue Univ, Birck Nanotechnol Ctr, W Lafayette, IN 47907 USA. [Bidkar, Rahul A.; Tung, Ryan C.; Raman, Arvind] Purdue Univ, Sch Mech Engn, W Lafayette, IN 47907 USA. [Alexeenko, Alina A.] Purdue Univ, Sch Aeronaut & Astronaut, W Lafayette, IN 47907 USA. [Sumali, Hartono] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Bidkar, RA (reprint author), Purdue Univ, Birck Nanotechnol Ctr, W Lafayette, IN 47907 USA. EM raman@ecn.purdue.edu RI Alexeenko, Alina/B-7168-2011 FU Department of Energy [National Nuclear Security Administration] [DE-FC52-08NA28617, DE-AC04-94-AL85000]; SNL [623235] FX This material is based upon work supported by the Department of Energy [National Nuclear Security Administration] under Award No. DE-FC52-08NA28617 and by the SNL under Contract No. 623235. Part of this work was conducted at SNL, which is a multiprogram laboratory operated under Sandia Corporation, a Lockheed Martin Co., for the United States DoE under Contract No. DE-AC04-94-AL85000. We also thank Prof. J. Murthy (Purdue) for insightful discussions on the topic. NR 13 TC 20 Z9 20 U1 1 U2 10 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD APR 20 PY 2009 VL 94 IS 16 AR 163117 DI 10.1063/1.3122933 PG 3 WC Physics, Applied SC Physics GA 442ER UT WOS:000265823300072 ER PT J AU Peralta, XG Wanke, MC Arrington, CL Williams, JD Brener, I Strikwerda, A Averitt, RD Padilla, WJ Smirnova, E Taylor, AJ O'Hara, JF AF Peralta, X. G. Wanke, M. C. Arrington, C. L. Williams, J. D. Brener, I. Strikwerda, A. Averitt, R. D. Padilla, W. J. Smirnova, E. Taylor, A. J. O'Hara, J. F. TI Large-area metamaterials on thin membranes for multilayer and curved applications at terahertz and higher frequencies SO APPLIED PHYSICS LETTERS LA English DT Article DE Fourier transform spectra; infrared spectra; membranes; metamaterials; microwave materials; Q-factor; silicon compounds ID OPTICAL FREQUENCIES; INDEX AB A possible path for fabricating three-dimensional metamaterials with curved geometries at optical and infrared frequencies is to stack flexible metamaterial layers. We have fabricated highly uniform metamaterials at terahertz frequencies on large-area, low-stress, free-standing 1 mu m thick silicon nitride membranes. Their response remains comparable to that of similar structures on thick substrates as measured by the quality factor of the resonances. Transmission measurements with a Fourier transform infrared spectrometer highlight the advantage of fabricating high frequency metamaterials on thin membranes as etalon effects are eliminated. Releasing the membranes enables layering schemes and placement onto curved surfaces in order to create three-dimensional structures. C1 [Peralta, X. G.; Wanke, M. C.; Arrington, C. L.; Williams, J. D.; Brener, I.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Strikwerda, A.; Averitt, R. D.] Boston Univ, Dept Phys, Boston, MA 02215 USA. [Padilla, W. J.] Boston Coll, Dept Phys, Chestnut Hill, MA 02467 USA. [Smirnova, E.; Taylor, A. J.; O'Hara, J. F.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Peralta, XG (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM xomalin.peralta@utsa.edu RI Brener, Igal/G-1070-2010; Padilla, Willie/A-7235-2008; Peralta, Xomalin/F-3710-2014; OI Brener, Igal/0000-0002-2139-5182; Padilla, Willie/0000-0001-7734-8847; Peralta, Xomalin/0000-0002-4034-3214; Simakov, Evgenya/0000-0002-7483-1152 FU CINT and the IC Postdoctoral Research Fellowship Program; U.S. DOE's NNSA [DE-AC04-94AL85000, DE-AC52-06NA25396] FX We acknowledge support from the CINT and the IC Postdoctoral Research Fellowship Program (X.G.P.). Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Co., for the U.S. DOE's NNSA under Contract No. DE-AC04-94AL85000. Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by Los Alamos National Security, LLC, for the NNSA of the U.S. DOE under Contract No. DE-AC52-06NA25396. NR 20 TC 27 Z9 27 U1 0 U2 21 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD APR 20 PY 2009 VL 94 IS 16 AR 161113 DI 10.1063/1.3114416 PG 3 WC Physics, Applied SC Physics GA 442ER UT WOS:000265823300013 ER PT J AU Ramirez, MO Kumar, A Denev, SA Chu, YH Seidel, J Martin, LW Yang, SY Rai, RC Xue, XS Ihlefeld, JF Podraza, NJ Saiz, E Lee, S Klug, J Cheong, SW Bedzyk, MJ Auciello, O Schlom, DG Orenstein, J Ramesh, R Musfeldt, JL Litvinchuk, AP Gopalan, V AF Ramirez, M. O. Kumar, A. Denev, S. A. Chu, Y. H. Seidel, J. Martin, L. W. Yang, S. -Y. Rai, R. C. Xue, X. S. Ihlefeld, J. F. Podraza, N. J. Saiz, E. Lee, S. Klug, J. Cheong, S. W. Bedzyk, M. J. Auciello, O. Schlom, D. G. Orenstein, J. Ramesh, R. Musfeldt, J. L. Litvinchuk, A. P. Gopalan, V. TI Spin-charge-lattice coupling through resonant multimagnon excitations in multiferroic BiFeO3 SO APPLIED PHYSICS LETTERS LA English DT Article DE bismuth compounds; ferroelectric materials; ferroelectric transitions; magnons; multiferroics; Neel temperature; phonon-magnon interactions; phonons; Raman spectra ID TEMPERATURE; FILMS AB Spin-charge-lattice coupling mediated by multimagnon processes is demonstrated in multiferroic BiFeO3. Experimental evidence of two- and three-magnon excitations as well as multimagnon coupling at electronic energy scales and high temperatures are reported. Temperature dependent Raman experiments show up to five resonant enhancements of the two-magnon excitation below the Neel temperature. These are shown to be collective interactions between on-site Fe d-d electronic resonance, phonons, and multimagnons. C1 [Ramirez, M. O.; Kumar, A.; Denev, S. A.; Ihlefeld, J. F.; Podraza, N. J.; Schlom, D. G.; Gopalan, V.] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA. [Ramirez, M. O.; Kumar, A.; Denev, S. A.; Ihlefeld, J. F.; Podraza, N. J.; Schlom, D. G.; Gopalan, V.] Penn State Univ, Mat Res Inst, University Pk, PA 16802 USA. [Chu, Y. H.; Seidel, J.; Martin, L. W.; Yang, S. -Y.; Ihlefeld, J. F.; Saiz, E.; Ramesh, R.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Chu, Y. H.; Seidel, J.; Orenstein, J.; Ramesh, R.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Rai, R. C.; Xue, X. S.; Musfeldt, J. L.] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. [Lee, S.; Cheong, S. W.] State Univ New Jersey, Dept Phys, Piscataway, NJ 08854 USA. [Lee, S.; Cheong, S. W.] State Univ New Jersey, Astron Rutgers Ctr Emergent Mat, Piscataway, NJ 08854 USA. [Klug, J.; Bedzyk, M. J.] Northwestern Univ, Mat Res Ctr, Evanston, IL 60208 USA. [Klug, J.; Bedzyk, M. J.; Auciello, O.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Litvinchuk, A. P.] Univ Houston, Dept Phys, Houston, TX 77204 USA. [Litvinchuk, A. P.] Univ Houston, Texas Ctr Superconduct & Adv Mat, Houston, TX 77204 USA. RP Ramirez, MO (reprint author), Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA. EM mariola.ramirez@uam.es RI Xu, Xiaoshan/B-1255-2009; Ihlefeld, Jon/B-3117-2009; Bedzyk, Michael/B-7503-2009; Ying-Hao, Chu/A-4204-2008; Martin, Lane/H-2409-2011; Klug, Jeffrey/A-3653-2013; Litvinchuk, Alexander/K-6991-2012; Kumar, Amit/C-9662-2012; Schlom, Darrell/J-2412-2013; Bedzyk, Michael/K-6903-2013; Orenstein, Joseph/I-3451-2015; Ramirez, Maria de la O/I-3439-2016 OI Rai, Ram/0000-0003-2475-2488; Xu, Xiaoshan/0000-0002-4363-392X; Ying-Hao, Chu/0000-0002-3435-9084; Martin, Lane/0000-0003-1889-2513; Litvinchuk, Alexander/0000-0002-5128-5232; Kumar, Amit/0000-0002-1194-5531; Schlom, Darrell/0000-0003-2493-6113; Ramirez, Maria de la O/0000-0002-1233-1769 FU National Science Foundation [DMR-0512165, DMR-0507146, DMR-0820404, DMR-0602986, DMR-0520513, DMR-0213623, DMR-0520471]; U.S. Department of Energy [DE-AC02-05CH11231, DE-FG02-01ER45885]; DOE/BES [DE-AC02-06CH11357] FX We acknowledge funding from the National Science Foundation Grant Nos. DMR-0512165, DMR-0507146, DMR-0820404, DMR-0507146, DMR-0820404, and DMR-0602986, DMR-0520513, DMR-0213623, and DMR-0520471 the MSD, BES U.S. Department of Energy under Contract Nos. DE-AC02-05CH11231 and DE-FG02-01ER45885 and the DOE/BES under Contract No. DE-AC02-06CH11357. NR 25 TC 30 Z9 30 U1 1 U2 28 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD APR 20 PY 2009 VL 94 IS 16 AR 161905 DI 10.1063/1.3118576 PG 3 WC Physics, Applied SC Physics GA 442ER UT WOS:000265823300020 ER PT J AU Sakiyama, Y Tomai, T Miyano, M Graves, DB AF Sakiyama, Yukinori Tomai, Takaaki Miyano, Masaru Graves, David B. TI Disinfection of E. coli by nonthermal microplasma electrolysis in normal saline solution SO APPLIED PHYSICS LETTERS LA English DT Article DE biological techniques; cellular biophysics; electrochemical electrodes; electrolysis; microorganisms; spectrochemical analysis; titanium ID PULSED ELECTRIC-FIELDS; ELECTROCHEMICAL DISINFECTION; BACTERICIDAL ACTIVITY; DISCHARGES; CELLS; WATER AB We present a unique method to inactivate microorganisms in 0.9% NaCl solution (normal saline solution) by means of microplasmas. The device consists of a thin titanium wire covered by a glass tube for insulation except the tip and a ground electrode. Application of an asymmetric high-frequency, high voltage results in the formation of microbubbles at both electrodes. Repetitive light emission is observed in the vicinity of the powered electrode. We employed E. coli bacteria to investigate the disinfection efficiency of the device. More than 99.5% of E. coli were deactivated in 180 s. The survival curve showed biphasic behavior. C1 [Sakiyama, Yukinori; Graves, David B.] Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. [Tomai, Takaaki] Univ Tokyo, Dept Adv Mat Sci, Chiba 2778561, Japan. [Miyano, Masaru] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA. RP Sakiyama, Y (reprint author), Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. EM ysaki@berkeley.edu FU Japan Society for the Promotion of Science FX The authors would like to thank Professor A. Majumdar of the Department of Mechanical Engineering, University of California at Berkeley, and Professor K. Kitano of the Center for Atomic and Molecular Technologies, Osaka University. T.T. is supported by Grants-in-Aid for the Research Fellowships for Young Scientists from the Japan Society for the Promotion of Science. NR 14 TC 40 Z9 40 U1 0 U2 14 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD APR 20 PY 2009 VL 94 IS 16 AR 161501 DI 10.1063/1.3122148 PG 3 WC Physics, Applied SC Physics GA 442ER UT WOS:000265823300015 ER PT J AU Tsetseris, L Logothetidis, S Pantelides, ST AF Tsetseris, L. Logothetidis, S. Pantelides, S. T. TI Migration of species in a prototype diffusion barrier: Cu, O, and H in TiN SO APPLIED PHYSICS LETTERS LA English DT Article DE ab initio calculations; copper; diffusion barriers; hydrogen; impurities; stoichiometry; titanium compounds; voids (solid) ID GRAIN-BOUNDARY DIFFUSION; NITRIDE THIN-FILMS; AUGMENTED-WAVE METHOD; MOS DEVICES; COPPER; HYDROGEN; METALLIZATION; SILICON; LAYERS AB Experimental data on the migration of Cu impurities in TiN and in similar diffusion-barriers used in electronic devices have led to conflicting suggestions about the underlying physical mechanisms. Here we use results of first-principles calculations, which are in agreement with measured activations energies, to elucidate the atomic-scale processes of moderate and rapid diffusion of Cu through the bulk and intergrain voids of TiN films, respectively. We also find that O and H impurities are fast diffusers in TiN. The results offer an assessment for the efficiency of TiN diffusion-barriers with respect to properties, such as nature of impurities, stoichiometry, and crystallinity. C1 [Tsetseris, L.; Logothetidis, S.] Aristotle Univ Thessaloniki, Dept Phys, GR-54124 Thessaloniki, Greece. [Tsetseris, L.; Pantelides, S. T.] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA. [Pantelides, S. T.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Tsetseris, L (reprint author), Aristotle Univ Thessaloniki, Dept Phys, GR-54124 Thessaloniki, Greece. EM leonidas.tsetseris@vanderbilt.edu FU McMinn Endowment at Vanderbilt University; AFOSR MURI [FA9550-05-1-0306] FX The authors acknowledge support by the McMinn Endowment at Vanderbilt University and AFOSR MURI under Grant No. FA9550-05-1-0306. NR 30 TC 24 Z9 24 U1 2 U2 47 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD APR 20 PY 2009 VL 94 IS 16 AR 161903 DI 10.1063/1.3122344 PG 3 WC Physics, Applied SC Physics GA 442ER UT WOS:000265823300018 ER PT J AU Xu, WZ Ye, ZZ Zeng, YJ Zhu, LP Zhao, BH Jiang, L Lu, JG He, HP Zhang, SB AF Xu, W. Z. Ye, Z. Z. Zeng, Y. J. Zhu, L. P. Zhao, B. H. Jiang, L. Lu, J. G. He, H. P. Zhang, S. B. TI ZnO light-emitting diode grown by plasma-assisted metal organic chemical vapor deposition (vol 88, 173506 2006) SO APPLIED PHYSICS LETTERS LA English DT Correction DE II-VI semiconductors; light emitting diodes; MOCVD; plasma materials processing; wide band gap semiconductors; zinc compounds C1 [Xu, W. Z.; Ye, Z. Z.; Zeng, Y. J.; Zhu, L. P.; Zhao, B. H.; Jiang, L.; Lu, J. G.; He, H. P.] Zhejiang Univ, State Key Lab Silicon Mat, Hangzhou 310027, Peoples R China. [Zhang, S. B.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Ye, ZZ (reprint author), Zhejiang Univ, State Key Lab Silicon Mat, Hangzhou 310027, Peoples R China. EM yezz@zju.edu.cn RI Krausnick, Jennifer/D-6291-2013; Zhang, Shengbai/D-4885-2013 OI Zhang, Shengbai/0000-0003-0833-5860 NR 1 TC 0 Z9 0 U1 2 U2 20 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD APR 20 PY 2009 VL 94 IS 16 AR 169901 DI 10.1063/1.3122923 PG 1 WC Physics, Applied SC Physics GA 442ER UT WOS:000265823300106 ER PT J AU Yang, S Halliburton, LE Manivannan, A Bunton, PH Baker, DB Klemm, M Horn, S Fujishima, A AF Yang, Shan Halliburton, L. E. Manivannan, A. Bunton, P. H. Baker, D. B. Klemm, M. Horn, S. Fujishima, A. TI Photoinduced electron paramagnetic resonance study of electron traps in TiO2 crystals: Oxygen vacancies and Ti3+ ions SO APPLIED PHYSICS LETTERS LA English DT Article DE electron traps; paramagnetic resonance; titanium compounds; vacancies (crystal) ID TITANIUM-DIOXIDE; DOPED TIO2; RUTILE; DEFECTS; PHOTOCATALYSTS AB Electron paramagnetic resonance (EPR) is used to identify photoinduced titanium-associated electron traps in TiO2 crystals (rutile). Defect production occurs at low temperature with 442 nm laser light. Spectra with S=1/2 and S=1 are assigned to singly ionized and neutral oxygen vacancies, respectively. These oxygen vacancies have their unpaired spins localized on the two neighboring titanium ions aligned along the c axis. A Ti3+ ion next to a Si4+ ion, a Ti3+ self-trapped electron, and a self-trapped hole shared by two adjacent oxygen ions are also observed. Isolated substitutional Fe3+ and Cr3+ ions serve as hole traps. C1 [Yang, Shan; Halliburton, L. E.; Manivannan, A.] W Virginia Univ, Dept Phys, Morgantown, WV 26506 USA. [Manivannan, A.] Natl Energy Technol Lab, Morgantown, WV 26507 USA. [Bunton, P. H.; Baker, D. B.] William Jewell Coll, Dept Phys, Liberty, MO 64068 USA. [Klemm, M.; Horn, S.] Univ Augsburg, Inst Phys, D-86135 Augsburg, Germany. [Fujishima, A.] Kanagawa Acad Sci & Technol, Takatsu Ku, Kanagawa 2130012, Japan. RP Yang, S (reprint author), W Virginia Univ, Dept Phys, Morgantown, WV 26506 USA. EM larry.halliburton@mail.wvu.edu RI Manivannan, Ayyakkannu/A-2227-2012; Yang, Shan /F-5020-2012; Fujishima, Akira/G-7701-2012 OI Manivannan, Ayyakkannu/0000-0003-0676-7918; NR 19 TC 62 Z9 63 U1 9 U2 68 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD APR 20 PY 2009 VL 94 IS 16 AR 162114 DI 10.1063/1.3124656 PG 3 WC Physics, Applied SC Physics GA 442ER UT WOS:000265823300038 ER PT J AU Graf, A Beiersdorfer, P Brown, GV Gu, MF AF Graf, A. Beiersdorfer, P. Brown, G. V. Gu, M. F. TI MEASUREMENT AND MODELING OF Na-LIKE Fe XVI INNER-SHELL SATELLITES BETWEEN 14.5 angstrom AND 18 angstrom SO ASTROPHYSICAL JOURNAL LA English DT Article DE line: identification; X-rays: general ID BEAM ION-TRAP; X-RAY-SPECTRUM; ELECTRON-BEAM; LABORATORY MEASUREMENTS; CRYSTAL SPECTROMETER; RELATIVE INTENSITY; CROSS-SECTIONS; LINE EMISSION; SOLAR; IRON AB We have used the University of California Lawrence Livermore National Laboratory's EBIT-I electron beam ion trap to perform measurements of the wavelengths and relative intensities of the X-ray lines from inner-shell satellite transitions in sodium-like Fe XVI. The measurements were carried out with high-resolution crystal and grating spectrometers and covered the 14.5-18 angstrom wavelength band. In contrast to some predicted line strengths and positions found in the literature, our results show that the strongest relatively unblended inner-shell satellites of Fe XVI are located near 15.2 angstrom. This is near the location of the 3d --> 2p intercombination line in Fe XVII. Calculations using the Flexible Atomic Code (FAC) are presented. The average deviation between the EBIT-I measurements and the FAC calculations for the wavelength positions and line ratios are 22 m angstrom and a factor of 2.3, respectively, where the average is taken over the ten features included in this work. C1 [Graf, A.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Beiersdorfer, P.; Brown, G. V.; Gu, M. F.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Graf, A (reprint author), Univ Calif Davis, Dept Phys, 1 Shields Ave, Davis, CA 95616 USA. FU Department of Energy [W-7405-ENG-48]; National Aeronautics and Space Administration ( NASA) [NNG06WF081] FX The work at Lawrence Livermore National Laboratory was performed under the auspices of the Department of Energy under Contract W-7405-ENG-48 and supported by the Astronomy and Physics Research and Analysis Program of the National Aeronautics and Space Administration ( NASA) under contract NNG06WF081. NR 49 TC 9 Z9 9 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD APR 20 PY 2009 VL 695 IS 2 BP 818 EP 824 DI 10.1088/0004-637X/695/2/818 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 430VS UT WOS:000265018300003 ER PT J AU Geballe, TR Saumon, D Golimowski, DA Leggett, SK Marley, MS Noll, KS AF Geballe, T. R. Saumon, D. Golimowski, D. A. Leggett, S. K. Marley, M. S. Noll, K. S. TI SPECTROSCOPIC DETECTION OF CARBON MONOXIDE IN TWO LATE-TYPE T DWARFS SO ASTROPHYSICAL JOURNAL LA English DT Article DE infrared: general; stars: individual (Gliese 570D, 2MASS J09373487+2931409); stars: low-mass, brown dwarfs ID GLIESE 229B; BROWN DWARFS; SPECTRAL CLASSIFICATION; ATMOSPHERIC CHEMISTRY; CHEMICAL-EQUILIBRIUM; ULTRACOOL DWARFS; SOLAR-SYSTEM; ABUNDANCES; PHOTOMETRY; JUPITER AB M-band spectra of two late-type T dwarfs, 2MASS J09373487+2931409, and Gliese 570D, confirm evidence from photometry that photospheric carbon monoxide (CO) is present at abundance levels far in excess of those predicted from chemical equilibrium. These new and unambiguous detections of CO, together with an earlier spectroscopic detection of CO in Gliese 229B and existing M-band photometry of a large selection of T dwarfs, suggest that vertical mixing in the photosphere drives the CO abundance out of chemical equilibrium and is a common, and likely universal feature of mid-to-late-type T dwarfs. The M-band spectra allow determinations of the timescale of vertical mixing in the radiative region of the atmosphere of each object, the first such measurements of this important parameter in late T dwarfs. A detailed analysis of the spectral energy distribution of 2MASS J09373487+2931409 results in the following values for metallicity, temperature, surface gravity, and luminosity: [M/H] similar to -0.3, T(eff) = 925-975 K, log g = 5.20-5.47, and log L/L(circle dot) = -5.308 +/- 0.027. The age is 3-10 Gyr and the mass is in the range 45-69 M(Jup). C1 [Geballe, T. R.; Leggett, S. K.] Gemini Observ, Hilo, HI 96720 USA. [Saumon, D.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Golimowski, D. A.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Marley, M. S.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Noll, K. S.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. RP Geballe, TR (reprint author), Gemini Observ, 670 N Aohoku Pl, Hilo, HI 96720 USA. EM tgeballe@gemini.edu RI Noll, Keith/C-8447-2012; Marley, Mark/I-4704-2013 NR 47 TC 34 Z9 34 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD APR 20 PY 2009 VL 695 IS 2 BP 844 EP 854 DI 10.1088/0004-637X/695/2/844 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 430VS UT WOS:000265018300006 ER PT J AU Dong, SB Gould, A Udalski, A Anderson, J Christie, GW Gaudi, BS Jaroszynski, M Kubiak, M Szymanski, MK Pietrzynski, G Soszynski, I Szewczyk, O Ulaczyk, K Wyrzykowski, L DePoy, DL Fox, DB Gal-Yam, A Han, C Lepine, S McCormick, J Ofek, E Park, BG Pogge, RW Abe, F Bennett, DP Bond, IA Britton, TR Gilmore, AC Hearnshaw, JB Itow, Y Kamiya, K Kilmartin, PM Korpela, A Masuda, K Matsubara, Y Motomura, M Muraki, Y Nakamura, S Ohnishi, K Okada, C Rattenbury, N Saito, T Sako, T Sasaki, M Sullivan, D Sumi, T Tristram, PJ Yanagisawa, T Yock, PCM Yoshoika, T Albrow, MD Beaulieu, JP Brillant, S Calitz, H Cassan, A Cook, KH Coutures, C Dieters, S Prester, DD Donatowicz, J Fouque, P Greenhill, J Hill, K Hoffman, M Horne, K Jorgensen, UG Kane, S Kubas, D Marquette, JB Martin, R Meintjes, P Menzies, J Pollard, KR Sahu, KC Vinter, C Wambsganss, J Williams, A Bode, M Bramich, DM Burgdorf, M Snodgrass, C Steele, I Doublier, V Foellmi, C AF Dong, Subo Gould, Andrew Udalski, Andrzej Anderson, Jay Christie, G. W. Gaudi, B. S. Jaroszynski, M. Kubiak, M. Szymanski, M. K. Pietrzynski, G. Soszynski, I. Szewczyk, O. Ulaczyk, K. Wyrzykowski, L. DePoy, D. L. Fox, D. B. Gal-Yam, A. Han, C. Lepine, S. McCormick, J. Ofek, E. Park, B. -G. Pogge, R. W. Abe, F. Bennett, D. P. Bond, I. A. Britton, T. R. Gilmore, A. C. Hearnshaw, J. B. Itow, Y. Kamiya, K. Kilmartin, P. M. Korpela, A. Masuda, K. Matsubara, Y. Motomura, M. Muraki, Y. Nakamura, S. Ohnishi, K. Okada, C. Rattenbury, N. Saito, To. Sako, T. Sasaki, M. Sullivan, D. Sumi, T. Tristram, P. J. Yanagisawa, T. Yock, P. C. M. Yoshoika, T. Albrow, M. D. Beaulieu, J. P. Brillant, S. Calitz, H. Cassan, A. Cook, K. H. Coutures, Ch. Dieters, S. Prester, D. Dominis Donatowicz, J. Fouque, P. Greenhill, J. Hill, K. Hoffman, M. Horne, K. Jorgensen, U. G. Kane, S. Kubas, D. Marquette, J. B. Martin, R. Meintjes, P. Menzies, J. Pollard, K. R. Sahu, K. C. Vinter, C. Wambsganss, J. Williams, A. Bode, M. Bramich, D. M. Burgdorf, M. Snodgrass, C. Steele, I. Doublier, Vanessa Foellmi, Cedric CA OGLE Collaboration FUN Collaboration MOA Collaboration PLANET RoboNet Collaborations TI OGLE-2005-BLG-071Lb, THE MOST MASSIVE M DWARF PLANETARY COMPANION? SO ASTROPHYSICAL JOURNAL LA English DT Article DE Galaxy: bulge; gravitational lensing; planetary systems ID GAS GIANT PLANETS; STANDARD STELLAR LIBRARY; MICROLENSING EVENT; EVOLUTIONARY SYNTHESIS; DETERMINISTIC MODEL; GRAVITATIONAL LENS; EXTRASOLAR PLANET; GALACTIC BULGE; HOST STARS; MASSES AB We combine all available information to constrain the nature of OGLE-2005-BLG-071Lb, the second planet discovered by microlensing and the first in a high-magnification event. These include photometric and astrometric measurements from the Hubble Space Telescope, as well as constraints from higher order effects extracted from the ground-based light curve, such as microlens parallax, planetary orbital motion, and finite-source effects. Our primary analysis leads to the conclusion that the host of Jovian planet OGLE-2005-BLG-071Lb is an M dwarf in the foreground disk with mass M = 0.46 +/- 0.04 M(circle dot), distance D(l) = 3.2 +/- 0.4 kpc, and thick-disk kinematics v(LSR) similar to 103 km s(-1). From the best-fit model, the planet has mass M(p) = 3.8 +/- 0.4 M(Jupiter), lies at a projected separation r(perpendicular to) = 3.6 +/- 0.2AU from its host, and so has an equilibrium temperature of T similar to 55 K, that is, similar to Neptune. A degenerate model gives similar planetary mass M(p) = 3.4 +/- 0.4 M(Jupiter) with a smaller projected separation, r(perpendicular to) = 2.1 +/- 0.1AU, and higher equilibrium temperature, T similar to 71 K. These results from the primary analysis suggest that OGLE-2005-BLG-071Lb is likely to be the most massive planet yet discovered that is hosted by an M dwarf. However, the formation of such high-mass planetary companions in the outer regions of M dwarf planetary systems is predicted to be unlikely within the core-accretion scenario. There are a number of caveats to this primary analysis, which assumes (based on real but limited evidence) that the unlensed light coincident with the source is actually due to the lens, that is, the planetary host. However, these caveats could mostly be resolved by a single astrometric measurement a few years after the event. C1 [Dong, Subo; Gould, Andrew; Gaudi, B. S.; DePoy, D. L.] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. [Gould, Andrew; Jaroszynski, M.; Kubiak, M.; Szymanski, M. K.; Pietrzynski, G.; Soszynski, I.; Szewczyk, O.; Ulaczyk, K.; Wyrzykowski, L.] Univ Warsaw Observ, PL-00478 Warsaw, Poland. [Anderson, Jay; Sahu, K. C.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Christie, G. W.] Auckland Observ, Auckland, New Zealand. [Pietrzynski, G.; Szewczyk, O.] Univ Concepcion, Dept Fis, Concepcion, Chile. [Wyrzykowski, L.] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. [Fox, D. B.] Penn State Univ, University Pk, PA 16802 USA. [Gal-Yam, A.] Weizmann Inst Sci, Benoziyo Ctr Astrophys, IL-76100 Rehovot, Israel. [Han, C.] Chungbuk Natl Univ, Dept Phys, Program Brain Korea, Chonju 371763, South Korea. [Lepine, S.] Amer Museum Nat Hist, Dept Astrophys, Div Phys Sci, New York, NY 10024 USA. [McCormick, J.] Farm Cove Observ, Ctr Backyard Astrophys, Auckland, New Zealand. [Ofek, E.] CALTECH, Div Phys Math & Astron, Pasadena, CA 91125 USA. [Park, B. -G.] Korea Astron & Space Sci Inst, Taejon 305348, South Korea. [Abe, F.; Itow, Y.; Kamiya, K.; Masuda, K.; Matsubara, Y.; Motomura, M.; Nakamura, S.; Okada, C.; Sako, T.; Sasaki, M.; Sumi, T.; Yoshoika, T.] Nagoya Univ, Solar Terr Environm Lab, Nagoya, Aichi 4648601, Japan. [Bennett, D. P.] Notre Dame Univ, Dept Phys, Notre Dame, IN 46556 USA. [Bond, I. A.] Massey Univ, Inst Informat & Math Sci, Auckland 1330, New Zealand. [Britton, T. R.; Gilmore, A. C.; Hearnshaw, J. B.; Albrow, M. D.; Pollard, K. R.] Univ Canterbury, Dept Phys & Astron, Christchurch 8020, New Zealand. [Kilmartin, P. M.; Tristram, P. J.] Mt John Observ, Lake Tekapo 8770, New Zealand. [Korpela, A.; Sullivan, D.] Victoria Univ, Sch Chem & Phys Sci, Wellington, New Zealand. [Muraki, Y.] Konan Univ, Dept Phys, Kobe, Hyogo 6588501, Japan. [Ohnishi, K.] Nagano Natl Coll Technol, Nagano 3818550, Japan. [Rattenbury, N.] Univ Manchester, Jodrell Bank Ctr Astrophys, Manchester M13 9PL, Lancs, England. [Saito, To.] Tokyo Metropolitan Coll Ind Technol, Tokyo 1168523, Japan. [Yanagisawa, T.] Japan Aerosp Explorat Agcy, Inst Aerosp Technol, Adv Space Technol Res Grp, Tokyo, Japan. [Yock, P. C. M.] Univ Auckland, Dept Phys, Auckland 1001, New Zealand. [Beaulieu, J. P.; Coutures, Ch.; Marquette, J. B.] Inst Astrophys, F-75014 Paris, France. [Brillant, S.; Kubas, D.; Snodgrass, C.] European So Observ, Santiago 19, Chile. [Calitz, H.; Hoffman, M.; Meintjes, P.] Univ Orange Free State, Dept Phys, Boyden Observ, ZA-9300 Bloemfontein, South Africa. [Cassan, A.; Wambsganss, J.] Univ Heidelberg, Astron Rech Inst, Zentrum Astron, D-69120 Heidelberg, Germany. [Cook, K. H.] Lawrence Livermore Natl Lab, IGPP, Livermore, CA 94551 USA. [Dieters, S.; Greenhill, J.; Hill, K.] Univ Tasmania, Sch Maths & Phys, Hobart, Tas 7001, Australia. [Prester, D. Dominis] Univ Rijeka, Dept Phys, Rijeka 51000, Croatia. [Donatowicz, J.] Vienna Univ Technol, Dept Comp, A-1060 Vienna, Austria. [Martin, R.; Williams, A.] Perth Observ, Perth, WA 6076, Australia. [Kane, S.] CALTECH, Michelson Sci Ctr, Pasadena, CA 91125 USA. [Jorgensen, U. G.; Vinter, C.] Niels Bohr Inst, Astron Observ, DK-2100 Copenhagen, Denmark. [Bode, M.; Burgdorf, M.; Steele, I.] Liverpool John Moores Univ, Astrophys Res Inst, Birkenhead CH41 1LD, Merseyside, England. [Menzies, J.] S African Astron Observ, ZA-7935 Cape Town, South Africa. [Horne, K.] Univ St Andrews, Sch Phys & Astron, SUPA, St Andrews KY16 9SS, Fife, Scotland. [Fouque, P.] Univ Toulouse, CNRS, LATT, F-31400 Toulouse, France. [Foellmi, Cedric] Observ Grenoble, LAOG, F-38041 Grenoble, France. [Doublier, Vanessa] ESO, D-85748 Garching, Germany. [Bramich, D. M.] Isaac Newton Grp Telescopes, E-38700 Santa Cruz De La Palma, Canary Islands, Spain. EM dong@astronomy.ohio-state.edu; gould@astronomy.ohio-state.edu; udalski@astrouw.edu.pl; jayander@stsci.edu; gwchristie@christie.org.nz; gaudi@astronomy.ohio-state.edu; mj@astrouw.edu.pl; msz@astrouw.edu.pl; mk@astrouw.edu.pl; pietrzyn@astrouw.edu.pl; soszynsk@astrouw.edu.pl; szewczyk@astro-udec.cl; kulaczyk@astrouw.edu.pl; wyrzykow@ast.cam.ac.uk; depoy@astronomy.ohio-state.edu; dfox@astro.psu.edu; avishay.gal-yam@weizmann.ac.il; cheongho@astroph.chungbuk.ac.kr; lepine@amnh.org; farmcoveobs@xtra.co.nz; eran@astro.caltech.edu; bgpark@kasi.re.kr; pogge@astronomy.ohio-state.edu RI Gaudi, Bernard/I-7732-2012; Dong, Subo/J-7319-2012; Kane, Stephen/B-4798-2013; Greenhill, John/C-8367-2013; Williams, Andrew/K-2931-2013; OI Williams, Andrew/0000-0001-9080-0105; Snodgrass, Colin/0000-0001-9328-2905 FU NASA [NAS5-26555, NNG04GL51G]; STScI [HST-GO-10707.01-A]; NSF [AST 042758]; IAP; CNRS; Polish MNiSW [N20303032/4275]; Korea Research Foundation [KRF-2006-311-C00072]; Korea Science and Engineering Foundation; Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan [14002006]; ANR HOLMES; Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX We thank M. Pinsonneault and D. An for providing us their unpublished isochrones. S. D. wishes to thank D. Will of Ohio State astronomy department for setting up and maintaining the Condor system, which greatly facilitates the computations for this work. S. D. is grateful to O. Pejcha and D. Heyrovsky for interesting discussions on limb-darkening. Based on observations with the NASA/ESA HST obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Incorporated, under NASA contract NAS5-26555. Support for this work was provided by NASA through grant HST-GO-10707.01-A from STScI. S. D. and A. G. were supported in part by grant AST 042758 from the NSF. S. D., A. G., D. D., and R. P. acknowledge support by NASA grant NNG04GL51G. A. G. thanks IAP, CNRS for its support. Support for OGLE project was provided by Polish MNiSW grant N20303032/4275. B. G. P. was supported by the grant (KRF-2006-311-C00072) from Korea Research Foundation. H. C. was supported by the Science Research Center from Korea Science and Engineering Foundation. The MOA project is supported by Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan, Grant-in-Aid for Specially Promoted Research No. 14002006. J.P.B., P. F., A. C., C. C., S. B., J. B. M. acknowledge the financial support of ANR HOLMES. K. H. C.'s work was performed under the auspices of the U. S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. This work was supported in part by an allocation of computing time from the Ohio Supercomputer Center. NR 64 TC 75 Z9 75 U1 0 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD APR 20 PY 2009 VL 695 IS 2 BP 970 EP 987 DI 10.1088/0004-637X/695/2/970 PG 18 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 430VS UT WOS:000265018300018 ER PT J AU Yirak, K Frank, A Cunningham, AJ Mitran, S AF Yirak, Kristopher Frank, Adam Cunningham, Andrew J. Mitran, Sorin TI HYPERSONIC BUCKSHOT: ASTROPHYSICAL JETS AS HETEROGENEOUS COLLIMATED PLASMOIDS SO ASTROPHYSICAL JOURNAL LA English DT Article DE hydrodynamics; ISM: Herbig-Haro objects; ISM: jets and outflows ID HUBBLE-SPACE-TELESCOPE; VARIABLE VELOCITY JET; HERBIG-HARO OBJECTS; STELLAR JETS; PROPER MOTIONS; 3-DIMENSIONAL SIMULATIONS; HH-111 JET; HYDRODYNAMIC INTERACTION; NUMERICAL SIMULATIONS; TRANSVERSE VELOCITY AB Herbig-Haro jets are commonly thought of as homogeneous beams of plasma traveling at hypersonic velocities. Structure within jet beams is often attributed to periodic or "pulsed" variations of conditions at the jet source. Simulations based on this scenario result in knots extending across the jet diameter. Observations and recent high energy density laboratory experiments shed new light on structures below this scale and indicate they may be important for understanding the fundamentals of jet dynamics. In this paper, we offer an alternative to "pulsed" models of protostellar jets. Using direct numerical simulations we explore the possibility that jets are chains of subradial clumps propagating through a moving interclump medium. Our models explore an idealization of this scenario by injecting small (r r(jet)), dense (rho > rho(jet)) spheres embedded in an otherwise smooth interclump jet flow. The spheres are initialized with velocities differing from the jet velocity by similar to 15%. We find that the consequences of shifting from homogeneous to heterogeneous flows are significant as clumps interact with each other and with the interclump medium in a variety of ways. Structures which mimic what is expected from pulsed-jet models can form, as can be previously unseen, "subradial" behaviors including backward facing bow shocks and off-axis working surfaces. While these small-scale structures have not been seen before in simulation studies, they are found in high-resolution jet observations. We discuss implications of our simulations for the interpretation of protostellar jets with regard to characterization of knots by a "lifetime" or "velocity history" approach as well as linking observed structures with central engines which produce the jets. C1 [Yirak, Kristopher; Frank, Adam; Cunningham, Andrew J.] Univ Rochester, Dept Phys & Astron, Rochester, NY 14620 USA. [Cunningham, Andrew J.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Mitran, Sorin] Univ N Carolina, Dept Math, Program Appl Math, Chapel Hill, NC 27599 USA. RP Yirak, K (reprint author), Univ Rochester, Dept Phys & Astron, Rochester, NY 14620 USA. EM yirak@pas.rochester.edu RI Mitran, Sorin/G-4682-2011 FU NASA [20269, 051080-001]; National Science Foundation [AST-0507519]; Space Telescope Science Institute [HST-AR-10972, HST-AR-11250, HST-AR-11252]; DOE [DE-FC03-02NA00057] FX Support for this work was in part provided by NASA through awards issued by JPL/Caltech through Spitzer program 20269 and 051080-001, the National Science Foundation through grants AST-0507519 as well as the Space Telescope Science Institute through grants HST-AR-10972, HST-AR-11250, and HST-AR-11252. We also thank the University of Rochester Laboratory for Laser Energetics and funds received through the DOE Cooperative Agreement no. DE-FC03-02NA00057. NR 53 TC 16 Z9 16 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD APR 20 PY 2009 VL 695 IS 2 BP 999 EP 1005 DI 10.1088/0004-637X/695/2/999 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 430VS UT WOS:000265018300021 ER PT J AU Birn, J Fletcher, L Hesse, M Neukirch, T AF Birn, J. Fletcher, L. Hesse, M. Neukirch, T. TI ENERGY RELEASE AND TRANSFER IN SOLAR FLARES: SIMULATIONS OF THREE-DIMENSIONAL RECONNECTION SO ASTROPHYSICAL JOURNAL LA English DT Article DE MHD; Sun: corona; Sun: magnetic fields ID X-RAY SOURCES; MAGNETIC RECONNECTION; FLUX ROPES; CHROMOSPHERIC EVAPORATION; PARTICLE-ACCELERATION; EMISSION MEASURE; ACTIVE-REGION; ALFVEN WAVES; TEMPERATURE; EVOLUTION AB Using three-dimensional magnetohydrodynamic simulations we investigate energy release and transfer in a three-dimensional extension of the standard two-ribbon flare picture. In this scenario, reconnection is initiated in a thin current sheet (suggested to form below a departing coronal mass ejection) above a bipolar magnetic field. Two cases are contrasted: an initially force-free current sheet (low beta) and a finite-pressure current sheet (high beta), where beta represents the ratio between gas (plasma) and magnetic pressure. The energy conversion process from reconnection consists of incoming Poynting flux turned into up-and downgoing Poynting flux, enthalpy flux, and bulk kinetic energy flux. In the low-beta case, the outgoing Poynting flux is the dominant contribution, whereas the outgoing enthalpy flux dominates in the high-beta case. The bulk kinetic energy flux is only a minor contribution in the downward direction. The dominance of the downgoing Poynting flux in the low-beta case is consistent with an alternative to the thick target electron beam model for solar flare energy transport, suggested recently by Fletcher & Hudson, whereas the enthalpy flux may act as an alternative transport mechanism. For plausible characteristic parameters of the reconnecting field configuration, we obtain energy release timescales and energy output rates that compare favorably with those inferred from observations for the impulsive phase of flares. Significant enthalpy flux and heating are found even in the initially force-free case with very small background beta, resulting mostly from adiabatic compression rather than Ohmic dissipation. The energy conversion mechanism is most easily understood as a two-step process (although the two steps may occur essentially simultaneously): the first step is the acceleration of the plasma by Lorentz forces in layers akin to the slow shocks in the Petschek reconnection model, involving the conversion of magnetic energy to bulk kinetic energy. However, due to pressure gradient forces that oppose the Lorentz forces in approximate, or partial force balance, the accelerated plasma becomes slowed down and compressed, whereby the bulk kinetic energy is converted to heat, either locally deposited or transported away by enthalpy flux and deposited later. This mechanism is most relevant in the downflow region, which is more strongly governed by force balance; it is less important in the outflow above the reconnection site, where more energy remains in the form of fast bulk flow. C1 [Birn, J.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Fletcher, L.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. [Hesse, M.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Neukirch, T.] Univ St Andrews, St Andrews KY16 9AJ, Fife, Scotland. RP Birn, J (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM jbirn@lanl.gov RI Neukirch, Thomas/C-1981-2009; Hesse, Michael/D-2031-2012; NASA MMS, Science Team/J-5393-2013 OI Neukirch, Thomas/0000-0002-7597-4980; NASA MMS, Science Team/0000-0002-9504-5214 FU US Department of Energy; NASA; UK STFC [ST/F002637]; European Commission [MTRNCT-2006-035484] FX This work was conducted under the auspices of the US Department of Energy, supported by NASA through its Heliophysic Theory, Living With a Star, and Supporting Research and Technology programs. L. F. and T.N. acknowledges support by the UK STFC under rolling grant ST/F002637 and by the European Commission through the SOLAIRE Network (MTRNCT-2006-035484). NR 45 TC 30 Z9 30 U1 0 U2 8 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD APR 20 PY 2009 VL 695 IS 2 BP 1151 EP 1162 DI 10.1088/0004-637X/695/2/1151 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 430VS UT WOS:000265018300034 ER PT J AU Faure, C Kneib, JP Hilbert, S Massey, R Covone, G Finoguenov, A Leauthaud, A Taylor, JE Pires, S Scoville, N Koekemoer, AM AF Faure, C. Kneib, J. -P. Hilbert, S. Massey, R. Covone, G. Finoguenov, A. Leauthaud, A. Taylor, J. E. Pires, S. Scoville, N. Koekemoer, Anton M. TI ON THE CONTRIBUTION OF LARGE-SCALE STRUCTURE TO STRONG GRAVITATIONAL LENSING SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: abundances; gravitational lensing; large-scale structure of universe ID IMAGE SEPARATION DISTRIBUTION; WIDE-FIELD SURVEY; COSMOS FIELD; COSMOLOGICAL PARAMETERS; GALAXY ENVIRONMENTS; OPTICAL DEPTHS; CDM UNIVERSE; LENSES; SIMULATIONS; CLUSTERS AB We study the correlation between the locations of galaxy-galaxy strong-lensing candidates and tracers of large-scale structure from both weak lensing (WL) or X-ray emission. The Cosmological Evolution Survey (COSMOS) is a unique data set, combining deep, high resolution and contiguous imaging in which strong lenses have been discovered, plus unparalleled multiwavelength coverage. To help interpret the COSMOS data, we have also produced mock COSMOS strong-and WL observations, based on ray-tracing through the Millennium Simulation. In agreement with the simulations, we find that strongly lensed images with the largest angular separations are found in the densest regions of the COSMOS field. This is explained by a prevalence among the lens population in dense environments of elliptical galaxies with high total-to-stellar mass ratios, which can deflect light through larger angles. However, we also find that the overall fraction of elliptical galaxies with strong gravitational lensing is independent of the local mass density; this observation is not true of the simulations, which predict an increasing fraction of strong lenses in dense environments. The discrepancy may be a real effect, but could also be explained by various limitations of our analysis. For example, our visual search of strong lens systems could be incomplete and suffer from selection bias; the luminosity function of elliptical galaxies may differ between our real and simulated data; or the simplifying assumptions and approximations used in our lensing simulations may be inadequate. Work is therefore ongoing. Automated searches for strong lens systems will be particularly important in better constraining the selection function. C1 [Faure, C.] Observ Sauverny, Astrophys Lab, EPFL, CH-1290 Sauverny, Versoix, Switzerland. [Faure, C.] Univ Heidelberg, Astron Rech Inst, Zentrum Astron, D-69120 Heidelberg, Germany. [Kneib, J. -P.] Univ Aix Marseille 1, Lab Astrophys Marseille, CNRS, F-13388 Marseille, France. [Hilbert, S.] Argelander Inst Astron, D-53121 Bonn, Germany. [Hilbert, S.] Max Planck Inst Astrophys, D-85741 Garching, Germany. [Massey, R.] Royal Observ, Inst Astron, Edinburgh EH9 3HJ, Midlothian, Scotland. [Covone, G.] Univ Naples Federico 2, Dept Phys Sci, I-80126 Naples, Italy. [Covone, G.] Ist Nazl Fis Nucl Sez Napoli, Naples, Italy. [Finoguenov, A.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Finoguenov, A.] Univ Maryland Baltimore Cty, Baltimore, MD 21250 USA. [Leauthaud, A.] Univ Calif Berkeley, LBNL, Berkeley, CA 94720 USA. [Leauthaud, A.] Univ Calif Berkeley, BCCP, Berkeley, CA 94720 USA. [Taylor, J. E.] Univ Waterloo, Dept Phys & Astron, Waterloo, ON N2L 3G1, Canada. [Pires, S.] Univ Paris Diderot, Lab AIM, CEA DSM CNRS, IRFU SEDI SAP,Serv Astrophys,CEA Saclay, F-91191 Gif Sur Yvette, France. [Scoville, N.] CALTECH, Pasadena, CA 91125 USA. [Koekemoer, Anton M.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. RP Faure, C (reprint author), Observ Sauverny, Astrophys Lab, EPFL, CH-1290 Sauverny, Versoix, Switzerland. OI Koekemoer, Anton/0000-0002-6610-2048; Massey, Richard/0000-0002-6085-3780 FU CNRS; CNES; ANR [06-BLAN-0067]; DFG [SCHN 342/6, WH6/3]; STFC [PP/E006450/1] FX We are thankful to the referee for his/her useful report. J. P. K. acknowledges support from CNRS, CNES, and the ANR through the grant 06-BLAN-0067. S. H. is supported by the DFG within the Priority Programme 1177 under projects SCHN 342/6 and WH6/3. R. M. is supported by STFC Advanced Fellowship PP/E006450/1. NR 50 TC 19 Z9 19 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD APR 20 PY 2009 VL 695 IS 2 BP 1233 EP 1243 DI 10.1088/0004-637X/695/2/1233 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 430VS UT WOS:000265018300041 ER PT J AU Acciari, VA Aliu, E Arlen, T Beilicke, M Benbow, W Bradbury, SM Buckley, JH Bugaev, V Butt, Y Byrum, KL Celik, O Cesarini, A Ciupik, L Chow, YCK Cogan, P Colin, P Cui, W Daniel, MK Ergin, T Falcone, AD Fegan, SJ Finley, JP Fortin, P Fortson, LF Furniss, A Gillanders, GH Grube, J Guenette, R Gyuk, G Hanna, D Hays, E Holder, J Horan, D Hui, CM Humensky, TB Imran, A Kaaret, P Karlsson, N Kertzman, M Kieda, DB Kildea, J Konopelko, A Krawczynski, H Krennrich, F Lang, MJ LeBohec, S Maier, G McCann, A McCutcheon, M Moriarty, P Mukherjee, R Nagai, T Niemiec, J Ong, RA Pandel, D Perkins, JS Pohl, M Quinn, J Ragan, K Reyes, LC Reynolds, PT Rose, HJ Schroedter, M Sembroski, GH Smith, AW Steele, D Swordy, SP Toner, JA Valcarcel, L Vassiliev, VV Wagner, R Wakely, SP Ward, JE Weekes, TC Weinstein, A White, RJ Williams, DA Wissel, SA Wood, M Zitzer, B AF Acciari, V. A. Aliu, E. Arlen, T. Beilicke, M. Benbow, W. Bradbury, S. M. Buckley, J. H. Bugaev, V. Butt, Y. Byrum, K. L. Celik, O. Cesarini, A. Ciupik, L. Chow, Y. C. K. Cogan, P. Colin, P. Cui, W. Daniel, M. K. Ergin, T. Falcone, A. D. Fegan, S. J. Finley, J. P. Fortin, P. Fortson, L. F. Furniss, A. Gillanders, G. H. Grube, J. Guenette, R. Gyuk, G. Hanna, D. Hays, E. Holder, J. Horan, D. Hui, C. M. Humensky, T. B. Imran, A. Kaaret, P. Karlsson, N. Kertzman, M. Kieda, D. B. Kildea, J. Konopelko, A. Krawczynski, H. Krennrich, F. Lang, M. J. LeBohec, S. Maier, G. McCann, A. McCutcheon, M. Moriarty, P. Mukherjee, R. Nagai, T. Niemiec, J. Ong, R. A. Pandel, D. Perkins, J. S. Pohl, M. Quinn, J. Ragan, K. Reyes, L. C. Reynolds, P. T. Rose, H. J. Schroedter, M. Sembroski, G. H. Smith, A. W. Steele, D. Swordy, S. P. Toner, J. A. Valcarcel, L. Vassiliev, V. V. Wagner, R. Wakely, S. P. Ward, J. E. Weekes, T. C. Weinstein, A. White, R. J. Williams, D. A. Wissel, S. A. Wood, M. Zitzer, B. TI VERITAS OBSERVATIONS OF THE BL LAC OBJECT 1ES 1218+304 SO ASTROPHYSICAL JOURNAL LA English DT Article DE BL Lacertae objects: individual (1ES 1218+304); galaxies: active; gamma rays: observations ID EXTRAGALACTIC BACKGROUND LIGHT; ENERGY GAMMA-RAYS; RADIATION-FIELDS; TEV BLAZARS; X-RAY; TELESCOPE; EMISSION; SPECTRA; DISCOVERY; HESS AB The VERITAS collaboration reports the detection of very-high-energy gamma-ray emission from the high-frequency-peaked BL Lac object 1ES 1218+304 located at a redshift of z = 0.182. A gamma-ray signal was detected with a statistical significance of 10.4 standard deviations (10.4 sigma) for the observations taken during the first three months of 2007, confirming the discovery of this object made by the MAGIC collaboration. The photon spectrum between similar to 160 GeV and similar to 1.8 TeV is well described by a power law with an index of Gamma = 3.08 +/- 0.34(stat) +/- 0.2(sys). The integral flux is Phi (E > 200 GeV) = (12.2 +/- 2.6) x 10(-12) cm(-2) s(-1), which corresponds to similar to 6% of that of the Crab Nebula. The light curve does not show any evidence for very high energy flux variability. Using lower limits on the density of the extragalactic background light in the near to mid-infrared, we are able to limit the range of intrinsic energy spectra for 1ES 1218+304. We show that the intrinsic photon spectrum has an index that is harder than Gamma = 2.32 +/- 0.37(stat). When including constraints from the spectra of 1ES 1101-232 and 1ES 0229+200, the spectrum of 1ES 1218+ 304 is likely to be harder than Gamma = 1.86 +/- 0.37(stat). C1 [Acciari, V. A.; Benbow, W.; Cesarini, A.; Hays, E.; Kildea, J.; Perkins, J. S.; Smith, A. W.; Toner, J. A.; Weekes, T. C.] Harvard Smithsonian Ctr Astrophys, Fred Lawrence Whipple Observ, Amado, AZ 85645 USA. [Acciari, V. A.; Moriarty, P.] Galway Mayo Inst Technol, Dept Life & Phys Sci, Galway, Ireland. [Aliu, E.; Holder, J.] Univ Delaware, Bartol Res Inst, Dept Phys & Astron, Newark, DE 19716 USA. [Arlen, T.; Furniss, A.; Williams, D. A.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Arlen, T.; Furniss, A.; Williams, D. A.] Univ Calif Santa Cruz, Dept Phys, Santa Cruz, CA 95064 USA. [Beilicke, M.; Buckley, J. H.; Bugaev, V.; Krawczynski, H.] Washington Univ, Dept Phys, St Louis, MO 63130 USA. [Bradbury, S. M.; Daniel, M. K.; Rose, H. J.; Smith, A. W.] Univ Leeds, Sch Phys & Astron, Leeds LS2 9JT, W Yorkshire, England. [Butt, Y.] Smithsonian Astrophys Observ, Cambridge, MA 02138 USA. [Byrum, K. L.; Hays, E.; Horan, D.; Wagner, R.] Argonne Natl Lab, Argonne, IL 60439 USA. [Celik, O.; Chow, Y. C. K.; Fegan, S. J.; Ong, R. A.; Vassiliev, V. V.; Weinstein, A.; Wood, M.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Cesarini, A.; Gillanders, G. H.; Lang, M. J.; Toner, J. A.] Natl Univ Ireland, Dept Phys, Galway, Ireland. [Ciupik, L.; Fortson, L. F.; Gyuk, G.; Karlsson, N.; Steele, D.] Adler Planetarium & Astron Museum, Dept Astron, Chicago, IL 60605 USA. [Cogan, P.; Guenette, R.; Hanna, D.; Maier, G.; McCann, A.; McCutcheon, M.; Ragan, K.; Valcarcel, L.] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada. [Colin, P.; Hui, C. M.; Kieda, D. B.; LeBohec, S.] Univ Utah, Dept Phys, Salt Lake City, UT 84112 USA. [Cui, W.; Finley, J. P.; Konopelko, A.; Sembroski, G. H.; Zitzer, B.] Purdue Univ, Dept Phys, W Lafayette, IN 47907 USA. [Ergin, T.] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA. [Falcone, A. D.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Fortin, P.; Mukherjee, R.] Grinnell Coll, Dept Phys, Grinnell, IA 50112 USA. [Grube, J.; Quinn, J.; Ward, J. E.] Columbia Univ, Barnard Coll, Dept Phys & Astron, New York, NY 10027 USA. [Humensky, T. B.; Reyes, L. C.; Swordy, S. P.; Wakely, S. P.; Wissel, S. A.] Univ Coll Dublin, Sch Phys, Dublin 2, Ireland. [Imran, A.; Krennrich, F.; Nagai, T.; Niemiec, J.; Pohl, M.; Schroedter, M.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Kaaret, P.; Pandel, D.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Kaaret, P.] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA. [Reynolds, P. T.] Cork Inst Technol, Dept Appl Phys & Instrumentat, Cork, Ireland. Max Planck Inst Extraterr Phys MPE, D-85748 Garching, Germany. RP Acciari, VA (reprint author), Galway Mayo Inst Technol, Dept Life & Phys Sci, Dublin Rd, Galway, Ireland. EM fortin@phys.columbia.edu RI Hays, Elizabeth/D-3257-2012; Daniel, Michael/A-2903-2010; OI Daniel, Michael/0000-0002-8053-7910; Ward, John E/0000-0003-1973-0794; Pandel, Dirk/0000-0003-2085-5586 FU U.S. Department of Energy; U.S. National Science Foundation; Smithsonian Institution; NSERC; PPARC; Science Foundation Ireland FX This research is supported by grants from the U.S. Department of Energy, the U.S. National Science Foundation, and the Smithsonian Institution, by NSERC in Canada, by PPARC in the UK, and Science Foundation Ireland. NR 41 TC 36 Z9 37 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD APR 20 PY 2009 VL 695 IS 2 BP 1370 EP 1375 DI 10.1088/0004-637X/695/2/1370 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 430VS UT WOS:000265018300054 ER PT J AU Carroll, JJ Frank, A Blackman, EG Cunningham, AJ Quillen, AC AF Carroll, Jonathan J. Frank, Adam Blackman, Eric G. Cunningham, Andrew J. Quillen, Alice C. TI OUTFLOW-DRIVEN TURBULENCE IN MOLECULAR CLOUDS SO ASTROPHYSICAL JOURNAL LA English DT Article DE ISM: jets and outflows; ISM: kinematics and dynamics; turbulence ID STAR-FORMATION; MAGNETOHYDRODYNAMIC TURBULENCE; PROTOSTELLAR TURBULENCE; NGC 1333; MODEL; DISSIPATION; STATISTICS; EVOLUTION; CAVITIES AB In this paper, we explore the relationship between protostellar outflows and turbulence in molecular clouds. Using three-dimensional numerical simulations we focus on the hydrodynamics of multiple outflows interacting within a parsec scale volume. We explore the extent to which transient outflows injecting directed energy and momentum into a subvolume of a molecular cloud can be converted into random turbulent motions. We show that turbulence can readily be sustained by these interactions and it is possible to broadly characterize an effective driving scale of the outflows. We compare the velocity spectrum obtained in our studies with that of isotropically forced hydrodynamic turbulence finding that in outflow-driven turbulence a power law of the form E(k) proportional to k(-beta) is indeed achieved. However, we find that a steeper spectrum beta similar to 2.74 is obtained in outflow-driven turbulence models than in isotropically forced simulations beta similar to 2.45. We discuss possible physical mechanisms responsible for these results as well as their implications for turbulence in molecular clouds where outflows will act in concert with other processes such as gravitational collapse. C1 [Carroll, Jonathan J.; Frank, Adam; Blackman, Eric G.; Cunningham, Andrew J.; Quillen, Alice C.] Univ Rochester, Dept Phys & Astron, Rochester, NY 14620 USA. [Cunningham, Andrew J.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Carroll, JJ (reprint author), Univ Rochester, Dept Phys & Astron, Rochester, NY 14620 USA. EM johannjc@pas.rochester.edu FU NASA [20269]; National Science Foundation [AST0406823, AST-0507519, PHY-0552695]; Space Telescope Science Institute [HST-AR10972, HST-AR-11250, HST-AR-11252]; DOE Cooperative Agreement [DE-FC03-02NA00057] FX We thank Chris Matzner, Chris McKee, and Mordecai-Mark Mac Low for extremely useful discussions as well as the referee for their insightful criticisms and helpful suggestions. Hector Arce, John Bally, Pat Hartigan, and Tom Ray were also generous with their time. Tim Dennis, Kris Yirak, Brandon Schroyer, and Mike Laski provided invaluable support and help. Support for this work was in part provided by NASA through awards issued by JPL/Caltech through Spitzer program 20269, the National Science Foundation through grants AST0406823, AST-0507519, and PHY-0552695 as well as the Space Telescope Science Institute through grants HST-AR10972, HST-AR-11250, and HST-AR-11252. We also thank the University of Rochester Laboratory for Laser Energetics and funds received through the DOE Cooperative Agreement DE-FC03-02NA00057. NR 30 TC 48 Z9 48 U1 0 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD APR 20 PY 2009 VL 695 IS 2 BP 1376 EP 1381 DI 10.1088/0004-637X/695/2/1376 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 430VS UT WOS:000265018300055 ER PT J AU Leggett, SK Cushing, MC Saumon, D Marley, MS Roellig, TL Warren, SJ Burningham, B Jones, HRA Kirkpatrick, JD Lodieu, N Lucas, PW Mainzer, AK Martin, EL McCaughrean, MJ Pinfield, DJ Sloan, GC Smart, RL Tamura, M Van Cleve, J AF Leggett, S. K. Cushing, Michael C. Saumon, D. Marley, M. S. Roellig, T. L. Warren, S. J. Burningham, Ben Jones, H. R. A. Kirkpatrick, J. D. Lodieu, N. Lucas, P. W. Mainzer, A. K. Martin, E. L. McCaughrean, M. J. Pinfield, D. J. Sloan, G. C. Smart, R. L. Tamura, M. Van Cleve, J. TI THE PHYSICAL PROPERTIES OF FOUR similar to 600 K T DWARFS SO ASTROPHYSICAL JOURNAL LA English DT Article DE stars: atmospheres; stars: individual (ULAS J003402.77-005206.7, ULAS J133553.45+113005.2, 2MASS J09393548-2448279, CFBD J005910.82-011401.3); stars: low-mass, brown dwarfs ID SPITZER-SPACE-TELESCOPE; EXOPLANET HOST STAR; DIGITAL SKY SURVEY; BROWN DWARF; SPECTRAL CLASSIFICATION; CHEMICAL-EQUILIBRIUM; ULTRACOOL DWARFS; GLIESE 229B; PHOTOMETRY; 2MASS AB We present Spitzer 7.6-14.5 mu m spectra of ULAS J003402.77-005206.7 and ULAS J133553.45+113005.2, two T9 dwarfs with the latest spectral types currently known. We fit synthetic spectra and photometry to the near-through mid-infrared energy distributions of these dwarfs and that of the T8 dwarf 2MASS J09393548-2448279. We also analyze near-infrared data for another T9, CFBD J005910.82-011401.3. We find that the ratio of the mid-to near-infrared fluxes is very sensitive to effective temperature at these low temperatures, and that the 2.2 mu m and 4.5 mu m fluxes are sensitive to metallicity and gravity; increasing gravity has a similar effect to decreasing metallicity, and vice versa, and there is a degeneracy between these parameters. The 4.5 mu m and 10 mu m fluxes are also sensitive to vertical transport of gas through the atmosphere, which we find to be significant for these dwarfs. The full near-through mid-infrared spectral energy distribution allows us to constrain the effective temperature (K)/gravity (ms(2))/metallicity ([m/H] dex) of ULAS J0034-00 and ULAS J1335+11 to 550-600/100-300/0.0-0.3 and 500-550/100-300/0.0-0.3, respectively. These fits imply low masses and young ages for the dwarfs of 5-20 M(Jupiter) and 0.1-2 Gyr. The fits to 2MASS J0939-24 are in good agreement with the measured distance, the observational data, and the earlier T8 near-infrared spectral type if it is a slightly metal-poor 4-10 Gyr old system consisting of a 500 K and 700 K, similar to 25 M(Jupiter) and similar to 40 M(Jupiter), pair, although it is also possible that it is an identical pair of 600 K, 30 M(Jupiter), dwarfs. As no mid-infrared data are available for CFBD J0059-01 its properties are less well constrained; nevertheless it appears to be a 550-600 K dwarf with g = 300-2000 ms(-2) and [m/H] = 0-0.3 dex. These properties correspond to mass and age ranges of 10-50 M(Jupiter) and 0.5-10 Gyr for this dwarf. C1 [Leggett, S. K.] Gemini Observ, Hilo, HI 96720 USA. [Cushing, Michael C.] Univ Hawaii, Inst Astron, Honolulu, HI 96822 USA. [Saumon, D.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Marley, M. S.; Roellig, T. L.] NASA, Ames Res Ctr, Moffett Field, CA 94305 USA. [Warren, S. J.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, London SW7 2AZ, England. [Burningham, Ben; Jones, H. R. A.; Lucas, P. W.; Pinfield, D. J.] Univ Hertfordshire, Sci & Technol Res Inst, Ctr Astrophys Res, Hatfield AL10 9AB, Herts, England. [Kirkpatrick, J. D.] CALTECH, IPAC, Pasadena, CA 91125 USA. [Lodieu, N.; Martin, E. L.] Inst Astrofis Canarias, E-38200 San Cristobal la Laguna, Spain. [Mainzer, A. K.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Martin, E. L.] Univ Cent Florida, Dept Phys, Orlando, FL 32816 USA. [McCaughrean, M. J.] Univ Exeter, Sch Phys, Exeter EX4 4QL, Devon, England. [Sloan, G. C.] Cornell Univ, Dept Astron, Ithaca, NY 14853 USA. [Smart, R. L.] Osserv Astron Torino, INAF, I-10025 Pino Torinese, TO, Italy. [Tamura, M.] Natl Inst Nat Sci, Natl Astron Observ Japan, Mitaka, Tokyo 1818588, Japan. [Van Cleve, J.] Ball Aerosp & Technol Corp, Boulder, CO 80301 USA. RP Leggett, SK (reprint author), Gemini Observ, 670 N Aohoku Pl, Hilo, HI 96720 USA. EM sleggett@gemini.edu RI Marley, Mark/I-4704-2013; OI Burningham, Ben/0000-0003-4600-5627; Smart, Richard/0000-0002-4424-4766; Jones, Hugh/0000-0003-0433-3665 FU NASA; Association of Universities for Research in Astronomy, Inc; Spanish Ministry of Science [AYA2007-67458] FX This work is based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. Support for this work was provided by NASA through an award issued by JPL/Caltech. S.K.L.'s research is supported by the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., on behalf of the international Gemini partnership of Argentina, Australia, Brazil, Canada, Chile, the United Kingdom, and the United States of America. E.L.M.'s research is supported by The Spanish Ministry of Science via project AYA2007-67458. NR 45 TC 52 Z9 52 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD APR 20 PY 2009 VL 695 IS 2 BP 1517 EP 1526 DI 10.1088/0004-637X/695/2/1517 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 430VS UT WOS:000265018300066 ER PT J AU Gosling, JT McComas, DJ Roberts, DA Skoug, RM AF Gosling, J. T. McComas, D. J. Roberts, D. A. Skoug, R. M. TI A ONE-SIDED ASPECT OF ALFVENIC FLUCTUATIONS IN THE SOLAR WIND SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE magnetic fields; plasmas; solar wind; turbulence; waves ID TURBULENCE; WAVES; RECONNECTION; MODEL AB Using Advanced Composition Explorer (ACE) 64 s data at 1 AU we find that Alfvenic fluctuations propagating outward from the Sun along the magnetic field, B, in the solar wind often produce one-sided variations in one of the equatorial components of Band velocity, V. This is a natural consequence of the fact that the Alfvenic fluctuations are transverse fluctuations in which |B| remains nearly constant. Thus, fluctuations in the field component that defines the underlying background field direction are always relative to a base value rather than to an average value. This suggests that conclusions derived from statistical analyses of fluctuations in the solar wind that assume the fluctuations in all field components are relative to average values need to be re-examined. We also find that discrete, sunward-propagating Alfvenic fluctuations or rotational discontinuities are extremely rare in the pristine solar wind; thus far we have identified such discrete events in ACE data only in association with events identified as magnetic reconnection exhausts and/or in association with backstreaming ions from reverse shocks, including Earth's bow shock. C1 [Gosling, J. T.] Univ Colorado, Atmospher & Space Phys Lab, Boulder, CO 80303 USA. [McComas, D. J.] SW Res Inst, San Antonio, TX 78228 USA. [Roberts, D. A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Skoug, R. M.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Gosling, JT (reprint author), Univ Colorado, Atmospher & Space Phys Lab, 1234 Innovat Dr, Boulder, CO 80303 USA. EM jack.gosling@lasp.colorado.edu FU NASA [NNG06GC27G]; NASA/ACE program FX J. G. thanks A. Balogh, J. Borovsky, T. Horbury, B. Matthaeus, M. Neugebauer, C. Smith, and M. Velli, for a number of stimulating conversations on one or more of the topics of this paper, C. Smith for use of the magnetometer data, and M. Desai for providing energetic particle observations. This work has been supported by NASA grant NNG06GC27G and the SWEPAM portion of the NASA/ACE program. NR 19 TC 23 Z9 24 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD APR 20 PY 2009 VL 695 IS 2 BP L213 EP L216 DI 10.1088/0004-637X/695/2/L213 PG 4 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 428TE UT WOS:000264872100020 ER PT J AU Zhang, ZC Helms, G Clark, SB Tian, GX Zanonato, P Rao, LF AF Zhang, Zhicheng Helms, Gregory Clark, Sue B. Tian, Guoxin Zanonato, PierLuigi Rao, Linfeng TI Complexation of Uranium(VI) by Gluconate in Acidic Solutions: a Thermodynamic Study with Structural Analysis SO INORGANIC CHEMISTRY LA English DT Article ID NUCLEAR MAGNETIC-RESONANCE; VARIABLE TEMPERATURES; DISSOCIATION CONSTANTS; AQUEOUS-SOLUTION; NMR; PROTONATION; EQUILIBRIA; ALUMINUM(III); COORDINATION; HYDROLYSIS AB Within the pC(H) range of 2.5 to 4.2, gluconate forms three uranyl complexes UO(2)(GH4)(+), UO(2)(GH(3))(aq), and UO(2)(GH(3))(GH(4))(-), through the following reactions: (1) UO(2)(2+) + GH(4)(-) = UO(2)(GH(4))(+), (2) UO(2)(2+) + GH(4)(-) = UO(2)(GH(3))(aq) + H(+), and (3) UO(2)(2+) + 2GH(4)(-) = UO(2)(GH(3))(GH(4))(-) + H(+). Complexes were inferred from potentiometric, calorimetric, NMR, and EXAFS studies. Correspondingly, the stability constants and enthalpies were determined to be log beta(1) = 2.2 +/- 0.3 and Delta H(1) = 7.5 +/- 1.3 kJ mol(-1) for reaction (1), log beta(2) = -(0.38 +/- 0.05) and Delta H(2) = 15.4 +/- 0.3 kJ mol(-1) for reaction (2), and log beta(3) = 1.3 +/- 0.2 and Delta H(3) = 14.6 +/- 0.3 kJ mol(-1) for reaction (3), at I = 1.0 M NaClO(4) and t = 25 degrees C. The UO(2)(GH(4))(+) complex forms through the bidentate carboxylate binding to U(VI). In the UO(2)(GH(3))(aq) complex, hydroxyl-deprotonated gluconate (GH(3)(2-)) coordinates to U(VI) through the five-membered ring chelation. For the UO(2)(GH(3))(GH(4))(-) complex, multiple coordination modes are suggested. These results are discussed in the context of trivalent and pentavalent actinide complexation by gluconate. C1 [Zhang, Zhicheng; Clark, Sue B.] Washington State Univ, Dept Chem, Pullman, WA 99164 USA. [Helms, Gregory] Washington State Univ, Ctr NMR Spect, Pullman, WA 99164 USA. [Zhang, Zhicheng; Tian, Guoxin; Zanonato, PierLuigi; Rao, Linfeng] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Zanonato, PierLuigi] Univ Padua, Dipartimento Sci Chim, I-35131 Padua, Italy. RP Clark, SB (reprint author), Washington State Univ, Dept Chem, Pullman, WA 99164 USA. EM s_clark@wsu.edu; lrao@lbl.gov RI Zhang, Zhicheng/B-3887-2010 FU U.S. DOE's Environmental Management Science Program; U.S. Department of Energy; Basic Energy Sciences; Heavy Elements program [DE-FG02-06ER15782]; DOE [DE-FG07-07ID14896]; U.S. Department of Energy, Office of Science; Office of Basic Energy Sciences [DE-AC02-05CH11231] FX At Washington State University, this work was supported primarily by U.S. DOE's Environmental Management Science Program. S.B.C., Z.Z., and G.H. also acknowledge support from the U.S. Department of Energy, Basic Energy Sciences, Heavy Elements program, contract DE-FG02-06ER15782 for the NMR studies. S.B.C. and Z.Z. also acknowledge support from DOE via contract number DE-FG07-07ID14896 while preparing this manuscript. The work performed at Lawrence Berkeley National Laboratory (LBNL) was supported by U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract No. DE-AC02-05CH11231 at LBNL. The EXAFS experiments were conducted at SSRL, which is operated by the Department of Energy, Division of Chemical Science. Special thanks are due to Drs. Corwin Booth and Wayne Lukens (LBNL) for their help on the EXAFS analyses in this work. NR 46 TC 20 Z9 20 U1 3 U2 23 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 J9 INORG CHEM JI Inorg. Chem. PD APR 20 PY 2009 VL 48 IS 8 BP 3814 EP 3824 DI 10.1021/ic8018925 PG 11 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 432WZ UT WOS:000265166300054 PM 19320439 ER PT J AU Raza, N Sial, S Siddiqi, SS Lookman, T AF Raza, Nauman Sial, Sultan Siddiqi, Shahid S. Lookman, Turab TI Energy minimization related to the nonlinear Schrodinger equation SO JOURNAL OF COMPUTATIONAL PHYSICS LA English DT Article DE Sobolev gradients; Nonlinear Schrodinger equation ID SOBOLEV GRADIENTS AB In this the window of the Sobolev gradient technique to the problem of minimizing a Schrodinger functional associated with a nonlinear Schrodinger equation. We show that gradients act in a suitably chosen Sobolev space (Sobolev gradients) can be used in finite-difference and finite-element settings in a computationally efficient way to find minimum energy states of Schrodinger functionals. (C) 2008 Elsevier Inc. All rights reserved. C1 [Raza, Nauman; Siddiqi, Shahid S.] Univ Punjab, Dept Math, Lahore, Pakistan. [Raza, Nauman] Lahore Univ Management Sci, Lahore, Pakistan. [Sial, Sultan] Lahore Univ Managernent Sci, DHA, Dept Math, Lahore Cantt 54792, Pakistan. [Lookman, Turab] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Raza, N (reprint author), Univ Punjab, Dept Math, House 15,St 39, Lahore, Pakistan. EM raza_nauman@yahoo.com; sultans@lums.edu.pk; shahidsiddiqiprof@yahoo.co.uk OI Lookman, Turab/0000-0001-8122-5671 FU Higher Education Commission Islamabad, Pakistan FX We acknowledge the enabling role of the Higher Education Commission Islamabad, Pakistan, and appreciate its financial support through the Indigenous PhD 5000 Fellowship Program Batch-I. NR 18 TC 9 Z9 9 U1 0 U2 2 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9991 J9 J COMPUT PHYS JI J. Comput. Phys. PD APR 20 PY 2009 VL 228 IS 7 BP 2572 EP 2577 DI 10.1016/j.jcp.2008.12.016 PG 6 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA 420LS UT WOS:000264291900014 ER PT J AU Archibald, R Gelb, A Saxena, R Xiu, DB AF Archibald, Rick Gelb, Anne Saxena, Rishu Xiu, Dongbin TI Discontinuity detection in multivariate space for stochastic simulations SO JOURNAL OF COMPUTATIONAL PHYSICS LA English DT Article DE Stochastic partial differential equations; Multivariate edge detection; Generalized polynomial chaos method ID DIFFERENTIAL-EQUATIONS; POLYNOMIAL CHAOS; EDGE-DETECTION AB Edge detection has traditionally been associated with detecting physical space jump discontinuities in one dimension, e.g. seismic signals, and two dimensions, e.g. digital images. Hence most of the research on edge detection algorithms is restricted to these contexts. High dimension edge detection can be of significant importance. however. For instance, stochastic variants of classical differential equations not only have variables in space/time dimensions, but additional dimensions are often introduced to the problem by the nature of the random inputs. The stochastic solutions to such problems sometimes contain discontinuities in the corresponding random space and a prior knowledge of jump locations can be very helpful in increasing the accuracy of the final solution. Traditional edge detection methods typically require uniform grid point distribution. They also often involve the computation of gradients and/or Laplacians, which can become very complicated to compute as the number of dimensions increases. The polynomial annihilation edge detection method, on the other hand, is more flexible in terms of its geometric specifications and is furthermore relatively easy to apply. This paper discusses the numerical implementation of the polynomial annihilation edge detection method to high dimensional functions that arise when solving stochastic partial differential equations. (C) 2009 Elsevier Inc. All rights reserved. C1 [Archibald, Rick] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Gelb, Anne; Saxena, Rishu] Arizona State Univ, Dept Math & Stat, Tempe, AZ 85287 USA. [Xiu, Dongbin] Purdue Univ, Dept Math, W Lafayette, IN 47907 USA. RP Archibald, R (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM ArchibaldRK@ORNL.gov; ag@math.asu.edu; saxena@mathpost.asu.edu; dxiu@math.purdue.edu RI Archibald, Rick/I-6238-2016 OI Archibald, Rick/0000-0002-4538-9780 FU U.S. Government [DE-AC05-00OR22725]; NSF [DMS-0510813, DMS-0652833, RUI-0608844, DMS-0421846, DMS-0645035]; AFOSR [FA9550-08-1-0353, DOE DE-FC52-08NA28617] FX The submitted manuscript has been authored by contractors [UT-Battelle LLC, manager of Oak Ridge National Laboratory (ORNL)] of the U.S. Government under Contract No. DE-AC05-00OR22725. Accordingly, the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for U.S. Government purposes. Anne Gelb was partially supported by NSF DMS-0510813, NSF FRG DMS-0652833, NSF RUI-0608844 and NSF SCREMS DMS-0421846. Dongbin Xiu was partially supported by AFOSR FA9550-08-1-0353, DOE DE-FC52-08NA28617 and NSF CAREER DMS-0645035. NR 22 TC 15 Z9 15 U1 0 U2 4 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9991 J9 J COMPUT PHYS JI J. Comput. Phys. PD APR 20 PY 2009 VL 228 IS 7 BP 2676 EP 2689 DI 10.1016/j.jcp.2009.01.001 PG 14 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA 420LS UT WOS:000264291900022 ER PT J AU Aaltonen, T Adelman, J Akimoto, T Gonzalez, BA Amerio, S Amidei, D Anastassov, A Annovi, A Antos, J Apollinari, G Apresyan, A Arisawa, T Artikov, A Ashmanskas, W Attal, A Aurisano, A Azfar, F Badgett, W Barbaro-Galtieri, A Barnes, VE Barnett, BA Barria, P Bartsch, V Bauer, G Beauchemin, PH Bedeschi, F Beecher, D Behari, S Bellettini, G Bellinger, J Benjamin, D Beretvas, A Beringer, J Bhatti, A Binkley, M Bisello, D Bizjak, I Blair, RE Blocker, C Blumenfeld, B Bocci, A Bodek, A Boisvert, V Bolla, G Bortoletto, D Boudreau, J Boveia, A Brau, B Bridgeman, A Brigliadori, L Bromberg, C Brubaker, E Budagov, J Budd, HS Budd, S Burke, S Burkett, K Busetto, G Bussey, P Buzatu, A Byrum, KL Cabrera, S Calancha, C Campanelli, M Campbell, M Canelli, F Canepa, A Carls, B Carlsmith, D Carosi, R Carrillo, S Carron, S Casal, B Casarsa, M Castro, A Catastini, P Cauz, D Cavaliere, V Cavalli-Sforza, M Cerri, A Cerrito, L Chang, SH Chen, YC Chertok, M Chiarelli, G Chlachidze, G Chlebana, F Cho, K Chokheli, D Chou, JP Choudalakis, G Chuang, SH Chung, K Chung, WH Chung, YS Chwalek, T Ciobanu, CI Ciocci, MA Clark, A Clark, D Compostella, G Convery, ME Conway, J Cordelli, M Cortiana, G Cox, CA Cox, DJ Crescioli, F Almenar, CC Cuevas, J Culbertson, R Cully, JC Dagenhart, D Datta, M Davies, T de Barbaro, P De Cecco, S Deisher, A De Lorenzo, G Dell'Orso, M Deluca, C Demortier, L Deng, J Deninno, M Derwent, PF Di Canto, A di Giovanni, GP Dionisi, C Di Ruzza, B Dittmann, JR D'Onofrio, M Donati, S Dong, P Donini, J Dorigo, T Dube, S Efron, J Elagin, A Erbacher, R Errede, D Errede, S Eusebi, R Fang, HC Farrington, S Fedorko, WT Feild, RG Feindt, M Fernandez, JP Ferrazza, C Field, R Flanagan, G Forrest, R Frank, MJ Franklin, M Freeman, JC Furic, I Gallinaro, M Galyardt, J Garberson, F Garcia, JE Garfinkel, AF Garosi, P Genser, K Gerberich, H Gerdes, D Gessler, A Giagu, S Giakoumopoulou, V Giannetti, R Gibson, K Gimmell, JL Ginsburg, CM Giokaris, N Giordani, M Giromini, P Giunta, M Giurgiu, G Glagolev, V Glenzinski, D Gold, M Goldschmidt, N Golossanov, A Gomez, G Gomez-Ceballos, G Goncharov, M Gonzalez, O Gorelov, I Goshaw, AT Goulianos, K Gresele, A Grinstein, S Grosso-Pilcher, C Group, RC Grundler, U da Costa, JG Gunay-Unalan, Z Haber, C Hahn, K Hahn, SR Halkiaclakis, E Han, BY Han, JY Happacher, F Hara, K Hare, D Hare, M Harper, S Harr, RF Harris, RM Hartz, M Hatakeyama, K Hays, C Heck, M Heijboer, A Heinrich, J Henderson, C Herndon, M Heuser, J Hewamanage, S Hidas, D Hill, CS Hirschbuehl, D Hocker, A Hou, S Houlden, M Hsu, SC Huffman, BT Hughes, RE Husemann, U Hussein, M Huston, J Incandela, J Introzzi, G Iori, M Ivanov, A James, E Jang, D Jayatilaka, B Jeon, EJ Jha, MK Jindariani, S Johnson, W Jones, M Joo, KK Jun, SY Jung, JE Junk, TR Kamon, T Kar, D Karchin, PE Kato, Y Kephart, R Ketchum, W Keung, J Khotilovich, V Kilminster, B Kim, DH Kim, HS Kim, HW Kim, JE Kim, MJ Kim, SB Kim, SH Kim, YK Kimura, N Kirsch, L Klimenko, S Knuteson, B Ko, BR Kondo, K Kong, DJ Konigsberg, J Korytov, A Kotwal, AV Kreps, M Kroll, J Krop, D Krumnack, N Kruse, M Krutelyov, V Kubo, T Kuhr, T Kulkarni, NP Kurata, M Kwang, S Laasanen, AT Lami, S Lammel, S Lancaster, M Lander, RL Lannon, K Lath, A Latino, G Lazzizzera, I LeCompte, T Lee, E Lee, HS Lee, SW Leone, S Lewis, JD Lin, CS Linacre, J Lindgren, M Lipeles, E Lister, A Litvintsev, DO Liu, C Liu, T Lockyer, NS Loginov, A Loreti, M Lovas, L Lucchesi, D Luci, C Lueck, J Lujan, P Lukens, P Lungu, G Lyons, L Lys, J Lysak, R MacQueen, D Madrak, R Maeshima, K Makhoul, K Maki, T Maksimovic, P Malde, S Malik, S Manca, G Manousakis-Katsikakis, A Margaroli, F Marino, C Marino, CP Martin, A Martin, V Martinez, M Martinez-Ballarin, R Maruyama, T Mastrandrea, P Masubuchi, T Mathis, M Mattson, ME Mazzanti, P McFarland, KS McIntyre, P McNulty, R Mehta, A Mehtala, P Menzione, A Merkel, P Mesropian, C Miao, T Miladinovic, N Miller, R Mills, C Milnik, M Mitra, A Mitselmakher, G Miyake, H Moed, S Moggi, N Moon, CS Moore, R Morello, MJ Morlock, J Fernandez, PM Mulmenstadt, J Mukherjee, A Muller, T Mumford, R Murat, P Mussini, M Nachtman, J Nagai, Y Nagano, A Naganoma, J Nakamura, K Nakano, I Napier, A Necula, V Nett, J Neu, C Neubauer, MS Neubauer, S Nielsen, J Nodulman, L Norman, M Norniella, O Nurse, E Oakes, L Oh, SH Oh, YD Oksuzian, I Okusawa, T Orava, R Osterberg, K Griso, SP Palencia, E Papadimitriou, V Papaikonomou, A Paramonov, AA Parks, B Pashapour, S Patrick, J Pauletta, G Paulini, M Paus, C Peiffer, T Pellett, DE Penzo, A Phillips, TJ Piacentino, G Pianori, E Pinera, L Pitts, K Plager, C Pondrom, L Poukhov, O Pounder, N Prakoshyn, F Pronko, A Proudfoot, J Ptohos, F Pueschel, E Punzi, G Pursley, J Rademacker, J Rahaman, A Ramakrishnan, V Ranjan, N Redondo, I Renton, P Renz, M Rescigno, M Richter, S Rimondi, F Ristori, L Robson, A Rodrigo, T Rodriguez, T Rogers, E Rolli, S Roser, R Rossi, M Rossin, R Roy, P Ruiz, A Russ, J Rusu, V Rutherford, B Saarikko, H Safonov, A Sakumoto, WK Salto, O Santi, L Sarkar, S Sartori, L Sato, K Savoy-Navarro, A Schlabach, P Schmidt, A Schmidt, EE Schmidt, MA Schmidt, MP Schmitt, M Schwarz, T Scodellaro, L Scribano, A Scuri, F Sedov, A Seidel, S Seiya, Y Semenov, A Sexton-Kennedy, L Sforza, F Sfyrla, A Shalhout, SZ Shears, T Shepard, PF Shimojima, M Shiraishi, S Shochet, M Shon, Y Shreyber, I Sinervo, P Sisakyan, A Slaughter, AJ Slaunwhite, J Sliwa, K Smith, JR Snider, FD Snihur, R Soha, A Somalwar, S Sorin, V Spreitzer, T Squillacioti, P Stanitzki, M Denis, RS Stelzer, B Stelzer-Chilton, O Stentz, D Strologas, J Strycker, GL Suh, JS Sukhanov, A Suslov, I Suzuki, T Taffard, A Takashima, R Takeuchi, Y Tanaka, R Tecchio, M Teng, PK Terashi, K Thom, J Thompson, AS Thompson, GA Thomson, E Tipton, P Ttito-Guzman, R Tkaczyk, S Toback, D Tokar, S Tollefson, K Tomura, T Tonelli, D Torre, S Torretta, D Totaro, P Tourneur, S Trovato, M Tsai, SY Tu, Y Turini, N Ukegawa, F Vallecorsa, S van Remortel, N Varganov, A Vataga, E Vazquez, F Velev, G Vellidis, C Vidal, M Vidal, R Vila, I Vilar, R Vine, T Vogel, M Volobouev, I Volpi, G Wagner, P Wagner, RG Wagner, RL Wagner, W Wagner-Kuhr, J Wakisaka, T Wallny, R Wang, SM Warburton, A Waters, D Weinberger, M Weinelt, J Wester, WC Whitehouse, B Whiteson, D Wicklund, AB Wicklund, E Wilbur, S Williams, G Williams, HH Wilson, P Winer, BL Wittich, P Wolbers, S Wolfe, C Wright, T Wu, X Wurthwein, F Xie, S Yagil, A Yamamoto, K Yamaoka, J Yang, UK Yang, YC Yao, WM Yeh, GP Yi, K Yoh, J Yorita, K Yoshida, T Yu, GB Yu, I Yu, SS Yun, JC Zanello, L Zanetti, A Zhang, X Zheng, Y Zucchelli, S AF Aaltonen, T. Adelman, J. Akimoto, T. Alvarez Gonzalez, B. Amerio, S. Amidei, D. Anastassov, A. Annovi, A. Antos, J. Apollinari, G. Apresyan, A. Arisawa, T. Artikov, A. Ashmanskas, W. Attal, A. Aurisano, A. Azfar, F. Badgett, W. Barbaro-Galtieri, A. Barnes, V. E. Barnett, B. A. Barria, P. Bartsch, V. Bauer, G. Beauchemin, P-H. Bedeschi, F. Beecher, D. Behari, S. Bellettini, G. Bellinger, J. Benjamin, D. Beretvas, A. Beringer, J. Bhatti, A. Binkley, M. Bisello, D. Bizjak, I. Blair, R. E. Blocker, C. Blumenfeld, B. Bocci, A. Bodek, A. Boisvert, V. Bolla, G. Bortoletto, D. Boudreau, J. Boveia, A. Brau, B. Bridgeman, A. Brigliadori, L. Bromberg, C. Brubaker, E. Budagov, J. Budd, H. S. Budd, S. Burke, S. Burkett, K. Busetto, G. Bussey, P. Buzatu, A. Byrum, K. L. Cabrera, S. Calancha, C. Campanelli, M. Campbell, M. Canelli, F. Canepa, A. Carls, B. Carlsmith, D. Carosi, R. Carrillo, S. Carron, S. Casal, B. Casarsa, M. Castro, A. Catastini, P. Cauz, D. Cavaliere, V. Cavalli-Sforza, M. Cerri, A. Cerrito, L. Chang, S. H. Chen, Y. C. Chertok, M. Chiarelli, G. Chlachidze, G. Chlebana, F. Cho, K. Chokheli, D. Chou, J. P. Choudalakis, G. Chuang, S. H. Chung, K. Chung, W. H. Chung, Y. S. Chwalek, T. Ciobanu, C. I. Ciocci, M. A. Clark, A. Clark, D. Compostella, G. Convery, M. E. Conway, J. Cordelli, M. Cortiana, G. Cox, C. A. Cox, D. J. Crescioli, F. Almenar, C. Cuenca Cuevas, J. Culbertson, R. Cully, J. C. Dagenhart, D. Datta, M. Davies, T. de Barbaro, P. De Cecco, S. Deisher, A. De Lorenzo, G. Dell'Orso, M. Deluca, C. Demortier, L. Deng, J. Deninno, M. Derwent, P. F. Di Canto, A. di Giovanni, G. P. Dionisi, C. Di Ruzza, B. Dittmann, J. R. D'Onofrio, M. Donati, S. Dong, P. Donini, J. Dorigo, T. Dube, S. Efron, J. Elagin, A. Erbacher, R. Errede, D. Errede, S. Eusebi, R. Fang, H. C. Farrington, S. Fedorko, W. T. Feild, R. G. Feindt, M. Fernandez, J. P. Ferrazza, C. Field, R. Flanagan, G. Forrest, R. Frank, M. J. Franklin, M. Freeman, J. C. Furic, I. Gallinaro, M. Galyardt, J. Garberson, F. Garcia, J. E. Garfinkel, A. F. Garosi, P. Genser, K. Gerberich, H. Gerdes, D. Gessler, A. Giagu, S. Giakoumopoulou, V. Giannetti, R. Gibson, K. Gimmell, J. L. Ginsburg, C. M. Giokaris, N. Giordani, M. Giromini, P. Giunta, M. Giurgiu, G. Glagolev, V. Glenzinski, D. Gold, M. Goldschmidt, N. Golossanov, A. Gomez, G. Gomez-Ceballos, G. Goncharov, M. Gonzalez, O. Gorelov, I. Goshaw, A. T. Goulianos, K. Gresele, A. Grinstein, S. Grosso-Pilcher, C. Group, R. C. Grundler, U. da Costa, J. Guimaraes Gunay-Unalan, Z. Haber, C. Hahn, K. Hahn, S. R. Halkiaclakis, E. Han, B. -Y. Han, J. Y. Happacher, F. Hara, K. Hare, D. Hare, M. Harper, S. Harr, R. F. Harris, R. M. Hartz, M. Hatakeyama, K. Hays, C. Heck, M. Heijboer, A. Heinrich, J. Henderson, C. Herndon, M. Heuser, J. Hewamanage, S. Hidas, D. Hill, C. S. Hirschbuehl, D. Hocker, A. Hou, S. Houlden, M. Hsu, S. -C. Huffman, B. T. Hughes, R. E. Husemann, U. Hussein, M. Huston, J. Incandela, J. Introzzi, G. Iori, M. Ivanov, A. James, E. Jang, D. Jayatilaka, B. Jeon, E. J. Jha, M. K. Jindariani, S. Johnson, W. Jones, M. Joo, K. K. Jun, S. Y. Jung, J. E. Junk, T. R. Kamon, T. Kar, D. Karchin, P. E. Kato, Y. Kephart, R. Ketchum, W. Keung, J. Khotilovich, V. Kilminster, B. Kim, D. H. Kim, H. S. Kim, H. W. Kim, J. E. Kim, M. J. Kim, S. B. Kim, S. H. Kim, Y. K. Kimura, N. Kirsch, L. Klimenko, S. Knuteson, B. Ko, B. R. Kondo, K. Kong, D. J. Konigsberg, J. Korytov, A. Kotwal, A. V. Kreps, M. Kroll, J. Krop, D. Krumnack, N. Kruse, M. Krutelyov, V. Kubo, T. Kuhr, T. Kulkarni, N. P. Kurata, M. Kwang, S. Laasanen, A. T. Lami, S. Lammel, S. Lancaster, M. Lander, R. L. Lannon, K. Lath, A. Latino, G. Lazzizzera, I. LeCompte, T. Lee, E. Lee, H. S. Lee, S. W. Leone, S. Lewis, J. D. Lin, C. -S. Linacre, J. Lindgren, M. Lipeles, E. Lister, A. Litvintsev, D. O. Liu, C. Liu, T. Lockyer, N. S. Loginov, A. Loreti, M. Lovas, L. Lucchesi, D. Luci, C. Lueck, J. Lujan, P. Lukens, P. Lungu, G. Lyons, L. Lys, J. Lysak, R. MacQueen, D. Madrak, R. Maeshima, K. Makhoul, K. Maki, T. Maksimovic, P. Malde, S. Malik, S. Manca, G. Manousakis-Katsikakis, A. Margaroli, F. Marino, C. Marino, C. P. Martin, A. Martin, V. Martinez, M. Martinez-Ballarin, R. Maruyama, T. Mastrandrea, P. Masubuchi, T. Mathis, M. Mattson, M. E. Mazzanti, P. McFarland, K. S. McIntyre, P. McNulty, R. Mehta, A. Mehtala, P. Menzione, A. Merkel, P. Mesropian, C. Miao, T. Miladinovic, N. Miller, R. Mills, C. Milnik, M. Mitra, A. Mitselmakher, G. Miyake, H. Moed, S. Moggi, N. Moon, C. S. Moore, R. Morello, M. J. Morlock, J. Fernandez, P. Movilla Muelmenstaedt, J. Mukherjee, A. Muller, Th Mumford, R. Murat, P. Mussini, M. Nachtman, J. Nagai, Y. Nagano, A. Naganoma, J. Nakamura, K. Nakano, I. Napier, A. Necula, V. Nett, J. Neu, C. Neubauer, M. S. Neubauer, S. Nielsen, J. Nodulman, L. Norman, M. Norniella, O. Nurse, E. Oakes, L. Oh, S. H. Oh, Y. D. Oksuzian, I. Okusawa, T. Orava, R. Osterberg, K. Griso, S. Pagan Palencia, E. Papadimitriou, V. Papaikonomou, A. Paramonov, A. A. Parks, B. Pashapour, S. Patrick, J. Pauletta, G. Paulini, M. Paus, C. Peiffer, T. Pellett, D. E. Penzo, A. Phillips, T. J. Piacentino, G. Pianori, E. Pinera, L. Pitts, K. Plager, C. Pondrom, L. Poukhov, O. Pounder, N. Prakoshyn, F. Pronko, A. Proudfoot, J. Ptohos, F. Pueschel, E. Punzi, G. Pursley, J. Rademacker, J. Rahaman, A. Ramakrishnan, V. Ranjan, N. Redondo, I. Renton, P. Renz, M. Rescigno, M. Richter, S. Rimondi, F. Ristori, L. Robson, A. Rodrigo, T. Rodriguez, T. Rogers, E. Rolli, S. Roser, R. Rossi, M. Rossin, R. Roy, P. Ruiz, A. Russ, J. Rusu, V. Rutherford, B. Saarikko, H. Safonov, A. Sakumoto, W. K. Salto, O. Santi, L. Sarkar, S. Sartori, L. Sato, K. Savoy-Navarro, A. Schlabach, P. Schmidt, A. Schmidt, E. E. Schmidt, M. A. Schmidt, M. P. Schmitt, M. Schwarz, T. Scodellaro, L. Scribano, A. Scuri, F. Sedov, A. Seidel, S. Seiya, Y. Semenov, A. Sexton-Kennedy, L. Sforza, F. Sfyrla, A. Shalhout, S. Z. Shears, T. Shepard, P. F. Shimojima, M. Shiraishi, S. Shochet, M. Shon, Y. Shreyber, I. Sinervo, P. Sisakyan, A. Slaughter, A. J. Slaunwhite, J. Sliwa, K. Smith, J. R. Snider, F. D. Snihur, R. Soha, A. Somalwar, S. Sorin, V. Spreitzer, T. Squillacioti, P. Stanitzki, M. Denis, R. St. Stelzer, B. Stelzer-Chilton, O. Stentz, D. Strologas, J. Strycker, G. L. Suh, J. S. Sukhanov, A. Suslov, I. Suzuki, T. Taffard, A. Takashima, R. Takeuchi, Y. Tanaka, R. Tecchio, M. Teng, P. K. Terashi, K. Thom, J. Thompson, A. S. Thompson, G. A. Thomson, E. Tipton, P. Ttito-Guzman, R. Tkaczyk, S. Toback, D. Tokar, S. Tollefson, K. Tomura, T. Tonelli, D. Torre, S. Torretta, D. Totaro, P. Tourneur, S. Trovato, M. Tsai, S. -Y. Tu, Y. Turini, N. Ukegawa, F. Vallecorsa, S. van Remortel, N. Varganov, A. Vataga, E. Vazquez, F. Velev, G. Vellidis, C. Vidal, M. Vidal, R. Vila, I. Vilar, R. Vine, T. Vogel, M. Volobouev, I. Volpi, G. Wagner, P. Wagner, R. G. Wagner, R. L. Wagner, W. Wagner-Kuhr, J. Wakisaka, T. Wallny, R. Wang, S. M. Warburton, A. Waters, D. Weinberger, M. Weinelt, J. Wester, W. C., III Whitehouse, B. Whiteson, D. Wicklund, A. B. Wicklund, E. Wilbur, S. Williams, G. Williams, H. H. Wilson, P. Winer, B. L. Wittich, P. Wolbers, S. Wolfe, C. Wright, T. Wu, X. Wuerthwein, F. Xie, S. Yagil, A. Yamamoto, K. Yamaoka, J. Yang, U. K. Yang, Y. C. Yao, W. M. Yeh, G. P. Yi, K. Yoh, J. Yorita, K. Yoshida, T. Yu, G. B. Yu, I. Yu, S. S. Yun, J. C. Zanello, L. Zanetti, A. Zhang, X. Zheng, Y. Zucchelli, S. TI Measurement of W-boson helicity fractions in top-quark decays using cos theta SO PHYSICS LETTERS B LA English DT Article DE Helicity; W boson; Top quark ID SEMILEPTONIC DECAYS; QCD CORRECTIONS; NEUTRINO; PHYSICS AB Fully reconstructed a t (t) over bar -> W(+)bW(-)(b) over bar -> l nu q (q) over bar 'b (b) over bar events are used to determine the fractions of right-handed (f(+)) and longitudinally polarized (f(0)) W bosons produced in top-quark decays. The helicity fractions are sensitive to the couplings and the Dirac structure of the Wtb vertex. This Letter reports measurements of the W-boson helicity fractions from two different methods using data corresponding to an integrated luminosity of 1.9 fb(-1) of pp collisions at a center-of-mass energy of 1.96 TeV collected by the CDF II detector operating at the Fermilab Tevatron. Combining the results from the two methods, we find f(0) = 0.62 +/- 0.10(stat) +/- 0.05(syst) under the assumption that f(+) = 0, and f(+) = -0.04 +/- 0.04(stat) +/- 0.03(syst) with f(0) fixed to the theoretically expected value of 0.70. Model-independent fits are also performed and simultaneously determine f(0) =0.66 +/- 0.16(stat) +/- 0.05(syst) and f(+) = -0.03 +/- 0.06(stat) +/- 0.03(syst). All these results are consistent with standard model expectations. (C) 2009 Elsevier B.V. All rights reserved. C1 [Chwalek, T.; Feindt, M.; Gessler, A.; Heck, M.; Heuser, J.; Hirschbuehl, D.; Kreps, M.; Kuhr, T.; Lueck, J.; Marino, C.; Milnik, M.; Morlock, J.; Muller, Th; Neubauer, S.; Papaikonomou, A.; Peiffer, T.; Renz, M.; Richter, S.; Schmidt, A.; Wagner, W.; Wagner-Kuhr, J.; Weinelt, J.] Univ Karlsruhe, Inst Expt Kernphys, D-76128 Karlsruhe, Germany. [Chen, Y. C.; Hou, S.; Mitra, A.; Teng, P. K.; Tsai, S. -Y.; Wang, S. M.] Acad Sinica, Inst Phys, Taipei 11529, Taiwan. [Blair, R. E.; Byrum, K. L.; LeCompte, T.; Nodulman, L.; Proudfoot, J.; Wagner, R. G.; Wicklund, A. B.] Argonne Natl Lab, Argonne, IL 60439 USA. [Giakoumopoulou, V.; Giokaris, N.; Manousakis-Katsikakis, A.; Vellidis, C.] Univ Athens, GR-15771 Athens, Greece. [Attal, A.; Cavalli-Sforza, M.; De Lorenzo, G.; Deluca, C.; D'Onofrio, M.; Martinez, M.; Salto, O.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. [Dittmann, J. R.; Frank, M. J.; Hewamanage, S.; Krumnack, N.] Baylor Univ, Waco, TX 76798 USA. [Brigliadori, L.; Castro, A.; Deninno, M.; Jha, M. K.; Mazzanti, P.; Moggi, N.; Mussini, M.; Rimondi, F.; Zucchelli, S.] Univ Bologna, I-40127 Bologna, Italy. [Brigliadori, L.; Castro, A.; Deninno, M.; Jha, M. K.; Mazzanti, P.; Moggi, N.; Mussini, M.; Rimondi, F.; Zucchelli, S.] Ist Nazl Fis Nucl Bologna, I-40127 Bologna, Italy. [Blocker, C.; Clark, D.; Kirsch, L.; Miladinovic, N.] Brandeis Univ, Waltham, MA 02254 USA. [Chertok, M.; Conway, J.; Cox, C. A.; Cox, D. J.; Almenar, C. Cuenca; Erbacher, R.; Forrest, R.; Ivanov, A.; Johnson, W.; Lander, R. L.; Lister, A.; Pellett, D. E.; Schwarz, T.; Smith, J. R.; Soha, A.] Univ Calif Davis, Davis, CA 95616 USA. [Dong, P.; Plager, C.; Wallny, R.; Zheng, Y.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Norman, M.; Wuerthwein, F.; Yagil, A.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Boveia, A.; Brau, B.; Garberson, F.; Hill, C. S.; Incandela, J.; Krutelyov, V.; Rossin, R.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Alvarez Gonzalez, B.; Casal, B.; Cuevas, J.; Gomez, G.; Rodrigo, T.; Ruiz, A.; Scodellaro, L.; Vila, I.; Vilar, R.] Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain. [Chung, K.; Galyardt, J.; Jang, D.; Jun, S. Y.; Paulini, M.; Pueschel, E.; Russ, J.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Adelman, J.; Brubaker, E.; Canelli, F.; Fedorko, W. T.; Grosso-Pilcher, C.; Ketchum, W.; Kim, Y. K.; Krop, D.; Kwang, S.; Lee, H. S.; Paramonov, A. A.; Schmidt, M. A.; Shiraishi, S.; Shochet, M.; Wilbur, S.; Wolfe, C.; Yang, U. K.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Antos, J.; Lovas, L.; Lysak, R.; Tokar, S.] Slovak Acad Sci, Inst Expt Phys, Kosice 04001, Slovakia. [Antos, J.; Lovas, L.; Lysak, R.; Tokar, S.] Comenius Univ, Bratislava 84248, Slovakia. [Artikov, A.; Budagov, J.; Chokheli, D.; Glagolev, V.; Poukhov, O.; Prakoshyn, F.; Semenov, A.; Sisakyan, A.; Suslov, I.] Joint Inst Nucl Res, RU-141980 Dubna, Russia. [Benjamin, D.; Bocci, A.; Cabrera, S.; Deng, J.; Goshaw, A. T.; Hidas, D.; Jayatilaka, B.; Ko, B. R.; Kotwal, A. V.; Kruse, M.; Necula, V.; Oh, S. H.; Phillips, T. J.; Yamaoka, J.] Duke Univ, Durham, NC 27708 USA. [Apollinari, G.; Ashmanskas, W.; Badgett, W.; Beretvas, A.; Binkley, M.; Burke, S.; Burkett, K.; Canelli, F.; Casarsa, M.; Chlachidze, G.; Chlebana, F.; Convery, M. E.; Culbertson, R.; Dagenhart, D.; Datta, M.; Derwent, P. F.; Eusebi, R.; Freeman, J. C.; Genser, K.; Ginsburg, C. M.; Glenzinski, D.; Golossanov, A.; Group, R. C.; Hahn, S. R.; Harris, R. M.; Hocker, A.; James, E.; Jindariani, S.; Junk, T. R.; Kephart, R.; Kilminster, B.; Lammel, S.; Lewis, J. D.; Lindgren, M.; Litvintsev, D. O.; Liu, T.; Lukens, P.; Madrak, R.; Maeshima, K.; Miao, T.; Moore, R.; Fernandez, P. Movilla; Mukherjee, A.; Murat, P.; Nachtman, J.; Palencia, E.; Papadimitriou, V.; Patrick, J.; Pronko, A.; Ptohos, F.; Roser, R.; Rusu, V.; Rutherford, B.; Sato, K.; Schlabach, P.; Schmidt, E. E.; Sexton-Kennedy, L.; Slaughter, A. J.; Snider, F. D.; Thom, J.; Tkaczyk, S.; Tonelli, D.; Torretta, D.; Velev, G.; Vidal, R.; Wagner, R. L.; Wester, W. C., III; Wicklund, E.; Wilson, P.; Wittich, P.; Wolbers, S.; Yeh, G. P.; Yi, K.; Yoh, J.; Yu, S. S.; Yun, J. C.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Carrillo, S.; Field, R.; Furic, I.; Goldschmidt, N.; Kar, D.; Klimenko, S.; Konigsberg, J.; Korytov, A.; Mitselmakher, G.; Oksuzian, I.; Pinera, L.; Sukhanov, A.; Vazquez, F.] Univ Florida, Gainesville, FL 32611 USA. [Annovi, A.; Cordelli, M.; Giromini, P.; Happacher, F.; Kim, M. J.; Torre, S.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Clark, A.; Garcia, J. E.; Vallecorsa, S.; Wu, X.] Univ Geneva, CH-1211 Geneva 4, Switzerland. [Bussey, P.; Davies, T.; Martin, V.; Robson, A.; Denis, R. St.; Thompson, A. S.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. [Chou, J. P.; Franklin, M.; Grinstein, S.; da Costa, J. Guimaraes; Mills, C.; Moed, S.] Harvard Univ, Cambridge, MA 02138 USA. [Aaltonen, T.; Maki, T.; Mehtala, P.; Orava, R.; Osterberg, K.; Saarikko, H.; van Remortel, N.] Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. [Aaltonen, T.; Maki, T.; Mehtala, P.; Orava, R.; Osterberg, K.; Saarikko, H.; van Remortel, N.] Helsinki Inst Phys, FIN-00014 Helsinki, Finland. [Bridgeman, A.; Budd, S.; Carls, B.; Errede, D.; Errede, S.; Gerberich, H.; Grundler, U.; Marino, C. P.; Neubauer, M. S.; Norniella, O.; Pitts, K.; Rogers, E.; Sfyrla, A.; Taffard, A.; Thompson, G. A.; Zhang, X.] Univ Illinois, Urbana, IL 61801 USA. [Barnett, B. A.; Behari, S.; Blumenfeld, B.; Giurgiu, G.; Maksimovic, P.; Mathis, M.; Mumford, R.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Feild, R. G.; Husemann, U.; Loginov, A.; Martin, A.; Schmidt, M. P.; Stanitzki, M.; Tipton, P.] Yale Univ, New Haven, CT 06520 USA. [Bellinger, J.; Carlsmith, D.; Chung, W. H.; Herndon, M.; Nett, J.; Pondrom, L.; Pursley, J.; Ramakrishnan, V.; Shon, Y.] Univ Wisconsin, Madison, WI 53706 USA. [Harr, R. F.; Karchin, P. E.; Kulkarni, N. P.; Mattson, M. E.; Shalhout, S. Z.] Wayne State Univ, Detroit, MI 48201 USA. [Arisawa, T.; Kondo, K.; Yorita, K.] Waseda Univ, Tokyo 169, Japan. [Hare, M.; Napier, A.; Rolli, S.; Sliwa, K.; Whitehouse, B.] Tufts Univ, Medford, MA 02155 USA. [Akimoto, T.; Hara, K.; Kim, S. H.; Kimura, N.; Kubo, T.; Kurata, M.; Maruyama, T.; Masubuchi, T.; Miyake, H.; Nagai, Y.; Nagano, A.; Naganoma, J.; Nakamura, K.; Shimojima, M.; Suzuki, T.; Takeuchi, Y.; Tomura, T.; Ukegawa, F.] Univ Tsukuba, Tsukuba, Ibaraki 305, Japan. [Aurisano, A.; Elagin, A.; Kamon, T.; Khotilovich, V.; Lee, E.; Lee, S. W.; McIntyre, P.; Safonov, A.; Toback, D.; Weinberger, M.] Texas A&M Univ, College Stn, TX 77843 USA. [Chuang, S. H.; Dube, S.; Halkiaclakis, E.; Hare, D.; Lath, A.; Somalwar, S.] Rutgers State Univ, Piscataway, NJ 08855 USA. [Cauz, D.; Di Ruzza, B.; Giordani, M.; Pauletta, G.; Penzo, A.; Rossi, M.; Santi, L.; Totaro, P.; Zanetti, A.] Ist Nazl Fis Nucl Trieste Udine, I-34100 Trieste, Italy. [Cauz, D.; Di Ruzza, B.; Giordani, M.; Pauletta, G.; Penzo, A.; Rossi, M.; Santi, L.; Totaro, P.; Zanetti, A.] Univ Trieste Udine, I-33100 Udine, Italy. [Bhatti, A.; Demortier, L.; Goulianos, K.; Hatakeyama, K.; Lungu, G.; Mesropian, C.; Terashi, K.] Rockefeller Univ, New York, NY 10021 USA. [Bodek, A.; Boisvert, V.; Budd, H. S.; Chung, Y. S.; de Barbaro, P.; Gimmell, J. L.; Han, B. -Y.; Han, J. Y.; McFarland, K. S.; Sakumoto, W. K.; Yu, G. B.] Univ Rochester, Rochester, NY 14627 USA. [Apresyan, A.; Barnes, V. E.; Bolla, G.; Bortoletto, D.; Flanagan, G.; Garfinkel, A. F.; Jones, M.; Laasanen, A. T.; Margaroli, F.; Merkel, P.; Ranjan, N.; Sedov, A.] Purdue Univ, W Lafayette, IN 47907 USA. [Boudreau, J.; Gibson, K.; Hartz, M.; Liu, C.; Rahaman, A.; Shepard, P. F.] Univ Pittsburgh, Pittsburgh, PA 15260 USA. [Canepa, A.; Heijboer, A.; Heinrich, J.; Keung, J.; Kroll, J.; Lipeles, E.; Lockyer, N. S.; Neu, C.; Pianori, E.; Rodriguez, T.; Thomson, E.; Tu, Y.; Wagner, P.; Whiteson, D.; Williams, H. H.] Univ Penn, Philadelphia, PA 19104 USA. [De Cecco, S.; Dionisi, C.; Gallinaro, M.; Giagu, S.; Iori, M.; Luci, C.; Mastrandrea, P.; Rescigno, M.; Sarkar, S.; Zanello, L.] Univ Roma La Sapienza, I-00185 Rome, Italy. [De Cecco, S.; Dionisi, C.; Gallinaro, M.; Giagu, S.; Iori, M.; Luci, C.; Mastrandrea, P.; Rescigno, M.; Sarkar, S.; Zanello, L.] Ist Nazl Fis Nucl, Sez Roma 1, I-00185 Rome, Italy. [Barria, P.; Bedeschi, F.; Bellettini, G.; Carosi, R.; Catastini, P.; Cavaliere, V.; Chiarelli, G.; Ciocci, M. A.; Crescioli, F.; Dell'Orso, M.; Di Canto, A.; Donati, S.; Ferrazza, C.; Garosi, P.; Giannetti, R.; Giunta, M.; Introzzi, G.; Lami, S.; Latino, G.; Leone, S.; Menzione, A.; Morello, M. J.; Piacentino, G.; Punzi, G.; Ristori, L.; Sartori, L.; Scribano, A.; Scuri, F.; Sforza, F.; Squillacioti, P.; Trovato, M.; Turini, N.; Vataga, E.; Volpi, G.] Univ Siena, Univ Pisa, Ist Nazl Fis Nucl Pisa, I-56127 Pisa, Italy. [Barria, P.; Bedeschi, F.; Bellettini, G.; Carosi, R.; Catastini, P.; Cavaliere, V.; Chiarelli, G.; Ciocci, M. A.; Crescioli, F.; Dell'Orso, M.; Di Canto, A.; Donati, S.; Ferrazza, C.; Garosi, P.; Giannetti, R.; Giunta, M.; Introzzi, G.; Lami, S.; Latino, G.; Leone, S.; Menzione, A.; Morello, M. J.; Piacentino, G.; Punzi, G.; Ristori, L.; Sartori, L.; Scribano, A.; Scuri, F.; Sforza, F.; Squillacioti, P.; Trovato, M.; Turini, N.; Vataga, E.; Volpi, G.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Amidei, D.; Campbell, M.; Cully, J. C.; Gerdes, D.; Strycker, G. L.; Tecchio, M.; Varganov, A.; Wright, T.] Univ Michigan, Ann Arbor, MI 48109 USA. [Kato, Y.; Okusawa, T.; Seiya, Y.; Wakisaka, T.; Yamamoto, K.; Yoshida, T.] Osaka City Univ, Osaka 588, Japan. [Azfar, F.; Farrington, S.; Harper, S.; Hays, C.; Huffman, B. T.; Linacre, J.; Lyons, L.; Malde, S.; Oakes, L.; Pounder, N.; Rademacker, J.; Renton, P.] Univ Oxford, Oxford OX1 3RH, England. [Amerio, S.; Bisello, D.; Busetto, G.; Compostella, G.; Cortiana, G.; Donini, J.; Dorigo, T.; Gresele, A.; Lazzizzera, I.; Loreti, M.; Lucchesi, D.; Griso, S. Pagan] Univ Padua, I-35131 Padua, Italy. [Amerio, S.; Bisello, D.; Busetto, G.; Compostella, G.; Cortiana, G.; Donini, J.; Dorigo, T.; Gresele, A.; Lazzizzera, I.; Loreti, M.; Lucchesi, D.; Griso, S. Pagan] Ist Nazl Fis Nucl, Sez Padova Trento, I-35131 Padua, Italy. [Ciobanu, C. I.; di Giovanni, G. P.; Savoy-Navarro, A.; Tourneur, S.] Univ Paris 06, CNRS, IN2P3, LPNHE,UMR7585, F-75252 Paris, France. [Nakano, I.; Takashima, R.; Tanaka, R.] Okayama Univ, Okayama 7008530, Japan. [Efron, J.; Hughes, R. E.; Lannon, K.; Parks, B.; Slaunwhite, J.; Winer, B. L.] Ohio State Univ, Columbus, OH 43210 USA. [Anastassov, A.; Schmitt, M.; Stentz, D.] Northwestern Univ, Evanston, IL 60208 USA. [Gold, M.; Gorelov, I.; Seidel, S.; Strologas, J.; Vogel, M.] Univ New Mexico, Albuquerque, NM 87131 USA. [Shreyber, I.] Inst Theoret & Expt Phys, ITEP, Moscow 117259, Russia. [Bromberg, C.; Campanelli, M.; Gunay-Unalan, Z.; Hussein, M.; Huston, J.; Miller, R.; Sorin, V.; Tollefson, K.] Michigan State Univ, E Lansing, MI 48824 USA. [Bartsch, V.; Beecher, D.; Bizjak, I.; Cerrito, L.; Lancaster, M.; Malik, S.; Nurse, E.; Vine, T.; Waters, D.] UCL, London WC1E 6BT, England. [Houlden, M.; Manca, G.; McNulty, R.; Mehta, A.; Shears, T.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Barbaro-Galtieri, A.; Beringer, J.; Cerri, A.; Deisher, A.; Fang, H. C.; Haber, C.; Hsu, S. -C.; Lin, C. -S.; Lujan, P.; Lys, J.; Muelmenstaedt, J.; Nielsen, J.; Volobouev, I.; Yao, W. M.] Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Bauer, G.; Choudalakis, G.; Gomez-Ceballos, G.; Goncharov, M.; Hahn, K.; Henderson, C.; Knuteson, B.; Makhoul, K.; Paus, C.; Xie, S.] MIT, Cambridge, MA 02139 USA. [Beauchemin, P-H.; Buzatu, A.; Carron, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] McGill Univ, Inst Particle Phys, Montreal, PQ H3A 2T8, Canada. [Beauchemin, P-H.; Buzatu, A.; Carron, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada. [Beauchemin, P-H.; Buzatu, A.; Carron, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] Univ Toronto, Toronto, ON M5S 1A7, Canada. [Beauchemin, P-H.; Buzatu, A.; Carron, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Kyungpook Natl Univ, Ctr High Energy Phys, Taegu 702701, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Seoul Natl Univ, Seoul 151742, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Sungkyunkwan Univ, Suwon 440746, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Korea Inst Sci & Technol, Taejon 305806, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Chonnam Natl Univ, Kwangju 500757, South Korea. [Calancha, C.; Fernandez, J. P.; Gonzalez, O.; Martinez-Ballarin, R.; Redondo, I.; Ttito-Guzman, R.; Vidal, M.] Ctr Invest Energet Medioambientales & Tecnol, E-28040 Madrid, Spain. RP Chwalek, T (reprint author), Univ Karlsruhe, Inst Expt Kernphys, D-76128 Karlsruhe, Germany. EM chwalek@ekp.uni-karlsruhe.de RI Gorelov, Igor/J-9010-2015; Canelli, Florencia/O-9693-2016; Lazzizzera, Ignazio/E-9678-2015; Chiarelli, Giorgio/E-8953-2012; Scodellaro, Luca/K-9091-2014; Grinstein, Sebastian/N-3988-2014; Paulini, Manfred/N-7794-2014; Russ, James/P-3092-2014; unalan, zeynep/C-6660-2015; vilar, rocio/P-8480-2014; Cabrera Urban, Susana/H-1376-2015; Garcia, Jose /H-6339-2015; ciocci, maria agnese /I-2153-2015; Cavalli-Sforza, Matteo/H-7102-2015; Muelmenstaedt, Johannes/K-2432-2015; Introzzi, Gianluca/K-2497-2015; Warburton, Andreas/N-8028-2013; Kim, Soo-Bong/B-7061-2014; Lysak, Roman/H-2995-2014; Moon, Chang-Seong/J-3619-2014; Ruiz, Alberto/E-4473-2011; Robson, Aidan/G-1087-2011; De Cecco, Sandro/B-1016-2012; manca, giulia/I-9264-2012; Amerio, Silvia/J-4605-2012; Punzi, Giovanni/J-4947-2012; Annovi, Alberto/G-6028-2012; Ivanov, Andrew/A-7982-2013; Hill, Christopher/B-5371-2012 OI Robson, Aidan/0000-0002-1659-8284; Torre, Stefano/0000-0002-7565-0118; Casarsa, Massimo/0000-0002-1353-8964; Vidal Marono, Miguel/0000-0002-2590-5987; Latino, Giuseppe/0000-0002-4098-3502; iori, maurizio/0000-0002-6349-0380; Lancaster, Mark/0000-0002-8872-7292; Nielsen, Jason/0000-0002-9175-4419; Jun, Soon Yung/0000-0003-3370-6109; Toback, David/0000-0003-3457-4144; Hays, Chris/0000-0003-2371-9723; Farrington, Sinead/0000-0001-5350-9271; Gorelov, Igor/0000-0001-5570-0133; Canelli, Florencia/0000-0001-6361-2117; Lami, Stefano/0000-0001-9492-0147; Margaroli, Fabrizio/0000-0002-3869-0153; Group, Robert/0000-0002-4097-5254; Lazzizzera, Ignazio/0000-0001-5092-7531; Chiarelli, Giorgio/0000-0001-9851-4816; Giordani, Mario/0000-0002-0792-6039; Scodellaro, Luca/0000-0002-4974-8330; Grinstein, Sebastian/0000-0002-6460-8694; Paulini, Manfred/0000-0002-6714-5787; Russ, James/0000-0001-9856-9155; unalan, zeynep/0000-0003-2570-7611; ciocci, maria agnese /0000-0003-0002-5462; Muelmenstaedt, Johannes/0000-0003-1105-6678; Introzzi, Gianluca/0000-0002-1314-2580; Warburton, Andreas/0000-0002-2298-7315; Moon, Chang-Seong/0000-0001-8229-7829; Ruiz, Alberto/0000-0002-3639-0368; Punzi, Giovanni/0000-0002-8346-9052; Annovi, Alberto/0000-0002-4649-4398; Ivanov, Andrew/0000-0002-9270-5643; Hill, Christopher/0000-0003-0059-0779 FU US Department of Energy and National Science Foundation: Italian Istituto Nazionale di Fisica Nucleare; Ministry of Education, Culture, Sports, Science and Technology of Japan: Natural Sciences and Engineering Research Council of Canada: National Science Council of the Republic of China; Swiss National Science Foundation; A.P. Sloan Foundation: Bundesministerium fur Bildung und Forschung, Germany: Korean Science and Engineering Foundation and Korean Research Foundation; Science and Technology Facilities Council and the Royal Society, UK: Institut National de Physique Nucleaire et Physique des Particules/CNRS; Russian Foundation for Basic Research; Ministerio de Ciencia e Innovacion, and Programa Consolider-Ingenio 2010, Spain; Slovak R&D Agency: Academy of Finland FX We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the US Department of Energy and National Science Foundation: the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of Japan: the Natural Sciences and Engineering Research Council of Canada: the National Science Council of the Republic of China; the Swiss National Science Foundation; the A.P. Sloan Foundation: the Bundesministerium fur Bildung und Forschung, Germany: the Korean Science and Engineering Foundation and the Korean Research Foundation; the Science and Technology Facilities Council and the Royal Society, UK: the Institut National de Physique Nucleaire et Physique des Particules/CNRS; the Russian Foundation for Basic Research; the Ministerio de Ciencia e Innovacion, and Programa Consolider-Ingenio 2010, Spain; the Slovak R&D Agency: and the Academy of Finland. NR 34 TC 14 Z9 14 U1 1 U2 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 EI 1873-2445 J9 PHYS LETT B JI Phys. Lett. B PD APR 20 PY 2009 VL 674 IS 3 BP 160 EP 167 DI 10.1016/j.physletb.2009.02.040 PG 8 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 437FD UT WOS:000265471000004 ER PT J AU Hurst, AM Wu, CY Becker, JA Stoyer, MA Pearson, CJ Hackman, G Schumaker, MA Svensson, CE Austin, RAE Ball, GC Bandyopadhyay, D Barton, CJ Boston, AJ Boston, HC Churchman, R Cline, D Colosimo, SJ Cross, DS Demand, G Djongolov, M Drake, TE Garrett, PE Gray-Jones, C Green, KL Grint, AN Hayes, AB Leach, KG Kulp, WD Lee, G Lloyd, S Maharaj, R Martin, JP Millar, BA Mythili, S Nelson, L Nolan, PJ Oxley, DC Padilla-Rodal, E Phillips, AA Porter-Peden, M Rigby, SV Sarazin, F Sumithrarachchi, CS Triambak, S Walker, PM Williams, SJ Wong, J Wood, JL AF Hurst, A. M. Wu, C. Y. Becker, J. A. Stoyer, M. A. Pearson, C. J. Hackman, G. Schumaker, M. A. Svensson, C. E. Austin, R. A. E. Ball, G. C. Bandyopadhyay, D. Barton, C. J. Boston, A. J. Boston, H. C. Churchman, R. Cline, D. Colosimo, S. J. Cross, D. S. Demand, G. Djongolov, M. Drake, T. E. Garrett, P. E. Gray-Jones, C. Green, K. L. Grint, A. N. Hayes, A. B. Leach, K. G. Kulp, W. D. Lee, G. Lloyd, S. Maharaj, R. Martin, J. -P. Millar, B. A. Mythili, S. Nelson, L. Nolan, P. J. Oxley, D. C. Padilla-Rodal, E. Phillips, A. A. Porter-Peden, M. Rigby, S. V. Sarazin, F. Sumithrarachchi, C. S. Triambak, S. Walker, P. M. Williams, S. J. Wong, J. Wood, J. L. TI Narrowing of the neutron sd-pf shell gap in Na-29 SO PHYSICS LETTERS B LA English DT Article DE Coulomb excitation; ISOL; Reduced transition matrix element; Island of inversion ID BETA-DECAY; MODEL; ISOTOPES; NUCLEI; SODIUM AB The wave-function composition for the low-lying states in Na-29 was explored by measuring their electromagnetic properties using the Coulomb-excitation technique. A beam of Na-29 ions, postaccelerated to 70 MeV, bombarded a Pd-110 target with a rate of up to 600 particles per second at the recently commissioned ISAC-II facility at TRIUMF. Six segmented HPGe clover detectors of the TIGRESS gamma-ray spectrometer were used to detect deexcitation gamma rays in coincidence with scattered or recoiling charged particles in the segmented silicon detector, BAMBINO. The reduced transition matrix element vertical bar < 5/2(1)(+)vertical bar vertical bar E2 vertical bar vertical bar 3/2(gs)(+)>vertical bar in Na-29 was derived to be 0.237(21) e b from the measured gamma-ray yields for both projectile and target. This first-time measured value is consistent with the most recent Monte Carlo shell-model calculation, indicating a significant admixture of both sd and pf components in the wave function, and also providing evidence for the narrowing of the neutron sd-pf shell gap from similar to 6 MeV for stable nuclei to similar to 3 MeV for Na-29. (C) 2009 Elsevier B.V. All rights reserved. C1 [Hurst, A. M.; Wu, C. Y.; Becker, J. A.; Stoyer, M. A.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Pearson, C. J.; Hackman, G.; Ball, G. C.; Bandyopadhyay, D.; Churchman, R.; Djongolov, M.; Lee, G.; Lloyd, S.; Maharaj, R.; Padilla-Rodal, E.; Williams, S. J.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Schumaker, M. A.; Svensson, C. E.; Demand, G.; Garrett, P. E.; Green, K. L.; Leach, K. G.; Millar, B. A.; Phillips, A. A.; Sumithrarachchi, C. S.; Triambak, S.; Wong, J.] Univ Guelph, Dept Phys, Guelph, ON N1G 2W1, Canada. [Austin, R. A. E.; Colosimo, S. J.] St Marys Univ, Dept Phys & Astron, Halifax, NS B3H 3C3, Canada. [Barton, C. J.] Univ York, Dept Phys, York YO10 5DD, N Yorkshire, England. [Boston, A. J.; Boston, H. C.; Gray-Jones, C.; Grint, A. N.; Nelson, L.; Nolan, P. J.; Oxley, D. C.; Rigby, S. V.] Univ Liverpool, Oliver Lodge Lab, Liverpool L69 7ZE, Merseyside, England. [Cline, D.; Hayes, A. B.] Univ Rochester, Dept Phys & Astron, Rochester, NY 14627 USA. [Cross, D. S.] Simon Fraser Univ, Dept Chem, Burnaby, BC V5A 1S6, Canada. [Drake, T. E.] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada. [Kulp, W. D.; Wood, J. L.] Georgia Inst Technol, Sch Phys, Atlanta, GA 30332 USA. [Martin, J. -P.] Univ Montreal, Dept Phys, Montreal, PQ G1K 7P4, Canada. [Mythili, S.] Univ British Columbia, Dept Phys, Vancouver, BC V6T 1Z1, Canada. [Porter-Peden, M.; Sarazin, F.] Colorado Sch Mines, Dept Phys, Golden, CO 80401 USA. [Walker, P. M.] Univ Surrey, Dept Phys, Surrey GU2 7XH, England. RP Hurst, AM (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM hurst10@llnl.gov OI Leach, Kyle/0000-0002-4751-1698 FU DOE, LLNL [DE-AC52-07NA27344]; NSF; NSERC of Canada; STFC of the UK; NRC of Canada FX This work was supported by the DOE, LLNL Contract DE-AC52-07NA27344, the NSF, the NSERC of Canada, and the STFC of the UK. TRIUMF receives federal funding via a contribution agreement with the NRC of Canada. The considerable effort of the operations staff at TRIUMF is gratefully acknowledged. The authors would also like to thank Prof. B.A. Brown and Dr. D.J. Millener for insightful discussions concerning the shell-model calculations. NR 34 TC 16 Z9 16 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 J9 PHYS LETT B JI Phys. Lett. B PD APR 20 PY 2009 VL 674 IS 3 BP 168 EP 171 DI 10.1016/j.physletb.2009.03.017 PG 4 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 437FD UT WOS:000265471000005 ER PT J AU Fernandez, CA Bekhazi, JG Hoppes, EM Wiacek, RJ Fryxell, GE Bays, JT Warner, MG Wang, CM Hutchison, JE Addleman, RS AF Fernandez, Carlos A. Bekhazi, Jacky G. Hoppes, Emily M. Wiacek, Robert J. Fryxell, Glen E. Bays, J. Timothy Warner, Marvin G. Wang, Chongmin Hutchison, James E. Addleman, R. Shane TI Advancements Toward the Greener Processing of Engineered Nanomaterials - Effect of Core Size on the Dispersibility and Transport of Gold Nanocrystals in Near-Critical Solvents SO SMALL LA English DT Article DE dispersibility; gold; near critical solvents; nanoparticles; supercritical fluids ID SUPERCRITICAL CARBON-DIOXIDE; STERIC STABILIZATION; METAL NANOPARTICLES; SOLUBILITIES; LIQUID; CO2; SIMULATION; SOLVATION; PARTICLES; ETHANE AB The ability to process and purify engineered nanomaterials using near critical or supercritical fluids (NcFs or ScFs) has enormous potential for the application at various stages of the development of green nanomaterial. The dispersibility of octanethiol-stabilized gold nanocrystals of different core sizes is explored, which were chosen to serve as model nanomaterials of general interest in compressed ethane and propane over a wide range of fluid conditions. Both solvents have enormous potential for the environmentally benign processing and transport of engineered nanomaterial due to their nominal toxicity and high degree of tunability and processability that can essentially eliminate solvent waste. The dispersibility is determined by measuring the absorption spectra of dispersions of various sizes of nanocrystals in NcFs. To beter understand the obtained results three models, the total interaction theory, the sedimentation coefficient equation, and the Chrastil method, are discussed. Nanoparticle dispersibility versus density plots are strongly dependent on nanoparticle size and solvent conditions, with the dispersion of larger nanocrystals more dependent on changes of pressure or density at a given temperature. For the range of nanoparticle sizes studies, compressed ehtane at 25 degrees C leads to a greater tunability of nanoparticle dispersion when compared with compressed propane at 65 degrees C. For equivalent pressures, compressed propane is found to provide better solubility than ethane due to its higher density. The results quantitatively demonstrate that NcFs can offer pressure-tunable, size-selective control of nanoparticle solvation and transport at easily obtainable temperature and pressure conditions. These capabilities provide clear advantages over conventional solvents and direct application to various nanomaterials processes, such as synthesis, separation, transport, and purification of nanocrystals. C1 [Fernandez, Carlos A.; Bekhazi, Jacky G.; Hoppes, Emily M.; Wiacek, Robert J.; Fryxell, Glen E.; Bays, J. Timothy; Warner, Marvin G.; Wang, Chongmin; Addleman, R. Shane] Pacific NW Natl Lab, Richland, WA 99352 USA. [Hutchison, James E.] Univ Oregon, Inst Mat Sci, Eugene, OR 97403 USA. RP Addleman, RS (reprint author), Pacific NW Natl Lab, POB 999, Richland, WA 99352 USA. EM Raymond.Addleman@pnl.gov FU Safer Nonomaterials Nanomanufacturing Initiative (SNNI); Oregon Nonoscience and Micro technologies Institute (ONAMI); Pacific Northwest National Laboratory; US Department of Energy by Battelle [DE-AC06-67RLO 1830]; Deportment of Energy's Office of Biological FX Funding for this work was provided by the Safer Nonomaterials Nanomanufacturing Initiative (SNNI) of the Oregon Nonoscience and Micro technologies Institute (ONAMI) and Pacific Northwest National Laboratory. The Pacific Northwest Notional Laboratory is operated for the US Department of Energy by Battelle under contract DE-AC06-67RLO 1830. A portion of this research was performed using EMSL, a national scientific user facility sponsored by the Deportment of Energy's Office of Biological and Environmental Research located at Pacific Northwest National Laboratory. NR 45 TC 5 Z9 5 U1 0 U2 16 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1613-6810 J9 SMALL JI Small PD APR 20 PY 2009 VL 5 IS 8 BP 961 EP 969 DI 10.1002/smll.200801207 PG 9 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 442VH UT WOS:000265868200011 PM 19242951 ER PT J AU Birn, J Hesse, M Schindler, K Zaharia, S AF Birn, J. Hesse, M. Schindler, K. Zaharia, S. TI Role of entropy in magnetotail dynamics SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID COLLISIONLESS MAGNETIC RECONNECTION; THIN CURRENT SHEETS; PLASMA SHEET; EARTHS MAGNETOTAIL; ELECTRON DISSIPATION; FLUX TUBES; CONVECTION; BUBBLES; BALANCE; FLOWS AB The role of entropy conservation and loss in magnetotail dynamics, particularly in relation to substorm phases, is discussed on the basis of MHD theory and simulations, using comparisons with particle-in-cell (PIC) simulations for validation. Entropy conservation appears to be a crucial element leading to the formation of thin embedded current sheets in the late substorm growth phase and the potential loss of equilibrium. Entropy conservation also governs the accessibility of final states of evolution and the amount of energy that may be released. Entropy loss (in the form of plasmoids) is essential in the earthward transport of flux tubes (bubbles, bursty bulk flows). Entropy loss also changes the tail stability properties and may render ballooning modes unstable and thus contribute to cross-tail variability. We illustrate these effects through results from theory and simulations. C1 [Birn, J.; Zaharia, S.] Los Alamos Natl Lab, Space Sci & Applicat Grp, Los Alamos, NM 87545 USA. [Hesse, M.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Schindler, K.] Ruhr Univ Bochum, Inst Theoret Phys, D-44780 Bochum, Germany. RP Birn, J (reprint author), Los Alamos Natl Lab, Space Sci & Applicat Grp, POB 1663, Los Alamos, NM 87545 USA. EM jbirn@lanl.gov RI Hesse, Michael/D-2031-2012; NASA MMS, Science Team/J-5393-2013 OI NASA MMS, Science Team/0000-0002-9504-5214 FU NASA Goddard Space Flight Center; NASA's Heliophysics Theory Program FX This work was performed under the auspices of the U. S. Department of Energy, supported by a grant from NASA Goddard Space Flight Center and by NASA's Heliophysics Theory Program.; Wolfgang Baumjohann thanks the reviewers for their assistance in evaluating this paper. NR 38 TC 41 Z9 42 U1 0 U2 5 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD APR 18 PY 2009 VL 114 AR A00D03 DI 10.1029/2008JA014015 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 435GN UT WOS:000265332200005 ER PT J AU Kyratsi, T Kika, I Hatzikraniotis, E Paraskevopoulos, KM Chrissafis, K Kanatzidis, MG AF Kyratsi, Th. Kika, I. Hatzikraniotis, E. Paraskevopoulos, K. M. Chrissafis, K. Kanatzidis, M. G. TI Synthetic conditions and their doping effect on beta-K2Bi8Se13 SO JOURNAL OF ALLOYS AND COMPOUNDS LA English DT Article DE Thermoelectric materials; Chemical synthesis ID SOLID-STATE CHEMISTRY; THERMOELECTRIC PROPERTIES; CRYSTALS; CHALCOGENIDES AB In this work the synthetic conditions for K2Bi8Se13 and their effect on its thermoelectric properties were investigated. K2Bi8Se13 was prepared as a single phase using K2Se and Bi2Se3 as starting materials in a furnace or via a reaction using direct flame, followed by remelting or annealing. Seebeck coefficient measurements showed that the doping level in the material is sensitive to the synthetic conditions. Higher synthesis temperatures as well as the flame reaction technique followed by annealing gave more homogenous samples with higher Seebeck coefficient. IR optical spectroscopic measurements showed a wide range of doping level achieved among the different synthetic conditions. These findings suggest that synthetic conditions can act as a useful tool for the optimization of the thermoelectric properties of these materials. (C) 2008 Elsevier B.V. All rights reserved. C1 [Kyratsi, Th.; Kika, I.] Univ Cyprus, Dept Mech & Mfg Engn, CY-1678 Nicosia, Cyprus. [Hatzikraniotis, E.; Paraskevopoulos, K. M.; Chrissafis, K.] Aristotle Univ Thessaloniki, Dept Phys, Thessaloniki 54124, Greece. [Kanatzidis, M. G.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Kanatzidis, M. G.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. RP Kyratsi, T (reprint author), Univ Cyprus, Dept Mech & Mfg Engn, CY-1678 Nicosia, Cyprus. EM kyratsi@ucy.ac.cy RI Paraskeuopoulos, Konstantinos/F-9926-2011; OI Chrissafis, Konstantinos/0000-0003-1546-8565; KYRATSI, THEODORA/0000-0003-2916-1708 FU ONR; [THEMATA-TEXNO/0104/16] FX The authors thank Dr. E. Pavlidou for her help with EDS measurements. Cyprus Research Promotion Foundation is greatly acknowledged for the financial support (THEMATA-TEXNO/0104/16). MGK thanks ONR for support. NR 31 TC 5 Z9 5 U1 1 U2 15 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0925-8388 EI 1873-4669 J9 J ALLOY COMPD JI J. Alloy. Compd. PD APR 17 PY 2009 VL 474 IS 1-2 BP 351 EP 357 DI 10.1016/j.jallcom.2008.06.143 PG 7 WC Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Chemistry; Materials Science; Metallurgy & Metallurgical Engineering GA 457RZ UT WOS:000266952000076 ER PT J AU Philominathan, STL Koide, T Hamada, K Yasui, H Seifert, S Matsushita, O Sakon, J AF Philominathan, Sagaya Theresa Leena Koide, Takaki Hamada, Kentaro Yasui, Hiroyuki Seifert, Soenke Matsushita, Osamu Sakon, Joshua TI Unidirectional Binding of Clostridial Collagenase to Triple Helical Substrates SO JOURNAL OF BIOLOGICAL CHEMISTRY LA English DT Article ID X-RAY-SCATTERING; PROTEIN INTERACTIONS; DUPUYTRENS-DISEASE; NMR-SPECTROSCOPY; DOMAIN; HISTOLYTICUM; ASSIGNMENTS; PEPTIDASE; AFFINITY; MODELS AB Histotoxic clostridia produce collagenases responsible for extensive tissue destruction in gas gangrene. The C-terminal collagen-binding domain (CBD) of these enzymes is the minimal segment required to bind to collagen fibril. Collagen binding efficiency of CBD is more pronounced in the presence of Ca(2+). We have shown that CBD can be functional to anchor growth factors in local tissue. A (1)H-(15)N HSQC NMR titration study with three different tropocollagen analogues ((POG)(10))(3), ((GPOG)(7)PRG)(3), and (GPRG(POG)(7)C-carbamidomethyl)(3), mapped a saddle-like binding cleft on CBD. NMR titrations with three nitroxide spin-labeled analogues of collagenous peptide, (PROXYL-G(POG)(7)PRG)(3), (PROXYL-G(POG)(7))(3), and (GPRG(POG)(7)C-PROXYL)(3) (where PROXYL represents 2,2,5,5-tetramethyl-L-pyrrolidinyloxy), unambiguously demonstrated unidirectional binding of CBD to the tropocollagen analogues. Small angle x-rays cattering data revealed that CBD binds closer to a terminus for each of the five different tropocollagen analogues, which in conjunction with NMR titration studies, implies a binding mode where CBD binds to the C terminus of the triple helix. C1 [Philominathan, Sagaya Theresa Leena; Sakon, Joshua] Univ Arkansas, Dept Chem & Biochem, Fayetteville, AR 72701 USA. [Koide, Takaki; Hamada, Kentaro] Waseda Univ, Dept Chem & Biochem, Sch Adv Sci & Engn, Tokyo 1698555, Japan. [Yasui, Hiroyuki] Kyoto Pharmaceut Univ, Dept Analyt & Bioinorgan Chem, Kyoto 6048414, Japan. [Seifert, Soenke] Argonne Natl Lab, Adv Photon Source, Xray Sci Div, Argonne, IL 60439 USA. [Matsushita, Osamu] Kitasato Univ, Sch Med, Dept Microbiol & Parasitol, Kanagawa 2288555, Japan. RP Philominathan, STL (reprint author), Univ Arkansas, Dept Chem & Biochem, Fayetteville, AR 72701 USA. EM pstleena@uark.edu RI Sakon, Joshua/N-2289-2014 OI Sakon, Joshua/0000-0002-8373-969X FU National Institutes of Health Center for Protein Structure and Function [NCRR COBRE 1 P20RR15569, INBRE P20RR16460.]; Japan Society for the Promotion of Science and Kagawa University FX This work was supported, in whole or in part, by the National Institutes of Health Center for Protein Structure and Function Grants NCRR COBRE 1 P20RR15569 and INBRE P20RR16460. This work was also supported by the AR Biosciences Institute (ABI) and a grant-in-aid for scientific research (C) from the Japan Society for the Promotion of Science and Kagawa University Project Research Fund 2005-2006. NR 30 TC 18 Z9 18 U1 0 U2 8 PU AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3996 USA SN 0021-9258 J9 J BIOL CHEM JI J. Biol. Chem. PD APR 17 PY 2009 VL 284 IS 16 BP 10868 EP 10876 DI 10.1074/jbc.M807684200 PG 9 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 431ZZ UT WOS:000265104600060 PM 19208618 ER PT J AU Nowinski, NS Trumbore, SE Jimenez, G Fenn, ME AF Nowinski, Nicole S. Trumbore, Susan E. Jimenez, Gloria Fenn, Mark E. TI Alteration of belowground carbon dynamics by nitrogen addition in southern California mixed conifer forests SO JOURNAL OF GEOPHYSICAL RESEARCH-BIOGEOSCIENCES LA English DT Article ID SAN-BERNARDINO MOUNTAINS; PHENOLIC HUMUS CONSTITUENTS; HARDWOOD LEAF LITTER; SOIL RESPIRATION; TEMPERATE FOREST; PONDEROSA PINE; N DEPOSITION; MICROBIAL COMMUNITY; ENZYME-ACTIVITY; ORGANIC-MATTER AB Nitrogen deposition rates in southern California are the highest in North America and have had substantial effects on ecosystem functioning. We document changes in the belowground C cycle near ponderosa pine trees experiencing experimental nitrogen (N) addition (50 and 150 kg N ha(-1) a(-1) as slow release urea since 1997) at two end-member sites along a pollution gradient in the San Bernardino Mountains, California. Despite considerable differences in N deposition between the two sites, we observed parallel changes in microbial substrate use and soil enzyme activity with N addition. Delta C-14 measurements indicate that the mean age of C respired by the Oa horizon declined 10-15 years with N addition at both sites. N addition caused an increase in cellulolytic enzyme activity at the polluted site and a decrease in ligninolytic enzyme activity at the unpolluted site. Given the likely differences in lignin and cellulose ages, this could explain the difference in the age of microbial respiration with N addition. Measurements of fractionated soil organic matter did not show the same magnitude of changes in response to N addition as were observed for respired C. This lesser response was likely because the soils are mostly composed of C having turnover times of decades to centuries, and 9 years of N amendment were not enough to affect this material. Consequently, Delta C-14 of respired CO2 provided a more sensitive indicator of the effects of N addition than other methods. Results suggest that enhanced N deposition alone may not result in increased soil C storage in xeric ecosystems. C1 [Nowinski, Nicole S.; Trumbore, Susan E.] Univ Calif Irvine, Dept Earth Syst Sci, Irvine, CA 92697 USA. [Jimenez, Gloria] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. [Fenn, Mark E.] Pacific SW Res Stn, Forest Fire Lab, Riverside, CA 92507 USA. RP Nowinski, NS (reprint author), Univ Calif Irvine, Dept Earth Syst Sci, 3200 Croul Hall, Irvine, CA 92697 USA. EM nnowinsk@alumni.uci.edu RI Trumbore, Susan/B-1948-2013 FU Kearney Foundation for Graduate Fellowship [2005.221] FX This work was financially supported by a Kearney Foundation for Graduate Fellowship and grant 2005.221. We thank K. McDuffee, C. Czimczik, G. Goteti, J. Nowinski, and D. Nowinski for field assistance, X. Xu for laboratory assistance, N. Grulke for assistance with the sites, J. Neff and D. Fernandez for the pyr-GCMS data, and S. Allison for assistance with the enzyme assays. NR 66 TC 2 Z9 2 U1 0 U2 18 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-BIOGEO JI J. Geophys. Res.-Biogeosci. PD APR 17 PY 2009 VL 114 AR G02005 DI 10.1029/2008JG000801 PG 15 WC Environmental Sciences; Geosciences, Multidisciplinary SC Environmental Sciences & Ecology; Geology GA 435FQ UT WOS:000265329700001 ER PT J AU Petrova, T Lunin, VY Ginell, S Hazemann, I Lazarski, K Mitschler, A Podjarny, A Joachimiak, A AF Petrova, Tatiana Lunin, Vladimir Y. Ginell, Stephan Hazemann, Isabelle Lazarski, Krzysztof Mitschler, Andre Podjarny, Alberto Joachimiak, Andrzej TI X-Ray-Radiation-Induced Cooperative Atomic Movements in Protein SO JOURNAL OF MOLECULAR BIOLOGY LA English DT Article DE protein molecule; radiation damage; structural changes; crystal disorder ID HUMAN ALDOSE REDUCTASE; ULTRAHIGH-RESOLUTION; MACROMOLECULAR CRYSTALS; ACTIVE-SITE; CRYOGENIC TEMPERATURES; STRUCTURAL-CHANGES; DAMAGE; DIFFRACTION; DYNAMICS; CRYSTALLOGRAPHY AB X-rays interact with biological matter and cause damage. Proteins and other macromolecules are damaged primarily by ionizing X-ray photons and secondarily by reactive radiolytic chemical species. In particular, protein molecules are damaged during X-ray diffraction experiments with protein crystals, which is, in many cases, a serious hindrance to structure solution. The local X-ray-induced structural changes of the protein molecule have been studied using a number of model systems. However, it is still not well understood whether these local chemical changes lead to global structural changes in protein and what the mechanism is. We present experimental evidence at atomic resolution indicating the movement of large parts of the protein globule together with bound water molecules in the early stages of radiation damage to the protein crystal. The data were obtained from a crystal cryocooled to similar to 100 K and diffracting to 1 angstrom. The movement of the protein structural elements occurs simultaneously with the decarboxylation of several glutamate and aspartate residues that mediate contacts between moving protein structural elements and with the rearrangement of the water network. The analysis of the anisotropy of atomic displacement parameters reveals that the observed atomic movements occur at different rates in different unit cells of the crystal. Thus, the examination of the cooperative atomic movement enables us to better understand how radiation-induced local chemical and structural changes of the protein molecule eventually lead to disorder in protein crystals. (C) 2009 Elsevier Ltd. All rights reserved. C1 [Petrova, Tatiana; Ginell, Stephan; Lazarski, Krzysztof; Joachimiak, Andrzej] Argonne Natl Lab, Biosci Div, Struct Biol Ctr, Argonne, IL 60439 USA. [Petrova, Tatiana; Lunin, Vladimir Y.] Russian Acad Sci, Inst Math Problems Biol, Pushchino 142290, Russia. [Hazemann, Isabelle; Mitschler, Andre; Podjarny, Alberto] ULP, CNRS, INSERM, IGBMC,Dept Biol Struct & Genom, F-67404 Illkirch Graffenstaden, France. RP Joachimiak, A (reprint author), Argonne Natl Lab, Biosci Div, Struct Biol Ctr, 9700 S Cass Ave, Argonne, IL 60439 USA. RI Petrova, Tatiana/N-1578-2013; Lunin, Vladimir/O-2506-2013; OI Petrova, Tatiana/0000-0002-8032-2629; Lunin, Vladimir/0000-0003-1235-1206; Podjarny, Alberto/0000-0002-7685-1077 FU U.S. Department of Energy; Office of Biological and Environmental Research [DE-AC02-06CH11357]; Russian Foundation for Basic Research [07-04-00137]; Centre National de la Recherche Scientifique; Instittit National de la Sante et de la Recherche Medicale; Hopital Universitaire de Strasbourg FX We thank R. Alkire for help with ion current measurements, the Institute for Diabetes Discovery for providing the inhibitor IDD 594, and Lindsey Butler for help in preparing the manuscript. This work was supported by the U.S. Department of Energy, Office of Biological and Environmental Research, under contract DE-AC02-06CH11357 and the Russian Foundation for Basic Research grant 07-04-00137. This work was also supported by the Centre National de la Recherche Scientifique, by the Instittit National de la Sante et de la Recherche Medicale, and by the Hopital Universitaire de Strasbourg. NR 54 TC 11 Z9 11 U1 0 U2 3 PU ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD PI LONDON PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND SN 0022-2836 J9 J MOL BIOL JI J. Mol. Biol. PD APR 17 PY 2009 VL 387 IS 5 BP 1092 EP 1105 DI 10.1016/j.jmb.2009.02.030 PG 14 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 437QC UT WOS:000265501000006 PM 19233199 ER PT J AU Aaltonen, T Adelman, J Akimoto, T Albrow, MG Gonzalez, BA Amerio, S Amidei, D Anastassov, A Annovi, A Antos, J Apollinari, G Apresyan, A Arisawa, T Artikov, A Ashmanskas, W Attal, A Aurisano, A Azfar, F Azzurri, P Badgett, W Barbaro-Galtieri, A Barnes, VE Barnett, BA Bartsch, V Bauer, G Beauchemin, PH Bedeschi, F Bednar, P Beecher, D Behari, S Bellettini, G Bellinger, J Benjamin, D Beretvas, A Beringer, J Bhatti, A Binkley, M Bisello, D Bizjak, I Blair, RE Blocker, C Blumenfeld, B Bocci, A Bodek, A Boisvert, V Bolla, G Bortoletto, D Boudreau, J Boveia, A Brau, B Bridgeman, A Brigliadori, L Bromberg, C Brubaker, E Budagov, J Budd, HS Budd, S Burkett, K Busetto, G Bussey, P Buzatu, A Byrum, KL Cabrera, S Calancha, C Campanelli, M Campbell, M Canelli, F Canepa, A Carlsmith, D Carosi, R Carrillo, S Carron, S Casal, B Casarsa, M Castro, A Catastini, P Cauz, D Cavaliere, V Cavalli-Sforza, M Cerri, A Cerrito, L Chang, SH Chen, YC Chertok, M Chiarelli, G Chlachidze, G Chlebana, F Cho, K Chokheli, D Chou, JP Choudalakis, G Chuang, SH Chung, K Chung, WH Chung, YS Ciobanu, CI Ciocci, MA Clark, A Clark, D Compostella, G Convery, ME Conway, J Copic, K Cordelli, M Cortiana, G Cox, DJ Crescioli, F Almenar, CC Cuevas, J Culbertson, R Cully, JC Dagenhart, D Datta, M Davies, T de Barbaro, P De Cecco, S Deisher, A De Lorenzo, G Dell'Orso, M Deluca, C Demortier, L Deng, J Deninno, M Derwent, PF di Giovanni, GP Dionisi, C Di Ruzza, B Dittmann, JR D'Onofrio, M Donati, S Dong, P Donini, J Dorigo, T Dube, S Efron, J Elagin, A Erbacher, R Errede, D Errede, S Eusebi, R Fang, HC Farrington, S Fedorko, WT Feild, RG Feindt, M Fernandez, JP Ferrazza, C Field, R Flanagan, G Forrest, R Franklin, M Freeman, JC Furic, I Gallinaro, M Galyardt, J Garberson, F Garcia, JE Garfinkel, AF Genser, K Gerberich, H Gerdes, D Gessler, A Giagu, S Giakoumopoulou, V Giannetti, P Gibson, K Gimmell, JL Ginsburg, CM Giokaris, N Giordani, M Giromini, P Giunta, M Giurgiu, G Glagolev, V Glenzinski, D Gold, M Goldschmidt, N Golossanov, A Gomez, G Gomez-Ceballos, G Goncharov, M Gonzalez, O Gorelov, I Goshaw, AT Goulianos, K Gresele, A Grinstein, S Grosso-Pilcher, C Group, RC Grundler, U da Costa, JG Gunay-Unalan, Z Haber, C Hahn, K Hahn, SR Halkiadakis, E Han, BY Han, JY Handler, R Happacher, F Hara, K Hare, D Hare, M Harper, S Harr, RF Harris, RM Hartz, M Hatakeyama, K Hauser, J Hays, C Heck, M Heijboer, A Heinemann, B Heinrich, J Henderson, C Herndon, M Heuser, J Hewamanage, S Hidas, D Hill, CS Hirschbuehl, D Hocker, A Hou, S Houlden, M Hsu, SC Huffman, BT Hughes, RE Husemann, U Huston, J Incandela, J Introzzi, G Iori, M Ivanov, A James, E Jayatilaka, B Jeon, EJ Jha, MK Jindariani, S Johnson, W Jones, M Joo, KK Jun, SY Jung, JE Junk, TR Kamon, T Kar, D Karchin, PE Kato, Y Kephart, R Keung, J Khotilovich, V Kilminster, B Kim, DH Kim, HS Kim, JE Kim, MJ Kim, SB Kim, SH Kim, YK Kimura, N Kirsch, L Klimenko, S Knuteson, B Ko, BR Koay, SA Kondo, K Kong, DJ Konigsberg, J Korytov, A Kotwal, AV Kreps, M Kroll, J Krop, D Krumnack, N Kruse, M Krutelyov, V Kubo, T Kuhr, T Kulkarni, NP Kurata, M Kusakabe, Y Kwang, S Laasanen, AT Lami, S Lammel, S Lancaster, M Lander, RL Lannon, K Lath, A Latino, G Lazzizzera, I LeCompte, T Lee, E Lee, SW Leone, S Lewis, JD Lin, CS Linacre, J Lindgren, M Lipeles, E Lister, A Litvintsev, DO Liu, C Liu, T Lockyer, NS Loginov, A Loreti, M Lovas, L Lu, RS Lucchesi, D Lueck, J Luci, C Lujan, P Lukens, P Lungu, G Lyons, L Lys, J Lysak, R Lytken, E Mack, P MacQueen, D Madrak, R Maeshima, K Makhoul, K Maki, T Maksimovic, P Malde, S Malik, S Manca, G Manousakis-Katsikakis, A Margaroli, F Marino, C Marino, CP Martin, A Martin, V Martinez, M Martinez-Ballarin, R Maruyama, T Mastrandrea, P Masubuchi, T Mattson, ME Mazzanti, P McFarland, KS McIntyre, P McNulty, R Mehta, A Mehtala, P Menzione, A Merkel, P Mesropian, C Miao, T Miladinovic, N Miller, R Mills, C Milnik, M Mitra, A Mitselmakher, G Miyake, H Moggi, N Moon, CS Moore, R Morello, MJ Morlok, J Fernandez, PM Mulmenstadt, J Mukherjee, A Muller, T Mumford, R Murat, P Mussini, M Nachtman, J Nagai, Y Nagano, A Naganoma, J Nakamura, K Nakano, I Napier, A Necula, V Neu, C Neubauer, MS Nielsen, J Nodulman, L Norman, M Norniella, O Nurse, E Oakes, L Oh, SH Oh, YD Oksuzian, I Okusawa, T Orava, R Osterberg, K Griso, SP Pagliarone, C Palencia, E Papadimitriou, V Papaikonomou, A Paramonov, AA Parks, B Pashapour, S Patrick, J Pauletta, G Paulini, M Paus, C Pellett, DE Penzo, A Phillips, TJ Piacentino, G Pianori, E Pinera, L Pitts, K Plager, C Pondrom, L Poukhov, O Pounder, N Prakoshyn, F Pronko, A Proudfoot, J Ptohos, F Pueschel, E Punzi, G Pursley, J Rademacker, J Rahaman, A Ramakrishnan, V Ranjan, N Redondo, I Reisert, B Rekovic, V Renton, P Rescigno, M Richter, S Rimondi, F Ristori, L Robson, A Rodrigo, T Rodriguez, T Rogers, E Rolli, S Roser, R Rossi, M Rossin, R Roy, P Ruiz, A Russ, J Rusu, V Saarikko, H Safonov, A Sakumoto, WK Salto, O Santi, L Sarkar, S Sartori, L Sato, K Savoy-Navarro, A Scheidle, T Schlabach, P Schmidt, A Schmidt, EE Schmidt, MA Schmidt, MP Schmitt, M Schwarz, T Scodellaro, L Scott, AL Scribano, A Scuri, F Sedov, A Seidel, S Seiya, Y Semenov, A Sexton-Kennedy, L Sfyrla, A Shalhout, SZ Shears, T Shekhar, R Shepard, PF Sherman, D Shimojima, M Shiraishi, S Shochet, M Shon, Y Shreyber, I Sidoti, A Sinervo, P Sisakyan, A Slaughter, AJ Slaunwhite, J Sliwa, K Smith, JR Snider, FD Snihur, R Soha, A Somalwar, S Sorin, V Spalding, J Spreitzer, T Squillacioti, P Stanitzki, M Denis, RS Stelzer, B Stelzer-Chilton, O Stentz, D Strologas, J Stuart, D Suh, JS Sukhanov, A Suslov, I Suzuki, T Taffard, A Takashima, R Takeuchi, Y Tanaka, R Tecchio, M Teng, PK Terashi, K Thom, J Thompson, AS Thompson, GA Thomson, E Tipton, P Tiwari, V Tkaczyk, S Toback, D Tokar, S Tollefson, K Tomura, T Tonelli, D Torre, S Torretta, D Totaro, P Tourneur, S Tu, Y Turini, N Ukegawa, F Vallecorsa, S van Remortel, N Varganov, A Vataga, E Vazquez, F Velev, G Vellidis, C Veszpremi, V Vidal, M Vidal, R Vila, I Vilar, R Vine, T Vogel, M Volobouev, I Volpi, G Wurthwein, F Wagner, P Wagner, RG Wagner, RL Wagner-Kuhr, J Wagner, W Wakisaka, T Wallny, R Wang, SM Warburton, A Waters, D Weinberger, M Wester, WC Whitehouse, B Whiteson, D Whiteson, S Wicklund, AB Wicklund, E Williams, G Williams, HH Wilson, P Winer, BL Wittich, P Wolbers, S Wolfe, C Wright, T Wu, X Wynne, SM Xie, S Yagil, A Yamamoto, K Yamaoka, J Yang, UK Yang, YC Yao, WM Yeh, GP Yoh, J Yorita, K Yoshida, T Yu, GB Yu, I Yu, SS Yun, JC Zanello, L Zanetti, A Zaw, I Zhang, X Zheng, Y Zucchelli, S AF Aaltonen, T. Adelman, J. Akimoto, T. Albrow, M. G. Alvarez Gonzalez, B. Amerio, S. Amidei, D. Anastassov, A. Annovi, A. Antos, J. Apollinari, G. Apresyan, A. Arisawa, T. Artikov, A. Ashmanskas, W. Attal, A. Aurisano, A. Azfar, F. Azzurri, P. Badgett, W. Barbaro-Galtieri, A. Barnes, V. E. Barnett, B. A. Bartsch, V. Bauer, G. Beauchemin, P. -H. Bedeschi, F. Bednar, P. Beecher, D. Behari, S. Bellettini, G. Bellinger, J. Benjamin, D. Beretvas, A. Beringer, J. Bhatti, A. Binkley, M. Bisello, D. Bizjak, I. Blair, R. E. Blocker, C. Blumenfeld, B. Bocci, A. Bodek, A. Boisvert, V. Bolla, G. Bortoletto, D. Boudreau, J. Boveia, A. Brau, B. Bridgeman, A. Brigliadori, L. Bromberg, C. Brubaker, E. Budagov, J. Budd, H. S. Budd, S. Burkett, K. Busetto, G. Bussey, P. Buzatu, A. Byrum, K. L. Cabrera, S. Calancha, C. Campanelli, M. Campbell, M. Canelli, F. Canepa, A. Carlsmith, D. Carosi, R. Carrillo, S. Carron, S. Casal, B. Casarsa, M. Castro, A. Catastini, P. Cauz, D. Cavaliere, V. Cavalli-Sforza, M. Cerri, A. Cerrito, L. Chang, S. H. Chen, Y. C. Chertok, M. Chiarelli, G. Chlachidze, G. Chlebana, F. Cho, K. Chokheli, D. Chou, J. P. Choudalakis, G. Chuang, S. H. Chung, K. Chung, W. H. Chung, Y. S. Ciobanu, C. I. Ciocci, M. A. Clark, A. Clark, D. Compostella, G. Convery, M. E. Conway, J. Copic, K. Cordelli, M. Cortiana, G. Cox, D. J. Crescioli, F. Almenar, C. Cuenca Cuevas, J. Culbertson, R. Cully, J. C. Dagenhart, D. Datta, M. Davies, T. de Barbaro, P. De Cecco, S. Deisher, A. De Lorenzo, G. Dell'Orso, M. Deluca, C. Demortier, L. Deng, J. Deninno, M. Derwent, P. F. di Giovanni, G. P. Dionisi, C. Di Ruzza, B. Dittmann, J. R. D'Onofrio, M. Donati, S. Dong, P. Donini, J. Dorigo, T. Dube, S. Efron, J. Elagin, A. Erbacher, R. Errede, D. Errede, S. Eusebi, R. Fang, H. C. Farrington, S. Fedorko, W. T. Feild, R. G. Feindt, M. Fernandez, J. P. Ferrazza, C. Field, R. Flanagan, G. Forrest, R. Franklin, M. Freeman, J. C. Furic, I. Gallinaro, M. Galyardt, J. Garberson, F. Garcia, J. E. Garfinkel, A. F. Genser, K. Gerberich, H. Gerdes, D. Gessler, A. Giagu, S. Giakoumopoulou, V. Giannetti, P. Gibson, K. Gimmell, J. L. Ginsburg, C. M. Giokaris, N. Giordani, M. Giromini, P. Giunta, M. Giurgiu, G. Glagolev, V. Glenzinski, D. Gold, M. Goldschmidt, N. Golossanov, A. Gomez, G. Gomez-Ceballos, G. Goncharov, M. Gonzalez, O. Gorelov, I. Goshaw, A. T. Goulianos, K. Gresele, A. Grinstein, S. Grosso-Pilcher, C. Group, R. C. Grundler, U. da Costa, J. Guimaraes Gunay-Unalan, Z. Haber, C. Hahn, K. Hahn, S. R. Halkiadakis, E. Han, B. -Y. Han, J. Y. Handler, R. Happacher, F. Hara, K. Hare, D. Hare, M. Harper, S. Harr, R. F. Harris, R. M. Hartz, M. Hatakeyama, K. Hauser, J. Hays, C. Heck, M. Heijboer, A. Heinemann, B. Heinrich, J. Henderson, C. Herndon, M. Heuser, J. Hewamanage, S. Hidas, D. Hill, C. S. Hirschbuehl, D. Hocker, A. Hou, S. Houlden, M. Hsu, S. -C. Huffman, B. T. Hughes, R. E. Husemann, U. Huston, J. Incandela, J. Introzzi, G. Iori, M. Ivanov, A. James, E. Jayatilaka, B. Jeon, E. J. Jha, M. K. Jindariani, S. Johnson, W. Jones, M. Joo, K. K. Jun, S. Y. Jung, J. E. Junk, T. R. Kamon, T. Kar, D. Karchin, P. E. Kato, Y. Kephart, R. Keung, J. Khotilovich, V. Kilminster, B. Kim, D. H. Kim, H. S. Kim, J. E. Kim, M. J. Kim, S. B. Kim, S. H. Kim, Y. K. Kimura, N. Kirsch, L. Klimenko, S. Knuteson, B. Ko, B. R. Koay, S. A. Kondo, K. Kong, D. J. Konigsberg, J. Korytov, A. Kotwal, A. V. Kreps, M. Kroll, J. Krop, D. Krumnack, N. Kruse, M. Krutelyov, V. Kubo, T. Kuhr, T. Kulkarni, N. P. Kurata, M. Kusakabe, Y. Kwang, S. Laasanen, A. T. Lami, S. Lammel, S. Lancaster, M. Lander, R. L. Lannon, K. Lath, A. Latino, G. Lazzizzera, I. LeCompte, T. Lee, E. Lee, S. W. Leone, S. Lewis, J. D. Lin, C. S. Linacre, J. Lindgren, M. Lipeles, E. Lister, A. Litvintsev, D. O. Liu, C. Liu, T. Lockyer, N. S. Loginov, A. Loreti, M. Lovas, L. Lu, R. -S. Lucchesi, D. Lueck, J. Luci, C. Lujan, P. Lukens, P. Lungu, G. Lyons, L. Lys, J. Lysak, R. Lytken, E. Mack, P. MacQueen, D. Madrak, R. Maeshima, K. Makhoul, K. Maki, T. Maksimovic, P. Malde, S. Malik, S. Manca, G. Manousakis-Katsikakis, A. Margaroli, F. Marino, C. Marino, C. P. Martin, A. Martin, V. Martinez, M. Martinez-Ballarin, R. Maruyama, T. Mastrandrea, P. Masubuchi, T. Mattson, M. E. Mazzanti, P. McFarland, K. S. McIntyre, P. McNulty, R. Mehta, A. Mehtala, P. Menzione, A. Merkel, P. Mesropian, C. Miao, T. Miladinovic, N. Miller, R. Mills, C. Milnik, M. Mitra, A. Mitselmakher, G. Miyake, H. Moggi, N. Moon, C. S. Moore, R. Morello, M. J. Morlok, J. Fernandez, P. Movilla Muelmenstaedt, J. Mukherjee, A. Muller, Th. Mumford, R. Murat, P. Mussini, M. Nachtman, J. Nagai, Y. Nagano, A. Naganoma, J. Nakamura, K. Nakano, I. Napier, A. Necula, V. Neu, C. Neubauer, M. S. Nielsen, J. Nodulman, L. Norman, M. Norniella, O. Nurse, E. Oakes, L. Oh, S. H. Oh, Y. D. Oksuzian, I. Okusawa, T. Orava, R. Osterberg, K. Griso, S. Pagan Pagliarone, C. Palencia, E. Papadimitriou, V. Papaikonomou, A. Paramonov, A. A. Parks, B. Pashapour, S. Patrick, J. Pauletta, G. Paulini, M. Paus, C. Pellett, D. E. Penzo, A. Phillips, T. J. Piacentino, G. Pianori, E. Pinera, L. Pitts, K. Plager, C. Pondrom, L. Poukhov, O. Pounder, N. Prakoshyn, F. Pronko, A. Proudfoot, J. Ptohos, F. Pueschel, E. Punzi, G. Pursley, J. Rademacker, J. Rahaman, A. Ramakrishnan, V. Ranjan, N. Redondo, I. Reisert, B. Rekovic, V. Renton, P. Rescigno, M. Richter, S. Rimondi, F. Ristori, L. Robson, A. Rodrigo, T. Rodriguez, T. Rogers, E. Rolli, S. Roser, R. Rossi, M. Rossin, R. Roy, P. Ruiz, A. Russ, J. Rusu, V. Saarikko, H. Safonov, A. Sakumoto, W. K. Salto, O. Santi, L. Sarkar, S. Sartori, L. Sato, K. Savoy-Navarro, A. Scheidle, T. Schlabach, P. Schmidt, A. Schmidt, E. E. Schmidt, M. A. Schmidt, M. P. Schmitt, M. Schwarz, T. Scodellaro, L. Scott, A. L. Scribano, A. Scuri, F. Sedov, A. Seidel, S. Seiya, Y. Semenov, A. Sexton-Kennedy, L. Sfyrla, A. Shalhout, S. Z. Shears, T. Shekhar, R. Shepard, P. F. Sherman, D. Shimojima, M. Shiraishi, S. Shochet, M. Shon, Y. Shreyber, I. Sidoti, A. Sinervo, P. Sisakyan, A. Slaughter, A. J. Slaunwhite, J. Sliwa, K. Smith, J. R. Snider, F. D. Snihur, R. Soha, A. Somalwar, S. Sorin, V. Spalding, J. Spreitzer, T. Squillacioti, P. Stanitzki, M. Denis, R. St. Stelzer, B. Stelzer-Chilton, O. Stentz, D. Strologas, J. Stuart, D. Suh, J. S. Sukhanov, A. Suslov, I. Suzuki, T. Taffard, A. Takashima, R. Takeuchi, Y. Tanaka, R. Tecchio, M. Teng, P. K. Terashi, K. Thom, J. Thompson, A. S. Thompson, G. A. Thomson, E. Tipton, P. Tiwari, V. Tkaczyk, S. Toback, D. Tokar, S. Tollefson, K. Tomura, T. Tonelli, D. Torre, S. Torretta, D. Totaro, P. Tourneur, S. Tu, Y. Turini, N. Ukegawa, F. Vallecorsa, S. van Remortel, N. Varganov, A. Vataga, E. Vazquez, F. Velev, G. Vellidis, C. Veszpremi, V. Vidal, M. Vidal, R. Vila, I. Vilar, R. Vine, T. Vogel, M. Volobouev, I. Volpi, G. Wuerthwein, F. Wagner, P. Wagner, R. G. Wagner, R. L. Wagner-Kuhr, J. Wagner, W. Wakisaka, T. Wallny, R. Wang, S. M. Warburton, A. Waters, D. Weinberger, M. Wester, W. C., III Whitehouse, B. Whiteson, D. Whiteson, S. Wicklund, A. B. Wicklund, E. Williams, G. Williams, H. H. Wilson, P. Winer, B. L. Wittich, P. Wolbers, S. Wolfe, C. Wright, T. Wu, X. Wynne, S. M. Xie, S. Yagil, A. Yamamoto, K. Yamaoka, J. Yang, U. K. Yang, Y. C. Yao, W. M. Yeh, G. P. Yoh, J. Yorita, K. Yoshida, T. Yu, G. B. Yu, I. Yu, S. S. Yun, J. C. Zanello, L. Zanetti, A. Zaw, I. Zhang, X. Zheng, Y. Zucchelli, S. CA CDF Collaboration TI Measurement of the Top-Quark Mass with Dilepton Events Selected Using Neuroevolution at CDF SO PHYSICAL REVIEW LETTERS LA English DT Article ID NEURAL-NETWORKS; FERMILAB; COLLISIONS; TEVATRON; TEV AB We report a measurement of the top-quark mass M(t) in the dilepton decay channel tt -> bl('+)nu(')(l)b1 nu(l). Events are selected with a neural network which has been directly optimized for statistical precision in top-quark mass using neuroevolution, a technique modeled on biological evolution. The top-quark mass is extracted from per-event probability densities that are formed by the convolution of leading order matrix elements and detector resolution functions. The joint probability is the product of the probability densities from 344 candidate events in 2.0 fb(-1) of pp collisions collected with the CDF II detector, yielding a measurement of M(t)=171.2 +/- 2.7(stat)+/- 2.9(syst) GeV/c(2). C1 [Aaltonen, T.; Maki, T.; Mehtala, P.; Orava, R.; Osterberg, K.; Saarikko, H.; van Remortel, N.] Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. [Aaltonen, T.; Maki, T.; Mehtala, P.; Orava, R.; Osterberg, K.; Saarikko, H.; van Remortel, N.] Helsinki Inst Phys, FIN-00014 Helsinki, Finland. [Chen, Y. C.; Hou, S.; Lu, R. -S.; Mitra, A.; Teng, P. K.; Wang, S. M.; Yang, U. K.] Acad Sinica, Inst Phys, Taipei 11529, Taiwan. [Blair, R. E.; Byrum, K. L.; LeCompte, T.; Nodulman, L.; Proudfoot, J.; Wagner, R. G.; Wicklund, A. B.] Argonne Natl Lab, Argonne, IL 60439 USA. [Giakoumopoulou, V.; Giokaris, N.; Manousakis-Katsikakis, A.; Vellidis, C.] Univ Athens, GR-15771 Athens, Greece. [Attal, A.; Cavalli-Sforza, M.; De Lorenzo, G.; Deluca, C.; D'Onofrio, M.; Martinez, M.; Salto, O.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. [Dittmann, J. R.; Hewamanage, S.; Krumnack, N.] Baylor Univ, Waco, TX 76798 USA. [Castro, A.; Deninno, M.; Jha, M. K.; Mazzanti, P.; Moggi, N.; Mussini, M.; Rimondi, F.; Zucchelli, S.] Ist Nazl Fis Nucl, I-40127 Bologna, Italy. [Castro, A.; Deninno, M.; Mussini, M.; Rimondi, F.; Zucchelli, S.] Univ Bologna, I-40127 Bologna, Italy. [Blocker, C.; Clark, D.; Kirsch, L.; Miladinovic, N.] Brandeis Univ, Waltham, MA 02254 USA. [Chertok, M.; Conway, J.; Cox, D. J.; Almenar, C. Cuenca; Erbacher, R.; Forrest, R.; Ivanov, A.; Johnson, W.; Lander, R. L.; Lister, A.; Pellett, D. E.; Schwarz, T.; Smith, J. R.; Soha, A.] Univ Calif Davis, Davis, CA 95616 USA. [Dong, P.; Hauser, J.; Plager, C.; Stelzer, B.; Wallny, R.; Zheng, Y.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Hsu, S. -C.; Lipeles, E.; Norman, M.; Wuerthwein, F.; Yagil, A.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Boveia, A.; Brau, B.; Garberson, F.; Hill, C. S.; Incandela, J.; Koay, S. A.; Krutelyov, V.; Rossin, R.; Scott, A. L.; Stuart, D.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Alvarez Gonzalez, B.; Casal, B.; Cuevas, J.; Gomez, G.; Rodrigo, T.; Ruiz, A.; Scodellaro, L.; Vila, I.; Vilar, R.] Univ Cantabria, Inst Fis Cantabria, CSIC, E-39005 Santander, Spain. [Chung, K.; Galyardt, J.; Jun, S. Y.; Paulini, M.; Pueschel, E.; Russ, J.; Tiwari, V.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Adelman, J.; Brubaker, E.; Fedorko, W. T.; Grosso-Pilcher, C.; Kim, Y. K.; Krop, D.; Kwang, S.; Paramonov, A. A.; Schmidt, M. A.; Shiraishi, S.; Shochet, M.; Wolfe, C.; Yang, U. K.; Yorita, K.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Antos, J.; Bednar, P.; Lovas, L.; Lysak, R.; Tokar, S.] Comenius Univ, Bratislava 84248, Slovakia. [Antos, J.; Bednar, P.; Lovas, L.; Lysak, R.; Tokar, S.] Inst Expt Phys, Kosice 04001, Slovakia. [Artikov, A.; Budagov, J.; Chokheli, D.; Glagolev, V.; Poukhov, O.; Prakoshyn, F.; Semenov, A.; Sisakyan, A.; Suslov, I.] Joint Inst Nucl Res, RU-141980 Dubna, Russia. [Benjamin, D.; Bocci, A.; Cabrera, S.; Deng, J.; Goshaw, A. T.; Hidas, D.; Jayatilaka, B.; Ko, B. R.; Kotwal, A. V.; Kruse, M.; Necula, V.; Oh, S. H.; Phillips, T. J.; Shekhar, R.; Whiteson, S.] Duke Univ, Durham, NC 27708 USA. [Albrow, M. G.; Apollinari, G.; Ashmanskas, W.; Badgett, W.; Beretvas, A.; Binkley, M.; Burkett, K.; Canelli, F.; Casarsa, M.; Chlachidze, G.; Chlebana, F.; Convery, M. E.; Culbertson, R.; Dagenhart, D.; Datta, M.; Derwent, P. F.; Eusebi, R.; Freeman, J. C.; Genser, K.; Ginsburg, C. M.; Glenzinski, D.; Golossanov, A.; Group, R. C.; Hahn, S. R.; Harris, R. M.; Hocker, A.; James, E.; Jindariani, S.; Junk, T. R.; Kephart, R.; Lammel, S.; Lewis, J. D.; Lindgren, M.; Litvintsev, D. O.; Liu, T.; Lukens, P.; Madrak, R.; Maeshima, K.; Miao, T.; Moore, R.; Fernandez, P. Movilla; Mukherjee, A.; Murat, P.; Nachtman, J.; Palencia, E.; Papadimitriou, V.; Patrick, J.; Pronko, A.; Ptohos, F.; Reisert, B.; Roser, R.; Rusu, V.; Sato, K.; Schlabach, P.; Schmidt, E. E.; Sexton-Kennedy, L.; Slaughter, A. J.; Snider, F. D.; Spalding, J.; Thom, J.; Tkaczyk, S.; Tonelli, D.; Torretta, D.; Velev, G.; Vidal, R.; Wagner, R. L.; Wester, W. C., III; Wilson, P.; Wittich, P.; Wolbers, S.; Yeh, G. P.; Yoh, J.; Yu, S. S.; Yun, J. C.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Carrillo, S.; Field, R.; Furic, I.; Goldschmidt, N.; Kar, D.; Klimenko, S.; Konigsberg, J.; Korytov, A.; Mitselmakher, G.; Oksuzian, I.; Pinera, L.; Sukhanov, A.; Vazquez, F.] Univ Florida, Gainesville, FL 32611 USA. [Annovi, A.; Cordelli, M.; Giromini, P.; Happacher, F.; Kim, M. J.; Torre, S.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Clark, A.; Sfyrla, A.; Vallecorsa, S.; Wu, X.] Univ Geneva, CH-1211 Geneva 4, Switzerland. [Bussey, P.; Davies, T.; Martin, V.; Robson, A.; Denis, R. St.; Thompson, A. S.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. [Chou, J. P.; Franklin, M.; Grinstein, S.; da Costa, J. Guimaraes; Mills, C.; Sherman, D.; Zaw, I.] Harvard Univ, Cambridge, MA 02138 USA. [Bridgeman, A.; Budd, S.; Errede, D.; Errede, S.; Gerberich, H.; Grundler, U.; Marino, C. P.; Neubauer, M. S.; Norniella, O.; Pitts, K.; Rogers, E.; Taffard, A.; Thompson, G. A.; Zhang, X.] Univ Illinois, Urbana, IL 61801 USA. [Barnett, B. A.; Behari, S.; Blumenfeld, B.; Giurgiu, G.; Maksimovic, P.; Mumford, R.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Feindt, M.; Gessler, A.; Heck, M.; Heuser, J.; Hirschbuehl, D.; Kreps, M.; Kuhr, T.; Lueck, J.; Mack, P.; Marino, C.; Milnik, M.; Morlok, J.; Muller, Th.; Papaikonomou, A.; Richter, S.; Scheidle, T.; Schmidt, A.; Wagner-Kuhr, J.; Wagner, W.] Univ Karlsruhe, Inst Expt Kernphys, D-76128 Karlsruhe, Germany. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Kyungpook Natl Univ, Ctr High Energy Phys, Taegu 702701, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Seoul Natl Univ, Seoul 151742, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Sungkyunkwan Univ, Suwon 440746, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Korea Inst Sci & Technol Informat, Taejon 305806, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Chonnam Natl Univ, Kwangju 500757, South Korea. [Barbaro-Galtieri, A.; Beringer, J.; Cerri, A.; Deisher, A.; Fang, H. C.; Haber, C.; Heinemann, B.; Lin, C. S.; Lujan, P.; Lys, J.; Muelmenstaedt, J.; Nielsen, J.; Volobouev, I.; Yao, W. M.] Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Houlden, M.; Manca, G.; McNulty, R.; Mehta, A.; Shears, T.; Wang, S. M.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Bartsch, V.; Beecher, D.; Bizjak, I.; Cerrito, L.; Lancaster, M.; Malik, S.; Nurse, E.; Vine, T.; Waters, D.] UCL, London WC1E 6BT, England. [Calancha, C.; Fernandez, J. P.; Gonzalez, O.; Martinez-Ballarin, R.; Redondo, I.; Vidal, M.] Ctr Invest Energet Medioambientales & Tecnol, E-28040 Madrid, Spain. [Bauer, G.; Choudalakis, G.; Gomez-Ceballos, G.; Hahn, K.; Henderson, C.; Knuteson, B.; Makhoul, K.; Paus, C.; Snihur, R.; Xie, S.] MIT, Cambridge, MA 02139 USA. [Beauchemin, P. -H.; Buzatu, A.; Carron, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Spreitzer, T.; Warburton, A.; Williams, G.] McGill Univ, Inst Particle Phys, Montreal, PQ H3A 2T8, Canada. [Beauchemin, P. -H.; Buzatu, A.; Carron, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Spreitzer, T.; Warburton, A.; Williams, G.] Univ Toronto, Toronto, ON M5S 1A7, Canada. [Amidei, D.; Campbell, M.; Copic, K.; Cully, J. C.; Gerdes, D.; Tecchio, M.; Varganov, A.; Wright, T.] Univ Michigan, Ann Arbor, MI 48109 USA. [Bromberg, C.; Campanelli, M.; Gunay-Unalan, Z.; Huston, J.; Miller, R.; Sorin, V.; Tollefson, K.] Michigan State Univ, E Lansing, MI 48824 USA. [Shreyber, I.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Gold, M.; Gorelov, I.; Rekovic, V.; Seidel, S.; Strologas, J.; Vogel, M.] Univ New Mexico, Albuquerque, NM 87131 USA. [Anastassov, A.; Schmitt, M.; Stentz, D.] Northwestern Univ, Evanston, IL 60208 USA. [Efron, J.; Hughes, R. E.; Kilminster, B.; Lannon, K.; Parks, B.; Slaunwhite, J.; Winer, B. L.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.; Takashima, R.; Tanaka, R.] Okayama Univ, Okayama 7008530, Japan. [Kato, Y.; Okusawa, T.; Seiya, Y.; Wakisaka, T.; Yamamoto, K.; Yoshida, T.] Osaka City Univ, Osaka 588, Japan. [Azfar, F.; Farrington, S.; Harper, S.; Hays, C.; Huffman, B. T.; Linacre, J.; Lyons, L.; Malde, S.; Oakes, L.; Pounder, N.; Rademacker, J.; Renton, P.; Stelzer-Chilton, O.] Univ Oxford, Oxford OX1 3RH, England. [Bisello, D.; Brigliadori, L.; Busetto, G.; Compostella, G.; Cortiana, G.; De Lorenzo, G.; Donini, J.; Dorigo, T.; Gresele, A.; Lazzizzera, I.; Lucchesi, D.; Griso, S. Pagan] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Bisello, D.; Busetto, G.; Cortiana, G.; Gresele, A.; Lazzizzera, I.; Loreti, M.; Lucchesi, D.; Griso, S. Pagan] Univ Padua, I-35131 Padua, Italy. [Ciobanu, C. I.; di Giovanni, G. P.; Savoy-Navarro, A.; Tourneur, S.] Univ Paris 06, LPNHE, IN2P3, CNRS,UMR7585, F-75252 Paris, France. [Amerio, S.; Canepa, A.; Heijboer, A.; Heinrich, J.; Keung, J.; Kroll, J.; Lockyer, N. S.; Neu, C.; Pianori, E.; Rodriguez, T.; Thomson, E.; Tu, Y.; Whiteson, D.; Williams, H. H.] Univ Penn, Philadelphia, PA 19104 USA. [Azzurri, P.; Bedeschi, F.; Bellettini, G.; Carosi, R.; Catastini, P.; Cavaliere, V.; Chiarelli, G.; Ciocci, M. A.; Crescioli, F.; Dell'Orso, M.; Donati, S.; Ferrazza, C.; Garcia, J. E.; Giannetti, P.; Giunta, M.; Introzzi, G.; Lami, S.; Latino, G.; Leone, S.; Menzione, A.; Morello, M. J.; Pagliarone, C.; Piacentino, G.; Punzi, G.; Ristori, L.; Sartori, L.; Scribano, A.; Scuri, F.; Sidoti, A.; Squillacioti, P.; Turini, N.; Vataga, E.; Volpi, G.] Ist Nazl Fis Nucl, I-56127 Pisa, Italy. [Bellettini, G.; Crescioli, F.; Dell'Orso, M.; Donati, S.; Giunta, M.; Morello, M. J.; Punzi, G.; Volpi, G.] Univ Pisa, I-56127 Pisa, Italy. [Catastini, P.; Cavaliere, V.; Ciocci, M. A.; Latino, G.; Scribano, A.; Squillacioti, P.; Turini, N.] Univ Siena, I-56127 Pisa, Italy. [Azzurri, P.; Ferrazza, C.; Vataga, E.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Boudreau, J.; Gibson, K.; Hartz, M.; Liu, C.; Rahaman, A.; Shepard, P. F.] Univ Pittsburgh, Pittsburgh, PA 15260 USA. [Apresyan, A.; Barnes, V. E.; Bolla, G.; Bortoletto, D.; Flanagan, G.; Garfinkel, A. F.; Jones, M.; Laasanen, A. T.; Lytken, E.; Margaroli, F.; Merkel, P.; Ranjan, N.; Sedov, A.; Veszpremi, V.] Purdue Univ, W Lafayette, IN 47907 USA. [Bodek, A.; Boisvert, V.; Budd, H. S.; Chung, Y. S.; de Barbaro, P.; Gimmell, J. L.; Han, B. -Y.; Han, J. Y.; McFarland, K. S.; Sakumoto, W. K.; Yu, G. B.] Univ Rochester, Rochester, NY 14627 USA. [Bhatti, A.; Demortier, L.; Goulianos, K.; Hatakeyama, K.; Lungu, G.; Mesropian, C.; Terashi, K.] Rockefeller Univ, New York, NY 10021 USA. [De Cecco, S.; Dionisi, C.; Gallinaro, M.; Giagu, S.; Jones, M.; Luci, C.; Mastrandrea, P.; Rescigno, M.; Sarkar, S.; Zanello, L.] Ist Nazl Fis Nucl, Sez Roma 1, I-00185 Rome, Italy. [Dionisi, C.; Giagu, S.; Jones, M.; Luci, C.; Sarkar, S.; Zanello, L.] Sapienza Univ Roma, I-00185 Rome, Italy. [Chuang, S. H.; Dube, S.; Halkiadakis, E.; Hare, D.; Lath, A.; Somalwar, S.; Yamaoka, J.] Rutgers State Univ, Piscataway, NJ 08855 USA. [Aurisano, A.; Elagin, A.; Goncharov, M.; Kamon, T.; Khotilovich, V.; Lee, E.; Lee, S. W.; McIntyre, P.; Napier, A.; Safonov, A.; Toback, D.; Weinberger, M.] Texas A&M Univ, College Stn, TX 77843 USA. [Cauz, D.; Di Ruzza, B.; Giordani, M.; Pauletta, G.; Penzo, A.; Rossi, M.; Santi, L.; Totaro, P.; Zanetti, A.] Ist Nazl Fis Nucl Trieste Udine, Udine, Italy. [Cauz, D.; Di Ruzza, B.; Giordani, M.; Pauletta, G.; Penzo, A.; Rossi, M.; Santi, L.; Totaro, P.; Zanetti, A.] Univ Trieste Udine, Udine, Italy. [Akimoto, T.; Hara, K.; Hare, M.; Kim, S. H.; Kimura, N.; Kubo, T.; Kurata, M.; Maruyama, T.; Masubuchi, T.; Miyake, H.; Nagai, Y.; Nagano, A.; Nakamura, K.; Shimojima, M.; Suzuki, T.; Takeuchi, Y.; Tomura, T.; Ukegawa, F.] Univ Tsukuba, Tsukuba, Ibaraki 305, Japan. [Rolli, S.; Sliwa, K.; Whitehouse, B.] Tufts Univ, Medford, MA 02155 USA. [Arisawa, T.; Kondo, K.; Kusakabe, Y.; Naganoma, J.] Waseda Univ, Tokyo 169, Japan. [Harr, R. F.; Karchin, P. E.; Kulkarni, N. P.; Mattson, M. E.; Shalhout, S. Z.] Wayne State Univ, Detroit, MI 48201 USA. [Bellinger, J.; Carlsmith, D.; Chung, W. H.; Handler, R.; Herndon, M.; Pondrom, L.; Pursley, J.; Ramakrishnan, V.; Shon, Y.] Univ Wisconsin, Madison, WI 53706 USA. [Feild, R. G.; Husemann, U.; Loginov, A.; Martin, A.; Schmidt, M. P.; Stanitzki, M.; Tipton, P.] Yale Univ, New Haven, CT 06520 USA. RP Aaltonen, T (reprint author), Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. RI Amerio, Silvia/J-4605-2012; Punzi, Giovanni/J-4947-2012; Annovi, Alberto/G-6028-2012; Ivanov, Andrew/A-7982-2013; Warburton, Andreas/N-8028-2013; Kim, Soo-Bong/B-7061-2014; Campbell, Michelle/B-5793-2008; Ruiz, Alberto/E-4473-2011; Robson, Aidan/G-1087-2011; De Cecco, Sandro/B-1016-2012; manca, giulia/I-9264-2012; Lysak, Roman/H-2995-2014; Moon, Chang-Seong/J-3619-2014; Gorelov, Igor/J-9010-2015; Xie, Si/O-6830-2016; Canelli, Florencia/O-9693-2016; Lazzizzera, Ignazio/E-9678-2015; Chiarelli, Giorgio/E-8953-2012; Scodellaro, Luca/K-9091-2014; Grinstein, Sebastian/N-3988-2014; Paulini, Manfred/N-7794-2014; Russ, James/P-3092-2014; unalan, zeynep/C-6660-2015; vilar, rocio/P-8480-2014; Cabrera Urban, Susana/H-1376-2015; Garcia, Jose /H-6339-2015; ciocci, maria agnese /I-2153-2015; Cavalli-Sforza, Matteo/H-7102-2015; Muelmenstaedt, Johannes/K-2432-2015; Introzzi, Gianluca/K-2497-2015 OI Punzi, Giovanni/0000-0002-8346-9052; Annovi, Alberto/0000-0002-4649-4398; Ivanov, Andrew/0000-0002-9270-5643; Warburton, Andreas/0000-0002-2298-7315; Ruiz, Alberto/0000-0002-3639-0368; Moon, Chang-Seong/0000-0001-8229-7829; Farrington, Sinead/0000-0001-5350-9271; Robson, Aidan/0000-0002-1659-8284; Gallinaro, Michele/0000-0003-1261-2277; Torre, Stefano/0000-0002-7565-0118; Turini, Nicola/0000-0002-9395-5230; Osterberg, Kenneth/0000-0003-4807-0414; Vidal Marono, Miguel/0000-0002-2590-5987; Margaroli, Fabrizio/0000-0002-3869-0153; Latino, Giuseppe/0000-0002-4098-3502; Group, Robert/0000-0002-4097-5254; iori, maurizio/0000-0002-6349-0380; Lancaster, Mark/0000-0002-8872-7292; Nielsen, Jason/0000-0002-9175-4419; Jun, Soon Yung/0000-0003-3370-6109; Toback, David/0000-0003-3457-4144; Hays, Chris/0000-0003-2371-9723; Gorelov, Igor/0000-0001-5570-0133; Xie, Si/0000-0003-2509-5731; Canelli, Florencia/0000-0001-6361-2117; Lazzizzera, Ignazio/0000-0001-5092-7531; Lami, Stefano/0000-0001-9492-0147; Chiarelli, Giorgio/0000-0001-9851-4816; Giordani, Mario/0000-0002-0792-6039; Casarsa, Massimo/0000-0002-1353-8964; Scodellaro, Luca/0000-0002-4974-8330; Grinstein, Sebastian/0000-0002-6460-8694; Paulini, Manfred/0000-0002-6714-5787; Russ, James/0000-0001-9856-9155; unalan, zeynep/0000-0003-2570-7611; ciocci, maria agnese /0000-0003-0002-5462; Muelmenstaedt, Johannes/0000-0003-1105-6678; Introzzi, Gianluca/0000-0002-1314-2580 FU U. S. Department of Energy and National Science Foundation; Italian Istituto Nazionale di Fisica Nucleare; Ministry of Education, Culture, Sports, Science and Technology of Japan; Natural Sciences and Engineering Research Council of Canada; National Science Council of the Republic of China; Swiss National Science Foundation; A. P. Sloan Foundation; Bundesministerium fur Bildung und Forschung, Germany; Korean Science and Engineering Foundation and the Korean Research Foundation; Science and Technology Facilities Council and the Royal Society, UK; Institut National de Physique Nucleaire et Physique des Particules/CNRS; Russian Foundation for Basic Research; Ministerio de Educacion y Ciencia and Programa Consolider-Ingenio 2010, Spain; Slovak RD Agency; Academy of Finland FX We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the U. S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A. P. Sloan Foundation; the Bundesministerium fur Bildung und Forschung, Germany; the Korean Science and Engineering Foundation and the Korean Research Foundation; the Science and Technology Facilities Council and the Royal Society, UK; the Institut National de Physique Nucleaire et Physique des Particules/CNRS; the Russian Foundation for Basic Research; the Ministerio de Educacion y Ciencia and Programa Consolider-Ingenio 2010, Spain; the Slovak R&D Agency; and the Academy of Finland. NR 28 TC 19 Z9 19 U1 2 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD APR 17 PY 2009 VL 102 IS 15 AR 152001 DI 10.1103/PhysRevLett.102.152001 PG 8 WC Physics, Multidisciplinary SC Physics GA 434PD UT WOS:000265285700016 ER PT J AU Aaltonen, T Adelman, J Akimoto, T Gonzalez, BA Amerio, S Amidei, D Anastassov, A Annovi, A Antos, J Apollinari, G Apresyan, A Arisawa, T Artikov, A Ashmanskas, W Attal, A Aurisano, A Azfar, F Azzurri, P Badgett, W Barbaro-Galtieri, A Barnes, VE Barnett, BA Bartsch, V Bauer, G Beauchemin, PH Bedeschi, F Beecher, D Behari, S Bellettini, G Bellinger, J Benjamin, D Beretvas, A Beringer, J Bhatti, A Binkley, M Bisello, D Bizjak, I Blair, RE Blocker, C Blumenfeld, B Bocci, A Bodek, A Boisvert, V Bolla, G Bortoletto, D Boudreau, J Boveia, A Brau, B Bridgeman, A Brigliadori, L Bromberg, C Brubaker, E Budagov, J Budd, HS Budd, S Burke, S Burkett, K Busetto, G Bussey, P Buzatu, A Byrum, KL Cabrera, S Calancha, C Campanelli, M Campbell, M Canelli, F Canepa, A Carls, B Carlsmith, D Carosi, R Carrillo, S Carron, S Casal, B Casarsa, M Castro, A Catastini, P Cauz, D Cavaliere, V Cavalli-Sforza, M Cerri, A Cerrito, L Chang, SH Chen, YC Chertok, M Chiarelli, G Chlachidze, G Chlebana, F Cho, K Chokheli, D Chou, JP Choudalakis, G Chuang, SH Chung, K Chung, WH Chung, YS Chwalek, T Ciobanu, CI Ciocci, MA Clark, A Clark, D Compostella, G Convery, ME Conway, J Cordelli, M Cortiana, G Cox, CA Cox, DJ Crescioli, F Almenar, CC Cuevas, J Culbertson, R Cully, JC Dagenhart, D Datta, M Davies, T de Barbaro, P De Cecco, S Deisher, A De Lorenzo, G Dell'Orso, M Deluca, C Demortier, L Deng, J Deninno, M Derwent, PF di Giovanni, GP Dionisi, C Di Ruzza, B Dittmann, JR D'Onofrio, M Donati, S Dong, P Donini, J Dorigo, T Dube, S Efron, J Elagin, A Erbacher, R Errede, D Errede, S Eusebi, R Fang, HC Farrington, S Fedorko, WT Feild, RG Feindt, M Fernandez, JP Ferrazza, C Field, R Flanagan, G Forrest, R Frank, MJ Franklin, M Freeman, JC Furic, I Gallinaro, M Galyardt, J Garberson, F Garcia, JE Garfinkel, AF Genser, K Gerberich, H Gerdes, D Gessler, A Giagu, S Giakoumopoulou, V Giannetti, P Gibson, K Gimmell, JL Ginsburg, CM Giokaris, N Giordani, M Giromini, P Giunta, M Giurgiu, G Glagolev, V Glenzinski, D Gold, M Goldschmidt, N Golossanov, A Gomez, G Gomez-Ceballos, G Goncharov, M Gonzalez, O Gorelov, I Goshaw, AT Goulianos, K Gresele, A Grinstein, S Grosso-Pilcher, C Group, RC Grundler, U da Costa, JG Gunay-Unalan, Z Haber, C Hahn, K Hahn, SR Halkiadakis, E Han, BY Han, JY Happacher, F Hara, K Hare, D Hare, M Harper, S Harr, RF Harris, RM Hartz, M Hatakeyama, K Hays, C Heck, M Heijboer, A Heinrich, J Henderson, C Herndon, M Heuser, J Hewamanage, S Hidas, D Hill, CS Hirschbuehl, D Hocker, A Hou, S Houlden, M Hsu, SC Huffman, BT Hughes, RE Husemann, U Hussein, M Huston, J Incandela, J Introzzi, G Iori, M Ivanov, A James, E Jang, D Jayatilaka, B Jeon, EJ Jha, MK Jindariani, S Johnson, W Jones, M Joo, KK Jun, SY Jung, JE Junk, TR Kamon, T Kar, D Karchin, PE Kato, Y Kephart, R Keung, J Khotilovich, V Kilminster, B Kim, DH Kim, HS Kim, HW Kim, JE Kim, MJ Kim, SB Kim, SH Kim, YK Kimura, N Kirsch, L Klimenko, S Knuteson, B Ko, BR Kondo, K Kong, DJ Konigsberg, J Korytov, A Kotwal, AV Kreps, M Kroll, J Krop, D Krumnack, N Kruse, M Krutelyov, V Kubo, T Kuhr, T Kulkarni, NP Kurata, M Kwang, S Laasanen, AT Lami, S Lammel, S Lancaster, M Lander, RL Lannon, K Lath, A Latino, G Lazzizzera, I LeCompte, T Lee, E Lee, HS Lee, SW Leone, S Lewis, JD Lin, CS Linacre, J Lindgren, M Lipeles, E Liss, TM Lister, A Litvintsev, DO Liu, C Liu, T Lockyer, NS Loginov, A Loreti, M Lovas, L Lucchesi, D Luci, C Lueck, J Lujan, P Lukens, P Lungu, G Lyons, L Lys, J Lysak, R MacQueen, D Madrak, R Maeshima, K Makhoul, K Maki, T Maksimovic, P Malde, S Malik, S Manca, G Manousakis-Katsikakis, A Margaroli, F Marino, C Marino, CP Martin, A Martin, V Martinez, M Martinez-Ballarin, R Maruyama, T Mastrandrea, P Masubuchi, T Mathis, M Mattson, ME Mazzanti, P McFarland, KS McIntyre, P McNulty, R Mehta, A Mehtala, P Menzione, A Merkel, P Mesropian, C Miao, T Miladinovic, N Miller, R Mills, C Milnik, M Mitra, A Mitselmakher, G Miyake, H Moggi, N Moon, CS Moore, R Morello, MJ Morlock, J Fernandez, PM Mulmenstadt, J Mukherjee, A Muller, T Mumford, R Murat, P Mussini, M Nachtman, J Nagai, Y Nagano, A Naganoma, J Nakamura, K Nakano, I Napier, A Necula, V Nett, J Neu, C Neubauer, MS Neubauer, S Nielsen, J Nodulman, L Norman, M Norniella, O Nurse, E Oakes, L Oh, SH Oh, YD Oksuzian, I Okusawa, T Orava, R Osterberg, K Griso, SP Palencia, E Papadimitriou, V Papaikonomou, A Paramonov, AA Parks, B Pashapour, S Patrick, J Pauletta, G Paulini, M Paus, C Peiffer, T Pellett, DE Penzo, A Phillips, TJ Piacentino, G Pianori, E Pinera, L Pitts, K Plager, C Pondrom, L Poukhov, O Pounder, N Prakoshyn, F Pronko, A Proudfoot, J Ptohos, F Pueschel, E Punzi, G Pursley, J Rademacker, J Rahaman, A Ramakrishnan, V Ranjan, N Redondo, I Renton, P Renz, M Rescigno, M Richter, S Rimondi, F Ristori, L Robson, A Rodrigo, T Rodriguez, T Rogers, E Rolli, S Roser, R Rossi, M Rossin, R Roy, P Ruiz, A Russ, J Rusu, V Rutherford, B Saarikko, H Safonov, A Sakumoto, WK Salto, O Santi, L Sarkar, S Sartori, L Sato, K Savoy-Navarro, A Schlabach, P Schmidt, A Schmidt, EE Schmidt, MA Schmidt, MP Schmitt, M Schwarz, T Scodellaro, L Scribano, A Scuri, F Sedov, A Seidel, S Seiya, Y Semenov, A Sexton-Kennedy, L Sforza, F Sfyrla, A Shalhout, SZ Shears, T Shepard, PF Shimojima, M Shiraishi, S Shochet, M Shon, Y Shreyber, I Sidoti, A Sinervo, P Sisakyan, A Slaughter, AJ Slaunwhite, J Sliwa, K Smith, JR Snider, FD Snihur, R Soha, A Somalwar, S Sorin, V Spalding, J Spreitzer, T Squillacioti, P Stanitzki, M Denis, RS Stelzer, B Stelzer-Chilton, O Stentz, D Strologas, J Strycker, GL Stuart, D Suh, JS Sukhanov, A Suslov, I Suzuki, T Taffard, A Takashima, R Takeuchi, Y Tanaka, R Tecchio, M Teng, PK Terashi, K Thom, J Thompson, AS Thompson, GA Thomson, E Tipton, P Ttito-Guzman, P Tkaczyk, S Toback, D Tokar, S Tollefson, K Tomura, T Tonelli, D Torre, S Torretta, D Totaro, P Tourneur, S Trovato, M Tsai, SY Tu, Y Turini, N Ukegawa, F Vallecorsa, S van Remortel, N Varganov, A Vataga, E Vazquez, F Velev, G Vellidis, C Vidal, M Vidal, R Vila, I Vilar, R Vine, T Vogel, M Volobouev, I Volpi, G Wagner, P Wagner, RG Wagner, RL Wagner, W Wagner-Kuhr, J Wakisaka, T Wallny, R Wang, SM Warburton, A Waters, D Weinberger, M Weinelt, J Wester, WC Whitehouse, B Whiteson, D Wicklund, AB Wicklund, E Wilbur, S Williams, G Williams, HH Wilson, P Winer, BL Wittich, P Wolbers, S Wolfe, C Wright, T Wu, X Wurthwein, F Xie, S Yagil, A Yamamoto, K Yamaoka, J Yang, UK Yang, YC Yao, WM Yeh, GP Yoh, J Yorita, K Yoshida, T Yu, GB Yu, I Yu, SS Yun, JC Zanello, L Zanetti, A Zhang, X Zheng, Y Zucchelli, S AF Aaltonen, T. Adelman, J. Akimoto, T. Alvarez Gonzalez, B. Amerio, S. Amidei, D. Anastassov, A. Annovi, A. Antos, J. Apollinari, G. Apresyan, A. Arisawa, T. Artikov, A. Ashmanskas, W. Attal, A. Aurisano, A. Azfar, F. Azzurri, P. Badgett, W. Barbaro-Galtieri, A. Barnes, V. E. Barnett, B. A. Bartsch, V. Bauer, G. Beauchemin, P. -H. Bedeschi, F. Beecher, D. Behari, S. Bellettini, G. Bellinger, J. Benjamin, D. Beretvas, A. Beringer, J. Bhatti, A. Binkley, M. Bisello, D. Bizjak, I. Blair, R. E. Blocker, C. Blumenfeld, B. Bocci, A. Bodek, A. Boisvert, V. Bolla, G. Bortoletto, D. Boudreau, J. Boveia, A. Brau, B. Bridgeman, A. Brigliadori, L. Bromberg, C. Brubaker, E. Budagov, J. Budd, H. S. Budd, S. Burke, S. Burkett, K. Busetto, G. Bussey, P. Buzatu, A. Byrum, K. L. Cabrera, S. Calancha, C. Campanelli, M. Campbell, M. Canelli, F. Canepa, A. Carls, B. Carlsmith, D. Carosi, R. Carrillo, S. Carron, S. Casal, B. Casarsa, M. Castro, A. Catastini, P. Cauz, D. Cavaliere, V. Cavalli-Sforza, M. Cerri, A. Cerrito, L. Chang, S. H. Chen, Y. C. Chertok, M. Chiarelli, G. Chlachidze, G. Chlebana, F. Cho, K. Chokheli, D. Chou, J. P. Choudalakis, G. Chuang, S. H. Chung, K. Chung, W. H. Chung, Y. S. Chwalek, T. Ciobanu, C. I. Ciocci, M. A. Clark, A. Clark, D. Compostella, G. Convery, M. E. Conway, J. Cordelli, M. Cortiana, G. Cox, C. A. Cox, D. J. Crescioli, F. Almenar, C. Cuenca Cuevas, J. Culbertson, R. Cully, J. C. Dagenhart, D. Datta, M. Davies, T. de Barbaro, P. De Cecco, S. Deisher, A. De Lorenzo, G. Dell'Orso, M. Deluca, C. Demortier, L. Deng, J. Deninno, M. Derwent, P. F. di Giovanni, G. P. Dionisi, C. Di Ruzza, B. Dittmann, J. R. D'Onofrio, M. Donati, S. Dong, P. Donini, J. Dorigo, T. Dube, S. Efron, J. Elagin, A. Erbacher, R. Errede, D. Errede, S. Eusebi, R. Fang, H. C. Farrington, S. Fedorko, W. T. Feild, R. G. Feindt, M. Fernandez, J. P. Ferrazza, C. Field, R. Flanagan, G. Forrest, R. Frank, M. J. Franklin, M. Freeman, J. C. Furic, I. Gallinaro, M. Galyardt, J. Garberson, F. Garcia, J. E. Garfinkel, A. F. Genser, K. Gerberich, H. Gerdes, D. Gessler, A. Giagu, S. Giakoumopoulou, V. Giannetti, P. Gibson, K. Gimmell, J. L. Ginsburg, C. M. Giokaris, N. Giordani, M. Giromini, P. Giunta, M. Giurgiu, G. Glagolev, V. Glenzinski, D. Gold, M. Goldschmidt, N. Golossanov, A. Gomez, G. Gomez-Ceballos, G. Goncharov, M. Gonzalez, O. Gorelov, I. Goshaw, A. T. Goulianos, K. Gresele, A. Grinstein, S. Grosso-Pilcher, C. Group, R. C. Grundler, U. da Costa, J. Guimaraes Gunay-Unalan, Z. Haber, C. Hahn, K. Hahn, S. R. Halkiadakis, E. Han, B. -Y. Han, J. Y. Happacher, F. Hara, K. Hare, D. Hare, M. Harper, S. Harr, R. F. Harris, R. M. Hartz, M. Hatakeyama, K. Hays, C. Heck, M. Heijboer, A. Heinrich, J. Henderson, C. Herndon, M. Heuser, J. Hewamanage, S. Hidas, D. Hill, C. S. Hirschbuehl, D. Hocker, A. Hou, S. Houlden, M. Hsu, S. -C. Huffman, B. T. Hughes, R. E. Husemann, U. Hussein, M. Huston, J. Incandela, J. Introzzi, G. Iori, M. Ivanov, A. James, E. Jang, D. Jayatilaka, B. Jeon, E. J. Jha, M. K. Jindariani, S. Johnson, W. Jones, M. Joo, K. K. Jun, S. Y. Jung, J. E. Junk, T. R. Kamon, T. Kar, D. Karchin, P. E. Kato, Y. Kephart, R. Keung, J. Khotilovich, V. Kilminster, B. Kim, D. H. Kim, H. S. Kim, H. W. Kim, J. E. Kim, M. J. Kim, S. B. Kim, S. H. Kim, Y. K. Kimura, N. Kirsch, L. Klimenko, S. Knuteson, B. Ko, B. R. Kondo, K. Kong, D. J. Konigsberg, J. Korytov, A. Kotwal, A. V. Kreps, M. Kroll, J. Krop, D. Krumnack, N. Kruse, M. Krutelyov, V. Kubo, T. Kuhr, T. Kulkarni, N. P. Kurata, M. Kwang, S. Laasanen, A. T. Lami, S. Lammel, S. Lancaster, M. Lander, R. L. Lannon, K. Lath, A. Latino, G. Lazzizzera, I. LeCompte, T. Lee, E. Lee, H. S. Lee, S. W. Leone, S. Lewis, J. D. Lin, C. -S. Linacre, J. Lindgren, M. Lipeles, E. Liss, T. M. Lister, A. Litvintsev, D. O. Liu, C. Liu, T. Lockyer, N. S. Loginov, A. Loreti, M. Lovas, L. Lucchesi, D. Luci, C. Lueck, J. Lujan, P. Lukens, P. Lungu, G. Lyons, L. Lys, J. Lysak, R. MacQueen, D. Madrak, R. Maeshima, K. Makhoul, K. Maki, T. Maksimovic, P. Malde, S. Malik, S. Manca, G. Manousakis-Katsikakis, A. Margaroli, F. Marino, C. Marino, C. P. Martin, A. Martin, V. Martinez, M. Martinez-Ballarin, R. Maruyama, T. Mastrandrea, P. Masubuchi, T. Mathis, M. Mattson, M. E. Mazzanti, P. McFarland, K. S. McIntyre, P. McNulty, R. Mehta, A. Mehtala, P. Menzione, A. Merkel, P. Mesropian, C. Miao, T. Miladinovic, N. Miller, R. Mills, C. Milnik, M. Mitra, A. Mitselmakher, G. Miyake, H. Moggi, N. Moon, C. S. Moore, R. Morello, M. J. Morlock, J. Fernandez, P. Movilla Muelmenstaedt, J. Mukherjee, A. Muller, Th. Mumford, R. Murat, P. Mussini, M. Nachtman, J. Nagai, Y. Nagano, A. Naganoma, J. Nakamura, K. Nakano, I. Napier, A. Necula, V. Nett, J. Neu, C. Neubauer, M. S. Neubauer, S. Nielsen, J. Nodulman, L. Norman, M. Norniella, O. Nurse, E. Oakes, L. Oh, S. H. Oh, Y. D. Oksuzian, I. Okusawa, T. Orava, R. Osterberg, K. Griso, S. Pagan Palencia, E. Papadimitriou, V. Papaikonomou, A. Paramonov, A. A. Parks, B. Pashapour, S. Patrick, J. Pauletta, G. Paulini, M. Paus, C. Peiffer, T. Pellett, D. E. Penzo, A. Phillips, T. J. Piacentino, G. Pianori, E. Pinera, L. Pitts, K. Plager, C. Pondrom, L. Poukhov, O. Pounder, N. Prakoshyn, F. Pronko, A. Proudfoot, J. Ptohos, F. Pueschel, E. Punzi, G. Pursley, J. Rademacker, J. Rahaman, A. Ramakrishnan, V. Ranjan, N. Redondo, I. Renton, P. Renz, M. Rescigno, M. Richter, S. Rimondi, F. Ristori, L. Robson, A. Rodrigo, T. Rodriguez, T. Rogers, E. Rolli, S. Roser, R. Rossi, M. Rossin, R. Roy, P. Ruiz, A. Russ, J. Rusu, V. Rutherford, B. Saarikko, H. Safonov, A. Sakumoto, W. K. Salto, O. Santi, L. Sarkar, S. Sartori, L. Sato, K. Savoy-Navarro, A. Schlabach, P. Schmidt, A. Schmidt, E. E. Schmidt, M. A. Schmidt, M. P. Schmitt, M. Schwarz, T. Scodellaro, L. Scribano, A. Scuri, F. Sedov, A. Seidel, S. Seiya, Y. Semenov, A. Sexton-Kennedy, L. Sforza, F. Sfyrla, A. Shalhout, S. Z. Shears, T. Shepard, P. F. Shimojima, M. Shiraishi, S. Shochet, M. Shon, Y. Shreyber, I. Sidoti, A. Sinervo, P. Sisakyan, A. Slaughter, A. J. Slaunwhite, J. Sliwa, K. Smith, J. R. Snider, F. D. Snihur, R. Soha, A. Somalwar, S. Sorin, V. Spalding, J. Spreitzer, T. Squillacioti, P. Stanitzki, M. Denis, R. St. Stelzer, B. Stelzer-Chilton, O. Stentz, D. Strologas, J. Strycker, G. L. Stuart, D. Suh, J. S. Sukhanov, A. Suslov, I. Suzuki, T. Taffard, A. Takashima, R. Takeuchi, Y. Tanaka, R. Tecchio, M. Teng, P. K. Terashi, K. Thom, J. Thompson, A. S. Thompson, G. A. Thomson, E. Tipton, P. Ttito-Guzman, P. Tkaczyk, S. Toback, D. Tokar, S. Tollefson, K. Tomura, T. Tonelli, D. Torre, S. Torretta, D. Totaro, P. Tourneur, S. Trovato, M. Tsai, S. -Y. Tu, Y. Turini, N. Ukegawa, F. Vallecorsa, S. van Remortel, N. Varganov, A. Vataga, E. Vazquez, F. Velev, G. Vellidis, C. Vidal, M. Vidal, R. Vila, I. Vilar, R. Vine, T. Vogel, M. Volobouev, I. Volpi, G. Wagner, P. Wagner, R. G. Wagner, R. L. Wagner, W. Wagner-Kuhr, J. Wakisaka, T. Wallny, R. Wang, S. M. Warburton, A. Waters, D. Weinberger, M. Weinelt, J. Wester, W. C., III Whitehouse, B. Whiteson, D. Wicklund, A. B. Wicklund, E. Wilbur, S. Williams, G. Williams, H. H. Wilson, P. Winer, B. L. Wittich, P. Wolbers, S. Wolfe, C. Wright, T. Wu, X. Wuerthwein, F. Xie, S. Yagil, A. Yamamoto, K. Yamaoka, J. Yang, U. K. Yang, Y. C. Yao, W. M. Yeh, G. P. Yoh, J. Yorita, K. Yoshida, T. Yu, G. B. Yu, I. Yu, S. S. Yun, J. C. Zanello, L. Zanetti, A. Zhang, X. Zheng, Y. Zucchelli, S. CA CDF Collaboration TI Search for Top-Quark Production via Flavor-Changing Neutral Currents in W+1 Jet Events at CDF SO PHYSICAL REVIEW LETTERS LA English DT Article ID EP COLLISIONS; DECAYS; PHYSICS; HERA AB We report on a search for the non-standard-model process u(c)+g -> t using pp collision data collected by the Collider Detector at Fermilab II detector corresponding to 2.2 fb(-1). The candidate events are classified as signal-like or backgroundlike by an artificial neural network. The observed discriminant distribution yields no evidence for flavor-changing neutral current top-quark production, resulting in an upper limit on the production cross section sigma(u(c)+g -> t)< 1.8 pb at the 95% C.L. Using theoretical predictions we convert the cross section limit to upper limits on flavor-changing neutral current branching ratios: B(t -> u+g)< 3.9x10(-4) and B(t -> c+g)< 5.7x10(-3). C1 [Aaltonen, T.; Maki, T.; Mehtala, P.; Orava, R.; Osterberg, K.; Robson, A.; Saarikko, H.; van Remortel, N.] Univ Helsinki, Div High Energy Phys, Dept Phys, FIN-00014 Helsinki, Finland. [Aaltonen, T.] Helsinki Inst Phys, FIN-00014 Helsinki, Finland. [Chen, Y. C.; Hou, S.; Martin, V.; Mitra, A.; Teng, P. K.; Tsai, S. -Y.; Wang, S. M.] Acad Sinica, Inst Phys, Taipei 11529, Taiwan. [Blair, R. E.; Byrum, K. L.; LeCompte, T.; Nodulman, L.; Proudfoot, J.; Wagner, R. G.; Wicklund, A. B.] Argonne Natl Lab, Argonne, IL 60439 USA. [Giakoumopoulou, V.; Giokaris, N.; Manousakis-Katsikakis, A.; Vellidis, C.] Univ Athens, Athens 15771, Greece. [Attal, A.; Cavalli-Sforza, M.; De Lorenzo, G.; Deluca, C.; D'Onofrio, M.; Martinez, M.; Salto, O.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Bellaterra, Barcelona, Spain. [Dittmann, J. R.; Frank, M. J.; Hewamanage, S.; Krumnack, N.] Baylor Univ, Waco, TX 76798 USA. [Castro, A.; Deninno, M.; Jha, M. K.; Mazzanti, P.; Moggi, N.; Mussini, M.; Rimondi, F.; Zucchelli, S.] Ist Nazl Fis Nucl, I-40127 Bologna, Italy. [Castro, A.; Mussini, M.; Rimondi, F.; Zucchelli, S.] Univ Bologna, I-40127 Bologna, Italy. [Blocker, C.; Clark, D.; Kirsch, L.; Miladinovic, N.] Brandeis Univ, Waltham, MA 02254 USA. [Chertok, M.; Conway, J.; Cox, C. A.; Cox, D. J.; Almenar, C. Cuenca; Erbacher, R.; Forrest, R.; Ivanov, A.; Johnson, W.; Lander, R. L.; Lister, A.; Pellett, D. E.; Schwarz, T.; Smith, J. R.; Soha, A.] Univ Calif Davis, Davis, CA 95616 USA. [Dong, P.; Plager, C.; Wallny, R.; Zheng, Y.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Hill, C. S.; Norman, M.; Wuerthwein, F.; Yagil, A.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Boveia, A.; Brau, B.; Garberson, F.; Incandela, J.; Krutelyov, V.; Rossin, R.; Stuart, D.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Alvarez Gonzalez, B.; Casal, B.; Cuevas, J.; Gomez, G.; Rodrigo, T.; Ruiz, A.; Scodellaro, L.; Vila, I.; Vilar, R.] Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain. [Chung, K.; Galyardt, J.; Jang, D.; Jun, S. Y.; Paulini, M.; Pueschel, E.; Russ, J.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Adelman, J.; Brubaker, E.; Canelli, F.; Fedorko, W. T.; Grosso-Pilcher, C.; Kim, Y. K.; Krop, D.; Kwang, S.; Lee, H. S.; Paramonov, A. A.; Schmidt, M. A.; Shiraishi, S.; Shochet, M.; Wilbur, S.; Wolfe, C.; Yang, U. K.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Antos, J.; Lovas, L.; Lysak, R.; Tokar, S.] Comenius Univ, Bratislava 84248, Slovakia. [Antos, J.; Lovas, L.; Lysak, R.; Tokar, S.] Inst Expt Phys, Kosice 04001, Slovakia. [Artikov, A.; Budagov, J.; Chokheli, D.; Glagolev, V.; Poukhov, O.; Prakoshyn, F.; Semenov, A.; Sisakyan, A.; Suslov, I.] Joint Inst Nucl Res, RU-141980 Dubna, Russia. [Benjamin, D.; Bocci, A.; Cabrera, S.; Deng, J.; Goshaw, A. T.; Hidas, D.; Jayatilaka, B.; Ko, B. R.; Kotwal, A. V.; Kruse, M.; Necula, V.; Oh, S. H.; Phillips, T. J.; Yamaoka, J.] Duke Univ, Durham, NC 27708 USA. [Apollinari, G.; Ashmanskas, W.; Badgett, W.; Beretvas, A.; Binkley, M.; Burke, S.; Burkett, K.; Canelli, F.; Casarsa, M.; Chlachidze, G.; Chlebana, F.; Convery, M. E.; Culbertson, R.; Dagenhart, D.; Datta, M.; Derwent, P. F.; Eusebi, R.; Freeman, J. C.; Genser, K.; Ginsburg, C. M.; Glenzinski, D.; Golossanov, A.; Group, R. C.; Hahn, S. R.; Harris, R. M.; Hocker, A.; James, E.; Jindariani, S.; Junk, T. R.; Kephart, R.; Kilminster, B.; Lammel, S.; Lewis, J. D.; Lindgren, M.; Litvintsev, D. O.; Liu, T.; Lukens, P.; Madrak, R.; Maeshima, K.; Miao, T.; Moore, R.; Fernandez, P. Movilla; Mukherjee, A.; Murat, P.; Nachtman, J.; Palencia, E.; Papadimitriou, V.; Patrick, J.; Pronko, A.; Ptohos, F.; Roser, R.; Rusu, V.; Rutherford, B.; Sato, K.; Schlabach, P.; Schmidt, E. E.; Sexton-Kennedy, L.; Slaughter, A. J.; Snider, F. D.; Spalding, J.; Thom, J.; Tkaczyk, S.; Tonelli, D.; Torretta, D.; Velev, G.; Vidal, R.; Wagner, R. L.; Wester, W. C., III; Wicklund, E.; Wilson, P.; Wittich, P.; Wolbers, S.; Yeh, G. P.; Yoh, J.; Yu, S. S.; Yun, J. C.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Annovi, A.; Cordelli, M.; Giromini, P.; Happacher, F.; Kim, M. J.; Torre, S.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Clark, A.; Garcia, J. E.; Vallecorsa, S.; Wu, X.] Univ Geneva, CH-1211 Geneva 4, Switzerland. [Bussey, P.; Davies, T.; Martin, V.; Denis, R. St.; Thompson, A. S.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. [Chou, J. P.; Franklin, M.; Grinstein, S.; da Costa, J. Guimaraes; Mills, C.] Harvard Univ, Cambridge, MA 02138 USA. [Bridgeman, A.; Budd, S.; Carls, B.; Errede, D.; Errede, S.; Gerberich, H.; Grundler, U.; Liss, T. M.; Marino, C. P.; Neubauer, M. S.; Norniella, O.; Pitts, K.; Rogers, E.; Sfyrla, A.; Taffard, A.; Thompson, G. A.; Zhang, X.] Univ Illinois, Urbana, IL 61801 USA. [Barnett, B. A.; Behari, S.; Blumenfeld, B.; Giurgiu, G.; Maksimovic, P.; Mathis, M.; Mumford, R.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Chwalek, T.; Feindt, M.; Gessler, A.; Heck, M.; Heuser, J.; Hirschbuehl, D.; Kreps, M.; Kuhr, T.; Lueck, J.; Marino, C.; Milnik, M.; Morlock, J.; Muller, Th.; Neubauer, S.; Papaikonomou, A.; Peiffer, T.; Renz, M.; Richter, S.; Schmidt, A.; Wagner, W.; Wagner-Kuhr, J.; Weinelt, J.] Univ Karlsruhe, Inst Expt Kernphys, D-76128 Karlsruhe, Germany. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Kyungpook Natl Univ, Ctr High Energy Phys, Taegu 702701, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Seoul Natl Univ, Seoul 151742, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Sungkyunkwan Univ, Suwon 440746, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Korea Inst Sci & Technol Informat, Taejon 305806, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Chonnam Natl Univ, Kwangju 500757, South Korea. [Barbaro-Galtieri, A.; Beringer, J.; Cerri, A.; Deisher, A.; Fang, H. C.; Haber, C.; Hsu, S. -C.; Lin, C. -S.; Lujan, P.; Lys, J.; Muelmenstaedt, J.; Nielsen, J.; Volobouev, I.; Yao, W. M.] Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Houlden, M.; Manca, G.; McNulty, R.; Mehta, A.; Shears, T.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Bartsch, V.; Beecher, D.; Bizjak, I.; Cerrito, L.; Lancaster, M.; Malik, S.; Nurse, E.; Vine, T.; Waters, D.] UCL, London WC1E 6BT, England. [Calancha, C.; Fernandez, J. P.; Gonzalez, O.; Martinez-Ballarin, R.; Redondo, I.; Ttito-Guzman, P.; Vidal, M.] Ctr Invest Energet Medioambientales & Tecnol, E-28040 Madrid, Spain. [Bauer, G.; Choudalakis, G.; Gomez-Ceballos, G.; Goncharov, M.; Hahn, K.; Henderson, C.; Knuteson, B.; Makhoul, K.; Paus, C.; Xie, S.] MIT, Cambridge, MA 02139 USA. [Beauchemin, P. -H.; Buzatu, A.; Carron, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] McGill Univ, Inst Particle Phys, Montreal, PQ H3A 2T8, Canada. [Beauchemin, P. -H.; Buzatu, A.; Carron, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada. [Beauchemin, P. -H.; Buzatu, A.; Carron, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] Univ Toronto, Toronto, ON M5S 1A7, Canada. [Beauchemin, P. -H.; Buzatu, A.; Carron, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Amidei, D.; Campbell, M.; Cully, J. C.; Gerdes, D.; Strycker, G. L.; Tecchio, M.; Varganov, A.; Wright, T.] Univ Michigan, Ann Arbor, MI 48109 USA. [Bromberg, C.; Campanelli, M.; Gunay-Unalan, Z.; Hussein, M.; Huston, J.; Miller, R.; Sorin, V.; Tollefson, K.] Michigan State Univ, E Lansing, MI 48824 USA. [Shreyber, I.] ITEP, Moscow 117259, Russia. [Gold, M.; Gorelov, I.; Seidel, S.; Strologas, J.; Vogel, M.] Univ New Mexico, Albuquerque, NM 87131 USA. [Anastassov, A.; Schmitt, M.; Stentz, D.] Northwestern Univ, Evanston, IL 60208 USA. [Efron, J.; Hughes, R. E.; Lannon, K.; Parks, B.; Slaunwhite, J.; Winer, B. L.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.; Takashima, R.; Tanaka, R.] Okayama Univ, Okayama 7008530, Japan. [Kato, Y.; Okusawa, T.; Seiya, Y.; Wakisaka, T.; Yamamoto, K.; Yoshida, T.] Osaka City Univ, Osaka 588, Japan. [Azfar, F.; Farrington, S.; Harper, S.; Hays, C.; Huffman, B. T.; Linacre, J.; Lyons, L.; Malde, S.; Oakes, L.; Pounder, N.; Rademacker, J.; Renton, P.] Univ Oxford, Oxford OX1 3RH, England. [Amerio, S.; Bisello, D.; Brigliadori, L.; Busetto, G.; Compostella, G.; Cortiana, G.; Donini, J.; Dorigo, T.; Gresele, A.; Lazzizzera, I.; Loreti, M.; Lucchesi, D.; Griso, S. Pagan] Ist Nazl Fis Nucl, Sez Padova Trento, I-35131 Padua, Italy. [Amerio, S.; Bisello, D.; Busetto, G.; Cortiana, G.; Gresele, A.; Lazzizzera, I.; Loreti, M.; Lucchesi, D.; Griso, S. Pagan] Univ Padua, I-35131 Padua, Italy. [Ciobanu, C. I.; di Giovanni, G. P.; Savoy-Navarro, A.; Tourneur, S.] Univ Paris 06, LPNHE, IN2P3, CNRS,UMR7585, F-75252 Paris, France. [Canepa, A.; Heijboer, A.; Heinrich, J.; Keung, J.; Kroll, J.; Lipeles, E.; Lockyer, N. S.; Neu, C.; Pianori, E.; Rodriguez, T.; Thomson, E.; Tu, Y.; Wagner, P.; Whiteson, D.; Williams, H. H.] Univ Penn, Philadelphia, PA 19104 USA. [Azzurri, P.; Bedeschi, F.; Bellettini, G.; Carosi, R.; Catastini, P.; Cavaliere, V.; Chiarelli, G.; Ciocci, M. A.; Crescioli, F.; Dell'Orso, M.; Donati, S.; Ferrazza, C.; Giannetti, P.; Giunta, M.; Introzzi, G.; Lami, S.; Latino, G.; Leone, S.; Menzione, A.; Morello, M. J.; Piacentino, G.; Punzi, G.; Ristori, L.; Sartori, L.; Scribano, A.; Scuri, F.; Sforza, F.; Sidoti, A.; Squillacioti, P.; Trovato, M.; Turini, N.; Vataga, E.; Volpi, G.] Ist Nazl Fis Nucl, I-56127 Pisa, Italy. [Azzurri, P.; Bellettini, G.; Crescioli, F.; Dell'Orso, M.; Donati, S.; Giunta, M.; Morello, M. J.; Punzi, G.; Volpi, G.] Univ Pisa, I-56127 Pisa, Italy. [Catastini, P.; Cavaliere, V.; Ciocci, M. A.; Latino, G.; Scribano, A.; Squillacioti, P.; Turini, N.] Univ Siena, I-56127 Pisa, Italy. [Ferrazza, C.; Vataga, E.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Boudreau, J.; Gibson, K.; Hartz, M.; Liu, C.; Rahaman, A.; Shepard, P. F.] Univ Pittsburgh, Pittsburgh, PA 15260 USA. [Apresyan, A.; Barnes, V. E.; Bolla, G.; Bortoletto, D.; Flanagan, G.; Garfinkel, A. F.; Jones, M.; Laasanen, A. T.; Margaroli, F.; Merkel, P.; Ranjan, N.; Sedov, A.] Purdue Univ, W Lafayette, IN 47907 USA. [Bodek, A.; Boisvert, V.; Budd, H. S.; Chung, Y. S.; de Barbaro, P.; Gimmell, J. L.; Han, B. -Y.; Han, J. Y.; McFarland, K. S.; Sakumoto, W. K.; Yu, G. B.] Univ Rochester, Rochester, NY 14627 USA. [Bhatti, A.; Demortier, L.; Goulianos, K.; Hatakeyama, K.; Lungu, G.; Mesropian, C.; Terashi, K.] Rockefeller Univ, New York, NY 10021 USA. [Mastrandrea, P.; Rescigno, M.; Sarkar, S.; Zanello, L.] Ist Nazl Fis Nucl, Sez Roma 1, I-00185 Rome, Italy. [Sarkar, S.; Zanello, L.] Sapienza Univ Roma, I-00185 Rome, Italy. [Chuang, S. H.; Dube, S.; Halkiadakis, E.; Hare, D.; Lath, A.; Somalwar, S.] Rutgers State Univ, Piscataway, NJ 08855 USA. [Aurisano, A.; Elagin, A.; Kamon, T.; Khotilovich, V.; Lee, E.; Lee, S. W.; McIntyre, P.; Safonov, A.; Toback, D.; Weinberger, M.] Texas A&M Univ, College Stn, TX 77843 USA. [Pauletta, G.; Penzo, A.; Rossi, M.; Santi, L.; Totaro, P.; Zanetti, A.] Ist Nazl Fis Nucl Trieste Udine, I-34100 Trieste, Italy. [Pauletta, G.; Santi, L.; Totaro, P.] Univ Trieste Udine, I-33100 Udine, Italy. [Akimoto, T.; Hara, K.; Kim, S. H.; Kimura, N.; Kubo, T.; Kurata, M.; Maruyama, T.; Masubuchi, T.; Miyake, H.; Nagai, Y.; Nagano, A.; Naganoma, J.; Nakamura, K.; Shimojima, M.; Suzuki, T.; Takeuchi, Y.; Tomura, T.; Ukegawa, F.] Univ Tsukuba, Tsukuba, Ibaraki 305, Japan. [Hare, M.; Napier, A.; Rolli, S.; Sliwa, K.; Whitehouse, B.] Tufts Univ, Medford, MA 02155 USA. [Arisawa, T.; Kondo, K.; Yorita, K.] Waseda Univ, Tokyo 169, Japan. [Harr, R. F.; Karchin, P. E.; Kulkarni, N. P.; Mattson, M. E.; Shalhout, S. Z.] Wayne State Univ, Detroit, MI 48201 USA. [Bellinger, J.; Carlsmith, D.; Chung, W. H.; Herndon, M.; Nett, J.; Pondrom, L.; Pursley, J.; Ramakrishnan, V.; Shon, Y.] Univ Wisconsin, Madison, WI 53706 USA. [Field, R.; Husemann, U.; Loginov, A.; Martin, A.; Schmidt, M. P.; Stanitzki, M.; Tipton, P.] Yale Univ, New Haven, CT 06520 USA. [Carrillo, S.; Field, R.; Furic, I.; Goldschmidt, N.; Kar, D.; Klimenko, S.; Konigsberg, J.; Korytov, A.; Mitselmakher, G.; Oksuzian, I.; Pinera, L.; Sukhanov, A.; Vazquez, F.] Univ Florida, Gainesville, FL 32611 USA. RP Aaltonen, T (reprint author), Univ Helsinki, Div High Energy Phys, Dept Phys, FIN-00014 Helsinki, Finland. RI Introzzi, Gianluca/K-2497-2015; Gorelov, Igor/J-9010-2015; Xie, Si/O-6830-2016; Canelli, Florencia/O-9693-2016; Chiarelli, Giorgio/E-8953-2012; Scodellaro, Luca/K-9091-2014; Grinstein, Sebastian/N-3988-2014; Paulini, Manfred/N-7794-2014; Russ, James/P-3092-2014; unalan, zeynep/C-6660-2015; Lazzizzera, Ignazio/E-9678-2015; vilar, rocio/P-8480-2014; Cabrera Urban, Susana/H-1376-2015; Garcia, Jose /H-6339-2015; ciocci, maria agnese /I-2153-2015; Cavalli-Sforza, Matteo/H-7102-2015; Muelmenstaedt, Johannes/K-2432-2015; Campbell, Michelle/B-5793-2008; Ruiz, Alberto/E-4473-2011; Robson, Aidan/G-1087-2011; De Cecco, Sandro/B-1016-2012; manca, giulia/I-9264-2012; Amerio, Silvia/J-4605-2012; Punzi, Giovanni/J-4947-2012; Annovi, Alberto/G-6028-2012; Ivanov, Andrew/A-7982-2013; Warburton, Andreas/N-8028-2013; Kim, Soo-Bong/B-7061-2014; Lysak, Roman/H-2995-2014; Moon, Chang-Seong/J-3619-2014 OI Hays, Chris/0000-0003-2371-9723; Farrington, Sinead/0000-0001-5350-9271; Robson, Aidan/0000-0002-1659-8284; Gallinaro, Michele/0000-0003-1261-2277; Torre, Stefano/0000-0002-7565-0118; Turini, Nicola/0000-0002-9395-5230; Osterberg, Kenneth/0000-0003-4807-0414; Giordani, Mario/0000-0002-0792-6039; Casarsa, Massimo/0000-0002-1353-8964; Vidal Marono, Miguel/0000-0002-2590-5987; Latino, Giuseppe/0000-0002-4098-3502; iori, maurizio/0000-0002-6349-0380; Lancaster, Mark/0000-0002-8872-7292; Nielsen, Jason/0000-0002-9175-4419; Jun, Soon Yung/0000-0003-3370-6109; Toback, David/0000-0003-3457-4144; Introzzi, Gianluca/0000-0002-1314-2580; Gorelov, Igor/0000-0001-5570-0133; Xie, Si/0000-0003-2509-5731; Canelli, Florencia/0000-0001-6361-2117; Lami, Stefano/0000-0001-9492-0147; Margaroli, Fabrizio/0000-0002-3869-0153; Group, Robert/0000-0002-4097-5254; Chiarelli, Giorgio/0000-0001-9851-4816; Scodellaro, Luca/0000-0002-4974-8330; Grinstein, Sebastian/0000-0002-6460-8694; Paulini, Manfred/0000-0002-6714-5787; Russ, James/0000-0001-9856-9155; unalan, zeynep/0000-0003-2570-7611; Lazzizzera, Ignazio/0000-0001-5092-7531; ciocci, maria agnese /0000-0003-0002-5462; Muelmenstaedt, Johannes/0000-0003-1105-6678; Ruiz, Alberto/0000-0002-3639-0368; Punzi, Giovanni/0000-0002-8346-9052; Annovi, Alberto/0000-0002-4649-4398; Ivanov, Andrew/0000-0002-9270-5643; Warburton, Andreas/0000-0002-2298-7315; Moon, Chang-Seong/0000-0001-8229-7829 FU U. S. Department of Energy and National Science Foundation; Italian Istituto Nazionale di Fisica Nucleare; Ministry of Education, Culture, Sports, Science and Technology of Japan; Natural Sciences and Engineering Research Council of Canada; National Science Council of the Republic of China; Swiss National Science Foundation; A. P. Sloan Foundation; Bundesministerium fur Bildung und Forschung, Germany; Korean Science and Engineering Foundation and the Korean Research Foundation; Science and Technology Facilities Council and the Royal Society, U. K.; Institut National de Physique Nucleaire et Physique des Particules/CNRS; Russian Foundation for Basic Research; Ministerio de Ciencia e Innovacion, and Programa Consolider-Ingenio 2010, Spain; Slovak RD Agency; Academy of Finland FX The authors express their gratitude to Chong Sheng Li of Peking University for very useful communication and for providing a new calculation of FCNC top-quark branching ratios in a very timely fashion. We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the U. S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A. P. Sloan Foundation; the Bundesministerium fur Bildung und Forschung, Germany; the Korean Science and Engineering Foundation and the Korean Research Foundation; the Science and Technology Facilities Council and the Royal Society, U. K.; the Institut National de Physique Nucleaire et Physique des Particules/CNRS; the Russian Foundation for Basic Research; the Ministerio de Ciencia e Innovacion, and Programa Consolider-Ingenio 2010, Spain; the Slovak R&D Agency; and the Academy of Finland. NR 30 TC 38 Z9 38 U1 2 U2 10 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD APR 17 PY 2009 VL 102 IS 15 AR 151801 DI 10.1103/PhysRevLett.102.151801 PG 7 WC Physics, Multidisciplinary SC Physics GA 434PD UT WOS:000265285700013 ER PT J AU Burrell, KH Osborne, TH Snyder, PB West, WP Fenstermacher, ME Groebner, RJ Gohil, P Leonard, AW Solomon, WM AF Burrell, K. H. Osborne, T. H. Snyder, P. B. West, W. P. Fenstermacher, M. E. Groebner, R. J. Gohil, P. Leonard, A. W. Solomon, W. M. TI Quiescent H-Mode Plasmas with Strong Edge Rotation in the Cocurrent Direction SO PHYSICAL REVIEW LETTERS LA English DT Article ID DIII-D; ASDEX UPGRADE; STABILITY; PEDESTAL; REGIME; OPERATION; TOKAMAK; JT-60U; ELMS AB For the first time in any tokamak, quiescent H-mode (QH-mode) plasmas have been created with strong edge rotation in the direction of the plasma current. This confirms the theoretical prediction that the QH mode should exist with either sign of the edge rotation provided the magnitude of the shear in the edge rotation is sufficiently large and demonstrates that counterinjection and counteredge rotation are not essential for the QH mode. Accordingly, the present work demonstrates a substantial broadening of the QH-mode operating space and represents a significant confirmation of the theory. C1 [Burrell, K. H.; Osborne, T. H.; Snyder, P. B.; West, W. P.; Groebner, R. J.; Gohil, P.; Leonard, A. W.] Gen Atom Co, San Diego, CA 92186 USA. [Fenstermacher, M. E.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Solomon, W. M.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Burrell, KH (reprint author), Gen Atom Co, POB 85608, San Diego, CA 92186 USA. OI Solomon, Wayne/0000-0002-0902-9876 FU U. S. Department of Energy [DE-FC02-04ER54698, DE-AC52-07NA27344, DE-AC02-76CH03073] FX This work was supported by the U. S. Department of Energy under No. DE-FC02-04ER54698, No. DE-AC52-07NA27344, and No. DE-AC02-76CH03073. NR 21 TC 30 Z9 30 U1 0 U2 12 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD APR 17 PY 2009 VL 102 IS 15 AR 155003 DI 10.1103/PhysRevLett.102.155003 PG 4 WC Physics, Multidisciplinary SC Physics GA 434PD UT WOS:000265285700037 PM 19518641 ER PT J AU Cheng, G Graessley, WW Melnichenko, YB AF Cheng, G. Graessley, W. W. Melnichenko, Y. B. TI Polymer Dimensions in Good Solvents: Crossover from Semidilute to Concentrated Solutions SO PHYSICAL REVIEW LETTERS LA English DT Article ID ANGLE NEUTRON-SCATTERING; MEAN-SQUARE RADIUS; POLY(METHYL METHACRYLATE)S; CRITICAL EXPONENTS; CHAIN DIMENSIONS; GYRATION AB Using small-angle neutron scattering, we studied the variation of the polymer radius of gyration (R(g)) as a function of polymer concentration (phi) for solutions of a flexible-chain poly(methyl methacrylate) in chloroform. We observed for the first time a distinct crossover between swollen coils in the semidilute regime, where R(g)(2)proportional to phi(-0.26 +/- 0.03), and unperturbed coils in the concentrated regime, where R(g) is independent on concentration. The crossover occurs at phi(>)approximate to 0.15, a value that agrees reasonably well with phi approximate to 0.21 +/- 0.035, estimated with a scaling relationship between phi and the coil overlap concentration phi(*). C1 [Cheng, G.; Melnichenko, Y. B.] Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA. [Graessley, W. W.] Princeton Univ, Dept Chem Engn, Princeton, NJ 08544 USA. RP Melnichenko, YB (reprint author), Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA. EM melnichenkoy@ornl.gov FU U.S. Department of Energy [DE-AC05-00OR22725] FX The authors thank M. Osa for suggesting the polymersolvent system studied in this work and G. D. Wignall for his careful reading of the manuscript and helpful remarks. Research was sponsored by the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, U.S. Department of Energy, under Contract No. DE-AC05-00OR22725 with Oak Ridge National Laboratory, managed and operated by UT-Battelle, LLC. This research was supported in part by the ORNL Postdoctoral Research Associates Program, administered jointly by the ORNL and the Oak Ridge Institute for Science and Education. NR 23 TC 14 Z9 14 U1 0 U2 18 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD APR 17 PY 2009 VL 102 IS 15 AR 157801 DI 10.1103/PhysRevLett.102.157801 PG 4 WC Physics, Multidisciplinary SC Physics GA 434PD UT WOS:000265285700069 PM 19518673 ER PT J AU Chipps, KA Bardayan, DW Blackmon, JC Chae, KY Greife, U Hatarik, R Kozub, RL Matei, C Moazen, BH Nesaraja, CD Pain, SD Peters, WA Pittman, ST Shriner, JF Smith, MS AF Chipps, K. A. Bardayan, D. W. Blackmon, J. C. Chae, K. Y. Greife, U. Hatarik, R. Kozub, R. L. Matei, C. Moazen, B. H. Nesaraja, C. D. Pain, S. D. Peters, W. A. Pittman, S. T. Shriner, J. F., Jr. Smith, M. S. TI First Direct Measurement of the F-17(p,gamma)Ne-18 Cross Section SO PHYSICAL REVIEW LETTERS LA English DT Article ID DARESBURY RECOIL SEPARATOR; NOVA NUCLEOSYNTHESIS; RADIOACTIVE BEAMS; CAPTURE REACTION; REACTION-RATES; RP-PROCESS; NE-18; F-17(P; ENERGIES; STATE AB The rate of the F-17(p,gamma)Ne-18 reaction is important in various astrophysical events. A previous F-17(p,p)F-17 measurement identified a 3(+) state providing the strongest resonance contribution, but the resonance strength was unknown. We have directly measured the F-17(p,gamma)Ne-18 reaction using a mixed beam of F-17 and O-17 at ORNL. The resonance strength for the 3(+) resonance in Ne-18 was found to be omega gamma=33 +/- 14(stat)+/- 17(syst) meV, corresponding to a gamma width of Gamma(gamma)=56 +/- 24(stat)+/- 30(syst) meV. An upper limit on the direct capture of S(E)<= 65 keV b was determined at an energy of 800 keV. C1 [Chipps, K. A.; Greife, U.] Colorado Sch Mines, Golden, CO 80401 USA. [Blackmon, J. C.] Louisiana State Univ, Baton Rouge, LA 70803 USA. [Chae, K. Y.; Moazen, B. H.; Nesaraja, C. D.; Pain, S. D.; Pittman, S. T.] Univ Tennessee, Knoxville, TN 37996 USA. [Hatarik, R.; Peters, W. A.] Rutgers State Univ, New Brunswick, NJ 08901 USA. [Kozub, R. L.; Shriner, J. F., Jr.] Tennessee Technol Univ, Cookeville, TN 38505 USA. [Matei, C.] Oak Ridge Associated Univ, Oak Ridge, TN 37830 USA. RP Chipps, KA (reprint author), Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. RI Pain, Steven/E-1188-2011; Peters, William/B-3214-2012; Matei, Catalin/B-2586-2008; OI Pain, Steven/0000-0003-3081-688X; Peters, William/0000-0002-3022-4924; Matei, Catalin/0000-0002-2254-3853; Chipps, Kelly/0000-0003-3050-1298 FU U. S. Department of Energy (DOE) [DE-AC05-00OR22725, DE-FG03-93ER40789, DE-FG02-96ER40990] FX Oak Ridge National Laboratory is managed by UT-Battelle, LLC, for the U. S. Department of Energy (DOE) under Contract No. DE-AC05-00OR22725. This work was also supported in part by the U. S. DOE under Contract No. DE-FG03-93ER40789 with the Colorado School of Mines and No. DE-FG02-96ER40990 with Tennessee Technological University. NR 26 TC 20 Z9 20 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD APR 17 PY 2009 VL 102 IS 15 AR 152502 DI 10.1103/PhysRevLett.102.152502 PG 4 WC Physics, Multidisciplinary SC Physics GA 434PD UT WOS:000265285700020 PM 19518624 ER PT J AU Coverdale, CA Safronova, AS Kantsyrev, VL Ouart, ND Esaulov, AA Deeney, C Williamson, KM Osborne, GC Shrestha, I Ampleford, DJ Jones, B AF Coverdale, C. A. Safronova, A. S. Kantsyrev, V. L. Ouart, N. D. Esaulov, A. A. Deeney, C. Williamson, K. M. Osborne, G. C. Shrestha, I. Ampleford, D. J. Jones, B. TI Observation of > 400-eV Precursor Plasmas from Low-Wire-Number Copper Arrays at the 1-MA Zebra Facility SO PHYSICAL REVIEW LETTERS LA English DT Article ID Z-PINCH; X-PINCHES; DYNAMICS; MODEL; MA AB Experiments with cylindrical copper wire arrays at the 1-MA Zebra facility show that high temperatures exist in the precursor plasmas formed when ablated wire array material accretes on the axis prior to the stagnation of a z pinch. In these experiments, the precursor radiated approximately 20% of the > 1000 eV x-ray output, and time-resolved spectra show substantial emission from Cu L-shell lines. Modeling of the spectra shows an increase in temperature as the precursor forms, up to similar to 450 eV, after which the temperature decreases to similar to 220-320 eV until the main implosion. C1 [Coverdale, C. A.; Ampleford, D. J.; Jones, B.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Safronova, A. S.; Kantsyrev, V. L.; Ouart, N. D.; Esaulov, A. A.; Williamson, K. M.; Osborne, G. C.; Shrestha, I.] Univ Nevada, Reno, NV 89557 USA. [Deeney, C.] Natl Nucl Secur Adm, Washington, DC USA. RP Coverdale, CA (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. FU U. S. DOE's National Nuclear Security Administration [DE-AC04-94AL85000]; DOE/NNSA Cooperative [DE-FC52-06NA27616, DE-FC52-06NA27588, DE-FC52-06NA27586]; National Physical Science Consortium; Sandia National Laboratories FX The authors would like to thank the Nevada Terawatt Facility and the assistance of S. Batie, A. Astanovitsky, B. LeGalloudec, T. Adkins, and V. Nalajala; S. Bott and F. Beg of University of California, San Diego, S. Lebedev and J. Chittenden of Imperial College, J. P. Apruzese of the Naval Research Lab, and V. V. Ivanov of University of Nevada, Reno, for useful discussions; and P. D. LePell of Ktech Corporation for helping develop the time-gated spectrometer. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the U. S. DOE's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. Work was also supported by the DOE/NNSA Cooperative agreements DE-FC52-06NA27616, DE-FC52-06NA27588, and DE-FC52-06NA27586 and in part by support from the National Physical Science Consortium with Sandia National Laboratories. NR 19 TC 12 Z9 12 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD APR 17 PY 2009 VL 102 IS 15 AR 155006 DI 10.1103/PhysRevLett.102.155006 PG 4 WC Physics, Multidisciplinary SC Physics GA 434PD UT WOS:000265285700040 PM 19518644 ER PT J AU Ghaemi, P Wang, F Vishwanath, A AF Ghaemi, Pouyan Wang, Fa Vishwanath, Ashvin TI Andreev Bound States as a Phase-Sensitive Probe of the Pairing Symmetry of the Iron Pnictide Superconductors SO PHYSICAL REVIEW LETTERS LA English DT Article ID SPECTROSCOPY; GAP AB A leading contender for the pairing symmetry in the Fe pnictide high-temperature superconductors is extended s wave s(+/-), a nodeless state in which the pairing changes sign between Fermi surfaces. Verifying such a pairing symmetry requires a special phase-sensitive probe that is also momentum selective. We show that the sign structure of s(+/-) pairing can lead to surface Andreev bound states (ABS) at the sample edge. In the clean limit they only occur when the edge is along the nearest neighbor Fe-Fe bond, but not for a diagonal edge or a surface orthogonal to the c axis. In contrast to d-wave ABS, they are not at zero energy and, in general, do not produce a zero bias tunneling peak. Consequences for tunneling measurements are derived, within a simplified two-band model and also for a more realistic five-band model. In both cases, surface ABS are obtained. C1 [Ghaemi, Pouyan; Wang, Fa; Vishwanath, Ashvin] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Wang, Fa; Vishwanath, Ashvin] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Ghaemi, P (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. RI Wang, Fa/D-3817-2015 OI Wang, Fa/0000-0002-6220-5349 FU LBNL [DOE504108] FX We acknowledge support from LBNL Grant No. DOE504108 and instructive discussions with Dung-Hai Lee. NR 24 TC 38 Z9 38 U1 1 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD APR 17 PY 2009 VL 102 IS 15 AR 157002 DI 10.1103/PhysRevLett.102.157002 PG 4 WC Physics, Multidisciplinary SC Physics GA 434PD UT WOS:000265285700064 PM 19518668 ER PT J AU Huang, W Wang, LS AF Huang, Wei Wang, Lai-Sheng TI Probing the 2D to 3D Structural Transition in Gold Cluster Anions Using Argon Tagging SO PHYSICAL REVIEW LETTERS LA English DT Article ID PHOTOELECTRON-SPECTROSCOPY; METAL CLUSTERS; ACTIVE GOLD; NANOCLUSTERS; OXIDATION AB Different physisorption properties by 2D and 3D isomers of Au(n)- clusters are observed and used to probe the 2D to 3D structural transition. Strong Ar clustering occurs on planar Au(n)- and the planar faces of the pyramidal Au(20)-. An abrupt change of Ar clustering at Au(12)- confirms the 2D to 3D structural transition at this size, where both isomers coexist. The minor 2D isomer can be titrated out by Ar to produce a clean 3D-Au(12)- beam and beams of Au(12)Ar(m)- with enhanced 2D isomers. Using the Ar titration and tagging, isomer-specific photoelectron spectra for the 2D and 3D Au(12)- are obtained. C1 [Huang, Wei] Washington State Univ, Dept Phys, Richland, WA 99354 USA. Pacific NW Natl Lab, Div Chem & Mat Sci, Richland, WA 99352 USA. RP Huang, W (reprint author), Washington State Univ, Dept Phys, 2710 Univ Dr, Richland, WA 99354 USA. EM ls.wang@pnl.gov FU National Science Foundation [CHE-0749496]; DOE's Office of Biological and Environmental Research FX We thank Professor Xiao Cheng Zeng and Professor Max Bertino for valuable discussions. This work was supported by the National Science Foundation ( No. CHE-0749496) and performed at the W. R. Wiley Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by DOE's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory, operated for DOE by Battelle. NR 24 TC 112 Z9 112 U1 2 U2 24 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD APR 17 PY 2009 VL 102 IS 15 AR 153401 DI 10.1103/PhysRevLett.102.153401 PG 4 WC Physics, Multidisciplinary SC Physics GA 434PD UT WOS:000265285700026 PM 19518630 ER PT J AU Kharzeev, D Levin, E Nardi, M Tuchin, K AF Kharzeev, Dmitri Levin, Eugene Nardi, Marzia Tuchin, Kirill TI Gluon Saturation Effects on J/psi Production in Heavy Ion Collisions SO PHYSICAL REVIEW LETTERS LA English DT Article ID COLOR GLASS CONDENSATE; ENERGY PA-COLLISIONS; HIGH-DENSITY QCD; RENORMALIZATION-GROUP; NUCLEUS COLLISIONS; HADRON-PRODUCTION; QUARK; DISSOCIATION; MOMENTUM; EQUATION AB We consider a novel mechanism for J/psi production in nuclear collisions arising due to the high density of gluons. The resulting J/psi production cross section is evaluated as a function of rapidity and centrality. We compute the nuclear modification factor and show that the rapidity distribution of the produced J/psi's is significantly more narrow in AA collisions due to the gluon saturation effects. Our results indicate that gluon saturation in the colliding nuclei is a significant source of J/psi suppression and can explain the experimentally observed rapidity and centrality dependencies of the effect. C1 [Kharzeev, Dmitri] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Levin, Eugene] Tel Aviv Univ, HEP Dept, Sch Phys, Raymond & Beverly Sackler Fac Exact Sci, IL-69978 Tel Aviv, Israel. [Nardi, Marzia] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy. [Tuchin, Kirill] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Tuchin, Kirill] RIKEN, BNL Res Ctr, Upton, NY 11973 USA. RP Kharzeev, D (reprint author), Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. FU U. S. Department of Energy [DE-AC02-98CH10886, DE-FG02-87ER40371]; RIKEN; BNL; Ministry of Science, Culture Sport, Israel; Russian Foundation for Basic Research; Russian Federation; BSF [20004019] FX The work of D. K. was supported by the U. S. Department of Energy under Contract No. DE-AC02-98CH10886. K. T. was supported in part by the U. S. Department of Energy under Grant No. DE-FG02-87ER40371; he thanks RIKEN, BNL, and the U. S. Department of Energy (Contract No. DE-AC02-98CH10886) for providing facilities essential for the completion of this work. This research of E. L. was supported in part by a grant from Ministry of Science, Culture & Sport, Israel and the Russian Foundation for Basic Research of the Russian Federation and by BSF Grant No. 20004019. NR 38 TC 22 Z9 22 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD APR 17 PY 2009 VL 102 IS 15 AR 152301 DI 10.1103/PhysRevLett.102.152301 PG 4 WC Physics, Multidisciplinary SC Physics GA 434PD UT WOS:000265285700018 PM 19518622 ER PT J AU Wakimoto, S Kimura, H Ishii, K Ikeuchi, K Adachi, T Fujita, M Kakurai, K Koike, Y Mizuki, J Noda, Y Yamada, K Said, AH Shvyd'ko, Y AF Wakimoto, S. Kimura, H. Ishii, K. Ikeuchi, K. Adachi, T. Fujita, M. Kakurai, K. Koike, Y. Mizuki, J. Noda, Y. Yamada, K. Said, A. H. Shvyd'ko, Yu. TI Charge Excitations in the Stripe-Ordered La5/3Sr1/3NiO4 and La2-x(Ba,Sr)(x)CuO4 Superconducting Compounds SO PHYSICAL REVIEW LETTERS LA English DT Article ID X-RAY-SCATTERING; COPPER-OXIDE SUPERCONDUCTORS; ELECTRONIC-STRUCTURE; SPIN; LA2-XSRXNIO4; SPECTRA; PLANE AB Charge excitations in stripe-ordered 214 compounds La5/3Sr1/3NiO4 and 1/8-doped La2-x(Ba or Sr)(x)CuO4 are studied using resonant inelastic x-ray scattering in the hard x-ray regime. We observe similar or equal to 1 eV excitation with a momentum transfer corresponding to the charge stripe spatial period both for the diagonal (nickelate) and parallel (cuprates) stripes. They are interpreted as collective stripe excitations or anomalous softening of the charge excitonic modes of the in-gap states. C1 [Wakimoto, S.; Kakurai, K.] Japan Atom Energy Agcy, Quantum Beam Sci Directorate, Tokai, Ibaraki 3191195, Japan. [Kimura, H.; Noda, Y.] Tohoku Univ, Inst Multidisciplinary Res Adv Mat, Sendai, Miyagi 9808577, Japan. [Ishii, K.; Ikeuchi, K.; Mizuki, J.] Japan Atom Energy Agcy, Synchrotron Radiat Res Ctr, Mikazuki, Hyogo 6795148, Japan. [Adachi, T.; Koike, Y.] Tohoku Univ, Dept Appl Phys, Sendai, Miyagi 9808579, Japan. [Fujita, M.; Yamada, K.] Tohoku Univ, Inst Mat Res, Sendai, Miyagi 9808577, Japan. [Yamada, K.] Adv Inst Mat Res, Sendai, Miyagi 9808577, Japan. [Said, A. H.; Shvyd'ko, Yu.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Wakimoto, S (reprint author), Japan Atom Energy Agcy, Quantum Beam Sci Directorate, Tokai, Ibaraki 3191195, Japan. EM wakimoto.shuichi@jaea.go.jp RI Yamada, Kazuyoshi/C-2728-2009; Fujita, Masaki/D-8430-2013 FU Ministry of Education, Culture, Sports, Science and Technology, Japan; U.S. Department of Energy [DE-AC02-06CH11357] FX The authors thank E. Kaneshita, K. Machida, K. Nakajima, and K. Tsutsui for invaluable discussions. Yu. Sh. acknowledges the long-standing efforts of his colleagues from the IXS Collaborative Design Team in building the MERIX instrument at the 30-ID beam line at the APS, in particular: J.P. Hill, D. S. Coburn (BNL), C. Burns (WMU), E. Alp, T. Toellner, H. Sinn (APS), and D. P. Siddons (BNL) for building the microstrip detector for the MERIX spectrometer. This work is supported by a Grant-In-Aid from the Ministry of Education, Culture, Sports, Science and Technology, Japan. The synchrotron radiation experiments at SPring-8 were performed under the Common-Use Facility Programme of JAEA. Use of the APS was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 34 TC 21 Z9 21 U1 0 U2 14 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD APR 17 PY 2009 VL 102 IS 15 AR 157001 DI 10.1103/PhysRevLett.102.157001 PG 4 WC Physics, Multidisciplinary SC Physics GA 434PD UT WOS:000265285700063 PM 19518667 ER PT J AU Walsh, A Da Silva, JLF Wei, SH AF Walsh, Aron Da Silva, Juarez L. F. Wei, Su-Huai TI Comment on "Theoretical Description of Carrier Mediated Magnetism in Cobalt Doped ZnO'' Reply SO PHYSICAL REVIEW LETTERS LA English DT Editorial Material AB A Reply to the Comment by Stefano Sanvito and Chaitanya Das Pemmaraju. C1 [Walsh, Aron; Da Silva, Juarez L. F.; Wei, Su-Huai] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Walsh, A (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. RI Walsh, Aron/A-7843-2008; Da Silva, Juarez L. F./D-1779-2011 OI Walsh, Aron/0000-0001-5460-7033; Da Silva, Juarez L. F./0000-0003-0645-8760 NR 11 TC 7 Z9 7 U1 1 U2 13 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD APR 17 PY 2009 VL 102 IS 15 AR 159702 DI 10.1103/PhysRevLett.102.159702 PG 1 WC Physics, Multidisciplinary SC Physics GA 434PD UT WOS:000265285700079 ER PT J AU Warusawithana, MP Cen, C Sleasman, CR Woicik, JC Li, YL Kourkoutis, LF Klug, JA Li, H Ryan, P Wang, LP Bedzyk, M Muller, DA Chen, LQ Levy, J Schlom, DG AF Warusawithana, Maitri P. Cen, Cheng Sleasman, Charles R. Woicik, Joseph C. Li, Yulan Kourkoutis, Lena Fitting Klug, Jeffrey A. Li, Hao Ryan, Philip Wang, Li-Peng Bedzyk, Michael Muller, David A. Chen, Long-Qing Levy, Jeremy Schlom, Darrell G. TI A Ferroelectric Oxide Made Directly on Silicon SO SCIENCE LA English DT Article ID THIN-FILMS; PEROVSKITE FILMS; ULTRATHIN FILMS; SRTIO3; MULTILAYERS; THICKNESS; GROWTH AB Metal oxide semiconductor field-effect transistors, formed using silicon dioxide and silicon, have undergone four decades of staggering technological advancement. With fundamental limits to this technology close at hand, alternatives to silicon dioxide are being pursued to enable new functionality and device architectures. We achieved ferroelectric functionality in intimate contact with silicon by growing coherently strained strontium titanate (SrTiO3) films via oxide molecular beam epitaxy in direct contact with silicon, with no interfacial silicon dioxide. We observed ferroelectricity in these ultrathin SrTiO3 layers by means of piezoresponse force microscopy. Stable ferroelectric nanodomains created in SrTiO3 were observed at temperatures as high as 400 kelvin. C1 [Warusawithana, Maitri P.; Schlom, Darrell G.] Cornell Univ, Dept Mat Sci & Engn, Ithaca, NY 14853 USA. [Cen, Cheng; Sleasman, Charles R.; Levy, Jeremy] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Woicik, Joseph C.] NIST, Gaithersburg, MD 20899 USA. [Li, Yulan; Chen, Long-Qing] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA. [Kourkoutis, Lena Fitting; Muller, David A.] Cornell Univ, Sch Appl & Engn Phys, Ithaca, NY 14853 USA. [Klug, Jeffrey A.; Bedzyk, Michael] Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA. [Li, Hao] Motorola Inc, Appl Res & Technol Ctr, Tempe, AZ 85284 USA. [Ryan, Philip] Ames Lab, Ames, IA 50011 USA. [Wang, Li-Peng] Intel Corp, Santa Clara, CA 95052 USA. [Wang, Li-Peng] TricornTech, San Jose, CA 95129 USA. [Bedzyk, Michael] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA. RP Schlom, DG (reprint author), Cornell Univ, Dept Mat Sci & Engn, Ithaca, NY 14853 USA. EM schlom@cornell.edu RI Schlom, Darrell/J-2412-2013; Bedzyk, Michael/B-7503-2009; Bedzyk, Michael/K-6903-2013; Chen, LongQing/I-7536-2012; Levy, Jeremy/A-2081-2009; Muller, David/A-7745-2010; Klug, Jeffrey/A-3653-2013 OI Schlom, Darrell/0000-0003-2493-6113; Chen, LongQing/0000-0003-3359-3781; Levy, Jeremy/0000-0002-5700-2977; Muller, David/0000-0003-4129-0473; Kourkoutis, Lena/0000-0002-1303-1362; FU Office of Naval Research [N00014-04-1-0426]; NSF [DMR-0507146, DMR-0704022]; Materials Research Science and Engineering Center [DMR-0520404, DMR-0520513, DMR-0820404]; U.S. Department of Energy, Basic Energy Sciences, Office of Science [W-31-109-ENG-38] FX We thank C. H. Ahn, O. Auciello, V. Gopalan, D. A. Tenne, and F. J. Walker for stimulating discussions and interactions during the course of this work. Supported by Office of Naval Research grant N00014-04-1-0426 (M.P.W., L.F.K., D.A.M., and D.G.S.), NSF grants DMR-0507146 and DMR-0704022, Materials Research Science and Engineering Center program grants DMR-0520404, DMR-0520513, and DMR-0820404, and, for the work performed at Argonne National Laboratory, the U.S. Department of Energy, Basic Energy Sciences, Materials Sciences. Diffraction data were taken at sector 33BM of the Advanced Photon Source, which is supported by the U.S. Department of Energy, Basic Energy Sciences, Office of Science under contract W-31-109-ENG-38. NR 32 TC 204 Z9 205 U1 16 U2 215 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 EI 1095-9203 J9 SCIENCE JI Science PD APR 17 PY 2009 VL 324 IS 5925 BP 367 EP 370 DI 10.1126/science.1169678 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 433QT UT WOS:000265221600036 PM 19372426 ER PT J AU Huang, J Lyczkowski, RW Gidaspow, D AF Huang, Jing Lyczkowski, Robert W. Gidaspow, Dimitri TI Pulsatile flow in a coronary artery using multiphase kinetic theory SO JOURNAL OF BIOMECHANICS LA English DT Article DE Computational fluid dynamics; Blood viscosity; Fahraeus-Lindqvist effect; Wall shear stress; Wall shear stress gradients ID COMPUTATIONAL FLUID-DYNAMICS; SIMULATED BLOOD-FLOW; CURVED TUBE MODEL; SHEAR-STRESS; CAROTID BIFURCATION; TRANSIENT FLOW; VASCULAR ENDOTHELIUM; WALL; ATHEROSCLEROSIS; HEMODYNAMICS AB Pulsatile flow in a model of a right coronary artery (RCA) was previously modeled as a single-phase fluid and as a two-phase fluid using experimental rheological data for blood as a function of hematocrit and shear rate. Here we present a multiphase kinetic theory model which has been shown to compute correctly the viscosity of red blood cells (RBCs) and their migration away from vessel walls: the Fahraeus-Lindqvist effect. The computed RBC viscosity decreases with shear rate and vessel size, consistent with measurements. The pulsatile computations were performed using a typical cardiac waveform until a limit cycle was well established. The RBC volume fractions, shear stresses, shear stress gradients, granular temperatures, viscosities, and phase velocities varied with time and position during each cardiac cycle. Steady-state computations were also performed and were found to compare well with time-averaged transient results. The wall shear stress and wall shear stress gradients (both spatial and temporal) were found to be highest on the inside area of Maximum curvature. Potential atherosclerosis sites are identified using these computational results. (C) 2009 Elsevier Ltd. All rights reserved. C1 [Lyczkowski, Robert W.] Argonne Natl Lab, Div Energy Syst, Argonne, IL 60439 USA. [Huang, Jing; Gidaspow, Dimitri] IIT, Dept Biol & Chem Engn, Chicago, IL 60616 USA. RP Lyczkowski, RW (reprint author), Argonne Natl Lab, Div Energy Syst, 9700 S Cass Ave, Argonne, IL 60439 USA. EM rlyczkowski@anl.gov NR 56 TC 12 Z9 13 U1 2 U2 10 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0021-9290 J9 J BIOMECH JI J. Biomech. PD APR 16 PY 2009 VL 42 IS 6 BP 743 EP 754 DI 10.1016/j.jbiomech.2009.01.038 PG 12 WC Biophysics; Engineering, Biomedical SC Biophysics; Engineering GA 436WS UT WOS:000265447400011 PM 19278682 ER PT J AU Zhang, Y Liu, KH Lagi, M Liu, D Littrell, KC Mou, CY Chen, SH AF Zhang, Yang Liu, Kao-Hsiang Lagi, Marco Liu, Dazhi Littrell, Kenneth C. Mou, Chung-Yuan Chen, Sow-Hsin TI Absence of the Density Minimum of Supercooled Water in Hydrophobic Confinement SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID VOIGT FUNCTION; GLASSY WATER; X-RAY; DIFFRACTION; TRANSITION; INTERFACE; LIQUID; LINE AB The surface effect on the peculiar dynamic and thermodynamic properties of supercooled water, such as the density, has been puzzling the scientific community for years. Recently, using the small angle neutron scattering method, we were able to measure the density of H(2)O confined in the hydrophobic mesoporous material CMK1-14 from room temperature down to the deeply supercooled temperature 130 K at ambient pressure. We found that the well-known density maximum of water is shifted 17 K lower and, more interestingly, that the previously observed density minimum in hydrophilic confinement disappears. Furthermore, the deduced thermal expansion coefficient shows a much broader peak spanning from 240 to 180 K in comparison with the sharp peak at 230 K in hydrophilic confinement. These present results may help in the understanding of the effect of hydrophobic/hydrophilic interfaces on the properties of supercooled confined water. C1 [Zhang, Yang; Lagi, Marco; Chen, Sow-Hsin] MIT, Dept Nucl Sci & Engn, Cambridge, MA 02139 USA. [Liu, Kao-Hsiang; Mou, Chung-Yuan] Natl Taiwan Univ, Dept Chem, Taipei 106, Taiwan. [Liu, Dazhi; Littrell, Kenneth C.] Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA. RP Chen, SH (reprint author), MIT, Dept Nucl Sci & Engn, 77 Massachusetts Ave, Cambridge, MA 02139 USA. EM sowhsin@mit.edu RI Lagi, Marco/A-4100-2008; Zhang, Yang/A-7975-2012; Liu, Dazhi/G-2675-2013; Littrell, Kenneth/D-2106-2013 OI Zhang, Yang/0000-0002-7339-8342; MOU, CHUNG-YUAN/0000-0001-7060-9899; Liu, Dazhi/0000-0002-7604-6940; Littrell, Kenneth/0000-0003-2308-8618 FU Department of Energy [DE-FG02-90ER45429]; Taiwan National Science Council [NSC952120-M-002-009, NSC96-2739-M-213-001]; Oak Ridge National Laboratory's High Flux Isotope Reactor; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy; European Union Marie Curie Research and Training Network on Arrested Matte FX Research at MIT is supported by Department of Energy Grant DE-FG02-90ER45429; at NTU, it is supported by Taiwan National Science Council Grants NSC952120-M-002-009 and NSC96-2739-M-213-001. The neutron scattering experiment at Oak Ridge National Laboratory's High Flux Isotope Reactor was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. We benefited from affiliation with European Union Marie Curie Research and Training Network on Arrested Matter. The authors appreciate the efforts of C. Redmon and D. Reass of the ORNL NSSD sample environments group in designing, fabricating, and testing the sample holders used in this work. NR 24 TC 26 Z9 27 U1 0 U2 15 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD APR 16 PY 2009 VL 113 IS 15 BP 5007 EP 5010 DI 10.1021/jp900641y PG 4 WC Chemistry, Physical SC Chemistry GA 430ZG UT WOS:000265030500006 PM 19317391 ER PT J AU Gregg, BA AF Gregg, Brian A. TI Transport in Charged Defect-Rich pi-Conjugated Polymers SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Letter ID ORGANIC SEMICONDUCTORS; SOLAR-CELLS; POLY(3-HEXYLTHIOPHENE); SIMULATION; MOBILITY AB Some models of charge transport in pi-conjugated polymers treat these materials as if they were electrical insulators. Although this may be appropriate for a few materials, many polymers are effectively doped p-type by a high density of charged defects. Herein, limits are estimated for the charged defect density above which the resulting electrostatic fluctuations may govern transport and for the corresponding free hole density above which space-charge-limited currents should not occur. These limits are lower than the experimentally observed values in many pi-conjugated polymers, suggesting that these materials are more accurately described by models of doped semiconductors. This analysis also provides an explanation for two otherwise puzzling experimental observations, the low-field Poole-Frenkel mobility and the correlated energetic disorder. C1 Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Gregg, BA (reprint author), Natl Renewable Energy Lab, 1617 Cole Blvd, Golden, CO 80401 USA. NR 26 TC 36 Z9 36 U1 0 U2 17 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD APR 16 PY 2009 VL 113 IS 15 BP 5899 EP 5901 DI 10.1021/jp900616g PG 3 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 430ZD UT WOS:000265030200003 ER PT J AU Sun, YG Pelton, M AF Sun, Yugang Pelton, Matthew TI Laser-Driven Growth of Silver Nanoplates on p-Type GaAs Substrates and Their Surface-Enhanced Raman Scattering Activity SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID SHAPE-CONTROLLED SYNTHESIS; KINETICALLY CONTROLLED SYNTHESIS; GALVANIC REPLACEMENT REACTION; SOLAR-ENERGY CONVERSION; LARGE-SCALE SYNTHESIS; OPTICAL-PROPERTIES; GOLD NANOCRYSTALS; METAL NANOPARTICLES; POLYOL SYNTHESIS; SINGLE-MOLECULE AB Contact between aqueous solutions of silver nitrate (AgNO(3)) and pristine surfaces of p-type gallium arsenide (GaAs) wafers results in essentially no reaction at room temperature and in the dark. The galvanic reactions between the GaAs wafers and AgNO(3) can be triggered under illumination of laser beams with power densities higher than a critical value (similar to 15 mW/cm(2) for a 630 nm laser), resulting in the growth of silver (Ag) nanoplates on the GaAs surface. The density and dimensions (including both thickness and edge length) of the resulting nanoplates can be readily tuned by controlling the growth time and laser power density. The as-grown Ag nanoplates on the substrates significantly enhance Raman signals of interesting molecules and serve as a new class of promising surface-enhanced Raman scattering substrates for sensitive chemical detection. C1 [Sun, Yugang; Pelton, Matthew] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. RP Sun, YG (reprint author), Argonne Natl Lab, Ctr Nanoscale Mat, 9700 S Cass Ave, Argonne, IL 60439 USA. EM ygsun@anl.gov RI Sun, Yugang /A-3683-2010; Pelton, Matthew/H-7482-2013 OI Sun, Yugang /0000-0001-6351-6977; Pelton, Matthew/0000-0002-6370-8765 NR 83 TC 9 Z9 9 U1 1 U2 13 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD APR 16 PY 2009 VL 113 IS 15 BP 6061 EP 6067 DI 10.1021/jp900638m PG 7 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 430ZD UT WOS:000265030200029 ER PT J AU Aliaga, C Park, JY Yamada, Y Lee, HS Tsung, CK Yang, PD Somorjai, GA AF Aliaga, Cesar Park, Jeong Y. Yamada, Yusuke Lee, Hyun Sook Tsung, Chia-Kuang Yang, Peidong Somorjai, Gabor A. TI Sum Frequency Generation and Catalytic Reaction Studies of the Removal of Organic Capping Agents from Pt Nanoparticles by UV-Ozone Treatment SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID SINGLE-CRYSTAL SURFACES; VIBRATIONAL SPECTROSCOPY; HETEROGENEOUS CATALYSIS; PLATINUM NANOPARTICLES; ETHYLENE HYDROGENATION; RHODIUM NANOPARTICLES; CO OXIDATION; NANOCRYSTALS; ADSORPTION; KINETICS AB We report the structure of the organic capping layers of platinum colloid nanoparticles and their removal by UV-ozone exposure. Sum frequency generation vibrational spectroscopy (SFGVS) studies identify the carbon-hydrogen stretching modes on poly(vinylpyrrolidone) (PVP) and tetradecyl tributylammonium bromide (TTAB)-capped platinum nanoparticles. We found that the UV-ozone treatment technique effectively removes the capping layer on the basis of several analytical measurements including SFGVS, X-ray photoelectron spectroscopy, and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). The overall shape of the nanoparticles was preserved after the removal of capping layers, as confirmed by transmission electron microscopy (TEM). SFGVS of ethylene hydrogenation on the clean platinum nanoparticles demonstrates the existence of ethylidyne and di-sigma-bonded species, indicating the similarity between single-crystal and nanoparticle systems. C1 [Somorjai, Gabor A.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Somorjai, GA (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM somorjai@berkeley.edu RI Park, Jeong Young/A-2999-2008; Yamada, Yusuke/D-3359-2013 FU Office of Basic Energy Sciences, Division of Chemical Sciences, Geological and Biosciences; Division of Materials Sciences and Engineering of the U.S. Department of Energy [DE-AC02-05CH 11231]; Korea Research Foundation; Korean Government FX This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geological and Biosciences and Division of Materials Sciences and Engineering of the U.S. Department of Energy under contract no. DE-AC02-05CH 11231. H.S.L gratefully acknowledges financial aid from the Korea Research Foundation Grant funded by the Korean Government. NR 35 TC 133 Z9 133 U1 10 U2 110 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD APR 16 PY 2009 VL 113 IS 15 BP 6150 EP 6155 DI 10.1021/jp8108946 PG 6 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 430ZD UT WOS:000265030200041 ER PT J AU Senanayake, SD Gordon, WO Overbury, SH Mullins, DR AF Senanayake, S. D. Gordon, W. O. Overbury, S. H. Mullins, D. R. TI Adsorption and Reaction of Acetone over CeOx(111) Thin Films SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID CERIUM OXIDE; SINGLE-CRYSTAL; SURFACES; DECOMPOSITION; SPECTROSCOPY; TIO2(110); SI(100); CO AB This study reports the interaction of acetone (CH3COCH3) the simplest ketone, with well ordered CeO2(111) thin film surfaces. The fully oxidized CeO2(111) surface shows a weak interaction with acetone with the sole desorption product (TPD) being acetone at 210 K. The chemisorbed molecule binds to the surface as the eta(1)-acetone species rather than through a bridge-bonded dioxy-configuration. Exposure of a CeO2(111) surface to acetone at 600K removes oxygen as CO and results in the conversion of Ce4+ to Ce3+. Acetone chemisorbs strongly on reduced CeO2-x(111) with molecular acetone desorbing near 500 K. Decomposition also occurs with H-2 desorbing between 450 and 600 K and C reacting with O in the ceria to desorb above 650 K. A stable species exists from 200 to 500 K on the reduced surface that has three unique types of C. High resolution C 1s XPS spectra indicate these are Cc-CH2, C-(C) under barH(3) and C-O species. C k-edge NEXAFS indicates the presence of C=C and C=O bonds. It is postulated that the intermediate is a carbanion bonded through both O and C atoms to Ce cations. C1 [Senanayake, S. D.; Gordon, W. O.; Overbury, S. H.; Mullins, D. R.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Mullins, DR (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM mullinsdr@ornl.gov RI Overbury, Steven/C-5108-2016; Senanayake, Sanjaya/D-4769-2009 OI Overbury, Steven/0000-0002-5137-3961; Senanayake, Sanjaya/0000-0003-3991-4232 NR 23 TC 29 Z9 29 U1 2 U2 48 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD APR 16 PY 2009 VL 113 IS 15 BP 6208 EP 6214 DI 10.1021/jp810403d PG 7 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 430ZD UT WOS:000265030200049 ER PT J AU Koehn, EM Fleischmann, T Conrad, JA Palfey, BA Lesley, SA Mathews, II Kohen, A AF Koehn, Eric M. Fleischmann, Todd Conrad, John A. Palfey, Bruce A. Lesley, Scott A. Mathews, Irimpan I. Kohen, Amnon TI An unusual mechanism of thymidylate biosynthesis in organisms containing the thyX gene SO NATURE LA English DT Article ID CATALYTIC MECHANISM; ESCHERICHIA-COLI; ACTIVE-SITE; SYNTHASE-X; FLAVIN; ENZYME; DNA AB Biosynthesis of the DNA base thymine depends on activity of the enzyme thymidylate synthase to catalyse the methylation of the uracil moiety of 2'-deoxyuridine-5'-monophosphate. All known thymidylate synthases rely on an active site residue of the enzyme to activate 2'-deoxyuridine-5'-monophosphate(1,2). This functionality has been demonstrated for classical thymidylate synthases, including human thymidylate synthase, and is instrumental in mechanism-based inhibition of these enzymes. Here we report an example of thymidylate biosynthesis that occurs without an enzymatic nucleophile. This unusual biosynthetic pathway occurs in organisms containing the thyX gene, which codes for a flavin-dependent thymidylate synthase (FDTS), and is present in several human pathogens(3-5). Our findings indicate that the putative active site nucleophile is not required for FDTS catalysis, and no alternative nucleophilic residues capable of serving this function can be identified. Instead, our findings suggest that a hydride equivalent (that is, a proton and two electrons) is transferred from the reduced flavin cofactor directly to the uracil ring, followed by an isomerization of the intermediate to form the product, 2'-deoxythymidine-5'-monophosphate. These observations indicate a very different chemical cascade than that of classical thymidylate synthases or any other known biological methylation. The findings and chemical mechanism proposed here, together with available structural data, suggest that selective inhibition of FDTSs, with little effect on human thymine biosynthesis, should be feasible. Because several human pathogens depend on FDTS for DNA biosynthesis, its unique mechanism makes it an attractive target for antibiotic drugs. C1 [Koehn, Eric M.; Fleischmann, Todd; Kohen, Amnon] Univ Iowa, Dept Chem, Iowa City, IA 52242 USA. [Conrad, John A.; Palfey, Bruce A.] Univ Michigan, Sch Med, Dept Biol Chem, Ann Arbor, MI 48109 USA. [Lesley, Scott A.] Novartis Res Fdn, Genom Inst, Joint Ctr Struct Genom, San Diego, CA 92121 USA. [Mathews, Irimpan I.] Stanford Univ, Stanford Synchrotron Radiat Lab, Menlo Pk, CA 94025 USA. RP Kohen, A (reprint author), Univ Iowa, Dept Chem, Iowa City, IA 52242 USA. EM amnon-kohen@uiowa.edu OI Palfey, Bruce/0000-0001-5098-259X FU NIH [R01 GM065368, R01 GM61087, GM08270]; NSF [CHE 0715448]; JCSG [U54GM074898]; DOE; OBER; NCRR; NIGMS FX This work was supported by NIH R01 GM065368 and NSF CHE 0715448 to A. K., the Iowa Center for Biocatalysis and Bioprocessing to E. M. K., NIH R01 GM61087 to B. A. P., NIH training grant GM08270 to J.A.C., and JCSG grant U54GM074898 to S. A. L. Portions of this research were carried out at the Stanford Synchrotron Radiation Laboratory (SSRL), a national user facility operated by Stanford University on behalf of DOE, OBER. The SSRL Structural Molecular Biology Program is supported by DOE, OBER and by NIH, NCRR, Biomedical Technology Program and NIGMS. NR 24 TC 45 Z9 46 U1 0 U2 9 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 J9 NATURE JI Nature PD APR 16 PY 2009 VL 458 IS 7240 BP 919 EP U13 DI 10.1038/nature07973 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 433CS UT WOS:000265182500049 PM 19370033 ER PT J AU Wang, MR Kang, QJ AF Wang, Moran Kang, Qinjun TI Electrokinetic Transport in Microchannels with Random Roughness SO ANALYTICAL CHEMISTRY LA English DT Article ID LATTICE BOLTZMANN METHOD; ELECTROOSMOTIC FLOW; BOUNDARY-CONDITION; POROUS-MEDIA; MICROFLUIDICS; SIMULATIONS; MODEL; ELECTROPHORESIS; PRESSURE; DEVICES AB We present a numerical framework to model the electrokinetic transport in microchannels with random roughness. The three-dimensional microstructure of the rough channel is generated by a random generation-growth method with three statistical parameters to control the number density, the total volume fraction, and the anisotropy characteristics of roughness elements. The governing equations for the electrokinetic transport are solved by a high-efficiency lattice Poisson-Boltzmann method in complex geometries. The effects from the geometric characteristics of roughness on the electrokinetic transport in microchannels are therefore modeled and analyzed. For a given total roughness volume fraction, a higher number density leads to a lower fluctuation because of the random factors. The electroosmotic flow rate increases with the roughness number density nearly logarithmically for a given volume fraction of roughness but decreases with the volume fraction for a given roughness number density. When both the volume fraction and the number density of roughness are given, the electroosmotic flow rate is enhanced by the increase of the characteristic length along the external electric field direction but is reduced by that in the direction across the channel. For a given microstructure of the rough microchannel, the electroosmotic flow rate decreases with the Debye length. It is found that the shape resistance of roughness is responsible for the flow rate reduction in the rough channel compared to the smooth channel even for very thin double layers, and hence plays an important role in microchannel electroosmotic flows. C1 [Wang, Moran; Kang, Qinjun] Los Alamos Natl Lab, Computat Earth Sci Grp EES 16, Los Alamos, NM 87545 USA. RP Wang, MR (reprint author), Los Alamos Natl Lab, Computat Earth Sci Grp EES 16, POB 1663, Los Alamos, NM 87545 USA. EM mwang@lanl.gov; qkang@lanl.gov RI Wang, Moran/A-1150-2010; Kang, Qinjun/A-2585-2010 OI Kang, Qinjun/0000-0002-4754-2240 FU LANL's LDRD [20080727PRD2] FX This work is supported by LANL's LDRD Project 20080727PRD2, through the J. R. Oppenheimer Fellowship awarded to M.W. The authors would like to thank Prof. T. M. Squires, Dr. J. K. Wang, Prof. J. G. Santiago, and Prof. D. Q. Li for helpful discussions. NR 50 TC 47 Z9 49 U1 2 U2 22 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 J9 ANAL CHEM JI Anal. Chem. PD APR 15 PY 2009 VL 81 IS 8 BP 2953 EP 2961 DI 10.1021/ac802569n PG 9 WC Chemistry, Analytical SC Chemistry GA 432UD UT WOS:000265158800016 PM 19301844 ER PT J AU Cha, SW Song, ZH Nikolau, BJ Yeung, ES AF Cha, Sangwon Song, Zhihong Nikolau, Basil J. Yeung, Edward S. TI Direct Profiling and Imaging of Epicuticular Waxes on Arabidopsis thaliana by Laser Desorption/Ionization Mass Spectrometry Using Silver Colloid as a Matrix SO ANALYTICAL CHEMISTRY LA English DT Article ID ECERIFERUM CER MUTANTS; CUTICULAR WAX; INFLORESCENCE STEMS; GENE; ACCUMULATION; IONIZATION; ALKANES; CLONING AB Colloidal silver laser desorption/ionization (LDI) mass spectrometry (MS) was employed to directly profile and image epicuticular wax metabolites on a variety of different surfaces of Arabidopsis thaliana leaves and flowers. Major cuticular wax compounds, such as very long-chain fatty acids, alcohols, alkanes, and ketones, were successfully detected as silver adduct ions. The surface metabolites of different flower organs (carpels, petals, and sepals) were profiled for the first time at a spatial resolution of similar to 100 mu m. In addition, mass spectral profiles and images were collected from wild type and a mutant strain, which carried alleles that affect the surface constituents of this organism. One of these mutant alleles (cer2-2) is in a gene whose biochemical functionality is still unclear, although its effect on normal epicuticular wax deposition was the characteristic that led to its original identification. Variations of wax products between different spatial locations for wild type and for a mutant strain were investigated by normalizing the ion intensities to a reference peak ([(107)Ag + (109)Ag](+)). The spatially resolved surface metabolite profiling data of this mutant has provided new insights into the complexity of epicuticular wax deposition at the cellular-resolution scale. This MS-based metabolite imaging technology has the potential to provide valuable data for dissecting metabolism in multicellular organism at the level of single cells. C1 [Cha, Sangwon; Yeung, Edward S.] US DOE, Ames Lab, Ames, IA 50011 USA. [Cha, Sangwon; Yeung, Edward S.] Iowa State Univ, Dept Chem, Ames, IA 50011 USA. [Song, Zhihong; Nikolau, Basil J.] Iowa State Univ, Dept Biochem Biophys & Mol Biol, Ames, IA 50011 USA. RP Yeung, ES (reprint author), US DOE, Ames Lab, Ames, IA 50011 USA. EM yeung@ameslab.gov RI Cha, Sangwon/C-6917-2008 OI Cha, Sangwon/0000-0003-2819-3417 FU U.S. Department of Energy by Iowa State University [DE-AC02-07CH11358]; Director of Science, Office of Basic Energy Sciences, Division of Chemical Sciences FX E.S.Y. thanks the Robert Allen Wright Endowment for Excellence for support. The Ames Laboratory is operated for the U.S. Department of Energy by Iowa State University under contract no. DE-AC02-07CH11358. This work was supported by the Director of Science, Office of Basic Energy Sciences, Division of Chemical Sciences. NR 26 TC 49 Z9 49 U1 0 U2 21 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 J9 ANAL CHEM JI Anal. Chem. PD APR 15 PY 2009 VL 81 IS 8 BP 2991 EP 3000 DI 10.1021/ac802615r PG 10 WC Chemistry, Analytical SC Chemistry GA 432UD UT WOS:000265158800021 PM 19290666 ER PT J AU Chang, H DeFilippis, RA Tlsty, TD Parvin, B AF Chang, Hang DeFilippis, Rosa Anna Tlsty, Thea D. Parvin, Bahram TI Graphical methods for quantifying macromolecules through bright field imaging SO BIOINFORMATICS LA English DT Article ID NONNEGATIVE MATRIX FACTORIZATION AB Bright field imaging of biological samples stained with antibodies and/or special stains provides a rapid protocol for visualizing various macromolecules. However, this method of sample staining and imaging is rarely employed for direct quantitative analysis due to variations in sample fixations, ambiguities introduced by color composition and the limited dynamic range of imaging instruments. We demonstrate that, through the decomposition of color signals, staining can be scored on a cell-by-cell basis. We have applied our method to fibroblasts grown from histologically normal breast tissue biopsies obtained from two distinct populations. Initially, nuclear regions are segmented through conversion of color images into gray scale, and detection of dark elliptic features. Subsequently, the strength of staining is quantified by a color decomposition model that is optimized by a graph cut algorithm. In rare cases where nuclear signal is significantly altered as a result of sample preparation, nuclear segmentation can be validated and corrected. Finally, segmented stained patterns are associated with each nuclear region following region-based tessellation. Compared to classical non-negative matrix factorization, proposed method: (i) improves color decomposition, (ii) has a better noise immunity, (iii) is more invariant to initial conditions and (iv) has a superior computing performance. C1 [Chang, Hang; Parvin, Bahram] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Chang, Hang] Chinese Acad Sci, Inst Automat, Beijing, Peoples R China. [DeFilippis, Rosa Anna; Tlsty, Thea D.] Univ Calif San Francisco, Dept Pathol, San Francisco, CA USA. [Parvin, Bahram] Univ Calif Riverside, Dept Elect Engn, Riverside, CA 92521 USA. RP Chang, H (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. EM hcchang@lbl.gov FU National Cancer Institute [1P01CA107584-01A1]; US Department of Energy, Office of Biological and Environmental Research [DE-AC03 SF0098] FX Funding: National Cancer Institute (1P01CA107584-01A1); US Department of Energy, Office of Biological and Environmental Research (DE-AC03 SF0098). NR 14 TC 10 Z9 10 U1 0 U2 5 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 1367-4803 EI 1460-2059 J9 BIOINFORMATICS JI Bioinformatics PD APR 15 PY 2009 VL 25 IS 8 BP 1070 EP 1075 DI 10.1093/bioinformatics/btn426 PG 6 WC Biochemical Research Methods; Biotechnology & Applied Microbiology; Computer Science, Interdisciplinary Applications; Mathematical & Computational Biology; Statistics & Probability SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology; Computer Science; Mathematical & Computational Biology; Mathematics GA 431WE UT WOS:000265094400013 PM 18703588 ER PT J AU Wang, H Wang, J Choi, DW Tang, ZW Wu, H Lin, YH AF Wang, Hua Wang, Jun Choi, Daiwon Tang, Zhiwen Wu, Hong Lin, Yuehe TI EQCM immunoassay for phosphorylated acetylcholinesterase as a biomarker for organophosphate exposures based on selective zirconia adsorption and enzyme-catalytic precipitation SO BIOSENSORS & BIOELECTRONICS LA English DT Article DE Phosphorylated acetylcholinesterase; Zirconia; Enzyme-catalytic precipitation; EQCM; Organophosphate exposures ID QUARTZ-CRYSTAL MICROBALANCE; CHEMICAL WARFARE AGENTS; FARADAIC IMPEDANCE SPECTROSCOPY; MASS-SPECTROMETRIC ANALYSIS; HUMAN BUTYRYLCHOLINESTERASE; RETROSPECTIVE DETECTION; CYCLIC VOLTAMMETRY; PESTICIDES; CHROMATOGRAPHY; NANOPARTICLES AB A zirconia (ZrO2) adsorption-based immunoassay by electrochemical quartz crystal microbalance (EQCM) has been initially developed, aiming at the detection of phosphorylated acetylcholinesterase (Phospho-AChE) as a potential biomarker for bio-monitoring exposures to organophosphate (OP) pesticides and chemical warfare agents. Hydroxyl-derivatized monolayer was preferably chosen to modify the crystal serving as the template for directing the electro-deposition of ZrO2 film with uniform nanostructures. The resulting ZrO2 film was utilized to selectively capture Phospho-AChE from the sample media. Horseradish peroxidase (HRP)-labeled anti-AChE antibodies were further employed to recognize the captured phosphorylated proteins. Enzyme-catalytic oxidation of the benzidine substrate resulted in the accumulation of insoluble product on the functionalized crystal. Ultrasensitive EQCM quantification by mass-amplified frequency responses as well as rapid qualification by visual color changes of product could be thus, achieved. Moreover, 4-chloro-1-naphthol (CN) was studied as an ideal chromogenic substrate for the enzyme-catalytic precipitation. Experimental results show that the developed EQCM technique can allow for the detection of Phospho-AChE in human plasma with a detection limit of 0.020 nM. Such an EQCM immunosensing format opens a new door towards the development of simple, sensitive, and field-applicable biosensor for biologically monitoring low-level OP exposures. (C) 2009 Elsevier B.V. All rights reserved. C1 [Wang, Hua; Wang, Jun; Choi, Daiwon; Tang, Zhiwen; Wu, Hong; Lin, Yuehe] Pacific NW Natl Lab, Richland, WA 99352 USA. [Wang, Hua] Hunan Univ, Coll Chem & Chem Engn, State Key Lab Chemobiosensing & Chemometr, Changsha 410082, Hunan, Peoples R China. RP Lin, YH (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM yuehe.lin@pnl.gov RI Choi, Daiwon/B-6593-2008; Lin, Yuehe/D-9762-2011 OI Lin, Yuehe/0000-0003-3791-7587 FU National Institutes of Health CounterACT Program through the National Institute of Neurological Disorders and Stroke [NS058161-01]; DOE [DE-AC05-76RL01830] FX This work is supported by the National Institutes of Health CounterACT Program through the National Institute of Neurological Disorders and Stroke (award # NS058161-01). Its contents are solely the responsibility of the authors and do not necessarily represent the official views of the federal government. The research described in this paper was performed at the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by DOE's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory, which is operated by Battelle for DOE under Contract DE-AC05-76RL01830. NR 35 TC 45 Z9 45 U1 6 U2 39 PU ELSEVIER ADVANCED TECHNOLOGY PI OXFORD PA OXFORD FULFILLMENT CENTRE THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0956-5663 EI 1873-4235 J9 BIOSENS BIOELECTRON JI Biosens. Bioelectron. PD APR 15 PY 2009 VL 24 IS 8 BP 2377 EP 2383 DI 10.1016/j.bios.2008.12.013 PG 7 WC Biophysics; Biotechnology & Applied Microbiology; Chemistry, Analytical; Electrochemistry; Nanoscience & Nanotechnology SC Biophysics; Biotechnology & Applied Microbiology; Chemistry; Electrochemistry; Science & Technology - Other Topics GA 442AC UT WOS:000265811000011 PM 19135350 ER PT J AU Brunecky, R Vinzant, TB Porter, SF Donohoe, BS Johnson, DK Himmel, ME AF Brunecky, Roman Vinzant, Todd B. Porter, Stephanie F. Donohoe, Bryon S. Johnson, David K. Himmel, Michael E. TI Redistribution of Xylan in Maize Cell Walls During Dilute Acid Pretreatment SO BIOTECHNOLOGY AND BIOENGINEERING LA English DT Article DE lignin; hemicellulose; biomass; corn stover; pretreatment; confocal microscopy ID ENZYMATIC-HYDROLYSIS; CORN STOVER; LIGNIN; CELLULOSE; WATER AB Developing processes for the conversion of biomass for use in transportation fuels production is becoming a critically important economic and engineering challenge. Dilute acid pretreatment is it promising technology for increasing the enzymatic digestibility of lignocellulosic biomass. However, a deeper understanding of the pretreatability of biomass is needed so that the rate of formation and yields of sugars call be increased, Xylan is an important hemicellulosic component of the plant cell wall and acts as it barrier to Cellulose, essentially blocking cellulase action. To better understand xylan hydrolysis in corn stover, we have Studied changes in the distribution of xylan caused by dilute acid pretreatment using correlative microscopy. A dramatic loss of xylan antibody signal from the center of the cell wall and all increase or retention of xylan at the plasma membrane interface and middle lamella of the cell were observed by confocal laser scanning microscopy (CLSM). We also observed a reduction in xylan fluorescence signal by CLSM that is generally consistent with the decrease in xylan content measured experimentally in the bulk sample, however, the compartmentalization of this xylan retention was not anticipated. C1 [Brunecky, Roman; Vinzant, Todd B.; Donohoe, Bryon S.; Johnson, David K.; Himmel, Michael E.] Natl Renewable Energy Lab, Chem Biosci Ctr, Golden, CO 80401 USA. [Porter, Stephanie F.] SynGeofuels LLC, Golden, CO 80401 USA. RP Brunecky, R (reprint author), Natl Renewable Energy Lab, Chem Biosci Ctr, 1617 Cole Blvd, Golden, CO 80401 USA. EM roman_brunecky@nrel.gov RI Johnson, David/G-4959-2011 OI Johnson, David/0000-0003-4815-8782 FU U.S. Department of Energy Office of the Biomass Program FX We acknowledge the support of the U.S. Department of Energy Office of the Biomass Program. NR 18 TC 38 Z9 40 U1 0 U2 20 PU JOHN WILEY & SONS INC PI HOBOKEN PA 111 RIVER ST, HOBOKEN, NJ 07030 USA SN 0006-3592 J9 BIOTECHNOL BIOENG JI Biotechnol. Bioeng. PD APR 15 PY 2009 VL 102 IS 6 BP 1537 EP 1543 DI 10.1002/bit.22211 PG 7 WC Biotechnology & Applied Microbiology SC Biotechnology & Applied Microbiology GA 422MX UT WOS:000264433500002 PM 19161247 ER PT J AU Simonson, TS Okinaka, RT Wang, B Easterday, WR Huynh, L U'Ren, JM Dukerich, M Zanecki, SR Kenefic, LJ Beaudry, J Schupp, JM Pearson, T Wagner, DM Hoffmaster, A Ravel, J Keim, P AF Simonson, Tatum S. Okinaka, Richard T. Wang, Bingxiang Easterday, W. Ryan Huynh, Lynn U'Ren, Jana M. Dukerich, Meghan Zanecki, Shaylan R. Kenefic, Leo J. Beaudry, Jodi Schupp, James M. Pearson, Talima Wagner, David M. Hoffmaster, Alex Ravel, Jacques Keim, Paul TI Bacillus anthracis in China and its relationship to worldwide lineages SO BMC MICROBIOLOGY LA English DT Article ID SINGLE-NUCLEOTIDE POLYMORPHISMS; DIVERSITY; GENE; AMES AB Background: The global pattern of distribution of 1033 B. anthracis isolates has previously been defined by a set of 12 conserved canonical single nucleotide polymorphisms (canSNP). These studies reinforced the presence of three major lineages and 12 sub-lineages and sub-groups of this anthrax-causing pathogen. Isolates that form the A lineage (unlike the B and C lineages) have become widely dispersed throughout the world and form the basis for the geographical disposition of "modern" anthrax. An archival collection of 191 different B. anthracis isolates from China provides a glimpse into the possible role of Chinese trade and commerce in the spread of certain sub-lineages of this pathogen. Canonical single nucleotide polymorphism (canSNP) and multiple locus VNTR analysis (MLVA) typing has been used to examine this archival collection of isolates. Results: The canSNP study indicates that there are 5 different sub-lineages/sub-groups in China out of 12 previously described world-wide canSNP genotypes. Three of these canSNP genotypes were only found in the western-most province of China, Xinjiang. These genotypes were A. Br.008/009, a sub-group that is spread across most of Europe and Asia; A. Br. Aust 94, a sub-lineage that is present in Europe and India, and A. Br. Vollum, a lineage that is also present in Europe. The remaining two canSNP genotypes are spread across the whole of China and belong to sub-group A. Br. 001/002 and the A. Br. Ames sub-lineage, two closely related genotypes. MLVA typing adds resolution to the isolates in each canSNP genotype and diversity indices for the A. Br. 008/009 and A. Br. 001/002 sub-groups suggest that these represent older and established clades in China. Conclusion: B. anthracis isolates were recovered from three canSNP sub-groups ( A. Br.008/009, A.Br.Aust94, and A.Br.Vollum) in the western most portion of the large Chinese province of Xinjiang. The city of Kashi in this province appears to have served as a crossroads for not only trade but the movement of diseases such as anthrax along the ancient "silk road". Phylogenetic inference also suggests that the A.Br.Ames sub-lineage, first identified in the original Ames strain isolated from Jim Hogg County, TX, is descended from the A.Br.001/002 sub-group that has a major presence in most of China. These results suggest a genetic discontinuity between the younger Ames sub-lineage in Texas and the large Western North American sub-lineage spread across central Canada and the Dakotas. C1 [Simonson, Tatum S.; Okinaka, Richard T.; Easterday, W. Ryan; Huynh, Lynn; U'Ren, Jana M.; Dukerich, Meghan; Zanecki, Shaylan R.; Kenefic, Leo J.; Beaudry, Jodi; Schupp, James M.; Pearson, Talima; Wagner, David M.; Keim, Paul] No Arizona Univ, Dept Biol Sci, Flagstaff, AZ 86011 USA. [Okinaka, Richard T.; Keim, Paul] Los Alamos Natl Lab, Biosci Div, Los Alamos, NM 87545 USA. [Wang, Bingxiang] Lanzhou Inst Biol Prod, Lanzhou, Peoples R China. [Hoffmaster, Alex] Ctr Dis Control & Prevent, Epidemiol Invest Lab, Atlanta, GA 30333 USA. [Ravel, Jacques] J Craig Venter Inst, Rockville, MD USA. [Keim, Paul] Translat Genom Res Inst, Pathogen Genom Div, Phoenix, AZ 85004 USA. RP Keim, P (reprint author), No Arizona Univ, Dept Biol Sci, Flagstaff, AZ 86011 USA. EM Tatum.Simonson@utah.edu; Richard.Okinaka@NAU.edu; Wangbxa@126.com; ryaneasterday@hotmail.com; lyhuynh@emory.edu; juren@email.arizona.edu; msdukerich@ucdavis.edu; shayz@cableone.net; Leo.Kenefic@nau.edu; Jodi.Beaudry@nau.edu; James.Schupp@nau.edu; Talima.Pearson@nau.edu; David.Wagner@nau.edu; amh9@cdc.gov; jravel@som.umaryland.edu; Paul.Keim@nau.edu RI Wagner, David/A-5125-2010; Keim, Paul/A-2269-2010; Easterday, W. Ryan/M-6732-2015; OI Easterday, W. Ryan/0000-0001-5865-7062; Ravel, Jacques/0000-0002-0851-2233 FU Department of Homeland Security Science and Technology Directorate [NBCH2070001, HSHQDC-08-C00158] FX We wish to acknowledge the contributions of Matthew N. Van Ert for providing conceptual and analytical insights for this project. This work was funded in part by the Department of Homeland Security Science and Technology Directorate under contract numbers: NBCH2070001 and HSHQDC-08-C00158. NR 22 TC 37 Z9 41 U1 0 U2 8 PU BIOMED CENTRAL LTD PI LONDON PA CURRENT SCIENCE GROUP, MIDDLESEX HOUSE, 34-42 CLEVELAND ST, LONDON W1T 4LB, ENGLAND SN 1471-2180 J9 BMC MICROBIOL JI BMC Microbiol. PD APR 15 PY 2009 VL 9 AR 71 DI 10.1186/1471-2180-9-71 PG 11 WC Microbiology SC Microbiology GA 442NS UT WOS:000265848500001 PM 19368722 ER PT J AU Yang, J Stewart, M Maupin, G Herling, D Zelenyuk, A AF Yang, Juan Stewart, Mark Maupin, Gary Herling, Darrell Zelenyuk, Alla TI Single wall diesel particulate filter (DPF) filtration efficiency studies using laboratory generated particles SO CHEMICAL ENGINEERING SCIENCE LA English DT Article DE Diesel particulate filter; Filtration; Porous media; Simulation; Particulate processes; Aerosol AB Diesel engines offer higher fuel efficiency, but produce more exhaust particulate than conventional gasoline engines. Diesel particulate filters are presently the most efficient means to reduce these emissions. These filters typically trap particles in two basic modes: at the beginning of the exposure cycle the particles are captured in the filter holes, and at longer times the particles form a "cake" on which particles are trapped. Eventually the "cake" is removed by oxidation and the cycle is repeated. We have investigated the properties and behavior of two commonly used filters: silicon carbide (SiC) and cordierite (DuraTrap (R) RC) by exposing them to nearly-spherical ammonium sulfate particles. We show that the transition from deep bed filtration to "cake" filtration can easily be identified by recording the change in pressure across the filters as a function of exposure. We investigated the performance of these filters as a function of flow rate and particle size and found that the filters have the highest filtration efficiencies for particles smaller than similar to 80 nm and larger than similar to 200 nm. A comparison between the experimental data and a simulation using incompressible lattice-Boltzmann model shows good qualitative agreement, but the model over-predicts the filter's trapping efficiency. (C) 2009 Published by Elsevier Ltd. C1 [Yang, Juan; Stewart, Mark; Maupin, Gary; Herling, Darrell; Zelenyuk, Alla] Pacific NW Natl Lab, Richland, WA 99354 USA. RP Zelenyuk, A (reprint author), Pacific NW Natl Lab, Richland, WA 99354 USA. EM alla.zelenyuk@pnl.gov RI Yang, Juan/F-5220-2010 OI Yang, Juan/0000-0001-5502-9351 FU DOE Office of Energy Efficiency and Renewable Energy; US Department of Energy [DE-AC06-76RL0 1830] FX This research was performed in part using the Molecular Science Computing Facility (MSCF) and other facilities in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research at Pacific Northwest National Laboratory (PNNL). PNNL is operated by the US Department of Energy by Battelle Memorial Institute under Contract no. DE-AC06-76RL0 1830. NR 14 TC 37 Z9 39 U1 6 U2 28 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0009-2509 J9 CHEM ENG SCI JI Chem. Eng. Sci. PD APR 15 PY 2009 VL 64 IS 8 BP 1625 EP 1634 DI 10.1016/j.ces.2008.12.011 PG 10 WC Engineering, Chemical SC Engineering GA 435AX UT WOS:000265316700001 ER PT J AU Wright, HMN Cashman, KV Gottesfeld, EH Roberts, JJ AF Wright, Heather M. N. Cashman, Katharine V. Gottesfeld, Emily H. Roberts, Jeffery J. TI Pore structure of volcanic clasts: Measurements of permeability and electrical conductivity SO EARTH AND PLANETARY SCIENCE LETTERS LA English DT Article DE porosity; permeability; electrical conductivity; degassing; tortuosity ID POROUS-MEDIA; TRANSPORT-PROPERTIES; NETWORK MODEL; ROCKS; FLOW; FRAGMENTATION; MAGMAS; TRANSITION; ERUPTIONS; PRESSURE AB The pore structure of volcanic clasts is examined using measurements of porosity, permeability, and electrical properties. Permeability varies by several orders of magnitude among volcanic clasts and does not depend solely upon porosity. Electrical property measurements of saturated volcanic samples illustrate the influence of pathway tortuosity and pore shape on permeability. For equivalent eruption conditions, silicic samples show higher tortuosities, smaller vesicle sizes, and lower permeabilities than mafic samples. These differences are largely due to variations in vesiculation and crystallization history. Differences between explosive and effusive samples reflect the relative ability of bubbles to form and maintain connected pathways during bubble expansion and collapse. Isotropic samples (variably expanded breadcrust bombs and most pumice fall samples) have pore pathways that simplify with increasing porosity. Highly vesicular anisotropic samples (e.g., tube pumice) have high permeabilities and low tortuosities parallel to pore elongation and low permeabilities and high tortuosities perpendicular to elongation. These pathways simplify with increasing deformation (i.e. tortuosity decreases as porosity decreases), until pore geometries collapse sufficiently to form intersecting cracks. More generally, Archie's Law (power law) relationships between electrical conductivity formation factor (F) and porosity (phi) have an Archie's exponent, m, between 1 and 4 (where F = phi(-m)) for low porosity volcanic clasts. However, samples with higher connected porosities (>20% for silicic samples and >50% for mafic samples) have in values that increase with increasing porosity, reaching up to 15. We also find that a single Archie's Law fit to a suite of samples is not appropriate either for sample suites with widely varying porosities or for anisotropic samples with a directional variation in measured properties. These measurements caution against simple application of cross-property relationships derived from sedimentary rocks to models of permeability in volcanic samples. (C) 2009 Elsevier B.V. All rights reserved. C1 [Wright, Heather M. N.] Monash Univ, Sch Geosci, Clayton, Vic 3800, Australia. [Wright, Heather M. N.; Cashman, Katharine V.; Gottesfeld, Emily H.] 1272 Univ Oregon, Dept Geol Sci, Eugene, OR 97403 USA. [Roberts, Jeffery J.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Wright, HMN (reprint author), Monash Univ, Sch Geosci, Clayton, Vic 3800, Australia. EM Heather.Wright@sci.monash.edu.au RI Wright, Heather/K-4500-2012 OI Wright, Heather/0000-0001-9013-507X FU NSF [EAR206201]; U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX We thank J.L. Pennec and one anonymous reviewer for their comments. This work was supported by NSF grant EAR206201 to KVC and performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344, specifically through the Office of Basic Energy Sciences to JJR. NR 62 TC 60 Z9 60 U1 0 U2 18 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0012-821X J9 EARTH PLANET SC LETT JI Earth Planet. Sci. Lett. PD APR 15 PY 2009 VL 280 IS 1-4 BP 93 EP 104 DI 10.1016/j.epsl.2009.01.023 PG 12 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 438ZE UT WOS:000265594800007 ER PT J AU Amidon, WH Rood, DH Farley, KA AF Amidon, William H. Rood, Dylan H. Farley, Kenneth A. TI Cosmogenic He-3 and Ne-21 production rates calibrated against Be-10 in minerals from the Coso volcanic field SO EARTH AND PLANETARY SCIENCE LETTERS LA English DT Article DE helium; neon; Be-10; lithium; Li ID SURFACE EXPOSURE AGES; HOLOCENE LAVA FLOWS; TERRESTRIAL ROCKS; (U-TH)/HE AGES; DRY VALLEYS; CALIFORNIA; HELIUM; QUARTZ; RHYOLITE; USA AB This study calibrates the production rate of cosmogenic He-3 in pyroxene, olivine, garnet, zircon and apatite as well as Ne-21 in quartz and pyroxene against the known production rate of Be-10 in quartz. The Devil's Kitchen rhyolite from the Coso volcanic field in southeastern California (elev. similar to 1300 m) was chosen for this study due to its young age (similar to 610 ka) and diverse mineral assemblage. Based on Be-10, our two rhyolite samples have apparent exposure ages of similar to 49 and 93 ka, indicating substantial erosion after eruption. Combining data from the two samples, we estimate sea level high latitude He-3 spallation production rates of 145 +/- 11, 141 +/- 16. and 144 +/- 30 at g(-1) a(-1) (2 sigma) for pyroxene, olivine and spessartine garnet respectively. For zircon and apatite, we estimate apparent He-3 spallation production rates of 114 +/- 8 and 149 +/- 28 at g(-1) a(-1) (2 sigma) respectively. The rates for zircon and apatite are reported as apparent production rates because we do not explicitly address the redistribution of spallation produced He-3 from adjacent minerals. These estimates quantitatively account for production of He-3 from both cosmogenic and radiogenic neutron reactions on Li-6 within the analyzed phases and also implanted from nuclear reactions in neighboring minerals: the high U, Th and Li content of this rhyolite provides a particularly rigorous test of this correction. We estimate Ne-21 production rates of 17.7 +/- 1.6 and 34.1 +/- 3.2 at g(-1) a(-1) (2 sigma) in quartz and pyroxene (Fe/Mg = 0.7 by mass) respectively. Although high U and Th contents create the potential for significant production of nucleogenic Ne-21, this component is small due to the young eruption age of the rhyolite. (C) 2009 Elsevier B.V. All Fights reserved. C1 [Amidon, William H.; Farley, Kenneth A.] CALTECH, GPS Div, Pasadena, CA 91125 USA. [Rood, Dylan H.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Amidon, WH (reprint author), CALTECH, GPS Div, MS 100-23, Pasadena, CA 91125 USA. EM wamidon@gps.caltech.edu FU National Science Foundation [0511053] FX Thanks to Don Burnett, P.H. Blard, and Frank Monastero. Thanks to Samuel Niedermann and an anonymous reviewer for greatly improving this manuscript. This work was supported by National Science Foundation Grant 0511053. NR 55 TC 27 Z9 27 U1 0 U2 12 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0012-821X EI 1385-013X J9 EARTH PLANET SC LETT JI Earth Planet. Sci. Lett. PD APR 15 PY 2009 VL 280 IS 1-4 BP 194 EP 204 DI 10.1016/j.epsl.2009.01.031 PG 11 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 438ZE UT WOS:000265594800017 ER PT J AU Shao, YY Wang, J Kou, R Engelhard, M Liu, J Wang, Y Lin, YH AF Shao, Yuyan Wang, Jun Kou, Rong Engelhard, Mark Liu, Jun Wang, Yong Lin, Yuehe TI The corrosion of PEM fuel cell catalyst supports and its implications for developing durable catalysts SO ELECTROCHIMICA ACTA LA English DT Article DE PEM fuel cell; Catalyst support; Degradation/corrosion; Potential-step; Accelerated durability test ID ORIENTED PYROLYTIC-GRAPHITE; OXIDIZED CARBON-FIBERS; SULFURIC-ACID-SOLUTION; OXYGEN REDUCTION; ELECTROCHEMICAL OXIDATION; DEGRADATION; MEMBRANE; DURABILITY; ELECTROCATALYSTS; ELECTRODES AB Studying the corrosion behavior of catalyst support materials is significant for understanding the degradation of polymer electrolyte membrane (PEM) fuel cell performance and developing durable electrocatalysts. The oxidation of Vulcan carbon black (the most widely used catalyst support for PEM fuel cells) was investigated using various electrochemical stressing methods (fixed-potential holding vs. potential-step cycling). among which the potential-step cycling was considered to mimic more closely the real drive-cycle operation of vehicle PEM fuel cells. The oxidation of carbon was accelerated under potential-step conditions as compared with the fixed-potential holding condition. Increasing the potential-step frequency or decreasing the lower potential limit in the potential-step can further accelerate the corrosion of carbon. The accelerated corrosion of carbon black was tentatively attributed to the cycle of consumption/regeneration of some easily oxidized species. These findings are being employed to develop a test protocol for fast-screening durable catalyst support. (C) 2009 Published by Elsevier Ltd. C1 [Shao, Yuyan; Wang, Jun; Kou, Rong; Engelhard, Mark; Liu, Jun; Wang, Yong; Lin, Yuehe] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Lin, YH (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM yuehe.lin@pnl.gov RI Engelhard, Mark/F-1317-2010; Shao, Yuyan/A-9911-2008; Lin, Yuehe/D-9762-2011; Wang, Yong/C-2344-2013; OI Shao, Yuyan/0000-0001-5735-2670; Lin, Yuehe/0000-0003-3791-7587; Engelhard, Mark/0000-0002-5543-0812 FU U.S. Department of Energy; Pacific Northwest National Laboratory (PNNL) [DE-AC05-76LO1830] FX This work is supported by the U.S. Department of Energy's (DOE's) Energy Efficiency and Renewable Energy Hydrogen Program. The research described in this paper was performed at the Environmental Molecular Science Laboratory, a national scientific user facility sponsored by DOE's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL). PNNL is operated by Battelle for DOE under Contract DE-AC05-76LO1830. NR 54 TC 66 Z9 66 U1 3 U2 30 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0013-4686 J9 ELECTROCHIM ACTA JI Electrochim. Acta PD APR 15 PY 2009 VL 54 IS 11 BP 3109 EP 3114 DI 10.1016/j.electacta.2008.12.001 PG 6 WC Electrochemistry SC Electrochemistry GA 435KF UT WOS:000265342100025 ER PT J AU Streets, DG Zhang, Q Wu, Y AF Streets, David G. Zhang, Qiang Wu, Ye TI Projections of Global Mercury Emissions in 2050 SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID ANTHROPOGENIC SOURCES; ATMOSPHERIC MERCURY; MEDITERRANEAN REGION; BIOMASS; INVENTORY; FIRES; CHINA AB Global Hg emissions are presented for the year 2050 under a variety of assumptions about socioeconomic and technology development. We find it likely that Hg emissions will increase in the future. The range of 2050 global Hg emissions is projected to be 2390-4860 Mg, compared to 2006 levels of 2480 Mg, reflecting a change of -4% to +96%. The main driving force for increased emissions is the expansion of coal-fired electricity generation in the developing world, particularly Asia. Our ability to arrest the growth in Hg emissions is limited by the relatively low Hg removal efficiency of the current generation of emission control technologies for coal-fired power plants (flue-gas desulfurization). Large-scale deployment of advanced Hg sorbent technologies, such as Activated Carbon Injection, offers the promise of lowering the 2050 emissions range to 1670-3480 Mg, but these technologies are not yet in commercial use. The share of elemental Hg in total emissions will decline from today's levels of similar to 65% to similar to 50-55% by 2050, while the share of divalent Hg will increase. This signals a shift from long-range transport of elemental Hg to local deposition of Hg compounds-though emissions of both species could increase under the worst case. C1 [Streets, David G.; Zhang, Qiang] Argonne Natl Lab, Decis & Informat Sci Div, Argonne, IL 60439 USA. [Wu, Ye] Tsinghua Univ, Dept Environm Sci & Engn, Beijing 100084, Peoples R China. RP Streets, DG (reprint author), Argonne Natl Lab, Decis & Informat Sci Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM dstreets@anl.gov RI Zhang, Qiang/D-9034-2012; Wu, Ye/O-9779-2015; OI Streets, David/0000-0002-0223-1350 FU U.S. Environmental Protection Agency's STAR Program FX This work was funded by the U.S. Environmental Protection Agency's STAR Program on the Consequences of Global Change for Air Quality, as part of collaboration with Harvard NR 33 TC 183 Z9 187 U1 11 U2 91 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X EI 1520-5851 J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD APR 15 PY 2009 VL 43 IS 8 BP 2983 EP 2988 DI 10.1021/es802474j PG 6 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 432ZK UT WOS:000265172800053 PM 19475981 ER PT J AU Hoffman, EM Curran, AM Dulgerian, N Stockham, RA Eckenrode, BA AF Hoffman, Erin M. Curran, Allison M. Dulgerian, Nishan Stockham, Rex A. Eckenrode, Brian A. TI Characterization of the volatile organic compounds present in the headspace of decomposing human remains SO FORENSIC SCIENCE INTERNATIONAL LA English DT Article DE Human remains; Canines; Volatile organic compounds; Clandestine burials; Solid-phase microextraction; SPME ID ADIPOCERE FORMATION; CADAVER DOGS; HUMAN-BODY; ENVIRONMENT; BURIAL; SOIL AB Law enforcement agencies frequently use canines trained to detect the odor of human decomposition to aid in determining the location of clandestine burials and human remains deposited or scattered on the surface. However, few studies attempt to identify the specific volatile organic compounds (VOCs) that elicit an appropriate response from victim recovery (VR) canines. Solid-phase microextraction (SPME) was combined with gas chromatography-mass spectrometry (GC-MS) to identify the VOCs released into the headspace associated with 14 separate tissue samples of human remains previously used for VR canine training. The headspace was found to contain various classes of VOCs, including acids, alcohols, aldehydes, halogens, aromatic hydrocarbons, ketones, and sulfides. Analysis of the data indicates that the VOCs associated with human decomposition share similarities across regions of the body and across types of tissue. However, sufficient differences exist to warrant VR canine testing to identify potential mimic odor chemical profiles that can be used as training aids. The resulting data will assist in the identification of the most suitable mixture and relative concentrations of VOCs to appropriately train VR canines. Published by Elsevier Ireland Ltd. C1 [Eckenrode, Brian A.] FBI Lab, Counterterrorism & Forens Sci Res Unit, Quantico, VA 22135 USA. [Hoffman, Erin M.; Curran, Allison M.] Oak Ridge Inst Sci & Educ, Oak Ridge, TN USA. [Dulgerian, Nishan; Stockham, Rex A.] FBI Lab, Evidence Response Team Unit, Quantico, VA 22135 USA. RP Eckenrode, BA (reprint author), FBI Lab, Counterterrorism & Forens Sci Res Unit, Bldg 12 Room 302, Quantico, VA 22135 USA. EM brian.eckenrode@ic.fbi.gov NR 23 TC 60 Z9 60 U1 6 U2 48 PU ELSEVIER IRELAND LTD PI CLARE PA ELSEVIER HOUSE, BROOKVALE PLAZA, EAST PARK SHANNON, CO, CLARE, 00000, IRELAND SN 0379-0738 J9 FORENSIC SCI INT JI Forensic Sci.Int. PD APR 15 PY 2009 VL 186 IS 1-3 BP 6 EP 13 DI 10.1016/j.forsciint.2008.12.022 PG 8 WC Medicine, Legal SC Legal Medicine GA 435VH UT WOS:000265370900002 PM 19203852 ER PT J AU Catalano, JG Fenter, P Park, C AF Catalano, Jeffrey G. Fenter, Paul Park, Changyong TI Water ordering and surface relaxations at the hematite (110)-water interface SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Article ID X-RAY REFLECTIVITY; AQUEOUS-SOLUTION; OXYGEN-EXCHANGE; ORTHOCLASE (001)-WATER; PHOSPHATE REMOVAL; MINERAL SURFACES; ADSORPTION; SCATTERING; MOLECULE; RATES AB Structural characterization of iron oxide-water interfaces provides insight into the mechanisms through which these minerals control contaminant fate and element cycling in soil, sedimentary, and groundwater systems. Ordering of interfacial water and structural relaxations at the hematite (110) surface have been investigated in situ using high-resolution specular X-ray reffectivity. These measurements demonstrate that relaxations are constrained to primarily the top similar to 5 angstrom of the surface. Near-surface iron atoms do not relax substantially, although the uppermost layer displays an increased distribution width, while the undercoordinated oxygens on the surface uniformly relaxed outward. Two sites of adsorbed water and additional layering of water farther from the surface were observed. Water fully covers the (110) surface and appears to form a continuous network extending into bulk solution, with positional order decreasing to that of a disordered bulk fluid within 1 nm. The arrangement of water is similar to that on the hematite (012) surface, which has a similar surface topography, although these surfaces display different vibrational amplitudes or positional disorder of adsorbed water molecules and average spacings of near-surface layered water. Comparison between these surfaces suggests that interfacial water ordering on hematite is controlled primarily by surface structure and steric constraints and that highly ordered water is likely common to most hematite-water interfaces. (c) 2009 Elsevier Ltd. All rights reserved. C1 [Catalano, Jeffrey G.] Washington Univ, Dept Earth & Planetary Sci, St Louis, MO 63130 USA. [Catalano, Jeffrey G.] Washington Univ, McDonnell Ctr Space Sci, St Louis, MO 63130 USA. [Fenter, Paul; Park, Changyong] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. RP Catalano, JG (reprint author), Washington Univ, Dept Earth & Planetary Sci, St Louis, MO 63130 USA. EM catalano@wustl.edu RI Catalano, Jeffrey/A-8322-2013; Park, Changyong/A-8544-2008 OI Catalano, Jeffrey/0000-0001-9311-977X; Park, Changyong/0000-0002-3363-5788 NR 55 TC 32 Z9 32 U1 3 U2 30 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD APR 15 PY 2009 VL 73 IS 8 BP 2242 EP 2251 DI 10.1016/j.gca.2009.02.001 PG 10 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 427PI UT WOS:000264790800003 ER PT J AU Fredrickson, JK Zachara, JM Plymale, AE Heald, SM McKinley, JP Kennedy, DW Liu, CX Nachimuthu, P AF Fredrickson, James K. Zachara, John M. Plymale, Andrew E. Heald, Steve M. McKinley, James P. Kennedy, David W. Liu, Chongxuan Nachimuthu, Ponnusamy TI Oxidative dissolution potential of biogenic and abiogenic TcO2 in subsurface sediments SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Article ID DISSIMILATORY REDUCTION; SHEWANELLA-PUTREFACIENS; TECHNETIUM REDUCTION; IRON REDUCTION; ELECTRON-DONOR; SOLID-SOLUTION; OXIDES; FE(II); PERTECHNETATE; PRODUCTS AB Technetium-99 (Tc) is an important fission product contaminant associated with sites of nuclear fuels reprocessing and geologic nuclear waste disposal. Tc is highly mobile in its most oxidized state [Tc(VII)O-4(-)] and less mobile in the reduced form [Tc(IV)O-2 center dot nH(2)O]. Here we investigate the potential for oxidation of Tc(IV) that was heterogeneously reduced by reaction with biogenic Fe(II) in two sediments differing in mineralogy and aggregation state; unconsolidated Pliocene-age fluvial sediment from the upper Ringold (RG) Formation at the Hanford Site and a clay-rich saprolite from the Field Research Center (FRC) background site on the Oak Ridge Site. Both sediments contained Fe(III) and Mn(III/IV) as redox active phases, but FRC also contained mass-dominant Fe-phyllosilicates of different types. Shewanella putrefaciens CN32 reduced Mn(III/IV) oxides and generated Fe(II) that was reactive with Tc(VII) in heat-killed, bioreduced sediment. After bioreduction and heat-killing, biogenic Fe(II) in the FRC exceeded that in RG by a factor of two. More rapid reduction rates were observed in the RG that had lower biogenic Fe(II), and less particle aggregation. EXAFS measurements indicated that the primary reduction product was a TcO2-like phase in both sediments. The biogenic redox product Tc(TV) oxidized rapidly and completely in RG when contacted with air. Oxidation, in contrast, was slow and incomplete in the FRC, in spite of similar molecular scale speciation of Tc compared to RG. X-ray microprobe, electron microprobe, X-ray absorption spectroscopy, and micro X-ray diffraction were applied to the whole sediment and isolated Tc-containing particles. These analyses revealed that non-oxidizable Tc(IV) in the FRC existed as complexes with octahedral Fe(III) within intra-grain domains of 50-100 mu m-sized, Fe-containing micas presumptively identified as celadonite. The markedly slower oxidation rates in FRC as compared to RG were attributed to mass-transfer-limited migration of 0, into intra-aggregate and intraparticle domains where Tc(IV) existed; and the formation of unique, oxidation-resistant, intragrain Tc(IV)-Fe(III) molecular species. (c) 2009 Elsevier Ltd. All rights reserved. C1 [Fredrickson, James K.; Zachara, John M.; Plymale, Andrew E.; McKinley, James P.; Kennedy, David W.; Liu, Chongxuan; Nachimuthu, Ponnusamy] Pacific NW Natl Lab, POB 999,MSIN P7-50, Richland, WA 99352 USA. [Heald, Steve M.] Argonne Natl Lab, Argonne, IL 60439 USA. RP Fredrickson, JK (reprint author), Pacific NW Natl Lab, POB 999,MSIN P7-50, Richland, WA 99352 USA. EM jim.fredrickson@pnl.gov RI Liu, Chongxuan/C-5580-2009; OI Kennedy, David/0000-0003-0763-501X FU Environmental Remediation Science Program (ERSP); Office of Biological and Environmental Research (OBER); US Department of Energy (DOE) [DE-AC02-06CH 11357] FX We wish to thank Tom Resch for preparation of samples for XAS analysis. This research was supported by the Environmental Remediation Science Program (ERSP), Office of Biological and Environmental Research (OBER), US Department of Energy (DOE). PNC/XOR facilities at the Advanced Photon Source, and research at these facilities, are supported by the US Department of Energy - Basic Energy Sciences, a major facilities access grant from NSERC, the University of Washington, Simon Fraser University and the Advanced Photon Source. Use of the Advanced Photon Source is also supported by the US Department ofEnergy, Office of Science, Office of Basic Energy Sciences, under Contract DE-AC02-06CH 11357. Mbssbauer analyses and micro X-ray diffraction were performed using EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research located at Pacific Northwest National Laboratory. We thank Dr. Ravi Kukkadapu for performing the M6ssbauer analysis and modeling. PNNL is operated for the Department of Energy by Battelle. NR 50 TC 33 Z9 33 U1 4 U2 30 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 EI 1872-9533 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD APR 15 PY 2009 VL 73 IS 8 BP 2299 EP 2313 DI 10.1016/j.gca.2009.01.027 PG 15 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 427PI UT WOS:000264790800006 ER PT J AU Beighley, RE Eggert, KG Dunne, T He, Y Gummadi, V Verdin, KL AF Beighley, R. E. Eggert, K. G. Dunne, T. He, Y. Gummadi, V. Verdin, K. L. TI Simulating hydrologic and hydraulic processes throughout the Amazon River Basin SO HYDROLOGICAL PROCESSES LA English DT Article DE Amazon Basin; flood routing; hydrologic modelling ID WATER STORAGE; INUNDATION; PARAMETERS; VEGETATION; SYSTEM; FOREST; SOILS; SCALE; AREA AB Presented here is a model framework based on a land surface topography that can be represented with various degrees of resolution and capable of providing representative channel/floodplain hydraulic characteristics on a daily to hourly scale. The framework integrates two models: (1) a water balance model (WBM) for the vertical fluxes and stores of water in and through the canopy and soil layers based oil the conservation of mass and energy, and (2) a routing model for the horizontal routing of surface and subsurface runoff and channel and floodplain waters based oil kinematic and diffusion wave methodologies. The WBM is driven by satellite-derived precipitation (TRMM_3B42) and air temperature (MOD08_M3). The model's use of an irregular computational grid is intended to facilitate parallel processing for applications to continental and global scales. Results are presented for the Amazon Basin over the period Jan 2001 through Dec 2005. The model is shown to capture annual runoff totals, annual peaks, seasonal patterns, and daily fluctuations over a range of spatial scales (>1,000 to <4.7M km(2)). For the period Of Study, results suggest basin-wide total water storage changes in the Amazon vary by approximately +/-5 to 10 cm, and the fractional components accounting for these changes are: root zone soil moisture (20%), Subsurface water being routed laterally to channels (40%) and channel/floodplain discharge (40%). Annual variability in monthly water storage changes by +/-2.5 cm is likely due to 0.5 to 1 month variability in the arrival of significant rainfall periods throughout the basin. Copyright (C) 2009 John Wiley & Sons, Ltd. C1 [Beighley, R. E.; He, Y.; Gummadi, V.] San Diego State Univ, San Diego, CA 92182 USA. [Eggert, K. G.] Univ Calif Santa Barbara, Inst Computat Earth Syst Sci, Santa Barbara, CA 93106 USA. [Eggert, K. G.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM USA. [Dunne, T.] Univ Calif Santa Barbara, Donald Bren Sch Environm Sci & Management, Santa Barbara, CA 93106 USA. [Verdin, K. L.] US Geol Survey, Earth Resources Observat & Sci Ctr, Sioux Falls, SD USA. RP Beighley, RE (reprint author), San Diego State Univ, 5500 Campanile Dr, San Diego, CA 92182 USA. EM beighley@mail.sdsu.edu RI Dunne, Thomas/B-6374-2014 OI Dunne, Thomas/0000-0002-5281-6517 FU NASA [NNX06AF13G, NAG5-6120, SH-02, NASA/NAG58396]; US Dept. of Energy [DE-AC52-06NA25396] FX In part, this work was carried Out under the auspices These data products were used in the basin model of the NASA New Investigator Program, Contract No. calibration. NNX06AF13G; NASA Earth Observing System project NAG5-6120, NASA LBA project SH-02: NASA/NAG58396; US Geological Survey Contract No. 05CRAGO029; and the National Nuclear Security Administration of the US Dept. of Energy at Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396; Los Alamos National Laboratory Directed Research and Development project, 'High-Resolution Physically-Based Model of Semi-Arid River Basin Hydrology', and US Dept. of Energy's Climate Change Prediction Program in the Office of Science. The authors thank Dr Rosangela Sviercoski for her analysis and extension of the discharge data at select stations in the Amazon basin. NR 58 TC 67 Z9 69 U1 3 U2 26 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0885-6087 EI 1099-1085 J9 HYDROL PROCESS JI Hydrol. Process. PD APR 15 PY 2009 VL 23 IS 8 BP 1221 EP 1235 DI 10.1002/hyp.7252 PG 15 WC Water Resources SC Water Resources GA 434DA UT WOS:000265254200011 ER PT J AU Leek, R Wu, JQ Wang, L Hanrahan, TP Barbet, ME Qiu, HX AF Leek, Randal Wu, Joan Q. Wang, Li Hanrahan, Timothy P. Barbet, Michael E. Qiu, Hanxue TI Heterogeneous characteristics of streambed saturated hydraulic conductivity of the Touchet River, south eastern Washington, USA SO HYDROLOGICAL PROCESSES LA English DT Article DE streambed heterogeneity; saturated hydraulic conductivity; slug test; hyporheic zone ID HYPORHEIC EXCHANGE; SLUG TESTS; SPAWNING HABITAT; ZONE; FLOW; SURVIVAL; QUALITY; BOUWER; WATER; GROUNDWATER AB Traditionally a streambed is treated as a layer of uniform thickness and low saturated hydraulic conductivity (K) in surface- and ground-water studies. Recent findings have shown a high level of spatial heterogeneity within a streambed and such heterogeneity directly affects surface- and ground-water exchange and can have ecological implications for biogeochemical transformations, nutrient cycling, organic matter decomposition, and reproduction of gravel spawning fish. In this study a detailed field investigation of K was conducted in two selected sites in Touchet River, a typical salmon spawning stream in and south eastern Washington, USA. In-stream Slug tests were conducted to determine K following the Bouwer and Rice method. For the upper and lower sites, each 50 m long and 9 m wide and roughly 20 m apart, a sampling grid of 5 m longitudinally and 3 m transversely was used. The Slug tests were performed for each horizontal coordinate at 0.3-0-45, 0-6-0-75, 0.9-1-05 and 1.2-1.35 in depth intervals unless a shallower impenetrable obstruction was encountered. Additionally, water levels were measured to obtain vertical hydraulic gradient (VHG) between each two adjacent depth intervals. Results indicated that K ranged over three orders of magnitude at both the upper and lower sites and differed between the two sites. At the upper site, K did not differ significantly among different depth intervals based on nonparametric statistical tests for mean, median. and empirical Cumulative distribution, but the spatial pattern of K varied among different depth intervals. At the lower site, K for the 0-3-0-45 m depth interval differed statistically from those at other depth intervals, and no similar spatial pattern was found among different depth intervals. Zones of upward and downward water flow based on VHG also varied among different depth intervals, reflecting the complexities of the water flow regime. Detailed characterization of the streambed as attempted in this study should be helpful in providing information on spatial variations of streambed hydraulic properties as well as surface- and,round-water interaction. Copyright (C) 2009 John Wiley & Sons, Ltd. C1 [Leek, Randal; Wu, Joan Q.; Wang, Li; Qiu, Hanxue] Washington State Univ, Dept Biol Syst Engn, Pullman, WA 99164 USA. [Hanrahan, Timothy P.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Barbet, Michael E.] Washington State Univ, Dept Civil & Environm Engn, State Washington Water Res Ctr, Pullman, WA 99164 USA. RP Wang, L (reprint author), Washington State Univ, Dept Biol Syst Engn, Pullman, WA 99164 USA. EM liwang@wsu.edu FU SWWRC (State of Washington Water Research Center) [01HQGR0107] FX This research was in part supported through a SWWRC (State of Washington Water Research Center) grant by the U.S. Geological Survey (Grant No. 01HQGR0107). We thank Cory Greer, Prabhakar Singh, Xiangyang Fu and Travis Parry for their valuable help during the field work, Steve Martin for his assistance in selecting study sites, and Dennis Holbrook, the land owner, for granting us the access to the study site. We are grateful to the Editor and the anonymous reviewers for their comments and suggestions that helped to substantially improve the rigor and clarity of this manuscript. NR 49 TC 26 Z9 27 U1 1 U2 16 PU JOHN WILEY & SONS LTD PI CHICHESTER PA THE ATRIUM, SOUTHERN GATE, CHICHESTER PO19 8SQ, W SUSSEX, ENGLAND SN 0885-6087 J9 HYDROL PROCESS JI Hydrol. Process. PD APR 15 PY 2009 VL 23 IS 8 BP 1236 EP 1246 DI 10.1002/hyp.7258 PG 11 WC Water Resources SC Water Resources GA 434DA UT WOS:000265254200012 ER PT J AU Zelenyuka, A Yang, J Imre, D AF Zelenyuka, Alla Yang, Juan Imre, Dan TI Comparison between mass spectra of individual organic particles generated by UV laser ablation and in the IR/UV two-step mode SO INTERNATIONAL JOURNAL OF MASS SPECTROMETRY LA English DT Article DE Single particle mass spectrometry; Laser desorption; Laser ionization ID AEROSOL-PARTICLES; ULTRAFINE PARTICLES; AIRBORNE PARTICLES; SPECTROMETRY; SIZE; DESORPTION/IONIZATION; IONIZATION; INSTRUMENT; SPLAT; PERFORMANCE AB In ablation-based single particle mass spectrometry it is common to find that the mass spectra of particles with identical compositions exhibit significant particle-to-particle fluctuations and high degree of fragmentation. This is particularly true when it comes to particles containing organic compounds. At laser fluence that is sufficient to ionize sulfates, mass spectra of the identical organic particles are classified into multitude of classes, some of which are indistinguishable from elemental carbon. In contrast, the individual particle mass spectra generated in two-step mode, in which an IR laser pulse is used to evaporate the semivolatile particle components and a time delayed UV laser pulse is used to ionize the evaporating plume, exhibit greatly diminished particle-to-particle fluctuations and significantly improved mass spectral quality. Since individual particle mass spectra must first be classified and only then can be averaged and analyzed, the IR/UV mode greatly improves the capability to properly quantify particle compositions. We present an experimental investigation of the properties and behavior of individual particle mass spectra of organic particles that are generated by ablation and in the two-step mode as function of UV laser fluence and the delay between the two lasers. The study shows that the two-step mode yields highly reproducible mass spectra that contain sufficient detail to allow molecular identification. In addition it produces significantly higher mass spectral intensities that are linearly related to the mass of organics in the particles. In contrast, ablation generated mass spectra were found to exhibit high degree of fragmentation and large particle-to-particle fluctuations. (C) 2009 Elsevier B.V. All rights reserved. C1 [Zelenyuka, Alla; Yang, Juan] Pacific NW Natl Lab, Richland, WA 99354 USA. [Imre, Dan] Imre Consulting, Richland, WA 99352 USA. RP Zelenyuka, A (reprint author), Pacific NW Natl Lab, 3335 Q Ave K8-88, Richland, WA 99354 USA. EM alla.zelenyuk@pnl.gov RI Yang, Juan/F-5220-2010 OI Yang, Juan/0000-0001-5502-9351 FU U.S. Department of Energy Office of Basic Energy Sciences; Chemical Sciences Division; Energy Efficiency and Renewable Energy; U.S. Department of Energy by Battelle Memorial Institute [DE-AC06-76RL0 1830] FX This work was supported by the U.S. Department of Energy Office of Basic Energy Sciences, Chemical Sciences Division, and Energy Efficiency and Renewable Energy. This research was performed in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research at Pacific Northwest National Laboratory (PNNL). PNNL is operated by the U.S. Department of Energy by Battelle Memorial Institute under contract no. DE-AC06-76RL0 1830. NR 39 TC 13 Z9 13 U1 0 U2 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1387-3806 J9 INT J MASS SPECTROM JI Int. J. Mass Spectrom. PD APR 15 PY 2009 VL 282 IS 1-2 BP 6 EP 12 DI 10.1016/j.ijms.2009.01.015 PG 7 WC Physics, Atomic, Molecular & Chemical; Spectroscopy SC Physics; Spectroscopy GA 434XO UT WOS:000265307700002 ER PT J AU Anderson, BE Ulrich, TJ Griffa, M Le Bas, PY Scalerandi, M Gliozzi, AS Johnson, PA AF Anderson, B. E. Ulrich, T. J. Griffa, M. Le Bas, P. -Y. Scalerandi, M. Gliozzi, A. S. Johnson, P. A. TI Experimentally identifying masked sources applying time reversal with the selective source reduction method SO JOURNAL OF APPLIED PHYSICS LA English DT Article DE acoustic radiators; acoustic signal processing; hearing; nondestructive testing ID MATCHED-FIELD LOCALIZATION; SHALLOW-WATER; MISMATCH; FILTER; MEDIA; SENSITIVITY; ENVIRONMENT; SCATTERING; ACOUSTICS; INVERSION AB This paper describes a time reversal (TR) method of spatially illuminating a source signal which has been masked by another source signal. This masking occurs as a result of inherent limitations in the traditional TR process. The selective source reduction (SSR) method employs a subtraction technique where one TR focus is selectively reduced to illuminate the masked focus. Experimental results and considerations are presented to demonstrate the SSR method for two elastic wave pulses emitted simultaneously from two spatially separated surficial sources and to examine the limitations of the method. A blind test was conducted to demonstrate that no a priori information about the source(s) is required. Spatial and/or temporal characteristics of multiple close-proximity sources can be resolved with the use of the illumination method. The measurements show that the SSR method's limitations are chiefly due to imperfect temporal reconstruction of the source function in the time reversed focal signal, which consequently limits signal reduction. C1 [Anderson, B. E.; Ulrich, T. J.; Griffa, M.; Le Bas, P. -Y.; Johnson, P. A.] Los Alamos Natl Lab, Geophys Grp, Los Alamos, NM 87544 USA. [Scalerandi, M.; Gliozzi, A. S.] Politecn Torino, Dept Phys, CNISM, I-10129 Turin, Italy. RP Anderson, BE (reprint author), Los Alamos Natl Lab, Geophys Grp, POB 1663, Los Alamos, NM 87544 USA. EM bea@byu.edu; michele.griffa@empa.ch RI Gliozzi, Antonio/G-7769-2012; Anderson, Brian/G-8819-2012; OI GLIOZZI, ANTONIO/0000-0003-1084-0444; SCALERANDI, MARCO/0000-0003-0809-9976; Griffa, Michele/0000-0001-8407-9438; Johnson, Paul/0000-0002-0927-4003 FU Los Alamos National Laboratory FX This research was supported by institutional support (LDRD) at the Los Alamos National Laboratory. The authors are grateful for the discussions and insight provided by Robert Guyer, Carene Larmat, Francesco Simonetti, and Jim TenCate. NR 50 TC 8 Z9 8 U1 0 U2 3 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD APR 15 PY 2009 VL 105 IS 8 AR 083506 DI 10.1063/1.3079517 PG 11 WC Physics, Applied SC Physics GA 471NH UT WOS:000268064700032 ER PT J AU Bae, IT Jiang, WL Wang, CM Weber, WJ Zhang, YW AF Bae, In-Tae Jiang, Weilin Wang, Chongmin Weber, William J. Zhang, Yanwen TI Thermal evolution of microstructure in ion-irradiated GaN SO JOURNAL OF APPLIED PHYSICS LA English DT Article DE amorphous semiconductors; annealing; crystal microstructure; electron diffraction; electron energy loss spectra; gallium compounds; III-V semiconductors; ion beam effects; nanofabrication; nanostructured materials; recrystallisation; semiconductor thin films; transmission electron microscopy; wide band gap semiconductors ID SOLID-PHASE EPITAXY; IMPLANTED GAN; SILICON-CARBIDE; THIN-FILMS; BEAM; AMORPHIZATION; DISORDER; DEFECTS; GAAS AB The thermal evolution of the microstructure created by irradiation of a GaN single crystal with 2 MeV Au(2+) ions at 150 K is characterized following annealing at 973 K using transmission electron microscopy. In the as-irradiated sample characterized at 300 K, Ga nanocrystals with the diamond structure, which is an unstable configuration for Ga, are directly observed together with nitrogen bubbles in the irradiation-induced amorphous layer. A simple model is proposed to explain Ga nanocrystal formation. Upon thermal annealing, the thickness of the amorphous layer decreases by similar to 13.1% and nanobeam electron diffraction analysis indicates no evidence for residual Ga nanocrystals, but instead reveals a mixture of hexagonal and cubic GaN phases in the annealed sample. Nitrogen molecules, captured in the as-irradiated bubbles, appear to disassociate and react with Ga nanocrystals during the thermal annealing to form crystalline GaN. In addition, electron energy loss spectroscopy measurements reveal an volume change of 18.9% for the as-irradiated amorphous layer relative to the virgin single crystal GaN. This relative swelling of the damaged layer reduces to 7.7% after thermal annealing. Partial recrystallization and structural relaxation of the GaN amorphous state are believed responsible for the volume change. C1 [Bae, In-Tae; Jiang, Weilin; Wang, Chongmin; Weber, William J.; Zhang, Yanwen] Pacific NW Natl Lab, Richland, WA 99352 USA. [Bae, In-Tae] SUNY Binghamton, Small Scale Syst Integrat & Packaging Ctr, Binghamton, NY 13902 USA. RP Zhang, YW (reprint author), Pacific NW Natl Lab, POB 999,Box 999,MS K8-87, Richland, WA 99352 USA. EM yanwen.zhang@pnl.gov RI Weber, William/A-4177-2008; OI Weber, William/0000-0002-9017-7365; Jiang, Weilin/0000-0001-8302-8313 FU Division of Materials Sciences and Engineering; Office of Basic Energy Sciences; U.S. Department of Energy [DE-AC05-76RL01830]; Department of Energy's Office of Biological and Environmental Research; Empire State Development Corporation FX This research was supported by the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, U.S. Department of Energy under Contract No. DE-AC05-76RL01830. A portion of the research was performed using EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. Support of S3IP at SUNY Binghamton was provided by Empire State Development Corporation. NR 28 TC 13 Z9 13 U1 1 U2 11 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD APR 15 PY 2009 VL 105 IS 8 AR 083514 DI 10.1063/1.3106606 PG 7 WC Physics, Applied SC Physics GA 471NH UT WOS:000268064700040 ER PT J AU Bazarov, IV Dunham, BM Liu, XH Virgo, M Dabiran, AM Hannon, F Sayed, H AF Bazarov, Ivan V. Dunham, Bruce M. Liu, Xianghong Virgo, Matt Dabiran, Amir M. Hannon, Fay Sayed, Hisham TI Thermal emittance and response time measurements of a GaN photocathode SO JOURNAL OF APPLIED PHYSICS LA English DT Article DE gallium compounds; III-V semiconductors; photocathodes; photoemission; wide band gap semiconductors ID NEGATIVE ELECTRON-AFFINITY; GAAS; ENERGY; PHOTOEMISSION; PARAMETERS; SURFACES; INN AB We present the measurements of thermal emittance and response time for a GaN photocathode illuminated with 5 ps pulses at 260 nm wavelength. The thermal emittance was measured downstream of a 100 kV dc gun using a solenoid scan with a wire scanner and a beam viewscreen and was found to be 1.35 +/- 0.11 mm mrad normalized rms emittance per 1 mm rms of illuminated spot size. The response time of the photoemitted electrons was evaluated using a deflecting mode rf cavity synchronized to the laser pulses and was found to be prompt within the time resolution capability of our setup. C1 [Bazarov, Ivan V.; Dunham, Bruce M.; Liu, Xianghong] Cornell Univ, Cornell Lab Accelerator Based Sci, Ithaca, NY 14853 USA. [Virgo, Matt] Argonne Natl Lab, Argonne, IL 60439 USA. [Dabiran, Amir M.] SVT Associates, Eden Prairie, MN 55344 USA. [Hannon, Fay; Sayed, Hisham] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. RP Bazarov, IV (reprint author), Cornell Univ, Cornell Lab Accelerator Based Sci, Ithaca, NY 14853 USA. EM ib38@cornell.edu RI Kamal Sayed, Hisham/C-8602-2015 OI Kamal Sayed, Hisham/0000-0002-6178-8394 FU NSF [PHY0131508]; NSF/NIH-NIGMS [DMR0225180]; DOE [DE-FG02-06ER84506] FX We acknowledge Dimitre Ouzoujnov for the laser system support, Yulin Li and Karl Smolenski for their technical support. This work is supported by NSF (Grant No. PHY0131508) and NSF/NIH-NIGMS (Award No. DMR0225180). The work at SVTA is partially supported by DOE (Grant No. DE-FG02-06ER84506). NR 27 TC 18 Z9 18 U1 0 U2 10 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD APR 15 PY 2009 VL 105 IS 8 AR 083715 DI 10.1063/1.3110075 PG 4 WC Physics, Applied SC Physics GA 471NH UT WOS:000268064700088 ER PT J AU Bu, W Vaknin, D AF Bu, Wei Vaknin, David TI X-ray fluorescence spectroscopy from ions at charged vapor/water interfaces SO JOURNAL OF APPLIED PHYSICS LA English DT Article DE fluorescence; Langmuir-Blodgett films; monolayers; X-ray fluorescence analysis ID GRAZING-INCIDENCE DIFFRACTION; ANOMALOUS SCATTERING; LANGMUIR MONOLAYERS; AIR/WATER INTERFACE; LIQUID INTERFACE; WATER-SURFACE; REFLECTION; CESIUM; DISTRIBUTIONS; MONOVALENT AB X-ray fluorescence spectra from monovalent ions (Cs+) that accumulate from dilute solutions to form an ion-rich layer near a charged Langmuir monolayer are presented. For the salt solution without the monolayer, the fluorescence signals below the critical angle are significantly lower than the detection sensitivity and only above the critical angle signals from the bulk are observed. In the presence of a monolayer that provides surface charges, strong fluorescence signals below the critical angle are observed. Ion density accumulated at the interface are determined from the fluorescence. The fluorescent spectra collected as a function of incident x-ray energy near the L-III edge yield the extended absorption spectra from the ions, and are compared to recent independent results. The fluorescence data from divalent Ba2+ with and without monolayer are also presented. C1 [Bu, Wei] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. RP Bu, W (reprint author), Iowa State Univ, Ames Lab, Ames, IA 50011 USA. EM vaknin@ameslab.gov RI Vaknin, David/B-3302-2009; Bu, Wei/Q-1390-2016 OI Vaknin, David/0000-0002-0899-9248; Bu, Wei/0000-0002-9996-3733 FU U.S. DOE, Basic Energy Sciences, Office of Science [DE-AC02-07CH11358]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, [DE-AC02-06CH11357] FX We thank D. S. Robinson for technical support at the 6-ID beamline. Ames Laboratory and the MUCAT sector at the APS are supported by the U.S. DOE, Basic Energy Sciences, Office of Science, under contract under Contract No. DE-AC02-07CH11358. Use of the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 28 TC 19 Z9 19 U1 0 U2 12 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD APR 15 PY 2009 VL 105 IS 8 AR 084911 DI 10.1063/1.3117487 PG 6 WC Physics, Applied SC Physics GA 471NH UT WOS:000268064700192 ER PT J AU DeMange, P Colvin, JD Park, HS Pollaine, SM AF DeMange, P. Colvin, J. D. Park, H. S. Pollaine, S. M. TI Reverberation technique for yield strength experiments at ultrahigh pressure and strain rate SO JOURNAL OF APPLIED PHYSICS LA English DT Article DE aluminium; copper; laser velocimeters; measurement by laser beam; mechanical variables measurement; titanium; yield strength ID CONSTITUTIVE RELATIONS; EXTREME CONDITIONS; MATERIAL DYNAMICS; DEFORMATION; SPALLATION; TANTALUM; STRESS; SOLIDS; METALS; MODEL AB Ultrahigh pressure and strain-rate (pressure 10 GPa and strain rate 10(5) s(-1)) are now attainable using high-power laser systems. A laser pulse drives a shock through a reservoir material which then unloads onto the target specimen. Laser velocimetry measurements at the back surface of the specimen are used to infer the material response. Material strength experiments have been proposed in which the pressure wave reverberates within the specimen and the cumulative resistance to compression by material strength is measured from the recorded velocimetry signature. In this work, ultrahigh pressure and strain-rate reverberation experiments are performed in tantalum, aluminum, and copper to investigate the yield strength behavior in this extreme regime. The experimental results indicate that the measurement sensitivity to yield strength is dominated by the lateral wave effects or impeded by the occurrence of spall. However, computer hydrodynamic code simulations are used to develop an experimental design based on shaping of the laser drive pulse that circumvents these difficulties. Simulations using the Steinberg-Guinan yield strength model and applying the design indicate the capability of measuring a factor-of-2 strength deviation from that predicted by the model with accuracy equal to or greater than the velocimetry measurement error. C1 [DeMange, P.; Colvin, J. D.; Park, H. S.; Pollaine, S. M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP DeMange, P (reprint author), Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94550 USA. EM demange1@llnl.gov OI Park, Hae-Sim/0000-0003-2614-0303 FU U. S. Department of Energy [DE-AC52-07NA27344] FX This work performed under the auspices of the U. S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. NR 39 TC 2 Z9 2 U1 1 U2 8 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD APR 15 PY 2009 VL 105 IS 8 AR 083543 DI 10.1063/1.3093840 PG 9 WC Physics, Applied SC Physics GA 471NH UT WOS:000268064700069 ER PT J AU Follstaedt, DM Lee, SR Allerman, AA Floro, JA AF Follstaedt, D. M. Lee, S. R. Allerman, A. A. Floro, J. A. TI Strain relaxation in AlGaN multilayer structures by inclined dislocations SO JOURNAL OF APPLIED PHYSICS LA English DT Article DE aluminium compounds; crystal microstructure; dislocation jogs; gallium compounds; III-V semiconductors; MOCVD; semiconductor epitaxial layers; semiconductor growth; semiconductor heterojunctions; transmission electron microscopy; vacancies (crystal); vapour phase epitaxial growth; wide band gap semiconductors; X-ray diffraction ID LIGHT-EMITTING-DIODES; MISFIT DISLOCATIONS; LAYER SUPERLATTICES; ISLAND COALESCENCE; GAN LAYERS; THIN-FILMS; STRESSES; DEFECTS; GROWTH; REDUCTION AB To examine further the strain relaxation produced by inclined threading dislocations in AlGaN, a heterostructure with three AlGaN layers having successively increasing Ga contents and compressive strains was grown on an AlN template layer by metalorganic vapor-phase epitaxy. The strain state of the layers was determined by x-ray diffraction (XRD) and the dislocation microstructure was characterized with transmission electron microscopy (TEM). As the GaN mole fraction of the heterostructure increased from 0.15 to 0.48, the increased epitaxial strain produced inclined dislocations with successively greater bend angles. Using the observed bend angles, which ranged from 6.7 degrees to 17.8 degrees, the measured strain relaxation within each layer was modeled and found to be accounted for by threading-dislocation densities of 6-7x10(9)/cm(2), in reasonable agreement with densities determined by TEM and XRD. In addition to the influence of lattice-mismatch strain on the average bend angle, we found evidence that local strain inhomogeneities due to neighboring dislocations influence the specific bend angles of individual dislocations. This interaction with local strain fields may contribute to the large spread in the bend angles observed within each layer. A detailed TEM examination found that the initial bending of threading dislocations away from vertical often occurs at positions within < 15 nm of the AlGaN/AlN heterointerface. Under the assumption that dislocation climb mediated by bulk-defect diffusion is effectively suppressed at the growth temperature, this result implies that inclination is established by processes occurring at the dynamic growth surface. We describe a mechanism where dislocation bending occurs by means of dislocation-line jogs created when surface steps overgrow vacancies that attach to threading-dislocation cores at their intersection with the growth surface. C1 [Follstaedt, D. M.; Lee, S. R.; Allerman, A. A.] Sandia Natl Labs, Phys Chem & Nano Sci Ctr, Albuquerque, NM 87185 USA. [Floro, J. A.] Univ Virginia, Dept Mat Sci & Engn, Charlottesville, VA 22904 USA. RP Follstaedt, DM (reprint author), Sandia Natl Labs, Phys Chem & Nano Sci Ctr, POB 5800, Albuquerque, NM 87185 USA. EM srlee@sandia.gov FU Laboratory Directed Research and Development Program; Division of Materials Science and Engineering, Office of Basic Energy Sciences, U.S. Department of Energy; Defense Advanced Research Projects Agency; [DE-AC04-94AL85000] FX The authors thank M. Rye for producing the FIB specimens, M. Smith for assistance with XRD, and J. Figiel for assistance with the MOVPE growths. The authors also appreciate discussions with J. A. Knapp on image presentation. This work was jointly supported by the Laboratory Directed Research and Development Program at Sandia National Laboratories, by the Division of Materials Science and Engineering, Office of Basic Energy Sciences, U.S. Department of Energy, and by the Defense Advanced Research Projects Agency under the SAIL project. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Co., for the United States Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. NR 41 TC 63 Z9 63 U1 8 U2 76 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD APR 15 PY 2009 VL 105 IS 8 AR 083507 DI 10.1063/1.3087515 PG 13 WC Physics, Applied SC Physics GA 471NH UT WOS:000268064700033 ER PT J AU Gessert, TA Yoshida, Y Fesenmaier, CC Coutts, TJ AF Gessert, T. A. Yoshida, Y. Fesenmaier, C. C. Coutts, T. J. TI Sputtered In2O3 and ITO thin films containing zirconium SO JOURNAL OF APPLIED PHYSICS LA English DT Article DE carrier density; indium compounds; infrared spectra; permittivity; semiconductor thin films; sputtered coatings; transparency; zirconium ID MOLYBDENUM AB Additions of Zr to In2O3 (IO) and In2O3:SnO2 (ITO) sputtered thin films are studied. We find that Zr allows IO-based films to maintain optical transparency as oxygen partial pressure in the sputter ambient decreases, and it also maintains high carrier concentration as the oxygen partial pressure increases. Applying this guidance could indicate pathways to improve film properties in large-area deposition systems. We also find that for films deposited at optimum oxygen partial pressure, the optical transparency of the IO-based films improves as Zr is added, especially in the near-infrared spectral region. Analysis of these films using Drude theory approximations indicate that optical improvement is due to an increase in dielectric permittivity caused by Zr addition. We propose that controlling dielectric permittivity may be an important strategy in improving other transparent conducting oxides (TCOs), as well as indicative of an important pathway to developing new TCOs. C1 [Gessert, T. A.; Yoshida, Y.; Fesenmaier, C. C.; Coutts, T. J.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Gessert, TA (reprint author), Natl Renewable Energy Lab, 1617 Cole Blvd, Golden, CO 80401 USA. EM tim_gessert@nrel.gov FU [DE-AC36-08-GO28308] FX This work is supported or funded under Contract No. DE-AC36-08-GO28308. NR 10 TC 15 Z9 15 U1 0 U2 5 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD APR 15 PY 2009 VL 105 IS 8 AR 083547 DI 10.1063/1.3116542 PG 6 WC Physics, Applied SC Physics GA 471NH UT WOS:000268064700073 ER PT J AU Grant, CD Crowhurst, JC Arsenlis, T Bringa, EM Wang, YM Hawreliak, JA Pauzauskie, PJ Clark, SM AF Grant, C. D. Crowhurst, J. C. Arsenlis, T. Bringa, E. M. Wang, Y. M. Hawreliak, J. A. Pauzauskie, P. J. Clark, S. M. TI X-ray diffraction of electrodeposited nanocrystalline nickel under high pressure SO JOURNAL OF APPLIED PHYSICS LA English DT Article DE elastic moduli; electrodeposition; grain size; high-pressure effects; nanostructured materials; nickel; reflection; X-ray diffraction ID NONHYDROSTATIC COMPRESSION; STRENGTH; POWDER; GOLD; GPA AB We studied the compressibility of monolithic fully dense electrodeposited nanocrystalline Ni (similar to 29 nm grain size) under both quasihydrostatic and nonhydrostatic conditions up to a nominal pressure of 50 GPa using angle-dispersive x-ray diffraction. We obtained an equation of state consistently and unambiguously from each measured reflection. The apparent bulk modulus measured under nonhydrostatic conditions is larger than that of the corresponding coarse-grained material under either type of compression, but is nearly the same when measured under quasihydrostatic conditions. These results may be consistent with a strength, but not necessarily a bulk modulus, that is enhanced in the nanomaterial relative to its coarse-grained counterparts. C1 [Grant, C. D.; Crowhurst, J. C.; Arsenlis, T.; Wang, Y. M.; Hawreliak, J. A.; Pauzauskie, P. J.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Bringa, E. M.] Univ Nacl Cuyo, Inst Ciencias Basicas, RA-5500 Mendoza, Argentina. [Clark, S. M.] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Grant, CD (reprint author), Lawrence Livermore Natl Lab, POB 5508, Livermore, CA 94551 USA. EM grant29@llnl.gov RI Bringa, Eduardo/F-8918-2011; Pauzauskie, Peter/A-1316-2014; Wang, Yinmin (Morris)/F-2249-2010; Clark, Simon/B-2041-2013 OI Wang, Yinmin (Morris)/0000-0002-7161-2034; Clark, Simon/0000-0002-7488-3438 FU U. S. Department of Energy [DE-AC0205CH11231, W-7405-Eng-48, DE-AC52-07NA27344]; Laboratory Directed Research and Development Program [06-SI-005] FX We thank J. Benterou for laser-cutting our nc-Ni disk sample. We thank J. Kuntz, A. Caro, and A. Bliss for their assistance in sample preparation and for useful discussions. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U. S. Department of Energy under Contract No. DE-AC0205CH11231. This work was performed under the auspices of the U. S. Department of Energy by Lawrence Livermore National Laboratory in part under Contract No. W-7405-Eng-48 and in part under Contract No. DE-AC52-07NA27344. The project 06-SI-005 was funded by the Laboratory Directed Research and Development Program at LLNL. NR 29 TC 8 Z9 9 U1 1 U2 13 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD APR 15 PY 2009 VL 105 IS 8 AR 084311 DI 10.1063/1.3100189 PG 6 WC Physics, Applied SC Physics GA 471NH UT WOS:000268064700150 ER PT J AU Hoche, D Shinn, M Muller, S Schaaf, P AF Hoeche, Daniel Shinn, Michelle Mueller, Sven Schaaf, Peter TI Diffusion, convection, and solidification in cw-mode free electron laser nitrided titanium SO JOURNAL OF APPLIED PHYSICS LA English DT Article DE coatings; convection; diffusion; free electron lasers; laser beam effects; materials preparation; microhardness; nanoindentation; nitrogen; scanning electron microscopy; sheet materials; solidification; stress effects; surface hardening; titanium; tribology; X-ray diffraction ID TINX COATINGS; THIN-FILMS; NITROGEN; IRRADIATION; ORIENTATION; TEXTURE; METALS; GROWTH; GAS AB Titanium sheets were irradiated by free electron laser radiation in cw mode in pure nitrogen. Due to the interaction, nitrogen diffusion occurs and titanium nitride was synthesized in the tracks. Overlapping tracks have been utilized to create coatings in order to improve the tribological properties of the sheets. Caused by the local heating and the spatial dimension of the melt pool, convection effects were observed and related to the track properties. Stress, hardness, and nitrogen content were investigated with x-ray diffraction, nanoindention, and resonant nuclear reaction analysis. The measured results were correlated with the scan parameters, especially to the lateral track shift. Cross section micrographs were prepared and investigated by means of scanning electron microscopy. They show the solidification behavior, phase formation, and the nitrogen distribution. The experiments give an insight into the possibilities of materials processing using such a unique heat source. C1 [Hoeche, Daniel; Mueller, Sven] Univ Gottingen, Inst Phys 2, D-37077 Gottingen, Germany. [Shinn, Michelle] Thomas Jefferson Natl Accelerator Facil, Free Elect Laser Grp, Newport News, VA 23606 USA. [Schaaf, Peter] Tech Univ Ilmenau, Inst Werkstofftech, FG Werkstoffe Elektrotech, D-98684 Ilmenau, Germany. RP Hoche, D (reprint author), Univ Gottingen, Inst Phys 2, Friedrich Hund Pl 1, D-37077 Gottingen, Germany. EM dhoeche@gwdg.de; peter.schaaf@tu-ilmenau.de RI Hoche, Daniel/G-8556-2013; Schaaf, Peter/B-4934-2009 OI Hoche, Daniel/0000-0002-7719-6684; Schaaf, Peter/0000-0002-8802-6621 FU Deutsche Forschungsgemeinschaft [DFG Scha 632/4]; U.S. Dept. of Energy; Office of Naval Research; Commonwealth of Virginia; Laser Processing Consortium FX This work is supported by the Deutsche Forschungsgemeinschaft under Grant No. DFG Scha 632/4. The Jefferson Laboratory is supported by the U.S. Dept. of Energy, the Office of Naval Research, the Commonwealth of Virginia, and the Laser Processing Consortium. Kevin Jordan and Joseph F. Gubeli III are gratefully acknowledged for their assistance at the FEL. NR 34 TC 4 Z9 4 U1 1 U2 6 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD APR 15 PY 2009 VL 105 IS 8 AR 083503 DI 10.1063/1.3097781 PG 6 WC Physics, Applied SC Physics GA 471NH UT WOS:000268064700029 ER PT J AU Sabau, AS Duty, CE Dinwiddie, RB Nichols, M Blue, CA Ott, RD AF Sabau, Adrian S. Duty, Chad E. Dinwiddie, Ralph B. Nichols, Mark Blue, Craig A. Ott, Ronald D. TI A radiative transport model for heating paints using high density plasma arc lamps SO JOURNAL OF APPLIED PHYSICS LA English DT Article DE arc lamps; heat radiation; paints ID ORIGINAL TOPCOATS 1974-1989; SPECTRAL OPTICAL-PROPERTIES; FINITE-DIFFERENCE SOLUTIONS; INFRARED-SPECTRA; INORGANIC PIGMENTS; NONUNIFORM GRIDS; REFRACTIVE-INDEX; STIFF PROBLEMS; THIN-FILM; SCATTERING AB The energy distribution and temperature evolution within paintlike systems that are exposed to spectral radiant energy were studied. A complete set of material properties was derived and discussed. Infrared measurements were conducted to obtain experimental data for the temperature in the paint film. The heat flux due to the incident radiation from the plasma arc lamp was measured using a heat flux sensor with a very short response time. A radiative transport model based on spectral four-flux radiation transport equations has been developed for multilayered and semitransparent material systems. Comparisons between the computed and experimental results for temperature show that the energy transport model yields accurate results for a black painted substrate. C1 [Sabau, Adrian S.; Duty, Chad E.; Dinwiddie, Ralph B.; Nichols, Mark; Blue, Craig A.; Ott, Ronald D.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Nichols, Mark] Ford Motor Co, Mat & Nanotechnol Dept, Ford Res & Adv Engn, Dearborn, MI 48126 USA. RP Sabau, AS (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Bldg 4508,MS 6083, Oak Ridge, TN 37831 USA. EM sabaua@ornl.gov RI Sabau, Adrian/B-9571-2008; OI Sabau, Adrian/0000-0003-3088-6474; Dinwiddie, Ralph/0000-0003-1670-470X FU DARPA; Strategic Technology Office; Oak Ridge National Laboratory (ORNL); U.S. Department of Energy [DE-AC05-00OR22725] FX This research was sponsored by DARPA, Strategic Technology Office, for initial studies. Research also sponsored by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory (ORNL), managed by UT-Battelle, LLC for the U.S. Department of Energy under Contract No. DE-AC05-00OR22725. NR 31 TC 3 Z9 3 U1 0 U2 3 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD APR 15 PY 2009 VL 105 IS 8 AR 084901 DI 10.1063/1.3097356 PG 12 WC Physics, Applied SC Physics GA 471NH UT WOS:000268064700182 ER PT J AU Sootsman, JR He, JQ Dravid, VP Li, CP Uher, C Kanatzidis, MG AF Sootsman, Joseph R. He, Jiaqing Dravid, Vinayak P. Li, Chang-Peng Uher, Ctirad Kanatzidis, Mercouri G. TI High thermoelectric figure of merit and improved mechanical properties in melt quenched PbTe-Ge and PbTe-Ge1-xSix eutectic and hypereutectic composites SO JOURNAL OF APPLIED PHYSICS LA English DT Article DE brittleness; carrier density; composite materials; electrical conductivity; elemental semiconductors; eutectic structure; fracture toughness; germanium; Ge-Si alloys; IV-VI semiconductors; lead compounds; melt processing; thermal conductivity; thermoelectricity ID THERMAL-CONDUCTIVITY; SOLID-SOLUTIONS; ALLOYS; NANOSTRUCTURES; AGPBMSBTE2+M; SYSTEM; POWER AB We report the synthesis, microstructure, and transport properties of composite thermoelectric materials based on the eutectic phase relationship between PbTe and Ge. When quenched, these eutectic mixtures exhibit considerably stronger mechanical strength and reduced brittleness compared to PbTe itself, while at the same time they possess lower lattice thermal conductivity. Thermal conductivity measurements show values lower than expected based on the law of mixtures and multiphase composites. We find that the thermoelectric performance in these composites can be tuned through the use of hypereutectic compositions and alloying of Ge with Si. PbI2 was used as an n-type dopant, and precise control of the carrier concentration was achieved to optimize the electrical transport and thermoelectric properties. ZT values approaching 1.3 at 778 K have been obtained in samples of PbTe-Ge0.8Si0.2(5%), which represent an similar to 62% improvement over that of PbTe. C1 [Sootsman, Joseph R.; Kanatzidis, Mercouri G.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. [He, Jiaqing; Dravid, Vinayak P.] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA. [Li, Chang-Peng; Uher, Ctirad] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Kanatzidis, Mercouri G.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Sootsman, JR (reprint author), Northwestern Univ, Dept Chem, 2145 Sheridan Rd, Evanston, IL 60208 USA. EM m-kanatzidis@northwestern.edu RI Dravid, Vinayak/B-6688-2009; He, Jiaqing/A-2245-2010 FU NSF-NSEC; NSF-MRSEC; Keck Foundation; State of Illinois; Northwestern University FX Financial support from the Office of Naval Research is gratefully acknowledged. Portions of the scanning electron microscopy work was performed in the (EPIC) (NIFTI) (Keck-II) Facility of NUANCE Center at Northwestern University. NUANCE Center is supported by NSF-NSEC, NSF-MRSEC, Keck Foundation, the State of Illinois, and Northwestern University. NR 41 TC 30 Z9 30 U1 4 U2 30 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD APR 15 PY 2009 VL 105 IS 8 AR 083718 DI 10.1063/1.3093833 PG 8 WC Physics, Applied SC Physics GA 471NH UT WOS:000268064700091 ER PT J AU Worsley, MA Satcher, JH Baumann, TF AF Worsley, Marcus A. Satcher, Joe H., Jr. Baumann, Theodore F. TI Enhanced thermal transport in carbon aerogel nanocomposites containing double-walled carbon nanotubes SO JOURNAL OF APPLIED PHYSICS LA English DT Article DE aerogels; carbon nanotubes; nanocomposites; nanotechnology; polymerisation; pyrolysis; scanning electron microscopy; sol-gel processing; surfactants; suspensions; thermal conductivity ID ELECTRICAL-CONDUCTIVITY; COMPOSITES; SUSPENSIONS; ELECTRODES; MANAGEMENT AB We report thermal conductivity measurements of a carbon aerogel nanocomposite containing double-walled carbon nanotubes. The nanocomposites were prepared by the sol-gel polymerization of resorcinol with formaldehyde in aqueous suspension containing a surfactant-stabilized dispersion of double-walled carbon nanotubes. Subsequent drying and pyrolysis resulted in free-standing monolithic carbon aerogel nanocomposites with uniform dispersions of carbon nanotubes. The monoliths were characterized by high-resolution scanning electron microscopy and thermal conductivity measurements via the transient hot-wire method. Enhanced thermal conductivities were observed for carbon aerogel nanocomposites relative to pristine carbon aerogels. The details of these results are discussed in comparison with theory and literature. C1 [Worsley, Marcus A.; Satcher, Joe H., Jr.; Baumann, Theodore F.] Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA 94551 USA. RP Worsley, MA (reprint author), Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, 7000 E Ave, Livermore, CA 94551 USA. EM worsley1@llnl.gov RI Worsley, Marcus/G-2382-2014 OI Worsley, Marcus/0000-0002-8012-7727 FU U. S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; DOE Office of Energy Efficiency and Renewable Energy FX This work was performed under the auspices of the U. S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344 and funded by the DOE Office of Energy Efficiency and Renewable Energy. NR 29 TC 13 Z9 13 U1 0 U2 29 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD APR 15 PY 2009 VL 105 IS 8 AR 084316 DI 10.1063/1.3117491 PG 4 WC Physics, Applied SC Physics GA 471NH UT WOS:000268064700155 ER PT J AU Slater, SC Goldman, BS Goodner, B Setubal, JC Farrand, SK Nester, EW Burr, TJ Banta, L Dickerman, AW Paulsen, I Otten, L Suen, G Welch, R Almeida, NF Arnold, F Burton, OT Du, ZJ Ewing, A Godsy, E Heisel, S Houmiel, KL Jhaveri, J Lu, J Miller, NM Norton, S Chen, Q Phoolcharoen, W Ohlin, V Ondrusek, D Pride, N Stricklin, SL Sun, J Wheeler, C Wilson, L Zhu, HJ Wood, DW AF Slater, Steven C. Goldman, Barry S. Goodner, Brad Setubal, Joao C. Farrand, Stephen K. Nester, Eugene W. Burr, Thomas J. Banta, Lois Dickerman, Allan W. Paulsen, Ian Otten, Leon Suen, Garret Welch, Roy Almeida, Nalvo F. Arnold, Frank Burton, Oliver T. Du, Zijin Ewing, Adam Godsy, Eric Heisel, Sara Houmiel, Kathryn L. Jhaveri, Jinal Lu, Jing Miller, Nancy M. Norton, Stacie Chen, Qiang Phoolcharoen, Waranyoo Ohlin, Victoria Ondrusek, Dan Pride, Nicole Stricklin, Shawn L. Sun, Jian Wheeler, Cathy Wilson, Lindsey Zhu, Huijun Wood, Derek W. TI Genome Sequences of Three Agrobacterium Biovars Help Elucidate the Evolution of Multichromosome Genomes in Bacteria SO JOURNAL OF BACTERIOLOGY LA English DT Article ID CROWN-GALL; SINORHIZOBIUM-MELILOTI; BRUCELLA-MELITENSIS; BIOLOGICAL-CONTROL; TUMEFACIENS C58; CELL-CYCLE; PLASMID; PROKARYOTES; DISEASE; GRAPE AB The family Rhizobiaceae contains plant-associated bacteria with critical roles in ecology and agriculture. Within this family, many Rhizobium and Sinorhizobium strains are nitrogen-fixing plant mutualists, while many strains designated as Agrobacterium are plant pathogens. These contrasting lifestyles are primarily dependent on the transmissible plasmids each strain harbors. Members of the Rhizobiaceae also have diverse genome architectures that include single chromosomes, multiple chromosomes, and plasmids of various sizes. Agrobacterium strains have been divided into three biovars, based on physiological and biochemical properties. The genome of a biovar I strain, A. tumefaciens C58, has been previously sequenced. In this study, the genomes of the biovar II strain A. radiobacter K84, a commercially available biological control strain that inhibits certain pathogenic agrobacteria, and the biovar III strain A. vitis S4, a narrow-host-range strain that infects grapes and invokes a hypersensitive response on nonhost plants, were fully sequenced and annotated. Comparison with other sequenced members of the Alphaproteobacteria provides new data on the evolution of multipartite bacterial genomes. Primary chromosomes show extensive conservation of both gene content and order. In contrast, secondary chromosomes share smaller percentages of genes, and conserved gene order is restricted to short blocks. We propose that secondary chromosomes originated from an ancestral plasmid to which genes have been transferred from a progenitor primary chromosome. Similar patterns are observed in select Beta- and Gammaproteobacteria species. Together, these results define the evolution of chromosome architecture and gene content among the Rhizobiaceae and support a generalized mechanism for second-chromosome formation among bacteria. C1 [Slater, Steven C.] Univ Wisconsin, Great Lakes Bioenergy Res Ctr, Madison, WI 53706 USA. [Goldman, Barry S.; Du, Zijin; Godsy, Eric; Heisel, Sara; Lu, Jing; Miller, Nancy M.; Norton, Stacie; Stricklin, Shawn L.; Zhu, Huijun] Monsanto Co, St Louis, MO 63167 USA. [Goodner, Brad; Arnold, Frank; Ewing, Adam; Ohlin, Victoria; Ondrusek, Dan; Pride, Nicole; Wheeler, Cathy; Wilson, Lindsey] Hiram Coll, Dept Biol, Hiram, OH 44234 USA. [Setubal, Joao C.] Virginia Polytech Inst & State Univ, Dept Comp Sci, Blacksburg, VA 24060 USA. [Setubal, Joao C.; Dickerman, Allan W.; Almeida, Nalvo F.; Jhaveri, Jinal; Sun, Jian] Virginia Polytech Inst & State Univ, Virginia Bioinformat Inst, Blacksburg, VA 24060 USA. [Farrand, Stephen K.] Univ Illinois, Dept Microbiol, Urbana, IL 61801 USA. [Nester, Eugene W.; Wood, Derek W.] Univ Washington, Dept Microbiol, Seattle, WA 98195 USA. [Burr, Thomas J.] Cornell Univ, New York State Agr Expt Stn, Dept Plant Pathol, Geneva, NY 14456 USA. [Banta, Lois; Burton, Oliver T.] Williams Coll, Dept Biol, Williamstown, MA 01267 USA. [Paulsen, Ian] Macquarie Univ, Dept Chem & Biomol Sci, N Ryde, NSW 2109, Australia. [Otten, Leon] Inst Plant Mol Biol, F-67084 Strasbourg, France. [Suen, Garret; Welch, Roy] Syracuse Univ, Dept Biol, Syracuse, NY 13244 USA. [Almeida, Nalvo F.] Univ Fed Mato Grosso do Sul, Dept Comp & Stat, Campo Grande, Brazil. [Houmiel, Kathryn L.; Chen, Qiang; Phoolcharoen, Waranyoo] Arizona State Univ, Biodesign Inst, Tempe, AZ 85287 USA. [Houmiel, Kathryn L.; Wood, Derek W.] Seattle Pacific Univ, Dept Biol, Seattle, WA 98119 USA. RP Setubal, JC (reprint author), Virginia Bioinformat Inst, Washington St,MC 0477, Blacksburg, VA 24060 USA. EM setubal@vt.edu RI Almeida, Nalvo/B-5856-2012; Setubal, Joao/C-7305-2012; Paulsen, Ian/K-3832-2012; Oncogenomica, Inct/H-9999-2013; Ewing, Adam/M-3164-2014; OI Setubal, Joao/0000-0001-9174-2816; Paulsen, Ian/0000-0001-9015-9418; Ewing, Adam/0000-0002-4544-994X; Suen, Garret/0000-0002-6170-711X; Almeida, Nalvo/0000-0001-5615-1746; chen, qiang/0000-0003-1498-7013; Welch, Roy/0000-0002-9946-108X FU National Science Foundation [0333297, 0603491, 0736671]; M.J. Murdock Charitable Trust Life Sciences program [2004262, 2006245]; Howard Hughes Medical Institute [52005125]; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico fellowship [200447/2007-6]; Monsanto Company FX This work was supported by National Science Foundation grants 0333297 and 0603491 to E.W.N. and 0736671 to S. C. S., grants from the M.J. Murdock Charitable Trust Life Sciences program (2004262: JVZ and 2006245: JVZ) to D. W. W., by a science education grant from the Howard Hughes Medical Institute to B.G. (52005125), by a Conselho Nacional de Desenvolvimento Cientifico e Tecnologico fellowship to N.F.A. (no. 200447/2007-6), and by the Monsanto Company. NR 49 TC 104 Z9 672 U1 4 U2 29 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0021-9193 J9 J BACTERIOL JI J. Bacteriol. PD APR 15 PY 2009 VL 191 IS 8 BP 2501 EP 2511 DI 10.1128/JB.01779-08 PG 11 WC Microbiology SC Microbiology GA 427AS UT WOS:000264752600008 PM 19251847 ER PT J AU Foster, JT Beckstrom-Sternberg, SM Pearson, T Beckstrom-Sternberg, JS Chain, PSG Roberto, FF Hnath, J Brettin, T Keim, P AF Foster, Jeffrey T. Beckstrom-Sternberg, Stephen M. Pearson, Talima Beckstrom-Sternberg, James S. Chain, Patrick S. G. Roberto, Francisco F. Hnath, Jonathan Brettin, Tom Keim, Paul TI Whole-Genome-Based Phylogeny and Divergence of the Genus Brucella SO JOURNAL OF BACTERIOLOGY LA English DT Article ID SINGLE-NUCLEOTIDE POLYMORPHISMS; REAL-TIME PCR; RAPID IDENTIFICATION; BACTERIAL EVOLUTION; GENETIC DIVERSITY; DNA POLYMORPHISM; SEQUENCE; ABORTUS; STRAINS; SUIS AB Brucellae are worldwide bacterial pathogens of livestock and wildlife, but phylogenetic reconstructions have been challenging due to limited genetic diversity. We assessed the taxonomic and evolutionary relationships of five Brucella species-Brucella abortus, B. melitensis, B. suis, B. canis, and B. ovis-using whole-genome comparisons. We developed a phylogeny using single nucleotide polymorphisms (SNPs) from 13 genomes and rooted the tree using the closely related soil bacterium and opportunistic human pathogen, Ochrobactrum anthropi. Whole-genome sequencing and a SNP-based approach provided the requisite level of genetic detail to resolve species in the highly conserved brucellae. Comparisons among the Brucella genomes revealed 20,154 orthologous SNPs that were shared in all genomes. Rooting with Ochrobactrum anthropi reveals that the B. ovis lineage is basal to the rest of the Brucella lineage. We found that B. suis is a highly divergent clade with extensive intraspecific genetic diversity. Furthermore, B. suis was determined to be paraphyletic in our analyses, only forming a monophyletic clade when the B. canis genome was included. Using a molecular clock with these data suggests that most Brucella species diverged from their common B. ovis ancestor in the past 86,000 to 296,000 years, which precedes the domestication of their livestock hosts. Detailed knowledge of the Brucella phylogeny will lead to an improved understanding of the ecology, evolutionary history, and host relationships for this genus and can be used for determining appropriate genotyping approaches for rapid detection and diagnostic assays for molecular epidemiological and clinical studies. C1 [Foster, Jeffrey T.; Beckstrom-Sternberg, Stephen M.; Pearson, Talima; Beckstrom-Sternberg, James S.; Keim, Paul] No Arizona Univ, Ctr Microbial Genet & Genom, Flagstaff, AZ 86011 USA. [Chain, Patrick S. G.] Joint Genome Inst, Microbial Program, Walnut Creek, CA 94598 USA. [Chain, Patrick S. G.] Lawrence Livermore Natl Lab, Biosci & Biotechnol Div, Livermore, CA 94550 USA. [Beckstrom-Sternberg, Stephen M.] Translat Genom Res Inst, Phoenix, AZ 85004 USA. [Chain, Patrick S. G.] Michigan State Univ, Ctr Microbial Ecol, E Lansing, MI 48824 USA. [Chain, Patrick S. G.] Michigan State Univ, Dept Microbiol & Mol Genet, E Lansing, MI 48824 USA. [Roberto, Francisco F.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. [Hnath, Jonathan] Natl Biodef Anal & Countermeasures Ctr, Frederick, MD 21703 USA. [Brettin, Tom] Los Alamos Natl Lab, Biosci Div, Los Alamos, NM 87545 USA. RP Keim, P (reprint author), No Arizona Univ, Ctr Microbial Genet & Genom, Flagstaff, AZ 86011 USA. EM paul.keim@nau.edu RI Keim, Paul/A-2269-2010; chain, patrick/B-9777-2013; OI Foster, Jeffrey/0000-0001-8235-8564 FU U.S. Department of Homeland Security; Intelligence Technology Innovation Center FX This study was supported by the U.S. Department of Homeland Security. Sequencing of the B. canis genome was funded by the Intelligence Technology Innovation Center. We thank Jim Burans and the staff at the National Bioforensics Analysis Center for the 454 pyrosequencing data. Use of product or trade names does not constitute endorsement by the U.S. Government. NR 51 TC 72 Z9 75 U1 3 U2 13 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0021-9193 J9 J BACTERIOL JI J. Bacteriol. PD APR 15 PY 2009 VL 191 IS 8 BP 2864 EP 2870 DI 10.1128/JB.01581-08 PG 7 WC Microbiology SC Microbiology GA 427AS UT WOS:000264752600045 PM 19201792 ER PT J AU Crosby, LD Kathmann, SM Windus, TL AF Crosby, Lonnie D. Kathmann, Shawn M. Windus, Theresa L. TI Implementation of Dynamical Nucleation Theory with Quantum Potentials SO JOURNAL OF COMPUTATIONAL CHEMISTRY LA English DT Article DE dynamical nucleation theory; water dimer; nucleation; Monte Carlo; ab initio methods ID CORRELATED MOLECULAR CALCULATIONS; FREE-ENERGY PERTURBATION; TRANSITION-STATE THEORY; GAUSSIAN-BASIS SETS; TIP5P WATER MODEL; ANTHROPOGENIC AEROSOLS; VAPOR; KINETICS; LIQUID; SENSITIVITY AB A method is implemented within the context of dynamical nucleation theory in order to efficiently determine the ab initio water dimer evaporation rate constant. The drive for increased efficiency in a Monte Carlo methodology is established by the need to use relatively expensive quantum mechanical interaction potentials. A discussion is presented illustrating the theory, algorithm, and implementation of this method to the water dimer. Hartree-Fock and second order Moller-Plesset perturbation theories along with the Dang-Chang polarizable classical potential are utilized to determine the ab initio water dimer evaporation rate constant. (C) 2008 Wiley Periodicals, Inc. J Cornput Chern 30: 743-749, 2009 C1 [Crosby, Lonnie D.; Windus, Theresa L.] Iowa State Univ, Dept Chem, Ames, IA 50011 USA. [Crosby, Lonnie D.; Windus, Theresa L.] Ames Lab, Ames, IA USA. [Kathmann, Shawn M.] Pacific NW Natl Lab, Div Chem & Mat Sci, Mol Interact & Transformat Grp, Richland, WA 99352 USA. RP Windus, TL (reprint author), Iowa State Univ, Dept Chem, Ames, IA 50011 USA. EM theresa@fi.ameslab.gov OI Crosby, Lonnie D/0000-0003-4283-4137 FU Iowa State University; U.S. Department of Energy (DOE) Office of Basic Energy Sciences; Chemical Sciences program FX T. L. Windus and L. D. Crosby gratefully acknowledge Iowa State University for providing funding and computational resources. This work was also supported by the U.S. Department of Energy (DOE) Office of Basic Energy Sciences, Chemical Sciences program, and it was performed in part using the Molecular Science Computing Facility (MSCF) in the William R. Wiley Environmental Molecular Sciences Laboratory, a DOE national scientific user facility located at the Pacific Northwest National Laboratory (PNNL). PNNL is operated by Battelle for the U.S. Department of Energy. NR 37 TC 4 Z9 4 U1 1 U2 8 PU JOHN WILEY & SONS INC PI HOBOKEN PA 111 RIVER ST, HOBOKEN, NJ 07030 USA SN 0192-8651 J9 J COMPUT CHEM JI J. Comput. Chem. PD APR 15 PY 2009 VL 30 IS 5 BP 743 EP 749 DI 10.1002/jcc.21098 PG 7 WC Chemistry, Multidisciplinary SC Chemistry GA 419NI UT WOS:000264225900006 PM 18711716 ER PT J AU Henager, CH Edwards, DJ Schemer-Kohrn, AL Bliss, M Jaffe, JE AF Henager, C. H., Jr. Edwards, D. J. Schemer-Kohrn, A. L. Bliss, M. Jaffe, J. E. TI Preferential orientation of Te particles in melt-grown CZT SO JOURNAL OF CRYSTAL GROWTH LA English DT Article DE Characterization; Crystal morphology; Interfaces; Bridgman technique; Semiconducting cadmium compounds ID TOTAL-ENERGY CALCULATIONS; WAVE BASIS-SET; X-RAY; CDTE; CRYSTALS; DEFECTS; CDZNTE; NONSTOICHIOMETRY; (CD,ZN)TE; DETECTORS AB Cadmium zinc telluride (Cd(1-x)Zn(x)Te or CZT) has proved to be a useful material for semiconductor gamma-ray spectrometers and other electro-optic devices. It is often grown Te-rich to optimize its electrical characteristics, but this off-stoichiometric growth leads to the formation of semimetallic Te particles in the semiconducting host crystal. These particles can impair device performance and their formation needs to be inhibited, if possible, during growth. In this study, characterization of several particles of different faceted shapes revealed that most of the Te particles were preferentially oriented with the {101}(CZT)parallel to{(1) over bar2 (1) over bar0}(Te). A secondary orientation relationship was also observed as {11 (1) over bar}(CZT)parallel to{01 (1) over bar1}(Te) for one of the {111}(CZT) family of planes. One of the particles exhibited {110}(CZT)parallel to{01 (1) over bar0}Te, and (001)(CZT)parallel to{0001}(Te). Particles were often found on {111}(CZT) twin boundaries and, in these cases, it was possible to assign specific orientations with respect to the twin plane. Ab initio calculations predicted a good lattice match between the {0001}-plane of Te aligned with the {111}-plane of CZT, however, no such particle orientation was observed. Observations of strained and polycrystalline Te particles are also discussed with relevance to the ab initio model and to impacts on electronic properties. (C) 2009 Published by Elsevier B.V. C1 [Henager, C. H., Jr.; Edwards, D. J.; Schemer-Kohrn, A. L.] Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA 99352 USA. [Bliss, M.] Pacific NW Natl Lab, Natl Secur Directorate, Richland, WA 99352 USA. [Jaffe, J. E.] Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Richland, WA 99352 USA. RP Henager, CH (reprint author), Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA 99352 USA. EM chuck.henager@pnl.gov RI Bliss, Mary/G-2240-2012; OI Bliss, Mary/0000-0002-7565-4813; Henager, Chuck/0000-0002-8600-6803 FU Office of Defense Nuclear Nonproliferation; Office of Nonproliferation Research and Development [NA-22] FX PNNL is operated for the US Department of Energy by Battelle Memorial Institute under Contract DE-AC06-76RLO 1830. This work was funded at PNNL by the Office of Defense Nuclear Nonproliferation, Office of Nonproliferation Research and Development (NA-22). NR 24 TC 10 Z9 10 U1 0 U2 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-0248 J9 J CRYST GROWTH JI J. Cryst. Growth PD APR 15 PY 2009 VL 311 IS 9 BP 2641 EP 2647 DI 10.1016/j.jcrysgro.2009.03.002 PG 7 WC Crystallography; Materials Science, Multidisciplinary; Physics, Applied SC Crystallography; Materials Science; Physics GA 454GY UT WOS:000266671600008 ER PT J AU Schneider, ZV Simmons-Potter, K Boyle, TJ AF Schneider, Z. V. Simmons-Potter, K. Boyle, T. J. TI Photomodification of heteroleptic titanium-based, complex metal alkoxides SO JOURNAL OF NON-CRYSTALLINE SOLIDS LA English DT Article DE Photocatalysis; Optical spectroscopy; Photoinduced effects; Solution chemistry ID SUBSTITUTED AROMATIC KETONES; THIN-FILMS; GEL FILMS; TRANSPARENT AB A heteroleptic titanium metal alkoxide (OPy)(2)Ti(4MP)(2), where OPy=NC5H4(CH2O)-2 and 4MP = OC6H4(SH)-4, was investigated as a candidate precursor for the solution-based (sol-gel) synthesis of titanium oxide via the photoactivation of intermolecular linking reactions (e.g., hydrolysis/condensation). The evolution of the electronic structure of the solution-based molecule arising from conventional (dark) chemical reaction kinetics was compared with that of samples exposed to ultraviolet (UV) radiation at wavelengths of lambda = 337.1 nm and 405 nm using UV-visible absorption spectroscopy. Photoinduced changes in the spectra were examined as a function of both the incident wavelength of exposure and the total fluence. Experimental results confirm the UV-induced modification of spectral absorption features, attributed to ligand-localized and charge transfer transitions accompanied by structural changes associated with hydrolysis and condensation. The photoenhancement of reaction kinetics in these processes was confirmed by the increased modification of the absorption features in the solution spectra, which saturated more rapidly under W-illumination than under dark conditions. Similar saturation behaviors were observed for both the 337.1 nm and the 405 rim incident wavelengths with the same total deposited energy density indicating a relative insensitivity of the photoinduced response to excitation energy for the wavelengths and fluences studied. (C) 2009 Elsevier B.V. All rights reserved. C1 [Schneider, Z. V.; Simmons-Potter, K.] Univ Arizona, Tucson, AZ 85721 USA. [Boyle, T. J.] Sandia Natl Labs, Adv Mat Lab, Albuquerque, NM 87106 USA. RP Schneider, ZV (reprint author), Univ Arizona, 1630 E Univ Blvd, Tucson, AZ 85721 USA. EM ZVS@email.arizona.edu FU United States Department of Energy, Office of Basic Energy Sciences [DE-AC04-94AL85000]; University of Arizona; State of Arizona; TRIF Optics Initiative Program; Sandia National Laboratories FX The authors would like to acknowledge B.C. Potter Jr., J.D. Musgraves, and N. Jacobsen for their contributions to this work. This research was supported by the United States Department of Energy, Office of Basic Energy Sciences. Partial support was also provided by the University of Arizona, State of Arizona, TRIF Optics Initiative Program and by Sandia National Laboratories. Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. NR 14 TC 2 Z9 2 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3093 EI 1873-4812 J9 J NON-CRYST SOLIDS JI J. Non-Cryst. Solids PD APR 15 PY 2009 VL 355 IS 9 BP 536 EP 540 DI 10.1016/j.jnoncrysol.2009.02.002 PG 5 WC Materials Science, Ceramics; Materials Science, Multidisciplinary SC Materials Science GA 444OX UT WOS:000265991400004 ER PT J AU Rest, J Hofman, GL Kim, YS AF Rest, J. Hofman, G. L. Kim, Yeon Soo TI Analysis of intergranular fission-gas bubble-size distributions in irradiated uranium-molybdenum alloy fuel SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID RE-SOLUTION; GROWTH; UO2 AB An analytical model for the nucleation and growth of intra and intergranular fission-gas bubbles is used to characterize fission-gas bubble development in low-enriched U-Mo alloy fuel irradiated in the advanced test reactor in Idaho as part of the Reduced Enrichment for Research and Test Reactor (RERTR) program. Fuel burnup was limited to less than similar to 7.8 at.% U in order to capture the fuel-swelling stage prior to irradiation-induced recrystallization. The model couples the calculation of the time evolution of the average intergranular bubble radius and number density to the calculation of the intergranular bubble-size distribution based on differential growth rate and sputtering coalescence processes. Recent results on TEM analysis of intragranular bubbles in U-Mo were used to set the irradiation-induced diffusivity and re-solution rate in the bubble-swelling model. Using these values, good agreement was obtained for intergranular bubble distribution compared against measured post-irradiation examination (PIE) data using grain-boundary diffusion enhancement factors of 15-125, depending on the Mo concentration. This range of enhancement factors is consistent with values obtained in the literature. (C) 2009 Elsevier B.V. All rights reserved. C1 [Rest, J.; Hofman, G. L.; Kim, Yeon Soo] Argonne Natl Lab, Argonne, IL 60439 USA. RP Rest, J (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM jrest@anl.gov FU US Government [DE-AC-02-06CH11357]; US Department of Energy; Office of Global Threat Reduction; National Nuclear Security Administration (NNSA) [DE-AC-02-06CH11357] FX The submitted manuscript has been authored by a contractor of the US Government under contract NO.DE-AC-02-06CH11357. Accordingly, the US government retains a non-exclusive royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for US Government purposes. Work supported by US Department of Energy, Office of Global Threat Reduction, National Nuclear Security Administration (NNSA), under Contract DE-AC-02-06CH11357. NR 18 TC 23 Z9 23 U1 0 U2 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD APR 15 PY 2009 VL 385 IS 3 BP 563 EP 571 DI 10.1016/j.jnucmat.2009.01.001 PG 9 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 437ED UT WOS:000265468100011 ER PT J AU Miller, MK Chernobaeva, AA Shtrombakh, YI Russell, KF Nanstad, RK Erak, DY Zabusov, OO AF Miller, M. K. Chernobaeva, A. A. Shtrombakh, Y. I. Russell, K. F. Nanstad, R. K. Erak, D. Y. Zabusov, O. O. TI Evolution of the nanostructure of VVER-1000 RPV materials under neutron irradiation and post irradiation annealing SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID PRESSURE-VESSEL STEELS; 3-DIMENSIONAL ATOM-PROBE; CR-MO-V; MICROSTRUCTURAL CHARACTERIZATION; RADIATION EMBRITTLEMENT; APFIM CHARACTERIZATION; POSITRON-ANNIHILATION; WELD; SEGREGATION; PERSPECTIVE AB A high nickel VVER-1000 (15Kh2NMFAA) base metal (1.34 wt% Ni, 0.47% Mn, 0.29% Si and 0.05% Cu), and a high nickel (12Kh2N2MAA) weld metal (1.77 wt% Ni, 0.74% Mn, 0.26% Si and 0.07% Cu) have been characterized by atom probe tomography to determine the changes in the microstructure during neutron irradiation to high fluences. The base metal was studied in the unirradiated condition and after neutron irradiation to fluences between 2.4 and 14.9 x 10(23) m(-2) (E > 0.5 MeV), and the weld metal was studied in the unirradiated condition and after neutron irradiation to fluences between 2.4 and 11.5 x 10(23) m(-2) (E > 0.5 MeV). High number densities of similar to 2-nm-diameter Ni-, Si- and Mn-enriched nanoclusters were found in the neutron irradiated base and weld metals. No significant copper enrichment was associated with these nanoclusters and no copper-enriched precipitates were observed. The number densities of these nanoclusters correlate with the shifts in the Delta T(41) (J) ductile-to-brittle transition temperature. These nanoclusters were present after a post irradiation anneal of 2 h at 450 degrees C, but had dissolved into the matrix after 24 h at 450 degrees C. Phosphorus, nickel, silicon and to a lesser extent manganese were found to be segregated to the dislocations. Published by Elsevier B.V. C1 [Miller, M. K.; Russell, K. F.; Nanstad, R. K.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Chernobaeva, A. A.; Shtrombakh, Y. I.; Erak, D. Y.; Zabusov, O. O.] Kurchatov Inst, Russian Res Ctr, Moscow, Russia. RP Miller, MK (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, POB 2008, Oak Ridge, TN 37831 USA. EM millermk@ornl.gov RI Zabusov, Oleg/N-9307-2013; Shtrombakh, Yaroslav/O-1081-2013; Erak, Dmitry/A-9595-2014 OI Zabusov, Oleg/0000-0003-3482-7885; FU Basic Energy Sciences, U.S. Department of Energy; Office of Nuclear Regulatory Research; U.S. Nuclear Regulatory Commission [1886-N695-3W, DE-AC05-00OR22725]; International Science and Technology Center (ISTC) [3420] FX The authors thank Dr S.S. Babu for providing the DICTRA calculations. Research at the Oak Ridge National Laboratory SHaRE User Facility was sponsored by Basic Energy Sciences, U.S. Department of Energy and by the Office of Nuclear Regulatory Research, U.S. Nuclear Regulatory Commission, under inter-agency agreement 1886-N695-3W and under contract DE-AC05-00OR22725 with UT-Battelle, LLC. Research at the Russian Research Center, Kurchatov Institute was performed under the International Science and Technology Center (ISTC) Project 3420. NR 50 TC 45 Z9 53 U1 2 U2 20 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD APR 15 PY 2009 VL 385 IS 3 BP 615 EP 622 DI 10.1016/j.jnucmat.2009.01.299 PG 8 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 437ED UT WOS:000265468100018 ER PT J AU Ryu, HJ Kim, YS Hofman, GL AF Ryu, Ho Jin Kim, Yeon Soo Hofman, G. L. TI Amorphization of the interaction products in U-Mo/Al dispersion fuel during irradiation SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID POSTIRRADIATION EXAMINATION; REACTION LAYER; MO; URANIUM; REACTORS; BEHAVIOR; SYSTEM; U3SI2 AB The microstructures of the product resulting from interaction between U-Mo fuel particles and the Al matrix in U-Mo/Al dispersion fuel are discussed. We analyzed the available characterization results for the Al matrix dispersion fuels from both the out-of-pile and in-pile tests and examined the difference between these results. The morphology of pores that form in the interaction products during irradiation is similar to the porosity previously observed in irradiation-induced amorphized uranium compounds. The available diffraction studies for the interaction products formed in both the out-of-pile and in-pile tests are analyzed. We have concluded that the interaction products in the U-Mo/Al dispersion fuel are formed as an amorphous state or become amorphous during irradiation, depending on the irradiation conditions. (C) 2009 Elsevier B.V. All rights reserved. C1 [Ryu, Ho Jin] Korea Atom Energy Res Inst, Recycled Fuel Dev Div, Taejon 305353, South Korea. [Kim, Yeon Soo; Hofman, G. L.] Argonne Natl Lab, Argonne, IL 60439 USA. RP Ryu, HJ (reprint author), Korea Atom Energy Res Inst, Recycled Fuel Dev Div, 150 Deokjin Dong, Taejon 305353, South Korea. EM hjryu@kaeri.re.kr RI RYU, HO JIN/J-2764-2013 OI RYU, HO JIN/0000-0002-3387-7381 FU Ministry of Education, Science and Technology of Korea (MEST); Korea Research Foundation [KRF-2005-214-D00116] FX One of the authors is grateful for the support of the National Nuclear Research Program by the Ministry of Education, Science and Technology of Korea (MEST) and the Korea Research Foundation Grant with the Grant number of KRF-2005-214-D00116. NR 34 TC 28 Z9 28 U1 1 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD APR 15 PY 2009 VL 385 IS 3 BP 623 EP 628 DI 10.1016/j.jnucmat.2009.01.306 PG 6 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 437ED UT WOS:000265468100019 ER PT J AU Fu, EG Carter, J Swadener, G Misra, A Shao, L Wang, H Zhang, X AF Fu, E. G. Carter, J. Swadener, G. Misra, A. Shao, L. Wang, H. Zhang, X. TI Size dependent enhancement of helium ion irradiation tolerance in sputtered Cu/V nanolaminates SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID MECHANICAL-PROPERTIES; ALLOYS; METALS; ACCUMULATION; BEHAVIOR; CREEP AB We have investigated the evolution of radiation damage and changes in hardness of sputter-deposited Cu/V nanolaminates upon room temperature helium ion irradiation. As the individual layer thickness decreases from 200 to 5 nm, helium bubble density and radiation hardening both decrease. The magnitude of radiation hardening becomes negligible for individual layer thickness of 2.5 nm or less. These observations indicate that nearly immiscible Cu/V interface can effectively absorb radiation-induced point defects and reduce their concentrations. (C) 2008 Elsevier B.V. All rights reserved. C1 [Fu, E. G.; Zhang, X.] Texas A&M Univ, Dept Mech Engn, Mat Sci & Engn Program, College Stn, TX 77843 USA. [Carter, J.; Shao, L.] Texas A&M Univ, Dept Nucl Engn, College Stn, TX 77843 USA. [Swadener, G.; Misra, A.] Los Alamos Natl Lab, Mat Phys & Applicat Div, Los Alamos, NM 87543 USA. [Wang, H.] Texas A&M Univ, Dept Elect & Comp Engn, College Stn, TX 77843 USA. RP Zhang, X (reprint author), Texas A&M Univ, Dept Mech Engn, Mat Sci & Engn Program, College Stn, TX 77843 USA. EM zhangx@tamu.edu RI Zhang, Xinghang/H-6764-2013; Wang, Haiyan/P-3550-2014; OI Zhang, Xinghang/0000-0002-8380-8667; Wang, Haiyan/0000-0002-7397-1209; Swadener, John G/0000-0001-5493-3461 FU DOE-NERI; Office of Nuclear Energy, Science and Technology; AFCI program [DE-FC07-05ID14657]; NRC Early Career Development FX XZ acknowledges financial support by DOE-NERI, Office of Nuclear Energy, Science and Technology, AFCI program, under Grant No. DE-FC07-05ID14657. L. Shao acknowledges the support from NRC Early Career Development Grant. Discussion with Dr K.T. Hartwig is appreciated. The access to a user facility, the Microscopy and Imaging Center at Texas A&M University, is also acknowledged. NR 20 TC 49 Z9 51 U1 4 U2 26 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD APR 15 PY 2009 VL 385 IS 3 BP 629 EP 632 DI 10.1016/j.jnucmat.2008.12.308 PG 4 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 437ED UT WOS:000265468100020 ER PT J AU Liu, WN Sun, X Stephens, E Khaleel, MA AF Liu, W. N. Sun, X. Stephens, E. Khaleel, M. A. TI Life prediction of coated and uncoated metallic interconnect for solid oxide fuel cell applications SO JOURNAL OF POWER SOURCES LA English DT Article DE Ferritic stainless steel interconnect; Crofer 22 APU; Solid oxide fuel cell (SOFC); Oxide scale; Spinel coating; Indentation test ID FERRITIC STAINLESS-STEELS; OXIDATION BEHAVIOR; STRESS; SCALES; ALLOY; ADHESION; GROWTH; TEMPERATURE; ADDITIONS; COATINGS AB In this paper, we present an integrated experimental and modeling methodology in predicting the life of coated and uncoated metallic interconnect (IC) for solid oxide fuel cell (SOFC) applications. The ultimate goal is to provide cell designer and manufacture with a predictive methodology such that the life of the IC system can be managed and optimized through different coating thickness to meet the overall cell designed life. Crofer 22 APU is used as the example IC material system. The life of coated and uncoated Crofer 22 APU under isothermal cooling was predicted by comparing the predicted interfacial strength and the interfacial stresses induced by the cooling process from the operating temperature to room temperature, together with the measured oxide scale growth kinetics. It was found that the interfacial strength between the oxide scale and the Crofer 22 APU substrate decreases with the growth of the oxide scale, and that the interfacial strength for the oxide scale/spinel coating interface is much higher than that of the oxide scale/Crofer 22 APU substrate interface. As expected, the predicted life of the coated Crofer 22 APU is significantly longer than that of the uncoated Crofer 22 APU. (C) 2009 Elsevier B.V. All rights reserved. C1 [Liu, W. N.; Sun, X.; Stephens, E.; Khaleel, M. A.] Pacific NW Natl Lab, Richland, WA 99354 USA. RP Liu, WN (reprint author), Pacific NW Natl Lab, POB 999,906 Battelle Blvd, Richland, WA 99354 USA. EM wenning.liu@pnl.gov OI khaleel, mohammad/0000-0001-7048-0749 FU U.S. Department of Energy's National Energy Technology Laboratory FX The Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy under Contract DE-AC05-76RL01830. The work was funded as part of the Solid-State Energy Conversion Alliance Core Technology Program by the U.S. Department of Energy's National Energy Technology Laboratory. NR 40 TC 36 Z9 38 U1 1 U2 16 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 J9 J POWER SOURCES JI J. Power Sources PD APR 15 PY 2009 VL 189 IS 2 BP 1044 EP 1050 DI 10.1016/j.jpowsour.2008.12.143 PG 7 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA 434YN UT WOS:000265310300026 ER PT J AU Wu, JW Johnson, CD Gemmen, RS Liu, XB AF Wu, Junwei Johnson, Christopher D. Gemmen, Randall S. Liu, Xingbo TI The performance of solid oxide fuel cells with Mn-Co electroplated interconnect as cathode current collector SO JOURNAL OF POWER SOURCES LA English DT Article DE On-cell test; SOFC; Interconnect; Spinel; Electroplating ID FERRITIC STAINLESS-STEELS; SOFC METALLIC INTERCONNECTS; OXIDATION RESISTANCE; ALLOY INTERCONNECT; THERMAL-EXPANSION; COATINGS; DEGRADATION; DEPOSITION; REDUCTION; COBALT AB To add a coating on a metallic interconnect is one option to prevent Cr poisoning of the cathode and to retain high conductivity during solid oxide fuel cells (SOFC) operation. Electroplating of metals or alloys followed by oxidation offers a cost-effective method. In this study, pure Co and Mn/Co alloys formed by electrodeposition are used to protect the substrate, SUS 430. On-cell tests, using uncoated, cobalt-coated and MnCo-coated interconnects were conducted at 375 mA cm(-2) for 323, 500 and 820 h, respectively. The results show that cell power degrades at a rate of 33% in 320h using an uncoated interconnect. Significant improvements are obtained for cell tests utilizing unoptimized coated interconnects with the degradation rate of 5% and 9% per 1000 h for cobalt and MnCo coatings, respectively. Based on the results from SEM and XRD studies, the advantages of both coatings are to successfully inhibit Cr diffusion to the scale surface. However, thin (similar to 2 mu m) cobalt coating allows fast scale growth, while thicker cobalt coatings have the potential to fail due to mismatch in the coefficient of temperature expansion (CTE) between Co(3)O(4) and the SUS 430 substrate. In spite of higher degradation rate for the MnCo coatings evaluated here, the addition of Mn into the cobalt coating not only aids in suppression of scale growth, but also reduces the CTE mismatch. Furthermore, no performance decay after two thermal cycles was observed. Finally, the cell degradation was observed to have a correlation with the cell cathode interlayer microstructure. (C) 2008 Elsevier B.V. All rights reserved. C1 [Wu, Junwei; Johnson, Christopher D.; Gemmen, Randall S.; Liu, Xingbo] US DOE, Natl Energy Technol Lab, Morgantown, WV 26507 USA. [Wu, Junwei; Liu, Xingbo] W Virginia Univ, Dept Mech & Aerosp Engn, Morgantown, WV 26506 USA. RP Liu, XB (reprint author), US DOE, Natl Energy Technol Lab, Morgantown, WV 26507 USA. EM xingbo.liu@mail.wvu.edu NR 36 TC 60 Z9 62 U1 6 U2 35 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 J9 J POWER SOURCES JI J. Power Sources PD APR 15 PY 2009 VL 189 IS 2 BP 1106 EP 1113 DI 10.1016/j.jpowsour.2008.12.079 PG 8 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA 434YN UT WOS:000265310300034 ER PT J AU Zhang, YH Cao, R Yin, F Hudock, MP Guo, RT Krysiak, K Mukherjee, S Gao, YG Robinson, H Song, Y No, JH Bergan, K Leon, A Cass, L Goddard, A Chang, TK Lin, FY Van Beek, E Papapoulos, S Wang, AHJ Kubo, T Ochi, M Mukkamala, D Oldfield, E AF Zhang, Yonghui Cao, Rong Yin, Fenglin Hudock, Michael P. Guo, Rey-Ting Krysiak, Kilannin Mukherjee, Sujoy Gao, Yi-Gui Robinson, Howard Song, Yongcheng No, Joo Hwan Bergan, Kyle Leon, Annette Cass, Lauren Goddard, Amanda Chang, Ting-Kai Lin, Fu-Yang Van Beek, Ermond Papapoulos, Socrates Wang, Andrew H. -J. Kubo, Taclahiko Ochi, Mitsuo Mukkamala, Dushyant Oldfield, Eric TI Lipophilic Bisphosphonates as Dual Farnesyl/Geranylgeranyl Diphosphate Synthase Inhibitors: An X-ray and NMR Investigation SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID NITROGEN-CONTAINING BISPHOSPHONATES; GERANYLGERANYL PYROPHOSPHATE SYNTHASE; ZOLEDRONIC ACID; IN-VIVO; ISOPRENOID BIOSYNTHESIS; TRYPANOSOMA-BRUCEI; ELECTRON-DENSITY; STRUCTURAL BASIS; T-CELLS; CANCER AB Considerable effort has focused on the development of selective protein farnesyl transferase (FTase) and protein geranylgeranyl transferase (GGTase) inhibitors as cancer chemwotherapeutics. Here, we report a new strategy for anticancer therapeutic agents involving inhibition of farnesyl diphosphate synthase (FPPS) and geranylgeranyl diphosphate synthase (GGPPS), the two enzymes upstream of FTase and GGTase, by lipophilic bisphosphonates. Due to dual site targeting and decreased polarity, the compounds have activities far greater than do current bisphosphonate drugs in inhibiting tumor cell growth and invasiveness, both in vitro and in vivo. We explore how these compounds inhibit cell growth and how cell activity can be predicted based on enzyme inhibition data, and using X-ray diffraction, solid state NMR, and isothermal titration calorimetry, we show how these compounds bind to FPPS and/or GGPPS. C1 [Zhang, Yonghui; Krysiak, Kilannin; Gao, Yi-Gui; Song, Yongcheng; Bergan, Kyle; Cass, Lauren; Goddard, Amanda; Chang, Ting-Kai; Oldfield, Eric] Univ Illinois, Dept Chem, Urbana, IL 61801 USA. [Cao, Rong; Yin, Fenglin; Hudock, Michael P.; Mukherjee, Sujoy; No, Joo Hwan; Leon, Annette; Lin, Fu-Yang; Mukkamala, Dushyant; Oldfield, Eric] Univ Illinois, Ctr Biophys & Computat Biol, Urbana, IL 61801 USA. [Guo, Rey-Ting; Wang, Andrew H. -J.] Acad Sinica, Inst Biol Chem, Sect 2, Taipei 115, Taiwan. [Robinson, Howard] Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. [Van Beek, Ermond; Papapoulos, Socrates] Leiden Univ, Med Ctr, Dept Endocrinol & Metab Dis, Leiden, Netherlands. [Kubo, Taclahiko; Ochi, Mitsuo] Hiroshima Univ, Dept Orthoped Surg, Grad Sch Biomed Sci, Minami Ku, Hiroshima 7348551, Japan. RP Oldfield, E (reprint author), Univ Illinois, Dept Chem, 600 S Mathews Ave, Urbana, IL 61801 USA. EM eo@chad.scs.uiuc.edu RI Hudock, Michael/B-3781-2009; Cao, Rong/A-7943-2010; Mukherjee, Sujoy/E-5708-2011; OI Krysiak, Kilannin/0000-0002-6299-9230 FU United States Public Health Service [GM065307, GM073216]; American Heart Association; Midwest Affiliate. [0615564Z]; NIH Institutional NRSA in Molecular Biophysics [GM008276]; Leukemia and Lymphoma Society Special Fellowship FX We thank K. Kavanagh and U. Oppermann for providing the human FPPS expression system and for providing unpublished results and H. Sagarni for providing the human GGPPS expression system. We thank the staff of the Brookhaven National Laboratory, SER-CAT Advanced Photon Source at Argonne National Laboratory, and the National Synchrotron Radiation Research Center (Taiwan) Beamlines, for synchrotron time and support. This work was supported by the United States Public Health Service (NIH Grants GM065307 and GM073216). Y.Z. was supported by a Postdoctoral Fellowship from the American Heart Association, Midwest Affiliate. A.L. was supported by an NIH Institutional NRSA in Molecular Biophysics (Grant GM008276). S.M. was supported by a Predoctoral Fellowship from the American Heart Association, Midwest Affiliate (Award 0615564Z). Y.S. was supported by a Leukemia and Lymphoma Society Special Fellowship. The coordinates for the FPPS and GGPPS structures have been deposited in the Protein Data Bank as 2opm, 3dyf, 3dyg, 3dyh, 3efq, 3egt, 2zeu, and 2zev. NR 40 TC 99 Z9 100 U1 3 U2 33 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD APR 15 PY 2009 VL 131 IS 14 BP 5153 EP 5162 DI 10.1021/ja808285e PG 10 WC Chemistry, Multidisciplinary SC Chemistry GA 431CN UT WOS:000265039000040 PM 19309137 ER PT J AU Appel, AM Lee, SJ Franz, JA DuBois, DL DuBois, MR AF Appel, Aaron M. Lee, Suh-Jane Franz, James A. DuBois, Daniel L. DuBois, M. Rakowski TI Free Energy Landscapes for S-H Bonds in (Cp2Mo2S4)-Mo-star Complexes SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID MONONUCLEAR MOLYBDENUM ENZYMES; HYDRIDE DONOR ABILITIES; METAL FORMYL COMPLEXES; SULFIDO LIGANDS; DIMOLYBDENUM COMPLEXES; SULFUR DIMERS; HYDROGEN; ACTIVATION; CLUSTERS; ACETONITRILE AB An extensive family of thermochemical data is presented for a series of complexes derived from CP*Mo(mu-S)(2)(mu-SMe)(mu-SH)MoCp* and Cp*Mo(mu-S)(2)(mu-SH)(2)MoCP*. These data include electrochemical potentials, pK(a) values, homolytic solution bond dissociation free energies (SBDFEs), and hydride donor abilities in acetonitrile. Thermochernical data ranged from +0.6 to -2.0 V vs FeCp2+/o for electrochemical potentials, 5 to 31 for pK(a) values, 43 to 68 kcal/mol for homolytic SBDFEs, and 44 to 84 kcal/mol for hydride donor abilities. The observed values for these thermodynamic parameters are comparable to those of many transition metal hydrides, which is consistent with the many parallels in the chemistry of these two classes of compounds. The extensive set of thermochemical data is presented in free energy landscapes as a useful approach to visualizing and understanding the relative stabilities of all of the species under varying conditions of pH and H-2 overpressure. In addition to the previously studied homogeneous reactivity and catalysis, Mo2S4 complexes are also models for heterogeneous molybdenum sulfide catalysts, and therefore, the present results demonstrate the dramatic range of S-H bond strengths available in both homogeneous and heterogeneous reaction pathways. C1 [Appel, Aaron M.; Lee, Suh-Jane; Franz, James A.; DuBois, Daniel L.; DuBois, M. Rakowski] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Franz, JA (reprint author), Pacific NW Natl Lab, POB 999, Richland, WA 99352 USA. EM james.franz@pnl.gov OI Appel, Aaron/0000-0002-5604-1253 FU U.S. Department of Energy's (DOE) Office of Basic Energy Sciences; Chemical Sciences program FX This work was supported by the U.S. Department of Energy's (DOE) Office of Basic Energy Sciences, Chemical Sciences program. The Pacific Northwest National Laboratory is operated by Battelle for DOE. NR 53 TC 28 Z9 28 U1 2 U2 19 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD APR 15 PY 2009 VL 131 IS 14 BP 5224 EP 5232 DI 10.1021/ja8093179 PG 9 WC Chemistry, Multidisciplinary SC Chemistry GA 431CN UT WOS:000265039000048 PM 19309157 ER PT J AU Spies, MA Reese, JG Dodd, D Pankow, KL Blanke, SR Baudry, J AF Spies, M. Ashley Reese, Joseph G. Dodd, Dylan Pankow, Katherine L. Blanke, Steven R. Baudry, Jerome TI Determinants of Catalytic Power and Ligand Binding in Glutamate Racemase SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID TRANSITION-STATE ANALOGS; PURINE NUCLEOSIDE PHOSPHORYLASE; MOLECULAR-DYNAMICS SIMULATIONS; TRANSFER RNA-SYNTHETASE; GRAM-POSITIVE BACTERIA; AMINO CARBON ACIDITY; ALANINE RACEMASE; BACILLUS-ANTHRACIS; PROLINE RACEMASE; ENZYMATIC CATALYSIS AB Glutamate racemases (EC 5.1.1.3) catalyze the cofactor-independent stereoinversion of D- and L-glutamate and are important for viability in several Gram-negative and -positive bacteria. As the only enzyme involved in the stereoinversion Of L- to D-glutamate for peptidoglycan biosynthesis, glutamate racemase is an attractive target for the design of antibacterial agents. However, the development of competitive tight-binding inhibitors has been problematic and highly species specific. Despite a number of recent crystal structures of cofactor-independent epimerases and racemases, cocrystallized with substrates or substrate analogues, the source of these enzymes' catalytic power and their ability to acidify the C alpha of amino acids remains unknown. The present integrated computational and experimental study focuses on the glutamate racemase from Bacillus subtilis (RacE). A particular focus is placed on the interaction of the glutamate carbanion intermediate with RacE. Results suggest that the reactive form of the RacE-glutamate carbanion complex, vis-a-vis proton abstraction from Ca, is significantly different than the RacE-D-glutamate complex on the basis of the crystal structure and possesses dramatically stronger enzyme-ligand interaction energy. In silico and experimental site-directed mutagenesis indicates that the strength of the RacE-glutamate carbanion interaction energy is highly distributed among numerous electrostatic interactions in the active site, rather than being dominated by strong hydrogen bonds. Results from this study are important for laying the groundwork for discovery and design of high-affinity ligands to this class of cofactor-independent racemases. C1 [Spies, M. Ashley; Reese, Joseph G.; Pankow, Katherine L.] Univ Illinois, Dept Biochem, Urbana, IL 61801 USA. [Spies, M. Ashley; Blanke, Steven R.] Univ Illinois, Inst Genom Biol, Urbana, IL 61801 USA. [Dodd, Dylan; Blanke, Steven R.] Univ Illinois, Dept Microbiol, Urbana, IL 61801 USA. [Baudry, Jerome] Oak Ridge Natl Lab, Ctr Biophys Mol, Oak Ridge, TN 37830 USA. [Baudry, Jerome] Univ Tennessee, Dept Biochem & Cellular & Mol Biol, Knoxville, TN 37996 USA. RP Spies, MA (reprint author), Univ Illinois, Dept Biochem, Urbana, IL 61801 USA. EM aspies@life.uiuc.edu FU NIH [A1076830, A1057156] FX This work was supported by NIH A1076830 (M.A.S.) and NIH A1057156 (S.R.B.). NR 89 TC 18 Z9 18 U1 2 U2 11 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD APR 15 PY 2009 VL 131 IS 14 BP 5274 EP 5284 DI 10.1021/ja809660g PG 11 WC Chemistry, Multidisciplinary SC Chemistry GA 431CN UT WOS:000265039000054 PM 19309142 ER PT J AU Sadtler, B Demchenko, DO Zheng, H Hughes, SM Merkle, MG Dahmen, U Wang, LW Alivisatos, AP AF Sadtler, Bryce Demchenko, Denis O. Zheng, Haimei Hughes, Steven M. Merkle, Maxwell G. Dahmen, Ulrich Wang, Lin-Wang Alivisatos, A. Paul TI Selective Facet Reactivity during Cation Exchange in Cadmium Sulfide Nanorods SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID TOTAL-ENERGY CALCULATIONS; WAVE BASIS-SET; CDSE NANOCRYSTALS; HYBRID NANOCRYSTALS; QUANTUM RODS; GROWTH; HETEROSTRUCTURES; NANOPARTICLES; CHALCOCITE; KINETICS AB The partial transformation of ionic nanocrystals through cation exchange has been used to synthesize nanocrystal heterostructures. We demonstrate that the selectivity for cation exchange to take place at different facets of the nanocrystal plays an important role in determining the resulting morphology of the binary heterostructure. In the case of copper(I) (Cu(+)) cation exchange in cadmium sulfide (CdS) nanorods, the reaction starts preferentially at the ends of the nanorods such that copper sulfide (Cu(2)S) grows inward from either end. The resulting morphology is very different from the striped pattern obtained in our previous studies of silver(I) (Ag(+)) exchange in CdS nanorods where nonselective nucleation of silver sulfide (Ag(2)S) occurs (Robinson, R. D.; Sadtler, B.; Demchenko, D. O.; Erdonmez, C. K.; Wang, L.-W.; Alivisatos, A. P. Science 2007, 317, 355-358). From interface formation energies calculated for several models of epitaxial connections between CdS and Cu(2)S or Ag(2)S, we infer the relative stability of each interface during the nucleation and growth of Cu(2)S or Ag(2)S within the CdS nanorods. The epitaxial attachments of Cu(2)S to the end facets of CdS nanorods minimize the formation energy, making these interfaces stable throughout the exchange reaction. Additionally, as the two end facets of wurtzite CdS nanorods are crystallographically nonequivalent, asymmetric heterostructures can be produced. C1 [Sadtler, Bryce; Zheng, Haimei; Hughes, Steven M.; Merkle, Maxwell G.; Alivisatos, A. Paul] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Sadtler, Bryce; Zheng, Haimei; Dahmen, Ulrich; Alivisatos, A. Paul] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Demchenko, Denis O.; Wang, Lin-Wang] Univ Calif Berkeley, Lawrence Berkeley Lab, Computat Res Div, Berkeley, CA 94720 USA. RP Alivisatos, AP (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM alivis@berkeley.edu RI Alivisatos , Paul /N-8863-2015 OI Alivisatos , Paul /0000-0001-6895-9048 FU Director, Office of Science; Office of Basic Energy Sciences; U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. The synthetic chemistry was developed under funding through the Helios Solar Energy Research Center at Lawrence Berkeley National Laboratory (LBNL). The theoretical modeling used computational facilities at the National Energy Research Scientific Computing Center (NERSC) at LBNL. EFTEM imaging was performed at the National Center for Electron Microscopy (NCEM) at LBNL. H.Z. thanks M. Watanabe, Z. Lee, and C. Song for their advice on EFTEM imaging. D.O.D. thanks W. L. Lambrecht and P. Lukashev for providing the atomic structure for high-temperature chalcocite. We thank R. Robinson for useful discussions. NR 36 TC 205 Z9 206 U1 12 U2 212 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD APR 15 PY 2009 VL 131 IS 14 BP 5285 EP 5293 DI 10.1021/ja809854q PG 9 WC Chemistry, Multidisciplinary SC Chemistry GA 431CN UT WOS:000265039000055 PM 19351206 ER PT J AU Abrahams, MR Anderson, JA Giorgi, EE Seoighe, C Mlisana, K Ping, LH Athreya, GS Treurnicht, FK Keele, BF Wood, N Salazar-Gonzalez, JF Bhattacharya, T Chu, H Hoffman, I Galvin, S Mapanje, C Kazembe, P Thebus, R Fiscus, S Hide, W Cohen, MS Karim, SA Haynes, BF Shaw, GM Hahn, BH Korber, BT Swanstrom, R Williamson, C AF Abrahams, M. -R. Anderson, J. A. Giorgi, E. E. Seoighe, C. Mlisana, K. Ping, L. -H. Athreya, G. S. Treurnicht, F. K. Keele, B. F. Wood, N. Salazar-Gonzalez, J. F. Bhattacharya, T. Chu, H. Hoffman, I. Galvin, S. Mapanje, C. Kazembe, P. Thebus, R. Fiscus, S. Hide, W. Cohen, M. S. Karim, S. Abdool Haynes, B. F. Shaw, G. M. Hahn, B. H. Korber, B. T. Swanstrom, R. Williamson, C. CA CAPRISA 002 Acute Infection Study Team Ctr Hiv-AIDS Vaccine Immunology Co TI Quantitating the Multiplicity of Infection with Human Immunodeficiency Virus Type 1 Subtype C Reveals a Non-Poisson Distribution of Transmitted Variants SO JOURNAL OF VIROLOGY LA English DT Article ID PRIMARY HIV-INFECTION; RECOMBINATION DETECTION; DISEASE PROGRESSION; GENETIC ALGORITHM; MALE CIRCUMCISION; MALE TRANSMISSION; IN-VIVO; DIVERSITY; FEMALE; COHORT AB Identifying the specific genetic characteristics of successfully transmitted variants may prove central to the development of effective vaccine and microbicide interventions. Although human immunodeficiency virus transmission is associated with a population bottleneck, the extent to which different factors influence the diversity of transmitted viruses is unclear. We estimate here the number of transmitted variants in 69 heterosexual men and women with primary subtype C infections. From 1,505 env sequences obtained using a single genome amplification approach we show that 78% of infections involved single variant transmission and 22% involved multiple variant transmissions (median of 3). We found evidence for mutations selected for cytotoxic-T-lymphocyte or antibody escape and a high prevalence of recombination in individuals infected with multiple variants representing another potential escape pathway in these individuals. In a combined analysis of 171 subtype B and C transmission events, we found that infection with more than one variant does not follow a Poisson distribution, indicating that transmission of individual virions cannot be seen as independent events, each occurring with low probability. While most transmissions resulted from a single infectious unit, multiple variant transmissions represent a significant fraction of transmission events, suggesting that there may be important mechanistic differences between these groups that are not yet understood. C1 [Williamson, C.] Univ Cape Town, Fac Hlth Sci, Div Med Virol, Inst Infect Dis & Mol Med, ZA-7925 Cape Town, South Africa. [Anderson, J. A.; Ping, L. -H.; Chu, H.; Hoffman, I.; Galvin, S.; Fiscus, S.; Cohen, M. S.; Swanstrom, R.] Univ N Carolina, Chapel Hill, NC USA. [Giorgi, E. E.; Athreya, G. S.; Bhattacharya, T.; Korber, B. T.] Los Alamos Natl Lab, Los Alamos, NM USA. [Giorgi, E. E.] Univ Massachusetts, Amherst, MA 01003 USA. [Mlisana, K.; Karim, S. Abdool] Univ KwaZulu Natal, Ctr AIDS Programme Res S Africa, Durban, South Africa. [Keele, B. F.; Salazar-Gonzalez, J. F.; Shaw, G. M.; Hahn, B. H.] Univ Alabama Birmingham, Birmingham, AL USA. [Bhattacharya, T.; Korber, B. T.] Santa Fe Inst, Santa Fe, NM 87501 USA. [Mapanje, C.; Kazembe, P.] Kamuzu Cent Hosp, Lilongwe, Malawi. [Hide, W.] Univ Western Cape, S African Bioinformat Inst, Cape Town, South Africa. [Haynes, B. F.] Duke Univ, Med Ctr, Durham, NC USA. RP Williamson, C (reprint author), Univ Cape Town, Fac Hlth Sci, Div Med Virol, Inst Infect Dis & Mol Med, ZA-7925 Cape Town, South Africa. EM carolyn.williamson@uct.ac.za RI Hide, Winston Hide/C-7217-2009; Chu, Haitao /J-7576-2012; Bhattacharya, Tanmoy/J-8956-2013; OI Hide, Winston Hide/0000-0002-8621-3271; Bhattacharya, Tanmoy/0000-0002-1060-652X; Mlisana, Koleka/0000-0002-8436-3268; , Carolyn/0000-0003-0125-1226; Chu, Haitao/0000-0003-0932-598X; Korber, Bette/0000-0002-2026-5757; Abdool Karim, Salim/0000-0002-4986-2133 FU National Institute of Allergy and Infectious Diseases; National Institutes of Health; U. S. Department of Health and Human Services [AI51794, DK49381]; National Research Foundation [67385]; South African AIDS Vaccine Initiative; amFAR [106997-43] FX This study was funded by the National Institute of Allergy and Infectious Diseases, National Institutes of Health, and the U. S. Department of Health and Human Services (AI51794, CAPRISA; DK49381 [M.S.C.], CHAVI), as well as by the National Research Foundation (no. 67385) ( South Africa), the South African AIDS Vaccine Initiative, and amFAR grant 106997-43. We thank the clinical staff and participants from the CAPRISA, CHAVI, and Malawi STI cohorts; Darren Marten for critical comments; and Leslie Arney for assistance with the graphics. We also thank the clinical staff from the CHAVI Lilongwe cohorts, including Francis Martinson, Gift Kamanga, Happiness Kanyamula, and Deborah Kamwendo, for their support. NR 47 TC 204 Z9 206 U1 1 U2 14 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0022-538X J9 J VIROL JI J. Virol. PD APR 15 PY 2009 VL 83 IS 8 BP 3556 EP 3567 DI 10.1128/JVI.02132-08 PG 12 WC Virology SC Virology GA 420ZI UT WOS:000264327300014 PM 19193811 ER PT J AU Bilheux, JC Alton, GD AF Bilheux, J. -C. Alton, G. D. TI A fast-valve system for characterizing effusive-flow properties of vapor-transport systems: RIB applications SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS LA English DT Article DE Effusive flow; Molecular flow; Vapor-transport system; Monte-Carlo simulation; ISOL target; Radioactive Ion Beam ID PRODUCTION TARGET APPLICATIONS; COMPOUND MATERIALS; ION-SOURCE; FACILITIES; EFFICIENCY; MATRICES; RELEASE AB Decay losses, associated with the times required for particles to diffuse from ISOL production targets and to effusively-flow to an ion source, must be reduced to as low as practically achievable levels in order to deliver useful beam intensities of short-lived isotopes for research at ISCL based Radioactive Ion Beam (RIB) facilities. We have developed a fast-valve system and complementary 3-D Monte-Carlo code which can be used separately or in combination to assess the effusive-flow properties of vapor-transport systems, independent of size, geometry and chemical properties of the transport species. In this report, we describe the fast valve and present time spectra and characteristic time data for noble gases flowing through serial- and parallel-coupled vapor-transport systems similar in geometry but longer than those used for RIB generation at the HRIBF with and without target coating matrices. (C) 2009 Published by Elsevier B.V. C1 [Bilheux, J. -C.; Alton, G. D.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Alton, GD (reprint author), Oak Ridge Natl Lab, POB 2008, Oak Ridge, TN 37831 USA. EM gda@ornl.gov RI Bilheux, Jean/A-2823-2016 OI Bilheux, Jean/0000-0003-2172-6487 FU US Department of Energy [DE-AC05-00OR22725] FX The authors are indebted to students and staff members of the Advanced Concept Research and Development Group, who through their diligent efforts, contributed to the content of this paper through execution of effusive-flow measurements used to validate the fast-valve system described in this report. This work was supported by the US Department of Energy under contract DE-AC05-00OR22725 with UT Battelle. NR 19 TC 2 Z9 2 U1 1 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-583X J9 NUCL INSTRUM METH B JI Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms PD APR 15 PY 2009 VL 267 IS 7 BP 1187 EP 1192 DI 10.1016/j.nimb.2008.12.019 PG 6 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Atomic, Molecular & Chemical; Physics, Nuclear SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 446XN UT WOS:000266155000026 ER PT J AU Apollonio, M Artamonov, A Bagulya, A Barr, G Blondel, A Bobisut, F Bogomilov, M Bonesini, M Booth, C Borghi, S Bunyatov, S Burguet-Castell, J Catanesi, MG Cervera-Villanueva, A Chimenti, P Coney, L Di Capua, E Dore, U Dumarchez, J Edgecock, R Ellis, M Ferri, F Gastaldi, U Giani, S Giannini, G Gibin, D Gilardoni, S Gorbunov, P Gossling, C Gomez-Cadenas, JJ Grant, A Graulich, JS Gregoire, G Grichine, V Grossheim, A Guglielmi, A Howlett, L Ivanchenko, A Ivanchenko, V Kayis-Topaksu, A Kirsanov, M Kolev, D Krasnoperov, A Martin-Albo, J Meurer, C Mezzetto, M Mills, GB Morone, MC Novella, P Orestano, D Palladino, V Panman, J Papadopoulos, I Pastore, F Piperov, S Polukhina, N Popov, B Prior, G Radicioni, E Schmitz, D Schroeter, R Skoro, G Sorel, M Tcherniaev, E Temnikov, P Tereschenko, V Tonazzo, A Tortora, L Tsenov, R Tsukerman, I Vidal-Sitjes, G Wiebusch, C Zucchelli, P AF Apollonio, M. Artamonov, A. Bagulya, A. Barr, G. Blondel, A. Bobisut, F. Bogomilov, M. Bonesini, M. Booth, C. Borghi, S. Bunyatov, S. Burguet-Castell, J. Catanesi, M. G. Cervera-Villanueva, A. Chimenti, P. Coney, L. Di Capua, E. Dore, U. Dumarchez, J. Edgecock, R. Ellis, M. Ferri, F. Gastaldi, U. Giani, S. Giannini, G. Gibin, D. Gilardoni, S. Gorbunov, P. Goessling, C. Gomez-Cadenas, J. J. Grant, A. Graulich, J. S. Gregoire, G. Grichine, V. Grossheim, A. Guglielmi, A. Howlett, L. Ivanchenko, A. Ivanchenko, V. Kayis-Topaksu, A. Kirsanov, M. Kolev, D. Krasnoperov, A. Martin-Albo, J. Meurer, C. Mezzetto, M. Mills, G. B. Morone, M. C. Novella, P. Orestano, D. Palladino, V. Panman, J. Papadopoulos, I. Pastore, F. Piperov, S. Polukhina, N. Popov, B. Prior, G. Radicioni, E. Schmitz, D. Schroeter, R. Skoro, G. Sorel, M. Tcherniaev, E. Temnikov, P. Tereschenko, V. Tonazzo, A. Tortora, L. Tsenov, R. Tsukerman, I. Vidal-Sitjes, G. Wiebusch, C. Zucchelli, P. CA HARP Collaboration TI Forward production of charged pions with incident pi(+/-) on nuclear targets measured at the CERN PS SO NUCLEAR PHYSICS A LA English DT Article DE NUCLEAR REACTIONS Be,C,Al,Cu,Sn,Ta,Pb(pi(+), pi(+/-)), (pi(-), pi(+/-)), E at 3, 5, 8, 12 GeV/c; Be(pi(+), pi(+/-)), (pi(-), pi(+/-)), E at 8.9 GeV/c; Al(pi(+), pi(+/-)), (pi(-), pi(+/-)), E at 12.9 GeV/c; measured sigma (E, theta), pion production yields. Comparison with Monte Carlo simulations ID 450 GEV/C PROTONS; PRODUCTION CROSS-SECTION; LARGE-ANGLE PRODUCTION; PARTICLE-PRODUCTION; POSITIVE PIONS; BERYLLIUM; HARP; DETECTOR; GEANT4 AB Measurements of the double-differential pi(+/-) production cross-section in the range of momentum 0.5 GeV/c <= p <= 8.0 GeV/c and angle 0.025 rad <= theta <= 0.25 rad in interactions of charged pions oil beryllium, carbon, aluminium, copper, tin, tantalum and lead are presented. These data represent the first experimental campaign to systematically measure forward pion hadroproduction. The data were taken with the large acceptance HARP detector in the T9 beam line of the CERN PS. Incident particles, impinging on a 5% nuclear interaction length target, were identified by an elaborate system of beam detectors. The tracking and identification of the produced particles was performed using the forward spectrometer of the HARP detector. Results are obtained for the double-differential cross-sections d(2)sigma/dpd Omega mainly at four incident pion beam momenta (3 GeV/c, 5 GeV/c, 8 GeV/c and 12 GeV/c). The measurements are compared with the GEANT4 and MARS Monte Carlo simulation. (C) 2009 Elsevier B.V. All rights reserved. C1 [Bonesini, M.; Ferri, F.] Sez INFN Milano Bicocca, Milan, Italy. [Catanesi, M. G.; Radicioni, E.] Sezione Ist Nazl Fis Nucl, Bari, Italy. [Edgecock, R.; Ellis, M.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Goessling, C.] Univ Dortmund, Inst Phys, D-44221 Dortmund, Germany. [Bunyatov, S.; Krasnoperov, A.; Popov, B.; Tereschenko, V.] Joint Inst Nucl Res, Dubna, Russia. [Di Capua, E.; Vidal-Sitjes, G.] Univ Ferrara, I-44100 Ferrara, Italy. [Di Capua, E.; Vidal-Sitjes, G.] Ist Nazl Fis Nucl, Ferrara, Italy. [Artamonov, A.; Giani, S.; Gilardoni, S.; Gorbunov, P.; Grant, A.; Grossheim, A.; Ivanchenko, A.; Ivanchenko, V.; Kayis-Topaksu, A.; Panman, J.; Papadopoulos, I.; Tcherniaev, E.; Wiebusch, C.; Zucchelli, P.] CERN, Geneva, Switzerland. [Blondel, A.; Morone, M. C.; Prior, G.; Schroeter, R.] Univ Geneva, Sect Phys, CH-1211 Geneva 4, Switzerland. [Meurer, C.] Forschungszentrum, Inst Phys, Karlsruhe, Germany. [Gastaldi, U.] Ist Nazl Fis Nucl, Lab Nazl Legnaro, I-35020 Legnaro, Italy. [Graulich, J. S.; Gregoire, G.] UCL, Inst Phys Nucl, Louvain, Belgium. [Bagulya, A.; Kirsanov, M.] Russian Acad Sci, Inst Nucl Res, Moscow, Russia. [Grichine, V.; Polukhina, N.] Russian Acad Sci, PN Lebedev Phys Inst FIAN, Moscow, Russia. [Palladino, V.] Univ Naples Federico II, Naples, Italy. [Palladino, V.] Sezione Ist Nazl Fis Nucl, Naples, Italy. [Barr, G.; Borghi, S.] Univ Oxford, Nucl & Astrophys Lab, Oxford OX1 2JD, England. [Bobisut, F.; Gibin, D.; Guglielmi, A.; Mezzetto, M.] Sezione Ist Nazl Fis Nucl, Padua, Italy. [Dumarchez, J.] Univ Paris 06, LPNHE, Paris, France. [Dumarchez, J.] Univ Paris 07, LPNHE, Paris, France. [Dore, U.] Univ Roma La Sapienza, Rome, Italy. [Dore, U.] Sez INFN Roma 1, Rome, Italy. [Howlett, L.; Orestano, D.; Pastore, F.; Tonazzo, A.; Tortora, L.] Sez INFN Roma III, Rome, Italy. [Booth, C.; Skoro, G.] Univ Sheffield, Dept Phys, Sheffield S10 2TN, S Yorkshire, England. [Bogomilov, M.; Kolev, D.; Piperov, S.; Tsukerman, I.] Sofia Univ St Kliment Ohridski, Fac Phys, Sofia, Bulgaria. [Temnikov, P.] Bulgarian Acad Sci, Inst Nucl Res & Nucl Energy, Sofia, Bulgaria. [Apollonio, M.; Chimenti, P.; Giannini, G.] Univ Trieste, Trieste, Italy. [Apollonio, M.; Chimenti, P.; Giannini, G.] Ist Nazl Fis Nucl, Trieste, Italy. [Burguet-Castell, J.; Cervera-Villanueva, A.; Gomez-Cadenas, J. J.; Martin-Albo, J.; Novella, P.; Sorel, M.] CSIC, IFIC, Inst Fis Corpuscular, Madrid, Spain. [Burguet-Castell, J.; Cervera-Villanueva, A.; Gomez-Cadenas, J. J.; Novella, P.; Sorel, M.] Univ Valencia, E-46003 Valencia, Spain. [Mills, G. B.] Los Alamos Natl Lab, Los Alamos, NM USA. [Coney, L.; Schmitz, D.] Columbia Univ, New York, NY USA. [Bobisut, F.; Gibin, D.] Univ Padua, Padua, Italy. [Mills, G. B.; Orestano, D.; Pastore, F.] Univ Rome III, Rome, Italy. RP Bonesini, M (reprint author), Sez INFN Milano Bicocca, Milan, Italy. EM maurizio.bonesini@mib.infn.it RI Graulich, Jean-Sebastien/B-4806-2009; Skoro, Goran/F-3642-2010; Chimenti, Pietro/F-9898-2012; Wiebusch, Christopher/G-6490-2012; Prior, Gersende/I-8191-2013; Bagulya, Alexander/D-4273-2014; Novella, Pau/K-2845-2014; Gomez Cadenas, Juan Jose/L-2003-2014; Temnikov, Petar/L-6999-2016; Skoro, Goran/P-1229-2014; Grichine, Vladimir/M-8526-2015; Polukhina, Natalia/E-1610-2014; Tcherniaev, Evgueni/G-3453-2016; Morone, Maria Cristina/P-4407-2016; Booth, Christopher/B-5263-2016; OI Chimenti, Pietro/0000-0002-9755-5066; Wiebusch, Christopher/0000-0002-6418-3008; Novella, Pau/0000-0002-0923-3172; Gomez Cadenas, Juan Jose/0000-0002-8224-7714; Temnikov, Petar/0000-0002-9559-3384; Skoro, Goran/0000-0001-7745-9045; Tcherniaev, Evgueni/0000-0002-3685-0635; Morone, Maria Cristina/0000-0002-0200-0632; Bonesini, Maurizio/0000-0001-5119-1896; Prior, Gersende/0000-0002-6058-1420; Booth, Christopher/0000-0002-6051-2847; Sorel, Michel/0000-0003-2141-9508; Martin-Albo, Justo/0000-0002-7318-1469; Schmitz, David/0000-0003-2165-7389 FU Institut Interuniversitaire des Sciences Nucleaires and the Interuniversitair Instituut voor Kernwetenschappen (Belgium), Ministerio de Educacion y Ciencia [FPA2003-06921-c02-02]; Generalitat Valenciana [GV00-054-1]; CERN (Geneva, Switzerland); German Bundesministerium fur Bildung und Forschung (Germany); Istituto Nazionale di Fisica Nucleare (Italy); INR RAS (Moscow); Russian Foundation for Basic Research [08-02-00018]; Particle Physics and Astronomy Research Council (UK); Swiss National Science Foundation FX We gratefully acknowledge the help and support of the PS beam staff and of the numerous technical Collaborators who contributed to the detector design, construction, commissioning and operation. In particular, we would like to thank G. Barichello, R. Brocard, K. Burin, V. Carassiti, F. Chignoli, D. Conventi, G. Decreuse, A Delattre, C. Detraz, A. Domeniconi, M. Dwuznik, F. Evangelisti, B. Friend, A. Iaciofano, I. Krasin, D. Lacroix, J.-C. Legrand, M. Lobello, A Lollo, J. Loquet, F. Marinilli, R. Mazza, J. Mulon, L. Musa, R. Nicholson, A. Pepato, P. Petev, X. Pons, I. Rusinov, M. Scandurra, E. Usenko, R. van der Vlugt, for their support in the construction of the detector and P. Dini for his contribution to Monte Carlo production. The Collaboration acknowledges the major contributions and advice of M. Baldo-Ceolin, L. Linssen, M.T. Muciaccia and A. Pullia during the construction of the experiment. The Collaboration is indebted to V. Ableev, F. Bergsma, P. Binko, E. Boter, M. Calvi, C. Cavion, M.Chizov, A. Chukanov, A. DeSanto, A. DeMin, M. Doucel, D. Dullmann, V. Ermilova, W. Flegel, Y. Hayato, A. Ichikawa, O. Klimov, T Kobayashi, D. Kustov, M. Laveder, M. Mass, H. Meinhard, A. Menegolli, I Nakaya, K. Nishikawa, M. Paganoni, F. Paleari, M. Pasquali, M. Placentino, V. Serdiouk, S. Simone, P.J. Soler, S. Troquereau, S. Ueda, A. Valassi and R. Veenhof for their contributions to the experiment.; We acknowledge the contributions of V. Ammosov. G. Chelkov, D. Dedovich, F. Dydak, M. Gostkin, A. Guskov, D. Khartchenko, V. Koreshev, Z. Kroumchtein, I. Nefedov, A. Semak, J. Wotschack, V. Zaets and A. Zhemchugov to the work described in this paper.; The experiment was made possible by grants from the Institut Interuniversitaire des Sciences Nucleaires and the Interuniversitair Instituut voor Kernwetenschappen (Belgium), Ministerio de Educacion y Ciencia, Grant FPA2003-06921-c02-02 and Generalitat Valenciana, grant GV00-054-1, CERN (Geneva, Switzerland), the German Bundesministerium fur Bildung und Forschung (Germany), the Istituto Nazionale di Fisica Nucleare (Italy), INR RAS (Moscow), the Russian Foundation for Basic Research (grant 08-02-00018), the Particle Physics and Astronomy Research Council (UK) and the Swiss National Science Foundation, in the framework of the SCOPES programme. We gratefully acknowledge their support. NR 39 TC 11 Z9 11 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 EI 1873-1554 J9 NUCL PHYS A JI Nucl. Phys. A PD APR 15 PY 2009 VL 821 BP 118 EP 192 DI 10.1016/j.nuclphysa.2009.01.080 PG 75 WC Physics, Nuclear SC Physics GA 434KU UT WOS:000265274400008 ER PT J AU MacLaughlin, DE Ohta, Y Machida, Y Nakatsuji, S Luke, GM Ishida, K Heffner, RH Shu, L Bernal, OO AF MacLaughlin, D. E. Ohta, Y. Machida, Y. Nakatsuji, S. Luke, G. M. Ishida, K. Heffner, R. H. Shu, Lei Bernal, O. O. TI Weak quasistatic magnetism in the frustrated Kondo lattice Pr2Ir2O7 SO PHYSICA B-CONDENSED MATTER LA English DT Article; Proceedings Paper CT 11th International Conference on Muon Spin Rotation, Relaxation and Resonance CY JUL 21-25, 2008 CL Tsukuba, JAPAN SP Japan World Exposit, Commemorat Organizat DE Frustrated magnetism; Pyrochlore lattice; Muon spin relaxation; Enhanced nuclear magnetism; Pr2Ir2O7 ID ENHANCED NUCLEAR MAGNETISM; MUON-SPIN RELAXATION; ELECTRIC-FIELD; MU(+) AB Muon spin relaxation experiments have been performed in the pyrochlore iridate Pr2Ir2O7 for temperatures in the range 0.025-250 K. Kubo-Toyabe relaxation functions are observed up to greater than or similar to 200 K, indicating static magnetism over this temperature range. The T -> 0 static muon spin relaxation rate Delta(0) approximate to 8 mu s(-1) implies a weak quasistatic moment (similar to 0.1 mu(B)). The temperature dependence of A is highly nonmean-field-like, decreasing smoothly by orders of magnitude but remaining nonzero for T < T-f. The data rule out ordering of the full Pr3+ CEF ground-state moment (3.0 mu(B)) down to 0.025 K. The weak static magnetism is most likely due to hyperfine-enhanced Pr-141 nuclear magnetism. The dynamic relaxation rate A increases markedly below similar to 20 K probably due to slowing down of spin fluctuations in the spin-liquid state. At low temperatures lambda is strong and temperature-independent, indicative of a high density of low-lying spin excitations as is common in frustrated antiferromagnets. (C) 2008 Elsevier B.V. All rights reserved. C1 [MacLaughlin, D. E.; Shu, Lei] Univ Calif Riverside, Dept Phys & Astron, Riverside, CA 92521 USA. [Ohta, Y.; Machida, Y.; Nakatsuji, S.] Univ Tokyo, Inst Solid State Phys, Kashiwa, Chiba 2778581, Japan. [Luke, G. M.] McMaster Univ, Dept Phys & Astron, Hamilton, ON L8S 4M1, Canada. [Ishida, K.] Kyoto Univ, Grad Sch Sci, Dept Phys, Kyoto 6068502, Japan. [Heffner, R. H.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Bernal, O. O.] Calif State Univ Los Angeles, Dept Phys & Astron, Los Angeles, CA 90032 USA. RP MacLaughlin, DE (reprint author), Univ Calif Riverside, Dept Phys & Astron, Riverside, CA 92521 USA. EM macl@physics.ucr.edu RI Shu, Lei/E-7524-2012; Luke, Graeme/A-9094-2010; OI Luke, Graeme/0000-0003-4762-1173 NR 17 TC 16 Z9 16 U1 1 U2 33 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4526 J9 PHYSICA B JI Physica B PD APR 15 PY 2009 VL 404 IS 5-7 BP 667 EP 670 DI 10.1016/j.physb.2008.11.167 PG 4 WC Physics, Condensed Matter SC Physics GA 437ES UT WOS:000265469800026 ER PT J AU Ohishi, K Heffner, RH Spehling, J MacDougall, GJ Ito, TU Higemoto, W Amato, A Andreica, D Nieuwenhuys, G Klauss, HH Luke, GM Thompson, JD Bianchi, AD Fisk, Z AF Ohishi, K. Heffner, R. H. Spehling, J. MacDougall, G. J. Ito, T. U. Higemoto, W. Amato, A. Andreica, D. Nieuwenhuys, G. Klauss, H. H. Luke, G. M. Thompson, J. D. Bianchi, A. D. Fisk, Z. TI Magnetism and superconductivity in heavy fermion superconductor CeCo(In0.97Cd0.03)(5) SO PHYSICA B-CONDENSED MATTER LA English DT Article; Proceedings Paper CT 11th International Conference on Muon Spin Rotation, Relaxation and Resonance CY JUL 21-25, 2008 CL Tsukuba, JAPAN SP Japan World Exposit, Commemorat Organizat DE Heavy fermion; CeCo(In,Cd)(5); Muon spin relaxation (mu SR); Superconductivity ID CECOIN5 AB Zero field (ZF) and transverse field (TF) muon spin relaxation and rotation (mu SR) experiments have been carried out in the Cd-doped heavy fermion superconductor CeCoIn5 to investigate its superconducting state. The ZF-mu SR results in CeCo(In0.97Cd0.03)(5) revealed that no spontaneous magnetic field was induced below its superconducting transition temperature (T-c), indicating no evidence for time reversal symmetry breaking. The muon Knight shifts obtained from TF-mu SR measurements decrease significantly below Tc, consistent with a spin-singlet state as in the parent compound CeCoIn5, which is a cl-wave superconductor. (c) 2008 Elsevier B.V. All rights reserved. C1 [Ohishi, K.; Heffner, R. H.; Ito, T. U.; Higemoto, W.] Japan Atom Energy Agcy, Adv Sci Res Ctr, Ibaraki 3191195, Japan. [Heffner, R. H.; Thompson, J. D.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Spehling, J.; Klauss, H. H.] Tech Univ Dresden, Inst Phys Solids, Dresden, Germany. [MacDougall, G. J.; Luke, G. M.] McMaster Univ, Dept Phys & Astron, Hamilton, ON L8S 4M1, Canada. [Ito, T. U.] Tokyo Inst Technol, Dept Phys, Meguro Ku, Tokyo 1528551, Japan. [Amato, A.; Andreica, D.; Nieuwenhuys, G.] Paul Scherrer Inst, Lab Muon Spin Spect, Villigen, Switzerland. [Andreica, D.] Univ Babes Bolyai, Fac Phys, Cluj Napoca 400084, Romania. [Bianchi, A. D.; Fisk, Z.] Univ Calif Irvine, Irvine, CA 92697 USA. RP Ohishi, K (reprint author), RIKEN, Inst Phys & Chem Res, Adv Meson Sci Lab, 2-1 Hirosawa, Wako, Saitama 3510198, Japan. EM kazuki.ohishi@riken.jp RI Ohishi, Kazuki/E-9592-2010; Klauss, Hans-Henning/G-4743-2010; Luke, Graeme/A-9094-2010; Amato, Alex/H-7674-2013; Bianchi, Andrea/E-9779-2010; OI Ohishi, Kazuki/0000-0003-1494-6502; Amato, Alex/0000-0001-9963-7498; Bianchi, Andrea/0000-0001-9340-6971; Ito, Takashi/0000-0003-1971-4313; Luke, Graeme/0000-0003-4762-1173 NR 13 TC 0 Z9 0 U1 0 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4526 J9 PHYSICA B JI Physica B PD APR 15 PY 2009 VL 404 IS 5-7 BP 754 EP 756 DI 10.1016/j.physb.2008.11.181 PG 3 WC Physics, Condensed Matter SC Physics GA 437ES UT WOS:000265469800051 ER PT J AU Aoki, Y Higemoto, W Tsunashima, Y Yonezawa, Y Satoh, KH Koda, A Ito, TU Ohishi, K Heffner, RH Kikuchi, D Sato, H AF Aoki, Y. Higemoto, W. Tsunashima, Y. Yonezawa, Y. Satoh, K. H. Koda, A. Ito, T. U. Ohishi, K. Heffner, R. H. Kikuchi, D. Sato, H. TI Weak ferromagnetic ordering in the anomalous field-insensitive heavy-fermion state in SMOs4Sb12 SO PHYSICA B-CONDENSED MATTER LA English DT Article; Proceedings Paper CT 11th International Conference on Muon Spin Rotation, Relaxation and Resonance CY JUL 21-25, 2008 CL Tsukuba, JAPAN SP Japan World Exposit, Commemorat Organizat DE Heavy fermion; SmOs4Sb12; Skutterudite; Muon spin relaxation (mu SR); Weak ferromagnetism ID FILLED SKUTTERUDITE SMOS4SB12; MU-SR; POINT AB Zero field (ZF) and transverse field (TF) muon spin relaxation and rotation (mu SR) study has been carried out in filled-skutterudite SmOs4Sb12 in order to investigate the magnetically robust heavy-fermion (HF) state and the weak ferromagnetic anomaly appearing below similar to 2.5 K. A large-amplitude oscillating signal appears in the ZF-mu SR spectra at low temperatures, confirming that the weak ferromagnetic anomaly is an intrinsic bulk property. Two components with the fraction ratio of similar to 2:1 exist both in the ZF-mu SR spectra of the ferromagnetically ordered state and the TF-mu SR FFT spectra in applied fields along the < 001 > direction. This observation can be explained consistently based on the most probable muon stopping site indicated from the value of the static nuclear dipolar width in Kubo-Toyabe function in the high-temperature ZF-mu SR spectra. Analysis reveals that the spontaneous magnetic moment M, ties along the < 001 > direction and the size of M-s is largely suppressed, indicating that the weak ferromagnetic moment is carried by itinerant heavy quasiparticles. (c) 2008 Elsevier B.V. All rights reserved. C1 [Aoki, Y.; Tsunashima, Y.; Yonezawa, Y.; Kikuchi, D.; Sato, H.] Tokyo Metropolitan Univ, Dept Phys, Tokyo 1920397, Japan. [Higemoto, W.; Ito, T. U.; Ohishi, K.; Heffner, R. H.] Japan Atom Energy Agcy, Adv Sci Res Ctr, Tokai, Ibaraki 3191195, Japan. [Satoh, K. H.; Koda, A.] High Energy Accelerator Res Org, Muon Sci Lab, Tsukuba, Ibaraki 3050801, Japan. [Heffner, R. H.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Aoki, Y (reprint author), Tokyo Metropolitan Univ, Dept Phys, Tokyo 1920397, Japan. EM aoki@phys.metro-u.ac.jp RI Ohishi, Kazuki/E-9592-2010; Aoki, Yuji/E-5494-2015; OI Ohishi, Kazuki/0000-0003-1494-6502; Aoki, Yuji/0000-0002-0957-3396; Ito, Takashi/0000-0003-1971-4313 NR 20 TC 4 Z9 4 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4526 J9 PHYSICA B JI Physica B PD APR 15 PY 2009 VL 404 IS 5-7 BP 757 EP 760 DI 10.1016/j.physb.2008.11.180 PG 4 WC Physics, Condensed Matter SC Physics GA 437ES UT WOS:000265469800052 ER PT J AU Ito, TU Higemoto, W Ohishi, K Heffner, RH Nishida, N Satoh, K Sugawara, H Aoki, Y Kikuchi, D Sato, H AF Ito, Takashi U. Higemoto, Wataru Ohishi, Kazuki Heffner, Robert H. Nishida, Nobuhiko Satoh, Kazuhiko Sugawara, Hitoshi Aoki, Yuji Kikuchi, Daisuke Sato, Hideyuki TI Possible low-energy excitations of multipoles in SmRu4P12 probed by muon spin relaxation SO PHYSICA B-CONDENSED MATTER LA English DT Article; Proceedings Paper CT 11th International Conference on Muon Spin Rotation, Relaxation and Resonance CY JUL 21-25, 2008 CL Tsukuba, JAPAN SP Japan World Exposit, Commemorat Organizat DE Filled skutterudite; Multipolar ordering; Low-energy excitations; Muon spin relaxation (mu SR) ID MAGNETIC-PROPERTIES AB We report on detailed longitudinal field (LF) muon spin relaxation studies in SmRu4P12 in order to characterize magnetic fluctuations in a magnetically ordered state below T-MI = 16.5 K. The magnitude and fluctuation rate of the fluctuating field are derived as functions of temperature from LF dependence of the longitudinal relaxation rate. Possible low-energy excitations of magnetic multipoles are discussed. (c) 2008 Elsevier B.V. All rights reserved. C1 [Ito, Takashi U.; Higemoto, Wataru; Ohishi, Kazuki; Heffner, Robert H.] Japan Atom Energy Agcy, Adv Sci Res Ctr, Tokai, Ibaraki 3191195, Japan. [Ito, Takashi U.; Nishida, Nobuhiko] Tokyo Inst Technol, Dept Phys, Meguro Ku, Tokyo 1528551, Japan. [Heffner, Robert H.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Satoh, Kazuhiko] Saitama Univ, Grad Sch Sci & Engn, Saitama 3388570, Japan. [Sugawara, Hitoshi] Univ Tokushima, Fac Integrated Arts & Sci, Tokushima 7708502, Japan. [Aoki, Yuji; Kikuchi, Daisuke; Sato, Hideyuki] Tokyo Metropolitan Univ, Dept Phys, Tokyo 1920397, Japan. RP Ito, TU (reprint author), Japan Atom Energy Agcy, Adv Sci Res Ctr, Tokai, Ibaraki 3191195, Japan. EM ito.takashi15@jaea.go.jp RI Ohishi, Kazuki/E-9592-2010; Aoki, Yuji/E-5494-2015 OI Ito, Takashi/0000-0003-1971-4313; Ohishi, Kazuki/0000-0003-1494-6502; Aoki, Yuji/0000-0002-0957-3396 NR 17 TC 1 Z9 1 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4526 J9 PHYSICA B JI Physica B PD APR 15 PY 2009 VL 404 IS 5-7 BP 761 EP 764 DI 10.1016/j.physb.2008.11.179 PG 4 WC Physics, Condensed Matter SC Physics GA 437ES UT WOS:000265469800053 ER PT J AU Song, Q Chow, KH Miller, RI Fan, I Hossain, MD Kiefl, RF Kreitzman, SR Levy, CDP Parolin, TJ Pearson, MR Salman, Z Saadaoui, H Smadella, M Wang, D Yu, KM Liu, X Furdyna, JK MacFarlane, WA AF Song, Q. Chow, K. H. Miller, R. I. Fan, I. Hossain, M. D. Kiefl, R. F. Kreitzman, S. R. Levy, C. D. P. Parolin, T. J. Pearson, M. R. Salman, Z. Saadaoui, H. Smadella, M. Wang, D. Yu, K. M. Liu, X. Furdyna, J. K. MacFarlane, W. A. TI Beta-detected NMR study of the local magnetic field in epitaxial GaAs:Mn SO PHYSICA B-CONDENSED MATTER LA English DT Article; Proceedings Paper CT 11th International Conference on Muon Spin Rotation, Relaxation and Resonance CY JUL 21-25, 2008 CL Tsukuba, JAPAN SP Japan World Exposit, Commemorat Organizat DE GaAs:Mn; Magnetism; Thin films; Low energy muon; Dilute ferromagnetic semiconductor ID SEMICONDUCTORS; SPINTRONICS; CRYSTALS AB A low energy beam of spin polarized (8)Li(+) has been employed to study the magnetic field distribution in an epitaxial thin film of 5.4% Mn doped GaAs(180 nm) on a (100) GaAs substrate via beta-detected NMR. The spectrum is a strong function of the implantation energy in the range 28-3 keV. In the magnetic layer, there is no indication of a missing fraction, and even more remarkable, there is a broad negatively shifted resonance. The spin lattice relaxation rate is, however, much faster in the Mn doped layer than in the substrate. A sharp peak characteristic of nonmagnetic GaAs is observed down to the lowest implantation energy, for which none of the Li should reach the substrate. This unexpected depth dependence is discussed. (C) 2008 Elsevier B.V. All rights reserved. C1 [Song, Q.; Hossain, M. D.; Kiefl, R. F.; Saadaoui, H.; Smadella, M.; Wang, D.] Univ British Columbia, Dept Phys, Vancouver, BC V6T 1Z1, Canada. [Chow, K. H.; Fan, I.] Univ Alberta, Dept Phys, Edmonton, AB T6G 2G7, Canada. [Miller, R. I.; Kreitzman, S. R.; Levy, C. D. P.; Pearson, M. R.; Salman, Z.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Parolin, T. J.] Univ British Columbia, Dept Chem, Vancouver, BC V6T 1Z1, Canada. [Kiefl, R. F.] Canadian Inst Adv Res, Vancouver, BC, Canada. [Yu, K. M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Liu, X.; Furdyna, J. K.; MacFarlane, W. A.] Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA. RP Song, Q (reprint author), Univ British Columbia, Dept Phys, 6224 Agr Rd, Vancouver, BC V6T 1Z1, Canada. EM susan@phas.ubc.ca RI Salman, Zaher/A-5696-2008; Yu, Kin Man/J-1399-2012; Fan, Isaac/L-5784-2016; Saadaoui, Hassan/F-4321-2016 OI Salman, Zaher/0000-0002-3431-8135; Yu, Kin Man/0000-0003-1350-9642; Saadaoui, Hassan/0000-0001-5526-3615 NR 22 TC 3 Z9 3 U1 0 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4526 J9 PHYSICA B JI Physica B PD APR 15 PY 2009 VL 404 IS 5-7 BP 892 EP 895 DI 10.1016/j.physb.2008.11.143 PG 4 WC Physics, Condensed Matter SC Physics GA 437ES UT WOS:000265469800088 ER PT J AU Arseneau, DJ Fleming, DG Sukhorukov, O Brewer, JH Garrett, BC Truhlar, DG AF Arseneau, Donald J. Fleming, Donald G. Sukhorukov, Oleksandr Brewer, Jess H. Garrett, Bruce C. Truhlar, Donald G. TI The muonic He atom and a preliminary study of the He-4 mu + H-2 reaction SO PHYSICA B-CONDENSED MATTER LA English DT Article; Proceedings Paper CT 11th International Conference on Muon Spin Rotation, Relaxation and Resonance CY JUL 21-25, 2008 CL Tsukuba, JAPAN SP Japan World Exposit, Commemorat Organizat DE He mu atom; Heavy H-atom; Hydrogen; Reaction rate; Kinetic isotope effects; Variational TST ID HELIUM ATOM; INTERVAL AB The muonic atom He-4 mu has the composition alpha(++)mu(-)e(-), and is formed by stopping negative muons in He doped with a small amount of NH3 (or Xe). It may be regarded as a unique heavy H-atom isotope with a mass of 4.1 amu. As such, the study of its chemical reaction rates and comparison with those of the well-known light Mu atom (0.113 amu) allows unprecedented tests of kinetic isotope effects over a range of 36 in mass. As a first example, and one which is of most fundamental interest, we have begun kinetics studies of the He mu + H-2 -> He mu H + H reaction in the gas phase. The first measurements, at 295 K, give a rate constant of k(He mu) = 4.1 +/- 0.7 X 10(-16) cm(3) molec(-1) s(-1). in comparison, variational transition state calculations give a value of 2.46 x 10(-6) cm(3) molec(-1) s-1, somewhat below the measurement, despite the large error bar, raising the possibility that the calculations, on an essentially exact potential energy surface, have underestimated the amount of quantum tunneling involved, even for this heavy H-atom isotope. (c) 2008 Elsevier B.V. All rights reserved. C1 [Arseneau, Donald J.] TRIUMF, CMMS, Vancouver, BC V6T 2A3, Canada. [Fleming, Donald G.; Sukhorukov, Oleksandr; Brewer, Jess H.] Univ British Columbia, TRIUMF, Vancouver, BC V6T 1Z1, Canada. [Fleming, Donald G.; Sukhorukov, Oleksandr] Univ British Columbia, Dept Chem, Vancouver, BC V6T 1Z1, Canada. [Brewer, Jess H.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada. [Garrett, Bruce C.] Pacific NW Natl Lab, Div Chem Sci, Richland, WA 99352 USA. [Truhlar, Donald G.] Univ Minnesota, Dept Chem, Minneapolis, MN 55455 USA. [Truhlar, Donald G.] Univ Minnesota, Inst Supercomp, Minneapolis, MN 55455 USA. RP Arseneau, DJ (reprint author), TRIUMF, CMMS, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3, Canada. EM asnd@triumf.ca RI Garrett, Bruce/F-8516-2011; Truhlar, Donald/G-7076-2015 OI Truhlar, Donald/0000-0002-7742-7294 NR 12 TC 9 Z9 9 U1 1 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4526 J9 PHYSICA B JI Physica B PD APR 15 PY 2009 VL 404 IS 5-7 BP 946 EP 949 DI 10.1016/j.physb.2008.11.130 PG 4 WC Physics, Condensed Matter SC Physics GA 437ES UT WOS:000265469800104 ER PT J AU Nagamine, K Miyadera, H Jason, A Seki, R AF Nagamine, K. Miyadera, H. Jason, A. Seki, R. TI Compact muon source with electron accelerator for a mobile mu SR facility SO PHYSICA B-CONDENSED MATTER LA English DT Article; Proceedings Paper CT 11th International Conference on Muon Spin Rotation, Relaxation and Resonance CY JUL 21-25, 2008 CL Tsukuba, JAPAN SP Japan World Exposit, Commemorat Organizat DE Microtron; FFAG; RFQ; Micro-beam ID PHOTOPRODUCTION; BREMSSTRAHLUNG AB In order to increase accessibility to the mu SR spectroscopy for people in various fields of science and engineering, a conceptual design study was made to realize a compact and inexpensive muon source by using 300 MeV electron microtron and a large-acceptance muon-capture. Advanced radiography imaging with muon spin probes will become possible for bio-medical studies, inspection of re-enforced architectures, etc. (c) 2008 Elsevier B.V. All rights reserved. C1 [Nagamine, K.] Univ Calif Riverside, Dept Phys & Astron, Riverside, CA 92521 USA. [Nagamine, K.] KEK, IMSS, Muon Sci Lab, Tsukuba, Ibaraki 3050801, Japan. [Nagamine, K.] RIKEN, Atom Phys Lab, Wako, Saitama 3510191, Japan. [Miyadera, H.; Jason, A.] Los Alamos Natl Lab, AOT ABS, Los Alamos, NM 87545 USA. [Seki, R.] Calif State Univ Northridge, Dept Phys, Northridge, CA 91330 USA. RP Nagamine, K (reprint author), Univ Calif Riverside, Dept Phys & Astron, Riverside, CA 92521 USA. EM kanetada.nagamine@ucr.edu NR 14 TC 1 Z9 1 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4526 J9 PHYSICA B JI Physica B PD APR 15 PY 2009 VL 404 IS 5-7 BP 1020 EP 1023 DI 10.1016/j.physb.2008.11.231 PG 4 WC Physics, Condensed Matter SC Physics GA 437ES UT WOS:000265469800124 ER PT J AU Fiawoo, MF Bonnot, AM Jourdain, V Michel, T Picher, M Arenal, R Thibault-Penisson, J Loiseau, A AF Fiawoo, M. -F. Bonnot, A. -M. Jourdain, V. Michel, T. Picher, M. Arenal, R. Thibault-Penisson, J. Loiseau, A. TI Substrate preparation techniques for direct investigation by TEM of single wall carbon nanotubes grown by chemical vapor deposition SO SURFACE SCIENCE LA English DT Article DE Carbon nanotubes; Growth; Membranes; TEM preparation; CVD; Ion bombardment; Reactive ion etching ID TRANSMISSION ELECTRON-MICROSCOPY; CATALYTIC NANOPARTICLES; SPECIMEN PREPARATION; SAMPLE PREPARATION; NUCLEATION; DIFFRACTION; NANOFIBERS; FILMS AB We have investigated and evaluated different TEM sample preparation techniques for studying carbon single-walled nanotube (C-SWNT) nucleation and growth, issued from CVD processes when the catalyst is supported on a substrate. This kind of study requires means to observe individual and isolated tubes. It implies using synthesis conditions able to produce only a low density of tubes and to thin the substrate to electron transparency, to observe the nanotubes and the catalytic particles from which they have grown in their native state. We have tested two approaches, depending if the substrate is thinned after or before the synthesis. The low tube density requirement led us to exclude all the techniques where the substrate is thinned to electron transparency after the synthesis. We have shown, that, with this last approach, all TEM preparation techniques dramatically suffer from a lack of control of thin areas with respect to the location of the tubes, which is unknown. However we have demonstrated that the suitable approach is to perform synthesis directly on transparent substrates presenting several holes. We have tested the capabilities and the potentialities of these supports for studying the size distribution and composition of the catalytic particles, the nucleation mode, the diameter and helicity of the tubes. These results are very promising and represent an important step for performing specific nanoscale TEM analyses necessary for the study of the growth mechanism of nanotubes on substrates. (C) 2009 Elsevier B.V. All rights reserved. C1 [Fiawoo, M. -F.; Arenal, R.; Loiseau, A.] Off Natl Etud & Rech Aerosp, CNRS, UMR 104, Lab Etud Microstruct, F-92322 Chatillon, France. [Bonnot, A. -M.] UJF, CNRS, Inst Louis Neel, F-38042 Grenoble 9, France. [Jourdain, V.; Michel, T.; Picher, M.] Univ Montpellier 2, CNRS, UMR5587, Lab Colloides Verres & Nanomat, F-34095 Montpellier 5, France. [Arenal, R.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Thibault-Penisson, J.] Univ Aix Marseille 3, CNRS, Fac Sci & Tech St Jerome, Inst Mat Microelect Nanosci Provence,UMR6242, F-13397 Marseille, France. RP Loiseau, A (reprint author), Off Natl Etud & Rech Aerosp, CNRS, UMR 104, Lab Etud Microstruct, 29 Ave Div Leclerc, F-92322 Chatillon, France. EM loiseau@onera.fr RI Arenal, Raul/D-2065-2009 OI Arenal, Raul/0000-0002-2071-9093 NR 35 TC 4 Z9 4 U1 1 U2 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0039-6028 J9 SURF SCI JI Surf. Sci. PD APR 15 PY 2009 VL 603 IS 8 BP 1115 EP 1120 DI 10.1016/j.susc.2009.02.029 PG 6 WC Chemistry, Physical; Physics, Condensed Matter SC Chemistry; Physics GA 440WL UT WOS:000265730300008 ER PT J AU Kang, XH Wang, J Tang, ZW Wu, H Lin, YH AF Kang, Xinhuang Wang, Jun Tang, Zhiwen Wu, Hong Lin, Yuehe TI Direct electrochemistry and electrocatalysis of horseradish peroxidase immobilized in hybrid organic-inorganic film of chitosan/sol-gel/carbon nanotubes SO TALANTA LA English DT Article DE Direct electrochemistry; Horseradish peroxidase; Multi-walled carbon nanotubes; Sol-gel ID DIRECT ELECTRON-TRANSFER; GLASSY-CARBON ELECTRODE; GOLD NANOPARTICLE NANOCOMPOSITE; GLUCOSE-OXIDASE; COMPOSITE FILM; CYTOCHROME-C; HEME-PROTEINS; BIOSENSOR; ENZYMES; HYDROGEL AB A hybrid organic-inorganic nanocomposite film of chitosan/sol-gel/multi-walled carbon nanotubes was constructed for the immobilization of horseradish peroxidase (HRP). This film was characterized by scanning electron microscopy. Direct electron transfer (DET) and bioelectrocatalysis of HRP incorporated into the composite film were investigated. The results indicate that the film can provide a favorable microenvironment for HRP to perform DET on the surface of glassy carbon electrodes with a pair of quasi-reversible redox waves and to retain its bioelectrocatalytic activity toward H(2)O(2). (C) 2008 Elsevier B.V. All rights reserved. C1 [Kang, Xinhuang; Wang, Jun; Tang, Zhiwen; Wu, Hong; Lin, Yuehe] Pacific NW Natl Lab, Richland, WA 99352 USA. [Kang, Xinhuang] Guangdong Ocean Univ, Coll Sci, Zhanjiang 524088, Peoples R China. RP Lin, YH (reprint author), Pacific NW Natl Lab, 902 Battelle Blvd, Richland, WA 99352 USA. EM Yuehe.lin@pnl.gov RI Lin, Yuehe/D-9762-2011 OI Lin, Yuehe/0000-0003-3791-7587 FU LDRD program at Pacific Northwest National Laboratory (PNNL); DOE's Office of Biological and Environmental Research; U.S. Department of Energy by Battelle [DE-AC05-76RL01830] FX The work was supported by a LDRD program at Pacific Northwest National Laboratory (PNNL). The research described in this paper was performed at the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the DOE's Office of Biological and Environmental Research and located at PNNL. PNNL is operated for the U.S. Department of Energy by Battelle under Contract DE-AC05-76RL01830. X. Kang gratefully acknowledges the award of a PNNL fellowship to perform this work at PNNL. NR 42 TC 60 Z9 62 U1 1 U2 32 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0039-9140 J9 TALANTA JI Talanta PD APR 15 PY 2009 VL 78 IS 1 BP 120 EP 125 DI 10.1016/j.talanta.2008.10.063 PG 6 WC Chemistry, Analytical SC Chemistry GA 411FO UT WOS:000263634700018 PM 19174213 ER PT J AU Orr, G Panther, DJ Cassens, KJ Phillips, JL Tarasevich, BJ Pounds, JG AF Orr, Galya Panther, David J. Cassens, Kaylyn J. Phillips, Jaclyn L. Tarasevich, Barbara J. Pounds, Joel G. TI Syndecan-1 mediates the coupling of positively charged submicrometer amorphous silica particles with actin filaments across the alveolar epithelial cell membrane SO TOXICOLOGY AND APPLIED PHARMACOLOGY LA English DT Article DE Toxicity; Biocompatibility; Proteoglycan; Syndecan; Silica; Alveolar; Actin; Macropinocytosis ID FIBROBLAST-GROWTH-FACTOR; IN-VITRO; SURFACE PROTEOGLYCAN; CYTOPLASMIC DOMAINS; CHONDROITIN SULFATE; DRUG-DELIVERY; PDZ PROTEIN; A549 CELLS; NANOPARTICLES; RECEPTORS AB The cellular interactions and pathways of engineered submicro- and nano-scale particles dictate the cellular response and ultimately determine the level of toxicity or biocompatibility of the particles. Positive surface charge call increase particle internalization, and in some cases call also increase particle toxicity, but the underlying Mechanisms are largely unknown. Here we identify the cellular interaction and pathway of positively charged submicrometer synthetic amorphous silica Particles, which are used extensively ill a wide range of industrial applications, and lie explored for drug delivery and medical imaging and sensing. Using time lapse fluorescence imaging in living cells and other quantitative imaging, approaches, it IS found that heparan surface proteoglycans play a critical role ill the attachment and internalization of the particles in alveolar type II epithelial cell line (C10), a potential target cell type bearing apical microvilli. Specifically. the transmembrane heparan surface proteoglycan, syndecan-1, is found to mediate the initial interactions of the particles at the cell Sulfate, their coupling With actin filaments across the cell membrane, and their subsequent internalization via macropinocytosis. The observed interaction of syndecan molecules With the particle prior to their engagement with actin filaments suggests that the particles initiate their own by facilitating the clustering of the molecules, which is required for the actin coupling and subsequent internalization of syndecan. Our observations identify a new role for syndecan-1 in mediating the cellular interactions and fate of positively charged submicrometer amorphous silica particles in the alveolar type II epithelial cell, a target cell for inhaled particles. (C) 2009 Elsevier Inc. All rights reserved. C1 [Orr, Galya; Panther, David J.; Cassens, Kaylyn J.; Phillips, Jaclyn L.; Tarasevich, Barbara J.; Pounds, Joel G.] Pacific NW Natl Lab, Richland, WA 99354 USA. RP Orr, G (reprint author), Pacific NW Natl Lab, POB 999,MSIN K8-88, Richland, WA 99354 USA. EM galya.orr@pnl.gov OI Pounds, Joel/0000-0002-6616-1566 NR 64 TC 21 Z9 21 U1 1 U2 9 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0041-008X J9 TOXICOL APPL PHARM JI Toxicol. Appl. Pharmacol. PD APR 15 PY 2009 VL 236 IS 2 BP 210 EP 220 DI 10.1016/j.taap.2009.01.022 PG 11 WC Pharmacology & Pharmacy; Toxicology SC Pharmacology & Pharmacy; Toxicology GA 429XV UT WOS:000264954300008 PM 19371605 ER PT J AU Mukhopadhyay, S Tsang, YW Finsterle, S AF Mukhopadhyay, Sumit Tsang, Yvonne W. Finsterle, Stefan TI Parameter estimation from flowing fluid temperature logging data in unsaturated fractured rock using multiphase inverse modeling SO WATER RESOURCES RESEARCH LA English DT Article ID PNEUMATIC INJECTION TESTS; YUCCA MOUNTAIN; POROUS-MEDIA; HYDRAULIC CONDUCTIVITY; CURVE INTERPRETATION; HEATER TEST; TUFF; TRANSPORT; NEVADA; SYSTEM AB A simple conceptual model has been recently developed for analyzing pressure and temperature data from flowing fluid temperature logging (FFTL) in unsaturated fractured rock. Using this conceptual model, we developed an analytical solution for FFTL pressure response, and a semianalytical solution for FFTL temperature response. We also proposed a method for estimating fracture permeability from FFTL temperature data. The conceptual model was based on some simplifying assumptions, particularly that a single-phase airflow model was used. In this paper, we develop a more comprehensive numerical model of multiphase flow and heat transfer associated with FFTL. Using this numerical model, we perform a number of forward simulations to determine the parameters that have the strongest influence on the pressure and temperature response from FFTL. We then use the iTOUGH2 optimization code to estimate these most sensitive parameters through inverse modeling and to quantify the uncertainties associated with these estimated parameters. We conclude that FFTL can be utilized to determine permeability, porosity, and thermal conductivity of the fracture rock. Two other parameters, which are not properties of the fractured rock, have strong influence on FFTL response. These are pressure and temperature in the borehole that were at equilibrium with the fractured rock formation at the beginning of FFTL. We illustrate how these parameters can also be estimated from FFTL data. C1 [Mukhopadhyay, Sumit; Tsang, Yvonne W.; Finsterle, Stefan] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Mukhopadhyay, S (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM smukhopadhyay@lbl.gov RI Finsterle, Stefan/A-8360-2009 OI Finsterle, Stefan/0000-0002-4446-9906 FU U. S. Department of Energy; U. S. Department of Energy [DE-AC02-05CH11231] FX We thank the anonymous reviewers for their careful and critical review of the manuscript. We thank Teamrat Ghezzehei and Dan Hawkes of the Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab) for their constructive review of the draft manuscript. We also thank Chin-Fu Tsang and Paul Cook of the Berkeley lab for sharing with us the photographs of the FFTL instrument (Figure 1) and the FFTL data (Figure 2). Diana M. Swantek of the Berkeley Lab prepared the graphics for Figure 3, and her contribution is duly acknowledged. This work was supported by the U. S. Department of Energy. The support is provided to Berkeley Lab through the U. S. Department of Energy contract DE-AC02-05CH11231. The U. S. government retains and the publisher, by accepting the article for publication, acknowledges that the U. S. government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for U. S. government purposes. The views expressed in this article are those of the authors and do not necessarily reflect the views or policies of the U. S. Department of Energy or the Berkeley Lab. NR 56 TC 1 Z9 1 U1 1 U2 9 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0043-1397 EI 1944-7973 J9 WATER RESOUR RES JI Water Resour. Res. PD APR 15 PY 2009 VL 45 AR W04414 DI 10.1029/2008WR006869 PG 17 WC Environmental Sciences; Limnology; Water Resources SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water Resources GA 435GV UT WOS:000265333000001 ER PT J AU Kim, S Lee, JS Mitterbauer, C Ramasse, QM Sarahan, MC Browning, ND Park, HJ AF Kim, Sangtae Lee, Jong Soo Mitterbauer, Christoph Ramasse, Quentin M. Sarahan, Michael C. Browning, Nigel D. Park, Hee Jung TI Anomalous Electrical Conductivity of Nanosheaves of CeO2 SO CHEMISTRY OF MATERIALS LA English DT Article ID DOPED CERIA; NANOPARTICLES; ELECTROLYTES; SHIFT AB CeO2 is a functional oxide known to conduct oxygen ions at elevated temperatures. Enhancement of the ionic conductivity can lead to its application as an electrolyte for solid oxide fuel cells that can operate at low temperatures. We report here a one-dimensional CeO2 nanostructure with a novel sheaflike morphology which exhibits the oxygen-ionic conductivity distinctively higher than that of conventional CeO2 electrolyte. The oxygen nonstoichiometry in the CeO2 nanowires constituting the sheaf was determined by electron energy loss spectroscopy (EELS) and was found to be very small. We thus attribute this anomalously high ionic conductivity to enhanced oxygen-ion mobility at the interfaces between CeO2 nanowires in the sheaf rather than to increased charge-carrier concentration which is often responsible for enhanced ionic conductivity in nanostructured ionic conductors. C1 [Kim, Sangtae; Lee, Jong Soo; Mitterbauer, Christoph; Sarahan, Michael C.; Browning, Nigel D.; Park, Hee Jung] Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA. [Browning, Nigel D.] Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA 94550 USA. [Ramasse, Quentin M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Natl Ctr Electron Microscopy, Berkeley, CA 94720 USA. RP Kim, S (reprint author), Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA. EM chmkim@ucdavis.edu RI Lee, Jong-Soo /F-7461-2010; OI Lee, Jong-Soo /0000-0002-3045-2206; Browning, Nigel/0000-0003-0491-251X FU Korea Government [KRF-2005-214-D00305]; Department of Energy [DE-FG02-03ER46057] FX J.S.L. is grateful for partial support from the Korea Research Foundation Grant funded by Korea Government for this work (MOEHRD, Basic Research Promotion Fund, KRF-2005-214-D00305). N.D.B. gratefully acknowledges the support from the Department of Energy (DE-FG02-03ER46057). NR 27 TC 25 Z9 26 U1 1 U2 27 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 J9 CHEM MATER JI Chem. Mat. PD APR 14 PY 2009 VL 21 IS 7 BP 1182 EP 1186 DI 10.1021/cm801584e PG 5 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 430YS UT WOS:000265029100006 ER PT J AU Dawes, R Passalacqua, A Wagner, AF Sewell, TD Minkoff, M Thompson, DL AF Dawes, Richard Passalacqua, Alessio Wagner, Albert F. Sewell, Thomas D. Minkoff, Michael Thompson, Donald L. TI Interpolating moving least-squares methods for fitting potential energy surfaces: Using classical trajectories to explore configuration space SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article DE convergence of numerical methods; curve fitting; HF calculations; hydrogen compounds; isomerisation; least squares approximations; minimisation; potential energy surfaces; reaction kinetics theory; reaction rate constants ID NEURAL-NETWORKS; REACTION DYNAMICS; REPRESENTATION; CONVERGENCE; MOLECULES; H-3(+); HONO AB We develop two approaches for growing a fitted potential energy surface (PES) by the interpolating moving least-squares (IMLS) technique using classical trajectories. We illustrate both approaches by calculating nitrous acid (HONO) cis -> trans isomerization trajectories under the control of ab initio forces from low-level HF/cc-pVDZ electronic structure calculations. In this illustrative example, as few as 300 ab initio energy/gradient calculations are required to converge the isomerization rate constant at a fixed energy to similar to 10%. Neither approach requires any preliminary electronic structure calculations or initial approximate representation of the PES (beyond information required for trajectory initial conditions). Hessians are not required. Both approaches rely on the fitting error estimation properties of IMLS fits. The first approach, called IMLS-accelerated direct dynamics, propagates individual trajectories directly with no preliminary exploratory trajectories. The PES is grown "on the fly" with the computation of new ab initio data only when a fitting error estimate exceeds a prescribed tight tolerance. The second approach, called dynamics-driven IMLS fitting, uses relatively inexpensive exploratory trajectories to both determine and fit the dynamically accessible configuration space. Once exploratory trajectories no longer find configurations with fitting error estimates higher than the designated accuracy, the IMLS fit is considered to be complete and usable in classical trajectory calculations or other applications. C1 [Dawes, Richard; Passalacqua, Alessio; Sewell, Thomas D.; Thompson, Donald L.] Univ Missouri, Dept Chem, Columbia, MO 65211 USA. [Wagner, Albert F.; Minkoff, Michael] Argonne Natl Lab, Div Chem, Argonne, IL 60439 USA. RP Dawes, R (reprint author), Univ Missouri, Dept Chem, Columbia, MO 65211 USA. EM thompsondon@missouri.edu RI Dawes, Richard/C-6344-2015 FU Office of Basic Energy Sciences; Division of Chemical Sciences; U. S. Department of Energy [W-31-109-Eng-38, DE-FG02-01ER15231] FX This work was supported by the Office of Basic Energy Sciences, Division of Chemical Sciences, U. S. Department of Energy under Contract Nos. W-31-109-Eng-38 (Argonne) and DE-FG02-01ER15231 (University of Missouri-Columbia). NR 42 TC 27 Z9 28 U1 0 U2 15 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD APR 14 PY 2009 VL 130 IS 14 AR 144107 DI 10.1063/1.3111261 PG 9 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 439HC UT WOS:000265617200009 PM 19368429 ER PT J AU Galperin, M Ratner, MA Nitzan, A AF Galperin, Michael Ratner, Mark A. Nitzan, Abraham TI Raman scattering in current-carrying molecular junctions SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article DE adsorption; charge exchange; Green's function methods; ground states; molecular electronics; surface enhanced Raman scattering; vibrational modes ID SURFACE-ENHANCED RAMAN; SINGLE-MOLECULE; METAL SPHERES; SPECTROSCOPY; TRANSPORT; SERS AB We present a theory for Raman scattering by current-carrying molecular junctions. The approach combines a nonequilibrium Green's function (NEGF) description of the nonequilibrium junction with a generalized scattering theory formulation for evaluating the light scattering signal. This generalizes our previous study [M. Galperin and A. Nitzan, Phys. Rev. Lett. 95, 206802 (2005); J. Chem. Phys. 124, 234709 (2006)] of junction spectroscopy by including molecular vibrations and developing machinery for calculation of state-to-state (Raman scattering) fluxes within the NEGF formalism. For large enough voltage bias, we find that the light scattering signal contains, in addition to the normal signal associated with the molecular ground electronic state, also a contribution from the inverse process originated from the excited molecular state as well as an interference component. The effects of coupling to the electrodes and of the imposed bias on the total Raman scattering as well as its components are discussed. Our result reduces to the standard expression for Raman scattering in the isolated molecule case, i.e., in the absence of coupling to the electrodes. The theory is used to discuss the charge-transfer contribution to surface enhanced Raman scattering for molecules adsorbed on metal surfaces and its manifestation in the biased junction. C1 [Galperin, Michael] Univ Calif San Diego, Dept Chem & Biochem, La Jolla, CA 92093 USA. [Ratner, Mark A.; Nitzan, Abraham] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. [Ratner, Mark A.; Nitzan, Abraham] Northwestern Univ, Mat Res Ctr, Evanston, IL 60208 USA. [Nitzan, Abraham] Tel Aviv Univ, Sackler Fac Sci, Sch Chem, IL-69978 Tel Aviv, Israel. [Galperin, Michael] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Galperin, Michael] Los Alamos Natl Lab, Ctr Integrated Nanotechnol CINT, Los Alamos, NM 87545 USA. RP Galperin, M (reprint author), Univ Calif San Diego, Dept Chem & Biochem, La Jolla, CA 92093 USA. EM migalperin@ucsd.edu RI Abraham, Nitzan/A-9963-2008; Galperin, Michael/B-2838-2011 OI Galperin, Michael/0000-0002-1401-5970 FU Israel Science Foundation [1646/08]; U. S.-Israel Binational; Germany-Israel Foundation; European Research Commission; UCSD startup funds; C Academic Senate research grant; LANL Director's; NSF; MRSEC program of the NSF; Northwestern MRSEC [DMR 0520513]; U. S. Department of Energy [DE-AC5206NA25396] FX The research of A. N. is supported by the Israel Science Foundation (Grant No. 1646/08), the U. S.-Israel Binational Science Foundation, the Germany-Israel Foundation, and the European Research Commission. M. G. gratefully acknowledges the support of UCSD startup funds, UC Academic Senate research grant, and a LANL Director's Postdoctoral Fellowship. M. R. thanks the Chemistry Division of the NSF, and the MRSEC program of the NSF, through the Northwestern MRSEC (Grant No. DMR 0520513), for support. This work was performed, in part, at the Center for Integrated Nanotechnologies, a U. S. Department of Energy, Office of Basic Energy Sciences user facility. Los Alamos National Laboratory, an affirmative action equal opportunity employer, is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U. S. Department of Energy under Contract No. DE-AC5206NA25396. NR 48 TC 41 Z9 43 U1 0 U2 18 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD APR 14 PY 2009 VL 130 IS 14 AR 144109 DI 10.1063/1.3109900 PG 19 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 439HC UT WOS:000265617200011 PM 19368431 ER PT J AU Hooper, JB Bedrov, D Smith, GD Hanson, B Borodin, O Dattelbaum, DM Kober, EM AF Hooper, Justin B. Bedrov, Dmitry Smith, Grant D. Hanson, Ben Borodin, Oleg Dattelbaum, Dana M. Kober, Edward M. TI A molecular dynamics simulation study of the pressure-volume-temperature behavior of polymers under high pressure SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article DE elastic moduli; equations of state; high-pressure effects; molecular dynamics method; polymers ID BETA-RELAXATION PROCESSES; 1,4-POLYBUTADIENE MELT; QUANTUM-CHEMISTRY; ALPHA-RELAXATION; POLYBUTADIENE; EQUATIONS; SYSTEMS; STATE AB Isothermal compression of poly (dimethylsiloxane), 1,4-poly(butadiene), and a model Estane (R) (in both pure form and a nitroplasticized composition similar to PBX-9501 binder) at pressures up to 100 kbars has been studied using atomistic molecular dynamics (MD) simulations. Comparison of predicted compression, bulk modulus, and U(s)-u(p) behavior with experimental static and dynamic compression data available in the literature reveals good agreement between experiment and simulation, indicating that MD simulations utilizing simple quantum-chemistry-based potentials can be used to accurately predict the behavior of polymers at relatively high pressure. Despite their very different zero-pressure bulk moduli, the compression, modulus, and U(s)-u(p) behavior (including low-pressure curvature) for the three polymers could be reasonably described by the Tait equation of state (EOS) utilizing the universal C parameter. The Tait EOS was found to provide an excellent description of simulation PVT data when the C parameter was optimized for each polymer. The Tait EOS parameters, namely, the zero-pressure bulk modulus and the C parameter, were found to correlate well with free volume for these polymers as measured in simulations by a simple probe insertion algorithm. Of the polymers studied, PDMS was found to have the most free volume at low pressure, consistent with its lower ambient pressure bulk modulus and greater increase in modulus with increasing pressure (i.e., crush-up behavior). C1 [Hooper, Justin B.; Bedrov, Dmitry; Smith, Grant D.; Hanson, Ben] Univ Utah, Dept Mat Sci & Engn, Salt Lake City, UT 84112 USA. [Borodin, Oleg] Wasatch Mol Inc, Salt Lake City, UT 84108 USA. [Dattelbaum, Dana M.; Kober, Edward M.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Hooper, JB (reprint author), Univ Utah, Dept Mat Sci & Engn, Salt Lake City, UT 84112 USA. EM gds8@utah.edu RI Borodin, Oleg/B-6855-2012 OI Borodin, Oleg/0000-0002-9428-5291 FU Simulation of Accidental Fires and Explosions (C-SAFE); Department of Energy, Lawrence Livermore National Laboratory [B341493]; Department of Energy; Los Alamos National Laboratory [LANL0591300104]; Air Force Office of Scientific Research [FA8651-08-M-0125] FX J. B. H., D. B., and G. D. S. gratefully acknowledge the financial support of the University of Utah Center for the Simulation of Accidental Fires and Explosions (C-SAFE), funded by the Department of Energy, Lawrence Livermore National Laboratory, under Subcontract No. B341493, as well as support from the Department of Energy, Los Alamos National Laboratory, under Contract No. LANL0591300104. An allocation of computer time from the Center for High Performance Computing at the University of Utah is gratefully acknowledged. O. B. acknowledges support from the Air Force Office of Scientific Research (Contract No. FA8651-08-M-0125). NR 41 TC 18 Z9 18 U1 3 U2 28 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD APR 14 PY 2009 VL 130 IS 14 AR 144904 DI 10.1063/1.3077868 PG 11 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 439HC UT WOS:000265617200048 PM 19368468 ER PT J AU Taube, AG Bartlett, RJ AF Taube, Andrew G. Bartlett, Rodney J. TI Rethinking linearized coupled-cluster theory SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article DE coupled cluster calculations; potential energy surfaces ID BODY PERTURBATION-THEORY; CORRELATED MOLECULAR CALCULATIONS; GAUSSIAN-BASIS SETS; AB-INITIO; ELECTRON CORRELATION; CONFIGURATION-INTERACTION; THEORETICAL METHODS; LEVEL SHIFT; DYNAMICS; ENERGY AB Hermitian linearized coupled-cluster methods have several advantages over more conventional coupled-cluster methods including facile analytical gradients for searching a potential energy surface. A persistent failure of linearized methods, however, is the presence of singularities on the potential energy surface. A simple Tikhonov regularization procedure is introduced that can eliminate this singularity. Application of the regularized linearized coupled-cluster singles and doubles (CCSD) method to both equilibrium structures and transition states shows that it is competitive with or better than conventional CCSD, and is more amenable to parallelization. C1 [Taube, Andrew G.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Bartlett, Rodney J.] Univ Florida, Quantum Theory Project, Gainesville, FL 32611 USA. RP Taube, AG (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM agtaube@sandia.gov RI Bartlett, Rodney/F-6781-2011 OI Bartlett, Rodney/0000-0003-3865-9639 FU University of Florida Alumni Fellowship; John von Neumann; United States Department of Energy [DE-AC04-94AL85000] FX A. G. T. would like to thank support through a University of Florida Alumni Fellowship and the John von Neumann Post- Doctoral Research Fellowship in Computational Science at Sandia. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract No. DE-AC04-94AL85000. NR 70 TC 40 Z9 40 U1 0 U2 15 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD APR 14 PY 2009 VL 130 IS 14 AR 144112 DI 10.1063/1.3115467 PG 14 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 439HC UT WOS:000265617200014 PM 19368434 ER PT J AU Zhang, W Lu, WC Zang, QJ Wang, CZ Ho, KM AF Zhang, Wei Lu, Wen-Cai Zang, Qing-Jun Wang, C. Z. Ho, K. M. TI Bulklike structures for medium-sized Al-n (n=31-40) clusters SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article DE aluminium; density functional theory; genetic algorithms; metal clusters; stacking faults; tight-binding calculations ID SMALL ALUMINUM CLUSTERS; PHOTOELECTRON-SPECTROSCOPY; ELECTRONIC-STRUCTURE; BINDING; EVOLUTION; DYNAMICS; AL-77 AB Neutral aluminum clusters Al-n (n=31-40) were studied using a genetic algorithm (GA)/tight-binding (TB) search combined with DFT-PBE calculations. It is found that the medium-sized aluminum clusters Al-31 to Al-40 exhibit a bulklike stacking pattern. Anion clusters were also studied. C1 [Zhang, Wei; Lu, Wen-Cai; Zang, Qing-Jun] Jilin Univ, Inst Theoret Chem, State Key Lab Theoret & Computat Chem, Changchun 130021, Jilin, Peoples R China. [Lu, Wen-Cai] Qingdao Univ, Dept Phys, Qingdao 266071, Shandong, Peoples R China. [Lu, Wen-Cai] Qingdao Univ, State Key Lab Cultivat Base Adv Fibers & Text Mat, Qingdao 266071, Shandong, Peoples R China. [Wang, C. Z.; Ho, K. M.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Wang, C. Z.; Ho, K. M.] Iowa State Univ, Ames Lab, US DOE, Ames, IA 50011 USA. RP Lu, WC (reprint author), Jilin Univ, Inst Theoret Chem, State Key Lab Theoret & Computat Chem, Changchun 130021, Jilin, Peoples R China. EM wencailu@jlu.edu.cn OI Wang, Chong/0000-0003-4489-4344 NR 36 TC 13 Z9 13 U1 3 U2 8 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD APR 14 PY 2009 VL 130 IS 14 AR 144701 DI 10.1063/1.3090485 PG 6 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 439HC UT WOS:000265617200039 PM 19368459 ER PT J AU Abel, MJ Pfeifer, T Jullien, A Nagel, PM Bell, MJ Neumark, DM Leone, SR AF Abel, Mark J. Pfeifer, Thomas Jullien, Aurelie Nagel, Phillip M. Bell, M. Justine Neumark, Daniel M. Leone, Stephen R. TI Carrier-envelope phase-dependent quantum interferences in multiphoton ionization SO JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS LA English DT Article ID MOLECULAR-OXYGEN; FREQUENCY; PHOTOELECTRON; GENERATION; LASERS AB The angular distribution of photoelectrons created by multiphoton ionization of xenon atoms by a few-cycle laser pulse shows a carrier-envelope phase (CEP) dependent asymmetry. A simple perturbative model based on a sum over indistinguishable quantum paths describes the observed asymmetry as a function of photoelectron energy and CEP. Although the individual multiphoton transition rates depend on the intensity profile of the pulse, the experimentally measured photoelectron angular distributions are sensitive to the absolute spectral phase of the pulse, including both CEP and chirp. We discuss retrieval of the CEP and chirp from the asymmetry pattern, as well as the potential to extract the scattering phase shift. C1 [Abel, Mark J.; Pfeifer, Thomas; Jullien, Aurelie; Nagel, Phillip M.; Bell, M. Justine; Neumark, Daniel M.; Leone, Stephen R.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Abel, Mark J.; Pfeifer, Thomas; Jullien, Aurelie; Nagel, Phillip M.; Bell, M. Justine; Neumark, Daniel M.; Leone, Stephen R.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Abel, Mark J.; Pfeifer, Thomas; Jullien, Aurelie; Nagel, Phillip M.; Bell, M. Justine; Neumark, Daniel M.; Leone, Stephen R.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Abel, MJ (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM srl@berkeley.edu RI Neumark, Daniel/B-9551-2009; Jullien, Aurelie/C-8345-2009 OI Neumark, Daniel/0000-0002-3762-9473; FU Air Force Office of Scientific Research [FA9550-04-1-0242]; US Department of Energy [DE-AC02-05CH11231]; Alexander von Humboldt-Foundation; National Science Foundation Grant FX The authors wish to thank Lukas Gallmann, Jason Jones and Jun Ye for significant contributions to the experimental apparatus. The project is supported by a MURI program from the Air Force Office of Scientific Research, contract no. FA9550-04-1-0242. Portions of the laboratory were supported by the Director, Office Of Science, Office of Basic Energy Sciences, of the US Department of Energy under contract DE-AC02-05CH11231. TP acknowledges support of a Feodor Lynen Fellowship of the Alexander von Humboldt-Foundation. MJB and PMN are recently supported by a National Science Foundation Grant. NR 24 TC 14 Z9 14 U1 2 U2 9 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0953-4075 J9 J PHYS B-AT MOL OPT JI J. Phys. B-At. Mol. Opt. Phys. PD APR 14 PY 2009 VL 42 IS 7 AR 075601 DI 10.1088/0953-4075/42/7/075601 PG 8 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 423OF UT WOS:000264504900014 ER PT J AU Berchtold, KA Hacioglu, B Nie, J Cramer, NB Stansbury, JW Bowman, CN AF Berchtold, Kathryn A. Hacioglu, Bilge Nie, Jun Cramer, Neil B. Stansbury, Jeffrey W. Bowman, Christopher N. TI Rapid Solid-State Photopolymerization of Cyclic Acetal-Containing Acrylates SO MACROMOLECULES LA English DT Article ID REACTIVE ACRYLIC-MONOMERS; MOLECULAR-WEIGHT DISTRIBUTION; LIQUID-CRYSTALLINE ACRYLATES; LIGHT-INDUCED POLYMERIZATION; INSITU PHOTOPOLYMERIZATION; MULTIFUNCTIONAL MONOMERS; MESOGENIC DIACRYLATE; REACTION BEHAVIOR; KINETIC-ANALYSIS; METHACRYLATE AB A cyclic acetal-functionalized urethane acrylate monomer is synthesized here and polymerized in a crystalline state without the polymerization kinetics being deleteriously affected by the solid state. Depending on the processing conditions, the cyclic acetal urethane acrylate monomer exists in either a metastable liquid state or a crystalline state at ambient conditions. Because of mobility restrictions, extremely poor polymerization kinetics and functional group conversions are typically achieved in solid-state polymerizations. However, the solid-state photopolymerization of a cyclic acetal urethane acrylate results in nearly identical polymerization rates and ultimately higher conversion in the crystalline state than in the liquid state under otherwise identical conditions. We conclude that the crystallization process occurs in such a manner as to template the acrylic double bonds in a structure that facilitates rapid, minimally activated propagation. C1 [Hacioglu, Bilge; Cramer, Neil B.; Stansbury, Jeffrey W.; Bowman, Christopher N.] Univ Colorado, Dept Biol & Chem Engn, Boulder, CO 80309 USA. [Berchtold, Kathryn A.] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. [Nie, Jun] Beijing Univ Chem Technol, State Key Lab Chem Resource Engn, Beijing 100029, Peoples R China. [Nie, Jun] Beijing Univ Chem Technol, Coll Mat Sci & Engn, Beijing 100029, Peoples R China. [Stansbury, Jeffrey W.; Bowman, Christopher N.] Univ Colorado Denver, Sch Dent Med, Dept Craniofacial Biol, Aurora, CO 80045 USA. RP Bowman, CN (reprint author), Univ Colorado, Dept Biol & Chem Engn, CB 424, Boulder, CO 80309 USA. EM christopher.bowman@colorado.edu RI Bowman, Christopher/B-1490-2008 OI Bowman, Christopher/0000-0001-8458-7723 FU NIH [DE 10959]; National Science Foundation Industry University Cooperative Research Center for Fundamentals and Applications FX The authors acknowledge NIH Grant DE 10959 and the National Science Foundation Industry University Cooperative Research Center for Fundamentals and Applications of Photopolymerizations for funding this work. NR 38 TC 6 Z9 7 U1 0 U2 14 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0024-9297 J9 MACROMOLECULES JI Macromolecules PD APR 14 PY 2009 VL 42 IS 7 BP 2433 EP 2437 DI 10.1021/ma802406j PG 5 WC Polymer Science SC Polymer Science GA 430MD UT WOS:000264992300021 PM 20827437 ER PT J AU Yang, L Tulk, CA Klug, DD Moudrakovski, IL Ratcliffe, CI Ripmeester, JA Chakoumakos, BC Ehm, L Martin, CD Parise, JB AF Yang, L. Tulk, C. A. Klug, D. D. Moudrakovski, I. L. Ratcliffe, C. I. Ripmeester, J. A. Chakoumakos, B. C. Ehm, L. Martin, C. D. Parise, J. B. TI Synthesis and characterization of a new structure of gas hydrate SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE high pressure; ice; clathrate hydrate ID CLATHRATE HYDRATE; METHANE HYDRATE; STRUCTURE-H; PRESSURE; XENON; TRANSFORMATIONS; ARGON; GPA AB Atoms and molecules < 0.9 nm in diameter can be incorporated in the cages formed by hydrogen-bonded water molecules making up the crystalline solid clathrate hydrates. For these materials crystallographic structures generally fall into 3 categories, which are 2 cubic forms and a hexagonal form. A unique clathrate hydrate structure, previously known only hypothetically, has been synthesized at high pressure and recovered at 77 K and ambient pressure in these experiments. These samples contain Xe as a guest atom and the details of this previously unobserved structure are described here, most notably the host-guest ratio is similar to the cubic Xe clathrate starting material. After pressure quench recovery to 1 atmosphere the structure shows considerable metastability with increasing temperature (T < 160 K) before reverting back to the cubic form. This evidence of structural complexity in compositionally similar clathrate compounds indicates that the reaction path may be an important determinant of the structure, and impacts upon the structures that might be encountered in nature. C1 [Yang, L.; Tulk, C. A.; Chakoumakos, B. C.] Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA. [Yang, L.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Klug, D. D.; Moudrakovski, I. L.; Ratcliffe, C. I.; Ripmeester, J. A.] Natl Res Council Canada, Steacie Inst Mol Sci, Ottawa, ON K1A 0R6, Canada. [Ehm, L.; Parise, J. B.] SUNY Stony Brook, Inst Mineral Phys, Dept Geosci, Stony Brook, NY 11794 USA. [Martin, C. D.] Argonne Natl Lab, Adv Photon Source, Xray Sci Div, Argonne, IL 60439 USA. RP Tulk, CA (reprint author), Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA. EM tulkca@ornl.gov RI Chakoumakos, Bryan/A-5601-2016; Tulk, Chris/R-6088-2016 OI Chakoumakos, Bryan/0000-0002-7870-6543; Tulk, Chris/0000-0003-3400-3878 FU UTBattelle, LLC [DE-AC05-00OR22725]; DOE-BES at the Spallation Neutron Source; Center for Nanophase Materials Science (L. Y.) at Oak Ridge National Laboratory; National Science Foundation [DMR-0800415] FX Oak Ridge National Laboratory is managed by UTBattelle, LLC for the U. S. Department of Energy under Contract DE-AC05-00OR22725. This work was supported by the scientific user facilities division of DOE-BES at the Spallation Neutron Source (C. A. T., L. Y., and B. C. C.) and Center for Nanophase Materials Science (L. Y.) at Oak Ridge National Laboratory; and the National Science Foundation Grant DMR-0800415 (to C. D. M., L. E., and J. B. P.). NR 25 TC 37 Z9 37 U1 4 U2 48 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD APR 14 PY 2009 VL 106 IS 15 BP 6060 EP 6064 DI 10.1073/pnas.0809342106 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 433AB UT WOS:000265174600008 PM 19332791 ER PT J AU Finzi-Hart, JA Pett-Ridge, J Weber, PK Popa, R Fallon, SJ Gunderson, T Hutcheon, ID Nealson, KH Capone, DG AF Finzi-Hart, Juliette A. Pett-Ridge, Jennifer Weber, Peter K. Popa, Radu Fallon, Stewart J. Gunderson, Troy Hutcheon, Ian D. Nealson, Kenneth H. Capone, Douglas G. TI Fixation and fate of C and N in the cyanobacterium Trichodesmium using nanometer-scale secondary ion mass spectrometry SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE NanoSIMS; stable isotope labeling; cyanophycin ID NORTH PACIFIC-OCEAN; MARINE OSCILLATORIA TRICHODESMIUM; AEROBIC NITROGEN-FIXATION; BLUE-GREEN-ALGA; N-2 FIXATION; NONHETEROCYSTOUS CYANOBACTERIUM; DIAZOTROPHIC CYANOBACTERIA; ANABAENA-CYLINDRICA; LOCALIZATION; OXYGEN AB The marine cyanobacterium Trichodesmium is ubiquitous in tropical and subtropical seas and is an important contributor to global N and C cycling. We sought to characterize metabolic uptake patterns in individual Trichodesmium IMS-101 cells by quantitatively imaging (13)C and (15)N uptake with high-resolution secondary ion mass spectrometry (NanoSIMS). Trichodesmium fix both CO(2) and N(2) concurrently during the day and are, thus, faced with a balancing act: the O(2) evolved during photosynthesis inhibits nitrogenase, the key enzyme in N(2) fixation. After performing correlated transmission electron microscopy (TEM) and NanoSIMS analysis on trichome thin-sections, we observed transient inclusion of (15)N and (13)C into discrete subcellular bodies identified as cyanophycin granules. We speculate that Trichodesmium uses these dynamic storage bodies to uncouple CO(2) and N(2) fixation from overall growth dynamics. We also directly quantified both CO(2) and N(2) fixation at the single cell level using NanoSIMS imaging of whole cells in multiple trichomes. Our results indicate maximal CO(2) fixation rates in the morning, compared with maximal N(2) fixation rates in the afternoon, bolstering the argument that segregation of CO(2) and N(2) fixation in Trichodesmium is regulated in part by temporal factors. Spatial separation of N(2) and CO(2) fixation may also have a role in metabolic segregation in Trichodesmium. Our approach in combining stable isotope labeling with NanoSIMS and TEM imaging can be extended to other physiologically relevant elements and processes in other important microbial systems. C1 [Finzi-Hart, Juliette A.; Gunderson, Troy; Nealson, Kenneth H.; Capone, Douglas G.] Univ So Calif, Wrigley Inst Environm Studies, Los Angeles, CA 90089 USA. [Finzi-Hart, Juliette A.; Gunderson, Troy; Nealson, Kenneth H.; Capone, Douglas G.] Univ So Calif, Dept Biol Sci, Los Angeles, CA 90089 USA. [Pett-Ridge, Jennifer; Weber, Peter K.; Hutcheon, Ian D.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Popa, Radu] Portland State Univ, Dept Biol, Portland, OR 97207 USA. [Fallon, Stewart J.] Australian Natl Univ, Res Sch Earth Sci, Canberra, ACT 0200, Australia. RP Finzi-Hart, JA (reprint author), Univ So Calif, Wrigley Inst Environm Studies, 3616 Trousdale Pkwy, Los Angeles, CA 90089 USA. EM jahart@usc.edu RI Fallon, Stewart/G-6645-2011 OI Fallon, Stewart/0000-0002-8064-5903 FU U. S. Department of Education Office of Biological and Environmental Research Genomics Genomes to Life Research Program; National Science Foundation Ocean Science Program [OCE 0452765, OCE 0753218]; U. S. Department of Energy [DE-AC52-07NA27344] FX We thank John Waterbury (Wood Hole Oceanographic Institution, Woods Hole, MA) for providing us his Trichodesmium culture, IMS-101; Rachel Foster (University of California Santa Cruz) and Ed Carpenter (San Francisco State University) for their aid in identifying cyanophycin in the TEM images; Larry Nittler (Carnegie Institute of Washington) for software development; Christina Ramon [Lawrence Livermore National Laboratory (LLNL)] for assistance with sample preparation for NanoSIMS and TEM analysis; and 3 anonymous reviewers, who provided valuable comments that helped improve the manuscript. This work was supported in part by the U. S. Department of Education Office of Biological and Environmental Research Genomics Genomes to Life Research Program (J.P.-R. and P.K.W.), and the National Science Foundation Ocean Science Program Grants OCE 0452765 and OCE 0753218. LLNL was supported by U. S. Department of Energy Contract DE-AC52-07NA27344. NR 44 TC 72 Z9 77 U1 6 U2 38 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD APR 14 PY 2009 VL 106 IS 15 BP 6345 EP 6350 DI 10.1073/pnas.0810547106 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 433AB UT WOS:000265174600057 PM 19332780 ER PT J AU Wang, GJ Volkow, ND Fowler, JS AF Wang, Gene-Jack Volkow, Nora D. Fowler, Joanna S. TI Reply to Burgard: Gender differences in eating behaviors and obesity SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Letter C1 [Wang, Gene-Jack; Fowler, Joanna S.] Brookhaven Natl Lab, Dept Med, Upton, NY 11973 USA. [Wang, Gene-Jack; Fowler, Joanna S.] NIAAA, Natl Inst Drug Abuse, Rockville, MD 20857 USA. [Volkow, Nora D.] Mt Sinai Sch Med, Dept Psychiat, New York, NY 10029 USA. RP Wang, GJ (reprint author), Brookhaven Natl Lab, Dept Med, 30 Bell Ave, Upton, NY 11973 USA. EM gjwang@bnl.gov NR 6 TC 2 Z9 2 U1 0 U2 1 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD APR 14 PY 2009 VL 106 IS 15 BP E37 EP E37 DI 10.1073/pnas.0901996106 PG 1 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 433AB UT WOS:000265174600074 ER PT J AU Jaradat, S Brimicombe, PD Southern, C Siemianowski, SD DiMasi, E Pindak, R Gleeson, HF AF Jaradat, S. Brimicombe, P. D. Southern, C. Siemianowski, S. D. DiMasi, E. Pindak, R. Gleeson, H. F. TI Stable field-induced ferrielectric liquid crystal phases in devices SO APPLIED PHYSICS LETTERS LA English DT Article DE antiferroelectric liquid crystals; dielectric polarisation; ferroelectric liquid crystals; ferroelectric transitions; flexoelectricity; liquid crystal devices; liquid crystal phase transformations; thermodynamic properties ID X-RAY-SCATTERING; TEMPERATURE-DEPENDENCE AB The field-induced transitions between ferri-, antiferro-, and ferroelectric liquid crystal phases are interesting because although there are only small thermodynamic differences between them, each of these phases has different electrical and optical properties. We report an irreversible field-induced transition from an antiferroelectric phase to the ferrielectric phase in a liquid crystal device, and compare it to a system in which the transition is reversible. The two systems differ mainly in their spontaneous polarization (120 nC cm(-2) for the former and 60 nC cm(-2) for the latter) while the optical tilt is comparable (29 degrees and 25 degrees, respectively). We explain the observed transitions based on the relative magnitudes of the discrete flexoelectric and spontaneous polarizations. C1 [Jaradat, S.; Brimicombe, P. D.; Southern, C.; Siemianowski, S. D.; Gleeson, H. F.] Univ Manchester, Sch Phys & Astron, Manchester M13 9PL, Lancs, England. [DiMasi, E.; Pindak, R.] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Gleeson, HF (reprint author), Univ Manchester, Sch Phys & Astron, Manchester M13 9PL, Lancs, England. EM helen.gleeson@manchester.ac.uk FU EPSRC [EP/D069793/1]; University of Manchester; U.S. Department of Energy, Office of Basic Energy Sciences [DE-AC02-98CH10886] FX The authors thank M. Hird and J.W. Goodby for materials, EPSRC (Grant No. EP/D069793/1) and the University of Manchester for funding. Use of the National Synchrotron Light Source, Brookhaven National Laboratory, was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. NR 15 TC 4 Z9 4 U1 3 U2 9 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD APR 13 PY 2009 VL 94 IS 15 AR 153507 DI 10.1063/1.3119208 PG 3 WC Physics, Applied SC Physics GA 434OY UT WOS:000265285200097 ER PT J AU Laurence, TA Bude, JD Shen, N Feldman, T Miller, PE Steele, WA Suratwala, T AF Laurence, Ted A. Bude, Jeff D. Shen, Nan Feldman, Theodore Miller, Philip E. Steele, William A. Suratwala, Tayyab TI Metallic-like photoluminescence and absorption in fused silica surface flaws SO APPLIED PHYSICS LETTERS LA English DT Article DE energy gap; evaporation; fracture; high-speed optical techniques; photoluminescence; polishing; silicon compounds; time resolved spectra ID OPTICAL-MATERIALS; DAMAGE; LUMINESCENCE; RADIATION; GROWTH; SIO2 AB Using high-sensitivity confocal time-resolved photoluminescence (PL) techniques, we report an ultrafast PL (40 ps-5 ns) from impurity-free surface flaws on fused silica, including polished, indented, or fractured surfaces of fused silica, and from laser-heated evaporation pits. This PL is excited by the single-photon absorption of sub-band gap light, and is especially bright in fractures. Regions which exhibit this PL are strongly absorptive well below the band gap, as evidenced by a propensity to damage with 3.5 eV nanosecond-scale laser pulses. C1 [Laurence, Ted A.; Bude, Jeff D.; Shen, Nan; Feldman, Theodore; Miller, Philip E.; Steele, William A.; Suratwala, Tayyab] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Laurence, TA (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM laurence2@llnl.gov; bude2@llnl.gov RI Laurence, Ted/E-4791-2011; Suratwala, Tayyab/A-9952-2013 OI Laurence, Ted/0000-0003-1474-779X; Suratwala, Tayyab/0000-0001-9086-1039 FU U.S. Department of Energy [DE-AC52-07NA27344]; Laboratory Directed Research and Development (LDRD) FX This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. This work was supported by the Laboratory Directed Research and Development (LDRD) program at LLNL. T. F. was supported by LLNL summer undergraduate internship. We thank Raluca Negres for assistance with laser damage testing and Gabe Guss for forming the laser evaporation pits. NR 18 TC 54 Z9 55 U1 4 U2 35 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD APR 13 PY 2009 VL 94 IS 15 AR 151114 DI 10.1063/1.3119622 PG 3 WC Physics, Applied SC Physics GA 434OY UT WOS:000265285200014 ER PT J AU Lee, W Joo, S Kim, SU Rhie, K Hong, J Shin, KH Kim, KH AF Lee, Wonhyun Joo, Sungjung Kim, Sun Ung Rhie, Kungwon Hong, Jinki Shin, Kyung-Ho Kim, Ki Hyun TI Magnetic bead counter using a micro-Hall sensor for biological applications SO APPLIED PHYSICS LETTERS LA English DT Article DE biosensors; Hall effect transducers; microsensors ID PARTICLES AB Micro-Hall sensors have been fabricated, and various numbers of micron-size magnetic beads have been placed within the sensor area. The Hall resistances measured at room temperature are found to be proportional to the number of the beads, and are in good agreement with the numerically simulated results presented in this study. Our sensors are designed to measure the number of beads between zero and full-scale signals for a given number range of interest. The effects of miniaturizing the beads and sensors to nanoscale are also discussed. C1 [Lee, Wonhyun; Joo, Sungjung; Kim, Sun Ung; Rhie, Kungwon; Hong, Jinki] Korea Univ, Dept Phys, Chochiwon 339700, South Korea. [Shin, Kyung-Ho] KIST, Nano Devices Res Ctr, Seoul 130650, South Korea. [Kim, Ki Hyun] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Lee, W (reprint author), Korea Univ, Dept Phys, Chochiwon 339700, South Korea. EM hcomet@chol.com; jkhongjkhong@korea.ac.kr FU KIST Vision 21 Program; Korean Government (MOEHRD) [KRF-2008-331-D00235]; IT Technology Under Ministry of Knowledge Economy of Korea FX This work was supported by KIST Vision 21 Program, a Korea Research Foundation grant funded by the Korean Government (MOEHRD) (Grant No. KRF-2008-331-D00235) and IT Technology Under Ministry of Knowledge Economy of Korea. NR 10 TC 14 Z9 14 U1 0 U2 5 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD APR 13 PY 2009 VL 94 IS 15 AR 153903 DI 10.1063/1.3122142 PG 3 WC Physics, Applied SC Physics GA 434OY UT WOS:000265285200101 ER PT J AU Shukla, NC Liao, HH Abiade, JT Murayama, M Kumar, D Huxtable, ST AF Shukla, Nitin C. Liao, Hao-Hsiang Abiade, Jeremiah T. Murayama, Mitsuhiro Kumar, Dhananjay Huxtable, Scott T. TI Thermal transport in composites of self-assembled nickel nanoparticles embedded in yttria stabilized zirconia SO APPLIED PHYSICS LETTERS LA English DT Article DE multilayers; nanoparticles; nickel; pulsed laser deposition; thermal conductivity; yttrium compounds; zirconium compounds ID CONDUCTIVITY; NANOSCALE; DENSE AB We investigate the effect of nickel nanoparticle size on thermal transport in multilayer nanocomposites consisting of alternating layers of nickel nanoparticles and yttria stabilized zirconia (YSZ) spacer layers that are grown with pulsed laser deposition. Using time-domain thermoreflectance, we measure thermal conductivities of k=1.8, 2.4, 2.3, and 3.0 W m(-1) K-1 for nanocomposites with nickel nanoparticle diameters of 7, 21, 24, and 38 nm, respectively, and k=2.5 W m(-1) K-1 for a single 80 nm thick layer of YSZ. We use an effective medium theory to estimate the lower limits for interface thermal conductance G between the nickel nanoparticles and the YSZ matrix (G>170 MW m(-2) K-1), and nickel nanoparticle thermal conductivity. C1 [Shukla, Nitin C.; Liao, Hao-Hsiang; Abiade, Jeremiah T.; Huxtable, Scott T.] Virginia Polytech Inst & State Univ, Dept Mech Engn, Blacksburg, VA 24061 USA. [Abiade, Jeremiah T.] Virginia Polytech Inst & State Univ, Dept Mat Sci & Engn, Blacksburg, VA 24061 USA. [Murayama, Mitsuhiro] Virginia Polytech Inst & State Univ, Inst Crit Technol & Appl Sci, Blacksburg, VA 24061 USA. [Kumar, Dhananjay] N Carolina Agr & Tech State Univ, Dept Mech & Chem Engn, Greensboro, NC 27411 USA. [Kumar, Dhananjay] N Carolina Agr & Tech State Univ, CAMSS, Greensboro, NC 27411 USA. [Kumar, Dhananjay] Oak Ridge Natl Lab, Condensed Matter Sci Div, Oak Ridge, TN 37831 USA. RP Shukla, NC (reprint author), Virginia Polytech Inst & State Univ, Dept Mech Engn, Blacksburg, VA 24061 USA. EM huxtable@vt.edu RI Huxtable, Scott/F-2434-2014 FU United States National Science Foundation (U. S. NSF) [CBET-0547122]; NSF-NIRT [DMR-0403480, NSF-BRIGE EEC-0824340]; Thomas F. and Kate Miller Jeffress Memorial Trust [J-799] FX This work was partially supported by the United States National Science Foundation (U. S. NSF) under Grant Nos. CBET-0547122, NSF-NIRT DMR-0403480, and NSF-BRIGE EEC-0824340, and by the Thomas F. and Kate Miller Jeffress Memorial Trust under Grant No. J-799. Some of this work was carried out using instruments in the Nanoscale Characterization and Fabrication Laboratory, a Virginia Tech facility operated by the Institute for Critical Technology and Applied Science, and we thank W. T. Reynolds, Jr. and J. McIntosh for their assistance with structural characterizations. NR 22 TC 3 Z9 3 U1 0 U2 5 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD APR 13 PY 2009 VL 94 IS 15 AR 151913 DI 10.1063/1.3116715 PG 3 WC Physics, Applied SC Physics GA 434OY UT WOS:000265285200030 ER PT J AU Wang, BN Zhou, JF Koschny, T Soukoulis, CM AF Wang, Bingnan Zhou, Jiangfeng Koschny, Thomas Soukoulis, Costas M. TI Nonplanar chiral metamaterials with negative index SO APPLIED PHYSICS LETTERS LA English DT Article DE chirality; circular dichroism; light reflection; light transmission; metamaterials ID REFRACTION AB We demonstrate experimentally and numerically that nonplanar chiral metamaterials give giant optical activity, circular dichroism, and negative refractive index. The transmission, reflection, and the retrieval results of the experiments agree pretty well with the simulations. This is an important step toward the design and fabrication of three-dimensional isotropic chiral metamaterials. C1 [Wang, Bingnan; Zhou, Jiangfeng; Koschny, Thomas; Soukoulis, Costas M.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Wang, Bingnan; Zhou, Jiangfeng; Koschny, Thomas; Soukoulis, Costas M.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Koschny, Thomas; Soukoulis, Costas M.] Univ Crete, FORTH, Inst Elect Struct & Laser, Dept Mat Sci & Technol, Iraklion 71110, Crete, Greece. RP Wang, BN (reprint author), Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. EM soukoulis@ameslab.gov RI Soukoulis, Costas/A-5295-2008; Zhou, Jiangfeng/D-4292-2009 OI Zhou, Jiangfeng/0000-0002-6958-3342 FU Department of Energy [DE-AC02-07CH11358]; Department of Navy [N00014-07-1-0359]; European Community [213390]; AFOSR [FA 9550-06-1-0337] FX Work at Ames Laboratory was supported by the Department of Energy (Basic Energy Sciences) under Contract No. DE-AC02-07CH11358. This work was partially supported by the Department of Navy, Office of the Naval Research (Grant No. N00014-07-1-0359), European Community FET project PHOME (Contract No. 213390) and AFOSR under MURI Grant No. FA 9550-06-1-0337. NR 19 TC 92 Z9 94 U1 1 U2 27 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD APR 13 PY 2009 VL 94 IS 15 AR 151112 DI 10.1063/1.3120565 PG 3 WC Physics, Applied SC Physics GA 434OY UT WOS:000265285200012 ER PT J AU Stieler, D Barsic, A Biswas, R Tuttle, G Ho, KM AF Stieler, Daniel Barsic, Anthony Biswas, Rana Tuttle, Gary Ho, Kai-Ming TI A planar four-port channel drop filter in the three-dimensional woodpile photonic crystal SO OPTICS EXPRESS LA English DT Article ID WAVE-GUIDES; BAND-GAP; WAVELENGTH; MODES AB A compact planar channel four-port drop filter is developed experimentally and theoretically in the three-dimensional woodpile photonic crystal having a complete band gap. This consists of two waveguides separated by a defect in a single layer of the photonic crystal. Frequencies for channel dropping can be tuned throughout the band gap, by changing the size of the defect. Quality factors of similar to 1000 were measured. Simulations demonstrate directional energy transfer between the input and out put waveguides, through excitation of fields in the defect region. The planar nature of the filter is much more amenable to fabrication at optical length wavelengths. (C) 2009 Optical Society of America C1 [Stieler, Daniel; Barsic, Anthony; Biswas, Rana; Tuttle, Gary; Ho, Kai-Ming] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Stieler, Daniel; Barsic, Anthony; Biswas, Rana; Tuttle, Gary] Iowa State Univ, Dept Elect & Comp Engn, Ames, IA 50011 USA. [Stieler, Daniel; Barsic, Anthony; Biswas, Rana; Tuttle, Gary] Iowa State Univ, Microelect Res Ctr, Ames, IA 50011 USA. [Biswas, Rana; Ho, Kai-Ming] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. RP Stieler, D (reprint author), Iowa State Univ, Ames Lab, Ames, IA 50011 USA. EM dstieler@gmail.com FU Department of Energy, Division of Basic Energy Sciences [DE-AC02-07CH11358] FX Research at the Ames Laboratory was supported by the Department of Energy, Division of Basic Energy Sciences, under Contract No. DE-AC02-07CH11358. NR 22 TC 10 Z9 11 U1 0 U2 3 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD APR 13 PY 2009 VL 17 IS 8 BP 6128 EP 6133 DI 10.1364/OE.17.006128 PG 6 WC Optics SC Optics GA 432BQ UT WOS:000265108900026 PM 19365435 ER PT J AU Bazinet, P Tilley, TD AF Bazinet, Patrick Tilley, T. Don TI Octa- and Nonamethylfluorenyl Complexes of Zirconium(IV): Reactive Hydride Derivatives and Reversible Hydrogen Migration between the Metal and the Fluorenyl Ligand SO ORGANOMETALLICS LA English DT Article ID METALLOCENE POLYMERIZATION CATALYSTS; INTRAMOLECULAR ARENE HYDROGENATION; REDUCTIVE ELIMINATION-REACTIONS; OLEFIN POLYMERIZATION; GROUP-4 METALLOCENES; STEREOCHEMICAL CONSEQUENCES; ORGANOMETALLIC DERIVATIVES; PROPYLENE POLYMERIZATIONS; DINITROGEN COMPLEX; CHAIN TRANSFER AB Reaction of the zirconocene dichloride Cp '' Flu*ZrCl2 (Cp '' = 1,3-(SiMe3)(2)C5H3, Flu* = C13Me9) with (BuLi)-Bu-i ((BuLi)-Bu-i = LiCH2CHMe2) resulted in elimination of isobutylene and formation of Cp ''(eta(5):eta(3)-C13Me9H)ZrH (1-syn-1,2-DHF*D), possessing an eta(5):eta(3) -dihydrofluorenediyl ligand derived from a metal-to-benzo ring hydride transfer. This species undergoes reversible hydride transfer and exists in equilibrium with only one of its three other possible isomers (1-syn-3,4-DHF*D). Compound 1-syn-1,2-DHF*D catalyzes the cyclization of 1,5-hexadiene to methylenecyclopentane, and its reaction with excess isobutylene leads to the elimination of isobutane and formation of the cyclometalated zirconocene isobutyl Species (eta(5):eta(3)-C5H3-1-SiMe3CH2-3-SiMe3)eta(5)-C13Me9)(ZrBu)-Bu-i (2). Reaction of Cp '' Flu '' ZrCl2 with (BuLi)-Bu-i directly generated the cyclometalated zirconocene species (eta(5):eta(3)-C5H3-1-SiMe3CH2-3-SiMe3)eta(5)-C13Me8H)(ZrBu)-Bu-i (3); however, reaction of the dichloride Cp '' Flu '' ZrCl2 with (BuLi)-Bu-i in the presence of hydrogen generated the dihydrofluorenediyl monohydride derivative Cp ''(eta(5):eta(3)-C13Me8H2)ZrH (4). Treatment of the cyclometalated isobutyl species 3 with H-2 led to partial hydrogenation of the Flu '' ligand and formation of the monohydride Cp ''(eta(5):eta(3)-C13Me9H)ZrH (5), which contains a hexahydrofluorenediyl ligand. Partial hydrogenation of the Flu '' ligand proceeded exclusively via an intramolecular pathway, as evidenced by the all-exo configuration of the methyl groups on the saturated benzo ring. Structural characterization of 1-syn-1,2-DHF*D, 2, 3, and 5 revealed a highly strained eta(5):eta(3-)Coordination mode for the dihydro- and hexahydrofluorenediyl ligands. C1 [Tilley, T. Don] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Ernest Orlando Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Tilley, TD (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM tdtilley@berkeley.edu FU Director, Office of Energy Research; Office of Basic Energy Sciences; Chemical Sciences Division; U.S. Department of Energy [DE-AC02-05CH 4 123 1]; NSERC FX We thank Jennifer McBee and Joe Escalada for assistance with the X-ray crystallography. This work was supported by the Director, Office of Energy Research, Office of Basic Energy Sciences, Chemical Sciences Division, U.S. Department of Energy, under Contract No. DE-AC02-05CH 4 123 1, and P.B. thanks NSERC for a postdoctoral fellowship. NR 72 TC 4 Z9 4 U1 1 U2 4 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0276-7333 EI 1520-6041 J9 ORGANOMETALLICS JI Organometallics PD APR 13 PY 2009 VL 28 IS 7 BP 2285 EP 2293 DI 10.1021/om900047x PG 9 WC Chemistry, Inorganic & Nuclear; Chemistry, Organic SC Chemistry GA 429PN UT WOS:000264932700041 ER PT J AU Actis, S Passarino, G Sturm, C Uccirati, S AF Actis, Stefano Passarino, Giampiero Sturm, Christian Uccirati, Sandro TI NNLO computational techniques: The cases H -> gamma gamma and H -> gg SO NUCLEAR PHYSICS B LA English DT Review DE Feynman diagrams; Two-loop calculations; Radiative corrections; Higgs physics ID HIGGS-BOSON PRODUCTION; QUANTUM-FIELD THEORY; ELECTROWEAK RADIATIVE-CORRECTIONS; LOOP LEADING LOGARITHMS; ANGLE SIN(2) THETA(EFF); 2-LOOP SELF-ENERGIES; VS. POLE MASSES; STANDARD MODEL; QCD CORRECTIONS; FEYNMAN DIAGRAMS AB A large set of techniques needed to compute decay rates at the two-loop level are derived and systematized. The main emphasis of the paper is on the two Standard Model decays H -> gamma gamma and H -> gg. The techniques, however, have a much wider range of application: they give practical examples of general rules for two-loop renormalization; they introduce simple recipes for handling internal unstable particles in two-loop processes; they illustrate simple procedures for the extraction of collinear logarithms from the amplitude. The latter is particularly relevant to show cancellations, e.g. cancellation of collinear divergencies. Furthermore, the paper deals with the proper treatment of non-enhanced two-loop QCD and electroweak contributions to different physical (pseudo-)observables, showing how they can be transformed in a way that allows for a stable numerical integration. Numerical results for the two-loop percentage corrections to H -> gamma gamma, gg are presented and discussed. When applied to the process pp ->). gg + X -> H + X, the results show that the electroweak scaling factor for the cross section is between -4% and +6% in the range 100 GeV < M-H < 500 GeV, without incongruent large effects around the physical electroweak thresholds, thereby showing that only a complete implementation of the computational scheme keeps two-loop corrections under control. (c) 2008 Elsevier B.V. All rights reserved. C1 [Sturm, Christian] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Actis, Stefano] Rhein Westfal TH Aachen, Inst Theoret Phys E, D-52056 Aachen, Germany. [Passarino, Giampiero] Univ Turin, Dipartimento Fis Teor, I-10124 Turin, Italy. [Passarino, Giampiero] Ist Nazl Fis Nucl, Sez Torino, Turin, Italy. [Uccirati, Sandro] Univ Karlsruhe, Inst Theoret Teilchenphys, D-76128 Karlsruhe, Germany. RP Sturm, C (reprint author), Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. EM actis@physik.rwth-aachen.de; giampiero@to.infn.it; sturm@bnl.gov; uccirati@particle.uni-karlsruhe.de RI Sturm, Christian/Q-2713-2015 OI Sturm, Christian/0000-0002-3137-4940 FU MIUR [2001023713 _ 006,]; European Community's Marie Curie Research; US Department of Energy [MRTN-CT-2006-035505]; Deutsche Forschungsgemeinschaft [DE-AC02-98CH10886] FX Work supported by MIUR under contract 2001023713 _ 006, by the European Community's Marie Curie Research Training Network Tools and Precision Calculations for Physics Discoveries at Colliders under contract MRTN-CT-2006-035505, by the US Department of Energy under contract No. DE-AC02-98CH10886 and by the Deutsche Forschungsgemeinschaft through Sonderforschungsbereich/Transregio 9 Computergestuzte Theoretische Teilchenphysik. NR 133 TC 91 Z9 91 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0550-3213 EI 1873-1562 J9 NUCL PHYS B JI Nucl. Phys. B PD APR 11 PY 2009 VL 811 IS 1-2 BP 182 EP 273 DI 10.1016/j.nuclphysb.2008.11.024 PG 92 WC Physics, Particles & Fields SC Physics GA 405UN UT WOS:000263249800009 ER PT J AU Chandler, E Hoover, E Field, J Sheetz, K Amir, W Carriles, R Ding, SY Squier, J AF Chandler, Eric Hoover, Erich Field, Jeff Sheetz, Kraig Amir, Wafa Carriles, Ramon Ding, Shi-you Squier, Jeff TI High-resolution mosaic imaging with multifocal, multiphoton photon-counting microscopy SO APPLIED OPTICS LA English DT Article ID REAL-TIME; 2-PHOTON; OSCILLATOR; EXCITATION; SINGLE; POWER AB High-resolution mosaic imaging is performed for the first time to our knowledge with a multifocal, multi-photon, photon-counting imaging system. We present a novel design consisting of a home-built femtosecond Yb-doped KGdWO4 laser with an optical multiplexer, which is coupled with a commercial Olympus IX-71 microscope frame. Photon counting is performed using single-element detectors and an inexpensive electronic demultiplexer and counters. (C) 2009 Optical Society of America C1 [Chandler, Eric; Hoover, Erich; Field, Jeff; Sheetz, Kraig; Amir, Wafa; Carriles, Ramon; Squier, Jeff] Colorado Sch Mines, Ctr Microintegrated Opt Adv Biol Control, Dept Phys, Golden, CO 80401 USA. [Ding, Shi-you] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Chandler, E (reprint author), Colorado Sch Mines, Ctr Microintegrated Opt Adv Biol Control, Dept Phys, 1500 Illinois St, Golden, CO 80401 USA. EM echandle@mines.edu FU NREL [ZCO-7-77379] FX This work was supported under NREL subcontract ZCO-7-77379. Additionally, we would like to thank Professor Martti Kauranen of the Tampere University of Technology for the loan of the gold nanostructures used to characterize the beam focus in this study. NR 20 TC 15 Z9 15 U1 0 U2 7 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1559-128X EI 2155-3165 J9 APPL OPTICS JI Appl. Optics PD APR 10 PY 2009 VL 48 IS 11 BP 2067 EP 2077 DI 10.1364/AO.48.002067 PG 11 WC Optics SC Optics GA 439IE UT WOS:000265620000013 PM 19363544 ER PT J AU Kaib, NA Becker, AC Jones, RL Puckett, AW Bizyaev, D Dilday, B Frieman, JA Oravetz, DJ Pan, K Quinn, T Schneider, DP Watters, S AF Kaib, Nathan A. Becker, Andrew C. Jones, R. Lynne Puckett, Andrew W. Bizyaev, Dmitry Dilday, Benjamin Frieman, Joshua A. Oravetz, Daniel J. Pan, Kaike Quinn, Thomas Schneider, Donald P. Watters, Shannon TI 2006 SQ(372): A LIKELY LONG-PERIOD COMET FROM THE INNER OORT CLOUD SO ASTROPHYSICAL JOURNAL LA English DT Article DE comets: general; Kuiper Belt; Oort Cloud ID DIGITAL SKY SURVEY; JUPITER-FAMILY COMETS; EMBEDDED STAR-CLUSTERS; OUTER SOLAR-SYSTEM; KUIPER-BELT; GALACTIC ENVIRONMENT; SCATTERED DISK; PAN-STARRS; ORIGIN; POPULATION AB We report the discovery of a minor planet (2006 SQ(372)) on an orbit with a perihelion of 24 AU and a semimajor axis of 796 AU. Dynamical simulations show that this is a transient orbit and is unstable on a timescale of similar to 200 Myr. Falling near the upper semimajor axis range of the scattered disk and the lower semimajor axis range of the Oort Cloud, previous membership in either class is possible. By modeling the production of similar orbits from the Oort Cloud as well as from the scattered disk, we find that the Oort Cloud produces 16 times as many objects on SQ(372)-like orbits as the scattered disk. Given this result, we believe this to be the most distant long-period comet (LPC) ever discovered. Furthermore, our simulation results also indicate that 2000 OO67 has had a similar dynamical history. Unaffected by the "Jupiter-Saturn Barrier," these two objects are most likely LPCs from the inner Oort Cloud. C1 [Kaib, Nathan A.; Becker, Andrew C.; Jones, R. Lynne; Quinn, Thomas] Univ Washington, Dept Astron, Seattle, WA 98195 USA. [Puckett, Andrew W.] Univ Alaska, Dept Phys & Astron, Anchorage, AK 99508 USA. [Bizyaev, Dmitry; Oravetz, Daniel J.; Pan, Kaike; Watters, Shannon] Apache Point Observ, Sunspot, NM 88349 USA. [Dilday, Benjamin] Univ Chicago, Dept Phys, Chicago, IL 60637 USA. [Dilday, Benjamin; Frieman, Joshua A.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Dilday, Benjamin] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA. [Frieman, Joshua A.] Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, Batavia, IL 60510 USA. [Frieman, Joshua A.] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [Schneider, Donald P.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. RP Kaib, NA (reprint author), Univ Washington, Dept Astron, Box 351580, Seattle, WA 98195 USA. EM kaib@astro.washington.edu FU Alfred P. Sloan Foundation; Participating Institutions; National Science Foundation; U.S. Department of Energy; National Aeronautics and Space Administration; Japanese Monbukagakusho; Max Planck Society; Higher Education Funding Council for England; American Museum of Natural History; Astrophysical Institute Potsdam; University of Basel; University of Cambridge; Case Western Reserve University; University of Chicago; Drexel University; Fermilab; Institute for Advanced Study; Japan Participation Group; Johns Hopkins University; Joint Institute for Nuclear Astrophysics; Kavli Institute for Particle Astrophysics and Cosmology; Korean Scientist Group; Chinese Academy of Sciences (LAMOST); Los Alamos National Laboratory; Max-Planck-Institute for Astronomy (MPIA); Max-Planck-Institute for Astrophysics (MPA); New Mexico State University; Ohio State University; University of Pittsburgh; University of Portsmouth; Princeton University; United States Naval Observatory; University of Washington FX We thank the reviewer, Alessandro Morbidelli, for insightful comments and suggestions that greatly improved the quality of this work. This research was partially funded by a NASA Earth and Space Science Fellowship. Most of our computing work was performed using the Purdue Teragrid computing facilities managed with Condor scheduling software (see http://www.cs.wisc.edu/condor). Funding for the SDSS and SDSS-II has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, the U.S. Department of Energy, the National Aeronautics and Space Administration, the Japanese Monbukagakusho, the Max Planck Society, and the Higher Education Funding Council for England. The SDSS Web site is http://www.sdss.org/. The SDSS is managed by the Astrophysical Research Consortium for the Participating Institutions. The Participating Institutions are the American Museum of Natural History, Astrophysical Institute Potsdam, University of Basel, University of Cambridge, Case Western Reserve University, University of Chicago, Drexel University, Fermilab, the Institute for Advanced Study, the Japan Participation Group, Johns Hopkins University, the Joint Institute for Nuclear Astrophysics, the Kavli Institute for Particle Astrophysics and Cosmology, the Korean Scientist Group, the Chinese Academy of Sciences (LAMOST), Los Alamos National Laboratory, the Max-Planck-Institute for Astronomy (MPIA), the Max-Planck-Institute for Astrophysics (MPA), New Mexico State University, Ohio State University, University of Pittsburgh, University of Portsmouth, Princeton University, the United States Naval Observatory, and the University of Washington. NR 57 TC 13 Z9 13 U1 1 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD APR 10 PY 2009 VL 695 IS 1 BP 268 EP 275 DI 10.1088/0004-637X/695/1/268 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 427KZ UT WOS:000264779500022 ER PT J AU Rubin, D Linder, EV Kowalski, M Aldering, G Amanullah, R Barbary, K Connolly, NV Dawson, KS Faccioli, L Fadeyev, V Goldhaber, G Goobar, A Hook, I Lidman, C Meyers, J Nobili, S Nugent, PE Pain, R Perlmutter, S Ruiz-Lapuente, P Spadafora, AL Strovink, M Suzuki, N Swift, H AF Rubin, D. Linder, E. V. Kowalski, M. Aldering, G. Amanullah, R. Barbary, K. Connolly, N. V. Dawson, K. S. Faccioli, L. Fadeyev, V. Goldhaber, G. Goobar, A. Hook, I. Lidman, C. Meyers, J. Nobili, S. Nugent, P. E. Pain, R. Perlmutter, S. Ruiz-Lapuente, P. Spadafora, A. L. Strovink, M. Suzuki, N. Swift, H. CA Supernova Cosmology Project TI LOOKING BEYOND LAMBDA WITH THE UNION SUPERNOVA COMPILATION SO ASTROPHYSICAL JOURNAL LA English DT Article DE cosmology: observations; cosmology: theory; supernovae: general ID COSMOLOGICAL CONSTANT; DARK ENERGY; QUINTESSENCE; SPACE AB The recent robust and homogeneous analysis of the world's supernova distance-redshift data, together with cosmic microwave background and baryon acoustic oscillation data-provides a powerful tool for constraining cosmological models. Here we examine particular classes of scalar field, modified gravity, and phenomenological models to assess whether they are consistent with observations even when their behavior deviates from the cosmological constant Lambda. Some models have tension with the data, while others survive only by approaching the cosmological constant, and a couple are statistically favored over Lambda cold dark matter. Dark energy described by two equation-of-state parameters has considerable phase space to avoid Lambda and next-generation data will be required to constrain such physics, with the level of complementarity between probes varying with cosmology. C1 [Rubin, D.; Linder, E. V.; Aldering, G.; Amanullah, R.; Barbary, K.; Dawson, K. S.; Faccioli, L.; Goldhaber, G.; Meyers, J.; Nugent, P. E.; Perlmutter, S.; Spadafora, A. L.; Strovink, M.; Suzuki, N.; Swift, H.] EO Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Rubin, D.; Barbary, K.; Goldhaber, G.; Meyers, J.; Perlmutter, S.; Strovink, M.; Swift, H.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Linder, E. V.; Amanullah, R.; Faccioli, L.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Kowalski, M.] Humboldt Univ, Dept Phys, D-12489 Berlin, Germany. [Connolly, N. V.] Hamilton Coll, Dept Phys, Clinton, NY 13323 USA. [Fadeyev, V.] Univ Calif Santa Cruz, Dept Phys, Santa Cruz, CA 95064 USA. [Goobar, A.; Nobili, S.] Stockholm Univ, Albanova Univ Ctr, Dept Phys, S-10691 Stockholm, Sweden. [Hook, I.] Univ Oxford, Sub Dept Astrophys, Oxford OX1 3RH, England. [Lidman, C.] European So Observ, Santiago 19, Chile. [Pain, R.] Univ Paris 06, CNRS, LPNHE, IN2P3, Paris, France. [Pain, R.] Univ Paris 07, CNRS, LPNHE, IN2P3, Paris, France. [Ruiz-Lapuente, P.] Univ Barcelona, Dept Astron, Barcelona, Spain. RP Rubin, D (reprint author), EO Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. RI Kowalski, Marek/G-5546-2012; Perlmutter, Saul/I-3505-2015; OI Perlmutter, Saul/0000-0002-4436-4661; Strovink, Mark/0000-0001-7020-7769; Meyers, Joshua/0000-0002-2308-4230 FU U.S. Department of Energy [DE-AC02-05CH11231]; Deutsche Forschungsgemeinschaft (DFG) FX We thank A. Albrecht, R. Caldwell, R. de Putter, S. Weinberg, and C. Wetterich for helpful discussions. This work has been supported in part by the Director, Office of Science, Office of High Energy Physics, of the U.S. Department of Energy under contract no. DE-AC02-05CH11231. M. K. acknowledges support from the Deutsche Forschungsgemeinschaft (DFG). NR 45 TC 32 Z9 32 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD APR 10 PY 2009 VL 695 IS 1 BP 391 EP 403 DI 10.1088/0004-637X/695/1/391 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 427KZ UT WOS:000264779500033 ER PT J AU Rosswog, S Ramirez-Ruiz, E Hix, WR AF Rosswog, S. Ramirez-Ruiz, E. Hix, W. R. TI TIDAL DISRUPTION AND IGNITION OF WHITE DWARFS BY MODERATELY MASSIVE BLACK HOLES SO ASTROPHYSICAL JOURNAL LA English DT Article DE accretion, accretion disks; black hole physics; globular clusters: general; hydrodynamics; nuclear reactions, nucleosynthesis, abundances ID SMOOTHED PARTICLE HYDRODYNAMICS; STELLAR DISRUPTION; NEUTRON-STARS; I SUPERNOVAE; CLUSTER G1; BINARIES; ENERGY; SAGITTARIUS; COLLISIONS; EQUATION AB We present a numerical investigation of the tidal disruption of white dwarfs by moderately massive black holes, with particular reference to the centers of dwarf galaxies and globular clusters. Special attention is given to the fate of white dwarfs of all masses that approach the black hole close enough to be disrupted and severely compressed to such an extent that explosive nuclear burning can be triggered. Consistent modeling of the gas dynamics together with the nuclear reactions allows for a realistic determination of the explosive energy release. In the most favorable cases, the nuclear energy release may be comparable to that of typical Type Ia supernovae. Although the explosion will increase the mass fraction escaping on hyperbolic orbits, a good fraction of the debris remains to be swallowed by the hole, causing a bright soft X-ray flare lasting for about a year. Such transient signatures, if detected, would be a compelling testimony for the presence of a moderately massive black hole (below 10(5) M(circle dot)) C1 [Rosswog, S.] Jacobs Univ Bremen, Sch Sci & Engn, D-28759 Bremen, Germany. [Ramirez-Ruiz, E.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Hix, W. R.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. RP Rosswog, S (reprint author), Jacobs Univ Bremen, Sch Sci & Engn, Campus Ring 1, D-28759 Bremen, Germany. RI Hix, William/E-7896-2011 OI Hix, William/0000-0002-9481-9126 FU DOE Program for Scientific Discovery through Advanced Computing (SciDAC) [DE-FC02-01ER41176]; U.S. Department of Energy [DE-AC05-00OR22725] FX We thank Holger Baumgardt, Peter Goldreich, JimGunn, Piet Hut, Dan Kasen, Bronson Messer, and Martin Rees for very useful discussions. E. R. acknowledges support from the DOE Program for Scientific Discovery through Advanced Computing (SciDAC; DE-FC02-01ER41176). The simulations presented in this paper were performed on the JUMP computer of the Hochstleistungsrechenzentrum Julich. Oak Ridge National Laboratory is managed by UT-Battelle, LLC, for the U.S. Department of Energy under contract DE-AC05-00OR22725. NR 53 TC 77 Z9 77 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD APR 10 PY 2009 VL 695 IS 1 BP 404 EP 419 DI 10.1088/0004-637X/695/1/404 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 427KZ UT WOS:000264779500034 ER PT J AU Palmer, DM AF Palmer, David M. TI A FAST CHI-SQUARED TECHNIQUE FOR PERIOD SEARCH OF IRREGULARLY SAMPLED DATA SO ASTROPHYSICAL JOURNAL LA English DT Article DE methods: data analysis; methods: numerical; methods: statistical; stars: oscillations ID PHOTOMETRY AB A new, computationally and statistically efficient algorithm, the Fast chi(2) algorithm (F chi(2)), can find a periodic signal with harmonic content in irregularly sampled data with nonuniform errors. The algorithm calculates the minimized chi(2) as a function of frequency at the desired number of harmonics, using fast Fourier transforms to provide O(N logN) performance. The code for a reference implementation is provided. C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Palmer, DM (reprint author), Los Alamos Natl Lab, B244, Los Alamos, NM 87545 USA. EM palmer@lanl.gov NR 11 TC 25 Z9 25 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD APR 10 PY 2009 VL 695 IS 1 BP 496 EP 502 DI 10.1088/0004-637X/695/1/496 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 427KZ UT WOS:000264779500042 ER PT J AU Horan, D Acciari, VA Bradbury, SM Buckley, JH Bugaev, V Byrum, KL Cannon, A Celik, O Cesarini, A Chow, YCK Ciupik, L Cogan, P Falcone, AD Fegan, SJ Finley, JP Fortin, P Fortson, LF Gall, D Gillanders, GH Grube, J Gyuk, G Hanna, D Hays, E Kertzman, M Kildea, J Konopelko, A Krawczynski, H Krennrich, F Lang, MJ Lee, K Moriarty, P Nagai, T Niemiec, J Ong, RA Perkins, JS Pohl, M Quinn, J Reynolds, PT Rose, HJ Sembroski, GH Smith, AW Steele, D Swordy, SP Toner, JA Vassiliev, VV Wakely, SP Weekes, TC White, RJ Williams, DA Wood, MD Zitzer, B Aller, HD Aller, MF Baker, M Barnaby, D Carini, MT Charlot, P Dumm, JP Fields, NE Hovatta, T Jordan, B Kovalev, YA Kovalev, YY Krimm, HA Kurtanidze, OM Lahteenmaki, A Le Campion, JF Maune, J Montaruli, T Sadun, AC Smith, S Tornikoski, M Turunen, M Walters, R AF Horan, D. Acciari, V. A. Bradbury, S. M. Buckley, J. H. Bugaev, V. Byrum, K. L. Cannon, A. Celik, O. Cesarini, A. Chow, Y. C. K. Ciupik, L. Cogan, P. Falcone, A. D. Fegan, S. J. Finley, J. P. Fortin, P. Fortson, L. F. Gall, D. Gillanders, G. H. Grube, J. Gyuk, G. Hanna, D. Hays, E. Kertzman, M. Kildea, J. Konopelko, A. Krawczynski, H. Krennrich, F. Lang, M. J. Lee, K. Moriarty, P. Nagai, T. Niemiec, J. Ong, R. A. Perkins, J. S. Pohl, M. Quinn, J. Reynolds, P. T. Rose, H. J. Sembroski, G. H. Smith, A. W. Steele, D. Swordy, S. P. Toner, J. A. Vassiliev, V. V. Wakely, S. P. Weekes, T. C. White, R. J. Williams, D. A. Wood, M. D. Zitzer, B. Aller, H. D. Aller, M. F. Baker, M. Barnaby, D. Carini, M. T. Charlot, P. Dumm, J. P. Fields, N. E. Hovatta, T. Jordan, B. Kovalev, Y. A. Kovalev, Y. Y. Krimm, H. A. Kurtanidze, O. M. Lahteenmaki, A. Le Campion, J. F. Maune, J. Montaruli, T. Sadun, A. C. Smith, S. Tornikoski, M. Turunen, M. Walters, R. TI MULTIWAVELENGTH OBSERVATIONS OF MARKARIAN 421 IN 2005-2006 SO ASTROPHYSICAL JOURNAL LA English DT Article DE BL Lacertae objects: individual (Markarian 421); gamma rays: observations; X-rays: individual (Markarian 421) ID ACTIVE GALACTIC NUCLEI; BL-LACERTAE OBJECTS; GAMMA-RAY EMISSION; SPECTRAL SLOPE VARIABILITY; TEV BLAZAR MARKARIAN-421; X-RAY; LAC OBJECTS; CORRELATED VARIABILITY; TIMING EXPLORER; PROTON BLAZAR AB Since 2005 September, the Whipple 10 m Gamma-ray Telescope has been operated primarily as a blazar monitor. The five northern hemisphere blazars that have already been detected at the Whipple Observatory, Markarian 421 (Mrk 421), H1426+428, Mrk 501, 1ES 1959+650, and 1ES 2344+514, are monitored routinely each night that they are visible. We report on the Mrk 421 observations taken from 2005 November to 2006 June in the gamma-ray, X-ray, optical, and radio bands. During this time, Mrk 421 was found to be variable at all wavelengths probed. Both the variability and the correlations among different energy regimes are studied in detail here. A tentative correlation, with large spread, was measured between the X-ray and gamma-ray bands, while no clear correlation was evident among the other energy bands. In addition to this, the well-sampled spectral energy distribution of Mrk 421 (1101+384) is presented for three different activity levels. The observations of the other blazar targets will be reported separately. C1 [Horan, D.; Byrum, K. L.; Hays, E.; Smith, A. W.] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Acciari, V. A.; Moriarty, P.] Galway Mayo Inst Technol, Dept Phys & Life Sci, Galway, Ireland. [Acciari, V. A.; Kildea, J.; Perkins, J. S.; Weekes, T. C.] Harvard Smithsonian Ctr Astrophys, Fred Lawrence Whipple Observ, Amado, AZ 85645 USA. [Bradbury, S. M.; Rose, H. J.; White, R. J.] Univ Leeds, Sch Phys & Astron, Leeds LS2 9JT, W Yorkshire, England. [Cannon, A.; Grube, J.; Quinn, J.] Washington Univ, Dept Phys, St Louis, MO 63130 USA. [Cannon, A.; Grube, J.; Quinn, J.] Univ Coll Dublin, Sch Phys, Dublin 4, Ireland. [Celik, O.; Chow, Y. C. K.; Fegan, S. J.; Ong, R. A.; Vassiliev, V. V.; Wood, M. D.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Cesarini, A.; Gillanders, G. H.; Lang, M. J.; Toner, J. A.] Natl Univ Ireland, Sch Phys, Galway, Ireland. [Ciupik, L.; Fortson, L. F.; Gyuk, G.; Steele, D.] Adler Planetarium & Astron Museum, Dept Astron, Chicago, IL 60605 USA. [Cogan, P.; Hanna, D.] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada. [Falcone, A. D.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Finley, J. P.; Gall, D.; Sembroski, G. H.; Zitzer, B.] Purdue Univ, Dept Phys, W Lafayette, IN 47907 USA. [Fortin, P.] Columbia Univ, Barnard Coll, Dept Phys & Astron, New York, NY 10027 USA. [Hays, E.; Swordy, S. P.; Wakely, S. P.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Hays, E.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Kertzman, M.] Depauw Univ, Dept Phys & Astron, Greencastle, IN 46135 USA. [Konopelko, A.] Pittsburg State Univ, Dept Phys, Pittsburg, KS 66762 USA. [Krennrich, F.; Nagai, T.; Niemiec, J.; Pohl, M.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Niemiec, J.] Inst Fizyki Hadrowej PAN, PL-31342 Krakow, Poland. [Reynolds, P. T.] Cork Inst Technol, Dept Appl Phys & Instrumentat, Cork, Ireland. [Williams, D. A.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Williams, D. A.] Univ Calif Santa Cruz, Dept Phys, Santa Cruz, CA 95064 USA. [Aller, H. D.; Aller, M. F.] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA. [Baker, M.; Dumm, J. P.; Fields, N. E.; Montaruli, T.] Univ Wisconsin, Madison, WI 53706 USA. [Barnaby, D.; Carini, M. T.; Maune, J.; Smith, S.; Walters, R.] Western Kentucky Univ, Bowling Green, KY 42104 USA. [Charlot, P.; Le Campion, J. F.] Univ Bordeaux, Observ Aquitain Sci Univ, F-33271 Floirac, France. [Charlot, P.; Le Campion, J. F.] CNRS, UMR 5804, Lab Astrophys Bordeaux, F-33271 Floirac, France. [Hovatta, T.; Lahteenmaki, A.; Tornikoski, M.; Turunen, M.] Helsinki Univ Technol, Metsahovi Radio Observ, Kylmala 02540, Finland. [Jordan, B.] Dublin Inst Adv Studies, Sch Cosm Phys, Dublin 4, Ireland. [Kovalev, Y. A.; Kovalev, Y. Y.] Ctr Astro Space, PN Lebedev Phys Inst, Moscow 117997, Russia. [Kovalev, Y. Y.] Max Planck Inst Radioastron, D-53121 Bonn, Germany. [Krimm, H. A.] CRESST, Greenbelt, MD 20771 USA. [Krimm, H. A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Krimm, H. A.] Univ Space Res Assoc, Columbia, MD 21044 USA. [Kurtanidze, O. M.] Abastumani Observ, Abastumani, GA USA. [Sadun, A. C.] Univ Colorado, Dept Phys, Denver, CO 80208 USA. RP Horan, D (reprint author), Argonne Natl Lab, Div High Energy Phys, 9700 S Cass Ave, Argonne, IL 60439 USA. EM deirdre.horan@gmail.com RI Kovalev, Yuri/J-5671-2013; Lahteenmaki, Anne/L-5987-2013; Hays, Elizabeth/D-3257-2012; Kurtanidze, Omar/J-6237-2014; Kovalev, Yuri/N-1053-2015 OI Kovalev, Yuri/0000-0001-9303-3263; NR 61 TC 35 Z9 35 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD APR 10 PY 2009 VL 695 IS 1 BP 596 EP 618 DI 10.1088/0004-637X/695/1/596 PG 23 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 427KZ UT WOS:000264779500050 ER PT J AU Abdo, AA Ackermann, M Atwood, WB Baldini, L Ballet, J Barbiellini, G Baring, MG Bastieri, D Baughman, BM Bechtol, K Bellazzini, R Berenji, B Bloom, ED Bonamente, E Borgland, AW Bregeon, J Brez, A Brigida, M Bruel, P Burnett, TH Caliandro, GA Cameron, RA Caraveo, PA Casandjian, JM Cecchi, C Charles, E Chekhtman, A Cheung, CC Chiang, J Ciprini, S Claus, R Cohen-Tanugi, J Cominsky, LR Conrad, J Dermer, CD de Angelis, A de Palma, F Digel, SW Donato, D Dormody, M Silva, EDE Drell, PS Dubois, R Dumora, D Edmonds, Y Farnier, C Favuzzi, C Fleury, P Focke, WB Frailis, M Fukazawa, Y Funk, S Fusco, P Gargano, F Gasparrini, D Gehrels, N Germani, S Giebels, B Giglietto, N Giordano, F Glanzman, T Godfrey, G Grenier, IA Grondin, MH Grove, JE Guillemot, L Guiriec, S Harding, AK Hayashida, M Hays, E Hughes, RE Johannesson, G Johnson, AS Johnson, RP Johnson, TJ Johnson, WN Johnston, S Kamae, T Katagiri, H Kataoka, J Kawai, N Kerr, M Knodlseder, J Komin, N Kramer, M Kuehn, F Kuss, M Latronico, L Lee, SH Lemoine-Goumard, M Longo, F Loparco, F Lott, B Lovellette, MN Lubrano, P Makeev, A Marelli, M Mazziotta, MN McConville, W McEnery, JE Meurer, C Michelson, PF Mitthumsiri, W Mizuno, T Moiseev, AA Monte, C Monzani, ME Morselli, A Moskalenko, IV Murgia, S Nolan, PL Nuss, E Ohsugi, T Omodei, N Orlando, E Ormes, JF Paneque, D Panetta, JH Parent, D Pepe, M Pesce-Rollins, M Piron, F Porter, TA Raino, S Rando, R Razzano, M Reimer, A Reimer, O Reposeur, T Ritz, S Rochester, LS Rodriguez, AY Romani, RW Roth, M Ryde, F Sadrozinski, HFW Sanchez, D Sander, A Parkinson, PMS Sgro, C Siskind, EJ Smith, DA Smith, PD Spandre, G Spinelli, P Starck, JL Strickman, MS Suson, DJ Tajima, H Takahashi, H Tanaka, T Thayer, JB Thayer, JG Thompson, DJ Thorsett, SE Tibaldo, L Torres, DF Tosti, G Tramacere, A Uchiyama, Y Usher, TL Van Etten, A Vilchez, N Vitale, V Waite, AP Watters, K Wood, KS Ylinen, T Ziegler, M Hobbs, G Keith, M Manchester, RN Weltevrede, P AF Abdo, A. A. Ackermann, M. Atwood, W. B. Baldini, L. Ballet, J. Barbiellini, G. Baring, M. G. Bastieri, D. Baughman, B. M. Bechtol, K. Bellazzini, R. Berenji, B. Bloom, E. D. Bonamente, E. Borgland, A. W. Bregeon, J. Brez, A. Brigida, M. Bruel, P. Burnett, T. H. Caliandro, G. A. Cameron, R. A. Caraveo, P. A. Casandjian, J. M. Cecchi, C. Charles, E. Chekhtman, A. Cheung, C. C. Chiang, J. Ciprini, S. Claus, R. Cohen-Tanugi, J. Cominsky, L. R. Conrad, J. Dermer, C. D. de Angelis, A. de Palma, F. Digel, S. W. Donato, D. Dormody, M. do Couto e Silva, E. Drell, P. S. Dubois, R. Dumora, D. Edmonds, Y. Farnier, C. Favuzzi, C. Fleury, P. Focke, W. B. Frailis, M. Fukazawa, Y. Funk, S. Fusco, P. Gargano, F. Gasparrini, D. Gehrels, N. Germani, S. Giebels, B. Giglietto, N. Giordano, F. Glanzman, T. Godfrey, G. Grenier, I. A. Grondin, M. -H. Grove, J. E. Guillemot, L. Guiriec, S. Harding, A. K. Hayashida, M. Hays, E. Hughes, R. E. Johannesson, G. Johnson, A. S. Johnson, R. P. Johnson, T. J. Johnson, W. N. Johnston, S. Kamae, T. Katagiri, H. Kataoka, J. Kawai, N. Kerr, M. Knoedlseder, J. Komin, N. Kramer, M. Kuehn, F. Kuss, M. Latronico, L. Lee, S. -H. Lemoine-Goumard, M. Longo, F. Loparco, F. Lott, B. Lovellette, M. N. Lubrano, P. Makeev, A. Marelli, M. Mazziotta, M. N. McConville, W. McEnery, J. E. Meurer, C. Michelson, P. F. Mitthumsiri, W. Mizuno, T. Moiseev, A. A. Monte, C. Monzani, M. E. Morselli, A. Moskalenko, I. V. Murgia, S. Nolan, P. L. Nuss, E. Ohsugi, T. Omodei, N. Orlando, E. Ormes, J. F. Paneque, D. Panetta, J. H. Parent, D. Pepe, M. Pesce-Rollins, M. Piron, F. Porter, T. A. Raino, S. Rando, R. Razzano, M. Reimer, A. Reimer, O. Reposeur, T. Ritz, S. Rochester, L. S. Rodriguez, A. Y. Romani, R. W. Roth, M. Ryde, F. Sadrozinski, H. F. -W. Sanchez, D. Sander, A. Parkinson, P. M. Saz Sgro, C. Siskind, E. J. Smith, D. A. Smith, P. D. Spandre, G. Spinelli, P. Starck, J. -L. Strickman, M. S. Suson, D. J. Tajima, H. Takahashi, H. Tanaka, T. Thayer, J. B. Thayer, J. G. Thompson, D. J. Thorsett, S. E. Tibaldo, L. Torres, D. F. Tosti, G. Tramacere, A. Uchiyama, Y. Usher, T. L. Van Etten, A. Vilchez, N. Vitale, V. Waite, A. P. Watters, K. Wood, K. S. Ylinen, T. Ziegler, M. Hobbs, G. Keith, M. Manchester, R. N. Weltevrede, P. TI DISCOVERY OF PULSED gamma-RAYS FROM THE YOUNG RADIO PULSAR PSR J1028-5819 WITH THE FERMI LARGE AREA TELESCOPE SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE pulsars: general; stars: neutron ID TIME-DIFFERENCING TECHNIQUE; SPACE TELESCOPE; RADIATION; EMISSION; CATALOG; SEARCH; GAPS AB Radio pulsar PSR J1028-5819 was recently discovered in a high-frequency search (at 3.1 GHz) in the error circle of the Energetic Gamma-Ray Experiment Telescope (EGRET) source 3EG J1027-5817. The spin-down power of this young pulsar is great enough to make it very likely the counterpart for the EGRET source. We report here the discovery of gamma-ray pulsations from PSR J1028-5819 in early observations by the Large Area Telescope (LAT) on the Fermi Gamma-Ray Space Telescope. The gamma-ray light curve shows two sharp peaks having phase separation of 0.460 +/- 0.004, trailing the very narrow radio pulse by 0.200 +/- 0.003 in phase, very similar to that of other known gamma-ray pulsars. The measured gamma-ray flux gives an efficiency for the pulsar of similar to 10-20% (for outer magnetosphere beam models). No evidence of a surrounding pulsar wind nebula is seen in the current Fermi data but limits on associated emission are weak because the source lies in a crowded region with high background emission. However, the improved angular resolution afforded by the LAT enables the disentanglement of the previous COS-B and EGRET source detections into at least two distinct sources, one of which is now identified as PSR J1028-5819. C1 [Cheung, C. C.; Donato, D.; Gehrels, N.; Harding, A. K.; Hays, E.; Johnson, T. J.; McConville, W.; McEnery, J. E.; Ritz, S.; Thompson, D. J.] NASA, Goddard Space Flight Ctr, CRESST, Greenbelt, MD 20771 USA. [Abdo, A. A.; Chekhtman, A.; Dermer, C. D.; Grove, J. E.; Johnson, W. N.; Lovellette, M. N.; Makeev, A.; Strickman, M. S.; Wood, K. S.] Naval Res Lab, Div Space Sci, Washington, DC 20375 USA. [Ackermann, M.; Bechtol, K.; Berenji, B.; Bloom, E. D.; Borgland, A. W.; Cameron, R. A.; Charles, E.; Chiang, J.; Claus, R.; Digel, S. W.; do Couto e Silva, E.; Drell, P. S.; Dubois, R.; Edmonds, Y.; Focke, W. B.; Funk, S.; Glanzman, T.; Godfrey, G.; Hayashida, M.; Johannesson, G.; Johnson, A. S.; Kamae, T.; Lee, S. -H.; Michelson, P. F.; Mitthumsiri, W.; Monzani, M. E.; Moskalenko, I. V.; Murgia, S.; Nolan, P. L.; Paneque, D.; Panetta, J. H.; Reimer, A.; Reimer, O.; Rochester, L. S.; Romani, R. W.; Tajima, H.; Tanaka, T.; Thayer, J. B.; Thayer, J. G.; Tramacere, A.; Uchiyama, Y.; Usher, T. L.; Van Etten, A.; Waite, A. P.; Watters, K.] Stanford Univ, W W Hansen Expt Phys Lab, Kavli Inst Particle Astrophys & Cosmol, Dept Phys, Stanford, CA 94305 USA. [Ackermann, M.; Bechtol, K.; Berenji, B.; Bloom, E. D.; Borgland, A. W.; Cameron, R. A.; Charles, E.; Chiang, J.; Claus, R.; Digel, S. W.; do Couto e Silva, E.; Drell, P. S.; Dubois, R.; Edmonds, Y.; Focke, W. B.; Funk, S.; Glanzman, T.; Godfrey, G.; Hayashida, M.; Johannesson, G.; Johnson, A. S.; Kamae, T.; Lee, S. -H.; Michelson, P. F.; Mitthumsiri, W.; Monzani, M. E.; Moskalenko, I. V.; Murgia, S.; Nolan, P. L.; Paneque, D.; Panetta, J. H.; Reimer, A.; Reimer, O.; Rochester, L. S.; Romani, R. W.; Tajima, H.; Tanaka, T.; Thayer, J. B.; Thayer, J. G.; Tramacere, A.; Uchiyama, Y.; Usher, T. L.; Van Etten, A.; Waite, A. P.; Watters, K.] Stanford Univ, Stanford Linear Accelerator Ctr, Stanford, CA 94305 USA. [Atwood, W. B.; Dormody, M.; Johnson, R. P.; Porter, T. A.; Sadrozinski, H. F. -W.; Parkinson, P. M. Saz; Thorsett, S. E.; Ziegler, M.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Dept Phys, Santa Cruz, CA 95064 USA. [Atwood, W. B.; Dormody, M.; Johnson, R. P.; Porter, T. A.; Sadrozinski, H. F. -W.; Parkinson, P. M. Saz; Thorsett, S. E.; Ziegler, M.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Baldini, L.; Bellazzini, R.; Bregeon, J.; Brez, A.; Kuss, M.; Latronico, L.; Omodei, N.; Pesce-Rollins, M.; Razzano, M.; Sgro, C.; Spandre, G.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Ballet, J.; Casandjian, J. M.; Grenier, I. A.; Komin, N.; Starck, J. -L.] Univ Paris, CEA Saclay, Serv Astrophys, Lab AIM,CEA,IRFU,CNRS, F-91191 Gif Sur Yvette, France. [Barbiellini, G.; Longo, F.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Barbiellini, G.; Longo, F.] Univ Trieste, Dipartmento Fis, I-34127 Trieste, Italy. [Baring, M. G.] Rice Univ, Dept Phys & Astron, Houston, TX 77251 USA. [Bastieri, D.; Rando, R.; Tibaldo, L.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Bastieri, D.; Rando, R.; Tibaldo, L.] Univ Padua, Dipartimento Fis G Galilei, I-35131 Padua, Italy. [Baughman, B. M.; Hughes, R. E.; Kuehn, F.; Sander, A.; Smith, P. D.] Ohio State Univ, Dept Phys, Ctr Cosmol & Astro Particle Phys, Columbus, OH 43210 USA. [Bonamente, E.; Cecchi, C.; Ciprini, S.; Germani, S.; Lubrano, P.; Pepe, M.; Tosti, G.] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy. [Bonamente, E.; Cecchi, C.; Ciprini, S.; Germani, S.; Lubrano, P.; Pepe, M.; Tosti, G.] Univ Perugia, Dipartimento Fis, I-06123 Perugia, Italy. [Brigida, M.; Caliandro, G. A.; de Palma, F.; Favuzzi, C.; Fusco, P.; Giglietto, N.; Giordano, F.; Loparco, F.; Monte, C.; Raino, S.; Spinelli, P.] Univ Politecn Bari, Dipartimento Fis M Merlin, I-70126 Bari, Italy. [Brigida, M.; Caliandro, G. A.; de Palma, F.; Favuzzi, C.; Fusco, P.; Gargano, F.; Giglietto, N.; Giordano, F.; Loparco, F.; Mazziotta, M. N.; Monte, C.; Raino, S.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Bruel, P.; Fleury, P.; Giebels, B.; Sanchez, D.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Burnett, T. H.; Kerr, M.; Roth, M.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Caraveo, P. A.; Marelli, M.] INAF Ist Astrofis Spaziale & Fis Cosm, I-20133 Milan, Italy. [Chekhtman, A.; Makeev, A.] George Mason Univ, Fairfax, VA 22030 USA. [Cohen-Tanugi, J.; Farnier, C.; Guiriec, S.; Komin, N.; Nuss, E.; Piron, F.] Univ Montpellier 2, CNRS, IN2P3, Lab Phys Theor & Astroparticules, Montpellier, France. [Cominsky, L. R.] Sonoma State Univ, Dept Phys & Astron, Rohnert Pk, CA 94928 USA. [Conrad, J.; Meurer, C.; Ryde, F.; Ylinen, T.] Oskar Klein Ctr Cosmo Particle Phys, SE-10691 Stockholm, Sweden. [Conrad, J.; Ryde, F.; Ylinen, T.] Royal Inst Technol, Dept Phys, KTH, SE-10691 Stockholm, Sweden. [Conrad, J.; Meurer, C.] Stockholm Univ, Dept Phys, SE-10691 Stockholm, Sweden. [de Angelis, A.; Frailis, M.] Univ Udine, Dipartimento Fis, I-33100 Udine, Italy. [de Angelis, A.; Frailis, M.] Ist Nazl Fis Nucl, Sez Trieste, Grp Collegato Udine, I-33100 Udine, Italy. [Dumora, D.; Grondin, M. -H.; Guillemot, L.; Lemoine-Goumard, M.; Lott, B.; Parent, D.; Reposeur, T.; Smith, D. A.] CEN Bordeaux Gradignan, CNRS, IN2P3, UMR 5797, F-33175 Gradignan, France. [Dumora, D.; Grondin, M. -H.; Guillemot, L.; Lemoine-Goumard, M.; Lott, B.; Parent, D.; Reposeur, T.; Smith, D. A.] Univ Bordeaux, CEN Bordeaux Gradignan, UMR 5797, F-33175 Gradignan, France. [Fukazawa, Y.; Katagiri, H.; Mizuno, T.; Ohsugi, T.; Takahashi, H.] Hiroshima Univ, Dept Phys Sci, Higashihiroshima 7398526, Japan. [Fukazawa, Y.; Katagiri, H.; Mizuno, T.; Ohsugi, T.; Takahashi, H.] Hiroshima Univ, Hiroshima Astrophys Sci Ctr, Higashihiroshima 7398526, Japan. [Gasparrini, D.] ASI, Sci Data Ctr, I-00044 Frascati, Roma, Italy. [Gehrels, N.; Johnson, T. J.; Ritz, S.] Univ Maryland, College Pk, MD 20742 USA. [Johnston, S.; Hobbs, G.; Keith, M.; Manchester, R. N.; Weltevrede, P.] CSIRO, Australia Telescope Natl Facil, Epping, NSW 1710, Australia. [Kataoka, J.; Kawai, N.] Tokyo Inst Technol, Dept Phys, Tokyo 1528551, Japan. [Kawai, N.] RIKEN, Inst Phys & Chem Res, Cosm Radiat Lab, Wako, Saitama 3510198, Japan. [Knoedlseder, J.; Vilchez, N.] CNR, SUPS 47, Ctr Etud Spatiale Rayonnements, F-31028 Toulouse 4, France. [Kramer, M.] Univ Manchester, Jodrell Bank, Ctr Astrophys, Manchester M13 9PL, Lancs, England. [Morselli, A.; Vitale, V.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, I-00133 Rome, Italy. [Orlando, E.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Ormes, J. F.] Univ Denver, Dept Phys & Astron, Denver, CO 80208 USA. [Rodriguez, A. Y.; Torres, D. F.] CSIC, IEEC, Inst Ciencies Espai, Barcelona 08193, Spain. [Siskind, E. J.] NYCB Real Time Comp Inc, Lattingtown, NY 11560 USA. [Suson, D. J.] Purdue Univ Calumet, Dept Chem & Phys, Hammond, IN 46323 USA. [Torres, D. F.] ICREA, Barcelona, Spain. [Tramacere, A.] CIFS, I-10133 Turin, Italy. [Vitale, V.] Univ Roma Tor Vergata, Dipartimento Fis, I-00133 Rome, Italy. [Ylinen, T.] Univ Kalmar, Sch Pure & Appl Nat Sci, SE-39182 Kalmar, Sweden. RP Harding, AK (reprint author), NASA, Goddard Space Flight Ctr, CRESST, Greenbelt, MD 20771 USA. EM ahardingx@yahoo.com; Tyrel.J.Johnson@nasa.gov RI Hays, Elizabeth/D-3257-2012; Johnson, Neil/G-3309-2014; Reimer, Olaf/A-3117-2013; Funk, Stefan/B-7629-2015; Johannesson, Gudlaugur/O-8741-2015; Gargano, Fabio/O-8934-2015; Loparco, Francesco/O-8847-2015; Moskalenko, Igor/A-1301-2007; Mazziotta, Mario /O-8867-2015; Sgro, Carmelo/K-3395-2016; Torres, Diego/O-9422-2016; Orlando, E/R-5594-2016; giglietto, nicola/I-8951-2012; Morselli, Aldo/G-6769-2011; Tosti, Gino/E-9976-2013; Rando, Riccardo/M-7179-2013; Nolan, Patrick/A-5582-2009; De Angelis, Alessandro/B-5372-2009; Starck, Jean-Luc/D-9467-2011; Thompson, David/D-2939-2012; Harding, Alice/D-3160-2012; Gehrels, Neil/D-2971-2012; McEnery, Julie/D-6612-2012; Baldini, Luca/E-5396-2012; lubrano, pasquale/F-7269-2012; Kuss, Michael/H-8959-2012; Komin, Nukri/J-6781-2015 OI Reimer, Olaf/0000-0001-6953-1385; Funk, Stefan/0000-0002-2012-0080; Johannesson, Gudlaugur/0000-0003-1458-7036; Gargano, Fabio/0000-0002-5055-6395; Loparco, Francesco/0000-0002-1173-5673; Moskalenko, Igor/0000-0001-6141-458X; Mazziotta, Mario /0000-0001-9325-4672; Torres, Diego/0000-0002-1522-9065; Rando, Riccardo/0000-0001-6992-818X; Sgro', Carmelo/0000-0001-5676-6214; giglietto, nicola/0000-0002-9021-2888; Morselli, Aldo/0000-0002-7704-9553; Starck, Jean-Luc/0000-0003-2177-7794; Thompson, David/0000-0001-5217-9135; lubrano, pasquale/0000-0003-0221-4806; Giordano, Francesco/0000-0002-8651-2394; Thorsett, Stephen/0000-0002-2025-9613; SPINELLI, Paolo/0000-0001-6688-8864; De Angelis, Alessandro/0000-0002-3288-2517; Frailis, Marco/0000-0002-7400-2135; Caraveo, Patrizia/0000-0003-2478-8018; Komin, Nukri/0000-0003-3280-0582 FU Istituto Nazionale di Astrofisica in Italy; K. A. Wallenberg Foundation in Sweden FX Additional support for science analysis during the operations phase from the following agencies is also gratefully acknowledged: the Istituto Nazionale di Astrofisica in Italy and the K. A. Wallenberg Foundation in Sweden for providing a grant in support of a Royal Swedish Academy of Sciences Research fellowship for J.C.; The Parkes radio telescope is part of the Australia Telescope which is funded by the Commonwealth of Australia for operation as a National Facility managed by the CSIRO. NR 26 TC 30 Z9 31 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 EI 2041-8213 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD APR 10 PY 2009 VL 695 IS 1 BP L72 EP L77 DI 10.1088/0004-637X/695/1/L72 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 424BE UT WOS:000264539700016 ER PT J AU Mostepanenko, VM Decca, RS Fischbach, E Geyer, B Klimchitskaya, GL Krause, DE Lopez, D Mohideen, U AF Mostepanenko, V. M. Decca, R. S. Fischbach, E. Geyer, B. Klimchitskaya, G. L. Krause, D. E. Lopez, D. Mohideen, U. TI WHY SCREENING EFFECTS DO NOT INFLUENCE THE CASIMIR FORCE SO INTERNATIONAL JOURNAL OF MODERN PHYSICS A LA English DT Article; Proceedings Paper CT 7th Alexander Friedmann International Seminar on Gravitations and Cosmology/Satellite Symposium on 60 Years of the Casimir Efffect CY JUN 30-JUL 04, 2008 CL Fed Univ Paraiba, Joao Pessoa, BRAZIL HO Fed Univ Paraiba DE Casimir force; screening effects; Nernst's heat theorem ID CONSTRAINTS AB The Lifshitz theory of dispersion forces leads to thermodynamic and experimental inconsistencies when the role of drifting charge carriers is included in the model of the dielectric response. Recently modified reflection coefficients were suggested that take into account screening effects and diffusion currents. We demonstrate that this theoretical approach leads to a violation of the third law of thermodynamics (Nernst's heat theorem) for a wide class of materials and is excluded by the data from two recent experiments. The physical reason for its failure is explained by the violation of thermal equilibrium, which is the fundamental applicability condition of the Lifshitz theory, in the presence of drift and diffusion currents. C1 [Mostepanenko, V. M.; Geyer, B.; Klimchitskaya, G. L.] Univ Leipzig, Inst Theoret Phys, D-04009 Leipzig, Germany. [Decca, R. S.] Indiana Univ Purdue Univ, Dept Phys, Indianapolis, IN 46202 USA. [Fischbach, E.] Purdue Univ, Dept Phys, W Lafayette, IN 47907 USA. [Krause, D. E.] Wabash Coll, Dept Phys, Crawfordsville, IN 47933 USA. [Lopez, D.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Mohideen, U.] Univ Calif Riverside, Dept Phys & Astron, Riverside, CA 92521 USA. RP Mostepanenko, VM (reprint author), Univ Leipzig, Inst Theoret Phys, D-04009 Leipzig, Germany. EM Vladimir.Mostepanenko@itp.uni-leipzig.de RI Krause, Dennis/O-3170-2013 NR 49 TC 11 Z9 11 U1 1 U2 7 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 0217-751X J9 INT J MOD PHYS A JI Int. J. Mod. Phys. A PD APR 10 PY 2009 VL 24 IS 8-9 BP 1721 EP 1742 PG 22 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 431VP UT WOS:000265092600050 ER PT J AU Decca, RS Lopez, D AF Decca, Ricardo S. Lopez, Daniel TI MEASUREMENT OF THE CASIMIR FORCE USING A MICROMECHANICAL TORSIONAL OSCILLATOR: ELECTROSTATIC CALIBRATION SO INTERNATIONAL JOURNAL OF MODERN PHYSICS A LA English DT Article; Proceedings Paper CT 7th Alexander Friedmann International Seminar on Gravitations and Cosmology/Satellite Symposium on 60 Years of the Casimir Efffect CY JUN 30-JUL 04, 2008 CL Fed Univ Paraiba, Joao Pessoa, BRAZIL HO Fed Univ Paraiba DE Casimir force; precision measurements; electrostatic calibration ID CONSTRAINTS; RANGE AB Experimental procedures associated with the electrostatic calibration of a microelectromechanical torsional oscillator are reported. These calibration s are required for the precision measurements of the Casimir force between a Au-coated sapphire sphere and a Au-coated polysilicon plate. It is shown that the electrostatic force between the surfaces is made zero by the application of a potential difference V(o) between the sphere and the plate. Vo is found to be independent of position and separation within the experimental error. C1 [Decca, Ricardo S.] Indiana Univ Purdue Univ, Dept Phys, Indianapolis, IN 46202 USA. [Lopez, Daniel] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. RP Decca, RS (reprint author), Indiana Univ Purdue Univ, Dept Phys, Indianapolis, IN 46202 USA. EM rdecca@iupui.edu; dlopez@cnm.anl.gov NR 26 TC 9 Z9 9 U1 0 U2 0 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 0217-751X J9 INT J MOD PHYS A JI Int. J. Mod. Phys. A PD APR 10 PY 2009 VL 24 IS 8-9 BP 1748 EP 1756 PG 9 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 431VP UT WOS:000265092600052 ER PT J AU Abia, JA Mriziq, KS Guiochon, GA AF Abia, Jude A. Mriziq, Khaled S. Guiochon, Georges A. TI Radial heterogeneity of some analytical columns used in high-performance liquid chromatography SO JOURNAL OF CHROMATOGRAPHY A LA English DT Article DE Radial heterogeneity; Column efficiency; Electrochemical microdetector ID MONOLITHIC COLUMNS; HIGH-EFFICIENCY; HPLC; BEDS; FLOW; HOMOGENEITY; ELECTRODES; DISPERSION; PARTICLES; MECHANICS AB An on-column electrochemical rnicrodetector was used to determine accurately the radial distribution of the mobile phase velocity and of the column efficiency at the exit of three common analytical columns, namely a 100 mm x 4.6 mm C18 bonded silica-based monolithic column, a 150 mm x 4.6 mm column packed with 2.7 mu m porous shell particles of C18 bonded silica (HALO), and a 150 mm x 4.6 mm column packed with 3 mu m fully porous C18 bonded silica particles (LUNA). The results obtained demonstrate that all three columns are not radially homogeneous. In all three cases, the efficiency was found to be lower in the wall region of the column than in its core region (the central core with a radius of 1/3 the column inner radius). The decrease in local efficiency from the core to the wall regions was lower in the case of the monolith (ca. 25%) than in that of the two particle-packed columns (ca. 35-50%). The mobile phase velocity was found to be ca. 1.5% higher in the wall than in the core region of the monolithic column while, in contrast, it was ca. 2.5-4.0% lower in the wall region for the two particle-packed columns. (C) 2009 Elsevier B.V. All rights reserved. C1 [Abia, Jude A.; Mriziq, Khaled S.; Guiochon, Georges A.] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. [Abia, Jude A.; Mriziq, Khaled S.; Guiochon, Georges A.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. RP Guiochon, GA (reprint author), Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. EM guiochon@utk.edu FU United States Department of Energy [DE-FG05-88-ER13869]; University of Tennessee; Oak Ridge National Laboratory FX This work was supported in part by Grant DE-FG05-88-ER13869 of the United States Department of Energy and by the collaborative agreement between the University of Tennessee and Oak Ridge National Laboratory. We thank Karen Cabrera (Merck, Darmstadt, Germany) for the generous gift of the analytical and semi-preparative monolithic columns, Jack Kirkland (Advanced Materials Technology, Wilmington, DE, USA) for the generous gift of HALO columns, and Tivadar Farkas (Phenomenex, Torrance, CA, USA) for the generous gift of LUNA columns. NR 27 TC 71 Z9 71 U1 1 U2 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0021-9673 EI 1873-3778 J9 J CHROMATOGR A JI J. Chromatogr. A PD APR 10 PY 2009 VL 1216 IS 15 BP 3185 EP 3191 DI 10.1016/j.chroma.2009.02.034 PG 7 WC Biochemical Research Methods; Chemistry, Analytical SC Biochemistry & Molecular Biology; Chemistry GA 432UM UT WOS:000265159700029 PM 19268295 ER PT J AU Krenkova, J Lacher, NA Svec, F AF Krenkova, Jana Lacher, Nathan A. Svec, Frantisek TI Multidimensional system enabling deglycosylation of proteins using a capillary reactor with peptide-N-glycosidase F immobilized on a porous polymer monolith and hydrophilic interaction liquid chromatography-mass spectrometry of glycans SO JOURNAL OF CHROMATOGRAPHY A LA English DT Article DE Enzyme reactor; Immobilization; Monolith; Immunoglobulin; PNGase F; Glycomics ID THERAPEUTIC ANTIBODIES; GLYCOSYLATION; GLYCOPROTEINS; SEPARATION; OLIGOSACCHARIDES AB A reactor with immobilized peptide-N-glycosidase F on a monolithic polymer support in a capillary has been developed that allows fast and efficient release of N-linked glycans from immunoglobulin G molecules. Two different monolithic scaffolds based on poly(glycidyl methacrylate-co-ethylene dimethacrylate) and poly(butyl methacrylate-co-ethylene dimethacrylate) were prepared. A multistep photografting process was used to reduce non-specific adsorption of proteins and to obtain support containing reactive azlactone functionalities enabling the preparation of highly active immobilized peptide-N-glycosidase F. Performance of these reactors was determined through glycan release from several glycoproteins including ribonuclease B, chicken albumin, and human immunoglobulin G and their detection by matrix-assisted laser desorption-ionization/time-of-flight mass spectrometry. The optimized reactor was integrated into a multidimensional system comprising on-line glycan release and their separation via hydrophilic interaction liquid chromatography followed by electrospray ionization/time-of-flight mass spectrometry detection. Using the optimized monolithic reactor with immobilized peptide-N-glycosidase F, human immunoglobulin G was deglycosylated at room temperature in 5.5 min to an extent similar to that achieved with soluble enzyme after 24 h at 37 degrees C. (C) 2009 Elsevier B.V. All rights reserved. C1 [Krenkova, Jana; Svec, Frantisek] EO Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Lacher, Nathan A.] Pfizer Global Biol, Analyt Res & Dev, St Louis, MO 63017 USA. RP Svec, F (reprint author), EO Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM fsvec@lbl.gov RI xiaorong, yang/B-9548-2009 FU US Department of Energy [DE-AC02-05CH11231]; Pfizer Inc. FX This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the US Department of Energy under contract No. DE-AC02-05CH11231. Support of J.K. by Pfizer Inc. is gratefully acknowledged. NR 26 TC 41 Z9 42 U1 2 U2 28 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0021-9673 J9 J CHROMATOGR A JI J. Chromatogr. A PD APR 10 PY 2009 VL 1216 IS 15 BP 3252 EP 3259 DI 10.1016/j.chroma.2009.02.036 PG 8 WC Biochemical Research Methods; Chemistry, Analytical SC Biochemistry & Molecular Biology; Chemistry GA 432UM UT WOS:000265159700037 PM 19268959 ER PT J AU Lu, GP DePaolo, DJ Kang, QJ Zhang, DX AF Lu, Guoping DePaolo, Donald J. Kang, Qinjun Zhang, Dongxiao TI Lattice Boltzmann simulation of snow crystal growth in clouds SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID SNOWFLAKE FORMATION; BACTERIAL COLONIES; ICE CRYSTALS; FLUID-FLOWS; PRECIPITATION; MODELS AB The Lattice Boltzmann (LB) method can be used to simulate aspects of chemical reactions such as mineral precipitation from a fluid phase or condensation from a vapor phase. The LB method has the advantage of allowing the shape of the condensing phase to evolve depending on local conditions rather than being specified, so that the controls on condensed phase grain shape can be studied simultaneously with the controls on chemical composition and growth rate. We have used the LB approach to simulate the growth of ice crystals from water vapor-oversaturated air as a first step in developing methods for treating more complex chemical reaction problems, including isotopic effects. The formation of ice crystals (i.e., snow) in air is a classic problem in diffusion-limited crystal growth. There are many complexities, but the process is attractive for modeling purposes because it involves only one chemical component and there is abundant information on reaction kinetics and the relationships between crystal morphology and growth conditions. In this paper we describe the LB approach used, and address strategies for properly conserving mass at a surface of a growing "crystal," the scaling of the calculations to the actual physical problem, and the conditions for growth of dendritic versus compact crystals. C1 [Lu, Guoping; DePaolo, Donald J.] Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. [DePaolo, Donald J.] Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. [Kang, Qinjun] Los Alamos Natl Lab, Div Earth & Environm Sci, Los Alamos, NM 87545 USA. [Zhang, Dongxiao] Univ So Calif, Dept Civil & Environm Engn, Los Angeles, CA 90089 USA. RP Lu, GP (reprint author), Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. EM guopinglu@yahoo.com RI Zhang, Dongxiao/D-5289-2009; Kang, Qinjun/A-2585-2010 OI Zhang, Dongxiao/0000-0001-6930-5994; Kang, Qinjun/0000-0002-4754-2240 FU Office of Science, Basic Energy Sciences, Chemical Sciences, Geosciences and Biosciences Division of the U. S. Department of Energy [DE-AC02-05CH11231] FX This work was initiated with support from the LDRD fund from Lawrence Berkeley National Laboratory and continued with support from the Director, Office of Science, Basic Energy Sciences, Chemical Sciences, Geosciences and Biosciences Division of the U. S. Department of Energy under contract DE-AC02-05CH11231. The authors would like to thank Daniel Hawkes for editing help, Marilyn Saarni for graphic aid, Benjamin Gilbert for helpful discussion, Carl Steefel for internal review, and peered reviews of two anonymous reviewers and Editor Steve Ghan. NR 37 TC 6 Z9 6 U1 2 U2 10 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD APR 10 PY 2009 VL 114 AR D07305 DI 10.1029/2008JD011087 PG 14 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 431ZA UT WOS:000265102100005 ER PT J AU Khare, A Dmitriev, SV Saxena, A AF Khare, Avinash Dmitriev, Sergey V. Saxena, Avadh TI Exact static solutions of a generalized discrete phi(4) model including short-periodic solutions SO JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL LA English DT Article ID NONLINEAR SCHRODINGER-EQUATION; KLEIN-GORDON MODELS; STATIONARY SOLUTIONS; ANHARMONIC LATTICES; DISCRETIZATIONS; KINKS; SYSTEM; MAPPINGS; DYNAMICS; CHAINS AB We carry out a comprehensive analysis of a generalized discrete phi(4) model, of which virtually all phi(4) models discussed in the literature are particular cases. For this model we construct the exact solutions in the form of the basic Jacobi elliptic, hyperbolic and sine functions, and also give a list of short-periodic and even aperiodic solutions. Some of those solutions coincide with the known ones, others generalize the existing solutions and the rest of them are new. We then discuss the relation between the models supporting exact static solutions and the two-point maps. In particular, we show that some of the short-periodic and sine solutions can be found from factorized difference equations and even from a set of two difference equations, one of the first and another of the second order. Particular attention is paid to the discussion of the exceptional discrete (ED) models defined as models supporting the translationally invariant (TI) static solutions that can be placed arbitrarily with respect to the lattice. We show that some of the derived short-periodic solutions are TI ones while the others are not. For the TI static solutions we demonstrate the existence of the translational Goldstone mode for any location of the solution with respect to the lattice. We then analyze numerically the stability and other properties of the TI kink solutions. In conclusion, we divide the ED models into two classes: the ED I models support a two-parameter set of TI static solutions, while the ED II models support only a one-parameter set of such solutions. C1 [Khare, Avinash] Inst Phys, Bhubaneswar 751005, Orissa, India. [Dmitriev, Sergey V.] Russian Acad Sci, Inst Met Superplast Problems, Ufa 450001, Russia. [Saxena, Avadh] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. [Saxena, Avadh] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Khare, A (reprint author), Inst Phys, Bhubaneswar 751005, Orissa, India. FU DST-RFBR [08-02-91316-Ind-a]; Russian Foundation for Basic Research [07-08-12152]; US Department of Energy FX AK and SVD gratefully acknowledge the financial support provided by the DST-RFBR joint grant 08-02-91316-Ind-a. The work of SVD was supported by the Russian Foundation for Basic Research, grant 07-08-12152. This work was supported in part by the US Department of Energy. NR 41 TC 2 Z9 2 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1751-8113 EI 1751-8121 J9 J PHYS A-MATH THEOR JI J. Phys. A-Math. Theor. PD APR 10 PY 2009 VL 42 IS 14 AR 145204 DI 10.1088/1751-8113/42/14/145204 PG 23 WC Physics, Multidisciplinary; Physics, Mathematical SC Physics GA 420LW UT WOS:000264292300007 ER PT J AU Alver, B Back, BB Baker, MD Ballintijn, M Barton, DS Betts, RR Bindel, R Busza, W Chai, Z Chetluru, V Garcia, E Gburek, T Gulbrandsen, K Hamblen, J Harnarine, I Henderson, C Hofman, DJ Hollis, RS Holynski, R Holzman, B Iordanova, A Kane, JL Kulinich, P Kuo, CM Li, W Lin, WT Loizides, C Manly, S Mignerey, AC Nouicer, R Olszewski, A Pak, R Reed, C Richardson, E Roland, C Roland, G Sagerer, J Sedykh, I Smith, CE Stankiewicz, MA Steinberg, P Stephans, GSF Sukhanov, A Szostak, A Tonjes, MB Trzupek, A Van Nieuwenhuizen, GJ Vaurynovich, SS Verdier, R Veres, GI Walters, P Wenger, E Willhelm, D Wolfs, FLH Wosiek, B Wozniak, K Wyngaardt, S Wyslouch, B AF Alver, B. Back, B. B. Baker, M. D. Ballintijn, M. Barton, D. S. Betts, R. R. Bindel, R. Busza, W. Chai, Z. Chetluru, V. Garcia, E. Gburek, T. Gulbrandsen, K. Hamblen, J. Harnarine, I. Henderson, C. Hofman, D. J. Hollis, R. S. Holynski, R. Holzman, B. Iordanova, A. Kane, J. L. Kulinich, P. Kuo, C. M. Li, W. Lin, W. T. Loizides, C. Manly, S. Mignerey, A. C. Nouicer, R. Olszewski, A. Pak, R. Reed, C. Richardson, E. Roland, C. Roland, G. Sagerer, J. Sedykh, I. Smith, C. E. Stankiewicz, M. A. Steinberg, P. Stephans, G. S. F. Sukhanov, A. Szostak, A. Tonjes, M. B. Trzupek, A. van Nieuwenhuizen, G. J. Vaurynovich, S. S. Verdier, R. Veres, G. I. Walters, P. Wenger, E. Willhelm, D. Wolfs, F. L. H. Wosiek, B. Wozniak, K. Wyngaardt, S. Wyslouch, B. CA PHOBOS Collaboration TI System Size, Energy, and Centrality Dependence of Pseudorapidity Distributions of Charged Particles in Relativistic Heavy-Ion Collisions SO PHYSICAL REVIEW LETTERS LA English DT Article AB We present the first measurements of the pseudorapidity distribution of primary charged particles in Cu+Cu collisions as a function of collision centrality and energy, s(NN)>=22.4, 62.4, and 200 GeV, over a wide range of pseudorapidity, using the PHOBOS detector. A comparison of Cu+Cu and Au+Au results shows that the total number of produced charged particles and the rough shape (height and width) of the pseudorapidity distributions are determined by the number of nucleon participants. More detailed studies reveal that a more precise matching of the shape of the Cu+Cu and Au+Au pseudorapidity distributions over the full range of pseudorapidity occurs for the same N(part)/2A rather than the same N(part). In other words, it is the collision geometry rather than just the number of nucleon participants that drives the detailed shape of the pseudorapidity distribution and its centrality dependence at RHIC energies. C1 [Alver, B.; Back, B. B.] Argonne Natl Lab, Argonne, IL 60439 USA. [Baker, M. D.; Barton, D. S.; Chai, Z.; Holzman, B.; Nouicer, R.; Pak, R.; Sedykh, I.; Stankiewicz, M. A.; Steinberg, P.; Sukhanov, A.; Szostak, A.; Wyngaardt, S.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Gburek, T.; Holynski, R.; Olszewski, A.; Trzupek, A.; Wosiek, B.; Wozniak, K.] PAN, Inst Nucl Phys, Krakow, Poland. [Ballintijn, M.; Gulbrandsen, K.; Henderson, C.; Kane, J. L.; Kulinich, P.; Li, W.; Loizides, C.; Roland, C.; Roland, G.; Stephans, G. S. F.; van Nieuwenhuizen, G. J.; Vaurynovich, S. S.; Verdier, R.; Veres, G. I.; Wenger, E.; Wyslouch, B.] MIT, Cambridge, MA 02139 USA. [Kuo, C. M.; Lin, W. T.] Natl Cent Univ, Chungli 32054, Taiwan. [Betts, R. R.; Chetluru, V.; Garcia, E.; Harnarine, I.; Hofman, D. J.; Hollis, R. S.; Iordanova, A.; Smith, C. E.] Univ Illinois, Chicago, IL 60607 USA. [Bindel, R.; Mignerey, A. C.; Richardson, E.; Tonjes, M. B.; Willhelm, D.] Univ Maryland, College Pk, MD 20742 USA. [Hamblen, J.; Manly, S.; Walters, P.; Wolfs, F. L. H.] Univ Rochester, Rochester, NY 14627 USA. RP Alver, B (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. RI Mignerey, Alice/D-6623-2011; OI Holzman, Burt/0000-0001-5235-6314 FU U.S. DOE [DE-AC02-98CH10886, DE-FG02-93ER40802, DE-FG02-94ER40818, DE-FG02-94ER40865, DE-FG02-99ER41099, DE-AC0206CH11357]; U.S. NSF [9603486, 0072204, 0245011]; Polish MNiSW [NN202 282234]; NSC of Taiwan [NSC 89-2112-M-008-024]; Hungarian OTKA [F 049823] FX This work was partially supported by U.S. DOE grants No. DE-AC02-98CH10886, No. DE-FG02-93ER40802, No. DE-FG02-94ER40818, No. DE-FG02-94ER40865, No. DE-FG02-99ER41099, and No. DE-AC0206CH11357, by U.S. NSF Grants No. 9603486, No. 0072204, and No. 0245011, by Polish MNiSW Grant No. NN202 282234 (2008-2010), by NSC of Taiwan Contract NSC 89-2112-M-008-024, and by Hungarian OTKA Grant (No. F 049823). NR 11 TC 26 Z9 27 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD APR 10 PY 2009 VL 102 IS 14 AR 142301 DI 10.1103/PhysRevLett.102.142301 PG 5 WC Physics, Multidisciplinary SC Physics GA 431SA UT WOS:000265082500014 PM 19392428 ER PT J AU Aubert, B Karyotakis, Y Lees, JP Poireau, V Prencipe, E Prudent, X Tisserand, V Tico, JG Grauges, E Lopez, L Palano, A Pappagallo, M Eigen, G Stugu, B Sun, L Battaglia, M Brown, DN Kerth, LT Kolomensky, YG Lynch, G Osipenkov, IL Tackmann, K Tanabe, T Hawkes, CM Soni, N Watson, AT Koch, H Schroeder, T Asgeirsson, DJ Fulsom, BG Hearty, C Mattison, TS McKenna, JA Barrett, M Khan, A Randle-Conde, A Blinov, VE Bukin, AD Buzykaev, AR Druzhinin, VP Golubev, VB Onuchin, AP Serednyakov, SI Skovpen, YI Solodov, EP Todyshev, KY Bondioli, M Curry, S Eschrich, I Kirkby, D Lankford, AJ Lund, P Mandelkern, M Martin, EC Stoker, DP Abachi, S Buchanan, C Atmacan, H Gary, JW Liu, F Long, O Vitug, GM Yasin, Z Zhang, L Sharma, V Campagnari, C Hong, TM Kovalskyi, D Mazur, MA Richman, JD Beck, TW Eisner, AM Heusch, CA Kroseberg, J Lockman, WS Martinez, AJ Schalk, T Schumm, BA Seiden, A Winstrom, LO Cheng, CH Doll, DA Echenard, B Fang, F Hitlin, DG Narsky, I Piatenko, T Porter, FC Andreassen, R Mancinelli, G Meadows, BT Mishra, K Sokoloff, MD Bloom, PC Ford, WT Gaz, A Hirschauer, JF Nagel, M Nauenberg, U Smith, JG Wagner, SR Ayad, R Soffer, A Toki, WH Wilson, RJ Feltresi, E Hauke, A Jasper, H Karbach, M Merkel, J Petzold, A Spaan, B Wacker, K Kobel, MJ Nogowski, R Schubert, KR Schwierz, R Volk, A Bernard, D Bonneaud, GR Latour, E Verderi, M Clark, PJ Playfer, S Watson, JE Andreotti, M Bettoni, D Bozzi, C Calabrese, R Cecchi, A Cibinetto, G Franchini, P Luppi, E Negrini, M Petrella, A Piemontese, L Santoro, V Baldini-Ferroli, R Calcaterra, A Sangro, R Finocchiaro, G Pacetti, S Patteri, P Peruzzi, IM Piccolo, M Rama, M Zallo, A Contri, R Guido, E Lo Vetere, M Monge, MR Passaggio, S Patrignani, C Robutti, E Tosi, S Chaisanguanthum, KS Morii, M Adametz, A Marks, J Schenk, S Uwer, U Bernlochner, FU Klose, V Lacker, HM Bard, DJ Dauncey, PD Tibbetts, M Behera, PK Chai, X Charles, MJ Mallik, U Cochran, J Crawley, HB Dong, L Meyer, WT Prell, S Rosenberg, EI Rubin, AE Gao, YY Gritsan, AV Guo, ZJ Arnaud, N Bequilleux, J D'Orazio, A Davier, M da Costa, JF Grosdidier, G Le Diberder, F Lepeltier, V Lutz, AM Pruvot, S Roudeau, P Schune, MH Serrano, J Sordini, V Stocchi, A Wormser, G Lange, DJ Wright, DM Bingham, I Burke, JP Chavez, CA Fry, JR Gabathuler, E Gamet, R Hutchcroft, DE Payne, DJ Touramanis, C Bevan, AJ Clarke, CK Di Lodovico, F Sacco, R Sigamani, M Cowan, G Paramesvaran, S Wren, AC Brown, DN Davis, CL Denig, AG Fritsch, M Gradl, W Hafner, A Alwyn, KE Bailey, D Barlow, RJ Jackson, G Lafferty, GD West, TJ Yi, JI Anderson, J Chen, C Jawahery, A Roberts, DA Simi, G Tuggle, JM Dallapiccola, C Salvati, E Saremi, S Cowan, R Dujmic, D Fisher, PH Henderson, SW Sciolla, G Spitznagel, M Yamamoto, RK Zhao, M Patel, PM Robertson, SH Schram, M Lazzaro, A Lombardo, V Palombo, F Stracka, S Bauer, JM Cremaldi, L Godang, R Kroeger, R Summers, DJ Zhao, HW Simard, M Taras, P Nicholson, H De Nardo, G Lista, L Monorchio, D Onorato, G Sciacca, C Raven, G Snoek, HL Jessop, CP Knoepfel, KJ LoSecco, JM Wang, WF Corwin, LA Honscheid, K Kagan, H Kass, R Morris, JP Rahimi, AM Regensburger, JJ Sekula, SJ Wong, QK Blount, NL Brau, J Frey, R Igonkina, O Kolb, JA Lu, M Rahmat, R Sinev, NB Strom, D Strube, J Torrence, E Castelli, G Gagliardi, N Margoni, M Morandin, M Posocco, M Rotondo, M Simonetto, F Stroili, R Voci, C Sanchez, PD Ben-Haim, E Briand, H Chauveau, J Hamon, O Leruste, P Ocariz, J Perez, A Prendki, J Sitt, S Gladney, L Biasini, M Manoni, E Angelini, C Batignani, G Bettarini, S Calderini, G Carpinelli, M Cervelli, A Forti, F Giorgi, MA Lusiani, A Marchiori, G Morganti, M Neri, N Paoloni, E Rizzo, G Walsh, JJ Pegna, DL Lu, C Olsen, J Smith, AJS Telnov, AV Anulli, F Baracchini, E Cavoto, G Faccini, R Ferrarotto, F Ferroni, F Gaspero, M Jackson, PD Li Gioi, L Mazzoni, MA Morganti, S Piredda, G Renga, F Voena, C Ebert, M Hartmann, T Schroder, H Waldi, R Adye, T Franek, B Olaiya, EO Wilson, FF Emery, S Esteve, L de Monchenault, GH Kozanecki, W Vasseur, G Yeche, C Zito, M Chen, XR Liu, H Park, W Purohit, MV White, RM Wilson, JR Allen, MT Aston, D Bartoldus, R Benitez, JF Cenci, R Coleman, JP Convery, MR Dingfelder, JC Dorfan, J Dubois-Felsmann, GP Dunwoodie, W Field, RC Gabareen, AM Graham, MT Grenier, P Hast, C Innes, WR Kaminski, J Kelsey, MH Kim, H Kim, P Kocian, ML Leith, DWGS Li, S Lindquist, B Luitz, S Luth, V Lynch, HL MacFarlane, DB Marsiske, H Messner, R Muller, DR Neal, H Nelson, S O'Grady, CP Ofte, I Perl, M Ratcliff, BN Roodman, A Salnikov, AA Schindler, RH Schwiening, J Snyder, A Su, D Sullivan, MK Suzuki, K Swain, SK Thompson, JM Va'vra, J Wagner, AP Weaver, M West, CA Wisniewski, WJ Wittgen, M Wright, DH Wulsin, HW Yarritu, AK Yi, K Young, CC Ziegler, V Burchat, PR Edwards, AJ Miyashita, TS Ahmed, S Alam, MS Ernst, JA Pan, B Saeed, MA Zain, SB Spanier, SM Wogsland, BJ Eckmann, R Ritchie, JL Ruland, AM Schilling, CJ Schwitters, RF Drummond, BW Izen, JM Lou, XC Bianchi, F Gamba, D Pelliccioni, M Bomben, M Bosisio, L Cartaro, C Ricca, G Lanceri, L Vitale, L Azzolini, V Lopez-March, N Martinez-Vidal, F Milanes, DA Oyanguren, A Albert, J Banerjee, S Bhuyan, B Choi, HHF Hamano, K King, GJ Kowalewski, R Lewczuk, MJ Nugent, IM Roney, JM Sobie, RJ Gershon, TJ Harrison, PF Ilic, J Latham, TE Mohanty, GB Puccio, EMT Band, HR Chen, X Dasu, S Flood, KT Pan, Y Prepost, R Vuosalo, CO Wu, SL AF Aubert, B. Karyotakis, Y. Lees, J. P. Poireau, V. Prencipe, E. Prudent, X. Tisserand, V. Tico, J. Garra Grauges, E. Lopez, L. Palano, A. Pappagallo, M. Eigen, G. Stugu, B. Sun, L. Battaglia, M. Brown, D. N. Kerth, L. T. Kolomensky, Yu. G. Lynch, G. Osipenkov, I. L. Tackmann, K. Tanabe, T. Hawkes, C. M. Soni, N. Watson, A. T. Koch, H. Schroeder, T. Asgeirsson, D. J. Fulsom, B. G. Hearty, C. Mattison, T. S. McKenna, J. A. Barrett, M. Khan, A. Randle-Conde, A. Blinov, V. E. Bukin, A. D. Buzykaev, A. R. Druzhinin, V. P. Golubev, V. B. Onuchin, A. P. Serednyakov, S. I. Skovpen, Yu. I. Solodov, E. P. Todyshev, K. Yu. Bondioli, M. Curry, S. Eschrich, I. Kirkby, D. Lankford, A. J. Lund, P. Mandelkern, M. Martin, E. C. Stoker, D. P. Abachi, S. Buchanan, C. Atmacan, H. Gary, J. W. Liu, F. Long, O. Vitug, G. M. Yasin, Z. Zhang, L. Sharma, V. Campagnari, C. Hong, T. M. Kovalskyi, D. Mazur, M. A. Richman, J. D. Beck, T. W. Eisner, A. M. Heusch, C. A. Kroseberg, J. Lockman, W. S. Martinez, A. J. Schalk, T. Schumm, B. A. Seiden, A. Winstrom, L. O. Cheng, C. H. Doll, D. A. Echenard, B. Fang, F. Hitlin, D. G. Narsky, I. Piatenko, T. Porter, F. C. Andreassen, R. Mancinelli, G. Meadows, B. T. Mishra, K. Sokoloff, M. D. Bloom, P. C. Ford, W. T. Gaz, A. Hirschauer, J. F. Nagel, M. Nauenberg, U. Smith, J. G. Wagner, S. R. Ayad, R. Soffer, A. Toki, W. H. Wilson, R. J. Feltresi, E. Hauke, A. Jasper, H. Karbach, M. Merkel, J. Petzold, A. Spaan, B. Wacker, K. Kobel, M. J. Nogowski, R. Schubert, K. R. Schwierz, R. Volk, A. Bernard, D. Bonneaud, G. R. Latour, E. Verderi, M. Clark, P. J. Playfer, S. Watson, J. E. Andreotti, M. Bettoni, D. Bozzi, C. Calabrese, R. Cecchi, A. Cibinetto, G. Franchini, P. Luppi, E. Negrini, M. Petrella, A. Piemontese, L. Santoro, V. Baldini-Ferroli, R. Calcaterra, A. de Sangro, R. Finocchiaro, G. Pacetti, S. Patteri, P. Peruzzi, I. M. Piccolo, M. Rama, M. Zallo, A. Contri, R. Guido, E. Lo Vetere, M. Monge, M. R. Passaggio, S. Patrignani, C. Robutti, E. Tosi, S. Chaisanguanthum, K. S. Morii, M. Adametz, A. Marks, J. Schenk, S. Uwer, U. Bernlochner, F. U. Klose, V. Lacker, H. M. Bard, D. J. Dauncey, P. D. Tibbetts, M. Behera, P. K. Chai, X. Charles, M. J. Mallik, U. Cochran, J. Crawley, H. B. Dong, L. Meyer, W. T. Prell, S. Rosenberg, E. I. Rubin, A. E. Gao, Y. Y. Gritsan, A. V. Guo, Z. J. Arnaud, N. Bequilleux, J. D'Orazio, A. Davier, M. da Costa, J. Firmino Grosdidier, G. Le Diberder, F. Lepeltier, V. Lutz, A. M. Pruvot, S. Roudeau, P. Schune, M. H. Serrano, J. Sordini, V. Stocchi, A. Wormser, G. Lange, D. J. Wright, D. M. Bingham, I. Burke, J. P. Chavez, C. A. Fry, J. R. Gabathuler, E. Gamet, R. Hutchcroft, D. E. Payne, D. J. Touramanis, C. Bevan, A. J. Clarke, C. K. Di Lodovico, F. Sacco, R. Sigamani, M. Cowan, G. Paramesvaran, S. Wren, A. C. Brown, D. N. Davis, C. L. Denig, A. G. Fritsch, M. Gradl, W. Hafner, A. Alwyn, K. E. Bailey, D. Barlow, R. J. Jackson, G. Lafferty, G. D. West, T. J. Yi, J. I. Anderson, J. Chen, C. Jawahery, A. Roberts, D. A. Simi, G. Tuggle, J. M. Dallapiccola, C. Salvati, E. Saremi, S. Cowan, R. Dujmic, D. Fisher, P. H. Henderson, S. W. Sciolla, G. Spitznagel, M. Yamamoto, R. K. Zhao, M. Patel, P. M. Robertson, S. H. Schram, M. Lazzaro, A. Lombardo, V. Palombo, F. Stracka, S. Bauer, J. M. Cremaldi, L. Godang, R. Kroeger, R. Summers, D. J. Zhao, H. W. Simard, M. Taras, P. Nicholson, H. De Nardo, G. Lista, L. Monorchio, D. Onorato, G. Sciacca, C. Raven, G. Snoek, H. L. Jessop, C. P. Knoepfel, K. J. LoSecco, J. M. Wang, W. F. Corwin, L. A. Honscheid, K. Kagan, H. Kass, R. Morris, J. P. Rahimi, A. M. Regensburger, J. J. Sekula, S. J. Wong, Q. K. Blount, N. L. Brau, J. Frey, R. Igonkina, O. Kolb, J. A. Lu, M. Rahmat, R. Sinev, N. B. Strom, D. Strube, J. Torrence, E. Castelli, G. Gagliardi, N. Margoni, M. Morandin, M. Posocco, M. Rotondo, M. Simonetto, F. Stroili, R. Voci, C. Sanchez, P. del Amo Ben-Haim, E. Briand, H. Chauveau, J. Hamon, O. Leruste, Ph. Ocariz, J. Perez, A. Prendki, J. Sitt, S. Gladney, L. Biasini, M. Manoni, E. Angelini, C. Batignani, G. Bettarini, S. Calderini, G. Carpinelli, M. Cervelli, A. Forti, F. Giorgi, M. A. Lusiani, A. Marchiori, G. Morganti, M. Neri, N. Paoloni, E. Rizzo, G. Walsh, J. J. Pegna, D. Lopes Lu, C. Olsen, J. Smith, A. J. S. Telnov, A. V. Anulli, F. Baracchini, E. Cavoto, G. Faccini, R. Ferrarotto, F. Ferroni, F. Gaspero, M. Jackson, P. D. Li Gioi, L. Mazzoni, M. A. Morganti, S. Piredda, G. Renga, F. Voena, C. Ebert, M. Hartmann, T. Schroeder, H. Waldi, R. Adye, T. Franek, B. Olaiya, E. O. Wilson, F. F. Emery, S. Esteve, L. de Monchenault, G. Hamel Kozanecki, W. Vasseur, G. Yeche, Ch. Zito, M. Chen, X. R. Liu, H. Park, W. Purohit, M. V. White, R. M. Wilson, J. R. Allen, M. T. Aston, D. Bartoldus, R. Benitez, J. F. Cenci, R. Coleman, J. P. Convery, M. R. Dingfelder, J. C. Dorfan, J. Dubois-Felsmann, G. P. Dunwoodie, W. Field, R. C. Gabareen, A. M. Graham, M. T. Grenier, P. Hast, C. Innes, W. R. Kaminski, J. Kelsey, M. H. Kim, H. Kim, P. Kocian, M. L. Leith, D. W. G. S. Li, S. Lindquist, B. Luitz, S. Luth, V. Lynch, H. L. MacFarlane, D. B. Marsiske, H. Messner, R. Muller, D. R. Neal, H. Nelson, S. O'Grady, C. P. Ofte, I. Perl, M. Ratcliff, B. N. Roodman, A. Salnikov, A. A. Schindler, R. H. Schwiening, J. Snyder, A. Su, D. Sullivan, M. K. Suzuki, K. Swain, S. K. Thompson, J. M. Va'vra, J. Wagner, A. P. Weaver, M. West, C. A. Wisniewski, W. J. Wittgen, M. Wright, D. H. Wulsin, H. W. Yarritu, A. K. Yi, K. Young, C. C. Ziegler, V. Burchat, P. R. Edwards, A. J. Miyashita, T. S. Ahmed, S. Alam, M. S. Ernst, J. A. Pan, B. Saeed, M. A. Zain, S. B. Spanier, S. M. Wogsland, B. J. Eckmann, R. Ritchie, J. L. Ruland, A. M. Schilling, C. J. Schwitters, R. F. Drummond, B. W. Izen, J. M. Lou, X. C. Bianchi, F. Gamba, D. Pelliccioni, M. Bomben, M. Bosisio, L. Cartaro, C. Della Ricca, G. Lanceri, L. Vitale, L. Azzolini, V. Lopez-March, N. Martinez-Vidal, F. Milanes, D. A. Oyanguren, A. Albert, J. Banerjee, Sw. Bhuyan, B. Choi, H. H. F. Hamano, K. King, G. J. Kowalewski, R. Lewczuk, M. J. Nugent, I. M. Roney, J. M. Sobie, R. J. Gershon, T. J. Harrison, P. F. Ilic, J. Latham, T. E. Mohanty, G. B. Puccio, E. M. T. Band, H. R. Chen, X. Dasu, S. Flood, K. T. Pan, Y. Prepost, R. Vuosalo, C. O. Wu, S. L. CA BaBar Collaboration TI Improved Measurement of B+->rho(+)rho(0) and Determination of the Quark-Mixing Phase Angle alpha SO PHYSICAL REVIEW LETTERS LA English DT Article ID ISOSPIN ANALYSIS; CP ASYMMETRIES; B-DECAYS; VIOLATION AB We present improved measurements of the branching fraction B, the longitudinal polarization fraction f(L), and the direct CP asymmetry A(CP) in the B meson decay channel B+->rho(+)rho(0). The data sample was collected with the BABAR detector at SLAC. The results are B(B+->rho(+)rho(0))=(23.7 +/- 1.4 +/- 1.4)x10(-6), f(L)=0.950 +/- 0.015 +/- 0.006, and A(CP)=-0.054 +/- 0.055 +/- 0.010, where the uncertainties are statistical and systematic, respectively. Based on these results, we perform an isospin analysis and determine the Cabibbo-Kobayashi-Maskawa phase angle alpha=arg(-VtdVtb*/VudVub*) to be (92.4(-6.5)(+6.0))degrees. C1 [Aubert, B.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prencipe, E.; Prudent, X.; Tisserand, V.] Univ Savoie, CNRS, Lab Annecy Le Vieux Phys Particules, IN2P3, F-74941 Annecy Le Vieux, France. [Tico, J. Garra; Grauges, E.] Univ Barcelona, Fac Fis, Dept Estructura & Constituents Mat, E-08028 Barcelona, Spain. [Lopez, L.; Palano, A.; Pappagallo, M.] Univ Bari, Dipartmento Fis, I-70126 Bari, Italy. [Eigen, G.; Stugu, B.; Sun, L.] Univ Bergen, Inst Phys, N-5007 Bergen, Norway. [Battaglia, M.; Brown, D. N.; Kerth, L. T.; Kolomensky, Yu. G.; Lynch, G.; Osipenkov, I. L.; Tackmann, K.; Tanabe, T.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Hawkes, C. M.; Soni, N.; Watson, A. T.] Univ Birmingham, Birmingham B15 2TT, W Midlands, England. [Koch, H.; Schroeder, T.] Ruhr Univ Bochum, Inst Expt Phys 1, D-44780 Bochum, Germany. [Asgeirsson, D. J.; Fulsom, B. G.; Hearty, C.; Mattison, T. S.; McKenna, J. A.] Univ British Columbia, Vancouver, BC V6T 1Z1, Canada. [Barrett, M.; Khan, A.; Randle-Conde, A.] Brunel Univ, Uxbridge UB8 3PH, Middx, England. [Blinov, V. E.; Bukin, A. D.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.] Budker Inst Nucl Phys, Novosibirsk 630090, Russia. [Bondioli, M.; Curry, S.; Eschrich, I.; Kirkby, D.; Lankford, A. J.; Lund, P.; Mandelkern, M.; Martin, E. C.; Stoker, D. P.] Univ Calif Irvine, Irvine, CA 92697 USA. [Abachi, S.; Buchanan, C.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Atmacan, H.; Gary, J. W.; Liu, F.; Long, O.; Vitug, G. M.; Yasin, Z.; Zhang, L.] Univ Calif Riverside, Riverside, CA 92521 USA. [Sharma, V.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Campagnari, C.; Hong, T. M.; Kovalskyi, D.; Mazur, M. A.; Richman, J. D.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Beck, T. W.; Eisner, A. M.; Heusch, C. A.; Kroseberg, J.; Lockman, W. S.; Martinez, A. J.; Schalk, T.; Schumm, B. A.; Seiden, A.; Winstrom, L. O.] Univ Calif Santa Cruz, Inst Particle Phys, Santa Cruz, CA 95064 USA. [Cheng, C. H.; Doll, D. A.; Echenard, B.; Fang, F.; Hitlin, D. G.; Narsky, I.; Piatenko, T.; Porter, F. C.] CALTECH, Pasadena, CA 91125 USA. [Andreassen, R.; Mancinelli, G.; Meadows, B. T.; Mishra, K.; Sokoloff, M. D.] Univ Cincinnati, Cincinnati, OH 45221 USA. [Bloom, P. C.; Ford, W. T.; Gaz, A.; Hirschauer, J. F.; Nagel, M.; Nauenberg, U.; Smith, J. G.; Wagner, S. R.] Univ Colorado, Boulder, CO 80309 USA. [Ayad, R.; Soffer, A.; Toki, W. H.; Wilson, R. J.] Colorado State Univ, Ft Collins, CO 80523 USA. [Feltresi, E.; Hauke, A.; Jasper, H.; Karbach, M.; Merkel, J.; Petzold, A.; Spaan, B.; Wacker, K.] Tech Univ Dortmund, Fac Phys, D-44221 Dortmund, Germany. [Kobel, M. J.; Nogowski, R.; Schubert, K. R.; Schwierz, R.; Volk, A.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. [Bernard, D.; Bonneaud, G. R.; Latour, E.; Verderi, M.] Ecole Polytech, CNRS, Lab Leprince Ringuet, IN2P3, F-91128 Palaiseau, France. [Clark, P. J.; Playfer, S.; Watson, J. E.] Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. [Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Franchini, P.; Luppi, E.; Negrini, M.; Petrella, A.; Piemontese, L.; Santoro, V.] Ist Nazl Fis Nucl, Sez Ferrara, I-44100 Ferrara, Italy. [Andreotti, M.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Franchini, P.; Luppi, E.; Negrini, M.; Petrella, A.; Santoro, V.] Univ Ferrara, Dipartimento Fis, I-44100 Ferrara, Italy. [Baldini-Ferroli, R.; Calcaterra, A.; de Sangro, R.; Finocchiaro, G.; Pacetti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; Zallo, A.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Contri, R.; Guido, E.; Lo Vetere, M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Tosi, S.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Contri, R.; Guido, E.; Lo Vetere, M.; Monge, M. R.; Patrignani, C.; Tosi, S.] Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy. [Chaisanguanthum, K. S.; Morii, M.] Harvard Univ, Cambridge, MA 02138 USA. [Adametz, A.; Marks, J.; Schenk, S.; Uwer, U.] Univ Heidelberg, Inst Phys, D-69120 Heidelberg, Germany. [Bernlochner, F. U.; Klose, V.; Lacker, H. M.] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany. [Bard, D. J.; Dauncey, P. D.; Tibbetts, M.] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. [Behera, P. K.; Chai, X.; Charles, M. J.; Mallik, U.] Univ Iowa, Iowa City, IA 52242 USA. [Cochran, J.; Crawley, H. B.; Dong, L.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Rubin, A. E.] Iowa State Univ, Ames, IA 50011 USA. [Gao, Y. Y.; Gritsan, A. V.; Guo, Z. J.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Arnaud, N.; Bequilleux, J.; D'Orazio, A.; Davier, M.; da Costa, J. Firmino; Grosdidier, G.; Le Diberder, F.; Lepeltier, V.; Lutz, A. M.; Pruvot, S.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wormser, G.] CNRS, Lab Accelerateur Lineaire, IN2P3, F-91898 Orsay, France. [Arnaud, N.; Bequilleux, J.; D'Orazio, A.; Davier, M.; da Costa, J. Firmino; Grosdidier, G.; Le Diberder, F.; Lepeltier, V.; Lutz, A. M.; Pruvot, S.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wormser, G.] Univ Paris 11, Ctr Sci Orsay, F-91898 Orsay, France. [Lange, D. J.; Wright, D. M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Bingham, I.; Burke, J. P.; Chavez, C. A.; Fry, J. R.; Gabathuler, E.; Gamet, R.; Hutchcroft, D. E.; Payne, D. J.; Touramanis, C.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Bevan, A. J.; Clarke, C. K.; Di Lodovico, F.; Sacco, R.; Sigamani, M.] Univ London, London E1 4NS, England. [Cowan, G.; Paramesvaran, S.; Wren, A. C.] Univ London, Royal Holloway & Bedford New Coll, Egham TW20 0EX, Surrey, England. [Brown, D. N.; Davis, C. L.] Univ Louisville, Louisville, KY 40292 USA. [Denig, A. G.; Fritsch, M.; Gradl, W.; Hafner, A.] Johannes Gutenberg Univ Mainz, Inst Kernphys, D-55099 Mainz, Germany. [Alwyn, K. E.; Bailey, D.; Barlow, R. J.; Jackson, G.; Lafferty, G. D.; West, T. J.; Yi, J. I.] Univ Manchester, Manchester M13 9PL, Lancs, England. [Anderson, J.; Chen, C.; Jawahery, A.; Roberts, D. A.; Simi, G.; Tuggle, J. M.] Univ Maryland, College Pk, MD 20742 USA. [Dallapiccola, C.; Salvati, E.; Saremi, S.] Univ Massachusetts, Amherst, MA 01003 USA. [Cowan, R.; Dujmic, D.; Fisher, P. H.; Henderson, S. W.; Sciolla, G.; Spitznagel, M.; Yamamoto, R. K.; Zhao, M.] MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. [Patel, P. M.; Robertson, S. H.; Schram, M.] McGill Univ, Montreal, PQ H3A 2T8, Canada. [Lazzaro, A.; Lombardo, V.; Palombo, F.; Stracka, S.] Ist Nazl Fis Nucl, Sez Milano, I-20133 Milan, Italy. [Lazzaro, A.; Palombo, F.; Stracka, S.] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. [Bauer, J. M.; Cremaldi, L.; Godang, R.; Kroeger, R.; Summers, D. J.; Zhao, H. W.] Univ Mississippi, University, MS 38677 USA. [Simard, M.; Taras, P.] Univ Montreal, Montreal, PQ H3C 3J7, Canada. [Nicholson, H.] Mt Holyoke Coll, S Hadley, MA 01075 USA. [De Nardo, G.; Lista, L.; Monorchio, D.; Onorato, G.; Sciacca, C.] Ist Nazl Fis Nucl, Sez Napoli, I-80126 Naples, Italy. [De Nardo, G.; Monorchio, D.; Onorato, G.; Sciacca, C.] Univ Naples Federico 2, Dipartimento Sci Fis, I-80126 Naples, Italy. [Raven, G.; Snoek, H. L.] Natl Inst Nucl Phys & High Energy Phys, NIKHEF, NL-1009 DB Amsterdam, Netherlands. [Jessop, C. P.; Knoepfel, K. J.; LoSecco, J. M.; Wang, W. F.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Corwin, L. A.; Honscheid, K.; Kagan, H.; Kass, R.; Morris, J. P.; Rahimi, A. M.; Regensburger, J. J.; Sekula, S. J.; Wong, Q. K.] Ohio State Univ, Columbus, OH 43210 USA. [Blount, N. L.; Brau, J.; Frey, R.; Igonkina, O.; Kolb, J. A.; Lu, M.; Rahmat, R.; Sinev, N. B.; Strom, D.; Strube, J.; Torrence, E.] Univ Oregon, Eugene, OR 97403 USA. [Castelli, G.; Gagliardi, N.; Margoni, M.; Morandin, M.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.; Voci, C.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Castelli, G.; Gagliardi, N.; Margoni, M.; Simonetto, F.; Stroili, R.; Voci, C.] Univ Padua, Dipartimento Fis, I-35131 Padua, Italy. [Sanchez, P. del Amo; Ben-Haim, E.; Briand, H.; Chauveau, J.; Hamon, O.; Leruste, Ph.; Ocariz, J.; Perez, A.; Prendki, J.; Sitt, S.; Calderini, G.] Univ Paris 07, Univ Paris 06, CNRS, Lab Phys Nucl & Hautes Energies,IN2P3, F-75252 Paris, France. [Gladney, L.] Univ Penn, Philadelphia, PA 19104 USA. [Biasini, M.; Manoni, E.] Ist Nazl Fis Nucl, Sez Perugia, I-06100 Perugia, Italy. [Peruzzi, I. M.; Biasini, M.; Manoni, E.] Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Calderini, G.; Carpinelli, M.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Marchiori, G.; Morganti, M.; Neri, N.; Paoloni, E.; Rizzo, G.; Walsh, J. J.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Calderini, G.; Carpinelli, M.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Marchiori, G.; Morganti, M.; Neri, N.; Paoloni, E.; Rizzo, G.] Univ Pisa, Dipartimento Fis, I-56127 Pisa, Italy. [Lusiani, A.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Pegna, D. Lopes; Lu, C.; Olsen, J.; Smith, A. J. S.; Telnov, A. V.] Princeton Univ, Princeton, NJ 08544 USA. [Anulli, F.; Baracchini, E.; Cavoto, G.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Jackson, P. D.; Li Gioi, L.; Mazzoni, M. A.; Morganti, S.; Piredda, G.; Renga, F.; Voena, C.] Ist Nazl Fis Nucl, Sez Roma, I-00185 Rome, Italy. [Baracchini, E.; Faccini, R.; Ferroni, F.; Gaspero, M.; Renga, F.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Ebert, M.; Hartmann, T.; Schroeder, H.; Waldi, R.] Univ Rostock, D-18051 Rostock, Germany. [Adye, T.; Franek, B.; Olaiya, E. O.; Wilson, F. F.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Emery, S.; Esteve, L.; de Monchenault, G. Hamel; Kozanecki, W.; Vasseur, G.; Yeche, Ch.; Zito, M.] CEA, SPP, Ctr Saclay, F-91191 Gif Sur Yvette, France. [Chen, X. R.; Liu, H.; Park, W.; Purohit, M. V.; White, R. M.; Wilson, J. R.] Univ S Carolina, Columbia, SC 29208 USA. [Allen, M. T.; Aston, D.; Bartoldus, R.; Benitez, J. F.; Cenci, R.; Coleman, J. P.; Convery, M. R.; Dingfelder, J. C.; Dorfan, J.; Dubois-Felsmann, G. P.; Dunwoodie, W.; Field, R. C.; Gabareen, A. M.; Graham, M. T.; Grenier, P.; Hast, C.; Innes, W. R.; Kaminski, J.; Kelsey, M. H.; Kim, H.; Kim, P.; Kocian, M. L.; Leith, D. W. G. S.; Li, S.; Lindquist, B.; Luitz, S.; Luth, V.; Lynch, H. L.; MacFarlane, D. B.; Marsiske, H.; Messner, R.; Muller, D. R.; Neal, H.; Nelson, S.; O'Grady, C. P.; Ofte, I.; Perl, M.; Ratcliff, B. N.; Roodman, A.; Salnikov, A. A.; Schindler, R. H.; Schwiening, J.; Snyder, A.; Su, D.; Sullivan, M. K.; Suzuki, K.; Swain, S. K.; Thompson, J. M.; Va'vra, J.; Wagner, A. P.; Weaver, M.; West, C. A.; Wisniewski, W. J.; Wittgen, M.; Wright, D. H.; Wulsin, H. W.; Yarritu, A. K.; Yi, K.; Young, C. C.; Ziegler, V.] Stanford Linear Accelerator Ctr, Natl Accelerator Lab, Stanford, CA 94309 USA. [Burchat, P. R.; Edwards, A. J.; Miyashita, T. S.] Stanford Univ, Stanford, CA 94305 USA. [Ahmed, S.; Alam, M. S.; Ernst, J. A.; Pan, B.; Saeed, M. A.; Zain, S. B.] SUNY Albany, Albany, NY 12222 USA. [Spanier, S. M.; Wogsland, B. J.] Univ Tennessee, Knoxville, TN 37996 USA. [Eckmann, R.; Ritchie, J. L.; Ruland, A. M.; Schilling, C. J.; Schwitters, R. F.] Univ Texas Austin, Austin, TX 78712 USA. [Drummond, B. W.; Izen, J. M.; Lou, X. C.] Univ Texas Dallas, Richardson, TX 75083 USA. [Bianchi, F.; Gamba, D.; Pelliccioni, M.] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy. [Bianchi, F.; Gamba, D.; Pelliccioni, M.] Univ Turin, Dipartimento Fis Sperimentale, I-10125 Turin, Italy. [Bomben, M.; Bosisio, L.; Cartaro, C.; Della Ricca, G.; Lanceri, L.; Vitale, L.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Bomben, M.; Bosisio, L.; Cartaro, C.; Della Ricca, G.; Lanceri, L.; Vitale, L.] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. [Azzolini, V.; Lopez-March, N.; Martinez-Vidal, F.; Milanes, D. A.; Oyanguren, A.] Univ Valencia, CSIC, IFIC, E-46071 Valencia, Spain. [Albert, J.; Banerjee, Sw.; Bhuyan, B.; Choi, H. H. F.; Hamano, K.; King, G. J.; Kowalewski, R.; Lewczuk, M. J.; Nugent, I. M.; Roney, J. M.; Sobie, R. J.] Univ Victoria, Victoria, BC V8W 3P6, Canada. [Gershon, T. J.; Harrison, P. F.; Ilic, J.; Latham, T. E.; Mohanty, G. B.; Puccio, E. M. T.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Band, H. R.; Chen, X.; Dasu, S.; Flood, K. T.; Pan, Y.; Prepost, R.; Vuosalo, C. O.; Wu, S. L.] Univ Wisconsin, Madison, WI 53706 USA. [Carpinelli, M.] Univ Sassari, I-07100 Sassari, Italy. [Lopez, L.; Palano, A.; Pappagallo, M.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. RP Aubert, B (reprint author), Univ Savoie, CNRS, Lab Annecy Le Vieux Phys Particules, IN2P3, F-74941 Annecy Le Vieux, France. RI Calabrese, Roberto/G-4405-2015; Martinez Vidal, F*/L-7563-2014; Kolomensky, Yury/I-3510-2015; Lo Vetere, Maurizio/J-5049-2012; Lusiani, Alberto/N-2976-2015; Lusiani, Alberto/A-3329-2016; Morandin, Mauro/A-3308-2016; Stracka, Simone/M-3931-2015; Di Lodovico, Francesca/L-9109-2016; Pappagallo, Marco/R-3305-2016; Calcaterra, Alessandro/P-5260-2015; Frey, Raymond/E-2830-2016; de Sangro, Riccardo/J-2901-2012; Saeed, Mohammad Alam/J-7455-2012; Della Ricca, Giuseppe/B-6826-2013; Negrini, Matteo/C-8906-2014; Monge, Maria Roberta/G-9127-2012; Oyanguren, Arantza/K-6454-2014; Luppi, Eleonora/A-4902-2015; White, Ryan/E-2979-2015; Patrignani, Claudia/C-5223-2009; Neri, Nicola/G-3991-2012; Forti, Francesco/H-3035-2011; Rotondo, Marcello/I-6043-2012 OI Strube, Jan/0000-0001-7470-9301; Chen, Chunhui /0000-0003-1589-9955; Raven, Gerhard/0000-0002-2897-5323; Ebert, Marcus/0000-0002-3014-1512; Corwin, Luke/0000-0001-7143-3821; Carpinelli, Massimo/0000-0002-8205-930X; Sciacca, Crisostomo/0000-0002-8412-4072; Adye, Tim/0000-0003-0627-5059; Lafferty, George/0000-0003-0658-4919; Wilson, Robert/0000-0002-8184-4103; Calabrese, Roberto/0000-0002-1354-5400; Martinez Vidal, F*/0000-0001-6841-6035; Kolomensky, Yury/0000-0001-8496-9975; Lo Vetere, Maurizio/0000-0002-6520-4480; Lusiani, Alberto/0000-0002-6876-3288; Lusiani, Alberto/0000-0002-6876-3288; Morandin, Mauro/0000-0003-4708-4240; Stracka, Simone/0000-0003-0013-4714; Di Lodovico, Francesca/0000-0003-3952-2175; Pappagallo, Marco/0000-0001-7601-5602; Calcaterra, Alessandro/0000-0003-2670-4826; Frey, Raymond/0000-0003-0341-2636; Lanceri, Livio/0000-0001-8220-3095; de Sangro, Riccardo/0000-0002-3808-5455; Saeed, Mohammad Alam/0000-0002-3529-9255; Della Ricca, Giuseppe/0000-0003-2831-6982; Negrini, Matteo/0000-0003-0101-6963; Monge, Maria Roberta/0000-0003-1633-3195; Oyanguren, Arantza/0000-0002-8240-7300; Luppi, Eleonora/0000-0002-1072-5633; White, Ryan/0000-0003-3589-5900; Patrignani, Claudia/0000-0002-5882-1747; Neri, Nicola/0000-0002-6106-3756; Forti, Francesco/0000-0001-6535-7965; Rotondo, Marcello/0000-0001-5704-6163 FU DOE and NSF (USA); NSERC (Canada); CEA and CNRS-IN2P3 (France); BMBF and DFG (Germany); INFN (Italy); FOM (The Netherlands); NFR (Norway); MES (Russia); MEC (Spain); STFC (United Kingdom); Marie Curie EIF (European Union); A.P. Sloan Foundation FX We are grateful for the excellent luminosity and machine conditions provided by our PEP-II colleagues and for the substantial dedicated effort from the computing organizations that support BABAR. The collaborating institutions thank SLAC for its support and kind hospitality. This work is supported by DOE and NSF (USA), NSERC (Canada), CEA and CNRS-IN2P3 (France), BMBF and DFG (Germany), INFN (Italy), FOM (The Netherlands), NFR (Norway), MES (Russia), MEC (Spain), and STFC (United Kingdom). Individuals have received support from the Marie Curie EIF (European Union) and the A.P. Sloan Foundation. NR 21 TC 26 Z9 26 U1 0 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD APR 10 PY 2009 VL 102 IS 14 AR 141802 DI 10.1103/PhysRevLett.102.141802 PG 7 WC Physics, Multidisciplinary SC Physics GA 431SA UT WOS:000265082500012 PM 19392426 ER PT J AU Chung, M Gilson, EP Davidson, RC Efthimion, PC Majeski, R AF Chung, Moses Gilson, Erik P. Davidson, Ronald C. Efthimion, Philip C. Majeski, Richard TI Use of a Linear Paul Trap to Study Random Noise-Induced Beam Degradation in High-Intensity Accelerators SO PHYSICAL REVIEW LETTERS LA English DT Article AB A random noise-induced beam degradation that can affect intense beam transport over long propagation distances has been experimentally studied by making use of the transverse beam dynamics equivalence between an alternating-gradient (AG) focusing system and a linear Paul trap system. For the present studies, machine imperfections in the quadrupole focusing lattice are considered, which are emulated by adding small random noise on the voltage waveform of the quadrupole electrodes in the Paul trap. It is observed that externally driven noise continuously produces a nonthermal tail of trapped ions, and increases the transverse emittance almost linearly with the duration of the noise. C1 [Chung, Moses] Fermilab Natl Accelerator Lab, Accelerator Phys Ctr, Batavia, IL 60510 USA. [Chung, Moses; Gilson, Erik P.; Davidson, Ronald C.; Efthimion, Philip C.; Majeski, Richard] Princeton Univ, Plasma Phys Lab, Princeton, NJ 08543 USA. RP Chung, M (reprint author), Fermilab Natl Accelerator Lab, Accelerator Phys Ctr, Batavia, IL 60510 USA. FU U. S. Department of Energy FX This research was supported by the U. S. Department of Energy. NR 21 TC 5 Z9 5 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD APR 10 PY 2009 VL 102 IS 14 AR 145003 DI 10.1103/PhysRevLett.102.145003 PG 4 WC Physics, Multidisciplinary SC Physics GA 431SA UT WOS:000265082500033 PM 19392447 ER PT J AU Essin, AM Moore, JE Vanderbilt, D AF Essin, Andrew M. Moore, Joel E. Vanderbilt, David TI Magnetoelectric Polarizability and Axion Electrodynamics in Crystalline Insulators SO PHYSICAL REVIEW LETTERS LA English DT Article ID PHASE; POLARIZATION AB The orbital motion of electrons in a three-dimensional solid can generate a pseudoscalar magnetoelectric coupling theta, a fact we derive for the single-particle case using a recent theory of polarization in weakly inhomogeneous materials. This polarizability theta is the same parameter that appears in the "axion electrodynamics" Lagrangian Delta L(EM)=(theta e(2)/2 pi h)E center dot B, which is known to describe the unusual magnetoelectric properties of the three-dimensional topological insulator (theta=pi). We compute theta for a simple model that accesses the topological insulator and discuss its connection to the surface Hall conductivity. The orbital magnetoelectric polarizability can be generalized to the many-particle wave function and defines the 3D topological insulator, like the integer quantum Hall effect, in terms of a topological ground-state response function. C1 [Essin, Andrew M.; Moore, Joel E.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Moore, Joel E.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Vanderbilt, David] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA. RP Essin, AM (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. RI Moore, Joel/O-4959-2016; OI Moore, Joel/0000-0002-4294-5761; Vanderbilt, David/0000-0002-2465-9091 FU Western Institute of Nanoelectronics; NSF [DMR-0804413, DMR-0549198] FX The authors acknowledge useful discussions with A. Selem and I. Souza. The work was supported by the Western Institute of Nanoelectronics ( A. M. E.), NSF DMR-0804413 ( J. E. M.), and NSF DMR-0549198 ( D. V.). NR 24 TC 342 Z9 344 U1 6 U2 50 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD APR 10 PY 2009 VL 102 IS 14 AR 146805 DI 10.1103/PhysRevLett.102.146805 PG 4 WC Physics, Multidisciplinary SC Physics GA 431SA UT WOS:000265082500055 PM 19392469 ER PT J AU Im, MY Bocklage, L Fischer, P Meier, G AF Im, Mi-Young Bocklage, Lars Fischer, Peter Meier, Guido TI Direct Observation of Stochastic Domain-Wall Depinning in Magnetic Nanowires SO PHYSICAL REVIEW LETTERS LA English DT Article ID X-RAY MICROSCOPY; FERROMAGNETIC WIRES; SHIFT REGISTER AB The stochastic field-driven depinning of a domain wall pinned at a notch in a magnetic nanowire is directly observed using magnetic x-ray microscopy with high lateral resolution down to 15 nm. The depinning-field distribution in Ni(80)Fe(20) nanowires considerably depends on the wire width and the notch depth. The difference in the multiplicity of domain-wall types generated in the vicinity of a notch is responsible for the observed dependence of the stochastic nature of the domain-wall depinning field on the wire width and the notch depth. Thus the random nature of the domain-wall depinning process is controllable by an appropriate design of the nanowire. C1 [Im, Mi-Young; Fischer, Peter] Univ Calif Berkeley, Lawrence Berkeley Lab, Ctr Xray Opt, Berkeley, CA 94720 USA. [Bocklage, Lars; Meier, Guido] Univ Hamburg, Inst Angew Phys, D-20355 Hamburg, Germany. [Bocklage, Lars; Meier, Guido] Univ Hamburg, Zentrum Mikrostrukturforsch, D-20355 Hamburg, Germany. RP Im, MY (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Ctr Xray Opt, Berkeley, CA 94720 USA. RI MSD, Nanomag/F-6438-2012; Fischer, Peter/A-3020-2010; OI Fischer, Peter/0000-0002-9824-9343; Bocklage, Lars/0000-0001-9769-4173 FU U. S. Department of Energy [DE-AC02-05CH11231]; Deutsche Forschungsgemeinschaft FX This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U. S. Department of Energy under Contract No. DE-AC02-05CH11231. Financial support of the Deutsche Forschungsgemeinschaft via SFB 668 "Magnetism from the Single Atom to the Nanostructure'' and via Graduiertenkolleg 1286 "Functional Metal-Semiconductor Hybrid Systems'' is gratefully acknowledged. NR 25 TC 91 Z9 91 U1 7 U2 29 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD APR 10 PY 2009 VL 102 IS 14 AR 147204 DI 10.1103/PhysRevLett.102.147204 PG 4 WC Physics, Multidisciplinary SC Physics GA 431SA UT WOS:000265082500065 PM 19392479 ER PT J AU Kurita, N Ronning, F Tokiwa, Y Bauer, ED Subedi, A Singh, DJ Thompson, JD Movshovich, R AF Kurita, N. Ronning, F. Tokiwa, Y. Bauer, E. D. Subedi, A. Singh, D. J. Thompson, J. D. Movshovich, R. TI Low-Temperature Magnetothermal Transport Investigation of a Ni-Based Superconductor BaNi2As2: Evidence for Fully Gapped Superconductivity SO PHYSICAL REVIEW LETTERS LA English DT Article ID LAYERED CRYSTAL-STRUCTURE; THERMAL-CONDUCTIVITY; SPIN; FIELD; GAPS AB We have performed low-temperature specific heat and thermal conductivity measurements of the Ni-based superconductor BaNi2As2 (T-c=0.7 K) in a magnetic field. In a zero field, thermal conductivity shows T-linear behavior in the normal state and exhibits a BCS-like exponential decrease below T-c. The field dependence of the residual thermal conductivity extrapolated to zero temperature is indicative of a fully gapped superconductor. This conclusion is supported by the analysis of the specific heat data, which are well fit by the BCS temperature dependence from T-c down to the lowest temperature of 0.1 K. C1 [Kurita, N.; Ronning, F.; Tokiwa, Y.; Bauer, E. D.; Thompson, J. D.; Movshovich, R.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Subedi, A.; Singh, D. J.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Subedi, A.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. RP Kurita, N (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. RI Bauer, Eric/D-7212-2011; Singh, David/I-2416-2012; Tokiwa, Yoshifumi/P-6593-2015; OI Tokiwa, Yoshifumi/0000-0002-6294-7879; Ronning, Filip/0000-0002-2679-7957; Bauer, Eric/0000-0003-0017-1937 FU U. S. Department of Energy; DOE, Division of Materials Sciences and Engineering FX We thank I. Vekhter, M. Graf, S.- H. Baek, and H. Sakai for useful discussions. Work at Los Alamos National Laboratory was performed under the auspices of the U. S. Department of Energy. Work at Oak Ridge was supported by the DOE, Division of Materials Sciences and Engineering. NR 34 TC 34 Z9 34 U1 1 U2 24 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD APR 10 PY 2009 VL 102 IS 14 AR 147004 DI 10.1103/PhysRevLett.102.147004 PG 4 WC Physics, Multidisciplinary SC Physics GA 431SA UT WOS:000265082500061 PM 19392475 ER PT J AU Macek, JH Sternberg, JB Ovchinnikov, SY Lee, TG Schultz, DR AF Macek, J. H. Sternberg, J. B. Ovchinnikov, S. Y. Lee, Teck-Ghee Schultz, D. R. TI Origin, Evolution, and Imaging of Vortices in Atomic Processes SO PHYSICAL REVIEW LETTERS LA English DT Article ID COLLISIONS; ION; ORIENTATION; EXCITATION; ALIGNMENT AB Vortices are usually associated with systems containing large numbers of particles. Of particular topical interest though are those formed within atomic-scale wave functions and observed in macroscopic systems such as superfluids and quantum condensates. We uncover them here in one of the most fundamental quantum systems consisting of just one electron and two protons. Moreover, the results of novel simulations of the dynamics of this system reveal previously unknown mechanisms of angular momentum transfer and new ways to image atomic-scale quantized vortices at macroscopic distances. Probing of vortices and vortex-driven dynamics in quantum systems is thereby illustrated. C1 [Macek, J. H.; Sternberg, J. B.; Ovchinnikov, S. Y.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Macek, J. H.; Lee, Teck-Ghee; Schultz, D. R.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. [Ovchinnikov, S. Y.] AF Ioffe Phys Tech Inst, St Petersburg 194021, Russia. RP Macek, JH (reprint author), Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. RI Lee, Teck Ghee/D-5037-2012; Ovchinnikov, Serguei/C-4994-2014 OI Lee, Teck Ghee/0000-0001-9472-3194; FU Office of Basic Energy Sciences; U.S. Department of Energy; University of Tennessee [DE-FG02-02ER15283]; Oak Ridge National Laboratory; UT-Battelle, LLC [DE-AC05-00OR22725] FX This research is sponsored by the Office of Basic Energy Sciences, U.S. Department of Energy, through grants to the University of Tennessee (DE-FG02-02ER15283) and the Oak Ridge National Laboratory which is managed by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725. NR 17 TC 23 Z9 23 U1 0 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD APR 10 PY 2009 VL 102 IS 14 AR 143201 DI 10.1103/PhysRevLett.102.143201 PG 4 WC Physics, Multidisciplinary SC Physics GA 431SA UT WOS:000265082500022 PM 19392436 ER PT J AU Nishino, H Clark, S Abe, K Hayato, Y Iida, T Ikeda, M Kameda, J Kobayashi, K Koshio, Y Miura, M Moriyama, S Nakahata, M Nakayama, S Obayashi, Y Ogawa, H Sekiya, H Shiozawa, M Suzuki, Y Takeda, A Takenaga, Y Takeuchi, Y Ueno, K Ueshima, K Watanabe, H Yamada, S Hazama, S Higuchi, I Ishihara, C Kajita, T Kaneyuki, K Mitsuka, G Okumura, K Tanimoto, N Vagins, MR Dufour, F Kearns, E Litos, M Raaf, JL Stone, JL Sulak, LR Wang, W Goldhaber, M Dazeley, S Svoboda, R Bays, K Casper, D Cravens, JP Kropp, WR Mine, S Regis, C Smy, MB Sobel, HW Ganezer, KS Hill, J Keig, WE Jang, JS Kim, JY Lim, IT Fechner, M Scholberg, K Walter, CW Wendell, R Tasaka, S Learned, JG Matsuno, S Watanabe, Y Hasegawa, T Ishida, T Ishii, T Kobayashi, T Nakadaira, T Nakamura, K Nishikawa, K Oyama, Y Sakashita, K Sekiguchi, T Tsukamoto, T Suzuki, AT Minamino, A Nakaya, T Yokoyama, M Fukuda, Y Itow, Y Tanaka, T Jung, CK Lopez, G McGrew, C Terri, R Yanagisawa, C Tamura, N Idehara, Y Sakuda, M Kuno, Y Yoshida, M Kim, SB Yang, BS Ishizuka, T Okazawa, H Choi, Y Seo, HK Furuse, Y Nishijima, K Yokosawa, Y Koshiba, M Totsuka, Y Chen, S Heng, Y Yang, Z Zhang, H Kielczewska, D Thrane, E Wilkes, RJ AF Nishino, H. Clark, S. Abe, K. Hayato, Y. Iida, T. Ikeda, M. Kameda, J. Kobayashi, K. Koshio, Y. Miura, M. Moriyama, S. Nakahata, M. Nakayama, S. Obayashi, Y. Ogawa, H. Sekiya, H. Shiozawa, M. Suzuki, Y. Takeda, A. Takenaga, Y. Takeuchi, Y. Ueno, K. Ueshima, K. Watanabe, H. Yamada, S. Hazama, S. Higuchi, I. Ishihara, C. Kajita, T. Kaneyuki, K. Mitsuka, G. Okumura, K. Tanimoto, N. Vagins, M. R. Dufour, F. Kearns, E. Litos, M. Raaf, J. L. Stone, J. L. Sulak, L. R. Wang, W. Goldhaber, M. Dazeley, S. Svoboda, R. Bays, K. Casper, D. Cravens, J. P. Kropp, W. R. Mine, S. Regis, C. Smy, M. B. Sobel, H. W. Ganezer, K. S. Hill, J. Keig, W. E. Jang, J. S. Kim, J. Y. Lim, I. T. Fechner, M. Scholberg, K. Walter, C. W. Wendell, R. Tasaka, S. Learned, J. G. Matsuno, S. Watanabe, Y. Hasegawa, T. Ishida, T. Ishii, T. Kobayashi, T. Nakadaira, T. Nakamura, K. Nishikawa, K. Oyama, Y. Sakashita, K. Sekiguchi, T. Tsukamoto, T. Suzuki, A. T. Minamino, A. Nakaya, T. Yokoyama, M. Fukuda, Y. Itow, Y. Tanaka, T. Jung, C. K. Lopez, G. McGrew, C. Terri, R. Yanagisawa, C. Tamura, N. Idehara, Y. Sakuda, M. Kuno, Y. Yoshida, M. Kim, S. B. Yang, B. S. Ishizuka, T. Okazawa, H. Choi, Y. Seo, H. K. Furuse, Y. Nishijima, K. Yokosawa, Y. Koshiba, M. Totsuka, Y. Chen, S. Heng, Y. Yang, Z. Zhang, H. Kielczewska, D. Thrane, E. Wilkes, R. J. CA Super Kamiokande Collaboration TI Search for Proton Decay via p -> e(+)pi(0) and p ->mu(+)pi(0) in a Large Water Cherenkov Detector SO PHYSICAL REVIEW LETTERS LA English DT Article ID SIMULATION; LIFETIME; PHYSICS; NUCLEI; SO(10) AB We have searched for proton decays via p -> e(+)pi(0) and p ->mu(+)pi(0) using data from a 91.7 kt center dot yr exposure of Super-Kamiokande-I and a 49.2 kt center dot yr exposure of Super-Kamiokande-II. No candidate events were observed with expected backgrounds induced by atmospheric neutrinos of 0.3 events for each decay mode. From these results, we set lower limits on the partial lifetime of 8.2x10(33) and 6.6x10(33) years at 90% confidence level for p -> e(+)pi(0) and p ->mu(+)pi(0) modes, respectively. C1 [Nishino, H.; Hazama, S.; Higuchi, I.; Ishihara, C.; Kajita, T.; Kaneyuki, K.; Mitsuka, G.; Okumura, K.; Tanimoto, N.] Univ Tokyo, Res Ctr Cosm Neutrinos, Inst Cosm Ray Res, Chiba 2778582, Japan. [Abe, K.; Hayato, Y.; Iida, T.; Ikeda, M.; Kameda, J.; Kobayashi, K.; Koshio, Y.; Miura, M.; Moriyama, S.; Nakahata, M.; Nakayama, S.; Obayashi, Y.; Ogawa, H.; Sekiya, H.; Shiozawa, M.; Suzuki, Y.; Takeda, A.; Takenaga, Y.; Takeuchi, Y.; Ueno, K.; Ueshima, K.; Watanabe, H.; Yamada, S.] Univ Tokyo, Inst Cosm Ray Res, Kamioka Observ, Gifu 5061205, Japan. [Hayato, Y.; Moriyama, S.; Nakahata, M.; Shiozawa, M.; Suzuki, Y.; Takeuchi, Y.; Kajita, T.; Kaneyuki, K.; Vagins, M. R.; Kearns, E.; Stone, J. L.; Smy, M. B.; Sobel, H. W.; Scholberg, K.; Walter, C. W.; Nakamura, K.; Nakaya, T.] Univ Tokyo, Inst Phys & Math Universe, Chiba 2778582, Japan. [Clark, S.; Dufour, F.; Kearns, E.; Litos, M.; Raaf, J. L.; Stone, J. L.; Sulak, L. R.; Wang, W.] Boston Univ, Dept Phys, Boston, MA 02215 USA. [Goldhaber, M.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Dazeley, S.; Svoboda, R.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Vagins, M. R.; Bays, K.; Casper, D.; Cravens, J. P.; Kropp, W. R.; Mine, S.; Regis, C.; Smy, M. B.; Sobel, H. W.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Ganezer, K. S.; Hill, J.; Keig, W. E.] Calif State Univ Dominguez Hills, Dept Phys, Carson, CA 90747 USA. [Jang, J. S.; Kim, J. Y.; Lim, I. T.] Chonnam Natl Univ, Dept Phys, Kwangju 500757, South Korea. [Fechner, M.; Scholberg, K.; Walter, C. W.; Wendell, R.] Duke Univ, Dept Phys, Durham, NC 27708 USA. [Tasaka, S.] Gifu Univ, Dept Phys, Gifu 5011193, Japan. [Learned, J. G.; Matsuno, S.] Univ Hawaii, Dept Phys & Astron, Honolulu, HI 96822 USA. [Watanabe, Y.] Kanagawa Univ, Dept Engn, Div Phys, Yokohama, Kanagawa 2218686, Japan. [Hasegawa, T.; Ishida, T.; Ishii, T.; Kobayashi, T.; Nakadaira, T.; Nakamura, K.; Nishikawa, K.; Oyama, Y.; Sakashita, K.; Sekiguchi, T.; Tsukamoto, T.] KEK, High Energy Accelerator Res Org, Tsukuba, Ibaraki 3050801, Japan. [Suzuki, A. T.] Kobe Univ, Dept Phys, Kobe, Hyogo 6578501, Japan. [Minamino, A.; Nakaya, T.; Yokoyama, M.] Kyoto Univ, Dept Phys, Kyoto 6068502, Japan. [Fukuda, Y.] Miyagi Univ Educ, Dept Phys, Sendai, Miyagi 9800845, Japan. [Itow, Y.; Tanaka, T.] Nagoya Univ, Solar Terr Environm Lab, Aichi 4648602, Japan. [Jung, C. K.; Lopez, G.; McGrew, C.; Terri, R.; Yanagisawa, C.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Tamura, N.] Niigata Univ, Dept Phys, Niigata 9502181, Japan. [Idehara, Y.; Sakuda, M.] Okayama Univ, Dept Phys, Okayama 7008530, Japan. [Kuno, Y.; Yoshida, M.] Osaka Univ, Dept Phys, Osaka 5600043, Japan. [Kim, S. B.; Yang, B. S.] Seoul Natl Univ, Dept Phys, Seoul 151742, South Korea. [Ishizuka, T.] Shizuoka Univ, Dept Syst Engn, Shizuoka 4328561, Japan. [Okazawa, H.] Shizuoka Univ Welf, Dept Informat Social Welf, Shizuoka 4258611, Japan. [Choi, Y.; Seo, H. K.] Sungkyunkwan Univ, Dept Phys, Suwon 440746, South Korea. [Furuse, Y.; Nishijima, K.; Yokosawa, Y.] Tokai Univ, Dept Phys, Kanagawa 2591292, Japan. [Koshiba, M.; Totsuka, Y.] Univ Tokyo, Tokyo 1130033, Japan. [Chen, S.; Heng, Y.; Yang, Z.; Zhang, H.] Tsinghua Univ, Dept Engn Phys, Beijing 100084, Peoples R China. [Kielczewska, D.] Univ Warsaw, Inst Expt Phys, PL-00681 Warsaw, Poland. [Thrane, E.; Wilkes, R. J.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. RP Nishino, H (reprint author), Univ Tokyo, Res Ctr Cosm Neutrinos, Inst Cosm Ray Res, Chiba 2778582, Japan. RI Yokoyama, Masashi/A-4458-2011; Nakamura, Kenzo/F-7174-2010; Sobel, Henry/A-4369-2011; Obayashi, Yoshihisa/A-4472-2011; Suzuki, Yoichiro/F-7542-2010; Takeuchi, Yasuo/A-4310-2011; Wilkes, R.Jeffrey/E-6011-2013; Kim, Soo-Bong/B-7061-2014; Koshio, Yusuke/C-2847-2015; OI Yokoyama, Masashi/0000-0003-2742-0251; Koshio, Yusuke/0000-0003-0437-8505; Raaf, Jennifer/0000-0002-4533-929X FU Japanese Ministry of Education, Science, Sports and Culture; United States Department of Energy FX We gratefully acknowledge the cooperation of the Kamioka Mining and Smelting Company. The Super-Kamiokande experiment was built and has been operated with funding from the Japanese Ministry of Education, Science, Sports and Culture, and the United States Department of Energy. NR 23 TC 78 Z9 79 U1 1 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD APR 10 PY 2009 VL 102 IS 14 AR 141801 DI 10.1103/PhysRevLett.102.141801 PG 5 WC Physics, Multidisciplinary SC Physics GA 431SA UT WOS:000265082500011 PM 19392425 ER PT J AU Noffsinger, J Louie, SG Cohen, ML Giustino, F AF Noffsinger, Jesse Louie, Steven G. Cohen, Marvin L. Giustino, Feliciano TI Role of Fluorine in the Iron Pnictides: Phonon Softening and Effective Hole Doping SO PHYSICAL REVIEW LETTERS LA English DT Article ID ELECTRON; FORMALISM AB Using a first-principles approach, we investigate the influence of fluorine doping on the electronic structure, lattice dynamics, and electron-phonon coupling in LaFeAsO. In order to explore properties which are not described by the virtual crystal approximation, we explicitly simulate the F doping using a supercell model. Our analysis reveals that the relaxation of the crystal lattice around the dopant modifies the lattice dynamics in agreement with recent experimental data. In addition, we find that the doped electronic charge does not localize on the two-dimensional Fe plane. The net charge variation in this plane upon doping corresponds instead to a slight hole doping. C1 [Noffsinger, Jesse; Louie, Steven G.; Cohen, Marvin L.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Noffsinger, Jesse; Louie, Steven G.; Cohen, Marvin L.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Giustino, Feliciano] Univ Oxford, Dept Mat, Oxford OX1 3PH, England. RP Noffsinger, J (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. RI Giustino, Feliciano/F-6343-2013; OI Giustino, Feliciano/0000-0001-9293-1176 FU National Science Foundation [DMR07-05941]; Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering Division, U. S. Department of Energy [DE-AC02-05CH11231]; SDSC; NPACI FX The authors are grateful to Brad Malone for helpful discussions. This work was supported by National Science Foundation Grant No. DMR07-05941 and by the Director, Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering Division, U. S. Department of Energy under Contract No. DE-AC02-05CH11231. Computational resources have been provided by SDSC and NPACI. Calculations were performed using the QUANTUM-ESPRESSO [ 17] package and Figs. 1 and 3 were rendered using XCRYSDEN [ 18]. NR 17 TC 17 Z9 17 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD APR 10 PY 2009 VL 102 IS 14 AR 147003 DI 10.1103/PhysRevLett.102.147003 PG 4 WC Physics, Multidisciplinary SC Physics GA 431SA UT WOS:000265082500060 PM 19392474 ER PT J AU Winger, JA Ilyushkin, SV Rykaczewski, KP Gross, CJ Batchelder, JC Goodin, C Grzywacz, R Hamilton, JH Korgul, A Krolas, W Liddick, SN Mazzocchi, C Padgett, S Piechaczek, A Rajabali, MM Shapira, D Zganjar, EF Borzov, IN AF Winger, J. A. Ilyushkin, S. V. Rykaczewski, K. P. Gross, C. J. Batchelder, J. C. Goodin, C. Grzywacz, R. Hamilton, J. H. Korgul, A. Krolas, W. Liddick, S. N. Mazzocchi, C. Padgett, S. Piechaczek, A. Rajabali, M. M. Shapira, D. Zganjar, E. F. Borzov, I. N. TI Large beta-Delayed Neutron Emission Probabilities in the Ni-78 Region SO PHYSICAL REVIEW LETTERS LA English DT Article ID DECAY PROPERTIES; HALF-LIVES; RICH ZN; NUCLEAR; SPECTROSCOPY; ISOTOPES AB The beta-delayed neutron branching ratios (P-beta n) for nuclei near doubly magic Ni-78 have been directly measured using a new method combining high-resolution mass separation, reacceleration, and digital beta-gamma spectroscopy of U-238 fission products. The P-beta n values for the very neutron-rich isotopes Cu76-78 and Ga-83 were found to be much higher than previously reported and predicted. Revised calculations of the beta n process, accounting for new mass measurements and an inversion of the pi 2p(3/2) and pi 1f(5/2) orbitals, are in better agreement with these new experimental results. C1 [Winger, J. A.; Ilyushkin, S. V.] Mississippi State Univ, Dept Phys & Astron, Mississippi State, MS 39762 USA. [Rykaczewski, K. P.; Gross, C. J.; Grzywacz, R.; Shapira, D.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. [Batchelder, J. C.; Liddick, S. N.] Oak Ridge Associated Univ, UNIRIB, Oak Ridge, TN 37831 USA. [Goodin, C.; Hamilton, J. H.; Korgul, A.] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA. [Grzywacz, R.; Korgul, A.; Liddick, S. N.; Mazzocchi, C.; Padgett, S.; Rajabali, M. M.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Korgul, A.] Univ Warsaw, Inst Expt Phys, PL-00681 Warsaw, Poland. [Korgul, A.; Krolas, W.] Joint Inst Heavy Ion React, Oak Ridge, TN 37831 USA. [Krolas, W.] Polish Acad Sci, Inst Nucl Phys, PL-31342 Krakow, Poland. [Mazzocchi, C.] Univ Milan, IFGA, I-20133 Milan, Italy. [Mazzocchi, C.] Ist Nazl Fis Nucl, I-20133 Milan, Italy. [Piechaczek, A.; Zganjar, E. F.] Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA. [Borzov, I. N.] GSI Darmstadt, D-64291 Darmstadt, Germany. RP Winger, JA (reprint author), Mississippi State Univ, Dept Phys & Astron, Mississippi State, MS 39762 USA. EM j.a.winger@msstate.edu RI Krolas, Wojciech/N-9391-2013 FU U.S. DOE [DE-FG02-96ER41006, DE-AC05-00OR22725, DE-FG02-96ER40983, DE-AC05-06OR23100, DE-FG02-96ER40978, DE-FG0588ER40407]; NNSA [DEFC0303NA00143]; Foundation for Polish Science; [DFG-436RUS113907/0-1] FX The authors gratefully acknowledge the work done by HRIBF staff in producing such high quality radioactive ion beams. This work was supported under U.S. DOE Grants No. DE-FG02-96ER41006, No. DE-AC05-00OR22725, No. DE-FG02-96ER40983, No. DE-AC05-06OR23100, No. DE-FG02-96ER40978, and No. DE-FG0588ER40407, through NNSA Grant No. DEFC0303NA00143, through the Foundation for Polish Science, and through the DFG-436RUS113907/0-1 grant. NR 23 TC 36 Z9 36 U1 0 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD APR 10 PY 2009 VL 102 IS 14 AR 142502 DI 10.1103/PhysRevLett.102.142502 PG 4 WC Physics, Multidisciplinary SC Physics GA 431SA UT WOS:000265082500017 PM 19392431 ER PT J AU Yuan, CW Yi, DO Sharp, ID Shin, SJ Liao, CY Guzman, J Ager, JW Haller, EE Chrzan, DC AF Yuan, C. W. Yi, D. O. Sharp, I. D. Shin, S. J. Liao, C. Y. Guzman, J. Ager, J. W., III Haller, E. E. Chrzan, D. C. TI Theory of Nanocluster Size Distributions from Ion Beam Synthesis SO PHYSICAL REVIEW LETTERS LA English DT Article ID ENHANCED DIFFUSION; SURFACE-DIFFUSION; ISLAND GROWTH; HOMOEPITAXY AB Ion beam synthesis of nanoclusters is studied via both kinetic Monte Carlo simulations and the self-consistent mean-field solution to a set of coupled rate equations. Both approaches predict the existence of a steady-state shape for the cluster-size distribution that depends only on a characteristic length determined by the effective diffusion coefficient, the ion solubility, and the volumetric ion flux. The average cluster size in the steady-state regime is determined by the implanted species or matrix interface energy. C1 [Yuan, C. W.; Yi, D. O.; Shin, S. J.; Liao, C. Y.; Guzman, J.; Haller, E. E.; Chrzan, D. C.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Yuan, C. W.; Yi, D. O.; Shin, S. J.; Liao, C. Y.; Guzman, J.; Ager, J. W., III; Haller, E. E.; Chrzan, D. C.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Sharp, I. D.] Tech Univ Munich, Walter Schottky Inst, D-85748 Garching, Germany. RP Yuan, CW (reprint author), Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. RI Sharp, Ian/I-6163-2015; OI Sharp, Ian/0000-0001-5238-7487; Ager, Joel/0000-0001-9334-9751 FU U. S. Department of Energy [DE-AC02-05CH11231] FX This research is supported by the Directorate, Office of Science, Office of Basic Energy Sciences of the U. S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 26 TC 14 Z9 14 U1 0 U2 12 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD APR 10 PY 2009 VL 102 IS 14 AR 146101 DI 10.1103/PhysRevLett.102.146101 PG 4 WC Physics, Multidisciplinary SC Physics GA 431SA UT WOS:000265082500042 PM 19392456 ER EF