FN Thomson Reuters Web of Science™ VR 1.0 PT J AU Parish, CM Brennecka, GL Tuttle, BA Brewer, LN AF Parish, Chad M. Brennecka, Geoff L. Tuttle, Bruce A. Brewer, Luke N. TI Quantitative X-Ray Spectrum Imaging of Lead Lanthanum Zirconate Titanate PLZT Thin-Films SO JOURNAL OF THE AMERICAN CERAMIC SOCIETY LA English DT Article ID ANALYTICAL ELECTRON-MICROSCOPE; SOL-GEL PROCESS; SPATIAL-RESOLUTION; XPS ANALYSIS; CRYSTALLIZATION; PHASE; CERAMICS; SURFACE; STEM; NONSTOICHIOMETRY AB The high permittivity of Pb(Zr,Ti)O(3) and (Pb,La)(Zr,Ti)O(3)-PZT and PLZT, respectively-thin films and the flexibility of chemical solution deposition (CSD) make solution-derived P(L)ZT thin films extremely attractive for integrated capacitor applications. However, Pb-loss or cation segregation during processing results in degraded properties of the final film. Here, we have extended the use of multivariate statistical analysis (MSA) of energy-dispersive spectroscopy (EDS) spectrum images (SIs) in scanning transmission electron microscopy (STEM) to allow the two-dimensional (2D) quantitative analysis of cation segregation and depletion in P(L)ZT thin films. Quantified STEM-EDS SIs allow high-resolution (< approximate to 10 nm) quantification of these cation distributions. Surface Pb depletion is found after crystallization and is replenished by a unique post-crystallization PbO overcoat+anneal processes. Zr/Ti and La segregation are found to develop in a decidedly nonplanar fashion during crystallization, especially in PLZT 12/70/30 material, highlighting the need for 2D analysis. Quantitative 2D chemical information is essential for improved processing of homogeneous P(L)ZT films with optimal electrical properties. C1 [Parish, Chad M.; Brennecka, Geoff L.; Tuttle, Bruce A.; Brewer, Luke N.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Parish, CM (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM cmparish@sandia.gov RI Parish, Chad/J-8381-2013; Brennecka, Geoff/J-9367-2012 OI Brennecka, Geoff/0000-0002-4476-7655 FU United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX Sandia is a multiprogram laboratory operated by Sandia Corporation, a LockheedMartin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. Thanks to P. Kotula, J. Michael, and M. Keenan for advice and discussions. NR 59 TC 25 Z9 25 U1 0 U2 25 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0002-7820 J9 J AM CERAM SOC JI J. Am. Ceram. Soc. PD NOV PY 2008 VL 91 IS 11 BP 3690 EP 3697 DI 10.1111/j.1551-2916.2008.02708.x PG 8 WC Materials Science, Ceramics SC Materials Science GA 374SI UT WOS:000261063600034 ER PT J AU Cho, CM Noh, JH Cho, IS An, JS Hong, KS Kim, JY AF Cho, Chin Moo Noh, Jun Hong Cho, In-Sun An, Jae-Sul Hong, Kug Sun Kim, Jin Young TI Low-Temperature Hydrothermal Synthesis of Pure BiFeO3 Nanopowders Using Triethanolamine and Their Applications as Visible-Light Photocatalysts SO JOURNAL OF THE AMERICAN CERAMIC SOCIETY LA English DT Article ID BISMUTH FERRITE; OXIDES AB BiFeO3 (BFO) nanopowders were synthesized at low temperatures via a hydrothermal process with the aid of triethanolamine (TEA) and their structural, optical, and photocatalytic properties were investigated. As a result of a strong reaction between TEA and Fe ions, pure BFO nanopowders without any secondary phases could be synthesized at temperatures as low as 130 degrees C. BFO nanopowders exhibited a strong absorption in the visible-light regime, which resulted in the efficient photocatalytic activity for decomposition of organic compounds. C1 [Cho, Chin Moo; Noh, Jun Hong; Cho, In-Sun; An, Jae-Sul; Hong, Kug Sun] Seoul Natl Univ, Dept Mat Sci & Engn, Seoul 151744, South Korea. [Kim, Jin Young] Chem & Biosci Ctr, Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Hong, KS (reprint author), Seoul Natl Univ, Dept Mat Sci & Engn, Seoul 151744, South Korea. EM kshongss@plaza.snu.ac.kr RI Kim, Jin Young/B-7077-2012; Dom, Rekha/B-7113-2012; Cho, In Sun/H-6557-2011; OI Kim, Jin Young/0000-0001-7728-3182; Cho, In Sun/0000-0001-5622-7712 FU Korea Science and Engineering Foundation (KOSEF) [R01-2007-000-11075-0] FX This work was supported by a Korea Science and Engineering Foundation (KOSEF) grant funded by the Korean government (MOST) (RIAM) (R01-2007-000-11075-0). NR 19 TC 66 Z9 70 U1 2 U2 44 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0002-7820 EI 1551-2916 J9 J AM CERAM SOC JI J. Am. Ceram. Soc. PD NOV PY 2008 VL 91 IS 11 BP 3753 EP 3755 DI 10.1111/j.1551-2916.2008.02689.x PG 3 WC Materials Science, Ceramics SC Materials Science GA 374SI UT WOS:000261063600046 ER PT J AU Yang, Y Marshak, A Chiu, JC Wiscombe, WJ Palm, SP Davis, AB Spangenberg, DA Nguyen, L Spinhirne, JD Minnis, P AF Yang, Yuekui Marshak, Alexander Chiu, J. Christine Wiscombe, Warren J. Palm, Stephen P. Davis, Anthony B. Spangenberg, Douglas A. Nguyen, Louis Spinhirne, James D. Minnis, Patrick TI Retrievals of Thick Cloud Optical Depth from the Geoscience Laser Altimeter System (GLAS) by Calibration of Solar Background Signal SO JOURNAL OF THE ATMOSPHERIC SCIENCES LA English DT Article ID SATELLITE; INSTRUMENT AB Laser beams emitted from the Geoscience Laser Altimeter System (GLAS), as well as other spaceborne laser instruments, can only penetrate clouds to a limit of a few optical depths. As a result, only optical depths of thinner clouds (< about 3 for GLAS) are retrieved from the reflected lidar signal. This paper presents a comprehensive study of possible retrievals of optical depth of thick clouds using solar background light and treating GLAS as a solar radiometer. To do so one must first calibrate the reflected solar radiation received by the photon-counting detectors of the GLAS 532-nm channel, the primary channel for atmospheric products. Solar background radiation is regarded as a noise to be subtracted in the retrieval process of the lidar products. However, once calibrated, it becomes a signal that can be used in studying the properties of optically thick clouds. In this paper, three calibration methods are presented: (i) calibration with coincident airborne and GLAS observations, (ii) calibration with coincident Geostationary Operational Environmental Satellite (GOES) and GLAS observations of deep convective clouds, and (iii) calibration from first principles using optical depth of thin water clouds over ocean retrieved by GLAS active remote sensing. Results from the three methods agree well with each other. Cloud optical depth (COD) is retrieved from the calibrated solar background signal using a one-channel retrieval. Comparison with COD retrieved from GOES during GLAS overpasses shows that the average difference between the two retrievals is 24%. As an example, the COD values retrieved from GLAS solar background are illustrated for a marine stratocumulus cloud field that is too thick to be penetrated by the GLAS laser. Based on this study, optical depths for thick clouds will be provided as a supplementary product to the existing operational GLAS cloud products in future GLAS data releases. C1 [Yang, Yuekui] Univ Maryland, Goddard Earth Sci & Technol Ctr, Baltimore, MD 21201 USA. [Chiu, J. Christine] Univ Maryland, Joint Ctr Earth Syst Technol, Baltimore, MD 21201 USA. [Palm, Stephen P.; Spangenberg, Douglas A.] Sci Syst & Applicat Inc, Lanham, MD USA. [Davis, Anthony B.] Los Alamos Natl Lab, Los Alamos, NM USA. [Nguyen, Louis; Minnis, Patrick] NASA, Langley Res Ctr, Hampton, VA USA. RP Yang, Y (reprint author), NASA, Goddard Space Flight Ctr, Code 613-2, Greenbelt, MD 20771 USA. EM yuekui@umbc.edu RI Minnis, Patrick/G-1902-2010; Wiscombe, Warren/D-4665-2012; Chiu, Christine/E-5649-2013; Marshak, Alexander/D-5671-2012; Yang, Yuekui/B-4326-2015 OI Minnis, Patrick/0000-0002-4733-6148; Wiscombe, Warren/0000-0001-6844-9849; Chiu, Christine/0000-0002-8951-6913; FU NASA's ICESat Science Project FX The authors thank Drs. Tamas Varnai, William Hart, David Doelling, and Kristine Barbieri for helpful discussions and advice. This work was supported by NASA's ICESat Science Project. NR 26 TC 10 Z9 10 U1 3 U2 6 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0022-4928 J9 J ATMOS SCI JI J. Atmos. Sci. PD NOV PY 2008 VL 65 IS 11 BP 3513 EP 3527 DI 10.1175/2008JAS2744.1 PG 15 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 374VZ UT WOS:000261073100009 ER PT J AU Arboleya, ML Babault, J Owen, LA Teixell, A Finkel, RC AF Arboleya, Maria-Luisa Babault, Julien Owen, Lewis A. Teixell, Antonio Finkel, Robert C. TI Timing and nature of Quaternary fluvial incision in the Ouarzazate foreland basin, Morocco SO JOURNAL OF THE GEOLOGICAL SOCIETY LA English DT Article ID HIGH ATLAS MOROCCO; IN-SITU BE-10; SOUTHEAST SPAIN; CLIMATE-CHANGE; HYDROLOGICAL CHANGES; NUCLIDE PRODUCTION; IBERIAN PENINSULA; NORTHWEST AFRICA; EROSION RATES; SIERRA-NEVADA AB The history of alluvial fan and terrace formation within a stretch of the Ouarzazate basin along the southern margin of the Central High Atlas is reconstructed using geomorphological and Be-10 terrestrial cosmogenic nuclide (TCN) methods. Alluvial fan and terrace incision was controlled partially by a drop in base level during the Pliocene or early Pleistocene as the outlet channel, the Draa river, progressively cut through the Anti-Atlas to the south of the Ouarzazate foreland basin, the drainage of which started to become external after a long period of internal drained conditions. The alluvial fans and terrace surfaces have abandonment ages that date to at least the past four glacial cycles. Their formation was strongly modulated by climate on glacial-interglacial time scales as base level dropped. This demonstrates a strong climatic control on sediment transfer in other intracontinental mountain belts. Furthermore, these data show that mean rates of fluvial incision in this region range between 0.3 and 1.0 mm a(-1) for the latter part of the Quaternary. This study provides the first comprehensive TCN chronology for the Atlas Mountains, and it illustrates the applicability and limitations of TCN methods. C1 [Arboleya, Maria-Luisa; Babault, Julien; Teixell, Antonio] Univ Autonoma Barcelona, Dept Geol, E-08193 Barcelona, Spain. [Owen, Lewis A.] Univ Cincinnati, Dept Geol, Cincinnati, OH 45221 USA. [Finkel, Robert C.] Lawrence Livermore Natl Lab, Ctr Accelerator Mass Spectrometry, Livermore, CA 92521 USA. RP Arboleya, ML (reprint author), Univ Autonoma Barcelona, Dept Geol, E-08193 Barcelona, Spain. EM MariaLuisa.Arboleya@uab.es RI babault, julien/L-9748-2014; OI babault, julien/0000-0002-9602-0975; Teixell, Antonio/0000-0002-7423-6361 FU Ministerio de Educacion y Ciencia (Spain) [CLG2005-25059 and CGL2006-07226]; Ministerio de Asuntos Exteriores AECI [A/2921/05]; CONSOLIDER-INGENIO [CDS2006-00041]; Lawrence Livermore National Laboratory [W-7405-ENG-48]; Salvador de Madariaga Program (MEC, Spain) FX We should like to thank J. Woodward, P. Hughes, D. Maddy and an anonymous reviewer for their very constructive and useful reviews of our manuscript. This work was supported by the Ministerio de Educacion y Ciencia (Spain) projects CLG2005-25059 and CGL2006-07226, the Ministerio de Asuntos Exteriores AECI grant A/2921/05 and the CONSOLIDER-INGENIO 2010 project CDS2006-00041 (TOPOIBERIA). The TCN AMS analytical work was undertaken at the Lawrence Livermore National Laboratory (under DOE contract W-7405-ENG-48). M.L.A. benefited from a grant from the Salvador de Madariaga Program (MEC, Spain) during her sabbatical leave at the University of Cincinnati. She also thanks C. Dietsch and E. Ward for their hospitality during her stay. We thank C. Dietsch for his comments on an early version of this manuscript. NR 83 TC 17 Z9 17 U1 1 U2 8 PU GEOLOGICAL SOC PUBL HOUSE PI BATH PA UNIT 7, BRASSMILL ENTERPRISE CENTRE, BRASSMILL LANE, BATH BA1 3JN, AVON, ENGLAND SN 0016-7649 EI 2041-479X J9 J GEOL SOC LONDON JI J. Geol. Soc. PD NOV PY 2008 VL 165 BP 1059 EP 1073 DI 10.1144/0016-76492007-151 PN 6 PG 15 WC Geosciences, Multidisciplinary SC Geology GA 377SP UT WOS:000261271200006 ER PT J AU Imai, T Ahilan, K Ning, FL McGuire, MA Sefat, AS Jin, RY Sales, BC Mandrus, D AF Imai, Takashi Ahilan, Kanagasingham Ning, Fanlong McGuire, Michael A. Sefat, Athena S. Jin, Ronying Sales, Brian C. Mandrus, David TI NMR measurements of intrinsic spin susceptibility in LaFeAsO0.9F0.1 SO JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN LA English DT Article DE iron pnictide superconductor; high temperature superconductivity; NMR AB We will probe the intrinsic behavior of spin susceptibility chi(spin) in the LaFeAsO1-xFx superconductor (x similar to 0.1, T-c similar to 27 K) using F-19 and As-75 NMR techniques. Our new results firmly establish a pseudo-gap behavior with Delta(PG)/k(B) similar to 140 K. The estimated magnitude of chi(spin) at 290 K, chi(spin) similar to 1.8 x 10(-4) emu/mol-Fe, is approximately twice larger than that in high T-c cuprates. We also show that chi(spin) levels off below similar to 50 K down to T-c. C1 [Imai, Takashi; Ahilan, Kanagasingham; Ning, Fanlong] McMaster Univ, Dept Phys & Astron, Hamilton, ON L8S 4M1, Canada. [Imai, Takashi] Canadian Inst Adv Res, Toronto, ON M5G 1Z8, Canada. [McGuire, Michael A.; Sefat, Athena S.; Jin, Ronying; Sales, Brian C.; Mandrus, David] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Imai, T (reprint author), McMaster Univ, Dept Phys & Astron, Hamilton, ON L8S 4M1, Canada. EM imai@mcmaster.ca RI Mandrus, David/H-3090-2014; Sefat, Athena/R-5457-2016 OI Sefat, Athena/0000-0002-5596-3504 FU NSERC; CFI; CIFAR; Division of Materials Science and Engineering, Office of Basic Sciences, Oak Ridge National Laboratory; U.S. Department of Energy [DE-AC-05-00OR22725] FX T.I. acknowledges financial support from NSERC, CFI and CIFAR. Research sponsored by the Division of Materials Science and Engineering, Office of Basic Sciences, Oak Ridge National Laboratory is managed by UT-Battelle, LLC, for the U.S. Department of Energy under contract No. DE-AC-05-00OR22725. A portion of this work was performed by Eugene P. Wigner Fellows at ORNL. NR 27 TC 16 Z9 16 U1 0 U2 1 PU PHYSICAL SOC JAPAN PI TOKYO PA YUSHIMA URBAN BUILDING 5F, 2-31-22 YUSHIMA, BUNKYO-KU, TOKYO, 113-0034, JAPAN SN 0031-9015 J9 J PHYS SOC JPN JI J. Phys. Soc. Jpn. PD NOV PY 2008 VL 77 SU C BP 47 EP 53 PG 7 WC Physics, Multidisciplinary SC Physics GA V29YO UT WOS:000208783900012 ER PT J AU Chu, CW Chaudhury, RP Chen, F Gooch, M Guloy, A Lorenz, B Lv, B Sasmal, K Tang, ZJ Wang, LM Xue, YY AF Chu, Ching-Wu Chaudhury, Rajit P. Chen, Feng Gooch, Melissa Guloy, Arnold Lorenz, Bernd Lv, Bing Sasmal, Kalyan Tang, Zhongjia Wang, Limin Xue, Yu-Yi TI Superconductivity in R(O,F)FeAs, AFe(2)As(2), (A,A')Fe2As2, AFeAs and LaNFeAs, where R = Rare Earth, A = Alkaline and A = Alkaline Earth SO JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN LA English DT Article AB This paper was based on the presentation delivered at the International Symposium on Fe-oxypnictide Superconductors held on June 29, 2008, in Tokyo. Preliminary results obtained before the Symposium on R(O,F)FeAs, AFe(2)As(2), (A,A')Fe2As2, AFeAs and LaNFeAs, where R = rare earth, A = alkaline and A' = alkaline earth are presented and discussed. The motivations for various experiments and the implications of the observations are also provided. C1 [Chaudhury, Rajit P.; Chen, Feng; Gooch, Melissa; Lorenz, Bernd; Sasmal, Kalyan; Xue, Yu-Yi] Univ Houston, Dept Phys, Houston, TX 77204 USA. [Chaudhury, Rajit P.; Chen, Feng; Gooch, Melissa; Guloy, Arnold; Lorenz, Bernd; Lv, Bing; Sasmal, Kalyan; Tang, Zhongjia; Wang, Limin; Xue, Yu-Yi] Univ Houston, Texas Ctr Superconduct, Houston, TX 77204 USA. [Chu, Ching-Wu] Hong Kong Univ Sci & Technol, Kowloon, Hong Kong, Peoples R China. [Chu, Ching-Wu] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Guloy, Arnold; Lv, Bing; Tang, Zhongjia; Wang, Limin] Univ Houston, Dept Chem, Houston, TX 77204 USA. RP Chu, CW (reprint author), Hong Kong Univ Sci & Technol, Kowloon, Hong Kong, Peoples R China. EM cwchu@uh.edu FU T. L. L. Temple Foundation; John J. and Rebecca Moores Endowment; State of Texas through the Texas Center for Superconductivity; U.S. Office of Scientific Research; U.S. Department of Energy; National Science Foundation FX This work is supported in part by the T. L. L. Temple Foundation, the John J. and Rebecca Moores Endowment, the State of Texas through the Texas Center for Superconductivity, the U.S. Office of Scientific Research and the U.S. Department of Energy. A. M. G. and B. L. acknowledge support from the National Science Foundation. The supply of the first few samples of electron-doped Sm1111 in the early stage of study by Professor X. H. Chen is greatly appreciated. NR 21 TC 5 Z9 5 U1 0 U2 5 PU PHYSICAL SOC JAPAN PI TOKYO PA YUSHIMA URBAN BUILDING 5F, 2-31-22 YUSHIMA, BUNKYO-KU, TOKYO, 113-0034, JAPAN SN 0031-9015 J9 J PHYS SOC JPN JI J. Phys. Soc. Jpn. PD NOV PY 2008 VL 77 SU C BP 72 EP 77 PG 6 WC Physics, Multidisciplinary SC Physics GA V29YO UT WOS:000208783900018 ER PT J AU Hwang, DJ Misra, N Grigoropoulos, CP Minor, AM Mao, SS AF Hwang, David J. Misra, Nipun Grigoropoulos, Costas P. Minor, Andrew M. Mao, Samuel S. TI In situ monitoring of material processing by a pulsed laser beam coupled via a lensed fiber into a scanning electron microscope SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A LA English DT Article DE chemical vapour deposition; focused ion beam technology; laser materials processing; scanning electron microscopes ID NEAR-FIELD; FEMTOSECOND LASER; PARTICLES; ABLATION; SILICON; DEPOSITION; NANOWIRES; PLATINUM; REMOVAL; SURFACE AB In this study, a new method coupling laser irradiation into a dual-beam scanning electron microscope (SEM) and focused-ion-beam (FIB) system is developed. By using a lensed fiber, pulsed laser illumination could be successfully delivered onto the sample under SEM imaging, providing in situ monitoring for laser material processing applications including local modification of micro-/nanostructures and laser-assisted chemical vapor deposition. In situ characterization of the laser-induced features by high resolution SEM imaging and energy dispersive x-ray spectrometry was successfully carried out. Furthermore, in situ repair of a contaminated lensed fiber probe during laser-assisted chemical vapor deposition was demonstrated via FIB milling. The results demonstrate the full compatibility of the lensed fiber apparatus with the dual-beam apparatus without disturbing the original functions of the system. The combination of guided laser radiation with SEM and FIB instruments offers a powerful capability for in situ monitoring of multilevel laser-based micro- and nanoscale material processing. C1 [Hwang, David J.; Misra, Nipun; Grigoropoulos, Costas P.; Mao, Samuel S.] Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA. [Grigoropoulos, Costas P.; Mao, Samuel S.] Univ Calif Berkeley, Lawrence Berkeley Lab, EETD, Adv Energy Technol Dept, Berkeley, CA 94720 USA. [Minor, Andrew M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Natl Ctr Electron Microscopy, Berkeley, CA 94720 USA. [Minor, Andrew M.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. RP Hwang, DJ (reprint author), Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA. EM cgrigoro@me.berkeley.edu RI Han, Kyuhee/B-6201-2009 FU SPAWAR [N66001-08-12041]; Lawrence Berkeley National Laboratory; U. S. Department of Energy [DE-AC02-05CH11231]; SINAM NSEC FX The authors gratefully acknowledge support by the DARPA/MTO under the SPAWAR Grant No. N66001-08-12041. Any opinions, findings, and conclusions expressed in this publication are those of the authors and do not necessarily reflect the views of DARPA/MTO. Research performed at the National Center for Electron Microscopy, Lawrence Berkeley National Laboratory, was supported by the Scientific User Facilities Division of the Office of Basic Energy Sciences, U. S. Department of Energy under Contract No. DE-AC02- 05CH11231. D. J. H. and C. P. G. acknowledge support by the SINAM NSEC. NR 37 TC 7 Z9 7 U1 2 U2 17 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 0734-2101 J9 J VAC SCI TECHNOL A JI J. Vac. Sci. Technol. A PD NOV PY 2008 VL 26 IS 6 BP 1432 EP 1438 DI 10.1116/1.2987946 PG 7 WC Materials Science, Coatings & Films; Physics, Applied SC Materials Science; Physics GA 370QH UT WOS:000260777100008 ER PT J AU Naulleau, PP Gallatin, G AF Naulleau, Patrick P. Gallatin, Gregg TI Spatial scaling metrics of mask-induced line-edge roughness SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B LA English DT Article DE masks; nanolithography; resists ID EXTREME-ULTRAVIOLET LITHOGRAPHY; RESIST; ALIGNMENT AB Mask contributors to line-edge roughness (LER) have recently been shown to be an issue of concern for both the accuracy of current resist evaluation tests as well the ultimate LER requirements for the 22 nm production node. Problems arise from mask absorber LER as well as mask multilayer roughness leading to random phase variations in the reflected beam. Not only do these mask contributors effect the total measured LER in resist but they also have an impact on LER spatial scaling characteristics such as power spectral density and the related descriptors of correlation length and roughness exponent. Understanding how these metrics respond to mask effects may lead to an experimental mechanism for evaluating the importance of mask contributors to observed LER in resist. Here the authors present a detailed study of mask-induced LER spatial characteristics. The authors further describe the influence of illumination conditions and defocus on the metrics and compare the results to those expected from intrinsic resist LER. The results show power spectral density analysis to be a promising technique for distinguishing mask and resist contributors to LER. C1 [Naulleau, Patrick P.] Lawrence Berkeley Natl Lab, Ctr XRay Opt, Berkeley, CA 94720 USA. [Gallatin, Gregg] Appl Math Solut, Newtown, CT 06470 USA. RP Naulleau, PP (reprint author), Lawrence Berkeley Natl Lab, Ctr XRay Opt, Berkeley, CA 94720 USA. EM pnaulleau@lbl.gov RI Gallatin, Gregg/H-1998-2012 FU SEMATECH; U. S. Department of Energy [DE-AC02-05CH11231] FX The authors are grateful to Warren Montgomery of SEMATECH for program support. This work was supported by SEMATECH and carried out at Lawrence Berkeley National Laboratory's Advanced Light Source, which is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U. S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 17 TC 23 Z9 23 U1 0 U2 1 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 1071-1023 J9 J VAC SCI TECHNOL B JI J. Vac. Sci. Technol. B PD NOV PY 2008 VL 26 IS 6 BP 1903 EP 1910 DI 10.1116/1.3010712 PG 8 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Physics, Applied SC Engineering; Science & Technology - Other Topics; Physics GA 379GV UT WOS:000261385600017 ER PT J AU Maldonado, JR Sun, Y Liu, Z Liu, XF Tanimoto, S Pianetta, P Pease, F AF Maldonado, Juan R. Sun, Yun Liu, Zhi Liu, Xuefeng Tanimoto, Sayaka Pianetta, Piero Pease, Fabian TI Evaluation of electron energy spread in CsBr based photocathodes SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B LA English DT Article; Proceedings Paper CT 52nd International Conference on Electron, Ion and Photon Beam Technology and Nanofabrication CY MAY 27-30, 2008 CL Portland, OR DE caesium compounds; current density; photocathodes; thin films AB Photocathodes with relatively low energy spread (< 0.5 eV) are required for electron sources in several applications including single and multiple electron beam inspection and lithography tools and free electron lasers. CsBr based photocathodes have been shown to be very robust and capable of operation at high current density (>150 A/cm(2)) with very long lifetime (approximately hundreds of hours/spot). Experimental results of the photoelectron energy spread obtained in CsBr films deposited on both metal and InGaN substrates will be presented in this paper. C1 [Maldonado, Juan R.; Pease, Fabian] Stanford Univ, Dept Elect Engn, Stanford, CA 94025 USA. [Sun, Yun; Liu, Zhi; Pianetta, Piero] Stanford Synchrotron Radiat Lab, Menlo Pk, CA 94025 USA. [Liu, Xuefeng] KLA Tencor, Mountain View, CA 95035 USA. [Tanimoto, Sayaka] Hitachi Cent Res Lab, Kokubunji, Tokyo 185, Japan. RP Maldonado, JR (reprint author), Stanford Univ, Dept Elect Engn, Stanford, CA 94025 USA. RI Liu, Zhi/B-3642-2009 OI Liu, Zhi/0000-0002-8973-6561 NR 6 TC 8 Z9 8 U1 0 U2 3 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 1071-1023 J9 J VAC SCI TECHNOL B JI J. Vac. Sci. Technol. B PD NOV PY 2008 VL 26 IS 6 BP 2085 EP 2090 DI 10.1116/1.2976572 PG 6 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Physics, Applied SC Engineering; Science & Technology - Other Topics; Physics GA 379GV UT WOS:000261385600045 ER PT J AU Skinner, JL Talin, AA Horsley, DA AF Skinner, Jack L. Talin, A. Alec Horsley, David A. TI Light modulation with nanopatterned diffractive microelectromechanical system pixels SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B LA English DT Article; Proceedings Paper CT 52nd International Conference on Electron, Ion and Photon Beam Technology and Nanofabrication CY MAY 27-30, 2008 CL Portland, OR DE micromechanical devices; nanolithography; optical modulation ID IMPRINT LITHOGRAPHY; TRANSMISSION; FABRICATION AB The design, fabrication, and testing of a microelectromechanical system (MEMS) optical modulator is presented. Polarization effects of noncircular holes on reflectivity are examined. Thermal nanoimprint lithography is used to form an array of 150 nm diameter nanoholes in a 60 nm thick metal film on a silicon-on-insulator wafer. A quartz superstrate with an indium tin oxide electrode and a photoresist spacer is used to electrostatically actuate the MEMS pixel. The motion of the pixel in relation to the superstrate causes shifts in the wavelengths of optical interference from the periodic nanohole array. An optical modulation depth of over 67% is demonstrated with this modulation method. Dynamic modal analysis is also presented. C1 [Skinner, Jack L.; Talin, A. Alec] Sandia Natl Labs, Livermore, CA 94551 USA. [Skinner, Jack L.; Horsley, David A.] Univ Calif Berkeley, Berkeley Sensor & Actuator Ctr, Berkeley, CA 94720 USA. [Skinner, Jack L.; Horsley, David A.] Univ Calif Davis, Dept Mech & Aeronaut Engn, Davis, CA 95616 USA. [Talin, A. Alec] Ctr Integrated Nanotechnol, Albuquerque, NM 87185 USA. RP Skinner, JL (reprint author), Sandia Natl Labs, Livermore, CA 94551 USA. EM jlskinn@sandia.gov NR 16 TC 4 Z9 4 U1 1 U2 1 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 1071-1023 J9 J VAC SCI TECHNOL B JI J. Vac. Sci. Technol. B PD NOV PY 2008 VL 26 IS 6 BP 2139 EP 2144 DI 10.1116/1.2998725 PG 6 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Physics, Applied SC Engineering; Science & Technology - Other Topics; Physics GA 379GV UT WOS:000261385600056 ER PT J AU Lu, M Ocola, LE Gray, SK Wiederrecht, GP AF Lu, M. Ocola, L. E. Gray, S. K. Wiederrecht, G. P. TI Fabrication of metallic nanoslit waveguides with sharp bends SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B LA English DT Article; Proceedings Paper CT 52nd International Conference on Electron, Ion and Photon Beam Technology and Nanofabrication CY MAY 27-30, 2008 CL Portland, OR DE gold; integrated optics; micro-optics; nanolithography; nanotechnology; optical fabrication; optical waveguides ID ZONE PLATES; LITHOGRAPHY; SILICON; RESIST AB Metallic nanoslit waveguides are promising candidates for ultrahigh-density optical interconnections. A variety of devices based on metallic nanoslit waveguides have already been proposed that show a great superiority over conventional photonic devices for compactness. However very few two-dimensional devices have been experimentally demonstrated with in-plane geometries due to fabrication difficulties. In this article, a feasible process is presented using traditional semiconductor fabrication technologies such as mix-and-match lithography and electroplating, which is cable of fabricating complicated 100 nm wide, 800 nm deep gold slit waveguides with multiple sharp right-angle corners. The process can be extended to volume production manufacturing with minor modifications, thus enabling the fabrication of nanoslit photonic circuits and networks. C1 [Lu, M.; Ocola, L. E.; Wiederrecht, G. P.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Gray, S. K.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. RP Lu, M (reprint author), Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. NR 21 TC 1 Z9 1 U1 1 U2 1 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 1071-1023 J9 J VAC SCI TECHNOL B JI J. Vac. Sci. Technol. B PD NOV PY 2008 VL 26 IS 6 BP 2151 EP 2155 DI 10.1116/1.3013398 PG 5 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Physics, Applied SC Engineering; Science & Technology - Other Topics; Physics GA 379GV UT WOS:000261385600058 ER PT J AU Seo, HS Lee, DG Kim, H Huh, S Ahn, BS Han, H Kim, D Kim, SS Cho, HK Gullikson, EM AF Seo, Hwan-Seok Lee, Dong-Gun Kim, Hoon Huh, Sungmin Ahn, Byung-Sup Han, Hakseung Kim, Dongwan Kim, Seong-Sue Cho, Han-Ku Gullikson, Eric M. TI Effects of mask absorber structures on the extreme ultraviolet lithography SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B LA English DT Article; Proceedings Paper CT 52nd International Conference on Electron, Ion and Photon Beam Technology and Nanofabrication CY MAY 27-30, 2008 CL Portland, OR DE masks; refractive index; tantalum compounds; ultraviolet lithography AB In this paper, the authors present the results of an investigation of the dependence of mask absorber thickness on the extreme ultraviolet lithography (EUVL) and suggest a new mask structure to minimize shadowing effects. For this purpose, several patterned masks with various TaN absorber thicknesses are fabricated using in-house Ru-capped EUVL mask blanks. According to the simulation using practical refractive indices, which are obtained at EUV wavelengths, the absorber thickness can be reduced to that of out-of-phase (Delta Phi=180 degrees) ranges without loss of image contrast and normalized image log slope. Thickness to meet out-of-phase in real mask can be obtained by comparing field spectrum intensity ratio using the EUV coherent scattering microscopy (CSM). 52.4 nm in thickness is close to Delta Phi=180 degrees for TaN absorber since it shows the highest 1st/0th order intensity ratio as well as the best resolution in the microfield exposure tool (MET) test. When we apply 40-nm-thick TaN instead of 80-nm-thick TaN, the amounts of H-V bias reduction in wafer scale correspond to 80% (2.46-0.48 nm) by CSM and 70% (2.23-0.65 nm) by MET test results. Considering the fact that H-V bias in the MET is similar with that of simulation using the resist model, the degree of H-V bias in the alpha demo tool (ADT) is supposed to be much higher than that of MET due to its higher incident angle (theta=6 degrees). Our final goal is to develop a thin absorber EUVL mask which has a low H-V bias, high EUV printability and DUV contrast, and sufficient optical density at the border. To achieve this, blind layer treatment and integration with anti-reflective coating layer are in progress. C1 [Seo, Hwan-Seok; Lee, Dong-Gun; Kim, Hoon; Huh, Sungmin; Ahn, Byung-Sup; Han, Hakseung; Kim, Dongwan; Kim, Seong-Sue; Cho, Han-Ku] Samsung Elect Co Ltd, Memory R&D Ctr, Hwasung City 445701, Gyeonggi Do, South Korea. [Gullikson, Eric M.] Lawrence Berkeley Natl Lab, Ctr Xray Opt, Berkeley, CA 94720 USA. RP Seo, HS (reprint author), Samsung Elect Co Ltd, Memory R&D Ctr, San 16 Banwol Dong, Hwasung City 445701, Gyeonggi Do, South Korea. EM hwanseok.seo@samsung.com NR 12 TC 16 Z9 16 U1 0 U2 0 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 1071-1023 J9 J VAC SCI TECHNOL B JI J. Vac. Sci. Technol. B PD NOV PY 2008 VL 26 IS 6 BP 2208 EP 2214 DI 10.1116/1.3002488 PG 7 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Physics, Applied SC Engineering; Science & Technology - Other Topics; Physics GA 379GV UT WOS:000261385600070 ER PT J AU Goldberg, KA Naulleau, P Mochi, I Anderson, EH Rekawa, SB Kemp, CD Gunion, RF Han, HS Huh, S AF Goldberg, K. A. Naulleau, P. Mochi, I. Anderson, E. H. Rekawa, S. B. Kemp, C. D. Gunion, R. F. Han, H. -S. Huh, S. TI Actinic extreme ultraviolet mask inspection beyond 0.25 numerical aperture SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B LA English DT Article; Proceedings Paper CT 52nd International Conference on Electron, Ion and Photon Beam Technology and Nanofabrication CY MAY 27-30, 2008 CL Portland, OR DE masks; ultraviolet lithography AB The SEMATECH Berkeley actinic inspection tool (AIT) is an extreme ultraviolet (EUV)-wavelength mask inspection microscope designed for direct aerial image measurements and precommercial EUV mask research. Operating on a synchrotron bending magnet beamline, the AIT uses an off-axis Fresnel zoneplate lens to project a high-magnification EUV image directly onto a charge coupled device camera. The authors present the results of recent system upgrades that have improved the imaging resolution, illumination uniformity, and partial coherence. Benchmarking tests show image contrast above 75% for 100 nm mask features and significant improvements and across the full range of measured sizes. The zoneplate lens has been replaced by an array of user-selectable zoneplates with higher magnification and numerical aperture (NA) values up to 0.0875, emulating the spatial resolution of a 0.35 NA 4x EUV stepper. Illumination uniformity is above 90% for mask areas 2 mu m wide and smaller. An angle-scanning mirror reduces the high coherence of the synchrotron beamline light source giving measured sigma values of approximately 0.125 at 0.0875 NA. C1 [Goldberg, K. A.; Naulleau, P.; Mochi, I.; Anderson, E. H.; Rekawa, S. B.; Kemp, C. D.; Gunion, R. F.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Huh, S.] SEMATECH, Albany, NY 12203 USA. [Han, H. -S.] Samsung Elect, Photomask Team, Hwasung 445701, Kyunggi, South Korea. RP Goldberg, KA (reprint author), Lawrence Berkeley Natl Lab, Mail Stop 2-400, Berkeley, CA 94720 USA. EM kagoldberg@lbl.gov NR 7 TC 22 Z9 22 U1 0 U2 1 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 1071-1023 J9 J VAC SCI TECHNOL B JI J. Vac. Sci. Technol. B PD NOV PY 2008 VL 26 IS 6 BP 2220 EP 2224 DI 10.1116/1.3002490 PG 5 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Physics, Applied SC Engineering; Science & Technology - Other Topics; Physics GA 379GV UT WOS:000261385600072 ER PT J AU Belau, L Park, JY Liang, T Somorjai, GA AF Belau, Leonid Park, Jeong Y. Liang, Ted Somorjai, Gabor A. TI The effects of oxygen plasma on the chemical composition and morphology of the Ru capping layer of the extreme ultraviolet mask blanks SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B LA English DT Article; Proceedings Paper CT 52nd International Conference on Electron, Ion and Photon Beam Technology and Nanofabrication CY MAY 27-30, 2008 CL Portland, OR DE atomic force microscopy; chemical interdiffusion; chemisorption; etching; masks; oxidation; plasma materials processing; ruthenium; surface morphology; surface roughness; transmission electron microscopy; ultraviolet lithography; X-ray photoelectron spectra ID RUTHENIUM; OXIDATION; NANOPARTICLES; LITHOGRAPHY; SURFACE; GROWTH AB Contamination removal from extreme ultraviolet (EUV) mask surfaces is one of the most important aspects to improve reliability for the next generation of EUV lithography. The authors report chemical and morphological changes of the ruthenium (Ru) mask surface after oxygen plasma treatment using surface sensitive analytical methods: x-ray photoelectron spectroscopy (XPS), atomic force microscopy, and transmission electron microscopy (TEM). Chemical analysis of the EUV masks shows an increase in the subsurface oxygen concentration, Ru oxidation, and surface roughness. XPS spectra at various photoelectron takeoff angles suggest that the EUV mask surface was covered with chemisorbed oxygen after oxygen plasma treatment. It is proposed that the Kirkendall effect is the most plausible mechanism that explains the Ru surface oxidation. The etching rate of the Ru capping layer by oxygen plasma was estimated to be 1.5 +/- 0.2 A/min, based on TEM cross sectional analysis. C1 [Belau, Leonid; Somorjai, Gabor A.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Park, Jeong Y.; Somorjai, Gabor A.] Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Somorjai, Gabor A.] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Liang, Ted] Intel Corp, Components Res Technol & Mfg Grp, Santa Clara, CA 95054 USA. RP Somorjai, GA (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM somorjai@berkeley.edu RI Park, Jeong Young/A-2999-2008 NR 19 TC 9 Z9 9 U1 1 U2 6 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 1071-1023 J9 J VAC SCI TECHNOL B JI J. Vac. Sci. Technol. B PD NOV PY 2008 VL 26 IS 6 BP 2225 EP 2229 DI 10.1116/1.3021368 PG 5 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Physics, Applied SC Engineering; Science & Technology - Other Topics; Physics GA 379GV UT WOS:000261385600073 ER PT J AU Anderson, CN Naulleau, PP Niakoula, D Hassanein, E Brainard, R Gallatin, G Dean, K AF Anderson, Christopher N. Naulleau, Patrick P. Niakoula, Dimitra Hassanein, Elsayed Brainard, Robert Gallatin, Gregg Dean, Kim TI Influence of base and photoacid generator on deprotection blur in extreme ultraviolet photoresists and some thoughts on shot noise SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B LA English DT Article; Proceedings Paper CT 52nd International Conference on Electron, Ion and Photon Beam Technology and Nanofabrication CY MAY 27-30, 2008 CL Portland, OR DE nanopatterning; photoresists; ultraviolet lithography ID RESOLUTION; LITHOGRAPHY AB A contact-hole deprotection blur metric has been used to monitor the deprotection blur of an experimental open platform resist (EH27) as the wt % of base and photoacid generator (PAG) were varied. A six times increase in base wt % is shown to reduce the size of successfully patterned 1:1 line-space features from 52 to 39 nm without changing deprotection blur. Corresponding isolated line edge roughness is reduced from 6.9 to 4.1 nm. A two times increase in PAG wt % is shown to improve 1:1 line-space patterning from 47 to 40 nm without changing deprotection blur or isolated line edge roughness. A discussion of improved patterning performance as related to shot noise and deprotection blur concludes with a speculation that the spatial distribution of PAG molecules has been playing some role, perhaps a dominant one, in determining the uniformity of photogenerated acids in the resists that have been studied. C1 [Anderson, Christopher N.] Univ Calif Berkeley, Appl Sci & Technol Grad Grp, Berkeley, CA 94704 USA. [Naulleau, Patrick P.; Niakoula, Dimitra] Lawrence Berkeley Natl Lab, Ctr Xray Opt, Berkeley, CA 94704 USA. [Naulleau, Patrick P.; Hassanein, Elsayed; Brainard, Robert] SUNY Albany, Coll Nanoscale Sci & Engn, Albany, NY 12203 USA. [Dean, Kim] SEMATECH, Austin, TX 78741 USA. RP Anderson, CN (reprint author), Univ Calif Berkeley, Appl Sci & Technol Grad Grp, Berkeley, CA 94704 USA. EM cnanderson@berkeley.edu RI Gallatin, Gregg/H-1998-2012 NR 17 TC 7 Z9 7 U1 0 U2 2 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 1071-1023 J9 J VAC SCI TECHNOL B JI J. Vac. Sci. Technol. B PD NOV PY 2008 VL 26 IS 6 BP 2295 EP 2299 DI 10.1116/1.2968615 PG 5 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Physics, Applied SC Engineering; Science & Technology - Other Topics; Physics GA 379GV UT WOS:000261385600086 ER PT J AU Weis, CD Schuh, A Batra, A Persaud, A Rangelow, IW Bokor, J Lo, CC Cabrini, S Sideras-Haddad, E Fuchs, GD Hanson, R Awschalom, DD Schenkel, T AF Weis, C. D. Schuh, A. Batra, A. Persaud, A. Rangelow, I. W. Bokor, J. Lo, C. C. Cabrini, S. Sideras-Haddad, E. Fuchs, G. D. Hanson, R. Awschalom, D. D. Schenkel, T. TI Single atom doping for quantum device development in diamond and silicon SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B LA English DT Article; Proceedings Paper CT 52nd International Conference on Electron, Ion and Photon Beam Technology and Nanofabrication CY MAY 27-30, 2008 CL Portland, OR DE atomic force microscopy; diamond; elemental semiconductors; ion beam applications; ion sources; quantum interference devices; semiconductor doping; silicon; transients ID INTEGRATION; CENTERS AB The ability to inject dopant atoms with high spatial resolution, flexibility in dopant species, and high single ion detection fidelity opens opportunities for the study of dopant fluctuation effects and the development of devices in which function is based on the manipulation of quantum states in single atoms, such as proposed quantum computers. The authors describe a single atom injector, in which the imaging and alignment capabilities of a scanning force microscope (SFM) are integrated with ion beams from a series of ion sources and with sensitive detection of current transients induced by incident ions. Ion beams are collimated by a small hole in the SFM tip and current changes induced by single ion impacts in transistor channels enable reliable detection of single ion hits. They discuss resolution limiting factors in ion placement and processing and paths to single atom (and color center) array formation for systematic testing of quantum computer architectures in silicon and diamond. C1 [Weis, C. D.; Schuh, A.; Batra, A.; Persaud, A.; Schenkel, T.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94114 USA. [Weis, C. D.; Schuh, A.; Rangelow, I. W.] Tech Univ Ilmenau, D-98684 Ilmenau, Germany. [Bokor, J.; Lo, C. C.] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA. [Bokor, J.; Cabrini, S.] Univ Calif Berkeley, Lawrence Berkeley Lab, Mol Foundry, Berkeley, CA 94720 USA. [Sideras-Haddad, E.] Univ Witwatersrand, Sch Phys, ZA-2050 Johannesburg, South Africa. [Fuchs, G. D.; Awschalom, D. D.] Univ Calif Santa Barbara, Ctr Spintron & Quantum Computat, Santa Barbara, CA 93106 USA. [Hanson, R.] Delft Univ Technol, Kavli Inst Nanosci, Delft, Netherlands. RP Weis, CD (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, 1 Cyclotron Rd, Berkeley, CA 94114 USA. EM t_schenkel@LBL.gov RI Hanson, Ronald/B-9555-2008; Bokor, Jeffrey/A-2683-2011 NR 21 TC 34 Z9 34 U1 0 U2 11 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 1071-1023 J9 J VAC SCI TECHNOL B JI J. Vac. Sci. Technol. B PD NOV PY 2008 VL 26 IS 6 BP 2596 EP 2600 DI 10.1116/1.2968614 PG 5 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Physics, Applied SC Engineering; Science & Technology - Other Topics; Physics GA 379GV UT WOS:000261385600145 ER PT J AU Ocola, LE Tirumala, VR AF Ocola, L. E. Tirumala, V. R. TI Nanofabrication of super-high-aspect-ratio structures in hydrogen silsesquioxane from direct-write e-beam lithography and hot development SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B LA English DT Article; Proceedings Paper CT 52nd International Conference on Electron, Ion and Photon Beam Technology and Nanofabrication CY MAY 27-30, 2008 CL Portland, OR DE electron beam lithography; micromechanical devices; Monte Carlo methods; nanolithography; nanopatterning; organic compounds; resists; surface tension; zone plates ID MECHANICAL-PROPERTIES; FILMS; TEMPERATURE; RESISTS AB Super-high-aspect-ratio structures (>10) in hydrogen silsesquioxane resist using direct write electron beam lithography at 100 kV and hot development and rinse are reported. Posts of 100 nm in width and 1.2 mu m tall have been successfully fabricated without the need of supercritical drying. Hot rinse solution with isopropyl alcohol has been used to reduce surface tension effects during drying. Dose absorption effects have been observed and modeled using known Monte Carlo models. These results indicate that for e-beam exposures of thick negative resists (>1 mu m), the bottom of the structures will have less cross-link density and therefore will be less stiff than the top. These results will have impact in the design of high-aspect-ratio structures that can be used in microelectromechanical system devices and high-aspect-ratio Fresnel zone plates. C1 [Ocola, L. E.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60559 USA. [Tirumala, V. R.] Natl Inst Stand & Technol, Div Polymers, Gaithersburg, MD 20878 USA. RP Ocola, LE (reprint author), Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60559 USA. EM ocola@anl.gov NR 16 TC 8 Z9 9 U1 2 U2 5 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 1071-1023 J9 J VAC SCI TECHNOL B JI J. Vac. Sci. Technol. B PD NOV PY 2008 VL 26 IS 6 BP 2632 EP 2635 DI 10.1116/1.3021395 PG 4 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Physics, Applied SC Engineering; Science & Technology - Other Topics; Physics GA 379GV UT WOS:000261385600152 ER PT J AU Aggarwal, R Narayan, RJ Xiao, K Geohegan, DB AF Aggarwal, Ravi Narayan, Roger J. Xiao, Kai Geohegan, David B. TI Fabrication of Ag-tetracyanoquinodimethane nanostructures using ink-jet printing/vapor-solid chemical reaction process SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B LA English DT Letter DE ink jet printers; nanoparticles; nanopatterning; organic compounds; scanning electron microscopy; silver ID TCNQ THIN-FILMS; SOLUTION ROUTES; NANOWIRES; GROWTH; TEMPERATURE; MICROSCOPY; MECHANISM; TRACKS AB In this study, microscale patterns of the charge-transfer organic compound silver-tetracyanoquinodimethane (Ag-TCNQ) were prepared using a novel two-step ink-jet printing/vapor-solid chemical reaction process. First, silver nanoparticles were patterned on silicon using a piezoelectric ink-jet printer. Ag-TCNQ nanostructures were then processed on these patterned surfaces using a vapor-solid chemical reaction growth process. Scanning electron microscopy revealed that 50-100 nm wide, similar to 2 mu m long Ag-TCNQ nanocones, crystallites, and ribbons were fabricated using this two-step process. Patterns with a higher number density of silver nanoparticles demonstrated a greater number of nanocone structures. Micro-Raman spectroscopy results confirmed charge transfer between silver and TCNQ in the Ag-TCNQ nanostructure. Patterned Ag-TCNQ nanostructures fabricated using this novel two-step ink-jet printing/vapor-solid chemical reaction process could find use in high density, high-speed optical memory devices, magnetic devices, field effect transistors, organic light emitting diodes, metal/insulator/metal photoswitches, biosensors, and other advanced devices. C1 [Aggarwal, Ravi; Narayan, Roger J.] N Carolina State Univ, Dept Mat Sci & Engn, Raleigh, NC 27695 USA. [Xiao, Kai; Geohegan, David B.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Aggarwal, Ravi; Narayan, Roger J.] Univ N Carolina, Joint Dept Biomed Engn, Chapel Hill, NC 27599 USA. [Aggarwal, Ravi; Narayan, Roger J.] N Carolina State Univ, Chapel Hill, NC 27599 USA. [Geohegan, David B.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Narayan, RJ (reprint author), N Carolina State Univ, Dept Mat Sci & Engn, Box 7907, Raleigh, NC 27695 USA. EM roger_narayan@unc.edu RI Xiao, Kai/A-7133-2012; Narayan, Roger/J-2789-2013; Geohegan, David/D-3599-2013 OI Xiao, Kai/0000-0002-0402-8276; Narayan, Roger/0000-0002-4876-9869; Geohegan, David/0000-0003-0273-3139 NR 29 TC 2 Z9 2 U1 1 U2 11 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 1071-1023 J9 J VAC SCI TECHNOL B JI J. Vac. Sci. Technol. B PD NOV PY 2008 VL 26 IS 6 BP L48 EP L52 DI 10.1116/1.3021027 PG 5 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Physics, Applied SC Engineering; Science & Technology - Other Topics; Physics GA 379GV UT WOS:000261385600002 ER PT J AU Ostfeld, A Uber, JG Salomons, E Berry, JW Hart, WE Phillips, CA Watson, JP Dorini, G Jonkergouw, P Kapelan, Z di Pierro, F Khu, ST Savic, D Eliades, D Polycarpou, M Ghimire, SR Barkdoll, BD Gueli, R Huang, JJ McBean, EA James, W Krause, A Leskovec, J Isovitsch, S Xu, JH Guestrin, C VanBriesen, J Small, M Fischbeck, P Preis, A Propato, M Piller, O Trachtman, GB Wu, ZY Walski, T AF Ostfeld, Avi Uber, James G. Salomons, Elad Berry, Jonathan W. Hart, William E. Phillips, Cindy A. Watson, Jean-Paul Dorini, Gianluca Jonkergouw, Philip Kapelan, Zoran di Pierro, Francesco Khu, Soon-Thiam Savic, Dragan Eliades, Demetrios Polycarpou, Marios Ghimire, Santosh R. Barkdoll, Brian D. Gueli, Roberto Huang, Jinhui J. McBean, Edward A. James, William Krause, Andreas Leskovec, Jure Isovitsch, Shannon Xu, Jianhua Guestrin, Carlos VanBriesen, Jeanne Small, Mitchell Fischbeck, Paul Preis, Ami Propato, Marco Piller, Olivier Trachtman, Gary B. Wu, Zheng Yi Walski, Tom TI The Battle of the Water Sensor Networks (BWSN): A Design Challenge for Engineers and Algorithms SO JOURNAL OF WATER RESOURCES PLANNING AND MANAGEMENT LA English DT Article ID SYSTEM AB Following the events of September 11, 2001, in the United States, world public awareness for possible terrorist attacks on water supply systems has increased dramatically. Among the different threats for a water distribution system, the most difficult to address is a deliberate chemical or biological contaminant injection, due to both the uncertainty of the type of injected contaminant and its consequences, and the uncertainty of the time and location of the injection. An online contaminant monitoring system is considered as a major opportunity to protect against the impacts of a deliberate contaminant intrusion. However, although optimization models and solution algorithms have been developed for locating sensors, little is known about how these design algorithms compare to the efforts of human designers, and thus, the advantages they propose for practical design of sensor networks. To explore these issues, the Battle of the Water Sensor Networks (BWSN) was undertaken as part of the 8th Annual Water Distribution Systems Analysis Symposium, Cincinnati, Ohio, August 27-29, 2006. This paper summarizes the outcome of the BWSN effort and suggests future directions for water sensor networks research and implementation. C1 [Ostfeld, Avi] Technion Israel Inst Technol, Fac Civil & Environm Engn, IL-32000 Haifa, Israel. [Uber, James G.] Univ Cincinnati, Dept Civil & Environm Engn, Cincinnati, OH 45221 USA. [Salomons, Elad] OptiWater, IL-34385 Haifa, Israel. [Berry, Jonathan W.; Hart, William E.; Phillips, Cindy A.; Watson, Jean-Paul] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Dorini, Gianluca; Jonkergouw, Philip; Kapelan, Zoran; di Pierro, Francesco; Khu, Soon-Thiam; Savic, Dragan] Univ Exeter, Ctr Water Syst, Exeter EX4 4QF, Devon, England. [Eliades, Demetrios; Polycarpou, Marios] Univ Cyprus, Dept Elect & Comp Engn, CY-1678 Nicosia, Cyprus. [Ghimire, Santosh R.; Barkdoll, Brian D.] Michigan Technol Univ, Dept Civil & Environm Engn, Houghton, MI 49931 USA. [Gueli, Roberto] Proteo SpA, I-95123 Catania, Italy. [Huang, Jinhui J.; McBean, Edward A.; James, William] Univ Guelph, Sch Engn, Guelph, ON N1G 2W1, Canada. [Krause, Andreas; Leskovec, Jure; Guestrin, Carlos] Carnegie Mellon Univ, Dept Comp Sci, Pittsburgh, PA 15213 USA. [Isovitsch, Shannon; VanBriesen, Jeanne; Small, Mitchell] Carnegie Mellon Univ, Dept Civil & Environm Engn, Pittsburgh, PA 15213 USA. [Xu, Jianhua; Small, Mitchell; Fischbeck, Paul] Carnegie Mellon Univ, Dept Engn & Publ Policy, Pittsburgh, PA 15213 USA. [Fischbeck, Paul] Carnegie Mellon Univ, Dept Social & Decis Sci, Pittsburgh, PA 15213 USA. [Preis, Ami] Technion Israel Inst Technol, Fac Civil & Environm Engn, IL-32000 Haifa, Israel. [Propato, Marco; Piller, Olivier] Irstea, Hydraul & Civil Engn Res Unit, Bordeaux, France. [Trachtman, Gary B.] Malcolm Pirnie Inc, Birmingham, AL 35205 USA. [Wu, Zheng Yi; Walski, Tom] Bentley Syst Inc, Haestad Methods Solut Ctr, Watertown, CT 06795 USA. RP Ostfeld, A (reprint author), Technion Israel Inst Technol, Fac Civil & Environm Engn, IL-32000 Haifa, Israel. RI uber, james/E-7189-2010; Eliades, Demetrios/H-2417-2013; Kapelan, Zoran/A-3103-2009; Savic, Dragan/G-2071-2012; OI Eliades, Demetrios/0000-0001-6184-6366; Savic, Dragan/0000-0001-9567-9041; Piller, Olivier/0000-0002-3625-7639 NR 24 TC 156 Z9 158 U1 7 U2 34 PU ASCE-AMER SOC CIVIL ENGINEERS PI RESTON PA 1801 ALEXANDER BELL DR, RESTON, VA 20191-4400 USA SN 0733-9496 EI 1943-5452 J9 J WATER RES PLAN MAN JI J. Water Resour. Plan. Manage.-ASCE PD NOV-DEC PY 2008 VL 134 IS 6 BP 556 EP 568 DI 10.1061/(ASCE)0733-9496(2008)134:6(556) PG 13 WC Engineering, Civil; Water Resources SC Engineering; Water Resources GA 361JQ UT WOS:000260124300009 ER PT J AU Boeglin, WE Itoh, A Zheng, YX Coffa, G Howe, GA Brash, AR AF Boeglin, William E. Itoh, Aya Zheng, Yuxiang Coffa, Gianguido Howe, Gregg A. Brash, Alan R. TI Investigation of Substrate Binding and Product Stereochemistry Issues in Two Linoleate 9-Lipoxygenases SO LIPIDS LA English DT Article DE Lipoxygenase; Stereochemistry; Linoleic acid; HODE; HPODE; Anandamide; Arabidopsis; Tomato; Chiral analysis ID CHIRAL COLUMN CHROMATOGRAPHY; ALLENE OXIDE SYNTHASE; SOYBEAN LIPOXYGENASE-1; METHYL JASMONATE; ENANTIOMERIC SEPARATION; HYDROGEN ABSTRACTION; ARACHIDONIC-ACID; POTATO-TUBER; OXYGENATION; ARABIDOPSIS AB Herein we characterize the Arabidopsis thaliana AtLOX1 and tomato (Solanum lycopersicum) LOXA proteins as linoleate 9S-lipoxygenases (9-LOX), and use the enzymes to test a model that predicts a relationship between substrate binding orientation and product stereochemistry. The cDNAs were heterologously expressed in E. coli and the proteins partially purified by nickel affinity chromatography using a N-terminal (His)(6)-tag. Both enzymes oxygenated linoleic acid almost exclusively to the 9S-hydroperoxide with turnover numbers of 300-400/s. AtLOX1 showed a broad range of activity over the range pH 5-9 (optimal at pH 6); tomato LOXA also showed optimal activity around pH 5-7 dropping off more sharply at pH 9. Site-directed mutagenesis of a conserved active site Ala (Ala562 in AtLOX1, Ala 564 in tomato LOXA, and typically conserved as Ala in S-LOX and Gly in R-LOX), revealed that substitution with Gly led to the production of a mixture of 9S- and 13R-hydroperoxyoctadecadienoic acids from linoleic acid. To follow up on earlier reports of 9-LOX metabolism of anandamide (van Zadelhoff et al. Biochem. Biophys. Res. Commun. 248:33-38, 1998), we also tested this substrate with the mutants, which produced predictable shifts in product profile, including a shift from the prominent 11S-hydroperoxy derivative of wild-type to include the 15R-hydroperoxide. These results conform to a model that predicts a head-first substrate binding orientation for 9S-LOX. We also found that linoleoyl-phosphatidylcholine is not a 9S-LOX substrate, which is consistent with this conclusion. C1 [Boeglin, William E.; Zheng, Yuxiang; Coffa, Gianguido; Brash, Alan R.] Vanderbilt Univ, Med Ctr, Dept Pharmacol, Nashville, TN 37232 USA. [Itoh, Aya; Howe, Gregg A.] Michigan State Univ, US DOE, Plant Res Lab, E Lansing, MI 48824 USA. [Howe, Gregg A.] Michigan State Univ, Dept Biochem & Mol Biol, E Lansing, MI 48824 USA. RP Brash, AR (reprint author), Vanderbilt Univ, Med Ctr, Dept Pharmacol, RRB Room 510,23rd Ave Pierce, Nashville, TN 37232 USA. EM alan.brash@vanderbilt.edu FU NIH [GM-53638, GM-074888]; US Department of Energy [DE-FG02-91ER20021] FX We thank Kaye Peterman (Wellesley College) for kindly proving the AtLOX1 cDNA. This work was supported by NIH grants GM-53638 and GM-074888 (to ARB) and by the US Department of Energy Grant DE-FG02-91ER20021 (to GAH). NR 38 TC 20 Z9 22 U1 0 U2 7 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 0024-4201 J9 LIPIDS JI Lipids PD NOV PY 2008 VL 43 IS 11 BP 979 EP 987 DI 10.1007/s11745-008-3230-1 PG 9 WC Biochemistry & Molecular Biology; Nutrition & Dietetics SC Biochemistry & Molecular Biology; Nutrition & Dietetics GA 367AZ UT WOS:000260526200001 PM 18795358 ER PT J AU Ruppel, C Boswell, R Jones, E AF Ruppel, C. Boswell, R. Jones, E. TI Scientific results from Gulf of Mexico Gas Hydrates joint Industry Project Leg 1 drilling: Introduction and overview SO MARINE AND PETROLEUM GEOLOGY LA English DT Article DE Gas hydrate; Hazard; Ocean drilling; Borehole; Gulf of Mexico ID CONTINENTAL-SLOPE; MARINE-SEDIMENTS; SEA-FLOOR; EVOLUTION; FLUID AB The Gulf of Mexico Gas Hydrates joint Industry Project (JIP) is a consortium of production and service companies and some government agencies formed to address the challenges that gas hydrates pose for deepwater exploration and production. In partnership with the U.S. Department of Energy and with scientific assistance from the U.S. Geological Survey and academic partners, the JIP has focused on studies to assess hazards associated with drilling the fine-grained, hydrate-bearing sediments that dominate much of the shallow subseafloor in the deepwater (>500 m) Gulf of Mexico. In preparation for an initial drilling, logging, and coring program, the JIP sponsored a multi-year research effort that included: (a) the development of borehole stability models for hydrate-bearing sediments; (b) exhaustive laboratory measurements of the physical properties of hydrate-bearing sediments; (c) refinement of new techniques for processing industry-standard 3-D seismic data to constrain gas hydrate saturations; and (d) construction of instrumentation to measure the physical properties of sediment cores that had never been removed from in situ hydrostatic pressure conditions. Following review of potential drilling sites, the JIP launched a 35-day expedition in Spring 2005 to acquire well logs and sediment cores at sites in Atwater Valley lease blocks 13/14 and Keathley Canyon lease block 151 in the northern Gulf of Mexico minibasin province. The Keathley Canyon site has a bottom simulating reflection at similar to 392 m below the seafloor, while the Atwater Valley location is characterized by seafloor mounds with an underlying upwarped seismic reflection consistent with upward fluid migration and possible shoaling of the base of the gas hydrate stability (BGHS). No gas hydrate was recovered at the drill sites, but logging data, and to some extent cores, suggest the occurrence of gas hydrate in inferred coarser-grained beds and fractures, particularly between 220 and 330 m below the seafloor at the Keathley Canyon site. This paper provides an overview of the results of the initial phases of the JIP work and introduces the 15 papers that make up this special volume on the scientific results related to the 2005 logging and drilling expedition. Published by Elsevier Ltd. C1 [Ruppel, C.] US Geol Survey, Woods Hole, MA 02543 USA. [Boswell, R.] US DOE, Natl Energy Technol Lab, Morgantown, WV 26507 USA. [Jones, E.] Chevron Energy Technol Co, Houston, TX 77002 USA. RP Ruppel, C (reprint author), US Geol Survey, 384 Woods Hole Rd, Woods Hole, MA 02543 USA. EM cruppel@usgs.gov; ray.boswell@netl.doe.gov; ejones@chevron.com OI Ruppel, Carolyn/0000-0003-2284-6632 FU U.S. Department of Energy [DE-FC26-01NT41330] FX We thank the crew of the Uncle John and the shipboard scientific party for their dedication in completing the drilling program and associated analyses. We thank D. Hutchinson and B. Dugan for suggestions that significantly improved the paper, B. Dugan and T. Collett for clarification of cruise results and the cruise report, and D. Hutchinson and W. Wood for contributing material for figures. EJ.'s participation in this project was supported by the U.S. Department of Energy, under award DE-FC26-01NT41330. However, any opinions, findings, conclusions, or recommendations expressed herein are those of the authors and do not necessarily reflect the views of the DOE or the USGS. Any use of a trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. NR 73 TC 49 Z9 58 U1 4 U2 25 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0264-8172 J9 MAR PETROL GEOL JI Mar. Pet. Geol. PD NOV PY 2008 VL 25 IS 9 BP 819 EP 829 DI 10.1016/j.marpetgeo.2008.02.007 PG 11 WC Geosciences, Multidisciplinary SC Geology GA 374FK UT WOS:000261028400001 ER PT J AU Pereyra, RA AF Pereyra, Ramiro A. TI Delta to alpha prime transformation of plutonium during microhardness testing SO MATERIALS CHARACTERIZATION LA English DT Article DE Plutonium; Phase transformation; Microhardness; Microstructure; Metallography AB Metallic plutonium is a complex material that can exist in six allotropic phases at ambient pressures; and under stress, it can transform martensitically from the ductile face centered cubic delta phase to the brittle monoclinic alpha prime phase. This investigation found that the pressures generated during microhardness indentation are sufficient for the transformation to occur. Micrographs showing the transformation as well as pressure calculations are presented in support for this finding. Also, based upon the amount of material displaced by the indenter, it was determined that there is at least a 16% error in published hardness values of the delta phase that can be attributed to the delta to alpha prime transformation. Published by Elsevier Inc. C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Pereyra, RA (reprint author), Los Alamos Natl Lab, MST-16,POB 1663, Los Alamos, NM 87545 USA. EM rpereyra@lanl.gov NR 16 TC 2 Z9 2 U1 0 U2 3 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 1044-5803 J9 MATER CHARACT JI Mater. Charact. PD NOV PY 2008 VL 59 IS 11 BP 1675 EP 1681 DI 10.1016/j.matchar.2008.03.002 PG 7 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering; Materials Science, Characterization & Testing SC Materials Science; Metallurgy & Metallurgical Engineering GA 363UX UT WOS:000260293500022 ER PT J AU Kalinin, SV Rodriguez, BJ Jesse, S Maksymovych, P Seal, K Nikiforov, M Baddorf, AP Kholkin, AL Proksch, R AF Kalinin, Sergei V. Rodriguez, Brian J. Jesse, Stephen Maksymovych, Peter Seal, Katyayani Nikiforov, Maxim Baddorf, Arthur P. Kholkin, Andrei L. Proksch, Roger TI Local bias-induced phase transitions SO MATERIALS TODAY LA English DT Review ID SCANNING PROBE MICROSCOPY; FERROELECTRIC DATA-STORAGE; THIN-FILMS; DOMAIN-STRUCTURES; FORCE MICROSCOPY; SINGLE-CRYSTALS; NANOSCALE; SURFACE; POLARIZATION; EVOLUTION AB Electrical bias-induced phase transitions underpin a wide range of applications from data storage to energy generation and conversion. The mechanisms behind these transitions are often quite complex and in many cases are extremely sensitive to local defects that act as centers for local transformations or pinning. Using ferroelectrics as an example, we review methods for probing bias-induced phase transitions and discuss the current limitations and challenges for extending the methods to field-induced phase transitions and electrochemical reactions in energy storage, biological and molecular systems. C1 [Kalinin, Sergei V.; Rodriguez, Brian J.; Jesse, Stephen; Maksymovych, Peter; Seal, Katyayani; Nikiforov, Maxim; Baddorf, Arthur P.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37922 USA. [Kholkin, Andrei L.] Univ Aveiro, CICECO, Dept Ceram & Glass Engn, P-3810193 Aveiro, Portugal. [Proksch, Roger] Asylum Res, Santa Barbara, CA 93117 USA. RP Kalinin, SV (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37922 USA. EM sergei2@ornl.gov RI Kholkin, Andrei/G-5834-2010; Nikiforov, Maxim/C-1965-2012; Kalinin, Sergei/I-9096-2012; Rodriguez, Brian/A-6253-2009; Maksymovych, Petro/C-3922-2016; Jesse, Stephen/D-3975-2016; Baddorf, Arthur/I-1308-2016 OI Kholkin, Andrei/0000-0003-3432-7610; Kalinin, Sergei/0000-0001-5354-6152; Rodriguez, Brian/0000-0001-9419-2717; Maksymovych, Petro/0000-0003-0822-8459; Jesse, Stephen/0000-0002-1168-8483; Baddorf, Arthur/0000-0001-7023-2382 FU Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy; Alexander von Humboldt Foundation; Portuguese Foundation for Science and Technology [PTDC/FIS/81442/2006]; Scientec withinjoint CICECO-Agilent PFM laboratory FX Research at the Center for Nanophase Materials Sciences was supported by the Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy (S.V.K., B.J.R., S.J., P.M., K.S., and A.P.B.). One of the authors (B.J.R.) acknowledges the financial support of the Alexander von Humboldt Foundation. Thanks are also due to the Portuguese Foundation for Science and Technology (project PTDC/FIS/81442/2006) and to Scientec for the support within joint CICECO-Agilent PFM laboratory (A.K.). NR 108 TC 32 Z9 32 U1 3 U2 43 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1369-7021 EI 1873-4103 J9 MATER TODAY JI Mater. Today PD NOV PY 2008 VL 11 IS 11 BP 16 EP 27 DI 10.1016/S1369-7021(08)70235-9 PG 12 WC Materials Science, Multidisciplinary SC Materials Science GA 382HB UT WOS:000261595500011 ER PT J AU Messina, P Pearson, J Vasserman, I Sasaki, S Moog, E Fradin, F AF Messina, P. Pearson, J. Vasserman, I. Sasaki, S. Moog, E. Fradin, F. TI Scanning tunneling microscope design with a confocal small field permanent magnet SO MEASUREMENT SCIENCE AND TECHNOLOGY LA English DT Article DE STM; RF electronics; RF STM ID ELECTRON-SPIN-RESONANCE; MOLECULES; STM AB The field of ultra-sensitive measurements with scanning probes requires the design and construction of novel instruments. For example, the combination of radio frequency detection and scanning probe can be exploited to measure thermal properties and mechanical resonances at a very low scale. Very recent results by Komeda and Manassen (2008 Appl. Phys. Lett. 92 212506) on the detection of spin noise with the scanning tunneling microscopy (STM) have further expanded previous results reported by one of the authors of this manuscript (Messina et al 2007 J. Appl. Phys. 101 053916). In a previous publication, one of the authors used a new STM instrument (Messina et al J. Appl. Phys. 2007 101 053916 and Mannini et al 2007 Inorg. Chim. Acta 360 3837-42) to obtain the detection of electron spin noise (ESN) from individual paramagnetic adsorbates. The magnetic field homogeneity at the STM tip-sample region was limited. Furthermore, vacuum operation of the STM microscope was limited by the heat dissipation at the electromagnet and the radio frequency (RF) recovery electronics. We report here on a new STM head that incorporates a specially designed permanent magnet and in-built RF amplification system. The magnet provides both a better field homogeneity and freedom to operate the instrument in vacuum. The STM microscope is vacuum compatible, and vertical stability has been improved over the previous design (Messina et al 2007 J. Appl. Phys. 101 053916), despite the presence of a heat dissipative RF amplifier in the close vicinity of the STM tip. C1 [Messina, P.; Pearson, J.; Fradin, F.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Vasserman, I.; Sasaki, S.; Moog, E.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Messina, P (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM pmessina@anl.gov; pearson@anl.gov; isaac@aps.anl.gov; sasaki@aps.anl.gov; moog@aps.anl.gov; ffradin@anl.gov FU US Department of Energy, Basic Energy Sciences [DE-AC02-06CH11357] FX We thank Curt Preissner and Branislav Brajuskovic at the Advanced Photon Source for useful discussions. We thank G Kristou from the Material Science Division mechanical workshop for his help in building the various parts of the instrument. We thank Professor Manassen from Ben Gurion University for useful discussions. Also we thank Stefano Prato and Vittorio Spreafico from APE Research for their help in designing the piezo tube actuator. This work was supported by the US Department of Energy, Basic Energy Sciences under contract no DE-AC02-06CH11357. NR 19 TC 2 Z9 2 U1 2 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0957-0233 EI 1361-6501 J9 MEAS SCI TECHNOL JI Meas. Sci. Technol. PD NOV PY 2008 VL 19 IS 11 AR 115802 DI 10.1088/0957-0233/19/11/115802 PG 7 WC Engineering, Multidisciplinary; Instruments & Instrumentation SC Engineering; Instruments & Instrumentation GA 357DJ UT WOS:000259826200034 ER PT J AU Rempe, JL Knudson, DL Daw, JE Wilkins, SC AF Rempe, J. L. Knudson, D. L. Daw, J. E. Wilkins, S. C. TI Type C thermocouple performance at 1500 degrees C SO MEASUREMENT SCIENCE AND TECHNOLOGY LA English DT Article DE high temperature sensors; type C thermocouples AB Experience with Type C thermocouples operating for extended times in the 1400-1600 degrees C temperature range indicates that significant decalibration occurs, often leading to expensive downtime and material waste. As part of an effort to understand the mechanisms causing drift in these thermocouples, the Idaho National Laboratory conducted a long duration (3000 h) test at 1500 degrees C containing eight Type C thermocouples. As reported in this paper, results from this long duration test were adversely affected due to oxygen ingress. Nevertheless, results provide important insights about the impact of precipitate formation due to material phase changes on thermoelectric response. Post-test examinations indicate that the thermocouple signal was not adversely impacted by the formation of precipitates detected after 1000 h of heating at 1500 degrees C and suggest that the signal would not be adversely impacted by these precipitates for longer durations. C1 [Rempe, J. L.; Knudson, D. L.; Daw, J. E.; Wilkins, S. C.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Rempe, JL (reprint author), Idaho Natl Lab, POB 1625,MS 3840, Idaho Falls, ID 83415 USA. EM Joy.Rempe@inl.gov OI Rempe, Joy/0000-0001-5527-3549 NR 15 TC 2 Z9 2 U1 2 U2 9 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0957-0233 EI 1361-6501 J9 MEAS SCI TECHNOL JI Meas. Sci. Technol. PD NOV PY 2008 VL 19 IS 11 AR 115201 DI 10.1088/0957-0233/19/11/115201 PG 9 WC Engineering, Multidisciplinary; Instruments & Instrumentation SC Engineering; Instruments & Instrumentation GA 357DJ UT WOS:000259826200006 ER PT J AU Raylman, RR Smith, MF Kinahan, PE Majewski, S AF Raylman, Raymond R. Smith, Mark F. Kinahan, Paul E. Majewski, Stan TI Quantification of radiotracer uptake with a dedicated breast PET imaging system SO MEDICAL PHYSICS LA English DT Article DE nuclear medicine; specialized imagers; breast cancer ID POSITRON EMISSION MAMMOGRAPHY; COMPUTED-TOMOGRAPHY; DETECTOR; SCATTER; CANCER; DESIGN; BIOPSY; BRAIN AB Tomographic breast imaging techniques can be used to quantify radiotracer uptake in breast and tumor tissue. However, physical processes common to PET imaging can confound accurate quantification. In this investigation, we assessed the effects of these phenomena and tested correction schemes for our new positron emission mammography-tomography system (PEM-PET). The PEM-PET scanner utilizes two sets of rotating planar detector heads. Each unit consists of a 4x3 array of Hamamatsu H8500 flat panel position sensitive photomultipliers coupled to a 96x72 array of 2x2x15 mm(3) LYSO detector elements (pitch=2.1 mm). Image reconstruction is performed with a 3D-OSEM algorithm parallelized to run on a multiprocessor computer system. The reconstructed field-of-view is 15x15x15 cm(3). Much of the testing procedures were based on NEMA-NU2/2001 protocols. Count rate losses due to pulse pile-up, image contamination due to acceptance of random coincidences and Compton scatter, and image artifacts produced by photon attenuation were measured. It was found that the system was susceptible to count rate losses when moderate levels of radiation were present in the scanner due to the current design of the event trigger electronics. Application of corrections for Compton scattering, photon attenuation and dead time resulted in improved estimations of (18)F concentration in simplified phantom studies. Results from these preliminary studies indicate that the PEM-PET scanner will be useful for the quantification of radiotracer uptake in breast tumors, possibly facilitating early assessment of cancer treatments. (C) 2008 American Association of Physicists in Medicine. [DOI: 10.1118/1.2990781] C1 [Raylman, Raymond R.] W Virginia Univ, Dept Radiol, Ctr Adv Imaging, Morgantown, WV 26506 USA. [Smith, Mark F.] Univ Maryland, Sch Med, Dept Diagnost Radiol & Nucl Med, Baltimore, MD 21214 USA. [Kinahan, Paul E.] Univ Washington, Dept Radiol, Seattle, WA 98116 USA. [Majewski, Stan] Thomas Jefferson Natl Accelerator Facil, Radiat Detect & Med Imaging Grp, Newport News, VA 23606 USA. RP Raylman, RR (reprint author), W Virginia Univ, Dept Radiol, Ctr Adv Imaging, Morgantown, WV 26506 USA. EM rraylman@wvu.edu OI Kinahan, Paul/0000-0001-6461-3306 FU National Cancer Institute [R01CA094196]; Office of Science of the U. S. Department of Energy FX This work was supported by the National Cancer Institute (Grant No. R01CA094196) and by the Office of Science of the U. S. Department of Energy. Jefferson Science Associates, LLC operates the Thomas Jefferson National Accelerator Facility for the U. S. Department of Energy under U. S. DOE Contract No. DE-AC05-06OR23177. NR 17 TC 7 Z9 7 U1 1 U2 5 PU AMER ASSOC PHYSICISTS MEDICINE AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 0094-2405 J9 MED PHYS JI Med. Phys. PD NOV PY 2008 VL 35 IS 11 BP 4989 EP 4997 DI 10.1118/1.2990781 PG 9 WC Radiology, Nuclear Medicine & Medical Imaging SC Radiology, Nuclear Medicine & Medical Imaging GA 366LZ UT WOS:000260484400026 PM 19070233 ER PT J AU Wu, QY Song, HJ Swindeman, RW Shingledecker, JP Vasudevan, VK AF Wu, Quanyan Song, Hyojin Swindeman, Robert W. Shingledecker, John P. Vasudevan, Vijay K. TI Microstructure of long-term aged IN617Ni-base superalloy SO METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE LA English DT Article ID CREEP-PROPERTIES; PHASE-STABILITY; ALLOY; INCONEL-617; PRECIPITATION; BEHAVIOR; 1000-DEGREES-C; HELIUM AB The microstructure of the Ni-base superalloy IN617 that had undergone prolonged aging (approximately 65,000 hours) at a series of temperatures from 482 degrees C to 871 degrees C has been characterized by microhardness measurements, optical microscopy, scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Cr23C6, Mo-rich eta-M6C, and Ti(C,N) constitute the major primary coarse precipitates both within the grains and along the grain boundaries. The secondary carbides were mostly fine Cr23C6, which had a cube-on-cube orientation relationship (OR) with the fcc matrix, and at long times were present in cuboidal and plate-shape forms within the grains and as films along the grain boundaries. Fine, eta-M6C carbides were also observed at low to intermediate temperatures with an OR given by [011] carbide//[011] matrix, ((1) over bar(1) over bar1) carbide//((1) over bar(1) over bar1) matrix. The coarse eta-M6C carbides increased in extent at 871 degrees C, whereas the counterpart fine carbides were absent. The gamma' phase was found to be present at all aging temperatures up to 871 degrees C, with a volume fraction ranging from very low to approximately 5 pct at 593 degrees C, where the peak in microhardness occurs. The observations have also suggested that the presence of a very small amount of gamma' at temperatures as high as 871 degrees C at long times may be associated with a reaction between the fine eta-carbides and the gamma matrix. Ultrafine precipitates of the intermetallic phase Ni-2(Cr,Mo) with the Pt2Mo-type structure was observed in addition to gamma' in samples aged for 28,300 hours at the lowest aging temperature of 482 degrees C. These precipitates were absent in samples aged at higher temperatures. The various observations made have suggested that the long-term thermal stability of the IN617 alloy is reasonably good over a wide temperature range of 538 degrees C to 704 degrees C, whereas at higher temperatures (871 degrees C), the substantial decrease in the volume fraction of gamma' and coarsening and clustering of the carbides lead to a large drop in the microhardness. A modified time-temperature-transformation (TTT) diagram was constructed based on the results of this study and comparison with previous reports. C1 [Wu, Quanyan] ON Semicond, Phoenix, AZ 85008 USA. [Song, Hyojin; Vasudevan, Vijay K.] Univ Cincinnati, Dept Chem & Mat Engn, Cincinnati, OH 45221 USA. [Swindeman, Robert W.] Cromtech, Oak Ridge, TN 37831 USA. [Shingledecker, John P.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Wu, QY (reprint author), ON Semicond, Phoenix, AZ 85008 USA. EM vijay.vasudevan@uc.edu NR 32 TC 67 Z9 77 U1 5 U2 47 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1073-5623 J9 METALL MATER TRANS A JI Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. PD NOV PY 2008 VL 39A IS 11 BP 2569 EP 2585 DI 10.1007/s11661-008-9618-y PG 17 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 353MY UT WOS:000259573300005 ER PT J AU De Moor, E Lacroix, S Clarke, AJ Penning, J Speer, JG AF De Moor, E. Lacroix, S. Clarke, A. J. Penning, J. Speer, J. G. TI Effect of retained austenite stabilized via quench and partitioning on the strain hardening of martensitic steels SO METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE LA English DT Article ID HIGH-STRENGTH STEELS; INTERFACE MIGRATION; CARBON-STEELS; P PROCESS; TRANSFORMATION; NUCLEATION; KINETICS; TRIP AB A novel heat-treating process, quench and partitioning (Q&P), has been proposed as a fundamentally new way to produce martensitic microstructures containing retained austenite. The two-step process hypothesizes carbon enrichment of the austenite by decarburization of the martensite. Significant amounts of retained austenite have been measured in the final microstructure, although evidence for transition carbide formation in the martensite also exists. The mechanical properties obtained via Q&P are reported for a CMnAlSiP steel after intercritical annealing for A50 specimens. Tensile strength/total elongation combinations, ranging from 800 MPa/> 25 pct to 900 MPa/20 pct to 1000 MPa/10 pct, indicate that Q&P is a viable way to produce high strength steel grades with good ductility. The instantaneous strain hardening of Q&P steels shows a significant dependence on the partitioning conditions applied. Lower partitioning temperature (PT) leads to continuously decreasing instantaneous n-values with strain, similar to the strain hardening behavior observed for dual-phase (DP) steels, whereas higher PTs for the same partitioning time increase the strain hardening significantly. After an initial increase, the observed n-values remain high up to considerable amounts of strain, resulting in similar strain hardening behavior observed for austempered transformation-induced plasticity (TRIP) grades. Assessment of the mechanical stability of the retained austenite indicates that the TRIP effect is effectively contributing to the increased strain hardening as function of strain. C1 [De Moor, E.; Penning, J.] Univ Ghent, Dept Met & Mat Sci, Lab Iron & SteelMaking, B-9052 Zwijnaarde, Belgium. [Lacroix, S.] Arcelor Mittal Res Ind Ghent OCAS NV, Arcelor Mittal Grp, B-9060 Zelzate, Belgium. [Clarke, A. J.] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. [Speer, J. G.] Colorado Sch Mines, Adv Steel Proc & Prod Res Ctr, Golden, CO 80401 USA. RP De Moor, E (reprint author), Univ Ghent, Dept Met & Mat Sci, Lab Iron & SteelMaking, B-9052 Zwijnaarde, Belgium. EM emmanuel.demoor@ugent.be RI de moor, emmanuel/E-9373-2012 OI de moor, emmanuel/0000-0001-6538-1121 FU Science and Technology in Flanders (IWT-Vlaanderen); Arcelor-Mittal Research Industry Ghent (OCAS) FX The Institute for the Promotion of Innovation through Science and Technology in Flanders (IWT-Vlaanderen) is gratefully acknowledged for funding this research. The support of Arcelor-Mittal Research Industry Ghent (OCAS) and the sponsors of the Advanced Steel Processing and Products Research Center (ASPPRC), an industry/university cooperative research center at the Colorado School of Mines, is also gratefully acknowledged. Special thanks go to Gary Zito, Bob McGrew, and Professor S. W. Thompson for their support in TEM sample preparation and analysis. NR 37 TC 85 Z9 91 U1 5 U2 42 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1073-5623 J9 METALL MATER TRANS A JI Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. PD NOV PY 2008 VL 39A IS 11 BP 2586 EP 2595 DI 10.1007/s11661-008-9609-z PG 10 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 353MY UT WOS:000259573300006 ER PT J AU Simon, SB Joswiak, DJ Ishii, HA Bradley, JP Chi, M Grossman, L Aleon, J Brownlee, DE Fallon, S Hutcheon, ID Matrajt, G McKeegan, KD AF Simon, S. B. Joswiak, D. J. Ishii, H. A. Bradley, J. P. Chi, M. Grossman, L. Aleon, J. Brownlee, D. E. Fallon, S. Hutcheon, I. D. Matrajt, G. McKeegan, K. D. TI A refractory inclusion returned by Stardust from comet 81P/Wild 2 SO METEORITICS & PLANETARY SCIENCE LA English DT Article ID ALUMINUM-RICH INCLUSIONS; EARLY SOLAR-SYSTEM; ALLENDE METEORITE; OXYGEN ISOTOPES; CARBONACEOUS CHONDRITES; INTERPLANETARY DUST; OUTWARD TRANSPORT; CA-RICH; NEBULA; PARTICLES AB Among the samples returned from comet 81P/Wild 2 by the Stardust spacecraft is a suite of particles from one impact track (Track 25) that are Ca-, Al-rich and FeO-free. We Studied three particles from this track that range in size from 5.3 x 3.2 mu m to 15 x 10 mu m. Scanning and transmission electron microscopy show that they consist of very fine-grained (typically from similar to 0.5 to similar to 2 mu m) Al-rich, Ti-bearing and Ti-free clinopyroxene, Mg-Al spinel and anorthite, with trace amounts of fine perovskite, FeNi metal and osbornite (TiN) grains. In addition to these phases, the terminal particle, named "Inti", also contains melilite. All of these phases, with the exception of osbornite, are common in refractory inclusions and are predicted to condense at high temperature from a gas of solar composition. Osbornite, though very rare, has also been found in meteoritic refractory inclusions, and could have formed in a region of the nebula where carbon became enriched relative to oxygen compared to solar composition. Compositions of Ti-pyroxene in Inti are similar, but not identical, to those of fassaite from Allende inclusions. Electron energy loss spectroscopy shows that Ti-rich pyroxene in Inti has Ti(3+)/Ti(4+) within the range of typical meteoritic fassaite, consistent with fori-nation under reducing conditions comparable to those of a system of solar composition. Inti is (16)O-rich, with delta(18)O approximate to delta(17)O approximate to-40 parts per thousand, like unaltered phases in refractory inclusions and refractory IDPs. With grain sizes, mineralogy, mineral chemistry, and an oxygen isotopic composition like those of refractory inclusions, we conclude that Inti is a refractory inclusion that formed in the inner solar nebula. Identification of a particle that formed in the inner solar system among the comet samples demonstrates that there was transport of materials from the inner to the outer nebula, probably either in a bipolar outflow or by turbulence. C1 [Simon, S. B.; Grossman, L.] Univ Chicago, Dept Geophys Sci, Chicago, IL 60637 USA. [Joswiak, D. J.; Brownlee, D. E.; Matrajt, G.] Univ Washington, Dept Astron, Seattle, WA 98195 USA. [Ishii, H. A.; Bradley, J. P.; Chi, M.; Fallon, S.; Hutcheon, I. D.] Lawrence Livermore Natl Lab, Inst Geophys & Planetary Phys, Livermore, CA 94550 USA. [Chi, M.] Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA. [Grossman, L.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Aleon, J.; Hutcheon, I. D.] Lawrence Livermore Natl Lab, Glenn T Seaborg Inst, Livermore, CA 94551 USA. [Aleon, J.] Ctr Spectrometrie Nucl & Spectrometrie Masse, F-91405 Orsay, France. [Fallon, S.] Australian Natl Univ, RSES, SSAMS Radiocarbon Dating Lab, Canberra, ACT 0200, Australia. [McKeegan, K. D.] Univ Calif Los Angeles, Dept Earth & Space Sci, Los Angeles, CA 90095 USA. RP Simon, SB (reprint author), Univ Chicago, Dept Geophys Sci, 5734 S Ellis Ave, Chicago, IL 60637 USA. EM sbs8@uchicago.edu RI McKeegan, Kevin/A-4107-2008; Fallon, Stewart/G-6645-2011; Chi, Miaofang/Q-2489-2015; UCLA, SIMS/A-1459-2011 OI McKeegan, Kevin/0000-0002-1827-729X; Fallon, Stewart/0000-0002-8064-5903; Chi, Miaofang/0000-0003-0764-1567; FU National Aeronautics and Space Administration (NASA) [NNG05GGOOG, NNG05G177G, NNH06AD671, NNH04AB491]; SEGRF Fellowship; NSF Instrumentation and Facilities Program FX We thank F. Ciesla for helpful discussions. This work was supported by the National Aeronautics and Space Administration (NASA) through grants NNG05GGOOG (LG), NNG05G177G (LG), NNH06AD671 (JPB) and NNH04AB491 (JPB). M. Chi is Supported by a SEGRF Fellowship at LLNL. Portions of this work were performed under the auspices of the U. S. Department of Energy by Lawrence Livermore National Laboratory, in part under contract no. W-7405-Eng-48 and in part under Contract DE-AC52-07NA27344. The UCLA ion microprobe laboratory is partially supported by a grant from the NSF Instrumentation and Facilities Program. A. Brearley, T. Fagan and two anonymous reviewers provided reviews that led to improvements in the text. We are also very grateful to the Discovery and the Cosmochemistry programs of NASA for funding and supporting the Stardust Mission. NR 59 TC 70 Z9 70 U1 1 U2 19 PU METEORITICAL SOC PI FAYETTEVILLE PA DEPT CHEMISTRY/BIOCHEMISTRY, UNIV ARKANSAS, FAYETTEVILLE, AR 72701 USA SN 1086-9379 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD NOV PY 2008 VL 43 IS 11 BP 1861 EP 1877 PG 17 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 409MV UT WOS:000263510700008 ER PT J AU Uribe, JD Osorio, J Barrero, CA Girata, D Morales, AL Hoffmann, A AF Uribe, J. D. Osorio, J. Barrero, C. A. Girata, D. Morales, A. L. Hoffmann, A. TI Physical properties in thin films of iron oxides SO MICROELECTRONICS JOURNAL LA English DT Article DE Thin films; Iron oxides; Mossbauer effect; Magnetization curves AB We have grown hematite (alpha-Fe(2)O(3)) thin films on stainless steel substrates and magnetite (Fe(3)O(4)) thin films on (001)-Si single crystal substrates by a RF magnetron sputtering process. alpha-Fe(2)O(3) thin films were grown in an Ar atmosphere at substrate temperatures around 400 degrees C. and Fe(3)O(4) thin films in an Ar/O(2) reactive atmosphere at substrate temperatures around 500 degrees C. Conversion electron Mossbauer (CEM) spectra of alpha-Fe(2)O(3) thin films exhibit values for hyperfine parameter characteristic of the hematite stoichiometric phase in the weak ferromagnetic state [R.E. Vandenberghe, in; Mossbauer Spectroscopy and Applications in Geology, University Gent, Belgium, 1990 [1]. Furthermore, the relative line intensity ratio suggests that the magnetization vector of the polycrystalline film is aligned preferentially parallel to the surface. The CEM spectra of Fe(3)O(4) thin films show the presence of only the stoichiometric phase, and the values for the hyperfine fields and isomer shifts of the A and B sites are consistent with hulk Fe(3)O(4) [1]. The X-ray diffraction (XRD) pattern of the polycrystalline thin films also corresponds to),alpha-Fe(2)O(3) and Fe(3)O(4) [JCPDS X-ray diffraction data cards. 2001. [2]]. The samples were also analyzed by atomic force microscopy (AFM) and they reveal a grain morphology common for polycrystalline films. We found an average grain size of 211 nm and surface roughness of 45 nm in alpha-Fe(2)O(3) films, and an average grain size of 148 nm and surface roughness of 1.2 nm in Fe(3)O(4) films (C) 2008 Elsevier Ltd. All rights reserved. C1 [Uribe, J. D.; Osorio, J.; Barrero, C. A.; Girata, D.; Morales, A. L.] Univ Antioquia, Fac Ciencias Exactas & Nat, Inst Fis, Medellin, Colombia. [Hoffmann, A.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Hoffmann, A.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. RP Uribe, JD (reprint author), Univ Antioquia, Fac Ciencias Exactas & Nat, Inst Fis, AA 1226, Medellin, Colombia. EM juribe@fisica.udea.edu.co RI Hoffmann, Axel/A-8152-2009 OI Hoffmann, Axel/0000-0002-1808-2767 FU Colciencias [043-2005]; U.S. Department of Energy [DE-AC02-06CH11357] FX This work was supported by the Excellence Center for Novel Materials under Colciencias Contract 043-2005 and CODI Project Sostenibilidad 2007-2008 work at Argonne was supported by the U.S. Department of Energy under Contract no. DE-AC02-06CH11357. NR 5 TC 5 Z9 6 U1 3 U2 23 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0026-2692 J9 MICROELECTRON J JI Microelectron. J. PD NOV PY 2008 VL 39 IS 11 SI SI BP 1391 EP 1393 DI 10.1016/j.mejo.2008.01.054 PG 3 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology SC Engineering; Science & Technology - Other Topics GA 378BK UT WOS:000261295900070 ER PT J AU Cappuccio, JA Blanchette, CD Sulchek, TA Arroyo, ES Kralj, JM Hinz, AK Kuhn, EA Chromy, BA Segelke, BW Rothschild, KJ Fletcher, JE Katzen, F Peterson, TC Kudlicki, WA Bench, G Hoeprich, PD Coleman, MA AF Cappuccio, Jenny A. Blanchette, Craig D. Sulchek, Todd A. Arroyo, Erin S. Kralj, Joel M. Hinz, Angela K. Kuhn, Edward A. Chromy, Brett A. Segelke, Brent W. Rothschild, Kenneth J. Fletcher, Julia E. Katzen, Federico Peterson, Todd C. Kudlicki, Wieslaw A. Bench, Graham Hoeprich, Paul D. Coleman, Matthew A. TI Cell-free Co-expression of Functional Membrane Proteins and Apolipoprotein, Forming Soluble Nanolipoprotein Particles SO MOLECULAR & CELLULAR PROTEOMICS LA English DT Article ID FREE EXPRESSION; HIGH-THROUGHPUT; IN-VITRO; PHOSPHOLIPID-BILAYERS; LIPID-BILAYERS; BACTERIORHODOPSIN; SPECTROSCOPY; RECONSTITUTION; VESICLES; TRANSDUCIN AB Here we demonstrate rapid production of solubilized and functional membrane protein by simultaneous cell-free expression of an apolipoprotein and a membrane protein in the presence of lipids, leading to the self-assembly of membrane protein-containing nanolipoprotein particles (NLPs). NLPs have shown great promise as a biotechnology platform for solubilizing and characterizing membrane proteins. However, current approaches are limited because they require extensive efforts to express, purify, and solubilize the membrane protein prior to insertion into NLPs. By the simple addition of a few constituents to cell-free extracts, we can produce membrane proteins in NLPs with considerably less effort. For this approach an integral membrane protein and an apolipoprotein scaffold are encoded by two DNA plasmids introduced into cell-free extracts along with lipids. For this study reported here we used plasmids encoding the bacteriorhodopsin (bR) membrane apoprotein and scaffold protein Delta 1-49 apolipoprotein A-I fragment (Delta 49A1). Cell free co-expression of the proteins encoded by these plasmids, in the presence of the cofactor all-trans-retinal and dimyristoylphosphatidylcholine, resulted in production of functional bR as demonstrated by a 5-nm shift in the absorption spectra upon light adaptation and characteristic time-resolved FT infrared difference spectra for the bR 3 M transition. Importantly the functional bR was solubilized in discoidal bR.NLPs as determined by atomic force microscopy. A survey study of other membrane proteins co-expressed with Delta 49A1 scaffold protein also showed significantly increased solubility of all of the membrane proteins, indicating that this approach may provide a general method for expressing membrane proteins enabling further studies. Molecular & Cellular Proteomics 7: 2246-2253, 2008. C1 [Cappuccio, Jenny A.; Blanchette, Craig D.; Sulchek, Todd A.; Arroyo, Erin S.; Hinz, Angela K.; Kuhn, Edward A.; Chromy, Brett A.; Segelke, Brent W.; Bench, Graham; Hoeprich, Paul D.; Coleman, Matthew A.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Fletcher, Julia E.; Katzen, Federico; Peterson, Todd C.; Kudlicki, Wieslaw A.] Invitrogen Corp, Carlsbad, CA 92008 USA. [Kralj, Joel M.; Rothschild, Kenneth J.] Boston Univ, Dept Phys, Boston, MA 02215 USA. [Kralj, Joel M.; Rothschild, Kenneth J.] Boston Univ, Photon Ctr, Boston, MA 02215 USA. RP Coleman, MA (reprint author), Lawrence Livermore Natl Lab, Biosci & Biotechnol Div, POB 808,L-452, Livermore, CA 94551 USA. EM coleman16@llnl.gov OI Coleman, Matthew/0000-0003-1389-4018 FU National Institutes of Health [R01GM069969]; United States Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; Laboratory Directed Research and Development Office [06-SI-003, LLNL-JRNL-401933] FX This work was supported, in whole or in part, by National Institutes of Health Grant R01GM069969 ( to K. J. R.). This work was also performed under the auspices of the United States Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 with support from the Laboratory Directed Research and Development Office (06-SI-003, LLNL-JRNL-401933 to P. D. H.). The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked "advertisement" in accordance with 18 U. S. C. Section 1734 solely to indicate this fact. NR 47 TC 54 Z9 55 U1 1 U2 20 PU AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3996 USA SN 1535-9476 J9 MOL CELL PROTEOMICS JI Mol. Cell. Proteomics PD NOV PY 2008 VL 7 IS 11 BP 2246 EP 2253 DI 10.1074/mcp.M800191-MCP200 PG 8 WC Biochemical Research Methods SC Biochemistry & Molecular Biology GA 372HV UT WOS:000260893600013 PM 18603642 ER PT J AU Anderson, SJ Stone, CL Posada-Buitrago, ML Boore, JL Neelam, BA Stephens, RM Luster, DG Frederick, RD Pedley, KF AF Anderson, Sharon J. Stone, Christine L. Posada-Buitrago, Martha Lucia Boore, Jeffrey L. Neelam, Beena A. Stephens, Robert M. Luster, Douglas G. Frederick, Reid D. Pedley, Kerry F. TI Development of simple sequence repeat markers for the soybean rust fungus, Phakopsora pachyrhizi SO MOLECULAR ECOLOGY RESOURCES LA English DT Article DE basidiomycetes; microsatellites; Phakopsora pachyrhizi; soybean rust; SSR AB Twenty-four simple sequence repeat markers were developed for Phakopsora pachyrhizi, a fungal pathogen of soybean (Glycine max) and other legumes. All 24 of the loci were evaluated on 28 isolates of P. pachyrhizi. Twenty-one loci were polymorphic, with allelic diversity ranging from two to eight alleles, and null alleles were observed for eight of the 24 loci. A preliminary screen with the closely related species, P. meibomiae, indicated that these primer pairs are specific to P. pachyrhizi. C1 [Anderson, Sharon J.; Stone, Christine L.; Luster, Douglas G.; Frederick, Reid D.; Pedley, Kerry F.] USDA ARS, Foreign Dis Weed Sci Res Unit, Ft Detrick, MD 21702 USA. [Posada-Buitrago, Martha Lucia; Boore, Jeffrey L.] Joint Genome Inst, Walnut Creek, CA 94598 USA. [Posada-Buitrago, Martha Lucia; Boore, Jeffrey L.] Lawrence Berkeley Natl Lab, US Dept Energy, Walnut Creek, CA USA. [Neelam, Beena A.; Stephens, Robert M.] NCI Frederick, SAIC Frederick Inc, Adv Biomed Comp Ctr, Adv Technol Program, Ft Detrick, MD 21702 USA. RP Pedley, KF (reprint author), USDA ARS, Foreign Dis Weed Sci Res Unit, Ft Detrick, MD 21702 USA. EM kerry.pedley@ars.usda.gov RI Moreira, Eder/B-2309-2010; POSADA, MARTHA/G-7927-2012 NR 8 TC 8 Z9 9 U1 1 U2 2 PU BLACKWELL PUBLISHING PI OXFORD PA 9600 GARSINGTON RD, OXFORD OX4 2DQ, OXON, ENGLAND SN 1755-098X J9 MOL ECOL RESOUR JI Mol. Ecol. Resour. PD NOV PY 2008 VL 8 IS 6 BP 1310 EP 1312 DI 10.1111/j.1755-0998.2008.02272.x PG 3 WC Biochemistry & Molecular Biology; Ecology; Evolutionary Biology SC Biochemistry & Molecular Biology; Environmental Sciences & Ecology; Evolutionary Biology GA 367BY UT WOS:000260528700027 PM 21586030 ER PT J AU Hickman, CR Peters, MB Crawford, NG Hagen, C Glenn, TSC Somers, CM AF Hickman, Caleb R. Peters, Maureen B. Crawford, Nicholas G. Hagen, Cris Glenn, Travi S. C. Somers, Christopher M. TI Development and characterization of microsatellite loci in the American white pelican (Pelecanus erythrorhynchos) SO MOLECULAR ECOLOGY RESOURCES LA English DT Article DE American white pelican; microsatellites; PCR; Pelecanus erythrorhynchos; population structure; primers AB We isolated and characterized nine microsatellite loci from the American white pelican, Pelecanus erythrorhynchos. The loci were screened in 23 individuals from the eastern and western populations of North America and were polymorphic, with the number of alleles per locus ranging from two to eight. Polymorphic information content ranged from 0.185 to 0.820 and observed heterozygosity from 0.217 to 0.957. These new loci will provide tools for studies of population structure in this species, thereby aiding conservation planning. C1 [Somers, Christopher M.] Univ Regina, Dept Biol, Regina, SK S4S 0A2, Canada. [Hickman, Caleb R.; Peters, Maureen B.; Crawford, Nicholas G.; Hagen, Cris; Glenn, Travi S. C.] Univ Georgia, Savannah River Ecol Lab, Aiken, SC 29802 USA. [Glenn, Travi S. C.] Univ Georgia, Dept Environm Hlth Sci, Athens, GA 30602 USA. RP Somers, CM (reprint author), Univ Regina, Dept Biol, Regina, SK S4S 0A2, Canada. EM chris.somers@uregina.ca FU Department of Energy award [DE-FC09-07SR22506]; Saskatchewan Environment's Fish and Wildlife Development Fund, the Canadian Wildlife Service; University of Regina FX This work was supported by Department of Energy award DE-FC09-07SR22506 to the University of Georgia, and funds awarded to C.M.S. through Saskatchewan Environment's Fish and Wildlife Development Fund, the Canadian Wildlife Service, and the University of Regina. We thank V. Kjoss and the volunteers who collected tissue samples. NR 9 TC 4 Z9 4 U1 1 U2 1 PU BLACKWELL PUBLISHING PI OXFORD PA 9600 GARSINGTON RD, OXFORD OX4 2DQ, OXON, ENGLAND SN 1755-098X J9 MOL ECOL RESOUR JI Mol. Ecol. Resour. PD NOV PY 2008 VL 8 IS 6 BP 1439 EP 1441 DI 10.1111/j.1755-0998.2008.02191.x PG 3 WC Biochemistry & Molecular Biology; Ecology; Evolutionary Biology SC Biochemistry & Molecular Biology; Environmental Sciences & Ecology; Evolutionary Biology GA 367BY UT WOS:000260528700066 PM 21586069 ER PT J AU Zhang, XC Hu, JP AF Zhang, Xin-Chun Hu, Jian-Ping TI FISSION1A and FISSION1B Proteins Mediate the Fission of Peroxisomes and Mitochondria in Arabidopsis SO MOLECULAR PLANT LA English DT Article DE peroxisomal and mitochondrial fission; Arabidopsis; FIS1 protein ID DYNAMIN-RELATED PROTEINS; PLANT PEROXISOMES; SACCHAROMYCES-CEREVISIAE; MAMMALIAN-CELLS; DIVISION; PROLIFERATION; BIOGENESIS; FIS1; THALIANA; ADL2B AB Peroxisomes and mitochondria are metabolically diverse organelles that act in concert in a number of pathways in eukaryotes, including photorespiration and lipid mobilization in plants. The division machineries of these two types of organelles also share several components such as dynamin-related proteins (DRPs) and their organelle anchor, the FISSION1 (FIS1) protein. In Arabidopsis, members of the DRP3 and FIS1 small protein families, namely DRP3A, DRP3B, FIS1A and FIS1B, are each dual-targeted to peroxisomes and mitochondria and are required for the division of both organelles; DRP3A and DRP38 are partially redundant in function. To further determine the contribution of FIS1A and FIS1B to the division of peroxisomes and mitochondria, we analyzed plants overexpressing FIS1A or FIS1B and mutants in which the functions of both proteins were disrupted. Domains in FIS1A and FIS1B required for peroxisomal targeting were also dissected. Our results demonstrate that FIS1A and FIS1B play rate-limiting and partially overlapping roles in promoting the fission of peroxisomes and mitochondria. Furthermore, although the C-terminus of FIS1 is both necessary and sufficient for targeting to peroxisomes, the role of the short C-terminal segment adjacent to the transmembrane domain may differ among diverse species in peroxisomal targeting. C1 [Zhang, Xin-Chun; Hu, Jian-Ping] Michigan State Univ, MSU DOE Plant Res Lab, E Lansing, MI 48824 USA. [Hu, Jian-Ping] Michigan State Univ, Dept Plant Biol, E Lansing, MI 48824 USA. RP Hu, JP (reprint author), Michigan State Univ, MSU DOE Plant Res Lab, E Lansing, MI 48824 USA. EM huji@msu.edu FU US Department of Energy; National Science Foundation [MCB 0618335] FX This work was supported by grants from the US Department of Energy and the National Science Foundation (MCB 0618335) to J.H. NR 46 TC 35 Z9 39 U1 0 U2 1 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 1674-2052 J9 MOL PLANT JI Mol. Plant. PD NOV PY 2008 VL 1 IS 6 BP 1036 EP 1047 DI 10.1093/mp/ssn056 PG 12 WC Biochemistry & Molecular Biology; Plant Sciences SC Biochemistry & Molecular Biology; Plant Sciences GA 400HG UT WOS:000262858000013 PM 19825601 ER PT J AU Correia, J Arritt, RW AF Correia, James, Jr. Arritt, Raymond W. TI Thermodynamic Properties of Mesoscale Convective Systems Observed during BAMEX SO MONTHLY WEATHER REVIEW LA English DT Article ID MIDLATITUDE SQUALL LINE; HIGH-PLAINS CUMULONIMBI; STRATIFORM PRECIPITATION; KINEMATIC STRUCTURE; DOPPLER RADAR; REAR-INFLOW; SURFACE PRESSURE; TRANSITION ZONE; LIFE-CYCLE; BOW ECHOES AB Dropsonde observations from the Bow Echo and Mesoscale Convective Vortex Experiment (BAMEX) are used to document the spatiotemporal variability of temperature, moisture, and wind within mesoscale convective systems (MCSs). Onion-type sounding structures are found throughout the stratiform region of MCSs, but the temperature and moisture variability is large. Composite soundings were constructed and statistics of thermodynamic variability were generated within each subregion of the MCS. The calculated air vertical velocity helped identify subsaturated downdrafts. It was found that lapse rates within the cold pool varied markedly throughout the MCS. Layered wet-bulb potential temperature profiles seem to indicate that air within the lowest several kilometers comes from a variety of source regions. It was also found that lapse-rate transitions across the 0 degrees C level were more common than isothermal, melting layers. The authors discuss the implications these findings have and how they can be used to validate future high-resolution numerical simulations of MCSs. C1 [Correia, James, Jr.; Arritt, Raymond W.] Iowa State Univ, Dept Agron, Ames, IA USA. RP Correia, J (reprint author), Pacific NW Natl Lab, POB 99, Richland, WA 99352 USA. EM james.correia@pnl.gov RI Correia, Jr, James/A-9455-2010 OI Correia, Jr, James/0000-0003-1092-8999 NR 65 TC 1 Z9 1 U1 0 U2 1 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0027-0644 J9 MON WEATHER REV JI Mon. Weather Rev. PD NOV PY 2008 VL 136 IS 11 BP 4242 EP 4271 DI 10.1175/2008MWR2284.1 PG 30 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 371VX UT WOS:000260861900014 ER PT J AU Meyer, JC Kisielowski, C Erni, R Rossell, MD Crommie, MF Zettl, A AF Meyer, Jannik C. Kisielowski, C. Erni, R. Rossell, Marta D. Crommie, M. F. Zettl, A. TI Direct Imaging of Lattice Atoms and Topological Defects in Graphene Membranes SO NANO LETTERS LA English DT Article ID CARBON NANOTUBES; SCATTERING FACTORS; ABERRATION AB We present a transmission electron microscopy investigation of graphene membranes, crystalline foils with a thickness of only I atom. By using aberration-correction in combination with a monochromator, 1-angstrom resolution is achieved at an acceleration voltage of only 80 kV. The low voltage is crucial for the stability of these membranes. As a result, every individual carbon atom in the field of view is detected and resolved. We observe a highly crystalline lattice along with occasional point defects. The formation and annealing of Stone-Wales defects is observed in situ. Multiple five- and seven-membered rings appear exclusively in combinations that avoid dislocations and disclinations, in contrast to previous observations on highly curved (tube- or fullerene-like) graphene surfaces. C1 [Meyer, Jannik C.; Crommie, M. F.; Zettl, A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Meyer, Jannik C.; Crommie, M. F.; Zettl, A.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Kisielowski, C.; Erni, R.; Rossell, Marta D.] Univ Calif Berkeley, Lawrence Berkeley Lab, Natl Ctr Electron Microscopy, Berkeley, CA 94720 USA. RP Zettl, A (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. EM azettl@berkeley.edu RI Meyer, Jannik/H-8541-2012; Erni, Rolf/P-7435-2014; Zettl, Alex/O-4925-2016; Rossell, Marta/E-9785-2017 OI Meyer, Jannik/0000-0003-4023-0778; Erni, Rolf/0000-0003-2391-5943; Zettl, Alex/0000-0001-6330-136X; FU Department of Energy [AC02-05CH11231]; Department of Energy, Office of Science, Office of Basic Energy Sciences; U.S. Department of Energy [DE-AC02-05CH11231] FX NCEM is supported by the Department of Energy under contract no. DE-AC02-05CH11231. The TEAM project is supported by the Department of Energy, Office of Science, Office of Basic Energy Sciences. J.C.M., M.F., and A.Z. were supported by the Director, Office of Energy Research, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy under contract no. DE-AC02-05CH11231, via the sp2-bonded nanostructures program. NR 28 TC 556 Z9 567 U1 32 U2 277 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD NOV PY 2008 VL 8 IS 11 BP 3582 EP 3586 DI 10.1021/nl801386m PG 5 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 372FX UT WOS:000260888600006 PM 18563938 ER PT J AU Kim, TW Chung, PW Slowing, II Tsunoda, M Yeung, ES Lin, VSY AF Kim, Tae-Wan Chung, Po-Wen Slowing, Igor I. Tsunoda, Makoto Yeung, Edward S. Lin, Victor S. -Y. TI Structurally Ordered Mesoporous Carbon Nanoparticles as Transmembrane Delivery Vehicle in Human Cancer Cells SO NANO LETTERS LA English DT Article ID SILICA NANOPARTICLES; DRUG-DELIVERY; NANOTUBES; TRANSPORTERS; RELEASE; DNA; ADSORPTION; PROTEINS; NANOCAGE; CARRIERS AB A structurally ordered, CMK-1 type mesoporous carbon nanoparticle (MCN) material was successfully synthesized by using a MCM-48 type mesoporous silica nanoparticle as template. The structure of MCN was analyzed by a series of different techniques, including the scanning and transmission electron microscopy, powder X-ray diffraction, and N-2 sorption analysis. To the best of our knowledge, no study has been reported prior to our investigation on the utilization of these structurally ordered mesoporous carbon nanoparticles for the delivery of membrane impermeable chemical agents inside of eukaryotic cells. The cellular uptake efficiency and biocompatibility of MCN with human cervical cancer cells (HeLa) were investigated. Our results show that the inhibitory concentration (IC50) value of MCN is very high (>50 mu g/mL per million cells) indicating that MCN is fairly biocompatible in vitro. Also, a membrane impermeable fluorescence dye, Fura-2, was loaded to the mesoporous matrix of MCN. We demonstrated that the MCN material could indeed serve as a transmembrane carrier for delivering Fura-2 through the cell membrane to release these molecules inside of live HeLa cells. We envision that further developments of this MCN material will lead to a new generation of nanodevices for transmembrane delivery and intracellular release applications. C1 [Kim, Tae-Wan; Chung, Po-Wen; Slowing, Igor I.; Tsunoda, Makoto; Yeung, Edward S.; Lin, Victor S. -Y.] Iowa State Univ, US DOE, Ames Lab, Dept Chem, Ames, IA 50011 USA. RP Lin, VSY (reprint author), Iowa State Univ, US DOE, Ames Lab, Dept Chem, Ames, IA 50011 USA. EM vsylin@iastate.edu RI Chung, Po-Wen/J-7476-2015; OI Slowing, Igor/0000-0002-9319-8639 FU U.S. National Science Foundation [CHE-0239570, CHE-0809521]; U.S. DOE Ames Laboratory through the office of Basic Energy Sciences [DEAC02-07CH11358] FX This study was supported by the U.S. National Science Foundation (CHE-0239570 and CHE-0809521) and the U.S. DOE Ames Laboratory through the office of Basic Energy Sciences under Contract No. DEAC02-07CH11358. NR 33 TC 138 Z9 143 U1 7 U2 138 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD NOV PY 2008 VL 8 IS 11 BP 3724 EP 3727 DI 10.1021/nl801976m PG 4 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 372FX UT WOS:000260888600030 PM 18954128 ER PT J AU Law, M Beard, MC Choi, S Luther, JM Hanna, MC Nozik, AJ AF Law, Matt Beard, Matthew C. Choi, Sukgeun Luther, Joseph M. Hanna, Mark C. Nozik, Arthur J. TI Determining the Internal Quantum Efficiency of PbSe Nanocrystal Solar Cells with the Aid of an Optical Model SO NANO LETTERS LA English DT Article ID PHOTOVOLTAIC DEVICES; POLYMER; FILMS AB We determine the internal quantum efficiency (IQE) of the active layer of PbSe nanocrystal (NC) back-contact Schottky solar cells by combining external quantum efficiency (EQE) and total reflectance measurements with an optical model of the device stack. The model is parametrized with the complex index of refraction of each layer in the stack as calculated from ellipsometry data. Good agreement between the experimental and modeled reflectance spectra permits a quantitative estimate of the fraction of incident light absorbed by the NC films at each wavelength, thereby yielding well-constrained QE spectra for photons absorbed only by the NCs. Using a series of devices fabricated from 5.1 +/- 0.4 nm diameter PbSe NCs, we show that thin NC cells achieve an EQE and an active layer IQE as high as 60 +/- 5% and 80 +/- 7%, respectively, while the QE of devices with NC layers thicker than about 150 nm falls, particularly in the blue, because of progressively greater light absorption in the field-free region of the films and enhanced recombination overall. Our results demonstrate that interference effects must be taken into account in order to calculate accurate optical generation profiles and IQE spectra for these thin film solar cells. The mixed modeling/experimental approach described here is a rigorous and powerful way to determine if multiple exciton generation (MEG) photocurrent is collected by devices with EQE < 100%. On the basis of the magnitudes and shapes of the IQE spectra, we conclude that the 1,2-ethanedithiol treated NC devices studied here do not produce appreciable MEG photocurrent. C1 [Law, Matt; Beard, Matthew C.; Choi, Sukgeun; Luther, Joseph M.; Hanna, Mark C.; Nozik, Arthur J.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Law, M (reprint author), Univ Calif Irvine, Dept Chem, Irvine, CA 92717 USA. EM matt.law@uci.edu RI Choi, Sukgeun/J-2345-2014; Nozik, Arthur/A-1481-2012; Nozik, Arthur/P-2641-2016; OI BEARD, MATTHEW/0000-0002-2711-1355 FU U.S. DOE [DE-AC36-99-GO10337] FX The authors thank Q. Song and B. Hughes for nanocrystal synthesis, B. To for AFM, D. Levi for assistance with ellipsometry, and D. Ginley for use of the glove boxes. M.C.B., J.M.L., and A.J.N. were supported by the Chemical Sciences, Geosciences, and Biosciences Division of the Office of Basic Energy Science of the U.S. DOE, contract DE-AC36-99-GO10337; M.L. acknowledges support from the Energy Efficiency and Renewable Energy Photovoltaics Program.; Correspondence and requests for materials should be addressed to M.L. or M.C.B. NR 21 TC 109 Z9 111 U1 1 U2 61 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD NOV PY 2008 VL 8 IS 11 BP 3904 EP 3910 DI 10.1021/nl802353x PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 372FX UT WOS:000260888600062 PM 18823149 ER PT J AU Graham, MW Ma, YZ Fleming, GR AF Graham, Matthew W. Ma, Ying-Zhong Fleming, Graham R. TI Femtosecond Photon Echo Spectroscopy of Semiconducting Single-Walled Carbon Nanotubes SO NANO LETTERS LA English DT Article ID SOLVATION DYNAMICS; EXCITONS; PHOTOLUMINESCENCE; ENVIRONMENTS AB Three-pulse photon echo peak shift measurements were performed on semiconducting single-walled carbon nanotubes embedded in polymer matrix at room temperature. Simultaneous modeling of the peak shift data in the limit of zero-intensity and the linear absorption spectrum enable us to extract an intrinsic homogeneous line width of 178 cm(-1), an inhomogeneous width of 698 cm(-1), and a Huang-Rhys factor of 0.04 for the radial breathing mode vibration. The peak shift data when combined with two-pulse photon echo and pump-probe measurements allows us to determine a pure exciton dephasing time scale of 78 fs at room temperature. C1 [Fleming, Graham R.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Fleming, GR (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM GRFleming@lbl.gov RI Ma, Yingzhong/L-6261-2016 OI Ma, Yingzhong/0000-0002-8154-1006 FU NSF; U.S. Department of Energy [DE-AC02-05CH11231] FX This work is supported by NSF. The steady-state fluorescence spectra reported in this work were measured at the Molecular Foundry, Lawrence Berkeley National Laboratory, which is supported by the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. We thank Prof. D.S. Larsen for offering the source code used in our 3PEPS data simulation. NR 38 TC 32 Z9 33 U1 0 U2 12 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD NOV PY 2008 VL 8 IS 11 BP 3936 EP 3941 DI 10.1021/nl802423w PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 372FX UT WOS:000260888600068 PM 18937517 ER PT J AU Tao, AR Ceperley, DP Sinsermsuksakul, P Neureuther, AR Yang, PD AF Tao, Andrea R. Ceperley, Daniel P. Sinsermsuksakul, Prasert Neureuther, Andrew R. Yang, Peidong TI Self-Organized Silver Nanoparticles for Three-Dimensional Plasmonic Crystals SO NANO LETTERS LA English DT Article ID ENHANCED RAMAN-SCATTERING; PHOTONIC CRYSTAL; OPTICAL WAVELENGTHS; WAVE-GUIDES; ARRAYS; LIGHT; METAMATERIALS; NANOCRYSTALS; BANDGAP; SPHERES AB Metal nanostructures that Support surface plasmons are compelling as plasmonic circuit elements and as the building blocks for metamaterials. We demonstrate here the spontaneous self-assembly of shaped silver nanoparticles into three-dimensional plasmonic crystals that display a frequency-selective response in the visible wavelengths. Extensive long-range order mediated by exceptional colloid monodispersity gives rise to optical passbands that can be tuned by particle volume fraction. These metallic supercrystals present a new paradigm for the fabrication of plasmonic materials, delivering a functional, tunable, completely bottom-up optical element that can be constructed on a massively parallel scale without lithography. C1 [Tao, Andrea R.; Sinsermsuksakul, Prasert; Yang, Peidong] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Tao, Andrea R.; Sinsermsuksakul, Prasert; Yang, Peidong] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Ceperley, Daniel P.; Neureuther, Andrew R.] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA. RP Yang, PD (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM p_yang@berkeley.edu FU National Science Foundation and the U.S. Department of Energy [DE-AC02-05CHI1231] FX This work is partially supported by National Science Foundation and the U.S. Department of Energy under Contract No. DE-AC02-05CHI1231. NR 30 TC 118 Z9 118 U1 6 U2 103 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD NOV PY 2008 VL 8 IS 11 BP 4033 EP 4038 DI 10.1021/nl802877h PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 372FX UT WOS:000260888600085 PM 18928325 ER PT J AU Kohout, SC Isacoff, EY AF Kohout, Susy C. Isacoff, Ehud Y. TI To dislodge an enzyme from an ion channel, try steroids SO NATURE CHEMICAL BIOLOGY LA English DT News Item ID K+ CHANNEL; BETA-SUBUNIT; POTASSIUM CHANNELS; INACTIVATION; EXPRESSION AB Voltage-gated K+ channels assemble into complexes with Kv beta s, a group of aldoketoreductases. The Kv beta s regulate channel gating and localization, and voltage-dependent changes in the channel regulate AKR activity. Pan and colleagues now propose a new type of modulation of this complex. Cortisone disrupts the complex and relieves channel inactivation-which should reduce neuronal excitability. C1 [Kohout, Susy C.] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. Lawrence Berkeley Lab, Div Mat, Berkeley, CA 94720 USA. Lawrence Berkeley Lab, Div Phys Biosci, Berkeley, CA 94720 USA. RP Kohout, SC (reprint author), Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. EM ehud@berkeley.edu FU NINDS NIH HHS [R01 NS035549] NR 13 TC 1 Z9 1 U1 0 U2 1 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK STREET, 9TH FLOOR, NEW YORK, NY 10013-1917 USA SN 1552-4450 J9 NAT CHEM BIOL JI Nat. Chem. Biol. PD NOV PY 2008 VL 4 IS 11 BP 650 EP 651 DI 10.1038/nchembio1108-650 PG 2 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 364CY UT WOS:000260315000006 PM 18936745 ER PT J AU Rahimov, F Marazita, ML Visel, A Cooper, ME Hitchler, MJ Rubini, M Domann, FE Govil, M Christensen, K Bille, C Melbye, M Jugessur, A Lie, RT Wilcox, AJ Fitzpatrick, DR Green, ED Mossey, PA Little, J Steegers-Theunissen, RP Pennacchio, LA Schutte, BC Murray, JC AF Rahimov, Fedik Marazita, Mary L. Visel, Axel Cooper, Margaret E. Hitchler, Michael J. Rubini, Michele Domann, Frederick E. Govil, Manika Christensen, Kaare Bille, Camille Melbye, Mads Jugessur, Astanand Lie, Rolv T. Wilcox, Allen J. Fitzpatrick, David R. Green, Eric D. Mossey, Peter A. Little, Julian Steegers-Theunissen, Regine P. Pennacchio, Len A. Schutte, Brian C. Murray, Jeffrey C. CA NISC Comparative Sequencing Pr TI Disruption of an AP-2 alpha binding site in an IRF6 enhancer is associated with cleft lip SO NATURE GENETICS LA English DT Article ID OROFACIAL CLEFTS; ORAL CLEFTS; PALATE; GENE; POPULATION; SEQUENCES; POLYMORPHISMS; CONTRIBUTES; EXPRESSION; MUTATIONS AB Previously we have shown that nonsyndromic cleft lip with or without cleft palate (NSCL/P)(1) is strongly associated with SNPs in IRF6 (interferon regulatory factor 6)(2). Here, we use multispecies sequence comparisons to identify a common SNP (rs642961, G>A) in a newly identified IRF6 enhancer. The A allele is significantly overtransmitted (P = 1 x 10(-11)) in families with NSCL/P, in particular those with cleft lip but not cleft palate. Further, there is a dosage effect of the A allele, with a relative risk for cleft lip of 1.68 for the AG genotype and 2.40 for the AA genotype. EMSA and ChIP assays demonstrate that the risk allele disrupts the binding site of transcription factor AP-2a and expression analysis in the mouse localizes the enhancer activity to craniofacial and limb structures. Our findings place IRF6 and AP-2a in the same developmental pathway and identify a high-frequency variant in a regulatory element contributing substantially to a common, complex disorder. C1 [Rahimov, Fedik; Schutte, Brian C.; Murray, Jeffrey C.] Univ Iowa, Dept Pediat, Iowa City, IA 52242 USA. [Marazita, Mary L.; Cooper, Margaret E.; Govil, Manika] Univ Pittsburgh, Sch Dent Med, Dept Oral Biol, Ctr Craniofacial & Dent Genet, Pittsburgh, PA 15219 USA. [Visel, Axel; Pennacchio, Len A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Genome Div, Berkeley, CA 94720 USA. [Hitchler, Michael J.; Domann, Frederick E.] Univ Iowa, Dept Radiat Oncol, Iowa City, IA 52242 USA. [Rubini, Michele] Univ Ferrara, Med Genet Unit, Dept Expt Diagnost Med, I-44100 Ferrara, Italy. [Christensen, Kaare; Bille, Camille] Univ So Denmark, Inst Publ Hlth, Ctr Prevent Congenital Malinformat, DK-5000 Odense C, Denmark. [Melbye, Mads] Danish Epidemiol Sci Ctr, State Serum Inst, Dept Epidemiol Res, DK-2300 Copenhagen, Denmark. [Jugessur, Astanand; Lie, Rolv T.] Univ Bergen, Dept Publ Hlth & Primary Hlth Care, Sect Epidemiol & Med Stat, N-5018 Bergen, Norway. [Wilcox, Allen J.] NIEHS, Epidemiol Branch, NIH, Res Triangle Pk, NC 27709 USA. [Fitzpatrick, David R.] Western Gen Hosp, Med Res Council Human Genet Unit, Edinburgh EH4 2XU, Midlothian, Scotland. [Green, Eric D.; NISC Comparative Sequencing Pr] NHGRI, Genome Technol Branch, NIH, Bethesda, MD 20892 USA. [Green, Eric D.; NISC Comparative Sequencing Pr] NHGRI, US Natl Inst Hlth Intramural Sequencing Ctr, NIH, Bethesda, MD 20892 USA. [Mossey, Peter A.] Univ Dundee, Dent Hosp & Sch, Dundee DD1 4HR, Scotland. [Little, Julian] Univ Ottawa, Dept Epidemiol & Community Med, Ottawa, ON K1H 8M5, Canada. [Steegers-Theunissen, Regine P.] Univ Med Ctr, NL-3015 GD Rotterdam, Netherlands. RP Murray, JC (reprint author), Univ Iowa, Dept Pediat, 2182 ML,S Grand Ave, Iowa City, IA 52242 USA. EM jeff-murray@uiowa.edu RI Visel, Axel/A-9398-2009; Christensen, Kaare/C-2360-2009; FitzPatrick, David/C-7301-2013; Rahimov, Fedik/H-2685-2013; OI Visel, Axel/0000-0002-4130-7784; Christensen, Kaare/0000-0002-5429-5292; Mossey, Peter/0000-0002-9914-6901; Wilcox, Allen/0000-0002-3376-1311 FU National Institutes of Health (NIH) [P50 DE16215, P30 ES05605, R37 DE08559, R01-DE13513, 1 UL1 RR024979-01, R01-CA73612, R01-HG003988]; Intramural Research Program of the National Human Genome Research Institute; Intramural Research Program of the NIH; National Institute of Environmental Health Sciences; European Commission FP5; EUROCRAN [QLG1-CT-2000-01019]; American Heart Association; [DE-AC02-05CH11231]; [T32 CA078586] FX We would like to thank A. Kinoshita, K. Frees, A. Mansilla, J. L'Heureux, M. Johnson, H. Morrison, G. Wehby, N. Rorick, K. Bedell and L. Powers for technical assistance and S. McConnell, D. Benton and M. DeVore for their administrative assistance. We would also like to thank A. Klingelhutz (University of Iowa) for kindly providing us with HFK cell line. This work was supported by grants from the National Institutes of Health (NIH): P50 DE16215 (J.C.M., M.L.M., B.C.S.), P30 ES05605 (J.C.M.), R37 DE08559 (J.C.M., M.L.M.), R01-DE13513 (B.C.S.), 1 UL1 RR024979-01 (J.C.M., B.C.S.), R01-CA73612 (F.E.D.), R01-HG003988 administered under Department of Energy Contract DE-AC02-05CH11231 (L.A.P.) as well as by the Intramural Research Program of the National Human Genome Research Institute (E.D.G.), in part by the Intramural Research Program of the NIH, National Institute of Environmental Health Sciences (A.J.W.), and European Commission FP5: EUROCRAN Project (contract no. QLG1-CT-2000-01019) (M.R., P.A.M., J.L., R.P.S.-T.). A.V. was supported by the American Heart Association. M.J.H. received salary support from T32 CA078586. NR 30 TC 222 Z9 235 U1 2 U2 18 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK STREET, 9TH FLOOR, NEW YORK, NY 10013-1917 USA SN 1061-4036 J9 NAT GENET JI Nature Genet. PD NOV PY 2008 VL 40 IS 11 BP 1341 EP 1347 DI 10.1038/ng.242 PG 7 WC Genetics & Heredity SC Genetics & Heredity GA 366RQ UT WOS:000260501500028 PM 18836445 ER PT J AU Gillett, NP Stone, DA Stott, PA Nozawa, T Karpechko, AY Hegerl, GC Wehner, MF Jones, PD AF Gillett, Nathan P. Stone, Daithi A. Stott, Peter A. Nozawa, Toru Karpechko, Alexey Yu. Hegerl, Gabriele C. Wehner, Michael F. Jones, Philip D. TI Attribution of polar warming to human influence SO NATURE GEOSCIENCE LA English DT Article ID SURFACE AIR-TEMPERATURE; CLIMATE-CHANGE; ANTARCTIC TEMPERATURES; ANNULAR MODE; VARIABILITY; 20TH-CENTURY; TRENDS AB The polar regions have long been expected to warm strongly as a result of anthropogenic climate change, because of the positive feedbacks associated with melting ice and snow(1,2). Several studies have noted a rise in Arctic temperatures over recent decades(2-4), but have not formally attributed the changes to human influence, owing to sparse observations and large natural variability(5,6). Both warming and cooling trends have been observed in Antarctica(7), which the Intergovernmental Panel on Climate Change Fourth Assessment Report concludes is the only continent where anthropogenic temperature changes have not been detected so far, possibly as a result of insufficient observational coverage(8). Here we use an up-to-date gridded data set of land surface temperatures(9,10) and simulations from four coupled climate models to assess the causes of the observed polar temperature changes. We find that the observed changes in Arctic and Antarctic temperatures are not consistent with internal climate variability or natural climate drivers alone, and are directly attributable to human influence. Our results demonstrate that human activities have already caused significant warming in both polar regions, with likely impacts on polar biology, indigenous communities(2), ice-sheet mass balance and global sea level(11). C1 [Gillett, Nathan P.; Karpechko, Alexey Yu.; Jones, Philip D.] Univ E Anglia, Sch Environm Sci, Climat Res Unit, Norwich NR4 7TJ, Norfolk, England. [Stone, Daithi A.] Univ Oxford, Dept Phys, Clarendon Lab, Oxford OX1 3PU, England. [Stone, Daithi A.] Univ Oxford, Environm Change Inst, Tyndall Ctr Climate Change Res, Oxford OX1 3QY, England. [Stott, Peter A.] Met Off Hadley Ctr, Exeter EX1 3PB, Devon, England. [Nozawa, Toru] Natl Inst Environm Studies, Tsukuba, Ibaraki 3058506, Japan. [Hegerl, Gabriele C.] Univ Edinburgh, Sch Geosci, Grant Inst, Edinburgh EH9 3JW, Midlothian, Scotland. [Wehner, Michael F.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Gillett, NP (reprint author), Univ E Anglia, Sch Environm Sci, Climat Res Unit, Norwich NR4 7TJ, Norfolk, England. EM n.gillett@uea.ac.uk RI Jones, Philip/C-8718-2009; Stott, Peter/N-1228-2016; OI Jones, Philip/0000-0001-5032-5493; Stott, Peter/0000-0003-4853-7686; Stone, Daithi/0000-0002-2518-100X FU Climate Change Detection and Attribution Project; NOAA's Office of Global Programs; US Department of Energy; NERC [NE/E006787/1]; Leverhulme Trust; Joint Defra; MoD Programme, (Defra) [GA01101, CBC/2B/0417] FX We thank S. Solomon, G. Marshall and H. Melling for useful advice and discussion; M. Allen for his optimal detection and attribution code; and G. Jones for assistance with the provision of model output. This work was supported in part by the Climate Change Detection and Attribution Project, jointly funded by NOAA's Office of Global Programs and the US Department of Energy. N. P. G. and A. Y. K. were also supported by NERC grant NE/E006787/1, and N. P. G. acknowledges support from the Leverhulme Trust. P. A. S. was supported by the Joint Defra and MoD Programme, (Defra) GA01101 (MoD) CBC/2B/0417 Annex C5. NR 30 TC 89 Z9 98 U1 4 U2 47 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 1752-0894 EI 1752-0908 J9 NAT GEOSCI JI Nat. Geosci. PD NOV PY 2008 VL 1 IS 11 BP 750 EP 754 DI 10.1038/ngeo338 PG 5 WC Geosciences, Multidisciplinary SC Geology GA 374DU UT WOS:000261023700012 ER PT J AU Fan, ZY Javey, A AF Fan, Zhiyong Javey, Ali TI PHOTOVOLTAICS Solar cells on curtains SO NATURE MATERIALS LA English DT News Item ID NANOWIRE ARRAYS; SCALE C1 [Fan, Zhiyong] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Fan, ZY (reprint author), Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA. EM ajavey@eecs.berkeley.edu RI Fan, Zhiyong/C-4970-2012; Javey, Ali/B-4818-2013; OI Fan, Zhiyong/0000-0002-5397-0129 NR 7 TC 24 Z9 25 U1 0 U2 19 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1476-1122 J9 NAT MATER JI Nat. Mater. PD NOV PY 2008 VL 7 IS 11 BP 835 EP 836 DI 10.1038/nmat2312 PG 2 WC Chemistry, Physical; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Materials Science; Physics GA 366IA UT WOS:000260472800008 PM 18955992 ER PT J AU Zaug, JM Soper, AK Clark, SM AF Zaug, Joseph M. Soper, Alan K. Clark, Simon M. TI Pressure-dependent structures of amorphous red phosphorus and the origin of the first sharp diffraction peaks SO NATURE MATERIALS LA English DT Article ID INFRARED-ABSORPTION; RAMAN-SCATTERING; RANGE ORDER; RECOMBINATION; DYNAMICS; CLUSTERS; SPECTRA; LIQUIDS; SOLIDS; MODELS AB Characterizing the nature of medium-range order (MRO) in liquids and disordered solids is important for understanding their structure and transport properties. However, accurately portraying MRO, as manifested by the first sharp diffraction peak (FSDP) in neutron and X-ray scattering measurements, has remained elusive for more than 80 years. Here, using X-ray diffraction of amorphous red phosphorus compressed to 6.30 GPa, supplemented with micro-Raman scattering studies, we build three-dimensional structural models consistent with the diffraction data. We discover that the pressure dependence of the FSDP intensity and line position can be quantitatively accounted for by a characteristic void distribution function, defined in terms of average void size, void spacing and void density. This work provides a template to unambiguously interpret atomic and void-space MRO across a broad range of technologically promising network-forming materials. C1 [Zaug, Joseph M.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Soper, Alan K.] STFC Rutherford Appleton Lab, ISIS Facil, Didcot OX11 0QX, Oxon, England. [Clark, Simon M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA USA. [Clark, Simon M.] Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. RP Zaug, JM (reprint author), Lawrence Livermore Natl Lab, 7000 E Ave,L-350, Livermore, CA 94551 USA. EM zaug1@llnl.gov RI Clark, Simon/B-2041-2013 OI Clark, Simon/0000-0002-7488-3438 FU Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; US Department of Energy [E-AC03-76SF00098] FX J.M.Z. thanks J. Molitoris for sparking an interest to study a-rP, M. Bastea for providing a-rP sample material and C. Thompson of www.mathengineering.com for Matlab consulting and code acceleration tips. We thank J. Eggert for his guidance to properly determine density from high-pressure diffraction data. This work was carried out under the auspices of the US Department of Energy jointly by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under Contract DE-AC03-76SF00098. NR 48 TC 39 Z9 39 U1 4 U2 37 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1476-1122 J9 NAT MATER JI Nat. Mater. PD NOV PY 2008 VL 7 IS 11 BP 890 EP 899 DI 10.1038/nmat2290 PG 10 WC Chemistry, Physical; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Materials Science; Physics GA 366IA UT WOS:000260472800023 PM 18849976 ER PT J AU Toor, N Rajashankar, K Keating, KS Pyle, AM AF Toor, Navtej Rajashankar, Kanagalaghatta Keating, Kevin S. Pyle, Anna Marie TI Structural basis for exon recognition by a group II intron SO NATURE STRUCTURAL & MOLECULAR BIOLOGY LA English DT Article AB Free group II introns are infectious retroelements that can bind and insert themselves into RNA and DNA molecules via reverse splicing. Here we report the 3.4-angstrom crystal structure of a complex between an oligonucleotide target substrate and a group IIC intron, as well as the refined free intron structure. The structure of the complex reveals the conformation of motifs involved in exon recognition by group II introns. C1 [Toor, Navtej; Pyle, Anna Marie] Yale Univ, Dept Mol Biophys & Biochem, New Haven, CT 06520 USA. [Toor, Navtej; Pyle, Anna Marie] Yale Univ, Howard Hughes Med Inst, New Haven, CT 06520 USA. [Rajashankar, Kanagalaghatta] Argonne Natl Lab, NE CAT Adv Photon Source, Argonne, IL 60439 USA. [Keating, Kevin S.] Yale Univ, Program Computat Biol & Bioinformat, New Haven, CT 06511 USA. RP Rajashankar, K (reprint author), Yale Univ, Dept Mol Biophys & Biochem, 266 Whitney Ave, New Haven, CT 06520 USA. EM rajashankar@anl.gov; anna.pyle@yale.edu OI Keating, Kevin/0000-0001-5855-6739 FU Howard Hughes Medical Institute (HHMI); US National Institutes of Health [GM50313]; HHMI FX We thank the staff of the NE-CAT beamline 24-ID-C at the Advanced Photon Source of Argonne National Laboratory. We also thank O. Fedorova for advice and support. This work was supported by the Howard Hughes Medical Institute (HHMI) and US National Institutes of Health grant GM50313 (A. M. P.). N.T. and A.M.P. are funded by the HHMI. NR 8 TC 58 Z9 58 U1 0 U2 3 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK STREET, 9TH FLOOR, NEW YORK, NY 10013-1917 USA SN 1545-9985 J9 NAT STRUCT MOL BIOL JI Nat. Struct. Mol. Biol. PD NOV PY 2008 VL 15 IS 11 BP 1221 EP 1222 DI 10.1038/nsmb.1509 PG 2 WC Biochemistry & Molecular Biology; Biophysics; Cell Biology SC Biochemistry & Molecular Biology; Biophysics; Cell Biology GA 368QV UT WOS:000260638500021 PM 18953333 ER PT J AU Kaatz, FH Bultheel, A Egami, T AF Kaatz, Forrest H. Bultheel, Adhemar Egami, Takeshi TI Order parameters from image analysis: a honeycomb example SO NATURWISSENSCHAFTEN LA English DT Article DE image analysis; bee honeycomb; radial distribution function; pair distribution function; Debye-Waller factor; order parameters ID MATHEMATICAL-MODEL; CONSTRUCTION; BEES; PATTERN; COMBS AB Honeybee combs have aroused interest in the ability of honeybees to form regular hexagonal geometric constructs since ancient times. Here we use a real space technique based on the pair distribution function (PDF) and radial distribution function (RDF), and a reciprocal space method utilizing the Debye-Waller Factor (DWF) to quantify the order for a range of honeycombs made by Apis mellifera ligustica. The PDFs and RDFs are fit with a series of Gaussian curves. We characterize the order in the honeycomb using a real space order parameter, OP(3) , to describe the order in the combs and a two-dimensional Fourier transform from which a Debye-Waller order parameter, u, is derived. Both OP(3) and u take values from [0, 1] where the value one represents perfect order. The analyzed combs have values of OP(3) from 0.33 to 0.60 and values of u from 0.59 to 0.69. RDF fits of honeycomb histograms show that naturally made comb can be crystalline in a 2D ordered structural sense, yet is more 'liquid-like' than cells made on 'foundation' wax. We show that with the assistance of man-made foundation wax, honeybees can manufacture highly ordered arrays of hexagonal cells. This is the first description of honeycomb utilizing the Debye-Waller Factor, and provides a complete analysis of the order in comb from a real-space order parameter and a reciprocal space order parameter. It is noted that the techniques used are general in nature and could be applied to any digital photograph of an ordered array. C1 [Kaatz, Forrest H.] Owens Community Coll, Dept Math & Life Nat Sci, Toledo, OH 43699 USA. [Bultheel, Adhemar] Katholieke Univ Leuven, Dept Comp Sci, B-3001 Heverlee, Belgium. [Egami, Takeshi] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Egami, Takeshi] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Egami, Takeshi] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Kaatz, FH (reprint author), Owens Community Coll, Dept Math & Life Nat Sci, Toledo, OH 43699 USA. EM fhkaatz@yahoo.com RI Bultheel, Adhemar/A-2785-2016 OI Bultheel, Adhemar/0000-0001-9562-5297 NR 23 TC 7 Z9 7 U1 0 U2 10 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0028-1042 J9 NATURWISSENSCHAFTEN JI Naturwissenschaften PD NOV PY 2008 VL 95 IS 11 BP 1033 EP 1040 DI 10.1007/s00114-008-0418-4 PG 8 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 359OM UT WOS:000259997400003 PM 18633584 ER PT J AU Abriola, D Sonzogni, AA AF Abriola, D. Sonzogni, A. A. TI Nuclear Data Sheets for A=96 SO NUCLEAR DATA SHEETS LA English DT Review ID DELAYED-NEUTRON EMISSION; DOUBLE-BETA-DECAY; LOW-LYING STATES; HIGH-SPIN STATES; INELASTIC DEUTERON SCATTERING; ISOBARIC ANALOG RESONANCES; MASS MOLYBDENUM ISOTOPES; DOUBLE SUBSHELL CLOSURE; GAMMA-RAY SPECTROSCOPY; SHORT-LIVED RB AB Experimental data on ground- and excited-state properties for all known nuclei with mass number A=96 have been compiled and evaluated. States populated in radioactive decay, as well as in nuclear reactions, have been considered. For these nuclei, level and decay schemes, as well as tables of nuclear properties, are presented. This work supersedes the 1993 evaluation by L.K. Peker (1993Pe02). In summary, three isomers were identified in Ag-96 (2003Ba39,1997Gr02), even though the relative energies were not established, In Ru-96 a nuclear fluorescence experiment (2005Li59) determined the spin, branching ratios and transition strengths of dipole excitations; high-spin level properties were reported by 2000Kh02 and 2002K107. High spin levels in Tc-96 were studied in 2001Bu19. For (MO)-M-96, there are new high-spin data (2000Ch42), as well as low-spin levels produced in (n,n'gamma) (2007Le05) and (gamma,gamma') (2004Fr30). High spin data (2005Pa48) were obtained for Zr-96 using heavy-ion induced fission. For Sr-96, new levels were deduced using alpha-induced (2005Pa48) and spontaneous fission. The decay of a (10-) isomer in Rb-96 was studied by 2005Pi13. Several new mass measurements for neutron rich nuclides have been published, which were used to obtain Q-values and separation energies. C1 [Abriola, D.; Sonzogni, A. A.] Brookhaven Natl Lab, Natl Nucl Data Ctr, Upton, NY 11973 USA. [Abriola, D.] IAEA, Div Phys & Chem Sci, Dept Nucl Sci & Applicat, Nucl Data Sect, A-1400 Vienna, Austria. RP Abriola, D (reprint author), Brookhaven Natl Lab, Natl Nucl Data Ctr, Upton, NY 11973 USA. NR 238 TC 39 Z9 39 U1 0 U2 4 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0090-3752 J9 NUCL DATA SHEETS JI Nucl. Data Sheets PD NOV PY 2008 VL 109 IS 11 BP 2501 EP + DI 10.1016/j.nds.2008.10.002 PG 154 WC Physics, Nuclear SC Physics GA 372VW UT WOS:000260931100001 ER PT J AU Browne, E Tuli, JK AF Browne, E. Tuli, J. K. TI Nuclear Data Sheets for A=229 SO NUCLEAR DATA SHEETS LA English DT Review ID ODD ELECTROMAGNETIC MOMENTS; SHORT-LIVED ISOTOPES; ALPHA-DECAY; HYPERFINE-STRUCTURE; PARITY-NONCONSERVATION; RADIUM ISOTOPES; GROUND-STATE; QUADRUPOLE-MOMENTS; EXCITED-STATE; ANGULAR-DISTRIBUTIONS AB The evaluators present in this publication spectroscopic data and level schemes from radioactive decay and nuclear reaction studies for all nuclei with mass number A=229. These nuclei belong to a region of coexisting quadrupole with possible octupole deformations. The latter have been observed in Ra-229, but in Pa-229 the experimental evidence is inconclusive. The present evaluation of A=229, which includes all data received by June 2008, supersedes the 1989 evaluation by Y. A. Akovali, published in Nuclear Data Sheets 58, 555 (1989). Highlights of this publication are given below: A comprehensive spectroscopic study of Fr-229(50.2 a) beta- decay using mass-separated sources have provided the first evidence of parity doublets in Ra-229 due to nuclear octupole deformation (1999Fr33). In Th-229 a level at 7.6 5 eV --the closest level to the ground state ever known -- has been confirmed through extremely precise measurements of gamma-ray energies from U-233 alpha decay (1994He08, 2007Be16). A nuclear level at such low energy may be used for studying a large variety of atomic properties associated to nuclear decay. The level structure in Pa-229 has been interpreted in terms of the rotational model (1994Le22). Some authors, however, have proposed the existence of parity doublets as evidence of octupole nuclear deformation (1982Ah08). This interpretation has not been confirmed. C1 [Browne, E.] Brookhaven Natl Lab, Natl Nucl Data Ctr, Lawrence Berkeley Lab, Upton, NY 11973 USA. RP Browne, E (reprint author), Brookhaven Natl Lab, Natl Nucl Data Ctr, Lawrence Berkeley Lab, Upton, NY 11973 USA. NR 161 TC 11 Z9 11 U1 0 U2 6 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0090-3752 J9 NUCL DATA SHEETS JI Nucl. Data Sheets PD NOV PY 2008 VL 109 IS 11 BP 2657 EP + DI 10.1016/j.nds.2008.10.001 PG 67 WC Physics, Nuclear SC Physics GA 372VW UT WOS:000260931100002 ER PT J AU Ball, S Richards, M Shepelev, S AF Ball, Syd Richards, Matt Shepelev, Sergey TI Sensitivity studies of air ingress accidents in modular HTGRs SO NUCLEAR ENGINEERING AND DESIGN LA English DT Article; Proceedings Paper CT 3rd International Conference on High Reactor Technology CY OCT 01-04, 2006 CL Gauteng, SOUTH AFRICA ID PIPE RUPTURE ACCIDENT; GAS-COOLED REACTOR AB Postulated air ingress accidents, while of very low probability in a modular high-temperature gas-cooled reactor (HTGR), are of considerable interest to the plant designer, operator, and regulator because of the possibility that the core could sustain significant damage under some circumstances. Sensitivity analyses are described that cover a wide spectrum of conditions affecting outcomes of the postulated accident sequences, for both prismatic and pebble-bed core designs. The major factors affecting potential core damage are the size and location of primary system leaks, flow path resistances, the core temperature distribution, and the long-term availability of oxygen in the incoming gas from a confinement building. Typically, all the incoming oxygen entering the core area is consumed within the reactor vessel, so it is more a matter of where, not whether, oxidation occurs. An air ingress model with example scenarios and means for mitigating damage are described. Representative designs of modular HTGRs included here are a 400-MW(th) pebble-bed reactor (PBR), and a 600-MW(th) prismatic-core modular reactor (PMR) design such as the gas-turbine modular helium reactor (GT-MHR). C1 [Ball, Syd; Richards, Matt; Shepelev, Sergey] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. Gen Atomics, San Diego, CA USA. OKBM, Novgorod, Russia. RP Ball, S (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM sjb@ornl.gov NR 16 TC 5 Z9 5 U1 0 U2 1 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0029-5493 J9 NUCL ENG DES JI Nucl. Eng. Des. PD NOV PY 2008 VL 238 IS 11 BP 2935 EP 2942 DI 10.1016/j.nucengdes.2008.02.021 PG 8 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 378KT UT WOS:000261320300014 ER PT J AU Hollmann, EM Jernigan, TC Parks, PB Boedo, JA Evans, TE Groth, M Humphreys, DA James, AN Lanctot, MJ Nishijima, D Rudakov, DL Scott, HA Strait, EJ Van Zeeland, MA Wesley, JC West, WP Wu, W Yu, JH AF Hollmann, E. M. Jernigan, T. C. Parks, P. B. Boedo, J. A. Evans, T. E. Groth, M. Humphreys, D. A. James, A. N. Lanctot, M. J. Nishijima, D. Rudakov, D. L. Scott, H. A. Strait, E. J. Van Zeeland, M. A. Wesley, J. C. West, W. P. Wu, W. Yu, J. H. TI Measurements of injected impurity assimilation during massive gas injection experiments in DIII-D SO NUCLEAR FUSION LA English DT Article ID JET DISRUPTION MITIGATION; FAST PLASMA SHUTDOWN; ALCATOR C-MOD; TOKAMAK; VALVE AB Impurities (H(2), D(2), He, Ne or Ar) injected into steady (non-disrupting) discharges with massive gas injection (MGI) are shown to mix into the plasma core dominantly via magnetohydrodynamic activity during the plasma thermal quench (TQ). Mixing efficiencies of injected impurities into the plasma core are measured to be of order 0.05-0.4. 0D modelling of the experiments is found to reproduce observed TQ and current quench durations reasonably well (typically within +/- 25% or so), although shutdown onset times are underestimated (by around 2 x). Preliminary 0D modelling of ITER based on DIII-D mixing efficiencies suggests that MGI will work well in ITER with regard to disruption heat load and vessel force mitigation, but may not collisionally suppress runaway electrons. C1 [Hollmann, E. M.; Boedo, J. A.; James, A. N.; Nishijima, D.; Rudakov, D. L.; Yu, J. H.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Jernigan, T. C.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Parks, P. B.; Evans, T. E.; Humphreys, D. A.; Strait, E. J.; Van Zeeland, M. A.; Wesley, J. C.; West, W. P.; Wu, W.] Gen Atom Co, San Diego, CA 92186 USA. [Groth, M.; Scott, H. A.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Lanctot, M. J.] Columbia Univ, New York, NY 10027 USA. RP Hollmann, EM (reprint author), Univ Calif San Diego, La Jolla, CA 92093 USA. RI Groth, Mathias/G-2227-2013; Lanctot, Matthew J/O-4979-2016 OI Lanctot, Matthew J/0000-0002-7396-3372 FU US Department of Energy [DE-FG02-07ER54917, DE-AC05-00OR22725, DE-FG03-95ER54294, DE-FC02-04ER54698, DE-AC52-07NA27344, DE-FG02-89ER53297] FX This work was supported by the US Department of Energy under DE-FG02-07ER54917, DE-AC05-00OR22725, DE-FG03-95ER54294, DE-FC02-04ER54698, DE-AC52-07NA27344 and DE-FG02-89ER53297. Useful advice from Drs D.G. Whyte (MIT), M. Bakhtiari (FIT) and N. Ohno (Nagoya University) is acknowledged, as is the experimental assistance of the DIII-D Team. Permission from Dr A. Pigarov (UCSD) to use the BELINE code for Stark line-shape calculations is gratefully acknowledged. The originating developer of ADAS is the JET Joint Undertaking. NR 26 TC 44 Z9 44 U1 0 U2 6 PU INT ATOMIC ENERGY AGENCY PI VIENNA PA WAGRAMERSTRASSE 5, PO BOX 100, A-1400 VIENNA, AUSTRIA SN 0029-5515 J9 NUCL FUSION JI Nucl. Fusion PD NOV PY 2008 VL 48 IS 11 AR 115007 DI 10.1088/0029-5515/48/11/115007 PG 12 WC Physics, Fluids & Plasmas SC Physics GA 367QE UT WOS:000260566400007 ER PT J AU Xu, YC Dong, X Zhang, ZP Tang, ZB Shao, M AF Xu, Yichun Dong, Xin Zhang, Ziping Tang, Zebo Shao, Ming TI Improvement of resonance reconstruction with time-of-flight detector at STAR experiment SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE TPC; TOF; PID; Reconstruction AB With the upgrade of the barrel Time-Of-Flight (TOF) detector, based on Multi-gap Resistive Plate Chamber technology, the particle identification capability of the STAR experiment will be improved greatly. In order to further understand the performance of TOF more practically, vector meson phi(1020) and K*(892) are reconstructed from their two-charged-particle decay mode using the data generated from Au + Au collisions at root S(NN) = 200 GeV. With the TOF to identify one of the two charged-daughter particles, the resonance significance could be increased by 2-4 times, compared to the identification of two charged-daughter particles using the Time Projection Chamber (TPC) only. This promising performance on resonance reconstruction from the TOF will enhance the measurements of short lived particles at RHIC. (C) 2008 Elsevier B.V. All rights reserved. C1 [Xu, Yichun; Dong, Xin; Zhang, Ziping; Tang, Zebo; Shao, Ming] Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Anhu, Peoples R China. [Dong, Xin] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Xu, YC (reprint author), Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Anhu, Peoples R China. EM xuyichun@mail.ustc.edu.cn RI Tang, Zebo/A-9939-2014; Dong, Xin/G-1799-2014 OI Tang, Zebo/0000-0002-4247-0081; Dong, Xin/0000-0001-9083-5906 NR 9 TC 0 Z9 1 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD NOV 1 PY 2008 VL 596 IS 2 BP 186 EP 189 DI 10.1016/j.nima.2008.07.147 PG 4 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 377ZS UT WOS:000261291500005 ER PT J AU Michael, DG Adamson, P Alexopoulos, T Allison, WWM Alner, GJ Anderson, K Andreopoulos, C Andrews, M Andrews, R Arroyo, C Avvakumov, S Ayres, DS Baller, B Barish, B Barker, MA Barnes, PD Barr, G Barrett, WL Beall, E Bechtol, K Becker, BR Belias, A Bergfeld, T Bernstein, RH Bhattacharya, D Bishai, M Blake, A Bocean, V Bock, B Bock, GJ Boehm, J Boehnlein, DJ Bogert, D Border, PM Bower, C Boyd, S Buckley-Geer, E Byon-Wagner, A Cabrera, A Chapman, JD Chase, TR Chernichenko, SK Childress, S Choudhary, BC Cobb, JH Coleman, SJ Cossairt, JD Courant, H Crane, DA Culling, AJ Damiani, D Dawson, JW de Jong, JK DeMuth, DM De Santo, A Dierckxsens, M Diwan, MV Dorman, M Drake, G Ducar, R Durkin, T Erwin, AR Escobar, CO Evans, JJ Fackler, OD Harris, EF Feldman, GJ Felt, N Fields, TH Ford, R Frohne, MV Gallagher, HR Gebhard, M Godley, A Gogos, J Goodman, MC Gornushkin, Y Gouffon, P Grashorn, EW Grossman, N Grudzinski, JJ Grzelak, K Guarino, V Habig, A Halsall, R Hanson, J Harris, D Harris, PG Hartnell, J Hartouni, EP Hatcher, R Heller, K Hill, N Ho, Y Howcroft, C Hylen, J Ignatenko, M Indurthy, D Irwin, GM James, C Jenner, L Jensen, D Joffe-Minor, T Kafka, T Kang, HJ Kasahara, SMS Kilmer, J Kim, H Kim, MS Koizumi, G Kopp, S Kordosky, M Koskinen, DJ Kostin, M Kotelnikov, SK Krakauer, DA Kumaratunga, S Ladran, AS Lang, K Laughton, C Lebedev, A Lee, R Lee, WY Libkind, MA Liu, J Litchfield, PJ Litchfield, RP Longley, NP Lucas, P Luebke, W Madani, S Maher, E Makeev, V Mann, WA Marchionni, A Marino, AD Marshak, ML Marshall, JS McDonald, J McGowan, AM Meier, JR Merzon, GI Messier, MD Milburn, RH Miller, JL Miller, WH Mishra, SR Miyagawa, PS Moore, CD Morfin, J Morse, R Mualem, L Mufson, S Murgia, S Murtagh, MJ Musser, J Naples, D Nelson, C Nelson, JK Newman, HB Nezrick, F Nichol, RJ Nicholls, TC Ochoa-Ricoux, JP Oliver, J Oliver, WP Onuchino, VA Osiecki, T Ospanov, R Paley, J Paolone, V Para, A Patzak, T Pavlovic, Z Pearce, GF Pearson, N Peck, CW Perry, C Peterson, EA Petyt, DA Ping, H Piteira, R Pla-Dalmau, A Plunkett, RK Price, LE Proga, M Pushka, DR Rahman, D Rameika, RA Raufer, TM Read, AL Rebel, B Reyna, DE Rosenfeld, C Rubin, HA Ruddick, K Ryabov, VA Saakyan, R Sanchez, MC Saoulidou, N Schneps, J Schoessow, PV Schreiner, P Schwienhorst, R Semenov, VK Seun, SM Shanahan, P Shield, PD Shivane, R Smart, W Smirnitsky, V Smith, C Smith, PN Sousa, A Speakman, B Stamoulis, P Stefanik, A Sullivan, P Swan, JM Symes, PA Tagg, N Talaga, RL Terekhov, A Tetteh-Lartey, E Thomas, J Thompson, J Thomson, MA Thron, JL Trendler, R Trevor, J Trostin, I Tsarev, VA Tzanakos, G Urheim, J Vahle, P Vakili, M Vaziri, K Velissaris, C Verebryusov, V Viren, B Wai, L Ward, CP Ward, DR Watabe, M Weber, A Webb, RC Wehmann, A West, N White, C White, RF Wojcicki, SG Wright, DM Wu, QK Yan, WG Yang, T Yumiceva, FX Yun, JC Zheng, H Zois, M Zwaska, R AF Michael, D. G. Adamson, P. Alexopoulos, T. Allison, W. W. M. Alner, G. J. Anderson, K. Andreopoulos, C. Andrews, M. Andrews, R. Arroyo, C. Avvakumov, S. Ayres, D. S. Baller, B. Barish, B. Barker, M. A. Barnes, P. D., Jr. Barr, G. Barrett, W. L. Beall, E. Bechtol, K. Becker, B. R. Belias, A. Bergfeld, T. Bernstein, R. H. Bhattacharya, D. Bishai, M. Blake, A. Bocean, V. Bock, B. Bock, G. J. Boehm, J. Boehnlein, D. J. Bogert, D. Border, P. M. Bower, C. Boyd, S. Buckley-Geer, E. Byon-Wagner, A. Cabrera, A. Chapman, J. D. Chase, T. R. Chernichenko, S. K. Childress, S. Choudhary, B. C. Cobb, J. H. Coleman, S. J. Cossairt, J. D. Courant, H. Crane, D. A. Culling, A. J. Damiani, D. Dawson, J. W. de Jong, J. K. DeMuth, D. M. De Santo, A. Dierckxsens, M. Diwan, M. V. Dorman, M. Drake, G. Ducar, R. Durkin, T. Erwin, A. R. Escobar, C. O. Evans, J. J. Fackler, O. D. Harris, E. Falk Feldman, G. J. Felt, N. Fields, T. H. Ford, R. Frohne, M. V. Gallagher, H. R. Gebhard, M. Godley, A. Gogos, J. Goodman, M. C. Gornushkin, Yu. Gouffon, P. Grashorn, E. W. Grossman, N. Grudzinski, J. J. Grzelak, K. Guarino, V. Habig, A. Halsall, R. Hanson, J. Harris, D. Harris, P. G. Hartnell, J. Hartouni, E. P. Hatcher, R. Heller, K. Hill, N. Ho, Y. Howcroft, C. Hylen, J. Ignatenko, M. Indurthy, D. Irwin, G. M. James, C. Jenner, L. Jensen, D. Joffe-Minor, T. Kafka, T. Kang, H. J. Kasahara, S. M. S. Kilmer, J. Kim, H. Kim, M. S. Koizumi, G. Kopp, S. Kordosky, M. Koskinen, D. J. Kostin, M. Kotelnikov, S. K. Krakauer, D. A. Kumaratunga, S. Ladran, A. S. Lang, K. Laughton, C. Lebedev, A. Lee, R. Lee, W. Y. Libkind, M. A. Liu, J. Litchfield, P. J. Litchfield, R. P. Longley, N. P. Lucas, P. Luebke, W. Madani, S. Maher, E. Makeev, V. Mann, W. A. Marchionni, A. Marino, A. D. Marshak, M. L. Marshall, J. S. McDonald, J. McGowan, A. M. Meier, J. R. Merzon, G. I. Messier, M. D. Milburn, R. H. Miller, J. L. Miller, W. H. Mishra, S. R. Miyagawa, P. S. Moore, C. D. Morfin, J. Morse, R. Mualem, L. Mufson, S. Murgia, S. Murtagh, M. J. Musser, J. Naples, D. Nelson, C. Nelson, J. K. Newman, H. B. Nezrick, F. Nichol, R. J. Nicholls, T. C. Ochoa-Ricoux, J. P. Oliver, J. Oliver, W. P. Onuchino, V. A. Osiecki, T. Ospanov, R. Paley, J. Paolone, V. Para, A. Patzak, T. Pavlovic, Z. Pearce, G. F. Pearson, N. Peck, C. W. Perry, C. Peterson, E. A. Petyt, D. A. Ping, H. Piteira, R. Pla-Dalmau, A. Plunkett, R. K. Price, L. E. Proga, M. Pushka, D. R. Rahman, D. Rameika, R. A. Raufer, T. M. Read, A. L. Rebel, B. Reyna, D. E. Rosenfeld, C. Rubin, H. A. Ruddick, K. Ryabov, V. A. Saakyan, R. Sanchez, M. C. Saoulidou, N. Schneps, J. Schoessow, P. V. Schreiner, P. Schwienhorst, R. Semenov, V. K. Seun, S. -M. Shanahan, P. Shield, P. D. Shivane, R. Smart, W. Smirnitsky, V. Smith, C. Smith, P. N. Sousa, A. Speakman, B. Stamoulis, P. Stefanik, A. Sullivan, P. Swan, J. M. Symes, P. A. Tagg, N. Talaga, R. L. Terekhov, A. Tetteh-Lartey, E. Thomas, J. Thompson, J. Thomson, M. A. Thron, J. L. Trendler, R. Trevor, J. Trostin, I. Tsarev, V. A. Tzanakos, G. Urheim, J. Vahle, P. Vakili, M. Vaziri, K. Velissaris, C. Verebryusov, V. Viren, B. Wai, L. Ward, C. P. Ward, D. R. Watabe, M. Weber, A. Webb, R. C. Wehmann, A. West, N. White, C. White, R. F. Wojcicki, S. G. Wright, D. M. Wu, Q. K. Yan, W. G. Yang, T. Yumiceva, F. X. Yun, J. C. Zheng, H. Zois, M. Zwaska, R. TI The magnetized steel and scintillator calorimeters of the MINOS experiment SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Detectors: neutrino; Detectors: scintillator; Calorimeters: tracking; Extruded plastic scintillator ID FRONT-END ELECTRONICS; INJECTION CALIBRATION SYSTEM; LONG-BASE-LINE; RABBIT SYSTEM; FAR DETECTOR; OSCILLATION; RANGE; PHOTOMULTIPLIERS; PERFORMANCE; FIBERS AB The Main Injector Neutrino Oscillation Search (MINOS) experiment uses an accelerator-produced neutrino beam to perform precision measurements of the neutrino oscillation parameters in the "atmospheric neutrino" sector associated with muon neutrino disappearance. This long-baseline experiment measures neutrino interactions in Fermilab's NuMI neutrino beam with a near detector at Fermilab and again 735 km downstream with a far detector in the Soudan Underground Laboratory in northern Minnesota. The two detectors are magnetized steel-scintillator tracking calorimeters. They are designed to be as similar as possible in order to ensure that differences in detector response have minimal impact on the comparisons of event rates, energy spectra and topologies that are essential to MINOS measurements of oscillation parameters. The design, construction, calibration and performance of the far and near detectors are described in this paper. (C) 2008 Elsevier B.V. All rights reserved. C1 [Bock, B.; Grashorn, E. W.; Habig, A.; Koskinen, D. J.] Univ Minnesota, Dept Phys, Duluth, MN 55812 USA. [Andreopoulos, C.; Saoulidou, N.; Stamoulis, P.; Tzanakos, G.; Zois, M.] Univ Athens, Dept Phys, GR-15771 Athens, Greece. [Frohne, M. V.; Schreiner, P.] Benedictine Univ, Dept Phys, Lisle, IL 60532 USA. [Bishai, M.; Dierckxsens, M.; Diwan, M. V.; Murtagh, M. J.; Viren, B.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Michael, D. G.; Barish, B.; Choudhary, B. C.; Hanson, J.; Howcroft, C.; Kim, H.; Mualem, L.; Newman, H. B.; Ochoa-Ricoux, J. P.; Peck, C. W.; Smith, C.; Trevor, J.; Zheng, H.] CALTECH, Lauritsen Lab, Pasadena, CA 91125 USA. [Blake, A.; Chapman, J. D.; Culling, A. J.; Howcroft, C.; Marshall, J. S.; Thomson, M. A.; Ward, C. P.; Ward, D. R.] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England. [Escobar, C. O.] Univ Estadual Campinas, IF UNICAMP, BR-13083970 Campinas, SP, Brazil. [Yan, W. G.] Chinese Acad Sci, Inst High Energy Phys, Beijing 100039, Peoples R China. [Patzak, T.; Piteira, R.] Univ Paris 07, APC, F-75205 Paris 13, France. [Ho, Y.; Lee, W. Y.] Columbia Univ, Dept Phys, New York, NY 10027 USA. [Adamson, P.; Anderson, K.; Andrews, M.; Andrews, R.; Baller, B.; Bernstein, R. H.; Bocean, V.; Bock, G. J.; Boehnlein, D. J.; Bogert, D.; Buckley-Geer, E.; Byon-Wagner, A.; Childress, S.; Choudhary, B. C.; Cossairt, J. D.; Ducar, R.; Ford, R.; Grossman, N.; Grzelak, K.; Harris, D.; Hatcher, R.; Hylen, J.; James, C.; Jensen, D.; Kilmer, J.; Koizumi, G.; Laughton, C.; Lucas, P.; Makeev, V.; Marchionni, A.; Marino, A. D.; Moore, C. D.; Morfin, J.; Nelson, C.; Nelson, J. K.; Nezrick, F.; Para, A.; Pla-Dalmau, A.; Plunkett, R. K.; Pushka, D. R.; Rameika, R. A.; Read, A. L.; Rebel, B.; Saoulidou, N.; Shanahan, P.; Smart, W.; Stefanik, A.; Thomas, J.; Trendler, R.; Vaziri, K.; Wehmann, A.; Yun, J. C.; Zwaska, R.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Boehm, J.; Feldman, G. J.; Felt, N.; Lebedev, A.; Lee, R.; Mishra, S. R.; Oliver, J.; Sanchez, M. C.; Seun, S. -M.] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA. [de Jong, J. K.; Luebke, W.; Rubin, H. A.; White, C.] IIT, Div Phys, Chicago, IL 60616 USA. [Bower, C.; Gebhard, M.; Messier, M. D.; Miller, J. L.; Mufson, S.; Musser, J.; Paley, J.; Rebel, B.; Urheim, J.] Indiana Univ, Bloomington, IN 47405 USA. [Chernichenko, S. K.; Makeev, V.; Onuchino, V. A.; Semenov, V. K.] Inst High Energy Phys, RU-140284 Protvino, Moscow Region, Russia. [Smirnitsky, V.; Trostin, I.; Verebryusov, V.] ITEP, High Energy Expt Phys Dept, Moscow 117218, Russia. [Miller, J. L.] James Madison Univ, Dept Phys, Harrisonburg, VA 22807 USA. [Belias, A.; Gornushkin, Yu.; Ignatenko, M.] Joint Inst Nucl Res, RU-141980 Dubna, Moscow Region, Russia. [Kotelnikov, S. K.; Merzon, G. I.; Ryabov, V. A.; Terekhov, A.; Tsarev, V. A.] PN Lebedev Phys Inst, Dept Nucl Phys, Moscow 117924, Russia. [Barnes, P. D., Jr.; Fackler, O. D.; Hartouni, E. P.; Ladran, A. S.; Libkind, M. A.; Swan, J. M.; Wright, D. M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Adamson, P.; Dorman, M.; Evans, J. J.; Jenner, L.; Kordosky, M.; Koskinen, D. J.; Nichol, R. J.; Saakyan, R.; Smith, C.; Thomas, J.; Vahle, P.] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Beall, E.; Becker, B. R.; Border, P. M.; Chase, T. R.; Courant, H.; DeMuth, D. M.; Gallagher, H. R.; Gogos, J.; Grashorn, E. W.; Heller, K.; Kasahara, S. M. S.; Kumaratunga, S.; Litchfield, P. J.; Longley, N. P.; Maher, E.; Marshak, M. L.; McGowan, A. M.; Meier, J. R.; Miller, W. H.; Mualem, L.; Nelson, J. K.; Pearson, N.; Peterson, E. A.; Petyt, D. A.; Rahman, D.; Ruddick, K.; Schwienhorst, R.; Shivane, R.; Speakman, B.; Urheim, J.] Univ Minnesota, Minneapolis, MN 55455 USA. [Allison, W. W. M.; Barker, M. A.; Barr, G.; Cabrera, A.; Cobb, J. H.; De Santo, A.; Gallagher, H. R.; Hartnell, J.; Litchfield, R. P.; Miyagawa, P. S.; Perry, C.; Petyt, D. A.; Raufer, T. M.; Shield, P. D.; Sousa, A.; Sullivan, P.; Tagg, N.; Weber, A.; West, N.] Univ Oxford, Subdept Particle Phys, Oxford OX1 3RH, England. [Bhattacharya, D.; Boyd, S.; Kim, M. S.; McDonald, J.; Naples, D.; Paolone, V.; Thompson, J.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Alner, G. J.; Andreopoulos, C.; Belias, A.; Durkin, T.; Halsall, R.; Hartnell, J.; Litchfield, P. J.; Madani, S.; Nicholls, T. C.; Pearce, G. F.; Petyt, D. A.; Raufer, T. M.; Weber, A.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Gouffon, P.] Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil. [Bergfeld, T.; Godley, A.; Mishra, S. R.; Rosenfeld, C.; Wu, Q. K.] Univ S Carolina, Dept Phys & Astron, Columbia, SC 29208 USA. [Avvakumov, S.; Irwin, G. M.; Kang, H. J.; Murgia, S.; Wai, L.; Wojcicki, S. G.; Yang, T.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Adamson, P.; Harris, E. Falk; Harris, P. G.; Hartnell, J.; Morse, R.; Smith, C.; Smith, P. N.; Symes, P. A.; White, R. F.] Univ Sussex, Dept Phys & Astron, Brighton BN1 9QH, E Sussex, England. [Tetteh-Lartey, E.; Vakili, M.; Watabe, M.; Webb, R. C.] Texas A&M Univ, Dept Phys, College Stn, TX 77843 USA. [Indurthy, D.; Kopp, S.; Kordosky, M.; Kostin, M.; Lang, K.; Liu, J.; Osiecki, T.; Ospanov, R.; Pavlovic, Z.; Proga, M.; Vahle, P.; Zwaska, R.] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA. [Gallagher, H. R.; Kafka, T.; Mann, W. A.; Milburn, R. H.; Oliver, W. P.; Patzak, T.; Sanchez, M. C.; Schneps, J.; Sousa, A.; Tagg, N.] Tufts Univ, Dept Phys, Medford, MA 02155 USA. [Barrett, W. L.] Western Washington Univ, Dept Phys, Bellingham, WA 98225 USA. [Bechtol, K.; Coleman, S. J.; Damiani, D.; Kordosky, M.; Nelson, J. K.; Vahle, P.; Yumiceva, F. X.] Coll William & Mary, Dept Phys, Williamsburg, VA 23187 USA. [Grzelak, K.] Warsaw Univ, Fac Phys, PL-00681 Warsaw, Poland. [Alexopoulos, T.; Erwin, A. R.; Ping, H.; Velissaris, C.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Ayres, D. S.; Beall, E.; Crane, D. A.; Dawson, J. W.; Drake, G.; Fields, T. H.; Gallagher, H. R.; Goodman, M. C.; Grudzinski, J. J.; Guarino, V.; Hill, N.; Joffe-Minor, T.; Krakauer, D. A.; McGowan, A. M.; Price, L. E.; Reyna, D. E.; Sanchez, M. C.; Schoessow, P. V.; Talaga, R. L.; Thron, J. L.] Argonne Natl Lab, Argonne, IL 60439 USA. RP Habig, A (reprint author), Univ Minnesota, Dept Phys, Duluth, MN 55812 USA. EM ahabig@umn.edu RI Gouffon, Philippe/I-4549-2012; Nichol, Ryan/C-1645-2008; Inst. of Physics, Gleb Wataghin/A-9780-2017; Semenov, Vitaliy/E-9584-2017; Harris, Philip/I-7419-2012; Gornushkin, Yury/F-4788-2013; Ryabov, Vladimir/E-1281-2014; Koskinen, David/G-3236-2014; Merzon, Gabriel/N-2630-2015; Evans, Justin/P-4981-2014; Kotelnikov, Sergey/A-9711-2014; OI Gouffon, Philippe/0000-0001-7511-4115; Harris, Philip/0000-0003-4369-3874; Gornushkin, Yury/0000-0003-3524-4032; Thomson, Mark/0000-0002-2654-9005; Koskinen, David/0000-0002-0514-5917; Evans, Justin/0000-0003-4697-3337; Kotelnikov, Sergey/0000-0002-8027-4612; Marchionni, Alberto/0000-0003-3039-9537; Hartnell, Jeffrey/0000-0002-1744-7955; Bernstein, Robert/0000-0002-7610-950X; Weber, Alfons/0000-0002-8222-6681; Hartouni, Edward/0000-0001-9869-4351 FU U.S. Department of Energy; U.K. Particle Physics and Astronomy Research Council; U.S. National Science Foundation; State and University of Minnesota; FAPESP (Fundacao de Amparo a Pesquisa do Estado de Sao Paulo); CNPq (Conselho Nacional de Desenvolvimento Cientifico e Tecnologico) in Brazil FX This work was supported by the U.S. Department of Energy, the U.K. Particle Physics and Astronomy Research Council, the U.S. National Science Foundation, the State and University of Minnesota, the Office of Special Accounts for Research Grants of the University of Athens, Greece, and FAPESP (Fundacao de Amparo a Pesquisa do Estado de Sao Paulo) and CNPq (Conselho Nacional de Desenvolvimento Cientifico e Tecnologico) in Brazil. This experiment would not have been possible without the dedicated efforts of the members of the Fermilab Accelerator and Particle Physics Divisions in building and operating the NuMI neutrino beamline. We thank the members of the Beam Design Group at the Institute for High Energy Physics, Protvino, Russia for their important contributions to the designs of the neutrino-beam target and horn systems. We gratefully acknowledge the Minnesota Department of Natural Resources for their assistance and for allowing us access to the facilities of the Soudan Underground Mine State Park. We also thank the crew of the Soudan Underground Laboratory for their tireless work in building and operating the MINOS far detector. Students in the University of Minnesota Mechanical Engineering Department made substantial contributions to the design of the scintillator module crimping machine. NR 61 TC 140 Z9 140 U1 0 U2 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD NOV 1 PY 2008 VL 596 IS 2 BP 190 EP 228 DI 10.1016/j.nima.2008.08.003 PG 39 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 377ZS UT WOS:000261291500006 ER PT J AU Jovanovic, I Shverdin, M Gibson, D Brown, C Gronberg, J AF Jovanovic, Iaor Shverdin, Miro Gibson, David Brown, Curtis Gronberg, Jeff TI High-Power Picosecond Pulse Recirculation for Inverse Compton Scattering SO NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS LA English DT Proceedings Paper CT Int Conf on Structure and Interactions of the Photon/17th Int Workshop on Photon-Photon Collisions/Int Workshop on High Energy Photon Linear Colliders CY JUL 09-13, 2007 CL Sorbonne, Paris, FRANCE HO Sorbonne ID PHOTON COLLIDER; CAVITY AB In the next generation of linear colliders, inverse Compton scattering (ICS) of intense laser pulses on relativistic electron bunches will enable a mode of operation based on energetic gamma e and gamma gamma collisions, with a significant complementary scientific potential. The efficiency of gamma-ray generation via ICS is constrained by the Thomson scattering cross section, resulting in typical laser photon-to-gamma efficiencies of <10(-9). Furthermore, repetition rates of the state-of-art high-energy short-pulse lasers are poorly matched with those available from electron accelerators. Laser recirculation has been proposed as a method to address those limitations, but has been limited to only small pulse energies and peak powers. We propose and experimentally demonstrate an alternative, non-interferometric method for laser pulse recirculation that is uniquely capable of recirculating short pulses with energies exceeding 1 J [1]. ICS of recirculated Joule-level laser pulses is compatible with the proposed pulse structure for ILC and has a potential to produce unprecedented peak and average gamma-ray brightness in the next generation of sources. C1 [Jovanovic, Iaor] Purdue Univ, Sch Nucl Engn, W Lafayette, IN 47907 USA. [Jovanovic, Iaor; Shverdin, Miro; Gibson, David; Brown, Curtis; Gronberg, Jeff] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Jovanovic, I (reprint author), Purdue Univ, Sch Nucl Engn, 400 Cent Dr, W Lafayette, IN 47907 USA. NR 11 TC 0 Z9 0 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0920-5632 J9 NUCL PHYS B-PROC SUP JI Nucl. Phys. B-Proc. Suppl. PD NOV PY 2008 VL 184 BP 289 EP 294 DI 10.1016/j.nuclphysbps.2008.09.178 PG 6 WC Physics, Particles & Fields SC Physics GA 386IJ UT WOS:000261876600054 ER PT J AU Warsa, JS AF Warsa, James S. TI A Continuous Finite Element-Based, Discontinuous Finite Element Method for S-N Transport SO NUCLEAR SCIENCE AND ENGINEERING LA English DT Article ID DIFFUSION SYNTHETIC ACCELERATION; SPATIAL DISCRETIZATION SCHEME; ASYMPTOTIC SOLUTIONS; TETRAHEDRAL MESHES; OPTICALLY THICK; POLYGONS; GEOMETRY; REGIMES AB A class of discontinuous finite element methods (DFEMs) is proposed for spatially discretizing the S-N transport equation in multidimensions. Mesh cells are first subdivided into simplexes. Equations for the angular fluxes in a cell are then generated by computing the linear DFEM SN equations for a simplex on each subelement and assembling the equations over the subelements. The result is a (piecewise) linear continuous finite element method spatial discretization on the cell that is coupled discontinuously to its neighbors through the standard DFEM upwinding technique. The method is presented in two-dimensional Cartesian coordinates. Numerical experiments indicate the method has numerical properties that are suitable for a new SN spatial discretization. C1 Los Alamos Natl Lab, Comp Computat & Stat Sci Div, Computat Phys & Methods Grp, Transport Methods Sect, Los Alamos, NM 87545 USA. RP Warsa, JS (reprint author), Los Alamos Natl Lab, Comp Computat & Stat Sci Div, Computat Phys & Methods Grp, Transport Methods Sect, Los Alamos, NM 87545 USA. EM warsa@lanl.gov FU U.S. Department of Energy [DE-AC52-06NA25396] FX The author would like to thank J. Chang of Los Alamos National Laboratory (LANL) for his help in implementing the methods and in improving the presentation. The author would like to thank T. Bailey of Texas A&M University for her help with the PWLD method. The author would like to acknowledge J. Morel of Texas A&M University, A. Prinja of the University of New Mexico, and T. Urbatsch of LANL for helpful discussions and support of this work. Finally, the author would like to thank M. Adams of Texas A&M University for bringing the point-in-the-middle DFEM to his attention. This information has been authored by an employee or employees of the Los Alamos National Security, LLC operator of LANL under contract DE-AC52-06NA25396 with the U.S. Department of Energy. NR 24 TC 8 Z9 8 U1 0 U2 0 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5639 J9 NUCL SCI ENG JI Nucl. Sci. Eng. PD NOV PY 2008 VL 160 IS 3 BP 385 EP 400 PG 16 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 363SH UT WOS:000260286500010 ER PT J AU Birkholzer, J AF Birkholzer, Jens TI RECENT ADVANCES IN NUCLEAR WASTE ISOLATION THROUGH SIMULATIONS WITH THE TOUGH CODES SO NUCLEAR TECHNOLOGY LA English DT Editorial Material C1 Lawrence Berkeley Natl Lab, Div Earth Sci, Nucl Energy & Waste Program, Berkeley, CA USA. RP Birkholzer, J (reprint author), Lawrence Berkeley Natl Lab, Div Earth Sci, Nucl Energy & Waste Program, Berkeley, CA USA. RI Birkholzer, Jens/C-6783-2011 OI Birkholzer, Jens/0000-0002-7989-1912 NR 0 TC 0 Z9 0 U1 0 U2 1 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5450 J9 NUCL TECHNOL JI Nucl. Technol. PD NOV PY 2008 VL 164 IS 2 BP 153 EP 154 PG 2 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 364RM UT WOS:000260352800001 ER PT J AU Kowalsky, MB Birkholzer, J Peterson, J Finsterle, S Mukhopadhyay, S Tsang, Y AF Kowalsky, M. B. Birkholzer, J. Peterson, J. Finsterle, S. Mukhopadhyay, S. Tsang, Y. TI SENSITIVITY ANALYSIS FOR JOINT INVERSION OF GROUND-PENETRATING RADAR AND THERMAL-HYDROLOGICAL DATA FROM A LARGE-SCALE UNDERGROUND HEATER TEST SO NUCLEAR TECHNOLOGY LA English DT Article DE hydrogeophysics; joint inversion; ground-penetrating radar ID TIME-DOMAIN REFLECTOMETRY; VADOSE ZONE; WATER SATURATION; YUCCA MOUNTAIN; FLOW; TRANSPORT; MODEL AB We describe a joint inversion approach that combines geophysical and thermal-hydrological data for the estimation of (a) thermal-hydrological parameters (such as permeability, porosity, thermal conductivity, and parameters of the capillary pressure and relative permeability functions) that are necessary for predicting the flow of fluids and heat in fractured porous media and (b) parameters of the petrophysical function that relates water saturation, porosity, and temperature to the dielectric constant. The approach incorporates the coupled simulation of nonisothermal multiphase fluid flow and ground-penetrating radar (GPR) travel times within an optimization framework. We discuss application of the approach to a large-scale in situ heater test that was conducted at Yucca Mountain, Nevada, to better understand the coupled thermal, hydrological, mechanical, and chemical processes that may occur in the fractured rock mass around a geologic repository for high-level radioactive waste. We provide a description of the time-lapse geophysical data (i.e., cross-borehole GPR) and thermal-hydrological data (i.e., temperature and water content data) collected before and during the 4-yr heating phase of the test and analyze the sensitivity of the most relevant thermal-hydrological and petrophysical parameters to the available data. To demonstrate feasibility of the approach, and as a first step toward comprehensive inversion of the heater test data, we apply the approach to estimate a single parameter: the permeability of the rock matrix. C1 [Kowalsky, M. B.; Birkholzer, J.; Peterson, J.; Finsterle, S.; Mukhopadhyay, S.; Tsang, Y.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Kowalsky, MB (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, 1 Cyclotron Rd,MS 90-1116, Berkeley, CA 94720 USA. EM MBKowalsky@lbl.gov RI Finsterle, Stefan/A-8360-2009; Birkholzer, Jens/C-6783-2011 OI Finsterle, Stefan/0000-0002-4446-9906; Birkholzer, Jens/0000-0002-7989-1912 FU Lawrence Berkeley National Laboratory; Director, Office of Science, of the DOE [DE-AC02-05CH11231] FX The authors would like to thank the anonymous reviewers and M. Commer for their thorough review of this paper. This work was supported by Laboratory Directed Research and Development funding from Lawrence Berkeley National Laboratory, provided by the Director, Office of Science, of the DOE under contract DE-AC02-05CH11231. NR 42 TC 3 Z9 3 U1 0 U2 4 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5450 J9 NUCL TECHNOL JI Nucl. Technol. PD NOV PY 2008 VL 164 IS 2 BP 169 EP 179 PG 11 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 364RM UT WOS:000260352800003 ER PT J AU Zhang, GX Spycher, N Sonnenthal, E Steefel, C Xu, TF AF Zhang, Guoxiang Spycher, Nicolas Sonnenthal, Eric Steefel, Carl Xu, Tianfu TI MODELING REACTIVE MULTIPHASE FLOW AND TRANSPORT OF CONCENTRATED SOLUTIONS SO NUCLEAR TECHNOLOGY LA English DT Article DE Yucca Mountain; Pitzer model; dryout ID CHEMICAL-EQUILIBRIUM MODEL; AQUEOUS CALCIUM-CHLORIDE; ION-INTERACTION MODEL; YUCCA MOUNTAIN; NATURAL-WATERS; MINERAL SOLUBILITIES; THERMODYNAMIC PROPERTIES; GEOCHEMICAL TRANSPORT; CATION-EXCHANGE; PREDICTION AB A Pitzer ion-interaction model for concentrated aqueous solutions was added to the reactive multiphase flow and transport code TOUGHREACT The model is described and verified against published experimental data and the geochemical code EQ3/6. The model is used to simulate water-rock-gas interactions caused by boiling and evaporation within and around nuclear waste emplacement tunnels at the proposed high-level waste repository at Yucca Mountain, Nevada. The coupled thermal, hydrological, and chemical processes considered consist of water and air/vapor flow, evaporation, boiling, condensation, solute and gas transport, formation of highly concentrated brines, precipitation of deliquescent salts, generation of acid gases, and vapor-pressure lowering caused by the high salinity of the concentrated brine. C1 [Zhang, Guoxiang; Spycher, Nicolas; Sonnenthal, Eric; Steefel, Carl; Xu, Tianfu] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Zhang, GX (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, 1 Cyclotron Rd,MS 90-1116, Berkeley, CA 94720 USA. EM gxzhang@lbl.gov RI Steefel, Carl/B-7758-2010; Spycher, Nicolas/E-6899-2010; Sonnenthal, Eric/A-4336-2009 FU Office of the Chief Scientist, Office of Civilian Radioactive Waste Management; Lawrence Berkeley National Laboratory through the U.S. Department of Energy [DE-AC02-05CH11231] FX We thank S. Mukhopadhyay, C. Bryan, M. Zhu, and two anonymous reviewers for their valuable comments and suggestions, as well as D. Hawkes for his technical editing support. This work was supported by the Office of the Chief Scientist, Office of Civilian Radioactive Waste Management, provided to Lawrence Berkeley National Laboratory through the U.S. Department of Energy contract DE-AC02-05CH11231. NR 44 TC 10 Z9 11 U1 1 U2 11 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5450 J9 NUCL TECHNOL JI Nucl. Technol. PD NOV PY 2008 VL 164 IS 2 BP 180 EP 195 PG 16 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 364RM UT WOS:000260352800004 ER PT J AU Ha, KS Jeong, HY Kwon, YM Lee, YB Hahn, D Cahalan, JE Dunn, FE AF Ha, Kwi Seok Jeong, Hae Yong Kwon, Young Min Lee, Yong Bum Hahn, Dohee Cahalan, James E. Dunn, Floyd E. TI AN ENHANCED CODE FOR THE SAFETY ANALYSIS OF POOL-TYPE SODIUM-COOLED FAST REACTORS SO NUCLEAR TECHNOLOGY LA English DT Article DE SSC-K; 3-D thermal-hydraulic model; KALIMER conceptual design AB The Super System Code of the Korea Atomic Energy Research Institute (SSC-K) has been developed for the transient analysis of the Korea Advanced LIquid MEtal Reactor (KALIMER) system. Recently, a detailed three-dimensional (3-D) core thermal-hydraulic model was developed to describe nonuniformities of radial temperature and flow within a subassembly and to decrease the uncertainties in the reactor safety margins during accident situations. The Shutdown Heat Removal Test-17 (SHRT-17) performed in the Experimental Breeder Reactor-II (EBR-II) and the postulated unscrammed events for the KALIMER conceptual design have been analyzed using a code system that has coupled a detailed 3-D core thermal-hydraulic model with SSC-K. The coupled code predicted behaviors for the experimental trends for the protected loss-of-flow SHRT-17. The KALIMER-150 design was adopted for a plant application of the same code system. Three events, unprotected transient overpower (UTOP), unprotected loss of flow (ULOF), and unprotected loss of heat sink (ULOHS) were analyzed, and the simulation results were compared to those obtained using another code system that has coupled the Safety Analysis Section SYStem (SASSYS)-1 code with the same detailed 3-D core thermal-hydraulic model. The results, calculated with SSC-K coupled with the detailed 3-D core thermal-hydraulic model showed good agreement with the calculated results of the SASSYS-1 coupled code system for the UTOP and ULOF; however, some discrepancies were shown in the results for the ULOHS. These were found to have occurred because of a difference of the modeling for the decay heat removal system and primary coolant inventory. Through these analyses, the coupled code system was validated in order to be available for the safety analysis of a liquid-metal reactor (LMR) plant. C1 [Ha, Kwi Seok; Jeong, Hae Yong; Kwon, Young Min; Lee, Yong Bum; Hahn, Dohee] Korea Atom Energy Res Inst, Taejon, Yuseong, South Korea. [Cahalan, James E.; Dunn, Floyd E.] Argonne Natl Lab, Argonne, IL 60439 USA. RP Ha, KS (reprint author), Korea Atom Energy Res Inst, 150-1 Dukjin Dong,1045 Daedeokdaero, Taejon, Yuseong, South Korea. EM ksha@kaeri.re.kr NR 8 TC 0 Z9 0 U1 0 U2 0 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5450 J9 NUCL TECHNOL JI Nucl. Technol. PD NOV PY 2008 VL 164 IS 2 BP 221 EP 231 PG 11 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 364RM UT WOS:000260352800007 ER PT J AU Geelhood, K Matson, D Senor, D Painter, C AF Geelhood, Kenneth Matson, Dean Senor, David Painter, Chad TI SPHERICAL FUEL ELEMENT CONCEPT FOR SMALL REACTOR DESIGN SO NUCLEAR TECHNOLOGY LA English DT Article DE atoms for peace reactor; small reactor; spherical fuel element AB The Pacific Northwest National Laboratory (PNNL) is currently developing a novel spherical fuel element concept that offers low fuel temperatures, low stored energy, and long core life. Fuel performance modeling has been conducted using the PNNL-developed Atoms for Peace Reactor (AFPR)-100 as a platform for demonstrating the potential of the fuel element concept. The AFPR-100 is a small [100-MW(electric), 300-MW(thermal)], water-cooled reactor concept that is designed to use established technology, be passively safe, and be proliferation resistant. The fuel performance modeling has demonstrated that this fuel element has a short thermal time constant, has low fuel temperature, provides a barrier for retention of fission products, and will have long-term dimensional stability. A technique for manufacturing these fuel elements was developed. A fabrication demonstration was conducted in cooperation with a commercial vendor to evaluate the feasibility of manufacturing the fuel elements. In order to demonstrate the proposed technique, the proposed spherical elements were produced using existing processes that could be scaled to large batch sizes. Surrogate ZrO2 kernels were substituted for the fuel in this demonstration. Thorough characterization of the fuel elements was performed at various stages in the fabrication process. The metallographic characterization included electron microscopic analysis of coating microstructure, and particular attention was paid to interface regions to search for deleterious reaction zones, debonding, and porosity. Although this demonstration is not complete, early results are promising and will be discussed in this paper. This paper will describe the fuel element, show the results of fuel performance calculations for this element, describe the proposed fabrication process, and discuss the results of a fabrication demonstration to date that has been performed for this concept. C1 [Geelhood, Kenneth; Matson, Dean; Senor, David; Painter, Chad] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Geelhood, K (reprint author), Pacific NW Natl Lab, 902 Battelle Blvd,POB 999, Richland, WA 99352 USA. EM kenneth.geelhood@pnl.gov NR 18 TC 0 Z9 0 U1 2 U2 2 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5450 J9 NUCL TECHNOL JI Nucl. Technol. PD NOV PY 2008 VL 164 IS 2 BP 255 EP 264 PG 10 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 364RM UT WOS:000260352800010 ER PT J AU Kim, ES Oh, CH No, HC AF Kim, Eung Soo Oh, Chang Ho No, Hee Cheon TI EXPERIMENTAL STUDY AND MODEL DEVELOPMENT ON THE MOISTURE EFFECT FOR NUCLEAR GRAPHITE OXIDATION SO NUCLEAR TECHNOLOGY LA English DT Article DE high-temperature gas-cooled reactor; moisture effect for graphite oxidation ID GRADE GRAPHITES; IG-110; FLOW AB A number of experiments were carried out to investigate the effect of moisture-which is always present in environmental air-on the graphite oxidation rate. A porous metal with 10-mu m pores was used to enhance the humidification at the outlet of the vertical column that is full of water and is designed to increase the moisture on the helium gas when it is passed through the porous media located at the bottom of the water column. The relative humidity (RH) of the mixture was controlled between 0 and 70% by a humidity sensor. The experiment was performed at temperatures ranging from 873 to 1573 K, mole fractions of oxygen from 0.09 to 0.17, and,9 RH from 0 to 70% at the normal condition. Assuming that the effect of moisture affects only the mass transfer, we derived a theoretical model for mass transfer that included the fast homogeneous CO combustion reaction. The present model shows that the mass transfer rate of humid air is half of the mass transfer rate for dry air. The predictions by the model agree with experimental data within 17%. C1 [Kim, Eung Soo; Oh, Chang Ho] Idaho Natl Lab, Idaho Falls, ID 83415 USA. [No, Hee Cheon] Korea Adv Inst Sci & Technol, Dept Nucl & Quantum Engn, Taejon 305701, South Korea. RP Kim, ES (reprint author), Idaho Natl Lab, POB 1625, Idaho Falls, ID 83415 USA. EM Chang.Oh@inl.gov RI NO, Hee Cheon/C-1866-2011 FU Korean Research Foundation; Korean government (MOEHRD) [KRF-2006-352-D00210] FX This work was supported by the Korean Research Foundation grant funded by the Korean government (MOEHRD) (KRF-2006-352-D00210). NR 11 TC 3 Z9 5 U1 3 U2 5 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5450 J9 NUCL TECHNOL JI Nucl. Technol. PD NOV PY 2008 VL 164 IS 2 BP 278 EP 285 PG 8 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 364RM UT WOS:000260352800012 ER PT J AU Khamayseh, A de Almeida, V Hansen, G AF Khamayseh, Ahmed de Almeida, Valmor Hansen, Glen TI Hybrid Surface Mesh Adaptation for Climate Modeling SO NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS LA English DT Article DE surface mesh generation; mesh adaptation; mesh optimization; climate modeling AB Solution-driven mesh adaptation is becoming quite popular for spatial error control in the numerical simulation of complex computational physics applications, such as climate modeling. Typically, spatial adaptation is achieved by element subdivision (h adaptation) with a primary goal of resolving the local length scales of interest. A second, less-popular method of spatial adaptivity is called "mesh motion" (r adaptation); the smooth repositioning of mesh node points aimed at resizing existing elements to capture the local length scales. This paper proposes an adaptation method based on a combination of both element subdivision and node point repositioning (rh adaptation). By combining these two methods using the notion of a mobility function, the proposed approach seeks to increase the flexibility and extensibility of mesh motion algorithms while providing a somewhat smoother transition between refined regions than is produced by element subdivision alone. Further, in an attempt to support the requirements of a very general class of climate simulation applications, the proposed method is designed to accommodate unstructured, polygonal mesh topologies in addition to the most popular mesh types. C1 [Khamayseh, Ahmed; de Almeida, Valmor] Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN 37831 USA. [Hansen, Glen] Idaho Natl Lab, Multiphys Methods Grp, Idaho Falls, ID 83415 USA. RP Khamayseh, A (reprint author), Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN 37831 USA. EM khamaysehak@ornl.gov; dealmeidav@ornl.gov; Glen.Hansen@inl.gov RI de Almeida, Valmor/P-5498-2016 OI de Almeida, Valmor/0000-0003-0899-695X NR 28 TC 1 Z9 1 U1 2 U2 3 PU GLOBAL SCIENCE PRESS PI WANCHAI PA ROOM 3208, CENTRAL PLAZA, 18 HARBOUR RD, WANCHAI, HONG KONG 00000, PEOPLES R CHINA SN 1004-8979 J9 NUMER MATH-THEORY ME JI Numer. Math.-Theory Methods Appl. PD NOV PY 2008 VL 1 IS 4 BP 410 EP 434 PG 25 WC Mathematics, Applied; Mathematics SC Mathematics GA V10OU UT WOS:000207474100003 ER PT J AU Williams, PT AF Williams, Paul T. TI Increases in Weight and Body Size Increase the Odds for Hypertension During 7 Years of Follow-up SO OBESITY LA English DT Article ID HIGH BLOOD-PRESSURE; FAT DISTRIBUTION; RISK-FACTORS; MASS INDEX; CARDIOVASCULAR-DISEASE; VIGOROUS EXERCISE; PHYSICAL-ACTIVITY; NORMOTENSIVE MEN; JAPANESE MEN; WOMEN AB Changes in BMI and body size were compared to incident hypertension in 24,550 men and 10,111 women followed prospectively as part of the National Runners' Health Study to test whether long-term weight change affects hypertension risk. Incident hypertensions were reported by 2,143 men and 430 women during (mean +/- s.d.) 7.8 +/- 1.8 and 7.5 +/- 2.0 years of follow-up, respectively. Despite being active, men's and women's BMI increased 1.15 +/- 1.70 and 0.95 +/- 1.89 kg/m(2), respectively, and their waist circumferences increased 2.97 +/- 5.02 and 3.29 +/- 6.67 cm, respectively. Compared to those whose BMI declined, those who gained >= 2.4 kg/m(2) had an odds ratio (95% confidence interval) of 1.68 (1.45, 1.94) for becoming hypertensive if male and 1.42 (1.05, 1.92) if female. Men whose waist circumference increased = 6 cm had an odds ratio of 1.22 (1.01, 1.47) for becoming hypertensive compared to those whose waists decreased. In both sexes, the odds for hypertension were significantly related to BMI at follow-up when adjusted for baseline BMI, but generally not to baseline BMI when adjusted for follow-up BMI. In the subset whose weights remained relatively unchanged during follow-up (+/- 0.4 kg/m(2)), each kg/m(2) increment in BMI was associated with an odds ratio for becoming hypertensive of 1.19 (1.14, 1.24) in men and 1.11 (1.02, 1.20) in women. Thus, even among lean, physically active individuals: (i) weight gain increases hypertension risk; (ii) higher body weight increases the hypertension risk in a dose-dependent manner in the absence of any weight change; and (iii) there is no advantage carried forward to having been previously lean. C1 Ernest Orlando Lawrence Berkeley Natl Lab, Donner Lab, Div Life Sci, Berkeley, CA USA. RP Williams, PT (reprint author), Ernest Orlando Lawrence Berkeley Natl Lab, Donner Lab, Div Life Sci, Berkeley, CA USA. EM ptwilliams@lbl.gov FU National Heart Lung and Blood Institute [AG032004, HL-072110, DK066738]; Ernest Orlando Lawrence Berkeley Laboratory [DE-AC03-76SF00098] FX We appreciate the assistance of Kathryn Hoffman and Isabelle La in their assistance in collecting the data. This study was supported in part by grants AG032004, HL-072110, and DK066738 from the National Heart Lung and Blood Institute, and was conducted at the Ernest Orlando Lawrence Berkeley Laboratory (Department of Energy DE-AC03-76SF00098 to the University of California). NR 42 TC 17 Z9 17 U1 1 U2 2 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK STREET, 9TH FLOOR, NEW YORK, NY 10013-1917 USA SN 1930-7381 J9 OBESITY JI Obesity PD NOV PY 2008 VL 16 IS 11 BP 2541 EP 2548 DI 10.1038/oby.2008.396 PG 8 WC Endocrinology & Metabolism; Nutrition & Dietetics SC Endocrinology & Metabolism; Nutrition & Dietetics GA 368OO UT WOS:000260631700025 PM 18756262 ER PT J AU Crutsinger, GM Reynolds, WN Classen, AT Sanders, NJ AF Crutsinger, Gregory M. Reynolds, W. Nicholas Classen, Aimee T. Sanders, Nathan J. TI Disparate effects of plant genotypic diversity on foliage and litter arthropod communities SO OECOLOGIA LA English DT Article DE community genetics; herbivores; leaf litter; microarthropods; Solidago altissima ID PRIMROSE OENOTHERA-BIENNIS; SOLIDAGO-ALTISSIMA; TERRESTRIAL ECOSYSTEMS; GOLDENRODS SOLIDAGO; DECOMPOSITION; BIODIVERSITY; DYNAMICS; POPULATION; GENETICS; ORIBATIDA AB Intraspecific diversity can influence the structure of associated communities, though whether litter-based and foliage-based arthropod communities respond to intraspecific diversity in similar ways remains unclear. In this study, we compared the effects of host-plant genotype and genotypic diversity of the perennial plant, Solidago altissima, on the arthropod community associated with living plant tissue (foliage-based community) and microarthropods associated with leaf litter (litter-based community). We found that variation among host-plant genotypes had strong effects on the diversity and composition of foliage-based arthropods, but only weak effects on litter-based microarthropods. Furthermore, host-plant genotypic diversity was positively related to the abundance and diversity of foliage-based arthropods, and within the herbivore and predator trophic levels. In contrast, there were minimal effects of plant genotypic diversity on litter-based microarthropods in any trophic level. Our study illustrates that incorporating communities associated with living foliage and senesced litter into studies of community genetics can lead to very different conclusions about the importance of intraspecific diversity than when only foliage-based community responses are considered in isolation. C1 [Crutsinger, Gregory M.; Classen, Aimee T.; Sanders, Nathan J.] Univ Tennessee, Dept Ecol & Evolutionary Biol, Knoxville, TN 37996 USA. [Reynolds, W. Nicholas] Univ Tennessee, Dept Entomol & Plant Pathol, Knoxville, TN 37996 USA. [Classen, Aimee T.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. RP Crutsinger, GM (reprint author), Univ Tennessee, Dept Ecol & Evolutionary Biol, 569 Dabney Hall, Knoxville, TN 37996 USA. EM gcrutsin@utk.edu RI Sanders, Nathan/A-6945-2009; Classen, Aimee/C-4035-2008 OI Sanders, Nathan/0000-0001-6220-6731; Classen, Aimee/0000-0002-6741-3470 FU EPA STAR; NSF Graduate Research; Department of Ecology and Evolutionary Biology at the University of Tennessee; Oak Ridge National Laboratory [DE-AC05-00OR22725]; US Department of Energy [DE-FG02-02ER63366] FX We thank K. Crawford, M. Genung, M. Habenicht, J. Ledford, and L. Zachmann for help with Weld and laboratory work. E. Bernard assisted with microarthropod identification. P. Kardol and T. Sackett provided helpful comments on the manuscript. G. M. C. was supported by an EPA STAR, NSF Graduate Research Fellowship, and funds from the Department of Ecology and Evolutionary Biology at the University of Tennessee. The Laboratory Directed Research and Development Program of Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the US Department of Energy under contract no. DE-AC05-00OR22725 and the Office of Science (Biological and Environmental Research), US Department of Energy, grant no. DE-FG02-02ER63366 supported A. T. C. and some of the work on this project. NR 56 TC 36 Z9 37 U1 0 U2 29 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0029-8549 J9 OECOLOGIA JI Oecologia PD NOV PY 2008 VL 158 IS 1 BP 65 EP 75 DI 10.1007/s00442-008-1130-y PG 11 WC Ecology SC Environmental Sciences & Ecology GA 357AX UT WOS:000259819800007 PM 18766383 ER PT J AU Fitzsimons, MS Miller, RM Jastrow, JD AF Fitzsimons, Michael S. Miller, R. Michael Jastrow, Julie D. TI Scale-dependent niche axes of arbuscular mycorrhizal fungi SO OECOLOGIA LA English DT Article DE succession; tallgrass prairie; multidimensional scaling; mantel tests; disturbance ID PLANT COMMUNITY STRUCTURE; TALLGRASS PRAIRIE; COMPETITIVE INTERACTIONS; ANDROPOGON-GERARDII; SPECIES-DIVERSITY; SOIL; ECOSYSTEM; ECOLOGY; BIODIVERSITY; COEXISTENCE AB Arbuscular mycorrhizal fungi (AMF) are mutualistic with most species of plants and are known to influence plant community diversity and composition. To better understand natural plant communities and the ecological processes they control it is important to understand what determines the distribution and diversity of AMF. We tested three putative niche axes: plant species composition, disturbance history, and soil chemistry against AMF species composition to determine which axis correlated most strongly with a changing AMF community. Due to a scale dependency we were not able to absolutely rank their importance, but we did find that each correlated significantly with AMF community change at our site. Among soil properties, pH and NO(3) were found to be especially good predictors of AMF community change. In a similar analysis of the plant community we found that time since disturbance had by far the largest impact on community composition. C1 [Fitzsimons, Michael S.] Univ Chicago, Dept Ecol & Evolut, Chicago, IL 60637 USA. [Fitzsimons, Michael S.; Miller, R. Michael; Jastrow, Julie D.] Argonne Natl Lab, Argonne, IL 60439 USA. [Miller, R. Michael] Univ Chicago, Comm Evolutionary Biol, Chicago, IL 60637 USA. RP Fitzsimons, MS (reprint author), Univ Chicago, Dept Ecol & Evolut, 1101 E 57th St, Chicago, IL 60637 USA. EM fitz@uchicago.edu; rmmiller@anl.gov; jdjastrow@anl.gov FU United States Department of Energy [W-31-109-Eng-38] FX We would like to thank the Fermi National Environmental Research Park for allowing us to sample the prairie restorations and A. C. McGraw for the spore identification. The research was supported by the United States Department of Energy, Office of Science, Office of Biological and Environmental Research, and Climate Change Research Division under contract W-31-109-Eng-38. The experiments discussed within this manuscript comply with the current laws of the United States of America and the state of Illinois. NR 65 TC 37 Z9 40 U1 2 U2 41 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0029-8549 J9 OECOLOGIA JI Oecologia PD NOV PY 2008 VL 158 IS 1 BP 117 EP 127 DI 10.1007/s00442-008-1117-8 PG 11 WC Ecology SC Environmental Sciences & Ecology GA 357AX UT WOS:000259819800012 PM 18690479 ER PT J AU Natali, SM Sanudo-Wilhelmy, SA Norby, RJ Zhang, H Finzi, AC Lerdau, MT AF Natali, Susan M. Sanudo-Wilhelmy, Sergio A. Norby, Richard J. Zhang, Hong Finzi, Adrien C. Lerdau, Manuel T. TI Increased mercury in forest soils under elevated carbon dioxide SO OECOLOGIA LA English DT Article DE Global change; Soil organic matter; Hg deposition; Throughfall; Free-air carbon dioxide enrichment ID ATMOSPHERIC CO2; THROUGHFALL; ENRICHMENT; CANOPY; DEPOSITION; AIR; ACIDIFICATION; ACCUMULATION; VEGETATION; WATER AB Fossil fuel combustion is the primary anthropogenic source of both CO(2) and Hg to the atmosphere. On a global scale, most Hg that enters ecosystems is derived from atmospheric Hg that deposits onto the land surface. Increasing concentrations of atmospheric CO(2) may affect Hg deposition to terrestrial systems and storage in soils through CO(2)-mediated changes in plant and soil properties. We show, using free-air CO(2) enrichment (FACE) experiments, that soil Hg concentrations are almost 30% greater under elevated atmospheric CO(2) in two temperate forests. There were no direct CO(2) effects, however, on litterfall, throughfall or stemflow Hg inputs. Soil Hg was positively correlated with percent soil organic matter (SOM), suggesting that CO(2)-mediated changes in SOM have influenced soil Hg concentrations. Through its impacts on SOM, elevated atmospheric CO(2) may increase the Hg storage capacity of soils and modulate the movement of Hg through the biosphere. Such effects of rising CO(2), ones that transcend the typically studied effects on C and nutrient cycling, are an important next phase for research on global environmental change. C1 [Natali, Susan M.] Univ Florida, Dept Bot, Gainesville, FL 32611 USA. [Sanudo-Wilhelmy, Sergio A.] Univ So Calif, Los Angeles, CA 90089 USA. [Norby, Richard J.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. [Zhang, Hong] Tennessee Technol Univ, Dept Chem, Cookeville, TN 38505 USA. [Finzi, Adrien C.] Boston Univ, Dept Biol, Boston, MA 02215 USA. [Lerdau, Manuel T.] Univ Virginia, Blandy Expt Farm, Charlottesville, VA 22904 USA. [Lerdau, Manuel T.] Univ Virginia, Dept Environm Sci, Charlottesville, VA 22904 USA. RP Natali, SM (reprint author), Univ Florida, Dept Bot, Gainesville, FL 32611 USA. EM natali@ufl.edu RI Norby, Richard/C-1773-2012; Lerdau, Manuel/E-7320-2011; Finzi, Adrien/A-7017-2016 OI Norby, Richard/0000-0002-0238-9828; Lerdau, Manuel/0000-0003-1864-0834; Finzi, Adrien/0000-0003-2220-4533 FU US Department of Energy, Office of Science-Biological and Environmental Research; National Science Foundation; Department of Energy FX We thank D. Richter for soil samples, E. A. Leger and F. J. Rohlf for statistical advice, C. Iversen, R. Oren and the FACE staff for Weld support, J. Lichter for conversations and data on pre-treatment soils, R. K. Kolka for advice on stemflow collectors, S. Lindberg and N. Bloom for throughfall sampling advice, J. Varekamp for use of his DMA-80, W. Schlesinger for advice during manuscript preparation, and H. Heilmeier and two anonymous reviewers for comments on this manuscript. This work was supported by the US Department of Energy, Office of Science-Biological and Environmental Research, and fellowships from the National Science Foundation (S. M. N.) and Department of Energy (S. M. N.). NR 46 TC 8 Z9 8 U1 0 U2 13 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0029-8549 J9 OECOLOGIA JI Oecologia PD NOV PY 2008 VL 158 IS 2 BP 343 EP 354 DI 10.1007/s00442-008-1135-6 PG 12 WC Ecology SC Environmental Sciences & Ecology GA 363UZ UT WOS:000260293700015 PM 18769943 ER PT J AU Long, EF Vaidya, NK Brandeau, ML AF Long, Elisa F. Vaidya, Naveen K. Brandeau, Margaret L. TI Controlling Co-Epidemics: Analysis of HIV and Tuberculosis Infection Dynamics SO OPERATIONS RESEARCH LA English DT Article ID UNITED-STATES; INDIA; IMPACT; THERAPY; MODELS; TRANSMISSION; POPULATIONS; PREVENTION; HIV/AIDS; DRIVEN AB A co-epidemic arises when the spread of one infectious disease stimulates the spread of another infectious disease. Recently, this has happened with human immunodeficiency virus (HIV) and tuberculosis (TB). We develop two variants of a coepidemic model of two diseases. We calculate the basic reproduction number (R(0)), the disease-free equilibrium, and the quasi-disease-free equilibria, which we de. ne as the existence of one disease along with the complete eradication of the other disease, and the co-infection equilibria for specific conditions. We determine stability criteria for the disease-free and quasi-disease-free equilibria. We present an illustrative numerical analysis of the HIV-TB co-epidemics in India that we use to explore the effects of hypothetical prevention and treatment scenarios. Our numerical analysis demonstrates that exclusively treating HIV or TB may reduce the targeted epidemic, but can subsequently exacerbate the other epidemic. Our analyses suggest that coordinated treatment efforts that include highly active antiretroviral therapy for HIV, latent TB prophylaxis, and active TB treatment may be necessary to slow the HIV-TB co-epidemic. However, treatment alone may not be sufficient to eradicate both diseases. Increased disease prevention efforts (for example, those that promote condom use) may also be needed to extinguish this co-epidemic. Our simple model of two synergistic infectious disease epidemics illustrates the importance of including the effects of each disease on the transmission and progression of the other disease. C1 [Long, Elisa F.] Yale Univ, Sch Management, New Haven, CT 06520 USA. [Vaidya, Naveen K.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Brandeau, Margaret L.] Stanford Univ, Dept Management Sci & Engn, Stanford, CA 94305 USA. RP Long, EF (reprint author), Yale Univ, Sch Management, New Haven, CT 06520 USA. EM elisa.long@yale.edu; nvaidya@nanl.gov; brandeau@stanford.edu FU National Institute on Drug Abuse [R-01-DA-15612]; Institute for Operations Research and the Management Sciences ( INFORMS); Natural Science and Engineering Research Council (NSERC) of Canada; Mathematics for Information Technology and Complex System (MITACS) of Canada FX This work was supported by a grant (R-01-DA-15612) from the National Institute on Drug Abuse; the Seth Bonder Scholarship for Applied Operations Research in Health Services, sponsored by the Institute for Operations Research and the Management Sciences ( INFORMS); the Natural Science and Engineering Research Council (NSERC) of Canada; and the Mathematics for Information Technology and Complex System (MITACS) of Canada. NR 41 TC 16 Z9 16 U1 2 U2 7 PU INFORMS PI HANOVER PA 7240 PARKWAY DR, STE 310, HANOVER, MD 21076-1344 USA SN 0030-364X J9 OPER RES JI Oper. Res. PD NOV-DEC PY 2008 VL 56 IS 6 BP 1366 EP 1381 DI 10.1287/opre.1080.0571 PG 16 WC Management; Operations Research & Management Science SC Business & Economics; Operations Research & Management Science GA 410GK UT WOS:000263565300004 PM 19412348 ER PT J AU Johnson, RP AF Johnson, Randall P. TI Spike suppression and longitudinal mode selection in a 1.319 mu m Nd : YAG laser by high-efficiency intracavity frequency doubling SO OPTICS AND LASER TECHNOLOGY LA English DT Article DE Nd : YAG; frequency doubling; mode selection AB We describe a flashlamp pumped 1.319 mu m Nd:YAG ring laser in which a high-efficiency intracavity frequency doubler is used as a nonlinear output coupler, virtually eliminating all spiking behavior and providing longitudinal mode selection as well. A single frequency, long pulse (> 50 mu s) output at 660 nm with about 20 W peak power is produced, suitable as a source for visar and other applications where long coherent pulses at relatively high power are required. Experimental results and theoretical analyses are given. (C) 2008 Elsevier Ltd. All rights reserved. C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Johnson, RP (reprint author), Los Alamos Natl Lab, P-24,Mail Stop E526,POB 1663, Los Alamos, NM 87545 USA. EM rpjohnson@lanl.gov NR 8 TC 2 Z9 2 U1 2 U2 2 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0030-3992 J9 OPT LASER TECHNOL JI Opt. Laser Technol. PD NOV PY 2008 VL 40 IS 8 BP 1078 EP 1081 DI 10.1016/j.optlastec.2008.02.001 PG 4 WC Optics; Physics, Applied SC Optics; Physics GA 332BI UT WOS:000258056300015 ER PT J AU Phuoc, TX Howard, BH Martello, DV Soong, Y Chyu, MK AF Phuoc, Tran X. Howard, Bret. H. Martello, Donald V. Soong, Yee Chyu, Minking K. TI Synthesis of Mg(OH)(2), MgO, and Mg nanoparticles using laser ablation of magnesium in water and solvents SO OPTICS AND LASERS IN ENGINEERING LA English DT Article DE laser ablation in liquid; magnesium; magnesium oxides ID OPTICAL-PROPERTIES; LIQUIDS; COLLOIDS; COBALT; SIZE AB Laser ablation of magnesium in deionized water (DW), solutions of DW and sodium dodecyl sulfate (SDS) with different concentrations, acetone and 2-propanol has been conducted. The results showed that ablation in acetone and 2-propanol yielded MgO and Mg nanocrystallites as isolated particles and agglomerated chains probably intermixed with organic residues resulting from the alteration/decomposition of the solvents under the high-energy conditions. Brucite-like Mg(OH)2 particles were mainly produced by laser ablation of Mg in either DW or DW-SDS solutions. Ablation in DW yielded particles of fiber-like shapes having a diameter of about 5-10nm and length-as long as 150 nm. Materials produced in DW-SDS solutions were composed of various size and shape particles. Some had rough surfaces with irregular shapes. Small particles were about 20-30 nm and larger particles were about 120 nm. Particles with rod-like, triangular, and plate-like shapes were also observed. Published by Elsevier Ltd. C1 [Phuoc, Tran X.; Howard, Bret. H.; Martello, Donald V.; Soong, Yee] Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. [Chyu, Minking K.] Univ Pittsburgh, Dept Mech Engn & Mat Sci, Pittsburgh, PA 15261 USA. RP Phuoc, TX (reprint author), Natl Energy Technol Lab, POB 10940,MS 84-340, Pittsburgh, PA 15236 USA. EM tran@netl.doe.gov NR 23 TC 45 Z9 45 U1 2 U2 14 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0143-8166 J9 OPT LASER ENG JI Opt. Lasers Eng. PD NOV PY 2008 VL 46 IS 11 BP 829 EP 834 DI 10.1016/j.optlaseng.2008.05.018 PG 6 WC Optics SC Optics GA 357NK UT WOS:000259852300007 ER PT J AU Huo, QK Yuasa, T Akatsuka, T Takeda, T Wu, J Thet-Thet-Lwin Hyodo, K Dilmanian, FA AF Huo, Qingkai Yuasa, Tetsuya Akatsuka, Takao Takeda, Tohoru Wu, Jin Thet-Thet-Lwin Hyodo, Kazuyuki Dilmanian, F. Avraham TI Sheet-beam geometry for in vivo fluorescent x-ray computed tomography: proof-of-concept experiment in molecular imaging SO OPTICS LETTERS LA English DT Article ID SYNCHROTRON-RADIATION AB We propose a fluorescent x-ray computed tomography method using an array of detectors with an incident sheet beam, aimed at providing molecular imaging with high sensitivity and good spatial resolution. In this study, we prove the feasibility of this concept and investigate its imaging properties, including spatial and contrast resolutions and quantitativeness, by imaging an acrylic phantom and a normal mouse brain using a preliminary imaging system with monochromatic synchrotron x rays. (C) 2008 Optical Society of America C1 [Huo, Qingkai; Yuasa, Tetsuya; Akatsuka, Takao] Yamagata Univ, Yamagata 9928510, Japan. [Takeda, Tohoru; Wu, Jin; Thet-Thet-Lwin] Univ Tsukuba, Tsukuba, Ibaraki 3058575, Japan. [Hyodo, Kazuyuki] KEK, High Energy Accelerator Res Org, Tsukuba, Ibaraki 3050801, Japan. [Dilmanian, F. Avraham] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Yuasa, T (reprint author), Yamagata Univ, Yamagata 9928510, Japan. EM yuasa@yz.yamagata-u.ac.jp RI Yuasa, Tetsuya/F-5006-2013 FU Japanese Ministry of Education, Science and Culture [09780789, 20500385, 19390313]; KEK [2007G643] FX This research was partially supported by a Grant-In-Aid for Scientific Research (09780789, 20500385, 19390313) from the Japanese Ministry of Education, Science and Culture, and performed under the auspices of KEK (2007G643). NR 10 TC 23 Z9 23 U1 0 U2 1 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 0146-9592 J9 OPT LETT JI Opt. Lett. PD NOV 1 PY 2008 VL 33 IS 21 BP 2494 EP 2496 PG 3 WC Optics SC Optics GA 379CQ UT WOS:000261373000027 PM 18978898 ER PT J AU Schiffbauer, JD Yanes, Y Tyler, CL Kowalewski, M Leighton, LR AF Schiffbauer, James D. Yanes, Yurena Tyler, Carrie L. Kowalewski, Michal Leighton, Lindsey R. TI THE MICROSTRUCTURAL RECORD OF PREDATION: A NEW APPROACH FOR IDENTIFYING PREDATORY DRILL HOLES SO PALAIOS LA English DT Article ID FOSSIL RECORD; NATICID GASTROPODS; SHELL PENETRATION; MYTILUS-EDULIS; MURICIDAE; PREY; BRACHIOPOD; BOREHOLES; DISSOLUTION; UROSALPINX AB Drill holes in prey skeletons are the most common source of data for quantifying predator-prey interactions in the fossil record. To be useful, however, such drill holes need to be identified correctly. Field emission scanning electron microscopy (FE-SEM) and environmental scanning electron microscopy (ESEM) were applied to describe and quantify microstructural characteristics of drill holes. Various specimens, including modern limpets and mussels drilled by muricid snails in laboratory experiments, subfossil limpets collected from a tidal flat (San juan Island, Washington state, USA), and various Miocene bivalves collected from multiple European sites, were examined for microstructural features. The microstructures observed are interpreted here as Radulichnus-like micro-rasping marks, or predatory microtraces, made by the radula of drilling gastropod predators. The mean adjacent spacing of these microtraces is notably denser than the spacing of muricid radular teeth determined by measurements taken from the literature. Because the radular marks typically overlie or crosscut each other, the denser spacing of predatory microtraces likely reflects superimposition of scratches from repeated passes of the radula. One incomplete drill hole showed a clear, chemically aided drilling dissolution signature around its outer margin, while a number of other specimens showed similar, but ambiguous, traces of dissolution. The range of organisms examined illustrates the utility of scanning electron microscopy (SEM) imaging for identifying micro-rasping marks associated with predatory drill holes in both modern and fossil specimens. These distinct microtraces offer promise for augmenting our ability to identify drill holes in the fossil record and to distinguish them from holes produced by non-predatory means. C1 [Schiffbauer, James D.; Tyler, Carrie L.; Kowalewski, Michal] Virginia Polytech Inst & State Univ, Dept Geosci, Blacksburg, VA 24061 USA. [Yanes, Yurena] Univ Georgia, Savannah River Ecol Lab, Aiken, SC 29802 USA. [Leighton, Lindsey R.] Univ Alberta, Dept Earth & Atmospher Sci, Edmonton, AB T6G 2E3, Canada. RP Schiffbauer, JD (reprint author), Virginia Polytech Inst & State Univ, Dept Geosci, 4044 Derring Hall, Blacksburg, VA 24061 USA. EM jdschiff@vt.edu RI Kowalewski, Michal/B-4263-2008; Yanes, Yurena/F-3218-2010 OI Kowalewski, Michal/0000-0002-8575-4711; FU National Science Foundation [OCE-0602375] FX The experimental portions of this study were conducted at the Friday Harbor Laboratories during a Predator-Prey Interactions summer course. We would like to thank the FHL faculty and staff for providing funding, facilities, and logistic and intellectual support. All EM analyses were conducted at the Virginia Tech Institute for Critical Technology and Applied Science Nanoscale Characterization and Fabrication Laboratory (ICTAS-NCFL). The final stages of the study were partly supported by National Science Foundation grant (OCE-0602375). We thank J.W. Huntley (University of Kentucky) for his generous help during the FHL Summer course and for insights on the manuscript; S.R.F McCartney and J. McIntosh (ICTAS-NCFL) for FE-SEM and ESEM technical assistance-, and T.A. Dexter, P.J. Voice, A.F Wallace, and S. Xiao (Virginia Tech) for constructive comments on earlier drafts of this report. We also thank G.S. Herbert (University of South Florida) for valuable discussions, as well as K. Parsons-Hubbard (Oberlin College), E.M. Harper (Cambridge University), two anonymous reviewers, and an anonymous associate editor for constructive reviews, suggestions, and comments that greatly improved the quality of this manuscript. NR 38 TC 14 Z9 14 U1 0 U2 10 PU SEPM-SOC SEDIMENTARY GEOLOGY PI TULSA PA 6128 EAST 38TH ST, STE 308, TULSA, OK 74135-5814 USA SN 0883-1351 J9 PALAIOS JI Palaios PD NOV-DEC PY 2008 VL 23 IS 11-12 BP 810 EP 820 DI 10.2110/palo.2008.p08-045r PG 11 WC Geology; Paleontology SC Geology; Paleontology GA 388SH UT WOS:000262039000009 ER PT J AU Alam, SR Agarwal, PK Vetter, JS AF Alam, Sadaf R. Agarwal, Pratul K. Vetter, Jeffrey S. TI Performance characteristics of biomolecular simulations on high-end systems with multi-core processors SO PARALLEL COMPUTING LA English DT Article; Proceedings Paper CT 6th IEEE International Workshop on High Performance Computational Biology CY MAR 26, 2007 CL Long Beach, CA SP IEEE DE Multicore processors; Performance evaluation; Workload characterization; Molecular modeling; Massively parallel systems ID MOLECULAR-DYNAMICS; PROTEIN DYNAMICS; CYCLOPHILIN-A; ISOMERIZATION; ENZYMES AB Biological processes occurring inside cell involve multiple scales of time and length; many popular theoretical and computational multi-scale techniques utilize biomolecular simulations based on molecular dynamics. Till recently, the computing power required for simulating the relevant scales was even beyond the reach of fastest supercomputers. The availability of petaFLOPS-scale computing power in near future holds great promise. Unfortunately, the biosimulations software technology has not kept up with the changes in hardware. In particular, with the introduction of multi-core processing technologies in systems with tens of thousands of processing cores, it is unclear whether the existing biomolecular simulation frameworks will be able to scale and to utilize these resources effectively. While the multi-core processing systems provide higher processing capabilities, their memory and network subsystems are posing new challenges to application and system software developers. In this study, we attempt to characterize computation, communication and memory efficiencies of biomolecular simulations on Teraflops-scale Cray XT systems, which contain dual-core Opteron processors. We identify that the application efficiencies using the multi-core processors reduce with the increase of the simulated system size. Further, we measure the communication overhead of using both cores in the processor simultaneously and identify that: the slowdown in the MPI communication performance can significantly lower the achievable performance in the dual-core execution mode. We conclude that not only the biomolecular simulations need to be aware of the underlying multicore hardware in order to achieve maximum performance but also the system software needs to provide processor and memory placement features in the high-end systems. Our results on stand-alone multi-core AMD and Intel systems confirm that combinations of processor and memory affinity schemes cause significant performance variations for our target test cases. (C) 2008 Elsevier B.V. All rights reserved. C1 [Alam, Sadaf R.; Agarwal, Pratul K.; Vetter, Jeffrey S.] Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN 37831 USA. RP Alam, SR (reprint author), Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN 37831 USA. EM alamsr@ornl.gov; agarwalpk@ornl.gov; vetter@ornl.gov NR 23 TC 4 Z9 5 U1 0 U2 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-8191 J9 PARALLEL COMPUT JI Parallel Comput. PD NOV PY 2008 VL 34 IS 11 BP 640 EP 651 DI 10.1016/j.parco.2008.05.003 PG 12 WC Computer Science, Theory & Methods SC Computer Science GA 379CB UT WOS:000261371300004 ER PT J AU Biswas, R Christensen, C Muehlmeier, J Tuttle, G Ho, KM AF Biswas, Rana Christensen, C. Muehlmeier, J. Tuttle, G. Ho, K. -M. TI Waveguide circuits in three-dimensional photonic crystals SO PHOTONICS AND NANOSTRUCTURES-FUNDAMENTALS AND APPLICATIONS LA English DT Article DE 3-D photonic bandgap crystal; Waveguide bend ID BENDS; DESIGN AB Waveguide circuits in three-dimensional photonic crystals with complete photonic band gaps are simulated with finite difference time domain (FDTD) simulations, and compared with measurements on microwave scale photonic crystals. The transmission through waveguide bends critically depends on the photonic crystal architecture in the bend region. We have found experimentally and theoretically, a new waveguide bend configuration consisting of overlapping rods in the bend region, that performs better than the simple waveguide bend of terminated rods, especially in the higher frequency portion of the band. Efficient beam splitters with this junction geometry are also simulated. (c) 2008 Elsevier B.V. All rights reserved. C1 [Biswas, Rana; Christensen, C.; Muehlmeier, J.; Tuttle, G.; Ho, K. -M.] Iowa State Univ, Microelect Res Ctr, Dept Phys & Astron, Ames Lab, Ames, IA 50011 USA. RP Biswas, R (reprint author), Iowa State Univ, Microelect Res Ctr, Dept Phys & Astron, Ames Lab, Ames, IA 50011 USA. EM biswasr@iastate.edu FU Department of Energy, Division of Basic Energy Sciences [DE-AC02-07CH11358] FX We thank Mihalas Sigalas for helpful suggestions. Work at the Ames Laboratory was supported by the Department of Energy, Division of Basic Energy Sciences, under Contract No. DE-AC02-07CH11358. NR 26 TC 6 Z9 8 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1569-4410 J9 PHOTONIC NANOSTRUCT JI Photonics Nanostruct. PD NOV PY 2008 VL 6 IS 2 BP 134 EP 141 DI 10.1016/j.photonics.2008.03.002 PG 8 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Optics; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Optics; Physics GA 372VF UT WOS:000260929400002 ER PT J AU Farfan, GB Rammohan, R Su, MF El-Kady, I Taha, MMR AF Farfan, G. B. Rammohan, R. Su, M. F. El-Kady, I. Taha, M. M. Reda TI Prediction of photonic crystal emitter efficiency using an optimized fuzzy learning approach SO PHOTONICS AND NANOSTRUCTURES-FUNDAMENTALS AND APPLICATIONS LA English DT Article DE Photonic crystal; Emitter efficiency; Power efficiency; Thermo-photovoltaics (TPV); Fuzzy set Theory ID DIFFRACTION; FORMULATION; GRATINGS; LIGHT AB Photonic crystals (PC) have attracted much attention over the last decade for their unique ability to control light propagation. Researchers suggested the use of metallic photonic crystal with network topology as high efficiency thermal emitters. A necessary precursor to the deployment of such crystals in practical systems is fast accurate prediction of the emission characteristics and efficiency from a photonic lattice. Conventional models that simulate the photonic response of PC are computationally expensive and can take up to a few hours on several parallel processors to realize the emitter efficiency for a given PC structure. Therefore, a practical design process with trial and error cannot be done in a reasonable amount of time. In this article we suggest the use of a fuzzy learning approach to establish a model that can be used to predict emitter efficiency from such systems. The widely studied metallic PC Lincoln log structure is used as a case study. We show that the proposed method can estimate the efficiency of any PC Lincoln log structure much faster than any existing method and is by no means bound to this specific geometry. The case study presented here was chosen only because of recent high interest in it and the abundance of literature data on the example structure. The learning process using Fuzzy set Theory is explained. A multi-objective optimization method to enhance the fuzzy learning process is also outlined. An exemplar case showing the ability of the proposed model to predict the emitter efficiency of a tungsten PC with a bandgap at (10-11.5 mu m) is illustrated. We show that once the fuzzy learning is performed, the proposed method can predict the emitter efficiency with 95% accuracy without the need for any expensive computations. (c) 2008 Elsevier B.V. All rights reserved. C1 [Farfan, G. B.; Su, M. F.; El-Kady, I.; Taha, M. M. Reda] Univ New Mexico, Dept Elect & Comp Engn, Albuquerque, NM 87131 USA. [Rammohan, R.] Univ New Mexico, Dept Comp Sci, Albuquerque, NM 87131 USA. [El-Kady, I.] Sandia Natl Labs, Dept Photon Microsyst Technol, Albuquerque, NM 87185 USA. [Taha, M. M. Reda] Univ New Mexico, Dept Civil Engn, Albuquerque, NM 87131 USA. RP El-Kady, I (reprint author), Univ New Mexico, Dept Elect & Comp Engn, Albuquerque, NM 87131 USA. EM ielkady@sandia.gov RI El-Kady, Ihab/D-2886-2013 OI El-Kady, Ihab/0000-0001-7417-9814 FU Sandia National Laboratories (SNL); U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000]; U.S. Department of Energy; Office of Science; Office of Basic Energy Sciences [W-31-109-Eng-38] FX This work is supported by Sandia National Laboratories (SNL). We greatly appreciate this support. Sandia National Laboratories, a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. Use of the Center for Nanoscale Materials was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. W-31-109-Eng-38. NR 35 TC 2 Z9 2 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1569-4410 EI 1569-4429 J9 PHOTONIC NANOSTRUCT JI Photonics Nanostruct. PD NOV PY 2008 VL 6 IS 2 BP 154 EP 166 DI 10.1016/j.photonics.2008.07.002 PG 13 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Optics; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Optics; Physics GA 372VF UT WOS:000260929400005 ER PT J AU Menshutin, AY Shchur, LN Vinokour, VM AF Menshutin, Anton Yu. Shchur, Lev N. Vinokour, Valery M. TI Finite size effect of harmonic measure estimation in a DLA model: Variable size of probe particles SO PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS LA English DT Article DE DLA; fractal growth; harmonic measure; fractal dimension ID DIFFUSION-LIMITED-AGGREGATION; BROWNIAN INTERSECTION EXPONENTS; KINETIC CRITICAL PHENOMENON; PLANE EXPONENTS; LATTICE; GROWTH; CLUSTERS; VALUES AB A finite size effect in the probing of the harmonic measure in simulation of diffusion-limited aggregation (DLA) growth is investigated. We introduce a variable size of probe particles, to estimate harmonic measure and extract the fractal dimension of DLA clusters taking two limits, of vanishingly small probe particle size and of infinitely large size of a DLA cluster. We generate 1000 DLA clusters consisting of 50 million particles each, using an off-lattice killing-free algorithm developed in the early work. The introduced method leads to unprecedented accuracy in the estimation of the fractal dimension. We discuss the variation of the probability distribution function with the size of probing particles. (C) 2008 Elsevier B.V. All rights reserved. C1 [Menshutin, Anton Yu.; Shchur, Lev N.] LD Landau Theoret Phys Inst, Chernogolovka 142432, Russia. [Shchur, Lev N.; Vinokour, Valery M.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Menshutin, AY (reprint author), LD Landau Theoret Phys Inst, Chernogolovka 142432, Russia. EM may@itp.ac.ru FU US Department of Energy Office of Science [DE-AC02-06CH11357]; Landau Scholarship Committee FX This work was supported by the US Department of Energy Office of Science through contract No. DE-AC02-06CH11357 and the Program. A.Yu.M. thanks Prof. G. Eilenberger and Landau Scholarship Committee for support and Prof. H. Muller-Krumbhaar and Prof. E. Brener for the kind hospitality and useful discussions. NR 28 TC 5 Z9 5 U1 2 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-4371 J9 PHYSICA A JI Physica A PD NOV 1 PY 2008 VL 387 IS 25 BP 6299 EP 6309 DI 10.1016/j.physa.2008.07.015 PG 11 WC Physics, Multidisciplinary SC Physics GA 356RF UT WOS:000259794600007 ER PT J AU Ho, PJ Santra, R AF Ho, Phay J. Santra, Robin TI Theory of x-ray diffraction from laser-aligned symmetric-top molecules SO PHYSICAL REVIEW A LA English DT Article ID ULTRAFAST ELECTRON-DIFFRACTION; PENDULAR STATES; PHASE RETRIEVAL; FIELDS; ALIGNMENT; CRYSTALLOGRAPHY; SCATTERING; ORBITALS; PULSES; ALLOW AB We present a theory of x-ray diffraction from an ensemble of symmetric-top molecules aligned by a short intense optical laser pulse at finite rotational temperature. Employing quantum electrodynamics, we describe the x-ray-molecule interaction as an electronically elastic one-photon scattering process. We treat the short x-ray pulse as a multimode radiation field and examine the effect of its coherence properties. In the practically important case that the x-ray pulse is quasimonochromatic and its coherence time is much shorter than the time scale of molecular rotational dynamics in the laser field, there is a simple connection between the rotational wave-packet dynamics and the diffraction pattern obtained. Our theory thus opens up a new perspective for quantum molecular imaging using x-ray radiation. An illustrative application to Br-2 is presented. C1 [Ho, Phay J.; Santra, Robin] Argonne Natl Lab, Argonne, IL 60439 USA. [Santra, Robin] Univ Chicago, Dept Phys, Chicago, IL 60637 USA. RP Ho, PJ (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. RI Santra, Robin/E-8332-2014 OI Santra, Robin/0000-0002-1442-9815 NR 53 TC 13 Z9 13 U1 1 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 J9 PHYS REV A JI Phys. Rev. A PD NOV PY 2008 VL 78 IS 5 AR 053409 DI 10.1103/PhysRevA.78.053409 PG 14 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 376XF UT WOS:000261215600111 ER PT J AU Khodas, M Kamenev, A Glazman, LI AF Khodas, M. Kamenev, A. Glazman, L. I. TI Photosolitonic effect SO PHYSICAL REVIEW A LA English DT Article ID BOSE-EINSTEIN CONDENSATE; DARK SOLITONS; BRAGG SPECTROSCOPY; SCATTERING; GAS; SPECTRUM AB We show that dark solitons in one-dimensional Bose liquids may be created by absorption of a single quanta of an external ac field, in a close analogy with the Einstein's photoelectric effect. Similarly to the von Lenard's experiment with photoexcited electrons, the external field's photon energy h omega should exceed a certain threshold. In our case the latter is given by the soliton energy epsilon(s)(hq) with the momentum hq, where q is photon's wave number. We find the probability of soliton creation to have a power-law dependence on the frequency detuning omega-epsilon(s)/h. This dependence is a signature of the quantum nature of the absorption process and the orthogonality catastrophe phenomenon associated with it. C1 [Khodas, M.] Univ Minnesota, William I Fine Theoret Phys Inst, Minneapolis, MN 55455 USA. [Khodas, M.; Kamenev, A.] Univ Minnesota, Sch Phys & Astron, Minneapolis, MN 55455 USA. [Glazman, L. I.] Yale Univ, Dept Phys, New Haven, CT 06520 USA. RP Khodas, M (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. FU DOE [DEFG02-08ER46482]; A. P. Sloan foundation FX We thank A. Abanov, J.- S. Caux, D. Gangardt, D. Gutman, V. Gurarie, and A. Imambekov for numerous discussions. This research is supported by DOE Grant No. DEFG02-08ER46482 and A. P. Sloan foundation. NR 41 TC 14 Z9 14 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 J9 PHYS REV A JI Phys. Rev. A PD NOV PY 2008 VL 78 IS 5 AR 053630 DI 10.1103/PhysRevA.78.053630 PG 8 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 376XF UT WOS:000261215600147 ER PT J AU Ludlow, JA Loch, SD Pindzola, MS Ballance, CP Griffin, DC Bannister, ME Fogle, M AF Ludlow, J. A. Loch, S. D. Pindzola, M. S. Ballance, C. P. Griffin, D. C. Bannister, M. E. Fogle, M. TI Electron-impact ionization of C(+) in both ground and metastable states SO PHYSICAL REVIEW A LA English DT Article ID COLLISIONAL-RADIATIVE MODEL; R-MATRIX; ISONUCLEAR SEQUENCE; ELEMENTS HYDROGEN; LIGHT-ELEMENTS; IONS; EXCITATION AB Electron-impact ionization cross sections are calculated for the ground and metastable states of C(+). Comparisons between perturbative distorted-wave and nonperturbative time-dependent close-coupling calculations find reductions in the peak direct ionization cross sections due to electron coupling effects of approximately 5% for ground state C(+) and approximately 15% for metastable state C(+). Fairly small excitation-autoionization contributions are found for ground state C(+), while larger excitation-autoionization contributions are found for metastable state C(+). Comparisons between perturbative distorted-wave and nonperturbative R-matrix with pseudostates calculations find reductions in the peak total ionization cross sections due to electron coupling effects of approximately 15-20 % for ground state C(+) and approximately 25-35 % for metastable state C(+). Finally, comparisons between theory and experiment find that present and previous C(+) crossed-beam measurements are in excellent agreement with ground state nonperturbative R-matrix with pseudostates calculations for total ionization cross sections. Combined with previous non-perturbative calculations for C, C(2+), and C(3+), accurate ionization cross sections and rate coefficients are now available for the ground and metastable states of all carbon ion stages. C1 [Ludlow, J. A.; Loch, S. D.; Pindzola, M. S.] Auburn Univ, Dept Phys, Auburn, AL 36849 USA. [Ballance, C. P.; Griffin, D. C.] Rollins Coll, Dept Phys, Winter Pk, FL 32789 USA. [Bannister, M. E.; Fogle, M.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. RP Ludlow, JA (reprint author), Auburn Univ, Dept Phys, Auburn, AL 36849 USA. OI Bannister, Mark E./0000-0002-9572-8154 FU U. S. Department of Energy; National Energy Research Scientific Computing Center in Oakland, California; National Center for Computational Sciences in Oak Ridge, Tennessee FX This work was supported in part by grants from the U. S. Department of Energy. Computational work was carried out at the National Energy Research Scientific Computing Center in Oakland, California and at the National Center for Computational Sciences in Oak Ridge, Tennessee. Experimental work was carried out at the Multicharged Ion Research Facility in Oak Ridge, Tennessee. NR 27 TC 5 Z9 5 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 J9 PHYS REV A JI Phys. Rev. A PD NOV PY 2008 VL 78 IS 5 AR 052708 DI 10.1103/PhysRevA.78.052708 PG 7 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 376XF UT WOS:000261215600093 ER PT J AU Perdew, JP Staroverov, VN Tao, JM Scuseria, GE AF Perdew, John P. Staroverov, Viktor N. Tao, Jianmin Scuseria, Gustavo E. TI Density functional with full exact exchange, balanced nonlocality of correlation, and constraint satisfaction SO PHYSICAL REVIEW A LA English DT Article ID GENERALIZED GRADIENT APPROXIMATION; GTO BASIS-SETS; CORRELATION-ENERGY; ELECTRON-GAS; THERMOCHEMICAL KINETICS; HYBRID FUNCTIONALS; CORRELATION HOLE; PAIR-DENSITY; ATOMS; ACCURATE AB We construct a nonlocal density functional approximation with full exact exchange, while preserving the constraint-satisfaction approach and justified error cancellations of simpler semilocal functionals. This is achieved by interpolating between different approximations suitable for two extreme regions of the electron density. In a "normal" region, the exact exchange-correlation hole density around an electron is semilocal because its spatial range is reduced by correlation and because it integrates over a narrow range to -1. These regions are well described by popular semilocal approximations (many of which have been constructed nonempirically), because of proper accuracy for a slowly varying density or because of error cancellation between exchange and correlation. "Abnormal" regions, where nonlocality is unveiled, include those in which exchange can dominate correlation (one-electron, nonuniform high density, and rapidly varying limits), and those open subsystems of fluctuating electron number over which the exact exchange-correlation hole integrates to a value greater than -1. Regions between these extremes are described by a hybrid functional mixing exact and semilocal exchange energy densities locally, i.e., with a mixing fraction that is a function of position r and a functional of the density. Because our mixing fraction tends to 1 in the high-density limit, we employ full exact exchange according to the rigorous definition of the exchange component of any exchange-correlation energy functional. Use of full exact exchange permits the satisfaction of many exact constraints, but the nonlocality of exchange also requires balanced nonlocality of correlation. We find that this nonlocality can demand at least five empirical parameters, corresponding roughly to the four kinds of abnormal regions. Our local hybrid functional is perhaps the first accurate fourth-rung density functional or hyper-generalized gradient approximation, with full exact exchange, that is size-consistent in the way that simpler functionals are. It satisfies other known exact constraints, including exactness for all one-electron densities, and provides an excellent fit to the 223 molecular enthalpies of formation of the G3/99 set and the 42 reaction barrier heights of the BH42/03 set, improving both (but especially the latter) over most semilocal functionals and global hybrids. Exact constraints, physical insights, and paradigm examples hopefully suppress "overfitting.". C1 [Perdew, John P.] Tulane Univ, Dept Phys, New Orleans, LA 70118 USA. [Staroverov, Viktor N.] Univ Western Ontario, Dept Chem, London, ON N6A 5B7, Canada. [Tao, Jianmin] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Tao, Jianmin] Los Alamos Natl Lab, CNLS, Los Alamos, NM 87545 USA. [Scuseria, Gustavo E.] Rice Univ, Dept Chem, Houston, TX 77005 USA. RP Perdew, JP (reprint author), Tulane Univ, Dept Phys, New Orleans, LA 70118 USA. RI Scuseria, Gustavo/F-6508-2011 FU National Science Foundation (NSF) [DMR-0501588, CHE-0807194]; Natural Sciences and Engineering Research Council of Canada (NSERC); Department of Energy [LDRD-PRD X9KU] FX This work was supported by the National Science Foundation (NSF) under Grants No. DMR-0501588 (J.P.P.) and No. CHE-0807194 (G.E.S.), by the Natural Sciences and Engineering Research Council of Canada (NSERC) through the Discovery Grants Program (V. N. S.), and by the Department of Energy under Grant No. LDRD-PRD X9KU at LANL (J. T.) NR 89 TC 107 Z9 107 U1 1 U2 20 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9926 EI 2469-9934 J9 PHYS REV A JI Phys. Rev. A PD NOV PY 2008 VL 78 IS 5 AR 052513 DI 10.1103/PhysRevA.78.052513 PG 13 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 376XF UT WOS:000261215600083 ER PT J AU Pesic, ZD Rolles, D Bilodeau, RC Dimitriu, I Berrah, N AF Pesic, Z. D. Rolles, D. Bilodeau, R. C. Dimitriu, I. Berrah, N. TI Three-body fragmentation of CO(2)2+upon K-shell photoionization SO PHYSICAL REVIEW A LA English DT Article ID COINCIDENCE EXPERIMENTS; SYNCHROTRON-RADIATION; DOUBLE-IONIZATION; REACTION DYNAMICS; MOLECULES; DISSOCIATIONS; PEPIPICO; ION AB The fragmentation dynamics of CO(2) molecules subsequent to K-shell photoexcitation and ionization was studied using a multicoincidence ion momentum imaging technique. The detailed analysis via fragment momentum correlation plots (Newton diagrams) clearly reveals concurrent fragmentation mechanisms for the three-body dissociation of CO(2)2+ into C(+)+O(+)+O, for both linear and bent geometry states of CO(2)2+. The experimental results are supported by a classical trajectory simulation based on a Coulomb explosion model, which elucidates energy and angular correlations between fragments for different fragmentation processes. C1 [Pesic, Z. D.; Rolles, D.; Bilodeau, R. C.; Dimitriu, I.; Berrah, N.] Western Michigan Univ, Dept Phys, Kalamazoo, MI 49008 USA. [Pesic, Z. D.; Rolles, D.; Bilodeau, R. C.; Dimitriu, I.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Pesic, ZD (reprint author), Western Michigan Univ, Dept Phys, Kalamazoo, MI 49008 USA. EM z.pesic@fzd.de OI Bilodeau, Rene/0000-0001-8607-2328 FU BES; DOE; CSGB divisions FX This work is supported by BES, DOE, and CSGB divisions. NR 20 TC 17 Z9 17 U1 0 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 J9 PHYS REV A JI Phys. Rev. A PD NOV PY 2008 VL 78 IS 5 AR 051401 DI 10.1103/PhysRevA.78.051401 PG 4 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 376XF UT WOS:000261215600005 ER PT J AU Solenov, D Mozyrsky, D AF Solenov, Dmitry Mozyrsky, Dmitry TI Quantum nucleation and macroscopic quantum tunneling in cold-atom boson-fermion mixtures SO PHYSICAL REVIEW A LA English DT Article ID METASTABLE STATES; PHASE-SEPARATION; ABSOLUTE ZERO; TEMPERATURES; CONDENSATE; DECAY AB The kinetics of the phase separation transition in boson-fermion cold-atom mixtures is investigated. We identify the parameters at which the transition is governed by a quantum nucleation mechanism, responsible for the formation of critical nuclei of a stable phase. We demonstrate that for low fermion-boson mass ratio the density dependence of the quantum nucleation transition rate is experimentally observable. The crossover to the macroscopic quantum tunneling regime is analyzed. Based on a microscopic description of interacting cold-atom boson-fermion mixtures, we derive an effective action for the critical droplet and obtain an asymptotic expression for the nucleation rate in the vicinity of the phase transition and near the spinodal instability of the mixed phase. We show that dissipation due to excitations in the fermion subsystem play a dominant role close to the transition point. C1 [Solenov, Dmitry; Mozyrsky, Dmitry] Los Alamos Natl Lab, Theoret Div T 4, Los Alamos, NM 87545 USA. RP Solenov, D (reprint author), Los Alamos Natl Lab, Theoret Div T 4, Los Alamos, NM 87545 USA. EM solenov@lanl.gov; mozyrsky@lanl.gov RI Solenov, Dmitry/H-6250-2012; OI Mozyrsky, Dima/0000-0001-5305-4617 FU U. S. DOE FX We thank Eddy Timmermans for valuable discussions and comments. D. S. acknowledges stimulating discussions with Vladimir Privman. The work is supported by the U. S. DOE. NR 30 TC 1 Z9 1 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 J9 PHYS REV A JI Phys. Rev. A PD NOV PY 2008 VL 78 IS 5 AR 053611 DI 10.1103/PhysRevA.78.053611 PG 12 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 376XF UT WOS:000261215600128 ER PT J AU Bauer, ED Ronning, F Scott, BL Thompson, JD AF Bauer, E. D. Ronning, F. Scott, B. L. Thompson, J. D. TI Superconductivity in SrNi2As2 single crystals SO PHYSICAL REVIEW B LA English DT Article ID LAYERED SUPERCONDUCTOR; MAGNETIC-PROPERTIES; TERNARY ARSENIDES AB The electrical resistivity rho(T) and heat capacity C(T) on single crystals of SrNi2As2 and EuNi2As2 are reported. While there is no evidence for a structural transition in either compound, SrNi2As2 is found to be a bulk superconductor at T-c=0.62 K with a Sommerfeld coefficient of gamma=8.7 mJ/mol K-2 and a small upper critical field H-c2 similar to 200 Oe. No superconductivity was found in EuNi2As2 above 0.4 K, but anomalies in rho and C reveal that magnetic order associated with the Eu2+ magnetic moments occurs at T-m=14 K. C1 [Bauer, E. D.; Ronning, F.; Scott, B. L.; Thompson, J. D.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Bauer, ED (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. RI Bauer, Eric/D-7212-2011; Scott, Brian/D-8995-2017; OI Scott, Brian/0000-0003-0468-5396; Ronning, Filip/0000-0002-2679-7957; Bauer, Eric/0000-0003-0017-1937 NR 26 TC 68 Z9 69 U1 8 U2 39 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2008 VL 78 IS 17 AR 172504 DI 10.1103/PhysRevB.78.172504 PG 3 WC Physics, Condensed Matter SC Physics GA 376WU UT WOS:000261214500015 ER PT J AU Binz, SM Hupalo, M Tringides, MC AF Binz, S. M. Hupalo, M. Tringides, M. C. TI Height-dependent nucleation and ideal layer by layer growth in Pb/Pb(111)/Si(111) SO PHYSICAL REVIEW B LA English DT Article DE diffusion barriers; lead; metallic thin films; nucleation; scanning tunnelling microscopy; surface morphology ID LOW-TEMPERATURES; EPITAXIAL-GROWTH; FILMS; DIFFRACTION; INTERFACE; ISLANDS; SIZE AB It has been puzzling why for Pb/Si(111), oscillations have been observed at temperatures as low as 18 K and were found to improve with decreasing temperature. With scanning tunneling microscope we have directly observed this ideal layer by layer growth. A dramatic dependence of the second layer island morphology on island height, expected from quantum size effects (QSE), is also found. Low density of fractal islands on stable vs high density on unstable Pb islands on a mixed height island confirms the role of QSE in kinetics. The low diffusion barrier and the fractal island morphology can explain the unusual layer by layer growth. C1 [Tringides, M. C.] Iowa State Univ, USDOE, Dept Phys, Ames, IA 50011 USA. Iowa State Univ, USDOE, Ames Lab, Ames, IA 50011 USA. RP Tringides, MC (reprint author), Iowa State Univ, USDOE, Dept Phys, Ames, IA 50011 USA. EM tringides@ameslab.gov FU Basic Sciences; U.S. Department of Energy [DE-AC02_07CH11358] FX Work at Ames Laboratory was supported by the Basic Sciences, U.S. Department of Energy under Contract No. DE-AC02_07CH11358. NR 27 TC 15 Z9 15 U1 0 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2008 VL 78 IS 19 AR 193407 DI 10.1103/PhysRevB.78.193407 PG 4 WC Physics, Condensed Matter SC Physics GA 396RC UT WOS:000262607800024 ER PT J AU Blackburn, E Sanchez-Hanke, C Roy, S Smith, DJ Hong, JI Chan, KT Berkowitz, AE Sinha, SK AF Blackburn, E. Sanchez-Hanke, C. Roy, S. Smith, D. J. Hong, J. -I. Chan, K. T. Berkowitz, A. E. Sinha, S. K. TI Pinned Co moments in a polycrystalline permalloy/CoO exchange-biased bilayer SO PHYSICAL REVIEW B LA English DT Article ID ANISOTROPY; FILMS AB We have measured element-specific magnetization depth profiles across the interface between a polycrystalline ferromagnet and an antiferromagnet in an exchange-biased bilayer of Py/CoO. Using soft x-ray resonant reflectivity we have identified a thin (0.5 nm) layer containing uncompensated Co magnetization at the interface with the Py. The majority of this magnetization follows the external field; however, similar to 10% of the magnetization in this interfacial layer is pinned antiparallel to the cooling field used when biasing the sample, consistent with the negative exchange bias in this bilayer system, provided that the pinned Co spins are antiferromagnetically coupled to the ferromagnetic layer. C1 [Blackburn, E.; Berkowitz, A. E.; Sinha, S. K.] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA. [Sanchez-Hanke, C.] Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA. [Roy, S.] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Smith, D. J.] Arizona State Univ, Dept Phys, Tempe, AZ 85287 USA. [Hong, J. -I.] Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA. [Chan, K. T.; Berkowitz, A. E.] Univ Calif San Diego, Ctr Magnet Recording Res, La Jolla, CA 92093 USA. RP Blackburn, E (reprint author), Univ Birmingham, Sch Phys & Astron, Birmingham B15 2TT, W Midlands, England. RI HONG, JUNG-IL/B-8566-2008; Blackburn, Elizabeth/C-2312-2014 OI HONG, JUNG-IL/0000-0001-7301-6693; FU Department of Energy [DE-FG02-03ER46084]; U.S. Department of Energy [DE-AC02-05CH11231] FX We thank the Center for Magnetic Recording Research, UC San Diego, for supporting this effort. This work was supported in part by the Department of Energy under Grant No. DE-FG02-03ER46084. Work at LBNL was supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 21 TC 21 Z9 21 U1 0 U2 22 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2008 VL 78 IS 18 AR 180408 DI 10.1103/PhysRevB.78.180408 PG 4 WC Physics, Condensed Matter SC Physics GA 376WX UT WOS:000261214800010 ER PT J AU Bocklage, L Kruger, B Eiselt, R Bolte, M Fischer, P Meier, G AF Bocklage, Lars Krueger, Benjamin Eiselt, Rene Bolte, Markus Fischer, Peter Meier, Guido TI Time-resolved imaging of current-induced domain-wall oscillations SO PHYSICAL REVIEW B LA English DT Article ID MAGNETIZATION DYNAMICS AB Current-induced domain-wall dynamics is investigated via high-resolution soft x-ray transmission microscopy by a stroboscopic pump-and-probe measurement scheme at a temporal resolution of 200 ps. A 180 degrees domain wall in a restoring potential of a permalloy microstructure is displaced from its equilibrium position by nanosecond current pulses leading to oscillations with velocities up to 325 m/s. The motion of the wall is described with an analytical model of a rigid domain wall in a nonharmonic potential allowing one to determine the mass of the domain wall. We show that Oersted fields dominate the domain-wall dynamics in our geometry. C1 [Bocklage, Lars; Eiselt, Rene; Bolte, Markus; Meier, Guido] Univ Hamburg, Inst Angew Phys, D-20355 Hamburg, Germany. [Bocklage, Lars; Eiselt, Rene; Bolte, Markus; Meier, Guido] Univ Hamburg, Zentrum Mikrostrukturforsch, D-20355 Hamburg, Germany. [Krueger, Benjamin] Univ Hamburg, Inst Theoret Phys 1, D-20355 Hamburg, Germany. [Fischer, Peter] Lawrence Berkeley Natl Lab, Ctr Xray Opt, Berkeley, CA 94720 USA. RP Bocklage, L (reprint author), Univ Hamburg, Inst Angew Phys, Jungiusstr 11, D-20355 Hamburg, Germany. EM lbocklag@physnet.uni-hamburg.de; bkrueger@physnet.uni-hamburg.de RI Bolte, Markus/A-6083-2009; Fischer, Peter/A-3020-2010; Krueger, Benjamin/B-7466-2009; MSD, Nanomag/F-6438-2012; OI Fischer, Peter/0000-0002-9824-9343; Krueger, Benjamin/0000-0001-8502-368X; Bocklage, Lars/0000-0001-9769-4173 NR 20 TC 40 Z9 40 U1 2 U2 14 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2008 VL 78 IS 18 AR 180405 DI 10.1103/PhysRevB.78.180405 PG 4 WC Physics, Condensed Matter SC Physics GA 376WX UT WOS:000261214800007 ER PT J AU Chan, JA Liu, JZ Raebiger, H Lany, S Zunger, A AF Chan, J. A. Liu, Jefferson Z. Raebiger, Hannes Lany, Stephan Zunger, Alex TI Relative stability, electronic structure, and magnetism of MnN and (Ga, Mn)N alloys SO PHYSICAL REVIEW B LA English DT Article ID MOLECULAR-BEAM EPITAXY; AB-INITIO; FERROMAGNETIC SEMICONDUCTORS; NEUTRON-DIFFRACTION; PHASE-TRANSITION; ZINCBLENDE MNAS; DENSITY; GAN; APPROXIMATION; SPINTRONICS AB Pure MnN and (Ga,Mn) N alloys are investigated using the ab initio generalized gradient approximation +U (GGA+U) or the hybrid-exchange density-functional (B3LYP) methods. These methods are found to predict dramatically different electronic structure, magnetic behavior, and relative stabilities compared to previous density-functional theory (DFT) calculations. A unique structural anomaly of MnN, in which local-density calculations fail to predict the experimentally observed distorted rocksalt as the ground-state structure, is resolved under the GGA+U and B3LYP formalisms. The magnetic configurations of MnN are studied and the results suggest the magnetic state of zinc-blende MnN might be complex. Epitaxial calculations are used to show that the epitaxial zinc-blende MnN can be stabilized on an InGaN substrate. The structural stability of (Ga,Mn) N alloys was examined and a crossover from the zinc-blende-stable alloy to the rocksalt-stable alloy at an Mn concentration of similar to 65% was found. The tendency for zinc-blende (Ga,Mn) N alloys to phase separate is described by an asymmetric spinodal phase diagram calculated from a mixed-basis cluster expansion. This predicts that precipitates will consist of Mn concentrations of similar to 5 and similar to 50% at typical experimental growth temperatures. Thus, pure antiferromagnetic MnN, previously thought to suppress the Curie temperature, will not be formed. The Curie temperature for the 50% phase is calculated to be T-C=354 K, indicating the possibility of high-temperature ferromagnetism in zinc-blende (Ga,Mn) N alloys due to precipitates. C1 [Chan, J. A.; Liu, Jefferson Z.; Raebiger, Hannes; Lany, Stephan; Zunger, Alex] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Chan, JA (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. RI Liu, Jefferson zhe/B-5916-2008; Zunger, Alex/A-6733-2013; Raebiger, Hannes/D-1881-2013 OI Lany, Stephan/0000-0002-8127-8885; Liu, Jefferson zhe/0000-0002-5282-7945; Raebiger, Hannes/0000-0003-3969-9165 FU U.S. Department of Energy, Office of Science; NREL [DE-AC36-08GO28308] FX We thank S.-H. Wei for helpful comments. This work was funded by the U.S. Department of Energy, Office of Science, under NREL Contract No. DE-AC36-08GO28308. NR 74 TC 27 Z9 27 U1 2 U2 17 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2008 VL 78 IS 18 AR 184109 DI 10.1103/PhysRevB.78.184109 PG 11 WC Physics, Condensed Matter SC Physics GA 376WX UT WOS:000261214800034 ER PT J AU Chroneos, A Bracht, H Jiang, C Uberuaga, BP Grimes, RW AF Chroneos, A. Bracht, H. Jiang, C. Uberuaga, B. P. Grimes, R. W. TI Nonlinear stability of E centers in Si1-xGex: Electronic structure calculations SO PHYSICAL REVIEW B LA English DT Article DE binding energy; colour centres; density functional theory; diffusion; Ge-Si alloys; semiconductor materials; vacancies (crystal) ID ATOMIC-SCALE SIMULATIONS; QUASI-RANDOM-STRUCTURES; VACANCY COMPLEXES; SELF-DIFFUSION; 1ST PRINCIPLES; BINARY-ALLOYS; SI-GE; GERMANIUM; SILICON; APPROXIMATION AB Electronic structure calculations are used to investigate the binding energies of defect pairs composed of lattice vacancies and phosphorus or arsenic atoms (E centers) in silicon-germanium alloys. To describe the local environment surrounding the E center we have generated special quasirandom structures that represent random silicon-germanium alloys. It is predicted that the stability of E centers does not vary linearly with the composition of the silicon-germanium alloy. Interestingly, we predict that the nonlinear behavior does not depend on the donor atom of the E center but only on the host lattice. The impact on diffusion properties is discussed in view of recent experimental and theoretical results. C1 [Chroneos, A.; Bracht, H.] Univ Munster, Inst Mat Phys, D-48149 Munster, Germany. [Jiang, C.; Uberuaga, B. P.] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. [Grimes, R. W.] Univ London Imperial Coll Sci Technol & Med, Dept Mat, London SW7 2BP, England. RP Chroneos, A (reprint author), Univ Munster, Inst Mat Phys, Wilhelm Klemm Str 10, D-48149 Munster, Germany. EM alexander.chroneos@imperial.ac.uk RI Jiang, Chao/A-2546-2011; OI Chroneos, Alex/0000-0002-2558-495X FU U.S. Department of Energy; Deutsche Forschungsgemeinschaft; U.S. Department of Energy [DE-AC5206NA25396] FX Computing resources were provided by the HPC facility of Imperial College London. C.J. and B. P. U. acknowledge support from the U.S. Department of Energy, Office of Basic Energy Sciences, and H. B. acknowledges support from the Deutsche Forschungsgemeinschaft. Los Alamos National Laboratory is operated by Los Alamos National Security, LLC for the National Nuclear Security Administration of the U.S. Department of Energy under Contract No. DE-AC5206NA25396. NR 63 TC 51 Z9 51 U1 3 U2 17 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2008 VL 78 IS 19 AR 195201 DI 10.1103/PhysRevB.78.195201 PG 7 WC Physics, Condensed Matter SC Physics GA 396RC UT WOS:000262607800050 ER PT J AU da Silva, LGGVD Heidrich-Meisner, F Feiguin, AE Busser, CA Martins, GB Anda, EV Dagotto, E AF da Silva, Luis G. G. V. D. Heidrich-Meisner, F. Feiguin, A. E. Buesser, C. A. Martins, G. B. Anda, E. V. Dagotto, E. TI Transport properties and Kondo correlations in nanostructures: Time-dependent DMRG method applied to quantum dots coupled to Wilson chains SO PHYSICAL REVIEW B LA English DT Article DE electric admittance; hopping conduction; Kondo effect; nanostructured materials; quantum dots; renormalisation ID NUMERICAL RENORMALIZATION-GROUP; DENSITY-MATRIX RENORMALIZATION; IMPURITY; SYSTEMS AB We apply the adaptive time-dependent density-matrix renormalization-group method (tDMRG) to the study of transport properties of quantum-dot systems connected to metallic leads. Finite-size effects make the usual tDMRG description of the Kondo regime a numerically demanding task. We show that such effects can be attenuated by describing the leads by "Wilson chains," in which the hopping matrix elements decay exponentially away from the impurity (t(n)proportional to Lambda(-n/2)). For a given system size and in the linear-response regime, results for Lambda>1 show several improvements over the undamped Lambda=1 case: perfect conductance is obtained deeper in the strongly interacting regime and current plateaus remain well defined for longer time scales. Similar improvements were obtained in the finite-bias regime up to bias voltages of the order of the Kondo temperature. These results show that with the proposed modification, the tDMRG characterization of Kondo correlations in the transport properties can be substantially improved, while it turns out to be sufficient to work with much smaller system sizes. We discuss the numerical cost of this approach with respect to the necessary system sizes and the entanglement growth during the time evolution. C1 [da Silva, Luis G. G. V. D.; Dagotto, E.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [da Silva, Luis G. G. V. D.; Dagotto, E.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Heidrich-Meisner, F.] Univ Aachen, Rhein Westfal TH Aachen, Inst Theoret Phys C, D-52056 Aachen, Germany. [Heidrich-Meisner, F.] Forschungszentrum Julich, D-52425 Julich, Germany. [Feiguin, A. E.] Univ Calif Santa Barbara, Microsoft Project Q, Santa Barbara, CA 93106 USA. [Feiguin, A. E.] Univ Maryland, Dept Phys, Condensed Matter Theory Ctr, College Pk, MD 20742 USA. [Buesser, C. A.; Martins, G. B.] Oakland Univ, Dept Phys, Rochester, MI 48309 USA. [Anda, E. V.] Pontificia Univ Catolica Rio de Janeiro PUC Rio, Dept Fis, BR-22452970 Rio De Janeiro, Brazil. RP da Silva, LGGVD (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RI Heidrich-Meisner, Fabian/B-6228-2009; Dias da Silva, Luis/D-8381-2013; Busser, Carlos/K-1017-2014; Martins, George/C-9756-2012 OI Dias da Silva, Luis/0000-0002-8156-9463; Busser, Carlos/0000-0002-0353-7490; Martins, George/0000-0001-7846-708X FU Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, U.S. Department of Energy [DE-AC05-00OR22725]; NSF [DMR-0706020, DMR-0710529]; DFG through FOR 912 [HE 5242/2-1]; FAPERJ; CNPq [CIAM 490865/2006-2] FX We sincerely thank K. A. Al-Hassanieh, I. P. McCulloch, G. Roux, H. Onishi, and U. Schollwock for fruitful discussions and valuable comments on the manuscript. Research at ORNL is sponsored by the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, U.S. Department of Energy under Contract No. DE-AC05-00OR22725 with Oak Ridge National Laboratory managed and operated by UT-Battelle, LLC. E. D. and L.D.d.S. are supported in part by NSF under Grant No. DMR-0706020. F.H.-M. acknowledges support from the DFG through FOR 912, Grant No. HE 5242/2-1. G. B. M. and C. A. B. acknowledge support from NSF (Grant No. DMR-0710529). E. V. A. acknowledges support from Brazilian agencies FAPERJ and CNPq (Grant No. CIAM 490865/2006-2) NR 59 TC 44 Z9 44 U1 0 U2 10 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2008 VL 78 IS 19 AR 195317 DI 10.1103/PhysRevB.78.195317 PG 9 WC Physics, Condensed Matter SC Physics GA 396RC UT WOS:000262607800076 ER PT J AU Daghofer, M Noack, RM Horsch, P AF Daghofer, M. Noack, R. M. Horsch, P. TI Magnetism of one-dimensional Wigner lattices and its impact on charge order SO PHYSICAL REVIEW B LA English DT Article ID HUBBARD-MODEL; TETRACYANOQUINODIMETHANE TCNQ; FERROMAGNETISM; CRYSTAL; SR14CU24O41; EXCHANGE; SOLITONS; SALTS; STATE; BAND AB The magnetic phase diagram of the quarter-filled generalized Wigner lattice with nearest-neighbor and next-nearest-neighbor hoppings, t(1) and t(2), is explored. We find a region at negative t(2) with fully saturated ferromagnetic ground states that we attribute to kinetic exchange. Such interaction disfavors antiferromagnetism at t(2)< 0 and stems from virtual excitations across the charge gap of the Wigner lattice, which is much smaller than the Mott-Hubbard gap proportional to U. Remarkably, we find a strong dependence of the charge structure factor on magnetism even in the limit U ->infinity, in contrast to the expectation that charge ordering in the Wigner lattice regime should be well described by spinless fermions. Our results, obtained using the density-matrix renormalization group and exact diagonalization, can be transparently explained by means of an effective low-energy Hamiltonian. C1 [Daghofer, M.; Horsch, P.] Max Planck Inst Festkorperforsch, D-70569 Stuttgart, Germany. [Daghofer, M.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Daghofer, M.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Noack, R. M.] Philipps Univ Marburg, D-35032 Marburg, Germany. RP Daghofer, M (reprint author), Max Planck Inst Festkorperforsch, Heisenbergstr 1, D-70569 Stuttgart, Germany. EM m.daghofer@fkf.mpg.de RI Daghofer, Maria/C-5762-2008; Horsch, Peter/B-9612-2011 OI Daghofer, Maria/0000-0001-9434-8937; FU NSF [DMR-0706020] FX We thank D. Baeriswyl, K. Hallberg, M. Jansen, N. Kawakami, B. Keimer, G. Khaliullin, S. Maekawa, W. Metzner, C. Penc, R. Zeyher, and T. Tohyama for useful discussions. This research (M. D.) was partly supported by the NSF under Grant No. DMR-0706020. NR 49 TC 3 Z9 3 U1 2 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2008 VL 78 IS 20 AR 205115 DI 10.1103/PhysRevB.78.205115 PG 7 WC Physics, Condensed Matter SC Physics GA 376XD UT WOS:000261215400028 ER PT J AU Dong, S Yu, R Yunoki, S Alvarez, G Liu, JM Dagotto, E AF Dong, Shuai Yu, Rong Yunoki, Seiji Alvarez, Gonzalo Liu, J. -M. Dagotto, Elbio TI Magnetism, conductivity, and orbital order in (LaMnO3)(2n)/(SrMnO3)(n) superlattices SO PHYSICAL REVIEW B LA English DT Article ID NEUTRON-DIFFRACTION; RECONSTRUCTION; INTERFACE AB The modulation of charge density and spin order in (LaMnO3)(2n)/(SrMnO3)(n) (n=1-4) superlattices is studied via Monte Carlo simulations of the double-exchange model. G-type antiferromagnetic barriers in the SrMnO3 regions with low charge density are found to separate ferromagnetic LaMnO3 layers with high charge density. A metal-insulator transition with increasing n is observed in the direction perpendicular to the interfaces. Our simulations provide insight into how disorder-induced localization may cause the metal-insulator transition occurring at n=3 in experiments. C1 [Dong, Shuai; Yu, Rong; Dagotto, Elbio] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Dong, Shuai; Yu, Rong; Dagotto, Elbio] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Dong, Shuai; Liu, J. -M.] Nanjing Univ, Nanjing Natl Lab Microstruct, Nanjing 210093, Peoples R China. [Yunoki, Seiji] RIKEN, Computat Condensed Matter Phys Lab, Wako, Saitama 3510198, Japan. [Yunoki, Seiji] Japan Sci & Technol Agcy, CREST, Kawaguchi, Saitama 3320012, Japan. [Alvarez, Gonzalo] Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN 37831 USA. [Alvarez, Gonzalo] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Dong, S (reprint author), Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. RI YU, RONG/C-1506-2012; Yunoki, Seiji/B-1831-2008; Yu, Rong/K-5854-2012; Dong (董), Shuai (帅)/A-5513-2008; Yu, Rong/H-3355-2016 OI Dong (董), Shuai (帅)/0000-0002-6910-6319; FU NSF [DMR-0706020, 50832002]; Division of Materials Science and Engineering; U.S. DOE; CREST-JST; CNMS; Scientific User Facilities Division; BES-DOE; 973 Projects of China [2006CB921802]; China Scholarship Council FX We thank A. Bhattacharya, S. May, M. Daghofer, and S. Okamoto for helpful discussions. This work was supported by the NSF under Grant No. DMR-0706020 and the Division of Materials Science and Engineering, U.S. DOE, under contract with UT-Battelle, LLC. S.Y. was supported by CREST-JST. G.A. was supported by the CNMS, sponsored by the Scientific User Facilities Division, BES-DOE. J.-M.L. was supported by the 973 Projects of China (Grant No. 2006CB921802) and NSF of China (Grant No. 50832002). S.D. was supported by the China Scholarship Council. NR 31 TC 62 Z9 63 U1 2 U2 33 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2008 VL 78 IS 20 AR 201102 DI 10.1103/PhysRevB.78.201102 PG 4 WC Physics, Condensed Matter SC Physics GA 376XD UT WOS:000261215400002 ER PT J AU Du, MH AF Du, Mao-Hua TI Bismuth-induced deep levels and carrier compensation in CdTe SO PHYSICAL REVIEW B LA English DT Article ID DONOR LEVELS; SEMICONDUCTORS; CRYSTALS; GROWTH AB First-principles calculations show that Bi on Cd site in CdTe can be either a donor Bi(Cd)(+) or an acceptor Bi(Cd)(-), depending on the Fermi level. The Bi(Cd)(-) can bind a substitutional O (O(Te)) with large binding energy of 1.40 eV. The calculated (0/-) transition level for Bi(Cd)(-)-O(Te) complex is in good agreement with experimentally observed deep hole trapping level. Bi can also substitute Te to form an acceptor. The amphoteric nature of Bi in CdTe results in the pinning of the Fermi level and the high resistivity. The transition of the CdTe samples from semi-insulating to p type at high Bi doping levels is explained by the formation of secondary phase that contains Bi and Te. C1 [Du, Mao-Hua] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Du, Mao-Hua] Oak Ridge Natl Lab, Ctr Radiat Detect Mat & Syst, Oak Ridge, TN 37831 USA. RP Du, MH (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RI Du, Mao-Hua/B-2108-2010 OI Du, Mao-Hua/0000-0001-8796-167X FU U.S. DOE Office of Nonproliferation Research; Development NA22 FX The author thanks D. J. Singh for helpful discussions. This work was supported by the U.S. DOE Office of Nonproliferation Research and Development NA22. NR 24 TC 13 Z9 14 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2008 VL 78 IS 17 AR 172105 DI 10.1103/PhysRevB.78.172105 PG 4 WC Physics, Condensed Matter SC Physics GA 376WU UT WOS:000261214500005 ER PT J AU Fernandes, RM Schmalian, J Westfahl, H AF Fernandes, Rafael M. Schmalian, Joerg Westfahl, Harry, Jr. TI Conductivity of electronic liquid-crystalline mesophases SO PHYSICAL REVIEW B LA English DT Article ID HIGH-TEMPERATURE SUPERCONDUCTORS; CORRELATED PERCOLATION; PHASE-TRANSITIONS; RESISTOR NETWORK; LONG-RANGE; STATE; SEPARATION; GLASSES; STRIPES; SYSTEM AB We investigate the connection between the transport properties and the thermodynamics of electronic systems with a tendency to form broken-symmetry mesophases evocative of the physics of liquid crystals. Through a hydrodynamic approach to the electronic transport in inhomogeneous systems, we develop a perturbative expansion for the macroscopic conductivity to study the transport of two-dimensional smectic and nematic phases. At the fluctuation-induced first-order phase transition expected for the smectic to isotropic transition, a jump in the macroscopic conductivity is predicted, with a directional dependence that reflects the fluctuation spectrum of the order parameter. When elastic fluctuation modes melt the smectic phase into a nematic phase, the resultant nematic order parameter is shown to be linearly proportional to the conductivity anisotropy. We also outline qualitative comparisons with recent experimental works on strongly correlated materials that show evidences of electronic liquid-crystalline mesophases. C1 [Fernandes, Rafael M.; Schmalian, Joerg] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Fernandes, Rafael M.; Schmalian, Joerg] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Fernandes, Rafael M.; Westfahl, Harry, Jr.] Lab Nacl Luz Sincrotron, BR-13083970 Campinas, SP, Brazil. [Fernandes, Rafael M.] Univ Estadual Campinas, Inst Fis Gleb Wataghin, BR-13083970 Campinas, SP, Brazil. RP Fernandes, RM (reprint author), Iowa State Univ, Ames Lab, Ames, IA 50011 USA. EM rafaelmf@ameslab.gov RI Schmalian, Joerg/H-2313-2011; Fernandes, Rafael/E-9273-2010; Inst. of Physics, Gleb Wataghin/A-9780-2017 FU CAPES; CNPq (Brazil); Ames Laboratory operated for the U.S. Department of Energy by Iowa State University [DE-AC02-07CH11358] FX The authors would like to thank C. Batista, V. Dobrosavljevic, E. Fradkin, S. Papanikolaou, P. Phillipps, and P. G. Wolynes for helpful discussions. This research was supported by CAPES and CNPq (Brazil) and by the Ames Laboratory operated for the U.S. Department of Energy by Iowa State University under Contract No. DE-AC02-07CH11358. NR 43 TC 3 Z9 3 U1 1 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2008 VL 78 IS 18 AR 184201 DI 10.1103/PhysRevB.78.184201 PG 9 WC Physics, Condensed Matter SC Physics GA 376WX UT WOS:000261214800038 ER PT J AU Gooch, M Lv, B Lorenz, B Guloy, AM Chu, CW AF Gooch, Melissa Lv, Bing Lorenz, Bernd Guloy, Arnold M. Chu, Ching-Wu TI Pressure-induced shift of T-c in KxSr1-xFe2As2 (x=0.2, 0.4, 0.7): Analogy to the high-T-c cuprate superconductors SO PHYSICAL REVIEW B LA English DT Article ID LAYERED QUATERNARY COMPOUND; 43 K; CRYSTAL; EARTH; METAL AB The systematic pressure shifts of T-c were investigated in the whole phase diagram of the FeAs-based superconducting compound KxSr1-xFe2As2. Different regions, arising from corresponding responses of Tc to pressure (dT(c)/dp>0, similar or equal to 0, or <0), can be clearly distinguished. This reveals an interesting similarity of the FeAs superconductors and the high-T-c cuprates. This behavior is a manifestation of the layered structure of the FeAs compounds and the pressure-induced charge transfer between the (Fe2As2) and (K/Sr) layers. The coexistence of superconductivity and spin-density wave behavior were also observed, and the pressure effects on the latter is explored. C1 [Gooch, Melissa; Lv, Bing; Lorenz, Bernd; Guloy, Arnold M.; Chu, Ching-Wu] Univ Houston, TCSUH, Houston, TX 77204 USA. [Gooch, Melissa; Lorenz, Bernd; Chu, Ching-Wu] Univ Houston, Dept Phys, Houston, TX 77204 USA. [Lv, Bing; Guloy, Arnold M.] Univ Houston, Dept Chem, Houston, TX 77204 USA. [Chu, Ching-Wu] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Chu, Ching-Wu] Hong Kong Univ Sci & Technol, Hong Kong, Hong Kong, Peoples R China. RP Gooch, M (reprint author), Univ Houston, TCSUH, Houston, TX 77204 USA. RI Lv, Bing/E-3485-2010 FU T. L. L. Temple Foundation; J.J. and R. Moores Endowment; State of Texas through TCSUH; USAF Office of Scientific Research; LBNL through USDOE. A. M. G; NSF [CHE-0616805]; R. A. Welch Foundation FX This work is supported in part by the T. L. L. Temple Foundation, the J.J. and R. Moores Endowment, the State of Texas through TCSUH, the USAF Office of Scientific Research, and the LBNL through USDOE. A. M. G. and B. L. acknowledge the support from the NSF (Grant No. CHE-0616805) and the R. A. Welch Foundation. NR 35 TC 37 Z9 37 U1 1 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2008 VL 78 IS 18 AR 180508 DI 10.1103/PhysRevB.78.180508 PG 4 WC Physics, Condensed Matter SC Physics GA 376WX UT WOS:000261214800025 ER PT J AU Groger, R Lookman, T Saxena, A AF Groeger, R. Lookman, T. Saxena, A. TI Defect-induced incompatibility of elastic strains: Dislocations within the Landau theory of martensitic phase transformations SO PHYSICAL REVIEW B LA English DT Article ID CU-ZN-AL; SHAPE-MEMORY ALLOYS; SINGLE-CRYSTALS; 2 DIMENSIONS; DISTRIBUTIONS; DEFORMATION; APPROXIMATION; MECHANICS; DYNAMICS; BEHAVIOR AB In dislocation-free martensites the components of the elastic strain tensor are constrained by the Saint-Venant compatibility condition which guarantees continuity of the body during external loading. However, in dislocated materials the plastic part of the distortion tensor introduces a displacement mismatch that is removed by elastic relaxation. The elastic strains are then no longer compatible in the sense of the Saint-Venant law and the ensuing incompatibility tensor is shown to be proportional to the gradients of the Nye dislocation density tensor. We demonstrate that the presence of this incompatibility gives rise to an additional long-range contribution in the inhomogeneous part of the Landau energy functional and to the corresponding stress fields. Competition among the local and long-range interactions results in frustration in the evolving order parameter (elastic) texture. We show how the Peach-Koehler forces and stress fields for any distribution of dislocations in arbitrarily anisotropic media can be calculated and employed in a Fokker-Planck dynamics for the dislocation density. This approach represents a self-consistent scheme that yields the evolutions of both the order parameter field and the continuous dislocation density. We illustrate our method by studying the effects of dislocations on microstructure, particularly twinned domain walls, in an Fe-Pd alloy undergoing a martensitic transformation. C1 [Groeger, R.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. RP Groger, R (reprint author), Los Alamos Natl Lab, Div Theoret, POB 1663, Los Alamos, NM 87545 USA. EM groger@lanl.gov RI Groger, Roman/G-3608-2010; OI Lookman, Turab/0000-0001-8122-5671 FU International Conference on Martensitic Transformations [ICOMAT-08] FX The authors thank F.-J. Perez-Reche, R. Ahluwalia, K. Dayal, S. Sengupta, J. San Juan, and A. Roytburd for their comments and stimulating discussion of this work during the International Conference on Martensitic Transformations (ICOMAT-08) in Santa Fe, New Mexico. In addition, they thank A. Acharya for bringing to their attention his work on the subject. NR 54 TC 21 Z9 21 U1 1 U2 21 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2008 VL 78 IS 18 AR 184101 DI 10.1103/PhysRevB.78.184101 PG 14 WC Physics, Condensed Matter SC Physics GA 376WX UT WOS:000261214800026 ER PT J AU Hicks, DG Boehly, TR Celliers, PM Bradley, DK Eggert, JH McWilliams, RS Jeanloz, R Collins, GW AF Hicks, D. G. Boehly, T. R. Celliers, P. M. Bradley, D. K. Eggert, J. H. McWilliams, R. S. Jeanloz, R. Collins, G. W. TI High-precision measurements of the diamond Hugoniot in and above the melt region SO PHYSICAL REVIEW B LA English DT Article ID SHOCK COMPRESSION; ELECTRONIC-PROPERTIES; PHASE-DIAGRAM; CARBON; INTERFEROMETER; PRESSURES; GRAPHITE; STATE AB High-precision measurements of the diamond principal Hugoniot have been made at pressures between 6 and 19 Mbar. Shock velocities were determined with 0.3%-1.1% precision using a velocity interferometer. Impedance-matching analysis, incorporating systematic uncertainties in the equation of state of the quartz standard, was used to determine the Hugoniot with 1.2%-2.7% precision in density. The results are in good agreement with published ab initio calculations, which predict a small negative melt slope along the Hugoniot, but disagree with previous laser-driven shock wave experiments, which had observed a large density increase in the melt region. In the extensive solid-liquid coexistence regime between 6 and 10 Mbar, the present measurements indicate that the mixed phase is a few percent more dense than what would be expected from a simple interpolation between liquid and solid Hugoniots. C1 [Hicks, D. G.; Celliers, P. M.; Bradley, D. K.; Eggert, J. H.; McWilliams, R. S.; Collins, G. W.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Boehly, T. R.] Univ Rochester, Laser Energet Lab, Rochester, NY 14623 USA. [McWilliams, R. S.; Jeanloz, R.] Univ Calif Berkeley, Berkeley, CA 94720 USA. RP Hicks, DG (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM hicks13@llnl.gov RI Collins, Gilbert/G-1009-2011; Hicks, Damien/B-5042-2015; McWilliams, R./J-4358-2016 OI Hicks, Damien/0000-0001-8322-9983; FU Lawrence Livermore National Laboratory [W-7405-Eng-48, DE-AC52-07NA27344]; University of Rochester [DE-FC03-92SF19460] FX We thank the Omega operations crew for help in carrying out the experiments, Mark Bonino and the Omega target fabrication group for their outstanding work, and Walter Unites for his assistance throughout. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory in part under Contract No. W-7405-Eng-48 and in part under Contract No. DE-AC52-07NA27344, and by the University of Rochester under Cooperative Agreement No. DE-FC03-92SF19460. NR 39 TC 44 Z9 44 U1 4 U2 20 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2008 VL 78 IS 17 AR 174102 DI 10.1103/PhysRevB.78.174102 PG 8 WC Physics, Condensed Matter SC Physics GA 376WU UT WOS:000261214500021 ER PT J AU Huda, MN Yan, YF Wei, SH Al-Jassim, MM AF Huda, Muhammad N. Yan, Yanfa Wei, Su-Huai Al-Jassim, Mowafak M. TI Electronic structure of ZnO:GaN compounds: Asymmetric bandgap engineering SO PHYSICAL REVIEW B LA English DT Article DE density functional theory; energy gap; gallium compounds; III-V semiconductors; II-VI semiconductors; wide band gap semiconductors; zinc compounds ID TOTAL-ENERGY CALCULATIONS; AUGMENTED-WAVE METHOD; HYDROGEN-PRODUCTION; SOLAR-ENERGY; BASIS-SET; (GA1-XZNX)(N1-XOX); WATER; SEMICONDUCTORS; PHOTOCATALYST; SOLIDS AB ZnO and GaN have a type-II band offset. The incorporation of one compound into the other would lead to a reduced bandgap as compared to that of either ZnO or GaN. Our density-functional theory calculation reveals an asymmetric bandgap reduction in this nonisovalent system; i.e., incorporating GaN in a ZnO host results in a much more effective bandgap reduction than incorporating ZnO in a GaN host. We further find that the random-alloy system is more favorable than the superlattice system in terms of light absorption in the longer-wavelength regions. Our results suggest that the wave-function localization at the band edges plays an important role in how to choose the host material and dopant for effective bandgap engineering through semiconductor compound alloying. C1 [Huda, Muhammad N.; Yan, Yanfa; Wei, Su-Huai; Al-Jassim, Mowafak M.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Huda, MN (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM muhammad_huda@nrel.gov RI Huda, Muhammad/C-1193-2008 OI Huda, Muhammad/0000-0002-2655-498X FU U.S. Department of Energy [DE-AC36-99-GO10337]; Office of Science of the U.S. Department of Energy [DE-AC0205CH11231] FX This work was supported by the U.S. Department of Energy through the UNLV Research Foundation under Contract No. DE-AC36-99-GO10337. This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC0205CH11231. NR 23 TC 64 Z9 64 U1 2 U2 47 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2008 VL 78 IS 19 AR 195204 DI 10.1103/PhysRevB.78.195204 PG 5 WC Physics, Condensed Matter SC Physics GA 396RC UT WOS:000262607800053 ER PT J AU Iavarone, M Di Capua, R Karapetrov, G Koshelev, AE Rosenmann, D Claus, H Malliakas, CD Kanatzidis, MG Nishizaki, T Kobayashi, N AF Iavarone, M. Di Capua, R. Karapetrov, G. Koshelev, A. E. Rosenmann, D. Claus, H. Malliakas, C. D. Kanatzidis, M. G. Nishizaki, T. Kobayashi, N. TI Effect of magnetic impurities on the vortex lattice properties in NbSe2 single crystals SO PHYSICAL REVIEW B LA English DT Article ID HIGH-TEMPERATURE SUPERCONDUCTORS; UPPER CRITICAL FIELDS; VORTICES; 2H-NBSE2; NIOBIUM AB We report a pronounced peak effect in the magnetization of CoxNbSe2 single crystals with critical temperatures T-c ranging between 7.1 and 5.0 K, and MnxNbSe2 single crystals with critical temperatures down to 3.4 K. We correlate the peak effect in magnetization with the structure of the vortex lattice across the peak-effect region using scanning-tunneling microscopy. Magnetization measurements show that the amplitude of the peak effect in the case of CoxNbSe2 exhibits a nonmonotonic behavior as a function of the Co content, reaching a maximum for concentration of Co of about 0.4 at. % (corresponding to a T-c of 5.7 K) and after that gradually decreasing in amplitude with the increase in the Co content. The normalized value of the peak position H-p/H-c2 has weak dependence on Co concentration. In the case of MnxNbSe2 the features of the peak effect as a function of the Mn content are different and they can be understood in terms of strong pinning. C1 [Iavarone, M.; Karapetrov, G.; Koshelev, A. E.; Rosenmann, D.; Claus, H.; Malliakas, C. D.; Kanatzidis, M. G.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Di Capua, R.] Univ Molise, Dipartimento S Pe S, I-86100 Campobasso, Italy. [Di Capua, R.] CNR INFM COHERENTIA, I-80126 Naples, Italy. [Malliakas, C. D.; Kanatzidis, M. G.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. [Nishizaki, T.; Kobayashi, N.] Tohoku Univ, Inst Mat Res, Sendai, Miyagi 9808577, Japan. RP Iavarone, M (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. RI Kobayashi, Norio/C-1909-2009; Nishizaki, Terukazu/C-1500-2011; Koshelev, Alexei/K-3971-2013; Karapetrov, Goran/C-2840-2008; Di Capua, Roberto/G-9622-2012 OI Koshelev, Alexei/0000-0002-1167-5906; Karapetrov, Goran/0000-0003-1113-0137; Di Capua, Roberto/0000-0003-3605-0993 FU U.S. Department of Energy Office of Science laboratory [DE-AC02-06CH11357] FX The authors would like to thank V Vinokur and A. Snezhko for useful discussions. They also would like to acknowledge the partial support by CNR under the short-term mobility program for researchers (R.D.C.) and the support by the International Frontier Center for Advanced Materials (IFCAM) at Tohoku University, Japan (M.I.). Financial support from NSF-DMR is acknowledged (M.G.K.). This work, as well as the use of the Center for Nanoscale Materials and the Electron Microscopy Center at Argonne National Laboratory, was supported by UChicago Argonne, LLC, operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. NR 25 TC 21 Z9 21 U1 2 U2 24 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2008 VL 78 IS 17 AR 174518 DI 10.1103/PhysRevB.78.174518 PG 8 WC Physics, Condensed Matter SC Physics GA 376WU UT WOS:000261214500086 ER PT J AU Jaroszynski, J Hunte, F Balicas, L Jo, YJ Raicevic, I Gurevich, A Larbalestier, DC Balakirev, FF Fang, L Cheng, P Jia, Y Wen, HH AF Jaroszynski, J. Hunte, F. Balicas, L. Jo, Youn-jung Raicevic, I. Gurevich, A. Larbalestier, D. C. Balakirev, F. F. Fang, L. Cheng, P. Jia, Y. Wen, H. H. TI Upper critical fields and thermally-activated transport of NdFeAsO0.7F0.3 single crystal SO PHYSICAL REVIEW B LA English DT Article ID BASIC PHYSICAL-PROPERTIES; SUPERCONDUCTIVITY; MGB2; TEMPERATURE; IMPURITIES; DEPENDENCE; SCATTERING; SPIN AB We present detailed measurements of the longitudinal resistivity rho(xx)(T,H) and the upper critical field H-c2 of NdFeAsO0.7F0.3 single crystals in strong dc and pulsed magnetic fields up to 45 and 60 T, respectively. We found that the field scale of H-c2 is comparable to H-c2 similar to 100 T of high-T-c cuprates. H-c2(T) parallel to the c axis exhibits a pronounced upward curvature similar to what was extracted from earlier measurements on polycrystalline LaFeAs(O,F), NdFeAs(O,F), and SmFeAs(O,F) samples. Thus, this behavior of H-c2(perpendicular to)(T) is indeed an intrinsic feature of oxypnictides rather than manifestation of vortex lattice melting or granularity. The orientational dependence of H-c2(theta) as a function of the angle theta between H and the c axis shows deviations from the one-band Ginzburg-Landau scaling. The mass anisotropy parameter gamma(T)=(m(c)/m(ab))(1/2)=H-c2(parallel to)/H-c2(perpendicular to) obtained from these measurements decreases as temperature decreases from gamma similar or equal to 9.2 at 44 K to gamma similar or equal to 5 at 34 K, where parallel to and perpendicular to correspond to H parallel and perpendicular to the ab planes, respectively. Spin-dependent magnetoresistance and nonlinearities in the Hall coefficient suggest contribution to the conductivity from electron-electron interactions modified by disorder reminiscent of that in diluted magnetic semiconductors. The Ohmic resistivity rho(xx)(T,H) measured below T-c but above the irreversibility field exhibits a clear Arrhenius thermally-activated behavior rho=rho(0) exp[-E-a(T,H)/T] over 4-5 decades of rho(xx). The activation energy E-a(T,H) has very different field dependencies for H parallel to ab and H perpendicular to ab varying from 4x10(3) K at H=0.2 T to similar to 200 K at H=35 T. We discuss to what extent different pairing scenarios suggested in the literature can manifest themselves in the observed behavior of H-c2, using the two-band model of superconductivity in oxypnictides. The results indicate the importance of paramagnetic effects on H-c2(T) in oxypnictides, which may significantly reduce H-c2(0) as compared to H-c2(0)similar to 200-300 T based on extrapolations of H-c2(T) near T-c down to low temperatures. C1 [Jaroszynski, J.; Hunte, F.; Balicas, L.; Jo, Youn-jung; Raicevic, I.; Gurevich, A.; Larbalestier, D. C.] Florida State Univ, Natl High Magnet Field Lab, Tallahassee, FL 32310 USA. [Balakirev, F. F.] Los Alamos Natl Lab, Natl High Magnet Field Lab, Los Alamos, NM 87545 USA. [Fang, L.; Cheng, P.; Jia, Y.; Wen, H. H.] Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China. RP Jaroszynski, J (reprint author), Florida State Univ, Natl High Magnet Field Lab, Tallahassee, FL 32310 USA. RI Gurevich, Alex/A-4327-2008; Fang, Lei /K-2017-2013; CHENG, PENG/D-4679-2015; Larbalestier, David/B-2277-2008 OI Gurevich, Alex/0000-0003-0759-8941; Larbalestier, David/0000-0001-7098-7208 FU NSF [DMR-0084173]; State of Florida; DOE; NHMFL IHRP; AFOSR [FA9550-06-1-0474] FX The work at NHMFL was supported by the NSF under Cooperative Agreement No. DMR-0084173, by the State of Florida, by the DOE, by the NHMFL IHRP program (F.H.), and by the AFOSR under Grant No. FA9550-06-1-0474 (A.G. and D.C.L.). NR 63 TC 219 Z9 220 U1 2 U2 26 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2008 VL 78 IS 17 AR 174523 DI 10.1103/PhysRevB.78.174523 PG 9 WC Physics, Condensed Matter SC Physics GA 376WU UT WOS:000261214500091 ER PT J AU Kagimura, R Singh, DJ AF Kagimura, R. Singh, D. J. TI Ab initio study of Pb antisite defects in PbZrO3 and Pb(Zr,Ti)O-3 SO PHYSICAL REVIEW B LA English DT Article ID CRYSTAL-STRUCTURE; THIN-FILMS; ANTIFERROELECTRIC PBZRO3; PEROVSKITE STRUCTURE; NEUTRON-DIFFRACTION; PHASE-TRANSITION; LEAD; TEMPERATURE; ENERGETICS; LATTICE AB We report an ab initio study of Pb antisite defects in PbZrO3 (PZ) and Pb(Zr,Ti)O-3 (PZT) perovskites. Also, we calculated the enthalpy of formation of PZ. Our results show that, under strong oxidizing conditions, Pb on the Zr-site antisite defects are unavoidable in PZ. Moreover, a positive enthalpy of formation (0.15 eV) of PZ is found. This indicates that PZ is metastable for low temperature and may help explain the difficulty in synthesizing high-quality Zr-rich PZT crystals. The Pb antisite defects in PZT alloys have low formation energies. This result is in agreement with experiments, which report the predominance of this defect in PZT films. We find that the Pb antisite defect produces electron traps 0.2-0.8 eV below the conduction-band edge. C1 [Kagimura, R.; Singh, D. J.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Kagimura, R.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. RP Kagimura, R (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RI Singh, David/I-2416-2012 FU Department of Energy ORNL LDRD; Division of Materials Science and Engineering; Office of Naval Research; Brazilian agency-CNPq (Conselho Nacional de Desenvolvimento Cientifico a Tecnologico) FX This work was supported by the Department of Energy ORNL LDRD program and Division of Materials Science and Engineering, and by the Office of Naval Research. One of the authors (R.K.) also was supported by the Brazilian agency-CNPq (Conselho Nacional de Desenvolvimento Cientifico a Tecnologico). NR 32 TC 5 Z9 5 U1 2 U2 26 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2008 VL 78 IS 17 AR 174105 DI 10.1103/PhysRevB.78.174105 PG 5 WC Physics, Condensed Matter SC Physics GA 376WU UT WOS:000261214500024 ER PT J AU Kalas, RM Balatsky, AV Mozyrsky, D AF Kalas, Ryan M. Balatsky, Alexander V. Mozyrsky, Dmitry TI Odd-frequency pairing in a binary mixture of bosonic and fermionic cold atoms SO PHYSICAL REVIEW B LA English DT Article ID SINGLET SUPERCONDUCTORS; TRIPLET; PARITY; PHASE; MODEL AB We study fermionic superfluidity in a boson-single-species-fermion cold-atom mixture. We argue that apart from the standard p-wave fermion pairing mediated by the phonon field of the boson gas, the system also exhibits s-wave pairing with the anomalous correlator being an odd function of time or frequency. We show that such a superfluid phase can have a much higher transition temperature than the p-wave and may exist for sufficiently strong couplings between fermions and bosons. These conditions for odd-frequency pairing are favorable close to the value of the coupling at which the mixture phase separates. We evaluate the critical temperatures for this system and discuss the experimental realization of this superfluid in ultracold atomic gases. C1 [Kalas, Ryan M.; Balatsky, Alexander V.; Mozyrsky, Dmitry] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Kalas, RM (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. EM mozyrsky@lanl.gov OI Mozyrsky, Dima/0000-0001-5305-4617 FU U.S. DOE FX We thank E. Abrahams, I. Kolokolov, V. V. Lebedev, I. Martin, and E. Timmermans for valuable discussions. The work is supported by the U.S. DOE. NR 20 TC 10 Z9 10 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2008 VL 78 IS 18 AR 184513 DI 10.1103/PhysRevB.78.184513 PG 5 WC Physics, Condensed Matter SC Physics GA 376WX UT WOS:000261214800097 ER PT J AU Kim, YI Cadars, S Shayib, R Proffen, T Feigerle, CS Chmelka, BF Seshadri, R AF Kim, Young-Il Cadars, Sylvian Shayib, Ramzy Proffen, Thomas Feigerle, Charles S. Chmelka, Bradley F. Seshadri, Ram TI Local structures of polar wurtzites Zn1-xMgxO studied by Raman and Zn-67/Mg-25 NMR spectroscopies and by total neutron scattering SO PHYSICAL REVIEW B LA English DT Article DE crystal structure; dielectric polarisation; magic angle spinning; neutron diffraction; Raman spectra; zinc compounds ID SOLID-STATE NMR; ZINC-OXIDE; ZNO; POLARIZATION; PARAMETERS; SPECTRA AB Local compositions and structures of Zn1-xMgxO alloys have been investigated by Raman and solid-state Zn-67/Mg-25 nuclear-magnetic-resonance (NMR) spectroscopies and by neutron pair-distribution-function (PDF) analyses. The E-2(low) and E-2(high) Raman modes of Zn1-xMgxO display Gaussian- and Lorentzian-type profiles, respectively. At higher Mg substitutions, both modes become broader, while their peak positions shift in opposite directions. The evolution of Raman spectra from Zn1-xMgxO solid solutions is discussed in terms of lattice deformation associated with the distinct coordination preferences of Zn and Mg. Solid-state magic-angle-spinning (MAS) NMR studies suggest that the local electronic environments of Zn-67 in ZnO are only weakly modified by the 15% substitution of Mg for Zn. Mg-25 MAS spectra of Zn0.85Mg0.15O show an unusual upfield shift, demonstrating the prominent shielding ability of Zn in the nearby oxidic coordination sphere. Neutron PDF analyses of Zn0.875Mg0.125O using a 2x2x1 supercell corresponding to Zn7MgO8 suggest that the mean local geometry of MgO4 fragments concurs with previous density-functional-theory-based structural relaxations of hexagonal wurtzite MgO. MgO4 tetrahedra are markedly compressed along their c axes and are smaller in volume than ZnO4 units by approximate to 6%. Mg atoms in Zn1-xMgxO have a shorter bond to the c-axial oxygen atom than to the three lateral oxygen atoms, which is distinct from the coordination of Zn. The precise structure, both local and average, of Zn0.875Mg0.125O obtained from time-of-flight total neutron scattering supports the view that Mg substitution in ZnO results in increased total spontaneous polarization. C1 [Kim, Young-Il; Seshadri, Ram] Univ Calif Santa Barbara, Dept Mat, Santa Barbara, CA 93106 USA. [Kim, Young-Il; Seshadri, Ram] Univ Calif Santa Barbara, Mat Res Lab, Santa Barbara, CA 93106 USA. [Kim, Young-Il] Yeungnam Univ, Dept Chem, Gyongsan 712749, Gyeongbuk, South Korea. [Cadars, Sylvian; Shayib, Ramzy; Chmelka, Bradley F.] Univ Calif Santa Barbara, Dept Chem Engn, Santa Barbara, CA 93106 USA. [Proffen, Thomas] Los Alamos Natl Lab, Manuel Lujan Jr Neutron Scattering Ctr, LANSCE 12, Los Alamos, NM 87545 USA. [Feigerle, Charles S.] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. [Seshadri, Ram] Univ Calif Santa Barbara, Dept Chem & Biochem, Santa Barbara, CA 93106 USA. RP Kim, YI (reprint author), Univ Calif Santa Barbara, Dept Mat, Santa Barbara, CA 93106 USA. RI Cadars, Sylvian/B-4727-2012; Lujan Center, LANL/G-4896-2012; Seshadri, Ram/C-4205-2013; Kim, Young-il/I-9322-2014; Proffen, Thomas/B-3585-2009; Cadars, Sylvian/E-8604-2017 OI Seshadri, Ram/0000-0001-5858-4027; Kim, Young-il/0000-0003-2755-9587; Proffen, Thomas/0000-0002-1408-6031; FU National Science Foundation [DMR05-20415]; Department of Energy, Basic Energy Sciences, Catalysis Science [DE-FG0203ER15467]; Office of Basic Energy Sciences; DOE [DE-AC5206NA25396] FX The authors acknowledge support from the National Science Foundation through the MRSEC program (Grant No. DMR05-20415) and from the Department of Energy, Basic Energy Sciences, Catalysis Science (Grant No. DE-FG0203ER15467). This work has benefited from the use of NPDF at the Lujan Center at Los Alamos Neutron Science Center, funded by Office of Basic Energy Sciences, DOE. Los Alamos National Laboratory is operated by Los Alamos National Security LLC under DOE Contract No. DE-AC5206NA25396. The authors are grateful to the NSF-supported National High Magnetic Field Laboratory in Tallahassee, Florida for access to the high-field (19.6 T) NMR facilities and to Zhehong Gan for assistance with the NMR measurements. Andrei Malashevich and David Vanderbilt kindly provided the DFT optimized structural data for Zn1-xMgxO supercells. The authors also thank Brent Melot and Daniel Shoemaker for the neutron data collection. NR 49 TC 31 Z9 31 U1 2 U2 18 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2008 VL 78 IS 19 AR 195205 DI 10.1103/PhysRevB.78.195205 PG 12 WC Physics, Condensed Matter SC Physics GA 396RC UT WOS:000262607800054 ER PT J AU Koshelev, AE AF Koshelev, A. E. TI Alternating dynamic state self-generated by internal resonance in stacks of intrinsic Josephson junctions SO PHYSICAL REVIEW B LA English DT Article ID TUNNEL-JUNCTIONS; SUPERCONDUCTORS; BI2SR2CACU2O8+DELTA; OSCILLATIONS AB Intrinsic Josephson-junction stacks realized in high-temperature superconductors provide a very attractive base for developing coherent sources of electromagnetic radiation in the terahertz frequency range. A promising way to synchronize phase oscillations in all the junctions is to excite an internal cavity resonance. We demonstrate that this resonance promotes the formation of an alternating coherent state, in which the system spontaneously splits into two subsystems with different phase-oscillation patterns. There is a static phase shift between the oscillations in the two subsystems, which changes from 0 to 2 pi in a narrow region near the stack center. The oscillating electric and magnetic fields are almost homogeneous in all the junctions. The formation of this state promotes efficient pumping of the energy into the cavity resonance leading to strong resonance features in the current-voltage dependence. C1 Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Koshelev, AE (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. RI Koshelev, Alexei/K-3971-2013 OI Koshelev, Alexei/0000-0002-1167-5906 FU US DOE, Office of Science [DE-AC02-06CH11357] FX The author would like to thank U. Welp, L. Bulaevskii, K. Gray, M. Tachiki, and X. Hu for useful discussions. This work was supported by the US DOE, Office of Science under Contract No. DE-AC02-06CH11357. NR 23 TC 72 Z9 72 U1 1 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2008 VL 78 IS 17 AR 174509 DI 10.1103/PhysRevB.78.174509 PG 6 WC Physics, Condensed Matter SC Physics GA 376WU UT WOS:000261214500077 ER PT J AU Kreyssig, A Green, MA Lee, Y Samolyuk, GD Zajdel, P Lynn, JW Bud'ko, SL Torikachvili, MS Ni, N Nandi, S Leao, JB Poulton, SJ Argyriou, DN Harmon, BN McQueeney, RJ Canfield, PC Goldman, AI AF Kreyssig, A. Green, M. A. Lee, Y. Samolyuk, G. D. Zajdel, P. Lynn, J. W. Bud'ko, S. L. Torikachvili, M. S. Ni, N. Nandi, S. Leao, J. B. Poulton, S. J. Argyriou, D. N. Harmon, B. N. McQueeney, R. J. Canfield, P. C. Goldman, A. I. TI Pressure-induced volume-collapsed tetragonal phase of CaFe2As2 as seen via neutron scattering SO PHYSICAL REVIEW B LA English DT Article ID 43 K; SUPERCONDUCTIVITY; LAO1-XFXFEAS AB Recent investigations of the superconducting iron-arsenide families have highlighted the role of pressure, be it chemical or mechanical, in fostering superconductivity. Here we report that CaFe2As2 undergoes a pressure-induced transition to a nonmagnetic volume "collapsed" tetragonal phase, which becomes superconducting at lower temperature. Spin-polarized total-energy calculations on the collapsed structure reveal that the magnetic Fe moment itself collapses, consistent with the absence of magnetic order in neutron diffraction. C1 [Kreyssig, A.; Lee, Y.; Samolyuk, G. D.; Bud'ko, S. L.; Ni, N.; Nandi, S.; Harmon, B. N.; McQueeney, R. J.; Canfield, P. C.; Goldman, A. I.] US DOE, Ames Lab, Ames, IA 50011 USA. [Kreyssig, A.; Lee, Y.; Samolyuk, G. D.; Bud'ko, S. L.; Ni, N.; Nandi, S.; Harmon, B. N.; McQueeney, R. J.; Canfield, P. C.; Goldman, A. I.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Green, M. A.; Zajdel, P.; Lynn, J. W.; Leao, J. B.; Poulton, S. J.] Natl Inst Stand & Technol, Ctr Neutron Res, Gaithersburg, MD 20899 USA. [Green, M. A.; Poulton, S. J.] Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA. [Zajdel, P.] UCL, Dept Chem, London W1X 0AJ, England. [Torikachvili, M. S.] San Diego State Univ, Dept Phys, San Diego, CA 92182 USA. [Argyriou, D. N.] Helmholtz Zentrum Berlin Mat & Energie, D-14109 Berlin, Germany. RP Kreyssig, A (reprint author), US DOE, Ames Lab, Ames, IA 50011 USA. EM kreyssig@ameslab.gov RI Zajdel, Pawel/B-7574-2013; Canfield, Paul/H-2698-2014; McQueeney, Robert/A-2864-2016 OI Zajdel, Pawel/0000-0003-1220-5866; McQueeney, Robert/0000-0003-0718-5602 NR 31 TC 223 Z9 225 U1 5 U2 42 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2008 VL 78 IS 18 AR 184517 DI 10.1103/PhysRevB.78.184517 PG 6 WC Physics, Condensed Matter SC Physics GA 376WX UT WOS:000261214800101 ER PT J AU McQueeney, RJ Yan, JQ Chang, S Ma, J AF McQueeney, R. J. Yan, J. -Q. Chang, S. Ma, J. TI Determination of the exchange anisotropy in perovskite antiferromagnets using powder inelastic neutron scattering SO PHYSICAL REVIEW B LA English DT Article AB A procedure is outlined for the determination of magnetic exchange constants in anisotropic perovskite anitferromagnets using powder inelastic neutron scattering. Spin-wave densities of states are measured using time-of-flight inelastic neutron scattering for LaMnO(3) (A-type antiferromagnet), LaVO(3) (C type), and LaFeO(3) (G type) and compared to Heisenberg model calculations. The anisotropy of in-plane (J(ab)) and out-of-plane (J(c)) exchange constants can be obtained from the data. The procedure quickly determines the magnetic exchange interactions without the need for single-crystal dispersion measurements and allows for rapid systematic studies of the evolution of magnetism in perovskite systems. C1 [McQueeney, R. J.; Ma, J.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [McQueeney, R. J.; Yan, J. -Q.; Chang, S.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. RP McQueeney, RJ (reprint author), Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. RI Ma, Jie/C-1637-2013; McQueeney, Robert/A-2864-2016 OI McQueeney, Robert/0000-0003-0718-5602 FU U. S. Department of Energy Office of Science [DE-AC02-07CH11358]; Los Alamos Neutron Science Center at Los Alamos National Laboratory; U. S. Department of Energy [W-7405-ENG- 36] FX R. J. M. would like to thank F. Trouw, A. Llobet, and M. Hehlen for assistance with Pharos. Ames Laboratory is supported by the U. S. Department of Energy Office of Science under Contract No. DE-AC02-07CH11358. The work has benefited from the use of the Los Alamos Neutron Science Center at Los Alamos National Laboratory. LANSCE is funded by the U. S. Department of Energy under Contract No. W-7405-ENG- 36. NR 14 TC 12 Z9 12 U1 3 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2008 VL 78 IS 18 AR 184417 DI 10.1103/PhysRevB.78.184417 PG 8 WC Physics, Condensed Matter SC Physics GA 376WX UT WOS:000261214800063 ER PT J AU Paudyal, D Mudryk, Y Lee, YB Pecharsky, VK Gschneidner, KAJ Harmon, BN AF Paudyal, Durga Mudryk, Ya. Lee, Y. B. Pecharsky, V. K. Gschneidner, K. A. Jr. Jr Harmon, B. N. TI Understanding the extraordinary magnetoelastic behavior in GdNi SO PHYSICAL REVIEW B LA English DT Article ID NI INTERMETALLIC COMPOUNDS; GDNI1-XCUX COMPOUNDS; ELECTRONIC-STRUCTURE; THERMAL-EXPANSION; CRYSTAL-STRUCTURE; SINGLE-CRYSTAL; RARE; THERMODYNAMICS; TEMPERATURE; TRANSITION AB Measurements as a function of both magnetic field and temperature along with first principles spin polarized calculations explain the remarkable magnetoelastic properties exhibited by GdNi below its Curie temperature. The lattice constants a and b elongate continuously by 0.35% and 0.49%, respectively, while the c axis contracts by 0.78%, all without phase volume change. Calculations and experiment confirm a relatively shallow magnetization-dependent energy landscape modified by the increased spin splitting of the conduction band as the 4f moments order. C1 [Paudyal, Durga; Mudryk, Ya.; Lee, Y. B.; Pecharsky, V. K.; Gschneidner, K. A. Jr. Jr; Harmon, B. N.] Iowa State Univ, Ames Lab, USDOE, Ames, IA 50011 USA. [Lee, Y. B.; Harmon, B. N.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Pecharsky, V. K.; Gschneidner, K. A. Jr. Jr] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. RP Pecharsky, VK (reprint author), Iowa State Univ, Ames Lab, USDOE, Ames, IA 50011 USA. EM vitkp@ameslab.gov FU Office of Basic Energy Sciences, Materials Sciences Division of the U.S. Department of Energy [DE-AC02-07CH11358]; Iowa State University of Science and Technology FX This work was supported by the Office of Basic Energy Sciences, Materials Sciences Division of the U.S. Department of Energy under Contract No. DE-AC02-07CH11358 with Iowa State University of Science and Technology. NR 33 TC 8 Z9 8 U1 2 U2 10 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2008 VL 78 IS 18 AR 184436 DI 10.1103/PhysRevB.78.184436 PG 5 WC Physics, Condensed Matter SC Physics GA 376WX UT WOS:000261214800082 ER PT J AU Popescu, V Bester, G Hanna, MC Norman, AG Zunger, A AF Popescu, Voicu Bester, Gabriel Hanna, Mark C. Norman, Andrew G. Zunger, Alex TI Theoretical and experimental examination of the intermediate-band concept for strain-balanced (In,Ga)As/Ga(As,P) quantum dot solar cells SO PHYSICAL REVIEW B LA English DT Article ID ORIENTED SEMICONDUCTOR HETEROSTRUCTURES; INFRARED PHOTODETECTORS; PIEZOELECTRIC FIELDS; ELECTRONIC-STRUCTURE; CHEMICAL TRENDS; TRANSITIONS; PHOTOCURRENT; COEFFICIENTS; ABSORPTION; EFFICIENCY AB The intermediate-band solar cell (IBSC) concept has been recently proposed to enhance the current gain from the solar spectrum whilst maintaining a large open-circuit voltage. Its main idea is to introduce a partially occupied intermediate band (IB) between the valence band (VB) and conduction band (CB) of the semiconductor absorber, thereby increasing the photocurrent by the additional VB -> IB and IB -> CB absorptions. The confined electron levels of self-assembled quantum dots (QDs) were proposed as potential candidates for the implementation of such an IB. Here we report experimental and theoretical investigations on In(y)Ga(1-y)As dots in a GaAs(1-x)P(x) matrix, examining its suitability for acting as IBSCs. The system has the advantage of allowing strain symmetrization within the structure, thus enabling the growth of a large number of defect-free QD layers, despite the significant size mismatch between the dot material and the surrounding matrix. We examine the various conditions related to the optimum functionality of the IBSC, in particular those connected to the optical and electronic properties of the system. We find that the intensity of absorption between QD-confined electron states and host CB is weak because of their localized-to-delocalized character. Regarding the position of the IB within the matrix band gap, we find that, whereas strain symmetrization can indeed permit growth of multiple dot layers, the current repertoire of GaAs(1-x)P(x) barrier materials, as well as In(y)Ga(1-y)As dot materials, does not satisfy the ideal energetic locations for the IB. We conclude that other QD systems must be considered for QD-IBSC implementations. C1 [Popescu, Voicu; Bester, Gabriel; Hanna, Mark C.; Norman, Andrew G.; Zunger, Alex] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Popescu, V (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. RI Norman, Andrew/F-1859-2010; Popescu, Voicu/A-9130-2010; Bester, Gabriel/I-4414-2012; Zunger, Alex/A-6733-2013 OI Norman, Andrew/0000-0001-6368-521X; Bester, Gabriel/0000-0003-2304-0817; FU U.S. Department of Energy [DE-AC36-99GO10337] FX The work of V. P., M. C. H., and A.G.N. was funded by the U.S. Department of Energy through NREL's Laboratory Directed Research and Development program. The collaboration with A.Z. and G. B. was funded by the U. S. Department of Energy Office of Science, Basic Energy Science, under Contract No. DE-AC36-99GO10337 to NREL. The authors gratefully acknowledge P. Dippo for the room-temperature PL measurements, L. M. Gedvilas for the FTIR measurements, and J.S. Ward for device processing. NR 55 TC 151 Z9 154 U1 4 U2 58 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2008 VL 78 IS 20 AR 205321 DI 10.1103/PhysRevB.78.205321 PG 17 WC Physics, Condensed Matter SC Physics GA 376XD UT WOS:000261215400060 ER PT J AU Qu, Z Spinu, L Yuan, HQ Dobrosavljevic, V Bao, W Lynn, JW Nicklas, M Peng, J Liu, TJ Fobes, D Flesch, E Mao, ZQ AF Qu, Zhe Spinu, Leonard Yuan, Huiqiu Dobrosavljevic, Vladimir Bao, Wei Lynn, Jeffrey W. Nicklas, M. Peng, Jin Liu, Tijiang Fobes, David Flesch, Etienne Mao, Z. Q. TI Unusual heavy-mass nearly ferromagnetic state with a surprisingly large Wilson ratio in the double layered ruthenates (Sr(1-x)Ca(x))(3)Ru(2)O(7) SO PHYSICAL REVIEW B LA English DT Article ID SR3RU2O7; TRANSITION; METAL; INSULATOR; PHASE AB We report an unusual nearly ferromagnetic heavy-mass state with a surprisingly large Wilson ratio R(w) (e.g., R(w) similar to 700 for x=0.2) in double layered ruthenates (Sr(1-x)Ca(x))(3)Ru(2)O(7) with 0.08 < x < 0.4. This state does not evolve into a long-range ferromagnetically ordered state despite considerably strong ferromagnetic correlations, but it freezes into a cluster-spin glass at low temperatures. In addition, evidence of non-Fermi-liquid behavior is observed as the spin-freezing temperature of the cluster-spin glass approaches zero near x approximate to 0.1. We discuss the origin of this unique magnetic state from the Fermi-surface information probed by Hall-effect measurements. C1 [Qu, Zhe; Peng, Jin; Liu, Tijiang; Fobes, David; Flesch, Etienne; Mao, Z. Q.] Tulane Univ, Dept Phys, New Orleans, LA 70118 USA. [Spinu, Leonard] Univ New Orleans, Dept Phys, New Orleans, LA 70148 USA. [Spinu, Leonard] Univ New Orleans, AMRI, New Orleans, LA 70148 USA. [Yuan, Huiqiu] Los Alamos Natl Lab, Natl High Magnet Field Lab, Los Alamos, NM 87545 USA. [Dobrosavljevic, Vladimir] Florida State Univ, Dept Phys, Tallahassee, FL 32306 USA. [Dobrosavljevic, Vladimir] Florida State Univ, NHMFL, Tallahassee, FL 32306 USA. [Lynn, Jeffrey W.] Natl Inst Stand & Technol, NIST Ctr Neutron Res, Gaithersburg, MD 20899 USA. [Nicklas, M.] Max Planck Inst Chem Phys Solids, D-01187 Dresden, Germany. RP Qu, Z (reprint author), Tulane Univ, Dept Phys, New Orleans, LA 70118 USA. EM zmao@tulane.edu RI Qu, Zhe/H-6406-2011; Bao, Wei/E-9988-2011; LIU, TIJIANG/A-3242-2013; Nicklas, Michael/B-6344-2008; Fobes, David/E-8526-2014 OI Qu, Zhe/0000-0003-3865-8337; Bao, Wei/0000-0002-2105-461X; Nicklas, Michael/0000-0001-6272-2162; Fobes, David/0000-0001-8252-2061 FU NSF [DMR-0645305, DMR-0542026]; DOE [DE-FG02-07ER46358]; ARO [W911NF-08-C-0131]; Research Corporation; DARPA [HR0011-07-1-0031] FX We thank C. M. Varma, I. Vekhter, A. V. Balatsky, M. J. Case, Z. Islam, and Y. Liu for useful discussions. Work at Tulane by the NSF under Grant No. DMR-0645305, the DOE under Grant No. DE-FG02-07ER46358, the ARO under Grant No. W911NF-08-C-0131, and the Research Corporation. Work at UNO is supported by DARPA under Contract No. HR0011-07-1-0031; work in Florida is supported by the NSF under Contract No. DMR-0542026; and work at LANL is supported by the NSF, DOE, and the State of Florida. H. Y. also acknowledges support from I2CAM and the kind hospitality of MPI-CPFS. NR 27 TC 23 Z9 23 U1 1 U2 11 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2008 VL 78 IS 18 AR 180407 DI 10.1103/PhysRevB.78.180407 PG 4 WC Physics, Condensed Matter SC Physics GA 376WX UT WOS:000261214800009 ER PT J AU Ramos, AV Santos, TS Miao, GX Guittet, MJ Moussy, JB Moodera, JS AF Ramos, A. V. Santos, T. S. Miao, G. X. Guittet, M. -J. Moussy, J. -B. Moodera, J. S. TI Influence of oxidation on the spin-filtering properties of CoFe(2)O(4) and the resultant spin polarization SO PHYSICAL REVIEW B LA English DT Article ID TUNNEL-JUNCTIONS; LARGE MAGNETORESISTANCE; BARRIERS; FIELD; ZERO AB We report the direct measurement of spin polarization in epitaxial CoFe(2)O(4) tunnel barriers using the Meservey-Tedrow technique. By observing an asymmetry in the Al quasiparticle density of states in Pt(111)/CoFe(2)O(4)(111)/gamma-Al(2)O(3)(111)/Al tunnel junctions, we prove the existence of spin filtering in our CoFe(2)O(4) tunnel barriers. We further analyze the effect of oxidation conditions during film growth on the polarization of the tunneling current, revealing an important role played by oxygen vacancies in the spin-filter efficiency of this material. C1 [Ramos, A. V.; Guittet, M. -J.; Moussy, J. -B.] CEA Saclay, IRAMIS, SPCSI, F-91191 Gif Sur Yvette, France. [Santos, T. S.] Argonne Natl Lab, Argonne, IL 60439 USA. [Santos, T. S.; Miao, G. X.; Moodera, J. S.] MIT, Francis Bitter Natl Magnet Lab, Cambridge, MA 02139 USA. RP Ramos, AV (reprint author), CEA Saclay, IRAMIS, SPCSI, F-91191 Gif Sur Yvette, France. RI Miao, Guo-Xing/A-2411-2008 OI Miao, Guo-Xing/0000-0002-8735-8077 FU NSF; ONR; MIT-France FX We wish to thank M. Gautier-Soyer for valuable discussions. We also acknowledge C. Deranlot for the growth of the Pt buffer layers. This work at MIT was supported by NSF and ONR grants as well as by the MIT-France program. NR 23 TC 58 Z9 58 U1 0 U2 13 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2008 VL 78 IS 18 AR 180402 DI 10.1103/PhysRevB.78.180402 PG 4 WC Physics, Condensed Matter SC Physics GA 376WX UT WOS:000261214800004 ER PT J AU Reichhardt, C Reichhardt, CJO AF Reichhardt, C. Reichhardt, C. J. Olson TI Transverse commensurability effect for vortices in periodic pinning arrays SO PHYSICAL REVIEW B LA English DT Article ID DRIVEN VORTEX LATTICES; SUPERCONDUCTING FILMS; REGULAR ARRAY; DYNAMICS; DEFECTS; STATES; PHASE AB Using computer simulations, we demonstrate a type of commensurability that occurs for vortices moving longitudinally through periodic pinning arrays in the presence of an additional transverse driving force. As a function of vortex density, there is a series of broad maxima in the transverse critical depinning force that do not fall at the matching fields where the number of vortices equals an integer multiple of the number of pinning sites. The commensurability effects are associated with dynamical states in which evenly spaced structures consisting of one or more moving rows of vortices form between rows of pinning sites. Remarkably, the critical transverse depinning force can be more than an order of magnitude larger than the longitudinal depinning force. C1 [Reichhardt, C.; Reichhardt, C. J. Olson] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Reichhardt, C (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. OI Reichhardt, Cynthia/0000-0002-3487-5089 FU U. S. DOE at LANL [DE-AC5206NA25396] FX This work was carried out under the auspices of the NNSA of the U. S. DOE at LANL under Contract No. DE-AC5206NA25396. NR 28 TC 6 Z9 6 U1 1 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2008 VL 78 IS 18 AR 180507 DI 10.1103/PhysRevB.78.180507 PG 4 WC Physics, Condensed Matter SC Physics GA 376WX UT WOS:000261214800024 ER PT J AU Rivin, O Osborn, R Kolesnikov, AI Caspi, EN Shaked, H AF Rivin, Oleg Osborn, Raymond Kolesnikov, Alexander I. Caspi, El'ad N. Shaked, Hagai TI Tb(3+) in TbCo(3)B(2): A singlet ground state system studied by inelastic neutron scattering SO PHYSICAL REVIEW B LA English DT Article ID FIELD AB The results of inelastic neutron scattering on the hexagonal compounds TbCo(3)B(2) and Tb(0.75)Y(0.25)Co(3)B(2), at several temperatures, are reported. The crystal-field level scheme of Tb(3+) ions in the paramagnetic phase is determined. This scheme contains a nonmagnetic singlet (Gamma 1) as the ground state. Inelastic neutron scattering at low temperature (10 K) leads to a different energy-level scheme, where the singlet ground state is ferromagnetic with < J(x)> not equal 0. This is a "self-induced" ferromagnetism on the Tb sublattice, resulting from the admixture of higher crystal-field levels into the singlet ground state by the exchange field. The resulting magnitudes of these ground state magnetic moments are 5.6(3)mu(B) and 3(1)mu(B) for TbCo(3)B(2) and Tb(0.75)Y(0.25)Co(3)B(2), respectively. These values are much smaller than the free ion value of 9 mu(B) and are in agreement with previously observed values. Such large reductions are characteristic of the "self-induced" ferromagnetism. The temperature dependences of the magnetic moment, magnetic anisotropy, Tb sublattice dilution, and magnetic susceptibility are discussed. C1 [Rivin, Oleg; Caspi, El'ad N.] Nucl Res Ctr Negev, Dept Phys, IL-84190 Beer Sheva, Israel. [Rivin, Oleg; Shaked, Hagai] Ben Gurion Univ Negev, Dept Phys, IL-84105 Beer Sheva, Israel. [Osborn, Raymond] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Kolesnikov, Alexander I.] Argonne Natl Lab, Intense Pulsed Neutron Source, Argonne, IL 60439 USA. [Kolesnikov, Alexander I.] Oak Ridge Natl Lab, Spallat Neutron Source, Oak Ridge, TN 37831 USA. RP Rivin, O (reprint author), Nucl Res Ctr Negev, Dept Phys, POB 9001, IL-84190 Beer Sheva, Israel. EM olegr@nrcn.org.il RI Osborn, Raymond/E-8676-2011; Kolesnikov, Alexander/I-9015-2012 OI Osborn, Raymond/0000-0001-9565-3140; Kolesnikov, Alexander/0000-0003-1940-4649 FU U. S. Department of Energy [DE-AC02-06CH11357, DE-AC05-00OR22725] FX This work is based on an experiment No. 5385, performed at the Intense Pulsed Neutron Source, Argonne National Laboratory, Argonne, IL, USA. ANL is managed by UChicago Argonne, LLC, for the U. S. Department of Energy under Contract No. DE-AC02-06CH11357. One of us (A. I. K.) wishes to acknowledge ORNL/SNS which is managed by UT-Battelle, LLC, for the U. S. Department of Energy under Contract No. DE-AC05-00OR22725. The authors wish to thank Lynnete Jirik and Kristina Verdal for their assistance in conducting the experiment. NR 17 TC 5 Z9 5 U1 1 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2008 VL 78 IS 18 AR 184424 DI 10.1103/PhysRevB.78.184424 PG 6 WC Physics, Condensed Matter SC Physics GA 376WX UT WOS:000261214800070 ER PT J AU Rybicki, D Kapusta, C Tokarz, W Stepankova, H Prochazka, V Haase, J Jirak, Z Adroja, DT Mitchell, JF AF Rybicki, D. Kapusta, Cz. Tokarz, W. Stepankova, H. Prochazka, V. Haase, J. Jirak, Z. Adroja, D. T. Mitchell, J. F. TI Mn-55 nuclear magnetic resonance study of highly Sr-doped La2-2xSr1+2xMn2O7 (x=0.5-0.8) SO PHYSICAL REVIEW B LA English DT Article ID ELECTRONIC PHASE-SEPARATION; COLOSSAL MAGNETORESISTANCE; SPIN INTERACTIONS; MANGANITES; NMR; CHARGE; RELAXATION; LA0.5CA0.5MNO3; LA1-XCAXMNO3; SEGREGATION AB The Mn-55 nuclear magnetic resonance (NMR) study of bilayered perovskites La2-2xSr1+2xMn2O7 with 0.5 <= x <= 1 is presented. The 55Mn spin-echo spectra were measured at 4.2 K at zero applied magnetic field and at fields up to 2.5 T. Recent neutron-diffraction studies report that all the compounds studied are antiferromagnetically ordered (except x=0.68 in which no long-range magnetic order was found [Mitchell et al., J. Phys. Chem. B 105, 10731 (2001)]. However, within the doping range 0.62 <= x <= 0.68, apart from NMR signal from antiferromagnetic insulating (AFI) phase, also lines from ferromagnetic insulating (FMI) and ferromagnetic metallic (FMM) phases are observed. This indicates that phase separation occurs in high Sr-doped bilayered manganites. The amount of the FMI and FMM regions decreases with the Sr doping level and for compounds with x=0.75 and x=0.8; only the line originating from nuclei in Mn4+ cations in AFI regions is observed. C1 [Rybicki, D.; Kapusta, Cz.; Tokarz, W.] AGH Univ Sci & Technol, Fac Phys & Appl Comp Sci, Dept Solid State Phys, Al Mickiewicza 30, PL-30059 Krakow, Poland. [Rybicki, D.; Haase, J.] Univ Leipzig, Fac Phys & Earth Sci, D-04103 Leipzig, Germany. [Stepankova, H.; Prochazka, V.] Charles Univ Prague, Fac Math & Phys, Dept Low Temp Phys, CR-18000 Prague 8, Czech Republic. [Jirak, Z.] Inst Phys, Prague 16253 6, Czech Republic. [Adroja, D. T.] Rutherford Appleton Lab, ISIS Facil, Didcot OX11 0QX, Oxon, England. [Mitchell, J. F.] Argonne Natl Lab, Div Mat Sci, Ctr Nanoscale Mat, Argonne, IL 60439 USA. RP Rybicki, D (reprint author), AGH Univ Sci & Technol, Fac Phys & Appl Comp Sci, Dept Solid State Phys, Al Mickiewicza 30, PL-30059 Krakow, Poland. RI Jirak, Zdenek/G-6281-2014 FU EU [NMP4-CT-2005- 517039]; Grant Agency of Czech Republic [202/06/0051]; Polish Ministry of Science and Higher Education FX Financial supports by the EU grant under Contract No. NMP4-CT-2005- 517039 (CoMePhS), the Grant Agency of Czech Republic under Project No. 202/06/0051, and partial support of the Polish Ministry of Science and Higher Education are acknowledged. NR 51 TC 4 Z9 5 U1 2 U2 10 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2008 VL 78 IS 18 AR 184428 DI 10.1103/PhysRevB.78.184428 PG 8 WC Physics, Condensed Matter SC Physics GA 376WX UT WOS:000261214800074 ER PT J AU Sakiyama, N Zaliznyak, A Lee, SH Mitsui, Y Yoshizawa, H AF Sakiyama, N. Zaliznyak, A. Lee, S. -H. Mitsui, Y. Yoshizawa, H. TI Doping-dependent charge and spin superstructures in layered cobalt perovskites SO PHYSICAL REVIEW B LA English DT Article ID HIGH-TEMPERATURE SUPERCONDUCTORS; ELECTRONIC PHASE-SEPARATION; STRIPES; LA2-XSRXCUO4; POLARONS; ORDER; MODEL; HOLES AB We have investigated cobaltite relatives of the layered perovskite cuprates and nickelates, Pr(2-x)Ca(x)CoO(4) (0.39 <= x <= 0.73) and La(2-x)Sr(x)CoO(4) (x=0.4, 0.61), using elastic neutron scattering. We have discovered doping-dependent incommensurate short-range ordering of charges and magnetic moments, which in cobaltites occur in the nonitinerant polaron phase, for 0.5 <= x <= 0.75. The charge order exists already at room temperature and shows no change on cooling. The incommensurability of its propagation vector, Q(c)=(epsilon(c), 0, l), roughly scales with the concentration of Co(2+) ions, epsilon(c) similar to (1-x). Magnetic order follows at low T less than or similar to 40 K and has twice larger periodicity, indicating a dominant antiferromagnetic correlation between the nearest Co(2+) spins. C1 [Zaliznyak, A.] Brookhaven Natl Lab, DCMPMS, Upton, NY 11973 USA. [Sakiyama, N.; Mitsui, Y.; Yoshizawa, H.] Univ Tokyo, Inst Solid State Phys, Neutron Sci Lab, Tokai, Ibaraki 3191106, Japan. [Lee, S. -H.] Univ Virginia, Dept Phys, Charlottesville, VA 22904 USA. RP Zaliznyak, A (reprint author), Brookhaven Natl Lab, DCMPMS, Upton, NY 11973 USA. EM zaliznyak@bnl.gov RI Zaliznyak, Igor/E-8532-2014 OI Zaliznyak, Igor/0000-0002-9886-3255 FU Ministry of Education, Culture, Sports, Science, and Technology, Japan [16540307]; U.S. DOE [DE-AC02-98CH10886] FX We thank T. J. Sato and K. Hirota for help with experiments and J. Tranquada for discussions. This work was supported by Grants-In-Aid for Scientific Research (C) (Grant No. 16540307) from the Ministry of Education, Culture, Sports, Science, and Technology, Japan, and by the U. S. DOE under Contract No. DE-AC02-98CH10886. NR 27 TC 16 Z9 16 U1 0 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2008 VL 78 IS 18 AR 180406 DI 10.1103/PhysRevB.78.180406 PG 4 WC Physics, Condensed Matter SC Physics GA 376WX UT WOS:000261214800008 ER PT J AU Sirenko, AA O'Malley, SM Ahn, KH Park, S Carr, GL Cheong, SW AF Sirenko, A. A. O'Malley, S. M. Ahn, K. H. Park, S. Carr, G. L. Cheong, S-W. TI Infrared-active excitations related to Ho(3+) ligand-field splitting at the commensurate-incommensurate magnetic phase transition in HoMn(2)O(5) SO PHYSICAL REVIEW B LA English DT Article AB Linearly polarized spectra of far-infrared (IR) transmission in HoMn(2)O(5) multiferroic single crystals have been studied in the frequency range between 8.5 and 105 cm(-1) and for temperatures between 5 and 300 K. Polarization of IR-active excitations depends on the crystallographic directions in HoMn(2)O(5) and is sensitive to the magnetic phase transitions. We attribute some of the infrared-active excitations to electric-dipole transitions between ligand-field (LF) split states of Ho(3+) ions. For light polarization along crystalline b axis, the oscillator strength of electric dipoles at low frequencies (10.5, 13, and 18 cm(-1)) changes significantly at the commensurate-incommensurate antiferromagnetic phase transition at T(3)=19 K. This effect shows a strong correlation with the pronounced steps of the b-directional static dielectric function. We propose that the LF on Ho(3+) connects the magnetism and dielectric properties of this compound through coupling with the Mn spin structure. We comment on the possibility for composite excitations of magnons and excited LF states. C1 [Sirenko, A. A.; O'Malley, S. M.; Ahn, K. H.] New Jersey Inst Technol, Dept Phys, Newark, NJ 07102 USA. [Park, S.; Cheong, S-W.] Rutgers State Univ, Rutgers Ctr Emergent Mat, Piscataway, NJ 08854 USA. [Park, S.; Cheong, S-W.] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA. [Carr, G. L.] Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA. RP Sirenko, AA (reprint author), New Jersey Inst Technol, Dept Phys, Newark, NJ 07102 USA. EM sirenko@njit.edu NR 20 TC 6 Z9 6 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2008 VL 78 IS 17 AR 174405 DI 10.1103/PhysRevB.78.174405 PG 8 WC Physics, Condensed Matter SC Physics GA 376WU UT WOS:000261214500044 ER PT J AU Souvatzis, P Rudin, SP AF Souvatzis, P. Rudin, S. P. TI Dynamical stabilization of cubic ZrO(2) by phonon-phonon interactions: Ab initio calculations SO PHYSICAL REVIEW B LA English DT Article ID FUNCTIONAL PERTURBATION-THEORY; TOTAL-ENERGY CALCULATIONS; FORCE-CONSTANTS; THERMAL-EXPANSION; DISPERSIONS; METALS; PHASE; CORE AB Cubic zirconia exhibits a soft phonon mode (X(2)(-)) which becomes dynamically unstable at low temperatures. Previous ab initio investigations into the temperature-induced stabilization of the soft mode treated it as an independent anharmonic oscillator. Calculations presented here, using the self-consistent ab initio lattice-dynamical method to evaluate the phonons at 2570 K, show that the soft mode should not be treated independently of other phonon modes. Phonon-phonon interactions stabilize the X(2)(-) mode. Furthermore, the effective potential experienced by the mode takes on a quadratic form. C1 [Souvatzis, P.; Rudin, S. P.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Souvatzis, P (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. FU Department of Energy [AC52-06NA25396]; Alexander Mavromaras of Materials Design FX The Department of Energy supported this work under Contract No. DE-AC52-06NA25396. We also want to acknowledge our appreciation to Alexander Mavromaras of Materials Design for suggesting cubic zirconia as an interesting material to study, and Olle Eriksson at Uppsala University for providing computer resources. We thank Eric Chisolm for helpful discussions. NR 31 TC 14 Z9 14 U1 2 U2 16 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2008 VL 78 IS 18 AR 184304 DI 10.1103/PhysRevB.78.184304 PG 6 WC Physics, Condensed Matter SC Physics GA 376WX UT WOS:000261214800045 ER PT J AU Telling, ND Keatley, PS van der Laan, G Hicken, RJ Arenholz, E Sakuraba, Y Oogane, M Ando, Y Takanashi, K Sakuma, A Miyazaki, T AF Telling, N. D. Keatley, P. S. van der Laan, G. Hicken, R. J. Arenholz, E. Sakuraba, Y. Oogane, M. Ando, Y. Takanashi, K. Sakuma, A. Miyazaki, T. TI Evidence of local moment formation in Co-based Heusler alloys SO PHYSICAL REVIEW B LA English DT Article ID MAGNETIC CIRCULAR-DICHROISM; ABSORPTION-SPECTRA AB We examine the formation of local moments in Heusler alloys of the composition Co(2)MnZ (where Z=Si or Al) using the combined techniques of x-ray magnetic circular and linear dichroism. The existence of local moments in half-metallic Heusler alloys is reliant upon the band gap in the minority-spin states. By utilizing the element-specific nature of x-ray absorption techniques we are able to explore the degree of localization of moments on Co and Mn atoms. We observe a crucial difference in the localization of the Co moment when comparing Co2MnSi (CMS) and Co2MnAl films that is consistent with the predicted larger minority-spin gap in the Co partial density of states for CMS. These results provide important evidence for the dominant role of the Co minority-spin states in realizing half-metallic ferromagnetism in this system. C1 [Telling, N. D.] Univ Manchester, Sch Earth Atmospher & Environm Sci, Manchester M13 9P, Lancs, England. [Telling, N. D.; van der Laan, G.] STFC, Daresbury Lab, Magnet Spect Grp, Warrington WA4 4AD, Cheshire, England. [Keatley, P. S.; Hicken, R. J.] Univ Exeter, Sch Phys, Exeter EX4 4QL, Devon, England. [van der Laan, G.] Diamond Light Source, Didcot OX11 0DE, Oxon, England. [Arenholz, E.] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Sakuraba, Y.; Takanashi, K.] Tohoku Univ, Inst Mat Res, Sendai, Miyagi 9808577, Japan. [Oogane, M.; Ando, Y.; Sakuma, A.; Miyazaki, T.] Tohoku Univ, Grad Sch Engn, Dept Appl Phys, Sendai, Miyagi 9808579, Japan. RP Telling, ND (reprint author), Univ Manchester, Sch Earth Atmospher & Environm Sci, Oxford Rd, Manchester M13 9P, Lancs, England. RI Sakuraba, Yuya/C-1902-2009; Miyazaki, Terunobu/E-5068-2010; Takanashi, Koki/A-9488-2011; van der Laan, Gerrit/Q-1662-2015; OI van der Laan, Gerrit/0000-0001-6852-2495; Keatley, Paul/0000-0002-7679-6418 FU Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC0205CH11231]; New Energy and Industrial Development Organization (NEDO); Japan Society for the Promotion of Science (JSPS) FX The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC0205CH11231. A part of this work was supported by the Grant Program of the New Energy and Industrial Development Organization (NEDO) and by a Research Foundation for Young Scientists from the Japan Society for the Promotion of Science (JSPS) NR 31 TC 33 Z9 33 U1 1 U2 18 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2008 VL 78 IS 18 AR 184438 DI 10.1103/PhysRevB.78.184438 PG 7 WC Physics, Condensed Matter SC Physics GA 376WX UT WOS:000261214800084 ER PT J AU Tian, W Li, JY Lynn, JW Zarestky, JL Vaknin, D AF Tian, Wei Li, Jiying Lynn, Jeffrey W. Zarestky, Jerel L. Vaknin, David TI Spin dynamics in the magnetoelectric effect compound LiCoPO(4) SO PHYSICAL REVIEW B LA English DT Article ID POLARIZATION ANALYSIS; MAGNETIC PROPERTIES; LINIPO4; ANTIFERROMAGNETISM; SCATTERING; MECHANISM; CRYSTAL AB Inelastic neutron-scattering (INS) experiments were performed to investigate the spin dynamics in magnetoelectric effect LiCoPO(4) single crystals. Weak dispersion was detected in the magnetic excitation spectra along the three principal crystallographic axes measured around the (0 1 0) magnetic reflection. Analysis of the data using linear spin-wave theory indicates that single-ion anisotropy in LiCoPO(4) is as important as the strongest nearest-neighbor exchange coupling. Our results suggest that Co(2+) single-ion anisotropy plays an important role in the spin dynamics of LiCoPO(4) and must be taken into account in understanding its physical properties. High-resolution INS measurements reveal an anomalous low-energy excitation that we hypothesize may be related to the magnetoelectric effect of LiCoPO(4). C1 [Tian, Wei; Zarestky, Jerel L.; Vaknin, David] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Tian, Wei; Zarestky, Jerel L.; Vaknin, David] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Li, Jiying; Lynn, Jeffrey W.] NIST, NCNR, Gaithersburg, MD 20899 USA. [Li, Jiying] Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA. RP Tian, W (reprint author), Iowa State Univ, Ames Lab, Ames, IA 50011 USA. RI Tian, Wei/C-8604-2013; Vaknin, David/B-3302-2009 OI Tian, Wei/0000-0001-7735-3187; Vaknin, David/0000-0002-0899-9248 FU U. S. Department of Energy, Office of Basic Energy Science [DE-AC0207CH11358]; U. S. Department of Energy, Office of Basic Energy Sciences, Materials Science [AC0500OR22725]; National Science Foundation [DMR-0454672]; National Institute of Standards Technology FX We acknowledge discussions with T. Barnes. Ames Laboratory was supported by the U. S. Department of Energy, Office of Basic Energy Science under Contract No. DE-AC0207CH11358. The HFIR is a national user facility funded by the U. S. Department of Energy, Office of Basic Energy Sciences, Materials Science under Contract No. DE-AC0500OR22725 with UT-Battelle, LLC. SPINS was supported in part by the National Science Foundation through Grant No. DMR-0454672. The work has benefited from the use of the NIST Center of Neutron Research at the National Institute of Standards Technology. NR 32 TC 25 Z9 25 U1 0 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2008 VL 78 IS 18 AR 184429 DI 10.1103/PhysRevB.78.184429 PG 6 WC Physics, Condensed Matter SC Physics GA 376WX UT WOS:000261214800075 ER PT J AU Tranquada, JM Gu, GD Hucker, M Jie, Q Kang, HJ Klingeler, R Li, Q Tristan, N Wen, JS Xu, GY Xu, ZJ Zhou, J van Zimmermann, M AF Tranquada, J. M. Gu, G. D. Huecker, M. Jie, Q. Kang, H. -J. Klingeler, R. Li, Q. Tristan, N. Wen, J. S. Xu, G. Y. Xu, Z. J. Zhou, J. v. Zimmermann, M. TI Evidence for unusual superconducting correlations coexisting with stripe order in La1.875Ba0.125CuO4 SO PHYSICAL REVIEW B LA English DT Article ID HIGH-TEMPERATURE SUPERCONDUCTIVITY; COPPER-OXIDE SUPERCONDUCTORS; T-C SUPERCONDUCTORS; CUPRATE SUPERCONDUCTORS; TRANSPORT-PROPERTIES; QUASI-PARTICLE; FERMI-SURFACE; DOPED ANTIFERROMAGNETS; STRUCTURAL TRANSITIONS; THERMAL-CONDUCTIVITY AB We present new x-ray and neutron-scattering measurements of stripe order in La1.875Ba0.125CuO4, along with low-field susceptibility, thermal conductivity, and specific-heat data. We compare these with previously reported results for resistivity and thermopower. Temperature-dependent features indicating transitions (or crossovers) are correlated among the various experimental quantities. Taking into account recent spectroscopic studies, we argue that the most likely interpretation of the complete collection of results is that an unusual form of two-dimensional superconducting correlations appears together with the onset of spin-stripe order. Recent theoretical proposals for a sinusoidally modulated superconducting state compatible with stripe order provide an intriguing explanation of our results and motivate further experimental tests. We also discuss evidence for one-dimensional pairing correlations that appear together with the charge order. With regard to the overall phenomenology, we consider the degree to which similar behavior may have been observed in other cuprates and describe possible connections to various puzzling phenomena in cuprate superconductors. C1 [Tranquada, J. M.; Gu, G. D.; Huecker, M.; Jie, Q.; Li, Q.; Wen, J. S.; Xu, G. Y.; Xu, Z. J.; Zhou, J.] Brookhaven Natl Lab, Dept Condensed Matter Phys & Mat Sci, Upton, NY 11973 USA. [Kang, H. -J.] NIST, NIST Ctr Neutron Res, Gaithersburg, MD 20899 USA. [Klingeler, R.; Tristan, N.] IFW Dresden, Leibniz Inst Solid State & Mat Res, D-01171 Dresden, Germany. [v. Zimmermann, M.] Deutsch Elektronensynchrotron DESY, Hamburger Synchrotronstrahlungslab HASYLAB, D-22603 Hamburg, Germany. RP Tranquada, JM (reprint author), Brookhaven Natl Lab, Dept Condensed Matter Phys & Mat Sci, Upton, NY 11973 USA. RI Tranquada, John/A-9832-2009; Wen, Jinsheng/F-4209-2010; Xu, Guangyong/A-8707-2010; Jie, Qing/H-3780-2011; xu, zhijun/A-3264-2013; Gu, Genda/D-5410-2013; Klingeler, Rudiger/E-5941-2010; Jie, Qing/N-8673-2013 OI Tranquada, John/0000-0003-4984-8857; Wen, Jinsheng/0000-0001-5864-1466; Xu, Guangyong/0000-0003-1441-8275; xu, zhijun/0000-0001-7486-2015; Gu, Genda/0000-0002-9886-3255; Klingeler, Rudiger/0000-0002-8816-9614; FU National Institute of Standards and Technology; Office of Science, U.S. Department of Energy [DEAC02-98CH10886] FX We are grateful to S. A. Kivelson, E. Fradkin, V Oganesyan, T. M. Rice, M. Strongin, and A. Tsvelik for valuable discussions. We acknowledge the support of the National Institute of Standards and Technology, U.S. Department of Commerce, in providing the neutron research facilities used in this work. This work was supported by the Office of Science, U.S. Department of Energy under Contract No. DEAC02-98CH10886. NR 165 TC 105 Z9 105 U1 0 U2 24 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2008 VL 78 IS 17 AR 174529 DI 10.1103/PhysRevB.78.174529 PG 13 WC Physics, Condensed Matter SC Physics GA 376WU UT WOS:000261214500097 ER PT J AU Vandescuren, M Hermet, P Meunier, V Henrard, L Lambin, P AF Vandescuren, M. Hermet, P. Meunier, V. Henrard, L. Lambin, Ph. TI Theoretical study of the vibrational edge modes in graphene nanoribbons SO PHYSICAL REVIEW B LA English DT Article DE carbon; density functional theory; electronic density of states; localised states; nanostructured materials; phonons; Raman spectra ID WALLED CARBON NANOTUBES; GRAPHITE; SYSTEMS; HYDROCARBONS; PHONONS; RIBBONS; STATES; PHASE; FILMS AB We investigate the phonon normal modes in hydrogen-terminated graphene nanoribbons (GNRs) using the second-generation reactive empirical bond order (REBOII) potential and density-functional theory calculations. We show that specific modes, absent in pristine graphene and localized at the GNR edges, are intrinsic signatures of the vibrational density of states of the GNRs. Three particular modes are described in details: a transverse phonon mode related to armchair GNRs, a hydrogen out-of-plane mode present in both armchair and zigzag GNRs, and the Raman radial-breathing-like mode. The good agreement between the frequencies of selected edge modes obtained using REBOII and first-principles methods shows the reliability of this empirical potential for the calculation and the assignment of phonon modes in carbon nanostructures where carbon atoms present a sp(2) hybridization. C1 [Vandescuren, M.; Hermet, P.; Henrard, L.; Lambin, Ph.] Fac Univ Notre Dame Paix, Lab Phys Solide, B-5000 Namur, Belgium. [Meunier, V.] Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN 37831 USA. RP Vandescuren, M (reprint author), Fac Univ Notre Dame Paix, Lab Phys Solide, B-5000 Namur, Belgium. EM matthieu.vandescuren@fundp.ac.be RI Meunier, Vincent/F-9391-2010; OI Meunier, Vincent/0000-0002-7013-179X; Lambin, Philippe/0000-0001-8051-042X FU Belgian National Fund for Scientific Research; European Commission under the 6 Framework Programme [NMP4-CT-2006-0335D]; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy FX M.V. and L.H. are supported by the Belgian National Fund for Scientific Research (FNRS). P.H. is supported by the European Commission under the 6 Framework Programme (STREP project BNC tubes under Contract No. NMP4-CT-2006-0335D). A portion of this research was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. The authors acknowledge the use of the Namur Interuniversity Scientific Computing Facility (Namur-ISCF), a common project between FNRS, SUN Microsystems, and Les Facultes Universitaires Notre-Dame de la Paix (FUNDP). NR 37 TC 46 Z9 46 U1 2 U2 26 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2008 VL 78 IS 19 AR 195401 DI 10.1103/PhysRevB.78.195401 PG 8 WC Physics, Condensed Matter SC Physics GA 396RC UT WOS:000262607800087 ER PT J AU Vavassori, P Bisero, D Bonanni, V Busato, A Grimsditch, M Lebecki, KM Metlushko, V Ilic, B AF Vavassori, P. Bisero, D. Bonanni, V. Busato, A. Grimsditch, M. Lebecki, K. M. Metlushko, V. Ilic, B. TI Magnetostatic dipolar domain-wall pinning in chains of permalloy triangular rings SO PHYSICAL REVIEW B LA English DT Article ID MAGNETS; LOGIC AB In a combined experimental and numerical study, we investigated the details of the motion and pinning of domain walls in isolated and interacting permalloy triangular rings (side 2 mu m, width 250 nm, and thickness 25 nm). To induce interaction between the rings, they were arranged either in vertical chains with an apex of each triangle in proximity to the edge center of the triangle above it or in horizontal chains where the proximity is between the adjacent corners of the triangles. Using longitudinal and diffraction magneto-optic Kerr effects, magnetic force microscopy, and micromagnetic simulations, we determined the field dependence of the spin structure in the rings. In all cases the remnant state of each ring is an "onion" state characterized by two domain walls-one head to head the other tail to tail-pinned at the apexes. In isolated rings the magnetization reversal occurs between two onion states via the formation of an intermediate vortex state, which arises from the motion and annihilation of the two domain walls. In the case of the horizontal chains the reversal mechanism is unchanged except that the dipolar interaction affects the field range in which the rings are in the vortex state. In the case of vertical chains an additional intermediate state is observed during reversal. The new state involves a domain wall pinned at the center of the edge that is in close proximity to the apex of its neighbor. We show that the domain-wall motion in this last case can be modeled by a triple potential well. Because the new state requires that a domain wall be pinned at the neighboring apex, our observations can be viewed as a very elementary form of magnetic logic. C1 [Vavassori, P.] CIC nanoGUNE Consolider, E-20009 San Sebastian, Spain. [Vavassori, P.; Bisero, D.; Bonanni, V.; Busato, A.] Univ Ferrara, CNISM, I-44100 Ferrara, Italy. [Vavassori, P.; Bisero, D.; Bonanni, V.; Busato, A.] Univ Ferrara, Dipartmento Fis, I-44100 Ferrara, Italy. [Vavassori, P.; Bisero, D.] CNR, INFM, Natl Res Ctr, I-41100 Modena, Italy. [Grimsditch, M.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Lebecki, K. M.] Polish Acad Sci, Inst Phys, PL-02668 Warsaw, Poland. [Metlushko, V.] Univ Illinois, Dept Elect & Comp Engn, Chicago, IL 60607 USA. [Ilic, B.] Cornell Univ, Sch Appl & Engn Phys, Cornell Nanofabricat Facil, Ithaca, NY 14853 USA. RP Vavassori, P (reprint author), CIC nanoGUNE Consolider, E-20009 San Sebastian, Spain. RI Bonanni, Valentina/F-1398-2011; Ilic, Rob/N-1359-2014; nanoGUNE, CIC/A-2623-2015; Vavassori, Paolo/B-4299-2014 OI Bonanni, Valentina/0000-0001-8346-0069; Vavassori, Paolo/0000-0002-4735-6640 FU U.S. NSF [0823813]; U. S. Department of Energy Office of Science Office of Basic Energy Sciences [DE-AC02-06C1357] FX VM. acknowledges support by the U.S. NSF under Grant No. ECCS-0823813 and by the U. S. Department of Energy Office of Science Office of Basic Energy Sciences under Contract No. DE-AC02-06C1357 (CNM ANL Grants No. 468 and No. 470). NR 20 TC 16 Z9 16 U1 0 U2 10 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2008 VL 78 IS 17 AR 174403 DI 10.1103/PhysRevB.78.174403 PG 7 WC Physics, Condensed Matter SC Physics GA 376WU UT WOS:000261214500042 ER PT J AU Vedda, A Nikl, M Fasoli, M Mihokova, E Pejchal, J Dusek, M Ren, G Stanek, CR McClellan, KJ Byler, DD AF Vedda, A. Nikl, M. Fasoli, M. Mihokova, E. Pejchal, J. Dusek, M. Ren, G. Stanek, C. R. McClellan, K. J. Byler, D. D. TI Thermally stimulated tunneling in rare-earth-doped oxyorthosilicates SO PHYSICAL REVIEW B LA English DT Article DE cerium; electron traps; electron-hole recombination; lutetium compounds; radiative lifetimes; samarium; terbium; thermoluminescence; thulium; tunnelling; vacancies (crystal); X-ray effects; yttrium compounds ID PHOTOSTIMULATED LUMINESCENCE; SINGLE-CRYSTALS; X-RAY; SCINTILLATORS; THERMOLUMINESCENCE; LU2SIO5; GROWTH; AFTERGLOW; IONS; EPR AB We present an investigation of defects acting as electron traps in Lu2SiO5 (LSO) and LuxY2-xSiO5 (LYSO) performed by wavelength-resolved thermally stimulated luminescence (TSL) measurements from 20 to 400 degrees C after room-temperature (RT) x-ray irradiation. Single crystals doped with several rare-earth ions such as Ce, Tb, Tm, and Sm were considered. A comparison between TSL and RT radio-luminescence (RL) emission spectra is also presented. The glow curves for both LSO and LYSO are similar, showing a series of TSL peaks at 78, 135, 181, and 236 degrees C. In addition, a further peak at about 300 degrees C is observed only in LYSO. Our results confirm the role of oxygen vacancies as electron traps in the material; the presence of several glow peaks with a unique trap depth (0.99 eV +/- 0.07 eV) for the 78, 135, 181, and 236 degrees C peaks is explained by suggesting that electrons stored in oxygen vacancies recombine through a thermally assisted tunneling mechanism with holes localized at Ce3+ or Tb3+ centers residing on Lu sites at different crystallographic distances from the traps. This model is supported by the very good correlation among O-Lu distances in the monoclinic C2/c structure of LSO and LYSO and the frequency factors of the traps containing the transmission coefficients of the potential barriers between traps and centers, evaluated in the framework of the thermally assisted tunneling process. Tm and Sm ions do not act as TSL recombination centers possibly due to their tendency to trap electrons during irradiation with ionizing radiation. C1 [Vedda, A.; Nikl, M.; Fasoli, M.] Univ Milano Bicocca, Dept Mat Sci, I-20125 Milan, Italy. [Nikl, M.; Mihokova, E.; Pejchal, J.; Dusek, M.] Acad Sci Czech Republic, Inst Phys, Prague 16253, Czech Republic. [Ren, G.] SIC, Shanghai 200050, Peoples R China. [Stanek, C. R.; McClellan, K. J.; Byler, D. D.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Vedda, A (reprint author), Univ Milano Bicocca, Dept Mat Sci, Via Cozzi 53, I-20125 Milan, Italy. EM anna.vedda@unimib.it RI Dusek, Michal/B-7316-2011; Mihokova, Eva/G-3966-2014; OI Fasoli, Mauro/0000-0001-5463-4875 FU Italian Cariplo Foundation; Czech projects [AV IAA100100810]; MSMT KONTAKT [ME08034] FX The authors gratefully acknowledge the financial support of the Italian Cariplo Foundation Project "Structure and optical properties of self-organized nano- and mesoscopic materials" (2006-2008) and of the Czech projects GA (Contract No. AV IAA100100810) and MSMT KONTAKT (Contract No. ME08034). The authors are grateful to K. Jurek for performing x-ray electron probe microanalysis and to V. Jary for carrying out the photoluminescence experiment and data evaluation. NR 34 TC 77 Z9 77 U1 2 U2 30 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2008 VL 78 IS 19 AR 195123 DI 10.1103/PhysRevB.78.195123 PG 8 WC Physics, Condensed Matter SC Physics GA 396RC UT WOS:000262607800047 ER PT J AU Vorontsov, AB Vekhter, I Graf, MJ AF Vorontsov, A. B. Vekhter, I. Graf, M. J. TI Pauli-limited upper critical field in dirty d-wave superconductors SO PHYSICAL REVIEW B LA English DT Article ID LARKIN-OVCHINNIKOV STATE; HEAVY-FERMION SUPERCONDUCTORS; INHOMOGENEOUS STATE; EXCHANGE FIELD; BIS(ETHYLENE-DITHIO)TETRATHIAFULVALENE; IMPURITIES; TRANSPORT AB We calculate the Pauli-limited upper critical field and the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) instability for dirty d-wave superconductors within the quasiclassical theory using the self-consistent (t) over cap- matrix approximation for impurities. We find that the phase diagram depends sensitively on the scattering rate and phase shift of nonmagnetic impurities. The transition into the superconducting state is always second order for weak (Born) scattering, while in the unitarity (strong) scattering limit a first-order transition into both uniform and spatially modulated superconducting states is stabilized. Contrary to general belief, we find that the FFLO phase is robust against disorder and survives impurity scattering equivalent to a T(c) suppression of roughly 40%. Our results bear on the search of FFLO states in heavy-fermion and layered organic superconductors. C1 [Vorontsov, A. B.; Vekhter, I.] Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA. [Graf, M. J.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Vorontsov, AB (reprint author), Univ Wisconsin, Dept Phys, 1150 Univ Ave, Madison, WI 53706 USA. EM anton@physics.wisc.edu RI Vekhter, Ilya/M-1780-2013 FU Louisiana Board of Regents; U. S. DOE [DE-AC52-06NA25396, DE-FG02-08ER46492] FX We acknowledge support from the Louisiana Board of Regents (A. B. V. and I. V.) and the U. S. DOE via Grants No. DE-AC52-06NA25396 (M.J.G.) and No. DE-FG02-08ER46492 (I.V.). NR 40 TC 7 Z9 7 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2008 VL 78 IS 18 AR 180505 DI 10.1103/PhysRevB.78.180505 PG 4 WC Physics, Condensed Matter SC Physics GA 376WX UT WOS:000261214800022 ER PT J AU Wang, SY Wang, CZ Li, MZ Huang, L Ott, RT Kramer, MJ Sordelet, DJ Ho, KM AF Wang, S. Y. Wang, C. Z. Li, M. Z. Huang, L. Ott, R. T. Kramer, M. J. Sordelet, D. J. Ho, K. M. TI Short- and medium-range order in a Zr(73)Pt(27) glass: Experimental and simulation studies SO PHYSICAL REVIEW B LA English DT Article ID TOTAL-ENERGY CALCULATIONS; WAVE BASIS-SET; METALLIC GLASSES; QUASI-CRYSTALS; MOLECULAR-DYNAMICS; AMORPHOUS ALLOY; ATOMIC PACKING; PHASE; LIQUIDS; PD AB The structure of a Zr(73)Pt(27) metallic glass, which forms a Zr(5)Pt(3) (Mn(5)Si(3)-type) phase having local atomic clusters with distorted icosahedral coordination during the primary crystallization, has been investigated by means of x-ray diffraction and combining ab initio molecular-dynamics (MD) and reverse Monte Carlo (RMC) simulations. The ab initio MD simulation provides an accurate description of short-range structural and chemical ordering in the glass. A three-dimensional atomistic model of 18 000 atoms for the glass structure has been generated by the RMC method utilizing both the structure factor S(k) from x-ray diffraction experiment and the partial pair-correlation functions from ab initio MD simulation. Honeycutt and Andersen index and Voronoi cell analyses, respectively, were used to characterize the short- and medium-range order in the atomistic structure models generated by ab initio MD and RMC simulations. The ab initio results show that an icosahedral type of short- range order is predominant in the glass state. Furthermore, analysis of the atomic model from the constrained RMC simulations reveals that the icosahedral-like clusters are packed in arrangements having higher-order correlations, thus establishing medium-range topological order up to two or three cluster shells. C1 [Wang, S. Y.] Fudan Univ, Dept Opt Sci & Engn, State Key Lab Adv Photon Mat & Devices, Shanghai 200433, Peoples R China. [Wang, S. Y.; Wang, C. Z.; Li, M. Z.; Huang, L.; Ott, R. T.; Kramer, M. J.; Sordelet, D. J.; Ho, K. M.] US DOE, Ames Lab, Ames, IA 50011 USA. [Wang, S. Y.; Wang, C. Z.; Li, M. Z.; Huang, L.; Ho, K. M.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Li, M. Z.] Renmin Univ China, Dept Phys, Beijing 100872, Peoples R China. RP Wang, SY (reprint author), Fudan Univ, Dept Opt Sci & Engn, State Key Lab Adv Photon Mat & Devices, Shanghai 200433, Peoples R China. RI 石, 源/D-5929-2012; ruc, phy/E-4170-2012; Wang, Songyou/H-4529-2011 OI Wang, Songyou/0000-0002-4249-3427 FU NSF of China [60578046]; Fudan High-End Computing Center. Ames Laboratory; U.S. Department of Energy by Iowa State University [DE-AC02-07CH11358]; Energy Research, Office of Basic Energy Sciences; National Energy Research Supercomputing Center (NERSC) in Berkeley; U.S. Department of Energy [DE-AC02-06CH11357] FX One of the authors (S.Y.W.) was supported by the NSF of China (Grant No. 60578046) and the Fudan High-End Computing Center. Ames Laboratory is operated for the U.S. Department of Energy by Iowa State University under Contract No. DE-AC02-07CH11358. This work was supported by the Director for Energy Research, Office of Basic Energy Sciences, including a grant of computer time at the National Energy Research Supercomputing Center (NERSC) in Berkeley. The work at the Advanced Photon Source was supported by U.S. Department of Energy under Contract No. DE-AC02-06CH11357. NR 47 TC 36 Z9 36 U1 5 U2 44 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2008 VL 78 IS 18 AR 184204 DI 10.1103/PhysRevB.78.184204 PG 9 WC Physics, Condensed Matter SC Physics GA 376WX UT WOS:000261214800041 ER PT J AU Wray, L Qian, D Hsieh, D Xia, Y Li, L Checkelsky, JG Pasupathy, A Gomes, KK Parker, CV Fedorov, AV Chen, GF Luo, JL Yazdani, A Ong, NP Wang, NL Hasan, MZ AF Wray, L. Qian, D. Hsieh, D. Xia, Y. Li, L. Checkelsky, J. G. Pasupathy, A. Gomes, K. K. Parker, C. V. Fedorov, A. V. Chen, G. F. Luo, J. L. Yazdani, A. Ong, N. P. Wang, N. L. Hasan, M. Z. TI Momentum dependence of superconducting gap, strong-coupling dispersion kink, and tightly bound Cooper pairs in the high-T-c (Sr,Ba)(1-x)(K,Na)(x)Fe2As2 superconductors SO PHYSICAL REVIEW B LA English DT Article AB We present a systematic angle-resolved photoemission spectroscopic study of the high-T-c superconductor class (Sr/Ba)(1-x)KxFe2As2. By utilizing a photon-energy-modulation contrast and scattering geometry we report the Fermi surface and the momentum dependence of the superconducting gap, Delta((k) over right arrow). A prominent quasiparticle dispersion kink reflecting strong scattering processes is observed in a binding-energy range of 25-55 meV in the superconducting state, and the coherence length or the extent of the Cooper pair wave function is found to be about 20 angstrom, which is uncharacteristic of a superconducting phase realized by the BCS-phonon-retardation mechanism. The observed 40 +/- 15 meV kink likely reflects contributions from the frustrated spin excitations in a J(1)-J(2) magnetic background and scattering from the soft phonons. Results taken collectively provide direct clues to the nature of the pairing potential including an internal phase-shift factor in the superconducting order parameter which leads to a Brillouin zone node in a strong-coupling setting. C1 [Wray, L.; Qian, D.; Hsieh, D.; Xia, Y.; Li, L.; Checkelsky, J. G.; Pasupathy, A.; Gomes, K. K.; Parker, C. V.; Yazdani, A.; Ong, N. P.; Hasan, M. Z.] Princeton Univ, Dept Phys, Joseph Henry Labs Phys, Princeton, NJ 08544 USA. [Fedorov, A. V.] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94305 USA. [Chen, G. F.; Luo, J. L.; Wang, N. L.] Chinese Acad Sci, Inst Phys, Beijing Natl Lab Condensed Matter Phys, Beijing 100080, Peoples R China. [Hasan, M. Z.] Princeton Univ, Princeton Ctr Complex Mat, Princeton, NJ 08544 USA. RP Hasan, MZ (reprint author), Princeton Univ, Dept Phys, Joseph Henry Labs Phys, Princeton, NJ 08544 USA. EM mzhasan@Princeton.edu RI HASAN, M. Zahid/D-8237-2012; Qian, Dong/O-1028-2015 FU DOE [DEFG-02-05ER46200]; NSF [DMR-0213706] FX We acknowledge discussions with D.A. Huse, P.W. Anderson, S. Sachdev, D.-H. Lee, and B.A. Bernevig. This work is supported by DOE Grant No. DEFG-02-05ER46200 and NSF Grant No. DMR-0213706. The use of ALS at LBNL and SSRL at SLAC are supported by the U.S. DOE. NR 34 TC 107 Z9 107 U1 0 U2 11 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2008 VL 78 IS 18 AR 184508 DI 10.1103/PhysRevB.78.184508 PG 5 WC Physics, Condensed Matter SC Physics GA 376WX UT WOS:000261214800092 ER PT J AU Xiang, HJ Wei, SH Da Silva, JLF Li, JB AF Xiang, H. J. Wei, Su-Huai Da Silva, Juarez L. F. Li, Jingbo TI Strain relaxation and band-gap tunability in ternary InxGa1-xN nanowires SO PHYSICAL REVIEW B LA English DT Article DE density functional theory; energy gap; enthalpy; gallium compounds; ground states; III-V semiconductors; indium compounds; Monte Carlo methods; nanowires; semiconductor quantum wires; wide band gap semiconductors ID SPECIAL QUASIRANDOM STRUCTURES; TOTAL-ENERGY CALCULATIONS; AUGMENTED-WAVE METHOD; BASIS-SET; ALLOYS; SEMICONDUCTORS; INN AB The alloy formation enthalpy and band structure of InGaN nanowires were studied by a combined approach of the valence-force field model, Monte Carlo simulation, and density-functional theory (DFT). For both random and ground-state structures of the coherent InGaN alloy, the nanowire configuration was found to be more favorable for the strain relaxation than the bulk alloy. We proposed an analytical formula for computing the band gap of any InGaN nanowires based on the results from the screened exchange hybrid DFT calculations, which in turn reveals a better band-gap tunability in ternary InGaN nanowires than the bulk alloy. C1 [Xiang, H. J.; Wei, Su-Huai; Da Silva, Juarez L. F.] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Li, Jingbo] Chinese Acad Sci, Inst Semicond, State Key Lab Superlattices & Microstruct, Beijing 100083, Peoples R China. RP Xiang, HJ (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM suhuai_wei@nrel.gov; jbli@semi.ac.cn RI Da Silva, Juarez L. F./D-1779-2011; Xiang, Hongjun/I-4305-2016 OI Da Silva, Juarez L. F./0000-0003-0645-8760; Xiang, Hongjun/0000-0002-9396-3214 FU U.S. Department of Energy [DE-AC36-99GO10337]; Chinese Academy of Sciences FX Work at NREL was supported by the U.S. Department of Energy under Contract No. DE-AC36-99GO10337. We thank G. Kresse for providing us the VASP 5.1 code. J.L. gratefully acknowledges financial support from the "One-Hundred Talents Plan" of the Chinese Academy of Sciences. NR 33 TC 47 Z9 47 U1 5 U2 30 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2008 VL 78 IS 19 AR 193301 DI 10.1103/PhysRevB.78.193301 PG 4 WC Physics, Condensed Matter SC Physics GA 396RC UT WOS:000262607800007 ER PT J AU Yao, Y Zhao, H Moore, JE Wu, CQ AF Yao, Yao Zhao, Hui Moore, Joel E. Wu, Chang-Qin TI Controllable spin-current blockade in a Hubbard chain SO PHYSICAL REVIEW B LA English DT Article DE hopping conduction; Hubbard model; renormalisation; spin polarised transport; strongly correlated electron systems ID QUANTUM RENORMALIZATION-GROUPS; ONE-DIMENSIONAL SRCUO2; CHARGE SEPARATION; OPTICAL LATTICES; TRANSPORT AB We investigate the spin or charge transport in a one-dimensional strongly correlated system by using the adaptive time-dependent density-matrix renormalization-group method. The model we consider is a non-half-filled Hubbard chain with a bond of controllable spin-dependent electron hoppings, which is found to cause a blockade of spin current with little influence on charge current. We have considered (1) the spread of a wave packet of both spin and charge and (2) the spin and charge currents induced by a spin-dependent voltage bias. It is found that the spin-charge separation plays a crucial role in the spin-current blockade, which may be utilized to observe the spin-charge separation directly. C1 [Yao, Yao; Zhao, Hui; Wu, Chang-Qin] Fudan Univ, Dept Phys, Shanghai 200433, Peoples R China. [Yao, Yao; Zhao, Hui; Wu, Chang-Qin] Fudan Univ, Surface Phys Lab, Shanghai 200433, Peoples R China. [Zhao, Hui] Tongji Univ, Dept Phys, Shanghai 200092, Peoples R China. [Moore, Joel E.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Moore, Joel E.] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Yao, Y (reprint author), Fudan Univ, Dept Phys, Shanghai 200433, Peoples R China. EM cqw@fudan.edu.cn RI Wu, Chang-Qin/D-3701-2011; Moore, Joel/O-4959-2016 OI Moore, Joel/0000-0002-4294-5761 FU NSF of China; MST of China [2006CB921302]; Western Institute of Nanoelectronics; OFSPIN [NMP3-CT-2006-033370] FX This work was supported by the NSF of China, the MST of China (Grant No. 2006CB921302), the Western Institute of Nanoelectronics, and the EC Project OFSPIN (Grant No. NMP3-CT-2006-033370). NR 28 TC 1 Z9 1 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2008 VL 78 IS 19 AR 193105 DI 10.1103/PhysRevB.78.193105 PG 4 WC Physics, Condensed Matter SC Physics GA 396RC UT WOS:000262607800005 ER PT J AU Ye, F Ren, Y Fernandez-Baca, JA Mook, HA Lynn, JW Chaudhury, RP Wang, YQ Lorenz, B Chu, CW AF Ye, F. Ren, Y. Fernandez-Baca, J. A. Mook, H. A. Lynn, J. W. Chaudhury, R. P. Wang, Y. -Q. Lorenz, B. Chu, C. W. TI Magnetic switching and phase competition in the multiferroic antiferromagnet Mn1-xFexWO4 SO PHYSICAL REVIEW B LA English DT Article DE antiferromagnetic materials; dielectric polarisation; ferroelectric materials; frustration; iron compounds; magnetic structure; magnetic switching; magnetoelectric effects; manganese compounds; multiferroics; neutron diffraction ID MNWO4; FERROELECTRICITY; POLARIZATION AB Elastic neutron scattering is used to study the spin correlations in the multiferroic Mn1-xFexWO4 with x=0.035, 0.05, and 0.10. The noncollinear incommensurate (ICM) magnetic structure associated with the ferroelectric (FE) phase in pure MnWO4 is suppressed at x=0.035 and completely absent at x=0.10. The ICM spin order and FE phase can be restored by applying a magnetic field along the spin easy axis. The low-T commensurate magnetic structure extends in both H/T with increasing Fe concentration. The systematic evolution of the magnetic and electric properties indicates that the noncollinear ICM spin order results from competing magnetic interactions and its stabilization can be tuned by the internal (x) or external (magnetic-field) perturbations. C1 [Ye, F.; Fernandez-Baca, J. A.; Mook, H. A.] Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA. [Ren, Y.] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA. [Fernandez-Baca, J. A.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Lynn, J. W.] NIST, Ctr Neutron Res, Gaithersburg, MD 20899 USA. [Chaudhury, R. P.; Wang, Y. -Q.; Lorenz, B.; Chu, C. W.] Univ Houston, Dept Phys, Houston, TX 77204 USA. [Chaudhury, R. P.; Wang, Y. -Q.; Lorenz, B.; Chu, C. W.] Univ Houston, TCSUH, Houston, TX 77204 USA. RP Ye, F (reprint author), Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA. EM yef1@ornl.gov RI Ye, Feng/B-3210-2010; Fernandez-Baca, Jaime/C-3984-2014 OI Ye, Feng/0000-0001-7477-4648; Fernandez-Baca, Jaime/0000-0001-9080-5096 FU Office of Basic Energy Sciences; U.S. Department of Energy; National Science Foundation [DMR-0454672]; T.L.L. Temple Foundation; J.J. and R. Moores Endowment; U.S. Air Force Office of Scientific Research; State of Texas through TCSUH FX We are grateful to R. S. Fishman and T. Kimura for helpful discussions. This work was partially supported by Division of Scientific User Facilities of the Office of Basic Energy Sciences, U.S. Department of Energy. This work utilized facilities supported in part by the National Science Foundation under Agreement No. DMR-0454672. Work at Houston was supported by the T.L.L. Temple Foundation, the J.J. and R. Moores Endowment, the U.S. Air Force Office of Scientific Research, and the State of Texas through TCSUH. NR 29 TC 31 Z9 31 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2008 VL 78 IS 19 AR 193101 DI 10.1103/PhysRevB.78.193101 PG 4 WC Physics, Condensed Matter SC Physics GA 396RC UT WOS:000262607800001 ER PT J AU Ye, HG Chen, GD Wu, YL Zhu, YZ Wei, SH AF Ye, Honggang Chen, Guangde Wu, Yelong Zhu, Youzhang Wei, Su-Huai TI Relaxation models of the (110) zinc-blende III-V semiconductor surfaces: Density functional study SO PHYSICAL REVIEW B LA English DT Article DE bond angles; density functional theory; electronegativity; gallium arsenide; III-V semiconductors; indium compounds; surface structure ID TOTAL-ENERGY CALCULATIONS; WAVE BASIS-SET; NONPOLAR SURFACES; ATOMIC STRUCTURES; GAAS(110); NITRIDE; GAAS; GAN; GROWTH AB Clean III-V zinc-blende (110) surfaces are the most extensively studied semiconductor surface. For conventional III-V compounds such as GaAs and InP, the surface relaxation follows a bond rotation relaxation model. However, for III-nitrides recent study indicates that they follow a bond-constricting relaxation model. First-principles atom relaxation calculations are performed to explore the origin of the difference between the two groups of materials. By analyzing the individual shift trends and ionic properties of the top layer anions and cations, we attribute the difference between the conventional and nitride III-V compounds to the strong electronegativity of N, which leads to the s(2)p(3) pyramid bond angle to be larger than the ideal one in bulk (109.5 degrees). The general trends of the atomic relaxation at the III-nitrides (110) surfaces are explained. C1 [Ye, Honggang; Chen, Guangde; Wu, Yelong; Zhu, Youzhang] Xi An Jiao Tong Univ, Dept Appl Phys, Xian 710049, Peoples R China. [Wei, Su-Huai] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Ye, HG (reprint author), Xi An Jiao Tong Univ, Dept Appl Phys, Xian 710049, Peoples R China. RI Ye, Honggang/A-8035-2008; Wu, Yelong/G-1100-2010; Chen, Guangde/D-4373-2011; chen, guangde/I-4260-2014 OI Ye, Honggang/0000-0002-5643-5914; Wu, Yelong/0000-0002-4211-911X; FU China National Natural Science Fund [10474078]; Xi'an Jiaotong University; U.S. DOE [DE-AC36-99GO10337] FX The authors gratefully acknowledge the financial support of the China National Natural Science Fund (Grant No. 10474078) and the computing support of the "Intelligent Information Processing and Computing Laboratory" of Xi'an Jiaotong University. The work at NREL is supported by the U.S. DOE under Contract No. DE-AC36-99GO10337. NR 33 TC 7 Z9 7 U1 0 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2008 VL 78 IS 19 AR 193308 DI 10.1103/PhysRevB.78.193308 PG 4 WC Physics, Condensed Matter SC Physics GA 396RC UT WOS:000262607800014 ER PT J AU Zhang, LJ Subedi, A Singh, DJ Du, MH AF Zhang, Lijun Subedi, Alaska Singh, D. J. Du, M. H. TI Possible superconductivity in Fe-Sb based materials: Density functional study of LiFeSb SO PHYSICAL REVIEW B LA English DT Article ID PHASE-DIAGRAM; IRON AB We investigate the electronic and other properties of the hypothetical compound LiFeSb in relation to superconducting LiFeAs and FeSe using density-functional calculations. The results show that LiFeSb in the LiFeAs structure would be dynamically stable in the sense of having no unstable phonon modes and would have very similar electronic and magnetic properties to the layered Fe-based superconductors. Importantly, a very similar structure for the Fermi surface and a spin-density wave related to but stronger than that in the corresponding As compound is found. These results are indicative of possible superconductivity analogous to the Fe-As based compounds if the spin-density wave can be suppressed by doping or other means. Prospects for synthesizing this material in pure form or in solid solution with FeTe are discussed. C1 [Zhang, Lijun; Subedi, Alaska; Singh, D. J.; Du, M. H.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Subedi, Alaska] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. RP Zhang, LJ (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RI Zhang, Lijun/F-7710-2011; Du, Mao-Hua/B-2108-2010; Singh, David/I-2416-2012 OI Du, Mao-Hua/0000-0001-8796-167X; FU Department of Energy, Division of Materials Sciences and Engineering FX We are grateful for helpful discussions with D. Mandrus, I. I. Mazin, and B. C. Sales. This work was supported by the Department of Energy, Division of Materials Sciences and Engineering. NR 55 TC 16 Z9 17 U1 3 U2 17 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2008 VL 78 IS 17 AR 174520 DI 10.1103/PhysRevB.78.174520 PG 5 WC Physics, Condensed Matter SC Physics GA 376WU UT WOS:000261214500088 ER PT J AU Zhou, CG Zhang, XG AF Zhou, Chenggang Zhang, X. -G. TI Numerical study of the noise power of a carbon nanowire network SO PHYSICAL REVIEW B LA English DT Article ID 1/F NOISE; FLUCTUATIONS; TRANSITION; NANOTUBES AB A thin film made of a carbon nanowire network can be mapped into a resistor network containing tunnel junctions that are randomly switched. In such a network the variance in individual resistance is infinity so the perturbative analysis must be applied on conductances. We study the relationship between the noise power and the network morphology through a Monte Carlo simulation of the conductance and the 1/f noise spectrum. We find that the noise power scales with the average current in a power law S proportional to I(-omega), where omega is a function of the network morphology. The noise spectrum is studied in detail, and we give a simple explanation for the observed relation between total noise power and the conductance. C1 [Zhou, Chenggang; Zhang, X. -G.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Zhang, X. -G.] Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN 37831 USA. RP Zhou, CG (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, POB 2008, Oak Ridge, TN 37831 USA. FU Oak Ridge National Laboratory's Center for Nanophase Materials Sciences; Assistant Secretary for Energy Efficiency and Renewable Energy; Office of Building Technology; U.S. Department of EnergyScientific User Facilities Division; Office of Basic Energy Sciences; U.S. Department of Energy FX This research at Oak Ridge National Laboratory's Center for Nanophase Materials Sciences was sponsored by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Building Technology, U.S. Department of Energy, and by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. NR 15 TC 2 Z9 2 U1 1 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2008 VL 78 IS 17 AR 174307 DI 10.1103/PhysRevB.78.174307 PG 6 WC Physics, Condensed Matter SC Physics GA 376WU UT WOS:000261214500038 ER PT J AU Zhou, SH Napolitano, RE AF Zhou, S. H. Napolitano, R. E. TI Energetics of nonequilibrium solidification in Al-Sm SO PHYSICAL REVIEW B LA English DT Article ID SPECIAL QUASIRANDOM STRUCTURES; BINARY-SYSTEM; CRYSTALLIZATION BEHAVIOR; AMORPHOUS-ALLOYS; PHASE-EQUILIBRIA; ENTHALPIES; STABILITY; ALUMINUM AB Solution-based thermodynamic modeling, aided by first-principles calculations, is employed here to examine phase transformations in the Al-Sm binary system which may give rise to product phases that are metastable or have a composition that deviates substantially from equilibrium. In addition to describing the pure undercooled Al liquid with a two-state model that accounts for structural ordering, thermodynamic descriptions of the fcc phase, and intermediate compounds (Al4Sm-beta, Al(11)Sm(3)-alpha, Al(3)Sm-delta, and Al(2)Sm-sigma) are reanalyzed using special quasirandom structure and first-principles calculations. The possible phase compositions are presented over a range of temperatures using a "Baker-Cahn" analysis of the energetics of solidification and compared with reports of rapid solidification. The energetics associated with varying degrees of chemical partitioning are quantified and compared with experimental observations of the metastable Al(11)Sm(3)-alpha primary phase and reports of amorphous solids. C1 [Zhou, S. H.; Napolitano, R. E.] US DOE, Ames Lab, Ames, IA 50011 USA. [Napolitano, R. E.] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. RP Zhou, SH (reprint author), US DOE, Ames Lab, Ames, IA 50011 USA. FU U.S. Department of Energy, Basic Energy Sciences [DE-AC0207CH11358] FX This work was performed within the Ames Laboratory and was supported by the U.S. Department of Energy, Basic Energy Sciences, under Contract No. DE-AC0207CH11358. NR 24 TC 5 Z9 5 U1 3 U2 11 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2008 VL 78 IS 18 AR 184111 DI 10.1103/PhysRevB.78.184111 PG 9 WC Physics, Condensed Matter SC Physics GA 376WX UT WOS:000261214800036 ER PT J AU Zhou, SY Siegel, DA Fedorov, AV Lanzara, A AF Zhou, S. Y. Siegel, D. A. Fedorov, A. V. Lanzara, A. TI Kohn anomaly and interplay of electron-electron and electron-phonon interactions in epitaxial graphene SO PHYSICAL REVIEW B LA English DT Article DE band structure; binding energy; carbon; electron-phonon interactions; epitaxial layers; nanostructured materials; photoelectron spectra ID GRAPHITE; SPECTROSCOPY; SUBSTRATE; DYNAMICS; FILMS AB The interplay of electron-phonon (el-ph) and electron-electron (el-el) interactions in epitaxial graphene is studied by directly probing its electronic structure. We found a strong coupling of electrons to the soft part of the A(1g) phonon evident by a kink at 150 +/- 15 meV, while the coupling of electrons to another expected phonon E-2g at 195 meV can only be barely detected. The possible role of the el-el interaction to account for the enhanced coupling of electrons to the A(1g) phonon, and the contribution of el-ph interaction to the linear imaginary part of the self-energy at high binding energy are also discussed. Our results reveal the dominant role of the A(1g) phonon in the el-ph interaction in graphene and highlight the important interplay of el-el and el-ph interactions in the self-energy of graphene. C1 [Zhou, S. Y.; Siegel, D. A.; Lanzara, A.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Zhou, S. Y.; Siegel, D. A.; Lanzara, A.] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Fedorov, A. V.] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Zhou, SY (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. RI Zhou, Shuyun/A-5750-2009 FU National Science Foundation [DMR03-49361]; Office of Science; Office of Basic Energy Sciences; U.S. Department of Energy [DEAC03-76SF00098]; Lawrence Berkeley National Laboratory; Department of Energy [DE-AC02-05CH11231]; Advanced Light Source FX We thank D.-H. Lee for useful discussions. This work was supported by the National Science Foundation through Grant No. DMR03-49361, by the Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering of the U.S. Department of Energy under Contract No. DEAC03-76SF00098, and by the Laboratory Directed Research and Development Program of Lawrence Berkeley National Laboratory under the Department of Energy Contract No. DE-AC02-05CH11231. S. Y. Zhou thanks the Advanced Light Source for financial support. NR 34 TC 43 Z9 43 U1 1 U2 21 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD NOV PY 2008 VL 78 IS 19 AR 193404 DI 10.1103/PhysRevB.78.193404 PG 4 WC Physics, Condensed Matter SC Physics GA 396RC UT WOS:000262607800021 ER PT J AU Algin, E Agvaanluvsan, U Guttormsen, M Larsen, AC Mitchell, GE Rekstad, J Schiller, A Siem, S Voinov, A AF Algin, E. Agvaanluvsan, U. Guttormsen, M. Larsen, A. C. Mitchell, G. E. Rekstad, J. Schiller, A. Siem, S. Voinov, A. TI Thermodynamic properties of (56,57)Fe SO PHYSICAL REVIEW C LA English DT Article ID STRENGTH FUNCTION; PHASE-TRANSITION; ATOMIC-NUCLEI; LEVEL DENSITY; SPECTRA; ENERGY AB Nuclear level densities for (56,57)Fe have been extracted from the primary gamma-ray spectra using ((3)He, (3)He(')gamma) and ((3)He, alpha gamma) reactions. Nuclear thermodynamic properties for (56)Fe and (57)Fe are investigated using the experimental level densities. These properties include entropy, Helmholtz free energy, caloric curves, chemical potential, and heat capacity. In particular, the breaking of Cooper pairs and single-quasiparticle entropy are discussed and shown to be important concepts for describing nuclear level density. Microscopic model calculations are performed for level densities of (56,57)Fe. The experimental and calculated level densities are compared. The average number of broken Cooper pairs and the parity distribution are extracted as a function of excitation energy for (56,57)Fe from the model calculations. C1 [Algin, E.] Eskisehir Osmangazi Univ, Dept Phys, TR-26480 Meselik, Turkey. [Agvaanluvsan, U.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Guttormsen, M.; Larsen, A. C.; Rekstad, J.; Siem, S.] Univ Oslo, Dept Phys, N-0316 Oslo, Norway. [Mitchell, G. E.] N Carolina State Univ, Raleigh, NC 27695 USA. [Mitchell, G. E.] Triangle Univ Nucl Lab, Durham, NC 27708 USA. [Schiller, A.; Voinov, A.] Ohio Univ, Dept Phys & Astron, Athens, OH 45701 USA. RP Algin, E (reprint author), Eskisehir Osmangazi Univ, Dept Phys, TR-26480 Meselik, Turkey. RI Larsen, Ann-Cecilie/C-8742-2014 OI Larsen, Ann-Cecilie/0000-0002-2188-3709 FU US Department of Energy [DE-FG02-97-ER41042, DE-FG52-06NA26194]; University of California, Lawrence Livermore National Laboratory [W-7405-ENG-48]; Norwegian Research Council (NFR) FX This work was supported in part by the US Department of Energy, Grant Nos. DE-FG02-97-ER41042 and DE-FG52-06NA26194. In addition, this work was performed under the auspices of the US Department of Energy by the University of California, Lawrence Livermore National Laboratory under Contract No. W-7405-ENG-48. Financial support from the Norwegian Research Council (NFR) is gratefully acknowledged. NR 38 TC 17 Z9 17 U1 1 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD NOV PY 2008 VL 78 IS 5 AR 054321 DI 10.1103/PhysRevC.78.054321 PG 9 WC Physics, Nuclear SC Physics GA 376WR UT WOS:000261214200030 ER PT J AU Bardayan, DW O'Malley, PD Blackmon, JC Chae, KY Chipps, KA Cizewski, JA Hatarik, R Jones, KL Kozub, RL Matei, C Moazen, BH Nesaraja, CD Pain, SD Paulauskas, S Peters, WA Pittman, ST Schmitt, KT Shriner, JF Smith, MS AF Bardayan, D. W. O'Malley, P. D. Blackmon, J. C. Chae, K. Y. Chipps, K. A. Cizewski, J. A. Hatarik, R. Jones, K. L. Kozub, R. L. Matei, C. Moazen, B. H. Nesaraja, C. D. Pain, S. D. Paulauskas, S. Peters, W. A. Pittman, S. T. Schmitt, K. T. Shriner, J. F., Jr. Smith, M. S. TI Spectroscopic study of low-lying (16)N levels SO PHYSICAL REVIEW C LA English DT Article ID GIANT BRANCH STARS; N-15(ALPHA,GAMMA)F-19; NUCLEOSYNTHESIS; UNCERTAINTIES; F-19 AB The magnitude of the (15)N(n,gamma)(16)N reaction rate in asymptotic giant branch stars depends directly on the neutron spectroscopic factors of low-lying (16)N levels. A new study of the (15)N(d,p)(16)N reaction is reported populating the ground and first three excited states in (16)N. The measured spectroscopic factors are near unity as expected from shell model calculations, resolving a long-standing discrepancy with earlier measurements that had never been confirmed or understood. Updated (15)N(n,gamma)(16)N reaction rates are presented. C1 [Bardayan, D. W.; Nesaraja, C. D.; Pain, S. D.; Smith, M. S.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. [O'Malley, P. D.; Cizewski, J. A.; Hatarik, R.; Peters, W. A.] Rutgers State Univ, Dept Phys & Astron, New Brunswick, NJ 08903 USA. [Blackmon, J. C.] Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA. [Chae, K. Y.; Jones, K. L.; Moazen, B. H.; Paulauskas, S.; Pittman, S. T.; Schmitt, K. T.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Chipps, K. A.] Colorado Sch Mines, Dept Phys, Golden, CO 80401 USA. [Kozub, R. L.; Shriner, J. F., Jr.] Tennessee Technol Univ, Dept Phys, Cookeville, TN 38505 USA. [Matei, C.] Oak Ridge Associated Univ, Oak Ridge, TN 37830 USA. RP Bardayan, DW (reprint author), Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. RI Jones, Katherine/B-8487-2011; Pain, Steven/E-1188-2011; Peters, William/B-3214-2012; Matei, Catalin/B-2586-2008 OI Jones, Katherine/0000-0001-7335-1379; Pain, Steven/0000-0003-3081-688X; Peters, William/0000-0002-3022-4924; Matei, Catalin/0000-0002-2254-3853 FU Oak Ridge National Laboratory [DE-AC05-00OR22725]; U. S. Department of Energy [DE-FG02-96ER40955, DE-FG02-96ER40990]; Tennessee Technological University [DE-FG03-93ER40789]; Rutgers University [DE-FG52-03NA00143]; University of Tennessee [DE-FG02-96ER40983]; National Science Foundation FX Oak Ridge National Laboratory is managed by UT-Battelle, LLC, for the U. S. Department of Energy under contract No. DE-AC05-00OR22725. This work was also supported in part by the U. S. Department of Energy under Contract Nos. DE- FG02-96ER40955 and DE-FG02-96ER40990 with Tennessee Technological University, DE-FG03-93ER40789 with the Colorado School of Mines, DE-FG52-03NA00143 with Rutgers University, DE-FG02-96ER40983 with the University of Tennessee, and the National Science Foundation. NR 20 TC 9 Z9 9 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD NOV PY 2008 VL 78 IS 5 AR 052801 DI 10.1103/PhysRevC.78.052801 PG 4 WC Physics, Nuclear SC Physics GA 376WR UT WOS:000261214200006 ER PT J AU Bartlett, AJ Tostevin, JA Thompson, IJ AF Bartlett, A. J. Tostevin, J. A. Thompson, I. J. TI R-matrix and dynamical model calculations of three-body resonance decay widths SO PHYSICAL REVIEW C LA English DT Article ID HALO NUCLEI; SCATTERING; LI-6; STATE; HE-6 AB Calculations of the decay widths of three-body resonances are considered using both R-matrix and dynamical three-body theoretical models. The R-matrix approach, which treats the three-body decay as two, ordered two-body decays, has both simultaneous and sequential particle emission pathways, each with an associated decay width. The question of how these two widths should be combined to determine the total resonance width is considered using comparisons with the width deduced from fully dynamical three-body model calculations. We use the decay of the well-understood (6)He(2(+), 1.8 MeV) resonance (into (4)He+n+n) as a benchmark case. C1 [Bartlett, A. J.; Tostevin, J. A.] Univ Surrey, Fac Engn & Phys Sci, Dept Phys, Guildford GU2 7XH, Surrey, England. [Thompson, I. J.] Lawrence Livermore Natl Lab, Phys Sci Directorate, Livermore, CA 94551 USA. RP Bartlett, AJ (reprint author), Univ Surrey, Fac Engn & Phys Sci, Dept Phys, Guildford GU2 7XH, Surrey, England. FU U.S. Department of Energy by Lawrence Livermore National Laboratory [AC52-07NA27344]; United Kingdom Science and Technology Facilities Council (STFC) [EP/D003628]; United Kingdom Engineering and Physical Sciences Research Council (EPSRC) FX This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE- AC52-07NA27344, and with the financial support of the United Kingdom Science and Technology Facilities Council (STFC) under grant no. EP/D003628. A. J. B. acknowledges the support of the United Kingdom Engineering and Physical Sciences Research Council (EPSRC). NR 26 TC 7 Z9 8 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD NOV PY 2008 VL 78 IS 5 AR 054603 DI 10.1103/PhysRevC.78.054603 PG 8 WC Physics, Nuclear SC Physics GA 376WR UT WOS:000261214200035 ER PT J AU Bashir, A Raya, A Cloet, IC Roberts, CD AF Bashir, A. Raya, A. Cloet, I. C. Roberts, C. D. TI Confinement and dynamical chiral symmetry breaking in QED3 SO PHYSICAL REVIEW C LA English DT Article ID DYSON-SCHWINGER EQUATIONS; QUANTUM ELECTRODYNAMICS; FERMION PROPAGATOR; GAUGE DEPENDENCE; VERTEX; TEMPERATURE; MODEL; RENORMALIZATION; DECONFINEMENT; POLARIZATION AB We establish that QED3 can possess a critical number of flavors, N(f)(c), associated with dynamical chiral symmetry breaking if, and only if, the fermion wave function renormalization and photon vacuum polarization are homogeneous functions at infrared momenta when the fermion mass function vanishes. The Ward identity entails that the fermion-photon vertex possesses the same property and ensures a simple relationship between the homogeneity degrees of each of these functions. Simple models for the photon vacuum polarization and fermion-photon vertex are used to illustrate these observations. The existence and value of N(f)(c) are contingent upon the precise form of the vertex but any discussion of gauge dependence is moot. We introduce an order parameter for confinement. Chiral symmetry restoration and deconfinement are coincident owing to an abrupt change in the analytic properties of the fermion propagator when a nonzero scalar self-energy becomes insupportable. C1 [Bashir, A.; Raya, A.] Univ Michoacana, Inst Fis & Matemat, Morelia 58040, Michoacan, Mexico. [Cloet, I. C.; Roberts, C. D.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. RP Bashir, A (reprint author), Univ Michoacana, Inst Fis & Matemat, Apartado Postal 2-82, Morelia 58040, Michoacan, Mexico. OI Roberts, Craig/0000-0002-2937-1361 FU AMC-FUMEC [CA23]; Universidad Michoacana de San Nicolas de Hidalgo; CIC; CONACyT [4.10, 4.22, 46614-I]; COECyT; Department of Energy, Office of Nuclear Physics [DE-AC02-06CH11357] FX We are pleased to acknowledge valuable interactions with B. El-Bennich, T. Klahn, and R. D. Young. This work was supported by AMC-FUMEC grant and CA23 grant of the Universidad Michoacana de San Nicolas de Hidalgo; CIC and CONACyT grants under projects 4.10, 4.22, and 46614-I; COECyT grants and the Department of Energy, Office of Nuclear Physics, Contract No. DE-AC02-06CH11357. NR 48 TC 67 Z9 67 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD NOV PY 2008 VL 78 IS 5 AR 055201 DI 10.1103/PhysRevC.78.055201 PG 7 WC Physics, Nuclear SC Physics GA 376WR UT WOS:000261214200049 ER PT J AU Bender, M Bertsch, GF Heenen, PH AF Bender, M. Bertsch, G. F. Heenen, P. -H. TI Collectivity-induced quenching of signatures for shell closures SO PHYSICAL REVIEW C LA English DT Article ID HARTREE-BOGOLIUBOV DESCRIPTION; NUCLEAR-MASS TABLE; NEUTRON DRIP-LINE; SN ISOTOPES; MEAN-FIELD; PENNING TRAP; MODEL; SPECTROMETER; POINT; DECAY AB Mass differences are an often used as signature and measure for shell closure. Using the angular-momentum projected generator coordinate method and the Skyrme interaction SLy4, we analyze the modification of mass differences due to static deformation and dynamic fluctuations around the mean-field ground state. C1 [Bender, M.] Univ Bordeaux, Ctr Etud Nucl Bordeaux Grandignan, UMR5797, F-33175 Gradignan, France. [Bender, M.] CEN Bordeaux Gradignan, CNRS, IN2P3, UMR5797, F-33175 Gradignan, France. [Bertsch, G. F.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Bertsch, G. F.] Univ Washington, Inst Nucl Theory, Seattle, WA 98195 USA. [Heenen, P. -H.] Univ Libre Bruxelles, Serv Phys Nucl Theor, B-1050 Brussels, Belgium. [Heenen, P. -H.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. RP Bender, M (reprint author), Univ Bordeaux, Ctr Etud Nucl Bordeaux Grandignan, UMR5797, F-33175 Gradignan, France. RI Bender, Michael/B-9004-2009 FU Belgian Office for Scientific Policy [PAI-P5-07]; US Department of Energy [DE-FG02-00ER41132, DE-AC02-06CH11357] FX M. B. thanks the organizers and participants of the workshop "Mass Olympics," held at ECT* Trento 26-30 May 2008 for many inspiring presentations and discussions. This research was supported in parts by the PAI-P5-07 of the Belgian Office for Scientific Policy, by the US Department of Energy under Grant DE-FG02-00ER41132 (Institute for Nuclear Theory) and DE-AC02-06CH11357 (ANL). NR 66 TC 46 Z9 46 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD NOV PY 2008 VL 78 IS 5 AR 054312 DI 10.1103/PhysRevC.78.054312 PG 7 WC Physics, Nuclear SC Physics GA 376WR UT WOS:000261214200021 ER PT J AU Hartley, DJ Seyfried, EP Reviol, W Sarantites, DG Chiara, CJ Pechenaya, OL Hauschild, K Lopez-Martens, A Carpenter, MP Janssens, RVF Seweryniak, D Zhu, S AF Hartley, D. J. Seyfried, E. P. Reviol, W. Sarantites, D. G. Chiara, C. J. Pechenaya, O. L. Hauschild, K. Lopez-Martens, A. Carpenter, M. P. Janssens, R. V. F. Seweryniak, D. Zhu, S. TI Possible shears bands in (204)At and (206)Fr, and identification of excited states in (205,207)Fr SO PHYSICAL REVIEW C LA English DT Article ID HIGH-SPIN STATES; NUCLEAR-DATA SHEETS; SYSTEMATIC BEHAVIOR; SPECTROSCOPY; MECHANISM; ISOTOPES AB Neutron-deficient astatine and francium nuclei were produced in the reaction (30)Si+(181)Ta ->(211)Fr(*) at 152 MeV. The evaporation residues from this very fissile system were selected with the HERCULES-II detector system and residue-gated gamma rays were measured with Gammasphere. Excited states were observed for the first time in (205,207)Fr, as well as sequences of low-energy transitions between high-spin states in (204)At and (206)Fr. These latter structures have properties similar to those associated with magnetic rotation (shears bands) in lead nuclei. Comparisons with established shears bands are presented and prospects for the magnetic-rotation phenomenon near the predicted N=120 "magic" number are explored. C1 [Hartley, D. J.; Seyfried, E. P.] USN Acad, Dept Phys, Annapolis, MD 21402 USA. [Reviol, W.; Sarantites, D. G.; Chiara, C. J.; Pechenaya, O. L.] Washington Univ, Dept Chem, St Louis, MO 63130 USA. [Hauschild, K.; Lopez-Martens, A.] CNRS, IN2P3, CSNSM, F-91405 Orsay, France. [Carpenter, M. P.; Janssens, R. V. F.; Seweryniak, D.; Zhu, S.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. RP Hartley, DJ (reprint author), USN Acad, Dept Phys, Annapolis, MD 21402 USA. RI Hauschild, Karl/A-6726-2009; Carpenter, Michael/E-4287-2015 OI Carpenter, Michael/0000-0002-3237-5734 FU National Science Foundation [PHY- 0554762]; US Department of Energy, Office of Nuclear Physics [DE-FG02-88ER-40406, DE-AC02-06CH11357] FX Special thanks to D. C. Radford and H. Q. Jin for their software support. The authors thank J. Elson (WU) and J. Rohrer (ANL) for technical support, J. P. Greene (ANL) for the preparation of the target, and F. G. Kondev for useful discussions. This work is funded by the National Science Foundation under grant no. PHY- 0554762 (USNA), as well as by the US Department of Energy, Office of Nuclear Physics under contract nos. DE-FG02-88ER-40406 (WU) and DE-AC02-06CH11357 (ANL). NR 23 TC 12 Z9 12 U1 1 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD NOV PY 2008 VL 78 IS 5 AR 054319 DI 10.1103/PhysRevC.78.054319 PG 8 WC Physics, Nuclear SC Physics GA 376WR UT WOS:000261214200028 ER PT J AU Horn, T Qian, X Arrington, J Asaturyan, R Benmokthar, F Boeglin, W Bosted, P Bruell, A Christy, ME Chudakov, E Clasie, B Dalton, MM Daniel, A Day, D Dutta, D El Fassi, L Ent, R Fenker, H Ferrer, J Fomin, N Gao, H Garrow, K Gaskell, D Gray, C Huber, GM Jones, MK Kalantarians, N Keppel, CE Kramer, K Li, Y Liang, Y Lung, AF Malace, S Markowitz, P Matsumura, A Meekins, D Mertens, T Miyoshi, T Mkrtchyan, H Monson, R Navasardyan, T Niculescu, G Niculescu, I Okayasu, Y Opper, AK Perdrisat, C Punjabi, V Rauf, AW Rodriguez, V Rohe, D Seely, J Segbefia, E Smith, GR Sumihama, M Tadevosyan, V Tang, LG Tvaskis, V Villano, A Vulcan, W Wesselmann, FR Wood, SA Yuan, L Zheng, XC AF Horn, T. Qian, X. Arrington, J. Asaturyan, R. Benmokthar, F. Boeglin, W. Bosted, P. Bruell, A. Christy, M. E. Chudakov, E. Clasie, B. Dalton, M. M. Daniel, A. Day, D. Dutta, D. El Fassi, L. Ent, R. Fenker, H. Ferrer, J. Fomin, N. Gao, H. Garrow, K. Gaskell, D. Gray, C. Huber, G. M. Jones, M. K. Kalantarians, N. Keppel, C. E. Kramer, K. Li, Y. Liang, Y. Lung, A. F. Malace, S. Markowitz, P. Matsumura, A. Meekins, D. Mertens, T. Miyoshi, T. Mkrtchyan, H. Monson, R. Navasardyan, T. Niculescu, G. Niculescu, I. Okayasu, Y. Opper, A. K. Perdrisat, C. Punjabi, V. Rauf, A. W. Rodriguez, V. Rohe, D. Seely, J. Segbefia, E. Smith, G. R. Sumihama, M. Tadevosyan, V. Tang, L. G. Tvaskis, V. Villano, A. Vulcan, W. Wesselmann, F. R. Wood, S. A. Yuan, L. Zheng, X. C. TI Scaling study of the pion electroproduction cross sections SO PHYSICAL REVIEW C LA English DT Article ID EXCLUSIVE ELECTROPRODUCTION; RESONANCE REGION; MESONS; PHOTOPRODUCTION; HYDROGEN; ENERGIES; PHOTONS; ANGLES; QCD AB The (1)H(e, e(')pi(+))n cross section was measured for arange of four-momentum transfer up to Q(2)=3.91 GeV(2) at values of the invariant mass W above the resonance region. The Q(2) dependence of the longitudinal component was found to be consistent with the Q(2)-scaling prediction for hard exclusive processes. This suggests that the QCD factorization theorem is applicable at rather low values of Q(2). The transverse term falls off slower than the naive Q(-8) expectation and remains appreciable even at Q(2)=3.91 GeV(2). C1 [Horn, T.; Bosted, P.; Bruell, A.; Chudakov, E.; Ent, R.; Fenker, H.; Gaskell, D.; Jones, M. K.; Keppel, C. E.; Lung, A. F.; Meekins, D.; Smith, G. R.; Tang, L. G.; Vulcan, W.; Wood, S. A.] TJNAF, Div Phys, Newport News, VA 23606 USA. [Qian, X.; Gao, H.; Kramer, K.] Duke Univ, Triangle Univ Nucl Lab, Durham, NC 27708 USA. [Arrington, J.; El Fassi, L.; Zheng, X. C.] Argonne Natl Lab, Argonne, IL 60439 USA. [Asaturyan, R.; Mkrtchyan, H.; Navasardyan, T.; Tadevosyan, V.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Benmokthar, F.] Univ Maryland, College Pk, MD 20742 USA. [Boeglin, W.; Markowitz, P.] Florida Int Univ, Miami, FL 33119 USA. [Christy, M. E.; Keppel, C. E.; Malace, S.; Segbefia, E.; Tang, L. G.; Yuan, L.] Hampton Univ, Hampton, VA 23668 USA. [Clasie, B.; Seely, J.] MIT, Cambridge, MA 02139 USA. [Dalton, M. M.; Gray, C.] Univ Witwatersrand, Johannesburg, South Africa. [Daniel, A.; Kalantarians, N.; Li, Y.; Rodriguez, V.] Univ Houston, Houston, TX 77204 USA. [Day, D.; Fomin, N.] Univ Virginia, Charlottesville, VA 22904 USA. [Dutta, D.] Mississippi State Univ, Mississippi State, MS 39762 USA. [Ferrer, J.; Niculescu, G.; Niculescu, I.] James Madison Univ, Harrisonburg, VA 22807 USA. [Garrow, K.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Huber, G. M.] Univ Regina, Regina, SK S4S 0A2, Canada. [Liang, Y.] American Univ, Washington, DC 20016 USA. [Matsumura, A.; Miyoshi, T.; Okayasu, Y.; Sumihama, M.] Tohoku Univ, Sendai, Miyagi 980, Japan. [Mertens, T.; Rohe, D.] Univ Basel, Basel, Switzerland. [Monson, R.] Cent Michigan Univ, Mt Pleasant, MI 48859 USA. [Opper, A. K.] Ohio Univ, Athens, OH 45071 USA. [Perdrisat, C.] Coll William & Mary, Williamsburg, VA 23187 USA. [Punjabi, V.; Wesselmann, F. R.] Norfolk State Univ, Norfolk, VA USA. [Rauf, A. W.] Univ Manitoba, Winnipeg, MB R3T 2N2, Canada. [Tvaskis, V.] Vrije Univ Amsterdam, Fac Nat Sterrenkunde, NL-1081 HV Amsterdam, Netherlands. [Villano, A.] Rensselaer Polytech Inst, Troy, NY 12180 USA. RP Horn, T (reprint author), TJNAF, Div Phys, Newport News, VA 23606 USA. RI Gao, Haiyan/G-2589-2011; Arrington, John/D-1116-2012; Mertens, Thomas/E-9826-2013; Day, Donal/C-5020-2015; Dalton, Mark/B-5380-2016 OI Arrington, John/0000-0002-0702-1328; Day, Donal/0000-0001-7126-8934; Dalton, Mark/0000-0001-9204-7559 FU US Department of Energy [DE-AC05-84150]; US National Science Foundation; Natural Sciences and Engineering Research Council of Canada FX We thank S. Brodsky and A. Radyushkin for helpful discussions. This work was supported in part by the US Department of Energy. The Southeastern Universities Research Association ( SURA) operates the Thomas Jefferson National Accelerator Facility for the US Department of Energy under Contract DE-AC05-84150. We acknowledge additional research grants from the US National Science Foundation and the Natural Sciences and Engineering Research Council of Canada. NR 26 TC 32 Z9 32 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD NOV PY 2008 VL 78 IS 5 AR 058201 DI 10.1103/PhysRevC.78.058201 PG 4 WC Physics, Nuclear SC Physics GA 376WR UT WOS:000261214200060 ER PT J AU Kawano, T Moller, P Wilson, WB AF Kawano, T. Moeller, P. Wilson, W. B. TI Calculation of delayed-neutron energy spectra in a quasiparticle random-phase approximation-Hauser-Feshbach model SO PHYSICAL REVIEW C LA English DT Article ID BETA-STRENGTH FUNCTIONS; SEPARATED FISSION-PRODUCTS; GROSS PROPERTIES; PRECURSORS; EMISSION; FORMULA; I-137; DECAY AB Theoretical beta-delayed-neutron spectra are calculated based on the Quasiparticle Random-Phase Approximation (QRPA) and the Hauser-Feshbach statistical model. Neutron emissions from an excited daughter nucleus after beta decay to the granddaughter residual are more accurately calculated than in previous evaluations, including all the microscopic nuclear structure information, such as a Gamow-Teller strength distribution and discrete states in the granddaughter. The calculated delayed-neutron spectra agree reasonably well with those evaluations in the ENDF decay library, which are based on experimental data. The model was adopted to generate the delayed-neutron spectra for all 271 precursors. C1 [Kawano, T.; Moeller, P.; Wilson, W. B.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Kawano, T (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. EM kawano@lanl.gov OI Moller, Peter/0000-0002-5848-3565 FU National Nuclear Security Administration of the U. S. Department of Energy at Los Alamos National Laboratory [DE-AC5206NA25396] FX We thank G. W. McKinney and L. Waters of Los Alamos National Laboratory for encouraging this work. This work was carried out under the auspices of the National Nuclear Security Administration of the U. S. Department of Energy at Los Alamos National Laboratory under Contract DE-AC5206NA25396. NR 32 TC 23 Z9 23 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD NOV PY 2008 VL 78 IS 5 AR 054601 DI 10.1103/PhysRevC.78.054601 PG 8 WC Physics, Nuclear SC Physics GA 376WR UT WOS:000261214200033 ER PT J AU Lindenbaum, SJ Longacre, RS AF Lindenbaum, S. J. Longacre, R. S. TI Centrality dependence of the parton bubble model for high-energy heavy-ion collisions and fireball surface substructure at energies available at the BNL relativistic heavy ion collider (RHIC) SO PHYSICAL REVIEW C LA English DT Article ID QUARK-GLUON PLASMA; NUCLEAR COLLISIONS; HADRONIZATION AB In an earlier paper we developed a QCD-inspired theoretical parton bubble model (PBM) for RHIC/LHC. The motivation for the PBM was to develop a model that would reasonably quantitatively agree with the strong charged particle pair correlations observed by the STAR Collaboration at RHIC in Au+Au central collisions at root s(NN)=200 GeV in the transverse momentum range 0.8 to 2.0 GeV/c. The model was constructed to also agree with the Hanbury Brown and Twiss (HBT) observed small final-state source size similar to 2 fm radii in the transverse momentum range above 0.8 GeV/c. The model assumed a substructure of a ring of localized adjoining similar to 2 fm radius bubbles perpendicular to the collider beam direction, centered on the beam, at midrapidity. The bubble ring was assumed to be located on the expanding fireball surface of the Au+Au collision. These bubbles consist almost entirely of gluons and form gluonic hot spots on the fireball surface. We achieved a reasonable quantitative agreement with the results of both the physically significant charge-independent (CI) and charge-dependent (CD) correlations that were observed. In this paper we extend the model to include the changing development of bubbles with centrality from the most central region where bubbles are very important to the most peripheral where the bubbles are gone. Energy density is found to be related to bubble formation and as centrality decreases the maximum energy density and bubbles shift from symmetry around the beam axis to the reaction plane region, causing a strong correlation of bubble formation with elliptic flow. We find reasonably quantitative agreement (within a few percent of the total correlations) with a new precision RHIC experiment that extended the centrality region investigated to the range 0%-80% (most central to most peripheral). The characteristics and behavior of the bubbles imply they represent a significant substructure formed on the surface of the fireball at kinetic freezeout. C1 [Lindenbaum, S. J.] CUNY City Coll, New York, NY 10031 USA. [Lindenbaum, S. J.; Longacre, R. S.] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Lindenbaum, SJ (reprint author), CUNY City Coll, New York, NY 10031 USA. FU U.S. Department of Energy [DE-AC02-98CH10886]; City College of New York Physics Department of the City University of New York FX The authors thank William Love for valuable discussion and assistance in production of figures. This research was supported by the U.S. Department of Energy under Contract No. DE-AC02-98CH10886 and the City College of New York Physics Department of the City University of New York. NR 28 TC 2 Z9 2 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9985 EI 2469-9993 J9 PHYS REV C JI Phys. Rev. C PD NOV PY 2008 VL 78 IS 5 AR 054904 DI 10.1103/PhysRevC.78.054904 PG 15 WC Physics, Nuclear SC Physics GA 376WR UT WOS:000261214200046 ER PT J AU Papenbrock, T Weidenmuller, HA AF Papenbrock, T. Weidenmueller, H. A. TI Abundance of ground states with positive parity SO PHYSICAL REVIEW C LA English DT Article ID PHYSICS; SPECTRA; SYSTEMS AB We investigate analytically and numerically a random-matrix model for m fermions occupying center dot(1) single-particle states with positive parity and center dot(2) single-particle states with negative parity and interacting through random two-body forces that conserve parity. The single-particle states are completely degenerate and carry no further quantum numbers. We compare spectra of many-body states with positive and with negative parity. We show that in the dilute limit defined by m,center dot(1,2)->infinity and m/center dot(1,2)-> 0, ground states with positive and negative parity occur with equal probability. Differences in the ground-state probabilities are, thus, a finite-size effect and are mainly due to different dimensions of the Hilbert spaces of either parity. C1 [Papenbrock, T.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Papenbrock, T.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. [Weidenmueller, H. A.] Max Planck Inst Kernphys, D-69029 Heidelberg, Germany. RP Papenbrock, T (reprint author), Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. OI Papenbrock, Thomas/0000-0001-8733-2849 FU U. S. Department of Energy [DE-AC05-00OR22725]; University of Tennessee [DE-FG02-96ER40963] FX This work was partially supported by the U. S. Department of Energy under Contract No. DE-AC05-00OR22725 with UT-Battelle, LLC (Oak Ridge National Laboratory), and under Grant No. DE-FG02-96ER40963 (University of Tennessee). NR 14 TC 8 Z9 8 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD NOV PY 2008 VL 78 IS 5 AR 054305 DI 10.1103/PhysRevC.78.054305 PG 9 WC Physics, Nuclear SC Physics GA 376WR UT WOS:000261214200014 ER PT J AU Swiatecki, WJ Siwek-Wilczynska, K Wilczynski, J AF Swiatecki, W. J. Siwek-Wilczynska, K. Wilczynski, J. TI Ratios of disintegration rates for distinct decay modes of an excited nucleus SO PHYSICAL REVIEW C LA English DT Article ID SUPERHEAVY NUCLEI; CROSS-SECTIONS; FISSION; DEPENDENCE; DYNAMICS AB This paper examines a prevalent departure from the standard transition-state treatment of Gamma(n)/Gamma(f), the relative rate of disintegration of an excited nucleus by neutron emission or fission. This departure is caused by what we believe is an erroneous treatment of shell structure corrections. According to the transition-state theory the shell correction in the excited compound nucleus cancels out identically in the ratio Gamma(n)/Gamma(f), whereas in the deviant treatment it leads to an energy-dependent fission barrier that modifies the expression for the partial width Gamma(f). Moreover, according to the transition-state theory, the partial width Gamma(n) depends on the shell effect in the residual nucleus that emitted the neutron, whereas in the deviant treatment this dependence is ignored. We illustrate explicitly the magnitude of the errors that the deviant treatment of Gamma(n)/Gamma(f) generates in typical nuclear reactions, errors that can reach orders of magnitude at low excitation energies. We take the opportunity to describe an accurate algebraic method of evaluating integrals over shell-affected level densities that appear in the transition-state theory. We also present a new derivation of Weisskopf's nucleon evaporation formula, based on the transition-state method rather than on the statistical principle of detailed balance used by Weisskopf. This unifies the theoretical treatments of fission and nucleon evaporation. C1 [Swiatecki, W. J.] Lawrence Berkeley Natl Lab, Div Nucl Sci, Berkeley, CA 94720 USA. [Siwek-Wilczynska, K.] Univ Warsaw, Inst Expt Phys, PL-00681 Warsaw, Poland. [Wilczynski, J.] Andrzej Soltan Inst Nucl Studies, PL-05400 Otwock, Poland. RP Swiatecki, WJ (reprint author), Lawrence Berkeley Natl Lab, Div Nucl Sci, Berkeley, CA 94720 USA. NR 30 TC 14 Z9 14 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD NOV PY 2008 VL 78 IS 5 AR 054604 DI 10.1103/PhysRevC.78.054604 PG 10 WC Physics, Nuclear SC Physics GA 376WR UT WOS:000261214200036 ER PT J AU Timofeyuk, NK Thompson, IJ AF Timofeyuk, N. K. Thompson, I. J. TI Spectroscopic factors and asymptotic normalization coeffcients in mirror three-body systems SO PHYSICAL REVIEW C LA English DT Article AB Using a three-body model, we study the dependence of spectroscopic factors for the overlap integrals < core + N vertical bar core + N + N > on the binding energy of the core + N subsystem, considering as prototypes (6)He, (6)Be, (9)Li, (9)C, (18)O, and (18)Ne. We show that at small N-core binding energies these spectroscopic factors can be strongly influenced by the geometrical mismatch between the two-body N-core wave function that stretches into the classically forbidden region and the spatially confined three- body function. This mismatch comes from the strong two-body correlations between the nucleons outside the core and due to the core recoil effects. The mismatch leads to symmetry breaking in mirror spectroscopic factors that in some cases can be large enough to be observed in nucleon removal reactions. It is also responsible for deviations of the ratios of mirror asymptotic normalization coefficients (ANCs) from the simple model-independent analytical estimates. We discuss the influence of such mirror symmetry breaking on the prediction of direct stellar (p, gamma) reactions from the measured mirror neutron ANCs. C1 [Timofeyuk, N. K.] Univ Surrey, Dept Phys, Guildford GU2 7XH, Surrey, England. [Thompson, I. J.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Timofeyuk, NK (reprint author), Univ Surrey, Dept Phys, Guildford GU2 7XH, Surrey, England. FU Department of Energy; Lawrence Livermore national Laboratory; [EP/C520521/1]; [EP/E036627/1]; [DE-AC52-07NA27344] FX N.K.T. thanks L. Grigorenko for useful discussions. This work was performed under the UK grants EP/C520521/1 and EP/E036627/1 and in the Lawrence Livermore National Laboratory under Department of Energy contract DE-AC52-07NA27344. NR 15 TC 5 Z9 5 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD NOV PY 2008 VL 78 IS 5 AR 054322 DI 10.1103/PhysRevC.78.054322 PG 10 WC Physics, Nuclear SC Physics GA 376WR UT WOS:000261214200031 ER PT J AU Torres, DA Cristancho, F Andersson, LL Johansson, EK Rudolph, D Fahlander, C Ekman, J du Rietz, R Andreoiu, C Carpenter, MP Seweryniak, D Zhu, S Charity, RJ Chiara, CJ Hoel, C Pechenaya, OL Reviol, W Sarantites, DG Sobotka, LG Baktash, C Yu, CH Carlsson, BG Ragnarsson, I AF Torres, D. A. Cristancho, F. Andersson, L. -L. Johansson, E. K. Rudolph, D. Fahlander, C. Ekman, J. du Rietz, R. Andreoiu, C. Carpenter, M. P. Seweryniak, D. Zhu, S. Charity, R. J. Chiara, C. J. Hoel, C. Pechenaya, O. L. Reviol, W. Sarantites, D. G. Sobotka, L. G. Baktash, C. Yu, C. -H. Carlsson, B. G. Ragnarsson, I. TI Deformations and magnetic rotations in the (60)Ni nucleus SO PHYSICAL REVIEW C LA English DT Article ID GAMMA-RAY SPECTROSCOPY; FUSION-EVAPORATION REACTIONS; 60 MASS REGION; HIGH-SPIN; SHELL-MODEL; SMOOTH TERMINATION; CHANNEL-SELECTION; BANDS; ENERGIES; COLLECTIVITY AB Data from three experiments using the heavy-ion fusion evaporation-reaction (36)Ar+(28)Si have been combined to study high-spin states in the residual nucleus (60)Ni, which is populated via the evaporation of four protons from the compound nucleus (64)Ge. The GAMMASPHERE array was used for all the experiments in conjunction with a 4 pi charged-particle detector arrays (MICROBALL, LUWUSIA) and neutron detectors (NEUTRON SHELL) to allow for the detection of. rays in coincidence with the evaporated particles. An extended (60)Ni level scheme is presented, comprising more than 270 gamma-ray transitions and 110 excited states. Their spins and parities have been assigned via directional correlations of gamma rays emitted from oriented states. Spherical shell-model calculations in the fp-shell characterize some of the low-spin states, while the experimental results of the rotational bands are analyzed with configuration-dependent cranked Nilsson-Strutinsky calculations. C1 [Torres, D. A.; Cristancho, F.] Univ Nacl Colombia, Dept Fis, Bogota, Colombia. [Andersson, L. -L.; Johansson, E. K.; Rudolph, D.; Fahlander, C.; Ekman, J.; du Rietz, R.] Lund Univ, Dept Phys, S-22100 Lund, Sweden. [Andreoiu, C.] Univ Guelph, Dept Phys, Guelph, ON N1G 2W1, Canada. [Carpenter, M. P.; Seweryniak, D.; Zhu, S.] Argonne Natl Lab, Div Phys, Argonne, IL 60493 USA. [Charity, R. J.; Chiara, C. J.; Hoel, C.; Pechenaya, O. L.; Reviol, W.; Sarantites, D. G.; Sobotka, L. G.] Washington Univ, Dept Chem, St Louis, MO 63130 USA. [Baktash, C.; Yu, C. -H.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. [Carlsson, B. G.; Ragnarsson, I.] Lund Inst Technol, Dept Math Phys, S-22100 Lund, Sweden. RP Torres, DA (reprint author), Univ W Scotland, Sch Sci & Engn, High St, Paisley PA1 2BE, Renfrew, Scotland. EM Diego.Torres@uws.ac.uk RI Rudolph, Dirk/D-4259-2009; Ekman, Jorgen/C-1385-2013; du Rietz, Rickard/I-3794-2013; Carpenter, Michael/E-4287-2015 OI Rudolph, Dirk/0000-0003-1199-3055; du Rietz, Rickard/0000-0002-9884-9058; Carpenter, Michael/0000-0002-3237-5734 FU Instituto Colombiano para el Avance de la Ciencia (Colciencias); Swedish Institute; Swedish Research Council; U. S. DOE [DE-AC05-000R22725] FX We would like to thank the staff and the accelerator crew at ANL and LBNL and also D. P. Balamuth, M. Devlin, J. Eberth, A. Galindo-Uribarri, P. A. Hausladen, L. L. Riedinger, and Th. Steinhardt for the help and support during the experiments. This research was supported in part by the Instituto Colombiano para el Avance de la Ciencia (Colciencias) and the Swedish Institute (D. A. Torres), the Swedish Research Council, and the U. S. DOE grant DE-AC05-000R22725. NR 59 TC 25 Z9 27 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD NOV PY 2008 VL 78 IS 5 AR 054318 DI 10.1103/PhysRevC.78.054318 PG 24 WC Physics, Nuclear SC Physics GA 376WR UT WOS:000261214200027 ER PT J AU Vinodkumar, AM Loveland, W Neeway, JJ Prisbrey, L Sprunger, PH Peterson, D Liang, JF Shapira, D Gross, CJ Varner, RL Kolata, JJ Roberts, A Caraley, AL AF Vinodkumar, A. M. Loveland, W. Neeway, J. J. Prisbrey, L. Sprunger, P. H. Peterson, D. Liang, J. F. Shapira, D. Gross, C. J. Varner, R. L. Kolata, J. J. Roberts, A. Caraley, A. L. TI (132)Sn+(96)Zr reaction: A study of fusion enhancement/hindrance SO PHYSICAL REVIEW C LA English DT Article ID RESIDUE CROSS-SECTIONS; SUBBARRIER FUSION; NUCLEAR SYSTEMS; QUASI-FISSION; NEUTRON-FLOW; HEAVY-NUCLEI; ION; COLLISIONS; DYNAMICS; BARRIER AB Capture-fission cross sections were measured for the collision of the massive nucleus (132)Sn with (96)Zr at center-of-mass energies ranging from 192.8 to 249.6 MeV in an attempt to study fusion enhancement and hindrance in this reaction involving very neutron-rich nuclei. Coincident fission fragments were detected using silicon detectors. Using angle and energy conditions, deep inelastic scattering events were separated from fission events. Coupled-channels calculations can describe the data if the surface diffuseness parameter, a, is allowed to be 1.10 fm instead of the customary 0.6 fm. The measured capture-fission cross sections agree moderately well with model calculations using the dinuclear system model. If we use this model to predict fusion barrier heights for these reactions, we find the predicted fusion hindrance, as represented by the extra push energy, is greater for the more neutron-rich system, lessening the advantage of the lower interaction barriers with neutron-rich projectiles. C1 [Vinodkumar, A. M.; Loveland, W.; Neeway, J. J.; Prisbrey, L.; Sprunger, P. H.] Oregon State Univ, Dept Chem, Corvallis, OR 97331 USA. [Peterson, D.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Liang, J. F.; Shapira, D.; Gross, C. J.; Varner, R. L.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. [Kolata, J. J.; Roberts, A.] Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA. [Caraley, A. L.] SUNY Coll Oswego, Dept Phys, Oswego, NY 13126 USA. RP Vinodkumar, AM (reprint author), Oregon State Univ, Dept Chem, Gilbert Hall 153, Corvallis, OR 97331 USA. EM attukalv@onid.orst.edu RI Attukalathil, Vinodkumar/A-7441-2009; OI Attukalathil, Vinodkumar/0000-0002-8204-7800; Neeway, Jim/0000-0001-7046-8408 FU US Department of Energy [DE-FG06-97ER41026]; National Science Foundation [PHY03-54828]; [W31-109ENG-38] FX We thank Giardina, Mandaglio, and Nasirov for furnishing the results of their calculations prior to their publication. This work was supported in part by the Director, Office of Energy Research, Division of Nuclear Physics of the Office of High Energy and Nuclear Physics of the US Department of Energy under grant DE-FG06-97ER41026 and contract no. W31-109ENG-38 and by the National Science Foundation under NSF grant no. PHY03-54828. NR 48 TC 13 Z9 13 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD NOV PY 2008 VL 78 IS 5 AR 054608 DI 10.1103/PhysRevC.78.054608 PG 7 WC Physics, Nuclear SC Physics GA 376WR UT WOS:000261214200040 ER PT J AU Wong, CY AF Wong, Cheuk-Yin TI Landau hydrodynamics reexamined SO PHYSICAL REVIEW C LA English DT Article ID HEAVY-ION COLLISIONS; RELATIVISTIC NUCLEAR COLLISIONS; MULTIPLE PRODUCTION; PP INTERACTIONS; MODEL; PARTICLES; FLOW AB We review the formulation of Landau hydrodynamics and find that the rapidity distribution of produced particles in the center-of-mass system should be more appropriately modified as dN/dy proportional to exp{root y(b)(2) - y(2)}, where y(b) = ln{root S-NN/m(p)} is the beam nucleon rapidity, instead of Landau's original distribution, dN/dy(Landau) proportional to exp{root L-2 - y(2)}, where L = ln{root S-NN/2m(p)}. The modified distribution agrees better with experimental dN/dy data than the original Landau distribution and can be represented well by the Gaussian distribution, dN/dy(Gaussian) proportional to exp{-y(2)/2L}. Past successes of the Gaussian distribution in explaining experimental rapidity data can be understood, not because it is an approximation of the original Landau distribution, but because it is in fact a close representation of the modified distribution. Predictions for pp and AA collisions at LHC energies in Landau hydrodynamics are presented. C1 Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. RP Wong, CY (reprint author), Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. EM wongc@ornl.gov OI Wong, Cheuk-Yin/0000-0001-8223-0659 FU U.S. Department of Energy; Division of Nuclear Physics; [DE-AC05-00OR22725] FX The author thanks Professor D. Blaschke for his hospitality at the Helmholtz international Summer School, July 12-26, 2008, Bogoliubov Laboratory of Theoretial Physics, Dubna, Russia, where this work on Landau hydrodynamics was initiated as lecture notes. This research was supported in part by the Division of Nuclear Physics, U.S. Department of Energy, under Contract DE-AC05-00OR22725, managed by UT-Battelle, LLC. NR 44 TC 66 Z9 72 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9985 EI 2469-9993 J9 PHYS REV C JI Phys. Rev. C PD NOV PY 2008 VL 78 IS 5 AR 054902 DI 10.1103/PhysRevC.78.054902 PG 10 WC Physics, Nuclear SC Physics GA 376WR UT WOS:000261214200044 ER PT J AU Aubert, B Bona, M Karyotakis, Y Lees, JP Poireau, V Prencipe, E Prudent, X Tisserand, V Tico, JG Grauges, E Lopez, L Palano, A Pappagallo, M Eigen, G Stugu, B Sun, L Abrams, GS Battaglia, M Brown, DN Cahn, RN Jacobsen, RG Kerth, LT Kolomensky, YG Kukartsev, G Lynch, G Osipenkov, IL Ronan, MT Tackmann, K Tanabe, T Hawkes, CM Soni, N Watson, AT Koch, H Schroeder, T Walker, D Asgeirsson, DJ Cuhadar-Donszelmann, T Fulsom, BG Hearty, C Mattison, TS McKenna, JA Barrett, M Khan, A Teodorescu, L Blinov, VE Bukin, AD Buzykaev, AR Druzhinin, VP Golubev, VB Onuchin, AP Serednyakov, SI Skovpen, YI Solodov, EP Todyshev, KY Bondioli, M Curry, S Eschrich, I Kirkby, D Lankford, AJ Lund, P Mandelkern, M Martin, EC Stoker, DP Abachi, S Buchanan, C Gary, JW Liu, F Long, O Shen, BC Vitug, GM Yasin, Z Zhang, L Sharma, V Campagnari, C Hong, TM Kovalskyi, D Mazur, MA Richman, JD Beck, TW Eisner, AM Flacco, CJ Heusch, CA Kroseberg, J Lockman, WS Schalk, T Schumm, BA Seiden, A Wang, L Wilson, MG Winstrom, LO Cheng, CH Doll, DA Echenard, B Fang, F Hitlin, DG Narsky, I Piatenko, T Porter, FC Andreassen, R Mancinelli, G Meadows, BT Mishra, K Sokoloff, MD Blanc, F Bloom, PC Ford, WT Gaz, A Hirschauer, JF Kreisel, A Nagel, M Nauenberg, U Smith, JG Ulmer, KA Wagner, SR Ayad, R Soffer, A Toki, WH Wilson, RJ Altenburg, DD Feltresi, E Hauke, A Jasper, H Karbach, M Merkel, J Petzold, A Spaan, B Wacker, K Kobel, MJ Mader, WF Nogowski, R Schubert, KR Schwierz, R Sundermann, JE Volk, A Bernard, D Bonneaud, GR Latour, E Thiebaux, C Verderi, M Clark, PJ Gradl, W Playfer, S Watson, JE Andreotti, M Bettoni, D Bozzi, C Calabrese, R Cecchi, A Cibinetto, G Franchini, P Luppi, E Negrini, M Petrella, A Piemontese, L Santoro, V Baldini-Ferroli, R Calcaterra, A de Sangro, R Finocchiaro, G Pacetti, S Patteri, P Peruzzi, IM Piccolo, M Rama, M Zallo, A Buzzo, A Contri, R Lo Vetere, M Macri, MM Monge, MR Passaggio, S Patrignani, C Robutti, E Santroni, A Tosi, S Chaisanguanthum, KS Morii, M Dubitzky, RS Marks, J Schenk, S Uwer, U Klose, V Lacker, HM De Nardo, G Lista, L Monorchio, D Onorato, G Sciacca, C Bard, DJ Dauncey, PD Nash, JA Vazquez, WP Tibbetts, M Behera, PK Chai, X Charles, MJ Mallik, U Cochran, J Crawley, HB Dong, L Meyer, WT Prell, S Rosenberg, EI Rubin, AE Gao, YY Gritsan, AV Guo, ZJ Lae, CK Denig, AG Fritsch, M Schott, G Arnaud, N Bequilleux, J D'Orazio, A Davier, M da Costa, JF Grosdidier, G Hocker, A Lepeltier, V Le Diberder, F Lutz, AM Pruvot, S Roudeau, P Schune, MH Serrano, J Sordini, V Stocchi, A Wormser, G Lange, DJ Wright, DM Bingham, I Burke, JP Chavez, CA Fry, JR Gabathuler, E Gamet, R Hutchcroft, DE Payne, DJ Touramanis, C Bevan, AJ George, KA Di Lodovico, F Sacco, R Sigamani, M Cowan, G Flaecher, HU Hopkins, DA Paramesvaran, S Salvatore, F Wren, AC Brown, DN Davis, CL Alwyn, KE Barlow, NR Barlow, RJ Chia, YM Edgar, CL Lafferty, GD West, TJ Yi, JI Anderson, J Chen, C Jawahery, A Roberts, DA Simi, G Tuggle, JM Dallapiccola, C Hertzbach, SS Li, X Salvati, E Saremi, S Cowan, R Dujmic, D Fisher, PH Koeneke, K Sciolla, G Spitznagel, M Taylor, F Yamamoto, RK Zhao, M Mclachlin, SE Patel, PM Robertson, SH Lazzaro, A Lombardo, V Palombo, F Bauer, JM Cremaldi, L Eschenburg, V Godang, R Kroeger, R Sanders, DA Summers, DJ Zhao, HW Simard, M Taras, P Viaud, FB Nicholson, H Baak, MA Raven, G Snoek, HL Jessop, CP Knoepfel, KJ LoSecco, JM Wang, WF Benelli, G Corwin, LA Honscheid, K Kagan, H Kass, R Morris, JP Rahimi, AM Regensburger, JJ Sekula, SJ Wong, QK Blount, NL Brau, J Frey, R Igonkina, O Kolb, JA Lu, M Rahmat, R Sinev, NB Strom, D Strube, J Torrence, E Castelli, G Gagliardi, N Margoni, M Morandin, M Posocco, M Rotondo, M Simonetto, F Stroili, R Voci, C Sanchez, PD Ben-Haim, E Briand, H Calderini, G Chauveau, J David, P Del Buono, L Hamon, O Leruste, P Ocariz, J Perez, A Prendki, J Gladney, L Biasini, M Covarelli, R Manoni, E Angelini, C Batignani, G Bettarini, S Carpinelli, M Cervelli, A Forti, F Giorgi, MA Lusiani, A Marchiori, G Morganti, M Neri, N Paoloni, E Rizzo, G Walsh, JJ Biesiada, J Pegna, DL Lu, C Olsen, J Smith, AJS Telnov, AV Anulli, F Baracchini, E Cavoto, G del Re, D Di Marco, E Faccini, R Ferrarotto, F Ferroni, F Gaspero, M Jackson, PD Gioi, LL Mazzoni, MA Morganti, S Piredda, G Polci, F Renga, F Voena, C Ebert, M Hartmann, T Schroder, H Waldi, R Adye, T Franek, B Olaiya, EO Roethel, W Wilson, FF Emery, S Escalier, M Esteve, L Gaidot, A Ganzhur, SF de Monchenault, GH Kozanecki, W Vasseur, G Yeche, C Zito, M Chen, XR Liu, H Park, W Purohit, MV White, RM Wilson, JR Allen, MT Aston, D Bartoldus, R Bechtle, P Benitez, JF Cenci, R Coleman, JP Convery, MR Dingfelder, JC Dorfan, J Dubois-Felsmann, GP Dunwoodie, W Field, RC Gabareen, AM Gowdy, SJ Graham, MT Grenier, P Hast, C Innes, WR Kaminski, J Kelsey, MH Kim, H Kim, P Kocian, ML Leith, DWGS Li, S Lindquist, B Luitz, S Luth, V Lynch, HL MacFarlane, DB Marsiske, H Messner, R Muller, DR Neal, H Nelson, S O'Grady, CP Ofte, I Perazzo, A Perl, M Ratcliff, BN Roodman, A Salnikov, AA Schindler, RH Schwiening, J Snyder, A Su, D Sullivan, MK Suzuki, K Swain, SK Thompson, JM Va'vra, J Wagner, AP Weaver, M West, CA Wisniewski, WJ Wittgen, M Wright, DH Wulsin, HW Yarritu, AK Yi, K Young, CC Ziegler, V Burchat, PR Edwards, AJ Majewski, SA Miyashita, TS Petersen, BA Wilden, L Ahmed, S Alam, MS Bula, R Ernst, JA Pan, B Saeed, MA Zain, SB Spanier, SM Wogsland, BJ Eckmann, R Ritchie, JL Ruland, AM Schilling, CJ Schwitters, RF Drummond, BW Izen, JM Lou, XC Bianchi, F Gamba, D Pelliccioni, M Bomben, M Bosisio, L Cartaro, C Della Ricca, G Lanceri, L Vitale, L Azzolini, V Lopez-March, N Martinez-Vidal, F Milanes, DA Oyanguren, A Albert, J Banerjee, S Bhuyan, B Choi, HHF Hamano, K Kowalewski, R Lewczuk, MJ Nugent, IM Roney, JM Sobie, RJ Gershon, TJ Harrison, PF Ilic, J Latham, TE Mohanty, GB Band, HR Chen, X Dasu, S Flood, KT Pan, Y Pierini, M Prepost, R Vuosalo, CO Wu, SL AF Aubert, B. Bona, M. Karyotakis, Y. Lees, J. P. Poireau, V. Prencipe, E. Prudent, X. Tisserand, V. Garra Tico, J. Grauges, E. Lopez, L. Palano, A. Pappagallo, M. Eigen, G. Stugu, B. Sun, L. Abrams, G. S. Battaglia, M. Brown, D. N. Cahn, R. N. Jacobsen, R. G. Kerth, L. T. Kolomensky, Yu. G. Kukartsev, G. Lynch, G. Osipenkov, I. L. Ronan, M. T. Tackmann, K. Tanabe, T. Hawkes, C. M. Soni, N. Watson, A. T. Koch, H. Schroeder, T. Walker, D. Asgeirsson, D. J. Cuhadar-Donszelmann, T. Fulsom, B. G. Hearty, C. Mattison, T. S. McKenna, J. A. Barrett, M. Khan, A. Teodorescu, L. Blinov, V. E. Bukin, A. D. Buzykaev, A. R. Druzhinin, V. P. Golubev, V. B. Onuchin, A. P. Serednyakov, S. I. Skovpen, Yu. I. Solodov, E. P. Todyshev, K. Yu. Bondioli, M. Curry, S. Eschrich, I. Kirkby, D. Lankford, A. J. Lund, P. Mandelkern, M. Martin, E. C. Stoker, D. P. Abachi, S. Buchanan, C. Gary, J. W. Liu, F. Long, O. Shen, B. C. Vitug, G. M. Yasin, Z. Zhang, L. Sharma, V. Campagnari, C. Hong, T. M. Kovalskyi, D. Mazur, M. A. Richman, J. D. Beck, T. W. Eisner, A. M. Flacco, C. J. Heusch, C. A. Kroseberg, J. Lockman, W. S. Schalk, T. Schumm, B. A. Seiden, A. Wang, L. Wilson, M. G. Winstrom, L. O. Cheng, C. H. Doll, D. A. Echenard, B. Fang, F. Hitlin, D. G. Narsky, I. Piatenko, T. Porter, F. C. Andreassen, R. Mancinelli, G. Meadows, B. T. Mishra, K. Sokoloff, M. D. Blanc, F. Bloom, P. C. Ford, W. T. Gaz, A. Hirschauer, J. F. Kreisel, A. Nagel, M. Nauenberg, U. Smith, J. G. Ulmer, K. A. Wagner, S. R. Ayad, R. Soffer, A. Toki, W. H. Wilson, R. J. Altenburg, D. D. Feltresi, E. Hauke, A. Jasper, H. Karbach, M. Merkel, J. Petzold, A. Spaan, B. Wacker, K. Kobel, M. J. Mader, W. F. Nogowski, R. Schubert, K. R. Schwierz, R. Sundermann, J. E. Volk, A. Bernard, D. Bonneaud, G. R. Latour, E. Thiebaux, Ch. Verderi, M. Clark, P. J. Gradl, W. Playfer, S. Watson, J. E. Andreotti, M. Bettoni, D. Bozzi, C. Calabrese, R. Cecchi, A. Cibinetto, G. Franchini, P. Luppi, E. Negrini, M. Petrella, A. Piemontese, L. Santoro, V. Baldini-Ferroli, R. Calcaterra, A. de Sangro, R. Finocchiaro, G. Pacetti, S. Patteri, P. Peruzzi, I. M. Piccolo, M. Rama, M. Zallo, A. Buzzo, A. Contri, R. Lo Vetere, M. Macri, M. M. Monge, M. R. Passaggio, S. Patrignani, C. Robutti, E. Santroni, A. Tosi, S. Chaisanguanthum, K. S. Morii, M. Dubitzky, R. S. Marks, J. Schenk, S. Uwer, U. Klose, V. Lacker, H. M. De Nardo, G. Lista, L. Monorchio, D. Onorato, G. Sciacca, C. Bard, D. J. Dauncey, P. D. Nash, J. A. Vazquez, W. Panduro Tibbetts, M. Behera, P. K. Chai, X. Charles, M. J. Mallik, U. Cochran, J. Crawley, H. B. Dong, L. Meyer, W. T. Prell, S. Rosenberg, E. I. Rubin, A. E. Gao, Y. Y. Gritsan, A. V. Guo, Z. J. Lae, C. K. Denig, A. G. Fritsch, M. Schott, G. Arnaud, N. Bequilleux, J. D'Orazio, A. Davier, M. da Costa, J. Firmino Grosdidier, G. Hoecker, A. Lepeltier, V. Le Diberder, F. Lutz, A. M. Pruvot, S. Roudeau, P. Schune, M. H. Serrano, J. Sordini, V. Stocchi, A. Wormser, G. Lange, D. J. Wright, D. M. Bingham, I. Burke, J. P. Chavez, C. A. Fry, J. R. Gabathuler, E. Gamet, R. Hutchcroft, D. E. Payne, D. J. Touramanis, C. Bevan, A. J. George, K. A. Di Lodovico, F. Sacco, R. Sigamani, M. Cowan, G. Flaecher, H. U. Hopkins, D. A. Paramesvaran, S. Salvatore, F. Wren, A. C. Brown, D. N. Davis, C. L. Alwyn, K. E. Barlow, N. R. Barlow, R. J. Chia, Y. M. Edgar, C. L. Lafferty, G. D. West, T. J. Yi, J. I. Anderson, J. Chen, C. Jawahery, A. Roberts, D. A. Simi, G. Tuggle, J. M. Dallapiccola, C. Hertzbach, S. S. Li, X. Salvati, E. Saremi, S. Cowan, R. Dujmic, D. Fisher, P. H. Koeneke, K. Sciolla, G. Spitznagel, M. Taylor, F. Yamamoto, R. K. Zhao, M. Mclachlin, S. E. Patel, P. M. Robertson, S. H. Lazzaro, A. Lombardo, V. Palombo, F. Bauer, J. M. Cremaldi, L. Eschenburg, V. Godang, R. Kroeger, R. Sanders, D. A. Summers, D. J. Zhao, H. W. Simard, M. Taras, P. Viaud, F. B. Nicholson, H. Baak, M. A. Raven, G. Snoek, H. L. Jessop, C. P. Knoepfel, K. J. LoSecco, J. M. Wang, W. F. Benelli, G. Corwin, L. A. Honscheid, K. Kagan, H. Kass, R. Morris, J. P. Rahimi, A. M. Regensburger, J. J. Sekula, S. J. Wong, Q. K. Blount, N. L. Brau, J. Frey, R. Igonkina, O. Kolb, J. A. Lu, M. Rahmat, R. Sinev, N. B. Strom, D. Strube, J. Torrence, E. Castelli, G. Gagliardi, N. Margoni, M. Morandin, M. Posocco, M. Rotondo, M. Simonetto, F. Stroili, R. Voci, C. Sanchez, P. del Amo Ben-Haim, E. Briand, H. Calderini, G. Chauveau, J. David, P. Del Buono, L. Hamon, O. Leruste, Ph. Ocariz, J. Perez, A. Prendki, J. Gladney, L. Biasini, M. Covarelli, R. Manoni, E. Angelini, C. Batignani, G. Bettarini, S. Carpinelli, M. Cervelli, A. Forti, F. Giorgi, M. A. Lusiani, A. Marchiori, G. Morganti, M. Neri, N. Paoloni, E. Rizzo, G. Walsh, J. J. Biesiada, J. Pegna, D. Lopes Lu, C. Olsen, J. Smith, A. J. S. Telnov, A. V. Anulli, F. Baracchini, E. Cavoto, G. del Re, D. Di Marco, E. Faccini, R. Ferrarotto, F. Ferroni, F. Gaspero, M. Jackson, P. D. Gioi, L. Li Mazzoni, M. A. Morganti, S. Piredda, G. Polci, F. Renga, F. Voena, C. Ebert, M. Hartmann, T. Schroeder, H. Waldi, R. Adye, T. Franek, B. Olaiya, E. O. Roethel, W. Wilson, F. F. Emery, S. Escalier, M. Esteve, L. Gaidot, A. Ganzhur, S. F. de Monchenault, G. Hamel Kozanecki, W. Vasseur, G. Yeche, Ch. Zito, M. Chen, X. R. Liu, H. Park, W. Purohit, M. V. White, R. M. Wilson, J. R. Allen, M. T. Aston, D. Bartoldus, R. Bechtle, P. Benitez, J. F. Cenci, R. Coleman, J. P. Convery, M. R. Dingfelder, J. C. Dorfan, J. Dubois-Felsmann, G. P. Dunwoodie, W. Field, R. C. Gabareen, A. M. Gowdy, S. J. Graham, M. T. Grenier, P. Hast, C. Innes, W. R. Kaminski, J. Kelsey, M. H. Kim, H. Kim, P. Kocian, M. L. Leith, D. W. G. S. Li, S. Lindquist, B. Luitz, S. Luth, V. Lynch, H. L. MacFarlane, D. B. Marsiske, H. Messner, R. Muller, D. R. Neal, H. Nelson, S. O'Grady, C. P. Ofte, I. Perazzo, A. Perl, M. Ratcliff, B. N. Roodman, A. Salnikov, A. A. Schindler, R. H. Schwiening, J. Snyder, A. Su, D. Sullivan, M. K. Suzuki, K. Swain, S. K. Thompson, J. M. Va'vra, J. Wagner, A. P. Weaver, M. West, C. A. Wisniewski, W. J. Wittgen, M. Wright, D. H. Wulsin, H. W. Yarritu, A. K. Yi, K. Young, C. C. Ziegler, V. Burchat, P. R. Edwards, A. J. Majewski, S. A. Miyashita, T. S. Petersen, B. A. Wilden, L. Ahmed, S. Alam, M. S. Bula, R. Ernst, J. A. Pan, B. Saeed, M. A. Zain, S. B. Spanier, S. M. Wogsland, B. J. Eckmann, R. Ritchie, J. L. Ruland, A. M. Schilling, C. J. Schwitters, R. F. Drummond, B. W. Izen, J. M. Lou, X. C. Bianchi, F. Gamba, D. Pelliccioni, M. Bomben, M. Bosisio, L. Cartaro, C. Della Ricca, G. Lanceri, L. Vitale, L. Azzolini, V. Lopez-March, N. Martinez-Vidal, F. Milanes, D. A. Oyanguren, A. Albert, J. Banerjee, Sw. Bhuyan, B. Choi, H. H. F. Hamano, K. Kowalewski, R. Lewczuk, M. J. Nugent, I. M. Roney, J. M. Sobie, R. J. Gershon, T. J. Harrison, P. F. Ilic, J. Latham, T. E. Mohanty, G. B. Band, H. R. Chen, X. Dasu, S. Flood, K. T. Pan, Y. Pierini, M. Prepost, R. Vuosalo, C. O. Wu, S. L. CA BaBar Collaboration TI Measurement of ratios of branching fractions and CP-violating asymmetries of B(+/-) -> D*K(+/-) decays SO PHYSICAL REVIEW D LA English DT Article AB We report a study of B(+/-) -> D*K(+/-) decays with D* decaying to D pi(0) or D gamma, using 383 x 10(6) B (B) over bar pairs collected at the Y(4S) resonance with the BABAR detector at the SLAC PEP-II B Factory. The D meson decays under study include a non-CP mode (K(+/-) pi(-/+)), CP-even modes (K(+/-)K(-/+), pi(+/-)pi(-/+)), and CP-odd modes (K(s)(0)pi(0), K(s)(0)phi, K(s)(0)omega).We measure ratios (R*(CP +/-)) of branching fractions of decays to CP eigenmode states and to flavor-specific states as well as CP asymmetries (A*(CP +/-)) These measurements are sensitive to the unitarity triangle angle gamma. We obtain A*(CP+) = -0.11 +/- 0.09 +/- 0.01, R*(CP) = 1.31 +/- 0.13 +/- 0.04, and A*(CP-) = 0.06 +/- 0.10 +/- 0.02, R(CP-)(*) = 1.10 +/- 0.12 +/- 0.04, where the first error is statistical and the second error is systematic. Translating our results into an alternative parametrization, widely used for related measurements, we obtain x(+)* = 0. 11 +/- 0.06 +/- 0.02 and x(-)* = 0.00 +/- 0.06 +/- 0.02. No significant CP-violating charge asymmetry is found in either the flavor-specific mode D -> K(+/-) pi(-/+) or in B(+/-) -> D*pi(+/-) decays. C1 [Aubert, B.; Bona, M.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prencipe, E.; Prudent, X.; Tisserand, V.] CNRS, IN2P3, Phys Particules Lab, F-74941 Annecy Le Vieux, France. [Aubert, B.; Bona, M.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prencipe, E.; Prudent, X.; Tisserand, V.] Univ Savoie, F-74941 Annecy Le Vieux, France. [Garra Tico, J.; Grauges, E.] Univ Barcelona, Fac Fis, Dept ECM, E-08028 Barcelona, Spain. [Lopez, L.; Palano, A.; Pappagallo, M.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Lopez, L.; Palano, A.; Pappagallo, M.] Univ Bari, Dipartmento Fis, I-70126 Bari, Italy. [Eigen, G.; Stugu, B.; Sun, L.] Univ Bergen, Inst Phys, N-5007 Bergen, Norway. [Abrams, G. S.; Battaglia, M.; Brown, D. N.; Cahn, R. N.; Jacobsen, R. G.; Kerth, L. T.; Kolomensky, Yu. G.; Kukartsev, G.; Lynch, G.; Osipenkov, I. L.; Ronan, M. T.; Tackmann, K.; Tanabe, T.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Hawkes, C. M.; Soni, N.; Watson, A. T.] Univ Birmingham, Birmingham B15 2TT, W Midlands, England. [Koch, H.; Schroeder, T.] Ruhr Univ Bochum, Inst Expt Phys, D-44780 Bochum, Germany. [Walker, D.] Univ Bristol, Bristol BS8 1TL, Avon, England. [Fulsom, B. G.; Hearty, C.; Mattison, T. S.; McKenna, J. A.] Univ British Columbia, Vancouver, BC V6T 1Z1, Canada. [Barrett, M.; Khan, A.; Teodorescu, L.] Brunel Univ, Uxbridge UB8 3PH, Middx, England. [Blinov, V. E.; Bukin, A. D.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.] Budker Inst Nucl Phys, Novosibirsk 630090, Russia. [Bondioli, M.; Curry, S.; Eschrich, I.; Kirkby, D.; Lankford, A. J.; Lund, P.; Mandelkern, M.; Martin, E. C.; Stoker, D. P.] Univ Calif Irvine, Irvine, CA 92697 USA. [Abachi, S.; Buchanan, C.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Gary, J. W.; Liu, F.; Long, O.; Shen, B. C.; Vitug, G. M.; Yasin, Z.; Zhang, L.] Univ Calif Riverside, Riverside, CA 92521 USA. [Sharma, V.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Campagnari, C.; Hong, T. M.; Kovalskyi, D.; Mazur, M. A.; Richman, J. D.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Beck, T. W.; Eisner, A. M.; Flacco, C. J.; Heusch, C. A.; Kroseberg, J.; Lockman, W. S.; Schalk, T.; Schumm, B. A.; Seiden, A.; Wang, L.; Wilson, M. G.; Winstrom, L. O.] Univ Calif Santa Cruz, Inst Particle Phys, Santa Cruz, CA 95064 USA. [Cheng, C. H.; Doll, D. A.; Echenard, B.; Fang, F.; Hitlin, D. G.; Narsky, I.; Piatenko, T.; Porter, F. C.] CALTECH, Pasadena, CA 91125 USA. [Mancinelli, G.; Meadows, B. T.; Mishra, K.; Sokoloff, M. D.; Anderson, J.] Univ Cincinnati, Cincinnati, OH 45221 USA. [Blanc, F.; Bloom, P. C.; Ford, W. T.; Gaz, A.; Hirschauer, J. F.; Kreisel, A.; Nagel, M.; Nauenberg, U.; Smith, J. G.; Ulmer, K. A.; Wagner, S. R.] Univ Colorado, Boulder, CO 80309 USA. [Ayad, R.; Soffer, A.; Toki, W. H.; Wilson, R. J.] Colorado State Univ, Ft Collins, CO 80523 USA. [Altenburg, D. D.; Feltresi, E.; Hauke, A.; Jasper, H.; Karbach, M.; Merkel, J.; Petzold, A.; Spaan, B.; Wacker, K.] Tech Univ Dortmund, Fak Phys, D-44221 Dortmund, Germany. [Kobel, M. J.; Mader, W. F.; Nogowski, R.; Schubert, K. R.; Schwierz, R.; Sundermann, J. E.; Volk, A.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. [Bernard, D.; Bonneaud, G. R.; Latour, E.; Thiebaux, Ch.; Verderi, M.] Ecole Polytech, CNRS, Lab Leprince Ringuet, IN2P3, F-91128 Palaiseau, France. [Clark, P. J.; Gradl, W.; Playfer, S.; Watson, J. E.] Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. [Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Franchini, P.; Luppi, E.; Negrini, M.; Petrella, A.; Piemontese, L.; Santoro, V.] Ist Nazl Fis Nucl, Sez Ferrara, I-44100 Ferrara, Italy. [Andreotti, M.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Franchini, P.; Luppi, E.; Negrini, M.; Petrella, A.; Piemontese, L.; Santoro, V.] Univ Ferrara, Dipartmento Fis, I-44100 Ferrara, Italy. [Baldini-Ferroli, R.; Calcaterra, A.; de Sangro, R.; Finocchiaro, G.; Pacetti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; Zallo, A.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Buzzo, A.; Contri, R.; Lo Vetere, M.; Macri, M. M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Santroni, A.; Tosi, S.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Contri, R.; Lo Vetere, M.; Monge, M. R.; Patrignani, C.; Santroni, A.; Tosi, S.] Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy. [Chaisanguanthum, K. S.; Morii, M.] Harvard Univ, Cambridge, MA 02138 USA. [Dubitzky, R. S.; Marks, J.; Schenk, S.; Uwer, U.] Univ Heidelberg, Inst Phys, D-69120 Heidelberg, Germany. [Klose, V.; Lacker, H. M.] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany. [De Nardo, G.; Lista, L.; Monorchio, D.; Onorato, G.; Sciacca, C.] Ist Nazl Fis Nucl, Sez Napoli, I-80126 Naples, Italy. [De Nardo, G.; Monorchio, D.; Onorato, G.; Sciacca, C.] Univ Naples Federico 2, Dipartimento Sci Fisiche, I-80126 Naples, Italy. [Bard, D. J.; Dauncey, P. D.; Nash, J. A.; Vazquez, W. Panduro; Tibbetts, M.] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. [Behera, P. K.; Chai, X.; Charles, M. J.; Mallik, U.] Univ Iowa, Iowa City, IA 52242 USA. [Cochran, J.; Crawley, H. B.; Dong, L.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Rubin, A. E.] Iowa State Univ, Ames, IA 50011 USA. [Gao, Y. Y.; Gritsan, A. V.; Guo, Z. J.; Lae, C. K.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Denig, A. G.; Fritsch, M.; Schott, G.] Univ Karlsruhe, Inst Expt Kernphys, D-76021 Karlsruhe, Germany. [Arnaud, N.; Bequilleux, J.; D'Orazio, A.; Davier, M.; da Costa, J. Firmino; Grosdidier, G.; Hoecker, A.; Lepeltier, V.; Le Diberder, F.; Lutz, A. M.; Pruvot, S.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wormser, G.] CNRS, IN2P3, Lab Accelerateur Lineaire, F-91898 Orsay, France. [Arnaud, N.; Bequilleux, J.; D'Orazio, A.; Davier, M.; da Costa, J. Firmino; Grosdidier, G.; Hoecker, A.; Lepeltier, V.; Le Diberder, F.; Lutz, A. M.; Pruvot, S.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wormser, G.] Univ Paris 11, Ctr Sci Orsay, F-91898 Orsay, France. [Lange, D. J.; Wright, D. M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Bingham, I.; Burke, J. P.; Chavez, C. A.; Fry, J. R.; Gabathuler, E.; Gamet, R.; Hutchcroft, D. E.; Payne, D. J.; Touramanis, C.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Bevan, A. J.; George, K. A.; Di Lodovico, F.; Sacco, R.; Sigamani, M.] Univ London, London E1 4NS, England. [Cowan, G.; Flaecher, H. U.; Hopkins, D. A.; Paramesvaran, S.; Salvatore, F.; Wren, A. C.] Univ London, Royal Holloway & Bedford New Coll, Egham TW20 0EX, Surrey, England. [Brown, D. N.; Davis, C. L.] Univ Louisville, Louisville, KY 40292 USA. [Alwyn, K. E.; Barlow, N. R.; Barlow, R. J.; Chia, Y. M.; Edgar, C. L.; Lafferty, G. D.; West, T. J.; Yi, J. I.] Univ Manchester, Manchester M13 9PL, Lancs, England. [Anderson, J.; Chen, C.; Jawahery, A.; Roberts, D. A.; Simi, G.; Tuggle, J. M.] Univ Maryland, College Pk, MD 20742 USA. [Dallapiccola, C.; Hertzbach, S. S.; Li, X.; Salvati, E.; Saremi, S.] Univ Massachusetts, Amherst, MA 01003 USA. [Cowan, R.; Dujmic, D.; Fisher, P. H.; Koeneke, K.; Sciolla, G.; Spitznagel, M.; Taylor, F.; Yamamoto, R. K.; Zhao, M.] MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. [Mclachlin, S. E.; Patel, P. M.; Robertson, S. H.] McGill Univ, Montreal, PQ H3A 2T8, Canada. [Lazzaro, A.; Lombardo, V.; Palombo, F.] Ist Nazl Fis Nucl, Sez Milano, I-20133 Milan, Italy. [Lazzaro, A.; Palombo, F.] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. [Bauer, J. M.; Cremaldi, L.; Eschenburg, V.; Godang, R.; Kroeger, R.; Sanders, D. A.; Summers, D. J.; Zhao, H. W.] Univ Mississippi, University, MS 38677 USA. [Simard, M.; Taras, P.; Viaud, F. B.] Univ Montreal, Montreal, PQ H3C 3J7, Canada. [Nicholson, H.] Mt Holyoke Coll, S Hadley, MA 01075 USA. [Baak, M. A.; Raven, G.; Snoek, H. L.] Natl Inst Nucl & High Energy Phys, NIKHEE, NL-1009 DB Amsterdam, Netherlands. [Jessop, C. P.; Knoepfel, K. J.; LoSecco, J. M.; Wang, W. F.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Benelli, G.; Corwin, L. A.; Honscheid, K.; Kagan, H.; Kass, R.; Morris, J. P.; Rahimi, A. M.; Regensburger, J. J.; Sekula, S. J.; Wong, Q. K.] Ohio State Univ, Columbus, OH 43210 USA. [Blount, N. L.; Brau, J.; Frey, R.; Igonkina, O.; Kolb, J. A.; Lu, M.; Rahmat, R.; Sinev, N. B.; Strom, D.; Strube, J.; Torrence, E.] Univ Oregon, Eugene, OR 97403 USA. [Castelli, G.; Gagliardi, N.; Margoni, M.; Morandin, M.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.; Voci, C.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Castelli, G.; Gagliardi, N.; Margoni, M.; Simonetto, F.; Stroili, R.; Voci, C.] Univ Padua, Dipartimento Fis, I-35131 Padua, Italy. [Sanchez, P. del Amo; Ben-Haim, E.; Briand, H.; Calderini, G.; Chauveau, J.; David, P.; Del Buono, L.; Hamon, O.; Leruste, Ph.; Ocariz, J.; Perez, A.; Prendki, J.] Univ Paris 07, CNRS, Lab Phys Nucl & Hautes Energies, IN2P3, F-75252 Paris, France. [Gladney, L.] Univ Penn, Philadelphia, PA 19104 USA. [Biasini, M.; Covarelli, R.; Manoni, E.] Ist Nazl Fis Nucl, Sez Perugia, I-06100 Perugia, Italy. [Peruzzi, I. M.; Biasini, M.; Covarelli, R.; Manoni, E.] Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Marchiori, G.; Morganti, M.; Neri, N.; Paoloni, E.; Rizzo, G.; Walsh, J. J.; Biesiada, J.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Marchiori, G.; Morganti, M.; Neri, N.; Paoloni, E.; Rizzo, G.; Walsh, J. J.] Univ Pisa, Dipartimento Fis, I-56127 Pisa, Italy. [Lusiani, A.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Carpinelli, M.] Univ Sassari, I-07100 Sassari, Italy. [Biesiada, J.; Pegna, D. Lopes; Lu, C.; Olsen, J.; Smith, A. J. S.; Telnov, A. V.] Princeton Univ, Princeton, NJ 08544 USA. [Anulli, F.; Baracchini, E.; Cavoto, G.; del Re, D.; Di Marco, E.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Jackson, P. D.; Gioi, L. Li; Mazzoni, M. A.; Morganti, S.; Piredda, G.; Polci, F.; Renga, F.; Voena, C.] Ist Nazl Fis Nucl, Sez Roma, I-00185 Rome, Italy. [Baracchini, E.; del Re, D.; Di Marco, E.; Faccini, R.; Ferroni, F.; Gaspero, M.; Polci, F.; Renga, F.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Ebert, M.; Hartmann, T.; Schroeder, H.; Waldi, R.] Univ Rostock, D-18051 Rostock, Germany. [Adye, T.; Franek, B.; Olaiya, E. O.; Roethel, W.; Wilson, F. F.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Emery, S.; Escalier, M.; Esteve, L.; Gaidot, A.; Ganzhur, S. F.; de Monchenault, G. Hamel; Kozanecki, W.; Vasseur, G.; Yeche, Ch.; Zito, M.] CEA Saclay, DSM Dapnia, F-91191 Gif Sur Yvette, France. [Chen, X. R.; Liu, H.; Park, W.; Purohit, M. V.; White, R. M.; Wilson, J. R.] Univ S Carolina, Columbia, SC 29208 USA. [Allen, M. T.; Aston, D.; Bartoldus, R.; Bechtle, P.; Benitez, J. F.; Cenci, R.; Coleman, J. P.; Convery, M. R.; Dingfelder, J. C.; Dorfan, J.; Dubois-Felsmann, G. P.; Dunwoodie, W.; Field, R. C.; Gabareen, A. M.; Gowdy, S. J.; Graham, M. T.; Grenier, P.; Hast, C.; Innes, W. R.; Kaminski, J.; Kelsey, M. H.; Kim, H.; Kim, P.; Kocian, M. L.; Leith, D. W. G. S.; Li, S.; Lindquist, B.; Luitz, S.; Luth, V.; Lynch, H. L.; MacFarlane, D. B.; Marsiske, H.; Messner, R.; Muller, D. R.; Neal, H.; Nelson, S.; O'Grady, C. P.; Ofte, I.; Perazzo, A.; Perl, M.; Ratcliff, B. N.; Roodman, A.; Salnikov, A. A.; Schindler, R. H.; Schwiening, J.; Snyder, A.; Su, D.; Sullivan, M. K.; Suzuki, K.; Swain, S. K.; Thompson, J. M.; Va'vra, J.; Wagner, A. P.; Weaver, M.; West, C. A.; Wisniewski, W. J.; Wittgen, M.; Wright, D. H.; Wulsin, H. W.; Yarritu, A. K.; Yi, K.; Young, C. C.; Ziegler, V.] Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. [Burchat, P. R.; Edwards, A. J.; Majewski, S. A.; Miyashita, T. S.; Petersen, B. A.; Wilden, L.] Stanford Univ, Stanford, CA 94305 USA. [Ahmed, S.; Alam, M. S.; Bula, R.; Ernst, J. A.; Pan, B.; Saeed, M. A.; Zain, S. B.] SUNY Albany, Albany, NY 12222 USA. [Spanier, S. M.; Wogsland, B. J.] Univ Tennessee, Knoxville, TN 37996 USA. [Eckmann, R.; Ritchie, J. L.; Ruland, A. M.; Schilling, C. J.; Schwitters, R. F.] Univ Texas Austin, Austin, TX 78712 USA. [Drummond, B. W.; Izen, J. M.; Lou, X. C.] Univ Texas Dallas, Richardson, TX 75083 USA. [Bianchi, F.; Gamba, D.; Pelliccioni, M.] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy. [Bianchi, F.; Gamba, D.; Pelliccioni, M.] Univ Turin, Dipartimento Fis Sperimentale, I-10125 Turin, Italy. [Bomben, M.; Bosisio, L.; Cartaro, C.; Della Ricca, G.; Lanceri, L.; Vitale, L.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Bomben, M.; Bosisio, L.; Cartaro, C.; Della Ricca, G.; Lanceri, L.; Vitale, L.] Univ Trieste, Dipartmento Fis, I-34127 Trieste, Italy. [Azzolini, V.; Lopez-March, N.; Martinez-Vidal, F.; Milanes, D. A.; Oyanguren, A.] Univ Valencia, CSIC, IFIC, E-46071 Valencia, Spain. [Albert, J.; Banerjee, Sw.; Bhuyan, B.; Choi, H. H. F.; Hamano, K.; Kowalewski, R.; Lewczuk, M. J.; Nugent, I. M.; Roney, J. M.; Sobie, R. J.] Univ Victoria, Victoria, BC V8W 3P6, Canada. [Gershon, T. J.; Harrison, P. F.; Ilic, J.; Latham, T. E.; Mohanty, G. B.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Band, H. R.; Chen, X.; Dasu, S.; Flood, K. T.; Pan, Y.; Pierini, M.; Prepost, R.; Vuosalo, C. O.; Wu, S. L.] Univ Wisconsin, Madison, WI 53706 USA. RP Aubert, B (reprint author), CNRS, IN2P3, Phys Particules Lab, F-74941 Annecy Le Vieux, France. RI dong, liaoyuan/A-5093-2015; Rizzo, Giuliana/A-8516-2015; Martinez Vidal, F*/L-7563-2014; Kolomensky, Yury/I-3510-2015; Lo Vetere, Maurizio/J-5049-2012; Lusiani, Alberto/N-2976-2015; Morandin, Mauro/A-3308-2016; Lusiani, Alberto/A-3329-2016; Della Ricca, Giuseppe/B-6826-2013; Di Lodovico, Francesca/L-9109-2016; Pappagallo, Marco/R-3305-2016; Calcaterra, Alessandro/P-5260-2015; Frey, Raymond/E-2830-2016; Luppi, Eleonora/A-4902-2015; White, Ryan/E-2979-2015; Calabrese, Roberto/G-4405-2015; Patrignani, Claudia/C-5223-2009; Neri, Nicola/G-3991-2012; Forti, Francesco/H-3035-2011; Rotondo, Marcello/I-6043-2012; de Sangro, Riccardo/J-2901-2012; Saeed, Mohammad Alam/J-7455-2012; Negrini, Matteo/C-8906-2014; Monge, Maria Roberta/G-9127-2012; Oyanguren, Arantza/K-6454-2014 OI Faccini, Riccardo/0000-0003-2613-5141; Cavoto, Gianluca/0000-0003-2161-918X; Barlow, Roger/0000-0002-8295-8612; Raven, Gerhard/0000-0002-2897-5323; Bettarini, Stefano/0000-0001-7742-2998; Cibinetto, Gianluigi/0000-0002-3491-6231; dong, liaoyuan/0000-0002-4773-5050; Pacetti, Simone/0000-0002-6385-3508; Covarelli, Roberto/0000-0003-1216-5235; Rizzo, Giuliana/0000-0003-1788-2866; Paoloni, Eugenio/0000-0001-5969-8712; Martinez Vidal, F*/0000-0001-6841-6035; Kolomensky, Yury/0000-0001-8496-9975; Lo Vetere, Maurizio/0000-0002-6520-4480; Lusiani, Alberto/0000-0002-6876-3288; Morandin, Mauro/0000-0003-4708-4240; Lusiani, Alberto/0000-0002-6876-3288; Della Ricca, Giuseppe/0000-0003-2831-6982; Di Lodovico, Francesca/0000-0003-3952-2175; Pappagallo, Marco/0000-0001-7601-5602; Calcaterra, Alessandro/0000-0003-2670-4826; Frey, Raymond/0000-0003-0341-2636; Luppi, Eleonora/0000-0002-1072-5633; White, Ryan/0000-0003-3589-5900; Calabrese, Roberto/0000-0002-1354-5400; Patrignani, Claudia/0000-0002-5882-1747; Neri, Nicola/0000-0002-6106-3756; Forti, Francesco/0000-0001-6535-7965; Rotondo, Marcello/0000-0001-5704-6163; de Sangro, Riccardo/0000-0002-3808-5455; Saeed, Mohammad Alam/0000-0002-3529-9255; Negrini, Matteo/0000-0003-0101-6963; Monge, Maria Roberta/0000-0003-1633-3195; Oyanguren, Arantza/0000-0002-8240-7300 NR 34 TC 51 Z9 51 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD NOV PY 2008 VL 78 IS 9 AR 092002 DI 10.1103/PhysRevD.78.092002 PG 13 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 376WO UT WOS:000261213900007 ER PT J AU Aubert, B Bona, M Karyotakis, Y Lees, JP Poireau, V Prencipe, E Prudent, X Tisserand, V Tico, JG Grauges, E Lopez, L Palano, A Pappagallo, M Eigen, G Stugu, B Sun, L Abrams, GS Battaglia, M Brown, DN Cahn, RN Jacobsen, RG Kerth, LT Kolomensky, YG Lynch, G Osipenkov, IL Ronan, MT Tackmann, K Tanabe, T Hawkes, CM Soni, N Watson, AT Koch, H Schroeder, T Walker, D Asgeirsson, DJ Fulsom, BG Hearty, C Mattison, TS McKenna, JA Barrett, M Khan, A Blinov, VE Bukin, AD Buzykaev, AR Druzhinin, VP Golubev, VB Onuchin, AP Serednyakov, SI Skovpen, YI Solodov, EP Todyshev, KY Bondioli, M Curry, S Eschrich, I Kirkby, D Lankford, AJ Lund, P Mandelkern, M Martin, EC Stoker, DP Abachi, S Buchanan, C Gary, JW Liu, F Long, O Shen, BC Vitug, GM Yasin, Z Zhang, L Sharma, V Campagnari, C Hong, TM Kovalskyi, D Mazur, MA Richman, JD Beck, TW Eisner, AM Flacco, CJ Heusch, CA Kroseberg, J Lockman, WS Martinez, AJ Schalk, T Schumm, BA Seiden, A Wilson, MG Winstrom, LO Cheng, CH Doll, DA Echenard, B Fang, F Hitlin, DG Narsky, I Piatenko, T Porter, FC Andreassen, R Mancinelli, G Meadows, BT Mishra, K Sokoloff, MD Bloom, PC Ford, WT Gaz, A Hirschauer, JF Nagel, M Nauenberg, U Smith, JG Ulmer, KA Wagner, SR Ayad, R Soffer, A Toki, WH Wilson, RJ Altenburg, DD Feltresi, E Hauke, A Jasper, H Karbach, M Merkel, J Petzold, A Spaan, B Wacker, K Kobel, MJ Mader, WF Nogowski, R Schubert, KR Schwierz, R Volk, A Bernard, D Bonneaud, GR Latour, E Verderi, M Clark, PJ Playfer, S Watson, JE Andreotti, M Bettoni, D Bozzi, C Calabrese, R Cecchi, A Cibinetto, G Franchini, P Luppi, E Negrini, M Petrella, A Piemontese, L Santoro, V Baldini-Ferroli, R Calcaterra, A de Sangro, R Finocchiaro, G Pacetti, S Patteri, P Peruzzi, IM Piccolo, M Rama, M Zallo, A Buzzo, A Contri, R Lo Vetere, M Macri, MM Monge, MR Passaggio, S Patrignani, C Robutti, E Santroni, A Tosi, S Chaisanguanthum, KS Morii, M Adametz, A Marks, J Schenk, S Uwer, U Klose, V Lacker, HM Bard, DJ Dauncey, PD Nash, JA Tibbetts, M Behera, PK Chai, X Charles, MJ Mallik, U Cochran, J Crawley, HB Dong, L Meyer, WT Prell, S Rosenberg, EI Rubin, AE Gao, YY Gritsan, AV Guo, ZJ Lae, CK Arnaud, N Bequilleux, J D'Orazio, A Davier, M da Costa, JF Grosdidier, G Hocker, A Lepeltier, V Le Diberder, F Lutz, AM Pruvot, S Roudeau, P Schune, MH Serrano, J Sordini, V Stocchi, A Wormser, G Lange, DJ Wright, DM Bingham, I Burke, JP Chavez, CA Fry, JR Gabathuler, E Gamet, R Hutchcroft, DE Payne, DJ Touramanis, C Bevan, AJ Clarke, CK George, KA Di Lodovico, F Sacco, R Sigamani, M Cowan, G Flaecher, HU Hopkins, DA Paramesvaran, S Salvatore, F Wren, AC Brown, DN Davis, CL Denig, AG Fritsch, M Gradl, W Schott, G Alwyn, KE Bailey, D Barlow, RJ Chia, YM Edgar, CL Jackson, G Lafferty, GD West, TJ Yi, JI Anderson, J Chen, C Jawahery, A Roberts, DA Simi, G Tuggle, JM Dallapiccola, C Li, X Salvati, E Saremi, S Cowan, R Dujmic, D Fisher, PH Sciolla, G Spitznagel, M Taylor, F Yamamoto, RK Zhao, M Patel, PM Robertson, SH Lazzaro, A Lombardo, V Palombo, F Bauer, JM Cremaldi, L Godang, R Kroeger, R Sanders, DA Summers, DJ Zhao, HW Simard, M Taras, P Viaud, FB Nicholson, H De Nardo, G Lista, L Monorchio, D Onorato, G Sciacca, C Raven, G Snoek, HL Jessop, CP Knoepfel, KJ LoSecco, JM Wang, WF Benelli, G Corwin, LA Honscheid, K Kagan, H Kass, R Morris, JP Rahimi, AM Regensburger, JJ Sekula, SJ Wong, QK Blount, NL Brau, J Frey, R Igonkina, O Kolb, JA Lu, M Rahmat, R Sinev, NB Strom, D Strube, J Torrence, E Castelli, G Gagliardi, N Margoni, M Morandin, M Posocco, M Rotondo, M Simonetto, F Stroili, R Voci, C Sanchez, PD Ben-Haim, E Briand, H Calderini, G Chauveau, J David, P Del Buono, L Hamon, O Leruste, P Ocariz, J Perez, A Prendki, J Sitt, S Gladney, L Biasini, M Covarelli, R Manoni, E Angelini, C Batignani, G Bettarini, S Carpinelli, M Cervelli, A Forti, F Giorgi, MA Lusiani, A Marchiori, G Morganti, M Neri, N Paoloni, E Rizzo, G Walsh, JJ Pegna, DL Lu, C Olsen, J Smith, AJS Telnov, AV Anulli, F Baracchini, E Cavoto, G del Re, D Di Marco, E Faccini, R Ferrarotto, F Ferroni, F Gaspero, M Jackson, PD Gioi, LL Mazzoni, MA Morganti, S Piredda, G Polci, F Renga, F Voena, C Ebert, M Hartmann, T Schroeder, H Waldi, R Adye, T Franek, B Olaiya, EO Wilson, FF Emery, S Escalier, M Esteve, L Ganzhur, SF de Monchenault, GH Kozanecki, W Vasseur, G Yeche, C Zito, M Chen, XR Liu, H Park, W Purohit, MV White, RM Wilson, JR Allen, MT Aston, D Bartoldus, R Bechtle, P Benitez, JF Cenci, R Coleman, JP Convery, MR Dingfelder, JC Dorfan, J Dubois-Felsmann, GP Dunwoodie, W Field, RC Gabareen, AM Gowdy, SJ Graham, MT Grenier, P Hast, C Innes, WR Kaminski, J Kelsey, MH Kim, H Kim, P Kocian, ML Leith, DWGS Li, S Lindquist, B Luitz, S Luth, V Lynch, HL MacFarlane, DB Marsiske, H Messner, R Muller, DR Neal, H Nelson, S O'Grady, CP Ofte, I Perazzo, A Perl, M Ratcliff, BN Roodman, A Salnikov, AA Schindler, RH Schwiening, J Snyder, A Su, D Sullivan, MK Suzuki, K Swain, SK Thompson, JM Va'vra, J Wagner, AP Weaver, M West, CA Wisniewski, WJ Wittgen, M Wright, DH Wulsin, HW Yarritu, AK Yi, K Young, CC Ziegler, V Burchat, PR Edwards, AJ Majewski, SA Miyashita, TS Petersen, BA Wilden, L Ahmed, S Alam, MS Ernst, JA Pan, B Saeed, MA Zain, SB Spanier, SM Wogsland, BJ Eckmann, R Ritchie, JL Ruland, AM Schilling, CJ Schwitters, RF Drummond, BW Izen, JM Lou, XC Bianchi, F Gamba, D Pelliccioni, M Bomben, M Bosisio, L Cartaro, C Ricca, G Lanceri, L Vitale, L Azzolini, V Lopez-March, N Martinez-Vidal, F Milanes, DA Oyanguren, A Albert, J Banerjee, S Bhuyan, B Choi, HHF Hamano, K Kowalewski, R Lewczuk, MJ Nugent, IM Roney, JM Sobie, RJ Gershon, TJ Harrison, PF Ilic, J Latham, TE Mohanty, GB Band, HR Chen, X Dasu, S Flood, KT Pan, Y Pierini, M Prepost, R Vuosalo, CO Wu, SL AF Aubert, B. Bona, M. Karyotakis, Y. Lees, J. P. Poireau, V. Prencipe, E. Prudent, X. Tisserand, V. Garra Tico, J. Grauges, E. Lopez, L. Palano, A. Pappagallo, M. Eigen, G. Stugu, B. Sun, L. Abrams, G. S. Battaglia, M. Brown, D. N. Cahn, R. N. Jacobsen, R. G. Kerth, L. T. Kolomensky, Yu. G. Lynch, G. Osipenkov, I. L. Ronan, M. T. Tackmann, K. Tanabe, T. Hawkes, C. M. Soni, N. Watson, A. T. Koch, H. Schroeder, T. Walker, D. Asgeirsson, D. J. Fulsom, B. G. Hearty, C. Mattison, T. S. McKenna, J. A. Barrett, M. Khan, A. Blinov, V. E. Bukin, A. D. Buzykaev, A. R. Druzhinin, V. P. Golubev, V. B. Onuchin, A. P. Serednyakov, S. I. Skovpen, Yu. I. Solodov, E. P. Todyshev, K. Yu. Bondioli, M. Curry, S. Eschrich, I. Kirkby, D. Lankford, A. J. Lund, P. Mandelkern, M. Martin, E. C. Stoker, D. P. Abachi, S. Buchanan, C. Gary, J. W. Liu, F. Long, O. Shen, B. C. Vitug, G. M. Yasin, Z. Zhang, L. Sharma, V. Campagnari, C. Hong, T. M. Kovalskyi, D. Mazur, M. A. Richman, J. D. Beck, T. W. Eisner, A. M. Flacco, C. J. Heusch, C. A. Kroseberg, J. Lockman, W. S. Martinez, A. J. Schalk, T. Schumm, B. A. Seiden, A. Wilson, M. G. Winstrom, L. O. Cheng, C. H. Doll, D. A. Echenard, B. Fang, F. Hitlin, D. G. Narsky, I. Piatenko, T. Porter, F. C. Andreassen, R. Mancinelli, G. Meadows, B. T. Mishra, K. Sokoloff, M. D. Bloom, P. C. Ford, W. T. Gaz, A. Hirschauer, J. F. Nagel, M. Nauenberg, U. Smith, J. G. Ulmer, K. A. Wagner, S. R. Ayad, R. Soffer, A. Toki, W. H. Wilson, R. J. Altenburg, D. D. Feltresi, E. Hauke, A. Jasper, H. Karbach, M. Merkel, J. Petzold, A. Spaan, B. Wacker, K. Kobel, M. J. Mader, W. F. Nogowski, R. Schubert, K. R. Schwierz, R. Volk, A. Bernard, D. Bonneaud, G. R. Latour, E. Verderi, M. Clark, P. J. Playfer, S. Watson, J. E. Andreotti, M. Bettoni, D. Bozzi, C. Calabrese, R. Cecchi, A. Cibinetto, G. Franchini, P. Luppi, E. Negrini, M. Petrella, A. Piemontese, L. Santoro, V. Baldini-Ferroli, R. Calcaterra, A. de Sangro, R. Finocchiaro, G. Pacetti, S. Patteri, P. Peruzzi, I. M. Piccolo, M. Rama, M. Zallo, A. Buzzo, A. Contri, R. Lo Vetere, M. Macri, M. M. Monge, M. R. Passaggio, S. Patrignani, C. Robutti, E. Santroni, A. Tosi, S. Chaisanguanthum, K. S. Morii, M. Adametz, A. Marks, J. Schenk, S. Uwer, U. Klose, V. Lacker, H. M. Bard, D. J. Dauncey, P. D. Nash, J. A. Tibbetts, M. Behera, P. K. Chai, X. Charles, M. J. Mallik, U. Cochran, J. Crawley, H. B. Dong, L. Meyer, W. T. Prell, S. Rosenberg, E. I. Rubin, A. E. Gao, Y. Y. Gritsan, A. V. Guo, Z. J. Lae, C. K. Arnaud, N. Bequilleux, J. D'Orazio, A. Davier, M. da Costa, J. Firmino Grosdidier, G. Hoecker, A. Lepeltier, V. Le Diberder, F. Lutz, A. M. Pruvot, S. Roudeau, P. Schune, M. H. Serrano, J. Sordini, V. Stocchi, A. Wormser, G. Lange, D. J. Wright, D. M. Bingham, I. Burke, J. P. Chavez, C. A. Fry, J. R. Gabathuler, E. Gamet, R. Hutchcroft, D. E. Payne, D. J. Touramanis, C. Bevan, A. J. Clarke, C. K. George, K. A. Di Lodovico, F. Sacco, R. Sigamani, M. Cowan, G. Flaecher, H. U. Hopkins, D. A. Paramesvaran, S. Salvatore, F. Wren, A. C. Brown, D. N. Davis, C. L. Denig, A. G. Fritsch, M. Gradl, W. Schott, G. Alwyn, K. E. Bailey, D. Barlow, R. J. Chia, Y. M. Edgar, C. L. Jackson, G. Lafferty, G. D. West, T. J. Yi, J. I. Anderson, J. Chen, C. Jawahery, A. Roberts, D. A. Simi, G. Tuggle, J. M. Dallapiccola, C. Li, X. Salvati, E. Saremi, S. Cowan, R. Dujmic, D. Fisher, P. H. Sciolla, G. Spitznagel, M. Taylor, F. Yamamoto, R. K. Zhao, M. Patel, P. M. Robertson, S. H. Lazzaro, A. Lombardo, V. Palombo, F. Bauer, J. M. Cremaldi, L. Godang, R. Kroeger, R. Sanders, D. A. Summers, D. J. Zhao, H. W. Simard, M. Taras, P. Viaud, F. B. Nicholson, H. De Nardo, G. Lista, L. Monorchio, D. Onorato, G. Sciacca, C. Raven, G. Snoek, H. L. Jessop, C. P. Knoepfel, K. J. LoSecco, J. M. Wang, W. F. Benelli, G. Corwin, L. A. Honscheid, K. Kagan, H. Kass, R. Morris, J. P. Rahimi, A. M. Regensburger, J. J. Sekula, S. J. Wong, Q. K. Blount, N. L. Brau, J. Frey, R. Igonkina, O. Kolb, J. A. Lu, M. Rahmat, R. Sinev, N. B. Strom, D. Strube, J. Torrence, E. Castelli, G. Gagliardi, N. Margoni, M. Morandin, M. Posocco, M. Rotondo, M. Simonetto, F. Stroili, R. Voci, C. Sanchez, P. del Amo Ben-Haim, E. Briand, H. Calderini, G. Chauveau, J. David, P. Del Buono, L. Hamon, O. Leruste, Ph. Ocariz, J. Perez, A. Prendki, J. Sitt, S. Gladney, L. Biasini, M. Covarelli, R. Manoni, E. Angelini, C. Batignani, G. Bettarini, S. Carpinelli, M. Cervelli, A. Forti, F. Giorgi, M. A. Lusiani, A. Marchiori, G. Morganti, M. Neri, N. Paoloni, E. Rizzo, G. Walsh, J. J. Pegna, D. Lopes Lu, C. Olsen, J. Smith, A. J. S. Telnov, A. V. Anulli, F. Baracchini, E. Cavoto, G. del Re, D. Di Marco, E. Faccini, R. Ferrarotto, F. Ferroni, F. Gaspero, M. Jackson, P. D. Gioi, L. Li Mazzoni, M. A. Morganti, S. Piredda, G. Polci, F. Renga, F. Voena, C. Ebert, M. Hartmann, T. Schroeder, H. Waldi, R. Adye, T. Franek, B. Olaiya, E. O. Wilson, F. F. Emery, S. Escalier, M. Esteve, L. Ganzhur, S. F. de Monchenault, G. Hamel Kozanecki, W. Vasseur, G. Yeche, Ch. Zito, M. Chen, X. R. Liu, H. Park, W. Purohit, M. V. White, R. M. Wilson, J. R. Allen, M. T. Aston, D. Bartoldus, R. Bechtle, P. Benitez, J. F. Cenci, R. Coleman, J. P. Convery, M. R. Dingfelder, J. C. Dorfan, J. Dubois-Felsmann, G. P. Dunwoodie, W. Field, R. C. Gabareen, A. M. Gowdy, S. J. Graham, M. T. Grenier, P. Hast, C. Innes, W. R. Kaminski, J. Kelsey, M. H. Kim, H. Kim, P. Kocian, M. L. Leith, D. W. G. S. Li, S. Lindquist, B. Luitz, S. Luth, V. Lynch, H. L. MacFarlane, D. B. Marsiske, H. Messner, R. Muller, D. R. Neal, H. Nelson, S. O'Grady, C. P. Ofte, I. Perazzo, A. Perl, M. Ratcliff, B. N. Roodman, A. Salnikov, A. A. Schindler, R. H. Schwiening, J. Snyder, A. Su, D. Sullivan, M. K. Suzuki, K. Swain, S. K. Thompson, J. M. Va'vra, J. Wagner, A. P. Weaver, M. West, C. A. Wisniewski, W. J. Wittgen, M. Wright, D. H. Wulsin, H. W. Yarritu, A. K. Yi, K. Young, C. C. Ziegler, V. Burchat, P. R. Edwards, A. J. Majewski, S. A. Miyashita, T. S. Petersen, B. A. Wilden, L. Ahmed, S. Alam, M. S. Ernst, J. A. Pan, B. Saeed, M. A. Zain, S. B. Spanier, S. M. Wogsland, B. J. Eckmann, R. Ritchie, J. L. Ruland, A. M. Schilling, C. J. Schwitters, R. F. Drummond, B. W. Izen, J. M. Lou, X. C. Bianchi, F. Gamba, D. Pelliccioni, M. Bomben, M. Bosisio, L. Cartaro, C. Della Ricca, G. Lanceri, L. Vitale, L. Azzolini, V. Lopez-March, N. Martinez-Vidal, F. Milanes, D. A. Oyanguren, A. Albert, J. Banerjee, Sw. Bhuyan, B. Choi, H. H. F. Hamano, K. Kowalewski, R. Lewczuk, M. J. Nugent, I. M. Roney, J. M. Sobie, R. J. Gershon, T. J. Harrison, P. F. Ilic, J. Latham, T. E. Mohanty, G. B. Band, H. R. Chen, X. Dasu, S. Flood, K. T. Pan, Y. Pierini, M. Prepost, R. Vuosalo, C. O. Wu, S. L. CA BaBar Collaboration TI Observation of B(0) -> chi(c0)K*(0) and evidence for B(+) -> chi(c0)K*(+) SO PHYSICAL REVIEW D LA English DT Article ID MESONS; DECAYS AB We present the observation of the decay B(0) -> chi(c0)K(*0) as well as evidence of B(+) -> chi(c0)K(*+), with an 8.9 and a 3.6 standard deviation significance, respectively, using a data sample of 454 X 10(6) Y(4S) -> B (B) over bar decays collected with the BABAR detector at the PEP-II B meson factory located at the Stanford Linear Accelerator Center (SLAC). The measured branching fractions are B(B(0) -> chi(c0)K(*0)) = (1.7 +/- 0.3 +/- 0.2) x 10(-4) and B(B(+) -> chi(c0)K(*+)) = (1.4 +/- 0.5 +/- 0.2) x 10(-4), where the first quoted errors are statistical and the second are systematic. We obtain a branching fraction upper limit of B(B(+) -> chi(c0)K(*+)) < 2.1 x 10(-4) at the 90% confidence level. C1 [Aubert, B.; Bona, M.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prencipe, E.; Prudent, X.; Tisserand, V.] CNRS, IN2P3, Phys Particules Lab, F-74941 Annecy Le Vieux, France. [Aubert, B.; Bona, M.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prencipe, E.; Prudent, X.; Tisserand, V.] Univ Sovie, F-74941 Annecy Le Vieux, France. [Garra Tico, J.; Grauges, E.] Univ Barcelona, Fac Fis, Dept ECM, E-08028 Barcelona, Spain. [Lopez, L.; Palano, A.; Pappagallo, M.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Lopez, L.; Palano, A.; Pappagallo, M.] Univ Bari, Dipartmento Fis, I-70126 Bari, Italy. [Eigen, G.; Stugu, B.; Sun, L.] Univ Bergen, Inst Phys, N-5007 Bergen, Norway. [Abrams, G. S.; Battaglia, M.; Brown, D. N.; Cahn, R. N.; Jacobsen, R. G.; Kerth, L. T.; Kolomensky, Yu. G.; Lynch, G.; Osipenkov, I. L.; Ronan, M. T.; Tackmann, K.; Tanabe, T.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Hawkes, C. M.; Soni, N.; Watson, A. T.] Univ Birmingham, Birmingham B15 2TT, W Midlands, England. [Koch, H.; Schroeder, T.] Ruhr Univ Bochum, Inst Expt Phys, D-44780 Bochum, Germany. [Walker, D.] Univ Bristol, Bristol BS8 1TL, Avon, England. [Asgeirsson, D. J.; Fulsom, B. G.; Hearty, C.; Mattison, T. S.; McKenna, J. A.] Univ British Columbia, Vancouver, BC V6T 1Z1, Canada. [Barrett, M.; Khan, A.] Brunel Univ, Uxbridge UB8 3PH, Middx, England. [Blinov, V. E.; Bukin, A. D.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.] Budker Inst Nucl Phys, Novosibirsk 630090, Russia. [Bondioli, M.; Curry, S.; Eschrich, I.; Kirkby, D.; Lankford, A. J.; Lund, P.; Mandelkern, M.; Martin, E. C.; Stoker, D. P.] Univ Calif Irvine, Irvine, CA 92697 USA. [Abachi, S.; Buchanan, C.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Gary, J. W.; Liu, F.; Long, O.; Shen, B. C.; Vitug, G. M.; Yasin, Z.; Zhang, L.] Univ Calif Riverside, Riverside, CA 92521 USA. [Sharma, V.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Campagnari, C.; Hong, T. M.; Kovalskyi, D.; Mazur, M. A.; Richman, J. D.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Beck, T. W.; Eisner, A. M.; Flacco, C. J.; Heusch, C. A.; Kroseberg, J.; Lockman, W. S.; Martinez, A. J.; Schalk, T.; Schumm, B. A.; Seiden, A.; Wilson, M. G.; Winstrom, L. O.] Univ Calif Santa Cruz, Inst Particle Phys, Santa Cruz, CA 95064 USA. [Cheng, C. H.; Doll, D. A.; Echenard, B.; Fang, F.; Hitlin, D. G.; Narsky, I.; Piatenko, T.; Porter, F. C.] CALTECH, Pasadena, CA 91125 USA. [Mancinelli, G.; Meadows, B. T.; Mishra, K.; Sokoloff, M. D.; Anderson, J.] Univ Cincinnati, Cincinnati, OH 45221 USA. [Bloom, P. C.; Ford, W. T.; Gaz, A.; Hirschauer, J. F.; Nagel, M.; Nauenberg, U.; Smith, J. G.; Ulmer, K. A.; Wagner, S. R.] Univ Colorado, Boulder, CO 80309 USA. [Ayad, R.; Soffer, A.; Toki, W. H.; Wilson, R. J.] Colorado State Univ, Ft Collins, CO 80523 USA. [Altenburg, D. D.; Feltresi, E.; Hauke, A.; Jasper, H.; Karbach, M.; Merkel, J.; Petzold, A.; Spaan, B.; Wacker, K.] Tech Univ Dortmund, Fak Phys, D-44221 Dortmund, Germany. [Kobel, M. J.; Mader, W. F.; Nogowski, R.; Schubert, K. R.; Schwierz, R.; Volk, A.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. [Bernard, D.; Bonneaud, G. R.; Latour, E.; Verderi, M.] Ecole Polytech, CNRS, Lab Leprince Ringuet, IN2P3, F-91128 Palaiseau, France. [Clark, P. J.; Playfer, S.; Watson, J. E.] Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. [Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Franchini, P.; Luppi, E.; Negrini, M.; Petrella, A.; Piemontese, L.; Santoro, V.] Ist Nazl Fis Nucl, Sez Ferrara, I-44100 Ferrara, Italy. [Andreotti, M.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Franchini, P.; Luppi, E.; Negrini, M.; Petrella, A.; Santoro, V.] Univ Ferrara, Dipartmento Fis, I-44100 Ferrara, Italy. [Baldini-Ferroli, R.; Calcaterra, A.; de Sangro, R.; Finocchiaro, G.; Pacetti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; Zallo, A.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Buzzo, A.; Contri, R.; Lo Vetere, M.; Macri, M. M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Santroni, A.; Tosi, S.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Contri, R.; Lo Vetere, M.; Monge, M. R.; Patrignani, C.; Santroni, A.; Tosi, S.] Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy. [Chaisanguanthum, K. S.; Morii, M.] Harvard Univ, Cambridge, MA 02138 USA. [Adametz, A.; Marks, J.; Schenk, S.; Uwer, U.] Univ Heidelberg, Inst Phys, D-69120 Heidelberg, Germany. [Klose, V.; Lacker, H. M.] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany. [Dauncey, P. D.; Nash, J. A.; Tibbetts, M.] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. [Behera, P. K.; Chai, X.; Charles, M. J.; Mallik, U.] Univ Iowa, Iowa City, IA 52242 USA. [Cochran, J.; Crawley, H. B.; Dong, L.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Rubin, A. E.] Iowa State Univ, Ames, IA 50011 USA. [Gao, Y. Y.; Gritsan, A. V.; Guo, Z. J.; Lae, C. K.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Arnaud, N.; Bequilleux, J.; D'Orazio, A.; Davier, M.; da Costa, J. Firmino; Grosdidier, G.; Hoecker, A.; Lepeltier, V.; Le Diberder, F.; Lutz, A. M.; Pruvot, S.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wormser, G.] CNRS, Lab Accelerateur Lineaire, IN2P3, F-91898 Orsay, France. [Arnaud, N.; Bequilleux, J.; D'Orazio, A.; Davier, M.; da Costa, J. Firmino; Grosdidier, G.; Hoecker, A.; Lepeltier, V.; Le Diberder, F.; Lutz, A. M.; Pruvot, S.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wormser, G.] Univ Paris 11, Ctr Sci Orsay, F-91898 Orsay, France. [Lange, D. J.; Wright, D. M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Bingham, I.; Burke, J. P.; Chavez, C. A.; Fry, J. R.; Gabathuler, E.; Gamet, R.; Hutchcroft, D. E.; Payne, D. J.; Touramanis, C.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Bevan, A. J.; Clarke, C. K.; George, K. A.; Di Lodovico, F.; Sacco, R.; Sigamani, M.] Univ London, London E1 4NS, England. [Cowan, G.; Flaecher, H. U.; Hopkins, D. A.; Paramesvaran, S.; Salvatore, F.; Wren, A. C.] Univ London, Royal Holloway & Bedford New Coll, Egham TW20 0EX, Surrey, England. [Brown, D. N.; Davis, C. L.] Univ Louisville, Louisville, KY 40292 USA. [Denig, A. G.; Fritsch, M.; Gradl, W.; Schott, G.] Johannes Gutenberg Univ Mainz, Inst Kernphys, D-55099 Mainz, Germany. [Alwyn, K. E.; Bailey, D.; Barlow, R. J.; Chia, Y. M.; Edgar, C. L.; Jackson, G.; Lafferty, G. D.; West, T. J.; Yi, J. I.] Univ Manchester, Manchester M13 9PL, Lancs, England. [Anderson, J.; Chen, C.; Jawahery, A.; Roberts, D. A.; Simi, G.; Tuggle, J. M.] Univ Maryland, College Pk, MD 20742 USA. [Dallapiccola, C.; Li, X.; Salvati, E.; Saremi, S.] Univ Massachusetts, Amherst, MA 01003 USA. [Cowan, R.; Dujmic, D.; Fisher, P. H.; Sciolla, G.; Spitznagel, M.; Taylor, F.; Yamamoto, R. K.; Zhao, M.] MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. [Robertson, S. H.] McGill Univ, Montreal, PQ H3A 2T8, Canada. [Lazzaro, A.; Lombardo, V.; Palombo, F.] Ist Nazl Fis Nucl, Sez Milano, I-20133 Milan, Italy. [Lazzaro, A.; Lombardo, V.; Palombo, F.] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. [Zhao, M.; Bauer, J. M.; Cremaldi, L.; Godang, R.; Kroeger, R.; Sanders, D. A.; Summers, D. J.] Univ Mississippi, University, MS 38677 USA. [Simard, M.; Taras, P.; Viaud, F. B.] Univ Montreal, Montreal, PQ H3C 3J7, Canada. [Nicholson, H.] Mt Holyoke Coll, S Hadley, MA 01075 USA. [De Nardo, G.; Lista, L.; Monorchio, D.; Onorato, G.; Sciacca, C.] Ist Nazl Fis Nucl, Sez Nepoli, I-80126 Naples, Italy. [De Nardo, G.; Lista, L.; Monorchio, D.; Onorato, G.; Sciacca, C.] Univ Naples Federico 2, Dipartimento Sci Fisiche, I-80126 Naples, Italy. [Raven, G.; Snoek, H. L.] Natl Inst Nucl & High Energy Phys, NIKHEF, NL-1009 DB Amsterdam, Netherlands. [Jessop, C. P.; Knoepfel, K. J.; LoSecco, J. M.; Wang, W. F.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Corwin, L. A.; Honscheid, K.; Kagan, H.; Kass, R.; Morris, J. P.; Rahimi, A. M.; Regensburger, J. J.; Sekula, S. J.; Wong, Q. K.] Ohio State Univ, Columbus, OH 43210 USA. [Blount, N. L.; Brau, J.; Frey, R.; Igonkina, O.; Kolb, J. A.; Lu, M.; Rahmat, R.; Sinev, N. B.; Strom, D.; Strube, J.; Torrence, E.] Univ Oregon, Eugene, OR 97403 USA. [Castelli, G.; Gagliardi, N.; Margoni, M.; Morandin, M.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.; Voci, C.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Castelli, G.; Gagliardi, N.; Margoni, M.; Simonetto, F.; Stroili, R.; Voci, C.] Univ Padua, Dipartimento Fis, I-35131 Padua, Italy. [Sanchez, P. del Amo; Ben-Haim, E.; Briand, H.; Calderini, G.; Chauveau, J.; David, P.; Del Buono, L.; Hamon, O.; Leruste, Ph.; Ocariz, J.; Perez, A.; Prendki, J.; Sitt, S.] Univ Paris 07, CNRS, Lab Phys Nucl & Haute Energies, F-75252 Paris, France. [Gladney, L.] Univ Penn, Philadelphia, PA 19104 USA. [Biasini, M.; Covarelli, R.; Manoni, E.] Ist Nazl Fis Nucl, Sez Perugia, I-06100 Perugia, Italy. [Biasini, M.; Covarelli, R.; Manoni, E.] Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. [Bettoni, D.; Angelini, C.; Batignani, G.; Carpinelli, M.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Marchiori, G.; Morganti, M.; Neri, N.; Paoloni, E.; Rizzo, G.; Walsh, J. J.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Angelini, C.; Giorgi, M. A.; Marchiori, G.; Morganti, M.; Neri, N.; Paoloni, E.; Rizzo, G.] Univ Pisa, Dipartimento Fis, I-56127 Pisa, Italy. [Lusiani, A.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Pegna, D. Lopes; Lu, C.; Olsen, J.; Smith, A. J. S.; Telnov, A. V.] Princeton Univ, Princeton, NJ 08544 USA. [Morganti, M.; Anulli, F.; Baracchini, E.; Cavoto, G.; del Re, D.; Di Marco, E.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Jackson, P. D.; Gioi, L. Li; Mazzoni, M. A.; Piredda, G.; Polci, F.; Renga, F.; Voena, C.] Ist Nazl Fis Nucl, Sez Roma, I-00185 Rome, Italy. [Baracchini, E.; del Re, D.; Di Marco, E.; Faccini, R.; Ferroni, F.; Gaspero, M.; Polci, F.; Renga, F.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Ebert, M.; Hartmann, T.; Schroeder, H.; Waldi, R.] Univ Rostock, D-18051 Rostock, Germany. [Adye, T.; Franek, B.; Olaiya, E. O.; Wilson, F. F.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Emery, S.; Escalier, M.; Esteve, L.; Ganzhur, S. F.; de Monchenault, G. Hamel; Kozanecki, W.; Vasseur, G.; Yeche, Ch.; Zito, M.] CEA, Irfu, SPP, Ctr Saclay, F-91191 Gif Sur Yvette, France. [Chen, X. R.; Liu, H.; Park, W.; Purohit, M. V.; White, R. M.; Wilson, J. R.] Univ S Carolina, Columbia, SC 29208 USA. [Allen, M. T.; Aston, D.; Bartoldus, R.; Bechtle, P.; Benitez, J. F.; Cenci, R.; Coleman, J. P.; Convery, M. R.; Dingfelder, J. C.; Dorfan, J.; Dubois-Felsmann, G. P.; Dunwoodie, W.; Field, R. C.; Gabareen, A. M.; Gowdy, S. J.; Graham, M. T.; Grenier, P.; Hast, C.; Innes, W. R.; Kaminski, J.; Kelsey, M. H.; Kim, H.; Kim, P.; Kocian, M. L.; Leith, D. W. G. S.; Li, S.; Lindquist, B.; Luitz, S.; Luth, V.; Lynch, H. L.; MacFarlane, D. B.; Marsiske, H.; Messner, R.; Muller, D. R.; Neal, H.; Nelson, S.; O'Grady, C. P.; Ofte, I.; Perazzo, A.; Perl, M.; Ratcliff, B. N.; Roodman, A.; Salnikov, A. A.; Schindler, R. H.; Schwiening, J.; Snyder, A.; Su, D.; Sullivan, M. K.; Suzuki, K.; Swain, S. K.; Thompson, J. M.; Va'vra, J.; Wagner, A. P.; Weaver, M.; West, C. A.; Wisniewski, W. J.; Wittgen, M.; Wright, D. H.; Wulsin, H. W.; Yarritu, A. K.; Yi, K.; Young, C. C.; Ziegler, V.] Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. [Burchat, P. R.; Edwards, A. J.; Majewski, S. A.; Miyashita, T. S.; Petersen, B. A.; Wilden, L.] Stanford Univ, Stanford, CA 94305 USA. [Ahmed, S.; Alam, M. S.; Ernst, J. A.; Pan, B.; Saeed, M. A.; Zain, S. B.] SUNY Albany, Albany, NY 12222 USA. [Spanier, S. M.; Wogsland, B. J.] Univ Tennessee, Knoxville, TN 37996 USA. [Eckmann, R.; Ritchie, J. L.; Ruland, A. M.; Schilling, C. J.; Schwitters, R. F.] Univ Texas Austin, Austin, TX 78712 USA. [Drummond, B. W.; Izen, J. M.; Lou, X. C.] Univ Texas Dallas, Richardson, TX 75083 USA. [Bianchi, F.; Gamba, D.; Pelliccioni, M.] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy. [Bianchi, F.; Gamba, D.; Pelliccioni, M.] Univ Turin, Dipartimento Fis Sperimentale, I-10125 Turin, Italy. [Bomben, M.; Bosisio, L.; Cartaro, C.; Della Ricca, G.; Lanceri, L.; Vitale, L.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Bomben, M.; Bosisio, L.; Cartaro, C.; Della Ricca, G.; Lanceri, L.; Vitale, L.] Univ Trieste, Dipartmento Fis, I-34127 Trieste, Italy. [Azzolini, V.; Lopez-March, N.; Martinez-Vidal, F.; Milanes, D. A.; Oyanguren, A.] Univ Valencia, CSIC, IFIC, E-46071 Valencia, Spain. [Albert, J.; Banerjee, Sw.; Bhuyan, B.; Choi, H. H. F.; Hamano, K.; Kowalewski, R.; Lewczuk, M. J.; Nugent, I. M.; Roney, J. M.; Sobie, R. J.] Univ Victoria, Victoria, BC V8W 3P6, Canada. [Gershon, T. J.; Harrison, P. F.; Ilic, J.; Latham, T. E.; Mohanty, G. B.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Band, H. R.; Chen, X.; Dasu, S.; Flood, K. T.; Pan, Y.; Pierini, M.; Prepost, R.; Vuosalo, C. O.; Wu, S. L.] Univ Wisconsin, Madison, WI 53706 USA. [Carpinelli, M.] Univ Sassari, I-07100 Sassari, Italy. RP Aubert, B (reprint author), CNRS, IN2P3, Phys Particules Lab, F-74941 Annecy Le Vieux, France. RI Calabrese, Roberto/G-4405-2015; Martinez Vidal, F*/L-7563-2014; Kolomensky, Yury/I-3510-2015; Lo Vetere, Maurizio/J-5049-2012; Lusiani, Alberto/N-2976-2015; Morandin, Mauro/A-3308-2016; Lusiani, Alberto/A-3329-2016; Di Lodovico, Francesca/L-9109-2016; Pappagallo, Marco/R-3305-2016; Calcaterra, Alessandro/P-5260-2015; Frey, Raymond/E-2830-2016; Oyanguren, Arantza/K-6454-2014; Luppi, Eleonora/A-4902-2015; White, Ryan/E-2979-2015; Patrignani, Claudia/C-5223-2009; Neri, Nicola/G-3991-2012; Forti, Francesco/H-3035-2011; Rotondo, Marcello/I-6043-2012; de Sangro, Riccardo/J-2901-2012; Saeed, Mohammad Alam/J-7455-2012; Della Ricca, Giuseppe/B-6826-2013; Negrini, Matteo/C-8906-2014; Monge, Maria Roberta/G-9127-2012; OI Calabrese, Roberto/0000-0002-1354-5400; Martinez Vidal, F*/0000-0001-6841-6035; Kolomensky, Yury/0000-0001-8496-9975; Lo Vetere, Maurizio/0000-0002-6520-4480; Lusiani, Alberto/0000-0002-6876-3288; Morandin, Mauro/0000-0003-4708-4240; Lusiani, Alberto/0000-0002-6876-3288; Di Lodovico, Francesca/0000-0003-3952-2175; Pappagallo, Marco/0000-0001-7601-5602; Calcaterra, Alessandro/0000-0003-2670-4826; Frey, Raymond/0000-0003-0341-2636; Corwin, Luke/0000-0001-7143-3821; Oyanguren, Arantza/0000-0002-8240-7300; Luppi, Eleonora/0000-0002-1072-5633; White, Ryan/0000-0003-3589-5900; Patrignani, Claudia/0000-0002-5882-1747; Neri, Nicola/0000-0002-6106-3756; Forti, Francesco/0000-0001-6535-7965; Rotondo, Marcello/0000-0001-5704-6163; de Sangro, Riccardo/0000-0002-3808-5455; Saeed, Mohammad Alam/0000-0002-3529-9255; Della Ricca, Giuseppe/0000-0003-2831-6982; Negrini, Matteo/0000-0003-0101-6963; Monge, Maria Roberta/0000-0003-1633-3195; Lanceri, Livio/0000-0001-8220-3095; Ebert, Marcus/0000-0002-3014-1512; Hamel de Monchenault, Gautier/0000-0002-3872-3592; Carpinelli, Massimo/0000-0002-8205-930X; Sciacca, Crisostomo/0000-0002-8412-4072; Adye, Tim/0000-0003-0627-5059; Lafferty, George/0000-0003-0658-4919; Wilson, Robert/0000-0002-8184-4103; Strube, Jan/0000-0001-7470-9301; Chen, Chunhui /0000-0003-1589-9955 NR 14 TC 3 Z9 3 U1 0 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD NOV PY 2008 VL 78 IS 9 AR 091101 DI 10.1103/PhysRevD.78.091101 PG 8 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 376WO UT WOS:000261213900001 ER PT J AU Aubert, B Bona, M Karyotakis, Y Lees, JP Poireau, V Prencipe, E Prudent, X Tisserand, V Tico, JG Grauges, E Lopez, L Palano, A Pappagallo, M Eigen, G Stugu, B Sun, L Abrams, GS Battaglia, M Brown, DN Cahn, RN Jacobsen, RG Kerth, LT Kolomensky, YG Lynch, G Osipenkov, IL Ronan, MT Tackmann, K Tanabe, T Hawkes, CM Soni, N Watson, AT Koch, H Schroeder, T Walker, D Asgeirsson, DJ Fulsom, BG Hearty, C Mattison, TS McKenna, JA Barrett, M Khan, A Blinov, VE Bukin, AD Buzykaev, AR Druzhinin, VP Golubev, VB Onuchin, AP Serednyakov, SI Skovpen, YI Solodov, EP Todyshev, KY Bondioli, M Curry, S Eschrich, I Kirkby, D Lankford, AJ Lund, P Mandelkern, M Martin, EC Stoker, DP Abachi, S Buchanan, C Gary, JW Liu, F Long, O Shen, BC Vitug, GM Yasin, Z Zhang, L Sharma, V Campagnari, C Hong, TM Kovalskyi, D Mazur, MA Richman, JD Beck, TW Eisner, AM Flacco, CJ Heusch, CA Kroseberg, J Lockman, WS Martinez, AJ Schalk, T Schumm, BA Seiden, A Wilson, MG Winstrom, LO Cheng, CH Doll, DA Echenard, B Fang, F Hitlin, DG Narsky, I Piatenko, T Porter, FC Andreassen, R Mancinelli, G Meadows, BT Mishra, K Sokoloff, MD Bloom, PC Ford, WT Gaz, A Hirschauer, JF Nagel, M Nauenberg, U Smith, JG Ulmer, KA Wagner, SR Ayad, R Soffer, A Toki, WH Wilson, RJ Altenburg, DD Feltresi, E Hauke, A Jasper, H Karbach, M Merkel, J Petzold, A Spaan, B Wacker, K Kobel, MJ Mader, WF Nogowski, R Schubert, KR Schwierz, R Volk, A Bernard, D Bonneaud, GR Latour, E Verderi, M Clark, PJ Playfer, S Watson, JE Andreotti, M Bettoni, D Bozzi, C Calabrese, R Cecchi, A Cibinetto, G Franchini, P Luppi, E Negrini, M Petrella, A Piemontese, L Santoro, V Baldini-Ferroli, R Calcaterra, A de Sangro, R Finocchiaro, G Pacetti, S Patteri, P Peruzzi, IM Piccolo, M Rama, M Zallo, A Buzzo, A Contri, R Lo Vetere, M Macri, MM Monge, MR Passaggio, S Patrignani, C Robutti, E Santroni, A Tosi, S Chaisanguanthum, KS Morii, M Adametz, A Marks, J Schenk, S Uwer, U Klose, V Lacker, HM Bard, DJ Dauncey, PD Nash, JA Tibbetts, M Behera, PK Chai, X Charles, MJ Mallik, U Cochran, J Crawley, HB Dong, L Meyer, WT Prell, S Rosenberg, EI Rubin, AE Gao, YY Gritsan, AV Guo, ZJ Lae, CK Arnaud, N Bequilleux, J D'Orazio, A Davier, M da Costa, JF Grosdidier, G Hocker, A Lepeltier, V Le Diberder, F Lutz, AM Pruvot, S Roudeau, P Schune, MH Serrano, J Sordini, V Stocchi, A Wormser, G Lange, DJ Wright, DM Bingham, I Burke, JP Chavez, CA Fry, JR Gabathuler, E Gamet, R Hutchcroft, DE Payne, DJ Touramanis, C Bevan, AJ Clarke, CK George, KA Di Lodovico, F Sacco, R Sigamani, M Cowan, G Flaecher, HU Hopkins, DA Paramesvaran, S Salvatore, F Wren, AC Brown, DN Davis, CL Denig, AG Fritsch, M Gradl, W Schott, G Alwyn, KE Bailey, D Barlow, RJ Chia, YM Edgar, CL Jackson, G Lafferty, GD West, TJ Yi, JI Anderson, J Chen, C Jawahery, A Roberts, DA Simi, G Tuggle, JM Dallapiccola, C Li, X Salvati, E Saremi, S Cowan, R Dujmic, D Fisher, PH Sciolla, G Spitznagel, M Taylor, F Yamamoto, RK Zhao, M Patel, PM Robertson, SH Lazzaro, A Lombardo, V Palombo, F Bauer, JM Cremaldi, L Godang, R Kroeger, R Sanders, DA Summers, DJ Zhao, HW Simard, M Taras, P Viaud, FB Nicholson, H De Nardo, G Lista, L Monorchio, D Onorato, G Sciacca, C Raven, G Snoek, HL Jessop, CP Knoepfel, KJ LoSecco, JM Wang, WF Benelli, G Corwin, LA Honscheid, K Kagan, H Kass, R Morris, JP Rahimi, AM Regensburger, JJ Sekula, SJ Wong, QK Blount, NL Brau, J Frey, R Igonkina, O Kolb, JA Lu, M Rahmat, R Sinev, NB Strom, D Strube, J Torrence, E Castelli, G Gagliardi, N Margoni, M Morandin, M Posocco, M Rotondo, M Simonetto, F Stroili, R Voci, C Sanchez, PD Ben-Haim, E Briand, H Calderini, G Chauveau, J David, P Del Buono, L Hamon, O Leruste, P Ocariz, J Perez, A Prendki, J Sitt, S Gladney, L Biasini, M Covarelli, R Manoni, E Angelini, C Batignani, G Bettarini, S Carpinelli, M Cervelli, A Forti, F Giorgi, MA Lusiani, A Marchiori, G Morganti, M Neri, N Paoloni, E Rizzo, G Walsh, JJ Pegna, DL Lu, C Olsen, J Smith, AJS Telnov, AV Anulli, F Baracchini, E Cavoto, G del Re, D Di Marco, E Faccini, R Ferrarotto, F Ferroni, F Gaspero, M Jackson, PD Li Gioi, L Mazzoni, MA Morganti, S Piredda, G Polci, F Renga, F Voena, C Ebert, M Hartmann, T Schroder, H Waldi, R Adye, T Franek, B Olaiya, EO Wilson, FF Emery, S Escalier, M Esteve, L Ganzhur, SF de Monchenault, GH Kozanecki, W Vasseur, G Yeche, C Zito, M Chen, XR Liu, H Park, W Purohit, MV White, RM Wilson, JR Allen, MT Aston, D Bartoldus, R Bechtle, P Benitez, JF Cenci, R Coleman, JP Convery, MR Dingfelder, JC Dorfan, J Dubois-Felsmann, GP Dunwoodie, W Field, RC Gabareen, AM Gowdy, SJ Graham, MT Grenier, P Hast, C Innes, WR Kaminski, J Kelsey, MH Kim, H Kim, P Kocian, ML Leith, DWGS Li, S Lindquist, B Luitz, S Luth, V Lynch, HL MacFarlane, DB Marsiske, H Messner, R Muller, DR Neal, H Nelson, S O'Grady, CP Ofte, I Perazzo, A Perl, M Ratcliff, BN Roodman, A Salnikov, AA Schindler, RH Schwiening, J Snyder, A Su, D Sullivan, MK Suzuki, K Swain, SK Thompson, JM Va'vra, J Wagner, AP Weaver, M West, CA Wisniewski, WJ Wittgen, M Wright, DH Wulsin, HW Yarritu, AK Yi, K Young, CC Ziegler, V Burchat, PR Edwards, AJ Majewski, SA Miyashita, TS Petersen, BA Wilden, L Ahmed, S Alam, MS Ernst, JA Pan, B Saeed, MA Zain, SB Spanier, SM Wogsland, BJ Eckmann, R Ritchie, JL Ruland, AM Schilling, CJ Schwitters, RF Drummond, BW Izen, JM Lou, XC Bianchi, F Gamba, D Pelliccioni, M Bomben, M Bosisio, L Cartaro, C Della Ricca, G Lanceri, L Vitale, L Azzolini, V Lopez-March, N Martinez-Vidal, F Milanes, DA Oyanguren, A Albert, J Banerjee, S Bhuyan, B Choi, HHF Hamano, K Kowalewski, R Lewczuk, MJ Nugent, IM Roney, JM Sobie, RJ Gershon, TJ Harrison, PF Ilic, J Latham, TE Mohanty, GB Band, HR Chen, X Dasu, S Flood, KT Pan, Y Pierini, M Prepost, R Vuosalo, CO Wu, SL AF Aubert, B. Bona, M. Karyotakis, Y. Lees, J. P. Poireau, V. Prencipe, E. Prudent, X. Tisserand, V. Garra Tico, J. Grauges, E. Lopez, L. Palano, A. Pappagallo, M. Eigen, G. Stugu, B. Sun, L. Abrams, G. S. Battaglia, M. Brown, D. N. Cahn, R. N. Jacobsen, R. G. Kerth, L. T. Kolomensky, Yu. G. Lynch, G. Osipenkov, I. L. Ronan, M. T. Tackmann, K. Tanabe, T. Hawkes, C. M. Soni, N. Watson, A. T. Koch, H. Schroeder, T. Walker, D. Asgeirsson, D. J. Fulsom, B. G. Hearty, C. Mattison, T. S. McKenna, J. A. Barrett, M. Khan, A. Blinov, V. E. Bukin, A. D. Buzykaev, A. R. Druzhinin, V. P. Golubev, V. B. Onuchin, A. P. Serednyakov, S. I. Skovpen, Yu. I. Solodov, E. P. Todyshev, K. Yu. Bondioli, M. Curry, S. Eschrich, I. Kirkby, D. Lankford, A. J. Lund, P. Mandelkern, M. Martin, E. C. Stoker, D. P. Abachi, S. Buchanan, C. Gary, J. W. Liu, F. Long, O. Shen, B. C. Vitug, G. M. Yasin, Z. Zhang, L. Sharma, V. Campagnari, C. Hong, T. M. Kovalskyi, D. Mazur, M. A. Richman, J. D. Beck, T. W. Eisner, A. M. Flacco, C. J. Heusch, C. A. Kroseberg, J. Lockman, W. S. Martinez, A. J. Schalk, T. Schumm, B. A. Seiden, A. Wilson, M. G. Winstrom, L. O. Cheng, C. H. Doll, D. A. Echenard, B. Fang, F. Hitlin, D. G. Narsky, I. Piatenko, T. Porter, F. C. Andreassen, R. Mancinelli, G. Meadows, B. T. Mishra, K. Sokoloff, M. D. Bloom, P. C. Ford, W. T. Gaz, A. Hirschauer, J. F. Nagel, M. Nauenberg, U. Smith, J. G. Ulmer, K. A. Wagner, S. R. Ayad, R. Soffer, A. Toki, W. H. Wilson, R. J. Altenburg, D. D. Feltresi, E. Hauke, A. Jasper, H. Karbach, M. Merkel, J. Petzold, A. Spaan, B. Wacker, K. Kobel, M. J. Mader, W. F. Nogowski, R. Schubert, K. R. Schwierz, R. Volk, A. Bernard, D. Bonneaud, G. R. Latour, E. Verderi, M. Clark, P. J. Playfer, S. Watson, J. E. Andreotti, M. Bettoni, D. Bozzi, C. Calabrese, R. Cecchi, A. Cibinetto, G. Franchini, P. Luppi, E. Negrini, M. Petrella, A. Piemontese, L. Santoro, V. Baldini-Ferroli, R. Calcaterra, A. de Sangro, R. Finocchiaro, G. Pacetti, S. Patteri, P. Peruzzi, I. M. Piccolo, M. Rama, M. Zallo, A. Buzzo, A. Contri, R. Lo Vetere, M. Macri, M. M. Monge, M. R. Passaggio, S. Patrignani, C. Robutti, E. Santroni, A. Tosi, S. Chaisanguanthum, K. S. Morii, M. Adametz, A. Marks, J. Schenk, S. Uwer, U. Klose, V. Lacker, H. M. Bard, D. J. Dauncey, P. D. Nash, J. A. Tibbetts, M. Behera, P. K. Chai, X. Charles, M. J. Mallik, U. Cochran, J. Crawley, H. B. Dong, L. Meyer, W. T. Prell, S. Rosenberg, E. I. Rubin, A. E. Gao, Y. Y. Gritsan, A. V. Guo, Z. J. Lae, C. K. Arnaud, N. Bequilleux, J. D'Orazio, A. Davier, M. da Costa, J. Firmino Grosdidier, G. Hoecker, A. Lepeltier, V. Le Diberder, F. Lutz, A. M. Pruvot, S. Roudeau, P. Schune, M. H. Serrano, J. Sordini, V. Stocchi, A. Wormser, G. Lange, D. J. Wright, D. M. Bingham, I. Burke, J. P. Chavez, C. A. Fry, J. R. Gabathuler, E. Gamet, R. Hutchcroft, D. E. Payne, D. J. Touramanis, C. Bevan, A. J. Clarke, C. K. George, K. A. Di Lodovico, F. Sacco, R. Sigamani, M. Cowan, G. Flaecher, H. U. Hopkins, D. A. Paramesvaran, S. Salvatore, F. Wren, A. C. Brown, D. N. Davis, C. L. Denig, A. G. Fritsch, M. Gradl, W. Schott, G. Alwyn, K. E. Bailey, D. Barlow, R. J. Chia, Y. M. Edgar, C. L. Jackson, G. Lafferty, G. D. West, T. J. Yi, J. I. Anderson, J. Chen, C. Jawahery, A. Roberts, D. A. Simi, G. Tuggle, J. M. Dallapiccola, C. Li, X. Salvati, E. Saremi, S. Cowan, R. Dujmic, D. Fisher, P. H. Sciolla, G. Spitznagel, M. Taylor, F. Yamamoto, R. K. Zhao, M. Patel, P. M. Robertson, S. H. Lazzaro, A. Lombardo, V. Palombo, F. Bauer, J. M. Cremaldi, L. Godang, R. Kroeger, R. Sanders, D. A. Summers, D. J. Zhao, H. W. Simard, M. Taras, P. Viaud, F. B. Nicholson, H. De Nardo, G. Lista, L. Monorchio, D. Onorato, G. Sciacca, C. Raven, G. Snoek, H. L. Jessop, C. P. Knoepfel, K. J. LoSecco, J. M. Wang, W. F. Benelli, G. Corwin, L. A. Honscheid, K. Kagan, H. Kass, R. Morris, J. P. Rahimi, A. M. Regensburger, J. J. Sekula, S. J. Wong, Q. K. Blount, N. L. Brau, J. Frey, R. Igonkina, O. Kolb, J. A. Lu, M. Rahmat, R. Sinev, N. B. Strom, D. Strube, J. Torrence, E. Castelli, G. Gagliardi, N. Margoni, M. Morandin, M. Posocco, M. Rotondo, M. Simonetto, F. Stroili, R. Voci, C. Sanchez, P. del Amo Ben-Haim, E. Briand, H. Calderini, G. Chauveau, J. David, P. Del Buono, L. Hamon, O. Leruste, Ph. Ocariz, J. Perez, A. Prendki, J. Sitt, S. Gladney, L. Biasini, M. Covarelli, R. Manoni, E. Angelini, C. Batignani, G. Bettarini, S. Carpinelli, M. Cervelli, A. Forti, F. Giorgi, M. A. Lusiani, A. Marchiori, G. Morganti, M. Neri, N. Paoloni, E. Rizzo, G. Walsh, J. J. Pegna, D. Lopes Lu, C. Olsen, J. Smith, A. J. S. Telnov, A. V. Anulli, F. Baracchini, E. Cavoto, G. del Re, D. Di Marco, E. Faccini, R. Ferrarotto, F. Ferroni, F. Gaspero, M. Jackson, P. D. Li Gioi, L. Mazzoni, M. A. Morganti, S. Piredda, G. Polci, F. Renga, F. Voena, C. Ebert, M. Hartmann, T. Schroeder, H. Waldi, R. Adye, T. Franek, B. Olaiya, E. O. Wilson, F. F. Emery, S. Escalier, M. Esteve, L. Ganzhur, S. F. de Monchenault, G. Hamel Kozanecki, W. Vasseur, G. Yeche, Ch. Zito, M. Chen, X. R. Liu, H. Park, W. Purohit, M. V. White, R. M. Wilson, J. R. Allen, M. T. Aston, D. Bartoldus, R. Bechtle, P. Benitez, J. F. Cenci, R. Coleman, J. P. Convery, M. R. Dingfelder, J. C. Dorfan, J. Dubois-Felsmann, G. P. Dunwoodie, W. Field, R. C. Gabareen, A. M. Gowdy, S. J. Graham, M. T. Grenier, P. Hast, C. Innes, W. R. Kaminski, J. Kelsey, M. H. Kim, H. Kim, P. Kocian, M. L. Leith, D. W. G. S. Li, S. Lindquist, B. Luitz, S. Luth, V. Lynch, H. L. MacFarlane, D. B. Marsiske, H. Messner, R. Muller, D. R. Neal, H. Nelson, S. O'Grady, C. P. Ofte, I. Perazzo, A. Perl, M. Ratcliff, B. N. Roodman, A. Salnikov, A. A. Schindler, R. H. Schwiening, J. Snyder, A. Su, D. Sullivan, M. K. Suzuki, K. Swain, S. K. Thompson, J. M. Va'vra, J. Wagner, A. P. Weaver, M. West, C. A. Wisniewski, W. J. Wittgen, M. Wright, D. H. Wulsin, H. W. Yarritu, A. K. Yi, K. Young, C. C. Ziegler, V. Burchat, P. R. Edwards, A. J. Majewski, S. A. Miyashita, T. S. Petersen, B. A. Wilden, L. Ahmed, S. Alam, M. S. Ernst, J. A. Pan, B. Saeed, M. A. Zain, S. B. Spanier, S. M. Wogsland, B. J. Eckmann, R. Ritchie, J. L. Ruland, A. M. Schilling, C. J. Schwitters, R. F. Drummond, B. W. Izen, J. M. Lou, X. C. Bianchi, F. Gamba, D. Pelliccioni, M. Bomben, M. Bosisio, L. Cartaro, C. Della Ricca, G. Lanceri, L. Vitale, L. Azzolini, V. Lopez-March, N. Martinez-Vidal, F. Milanes, D. A. Oyanguren, A. Albert, J. Banerjee, Sw. Bhuyan, B. Choi, H. H. F. Hamano, K. Kowalewski, R. Lewczuk, M. J. Nugent, I. M. Roney, J. M. Sobie, R. J. Gershon, T. J. Harrison, P. F. Ilic, J. Latham, T. E. Mohanty, G. B. Band, H. R. Chen, X. Dasu, S. Flood, K. T. Pan, Y. Pierini, M. Prepost, R. Vuosalo, C. O. Wu, S. L. CA BaBar Collaboration TI Time-dependent and time-integrated angular analysis of B -> phi K-S(0)pi(0) and phi K-+/-pi(-/+) SO PHYSICAL REVIEW D LA English DT Article ID DIRECT CP VIOLATION; NEUTRAL KAON; DECAY B->VV; POLARIZATION; PHYSICS; ASYMMETRIES; SCATTERING; MESON AB We perform a time-dependent and time-integrated angular analysis of the decays B-0 -> phi K*(892)(0), phi K-2*(1430)(0), and phi(K pi)(0)*(0) with the final sample of about 465 x 10(6) B (B) over bar pairs recorded with the BABAR detector. Twenty-four parameters are investigated, including the branching fractions, CP-violation parameters, and parameters sensitive to final-state interactions. We use the dependence on the K pi invariant mass of the interference between the scalar and vector or tensor components to resolve discrete ambiguities of the strong and weak phases. We use the time evolution of the B -> phi K-S(0)pi(0) channel to extract the CP-violation phase difference Delta phi(00) = 0.28 +/- 0.42 +/- 0.04 between the B and (B) over bar decay amplitudes. When the B -> pi K-+/-pi(-/+) channel is included, the fractions of longitudinal polarization f(L) of the vector-vector and vector-tensor decay modes are measured to be 0.494 +/- 0.034 +/- 0.013 and 0.901(-0.058)(+0.046) +/- 0.037, respectively. This polarization pattern requires the presence of a positive-helicity amplitude in the vector-vector decay from a currently unknown source. C1 [Aubert, B.; Bona, M.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prencipe, E.; Prudent, X.; Tisserand, V.] CNRS, IN2P3, Phys Particules Lab, F-74941 Annecy Le Vieux, France. [Aubert, B.; Bona, M.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prencipe, E.; Prudent, X.; Tisserand, V.] Univ Savoie, F-74941 Annecy Le Vieux, France. [Garra Tico, J.; Grauges, E.] Univ Barcelona, Fac Fis, Dept ECM, E-08028 Barcelona, Spain. [Lopez, L.; Palano, A.; Pappagallo, M.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Lopez, L.; Palano, A.; Pappagallo, M.] Univ Bari, Dipartmento Fis, I-70126 Bari, Italy. [Eigen, G.; Stugu, B.; Sun, L.] Univ Bergen, Inst Phys, N-5007 Bergen, Norway. [Abrams, G. S.; Battaglia, M.; Brown, D. N.; Cahn, R. N.; Jacobsen, R. G.; Kerth, L. T.; Kolomensky, Yu. G.; Lynch, G.; Osipenkov, I. L.; Ronan, M. T.; Tackmann, K.; Tanabe, T.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Hawkes, C. M.; Soni, N.; Watson, A. T.] Univ Birmingham, Birmingham B15 2TT, W Midlands, England. [Koch, H.; Schroeder, T.] Ruhr Univ Bochum, Inst Expt Phys, D-44780 Bochum, Germany. [Walker, D.] Univ Bristol, Bristol BS8 1TL, Avon, England. [Asgeirsson, D. J.; Fulsom, B. G.; Hearty, C.; Mattison, T. S.; McKenna, J. A.] Univ British Columbia, Vancouver, BC V6T 1Z1, Canada. [Barrett, M.; Khan, A.] Brunel Univ, Uxbridge UB8 3PH, Middx, England. [Blinov, V. E.; Bukin, A. D.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.] Budker Inst Nucl Phys, Novosibirsk 630090, Russia. [Bondioli, M.; Curry, S.; Eschrich, I.; Kirkby, D.; Lankford, A. J.; Lund, P.; Mandelkern, M.; Martin, E. C.; Stoker, D. P.] Univ Calif Irvine, Irvine, CA 92697 USA. [Abachi, S.; Buchanan, C.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Gary, J. W.; Liu, F.; Long, O.; Shen, B. C.; Vitug, G. M.; Yasin, Z.; Zhang, L.] Univ Calif Riverside, Riverside, CA 92521 USA. [Sharma, V.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Campagnari, C.; Hong, T. M.; Kovalskyi, D.; Mazur, M. A.; Richman, J. D.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Beck, T. W.; Eisner, A. M.; Flacco, C. J.; Heusch, C. A.; Kroseberg, J.; Lockman, W. S.; Martinez, A. J.; Schalk, T.; Schumm, B. A.; Seiden, A.; Wilson, M. G.; Winstrom, L. O.] Univ Calif Santa Cruz, Inst Particle Phys, Santa Cruz, CA 95064 USA. [Cheng, C. H.; Doll, D. A.; Echenard, B.; Fang, F.; Hitlin, D. G.; Narsky, I.; Piatenko, T.; Porter, F. C.] CALTECH, Pasadena, CA 91125 USA. [Mancinelli, G.; Meadows, B. T.; Mishra, K.; Sokoloff, M. D.; Anderson, J.] Univ Cincinnati, Cincinnati, OH 45221 USA. [Bloom, P. C.; Ford, W. T.; Gaz, A.; Hirschauer, J. F.; Nagel, M.; Nauenberg, U.; Smith, J. G.; Ulmer, K. A.; Wagner, S. R.] Univ Colorado, Boulder, CO 80309 USA. [Ayad, R.; Soffer, A.; Toki, W. H.; Wilson, R. J.] Colorado State Univ, Ft Collins, CO 80523 USA. [Altenburg, D. D.; Feltresi, E.; Hauke, A.; Jasper, H.; Karbach, M.; Merkel, J.; Petzold, A.; Spaan, B.; Wacker, K.] Tech Univ Dortmund, Fak Phys, D-44221 Dortmund, Germany. [Kobel, M. J.; Mader, W. F.; Nogowski, R.; Schubert, K. R.; Schwierz, R.; Volk, A.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. [Bernard, D.; Bonneaud, G. R.; Latour, E.; Verderi, M.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Clark, P. J.; Playfer, S.; Watson, J. E.] Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. [Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Franchini, P.; Luppi, E.; Negrini, M.; Petrella, A.; Piemontese, L.; Santoro, V.] Ist Nazl Fis Nucl, Sez Ferrara, I-44100 Ferrara, Italy. [Andreotti, M.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Franchini, P.; Luppi, E.; Negrini, M.; Petrella, A.; Santoro, V.] Univ Ferrara, Dipartmento Fis, I-44100 Ferrara, Italy. [Baldini-Ferroli, R.; Calcaterra, A.; de Sangro, R.; Finocchiaro, G.; Pacetti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; Zallo, A.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Buzzo, A.; Contri, R.; Lo Vetere, M.; Macri, M. M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Santroni, A.; Tosi, S.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Contri, R.; Lo Vetere, M.; Monge, M. R.; Patrignani, C.; Santroni, A.; Tosi, S.] Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy. [Chaisanguanthum, K. S.; Morii, M.] Harvard Univ, Cambridge, MA 02138 USA. [Adametz, A.; Marks, J.; Schenk, S.; Uwer, U.] Heidelberg Univ, Inst Phys, D-69120 Heidelberg, Germany. [Klose, V.; Lacker, H. M.] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany. [Bard, D. J.; Dauncey, P. D.; Nash, J. A.; Tibbetts, M.] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. [Behera, P. K.; Chai, X.; Charles, M. J.; Mallik, U.] Univ Iowa, Iowa City, IA 52242 USA. [Cochran, J.; Crawley, H. B.; Dong, L.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Rubin, A. E.] Iowa State Univ, Ames, IA 50011 USA. [Gao, Y. Y.; Gritsan, A. V.; Guo, Z. J.; Lae, C. K.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Arnaud, N.; Bequilleux, J.; D'Orazio, A.; Davier, M.; da Costa, J. Firmino; Grosdidier, G.; Hoecker, A.; Lepeltier, V.; Le Diberder, F.; Lutz, A. M.; Pruvot, S.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wormser, G.] CNRS, IN2P3, Lab Accelerateur Lineaire, F-91898 Orsay, France. [Arnaud, N.; Bequilleux, J.; D'Orazio, A.; Davier, M.; da Costa, J. Firmino; Grosdidier, G.; Hoecker, A.; Lepeltier, V.; Le Diberder, F.; Lutz, A. M.; Pruvot, S.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wormser, G.] Univ Paris 11, Ctr Sci Orsay, F-91898 Orsay, France. [Lange, D. J.; Wright, D. M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Bingham, I.; Burke, J. P.; Chavez, C. A.; Fry, J. R.; Gabathuler, E.; Gamet, R.; Hutchcroft, D. E.; Payne, D. J.; Touramanis, C.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Bevan, A. J.; Clarke, C. K.; George, K. A.; Di Lodovico, F.; Sacco, R.; Sigamani, M.] Univ London, London E1 4NS, England. [Cowan, G.; Flaecher, H. U.; Hopkins, D. A.; Paramesvaran, S.; Salvatore, F.; Wren, A. C.] Univ London, Royal Holloway & Bedford New Coll, Egham TW20 0EX, Surrey, England. [Brown, D. N.; Davis, C. L.] Univ Louisville, Louisville, KY 40292 USA. [Denig, A. G.; Fritsch, M.; Gradl, W.; Schott, G.] Johannes Gutenberg Univ Mainz, Inst Kernphys, D-55099 Mainz, Germany. [Alwyn, K. E.; Bailey, D.; Barlow, R. J.; Chia, Y. M.; Edgar, C. L.; Jackson, G.; Lafferty, G. D.; West, T. J.; Yi, J. I.] Univ Manchester, Manchester M13 9PL, Lancs, England. [Anderson, J.; Chen, C.; Jawahery, A.; Roberts, D. A.; Simi, G.; Tuggle, J. M.] Univ Maryland, College Pk, MD 20742 USA. [Dallapiccola, C.; Li, X.; Salvati, E.; Saremi, S.] Univ Massachusetts, Amherst, MA 01003 USA. [Cowan, R.; Dujmic, D.; Fisher, P. H.; Sciolla, G.; Spitznagel, M.; Taylor, F.; Yamamoto, R. K.; Zhao, M.] MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. [Patel, P. M.; Robertson, S. H.] McGill Univ, Montreal, PQ H3A 2T8, Canada. [Lazzaro, A.; Lombardo, V.; Palombo, F.] Ist Nazl Fis Nucl, Sez Milano, I-20133 Milan, Italy. [Lazzaro, A.; Lombardo, V.; Palombo, F.] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. [Bauer, J. M.; Cremaldi, L.; Godang, R.; Kroeger, R.; Sanders, D. A.; Summers, D. J.; Zhao, H. W.] Univ Mississippi, University, MS 38677 USA. [Simard, M.; Taras, P.; Viaud, F. B.] Univ Montreal, Montreal, PQ H3C 3J7, Canada. [Nicholson, H.] Mt Holyoke Coll, S Hadley, MA 01075 USA. [De Nardo, G.; Lista, L.; Monorchio, D.; Onorato, G.; Sciacca, C.] Ist Nazl Fis Nucl, Sez Napoli, I-80126 Naples, Italy. [De Nardo, G.; Monorchio, D.; Onorato, G.; Sciacca, C.] Univ Naples Federico II, Dipartimento Sci Fisiche, I-80126 Naples, Italy. [Raven, G.; Snoek, H. L.] Natl Inst Nucl & High Energy Phys, NIKHEF, NL-1009 DB Amsterdam, Netherlands. [Jessop, C. P.; Knoepfel, K. J.; LoSecco, J. M.; Wang, W. F.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Benelli, G.; Corwin, L. A.; Honscheid, K.; Kagan, H.; Kass, R.; Morris, J. P.; Rahimi, A. M.; Regensburger, J. J.; Sekula, S. J.; Wong, Q. K.] Ohio State Univ, Columbus, OH 43210 USA. [Blount, N. L.; Brau, J.; Frey, R.; Igonkina, O.; Kolb, J. A.; Lu, M.; Rahmat, R.; Sinev, N. B.; Strom, D.; Strube, J.; Torrence, E.] Univ Oregon, Eugene, OR 97403 USA. [Castelli, G.; Gagliardi, N.; Margoni, M.; Morandin, M.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.; Voci, C.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Castelli, G.; Gagliardi, N.; Margoni, M.; Simonetto, F.; Stroili, R.; Voci, C.] Univ Padua, Dipartimento Fis, I-35131 Padua, Italy. [Sanchez, P. del Amo; Ben-Haim, E.; Briand, H.; Calderini, G.; Chauveau, J.; David, P.; Del Buono, L.; Hamon, O.; Leruste, Ph.; Ocariz, J.; Perez, A.; Prendki, J.; Sitt, S.] Univ Paris 07, CNRS, IN2P3, Lab Phys Nucl & Hautes Energies, F-75252 Paris, France. [Gladney, L.] Univ Penn, Philadelphia, PA 19104 USA. [Biasini, M.; Covarelli, R.; Manoni, E.] Ist Nazl Fis Nucl, Sez Perugia, I-06100 Perugia, Italy. [Peruzzi, I. M.; Biasini, M.; Covarelli, R.; Manoni, E.] Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Marchiori, G.; Morganti, M.; Neri, N.; Paoloni, E.; Rizzo, G.; Walsh, J. J.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Marchiori, G.; Morganti, M.; Neri, N.; Paoloni, E.; Rizzo, G.; Walsh, J. J.] Univ Pisa, Dipartimento Fis, I-56127 Pisa, Italy. [Lusiani, A.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Carpinelli, M.] Univ Sassari, I-07100 Sassari, Italy. [Pegna, D. Lopes; Lu, C.; Olsen, J.; Smith, A. J. S.; Telnov, A. V.] Princeton Univ, Princeton, NJ 08544 USA. [Anulli, F.; Baracchini, E.; Cavoto, G.; del Re, D.; Di Marco, E.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Jackson, P. D.; Li Gioi, L.; Mazzoni, M. A.; Morganti, S.; Piredda, G.; Polci, F.; Renga, F.; Voena, C.] Ist Nazl Fis Nucl, Sez Roma, I-00185 Rome, Italy. [Baracchini, E.; del Re, D.; Di Marco, E.; Faccini, R.; Ferroni, F.; Gaspero, M.; Polci, F.; Renga, F.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Ebert, M.; Hartmann, T.; Schroeder, H.; Waldi, R.] Univ Rostock, D-18051 Rostock, Germany. [Adye, T.; Franek, B.; Olaiya, E. O.; Wilson, F. F.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Emery, S.; Escalier, M.; Esteve, L.; Ganzhur, S. F.; de Monchenault, G. Hamel; Kozanecki, W.; Vasseur, G.; Yeche, Ch.; Zito, M.] CEA, Irfu, SPP, Ctr Saclay, F-91191 Gif Sur Yvette, France. [Chen, X. R.; Liu, H.; Park, W.; Purohit, M. V.; White, R. M.; Wilson, J. R.] Univ S Carolina, Columbia, SC 29208 USA. [Allen, M. T.; Aston, D.; Bartoldus, R.; Bechtle, P.; Benitez, J. F.; Cenci, R.; Coleman, J. P.; Convery, M. R.; Dingfelder, J. C.; Dorfan, J.; Dubois-Felsmann, G. P.; Dunwoodie, W.; Field, R. C.; Gabareen, A. M.; Gowdy, S. J.; Graham, M. T.; Grenier, P.; Hast, C.; Innes, W. R.; Kaminski, J.; Kelsey, M. H.; Kim, H.; Kim, P.; Kocian, M. L.; Leith, D. W. G. S.; Li, S.; Lindquist, B.; Luitz, S.; Luth, V.; Lynch, H. L.; MacFarlane, D. B.; Marsiske, H.; Messner, R.; Muller, D. R.; Neal, H.; Nelson, S.; O'Grady, C. P.; Ofte, I.; Perazzo, A.; Perl, M.; Ratcliff, B. N.; Roodman, A.; Salnikov, A. A.; Schindler, R. H.; Schwiening, J.; Snyder, A.; Su, D.; Sullivan, M. K.; Suzuki, K.; Swain, S. K.; Thompson, J. M.; Va'vra, J.; Wagner, A. P.; Weaver, M.; West, C. A.; Wisniewski, W. J.; Wittgen, M.; Wright, D. H.; Wulsin, H. W.; Yarritu, A. K.; Yi, K.; Young, C. C.; Ziegler, V.] Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. [Burchat, P. R.; Edwards, A. J.; Majewski, S. A.; Miyashita, T. S.; Petersen, B. A.; Wilden, L.] Stanford Univ, Stanford, CA 94305 USA. [Ahmed, S.; Alam, M. S.; Ernst, J. A.; Pan, B.; Saeed, M. A.; Zain, S. B.] SUNY Albany, Albany, NY 12222 USA. [Spanier, S. M.; Wogsland, B. J.] Univ Tennessee, Knoxville, TN 37996 USA. [Eckmann, R.; Ritchie, J. L.; Ruland, A. M.; Schilling, C. J.; Schwitters, R. F.] Univ Texas Austin, Austin, TX 78712 USA. [Drummond, B. W.; Izen, J. M.; Lou, X. C.] Univ Texas Dallas, Richardson, TX 75083 USA. [Bianchi, F.; Gamba, D.; Pelliccioni, M.] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy. [Bianchi, F.; Gamba, D.; Pelliccioni, M.] Univ Turin, Dipartimento Fis Sperimentale, I-10125 Turin, Italy. [Bomben, M.; Bosisio, L.; Cartaro, C.; Della Ricca, G.; Lanceri, L.; Vitale, L.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Bomben, M.; Bosisio, L.; Cartaro, C.; Della Ricca, G.; Lanceri, L.; Vitale, L.] Univ Trieste, Dipartmento Fis, I-34127 Trieste, Italy. [Azzolini, V.; Lopez-March, N.; Martinez-Vidal, F.; Milanes, D. A.; Oyanguren, A.] Univ Valencia, CSIC, IFIC, E-46071 Valencia, Spain. [Albert, J.; Banerjee, Sw.; Bhuyan, B.; Choi, H. H. F.; Hamano, K.; Kowalewski, R.; Lewczuk, M. J.; Nugent, I. M.; Roney, J. M.; Sobie, R. J.] Univ Victoria, Victoria, BC V8W 3P6, Canada. [Gershon, T. J.; Harrison, P. F.; Ilic, J.; Latham, T. E.; Mohanty, G. B.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Band, H. R.; Chen, X.; Dasu, S.; Flood, K. T.; Pan, Y.; Pierini, M.; Prepost, R.; Vuosalo, C. O.; Wu, S. L.] Univ Wisconsin, Madison, WI 53706 USA. RP Aubert, B (reprint author), CNRS, IN2P3, Phys Particules Lab, F-74941 Annecy Le Vieux, France. RI White, Ryan/E-2979-2015; Patrignani, Claudia/C-5223-2009; Neri, Nicola/G-3991-2012; Forti, Francesco/H-3035-2011; Rotondo, Marcello/I-6043-2012; de Sangro, Riccardo/J-2901-2012; Saeed, Mohammad Alam/J-7455-2012; Della Ricca, Giuseppe/B-6826-2013; Negrini, Matteo/C-8906-2014; Monge, Maria Roberta/G-9127-2012; Oyanguren, Arantza/K-6454-2014; Luppi, Eleonora/A-4902-2015; Calabrese, Roberto/G-4405-2015; Martinez Vidal, F*/L-7563-2014; Kolomensky, Yury/I-3510-2015; Lo Vetere, Maurizio/J-5049-2012; Lusiani, Alberto/N-2976-2015; Lusiani, Alberto/A-3329-2016; Morandin, Mauro/A-3308-2016; Di Lodovico, Francesca/L-9109-2016; Pappagallo, Marco/R-3305-2016; Calcaterra, Alessandro/P-5260-2015; Frey, Raymond/E-2830-2016; dong, liaoyuan/A-5093-2015; Rizzo, Giuliana/A-8516-2015; OI Raven, Gerhard/0000-0002-2897-5323; White, Ryan/0000-0003-3589-5900; Patrignani, Claudia/0000-0002-5882-1747; Neri, Nicola/0000-0002-6106-3756; Forti, Francesco/0000-0001-6535-7965; Rotondo, Marcello/0000-0001-5704-6163; de Sangro, Riccardo/0000-0002-3808-5455; Saeed, Mohammad Alam/0000-0002-3529-9255; Della Ricca, Giuseppe/0000-0003-2831-6982; Negrini, Matteo/0000-0003-0101-6963; Monge, Maria Roberta/0000-0003-1633-3195; Oyanguren, Arantza/0000-0002-8240-7300; Luppi, Eleonora/0000-0002-1072-5633; Calabrese, Roberto/0000-0002-1354-5400; Martinez Vidal, F*/0000-0001-6841-6035; Kolomensky, Yury/0000-0001-8496-9975; Lo Vetere, Maurizio/0000-0002-6520-4480; Lusiani, Alberto/0000-0002-6876-3288; Lusiani, Alberto/0000-0002-6876-3288; Morandin, Mauro/0000-0003-4708-4240; Di Lodovico, Francesca/0000-0003-3952-2175; Pappagallo, Marco/0000-0001-7601-5602; Calcaterra, Alessandro/0000-0003-2670-4826; Frey, Raymond/0000-0003-0341-2636; Bettarini, Stefano/0000-0001-7742-2998; Cibinetto, Gianluigi/0000-0002-3491-6231; dong, liaoyuan/0000-0002-4773-5050; Pacetti, Simone/0000-0002-6385-3508; Covarelli, Roberto/0000-0003-1216-5235; Rizzo, Giuliana/0000-0003-1788-2866; Paoloni, Eugenio/0000-0001-5969-8712; Faccini, Riccardo/0000-0003-2613-5141 NR 76 TC 42 Z9 42 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD NOV PY 2008 VL 78 IS 9 AR 092008 DI 10.1103/PhysRevD.78.092008 PG 27 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 376WO UT WOS:000261213900013 ER PT J AU Aubert, B Bona, M Karyotakis, Y Lees, JP Poireau, V Prencipe, E Prudent, X Tisserand, V Tico, JG Grauges, E Lopez, L Palano, A Pappagallo, M Eigen, G Stugu, B Sun, L Abrams, GS Battaglia, M Brown, DN Cahn, RN Jacobsen, RG Kerth, LT Kolomensky, YG Lynch, G Osipenkov, IL Ronan, MT Tackmann, K Tanabe, T Hawkes, CM Soni, N Watson, AT Koch, H Schroeder, T Walker, D Asgeirsson, DJ Fulsom, BG Hearty, C Mattison, TS McKenna, JA Barrett, M Khan, A Blinov, VE Bukin, AD Buzykaev, AR Druzhinin, VP Golubev, VB Onuchin, AP Serednyakov, SI Skovpen, YI Solodov, EP Todyshev, KY Bondioli, M Curry, S Eschrich, I Kirkby, D Lankford, AJ Lund, P Mandelkern, M Martin, EC Stoker, DP Abachi, S Buchanan, C Gary, JW Liu, F Long, O Shen, BC Vitug, GM Yasin, Z Zhang, L Sharma, V Campagnari, C Hong, TM Kovalskyi, D Mazur, MA Richman, JD Beck, TW Eisner, AM Flacco, CJ Heusch, CA Kroseberg, J Lockman, WS Martinez, AJ Schalk, T Schumm, BA Seiden, A Wilson, MG Winstrom, LO Cheng, CH Doll, DA Echenard, B Fang, F Hitlin, DG Narsky, I Piatenko, T Porter, FC Andreassen, R Mancinelli, G Meadows, BT Mishra, K Sokoloff, MD Bloom, PC Ford, WT Gaz, A Hirschauer, JF Nagel, M Nauenberg, U Smith, JG Ulmer, KA Wagner, SR Ayad, R Soffer, A Toki, WH Wilson, RJ Altenburg, DD Feltresi, E Hauke, A Jasper, H Karbach, M Merkel, J Petzold, A Spaan, B Wacker, K Kobel, MJ Mader, WF Nogowski, R Schubert, KR Schwierz, R Volk, A Bernard, D Bonneaud, GR Latour, E Verderi, M Clark, PJ Playfer, S Watson, JE Andreotti, M Bettoni, D Bozzi, C Calabrese, R Cecchi, A Cibinetto, G Franchini, P Luppi, E Negrini, M Petrella, A Piemontese, L Santoro, V Baldini-Ferroli, R Calcaterra, A de Sangro, R Finocchiaro, G Pacetti, S Patteri, P Peruzzi, IM Piccolo, M Rama, M Zallo, A Buzzo, A Contri, R Lo Vetere, M Macri, MM Monge, MR Passaggio, S Patrignani, C Robutti, E Santroni, A Tosi, S Chaisanguanthum, KS Morii, M Adametz, A Marks, J Schenk, S Uwer, U Klose, V Lacker, HM Bard, DJ Dauncey, PD Nash, JA Tibbetts, M Behera, PK Chai, X Charles, MJ Mallik, U Cochran, J Crawley, HB Dong, L Meyer, WT Prell, S Rosenberg, EI Rubin, AE Gao, YY Gritsan, AV Guo, ZJ Lae, CK Arnaud, N Bequilleux, J D'Orazio, A Davier, M da Costa, JF Grosdidier, G Hocker, A Lepeltier, V Le Diberder, F Lutz, AM Pruvot, S Roudeau, P Schune, MH Serrano, J Sordini, V Stocchi, A Wormser, G Lange, DJ Wright, DM Bingham, I Burke, JP Chavez, CA Fry, JR Gabathuler, E Gamet, R Hutchcroft, DE Payne, DJ Touramanis, C Bevan, AJ Clarke, CK George, KA Di Lodovico, F Sacco, R Sigamani, M Cowan, G Flaecher, HU Hopkins, DA Paramesvaran, S Salvatore, F Wren, AC Brown, DN Davis, CL Denig, AG Fritsch, M Gradl, W Schott, G Alwyn, KE Bailey, D Barlow, RJ Chia, YM Edgar, CL Jackson, G Lafferty, GD West, TJ Yi, JI Anderson, J Chen, C Jawahery, A Roberts, DA Simi, G Tuggle, JM Dallapiccola, C Li, X Salvati, E Saremi, S Cowan, R Dujmic, D Fisher, PH Sciolla, G Spitznagel, M Taylor, F Yamamoto, RK Zhao, M Patel, PM Robertson, SH Lazzaro, A Lombardo, V Palombo, F Bauer, JM Cremaldi, L Godang, R Kroeger, R Sanders, DA Summers, DJ Zhao, HW Simard, M Taras, P Viaud, FB Nicholson, H De Nardo, G Lista, L Monorchio, D Onorato, G Sciacca, C Raven, G Snoek, HL Jessop, CP Knoepfel, KJ LoSecco, JM Wang, WF Benelli, G Corwin, LA Honscheid, K Kagan, H Kass, R Morris, JP Rahimi, AM Regensburger, JJ Sekula, SJ Wong, QK Blount, NL Brau, J Frey, R Igonkina, O Kolb, JA Lu, M Rahmat, R Sinev, NB Strom, D Strube, J Torrence, E Castelli, G Gagliardi, N Margoni, M Morandin, M Posocco, M Rotondo, M Simonetto, F Stroili, R Voci, C Sanchez, PD Ben-Haim, E Briand, H Calderini, G Chauveau, J David, P Del Buono, L Hamon, O Leruste, P Ocariz, J Perez, A Prendki, J Sitt, S Gladney, L Biasini, M Covarelli, R Manoni, E Angelini, C Batignani, G Bettarini, S Carpinelli, M Cervelli, A Forti, F Giorgi, MA Lusiani, A Marchiori, G Morganti, M Neri, N Paoloni, E Rizzo, G Walsh, JJ Pegna, DL Lu, C Olsen, J Smith, AJS Telnov, AV Anulli, F Baracchini, E Cavoto, G del Re, D Di Marco, E Faccini, R Ferrarotto, F Ferroni, F Gaspero, M Jackson, PD Gioi, LL Mazzoni, MA Morganti, S Piredda, G Polci, F Renga, F Voena, C Ebert, M Hartmann, T Schroder, H Waldi, R Adye, T Franek, B Olaiya, EO Wilson, FF Emery, S Escalier, M Esteve, L Ganzhur, SF de Monchenault, GH Kozanecki, W Vasseur, G Yeche, C Zito, M Chen, XR Liu, H Park, W Purohit, MV White, RM Wilson, JR Allen, MT Aston, D Bartoldus, R Bechtle, P Benitez, JF Cenci, R Coleman, JP Convery, MR Dingfelder, JC Dorfan, J Dubois-Felsmann, GP Dunwoodie, W Field, RC Gabareen, AM Gowdy, SJ Graham, MT Grenier, P Hast, C Innes, WR Kaminski, J Kelsey, MH Kim, H Kim, P Kocian, ML Leith, DWGS Li, S Lindquist, B Luitz, S Luth, V Lynch, HL MacFarlane, DB Marsiske, H Messner, R Muller, DR Neal, H Nelson, S O'Grady, CP Ofte, I Perazzo, A Perl, M Ratcliff, BN Roodman, A Salnikov, AA Schindler, RH Schwiening, J Snyder, A Su, D Sullivan, MK Suzuki, K Swain, SK Thompson, JM Va'vra, J Wagner, AP Weaver, M West, CA Wisniewski, WJ Wittgen, M Wright, DH Wulsin, HW Yarritu, AK Yi, K Young, CC Ziegler, V Burchat, PR Edwards, AJ Majewski, SA Miyashita, TS Petersen, BA Wilden, L Ahmed, S Alam, MS Ernst, JA Pan, B Saeed, MA Zain, SB Spanier, SM Wogsland, BJ Eckmann, R Ritchie, JL Ruland, AM Schilling, CJ Schwitters, RF Drummond, BW Izen, JM Lou, XC Bianchi, F Gamba, D Pelliccioni, M Bomben, M Bosisio, L Cartaro, C Della Ricca, G Lanceri, L Vitale, L Azzolini, V Lopez-March, N Martinez-Vidal, F Milanes, DA Oyanguren, A Albert, J Banerjee, S Bhuyan, B Choi, HHF Hamano, K Kowalewski, R Lewczuk, MJ Nugent, IM Roney, JM Sobie, RJ Gershon, TJ Harrison, PF Ilic, J Latham, TE Mohanty, GB Band, HR Chen, X Dasu, S Flood, KT Pan, Y Pierini, M Prepost, R Vuosalo, CO Wu, SL AF Aubert, B. Bona, M. Karyotakis, Y. Lees, J. P. Poireau, V. Prencipe, E. Prudent, X. Tisserand, V. Garra Tico, J. Grauges, E. Lopez, L. Palano, A. Pappagallo, M. Eigen, G. Stugu, B. Sun, L. Abrams, G. S. Battaglia, M. Brown, D. N. Cahn, R. N. Jacobsen, R. G. Kerth, L. T. Kolomensky, Yu. G. Lynch, G. Osipenkov, I. L. Ronan, M. T. Tackmann, K. Tanabe, T. Hawkes, C. M. Soni, N. Watson, A. T. Koch, H. Schroeder, T. Walker, D. Asgeirsson, D. J. Fulsom, B. G. Hearty, C. Mattison, T. S. McKenna, J. A. Barrett, M. Khan, A. Blinov, V. E. Bukin, A. D. Buzykaev, A. R. Druzhinin, V. P. Golubev, V. B. Onuchin, A. P. Serednyakov, S. I. Skovpen, Yu. I. Solodov, E. P. Todyshev, K. Yu. Bondioli, M. Curry, S. Eschrich, I. Kirkby, D. Lankford, A. J. Lund, P. Mandelkern, M. Martin, E. C. Stoker, D. P. Abachi, S. Buchanan, C. Gary, J. W. Liu, F. Long, O. Shen, B. C. Vitug, G. M. Yasin, Z. Zhang, L. Sharma, V. Campagnari, C. Hong, T. M. Kovalskyi, D. Mazur, M. A. Richman, J. D. Beck, T. W. Eisner, A. M. Flacco, C. J. Heusch, C. A. Kroseberg, J. Lockman, W. S. Martinez, A. J. Schalk, T. Schumm, B. A. Seiden, A. Wilson, M. G. Winstrom, L. O. Cheng, C. H. Doll, D. A. Echenard, B. Fang, F. Hitlin, D. G. Narsky, I. Piatenko, T. Porter, F. C. Andreassen, R. Mancinelli, G. Meadows, B. T. Mishra, K. Sokoloff, M. D. Bloom, P. C. Ford, W. T. Gaz, A. Hirschauer, J. F. Nagel, M. Nauenberg, U. Smith, J. G. Ulmer, K. A. Wagner, S. R. Ayad, R. Soffer, A. Toki, W. H. Wilson, R. J. Altenburg, D. D. Feltresi, E. Hauke, A. Jasper, H. Karbach, M. Merkel, J. Petzold, A. Spaan, B. Wacker, K. Kobel, M. J. Mader, W. F. Nogowski, R. Schubert, K. R. Schwierz, R. Volk, A. Bernard, D. Bonneaud, G. R. Latour, E. Verderi, M. Clark, P. J. Playfer, S. Watson, J. E. Andreotti, M. Bettoni, D. Bozzi, C. Calabrese, R. Cecchi, A. Cibinetto, G. Franchini, P. Luppi, E. Negrini, M. Petrella, A. Piemontese, L. Santoro, V. Baldini-Ferroli, R. Calcaterra, A. de Sangro, R. Finocchiaro, G. Pacetti, S. Patteri, P. Peruzzi, I. M. Piccolo, M. Rama, M. Zallo, A. Buzzo, A. Contri, R. Lo Vetere, M. Macri, M. M. Monge, M. R. Passaggio, S. Patrignani, C. Robutti, E. Santroni, A. Tosi, S. Chaisanguanthum, K. S. Morii, M. Adametz, A. Marks, J. Schenk, S. Uwer, U. Klose, V. Lacker, H. M. Bard, D. J. Dauncey, P. D. Nash, J. A. Tibbetts, M. Behera, P. K. Chai, X. Charles, M. J. Mallik, U. Cochran, J. Crawley, H. B. Dong, L. Meyer, W. T. Prell, S. Rosenberg, E. I. Rubin, A. E. Gao, Y. Y. Gritsan, A. V. Guo, Z. J. Lae, C. K. Arnaud, N. Bequilleux, J. D'Orazio, A. Davier, M. da Costa, J. Firmino Grosdidier, G. Hoecker, A. Lepeltier, V. Le Diberder, F. Lutz, A. M. Pruvot, S. Roudeau, P. Schune, M. H. Serrano, J. Sordini, V. Stocchi, A. Wormser, G. Lange, D. J. Wright, D. M. Bingham, I. Burke, J. P. Chavez, C. A. Fry, J. R. Gabathuler, E. Gamet, R. Hutchcroft, D. E. Payne, D. J. Touramanis, C. Bevan, A. J. Clarke, C. K. George, K. A. Di Lodovico, F. Sacco, R. Sigamani, M. Cowan, G. Flaecher, H. U. Hopkins, D. A. Paramesvaran, S. Salvatore, F. Wren, A. C. Brown, D. N. Davis, C. L. Denig, A. G. Fritsch, M. Gradl, W. Schott, G. Alwyn, K. E. Bailey, D. Barlow, R. J. Chia, Y. M. Edgar, C. L. Jackson, G. Lafferty, G. D. West, T. J. Yi, J. I. Anderson, J. Chen, C. Jawahery, A. Roberts, D. A. Simi, G. Tuggle, J. M. Dallapiccola, C. Li, X. Salvati, E. Saremi, S. Cowan, R. Dujmic, D. Fisher, P. H. Sciolla, G. Spitznagel, M. Taylor, F. Yamamoto, R. K. Zhao, M. Patel, P. M. Robertson, S. H. Lazzaro, A. Lombardo, V. Palombo, F. Bauer, J. M. Cremaldi, L. Godang, R. Kroeger, R. Sanders, D. A. Summers, D. J. Zhao, H. W. Simard, M. Taras, P. Viaud, F. B. Nicholson, H. De Nardo, G. Lista, L. Monorchio, D. Onorato, G. Sciacca, C. Raven, G. Snoek, H. L. Jessop, C. P. Knoepfel, K. J. LoSecco, J. M. Wang, W. F. Benelli, G. Corwin, L. A. Honscheid, K. Kagan, H. Kass, R. Morris, J. P. Rahimi, A. M. Regensburger, J. J. Sekula, S. J. Wong, Q. K. Blount, N. L. Brau, J. Frey, R. Igonkina, O. Kolb, J. A. Lu, M. Rahmat, R. Sinev, N. B. Strom, D. Strube, J. Torrence, E. Castelli, G. Gagliardi, N. Margoni, M. Morandin, M. Posocco, M. Rotondo, M. Simonetto, F. Stroili, R. Voci, C. Sanchez, P. del Amo Ben-Haim, E. Briand, H. Calderini, G. Chauveau, J. David, P. Del Buono, L. Hamon, O. Leruste, Ph. Ocariz, J. Perez, A. Prendki, J. Sitt, S. Gladney, L. Biasini, M. Covarelli, R. Manoni, E. Angelini, C. Batignani, G. Bettarini, S. Carpinelli, M. Cervelli, A. Forti, F. Giorgi, M. A. Lusiani, A. Marchiori, G. Morganti, M. Neri, N. Paoloni, E. Rizzo, G. Walsh, J. J. Pegna, D. Lopes Lu, C. Olsen, J. Smith, A. J. S. Telnov, A. V. Anulli, F. Baracchini, E. Cavoto, G. del Re, D. Di Marco, E. Faccini, R. Ferrarotto, F. Ferroni, F. Gaspero, M. Jackson, P. D. Gioi, L. Li Mazzoni, M. A. Morganti, S. Piredda, G. Polci, F. Renga, F. Voena, C. Ebert, M. Hartmann, T. Schroeder, H. Waldi, R. Adye, T. Franek, B. Olaiya, E. O. Wilson, F. F. Emery, S. Escalier, M. Esteve, L. Ganzhur, S. F. de Monchenault, G. Hamel Kozanecki, W. Vasseur, G. Yeche, Ch. Zito, M. Chen, X. R. Liu, H. Park, W. Purohit, M. V. White, R. M. Wilson, J. R. Allen, M. T. Aston, D. Bartoldus, R. Bechtle, P. Benitez, J. F. Cenci, R. Coleman, J. P. Convery, M. R. Dingfelder, J. C. Dorfan, J. Dubois-Felsmann, G. P. Dunwoodie, W. Field, R. C. Gabareen, A. M. Gowdy, S. J. Graham, M. T. Grenier, P. Hast, C. Innes, W. R. Kaminski, J. Kelsey, M. H. Kim, H. Kim, P. Kocian, M. L. Leith, D. W. G. S. Li, S. Lindquist, B. Luitz, S. Luth, V. Lynch, H. L. MacFarlane, D. B. Marsiske, H. Messner, R. Muller, D. R. Neal, H. Nelson, S. O'Grady, C. P. Ofte, I. Perazzo, A. Perl, M. Ratcliff, B. N. Roodman, A. Salnikov, A. A. Schindler, R. H. Schwiening, J. Snyder, A. Su, D. Sullivan, M. K. Suzuki, K. Swain, S. K. Thompson, J. M. Va'vra, J. Wagner, A. P. Weaver, M. West, C. A. Wisniewski, W. J. Wittgen, M. Wright, D. H. Wulsin, H. W. Yarritu, A. K. Yi, K. Young, C. C. Ziegler, V. Burchat, P. R. Edwards, A. J. Majewski, S. A. Miyashita, T. S. Petersen, B. A. Wilden, L. Ahmed, S. Alam, M. S. Ernst, J. A. Pan, B. Saeed, M. A. Zain, S. B. Spanier, S. M. Wogsland, B. J. Eckmann, R. Ritchie, J. L. Ruland, A. M. Schilling, C. J. Schwitters, R. F. Drummond, B. W. Izen, J. M. Lou, X. C. Bianchi, F. Gamba, D. Pelliccioni, M. Bomben, M. Bosisio, L. Cartaro, C. Della Ricca, G. Lanceri, L. Vitale, L. Azzolini, V. Lopez-March, N. Martinez-Vidal, F. Milanes, D. A. Oyanguren, A. Albert, J. Banerjee, Sw. Bhuyan, B. Choi, H. H. F. Hamano, K. Kowalewski, R. Lewczuk, M. J. Nugent, I. M. Roney, J. M. Sobie, R. J. Gershon, T. J. Harrison, P. F. Ilic, J. Latham, T. E. Mohanty, G. B. Band, H. R. Chen, X. Dasu, S. Flood, K. T. Pan, Y. Pierini, M. Prepost, R. Vuosalo, C. O. Wu, S. L. CA BaBar Collaboration TI Search for the highly suppressed decays B- -> K+pi(-)pi(-) and B- -> K-K-pi(+) SO PHYSICAL REVIEW D LA English DT Article ID PHYSICS AB We report a search for the decays B- -> K+pi(-)pi(-) and B- -> K-K-pi(+), which are highly suppressed in the standard model. Using a sample of (467 +/- 5) x 10(6) B (B) over bar pairs collected with the BABAR detector, we do not see any evidence of these decays and determine 90% confidence level upper limits of B(B- -> K+pi(-)pi(-)) and < 9.5 x 10(-7) B(B- -> K-K-pi(+)) and < 1.6 x 10(-7) on the corresponding branching fractions, including systematic uncertainties. C1 [Aubert, B.; Bona, M.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prencipe, E.; Prudent, X.; Tisserand, V.] CNRS, IN2P3, Phys Particules Lab, F-74941 Annecy Le Vieux, France. [Aubert, B.; Bona, M.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prencipe, E.; Prudent, X.; Tisserand, V.] Univ Savoie, F-74941 Annecy Le Vieux, France. [Garra Tico, J.; Grauges, E.] Univ Barcelona, Fac Fis, Dept ECM, E-08028 Barcelona, Spain. [Lopez, L.; Palano, A.; Pappagallo, M.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Lopez, L.; Palano, A.; Pappagallo, M.] Univ Bari, Dipartmento Fis, I-70126 Bari, Italy. [Eigen, G.; Stugu, B.; Sun, L.] Univ Bergen, Inst Phys, N-5007 Bergen, Norway. [Abrams, G. S.; Battaglia, M.; Brown, D. N.; Cahn, R. N.; Jacobsen, R. G.; Kerth, L. T.; Kolomensky, Yu. G.; Lynch, G.; Osipenkov, I. L.; Ronan, M. T.; Tackmann, K.; Tanabe, T.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Hawkes, C. M.; Soni, N.; Watson, A. T.] Univ Birmingham, Birmingham B15 2TT, W Midlands, England. [Koch, H.; Schroeder, T.] Ruhr Univ Bochum, Inst Expt Phys, D-44780 Bochum, Germany. [Walker, D.] Univ Bristol, Bristol BS8 1TL, Avon, England. [Asgeirsson, D. J.; Fulsom, B. G.; Hearty, C.; Mattison, T. S.; McKenna, J. A.] Univ British Columbia, Vancouver, BC V6T 1Z1, Canada. [Barrett, M.; Khan, A.] Brunel Univ, Uxbridge UB8 3PH, Middx, England. [Blinov, V. E.; Bukin, A. D.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.] Budker Inst Nucl Phys, Novosibirsk 630090, Russia. [Bondioli, M.; Curry, S.; Eschrich, I.; Kirkby, D.; Lankford, A. J.; Lund, P.; Mandelkern, M.; Martin, E. C.; Stoker, D. P.] Univ Calif Irvine, Irvine, CA 92697 USA. [Abachi, S.; Buchanan, C.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Gary, J. W.; Liu, F.; Long, O.; Shen, B. C.; Vitug, G. M.; Yasin, Z.; Zhang, L.] Univ Calif Riverside, Riverside, CA 92521 USA. [Sharma, V.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Campagnari, C.; Hong, T. M.; Kovalskyi, D.; Mazur, M. A.; Richman, J. D.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Beck, T. W.; Eisner, A. M.; Flacco, C. J.; Heusch, C. A.; Kroseberg, J.; Lockman, W. S.; Martinez, A. J.; Schalk, T.; Schumm, B. A.; Seiden, A.; Wilson, M. G.; Winstrom, L. O.] Univ Calif Santa Cruz, Inst Particle Phys, Santa Cruz, CA 95064 USA. [Cheng, C. H.; Doll, D. A.; Echenard, B.; Fang, F.; Hitlin, D. G.; Narsky, I.; Piatenko, T.; Porter, F. C.] CALTECH, Pasadena, CA 91125 USA. [Mancinelli, G.; Meadows, B. T.; Mishra, K.; Sokoloff, M. D.; Anderson, J.] Univ Cincinnati, Cincinnati, OH 45221 USA. [Bloom, P. C.; Ford, W. T.; Gaz, A.; Hirschauer, J. F.; Nagel, M.; Nauenberg, U.; Smith, J. G.; Ulmer, K. A.; Wagner, S. R.] Univ Colorado, Boulder, CO 80309 USA. [Ayad, R.; Soffer, A.; Toki, W. H.; Wilson, R. J.] Colorado State Univ, Ft Collins, CO 80523 USA. [Altenburg, D. D.; Feltresi, E.; Hauke, A.; Jasper, H.; Karbach, M.; Merkel, J.; Petzold, A.; Spaan, B.; Wacker, K.] Tech Univ Dortmund, Fak Phys, D-44221 Dortmund, Germany. [Kobel, M. J.; Mader, W. F.; Nogowski, R.; Schubert, K. R.; Schwierz, R.; Volk, A.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. [Bernard, D.; Bonneaud, G. R.; Latour, E.; Verderi, M.] Ecole Polytech, CNRS, Lab Leprince Ringuet, IN2P3, F-91128 Palaiseau, France. [Clark, P. J.; Playfer, S.; Watson, J. E.] Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. [Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Franchini, P.; Luppi, E.; Negrini, M.; Petrella, A.; Piemontese, L.; Santoro, V.] Ist Nazl Fis Nucl, Sez Ferrara, I-44100 Ferrara, Italy. [Andreotti, M.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Franchini, P.; Luppi, E.; Negrini, M.; Petrella, A.; Santoro, V.] Univ Ferrara, Dipartmento Fis, I-44100 Ferrara, Italy. [Baldini-Ferroli, R.; Calcaterra, A.; de Sangro, R.; Finocchiaro, G.; Pacetti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; Zallo, A.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Buzzo, A.; Contri, R.; Lo Vetere, M.; Macri, M. M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Santroni, A.; Tosi, S.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Contri, R.; Lo Vetere, M.; Monge, M. R.; Patrignani, C.; Santroni, A.; Tosi, S.] Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy. [Chaisanguanthum, K. S.; Morii, M.] Harvard Univ, Cambridge, MA 02138 USA. [Adametz, A.; Marks, J.; Schenk, S.; Uwer, U.] Heidelberg Univ, Inst Phys, D-69120 Heidelberg, Germany. [Klose, V.; Lacker, H. M.] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany. [Bard, D. J.; Dauncey, P. D.; Nash, J. A.; Tibbetts, M.] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. [Behera, P. K.; Chai, X.; Charles, M. J.; Mallik, U.] Univ Iowa, Iowa City, IA 52242 USA. [Cochran, J.; Crawley, H. B.; Dong, L.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Rubin, A. E.; Gao, Y. Y.] Iowa State Univ, Ames, IA 50011 USA. [Gritsan, A. V.; Guo, Z. J.; Lae, C. K.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Arnaud, N.; Bequilleux, J.; D'Orazio, A.; Davier, M.; da Costa, J. Firmino; Grosdidier, G.; Hoecker, A.; Lepeltier, V.; Le Diberder, F.; Lutz, A. M.; Pruvot, S.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wormser, G.] CNRS, IN2P3, Lab Accelerateur Lineaire, F-91898 Orsay, France. [Arnaud, N.; Bequilleux, J.; D'Orazio, A.; Davier, M.; da Costa, J. Firmino; Grosdidier, G.; Hoecker, A.; Lepeltier, V.; Le Diberder, F.; Lutz, A. M.; Pruvot, S.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wormser, G.] Univ Paris 11, Ctr Sci Orsay, F-91898 Orsay, France. [Lange, D. J.; Wright, D. M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Bingham, I.; Burke, J. P.; Chavez, C. A.; Fry, J. R.; Gabathuler, E.; Gamet, R.; Hutchcroft, D. E.; Payne, D. J.; Touramanis, C.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Bevan, A. J.; Clarke, C. K.; George, K. A.; Di Lodovico, F.; Sacco, R.; Sigamani, M.] Univ London, London E1 4NS, England. [Cowan, G.; Flaecher, H. U.; Hopkins, D. A.; Paramesvaran, S.; Salvatore, F.; Wren, A. C.] Univ London, Royal Holloway & Bedford New Coll, Egham TW20 0EX, Surrey, England. [Brown, D. N.; Davis, C. L.; Denig, A. G.] Univ Louisville, Louisville, KY 40292 USA. [Fritsch, M.; Gradl, W.; Schott, G.] Johannes Gutenberg Univ Mainz, Inst Kernphys, D-55099 Mainz, Germany. [Alwyn, K. E.; Bailey, D.; Barlow, R. J.; Chia, Y. M.; Edgar, C. L.; Jackson, G.; Lafferty, G. D.; West, T. J.; Yi, J. I.] Univ Manchester, Manchester M13 9PL, Lancs, England. [Anderson, J.; Chen, C.; Jawahery, A.; Roberts, D. A.; Simi, G.; Tuggle, J. M.] Univ Maryland, College Pk, MD 20742 USA. [Dallapiccola, C.; Li, X.; Salvati, E.; Saremi, S.] Univ Massachusetts, Amherst, MA 01003 USA. [Cowan, R.; Dujmic, D.; Fisher, P. H.; Sciolla, G.; Spitznagel, M.; Taylor, F.; Yamamoto, R. K.; Zhao, M.] MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. [Patel, P. M.; Robertson, S. H.] McGill Univ, Montreal, PQ H3A 2T8, Canada. [Lazzaro, A.; Lombardo, V.; Palombo, F.] Ist Nazl Fis Nucl, Sez Milano, I-20133 Milan, Italy. [Lazzaro, A.; Palombo, F.] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. [Bauer, J. M.; Cremaldi, L.; Godang, R.; Kroeger, R.; Sanders, D. A.; Summers, D. J.; Zhao, H. W.] Univ Mississippi, University, MS 38677 USA. [Simard, M.; Taras, P.; Viaud, F. B.] Univ Montreal, Montreal, PQ H3C 3J7, Canada. [Nicholson, H.] Mt Holyoke Coll, S Hadley, MA 01075 USA. [De Nardo, G.; Lista, L.; Monorchio, D.; Onorato, G.; Sciacca, C.] Ist Nazl Fis Nucl, Sez Napoli, I-80126 Naples, Italy. [De Nardo, G.; Monorchio, D.; Onorato, G.; Sciacca, C.] Univ Naples Federico II, Dipartimento Sci Fisiche, I-80126 Naples, Italy. [Raven, G.; Snoek, H. L.] Natl Inst Nucl & High Energy Phys, NIKHEE, NL-1009 DB Amsterdam, Netherlands. [Jessop, C. P.; Knoepfel, K. J.; LoSecco, J. M.; Wang, W. F.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Benelli, G.; Corwin, L. A.; Honscheid, K.; Kagan, H.; Kass, R.; Morris, J. P.; Rahimi, A. M.; Regensburger, J. J.; Sekula, S. J.; Wong, Q. K.] Ohio State Univ, Columbus, OH 43210 USA. [Blount, N. L.; Brau, J.; Frey, R.; Igonkina, O.; Kolb, J. A.; Lu, M.; Rahmat, R.; Sinev, N. B.; Strom, D.; Strube, J.; Torrence, E.] Univ Oregon, Eugene, OR 97403 USA. [Castelli, G.; Gagliardi, N.; Margoni, M.; Morandin, M.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.; Voci, C.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Castelli, G.; Gagliardi, N.; Margoni, M.; Simonetto, F.; Stroili, R.; Voci, C.] Univ Padua, Dipartimento Fis, I-35131 Padua, Italy. [Sanchez, P. del Amo; Ben-Haim, E.; Briand, H.; Calderini, G.; Chauveau, J.; David, P.; Del Buono, L.; Hamon, O.; Leruste, Ph.; Ocariz, J.; Perez, A.; Prendki, J.; Sitt, S.] Univ Paris 07, CNRS, Lab Phys Nucl & Hautes Energies, IN2P3, F-75252 Paris, France. [Gladney, L.] Univ Penn, Philadelphia, PA 19104 USA. [Biasini, M.; Covarelli, R.; Manoni, E.] Ist Nazl Fis Nucl, Sez Perugia, I-06100 Perugia, Italy. [Biasini, M.; Covarelli, R.; Manoni, E.] Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Marchiori, G.; Morganti, M.; Neri, N.; Paoloni, E.; Rizzo, G.; Walsh, J. J.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Marchiori, G.; Morganti, M.; Neri, N.; Paoloni, E.; Rizzo, G.] Univ Pisa, Dipartimento Fis, I-56127 Pisa, Italy. [Carpinelli, M.] Univ Sassari, I-07100 Sassari, Italy. [Lusiani, A.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Pegna, D. Lopes; Lu, C.; Olsen, J.; Smith, A. J. S.; Telnov, A. V.] Princeton Univ, Princeton, NJ 08544 USA. [Morganti, M.; Anulli, F.; Baracchini, E.; Cavoto, G.; del Re, D.; Di Marco, E.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Jackson, P. D.; Gioi, L. Li; Mazzoni, M. A.; Piredda, G.; Polci, F.; Renga, F.; Voena, C.] Ist Nazl Fis Nucl, Sez Roma, I-00185 Rome, Italy. [Baracchini, E.; del Re, D.; Di Marco, E.; Faccini, R.; Ferroni, F.; Gaspero, M.; Polci, F.; Renga, F.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Ebert, M.; Hartmann, T.; Schroeder, H.; Waldi, R.] Univ Rostock, D-18051 Rostock, Germany. [Adye, T.; Franek, B.; Olaiya, E. O.; Wilson, F. F.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Emery, S.; Escalier, M.; Esteve, L.; Ganzhur, S. F.; de Monchenault, G. Hamel; Kozanecki, W.; Vasseur, G.; Yeche, Ch.; Zito, M.] CEA, Irfu, SPP, Ctr Saclay, F-91191 Gif Sur Yvette, France. [Chen, X. R.; Liu, H.; Park, W.; Purohit, M. V.; White, R. M.; Wilson, J. R.] Univ S Carolina, Columbia, SC 29208 USA. [Allen, M. T.; Aston, D.; Bartoldus, R.; Bechtle, P.; Benitez, J. F.; Cenci, R.; Coleman, J. P.; Convery, M. R.; Dingfelder, J. C.; Dorfan, J.; Dubois-Felsmann, G. P.; Dunwoodie, W.; Field, R. C.; Gabareen, A. M.; Gowdy, S. J.; Graham, M. T.; Grenier, P.; Hast, C.; Innes, W. R.; Kaminski, J.; Kelsey, M. H.; Kim, H.; Kim, P.; Kocian, M. L.; Leith, D. W. G. S.; Li, S.; Lindquist, B.; Luitz, S.; Luth, V.; Lynch, H. L.; MacFarlane, D. B.; Marsiske, H.; Messner, R.; Muller, D. R.; Neal, H.; Nelson, S.; O'Grady, C. P.; Ofte, I.; Perazzo, A.; Perl, M.; Ratcliff, B. N.; Roodman, A.; Salnikov, A. A.; Schindler, R. H.; Schwiening, J.; Snyder, A.; Su, D.; Sullivan, M. K.; Suzuki, K.; Swain, S. K.; Thompson, J. M.; Va'vra, J.; Wagner, A. P.; Weaver, M.; West, C. A.; Wisniewski, W. J.; Wittgen, M.; Wright, D. H.; Wulsin, H. W.; Yarritu, A. K.; Yi, K.; Young, C. C.; Ziegler, V.] Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. [Burchat, P. R.; Edwards, A. J.; Majewski, S. A.; Miyashita, T. S.; Petersen, B. A.; Wilden, L.] Stanford Univ, Stanford, CA 94305 USA. [Ahmed, S.; Alam, M. S.; Ernst, J. A.; Pan, B.; Saeed, M. A.; Zain, S. B.] SUNY Albany, Albany, NY 12222 USA. [Spanier, S. M.; Wogsland, B. J.] Univ Tennessee, Knoxville, TN 37996 USA. [Eckmann, R.; Ritchie, J. L.; Ruland, A. M.; Schilling, C. J.; Schwitters, R. F.] Univ Texas Austin, Austin, TX 78712 USA. [Drummond, B. W.; Izen, J. M.; Lou, X. C.] Univ Texas Dallas, Richardson, TX 75083 USA. [Bianchi, F.; Gamba, D.; Pelliccioni, M.] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy. [Bianchi, F.; Gamba, D.; Pelliccioni, M.] Univ Turin, Dipartimento Fis Sperimentale, I-10125 Turin, Italy. [Bomben, M.; Bosisio, L.; Cartaro, C.; Della Ricca, G.; Lanceri, L.; Vitale, L.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Bomben, M.; Bosisio, L.; Cartaro, C.; Della Ricca, G.; Lanceri, L.; Vitale, L.] Univ Trieste, Dipartmento Fis, I-34127 Trieste, Italy. [Azzolini, V.; Lopez-March, N.; Martinez-Vidal, F.; Milanes, D. A.; Oyanguren, A.] Univ Valencia, CSIC, IFIC, E-46071 Valencia, Spain. [Albert, J.; Banerjee, Sw.; Bhuyan, B.; Choi, H. H. F.; Hamano, K.; Kowalewski, R.; Lewczuk, M. J.; Nugent, I. M.; Roney, J. M.; Sobie, R. J.] Univ Victoria, Victoria, BC V8W 3P6, Canada. [Gershon, T. J.; Harrison, P. F.; Ilic, J.; Latham, T. E.; Mohanty, G. B.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Band, H. R.; Chen, X.; Dasu, S.; Flood, K. T.; Pan, Y.; Pierini, M.; Prepost, R.; Vuosalo, C. O.; Wu, S. L.] Univ Wisconsin, Madison, WI 53706 USA. RP Aubert, B (reprint author), CNRS, IN2P3, Phys Particules Lab, F-74941 Annecy Le Vieux, France. RI Calabrese, Roberto/G-4405-2015; Martinez Vidal, F*/L-7563-2014; Kolomensky, Yury/I-3510-2015; Lo Vetere, Maurizio/J-5049-2012; Lusiani, Alberto/N-2976-2015; Morandin, Mauro/A-3308-2016; Lusiani, Alberto/A-3329-2016; Di Lodovico, Francesca/L-9109-2016; Pappagallo, Marco/R-3305-2016; Calcaterra, Alessandro/P-5260-2015; Frey, Raymond/E-2830-2016; Della Ricca, Giuseppe/B-6826-2013; Negrini, Matteo/C-8906-2014; Monge, Maria Roberta/G-9127-2012; Oyanguren, Arantza/K-6454-2014; Luppi, Eleonora/A-4902-2015; White, Ryan/E-2979-2015; Patrignani, Claudia/C-5223-2009; Neri, Nicola/G-3991-2012; Forti, Francesco/H-3035-2011; Rotondo, Marcello/I-6043-2012; de Sangro, Riccardo/J-2901-2012; Saeed, Mohammad Alam/J-7455-2012; dong, liaoyuan/A-5093-2015; Rizzo, Giuliana/A-8516-2015; OI Calabrese, Roberto/0000-0002-1354-5400; Martinez Vidal, F*/0000-0001-6841-6035; Kolomensky, Yury/0000-0001-8496-9975; Lo Vetere, Maurizio/0000-0002-6520-4480; Lusiani, Alberto/0000-0002-6876-3288; Morandin, Mauro/0000-0003-4708-4240; Lusiani, Alberto/0000-0002-6876-3288; Di Lodovico, Francesca/0000-0003-3952-2175; Pappagallo, Marco/0000-0001-7601-5602; Calcaterra, Alessandro/0000-0003-2670-4826; Frey, Raymond/0000-0003-0341-2636; Della Ricca, Giuseppe/0000-0003-2831-6982; Negrini, Matteo/0000-0003-0101-6963; Monge, Maria Roberta/0000-0003-1633-3195; Oyanguren, Arantza/0000-0002-8240-7300; Luppi, Eleonora/0000-0002-1072-5633; White, Ryan/0000-0003-3589-5900; Patrignani, Claudia/0000-0002-5882-1747; Neri, Nicola/0000-0002-6106-3756; Forti, Francesco/0000-0001-6535-7965; Rotondo, Marcello/0000-0001-5704-6163; de Sangro, Riccardo/0000-0002-3808-5455; Saeed, Mohammad Alam/0000-0002-3529-9255; Raven, Gerhard/0000-0002-2897-5323; Cibinetto, Gianluigi/0000-0002-3491-6231; dong, liaoyuan/0000-0002-4773-5050; Pacetti, Simone/0000-0002-6385-3508; Covarelli, Roberto/0000-0003-1216-5235; Rizzo, Giuliana/0000-0003-1788-2866; Paoloni, Eugenio/0000-0001-5969-8712; Faccini, Riccardo/0000-0003-2613-5141 FU BABAR; SLAC; DOE; NSF (USA); NSERC (Canada); CEA; CNRS-IN2P3 (France); BMBF; DFG (Germany); INFN (Italy); FOM (The Netherlands); NFR (Norway); MES (Russia); MEC (Spain); STFC (United Kingdom); Marie Curie EIF (European Union); A. P. Sloan Foundation FX We are grateful for the excellent luminosity and machine conditions provided by our PEP-II colleagues, and for the substantial dedicated effort from the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and kind hospitality. This work is supported by DOE and NSF (USA), NSERC (Canada), CEA and CNRS-IN2P3 (France), BMBF and DFG (Germany), INFN (Italy), FOM (The Netherlands), NFR (Norway), MES (Russia), MEC (Spain), and STFC (United Kingdom). Individuals have received support from the Marie Curie EIF (European Union) and the A. P. Sloan Foundation. NR 28 TC 8 Z9 8 U1 0 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD NOV PY 2008 VL 78 IS 9 AR 091102 DI 10.1103/PhysRevD.78.091102 PG 9 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 376WO UT WOS:000261213900002 ER PT J AU Bern, Z Carrasco, JJM Dixon, LJ Johansson, H Roiban, R AF Bern, Z. Carrasco, J. J. M. Dixon, L. J. Johansson, H. Roiban, R. TI Manifest ultraviolet behavior for the three-loop four-point amplitude of N=8 supergravity SO PHYSICAL REVIEW D LA English DT Review ID SUDAKOV FORM-FACTOR; ABELIAN GAUGE-THEORIES; ONE-LOOP DIVERGENCES; SUPER-YANG-MILLS; GRAVITON SCATTERING-AMPLITUDES; ASYMPTOTIC-BEHAVIOR; TREE AMPLITUDES; QUANTUM-GRAVITY; CROSS-SECTIONS; STRING THEORY AB Using the method of maximal cuts, we obtain a form of the three-loop four-point scattering amplitude of N=8 supergravity in which all ultraviolet cancellations are made manifest. The Feynman loop integrals that appear have a graphical representation with only cubic vertices, and numerator factors that are quadratic in the loop momenta, rather than quartic as in the previous form. This quadratic behavior reflects cancellations beyond those required for finiteness, and matches the quadratic behavior of the three-loop four-point scattering amplitude in N=4 super-Yang-Mills theory. By direct integration we confirm that no additional cancellations remain in the N=8 supergravity amplitude, thus demonstrating that the critical dimension in which the first ultraviolet divergence occurs at three loops is D-c=6. We also give the values of the three-loop divergences in D=7, 9, 11. In addition, we present the explicitly color-dressed three-loop four-point amplitude of N=4 super-Yang-Mills theory. C1 [Bern, Z.; Carrasco, J. J. M.; Johansson, H.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Dixon, L. J.] Stanford Univ, Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. [Roiban, R.] Penn State Univ, Dept Phys, University Pk, PA 16802 USA. RP Bern, Z (reprint author), Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. OI Carrasco, John Joseph/0000-0002-4499-8488 FU US Department of Energy [DE-FG03-91ER40662, DE-AC02-76SF00515, DE-FG02-90ER40577]; US National Science Foundation [PHY-0455649, PHY-0608114]; A. P. Sloan Foundation; Guy Weyl Physics; Astronomy Alumni FX We thank David Kosower for many helpful discussions and collaboration on this topic. We also thank Paul Howe, Harald Ita, Renata Kallosh, Kelly Stelle, and Pierre Vanhove for valuable discussions. We thank Academic Technology Services at UCLA for computer support. This research was supported by the US Department of Energy under Contracts No. DE-FG03-91ER40662 (Z. B., J. J. M. C., H. J.), No. DE-AC02-76SF00515 ( L. J. D.), No. DE-FG02-90ER40577 (OJI) ( R. R.), the US National Science Foundation under Grants No. PHY-0455649 and No. PHY-0608114, and the A. P. Sloan Foundation ( R. R.). J. J. M. C. and H. J. gratefully acknowledge the financial support of Guy Weyl Physics and Astronomy Alumni Grants. NR 158 TC 117 Z9 117 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD NOV PY 2008 VL 78 IS 10 AR 105019 DI 10.1103/PhysRevD.78.105019 PG 18 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 376WQ UT WOS:000261214100093 ER PT J AU Chen, MC Dawson, S Jackson, CB AF Chen, Mu-Chun Dawson, Sally Jackson, C. B. TI Higgs triplets, decoupling, and precision measurements SO PHYSICAL REVIEW D LA English DT Article ID RADIATIVE-CORRECTIONS; MODELS; SYMMETRY; PHYSICS; MASS AB Electroweak precision data has been extensively used to constrain models containing physics beyond that of the standard model. When the model contains Higgs scalars in representations other than SU(2) singlets or doublets, and hence rho not equal 1 at tree level, a correct renormalization scheme requires more inputs than the three needed for the standard model. We discuss the connection between the renormalization of models with Higgs triplets and the decoupling properties of the models as the mass scale for the scalar triplet field becomes much larger than the electroweak scale. The requirements of perturbativity of the couplings and agreement with electroweak data place strong restrictions on models with Higgs triplets. Our results have important implications for Little Higgs type models and other models with rho not equal 1 at tree level. C1 [Chen, Mu-Chun] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Dawson, Sally] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Jackson, C. B.] Argonne Natl Lab, HEP Div, Argonne, IL 60439 USA. RP Chen, MC (reprint author), Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. EM muchunc@uci.edu; dawson@bnl.gov; jackson@hep.anl.gov OI Dawson, Sally/0000-0002-5598-695X; Chen, Mu-Chun/0000-0002-5749-2566 FU U.S. Department of Energy [DE-AC02-98CH10886, (DE-AC02-06CH11357)]; National Science Foundation [PHY-0709742] FX The work of S. D. (C.J.) is supported by the U.S. Department of Energy under Grant No. DE-AC02-98CH10886 (DE-AC02-06CH11357). The work of M.C.C. is supported, in part, by the National Science Foundation under Grant No. PHY-0709742. S.D. thanks the SLAC theory group for their hospitality, where this work was begun. NR 36 TC 27 Z9 27 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD NOV PY 2008 VL 78 IS 9 AR 093001 DI 10.1103/PhysRevD.78.093001 PG 12 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 376WO UT WOS:000261213900014 ER PT J AU Choi, SY Drees, M Freitas, A Zerwas, PM AF Choi, S. Y. Drees, M. Freitas, A. Zerwas, P. M. TI Testing the Majorana nature of gluinos and neutralinos SO PHYSICAL REVIEW D LA English DT Article ID SUPERSYMMETRIC PARTICLES; LINEAR COLLIDERS; HADRON COLLIDERS; STANDARD MODEL; PHYSICS; DECAYS; LHC; E(+)E(-); BREAKING; SEARCH AB Gluinos and neutralinos, supersymmetric partners of gluons and neutral electroweak gauge and Higgs bosons, are Majorana particles in the minimal supersymmetric standard model (MSSM). Decays of such self-conjugate particles generate charge symmetric ensembles of final states. Moreover, production channels of supersymmetric particles at colliders are characteristically affected by the Majorana nature of particles exchanged in the production processes. The sensitivity to the Majorana character of the particles can be quantified by comparing the predictions with Dirac exchange mechanisms. A consistent framework for introducing gluino and neutralino Dirac fields can be designed by extending the N = 1 supersymmetry of the MSSM to N = 2 in the gauge sector. We examine to which extent like-sign dilepton production in the processes qq -> (q) over tilde(q) over tilde and e(-)e(-) -> (e) over tilde (-)(e) over tilde (-) is affected by the exchange of either Majorana or Dirac gluinos and neutralinos, respectively, at the Large Hadron Collider (LHC) and in the prospective e(-)e(-) mode of a lepton linear collider. C1 [Choi, S. Y.] Chonbuk Natl Univ, Dept Phys, Jeonju 561756, South Korea. [Choi, S. Y.] Chonbuk Natl Univ, RIPC, Jeonju 561756, South Korea. [Drees, M.] Univ Bonn, Inst Phys, D-53115 Bonn, Germany. [Drees, M.] KIAS, Sch Phys, Seoul 130012, South Korea. [Drees, M.] Univ Bonn, Bethe Ctr Theoret Phys, D-53115 Bonn, Germany. [Freitas, A.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Freitas, A.] Argonne Natl Lab, HEP Div, Argonne, IL 60439 USA. [Zerwas, P. M.] DESY, D-22603 Hamburg, Germany. [Zerwas, P. M.] RWTH Aachen U, Inst Theor, D-52074 Aachen, Germany. RP Choi, SY (reprint author), Chonbuk Natl Univ, Dept Phys, Jeonju 561756, South Korea. FU Korean Government (MOERHRD, Basic Research Promotion Fund) [KRF-2007-521-C00065]; Bundesministerium fur Bildung und Forschung [05HT6PDA]; Marie Curie Training Research Networks "UniverseNet" [MRTN-CT-2006-035863]; "ForcesUniverse" [MRTN-CT-2004-005104]; The Quest for Unification [MRTNCT-2004-503369]; U.S. DOE, Division of HEP [DE-AC-0206CH11357] FX We are grateful to A. M. Cooper-Sarkar, A. Glazov, T. Hebbeker, and S. Lammel for communications on vari- ous experimental aspects of this study, and to J. Kalinowski for the critical reading of the manuscript. Special thanks go to M. M. Miihlleitner and P. Skands for clarifying issues on the branching ratios of gluino decays. The work by S. Y. C. was supported in part by the Korea Research Foundation Grant funded by the Korean Government (MOERHRD, Basic Research Promotion Fund) under Contract No. (KRF-2007-521-C00065 and in part by KOSEF through CHEP at Kyungpook National University. The work of M. D. was partially supported by Bundesministerium fur Bildung und Forschung under Contract No. 05HT6PDA, and partially by the Marie Curie Training Research Networks "UniverseNet" under Contract No. MRTN-CT-2006-035863, "ForcesUniverse" under Contract No. MRTN-CT-2004-005104, as well as "The Quest for Unification" under Contract No. MRTNCT-2004-503369. Work at ANL is supported in part by the U.S. DOE, Division of HEP, Contract No. DE-AC-0206CH11357. P.M.Z. is grateful to the Institute for Theoretical Physics E for the warm hospitality extended to him at RWTH Aachen. NR 60 TC 58 Z9 58 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD NOV PY 2008 VL 78 IS 9 AR 095007 DI 10.1103/PhysRevD.78.095007 PG 22 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 376WO UT WOS:000261213900057 ER PT J AU Dudek, JJ Rrapaj, E AF Dudek, Jozef J. Rrapaj, Ermal CA Hadron Spectrum Collaboration TI Charmonium in lattice QCD and the nonrelativistic quark model SO PHYSICAL REVIEW D LA English DT Article AB We compare the results of a numerical lattice QCD calculation of the charmonium spectrum with the structure of a general nonrelativistic potential model. To achieve this we form the nonrelativistic reduction of derivative-based fermion bilinear interpolating fields used in lattice QCD calculations and compute their overlap with c (c) over bar meson states at rest constructed in the nonrelativistic quark model, providing a bound-state model interpretation for the lattice data. Essential gluonic components in the bound states, usually called hybrids, are identified by considering interpolating fields that involve the gluonic field-strength tensor and which have zero overlap onto simple c (c) over bar model states. C1 [Dudek, Jozef J.] Jefferson Lab MS 12H2, Newport News, VA 23606 USA. [Dudek, Jozef J.; Rrapaj, Ermal] Old Dominion Univ, Dept Phys, Norfolk, VA 23529 USA. RP Dudek, JJ (reprint author), Jefferson Lab MS 12H2, 12000 Jefferson Ave, Newport News, VA 23606 USA. EM dudek@jlab.org NR 15 TC 28 Z9 29 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD NOV PY 2008 VL 78 IS 9 AR 094504 DI 10.1103/PhysRevD.78.094504 PG 10 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 376WO UT WOS:000261213900048 ER PT J AU Fang, WJ Wang, S Hu, W Haiman, Z Hui, L May, M AF Fang, Wenjuan Wang, Sheng Hu, Wayne Haiman, Zoltan Hui, Lam May, Morgan TI Challenges to the DGP model from horizon-scale growth and geometry SO PHYSICAL REVIEW D LA English DT Article ID LUMINOUS RED GALAXIES; GRAVITY; BRANE; COSMOLOGY; SPACE; POWER AB We conduct a Markov Chain Monte Carlo study of the Dvali-Gabadadze-Porrati self-accelerating braneworld scenario given the cosmic microwave background (CMB) anisotropy, supernovae and Hubble constant data by implementing an effective dark energy prescription for modified gravity into a standard Einstein-Boltzmann code. We find no way to alleviate the tension between distance measures and horizon-scale growth in this model. Growth alterations due to perturbations propagating into the bulk appear as excess CMB anisotropy at the lowest multipoles. In a flat cosmology, the maximum likelihood Dvali-Gabadadze-Porrati model is nominally a 5.3 sigma poorer fit than Lambda CDM. Curvature can reduce the tension between distance measures but only at the expense of exacerbating the problem with growth leading to a 4.8 sigma result that is dominated by the low multipole CMB temperature spectrum. While changing the initial conditions to reduce large-scale power can flatten the temperature spectrum, this also suppresses the large angle polarization spectrum in violation of recent results from the five-year Wilkinson Microwave Anisotropy Probe. The failure of this model highlights the power of combining growth and distance measures in cosmology as a test of gravity on the largest scales. C1 [Fang, Wenjuan; Hui, Lam] Columbia Univ, Dept Phys, New York, NY 10027 USA. [Wang, Sheng; Hu, Wayne] Univ Chicago, Kavli Inst Cosmol Phys, Enrico Fermi Inst, Chicago, IL 60637 USA. [Hu, Wayne] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [Haiman, Zoltan] Columbia Univ, Dept Astron, New York, NY 10027 USA. [May, Morgan] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Fang, WJ (reprint author), Columbia Univ, Dept Phys, 538 W 120th St, New York, NY 10027 USA. NR 47 TC 89 Z9 89 U1 1 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD NOV PY 2008 VL 78 IS 10 AR 103509 DI 10.1103/PhysRevD.78.103509 PG 11 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 376WQ UT WOS:000261214100027 ER PT J AU Gershtein, Y Petriello, F Quackenbush, S Zurek, KM AF Gershtein, Yuri Petriello, Frank Quackenbush, Seth Zurek, Kathryn M. TI Discovering hidden sectors with monophoton Z ' searches SO PHYSICAL REVIEW D LA English DT Article ID DIMENSIONS; HIGGS AB In many theories of physics beyond the standard model, from extra dimensions to Hidden Valleys and models of dark matter, Z' bosons mediate between standard model particles and hidden sector states. We study the feasibility of observing such hidden states through an invisibly decaying Z' at the LHC. We focus on the process pp -> gamma Z' -> gamma XX dagger, where X is any neutral, (quasi-) stable particle, whether a standard model neutrino or a new state. This complements a previous study using pp -> ZZ' -> l+l-XX dagger. Only the Z' mass and two effective charges are needed to describe this process. If the Z' decays invisibly only to standard model neutrinos, then these charges are predicted by observation of the Z' through the Drell-Yan process, allowing discrimination between Z' decays to standard model P's and invisible decays to new states. We carefully discuss all backgrounds and systematic errors that affect this search. We find that hidden sector decays of a I TeV Z' can be observed at 5 sigma significance with 50 fb(-1) at the LHC. Observation of a 1.5 TeV state requires super-LHC statistics of I ab(-1). Control of the systematic errors, in particular, the parton distribution function uncertainty of the dominant Z gamma background, is crucial to maximize the LHC search reach. C1 [Gershtein, Yuri] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA. [Petriello, Frank; Quackenbush, Seth; Zurek, Kathryn M.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Zurek, Kathryn M.] Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, Batavia, IL 60510 USA. RP Gershtein, Y (reprint author), Rutgers State Univ, Dept Phys & Astron, POB 849, Piscataway, NJ 08854 USA. FU DOE [DE-FG0295ER40896, DE-FG02-97ER41022]; Wisconsin Alumni Research Foundation; Alfred P. Sloan Foundation FX The authors are supported by the DOE grants DE-FG0295ER40896 and DE-FG02-97ER41022 and by the University of Wisconsin Research Committee with funds provided by the Wisconsin Alumni Research Foundation, and by the Alfred P. Sloan Foundation. NR 34 TC 42 Z9 42 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD NOV PY 2008 VL 78 IS 9 AR 095002 DI 10.1103/PhysRevD.78.095002 PG 6 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 376WO UT WOS:000261213900052 ER PT J AU Hubner, K Karsch, F Pica, C AF Huebner, K. Karsch, F. Pica, C. TI Correlation functions of the energy-momentum tensor in SU(2) gauge theory at finite temperature SO PHYSICAL REVIEW D LA English DT Article ID QUARK-GLUON PLASMA; TRANSPORT-COEFFICIENTS; CRITICAL-POINT; BULK VISCOSITY; LATTICE; RENORMALIZATION; THERMODYNAMICS; COLLABORATION; PERSPECTIVE; COLLISIONS AB We calculate correlation functions of the energy-momentum tensor in the vicinity of the deconfinement phase transition of (3 + 1)-dimensional SU(2) gauge theory and discuss their critical behavior in the vicinity of the second order deconfinement transition. We show that correlation functions of the trace of the energy-momentum tensor diverge uniformly at the critical point in proportion to the specific heat singularity. Correlation functions of the pressure, on the other hand, stay finite at the critical point. We discuss the consequences of these findings for the analysis of transport coefficients, in particular, the bulk viscosity, in the vicinity of a second order phase transition point. C1 [Huebner, K.; Karsch, F.; Pica, C.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Karsch, F.] Univ Bielefeld, Fac Phys, D-33615 Bielefeld, Germany. RP Hubner, K (reprint author), Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. OI Pica, Claudio/0000-0002-0569-0376 FU U.S. Department of Energy [DE-AC02-98CH10886] FX We thank Harvey Meyer, Dimitri Kharzeev, and Kirill Tuchin for helpful discussions. This work has been supported by Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. Numerical simulations have been performed on the BlueGene/L at the New York Center for Computational Science (NYCCS). NR 34 TC 4 Z9 4 U1 1 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD NOV PY 2008 VL 78 IS 9 AR 094501 DI 10.1103/PhysRevD.78.094501 PG 11 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 376WO UT WOS:000261213900045 ER PT J AU Kachru, S Liu, X Mulligan, M AF Kachru, Shamit Liu, Xiao Mulligan, Michael TI Gravity duals of Lifshitz-like fixed points SO PHYSICAL REVIEW D LA English DT Article ID PHASE-TRANSITIONS; INSTABILITY; METALS; ORDER; MODEL AB We find candidate macroscopic gravity duals for scale-invariant but non-Lorentz invariant fixed points, which do not have particle number as a conserved quantity. We compute two-point correlation functions which exhibit novel behavior relative to their AdS counterparts, and find holographic renormalization group flows to conformal field theories. Our theories are characterized by a dynamical critical exponent z, which governs the anisotropy between spatial and temporal scaling t ->lambda(z)t, x ->lambda x; we focus on the case with z=2. Such theories describe multicritical points in certain magnetic materials and liquid crystals, and have been shown to arise at quantum critical points in toy models of the cuprate superconductors. This work can be considered a small step towards making useful dual descriptions of such critical points. C1 [Kachru, Shamit; Mulligan, Michael] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Kachru, Shamit; Mulligan, Michael] Stanford Univ, SLAC, Stanford, CA 94305 USA. [Liu, Xiao] Perimeter Inst Theoret Phys, Waterloo, ON N2L 2Y5, Canada. RP Kachru, S (reprint author), Stanford Univ, Dept Phys, Stanford, CA 94305 USA. FU Stanford Institute for Theoretical Physics; NSF [PHY-0244728]; DOE [DE-AC03-76SF00515]; ARCS; government of Canada; province of Ontario FX We are happy to thank A. Adams, O. Aharony, J. Cardy, S. Dubovsky, E. Fradkin, P. Horava, J. Maldacena, J. McGreevy, G. Moore, C. Nayak, S. Sachdev, S. Shenker, and E. Silverstein for stimulating discussions. We thank S. Hartnoll and G. Horowitz for comments on the singularity structure of the spacetime discussed in this paper. We especially appreciate J. Maldacena's absolutely valuable comment about the calculation of correlators in this spacetime. We are also grateful to M. Amin for help with numerical methods. M. M. thanks C.-Y. Hou, C. Laumann, S. Parameswaran, and A. Rahmani for computer assistance after catastrophic HD failure. S. K. would like to acknowledge the kind hospitality of the Kavli Institute for Theoretical Physics, the Aspen Center for Physics, and the Institute for Advanced Study at various points during this work. X. L. would like to acknowledge the kind hospitality of the SITP during the major phase of this collaboration. M. M. thanks the Les Houches School of Physics for hospitality during the completion of this work. This research was supported in part by the Stanford Institute for Theoretical Physics, the NSF under Grant No. PHY-0244728, and the DOE under Contract No. DE-AC03-76SF00515. M. M. was also supported by an ARCS Fellowship. Research at the Perimeter Institute for Theoretical Physics is supported in part by the government of Canada and through NSERC and by the province of Ontario through MRI. NR 45 TC 549 Z9 550 U1 3 U2 13 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD NOV PY 2008 VL 78 IS 10 AR 106005 DI 10.1103/PhysRevD.78.106005 PG 8 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 376WQ UT WOS:000261214100101 ER PT J AU Kile, J Soni, A AF Kile, Jennifer Soni, Amarjit TI Model-independent constraints on lepton-flavor-violating decays of the top quark SO PHYSICAL REVIEW D LA English DT Article ID CONSERVATION AB The imminent start of the Large Hadron Collider, which is expected to produce similar to 10(8) t (t) over bar pairs per year, provides an unprecedented opportunity for top physics. As the top quark is widely expected to be rather sensitive to effects of new physics, a detailed study of its properties, including rare decays, is called for. A possible, experimentally distinctive decay is the case where a top decays to a light quark and a flavor-violating lepton-antilepton pair. We use an effective operator analysis to place model-independent bounds on contributions to the decays t -> ue(+/-) mu(-/+) and t -> ce(+/-) mu(-/+). We enumerate the dimension-six operators which contribute to these decays and which are invariant under the standard model gauge group. We separate these operators into two classes, one with operators where the top quark belongs to an SU(2) doublet and thus can contribute at tree level to low-energy processes, and one class with operators where the top quark is a right-handed singlet and can only contribute to low-energy processes via loop diagrams. We use B and K decays to place limits on the coefficients of some of these operators, but find that several remain unconstrained and could potentially make observable contributions to top decay. C1 [Kile, Jennifer; Soni, Amarjit] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Kile, J (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. EM jenkile@quark.phy.bnl.gov; soni@bnl.gov NR 33 TC 1 Z9 1 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD NOV PY 2008 VL 78 IS 9 AR 094008 DI 10.1103/PhysRevD.78.094008 PG 9 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 376WO UT WOS:000261213900030 ER PT J AU Nomura, Y Stolarski, D AF Nomura, Yasunori Stolarski, Daniel TI Naturally flavorful supersymmetry at the LHC SO PHYSICAL REVIEW D LA English DT Review ID ELECTRIC-DIPOLE MOMENT; ABELIAN HORIZONTAL SYMMETRIES; SU(3) FAMILY SYMMETRY; MASS MATRIX MODELS; CP VIOLATION; QUARK MASSES; SUPERGRAVITY THEORIES; LOCAL SUPERSYMMETRY; GRAND UNIFICATION; PARTICLE PHYSICS AB The suppression of flavor and CP violation in supersymmetric theories may be due to the mechanism responsible for the structure of the Yukawa couplings. We study model independently the compatibility between low-energy flavor and CP constraints and observability of superparticles at the LHC, assuming a generic correlation between the Yukawa couplings and the supersymmetry breaking parameters. We find that the superpotential operators that generate scalar trilinear interactions are generically problematic. We discuss several ways in which this tension is naturally avoided. In particular, we focus on several frameworks in which the dangerous operators are naturally absent. These frameworks can be combined with many theories of flavor, including those with (flat or warped) extra dimensions, strong dynamics, or flavor symmetries. We show that the resulting theories can avoid all the low-energy constraints while keeping the superparticles light. The intergenerational mass splittings among the sfermions can reflect the structure of the underlying flavor theory, and can be large enough to be measurable at the LHC. Detailed observations of the superparticle spectrum may thus provide new handles on the origin of the flavor structure of the standard model. C1 [Nomura, Yasunori] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Theoret Phys Grp, Berkeley, CA 94720 USA. RP Nomura, Y (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. OI Stolarski, Daniel/0000-0002-1783-8163; Nomura, Yasunori/0000-0002-1497-1479 NR 112 TC 17 Z9 17 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD NOV PY 2008 VL 78 IS 9 AR 095011 DI 10.1103/PhysRevD.78.095011 PG 21 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 376WO UT WOS:000261213900061 ER PT J AU Shu, J AF Shu, Jing TI Unitarity bounds for new physics from axial coupling at CERN LHC SO PHYSICAL REVIEW D LA English DT Article ID FERMION MASS GENERATION; YANG-MILLS THEORY; HIGGS-BOSON MASS; WEAK INTERACTIONS; HIGH-ENERGIES; CONDENSATION; SYMMETRY AB If a new massive vector boson with nonzero axial couplings to fermions will be observed at LHC, then an upper limit on the scale of new physics could be derived from unitarity of S matrix. The new physics will involve either new massive fermions, or scalars, or even a strongly coupled sector. We derive a model independent bound on the scale of new physics. If M-G/g(A) < 3 TeV and the fermion is a top quark, the upper limit is 78 TeV. C1 [Shu, Jing] Univ Chicago, Kavli Inst Cosmol Phys, Enrico Fermi Inst, Chicago, IL 60637 USA. [Shu, Jing] Univ Chicago, Kavli Inst Cosmol Phys, Dept Phys, Chicago, IL 60637 USA. [Shu, Jing] Argonne Natl Lab, HEP Div, Argonne, IL 60439 USA. RP Shu, J (reprint author), Univ Chicago, Kavli Inst Cosmol Phys, Enrico Fermi Inst, 5640 S Ellis Ave, Chicago, IL 60637 USA. EM jshu@theory.uchicago.edu OI Shu, Jing/0000-0001-6569-403X FU U.S. Department of Energy [DE-FG0290ER40560, DE-AC02-06CHI 1357] FX I would like to thank Tim Tait and Carlos Wagner for valuable discussions and a careful reading of the manuscript. I especially wish to thank Bogdan Dobrescu for many useful discussions and directing me to Ref. [14]. 1 also thank Jay Hubisz, Tao Liu, Ian Low, Joseph Lykken, Rakhi Mahbubani, Arun Thalapillil, and Chris Quigg for helpful discussions. This work was supported in part by the U.S. Department of Energy through Grant No. DE-FG0290ER40560 and DE-AC02-06CHI 1357. NR 41 TC 4 Z9 4 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD NOV PY 2008 VL 78 IS 9 AR 096004 DI 10.1103/PhysRevD.78.096004 PG 7 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 376WO UT WOS:000261213900066 ER PT J AU Silverstein, E Westphal, A AF Silverstein, Eva Westphal, Alexander TI Monodromy in the CMB: Gravity waves and string inflation SO PHYSICAL REVIEW D LA English DT Article ID PROBE WMAP OBSERVATIONS; FLUX COMPACTIFICATIONS; BRANE INFLATION; POLARIZATION; ANISOTROPY; COSMOLOGY; FLATNESS; UNIVERSE; HORIZON; MODELS AB We present a simple mechanism for obtaining large-field inflation, and hence a gravitational wave signature, from string theory compactified on twisted tori. For nil manifolds, we obtain a leading inflationary potential proportional to phi(2/3) in terms of the canonically normalized field phi, yielding predictions for the tilt of the power spectrum and the tensor-to-scalar ratio, n(s)approximate to 0.98 and r approximate to 0.04 with 60 e-foldings of inflation; we note also the possibility of a variant with a candidate inflaton potential proportional to phi(2/5). The basic mechanism involved in extending the field range-monodromy in D-branes as they move in circles on the manifold-arises in a more general class of compactifications, though our methods for controlling the corrections to the slow-roll parameters require additional symmetries. C1 [Silverstein, Eva] Stanford Univ, SLAC, Stanford, CA 94305 USA. Stanford Univ, Dept Phys, Stanford, CA 94305 USA. RP Silverstein, E (reprint author), Stanford Univ, SLAC, Stanford, CA 94305 USA. OI Westphal, Alexander/0000-0003-1578-6539 FU NSF [PHY-0244728]; DOE [DE-AC03-76SF00515]; BSF; FQXi; Alexander-von-Humboldt foundation FX We thank T. Banks, J. R. Bond, G. Efstathiou, S. Kachru, R. Kallosh, C.-L. Kuo, A. Lawrence, A. Linde, J. Maldacena, L. McAllister, B. Netterfield, L. Senatore, and D. Tong for useful discussions. The research of E. S. is supported by NSF Grant No. PHY-0244728, by the DOE under Contract No. DE-AC03-76SF00515, and by BSF and FQXi grants. The research of A. W. is supported in part by the Alexander-von-Humboldt foundation, as well as by NSF Grant No. PHY-0244728. NR 95 TC 387 Z9 387 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD NOV PY 2008 VL 78 IS 10 AR 106003 DI 10.1103/PhysRevD.78.106003 PG 21 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 376WQ UT WOS:000261214100099 ER PT J AU Mayo, JR Kerstein, AR AF Mayo, Jackson R. Kerstein, Alan R. TI Fronts in randomly advected and heterogeneous media and nonuniversality of Burgers turbulence: Theory and numerics SO PHYSICAL REVIEW E LA English DT Article ID DIRECTED POLYMERS; GROWING INTERFACES; SPIN-GLASSES; PROPAGATION; VELOCITY AB A recently established mathematical equivalence-between weakly perturbed Huygens fronts (e.g., flames in weak turbulence or geometrical-optics wave fronts in slightly nonuniform media) and the inviscid limit of white-noise-driven Burgers turbulence-motivates theoretical and numerical estimates of Burgers-turbulence properties for specific types of white-in-time forcing. Existing mathematical relations between Burgers turbulence and the statistical mechanics of directed polymers, allowing use of the replica method, are exploited to obtain systematic upper bounds on the Burgers energy density, corresponding to the ground-state binding energy of the directed polymer and the speedup of the Huygens front. The results are complementary to previous studies of both Burgers turbulence and directed polymers, which have focused on universal scaling properties instead of forcing-dependent parameters. The upper-bound formula can be heuristically understood in terms of renormalization of a different kind from that previously used in combustion models, and also shows that the burning velocity of an idealized turbulent flame does not diverge with increasing Reynolds number at fixed turbulence intensity, a conclusion that applies even to strong turbulence. Numerical simulations of the one-dimensional inviscid Burgers equation using a Lagrangian finite-element method confirm that the theoretical upper bounds are sharp within about 15% for various forcing spectra (corresponding to various two-dimensional random media). These computations provide a quantitative test of the replica method. The inferred nonuniversality (spectrum dependence) of the front speedup is of direct importance for combustion modeling. C1 [Mayo, Jackson R.; Kerstein, Alan R.] Sandia Natl Labs, Combust Res Facil, Livermore, CA 94551 USA. RP Mayo, JR (reprint author), Sandia Natl Labs, Combust Res Facil, Livermore, CA 94551 USA. EM jmayo@sandia.gov; arkerst@sandia.gov NR 28 TC 2 Z9 2 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD NOV PY 2008 VL 78 IS 5 AR 056307 DI 10.1103/PhysRevE.78.056307 PN 2 PG 18 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 376WN UT WOS:000261213800041 PM 19113216 ER PT J AU Danilov, V AF Danilov, V. TI Practical solutions for nonlinear accelerator lattice with stable nearly regular motion SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article AB The use of nonlinear lattices with the large betatron tune spreads can increase instability and space charge thresholds by orders of magnitude compared to typical linear accelerator lattices. Unfortunately, strong nonlinear fields create, in general, strong resonances and chaotic motion. This shrinks the dynamic aperture to impractical values, thus erasing all benefits from their use. Previously known examples of stable and regular accelerator motion with special nonlinear lenses were related to one-dimensional motion or round beams. However, no solution has been realized with real 2D transverse magnetic fields to produce stable, close to regular 2D motion with the large dynamic aperture and betatron tune spread comparable to the betatron tune itself. This paper presents possible solutions for such 2D lattices. They consist of straight sections with short linear and nonlinear lenses with transverse magnetic fields. C1 Oak Ridge Natl Lab, Spallat Neutron Source Project, Oak Ridge, TN 37830 USA. RP Danilov, V (reprint author), Oak Ridge Natl Lab, Spallat Neutron Source Project, Bldg 8600, Oak Ridge, TN 37830 USA. FU U. S. Department of Energy [AC0500OR22725] FX The author thanks A. Aleksandrov and J. Holmes for useful comments and help in manuscript preparation. The research is sponsored by UT-Battelle, LLC, for the U. S. Department of Energy under Contract No. DE-AC0500OR22725. NR 18 TC 3 Z9 3 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD NOV PY 2008 VL 11 IS 11 AR 114001 DI 10.1103/PhysRevSTAB.11.114001 PG 7 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 390XL UT WOS:000262196900003 ER PT J AU Novokhatski, A Heifets, S AF Novokhatski, A. Heifets, S. TI Simple low-frequency beam pickup SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article AB Detection of the field induced by a beam outside of the beam pipe can be used as a beam diagnostic. Wires placed in longitudinal slots in the outside wall of the beam pipe can be used as a beam pickup. This has a very small beam-coupling impedance and avoids complications of having a feedthrough. The signal can be reasonably high at low frequencies. We present a field waveform at the outer side of a beam pipe, obtained as a result of calculations and measurements. We calculate the beam-coupling impedance due to a long longitudinal slot in the resistive wall and the signal induced in a wire placed in such a slot and shielded by a thin screen from the beam. These results should be relevant for impedance calculations of the slot in an antechamber and for slots in the PEP-II distributed ion pump screens. The design of the low-requency beam position monitor is very simple. It can be used in storage rings, synchrotron light sources, and free electron lasers, like LINAC coherent light source. C1 [Novokhatski, A.; Heifets, S.] Stanford Univ, Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. RP Novokhatski, A (reprint author), Stanford Univ, Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. EM novo@slac.stanford.edu FU Department of Energy [DE-AC0376SF00515, DE-AC0596OR22464.] FX The work of A. N. and S. H. was supported by Department of Energy Contract No. DE-AC0376SF00515. The work of A. A. was supported by Department of Energy Contract No. DE-AC0596OR22464. NR 5 TC 0 Z9 0 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD NOV PY 2008 VL 11 IS 11 AR 114401 DI 10.1103/PhysRevSTAB.11.114401 PG 9 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 390XL UT WOS:000262196900004 ER PT J AU Gorelenkov, NN AF Gorelenkov, N. N. TI Existence of weakly damped kinetic Alfven eigenmodes in reversed shear tokamak plasmas SO PHYSICS OF PLASMAS LA English DT Article DE plasma Alfven waves; plasma instability; plasma kinetic theory; plasma magnetohydrodynamics; plasma toroidal confinement; Tokamak devices ID WAVES; EXCITATION AB A kinetic theory of weakly damped Alfven eigenmode solutions strongly interacting with the continuum is developed for tokamak plasmas with reversed magnetic shear. It is shown that finite Larmor radius (FLR) effects are required for global eigenmode solutions. FLR effects induce multiple kinetic subeigenmodes and collisionless radiative damping. The theory explains the existence of experimentally observed Alfvenic instabilities with frequencies sweeping down and reaching their minimum (bottom). C1 Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Gorelenkov, NN (reprint author), Princeton Univ, Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. EM gnorelen@pppl.gov FU U.S. Department of Energy [DE-AC02-76CH03073] FX This work was supported by the U.S. Department of Energy under Contract No. DE-AC02-76CH03073. NR 21 TC 16 Z9 16 U1 1 U2 2 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD NOV PY 2008 VL 15 IS 11 AR 110701 DI 10.1063/1.3027512 PG 4 WC Physics, Fluids & Plasmas SC Physics GA 376VZ UT WOS:000261212400001 ER PT J AU Martin-Solis, JR Sanchez, R AF Martin-Solis, J. R. Sanchez, R. TI Pitch angle scattering and synchrotron radiation of relativistic runaway electrons in tokamak stochastic magnetic fields SO PHYSICS OF PLASMAS LA English DT Article DE plasma fluctuations; plasma toroidal confinement; plasma-beam interactions; synchrotron radiation; Tokamak devices ID LOWER-HYBRID WAVES; SPACE STRUCTURE; MOMENTUM-SPACE; DYNAMICS; FLUCTUATIONS; INSTABILITY; TERMINATION; DIFFUSION; TRANSPORT; PLASMAS AB In a recent work [J. R. Martin-Solis and R. Sanchez, Phys. Plasmas 13, 012508 (2006)], the increase that the presence of stochastic magnetic fields causes on the synchrotron radiation losses of relativistic runaway electrons was quantified using a guiding-center approximation. Here, we complete those studies by considering instead the mechanism which dominates the interaction at the gyromotion level. It is shown that, under typical tokamak conditions, the resonant cyclotron interaction with high enough parallel (to the magnetic field) wave numbers (k(parallel to)) modes can create, even for moderate magnetic fluctuation levels, an upper bound on the runaway energy. Implications for disruption-generated runaway electrons will be also discussed. C1 [Martin-Solis, J. R.] Univ Carlos III Madrid, Madrid 28911, Spain. [Sanchez, R.] Oak Ridge Natl Lab, Div Fus Energy, Oak Ridge, TN 37831 USA. RP Martin-Solis, JR (reprint author), Univ Carlos III Madrid, Ave Univ 30, Madrid 28911, Spain. EM solis@fis.uc3m.es FU Direccion General de Investigacion [FTN2003-04587, ENE2006-15244-C03-01/FTN]; Oak Ridge National Laboratory; U.S. Department of Energy [DE-AC05-00OR22725] FX This work was done under financial support from Direccion General de Investigacion Project Nos. FTN2003-04587 and ENE2006-15244-C03-01/FTN. Research sponsored in part by Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U.S. Department of Energy under Contract No. DE-AC05-00OR22725. NR 23 TC 7 Z9 7 U1 2 U2 8 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD NOV PY 2008 VL 15 IS 11 AR 112505 DI 10.1063/1.3013849 PG 8 WC Physics, Fluids & Plasmas SC Physics GA 376VZ UT WOS:000261212400022 ER PT J AU Mier, JA Sanchez, R Garcia, L Newman, DE Carreras, BA AF Mier, J. A. Sanchez, R. Garcia, L. Newman, D. E. Carreras, B. A. TI On the nature of transport in near-critical dissipative-trapped-electron-mode turbulence: Effect of a subdominant diffusive channel SO PHYSICS OF PLASMAS LA English DT Article DE plasma confinement; plasma turbulence ID SELF-ORGANIZED CRITICALITY; FRACTIONAL DYNAMICS APPROACH; DRIFT-WAVE TURBULENCE; ANOMALOUS TRANSPORT; PLASMA TURBULENCE; RANDOM-WALKS; PARADIGM; FUSION AB The change in nature of radial transport in numerical simulations of near-critical dissipative-trapped-electron-mode turbulence is characterized as the relative strength of an additional diffusive transport channel (subdominant to turbulence) is increased from zero. In its absence, radial transport exhibits the lack of spatial and temporal scales characteristic of self-organized-critical systems. This dynamical regime survives up to diffusivity values which, for the system investigated here, greatly exceeds the expected neoclassical value. These results, obtained using a novel Lagrangian method, complete and extend previous works based instead on the use of techniques imported from the study of cellular automata [J. A. Mier , Phys. Plasmas 13, 102308 (2006)]. They also shed further light on why some features of self-organized criticality seem to be observed in magnetically confined plasmas in spite of the presence of mechanisms which apparently violate the conditions needed for its establishment. C1 [Mier, J. A.; Garcia, L.] Univ Carlos III Madrid, Dept Fis, Madrid 28911, Spain. [Sanchez, R.] Oak Ridge Natl Lab, Div Fus Energy, Oak Ridge, TN 37831 USA. [Newman, D. E.] Univ Alaska, Dept Phys, Fairbanks, AK 99775 USA. [Carreras, B. A.] BACV Solut Inc, Oak Ridge, TN 37830 USA. RP Mier, JA (reprint author), Univ Carlos III Madrid, Dept Fis, Madrid 28911, Spain. EM jmier@fis.uc3m.es RI Garcia, Luis/A-5344-2015 OI Garcia, Luis/0000-0002-0492-7466 FU DGICYT (Direccion General de Investigaciones Cientificas y Tecnologicas) of Spain [ENE2006-15244-C03-01/FTN]; U.S. Department of Energy [DE-AC05-00OR22725]; DOE Office of Science [DE-FG02-04ER5741] FX The authors express their thanks to Jose Ramon Martin-Solis (Universidad Carlos III de Madrid, SPAIN) and Boudewijn Ph. van Milligen, Ivan Calvo, and Guillermo Sanchez-Burillo (CIEMAT, Madrid, SPAIN) for very stimulating discussions.; This research was sponsored by DGICYT (Direccion General de Investigaciones Cientificas y Tecnologicas) of Spain under Project No. ENE2006-15244-C03-01/FTN. Research sponsored in part by the Laboratory Research and Development Program of Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U.S. Department of Energy under Contract No. DE-AC05-00OR22725. Research supported in part by DOE Office of Science Grant No. DE-FG02-04ER5741 at the University of Alaska. NR 32 TC 11 Z9 11 U1 1 U2 1 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD NOV PY 2008 VL 15 IS 11 AR 112301 DI 10.1063/1.3006088 PG 9 WC Physics, Fluids & Plasmas SC Physics GA 376VZ UT WOS:000261212400008 ER PT J AU Yampolsky, NA Fisch, NJ Malkin, VM Valeo, EJ Lindberg, R Wurtele, J Ren, J Li, S Morozov, A Suckewer, S AF Yampolsky, N. A. Fisch, N. J. Malkin, V. M. Valeo, E. J. Lindberg, R. Wurtele, J. Ren, J. Li, S. Morozov, A. Suckewer, S. TI Demonstration of detuning and wavebreaking effects on Raman amplification efficiency in plasma SO PHYSICS OF PLASMAS LA English DT Article DE optical pulse compression; plasma density; plasma light propagation; Raman spectra ID LASER-PULSE AMPLIFICATION; INTENSE PULSES; AMPLIFIERS; BEAMS; BACKSCATTERING; GENERATION; CHANNELS AB A plasma-based resonant backward Raman amplifier/compressor for high power amplification of short laser pulses might, under ideal conditions, convert as much as 90% of the pump energy to the seed pulse. While the theoretical highest possible efficiency of this scheme has not yet been achieved, larger efficiencies than ever before obtained experimentally (6.4%) are now being reported, and these efficiencies are accompanied by strong pulse compression. Based on these recent extensive experiments, it is now possible to deduce that the experimentally realized efficiency of the amplifier is likely constrained by two factors, namely the pump chirp and the plasma wavebreaking, and that these experimental observations may likely involve favorable compensation between the chirp of the laser and the density variation of the mediating plasma. Several methods for further improvement of the amplifier efficiency in current experiments are suggested. C1 [Yampolsky, N. A.; Fisch, N. J.; Malkin, V. M.] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. [Valeo, E. J.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Lindberg, R.; Wurtele, J.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Ren, J.; Li, S.; Morozov, A.; Suckewer, S.] Princeton Univ, Dept Mech & Aerosp Engn, Princeton, NJ 08543 USA. RP Yampolsky, NA (reprint author), Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. RI Yampolsky, Nikolai/A-7521-2011; Li, Shuanglei/A-5376-2012; wurtele, Jonathan/J-6278-2016 OI wurtele, Jonathan/0000-0001-8401-0297 FU DOE [DE-FG5207NA28122, DE-AC0276CH03073] FX This work was supported by the NNSA under the SSAA Program through DOE Research Grant No. DE-FG5207NA28122 and by DOE Contract No. DE-AC0276CH03073. NR 40 TC 29 Z9 30 U1 1 U2 6 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD NOV PY 2008 VL 15 IS 11 AR 113104 DI 10.1063/1.3023153 PG 10 WC Physics, Fluids & Plasmas SC Physics GA 376VZ UT WOS:000261212400034 ER PT J AU Sanchez-Valle, C Sinogeikin, SV Smyth, JR Bass, JD AF Sanchez-Valle, Carmen Sinogeikin, Stanislav V. Smyth, Joseph R. Bass, Jay D. TI Sound velocities and elasticity of DHMS phase A to high pressure and implications for seismic velocities and anisotropy in subducted stabs SO PHYSICS OF THE EARTH AND PLANETARY INTERIORS LA English DT Article DE Phase A; High pressure; Elasticity; Sound velocities; Brillouin scattering ID SINGLE-CRYSTAL ELASTICITY; X-RAY-DIFFRACTION; HYDROUS MAGNESIUM SILICATES; BRILLOUIN-SCATTERING; UPPER-MANTLE; THERMAL-EXPANSION; WATER TRANSPORT; 12 GPA; STABILITY; TEMPERATURE AB Dense hydrous magnesium silicate (DHMS) phase A forms in cold subducted slabs after the breakdown of antigorite serpentine. and may play an important role in the transport of water within the upper mantle. In this paper we present acoustic velocities and the single-crystal elastic properties of Fe-bearing phase A, (Mg-0.981 Fe-0.019)(7)Si2O8(OH)(6), measured by Brillouin spectroscopy on a sample compressed to 12.4(2) GPa in a diamond anvil cell. A fit to the acoustic data using a 3rd order finite-strain EOS yields the following adiabatic bulk (K-S) and shear (mu) moduli and their pressure derivatives: K-S=106(1) GPa, (partial derivative K-S/partial derivative P)(T0)=5.8(3), mu=61(1) GPa, (partial derivative mu/partial derivative P)(T0)=1.8(1). Within the experimental resolution, the pure longitudinal elastic constants, C-11 and C-33, and the off-diagonal C-12 constants exhibit positive linear pressure dependence, whereas C-44, C-66 and C-13 increase with a quadratic dependence on pressure. The axial compressibility of phase A remains highly anisotropic in the investigated pressure range, with the a-axis being 15% more compressible than the c-axis at 12.4(2) GPa. Compared to forsterite, the aggregate compressional (V-P) and shear (V-S) acoustic velocities of phase A are 7% slower at room pressure. Although the velocity contrast diminishes to 3.5% for V-P, it is maintained for V-S over the investigated pressure range. Phase A has high shear wave anisotropy (A(S)) and shear-wave polarization anisotropy (A(S)(P0)) of A(S)=20% and A(S)(P0)=18%, and a more moderate compressional wave anisotropy A(P)=12% at room pressure. The A(P) of phase A decreases to 8% at 12.4(2) GPa, remaining significantly lower than that of forsterite, whereas the shear anisotropy is nearly constant at similar to 20% over the same pressure range and exceeds that of forsterite by 12% at 12.4(2) GPa. At upper mantle pressures, the shear wave splitting in phase A (A(S)(P0)) is 20% higher than in forsterite. The results of this study were used with thermoelastic S data for other relevant minerals to compute the density, seismic velocities and V-P/V-S ratios of subducted garnet-harzbugite and moderately depleted harzburgite assemblages with various degrees of hydration as a function of pressure along a slab isotherm at 1073 K. The results suggest that the seismic velocities of dry and water-saturated harzburgites (44.5vol% phase A) may be indistinguishable at upper mantle P-T conditions because of the increasing concentration of high-pressure orthopyroxene upon hydration. This phase displays high seismic velocities that offset the decrease in velocities due to phase A, rendering hydration difficult to detect (anelastic attenuation is not considered). Combined observations from the analysis of seismic parameters indicate that significant shear wave anisotropy, accompanied by high V-P/V-S and Poisson's ratios and pronounced shear wave splitting, could be major diagnostic features for identifying phase A-bearing assemblages at depth (180-350 km) in cold subducted slabs. (C) 2008 Elsevier B.V. All rights reserved. C1 [Sanchez-Valle, Carmen] ETH, Inst Mineral & Petrol, CH-8092 Zurich, Switzerland. [Sanchez-Valle, Carmen; Bass, Jay D.] Univ Illinois, Dept Geol, Urbana, IL 61801 USA. [Sinogeikin, Stanislav V.] Argonne Natl Lab, Adv Photon Source, Carnegie Inst Washington, HPCAT, Argonne, IL 60439 USA. [Smyth, Joseph R.] Univ Colorado, Dept Geol Sci, Boulder, CO 80309 USA. RP Sanchez-Valle, C (reprint author), ETH, Inst Mineral & Petrol, CH-8092 Zurich, Switzerland. EM carmen.sanchez@erdw.ethz.ch RI Bass, Jay/G-2599-2013; Sanchez-Valle, Carmen/A-2119-2017 OI Sanchez-Valle, Carmen/0000-0001-5046-1612 FU NSF [EAR 0003383, 0135642] FX We would like to thank J.R Perrillat, R Ulmer and E. Medard for fruitful discussions at different stages of this work. Shear wave polarization anisotropies were calculated using the Petrophysical software of D. Mainprice. Comments by two anonymous reviewers helped to improve this manuscript. This work was supported by NSF grants EAR 0003383 and 0135642 to JDB. NR 74 TC 11 Z9 12 U1 2 U2 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0031-9201 EI 1872-7395 J9 PHYS EARTH PLANET IN JI Phys. Earth Planet. Inter. PD NOV PY 2008 VL 170 IS 3-4 BP 229 EP 239 DI 10.1016/j.pepi.2008.07.015 PG 11 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 378LP UT WOS:000261322600013 ER PT J AU Lin, JF Tsuchiya, T AF Lin, Jung-Fu Tsuchiya, Taku TI Spin transition of iron in the Earth's lower mantle SO PHYSICS OF THE EARTH AND PLANETARY INTERIORS LA English DT Article DE Spin transition; Lower mantle; Mineral physics; Ferropericlase; Silicate perovskite ID POST-PEROVSKITE PHASE; OPTICAL-ABSORPTION SPECTRA; RAY-EMISSION SPECTROSCOPY; HIGH-PRESSURE; SYNCHROTRON MOSSBAUER; ELECTRONIC-STRUCTURE; SILICATE PEROVSKITE; MGSIO3 PEROVSKITE; THERMODYNAMIC PARAMETERS; THERMAL-CONDUCTIVITY AB Electronic spin-pairing transitions of iron and associated effects on the physical properties of host phases have been reported in lower-mantle minerals including ferropericlase, silicate perovskite, and possibly in post-perovskite at lower-mantle pressures. Here we evaluate current understanding of the spin and valence states of iron in the lower-mantle phases, emphasizing the effects of the spin transitions on the density, sound velocities, chemical behavior, and transport properties of the lower-mantle phases. The spin transition of iron in ferropericlase occurs at approximately 50 GPa and room temperature but turns into a wide spin crossover under lower-mantle temperatures. Current experimental results indicate a continuous nature of the spin crossover in silicate perovskite at high pressures, but Which valence state of iron undergoes the spin crossover and what is its associated crystallographic site remain uncertain. The spin transition of iron results in enhanced density, incompressibility, and sound velocities, and reduced radiative thermal conductivity and electrical conductivity in the low-spin ferropericlase, which should be considered in future geophysical and geodynamic modeling of the Earth's lower mantle. In addition, a reduction in sound velocities within the spin transition is recently reported. Our evaluation of the experimental and theoretical pressure-volume results shows that the spin crossover of iron results in a density increase of 2-4% in ferropericlase containing 17-20% FeO. Here we have modeled the density and bulk modulus profiles of ferropericlase across the spin crossover under lower-mantle pressure-temperature conditions and shown how the ratio of the spin states of iron affects our understanding of the state of the Earth's lower mantle. (C) 2008 Elsevier B.V. All rights reserved. C1 [Lin, Jung-Fu] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Tsuchiya, Taku] Ehime Univ, Geodynam Res Ctr, Matsuyama, Ehime 7908577, Japan. RP Lin, JF (reprint author), Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94550 USA. EM afu@llnl.gov RI Lin, Jung-Fu/B-4917-2011; Tsuchiya, Taku/A-6406-2014 OI Tsuchiya, Taku/0000-0002-6042-3692 FU Ehime University; Japan Society for the Promotion of Science [18840033, 19740331] FX We thank M.J. Lipps, V. Iota, and A. Lazicki for discussions. We also thank S. Speziale and W.A. Bassett for constructive comments. This work at LLNL was performed under the auspices of the U.S. DOE by University of California and LLNL under Contract No. W-7405-Eng-48. JFL was also supported by Lawrence Livermore Fellowship. TT is supported by the Ehime University Project Fund and Grant-in-Aid for Scientific Research from the Japan Society for the Promotion of Science (nos. 18840033 and 19740331). Part of the study was completed during JFL's visit to GRC, Ehime University. NR 91 TC 57 Z9 57 U1 1 U2 25 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0031-9201 EI 1872-7395 J9 PHYS EARTH PLANET IN JI Phys. Earth Planet. Inter. PD NOV PY 2008 VL 170 IS 3-4 BP 248 EP 259 DI 10.1016/j.pepi.2008.01.005 PG 12 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 378LP UT WOS:000261322600015 ER PT J AU Manley, DK McIlroy, A Taatjes, CA AF Manley, Dawn K. McIlroy, Andrew Taatjes, Craig A. TI Research needs for future internal combustion engines SO PHYSICS TODAY LA English DT Article ID CHEMICAL-KINETICS; SIMULATION; JET C1 [Manley, Dawn K.] Sandia Natl Labs, Combust Res Facil, Reacting flow Res Dept, Livermore, CA USA. [McIlroy, Andrew; Taatjes, Craig A.] Sandia Natl Labs, Combust Res Facil, Combust Chem Dept, Livermore, CA USA. RP Manley, DK (reprint author), Sandia Natl Labs, Combust Res Facil, Reacting flow Res Dept, Livermore, CA USA. NR 18 TC 21 Z9 21 U1 2 U2 20 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0031-9228 J9 PHYS TODAY JI Phys. Today PD NOV PY 2008 VL 61 IS 11 BP 47 EP 52 DI 10.1063/1.3027991 PG 6 WC Physics, Multidisciplinary SC Physics GA 368LC UT WOS:000260621600024 ER PT J AU Crease, RP AF Crease, Robert P. TI Critical Point Beauty and the beast SO PHYSICS WORLD LA English DT Editorial Material C1 SUNY Stony Brook, Dept Philosophy, Stony Brook, NY 11794 USA. [Crease, Robert P.] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Crease, RP (reprint author), SUNY Stony Brook, Dept Philosophy, Stony Brook, NY 11794 USA. EM rcrease@notes.cc.sunysb.edu NR 0 TC 0 Z9 0 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8585 J9 PHYS WORLD JI Phys. World PD NOV PY 2008 VL 21 IS 11 BP 19 EP 19 PG 1 WC Physics, Multidisciplinary SC Physics GA 384QA UT WOS:000261758100024 ER PT J AU Tobias, CM Sarath, G Twigg, P Lindquist, E Pangilinan, J Penning, BW Barry, K McCann, MC Carpita, NC Lazo, GR AF Tobias, Christian M. Sarath, Gautam Twigg, Paul Lindquist, Erika Pangilinan, Jasmyn Penning, Bryan W. Barry, Kerry McCann, Maureen C. Carpita, Nicholas C. Lazo, Gerard R. TI Comparative Genomics in Switchgrass Using 61,585 High-Quality Expressed Sequence Tags SO PLANT GENOME LA English DT Article ID NONSYNONYMOUS SUBSTITUTION RATES; NUCLEAR-DNA CONTENT; CESA GENE FAMILY; PANICUM-VIRGATUM; ALANINE AMINOTRANSFERASE; O-METHYLTRANSFERASE; RAPD MARKERS; SSR-MARKERS; PLANT; SYNTHASE AB The development of genomic resources for switchgrass (Panicum virgatum L.), a perennial NAD(+)-malic enzyme type C-4 grass, is required to enable molecular breeding and biotechnological approaches for improving its value as a forage and bioenergy crop. Expressed sequence tag (EST) sequencing is one method that can quickly sample gene inventories and produce data suitable for marker development or analysis of tissue-specific patterns of expression. Toward this goal, three cDNA libraries from callus, crown, and seedling tissues of 'Kanlow' switchgrass were end-sequenced to generate a total of 61,585 high-quality ESTs from 36,565 separate clones. Seventy-three percent of the assembled consensus sequences could be aligned with the sorghum [Sorghum bicolor (L.) Moench] genome at a E-value of <1 x 10(-20), indicating a high degree of similarity. Sixty-five percent of the ESTs matched with gene ontology molecular terms, and 3.3% of the sequences were matched with genes that play potential roles in cell-wall biogenesis. The representation in the three libraries of gene families known to be associated with C-4 photosynthesis, cellulose and beta-glucan synthesis, phenylpropanoid biosynthesis, and peroxidase activity indicated likely roles for individual family members. Pairwise comparisons of synonymous codon substitutions were used to assess genome sequence diversity and indicated an overall similarity between the two genome copies present in the tetraploid. Identification of EST-simple sequence repeat markers and amplification on two individual parents of a mapping population yielded an average of 2.18 amplicons per individual, and 35% of the markers produced fragment length polymorphisms. C1 [Tobias, Christian M.; Lazo, Gerard R.] USDA ARS, Western Reg Res Ctr, Genom & Gene Discovery Unit, Albany, CA 94710 USA. [Sarath, Gautam] Univ Nebraska, USDA ARS, Grain Forage & Bioenergy Res Unit, Lincoln, NE 68583 USA. [Twigg, Paul] Univ Nebraska, Dep Biol, Kearney, NE 68849 USA. [Pangilinan, Jasmyn; Barry, Kerry] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Penning, Bryan W.; McCann, Maureen C.] Purdue Univ, Dep Biol Sci, W Lafayette, IN 47907 USA. [Carpita, Nicholas C.] Purdue Univ, Dep Bot & Plant Pathol, W Lafayette, IN 47907 USA. RP Tobias, CM (reprint author), USDA ARS, Western Reg Res Ctr, Genom & Gene Discovery Unit, 800 Buchanan St, Albany, CA 94710 USA. EM christian.tobias@ars.usda.gov RI Lazo, Gerard/A-8900-2009; Tobias, Christian/B-6602-2009 OI Lazo, Gerard/0000-0002-9160-2052; Tobias, Christian/0000-0002-7881-750X FU U.S. Department of Energy [776898]; U.S. Department of Agriculture, Agriculture Research Service CRIS [5325-21000-13, 5440-21000-028]; NIH from the BRIN Program of the National Center for Research Resources [P20 RR16569]; University of Nebraska at Kearney Research Services Council University Research & Creative Activity Grant; NSF Plant Genome Research Grant [DBI-0217552] FX The authors would like to acknowledge Humphrey Wanjugi and Jennifer Bragg for critical reading of the manuscript. This work was supported through the community sequencing program of the U.S. Department of Energy, project 776898, through the U.S. Department of Agriculture, Agriculture Research Service CRIS 5325-21000-13 and 5440-21000-028, and supported in part by NIH Grant P20 RR16569 from the BRIN Program of the National Center for Research Resources, a University of Nebraska at Kearney Research Services Council University Research & Creative Activity Grant, and an NSF Plant Genome Research Grant DBI-0217552 (to N.C.C., M. C. C.). Mention of trade names or commercial products in this article is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture. NR 60 TC 44 Z9 45 U1 3 U2 12 PU CROP SCIENCE SOC AMER PI MADISON PA 677 S SEGOE ROAD, MADISON, WI 53711 USA SN 1940-3372 J9 PLANT GENOME-US JI Plant Genome PD NOV PY 2008 VL 1 IS 2 BP 111 EP 124 DI 10.3835/plantgenome2008.08.0003 PG 14 WC Plant Sciences; Genetics & Heredity SC Plant Sciences; Genetics & Heredity GA V26WM UT WOS:000208575700006 ER PT J AU Yang, XH Kalluri, UC Jawdy, S Gunter, LE Yin, TM Tschaplinski, TJ Weston, DJ Ranjan, P Tuskan, GA AF Yang, Xiaohan Kalluri, Udaya C. Jawdy, Sara Gunter, Lee E. Yin, Tongming Tschaplinski, Timothy J. Weston, David J. Ranjan, Priya Tuskan, Gerald A. TI The F-Box Gene Family Is Expanded in Herbaceous Annual Plants Relative to Woody Perennial Plants SO PLANT PHYSIOLOGY LA English DT Article ID SELF-INCOMPATIBILITY; ARABIDOPSIS-THALIANA; PROTEIN; GENOME; ANNOTATION; DEGRADATION; DATABASE; IDENTIFICATION; ASSEMBLIES; EVOLUTION AB F-box proteins are generally responsible for substrate recognition in the Skp1-Cullin-F-box complexes that are involved in protein degradation via the ubiquitin-26S proteasome pathway. In plants, F-box genes influence a variety of biological processes, such as leaf senescence, branching, self-incompatibility, and responses to biotic and abiotic stresses. The number of F-box genes in Populus ( Populus trichocarpa; approximately 320) is less than half that found in Arabidopsis ( Arabidopsis thaliana; approximately 660) or Oryza ( Oryza sativa; approximately 680), even though the total number of genes in Populus is equivalent to that in Oryza and 1.5 times that in Arabidopsis. We performed comparative genomics analysis between the woody perennial plant Populus and the herbaceous annual plants Arabidopsis and Oryza in order to explicate the functional implications of this large gene family. Our analyses reveal interspecific differences in genomic distribution, orthologous relationship, intron evolution, protein domain structure, and gene expression. The set of F-box genes shared by these species appear to be involved in core biological processes essential for plant growth and development; lineage-specific differences primarily occurred because of an expansion of the F-box genes via tandem duplications in Arabidopsis and Oryza. The number of F-box genes in the newly sequenced woody species Vitis ( Vitis vinifera; 156) and Carica ( Carica papaya; 139) is similar to that in Populus, supporting the hypothesis that the F-box gene family is expanded in herbaceous annual plants relative to woody perennial plants. This study provides insights into the relationship between the structure and composition of the F-box gene family in herbaceous and woody species and their associated developmental and physiological features. C1 [Yang, Xiaohan; Kalluri, Udaya C.; Jawdy, Sara; Gunter, Lee E.; Yin, Tongming; Tschaplinski, Timothy J.; Weston, David J.; Ranjan, Priya; Tuskan, Gerald A.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. RP Tuskan, GA (reprint author), Oak Ridge Natl Lab, Div Environm Sci, POB 2008, Oak Ridge, TN 37831 USA. EM tuskanga@ornl.gov RI KALLURI, UDAYA/A-6218-2011; Tuskan, Gerald/A-6225-2011; Weston, David/A-9116-2011; Gunter, Lee/L-3480-2016; Yang, Xiaohan/A-6975-2011; OI Tuskan, Gerald/0000-0003-0106-1289; Weston, David/0000-0002-4794-9913; Gunter, Lee/0000-0003-1211-7532; Yang, Xiaohan/0000-0001-5207-4210; Tschaplinski, Timothy/0000-0002-9540-6622; KALLURI, UDAYA/0000-0002-5963-8370 FU U. S. Department of Energy [DE-AC05-00OR22725]; Office of Science, Biological, and Environmental Research Carbon Sequestration Program FX This work was supported by the U. S. Department of Energy, Office of Science, Biological, and Environmental Research Carbon Sequestration Program. Oak Ridge National Laboratory is managed by UT-Battelle, LLC, for the U. S. Department of Energy under Contract Number DE-AC05-00OR22725. NR 46 TC 61 Z9 62 U1 3 U2 25 PU AMER SOC PLANT BIOLOGISTS PI ROCKVILLE PA 15501 MONONA DRIVE, ROCKVILLE, MD 20855 USA SN 0032-0889 J9 PLANT PHYSIOL JI Plant Physiol. PD NOV PY 2008 VL 148 IS 3 BP 1189 EP 1200 DI 10.1104/pp.108.121921 PG 12 WC Plant Sciences SC Plant Sciences GA 369UN UT WOS:000260719500002 PM 18775973 ER PT J AU Catto, PJ Simakov, AN Parra, FI Kagan, G AF Catto, Peter J. Simakov, Andrei N. Parra, Felix I. Kagan, Grigory TI Electrostatic turbulence in tokamaks on transport time scales SO PLASMA PHYSICS AND CONTROLLED FUSION LA English DT Article ID HYDROMAGNETIC EQUATIONS; GYROKINETIC EQUATIONS; MOMENTUM TRANSPORT; ION-TRANSPORT; PLASMA; SYSTEMS; DRIVEN AB Simulating electrostatic turbulence in tokamaks on transport time scales requires retaining and evolving a complete turbulence modified neoclassical transport description, including all the axisymmetric neoclassical and zonal flow radial electric field effects, as well as the turbulent transport normally associated with drift instabilities. Neoclassical electric field effects are particularly difficult to retain since they require evaluating the ion distribution function to higher order in gyroradius over background scale length than standard gyrokinetic treatments. To avoid extending gyrokinetics an alternate hybrid gyrokinetic-fluid treatment is formulated that employs moments of the full Fokker-Planck kinetic equation to remove the need for a higher order gyrokinetic distribution function. The resulting hybrid description is able to model all electrostatic turbulence effects withwavelengths much longer than an electron Larmor radius such as the ion temperature gradient (ITG) and trapped electron modes (TEM). C1 [Catto, Peter J.; Parra, Felix I.; Kagan, Grigory] MIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA. [Simakov, Andrei N.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Catto, PJ (reprint author), MIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA. EM catto@psfc.mit.edu RI Parra, Felix I./C-1442-2012; OI Parra, Felix I./0000-0001-9621-7404; Simakov, Andrei/0000-0001-7064-9153 NR 39 TC 8 Z9 8 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0741-3335 J9 PLASMA PHYS CONTR F JI Plasma Phys. Control. Fusion PD NOV PY 2008 VL 50 IS 11 AR 115006 DI 10.1088/0741-3335/50/11/115006 PG 21 WC Physics, Fluids & Plasmas SC Physics GA 364BR UT WOS:000260311700006 ER PT J AU Shevelko, A Bliss, D Kazakov, E Mazarakis, M McGurn, J Knight, L Struve, K Tolstikhina, I Weeks, T AF Shevelko, A. P. Bliss, D. E. Kazakov, E. D. Mazarakis, M. G. McGurn, J. S. Knight, L. V. Struve, K. W. Tolstikhina, I. Yu. Weeks, T. J. TI EUV spectroscopy of plasmas created in the final anode-cathode gap of the Z-Machine high-current pulsed generator (SNL) SO PLASMA PHYSICS REPORTS LA English DT Article DE 52; 58; Lq; 52; 70; La ID LASER-PRODUCED PLASMAS; X-RAY SPECTROSCOPY; RADIATION; LINES AB The effect of short-circuit across the final anode-cathode gap of powerful pulsed current generators could hamper efficient power delivery to the Z-pinch plasma. To study this effect, a novel EUV diagnostics of plasmas created in the final section of the transmission line (the anode-cathode gap near the main load) of the Z-Machine high-current generator (Sandia National Laboratories, United States) was developed. The work included developing spectroscopic instruments, theoretical and experimental studies of EUV spectra of iron ions in well-diagnosed laser-produced plasmas, and a comparison of these spectra with those of plasmas created in the final anode-cathode gap of the transmission line. The EUV spectra of highly charged Fe ions in the spectral range lambda similar to 20-800 angstrom were investigated. In experiments performed at Sandia National Laboratories, spectra of FeXIII-FeXVII ions were observed. A comparison of the measured and calculated spectra shows that the electron plasma temperature in the anode-cathode gap is T (e) similar to 200 eV. C1 [Shevelko, A. P.; Kazakov, E. D.; Tolstikhina, I. Yu.] Russian Acad Sci, Lebedev Phys Inst, Moscow 119991, Russia. [Bliss, D. E.; Mazarakis, M. G.; McGurn, J. S.; Struve, K. W.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Knight, L. V.; Weeks, T. J.] Brigham Young Univ, Provo, UT 84602 USA. RP Shevelko, A (reprint author), Russian Acad Sci, Lebedev Phys Inst, Leninskii Pr 53, Moscow 119991, Russia. RI Tolstikhina, Inga/L-3576-2013; Kazakov, Evgeny/A-8314-2014; Shevelko, Alexander/N-1599-2015 FU SNL; MOXTEK Inc. [303049]; Lebedev Physical Institute [469254] FX We thank G. Sarkisov and D. Brown (Sandia National Laboratories, Albuquerque, NM) for their technical support. We also thank G. Stewart (MOXTEK Inc., Orem, UT), S. N. Andreev, I. L. Beigman, and M. A. Mazing (Lebedev Physical Institute, Russian Academy of Sciences, Moscow, Russia) for helpful discussions and fruitful cooperation. This work was performed under the cooperation agreements between SNL and MOXTEK Inc. (contract no. 303049) and between SNL and the Lebedev Physical Institute (contract no. 469254). NR 19 TC 12 Z9 12 U1 0 U2 2 PU MAIK NAUKA/INTERPERIODICA/SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013-1578 USA SN 1063-780X J9 PLASMA PHYS REP+ JI Plasma Phys. Rep. PD NOV PY 2008 VL 34 IS 11 BP 944 EP 954 DI 10.1134/S1063780X08110081 PG 11 WC Physics, Fluids & Plasmas SC Physics GA 370SH UT WOS:000260782900008 ER PT J AU Barnat, EV Miller, PA Paterson, AM AF Barnat, E. V. Miller, P. A. Paterson, A. M. TI RF discharge under the influence of a transverse magnetic field SO PLASMA SOURCES SCIENCE & TECHNOLOGY LA English DT Article ID COUPLED PLASMA SOURCES; REFERENCE CELL; REACTOR; ETCH; OPTIMIZATION; TECHNOLOGY; TRANSPORT; VOLTAGE; DRIVEN AB We examine the effects of an externally applied magnetic field (0-150 G) on an argon discharge generated capacitively at 13.56 MHz, in a Gaseous Electronics Conference reference cell. Dependence of the electrical characteristics of the discharge are measured as functions of applied magnetic field, rf power and argon pressure. At fixed power the rf voltage decreases with increasing magnetic field. Likewise, the impedance of the discharge is capacitive but becomes more resistive as the electron mobility becomes limited by the magnetic field. The impact of the magnetic field is found to diminish as the cyclotron frequency of the electron becomes smaller than that of the collision frequency of the electron. We also measure the impact the magnetic field has on the distribution of the plasma in vertical planes parallel and perpendicular to the magnetic field using Langmuir probes, optical emission and laser-induced fluorescence. It is found that the distribution of the plasma remains symmetric in the plane parallel to the magnetic field and becomes skewed in the plane perpendicular to the magnetic field. The degree of skew depends on the optical state probed. Finally, we examine the spatial distribution and the temporal evolution of the electric fields in the plasma. It is shown that with the presence of the magnetic field, the thickness of the sheath is reduced and that most of the voltage drop is contained within the sheath. Consistent with dc voltage trends, there was no significant sheath reversal observed at higher magnetic fields. Comparisons of the results presented here are made with trends predicted by models and simulations found in the literature. C1 [Barnat, E. V.; Miller, P. A.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Paterson, A. M.] Appl Mat Inc, Sunnyvale, CA 94086 USA. RP Barnat, EV (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM evbarna@sandia.gov NR 28 TC 6 Z9 6 U1 0 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0963-0252 J9 PLASMA SOURCES SCI T JI Plasma Sources Sci. Technol. PD NOV PY 2008 VL 17 IS 4 AR 045005 DI 10.1088/0963-0252/17/4/045005 PG 11 WC Physics, Fluids & Plasmas SC Physics GA 372HB UT WOS:000260891600005 ER PT J AU Yan, HH Talbert, PB Lee, HR Jett, J Henikoff, S Chen, F Jiang, JM AF Yan, Huihuang Talbert, Paul B. Lee, Hye-Ran Jett, Jamie Henikoff, Steven Chen, Feng Jiang, Jiming TI Intergenic Locations of Rice Centromeric Chromatin SO PLOS BIOLOGY LA English DT Article ID HISTONE H3 VARIANT; SATELLITE REPEAT; DNA; EVOLUTION; NEOCENTROMERES; SEQUENCE; GENOME; TRANSCRIPTION; KINETOCHORE; DOMAINS AB Centromeres are sites for assembly of the chromosomal structures that mediate faithful segregation at mitosis and meiosis. Plant and animal centromeres are typically located in megabase-sized arrays of tandem satellite repeats, making their precise mapping difficult. However, some rice centromeres are largely embedded in nonsatellite DNA, providing an excellent model to study centromere structure and evolution. We used chromatin immunoprecipitation and 454 sequencing to define the boundaries of nine of the 12 centromeres of rice. Centromere regions from chromosomes 8 and 9 were found to share synteny, most likely reflecting an ancient genome duplication. For four centromeres, we mapped discrete subdomains of binding by the centromeric histone variant CENH3. These subdomains were depleted in both intact and nonfunctional genes relative to interspersed subdomains lacking CENH3. The intergenic location of rice centromeric chromatin resembles the situation for human neocentromeres and supports a model of the evolution of centromeres from gene-poor regions. C1 [Jett, Jamie; Chen, Feng] US DOE, Joint Genome Inst, Walnut Creek, CA USA. [Yan, Huihuang; Lee, Hye-Ran; Jiang, Jiming] Univ Wisconsin, Dept Hort, Madison, WI 53706 USA. [Talbert, Paul B.; Henikoff, Steven] Fred Hutchinson Canc Res Ctr, Howard Hughes Med Inst, Seattle, WA 98104 USA. RP Chen, F (reprint author), US DOE, Joint Genome Inst, Walnut Creek, CA USA. EM fchen@lbl.gov; jjiang1@wisc.edu RI Jiang, Jiming/A-9614-2009 FU University of California; Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; Lawrence Berkeley National Laboratory [DE-AC02-05CH11231]; Los Alamos National Laborator [DE-AC02-06NA25396]; National Science Foundation [DBI-0603927]; US Department of Agriculture Cooperative State Research, Education, and Extension Service (CSREES) [2006-35604-16649] FX The sequencing was performed under the auspices of the US Department of Energy's Office of Science, Biological and Environmental Research Program and by the University of California, Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344, Lawrence Berkeley National Laboratory under contract No. DE-AC02-05CH11231, and Los Alamos National Laboratory under contract No. DE-AC02-06NA25396. This research was supported by grant DBI-0603927 from the National Science Foundation and grant 2006-35604-16649 from the US Department of Agriculture Cooperative State Research, Education, and Extension Service (CSREES) to J. Jiang. NR 55 TC 51 Z9 52 U1 1 U2 6 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA SN 1544-9173 J9 PLOS BIOL JI PLoS. Biol. PD NOV PY 2008 VL 6 IS 11 BP 2563 EP 2575 AR e286 DI 10.1371/journal.pbio.0060286 PG 13 WC Biochemistry & Molecular Biology; Biology SC Biochemistry & Molecular Biology; Life Sciences & Biomedicine - Other Topics GA 376MO UT WOS:000261187900022 PM 19067486 ER PT J AU Yandell, M Moore, B Salas, F Mungall, C MacBride, A White, C Reese, MG AF Yandell, Mark Moore, Barry Salas, Fidel Mungall, Chris MacBride, Andrew White, Charles Reese, Martin G. TI Genome-Wide Analysis of Human Disease Alleles Reveals That Their Locations Are Correlated in Paralogous Proteins SO PLOS COMPUTATIONAL BIOLOGY LA English DT Article ID AMINO-ACID SUBSTITUTIONS; ALAGILLE-SYNDROME; GENE CONVERSION; EVOLUTION; JAGGED1; ASSOCIATION; MUTATIONS; DATABASE; GROWTH AB The millions of mutations and polymorphisms that occur in human populations are potential predictors of disease, of our reactions to drugs, of predisposition to microbial infections, and of age-related conditions such as impaired brain and cardiovascular functions. However, predicting the phenotypic consequences and eventual clinical significance of a sequence variant is not an easy task. Computational approaches have found perturbation of conserved amino acids to be a useful criterion for identifying variants likely to have phenotypic consequences. To our knowledge, however, no study to date has explored the potential of variants that occur at homologous positions within paralogous human proteins as a means of identifying polymorphisms with likely phenotypic consequences. In order to investigate the potential of this approach, we have assembled a unique collection of known disease-causing variants from OMIM and the Human Genome Mutation Database (HGMD) and used them to identify and characterize pairs of sequence variants that occur at homologous positions within paralogous human proteins. Our analyses demonstrate that the locations of variants are correlated in paralogous proteins. Moreover, if one member of a variant-pair is disease-causing, its partner is likely to be disease-causing as well. Thus, information about variant-pairs can be used to identify potentially disease-causing variants, extend existing procedures for polymorphism prioritization, and provide a suite of candidates for further diagnostic and therapeutic purposes. C1 [Yandell, Mark; Moore, Barry] Univ Utah, Sch Med, Eccles Inst Human Genet, Salt Lake City, UT 84112 USA. [Salas, Fidel; MacBride, Andrew; White, Charles; Reese, Martin G.] Omicia, Emeryville, CA USA. [Mungall, Chris] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Yandell, M (reprint author), Univ Utah, Sch Med, Eccles Inst Human Genet, Salt Lake City, UT 84112 USA. EM myandell@genetics.utah.edu; mreese@omicia.com RI Sincan, Murat /A-3794-2010 FU NIH SBIR [1R43 HG003667, 1R44HG002993] FX This work was supported by NIH SBIR grants 1R43 HG003667 and 1R44HG002993, administered by the National Human Genome Research Institute (NHGRI) to Omicia Inc. NR 32 TC 10 Z9 11 U1 0 U2 1 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA SN 1553-734X J9 PLOS COMPUT BIOL JI PLoS Comput. Biol. PD NOV PY 2008 VL 4 IS 11 AR e1000218 DI 10.1371/journal.pcbi.1000218 PG 7 WC Biochemical Research Methods; Mathematical & Computational Biology SC Biochemistry & Molecular Biology; Mathematical & Computational Biology GA 380QR UT WOS:000261480800010 PM 18989397 ER PT J AU Modesti, M Besco, S Lorenzetti, A Zammarano, M Causin, V Marega, C Gilman, JW Fox, DM Trulove, PC De Long, HC Maupin, PH AF Modesti, M. Besco, S. Lorenzetti, A. Zammarano, M. Causin, V. Marega, C. Gilman, J. W. Fox, D. M. Trulove, P. C. De Long, H. C. Maupin, P. H. TI Imidazolium-modified clay-based ABS nanocomposites: a comparison between melt-blending and solution-sonication processes SO POLYMERS FOR ADVANCED TECHNOLOGIES LA English DT Article DE ABS; imidazolium salts; solution processing; melt-blending; nanocomposites; Nile Blue A; fluorescence probe ID POLYMER/LAYERED SILICATE NANOCOMPOSITES; THERMAL-DEGRADATION; EXFOLIATION; MODEL; MONTMORILLONITE; AMMONIUM; BEHAVIOR AB Acrylonitrile--butadiene--styrene (ABS) nanocomposites containing imidazolium-modified montmorillonite have been prepared by melt-blending (MB) and solution-sonication in order to study the effects of processing on the morphology and properties of the polymer/clay composites. The structure-property relationships of the prepared composites have been studied by means of X-ray diffraction (XRD), transmission electron microscopy (TEM), mechanical testing, dynamic-mechanical analyses (DMA), thermal gravimetrical analyses (TGA), fluorescence probe confocal microscopy, and fluorescence spectroscopy (FS). X-Ray and TEM show that both nanocomposites have a mixed intercalated/exfoliated structure. Fluorescence probe confocal microscopy reveals that the sonicated sample has a more homogeneous dispersion: this result is confirmed by the values of elongation at break and flexural elastic modulus measured for the composites. Fluorescence spectroscopy has also been used to investigate the distribution of clay in the composites and results indicate that clay layers in ABS are preferentially located in the styrene-acrylonitrile (SAN) phase, independent of the dispersion process used. Published in 2008 by John Wiley & Sons, Ltd. C1 [Modesti, M.; Besco, S.; Lorenzetti, A.] Univ Padua, Dept Chem Proc Engn, I-35131 Padua, Italy. [Zammarano, M.; Gilman, J. W.] Natl Inst Stand & Technol, Bldg & Fire Res Lab, Gaithersburg, MD 20899 USA. [Causin, V.; Marega, C.] Univ Padua, Dept Chem Sci, I-35131 Padua, Italy. [Fox, D. M.] American Univ, Dept Chem, Washington, DC 20016 USA. [Trulove, P. C.] USN Acad, Dept Chem, Annapolis, MD 21402 USA. [De Long, H. C.] USAF, Off Sci Res, Directorate Chem & Life Sci, Arlington, VA 22203 USA. [Maupin, P. H.] US DOE, Off Sci, Off Basic Energy Sci, Washington, DC 20585 USA. RP Modesti, M (reprint author), Univ Padua, Dept Chem Proc Engn, I-35131 Padua, Italy. EM michele.modesti@unipd.it OI causin, valerio/0000-0002-2581-8445 NR 21 TC 13 Z9 13 U1 0 U2 13 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1042-7147 EI 1099-1581 J9 POLYM ADVAN TECHNOL JI Polym. Adv. Technol. PD NOV PY 2008 VL 19 IS 11 BP 1576 EP 1583 DI 10.1002/pat.1172 PG 8 WC Polymer Science SC Polymer Science GA 375VM UT WOS:000261141900018 ER PT J AU Cruden, A Houghton, T Gair, S Duerr, M Agnew, GD Stewart, EM Lutz, A AF Cruden, A. Houghton, T. Gair, S. Duerr, M. Agnew, G. D. Stewart, E. M. Lutz, A. TI Fuel cells as distributed generation SO PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART A-JOURNAL OF POWER AND ENERGY LA English DT Article DE fuel cell; distributed generation AB This paper presents an overview of fuel cells as a form of distributed generation within the context of a highly distributed power system, by discussing some example demonstration systems categorized by the type of primary fuel used, namely fossil fuels, hydrogen gas, or biofuels. It discusses the background to fuel cells as a stationary, grid connected, power Source, briefly compared with conventional thermal electrical generation, while describing the main characteristics of their performance and an electric equivalent circuit model. Additionally it presents a view of the current state of commercialization of fuel cell technology for stationary power applications. C1 [Cruden, A.] Univ Strathclyde, Dept Elect & Elect Engn, Royal Coll, Glasgow G1 1XW, Lanark, Scotland. [Duerr, M.; Agnew, G. D.] Rolls Royce Fuel Cell Syst Ltd, Derby, England. [Stewart, E. M.; Lutz, A.] Sandia Natl Labs, Livermore, CA USA. RP Cruden, A (reprint author), Univ Strathclyde, Dept Elect & Elect Engn, Royal Coll, 204 George St, Glasgow G1 1XW, Lanark, Scotland. EM a.cruden@eee.strath.ac.uk NR 19 TC 1 Z9 1 U1 0 U2 3 PU PROFESSIONAL ENGINEERING PUBLISHING LTD PI WESTMINISTER PA 1 BIRDCAGE WALK, WESTMINISTER SW1H 9JJ, ENGLAND SN 0957-6509 J9 P I MECH ENG A-J POW JI Proc. Inst. Mech. Eng. Part A-J. Power Energy PD NOV PY 2008 VL 222 IS A7 SI SI BP 707 EP 720 DI 10.1243/09576509JPE609 PG 14 WC Engineering, Mechanical SC Engineering GA 374XW UT WOS:000261078000008 ER PT J AU Muske, KR Jones, JCP Kirschman, JS Frey, JC Makki, IH Uhrich, MJ Howse, JW AF Muske, K. R. Jones, J. C. Peyton Kirschman, J. S. Frey, J. C. Makki, I. H. Uhrich, M. J. Howse, J. W. TI Probability density diagnostic metric for an integrated three-way catalyst controller and monitor SO PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART D-JOURNAL OF AUTOMOBILE ENGINEERING LA English DT Article DE probability density; diagnostic metric; three-way catalyst controller and monitor AB An integrated model-based methodology for three-way automotive catalyst control and diagnostic monitoring is presented in this work. The catalyst controller and monitor both utilize a limited integrator catalyst oxygen storage model with an adaptive integral gain. This adaptive catalyst gain, which is a measure of the catalyst oxygen storage capacity, is used by the controller to provide information on the dynamic catalyst behaviour and by the diagnostic monitor to provide information on long-term catalyst deactivation and short-term emission control device failure. A statistical classification technique based on the fraction of time that the catalyst gain values in a moving window are within a threshold of zero is employed as the test metric for on-board diagnostic monitoring. The performance of the catalyst monitor is demonstrated with experimental vehicle test data from a 4.61 ULEV II gasoline engine operated over a series of Environmental Protection Agency Federal Test Procedure drive cycles with differently aged catalysts. Preliminary results indicate that it is possible to perform very accurate discrimination between catalyst operation, even near the on-board diagnostic detection threshold, using this technique. C1 [Muske, K. R.; Jones, J. C. Peyton; Kirschman, J. S.] Villanova Univ, Ctr Nonlinear Dynam & Control, Villanova, PA 19085 USA. [Frey, J. C.] Villanova Univ, Dept Math Sci, Villanova, PA 19085 USA. [Makki, I. H.; Uhrich, M. J.] Ford Motor Co, Powertrain Res & Dev, Dearborn, MI 48121 USA. [Howse, J. W.] Los Alamos Natl Lab, Modeling Algorithms & Informat Grp, Los Alamos, NM USA. RP Muske, KR (reprint author), Villanova Univ, Ctr Nonlinear Dynam & Control, 800 Lancaster Ave, Villanova, PA 19085 USA. EM kenneth.muske@villanova.edu FU Ford Motor Company; National Science Foundation [CTS-0215920.] FX The first four authors gratefully acknowledge support for this work from Ford Motor Company, Johnson Matthey, ExxonMobil, and the National Science Foundation under Grant CTS-0215920. NR 17 TC 0 Z9 0 U1 0 U2 2 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 0954-4070 EI 2041-2991 J9 P I MECH ENG D-J AUT JI Proc. Inst. Mech. Eng. Part D-J. Automob. Eng. PD NOV PY 2008 VL 222 IS D11 BP 2185 EP 2194 DI 10.1243/09544070JAUTO744 PG 10 WC Engineering, Mechanical; Transportation Science & Technology SC Engineering; Transportation GA 389MG UT WOS:000262096500019 ER PT J AU Mulligan, EA Dunn, JJ AF Mulligan, Elizabeth A. Dunn, John J. TI Cloning, purification and initial characterization of E. coli McrA, a putative 5-methylcytosine-specific nuclease SO PROTEIN EXPRESSION AND PURIFICATION LA English DT Article DE McrA; Zn2+ finger; DNA methylation; C-5-methylcytosine (m(5)C); DNA binding; CpG island affinity purification ID PROTEIN SECONDARY STRUCTURE; DNA GLYCOSYLASE/LYASE ROS1; ESCHERICHIA-COLI; CIRCULAR-DICHROISM; METHYLATION PATTERNS; CPG ISLANDS; RESTRICTION; ARABIDOPSIS; EXPRESSION; CANCER AB Expression strains of Escherichia coli BL21(DE3) overproducing the E. coli m(5)C McrA restriction protein were produced by cloning the mcrA coding sequence behind a T7 promoter. The recombinant mcrA minus BL21 (DE3) host produces active McrA as evidenced by its acquired ability to selectively restrict the growth of T7 phage containing DNA methylated in vitro by HpaII methylase. The mcrA coding region contains several non-optimal E. coli triplets. Addition of the pACYC-RIL tRNA encoding plasmid to the BL21(DE3) host increased the yield of recombinant McrA (rMcrA) upon induction about 5- to 10-fold. McrA protein expressed at 37 degrees C is insoluble but a significant fraction is recovered as soluble protein after autoinduction at 20 degrees C. rMcrA protein, which is predicted to contain a Cys(4)-Zn2+ finger and a catalytically important histidine triad in its putative nuclease domain, binds to several metal chelate resins without addition of a poly-histidine affinity tag. This feature was used to develop an efficient protocol for the rapid purification of nearly homogeneous rMcrA. The native protein is a dinner with a high alpha-helical content as measured by circular dichroism analysis. Under all conditions tested purified rMcrA does not have measurable nuclease activity on HpaII methylated (Cm(5)CGG) DNA, although the purified protein does specifically bind HpaII methylated DNA. These results have implications for understanding the in vivo activity of McrA in "restricting" m(5)C-containing DNA and suggest that rMcrA may have utility as a reagent for affinity purification of DNA fragments containing m(5)C residues. (C) 2008 Elsevier Inc. All rights reserved. C1 [Mulligan, Elizabeth A.; Dunn, John J.] Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. [Mulligan, Elizabeth A.] SUNY Stony Brook, Sch Med, Dept Mol Genet & Microbiol, Stony Brook, NY 11794 USA. RP Dunn, JJ (reprint author), Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. EM jdunn@BNL.gov FU Laboratory Directed Research and Development Award at Brookhaven National Laboratory; Low Dose Radiation Research Program of the Office of Biological and Environmental Research (BER); NIH [U01-AI56480]; BER-DOE FX This work was supported by a Laboratory Directed Research and Development Award at Brookhaven National Laboratory, the Low Dose Radiation Research Program of the Office of Biological and Environmental Research (BER) program of the U.S. Department of Energy (DOE). J.J.D. was also supported by NIH Grant U01-AI56480. We thank John Trunk for CD analysis using beamline U11 at the NSLS which is supported by BER-DOE. We also acknowledge the help of Mike Blewitt, Ed Whittle and Vito Graziano in analytical analysis of rMcrA and the technical assistance of Barbara Lade, Laura-Li Loffredo and Judi Romeo in this work. NR 28 TC 11 Z9 11 U1 0 U2 3 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 1046-5928 J9 PROTEIN EXPRES PURIF JI Protein Expr. Purif. PD NOV PY 2008 VL 62 IS 1 BP 98 EP 103 DI 10.1016/j.pep.2008.06.016 PG 6 WC Biochemical Research Methods; Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology GA 360MP UT WOS:000260061900014 PM 18662788 ER PT J AU Londer, YY Giuliani, SE Peppler, T Collart, FR AF Londer, Yuri Y. Giuliani, Sarah E. Peppler, Terese Collart, Frank R. TI Addressing Shewanella oneidensis "cytochromome": The first step towards high-throughput expression of cytochromes c SO PROTEIN EXPRESSION AND PURIFICATION LA English DT Article DE Cytochrome c; High-throughput; Ligation-independent cloning; Periplasmic expression; Protein expression; Shewanella oneidensis ID ESCHERICHIA-COLI; GEOBACTER-SULFURREDUCENS; PUTREFACIENS MR-1; SIGNAL PEPTIDES; HETEROLOGOUS EXPRESSION; MULTIDOMAIN CYTOCHROME; FUNCTIONAL EXPRESSION; ANTIBODY FRAGMENTS; GENE SYNTHESIS; PREDICTION AB Integrated studies that address proteins structure and function in the new era of systems biology and genomics often require the application of high-throughput approaches for parallel production of many different purified proteins from the same organism. Cytochromes c-electron transfer proteins carrying one or more hemes covalently bound to the polypeptide chain-are essential in most organisms. However, they are one of the most recalcitrant classes of proteins with respect to heterologous expression because post-translational incorporation of hemes is required for proper folding and stability. We have addressed this challenge by designing two families of vectors (total of 6 vectors) suitable for ligation-independent cloning and developing a pipeline for expression and solubility analysis of cytochromes c. This stem has been validated by expression analysis of thirty genes from Shewanella oneidensis coding for cytochromes c or cytochromes c-type domains predicted to have 1-4 hemes. Out of 30 targets, 26 (87%) were obtained in soluble form in one or more vectors. This work establishes a methodology for high-throughput expression of this class of proteins and provides a clone resource for the microbiological and functional genomics research communities. (C) 2008 Elsevier Inc. All rights reserved. C1 [Londer, Yuri Y.; Giuliani, Sarah E.; Peppler, Terese; Collart, Frank R.] Argonne Natl Lab, Biosci Div, Argonne, IL 60439 USA. RP Londer, YY (reprint author), Argonne Natl Lab, Biosci Div, 9700 S Cass Ave,Bldg 202, Argonne, IL 60439 USA. EM londer@neb.com OI Collart, Frank/0000-0001-6942-4483 FU U.S. Department of Energy's Office of Science, Biological and Environmental Research GTL program [DE-AC02-06CH11357] FX We are grateful to Dr. L. Thony-Meyer (ETH, Zurich, Switzerland) for plasmid pEC86 and Dr. M. Romine (Pacific Northwest National Laboratory) for helpful discussions and critical reading of this manuscript. This work was supported by the U.S. Department of Energy's Office of Science, Biological and Environmental Research GTL program under Contract No. DE-AC02-06CH11357. NR 50 TC 12 Z9 12 U1 2 U2 9 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 1046-5928 J9 PROTEIN EXPRES PURIF JI Protein Expr. Purif. PD NOV PY 2008 VL 62 IS 1 BP 128 EP 137 DI 10.1016/j.pep.2008.06.014 PG 10 WC Biochemical Research Methods; Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology GA 360MP UT WOS:000260061900019 PM 18657620 ER PT J AU Bjorklund, AK Light, S Hedin, L Elofsson, A AF Bjorklund, Asa K. Light, Sara Hedin, Linnea Elofsson, Arne TI Quantitative assessment of the structural bias in protein-protein interaction assays SO PROTEOMICS LA English DT Article DE Abundance; Disorder; Protein-protein interactions; Tandem affinity purification; Yeast two hybrid ID SACCHAROMYCES-CEREVISIAE; INTERACTION NETWORKS; INTRINSIC DISORDER; HUB PROTEINS; YEAST; COMPLEXES; DATABASE; MAP; RESOURCE; REPEATS AB With recent publications of several large-scale protein-protein interaction (PPI) studies, the realization of the full yeast interaction network is getting closer. Here, we have analysed several yeast protein interaction datasets to understand their strengths and weaknesses. In particular, we investigate the effect of experimental biases on some of the protein properties suggested to be enriched in highly connected proteins. Finally, we use support vector machines (SVM) to assess the contribution of these properties to protein interactivity. We find that protein abundance is the most important factor for detecting interactions in tandem affinity purifications (TAP), while it is of less importance for Yeast Two Hybrid (Y2H) screens. Consequently, sequence conservation and/or essentiality of hubs may be related to their high abundance. Further, proteins with disordered structure are over-represented in Y2H screens and in one, but not the other, large-scale TAP assay. Hence, disordered regions may be important both in transient interactions and interactions in complexes. Finally, a few domain families seem to be responsible for a large part of all interactions. Most importantly, we show that there are method-specific biases in PPI experiments. Thus, care should be taken before drawing strong conclusions based on a single dataset. C1 [Bjorklund, Asa K.; Hedin, Linnea; Elofsson, Arne] Stockholm Univ, Dept Biochem & Biophys, Stockholm Bioinformat Ctr, Ctr Biol Membrane Res, SE-10691 Stockholm, Sweden. [Light, Sara] Lawrence Livermore Natl Lab, Computat Directorate, Sci & Technol Comp Div, Livermore, CA USA. RP Elofsson, A (reprint author), Stockholm Univ, Dept Biochem & Biophys, Stockholm Bioinformat Ctr, Ctr Biol Membrane Res, SE-10691 Stockholm, Sweden. EM arne@bioinfo.se RI Bjorklund, Asa /J-4587-2013; OI Bjorklund, Asa /0000-0003-2224-7090; Elofsson, Arne/0000-0002-7115-9751 FU Swedish Natural Sciences Research Council; SSF (the Foundation for Strategic Research); EU [LSHG-CT-2004-503567]; US Department of Energy [DE-AC52-07NA27344] FX This work was supported by grants from the Swedish Natural Sciences Research Council, SSF (the Foundation for Strategic Research) and the EU Sixth Framework Program is gratefully acknowledged for support to the GeneFun project, contract No: LSHG-CT-2004-503567. Furthermore, this work was partly performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 43 TC 14 Z9 14 U1 0 U2 3 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 1615-9853 J9 PROTEOMICS JI Proteomics PD NOV PY 2008 VL 8 IS 22 BP 4657 EP 4667 DI 10.1002/pmic.200800150 PG 11 WC Biochemical Research Methods; Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 379EU UT WOS:000261380300007 PM 18924110 ER PT J AU Beresford, NA Barnett, CL Brown, JE Cheng, JJ Copplestone, D Filistovic, V Hosseini, A Howard, BJ Jones, SR Kamboj, S Kryshev, A Nedveckaite, T Olyslaegers, G Saxen, R Sazykina, T Batlle, JVI Vives-Lynch, S Yankovich, T Yu, C AF Beresford, N. A. Barnett, C. L. Brown, J. E. Cheng, J. J. Copplestone, D. Filistovic, V. Hosseini, A. Howard, B. J. Jones, S. R. Kamboj, S. Kryshev, A. Nedveckaite, T. Olyslaegers, G. Saxen, R. Sazykina, T. Batlle, J. Vives i Vives-Lynch, S. Yankovich, T. Yu, C. TI Inter-comparison of models to estimate radionuclide activity concentrations in non-human biota SO RADIATION AND ENVIRONMENTAL BIOPHYSICS LA English DT Article ID RADIATION; EXPOSURE AB A number of models have recently been, or are currently being, developed to enable the assessment of radiation doses from ionising radiation to non-human species. A key component of these models is the ability to predict whole-organism activity concentrations in a wide range of wildlife. In this paper, we compare the whole-organism activity concentrations predicted by eight models participating within the IAEA Environmental Modelling for Radiation Safety programme for a range of radionuclides to terrestrial and freshwater organisms. In many instances, there was considerable variation, ranging over orders of magnitude, between the predictions of the different models. Reasons for this variability (including methodology, data source and data availability) are identified and discussed. The active participation of groups responsible for the development of key models within this exercise is a useful step forward in providing the transparency in methodology and data provenance required for models which are either currently being used for regulatory purposes or which may be used in the future. The work reported in this paper, and supported by other findings, demonstrates that the largest contribution to variability between model predictions is the parameterisation of their transfer components. There is a clear need to focus efforts and provide authoritative compilations of those data which are available. C1 [Beresford, N. A.; Barnett, C. L.; Howard, B. J.] Lancaster Environm Ctr, Ctr Ecol & Hydrol Lancaster, Lancaster LA1 4AP, England. [Brown, J. E.; Hosseini, A.] Norwegian Radiat Protect Author, Osteras, Norway. [Cheng, J. J.; Kamboj, S.; Yu, C.] Argonne Natl Lab, Argonne, IL 60439 USA. [Copplestone, D.] England & Wales Environm Agcy, Warrington, Cheshire, England. [Filistovic, V.; Nedveckaite, T.] Lithuania Acad Sci, Inst Phys, LT-232600 Vilnius, Lithuania. [Jones, S. R.; Batlle, J. Vives i; Vives-Lynch, S.] Westlakes Res Inst, Moor Row, Cumbria, England. [Kryshev, A.; Sazykina, T.] SPA Typhoon, Obninsk, Russia. [Olyslaegers, G.] CEN SCK, B-2400 Mol, Belgium. [Saxen, R.] Radiat & Nucl Safety Author STUK, Helsinki, Finland. [Yankovich, T.] Atom Energy Canada Ltd, Chalk River, ON K0J 1J0, Canada. RP Beresford, NA (reprint author), Lancaster Environm Ctr, Ctr Ecol & Hydrol Lancaster, Lib Av,Bailrigg, Lancaster LA1 4AP, England. EM nab@ceh.ac.uk RI Howard, Brenda/I-8279-2012; Beresford, Nicholas/I-6188-2012; OI Howard, Brenda/0000-0002-9698-9524; Copplestone, David/0000-0002-1468-9545 NR 50 TC 44 Z9 45 U1 0 U2 12 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0301-634X J9 RADIAT ENVIRON BIOPH JI Radiat. Environ. Biophys. PD NOV PY 2008 VL 47 IS 4 BP 491 EP 514 DI 10.1007/s00411-008-0186-8 PG 24 WC Biology; Biophysics; Environmental Sciences; Radiology, Nuclear Medicine & Medical Imaging SC Life Sciences & Biomedicine - Other Topics; Biophysics; Environmental Sciences & Ecology; Radiology, Nuclear Medicine & Medical Imaging GA 359OJ UT WOS:000259997000010 PM 18679701 ER PT J AU Bucci, P Kirschenbaum, J Mangan, LA Aldemir, T Smith, C Wood, T AF Bucci, Paolo Kirschenbaum, Jason Mangan, L. Anthony Aldemir, Tunc Smith, Curtis Wood, Ted TI Construction of event-tree/fault-tree models from a Markov approach to dynamic system reliability SO RELIABILITY ENGINEERING & SYSTEM SAFETY LA English DT Article DE Markov; dynamic reliability; PRA; dynamic event tree; dynamic fault tree ID FAILURE ANALYSIS; SAFETY ANALYSIS AB While the event-tree (ET)/fault-tree (FT) methodology is the most popular approach to probability risk assessment (PRA), concerns have been raised in the literature regarding its potential limitations in the reliability modeling of dynamic systems. Markov reliability models have the ability to capture the statistical dependencies between failure events that can arise in complex dynamic systems. A methodology is presented that combines Markov modeling with the cell-to-cell mapping technique (CCMT) to construct dynamic ETs/FTs and addresses the concerns with the traditional ET/FT methodology. The approach is demonstrated using a simple water level control system. It is also shown how the generated ETs/FTs can be incorporated into an existing PRA so that only the (sub)systems requiring dynamic methods need to be analyzed using this approach while still leveraging the static model of the rest of the system. (c) 2008 Elsevier Ltd. All rights reserved. C1 [Mangan, L. Anthony; Aldemir, Tunc] Ohio State Univ, Nucl Engn Program, Columbus, OH 43210 USA. [Bucci, Paolo; Kirschenbaum, Jason] Ohio State Univ, Dept Comp Sci & Engn, Columbus, OH 43210 USA. [Smith, Curtis; Wood, Ted] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Aldemir, T (reprint author), Ohio State Univ, Nucl Engn Program, 427 Scott Lab,201 W 19th Ave, Columbus, OH 43210 USA. EM bucci.2@osu.edu; kirschen@cse.ohio-state.edu; mangan.10@osu.edu; aldemir.1@osu.edu NR 30 TC 33 Z9 37 U1 0 U2 32 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0951-8320 J9 RELIAB ENG SYST SAFE JI Reliab. Eng. Syst. Saf. PD NOV PY 2008 VL 93 IS 11 BP 1616 EP 1627 DI 10.1016/j.ress.2008.01.008 PG 12 WC Engineering, Industrial; Operations Research & Management Science SC Engineering; Operations Research & Management Science GA 316YK UT WOS:000256985600005 ER PT J AU Tsiamis, G Katsaveli, K Ntougias, S Kyrpides, N Andersen, G Piceno, Y Bourtzis, K AF Tsiamis, George Katsaveli, Katerina Ntougias, Spyridon Kyrpides, Nikos Andersen, Gary Piceno, Yvette Bourtzis, Kostas TI Prokaryotic community profiles at different operational stages of a Greek solar saltern SO RESEARCH IN MICROBIOLOGY LA English DT Article DE Halophiles; Prokaryotic diversity; Hypersaline; PhyloChip; MikroBioKosmos ID 16S RIBOSOMAL-RNA; EXTREMELY HALOPHILIC ARCHAEA; HYPERSALINE MICROBIAL MAT; SALINITY GRADIENT; SEQUENCE-ANALYSIS; CRYSTALLIZER PONDS; ANAEROBIC GROWTH; GEN. NOV.; DIVERSITY; BACTERIA AB A combination of culture-dependent and independent approaches was employed to identify the microbial community structure in a Greek solar saltem. A total of 219 and 132 isolates belonging, respectively, to Bacteria and Archaea, were recovered. All bacterial isolates were phylogenetically related to 43 members of Actinobacteria, Firmicutes and gamma-Proteobacteria. The archaeal isolates were placed within the Halobacteriaceae. At least four groups of isolates represented novel species among the Bacteria. High bacterial diversity, consisting of 417 subfamilies, was revealed using a high-density oligonucleotide microarray (PhyloChip). At the four stages of saltem operation analyzed, the archaeal community consisted of both Crenarchaeota and Euryarchaeota, except for the sediment where Crenarchaeota were not detected. The bacterial community in sediment consisted mainly of gamma-Proteobacteria and Actinobacteria, while, in hypersaline water, it was restricted to a few representatives of Bacteria. Members of alpha-Proteobacteria were the main constituents in saturated brine and crude salt, followed by gamma-Proteobacteria, Actinobacteria and Firmicutes. A large Bacteroidetes and Verrucomicrobia diversity was identified in saturated brine, while delta-Proteobacteria and Cloroflexi were abundant in crude salt. Significant changes in the microbial community structure were detected during a short time period, denoting a rapidly adaptive dynamic ecosystem and viable diversity. Prokaryotic members reported for the first time in solar salterns were identified. (C) 2008 Elsevier Masson SAS. All fights reserved. C1 [Tsiamis, George; Katsaveli, Katerina; Bourtzis, Kostas] Univ Ioannina, Dept Environm & Nat Resources Management, GR-45110 Ioannina, Greece. [Ntougias, Spyridon] Natl Agr Res Fdn, Inst Kalamata, Kalamata 24100, Greece. [Kyrpides, Nikos] Genome Biol Program, Joint Genome Inst, Dept Energy, Walnut Creek, CA 94598 USA. [Andersen, Gary; Piceno, Yvette] Univ Calif Berkeley, Lawrence Berkeley Lab, Ctr Environm Biotechnol, Berkeley, CA 94720 USA. RP Bourtzis, K (reprint author), Univ Ioannina, Dept Environm & Nat Resources Management, 2 Seferi St, GR-45110 Ioannina, Greece. EM gtsiamis@cc.uoi.gr; akatsave@cc.uoi.gr; sntougias@in.gr; NCKyrpides@lbl.gov; GLAndersen@lbl.gov; YMPiceno@lbl.gov; kbourtz@uoi.gr RI Piceno, Yvette/I-6738-2016; Andersen, Gary/G-2792-2015; Kyrpides, Nikos/A-6305-2014; OI Piceno, Yvette/0000-0002-7915-4699; Andersen, Gary/0000-0002-1618-9827; Kyrpides, Nikos/0000-0002-6131-0462; Ntougias, Spyridon/0000-0002-6389-692X FU EU CSA-REGPROT [203590-MicrobeGR]; University of Ioannina FX The authors thank Markos Mpilalis for help with sampling the salterns. They also wish to acknowledge the Municipal Solar Saltern Enterprise (MSSE) for allowing members of our research team to visit the grounds of the company. Microarray chip raw data can be downloaded from http://microbegr.env. uoi.gr or by sending an e-mail to the corresponding author (kbourtz@uoi.gr). This work was partially supported by EU CSA-REGPROT 203590-MicrobeGR and by intramural funds of the University of Ioannina to K.B. NR 68 TC 23 Z9 24 U1 1 U2 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0923-2508 J9 RES MICROBIOL JI Res. Microbiol. PD NOV-DEC PY 2008 VL 159 IS 9-10 BP 609 EP 627 DI 10.1016/j.resmic.2008.09.007 PG 19 WC Microbiology SC Microbiology GA 389XW UT WOS:000262129900005 PM 18976703 ER PT J AU Chaum, E Karnowski, TP Govindasamy, VP Abdelrahman, M Tobin, KW AF Chaum, Edward Karnowski, Thomas P. Govindasamy, V. Priya Abdelrahman, Mohamed Tobin, Kenneth W. TI AUTOMATED DIAGNOSIS OF RETINOPATHY BY CONTENT-BASED IMAGE RETRIEVAL SO RETINA-THE JOURNAL OF RETINAL AND VITREOUS DISEASES LA English DT Article DE content-based image retrieval; computer-aided diagnosis; retina; retinopathy; diabetic retinopathy; age-related macular degeneration; image analysis ID DIABETIC-RETINOPATHY; MACULAR DEGENERATION; FUNDUS IMAGES; RETINAL IMAGES; OPTIC DISC; VESSEL SEGMENTATION; NEURORETINAL RIM; PHOTOGRAPHS; LESIONS; SYSTEM AB Purpose: To describe a novel computer-based image analysis method that is being developed to assist and automate the diagnosis of retinal disease. Methods: Content-based image retrieval is the process of retrieving related images from large database collections using their pictorial content. The content feature list becomes the index for storage, search, and retrieval of related images from a library based upon specific visual characteristics. Low-level analyses use feature description models and higher-level analyses use perceptual organization and spatial relationships, including clinical metadata, to extract semantic information. Results: We defined, extracted, and tested a large number of region- and lesion-based features from a dataset of 395 retinal images. Using a statistical hold-one-out method, independent queries for each image were submitted to the system and a diagnostic prediction was formulated. The diagnostic sensitivity for all stratified levels of age-related macular degeneration ranged from 75% to 100%. Similarly, the sensitivity of detection and accuracy for proliferative diabetic retinopathy ranged from 75% to 91.7% and for nonproliferative diabetic retinopathy, ranged from 75% to 94.7%. The overall purity of the diagnosis (specificity) for all disease states in the dataset was 91.3%. Conclusions: The probabilistic nature of content-based image retrieval permits us to make statistically relevant predictions regarding the presence, severity, and manifestations of common retinal diseases from digital images in an automated and deterministic manner. C1 [Chaum, Edward] Univ Tennessee, Hlth Sci Ctr, Dept Ophthalmol, Memphis, TN USA. [Chaum, Edward] Univ Tennessee, Hlth Sci Ctr, Dept Anat & Neurobiol, Memphis, TN USA. [Chaum, Edward] Univ Tennessee, Hlth Sci Ctr, Dept Biomed Engn, Memphis, TN USA. [Chaum, Edward] Univ Tennessee, Hlth Sci Ctr, Dept Pediat, Memphis, TN USA. [Karnowski, Thomas P.; Govindasamy, V. Priya; Tobin, Kenneth W.] Oak Ridge Natl Lab, Image Sci & Machine Vis Grp, Oak Ridge, TN USA. [Abdelrahman, Mohamed] Tennessee Technol Univ, Cookeville, TN 38505 USA. RP Chaum, E (reprint author), Hamilton Eye Inst, 930 Madison Ave,Suite 731, Memphis, TN 38163 USA. EM echaum@utmem.edu FU Oak Ridge National Laboratory; National Eye Institute [EY017065]; United States Army Medical and Material Command; Telemedicine and Advanced Technology Research Center [W81XWH-05-1-0409]; Research to Prevent Blindness, New York, NY; Fight for Sight, New York, NY; Plough Foundation, Memphis, TN FX These studies were supported in part by grants from Oak Ridge National Laboratory, the National Eye Institute, (EY017065), the United States Army Medical and Material Command, Telemedicine and Advanced Technology Research Center (W81XWH-05-1-0409), by an unrestricted UTHSC Departmental grant from Research to Prevent Blindness, New York, NY, Fight for Sight, New York, NY, and by The Plough Foundation, Memphis, TN. NR 59 TC 35 Z9 36 U1 0 U2 9 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA SN 0275-004X EI 1539-2864 J9 RETINA-J RET VIT DIS JI Retin.-J. Retin. Vitr. Dis. PD NOV-DEC PY 2008 VL 28 IS 10 BP 1463 EP 1477 DI 10.1097/IAE.0b013e31818356dd PG 15 WC Ophthalmology SC Ophthalmology GA 373LH UT WOS:000260972600013 PM 18997609 ER PT J AU Bailey, JE Rochau, GA Mancini, RC Iglesias, CA MacFarlane, JJ Golovkin, IE Pain, JC Gilleron, F Blancard, C Cosse, P Faussurier, G Chandler, GA Nash, TJ Nielsen, DS Lake, PW AF Bailey, J. E. Rochau, G. A. Mancini, R. C. Iglesias, C. A. MacFarlane, J. J. Golovkin, I. E. Pain, J. C. Gilleron, F. Blancard, C. Cosse, Ph. Faussurier, G. Chandler, G. A. Nash, T. J. Nielsen, D. S. Lake, P. W. TI Diagnosis of x-ray heated Mg/Fe opacity research plasmas SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article DE electron density; iron; magnesium; opacity; plasma diagnostics ID ABSORPTION EXPERIMENTS; CONSTRAINED SAMPLES; Z PINCHES; IRON; SPECTROSCOPY; TEMPERATURE; PROFILES; SPECTRUM; PHYSICS; RANGE AB Understanding stellar interiors, inertial confinement fusion, and Z pinches depends on opacity models for mid-Z plasmas in the 100-300 eV temperature range. These models are complex and experimental validation is crucial. In this paper we describe the diagnosis of the first experiments to measure iron plasma opacity at a temperature high enough to produce the charge states and electron configurations that exist in the solar interior. The dynamic Hohlraum x-ray source at Sandia National Laboratories' Z facility was used to both heat and backlight Mg/Fe CH tamped foils. The backlighter equivalent brightness temperature was estimated to be T-r similar to 314 eV +/- 8% using time-resolved x-ray power and imaging diagnostics. This high brightness is significant because it overwhelms the sample self-emission. The sample transmission in the 7-15.5 A range was measured using two convex potassium acid phthalate crystal spectrometers that view the backlighter through the sample. The average spectral resolution over this range was estimated to be lambda/delta lambda similar to 700 by comparing theoretical crystal resolution calculations with measurements at 7.126, 8.340, and 12.254 A. The electron density was determined to be n(e)=6.9 +/- 1.7x10(21) cm(-3) using the Stark-broadened Mg He beta, He gamma, and He delta lines. The temperature inferred from the H-like to He-like Mg line ratios was T-e=156 +/- 6 eV. Comparisons with three different spectral synthesis models all have normalized chi(2) that is close to unity, indicating quantitative consistency in the inferred plasma conditions. This supports the reliability of the results and implies the experiments are suitable for testing iron opacity models. C1 [Bailey, J. E.; Rochau, G. A.; Chandler, G. A.; Nash, T. J.; Nielsen, D. S.; Lake, P. W.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Mancini, R. C.] Univ Nevada, Reno, NV 89557 USA. [Iglesias, C. A.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [MacFarlane, J. J.; Golovkin, I. E.] Prism Computat Sci, Madison, WI 53711 USA. [Pain, J. C.; Gilleron, F.; Blancard, C.; Cosse, Ph.; Faussurier, G.] CEA, DIF, F-91297 Bruyeres Le Chatel, Arpajon, France. RP Bailey, JE (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. OI Pain, Jean-Christophe/0000-0002-7825-1315 FU U. S. Department of Energy [DE-AC04-94AL85000]; Department of Energy by Lawrence Livermore National Laboratory [W-7405-ENGF-48] FX We thank the Z dynamic Hohlraum, accelerator, diagnostics, materials processing, target fabrication, and wire array teams for invaluable and dedicated technical assistance. Special assistance was provided by L. Nielsen-Weber and L. P. Mix. We are grateful to R. J. Leeper, T. A. Mehlhorn, J. L. Porter, and M. K. Matzen for support and encouragement. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Co., for the U. S. Department of Energy under Contract No. DE-AC04-94AL85000. Work by CAI performed under the auspices of the Department of Energy by Lawrence Livermore National Laboratory under Contract No. W-7405-ENGF-48. NR 51 TC 22 Z9 24 U1 1 U2 5 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD NOV PY 2008 VL 79 IS 11 AR 113104 DI 10.1063/1.3020710 PG 11 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 376WB UT WOS:000261212600005 PM 19045886 ER PT J AU Raabe, J Tzvetkov, G Flechsig, U Boge, M Jaggi, A Sarafimov, B Vernooij, MGC Huthwelker, T Ade, H Kilcoyne, D Tyliszczak, T Fink, RH Quitmann, C AF Raabe, J. Tzvetkov, G. Flechsig, U. Boege, M. Jaggi, A. Sarafimov, B. Vernooij, M. G. C. Huthwelker, T. Ade, H. Kilcoyne, D. Tyliszczak, T. Fink, R. H. Quitmann, C. TI PolLux: A new facility for soft x-ray spectromicroscopy at the Swiss Light Source SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article DE image resolution; light sources; X-ray apparatus; X-ray microscopy; X-ray optics; X-ray spectroscopy; zone plates ID MICROSCOPY; TRANSMISSION; BEAMLINE; MICROSPECTROSCOPY; SPECTROSCOPY; MOLECULES; POLYMERS; SPECTRA; PHOTOABSORPTION; MICROBALLOONS AB We report on the successful installation and operation of a scanning transmission x-ray microspectroscope (STXM) at the PolLux facility at the Swiss Light Source. This integration of an advanced STXM with improved sample handling capabilities and a novel beamline provides unique capabilities. PolLux uses linearly or circularly polarized x-rays from a bending magnet with an extended photon energy range (200-1400 eV). It is therefore well suited to determine a sample's quantitative chemical composition, molecular orientation, or thickness of organic as well as condensed matter materials. The local magnetic state of magnetic thin films is accessible through fast helicity switching by steering the electron beam off axis through the bending magnet. Ex vacuo girder movers allow fast and highly reproducible (< 1 mu m) alignment of the instrument with respect to the photon beam. The present spatial resolution is similar to 20 nm, limited by the zone plates utilized. The instrument has the stability and positional resolution to operate with much higher resolution optics as it becomes available. In addition to characterization experiments, we present several typical examples from materials research and environmental science to exemplify the capabilities. C1 [Raabe, J.; Boege, M.; Jaggi, A.; Sarafimov, B.; Huthwelker, T.; Quitmann, C.] Paul Scherrer Inst, Swiss Light Source, CH-5232 Villigen, Switzerland. [Tzvetkov, G.; Fink, R. H.] Univ Erlangen Nurnberg, Phys Chem & ICMM 2, D-91058 Erlangen, Germany. [Vernooij, M. G. C.] Eidgenoss Mat Prufungsanstalt EMPA, CH-8600 Dubendorf, Switzerland. [Ade, H.] N Carolina State Univ, Dept Phys, Raleigh, NC 27695 USA. [Kilcoyne, D.; Tyliszczak, T.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Raabe, J (reprint author), Paul Scherrer Inst, Swiss Light Source, CH-5232 Villigen, Switzerland. EM joerg.raabe@psi.ch RI Quitmann, Christoph/A-7047-2008; Fink, Rainer/C-5333-2008; Fink, Rainer/F-8365-2010; Ade, Harald/E-7471-2011; Kilcoyne, David/I-1465-2013; Raabe, Joerg/C-4818-2012 OI Fink, Rainer/0000-0002-6896-4266; Fink, Rainer/0000-0002-6896-4266; Raabe, Joerg/0000-0002-2071-6896 FU BMBF [05KS4WE1]; BaCaTec FX We acknowledge financial support through the BMBF (Project No. 05KS4WE1) and BaCaTec. We like to thank Dr. S. Sjoegren and Dr. E. Weingartner for helpful discussion concerning the preparation and the thermodynamics of ammonium sulfate and adipic acid mixtures. The assistance of Dr. M. Ammann and M. Birrer in preparing the climate cell was gratefully acknowledged. We also acknowledge the constructive interaction with Dr. U. Wiesemann and W. Diete from ACCEL. The measurements have been performed at the Swiss Light Source, Paul Scherrer Institut, Villigen, Switzerland. NR 51 TC 103 Z9 104 U1 5 U2 37 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD NOV PY 2008 VL 79 IS 11 AR 113704 DI 10.1063/1.3021472 PG 10 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 376WB UT WOS:000261212600011 PM 19045892 ER PT J AU Wiley, S AF Wiley, Steven TI Peer Review Isn't Perfect ... SO SCIENTIST LA English DT Editorial Material C1 Pacific NW Natl Lab, Richland, WA 99352 USA. RP Wiley, S (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. NR 0 TC 7 Z9 7 U1 2 U2 4 PU LABX MEDIA GROUP PI MIDLAND PA PO BOX 216, 478 BAY ST, MIDLAND, ONTARIO L4R 1K9, CANADA SN 0890-3670 EI 1547-0806 J9 SCIENTIST JI Scientist PD NOV PY 2008 VL 22 IS 11 BP 31 EP 31 PG 1 WC Information Science & Library Science; Multidisciplinary Sciences SC Information Science & Library Science; Science & Technology - Other Topics GA 362ID UT WOS:000260190500016 ER PT J AU Alsem, DH Muhlstein, CL Stach, EA Ritchie, RO AF Alsem, D. H. Muhlstein, C. L. Stach, E. A. Ritchie, R. O. TI Further considerations on the high-cycle fatigue of micron-scale polycrystalline silicon SO SCRIPTA MATERIALIA LA English DT Article DE MEMS; Silicon; Fatigue; Reaction-layer fatigue ID SINGLE-CRYSTAL SILICON; STRUCTURAL FILMS; POLYSILICON; PLASTICITY; MECHANISMS; FRACTURE; FAILURE; STRESS AB Bulk silicon is not susceptible to high-cycle fatigue but micron-scale silicon films are. Using polysilicon resonators to determine stress-lifetime fatigue behavior in several environments, oxide layers are found to show up to four-fold thickening after cycling, which is not seen after monotonic loading or after cycling in vacuo. We believe that the mechanism of thin-film silicon fatigue is "reaction-layer fatigue", involving cyclic stress-induced thickening of the oxide and moisture-assisted cracking within this layer. Published by Elsevier Ltd. on behalf of Acta Materialia Inc. C1 [Ritchie, R. O.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Alsem, D. H.; Ritchie, R. O.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Alsem, D. H.] Univ Calif Berkeley, Lawrence Berkeley Lab, Natl Ctr Electron Microscopy, Berkeley, CA 94720 USA. [Muhlstein, C. L.] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA. [Stach, E. A.] Purdue Univ, Sch Mat Engn, W Lafayette, IN 47907 USA. RP Ritchie, RO (reprint author), Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. EM RORitchie@lbl.gov RI Stach, Eric/D-8545-2011; Ritchie, Robert/A-8066-2008; OI Stach, Eric/0000-0002-3366-2153; Ritchie, Robert/0000-0002-0501-6998; Muhlstein, Christopher/0000-0002-5928-068X FU US Department of Energy [DE-AC02-05CH11231]; The Pennsylvania State University FX This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, of the US Department of Energy under Contract No. DE-AC02-05CH11231. The authors would like to thank the staff and the use of equipment at the National Center for Electron Microscopy, Lawrence Berkeley National Laboratory, which is supported by the Department of Energy under this contract. The generous support of The Pennsylvania State University (for C.L.M.) is also acknowledged. NR 29 TC 26 Z9 27 U1 0 U2 12 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6462 J9 SCRIPTA MATER JI Scr. Mater. PD NOV PY 2008 VL 59 IS 9 BP 931 EP 935 DI 10.1016/j.scriptamat.2008.03.043 PG 5 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 358QD UT WOS:000259931700006 ER PT J AU Ye, J Mishra, RK Minor, AM AF Ye, J. Mishra, R. K. Minor, A. M. TI Relating nanoscale plasticity to bulk ductility in aluminum alloys SO SCRIPTA MATERIALIA LA English DT Article DE Transmission electron microscopy (TEM); Compression test; Aluminium alloys; Ductility annealing ID CRYSTAL PLASTICITY; SCALE AB In situ transmission electron microscopy nanocompression tests of aluminum alloy pillars revealed higher yield stress and greater ductility post-annealing, analogous to what is seen in bulk testing. The annealed pillars showed a complex three-dimensional deformation behavior, whereas the as-extruded sample showed a simpler two-dimensional plasticity. This difference in behavior is consistent with the hypothesis that increasing the Cr content in solution results in stronger obstacles to dislocation motion, leading to a more three-dimensional plasticity at the nanoscale and an increase in bulk ductility. Published by Elsevier Ltd. on behalf of Acta Materialia Inc. C1 [Ye, J.; Minor, A. M.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Ye, J.; Minor, A. M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Natl Ctr Electron Microscopy, Berkeley, CA 94720 USA. [Mishra, R. K.] Gen Motors Res & Dev Ctr, Warren, MI USA. RP Minor, AM (reprint author), Univ Calif Berkeley, Dept Mat Sci & Engn, 1 Cyclotron Rd,MS 72, Berkeley, CA 94720 USA. EM aminor@lbl.gov FU Scientific User Facilities Division of the Office of Basic Energy Sciences; US Department of Energy [DE-AC02-05CH11231]; General Motors Research and Development Center FX This research was supported by the Scientific User Facilities Division of the Office of Basic Energy Sciences, US Department of Energy under Contract No. DE-AC02-05CH11231 and the General Motors Research and Development Center. NR 14 TC 16 Z9 16 U1 1 U2 14 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6462 J9 SCRIPTA MATER JI Scr. Mater. PD NOV PY 2008 VL 59 IS 9 BP 951 EP 954 DI 10.1016/j.scriptamat.2008.06.052 PG 4 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 358QD UT WOS:000259931700010 ER PT J AU Jiang, C AF Jiang, Chao TI First-principles study of Co-3(Al,W) alloys using special quasi-random structures SO SCRIPTA MATERIALIA LA English DT Article DE Phase stability; Elastic behaviour; Intermetallic compounds; First-principle electron theory ID SPECIAL QUASIRANDOM STRUCTURES; ELECTRONIC-STRUCTURE; PHASE-STABILITY; CO; APPROXIMATION AB We have developed 32-atom special quasi-random structures (SQSs) to model the substitutionally random pseudo-binary A(3)(B0.5C0.5) alloys in L1(2), D0(19), and D0(3) crystal structures, respectively. First-principles SQS calculations are performed to examine the phase stability of the recently identified L1(2)-Co3Al0.5W0.5 compound in the Co-Al-W ternary system. By computing total energy as a function of applied strain, the single-crystal elastic constants of L1(2)-Co3Al0.5W0.5 are also predicted and our results show excellent agreement with recent experimental measurements. (c) 2008 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 Los Alamos Natl Lab, Struct Property Relat Grp MST 8, Los Alamos, NM 87545 USA. RP Jiang, C (reprint author), Los Alamos Natl Lab, Struct Property Relat Grp MST 8, POB 1663, Los Alamos, NM 87545 USA. EM chao@lanl.gov RI Jiang, Chao/A-2546-2011; Jiang, Chao/D-1957-2017 OI Jiang, Chao/0000-0003-0610-6327 FU Los Alamos National Laboratory (LANL) FX The author acknowledges the support of the Director's postdoctoral fellowship at Los Alamos National Laboratory (LANL). All calculations were performed using the parallel computing facilities at LANL. NR 25 TC 41 Z9 43 U1 4 U2 17 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6462 J9 SCRIPTA MATER JI Scr. Mater. PD NOV PY 2008 VL 59 IS 10 BP 1075 EP 1078 DI 10.1016/j.scriptamat.2008.07.021 PG 4 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 357ZL UT WOS:000259885800013 ER PT J AU Schlagel, DL Yuhasz, WM Dennis, KW McCallum, RW Lograsso, TA AF Schlagel, D. L. Yuhasz, W. M. Dennis, K. W. McCallum, R. W. Lograsso, T. A. TI Temperature dependence of the field-induced phase transformation in Ni50Mn37Sn13 SO SCRIPTA MATERIALIA LA English DT Article DE Ni-Mn-Sn alloy; Heusler phase; Magnetic shape memory alloy; Martensitic phase transformation; Field-induced ID ALLOYS AB Polycrystalline Ni50Mn37Sn13 alloy was fully homogenized such that the structural and magnetic transitions were clearly separated from each other in temperature. The sequence of transitions on cooling is: (1) austenite Curie point; (2) austenite to martensite structural and coupled ferromagnetic to paramagnetic transitions (first-order); and (3) martensite Curie point. Most notably, we found the field-induced transformation occurs from paramagnetic martensite to ferromagnetic austenite. The field-induced transition has a temperature dependence of -10 kOe K-1 over a narrow temperature range. (c) 2008 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Schlagel, D. L.; Yuhasz, W. M.; Dennis, K. W.; McCallum, R. W.; Lograsso, T. A.] Iowa State Univ Sci & Technol, Ames Lab, Mat & Engn Phys Program, Ames, IA 50011 USA. RP Schlagel, DL (reprint author), Iowa State Univ Sci & Technol, Ames Lab, Mat & Engn Phys Program, 111 Met Dev, Ames, IA 50011 USA. EM schlagel@iastate.edu RI Yuhasz, William/C-9418-2009 FU US Department of Energy [DE-AC02-07CH11358] FX Work was performed at the Ames Laboratory with support from the US Department of Energy Contract No. DE-AC02-07CH11358. NR 9 TC 24 Z9 24 U1 3 U2 18 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6462 J9 SCRIPTA MATER JI Scr. Mater. PD NOV PY 2008 VL 59 IS 10 BP 1083 EP 1086 DI 10.1016/j.scriptamat.2008.07.039 PG 4 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 357ZL UT WOS:000259885800015 ER PT J AU Shim, S Bei, H George, EP Pharr, GM AF Shim, S. Bei, H. George, E. P. Pharr, G. M. TI A different type of indentation size effect SO SCRIPTA MATERIALIA LA English DT Article DE Nanoindentation; Nickel; Yield phenomena; Elastic behavior; Pop-in ID STRAIN GRADIENT PLASTICITY; INCIPIENT PLASTICITY; MECHANICAL-PROPERTIES; YIELD-POINT; THIN-FILMS; NANOINDENTATION; NUCLEATION; DEFORMATION; CRYSTALS; ALLOY AB Pop-in during nanoindentation, which indicates the onset of dislocation plasticity, was systematically investigated in annealed and pre-strained single crystals of nickel using spherical indenters with different tip radii. As the indenter radius and pre-strain decrease, the maximum shear stresses determined from the pop-in loads increase. This represents a new type of indentation size effect (ISE), based not on the measured hardness as in conventional ISE, but on the stress needed to initiate dislocation plasticity. (c) 2008 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Shim, S.; Bei, H.; George, E. P.; Pharr, G. M.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Shim, S.; George, E. P.; Pharr, G. M.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. RP Shim, S (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. EM Shims@ornl.gov; Beih@ornl.gov RI George, Easo/L-5434-2014; OI Bei, Hongbin/0000-0003-0283-7990 FU US Department of Energy FX This research was sponsored by the US Department of Energy: the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of FreedomCAR and Vehicle Technologies, as part of the High Temperature Materials Laboratory User Program (S.S.); Division of Materials Sciences and Engineering (H.B. and E.P.G.); and the SHaRE User Facility, Division of Scientific User Facilities (G.M.P.). NR 24 TC 105 Z9 107 U1 6 U2 59 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6462 J9 SCRIPTA MATER JI Scr. Mater. PD NOV PY 2008 VL 59 IS 10 BP 1095 EP 1098 DI 10.1016/j.scriptamat.2008.07.026 PG 4 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 357ZL UT WOS:000259885800018 ER PT J AU Hu, ZW De Carlo, F AF Hu, Z. W. De Carlo, F. TI Noninvasive three-dimensional visualization of defects and crack propagation in layered foam structures by phase-contrast microimaging SO SCRIPTA MATERIALIA LA English DT Article DE Layered structures; Interface defects; Foams; Stress-rupture; Imaging ID X-RAYS; MICROTOMOGRAPHY; TOMOGRAPHY AB Layered polymer foam structures used to insulate the fuel tank on the Space Shuttle were investigated by combining phase-contrast X-ray three-dimensional imaging and loading. It is shown that the interlayers between layers were distinctly different from the layers, resulting in incoherent interfaces where defects developed due to severe mismatch of cell structure between the mechanically weaker layers and stronger interlayers. These images reveal noninvasively that cracks nucleated readily at the interfaces and grew preferably along the direction of foam rise. (C) 2008 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Hu, Z. W.] NASA, George C Marshall Space Flight Ctr, BAE Syst, Huntsville, AL 35812 USA. [De Carlo, F.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Hu, ZW (reprint author), NASA, George C Marshall Space Flight Ctr, BAE Syst, Huntsville, AL 35812 USA. EM zhengwei.hu-l@nasa.gov FU NASA/Marshall Space Flight Center; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX Z.W.H. thank Mr. B. Tiemen and Ms. P. Fernandez for help with data processing and cryogenic testing, respectively. Mr. M. Suits, Mr. J. Walker and Ms. B. Cook are thanked for their support and encouragement. The work was supported by the Advanced Materials for Exploration Element and the Biotechnology Science Program at NASA/Marshall Space Flight Center. Use of the APS was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under contract No. DE-AC02-06CH11357. NR 22 TC 2 Z9 2 U1 1 U2 5 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6462 J9 SCRIPTA MATER JI Scr. Mater. PD NOV PY 2008 VL 59 IS 10 BP 1127 EP 1130 DI 10.1016/j.scriptamat.2008.07.043 PG 4 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 357ZL UT WOS:000259885800026 ER PT J AU Zhou, SH Napolitano, RE AF Zhou, S. H. Napolitano, R. E. TI Identification of the B33 martensite phase in Cu-Zr using first-principles and X-ray diffraction SO SCRIPTA MATERIALIA LA English DT Article DE Martensitic phase transformation; Thermodynamics; Intermetallics phases; X-ray diffraction (XRD) ID AUGMENTED-WAVE METHOD; MECHANICAL-PROPERTIES; INTERMETALLIC COMPOUND; THERMAL-STABILITY; GLASS-FORMATION; ALLOY; MICROSTRUCTURE; TRANSFORMATION; SYSTEM; COPPER AB X-ray diffraction (XRD) experiments and first-principles calculations were employed to investigate the martensitic transformation products formed upon rapid cooling of the CuZr-B2 phase. Candidate intermetallic compound structures were selected, and calculations show that CuZr-B11 (CuTi prototype), CuZr-B27 (FeB), CuZr-B19' (NiTi) and CuZr-B33 (BCr) are more stable than the B2 phase at 0 K. Computed XRD patterns, based on first-principles calculations, were compared with experimental XRD measurements. The results indicate that the CuZr martensite consists of the CuZr-B33 and CuZr-B19' phases. (C) 2008 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Napolitano, R. E.] Iowa State Univ Sci & Technol, Dept Mat Sci & Engn, Ames, IA 50011 USA. [Zhou, S. H.; Napolitano, R. E.] Ames Lab, Usdoe, IA USA. RP Napolitano, RE (reprint author), Iowa State Univ Sci & Technol, Dept Mat Sci & Engn, 2220 Hoover Hall, Ames, IA 50011 USA. EM ralphn@iastate.edu FU Department of Energy-Basic Energy Sciences [DE-AC02-07CH11358] FX This work was performed within the Ames Laboratory and was supported by the Department of Energy-Basic Energy Sciences, under Contract No. DE-AC02-07CH11358. NR 28 TC 15 Z9 15 U1 0 U2 17 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6462 J9 SCRIPTA MATER JI Scr. Mater. PD NOV PY 2008 VL 59 IS 10 BP 1143 EP 1146 DI 10.1016/j.scriptamat.2008.07.040 PG 4 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 357ZL UT WOS:000259885800030 ER PT J AU Winkler, R Culcer, D Papadakis, SJ Habib, B Shayegan, M AF Winkler, R. Culcer, Dimitrie Papadakis, S. J. Habib, B. Shayegan, M. TI Spin orientation of holes in quantum wells SO SEMICONDUCTOR SCIENCE AND TECHNOLOGY LA English DT Article ID ELECTRON G-FACTOR; TWO-DIMENSIONAL ELECTRONS; 2-DIMENSIONAL ELECTRON; RELAXATION ANISOTROPY; MAGNETIC-FIELD; VALENCE BANDS; SEMICONDUCTORS; SYSTEMS; GAAS; HETEROSTRUCTURES AB This paper reviews the spin orientation of spin-3/2 holes in quantum wells. We discuss the Zeeman and Rashba spin splitting in hole systems that are qualitatively different from their counterparts in electron systems. We show how a systematic understanding of the unusual spin-dependent phenomena in hole systems can be gained using a multipole expansion of the spin density matrix. As an example we discuss spin precession in hole systems that can give rise to an alternating spin polarization. Finally, we discuss the qualitatively different regimes of hole spin polarization decay in clean and dirty samples. C1 [Winkler, R.; Culcer, Dimitrie] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Winkler, R.; Culcer, Dimitrie] No Illinois Univ, De Kalb, IL 60115 USA. [Papadakis, S. J.; Habib, B.; Shayegan, M.] Princeton Univ, Dept Elect Engn, Princeton, NJ 08544 USA. RP Winkler, R (reprint author), Argonne Natl Lab, Adv Photon Source, 9700 S Cass Ave, Argonne, IL 60439 USA. RI Schaff, William/B-5839-2009 FU DOE; ARO; NSF; Alexander von Humboldt Foundation; US Department of Energy; Office of Science; Office of Basic Energy Sciences [DE-AC02-06CH11357.] FX The authors appreciate stimulating discussions with C Lechner, E P De Poortere and E Tutuc. Also, we are grateful to D Wasserman and S A Lyon for growing the wafers for our experiments. We thank the DOE, ARO, NSF and the Alexander von Humboldt Foundation for support. The research at Argonne National Laboratory was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under contract no DE-AC02-06CH11357. NR 74 TC 22 Z9 22 U1 0 U2 11 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0268-1242 EI 1361-6641 J9 SEMICOND SCI TECH JI Semicond. Sci. Technol. PD NOV PY 2008 VL 23 IS 11 AR 114017 DI 10.1088/0268-1242/23/11/114017 PG 13 WC Engineering, Electrical & Electronic; Materials Science, Multidisciplinary; Physics, Condensed Matter SC Engineering; Materials Science; Physics GA 366PO UT WOS:000260495100019 ER PT J AU Maye, MM Freumuth, P Gang, O AF Maye, Mathew M. Freumuth, Paul Gang, Oleg TI Adenovirus Knob Trimers as Tailorable Scaffolds for Nanoscale Assembly SO SMALL LA English DT Article DE biomimetics; nanoparticles; proteins; scaffolds; self-assembly ID FUNCTIONALIZED GOLD NANOPARTICLES; COWPEA MOSAIC-VIRUS; QUANTUM DOTS; PEPTIDE; AGGREGATION; FABRICATION; TEMPLATES; NANOWIRES; PROTEINS; SURFACE C1 [Freumuth, Paul] Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. [Maye, Mathew M.; Gang, Oleg] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. RP Freumuth, P (reprint author), Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. EM freimuth@bnt.gov; ogang@bnt.gov FU US DOE [DE-AC-02-98CH10866] FX Research carried out at the Center for Functional Nanomaterials at Brookhaven National Laboratory is supported by the US DOE under contract no. DE-AC-02-98CH10866. M. M. M. acknowledges a Goldhaber Distinguished Fellowship at BNL sponsored by Brookhaven Science Associates. NR 50 TC 3 Z9 3 U1 0 U2 4 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 1613-6810 J9 SMALL JI Small PD NOV PY 2008 VL 4 IS 11 BP 1941 EP 1944 DI 10.1002/smll.200800177 PG 4 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 377CX UT WOS:000261230400012 PM 18932187 ER PT J AU Peng, H Jain, M Peterson, DE Zhu, Y Jia, Q AF Peng, Huisheng Jain, Menka Peterson, Dean E. Zhu, Yuntian Jia, Quanxi TI Composite Carbon Nanotube/Silica Fibers with Improved Mechanical Strengths and Electrical Conductivities SO SMALL LA English DT Article DE carbon nanotubes; composite fibers; hydrogen bonding; silica ID GROWTH; ARRAYS; POLYMERIZATION; FABRICATION; FILMS C1 [Peng, Huisheng] Fudan Univ, Adv Mat Lab, Shanghai 200433, Peoples R China. [Peng, Huisheng] Fudan Univ, Dept Macromol Sci, Shanghai 200433, Peoples R China. [Peng, Huisheng; Jain, Menka; Peterson, Dean E.; Jia, Quanxi] Los Alamos Natl Lab, Div Mat Phys & Applicat, Los Alamos, NM 87545 USA. [Zhu, Yuntian] N Carolina State Univ, Dept Mat Sci & Engn, Raleigh, NC 27695 USA. RP Peng, H (reprint author), Fudan Univ, Adv Mat Lab, Shanghai 200433, Peoples R China. EM penghs2004@yahoo.com; ytzhu@ncsu.edu; qxjia@lanl.gov RI Zhu, Yuntian/B-3021-2008; Jia, Q. X./C-5194-2008; Peng, Huisheng/G-8867-2011; OI Zhu, Yuntian/0000-0002-5961-7422; Jain, Menka/0000-0002-2264-6895 FU U.S. Department of Energy FX We gratefully acknowledge the support of the U.S. Department of Energy through the LANL/LDRD program for this work. NR 25 TC 46 Z9 46 U1 3 U2 35 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 1613-6810 J9 SMALL JI Small PD NOV PY 2008 VL 4 IS 11 BP 1964 EP 1967 DI 10.1002/smll.200800231 PG 4 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 377CX UT WOS:000261230400017 PM 18949795 ER PT J AU Sumpter, BG Jiang, DE Meunier, V AF Sumpter, Bobby G. Jiang, De-En Meunier, Vincent TI New Insight into Carbon-Nanotube Electronic-Structure Selectivity SO SMALL LA English DT Article DE carbon nanotubes; conducting materials; diazonium salts; electronic-structure selectivity ID CORRELATED MOLECULAR CALCULATIONS; TOTAL-ENERGY CALCULATIONS; AUGMENTED-WAVE METHOD; GAUSSIAN-BASIS SETS; DIAZONIUM SALTS; TRANSPORT-PROPERTIES; ORBITAL METHODS; SEPARATION; FUNCTIONALIZATION; HYDROGEN AB The fundamental role of aryl diazonium salts for post-synthesis selectivity of carbon nanotubes is investigated using extensive electronic-structure calculations. The resulting understanding for diaz onium-salt-based selective separation of conducting and semiconducting carbon nanotubes shows how the primary contribution comes from the interplay between the intrinsic electronic structure of the carbon nanotubes and that of the anion of the salt. We demonstrate how the electronic-transport properties change upon the formation of charge transfer complexes and upon their conversion into covalently attached functional groups. The results are found to correlate well with experiments and provide for the first time an atomistic description for diazonium-salt-based chemical separation of carbon nanotubes. C1 [Sumpter, Bobby G.; Jiang, De-En] Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA. [Sumpter, Bobby G.; Jiang, De-En] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Jiang, De-En; Meunier, Vincent] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. RP Sumpter, BG (reprint author), Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA. EM sumpterbg@ornl.gov RI Jiang, De-en/D-9529-2011; Meunier, Vincent/F-9391-2010; Sumpter, Bobby/C-9459-2013 OI Jiang, De-en/0000-0001-5167-0731; Meunier, Vincent/0000-0002-7013-179X; Sumpter, Bobby/0000-0001-6341-0355 FU Division of Materials Science and Engineering, Office of Basic Energy Sciences, U.S. Department of Energy; Center for Nonophose Materials Sciences (CNMS); Division of Scientific User Facilities, U.S. Department of Energy FX This work was supported by the Division of Materials Science and Engineering, Office of Basic Energy Sciences, U.S. Department of Energy and by the Center for Nonophose Materials Sciences (CNMS), sponsored by the Division of Scientific User Facilities, U.S. Department of Energy. The extensive computational work was performed using the resources of the National Center for Computational Science (NCCS) at ORNL. NR 64 TC 16 Z9 16 U1 0 U2 14 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1613-6810 J9 SMALL JI Small PD NOV PY 2008 VL 4 IS 11 BP 2035 EP 2042 DI 10.1002/smll.200800298 PG 8 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 377CX UT WOS:000261230400027 PM 18924129 ER PT J AU Johnson, DW Todd, DE Trettin, CF Mulholland, PJ AF Johnson, D. W. Todd, D. E., Jr. Trettin, C. F. Mulholland, P. J. TI Decadal Changes in Potassium, Calcium, and Magnesium in a Deciduous Forest Soil SO SOIL SCIENCE SOCIETY OF AMERICA JOURNAL LA English DT Article ID MIXED OAK FOREST; ALLEGHENY PLATEAU; NUTRIENT; NITROGEN; PENNSYLVANIA; ECOSYSTEMS; TENNESSEE; BUDGETS; CARBON; PERIOD AB Decadal changes in soil exchangeable K+, Ca2+, and Mg2+ concentrations and contents from 1972 to 2004 in eight intensively monitored plots on Walker Branch Watershed were compared with estimates of increments or decrements in vegetation and detritus. The results from these eight plots compared favorably with those from a more extensive set from 24 soil sampling plots sampled in 1972 and 2004. Increases in exchangeable K+ were noted between 1972 and 1982, but few changes were noted between 1982 and 2004 despite significant increments in vegetation and detritus and significant potential losses by leaching. Total K contents of soils in the 0- to 60-cm sampling depth were very large and a slight amount of weathering could have replenished the K+ lost from exchanges sites. With one notable exception, exchangeable Ca2+ and Mg2+ concentrations and contents decreased continuously during the sampling period. Decreases in exchangeable Ca2+ could be attributed mostly to increments in biomass and detritus, whereas decreases in exchangeable Mg2+ could not and were attributed to leaching. The major exception to these patterns was in the case of exchangeable Ca2+, where significant increases were noted in one plot and attributed to Ca release from the decomposition of Ca-rich coarse woody debris from oak (Quercus spp.) mortality. With minor exceptions, soils and changes in soils among the eight intensively sampled core plots were similar to those in a more extensive set of plots distributed across the watershed. This study shows that averaging among plots can mask significant and important spatial patterns in soil change that must be taken into account in assessing long-term trends. C1 [Johnson, D. W.] Univ Nevada, Dep Nat Resource & Environ Sci, Reno, NV 89557 USA. [Todd, D. E., Jr.; Mulholland, P. J.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Trettin, C. F.] US Forest Serv, Charleston, SC 29414 USA. RP Johnson, DW (reprint author), Univ Nevada, Dep Nat Resource & Environ Sci, Ieischmann Agr Bldg 370, Reno, NV 89557 USA. EM dwj@cabnr.unr.edu RI Mulholland, Patrick/C-3142-2012 NR 26 TC 16 Z9 16 U1 1 U2 8 PU SOIL SCI SOC AMER PI MADISON PA 677 SOUTH SEGOE ROAD, MADISON, WI 53711 USA SN 0361-5995 J9 SOIL SCI SOC AM J JI Soil Sci. Soc. Am. J. PD NOV-DEC PY 2008 VL 72 IS 6 BP 1795 EP 1805 DI 10.2136/sssaj2007.0229 PG 11 WC Soil Science SC Agriculture GA 373KQ UT WOS:000260970900036 ER PT J AU Romanyuk, YE Yu, KM Walukiewicz, W Lavrynyuk, ZV Pekhnyo, VI Parasyuk, OV AF Romanyuk, Y. E. Yu, K. M. Walukiewicz, W. Lavrynyuk, Z. V. Pekhnyo, V. I. Parasyuk, O. V. TI Single crystal growth and properties of gamma-phase in the CuInSe2+2CdS double left right arrow CuInS2+2CdSe reciprocal system SO SOLAR ENERGY MATERIALS AND SOLAR CELLS LA English DT Article DE CuInSe2; crystal growth; solid solution ID THIN-FILM; ELECTRICAL-PROPERTIES; SOLAR-CELLS; CDS; HETEROJUNCTION; INTERFACES; TRANSPORT; DIAGRAM AB The intermediate solid solution, gamma-phase, exists in the CuInSe2+2CdS double left right arrow CuInS2+2CdSe reciprocal system. It crystallizes in the cubic structure and has a wide homogeneity range. Single crystals of the gamma-phase are grown by a modified Bridgman method and their composition, crystal structure, optical and electrical properties are studied. The band gap varies from 1.43 to 1.05 eV along the 'Cu3Cd2In3S8'-'CuCd2InSe4' compositional section. The crystals are photosensitive, mostly p-type, with hole concentrations in the 10(15)-10(16) cm(-3) range and mobilities Up to 18 cm(2)/Vs. The results indicate that the gamma-phase can be considered as a new absorbing material for thin-film solar cells. (c) 2008 Elsevier B.V. All rights reserved. C1 [Romanyuk, Y. E.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Yu, K. M.; Walukiewicz, W.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Lavrynyuk, Z. V.; Parasyuk, O. V.] Volyn State Univ, Dept Gen & Inorgan Chem, Lutsk, Ukraine. [Pekhnyo, V. I.] VI Vernadskii Inst Gen & Inorgan Chem, Kiev, Ukraine. RP Romanyuk, YE (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM yaromanyuk@lbl.gov RI Yu, Kin Man/J-1399-2012 OI Yu, Kin Man/0000-0003-1350-9642 FU Science and Technology Centre of Ukraine (STCU) [4120]; US Department of Energy [DE-AC02-05CH11231] FX This work was supported by the Science and Technology Centre of Ukraine (STCU), Project no. 4120. Optical and electrical measurements were supported by the Director, Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under Contract no. DE-AC02-05CH11231. NR 23 TC 14 Z9 14 U1 0 U2 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0927-0248 J9 SOL ENERG MAT SOL C JI Sol. Energy Mater. Sol. Cells PD NOV PY 2008 VL 92 IS 11 BP 1495 EP 1499 DI 10.1016/j.solmat.2008.06.014 PG 5 WC Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied SC Energy & Fuels; Materials Science; Physics GA 355DB UT WOS:000259688100031 ER PT J AU Page, K Li, J Savinelli, R Szumila, HN Zhang, JP Stalick, JK Proffen, T Scott, SL Seshadri, R AF Page, Katharine Li, Jun Savinelli, Robert Szumila, Holly N. Zhang, Jinping Stalick, Judith K. Proffen, Thomas Scott, Susannah L. Seshadri, Ram TI Reciprocal-space and real-space neutron investigation of nanostructured Mo(2)C and WC SO SOLID STATE SCIENCES LA English DT Article DE Metal carbides; Nanostructures; Pair-distribution function method; Neutron diffraction ID METAL HEMICARBIDES M2C1-X; POWDER DIFFRACTION; AMMONIUM PARATUNGSTATE; MOLYBDENUM CARBIDE; TUNGSTEN CARBIDE; TEMPERATURE; RESOLUTION AB As possible substitute materials for platinum group metal heterogeneous catalysts, high surface area carbides of the early transition metals Mo and W are of great interest. Here we report nanostructured, high surface area Mo(2)C and WC prepared by decomposing and carburizing ammonium paramolybdate [(NH(4))(6)Mo(7)O(24)center dot 4H(2)O] and ammonium paratungstate [(NH(4))(10)W(12)O(41)center dot 5H(2)O] in flowing 50%CH(4)/50%H(2). Surface areas as high as 52 m(2)/g for Mo(2)C and 24 m(2)/g for WC were obtained, with both structures crystallizing in structures appropriate for catalytic activity. We have studied these materials using a combination of neutron diffraction Rietveld refinement, X-ray photoelectron spectroscopy, surface area measurements, and scanning transmission electron microscopy. In addition, we have used pair-distribution function (PDF) analysis of the neutron total scattering data as a means of establishing the presence of graphitic carbon in the as-prepared materials. (c) 2008 Elsevier Masson SAS. All rights reserved. C1 [Savinelli, Robert; Scott, Susannah L.] Univ Calif Santa Barbara, Dept Chem Engn, Santa Barbara, CA 93106 USA. [Page, Katharine; Li, Jun; Szumila, Holly N.; Zhang, Jinping; Seshadri, Ram] Univ Calif Santa Barbara, Dept Mat, Santa Barbara, CA 93106 USA. [Page, Katharine; Li, Jun; Szumila, Holly N.; Zhang, Jinping; Seshadri, Ram] Univ Calif Santa Barbara, Mat Res Lab, Santa Barbara, CA 93106 USA. [Scott, Susannah L.; Seshadri, Ram] Univ Calif Santa Barbara, Dept Mat, Santa Barbara, CA 93106 USA. [Stalick, Judith K.] Natl Inst Stand & Technol, Gaithersburg, MD 20899 USA. [Proffen, Thomas] Los Alamos Natl Lab, Manuel Lujan Jr Neutron Scattering Ctr, LANSCE LC, Los Alamos, NM 87545 USA. RP Scott, SL (reprint author), Univ Calif Santa Barbara, Dept Chem Engn, Santa Barbara, CA 93106 USA. EM sscott@engineering.ucsb.edu; seshadri@mrl.ucsb.edu RI Page, Katharine/C-9726-2009; Lujan Center, LANL/G-4896-2012; Seshadri, Ram/C-4205-2013; Proffen, Thomas/B-3585-2009 OI Page, Katharine/0000-0002-9071-3383; Seshadri, Ram/0000-0001-5858-4027; Proffen, Thomas/0000-0002-1408-6031 FU Department of Energy, (DOE) Office of Basic Energy Sciences (BES) [FG02-05ER15025]; National Science Foundation; NSF [DMR05-20415]; National Institute of Standards and Technology, U.S. Department of Commerce; Department of Energy, Office of Basic Energy Sciences; National Science Foundation [DMR00-76488] FX This work has been supported by the Department of Energy, (DOE) Office of Basic Energy Sciences (BES) through grant DE-FG02-05ER15025. KP and HNS were supported by the National Science Foundation through a Graduate Research Fellowship and through an Undergraduate Internship (RISE Program), respectively. The work at UCSB made use of facilities of the Materials Research Laboratory, supported by the NSF (DMR05-20415). We acknowledge the support of the National Institute of Standards and Technology, U.S. Department of Commerce, in providing the neutron research facilities. This work benefited from the use of the Lujan Center at Los Alamos Neutron Science Center, funded by the Department of Energy, Office of Basic Energy Sciences. The upgrade of NPDF was funded by the National Science Foundation through grant DMR00-76488. NR 32 TC 23 Z9 23 U1 1 U2 19 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1293-2558 J9 SOLID STATE SCI JI Solid State Sci. PD NOV PY 2008 VL 10 IS 11 BP 1499 EP 1510 DI 10.1016/j.solidstatesciences.2008.03.018 PG 12 WC Chemistry, Inorganic & Nuclear; Chemistry, Physical; Physics, Condensed Matter SC Chemistry; Physics GA 378XN UT WOS:000261358300005 ER PT J AU Rice, AE Carne, TG Kelton, DW AF Rice, Amy E. Carne, Thomas G. Kelton, David W. TI Model Validation of a Complex Aerospace Structure SO SOUND AND VIBRATION LA English DT Article AB A series of modal tests were performed to validate a finite-element model of a complex aerospace structure. Data were measured using various excitation methods to extract clean modes and damping values for a lightly damped system. Model validation was performed for one subassembly as well as for the full assembly to pinpoint the areas of the model that required updating and to better ascertain the quality of the joint models connecting the various components and subassemblies. After model updates were completed using the measured modal data, the model was validated using frequency response functions (FRFs) as the independent validation metric. Test and model FRFs were compared to determine the validity of the finite-element model. C1 [Rice, Amy E.; Carne, Thomas G.; Kelton, David W.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Rice, AE (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM aerice@sandia.gov NR 5 TC 1 Z9 1 U1 0 U2 1 PU ACOUSTICAL PUBL INC PI BAY VILLAGE PA 27101 E OVIATT RD, PO BOX 40416, BAY VILLAGE, OH 44140 USA SN 1541-0161 J9 SOUND VIB JI Sound Vib. PD NOV PY 2008 VL 42 IS 11 BP 10 EP 15 PG 6 WC Acoustics; Engineering, Mechanical; Mechanics SC Acoustics; Engineering; Mechanics GA 382QW UT WOS:000261621500003 ER PT J AU Hanisch, J Mueller, FM Ashworth, S Coulter, JY Matias, V AF Haenisch, J. Mueller, F. M. Ashworth, S. Coulter, J. Y. Matias, V. TI Measurement of the transverse J(c) profiles of coated conductors using a magnetic knife of permanent magnets SO SUPERCONDUCTOR SCIENCE & TECHNOLOGY LA English DT Article ID TEMPERATURE SUPERCONDUCTING TAPES; CRITICAL-CURRENT DENSITY; HIGH CRITICAL CURRENTS; THIN-FILMS; SCALE-UP; PROGRESS AB The transverse J(c) distribution in YBCO coated conductors was measured non-destructively with high resolution using a 'magnetic knife' made of permanent magnets. The method utilizes the strong depression of Jc in applied magnetic fields. A narrow region of low (including zero) magnetic field, in a surrounding higher field, is moved transversely across the sample in order to reveal the critical-current density distribution. The net resolution of this device is approximately 65 mu m, and the Jc resolution is better than 0.5%. A Fourier series inversion process was used to determine the transverse Jc distribution in the sample. The Jc profile was correlated with other sample properties of coated conductors prepared by pulsed laser deposition. Because of its straightforward and inexpensive design, this J(c) imaging technique can be a powerful tool for quality control in coated-conductor production. C1 [Haenisch, J.; Mueller, F. M.; Ashworth, S.; Coulter, J. Y.; Matias, V.] Los Alamos Natl Lab, Superconduct Technol Ctr, Los Alamos, NM 87545 USA. RP Hanisch, J (reprint author), Los Alamos Natl Lab, Superconduct Technol Ctr, POB 1663, Los Alamos, NM 87545 USA. RI Hanisch, Jens/D-8503-2011 NR 19 TC 6 Z9 6 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-2048 J9 SUPERCOND SCI TECH JI Supercond. Sci. Technol. PD NOV PY 2008 VL 21 IS 11 AR 115021 DI 10.1088/0953-2048/21/11/115021 PG 4 WC Physics, Applied; Physics, Condensed Matter SC Physics GA 355HI UT WOS:000259699600022 ER PT J AU Donnet, C Erdemir, A AF Donnet, C. Erdemir, A. TI New horizon in the tribology of diamondlike carbon films SO SURFACE ENGINEERING LA English DT Editorial Material C1 [Donnet, C.] Univ St Etienne, Univ Inst France, St Etienne, France. [Erdemir, A.] Argonne Natl Lab, Div Energy Syst, Argonne, IL 60439 USA. RP Donnet, C (reprint author), Univ St Etienne, Univ Inst France, St Etienne, France. EM christophe.donnet@univ-st-etienne.fr NR 4 TC 7 Z9 8 U1 2 U2 8 PU MANEY PUBLISHING PI LEEDS PA STE 1C, JOSEPHS WELL, HANOVER WALK, LEEDS LS3 1AB, W YORKS, ENGLAND SN 0267-0844 J9 SURF ENG JI Surf. Eng. PD NOV PY 2008 VL 24 IS 6 BP 399 EP 401 DI 10.1179/174329408X365666 PG 3 WC Materials Science, Coatings & Films SC Materials Science GA 367XN UT WOS:000260586000001 ER PT J AU Ma, SG Rodriguez, J Hrbek, J AF Ma, Shuguo Rodriguez, Jose Hrbek, Jan TI STM study of the growth of cerium oxide nanoparticles on Au(111) SO SURFACE SCIENCE LA English DT Article DE Cerium oxide; Gold; Growth; Scanning tunneling microscopy; Sintering ID WATER-GAS SHIFT; INVERSE MODEL CATALYST; SCANNING-TUNNELING-MICROSCOPY; METAL-SUPPORT INTERACTIONS; LAYER-ASSISTED DEPOSITION; PHOTOEMISSION-SPECTROSCOPY; THERMAL-PROPERTIES; SURFACE; CO; FILMS AB The morphology and structure of nanosized ceria particles prepared by several in vacuo deposition methods on a Au(111) template were investigated by scanning tunneling microscopy. Cerium metal nanoparticles on gold have limited reactivity toward molecular oxygen and NO(2), due to the formation of Ce-Au alloys, and their oxidation leads to formation of non-uniform substoichiometric three-dimensional (3D) oxide particles. Cerium metal deposition onto condensed multilayers of water or NO(2) generates fully oxidized but poorly ordered ceria particles after annealing. Ultra-thin flat and ordered ceria nanoislands were prepared by deposition of cerium metal on the gold surface at elevated temperatures under an oxygen background pressure. Atomically resolved images show an oxygen-terminated surface of CeO(2)(111) with oxygen vacancies. Published by Elsevier B.V. C1 [Ma, Shuguo; Rodriguez, Jose; Hrbek, Jan] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. RP Hrbek, J (reprint author), Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. EM hrbek@bnl.gov RI Hrbek, Jan/I-1020-2013 FU US Department of Energy [DE-AC02-98CH10886] FX This research was carried out at Brookhaven National Laboratory and supported by the US Department of Energy (Chemical Sciences Division, DE-AC02-98CH10886). NR 40 TC 40 Z9 40 U1 3 U2 46 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0039-6028 J9 SURF SCI JI Surf. Sci. PD NOV 1 PY 2008 VL 602 IS 21 BP 3272 EP 3278 DI 10.1016/j.susc.2008.08.021 PG 7 WC Chemistry, Physical; Physics, Condensed Matter SC Chemistry; Physics GA 377JF UT WOS:000261246800008 ER PT J AU Ferrin, P Nilekar, AU Greeley, J Mavrikakis, M Rossmeisl, J AF Ferrin, Peter Nilekar, Anand Udaykumar Greeley, Jeff Mavrikakis, Manos Rossmeisl, Jan TI Reactivity descriptors for direct methanol fuel cell anode catalysts SO SURFACE SCIENCE LA English DT Article DE Methanol; Transition metals; DFT; Electrocatalysis ID GAS SHIFT REACTION; DENSITY-FUNCTIONAL THEORY; RU ALLOY SURFACES; OXYGEN REDUCTION; HYDROGEN EVOLUTION; TRANSITION-METALS; DIRECT OXIDATION; WATER; ELECTROOXIDATION; PT(111) AB We have investigated the anode reaction in direct methanol fuel cells using a database of adsorption free energies for 16 intermediates on 12 close-packed transition metal surfaces calculated with periodic, self-consistent, density functional theory (DFT-GGA). This database, combined with a simple electrokinetic model of the methanol electrooxidation reaction, yields mechanistic insights that are consistent with previous experimental and theoretical studies on Pt, and extends these insights to a broad spectrum of other transition metals. In addition, by using linear scaling relations between the adsorption free energies of various intermediates in the reaction network, we find that the results determined with the full database of adsorption energies can be estimated by knowing only two key descriptors for each metal surface: the free energies of OH and CO on the surface. Two mechanisms for methanol oxidation to CO(2) are investigated: an indirect mechanism that goes through a CO intermediate and a direct mechanism where methanol is oxidized to CO(2) without the formation of a CO intermediate. For the direct mechanism, we find that, because of CO poisoning, only a small current will result on all non-group 11 transition metals; of these metals, Pt is predicted to be the most active, For methanol decomposition via the indirect mechanism, we find that the onset potential is limited either by the ability to activate methanol, by the ability to activate water, or by surface poisoning by CO(center dot) or OH(center dot)/O(center dot). Among pure metals, there is no obvious candidate for a good anode catalyst, and in order to design a better catalyst, one has to look for bi-functional surfaces such as the well-studied PtRu alloy. (C) 2008 Elsevier B.V. All rights reserved. C1 [Ferrin, Peter; Nilekar, Anand Udaykumar; Mavrikakis, Manos; Rossmeisl, Jan] Univ Wisconsin, Dept Chem & Biol Engn, Madison, WI 53706 USA. [Greeley, Jeff] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Rossmeisl, Jan] Tech Univ Denmark, Dept Phys Nano DTU, Ctr Atom Scale Mat Design, DK-2800 Lyngby, Denmark. RP Rossmeisl, J (reprint author), Univ Wisconsin, Dept Chem & Biol Engn, 1415 Engn Dr, Madison, WI 53706 USA. EM jross@fysik.dtu.dk RI Rossmeisl, Jan/A-5714-2011; Mavrikakis, Manos/D-5702-2012 OI Rossmeisl, Jan/0000-0001-7749-6567; Mavrikakis, Manos/0000-0002-5293-5356 FU Department of Energy; Office of Basic Energy Sciences [DE-AC02-06CHI 1357]; National - 1.0 Science Foundation; University of Wisconsin; Lundbeck foundation FX Work at the University of Wisconsin was funded in part by the Department of Energy, Office of Basic Energy Sciences, the National - 1.0 Science Foundation, and the University of Wisconsin. Supercomputing time at NERSC, PNNL, and NCCS and ORNL is gratefully -1.5 acknowledged. Use of the Center for Nanoscale Materials at ANL was supported by the US Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CHI 1357. JR would like to thank CAMD, which is funded by the Lundbeck foundation. NR 51 TC 92 Z9 92 U1 14 U2 100 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0039-6028 J9 SURF SCI JI Surf. Sci. PD NOV 1 PY 2008 VL 602 IS 21 BP 3424 EP 3431 DI 10.1016/j.susc.2008.08.011 PG 8 WC Chemistry, Physical; Physics, Condensed Matter SC Chemistry; Physics GA 377JF UT WOS:000261246800030 ER PT J AU DeMarco, A Dalal, RM Kahanda, M Mullapudi, U Pai, J Hammel, C Liebling, CNB Patel, V Brodie, JD Schiffer, WK Dewey, SL Aquilina, SD AF DeMarco, Amy Dalal, Reema M. Kahanda, Milan Mullapudi, Uma Pai, Jessica Hammel, Crystie Liebling, Courtney N. B. Patel, Vinal Brodie, Jonathan D. Schiffer, Wynne K. Dewey, Stephen L. Aquilina, Stefanie D. TI Subchronic racemic gamma vinyl-GABA produces weight loss in Sprague Dawley and Zucker fatty rats SO SYNAPSE LA English DT Article DE vigabatrin; GABA; obesity; binge eating disorder; Zucker fatty rat ID ETHANOLAMINE-O-SULFATE; INGESTIVE BEHAVIOR; COCAINE ADDICTION; METHAMPHETAMINE; INCREASES; VIGABATRIN; INHIBITOR; MUSCIMOL; DOPAMINE; SAFETY AB Given the growing obesity epidemic, pressure to develop an effective pharmacologic treatment is mounting. Following the completion of a randomized, double-blind, placebo controlled trial as well as two small open label trials, gamma vinyl-GABA (GVG) has been shown to be safe and effective for treating cocaine and/or methamphetamine dependence. In an extension of these findings, the present study examined whether GVG could produce weight loss in adolescent as well as genetically obese animals. Specifically, adolescent Sprague Dawley and adolescent and adult Zucker fatty rats received GVG at various doses (75-300 mg/kg, i.p., racemic) for treatment periods lasting no longer than 14 consecutive days. GVG produced significant weight loss in a dose dependent fashion in all groups. These effects were marked, as average decreases of 12-20% of original body weight were observed. These findings suggest that GVG may be useful as a treatment for obesity. Further, that these results occurred in genetically obese animals offers the possibility that GVG may even help manage severe obesity resulting from binge-eating, a disorder involving food consumption in a pattern similar to the compulsive drug-seeking behavior observed in cocaine and methamphetamine dependent subjects. C1 [DeMarco, Amy; Kahanda, Milan; Hammel, Crystie; Liebling, Courtney N. B.; Patel, Vinal; Schiffer, Wynne K.; Dewey, Stephen L.] Brookhaven Natl Lab, Dept Med, Upton, NY 11973 USA. [Dalal, Reema M.; Pai, Jessica; Brodie, Jonathan D.] NYU, New York, NY 10016 USA. [Mullapudi, Uma] Dartmouth Coll, Hanover, NH 03755 USA. [Aquilina, Stefanie D.] Cornell Univ, Ithaca, NY 14850 USA. RP DeMarco, A (reprint author), Brookhaven Natl Lab, Dept Med, Upton, NY 11973 USA. EM ald2126@columbia.edu OI Brodie, Jonathan/0000-0002-2254-8654 FU NIDA NIH HHS [DA 15041, DA 22346] NR 16 TC 1 Z9 1 U1 0 U2 2 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0887-4476 J9 SYNAPSE JI Synapse PD NOV PY 2008 VL 62 IS 11 BP 870 EP 872 DI 10.1002/syn.20555 PG 3 WC Neurosciences SC Neurosciences & Neurology GA 354RZ UT WOS:000259658000008 PM 18720383 ER PT J AU Larson, ED Consonni, S Katofsky, RE Iisa, K Frederick, WJ AF Larson, Eric D. Consonni, Stefano Katofsky, Ryan E. Iisa, Kristiina Frederick, W. James, Jr. TI An assessment of gasification-based biorefining at kraft pulp and paper mills in the United States, Part A: Background and assumptions SO TAPPI JOURNAL LA English DT Article AB Commercialization of black liquor and biomass gasification technologies is anticipated in the 2010-2015 time frame, and synthesis gas from gasifiers can be converted into liquid fuels using catalytic synthesis technologies that are already commercially established in the gas-to-liquids or coal-to-liquids industries. This set of two papers describes key results from a major assessment of the prospective energy, environmental, and financial performance of commercial gasification-based biorefineries integrated with kraft pulp and paper mills [1]. Seven detailed biorefinery designs were developed for a reference mill in the southeastern United States, together with the associated mass/energy balances, air emissions estimates, and capital investment requirements. The biorefineries provide chemical recovery services and co-produce process steam for the mill, some electricity, and one of three liquid fuels: a Fischer-Tropsch synthetic crude oil (which could be refined to vehicle fuels at an existing petroleum refinery), dimethyl ether (a diesel engine fuel or propane substitute), or an ethanol-rich mixed-alcohol product. This paper describes the key assumptions that underlie the biorefinery designs. Part B will present analytical results. C1 [Larson, Eric D.] Princeton Univ, Princeton Environm Inst, Princeton, NJ 08544 USA. [Consonni, Stefano] Politecn Milan, Dept Energy Engn, I-20133 Milan, Italy. [Frederick, W. James, Jr.] Natl Renewable Energy Lab, Thermochem Platform Program, Golden, CO USA. RP Larson, ED (reprint author), Princeton Univ, Princeton Environm Inst, Princeton, NJ 08544 USA. EM elarson@princeton.edu OI Consonni, Stefano/0000-0002-4158-4140 FU U.S. Department of Energy Biomass Program; American Forest and Paper Association; Princeton University Carbon Mitigation Initiative; William and Flora Hewlett Foundation; Institute of Paper Science and Technology (IPST) FX For primary financial Support, we thank the U.S. Department of Energy Biomass Program and the American Forest and Paper Association. Additionally, support is gratefully acknowledged from the Princeton University Carbon Mitigation Initiative, the William and Flora Hewlett Foundation, and the member companies of the Institute of Paper Science and Technology (IPST) (at the Georgia Institute of Technology) who have sponsored IPST's research project, "Gasification and Biorefinery Development." NR 14 TC 9 Z9 9 U1 0 U2 6 PU TECH ASSOC PULP PAPER IND INC PI NORCROSS PA 15 TECHNOLOGY PARK SOUTH, NORCROSS, GA 30092 USA SN 0734-1415 J9 TAPPI J JI TAPPI J. PD NOV PY 2008 VL 7 IS 11 BP 8 EP 14 PG 7 WC Materials Science, Paper & Wood SC Materials Science GA 378JR UT WOS:000261317500003 ER PT J AU Hall, SR Farber, DL Audin, L Finkel, RC Meriaux, AS AF Hall, S. R. Farber, D. L. Audin, L. Finkel, R. C. Meriaux, A. -S. TI Geochronology of pediment surfaces in southern Peru: Implications for Quaternary deformation of the Andean forearc SO TECTONOPHYSICS LA English DT Article; Proceedings Paper CT 6th International Symposium on Andean Geodynamics (ISAG) CY SEP 12-14, 2005 CL Barcelona, SPAIN DE Beryllium-10; Cosmogenic; Central Andes; Peru; Pediment; Forearc ID PORPHYRY COPPER PROVINCE; NORTHERN CHILE; ATACAMA DESERT; CLIMATE-CHANGE; SUPERGENE ENRICHMENT; BOLIVIAN ALTIPLANO; MIOCENE AGE; NAZCA RIDGE; UPLIFT; EVOLUTION AB The geomorphology of the Andean forearc has historically been viewed as an old remnant of a late Miocene planar landscape with no significant active structures accommodating Quaternary deformation. However, the well-preserved sequence of planation surfaces and strath terraces developed within the forearc of southern Peru provide evidence of recent uplift along the western margin. Previously, the abandonment of these surfaces was attributed to uplift of late Miocene age, however, abrupt changes in topography and drainage incision within the pediment surfaces indicate recent deformation. We use in situ produced (10)Be to determine the exposure ages of these abandoned surfaces in order to derive the spatial and temporal extent of this tectonic activity. Our new results, in contrast to previous work, yield pediment surface ages of similar to 119 ka, similar to 203 ka, similar to 278 ka, similar to 549 ka and similar to 1003 ka indicating a youthful morphology. Additionally, these surfaces are affected by steeply dipping active faults producing localized deformation, which can be quantified. Incision rates, based on the exposure ages of abandoned strath surfaces are on the order of 0.04-0.3 mm/yr. The data set presented here not only suggests significant active deformation within the forearc, but also highlights a sharp contrast between the style of deformation observed on the eastern and western margins of the Andes. While the general notion is that active deformation is localized in the Subandean fold and thrust belt, our data support an emerging view where active deformation is occurring in the western margin as well. (c) 2008 Elsevier B.V. All rights reserved. C1 [Hall, S. R.] Univ Calif Santa Cruz, Dept Earth Sci, Santa Cruz, CA 95060 USA. [Farber, D. L.; Finkel, R. C.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Audin, L.] IRD, Lima 18, Peru. [Meriaux, A. -S.] Univ Edinburgh, Inst Geog, Edinburgh EH8 9XP, Midlothian, Scotland. RP Hall, SR (reprint author), Univ Calif Santa Cruz, Dept Earth Sci, Santa Cruz, CA 95060 USA. EM shall@pmc.ucsc.edu RI Meriaux, Anne-Sophie/G-1754-2010; Farber, Daniel/F-9237-2011; laurence, audin/D-7727-2013 OI laurence, audin/0000-0002-4510-479X NR 73 TC 19 Z9 19 U1 1 U2 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0040-1951 J9 TECTONOPHYSICS JI Tectonophysics PD NOV 1 PY 2008 VL 459 IS 1-4 BP 186 EP 205 DI 10.1016/j.tecto.2007.11.073 PG 20 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 379BK UT WOS:000261369300013 ER PT J AU Mathelin, L Bataille, F Zhou, Y AF Mathelin, Lionel Bataille, Francoise Zhou, Ye TI Theoretical investigation of some thermal effects in turbulence modeling SO THEORETICAL AND COMPUTATIONAL FLUID DYNAMICS LA English DT Article DE Turbulence modeling; Non-isothermal flow; DIA; Compressible turbulence ID DIRECT-INTERACTION APPROXIMATION; WEAKLY COMPRESSIBLE TURBULENCE; ISOTROPIC TURBULENCE; FLOWS; CLOSURES AB Fluid compressibility effects arising from thermal rather than dynamical aspects are theoretically investigated in the framework of turbulent flows. The Mach number is considered low and not to induce significant compressibility effects which here occur due to a very high thermal gradient within the flowfield. With the use of the Two-Scale Direct Interaction Approximation approach, essential turbulent correlations are derived in a one-point one-time framework. In the low velocity gradient limit, they are shown to directly depend on the temperature gradient, assumed large. The impact of thermal effects onto the transport equations of the turbulent kinetic energy and dissipation rate is also investigated, together with the transport equation for both the density and the internal energy variance. C1 [Mathelin, Lionel] LIMSI CNRS, F-91403 Orsay, France. [Bataille, Francoise] Tecnosud, PROMES CNRS, F-66100 Perpignan, France. [Zhou, Ye] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Mathelin, L (reprint author), LIMSI CNRS, BP 133, F-91403 Orsay, France. EM mathelin@limsi.fr; Francoise.Daumas-Bataille@Univ-Perp.fr; zhou3@llnl.gov FU Universite de Perpignan FX The first two authors (L. M. and F. B.) gratefully acknowledge Dr. Robert Rubinstein and Professor M. Yousuff Hussaini for fruitful discussions and support in initiating this work. The third author (Y.Z.) gratefully acknowledges the financial support provided by Universite de Perpignan that made his visit to PROMES possible. NR 15 TC 1 Z9 1 U1 0 U2 2 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0935-4964 J9 THEOR COMP FLUID DYN JI Theor. Comput. Fluid Dyn. PD NOV PY 2008 VL 22 IS 6 BP 471 EP 483 DI 10.1007/s00162-008-0087-0 PG 13 WC Mechanics; Physics, Fluids & Plasmas SC Mechanics; Physics GA 365BL UT WOS:000260380800003 ER PT J AU Kenyon, EM Hughes, MF Adair, BM Highfill, JH Crecelius, EA Clewell, HJ Yager, JW AF Kenyon, E. M. Hughes, M. F. Adair, B. M. Highfill, J. H. Crecelius, E. A. Clewell, H. J. Yager, J. W. TI Tissue distribution and urinary excretion of inorganic arsenic and its methylated metabolites in C57BL6 mice following subchronic exposure to arsenate in drinking water SO TOXICOLOGY AND APPLIED PHARMACOLOGY LA English DT Article; Proceedings Paper CT 47th Annual Meeting of the Society-Toxicology CY MAR 16-20, 2008 CL Seattle, WA SP Soc Toxicol DE Arsenic pharmacokinetics; Arsenate; Subchronic drinking water exposure; Mice ID ATOMIC-ABSORPTION-SPECTROMETRY; DIMETHYLARSINOUS ACID; TRIVALENT ARSENICALS; RAT-BLOOD; METHYLTRANSFERASE; GLUTATHIONE; INDUCTION; METALLOTHIONEIN; ACCUMULATION; TRANSFERASE AB The relationship of exposure and tissue concentration of parent chemical and metabolites over prolonged exposure is a critical issue for chronic toxicities mediated by metabolite(s) rather than parent chemical alone. This is an issue As-V because its trivalent metabolites have unique toxicities and relatively greater potency compared to their pentavalent counterparts for many endpoints. In this study, dose-dependency in tissue distribution and urinary excretion for inorganic arsenic and its methylated metabolites was assessed in female C57B1/6 mice exposed to 0, 0.5, 2, 10 or 50 ppm arsenic (as arsenate, As-V) in their drinking water for 12 weeks. No adverse effects were observed and body weight gain did not differ significantly among groups. Urinary excretion of arsenite mono methylarsonous acid (MMA(III)), dimethylarsinous acid (DMA(III)), dimethylarsinic acid (DMA(V)), and trimethylarsine oxide (TMAO) increased linearly with dose, whereas As-V and mono methylarsonic acid (MMA(V)) excretion was non-linear with respect to dose. Total tissue arsenic accumulation was greatest in kidney > lung > urinary bladder >>> skin > blood > liver. Monomethyl arsenic (MMA, i.e. MMA(III)+MMA(V)) was the predominant metabolite in kidney, whereas dimethylarsenic (DMA, i.e., DMA(III)+DMA(V)) was the predominant metabolite in lung. Urinary bladder tissue had roughly equivalent levels of inorganic arsenic and dimethylarsenic, as did skin. These data indicate that pharmacokinetic models for arsenic metabolism and disposition need to include mechanisms for organ-specific accumulation of some arsenicals and that urinary metabolite profiles are not necessarily reflective of target tissue dosimetry. Published by Elsevier Inc. C1 [Kenyon, E. M.; Hughes, M. F.; Adair, B. M.; Highfill, J. H.] US EPA, Off Res & Dev, Natl Hlth & Environm Effects Res Lab, Expt Toxicol Div,Pharmacokinet Branch, Res Triangle Pk, NC 27711 USA. [Crecelius, E. A.] Battelle Marine Sci Lab, Sequim, WA USA. [Clewell, H. J.] Hamner Inst Hlth Sci, Res Triangle Pk, NC 27709 USA. [Yager, J. W.] Univ New Mexico, Albuquerque, NM 87131 USA. RP Kenyon, EM (reprint author), US EPA, Off Res & Dev, Natl Hlth & Environm Effects Res Lab, Expt Toxicol Div,Pharmacokinet Branch, Mail Stop B143-01, Res Triangle Pk, NC 27711 USA. EM kenyon.elaina@epa.gov NR 35 TC 51 Z9 51 U1 0 U2 8 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0041-008X J9 TOXICOL APPL PHARM JI Toxicol. Appl. Pharmacol. PD NOV 1 PY 2008 VL 232 IS 3 BP 448 EP 455 DI 10.1016/j.taap.2008.07.018 PG 8 WC Pharmacology & Pharmacy; Toxicology SC Pharmacology & Pharmacy; Toxicology GA 366IX UT WOS:000260475500010 PM 18706920 ER PT J AU Bellgraph, BJ Brown, RS Stephenson, JR Welch, AE Deters, KA Carlson, TJ AF Bellgraph, Brian J. Brown, Richard S. Stephenson, John R. Welch, Abigail E. Deters, Katherine A. Carlson, Thomas J. TI Healing Rate of Swim Bladders in Rainbow Trout SO TRANSACTIONS OF THE AMERICAN FISHERIES SOCIETY LA English DT Article ID BUOYANCY REGULATION; DECOMPRESSION; BAROTRAUMA; BEHAVIOR; TRAUMA; FISHES AB Swim bladders Of juvenile rainbow trout Oncorhynchus mykiss were ruptured and subsequently observed for 28 d to identify healing patterns of swim bladder wounds and the effect of swim bladder rupture on direct mortality. Healing began within 7 d, wounds were completely closed after 14 d, and no mortality occurred. The healing process followed a pattern in which tissue first thickened around the opening (7-14 d), scarring of the ruptured area occurred. and evidence of the wound ultimately disappeared (21-28 d). The healing observed in juvenile rainbow trout suggests that swim bladder rupture does not result in direct mortality as was hypothesized however. the indirect effects of swim bladder injury (e.g., a decreased ability to swim efficiently) may lead to mortality by predation or other natural phenomena that were not observable in this study. C1 [Bellgraph, Brian J.; Brown, Richard S.; Stephenson, John R.; Welch, Abigail E.; Deters, Katherine A.; Carlson, Thomas J.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Bellgraph, BJ (reprint author), Pacific NW Natl Lab, POB 999, Richland, WA 99352 USA. EM brian.bellgraph@pnl.gov FU U.S. Army Corps of Engineers Portland District [AGRW66QKZ7010121]; U.S. Department of Energy [DE-AC05-76RL01830] FX Funding was provided by the U.S. Army Corps of Engineers Portland District (Contract Number AGRW66QKZ7010121). We acknowledge the scientific advice and insight of Martin Ahmann, Blaine Ebberts, and Dan Feil of the U.S. Army Corps of Engineers. Pacific Northwest National Laboratory animal facilities used in this research were certified by the Association for Assessment and Accreditation of Laboratory Animal Care; animals were handled in accordance with federal guidelines for the care and use of laboratory animals, and protocols for our study were approved by the Institutional Animal Care and Use Committee at Battelle-Pacific Northwest Division. We thank Kathleen Carter for reviewing the manuscript and Andrea Currie for editing the manuscript. The Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy under Contract Number DE-AC05-76RL01830. NR 19 TC 8 Z9 8 U1 1 U2 12 PU AMER FISHERIES SOC PI BETHESDA PA 5410 GROSVENOR LANE SUITE 110, BETHESDA, MD 20814-2199 USA SN 0002-8487 J9 T AM FISH SOC JI Trans. Am. Fish. Soc. PD NOV PY 2008 VL 137 IS 6 BP 1791 EP 1794 DI 10.1577/T07-167.1 PG 4 WC Fisheries SC Fisheries GA 477EG UT WOS:000268500800018 ER PT J AU Calvo-Alvarado, JC McDowell, NG Waring, RH AF Calvo-Alvarado, J. C. McDowell, N. G. Waring, R. H. TI Allometric relationships predicting foliar biomass and leaf area:sapwood area ratio from tree height in five Costa Rican rain forest species SO TREE PHYSIOLOGY LA English DT Article DE Carapa guianensis; hydraulic model; leaf area; leaf biomass; Pentaclethra macroloba; pipe-model theory; sapwood area; specific leaf area; Tetragastris panamensis; Virola koshnii; Vochysia ferruginea ID HYDRAULIC LIMITATION HYPOTHESIS; CONDUCTING SAPWOOD AREA; SCOTS PINE; WATER TRANSPORT; LODGEPOLE PINE; STAND DENSITY; DOUGLAS-FIR; PATTERNS; INDEX; PLANTS AB We developed allometric equations to predict whole-tree leaf area (A(1)), leaf biomass (M-1) and leaf area to sap-wood area ratio (A,:A,) in five rain forest tree species of Costa Rica: Pentaclethra macroloba (Willd.) Kuntze (Fabaceae/Mim), Carapa guianensis Aubl. (Meliaceae), Vochysia ferruginea Mart. (Vochysiaceae), Virola koshnii Warb. (Myristicaceae) and Tetragastris panamensis (Engl.) Kuntze (Burseraceae). By destructive analyses (n = 11-14 trees per species), we observed strong nonlinear allometric relationships (r(2) >= 0.9) for predicting A(1) or M-1 from stem diameters or A(s) measured at breast height. Linear relationships were less accurate. In general, A1:A(s) at breast height increased linearly with tree height except for Pentaclethra, which showed a negative trend. All species, however, showed increased total A(1) with height. The observation that four of the five species increased in A(1)A(s) with height is consistent with hypotheses about trade-offs between morphological and anatomical adaptations that favor efficient water flow through variation in the amount of leaf area Supported by sapwood and those imposed by the need to respond quickly to light gaps in the canopy. C1 [Calvo-Alvarado, J. C.] ITCR, Escuela Ingn Forestal, Cartago, Costa Rica. [McDowell, N. G.] Los Alamos Natl Lab, Div Earth & Environm Sci, Los Alamos, NM 87545 USA. [Waring, R. H.] Oregon State Univ, Coll Forestry, Corvallis, OR 97331 USA. RP Calvo-Alvarado, JC (reprint author), ITCR, Escuela Ingn Forestal, Cartago, Costa Rica. EM jucalvo@itcr.ac.cr RI Waring, Richared/C-4796-2014; OI Waring, Richared/0000-0003-2533-3664; Calvo-Alvarado, Julio Cesar/0000-0001-9555-6420 FU Instituto Technologico de Costa Rica; Organization for Tropical Studies; NASA National Space Technology Laboratory FX This project Was Supported by the Instituto Technologico de Costa Rica and the Organization for Tropical Studies. Funding was provided by the Organization for Tropical Studies through a research project conducted by NASA National Space Technology Laboratory (renamed Stennis Space Center) in Mississippi, USA. Special thanks to all collaborators: Dr. Armond Joyce (NASA): Dr. Donald Stone and Dr. Charles Schnell (OTS): Dr. Edgar Ortiz (ITCR): and Ing. Hector Arce and Ing. Alsemo Acuna (Direccion General Forestal-CORENA-GCR-AID-515-T-032 Project). We are grateful to Ing. Javier Zamora and Tec. Didier Salas for their support throughout this study. NR 57 TC 20 Z9 23 U1 1 U2 27 PU HERON PUBLISHING PI VICTORIA PA 202, 3994 SHELBOURNE ST, VICTORIA, BC V8N 3E2, CANADA SN 0829-318X J9 TREE PHYSIOL JI Tree Physiol. PD NOV PY 2008 VL 28 IS 11 BP 1601 EP 1608 PG 8 WC Forestry SC Forestry GA 371TW UT WOS:000260855200001 PM 18765365 ER PT J AU van Elsas, JD Costal, R Jansson, J Sjoling, S Bailey, M Nalin, R Vogel, TM van Overbeek, L AF van Elsas, Jan Dirk Costal, Rodrigo Jansson, Janet Sjoling, Sara Bailey, Mark Nalin, Renaud Vogel, Timothy M. van Overbeek, Leo TI The metagenomics of disease-suppressive soils - experiences from the METACONTROL project SO TRENDS IN BIOTECHNOLOGY LA English DT Review ID WIDE HOST-RANGE; COMMUNITY STRUCTURE; UNCULTURED MICROORGANISMS; FUNCTIONAL DIVERSITY; ESCHERICHIA-COLI; ENVIRONMENTAL LIBRARIES; MICROBIAL COMMUNITIES; NATURAL-PRODUCTS; GENE-EXPRESSION; DNA AB Soil teems with microbial genetic information that can be exploited for biotechnological innovation. Because only a fraction of the soil microbiota is cultivable, our ability to unlock this genetic complement has been hampered. Recently developed molecular tools, which make it possible to utilize genomic DNA from soil, can bypass cultivation and provide information on the collective soil metagenome with the aim to explore genes that encode functions of key interest to biotechnology. The metagenome of disease-suppressive soils is of particular interest given the expected prevalence of antibiotic biosynthetic clusters. However, owing to the complexity of soil microbial communities, deciphering this key genetic information is challenging. Here, we examine crucial issues and challenges that so far have hindered the metagenomic exploration of soil by drawing on experience from a trans-European project on disease-suppressive soils denoted METACONTROL. C1 [van Elsas, Jan Dirk; Costal, Rodrigo] Univ Groningen, Dept Microbial Ecol, Ctr Ecol & Evolutionary Studies, NL-9750 AA Haren, Netherlands. [Jansson, Janet] Swedish Univ Agr Sci, Dept Microbiol, Genet Ctr, S-75007 Uppsala, Sweden. [Jansson, Janet] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Dept Ecol, Berkeley, CA 94720 USA. [Sjoling, Sara] Sodertorn Univ Coll, Sch Life Sci, S-14189 Huddinge, Sweden. [Bailey, Mark] Ctr Ecol & Hydrol, Mol Microbial Ecol Grp, Oxford OX1 3SR, England. [Nalin, Renaud] LibraGen SA, F-31400 Toulouse, France. [Vogel, Timothy M.] Univ Lyon, Ecole Cent Lyon, Lab AMPERE, F-69134 Ecully, France. [van Overbeek, Leo] Plant Res Int, Wageningen, Netherlands. RP van Elsas, JD (reprint author), Univ Groningen, Dept Microbial Ecol, Ctr Ecol & Evolutionary Studies, Kerklaan 30, NL-9750 AA Haren, Netherlands. EM j.d.van.elsas@rug.nl RI Ducey, Thomas/A-6493-2011; Jansson, Janet/F-9951-2012; Costa, Rodrigo/N-7274-2013; OI Costa, Rodrigo/0000-0002-5932-4101; Vogel, Timothy/0000-0002-9542-3246 FU Soil Biotechnology Foundation (Groningen) FX This work was supported by funding received under the EU METACONTROL project (QLK3-CT-2002-02068). R.C. received support from the Soil Biotechnology Foundation (Groningen). NR 67 TC 48 Z9 50 U1 5 U2 48 PU ELSEVIER SCIENCE LONDON PI LONDON PA 84 THEOBALDS RD, LONDON WC1X 8RR, ENGLAND SN 0167-7799 J9 TRENDS BIOTECHNOL JI Trends Biotechnol. PD NOV PY 2008 VL 26 IS 11 BP 591 EP 601 DI 10.1016/j.tibtech.2008.07.004 PG 11 WC Biotechnology & Applied Microbiology SC Biotechnology & Applied Microbiology GA 370ZW UT WOS:000260802600003 PM 18774191 ER PT J AU Kim, JB Grate, JW Wang, P AF Kim, Jungbae Grate, Jay W. Wang, Ping TI Nanobiocatalysis and its potential applications SO TRENDS IN BIOTECHNOLOGY LA English DT Review ID INTERFACE-BINDING CHLOROPEROXIDASE; SINGLE-ENZYME NANOPARTICLES; MESOCELLULAR CARBON FOAM; MESOPOROUS SILICA; BIOFUEL CELLS; ORGANIC-SOLVENTS; DEHYDROGENASE ENZYMES; BIOCATALYTIC ACTIVITY; OIL/WATER INTERFACES; NANOPOROUS SUPPORT AB Nanobiocatalysis, in which enzymes are incorporated into nanostructured materials, has emerged as a rapidly growing area. Nanostructures, including nanoporous media, nanofibers, carbon nanotubes and nanoparticles, have manifested great efficiency in the manipulation of the nanoscale environment of the enzyme and thus promise exciting advances in many areas of enzyme technology. This review will describe these recent developments in nanobiocatalysis and their potential applications in various fields, such as trypsin digestion in proteomic analysis, antifouling, and biofuel cells. C1 [Kim, Jungbae] Korea Univ, Dept Biol & Chem Engn, Seoul 136701, South Korea. [Grate, Jay W.] Pacific NW Natl Lab, Div Chem & Mat Sci, Richland, WA 99352 USA. RP Kim, JB (reprint author), Korea Univ, Dept Biol & Chem Engn, Seoul 136701, South Korea. EM jbkim3@korea.ac.kr; ping@umn.edu FU Korea Research Foundation [IKRF-2007-313-D001521] FX Parts of this work were supported by a Korea Research Foundation Grant funded by the Korean Government (MOEHRD, Basic Research Promotion Fund) IKRF-2007-313-D001521. We appreciate S-H. Jun and B. Lee for their help in the preparation of figures. J.W.G. acknowledges the William R. Wiley Environmental Molecular Sciences Laboratory, a US Department of Energy (DOE) scientific user facility operated for the DOE by the Pacific Northwest National Laboratory (PNNL). The PNNL is a multiprogram national laboratory operated for the US DOE by the Battelle Memorial lnstitute. NR 76 TC 203 Z9 207 U1 9 U2 89 PU ELSEVIER SCIENCE LONDON PI LONDON PA 84 THEOBALDS RD, LONDON WC1X 8RR, ENGLAND SN 0167-7799 J9 TRENDS BIOTECHNOL JI Trends Biotechnol. PD NOV PY 2008 VL 26 IS 11 BP 639 EP 646 DI 10.1016/j.tibtech.2008.07.009 PG 8 WC Biotechnology & Applied Microbiology SC Biotechnology & Applied Microbiology GA 370ZW UT WOS:000260802600008 PM 18804884 ER PT J AU Chiaramonti, AN Thompson, LJ Egelhoff, WF Kabius, BC Petford-Long, AK AF Chiaramonti, A. N. Thompson, L. J. Egelhoff, W. F. Kabius, B. C. Petford-Long, A. K. TI In situ TEM studies of local transport and structure in nanoscale multilayer films SO ULTRAMICROSCOPY LA English DT Article DE Transmission electron microscopy; Microscopic methods for solid interfaces and multilayers; In situ ID TRANSMISSION ELECTRON-MICROSCOPY; MAGNETIC TUNNEL-JUNCTIONS; ATOMIC-FORCE MICROSCOPY; MAGNETORESISTANCE; CONDUCTANCE; BARRIERS; CONTACT; DAMAGE AB This paper describes a novel technique for studying structure-transport correlations in nanoscale multilayer thin films. Here, local current-voltage characteristics from simplified magnetic tunnel junctions are measured in situ on cross-sectional transmission electron microscopy (TEM) samples and correlated directly with TEM images of the microstructure at the tunneling site. It is found that local variations in barrier proper-ties can be detected by a point probe method, and that the tunneling barrier height and width can be extracted. (C) 2008 Elsevier B.V. All rights reserved. C1 [Chiaramonti, A. N.; Thompson, L. J.; Kabius, B. C.; Petford-Long, A. K.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Egelhoff, W. F.] NIST, Magnet Mat Grp, Gaithersburg, MD 20899 USA. RP Chiaramonti, AN (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM chiaramonti@anl.gov RI Chiaramonti, Ann/E-7459-2013; Petford-Long, Amanda/P-6026-2014 OI Chiaramonti, Ann/0000-0001-9933-3267; Petford-Long, Amanda/0000-0002-3154-8090 FU U.S. Department of Energy Office of Science Laboratory [DE-AC02-06CH11357] FX The electron microscopy and FIB sample preparation were accomplished at the Electron Microscopy Center for Materials Research at Argonne National Laboratory. The authors would like to thank J.M. Hiller for assisting with the FIB sample development and preparation. This manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory (Argonne). Argonne, a U.S. Department of Energy Office of Science Laboratory, is operated under Contract no. DE-AC02-06CH11357. NR 51 TC 6 Z9 6 U1 0 U2 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0304-3991 EI 1879-2723 J9 ULTRAMICROSCOPY JI Ultramicroscopy PD NOV PY 2008 VL 108 IS 12 BP 1529 EP 1535 DI 10.1016/j.ultramic.2008.04.008 PG 7 WC Microscopy SC Microscopy GA 371CB UT WOS:000260808300005 PM 18556122 ER PT J AU Arslan, I Marquis, EA Homer, M Hekmaty, MA Bartelt, NC AF Arslan, Ilke Marquis, Emmanuelle A. Homer, Mark Hekmaty, Michelle A. Bartelt, Norman C. TI Towards better 3-D reconstructions by combining electron tomography and atom-probe tomography SO ULTRAMICROSCOPY LA English DT Article DE STEM tomography; Atom-probe tomography; Three-dimensional reconstructions; Reconstruction artifacts ID 3-DIMENSIONAL RECONSTRUCTION; MISSING WEDGE; MICROSCOPE; RESOLUTION; PROJECTIONS; STEM AB Scanning transmission electron microscope tomography and atom-probe tomography are both three-dimensional techniques on the nanoscale. We demonstrate here the combination of the techniques by analyzing the very same volume of an Al-Ag alloy specimen. This comparison allows us to directly visualize the theoretically known artifacts of each technique experimentally, providing insight into the optimal parameters to use for reconstructions and assessing the quality of each reconstruction. The combination of the techniques for accurate morphology and compositional information in three dimensions at the nanoscale provides a route for a new level of materials characterization and understanding. Published by Elsevier B.V. C1 [Arslan, Ilke; Homer, Mark; Hekmaty, Michelle A.; Bartelt, Norman C.] Sandia Natl Labs, Livermore, CA 94550 USA. [Marquis, Emmanuelle A.] Univ Oxford, Dept Mat, Oxford OX1 3PH, England. RP Arslan, I (reprint author), Sandia Natl Labs, 7011 E Ave, Livermore, CA 94550 USA. EM iarslan@sandia.gov RI Bartelt, Norman/G-2927-2012; Marquis, Emmanuelle/O-5647-2014 OI Marquis, Emmanuelle/0000-0002-6476-2835 FU United States Department of Energy [DE-AC04-94AL85000, DE-AC04-94AL850001]; National Security Science and Engineering; Office of Basic Energy Sciences; Engineering and Physical Sciences Research Council (EPSRC) [EP/077664] FX Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC04-94AL85000. I.A. gratefully acknowledges support by Sandia's President Harry S. Truman Fellowship in National Security Science and Engineering, a Laboratory Directed Research and Development Program (LDRD). This work was supported in part by the Office of Basic Energy Sciences, Division of Materials Sciences, US Department of Energy, under Contract No. DE-AC04-94AL850001. E.A.M. acknowledges support from the Engineering and Physical Sciences Research Council (EPSRC) under grant number EP/077664. We acknowledge D.L. Medlin for helpful discussions. NR 23 TC 55 Z9 55 U1 2 U2 35 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0304-3991 J9 ULTRAMICROSCOPY JI Ultramicroscopy PD NOV PY 2008 VL 108 IS 12 BP 1579 EP 1585 DI 10.1016/j.ultramic.2008.05.008 PG 7 WC Microscopy SC Microscopy GA 371CB UT WOS:000260808300012 PM 18620812 ER PT J AU Yaguchi, T Konno, M Kamino, T Watanabe, M AF Yaguchi, Toshie Konno, Mitsuru Kamino, Takeo Watanabe, Masashi TI Observation of three-dimensional elemental distributions of a Si device using a 360 degrees-tilt FIB and the cold field-emission STEM system SO ULTRAMICROSCOPY LA English DT Article DE Focused ion beam; Scanning transmission electron microscopy; Energy-dispersive X-ray spectroscopy; Principle component analysis; Three-dimensional elemental distribution ID MULTIVARIATE STATISTICAL-ANALYSIS; TRANSMISSION ELECTRON-MICROSCOPY; RAY SPECTRAL IMAGES; MATERIALS SCIENCE; 3 DIMENSIONS; ZEOLITE-Y; TOMOGRAPHY; MICROANALYSIS; RECONSTRUCTION; INFORMATION AB A technique for preparation of a pillar-shaped specimen and its multidirectional observation using a combination of a scanning transmission electron microscope (STEM) and a focused ion beam (FIB) instrument has been developed. The system employs an FIB/STEM compatible holder with a specially designed tilt mechanism, which allows the specimen to be tilted through 360 degrees [T. Yaguchi, M. Konno, T. Kamino, T. Hashimoto, T. Ohnishi, K. Umemura, K. Asayama, Microsc. Microanal. 9 (Suppl. 2) (2003) 118; T. Yaguchi, M. Konno, T. Kamino, T. Hashimoto, T. Ohnishi, M. Watanabe, Microsc. Microanal. 10 (Suppl. 2) (2004) 1030]. This technique was applied to obtain the three-dimensional (3D) elemental distributions around a contact plug of a Si device used in a 90-nm technology. A specimen containing only one contact plug was prepared in the shape of a pillar with a diameter of 200 nm and a length of 5 pm. Elemental maps were obtained from the pillar specimen using a 200-kV cold-field emission gun (FEG) STEM model HD-2300C equipped with the EDAX genesis X-ray energy-dispersive spectrometry (XEDS) system through a spectrum imaging technique. In this study, elemental distributions of minor elements with weak signals were enhanced by applying principal component analysis (PCA), which is a superior technique to extract weak signals from a large dataset. The distributions of elements, especially the metallization component Ti and minor dopant As in this particular device, were successfully extracted by PCA. Finally, the 3D elemental distributions around the contact plug could be visualized by reconstruction from the tilt series of maps. (C) 2008 Elsevier B.V. All rights reserved. C1 [Yaguchi, Toshie; Konno, Mitsuru; Kamino, Takeo] Hitachi High Technol Corp, Naka Applicat Ctr, Ibaraki 3120057, Japan. [Watanabe, Masashi] Lehigh Univ, Dept Mat Sci & Engn, Bethlehem, PA 18015 USA. [Watanabe, Masashi] Univ Calif Berkeley, Lawrence Berkeley Lab, Natl Ctr Electron Microscopy, Berkeley, CA 94720 USA. RP Yaguchi, T (reprint author), Hitachi High Technol Corp, Naka Applicat Ctr, 11-1 Ishikawa, Ibaraki 3120057, Japan. EM yaguchi-toshie@naka.hitachi-hitec.com FU National Science Foundation [DMR-0304738]; US Department of Energy [DE-AC02-05CH11231] FX The authors gratefully acknowledge Mr. Mitsuo Ogasawara, Ms. Michiyo Miyakawa and Mr. Hirohisa Okushima for 3D-reconstruction software help. MW also wishes to acknowledge the support of the National Science Foundation through grant DMR-0304738, of Bechtel Bettis, Inc. and of the Scientific User Facilities Division of the Office of Basic Energy Sciences, US Department of Energy under Contract no. DE-AC02-05CH11231. NR 31 TC 25 Z9 25 U1 2 U2 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0304-3991 J9 ULTRAMICROSCOPY JI Ultramicroscopy PD NOV PY 2008 VL 108 IS 12 BP 1603 EP 1615 DI 10.1016/j.ultramic.2008.06.003 PG 13 WC Microscopy SC Microscopy GA 371CB UT WOS:000260808300015 PM 18715717 ER PT J AU Evans, JE Hetherington, C Kirkland, A Chang, LY Stahlberg, H Browning, N AF Evans, James E. Hetherington, Crispin Kirkland, Angus Chang, Lan-Yun Stahlberg, Henning Browning, Nigel TI Low-dose aberration corrected cryo-electron microscopy of organic specimens SO ULTRAMICROSCOPY LA English DT Article DE Aberration correction; Electron microscopy; TEM; Cryo-EM ID TRANSMISSION ELECTRON-MICROSCOPY; SPHERICAL-ABERRATION; ANGSTROM RESOLUTION; PURPLE MEMBRANE; PHASE-CONTRAST; CRYSTALS; CRYOMICROSCOPY; MICROGRAPHS; MODEL; KV AB Spherical aberration (C-s) correction in the transmission electron microscope has enabled sub-angstrom resolution imaging of inorganic materials. To achieve similar resolution for radiation-sensitive organic materials requires the microscope to be operated under hybrid conditions: low electron dose illumination of the specimen at liquid nitrogen temperature and low defocus values. Initial images from standard inorganic and organic test specimens have indicated that under these conditions C-s-correction can provide a significant improvement in resolution (to less than 0.16 nm) for direct imaging of organic samples. (C) 2008 Published by Elsevier B.V. C1 [Evans, James E.; Stahlberg, Henning] Univ Calif Davis, Davis, CA 95616 USA. [Hetherington, Crispin; Kirkland, Angus; Chang, Lan-Yun] Univ Oxford, Dept Mat, Oxford OX1 3PH, England. [Browning, Nigel] Univ Calif Davis, Dept Mat Sci & Chem Engn, Davis, CA 95616 USA. [Evans, James E.; Browning, Nigel] Lawrence Livermore Natl Lab, Chem Mat & Life Sci Directorate, Div Mat Sci & Technol, Livermore, CA 94550 USA. RP Evans, JE (reprint author), Univ Calif Davis, 1 Shields Ave, Davis, CA 95616 USA. EM JEEvans@ucdavis.edu RI Stahlberg, Henning/H-1868-2011; OI Stahlberg, Henning/0000-0002-1185-4592; Browning, Nigel/0000-0003-0491-251X FU National Institute of Health [P32-GM07377]; US Department of Energy [DE-FG02-03ER46057]; Engineering and Physical Sciences Research Council; Leverhulme Trust FX The authors are grateful to R. Glaeser, D. Typke for providing the paraffin solution and for relevant discussions. This work was supported by the National Institute of Health (training Grant P32-GM07377) and by the US Department of Energy (Grant no. DE-FG02-03ER46057). AIK acknowledges financial support from the Engineering and Physical Sciences Research Council and from the Leverhulme Trust. NR 33 TC 22 Z9 22 U1 0 U2 16 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0304-3991 J9 ULTRAMICROSCOPY JI Ultramicroscopy PD NOV PY 2008 VL 108 IS 12 BP 1636 EP 1644 DI 10.1016/j.ultramic.2008.06.004 PG 9 WC Microscopy SC Microscopy GA 371CB UT WOS:000260808300018 PM 18703285 ER PT J AU Karabutov, A Devichensky, A Ivochkin, A Lyamshev, M Pelivanov, I Rohadgi, U Solomatin, V Subudhi, M AF Karabutov, Alexander Devichensky, Anton Ivochkin, Alexander Lyamshev, Michael Pelivanov, Ivan Rohadgi, Upendra Solomatin, Vladimir Subudhi, Manomohan TI Laser ultrasonic diagnostics of residual stress SO ULTRASONICS LA English DT Article; Proceedings Paper CT Inaugural Meeting of the International Congress on Ultrasonic CY APR 09-12, 2007 CL Vienna, AUSTRIA DE Residual stresses; Laser ultrasonic ID WAVES; SOLIDS AB Ultrasonic NDE is one of the most promising methods for non-destructive diagnostics of residual stresses. However the relative change of sound velocity, which is directly proportional to applied stress, is extremely small. An initial stress of 100 MPa produces the result of delta V/V similar to 10 (4). Therefore measurements must be performed with high precision. The required accuracy can be achieved with laser-exited ultrasonic transients. Radiation from a Nd-YAG laser (pulse duration 7 ns, pulse energy 100 mu J) was absorbed by the surface of the sample. The exited ultrasonic transients resembled the form of laser pulses. A specially designed optoacoustic transducer was used both for the excitation and detecting of the ultrasonic pulses. The wide frequency band of the piezodetector made it possible to achieve the time-of-flight measurements with an accuracy of about 0.5 ns. This technique was used for measuring of plane residual stress in welds and for in-depth testing of subsurface residual stresses in metals. Plane stress distribution for welded metallic plates of different thicknesses (2-8 mm) and the subsurface stress distribution for titanium and nickel alloys were obtained. The results of conventional testing are in good agreement with the laser ultrasonic method. (c) 2008 Elsevier B.V. All rights reserved. C1 [Karabutov, Alexander; Ivochkin, Alexander; Pelivanov, Ivan; Solomatin, Vladimir] Moscow MV Lomonosov State Univ, Ctr Int Laser, Moscow 119992, Russia. [Devichensky, Anton; Lyamshev, Michael] Russian Acad Sci, Inst Gen Phys, Moscow 119991, Russia. [Rohadgi, Upendra; Subudhi, Manomohan] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Ivochkin, A (reprint author), Moscow MV Lomonosov State Univ, Ctr Int Laser, Moscow 119992, Russia. EM ivochkin@yandex.ru RI Karabutov, Alexander/E-1295-2015 NR 20 TC 15 Z9 18 U1 3 U2 19 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0041-624X J9 ULTRASONICS JI Ultrasonics PD NOV PY 2008 VL 48 IS 6-7 BP 631 EP 635 DI 10.1016/j.ultras.2008.07.006 PG 5 WC Acoustics; Radiology, Nuclear Medicine & Medical Imaging SC Acoustics; Radiology, Nuclear Medicine & Medical Imaging GA 370CC UT WOS:000260739300028 PM 18762308 ER PT J AU Wellman, DM Zachara, JM Liu, C Qafoku, NP Smith, SC Forrester, SW AF Wellman, D. M. Zachara, J. M. Liu, C. Qafoku, N. P. Smith, S. C. Forrester, S. W. TI Advective Desorption of Uranium(VI) from Contaminated Hanford Vadose Zone Sediments under Saturated and Unsaturated Conditions SO VADOSE ZONE JOURNAL LA English DT Article ID URANYL INCORPORATION; 2-REGION FLOW; TRANSPORT; ADSORPTION; SORPTION; DISSOLUTION; CALCITE; U(VI); SITE; LUMINESCENCE AB Sedimentary, hydrologic, and geochemical variations in the Hanford subsurface environment, as well as compositional differences in contaminating waste streams, have created vast differences in the migration and mobility of U within the subsurface environment. A series of hydraulically saturated and unsaturated column experiments were performed to (i) assess the effect of water content on the advective desorption and migration of U from contaminated sediments and (ii) evaluate the U concentration that can develop in pore water and/or groundwater as a result of desorption/dissolution reactions. Flow rate and moisture content were varied to evaluate the influence of contact time, pore water velocity, and macropore desaturation on aqueous U concentrations. Sediments were collected from the T-TX-TY tank farm complex and the 300 Area Process Ponds located on the Hanford Site, southeastern Washington State. The sediments vary in depth, mineralogy, and in contamination events. Experiments were conducted under mildly alkaline/calcareous conditions representative of conditions commonly encountered at repository sites across the arid western United States and, in particular, the Hanford site. Results illustrate the release of U from these sediments is kinetically controlled, and low water contents encountered within the Hanford vadose zone result in the formation of mobile immobile water regimes, which isolate a fraction of the reactive sites within the sediments, effectively reducing the concentration of U released into migrating pore waters. C1 [Wellman, D. M.; Zachara, J. M.; Liu, C.; Qafoku, N. P.; Smith, S. C.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Forrester, S. W.] Univ Nevada, Dept Geol, Las Vegas, NV 89011 USA. RP Wellman, DM (reprint author), Pacific NW Natl Lab, 902 Battelle Blvd,POB 999, Richland, WA 99352 USA. EM dawn.wellman@pnl.gov RI Liu, Chongxuan/C-5580-2009; OI Qafoku, Nikolla P./0000-0002-3258-5379 FU U.S. Department of Energy (USDOE)-Office of Environmental Management (EM); U.S. Department of Energy by Battelle [DE-AC05-76RL01830] FX This research was supported by the U.S. Department of Energy (USDOE)-Office of Environmental Management (EM) through the Hanford Remediation and Closure Science Project and EM-20 Environmental Cleanup and Acceleration. Support was also provided by the Office of Biological and Environmental Research (OBER) through the Environmental Remediation Sciences Program. The assistance of K.N. Geiszler for conducting ICP-MS and S. R. Baum for ICP-OES analyses is greatly appreciated. Pacific Northwest National Laboratory is operated for the U.S. Department of Energy by Battelle under contract DE-AC05-76RL01830. NR 58 TC 4 Z9 4 U1 0 U2 16 PU SOIL SCI SOC AMER PI MADISON PA 677 SOUTH SEGOE ROAD, MADISON, WI 53711 USA SN 1539-1663 J9 VADOSE ZONE J JI Vadose Zone J. PD NOV PY 2008 VL 7 IS 4 BP 1144 EP 1159 DI 10.2136/vzj2007.0166 PG 16 WC Environmental Sciences; Soil Science; Water Resources SC Environmental Sciences & Ecology; Agriculture; Water Resources GA 379GL UT WOS:000261384600005 ER PT J AU Tartakovsky, AM Bolster, D Tartakovsky, DM AF Tartakovsky, Alexandre M. Bolster, Diogo Tartakovsky, Daniel M. TI Hydrogeophysical Approach for Identification of Layered Structures of the Vadose Zone from Electrical Resistivity Data SO VADOSE ZONE JOURNAL LA English DT Article ID HETEROGENEOUS COMPOSITE AQUIFERS; STATE UNSATURATED FLOW; POROUS-MEDIA; SIMPLEX-METHOD; SOILS; RECONSTRUCTION; TOMOGRAPHY; PARAMETERS; TRANSPORT; MODELS AB The electric resistivity survey and borehole collection of resistivity data are one of the oldest geophysical tools for characterization of the vadose zone. A current trend is to conduct such surveys in a tomographic manner, which requires significant computational resources. We present a simple, semianalytical approach to delineate multiple layers in partially saturated soils from resistivity and saturation measurements taken at several depths along a borehole. The number of layers and their hydraulic properties are assumed to be known. The proposed inversion algorithm is computationally efficient and can serve either as a stand-alone tool for layer delineation or as an autonomous module in a more comprehensive geophysical survey. It is most robust when each layer is sampled at least once. When one or more layers have not been sampled, the algorithm's robustness (convergence) depends on the accuracy of an initial guess (e.g., expert knowledge and other hard or soft data). We provide a detailed analysis of the algorithm's convergence and identify potential pitfalls. C1 [Tartakovsky, Alexandre M.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Bolster, Diogo] Tech Univ Catalonia, Barcelona, Spain. [Tartakovsky, Daniel M.] Univ Calif San Diego, Dept Mech & Aerosp Engn, La Jolla, CA 92093 USA. RP Tartakovsky, AM (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM Alexandre.Tartakovsky@pnl.gov RI Bolster, Diogo/D-9667-2011; Tartakovsky, Daniel/E-7694-2013 OI Bolster, Diogo/0000-0003-3960-4090; FU DOE's Office of Advanced Scientific Computing Research FX This research was supported in part by the DOE's Office of Advanced Scientific Computing Research. NR 40 TC 1 Z9 1 U1 0 U2 5 PU SOIL SCI SOC AMER PI MADISON PA 677 SOUTH SEGOE ROAD, MADISON, WI 53711 USA SN 1539-1663 J9 VADOSE ZONE J JI Vadose Zone J. PD NOV PY 2008 VL 7 IS 4 BP 1207 EP 1214 DI 10.2136/vzj2008.0009 PG 8 WC Environmental Sciences; Soil Science; Water Resources SC Environmental Sciences & Ecology; Agriculture; Water Resources GA 379GL UT WOS:000261384600014 ER PT J AU Bolshov, L Kondratenko, P Matveev, L Pruess, K AF Bolshov, Leonid Kondratenko, Peter Matveev, Leonid Pruess, Karsten TI Elements of Fractal Generalization of Dual-Porosity Model for Solute Transport in Unsaturated Fractured Rocks SO VADOSE ZONE JOURNAL LA English DT Article ID SELF-ORGANIZED CRITICALITY; POROUS-MEDIA; PERCOLATION THEORY; DISPERSION; SOILS; WATER; FLOW AB In this study, new elements were developed to generalize the dual-porosity model for moisture infiltration and solute transport in unsaturated rocks, taking into account fractal aspects of the percolation process. Random advection was considered as a basic mechanism of solute transport in self-similar fracture systems. In addition to spatial variations in the infiltration velocity field, temporal fluctuations were also taken into account. The rock matrix, which is a low-permeability component of the heterogeneous geologic medium, acts as a trap for solute particles and moisture. Scaling relations were derived for the moisture infiltration flux, the velocity correlation length, the average velocity of infiltration, and the velocity correlation function. The effect of temporal variations in precipitation intensity on the infiltration processes was analyzed. It showed that the mode of solute transport is determined by the power exponent in the advection velocity correlation function and the dimensionality of the trapping system, both of which may change with time. Therefore, depending on time, various transport regimes may be realized: superdiffusion, subdiffusion, or classical diffusion. The complex structure of breakthrough curves arising from changes in the transport regimes was also examined. A renormalization of the solute source strength due to characteristic fluctuations of highly disordered media was established. C1 [Bolshov, Leonid; Kondratenko, Peter; Matveev, Leonid] Russian Acad Sci, Nucl Safety Inst, Moscow 115191, Russia. [Pruess, Karsten] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Kondratenko, P (reprint author), Russian Acad Sci, Nucl Safety Inst, 52 Bolshaya Tulskaya St, Moscow 115191, Russia. EM kondrat@ibrae.ac.ru; K_Pruess@lbl.gov RI Matveev, Leonid/L-2604-2014; Большов, Леонид/P-9814-2015 OI Matveev, Leonid/0000-0002-7094-4395; FU U.S. Department of Energy (USDOE); U.S. Civilian Research and Development Foundation [RG0-20101-RW40]; Russian Academy of Sciences; Russian Foundation for Basic Research (RFBR) [06-08-00176a]; USDOE Office of Civilian Radioactive Waste Management [DE-AC02-05CH11231] FX We acknowledge support from the U.S. Department of Energy (USDOE) under the U.S. Civilian Research and Development Foundation Grant Assistance Program Project RG0-20101-RW40 with the Institute of Nuclear Energy Safety (IBRAE) of the Russian Academy of Sciences, and from the Russian Foundation for Basic Research (RFBR) under Project 06-08-00176a. Dr. Pruess also acknowledges support from the USDOE Office of Civilian Radioactive Waste Management under Contract Number DE-AC02-05CH11231. NR 26 TC 4 Z9 4 U1 1 U2 5 PU SOIL SCI SOC AMER PI MADISON PA 677 SOUTH SEGOE ROAD, MADISON, WI 53711 USA SN 1539-1663 J9 VADOSE ZONE J JI Vadose Zone J. PD NOV PY 2008 VL 7 IS 4 DI 10.2136/vzj2007.0151 PG 9 WC Environmental Sciences; Soil Science; Water Resources SC Environmental Sciences & Ecology; Agriculture; Water Resources GA 379GL UT WOS:000261384600007 ER PT J AU Bolshov, L Kondratenko, P Pruess, K Semenov, V AF Bolshov, Leonid Kondratenko, Peter Pruess, Karsten Semenov, Vladimir TI Nonclassical Transport Processes in Geologic Media: Review of Field and Laboratory Observations and Basic Physical Concepts SO VADOSE ZONE JOURNAL LA English DT Review ID NATURAL GRADIENT EXPERIMENT; FRACTIONAL-FLOW DIMENSIONS; POROUS BUILDING-MATERIALS; THICK UNSATURATED ZONES; CEMENT-BASED MATERIALS; SOLUTE TRANSPORT; FRACTURED ROCKS; TRACER TESTS; WATER-ABSORPTION; FLUID-FLOW AB We present an overview of the problem of solute transport in unsaturated heterogeneous media. We first review field and laboratory observations that demonstrate nonclassical flow and transport behavior. The main physical principles causing anomalous transport regimes in fractured rock media are identified. The basic factors and physical concepts needed to describe anomalous transport in saturated and unsaturated fractured rock are discussed in detail. C1 [Bolshov, Leonid; Kondratenko, Peter; Semenov, Vladimir] Russian Acad Sci, Nucl Safety Inst, Moscow 115191, Russia. [Pruess, Karsten] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Kondratenko, P (reprint author), Russian Acad Sci, Nucl Safety Inst, 52 Bolshaya Tulskaya St, Moscow 115191, Russia. EM kondrat@ibrae.ac.ru; K_Pruess@lbl.gov RI Большов, Леонид/P-9814-2015 FU U.S. Department of Energy (DOE); U.S. Civilian Research and Development Foundation [RG0-20101-RW40]; Institute of Nuclear Energy Safety (IBRAE) of the Russian Academy of Sciences; RFBR [06-08-00176a, 06-08-01501a]; U.S. DOE Office of Civilian Radioactive Waste Management [AC02-05CH11231] FX We acknowledge support from the U.S. Department of Energy (DOE) under U.S. Civilian Research and Development Foundation Grant Assistance Program Project RG0-20101-RW40 with the Institute of Nuclear Energy Safety (IBRAE) of the Russian Academy of Sciences, and from RFBR (Russian Foundation for Basic Research) under Projects 06-08-00176a and 06-08-01501a. K. Pruess also acknowledges support from the U.S. DOE Office of Civilian Radioactive Waste Management under Contract no. DE-AC02-05CH11231. NR 127 TC 5 Z9 5 U1 1 U2 11 PU SOIL SCI SOC AMER PI MADISON PA 677 SOUTH SEGOE ROAD, MADISON, WI 53711 USA SN 1539-1663 J9 VADOSE ZONE J JI Vadose Zone J. PD NOV PY 2008 VL 7 IS 4 DI 10.2136/vzj2007.0153 PG 10 WC Environmental Sciences; Soil Science; Water Resources SC Environmental Sciences & Ecology; Agriculture; Water Resources GA 379GL UT WOS:000261384600003 ER PT J AU Bolshov, L Kondratenko, P Pruess, K AF Bolshov, Leonid Kondratenko, Peter Pruess, Karsten TI Preface: Nonclassical Transport SO VADOSE ZONE JOURNAL LA English DT Editorial Material C1 [Pruess, Karsten] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Bolshov, Leonid; Kondratenko, Peter] Russian Acad Sci, Nucl Safety Inst, Moscow 117901, Russia. RP Pruess, K (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM k_pruess@lbl.gov RI Большов, Леонид/P-9814-2015 NR 4 TC 3 Z9 3 U1 0 U2 0 PU SOIL SCI SOC AMER PI MADISON PA 677 SOUTH SEGOE ROAD, MADISON, WI 53711 USA SN 1539-1663 J9 VADOSE ZONE J JI Vadose Zone J. PD NOV PY 2008 VL 7 IS 4 DI 10.2136/vzj2008.0109 PG 2 WC Environmental Sciences; Soil Science; Water Resources SC Environmental Sciences & Ecology; Agriculture; Water Resources GA 379GL UT WOS:000261384600002 ER PT J AU Goloviznin, VM Korotkin, IA Pruess, K Semenov, VN Sorokovikova, OS AF Goloviznin, V. M. Korotkin, I. A. Pruess, K. Semenov, V. N. Sorokovikova, O. S. TI Stochastic Models of Solute Transport in Highly Heterogeneous Geologic Media SO VADOSE ZONE JOURNAL LA English DT Article ID ADVECTION-DISPERSION EQUATION; FINITE-DIFFERENCE APPROXIMATIONS; POROUS-MEDIA; ANOMALOUS DIFFUSION; NUMERICAL-SOLUTION; RANDOM-WALKS; AQUIFER; MOMENTS; MOTION; SCALE AB A stochastic model of anomalous diffusion was developed in which transport occurs by random motion of Brownian particles, described by distribution functions of random displacements with heavy (power-law) tails. One variant of an effective algorithm for random function generation with a power-law asymptotic and arbitrary factor of asymmetry is proposed that is based on the Gnedenko-Levy limit theorem and makes it possible to reproduce all known Levy alpha-stable fractal processes. A two-dimensional stochastic random walk algorithm has been developed that approximates anomalous diffusion with streamline-dependent and space-dependent parameters. The motivation for introducing such a type of dispersion model is the observed fact that tracers in natural aquifers spread at different super-Fickian rates in different directions. For this and other important cases, stochastic random walk models are the only known way to solve the so-called multi scaling fractional order diffusion equation with space-dependent parameters. Some comparisons of model results and field experiments are presented. C1 [Goloviznin, V. M.; Korotkin, I. A.; Semenov, V. N.; Sorokovikova, O. S.] Russian Acad Sci, Nucl Safety Inst, Moscow 115191, Russia. [Pruess, K.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Goloviznin, VM (reprint author), Russian Acad Sci, Nucl Safety Inst, 52 Bolshaya Tulskaya St, Moscow 115191, Russia. EM gol@ibrae.ac.ru; K_Pruess@lbl.gov FU U.S. Civilian Research and Development Foundation [RG0-20101-RW40]; Institute of Nuclear Energy Safety of the Russian Academy of Sciences; Russian Foundation for Basic Research [0608-00176a, 06-08-01501a]; U.S. DOE Office of Civilian Radioactive Waste Management [DE-AC02-05CH11231] FX We acknowledge support from the U. S. Department of Energy ( DOE) under the U.S. Civilian Research and Development Foundation Grant Assistance Program, Project RG0-20101-RW40, with the Institute of Nuclear Energy Safety of the Russian Academy of Sciences, and from the Russian Foundation for Basic Research under Projects 0608-00176a and 06-08-01501a. Dr. Pruess also acknowledges support from the U.S. DOE Office of Civilian Radioactive Waste Management under Contract no. DE-AC02-05CH11231. NR 50 TC 2 Z9 3 U1 0 U2 0 PU SOIL SCI SOC AMER PI MADISON PA 677 SOUTH SEGOE ROAD, MADISON, WI 53711 USA SN 1539-1663 J9 VADOSE ZONE J JI Vadose Zone J. PD NOV PY 2008 VL 7 IS 4 DI 10.2136/vzj2007.0150 PG 11 WC Environmental Sciences; Soil Science; Water Resources SC Environmental Sciences & Ecology; Agriculture; Water Resources GA 379GL UT WOS:000261384600009 ER PT J AU Moriarty, P AF Moriarty, Patrick TI Database for Validation of Design Load Extrapolation Techniques SO WIND ENERGY LA English DT Article DE Loads extrapolation; aeroelastic stimulation; extreme events AB Extrapolation techniques used for predicting long-term wind turbine loads have produced highly variable loading estimates dependent on the individual designer implementation. To reduce such variability, more precise definition and validation of these techniques ore necessary. As port of a wider effort to test loads extrapolation techniques used in wind turbine design, two data sets were created. The first data set was created as an example typical of what designers use to extrapolate loads according to wind turbine design standards. The second data set was a series of year-long simulations that could be used to quantify the accuracy of extrapolation methods. Due to the large number of simulations, care was taken not to reproduce random samplings in individual time series. Additionally, a grid computing architecture was used to run the simulations in a reasonable time frame. The wind speeds where loads were highest were identified, which varied with loading type. The identification of dominant wind speeds is important to ensure an adequate number of simulations at such speeds, which often influence extrapolated loads. In-plane loads and deflections tended to be dominated by high wind speeds near cut-out wind speed. Out-of plane loads and deflections were most influenced by winds that were near the rated wind speed. Some loads were influenced by a range of wind speeds. The loads dominated by high wind speeds had greater variability in the extreme values, which could be a reflection of the greatly varying wind and also greater sensitivity to higher energy content of the wind at such speeds. Copyright (C) 2008 John Wiley & Sons, Ltd. C1 Natl Renewable Energy Lab, Golden, CO USA. RP Moriarty, P (reprint author), Natl Renewable Energy Lab, Golden, CO USA. NR 10 TC 18 Z9 19 U1 1 U2 3 PU JOHN WILEY & SONS LTD PI CHICHESTER PA THE ATRIUM, SOUTHERN GATE, CHICHESTER PO19 8SQ, W SUSSEX, ENGLAND SN 1095-4244 J9 WIND ENERGY JI Wind Energy PD NOV-DEC PY 2008 VL 11 IS 6 BP 559 EP 576 DI 10.1002/we.305 PG 18 WC Energy & Fuels; Engineering, Mechanical SC Energy & Fuels; Engineering GA 386QV UT WOS:000261898600002 ER PT J AU Moriarty, P AF Moriarty, Patrick TI Safety-factor Calibration for Wind Turbine Extreme Loads SO WIND ENERGY LA English DT Article DE loads extrapolation; safety factor; extreme events AB Proper prediction of long-term extreme values for operating wind turbine loads and deflections is a critical component of wind turbine design. Direct observations or simulations of long-term extremes are not yet available, therefore, these predictions rely on some combination of large numbers of simulations and extrapolation. Extrapolation methods themselves can hove significant uncertainty, and they also require that the wind turbine designer have a greater level of statistical expertise-factors that make the methods less attractive for industrial application. As an alternative to extrapolation, safety factors can be calibrated using techniques that allow designers to use smaller data sets. To calculate such factors, a series of simulations was used to extrapolate 50 year extreme values for a 5 MW wind turbine. Two methods ore proposed for calculating such safety factors: one based on the mean and standard deviation of extreme values, and one based on the median of extreme values. Through a process of random sampling without replacement, the safety factor based on the median of extreme values was found to be less variable and also more independent of the number of simulations. The safety factors required were as large as 1.7, or were only 1.25 if rotor thrust loads were considered the dominant design drivers. Copyright (C) 2008 John Wiley & Sons, Ltd. C1 Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Moriarty, P (reprint author), Natl Renewable Energy Lab, 1617 Cole Blvd,MS 3811, Golden, CO 80401 USA. EM patrick_moriarty@nrel.gov NR 10 TC 7 Z9 7 U1 1 U2 1 PU JOHN WILEY & SONS LTD PI CHICHESTER PA THE ATRIUM, SOUTHERN GATE, CHICHESTER PO19 8SQ, W SUSSEX, ENGLAND SN 1095-4244 J9 WIND ENERGY JI Wind Energy PD NOV-DEC PY 2008 VL 11 IS 6 BP 601 EP 612 DI 10.1002/we.306 PG 12 WC Energy & Fuels; Engineering, Mechanical SC Energy & Fuels; Engineering GA 386QV UT WOS:000261898600005 ER PT J AU Lonescu, M Bhatia, NP Cohen, DD Kachenko, A Siegele, R Marcus, MA Fakra, S Foran, G AF Lonescu, M. Bhatia, N. P. Cohen, D. D. Kachenko, A. Siegele, R. Marcus, M. A. Fakra, S. Foran, G. TI X-ray absorption spectroscopy at the Ni-K edge in Stackhousia tryonii Bailey hyperaccumulator SO X-RAY SPECTROMETRY LA English DT Article ID NICKEL HYPERACCUMULATION; THLASPI-GOESINGENSE; NUCLEAR MICROPROBE; SEBERTIA-ACUMINATA; SPECIATION; PLANTS; HISTIDINE; LEAVES; FERN AB Young plants of Stackhousia tryonii Bailey were exposed to 34 mM Ni kg(-1) in the form of NiSO(4) center dot 6H(2)O solution and grown under controlled glasshouse conditions fora period of 20 days. Fresh leaf, stem and root samples were analysed in vivo by micro x-ray absorption spectroscopy (XAS) at the Ni-K edge. Both x-ray absorption near edge structure and extended x-ray absorption fine structure spectra were analysed, and the resulting spectra were compared with spectra obtained from nine biologically important Ni-containing model compounds. The results revealed that the majority of leaf, stem and root Ni in the hyperaccumulator was chelated by citrate. Our results also suggest that in leaves Ni is complexed by phosphate and histidine, and in stems and roots, phytate and histidine. The XAS results provide an important physiological insight into transport, detoxification and storage of Ni in S. tryonii plants. Copyright (C) 2008 John Wiley & Sons, Ltd. C1 [Lonescu, M.; Bhatia, N. P.; Cohen, D. D.; Siegele, R.] Australian Nucl Sci & Technol Org, Sydney, NSW, Australia. [Kachenko, A.] Univ Sydney, Fac Agr Food & Nat Resources, Sydney, NSW 2006, Australia. [Marcus, M. A.; Fakra, S.] Adv Light Source, Lawrence Berkeley Natl Lab, Berkeley, CA USA. [Foran, G.] Australian Natl Beamline Facil, Tsukuba, Ibaraki, Japan. RP Lonescu, M (reprint author), Australian Nucl Sci & Technol Org, Sydney, NSW, Australia. EM Mihail.lonescu@ansto.gov.au OI Cohen, David/0000-0002-1209-9234 FU Australian Synchrotron Research Program; Commonwealth of Australia FX This work was partially supported by the Australian Synchrotron Research Program, which is funded by the Commonwealth of Australia under the Major National Research Facilities Program. NR 23 TC 2 Z9 2 U1 3 U2 9 PU JOHN WILEY & SONS LTD PI CHICHESTER PA THE ATRIUM, SOUTHERN GATE, CHICHESTER PO19 8SQ, W SUSSEX, ENGLAND SN 0049-8246 J9 X-RAY SPECTROM JI X-Ray Spectrom. PD NOV-DEC PY 2008 VL 37 IS 6 BP 629 EP 634 DI 10.1002/xrs.1111 PG 6 WC Spectroscopy SC Spectroscopy GA 375LX UT WOS:000261116500010 ER PT J AU Jonah, CD Chemerisov, S Long, JD Gai, W Jean, YC Schrader, D AF Jonah, Charles D. Chemerisov, Sergey Long, Jidong Gai, Wei Jean, Y. C. Schrader, David TI Development of the Argonne positron source APosS SO APPLIED SURFACE SCIENCE LA English DT Article; Proceedings Paper CT 11th Workshop on Slow Position Beam Techniques for Solids and Surfaces CY JUL 09-13, 2007 CL Musee Sci Naturelles, Orleans, FRANCE SP Ville Orleans, Conseil Reg Loiret, Reg Ctr, Ctr Natl Rec Sci, Commiss Energ Atom HO Musee Sci Naturelles DE Argonne positron source; accelerator system; converter AB In this paper we discuss the progress at Argonne National Laboratory with the APosS. We outline possible improvements that can increase the flux of positrons by increasing the electron current on target or by modi. cation of the positron converter. We discuss some new techniques that could increase moderation efficiency and thus further increase positron flux two to three orders of magnitude by making use of modern accelerator techniques. (C) 2008 Elsevier B.V. All rights reserved. C1 [Jonah, Charles D.; Chemerisov, Sergey] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Long, Jidong; Gai, Wei] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Jean, Y. C.] Univ Missouri, Dept Chem, Kansas City, MO USA. [Schrader, David] Marquette Univ, Milwaukee, WI 53233 USA. RP Jonah, CD (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM CDJonah@anl.gov NR 6 TC 3 Z9 3 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0169-4332 J9 APPL SURF SCI JI Appl. Surf. Sci. PD OCT 31 PY 2008 VL 255 IS 1 BP 25 EP 28 DI 10.1016/j.apsusc.2008.05.299 PG 4 WC Chemistry, Physical; Materials Science, Coatings & Films; Physics, Applied; Physics, Condensed Matter SC Chemistry; Materials Science; Physics GA 355RV UT WOS:000259726900005 ER PT J AU Xu, Y Gao, S Bruno, JF Luft, BJ Dunn, JJ AF Xu, Yun Gao, Simon Bruno, John F. Luft, Benjamin J. Dunn, John J. TI Rapid detection and identification of a pathogen's DNA using Phi29 DNA polymerase SO BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS LA English DT Article DE Phi29 DNA polymerase; Multiply-primed rolling circle amplification ID BORRELIA-BURGDORFERI; AMPLIFICATION; REPLICATION; VIRUS AB Zoonotic pathogens including those transmitted by insect vectors are some of the most deadly of all infectious diseases known to mankind. A number of these agents have been further weaponized and are widely recognized as being potentially significant biothreat agents. We describe a novel method based on multiply-primed rolling circle in vitro amplification for profiling genomic DNAs to permit rapid, cultivation-free differential detection and identification of circular plasmids in infectious agents. Using Phi29 DNA polymerase and a two-step priming reaction we could reproducibly detect and characterize by DNA sequencing circular DNA from Borrelia burgdorferi B31 in DNA samples containing as little as 25 pg of Borrelia DNA amongst a vast excess of human DNA. This simple technology can ultimately be adapted as a sensitive method to detect specific DNA from both known and unknown pathogens in a wide variety of complex environments. (C) 2008 Elsevier Inc. All rights reserved. C1 [Xu, Yun; Gao, Simon; Bruno, John F.; Luft, Benjamin J.] SUNY Stony Brook, Dept Med, Stony Brook, NY 11794 USA. [Dunn, John J.] Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. RP Xu, Y (reprint author), SUNY Stony Brook, Dept Med, T-16 Room 027, Stony Brook, NY 11794 USA. EM jbruno@notes.cc.sunysb.edu OI Luft, Benjamin/0000-0001-9008-7004 FU NIH [U01-A156480] FX Supported by NIH Grant U01-A156480. Studies performed at BNL were conducted under the auspices of the United States Department of Energy. NR 10 TC 4 Z9 4 U1 1 U2 2 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0006-291X J9 BIOCHEM BIOPH RES CO JI Biochem. Biophys. Res. Commun. PD OCT 31 PY 2008 VL 375 IS 4 BP 522 EP 525 DI 10.1016/j.bbrc.2008.08.082 PG 4 WC Biochemistry & Molecular Biology; Biophysics SC Biochemistry & Molecular Biology; Biophysics GA 356HL UT WOS:000259769200007 PM 18755142 ER PT J AU Min, QL Wang, TH Long, CN Duan, MZ AF Min, Qilong Wang, Tianhe Long, Charles N. Duan, Minzheng TI Estimating fractional sky cover from spectral measurements SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article AB A method for estimating fractional sky cover from spectral measurements has been developed. The spectral characteristics of clouds and clear-sky aerosols are utilized to partition sky fraction. As illustrated in our sensitivity study and demonstrated in real measurements, the transmittance ratio at selected wavelengths in insensitive to solar zenith angle and major atmospheric gaseous absorption. With a localized baseline procedure, retrievals of this ratio method are independent of absolute calibration and weakly sensitive to changes in cloud and aerosol optical properties. Therefore this method substantially reduces the retrieval uncertainty. The uncertainty of this method, estimated through the sensitivity study and intercomparison, is less than 10%. With globally deployed narrowband radiometers, this simple ratio method can substantially enhance the current capability for monitoring fractional sky cover. C1 [Min, Qilong; Wang, Tianhe] SUNY Albany, Atmospher Sci Res Ctr, Albany, NY 12203 USA. [Duan, Minzheng] Chinese Acad Sci, Inst Atmospher Phys, Beijing 100029, Peoples R China. [Long, Charles N.] Pacific NW Natl Lab, Atmospher Radiat Measurement Program, Richland, WA 99352 USA. RP Min, QL (reprint author), SUNY Albany, Atmospher Sci Res Ctr, Room L215,251 Fuller Rd, Albany, NY 12203 USA. EM min@asrc.cestm.albany.edu FU Office of Science (BER); U.S. Departement of Energy [DE-FH02-03ER63531]; NOAA Educational Partnership Program with Minority Serving Institutions (EPP/MSI) [NA17AE1625, NA17AE1623]; U.S. Department of Energy; Office of Energy Research; Office of Health and Environmental Research; Environmental Sceinces Division FX This research was supported by the Office of Science (BER), U.S. Departement of Energy, Grant DE-FH02-03ER63531, and by the NOAA Educational Partnership Program with Minority Serving Institutions (EPP/MSI) under cooperative agreements NA17AE1625 and NA17AE1623. Surface data were obtained from the Atmospheric Radiation Measurement (ARM) Program sponsored by the U.S. Department of Energy, Office of Energy Research, Office of Health and Environmental Research, Environmental Sceinces Division. NR 15 TC 21 Z9 22 U1 0 U2 7 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD OCT 31 PY 2008 VL 113 IS D20 AR D20208 DI 10.1029/2008JD010278 PG 6 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 368CF UT WOS:000260598200005 ER PT J AU Burchell, T Pappano, P AF Burchell, Tim Pappano, Pete TI Papers from the International Nuclear Graphite Specialists Meetings Preface SO JOURNAL OF NUCLEAR MATERIALS LA English DT Editorial Material C1 [Burchell, Tim; Pappano, Pete] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Burchell, T (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, POB 2008, Oak Ridge, TN 37831 USA. NR 0 TC 0 Z9 0 U1 2 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD OCT 31 PY 2008 VL 381 IS 1-2 BP IX EP IX DI 10.1016/j.jnucmat.2008.07.037 PG 1 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 378TU UT WOS:000261347700001 ER PT J AU Contescu, CI Azad, S Miller, D Lance, MJ Baker, FS Burchell, TD AF Contescu, Cristian I. Azad, Samina Miller, Doug Lance, Michael J. Baker, Frederick S. Burchell, Timothy D. TI Practical aspects for characterizing air oxidation of graphite SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT 8th International Graphite Specialists Meeting (INGSM-8) CY SEP 09-12, 2007 CL Sun City, SOUTH AFRICA ID NATURAL GRAPHITE; NUCLEAR GRAPHITE; THERMAL-ANALYSIS; GASIFICATION; RESISTANCE; KINETICS AB The efforts for designing a meaningful and acceptable standard test method for characterization of kinetic parameters of air oxidation of graphite helped identify several practical issues that must be considered for the development Of Such a test. Using standard size (and shape) specimens, large enough in size to accommodate the inherent local microstructure differences between graphite samples, resulted in non-uniform oxidation profiles and preferential binder oxidation; this was not expected based on the linearity of Arrhenius plots and the (large) values of activation energy. It was found that the transition between the regimes 1 and 2 of graphite oxidation occurs gradually. depending both on the oxidation temperature and rate of oxygen supply. Nevertheless, measuring oxidation rates obtained on standard size samples provides a basis for a meaningful comparison among materials, which may serve as much needed information for predictive models. (C) 2008 Published by Elsevier B.V. C1 [Contescu, Cristian I.; Lance, Michael J.; Baker, Frederick S.; Burchell, Timothy D.] Oak Ridge Natl Lab, UT Battelle Inc, Oak Ridge, TN 37831 USA. [Azad, Samina; Miller, Doug] GrafTech Int Parma, Parma, OH 44130 USA. RP Contescu, CI (reprint author), Oak Ridge Natl Lab, UT Battelle Inc, POB 2008, Oak Ridge, TN 37831 USA. EM ccontescu@ornl.gov RI Contescu, Cristian/E-8880-2011; Lance, Michael/I-8417-2016; Burchell, Tim/E-6566-2017 OI Contescu, Cristian/0000-0002-7450-3722; Lance, Michael/0000-0001-5167-5452; Burchell, Tim/0000-0003-1436-1192 NR 43 TC 25 Z9 29 U1 3 U2 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD OCT 31 PY 2008 VL 381 IS 1-2 BP 15 EP 24 DI 10.1016/j.jnucmat.2008.07.020 PG 10 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 378TU UT WOS:000261347700004 ER PT J AU Pappano, PJ Burchell, TD Hunn, JD Trammell, MP AF Pappano, P. J. Burchell, T. D. Hunn, J. D. Trammell, M. P. TI A novel approach to fabricating fuel compacts for the next generation nuclear plant (NGNP) SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT 8th International Graphite Specialists Meeting (INGSM-8) CY SEP 09-12, 2007 CL Sun City, SOUTH AFRICA ID REACTOR AB The next generation nuclear plant (NGNP) is a combined complex of a very high temperature reactor (VHTR) and hydrogen production facility. The VHTR can have a prismatic or pebble bed design and is powered by TRISO fuel in the form of a fuel compact (prismatic) or pebble (pebble bed). The US is scheduled to build a demonstration VHTR at the Idaho National Laboratory site by 2020. The first step toward building of this facility is development and qualification of the fuel for the reactor. This paper summarizes the research and development efforts performed at Oak Ridge National Laboratory (ORNL) toward development of a qualified fuel compact for a VHTR. (C) 2008 Elsevier B.V. All rights reserved. C1 [Pappano, P. J.; Burchell, T. D.; Hunn, J. D.; Trammell, M. P.] Oak Ridge Natl Lab, Carbon Mat Technol Grp, Oak Ridge, TN 37831 USA. RP Pappano, PJ (reprint author), Oak Ridge Natl Lab, Carbon Mat Technol Grp, 1 Bethel Valley Rd,POB 2008, Oak Ridge, TN 37831 USA. EM pappanopj@ornl.gov RI Burchell, Tim/E-6566-2017 OI Burchell, Tim/0000-0003-1436-1192 NR 15 TC 12 Z9 12 U1 0 U2 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD OCT 31 PY 2008 VL 381 IS 1-2 BP 25 EP 38 DI 10.1016/j.jnucmat.2008.07.032 PG 14 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 378TU UT WOS:000261347700005 ER PT J AU Burchell, TD AF Burchell, Timothy D. TI Irradiation induced creep behavior of H-451 graphite SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT 8th International Graphite Specialists Meeting (INGSM-8) CY SEP 09-12, 2007 CL Sun City, SOUTH AFRICA ID GRAINED ISOTROPIC GRAPHITE; FAST-NEUTRON IRRADIATION; DIMENSIONAL CHANGES; REACTOR GRAPHITE; COEFFICIENT AB The application of a creep model previously applied to compressive creep data for H-451 irradiated at 900 degrees C (13.7 and 20.8 MPa) has been extended to compressive creep data for H-451 irradiated at 600 degrees C (13.7 and 20.8 MPa). The basis of the creep model is discussed and the experimental data required to evaluate the terms in the creep model are reported and discussed. The model, which corrects the true (crystal) creep strain for the effect of creep on the dimensional change component of the creep specimen, is shown to be a good fit to the data. Creep strain data for H-451 graphite irradiated at 900 degrees C under a tensile stress of 6 MPa are also reported, along with the required experimental data to evaluate the terms in the creep model. The model is shown to inadequately represent the high dose (post volume turnaround) H-451 tensile creep strain data. Reasons for the models limitation are discussed and an approach to a potentially improved graphite irradiation creep model is suggested. (C) 2008 Elsevier B.V. All rights reserved. C1 Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Burchell, TD (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, POB 2008, Oak Ridge, TN 37831 USA. EM burchelltd@ornl.gov RI Burchell, Tim/E-6566-2017 OI Burchell, Tim/0000-0003-1436-1192 NR 33 TC 16 Z9 16 U1 0 U2 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD OCT 31 PY 2008 VL 381 IS 1-2 BP 46 EP 54 DI 10.1016/j.jnucmat.2008.07.022 PG 9 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 378TU UT WOS:000261347700007 ER PT J AU Snead, LL Burchell, TD Katoh, Y AF Snead, L. L. Burchell, T. D. Katoh, Y. TI Swelling of nuclear graphite and high quality carbon fiber composite under very high irradiation temperature SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT 8th International Graphite Specialists Meeting (INGSM-8) CY SEP 09-12, 2007 CL Sun City, SOUTH AFRICA AB The purpose of this experiment was to evaluate the dimensional change of newly proposed nuclear graphite material following high-temperature irradiation, and to compare the measured swelling with the historic nuclear graphite, H-451. Over the irradiation temperature range Studied (similar to 850-1475 degrees C) and neutron dose range (2-10 x 10(25) n/m(2) (E > 0.1 MeV)) the Graftech PCEA and SGL NBG-10 candidate nuclear graphite had similar densification to that of Great Lakes Carbon nuclear graphite H-451. In this temperature and dose range all materials remained in the densification stage. Additionally, the effect of high-temperature irradiation on the dimensional stability of high-quality carbon fiber composites was investigated. A high thermal conductivity three-dimensional carbon fiber composite, FMI-222, and a very high thermal conductivity one-dimensional carbon fiber composite MKC-1PH, were studied. Results indicate that a greater than anticipated dimensional change Occurred for these composites. Moreover, the dimensional stability of the 3D composite appears to be a strong function of the sample size chosen, thus raising the question of the appropriate size sample to use to determine irradiation-induced dimensional change for these materials. Published by Elsevier B.V. C1 [Snead, L. L.; Burchell, T. D.; Katoh, Y.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Snead, LL (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. EM SneadLL@ORNL.gov RI Burchell, Tim/E-6566-2017; OI Burchell, Tim/0000-0003-1436-1192; Katoh, Yutai/0000-0001-9494-5862 NR 10 TC 26 Z9 27 U1 1 U2 14 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD OCT 31 PY 2008 VL 381 IS 1-2 BP 55 EP 61 DI 10.1016/j.jnucmat.2008.07.033 PG 7 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 378TU UT WOS:000261347700008 ER PT J AU Snead, LL AF Snead, L. L. TI Accumulation of thermal resistance in neutron irradiated graphite materials SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT 8th International Graphite Specialists Meeting (INGSM-8) CY SEP 09-12, 2007 CL Sun City, SOUTH AFRICA ID CONDUCTIVITY DEGRADATION; POLYCRYSTALLINE GRAPHITE; PYROLYTIC GRAPHITE; LOW-TEMPERATURE AB A nuclear graphite, H451, and two high thermal conductivity graphite composites have been irradiated in the temperature range of 310-710 degrees C in the high flux isotope reactor and their thermal conductivities monitored in situ. Data were measured continuously up to a fast neutron dose of approximately 1 X 10(25) n/m(2) (E > 0.1 MeV). Data are interpreted in terms of the added thermal resistance and materials compared on this basis. Following this analysis it is shown that for the three materials studied, which have significantly different initial thermal conductivity values, the accumulation of thermal resistance is greater for the materials with lower initial thermal conductivity. Given that vacancies dominate phonon scattering at these irradiation temperatures and dose levels, these data clearly indicate that materials of higher perfection have a slower rate of stable vacancy accumulation during irradiation. Published by Elsevier B.V. C1 Oak Ridge Natl Lab, UT Battele, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Snead, LL (reprint author), Oak Ridge Natl Lab, UT Battele, Div Mat Sci & Technol, POB 2008, Oak Ridge, TN 37831 USA. EM sneadll@ornl.gov NR 25 TC 5 Z9 5 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD OCT 31 PY 2008 VL 381 IS 1-2 BP 76 EP 82 DI 10.1016/j.jnucmat.2008.07.017 PG 7 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 378TU UT WOS:000261347700011 ER PT J AU McDuffee, JL Burchell, TD Heatherly, DW Thoms, KR AF McDuffee, J. L. Burchell, T. D. Heatherly, D. W. Thoms, K. R. TI Experimental plan and design of two experiments for graphite irradiation at temperatures up to 1500 degrees C in the target region of the high flux isotope reactor SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT 8th International Graphite Specialists Meeting (INGSM-8) CY SEP 09-12, 2007 CL Sun City, SOUTH AFRICA AB Two irradiation capsules have been designed for the target region of the high flux isotope reactor (HFIR). The objective is to provide dimensional change and physical property data for four candidate next generation nuclear plant (NGNP) graphites. The capsules will reach peak doses of similar to 1.59 and similar to 4.76 dpa, respectively, at temperatures of 900, 1200, and 1500 degrees C. (C) 2008 Elsevier B.V. All rights reserved. C1 [McDuffee, J. L.; Burchell, T. D.; Heatherly, D. W.; Thoms, K. R.] Oak Ridge Natl Lab, UT Battelle Inc, Oak Ridge, TN 37831 USA. RP McDuffee, JL (reprint author), Oak Ridge Natl Lab, UT Battelle Inc, POB 2008, Oak Ridge, TN 37831 USA. EM mcduffeej@ornl.gov RI Burchell, Tim/E-6566-2017 OI Burchell, Tim/0000-0003-1436-1192 NR 5 TC 1 Z9 1 U1 1 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD OCT 31 PY 2008 VL 381 IS 1-2 BP 114 EP 118 DI 10.1016/j.jnucmat.2008.07.030 PG 5 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 378TU UT WOS:000261347700016 ER PT J AU McDuffee, JL Burchell, TD Heatherly, DW Thoms, KR AF McDuffee, J. L. Burchell, T. D. Heatherly, D. W. Thoms, K. R. TI Preliminary design of a graphite irradiation tensile creep experiment in the target region of the high flux isotope reactor SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT 8th International Graphite Specialists Meeting (INGSM-8) CY SEP 09-12, 2007 CL Sun City, SOUTH AFRICA AB Up to four irradiation tensile creep tests are planned for the target region of the high flux isotope reactor on two graphite grades: PCEA and NBG-18. The initial experiment is designed for an irradiation temperature of 600 degrees C and at fluences between 1 x 10(22) n/cm(2) and 1.4 x 10(22) n/cm(2) (E > 50 keV). (C) 2008 Elsevier B.V. All rights reserved. C1 [McDuffee, J. L.; Burchell, T. D.; Heatherly, D. W.; Thoms, K. R.] Oak Ridge Natl Lab, UT Battelle Inc, Oak Ridge, TN 37831 USA. RP McDuffee, JL (reprint author), Oak Ridge Natl Lab, UT Battelle Inc, POB 2008, Oak Ridge, TN 37831 USA. EM mcduffeej@ornl.gov RI Burchell, Tim/E-6566-2017 OI Burchell, Tim/0000-0003-1436-1192 NR 4 TC 4 Z9 4 U1 1 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD OCT 31 PY 2008 VL 381 IS 1-2 BP 119 EP 123 DI 10.1016/j.jnucmat.2008.07.031 PG 5 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 378TU UT WOS:000261347700017 ER PT J AU Wang, JAJ Liu, KC AF Wang, Jy-An John Liu, Ken C. TI An innovative technique for evaluating fracture toughness of graphite materials SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article; Proceedings Paper CT 8th International Graphite Specialists Meeting (INGSM-8) CY SEP 09-12, 2007 CL Sun City, SOUTH AFRICA ID CRACK AB Spiral notch torsion fracture toughness test (SNTT) was developed recently to measure the intrinsic fracture toughness (K(IC)) of structural materials. The SNTT system operates by applying pure torsion to Uniform cylindrical specimens with a notch line that spirals around the specimen at a 45 degrees pitch. The K(IC) Values are obtained with the aid of a three-dimensional finite-element computer code, TOR3D-KIC. The SNTT method is uniquely suitable for testing a wide variety of materials used extensively in pressure vessel and piping structural components and weldments, including others Such as ceramics, their composites, and concrete. (C) 2008 Elsevier B.V. All rights reserved. C1 [Wang, Jy-An John; Liu, Ken C.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Wang, JAJ (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM wangja@ornl.gov OI Wang, Jy-An/0000-0003-2402-3832 NR 18 TC 14 Z9 15 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD OCT 31 PY 2008 VL 381 IS 1-2 BP 177 EP 184 DI 10.1016/j.jnucmat.2008.07.034 PG 8 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 378TU UT WOS:000261347700026 ER PT J AU Sihver, L Matthia, D Koi, T Mancusi, D AF Sihver, L. Matthiae, D. Koi, T. Mancusi, D. TI Dose calculations at high altitudes and in deep space with GEANT4 using BIC and JQMD models for nucleus-nucleus reactions SO NEW JOURNAL OF PHYSICS LA English DT Article ID ACCURATE UNIVERSAL PARAMETERIZATION; ABSORPTION CROSS-SECTIONS; QUANTUM MOLECULAR-DYNAMICS; MONTE-CARLO SIMULATIONS; HEAVY-ION COLLISIONS; RADIATION ENVIRONMENT; ENERGY-RANGE; CODE; PHITS; PARTICLE AB Radiation exposure of aircrew is more and more recognized as an occupational hazard. The ionizing environment at standard commercial aircraft flight altitudes consists mainly of secondary particles, of which the neutrons give a major contribution to the dose equivalent. Accurate estimations of neutron spectra in the atmosphere are therefore essential for correct calculations of aircrew doses. Energetic solar particle events (SPE) could also lead to significantly increased dose rates, especially at routes close to the North Pole, e. g. for flights between Europe and USA. It is also well known that the radiation environment encountered by personnel aboard low Earth orbit (LEO) spacecraft or aboard a spacecraft traveling outside the Earth's protective magnetosphere is much harsher compared with that within the atmosphere since the personnel are exposed to radiation from both galactic cosmic rays (GCR) and SPE. The relative contribution to the dose from GCR when traveling outside the Earth's magnetosphere, e. g. to the Moon or Mars, is even greater, and reliable and accurate particle and heavy ion transport codes are essential to calculate the radiation risks for both aircrew and personnel on spacecraft. We have therefore performed calculations of neutron distributions in the atmosphere, total dose equivalents, and quality factors at different depths in a water sphere in an imaginary spacecraft during solar minimum in a geosynchronous orbit. The calculations were performed with the GEANT4 Monte Carlo (MC) code using both the binary cascade (BIC) model, which is part of the standard GEANT4 package, and the JQMD model, which is used in the particle and heavy ion transport code PHITS GEANT4. C1 [Sihver, L.; Mancusi, D.] Chalmers, S-41296 Gothenburg, Sweden. [Sihver, L.] Roanoke Coll, Salem, VA 24153 USA. [Matthiae, D.] German Aerosp Ctr, Cologne, Germany. [Koi, T.] SLAC, Stanford, CA USA. RP Sihver, L (reprint author), Chalmers, S-41296 Gothenburg, Sweden. EM sihver@chalmers.se OI Mancusi, Davide/0000-0002-2518-8228; Matthia, Daniel/0000-0003-1507-0143 NR 66 TC 9 Z9 9 U1 1 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1367-2630 J9 NEW J PHYS JI New J. Phys. PD OCT 31 PY 2008 VL 10 AR 105019 DI 10.1088/1367-2630/10/10/105019 PG 19 WC Physics, Multidisciplinary SC Physics GA 370JY UT WOS:000260759700001 ER PT J AU Aaltonen, T Adelman, J Akimoto, T Albrow, MG Gonzalez, BA Amerio, S Amidei, D Anastassov, A Annovi, A Antos, J Apollinari, G Apresyan, A Arisawa, T Artikov, A Ashmanskas, W Attal, A Aurisano, A Azfar, F Azzurri, P Badgett, W Barbaro-Galtieri, A Barnes, VE Barnett, BA Bartsch, V Bauer, G Beauchemin, PH Bedeschi, F Bednar, P Beecher, D Behari, S Bellettini, G Bellinger, J Benjamin, D Beretvas, A Beringer, J Bhatti, A Binkley, M Bisello, D Bizjak, I Blair, RE Blocker, C Blumenfeld, B Bocci, A Bodek, A Boisvert, V Bolla, G Bortoletto, D Boudreau, J Boveia, A Brau, B Bridgeman, A Brigliadori, L Bromberg, C Brubaker, E Budagov, J Budd, HS Budd, S Burkett, K Busetto, G Bussey, P Buzatu, A Byrum, KL Cabrera, S Calancha, C Campanelli, M Campbell, M Canelli, F Canepa, A Carlsmith, D Carosi, R Carrillo, S Carron, S Casal, B Casarsa, M Castro, A Catastini, P Cauz, D Cavaliere, V Cavalli-Sforza, M Cerri, A Cerrito, L Chang, SH Chen, YC Chertok, M Chiarelli, G Chlachidze, G Chlebana, F Cho, K Chokheli, D Chou, JP Choudalakis, G Chuang, SH Chung, K Chung, WH Chung, YS Ciobanu, CI Ciocci, MA Clark, A Clark, D Compostella, G Convery, ME Conway, J Copic, K Cordelli, M Cortiana, G Cox, DJ Crescioli, F Almenar, C Cuevas, J Culbertson, R Cully, JC Dagenhart, D Datta, M Davies, T Barbaro, P Cecco, S Deisher, A Lorenzo, G Dell'Orso, M Deluca, C Demortier, L Deng, J Deninno, M Derwent, PF Giovanni, GP Dionisi, C Ruzza, B Dittmann, JR D'Onofrio, M Donati, S Dong, P Donini, J Dorigo, T Dube, S Efron, J Elagin, A Erbacher, R Errede, D Errede, S Eusebi, R Fang, HC Farrington, S Fedorko, WT Feild, RG Feindt, M Fernandez, JP Ferrazza, C Field, R Flanagan, G Forrest, R Franklin, M Freeman, JC Furic, I Gallinaro, M Galyardt, J Garberson, F Garcia, JE Garfinkel, AF Genser, K Gerberich, H Gerdes, D Gessler, A Giagu, S Giakoumopoulou, V Giannetti, P Gibson, K Gimmell, JL Ginsburg, CM Giokaris, N Giordani, M Giromini, P Giunta, M Giurgiu, G Glagolev, V Glenzinski, D Gold, M Goldschmidt, N Golossanov, A Gomez, G Gomez-Ceballos, G Goncharov, M Gonzalez, O Gorelov, I Goshaw, AT Goulianos, K Gresele, A Grinstein, S Grosso-Pilcher, C Group, RC Grundler, U da Costa, J Gunay-Unalan, Z Haber, C Hahn, K Hahn, SR Halkiadakis, E Han, BY Han, JY Handler, R Happacher, F Hara, K Hare, D Hare, M Harper, S Harr, RF Harris, RM Hartz, M Hatakeyama, K Hauser, J Hays, C Heck, M Heijboer, A Heinemann, B Heinrich, J Henderson, C Herndon, M Heuser, J Hewamanage, S Hidas, D Hill, CS Hirschbuehl, D Hocker, A Hou, S Houlden, M Hsu, SC Huffman, BT Hughes, RE Husemann, U Huston, J Incandela, J Introzzi, G Iori, M Ivanov, A James, E Jayatilaka, B Jeon, EJ Jha, MK Jindariani, S Johnson, W Jones, M Joo, KK Jun, SY Jung, JE Junk, TR Kamon, T Kar, D Karchin, PE Kato, Y Kephart, R Keung, J Khotilovich, V Kilminster, B Kim, DH Kim, HS Kim, JE Kim, MJ Kim, SB Kim, SH Kim, YK Kimura, N Kirsch, L Klimenko, S Knuteson, B Ko, BR Koay, SA Kondo, K Kong, DJ Konigsberg, J Korytov, A Kotwal, AV Kreps, M Kroll, J Krop, D Krumnack, N Kruse, M Krutelyov, V Kubo, T Kuhr, T Kulkarni, NP Kurata, M Kusakabe, Y Kwang, S Laasanen, AT Lami, S Lammel, S Lancaster, M Lander, RL Lannon, K Lath, A Latino, G Lazzizzera, I LeCompte, T Lee, E Lee, HS Lee, SW Leone, S Lewis, JD Lin, CS Linacre, J Lindgren, M Lipeles, E Lister, A Litvintsev, DO Liu, C Liu, T Lockyer, NS Loginov, A Loreti, M Lovas, L Lu, RS Lucchesi, D Lueck, J Luci, C Lujan, P Lukens, P Lungu, G Lyons, L Lys, J Lysak, R Lytken, E Mack, P MacQueen, D Madrak, R Maeshima, K Makhoul, K Maki, T Maksimovic, P Malde, S Malik, S Manca, G Manousakis-Katsikakis, A Margaroli, F Marino, C Marino, CP Martin, A Martin, V Martinez, M Martinez-Ballaren, R Maruyama, T Mastrandrea, P Masubuchi, T Mattson, ME Mazzanti, P McFarland, KS McIntyre, P McNulty, R Mehta, A Mehtala, P Menzione, A Merkel, P Mesropian, C Miao, T Miladinovic, N Miller, R Mills, C Milnik, M Mitra, A Mitselmakher, G Miyake, H Moggi, N Moon, CS Moore, R Morello, MJ Morlok, J Fernandez, P Muelmenstaedt, J Mukherjee, A Muller, T Mumford, R Murat, P Mussini, M Nachtman, J Nagai, Y Nagano, A Naganoma, J Nakamura, K Nakano, I Napier, A Necula, V Neu, C Neubauer, MS Nielsen, J Nodulman, L Norman, M Norniella, O Nurse, E Oakes, L Oh, SH Oh, YD Oksuzian, I Okusawa, T Orava, R Osterberg, K Griso, S Pagliarone, C Palencia, E Papadimitriou, V Papaikonomou, A Paramonov, AA Parks, B Pashapour, S Patrick, J Pauletta, G Paulini, M Paus, C Pellett, DE Penzo, A Phillips, TJ Piacentino, G Pianori, E Pinera, L Pitts, K Plager, C Pondrom, L Poukhov, O Pounder, N Prakoshyn, F Pronko, A Proudfoot, J Ptohos, F Pueschel, E Punzi, G Pursley, J Rademacker, J Rahaman, A Ramakrishnan, V Ranjan, N Redondo, I Reisert, B Rekovic, V Renton, P Rescigno, M Richter, S Rimondi, F Ristori, L Robson, A Rodrigo, T Rodriguez, T Rogers, E Rolli, S Roser, R Rossi, M Rossin, R Roy, P Ruiz, A Russ, J Rusu, V Saarikko, H Safonov, A Sakumoto, WK Salto, O Santi, L Sarkar, S Sartori, L Sato, K Savard, P Savoy-Navarro, A Scheidle, T Schlabach, P Schmidt, A Schmidt, EE Schmidt, MA Schmidt, MP Schmitt, M Schwarz, T Scodellaro, L Scott, AL Scribano, A Scuri, F Sedov, A Seidel, S Seiya, Y Semenov, A Sexton-Kennedy, L Sfyrla, A Shalhout, SZ Shears, T Shepard, PF Sherman, D Shimojima, M Shiraishi, S Shochet, M Shon, Y Shreyber, I Sidoti, A Sinervo, P Sisakyan, A Slaughter, AJ Slaunwhite, J Sliwa, K Smith, JR Snider, FD Snihur, R Soha, A Somalwar, S Sorin, V Spalding, J Spreitzer, T Squillacioti, P Stanitzki, M Denis, R Stelzer, B Stelzer-Chilton, O Stentz, D Strologas, J Stuart, D Suh, JS Sukhanov, A Suslov, I Suzuki, T Taffard, A Takashima, R Takeuchi, Y Tanaka, R Tecchio, M Teng, PK Terashi, K Thom, J Thompson, AS Thompson, GA Thomson, E Tipton, P Tiwari, V Tkaczyk, S Toback, D Tokar, S Tollefson, K Tomura, T Tonelli, D Torre, S Torretta, D Totaro, P Tourneur, S Tu, Y Turini, N Ukegawa, F Vallecorsa, S Remortel, N Varganov, A Vataga, E Vazquez, F Velev, G Vellidis, C Veszpremi, V Vidal, M Vidal, R Vila, I Vilar, R Vine, T Vogel, M Volobouev, I Volpi, G Wurthwein, F Wagner, P Wagner, RG Wagner, RL Wagner-Kuhr, J Wagner, W Wakisaka, T Wallny, R Wang, SM Warburton, A Waters, D Weinberger, M Wester, WC Whitehouse, B Whiteson, D Wicklund, AB Wicklund, E Williams, G Williams, HH Wilson, P Winer, BL Wittich, P Wolbers, S Wolfe, C Wright, T Wu, X Wynne, SM Xie, S Yagil, A Yamamoto, K Yamaoka, J Yang, UK Yang, YC Yao, WM Yeh, GP Yoh, J Yorita, K Yoshida, T Yu, GB Yu, I Yu, SS Yun, JC Zanello, L Zanetti, A Zaw, I Zhang, X Zheng, Y Zucchelli, S AF Aaltonen, T. Adelman, J. Akimoto, T. Albrow, M. G. Gonzalez, B. Alvarez Amerio, S. Amidei, D. Anastassov, A. Annovi, A. Antos, J. Apollinari, G. Apresyan, A. Arisawa, T. Artikov, A. Ashmanskas, W. Attal, A. Aurisano, A. Azfar, F. Azzurri, P. Badgett, W. Barbaro-Galtieri, A. Barnes, V. E. Barnett, B. A. Bartsch, V. Bauer, G. Beauchemin, P. -H. Bedeschi, F. Bednar, P. Beecher, D. Behari, S. Bellettini, G. Bellinger, J. Benjamin, D. Beretvas, A. Beringer, J. Bhatti, A. Binkley, M. Bisello, D. Bizjak, I. Blair, R. E. Blocker, C. Blumenfeld, B. Bocci, A. Bodek, A. Boisvert, V. Bolla, G. Bortoletto, D. Boudreau, J. Boveia, A. Brau, B. Bridgeman, A. Brigliadori, L. Bromberg, C. Brubaker, E. Budagov, J. Budd, H. S. Budd, S. Burkett, K. Busetto, G. Bussey, P. Buzatu, A. Byrum, K. L. Cabrera, S. Calancha, C. Campanelli, M. Campbell, M. Canelli, F. Canepa, A. Carlsmith, D. Carosi, R. Carrillo, S. Carron, S. Casal, B. Casarsa, M. Castro, A. Catastini, P. Cauz, D. Cavaliere, V. Cavalli-Sforza, M. Cerri, A. Cerrito, L. Chang, S. H. Chen, Y. C. Chertok, M. Chiarelli, G. Chlachidze, G. Chlebana, F. Cho, K. Chokheli, D. Chou, J. P. Choudalakis, G. Chuang, S. H. Chung, K. Chung, W. H. Chung, Y. S. Ciobanu, C. I. Ciocci, M. A. Clark, A. Clark, D. Compostella, G. Convery, M. E. Conway, J. Copic, K. Cordelli, M. Cortiana, G. Cox, D. J. Crescioli, F. Cuenca Almenar, C. Cuevas, J. Culbertson, R. Cully, J. C. Dagenhart, D. Datta, M. Davies, T. de Barbaro, P. De Cecco, S. Deisher, A. De Lorenzo, G. Dell'Orso, M. Deluca, C. Demortier, L. Deng, J. Deninno, M. Derwent, P. F. di Giovanni, G. P. Dionisi, C. Di Ruzza, B. Dittmann, J. R. D'Onofrio, M. Donati, S. Dong, P. Donini, J. Dorigo, T. Dube, S. Efron, J. Elagin, A. Erbacher, R. Errede, D. Errede, S. Eusebi, R. Fang, H. C. Farrington, S. Fedorko, W. T. Feild, R. G. Feindt, M. Fernandez, J. P. Ferrazza, C. Field, R. Flanagan, G. Forrest, R. Franklin, M. Freeman, J. C. Furic, I. Gallinaro, M. Galyardt, J. Garberson, F. Garcia, J. E. Garfinkel, A. F. Genser, K. Gerberich, H. Gerdes, D. Gessler, A. Giagu, S. Giakoumopoulou, V. Giannetti, P. Gibson, K. Gimmell, J. L. Ginsburg, C. M. Giokaris, N. Giordani, M. Giromini, P. Giunta, M. Giurgiu, G. Glagolev, V. Glenzinski, D. Gold, M. Goldschmidt, N. Golossanov, A. Gomez, G. Gomez-Ceballos, G. Goncharov, M. Gonzalez, O. Gorelov, I. Goshaw, A. T. Goulianos, K. Gresele, A. Grinstein, S. Grosso-Pilcher, C. Group, R. C. Grundler, U. Guimaraes da Costa, J. Gunay-Unalan, Z. Haber, C. Hahn, K. Hahn, S. R. Halkiadakis, E. Han, B. -Y. Han, J. Y. Handler, R. Happacher, F. Hara, K. Hare, D. Hare, M. Harper, S. Harr, R. F. Harris, R. M. Hartz, M. Hatakeyama, K. Hauser, J. Hays, C. Heck, M. Heijboer, A. Heinemann, B. Heinrich, J. Henderson, C. Herndon, M. Heuser, J. Hewamanage, S. Hidas, D. Hill, C. S. Hirschbuehl, D. Hocker, A. Hou, S. Houlden, M. Hsu, S. -C. Huffman, B. T. Hughes, R. E. Husemann, U. Huston, J. Incandela, J. Introzzi, G. Iori, M. Ivanov, A. James, E. Jayatilaka, B. Jeon, E. J. Jha, M. K. Jindariani, S. Johnson, W. Jones, M. Joo, K. K. Jun, S. Y. Jung, J. E. Junk, T. R. Kamon, T. Kar, D. Karchin, P. E. Kato, Y. Kephart, R. Keung, J. Khotilovich, V. Kilminster, B. Kim, D. H. Kim, H. S. Kim, J. E. Kim, M. J. Kim, S. B. Kim, S. H. Kim, Y. K. Kimura, N. Kirsch, L. Klimenko, S. Knuteson, B. Ko, B. R. Koay, S. A. Kondo, K. Kong, D. J. Konigsberg, J. Korytov, A. Kotwal, A. V. Kreps, M. Kroll, J. Krop, D. Krumnack, N. Kruse, M. Krutelyov, V. Kubo, T. Kuhr, T. Kulkarni, N. P. Kurata, M. Kusakabe, Y. Kwang, S. Laasanen, A. T. Lami, S. Lammel, S. Lancaster, M. Lander, R. L. Lannon, K. Lath, A. Latino, G. Lazzizzera, I. LeCompte, T. Lee, E. Lee, H. S. Lee, S. W. Leone, S. Lewis, J. D. Lin, C. S. Linacre, J. Lindgren, M. Lipeles, E. Lister, A. Litvintsev, D. O. Liu, C. Liu, T. Lockyer, N. S. Loginov, A. Loreti, M. Lovas, L. Lu, R. -S. Lucchesi, D. Lueck, J. Luci, C. Lujan, P. Lukens, P. Lungu, G. Lyons, L. Lys, J. Lysak, R. Lytken, E. Mack, P. MacQueen, D. Madrak, R. Maeshima, K. Makhoul, K. Maki, T. Maksimovic, P. Malde, S. Malik, S. Manca, G. Manousakis-Katsikakis, A. Margaroli, F. Marino, C. Marino, C. P. Martin, A. Martin, V. Martinez, M. Martinez-Ballaren, R. Maruyama, T. Mastrandrea, P. Masubuchi, T. Mattson, M. E. Mazzanti, P. McFarland, K. S. McIntyre, P. McNulty, R. Mehta, A. Mehtala, P. Menzione, A. Merkel, P. Mesropian, C. Miao, T. Miladinovic, N. Miller, R. Mills, C. Milnik, M. Mitra, A. Mitselmakher, G. Miyake, H. Moggi, N. Moon, C. S. Moore, R. Morello, M. J. Morlok, J. Movilla Fernandez, P. Muelmenstaedt, J. Mukherjee, A. Muller, Th. Mumford, R. Murat, P. Mussini, M. Nachtman, J. Nagai, Y. Nagano, A. Naganoma, J. Nakamura, K. Nakano, I. Napier, A. Necula, V. Neu, C. Neubauer, M. S. Nielsen, J. Nodulman, L. Norman, M. Norniella, O. Nurse, E. Oakes, L. Oh, S. H. Oh, Y. D. Oksuzian, I. Okusawa, T. Orava, R. Osterberg, K. Pagan Griso, S. Pagliarone, C. Palencia, E. Papadimitriou, V. Papaikonomou, A. Paramonov, A. A. Parks, B. Pashapour, S. Patrick, J. Pauletta, G. Paulini, M. Paus, C. Pellett, D. E. Penzo, A. Phillips, T. J. Piacentino, G. Pianori, E. Pinera, L. Pitts, K. Plager, C. Pondrom, L. Poukhov, O. Pounder, N. Prakoshyn, F. Pronko, A. Proudfoot, J. Ptohos, F. Pueschel, E. Punzi, G. Pursley, J. Rademacker, J. Rahaman, A. Ramakrishnan, V. Ranjan, N. Redondo, I. Reisert, B. Rekovic, V. Renton, P. Rescigno, M. Richter, S. Rimondi, F. Ristori, L. Robson, A. Rodrigo, T. Rodriguez, T. Rogers, E. Rolli, S. Roser, R. Rossi, M. Rossin, R. Roy, P. Ruiz, A. Russ, J. Rusu, V. Saarikko, H. Safonov, A. Sakumoto, W. K. Salto, O. Santi, L. Sarkar, S. Sartori, L. Sato, K. Savard, P. Savoy-Navarro, A. Scheidle, T. Schlabach, P. Schmidt, A. Schmidt, E. E. Schmidt, M. A. Schmidt, M. P. Schmitt, M. Schwarz, T. Scodellaro, L. Scott, A. L. Scribano, A. Scuri, F. Sedov, A. Seidel, S. Seiya, Y. Semenov, A. Sexton-Kennedy, L. Sfyrla, A. Shalhout, S. Z. Shears, T. Shepard, P. F. Sherman, D. Shimojima, M. Shiraishi, S. Shochet, M. Shon, Y. Shreyber, I. Sidoti, A. Sinervo, P. Sisakyan, A. Slaughter, A. J. Slaunwhite, J. Sliwa, K. Smith, J. R. Snider, F. D. Snihur, R. Soha, A. Somalwar, S. Sorin, V. Spalding, J. Spreitzer, T. Squillacioti, P. Stanitzki, M. St. Denis, R. Stelzer, B. Stelzer-Chilton, O. Stentz, D. Strologas, J. Stuart, D. Suh, J. S. Sukhanov, A. Suslov, I. Suzuki, T. Taffard, A. Takashima, R. Takeuchi, Y. Tanaka, R. Tecchio, M. Teng, P. K. Terashi, K. Thom, J. Thompson, A. S. Thompson, G. A. Thomson, E. Tipton, P. Tiwari, V. Tkaczyk, S. Toback, D. Tokar, S. Tollefson, K. Tomura, T. Tonelli, D. Torre, S. Torretta, D. Totaro, P. Tourneur, S. Tu, Y. Turini, N. Ukegawa, F. Vallecorsa, S. van Remortel, N. Varganov, A. Vataga, E. Vazquez, F. Velev, G. Vellidis, C. Veszpremi, V. Vidal, M. Vidal, R. Vila, I. Vilar, R. Vine, T. Vogel, M. Volobouev, I. Volpi, G. Wuerthwein, F. Wagner, P. Wagner, R. G. Wagner, R. L. Wagner-Kuhr, J. Wagner, W. Wakisaka, T. Wallny, R. Wang, S. M. Warburton, A. Waters, D. Weinberger, M. Wester, W. C., III Whitehouse, B. Whiteson, D. Wicklund, A. B. Wicklund, E. Williams, G. Williams, H. H. Wilson, P. Winer, B. L. Wittich, P. Wolbers, S. Wolfe, C. Wright, T. Wu, X. Wynne, S. M. Xie, S. Yagil, A. Yamamoto, K. Yamaoka, J. Yang, U. K. Yang, Y. C. Yao, W. M. Yeh, G. P. Yoh, J. Yorita, K. Yoshida, T. Yu, G. B. Yu, I. Yu, S. S. Yun, J. C. Zanello, L. Zanetti, A. Zaw, I. Zhang, X. Zheng, Y. Zucchelli, S. TI Search for Large Extra Dimensions in Final States Containing One Photon or Jet and Large Missing Transverse Energy Produced in pp Collisions at s=1.96 TeV SO PHYSICAL REVIEW LETTERS LA English DT Article ID COLLIDERS; PHYSICS AB We present the results of searches for large extra dimensions in samples of events with large missing transverse energy E(T) and either a photon or a jet produced in pp collisions at s=1.96 TeV collected with the Collider Detector at Fermilab II. For gamma+E(T) and jet+E(T) candidate samples corresponding to 2.0 and 1.1 fb(-1) of integrated luminosity, respectively, we observe good agreement with standard model expectations and obtain a combined lower limit on the fundamental parameter of the large extra dimensions model M(D) as a function of the number of extra dimensions in the model. C1 [Anastassov, A.; Chen, Y. C.; Hou, S.; Lu, R. -S.; Mitra, A.; Teng, P. K.; Wang, S. M.] Acad Sinica, Inst Phys, Taipei 11529, Taiwan. [Blair, R. E.; Byrum, K. L.; LeCompte, T.; Nodulman, L.; Proudfoot, J.; Wagner, P.; Wagner, R. G.; Wicklund, A. B.] Argonne Natl Lab, Argonne, IL 60439 USA. [Giakoumopoulou, V.; Giokaris, N.; Manousakis-Katsikakis, A.; Vellidis, C.] Univ Athens, GR-15771 Athens, Greece. [Attal, A.; Cavalli-Sforza, M.; De Lorenzo, G.; Deluca, C.; D'Onofrio, M.; Martinez, M.; Salto, O.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. [Dittmann, J. R.; Hewamanage, S.; Krumnack, N.] Baylor Univ, Waco, TX 76798 USA. [Castro, A.; Deninno, M.; Jha, M. K.; Mazzanti, P.; Moggi, N.; Mussini, M.; Rimondi, F.; Zucchelli, S.] Ist Nazl Fis Nucl, I-40127 Bologna, Italy. [Castro, A.; Mussini, M.; Rimondi, F.; Zucchelli, S.] Univ Bologna, I-40127 Bologna, Italy. [Blocker, C.; Clark, D.; Kirsch, L.; Miladinovic, N.] Brandeis Univ, Waltham, MA 02254 USA. [Chertok, M.; Conway, J.; Cox, D. J.; Erbacher, R.; Forrest, R.; Ivanov, A.; Johnson, W.; Lander, R. L.; Lister, A.; Pellett, D. E.; Schwarz, T.; Smith, J. R.; Soha, A.] Univ Calif Davis, Davis, CA 95616 USA. [Dong, P.; Hauser, J.; Plager, C.; Stelzer, B.; Wallny, R.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Hsu, S. -C.; Lipeles, E.; Norman, M.; Wuerthwein, F.; Yagil, A.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Boveia, A.; Brau, B.; Garberson, F.; Hill, C. S.; Incandela, J.; Koay, S. A.; Krutelyov, V.; Rossin, R.; Scott, A. L.; Stuart, D.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Gonzalez, B. Alvarez; Casal, B.; Cuevas, J.; Gomez, G.; Rodrigo, T.; Ruiz, A.; Scodellaro, L.; Vila, I.; Vilar, R.] Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain. [Chung, K.; Galyardt, J.; Jun, S. Y.; Paulini, M.; Pueschel, E.; Russ, J.; Tiwari, V.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Adelman, J.; Brubaker, E.; Fedorko, W. T.; Grosso-Pilcher, C.; Kim, Y. K.; Krop, D.; Kwang, S.; Lee, H. S.; Paramonov, A. A.; Schmidt, M. A.; Shiraishi, S.; Shochet, M.; Wolfe, C.; Yang, U. K.; Yorita, K.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Antos, J.; Bednar, P.; Lovas, L.; Lysak, R.; Tokar, S.] Comenius Univ, Bratislava 84248, Slovakia. [Antos, J.; Bednar, P.; Lovas, L.; Lysak, R.; Tokar, S.] Slovak Acad Sci, Inst Expt Phys, Kosice 04001, Slovakia. [Artikov, A.; Budagov, J.; Chokheli, D.; Glagolev, V.; Poukhov, O.; Prakoshyn, F.; Semenov, A.; Sisakyan, A.; Suslov, I.] Joint Inst Nucl Res, Dubna 141980, Russia. [Benjamin, D.; Bocci, A.; Cabrera, S.; Deng, J.; Goshaw, A. T.; Hidas, D.; Jayatilaka, B.; Ko, B. R.; Kotwal, A. V.; Kruse, M.; Necula, V.; Oh, S. H.; Phillips, T. J.] Duke Univ, Durham, NC 27708 USA. [Albrow, M. G.; Apollinari, G.; Ashmanskas, W.; Badgett, W.; Beretvas, A.; Binkley, M.; Burkett, K.; Canelli, F.; Casarsa, M.; Chlachidze, G.; Chlebana, F.; Convery, M. E.; Culbertson, R.; Dagenhart, D.; Datta, M.; Derwent, P. F.; Eusebi, R.; Freeman, J. C.; Genser, K.; Ginsburg, C. M.; Glenzinski, D.; Golossanov, A.; Group, R. C.; Hahn, S. R.; Harris, R. M.; Hocker, A.; James, E.; Jindariani, S.; Junk, T. R.; Kephart, R.; Lammel, S.; Lewis, J. D.; Lindgren, M.; Litvintsev, D. O.; Liu, T.; Lukens, P.; Madrak, R.; Maeshima, K.; Miao, T.; Moore, R.; Movilla Fernandez, P.; Mukherjee, A.; Murat, P.; Nachtman, J.; Palencia, E.; Papadimitriou, V.; Patrick, J.; Pronko, A.; Ptohos, F.; Reisert, B.; Roser, R.; Rusu, V.; Sato, K.; Schlabach, P.; Schmidt, E. E.; Sexton-Kennedy, L.; Slaughter, A. J.; Snider, F. D.; Spalding, J.; Thom, J.; Tkaczyk, S.; Tonelli, D.; Torretta, D.; Velev, G.; Vidal, R.; Wagner, R. L.; Wester, W. C., III; Wicklund, E.; Wilson, P.; Wittich, P.; Wolbers, S.; Yeh, G. P.; Yoh, J.; Yu, S. S.; Yun, J. C.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Carrillo, S.; Field, R.; Furic, I.; Goldschmidt, N.; Kar, D.; Klimenko, S.; Konigsberg, J.; Korytov, A.; Mitselmakher, G.; Oksuzian, I.; Pinera, L.; Sukhanov, A.; Vazquez, F.] Univ Florida, Gainesville, FL 32611 USA. [Annovi, A.; Cordelli, M.; Giromini, P.; Happacher, F.; Kim, M. J.; Torre, S.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Clark, A.; Sfyrla, A.; Vallecorsa, S.; Wu, X.] Univ Geneva, CH-1211 Geneva 4, Switzerland. [Bussey, P.; Davies, T.; Martin, V.; Robson, A.; St. Denis, R.; Thompson, A. S.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. [Chou, J. P.; Franklin, M.; Grinstein, S.; Guimaraes da Costa, J.; Mills, C.; Sherman, D.; Zaw, I.] Harvard Univ, Cambridge, MA 02138 USA. [Aaltonen, T.; Maki, T.; Mehtala, P.; Orava, R.; Osterberg, K.; Saarikko, H.; van Remortel, N.] Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. [Aaltonen, T.; Maki, T.; Mehtala, P.; Orava, R.; Osterberg, K.; Saarikko, H.; van Remortel, N.] Helsinki Inst Phys, FIN-00014 Helsinki, Finland. [Bridgeman, A.; Budd, S.; Errede, D.; Errede, S.; Gerberich, H.; Grundler, U.; Marino, C. P.; Neubauer, M. S.; Norniella, O.; Pitts, K.; Rogers, E.; Taffard, A.; Thompson, G. A.; Zhang, X.] Univ Illinois, Urbana, IL 61801 USA. [Barnett, B. A.; Behari, S.; Blumenfeld, B.; Giurgiu, G.; Maksimovic, P.; Mumford, R.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Feindt, M.; Gessler, A.; Heck, M.; Heuser, J.; Hirschbuehl, D.; Kreps, M.; Kuhr, T.; Lueck, J.; Mack, P.; Marino, C.; Milnik, M.; Morlok, J.; Muller, Th.; Papaikonomou, A.; Richter, S.; Scheidle, T.; Schmidt, A.; Wagner-Kuhr, J.; Wagner, W.] Univ Karlsruhe, Inst Expt Kernphys, D-76128 Karlsruhe, Germany. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Kyungpook Natl Univ, Ctr High Energy Phys, Taegu 702701, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Seoul Natl Univ, Seoul 151742, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Sungkyunkwan Univ, Suwon 440746, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Korea Inst Sci & Technol Informat, Taejon 305806, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Chonnam Natl Univ, Kwangju 500757, South Korea. [Barbaro-Galtieri, A.; Beringer, J.; Cerri, A.; Deisher, A.; Fang, H. C.; Haber, C.; Heinemann, B.; Lin, C. S.; Lujan, P.; Lys, J.; Muelmenstaedt, J.; Nielsen, J.; Volobouev, I.; Yao, W. M.] Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Anastassov, A.; Houlden, M.; Manca, G.; McNulty, R.; Mehta, A.; Shears, T.; Wynne, S. M.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Bartsch, V.; Beecher, D.; Bizjak, I.; Cerrito, L.; Lancaster, M.; Malik, S.; Nurse, E.; Vine, T.; Waters, D.] UCL, London WC1E 6BT, England. [Calancha, C.; Fernandez, J. P.; Gonzalez, O.; Martinez-Ballaren, R.; Redondo, I.; Vidal, M.] Ctr Invest Energet Medioambientales & Tecnol, E-28040 Madrid, Spain. [Bauer, G.; Choudalakis, G.; Gomez-Ceballos, G.; Hahn, K.; Henderson, C.; Knuteson, B.; Makhoul, K.; Paus, C.; Xie, S.] MIT, Cambridge, MA 02139 USA. [Beauchemin, P. -H.; Buzatu, A.; Carron, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Savard, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Warburton, A.; Williams, G.] McGill Univ, Inst Particle Phys, Montreal, PQ H3A 2T8, Canada. [Beauchemin, P. -H.; Buzatu, A.; Carron, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Savard, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Warburton, A.; Williams, G.] Univ Toronto, Toronto, ON M5S 1A7, Canada. [Amidei, D.; Campbell, M.; Copic, K.; Cully, J. C.; Gerdes, D.; Tecchio, M.; Varganov, A.; Wright, T.] Univ Michigan, Ann Arbor, MI 48109 USA. [Bromberg, C.; Campanelli, M.; Gunay-Unalan, Z.; Huston, J.; Miller, R.; Sorin, V.; Tollefson, K.] Michigan State Univ, E Lansing, MI 48824 USA. [Shreyber, I.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Gold, M.; Gorelov, I.; Rekovic, V.; Seidel, S.; Strologas, J.; Vogel, M.] Univ New Mexico, Albuquerque, NM 87131 USA. [Anastassov, A.; Schmitt, M.; Stentz, D.] Northwestern Univ, Evanston, IL 60208 USA. [Efron, J.; Hughes, R. E.; Kilminster, B.; Lannon, K.; Parks, B.; Slaunwhite, J.; Winer, B. L.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.; Takashima, R.; Tanaka, R.] Okayama Univ, Okayama 7008530, Japan. [Kato, Y.; Okusawa, T.; Seiya, Y.; Wakisaka, T.; Yamamoto, K.; Yoshida, T.] Osaka City Univ, Osaka 588, Japan. [Azfar, F.; Farrington, S.; Harper, S.; Hays, C.; Huffman, B. T.; Linacre, J.; Lyons, L.; Malde, S.; Oakes, L.; Pounder, N.; Rademacker, J.; Renton, P.; Stelzer-Chilton, O.] Univ Oxford, Oxford OX1 3RH, England. [Amerio, S.; Bisello, D.; Brigliadori, L.; Busetto, G.; Compostella, G.; Cortiana, G.; Donini, J.; Dorigo, T.; Gresele, A.; Lazzizzera, I.; Loreti, M.; Lucchesi, D.; Pagan Griso, S.] Ist Nazl Fis Nucl, Sez Padova Trento, I-35131 Padua, Italy. [Amerio, S.; Bisello, D.; Busetto, G.; Cortiana, G.; Gresele, A.; Lazzizzera, I.; Loreti, M.; Lucchesi, D.; Pagan Griso, S.] Univ Padua, I-35131 Padua, Italy. [Ciobanu, C. I.; di Giovanni, G. P.; Savoy-Navarro, A.; Tourneur, S.] Univ Paris 06, LPNHE, IN2P3, CNRS,UMR7585, F-75252 Paris, France. [Canepa, A.; Heijboer, A.; Heinrich, J.; Keung, J.; Kroll, J.; Lockyer, N. S.; Neu, C.; Pianori, E.; Rodriguez, T.; Thomson, E.; Tu, Y.; Whiteson, D.; Williams, H. H.] Univ Penn, Philadelphia, PA 19104 USA. [Azzurri, P.; Bedeschi, F.; Bellettini, G.; Carosi, R.; Catastini, P.; Cavaliere, V.; Chiarelli, G.; Ciocci, M. A.; Crescioli, F.; Dell'Orso, M.; Donati, S.; Ferrazza, C.; Garcia, J. E.; Giannetti, P.; Giunta, M.; Introzzi, G.; Lami, S.; Latino, G.; Leone, S.; Menzione, A.; Morello, M. J.; Pagliarone, C.; Piacentino, G.; Punzi, G.; Ristori, L.; Sartori, L.; Scribano, A.; Scuri, F.; Sidoti, A.; Squillacioti, P.; Turini, N.; Vataga, E.; Volpi, G.] Ist Nazl Fis Nucl, I-56127 Pisa, Italy. [Bellettini, G.; Crescioli, F.; Dell'Orso, M.; Donati, S.; Giunta, M.; Morello, M. J.; Punzi, G.; Volpi, G.] Univ Pisa, I-56127 Pisa, Italy. [Catastini, P.; Cavaliere, V.; Ciocci, M. A.; Latino, G.; Scribano, A.; Squillacioti, P.; Turini, N.] Univ Siena, I-56127 Pisa, Italy. [Azzurri, P.; Ferrazza, C.; Vataga, E.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Boudreau, J.; Gibson, K.; Hartz, M.; Liu, C.; Rahaman, A.; Shepard, P. F.] Univ Pittsburgh, Pittsburgh, PA 15260 USA. [Apresyan, A.; Barnes, V. E.; Bolla, G.; Bortoletto, D.; Flanagan, G.; Garfinkel, A. F.; Jones, M.; Laasanen, A. T.; Lytken, E.; Margaroli, F.; Merkel, P.; Ranjan, N.; Sedov, A.; Veszpremi, V.] Purdue Univ, W Lafayette, IN 47907 USA. [Bodek, A.; Boisvert, V.; Budd, H. S.; Chung, Y. S.; de Barbaro, P.; Gimmell, J. L.; Han, B. -Y.; Han, J. Y.; McFarland, K. S.; Yu, G. B.] Univ Rochester, Rochester, NY 14627 USA. [Bhatti, A.; Demortier, L.; Goulianos, K.; Hatakeyama, K.; Lungu, G.; Mesropian, C.; Terashi, K.] Rockefeller Univ, New York, NY 10021 USA. [De Cecco, S.; Dionisi, C.; Gallinaro, M.; Giagu, S.; Iori, M.; Luci, C.; Mastrandrea, P.; Rescigno, M.; Sarkar, S.; Zanello, L.] Ist Nazl Fis Nucl, Sez Roma, I-00185 Rome, Italy. [Dionisi, C.; Giagu, S.; Iori, M.; Luci, C.; Sarkar, S.; Zanello, L.] Univ Roma La Sapienza, I-00185 Rome, Italy. [Chuang, S. H.; Dube, S.; Halkiadakis, E.; Hare, D.; Lath, A.; Somalwar, S.; Yamaoka, J.] Rutgers State Univ, Piscataway, NJ 08855 USA. [Aurisano, A.; Elagin, A.; Goncharov, M.; Kamon, T.; Khotilovich, V.; Lee, E.; Lee, S. W.; McIntyre, P.; Safonov, A.; Toback, D.; Weinberger, M.] Texas A&M Univ, College Stn, TX 77843 USA. [Cauz, D.; Di Ruzza, B.; Giordani, M.; Pauletta, G.; Penzo, A.; Rossi, M.; Santi, L.; Totaro, P.; Zanetti, A.] Ist Nazl Fis Nucl Trieste Udine, Trieste, Italy. [Cauz, D.; Di Ruzza, B.; Giordani, M.; Pauletta, G.; Santi, L.; Totaro, P.] Univ Trieste Udine, Trieste, Italy. [Akimoto, T.; Hara, K.; Kim, S. H.; Kimura, N.; Kubo, T.; Kurata, M.; Maruyama, T.; Masubuchi, T.; Miyake, H.; Nagai, Y.; Nagano, A.; Nakamura, K.; Shimojima, M.; Suzuki, T.; Takeuchi, Y.; Tomura, T.; Ukegawa, F.] Univ Tsukuba, Tsukuba, Ibaraki 305, Japan. [Hare, M.; Napier, A.; Rolli, S.; Sliwa, K.; Whitehouse, B.] Tufts Univ, Medford, MA 02155 USA. [Arisawa, T.; Kondo, K.; Kusakabe, Y.; Naganoma, J.] Waseda Univ, Tokyo 169, Japan. [Harr, R. F.; Karchin, P. E.; Kulkarni, N. P.; Mattson, M. E.; Shalhout, S. Z.] Wayne State Univ, Detroit, MI 48201 USA. [Bellinger, J.; Carlsmith, D.; Chung, W. H.; Handler, R.; Herndon, M.; Pondrom, L.; Pursley, J.; Ramakrishnan, V.; Shon, Y.] Univ Wisconsin, Madison, WI 53706 USA. [Feild, R. G.; Husemann, U.; Loginov, A.; Martin, A.; Schmidt, M. P.; Stanitzki, M.; Tipton, P.] Yale Univ, New Haven, CT 06520 USA. RP Aaltonen, T (reprint author), Acad Sinica, Inst Phys, Taipei 11529, Taiwan. RI Gorelov, Igor/J-9010-2015; Prokoshin, Fedor/E-2795-2012; Canelli, Florencia/O-9693-2016; Moon, Chang-Seong/J-3619-2014; Scodellaro, Luca/K-9091-2014; Paulini, Manfred/N-7794-2014; Russ, James/P-3092-2014; unalan, zeynep/C-6660-2015; Lazzizzera, Ignazio/E-9678-2015; Cabrera Urban, Susana/H-1376-2015; Garcia, Jose /H-6339-2015; ciocci, maria agnese /I-2153-2015; Cavalli-Sforza, Matteo/H-7102-2015; Muelmenstaedt, Johannes/K-2432-2015; Introzzi, Gianluca/K-2497-2015; Annovi, Alberto/G-6028-2012; Ivanov, Andrew/A-7982-2013; St.Denis, Richard/C-8997-2012; Warburton, Andreas/N-8028-2013; Kim, Soo-Bong/B-7061-2014; Lysak, Roman/H-2995-2014; Ruiz, Alberto/E-4473-2011; Robson, Aidan/G-1087-2011; De Cecco, Sandro/B-1016-2012; manca, giulia/I-9264-2012; Amerio, Silvia/J-4605-2012; Punzi, Giovanni/J-4947-2012 OI Gorelov, Igor/0000-0001-5570-0133; Prokoshin, Fedor/0000-0001-6389-5399; Canelli, Florencia/0000-0001-6361-2117; Gallinaro, Michele/0000-0003-1261-2277; Turini, Nicola/0000-0002-9395-5230; Moon, Chang-Seong/0000-0001-8229-7829; Scodellaro, Luca/0000-0002-4974-8330; Paulini, Manfred/0000-0002-6714-5787; Russ, James/0000-0001-9856-9155; unalan, zeynep/0000-0003-2570-7611; Lazzizzera, Ignazio/0000-0001-5092-7531; ciocci, maria agnese /0000-0003-0002-5462; Muelmenstaedt, Johannes/0000-0003-1105-6678; Introzzi, Gianluca/0000-0002-1314-2580; Annovi, Alberto/0000-0002-4649-4398; Ivanov, Andrew/0000-0002-9270-5643; Warburton, Andreas/0000-0002-2298-7315; Ruiz, Alberto/0000-0002-3639-0368; Punzi, Giovanni/0000-0002-8346-9052 FU U.S. Department of Energy; National Science Foundation; Italian Istituto Nazionale di Fisica Nucleare; Ministry of Education, Culture, Sports, Science and Technology of Japan; Natural Sciences and Engineering Research Council of Canada; National Science Council of the Republic of China; Swiss National Science Foundation; A. P. Sloan Foundation; Bundesministerium fur Bildung und Forschung, Germany; Korean Science and Engineering Foundation; Korean Research Foundation; Science and Technology Facilities Council; Royal Society, U. K.; Institut National de Physique Nucleaire et Physique des Particules/CNRS; Russian Foundation for Basic Research; Ministerio de Educacion y Ciencia and Programa Consolider-Ingenio 2010, Spain; Slovak RD Agency; Academy of Finland FX We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the U. S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A. P. Sloan Foundation; the Bundesministerium fur Bildung und Forschung, Germany; the Korean Science and Engineering Foundation and the Korean Research Foundation; the Science and Technology Facilities Council and the Royal Society, U. K.; the Institut National de Physique Nucleaire et Physique des Particules/CNRS; the Russian Foundation for Basic Research; the Ministerio de Educacion y Ciencia and Programa Consolider-Ingenio 2010, Spain; the Slovak R&D Agency; and the Academy of Finland. NR 15 TC 57 Z9 57 U1 1 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD OCT 31 PY 2008 VL 101 IS 18 AR 181602 DI 10.1103/PhysRevLett.101.181602 PG 7 WC Physics, Multidisciplinary SC Physics GA 367TD UT WOS:000260574600019 PM 18999815 ER PT J AU Abazov, VM Abbott, B Abolins, M Acharya, BS Adams, M Adams, T Aguilo, E Ahsan, M Alexeev, GD Alkhazov, G Alton, A Alverson, G Alves, GA Anastasoaie, M Ancu, LS Andeen, T Andrieu, B Anzelc, MS Aoki, M Arnoud, Y Arov, M Arthaud, M Askew, A Asman, B Jesus, ACSA Atramentov, O Avila, C Badaud, F Bagby, L Baldin, B Bandurin, DV Banerjee, P Banerjee, S Barberis, E Barfuss, AF Bargassa, P Baringer, P Barreto, J Bartlett, JF Bassler, U Bauer, D Beale, S Bean, A Begalli, M Begel, M Belanger-Champagne, C Bellantoni, L Bellavance, A Benitez, JA Beri, SB Bernardi, G Bernhard, R Bertram, I Besancon, M Beuselinck, R Bezzubov, VA Bhat, PC Bhatnagar, V Biscarat, C Blazey, G Blekman, F Blessing, S Bloch, D Bloom, K Boehnlein, A Boline, D Bolton, TA Boos, EE Borissov, G Bose, T Brandt, A Brock, R Brooijmans, G Bross, A Brown, D Bu, XB Buchanan, NJ Buchholz, D Buehler, M Buescher, V Bunichev, V Burdin, S Burnett, TH Buszello, CP Butler, JM Calfayan, P Calvet, S Cammin, J Carrera, E Carvalho, W Casey, BCK Castilla-Valdez, H Chakrabarti, S Chakraborty, D Chan, KM Chandra, A Cheu, E Chevallier, F Cho, DK Choi, S Choudhary, B Christofek, L Christoudias, T Cihangir, S Claes, D Clutter, J Cooke, M Cooper, WE Corcoran, M Couderc, F Cousinou, MC Crepe-Renaudin, S Cuplov, V Cutts, D Cwiok, M Motta, H Das, A Davies, G De, K Jong, SJ De La Cruz-Burelo, E De Oliveira Martins, C Degenhardt, JD Deliot, F Demarteau, M Demina, R Denisov, D Denisov, SP Desai, S Diehl, HT Diesburg, M Dominguez, A Dong, H Dorland, T Dubey, A Dudko, LV Duflot, L Dugad, SR Duggan, D Duperrin, A Dyer, J Dyshkant, A Eads, M Edmunds, D Ellison, J Elvira, VD Enari, Y Eno, S Ermolov, P Evans, H Evdokimov, A Evdokimov, VN Ferapontov, AV Ferbel, T Fiedler, F Filthaut, F Fisher, W Fisk, HE Fortner, M Fox, H Fu, S Fuess, S Gadfort, T Galea, CF Garcia, C Garcia-Bellido, A Gavrilov, V Gay, P Geist, W Gele, D Geng, W Gerber, CE Gershtein, Y Gillberg, D Ginther, G Gollub, N Gomez, B Goussiou, A Grannis, PD Greenlee, H Greenwood, ZD Gregores, EM Grenier, G Gris, P Grivaz, JF Grohsjean, A Grunendahl, S Grunewald, MW Guo, F Guo, J Gutierrez, G Gutierrez, P Haas, A Hadley, NJ Haefner, P Hagopian, S Haley, J Hall, I Hall, RE Han, L Harder, K Harel, A Hauptman, JM Hauser, R Hays, J Hebbeker, T Hedin, D Hegeman, JG Heinson, AP Heintz, U Hensel, C Herner, K Hesketh, G Hildreth, MD Hirosky, R Hobbs, JD Hoeneisen, B Hoeth, H Hohlfeld, M Hossain, S Houben, P Hu, Y Hubacek, Z Hynek, V Iashvili, I Illingworth, R Ito, AS Jabeen, S Jaffre, M Jain, S Jakobs, K Jarvis, C Jesik, R Johns, K Johnson, C Johnson, M Jonckheere, A Jonsson, P Juste, A Kajfasz, E Kalk, JM Karmanov, D Kasper, PA Katsanos, I Kau, D Kaushik, V Kehoe, R Kermiche, S Khalatyan, N Khanov, A Kharchilava, A Kharzheev, YM Khatidze, D Kim, TJ Kirby, MH Kirsch, M Klima, B Kohli, JM Konrath, JP Kozelov, AV Kraus, J Kuhl, T Kumar, A Kupco, A Kurca, T Kuzmin, VA Kvita, J Lacroix, F Lam, D Lammers, S Landsberg, G Lebrun, P Lee, WM Leflat, A Lellouch, J Li, J Li, L Li, QZ Lietti, SM Lim, JK Lima, JGR Lincoln, D Linnemann, J Lipaev, VV Lipton, R Liu, Y Liu, Z Lobodenko, A Lokajicek, M Love, P Lubatti, HJ Luna, R Lyon, AL Maciel, AKA Mackin, D Madaras, RJ Mattig, P Magass, C Magerkurth, A Mal, PK Malbouisson, HB Malik, S Malyshev, VL Mao, HS Maravin, Y Martin, B McCarthy, R Melnitchouk, A Mendoza, L Mercadante, PG Merkin, M Merritt, KW Meyer, A Meyer, J Millet, T Mitrevski, J Mommsen, RK Mondal, NK Moore, RW Moulik, T Muanza, GS Mulhearn, M Mundal, O Mundim, L Nagy, E Naimuddin, M Narain, M Naumann, NA Neal, HA Negret, JP Neustroev, P Nilsen, H Nogima, H Novaes, SF Nunnemann, T O'Dell, V O'Neil, DC Obrant, G Ochando, C Onoprienko, D Oshima, N Osman, N Osta, J Otec, R Garzon, GJY Owen, M Padley, P Pangilinan, M Parashar, N Park, SJ Park, SK Parsons, J Partridge, R Parua, N Patwa, A Pawloski, G Penning, B Perfilov, M Peters, K Peters, Y Petroff, P Petteni, M Piegaia, R Piper, J Pleier, MA Podesta-Lerma, PLM Podstavkov, VM Pogorelov, Y Pol, ME Polozov, P Pope, BG Popov, AV Potter, C Silva, WLP Prosper, HB Protopopescu, S Qian, J Quadt, A Quinn, B Rakitine, A Rangel, MS Ranjan, K Ratoff, PN Renkel, P Reucroft, S Rich, P Rieger, J Rijssenbeek, M Ripp-Baudot, I Rizatdinova, F Robinson, S Rodrigues, RF Rominsky, M Royon, C Rubinov, P Ruchti, R Safronov, G Sajot, G Sanchez-Hernandez, A Sanders, MP Sanghi, B Savage, G Sawyer, L Scanlon, T Schaile, D Schamberger, RD Scheglov, Y Schellman, H Schliephake, T Schlobohm, S Schwanenberger, C Schwartzman, A Schwienhorst, R Sekaric, J Severini, H Shabalina, E Shamim, M Shary, V Shchukin, AA Shivpuri, RK Siccardi, V Simak, V Sirotenko, V Skubic, P Slattery, P Smirnov, D Snow, GR Snow, J Snyder, S Soldner-Rembold, S Sonnenschein, L Sopczak, A Sosebee, M Soustruznik, K Spurlock, B Stark, J Steele, J Stolin, V Stoyanova, DA Strandberg, J Strandberg, S Strang, MA Strauss, E Strauss, M Strohmer, R Strom, D Stutte, L Sumowidagdo, S Svoisky, P Sznajder, A Tamburello, P Tanasijczuk, A Taylor, W Tiller, B Tissandier, F Titov, M Tokmenin, VV Torchiani, I Tsybychev, D Tuchming, B Tully, C Tuts, PM Unalan, R Uvarov, L Uvarov, S Uzunyan, S Vachon, B van den Berg, PJ Van Kooten, R van Leeuwen, WM Varelas, N Varnes, EW Vasilyev, IA Vaupel, M Verdier, P Vertogradov, LS Verzocchi, M Vilanova, D Villeneuve-Seguier, F Vint, P Vokac, P Von Toerne, E Voutilainen, M Wagner, R Wahl, HD Wang, L Wang, MHLS Warchol, J Watts, G Wayne, M Weber, G Weber, M Welty-Rieger, L Wenger, A Wermes, N Wetstein, M White, A Wicke, D Wilson, GW Wimpenny, SJ Wobisch, M Wood, DR Wyatt, TR Xie, Y Yacoob, S Yamada, R Yang, WC Yasuda, T Yatsunenko, YA Yin, H Yip, K Yoo, HD Youn, SW Yu, J Zeitnitz, C Zelitch, S Zhao, T Zhou, B Zhu, J Zielinski, M Zieminska, D Zieminski, A Zivkovic, L Zutshi, V Zverev, EG AF Abazov, V. M. Abbott, B. Abolins, M. Acharya, B. S. Adams, M. Adams, T. Aguilo, E. Ahsan, M. Alexeev, G. D. Alkhazov, G. Alton, A. Alverson, G. Alves, G. A. Anastasoaie, M. Ancu, L. S. Andeen, T. Andrieu, B. Anzelc, M. S. Aoki, M. Arnoud, Y. Arov, M. Arthaud, M. Askew, A. Asman, B. Jesus, A. C. S. Assis Atramentov, O. Avila, C. Badaud, F. Bagby, L. Baldin, B. Bandurin, D. V. Banerjee, P. Banerjee, S. Barberis, E. Barfuss, A. -F. Bargassa, P. Baringer, P. Barreto, J. Bartlett, J. F. Bassler, U. Bauer, D. Beale, S. Bean, A. Begalli, M. Begel, M. Belanger-Champagne, C. Bellantoni, L. Bellavance, A. Benitez, J. A. Beri, S. B. Bernardi, G. Bernhard, R. Bertram, I. Besancon, M. Beuselinck, R. Bezzubov, V. A. Bhat, P. C. Bhatnagar, V. Biscarat, C. Blazey, G. Blekman, F. Blessing, S. Bloch, D. Bloom, K. Boehnlein, A. Boline, D. Bolton, T. A. Boos, E. E. Borissov, G. Bose, T. Brandt, A. Brock, R. Brooijmans, G. Bross, A. Brown, D. Bu, X. B. Buchanan, N. J. Buchholz, D. Buehler, M. Buescher, V. Bunichev, V. Burdin, S. Burnett, T. H. Buszello, C. P. Butler, J. M. Calfayan, P. Calvet, S. Cammin, J. Carrera, E. Carvalho, W. Casey, B. C. K. Castilla-Valdez, H. Chakrabarti, S. Chakraborty, D. Chan, K. M. Chandra, A. Cheu, E. Chevallier, F. Cho, D. K. Choi, S. Choudhary, B. Christofek, L. Christoudias, T. Cihangir, S. Claes, D. Clutter, J. Cooke, M. Cooper, W. E. Corcoran, M. Couderc, F. Cousinou, M. -C. Crepe-Renaudin, S. Cuplov, V. Cutts, D. Cwiok, M. da Motta, H. Das, A. Davies, G. De, K. de Jong, S. J. De La Cruz-Burelo, E. De Oliveira Martins, C. Degenhardt, J. D. Deliot, F. Demarteau, M. Demina, R. Denisov, D. Denisov, S. P. Desai, S. Diehl, H. T. Diesburg, M. Dominguez, A. Dong, H. Dorland, T. Dubey, A. Dudko, L. V. Duflot, L. Dugad, S. R. Duggan, D. Duperrin, A. Dyer, J. Dyshkant, A. Eads, M. Edmunds, D. Ellison, J. Elvira, V. D. Enari, Y. Eno, S. Ermolov, P. Evans, H. Evdokimov, A. Evdokimov, V. N. Ferapontov, A. V. Ferbel, T. Fiedler, F. Filthaut, F. Fisher, W. Fisk, H. E. Fortner, M. Fox, H. Fu, S. Fuess, S. Gadfort, T. Galea, C. F. Garcia, C. Garcia-Bellido, A. Gavrilov, V. Gay, P. Geist, W. Gele, D. Geng, W. Gerber, C. E. Gershtein, Y. Gillberg, D. Ginther, G. Gollub, N. Gomez, B. Goussiou, A. Grannis, P. D. Greenlee, H. Greenwood, Z. D. Gregores, E. M. Grenier, G. Gris, Ph. Grivaz, J. -F. Grohsjean, A. Gruenendahl, S. Gruenewald, M. W. Guo, F. Guo, J. Gutierrez, G. Gutierrez, P. Haas, A. Hadley, N. J. Haefner, P. Hagopian, S. Haley, J. Hall, I. Hall, R. E. Han, L. Harder, K. Harel, A. Hauptman, J. M. Hauser, R. Hays, J. Hebbeker, T. Hedin, D. Hegeman, J. G. Heinson, A. P. Heintz, U. Hensel, C. Herner, K. Hesketh, G. Hildreth, M. D. Hirosky, R. Hobbs, J. D. Hoeneisen, B. Hoeth, H. Hohlfeld, M. Hossain, S. Houben, P. Hu, Y. Hubacek, Z. Hynek, V. Iashvili, I. Illingworth, R. Ito, A. S. Jabeen, S. Jaffre, M. Jain, S. Jakobs, K. Jarvis, C. Jesik, R. Johns, K. Johnson, C. Johnson, M. Jonckheere, A. Jonsson, P. Juste, A. Kajfasz, E. Kalk, J. M. Karmanov, D. Kasper, P. A. Katsanos, I. Kau, D. Kaushik, V. Kehoe, R. Kermiche, S. Khalatyan, N. Khanov, A. Kharchilava, A. Kharzheev, Y. M. Khatidze, D. Kim, T. J. Kirby, M. H. Kirsch, M. Klima, B. Kohli, J. M. Konrath, J. -P. Kozelov, A. V. Kraus, J. Kuhl, T. Kumar, A. Kupco, A. Kurca, T. Kuzmin, V. A. Kvita, J. Lacroix, F. Lam, D. Lammers, S. Landsberg, G. Lebrun, P. Lee, W. M. Leflat, A. Lellouch, J. Li, J. Li, L. Li, Q. Z. Lietti, S. M. Lim, J. K. Lima, J. G. R. Lincoln, D. Linnemann, J. Lipaev, V. V. Lipton, R. Liu, Y. Liu, Z. Lobodenko, A. Lokajicek, M. Love, P. Lubatti, H. J. Luna, R. Lyon, A. L. Maciel, A. K. A. Mackin, D. Madaras, R. J. Maettig, P. Magass, C. Magerkurth, A. Mal, P. K. Malbouisson, H. B. Malik, S. Malyshev, V. L. Mao, H. S. Maravin, Y. Martin, B. McCarthy, R. Melnitchouk, A. Mendoza, L. Mercadante, P. G. Merkin, M. Merritt, K. W. Meyer, A. Meyer, J. Millet, T. Mitrevski, J. Mommsen, R. K. Mondal, N. K. Moore, R. W. Moulik, T. Muanza, G. S. Mulhearn, M. Mundal, O. Mundim, L. Nagy, E. Naimuddin, M. Narain, M. Naumann, N. A. Neal, H. A. Negret, J. P. Neustroev, P. Nilsen, H. Nogima, H. Novaes, S. F. Nunnemann, T. O'Dell, V. O'Neil, D. C. Obrant, G. Ochando, C. Onoprienko, D. Oshima, N. Osman, N. Osta, J. Otec, R. Otero y Garzon, G. J. Owen, M. Padley, P. Pangilinan, M. Parashar, N. Park, S. -J. Park, S. K. Parsons, J. Partridge, R. Parua, N. Patwa, A. Pawloski, G. Penning, B. Perfilov, M. Peters, K. Peters, Y. Petroff, P. Petteni, M. Piegaia, R. Piper, J. Pleier, M. -A. Podesta-Lerma, P. L. M. Podstavkov, V. M. Pogorelov, Y. Pol, M. -E. Polozov, P. Pope, B. G. Popov, A. V. Potter, C. da Silva, W. L. Prado Prosper, H. B. Protopopescu, S. Qian, J. Quadt, A. Quinn, B. Rakitine, A. Rangel, M. S. Ranjan, K. Ratoff, P. N. Renkel, P. Reucroft, S. Rich, P. Rieger, J. Rijssenbeek, M. Ripp-Baudot, I. Rizatdinova, F. Robinson, S. Rodrigues, R. F. Rominsky, M. Royon, C. Rubinov, P. Ruchti, R. Safronov, G. Sajot, G. Sanchez-Hernandez, A. Sanders, M. P. Sanghi, B. Savage, G. Sawyer, L. Scanlon, T. Schaile, D. Schamberger, R. D. Scheglov, Y. Schellman, H. Schliephake, T. Schlobohm, S. Schwanenberger, C. Schwartzman, A. Schwienhorst, R. Sekaric, J. Severini, H. Shabalina, E. Shamim, M. Shary, V. Shchukin, A. A. Shivpuri, R. K. Siccardi, V. Simak, V. Sirotenko, V. Skubic, P. Slattery, P. Smirnov, D. Snow, G. R. Snow, J. Snyder, S. Soeldner-Rembold, S. Sonnenschein, L. Sopczak, A. Sosebee, M. Soustruznik, K. Spurlock, B. Stark, J. Steele, J. Stolin, V. Stoyanova, D. A. Strandberg, J. Strandberg, S. Strang, M. A. Strauss, E. Strauss, M. Stroehmer, R. Strom, D. Stutte, L. Sumowidagdo, S. Svoisky, P. Sznajder, A. Tamburello, P. Tanasijczuk, A. Taylor, W. Tiller, B. Tissandier, F. Titov, M. Tokmenin, V. V. Torchiani, I. Tsybychev, D. Tuchming, B. Tully, C. Tuts, P. M. Unalan, R. Uvarov, L. Uvarov, S. Uzunyan, S. Vachon, B. van den Berg, P. J. Van Kooten, R. van Leeuwen, W. M. Varelas, N. Varnes, E. W. Vasilyev, I. A. Vaupel, M. Verdier, P. Vertogradov, L. S. Verzocchi, M. Vilanova, D. Villeneuve-Seguier, F. Vint, P. Vokac, P. Von Toerne, E. Voutilainen, M. Wagner, R. Wahl, H. D. Wang, L. Wang, M. H. L. S. Warchol, J. Watts, G. Wayne, M. Weber, G. Weber, M. Welty-Rieger, L. Wenger, A. Wermes, N. Wetstein, M. White, A. Wicke, D. Wilson, G. W. Wimpenny, S. J. Wobisch, M. Wood, D. R. Wyatt, T. R. Xie, Y. Yacoob, S. Yamada, R. Yang, W. -C. Yasuda, T. Yatsunenko, Y. A. Yin, H. Yip, K. Yoo, H. D. Youn, S. W. Yu, J. Zeitnitz, C. Zelitch, S. Zhao, T. Zhou, B. Zhu, J. Zielinski, M. Zieminska, D. Zieminski, A. Zivkovic, L. Zutshi, V. Zverev, E. G. TI Precise Measurement of the Top-Quark Mass from lepton plus jets Events SO PHYSICAL REVIEW LETTERS LA English DT Article ID DETECTOR AB We measure the mass of the top quark using top-quark pair candidate events in the lepton+jets channel from data corresponding to 1 fb(-1) of integrated luminosity collected by the D0 experiment at the Fermilab Tevatron collider. We use a likelihood technique that reduces the jet energy scale uncertainty by combining an in situ jet energy calibration with the independent constraint on the jet energy scale (JES) from the calibration derived using photon+jets and dijet samples. We find the mass of the top quark to be 171.5 +/- 1.8(stat.+JES)+/- 1.1(syst.) GeV. C1 [Abazov, V. M.; Alexeev, G. D.; Alton, A.; Kharzheev, Y. M.; Malyshev, V. L.; Tokmenin, V. V.; Vertogradov, L. S.; Yatsunenko, Y. A.] Joint Inst Nucl Res, Dubna, Russia. [Piegaia, R.; Tanasijczuk, A.] Univ Buenos Aires, Buenos Aires, DF, Argentina. [Alves, G. A.; Barreto, J.; da Motta, H.; Maciel, A. K. A.; Pol, M. -E.; Rangel, M. S.] LAFEX, Ctr Brasileiro Pesquisas Fis, Rio De Janeiro, Brazil. [Jesus, A. C. S. Assis; Begalli, M.; Carvalho, W.; De Oliveira Martins, C.; Luna, R.; Malbouisson, H. B.; Mundim, L.; Nogima, H.; da Silva, W. L. Prado; Rodrigues, R. F.; Sznajder, A.] Univ Estado Rio de Janeiro, BR-20550011 Rio De Janeiro, Brazil. [Gregores, E. M.; Han, L.] Univ Fed ABC, Santo Andre, Brazil. [Lietti, S. M.; Mercadante, P. G.; Novaes, S. F.] Univ Estadual Paulista, Inst Fis Teor, BR-01405 Sao Paulo, Brazil. [Aguilo, E.; Beale, S.; Gillberg, D.; Liu, Z.; Moore, R. W.; O'Neil, D. C.; Potter, C.; Taylor, W.; Vachon, B.] Univ Alberta, Edmonton, AB, Canada. [Aguilo, E.; Beale, S.; Gillberg, D.; Liu, Z.; Moore, R. W.; O'Neil, D. C.; Potter, C.; Taylor, W.; Vachon, B.] Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada. [Aguilo, E.; Beale, S.; Gillberg, D.; Liu, Z.; Moore, R. W.; O'Neil, D. C.; Potter, C.; Taylor, W.; Vachon, B.] York Univ, Toronto, ON M3J 2R7, Canada. [Aguilo, E.; Beale, S.; Gillberg, D.; Liu, Z.; Moore, R. W.; O'Neil, D. C.; Potter, C.; Taylor, W.; Vachon, B.] McGill Univ, Montreal, PQ, Canada. [Bu, X. B.; Liu, Y.; Yin, H.] Univ Sci & Technol China, Hefei 230026, Peoples R China. [Avila, C.; Gomez, B.; Mendoza, L.; Negret, J. P.] Univ Los Andes, Bogota, Colombia. [Hynek, V.; Kvita, J.; Soustruznik, K.] Charles Univ Prague, Ctr Particle Phys, Prague, Czech Republic. [Hubacek, Z.; Otec, R.; Simak, V.; Vokac, P.] Czech Tech Univ, CR-16635 Prague, Czech Republic. [Kupco, A.; Lokajicek, M.] Acad Sci Czech Republic, Inst Phys, Ctr Particle Phys, Prague, Czech Republic. [Hoeneisen, B.] Univ San Francisco Quito, Quito, Ecuador. [Badaud, F.; Gay, P.; Gris, Ph.; Lacroix, F.; Tissandier, F.] Univ Clermont Ferrand, IN2P3, CNRS, LPC, Clermont, France. [Arnoud, Y.; Chevallier, F.; Crepe-Renaudin, S.; Martin, B.; Sajot, G.; Stark, J.] Univ Grenoble 1, CNRS, IN2P3, Inst Natl Polytech Grenoble,LPSC, Grenoble, France. [Barfuss, A. -F.; Cousinou, M. -C.; Duperrin, A.; Geng, W.; Kajfasz, E.; Kermiche, S.; Nagy, E.] Aix Marseille Univ, CNRS, IN2P3, CPPM, Marseille, France. [Calvet, S.; Duflot, L.; Grivaz, J. -F.; Jaffre, M.; Ochando, C.; Petroff, P.] Univ Paris 11, CNRS, IN2P3, LAL, Orsay, France. [Andrieu, B.; Bernardi, G.; Couderc, F.; Lellouch, J.; Sanders, M. P.; Sonnenschein, L.] Univ Paris 06, CNRS, IN2P3, LPNHE, Paris, France. [Andrieu, B.; Bernardi, G.; Couderc, F.; Lellouch, J.; Sanders, M. P.; Sonnenschein, L.] Univ Paris 07, CNRS, IN2P3, LPNHE, Paris, France. [Arthaud, M.; Bassler, U.; Besancon, M.; Chakrabarti, S.; Deliot, F.; Royon, C.; Shary, V.; Titov, M.; Tuchming, B.; Vilanova, D.] SPP, Irfu, CEA, Saclay, France. [Bloch, D.; Geist, W.; Gele, D.; Ripp-Baudot, I.; Siccardi, V.] Univ Strasbourg 1, CNRS, IN2P3, IPHC, Strasbourg, France. [Biscarat, C.; Grenier, G.; Kurca, T.; Lebrun, P.; Millet, T.; Muanza, G. S.; Verdier, P.] Univ Lyon, Lyon, France. [Biscarat, C.; Grenier, G.; Kurca, T.; Lebrun, P.; Millet, T.; Muanza, G. S.; Verdier, P.] Univ Lyon 1, CNRS, IN2P3, IPNL, F-69622 Villeurbanne, France. [Hebbeker, T.; Kirsch, M.; Magass, C.; Meyer, A.] Rhein Westfal TH Aachen, Phys Inst A 3, Aachen, Germany. [Buescher, V.; Hensel, C.; Hohlfeld, M.; Meyer, J.; Mundal, O.; Park, S. -J.; Pleier, M. -A.; Quadt, A.; Wermes, N.] Univ Bonn, Inst Phys, D-5300 Bonn, Germany. [Bernhard, R.; Jakobs, K.; Konrath, J. -P.; Nilsen, H.; Penning, B.; Torchiani, I.; Wenger, A.] Univ Freiburg, Inst Phys, Freiburg, Germany. [Fiedler, F.; Kuhl, T.; Weber, G.] Johannes Gutenberg Univ Mainz, Inst Phys, D-6500 Mainz, Germany. [Calfayan, P.; Grohsjean, A.; Haefner, P.; Nunnemann, T.; Schaile, D.; Stroehmer, R.; Tiller, B.] Univ Munich, Munich, Germany. [Hoeth, H.; Maettig, P.; Peters, Y.; Schliephake, T.; Vaupel, M.; Wicke, D.; Zeitnitz, C.] Univ Wuppertal, Fachbereich Phys, Wuppertal, Germany. [Beri, S. B.; Bhatnagar, V.; Kohli, J. M.] Panjab Univ, Chandigarh 160014, India. [Choudhary, B.; Dubey, A.; Ranjan, K.; Shivpuri, R. K.] Univ Delhi, Delhi 110007, India. [Acharya, B. S.; Banerjee, P.; Banerjee, S.; Dugad, S. R.; Mondal, N. K.] Tata Inst Fundamental Res, Mumbai 400005, Maharashtra, India. [Cwiok, M.; Gruenewald, M. W.] Univ Coll Dublin, Dublin 2, Ireland. [Kim, T. J.; Lim, J. K.; Park, S. K.] Korea Univ, Korea Detector Lab, Seoul, South Korea. [Choi, S.] Sungkyunkwan Univ, Suwon, South Korea. [Castilla-Valdez, H.; Podesta-Lerma, P. L. M.; Sanchez-Hernandez, A.] CINVESTAV, Mexico City 14000, DF, Mexico. [Hegeman, J. G.; Houben, P.; van den Berg, P. J.; van Leeuwen, W. M.] NIKHEF, FOM Inst, Amsterdam, Netherlands. [Hegeman, J. G.; Houben, P.; van den Berg, P. J.; van Leeuwen, W. M.] Univ Amsterdam, NIKHEF, Amsterdam, Netherlands. [Anastasoaie, M.; Ancu, L. S.; de Jong, S. J.; Filthaut, F.; Galea, C. F.; Naumann, N. A.] Radboud Univ Nijmegen, NIKHEF, NL-6525 ED Nijmegen, Netherlands. [Gavrilov, V.; Polozov, P.; Safronov, G.; Stolin, V.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Boos, E. E.; Bunichev, V.; Dudko, L. V.; Ermolov, P.; Karmanov, D.; Kuzmin, V. A.; Leflat, A.; Merkin, M.; Perfilov, M.; Zverev, E. G.] Moscow MV Lomonosov State Univ, Moscow, Russia. [Bezzubov, V. A.; Denisov, S. P.; Evdokimov, V. N.; Kozelov, A. V.; Lipaev, V. V.; Popov, A. V.; Shchukin, A. A.; Stoyanova, D. A.; Vasilyev, I. A.] Inst High Energy Phys, Protvino, Russia. [Alkhazov, G.; Lobodenko, A.; Neustroev, P.; Obrant, G.; Scheglov, Y.; Uvarov, L.; Uvarov, S.] Petersburg Nucl Phys Inst, St Petersburg, Russia. [Asman, B.; Belanger-Champagne, C.; Gollub, N.; Strandberg, S.] Stockholm Univ, S-10691 Stockholm, Sweden. [Asman, B.; Belanger-Champagne, C.; Gollub, N.; Strandberg, S.] Lund Univ, Lund, Sweden. [Asman, B.; Belanger-Champagne, C.; Gollub, N.; Strandberg, S.] Royal Inst Technol, Stockholm, Sweden. [Asman, B.; Belanger-Champagne, C.; Gollub, N.; Strandberg, S.] Uppsala Univ, Uppsala, Sweden. [Bertram, I.; Borissov, G.; Burdin, S.; Fox, H.; Love, P.; Rakitine, A.; Ratoff, P. N.; Sopczak, A.] Univ Lancaster, Lancaster, England. [Bauer, D.; Beuselinck, R.; Blekman, F.; Buszello, C. P.; Christoudias, T.; Davies, G.; Hays, J.; Jesik, R.; Jonsson, P.; Osman, N.; Petteni, M.; Robinson, S.; Scanlon, T.; Villeneuve-Seguier, F.; Vint, P.] Univ London Imperial Coll Sci Technol & Med, London, England. [Harder, K.; Mommsen, R. K.; Owen, M.; Peters, K.; Rich, P.; Schwanenberger, C.; Soeldner-Rembold, S.; Wyatt, T. R.; Yang, W. -C.] Univ Manchester, Manchester, Lancs, England. [Cheu, E.; Das, A.; Johns, K.; Tamburello, P.; Varnes, E. W.] Univ Arizona, Tucson, AZ 85721 USA. [Madaras, R. J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Hall, R. E.] Calif State Univ Fresno, Fresno, CA 93740 USA. [Chandra, A.; Ellison, J.; Heinson, A. P.; Li, L.; Wimpenny, S. J.] Univ Calif Riverside, Riverside, CA 92521 USA. [Adams, T.; Askew, A.; Atramentov, O.; Blessing, S.; Buchanan, N. J.; Carrera, E.; Duggan, D.; Gershtein, Y.; Hagopian, S.; Kau, D.; Prosper, H. B.; Sekaric, J.; Sumowidagdo, S.; Wahl, H. D.] Florida State Univ, Tallahassee, FL 32306 USA. [Aoki, M.; Bagby, L.; Baldin, B.; Bartlett, J. F.; Bellantoni, L.; Bellavance, A.; Bhat, P. C.; Boehnlein, A.; Bross, A.; Casey, B. C. K.; Cihangir, S.; Cooke, M.; Cooper, W. E.; Demarteau, M.; Denisov, D.; Desai, S.; Diehl, H. T.; Diesburg, M.; Elvira, V. D.; Fisher, W.; Fisk, H. E.; Fu, S.; Fuess, S.; Greenlee, H.; Gruenendahl, S.; Gutierrez, G.; Illingworth, R.; Ito, A. S.; Johnson, M.; Jonckheere, A.; Juste, A.; Kasper, P. A.; Khalatyan, N.; Klima, B.; Lee, W. M.; Li, Q. Z.; Lima, J. G. R.; Lincoln, D.; Lipton, R.; Lyon, A. L.; Mao, H. S.; Merritt, K. W.; Naimuddin, M.; O'Dell, V.; Oshima, N.; Otero y Garzon, G. J.; Podstavkov, V. M.; Rubinov, P.; Sanghi, B.; Savage, G.; Sirotenko, V.; Stutte, L.; Verzocchi, M.; Wang, M. H. L. S.; Weber, M.; Yamada, R.; Yasuda, T.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Adams, M.; Gerber, C. E.; Shabalina, E.; Varelas, N.] Univ Illinois, Chicago, IL 60607 USA. [Blazey, G.; Chakraborty, D.; Dyshkant, A.; Fortner, M.; Hedin, D.; Uzunyan, S.; Zutshi, V.] No Illinois Univ, De Kalb, IL 60115 USA. [Andeen, T.; Anzelc, M. S.; Buchholz, D.; Kirby, M. H.; Schellman, H.; Strom, D.; Yacoob, S.; Youn, S. W.] Northwestern Univ, Evanston, IL 60208 USA. [Evans, H.; Parua, N.; Rieger, J.; Van Kooten, R.; Welty-Rieger, L.; Zieminska, D.; Zieminski, A.] Indiana Univ, Bloomington, IN 47405 USA. [Chan, K. M.; Hildreth, M. D.; Lam, D.; Osta, J.; Pogorelov, Y.; Ruchti, R.; Smirnov, D.; Svoisky, P.; Warchol, J.; Wayne, M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Parashar, N.] Purdue Univ Calumet, Hammond, IN 46323 USA. [Hauptman, J. M.] Iowa State Univ, Ames, IA 50011 USA. [Baringer, P.; Bean, A.; Clutter, J.; Moulik, T.; Wilson, G. W.] Univ Kansas, Lawrence, KS 66045 USA. [Ahsan, M.; Bandurin, D. V.; Bolton, T. A.; Cuplov, V.; Ferapontov, A. V.; Maravin, Y.; Onoprienko, D.; Shamim, M.; Von Toerne, E.] Kansas State Univ, Manhattan, KS 66506 USA. [Arov, M.; Greenwood, Z. D.; Kalk, J. M.; Sawyer, L.; Steele, J.; Wobisch, M.] Louisiana Tech Univ, Ruston, LA 71272 USA. [Eno, S.; Hadley, N. J.; Jarvis, C.; Wang, L.; Wetstein, M.] Univ Maryland, College Pk, MD 20742 USA. [Boline, D.; Butler, J. M.; Cho, D. K.; Heintz, U.; Jabeen, S.] Boston Univ, Boston, MA 02215 USA. [Alverson, G.; Barberis, E.; Hesketh, G.; Reucroft, S.; Wood, D. R.] Northeastern Univ, Boston, MA 02115 USA. [Alton, A.; De La Cruz-Burelo, E.; Degenhardt, J. D.; Magerkurth, A.; Neal, H. A.; Qian, J.; Strandberg, J.; Zhou, B.] Univ Michigan, Ann Arbor, MI 48109 USA. [Abolins, M.; Benitez, J. A.; Brock, R.; Dyer, J.; Edmunds, D.; Geng, W.; Hall, I.; Hauser, R.; Kraus, J.; Linnemann, J.; Piper, J.; Pope, B. G.; Schwienhorst, R.; Unalan, R.] Michigan State Univ, E Lansing, MI 48824 USA. [Melnitchouk, A.; Quinn, B.] Univ Mississippi, University, MS 38677 USA. [Bloom, K.; Claes, D.; Dominguez, A.; Eads, M.; Malik, S.; Snow, G. R.] Univ Nebraska, Lincoln, NE 68588 USA. [Haley, J.; Schwartzman, A.; Tully, C.; Voutilainen, M.; Wagner, R.] Princeton Univ, Princeton, NJ 08544 USA. [Iashvili, I.; Kharchilava, A.; Kumar, A.; Strang, M. A.] SUNY Buffalo, Buffalo, NY 14260 USA. [Brooijmans, G.; Gadfort, T.; Haas, A.; Johnson, C.; Katsanos, I.; Khatidze, D.; Lammers, S.; Mitrevski, J.; Mulhearn, M.; Parsons, J.; Tuts, P. M.; Zivkovic, L.] Columbia Univ, New York, NY 10027 USA. [Cammin, J.; Demina, R.; Ferbel, T.; Garcia, C.; Ginther, G.; Harel, A.; Slattery, P.; Zielinski, M.] Univ Rochester, Rochester, NY 14627 USA. [Dong, H.; Grannis, P. D.; Guo, F.; Guo, J.; Herner, K.; Hobbs, J. D.; Hu, Y.; McCarthy, R.; Rijssenbeek, M.; Schamberger, R. D.; Strauss, E.; Tsybychev, D.; Zhu, J.] SUNY Stony Brook, Stony Brook, NY 11794 USA. [Begel, M.; Evdokimov, A.; Patwa, A.; Protopopescu, S.; Snyder, S.; Yip, K.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Snow, J.] Langston Univ, Langston, OK 73050 USA. [Abbott, B.; Gutierrez, P.; Hossain, S.; Jain, S.; Rominsky, M.; Severini, H.; Skubic, P.; Strauss, M.] Univ Oklahoma, Norman, OK 73019 USA. [Khanov, A.; Rizatdinova, F.] Oklahoma State Univ, Stillwater, OK 74078 USA. [Bose, T.; Christofek, L.; Cutts, D.; Enari, Y.; Landsberg, G.; Narain, M.; Pangilinan, M.; Partridge, R.; Xie, Y.; Yoo, H. D.] Brown Univ, Providence, RI 02912 USA. [Brandt, A.; De, K.; Kaushik, V.; Li, J.; Sosebee, M.; Spurlock, B.; White, A.; Yu, J.] Univ Texas Arlington, Arlington, TX 76019 USA. [Kehoe, R.; Renkel, P.] So Methodist Univ, Dallas, TX 75275 USA. [Bargassa, P.; Corcoran, M.; Mackin, D.; Padley, P.; Pawloski, G.] Rice Univ, Houston, TX 77005 USA. [Brown, D.; Buehler, M.; Hirosky, R.; Zelitch, S.] Univ Virginia, Charlottesville, VA 22901 USA. [Burnett, T. H.; Dorland, T.; Garcia-Bellido, A.; Goussiou, A.; Lubatti, H. J.; Mal, P. K.; Schlobohm, S.; Watts, G.; Zhao, T.] Univ Washington, Seattle, WA 98195 USA. RP Abazov, VM (reprint author), Joint Inst Nucl Res, Dubna, Russia. RI Fisher, Wade/N-4491-2013; Ancu, Lucian Stefan/F-1812-2010; Alves, Gilvan/C-4007-2013; Deliot, Frederic/F-3321-2014; Sharyy, Viatcheslav/F-9057-2014; Kupco, Alexander/G-9713-2014; Christoudias, Theodoros/E-7305-2015; KIM, Tae Jeong/P-7848-2015; Guo, Jun/O-5202-2015; Sznajder, Andre/L-1621-2016; Li, Liang/O-1107-2015; Mundim, Luiz/A-1291-2012; Boos, Eduard/D-9748-2012; bu, xuebing/D-1121-2012; Mercadante, Pedro/K-1918-2012; Yip, Kin/D-6860-2013; De, Kaushik/N-1953-2013; Novaes, Sergio/D-3532-2012; Merkin, Mikhail/D-6809-2012; Leflat, Alexander/D-7284-2012; Dudko, Lev/D-7127-2012; Perfilov, Maxim/E-1064-2012; Shivpuri, R K/A-5848-2010; Gutierrez, Phillip/C-1161-2011 OI Belanger-Champagne, Camille/0000-0003-2368-2617; Ancu, Lucian Stefan/0000-0001-5068-6723; Sharyy, Viatcheslav/0000-0002-7161-2616; Christoudias, Theodoros/0000-0001-9050-3880; KIM, Tae Jeong/0000-0001-8336-2434; Guo, Jun/0000-0001-8125-9433; Sznajder, Andre/0000-0001-6998-1108; Li, Liang/0000-0001-6411-6107; Mundim, Luiz/0000-0001-9964-7805; Yip, Kin/0000-0002-8576-4311; De, Kaushik/0000-0002-5647-4489; Novaes, Sergio/0000-0003-0471-8549; Dudko, Lev/0000-0002-4462-3192; NR 13 TC 19 Z9 19 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD OCT 31 PY 2008 VL 101 IS 18 AR 182001 DI 10.1103/PhysRevLett.101.182001 PG 7 WC Physics, Multidisciplinary SC Physics GA 367TD UT WOS:000260574600022 ER PT J AU Abazov, VM Abbott, B Abolins, M Acharya, BS Adams, M Adams, T Aguilo, E Ahn, SH Ahsan, M Alexeev, GD Alkhazov, G Alton, A Alverson, G Alves, GA Anastasoaie, M Ancu, LS Andeen, T Anderson, S Andrieu, B Anzelc, MS Aoki, M Arnoud, Y Arov, M Arthaud, M Askew, A Asman, B Jesus, ACSA Atramentov, O Avila, C Badaud, F Baden, A Bagby, L Baldin, B Bandurin, DV Banerjee, P Banerjee, S Barberis, E Barfuss, AF Bargassa, P Baringer, P Barreto, J Bartlett, JF Bassler, U Bauer, D Beale, S Bean, A Begalli, M Begel, M Belanger-Champagne, C Bellantoni, L Bellavance, A Benitez, JA Beri, SB Bernardi, G Bernhard, R Bertram, I Besancon, M Beuselinck, R Bezzubov, VA Bhat, PC Bhatnagar, V Biscarat, C Blazey, G Blekman, F Blessing, S Bloch, D Bloom, K Boehnlein, A Boline, D Bolton, TA Boos, EE Borissov, G Bose, T Brandt, A Brock, R Brooijmans, G Bross, A Brown, D Buchanan, NJ Buchholz, D Buehler, M Buescher, V Bunichev, V Burdin, S Burke, S Burnett, TH Buszello, CP Butler, JM Calfayan, P Calvet, S Cammin, J Carvalho, W Casey, BCK Castilla-Valdez, H Chakrabarti, S Chakraborty, D Chan, K Chan, KM Chandra, A Charles, F Cheu, E Chevallier, F Cho, DK Choi, S Choudhary, B Christofek, L Christoudias, T Cihangir, S Claes, D Clutter, J Cooke, M Cooper, WE Corcoran, M Couderc, F Cousinou, MC Crepe-Renaudin, S Cutts, D Cwiok, M Motta, H Das, A Davies, G De, K Jong, SJ La Cruz-Burelo, E Martins, CO Degenhardt, JD Deliot, F Demarteau, M Demina, R Denisov, D Denisov, SP Desai, S Diehl, HT Diesburg, M Dominguez, A Dong, H Dudko, LV Duflot, L Dugad, SR Duggan, D Duperrin, A Dyer, J Dyshkant, A Eads, M Edmunds, D Ellison, J Elvira, VD Enari, Y Eno, S Ermolov, P Evans, H Evdokimov, A Evdokimov, VN Ferapontov, AV Ferbel, T Fiedler, F Filthaut, F Fisher, W Fisk, HE Fortner, M Fox, H Fu, S Fuess, S Gadfort, T Galea, CF Gallas, E Garcia, C Garcia-Bellido, A Gavrilov, V Gay, P Geist, W Gele, D Gerber, CE Gershtein, Y Gillberg, D Ginther, G Gollub, N Gomez, B Goussiou, A Grannis, PD Greenlee, H Greenwood, ZD Gregores, EM Grenier, G Gris, P Grivaz, JF Grohsjean, A Grunendahl, S Grunewald, MW Guo, F Guo, J Gutierrez, G Gutierrez, P Haas, A Hadley, NJ Haefner, P Hagopian, S Haley, J Hall, I Hall, RE Han, L Harder, K Harel, A Hauptman, JM Hauser, R Hays, J Hebbeker, T Hedin, D Hegeman, JG Heinson, AP Heintz, U Hensel, C Herner, K Hesketh, G Hildreth, MD Hirosky, R Hobbs, JD Hoeneisen, B Hoeth, H Hohlfeld, M Hong, SJ Hossain, S Houben, P Hu, Y Hubacek, Z Hynek, V Iashvili, I Illingworth, R Ito, AS Jabeen, S Jaffre, M Jain, S Jakobs, K Jarvis, C Jesik, R Johns, K Johnson, C Johnson, M Jonckheere, A Jonsson, P Juste, A Kajfasz, E Kalk, JM Karmanov, D Kasper, PA Katsanos, I Kau, D Kaushik, V Kehoe, R Kermiche, S Khalatyan, N Khanov, A Kharchilava, A Kharzheev, YM Khatidze, D Kim, TJ Kirby, MH Kirsch, M Klima, B Kohli, JM Konrath, JP Kozelov, AV Kraus, J Krop, D Kuhl, T Kumar, A Kupco, A Kurca, T Kuzmin, VA Kvita, J Lacroix, F Lam, D Lammers, S Landsberg, G Lebrun, P Lee, WM Leflat, A Lellouch, J Leveque, J Li, J Li, L Li, QZ Lietti, SM Lima, JGR Lincoln, D Linnemann, J Lipaev, VV Lipton, R Liu, Y Liu, Z Lobodenko, A Lokajicek, M Love, P Lubatti, HJ Luna, R Lyon, AL Maciel, AKA Mackin, D Madaras, RJ Mattig, P Magass, C Magerkurth, A Mal, PK Malbouisson, HB Malik, S Malyshev, VL Mao, HS Maravin, Y Martin, B McCarthy, R Melnitchouk, A Mendoza, L Mercadante, PG Merkin, M Merritt, KW Meyer, A Meyer, J Millet, T Mitrevski, J Mommsen, RK Mondal, NK Moore, RW Moulik, T Muanza, GS Mulhearn, M Mundal, O Mundim, L Nagy, E Naimuddin, M Narain, M Naumann, NA Neal, HA Negret, JP Neustroev, P Nilsen, H Nogima, H Novaes, SF Nunnemann, T O'Dell, V O'Neil, DC Obrant, G Ochando, C Onoprienko, D Oshima, N Osman, N Osta, J Otec, R Garzon, GJY Owen, M Padley, P Pangilinan, M Parashar, N Park, SJ Park, SK Parsons, J Partridge, R Parua, N Patwa, A Pawloski, G Penning, B Perfilov, M Peters, K Peters, Y Petroff, P Petteni, M Piegaia, R Piper, J Pleier, MA Podesta-Lerma, PLM Podstavkov, VM Pogorelov, Y Pol, ME Polozov, P Pope, BG Popov, AV Potter, C da Silva, WL Prosper, HB Protopopescu, S Qian, J Quadt, A Quinn, B Rakitine, A Rangel, MS Ranjan, K Ratoff, PN Renkel, P Reucroft, S Rich, P Rieger, J Rijssenbeek, M Ripp-Baudot, I Rizatdinova, F Robinson, S Rodrigues, RF Rominsky, M Royon, C Rubinov, P Ruchti, R Safronov, G Sajot, G Sanchez-Hernandez, A Sanders, MP Sanghi, B Santoro, A Savage, G Sawyer, L Scanlon, T Schaile, D Schamberger, RD Scheglov, Y Schellman, H Schliephake, T Schwanenberger, C Schwartzman, A Schwienhorst, R Sekaric, J Severini, H Shabalina, E Shamim, M Shary, V Shchukin, AA Shivpuri, RK Siccardi, V Simak, V Sirotenko, V Skubic, P Slattery, P Smirnov, D Snow, GR Snow, J Snyder, S Soldner-Rembold, S Sonnenschein, L Sopczak, A Sosebee, M Soustruznik, K Spurlock, B Stark, J Steele, J Stolin, V Stoyanova, DA Strandberg, J Strandberg, S Strang, MA Strauss, E Strauss, M Strohmer, R Strom, D Stutte, L Sumowidagdo, S Svoisky, P Sznajder, A Tamburello, P Tanasijczuk, A Taylor, W Temple, J Tiller, B Tissandier, F Titov, M Tokmenin, VV Toole, T Torchiani, I Trefzger, T Tsybychev, D Tuchming, B Tully, C Tuts, PM Unalan, R Uvarov, L Uvarov, S Uzunyan, S Vachon, B van den Berg, PJ Van Kooten, R van Leeuwen, WM Varelas, N Varnes, EW Vasilyev, IA Vaupel, M Verdier, P Vertogradov, LS Verzocchi, M Villeneuve-Seguier, F Vint, P Vokac, P Toerne, E Voutilainen, M Wagner, R Wahl, HD Wang, L Wang, MHLS Warchol, J Watts, G Wayne, M Weber, G Weber, M Welty-Rieger, L Wenger, A Wermes, N Wetstein, M White, A Wicke, D Wilson, GW Wimpenny, SJ Wobisch, M Wood, DR Wyatt, TR Xie, Y Yacoob, S Yamada, R Yan, M Yasuda, T Yatsunenko, YA Yip, K Yoo, HD Youn, SW Yu, J Zeitnitz, C Zhao, T Zhou, B Zhu, J Zielinski, M Zieminska, D Zieminski, A Zivkovic, L Zutshi, V Zverev, EG AF Abazov, V. M. Abbott, B. Abolins, M. Acharya, B. S. Adams, M. Adams, T. Aguilo, E. Ahn, S. H. Ahsan, M. Alexeev, G. D. Alkhazov, G. Alton, A. Alverson, G. Alves, G. A. Anastasoaie, M. Ancu, L. S. Andeen, T. Anderson, S. Andrieu, B. Anzelc, M. S. Aoki, M. Arnoud, Y. Arov, M. Arthaud, M. Askew, A. Asman, B. Jesus, A. C. S. Assis Atramentov, O. Avila, C. Badaud, F. Baden, A. Bagby, L. Baldin, B. Bandurin, D. V. Banerjee, P. Banerjee, S. Barberis, E. Barfuss, A. -F. Bargassa, P. Baringer, P. Barreto, J. Bartlett, J. F. Bassler, U. Bauer, D. Beale, S. Bean, A. Begalli, M. Begel, M. Belanger-Champagne, C. Bellantoni, L. Bellavance, A. Benitez, J. A. Beri, S. B. Bernardi, G. Bernhard, R. Bertram, I. Besancon, M. Beuselinck, R. Bezzubov, V. A. Bhat, P. C. Bhatnagar, V. Biscarat, C. Blazey, G. Blekman, F. Blessing, S. Bloch, D. Bloom, K. Boehnlein, A. Boline, D. Bolton, T. A. Boos, E. E. Borissov, G. Bose, T. Brandt, A. Brock, R. Brooijmans, G. Bross, A. Brown, D. Buchanan, N. J. Buchholz, D. Buehler, M. Buescher, V. Bunichev, V. Burdin, S. Burke, S. Burnett, T. H. Buszello, C. P. Butler, J. M. Calfayan, P. Calvet, S. Cammin, J. Carvalho, W. Casey, B. C. K. Castilla-Valdez, H. Chakrabarti, S. Chakraborty, D. Chan, K. Chan, K. M. Chandra, A. Charles, F. Cheu, E. Chevallier, F. Cho, D. K. Choi, S. Choudhary, B. Christofek, L. Christoudias, T. Cihangir, S. Claes, D. Clutter, J. Cooke, M. Cooper, W. E. Corcoran, M. Couderc, F. Cousinou, M. -C. Crepe-Renaudin, S. Cutts, D. Cwiok, M. da Motta, H. Das, A. Davies, G. De, K. de Jong, S. J. De La Cruz-Burelo, E. De Oliveira Martins, C. Degenhardt, J. D. Deliot, F. Demarteau, M. Demina, R. Denisov, D. Denisov, S. P. Desai, S. Diehl, H. T. Diesburg, M. Dominguez, A. Dong, H. Dudko, L. V. Duflot, L. Dugad, S. R. Duggan, D. Duperrin, A. Dyer, J. Dyshkant, A. Eads, M. Edmunds, D. Ellison, J. Elvira, V. D. Enari, Y. Eno, S. Ermolov, P. Evans, H. Evdokimov, A. Evdokimov, V. N. Ferapontov, A. V. Ferbel, T. Fiedler, F. Filthaut, F. Fisher, W. Fisk, H. E. Fortner, M. Fox, H. Fu, S. Fuess, S. Gadfort, T. Galea, C. F. Gallas, E. Garcia, C. Garcia-Bellido, A. Gavrilov, V. Gay, P. Geist, W. Gele, D. Gerber, C. E. Gershtein, Y. Gillberg, D. Ginther, G. Gollub, N. Gomez, B. Goussiou, A. Grannis, P. D. Greenlee, H. Greenwood, Z. D. Gregores, E. M. Grenier, G. Gris, Ph. Grivaz, J. -F. Grohsjean, A. Gruenendahl, S. Gruenewald, M. W. Guo, F. Guo, J. Gutierrez, G. Gutierrez, P. Haas, A. Hadley, N. J. Haefner, P. Hagopian, S. Haley, J. Hall, I. Hall, R. E. Han, L. Harder, K. Harel, A. Hauptman, J. M. Hauser, R. Hays, J. Hebbeker, T. Hedin, D. Hegeman, J. G. Heinson, A. P. Heintz, U. Hensel, C. Herner, K. Hesketh, G. Hildreth, M. D. Hirosky, R. Hobbs, J. D. Hoeneisen, B. Hoeth, H. Hohlfeld, M. Hong, S. J. Hossain, S. Houben, P. Hu, Y. Hubacek, Z. Hynek, V. Iashvili, I. Illingworth, R. Ito, A. S. Jabeen, S. Jaffre, M. Jain, S. Jakobs, K. Jarvis, C. Jesik, R. Johns, K. Johnson, C. Johnson, M. Jonckheere, A. Jonsson, P. Juste, A. Kajfasz, E. Kalk, J. M. Karmanov, D. Kasper, P. A. Katsanos, I. Kau, D. Kaushik, V. Kehoe, R. Kermiche, S. Khalatyan, N. Khanov, A. Kharchilava, A. Kharzheev, Y. M. Khatidze, D. Kim, T. J. Kirby, M. H. Kirsch, M. Klima, B. Kohli, J. M. Konrath, J. -P. Kozelov, A. V. Kraus, J. Krop, D. Kuhl, T. Kumar, A. Kupco, A. Kurca, T. Kuzmin, V. A. Kvita, J. Lacroix, F. Lam, D. Lammers, S. Landsberg, G. Lebrun, P. Lee, W. M. Leflat, A. Lellouch, J. Leveque, J. Li, J. Li, L. Li, Q. Z. Lietti, S. M. Lima, J. G. R. Lincoln, D. Linnemann, J. Lipaev, V. V. Lipton, R. Liu, Y. Liu, Z. Lobodenko, A. Lokajicek, M. Love, P. Lubatti, H. J. Luna, R. Lyon, A. L. Maciel, A. K. A. Mackin, D. Madaras, R. J. Maettig, P. Magass, C. Magerkurth, A. Mal, P. K. Malbouisson, H. B. Malik, S. Malyshev, V. L. Mao, H. S. Maravin, Y. Martin, B. McCarthy, R. Melnitchouk, A. Mendoza, L. Mercadante, P. G. Merkin, M. Merritt, K. W. Meyer, A. Meyer, J. Millet, T. Mitrevski, J. Mommsen, R. K. Mondal, N. K. Moore, R. W. Moulik, T. Muanza, G. S. Mulhearn, M. Mundal, O. Mundim, L. Nagy, E. Naimuddin, M. Narain, M. Naumann, N. A. Neal, H. A. Negret, J. P. Neustroev, P. Nilsen, H. Nogima, H. Novaes, S. F. Nunnemann, T. O'Dell, V. O'Neil, D. C. Obrant, G. Ochando, C. Onoprienko, D. Oshima, N. Osman, N. Osta, J. Otec, R. Otero y Garzon, G. J. Owen, M. Padley, P. Pangilinan, M. Parashar, N. Park, S. -J. Park, S. K. Parsons, J. Partridge, R. Parua, N. Patwa, A. Pawloski, G. Penning, B. Perfilov, M. Peters, K. Peters, Y. Petroff, P. Petteni, M. Piegaia, R. Piper, J. Pleier, M. -A. Podesta-Lerma, P. L. M. Podstavkov, V. M. Pogorelov, Y. Pol, M. -E. Polozov, P. Pope, B. G. Popov, A. V. Potter, C. Prado da Silva, W. L. Prosper, H. B. Protopopescu, S. Qian, J. Quadt, A. Quinn, B. Rakitine, A. Rangel, M. S. Ranjan, K. Ratoff, P. N. Renkel, P. Reucroft, S. Rich, P. Rieger, J. Rijssenbeek, M. Ripp-Baudot, I. Rizatdinova, F. Robinson, S. Rodrigues, R. F. Rominsky, M. Royon, C. Rubinov, P. Ruchti, R. Safronov, G. Sajot, G. Sanchez-Hernandez, A. Sanders, M. P. Sanghi, B. Santoro, A. Savage, G. Sawyer, L. Scanlon, T. Schaile, D. Schamberger, R. D. Scheglov, Y. Schellman, H. Schliephake, T. Schwanenberger, C. Schwartzman, A. Schwienhorst, R. Sekaric, J. Severini, H. Shabalina, E. Shamim, M. Shary, V. Shchukin, A. A. Shivpuri, R. K. Siccardi, V. Simak, V. Sirotenko, V. Skubic, P. Slattery, P. Smirnov, D. Snow, G. R. Snow, J. Snyder, S. Soldner-Rembold, S. Sonnenschein, L. Sopczak, A. Sosebee, M. Soustruznik, K. Spurlock, B. Stark, J. Steele, J. Stolin, V. Stoyanova, D. A. Strandberg, J. Strandberg, S. Strang, M. A. Strauss, E. Strauss, M. Stroehmer, R. Strom, D. Stutte, L. Sumowidagdo, S. Svoisky, P. Sznajder, A. Tamburello, P. Tanasijczuk, A. Taylor, W. Temple, J. Tiller, B. Tissandier, F. Titov, M. Tokmenin, V. V. Toole, T. Torchiani, I. Trefzger, T. Tsybychev, D. Tuchming, B. Tully, C. Tuts, P. M. Unalan, R. Uvarov, L. Uvarov, S. Uzunyan, S. Vachon, B. van den Berg, P. J. Van Kooten, R. van Leeuwen, W. M. Varelas, N. Varnes, E. W. Vasilyev, I. A. Vaupel, M. Verdier, P. Vertogradov, L. S. Verzocchi, M. Villeneuve-Seguier, F. Vint, P. Vokac, P. Von Toerne, E. Voutilainen, M. Wagner, R. Wahl, H. D. Wang, L. Wang, M. H. L. S. Warchol, J. Watts, G. Wayne, M. Weber, G. Weber, M. Welty-Rieger, L. Wenger, A. Wermes, N. Wetstein, M. White, A. Wicke, D. Wilson, G. W. Wimpenny, S. J. Wobisch, M. Wood, D. R. Wyatt, T. R. Xie, Y. Yacoob, S. Yamada, R. Yan, M. Yasuda, T. Yatsunenko, Y. A. Yip, K. Yoo, H. D. Youn, S. W. Yu, J. Zeitnitz, C. Zhao, T. Zhou, B. Zhu, J. Zielinski, M. Zieminska, D. Zieminski, A. Zivkovic, L. Zutshi, V. Zverev, E. G. TI Measurement of the Polarization of the Upsilon(1S) and Upsilon(2S) States in pp Collisions at s=1.96 TeV SO PHYSICAL REVIEW LETTERS LA English DT Article ID OCTET QUARKONIA PRODUCTION; PHYSICS AB We present a study of the polarization of the Upsilon(1S) and Upsilon(2S) states using a 1.3 fb(-1) data sample collected by the D0 experiment in 2002-2006 during run II of the Fermilab Tevatron Collider. We measure the polarization parameter alpha=(sigma(T)-2 sigma(L))/(sigma(T)+2 sigma(L)), where sigma(T) and sigma(L) are the transversely and longitudinally polarized components of the production cross section, as a function of the transverse momentum (p(T)(Upsilon)) for the Upsilon(1S) and Upsilon(2S). Significant p(T)(Upsilon)-dependent longitudinal polarization is observed for the Upsilon(1S). A comparison with theoretical models is presented. C1 [Abazov, V. M.; Alexeev, G. D.; Kharzheev, Y. M.; Malyshev, V. L.; Tokmenin, V. V.; Vertogradov, L. S.; Yatsunenko, Y. A.] Joint Inst Nucl Res, Dubna, Russia. [Piegaia, R.; Tanasijczuk, A.] Univ Buenos Aires, Buenos Aires, DF, Argentina. [Alves, G. A.; Barreto, J.; da Motta, H.; Maciel, A. K. A.; Pol, M. -E.; Rangel, M. S.] LAFEX, Ctr Brasileiro Pesquisas Fis, Rio De Janeiro, Brazil. [Jesus, A. C. S. Assis; Begalli, M.; Carvalho, W.; De Oliveira Martins, C.; Luna, R.; Malbouisson, H. B.; Mundim, L.; Nogima, H.; Prado da Silva, W. L.; Rodrigues, R. F.; Santoro, A.; Sznajder, A.] Univ Estado Rio de Janeiro, BR-20550011 Rio De Janeiro, Brazil. [Gregores, E. M.] Univ Fed ABC, Santo Andre, Brazil. [Lietti, S. M.; Mercadante, P. G.; Novaes, S. F.] Univ Estadual Paulista, Inst Fis Teor, BR-01405 Sao Paulo, Brazil. [Aguilo, E.; Beale, S.; Chan, K.; Gillberg, D.; Liu, Z.; Moore, R. W.; O'Neil, D. C.; Potter, C.; Taylor, W.; Vachon, B.] Univ Alberta, Edmonton, AB, Canada. [Aguilo, E.; Beale, S.; Chan, K.; Gillberg, D.; Liu, Z.; Moore, R. W.; O'Neil, D. C.; Potter, C.; Taylor, W.; Vachon, B.] Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada. [Aguilo, E.; Beale, S.; Chan, K.; Gillberg, D.; Liu, Z.; Moore, R. W.; O'Neil, D. C.; Potter, C.; Taylor, W.; Vachon, B.] York Univ, Toronto, ON M3J 2R7, Canada. [Aguilo, E.; Beale, S.; Chan, K.; Gillberg, D.; Liu, Z.; Moore, R. W.; O'Neil, D. C.; Potter, C.; Taylor, W.; Vachon, B.] McGill Univ, Montreal, PQ, Canada. [Han, L.; Liu, Y.] Univ Sci & Technol China, Hefei 230026, Peoples R China. [Avila, C.; Gomez, B.; Negret, J. P.] Univ Los Andes, Bogota, Colombia. [Hynek, V.; Kvita, J.; Soustruznik, K.] Charles Univ Prague, Ctr Particle Phys, Prague, Czech Republic. [Hubacek, Z.; Otec, R.; Simak, V.; Vokac, P.] Czech Tech Univ, CR-16635 Prague, Czech Republic. [Kupco, A.; Lokajicek, M.] Acad Sci Czech Republic, Inst Phys, Ctr Particle Phys, Prague, Czech Republic. [Hoeneisen, B.] Univ San Francisco Quito, Quito, Ecuador. [Badaud, F.; Gay, P.; Gris, Ph.; Lacroix, F.; Tissandier, F.] Univ Clermont Ferrand, LPC, CNRS, IN2P3, Clermont, France. [Arnoud, Y.; Chevallier, F.; Crepe-Renaudin, S.; Martin, B.; Sajot, G.; Stark, J.] Univ Grenoble 1, CNRS, LPSC, IN2P3,Inst Natl Polytech Grenoble, Grenoble, France. [Barfuss, A. -F.; Cousinou, M. -C.; Duperrin, A.; Kajfasz, E.; Kermiche, S.; Nagy, E.] Aix Marseille Univ, CPPM, CNRS, IN2P3, Marseille, France. [Calvet, S.; Duflot, L.; Grivaz, J. -F.; Jaffre, M.; Ochando, C.; Petroff, P.] Univ Paris 11, LAL, IN2P3, CNRS, Orsay, France. [Andrieu, B.; Bernardi, G.; Lellouch, J.; Sanders, M. P.; Sonnenschein, L.] Univ Paris 06, CNRS, IN2P3, LPNHE, Paris, France. [Andrieu, B.; Bernardi, G.; Lellouch, J.; Sanders, M. P.; Sonnenschein, L.] Univ Paris 07, CNRS, IN2P3, LPNHE, Paris, France. [Arthaud, M.; Bassler, U.; Besancon, M.; Chakrabarti, S.; Couderc, F.; Deliot, F.; Royon, C.; Shary, V.; Titov, M.; Tuchming, B.] CEA, DAPNIA, Serv Phys Particules, Saclay, France. [Bloch, D.; Charles, F.; Geist, W.; Gele, D.; Ripp-Baudot, I.; Siccardi, V.] Univ Strasbourg 1, IPHC, Strasbourg, France. [Bloch, D.; Charles, F.; Geist, W.; Gele, D.; Ripp-Baudot, I.; Siccardi, V.] Univ Haute Alsace, CNRS, IN2P3, Strasbourg, France. [Biscarat, C.; Grenier, G.; Kurca, T.; Lebrun, P.; Millet, T.; Muanza, G. S.; Verdier, P.] Univ Lyon 1, CNRS, IN2P3, IPNL, F-69622 Villeurbanne, France. [Biscarat, C.; Grenier, G.; Kurca, T.; Lebrun, P.; Millet, T.; Muanza, G. S.; Verdier, P.] Univ Lyon, Lyon, France. [Hebbeker, T.; Kirsch, M.; Magass, C.; Meyer, A.] Rhein Westfal TH Aachen, Phys Inst A 3, Aachen, Germany. [Buescher, V.; Hensel, C.; Hohlfeld, M.; Meyer, J.; Mundal, O.; Park, S. -J.; Pleier, M. -A.; Quadt, A.; Wermes, N.] Univ Bonn, Inst Phys, D-5300 Bonn, Germany. [Bernhard, R.; Jakobs, K.; Konrath, J. -P.; Nilsen, H.; Penning, B.; Torchiani, I.; Wenger, A.] Univ Freiburg, Inst Phys, Freiburg, Germany. [Fiedler, F.; Kuhl, T.; Trefzger, T.; Weber, G.] Johannes Gutenberg Univ Mainz, Inst Phys, D-6500 Mainz, Germany. [Calfayan, P.; Grohsjean, A.; Haefner, P.; Nunnemann, T.; Schaile, D.; Stroehmer, R.; Tiller, B.] Univ Munich, Munich, Germany. [Hoeth, H.; Maettig, P.; Peters, Y.; Schliephake, T.; Vaupel, M.; Wicke, D.; Zeitnitz, C.] Univ Wuppertal, Fachbereich Phys, Wuppertal, Germany. [Beri, S. B.; Bhatnagar, V.; Kohli, J. M.] Panjab Univ, Chandigarh 160014, India. [Choudhary, B.; Ranjan, K.; Shivpuri, R. K.] Univ Delhi, Delhi 110007, India. [Acharya, B. S.; Banerjee, P.; Banerjee, S.; Dugad, S. R.; Mondal, N. K.] Tata Inst Fundamental Res, Mumbai 400005, Maharashtra, India. [Cwiok, M.; Gruenewald, M. W.] Univ Coll Dublin, Dublin 2, Ireland. [Ahn, S. H.; Hong, S. J.; Kim, T. J.; Park, S. K.] Korea Univ, Korea Detector Lab, Seoul, South Korea. [Choi, S.] Sungkyunkwan Univ, Suwon, South Korea. [Castilla-Valdez, H.; Podesta-Lerma, P. L. M.; Sanchez-Hernandez, A.] CINVESTAV, Mexico City 14000, DF, Mexico. [Hegeman, J. G.; Houben, P.; van den Berg, P. J.; van Leeuwen, W. M.] Univ Amsterdam, NIKHEF, Amsterdam, Netherlands. [Hegeman, J. G.; Houben, P.; van den Berg, P. J.; van Leeuwen, W. M.] NIKHEF, FOM Inst, Amsterdam, Netherlands. [Anastasoaie, M.; Ancu, L. S.; de Jong, S. J.; Filthaut, F.; Galea, C. F.; Naumann, N. A.] Radboud Univ Nijmegen, NIKHEF, NL-6525 ED Nijmegen, Netherlands. [Gavrilov, V.; Polozov, P.; Safronov, G.; Stolin, V.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Boos, E. E.; Bunichev, V.; Dudko, L. V.; Ermolov, P.; Karmanov, D.; Kuzmin, V. A.; Leflat, A.; Merkin, M.; Perfilov, M.; Zverev, E. G.] Moscow MV Lomonosov State Univ, Moscow, Russia. [Bezzubov, V. A.; Denisov, S. P.; Evdokimov, V. N.; Kozelov, A. V.; Lipaev, V. V.; Popov, A. V.; Shchukin, A. A.; Stoyanova, D. A.; Vasilyev, I. A.] Inst High Energy Phys, Protvino, Russia. [Alkhazov, G.; Lobodenko, A.; Neustroev, P.; Obrant, G.; Scheglov, Y.; Uvarov, L.; Uvarov, S.] Petersburg Nucl Phys Inst, St Petersburg, Russia. [Asman, B.; Belanger-Champagne, C.; Gollub, N.; Strandberg, S.] Lund Univ, Lund, Sweden. [Asman, B.; Belanger-Champagne, C.; Gollub, N.; Strandberg, S.] Stockholm Univ, S-10691 Stockholm, Sweden. [Asman, B.; Belanger-Champagne, C.; Gollub, N.; Strandberg, S.] Royal Inst Technol, Stockholm, Sweden. [Asman, B.; Belanger-Champagne, C.; Gollub, N.; Strandberg, S.] Uppsala Univ, Uppsala, Sweden. [Bertram, I.; Borissov, G.; Burdin, S.; Fox, H.; Love, P.; Rakitine, A.; Ratoff, P. N.; Sopczak, A.] Univ Lancaster, Lancaster, England. [Bauer, D.; Beuselinck, R.; Blekman, F.; Buszello, C. P.; Christoudias, T.; Davies, G.; Hays, J.; Jesik, R.; Jonsson, P.; Osman, N.; Petteni, M.; Robinson, S.; Scanlon, T.; Villeneuve-Seguier, F.; Vint, P.] Univ London Imperial Coll Sci Technol & Med, London, England. [Harder, K.; Mommsen, R. K.; Owen, M.; Peters, K.; Rich, P.; Schwanenberger, C.; Soldner-Rembold, S.; Wyatt, T. R.] Univ Manchester, Manchester, Lancs, England. [Anderson, S.; Burke, S.; Cheu, E.; Das, A.; Johns, K.; Leveque, J.; Tamburello, P.; Temple, J.; Varnes, E. W.] Univ Arizona, Tucson, AZ 85721 USA. [Madaras, R. J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Hall, R. E.] Calif State Univ Fresno, Fresno, CA 93740 USA. [Chandra, A.; Ellison, J.; Heinson, A. P.; Li, L.; Wimpenny, S. J.] Univ Calif Riverside, Riverside, CA 92521 USA. [Adams, T.; Askew, A.; Atramentov, O.; Blessing, S.; Buchanan, N. J.; Duggan, D.; Gershtein, Y.; Hagopian, S.; Kau, D.; Prosper, H. B.; Sekaric, J.; Sumowidagdo, S.; Wahl, H. D.] Florida State Univ, Tallahassee, FL 32306 USA. [Aoki, M.; Bagby, L.; Baldin, B.; Bartlett, J. F.; Bellantoni, L.; Bellavance, A.; Bhat, P. C.; Boehnlein, A.; Bross, A.; Casey, B. C. K.; Cihangir, S.; Cooper, W. E.; Demarteau, M.; Denisov, D.; Desai, S.; Diehl, H. T.; Diesburg, M.; Elvira, V. D.; Fisher, W.; Fisk, H. E.; Fu, S.; Fuess, S.; Gallas, E.; Greenlee, H.; Gruenendahl, S.; Gutierrez, G.; Illingworth, R.; Ito, A. S.; Johnson, M.; Jonckheere, A.; Juste, A.; Kasper, P. A.; Khalatyan, N.; Klima, B.; Lee, W. M.; Li, Q. Z.; Lincoln, D.; Lipton, R.; Lyon, A. L.; Mao, H. S.; Merritt, K. W.; Naimuddin, M.; O'Dell, V.; Oshima, N.; Otero y Garzon, G. J.; Podstavkov, V. M.; Rubinov, P.; Sanghi, B.; Savage, G.; Sirotenko, V.; Stutte, L.; Verzocchi, M.; Wang, M. H. L. S.; Weber, M.; Yamada, R.; Yasuda, T.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Adams, M.; Gerber, C. E.; Shabalina, E.; Varelas, N.] Univ Illinois, Chicago, IL 60607 USA. [Blazey, G.; Chakraborty, D.; Dyshkant, A.; Fortner, M.; Hedin, D.; Lima, J. G. R.; Uzunyan, S.; Zutshi, V.] No Illinois Univ, De Kalb, IL 60115 USA. [Andeen, T.; Anzelc, M. S.; Buchholz, D.; Kirby, M. H.; Schellman, H.; Strom, D.; Yacoob, S.; Youn, S. W.] Northwestern Univ, Evanston, IL 60208 USA. [Evans, H.; Krop, D.; Parua, N.; Rieger, J.; Van Kooten, R.; Welty-Rieger, L.; Zieminska, D.; Zieminski, A.] Indiana Univ, Bloomington, IN 47405 USA. [Chan, K. M.; Hildreth, M. D.; Lam, D.; Osta, J.; Pogorelov, Y.; Ruchti, R.; Smirnov, D.; Svoisky, P.; Warchol, J.; Wayne, M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Parashar, N.] Purdue Univ Calumet, Hammond, IN 46323 USA. [Hauptman, J. M.] Iowa State Univ, Ames, IA 50011 USA. [Baringer, P.; Bean, A.; Clutter, J.; Moulik, T.; Wilson, G. W.] Univ Kansas, Lawrence, KS 66045 USA. [Ahsan, M.; Bandurin, D. V.; Bolton, T. A.; Ferapontov, A. V.; Maravin, Y.; Onoprienko, D.; Shamim, M.; Von Toerne, E.] Kansas State Univ, Manhattan, KS 66506 USA. [Arov, M.; Greenwood, Z. D.; Kalk, J. M.; Sawyer, L.; Steele, J.; Wobisch, M.] Louisiana Tech Univ, Ruston, LA 71272 USA. [Baden, A.; Eno, S.; Hadley, N. J.; Jarvis, C.; Toole, T.; Wang, L.; Wetstein, M.; Yan, M.] Univ Maryland, College Pk, MD 20742 USA. [Boline, D.; Butler, J. M.; Cho, D. K.; Heintz, U.; Jabeen, S.] Boston Univ, Boston, MA 02215 USA. [Alverson, G.; Barberis, E.; Hesketh, G.; Reucroft, S.; Wood, D. R.] Northeastern Univ, Boston, MA 02115 USA. [Alton, A.; De La Cruz-Burelo, E.; Degenhardt, J. D.; Magerkurth, A.; Neal, H. A.; Qian, J.; Strandberg, J.; Zhou, B.] Univ Michigan, Ann Arbor, MI 48109 USA. [Abolins, M.; Benitez, J. A.; Brock, R.; Dyer, J.; Edmunds, D.; Hall, I.; Hauser, R.; Kraus, J.; Linnemann, J.; Piper, J.; Pope, B. G.; Schwienhorst, R.; Unalan, R.] Michigan State Univ, E Lansing, MI 48824 USA. [Melnitchouk, A.; Quinn, B.] Univ Mississippi, University, MS 38677 USA. [Bloom, K.; Claes, D.; Dominguez, A.; Eads, M.; Malik, S.; Snow, G. R.] Univ Nebraska, Lincoln, NE 68588 USA. [Haley, J.; Schwartzman, A.; Tully, C.; Voutilainen, M.; Wagner, R.] Princeton Univ, Princeton, NJ 08544 USA. [Iashvili, I.; Kharchilava, A.; Kumar, A.; Strang, M. A.] SUNY Buffalo, Buffalo, NY 14260 USA. [Brooijmans, G.; Gadfort, T.; Haas, A.; Johnson, C.; Katsanos, I.; Khatidze, D.; Lammers, S.; Mitrevski, J.; Mulhearn, M.; Parsons, J.; Tuts, P. M.; Zivkovic, L.] Columbia Univ, New York, NY 10027 USA. [Cammin, J.; Demina, R.; Ferbel, T.; Garcia, C.; Ginther, G.; Harel, A.; Slattery, P.; Zielinski, M.] Univ Rochester, Rochester, NY 14627 USA. [Dong, H.; Grannis, P. D.; Guo, F.; Guo, J.; Herner, K.; Hobbs, J. D.; Hu, Y.; McCarthy, R.; Rijssenbeek, M.; Schamberger, R. D.; Strauss, E.; Tsybychev, D.; Zhu, J.] SUNY Stony Brook, Stony Brook, NY 11794 USA. [Begel, M.; Evdokimov, A.; Patwa, A.; Protopopescu, S.; Snyder, S.; Yip, K.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Snow, J.] Langston Univ, Langston, OK 73050 USA. [Abbott, B.; Gutierrez, P.; Hossain, S.; Jain, S.; Rominsky, M.; Severini, H.; Skubic, P.; Strauss, M.] Univ Oklahoma, Norman, OK 73019 USA. [Khanov, A.; Rizatdinova, F.] Oklahoma State Univ, Stillwater, OK 74078 USA. [Bose, T.; Christofek, L.; Cutts, D.; Enari, Y.; Landsberg, G.; Narain, M.; Pangilinan, M.; Partridge, R.; Xie, Y.; Yoo, H. D.] Brown Univ, Providence, RI 02912 USA. [Brandt, A.; De, K.; Kaushik, V.; Li, J.; Sosebee, M.; Spurlock, B.; White, A.; Yu, J.] Univ Texas Arlington, Arlington, TX 76019 USA. [Kehoe, R.; Renkel, P.] So Methodist Univ, Dallas, TX 75275 USA. [Bargassa, P.; Cooke, M.; Corcoran, M.; Mackin, D.; Padley, P.; Pawloski, G.] Rice Univ, Houston, TX 77005 USA. [Brown, D.; Buehler, M.; Hirosky, R.] Univ Virginia, Charlottesville, VA 22901 USA. [Burnett, T. H.; Garcia-Bellido, A.; Goussiou, A.; Lubatti, H. J.; Mal, P. K.; Watts, G.; Zhao, T.] Univ Washington, Seattle, WA 98195 USA. RP Abazov, VM (reprint author), Joint Inst Nucl Res, Dubna, Russia. RI Merkin, Mikhail/D-6809-2012; Perfilov, Maxim/E-1064-2012; De, Kaushik/N-1953-2013; Fisher, Wade/N-4491-2013; Ancu, Lucian Stefan/F-1812-2010; Alves, Gilvan/C-4007-2013; Santoro, Alberto/E-7932-2014; Deliot, Frederic/F-3321-2014; Sharyy, Viatcheslav/F-9057-2014; Kupco, Alexander/G-9713-2014; Christoudias, Theodoros/E-7305-2015; KIM, Tae Jeong/P-7848-2015; Guo, Jun/O-5202-2015; Sznajder, Andre/L-1621-2016; Li, Liang/O-1107-2015; Shivpuri, R K/A-5848-2010; Gutierrez, Phillip/C-1161-2011; Dudko, Lev/D-7127-2012; Leflat, Alexander/D-7284-2012; Boos, Eduard/D-9748-2012; Novaes, Sergio/D-3532-2012; Mercadante, Pedro/K-1918-2012; Mundim, Luiz/A-1291-2012; Yip, Kin/D-6860-2013 OI De, Kaushik/0000-0002-5647-4489; Ancu, Lucian Stefan/0000-0001-5068-6723; Sharyy, Viatcheslav/0000-0002-7161-2616; Christoudias, Theodoros/0000-0001-9050-3880; KIM, Tae Jeong/0000-0001-8336-2434; Guo, Jun/0000-0001-8125-9433; Sznajder, Andre/0000-0001-6998-1108; Li, Liang/0000-0001-6411-6107; Dudko, Lev/0000-0002-4462-3192; Novaes, Sergio/0000-0003-0471-8549; Mundim, Luiz/0000-0001-9964-7805; Yip, Kin/0000-0002-8576-4311 FU DOE and NSF (USA); CEA and CNRS/IN2P3 (France); FASI, Rosatom and RFBR (Russia); CNPq; FAPERJ; FAPESP; FUNDUNESP (Brazil); DAE and DST (India); Colciencias (Colombia); CONACyT (Mexico); KRF and KOSEF (Korea); CONICET; UBACyT (Argentina); FOM (The Netherlands); STFC (United Kingdom); MSMT; GACR (Czech Republic); CRC Program; CFI; NSERC; WestGrid Project (Canada); BMBF; DFG (Germany); SFI (Ireland); Swedish Research Council (Sweden); CAS; CNSF (China); Alexander von Humboldt Foundation FX We thank the staffs at Fermilab and collaborating institutions, and acknowledge support from the DOE and NSF (USA); CEA and CNRS/IN2P3 (France); FASI, Rosatom and RFBR (Russia); CNPq, FAPERJ, FAPESP and FUNDUNESP (Brazil); DAE and DST (India); Colciencias (Colombia); CONACyT (Mexico); KRF and KOSEF (Korea); CONICET and UBACyT (Argentina); FOM (The Netherlands); STFC (United Kingdom); MSMT and GACR (Czech Republic); CRC Program, CFI, NSERC and WestGrid Project (Canada); BMBF and DFG (Germany); SFI (Ireland); The Swedish Research Council (Sweden); CAS and CNSF (China); and the Alexander von Humboldt Foundation. NR 20 TC 43 Z9 43 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD OCT 31 PY 2008 VL 101 IS 18 AR 182004 DI 10.1103/PhysRevLett.101.182004 PG 7 WC Physics, Multidisciplinary SC Physics GA 367TD UT WOS:000260574600025 PM 18999821 ER PT J AU Fu, GY AF Fu, G. Y. TI Energetic-Particle-Induced Geodesic Acoustic Mode SO PHYSICAL REVIEW LETTERS LA English DT Article ID N=0 CHIRPING MODE; EXPLANATION; DYNAMICS; PLASMAS AB A new energetic particle-induced geodesic acoustic mode (EGAM) is shown to exist. The mode frequency and mode structure are determined nonperturbatively by energetic particle kinetic effects. In particular the EGAM frequency is found to be substantially lower than the standard GAM frequency. The radial mode width is determined by the energetic particle drift orbit width and can be fairly large for high energetic particle pressure and large safety factor. These results are consistent with the recent experimental observation of the beam-driven n=0 mode in DIII-D. C1 Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Fu, GY (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. EM fu@pppl.gov FU U. S. Department of Energy [DE-AC02-76CH03073] FX This work is supported by the U. S. Department of Energy under DE-AC02-76CH03073. The author thanks Dr. R. Nazikian, Dr. H. L. Berk, and Dr. G. Kramer for stimulating discussions. In particular, the author is indebted to Dr. R. Nazikian for sharing unpublished experimental data from DIII-D which motivated this work, to Dr. H. L. Berk for reading the manuscript and for suggestions on stability threshold of EGAM, and to Dr. G. Kramer for calculating the GAM frequency using the NOVA code. NR 11 TC 86 Z9 89 U1 0 U2 10 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD OCT 31 PY 2008 VL 101 IS 18 AR 185002 DI 10.1103/PhysRevLett.101.185002 PG 4 WC Physics, Multidisciplinary SC Physics GA 367TD UT WOS:000260574600040 PM 18999836 ER PT J AU Horner, DA Miyabe, S Rescigno, TN McCurdy, CW Morales, F Martin, F AF Horner, D. A. Miyabe, S. Rescigno, T. N. McCurdy, C. W. Morales, F. Martin, F. TI Classical Two-Slit Interference Effects in Double Photoionization of Molecular Hydrogen at High Energies SO PHYSICAL REVIEW LETTERS LA English DT Article ID DOUBLE-SLIT; BREAKUP; H-2; N-2 AB Recent experiments on double photoionization of H-2 with photon energies between 160 and 240 eV have revealed body-frame angular distributions that suggest classical two-slit interference effects may be present when one electron carries most of the available energy and the second electron is not observed. We report precise quantum mechanical calculations that reproduce the experimental findings. They reveal that the interpretation in terms of classical diffraction is only appropriate at substantially higher photon energies. At the energies considered in the experiment we offer an alternative explanation based on the mixing of two nondiffractive contributions by circularly polarized light. C1 [Horner, D. A.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Miyabe, S.; McCurdy, C. W.] Univ Calif Davis, Dept Appl Sci, Davis, CA 95616 USA. [Miyabe, S.; McCurdy, C. W.] Univ Calif Davis, Dept Chem, Davis, CA 95616 USA. [Rescigno, T. N.; McCurdy, C. W.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Morales, F.; Martin, F.] Univ Autonoma Madrid, Dept Quim C9, E-28049 Madrid, Spain. RP Horner, DA (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RI Martin, Fernando/C-3972-2014 OI Martin, Fernando/0000-0002-7529-925X FU Los Alamos National Laboratory; Los Alamos National Laboratory [DE-AC52-06NA25396]; Lawrence Berkeley National Laboratory [DE-AC02-05CH11231]; Spanish Ministerio de Ciencia e Innovacion [FIS2007-60064]; European Science Foundation [CM0702]; U. S. DOE Office of Basic Energy Sciences, Division of Chemical Sciences.; National Science Foundation [PHY-0604628] FX We acknowledge many stimulating discussions with Professor Reinhard Dorner that helped to inspire this work. Work performed under the auspices of the U. S. DOE by Los Alamos National Laboratory (Contract No. DE-AC52-06NA25396) and Lawrence Berkeley National Laboratory (Contract No. DE-AC02-05CH11231), the Spanish Ministerio de Ciencia e Innovacion (Contract No. FIS2007-60064), the European Science Foundation (COST action CM0702), and supported by the U. S. DOE Office of Basic Energy Sciences, Division of Chemical Sciences.C. W. M. and S. M. acknowledge support from the National Science Foundation (Grant No. PHY-0604628). Computer resources from Institutional Computing resources (Los Alamos), NERSC (Berkeley), and Barcelona Supercomputer Center Mare Nostrum (Spain) are also acknowledged. NR 16 TC 30 Z9 31 U1 1 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD OCT 31 PY 2008 VL 101 IS 18 AR 183002 DI 10.1103/PhysRevLett.101.183002 PG 4 WC Physics, Multidisciplinary SC Physics GA 367TD UT WOS:000260574600030 PM 18999826 ER PT J AU Moore, JE Ran, Y Wen, XG AF Moore, Joel E. Ran, Ying Wen, Xiao-Gang TI Topological Surface States in Three-Dimensional Magnetic Insulators SO PHYSICAL REVIEW LETTERS LA English DT Article ID HOMOTOPY; PHASE; SPIN AB An electron moving in a magnetically ordered background feels an effective magnetic field that can be both stronger and more rapidly varying than typical externally applied fields. One consequence is that insulating magnetic materials in three dimensions can have topologically nontrivial properties of the effective band structure. For the simplest case of two bands, these "Hopf insulators" are characterized by a topological invariant as in quantum Hall states and Z(2) topological insulators, but instead of a Chern number or parity, the underlying invariant is the Hopf invariant that classifies maps from the three-sphere to the two-sphere. This Letter gives an efficient algorithm to compute whether a given magnetic band structure has nontrivial Hopf invariant, a double-exchange-like tight-binding model that realizes the nontrivial case, and a numerical study of the surface states of this model. C1 [Moore, Joel E.; Ran, Ying; Wen, Xiao-Gang] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Moore, Joel E.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Moore, JE (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. RI Moore, Joel/O-4959-2016 OI Moore, Joel/0000-0002-4294-5761 FU NSF [DMR-0238760, DMR-0804413, DMR-0706078] FX The authors thank A. Abanov, F. Guinea, D.-H. Lee, and A. Vishwanath for helpful conversations, and NSF DMR-0238760 and DMR-0804413 (J.E.M.), ARO/DARPA (Y.R.) and NSF DMR-0706078 (X.G.W.) for financial support. NR 23 TC 43 Z9 43 U1 2 U2 11 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD OCT 31 PY 2008 VL 101 IS 18 AR 186805 DI 10.1103/PhysRevLett.101.186805 PG 4 WC Physics, Multidisciplinary SC Physics GA 367TD UT WOS:000260574600054 PM 18999850 ER PT J AU Nazikian, R Fu, GY Austin, ME Berk, HL Budny, RV Gorelenkov, NN Heidbrink, WW Holcomb, CT Kramer, GJ Mckee, GR Makowski, MA Solomon, WM Shafer, M Strait, EJ Van Zeeland, MA AF Nazikian, R. Fu, G. Y. Austin, M. E. Berk, H. L. Budny, R. V. Gorelenkov, N. N. Heidbrink, W. W. Holcomb, C. T. Kramer, G. J. McKee, G. R. Makowski, M. A. Solomon, W. M. Shafer, M. Strait, E. J. Van Zeeland, M. A. TI Intense Geodesic Acousticlike Modes Driven by Suprathermal Ions in a Tokamak Plasma SO PHYSICAL REVIEW LETTERS LA English DT Article ID DIII-D TOKAMAK; CLUMP PAIR CREATION; N=0 CHIRPING MODE; ALFVEN EIGENMODES; EXPLANATION; WAVES AB Intense axisymmetric oscillations driven by suprathermal ions injected in the direction counter to the toroidal plasma current are observed in the DIII-D tokamak. The modes appear at nearly half the ideal geodesic acoustic mode frequency, in plasmas with comparable electron and ion temperatures and elevated magnetic safety factor (q(min)>= 2). Strong bursting and frequency chirping are observed, concomitant with large (10%-15%) drops in the neutron emission. Large electron density fluctuations (n(e)/n(e)similar or equal to 1.5%) are observed with no detectable electron temperature fluctuations, confirming a dominant compressional contribution to the pressure perturbation as predicted by kinetic theory. The observed mode frequency is consistent with a recent theoretical prediction for the energetic-particle-driven geodesic acoustic mode. C1 [Nazikian, R.; Fu, G. Y.; Budny, R. V.; Gorelenkov, N. N.; Kramer, G. J.; Solomon, W. M.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Austin, M. E.; Berk, H. L.] Univ Texas Austin, Austin, TX 78712 USA. [Heidbrink, W. W.] Univ Calif Irvine, Irvine, CA 92697 USA. [Holcomb, C. T.; Makowski, M. A.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [McKee, G. R.; Shafer, M.] Univ Wisconsin, Madison, WI 53706 USA. [Strait, E. J.; Van Zeeland, M. A.] Gen Atom Co, San Diego, CA 92186 USA. RP Nazikian, R (reprint author), Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. OI Solomon, Wayne/0000-0002-0902-9876; Shafer, Morgan/0000-0001-9808-6305 FU U. S. Department of Energy [DE-AC02-76CH03073, DE-FG0397ER54415, DE-FC02-04ER54698, DE-FG0301ER5461, DE-FG03-96ER54373, W-7405-ENG-48, DE-AC05-76OR00033] FX This work is supported by the U. S. Department of Energy under DE-AC02-76CH03073, DE-FG0397ER54415, DE-FC02-04ER54698, DE-FG0301ER5461, DE-FG03-96ER54373, W-7405-ENG-48, and DE-AC05-76OR00033. NR 27 TC 81 Z9 83 U1 0 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD OCT 31 PY 2008 VL 101 IS 18 AR 185001 DI 10.1103/PhysRevLett.101.185001 PG 4 WC Physics, Multidisciplinary SC Physics GA 367TD UT WOS:000260574600039 PM 18999835 ER PT J AU Solvignon, P Liyanage, N Chen, JP Choi, S Aniol, K Averett, T Boeglin, W Camsonne, A Cates, GD Chang, CC Chudakov, E Craver, B Cusanno, F Deur, A Dutta, D Ent, R Feuerbach, R Frullani, S Gao, H Garibaldi, F Gilman, R Glashausser, C Gorbenko, V Hansen, O Higinbotham, DW Ibrahim, H Jiang, X Jones, M Kelleher, A Kelly, J Keppel, C Kim, W Korsch, W Kramer, K Kumbartzki, G LeRose, JJ Lindgren, R Ma, B Margaziotis, DJ Markowitz, P McCormick, K Meziani, ZE Michaels, R Moffit, B Monaghan, P Camacho, C Paschke, K Reitz, B Saha, A Sheyor, R Singh, J Slifer, K Sulkosky, V Tobias, A Urciuoli, GM Wang, K Wijesooriya, K Wojtsekhowski, B Woo, S Yang, JC Zheng, X Zhu, L AF Solvignon, P. Liyanage, N. Chen, J. -P. Choi, Seonho Aniol, K. Averett, T. Boeglin, W. Camsonne, A. Cates, G. D. Chang, C. C. Chudakov, E. Craver, B. Cusanno, F. Deur, A. Dutta, D. Ent, R. Feuerbach, R. Frullani, S. Gao, H. Garibaldi, F. Gilman, R. Glashausser, C. Gorbenko, V. Hansen, O. Higinbotham, D. W. Ibrahim, H. Jiang, X. Jones, M. Kelleher, A. Kelly, J. Keppel, C. Kim, W. Korsch, W. Kramer, K. Kumbartzki, G. LeRose, J. J. Lindgren, R. Ma, B. Margaziotis, D. J. Markowitz, P. McCormick, K. Meziani, Z. -E. Michaels, R. Moffit, B. Monaghan, P. Munoz Camacho, C. Paschke, K. Reitz, B. Saha, A. Sheyor, R. Singh, J. Slifer, K. Sulkosky, V. Tobias, A. Urciuoli, G. M. Wang, K. Wijesooriya, K. Wojtsekhowski, B. Woo, S. Yang, J. -C. Zheng, X. Zhu, L. CA Jefferson Lab E01-012 Collaboratio TI Quark-Hadron Duality in Neutron (He-3) Spin Structure SO PHYSICAL REVIEW LETTERS LA English DT Article ID DEEP-INELASTIC SCATTERING; POLARIZED QUARK; DISTRIBUTIONS; NUCLEON; REGION AB We present experimental results of the first high-precision test of quark-hadron duality in the spin-structure function g(1) of the neutron and He-3 using a polarized He-3 target in the four-momentum-transfer-squared range from 0.7 to 4.0 (GeV/c)(2). Global duality is observed for the spin-structure function g(1) down to at least Q(2)=1.8 (GeV/c)(2) in both targets. We have also formed the photon-nucleon asymmetry A(1) in the resonance region for He-3 and found no strong Q(2) dependence above 2.2 (GeV/c)(2). C1 [Solvignon, P.; Choi, Seonho; Slifer, K.] Temple Univ, Philadelphia, PA 19122 USA. [Solvignon, P.; Zheng, X.] Argonne Natl Lab, Argonne, IL 60439 USA. [Camsonne, A.] Univ Clermont Ferrand, F-63177 Aubiere, France. [Camsonne, A.] CNRS IN2P3 LPC, F-63177 Aubiere, France. [Aniol, K.; Margaziotis, D. J.] Calif State Univ Los Angeles, Los Angeles, CA 90032 USA. [Dutta, D.; Gao, H.; Wijesooriya, K.] Duke Univ, Durham, NC 27708 USA. [Munoz Camacho, C.] CEA Saclay, DAPNIA SPhN, F-91191 Gif Sur Yvette, France. [Yang, J. -C.] Chungnam Natl Univ, Taejon 305764, South Korea. [Boeglin, W.; Markowitz, P.] Florida Int Univ, Miami, FL 33199 USA. [Keppel, C.] Hampton Univ, Hampton, VA 23187 USA. [Cusanno, F.; Frullani, S.; Garibaldi, F.] Ist Nazl Fis Nucl, Grp Coll Sanita, Sez Roma, I-00161 Rome, Italy. [Urciuoli, G. M.] Ist Nazl Fis Nucl, Sez Roma, I-00185 Rome, Italy. [Gorbenko, V.] Kharkov Phys & Technol Inst, UA-61108 Kharkov, Ukraine. [Chen, J. -P.; Chudakov, E.; Ent, R.; Feuerbach, R.; Gilman, R.; Hansen, O.; Higinbotham, D. W.; Jones, M.; Keppel, C.; LeRose, J. J.; Michaels, R.; Reitz, B.; Saha, A.; Wojtsekhowski, B.] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. [Korsch, W.] Univ Kentucky, Lexington, KY 40506 USA. [Kim, W.; Woo, S.] Kyungpook Natl Univ, Taegu 702701, South Korea. [Chang, C. C.; Kelly, J.] Univ Maryland, College Pk, MD 20742 USA. [Paschke, K.] Univ Massachusetts, Amherst, MA 01003 USA. [Ma, B.; Monaghan, P.; Zhu, L.] MIT, Cambridge, MA 02139 USA. [Ibrahim, H.; Kumbartzki, G.; McCormick, K.] Old Dominion Univ, Norfolk, VA 23529 USA. [Gilman, R.; Glashausser, C.; Jiang, X.] Rutgers State Univ, Piscataway, NJ 08855 USA. [Meziani, Z. -E.; Sheyor, R.] Tel Aviv Univ, IL-69978 Tel Aviv, Israel. [Liyanage, N.; Cates, G. D.; Craver, B.; Deur, A.; Lindgren, R.; Tobias, A.; Wang, K.] Univ Virginia, Charlottesville, VA 22904 USA. [Averett, T.; Kelleher, A.; Kramer, K.; Moffit, B.; Sulkosky, V.] Coll William & Mary, Williamsburg, VA 23187 USA. RP Solvignon, P (reprint author), Temple Univ, Philadelphia, PA 19122 USA. RI Averett, Todd/A-2969-2011; Gao, Haiyan/G-2589-2011; Singh, Jaideep/H-2346-2013; Higinbotham, Douglas/J-9394-2014 OI Singh, Jaideep/0000-0002-4810-4824; Higinbotham, Douglas/0000-0003-2758-6526 FU National Science Foundation; US Department of Energy (DOE) [DE-AC05-84ER40150] FX We would like to acknowledge the outstanding support from the Jefferson Lab Hall A technical staff. This work was supported in part by the National Science Foundation and the US Department of Energy (DOE) Contract No. DE-AC05-84ER40150 Modification No. M175, under which the Southeastern Universities Research Association (SURA) operates the Thomas Jefferson National Accelerator Facility. NR 39 TC 25 Z9 25 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD OCT 31 PY 2008 VL 101 IS 18 AR 182502 DI 10.1103/PhysRevLett.101.182502 PG 5 WC Physics, Multidisciplinary SC Physics GA 367TD UT WOS:000260574600027 PM 18999823 ER PT J AU Tandel, US Tandel, SK Chowdhury, P Cline, D Wu, CY Carpenter, MP Janssens, RVF Khoo, TL Lauritsen, T Lister, CJ Seweryniak, D Zhu, S AF Tandel, U. S. Tandel, S. K. Chowdhury, P. Cline, D. Wu, C. Y. Carpenter, M. P. Janssens, R. V. F. Khoo, T. L. Lauritsen, T. Lister, C. J. Seweryniak, D. Zhu, S. TI Collective Oblate Rotation at High Spins in Neutron-Rich Hf-180 SO PHYSICAL REVIEW LETTERS LA English DT Article ID HIGH-K ISOMERS; NUCLEI; BAND; GAMMASPHERE; ALIGNMENT AB We report on experimental evidence for collective oblate rotation becoming favored at high spins in a rigid, well-deformed, axially symmetric nucleus. Excited states established up to spin 20h in Hf-180 are consistent with predictions that nucleon alignments would favor oblate over prolate shapes at high spins in neutron-rich Hf isotopes. The results highlight the influence of valence orbitals on the interplay between nucleon alignments and nuclear shapes and provide a rare example of independent particle dynamics in competing potential wells. C1 [Tandel, U. S.; Tandel, S. K.; Chowdhury, P.] Univ Massachusetts, Dept Phys, Lowell, MA 01854 USA. [Cline, D.; Wu, C. Y.] Univ Rochester, Nucl Struct Res Lab, Rochester, NY 14627 USA. [Carpenter, M. P.; Janssens, R. V. F.; Khoo, T. L.; Lauritsen, T.; Lister, C. J.; Seweryniak, D.; Zhu, S.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. RP Tandel, US (reprint author), Univ Massachusetts, Dept Phys, Lowell, MA 01854 USA. RI Carpenter, Michael/E-4287-2015 OI Carpenter, Michael/0000-0002-3237-5734 FU U. S. Department of Energy; Office of Nuclear Physics [DE-FG02-94ER40848, DE-AC0206CH11357]; National Science Foundation FX We would like to acknowledge useful discussions with P. M. Walker, and the ATLAS accelerator staff for developing the 180Hf beam. This research is supported by the U. S. Department of Energy, Office of Nuclear Physics, under grants DE-FG02-94ER40848 and DE-AC0206CH11357, and the National Science Foundation. NR 31 TC 7 Z9 7 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD OCT 31 PY 2008 VL 101 IS 18 AR 182503 DI 10.1103/PhysRevLett.101.182503 PG 4 WC Physics, Multidisciplinary SC Physics GA 367TD UT WOS:000260574600028 PM 18999824 ER PT J AU Yang, L Cohen, ML Louie, SG AF Yang, Li Cohen, Marvin L. Louie, Steven G. TI Magnetic Edge-State Excitons in Zigzag Graphene Nanoribbons SO PHYSICAL REVIEW LETTERS LA English DT Article ID QUASI-PARTICLE ENERGIES; WALLED CARBON NANOTUBES; OPTICAL-SPECTRA; SEMICONDUCTORS; GRAPHITE; RIBBONS; GAS AB We present first-principles calculations of the optical properties of zigzag-edged graphene nanoribbons (ZGNRs) employing the GW-Bethe-Salpeter equation approach with the spin interaction included. Optical response of the ZGNRs is found to be dominated by magnetic edge-state-derived excitons with large binding energy. The absorption spectrum is composed of a characteristic series of exciton states, providing a possible signature for identifying the ZGNRs. The edge-state excitons are charge-transfer excitations with the excited electron and hole located on opposite edges; they moreover induce a spin transfer across the ribbon, resulting in a photoreduction of the magnetic ordering. These novel characteristics are potentially useful in the applications. C1 [Yang, Li] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Yang, L (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. FU National Science Foundation [DMR07-05941]; Director, Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering Division, U. S. Department of Energy [DE-AC02-05CH11231.] FX We thank C.- H. Park, D. Prendergast, and J. Deslippe for discussions. This work was supported by National Science Foundation Grant No. DMR07-05941 and by the Director, Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering Division, U. S. Department of Energy under Contract No. DE-AC02-05CH11231. Computational resources have been provided by NERSC and NPACI. NR 32 TC 80 Z9 81 U1 5 U2 41 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD OCT 31 PY 2008 VL 101 IS 18 AR 186401 DI 10.1103/PhysRevLett.101.186401 PG 4 WC Physics, Multidisciplinary SC Physics GA 367TD UT WOS:000260574600047 PM 18999843 ER PT J AU Yin, L Xia, JS Zapf, VS Sullivan, NS Paduan, A AF Yin, L. Xia, J. S. Zapf, V. S. Sullivan, N. S. Paduan-Filho, A. TI Direct Measurement of the Bose-Einstein Condensation Universality Class in NiCl(2)-4SC(NH(2))(2) at Ultralow Temperatures SO PHYSICAL REVIEW LETTERS LA English DT Article ID TLCUCL3 AB In this work, we demonstrate field-induced Bose-Einstein condensation (BEC) in the organic compound NiCl(2)-4SC(NH(2))(2) using ac susceptibility measurements down to 1 mK. The Ni S=1 spins exhibit 3D XY antiferromagnetism between a lower critical field H(c1)similar to 2 T and a upper critical field H(c2)similar to 12 T. The results show a power-law temperature dependence of the phase transition line H(c1)(T)-H(c1)(0)=aT(alpha) with alpha=1.47 +/- 0.10 and H(c1)(0)=2.053 T, consistent with the 3D BEC universality class. Near H(c2), a kink was found in the phase boundary at approximately 150 mK. C1 [Yin, L.; Xia, J. S.; Sullivan, N. S.] Univ Florida, Dept Phys, Gainesville, FL 32611 USA. [Yin, L.; Xia, J. S.; Sullivan, N. S.] Natl High Magnet Field Lab, Gainesville, FL 32611 USA. [Zapf, V. S.] Los Alamos Natl Lab, Natl High Magnet Field Lab, Los Alamos, NM 87545 USA. [Paduan-Filho, A.] Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil. RP Yin, L (reprint author), Univ Florida, Dept Phys, Gainesville, FL 32611 USA. RI YIN, LIANG/G-7585-2011; PaduanFilho, Armando/H-2443-2011; Zapf, Vivien/K-5645-2013 OI Zapf, Vivien/0000-0002-8375-4515 FU National Science Foundation Cooperative Agreement [DMR 0654118]; Department of Energy and the State of Florida. FX These measurements were carried out at the High B/T facility of the National High Magnetic Field Laboratory and were supported by the National Science Foundation Cooperative Agreement No. DMR 0654118, the Department of Energy and the State of Florida. A. P. F. acknowledges support from the Brazilian Agencies CNPq and FAPESP. NR 26 TC 39 Z9 39 U1 0 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD OCT 31 PY 2008 VL 101 IS 18 AR 187205 DI 10.1103/PhysRevLett.101.187205 PG 4 WC Physics, Multidisciplinary SC Physics GA 367TD UT WOS:000260574600065 PM 18999861 ER PT J AU Kwak, J Willse, A Matsumura, K Opiekun, MC Yi, WG Preti, G Yamazaki, K Beauchamp, GK AF Kwak, Jae Willse, Alan Matsumura, Koichi Opiekun, Maryanne Curran Yi, Weiguang Preti, George Yamazaki, Kunio Beauchamp, Gary K. TI Genetically-Based Olfactory Signatures Persist Despite Dietary Variation SO PLOS ONE LA English DT Article AB Individual mice have a unique odor, or odortype, that facilitates individual recognition. Odortypes, like other phenotypes, can be influenced by genetic and environmental variation. The genetic influence derives in part from genes of the major histocompatibility complex (MHC). A major environmental influence is diet, which could obscure the genetic contribution to odortype. Because odortype stability is a prerequisite for individual recognition under normal behavioral conditions, we investigated whether MHC-determined urinary odortypes of inbred mice can be identified in the face of large diet-induced variation. Mice trained to discriminate urines from panels of mice that differed both in diet and MHC type found the diet odor more salient in generalization trials. Nevertheless, when mice were trained to discriminate mice with only MHC differences (but on the same diet), they recognized the MHC difference when tested with urines from mice on a different diet. This indicates that MHC odor profiles remain despite large dietary variation. Chemical analyses of urinary volatile organic compounds (VOCs) extracted by solid phase microextraction (SPME) and analyzed by gas chromatography/mass spectrometry (GC/MS) are consistent with this inference. Although diet influenced VOC variation more than MHC, with algorithmic training (supervised classification) MHC types could be accurately discriminated across different diets. Thus, although there are clear diet effects on urinary volatile profiles, they do not obscure MHC effects. C1 [Kwak, Jae; Matsumura, Koichi; Opiekun, Maryanne Curran; Yi, Weiguang; Preti, George; Yamazaki, Kunio; Beauchamp, Gary K.] Monell Chem Senses Ctr, Philadelphia, PA 19104 USA. [Willse, Alan] Battelle Mem Inst, Pacific NW Div, Richland, WA USA. [Preti, George] Univ Penn, Sch Med, Dept Dermatol, Philadelphia, PA 19104 USA. RP Kwak, J (reprint author), Monell Chem Senses Ctr, 3500 Market St, Philadelphia, PA 19104 USA. EM beauchamp@monell.org RI Kwak, Jae/E-5781-2011 OI Kwak, Jae/0000-0003-4216-2019 FU ARO [DAAD19-03-1-0109] FX This work is supported by ARO contract DAAD19-03-1-0109. Opinions, interpretations, conclusions, and recommendations are those of the authors and are not necessarily endorsed by the United States Government. NR 41 TC 21 Z9 22 U1 1 U2 7 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD OCT 31 PY 2008 VL 3 IS 10 AR e3591 DI 10.1371/journal.pone.0003591 PG 9 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 432KK UT WOS:000265131700012 PM 18974891 ER PT J AU Price, MN Dehal, PS Arkin, AP AF Price, Morgan N. Dehal, Paramvir S. Arkin, Adam P. TI FastBLAST: Homology Relationships for Millions of Proteins SO PLOS ONE LA English DT Article AB Background: All-versus-all BLAST, which searches for homologous pairs of sequences in a database of proteins, is used to identify potential orthologs, to find new protein families, and to provide rapid access to these homology relationships. As DNA sequencing accelerates and data sets grow, all-versus-all BLAST has become computationally demanding. Methodology/Principal Findings: We present FastBLAST, a heuristic replacement for all-versus-all BLAST that relies on alignments of proteins to known families, obtained from tools such as PSI-BLAST and HMMer. FastBLAST avoids most of the work of all-versus-all BLAST by taking advantage of these alignments and by clustering similar sequences. FastBLAST runs in two stages: the first stage identifies additional families and aligns them, and the second stage quickly identifies the homologs of a query sequence, based on the alignments of the families, before generating pairwise alignments. On 6.53 million proteins from the non-redundant Genbank database ("NR''), FastBLAST identifies new families 25 times faster than all-versus-all BLAST. Once the first stage is completed, FastBLAST identifies homologs for the average query in less than 5 seconds (8.6 times faster than BLAST) and gives nearly identical results. For hits above 70 bits, FastBLAST identifies 98% of the top 3,250 hits per query. Conclusions/Significance: FastBLAST enables research groups that do not have supercomputers to analyze large protein sequence data sets. FastBLAST is open source software and is available at http://microbesonline.org/fastblast. C1 [Price, Morgan N.; Dehal, Paramvir S.; Arkin, Adam P.] Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Price, Morgan N.; Dehal, Paramvir S.; Arkin, Adam P.] Virtual Inst Microb Stress & Survival, Berkeley, CA USA. [Arkin, Adam P.] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA. RP Price, MN (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. EM morgannprice@yahoo.com RI Arkin, Adam/A-6751-2008 OI Arkin, Adam/0000-0002-4999-2931 FU US Department of Energy Genomics: GTL program [DE-AC02-05CH11231] FX This work was supported by a grant to A.P.A. from the US Department of Energy Genomics: GTL program (DE-AC02-05CH11231). The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 22 TC 11 Z9 12 U1 0 U2 4 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD OCT 31 PY 2008 VL 3 IS 10 AR e3589 DI 10.1371/journal.pone.0003589 PG 8 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 432KK UT WOS:000265131700011 PM 18974889 ER PT J AU Stephenson, AE DeYoreo, JJ Wu, L Wu, KJ Hoyer, J Dove, PM AF Stephenson, A. E. DeYoreo, J. J. Wu, L. Wu, K. J. Hoyer, J. Dove, P. M. TI Peptides Enhance Magnesium Signature in Calcite: Insights into Origins of Vital Effects SO SCIENCE LA English DT Article ID AQUEOUS SOLUTION SYSTEMS; CRYSTAL-GROWTH; KINETICS; SURFACE; BIOMINERALIZATION; SUPERSATURATION; TEMPERATURE; PROTEINS; PRECIPITATION; DESOLVATION AB Studies relating the magnesium (Mg) content of calcified skeletons to temperature often report unexplained deviations from the signature expected for inorganically grown calcite. These "vital effects" are believed to have biological origins, but mechanistic bases for measured offsets remain unclear. We show that a simple hydrophilic peptide, with the same carboxyl- rich character as that of macromolecules isolated from sites of calcification, increases calcite Mg content by up to 3 mole percent. Comparisons to previous studies correlating Mg content of carbonate minerals with temperature show that the Mg enhancement due to peptides results in offsets equivalent to 7 degrees to 14 degrees C. The insights also provide a physical basis for anecdotal evidence that organic chemistry modulates the mineralization of inorganic carbonates and suggest an approach to tuning impurity levels in controlled materials synthesis. C1 [Stephenson, A. E.; Dove, P. M.] Virginia Tech, Dept Geosci, Blacksburg, VA 24061 USA. [DeYoreo, J. J.; Wu, L.; Wu, K. J.] Lawrence Livermore Natl Lab, Chem & Mat Sci Directorate, Livermore, CA 94551 USA. [Wu, L.] Univ Calif Davis, Dept Appl Sci, Davis, CA 95616 USA. [Hoyer, J.] Univ Delaware, Dept Biol Sci, Newark, DE 19716 USA. RP Stephenson, AE (reprint author), Virginia Tech, Dept Geosci, Blacksburg, VA 24061 USA. EM aestephe@vt.edu; dove@vt.edu RI yu, yu/C-7781-2009; Wu, Ligang/C-7770-2009; Dove, Patricia/A-7911-2010 FU NSF [OCE-052667]; U.S. Department of Energy [FG02-00ER15112] FX We thank J.F. Read and D. Rimstidt for thoughtful discussions. This research was supported by awards to P.M.D. from the NSF (grant OCE-052667) and U. S. Department of Energy (grant FG02-00ER15112). This work was also performed under the auspices of the U.S. DOE by an award to J.D.Y. at the University of California, Lawrence Livermore National Laboratory, under Contract No. W-7405-Eng-48. Opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the NSF or DOE. NR 36 TC 85 Z9 87 U1 3 U2 72 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD OCT 31 PY 2008 VL 322 IS 5902 BP 724 EP 727 DI 10.1126/science.1159417 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 368EW UT WOS:000260605200043 PM 18974348 ER PT J AU Hou, C Zuo, WY Moses, ME Woodruff, WH Brown, JH West, GB AF Hou, Chen Zuo, Wenyun Moses, Melanie E. Woodruff, William H. Brown, James H. West, Geoffrey B. TI Energy Uptake and Allocation During Ontogeny SO SCIENCE LA English DT Article ID DYNAMIC ACTION; GROWTH; MODEL; SDA AB All organisms face the problem of how to fuel ontogenetic growth. We present a model, empirically grounded in data from birds and mammals, that correctly predicts how growing animals allocate food energy between synthesis of new biomass and maintenance of existing biomass. Previous energy budget models have typically had their bases in rates of either food consumption or metabolic energy expenditure. Our model provides a framework that reconciles these two approaches and highlights the fundamental principles that determine rates of food assimilation and rates of energy allocation to maintenance, biosynthesis, activity, and storage. The model predicts that growth and assimilation rates for all animals should cluster closely around two universal curves. Data for mammals and birds of diverse body sizes and taxa support these predictions. C1 [Hou, Chen; Woodruff, William H.; Brown, James H.; West, Geoffrey B.] Santa Fe Inst, Santa Fe, NM 87501 USA. [Zuo, Wenyun; Brown, James H.] Univ New Mexico, Dept Biol, Albuquerque, NM 87131 USA. [Moses, Melanie E.] Univ New Mexico, Dept Comp Sci, Albuquerque, NM 87131 USA. [Woodruff, William H.; West, Geoffrey B.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Hou, C (reprint author), Santa Fe Inst, 1399 Hyde Pk Rd, Santa Fe, NM 87501 USA. EM houc@santafe.edu OI Hou, Chen/0000-0002-3665-225X FU NIH [P20 RR-018754, DK36263]; NSF [DEB-0083422, CCF0621900, PHY 0706174, PHY 0202180]; Thaw Charitable Trust FX Supported by NIH grants P20 RR-018754 (for M.E.M.) and DK36263 (for W.H.W.) and by NSF grants DEB-0083422 and CCF0621900 (for J.H.B.) and PHY 0706174 and PHY 0202180 (for G.B.W.) G.B.W. also acknowledges the Thaw Charitable Trust for its support. NR 19 TC 76 Z9 78 U1 5 U2 24 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD OCT 31 PY 2008 VL 322 IS 5902 BP 736 EP 739 DI 10.1126/science.1162302 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 368EW UT WOS:000260605200047 PM 18974352 ER PT J AU Li, JY Yao, WL Martin, S Vaknin, D AF Li, Jiying Yao, Wenlong Martin, Steve Vaknin, David TI Lithium ion conductivity in single crystal LiFePO4 SO SOLID STATE IONICS LA English DT Article DE Lithium rechargeable battery; Cathode material; LiFePO4; Ionic conductivity ID ELECTRODE MATERIALS; UNDOPED LIFEPO4; SOLID-SOLUTION; BATTERIES; TEMPERATURE; CATHODES; BEHAVIOR; MN; FE AB Although extensively studied as a potential Li rechargeable battery cathode in its powder form, very little is known about the anisotropy of the ionic and electronic transport properties in LiFePO4 as it may be manifested in single crystal studies. Here. we report on the conductivity of lithium ions along three principal axis directions in single crystal LiFePO4 as a function of temperature by AC impedance spectroscopy. Despite the apparent quasi-two dimensional nature of the crystal structure, suggestive of facilitated inplane diffusion, we show that Li diffusion in LiFePO4 is, to a large extent. confined to one dimension through tunnels along b-axis (using the Pnma symmetry group notation), implying oriented powders in batteries may improve the performance of this material as a cathode in rechargeable batteries. Our results may also explain the numerous failed attempts to enhance the ionic conductivity by introducing divalent and trivalent substitutions to Li+ that, although produce vacancies in the Li sheets, may concurrently impede the diffusion in the tunnels. (C) 2008 Elsevier B.V. All rights reserved. C1 [Li, Jiying; Vaknin, David] Iowa State Univ Sci & Technol, Ames Lab, Ames, IA 50011 USA. [Vaknin, David] Iowa State Univ Sci & Technol, Dept Phys, Ames, IA 50011 USA. [Li, Jiying] Iowa State Univ Sci & Technol, Dept Phys & Astron, Ames, IA 50011 USA. [Yao, Wenlong; Martin, Steve] Iowa State Univ Sci & Technol, Dept Mat Sci & Engn, Ames, IA 50011 USA. RP Vaknin, D (reprint author), Iowa State Univ Sci & Technol, Ames Lab, Ames, IA 50011 USA. EM vaknin@ameslab.gov RI Vaknin, David/B-3302-2009 OI Vaknin, David/0000-0002-0899-9248 FU Department of Energy, Office of Basic Energy Sciences [DE-AC02-07CH11358] FX The work was supported by the Department of Energy, Office of Basic Energy Sciences under contract number DE-AC02-07CH11358. NR 29 TC 84 Z9 86 U1 3 U2 84 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-2738 J9 SOLID STATE IONICS JI Solid State Ion. PD OCT 31 PY 2008 VL 179 IS 35-36 BP 2016 EP 2019 DI 10.1016/j.ssi.2008.06.028 PG 4 WC Chemistry, Physical; Physics, Condensed Matter SC Chemistry; Physics GA 386TF UT WOS:000261904800011 ER PT J AU Sherwood, OA Edinger, EN Guilderson, TP Ghaleb, B Risk, MJ Scott, DB AF Sherwood, Owen A. Edinger, Evan N. Guilderson, Thomas P. Ghaleb, Bassam Risk, Michael J. Scott, David B. TI Late Holocene radiocarbon variability in Northwest Atlantic slope waters SO EARTH AND PLANETARY SCIENCE LETTERS LA English DT Article DE radiocarbon; bomb-C-14; vertical gradient; deep-sea corals; Northwest Atlantic ID DEEP-SEA CORALS; ANTARCTIC INTERMEDIATE WATER; CAL KYR BP; BOMB RADIOCARBON; AGE CALIBRATION; RESERVOIR AGES; MARINE SAMPLES; SURFACE-WATER; GEORGES BANK; C-14 DATA AB Deep-sea gorgonian corals secrete a 2-part skeleton of calcite, derived from dissolved inorganic carbon at depth. and gorgonin, derived from recently fixed and exported particulate organic matter. Radiocarbon contents of the calcite and gorgonin provide direct measures of seawater radiocarbon at depth and in the overlying surface waters, respectively. Using specimens collected from Northwest Atlantic slope waters, we generated radiocarbon records for surface and upper intermediate water layers spanning the pre- and post-bomb- C-14 eras. In Labrador Slope Water (LSW), convective mixing homogenizes the pre-bomb Delta C-14 signature (-67 +/- 4 parts per thousand) to at least 1000 m depth. Surface water bomb-C-14 signals were lagged and damped (peaking at similar to+45 parts per thousand in theearly 1980s) relative to other regions of the Northwest Atlantic, and intermediate water signals were damped further. Off southwest Nova Scotia, the vertical gradient in Delta C-14 is much stronger. In surface water, pre-bomb A 14C averaged -75 +/- 5 parts per thousand. At 250-475 m depth, pre-bomb Delta C-14 oscillated quasi-decadally between -80 and -100 parts per thousand, likely reflecting interannual variability in the presence of Labrador Slope Water vs. Warm Slope Water (WSW). Finally, sublossil corals reveal no systematic changes in vertical Delta C-14 gradients over the last 1200 yr. (c) 2008 Elsevier B.V. All rights reserved. C1 [Sherwood, Owen A.; Edinger, Evan N.] Mem Univ Newfoundland, Dept Biol, St John, NF A1B 3X9, Canada. [Edinger, Evan N.] Mem Univ Newfoundland, Dept Geog, St John, NF A1B 3X9, Canada. [Guilderson, Thomas P.] Lawrence Livermore Natl Lab, Ctr Accelerator Mass Spectrometry, Livermore, CA 94551 USA. [Guilderson, Thomas P.] Univ Calif Santa Cruz, Dept Ocean Sci, Santa Cruz, CA 95064 USA. [Guilderson, Thomas P.] Univ Calif Santa Cruz, Inst Marine Sci, Santa Cruz, CA 95064 USA. [Ghaleb, Bassam] Ctr GEOTOP UQAM McCill, Montreal, PQ H3C 3P8, Canada. [Risk, Michael J.] McMaster Univ, Sch Geog & Geol, Hamilton, ON L8S 4M1, Canada. [Scott, David B.] Dalhousie Univ, Ctr Environm & Marine Geol, Halifax, NS B3H 4J1, Canada. RP Sherwood, OA (reprint author), Mem Univ Newfoundland, Dept Biol, St John, NF A1B 3X9, Canada. EM osherwood@gmail.com FU Canadian Department of Fisheries and Oceans IGP funds; NSERC post-doctoral fellowship; U.S. Department of Energy by the University of California; Lawrence Livermore National Laboratory [W-7405-Eng-48] FX We gratefully acknowledge Derek Jones, Pal Mortensen, the fisheries observers and officers and crew of the CCGS Hudson, and ROPOS technicians for their assistance in acquiring samples. We also thank Kent Gilkinson and Vonda Wareham for logistical support, Steve Campana for use of the micromill, and Theo Pitsiavas, Jessie Tesolin and Christine Ward-Paige for counting growth rings. Finally, we thank Kumiko Azetsu-Scott, Richard Fairbanks and 2 anonymous reviewers for comments on earlier versions of this manuscript. This work was supported by the Canadian Department of Fisheries and Oceans IGP funds, and an NSERC post-doctoral fellowship to OAS. Radiocarbon analyses were performed under the auspices of the U.S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48. NR 57 TC 21 Z9 22 U1 0 U2 12 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0012-821X EI 1385-013X J9 EARTH PLANET SC LETT JI Earth Planet. Sci. Lett. PD OCT 30 PY 2008 VL 275 IS 1-2 BP 146 EP 153 DI 10.1016/j.epsl.2008.08.019 PG 8 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 373SN UT WOS:000260993000016 ER PT J AU Culcer, D AF Culcer, Dimitrie TI STEADY-STATE SPIN DENSITIES AND CURRENTS SO INTERNATIONAL JOURNAL OF MODERN PHYSICS B LA English DT Review DE Spin; spin current; spin-orbit ID ELECTRIC-CURRENT; QUANTUM-THEORY; HALL; SEMICONDUCTORS; POLARIZATION; CRYSTALS; METAL AB This article reviews steady-state spin densities and spin currents in materials with strong spin-orbit interactions. These phenomena are intimately related to spin precession due to spin-orbit coupling, which has no equivalent in the steady state of charge distributions. The focus will initially be on effects originating from the band structure. In this case, spin densities arise in an electric field because a component of each spin is conserved during precession. Spin currents arise because a component of each spin is continually precessing. These two phenomena are due to independent contributions to the steady-state density matrix, and scattering between the conserved and precessing spin distributions has important consequences for spin dynamics and spin-related effects in general. In the latter part of the article, extrinsic effects such as skew scattering and side jump will be discussed, and it will be shown that these effects are also modified considerably by spin precession. Theoretical and experimental progress in all areas will be reviewed. C1 [Culcer, Dimitrie] Univ Maryland, Dept Phys, Condensed Matter Theory Ctr, College Pk, MD 20742 USA. [Culcer, Dimitrie] No Illinois Univ, De Kalb, IL 60115 USA. [Culcer, Dimitrie] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Culcer, D (reprint author), Univ Maryland, Dept Phys, Condensed Matter Theory Ctr, College Pk, MD 20742 USA. EM dimi@physics.utexas.edu NR 102 TC 2 Z9 2 U1 2 U2 11 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 0217-9792 J9 INT J MOD PHYS B JI Int. J. Mod. Phys. B PD OCT 30 PY 2008 VL 22 IS 27 BP 4765 EP 4791 DI 10.1142/S021797920804911X PG 27 WC Physics, Applied; Physics, Condensed Matter; Physics, Mathematical SC Physics GA 371AU UT WOS:000260805000001 ER PT J AU Clilverd, MA Rodger, CJ Brundell, J Bahr, J Cobbett, N Moffat-Griffin, T Kavanagh, AJ Seppala, A Thomson, NR Friedel, RHW Menk, FW AF Clilverd, Mark A. Rodger, Craig J. Brundell, James Bahr, John Cobbett, Neil Moffat-Griffin, Tracy Kavanagh, Andrew J. Seppala, Annika Thomson, Neil R. Friedel, Reiner H. W. Menk, Frederick W. TI Energetic electron precipitation during substorm injection events: High-latitude fluxes and an unexpected midlatitude signature SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID IONIZATION; ATMOSPHERE; PROPAGATION; IONOSPHERE; DEPOSITION; DYNAMICS; SPECTRA; CHORUS; WAVES; SIZE AB Geosynchronous Los Alamos National Laboratory (LANL-97A) satellite particle data, riometer data, and radio wave data recorded at high geomagnetic latitudes in the region south of Australia and New Zealand are used to perform the first complete modeling study of the effect of substorm electron precipitation fluxes on low-frequency radio wave propagation conditions associated with dispersionless substorm injection events. We find that the precipitated electron energy spectrum is consistent with an e-folding energy of 50 keV for energies <400 keV but also contains higher fluxes of electrons from 400 to 2000 keV. To reproduce the peak subionospheric radio wave absorption signatures seen at Casey (Australian Antarctic Division), and the peak riometer absorption observed at Macquarie Island, requires the precipitation of 50-90% of the peak fluxes observed by LAM+NL-97A. Additionally, there is a concurrent and previously unreported substorm signature at L< 2.8, observed as a substorm-associated phase advance on radio waves propagation between Australia and New Zealand. Two mechanisms are discussed to explain the phase advances. We find that the most likely mechanism is the triggering of wave-induced electron precipitation caused by waves enhanced in the plasmasphere during the substorm and that either plasmaspheric hiss waves or electromagnetic ion cyclotron waves are a potential source capable of precipitationg the type of high-energy electron spectrum required. However, the presence of these waves at such low L shells has not been confirmed in this study. C1 [Clilverd, Mark A.; Cobbett, Neil; Moffat-Griffin, Tracy] British Antarctic Survey, Natl Environm Res Council, Div Phys Sci, Cambridge CB3 0ET, England. [Rodger, Craig J.; Bahr, John; Thomson, Neil R.] Univ Otago, Dept Phys, Dunedin 9054, New Zealand. [Kavanagh, Andrew J.] Univ Lancaster, Dept Commun Syst, Space Plasma Environm & Radio Sci Grp, InfoLab 21, Lancaster LA1 4WA, England. [Seppala, Annika] Finnish Meteorol Inst, FIN-00101 Helsinki, Finland. [Friedel, Reiner H. W.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Menk, Frederick W.] Univ Newcastle, Sch Math & Phys Sci, Callaghan, NSW 2308, Australia. [Menk, Frederick W.] Univ Newcastle, Cooperat Res Ctr Satellite Syst, Callaghan, NSW 2308, Australia. RP Clilverd, MA (reprint author), British Antarctic Survey, Natl Environm Res Council, Div Phys Sci, Madingley Rd, Cambridge CB3 0ET, England. EM macl@bas.ac.uk; crodger@physics.otago.ac.nz; james@brundell.co.nz; bahr@physics.otago.ac.nz; nco@bas.ac.uk; tmof@bas.ac.uk; a.j.kavanagh@lancaster.ac.uk; annika.seppala@fmi.fi; n_thomson@physics.otago.ac.nz; friedel@lanl.gov; fred.menk@newcastle.edu.au RI Brundell, James/F-3196-2013; Seppala, Annika/C-8031-2014; Rodger, Craig/A-1501-2011; Menk, Frederick/A-2640-2009; Friedel, Reiner/D-1410-2012 OI Brundell, James/0000-0002-8753-4720; Seppala, Annika/0000-0002-5028-8220; Rodger, Craig/0000-0002-6770-2707; Menk, Frederick/0000-0002-1154-6223; Friedel, Reiner/0000-0002-5228-0281 FU Finnish Academy FX The authors would like to thank Bill and Helen Dunford for their generous support during this work. The Casey data are supported by AAD project ASAC 1324. We would also like to acknowledge the use of the AAD data system for the provision of the Macquarie Island Riometer data, available at http://www.ips.gov.au/World_Data_Centre/1/8. We would like to acknowledge Hiroshi Fukunishi of Tohoku University, Sendai, Japan, for providing the summary AGO Pc 1-2 data. The LANL data were kindly provided by the Los Alamos National Laboratory from http://leadbelly.lan1.gov/lan1_ep_data. A. S. would like to acknowledge funding support from the Finnish Academy. NR 37 TC 17 Z9 18 U1 0 U2 1 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD OCT 30 PY 2008 VL 113 IS A10 AR A10311 DI 10.1029/2008JA013220 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 368EJ UT WOS:000260603800003 ER PT J AU Lee, RW Kulesz, JJ AF Lee, Ronald W. Kulesz, James J. TI A risk-based sensor placement methodology SO JOURNAL OF HAZARDOUS MATERIALS LA English DT Article DE Sensor placement; Risk AB A risk-based sensor placement methodology is proposed to solve the problem of optimal location of sensors to protect population against the exposure to, and effects of, known and/or postulated chemical, biological, and/or radiological threats. Risk is calculated its a quantitative Value representing population at risk from exposure at standard exposure levels. Historical meteorological data are used to characterize weather conditions as the frequency of wind speed and direction pairs. The meteorological data drive atmospheric transport and dispersion modeling of the threats. the results of which are used to calculate risk values. Sensor locations are determined via an iterative dynamic programming algorithm whereby threats detected by sensors placed in prior iterations are removed from consideration in Subsequent iterations. In addition to the risk-based placement algorithm, the proposed methodology provides a quantification of the marginal utility of each additional sensor. This is the fraction of the total risk accounted for by placement of the sensor. Thus, the criteria for halting the iterative process call be the number of sensors available. a threshold marginal utility value, and/or a minimum cumulative utility achieved with all sensors. (c) 2008 Elsevier B.V All rights reserved. C1 [Lee, Ronald W.; Kulesz, James J.] Oak Ridge Natl Lab, Computat Sci & Engn Div, Oak Ridge, TN USA. RP Lee, RW (reprint author), Oak Ridge Natl Lab, Computat Sci & Engn Div, Oak Ridge, TN USA. EM leerw@ornl.gov FU UT-Battelle, LLC [AC05-00OR22725] FX This manuscript has been authored by UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government Purpose. NR 16 TC 8 Z9 9 U1 1 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0304-3894 J9 J HAZARD MATER JI J. Hazard. Mater. PD OCT 30 PY 2008 VL 158 IS 2-3 BP 417 EP 429 DI 10.1016/j.jhazmat.2008.01.111 PG 13 WC Engineering, Environmental; Engineering, Civil; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 358AB UT WOS:000259887400022 PM 18343570 ER PT J AU Benson, MT Moser, ML Peterman, DR Dinescu, A AF Benson, Michael T. Moser, Megan L. Peterman, Dean R. Dinescu, Adriana TI Determination of pK(a) for dithiophosphinic acids using density functional theory SO JOURNAL OF MOLECULAR STRUCTURE-THEOCHEM LA English DT Article DE Dithiophosphinic acid; pK(a); Density functional theory; Cyanex-301 ID 1ST PRINCIPLES CALCULATIONS; GAS-PHASE; AB-INITIO; TRIVALENT ACTINIDES; MOLECULAR-STRUCTURE; CRYSTAL-STRUCTURE; SOLVATION MODEL; FREE-ENERGY; EXTRACTION; VALUES AB Aromatic dithiophosphinic acids have shown remarkable abilities for separating minor actinides from accompanying lanthanide elements. In particular, the bis(o-trifluoromethylphenyl)dithiophosphinic acid has displayed excellent separation properties, and this molecule also has an unexpectedly high pK(a). To investigate the intrinsic chemistry responsible for the separation and acidity behavior, and envelope of dithiophosphinic acid derivatives were investigated using Density Functional Theory. Symmetric aromatic dithiophosphinic acids of the form (XC6H4)(2)P(=S)(SH), where X = H, o-CH3, p-CH3, p-Cl, p-F, o-CF3, m-CF3, and p-CF3, and asymmetric aromatic acids of the form (X'C6H4)(X"C6H4)P(=S)(SH), where X'=o-CF3, X"=m-CF3; X'=H, X"=o-CF3, have been investigated using B3LYP/6-311G(d,p) and 6311 ++G(d,p) (Gaussian03). Solvation was included in the calculations using the CPCM continuum solvation method. Using the thermochemical data from vibrational frequency calculations, the pK(a) was calculated for the acids, and compared to that of Cyanex-301. The unexpectedly high pK(a) for bis(o-trifluoromethylphenyl)dithiophosphinic acid, when compared to the ortho-meta, meta-meta, and para-para isomers, is rationalized by electron repulsion between nearby fluorines and the sulfurs in the anion. This repulsion destabilizes the anion to a greater extent than the other isomers, thus raising the pK(a) (c) 2008 Elsevier B.V. All rights reserved. C1 [Benson, Michael T.; Moser, Megan L.; Peterman, Dean R.; Dinescu, Adriana] Idaho Natl Lab, Interfacial Chem Dept, Idaho Falls, ID 83415 USA. RP Benson, MT (reprint author), Idaho Natl Lab, Interfacial Chem Dept, POB 1625, Idaho Falls, ID 83415 USA. EM michael.benson@inl.gov RI Benson, Michael/B-8855-2017 OI Benson, Michael/0000-0003-4927-614X FU INL Laboratory Directed Research & Development (LDRD) Program under DOE Idaho Operations Office [DE-AC07-05ID14517] FX Work supported through the INL Laboratory Directed Research & Development (LDRD) Program under DOE Idaho Operations Office Contract DE-AC07-05ID14517. NR 46 TC 13 Z9 13 U1 1 U2 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0166-1280 J9 J MOL STRUC-THEOCHEM JI Theochem-J. Mol. Struct. PD OCT 30 PY 2008 VL 867 IS 1-3 BP 71 EP 77 DI 10.1016/j.theochem.2008.07.020 PG 7 WC Chemistry, Physical SC Chemistry GA 363LT UT WOS:000260269500013 ER PT J AU Wang, B Zhai, HJ Huang, X Wang, LS AF Wang, Bin Zhai, Hua-Jin Huang, Xin Wang, Lai-Sheng TI On the Electronic Structure and Chemical Bonding in the Tantalum Trimer Cluster SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID DENSITY-FUNCTIONAL THEORY; D-ORBITAL AROMATICITY; TRANSITION-METAL CLUSTERS; AB-INITIO CALCULATIONS; PHOTOELECTRON-SPECTROSCOPY; OXIDE CLUSTERS; QUINTUPLE BOND; IONIZATION-POTENTIALS; CARBIDE CLUSTERS; BORON CLUSTERS AB The electronic structure and chemical bonding in the Ta-3(-) cluster are investigated using photoelectron spectroscopy and density functional theory calculations. Photoelectron spectra are obtained for Ta3- at four photon energies: 532, 355, 266, and 193 nm. While congested spectra are observed at high electron binding energies, several low-lying electronic transitions are well resolved and compared with the theoretical calculations. The electron affinity of Ta-3 is determined to be 1.35 +/- 0.03 eV. Extensive density functional calculations are performed at the B3LYP/Stuttgart +2f 1g level to locate the ground-state and low-lying isomers for Ta-3 and Ta-3(-). The ground-state for the Ta-3(-) anion is shown to be a quintet ((5)A(1)') with D-3h symmetry, whereas two nearly isoenergetic states, C-2v ((4)A(1)) and D-3h ((6)A(1)'), are found to compete for the ground-state for neutral Ta-3. A detailed molecular orbital analysis is performed to elucidate the chemical boding in Ta-3(-), which is found to possess multiple d-orbital aromaticity, commensurate with its highly symmetric D-3h structure. C1 [Wang, Bin; Huang, Xin] Fuzhou Univ, Dept Chem, Fuzhou 350108, Fujian, Peoples R China. [Wang, Bin; Huang, Xin] State Key Lab Struct Chem, Fuzhou 350002, Fujian, Peoples R China. [Zhai, Hua-Jin; Wang, Lai-Sheng] Washington State Univ, Dept Phys, Richland, WA 99354 USA. [Zhai, Hua-Jin; Wang, Lai-Sheng] Pacific NW Natl Lab, Div Chem & Mat Sci, Richland, WA 99352 USA. RP Huang, X (reprint author), Fuzhou Univ, Dept Chem, Fuzhou 350108, Fujian, Peoples R China. EM xhuang@fzu.edu.cn; ls.wang@pnl.gov FU U.S. National Science Foundation [CHE-0749496]; Natural Science Foundation of China [20641004, 20771026]; Natural Science Foundation of Fujian Province [2008J0151] FX The experimental work was supported by the U.S. National Science Foundation (Grant CHE-0749496) and performed at the W. R. Wiley Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the U.S. DOE's Office of Biological and Environmental Research and located at the Pacific Northwest National Laboratory, operated for DOE by Battelle. X.H. gratefully acknowledges supports from the Natural Science Foundation of China (Grants 20641004 and 20771026) and the Natural Science Foundation of Fujian Province of China (No. 2008J0151). NR 67 TC 31 Z9 31 U1 5 U2 21 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD OCT 30 PY 2008 VL 112 IS 43 BP 10962 EP 10967 DI 10.1021/jp806166h PG 6 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 364TG UT WOS:000260357600034 PM 18831541 ER PT J AU Verdaguer, A Segura, JJ Fraxedas, J Bluhm, H Salmeron, M AF Verdaguer, Albert Segura, Juan Jose Fraxedas, Jordi Bluhm, Hendrik Salmeron, Miquel TI Correlation between Charge State of Insulating NaCl Surfaces and Ionic Mobility Induced by Water Adsorption: A Combined Ambient Pressure X-ray Photoelectron Spectroscopy and Scanning Force Microscopy Study SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID NACL(100); PHOTOEMISSION; OXIDATION; CENTERS; FILMS AB In situ ambient pressure X-ray photoelectron spectroscopy (APPES) and scanning force microscopy were used to characterize the surface discharge induced by water layers grown on (001) surfaces of sodium chloride single crystals. The APPES studies show that both kinetic energy (KE) and full width at half-maximum (FWHM) of the Na 2s and CI 2p core level peaks, monitored as a function of relative humidity (RH), mimic surface conductivity curves measured using scanning force microscopy. The KE position and FWHM of the core level peaks therefore are directly related to the solvation and diffusion of ions at the NaCl( 100) surface upon adsorption of water. C1 [Verdaguer, Albert; Segura, Juan Jose; Fraxedas, Jordi] Esfera UAB, CIN2 CSIC ICN, Bellaterra 08193, Catalunya, Spain. [Bluhm, Hendrik; Salmeron, Miquel] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Salmeron, Miquel] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. RP Verdaguer, A (reprint author), Esfera UAB, CIN2 CSIC ICN, Campus UAB,Edifici CM-7, Bellaterra 08193, Catalunya, Spain. EM Albert.Verdaguer.ICN@uab.cat RI Verdaguer, Albert/A-4303-2008; Segura, Juan Jose/H-3924-2011; Fraxedas, Jordi/G-3135-2013 OI Verdaguer, Albert/0000-0002-4855-821X; Fraxedas, Jordi/0000-0002-2821-4831 FU Ministerio, de Educacion y Ciencia (Spain) [FIS2006-12117-C04-01]; Generalitat de Catalunya [SGR 00909]; Director, Office of Science, Office of Biological and Environmental Research; Office of Biological and Environmental Research, the Materials Sciences Division and the Chemical Sciences Divisions of the U.S. Department of Energy,; Spanish Ramon y Cajal [DE-AC02-05CH11231] FX This work was supported by the Ministerio, de Educacion y Ciencia (Spain), through project FIS2006-12117-C04-01, by Generalitat de Catalunya (SGR 00909) and by the Director, Office of Science, Office of Biological and Environmental Research, the Materials Sciences Division and the Chemical Sciences Divisions of the U.S. Department of Energy, under Contract DE-AC02-05CH11231. A.V. acknowledges support front the Spanish Ramon y Cajal Program and the mobility BE program from Agaur, Generalitat de Catalunya. J.J.S. thanks the Consejo Superior de Investigaciones Cientificas (CSIC) for a JAE DOC PhD grant. NR 22 TC 12 Z9 12 U1 1 U2 12 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD OCT 30 PY 2008 VL 112 IS 43 BP 16898 EP 16901 DI 10.1021/jp805444v PG 4 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 364TI UT WOS:000260357800027 ER PT J AU Duffin, AM Saykally, RJ AF Duffin, Andrew M. Saykally, Richard J. TI Electrokinetic Power Generation from Liquid Water Microjets SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID ENERGY-CONVERSION; NANOFLUIDIC CHANNELS; EFFICIENCY; SURFACES AB Although electrokinetic effects are not new, only recently have they been investigated for possible use in energy conversion devices. We recently reported the electrokinetic generation of molecular hydrogen from rapidly flowing liquid water microjets [DUffin et al. J. PhYs. Chem. C 2007, 111, 12031]. Here, we describe the use of liquid water microjets for direct conversion of electrokinetic energy to electrical power. Previous studies of electrokinetic power production have reported low efficiencies (similar to 3%), limited by back conduction of ions at the surface and in the bulk liquid. Liquid microjets eliminate energy dissipation due to back conduction and, measuring only at the jet target, yield conversion efficiencies exceeding 10%. C1 [Saykally, Richard J.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94618 USA. RP Saykally, RJ (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM saykally@berkeley.edu NR 19 TC 28 Z9 29 U1 1 U2 16 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD OCT 30 PY 2008 VL 112 IS 43 BP 17018 EP 17022 DI 10.1021/jp8015276 PG 5 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 364TI UT WOS:000260357800044 ER PT J AU Martinez, A Hinz, JM Gomez, L Molina, B Acuna, H Jones, IM Frias, S Coleman, MA AF Martinez, Angelica Hinz, John M. Gomez, Laura Molina, Bertha Acuna, Hilda Jones, Irene M. Frias, Sara Coleman, Matthew A. TI Differential expression of TP53 associated genes in Fanconi anemia cells after mitomycin C and hydroxyurea treatment SO MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS LA English DT Article DE Fanconi anemia; Hydroxyurea; Mitomycin C; TP53; Gene expression; Cell cycle arrest; Apoptosis ID DNA-REPLICATION; NUCLEAR-COMPLEX; BLOOM-SYNDROME; P53; PATHWAY; PROTEIN; APOPTOSIS; SUSCEPTIBILITY; FANCD2; DAMAGE AB Fanconi anemia (FA) is a rare, heritable chromosomal instability disease characterized by several congenital defects and cancer predisposition. Functional interactions between specific FA proteins and DNA damage response and repair activities have been reported, but the interplay between these mechanisms for maintaining genomic stability are not well understood. Many DNA damage response proteins are transcriptionally regulated by the tumor suppressor protein p53 (TP53), suggesting an important regulatory role for the DNA damage and stress response pathway. To better understand the association between FA and the DNA damage stress response we analyzed the levels of chromosomal damage and damage mediated gene transcription responses in lymphoblastoid cells derived from normal individuals and patients carrying the most common FA complementation group (FA-A). Chromosomal aberrations were first measured after exposure to mitomicyn C (MMC) or hydroxyurea (HU). Aliquots of the same cell were than assayed for the transcriptional response of 21 DNA damage and stress response genes using quantitative real-time PCR. The FA-A lymphoblastoid cells showed significant increases in the frequency of chromosome aberrations relative to non-FA-A lymphoblastoid lines after MMC treatment. The MMC induced damage was correlated with a general increase in expression of TP53-modulated DNA damage stress response genes involved in processes such as DNA repair, cell cycle progression, and apoptosis. Following HU treatment FA cells showed a decreased induction of CAs with much less transcriptional differences between targeted genes. Overall, the differences between the normal and FA-A cells after genotoxic treatments imply an increased activation and reliance of FA cells on the down-stream activities of TP53 for prevention of cell killing and chromosome damage from interstrand crosslinks but not for general replication arrest and double strand breaks. Furthermore, these results imply a regulatory connection between the FA pathway and activation of TP53 for responding to DNA damage. Alterations in the regulation of the DNA damage response may be related to the complex phenotypes seen in FA patients. (C) 2008 Elsevier B.V. All rights reserved. C1 [Jones, Irene M.; Coleman, Matthew A.] Lawrence Livermore Natl Lab, Chem Mat Earth & Life Sci Directorate, Livermore, CA USA. [Martinez, Angelica; Gomez, Laura; Molina, Bertha; Acuna, Hilda; Frias, Sara] Inst Nacl Pediat, Lab Citogenet, Mexico City, DF, Mexico. [Martinez, Angelica] Univ Nacl Autonoma Mexico, Posgrad Ciencias Biol, Mexico City 04510, DF, Mexico. [Hinz, John M.] Washington State Univ, Sch Mol Biosci, Pullman, WA 99164 USA. RP Coleman, MA (reprint author), Lawrence Livermore Natl Lab, Chem Mat Earth & Life Sci Directorate, Livermore, CA USA. EM sarafrias@yahoo.com; coleman16@llnl.gov OI Coleman, Matthew/0000-0003-1389-4018; Frias, Sara/0000-0002-3097-6368 FU Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; Department of Energy, Office of Science; Low Dose Radiation Research [KP110202]; CONACYT [44389]; SEP-CONACYT FX This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344, with funding from the Department of Energy, Office of Science and the Low Dose Radiation Research program grant KP110202, and by CONACYT project 44389, SEP-CONACYT. NR 44 TC 6 Z9 6 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1383-5718 J9 MUTAT RES-GEN TOX EN JI Mutat. Res. Genet. Toxicol. Environ. Mutagen. PD OCT 30 PY 2008 VL 656 IS 1-2 BP 1 EP 7 DI 10.1016/j.mrgentox.2008.06.012 PG 7 WC Biotechnology & Applied Microbiology; Genetics & Heredity; Toxicology SC Biotechnology & Applied Microbiology; Genetics & Heredity; Toxicology GA 370EY UT WOS:000260746700001 PM 18647660 ER PT J AU Grimson, A Srivastava, M Fahey, B Woodcroft, BJ Chiang, HR King, N Degnan, BM Rokhsar, DS Bartel, DP AF Grimson, Andrew Srivastava, Mansi Fahey, Bryony Woodcroft, Ben J. Chiang, H. Rosaria King, Nicole Degnan, Bernard M. Rokhsar, Daniel S. Bartel, David P. TI Early origins and evolution of microRNAs and Piwi-interacting RNAs in animals SO NATURE LA English DT Article ID ALGA CHLAMYDOMONAS-REINHARDTII; C-ELEGANS; GENOME; EXPRESSION; DROSOPHILA; MECHANISM; EXPANSION; REVEALS; CONSERVATION; REPERTOIRE AB In bilaterian animals, such as humans, flies and worms, hundreds of microRNAs ( miRNAs), some conserved throughout bilaterian evolution, collectively regulate a substantial fraction of the transcriptome. In addition to miRNAs, other bilaterian small RNAs, known as Piwi- interacting RNAs (piRNAs), protect the genome from transposons. Here we identify small RNAs from animal phyla that diverged before the emergence of the Bilateria. The cnidarian Nematostella vectensis ( starlet sea anemone), a close relative to the Bilateria, possesses an extensive repertoire of miRNA genes, two classes of piRNAs and a complement of proteins specific to small- RNA biology comparable to that of humans. The poriferan Amphimedon queenslandica ( sponge), one of the simplest animals and a distant relative of the Bilateria, also possesses miRNAs, both classes of piRNAs and a full complement of the small- RNA machinery. Animal miRNA evolution seems to have been relatively dynamic, with precursor sizes and mature miRNA sequences differing greatly between poriferans, cnidarians and bilaterians. Nonetheless, miRNAs and piRNAs have been available as classes of riboregulators to shape gene expression throughout the evolution and radiation of animal phyla. C1 [Grimson, Andrew; Chiang, H. Rosaria; Bartel, David P.] Whitehead Inst Biomed Res, Cambridge, MA 02142 USA. [Grimson, Andrew; Chiang, H. Rosaria; Bartel, David P.] MIT, Howard Hughes Med Inst, Dept Biol, Cambridge, MA 02139 USA. [Fahey, Bryony; Woodcroft, Ben J.; Degnan, Bernard M.] Univ Queensland, Sch Integrat Biol, Brisbane, Qld 4072, Australia. [Srivastava, Mansi; King, Nicole; Rokhsar, Daniel S.] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Srivastava, Mansi; King, Nicole; Rokhsar, Daniel S.] Univ Calif Berkeley, Ctr Integrat Genom, Berkeley, CA 94720 USA. [Rokhsar, Daniel S.] Joint Genome Inst, Dept Energy, Walnut Creek, CA 94598 USA. RP Bartel, DP (reprint author), Whitehead Inst Biomed Res, 9 Cambridge Ctr, Cambridge, MA 02142 USA. EM dbartel@wi.mit.edu FU NIH postdoctoral fellowship; NIH; Center for Integrative Genomics; Gordon and Betty Moore Foundation; Australian Research Council FX We thank M. Abedin and E. Begovic for preparing the Monosiga and Trichoplax samples, respectively, W. Johnston for technical assistance, and J. Grenier, C. Mayr, C. Jan and N. Lau for discussions. This work was supported by an NIH postdoctoral fellowship (A.G.), and by grants from the NIH (D.P.B.), Richard Melmon (M.S., N.K. and D.S.R.), the Center for Integrative Genomics (M.S. and D.S.R.), the Gordon and Betty Moore Foundation (N.K.) and the Australian Research Council (B.F., B.J.W. and B.M.D.). D.P.B. is an investigator of the Howard Hughes Medical Institute. NR 35 TC 343 Z9 415 U1 6 U2 53 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 J9 NATURE JI Nature PD OCT 30 PY 2008 VL 455 IS 7217 BP 1193 EP U15 DI 10.1038/nature07415 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 366DZ UT WOS:000260462100034 PM 18830242 ER PT J AU Actis, S Passarino, G Sturm, C Uccirati, S AF Actis, Stefano Passarino, Giampiero Sturm, Christian Uccirati, Sandro TI Two-loop threshold singularities, unstable particles and complex masses SO PHYSICS LETTERS B LA English DT Article DE Feynman diagrams; Multi-loop calculations; Higgs physics ID QUANTUM-FIELD THEORY; FEYNMAN DIAGRAMS; STANDARD MODEL; ELECTROWEAK CORRECTIONS; NUMERICAL EVALUATION; RENORMALIZATION; CONFIGURATIONS; VERTICES; PHYSICS; SCHEME AB The effect of threshold singularities induced by unstable particles on two-loop observables is investigated and it is shown how to cure them working in the complex-mass scheme. The impact on radiative corrections around thresholds is thoroughly analyzed and shown to be relevant for two selected LHC and ILC applications: Higgs production via gluon fusion and decay into two photons at two loops in the Standard Model. Concerning Higgs production, it is essential to understand possible sources of large corrections in addition to the well-known QCD effects. It is shown that NLO electroweak corrections can incongruently reach a 10% level around the W W vector-boson threshold without a complete implementation of the complex-mass scheme in the two-loop calculation. (C) 2008 Elsevier BY. All rights reserved. C1 [Actis, Stefano] Univ Aachen, Rhein Westfal TH Aachen, Inst Theoret Phys E, D-52056 Aachen, Germany. [Passarino, Giampiero] Univ Turin, Dipartimento Fis Teor, Italy INFN, Sez Torino, I-10124 Turin, Italy. [Sturm, Christian] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Uccirati, Sandro] Univ Karlsruhe, Inst Theoret Teilchenphys, D-76128 Karlsruhe, Germany. RP Actis, S (reprint author), Univ Aachen, Rhein Westfal TH Aachen, Inst Theoret Phys E, D-52056 Aachen, Germany. EM actis@physik.rwth-aachen.de; giampiero@to.infn.it; sturm@bnl.gov; uccirati@particle.uni-karlsruhe.de RI Sturm, Christian/Q-2713-2015; OI Sturm, Christian/0000-0002-3137-4940; Passarino, Giampiero/0000-0001-6379-4686 FU MIUR [2001023713_006]; European Community [MRTN-CT-2006-035505]; US Department of Energy [DE-AC02-98CH10886]; Deutsche Forschungsgemeinschaft; INFN FX Work supported by MIUR under contract 2001023713_006, by the European Community's Marie Curie Research Training Network Tools and Precision Calculations for Physics Discoveries at Colliders under contract MRTN-CT-2006-035505, by the US Department of Energy under contract No. DE-AC02-98CH10886 and by the Deutsche Forschungsgemeinschaft through Sonderforschungsbereich/Transregio 9 Computergestutzte Theoretische Teilchenphysik. The authors thank the Galileo Galilei institute for Theoretical Physics for hospitality and the INFN for partial support during the completion of this work. NR 37 TC 21 Z9 21 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 J9 PHYS LETT B JI Phys. Lett. B PD OCT 30 PY 2008 VL 669 IS 1 BP 62 EP 68 DI 10.1016/j.physletb.2008.09.028 PG 7 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 372BM UT WOS:000260876400013 ER PT J AU Markert, C Bellwied, R Vitev, I AF Markert, C. Bellwied, R. Vitev, I. TI Formation and decay of hadronic resonances in the QGP SO PHYSICS LETTERS B LA English DT Article ID HEAVY-ION COLLISIONS; NUCLEAR-MATTER; FRAGMENTATION AB Hadronic resonances can play a pivotal role in providing experimental evidence for partial chiral symmetry restoration in the deconfined quark-gluon phase produced at RHIC and the LHC. Their lifetimes, which are comparable to the lifetime of the partonic plasma phase, make them an invaluable tool to study medium modifications to the resonant state due to the chiral transition. In this Letter we show that the heavier, but still abundant, light and strange quark resonances K*, phi, Delta and Lambda* have large probability to be produced well within the plasma phase due to their short formation times. We demonstrate that, under particular kinematic conditions, these resonances can be formed and will decay inside the partonic state, but still carry sufficient momentum to not interact strongly with the hadronic medium after the QCD phase transition. Thus, K*, phi, Delta and Lambda* should exhibit the characteristic property modifications which can be attributed to chiral symmetry restoration, such as mass shifts, width broadening or branching ratio modifications. (C) 2008 Elsevier B.V. All rights reserved. C1 [Markert, C.] Univ Texas Austin, Dept Phys, Austin, TX 78702 USA. [Bellwied, R.] Wayne State Univ, Dept Phys, Detroit, MI 48201 USA. [Vitev, I.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Markert, C (reprint author), Univ Texas Austin, Dept Phys, Austin, TX 78702 USA. EM cmarkert@physics.utexas.edu FU US Department of Energy Office of Science [DE-AC52-06NA25396, DE-FG02-94ER40845, DE-FG02-92FR40713] FX We thank B.W. Zhang, H. Huang and C. Greiner for useful discussions. This work is supported by the US Department of Energy Office of Science under contracts Nos. DE-AC52-06NA25396, DE-FG02-94ER40845,and DE-FG02-92FR40713. NR 34 TC 26 Z9 26 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 EI 1873-2445 J9 PHYS LETT B JI Phys. Lett. B PD OCT 30 PY 2008 VL 669 IS 1 BP 92 EP 97 DI 10.1016/j.physletb.2008.08.073 PG 6 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 372BM UT WOS:000260876400018 ER PT J AU Alia-Klein, N Kriplani, A Pradhan, K Ma, JY Logan, J Williams, B Craig, IW Telang, F Tomasi, D Goldstein, RZ Wang, GJ Volkow, ND Fowler, JS AF Alia-Klein, Nelly Kriplani, Aarti Pradhan, Kith Ma, Jim Yeming Logan, Jean Williams, Benjamin Craig, Ian W. Telang, Frank Tomasi, Dardo Goldstein, Rita Z. Wang, Gene-Jack Volkow, Nora D. Fowler, Joanna S. TI The MAO-A genotype does not modulate resting brain metabolism in adults SO PSYCHIATRY RESEARCH-NEUROIMAGING LA English DT Article DE MAO-A; FDG; Baseline ID MONOAMINE-OXIDASE; GENETIC-VARIATION; IMPULSIVITY; ATTENTION; PROMOTER; BEHAVIOR; VIOLENCE; HUMANS; RISK AB Variation in the monoamine-oxidase-A (MAO-A) gene has been associated with volumetric changes in corticolimbic regions with differences in their response to relevant emotional tasks. Here we show no changes in baseline regional brain metabolism as a function of genotype indicating that, unchallenged, corticolimbic activity is not modulated by the MAO-A genotype. Published by Elsevier Ireland Ltd. C1 [Alia-Klein, Nelly; Kriplani, Aarti; Pradhan, Kith; Ma, Jim Yeming; Logan, Jean; Telang, Frank; Tomasi, Dardo; Goldstein, Rita Z.; Wang, Gene-Jack; Fowler, Joanna S.] Brookhaven Natl Lab, Dept Med, Upton, NY 11973 USA. [Williams, Benjamin; Craig, Ian W.] Kings Coll London, Dept Psychiat, London SE5 8AF, England. [Wang, Gene-Jack; Fowler, Joanna S.] Mt Sinai Sch Med, New York, NY 10029 USA. [Volkow, Nora D.] NIDA, Bethesda, MD 20892 USA. RP Alia-Klein, N (reprint author), Brookhaven Natl Lab, Dept Med, Upton, NY 11973 USA. EM nellyklein@bnl.gov RI Tomasi, Dardo/J-2127-2015; OI Craig, Ian/0000-0002-4063-1005; Logan, Jean/0000-0002-6993-9994 FU Brookhaven National Laboratory [DE-AC-298CH 10886]; Office of Biological and Environmental Research; NIH-NIDA [K05DA020001]; NIH CGRC [MOIRR10710]; National Association for Research oil Schizophrenia and Depression (NARSAD) FX This work was carried out at Brookhaven National Laboratory under contract DE-AC-298CH 10886 with the U.S. Department of Energy and supported by its Office of Biological and Environmental Research and by NIH-NIDA (K05DA020001), NIH CGRC (MOIRR10710) and by the National Association for Research oil Schizophrenia and Depression (NARSAD). We thank the PET team for tile advice and assistance in different aspects of these studies. We are also grateful to the subjects who volunteered for these studies. NR 22 TC 9 Z9 10 U1 2 U2 3 PU ELSEVIER IRELAND LTD PI CLARE PA ELSEVIER HOUSE, BROOKVALE PLAZA, EAST PARK SHANNON, CO, CLARE, 00000, IRELAND SN 0925-4927 J9 PSYCHIAT RES-NEUROIM JI Psychiatry Res. Neuroimaging PD OCT 30 PY 2008 VL 164 IS 1 BP 73 EP 76 DI 10.1016/j.pscychresns.2007.12.010 PG 4 WC Clinical Neurology; Neuroimaging; Psychiatry SC Neurosciences & Neurology; Psychiatry GA 374DV UT WOS:000261023800006 PM 18706791 ER PT J AU Mukhopadhyaya, S Tsang, YW AF Mukhopadhyaya, Sumith Tsang, Yvonne W. TI Determination of transport properties from flowing fluid temperature logging in unsaturated fractured rocks: Theory and semi-analytical solution SO WATER RESOURCES RESEARCH LA English DT Article ID BOREHOLE TEMPERATURES; GROUNDWATER-FLOW; YUCCA MOUNTAIN; CLIMATE-CHANGE; SYSTEMS; EXAMPLE; UTAH; TUFF AB Flowing fluid temperature logging (FFTL) has recently been proposed as a method to locate flowing fractures. We argue that FFTL, backed up by data from high-precision distributed temperature sensors, can be a useful tool in locating flowing fractures and in estimating the transport properties of unsaturated fractured rocks. We have developed the theoretical background needed to analyze data from FFTL. In this article, we present a simplified conceptualization of FFTL in unsaturated fractured rock and develop a semi-analytical solution for spatial and temporal variations of pressure and temperature inside a borehole in response to an applied perturbation (pumping of air from the borehole). We compare the semi-analytical solution with predictions from the TOUGH2 numerical simulator. On the basis of the semi-analytical solution, we propose a method to estimate the permeability of the fracture continuum surrounding the borehole. Using this proposed method, we estimated the effective fracture continuum permeability of the unsaturated rock hosting the Drift Scale Test (DST) at Yucca Mountain, Nevada. Our estimate compares well with previous independent estimates for fracture permeability of the DST host rock. The conceptual model of FFTL presented in this article is based on the assumptions of single-phase flow, convection-only heat transfer, and negligible change in system state of the rock formation. In a sequel article, we extend the conceptual model to evaluate some of these assumptions. In that paper, we also perform inverse modeling of FFTL data to estimate, in addition to permeability, other transport parameters (such as porosity and thermal conductivity) of unsaturated fractured rocks. C1 [Mukhopadhyaya, Sumith; Tsang, Yvonne W.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Mukhopadhyaya, S (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, 1 Cyclotron Rd,MS-90R1116, Berkeley, CA 94720 USA. EM smukhopadhyay@lbl.gov NR 37 TC 1 Z9 1 U1 0 U2 1 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0043-1397 J9 WATER RESOUR RES JI Water Resour. Res. PD OCT 30 PY 2008 VL 44 IS 10 AR W10424 DI 10.1029/2008WR006860 PG 14 WC Environmental Sciences; Limnology; Water Resources SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water Resources GA 368EU UT WOS:000260604900001 ER PT J AU Maslov, S Redner, S AF Maslov, Sergei Redner, Sidney TI Promise and Pitfalls of Extending Google's PageRank Algorithm to Citation Networks SO JOURNAL OF NEUROSCIENCE LA English DT Editorial Material C1 [Redner, Sidney] Boston Univ, Ctr Polymer Studies, Boston, MA 02215 USA. [Redner, Sidney] Boston Univ, Dept Phys, Boston, MA 02215 USA. [Maslov, Sergei] Brookhaven Natl Lab, Dept Condensed Matter Phys & Mat Sci, Upton, NY 11973 USA. RP Redner, S (reprint author), Boston Univ, Ctr Polymer Studies, Boston, MA 02215 USA. EM redner@bu.edu RI Maslov, Sergei/C-2397-2009 OI Maslov, Sergei/0000-0002-3701-492X NR 10 TC 42 Z9 42 U1 2 U2 26 PU SOC NEUROSCIENCE PI WASHINGTON PA 11 DUPONT CIRCLE, NW, STE 500, WASHINGTON, DC 20036 USA SN 0270-6474 J9 J NEUROSCI JI J. Neurosci. PD OCT 29 PY 2008 VL 28 IS 44 BP 11103 EP 11105 DI 10.1523/JNEUROSCI.0002-08.2008 PG 3 WC Neurosciences SC Neurosciences & Neurology GA 366RZ UT WOS:000260502400001 PM 18971452 ER PT J AU Dagotto, E Yunoki, S Sen, C Alvarez, G Moreo, A AF Dagotto, Elbio Yunoki, Seiji Sen, Cengiz Alvarez, Gonzalo Moreo, Adriana TI Recent developments in the theoretical study of phase separation in manganites and underdoped cuprates SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article AB This paper is a brief review of the status of 'phase separation' ideas in manganites and cuprates, mainly focused on the recent efforts by the authors. It is argued that in the last year considerable progress has been made in the understanding of manganites, since the famous colossal magnetoresistance peak in the resistivity versus temperature has been numerically observed in unbiased Monte Carlo simulations using realistic models (namely, including double exchange, phonons, and quenched disorder). It is also conjectured that a phenomenology similar to the one found in manganites could be present in the underdoped regime of the cuprates. It is predicted that a state with superconducting patches exists above the critical temperature in the underdoped regime, in agreement with recent scanning tunneling microscopy experiments. C1 [Dagotto, Elbio; Yunoki, Seiji; Moreo, Adriana] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Dagotto, Elbio; Yunoki, Seiji; Moreo, Adriana] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Sen, Cengiz] Florida State Univ, Natl High Magnet Field Lab, Tallahassee, FL 32310 USA. [Sen, Cengiz] Florida State Univ, Dept Phys, Tallahassee, FL 32310 USA. [Alvarez, Gonzalo] Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA. [Alvarez, Gonzalo] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Dagotto, E (reprint author), Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. EM edagotto@utk.edu RI Yunoki, Seiji/B-1831-2008 FU NSF [DMR-0443144, DMR-0706020]; Division of Materials Sciences and Engineering of the Department of Energy, USA; Cray XT3; National Center for Computational Sciences at Oak Ridge National Laboratory FX This research has been supported mainly by NSF via grants DMR-0443144 and DMR-0706020. This effort has also been sponsored by the Division of Materials Sciences and Engineering of the Department of Energy, USA. Most of the computational work was performed on the Cray XT3 of the National Center for Computational Sciences at Oak Ridge National Laboratory. NR 15 TC 11 Z9 11 U1 3 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD OCT 29 PY 2008 VL 20 IS 43 AR 434224 DI 10.1088/0953-8984/20/43/434224 PG 7 WC Physics, Condensed Matter SC Physics GA 358MZ UT WOS:000259922600025 ER PT J AU Ederer, C Fennie, CJ AF Ederer, Claude Fennie, Craig J. TI Electric-field switchable magnetization via the Dzyaloshinskii-Moriya interaction: FeTiO3 versus BiFeO3 SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article ID THIN-FILM HETEROSTRUCTURES; PHASE-TRANSITIONS; TEMPERATURE; FERROMAGNETISM; POLARIZATION; DIFFRACTION; CRYSTAL; DOMAINS AB In this paper we review and discuss a mechanism for coupling between electric polarization and magnetization that can ultimately lead to electric-field switchable magnetization. The basic idea is that a ferroelectric distortion in an antiferromagnetic material can 'switch on' the Dzyaloshinskii-Moriya interaction which leads to a canting of the antiferromagnetic sublattice magnetizations, and thus to a net magnetization. This magnetization (M) over right arrow M is coupled to the polarization (P) over right arrow P via a trilinear free energy contribution of the form (P) over right arrow (M) over right arrow (L) over right arrow where (L) over right arrow is the antiferromagnetic order parameter. In particular, we discuss why such an invariant is present in R3c FeTiO3 but not in the isostructural multiferroic BiFeO3. Finally, we construct symmetry groups that in general allow for this kind of ferroelectrically-induced weak ferromagnetism. C1 [Ederer, Claude] Trinity Coll Dublin, Sch Phys, Dublin 2, Ireland. [Fennie, Craig J.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. RP Ederer, C (reprint author), Trinity Coll Dublin, Sch Phys, Dublin 2, Ireland. EM edererc@tcd.ie; fennie@anl.gov RI Ederer, Claude/F-5420-2010 FU Science Foundation Ireland; Irish National Development Plan; Center for Nanoscale Materials; US DOE, Office of Science, Basic Energy Sciences [DE-AC02-06CH11357] FX CE acknowledges financial support by Science Foundation Ireland and the Irish National Development Plan. Work at the Center for Nanoscale Materials was supported by US DOE, Office of Science, Basic Energy Sciences under Contract No. DE-AC02-06CH11357. NR 42 TC 57 Z9 57 U1 6 U2 46 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD OCT 29 PY 2008 VL 20 IS 43 AR 434219 DI 10.1088/0953-8984/20/43/434219 PG 8 WC Physics, Condensed Matter SC Physics GA 358MZ UT WOS:000259922600020 ER PT J AU Martin, L Crane, SP Chu, YH Holcomb, MB Gajek, M Huijben, M Yang, CH Balke, N Ramesh, R AF Martin, L. W. Crane, S. P. Chu, Y-H Holcomb, M. B. Gajek, M. Huijben, M. Yang, C-H Balke, N. Ramesh, R. TI Multiferroics and magnetoelectrics: thin films and nanostructures SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Review ID CHEMICAL-VAPOR-DEPOSITION; YMNO3 EPITAXIAL-FILMS; CRYSTAL-STRUCTURE; FERROELECTRIC PROPERTIES; MAGNETIC FERROELECTRICS; ELECTRIC POLARIZATION; DOMAIN CONTROL; EXCHANGE BIAS; BIFEO3 FILMS; PEROVSKITE AB Multiferroic materials, or materials that simultaneously possess two or more ferroic order parameters, have returned to the forefront of materials research. Driven by the desire to achieve new functionalities-such as electrical control of ferromagnetism at room temperature-researchers have undertaken a concerted effort to identify and understand the complexities of multiferroic materials. The ability to create high quality thin film multiferroics stands as one of the single most important landmarks in this flurry of research activity. In this review we discuss the basics of multiferroics including the important order parameters and magnetoelectric coupling in materials. We then discuss in detail the growth of single phase, horizontal multilayer, and vertical heterostructure multiferroics. The review ends with a look to the future and how multiferroics can be used to create new functionalities in materials. C1 [Martin, L. W.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Martin, L (reprint author), Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. EM lwmartin@lbl.gov RI YANG, CHAN-HO/C-2079-2011; Martin, Lane/H-2409-2011; Ying-Hao, Chu/A-4204-2008; Balke, Nina/Q-2505-2015; OI Martin, Lane/0000-0003-1889-2513; Ying-Hao, Chu/0000-0002-3435-9084; Balke, Nina/0000-0001-5865-5892; Holcomb, Mikel/0000-0003-2111-3410 FU Office of Basic Energy Sciences, Materials Science Division of the US Department of Energy [DE-AC0205CH11231]; ONR-MURI [E21-6RU-G4]; Western Institute of Nanoelectronics program FX The authors acknowledge the support of the Director, Office of Basic Energy Sciences, Materials Science Division of the US Department of Energy under Contract No. DE-AC0205CH11231 and previous contracts, ONR-MURI under Grant No. E21-6RU-G4 and previous contracts, and the Western Institute of Nanoelectronics program. NR 124 TC 168 Z9 171 U1 15 U2 219 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 EI 1361-648X J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD OCT 29 PY 2008 VL 20 IS 43 AR 434220 DI 10.1088/0953-8984/20/43/434220 PG 13 WC Physics, Condensed Matter SC Physics GA 358MZ UT WOS:000259922600021 ER PT J AU Picozzi, S Yamauchi, K Sergienko, IA Sen, C Sanyal, B Dagotto, E AF Picozzi, Silvia Yamauchi, Kunihiko Sergienko, Ivan A. Sen, Cengiz Sanyal, Biplab Dagotto, Elbio TI Microscopic mechanisms for improper ferroelectricity in multiferroic perovskites: a theoretical review SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Review ID AUGMENTED-WAVE METHOD; WEAK FERROMAGNETISM; POLARIZATION; MANGANITES AB Two microscopic mechanisms helping us to understand the multiferroic behavior of distorted rare-earth manganites are here briefly reviewed. The original work was carried out by means of Hamiltonian modeling and first-principles density functional simulations. Our first topic concerns the link between the Dzyaloshinskii-Moriya interaction and ferroelectricity in incommensurate magnets. We argue that the Dzyaloshinskii-Moriya interaction may play a key role since (i) it induces ferroelectric displacements of oxygen atoms and (ii) it favors the stabilization of a helical magnetic structure at low temperatures. Our second topic concerns the prediction, based on Landau theory, that the symmetry of the zigzag spin chains in the AFM-E (E-type antiferromagnetic) orthorhombic manganites (such as HoMnO(3)) allows a finite polarization along the c axis. The microscopic mechanism at the basis of ferroelectricity is interpreted through a gain in band energy of the e(g) electrons within the orbitally degenerate double-exchange model. Related Monte Carlo simulations have confirmed that the polarization can be much higher than what is observed in spiral magnetic phases. Density functional calculations performed on orthorhombic HoMnO(3) quantitatively confirm a magnetically induced ferroelectric polarization up to similar to 6 mu C cm(-2), the largest reported so far for improper magnetic ferroelectrics. We find in HoMnO(3), in addition to the conventional displacement mechanism, a sizable contribution arising from the purely electronic effect of orbital polarization. The relatively large ferroelectric polarization, present even with centrosymmetric atomic positions, is a clear sign of a magnetism-induced electronic mechanism at play, which is also confirmed by the large displacements of the Wannier function centers with respect to the corresponding ions in AFM-E HoMnO(3). The final polarization is shown to be the result of competing effects, as shown by the opposite signs of the eg and t(2g) contributions to the ferroelectric polarization. C1 [Picozzi, Silvia; Yamauchi, Kunihiko] Univ Aquila, Dipartimento Fis, CASTI Reg Lab, CNR INFM, I-67100 Laquila, Italy. [Sergienko, Ivan A.; Sen, Cengiz; Dagotto, Elbio] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Sergienko, Ivan A.; Sen, Cengiz; Dagotto, Elbio] Univ Tennessee, Dept Phys, Knoxville, TN 37996 USA. [Sanyal, Biplab] Uppsala Univ, Dept Phys, Theoret Magnetism Grp, SE-75121 Uppsala, Sweden. RP Picozzi, S (reprint author), Univ Aquila, Dipartimento Fis, CASTI Reg Lab, CNR INFM, I-67100 Laquila, Italy. EM silvia.picozzi@aquila.infn.it RI Yamauchi, Kunihiko/A-6324-2009; Sanyal, Biplab/G-4416-2011; Picozzi, Silvia/E-2374-2011; Yamauchi, Kunihiko/E-5833-2010 OI Sanyal, Biplab/0000-0002-3687-4223; Picozzi, Silvia/0000-0002-3232-788X; Yamauchi, Kunihiko/0000-0003-4164-4569 FU NSF [DMR-0706020]; Division of Materials Science and Engineering, US DOE; UT-Battelle, LLC; Barcelona Supercomputing Center and from CINECA (Bologna, Italy) FX This work was supported in part by the NSF grant DMR-0706020 and by the Division of Materials Science and Engineering, US DOE, under contract with UT-Battelle, LLC. Computational support from the Barcelona Supercomputing Center and from CINECA (Bologna, Italy) is gratefully acknowledged. NR 36 TC 27 Z9 27 U1 6 U2 58 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD OCT 29 PY 2008 VL 20 IS 43 AR 434208 DI 10.1088/0953-8984/20/43/434208 PG 10 WC Physics, Condensed Matter SC Physics GA 358MZ UT WOS:000259922600009 ER PT J AU Kuhn, JN Huang, WY Tsung, CK Zhang, YW Somorjai, GA AF Kuhn, John N. Huang, Wenyu Tsung, Chia-Kuang Zhang, Yawen Somorjai, Gabor A. TI Structure Sensitivity of Carbon-Nitrogen Ring Opening: Impact of Platinum Particle Size from below 1 to 5 nm upon Pyrrole Hydrogenation Product Selectivity over Monodisperse Platinum Nanoparticles Loaded onto Mesoporous Silica SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID DENDRIMER-ENCAPSULATED NANOPARTICLES; CATALYTIC-ACTIVITY; HYDRODENITROGENATION; KINETICS AB Well-defined platinum nanoparticles between 0.8 and 5.0 nm were prepared using dendrimer and polymer capping agents and supported onto mesoporous SBA-15 silica. Using these model catalysts, pyrrole hydrogenation was demonstrated to be structure sensitive because ring opening occurred more easily over larger particles compared to smaller ones. The phenomenon is caused by surface roughness or electronic effects that change with particle size. C1 [Somorjai, Gabor A.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Lawrence Berkeley Natl Lab, Div Chem & Mat Sci, Berkeley, CA 94720 USA. RP Somorjai, GA (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM somorjai@berkeley.edu RI Huang, Wenyu/L-3784-2014 OI Huang, Wenyu/0000-0003-2327-7259 FU U.S. DOE [DE-AC03-76SF00098, DEAC02-05CH11231] FX We acknowledge support from the Director, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geological and Biosciences of the U.S. DOE under Contract DE-AC03-76SF00098 and the Director, Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering of the U.S. DOE under Contract No. DEAC02-05CH11231. Additional support from Chevron is also appreciated. We also thank the Molecular Foundry of the LBNL and Prof. A. Paul Alivisatos for use of facilities. Y.W.Z. thanks the Huaxin Distinguished Scholar Award from Peking University Education Foundation of China. NR 18 TC 121 Z9 121 U1 8 U2 67 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD OCT 29 PY 2008 VL 130 IS 43 BP 14026 EP + DI 10.1021/ja805050c PG 3 WC Chemistry, Multidisciplinary SC Chemistry GA 363XV UT WOS:000260301700003 PM 18834126 ER PT J AU Peckys, DB de Jonge, N Simpson, ML McKnight, TE AF Peckys, Diana B. de Jonge, Niels Simpson, Michael L. McKnight, Timothy E. TI End-specific strategies of attachment of long double stranded DNA onto gold-coated nanofiber arrays SO NANOTECHNOLOGY LA English DT Article ID ATOMIC-FORCE MICROSCOPY; CARBON NANOTUBES; GENE DELIVERY; PLASMID DNA; SURFACES; BINDING; ELECTRODE; TRACKING; CELLS AB We report the effective and site-specific binding of long double stranded (ds) DNA to high aspect ratio carbon nanofiber arrays. The carbon nanofibers were first coated with a thin gold layer to provide anchorage for two controllable binding methods. One method was based on the direct binding of thiol end-labeled dsDNA. The second and enhanced method used amine end-labeled dsDNA bound with crosslinkers to a carboxyl-terminated self-assembled monolayer. The bound dsDNA was first visualized with a fluorescent, dsDNA-intercalating dye. The specific binding onto the carbon nanofiber was verified by a high resolution detection method using scanning electron microscopy in combination with the binding of neutravidin-coated fluorescent microspheres to the immobilized and biotinylated dsDNA. Functional activity of thiol end-labeled dsDNA on gold-coated nanofiber arrays was verified with a transcriptional assay, whereby Chinese hamster lung cells (V79) were impaled upon the DNA-modified nanofibers and scored for transgene expression of the tethered template. Thiol end-labeled dsDNA demonstrated significantly higher expression levels than nanofibers prepared with control dsDNA that lacked a gold-binding end-label. Employing these site-specific and robust techniques of immobilization of dsDNA onto nanodevices can be of advantage for the study of DNA/protein interactions and for gene delivery applications. C1 [Peckys, Diana B.; de Jonge, Niels] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Peckys, Diana B.; Simpson, Michael L.] Univ Tennessee, Knoxville, TN 37996 USA. [de Jonge, Niels] Vanderbilt Univ, Sch Med, Nashville, TN 37232 USA. [Simpson, Michael L.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [McKnight, Timothy E.] Oak Ridge Natl Lab, Measurement Sci & Syst Engn Div, Oak Ridge, TN 37831 USA. RP Peckys, DB (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. EM peckysdb@ornl.gov RI de Jonge, Niels/B-5677-2008; Simpson, Michael/A-8410-2011; McKnight, Tim/H-3087-2011; Peckys, Diana/B-4642-2015 OI Simpson, Michael/0000-0002-3933-3457; McKnight, Tim/0000-0003-4326-9117; FU NIBIB [R01EB006316]; Oak Ridge National Laboratory; US Department of Energy; DOE Office of Science; Basic Energy Sciences; Division of Scientific User Facilities FX The authors are grateful to A V Melechko, G M Veith, T Subich, D Hensley, D Thomas, and P Fleming for assistance with nanofiber fabrication. This study was supported by grant R01EB006316 (NIBIB) and through the Laboratory Directed Research and Development funding program of the Oak Ridge National Laboratory, which is managed for the US Department of Energy by UT-Battelle, LLC. MLS acknowledges support from the Material Sciences and Engineering Division Program of the DOE Office of Science. A portion of this research was conducted at the Center for Nanophase Materials Sciences, which is sponsored by the US Department of Energy, Basic Energy Sciences, Division of Scientific User Facilities. NR 37 TC 8 Z9 8 U1 0 U2 12 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0957-4484 J9 NANOTECHNOLOGY JI Nanotechnology PD OCT 29 PY 2008 VL 19 IS 43 AR 435301 DI 10.1088/0957-4484/19/43/435301 PG 9 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA 352HK UT WOS:000259486700007 PM 21832688 ER PT J AU Sutter, E Ozturk, B Sutter, P AF Sutter, Eli Ozturk, Birol Sutter, Peter TI Selective growth of Ge nanowires by low-temperature thermal evaporation SO NANOTECHNOLOGY LA English DT Article ID FIELD-EFFECT TRANSISTORS; GERMANIUM NANOWIRES; SEMICONDUCTOR NANOWIRES; SILICON NANOWIRES; TRANSPORT AB High-quality single-crystalline Ge nanowires with electrical properties comparable to those of bulk Ge have been synthesized by vapor-liquid-solid growth using Au growth seeds on SiO(2)/Si(100) substrates and evaporation from solid Ge powder in a low-temperature process at crucible temperatures down to 700 degrees C. High nanowire growth rates at these low source temperatures have been identified as being due to sublimation of GeO from substantial amounts of GeO(2) on the powder. The Ge nanowire synthesis from GeO is highly selective at our substrate temperatures (420-500 degrees C), i.e., occurs only on Au vapor-liquid-solid growth seeds. For growth of nanowires of 10-20 mu m length on Au particles, an upper bound of 0.5 nm Ge deposition was determined in areas of bare SiO(2)/Si substrate without Au nanoparticles. C1 [Sutter, Eli; Ozturk, Birol; Sutter, Peter] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. RP Sutter, E (reprint author), Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. EM esutter@bnl.gov FU US Department of Energy [DE-AC02-98CH1-886] FX Work performed under the auspices of the US Department of Energy under contract No. DE-AC02-98CH1-886. NR 33 TC 22 Z9 23 U1 1 U2 9 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0957-4484 J9 NANOTECHNOLOGY JI Nanotechnology PD OCT 29 PY 2008 VL 19 IS 43 AR 435607 DI 10.1088/0957-4484/19/43/435607 PG 6 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA 352HK UT WOS:000259486700022 PM 21832702 ER PT J AU Wang, SF Zhang, X Mao, X Zeng, QX Xu, H Lin, YH Chen, W Liu, GD AF Wang, Shengfu Zhang, Xing Mao, Xun Zeng, Qingxiang Xu, Hui Lin, Yuehe Chen, Wei Liu, Guodong TI Electrochemical immunoassay of carcinoembryonic antigen based on a lead sulfide nanoparticle label SO NANOTECHNOLOGY LA English DT Article ID TUMOR-MARKERS; LUNG-CARCINOMA; COLLOIDAL GOLD; PLEURAL FLUID; IMMUNOSENSOR; SERUM; CANCER; CA-19-9; ASSAY; CEA AB We describe a lead sulfide nanoparticle (PbS NP)-based electrochemical immunoassay to detect a tumor biomarker, carcinoembryonic antigen (CEA). Cubic PbS NPs were prepared and functionalized with thioglycolic acid (TGA), which stabilized the formed NPs and offered carboxyl groups to conjugate with CEA antibodies. PbS NP conjugated with monoclonal CEA antibody was used as a label in an immunorecognition event. After a complete sandwich immunoreaction among the primary CEA antibody (immobilized on the carboxyl-modified magnetic beads), CEA and the PbS-labeled secondary antibody (PbS-anti-CEA), PbS labels were captured to the magnetic-bead (MB) surface through the antibody-antigen immunocomplex. Electrochemical stripping analysis of the captured PbS was used to quantify the concentration of CEA after an acid-dissolution step. The MBs and the magnetic separation platform were used to integrate a facile antibody immobilization with immunoreactions and the isolation of immunocomplexes from reaction solutions in the immunoassay. The voltammetric response is highly linear over the range of 1-50 ng ml(-1) CEA, and the limit of detection is estimated to be 0.5 ng ml(-1). The performance of this nanoparticle-based electrochemical immunoassay was successfully evaluated with human serum spiked with CEA, indicating that this convenient and sensitive technique offers great promise for rapid, simple and cost-effective analysis of tumor biomarkers in biological fluids. C1 [Zhang, Xing; Chen, Wei] Univ Texas Arlington, Dept Phys, Arlington, TX 76019 USA. [Wang, Shengfu; Mao, Xun; Zeng, Qingxiang; Xu, Hui] N Dakota State Univ, Dept Chem & Mol Biol, Fargo, ND 58105 USA. [Wang, Shengfu; Zeng, Qingxiang; Xu, Hui] Hubei Univ, Coll Chem & Chem Engn, Wuhan 430062, Peoples R China. [Lin, Yuehe; Liu, Guodong] Pacific NW Natl Lab, Richland, WA 99354 USA. RP Chen, W (reprint author), Univ Texas Arlington, Dept Phys, POB 19059, Arlington, TX 76019 USA. EM weichen@uta.edu; guodong.liu@ndsu.edu RI Lin, Yuehe/D-9762-2011 OI Lin, Yuehe/0000-0003-3791-7587 FU North Dakota Experimental Program; North Dakota State University; UTA; NSF; DHS [CBET-0736172]; DOD [HDTRA1-08-P-0034]; DOD Congressionally Directed Medical Research Programs [W81XWH-08-1-0450]; National Natural Science Foundation of China [20575017]; PNNL LDRD; DOE [DE-AC05-76RL01830] FX GL acknowledges the financial support from the North Dakota Experimental Program to Stimulate Competitive Research (EPSCoR) and new faculty startup funds of North Dakota State University. WC would like to thank support from the Startup and LERR Funds from UTA, the NSF and DHS joint program (CBET-0736172), DOD HDTRA1-08-P-0034 and the DOD Congressionally Directed Medical Research Programs (W81XWH-08-1-0450). SW acknowledges the financial support from the National Natural Science Foundation of China (no. 20575017). YL would like to acknowledge support from a PNNL LDRD program. PNNL is operated by Battelle for DOE under contract DE-AC05-76RL01830. NR 37 TC 9 Z9 9 U1 0 U2 23 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0957-4484 EI 1361-6528 J9 NANOTECHNOLOGY JI Nanotechnology PD OCT 29 PY 2008 VL 19 IS 43 AR 435501 DI 10.1088/0957-4484/19/43/435501 PG 6 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA 352HK UT WOS:000259486700014 PM 21832695 ER PT J AU Yim, TJ Wang, Y Zhang, X AF Yim, Tae-Jin Wang, Yuan Zhang, Xiang TI Synthesis of a gold nanoparticle dimer plasmonic resonator through two-phase-mediated functionalization SO NANOTECHNOLOGY LA English DT Article ID SOLID-PHASE SYNTHESIS; RAMAN-SCATTERING; SPECTROSCOPY; HETERODIMERS; INTERFACES; DYNAMICS; SIZE AB We report that Au nanoparticles, ligand-exchanged with a thiol ligand at the liquid-liquid interface, were dimerized using an N, N'-diisopropylcarbodiimide-mediated amide bond formation. This dimerization of 60 nm sized Au nanoparticles achieved 24% overall yield and was visually confirmed by transmission electron microscopy as well as by scanning electron microscopy images. The resultant electromagnetic field enhancement of a single Au nanoparticle dimer was proven by dark field spectroscopy which, in turn, made the Au nanoparticle dimer suitable for molecular sensing applications, such as in surface enhanced Raman spectroscopy. Our dimerization method demonstrated that the synthesis of Au nanoparticle dimers with a high yield and enhanced optical properties of the dimers were possible. Our methodology also has good prospects as regards the formation of nanoscale building blocks. C1 [Yim, Tae-Jin; Wang, Yuan; Zhang, Xiang] Univ Calif Berkeley, NSF Nanoscale Sci & Engn Ctr, Berkeley, CA 94720 USA. [Zhang, Xiang] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Zhang, X (reprint author), Univ Calif Berkeley, NSF Nanoscale Sci & Engn Ctr, Berkeley, CA 94720 USA. EM xiang@berkeley.edu RI Zhang, Xiang/F-6905-2011; Wang, Yuan/F-7211-2011 FU National Institutes of Health [PN2 EY018228] FX We thank the National Institutes of Health through the NIH Roadmap for Medical Research (PN2 EY018228) for support. NR 31 TC 20 Z9 20 U1 0 U2 24 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0957-4484 J9 NANOTECHNOLOGY JI Nanotechnology PD OCT 29 PY 2008 VL 19 IS 43 AR 435605 DI 10.1088/0957-4484/19/43/435605 PG 6 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA 352HK UT WOS:000259486700020 PM 20737026 ER PT J AU Wang, D Kopidakis, N Reese, MO Gregg, BA AF Wang, Dong Kopidakis, Nikos Reese, Matthew O. Gregg, Brian A. TI Treating Poly(3-hexylthiophene) with Dimethylsulfate Improves Its Photoelectrical Properties SO CHEMISTRY OF MATERIALS LA English DT Article ID ORGANIC SOLAR-CELLS; REGIOREGULAR POLY(3-HEXYLTHIOPHENE); HETEROJUNCTION; FILMS C1 [Wang, Dong; Kopidakis, Nikos; Reese, Matthew O.; Gregg, Brian A.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Gregg, BA (reprint author), Natl Renewable Energy Lab, 1617 Cole Blvd, Golden, CO 80401 USA. RI Kopidakis, Nikos/N-4777-2015 NR 25 TC 27 Z9 27 U1 1 U2 14 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 J9 CHEM MATER JI Chem. Mat. PD OCT 28 PY 2008 VL 20 IS 20 BP 6307 EP 6309 DI 10.1021/cm8015676 PG 3 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 363FY UT WOS:000260254400007 ER PT J AU Ruddy, DA Jarupatrakorn, J Rioux, RM Miller, JT McMurdo, MJ Mcbee, JL Tupper, KA Tilley, TD AF Ruddy, Daniel A. Jarupatrakorn, Jonggol Rioux, Robert M. Miller, Jeffrey T. McMurdo, Meredith J. McBee, Jennifer L. Tupper, Karl A. Tilley, T. Don TI Site-Isolated Pt-SBA15 Materials from Tris(tert-butoxy)siloxy Complexes of Pt(II) and Pt(IV) SO CHEMISTRY OF MATERIALS LA English DT Article ID SURFACE ORGANOMETALLIC CHEMISTRY; MONODISPERSED PLATINUM CLUSTERS; RAY-ABSORPTION SPECTROSCOPY; GAS SHIFT REACTION; MOLECULAR PRECURSOR; MESOPOROUS SILICA; HETEROGENEOUS CATALYSIS; THERMOLYTIC CONVERSION; OLEFIN EPOXIDATION; LOW-TEMPERATURE AB Two novel tris(tert-butoxy)siloxy complexes of Pt(II) and Pt(IV) were prepared in high yields, (cod)Pt[OSi(O'Bu)(3)](2) (1; 87%; cod = 1,5-cyclooctadiene) and Me3Pt(tmeda)[OSi(O'Bu)(3)] (2; 81%; tmeda = N,N,N',N'-tetramethylethylenediamine). The structures of these compounds were determined by multinuclear NMR spectroscopy and by single-crystal X-ray analysis. The thermolytic chemistry of I and 2 in the solid state was studied by thermogravimetric analysis. The thermal decomposition of these complexes resulted in the formation of Pt metal, with the elimination of HOSi(O'Bu)(3), Precursors I and 2 react with the surface Si-OH groups of mesoporous SBA15 silica to generate surface-supported Pt centers. The coordination environments of the Supported Pt centers in these new materials, termed Pt(II)SBA15 and Pt(IV)SBA15, were investigated using Fourier-transform infrared spectroscopy, X-ray absorption near-edge spectroscopy, and extended X-ray absorption fine structure analysis. These materials were also characterized using N, porosimetry, powder X-ray diffraction and transmission electron microscopy. Comparisons with the molecular precursors 1 and 2 revealed many similarities, and the results are indicative of isolated Pt(II) and Pt(IV) centers. In addition, isolated Pt centers proved to be robust in inert atmosphere to 150-200 degrees C, which is similar to the decomposition temperatures of 1 and 2. C1 [Ruddy, Daniel A.; Jarupatrakorn, Jonggol; McMurdo, Meredith J.; McBee, Jennifer L.; Tupper, Karl A.; Tilley, T. Don] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Ruddy, Daniel A.; Jarupatrakorn, Jonggol; McMurdo, Meredith J.; McBee, Jennifer L.; Tilley, T. Don] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Rioux, Robert M.] Penn State Univ, Dept Chem Engn, University Pk, PA 16802 USA. BP Res Ctr, Naperville, IL 60565 USA. [Miller, Jeffrey T.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Tilley, TD (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM tdtilley@berkeley.edu RI ID, MRCAT/G-7586-2011 FU U.S. Department of Energy [DE-AC03-76SF00098] FX The authors gratefully acknowledge the Support of the Director, Office of Energy Research, Office of Basic Energy Sciences, Chemical Sciences Division, of the U.S. Department of Energy under Contract DE-AC03-76SF00098. We thank A. M. Stacy and A. P. Alivisatos at the University of California, Berkeley, for use of instrumentation (PXRD, SAXS, and TEM). Use of the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences and the MRCAT member institutions. NR 82 TC 22 Z9 22 U1 0 U2 22 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 J9 CHEM MATER JI Chem. Mat. PD OCT 28 PY 2008 VL 20 IS 20 BP 6517 EP 6527 DI 10.1021/cm801598k PG 11 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 363FY UT WOS:000260254400036 ER PT J AU Bielicki, JK Zhang, HY Azhar, R Johansson, J Azhar, S AF Bielicki, John K. Zhang, Haiyan Azhar, Rakia Johansson, Jan Azhar, Selman TI Reduction of Established Atherosclerosis in Hypercholesterolemic Mouse Models by ATI-5261: a Novel a-helix Peptide that Stimulates ABCA1 Cholesterol Efflux with High Efficiency SO CIRCULATION LA English DT Meeting Abstract CT 81st Annual Scientific Session of the American-Heart-Association CY NOV 08-12, 2008 CL New Orleans, LA SP Amer Heart Assoc C1 [Bielicki, John K.] Lawrence Berkeley Natl Lab, Berkeley, CA USA. [Zhang, Haiyan; Azhar, Rakia; Azhar, Selman] Stanford Univ, GRECC, VA Palo Alto Hlth Care Syst, Palo Alto, CA 94304 USA. [Johansson, Jan] Artery Therapeut, Danville, CA USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA SN 0009-7322 J9 CIRCULATION JI Circulation PD OCT 28 PY 2008 VL 118 IS 18 BP S558 EP S558 PG 1 WC Cardiac & Cardiovascular Systems; Peripheral Vascular Disease SC Cardiovascular System & Cardiology GA 389ON UT WOS:000262104501467 ER PT J AU Kim, HW Yang, J Finney, L Vogt, S McKinney, RD Wilgus, TA DiPietro, LA Ushio-Fukai, M Fukai, T AF Kim, Ha Won Yang, Jay Finney, Lydia Vogt, Stefan McKinney, Ronald D. Wilgus, Traci A. DiPietro, Luisa A. Ushio-Fukai, Masuko Fukai, Tohru TI Segregation of Copper-dependent Transcription Factor and Copper Chaperone Function of Antioxidant-1 in Wound Healing SO CIRCULATION LA English DT Meeting Abstract CT 81st Annual Scientific Session of the American-Heart-Association CY NOV 08-12, 2008 CL New Orleans, LA SP Amer Heart Assoc C1 [Kim, Ha Won; McKinney, Ronald D.; Wilgus, Traci A.; DiPietro, Luisa A.; Ushio-Fukai, Masuko; Fukai, Tohru] Univ Illinois, Chicago, IL USA. [Yang, Jay] Columbia Univ, New York, NY USA. [Finney, Lydia; Vogt, Stefan] Argonne Natl Lab, Chicago, IL USA. NR 0 TC 0 Z9 0 U1 0 U2 3 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA SN 0009-7322 J9 CIRCULATION JI Circulation PD OCT 28 PY 2008 VL 118 IS 18 BP S332 EP S332 PG 1 WC Cardiac & Cardiovascular Systems; Peripheral Vascular Disease SC Cardiovascular System & Cardiology GA 389ON UT WOS:000262104500286 ER PT J AU Blackburn, JL Svedruzic, D McDonald, TJ Kim, YH King, PW Heben, MJ AF Blackburn, Jeffrey L. Svedruzic, Drazenka McDonald, Timothy J. Kim, Yong-Hyun King, Paul W. Heben, Michael J. TI Raman spectroscopy of charge transfer interactions between single wall carbon nanotubes and [FeFe] hydrogenase SO DALTON TRANSACTIONS LA English DT Article ID DESULFOVIBRIO-DESULFURICANS; ELECTRONIC-STRUCTURE; DISPERSIONS; PROTONATION; RESONANCE; OXIDATION AB We report a Raman spectroscopy study of charge transfer interactions in complexes formed by single-walled carbon nanotubes (SWNTs) and [FeFe] hydrogenase I (CaHydl) from clostridium acetobutylicum. The choice of Raman excitation wavelength and sample preparation conditions allows differences to be observed for complexes involving metallic (m) and semiconducting (s) species. Adsorbed CaHydl can reversibly inject electronic charge into the LUMOs of s-SWNTs, while charge can be injected and removed from m-SWNTs at lower potentials just above the Fermi energy. Time-dependent enzymatic assays demonstrated that the reduced and oxidized forms of CaHydl are deactivated by oxygen, but at rates that varied by an order of magnitude. The time evolution of the oxidative decay of the CaHydl activity reveals different time constants when complexed with m-SWNTs and s-SWNTs. The correlation of enzymatic assays with time-dependent Raman spectroscopy provides a novel method by which the charge transfer interactions may be investigated in the various SwNT. CaHydl complexes. Surprisingly, an oxidized form of CaHydl is apparently more resistant to oxygen deactivation when complexed to m-SWNTs rather than s-SWNTs. C1 [Blackburn, Jeffrey L.; Svedruzic, Drazenka; McDonald, Timothy J.; Kim, Yong-Hyun; King, Paul W.; Heben, Michael J.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Blackburn, JL (reprint author), Natl Renewable Energy Lab, 16253 Denver W Pkwy, Golden, CO 80401 USA. RI Kim, Yong-Hyun/C-2045-2011; Blackburn, Jeffrey/D-7344-2012; King, Paul/D-9979-2011 OI Kim, Yong-Hyun/0000-0003-4255-2068; King, Paul/0000-0001-5039-654X FU U.S. Department of Energy; Office of Science; Office of Basic Energy Scicnces; Division of Chemical Sciences, Geoscienccs, and Biosciences FX This work was supported by the U.S. Department of Energy, Office of Science. Office of Basic Energy Scicnces. Division of Chemical Sciences, Geoscienccs, and Biosciences. NR 33 TC 8 Z9 8 U1 0 U2 12 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1477-9226 J9 DALTON T JI Dalton Trans. PD OCT 28 PY 2008 IS 40 BP 5454 EP 5461 DI 10.1039/b806379f PG 8 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 365SS UT WOS:000260428700009 PM 19082027 ER PT J AU Hansson, A Istrate, G AF Hansson, Anders Istrate, Gabriel TI Counting preimages of TCP reordering patterns SO DISCRETE APPLIED MATHEMATICS LA English DT Article; Proceedings Paper CT Cologne/Twente Workshop on Graphs and Combinatorial Optimization CY MAY 18-20, 2005 CL Univ Cologne, Cologne, GERMANY SP Univ Duisburt Essen, Polytechn Univ Malin, Univ Twente HO Univ Cologne DE TCP; Packet reordering; Doubly convex bipartite graphs; Matchings AB Packet reordering is an important property of network traffic that should be captured by analytical models of the Transmission Control Protocol (TCP). We study a combinatorial problem motivated by RESTORED [G. Istrate, A. Hansson, S. Thulasidasan, M. Marathe, C. Barrett, Semantic compression of TCP traces, in: F. Boavida (Ed.), Proceedings of the Fifth IFIP NETWORKING Conference, in: Lecture Notes in Computer Science, vol. 3976, Springer-Verlag, 2006, pp. 123-135], a TCP modeling methodology that incorporates information about packet dynamics. A significant component of this model is a many-to-one mapping B that transforms sequences of packet IDS into buffer sequences in a manner that is compatible with TCP semantics. We obtain the following results: We give an easy necessary and sufficient condition for an input sequence W to be valid (i.e. A is an element of B-1 (W) for some permutation A or {1, 2, . . . , n}), and a linear time algorithm that, given a valid buffer sequence W of length n, constructs a permutation A in the preimage of W. We show that the problem of counting the number of permutations in B-1 (W) has a polynomial time algorithm. We also show how to extend these results to sequences of IDS that contain repeated packets. (C) 2008 Elsevier B.V. All rights reserved. C1 [Istrate, Gabriel] eAustria Res Inst, RO-300223 Timisoara, Romania. [Hansson, Anders] Los Alamos Natl Lab, Informat Sci CCS 3, Los Alamos, NM 87545 USA. RP Istrate, G (reprint author), eAustria Res Inst, Bd V Parvan 4,Cam 045B, RO-300223 Timisoara, Romania. EM hansson@lanl.gov; gabrielistrate@acm.org NR 12 TC 1 Z9 1 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0166-218X EI 1872-6771 J9 DISCRETE APPL MATH JI Discret Appl. Math. PD OCT 28 PY 2008 VL 156 IS 17 SI SI BP 3187 EP 3193 DI 10.1016/j.dam.2008.05.011 PG 7 WC Mathematics, Applied SC Mathematics GA 381WM UT WOS:000261566600005 ER PT J AU Delle Monache, L Lundquist, JK Kosovic, B Johannesson, G Dyer, KM Aines, RD Chow, FK Belles, RD Hanley, WG Larsen, SC Loosmore, GA Nitao, JJ Sugiyama, GA Vogt, PJ AF Delle Monache, Luca Lundquist, Julie K. Kosovic, Branko Johannesson, Gardar Dyer, Kathleen M. Aines, Roger D. Chow, Fotini K. Belles, Rich D. Hanley, William G. Larsen, Shawn C. Loosmore, Gwen A. Nitao, John J. Sugiyama, Gayle A. Vogt, Philip J. TI Bayesian Inference and Markov Chain Monte Carlo Sampling to Reconstruct a Contaminant Source on a Continental Scale SO JOURNAL OF APPLIED METEOROLOGY AND CLIMATOLOGY LA English DT Article ID GENETIC ALGORITHM; MAXIMUM-ENTROPY; PRINCIPLE; MODEL AB A methodology combining Bayesian inference with Markov chain Monte Carlo (MCMC) sampling is applied to a real accidental radioactive release that occurred on a continental scale at the end of May 1998 near Algeciras, Spain. The source parameters (i.e., source location and strength) are reconstructed from a limited set of measurements of the release. Annealing and adaptive procedures are implemented to ensure a robust and effective parameter-space exploration. The simulation setup is similar to an emergency response scenario, with the simplifying assumptions that the source geometry and release time are known. The Bayesian stochastic algorithm provides likely source locations within 100 km from the true source, after exploring a domain covering an area of approximately 1800 km x 3600 km. The source strength is reconstructed with a distribution of values of the same order of magnitude as the upper end of the range reported by the Spanish Nuclear Security Agency. By running the Bayesian MCMC algorithm on a large parallel cluster the inversion results could be obtained in few hours as required for emergency response to continental-scale releases. With additional testing and refinement of the methodology ( e. g., tests that also include the source geometry and release time among the unknown source parameters), as well as with the continuous and rapid growth of computational power, the approach can potentially be used for real-world emergency response in the near future. C1 [Delle Monache, Luca; Lundquist, Julie K.; Kosovic, Branko; Johannesson, Gardar; Dyer, Kathleen M.; Aines, Roger D.; Belles, Rich D.; Hanley, William G.; Larsen, Shawn C.; Loosmore, Gwen A.; Nitao, John J.; Sugiyama, Gayle A.; Vogt, Philip J.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Chow, Fotini K.] Univ Calif Berkeley, Berkeley, CA 94720 USA. RP Delle Monache, L (reprint author), Lawrence Livermore Natl Lab, 7000 E Ave,L-103, Livermore, CA 94550 USA. EM ldm@llnl.gov RI Aines, Roger/A-2013-2013; OI LUNDQUIST, JULIE/0000-0001-5490-2702 FU U. S. Department of Energy by University of California, Lawrence Livermore National Laboratory [W-7405-Eng-48] FX This work was performed under the auspices of the U. S. Department of Energy by University of California, Lawrence Livermore National Laboratory under Contract W-7405-Eng-48. NR 31 TC 26 Z9 26 U1 3 U2 8 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 1558-8424 EI 1558-8432 J9 J APPL METEOROL CLIM JI J. Appl. Meteorol. Climatol. PD OCT 28 PY 2008 VL 47 IS 10 BP 2600 EP 2613 DI 10.1175/2008JAMC1766.1 PG 14 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 366HO UT WOS:000260471600008 ER PT J AU in' t Veld, PJ Horsch, MA Lechman, JB Grest, GS AF in' t Veld, Pieter J. Horsch, Mark A. Lechman, Jeremy B. Grest, Gary S. TI Liquid-vapor coexistence for nanoparticles of various size SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID MOLECULAR-DYNAMICS SIMULATION; MONTE-CARLO SIMULATIONS; LENNARD-JONES LIQUID; PHASE-EQUILIBRIA; MODEL; PARTICLES; NANOCOMPOSITES; DIAGRAMS; NANORODS; SURFACE AB We present molecular dynamics simulations of the liquid-vapor phase coexistence of pure nanoparticle systems with three different model nanoparticle interactions. Our simulations show that the form of the interaction potential between nanoparticles strongly influences their coexistence behavior. For nanoparticles interacting with an integrated Lennard-Jones potential, the critical temperature and critical density increase with increasing particle size. In contrast, nanoparticles interacting via a Lennard-Jones potential shifted to the surface of the nanoparticle do not exhibit the expected size dependence of the phase diagram. For this model, the critical temperature decreases with increasing nanoparticle size. Similar results were observed for composite nanoparticles, with the interactions truncated at a finite distance. (C) 2008 American Institute of Physics. [DOI: 10.1063/1.2996513] C1 [in' t Veld, Pieter J.] BASF SE, Polymer Res, D-67056 Ludwigshafen, Germany. [in' t Veld, Pieter J.; Horsch, Mark A.; Lechman, Jeremy B.; Grest, Gary S.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP in' t Veld, PJ (reprint author), BASF SE, Polymer Res, D-67056 Ludwigshafen, Germany. EM gsgrest@sandia.gov FU Sandia Corporation; Lockheed-Martin Company [DE-AC04-94AL85000] FX This work was performed, in part, at the Center for Integrated Nanotechnologies, a U. S. Department of Energy, Office of Basic Energy Sciences user facility. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the U. S. Department of Energy under Contract No. DE-AC04-94AL85000. NR 42 TC 8 Z9 8 U1 0 U2 7 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD OCT 28 PY 2008 VL 129 IS 16 AR 164504 DI 10.1063/1.2996513 PG 7 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 367SI UT WOS:000260572300044 PM 19045281 ER PT J AU Jungen, C Pratt, ST AF Jungen, Ch. Pratt, S. T. TI Renner-Teller interactions in the vibrational autoionization of polyatomic molecules SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID QUANTUM-DEFECT THEORY; TRIPLE-RESONANCE SPECTROSCOPY; HIGHER EXCITED-STATES; ORBITAL ANGULAR-MOMENTUM; RYDBERG STATES; DISSOCIATIVE RECOMBINATION; TRIATOMIC-MOLECULES; LINEAR-MOLECULES; NO2; IONIZATION AB Vibrational autoionization induced by the Renner-Teller interaction in linear polyatomic molecules is considered in the context of the three-state electrostatic model developed by Gauyacq and Jungen [Mol. Phys. 41, 383 (1980)]. For small interactions, simple formulas are derived for the quantum defect matrix elements and the autoionization rates in terms of the more common Renner-Teller parameters derived from spectroscopic analyses of low-lying Rydberg states. These formulas should provide guidance for empirical fitting of quantum defect parameters to spectra of high Rydberg states. Consideration of typical values of the Renner-Teller parameters also allows the estimation of vibrational autoionization rates induced by these interactions. These estimates support the validity of the Delta v = -1 propensity rule for vibrational autoionization. Constraints on the vibrational autoionization rates for the symmetric stretching vibration are also discussed. In the following paper, electron capture by polyatomic molecular ions into vibrationally autoionizing Rydberg states is considered from the same perspective, and a simple formula is derived to allow the estimation of the effect of this process on dissociative recombination cross sections. (C) 2008 American Institute of Physics. [DOI: 10.1063/1.2999553] C1 [Jungen, Ch.] Univ Paris 11, CNRS, Aime Cotton Lab, F-91405 Orsay, France. [Pratt, S. T.] Argonne Natl Lab, Argonne, IL 60439 USA. RP Jungen, C (reprint author), Univ Paris 11, CNRS, Aime Cotton Lab, F-91405 Orsay, France. EM stpratt@anl.gov FU U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences; Division of Chemical Sciences, Geosciences, and Biosciences [DE-AC02-06CH11357]; E. Miescher Foundation (Basel, Switzerland) FX The work at Argonne was supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences under Contract No. DE-AC02-06CH11357. S. T. P. also thanks the Universite Paris Sud for support for a series of visits during which this work was developed. C. J. has benefited from financial support by the E. Miescher Foundation (Basel, Switzerland). NR 48 TC 8 Z9 8 U1 0 U2 3 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD OCT 28 PY 2008 VL 129 IS 16 AR 164310 DI 10.1063/1.2999553 PG 11 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 367SI UT WOS:000260572300032 PM 19045269 ER PT J AU Jungen, C Pratt, ST AF Jungen, Ch. Pratt, S. T. TI Renner-Teller interactions in the dissociative recombination of HCO(+) SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID DOUBLE-RESONANCE SPECTROSCOPY; EXCITED VIBRATIONAL-STATES; ORBITAL ANGULAR-MOMENTUM; HIGH RYDBERG STATES; TRIATOMIC-MOLECULES; IONIZATION; SPECTRUM; MODE; LINE; DCO+ AB The formalism developed in the preceding paper for vibrational autoionization via Renner-Teller active vibrations is adapted to treat dissociative recombination and applied to the reaction of HCO(+) + e(-). Existing spectroscopic data on the rovibrational structure of the HCO(+) (2)Sigma(+) ion and the HCO 3p pi(2)Pi Rydberg state are fitted by using the semirigid bender model to extract the parameters required to calculate the autoionization and electron capture widths. The results of this simple model are in good agreement with more detailed first principles calculations of the dissociative recombination cross section and confirm the earlier conclusion that coupling due to the Renner Teller interaction is largely responsible for the observed dissociative recombination cross section at electron energies below similar to 0.1 eV. (C) 2008 American Institute of Physics. [DOI: 10.1063/1.2999557] C1 [Jungen, Ch.] Univ Paris 11, CNRS, Aime Cotton Lab, F-91405 Orsay, France. [Pratt, S. T.] Argonne Natl Lab, Argonne, IL 60439 USA. RP Jungen, C (reprint author), Univ Paris 11, CNRS, Aime Cotton Lab, F-91405 Orsay, France. EM stpratt@anl.gov NR 41 TC 17 Z9 17 U1 0 U2 5 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD OCT 28 PY 2008 VL 129 IS 16 AR 164311 DI 10.1063/1.2999557 PG 9 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 367SI UT WOS:000260572300033 PM 19045270 ER PT J AU Durach, M Rusina, A Klimov, VI Stockman, MI AF Durach, M. Rusina, A. Klimov, V. I. Stockman, M. I. TI Nanoplasmonic renormalization and enhancement of Coulomb interactions SO NEW JOURNAL OF PHYSICS LA English DT Article ID ENERGY-TRANSFER; RAMAN-SCATTERING; SILVER ELECTRODE; SEMICONDUCTOR NANOCRYSTALS; FLUORESCENCE; SPECTROSCOPY; PYRIDINE; SPECTRA AB In this paper, we propose a general and powerful theory of the plasmonic enhancement of the many-body phenomena resulting in a closed expression for the surface plasmon-dressed Coulomb interaction. We illustrate this theory by computing the dressed interaction explicitly for an important example of metal-dielectric nanoshells which exhibits a rich resonant behavior in magnitude and phase. This interaction is used to describe the nanoplasmonic-enhanced Forster resonant energy transfer (FRET) between nanocrystal quantum dots near a nanoshell. C1 [Durach, M.; Rusina, A.; Stockman, M. I.] Georgia State Univ, Dept Phys & Astron, Atlanta, GA 30303 USA. [Klimov, V. I.] Los Alamos Natl Lab, Div Chem, C PCS, Los Alamos, NM USA. RP Stockman, MI (reprint author), Georgia State Univ, Dept Phys & Astron, Atlanta, GA 30303 USA. EM mstockman@gsu.edu OI Klimov, Victor/0000-0003-1158-3179 FU NSF [0507147]; US-Israel BSF; DOE Center; Los Alamos and Sandia National Laboratories FX This work was supported by grants from the Chemical Sciences, Biosciences and Geosciences Division of the Office of Basic Energy Sciences, Office of Science, US Department of Energy, a grant CHE-0507147 from NSF, a grant from the US-Israel BSF, and by the DOE Center for Integrated Nanotechnologies jointly operated by the the Los Alamos and Sandia National Laboratories. MIS gratefully acknowledges useful discussions with D Bergman and A Nitzan. NR 31 TC 57 Z9 57 U1 1 U2 19 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1367-2630 J9 NEW J PHYS JI New J. Phys. PD OCT 28 PY 2008 VL 10 AR 105011 DI 10.1088/1367-2630/10/10/105011 PG 14 WC Physics, Multidisciplinary SC Physics GA 370JW UT WOS:000260759500010 ER PT J AU Oulton, RF Bartal, G Pile, DFP Zhang, X AF Oulton, R. F. Bartal, G. Pile, D. F. P. Zhang, X. TI Confinement and propagation characteristics of subwavelength plasmonic modes SO NEW JOURNAL OF PHYSICS LA English DT Article ID WAVE-GUIDES; SURFACE; POLARITON AB We have studied subwavelength confinement of the surface plasmon polariton modes of various plasmonic waveguides and examined their relative merits using a graphical parametric representation of their confinement and propagation characteristics. While the same plasmonic phenomenon governs mode confinement in all these waveguides, the various architectures can exhibit distinctive behavior in terms of effective mode area and propagation distance. We found that the waveguides based on metal and one dielectric material show a similar trade-off between energy confinement and propagation distance. However, a hybrid plasmon waveguide, incorporating metal, low index and high index dielectric materials, exhibits longer propagation distances for the same degree of confinement. We also point out that plasmonic waveguides with sharp features can provide an extremely strong local field enhancement, which is not necessarily accompanied by strong confinement of the total electromagnetic energy. In these waveguides, a mode may couple strongly to nearby atoms, but suffer relatively low propagation losses due to weak confinement. C1 [Oulton, R. F.; Bartal, G.; Zhang, X.] Univ Calif Berkeley, NSF Nanoscale Sci & Engn Ctr, Berkeley, CA 94720 USA. [Pile, D. F. P.] Queensland Univ Technol, Appl Opt Program, Sch Phys & Chem Sci, Brisbane, Qld 4001, Australia. [Zhang, X.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Zhang, X (reprint author), Univ Calif Berkeley, NSF Nanoscale Sci & Engn Ctr, 3112 Etcheverry Hall, Berkeley, CA 94720 USA. EM xiang@berkeley.edu RI Zhang, Xiang/F-6905-2011; OI Pile, David/0000-0001-9961-1319 FU AFOSR MURI [FA9550-04-1-0434]; NSF Nanoscale Science and Engineering Centre [DMI-0327077] FX This work was supported by AFOSR MURI (FA9550-04-1-0434) and NSF Nanoscale Science and Engineering Centre (DMI-0327077). NR 26 TC 159 Z9 162 U1 7 U2 70 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1367-2630 J9 NEW J PHYS JI New J. Phys. PD OCT 28 PY 2008 VL 10 AR 105018 DI 10.1088/1367-2630/10/10/105018 PG 14 WC Physics, Multidisciplinary SC Physics GA 370JW UT WOS:000260759500017 ER PT J AU Shegai, T Li, ZP Dadosh, T Zhang, ZY Xu, HX Haran, G AF Shegai, Timur Li, Zhipeng Dadosh, Tali Zhang, Zhenyu Xu, Hongxing Haran, Gilad TI Managing light polarization via plasmon-molecule interactions within an asymmetric metal nanoparticle trimer SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE generalized Mie theory; single-molecule Raman scattering; plasmonics ID SURFACE-ENHANCED RAMAN; ELECTROMAGNETIC ENERGY-FLOW; ARBITRARY SPHERES; SCATTERING SERS; HOLE ARRAYS; SPECTROSCOPY; SILVER; SENSITIVITY; POLARITONS; FIELD AB The interaction of light with metal nanoparticles leads to novel phenomena mediated by surface plasmon excitations. In this article we use single molecules to characterize the interaction of surface plasmons with light, and show that such interaction can strongly modulate the polarization of the emitted light. The simplest nanostructures that enable such polarization modulation are asymmetric silver nanocrystal trimers, where individual Raman scattering molecules are located in the gap between two of the nanoparticles. The third particle breaks the dipolar symmetry of the two-particle junction, generating a wavelength-dependent polarization pattern. Indeed, the scattered light becomes elliptically polarized and its intensity pattern is rotated in the presence of the third particle. We use a combination of spectroscopic observations on single molecules, scanning electron microscope imaging, and generalized Mie theory calculations to provide a full picture of the effect of particles on the polarization of the emitted light. Furthermore, our theoretical analysis allows us to show that the observed phenomenon is very sensitive to the size of the trimer particles and their relative position, suggesting future means for precise control of light polarization on the nanoscale. C1 [Li, Zhipeng; Xu, Hongxing] Chinese Acad Sci, Inst Phys, Beijing Natl Lab Condensed Matter Phys, Beijing 100080, Peoples R China. [Shegai, Timur; Haran, Gilad] Weizmann Inst Sci, Dept Chem Phys, IL-76100 Rehovot, Israel. [Dadosh, Tali] Weizmann Inst Sci, Dept Condensed Matter Phys, IL-76100 Rehovot, Israel. [Zhang, Zhenyu] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Zhang, Zhenyu] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Xu, Hongxing] Lund Univ, Div Solid State Phys, S-22100 Lund, Sweden. RP Xu, HX (reprint author), Chinese Acad Sci, Inst Phys, Beijing Natl Lab Condensed Matter Phys, POB 603, Beijing 100080, Peoples R China. EM hongxingxu@aphy.iphy.ac.cn; gilad.haran@weizmann.ac.il RI li, zhipeng/D-3313-2009; Shegai, Timur/B-1207-2011; IoP, Nano Lab/B-9663-2013; HARAN, GILAD/K-1489-2012; zou, Ci/E-8559-2017 FU Natural Science Foundation of China [10625418]; Ministry of Science and Technology [2006DFB02020, 2007CB936800]; Chinese Academy of Science; Division of Materials Sciences and Engineering; Office of Basic Energy Sciences; Department of Energy [DEFG0205ER46209]; National Science Foundation [DMR-0606485]; Israel Science Foundation; Weizmann Institute of Science FX This work was supported by Natural Science Foundation of China Contract 10625418 (to H.X.), Ministry of Science and Technology Contract 2006DFB02020 and 2007CB936800 (to H.X.), the "Bairen" projects of the Chinese Academy of Science (H.X.); in part, by Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, Department of Energy Grant DEFG0205ER46209 (to Z.Z.) and, in part, by National Science Foundation Grant DMR-0606485) (to Z.Z.); in part, by the historic generosity of the Harold Perlman Family (G.H.) and by the Israel Science Foundation. The electron microscopy studies were conducted at the Irving and Cherna Moskowitz Center for Nano and Bio-Nano Imaging at the Weizmann Institute of Science. NR 31 TC 150 Z9 151 U1 6 U2 68 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD OCT 28 PY 2008 VL 105 IS 43 BP 16448 EP 16453 DI 10.1073/pnas.0808365105 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 372PM UT WOS:000260913500011 PM 18927232 ER PT J AU Canovas, E Marti, A Luque, A Walukiewicz, W AF Canovas, E. Marti, A. Luque, A. Walukiewicz, W. TI Optimum nitride concentration in multiband III-N-V alloys for high efficiency ideal solar cells SO APPLIED PHYSICS LETTERS LA English DT Article AB III-N-x-V1-x highly mismatched alloys (HMAs) have been proposed as promising material candidates for the development of high efficiency solar cells. According to the band anticrossing model, these alloys present a multiband character with an intermediate band within the otherwise fundamental bandgap that gives them the ability of improving the efficiency by means of below-bandgap photon absorption. The efficiency of GaNxAs1-x, GaNxP1-x, and their quaternaries InyGa1-yNxAs1-x and GaNxP1-x-yAsy is estimated theoretically versus nitrogen content in this letter. Low nitrogen content in the range of 1%-3.5% in the HMAs analyzed leads to theoretical efficiencies above 60%. (C) 2008 American Institute of Physics. [DOI: 10.1063/1.3013570] C1 [Canovas, E.; Marti, A.; Luque, A.] Univ Politecn Madrid, Inst Energia Solar, E-28040 Madrid, Spain. [Walukiewicz, W.] Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Canovas, E (reprint author), Univ Politecn Madrid, Inst Energia Solar, E-28040 Madrid, Spain. EM canovas@ies-def.upm.es RI Marti, Antonio/L-2791-2014; Canovas, Enrique/F-9104-2016 OI Marti, Antonio/0000-0002-8841-7091; FU European Commission [211640]; Comunidad de Madrid [S-0505/ENE/000310]; Plan Nacional de Formacion de Personal Investigador [CSD2006-00004] FX This work has been supported by the European Commission within the project IBPOWER (Contract No. 211640)) and the projects NUMANCIA (Contract No. S-0505/ENE/000310) funded by the Comunidad de Madrid and GENESIS-FV (Contract No. CSD2006-00004) funded by the Spanish National Programme. E. C. acknowledges the "Plan Nacional de Formacion de Personal Investigador" research grant. NR 18 TC 11 Z9 11 U1 0 U2 13 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD OCT 27 PY 2008 VL 93 IS 17 AR 174109 DI 10.1063/1.3013570 PG 3 WC Physics, Applied SC Physics GA 367SD UT WOS:000260571800109 ER PT J AU Creighton, JR Coltrin, ME Figiel, JJ AF Creighton, J. Randall Coltrin, Michael E. Figiel, Jeffrey J. TI Observations of gas-phase nanoparticles during InGaN metal-organic chemical vapor deposition SO APPLIED PHYSICS LETTERS LA English DT Article ID INDIUM INCORPORATION; OPTICAL-PROPERTIES; MOVPE; GROWTH; FILMS; CHEMISTRY AB Using in situ laser light scattering, we have directly observed the formation of gas-phase nanoparticles during InN and InGaN metal-organic chemical vapor deposition. The angular dependence of the light scattering intensity suggests that the nanoparticles are metallic In or InGa alloys. From the angle-resolved scattering profile, we determined that the particle diameters were in the range 20-50 nm, and particle densities were mostly in the 10(8)-10(9) cm(-3) range. Results indicate that for growth temperatures near 800 C nearly 100% of the indium near the surface is converted into gas-phase nanoparticles and is no longer available for InGaN growth. (C) 2008 American Institute of Physics. [DOI: 10.1063/1.3009291] C1 [Creighton, J. Randall; Coltrin, Michael E.; Figiel, Jeffrey J.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Creighton, JR (reprint author), Sandia Natl Labs, POB 5800,MS 1086, Albuquerque, NM 87185 USA. EM jrcreig@sandia.gov FU Sandia National Laboratories, for the United States Department of Energy [DE-AC04-94AL85000]; U. S. Department of Energy's Office of Energy Efficiency and Renewable Energy (ERE)Solid-State Lighting Core Technology Program; National Energy Technology Laboratory [M6743230] FX This research was performed at Sandia National Laboratories, for the United States Department of Energy under Contract No. DE-AC04-94AL85000. Most of this work was funded by the U. S. Department of Energy's Office of Energy Efficiency and Renewable Energy (ERE)Solid-State Lighting Core Technology Program, administered by the National Energy Technology Laboratory, Project No. M6743230, Manager: Joel Chaddock. We wish to acknowledge Bill Breiland for valuable assistance in both the experimental and theoretical work reported here. NR 24 TC 13 Z9 13 U1 6 U2 14 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD OCT 27 PY 2008 VL 93 IS 17 AR 171906 DI 10.1063/1.3009291 PG 3 WC Physics, Applied SC Physics GA 367SD UT WOS:000260571800021 ER PT J AU Hindmarch, AT Dempsey, KJ Morgan, JP Hickey, BJ Arena, DA Marrows, CH AF Hindmarch, A. T. Dempsey, K. J. Morgan, J. P. Hickey, B. J. Arena, D. A. Marrows, C. H. TI Room temperature magnetic stabilization of buried cobalt nanoclusters within a ferromagnetic matrix studied by soft x-ray magnetic circular dichroism SO APPLIED PHYSICS LETTERS LA English DT Article ID NANOPARTICLES; PARTICLES AB Single dusting layers of size-selected Co nanoclusters (NCs) of sizes ranging from 1.5-5.5 nm have been deposited by a gas-phase aggregation method in ultrahigh vacuum, and embedded within a NiFe matrix. Magnetic hysteresis loops have been obtained using soft x-ray magnetic circular dichroism, which shows that these Co NCs embedded in NiFe exhibit room temperature ferromagnetism with identical coercivity to the surrounding NiFe film. The strong local exchange field at the interface between NiFe and Co NCs, combined with the magnetic anisotropy of the NiFe film, allows stabilization of NC ferromagnetism which persists to room temperature. (c) 2008 American Institute of Physics. [DOI: 10.1063/1.3012368] C1 [Hindmarch, A. T.; Dempsey, K. J.; Morgan, J. P.; Hickey, B. J.; Marrows, C. H.] Univ Leeds, Sch Phys & Astron, EC Stoner Lab, Leeds LS2 9JT, W Yorkshire, England. [Arena, D. A.] Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA. RP Hindmarch, AT (reprint author), Univ Leeds, Sch Phys & Astron, EC Stoner Lab, Leeds LS2 9JT, W Yorkshire, England. EM a.t.hindmarch@leeds.ac.uk RI Marrows, Christopher/D-7980-2011; Hindmarch, Aidan/B-7970-2012; Morgan, Jason/K-7757-2012; Hickey, B J/B-3333-2016; OI Hickey, B J/0000-0001-8289-5618; Morgan, Jason/0000-0003-2785-8165; Marrows, Christopher/0000-0003-4812-6393 FU EPSRC; Brookhaven National Laboratory FX The authors acknowledge financial support from EPSRC and are grateful to Brookhaven National Laboratory for the provision of NSLS beamtime. NR 16 TC 5 Z9 5 U1 0 U2 4 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD OCT 27 PY 2008 VL 93 IS 17 AR 172511 DI 10.1063/1.3012368 PG 3 WC Physics, Applied SC Physics GA 367SD UT WOS:000260571800061 ER PT J AU Pookpanratana, S France, R Bar, M Weinhardt, L Fuchs, O Blum, M Yang, W Denlinger, JD Moustakas, TD Heske, C AF Pookpanratana, S. France, R. Baer, M. Weinhardt, L. Fuchs, O. Blum, M. Yang, W. Denlinger, J. D. Moustakas, T. D. Heske, C. TI Intermixing and chemical structure at the interface between n-GaN and V-based contacts SO APPLIED PHYSICS LETTERS LA English DT Article ID OHMIC CONTACTS; ALGAN/GAN HETEROSTRUCTURES; GALLIUM NITRIDE; XPS AB The interface between n-type GaN and V-based contacts was characterized by soft x-ray spectroscopy. We have investigated the chemical interface structure before and after a rapid thermal annealing (RTA) step, which is crucial for the formation of an Ohmic contact. X-ray photoelectron and x-ray excited Auger electron spectra suggest that RTA induces an accumulation of metallic Ga at the surface. Using x-ray emission spectroscopy, we find that the probed nitrogen atoms are in a VN-like environment, indicating that vanadium interacts with nitrogen atoms from the GaN to form VN. (C) 2008 American Institute of Physics. [DOI: 10.1063/1.2992199] C1 [Pookpanratana, S.; Baer, M.; Weinhardt, L.; Heske, C.] Univ Nevada, Dept Chem, Las Vegas, NV 89154 USA. [France, R.; Moustakas, T. D.] Boston Univ, Dept Elect & Comp Engn, Boston, MA 02215 USA. [Fuchs, O.; Blum, M.] Univ Wurzburg, D-97074 Wurzburg, Germany. [Yang, W.; Denlinger, J. D.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Pookpanratana, S (reprint author), Univ Nevada, Dept Chem, Las Vegas, NV 89154 USA. EM pookpanr@unlv.nevada.edu; tdm@bu.edu; heske@unlv.nevada.edu RI Weinhardt, Lothar/G-1689-2013; Yang, Wanli/D-7183-2011; Moustakas, Theodore/D-9249-2016 OI Yang, Wanli/0000-0003-0666-8063; Moustakas, Theodore/0000-0001-8556-884X FU U.S. Department of Energy (DOE) [DE-FG36-05GO85032]; Nevada System of Higher Education [NSHE 07-101, 08-03]; DOE [DE-AC02-05CH11231]; Deutsche Forschungsgemeinschaft FX We gratefully acknowledge support from the U.S. Department of Energy (DOE) under Contract No. DE-FG36-05GO85032 and the Nevada System of Higher Education under SFFA Nos. NSHE 07-101 and 08-03. The Advanced Light Source is supported by the DOE under Contract No. DE-AC02-05CH11231, and M. Bar gratefully acknowledges support by the Emmy Noether Programm of the Deutsche Forschungsgemeinschaft. NR 19 TC 13 Z9 13 U1 0 U2 5 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD OCT 27 PY 2008 VL 93 IS 17 AR 172106 DI 10.1063/1.2992199 PG 3 WC Physics, Applied SC Physics GA 367SD UT WOS:000260571800037 ER PT J AU Wang, Y Han, XF Zhang, XG AF Wang, Yan Han, X. F. Zhang, X. -G. TI Effect of Co interlayers in Fe/MgO/Fe magnetic tunnel junctions SO APPLIED PHYSICS LETTERS LA English DT Article ID ROOM-TEMPERATURE; MAGNETORESISTANCE; LAYER AB The effect of Co interlayers in -Fe(001)/Co/MgO/Co/Fe- magnetic tunnel junctions is studied by first-principles calculation. We confirm that the Co layers inserted at the two Fe/MgO interfaces strongly influence the interfacial resonance (IR) states and the tunneling magnetoresistance (TMR). The effect is not monotonic. Strongest IR occurs at Co layer thickness of 0.5 monolayer (ML). With 1 ML Co, the IR is dramatically reduced and TMR ratio is maximized. (c) 2008 American Institute of Physics. [DOI: 10.1063/1.3005561] C1 [Wang, Yan; Han, X. F.] Chinese Acad Sci, Inst Phys, Beijing Natl Lab Condensed Matter Phys, State Key Lab Magnetism, Beijing 100080, Peoples R China. [Zhang, X. -G.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci & Comp Sci, Oak Ridge, TN 37831 USA. [Zhang, X. -G.] Oak Ridge Natl Lab, Div Math, Oak Ridge, TN 37831 USA. RP Wang, Y (reprint author), Chinese Acad Sci, Inst Phys, Beijing Natl Lab Condensed Matter Phys, State Key Lab Magnetism, Beijing 100080, Peoples R China. EM wyan@aphy.iphy.ac.cn; xfhan@aphy.iphy.ac.cn; xgz@ornl.gov RI Wang, Yan/G-8061-2011 OI Wang, Yan/0000-0002-8648-2172 FU Ministry of Science and Technology (MOST) [2006CB932200]; National Natural Science Foundation of China (NNSFC) [10574156]; Outstanding Young Researcher Foundation [50528101, 50721001] FX The project was supported by the State Key Project of Fundamental Research of Ministry of Science and Technology (MOST) (Grant No. 2006CB932200), National Natural Science Foundation of China (NNSFC) (Grant No. 10574156), and the Knowledge Innovation Program Project of Chinese Academy of Sciences. X. F. H. gratefully thanks the partial support of Outstanding Young Researcher Foundation (NSFC, Grant Nos. 50528101 and 50721001), K. C. Wong Education Foundation, Hong Kong, and Microfabrication Center of Institute of Physics, CAS. A portion of this research was conducted at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Division of Scientific User Facilities, U. S. Department of Energy. NR 15 TC 16 Z9 16 U1 2 U2 14 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD OCT 27 PY 2008 VL 93 IS 17 AR 172501 DI 10.1063/1.3005561 PG 3 WC Physics, Applied SC Physics GA 367SD UT WOS:000260571800051 ER PT J AU Withers, NJ Sankar, K Akins, BA Memon, TA Gu, TY Gu, JJ Smolyakov, GA Greenberg, MR Boyle, TJ Osinski, M AF Withers, Nathan J. Sankar, Krishnaprasad Akins, Brian A. Memon, Tosifa A. Gu, Tingyi Gu, Jiangjiang Smolyakov, Gennady A. Greenberg, Melisa R. Boyle, Timothy J. Osinski, Marek TI Rapid degradation of CdSe/ZnS colloidal quantum dots exposed to gamma irradiation SO APPLIED PHYSICS LETTERS LA English DT Article ID NANOCRYSTALS; EXCITON; LUMINESCENCE; STATES; DARK AB Effects of (137)Cs gamma irradiation on photoluminescent properties of CdSe/ZnS colloidal quantum dots are reported. Optical degradation is evaluated by tracking the dependence of photoluminescence intensity on irradiation dose. CdSe/ZnS quantum dots show poor radiation hardness, and severely degrade after less than 20 kR exposure to 662 keV gamma photons. (c) 2008 American Institute of Physics. [DOI: 10.1063/1.2978073] C1 [Withers, Nathan J.; Sankar, Krishnaprasad; Akins, Brian A.; Memon, Tosifa A.; Gu, Tingyi; Gu, Jiangjiang; Smolyakov, Gennady A.; Greenberg, Melisa R.; Osinski, Marek] Univ New Mexico, Ctr High Technol Mat, Albuquerque, NM 87106 USA. [Boyle, Timothy J.] Sandia Natl Labs, Adv Mat Lab, Albuquerque, NM 87106 USA. RP Withers, NJ (reprint author), Univ New Mexico, Ctr High Technol Mat, 1313 Goddard SE, Albuquerque, NM 87106 USA. EM osinski@chtm.unm.edu RI Gu, Jiangjiang/C-9642-2012; Gu, Tingyi/K-2067-2012; Gu, Tingyi/A-4002-2013 OI Gu, Tingyi/0000-0003-4152-0160; FU NSF [IIS-0610201, CBET-0736241, DGE-0549500] FX This work was supported by the NSF Grant Nos. IIS-0610201, CBET-0736241, and DGE-0549500. The authors express their gratitude to members of the UNM Department of Safety and Risk Services: Jim De Zetter, Marybeth Marcinkovich, Ralph M. Becker, Marj Walters, and Tom Rolland for their regular assistance with the use of Eberline 1000B multisource gamma calibrator. Dr. Markku Koskello and Don Jacoby of Canberra Albuquerque, Inc., are gratefully acknowledged for the loan of a calibrated Canberra Radiac Meter Geiger-Muller counter, which was used to calibrate the Eberline 137Cs source used in irradiation tests. NR 19 TC 11 Z9 11 U1 0 U2 11 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD OCT 27 PY 2008 VL 93 IS 17 AR 173101 DI 10.1063/1.2978073 PG 3 WC Physics, Applied SC Physics GA 367SD UT WOS:000260571800073 ER PT J AU Zhang, ZJ Peng, RW Wang, Z Gao, F Huang, XR Sun, WH Wang, QJ Wang, MU AF Zhang, Z. J. Peng, R. W. Wang, Z. Gao, F. Huang, X. R. Sun, W. H. Wang, Q. J. Wang, M. U. TI Plasmonic antenna array at optical frequency made by nanoapertures SO APPLIED PHYSICS LETTERS LA English DT Article ID TRANSMISSION; FILMS; METAL AB We show here that the plasmonic array based on nanoapertures in ultrathin silver film radiates at optical frequency and behaves as an optical antenna array (OAA). The far-field radiation originates from the coherent superposition of plasmonic emissions on each bank of the aperture. The radiation of OAA presents a strong directivity, which depends on the in-plane rotation of aperture array, and on the polarization and incidence angle of the excitation light as well. We suggest that these features have potential applications in photovoltaics, light-emitting devices, and optical sensors. (C) 2008 American Institute of Physics. [DOI: 10.1063/1.3010741] C1 [Zhang, Z. J.; Peng, R. W.; Wang, Z.; Gao, F.; Sun, W. H.; Wang, Q. J.; Wang, M. U.] Nanjing Univ, Natl Lab Solid State Microstruct, Nanjing 210093, Peoples R China. [Zhang, Z. J.; Peng, R. W.; Wang, Z.; Gao, F.; Sun, W. H.; Wang, Q. J.; Wang, M. U.] Nanjing Univ, Dept Phys, Nanjing 210093, Peoples R China. [Huang, X. R.] Brookhaven Natl Lab, Natl Synchrotron Light Source 2, Upton, NY 11973 USA. RP Peng, RW (reprint author), Nanjing Univ, Natl Lab Solid State Microstruct, Nanjing 210093, Peoples R China. EM rwpeng@nju.edu.cn FU NSFC [10625417, 50672035, 10874068]; MOST of China [2004CB619005, 2006CB921804]; ME of China; Jiangsu Province [NCET-05-0440, BK2008012] FX The authors gratefully acknowledge the discussion with Professor Xiang Zhang. This work was supported by grants from the NSFC (Grant Nos. 10625417, 50672035, and 10874068), the MOST of China (Grant Nos. 2004CB619005 and 2006CB921804), and partly by the ME of China and also Jiangsu Province (Grant Nos. NCET-05-0440 and BK2008012). NR 23 TC 20 Z9 20 U1 0 U2 5 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD OCT 27 PY 2008 VL 93 IS 17 AR 171110 DI 10.1063/1.3010741 PG 3 WC Physics, Applied SC Physics GA 367SD UT WOS:000260571800010 ER PT J AU Zuev, YL Christen, DK Wee, SH Goyal, A Cook, SW AF Zuev, Y. L. Christen, D. K. Wee, S. H. Goyal, A. Cook, S. W. TI Near-isotropic performance of intrinsically anisotropic high-temperature superconducting tapes due to self-assembled nanostructures SO APPLIED PHYSICS LETTERS LA English DT Article ID COATED CONDUCTORS; NANODOTS; WIRES AB We report material and operating parameter conditions where prototype high-temperature superconducting tape conductors exhibit in-plane critical current characteristics that are essentially field orientation independent. This phenomenon is observed for specific magnetic field intensities that depend on the operating temperature and in materials having strong flux pinning by extended nanoscale structures aligned roughly along the crystalline c-axis. The effect can be described by a simple model for the field dependence of critical current density, generalized for anisotropic electronic response. This description may provide insight into means to fine tune the material properties for nearly isotropic performance characteristics at a preferred field and temperature. (c) 2008 American Institute of Physics. [DOI: 10.1063/1.3009286] C1 [Zuev, Y. L.; Christen, D. K.; Wee, S. H.; Goyal, A.; Cook, S. W.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Wee, S. H.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. RP Zuev, YL (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM christendk@ornl.gov FU Department of Energy Office of Electricity Delivery and Energy Reliability; Superconductivity for Electric Systems; Office of Basic Energy Sciences-Division of Materials Sciences and Engineering FX The authors are grateful to J.R. Thompson and D. F. Lee for useful discussions. Y.L.Z. would like to thank Oak Ridge Associated Universities for a postdoctoral fellowship. This work was sponsored by the Department of Energy Office of Electricity Delivery and Energy Reliability (OE)-Superconductivity for Electric Systems, and the Office of Basic Energy Sciences-Division of Materials Sciences and Engineering. This research was performed at the Oak Ridge National Laboratory, managed by UT-Battelle, LLC for the USDOE. NR 15 TC 18 Z9 18 U1 2 U2 5 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD OCT 27 PY 2008 VL 93 IS 17 AR 172512 DI 10.1063/1.3009286 PG 3 WC Physics, Applied SC Physics GA 367SD UT WOS:000260571800062 ER PT J AU Binkowski, TA Joachimiak, A AF Binkowski, T. Andrew Joachimiak, Andrzej TI Protein Functional Surfaces: Global Shape Matching and Local Spatial Alignments of Ligand Binding Sites SO BMC STRUCTURAL BIOLOGY LA English DT Article ID ENZYME ACTIVE-SITES; TYROSINE KINASE; STI-571 INHIBITION; CRYSTAL-STRUCTURE; COMPUTED ATLAS; HIV-1 PROTEASE; 3D TEMPLATES; SIDE-CHAINS; RECOGNITION; PATTERNS AB Background: Protein surfaces comprise only a fraction of the total residues but are the most conserved functional features of proteins. Surfaces performing identical functions are found in proteins absent of any sequence or fold similarity. While biochemical activity can be attributed to a few key residues, the broader surrounding environment plays an equally important role. Results: We describe a methodology that attempts to optimize two components, global shape and local physicochemical texture, for evaluating the similarity between a pair of surfaces. Surface shape similarity is assessed using a three-dimensional object recognition algorithm and physicochemical texture similarity is assessed through a spatial alignment of conserved residues between the surfaces. The comparisons are used in tandem to efficiently search the Global Protein Surface Survey (GPSS), a library of annotated surfaces derived from structures in the PDB, for studying evolutionary relationships and uncovering novel similarities between proteins. Conclusion: We provide an assessment of our method using library retrieval experiments for identifying functionally homologous surfaces binding different ligands, functionally diverse surfaces binding the same ligand, and binding surfaces of ubiquitous and conformationally flexible ligands. Results using surface similarity to predict function for proteins of unknown function are reported. Additionally, an automated analysis of the ATP binding surface landscape is presented to provide insight into the correlation between surface similarity and function for structures in the PDB and for the subset of protein kinases. C1 [Joachimiak, Andrzej] Argonne Natl Lab, Midwest Ctr Struct Genom, Argonne, IL 60439 USA. Argonne Natl Lab, Struct Biol Ctr, Biosci Div, Argonne, IL 60439 USA. RP Joachimiak, A (reprint author), Argonne Natl Lab, Midwest Ctr Struct Genom, 9700 S Cass Ave, Argonne, IL 60439 USA. EM abinkowski@anl.gov; andrzejj@anl.gov FU National Institutes of Health [GM62414, GM074942]; U.S. Department of Energy, Office of Biological and Environmental Research [DE-AC02-06CH11357] FX We wish to thank Dr. Jie Liang for discussion of ideas and access to CASTp database, all members of the Midwest Center for Structural Genomics for making their data available and discussions. Molecular graphics were created using PyMOL[33]. This work was supported by National Institutes of Health Grants GM62414 and GM074942 and by the U.S. Department of Energy, Office of Biological and Environmental Research, under contract DE-AC02-06CH11357. NR 75 TC 35 Z9 37 U1 2 U2 3 PU BIOMED CENTRAL LTD PI LONDON PA CURRENT SCIENCE GROUP, MIDDLESEX HOUSE, 34-42 CLEVELAND ST, LONDON W1T 4LB, ENGLAND SN 1471-2237 J9 BMC STRUCT BIOL JI BMC Struct. Biol. PD OCT 27 PY 2008 VL 8 AR 45 DI 10.1186/1472-6807-8-45 PG 23 WC Biophysics SC Biophysics GA 406ZY UT WOS:000263334600001 PM 18954462 ER PT J AU Xu, G Piao, D Musgrove, CH Bunting, CF Dehghani, H AF Xu, Guan Piao, Daqing Musgrove, Cameron H. Bunting, Charles F. Dehghani, Hamid TI Trans-rectal ultrasound-coupled near-infrared optical tomography of the prostate Part I: Simulation SO OPTICS EXPRESS LA English DT Article ID PIECEWISE-CONSTANT COEFFICIENTS; RADICAL PROSTATECTOMY; TRANSRECTAL ULTRASOUND; DIFFUSION TOMOGRAPHY; REGION BOUNDARIES; BREAST-CANCER; RECONSTRUCTION; SPECTROSCOPY; TISSUE; MAMMOGRAPHY AB We investigate the feasibility of trans-rectal optical tomography of the prostate using an endo-rectal near-infrared (NIR) applicator that is to be integrated with a trans-rectal ultrasound (TRUS) probe. Integration with TRUS ensures accurate endo-rectal positioning of the NIR applicator and the utility of using TRUS spatial prior information to guide NIR image reconstruction. The prostate NIR image reconstruction is challenging even with the use of spatial prior owing to the anatomic complexity of the imaging domain. A hierarchical reconstruction algorithm is developed that implements cascaded initial-guesses for nested domains. This hierarchical image reconstruction method is then applied to evaluating a number of NIR applicator designs for integration with a sagittal TRUS transducer. A NIR applicator configuration feasible for instrumentation development is proposed that contains one linear array of optodes on each lateral side of the sagittal TRUS transducer. The performance of this NIR applicator is characterized for the recovery of single tumor mimicking lesion as well as dual targets in the prostate. The results suggest a strong feasibility of trans-rectal prostate imaging by use of the endo-rectal NIR/US probe. (C) 2008 Optical Society of America C1 [Xu, Guan; Piao, Daqing; Bunting, Charles F.] Oklahoma State Univ, Sch Elect & Comp Engn, Stillwater, OK 74078 USA. [Musgrove, Cameron H.] Sandia Natl Labs, Albuquerque, NM 87155 USA. [Dehghani, Hamid] Univ Exeter, Sch Phys, Exeter EX4 4QL, Devon, England. RP Piao, D (reprint author), Oklahoma State Univ, Sch Elect & Comp Engn, Stillwater, OK 74078 USA. EM daqing.piao@okstate.edu RI Bunting, Charles/B-9762-2013 OI Bunting, Charles/0000-0001-9167-4235 FU Prostate Cancer Research Program of the U. S. Army Medical Research Acquisition Activity (USAMRAA) [W81XWH-07-1-0247] FX This work has been supported by the Prostate Cancer Research Program of the U. S. Army Medical Research Acquisition Activity (USAMRAA), 820 Chandler Street, Fort Detrick MD, 21702-5014, through grant #W81XWH-07-1-0247. The content of the information does not necessarily reflect the position or the policy of the USARAA, and no official endorsement should be inferred. Comments and questions may be directed to Daqing Piao at daqing.piao@okstate.edu. NR 46 TC 22 Z9 23 U1 0 U2 5 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD OCT 27 PY 2008 VL 16 IS 22 BP 17484 EP 17504 DI 10.1364/OE.16.017484 PG 21 WC Optics SC Optics GA 371XL UT WOS:000260865900037 PM 18958030 ER PT J AU Berrocal, E Kristensson, E Richter, M Linne, M Alden, M AF Berrocal, Edouard Kristensson, Elias Richter, Mattias Linne, Mark Alden, Marcus TI Application of structured illumination for multiple scattering suppression in planar laser imaging of dense sprays SO OPTICS EXPRESS LA English DT Article ID DIAGNOSTICS; ATTENUATION; VELOCIMETRY; MICROSCOPE; IMAGES; LIGHT AB A novel approach to reduce the multiple light scattering contribution in planar laser images of atomizing sprays is reported. This new technique, named Structured Laser Illumination Planar Imaging (SLIPI), has been demonstrated in the dense region of a hollow-cone water spray generated in ambient air at 50 bars injection pressure. The idea is based on using an incident laser sheet which is spatially modulated along the vertical direction. By properly shifting the spatial phase of the modulation and using post-processing of the successive recorded images, the blurring effects from multiple light scattering can be mitigated. Since hollow-cone sprays have a known inner structure in the central region, the efficiency of the method could be evaluated. We demonstrate, for the case of averaged images, that an unwanted contribution of 44% of the detected light intensity can be removed. The suppression of this diffuse light enables an increase from 55% to 80% in image contrast. Such an improvement allows a more accurate description of the near-field region and of the spray interior. The possibility of extracting instantaneous flow motion is also shown, here, for a dilute flow of water droplets. These results indicate promising applications of the technique to denser two-phase flows such as air-blast atomizer and diesel sprays. (C) 2008 Optical Society of America C1 [Berrocal, Edouard; Kristensson, Elias; Richter, Mattias; Linne, Mark; Alden, Marcus] Lund Inst Technol, Dept Combust Phys, S-22100 Lund, Sweden. [Linne, Mark] Sandia Natl Labs, Livermore, CA 94551 USA. RP Berrocal, E (reprint author), Lund Inst Technol, Dept Combust Phys, Box 118, S-22100 Lund, Sweden. EM edouard.berrocal@forbrf.lth.se FU Centre for Combustion Science and Technology (CECOST) through SSF and STEM FX The authors wish to show their appreciation to the Linne Centre within the Lund Laser Centre (LLC) as well as the Centre for Combustion Science and Technology (CECOST) through SSF and STEM for financial support. The authors would like to acknowledge also Dr. Ulf Goransson and Dr. Bjarne Paulsen Husted for lending their spray equipment. NR 20 TC 49 Z9 49 U1 0 U2 10 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD OCT 27 PY 2008 VL 16 IS 22 BP 17870 EP 17881 DI 10.1364/OE.16.017870 PG 12 WC Optics SC Optics GA 371XL UT WOS:000260865900075 PM 18958069 ER PT J AU Penciu, RS Aydin, K Kafesaki, M Koschny, T Ozbay, E Economou, EN Soukoulis, CM AF Penciu, R. S. Aydin, K. Kafesaki, M. Koschny, Th. Ozbay, E. Economou, E. N. Soukoulis, C. M. TI Multi-gap individual and coupled split-ring resonator structures SO OPTICS EXPRESS LA English DT Article ID LEFT-HANDED MATERIALS; ELECTROMAGNETICALLY INDUCED TRANSPARENCY; NEGATIVE REFRACTIVE-INDEX; MAGNETIC-RESONANCE; METAMATERIALS; BEHAVIOR; DESIGN; MU AB We present a systematic numerical study, validated by accompanied experimental data, of individual and coupled split ring resonators (SRRs) of a single rectangular ring with one, two and four gaps. We discuss the behavior of the magnetic resonance frequency, the magnetic field and the currents in the SRRs, as one goes from a single SRR to strongly interacting SRR pairs in the SRR plane. We show that coupling of the SRRs along the E direction results to shift of the magnetic resonance frequency to lower or higher values, depending on the capacitive or inductive nature of the coupling. Strong SRR coupling along propagation direction usually results to splitting of the single SRR resonance into two distinct resonances, associated with peculiar field and current distributions. (C) 2008 Optical Society of America C1 [Penciu, R. S.; Kafesaki, M.; Koschny, Th.; Economou, E. N.; Soukoulis, C. M.] FORTH, Inst Elect Struct & Laser, Iraklion 71110, Crete, Greece. [Aydin, K.; Ozbay, E.] Bilkent Univ, Dept Elect & Elect Engn, Dept Phys, Nanotechnol Res Ctr, TR-06800 Ankara, Turkey. [Kafesaki, M.; Soukoulis, C. M.] Univ Crete, Dept Mat Sci & Technol, Iraklion, Greece. [Koschny, Th.; Soukoulis, C. M.] Iowa State Univ, Dept Phys, Ames, IA USA. [Koschny, Th.; Soukoulis, C. M.] Iowa State Univ, Ames Lab, Ames, IA USA. [Economou, E. N.] Univ Crete, Dept Phys, Iraklion, Greece. RP Kafesaki, M (reprint author), FORTH, Inst Elect Struct & Laser, POB 1527, Iraklion 71110, Crete, Greece. EM kafesaki@iesl.forth.gr RI Aydin, Koray/D-5100-2009; Aydin, Koray/G-2537-2011; Economou, Eleftherios /E-6374-2010; Kafesaki, Maria/E-6843-2012; Soukoulis, Costas/A-5295-2008 OI Aydin, Koray/0000-0002-3268-2216; Kafesaki, Maria/0000-0002-9524-2576; FU EU [LSHG-CT-2003-503259]; PHOME [213390]; US Department of Energy (Basic Energy Sciences) [DE-AC02-07CH11358]; AFOSR under MURI [FA9550-06-1-0337]; DARPA [MDA-972-01-2-0016]; Office of Naval Research [N00014-07-1-0359] FX Authors would like to acknowledge financial support by EU under the projects Metamorphose, PHOREMOST, Molecular Imaging (LSHG-CT-2003-503259), PHOME (FET Contract No. 213390) and ENSEMBLE, by the US Department of Energy (Basic Energy Sciences) under Contract No. DE-AC02-07CH11358, by the AFOSR under MURI grant (FA9550-06-1-0337), by DARPA (Contract No. MDA-972-01-2-0016), by Office of Naval Research (Award No. N00014-07-1-0359). NR 35 TC 54 Z9 55 U1 0 U2 17 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD OCT 27 PY 2008 VL 16 IS 22 BP 18131 EP 18144 DI 10.1364/OE.16.018131 PG 14 WC Optics SC Optics GA 371XL UT WOS:000260865900097 PM 18958091 ER PT J AU Graves, CR Schelter, EJ Cantat, T Scott, BL Kiplinger, JL AF Graves, Christopher R. Schelter, Eric J. Cantat, Thibault Scott, Brian L. Kiplinger, Jaqueline L. TI A Mild Protocol To Generate Uranium(IV) Mixed-Ligand Metallocene Complexes using Copper(I) Iodide SO ORGANOMETALLICS LA English DT Article ID VALENT ORGANOURANIUM COMPLEXES; HYDROGEN-DEUTERIUM EXCHANGE; ORGANO-METALLIC COMPOUNDS; EARLY ACTINIDE COMPLEXES; X-RAY STRUCTURES; C-H ACTIVATION; F-ELEMENT; ELECTRONIC-STRUCTURE; FUNCTIONAL-GROUPS; REACTIVITY AB Reaction of the trivalent uranium complexes (C(5)Me(5))(2)UI(THF) (1), (C(5)Me(5))(2)U[N(SiMe(3))(2)] (3), (C(5)Me(5))(2)U(NPh(2))(THF) (4), and (C(5)Me(5))(2)U(O-2,6-(i)Pr(2)-C(6)H(3))(THF) (5) with copper(I) iodide affords the corresponding tetravalent uranium diiodide, amide iodide, and aryloxide iodide complexes (C(5)Me(5))(2)UI(2) (2), (C(5)Me(5))(2)U[N(SiMe(3))(2)](I) (6), (C(5)Me(5))(2)U(NPh(2))(I) (7) and (C(5)Me(5))(2)U(O-2,6-(i)Pr(2)-C(6)H(3))(I) (8), respectively. This protocol was also extended to the synthesis of the alkyl iodide complex (C(5)Me(5))(2)U(CHPh(2))(I) (10). The isolation of complex 10 from the in situ generated trivalent uranium alkyl complex (C(5)Me(5))(2)U(CHPh(2))(THF) (9) illustrates the synthetic value of this oxidation procedure in those situations where the uranium(III) metallocene complex cannot be isolated or is unstable. Overoxidation and ligand redistribution are not observed with this Cu-based U(III) -> U(IV) oxidation procedure. Attempted functionalization of the U(IV) amide iodide complex (C(5)Me(5))(2)U[N(SiMe(3))(2)](I) (6) with Me(2)Mg afforded the novel azametallacycle (C(5)Me(5))(2)U[eta(2)(N,C)-CH(2)SiMe(2)N(SiMe(3))] (12) by intramoiecular C-H activation and liberation of methane. Reaction between (C(5)Me(5))(2)U(NPh(2))(I) (7) and Me(2)Mg afforded a mixture of the products (C(5)Me(5))(2)U(NPh(2))(Me) (13), (C(5)Me(5))(2)UMe(2) (14), and (C(5)Me(5))(2)U(NPh(2))(2) (15) at room temperature; heating the mixture smoothly furnished the azametallacycle (C(5)Me(5))(2)U[eta(2)(N,C)-(o-C(6)H(4))NPh] (16). Similarly, reaction between 14 and HNPh(2) at 100 degrees C produced the azametallacycle 16 by aminolysis and subsequent intramolecular C-H activation. C1 [Graves, Christopher R.; Schelter, Eric J.; Cantat, Thibault; Scott, Brian L.; Kiplinger, Jaqueline L.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Kiplinger, JL (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM kiplinger@lanl.gov RI Cantat, Thibault/A-8167-2010; Schelter, Eric/E-2962-2013; Kiplinger, Jaqueline/B-9158-2011; Scott, Brian/D-8995-2017 OI Cantat, Thibault/0000-0001-5265-8179; Kiplinger, Jaqueline/0000-0003-0512-7062; Scott, Brian/0000-0003-0468-5396 FU LANL; Division of Chemical Sciences, Office of Basic Energy Sciences, Heavy Element Chemistry program; LANL Laboratory Directed Research & Development program FX For financial support of this work, we acknowledge the LANL (Director's PD Fellowships to C.R.G., T.C., and E.J.S.; Frederick Reines PD Fellowship to E.J.S.), the LANL G. T. Seaborg Institute (PD Fellowships to C.R.G. and E.J.S.), the Division of Chemical Sciences, Office of Basic Energy Sciences, Heavy Element Chemistry program, and the LANL Laboratory Directed Research & Development program. NR 54 TC 38 Z9 39 U1 0 U2 8 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0276-7333 J9 ORGANOMETALLICS JI Organometallics PD OCT 27 PY 2008 VL 27 IS 20 BP 5371 EP 5378 DI 10.1021/om800622g PG 8 WC Chemistry, Inorganic & Nuclear; Chemistry, Organic SC Chemistry GA 359LS UT WOS:000259988800026 ER PT J AU Keating, GN Pelletier, JD Valentine, GA Statham, W AF Keating, Gordon N. Pelletier, Jon D. Valentine, Greg A. Statham, William TI Evaluating suitability of a tephra dispersal model as part of a risk assessment framework SO JOURNAL OF VOLCANOLOGY AND GEOTHERMAL RESEARCH LA English DT Article DE tephra dispersal; tephra redistribution; risk assessment; surficial processes; numerical modeling; uncertainty ID RADIOACTIVE-WASTE REPOSITORY; VOLUME BASALTIC VOLCANOS; YUCCA MOUNTAIN; SOUTHERN NEVADA; PYROCLASTIC FLOWS; PLUMBING SYSTEMS; NEW-ZEALAND; ERUPTION; USA; SIMULATION AB In volcanic risk assessment it is necessary to determine the appropriate level of sophistication for a given predictive model within the contexts of multiple sources of uncertainty and coupling between models. A component of volcanic risk assessment for the proposed radioactive waste repository at Yucca Mountain (Nevada, USA) involves prediction of dispersal of contaminated tephra during violent Strombolian eruptions and the subsequent transport of that tephra toward a hypothetical individual via surface processes. We test the suitability of a simplified model for volcanic plume transport and fallout tephra deposition (ASHPLUME) coupled to a surface sediment-transport model (FAR) that calculates the redistribution of tephra, and in light of inherent uncertainties in the system. The study focuses on two simplifying assumptions in the ASHPLUME model: 1) constant eruptive column height and 2) constant wind speed and direction during an eruption. Variations in tephra dispersal resulting from unsteady column height and wind conditions produced variations up to a factor of two in the concentration of tephra in sediment transported to the control population. However, the effects of watershed geometry and terrain, which control local remobilization of tephra, overprint sensitivities to eruption parameters. Because the combination of models used here shows limited sensitivity to the actual details of ash fall, a simple fall model suffices to estimate tephra mass delivered to the hypothetical individual. Published by Elsevier B.V. C1 [Keating, Gordon N.] Los Alamos Natl Lab, Div Earth & Environm Sci, Los Alamos, NM 87545 USA. [Pelletier, Jon D.] Univ Arizona, Dept Geosci, Tucson, AZ 85721 USA. [Valentine, Greg A.] SUNY Buffalo, Dept Geol, Buffalo, NY 14260 USA. [Statham, William] AREVA Fed Serv LLC, Las Vegas, NV 89144 USA. RP Keating, GN (reprint author), Los Alamos Natl Lab, Div Earth & Environm Sci, MS D452, Los Alamos, NM 87545 USA. EM gkeating@lanl.gov; jdpellet@email.arizona.edu; gav4@buffalo.edu; wstatha@sandia.gov NR 35 TC 1 Z9 1 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0377-0273 J9 J VOLCANOL GEOTH RES JI J. Volcanol. Geotherm. Res. PD OCT 25 PY 2008 VL 177 IS 2 BP 397 EP 404 DI 10.1016/j.jvolgeores.2008.06.007 PG 8 WC Geosciences, Multidisciplinary SC Geology GA 375NG UT WOS:000261120000007 ER PT J AU Radhakrishnan, B Sarma, GB AF Radhakrishnan, B. Sarma, G. B. TI Coupled simulations of texture evolution during deformation and recrystallization of fcc and bcc metals SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING LA English DT Article; Proceedings Paper CT Symposium on Advances in Microstructure-Based Modeling and Characterization of Deformation Microstructures held at 2007 TMS Annual Meeting CY FEB 26-28, 2007 CL Orlando, FL SP Minerals, Metals, Mat Soc DE Recrystallization; Nucleation; Texture ID MONTE-CARLO-SIMULATION; ALUMINUM-ALLOYS; COLD; ORIENTATION; BICRYSTALS; STEEL; SHEET AB Thermo-mechanical processing to produce optimum grain structure and texture is essential for the successful utilization of commercial aluminum alloys and steels as sheet products. Several modeling techniques have been developed in the past with a reasonably good predictive capability for bulk deformation textures. However, prediction of texture evolution during recrystallization remains very challenging because of uncertainties involved in predicting the mechanisms that lead to nuclei formation and crystallographic orientations of the nuclei, and the uncertainties involved in predicting the grain boundary properties that determine the growth kinetics of the nuclei. We present some of our recent work in modeling the recrystallization textures following cold deformation in polycrystalline bcc metals and hot-deformation in fcc metals. (C) 2007 Elsevier B.V. All rights reserved. C1 [Radhakrishnan, B.; Sarma, G. B.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Radhakrishnan, B (reprint author), Oak Ridge Natl Lab, 1 Bethel Valley Rd, Oak Ridge, TN 37831 USA. EM radhakrishnb@ornl.gov NR 21 TC 15 Z9 16 U1 3 U2 16 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0921-5093 J9 MAT SCI ENG A-STRUCT JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. PD OCT 25 PY 2008 VL 494 IS 1-2 SI SI BP 73 EP 79 DI 10.1016/j.msea.2007.10.094 PG 7 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 359JU UT WOS:000259983700011 ER PT J AU Sarma, GB Radhakrishnan, B AF Sarma, G. B. Radhakrishnan, B. TI Modeling the effect of microstructural features on the nucleation of creep cavities SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING LA English DT Article; Proceedings Paper CT Symposium on Advances in Microstructure-Based Modeling and Characterization of Deformation Microstructures held at 2007 TMS Annual Meeting CY FEB 26-28, 2007 CL Orlando, FL SP Minerals, Metals, Mat Soc DE Deformation model; Finite element; Crystal plasticity; Microstructure; Creep cavities ID POLYCRYSTALLINE MATERIALS; DEFORMATION; PLASTICITY; TEXTURE; STEEL AB A crystal plasticity based finite element model has been applied to study the deformation of metals at the microstructural length scale, in order to determine the effect of various microstructural features on the nucleation of creep cavities. The deformation model captures the non-uniform distributions of the equivalent plastic strain and the hydrostatic stress within the different grains of the microstructure when subjected to cyclic loading conditions. The influence of various microstructural features such as grain boundaries, triple junctions, and second-phase particles, on the strain and stress fields is examined through the simulations. The results indicate that the various microstructural parameters, such as grain orientation, presence of the precipitates and their shape, and alignment of the boundaries with respect to the loading direction influence the strain and stress distributions, and therefore, the conditions that favor the nucleation and growth of creep cavities. (C) 2007 Elsevier B.V. All rights reserved. C1 [Sarma, G. B.; Radhakrishnan, B.] Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN 37831 USA. RP Sarma, GB (reprint author), Oak Ridge Natl Lab, Div Math & Comp Sci, POB 2008, Oak Ridge, TN 37831 USA. EM sarmag@ornl.gov NR 16 TC 5 Z9 6 U1 2 U2 4 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0921-5093 J9 MAT SCI ENG A-STRUCT JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. PD OCT 25 PY 2008 VL 494 IS 1-2 SI SI BP 92 EP 102 DI 10.1016/j.msea.2007.10.095 PG 11 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 359JU UT WOS:000259983700014 ER PT J AU Hibbard, GD Radmilovic, V Aust, KT Erb, U AF Hibbard, G. D. Radmilovic, V. Aust, K. T. Erb, U. TI Grain boundary migration during abnormal grain growth in nanocrystalline Ni SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING LA English DT Article DE Nanostructured materials; Grain growth; Nickel; In situ electron microscopy ID THERMAL-STABILITY; INSITU TEM; ALLOY; METALS; NICKEL; ELECTRODEPOSITS; MOTION; COPPER AB The transformation mechanisms of abnormal grain growth in nanocrystalline Ni were studied extensively by transmission electron microscopy (TEM). A combination of in situ TEM annealing and ex situ annealing followed by TEM characterization was used. It was observed that grain boundary migration is both spatially and temporally non-uniform; migration occurs in a series of discrete steps, which are followed by periods of stagnation. (C) 2008 Elsevier B.V. All rights reserved. C1 [Hibbard, G. D.; Aust, K. T.; Erb, U.] Univ Toronto, Dept Mat Sci & Engn, Toronto, ON M5S 3E4, Canada. [Radmilovic, V.] Univ Calif Berkeley, Lawrence Berkeley Lab, Natl Ctr Electron Microscopy, Berkeley, CA 94720 USA. RP Hibbard, GD (reprint author), Univ Toronto, Dept Mat Sci & Engn, 184 Coll St,Room 140, Toronto, ON M5S 3E4, Canada. EM glenn.hibbard@utoronto.ca FU Natural Sciences and Engineering Research Council of Canada (NSERC); U.S. Department of Energy [DE-AC02-05CH11231] FX The authors would like to acknowledge the contributions of Dr. C. Yanar. This work was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC). In situ TEM analysis was performed at the National Center for Electron Microscopy (NCEM), LBNL, University of California, Berkeley. The NCEM is supported by the Director, Office of Science, U.S. Department of Energy, under Contract No. DE-AC02-05CH11231. NR 37 TC 21 Z9 21 U1 3 U2 31 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0921-5093 J9 MAT SCI ENG A-STRUCT JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. PD OCT 25 PY 2008 VL 494 IS 1-2 SI SI BP 232 EP 238 DI 10.1016/j.msea.2008.04.054 PG 7 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 359JU UT WOS:000259983700033 ER PT J AU Buchheit, AA Hilmas, GE Fahrenholtz, WG Deason, DM Wang, H AF Buchheit, Andrew A. Hilmas, Greg E. Fahrenholtz, William G. Deason, Douglas M. Wang, Hsin TI Mechanical and thermal properties of AlN-BN-SiC ceramics SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING LA English DT Article DE Aluminum nitride; Boron nitride; Silicon carbide; Mechanical properties; Thermal properties; Hot pressing ID BORON NITRIDE COMPOSITES; SITU REACTION SYNTHESIS; SILICON-CARBIDE; FABRICATION; SYSTEM AB Mechanical and thermal properties were characterized for two AlN:BN:SiC composite ceramics produced from BN with different particle sizes. The ceramics were hot pressed at temperatures from 1950 to 2100 degrees C to similar to 97% relative density. For both materials, the matrix (90:10 vol% SiC:AlN) had a grain size of similar to 0.4 mu m, and the BN grains (10 vol%) were crystallographically aligned. Microhardness values were between 20 and 22 GPa, while fracture toughness values were between 2.5 and 3.1 MPa m(1/2). Other Properties were found to be dependent on testing direction. Elastic moduli were between 260 and 300 GPa and strengths were similar to 630 MPa for small particle BN additions. Thermal conductivity was calculated to be between 25 and 37W/m K at room temperature and 17 and 25 W/m K at 900 degrees C. The low values compared to traditional SiC ceramics were attributed to AlN-SiC solid solution formation and sub-micron matrix grain sizes. (C) 2008 Elsevier B.V. All rights reserved. C1 [Buchheit, Andrew A.; Hilmas, Greg E.; Fahrenholtz, William G.] Missouri Univ Sci & Technol, Dept Mat Sci & Engn, Rolla, MO 65409 USA. [Deason, Douglas M.] USA, Space & Missile Def Command, Redstone Arsenal, AL 35898 USA. [Wang, Hsin] Oak Ridge Natl Lab, High Temp Mat Lab, Oak Ridge, TN 37831 USA. RP Hilmas, GE (reprint author), Missouri Univ Sci & Technol Missouri S & T, Dept Mat Sci & Engn, 222 McNutt Hall,1400 N Bishop Ave, Rolla, MO 65409 USA. EM aab@mst.edu; ghilmas@mst.edu RI Wang, Hsin/A-1942-2013; OI Wang, Hsin/0000-0003-2426-9867; Fahrenholtz, William/0000-0002-8497-0092 NR 28 TC 10 Z9 10 U1 2 U2 15 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0921-5093 EI 1873-4936 J9 MAT SCI ENG A-STRUCT JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. PD OCT 25 PY 2008 VL 494 IS 1-2 SI SI BP 239 EP 246 DI 10.1016/j.msea.2008.05.051 PG 8 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 359JU UT WOS:000259983700034 ER PT J AU Hodge, AM Kumar, M Martin, LP Campbell, GH AF Hodge, Andrea M. Kumar, Mukul Martin, L. Peter Campbell, Geoffrey H. TI Intermetallic layer formation and its effect on the mechanical behavior of laminated Ta-Au composites SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING LA English DT Article DE Laminates; Composites; AuTa ID SELF-DIFFUSION; TANTALUM; ALLOYS; GOLD AB The tensile properties and deformation behavior of Ta-Au laminated composites processed by diffusion bonding are presented. The formation of the Ta-Au interface region was characterized using XRD, SEM and nanoindentation in order to identify the phases present. Tensile test results showed that the composition of the interface region strongly affects the overall sample behavior. The data indicates that the interface region tends to form into a stable AuTa phase. The overall material strength and ductility are then related to the composition of the intermediate interface layer. (C) 2008 Elsevier B.V. All rights reserved. C1 [Hodge, Andrea M.] Univ So Calif, Dept Aerosp & Mech Engn, Los Angeles, CA 90089 USA. [Hodge, Andrea M.; Kumar, Mukul; Martin, L. Peter; Campbell, Geoffrey H.] Lawrence Livermore Natl Lab, Div Mat Sci & Technol, Livermore, CA 94550 USA. RP Hodge, AM (reprint author), Univ So Calif, Dept Aerosp & Mech Engn, Los Angeles, CA 90089 USA. EM ahodge@usc.edu RI Campbell, Geoffrey/F-7681-2010 FU U.S. Department of Energy; Lawrence Livermore National Laboratory [W-7405-Eng-48]; Laboratory Directed Research and Development Program [06-SI-005] FX This work was performed under the auspices of the U.S. Department of Energy by University of California, Lawrence Livermore National Laboratory under Contract W-7405-Eng-48. The project 06-SI-005 was funded by the Laboratory Directed Research and Development Program at LLNL. The authors thank B. Olsen, E. Sedillo, D. Freeman and Dr. C. Saw at LLNL for their assistance in sample in preparation, testing and characterization. NR 16 TC 1 Z9 1 U1 2 U2 5 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0921-5093 J9 MAT SCI ENG A-STRUCT JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. PD OCT 25 PY 2008 VL 494 IS 1-2 SI SI BP 276 EP 280 DI 10.1016/j.msea.2008.04.016 PG 5 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 359JU UT WOS:000259983700039 ER PT J AU Martin, M Shen, T Thadhani, NN AF Martin, M. Shen, T. Thadhani, N. N. TI Instrumented anvil-on-rod impact experiments for validating constitutive strength model for simulating transient dynamic deformation response of metals SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING LA English DT Article DE Constitutive behavior; Polycrystalline material; Stress waves; Impact testing ID FLAT-ENDED PROJECTILES; TAYLOR-TEST; ELEVATED-TEMPERATURES; PLASTIC-DEFORMATION; STRAIN RATES; COPPER; CYLINDERS; CONSTANTS; VELOCITY; BEHAVIOR AB Instrumented anvil-on-rod impact experiments were performed to access the applicability of this approach for validating a constitutive strength model for dynamic, transient-state deformation and elastic-plastic wave interactions in vanadium, 21-6-9 stainless steel, titanium, and Ti-6Al-4V. In addition to soft-catching the impacted rod-shaped samples, their transient deformation states were captured by high-speed imaging, and velocity interferometry was used to record the sample back (free) surface velocity and monitor elastic-plastic wave interactions. Simulations utilizing AUTODYN-2D hydrocode with Steinberg-Guinan constitutive equation were used to generate simulated free Surface velocity traces and final/transient deformation profiles for comparisons with experiments. The simulations were observed to under-predict the radial strain for bcc vanadium and fcc steel, but over-predict the radial strain for hcp titanium and Ti-6Al-4V. The correlations illustrate the applicability of the instrumented anvil-on-rod impact test as a method for providing robust model validation based on the entire deformation event, and not just the final deformed state. (C) 2008 Elsevier B.V. All rights reserved. C1 [Martin, M.; Thadhani, N. N.] Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA. [Shen, T.] Lawrence Livermore Natl Lab, Mat Sci & Technol Div, Livermore, CA 94550 USA. RP Thadhani, NN (reprint author), Georgia Inst Technol, Sch Mat Sci & Engn, 771 Ferst Dr, Atlanta, GA 30332 USA. EM naresh.thadhani@mse.gatech.edu RI Trexler, Morgana/E-9003-2013 FU U.S. Department of Energy by University of California; Lawrence Livermore National Laboratory [W-7405-Eng-48]; ARO [E-48148-MS-000-05123-1]; NASA Jenkins Predoctoral Fellowship FX This work was performed under the auspices of the U.S. Department of Energy by University of California, Lawrence Livermore National Laboratory under Contract-W-7405-Eng-48, and in part by ARO Grant No. E-48148-MS-000-05123-1 (Dr. Mullins program monitor). M.M. is a recipient of the NASA Jenkins Predoctoral Fellowship. NR 32 TC 7 Z9 7 U1 2 U2 14 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0921-5093 J9 MAT SCI ENG A-STRUCT JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. PD OCT 25 PY 2008 VL 494 IS 1-2 SI SI BP 416 EP 424 DI 10.1016/j.msea.2008.04.062 PG 9 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 359JU UT WOS:000259983700058 ER PT J AU Beverly, KN Sawaya, MR Schmid, E Koehler, CM AF Beverly, Kristen N. Sawaya, Michael R. Schmid, Einhard Koehler, Carla M. TI The Tim8-Tim13 Complex Has Multiple Substrate Binding Sites and Binds Cooperatively to Tim23 SO JOURNAL OF MOLECULAR BIOLOGY LA English DT Article DE mitochondria; protein translocation; surface plasmon resonance; cooperativity; chaperone ID MITOCHONDRIAL INTERMEMBRANE SPACE; INNER MEMBRANE-PROTEINS; CRYSTAL-STRUCTURE; CHAPERONE PREFOLDIN; ADP/ATP CARRIER; IMPORT; REFINEMENT; MECHANISM; ACCURACY; SOFTWARE AB The Tim8-Tim13 complex, located in the mitochondrial intermembrane space, functions in the TIM22 import pathway that mediates the import of the mitochondrial carriers Tim23, Tim22, and Tim17 into the mitochondrial inner membrane. The Tim8-Tim13 complex assembles as a hexamer and binds to the substrate Tim23 to chaperone the hydrophobic Tim23 across the aqueous intermembrane space. However, both structural features of the Tim8-Tim13 complex and the binding interaction to Tim23 remain poorly defined. The crystal structure of the yeast Tim8-Tim13 complex, reported here at 2.6 angstrom resolution, reveals that the architecture of the Tim8-Tim13 complex is similar to those of other chaperones such as Tim9-Tim10, prefoldin, and Skp, in which long helices extend from a central body like tentacles from a jellyfish. Surface plasmon resonance was applied to investigate interactions between the Tim8-Tim13 complex and Tim23. The Tim8-Tim13 complex contained approximately six binding sites and showed a complex binding interaction indicative of positive cooperativity rather than a simple bimolecular interaction. By combining results from the structural and binding studies, we provide a molecular model of the Tim8-Tim13 complex binding to Tim23. The regions where the tentacle helices attach to the body of the Tim8-Tim13 complex contain six hydrophobic pockets that likely interact with specific sequences of Tim23 and possibly other Substrates. Smaller hydrophobic patches on the tentacles themselves likely interact nonspecifically with the Substrate's transmembrane helices, shielding it from the aqueous intermembrane space. The central region of Tim23, which enters the intermembrane space first, may serve to nucleate the binding of the Tim8-Tim13 complex, thereby initiating the chaperoned translocation of Tim23 to the mitochondrial inner membrane. (C) 2008 Elsevier Ltd. All rights reserved. C1 [Beverly, Kristen N.; Schmid, Einhard; Koehler, Carla M.] Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90095 USA. [Sawaya, Michael R.] Univ Calif Los Angeles, Howard Hughes Med Inst, DOE, Inst Genom & Proteom, Los Angeles, CA 90095 USA. RP Koehler, CM (reprint author), Univ Calif Los Angeles, Dept Chem & Biochem, Box 951569, Los Angeles, CA 90095 USA. EM koehler@chem.ucla.edu OI Sawaya, Michael/0000-0003-0874-9043 FU National Institutes of Health [GM070404, 1R01GM61721, 23616-002-06]; Department of Energy [DE-FC03-02ER63421]; American Heart Association [0640076N] FX We thank Dr. Martin Phillips (University of California, Los Angeles) for technical assistance with the instrumentation, the UCLA-DOE X-ray Core Technology Center for X-ray crystallography experiments and modeling analysis, and Dr. Steven Claypool for critical reading of the manuscript. C.M. K. is an established investigator of the American Heart Association. This work was supported by grants from the National Institutes of Health (United States Public Health Service National Service Award GM070404 to K.N.B., 1R01GM61721 to C.M.K., and 23616-002-06 to M.R.S.), the Department of Energy (DE-FC03-02ER63421 to M.R.S.), and the American Heart Association (0640076N to C.M.K.). NR 44 TC 24 Z9 25 U1 0 U2 2 PU ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD PI LONDON PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND SN 0022-2836 J9 J MOL BIOL JI J. Mol. Biol. PD OCT 24 PY 2008 VL 382 IS 5 BP 1144 EP 1156 DI 10.1016/j.jmb.2008.07.069 PG 13 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 363LY UT WOS:000260270000005 PM 18706423 ER PT J AU Vrinceanu, D Balaraman, GS Collins, LA AF Vrinceanu, D. Balaraman, G. S. Collins, L. A. TI The King model for electrons in a finite-size ultracold plasma SO JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL LA English DT Article ID COLD AB A self-consistent model for a finite-size non-neutral ultracold plasma is obtained by extending a conventional model of globular star clusters. This model describes the dynamics of electrons at quasi-equilibrium trapped within the potential created by a cloud of stationary ions. A random sample of electron positions and velocities can be generated with the statistical properties defined by this model. C1 [Vrinceanu, D.; Collins, L. A.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Balaraman, G. S.] Georgia Inst Technol, Sch Phys, Atlanta, GA 30332 USA. RP Vrinceanu, D (reprint author), Los Alamos Natl Lab, Div Theoret, POB 1663, Los Alamos, NM 87545 USA. FU US Department of Energy at Los Alamos National Laboratory [DE-AC52-06NA25396] FX This work has been supported by the US Department of Energy at Los Alamos National Laboratory under contract no. DE-AC52-06NA25396. NR 12 TC 4 Z9 4 U1 1 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1751-8113 J9 J PHYS A-MATH THEOR JI J. Phys. A-Math. Theor. PD OCT 24 PY 2008 VL 41 IS 42 AR 425501 DI 10.1088/1751-8113/41/42/425501 PG 10 WC Physics, Multidisciplinary; Physics, Mathematical SC Physics GA 355HG UT WOS:000259699400015 ER PT J AU Bunker, BC AF Bunker, Bruce C. TI Reversible switching of interfacial interactions SO MATERIALS SCIENCE & ENGINEERING R-REPORTS LA English DT Review DE Interfacial interactions; Self-assembled monolayers (SAMs); Programmable interfaces; Programmable materials; Switchable films ID SELF-ASSEMBLED MONOLAYERS; RESPONSIVE FUSION PROTEIN; CONTACT-ANGLE MEASUREMENT; LIQUID-CRYSTAL ALIGNMENT; ACTIVE CONTROL; MOLECULAR MACHINES; FERROCENE DERIVATIVES; BETA-CYCLODEXTRIN; FORCE MICROSCOPY; COATED SURFACES AB The key to assembling and manipulating materials ranging in size from molecules to microns involves controlling how the materials interact with each other or with patterned substrates. The focus of this review involves recent work in which researchers are learning how to use materials such as self-assembled monolayers (SAMS) to reversibly program interfacial interactions using external stimuli including heat, light, and electric fields. Using such stimuli, it has been shown that intermolecular and surface forces including electrical double layer interactions, hydration forces, pi-stacking interactions, and hydrophobic/hydrophilic behavior can be switched back and forth between discrete states. Such switching allows surfaces to be programmed to grab or release generic classes of materials or specific objects based on programmed molecular recognition. This review highlights strategies for developing and characterizing responsive interfaces, shows how such surfaces have been exploited in microfluidic systems, and explores the promise of switchable materials for creating responsive and adaptable materials in three dimensions. Published by Elsevier B.V. C1 Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Bunker, BC (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM bcbunke@sandia.gov FU United States Department of Energy [DE-AC04-94A18500]; Sandia National Laboratories FX The author would like to thank colleagues who have collaborated with him on projects related to the topic area, including Jim Voigt, Jun Liu, Jim Kushmerick, Dale Huber, Andrew Boal, Matt Farrow, Jack Houston, Bill Smith, Murat Okandan, Kevin Zavadil, Graham Yelton, George Bachand, Judy Hendricks, and Bruce Kay. The author is also thankful for support by the Division of Materials Science and Engineering of the Office of Basic Energy Sciences of the United States Department of Energy as well as Laboratory Directed Research and Development funding from Sandia National Laboratories. Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract DE-AC04-94A18500. NR 138 TC 11 Z9 11 U1 7 U2 47 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0927-796X EI 1879-212X J9 MAT SCI ENG R JI Mater. Sci. Eng. R-Rep. PD OCT 24 PY 2008 VL 62 IS 5 BP 157 EP 173 DI 10.1016/j.mser.2008.06.001 PG 17 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA 376DX UT WOS:000261164500001 ER PT J AU Mao, DYL Neculai, D Downey, M Orlicky, S Haffani, YZ Ceccarelli, DF Ho, JSL Szilard, RK Zhang, W Ho, CS Wan, L Fares, C Rumpel, S Kurinov, I Arrowsmith, CH Durocher, D Sicheri, F AF Mao, Daniel Y. L. Neculai, Dante Downey, Michael Orlicky, Stephen Haffani, Yosr Z. Ceccarelli, Derek F. Ho, Jenny S. L. Szilard, Rachel K. Zhang, Wei Ho, Cynthia S. Wan, Leo Fares, Christophe Rumpel, Sigrun Kurinov, Igor Arrowsmith, Cheryl H. Durocher, Daniel Sicheri, Frank TI Atomic Structure of the KEOPS Complex: An Ancient Protein Kinase-Containing Molecular Machine SO MOLECULAR CELL LA English DT Article ID AUTOMATED STRUCTURE SOLUTION; TELOMERE LENGTH; YEAST; NMR; MODEL; REFINEMENT; EXPRESSION; MECHANISM; COUPLINGS; ALIGNMENT AB Kae1 is a universally conserved ATPase and part of the essential gene set in bacteria. In archaea and eukaryotes, Kae1 is embedded within the protein kinase-containing KEOPS complex. Mutation of KEOPS subunits in yeast leads to striking telomere and transcription defects, but the exact biochemical function of KEOPS is not known. As a first step to elucidating its function, we solved the atomic structure of archaea-derived KEOPS complexes involving Kae1, Bud32, Pcc1, and Cgi121 subunits. Our studies suggest that Kae1 is regulated at two levels by the primordial protein kinase Bud32, which is itself regulated by Cgi121. Moreover, Pcc1 appears to function as a dimerization module, perhaps suggesting that KEOPS may be a processive molecular machine. Lastly, as Bud32 lacks the conventional substrate-recognition infrastructure of eukaryotic protein kinases including an activation segment, Bud32 may provide a glimpse of the evolutionary history of the protein kinase family. C1 [Mao, Daniel Y. L.; Neculai, Dante; Downey, Michael; Orlicky, Stephen; Haffani, Yosr Z.; Ceccarelli, Derek F.; Szilard, Rachel K.; Zhang, Wei; Ho, Cynthia S.; Wan, Leo; Durocher, Daniel; Sicheri, Frank] Mt Sinai Hosp, Samuel Lunenfeld Res Inst, Toronto, ON M5G 1X5, Canada. [Downey, Michael; Zhang, Wei; Durocher, Daniel; Sicheri, Frank] Univ Toronto, Dept Mol Genet, Toronto, ON M5S 1A8, Canada. [Ho, Jenny S. L.] Hosp Sick Children, Program Dev & Stem Cell Biol, Toronto, ON M5G 1X8, Canada. [Fares, Christophe; Rumpel, Sigrun; Arrowsmith, Cheryl H.] Univ Toronto, Ontario Canc Inst, Dept Med Biophys, Toronto, ON M5G 1L7, Canada. [Kurinov, Igor] Cornell Univ, Dept Chem & Biol Chem, NE CAT, Adv Photon Source, Argonne, IL 60439 USA. RP Durocher, D (reprint author), Mt Sinai Hosp, Samuel Lunenfeld Res Inst, 600 Univ Ave, Toronto, ON M5G 1X5, Canada. EM durocher@mshri.on.ca; sicheri@mshri.on.ca RI Neculai, Dante/A-9923-2011; Durocher, Daniel/A-7733-2010; Sicheri, Frank/F-8856-2013; Neculai, Dante/M-2884-2013 OI Durocher, Daniel/0000-0003-3863-8635; FU National Center for Research Resources [FIR 15301]; U.S. Department of Energy [DE-AC02-06CH11357]; CIHR [MOP 79441]; Canadian Cancer Society [017220]; NCIC; CIHR; German Academic Exchange Service (DAAD) FX We thank Steve Bell for help in identifying archaeal KEOPS orthologs and Domenico Libri for strains/plasmids. Research conducted at the NE-CAT beamlines (Advanced Photon Source) was supported by the National Center for Research Resources (NIH, award FIR 15301) and the U.S. Department of Energy (Office of Basic Energy Sciences, contract DE-AC02-06CH11357). D.D. is a Canada Research Chair (Tier 11). This work was funded by grants from the CIHR (MOP 79441) to D.D. and the Canadian Cancer Society to F.S. (grant 017220). D.Y.L.M. and D.N. were supported by NCIC and CIHR postdoctoral fellowships. respectively. S.R. was supported by a postdoctoral fellowship of the German Academic Exchange Service (DAAD). NR 45 TC 44 Z9 48 U1 2 U2 6 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 1097-2765 J9 MOL CELL JI Mol. Cell PD OCT 24 PY 2008 VL 32 IS 2 BP 259 EP 275 DI 10.1016/j.molcel.2008.10.002 PG 17 WC Biochemistry & Molecular Biology; Cell Biology SC Biochemistry & Molecular Biology; Cell Biology GA 367IX UT WOS:000260546800014 PM 18951093 ER PT J AU Abazov, VM Abbott, B Abolins, M Acharya, BS Adams, M Adams, T Aguilo, E Ahsan, M Alexeev, GD Alkhazov, G Alton, A Alverson, G Alves, GA Anastasoaie, M Ancu, LS Andeen, T Andrieu, B Anzelc, MS Aoki, M Arnoud, Y Arov, M Arthaud, M Askew, A Asman, B Jesus, ACSA Atramentov, O Avila, C Badaud, F Bagby, L Baldin, B Bandurin, DV Banerjee, P Banerjee, S Barberis, E Barfuss, AF Bargassa, P Baringer, P Barreto, J Bartlett, JF Bassler, U Bauer, D Beale, S Bean, A Begalli, M Begel, M Belanger-Champagne, C Bellantoni, L Bellavance, A Benitez, JA Beri, SB Bernardi, G Bernhard, R Bertram, I Besancon, M Beuselinck, R Bezzubov, VA Bhat, PC Bhatnagar, V Biscarat, C Blazey, G Blekman, F Blessing, S Bloom, K Boehnlein, A Boline, D Bolton, TA Boos, EE Borissov, G Bose, T Brandt, A Brock, R Brooijmans, G Bross, A Brown, D Bu, XB Buchanan, NJ Buchholz, D Buehler, M Buescher, V Bunichev, V Burdin, S Burnett, TH Buszello, CP Butler, JM Calfayan, P Calvet, S Cammin, J Carrera, E Carvalho, W Casey, BCK Castilla-Valdez, H Cerminara, G Chakrabarti, S Chakraborty, D Chan, KM Chandra, A Cheu, E Chevallier, F Cho, DK Choi, S Choudhary, B Christofek, L Christoudias, T Cihangir, S Claes, D Clutter, J Cooke, M Cooper, WE Corcoran, M Couderc, F Cousinou, MC Crepe-Renaudin, S Cuplov, V Cutts, D Cwiok, M da Motta, H Das, A Davies, G De, K de Jong, SJ De La Cruz-Burelo, E Martins, CDO DeVaughan, K Degenhardt, JD Deliot, F Demarteau, M Demina, R Denisov, D Denisov, SP Desai, S Diehl, HT Diesburg, M Dominguez, A Dong, H Dorland, T Dubey, A Dudko, LV Duflot, L Dugad, SR Duggan, D Duperrin, A Dyer, J Dyshkant, A Eads, M Edmunds, D Ellison, J Elvira, VD Enari, Y Eno, S Ermolov, P Evans, H Evdokimov, A Evdokimov, VN Facini, G Ferapontov, AV Ferbel, T Fiedler, F Filthaut, F Fisher, W Fisk, HE Fortner, M Fox, H Fu, S Fuess, S Gadfort, T Galea, CF Garcia, C Garcia-Bellido, A Gavrilov, V Gay, P Geist, W Geng, W Gerber, CE Gershtein, Y Gillberg, D Ginther, G Gollub, N Gomez, B Goussiou, A Grannis, PD Greenlee, H Greenwood, ZD Gregores, EM Grenier, G Gris, P Grivaz, JF Grohsjean, A Grunendahl, S Grunewald, MW Guo, F Guo, J Gutierrez, G Gutierrez, P Haas, A Hadley, NJ Haefner, P Hagopian, S Haley, J Hall, I Hall, RE Han, L Harder, K Harel, A Hauptman, JM Hays, J Hebbeker, T Hedin, D Hegeman, JG Heinson, AP Heintz, U Hensel, C Herner, K Hesketh, G Hildreth, MD Hirosky, R Hobbs, JD Hoeneisen, B Hoeth, H Hohlfeld, M Hossain, S Houben, P Hu, Y Hubacek, Z Hynek, V Iashvili, I Illingworth, R Ito, AS Jabeen, S Jaffre, M Jain, S Jakobs, K Jarvis, C Jesik, R Johns, K Johnson, C Johnson, M Johnston, D Jonckheere, A Jonsson, P Juste, A Kajfasz, E Kalk, JM Karmanov, D Kasper, PA Katsanos, I Kau, D Kaushik, V Kehoe, R Kermiche, S Khalatyan, N Khanov, A Kharchilava, A Kharzheev, YM Khatidze, D Kim, TJ Kirby, MH Kirsch, M Klima, B Kohli, JM Konrath, JP Kozelov, AV Kraus, J Kuhl, T Kumar, A Kupco, A Kurca, T Kuzmin, VA Kvita, J Lacroix, F Lam, D Lammers, S Landsberg, G Lebrun, P Lee, WM Leflat, A Lellouch, J Li, J Li, L Li, QZ Lietti, SM Lim, JK Lima, JGR Lincoln, D Linnemann, J Lipaev, VV Lipton, R Liu, Y Liu, Z Lobodenko, A Lokajicek, M Love, P Lubatti, HJ Luna, R Lyon, AL Maciel, AKA Mackin, D Madaras, RJ Mattig, P Magass, C Magerkurth, A Mal, PK Malbouisson, HB Malik, S Malyshev, VL Maravin, Y Martin, B McCarthy, R Melnitchouk, A Mendoza, L Mercadante, PG Merkin, M Merritt, KW Meyer, A Meyer, J Mitrevski, J Mommsen, RK Mondal, NK Moore, RW Moulik, T Muanza, GS Mulhearn, M Mundal, O Mundim, L Nagy, E Naimuddin, M Narain, M Naumann, NA Neal, HA Negret, JP Neustroev, P Nilsen, H Nogima, H Novaes, SF Nunnemann, T O'Dell, V O'Neil, DC Obrant, G Ochando, C Onoprienko, D Oshima, N Osman, N Osta, J Otec, R Garzon, GJOY Owen, M Padley, P Pangilinan, M Parashar, N Park, SJ Park, SK Parsons, J Partridge, R Parua, N Patwa, A Pawloski, G Penning, B Perfilov, M Peters, K Peters, Y Petroff, P Petteni, M Piegaia, R Piper, J Pleier, MA Podesta-Lerma, PLM Podstavkov, VM Pogorelov, Y Pol, ME Polozov, P Pope, BG Popov, AV Potter, C da Silva, WLP Prosper, HB Protopopescu, S Qian, J Quadt, A Quinn, B Rakitine, A Rangel, MS Ranjan, K Ratoff, PN Razumov, I Renkel, P Rich, P Rieger, J Rijssenbeek, M Ripp-Baudot, I Rizatdinova, F Robinson, S Rodrigues, RF Rominsky, M Royon, C Rubinov, P Ruchti, R Safronov, G Sajot, G Sanchez-Hernandez, A Sanders, MP Sanghi, B Savage, G Sawyer, L Scanlon, T Schaile, D Schamberger, RD Scheglov, Y Schellman, H Schliephake, T Schlobohm, S Schwanenberger, C Schwartzman, A Schwienhorst, R Sekaric, J Severini, H Shabalina, E Shamim, M Shary, V Shchukin, AA Shivpuri, RK Siccardi, V Simak, V Sirotenko, V Skubic, P Slattery, P Smirnov, D Snow, GR Snow, J Snyder, S Soldner-Rembold, S Sonnenschein, L Sopczak, A Sosebee, M Soustruznik, K Spurlock, B Stark, J Steele, J Stolin, V Stoyanova, DA Strandberg, J Strandberg, S Strang, MA Strauss, E Strauss, M Strohmer, R Strom, D Stutte, L Sumowidagdo, S Svoisky, P Sznajder, A Tamburello, P Tanasijczuk, A Taylor, W Tiller, B Tissandier, F Titov, M Tokmenin, VV Torchiani, I Tsybychev, D Tuchming, B Tully, C Tuts, PM Unalan, R Uvarov, L Uvarov, S Uzunyan, S Vachon, B van den Berg, PJ Van Kooten, R van Leeuwen, WM Varelas, N Varnes, EW Vasilyev, IA Verdier, P Vertogradov, LS Verzocchi, M Vilanova, D Villeneuve-Seguier, F Vint, P Vokac, P Voutilainen, M Wagner, R Wahl, HD Wang, MHLS Warchol, J Watts, G Wayne, M Weber, G Weber, M Welty-Rieger, L Wenger, A Wermes, N Wetstein, M White, A Wicke, D Williams, M Wilson, GW Wimpenny, SJ Wobisch, M Wood, DR Wyatt, TR Xie, Y Yacoob, S Yamada, R Yang, WC Yasuda, T Yatsunenko, YA Yin, H Yip, K Yoo, HD Youn, SW Yu, J Zeitnitz, C Zelitch, S Zhao, T Zhou, B Zhu, J Zielinski, M Zieminska, D Zieminski, A Zivkovic, L Zutshi, V Zverev, EG AF Abazov, V. M. Abbott, B. Abolins, M. Acharya, B. S. Adams, M. Adams, T. Aguilo, E. Ahsan, M. Alexeev, G. D. Alkhazov, G. Alton, A. Alverson, G. Alves, G. A. Anastasoaie, M. Ancu, L. S. Andeen, T. Andrieu, B. Anzelc, M. S. Aoki, M. Arnoud, Y. Arov, M. Arthaud, M. Askew, A. Asman, B. Jesus, A. C. S. Assis Atramentov, O. Avila, C. Badaud, F. Bagby, L. Baldin, B. Bandurin, D. V. Banerjee, P. Banerjee, S. Barberis, E. Barfuss, A. -F. Bargassa, P. Baringer, P. Barreto, J. Bartlett, J. F. Bassler, U. Bauer, D. Beale, S. Bean, A. Begalli, M. Begel, M. Belanger-Champagne, C. Bellantoni, L. Bellavance, A. Benitez, J. A. Beri, S. B. Bernardi, G. Bernhard, R. Bertram, I. Besancon, M. Beuselinck, R. Bezzubov, V. A. Bhat, P. C. Bhatnagar, V. Biscarat, C. Blazey, G. Blekman, F. Blessing, S. Bloom, K. Boehnlein, A. Boline, D. Bolton, T. A. Boos, E. E. Borissov, G. Bose, T. Brandt, A. Brock, R. Brooijmans, G. Bross, A. Brown, D. Bu, X. B. Buchanan, N. J. Buchholz, D. Buehler, M. Buescher, V. Bunichev, V. Burdin, S. Burnett, T. H. Buszello, C. P. Butler, J. M. Calfayan, P. Calvet, S. Cammin, J. Carrera, E. Carvalho, W. Casey, B. C. K. Castilla-Valdez, H. Cerminara, G. Chakrabarti, S. Chakraborty, D. Chan, K. M. Chandra, A. Cheu, E. Chevallier, F. Cho, D. K. Choi, S. Choudhary, B. Christofek, L. Christoudias, T. Cihangir, S. Claes, D. Clutter, J. Cooke, M. Cooper, W. E. Corcoran, M. Couderc, F. Cousinou, M. -C. Crepe-Renaudin, S. Cuplov, V. Cutts, D. Cwiok, M. da Motta, H. Das, A. Davies, G. De, K. de Jong, S. J. De La Cruz-Burelo, E. Martins, C. De Oliveira DeVaughan, K. Degenhardt, J. D. Deliot, F. Demarteau, M. Demina, R. Denisov, D. Denisov, S. P. Desai, S. Diehl, H. T. Diesburg, M. Dominguez, A. Dong, H. Dorland, T. Dubey, A. Dudko, L. V. Duflot, L. Dugad, S. R. Duggan, D. Duperrin, A. Dyer, J. Dyshkant, A. Eads, M. Edmunds, D. Ellison, J. Elvira, V. D. Enari, Y. Eno, S. Ermolov, P. Evans, H. Evdokimov, A. Evdokimov, V. N. Facini, G. Ferapontov, A. V. Ferbel, T. Fiedler, F. Filthaut, F. Fisher, W. Fisk, H. E. Fortner, M. Fox, H. Fu, S. Fuess, S. Gadfort, T. Galea, C. F. Garcia, C. Garcia-Bellido, A. Gavrilov, V. Gay, P. Geist, W. Geng, W. Gerber, C. E. Gershtein, Y. Gillberg, D. Ginther, G. Gollub, N. Gomez, B. Goussiou, A. Grannis, P. D. Greenlee, H. Greenwood, Z. D. Gregores, E. M. Grenier, G. Gris, Ph. Grivaz, J. -F. Grohsjean, A. Gruenendahl, S. Gruenewald, M. W. Guo, F. Guo, J. Gutierrez, G. Gutierrez, P. Haas, A. Hadley, N. J. Haefner, P. Hagopian, S. Haley, J. Hall, I. Hall, R. E. Han, L. Harder, K. Harel, A. Hauptman, J. M. Hays, J. Hebbeker, T. Hedin, D. Hegeman, J. G. Heinson, A. P. Heintz, U. Hensel, C. Herner, K. Hesketh, G. Hildreth, M. D. Hirosky, R. Hobbs, J. D. Hoeneisen, B. Hoeth, H. Hohlfeld, M. Hossain, S. Houben, P. Hu, Y. Hubacek, Z. Hynek, V. Iashvili, I. Illingworth, R. Ito, A. S. Jabeen, S. Jaffre, M. Jain, S. Jakobs, K. Jarvis, C. Jesik, R. Johns, K. Johnson, C. Johnson, M. Johnston, D. Jonckheere, A. Jonsson, P. Juste, A. Kajfasz, E. Kalk, J. M. Karmanov, D. Kasper, P. A. Katsanos, I. Kau, D. Kaushik, V. Kehoe, R. Kermiche, S. Khalatyan, N. Khanov, A. Kharchilava, A. Kharzheev, Y. M. Khatidze, D. Kim, T. J. Kirby, M. H. Kirsch, M. Klima, B. Kohli, J. M. Konrath, J. -P. Kozelov, A. V. Kraus, J. Kuhl, T. Kumar, A. Kupco, A. Kurca, T. Kuzmin, V. A. Kvita, J. Lacroix, F. Lam, D. Lammers, S. Landsberg, G. Lebrun, P. Lee, W. M. Leflat, A. Lellouch, J. Li, J. Li, L. Li, Q. Z. Lietti, S. M. Lim, J. K. Lima, J. G. R. Lincoln, D. Linnemann, J. Lipaev, V. V. Lipton, R. Liu, Y. Liu, Z. Lobodenko, A. Lokajicek, M. Love, P. Lubatti, H. J. Luna, R. Lyon, A. L. Maciel, A. K. A. Mackin, D. Madaras, R. J. Maettig, P. Magass, C. Magerkurth, A. Mal, P. K. Malbouisson, H. B. Malik, S. Malyshev, V. L. Maravin, Y. Martin, B. McCarthy, R. Melnitchouk, A. Mendoza, L. Mercadante, P. G. Merkin, M. Merritt, K. W. Meyer, A. Meyer, J. Mitrevski, J. Mommsen, R. K. Mondal, N. K. Moore, R. W. Moulik, T. Muanza, G. S. Mulhearn, M. Mundal, O. Mundim, L. Nagy, E. Naimuddin, M. Narain, M. Naumann, N. A. Neal, H. A. Negret, J. P. Neustroev, P. Nilsen, H. Nogima, H. Novaes, S. F. Nunnemann, T. O'Dell, V. O'Neil, D. C. Obrant, G. Ochando, C. Onoprienko, D. Oshima, N. Osman, N. Osta, J. Otec, R. Garzon, G. J. Otero y Owen, M. Padley, P. Pangilinan, M. Parashar, N. Park, S. -J. Park, S. K. Parsons, J. Partridge, R. Parua, N. Patwa, A. Pawloski, G. Penning, B. Perfilov, M. Peters, K. Peters, Y. Petroff, P. Petteni, M. Piegaia, R. Piper, J. Pleier, M. -A. Podesta-Lerma, P. L. M. Podstavkov, V. M. Pogorelov, Y. Pol, M. -E. Polozov, P. Pope, B. G. Popov, A. V. Potter, C. da Silva, W. L. Prado Prosper, H. B. Protopopescu, S. Qian, J. Quadt, A. Quinn, B. Rakitine, A. Rangel, M. S. Ranjan, K. Ratoff, P. N. Razumov, I. Renkel, P. Rich, P. Rieger, J. Rijssenbeek, M. Ripp-Baudot, I. Rizatdinova, F. Robinson, S. Rodrigues, R. F. Rominsky, M. Royon, C. Rubinov, P. Ruchti, R. Safronov, G. Sajot, G. Sanchez-Hernandez, A. Sanders, M. P. Sanghi, B. Savage, G. Sawyer, L. Scanlon, T. Schaile, D. Schamberger, R. D. Scheglov, Y. Schellman, H. Schliephake, T. Schlobohm, S. Schwanenberger, C. Schwartzman, A. Schwienhorst, R. Sekaric, J. Severini, H. Shabalina, E. Shamim, M. Shary, V. Shchukin, A. A. Shivpuri, R. K. Siccardi, V. Simak, V. Sirotenko, V. Skubic, P. Slattery, P. Smirnov, D. Snow, G. R. Snow, J. Snyder, S. Soeldner-Rembold, S. Sonnenschein, L. Sopczak, A. Sosebee, M. Soustruznik, K. Spurlock, B. Stark, J. Steele, J. Stolin, V. Stoyanova, D. A. Strandberg, J. Strandberg, S. Strang, M. A. Strauss, E. Strauss, M. Stroehmer, R. Strom, D. Stutte, L. Sumowidagdo, S. Svoisky, P. Sznajder, A. Tamburello, P. Tanasijczuk, A. Taylor, W. Tiller, B. Tissandier, F. Titov, M. Tokmenin, V. V. Torchiani, I. Tsybychev, D. Tuchming, B. Tully, C. Tuts, P. M. Unalan, R. Uvarov, L. Uvarov, S. Uzunyan, S. Vachon, B. van den Berg, P. J. Van Kooten, R. van Leeuwen, W. M. Varelas, N. Varnes, E. W. Vasilyev, I. A. Verdier, P. Vertogradov, L. S. Verzocchi, M. Vilanova, D. Villeneuve-Seguier, F. Vint, P. Vokac, P. Voutilainen, M. Wagner, R. Wahl, H. D. Wang, M. H. L. S. Warchol, J. Watts, G. Wayne, M. Weber, G. Weber, M. Welty-Rieger, L. Wenger, A. Wermes, N. Wetstein, M. White, A. Wicke, D. Williams, M. Wilson, G. W. Wimpenny, S. J. Wobisch, M. Wood, D. R. Wyatt, T. R. Xie, Y. Yacoob, S. Yamada, R. Yang, W. -C. Yasuda, T. Yatsunenko, Y. A. Yin, H. Yip, K. Yoo, H. D. Youn, S. W. Yu, J. Zeitnitz, C. Zelitch, S. Zhao, T. Zhou, B. Zhu, J. Zielinski, M. Zieminska, D. Zieminski, A. Zivkovic, L. Zutshi, V. Zverev, E. G. TI Observation of ZZ Production in p(p)over-bar Collisions at root s=1.96 TeV SO PHYSICAL REVIEW LETTERS LA English DT Article ID PAIR PRODUCTION AB We present an observation for ZZ -> l(+) l(-) l'(+) l'(-) (l, l' =e or mu) production in p (p) over bar collisions at a center-of-mass energy of root s = 1.96 TeV. Using 1.7 fb(-1) of data collected by the D0 experiment at the Fermilab Tevatron Collider, we observe three candidate events with an expected background of 0.14(-0.02)(+0.03) events. The significance of this observation is 5.3 standard deviations. The combination of D0 results in this channel, as well as in ZZ -> l(+) l(-) v (v) over bar yields a significance of 5.7 standard deviations and a combined cross section of sigma(ZZ) = 1.60 +/- 0.63(stat)(-0.17)(+0.16)(syst) pb. C1 [Piegaia, R.; Tanasijczuk, A.] Univ Buenos Aires, Buenos Aires, DF, Argentina. [Alves, G. A.; Barreto, J.; da Motta, H.; Maciel, A. K. A.; Pol, M. -E.] Ctr Brasileiro Pesquisas Fis, LAFEX, Rio De Janeiro, Brazil. [Jesus, A. C. S. Assis; Begalli, M.; Carvalho, W.; Martins, C. De Oliveira; Luna, R.; Malbouisson, H. B.; Mundim, L.; Nogima, H.; da Silva, W. L. Prado; Rodrigues, R. F.; Sznajder, A.] Univ Estado Rio de Janeiro, BR-20550011 Rio De Janeiro, Brazil. [Gregores, E. M.] Univ Fed ABC, Santo Andre, Brazil. [Lietti, S. M.; Mercadante, P. G.; Novaes, S. F.] Univ Estadual Paulista, Inst Fis Teor, BR-01405 Sao Paulo, Brazil. [Aguilo, E.; Beale, S.; Gillberg, D.; Liu, Z.; Moore, R. W.; O'Neil, D. C.; Potter, C.; Taylor, W.; Vachon, B.] Univ Alberta, Edmonton, AB, Canada. [Aguilo, E.; Beale, S.; Gillberg, D.; Liu, Z.; Moore, R. W.; O'Neil, D. C.; Potter, C.; Taylor, W.; Vachon, B.] Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada. [Aguilo, E.; Beale, S.; Gillberg, D.; Liu, Z.; Moore, R. W.; O'Neil, D. C.; Potter, C.; Taylor, W.; Vachon, B.] York Univ, Toronto, ON M3J 2R7, Canada. [Aguilo, E.; Beale, S.; Gillberg, D.; Liu, Z.; Moore, R. W.; O'Neil, D. C.; Potter, C.; Taylor, W.; Vachon, B.] McGill Univ, Montreal, PQ, Canada. [Bu, X. B.; Han, L.; Liu, Z.; Yin, H.] Univ Sci & Technol China, Hefei 230026, Peoples R China. [Avila, C.; Gomez, B.; Mendoza, L.; Negret, J. P.] Univ Los Andes, Bogota, Colombia. [Hynek, V.; Kvita, J.; Soustruznik, K.] Charles Univ Prague, Ctr Particle Phys, Prague, Czech Republic. [Hubacek, Z.; Otec, R.; Simak, V.; Vokac, P.] Czech Tech Univ, CR-16635 Prague, Czech Republic. [Kupco, A.; Lokajicek, M.] Acad Sci Czech Republic, Inst Phys, Ctr Particle Phys, Prague, Czech Republic. [Hoeneisen, B.] Univ San Francisco Quito, Quito, Ecuador. [Badaud, F.; Gay, P.; Gris, Ph.; Lacroix, F.; Tissandier, F.] Univ Clermont Ferrand, CNRS, IN2P3, LPC, Clermont, France. [Arnoud, Y.; Chevallier, F.; Crepe-Renaudin, S.; Martin, B.; Sajot, G.; Stark, J.] Univ Grenoble 1, CNRS, IN2P3, Inst Natl Polytech Grenoble,LPSC, Grenoble, France. [Barfuss, A. -F.; Cousinou, M. -C.; Duperrin, A.; Geng, W.; Kajfasz, E.; Kermiche, S.; Nagy, E.] Aix Marseille Univ, CNRS, IN2P3, CPPM, Marseille, France. [Calvet, S.; Duflot, L.; Grivaz, J. -F.; Jaffre, M.; Ochando, C.; Petroff, P.] Univ Paris 11, CNRS, IN2P3, LAL, Orsay, France. [Andrieu, B.; Bernardi, G.; Lellouch, J.; Sanders, M. P.; Sonnenschein, L.] Univ Paris 06, CNRS, IN2P3, LPNHE, Paris, France. [Andrieu, B.; Bernardi, G.; Lellouch, J.; Sanders, M. P.; Sonnenschein, L.] Univ Paris 07, CNRS, IN2P3, LPNHE, Paris, France. [Arthaud, M.; Bassler, U.; Besancon, M.; Chakrabarti, S.; Couderc, F.; Deliot, F.; Royon, C.; Shary, V.; Titov, M.; Tuchming, B.; Vilanova, D.] SPP, CEA, Saclay, France. [Geist, W.; Ripp-Baudot, I.; Siccardi, V.] Univ Strasbourg 1, CNRS, IN2P3, IPHC, Strasbourg, France. [Biscarat, C.; Grenier, G.; Kurca, T.; Lebrun, P.; Muanza, G. S.; Verdier, P.] Univ Lyon 1, CNRS, IN2P3, IPNL, F-69622 Villeurbanne, France. [Biscarat, C.; Grenier, G.; Kurca, T.; Lebrun, P.; Muanza, G. S.; Verdier, P.] Univ Lyon, Lyon, France. [Hebbeker, T.; Kirsch, M.; Magass, C.; Meyer, A.] Rhein Westfal TH Aachen, Phys Inst A 3, Aachen, Germany. [Buescher, V.; Hensel, C.; Hohlfeld, M.; Meyer, J.; Mundal, O.; Park, S. -J.; Pleier, M. -A.; Quadt, A.; Wermes, N.] Univ Bonn, Inst Phys, D-5300 Bonn, Germany. [Bernhard, R.; Jakobs, K.; Konrath, J. -P.; Nilsen, H.; Penning, B.; Torchiani, I.; Wenger, A.] Univ Freiburg, Inst Phys, Freiburg, Germany. [Fiedler, F.; Kuhl, T.; Weber, G.] Johannes Gutenberg Univ Mainz, Inst Phys, D-6500 Mainz, Germany. [Calfayan, P.; Grohsjean, A.; Haefner, P.; Nunnemann, T.; Schaile, D.; Stroehmer, R.; Tiller, B.] Univ Munich, Munich, Germany. [Hoeth, H.; Maettig, P.; Peters, Y.; Rangel, M. S.; Schliephake, T.; Wicke, D.; Zeitnitz, C.] Univ Wuppertal, Fachbereich Phys, Wuppertal, Germany. [Beri, S. B.; Bhatnagar, V.; Kohli, J. M.] Panjab Univ, Chandigarh 160014, India. [Choudhary, B.; Dubey, A.; Ranjan, K.; Shivpuri, R. K.] Univ Delhi, Delhi 110007, India. [Acharya, B. S.; Banerjee, P.; Banerjee, S.; Dugad, S. R.; Mondal, N. K.] Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India. [Cwiok, M.; Gruenewald, M. W.] Univ Coll Dublin, Dublin 2, Ireland. [Kim, T. J.; Lim, J. K.; Park, S. K.] Korea Univ, Korea Detector Lab, Seoul, South Korea. [Choi, S.] Sungkyunkwan Univ, Suwon, South Korea. [Castilla-Valdez, H.; De La Cruz-Burelo, E.; Podesta-Lerma, P. L. M.; Sanchez-Hernandez, A.] CINVESTAV, Mexico City 14000, DF, Mexico. [Hegeman, J. G.; Houben, P.; van den Berg, P. J.; van Leeuwen, W. M.] NIKHEF, FOM Inst, Amsterdam, Netherlands. [Hegeman, J. G.; Houben, P.; van den Berg, P. J.; van Leeuwen, W. M.] Univ Amsterdam, NIKHEF, Amsterdam, Netherlands. [Anastasoaie, M.; Ancu, L. S.; de Jong, S. J.; Filthaut, F.; Galea, C. F.; Naumann, N. A.] Radboud Univ Nijmegen, NIKHEF, NL-6525 ED Nijmegen, Netherlands. [Abazov, V. M.; Alexeev, G. D.; Kharzheev, Y. M.; Malyshev, V. L.; Tokmenin, V. V.; Vertogradov, L. S.; Yatsunenko, Y. A.] Joint Inst Nucl Res, Dubna, Russia. [Gavrilov, V.; Polozov, P.; Safronov, G.; Stolin, V.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Boos, E. E.; Bunichev, V.; Dudko, L. V.; Ermolov, P.; Karmanov, D.; Kuzmin, V. A.; Leflat, A.; Merkin, M.; Perfilov, M.; Zverev, E. G.] Moscow MV Lomonosov State Univ, Moscow, Russia. [Bezzubov, V. A.; Denisov, D.; Evdokimov, V. N.; Kozelov, A. V.; Lipaev, V. V.; Popov, A. V.; Razumov, I.; Shchukin, A. A.; Stoyanova, D. A.; Vasilyev, I. A.] Inst High Energy Phys, Protvino, Russia. [Alkhazov, G.; Lobodenko, A.; Neustroev, P.; Obrant, G.; Scheglov, Y.; Uvarov, L.; Uvarov, S.] Petersburg Nucl Phys Inst, St Petersburg, Russia. [Asman, B.; Belanger-Champagne, C.; Gollub, N.; Strandberg, S.] Lund Univ, Lund, Sweden. [Asman, B.; Belanger-Champagne, C.; Gollub, N.; Strandberg, S.] Royal Inst Technol, Stockholm, Sweden. [Asman, B.; Belanger-Champagne, C.; Gollub, N.; Strandberg, S.] Stockholm Univ, S-10691 Stockholm, Sweden. [Asman, B.; Belanger-Champagne, C.; Gollub, N.; Strandberg, S.] Uppsala Univ, Uppsala, Sweden. [Bertram, I.; Borissov, G.; Burdin, S.; Fox, H.; Love, P.; Rakitine, A.; Ratoff, P. N.; Sopczak, A.; Williams, M.] Univ Lancaster, Lancaster, England. [Bauer, D.; Beuselinck, R.; Blekman, F.; Buszello, C. P.; Christoudias, T.; Davies, G.; Hays, J.; Jesik, R.; Jonsson, P.; Osman, N.; Petteni, M.; Robinson, S.; Scanlon, T.; Villeneuve-Seguier, F.; Vint, P.] Univ London Imperial Coll Sci Technol & Med, London, England. [Harder, K.; Mommsen, R. K.; Owen, M.; Peters, K.; Rich, P.; Schwanenberger, C.; Soeldner-Rembold, S.; Wyatt, T. R.; Yang, W. -C.] Univ Manchester, Manchester, Lancs, England. [Cheu, E.; Das, A.; Johns, K.; Tamburello, P.; Varnes, E. W.] Univ Arizona, Tucson, AZ 85721 USA. [Madaras, R. J.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Madaras, R. J.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Hall, R. E.] Calif State Univ Fresno, Fresno, CA 93740 USA. [Chandra, A.; Ellison, J.; Heinson, A. P.; Li, L.; Wimpenny, S. J.] Univ Calif Riverside, Riverside, CA 92521 USA. [Adams, T.; Askew, A.; Atramentov, O.; Blessing, S.; Buchanan, N. J.; Carrera, E.; Duggan, D.; Gershtein, Y.; Hagopian, S.; Kau, D.; Prosper, H. B.; Sekaric, J.; Sumowidagdo, S.; Wahl, H. D.] Florida State Univ, Tallahassee, FL 32306 USA. [Aoki, M.; Bagby, L.; Baldin, B.; Bartlett, J. F.; Bellantoni, L.; Bellavance, A.; Bhat, P. C.; Boehnlein, A.; Bross, A.; Casey, B. C. K.; Cihangir, S.; Cooke, M.; Cooper, W. E.; Demarteau, M.; Denisov, D.; Desai, S.; Diehl, H. T.; Diesburg, M.; Elvira, V. D.; Fisher, W.; Fisk, H. E.; Fu, S.; Fuess, S.; Greenlee, H.; Gruenendahl, S.; Gutierrez, G.; Illingworth, R.; Ito, A. S.; Johnson, M.; Jonckheere, A.; Juste, A.; Kasper, P. A.; Khalatyan, N.; Klima, B.; Li, Q. Z.; Lincoln, D.; Lipton, R.; Lyon, A. L.; Merritt, K. W.; Naimuddin, M.; O'Dell, V.; Oshima, N.; Garzon, G. J. Otero y; Podstavkov, V. M.; Rubinov, P.; Sanghi, B.; Savage, G.; Sirotenko, V.; Stutte, L.; Verzocchi, M.; Wang, M. H. L. S.; Weber, M.; Yamada, R.; Yasuda, T.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Adams, M.; Gerber, C. E.; Shabalina, E.; Varelas, N.] Univ Illinois, Chicago, IL 60607 USA. [Blazey, G.; Chakraborty, D.; Dyshkant, A.; Fortner, M.; Hedin, D.; Lima, J. G. R.; Uzunyan, S.; Zutshi, V.] No Illinois Univ, De Kalb, IL 60115 USA. [Andeen, T.; Anzelc, M. S.; Buchholz, D.; Kirby, M. H.; Schellman, H.; Strom, D.; Yacoob, S.; Youn, S. W.] Northwestern Univ, Evanston, IL 60208 USA. [Evans, H.; Parua, N.; Rieger, J.; Van Kooten, R.; Welty-Rieger, L.; Zieminska, D.; Zieminski, A.] Indiana Univ, Bloomington, IN 47405 USA. [Chan, K. M.; Hildreth, M. D.; Lam, D.; Osta, J.; Pogorelov, Y.; Ruchti, R.; Smirnov, D.; Svoisky, P.; Warchol, J.; Wayne, M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Parashar, N.] Purdue Univ Calumet, Hammond, IN 46323 USA. [Hauptman, J. M.] Iowa State Univ, Ames, IA 50011 USA. [Baringer, P.; Bean, A.; Clutter, J.; Moulik, T.; Wilson, G. W.] Univ Kansas, Lawrence, KS 66045 USA. [Ahsan, M.; Bandurin, D. V.; Bolton, T. A.; Cuplov, V.; Ferapontov, A. V.; Maravin, Y.; Onoprienko, D.; Shamim, M.] Kansas State Univ, Manhattan, KS 66506 USA. [Arov, M.; Greenwood, Z. D.; Kalk, J. M.; Sawyer, L.; Steele, J.; Wobisch, M.] Louisiana Tech Univ, Ruston, LA 71272 USA. [Eno, S.; Hadley, N. J.; Jarvis, C.; Wetstein, M.] Univ Maryland, College Pk, MD 20742 USA. [Boline, D.; Butler, J. M.; Cho, D. K.; Heintz, U.; Jabeen, S.] Boston Univ, Boston, MA 02215 USA. [Alverson, G.; Barberis, E.; Cerminara, G.; Facini, G.; Hesketh, G.; Wood, D. R.] Northeastern Univ, Boston, MA 02115 USA. [Alton, A.; Degenhardt, J. D.; Magerkurth, A.; Neal, H. A.; Qian, J.; Strandberg, S.; Zhou, B.] Univ Michigan, Ann Arbor, MI 48109 USA. [Abolins, M.; Benitez, J. A.; Brock, R.; Dyer, J.; Edmunds, D.; Geng, W.; Hall, I.; Kraus, J.; Linnemann, J.; Piper, J.; Pope, B. G.; Schwienhorst, R.; Unalan, R.] Michigan State Univ, E Lansing, MI 48824 USA. [Melnitchouk, A.; Quinn, B.] Univ Mississippi, University, MS 38677 USA. [Bloom, K.; Claes, D.; DeVaughan, K.; Dominguez, A.; Eads, M.; Johnston, D.; Malik, S.; Snow, G. R.; Voutilainen, M.] Univ Nebraska, Lincoln, NE 68588 USA. [Haley, J.; Schwartzman, A.; Tully, C.; Wagner, R.] Princeton Univ, Princeton, NJ 08544 USA. [Iashvili, I.; Kharchilava, A.; Kumar, A.; Strang, M. A.] SUNY Buffalo, Buffalo, NY 14260 USA. [Brooijmans, G.; Gadfort, T.; Haas, A.; Johnson, C.; Katsanos, I.; Khatidze, D.; Lammers, S.; Mitrevski, J.; Mulhearn, M.; Parsons, J.; Tuts, P. M.; Zivkovic, L.] Columbia Univ, New York, NY 10027 USA. [Cammin, J.; Demina, R.; Ferbel, T.; Garcia, C.; Garcia-Bellido, A.; Ginther, G.; Harel, A.; Slattery, P.; Zielinski, M.] Univ Rochester, Rochester, NY 14627 USA. [Dong, H.; Grannis, P. D.; Guo, F.; Guo, J.; Herner, K.; Hobbs, J. D.; Hu, Y.; McCarthy, R.; Rijssenbeek, M.; Schamberger, R. D.; Strauss, E.; Tsybychev, D.; Zhu, J.] SUNY Stony Brook, Stony Brook, NY 11794 USA. [Begel, M.; Evdokimov, A.; Patwa, A.; Protopopescu, S.; Snyder, S.; Yip, K.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Snow, J.] Langston Univ, Langston, OK 73050 USA. [Abbott, B.; Gutierrez, P.; Hossain, S.; Jain, S.; Rominsky, M.; Severini, H.; Skubic, P.; Strauss, M.] Univ Oklahoma, Norman, OK 73019 USA. [Khanov, A.; Rizatdinova, F.] Oklahoma State Univ, Stillwater, OK 74078 USA. [Bose, T.; Christofek, L.; Cutts, D.; Enari, Y.; Landsberg, G.; Narain, M.; Pangilinan, M.; Partridge, R.; Xie, Y.; Yoo, H. D.] Brown Univ, Providence, RI 02912 USA. [Brandt, A.; De, K.; Kaushik, V.; Li, J.; Sosebee, M.; Spurlock, B.; White, A.; Yu, J.] Univ Texas Arlington, Arlington, TX 76019 USA. [Kehoe, R.; Renkel, P.] So Methodist Univ, Dallas, TX 75275 USA. [Bargassa, P.; Corcoran, M.; Mackin, D.; Padley, P.; Pawloski, G.] Rice Univ, Houston, TX 77005 USA. [Brown, D.; Buehler, M.; Hirosky, R.; Zelitch, S.] Univ Virginia, Charlottesville, VA 22901 USA. [Burnett, T. H.; Dorland, T.; Goussiou, A.; Lubatti, H. J.; Mal, P. K.; Schlobohm, S.; Watts, G.; Zhao, T.] Univ Washington, Seattle, WA 98195 USA. RP Abazov, VM (reprint author), Univ Buenos Aires, Buenos Aires, DF, Argentina. RI Li, Liang/O-1107-2015; Ancu, Lucian Stefan/F-1812-2010; De, Kaushik/N-1953-2013; Fisher, Wade/N-4491-2013; Alves, Gilvan/C-4007-2013; Deliot, Frederic/F-3321-2014; Sharyy, Viatcheslav/F-9057-2014; Kupco, Alexander/G-9713-2014; Christoudias, Theodoros/E-7305-2015; KIM, Tae Jeong/P-7848-2015; Guo, Jun/O-5202-2015; Sznajder, Andre/L-1621-2016; Shivpuri, R K/A-5848-2010; Gutierrez, Phillip/C-1161-2011; bu, xuebing/D-1121-2012; Novaes, Sergio/D-3532-2012; Mercadante, Pedro/K-1918-2012; Mundim, Luiz/A-1291-2012; Yip, Kin/D-6860-2013; Dudko, Lev/D-7127-2012; Leflat, Alexander/D-7284-2012; Perfilov, Maxim/E-1064-2012; Boos, Eduard/D-9748-2012; Merkin, Mikhail/D-6809-2012 OI Li, Liang/0000-0001-6411-6107; Ancu, Lucian Stefan/0000-0001-5068-6723; De, Kaushik/0000-0002-5647-4489; Sharyy, Viatcheslav/0000-0002-7161-2616; Christoudias, Theodoros/0000-0001-9050-3880; KIM, Tae Jeong/0000-0001-8336-2434; Guo, Jun/0000-0001-8125-9433; Sznajder, Andre/0000-0001-6998-1108; Novaes, Sergio/0000-0003-0471-8549; Mundim, Luiz/0000-0001-9964-7805; Yip, Kin/0000-0002-8576-4311; Dudko, Lev/0000-0002-4462-3192; FU DOE and NSF (USA); CEA and CNRS/IN2P3 (France); FASI, Rosatom, and RFBR (Russia); CNPq, FAPERJ, FAPESP, and FUNDUNESP (Brazil); DAE and DST (India); Colciencias (Colombia); CONACyT (Mexico); KRF and KOSEF (Korea); CONICET and UBACyT (Argentina); FOM (The Netherlands); STFC (United Kingdom); MSMT and GACR (Czech Republic); CRC Program, CFI, NSERC and WestGrid Project (Canada); BMBF and DFG (Germany); SFI (Ireland); The Swedish Research Council (Sweden); CAS and CNSF (China); Alexander von Humboldt Foundation (Germany); Istituto Nazionale di Fisica Nucleare (Italy) FX We thank the staffs at Fermilab and collaborating institutions, and acknowledge support from the DOE and NSF (USA); CEA and CNRS/IN2P3 (France); FASI, Rosatom, and RFBR (Russia); CNPq, FAPERJ, FAPESP, and FUNDUNESP (Brazil); DAE and DST (India); Colciencias (Colombia); CONACyT (Mexico); KRF and KOSEF (Korea); CONICET and UBACyT (Argentina); FOM (The Netherlands); STFC (United Kingdom); MSMT and GACR (Czech Republic); CRC Program, CFI, NSERC and WestGrid Project (Canada); BMBF and DFG (Germany); SFI (Ireland); The Swedish Research Council (Sweden); CAS and CNSF (China); Alexander von Humboldt Foundation (Germany); and the Istituto Nazionale di Fisica Nucleare (Italy). NR 16 TC 15 Z9 15 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD OCT 24 PY 2008 VL 101 IS 17 AR 171803 DI 10.1103/PhysRevLett.101.171803 PG 7 WC Physics, Multidisciplinary SC Physics GA 365CN UT WOS:000260383600018 ER PT J AU Alvarez, G Dagotto, E AF Alvarez, G. Dagotto, E. TI Fermi Arcs in the Superconducting Clustered State for Underdoped Cuprate Superconductors SO PHYSICAL REVIEW LETTERS LA English DT Article AB The one-particle spectral function of a state formed by superconducting (SC) clusters is studied via Monte Carlo techniques. The clusters have similar SC amplitudes but randomly distributed phases. This state is stabilized by competition with the antiferromagnetism expected to be present in the cuprates and after quenched disorder is introduced. A Fermi surface composed of disconnected segments, i.e., Fermi arcs, is observed between the critical temperature T(c) and the cluster formation temperature scale T(*). C1 [Alvarez, G.] Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN 37831 USA. [Alvarez, G.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Dagotto, E.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Dagotto, E.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Alvarez, G (reprint author), Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN 37831 USA. FU NSF [DMR-0706020]; Scientific User Facilities; BES-DOE FX Work supported by the NSF Grant No. DMR-0706020, the Div. of Mat. Science and Eng., U. S. DOE, under contract with UT-Battelle, LLC, and by the CNMS, sponsored by the Scientific User Facilities Div., BES-DOE. NR 17 TC 16 Z9 16 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD OCT 24 PY 2008 VL 101 IS 17 AR 177001 DI 10.1103/PhysRevLett.101.177001 PG 4 WC Physics, Multidisciplinary SC Physics GA 365CN UT WOS:000260383600052 PM 18999774 ER PT J AU Aubert, B Bona, M Karyotakis, Y Lees, JP Poireau, V Prudent, X Tisserand, V Zghiche, A Tico, JG Grauges, E Lopez, L Palano, A Pappagallo, M Eigen, G Stugu, B Sun, L Abrams, GS Battaglia, M Brown, DN Button-Shafer, J Cahn, RN Jacobsen, RG Kadyk, JA Kerth, LT Kolomensky, YG Kukartsev, G Lynch, G Osipenkov, IL Ronan, MT Tackmann, K Tanabe, T Wenzel, WA Hawkes, CM Soni, N Watson, AT Koch, H Schroeder, T Walker, D Asgeirsson, DJ Cuhadar-Donszelmann, T Fulsom, BG Hearty, C Mattison, TS McKenna, JA Barrett, M Khan, A Saleem, M Teodorescu, L Blinov, VE Bukin, AD Buzykaev, AR Druzhinin, VP Golubev, VB Onuchin, AP Serednyakov, SI Skovpen, YI Solodov, EP Todyshev, KY Bondioli, M Curry, S Eschrich, I Kirkby, D Lankford, AJ Lund, P Mandelkern, M Martin, EC Stoker, DP Abachi, S Buchanan, C Gary, JW Liu, F Long, O Shen, BC Vitug, GM Yasin, Z Zhang, L Paar, HP Rahatlou, S Sharma, V Campagnari, C Hong, TM Kovalskyi, D Mazur, MA Richman, JD Beck, TW Eisner, AM Flacco, CJ Heusch, CA Kroseberg, J Lockman, WS Schalk, T Schumm, BA Seiden, A Wilson, MG Winstrom, LO Chen, E Cheng, CH Doll, DA Echenard, B Fang, F Hitlin, DG Narsky, I Piatenko, T Porter, FC Andreassen, R Mancinelli, G Meadows, BT Mishra, K Sokoloff, MD Blanc, F Bloom, PC Ford, WT Hirschauer, JF Kreisel, A Nagel, M Nauenberg, U Olivas, A Smith, JG Ulmer, KA Wagner, SR Ayad, R Gabareen, AM Soffer, A Toki, WH Wilson, RJ Altenburg, DD Feltresi, E Hauke, A Jasper, H Karbach, M Merkel, J Petzold, A Spaan, B Wacker, K Klose, V Kobel, MJ Lacker, HM Mader, WF Nogowski, R Schubert, J Schubert, KR Schwierz, R Sundermann, JE Volk, A Bernard, D Bonneaud, GR Latour, E Thiebaux, C Verderi, M Clark, PJ Gradl, W Playfer, S Robertson, AI Watson, JE Andreotti, M Bettoni, D Bozzi, C Calabrese, R Cecchi, A Cibinetto, G Franchini, P Luppi, E Negrini, M Petrella, A Piemontese, L Prencipe, E Santoro, V Anulli, F Baldini-Ferroli, R Calcaterra, A de Sangro, R Finocchiaro, G Pacetti, S Patteri, P Peruzzi, IM Piccolo, M Rama, M Zallo, A Buzzo, A Contri, R Lo Vetere, M Macri, MM Monge, MR Passaggio, S Patrignani, C Robutti, E Santroni, A Tosi, S Chaisanguanthum, KS Morii, M Dubitzky, RS Marks, J Schenk, S Uwer, U Bard, DJ Dauncey, PD Nash, JA Vazquez, WP Tibbetts, M Behera, PK Chai, X Charles, MJ Mallik, U Cochran, J Crawley, HB Dong, L Eyges, V Meyer, WT Prell, S Rosenberg, EI Rubin, AE Gao, YY Gritsan, AV Guo, ZJ Lae, CK Denig, AG Fritsch, M Schott, G Arnaud, N Bequilleux, J D'Orazio, A Davier, M da Costa, JF Grosdidier, G Hocker, A Lepeltier, V Le Diberder, F Lutz, AM Pruvot, S Roudeau, P Schune, MH Serrano, J Sordini, V Stocchi, A Wang, WF Wormser, G Lange, DJ Wright, DM Bingham, I Burke, JP Chavez, CA Fry, JR Gabathuler, E Gamet, R Hutchcroft, DE Payne, DJ Touramanis, C Bevan, AJ George, KA Di Lodovico, F Sacco, R Sigamani, M Cowan, G Flaecher, HU Hopkins, DA Paramesvaran, S Salvatore, F Wren, AC Brown, DN Davis, CL Alwyn, KE Barlow, NR Barlow, RJ Chia, YM Edgar, CL Lafferty, GD West, TJ Yi, JI Anderson, J Chen, C Jawahery, A Roberts, DA Simi, G Tuggle, JM Dallapiccola, C Hertzbach, SS Li, X Salvati, E Saremi, S Cowan, R Dujmic, D Fisher, PH Koeneke, K Sciolla, G Spitznagel, M Taylor, F Yamamoto, RK Zhao, M Mclachlin, SE Patel, PM Robertson, SH Lazzaro, A Lombardo, V Palombo, F Bauer, JM Cremaldi, L Eschenburg, V Godang, R Kroeger, R Sanders, DA Summers, DJ Zhao, HW Brunet, S Cote, D Simard, M Taras, P Viaud, FB Nicholson, H De Nardo, G Lista, L Monorchio, D Sciacca, C Baak, MA Raven, G Snoek, HL Jessop, CP Knoepfel, KJ LoSecco, JM Benelli, G Corwin, LA Honscheid, K Kagan, H Kass, R Morris, JP Rahimi, AM Regensburger, JJ Sekula, SJ Wong, QK Blount, NL Brau, J Frey, R Igonkina, O Kolb, JA Lu, M Rahmat, R Sinev, NB Strom, D Strube, J Torrence, E Castelli, G Gagliardi, N Gaz, A Margoni, M Morandin, M Posocco, M Rotondo, M Simonetto, F Stroili, R Voci, C Sanchez, PD Ben-Haim, E Briand, H Calderini, G Chauveau, J David, P Del Buono, L Hamon, O Leruste, P Malcles, J Ocariz, J Perez, A Prendki, J Gladney, L Biasini, M Covarelli, R Manoni, E Angelini, C Batignani, G Bettarini, S Carpinelli, M Cervelli, A Forti, F Giorgi, MA Lusiani, A Marchiori, G Morganti, M Neri, N Paoloni, E Rizzo, G Walsh, JJ Biesiada, J Lau, YP Pegna, DL Lu, C Olsen, J Smith, AJS Telnov, AV Baracchini, E Cavoto, G del Re, D Di Marco, E Faccini, R Ferrarotto, F Ferroni, F Gaspero, M Jackson, PD Mazzoni, MA Morganti, S Piredda, G Polci, F Renga, F Voena, C Ebert, M Hartmann, T Schroder, H Waldi, R Adye, T Franek, B Olaiya, EO Roethel, W Wilson, FF Emery, S Escalier, M Gaidot, A Ganzhur, SF de Monchenault, GH Kozanecki, W Vasseur, G Yeche, C Zito, M Chen, XR Liu, H Park, W Purohit, MV White, RM Wilson, JR Allen, MT Aston, D Bartoldus, R Bechtle, P Benitez, JF Cenci, R Coleman, JP Convery, MR Dingfelder, JC Dorfan, J Dubois-Felsmann, GP Dunwoodie, W Field, RC Glanzman, T Gowdy, SJ Graham, MT Grenier, P Hast, C Innes, WR Kaminski, J Kelsey, MH Kim, H Kim, P Kocian, ML Leith, DWGS Li, S Lindquist, B Luitz, S Luth, V Lynch, HL MacFarlane, DB Marsiske, H Messner, R Muller, DR Neal, H Nelson, S O'Grady, CP Ofte, I Perazzo, A Perl, M Ratcliff, BN Roodman, A Salnikov, AA Schindler, RH Schwiening, J Snyder, A Su, D Sullivan, MK Suzuki, K Swain, SK Thompson, JM Va'vra, J Wagner, AP Weaver, M Wisniewski, WJ Wittgen, M Wright, DH Wulsin, HW Yarritu, AK Yi, K Young, CC Ziegler, V Burchat, PR Edwards, AJ Majewski, SA Miyashita, TS Petersen, BA Wilden, L Ahmed, S Alam, MS Bula, R Ernst, JA Pan, B Saeed, MA Zain, SB Spanier, SM Wogsland, BJ Eckmann, R Ritchie, JL Ruland, AM Schilling, CJ Schwitters, RF Izen, JM Lou, XC Ye, S Bianchi, F Gamba, D Pelliccioni, M Bomben, M Bosisio, L Cartaro, C Cossutti, F Della Ricca, G Lanceri, L Vitale, L Azzolini, V Lopez-March, N Martinez-Vidal, F Milanes, DA Oyanguren, A Albert, J Banerjee, S Bhuyan, B Hamano, K Kowalewski, R Nugent, IM Roney, JM Sobie, RJ Gershon, TJ Harrison, PF Ilic, J Latham, TE Mohanty, GB Band, HR Chen, X Dasu, S Flood, KT Kutter, PE Pan, Y Pierini, M Prepost, R Vuosalo, CO Wu, SL AF Aubert, B. Bona, M. Karyotakis, Y. Lees, J. P. Poireau, V. Prudent, X. Tisserand, V. Zghiche, A. Tico, J. Garra Grauges, E. Lopez, L. Palano, A. Pappagallo, M. Eigen, G. Stugu, B. Sun, L. Abrams, G. S. Battaglia, M. Brown, D. N. Button-Shafer, J. Cahn, R. N. Jacobsen, R. G. Kadyk, J. A. Kerth, L. T. Kolomensky, Yu. G. Kukartsev, G. Lynch, G. Osipenkov, I. L. Ronan, M. T. Tackmann, K. Tanabe, T. Wenzel, W. A. Hawkes, C. M. Soni, N. Watson, A. T. Koch, H. Schroeder, T. Walker, D. Asgeirsson, D. J. Cuhadar-Donszelmann, T. Fulsom, B. G. Hearty, C. Mattison, T. S. McKenna, J. A. Barrett, M. Khan, A. Saleem, M. Teodorescu, L. Blinov, V. E. Bukin, A. D. Buzykaev, A. R. Druzhinin, V. P. Golubev, V. B. Onuchin, A. P. Serednyakov, S. I. Skovpen, Yu. I. Solodov, E. P. Todyshev, K. Yu. Bondioli, M. Curry, S. Eschrich, I. Kirkby, D. Lankford, A. J. Lund, P. Mandelkern, M. Martin, E. C. Stoker, D. P. Abachi, S. Buchanan, C. Gary, J. W. Liu, F. Long, O. Shen, B. C. Vitug, G. M. Yasin, Z. Zhang, L. Paar, H. P. Rahatlou, S. Sharma, V. Campagnari, C. Hong, T. M. Kovalskyi, D. Mazur, M. A. Richman, J. D. Beck, T. W. Eisner, A. M. Flacco, C. J. Heusch, C. A. Kroseberg, J. Lockman, W. S. Schalk, T. Schumm, B. A. Seiden, A. Wilson, M. G. Winstrom, L. O. Chen, E. Cheng, C. H. Doll, D. A. Echenard, B. Fang, F. Hitlin, D. G. Narsky, I. Piatenko, T. Porter, F. C. Andreassen, R. Mancinelli, G. Meadows, B. T. Mishra, K. Sokoloff, M. D. Blanc, F. Bloom, P. C. Ford, W. T. Hirschauer, J. F. Kreisel, A. Nagel, M. Nauenberg, U. Olivas, A. Smith, J. G. Ulmer, K. A. Wagner, S. R. Ayad, R. Gabareen, A. M. Soffer, A. Toki, W. H. Wilson, R. J. Altenburg, D. D. Feltresi, E. Hauke, A. Jasper, H. Karbach, M. Merkel, J. Petzold, A. Spaan, B. Wacker, K. Klose, V. Kobel, M. J. Lacker, H. M. Mader, W. F. Nogowski, R. Schubert, J. Schubert, K. R. Schwierz, R. Sundermann, J. E. Volk, A. Bernard, D. Bonneaud, G. R. Latour, E. Thiebaux, Ch. Verderi, M. Clark, P. J. Gradl, W. Playfer, S. Robertson, A. I. Watson, J. E. Andreotti, M. Bettoni, D. Bozzi, C. Calabrese, R. Cecchi, A. Cibinetto, G. Franchini, P. Luppi, E. Negrini, M. Petrella, A. Piemontese, L. Prencipe, E. Santoro, V. Anulli, F. Baldini-Ferroli, R. Calcaterra, A. de Sangro, R. Finocchiaro, G. Pacetti, S. Patteri, P. Peruzzi, I. M. Piccolo, M. Rama, M. Zallo, A. Buzzo, A. Contri, R. Lo Vetere, M. Macri, M. M. Monge, M. R. Passaggio, S. Patrignani, C. Robutti, E. Santroni, A. Tosi, S. Chaisanguanthum, K. S. Morii, M. Dubitzky, R. S. Marks, J. Schenk, S. Uwer, U. Bard, D. J. Dauncey, P. D. Nash, J. A. Vazquez, W. Panduro Tibbetts, M. Behera, P. K. Chai, X. Charles, M. J. Mallik, U. Cochran, J. Crawley, H. B. Dong, L. Eyges, V. Meyer, W. T. Prell, S. Rosenberg, E. I. Rubin, A. E. Gao, Y. Y. Gritsan, A. V. Guo, Z. J. Lae, C. K. Denig, A. G. Fritsch, M. Schott, G. Arnaud, N. Bequilleux, J. D'Orazio, A. Davier, M. da Costa, J. Firmino Grosdidier, G. Hoecker, A. Lepeltier, V. Le Diberder, F. Lutz, A. M. Pruvot, S. Roudeau, P. Schune, M. H. Serrano, J. Sordini, V. Stocchi, A. Wang, W. F. Wormser, G. Lange, D. J. Wright, D. M. Bingham, I. Burke, J. P. Chavez, C. A. Fry, J. R. Gabathuler, E. Gamet, R. Hutchcroft, D. E. Payne, D. J. Touramanis, C. Bevan, A. J. George, K. A. Di Lodovico, F. Sacco, R. Sigamani, M. Cowan, G. Flaecher, H. U. Hopkins, D. A. Paramesvaran, S. Salvatore, F. Wren, A. C. Brown, D. N. Davis, C. L. Alwyn, K. E. Barlow, N. R. Barlow, R. J. Chia, Y. M. Edgar, C. L. Lafferty, G. D. West, T. J. Yi, J. I. Anderson, J. Chen, C. Jawahery, A. Roberts, D. A. Simi, G. Tuggle, J. M. Dallapiccola, C. Hertzbach, S. S. Li, X. Salvati, E. Saremi, S. Cowan, R. Dujmic, D. Fisher, P. H. Koeneke, K. Sciolla, G. Spitznagel, M. Taylor, F. Yamamoto, R. K. Zhao, M. Mclachlin, S. E. Patel, P. M. Robertson, S. H. Lazzaro, A. Lombardo, V. Palombo, F. Bauer, J. M. Cremaldi, L. Eschenburg, V. Godang, R. Kroeger, R. Sanders, D. A. Summers, D. J. Zhao, H. W. Brunet, S. Cote, D. Simard, M. Taras, P. Viaud, F. B. Nicholson, H. De Nardo, G. Lista, L. Monorchio, D. Sciacca, C. Baak, M. A. Raven, G. Snoek, H. L. Jessop, C. P. Knoepfel, K. J. LoSecco, J. M. Benelli, G. Corwin, L. A. Honscheid, K. Kagan, H. Kass, R. Morris, J. P. Rahimi, A. M. Regensburger, J. J. Sekula, S. J. Wong, Q. K. Blount, N. L. Brau, J. Frey, R. Igonkina, O. Kolb, J. A. Lu, M. Rahmat, R. Sinev, N. B. Strom, D. Strube, J. Torrence, E. Castelli, G. Gagliardi, N. Gaz, A. Margoni, M. Morandin, M. Posocco, M. Rotondo, M. Simonetto, F. Stroili, R. Voci, C. Sanchez, P. del Amo Ben-Haim, E. Briand, H. Calderini, G. Chauveau, J. David, P. Del Buono, L. Hamon, O. Leruste, Ph. Malcles, J. Ocariz, J. Perez, A. Prendki, J. Gladney, L. Biasini, M. Covarelli, R. Manoni, E. Angelini, C. Batignani, G. Bettarini, S. Carpinelli, M. Cervelli, A. Forti, F. Giorgi, M. A. Lusiani, A. Marchiori, G. Morganti, M. Neri, N. Paoloni, E. Rizzo, G. Walsh, J. J. Biesiada, J. Lau, Y. P. Pegna, D. Lopes Lu, C. Olsen, J. Smith, A. J. S. Telnov, A. V. Baracchini, E. Cavoto, G. del Re, D. Di Marco, E. Faccini, R. Ferrarotto, F. Ferroni, F. Gaspero, M. Jackson, P. D. Mazzoni, M. A. Morganti, S. Piredda, G. Polci, F. Renga, F. Voena, C. Ebert, M. Hartmann, T. Schroeder, H. Waldi, R. Adye, T. Franek, B. Olaiya, E. O. Roethel, W. Wilson, F. F. Emery, S. Escalier, M. Gaidot, A. Ganzhur, S. F. de Monchenault, G. Hamel Kozanecki, W. Vasseur, G. Yeche, Ch. Zito, M. Chen, X. R. Liu, H. Park, W. Purohit, M. V. White, R. M. Wilson, J. R. Allen, M. T. Aston, D. Bartoldus, R. Bechtle, P. Benitez, J. F. Cenci, R. Coleman, J. P. Convery, M. R. Dingfelder, J. C. Dorfan, J. Dubois-Felsmann, G. P. Dunwoodie, W. Field, R. C. Glanzman, T. Gowdy, S. J. Graham, M. T. Grenier, P. Hast, C. Innes, W. R. Kaminski, J. Kelsey, M. H. Kim, H. Kim, P. Kocian, M. L. Leith, D. W. G. S. Li, S. Lindquist, B. Luitz, S. Luth, V. Lynch, H. L. MacFarlane, D. B. Marsiske, H. Messner, R. Muller, D. R. Neal, H. Nelson, S. O'Grady, C. P. Ofte, I. Perazzo, A. Perl, M. Ratcliff, B. N. Roodman, A. Salnikov, A. A. Schindler, R. H. Schwiening, J. Snyder, A. Su, D. Sullivan, M. K. Suzuki, K. Swain, S. K. Thompson, J. M. Va'vra, J. Wagner, A. P. Weaver, M. Wisniewski, W. J. Wittgen, M. Wright, D. H. Wulsin, H. W. Yarritu, A. K. Yi, K. Young, C. C. Ziegler, V. Burchat, P. R. Edwards, A. J. Majewski, S. A. Miyashita, T. S. Petersen, B. A. Wilden, L. Ahmed, S. Alam, M. S. Bula, R. Ernst, J. A. Pan, B. Saeed, M. A. Zain, S. B. Spanier, S. M. Wogsland, B. J. Eckmann, R. Ritchie, J. L. Ruland, A. M. Schilling, C. J. Schwitters, R. F. Izen, J. M. Lou, X. C. Ye, S. Bianchi, F. Gamba, D. Pelliccioni, M. Bomben, M. Bosisio, L. Cartaro, C. Cossutti, F. Della Ricca, G. Lanceri, L. Vitale, L. Azzolini, V. Lopez-March, N. Martinez-Vidal, F. Milanes, D. A. Oyanguren, A. Albert, J. Banerjee, Sw. Bhuyan, B. Hamano, K. Kowalewski, R. Nugent, I. M. Roney, J. M. Sobie, R. J. Gershon, T. J. Harrison, P. F. Ilic, J. Latham, T. E. Mohanty, G. B. Band, H. R. Chen, X. Dasu, S. Flood, K. T. Kutter, P. E. Pan, Y. Pierini, M. Prepost, R. Vuosalo, C. O. Wu, S. L. TI Measurement of the CP Asymmetry in b -> s gamma Using a Sum of Exclusive Final States SO PHYSICAL REVIEW LETTERS LA English DT Article ID DECAY B->S-GAMMA; PHYSICS; VIOLATION; MODEL AB We perform a measurement of the CP asymmetry in b -> s gamma decays using a sample of 383 x 10(6) B (B) over bar events collected by the BABAR detector at the SLAC PEP-II asymmetric B factory. We reconstruct 16 flavor-specific B decay modes containing a high-energy photon and a hadronic system X-s containing an s quark. We measure the CP asymmetry to be -0.011 +/- 0.030(stat) +/- 0.014(syst) for a hadronic system mass between 0.6 and 2.8 GeV/c(2). C1 [Aubert, B.; Bona, M.; Karyotakis, Y.; Lees, J. P.; Prudent, X.; Tisserand, V.; Zghiche, A.] CNRS, Phys Particules Lab, IN2P3, F-74941 Annecy Le Vieux, France. [Aubert, B.; Bona, M.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prudent, X.; Tisserand, V.; Zghiche, A.] Univ Savoie, F-74941 Annecy Le Vieux, France. [Tico, J. Garra; Grauges, E.] Univ Barcelona, Fac Fis, Dept Estructura & Constituents Mat, E-08028 Barcelona, Spain. [Lopez, L.; Palano, A.; Pappagallo, M.] Univ Bari, Dipartmento Fis, I-70126 Bari, Italy. [Lopez, L.; Palano, A.; Pappagallo, M.] Ist Nazl Fis Nucl, I-70126 Bari, Italy. [Eigen, G.; Stugu, B.; Sun, L.] Univ Bergen, Inst Phys, N-5007 Bergen, Norway. [Abrams, G. S.; Battaglia, M.; Brown, D. N.; Button-Shafer, J.; Cahn, R. N.; Jacobsen, R. G.; Kadyk, J. A.; Kerth, L. T.; Kolomensky, Yu. G.; Kukartsev, G.; Lynch, G.; Osipenkov, I. L.; Ronan, M. T.; Tackmann, K.; Tanabe, T.; Wenzel, W. A.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Abrams, G. S.; Battaglia, M.; Brown, D. N.; Button-Shafer, J.; Cahn, R. N.; Jacobsen, R. G.; Kadyk, J. A.; Kerth, L. T.; Kolomensky, Yu. G.; Kukartsev, G.; Lynch, G.; Osipenkov, I. L.; Ronan, M. T.; Tackmann, K.; Tanabe, T.; Wenzel, W. A.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Hawkes, C. M.; Soni, N.; Watson, A. T.] Univ Birmingham, Birmingham B15 2TT, W Midlands, England. [Koch, H.; Schroeder, T.] Ruhr Univ Bochum, Inst Expt Phys 1, D-44780 Bochum, Germany. [Walker, D.] Univ Bristol, Bristol BS8 1TL, Avon, England. [Asgeirsson, D. J.; Cuhadar-Donszelmann, T.; Fulsom, B. G.; Hearty, C.; Mattison, T. S.; McKenna, J. A.] Univ British Columbia, Vancouver, BC V6T 1Z1, Canada. [Barrett, M.; Khan, A.; Saleem, M.; Teodorescu, L.] Brunel Univ, Uxbridge UB8 3PH, Middx, England. [Blinov, V. E.; Bukin, A. D.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.] Budker Inst Nucl Phys, Novosibirsk 630090, Russia. [Bondioli, M.; Curry, S.; Eschrich, I.; Kirkby, D.; Lankford, A. J.; Lund, P.; Mandelkern, M.; Martin, E. C.; Stoker, D. P.] Univ Calif Irvine, Irvine, CA 92697 USA. [Abachi, S.; Buchanan, C.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Gary, J. W.; Liu, F.; Long, O.; Shen, B. C.; Vitug, G. M.; Yasin, Z.; Zhang, L.] Univ Calif Riverside, Riverside, CA 92521 USA. [Paar, H. P.; Rahatlou, S.; Sharma, V.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Campagnari, C.; Hong, T. M.; Kovalskyi, D.; Mazur, M. A.; Richman, J. D.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Beck, T. W.; Eisner, A. M.; Flacco, C. J.; Heusch, C. A.; Kroseberg, J.; Lockman, W. S.; Schalk, T.; Schumm, B. A.; Seiden, A.; Wilson, M. G.; Winstrom, L. O.] Univ Calif Santa Cruz, Inst Particle Phys, Santa Cruz, CA 95064 USA. [Chen, E.; Cheng, C. H.; Doll, D. A.; Echenard, B.; Fang, F.; Hitlin, D. G.; Narsky, I.; Piatenko, T.; Porter, F. C.] CALTECH, Pasadena, CA 91125 USA. [Andreassen, R.; Mancinelli, G.; Meadows, B. T.; Mishra, K.; Sokoloff, M. D.] Univ Cincinnati, Cincinnati, OH 45221 USA. [Blanc, F.; Bloom, P. C.; Ford, W. T.; Hirschauer, J. F.; Kreisel, A.; Nagel, M.; Nauenberg, U.; Olivas, A.; Smith, J. G.; Ulmer, K. A.; Wagner, S. R.] Univ Colorado, Boulder, CO 80309 USA. [Ayad, R.; Gabareen, A. M.; Soffer, A.; Toki, W. H.; Wilson, R. J.] Colorado State Univ, Ft Collins, CO 80523 USA. [Altenburg, D. D.; Feltresi, E.; Hauke, A.; Jasper, H.; Karbach, M.; Merkel, J.; Petzold, A.; Spaan, B.; Wacker, K.] Univ Dortmund, Inst Phys, D-4421 Dortmund, Germany. [Klose, V.; Kobel, M. J.; Lacker, H. M.; Mader, W. F.; Nogowski, R.; Schubert, J.; Schubert, K. R.; Schwierz, R.; Sundermann, J. E.; Volk, A.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. [Bernard, D.; Bonneaud, G. R.; Latour, E.; Thiebaux, Ch.; Verderi, M.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Clark, P. J.; Gradl, W.; Playfer, S.; Robertson, A. I.; Watson, J. E.] Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. [Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Franchini, P.; Luppi, E.; Negrini, M.; Petrella, A.; Piemontese, L.; Prencipe, E.; Santoro, V.] Univ Ferrara, Dipartmento Fis, I-44100 Ferrara, Italy. [Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Franchini, P.; Luppi, E.; Negrini, M.; Petrella, A.; Piemontese, L.; Prencipe, E.; Santoro, V.] Ist Nazl Fis Nucl, I-44100 Ferrara, Italy. [Anulli, F.; Baldini-Ferroli, R.; Calcaterra, A.; de Sangro, R.; Finocchiaro, G.; Pacetti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; Zallo, A.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Buzzo, A.; Contri, R.; Lo Vetere, M.; Macri, M. M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Santroni, A.; Tosi, S.] Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy. [Buzzo, A.; Contri, R.; Lo Vetere, M.; Macri, M. M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Santroni, A.; Tosi, S.] Ist Nazl Fis Nucl, I-16146 Genoa, Italy. [Chaisanguanthum, K. S.; Morii, M.] Harvard Univ, Cambridge, MA 02138 USA. [Dubitzky, R. S.; Marks, J.; Schenk, S.; Uwer, U.] Heidelberg Univ, Inst Phys, D-69120 Heidelberg, Germany. [Bard, D. J.; Dauncey, P. D.; Nash, J. A.; Vazquez, W. Panduro; Tibbetts, M.] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. [Behera, P. K.; Chai, X.; Charles, M. J.; Mallik, U.] Univ Iowa, Iowa City, IA 52242 USA. [Cochran, J.; Crawley, H. B.; Dong, L.; Eyges, V.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Rubin, A. E.] Iowa State Univ, Ames, IA 50011 USA. [Gao, Y. Y.; Gritsan, A. V.; Guo, Z. J.; Lae, C. K.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Denig, A. G.; Fritsch, M.; Schott, G.] Univ Karlsruhe, Inst Expt Kernphys, D-76021 Karlsruhe, Germany. [Arnaud, N.; Bequilleux, J.; D'Orazio, A.; Davier, M.; da Costa, J. Firmino; Grosdidier, G.; Hoecker, A.; Lepeltier, V.; Le Diberder, F.; Lutz, A. M.; Pruvot, S.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wang, W. F.; Wormser, G.] CNRS, IN2P3, Lab Accelerateur Lineaire, F-91898 Orsay, France. [Arnaud, N.; Bequilleux, J.; D'Orazio, A.; Davier, M.; da Costa, J. Firmino; Grosdidier, G.; Hoecker, A.; Lepeltier, V.; Le Diberder, F.; Lutz, A. M.; Pruvot, S.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wang, W. F.; Wormser, G.] Univ Paris 11, Ctr Sci, F-91898 Orsay, France. [Lange, D. J.; Wright, D. M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Bingham, I.; Burke, J. P.; Chavez, C. A.; Fry, J. R.; Gabathuler, E.; Gamet, R.; Hutchcroft, D. E.; Payne, D. J.; Touramanis, C.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Bevan, A. J.; George, K. A.; Di Lodovico, F.; Sacco, R.; Sigamani, M.] Univ London, London E1 4NS, England. [Cowan, G.; Flaecher, H. U.; Hopkins, D. A.; Paramesvaran, S.; Salvatore, F.; Wren, A. C.] Univ London Royal Holloway & Bedford New Coll, Egham TW20 0EX, Surrey, England. [Brown, D. N.; Davis, C. L.] Univ Louisville, Louisville, KY 40292 USA. [Alwyn, K. E.; Barlow, N. R.; Barlow, R. J.; Chia, Y. M.; Edgar, C. L.; Lafferty, G. D.; West, T. J.; Yi, J. I.] Univ Manchester, Manchester M13 9PL, Lancs, England. [Anderson, J.; Chen, C.; Jawahery, A.; Roberts, D. A.; Simi, G.; Tuggle, J. M.] Univ Maryland, College Pk, MD 20742 USA. [Dallapiccola, C.; Hertzbach, S. S.; Li, X.; Salvati, E.; Saremi, S.] Univ Massachusetts, Amherst, MA 01003 USA. [Cowan, R.; Dujmic, D.; Fisher, P. H.; Koeneke, K.; Sciolla, G.; Spitznagel, M.; Taylor, F.; Yamamoto, R. K.; Zhao, M.] MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. [Mclachlin, S. E.; Patel, P. M.; Robertson, S. H.] McGill Univ, Montreal, PQ H3A 2T8, Canada. [Lazzaro, A.; Lombardo, V.; Palombo, F.] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. [Lazzaro, A.; Lombardo, V.; Palombo, F.] Ist Nazl Fis Nucl, I-20133 Milan, Italy. [Bauer, J. M.; Cremaldi, L.; Eschenburg, V.; Godang, R.; Kroeger, R.; Sanders, D. A.; Summers, D. J.; Zhao, H. W.] Univ Mississippi, University, MS 38677 USA. [Brunet, S.; Cote, D.; Simard, M.; Taras, P.; Viaud, F. B.] Univ Montreal, Montreal, PQ H3C 3J7, Canada. [Nicholson, H.] Mt Holyoke Coll, S Hadley, MA 01075 USA. [De Nardo, G.; Lista, L.; Monorchio, D.; Sciacca, C.] Univ Naples Federico II, Dipartimento Sci Fis, I-80126 Naples, Italy. [De Nardo, G.; Lista, L.; Monorchio, D.; Sciacca, C.] Ist Nazl Fis Nucl, I-80126 Naples, Italy. [Baak, M. A.; Raven, G.; Snoek, H. L.] Natl Inst Nucl & High Energy Phys, NIKHEF, NL-1009 DB Amsterdam, Netherlands. [Jessop, C. P.; Knoepfel, K. J.; LoSecco, J. M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Benelli, G.; Corwin, L. A.; Honscheid, K.; Kagan, H.; Kass, R.; Morris, J. P.; Rahimi, A. M.; Regensburger, J. J.; Sekula, S. J.; Wong, Q. K.] Ohio State Univ, Columbus, OH 43210 USA. [Blount, N. L.; Brau, J.; Frey, R.; Igonkina, O.; Kolb, J. A.; Lu, M.; Rahmat, R.; Sinev, N. B.; Strom, D.; Strube, J.; Torrence, E.] Univ Oregon, Eugene, OR 97403 USA. [Castelli, G.; Gagliardi, N.; Gaz, A.; Margoni, M.; Morandin, M.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.; Voci, C.] Univ Padua, Dipartimento Fis, I-35131 Padua, Italy. [Castelli, G.; Gagliardi, N.; Gaz, A.; Margoni, M.; Morandin, M.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.; Voci, C.] Univ Padua, Dipartimento Fis, I-35131 Padua, Italy. [Sanchez, P. del Amo; Ben-Haim, E.; Briand, H.; Calderini, G.; Chauveau, J.; David, P.; Del Buono, L.; Hamon, O.; Leruste, Ph.; Malcles, J.; Ocariz, J.; Perez, A.; Prendki, J.] Univ Paris 07, Univ Paris 06, CNRS, Lab Phys Nucl & Haute Energies,IN2P3, F-75252 Paris, France. [Gladney, L.] Univ Penn, Philadelphia, PA 19104 USA. [Biasini, M.; Covarelli, R.; Manoni, E.] Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. [Biasini, M.; Covarelli, R.; Manoni, E.] Ist Nazl Fis Nucl, I-06100 Perugia, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Marchiori, G.; Morganti, M.; Neri, N.; Paoloni, E.; Rizzo, G.; Walsh, J. J.] Univ Pisa, Dipartimento Fis, Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Marchiori, G.; Morganti, M.; Neri, N.; Paoloni, E.; Rizzo, G.; Walsh, J. J.] Ist Nazl Fis Nucl, I-56127 Pisa, Italy. [Biesiada, J.; Lau, Y. P.; Pegna, D. Lopes; Lu, C.; Olsen, J.; Smith, A. J. S.; Telnov, A. V.] Princeton Univ, Princeton, NJ 08544 USA. [Baracchini, E.; Cavoto, G.; del Re, D.; Di Marco, E.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Jackson, P. D.; Mazzoni, M. A.; Morganti, S.; Piredda, G.; Polci, F.; Renga, F.; Voena, C.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Baracchini, E.; Cavoto, G.; del Re, D.; Di Marco, E.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Jackson, P. D.; Mazzoni, M. A.; Morganti, S.; Piredda, G.; Polci, F.; Renga, F.; Voena, C.] Ist Nazl Fis Nucl, I-00185 Rome, Italy. [Ebert, M.; Hartmann, T.; Schroeder, H.; Waldi, R.] Univ Rostock, D-18051 Rostock, Germany. [Adye, T.; Franek, B.; Olaiya, E. O.; Roethel, W.; Wilson, F. F.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Emery, S.; Escalier, M.; Gaidot, A.; Ganzhur, S. F.; de Monchenault, G. Hamel; Kozanecki, W.; Vasseur, G.; Yeche, Ch.; Zito, M.] CEA Saclay, DSM Dapnia, F-91191 Gif Sur Yvette, France. [Chen, X. R.; Liu, H.; Park, W.; Purohit, M. V.; White, R. M.; Wilson, J. R.] Univ S Carolina, Columbia, SC 29208 USA. [Allen, M. T.; Aston, D.; Bartoldus, R.; Bechtle, P.; Benitez, J. F.; Cenci, R.; Coleman, J. P.; Convery, M. R.; Dingfelder, J. C.; Dorfan, J.; Dubois-Felsmann, G. P.; Dunwoodie, W.; Field, R. C.; Glanzman, T.; Gowdy, S. J.; Graham, M. T.; Grenier, P.; Hast, C.; Innes, W. R.; Kaminski, J.; Kelsey, M. H.; Kim, H.; Kim, P.; Kocian, M. L.; Leith, D. W. G. S.; Li, S.; Lindquist, B.; Luitz, S.; Luth, V.; Lynch, H. L.; MacFarlane, D. B.; Marsiske, H.; Messner, R.; Muller, D. R.; Neal, H.; Nelson, S.; O'Grady, C. P.; Ofte, I.; Perazzo, A.; Perl, M.; Ratcliff, B. N.; Roodman, A.; Salnikov, A. A.; Schindler, R. H.; Schwiening, J.; Snyder, A.; Su, D.; Sullivan, M. K.; Suzuki, K.; Swain, S. K.; Thompson, J. M.; Va'vra, J.; Wagner, A. P.; Weaver, M.; Wisniewski, W. J.; Wittgen, M.; Wright, D. H.; Wulsin, H. W.; Yarritu, A. K.; Yi, K.; Young, C. C.; Ziegler, V.] Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. [Burchat, P. R.; Edwards, A. J.; Majewski, S. A.; Miyashita, T. S.; Petersen, B. A.; Wilden, L.] Stanford Univ, Stanford, CA 94305 USA. [Ahmed, S.; Alam, M. S.; Bula, R.; Ernst, J. A.; Pan, B.; Saeed, M. A.; Zain, S. B.] SUNY Albany, Albany, NY 12222 USA. [Spanier, S. M.; Wogsland, B. J.] Univ Tennessee, Knoxville, TN 37996 USA. [Eckmann, R.; Ritchie, J. L.; Ruland, A. M.; Schilling, C. J.; Schwitters, R. F.] Univ Texas Austin, Austin, TX 78712 USA. [Izen, J. M.; Lou, X. C.; Ye, S.] Univ Texas Dallas, Richardson, TX 75083 USA. [Bianchi, F.; Gamba, D.; Pelliccioni, M.] Univ Turin, Dipartimento Fis Sperimentale, I-10125 Turin, Italy. [Bianchi, F.; Gamba, D.; Pelliccioni, M.] Ist Nazl Fis Nucl, I-10125 Turin, Italy. [Bomben, M.; Bosisio, L.; Cartaro, C.; Cossutti, F.; Della Ricca, G.; Lanceri, L.; Vitale, L.] Univ Trieste, Dipartmento Fis, I-34127 Trieste, Italy. [Bomben, M.; Bosisio, L.; Cartaro, C.; Cossutti, F.; Della Ricca, G.; Lanceri, L.; Vitale, L.] Ist Nazl Fis Nucl, I-34127 Trieste, Italy. [Azzolini, V.; Lopez-March, N.; Martinez-Vidal, F.; Milanes, D. A.; Oyanguren, A.] Univ Valencia, CSIC, IFIC, E-46071 Valencia, Spain. [Albert, J.; Banerjee, Sw.; Bhuyan, B.; Hamano, K.; Kowalewski, R.; Nugent, I. M.; Roney, J. M.; Sobie, R. J.] Univ Victoria, Victoria, BC V8W 3P6, Canada. [Gershon, T. J.; Harrison, P. F.; Ilic, J.; Latham, T. E.; Mohanty, G. B.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Band, H. R.; Chen, X.; Dasu, S.; Flood, K. T.; Kutter, P. E.; Pan, Y.; Pierini, M.; Prepost, R.; Vuosalo, C. O.; Wu, S. L.] Univ Wisconsin, Madison, WI 53706 USA. RP Aubert, B (reprint author), CNRS, Phys Particules Lab, IN2P3, F-74941 Annecy Le Vieux, France. RI dong, liaoyuan/A-5093-2015; Rizzo, Giuliana/A-8516-2015; Calabrese, Roberto/G-4405-2015; Martinez Vidal, F*/L-7563-2014; Kolomensky, Yury/I-3510-2015; Lo Vetere, Maurizio/J-5049-2012; Lusiani, Alberto/N-2976-2015; Morandin, Mauro/A-3308-2016; Lusiani, Alberto/A-3329-2016; Di Lodovico, Francesca/L-9109-2016; Pappagallo, Marco/R-3305-2016; Calcaterra, Alessandro/P-5260-2015; Frey, Raymond/E-2830-2016; Negrini, Matteo/C-8906-2014; Monge, Maria Roberta/G-9127-2012; Oyanguren, Arantza/K-6454-2014; Luppi, Eleonora/A-4902-2015; White, Ryan/E-2979-2015; Patrignani, Claudia/C-5223-2009; Neri, Nicola/G-3991-2012; Forti, Francesco/H-3035-2011; Rotondo, Marcello/I-6043-2012; de Sangro, Riccardo/J-2901-2012; Saeed, Mohammad Alam/J-7455-2012; Della Ricca, Giuseppe/B-6826-2013 OI Raven, Gerhard/0000-0002-2897-5323; Cibinetto, Gianluigi/0000-0002-3491-6231; dong, liaoyuan/0000-0002-4773-5050; Pacetti, Simone/0000-0002-6385-3508; Covarelli, Roberto/0000-0003-1216-5235; Rizzo, Giuliana/0000-0003-1788-2866; Paoloni, Eugenio/0000-0001-5969-8712; Faccini, Riccardo/0000-0003-2613-5141; Calabrese, Roberto/0000-0002-1354-5400; Martinez Vidal, F*/0000-0001-6841-6035; Kolomensky, Yury/0000-0001-8496-9975; Lo Vetere, Maurizio/0000-0002-6520-4480; Lusiani, Alberto/0000-0002-6876-3288; Morandin, Mauro/0000-0003-4708-4240; Lusiani, Alberto/0000-0002-6876-3288; Di Lodovico, Francesca/0000-0003-3952-2175; Pappagallo, Marco/0000-0001-7601-5602; Calcaterra, Alessandro/0000-0003-2670-4826; Frey, Raymond/0000-0003-0341-2636; Bettarini, Stefano/0000-0001-7742-2998; Negrini, Matteo/0000-0003-0101-6963; Monge, Maria Roberta/0000-0003-1633-3195; Oyanguren, Arantza/0000-0002-8240-7300; Luppi, Eleonora/0000-0002-1072-5633; White, Ryan/0000-0003-3589-5900; Patrignani, Claudia/0000-0002-5882-1747; Neri, Nicola/0000-0002-6106-3756; Forti, Francesco/0000-0001-6535-7965; Rotondo, Marcello/0000-0001-5704-6163; de Sangro, Riccardo/0000-0002-3808-5455; Saeed, Mohammad Alam/0000-0002-3529-9255; Della Ricca, Giuseppe/0000-0003-2831-6982 FU DOE and NSF (USA); NSERC (Canada); CEA and CNRS-IN2P3 (France); BMBF and DFG (Germany); INFN (Italy); FOM (The Netherlands); NFR (Norway); MES (Russia); MEC (Spain); STFC (United Kingdom); Marie Curie EIF (European Union); A. P. Sloan Foundation FX We are grateful for the excellent luminosity and machine conditions provided by our PEP-II colleagues, and for the substantial dedicated effort from the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and kind hospitality. This work is supported by DOE and NSF (USA), NSERC (Canada), CEA and CNRS-IN2P3 (France), BMBF and DFG (Germany), INFN (Italy), FOM (The Netherlands), NFR (Norway), MES (Russia), MEC (Spain), and STFC (United Kingdom). Individuals have received support from the Marie Curie EIF (European Union) and the A. P. Sloan Foundation. NR 20 TC 12 Z9 12 U1 0 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD OCT 24 PY 2008 VL 101 IS 17 AR 171804 DI 10.1103/PhysRevLett.101.171804 PG 7 WC Physics, Multidisciplinary SC Physics GA 365CN UT WOS:000260383600019 PM 18999741 ER PT J AU Kim, KW Gu, GD Homes, CC Noh, TW AF Kim, K. W. Gu, G. D. Homes, C. C. Noh, T. W. TI Bound Excitons in Sr2CuO3 SO PHYSICAL REVIEW LETTERS LA English DT Article ID TEMPERATURE-DEPENDENCE; OPTICAL-ABSORPTION; SPECTRUM AB We investigated temperature dependent optical spectra of the one-dimensional chain compound Sr2CuO3. The charge transfer transition polarized along the chain direction shows a strongly asymmetric line shape as expected in one-dimensional extended Hubbard model. At low temperature, the charge transfer peak shows a large blueshift and reveals additional sharp peaks at the gap. Even though many spectroscopic studies suggest that this material cannot have a bound exciton based on the one-dimensional extended Hubbard model, we attribute the additional sharp peaks to excitons, which come to exist due to the long-range Coulomb interaction. C1 [Kim, K. W.] Univ Fribourg, Dept Phys, CH-1700 Fribourg, Switzerland. [Kim, K. W.; Gu, G. D.; Homes, C. C.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. [Kim, K. W.; Noh, T. W.] Seoul Natl Univ, Sch Phys, Seoul 151747, South Korea. [Kim, K. W.; Noh, T. W.] Seoul Natl Univ, Res Ctr Oxide Elect, Seoul 151747, South Korea. RP Kim, KW (reprint author), Univ Fribourg, Dept Phys, Chemin Muse 3, CH-1700 Fribourg, Switzerland. EM kyungwan.kim@gmail.com RI Kim, Kyungwan/A-9242-2012; Gu, Genda/D-5410-2013; Noh, Tae Won /K-9405-2013 OI Kim, Kyungwan/0000-0003-3833-5378; Gu, Genda/0000-0002-9886-3255; FU Schweizer Nationalfonds (SNF) [200020-119784]; Department of Energy [DE-AC02-98CH10886]; Creative Research Initiatives; Brain Korea 21 Project; MOST; POSCO FX K. W. Kim acknowledges discussions with D. Baeriswyl, E. Jeckelmann, C. Bernhard, and A. Dubroka. This work is supported by the Schweizer Nationalfonds (SNF) with Grant No. 200020-119784, by the Department of Energy under Contract No. DE-AC02-98CH10886, by the Creative Research Initiatives (Functionally Integrated Oxide Heterostructure) of KOSEF, and by the Brain Korea 21 Project in 2002. The experiments at PLS was supported by MOST and POSCO. NR 21 TC 7 Z9 7 U1 1 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD OCT 24 PY 2008 VL 101 IS 17 AR 177404 DI 10.1103/PhysRevLett.101.177404 PG 4 WC Physics, Multidisciplinary SC Physics GA 365CN UT WOS:000260383600064 PM 18999786 ER PT J AU Liu, C Samolyuk, GD Lee, Y Ni, N Kondo, T Santander-Syro, AF Bud'ko, SL McChesney, JL Rotenberg, E Valla, T Fedorov, AV Canfield, PC Harmon, BN Kaminski, A AF Liu, Chang Samolyuk, G. D. Lee, Y. Ni, Ni Kondo, Takeshi Santander-Syro, A. F. Bud'ko, S. L. McChesney, J. L. Rotenberg, E. Valla, T. Fedorov, A. V. Canfield, P. C. Harmon, B. N. Kaminski, A. TI K-Doping Dependence of the Fermi Surface of the Iron-Arsenic Ba1-xKxFe2As2 Superconductor Using Angle-Resolved Photoemission Spectroscopy SO PHYSICAL REVIEW LETTERS LA English DT Article ID LAO1-XFXFEAS; COMPOUND; GAP AB We use angle-resolved photoemission spectroscopy to investigate the electronic properties of the newly discovered iron-arsenic superconductor Ba1-xKxFe2As2 and nonsuperconducting BaFe2As2. Our study indicates that the Fermi surface of the undoped, parent compound BaFe2As2 consists of hole pocket(s) at Gamma (0,0) and larger electron pocket(s) at X (1,0), in general agreement with full-potential linearized plane wave calculations. Upon doping with potassium, the hole pocket expands and the electron pocket becomes smaller with its bottom approaching the chemical potential. Such an evolution of the Fermi surface is consistent with hole doping within a rigid-band shift model. Our results also indicate that the full-potential linearized plane wave calculation is a reasonable approach for modeling the electronic properties of both undoped and K-doped iron arsenites. C1 [Liu, Chang; Samolyuk, G. D.; Lee, Y.; Ni, Ni; Kondo, Takeshi; Bud'ko, S. L.; Canfield, P. C.; Harmon, B. N.; Kaminski, A.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Liu, Chang; Samolyuk, G. D.; Lee, Y.; Ni, Ni; Kondo, Takeshi; Bud'ko, S. L.; Canfield, P. C.; Harmon, B. N.; Kaminski, A.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Santander-Syro, A. F.] ESPCI, CNRS, UPR 5, Lab Phys & Matiere, F-75231 Paris 5, France. [Santander-Syro, A. F.] Univ Paris 11, CNRS, UMR 8502, Phys Solides Lab, F-91405 Orsay, France. [McChesney, J. L.; Rotenberg, E.; Fedorov, A. V.] Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Valla, T.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. RP Liu, C (reprint author), Iowa State Univ, Ames Lab, Ames, IA 50011 USA. RI Rotenberg, Eli/B-3700-2009; Santander-Syro, Andres/D-7017-2012; McChesney, Jessica/K-8911-2013; Canfield, Paul/H-2698-2014; Kondo, Takeshi/H-2680-2016 OI Rotenberg, Eli/0000-0002-3979-8844; Santander-Syro, Andres/0000-0003-3966-2485; McChesney, Jessica/0000-0003-0470-2088; FU Department of Energy Basic Energy Sciences [DE-AC02-07CH11358]; US DOE [DE-AC03-76SF00098, DE-AC02-98CH10886]; LPEM FX We are grateful for useful discussions with Jorg Schmalian. We thank Helen Fretwell for useful remarks and corrections. Work at Ames Laboratory was supported by the Department of Energy Basic Energy Sciences under Contract No. DE-AC02-07CH11358. ALS is operated by the US DOE under Contract No. DE-AC03-76SF00098. Brookhaven National Laboratory is supported by US DOE under Contract No. DE-AC02-98CH10886. A. F. S. S. thanks LPEM for financial support. NR 25 TC 191 Z9 191 U1 5 U2 45 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD OCT 24 PY 2008 VL 101 IS 17 AR 177005 DI 10.1103/PhysRevLett.101.177005 PG 4 WC Physics, Multidisciplinary SC Physics GA 365CN UT WOS:000260383600056 PM 18999778 ER PT J AU Matveev, KA Furusaki, A AF Matveev, K. A. Furusaki, A. TI Spectral Functions of Strongly Interacting Isospin-1/2 Bosons in One Dimension SO PHYSICAL REVIEW LETTERS LA English DT Article ID TONKS-GIRARDEAU GAS; IMPENETRABLE BOSONS; HUBBARD-MODEL AB We study a system of one-dimensional (iso)spin-1/2 bosons in the regime of strong repulsive interactions. We argue that the low-energy spectrum of the system consists of acoustic density waves and the spin excitations described by an effective ferromagnetic spin chain with a small exchange constant J. We use this description to compute the dynamic spin structure factor and the spectral functions of the system. C1 [Matveev, K. A.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Furusaki, A.] RIKEN, Condensed Matter Theory Lab, Wako, Saitama 3510198, Japan. RP Matveev, KA (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. RI Furusaki, Akira/B-3204-2008 OI Furusaki, Akira/0000-0001-8394-0003 FU U.S. DOE; Office of Science [DE-AC02-06CH11357]; MEXT of Japan [16GS0219] FX The authors are grateful to T. Giamarchi, L. I. Glazman, G. V. Shlyapnikov, and M. B. Zvonarev for stimulating discussions. K. A. M. is grateful to RIKEN for hospitality. This work was supported by the U.S. DOE, Office of Science, under Contract No. DE-AC02-06CH11357, and by Grant-in-Aid for Scientific Research (Grant No. 16GS0219) from MEXT of Japan. NR 25 TC 26 Z9 26 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD OCT 24 PY 2008 VL 101 IS 17 AR 170403 DI 10.1103/PhysRevLett.101.170403 PG 4 WC Physics, Multidisciplinary SC Physics GA 365CN UT WOS:000260383600003 PM 18999725 ER PT J AU Park, T Bauer, ED Thompson, JD AF Park, Tuson Bauer, E. D. Thompson, J. D. TI Probing the Nodal Gap in the Pressure-Induced Heavy Fermion Superconductor CeRhIn(5) SO PHYSICAL REVIEW LETTERS LA English DT Article ID DENSITY-OF-STATES; UNCONVENTIONAL SUPERCONDUCTIVITY; WAVE SUPERCONDUCTORS; CECOIN5; VORTEX; FIELD; DEPENDENCE AB We report field-orientation specific heat studies of the pressure-induced heavy-fermion superconductor CeRhIn(5). These experiments provide the momentum-dependent superconducting gap function for the first time in any pressure-induced superconductor. In the coexisting phase of superconductivity and antiferromagnetism, field rotation within the Ce-In plane reveals fourfold modulation in the density of states, which favors a d-wave order parameter and constrains a theory of the interplay between superconductivity and magnetism. C1 [Park, Tuson; Bauer, E. D.; Thompson, J. D.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Park, Tuson] Sungkyunkwan Univ, Dept Phys, Suwon 440746, South Korea. RP Park, T (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RI Bauer, Eric/D-7212-2011; Park, Tuson/A-1520-2012; OI Bauer, Eric/0000-0003-0017-1937 FU Los Alamos LDRD program; Korea Science and Engineering Foundation (KOSEF); Korea government [R01-2008-000-10570-0] FX The authors thank I. Vekhter for discussion. Work at Los Alamos was performed under the auspices of the U. S. Department of Energy/Office of Science and supported by the Los Alamos LDRD program. T. P acknowledges a grant from the Korea Science and Engineering Foundation (KOSEF) funded by the Korea government R01-2008-000-10570-0. NR 28 TC 22 Z9 23 U1 1 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD OCT 24 PY 2008 VL 101 IS 17 AR 177002 DI 10.1103/PhysRevLett.101.177002 PG 4 WC Physics, Multidisciplinary SC Physics GA 365CN UT WOS:000260383600053 PM 18999775 ER PT J AU Polomarov, O Kaganovich, I Shvets, G AF Polomarov, Oleg Kaganovich, Igor Shvets, Gennady TI Merging of Super-Alfvenic Current Filaments During Collisionless Weibel Instability of Relativistic Electron Beams SO PHYSICAL REVIEW LETTERS LA English DT Article ID MAGNETIC-FIELDS; ELECTROMAGNETIC INSTABILITIES; PLASMA; IGNITION; TRANSPORT; SHOCKS; WAVES AB The theoretical framework predicting the long-term evolution, structure, and coalescence energetics of current filaments during the Weibel instability of an electron beam in a collisionless plasma is developed. We emphasize the nonlinear stage of the instability, during which the beam density of filaments increases to the background ion density, and the ambient plasma electrons are fully expelled from the filaments. Our analytic and numerical results demonstrate that the beam filaments can carry super-Alfvenic currents and develop hollow-current density profiles. This explains why the initially increasing magnetic field energy eventually decreases during the late stage of the instability. C1 [Polomarov, Oleg; Shvets, Gennady] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA. [Polomarov, Oleg; Shvets, Gennady] Univ Texas Austin, Inst Fus Studies, Austin, TX 78712 USA. [Kaganovich, Igor] Princeton Univ, Plasma Phys Lab, Princeton, NJ 08543 USA. RP Polomarov, O (reprint author), Univ Texas Austin, Dept Phys, Austin, TX 78712 USA. FU U. S. DOE [DE-FG02-05ER54840] FX This work was supported by the U. S. DOE Grant No. DE-FG02-05ER54840. We thank E. Startsev, A. Pukhov, A. Spitkovsky, U. Keshet, and S. Kalmykov for fruitful discussions. NR 22 TC 17 Z9 17 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD OCT 24 PY 2008 VL 101 IS 17 AR 175001 DI 10.1103/PhysRevLett.101.175001 PG 4 WC Physics, Multidisciplinary SC Physics GA 365CN UT WOS:000260383600033 PM 18999755 ER PT J AU Rosenberg, RA Abu Haija, M Ryan, PJ AF Rosenberg, R. A. Abu Haija, M. Ryan, P. J. TI Chiral-Selective Chemistry Induced by Spin-Polarized Secondary Electrons from a Magnetic Substrate SO PHYSICAL REVIEW LETTERS LA English DT Article ID SCATTERING CROSS-SECTION; ASYMMETRIC PHOTOLYSIS; ORIGIN; LIFE; CO; HOMOCHIRALITY; MOLECULES; EMISSION; SURFACES; LIGHT AB We demonstrate for the first time that low-energy spin-polarized secondary electrons, produced by irradiation of a magnetic substrate, can induce chiral-selective chemistry. Our approach was to perform detailed measurements of the reaction rate for x-ray induced, secondary electron photolysis of a model chiral compound, (R)- or (S)-2-butanol, adsorbed on a magnetized Permalloy substrate. The results showed that there is an enhancement of similar to 10% in the rate of CO bond cleavage that depends on the chirality of the molecule and the spin polarization of the substrate secondary electrons. C1 [Rosenberg, R. A.; Abu Haija, M.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Ryan, P. J.] Ames Lab, MUCAT, Ames, IA 50011 USA. RP Rosenberg, RA (reprint author), Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RI Rosenberg, Richard/K-3442-2012 FU U. S. Department of Energy; Office of Science; Office of Basic Energy Sciences [DE-AC02-06CH11357] FX We would like to thank Dr. Neal Fairley for customizing CASAXPS to import our XPS data format. We would also like to thank the APS Accelerator Systems Division Groups for maintaining such a stable beam, which was essential for the success of these experiments. This work was performed at the Advanced Photon Source and was supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract No. DE-AC02-06CH11357. NR 29 TC 29 Z9 29 U1 1 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD OCT 24 PY 2008 VL 101 IS 17 AR 178301 DI 10.1103/PhysRevLett.101.178301 PG 4 WC Physics, Multidisciplinary SC Physics GA 365CN UT WOS:000260383600070 PM 18999792 ER PT J AU Simon, F Dora, B Muranyi, F Janossy, A Garaj, S Forro, L Bud'ko, S Petrovic, C Canfield, PC AF Simon, F. Dora, B. Muranyi, F. Janossy, A. Garaj, S. Forro, L. Bud'ko, S. Petrovic, C. Canfield, P. C. TI Generalized Elliott-Yafet Theory of Electron Spin Relaxation in Metals: Origin of the Anomalous Electron Spin Lifetime in MgB(2) SO PHYSICAL REVIEW LETTERS LA English DT Article ID RESONANCE; SUPERCONDUCTIVITY; TRANSPORT AB The temperature dependence of the electron-spin relaxation time in MgB(2) is anomalous as it does not follow the resistivity above 150 K; it has a maximum around 400 K and decreases for higher temperatures. This violates the well established Elliot-Yafet theory of spin relaxation in metals. The anomaly occurs when the quasiparticle scattering rate (in energy units) is comparable to the energy difference between the conduction and a neighboring bands. The anomalous behavior is related to the unique band structure of MgB(2) and the large electron-phonon coupling. The saturating spin relaxation is the spin transport analogue of the Ioffe-Regel criterion of electron transport. C1 [Simon, F.; Dora, B.; Muranyi, F.; Janossy, A.] Budapest Univ Technol & Econ, Inst Phys, H-1521 Budapest, Hungary. [Simon, F.; Dora, B.; Muranyi, F.; Janossy, A.] Hungarian Acad Sci, Condensed Matter Res Grp, H-1521 Budapest, Hungary. [Dora, B.] Phys Komplexer Syst, Max Planck Inst, D-01187 Dresden, Germany. [Garaj, S.; Forro, L.] Ecole Polytech Fed Lausanne, Swiss Fed Inst Technol, Inst Phys Complex Matter, FBS, CH-1015 Lausanne, Switzerland. [Bud'ko, S.; Petrovic, C.; Canfield, P. C.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Bud'ko, S.; Petrovic, C.; Canfield, P. C.] Iowa State Univ, US Dept Energy, Ames Lab, Ames, IA 50011 USA. RP Simon, F (reprint author), Budapest Univ Technol & Econ, Inst Phys, H-1521 Budapest, Hungary. EM simon@esr.phy.bme.hu RI Petrovic, Cedomir/A-8789-2009; Simon, Ferenc/G-7580-2011; Janossy, Andras/H-5415-2012; Garaj, Slaven/B-9782-2013; Canfield, Paul/H-2698-2014 OI Petrovic, Cedomir/0000-0001-6063-1881; Simon, Ferenc/0000-0001-9822-4309; Garaj, Slaven/0000-0001-5529-4040; FU Hungarian Academy of Sciences; Humboldt Foundation; Hungarian State [F61733, K72613, NK60984]; Swiss NSF; Iowa State University [W-7405-Eng-82] FX We are grateful to J. Fabian and A. Virosztek for enlightening discussions. F. S. and F. M. acknowledge the Bolyai programme of the Hungarian Academy of Sciences and the Humboldt Foundation for support. Work supported by the Hungarian State Grants (OTKA) No. F61733, K72613, and NK60984. The work in Lausanne was supported by the Swiss NSF and its NCCR "MaNEP.'' Ames Laboratory is operated for the U. S. Department of Energy by Iowa State University under Contract No. W-7405-Eng-82. NR 22 TC 10 Z9 10 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD OCT 24 PY 2008 VL 101 IS 17 AR 177003 DI 10.1103/PhysRevLett.101.177003 PG 4 WC Physics, Multidisciplinary SC Physics GA 365CN UT WOS:000260383600054 PM 18999776 ER PT J AU Sulai, IA Wu, QX Bishof, M Drake, GWF Lu, ZT Mueller, P Santra, R AF Sulai, I. A. Wu, Qixue Bishof, M. Drake, G. W. F. Lu, Z. -T. Mueller, P. Santra, R. TI Hyperfine Suppression of 2(3)S(1)-3(3)P(J) Transitions in (3)He SO PHYSICAL REVIEW LETTERS LA English DT Article ID HELIUM FINE-STRUCTURE; ISOTOPE SHIFT; STATE; INTERVALS AB Two anomalously weak transitions within the 2(3)S(1)-3(3)P(J) manifolds in (3)He have been identified. Their transition strengths are measured to be 1000 times weaker than that of the strongest transition in the same group. This dramatic suppression of transition strengths is due to the dominance of the hyperfine interaction over the fine-structure interaction. An alternative selection rule based on IS coupling (where the nuclear spin is first coupled to the total electron spin) is proposed. This provides qualitative understanding of the transition strengths. It is shown that the small deviations from the IS coupling model are fully accounted for by an exact diagonalization of the strongly interacting states. C1 [Sulai, I. A.; Bishof, M.; Lu, Z. -T.; Mueller, P.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Sulai, I. A.; Lu, Z. -T.; Santra, R.] Univ Chicago, Dept Phys, Chicago, IL 60637 USA. [Sulai, I. A.; Bishof, M.; Lu, Z. -T.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Wu, Qixue; Drake, G. W. F.] Univ Windsor, Dept Phys, Windsor, ON N9B 3P4, Canada. [Santra, R.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. RP Sulai, IA (reprint author), Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. RI Mueller, Peter/E-4408-2011; Santra, Robin/E-8332-2014 OI Sulai, Ibrahim/0000-0003-4631-7006; Mueller, Peter/0000-0002-8544-8191; Santra, Robin/0000-0002-1442-9815 FU U.S. Department of Energy; Office of Nuclear Physics; Office of Basic Energy Sciences; Office of Science [DE-AC02-06CH11357]; Natural Sciences and Engineering Research Council of Canada; SHARCNET FX We would like to thank K. Bailey and T. P. O'Connor for technical support. This work was supported by the U.S. Department of Energy, Office of Nuclear Physics and Office of Basic Energy Sciences, Office of Science, under Contract No. DE-AC02-06CH11357. G. W. F. D. acknowledges support by the Natural Sciences and Engineering Research Council of Canada, and by SHARCNET. NR 27 TC 6 Z9 6 U1 0 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD OCT 24 PY 2008 VL 101 IS 17 AR 173001 DI 10.1103/PhysRevLett.101.173001 PG 4 WC Physics, Multidisciplinary SC Physics GA 365CN UT WOS:000260383600022 PM 18999744 ER PT J AU Greaves, GN Wilding, MC Fearn, S Langstaff, D Kargl, F Cox, S Van, QV Majerus, O Benmore, CJ Weber, R Martin, CM Hennet, L AF Greaves, G. N. Wilding, M. C. Fearn, S. Langstaff, D. Kargl, F. Cox, S. Van, Q. Vu Majerus, O. Benmore, C. J. Weber, R. Martin, C. M. Hennet, L. TI Detection of first-order liquid/liquid phase transitions in yttrium oxide-aluminum oxide melts SO SCIENCE LA English DT Article ID LIQUID-PHASE; HIGH-PRESSURE; GLASS; POLYMORPHISM; PHOSPHORUS; SEPARATION; SILICON; SOLIDS; ICE AB We combine small-angle x-ray scattering (SAXS) and wide-angle x-ray scattering (WAXS) with aerodynamic levitation techniques to study in situ phase transitions in the liquid state under contactless conditions. At very high temperatures, yttria-alumina melts show a first-order transition, previously inferred from phase separation in quenched glasses. We show how the transition coincides with a narrow and reversible maximum in SAXS indicative of liquid unmixing on the nanoscale, combined with an abrupt realignment in WAXS features related to reversible shifts in polyhedral packing on the atomic scale. We also observed a rotary action in the suspended supercooled drop driven by repetitive transitions (a polyamorphic rotor) from which the reversible changes in molar volume (1.2 +/- 0.2 cubic centimeters) and entropy (19 +/- 4 joules mole(-1) kelvin(-1)) can be estimated. C1 [Greaves, G. N.; Wilding, M. C.; Fearn, S.; Langstaff, D.; Kargl, F.; Cox, S.; Van, Q. Vu] Aberystwyth Univ, Ctr Adv Funct Mat & Devices, Inst Math & Phys, Aberystwyth SY23 3BZ, Dyfed, Wales. [Majerus, O.] Ecole Natl Super Chim Paris, F-75231 Paris, France. [Benmore, C. J.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Weber, R.] Mat Dev, Arlington Hts, IL 60004 USA. [Martin, C. M.] STFC Daresbury Lab, Synchrotron Radiat Source, Warrington WA4 4AD, Cheshire, England. [Hennet, L.] CNRS CEMHTI, F-45071 Orleans 9, France. RP Greaves, GN (reprint author), Aberystwyth Univ, Ctr Adv Funct Mat & Devices, Inst Math & Phys, Aberystwyth SY23 3BZ, Dyfed, Wales. EM gng@aber.ac.uk RI HENNET, Louis/C-1711-2008; Cox, Simon/F-5280-2012; OI HENNET, Louis/0000-0002-2992-4800; Cox, Simon/0000-0001-6129-3394; Benmore, Chris/0000-0001-7007-7749 FU Higher Education Funding Council in Wales; Centre for Advanced Functional Materials and Devices FX We thank W. Bras, P. McMillan, and P. Poole for very Useful discussions; the Science Technology Facilities Council and staff at the Synchrotron Radiation Source for access to the SAXS/WAXS facilities on station 6.2; and the Advanced Photon Source for access to high-energy x-ray scattering facilities on 11-ID-C. We also acknowledge the support of the Higher Education Funding Council in Wales through the Centre for Advanced Functional Materials and Devices. NR 32 TC 109 Z9 111 U1 8 U2 71 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD OCT 24 PY 2008 VL 322 IS 5901 BP 566 EP 570 DI 10.1126/science.1160766 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 363WV UT WOS:000260299100037 PM 18948535 ER PT J AU Taylor, MP Readey, DW van Hest, MFAM Teplin, CW Alleman, JL Dabney, MS Gedvilas, LM Keyes, BM To, B Perkins, JD Ginley, DS AF Taylor, Matthew P. Readey, Dennis W. van Hest, Maikel F. A. M. Teplin, Charles W. Alleman, Jeff L. Dabney, Matthew S. Gedvilas, Lynn M. Keyes, Brian M. To, Bobby Perkins, John D. Ginley, David S. TI The Remarkable Thermal Stability of Amorphous In-Zn-O Transparent Conductors SO ADVANCED FUNCTIONAL MATERIALS LA English DT Article ID INDIUM-TIN-OXIDE; IN2O3-ZNO THIN-FILMS; OPTICAL-PROPERTIES; PHYSICAL-PROPERTIES; TRANSPORT-PROPERTIES; CRYSTALLIZATION; SEMICONDUCTORS; PARAMETERS; DEPOSITION; SYSTEM AB Transparent conducting oxides (TCOs) are increasingly critical components in photovoltaic cells, low-a windows, flat panel displays, electrochromic devices, and flexible electronics. The conventional TCOs, such as Sn-doped In2O3, are crystalline single phase materials. Here, we report on In-Zn-O (IZO), a compositionally tunable amorphous TCO with some significantly improved properties. Compositionally graded thin film samples were deposited by co-sputtering from separate In2O3 and ZnO targets onto glass substrates at 100 C. For the metals composition range of 55-84 cation% indium, the as-deposited IZO thin films are amorphous, smooth (R-RMS < 0.4 nm), conductive (sigma 3000 Omega(-1) . cm(-1)), and transparent in the visible (T-Vis > 90%). Furthermore, the amorphous IZO thin films demonstrate remarkable functional and structural stability with respect to heating up to 600 degrees C in either air or argon. Hence, though not completely understood at present, these amorphous materials constitute a new class of fundamentally interesting and technologically important high performance transparent conductors. C1 [van Hest, Maikel F. A. M.; Teplin, Charles W.; Alleman, Jeff L.; Dabney, Matthew S.; Gedvilas, Lynn M.; Keyes, Brian M.; To, Bobby; Perkins, John D.; Ginley, David S.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Taylor, MP (reprint author), Colorado Sch Mines, Golden, CO 80401 USA. EM john_perkins@nrel.gov NR 48 TC 91 Z9 92 U1 11 U2 91 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 1616-301X J9 ADV FUNCT MATER JI Adv. Funct. Mater. PD OCT 23 PY 2008 VL 18 IS 20 BP 3169 EP 3178 DI 10.1002/adfm.200700604 PG 10 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 369PV UT WOS:000260707300008 ER PT J AU Coe, JD Sewell, TD Shaw, MS Kober, EM AF Coe, Joshua D. Sewell, Thomas D. Shaw, M. Sam Kober, Edward M. TI A quantum chemical method for calculating vibrational line shifts in diatomic fluids SO CHEMICAL PHYSICS LETTERS LA English DT Article ID STOKES-RAMAN SCATTERING; DENSE MOLECULAR FLUIDS; EQUATION-OF-STATE; SOLID NITROGEN; HIGH-PRESSURES; FREQUENCY-SHIFTS; HIGH-TEMPERATURE; SPECTROSCOPY; HYDROGEN; N-2 AB We introduce a simple procedure for generating spectral line shifts in diatomic fluids as a function of pressure. From O(100) configurations (of 100 N-2 molecules) sampled in an isothermal-isobaric ensemble, forces computed with density functional theory are used to generate force-displacement correlations at a series of fluid densities. The curves are fitted with second-degree polynomials, and the resulting coefficients are related to fundamental frequencies and anharmonicities through a truncated expansion of the Morse potential. Comparison to coherent anti-Stokes Raman data reveals satisfactory agreement for line shifts as a function of pressure. (C) 2008 Elsevier B.V. All rights reserved. C1 [Coe, Joshua D.; Sewell, Thomas D.; Shaw, M. Sam; Kober, Edward M.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Coe, JD (reprint author), Los Alamos Natl Lab, Div Theoret, POB 1663,MS B214, Los Alamos, NM 87545 USA. EM coe.joshua@gmail.com FU Los Alamos National Laboratory (LANL); National Nuclear Security Administration (NNSA); Advanced Strategic Computing Program (HE-ASC).; LANL Laboratory Directed Research and Development (LDRD) Program; Los Alamos National Security L.L.C; NNSA; United States Department of Energy [AC52-06NA25396] FX The authors thank Dave Moore for helpful comments on the manuscript. J.D.C. thanks the Office of the Director at Los Alamos National Laboratory (LANL) for support in the form of a Director's Postdoctoral Fellowship. M. S. S. and E. M. K are supported by the LANL High Explosives Project of the National Nuclear Security Administration (NNSA) Advanced Strategic Computing Program (HE-ASC). T.D.S. is supported by the LANL Laboratory Directed Research and Development (LDRD) Program. LANL is operated by Los Alamos National Security L.L.C. under the auspices of the NNSA and the United States Department of Energy, under Contract No. DE-AC52-06NA25396. NR 45 TC 1 Z9 1 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0009-2614 J9 CHEM PHYS LETT JI Chem. Phys. Lett. PD OCT 23 PY 2008 VL 464 IS 4-6 BP 265 EP 270 DI 10.1016/j.cplett.2008.09.028 PG 6 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 363HS UT WOS:000260259000028 ER PT J AU Shelton, DJ Cleary, JW Ginn, JC Wadsworth, SL Peale, RE Kotter, DK Boreman, GD AF Shelton, D. J. Cleary, J. W. Ginn, J. C. Wadsworth, S. L. Peale, R. E. Kotter, D. K. Boreman, G. D. TI Gangbuster frequency selective surface metamaterials in terahertz band SO ELECTRONICS LETTERS LA English DT Article ID FABRICATION AB Frequency selective surfaces using Ag dipole antenna elements have been simulated, fabricated and tested to demonstrate improved narrowband transmission compared to the current state of the art in the 1 - 2 THz. Several designs are presented including variations in dipole packing density, and sensitivity to a cladding layer. The sharpest resonant response was measured to have a bandwidth of 90 GHz at a centre frequency of 1.3 THz, for a Q of 14.5, which is the highest thus far reported for a terahertz narrowband filter. In addition, the sensitivity of the resonance of the structures to material properties may be exploited as a way to measure the permittivity and loss tangent of thin films in the terahertz band. C1 [Shelton, D. J.; Cleary, J. W.; Ginn, J. C.; Wadsworth, S. L.; Peale, R. E.; Boreman, G. D.] Univ Cent Florida, Orlando, FL 32816 USA. [Kotter, D. K.] Idaho Natl Labs, Idaho Falls, ID 83415 USA. RP Shelton, DJ (reprint author), Univ Cent Florida, 4000 Cent Florida Blvd, Orlando, FL 32816 USA. EM dshelton@creol.ucf.edu RI zhou, hang/H-3387-2011 NR 6 TC 6 Z9 6 U1 0 U2 7 PU INST ENGINEERING TECHNOLOGY-IET PI HERTFORD PA MICHAEL FARADAY HOUSE SIX HILLS WAY STEVENAGE, HERTFORD SG1 2AY, ENGLAND SN 0013-5194 J9 ELECTRON LETT JI Electron. Lett. PD OCT 23 PY 2008 VL 44 IS 22 BP 1288 EP U5 DI 10.1049/el:20082119 PG 2 WC Engineering, Electrical & Electronic SC Engineering GA 366HR UT WOS:000260471900003 ER PT J AU Zhong, L Oostrom, M Wietsma, TW Covert, MA AF Zhong, L. Oostrom, M. Wietsma, T. W. Covert, M. A. TI Enhanced remedial amendment delivery through fluid viscosity modifications: Experiments and numerical simulations SO JOURNAL OF CONTAMINANT HYDROLOGY LA English DT Article DE Remedial amendment; Enhanced delivery; Enhanced sweeping; Heterogeneous aquifer; Shear thinning; Numerical model ID NONAQUEOUS PHASE LIQUID; VARIABLE-DENSITY FLOW; POROUS-MEDIA; MOBILIZATION; MIGRATION; RECOVERY; SAND; SOLUBILIZATION; GROUNDWATER; AQUIFER AB Low-permeability zones are typically bypassed when remedial fluids are injected into subsurface heterogeneous aquifer systems. Therefore, contaminants in the bypassed areas may not be contacted by the amendments in the remedial fluid, which may significantly prolong remediation operations. Laboratory experiments and numerical studies have been conducted to investigate the use of a shear-thinning polymer (Xanthan gum) to improve access to low-permeability zones in heterogeneous systems. The chemicals sodium mono-phosphate and the surfactant MA-80 were used as the remedial amendments. The impact of polymer concentration, fluid injection rate, and permeability contrast in the heterogeneous systems has been studied in a series of eleven two-dimensional flow cell experiments. The Subsurface Transport over Multiple Phases (STOMP) simulator was modified to include polymer-induced shear-thinning effects. The experimental and simulation results clearly show that using the polymer leads to an enhanced delivery of remedial amendments to lower-permeability zones and an increased sweeping efficiency. An added benefit of using the polymer is the stabilization of the displacing front when density differences exist between displaced and displacing fluids. The modified STOMP simulator was able to predict the experimental observed fluid displacing behavior well and might be used to predict subsurface remediation performance when a shear-thinning fluid is used to remediate a heterogeneous system at larger scales. Published by Elsevier B.V. C1 [Zhong, L.; Oostrom, M.] Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA 99354 USA. [Wietsma, T. W.; Covert, M. A.] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99354 USA. RP Zhong, L (reprint author), Pacific NW Natl Lab, Energy & Environm Directorate, POB 999, Richland, WA 99354 USA. EM lirong.zhong@pnl.gov FU Pacific Northwest National Laboratory (PNNL) FX This study was performed under support provided by Pacific Northwest National Laboratory (PNNL) through the Laboratory Directed Research and Development (LDRD) program. PNNL is operated by the Battelle Memorial Institute for the Department of Energy (DOE) under Contract DE-AC06-76RLO 1830. The intermediate-scale experiments were performed in the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the DOE's Office of Biological and Environmental Research and located at PNNL. Scientists interested in conducting experimental work in the EMSL are encouraged to contact M. Oostrom (mart.oostrom@pnl.gov). NR 46 TC 24 Z9 26 U1 0 U2 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0169-7722 J9 J CONTAM HYDROL JI J. Contam. Hydrol. PD OCT 23 PY 2008 VL 101 IS 1-4 BP 29 EP 41 DI 10.1016/j.jconhyd.2008.07.007 PG 13 WC Environmental Sciences; Geosciences, Multidisciplinary; Water Resources SC Environmental Sciences & Ecology; Geology; Water Resources GA 369AU UT WOS:000260665800003 PM 18786743 ER PT J AU Hay, MB Myneni, SCB AF Hay, Michael B. Myneni, Satish C. B. TI Geometric and Electronic Structure of the Aqueous Al(H2O)(6)(3+) Complex SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID AL K-EDGE; RAY-ABSORPTION SPECTROSCOPY; 2ND-SHELL WATER-MOLECULES; AL-27 MAS NMR; AB-INITIO; ALZHEIMERS-DISEASE; THEORETICAL-ANALYSIS; XANES SPECTRA; ALUMINUM; DENSITY AB The bonding environment of the aqueous Al(H2O)(6)(3+) complex was Studied using X-ray absorption near-edge structure (XANES) spectroscopy at the Al K-edge, with spectral interpretations based on density functional theory (DFT). Calculations for a highly symmetric complex (T-h symmetry) indicate electron transitions into Al 3p-O 2s and Al 3 p-O 2p antibonding orbitals, with a split O 2p contribution that appears to be due to a weak pi-interaction of the Al 3p orbitals with water ligands off-axis (equatorial) with respect to the At 3p axis. Calculations were performed with several hypothetical structures to assess the effects of Al-O bond length, orientation of water ligands in the first coordination shell, and the presence of a second solvation shell on the XANES spectrum. Similar transitions were observed in all of these cases, but with further splitting on addition of 12 solvation waters, inward tilting and random twisting of the water ligands, and nonuniform Al-O bond lengths. Although it was previously hypothesized that the broadness of the XANES spectrum for this complex is due to an asymmetric geometry, these results illustrate how an Al(H2O)(6)(3+) geometry that is octahedral (O-h) with respect to the Al-O-6 core could produce the broad spectrum observed. Because geometric distortions would affect relative Al-O bond strengths, an understanding of the equilibrium Al(H2O)(6)(3+) geometry is prerequisite to a quantitative description of reaction chemistry, including acidity and ligand exchange. C1 [Hay, Michael B.] Princeton Univ, Dept Civil & Environm Engn, Princeton, NJ 08544 USA. [Myneni, Satish C. B.] Princeton Univ, Dept Geosci, Princeton, NJ 08544 USA. [Myneni, Satish C. B.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Hay, MB (reprint author), Princeton Univ, Dept Civil & Environm Engn, Princeton, NJ 08544 USA. EM mbhay@usgs.gov FU NSF (Chemical Sciences-EMSI program); BES DOE (Geosciences); EPA STAR; NSF graduate research fellowships; Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231] FX This project was supported by grants from NSF (Chemical Sciences-EMSI program) and from the BES DOE (Geosciences). M.B.H. also acknowledges financial support from the EPA STAR and NSF graduate research fellowships. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. We thank Tolek Tyliszczak, Hendrik Bluhm, Mary Gilles, and David Shuh at Beamline 11.0.2, Advanced Light Source, for assistance with experimental design and setup. We also thank Kate Campbell and two anonymous reviewers for helpful comments on the manuscript. NR 66 TC 15 Z9 15 U1 5 U2 24 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD OCT 23 PY 2008 VL 112 IS 42 BP 10595 EP 10603 DI 10.1021/jp802675v PG 9 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 361AV UT WOS:000260100800021 PM 18826294 ER PT J AU Ginovska, B Camaioni, DM Dupuis, M Schwerdtfeger, CA Gil, Q AF Ginovska, Bojana Camaioni, Donald M. Dupuis, Michel Schwerdtfeger, Christine A. Gil, Quinn TI Charge-Dependent Cavity Radii for an Accurate Dielectric Continuum Model of Solvation with Emphasis on Ions: Aqueous Solutes with Oxo, Hydroxo, Amino, Methyl, Chloro, Bromo, and Fluoro Functionalities SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID BOND-DISSOCIATION ENERGIES; GAS-PHASE; WATER CLUSTERS; BASIS-SETS; SOLVENT; GLYCINE; MOLECULES; HYDRATION; ENTHALPY; VALUES AB Dielectric continuum solvation models are widely used because they are a computationally efficacious way to simulate equilibrium properties of solutes. With advances that allow for molecular-shaped cavities, they have reached a high level of accuracy, in particular for neutral solutes. However, benchmark tests show that existing schemes for defining cavities are unable to consistently predict accurately the effects of solvation on ions, especially anions. This work involves the further development of a protocol put forth earlier for defining the cavities of aqueous solutes, with resulting advances that are most striking for anions. Molecular cavities are defined as interlocked spheres around atoms or groups of atoms in the solute, but the sphere radii are determined by simple empirically based expressions involving the effective atomic charges of the solute atoms (derived from molecular electrostatic potential) and base radii. Both of these terms are optimized for the different types of atoms or functional groups in a training set of neutral and charged Solutes. Parameters in these expressions for radii were fitted by minimizing residuals between calculated and measured standard free energies of solvation (Delta G(s)(*)), weighted by the uncertainty in the measured value. The calculations were performed using density functional theory with the B3LYP functional and the 6-311+G** basis set and the COnductor-like Screening MOdel (COSMO). The optimized radii definitions reproduce Delta G(s)(*) of neutral solutes and singly charged ions in the training set to within experimental uncertainty and, more importantly, accurately predict Delta G(s)(*) of compounds outside the training set. in particular anions (J. Phys. Chem. A 2003, 107, 5778). Inherent to this approach, the cavity definitions reflect the strength of specific solute-water interactions. We surmise that this feature underlies the success of the model, referred to as the CD-COSMO model for Charge-Dependent (also Camaioni-Dupuis) COSMO model. These findings offer encouragement that we can keep extending this scheme to other functional groups and obtain better accuracy in using continuum solvation models to predict equilibrium properties of aqueous ionic solutes. The approach is illustrated for a number of test cases, including the determination of acidities of an amine base, a study of the tautomerization equilibrium of a zwitterionic molecule (glycine), and calculating solvation energies of transition states toward a full characterization of reaction pathways in aqueous phase, here in S(N)2 exchange reactions. The calculated reaction barriers in aqueous solution are in excellent agreement with experimental values. C1 [Ginovska, Bojana; Camaioni, Donald M.; Dupuis, Michel; Schwerdtfeger, Christine A.; Gil, Quinn] Pacific NW Natl Lab, Div Chem & Mat Sci, Richland, WA 99352 USA. RP Camaioni, DM (reprint author), Pacific NW Natl Lab, Div Chem & Mat Sci, Richland, WA 99352 USA. FU U.S. Department of Energy (DOE); Office of Science's Science Undergraduate Laboratory Internship (SULI) program; Environmental and Biological Sciences' Environmental Research Sciences Program; DOE's Office of Basic Energy Sciences; Condensed Phase and Interfacial Molecular Science program; Battelle Memorial Institute for the U.S. Department of Energy FX This research was conducted at the Pacific Northwest National Laboratory (PNNL). C.A.S. and Q.G. acknowledge support by the U.S. Department of Energy (DOE), Office of Science's Science Undergraduate Laboratory Internship (SULI) program. D.M.C. acknowledges support from the Office of Environmental and Biological Sciences' Environmental Research Sciences Program. B.G. and M.D. were supported by the DOE's Office of Basic Energy Sciences, Condensed Phase and Interfacial Molecular Science program. PNNL is operated by Battelle Memorial Institute for the U.S. Department of Energy. NR 63 TC 19 Z9 19 U1 0 U2 10 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD OCT 23 PY 2008 VL 112 IS 42 BP 10604 EP 10613 DI 10.1021/jp804092v PG 10 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 361AV UT WOS:000260100800022 PM 18816107 ER PT J AU Zorn, D Lin, VSY Pruski, M Gordon, MS AF Zorn, Deborah Lin, Victor S. -Y. Pruski, Marek Gordon, Mark S. TI Comparison of Nitroaldol Reaction Mechanisms Using Accurate Ab Initio Calculations SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID BASIS-SETS; ALGORITHMS; SILICA; SYSTEM; PATHS AB In the nitroaldol reaction, condensation between a nitroalkane and an aldehyde yields a nitroalcohol that can undergo dehydration to yield a nitroalkene. Amine-functionalized. MCM-41-type mesoporous silica nanosphere (MSN) materials have been shown to selectively catalyze this reaction. Gas-phase reaction paths for the several competing mechanisms for the nitroaldol reaction have been mapped out using second-order perturbation theory (MP2). Improved relative energies were determined using singles and doubles coupled cluster theory with perturbative triples, CCSD(T). The mechanism in the absence of a catalyst was used to provide a baseline against which to assess the impact of the catalyst on both the mechanism and the related energetics. Catalyzed mechanisms can either pass through a nitroalcohol intermediate as in the classical mechanism or an imine intermediate. C1 [Gordon, Mark S.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. Iowa State Univ, Dept Chem, Ames, IA 50011 USA. RP Gordon, MS (reprint author), Iowa State Univ, Ames Lab, Ames, IA 50011 USA. FU U.S. Department of Energy to the Ames Laboratory; office of BES [DE-AC02-07CH11358] FX This research was supported by a Grant front the U.S. Department of Energy to the Ames Laboratory, office of BES, under contract DE-AC02-07CH11358. NR 28 TC 7 Z9 7 U1 0 U2 11 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD OCT 23 PY 2008 VL 112 IS 42 BP 10635 EP 10649 DI 10.1021/jp805135p PG 15 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 361AV UT WOS:000260100800025 PM 18823100 ER PT J AU Velizhanin, KA Kilina, S Sewell, TD Piryatinski, A AF Velizhanin, Kirill A. Kilina, Svetlana Sewell, Thomas D. Piryatinski, Andrei TI First-Principles-Based Calculations of Vibrational Normal Modes in Polyatomic Materials with Translational Symmetry: Application to PETN Molecular Crystal SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID INELASTIC NEUTRON-SCATTERING; TETRANITRATE SINGLE-CRYSTALS; DENSITY-FUNCTIONAL THEORY; INITIO PHONON DYNAMICS; AUGMENTED-WAVE METHOD; DER-WAALS FORCES; AB-INITIO; PENTAERYTHRITOL TETRANITRATE; SPECTROSCOPY; PSEUDOPOTENTIALS AB Numerical studies of vibrational energy transport and associated (non)linear infrared and Raman response in polyatomic materials require knowledge of the Multidimensional vibrational potential-energy surface and the ability to perform normal-mode analysis oil that potential. The presence of translational symmetry, as in crystals, leads to the observed dispersion of the unit cell normal modes and has to be accounted for in calculations of energy transfer rates and other spectroscopic quantities. Here we report on the implementation of a computational approach that combines the generalized supercell method and density functional theory electronic structure calculations to investigate the vibrational structure in translationally symmetric materials containing relatively large numbers of atoms in the unit cell (58 atoms in the present study). The method is applied to calculate the phonon and vibron dispersion relations and the vibrational density of states in pentaerythritol tetranitrate (PETN) molecular crystal which is all important energetic material. The results set the stage for future investigations of vibrational energy transport and associated nonlinear spectroscopic signatures in this class of materials. C1 [Velizhanin, Kirill A.; Kilina, Svetlana; Sewell, Thomas D.; Piryatinski, Andrei] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. [Velizhanin, Kirill A.; Kilina, Svetlana; Sewell, Thomas D.; Piryatinski, Andrei] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Velizhanin, Kirill A.] New Mexico State Univ, Dept Chem & Biochem, Las Cruces, NM 88003 USA. RP Piryatinski, A (reprint author), Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. EM swellt@missouri.edu; apiryat@lanl.gov RI Velizhanin, Kirill/C-4835-2008; Piryatinski, Andrei/B-5543-2009 FU National Nuclear Security Administration of the U.S. Department of Energy at Los Alamos National Laboratory [DE-AC52-06NA25396, W-7405-ENG-36]; Los Alamos Center for Nonlinear Studies (CNLS) FX This research was carried out under the auspices of the National Nuclear Security Administration of the U.S. Department of Energy at Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396. K.A.V., S.K., and A.P. are supported by the LDRD programn of the U.S. Department of Energy under Contract W-7405-ENG-36 and by the Los Alamos Center for Nonlinear Studies (CNLS). T.D.S. acknowledges support by the U.S. Office of Naval Research. We thank Marc J. Cawkwell, Sergei Tretiak, Von H. Whitley' and Haobin Wang for valuable discussions and suggestions. NR 42 TC 15 Z9 16 U1 1 U2 8 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD OCT 23 PY 2008 VL 112 IS 42 BP 13252 EP 13257 DI 10.1021/jp804980a PG 6 WC Chemistry, Physical SC Chemistry GA 361AW UT WOS:000260100900015 PM 18821785 ER PT J AU Mo, Y Lee, BK Ankner, JF Becker, JM Heller, WT AF Mo, Yiming Lee, Byung-Kwon Ankner, John F. Becker, Jeffrey M. Heller, William T. TI Detergent-Associated Solution Conformations of Helical and beta-Barrel Membrane Proteins SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID X-RAY-SCATTERING; SMALL-ANGLE SCATTERING; HARVESTING COMPLEX LH2; CIRCULAR-DICHROISM SPECTRA; COUPLED RECEPTOR; RHODOPSEUDOMONAS-ACIDOPHILA; ANGSTROM RESOLUTION; SECONDARY STRUCTURE; NEUTRON-SCATTERING; CRYSTAL-STRUCTURE AB Membrane proteins present major challenges for structural biology. In particular, the production of suitable crystals for high-resolution structural determination continues to be a significant roadblock for developing an atomic-level understanding of these vital cellular systems. The use of detergents for extracting membrane proteins from the native membrane for either crystallization or reconstitution into model lipid membranes for further study is assumed to leave the protein with the proper fold with a belt of detergent encompassing the membrane-spanning segments of the structure. Small-angle X-ray scattering was used to probe the detergent-associated solution conformations of three membrane proteins, namely bacteriorhodopsin (BR), the Ste2p G-protein coupled receptor from Saccharomyces cerevisiae, and the Escherichia coli porin OmpF. The results demonstrate that, contrary to the traditional model of a detergent-associated membrane protein, the helical proteins BR and Ste2p are not in the expected, compact conformation and associated with detergent micelles, while the beta-barrel OmpF is indeed embedded in a disk-like micelle in a properly folded state. The comparisonprovided by the BR and Ste2p, both members of the 7TM family of helical membrane proteins, further suggests that the interhelical interactions between the transmembrane helices of the two proteins differ, such that BR, like other rhodopsins, can properly refold to crystallize, while Ste2p continues to prove resistant to crystallization from an initially detergent-associated state. C1 [Lee, Byung-Kwon; Becker, Jeffrey M.] Univ Tennessee, Dept Microbiol, Knoxville, TN 37996 USA. [Mo, Yiming; Heller, William T.] Oak Ridge Natl Lab, Ctr Struct mol Biol, Oak Ridge, TN 37831 USA. [Mo, Yiming; Heller, William T.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. [Ankner, John F.] Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA. RP Becker, JM (reprint author), Univ Tennessee, Dept Microbiol, Knoxville, TN 37996 USA. EM jbecker@utk.edu; hellerwt@ornl.gov OI Ankner, John/0000-0002-6737-5718 FU Laboratory Directed Research and Development Program; U.S. Department of Energy [DE-AC05-00OR22725]; National Institute of General Medical Sciences [NIH GM022087] FX The authors would like to thanks Dr. Anne H. Delcour of the University of Houston for the generous gift of the OmpF clone. This work was supported by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory, managed and operated by UT-Battelle, LLC, for the U.S. Department of Energy under Contract No. DE-AC05-00OR22725, the Joint Directed Laboratory Development Program from the University of Tennessee, and NIH GM022087 from the National Institute of General Medical Sciences. NR 42 TC 9 Z9 9 U1 1 U2 10 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD OCT 23 PY 2008 VL 112 IS 42 BP 13349 EP 13354 DI 10.1021/jp801266r PG 6 WC Chemistry, Physical SC Chemistry GA 361AW UT WOS:000260100900027 PM 18816091 ER PT J AU Cheng, YC Ahn, TK Avenson, TJ Zigmantas, D Niyogi, KK Ballottari, M Bassi, R Fleming, GR AF Cheng, Yuan-Chung Ahn, Tae Kyu Avenson, Thomas J. Zigmantas, Donatas Niyogi, Krishna K. Ballottari, Matteo Bassi, Roberto Fleming, Graham R. TI Kinetic Modeling of Charge-Transfer Quenching in the CP29 Minor Complex SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID LIGHT-HARVESTING COMPLEX; PHOTOSYSTEM-II COMPLEX; PLANT ANTENNA PROTEIN; ENERGY-TRANSFER; GREEN PLANTS; CHLOROPHYLL FLUORESCENCE; CATION FORMATION; EXCITED-STATES; LHCII COMPLEX; PEAK SHIFT AB We performed transient absorption (TA) measurements on CP29 minor light-harvesting complexes that were reconstituted in vitro with either violaxanthin (Vio) or zeaxanthin (Zea) and demonstrate that the Zea-bound CP29 complexes exhibit charge-transfer (CT) quenching that has been correlated with the energy-dependent quenching (qE) in higher plants. Simulations of the difference TA kinetics reveal two-phase kinetics for intracomplex energy transfer to the CT quenching site in CP29 complexes, with a fast <500 fs component and a similar to 6 ps component. Specific chlorophyll sites within CP29 are identified as likely locations for CT quenching. We also construct a kinetic model for CT quenching during qE in an intact system that incorporates CP29 as a CT trap and show that the model is consistent with previous in vivo measurements on spinach thylakoid membranes. Finally, we compare simulations of CT quenching in thylakoids with those of the individual CP29 complexes and propose that CP29 rather than LHCII is a site of CT quenching. C1 [Cheng, Yuan-Chung; Ahn, Tae Kyu; Zigmantas, Donatas; Niyogi, Krishna K.; Fleming, Graham R.] Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Cheng, Yuan-Chung; Ahn, Tae Kyu; Avenson, Thomas J.; Zigmantas, Donatas; Fleming, Graham R.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Avenson, Thomas J.; Niyogi, Krishna K.] Univ Calif Berkeley, Dept Plant & Microbial Biol, Berkeley, CA 94720 USA. [Ballottari, Matteo; Bassi, Roberto] Univ Verona, Dept Sci & Technol, I-37134 Verona, Italy. RP Fleming, GR (reprint author), Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. EM GRFleming@lbl.gov RI Cheng, Yuan-Chung/A-6566-2008; Ahn, Tae/A-5838-2013; Zigmantas, Donatas/E-5541-2014; OI Cheng, Yuan-Chung/0000-0003-0125-4267; Zigmantas, Donatas/0000-0003-2007-5256; Ballottari, Matteo/0000-0001-8410-3397; bassi, roberto/0000-0002-4140-8446 FU U.S. Department of Energy [DE-AC02-05C-H11231, DE-AC03-76SF000098]; Korean Government [KRF-2006-214-C00037]; National Research Initiative Competitive [2006-03279]; Italian Basic Research Foundation [RBLA0345SF] FX This work was supported by the Director. Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract DE-AC02-05C-H11231 and by the Chemical Sciences. Geosciences and Biosciences Division, Office of Basic Energy Sciences, U.S. Department of Energy, under Contract DE-AC03-76SF000098 (G.R.F. and K.K.N), the Korea Research Foundation Grant (KRF-2006-214-C00037) funded by the Korean Government (MOEHRD) (T.K.A.), and the National Research Initiative Competitive Grant (2006-03279) (T.J.A). R.B. extends thanks to the FIRB Contract RBLA0345SF from the Italian Basic Research Foundation and contract SAMBA Trento Research Council for foundational support. NR 43 TC 16 Z9 16 U1 0 U2 6 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD OCT 23 PY 2008 VL 112 IS 42 BP 13418 EP 13423 DI 10.1021/jp802730c PG 6 WC Chemistry, Physical SC Chemistry GA 361AW UT WOS:000260100900035 PM 18826191 ER PT J AU Chin, L Meyerson, M Aldape, K Bigner, D Mikkelsen, T VandenBerg, S Kahn, A Penny, R Ferguson, ML Gerhard, DS Getz, G Brennan, C Taylor, BS Winckler, W Park, P Ladanyi, M Hoadley, KA Verhaak, RGW Hayes, DN Spellman, PT Absher, D Weir, BA Ding, L Wheeler, D Lawrence, MS Cibulskis, K Mardis, E Zhang, JH Wilson, RK Donehower, L Wheeler, DA Purdom, E Wallis, J Laird, PW Herman, JG Schuebel, KE Weisenberger, DJ Baylin, SB Schultz, N Yao, J Wiedemeyer, R Weinstein, J Sander, C Gibbs, RA Gray, J Kucherlapati, R Lander, ES Myers, RM Perou, CM McLendon, R Friedman, A Van Meir, EG Brat, DJ Mastrogianakis, GM Olson, JJ Lehman, N Yung, WKA Bogler, O Berger, M Prados, M Muzny, D Morgan, M Scherer, S Sabo, A Nazareth, L Lewis, L Hall, O Zhu, YM Ren, YR Alvi, O Yao, JQ Hawes, A Jhangiani, S Fowler, G San Lucas, A Kovar, C Cree, A Dinh, H Santibanez, J Joshi, V Gonzalez-Garay, ML Miller, CA Milosavljevic, A Sougnez, C Fennell, T Mahan, S Wilkinson, J Ziaugra, L Onofrio, R Bloom, T Nicol, R Ardlie, K Baldwin, J Gabriel, S Fulton, RS McLellan, MD Larson, DE Shi, XQ Abbott, R Fulton, L Chen, K Koboldt, DC Wendl, MC Meyer, R Tang, YZ Lin, L Osborne, JR Dunford-Shore, BH Miner, TL Delehaunty, K Markovic, C Swift, G Courtney, W Pohl, C Abbott, S Hawkins, A Leong, S Haipek, C Schmidt, H Wiechert, M Vickery, T Scott, S Dooling, DJ Chinwalla, A Weinstock, GM O'Kelly, M Robinson, J Alexe, G Beroukhim, R Carter, S Chiang, D Gould, J Gupta, S Korn, J Mermel, C Mesirov, J Monti, S Nguyen, H Parkin, M Reich, M Stransky, N Garraway, L Golub, T Protopopov, A Perna, I Aronson, S Sathiamoorthy, N Ren, G Kim, H Kong, SK Xiao, YH Kohane, IS Seidman, J Cope, L Pan, F Van Den Berg, D Van Neste, L Yi, JM Li, JZ Southwick, A Brady, S Aggarwal, A Chung, T Sherlock, G Brooks, JD Jakkula, LR Lapuk, AV Marr, H Dorton, S Choi, YG Han, J Ray, A Wang, V Durinck, S Robinson, M Wang, NJ Vranizan, K Peng, V Van Name, E Fontenay, GV Ngai, J Conboy, JG Parvin, B Feiler, HS Speed, TP Socci, ND Olshen, A Lash, A Reva, B Antipin, Y Stukalov, A Gross, B Cerami, E Wang, WQ Qin, LX Seshan, VE Villafania, L Cavatore, M Borsu, L Viale, A Gerald, W Topal, MD Qi, Y Balu, S Shi, Y Wu, G Bittner, M Shelton, T Lenkiewicz, E Morris, S Beasley, D Sanders, S Sfeir, R Chen, J Nassau, D Feng, L Hickey, E Schaefer, C Madhavan, S Buetow, K Barker, A Vockley, J Compton, C Vaught, J Fielding, P Collins, F Good, P Guyer, M Ozenberger, B Peterson, J Thomson, E AF Chin, L. Meyerson, M. Aldape, K. Bigner, D. Mikkelsen, T. VandenBerg, S. Kahn, A. Penny, R. Ferguson, M. L. Gerhard, D. S. Getz, G. Brennan, C. Taylor, B. S. Winckler, W. Park, P. Ladanyi, M. Hoadley, K. A. Verhaak, R. G. W. Hayes, D. N. Spellman, Paul T. Absher, D. Weir, B. A. Ding, L. Wheeler, D. Lawrence, M. S. Cibulskis, K. Mardis, E. Zhang, Jinghui Wilson, R. K. Donehower, L. Wheeler, D. A. Purdom, E. Wallis, J. Laird, P. W. Herman, J. G. Schuebel, K. E. Weisenberger, D. J. Baylin, S. B. Schultz, N. Yao, Jun Wiedemeyer, R. Weinstein, J. Sander, C. Gibbs, R. A. Gray, J. Kucherlapati, R. Lander, E. S. Myers, R. M. Perou, C. M. McLendon, Roger Friedman, Allan Van Meir, Erwin G Brat, Daniel J Mastrogianakis, Gena Marie Olson, Jeffrey J Lehman, Norman Yung, W. K. Alfred Bogler, Oliver Berger, Mitchel Prados, Michael Muzny, Donna Morgan, Margaret Scherer, Steve Sabo, Aniko Nazareth, Lynn Lewis, Lora Hall, Otis Zhu, Yiming Ren, Yanru Alvi, Omar Yao, Jiqiang Hawes, Alicia Jhangiani, Shalini Fowler, Gerald San Lucas, Anthony Kovar, Christie Cree, Andrew Dinh, Huyen Santibanez, Jireh Joshi, Vandita Gonzalez-Garay, Manuel L. Miller, Christopher A. Milosavljevic, Aleksandar Sougnez, Carrie Fennell, Tim Mahan, Scott Wilkinson, Jane Ziaugra, Liuda Onofrio, Robert Bloom, Toby Nicol, Rob Ardlie, Kristin Baldwin, Jennifer Gabriel, Stacey Fulton, Robert S. McLellan, Michael D. Larson, David E. Shi, Xiaoqi Abbott, Rachel Fulton, Lucinda Chen, Ken Koboldt, Daniel C. Wendl, Michael C. Meyer, Rick Tang, Yuzhu Lin, Ling Osborne, John R. Dunford-Shore, Brian H. Miner, Tracie L. Delehaunty, Kim Markovic, Chris Swift, Gary Courtney, William Pohl, Craig Abbott, Scott Hawkins, Amy Leong, Shin Haipek, Carrie Schmidt, Heather Wiechert, Maddy Vickery, Tammi Scott, Sacha Dooling, David J. Chinwalla, Asif Weinstock, George M. O'Kelly, Michael Robinson, Jim Alexe, Gabriele Beroukhim, Rameen Carter, Scott Chiang, Derek Gould, Josh Gupta, Supriya Korn, Josh Mermel, Craig Mesirov, Jill Monti, Stefano Nguyen, Huy Parkin, Melissa Reich, Michael Stransky, Nicolas Garraway, Levi Golub, Todd Protopopov, Alexei Perna, Ilana Aronson, Sandy Sathiamoorthy, Narayan Ren, Georgia Kim, Hyunsoo Kong, Sek Won Xiao, Yonghong Kohane, Isaac S. Seidman, Jon Cope, Leslie Pan, Fei Van Den Berg, David Van Neste, Leander Yi, Joo Mi Li, Jun Z. Southwick, Audrey Brady, Shannon Aggarwal, Amita Chung, Tisha Sherlock, Gavin Brooks, James D. Jakkula, Lakshmi R. Lapuk, Anna V. Marr, Henry Dorton, Shannon Choi, Yoon Gi Han, Ju Ray, Amrita Wang, Victoria Durinck, Steffen Robinson, Mark Wang, Nicholas J. Vranizan, Karen Peng, Vivian Van Name, Eric Fontenay, Gerald V. Ngai, John Conboy, John G. Parvin, Bahram Feiler, Heidi S. Speed, Terence P. Socci, Nicholas D. Olshen, Adam Lash, Alex Reva, Boris Antipin, Yevgeniy Stukalov, Alexey Gross, Benjamin Cerami, Ethan Wang, Wei Qing Qin, Li-Xuan Seshan, Venkatraman E. Villafania, Liliana Cavatore, Magali Borsu, Laetitia Viale, Agnes Gerald, William Topal, Michael D. Qi, Yuan Balu, Sai Shi, Yan Wu, George Bittner, Michael Shelton, Troy Lenkiewicz, Elizabeth Morris, Scott Beasley, Debbie Sanders, Sheri Sfeir, Robert Chen, Jessica Nassau, David Feng, Larry Hickey, Erin Schaefer, Carl Madhavan, Subha Buetow, Ken Barker, Anna Vockley, Joseph Compton, Carolyn Vaught, Jim Fielding, Peter Collins, Francis Good, Peter Guyer, Mark Ozenberger, Brad Peterson, Jane Thomson, Elizabeth CA Canc Genome Atlas Res Network Tissue Source Sites Genome Sequencing Ctr Canc Genome Characterization Ctr Project Teams TI Comprehensive genomic characterization defines human glioblastoma genes and core pathways SO NATURE LA English DT Article ID NF1 GENE; MISMATCH REPAIR; NEUROFIBROMATOSIS TYPE-1; SOMATIC MUTATIONS; MALIGNANT GLIOMAS; ALKYLATING-AGENTS; HIGH-FREQUENCY; PIK3CA GENE; CELL-LINES; TUMORS AB Human cancer cells typically harbour multiple chromosomal aberrations, nucleotide substitutions and epigenetic modifications that drive malignant transformation. The Cancer Genome Atlas ( TCGA) pilot project aims to assess the value of large- scale multi- dimensional analysis of these molecular characteristics in human cancer and to provide the data rapidly to the research community. Here we report the interim integrative analysis of DNA copy number, gene expression and DNA methylation aberrations in 206 glioblastomas - the most common type of primary adult brain cancer - and nucleotide sequence aberrations in 91 of the 206 glioblastomas. This analysis provides new insights into the roles of ERBB2, NF1 and TP53, uncovers frequent mutations of the phosphatidylinositol- 3- OH kinase regulatory subunit gene PIK3R1, and provides a network view of the pathways altered in the development of glioblastoma. Furthermore, integration of mutation, DNA methylation and clinical treatment data reveals a link between MGMT promoter methylation and a hypermutator phenotype consequent to mismatch repair deficiency in treated glioblastomas, an observation with potential clinical implications. Together, these findings establish the feasibility and power of TCGA, demonstrating that it can rapidly expand knowledge of the molecular basis of cancer. C1 [Chin, L.; Meyerson, M.; Winckler, W.; Verhaak, R. G. W.; Weir, B. A.; Wiedemeyer, R.; Beroukhim, Rameen; Chiang, Derek; Mermel, Craig; Garraway, Levi] Dana Farber Canc Inst, Dept Med Oncol, Boston, MA 02115 USA. [Chin, L.; Yao, Jun; Protopopov, Alexei; Perna, Ilana; Ren, Georgia; Xiao, Yonghong] Dana Farber Canc Inst, Ctr Appl Canc Sci, Belfer Inst innovat Canc Sci, Boston, MA 02115 USA. [Chin, L.; Robinson, Jim; Alexe, Gabriele; Carter, Scott] Harvard Univ, Sch Med, Dept Dermatol, Boston, MA 02115 USA. [Meyerson, M.; Getz, G.; Winckler, W.; Verhaak, R. G. W.; Weir, B. A.; Lawrence, M. S.; Lander, E. S.; O'Kelly, Michael; Beroukhim, Rameen; Chiang, Derek; Gould, Josh; Gupta, Supriya; Korn, Josh; Mermel, Craig; Mesirov, Jill; Monti, Stefano; Nguyen, Huy; Parkin, Melissa; Reich, Michael; Stransky, Nicolas; Garraway, Levi; Golub, Todd] Harvard Univ, Cambridge, MA 02142 USA. [Bigner, D.; McLendon, Roger] Duke Univ, Med Ctr, Dept Pathol, Durham, NC 27710 USA. [Friedman, Allan] Duke Univ, Med Ctr, Dept Surg, Durham, NC 27710 USA. [Mikkelsen, T.] Henry Ford Hosp, Dept Neurol Surg, Detroit, MI 48202 USA. [VandenBerg, S.] Univ Calif San Francisco, Dept Pathol, San Francisco, CA 94143 USA. [Aldape, K.] Univ Texas Houston MD Anderson Canc Ctr, Dept Pathol, Houston, TX 77030 USA. [Yung, W. K. Alfred] Univ Texas Houston MD Anderson Canc Ctr, Dept Neurooncol, Houston, TX 77030 USA. [Bogler, Oliver] Univ Texas Houston MD Anderson Canc Ctr, Dept Neurosurg, Houston, TX 77030 USA. [Kahn, A.; Sfeir, Robert; Chen, Jessica; Nassau, David; Feng, Larry; Hickey, Erin] SRA Int, Fairfax, VA 22033 USA. NCI, Ctr Biomed Informat & Informat Technol, Rockville, MD 20852 USA. [Collins, Francis; Good, Peter; Guyer, Mark; Ozenberger, Brad; Peterson, Jane; Thomson, Elizabeth] NIH, Natl Human Genome Res Inst, Bethesda, MD 20892 USA. [Gerhard, D. S.; Barker, Anna; Vockley, Joseph; Compton, Carolyn; Vaught, Jim; Fielding, Peter] NCI, NIH, Bethesda, MD 20892 USA. [Penny, R.; Shelton, Troy; Lenkiewicz, Elizabeth; Morris, Scott; Beasley, Debbie; Sanders, Sheri] Int Genom Consortium, Phoenix, AZ 85004 USA. [Ferguson, M. L.] MLF Consulting, Arlington, MA 02474 USA. [Ding, L.; Mardis, E.; Wilson, R. K.; Wallis, J.; Fennell, Tim; Baldwin, Jennifer; Fulton, Robert S.; McLellan, Michael D.; Larson, David E.; Shi, Xiaoqi; Abbott, Rachel; Fulton, Lucinda; Chen, Ken; Koboldt, Daniel C.; Wendl, Michael C.; Meyer, Rick; Tang, Yuzhu; Lin, Ling; Osborne, John R.; Dunford-Shore, Brian H.; Miner, Tracie L.; Delehaunty, Kim; Markovic, Chris; Swift, Gary; Courtney, William; Pohl, Craig; Abbott, Scott; Hawkins, Amy; Leong, Shin; Haipek, Carrie; Schmidt, Heather; Wiechert, Maddy; Vickery, Tammi; Scott, Sacha; Dooling, David J.; Chinwalla, Asif; Weinstock, George M.] Washington Univ, Sch Med, Dept Genet, Genome Ctr, St Louis, MO 63108 USA. Sidney Kimmel Comprehens Canc Ctr Johns Hopkins, Baltimore, MD 21231 USA. [Park, P.; Aronson, Sandy; Sathiamoorthy, Narayan; Kim, Hyunsoo; Kohane, Isaac S.] Harvard Univ, Sch Med, Partners Healthcare Ctr Genet & Genom, Boston, MA 02115 USA. [Park, P.; Kucherlapati, R.; Kohane, Isaac S.] Harvard Univ, Sch Med, Ctr Biomed Informat, Boston, MA 02115 USA. [Park, P.; Kong, Sek Won; Kohane, Isaac S.] Childrens Hosp, Informat Program, Boston, MA 02115 USA. [Brennan, C.] Mem Sloan Kettering Canc Ctr, Dept Neurosurg, New York, NY 10065 USA. [Taylor, B. S.; Schultz, N.; Sander, C.; Socci, Nicholas D.; Lash, Alex; Reva, Boris; Antipin, Yevgeniy; Stukalov, Alexey; Gross, Benjamin; Cerami, Ethan; Wang, Wei Qing; Gerald, William] Mem Sloan Kettering Canc Ctr, Computat Biol Ctr, New York, NY 10065 USA. [Taylor, B. S.] Weill Cornell Grad Sch Med Sci, Dept Physiol & Biophys, New York, NY 10065 USA. [Ladanyi, M.; Borsu, Laetitia] Mem Sloan Kettering Canc Ctr, Dept Pathol, Human Oncol & Pathogenesis Program, New York, NY 10065 USA. [Spellman, Paul T.; Gray, J.; Jakkula, Lakshmi R.; Lapuk, Anna V.; Marr, Henry; Dorton, Shannon; Han, Ju; Ray, Amrita; Durinck, Steffen; Wang, Nicholas J.; Fontenay, Gerald V.; Conboy, John G.; Parvin, Bahram; Feiler, Heidi S.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA. [Purdom, E.; Wang, Victoria; Speed, Terence P.] Univ Calif Berkeley, Dept Stat, Berkeley, CA 95720 USA. [Choi, Yoon Gi; Vranizan, Karen; Peng, Vivian; Van Name, Eric; Ngai, John] Univ Calif Berkeley, Dept Mol & Cellular Biol, Berkeley, CA 95720 USA. [Robinson, Mark; Speed, Terence P.] Walter & Eliza Hall Inst Med Res, Parkville, Vic 3052, Australia. [Southwick, Audrey; Brady, Shannon; Aggarwal, Amita; Chung, Tisha; Sherlock, Gavin] Stanford Univ, Sch Med, Dept Genet, Stanford, CA 94305 USA. [Brooks, James D.] Stanford Univ, Sch Med, Dept Urol, Stanford, CA 94305 USA. [Wheeler, D.; Donehower, L.; Wheeler, D. A.] Baylor Coll Med, Human Genome Sequencing Ctr, Dept Mol Virol & Microbiol, Houston, TX 77030 USA. [Perou, C. M.; Miller, Christopher A.; Milosavljevic, Aleksandar] Baylor Coll Med, Grad Program Struct & Computat Biol & Mol Biophys, Houston, TX 77030 USA. [Perou, C. M.; Milosavljevic, Aleksandar] Baylor Coll Med, Dept Mol & Human Genet, Houston, TX 77030 USA. Univ N Carolina, Dept Genet, Lineberger Comprehens Canc Ctr, Chapel Hill, NC 27599 USA. [Hoadley, K. A.; Topal, Michael D.] Univ N Carolina, Dept Pathol & Lab Med, Lineberger Comprehens Canc Ctr, Chapel Hill, NC 27599 USA. [Qi, Yuan] Univ N Carolina, Dept Internal Med, Lineberger Comprehens Canc Ctr, Div Med Oncol, Chapel Hill, NC 27599 USA. [Hayes, D. N.; Herman, J. G.; Schuebel, K. E.; Baylin, S. B.; Yi, Joo Mi] Johns Hopkins Univ, Div Canc Biol, Sidney Kimmel Comprehens Canc Ctr, Baltimore, MD 21231 USA. [Cope, Leslie] Johns Hopkins Univ, Biometry & Clin Trials Div, Sidney Kimmel Comprehens Canc Ctr, Baltimore, MD 21231 USA. [Van Neste, Leander] Univ Ghent, Fac Biosci & Engn, Dept Mol Biotechnol, B-9000 Ghent, Belgium. [Van Meir, Erwin G; Mastrogianakis, Gena Marie; Olson, Jeffrey J] Emory Univ, Sch Med, Dept Neurosurg, Atlanta, GA 30322 USA. [Van Meir, Erwin G; Olson, Jeffrey J] Emory Univ, Sch Med, Dept Hematol & Med Oncol, Atlanta, GA 30322 USA. [Van Meir, Erwin G; Brat, Daniel J; Olson, Jeffrey J] Emory Univ, Sch Med, Winship Canc Inst, Atlanta, GA 30322 USA. [Brat, Daniel J] Emory Univ, Sch Med, Dept Pathol & Lab Med, Atlanta, GA 30322 USA. [Laird, P. W.; Weisenberger, D. J.; Pan, Fei; Van Den Berg, David] Univ So Calif, USC Epigenome Ctr, Los Angeles, CA 90089 USA. [Lehman, Norman] Henry Ford Hosp, Dept Pathol, Detroit, MI 48202 USA. [Berger, Mitchel; Prados, Michael] Univ Calif San Francisco, Dept Neurosurg, San Francisco, CA 94143 USA. [Cibulskis, K.; Sougnez, Carrie] MIT, Eli & Edythe L Broad Inst, Canc Genome Project, Cambridge, MA 02142 USA. [Sougnez, Carrie] MIT, Eli & Edythe L Broad Inst, Med Resequencing Project, Cambridge, MA 02142 USA. [Lander, E. S.] MIT, Dept Biol, Cambridge, MA 02142 USA. [Lander, E. S.] Harvard Univ, Dept Syst Biol, Boston, MA 02115 USA. [Golub, Todd] Dana Farber Canc Inst, Dept Pediat Oncol, Boston, MA 02115 USA. [Seidman, Jon] Harvard Univ, Sch Med, Dept Genet, Boston, MA 02115 USA. [Absher, D.; Myers, R. M.] HudsonAlpha Inst Biotechnol, Huntsville, AL 35806 USA. [Olshen, Adam; Qin, Li-Xuan; Seshan, Venkatraman E.] Mem Sloan Kettering Canc Ctr, Dept Epidemiol & Biostat, New York, NY 10065 USA. [Villafania, Liliana; Cavatore, Magali; Viale, Agnes] Mem Sloan Kettering Canc Ctr, Genom Core Lab, New York, NY 10065 USA. [Bittner, Michael] Translat Genom Res Inst, Computat Biol Div, Phoenix, AZ 85004 USA. [Zhang, Jinghui; Schaefer, Carl; Madhavan, Subha; Buetow, Ken] NCI, Ctr Biomed Informat & Informat Technol, Rockville, MD 20852 USA. [Weinstein, J.] Univ Texas Houston MD Anderson Canc Ctr, Dept Bioinformat & Computat Biol, Houston, TX 77030 USA. [Li, Jun Z.] Univ Michigan, Dept Human Genet, Ann Arbor, MI 48109 USA. [Kong, Sek Won] Childrens Hosp, Dept Cardiol, Boston, MA 02115 USA. RP Chin, L (reprint author), Dana Farber Canc Inst, Dept Med Oncol, Boston, MA 02115 USA. EM lynda_chin@dfci.harvard.edu; matthew_meyerson@dfci.harvard.edu RI Wendl, Michael/A-2741-2008; Speed, Terence /B-8085-2009; leng, xianwei/F-9073-2011; sander, chris/H-1452-2011; Meyerson, Matthew/E-7123-2012; Sherlock, Gavin/E-9110-2012; Miller, Christopher/A-1060-2009; Kohane, Isaac Kohane/K-3716-2012; Robinson, Mark/A-6432-2015; Laird, Peter/G-8683-2012; Lehman, Norman/A-7351-2015; Chiang, Daisy/C-9481-2011; Reva, Boris/B-6436-2014; OI Speed, Terence /0000-0002-5403-7998; Miller, Christopher/0000-0003-4266-6700; Kohane, Isaac Kohane/0000-0003-2192-5160; Robinson, Mark/0000-0002-3048-5518; Chiang, Daisy/0000-0002-8205-4285; Reva, Boris/0000-0002-8805-389X; Van Meir, Erwin G./0000-0003-2444-7707; Lehman, Norman/0000-0001-8394-2607; Bogler, Oliver/0000-0002-3700-0480; Brennan, Cameron/0000-0003-4064-8891; Lash, Alex/0000-0003-3787-1590; Hayes, D. Neil/0000-0001-6203-7771; Sherlock, Gavin/0000-0002-1692-4983; Perou, Charles/0000-0001-9827-2247 FU United States National Institutes of Health [U54HG003067, U54HG003079, U54HG003273, U24CA126543, U24CA126544, U24CA126546, U24CA126551, U24CA126554, U24CA126561, U24CA126563] FX We thank the members of TCGA's External Scientific Committee, the Glioblastoma Disease Working Group (http:// cancergenome.nih.gov/components) and D. N. Louis for discussions; A. Mirick, J. Melone and C. Collins for administrative coordination of TCGA activities; and L. Gaffney for graphic art. This work was supported by the following grants from the United States National Institutes of Health: U54HG003067, U54HG003079, U54HG003273, U24CA126543, U24CA126544, U24CA126546, U24CA126551, U24CA126554, U24CA126561 and U24CA126563. NR 50 TC 2301 Z9 2332 U1 49 U2 315 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 EI 1476-4687 J9 NATURE JI Nature PD OCT 23 PY 2008 VL 455 IS 7216 BP 1061 EP 1068 DI 10.1038/nature07385 PG 8 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 363FG UT WOS:000260252600035 ER PT J AU Morton, JJL Tyryshkin, AM Brown, RM Shankar, S Lovett, BW Ardavan, A Schenkel, T Haller, EE Ager, JW Lyon, SA AF Morton, John J. L. Tyryshkin, Alexei M. Brown, Richard M. Shankar, Shyam Lovett, Brendon W. Ardavan, Arzhang Schenkel, Thomas Haller, Eugene E. Ager, Joel W. Lyon, S. A. TI Solid-state quantum memory using the (31)P nuclear spin SO NATURE LA English DT Article ID ULTRAFAST PHASE GATES; ELECTRON SPIN; SILICON; QUBITS; DECOHERENCE; COHERENCE; COMPUTER AB The transfer of information between different physical forms - for example processing entities and memory - is a central theme in communication and computation. This is crucial in quantum computation(1), where great effort(2) must be taken to protect the integrity of a fragile quantum bit ( qubit). However, transfer of quantum information is particularly challenging, as the process must remain coherent at all times to preserve the quantum nature of the information(3). Here we demonstrate the coherent transfer of a superposition state in an electron- spin 'processing' qubit to a nuclear- spin 'memory' qubit, using a combination of microwave and radio- frequency pulses applied to (31)P donors in an isotopically pure (28)Si crystal(4,5). The state is left in the nuclear spin on a time-scale that is long compared with the electron decoherence time, and is then coherently transferred back to the electron spin, thus demonstrating the (31)P nuclear spin as a solid-state quantum memory. The overall store - readout fidelity is about 90 per cent, with the loss attributed to imperfect rotations, and can be improved through the use of composite pulses(6). The coherence lifetime of the quantum memory element at 5.5 K exceeds 1 s. C1 [Morton, John J. L.; Brown, Richard M.; Lovett, Brendon W.] Univ Oxford, Dept Mat, Oxford OX1 3PH, England. [Morton, John J. L.; Ardavan, Arzhang] Univ Oxford, Dept Phys, Clarendon Lab, CAESR, Oxford OX1 3PU, England. [Tyryshkin, Alexei M.; Shankar, Shyam; Lyon, S. A.] Princeton Univ, Dept Elect Engn, Princeton, NJ 08544 USA. [Schenkel, Thomas; Haller, Eugene E.; Ager, Joel W.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Haller, Eugene E.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. RP Morton, JJL (reprint author), Univ Oxford, Dept Mat, Parks Rd, Oxford OX1 3PH, England. EM john.morton@materials.ox.ac.uk RI Morton, John/I-3515-2013; Shankar, Shyam/K-5127-2013; OI Shankar, Shyam/0000-0002-1311-9508; Ager, Joel/0000-0001-9334-9751 FU National Security Agency [MOD 713106A]; EPSRC [GR/S82176/01]; CAESR [EP/D048559/1]; St John's College, Oxford; Royal Society; US National Science Foundation [DMR-0213706]; Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division of the US Department of Energy [DE-AC02-05CH11231] FX We thank G. A. D. Briggs for comments and support and R. Weber, P. Hofer and Bruker Biospin for support with instrumentation. We thank P. Weaver of Advanced Silicon Materials, Inc. for zone- refining and H. Riemann of the Institut fur Kristallzuchtung for float- zone processing of the 28Si crystals used in this work. This research is supported by the National Security Agency (MOD 713106A) and the EPSRC through the Quantum Information Processing Interdisciplinary Research Collaboration (GR/S82176/01) and CAESR (EP/D048559/1). J.J.L.M. is supported by St John's College, Oxford. A. A. and B. W. L. are supported by the Royal Society. Work at Princeton received support from the US National Science Foundation through the Princeton MRSEC (DMR-0213706). Work at Lawrence Berkeley National Laboratory was supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division of the US Department of Energy (DE-AC02-05CH11231). NR 31 TC 208 Z9 210 U1 4 U2 51 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 J9 NATURE JI Nature PD OCT 23 PY 2008 VL 455 IS 7216 BP 1085 EP 1088 DI 10.1038/nature07295 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 363FG UT WOS:000260252600039 ER PT J AU Abazov, VM Abbott, B Abolins, M Acharya, BS Adams, M Adams, T Aguilo, E Ahsan, M Alexeev, GD Alkhazov, G Alton, A Alverson, G Alves, GA Anastasoaie, M Ancu, LS Andeen, T Andrie, B Anzelc, MS Aoki, M Arnoud, Y Arov, M Arthaud, M Askew, A Asman, B Jesus, ACSA Atramentov, O Avila, C Badaud, F Bagby, L Baldin, B Banduri, DV Banerjee, P Banerjee, S Barberis, E Barfuss, AF Bargassa, P Baringer, R Barreto, J Bartlett, JF Bassler, U Bauer, D Beale, S Bean, A Begalli, M Begel, M Belanger-Champagne, C Bellantoni, L Bellavance, A Benitez, JA Beri, SB Bernardi, G Bernhard, R Bertram, I Besancon, M Beuselinck, R Bezzubov, VA Bhat, PC Bhatnagar, V Biscaratt, C Blazey, G Blekman, F Blessing, S Bloom, K Boehnlein, A Boline, D Bolton, TA Boos, EE Borissov, G Bose, T Brandt, A Brock, R Brooijmans, G Bross, A Brown, D Bu, XB Buchanan, NJ Buchholz, D Buehler, M Buescher, V Bunichev, V Burdin, S Burnett, TH Buszello, CP Butler, JM Calfayan, P Calvet, S Cammin, J Carrera, E Carvalho, W Casey, BCK Castilla-Valdez, H Chakrabarti, S Chakraborty, D Chan, KM Chandra, A Cheu, E Chevallie, F Cho, DK Choi, S Choudhary, B Christofek, L Christoudias, T Cihangir, S Claes, D Clutter, J Cooke, M Cooper, WE Corcoran, M Couderc, F Cousinou, MC Crepe-Renaudin, S Cuplov, V Cutts, D Cwiok, M da Motta, H Das, A Davies, G De, K Jong, SJ De la Cruz-Burelo, E Martins, CDO DeVaughan, K Degenhardt, JD Deliot, F Demarteau, M Demina, R Denisov, D Denisov, SP Desai, S Diehl, HT Diesburg, M Dominguez, A Dong, H Dorland, T Dubey, A Dudko, LV Duflot, L Dugad, SR Duggan, D Duperrin, A Dyer, J Dyshkant, A Eads, M Edmunds, D Ellison, J Elvira, VD Enari, Y Eno, S Ermolov, R Evans, H Evdokimov, A Evdolimov, VN Ferapontov, AV Ferbel, T Fiedler, F Filthaut, F Fisher, W Fisk, HE Fortner, M Fox, H Fu, S Fuess, S Gadfort, T Galea, CF Garcia, C Garcia-Bellido, A Gavrilov, V Gay, R Geist, W Geng, W Gerber, CE Gershtein, Y Gillberg, D Ginther, G Gollub, N Gomez, B Goussiou, A Grannis, PD Greenlee, H Greenwood, ZD Gregores, EM Grenier, G Gris, P Grivaz, JF Grohsjean, A Gruenendahl, S Gruenewald, MW Guo, F Guo, J Gutierrez, G Gutierrez, R Haas, A Hadley, NJ Haefner, R Hagopian, S Haley, J Hall, I Hall, RE Han, L Harder, K Harel, A Hauptman, M Hays, J Hebbeker, T Hedin, D Hegeman, JG Heinson, AP Heintz, U Hensel, C Herner, K Hesketh, G Hildreth, MD Hirosky, R Hobbs, JD Hoeneisen, B Hoeth, H Hohifeld, M Hossain, S Houben, R Hu, Y Hubacek, Z Hynek, V Iashvili, I Illingworth, R Ito, AS Jabeen, S Jaffre, M Jain, S Jakobs, K Jarvis, C Jesik, R Johns, K Johnson, C Johnson, M Johnston, D Jonckheere, A Jonsson, R Juste, A Kajfasz, E Kalk, JM Karmanov, D Kasper, PA Katsanos, I Kau, D Kaushik, V Kehoe, R Kermiche, S Khalatyan, N Khanov, A Kharchilava, A Kharzheev, YM Khatidze, D Kim, TJ Kirby, MH Kirschu, M Klima, B Kohli, JM Konrath, JP Kozelov, AV Kraus, J Kuhl, T Kumar, A Kupco, A Kurca, T Kuzmin, VA Kvita, J Lacroix, F Lam, D Lammers, S Landsberg, G Lebrun, R Lee, WM Leflat, A Lellouch, J Li, J Li, L Li, QZ Lietti, SM Lim, JK Lima, JGR Lincoln, D Linnemann, J Lipaev, VV Lipton, R Liug, Y Liu, Z Lobodenko, A Lokajicek, M Love, P Lubatti, HJ Luna, R Lyon, AL Maciel, AKA Macki, D Madaras, RJ Maettig, R Magass, C Magerkurth, A Mal, PK Malbouisson, HB Malik, S Malyshev, VL Maravin, Y Martin, B McCarthy, R Melnitchouk, A Mendoza, L Mercadante, PG Merkin, M Merritt, KW Meyer, A Meyer, J Mitrevski, J Mommsen, RK Mondal, NK Moore, RW Moulik, T Muanza, GS Mulhearn, M Mundal, O Mundim, L Nagy, E Naimuddin, M Narain, M Naumann, NA Neal, HA Negret, JP Neustroev, P Nilsen, H Nogima, H Novaes, SF Nunnemann, T O'Dell, V O'Neil, DC Obrant, G Ochando, C Onoprienko, D Oshima, N Osman, N Osta, J Otec, R Garzon, GJO Owen, M Padley, P Pangilinan, M Parashar, N Park, SJ Parkae, SK Parsons, J Partridge, R Parua, N Patwa, A Pawloski, G Penning, B Perfilov, M Peters, K Peters, Y Petroff, P Petteni, M Piegaia, R Piper, J Pleie, MA Podesta-Lerma, PLM Podstavkov, VM Pogorelov, Y Pol, ME Polozov, P Pope, BG Popov, AV Potter, C da Silva, WLP Prosper, HB Protopopescu, S Qian, J Quadt, A Quinn, B Rakitine, A Rangel, MS Ranjan, K Ratoff, PN Renkel, P Rich, P Rieger, J Rijssenbeek, M Ripp-Baudot, I Rizatdinova, F Robinson, S Rodrigues, RF Rominsky, M Royon, C Rubinov, P Ruchti, R Safronov, G Sajot, G Sanchez-Hernandez, A Sanders, MP Sanghi, B Savage, G Sawyer, L Scanlon, T Schaile, D Scharnberger, RD Scheglov, Y Schellman, H Schliephake, T Schlobohm, S Schwanenberger, C Schwartzman, A Schwienhorst, R Sekaric, J Severini, H Shabalina, E Shamim, M Shary, V Shchulkin, AA Shivpuri, RK Siccardi, V Simak, V Sirotenko, V Skubic, P Slattery, P Smirnov, D Snow, GR Snow, J Snyder, S Soeldner-Rembold, S Sonnenschein, L Sopczak, A Sosebee, M Soustruznik, K Spurlock, B Stark, J Steele, J Stolin, V Stoyanova, DA Strandberg, J Strandberg, S Strang, MA Strauss, E Strauss, M Stroehmer, R Strom, D Stutte, L Surnowidagdo, S Svoisky, P Sznajder, A Tamburello, P Tanasijczuk, A Taylor, W Tiller, B Tissandier, F Titov, M Tokmenin, VV Tschudi, Y Torchiani, I Tsybychev, D Tuchming, B Tuchming, B Tully, C Tuts, PM Unalan, R Uvarov, L Uvarov, S Uzunyan, S Vachon, B van den Berg, PJ Van Kooten, R van Leeuwen, WM Varelasly, N Varnes, EW Vasilyev, IA Verdier, P Vertogradov, LS Verzocchi, M Vilanova, D Villeneuve-Seguier, F Vint, P Volkac, P Voutilainen, M Wagner, R Wahl, HD Wang, MHLS Warchol, J Watts, G Wayne, M Weber, G Weber, M Welty-Rieger, L Wenger, A Wermes, N Wetstein, M White, A Wicke, D Williams, M Wilson, GW Wimpenny, SJ Wobisch, M Wood, DR Wyatt, TR Xie, Y Yacoob, S Yamada, R Yang, WC Yasuda, T Yatsunenko, YA Yin, H Yip, K Yoo, HD Youn, SW Yu, J Zeitnitz, C Zelitch, S Zhao, T Zhou, B Zhu, J Zielinski, M Zieminska, D Zieminski, A Zivkovic, L Zutshi, V Zverev, EG AF Abazov, V. M. Abbott, B. Abolins, M. Acharya, B. S. Adams, M. Adams, T. Aguilo, E. Ahsan, M. Alexeev, G. D. Alkhazov, G. Alton, A. Alverson, G. Alves, G. A. Anastasoaie, M. Ancu, L. S. Andeen, T. Andrie, B. Anzelc, M. S. Aoki, M. Arnoud, Y. Arov, M. Arthaud, M. Askew, A. Asman, B. Jesus, A. C. S. Assis Atramentov, O. Avila, C. Badaud, F. Bagby, L. Baldin, B. Banduri, D. V. Banerjee, P. Banerjee, S. Barberis, E. Barfuss, A. -F Bargassa, P. Baringer, R. Barreto, J. Bartlett, J. F. Bassler, U. Bauer, D. Beale, S. Bean, A. Begalli, M. Begel, M. Belanger-Champagne, C. Bellantoni, L. Bellavance, A. Benitez, J. A. Beri, S. B. Bernardi, G. Bernhard, R. Bertram, I. Besancon, M. Beuselinck, R. Bezzubov, V. A. Bhat, P. C. Bhatnagar, V. Biscaratt, C. Blazey, G. Blekman, F. Blessing, S. Bloom, K. Boehnlein, A. Boline, D. Bolton, T. A. Boos, E. E. Borissov, G. Bose, T. Brandt, A. Brock, R. Brooijmans, G. Bross, A. Brown, D. Bu, X. B. Buchanan, N. J. Buchholz, D. Buehler, M. Buescher, V. Bunichev, V. Burdin, S. Burnett, T. H. Buszello, C. P. Butler, J. M. Calfayan, P. Calvet, S. Cammin, J. Carrera, E. Carvalho, W. Casey, B. C. K. Castilla-Valdez, H. Chakrabarti, S. Chakraborty, D. Chan, K. M. Chandra, A. Cheu, E. Chevallie, F. Cho, D. K. Choi, S. Choudhary, B. Christofek, L. Christoudias, T. Cihangir, S. Claes, D. Clutter, J. Cooke, M. Cooper, W. E. Corcoran, M. Couderc, F. Cousinou, M. -C. Crepe-Renaudin, S. Cuplov, V. Cutts, D. Cwiok, M. da Motta, H. Das, A. Davies, G. De, K. de Jong, S. J. De la Cruz-Burelo, E. Martins, C. De Oliveira DeVaughan, K. Degenhardt, J. D. Deliot, F. Demarteau, M. Demina, R. Denisov, D. Denisov, S. P. Desai, S. Diehl, H. T. Diesburg, M. Dominguez, A. Dong, H. Dorland, T. Dubey, A. Dudko, L. V. Duflot, L. Dugad, S. R. Duggan, D. Duperrin, A. Dyer, J. Dyshkant, A. Eads, M. Edmunds, D. Ellison, J. Elvira, V. D. Enari, Y. Eno, S. Ermolov, R. Evans, H. Evdokimov, A. Evdolimov, V. N. Ferapontov, A. V. Ferbel, T. Fiedler, F. Filthaut, F. Fisher, W. Fisk, H. E. Fortner, M. Fox, H. Fu, S. Fuess, S. Gadfort, T. Galea, C. F. Garcia, C. Garcia-Bellido, A. Gavrilov, V. Gay, R. Geist, W. Geng, W. Gerber, C. E. Gershtein, Y. Gillberg, D. Ginther, G. Gollub, N. Gomez, B. Goussiou, A. Grannis, P. D. Greenlee, H. Greenwood, Z. D. Gregores, E. M. Grenier, G. Gris, Ph. Grivaz, J. -F. Grohsjean, A. Gruenendahl, S. Gruenewald, M. W. Guo, F. Guo, J. Gutierrez, G. Gutierrez, R. Haas, A. Hadley, N. J. Haefner, R. Hagopian, S. Haley, J. Hall, I. Hall, R. E. Han, L. Harder, K. Harel, A. Hauptman, M. Hays, J. Hebbeker, T. Hedin, D. Hegeman, J. G. Heinson, A. P. Heintz, U. Hensel, C. Herner, K. Hesketh, G. Hildreth, M. D. Hirosky, R. Hobbs, J. D. Hoeneisen, B. Hoeth, H. Hohifeld, M. Hossain, S. Houben, R. Hu, Y. Hubacek, Z. Hynek, V. Iashvili, I. Illingworth, R. Ito, A. S. Jabeen, S. Jaffre, M. Jain, S. Jakobs, K. Jarvis, C. Jesik, R. Johns, K. Johnson, C. Johnson, M. Johnston, D. Jonckheere, A. Jonsson, R. Juste, A. Kajfasz, E. Kalk, J. M. Karmanov, D. Kasper, P. A. Katsanos, I. Kau, D. Kaushik, V. Kehoe, R. Kermiche, S. Khalatyan, N. Khanov, A. Kharchilava, A. Kharzheev, Y. M. Khatidze, D. Kim, T. J. Kirby, M. H. Kirschu, M. Klima, B. Kohli, J. M. Konrath, J. -P. Kozelov, A. V. Kraus, J. Kuhl, T. Kumar, A. Kupco, A. Kurca, T. Kuzmin, V. A. Kvita, J. Lacroix, F. Lam, D. Lammers, S. Landsberg, G. Lebrun, R. Lee, W. M. Leflat, A. Lellouch, J. Li, J. Li, L. Li, Q. Z. Lietti, S. M. Lim, J. K. Lima, J. G. R. Lincoln, D. Linnemann, J. Lipaev, V. V. Lipton, R. Liug, Y. Liu, Z. Lobodenko, A. Lokajicek, M. Love, P. Lubatti, H. J. Luna, R. Lyon, A. L. Maciel, A. K. A. Mackin, D. Madaras, R. J. Maettig, R. Magass, C. Magerkurth, A. Mal, P. K. Malbouisson, H. B. Malik, S. Malyshev, V. L. Maravin, Y. Martin, B. McCarthy, R. Melnitchouk, A. Mendoza, L. Mercadante, P. G. Merkin, M. Merritt, K. W. Meyer, A. Meyer, J. Mitrevski, J. Mommsen, R. K. Mondal, N. K. Moore, R. W. Moulik, T. Muanza, G. S. Mulhearn, M. Mundal, O. Mundim, L. Nagy, E. Naimuddin, M. Narain, M. Naumann, N. A. Neal, H. A. Negret, J. P. Neustroev, P. Nilsen, H. Nogima, H. Novaes, S. F. Nunnemann, T. O'Dell, V. O'Neil, D. C. Obrant, G. Ochando, C. Onoprienko, D. Oshima, N. Osman, N. Osta, J. Otec, R. y Garzon, G. J. Otero Owen, M. Padley, P. Pangilinan, M. Parashar, N. Park, S. -J. Parkae, S. K. Parsons, J. Partridge, R. Parua, N. Patwa, A. Pawloski, G. Penning, B. Perfilov, M. Peters, K. Peters, Y. Petroff, P. Petteni, M. Piegaia, R. Piper, J. Pleie, M. -A. Podesta-Lerma, P. L. M. Podstavkov, V. M. Pogorelov, Y. Pol, M. -E. Polozov, P. Pope, B. G. Popov, A. V. Potter, C. da Silva, W. L. Prado Prosper, H. B. Protopopescu, S. Qian, J. Quadt, A. Quinn, B. Rakitine, A. Rangel, M. S. Ranjan, K. Ratoff, P. N. Renkel, P. Rich, P. Rieger, J. Rijssenbeek, M. Ripp-Baudot, I. Rizatdinova, F. Robinson, S. Rodrigues, R. F. Rominsky, M. Royon, C. Rubinov, P. Ruchti, R. Safronov, G. Sajot, G. Sanchez-Hernandez, A. Sanders, M. P. Sanghi, B. Savage, G. Sawyer, L. Scanlon, T. Schaile, D. Scharnberger, R. D. Scheglov, Y. Schellman, H. Schliephake, T. Schlobohm, S. Schwanenberger, C. Schwartzman, A. Schwienhorst, R. Sekaric, J. Severini, H. Shabalina, E. Shamim, M. Shary, V. Shchulkin, A. A. Shivpuri, R. K. Siccardi, V. Simak, V. Sirotenko, V. Skubic, P. Slattery, P. Smirnov, D. Snow, G. R. Snow, J. Snyder, S. Soeldner-Rembold, S. Sonnenschein, L. Sopczak, A. Sosebee, M. Soustruznik, K. Spurlock, B. Stark, J. Steele, J. Stolin, V. Stoyanova, D. A. Strandberg, J. Strandberg, S. Strang, M. A. Strauss, E. Strauss, M. Stroehmer, R. Strom, D. Stutte, L. Surnowidagdo, S. Svoisky, P. Sznajder, A. Tamburello, P. Tanasijczuk, A. Taylor, W. Tiller, B. Tissandier, F. Titov, M. Tokmenin, V. V. Tschudi, Y. Torchiani, I. Tsybychev, D. Tuchming, B. Tuchming, B. Tully, C. Tuts, P. M. Unalan, R. Uvarov, L. Uvarov, S. Uzunyan, S. Vachon, B. van den Berg, P. J. Van Kooten, R. van Leeuwen, W. M. Varelasly, N. Varnes, E. W. Vasilyev, I. A. Verdier, P. Vertogradov, L. S. Verzocchi, M. Vilanova, D. Villeneuve-Seguier, F. Vint, P. Volkac, P. Voutilainen, M. Wagner, R. Wahl, H. D. Wang, M. H. L. S. Warchol, J. Watts, G. Wayne, M. Weber, G. Weber, M. Welty-Rieger, L. Wenger, A. Wermes, N. Wetstein, M. White, A. Wicke, D. Williams, M. Wilson, G. W. Wimpenny, S. J. Wobisch, M. Wood, D. R. Wyatt, T. R. Xie, Y. Yacoob, S. Yamada, R. Yang, W. -C. Yasuda, T. Yatsunenko, Y. A. Yin, H. Yip, K. Yoo, H. D. Youn, S. W. Yu, J. Zeitnitz, C. Zelitch, S. Zhao, T. Zhou, B. Zhu, J. Zielinski, M. Zieminska, D. Zieminski, A. Zivkovic, L. Zutshi, V. Zverev, E. G. TI Search for scalar leptoquarks and T-odd quarks in the acoplanar jet topology using 2.5 fb(-1) of p(p)over-bar collision data at root s=1.96 TeV SO PHYSICS LETTERS B LA English DT Article ID EVENTS AB A search for new physics in the acoplanar jet topology has been performed in 2.5 fb(-1) of data from p (p) over bar collisions at root s = 1.96 TeV, recorded by the DO detector at the Fermilab Tevatron Collider. The numbers of events with exactly two acoplanar jets and missing transverse energy are in good agreement with the Standard Model expectations. The result of this search has been used to set a lower mass limit of 205 GeV at the 95% C.L. on the mass of a scalar leptoquark when this particle decays exclusively into a quark and a neutrino. In the framework of the Little Higgs model with T-parity, limits have also been obtained on the T-odd quark mass as a function of the T-odd photon mass. (C) 2008 Elsevier B.V. All rights reserved. C1 [Biscaratt, C.; Grenier, G.; Kurca, T.; Lebrun, R.; Muanza, G. S.; Tschudi, Y.; Verdier, P.] Univ Lyon 1, CNRS, IN2P3, IPNL, F-69622 Villeurbanne, France. [Biscaratt, C.; Grenier, G.; Kurca, T.; Lebrun, R.; Muanza, G. S.; Tschudi, Y.; Verdier, P.] Univ Lyon, Lyon, France. [Piegaia, R.; Tanasijczuk, A.] Univ Buenos Aires, Buenos Aires, DF, Argentina. [Alves, G. A.; Barreto, J.; da Motta, H.; Maciel, A. K. A.; Pol, M. -E.; Rangel, M. S.] Ctr Brasileiro Pesquisas Fis, LAFEX, Rio De Janeiro, Brazil. [Jesus, A. C. S. Assis; Begalli, M.; Carvalho, W.; Martins, C. De Oliveira; Luna, R.; Malbouisson, H. B.; Mundim, L.; Nogima, H.; da Silva, W. L. Prado; Rodrigues, R. F.; Sznajder, A.] Univ Estado Rio de Janeiro, Rio De Janeiro, Brazil. [Gregores, E. M.] Univ Fed ABC, Santo Andre, Brazil. [Lietti, S. M.; Mercadante, P. G.; Novaes, S. F.] Univ Estadual Paulista, Inst Fis Teor, BR-01405 Sao Paulo, Brazil. [Aguilo, E.; Beale, S.; Gillberg, D.; Liu, Z.; Moore, R. W.; Potter, C.; Taylor, W.; Vachon, B.] Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada. [Aguilo, E.; Beale, S.; Gillberg, D.; Liu, Z.; Moore, R. W.; O'Neil, D. C.; Potter, C.; Taylor, W.; Vachon, B.] Univ Alberta, Edmonton, AB, Canada. [Bu, X. B.; Han, L.; Liu, Z.; Yin, H.] Univ Sci & Technol China, Hefei 230026, Peoples R China. [Aguilo, E.; Beale, S.; Gillberg, D.; Liu, Z.; Moore, R. W.; O'Neil, D. C.; Potter, C.; Taylor, W.; Vachon, B.] York Univ, Toronto, ON M3J 2R7, Canada. [Aguilo, E.; Beale, S.; Gillberg, D.; Liu, Z.; Moore, R. W.; O'Neil, D. C.; Potter, C.; Taylor, W.; Vachon, B.] McGill Univ, Montreal, PQ, Canada. [Avila, C.; Gomez, B.; Mendoza, L.; Negret, J. P.] Univ Los Andes, Bogota, Colombia. [Hynek, V.; Kvita, J.; Soustruznik, K.] Charles Univ Prague, Ctr Particle Phys, Prague, Czech Republic. [Hubacek, Z.; Otec, R.; Simak, V.; Volkac, P.] Czech Tech Univ, CR-16635 Prague, Czech Republic. [Kupco, A.; Lokajicek, M.] Acad Sci Czech Republic, Inst Phys, Ctr Particle Phys, Prague, Czech Republic. [Hoeneisen, B.] Univ San Francisco Quito, Quito, Ecuador. [Badaud, F.; Gay, R.; Gris, Ph.; Lacroix, F.; Tissandier, F.] Univ Clermont Ferrand, LPC, CNRS, IN2P3, Clermont, France. [Arnoud, Y.; Chevallie, F.; Crepe-Renaudin, S.; Martin, B.; Sajot, G.; Stark, J.] Univ Grenoble 1, CNRS, LPSC, IN2P3,Inst Natl Polytech Grenoble, Grenoble, France. [Barfuss, A. -F; Cousinou, M. -C.; Duperrin, A.; Geng, W.; Kajfasz, E.; Kermiche, S.; Nagy, E.] Aix Marseille Univ, CNRS, IN2P3, CPPM, Marseille, France. [Calvet, S.; Duflot, L.; Grivaz, J. -F.; Jaffre, M.; Ochando, C.; Petroff, P.] Univ Paris 11, CNRS, IN2P3, LAL, F-91405 Orsay, France. [Andrie, B.; Bernardi, G.; Lellouch, J.; Sanders, M. P.; Sonnenschein, L.] Univ Paris 06, CNRS, IN2P3, LPNHE, Paris, France. [Andrie, B.; Bernardi, G.; Lellouch, J.; Sanders, M. P.; Sonnenschein, L.] Univ Paris 07, Paris, France. [Arthaud, M.; Bassler, U.; Besancon, M.; Chakrabarti, S.; Couderc, F.; Deliot, F.; Royon, C.; Shary, V.; Titov, M.; Tuchming, B.; Vilanova, D.] CEA, Irfu, SPP, Saclay, France. [Geist, W.; Ripp-Baudot, I.; Siccardi, V.] Univ Strasbourg 1, CNRS, IN2P3, IPHC, Strasbourg, France. [Hebbeker, T.; Kirschu, M.; Magass, C.; Meyer, A.] Rhein Westfal TH Aachen, Phys Inst A 3, Aachen, Germany. [Buescher, V.; Hensel, C.; Hohifeld, M.; Meyer, J.; Mundal, O.; Park, S. -J.; Pleie, M. -A.; Quadt, A.; Wermes, N.] Univ Bonn, Inst Phys, D-5300 Bonn, Germany. [Bernhard, R.; Jakobs, K.; Konrath, J. -P.; Nilsen, H.; Penning, B.; Torchiani, I.; Wenger, A.] Univ Freiburg, Inst Phys, Freiburg, Germany. [Fiedler, F.; Kuhl, T.; Weber, G.] Johannes Gutenberg Univ Mainz, Inst Phys, D-6500 Mainz, Germany. [Calfayan, P.; Grohsjean, A.; Haefner, R.; Nunnemann, T.; Schaile, D.; Stroehmer, R.; Tiller, B.] Univ Munich, Munich, Germany. [Hoeth, H.; Maettig, R.; Peters, Y.; Schliephake, T.; Wicke, D.; Zeitnitz, C.] Univ Wuppertal, Fachbereich Phys, Wuppertal, Germany. [Beri, S. B.; Bhatnagar, V.; Kohli, J. M.] Panjab Univ, Chandigarh 160014, India. [Choudhary, B.; Dubey, A.; Ranjan, K.; Shivpuri, R. K.] Univ Delhi, Delhi 110007, India. [Acharya, B. S.; Banerjee, P.; Banerjee, S.; Dugad, S. R.; Mondal, N. K.] Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India. [Cwiok, M.; Gruenewald, M. W.] Univ Coll Dublin, Dublin 2, Ireland. [Kim, T. J.; Lim, J. K.; Park, S. -J.] Korea Univ, Korea Detector Lab, Seoul, South Korea. [Choi, S.] Sungkyunkwan Univ, Suwon, South Korea. [Castilla-Valdez, H.; De la Cruz-Burelo, E.; Podesta-Lerma, P. L. M.; Sanchez-Hernandez, A.] CINVESTAV, Mexico City 14000, DF, Mexico. [Hegeman, J. G.; Houben, R.; van den Berg, P. J.; van Leeuwen, W. M.] NIKHEF H, FOM Inst, NL-1009 DB Amsterdam, Netherlands. [Hegeman, J. G.; Houben, R.; van den Berg, P. J.; van Leeuwen, W. M.] Univ Amsterdam, NIKHEF, Amsterdam, Netherlands. [Anastasoaie, M.; Ancu, L. S.; de Jong, S. J.; Filthaut, F.; Galea, C. F.; Naumann, N. A.] Radboud Univ Nijmegen, NIKHEF, NL-6525 ED Nijmegen, Netherlands. [Abazov, V. M.; Alexeev, G. D.; Kharzheev, Y. M.; Malyshev, V. L.; Tokmenin, V. V.; Vertogradov, L. S.; Yatsunenko, Y. A.] Joint Inst Nucl Res, Dubna, Russia. [Gavrilov, V.; Polozov, P.; Safronov, G.; Stolin, V.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Boos, E. E.; Bunichev, V.; Dudko, L. V.; Ermolov, R.; Karmanov, D.; Kuzmin, V. A.; Leflat, A.; Merkin, M.; Perfilov, M.; Zverev, E. G.] Moscow MV Lomonosov State Univ, Moscow, Russia. [Bezzubov, V. A.; Denisov, S. P.; Evdolimov, V. N.; Kozelov, A. V.; Lipaev, V. V.; Popov, A. V.; Shchulkin, A. A.; Stoyanova, D. A.; Vasilyev, I. A.] Inst High Energy Phys, Protvino, Russia. [Alkhazov, G.; Lobodenko, A.; Neustroev, P.; Obrant, G.; Scheglov, Y.; Uvarov, S.] Petersburg Nucl Phys Inst, St Petersburg, Russia. [Asman, B.; Belanger-Champagne, C.; Gollub, N.; Strandberg, S.] Stockholm Univ, S-10691 Stockholm, Sweden. [Asman, B.; Belanger-Champagne, C.; Gollub, N.; Strandberg, S.] Lund Univ, Lund, Sweden. [Asman, B.; Belanger-Champagne, C.; Gollub, N.; Strandberg, S.] Royal Inst Technol, Stockholm, Sweden. [Asman, B.; Belanger-Champagne, C.; Gollub, N.; Strandberg, S.] Uppsala Univ, Uppsala, Sweden. [Bertram, I.; Borissov, G.; Burdin, S.; Fox, H.; Love, P.; Rakitine, A.; Ratoff, P. N.; Sopczak, A.; Williams, M.] Univ Lancaster, Lancaster, England. [Bauer, D.; Beuselinck, R.; Blekman, F.; Buszello, C. P.; Christoudias, T.; Davies, G.; Hays, J.; Jesik, R.; Jonsson, R.; Osman, N.; Petteni, M.; Robinson, S.; Scanlon, T.; Villeneuve-Seguier, F.; Vint, P.] Univ London Imperial Coll Sci Technol & Med, London, England. [Harder, K.; Mommsen, R. K.; Owen, M.; Peters, K.; Rich, P.; Schwanenberger, C.; Soeldner-Rembold, S.; Wyatt, T. R.; Yang, W. -C.] Univ Manchester, Manchester, Lancs, England. [Cheu, E.; Das, A.; Johns, K.; Tamburello, P.; Varnes, E. W.] Univ Arizona, Tucson, AZ 85721 USA. [Madaras, R. J.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Madaras, R. J.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Hall, R. E.] Calif State Univ Fresno, Fresno, CA 93740 USA. [Chandra, A.; Ellison, J.; Heinson, A. P.; Li, L.; Wimpenny, S. J.] Univ Calif Riverside, Riverside, CA 92521 USA. [Adams, T.; Askew, A.; Atramentov, O.; Blessing, S.; Buchanan, N. J.; Carrera, E.; Duggan, D.; Gershtein, Y.; Hagopian, S.; Kau, D.; Prosper, H. B.; Sekaric, J.; Surnowidagdo, S.; Wahl, H. D.] Florida State Univ, Tallahassee, FL 32306 USA. [Aoki, M.; Bagby, L.; Baldin, B.; Bellantoni, L.; Bellavance, A.; Bhat, P. C.; Boehnlein, A.; Bross, A.; Casey, B. C. K.; Cihangir, S.; Cooke, M.; Cooper, W. E.; Demarteau, M.; Denisov, D.; Desai, S.; Diehl, H. T.; Diesburg, M.; Elvira, V. D.; Fisher, W.; Fisk, H. E.; Fu, S.; Fuess, S.; Greenlee, H.; Gruenendahl, S.; Gutierrez, G.; Illingworth, R.; Ito, A. S.; Johnson, M.; Johnston, D.; Jonckheere, A.; Juste, A.; Kasper, P. A.; Khalatyan, N.; Klima, B.; Lee, W. M.; Li, Q. Z.; Lincoln, D.; Lipton, R.; Lyon, A. L.; Merritt, K. W.; Naimuddin, M.; O'Dell, V.; Oshima, N.; y Garzon, G. J. Otero; Podstavkov, V. M.; Rubinov, P.; Sanghi, B.; Savage, G.; Sirotenko, V.; Stutte, L.; Verzocchi, M.; Wang, M. H. L. S.; Weber, M.; Yamada, R.; Yasuda, T.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Adams, M.; Gerber, C. E.; Shabalina, E.; Varelasly, N.] Univ Illinois, Chicago, IL 60607 USA. [Blazey, G.; Chakraborty, D.; Dyshkant, A.; Fortner, M.; Hedin, D.; Lima, J. G. R.; Uzunyan, S.; Zutshi, V.] No Illinois Univ, De Kalb, IL 60115 USA. [Andeen, T.; Anzelc, M. S.; Buchholz, D.; Kirby, M. H.; Schellman, H.; Strom, D.; Yacoob, S.; Youn, S. W.] Northwestern Univ, Evanston, IL 60208 USA. [Evans, H.; Parua, N.; Rieger, J.; Van Kooten, R.; Welty-Rieger, L.; Zieminska, D.; Zieminski, A.] Indiana Univ, Bloomington, IN 47405 USA. [Chan, K. M.; Hildreth, M. D.; Lam, D.; Osta, J.; Pogorelov, Y.; Ruchti, R.; Smirnov, D.; Svoisky, P.; Warchol, J.; Wayne, M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Parashar, N.] Purdue Univ Calumet, Hammond, IN 46323 USA. [Hauptman, M.] Iowa State Univ, Ames, IA 50011 USA. [Baringer, R.; Bean, A.; Clutter, J.; Moulik, T.; Wilson, G. W.] Univ Kansas, Lawrence, KS 66045 USA. [Ahsan, M.; Banduri, D. V.; Bolton, T. A.; Cuplov, V.; Ferapontov, A. V.; Maravin, Y.; Onoprienko, D.; Shamim, M.] Kansas State Univ, Manhattan, KS 66506 USA. [Arov, M.; Greenwood, Z. D.; Kalk, J. M.; Sawyer, L.; Steele, J.; Wobisch, M.] Louisiana Tech Univ, Ruston, LA 71272 USA. [Dominguez, A.; Eno, S.; Hadley, N. J.; Jarvis, C.; Wetstein, M.] Univ Maryland, College Pk, MD 20742 USA. [Boline, D.; Butler, J. M.; Cho, D. K.; Heintz, U.; Jabeen, S.; Strandberg, J.] Boston Univ, Boston, MA 02215 USA. [Alverson, G.; Barberis, E.; Hesketh, G.; Wood, D. R.] Northeastern Univ, Boston, MA 02115 USA. [Alton, A.; Degenhardt, J. D.; Magerkurth, A.; O'Neil, D. C.; Qian, J.; Zhou, B.] Univ Michigan, Ann Arbor, MI 48109 USA. [Abolins, M.; Benitez, J. A.; Brock, R.; Dyer, J.; Edmunds, D.; Hall, I.; Kraus, J.; Linnemann, J.; Piper, J.; Pope, B. G.; Schwienhorst, R.; Unalan, R.] Michigan State Univ, E Lansing, MI 48824 USA. [Melnitchouk, A.; Quinn, B.] Univ Mississippi, University, MS 38677 USA. [Bloom, K.; Claes, D.; DeVaughan, K.; Eads, M.; Malik, S.; Snow, G. R.; Voutilainen, M.] Univ Nebraska, Lincoln, NE 68588 USA. [Schwartzman, A.; Wagner, R.] Princeton Univ, Princeton, NJ 08544 USA. [Haley, J.; Iashvili, I.; Kharchilava, A.; Kumar, A.; Strang, M. A.; Tully, C.] SUNY Buffalo, Buffalo, NY 14260 USA. [Brooijmans, G.; Gadfort, T.; Haas, A.; Johnson, C.; Katsanos, I.; Khatidze, D.; Lammers, S.; Mitrevski, J.; Mulhearn, M.; Parsons, J.; Rijssenbeek, M.; Tuts, P. M.; Zivkovic, L.] Columbia Univ, New York, NY 10027 USA. [Cammin, J.; Demina, R.; Ferbel, T.; Garcia, C.; Garcia-Bellido, A.; Ginther, G.; Harel, A.; Slattery, P.; Zielinski, M.] Univ Rochester, Rochester, NY 14627 USA. [Dong, H.; Grannis, P. D.; Guo, F.; Guo, J.; Herner, K.; Hobbs, J. D.; Hu, Y.; McCarthy, R.; Scharnberger, R. D.; Strauss, E.; Tsybychev, D.; Zhu, J.] SUNY Stony Brook, Stony Brook, NY 11794 USA. [Begel, M.; Patwa, A.; Protopopescu, S.; Snyder, S.; Yip, K.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Evdokimov, A.; Snow, J.] Langston Univ, Langston, OK 73050 USA. [Abbott, B.; Gutierrez, R.; Hossain, S.; Jain, S.; Rominsky, M.; Severini, H.; Skubic, P.; Strauss, M.] Univ Oklahoma, Norman, OK 73019 USA. [Khanov, A.; Rizatdinova, F.] Oklahoma State Univ, Stillwater, OK 74078 USA. [Bose, T.; Christofek, L.; Cutts, D.; Enari, Y.; Landsberg, G.; Narain, M.; Pangilinan, M.; Partridge, R.; Xie, Y.; Yoo, H. D.] Brown Univ, Providence, RI 02912 USA. [Brandt, A.; De, K.; Kaushik, V.; Li, J.; Sosebee, M.; Spurlock, B.; White, A.; Yu, J.] Univ Texas Arlington, Arlington, TX 76019 USA. [Kehoe, R.; Renkel, P.] So Methodist Univ, Dallas, TX 75275 USA. [Bargassa, P.; Corcoran, M.; Mackin, D.; Padley, P.; Pawloski, G.] Rice Univ, Houston, TX 77005 USA. [Brown, D.; Buescher, V.; Hirosky, R.; Zelitch, S.] Univ Virginia, Charlottesville, VA 22901 USA. [Burnett, T. H.; Dorland, T.; Goussiou, A.; Lubatti, H. J.; Mal, P. K.; Schlobohm, S.; Watts, G.; Zhao, T.] Univ Washington, Seattle, WA 98195 USA. RP Verdier, P (reprint author), Univ Lyon 1, CNRS, IN2P3, IPNL, F-69622 Villeurbanne, France. EM verdier@ipnl.in2p3.fr RI Novaes, Sergio/D-3532-2012; Mercadante, Pedro/K-1918-2012; Mundim, Luiz/A-1291-2012; Yip, Kin/D-6860-2013; Ancu, Lucian Stefan/F-1812-2010; Shivpuri, R K/A-5848-2010; bu, xuebing/D-1121-2012; Dudko, Lev/D-7127-2012; Leflat, Alexander/D-7284-2012; Perfilov, Maxim/E-1064-2012; Boos, Eduard/D-9748-2012; Merkin, Mikhail/D-6809-2012; De, Kaushik/N-1953-2013; Fisher, Wade/N-4491-2013; Alves, Gilvan/C-4007-2013; Deliot, Frederic/F-3321-2014; Sharyy, Viatcheslav/F-9057-2014; Kupco, Alexander/G-9713-2014; Christoudias, Theodoros/E-7305-2015; KIM, Tae Jeong/P-7848-2015; Sznajder, Andre/L-1621-2016; Li, Liang/O-1107-2015 OI Novaes, Sergio/0000-0003-0471-8549; Mundim, Luiz/0000-0001-9964-7805; Yip, Kin/0000-0002-8576-4311; Ancu, Lucian Stefan/0000-0001-5068-6723; Dudko, Lev/0000-0002-4462-3192; De, Kaushik/0000-0002-5647-4489; Sharyy, Viatcheslav/0000-0002-7161-2616; Christoudias, Theodoros/0000-0001-9050-3880; KIM, Tae Jeong/0000-0001-8336-2434; Sznajder, Andre/0000-0001-6998-1108; Li, Liang/0000-0001-6411-6107 FU DOE; NSF (USA); CEA; FASI; Rosatom; RFBR (Russia); CNPq; FAPERJ; FAPESP; FUNDUNESP (Brazil); DAE; DST (India); Colciencias (Colombia); CONACyT (Mexico); KRF; KOSEF (Korea); CONICET; UBACyT (Argentina); FOM (The Netherlands); STFC (United Kingdom); MSMT; GACR (Czech Republic); CRC Program; CFI; NSERC; WestGrid Project (Canada); BMBF; DFG (Germany); SFI (Ireland); The Swedish Research Council (Sweden); CAS; CNSF (China); Alexander von Humboldt Foundation (Germany); [CNRS/IN2P3] FX We thank M. Carena. J. Hubisz, and M. Perelstein for their valuable help with the LHT model, the staffs at Fermilab and collaborating institutions, and acknowledge support from the DOE and NSF (USA): CEA and CNRS/IN2P3 (France); FASI, Rosatom and RFBR (Russia): CNPq, FAPERJ, FAPESP and FUNDUNESP (Brazil); DAE and DST (India): Colciencias (Colombia); CONACyT (Mexico); KRF and KOSEF (Korea); CONICET and UBACyT (Argentina); FOM (The Netherlands); STFC (United Kingdom); MSMT and GACR (Czech Republic): CRC Program, CFI, NSERC and WestGrid Project (Canada): BMBF and DFG (Germany): SFI (Ireland); The Swedish Research Council (Sweden); CAS and CNSF (China); and the Alexander von Humboldt Foundation (Germany). NR 27 TC 17 Z9 17 U1 0 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 J9 PHYS LETT B JI Phys. Lett. B PD OCT 23 PY 2008 VL 668 IS 5 BP 357 EP 363 DI 10.1016/j.physletb.2008.09.014 PG 7 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 369TO UT WOS:000260717000002 ER PT J AU Garnsworthy, AB Regan, PH Caceres, L Pietri, Y Sun, Y Rudolph, D Gorska, M Podolyak, Z Steer, SJ Hoischen, R Heinz, A Becker, F Bednarczyk, R Doornenbal, P Geissel, H Gerl, J Grawe, H Grebosz, J Kelic, A Kojouharov, I Kurz, N Montes, F Prokopowicz, W Saito, T Schaffner, H Tachenov, S Werner-Malento, E Wollersheim, HJ Benzoni, G Blank, BB Brandau, C Bruce, AM Camera, F Catford, WN Cullen, IJ Dornbradi, Z Estevez, E Gelletly, W Ilie, G Jolie, J Jones, GA Jungclaus, A Kmiecik, M Kondev, FG Kurtukian-Nieto, T Lalkovski, S Liu, Z Maj, A Myalski, S Pfutzner, M Schwertel, S Shizuma, T Simons, AJ Walker, PM Wieland, O Xu, FR AF Garnsworthy, A. B. Regan, P. H. Caceres, L. Pietri, Y. Sun, Y. Rudolph, D. Gorska, M. Podolyak, Zs. Steer, S. J. Hoischen, R. Heinz, A. Becker, F. Bednarczyk, R. Doornenbal, P. Geissel, H. Gerl, J. Grawe, H. Grebosz, J. Kelic, A. Kojouharov, I. Kurz, N. Montes, F. Prokopowicz, W. Saito, T. Schaffner, H. Tachenov, S. Werner-Malento, E. Wollersheim, H. J. Benzoni, G. Blank, B. B. Brandau, C. Bruce, A. M. Camera, F. Catford, W. N. Cullen, I. J. Dornbradi, Zs. Estevez, E. Gelletly, W. Ilie, G. Jolie, J. Jones, G. A. Jungclaus, A. Kmiecik, M. Kondev, F. G. Kurtukian-Nieto, T. Lalkovski, S. Liu, Z. Maj, A. Myalski, S. Pfutzner, M. Schwertel, S. Shizuma, T. Simons, A. J. Walker, P. M. Wieland, O. Xu, F. R. TI Neutron-proton pairing competition in N = Z nuclei: Metastable state decays in the proton dripline nuclei (82)(41)Nb and (86)(43)TC (vol 660, pg 326, 2008) SO PHYSICS LETTERS B LA English DT Correction C1 [Garnsworthy, A. B.; Regan, P. H.; Pietri, Y.; Podolyak, Zs.; Steer, S. J.; Brandau, C.; Catford, W. N.; Cullen, I. J.; Gelletly, W.; Jones, G. A.; Liu, Z.; Shizuma, T.; Simons, A. J.; Walker, P. M.] Univ Surrey, Dept Phys, Guildford GU2 7XH, Surrey, England. [Garnsworthy, A. B.; Heinz, A.] Yale Univ, WNSL, New Haven, CT 06520 USA. [Caceres, L.; Gorska, M.; Hoischen, R.; Becker, F.; Bednarczyk, R.; Doornenbal, P.; Geissel, H.; Gerl, J.; Grawe, H.; Grebosz, J.; Kelic, A.; Kojouharov, I.; Kurz, N.; Montes, F.; Prokopowicz, W.; Saito, T.; Schaffner, H.; Tachenov, S.; Werner-Malento, E.; Wollersheim, H. J.; Brandau, C.] GSL, D-64291 Darmstadt, Germany. [Caceres, L.; Jungclaus, A.] Univ Autonoma Madrid, Dept Teor, Madrid, Spain. [Sun, Y.] Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA. [Sun, Y.] Univ Notre Dame, Joint Inst Nucl Astrophys, Notre Dame, IN 46556 USA. [Sun, Y.] Shanghai Jiao Tong Univ, Dept Phys, Shanghai 200240, Peoples R China. [Rudolph, D.; Hoischen, R.] Lund Univ, Dept Phys, S-22100 Lund, Sweden. [Bednarczyk, R.; Grebosz, J.; Kmiecik, M.; Maj, A.] Inst Nucl Phys, PL-31342 Krakow, Poland. [Werner-Malento, E.; Pfutzner, M.] Warsaw Univ, IEP, PL-00681 Warsaw, Poland. [Benzoni, G.; Camera, F.; Wieland, O.] Univ Milan, I-20133 Milan, Italy. [Benzoni, G.; Camera, F.; Wieland, O.] Ist Nazl Fis Nucl, I-20133 Milan, Italy. [Blank, B. B.; Kurtukian-Nieto, T.] CEN Bordeaux Gradignan, F-33175 Gradignan, France. [Bruce, A. M.; Lalkovski, S.] Univ Brighton, Sch Engn, Brighton BN2 4GJ, E Sussex, England. [Dornbradi, Zs.] Inst Nucl Res, H-4001 Debrecen, Hungary. [Estevez, E.; Kurtukian-Nieto, T.] Univ Santiago de Compostela, Santiago De Compostela, Spain. [Ilie, G.; Jolie, J.] Univ Cologne, IKP, D-50937 Cologne, Germany. [Ilie, G.] Natl Inst Phys & Nucl Engn, Bucharest, Romania. [Kondev, F. G.] Argonne Natl Lab, Nucl Engn Div, Argonne, IL 60439 USA. [Lalkovski, S.] Univ Sofia St Kliment Ohridski Sofia, Fac Phys, Sofia, Bulgaria. [Schwertel, S.] Tech Univ Munich, Phys Dept E12, D-8046 Garching, Germany. [Shizuma, T.] Japan Atom Energy Agcy, Kizu, Kyoto 6190215, Japan. [Simons, A. J.] AWE Plc, Aldermaston RG7 4PR, Berks, England. [Xu, F. R.] Peking Univ, Dept Tech Phys, Beijing 100871, Peoples R China. RP Garnsworthy, AB (reprint author), Univ Surrey, Dept Phys, Guildford GU2 7XH, Surrey, England. EM a.garnsworthy@surrey.ac.uk RI Gerl, Juergen/A-3255-2011; Wieland, Oliver/G-1784-2011; Xu, Furong/K-4178-2013; Heinz, Andreas/E-3191-2014; Kurtukian-Nieto, Teresa/J-1707-2014; Bruce, Alison/K-7663-2016; Sun, Yang/P-2417-2015 OI Kurtukian-Nieto, Teresa/0000-0002-0028-0220; Bruce, Alison/0000-0003-2871-0517; NR 1 TC 4 Z9 5 U1 0 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 J9 PHYS LETT B JI Phys. Lett. B PD OCT 23 PY 2008 VL 668 IS 5 BP 460 EP 460 DI 10.1016/j.physletb.2008.09.020 PG 1 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 369TO UT WOS:000260717000022 ER PT J AU Knap, J Barton, NR Hornung, RD Arsenlis, A Becker, R Jefferson, DR AF Knap, J. Barton, N. R. Hornung, R. D. Arsenlis, A. Becker, R. Jefferson, D. R. TI Adaptive sampling, in hierarchical simulation SO INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING LA English DT Article DE solids; materials science; multi-scale; plasticity; finite elements ID POLYCRYSTAL PLASTICITY; POLYNOMIAL INTERPOLATION; NANOMECHANICS; SOLIDS; PREDICTION; TABULATION; MODEL AB We propose art adaptive sampling methodology for hierarchical multi-scale simulation. The method Utilizes a moving kriging interpolation to significantly reduce the number of evaluations of finer-scale response functions to provide essential constitutive information to a coarser-scale simulation model. The Underlying interpolation scheme is unstructured and adaptive to handle the transient nature of a simulation. To handle the dynamic construction and searching of a potentially large set of finer-scale response data, we employ a dynamic metric-tree database. We study the performance of our adaptive sampling methodology for a two-level multi-scale model involving a coarse-scale finite element simulation and a fine-scale crystal plasticity-based constitutive law. Copyright (c) 2008 John Wiley & Soils, Ltd. C1 [Knap, J.; Barton, N. R.; Hornung, R. D.; Arsenlis, A.; Becker, R.; Jefferson, D. R.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Knap, J (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM jaroslaw.knap@llnl.gov RI Becker, Richard/I-1196-2013 NR 47 TC 13 Z9 13 U1 1 U2 11 PU JOHN WILEY & SONS LTD PI CHICHESTER PA THE ATRIUM, SOUTHERN GATE, CHICHESTER PO19 8SQ, W SUSSEX, ENGLAND SN 0029-5981 J9 INT J NUMER METH ENG JI Int. J. Numer. Methods Eng. PD OCT 22 PY 2008 VL 76 IS 4 BP 572 EP 600 DI 10.1002/nme.2339 PG 29 WC Engineering, Multidisciplinary; Mathematics, Interdisciplinary Applications SC Engineering; Mathematics GA 364QY UT WOS:000260351400007 ER PT J AU Forrest, TR Bland, SR Wilkins, SB Walker, HC Beale, TAW Hatton, PD Prabhakaran, D Boothroyd, AT Mannix, D Yakhou, F McMorrow, DF AF Forrest, T. R. Bland, S. R. Wilkins, S. B. Walker, H. C. Beale, T. A. W. Hatton, P. D. Prabhakaran, D. Boothroyd, A. T. Mannix, D. Yakhou, F. McMorrow, D. F. TI Ordering of localized electronic states in multiferroic TbMnO(3): a soft X-ray resonant scattering study SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article ID POLARIZATION AB Soft x-ray resonant scattering (XRS) has been used to observe directly, for the first time, the ordering of localized electronic states on both the Mn and the Tb sites in multiferroic TbMnO(3). Large resonant enhancements of the x-ray scattering cross-section were observed when the incident photon energy was tuned to either the Mn L or Tb M edges which provide information on the Mn 3d and Tb 4f electronic states, respectively. The temperature dependence of the XRS signal establishes, in a model independent way, that in the high-temperature phase (28 K <= T <= 42 K) the Mn 3d sublattice displays long-range order. The Tb 4f sublattices are found to order only on entering the combined ferroelectric/magnetic state below 28 K. Our results are discussed with respect to recent hard XRS experiments ( sensitive to spatially extended orbitals) and neutron scattering. C1 [Forrest, T. R.; Walker, H. C.; McMorrow, D. F.] UCL, London Ctr Nanotechnol, London WC1E 6BT, England. [Bland, S. R.; Beale, T. A. W.; Hatton, P. D.] Univ Durham, Dept Phys, Durham DH1 3LE, England. [Wilkins, S. B.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. [Prabhakaran, D.; Boothroyd, A. T.] Univ Oxford, Clarendon Lab, Dept Phys, Oxford OX1 3PU, England. [Mannix, D.] UJF, CNRS, Inst Neel, F-38042 Grenoble, France. [Yakhou, F.] European Synchrotron Radiat Facil, F-38043 Grenoble, France. RP Forrest, TR (reprint author), UCL, London Ctr Nanotechnol, Gower St, London WC1E 6BT, England. EM t.forrest@ucl.ac.uk RI McMorrow, Desmond/C-2655-2008; Walker, Helen/C-4201-2011; Hatton, Peter/J-8445-2014 OI McMorrow, Desmond/0000-0002-4947-7788; Walker, Helen/0000-0002-7859-5388; FU EPSRC; Wolfson Royal Society Award; Office of Science, US Department of Energy [DE-AC02-98CH10886] FX The authors thank R Bean for his experimental assistance. Work in London was supported by the EPSRC and a Wolfson Royal Society Award and in Durham and Oxford by the EPSRC. The work at Brookhaven National Laboratory is supported by the Office of Science, US Department of Energy, under contract no. DE-AC02-98CH10886. NR 24 TC 15 Z9 15 U1 1 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD OCT 22 PY 2008 VL 20 IS 42 AR 422205 DI 10.1088/0953-8984/20/42/422205 PG 5 WC Physics, Condensed Matter SC Physics GA 355FB UT WOS:000259693700005 ER PT J AU Sebastian, SE Gillett, J Harrison, N Lau, PHC Singh, DJ Mielke, CH Lonzarich, GG AF Sebastian, Suchitra E. Gillett, J. Harrison, N. Lau, P. H. C. Singh, D. J. Mielke, C. H. Lonzarich, G. G. TI Quantum oscillations in the parent magnetic phase of an iron arsenide high temperature superconductor SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article ID FERMI-SURFACE; LAO1-XFXFEAS AB We report measurements of quantum oscillations in SrFe(2)As(2)-which is an antiferromagnetic parent of the iron arsenide family of superconductors-known to become superconducting under doping and the application of pressure. The magnetic field and temperature dependences of the oscillations between 20 and 55 T in the liquid helium temperature range suggest that the electronic excitations are those of a Fermi liquid. We show that the observed Fermi surface comprising small pockets is consistent with the formation of a spin-density wave. Our measurements thus demonstrate that high T(c) superconductivity can occur on doping or pressurizing a conventional metallic spin-density wave state. C1 [Sebastian, Suchitra E.; Gillett, J.; Lau, P. H. C.; Lonzarich, G. G.] Univ Cambridge, Cavendish Lab, Cambridge CB3 OHE, England. [Harrison, N.; Mielke, C. H.] Los Alamos Natl Lab, NHMFL, Los Alamos, NM 87545 USA. [Singh, D. J.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Sebastian, SE (reprint author), Univ Cambridge, Cavendish Lab, J J Thomson Ave, Cambridge CB3 OHE, England. EM suchitra@phy.cam.ac.uk RI Singh, David/I-2416-2012; OI Harrison, Neil/0000-0001-5456-7756 NR 32 TC 132 Z9 134 U1 1 U2 15 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD OCT 22 PY 2008 VL 20 IS 42 AR 422203 DI 10.1088/0953-8984/20/42/422203 PG 5 WC Physics, Condensed Matter SC Physics GA 355FB UT WOS:000259693700003 ER PT J AU Yu, SW Tobin, JG Soderlind, P AF Yu, S. W. Tobin, J. G. Soderlind, P. TI An alternative model for electron correlation in Pu SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article ID RESOLVED PHOTOELECTRON-SPECTROSCOPY; DELTA-PU; SPIN ORIENTATION; VALENCE BANDS; 5F STATES; PLUTONIUM; MOMENTS AB Using a density functional theory based approach that treats the 5f electrons relativistically, a Pu electronic structure with zero net magnetic moment is obtained, where the 5f orbital and 5f spin moments cancel each other. By combining the spin and orbital specific densities of states with state, spin and polarization specific transition moments, it is possible to reconstruct the experimentally observed photoemission spectra from Pu. Extrapolating to a spin-resolving Fano configuration, it is shown how this would resolve the extant controversy over Pu electronic structure. C1 [Yu, S. W.; Tobin, J. G.; Soderlind, P.] LLNS LLC, Lawrence Livermore Natl Lab, Livermore, CA USA. RP Yu, SW (reprint author), LLNS LLC, Lawrence Livermore Natl Lab, Livermore, CA USA. EM Yu21@LLNL.Gov RI Tobin, James/O-6953-2015 FU US Department of Energy FX Lawrence Livermore National Laboratory is operated by Lawrence Livermore National Security, LLC, for the US Department of Energy, National Nuclear Security Administration under Contract DE-AC52-07NA27344. Work that was performed by LLNL personnel was supported in part by the Office of Basic Energy Science at the US Department of Energy. NR 27 TC 16 Z9 16 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD OCT 22 PY 2008 VL 20 IS 42 AR 422202 DI 10.1088/0953-8984/20/42/422202 PG 5 WC Physics, Condensed Matter SC Physics GA 355FB UT WOS:000259693700002 ER PT J AU Chen, S Ferreira, PJ Sheng, WC Yabuuchi, N Allard, LF Shao-Horn, Y AF Chen, Shuo Ferreira, Paulo J. Sheng, Wenchao Yabuuchi, Naoaki Allard, Lawrence F. Shao-Horn, Yang TI Enhanced activity for oxygen reduction reaction on "Pt(3)CO" nanoparticles: Direct evidence of percolated and sandwich-segregation structures SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID TRANSITION-METAL-ALLOYS; ELECTRONIC-STRUCTURE; FUEL-CELLS; PT-CO; SURFACES; ELECTROCATALYSIS; STABILITY; FE; TRENDS; STRAIN AB Atomically resolved structures and composition of Pt alloy nanoparticles were obtained using aberration-corrected high-angle dark field imaging, which was correlated to specific ORR activity based on a Pt surface area. The enhanced specific ORR activity (similar to 2 times relative to Pt) of acid-treated "Pt(3)Co" nanoparticles can be related to composition variations at the atomic scale and the atomic scale and the formation of percolated Pt-rich and Pt-poor regions within individual particles. Upon annealing, we show direct evidence of surface Pt sandwich-segregation structures, which correspond to a specific ORR activity similar to 4 times relative to Pt. C1 [Chen, Shuo; Sheng, Wenchao; Yabuuchi, Naoaki; Shao-Horn, Yang] MIT, Electrochem Energy Lab, Cambridge, MA 02139 USA. [Ferreira, Paulo J.] Univ Texas Austin, Mat Sci & Engn Program, Austin, TX 78712 USA. [Allard, Lawrence F.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Shao-Horn, Y (reprint author), MIT, Electrochem Energy Lab, 77 Massachusetts Ave, Cambridge, MA 02139 USA. EM shaohorn@mit.edu RI Sheng, Wenchao/E-6196-2012; Chen, Shuo/H-2491-2011; Yabuuchi, Naoaki/F-8369-2012 OI Chen, Shuo/0000-0002-7145-1269; Yabuuchi, Naoaki/0000-0002-9404-5693 FU DOE Hydrogen Initiative program [DE-FG02-05ER15728]; National Science Foundation [DMR 02-13282]; Asst. Sec. Renew, Energy, Vehicle Tech. FX This work is supported in part by the DOE Hydrogen Initiative program under Award No. DE-FG02-05ER15728 and the MRSEC Program of the National Science Foundation under Award No. DMR 02-13282. The research made use of the DOE ORNL HTML User Program sponsored by Asst. Sec. for Energy Eff. and Renew. Energy, off. of FreedomCAR and Vehicle Tech. NR 25 TC 178 Z9 181 U1 9 U2 94 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD OCT 22 PY 2008 VL 130 IS 42 BP 13818 EP 13819 DI 10.1021/ja802513y PG 2 WC Chemistry, Multidisciplinary SC Chemistry GA 360HD UT WOS:000260047700004 PM 18811156 ER PT J AU Zhao, JG Wang, LH Dong, DW Liu, ZG Liu, HZ Chen, GF Wu, D Luo, JL Wang, NL Yu, Y Jin, CQ Guo, QZ AF Zhao, Jinggeng Wang, Luhong Dong, Dawei Liu, Zhiguo Liu, Haozhe Chen, Genfu Wu, Dan Luo, Jianlin Wang, Nanlin Yu, Yong Jin, Changqing Guo, Quanzhong TI Struture stability and compressibility of iron-based superconductor Nd(O(0.88)F(0.12))FeAs under high pressure SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID LAYERED QUATERNARY COMPOUND; EARTH; METAL AB The high-pressure angle-dispersive X-ray diffraction experiments on the iron-based superconductor Nd(O(0.88)F(0.12))FeAs were performed up to 32.7 GPa at room temperature. An isostructural phase transition starts at similar to 10 GPa. When pressure is higher than 13.5 GPa, Nd (O(0.88)F(0.12))FeAs completely transforms to a high-pressure phase, which remains the same tetragonal structure with a larger a-axis and smaller c-axis than those of the low-pressure phase. The ambient conditions isothermal bulk moduli B(0) are derived as 102(2) and 245(9) GPa for the low-pressure phase and high-pressure phase, respectively. The structure analysis based on the Rietveld refinement methods shows the difference of pressure dependence of the Fe-As and Nd-(O, F) bonding distances, as well as As-Fe-As and Nd-(O, F)-Nd angles between the low-pressure phase and high-pressure phase. C1 [Zhao, Jinggeng; Wang, Luhong; Dong, Dawei; Liu, Zhiguo; Liu, Haozhe] Harbin Inst Technol, Nat Sci Res Ctr, Acad Fundamental & Interdisciplinary Sci, Harbin 150080, Peoples R China. [Chen, Genfu; Wu, Dan; Luo, Jianlin; Wang, Nanlin; Yu, Yong; Jin, Changqing] Chinese Acad Sci, Beijing Natl Lab Condensed Matter Phys, Inst Phys, Beijing 100190, Peoples R China. [Guo, Quanzhong] Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA. RP Liu, HZ (reprint author), Harbin Inst Technol, Nat Sci Res Ctr, Acad Fundamental & Interdisciplinary Sci, Harbin 150080, Peoples R China. EM jin@aphy.iphy.ac.cn; haozhe@hit.edu.cn; jin@aphy.iphy.ac.cn RI Liu, Haozhe/E-6169-2011; Wang, Luhong/E-6234-2011 FU COMPRES; NSF MOST of China; New Century Excellent Talents and the Excellent Team Program in Harbin Institute of Technology FX We thank the support from COMPRES. This work was partly supported by NSF & MOST of China, and the Program for New Century Excellent Talents and the Excellent Team Program in Harbin Institute of Technology. NR 12 TC 44 Z9 45 U1 2 U2 42 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD OCT 22 PY 2008 VL 130 IS 42 BP 13828 EP 13829 DI 10.1021/ja804229k PG 2 WC Chemistry, Multidisciplinary SC Chemistry GA 360HD UT WOS:000260047700009 PM 18817396 ER PT J AU Misra, S Miller, GJ AF Misra, Sumohan Miller, Gordon J. TI Gd(5-x)Y(x)Tt(4) (Tt = Si or Ge): Effect of metal substitution on structure, bonding, and magnetism SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID ADIABATIC TEMPERATURE-CHANGE; ELECTRICAL-RESISTANCE; PHASE-RELATIONSHIPS; NANOSCALE ZIPPERS; CRYSTAL-STRUCTURE; TRANSITION; GD-5(SI2GE2); ALLOYS; GD5SI2GE2; SYSTEM AB A crystallographic study and theoretical assessment of the Gd/Y site preferences in the Gd(5-x)Y(x)Tt(4) (Tt = Si, Ge) series prepared by high-temperature methods is presented. All structures for the (Tt = Si, Ge) series prepared by high-temperature methods is presented. All structures for the system (Tt = Si, Ge) series prepared by high-temperature methods is presented. All structures for the Gd(5-x)Y(x)Si(4) system belong to the orthorhombic, Gd(5)Si(4)-type (space group Pnma). For the Gd(5-x)Y(x)Ge(4) system, phases with x < 3.6 and x >= 4.4 adopt the orthorhombic, Sm(5)Ge(4)-type structure. For the composition range of 3.6 <= x <= 4.2, a monoclinic, U(2)Mo(3)Si(4)-type structure (space group P2(1)/c) occurs as the majority phase. This structure type has not been previously observed in the RE(5)T(4) (T = Si, Ge, Ga) system and differs from the known monoclinic structure of Gd(5)Si(2)Ge(2)-type (space group P2(1)/a) because all Ge center dot center dot center dot Ge contacts between slabs are equivalent. The structural relationships between the Sm5Ge4-type and the U(2)Mo(3)Si(4)-type structures are discussed. Single crystal refinements of the occupancies for the three sites for Gd/Y atoms in the asymmetric unit reveal a partially ordered arrangement of Gd and Y atoms. TB-LMTO-ASA calculations were performed to study these atomic distributions as well as to elucidate possible electronic forces that might drive the structural variation. These results illustrate the importance of one of the Gd/Y-sites in shaping the magnetic and structural features observed in Gd(5-x)Y(x)Tt(4) system. The magnetic properties of some of the Gd(5-x)Y(x)Tt(4) phases are also reported. Germanides with x <= 2 show a metamagnetic-type transition similar to Gd(5)Ge(4) from 57-92(2) K. As the Y concentration increases (3 <= x <= 4), these phases exhibit at least ferrimagnetic ordering with transition temperatures ranging from 15-31(2) K to the paramagnetic state. C1 [Miller, Gordon J.] Iowa State Univ, Dept Chem, Ames, IA 50011 USA. Iowa State Univ, Ames Lab, Ames, IA 50011 USA. RP Miller, GJ (reprint author), Iowa State Univ, Dept Chem, Ames, IA 50011 USA. EM gmiller@iastate.edu FU Iowa State University [DE-AC02-07CH11358]; Materials Sciences Division of the Office of Basic Energy Sciences of the U.S. Department of Energy FX The authors thank Prof. Vitalij Pecharsky and Mr. Roger Rink for using the Lakeshore Magnetometer. This work was carried out at the Ames Laboratory, which is operated for the U.S. Department of Energy by Iowa State University under Contract No. DE-AC02-07CH11358. This work was supported by the Materials Sciences Division of the Office of Basic Energy Sciences of the U.S. Department of Energy. NR 47 TC 39 Z9 39 U1 1 U2 10 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD OCT 22 PY 2008 VL 130 IS 42 BP 13900 EP 13911 DI 10.1021/ja802848r PG 12 WC Chemistry, Multidisciplinary SC Chemistry GA 360HD UT WOS:000260047700034 PM 18817384 ER PT J AU Sun, YY Kim, YH Lee, K Zhang, SB AF Sun, Y. Y. Kim, Yong-Hyun Lee, Kyuho Zhang, S. B. TI Accurate and efficient calculation of van der Waals interactions within density functional theory by local atomic potential approach SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID GENERALIZED GRADIENT APPROXIMATION; NONCOVALENT INTERACTIONS; STACKING INTERACTIONS; INTERACTION ENERGIES; BASE-PAIRS; COMPLEXES; HYDROGEN; BIOMOLECULES; SET; STABILIZATION AB Density functional theory (DFT) in the commonly used local density or generalized gradient approximation fails to describe van der Waals (vdW) interactions that are vital to organic, biological, and other molecular systems. Here, we propose a simple, efficient, yet accurate local atomic potential (LAP) approach, named DFT+LAP, for including vdW interactions in the framework of DFT. The LAPs for H, C, N, and O are generated by fitting the DFT+LAP potential energy curves of small molecule dimers to those obtained from coupled cluster calculations with single, double, and perturbatively treated triple excitations, CCSD(T). Excellent transferability of the LAPs is demonstrated by remarkable agreement with the JSCH-2005 benchmark database [P. Jurecka Phys. Chem. Chem. Phys. 8, 1985 (2006)], which provides the interaction energies of CCSD(T) quality for 165 vdW and hydrogen-bonded complexes. For over 100 vdW dominant complexes in this database, our DFT+LAP calculations give a mean absolute deviation from the benchmark results less than 0.5 kcal/mol. The DFT+LAP approach involves no extra computational cost other than standard DFT calculations and no modification of existing DFT codes, which enables straightforward quantum simulations, such as ab initio molecular dynamics, on biomolecular systems, as well as on other organic systems. (C) 2008 American Institute of Physics. [DOI: 10.1063/1.2992078] C1 [Sun, Y. Y.; Kim, Yong-Hyun; Lee, Kyuho; Zhang, S. B.] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Sun, Y. Y.; Lee, Kyuho; Zhang, S. B.] Rensselaer Polytech Inst, Dept Phys Appl Phys & Astron, Troy, NY 12180 USA. RP Sun, YY (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM zhangs9@rpi.edu RI Lee, Kyuho/B-9370-2008; Kim, Yong-Hyun/C-2045-2011; Krausnick, Jennifer/D-6291-2013; Zhang, Shengbai/D-4885-2013; Sun, Yi-Yang/H-4029-2014 OI Lee, Kyuho/0000-0001-9325-3717; Kim, Yong-Hyun/0000-0003-4255-2068; Zhang, Shengbai/0000-0003-0833-5860; FU DOE/OS [DE-AC02-05CH11231]; CCNI of Rensselaer Polytechnic Institute; DOE/OS/BES; DOE/EERE [DE-AC36-99GO10337] FX The authors thank E. Schwegler, J. DuBois, S. Hamel, and R. Q. Hood at Lawrence Livermore National Lab, X. C. Zeng at the University of Nebraska and D. C. Langreth at Rutgers University for helpful discussions. Part of the calculations was done at NERSC, which is supported by DOE/OS under Contract No. DE-AC02-05CH11231, and at CCNI of Rensselaer Polytechnic Institute. This work was supported by DOE/OS/BES and DOE/EERE under Contract No. DE-AC36-99GO10337. NR 46 TC 58 Z9 58 U1 1 U2 13 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-9606 EI 1089-7690 J9 J CHEM PHYS JI J. Chem. Phys. PD OCT 21 PY 2008 VL 129 IS 15 AR 154102 DI 10.1063/1.2992078 PG 8 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 363QA UT WOS:000260280600002 PM 19045171 ER PT J AU Tatarkhanov, M Fomin, E Salmeron, M Andersson, K Ogasawara, H Pettersson, LGM Nilsson, A Cerda, JI AF Tatarkhanov, M. Fomin, E. Salmeron, M. Andersson, K. Ogasawara, H. Pettersson, L. G. M. Nilsson, A. Cerda, J. I. TI The structure of mixed H(2)O-OH monolayer films on Ru(0001) SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID SCANNING-TUNNELING-MICROSCOPY; LIQUID WATER; ADSORPTION; PT(111); ELECTROOXIDATION; RUTHENIUM; HYDROXYL; PLATINUM; SURFACES; HYDROGEN AB Scanning tunneling microscopy (STM) and x-ray absorption spectroscopy (XAS) have been used to study the structures produced by water on Ru(0001) at temperatures above 140 K. It was found that while undissociated water layers are metastable below 140 K, heating above this temperature produces drastic transformations, whereby a fraction of the water molecules partially dissociate and form mixed H(2)O-OH structures. X-ray photoelectron spectroscopy and XAS revealed the presence of hydroxyl groups with their O-H bond essentially parallel to the surface. STM images show that the mixed H(2)O-OH structures consist of long narrow stripes aligned with the three crystallographic directions perpendicular to the close-packed atomic rows of the Ru(0001) substrate. The internal structure of the stripes is a honeycomb network of H-bonded water and hydroxyl species. We found that the metastable low temperature molecular phase can also be converted to a mixed H(2)O-OH phase through excitation by the tunneling electrons when their energy is 0.5 eV or higher above the Fermi level. Structural models based on the STM images were used for density functional theory optimizations of the stripe geometry. The optimized geometry was then utilized to calculate STM images for comparison with the experiment. (C) 2008 American Institute of Physics. [DOI: 10.1063/1.2988903] C1 [Tatarkhanov, M.; Fomin, E.; Salmeron, M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Tatarkhanov, M.; Fomin, E.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Salmeron, M.] Univ Calif Berkeley, Div Engn & Mat Sci, Berkeley, CA 94720 USA. [Andersson, K.; Ogasawara, H.; Nilsson, A.] Stanford Synchrotron Radiat Lab, Menlo Pk, CA 94025 USA. [Andersson, K.; Pettersson, L. G. M.; Nilsson, A.] Stockholm Univ, Albanova Univ Ctr, FYSIKUM, S-10691 Stockholm, Sweden. [Andersson, K.] Tech Univ Denmark, Dept Phys, Ctr Individual Nanoparticle Funct, DK-2800 Lyngby, Denmark. [Cerda, J. I.] CSIC, Inst Ciencia Mat, E-28049 Madrid, Spain. RP Salmeron, M (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM mbsalmeron@lbl.gov RI Cerda, Jorge/F-4043-2010; Nilsson, Anders/E-1943-2011; Pettersson, Lars/F-8428-2011; Pettersson, Lars/J-4925-2013; Ogasawara, Hirohito/D-2105-2009; OI Cerda, Jorge/0000-0001-6176-0191; Nilsson, Anders/0000-0003-1968-8696; Pettersson, Lars/0000-0003-1133-9934; Ogasawara, Hirohito/0000-0001-5338-1079; Andersson, Klas J./0000-0002-6064-5658 FU U. S. Department of Energy [DE-AC02-05CH11231]; Spanish Ministry of Science and Technology [MAT2007-66719-C0302]; XPS; XAS; NSF [CHE-0089215]; Swedish Foundation for Strategic Research; Swedish Natural Science Research Council FX This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, and Materials Sciences and Engineering Division of the U. S. Department of Energy under Contract No. DE-AC02-05CH11231. The theoretical work was supported by the Spanish Ministry of Science and Technology (Project No. MAT2007-66719-C0302). The XPS and XAS work was supported by the NSF (Grant No. CHE-0089215) grant and by the Swedish Foundation for Strategic Research, Swedish Natural Science Research Council. The staff, David Shuh, Mary Gilles, and Tolek Tyliszczak at beamline 11.0.2, Advanced Light Source, are gratefully acknowledged. NR 54 TC 25 Z9 25 U1 3 U2 34 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD OCT 21 PY 2008 VL 129 IS 15 AR 154109 DI 10.1063/1.2988903 PG 8 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 363QA UT WOS:000260280600009 PM 19045178 ER PT J AU Knobelspiesse, KD Cairns, B Schmid, B Roman, MO Schaaf, CB AF Knobelspiesse, Kirk D. Cairns, Brian Schmid, Beat Roman, Miguel O. Schaaf, Crystal B. TI Surface BRDF estimation from an aircraft compared to MODIS and ground estimates at the Southern Great Plains site SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID REFLECTANCE DISTRIBUTION FUNCTION; BROAD-BAND CONVERSIONS; REMOTE-SENSING DATA; BIDIRECTIONAL REFLECTANCE; PLANETARY ATMOSPHERES; MULTIPLE-SCATTERING; ALBEDO RETRIEVALS; POLARIZED-LIGHT; NARROW-BAND; VALIDATION AB Surface albedo, which quantifies the amount of solar radiation reflected by the ground, is an important component of climate models. However, it can be highly heterogeneous, so obtaining adequate measurements are challenging. Global measurements require orbital observations, such as those provided by the Moderate Resolution Imaging Spectroradiometer (MODIS). Satellites estimate the surface bidirectional reflectance distribution function (BRDF), a surface inherent optical property, by correcting observed radiances for atmospheric effects and accumulating measurements at many viewing and solar geometries. The BRDF is then used to estimate albedo, an apparent optical property utilized by climate models. Satellite observations are often validated with ground radiometer measurements. However, spatial and temporal sampling differences mean that direct comparisons are subject to substantial uncertainties. We attempt to bridge the resolution gap using an airborne radiometer, the Research Scanning Polarimeter (RSP). RSP was flown at low altitude in the vicinity of the Department of Energy's Southern Great Plains Central Facility (SGP CF) in Oklahoma during the Aerosol Lidar Validation Experiment (ALIVE) in September, 2005. The RSP's scanning radiometers estimate the BRDF in seconds, rather than days required by MODIS, and utilize the Ames Airborne Tracking Sunphotometer (AATS-14) for atmospheric correction. Our comparison indicates that surface albedo estimates from RSP and MODIS agree with Best Estimate Radiation Flux (BEFLUX) ground radiometer observations at the SGP CF. Since the RSP is an airborne prototype of the Aerosol Polarimetery Sensor (APS), due to be launched into orbit in 2009, these techniques could form the basis for routine BRDF validation. C1 [Knobelspiesse, Kirk D.; Cairns, Brian] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10025 USA. [Cairns, Brian] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Schmid, Beat] Pacific NW Natl Lab, Atmospher Sci & Global Change Div, Richland, WA 99352 USA. [Roman, Miguel O.; Schaaf, Crystal B.] Boston Univ, Ctr Remote Sensing, Dept Geog & Environm, Boston, MA 02215 USA. RP Knobelspiesse, KD (reprint author), Columbia Univ, Dept Appl Phys & Appl Math, 2880 Broadway, New York, NY 10025 USA. EM kdk2103@columbia.edu RI Roman, Miguel/D-4764-2012; Knobelspiesse, Kirk/S-5902-2016; OI Roman, Miguel/0000-0003-3953-319X; Knobelspiesse, Kirk/0000-0001-5986-1751; Cairns, Brian/0000-0002-1980-1022 FU US National Science Foundation; U. S. Department of Energy, Office of Science, Office of Biological and Environmental Research, Environmental Sciences Division; ARM; National Aeronautics and Space Administration (NASA) FX The first author acknowledges support from the US National Science Foundation, through a Fellowship in the IGERT Joint Program in Applied Mathematics and Earth and Environmental Science at Columbia University at the time of the ALIVE field campaign. BEFLUX data were obtained from the Atmospheric Radiation Measurement (ARM) Program sponsored by the U. S. Department of Energy, Office of Science, Office of Biological and Environmental Research, Environmental Sciences Division. ALIVE was also funded by ARM, and RSP participation during that experiment was funded by the National Aeronautics and Space Administration (NASA). Thanks to the many who helped collect the data used in this study: Ben Hovelman was the J-31 pilot, Roy Johnson and Nicholas Truong were AATS-14 engineers, Rose Dominguez provided J-31 Navigational and GPS data, and Warren Gore provided J-31 Meteorological data. Finally, thanks to both the anonymous reviewers. NR 49 TC 23 Z9 28 U1 1 U2 7 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD OCT 21 PY 2008 VL 113 IS D20 AR D20105 DI 10.1029/2008JD010062 PG 21 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 365GE UT WOS:000260393100007 ER PT J AU Hohenbild, S Grubel, C Yushkov, GY Oks, EM Anders, A AF Hohenbild, Stefan Gruebel, Christoph Yushkov, Georgy Yu Oks, Efim M. Anders, Andre TI A study of vacuum arc ion velocities using a linear set of probes SO JOURNAL OF PHYSICS D-APPLIED PHYSICS LA English DT Article ID ENERGY-DISTRIBUTION; PLASMAS; CATHODE; CHARGE AB The most likely velocity of ions moving away from vacuum arc cathode spots was measured using a set of probes along the path of plasma expansion. The goal was to determine how much, if any, change in the ion drift velocity occurs in the expanded plasma. The arc discharge current was perturbed to create plasma density markers whose travel is picked up by the set of probes. It was found that the perturbation with current oscillations did not result in consistent data because ion current maxima and minima are determined not only by the plasma production but also by the transients of the arc pulse and by the asymmetry of the ion velocity distribution function. Perturbation with a short current spike was more conclusive. The most likely ion velocity, which depends on the cathode material but is generally (1-3) x 10(4) m s(-1), was measured to be reduced (about 25%) with increasing distance (0.5 m) from the cathode, which can be explained by collisions of ions with the background of neutrals. The ion velocity was slightly increased when the arc current was increased (about 15% when going from 50 to 400 A), which correlated with enhanced arc voltage and power dissipation. The ion velocity could be enhanced (by about 20%) when the plasma was produced in a non-uniform magnetic field (up to 300 mT). C1 [Anders, Andre] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Hohenbild, Stefan; Gruebel, Christoph] Univ Bundeswehr Munchen, Fak Electrotech & Informat Tech, EIT 1a, D-85577 Neubiberg, Germany. [Yushkov, Georgy Yu; Oks, Efim M.] Russian Acad Sci, Inst High Current Elect, Tomsk 634055, Russia. RP Anders, A (reprint author), Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM aanders@lbl.gov RI Oks, Efim/A-9409-2014; Anders, Andre/B-8580-2009; Yushkov, Georgy/O-8024-2015 OI Oks, Efim/0000-0002-9323-0686; Anders, Andre/0000-0002-5313-6505; Yushkov, Georgy/0000-0002-7615-6058 FU US Department of Energy, Office of Nonproliferation and International Security, Initiatives for Proliferation Prevention [IPP-LBNL-T2-196]; Lawrence Berkeley National Laboratory [DE-AC02-05CH11231] FX Two of us (SH and ChG) thank Professor J Schein, UBW Munich, for arranging the research opportunity at Berkeley. This work was supported by the US Department of Energy, Office of Nonproliferation and International Security, Initiatives for Proliferation Prevention, Project No IPP-LBNL-T2-196, under Contract No DE-AC02-05CH11231 with the Lawrence Berkeley National Laboratory. NR 17 TC 2 Z9 3 U1 2 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0022-3727 EI 1361-6463 J9 J PHYS D APPL PHYS JI J. Phys. D-Appl. Phys. PD OCT 21 PY 2008 VL 41 IS 20 AR 205210 DI 10.1088/0022-3727/41/20/205210 PG 7 WC Physics, Applied SC Physics GA 361ML UT WOS:000260131700036 ER PT J AU Ma, BH Kwon, DK Narayanan, M Balachandran, U AF Ma, Beihai Kwon, Do-Kyun Narayanan, Manoj Balachandran, U. (Balu) TI Leakage current characteristics and dielectric breakdown of antiferroelectric Pb(0.92)La(0.08)Zr(0.95)Ti(0.05)O(3) film capacitors grown on metal foils SO JOURNAL OF PHYSICS D-APPLIED PHYSICS LA English DT Article ID TITANATE THIN-FILMS; ELECTRONIC CONDUCTION; ELECTRICAL-PROPERTIES; STATISTICS; MECHANISM; BUFFER AB We have grown crack-free antiferroelectric (AFE) Pb(0.92)La(0.08)Zr(0.95)Ti(0.05)O(3) (PLZT) films on nickel foils by chemical solution deposition. To eliminate the parasitic effect caused by the formation of a low-permittivity interfacial oxide, we applied a conductive buffer layer of lanthanum nickel oxide (LNO) on the nickel foil by chemical solution deposition prior to the PLZT deposition. Use of the LNO buffer allowed high-quality film-on-foil capacitors to be prepared at high temperatures in air. With the AFE PLZT deposited on LNO-buffered Ni foils, we observed field-induced phase transformations of AFE to ferroelectric (FE). The AFE-to-FE phase transition field, E(AF) = 260 kV cm(-1), and the reverse phase transition field, E(FA) = 220 kVcm(-1), were measured at room temperature on a similar to 1.15 mu m thick PLZT film grown on LNO-buffered Ni foils. The relative permittivities of the AFE and FE states were similar to 530 and similar to 740, respectively, with dielectric loss < 0.05 at room temperature. P-E hysteresis loop measured at room temperature confirmed the field-induced phase transition. The time-relaxation current density was investigated under various applied electric fields. The leakage current density of a 1.15 mu m thick AFE PLZT film-on-foil capacitor was 5 x 10(-9) Acm(-2) at room temperature under 87 kV cm(-1) applied field. The breakdown behaviour of the AFE PLZT film-on-foil capacitors was studied by Weibull analysis. The mean breakdown time decreased exponentially with increasing applied field. The mean breakdown time was over 610 s when a field of 1.26MVcm(-1) was applied to a 1.15 mu m thick AFE PLZT film-on-foil capacitor. C1 [Ma, Beihai; Kwon, Do-Kyun; Narayanan, Manoj; Balachandran, U. (Balu)] Argonne Natl Lab, Div Energy Syst, Argonne, IL 60439 USA. RP Ma, BH (reprint author), Argonne Natl Lab, Div Energy Syst, 9700 S Cass Ave, Argonne, IL 60439 USA. EM bma@anl.gov RI Narayanan, Manoj/A-4622-2011; Ma, Beihai/I-1674-2013 OI Ma, Beihai/0000-0003-3557-2773 FU US Department of Energy, Office of Vehicle Technologies Program [DE-AC020-6CH11357] FX Work funded by the US Department of Energy, Office of Vehicle Technologies Program, under Contract DE-AC020-6CH11357. This work benefited from the use of the Electron Microscopy Center (EMC) at Argonne National Laboratory. The authors thank Dr R E Koritala at EMC for her assistance with scanning electron microscopy. NR 28 TC 20 Z9 20 U1 1 U2 21 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0022-3727 J9 J PHYS D APPL PHYS JI J. Phys. D-Appl. Phys. PD OCT 21 PY 2008 VL 41 IS 20 AR 205003 DI 10.1088/0022-3727/41/20/205003 PG 7 WC Physics, Applied SC Physics GA 361ML UT WOS:000260131700010 ER PT J AU Kharlampieva, E Kozlovskaya, V Ankner, JF Sukhishvili, SA AF Kharlampieva, Eugenia Kozlovskaya, Veronika Ankner, John F. Sukhishvili, Svetlana A. TI Hydrogen-Bonded Polymer Multilayers Probed by Neutron Reflectivity SO LANGMUIR LA English DT Article ID POLYELECTROLYTE MULTILAYERS; MOLECULAR-WEIGHT; LAYER; FILMS; POLY(N-ISOPROPYLACRYLAMIDE); WATER; TEMPERATURE; REFLECTOMETRY; NANOPARTICLE; PH AB We present a neutron reflectivity study of the internal structure of multilayers made of a weak polyelectrolyte and a neutral component where interactions between adjacent layers are controlled by hydrogen-bonding. We found the degree of interpenetration of polymer layers expressed as the interlayer roughness to be strongly correlated with the strength of intermolecular interactions between the adjacent layers. In addition, polymer layers become more diffuse with a distance from the substrate. Our results demonstrate that hydrogen-bonded films exhibit a close correlation between their structure and properties, which is essential for various applications. C1 [Kharlampieva, Eugenia; Kozlovskaya, Veronika; Sukhishvili, Svetlana A.] Stevens Inst Technol, Dept Chem & Chem Biol, Hoboken, NJ 07030 USA. [Ankner, John F.] Oak Ridge Natl Lab, Spallat Neutron Source, Oak Ridge, TN 37831 USA. RP Sukhishvili, SA (reprint author), Stevens Inst Technol, Dept Chem & Chem Biol, Hoboken, NJ 07030 USA. EM ssukhish@stevens.edu OI Ankner, John/0000-0002-6737-5718 NR 30 TC 38 Z9 38 U1 5 U2 19 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0743-7463 J9 LANGMUIR JI Langmuir PD OCT 21 PY 2008 VL 24 IS 20 BP 11346 EP 11349 DI 10.1021/la802502c PG 4 WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 360HT UT WOS:000260049300007 PM 18816021 ER PT J AU Sun, YG Lei, CH Gosztola, D Haasch, R AF Sun, Yugang Lei, Changhui Gosztola, David Haasch, Rick TI Formation of Oxides and Their Role in the Growth of Ag Nanoplates on GaAs Substrates SO LANGMUIR LA English DT Article ID SOLAR-ENERGY CONVERSION; INHOMOGENEOUS SCHOTTKY BARRIERS; ENHANCED RAMAN-SCATTERING; THIN-FILM GROWTH; REPLACEMENT REACTION; PHOTOELECTROCHEMICAL CELLS; SEMICONDUCTOR SURFACES; GALVANIC DISPLACEMENT; METAL NANOSTRUCTURES; ELECTRON-MICROSCOPY AB Simple galvanic reactions between highly doped n-type GaAs wafers and a pure aqueous solution of AgNO3 at room temperature provide an easy and efficient protocol to directly deposit uniform Ag nanoplates with tunable dimensions on the GaAs substrates. The anisotropic growth of the Ag nanoplates in the absence of surfactant molecules might be partially ascribed to the codeposition of oxides of gallium and arsenic, which are revealed by extensive data from electron microscopy, X-ray photoelectron spectroscopy, and Raman spectroscopy, during the growth of the Ag nanoplates. The electron microscopic characterization shows that each Ag nanoplate has a "necked" geometry, that is, it pins on the GaAs lattices through only a tiny neck (with sizes of < 10 nm). In addition, the as-grown Ag nanoplates exhibit strong enhancement toward Raman scattering of materials on (or around) their surfaces. C1 [Sun, Yugang; Gosztola, David] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Lei, Changhui; Haasch, Rick] Univ Illinois, Ctr Microanal Mat, Frederick Seitz Mat Res Lab, Urbana, IL 61801 USA. RP Sun, YG (reprint author), Argonne Natl Lab, Ctr Nanoscale Mat, 9700 S Cass Ave, Argonne, IL 60439 USA. EM ygsun@anl.gov RI Gosztola, David/D-9320-2011; Sun, Yugang /A-3683-2010 OI Gosztola, David/0000-0003-2674-1379; Sun, Yugang /0000-0001-6351-6977 FU U.S. Department of Energy [DEFG02-91-ER45439]; Office of Science; Office of Basic Energy Sciences [DE-AC02-06CH11357] FX The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. Use of the Center for Nanoscale Materials and the Electron Microscopy Center for Materials Research at Argonne was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. Characterizations were also carried out by partially using the Center for Microanalysis of Materials Facilities in Frederick Seitz Materials Research Laboratory, University of Illinois, which is partially supported by the U.S. Department of Energy under Grant No. DEFG02-91-ER45439. NR 57 TC 15 Z9 15 U1 1 U2 15 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0743-7463 J9 LANGMUIR JI Langmuir PD OCT 21 PY 2008 VL 24 IS 20 BP 11928 EP 11934 DI 10.1021/la801698s PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 360HT UT WOS:000260049300082 PM 18788821 ER PT J AU Budhlall, BM Marquez, M Velev, OD AF Budhlall, Bridgette M. Marquez, Manuel Velev, Orlin D. TI Microwave, Photo- and Thermally Responsive PNIPAm-Gold Nanoparticle Microgels SO LANGMUIR LA English DT Article ID POLY-N-ISOPROPYLACRYLAMIDE; INTERNAL PHASE-SEPARATION; SHELL MICROCAPSULES; EMULSION DROPLETS; HOLLOW SPHERES; ASSISTED SYNTHESIS; LATEX-PARTICLES; RELEASE; NANOCONTAINERS; MICROSPHERES AB Microwave-, photo- and thermo-responsive polymer microgels that range in size from 500 to 800 urn and are swollen with water were prepared by a novel microarray technique. We used a liquid-liquid dispersion technique in a system of three immiscible liquids to prepare hybrid PNIPAm-co-AM core-shell capsules loaded with AuNPs. The spontaneous encapsulation is a result of the formation of double oil-in-water-in-oil (o/w/o) emulsion. It is facilitated by adjusting the balance of the interfacial tensions between the aqueous phase (in which a water-soluble drug may be dissolved), the monomer phase and the continuous phase. The water-in-oil (w/o) droplets containing 26 wt% NIPAm and Am monomers, 0.1 wt% Tween-80 surfactant, FITC fluorescent dye and colloidal gold nanoparticles spontaneously developed a core-shell morphology that was fixed by in situ photopolymerization. The results demonstrate new reversibly swelling and deswelling AuNP/PNIPAm hybrid core-shell microcapsules and microgels that can be actuated by visible light and/or microwave radiation (<= 1250nm) and/or temperature. This is the first study to demonstrate that incorporating AuNPs speeds up the response kinetics of PNIPAm, and hence enhances the sensitivity to external stimuli of PNIPAm. These microgels can have potential applications for microfluidic switches or microactuators, photosensors, and various nanomedicine applications in controlled delivery and release. C1 [Budhlall, Bridgette M.] Univ Massachusetts, NSF Funded Ctr High Rate Nanomfg, Lowell, MA 01854 USA. [Budhlall, Bridgette M.] Univ Massachusetts, Nanomfg Ctr Excellence, Dept Engn Phys, Lowell, MA 01854 USA. [Budhlall, Bridgette M.; Velev, Orlin D.] N Carolina State Univ, Dept Chem & Biomol Engn, Raleigh, NC 27695 USA. [Budhlall, Bridgette M.; Marquez, Manuel] NIST, Ctr Theoret & Computat Nanosci, Gaithersburg, MD 20899 USA. [Budhlall, Bridgette M.; Marquez, Manuel] Arizona State Univ, Harrington Dept Bioengn, Tempe, AZ USA. [Budhlall, Bridgette M.; Marquez, Manuel] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. RP Budhlall, BM (reprint author), Univ Massachusetts, NSF Funded Ctr High Rate Nanomfg, Lowell, MA 01854 USA. EM bridgette_budhlall@uml.edu; odvelev@unity.ncsu.edu FU University of Massachusetts, Lowell; International Network of Emerging Science and Technology Group; Phillip Morris USA FX B.M.B. acknowledges the University of Massachusetts, Lowell, for granting time to work with Prof. Velev, International Network of Emerging Science and Technology Group, Phillip Morris USA for funding, Emily Hon (undergraduate student), Suk-Tai Chang and Ketan Bhatt (graduate students) for performing some of the experiments and providing training on the confocal microscope, respectively. NR 66 TC 50 Z9 53 U1 8 U2 132 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0743-7463 J9 LANGMUIR JI Langmuir PD OCT 21 PY 2008 VL 24 IS 20 BP 11959 EP 11966 DI 10.1021/la8019556 PG 8 WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 360HT UT WOS:000260049300087 PM 18817426 ER PT J AU Uplegger, L AF Uplegger, Lorenzo CA CMS Collaboration TI Status of the CMS pixel project SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Semiconductor detector; Pixel ID DETECTOR; SENSORS AB The Compact Muon Solenoid Experiment (CMS) will start taking data at the Large Hadron Collider (LHC) in 2008. The closest detector to the interaction point is the silicon pixel detector which is the heart of the tracking system. It consists of three barrel layers and two pixel disks on each side of the interaction point for a total of 66 million channels. Its proximity to the interaction point means there will be very large particle fluences and therefore a radiation-tolerant design is necessary. The pixel detector will be crucial to achieve a good vertex resolution and will play a key role in pattern recognition and track reconstruction. The results from test beam runs prove that the expected performances can be achieved. The detector is currently being assembled and will be ready for insertion into CMS in early 2008. During the assembly phase, a thorough electronic test is being done to check the functionality of each channel to guarantee the performance required to achieve the physics goals. This report will present the final detector design, the status of the production as well as results from test beam runs to validate the expected performance. Published by Elsevier B.V. C1 [Uplegger, Lorenzo; CMS Collaboration] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. RP Uplegger, L (reprint author), Fermilab Natl Accelerator Lab, POB 500,Wilson Rd, Batavia, IL 60510 USA. EM uplegger@fnat.gov NR 6 TC 0 Z9 0 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD OCT 21 PY 2008 VL 596 IS 1 BP 63 EP 65 DI 10.1016/j.nima.2008.07.138 PG 3 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 378KS UT WOS:000261320200016 ER PT J AU Bonechi, L Adriani, O Bongi, M Castellini, G D'Alessandro, R Faus, A Haguenauer, M Itow, Y Kasahara, K Macina, D Mase, T Masuda, K Matsubara, Y Matsumoto, H Menjo, H Mizuishi, M Muraki, Y Papini, P Perrot, AL Ricciarini, S Sako, T Shimizu, Y Tamura, T Torii, S Tricomi, A Turner, WC Velasco, J Watanabe, H Yoshida, K AF Bonechi, L. Adriani, O. Bongi, M. Castellini, G. D'Alessandro, R. Faus, A. Haguenauer, M. Itow, Y. Kasahara, K. Macina, D. Mase, T. Masuda, K. Matsubara, Y. Matsumoto, H. Menjo, H. Mizuishi, M. Muraki, Y. Papini, P. Perrot, A. L. Ricciarini, S. Sako, T. Shimizu, Y. Tamura, T. Torii, S. Tricomi, A. Turner, W. C. Velasco, J. Watanabe, H. Yoshida, K. TI Production and test of the LHCf microstrip silicon system SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE LHC forward physics; Calorimeter; Microstrip silicon tracker AB After a preliminary installation test, successfully performed in 2007, both the detectors of the LHCf experiment are now ready to be installed at the CERN LHC accelerator for the first physics run. A beam test at SPS in September 2007 allowed to verify the performance of the apparata. Production and test of the silicon tracker developed for one of them are shortly discussed in this work. (C) 2008 Elsevier B.V. All rights reserved. C1 [Bonechi, L.; Adriani, O.; Bongi, M.; D'Alessandro, R.; Papini, P.; Ricciarini, S.] Ist Nazl Fis Nucl, Sect Florence, Florence, Italy. [Bonechi, L.; Adriani, O.; Bongi, M.; D'Alessandro, R.] Univ Florence, I-50121 Florence, Italy. [Tricomi, A.] Ist Nazl Fis Nucl, Sect Catania, Catania, Italy. [Tricomi, A.] Univ Catania, I-95124 Catania, Italy. [Castellini, G.] IFAC CNR, Florence, Italy. [Faus, A.; Velasco, J.] Ctr Mixto CSIC UVEG, IFIC, Valencia, Spain. [Haguenauer, M.] Ecole Polytech, Palaiseau, France. [Itow, Y.; Mase, T.; Masuda, K.; Matsubara, Y.; Matsumoto, H.; Menjo, H.; Sako, T.; Watanabe, H.] Nagoya Univ, Solar Terr Environm Lab, Nagoya, Aichi 4648601, Japan. [Tamura, T.] Kanagawa Univ, Kanagawa, Japan. [Kasahara, K.; Mizuishi, M.; Shimizu, Y.; Torii, S.] Waseda Univ, RISE, Tokyo, Japan. [Turner, W. C.] LBNL, Berkeley, CA USA. [Muraki, Y.] Konan Univ, Kobe, Hyogo, Japan. [Macina, D.; Perrot, A. L.] CERN, Geneva, Switzerland. RP Bonechi, L (reprint author), Ist Nazl Fis Nucl, Sect Florence, Florence, Italy. EM lorenzo.bonechi@fl.infn.it RI Masuda, Kimiaki/M-4932-2014; D'Alessandro, Raffaello/F-5897-2015; Bongi, Massimo/L-9417-2015; OI D'Alessandro, Raffaello/0000-0001-7997-0306; Bongi, Massimo/0000-0002-6050-1937; Tricomi, Alessia Rita/0000-0002-5071-5501; Ricciarini, Sergio Bruno/0000-0001-6176-3368; Castellini, Guido/0000-0002-0177-0643; Papini, Paolo/0000-0003-4718-2895 NR 4 TC 1 Z9 1 U1 1 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD OCT 21 PY 2008 VL 596 IS 1 BP 85 EP 87 DI 10.1016/j.nima.2008.07.122 PG 3 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 378KS UT WOS:000261320200021 ER PT J AU Badala, A Blanco, F La Rocca, P Librizzi, F Pappalardo, GS Pulvirenti, A Riggi, F Vernet, R Awes, TC Muller, H Tupikin, N AF Badala, A. Blanco, F. La Rocca, P. Librizzi, F. Pappalardo, G. S. Pulvirenti, A. Riggi, F. Vernet, R. Awes, T. C. Muller, H. Tupikin, N. TI Characterization of avalanche photodiodes (APDs) for the electromagnetic calorimeter in the ALICE experiment SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Photosensor; Silicon avalanche photodiode; APD; Electromagnetic calorimeter AB The Electromagnetic Calorimeter (EMCal) of the ALICE experiment at LHC will extensively make use of avalanche photodiodes (APDs) for the readout of scintillation light. The large sensitive area, high quantum efficiency and low dark current make this type of photosensors well-suited for the EMCal requirements. A testing activity is currently in progress in order to characterize the main properties of these APDs and find the best working conditions. Fundamental tasks are the individual test of all APDs after presetting their nominal gain via the bias control and the study of APD gain coefficients as a function of the applied bias voltage and temperature. An overview of the adopted procedure will be presented, together with a description of preliminary results obtained on a first sample of APDs during the testing activity. (C) 2008 Elsevier B.V. All rights reserved. C1 [Badala, A.; Blanco, F.; La Rocca, P.; Librizzi, F.; Pappalardo, G. S.; Pulvirenti, A.; Riggi, F.] Ist Nazl Fis Nucl, Sez Catania, Catania, Italy. [Blanco, F.; La Rocca, P.; Pulvirenti, A.; Riggi, F.] Univ Catania, Dept Phys & Astron, Catania, Italy. [Vernet, R.] Consortzio Cometa, Catania, Italy. [Awes, T. C.] Oak Ridge Natl Lab, Oak Ridge, TN USA. [Muller, H.] CERN, CH-1211 Geneva 23, Switzerland. [Tupikin, N.] RRC Kurchatov Inst, Moscow, Russia. RP La Rocca, P (reprint author), Ist Nazl Fis Nucl, Sez Catania, Catania, Italy. EM paola.larocca@ct.infn.it OI Riggi, Francesco/0000-0002-0030-8377 NR 9 TC 2 Z9 2 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 EI 1872-9576 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD OCT 21 PY 2008 VL 596 IS 1 BP 122 EP 125 DI 10.1016/j.nima.2008.07.133 PG 4 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 378KS UT WOS:000261320200030 ER PT J AU Andre, I Strauss, CEM Kaplan, DB Bradley, P Baker, D AF Andre, Ingemar Strauss, Charlie E. M. Kaplan, David B. Bradley, Philip Baker, David TI Emergence of symmetry in homooligomeric biological assemblies SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE evolution; protein structure; Monte Carlo Simulation; modeling ID ENERGY LANDSCAPES; PROTEINS; MODEL AB Naturally occurring homooligomeric protein complexes exhibit striking internal symmetry. The evolutionary origins of this symmetry have been the subject of considerable speculation; proposals for the advantages associated with symmetry include greater folding efficiency, reduced aggregation, amenability to allosteric regulation, and greater adaptability. An alternative possibility stems from the idea that to contribute to fitness, and hence be subject to evolutionary optimization, a complex must be significantly populated, which implies that the interaction energy between monomers in the ancestors of modern-day complexes must have been sufficient to at least partially overcome the entropic cost of association. Here, we investigate the effects of this bias toward very-low-energy complexes on the distribution of symmetry in primordial homooligomers modeled as randomly interacting pairs of monomers. We demonstrate quantitatively that a bias toward very-low-energy complexes can result in the emergence of symmetry from random ensembles in which the overall frequency of symmetric complexes is vanishingly small. This result is corroborated by using explicit protein-protein docking calculations to generate ensembles of randomly docked complexes: the fraction of these that are symmetric increases from 0.02% in the overall population to >50% in very low energy subpopulations. C1 [Andre, Ingemar; Baker, David] Univ Washington, Dept Biochem, Seattle, WA 98195 USA. [Strauss, Charlie E. M.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Kaplan, David B.] Univ Washington, Inst Nucl Theory, Seattle, WA 98195 USA. [Bradley, Philip] Fred Hutchinson Canc Res Ctr, Seattle, WA 98109 USA. [Baker, David] Univ Washington, Howard Hughes Med Inst, Seattle, WA 98195 USA. RP Baker, D (reprint author), Univ Washington, Dept Biochem, Seattle, WA 98195 USA. EM dabaker@u.washington.edu RI Andre, Ingemar/O-4777-2014; Baker, David/K-8941-2012; OI Andre, Ingemar/0000-0002-4753-8233; Baker, David/0000-0001-7896-6217; Kaplan, David/0000-0001-5141-8245 FU Knut and Alice Wallenberg Foundation; Defense Threat Reduction Agency [MIPR7K08970172]; Spanish MEC [SA62006-0089, FPA2006-05423]; Comunidad de Madrid HEPHACOS; Department of Energy [DE-FG02-OOER41132]; National Institutes of Health; Howard Hughes Medical Institute FX We thank Ora Schueler-Furman, John Moult, Rhiju Das, and David Eisenberg for stimulating conversations about the origin of symmetry. This work was supported by a Knut and Alice Wallenberg Foundation postdoctoral fellowship (to I-A), by Defense Threat Reduction Agency Contract MIPR7K08970172 (to C.E.M.S.), in part by Spanish MEC grant SA62006-0089 and project FPA2006-05423 (to D.B.K.), by the regional Comunidad de Madrid HEPHACOS project (D.B.K.), and by Department of Energy Grant DE-FG02-OOER41132 (to D.B.K.), and by the National Institutes of Health and Howard Hughes Medical Institute. NR 16 TC 78 Z9 79 U1 3 U2 15 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD OCT 21 PY 2008 VL 105 IS 42 BP 16148 EP 16152 DI 10.1073/pnas.0807576105 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 368BX UT WOS:000260597400017 PM 18849473 ER PT J AU Leary, RJ Lin, JC Cummins, J Boca, S Wood, LD Parsons, DW Jones, S Sjoblom, T Park, BH Parsons, R Willis, J Dawson, D Willson, JKV Nikolskaya, T Nikolsky, Y Kopelovich, L Papadopoulos, N Pennacchio, LA Wang, TL Markowitz, SD Parmigiani, G Kinzler, KW Vogelstein, B Velculescu, VE AF Leary, Rebecca J. Lin, Jimmy C. Cummins, Jordan Boca, Simina Wood, Laura D. Parsons, D. Williams Jones, Sian Sjoeblom, Tobias Park, Ben-Ho Parsons, Ramon Willis, Joseph Dawson, Dawn Willson, James K. V. Nikolskaya, Tatiana Nikolsky, Yuri Kopelovich, Levy Papadopoulos, Nick Pennacchio, Len A. Wang, Tian-Li Markowitz, Sanford D. Parmigiani, Giovanni Kinzler, Kenneth W. Vogelstein, Bert Velculescu, Victor E. TI Integrated analysis of homozygous deletions, focal amplifications, and sequence alterations in breast and colorectal cancers SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE amplification; copy number changes; Digital Karyotyping; high-density SNP arrays; homozygous deletion ID CANDIDATE TUMOR-SUPPRESSOR; NUCLEOTIDE POLYMORPHISM ARRAYS; COPY NUMBER ANALYSIS; GENETIC ALTERATIONS; HUMAN GENOME; RESOLUTION; LEUKEMIA; THERAPY; SITES AB we have performed a genome-wide analysis of copy number changes in breast and colorectal tumors using approaches that can reliably detect homozygous deletions and amplifications. We found that the number of genes altered by major copy number changes, deletion of all copies or amplification to at least 12 copies per cell, averaged 17 per tumor. We have integrated these data with previous mutation analyses of the Reference Sequence genes in these same tumor types and have identified genes and cellular pathways affected by both copy number changes and point alterations. Pathways enriched for genetic alterations included those controlling cell adhesion, intracellular signaling, DNA topological change, and cell cycle control. These analyses provide an integrated view of copy number and sequencing alterations on a genome-wide scale and identify genes and pathways that could prove useful for cancer diagnosis and therapy. C1 [Leary, Rebecca J.; Lin, Jimmy C.; Cummins, Jordan; Boca, Simina; Wood, Laura D.; Parsons, D. Williams; Jones, Sian; Sjoeblom, Tobias; Papadopoulos, Nick; Wang, Tian-Li; Parmigiani, Giovanni; Kinzler, Kenneth W.; Vogelstein, Bert; Velculescu, Victor E.] Johns Hopkins Kimmel Canc Ctr, Ludwig Ctr Canc Genet & Therapeut, Baltimore, MD 21231 USA. [Leary, Rebecca J.; Lin, Jimmy C.; Cummins, Jordan; Boca, Simina; Wood, Laura D.; Parsons, D. Williams; Jones, Sian; Sjoeblom, Tobias; Papadopoulos, Nick; Wang, Tian-Li; Parmigiani, Giovanni; Kinzler, Kenneth W.; Vogelstein, Bert; Velculescu, Victor E.] Johns Hopkins Kimmel Canc Ctr, Howard Hughes Med Inst, Baltimore, MD 21231 USA. [Boca, Simina; Parmigiani, Giovanni] Johns Hopkins Kimmel Canc Ctr, Dept Bioinformat, Baltimore, MD 21231 USA. [Boca, Simina; Parmigiani, Giovanni] Johns Hopkins Kimmel Canc Ctr, Dept Pathol, Baltimore, MD 21231 USA. [Park, Ben-Ho] Sidney Kimmel Comprehens Canc Ctr Johns Hopkins, Baltimore, MD 21231 USA. [Parsons, Ramon] Columbia Univ, Inst Canc Genet, New York, NY 10032 USA. [Willis, Joseph; Dawson, Dawn; Markowitz, Sanford D.] Case Western Reserve Univ, Dept Med, Cleveland, OH 44106 USA. [Willis, Joseph; Dawson, Dawn; Markowitz, Sanford D.] Case Western Reserve Univ, Ireland Canc Ctr, Cleveland, OH 44106 USA. [Willis, Joseph; Dawson, Dawn; Markowitz, Sanford D.] Univ Hosp Cleveland, Cleveland, OH 44106 USA. [Willis, Joseph; Dawson, Dawn; Markowitz, Sanford D.] Howard Hughes Med Inst, Cleveland, OH 44106 USA. [Willson, James K. V.] Univ Texas SW Med Ctr Dallas, Harold C Simmons Comprehens Canc Ctr, Dallas, TX 75390 USA. [Nikolskaya, Tatiana] NI Vavilov Gen Genet Res Inst, Moscow 117809, Russia. [Nikolskaya, Tatiana; Nikolsky, Yuri] GeneGo Inc, St Joseph, MI 49085 USA. [Kopelovich, Levy] NCI, Canc Prevent Div, Bethesda, MD 20892 USA. [Pennacchio, Len A.] Joint Genome Inst, Dept Energy, Walnut Creek, CA 94598 USA. RP Vogelstein, B (reprint author), Johns Hopkins Kimmel Canc Ctr, Ludwig Ctr Canc Genet & Therapeut, Baltimore, MD 21231 USA. EM velculescu@jhmi.edu RI Jones, Sian/A-5050-2012; Papadopoulos, Nickolas/K-7272-2012; Nikolskaya, Tatiana/M-5008-2013 FU Virginia and D. K. Ludwig Fund for Cancer Research; National Institutes of Health [CA121113, CA 57345, CA 43460, CA 109274]; National Cancer Institute Division of Cancer Prevention [HHSN261200433002C]; Pew Charitable Trusts; Avon Foundation FX We thank R. Ashworth and A. Scott for assistance with Illumina analyses, S. Bentivegna for assistance with DK, D. H. Nguyen for the artwork in Fig. 2, and M. Newton for sharing software for non-id Bernoulli calculations. This work was supported by the Virginia and D. K. Ludwig Fund for Cancer Research; National Institutes of Health Grants CA121113, CA 57345, CA 43460, and CA 109274; National Cancer Institute Division of Cancer Prevention Contract HHSN261200433002C; the Pew Charitable Trusts, and the Avon Foundation. NR 41 TC 170 Z9 173 U1 3 U2 14 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD OCT 21 PY 2008 VL 105 IS 42 BP 16224 EP 16229 DI 10.1073/pnas.0808041105 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 368BX UT WOS:000260597400030 PM 18852474 ER PT J AU Vereecken, H Huisman, JA Bogena, H Vanderborght, J Vrugt, JA Hopmans, JW AF Vereecken, H. Huisman, J. A. Bogena, H. Vanderborght, J. Vrugt, J. A. Hopmans, J. W. TI On the value of soil moisture measurements in vadose zone hydrology: A review SO WATER RESOURCES RESEARCH LA English DT Review ID GROUND-PENETRATING RADAR; ROOT WATER-UPTAKE; SOUTHERN GREAT-PLAINS; ENSEMBLE KALMAN FILTER; SEQUENTIAL DATA ASSIMILATION; REMOTE-SENSING FOOTPRINTS; ELECTRICAL-RESISTIVITY TOMOGRAPHY; IMPROVED CAPACITANCE TECHNIQUE; TIME-DOMAIN REFLECTOMETRY; NEAR-SURFACE MEASUREMENTS AB We explore and review the value of soil moisture measurements in vadose zone hydrology with a focus on the field and catchment scales. This review is motivated by the increasing ability to measure soil moisture with unprecedented spatial and temporal resolution across scales. We highlight and review the state of the art in using soil moisture measurements for (1) estimation of soil hydraulic properties, (2) quantification of water and energy fluxes, and (3) retrieval of spatial and temporal dynamics of soil moisture profiles. We argue for the urgent need to have access to field monitoring sites and databases that include detailed information about variability of hydrological fluxes and parameters, including their upscaled values. In addition, improved data assimilation methods are needed that fully exploit the information contained in soil moisture data. The development of novel upscaling methods for predicting effective moisture fluxes and disaggregation schemes toward integrating large-scale soil moisture measurements in hydrological models will increase the value of soil moisture measurements. Finally, we recognize a need to develop strategies that combine hydrogeophysical measurement techniques with remote sensing methods. C1 [Vereecken, H.; Huisman, J. A.; Bogena, H.; Vanderborght, J.] Forschungszentrum Julich, Inst Chem & Dynam Geosphere, Agrosphere Inst,ICG4, D-52485 Julich, Germany. [Vrugt, J. A.] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. [Hopmans, J. W.] Univ Calif Davis, Dept Land Air & Water Resources, Davis, CA 95616 USA. RP Vereecken, H (reprint author), Forschungszentrum Julich, Inst Chem & Dynam Geosphere, Agrosphere Inst,ICG4, D-52485 Julich, Germany. EM h.vereecken@fz-juelich.de RI Vrugt, Jasper/C-3660-2008; Huisman, J.A. (Sander)/I-7078-2012; OI Bogena, Heye/0000-0001-9974-6686; Huisman, Johan Alexander/0000-0002-1327-0945; Vanderborght, Jan/0000-0001-7381-3211 FU LANL postdoctoral program FX The fifth author is supported by a J. Robert Oppenheimer Fellowship from the LANL postdoctoral program. NR 297 TC 188 Z9 191 U1 30 U2 189 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0043-1397 EI 1944-7973 J9 WATER RESOUR RES JI Water Resour. Res. PD OCT 21 PY 2008 VL 44 AR W00D06 DI 10.1029/2008WR006829 PG 21 WC Environmental Sciences; Limnology; Water Resources SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water Resources GA 365ER UT WOS:000260389200001 ER PT J AU Ahn, KS Yan, Y Shet, S Jones, K Deutsch, T Turner, J Al-Jassim, M AF Ahn, Kwang-Soon Yan, Yanfa Shet, Sudhakar Jones, Kim Deutsch, Todd Turner, John Al-Jassim, Mowafak TI ZnO nanocoral structures for photoelectrochemical cells SO APPLIED PHYSICS LETTERS LA English DT Article ID SENSITIZED SOLAR-CELLS; TIO2 NANOTUBES; FILMS; GROWTH; PHOTOCATALYSIS; ENHANCEMENT; ELECTRODES; NANOWIRES; NANORODS AB We report on synthesis of a uniform and large area of a new form of ZnO nanocorals. These nanostructures can provide suitable electrical pathways for efficient carrier collection as well as large surface areas for the photoelectrochemical (PEC) cells. PEC devices made from these ZnO nanocoral structures demonstrate significantly enhanced photoresponse as compared to ZnO compact and nanorod films. Our results suggest that the nanocoral structures could be an excellent choice for nanomaterial-based applications such as dye-sensitized solar cells, electrochromic windows, and batteries. (C) 2008 American Institute of Physics. [DOI: 10.1063/1.3002282]. C1 [Ahn, Kwang-Soon; Yan, Yanfa; Shet, Sudhakar; Jones, Kim; Deutsch, Todd; Turner, John; Al-Jassim, Mowafak] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Ahn, KS (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM kwang-soon_ahn@nrel.gov RI Dom, Rekha/B-7113-2012; OI Deutsch, Todd/0000-0001-6577-1226 FU U. S. Department of Energy through the UNLV Research Foundation FX This work was supported by the U. S. Department of Energy through the UNLV Research Foundation. NR 25 TC 55 Z9 56 U1 2 U2 30 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD OCT 20 PY 2008 VL 93 IS 16 AR 163117 DI 10.1063/1.3002282 PG 3 WC Physics, Applied SC Physics GA 365CO UT WOS:000260383700063 ER PT J AU Arenholz, E van der Laan, G Nolting, F AF Arenholz, Elke van der Laan, Gerrit Nolting, Frithjof TI Magnetic structure near the Co/NiO(001) interface SO APPLIED PHYSICS LETTERS LA English DT Article ID PHOTOELECTRON MICROSCOPY; FERROMAGNET; SURFACE; FILMS AB We investigate the magnetic coupling at the Co/NiO interface using soft x-ray magnetic linear dichroism (XMLD) and circular dichroism taking explicitly into account the recently observed angular dependence of the XMLD with respect to the crystallographic axes. We find that the Co moments are aligned perpendicular to the NiO moments. We discuss the impact of the anisotropic XMLD on the intensity ratio of the two peaks at the Ni L(2) edge, which is commonly employed to determine the spin orientation in antiferromagnets using XMLD. (C) 2008 American Institute of Physics. [DOI: 10.1063/1.3005643] C1 [Arenholz, Elke] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. [van der Laan, Gerrit] Diamond Light Source, Didcot OX11 0DE, Oxon, England. [Nolting, Frithjof] Paul Scherrer Inst, Swiss Light Source, CH-5232 Villigen, Switzerland. RP Arenholz, E (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. EM earenholz@lbl.gov RI van der Laan, Gerrit/Q-1662-2015 OI van der Laan, Gerrit/0000-0001-6852-2495 FU Director, Office of Science, Office of Basic Energy Sciences, of the U. S. Department of Energy [DE-AC02-05CH11231] FX The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U. S. Department of Energy under Contract No. DE-AC02-05CH11231. The authors thank Andreas Scholl for the NR 17 TC 14 Z9 14 U1 0 U2 11 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD OCT 20 PY 2008 VL 93 IS 16 AR 162506 DI 10.1063/1.3005643 PG 3 WC Physics, Applied SC Physics GA 365CO UT WOS:000260383700038 ER PT J AU Choudhury, S Zhang, JX Li, YL Chen, LQ Jia, QX Kalinin, SV AF Choudhury, S. Zhang, J. X. Li, Y. L. Chen, L. Q. Jia, Q. X. Kalinin, S. V. TI Effect of ferroelastic twin walls on local polarization switching: Phase-field modeling SO APPLIED PHYSICS LETTERS LA English DT Article ID FERROELECTRIC DOMAIN-STRUCTURES; THIN-FILMS; FORCE MICROSCOPY; SIMULATIONS; EVOLUTION; REVERSAL AB Local polarization switching in epitaxial ferroelectric thin films in the presence of ferroelastic domain walls was studied using phase-field approach. The nucleation bias profile across a twin wall was analyzed, and the localization of preferential nucleation sites was established. This analysis was further extended to a realistic domain structure with multiple twin boundaries. It was observed that the local nucleation voltage required for a 180 degrees domain switching is closely related to the number of such local defects. (C) 2008 American Institute of Physics. [DOI: 10.1063/1.2993330] C1 [Choudhury, S.; Zhang, J. X.; Li, Y. L.; Chen, L. Q.] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA. [Jia, Q. X.] Los Alamos Natl Lab, MPA STC, Los Alamos, NM 87545 USA. [Kalinin, S. V.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Kalinin, S. V.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Choudhury, S (reprint author), Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA. EM sxc398@psu.edu RI Choudhury, Samrat/B-4115-2009; Zhang, Jingxian/B-2253-2010; Jia, Q. X./C-5194-2008; Kalinin, Sergei/I-9096-2012; Chen, LongQing/I-7536-2012 OI Kalinin, Sergei/0000-0001-5354-6152; Chen, LongQing/0000-0003-3359-3781 FU NSF [DMR-0507146, DMR-0820404]; Department of Energy [DOE DE-FG02-07ER46417]; Division of Materials Sciences and Engineering; Office of Basic Energy Sciences FX We are grateful for the financial supports from NSF under Contract Nos. DMR-0507146 and DMR-0820404 (S. C., J. X. Z., and L. Q. C.) and from the Department of Energy under the Grant No. DOE DE-FG02-07ER46417 (Chen). Research was sponsored in part (S. V. K.) by the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, U. S. Department of Energy with Oak Ridge National Laboratory, managed and operated by UT-Battelle, LLC. The work at Los Alamos National Laboratory was supported by the U. S. Department of Energy (DOE) through the LANL/ LDRD Program. NR 21 TC 14 Z9 14 U1 2 U2 23 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD OCT 20 PY 2008 VL 93 IS 16 AR 162901 DI 10.1063/1.2993330 PG 3 WC Physics, Applied SC Physics GA 365CO UT WOS:000260383700043 ER PT J AU Fluegel, B Mascarenhas, A AF Fluegel, B. Mascarenhas, A. TI Aberration-free imaging for light and electrons SO APPLIED PHYSICS LETTERS LA English DT Article ID REFRACTION AB The equations for refraction of either the extraordinary wave of light or the wavefunction of an electron at a planar boundary between two misoriented uniaxially anisotropic materials are shown via raytracing to yield a transverse displacement of the object point. The displacement is independent of ray incidence angle and is thus free from spherical aberration, yielding a perfect virtual image which can have applications in birefringent optics. The general conditions for this aberration-free imaging are found to be identical to those required for amphoteric total refraction. (C) 2008 American Institute of Physics. [DOI: 10.1063/1.3005582] C1 [Fluegel, B.; Mascarenhas, A.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Fluegel, B (reprint author), Natl Renewable Energy Lab, 1617 Cole Blvd, Golden, CO 80401 USA. EM brian_fluegel@nrel.gov FU Department of Energy Office of Science, Basic Energy Sciences [DE-AC36-83CH10093] FX We acknowledge the financial support of the Department of Energy Office of Science, Basic Energy Sciences under Grant No. DE-AC36-83CH10093. NR 11 TC 2 Z9 3 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD OCT 20 PY 2008 VL 93 IS 16 AR 161105 DI 10.1063/1.3005582 PG 3 WC Physics, Applied SC Physics GA 365CO UT WOS:000260383700005 ER PT J AU Huang, EW Liaw, PK Porcar, L Liu, Y Liu, YL Kai, JJ Chen, WR AF Huang, E-Wen Liaw, Peter K. Porcar, Lionel Liu, Yun Liu, Yee-Lang Kai, Ji-Jung Chen, Wei-Ren TI Study of nanoprecipitates in a nickel-based superalloy using small-angle neutron scattering and transmission electron microscopy SO APPLIED PHYSICS LETTERS LA English DT Article ID ALLOY AB Small-angle neutron scattering (SANS) experiments were performed on a Ni-based nanoprecipitate-strengthened superalloy. A theoretical model for SANS absolute intensity distribution I(Q) was presented to extract the structural properties. During the deformation process, a change in the morphology of precipitates was discovered. However, the average interprecipitate distance and the average volume of precipitates were found to remain invariant. This microstructural information resolved by SANS is in good agreement with the results obtained from the quantitative transmission-electron-microscopy image analysis. (C) 2008 American Institute of Physics. [DOI: 10.1063/1.3002288] C1 [Huang, E-Wen; Liaw, Peter K.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Porcar, Lionel; Liu, Yun] NIST, Ctr Neutron Res, Gaithersburg, MD 20899 USA. [Liu, Yee-Lang; Kai, Ji-Jung] Natl Tsing Hua Univ, Dept Engn & Syst Sci, Hsinchu 300, Taiwan. [Chen, Wei-Ren] Oak Ridge Natl Lab, Spallat Neutron Source, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA. RP Huang, EW (reprint author), Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. EM chenw@ornl.gov RI Huang, E-Wen/A-7509-2009; Liu, Yun/A-2478-2010; Liu, Yun/F-6516-2012; Huang, E-Wen/A-5717-2015; OI Liu, Yun/0000-0002-0944-3153; Liu, Yun/0000-0002-0944-3153; Huang, E-Wen/0000-0003-4986-0661; KAI, Ji-jung/0000-0001-7848-8753 FU International Materials Institutes (IMI) Program (DMR-0231320) National Science Foundation (NSF); NSF [DMR-0454672] FX International Materials Institutes (IMI) Program (DMR-0231320) National Science Foundation (NSF), supports this research. NIST U. S. DOC provided the neutron-research facilities under the NSF agreement DMR-0454672. We thank Haynes International, Inc.6 for providing the materials. NR 13 TC 16 Z9 16 U1 0 U2 14 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD OCT 20 PY 2008 VL 93 IS 16 AR 161904 DI 10.1063/1.3002288 PG 3 WC Physics, Applied SC Physics GA 365CO UT WOS:000260383700016 ER PT J AU Huger, E Tietze, U Lott, D Bracht, H Bougeard, D Haller, EE Schmidt, H AF Hueger, E. Tietze, U. Lott, D. Bracht, H. Bougeard, D. Haller, E. E. Schmidt, H. TI Self-diffusion in germanium isotope multilayers at low temperatures SO APPLIED PHYSICS LETTERS LA English DT Article ID SILICON; HETEROSTRUCTURES; DEFECTS; GALLIUM; SI AB Self-diffusion in intrinsic single crystalline germanium was investigated between 429 and 596 degrees C using (70)Ge/(nat)Ge isotope multilayer structures. The diffusivities were determined by neutron reflectometry from the decay of the first and third order Bragg peak. At high temperatures the diffusivities are in excellent agreement with literature data obtained by ion beam sputtering techniques, while considerably smaller diffusion lengths between 0.6 and 4.1 nm were measured. At lower temperatures the accessible range of diffusivities could be expanded to D approximate to 1x10(-25) m(2) s(-1), which is three orders of magnitude lower than the values measured by sputtering techniques. Taking into account available data on Ge self-diffusion, the temperature dependence is accurately described over nine orders of magnitude by a single Arrhenius equation. A diffusion activation enthalpy of 3.13 +/- 0.03 eV and a pre-exponential factor of 2.54x10(-3) m(2) s(-1) for temperatures between 429 and 904 degrees C are obtained. Single vacancies are considered to prevail self-diffusion in Ge over the whole temperature range. (C) 2008 American Institute of Physics. [DOI: 10.1063/1.3002294] C1 [Hueger, E.; Schmidt, H.] Tech Univ Clausthal, Inst Met, AG Mat Phys, D-38678 Clausthal Zellerfeld, Germany. [Tietze, U.; Lott, D.] GKSS Forschungszentrum Geesthacht GmbH, D-21502 Geesthacht, Germany. [Bracht, H.] Univ Munster, Inst Mat Phys, D-48149 Munster, Germany. [Bougeard, D.] Tech Univ Munich, Walter Schottky Inst, D-85748 Garching, Germany. [Haller, E. E.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Huger, E (reprint author), Tech Univ Clausthal, Inst Met, AG Mat Phys, Robert Koch Str 42, D-38678 Clausthal Zellerfeld, Germany. EM erwin.hueger@tu-clausthal.de RI Schmidt, Harald/E-8736-2014 OI Schmidt, Harald/0000-0001-9389-8507 FU German Research Foundation [SCHM 1569/7-1]; SFB [631 TPC4] FX This research was supported by the German Research Foundation under Contract No. SCHM 1569/7-1. One of us (D. B.) acknowledges support by SFB 631 TPC4. NR 28 TC 69 Z9 69 U1 0 U2 15 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD OCT 20 PY 2008 VL 93 IS 16 AR 162104 DI 10.1063/1.3002294 PG 3 WC Physics, Applied SC Physics GA 365CO UT WOS:000260383700029 ER PT J AU Kondo, S Katoh, Y Snead, LL AF Kondo, S. Katoh, Y. Snead, L. L. TI Unidirectional formation of tetrahedral voids in irradiated silicon carbide SO APPLIED PHYSICS LETTERS LA English DT Article ID VACANCY CLUSTERS; SURFACES; METALS; STABILITY; GROWTH; VAPOR; SI AB The {111} tetrahedral voids induced by neutron irradiation in 3C-SiC were found to be spatially oriented in only one of two possible directions. The tetrahedral shape was unexpected as the surface-to-volume ratio is larger than the alternative {111} octahedral void common in both metals and ceramics. From a geometric viewpoint, all faces of the observed voids are either Si- or C-terminated surfaces. By comparing the surface area with the octahedral void (composed of the both Si- and C-surfaces) of the same volume, the considerable difference in surface energy between the Si(111) and C((111) over bar) was implicated. (C) 2008 American Institute of Physics. [DOI: 10.1063/1.3005650]. C1 [Kondo, S.; Katoh, Y.; Snead, L. L.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Kondo, S (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, POB 2008, Oak Ridge, TN 37831 USA. EM kondos1@ornl.gov OI Katoh, Yutai/0000-0001-9494-5862 NR 22 TC 17 Z9 18 U1 1 U2 11 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD OCT 20 PY 2008 VL 93 IS 16 AR 163110 DI 10.1063/1.3005650 PG 3 WC Physics, Applied SC Physics GA 365CO UT WOS:000260383700056 ER PT J AU Millett, PC Wolf, D Desai, T Yamakov, V AF Millett, Paul C. Wolf, Dieter Desai, Tapan Yamakov, Vesselin TI Time scale for point-defect equilibration in nanostructures SO APPLIED PHYSICS LETTERS LA English DT Article ID VACANCY CONCENTRATIONS; MOLECULAR-DYNAMICS; METALS AB Molecular dynamics simulations of high-temperature annealing are performed on nanostructured materials enabling direct observation of vacancy emission from planar defects (i.e., grain boundaries and free surfaces) to populate the initially vacancy-free grain interiors on a subnanosecond time scale. We demonstrate a universal time-length scale correlation that governs these re-equilibration processes, suggesting that nanostructures are particularly stable against perturbations in their point-defect concentrations, caused for example by particle irradiation or temperature fluctuations. (C) 2008 American Institute of Physics. [DOI: 10.1063/1.3005175] C1 [Millett, Paul C.; Wolf, Dieter; Desai, Tapan] Idaho Natl Lab, Dept Mat Sci, Idaho Falls, ID 83415 USA. [Yamakov, Vesselin] Natl Inst Aerosp, Hampton, VA 23693 USA. RP Millett, PC (reprint author), Idaho Natl Lab, Dept Mat Sci, Idaho Falls, ID 83415 USA. EM paul.millett@inl.gov FU DOE Idaho Operations Office [DE-AC07-051D14517V]; National Institute of Aerospace and NASA Langley Research Center [NCC-1-02043]; CMSN-DOE-BES project FX P. C. M, D. W., and T. D. gratefully acknowledge support from the INL LDRD program under DOE Idaho Operations Office Contract No. DE-AC07-051D14517V. V.Y. was sponsored through cooperative Agreement No. NCC-1-02043 between the National Institute of Aerospace and NASA Langley Research Center. All authors are grateful for collaborative interactions funded by the CMSN-DOE-BES project on "Multi-scale simulation of thermo-mechanical processes in irradiated fission-reactor materials." NR 15 TC 11 Z9 11 U1 1 U2 3 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD OCT 20 PY 2008 VL 93 IS 16 AR 161902 DI 10.1063/1.3005175 PG 3 WC Physics, Applied SC Physics GA 365CO UT WOS:000260383700014 ER PT J AU Kowalski, M Rubin, D Aldering, G Agostinho, RJ Amadon, A Amanullah, R Balland, C Barbary, K Blanc, G Challis, PJ Conley, A Connolly, NV Covarrubias, R Dawson, KS Deustua, SE Ellis, R Fabbro, S Fadeyev, V Fan, X Farris, B Folatelli, G Frye, BL Garavini, G Gates, EL Germany, L Goldhaber, G Goldman, B Goobar, A Groom, DE Haissinski, J Hardin, D Hook, I Kent, S Kim, AG Knop, RA Lidman, C Linder, EV Mendez, J Meyers, J Miller, GJ Moniez, M Mourao, AM Newberg, H Nobili, S Nugent, PE Pain, R Perdereau, O Perlmutter, S Phillips, MM Prasad, V Quimby, R Regnault, N Rich, J Rubenstein, EP Ruiz-Lapuente, P Santos, FD Schaefer, BE Schommer, RA Smith, RC Soderberg, AM Spadafora, AL Strolger, LG Strovink, M Suntzeff, NB Suzuki, N Thomas, RC Walton, NA Wang, L Wood-Vasey, WM Yun, JL AF Kowalski, M. Rubin, D. Aldering, G. Agostinho, R. J. Amadon, A. Amanullah, R. Balland, C. Barbary, K. Blanc, G. Challis, P. J. Conley, A. Connolly, N. V. Covarrubias, R. Dawson, K. S. Deustua, S. E. Ellis, R. Fabbro, S. Fadeyev, V. Fan, X. Farris, B. Folatelli, G. Frye, B. L. Garavini, G. Gates, E. L. Germany, L. Goldhaber, G. Goldman, B. Goobar, A. Groom, D. E. Haissinski, J. Hardin, D. Hook, I. Kent, S. Kim, A. G. Knop, R. A. Lidman, C. Linder, E. V. Mendez, J. Meyers, J. Miller, G. J. Moniez, M. Mourao, A. M. Newberg, H. Nobili, S. Nugent, P. E. Pain, R. Perdereau, O. Perlmutter, S. Phillips, M. M. Prasad, V. Quimby, R. Regnault, N. Rich, J. Rubenstein, E. P. Ruiz-Lapuente, P. Santos, F. D. Schaefer, B. E. Schommer, R. A. Smith, R. C. Soderberg, A. M. Spadafora, A. L. Strolger, L. -G. Strovink, M. Suntzeff, N. B. Suzuki, N. Thomas, R. C. Walton, N. A. Wang, L. Wood-Vasey, W. M. Yun, J. L. CA Supernova Cosmology Project TI IMPROVED COSMOLOGICAL CONSTRAINTS FROM NEW, OLD, AND COMBINED SUPERNOVA DATA SETS SO ASTROPHYSICAL JOURNAL LA English DT Article DE cosmological parameters; cosmology: observations; supernovae: general ID HUBBLE-SPACE-TELESCOPE; HIGH-REDSHIFT SUPERNOVAE; 2-PARAMETER LUMINOSITY CORRECTION; LARGE-SCALE STRUCTURE; BVRI LIGHT CURVES; IA SUPERNOVAE; DARK ENERGY; INFRARED PHOTOMETRY; HOST GALAXY; SPECTROSCOPIC OBSERVATIONS AB We present a new compilation of Type Ia supernovae (SNe Ia), a new data set of low-redshift nearby-Hubble-flow SNe, and new analysis procedures to work with these heterogeneous compilations. This "Union'' compilation of 414 SNe Ia, which reduces to 307 SNe after selection cuts, includes the recent large samples of SNe Ia from the Supernova Legacy Survey and ESSENCE Survey, the older data sets, as well as the recently extended data set of distant supernovae observed with the Hubble Space Telescope (HST). A single, consistent, and blind analysis procedure is used for all the various SN Ia subsamples, and a new procedure is implemented that consistently weights the heterogeneous data sets and rejects outliers. We present the latest results from this Union compilation and discuss the cosmological constraints from this new compilation and its combination with other cosmological measurements (CMB and BAO). The constraint we obtain from supernovae on the dark energy density is Omega(Lambda) = 0.713(-0.029)(+0.027)(stat)(-0.039)(+0.036)(sys), for a flat, Lambda CDM universe. Assuming a constant equation of state parameter, w, the combined constraints from SNe, BAO, and CMB give w = -0.969(-0.063)(+0.059)(stat)(-0.066)(+0.063)(sys). While our results are consistent with a cosmological constant, we obtain only relatively weak constraints on a w that varies with redshift. In particular, the current SN data do not yet significantly constrain w at z > 1. With the addition of our new nearby Hubble-flow SNe Ia, these resulting cosmological constraints are currently the tightest available. C1 [Kowalski, M.] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany. [Rubin, D.; Aldering, G.; Barbary, K.; Dawson, K. S.; Goldhaber, G.; Groom, D. E.; Kim, A. G.; Nugent, P. E.; Perlmutter, S.; Prasad, V.; Spadafora, A. L.; Strovink, M.; Suzuki, N.; Thomas, R. C.] EO Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Rubin, D.; Barbary, K.; Goldhaber, G.; Meyers, J.; Perlmutter, S.; Strovink, M.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Agostinho, R. J.; Yun, J. L.] Univ Lisbon, Ctr Astron & Astrofis, Astron Observ, P-1349018 Lisbon, Portugal. [Amadon, A.; Rich, J.] CEA Saclay, DSM DAPNIA, F-91191 Gif Sur Yvette, France. [Amanullah, R.; Linder, E. V.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Balland, C.; Hardin, D.; Pain, R.; Regnault, N.] Univ Paris 06, CNRS, IN2P3, LPNHE, Paris, France. [Blanc, G.] Univ Paris 07, APC, F-75205 Paris 13, France. [Challis, P. J.; Wood-Vasey, W. M.] Harvard Univ, Ctr Astrophys, Cambridge, MA 02138 USA. [Conley, A.] Univ Toronto, Dept Astron & Astrophys, Toronto, ON M5S 3H8, Canada. [Connolly, N. V.] Hamilton Coll, Dept Phys, Clinton, NY 13323 USA. [Covarrubias, R.] Observ Carnegie Inst Washington, Pasadena, CA USA. [Deustua, S. E.] Amer Astron Soc, Washington, DC 20009 USA. [Ellis, R.; Quimby, R.; Soderberg, A. M.] CALTECH, Pasadena, CA 91125 USA. [Fabbro, S.; Mourao, A. M.] Univ Tecn Lisboa, CENTRA, P-1049 Lisbon, Portugal. [Fabbro, S.; Mourao, A. M.] IST, Dept Fis, P-1049 Lisbon, Portugal. [Fadeyev, V.] Univ Calif Santa Cruz, Dept Phys, Santa Cruz, CA 95064 USA. [Fan, X.] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. [Farris, B.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Frye, B. L.] Dublin City Univ, Dept Phys Sci, Dublin 9, Ireland. [Garavini, G.; Goobar, A.; Nobili, S.] Stockholm Univ, Dept Phys, Albanova Univ Ctr, S-10691 Stockholm, Sweden. [Balland, C.; Hardin, D.; Pain, R.; Regnault, N.] Univ Paris 07, CNRS, IN2P3, LPNHE, Paris, France. [Gates, E. L.] Univ Calif Santa Cruz, Lick Observ, Mt Hamilton, CA 95140 USA. [Germany, L.] Swinburne Univ Technol, Ctr Astrophys & Supercomp, Hawthorn, Vic 3122, Australia. [Goldman, B.] MPIA, D-69117 Heidelberg, Germany. [Haissinski, J.; Moniez, M.; Perdereau, O.] Univ Paris 11, CNRS, IN2P3, Lab Accelerateur Lineaire, F-91898 Orsay, France. [Hook, I.] Univ Oxford, Sub Dept Astrophys, Oxford OX1 3RH, England. [Kent, S.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Knop, R. A.] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37240 USA. [Lidman, C.] European So Observ, Santiago 19, Chile. [Mendez, J.] Isaac Newton Grp, Santa Cruz De La Palmas 38780, Islas Canarias, Spain. [Mendez, J.; Ruiz-Lapuente, P.] Univ Barcelona, Dept Astron, Barcelona, Spain. [Miller, G. J.] Southwestern Coll, Dept Astron, Chula Vista, CA 91910 USA. [Newberg, H.] Rensselaer Polytech Inst, Dept Phys, Troy, NY 12180 USA. [Phillips, M. M.] Carnegie Observ, Las Campanas Observ, La Serena, Chile. [Rubenstein, E. P.] Adv Fuel Res Inc, E Hartford, CT 06108 USA. [Santos, F. D.] Univ Lisbon, Dept Phys, Fac Sci, P-1749016 Lisbon, Portugal. [Schaefer, B. E.] Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA. [Smith, R. C.] Natl Opt Astron Observ, Cerro Tololo Inter Amer Observ, La Serena, Chile. [Strolger, L. -G.] Western Kentucky Univ, Dept Phys & Astron, Bowling Green, KY 42101 USA. [Suntzeff, N. B.; Wang, L.] Texas A&M Univ, Dept Phys, College Stn, TX 77843 USA. [Walton, N. A.] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. RP Kowalski, M (reprint author), Humboldt Univ, Inst Phys, Newtonstr 15, D-12489 Berlin, Germany. RI Folatelli, Gaston/A-4484-2011; Kowalski, Marek/G-5546-2012; Santos, Filipe/M-7709-2013; Perlmutter, Saul/I-3505-2015; Mourao, Ana/K-9133-2015; Yun, Joao/M-3177-2015; Blanc, Guillermo/I-5260-2016; OI Strovink, Mark/0000-0001-7020-7769; Meyers, Joshua/0000-0002-2308-4230; Santos, Filipe/0000-0001-7316-1479; Perlmutter, Saul/0000-0002-4436-4661; Mourao, Ana/0000-0002-0855-1849; Yun, Joao/0000-0002-6413-728X; Agostinho, Rui/0000-0002-7177-2695 NR 96 TC 862 Z9 866 U1 4 U2 25 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD OCT 20 PY 2008 VL 686 IS 2 BP 749 EP 778 DI 10.1086/589937 PG 30 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 364YB UT WOS:000260370500001 ER PT J AU Nakamura, M Tregillis, IL Li, H Li, S AF Nakamura, Masanori Tregillis, Ian L. Li, Hui Li, Shengtai TI A NUMERICAL MODEL OF HERCULES A BY MAGNETIC TOWER: JET/LOBE TRANSITION, WIGGLING, AND THE MAGNETIC FIELD DISTRIBUTION SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: active; galaxies: individual (Hercules A); galaxies: jets; methods: numerical; MHD ID ACTIVE GALACTIC NUCLEUS; EXTRAGALACTIC RADIO-SOURCES; ACCRETION DISKS; POYNTING JETS; GALAXY HERCULES; LOW-LUMINOSITY; ALFVENIC JETS; DYNAMICS; CLUSTER; ENVIRONMENT AB We apply magnetohydrodynamic (MHD) modeling to the radio galaxy Hercules A to investigate the jet-driven shock, jet/lobe transition, wiggling, and magnetic field distribution associated with this source. The model consists of magnetic tower jets in a galaxy cluster environment, which has been discussed in a series of our papers. The profile of the underlying ambient gas plays an important role in the jet/lobe morphology. The balance between the magnetic pressure generated by the axial current and the ambient gas pressure can determine the lobe radius. The jet body is confined jointly by the external pressure and gravity inside the cluster core radius Rc, while outside Rc it expands radially to form fat lobes in a steeply decreasing ambient thermal pressure gradient. The current-carrying jets are responsible for generating a strong, tightly wound helical magnetic field. This magnetic configuration will be unstable against the current-driven kink mode, which visibly grows beyond Rc, where a separation between the jet forward and return currents occurs. The reversed pinch profile of the global magnetic field associated with the jet and lobes produces projected B-vector distributions aligned with the jet flow and the lobe edge. An AGN-driven shock powered by the expanding magnetic tower jet surrounds the jet/lobe structure and heats the ambient ICM. The lobes expand subsonically; no obvious hot spots are produced at the heads of lobes. Several key features in our MHD modeling may be qualitatively supported by observations of Hercules A. C1 [Nakamura, Masanori; Tregillis, Ian L.; Li, Hui; Li, Shengtai] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Nakamura, M (reprint author), Los Alamos Natl Lab, MS B227, Los Alamos, NM 87545 USA. EM nakamura@stsci.edu OI Li, Shengtai/0000-0002-4142-3080 FU US Department of Energy at Los Alamos National Laboratory (LANL) [DE-AC52-06NA25396] FX Helpful discussions with Philipp Kronberg and Steven Diehl are gratefully acknowledged. The authors thank the anonymous referee for helpful suggestions. This work was carried out under the auspices of the National Nuclear Security Administration of the US Department of Energy at Los Alamos National Laboratory (LANL) under contract DE-AC52-06NA25396. It was supported by the Laboratory Directed Research and Development Program and the Institute of Geophysics and Planetary Physics at LANL. NR 66 TC 21 Z9 21 U1 0 U2 3 PU UNIV CHICAGO PRESS PI CHICAGO PA 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD OCT 20 PY 2008 VL 686 IS 2 BP 843 EP 850 DI 10.1086/591222 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 364YB UT WOS:000260370500008 ER PT J AU Muzzin, A Wilson, G Lacy, M Yee, HKC Stanford, SA AF Muzzin, Adam Wilson, Gillian Lacy, Mark Yee, H. K. C. Stanford, S. A. TI THE EVOLUTION OF DUSTY STAR FORMATION AND STELLAR MASS ASSEMBLY IN CLUSTERS: RESULTS FROM THE IRAC 3.6, 4.5, 5.8, AND 8.0 mu m CLUSTER LUMINOSITY FUNCTIONS SO ASTROPHYSICAL JOURNAL LA English DT Review DE galaxies: clusters: general; galaxies: evolution; galaxies: photometry; galaxies: starburst; Galaxy: fundamental parameters; infrared: galaxies ID EARLY-TYPE GALAXIES; COLOR-MAGNITUDE RELATION; NEAR-INFRARED PROPERTIES; ACTIVE GALACTIC NUCLEI; DIGITAL SKY SURVEY; MORPHOLOGY-DENSITY RELATION; TO-LIGHT RATIOS; TELESCOPE 1ST-LOOK SURVEY; HALO OCCUPATION NUMBER; HUBBLE-SPACE-TELESCOPE AB We present a catalog of 99 candidate clusters and groups of galaxies in the redshift range 0.1 < z(phot) < 1.3 discovered in the Spitzer FLS. The clusters are selected by their R-c - 3.6 mu m galaxy color-magnitude relation using the cluster red-sequence algorithm. Using this cluster sample, we compute the 3.6, 4.5, 5.8, and 8.0 mu m cluster LFs. Similar to previous studies, we find that for the bands that trace stellar mass at these redshifts (3.6 and 4.5 mu m) the evolution in M* is consistent with a passively evolving population of galaxies with a high formation redshift (z(f) > 1: 5). Using the 3.6 mu m LF as a proxy for stellar luminosity, we remove this component from the MIR (5.8 and 8.0 mu m) cluster LFs and measure the LF of dusty star formation/AGNs in clusters. We find that at z < 0.4 the bright end of the cluster 8.0 mu m LF is well described by a composite population of quiescent galaxies and regular star-forming galaxies with a mix consistent with typical cluster blue fractions; however, at z > 0: 4, an additional population of dusty starburst galaxies is required to properly model the 8.0 mu m LFs. Comparison to field studies at similar redshifts shows a strong differential evolution in the field and cluster 8.0 mu m LFs with redshift. At z similar to 0.65 8.0 mu m-detected galaxies are more abundant in clusters compared to the field, but thereafter the number of 8.0 mu m sources in clusters declines with decreasing redshift, and by z similar to 0.15, clusters are underdense relative to the field by a factor of similar to 5. The rapid differential evolution between the cluster and field LFs is qualitatively consistent with recent field galaxy studies that show that the star formation rates of galaxies in high-density environments are larger than those in low-density environments at higher redshift. C1 [Muzzin, Adam; Yee, H. K. C.] Univ Toronto, Dept Astron & Astrophys, Toronto, ON M5S 3H4, Canada. [Wilson, Gillian; Lacy, Mark] CALTECH, Spitzer Sci Ctr, Pasadena, CA 91125 USA. [Wilson, Gillian] Univ Calif Riverside, Dept Phys & Astron, Riverside, CA 92521 USA. [Stanford, S. A.] Univ Calif Davis, Davis, CA 95616 USA. [Stanford, S. A.] Lawrence Livermore Natl Lab, Inst Geophys & Planetary Phys, Livermore, CA 94551 USA. RP Muzzin, A (reprint author), Yale Univ, Dept Astron, New Haven, CT 06520 USA. EM adam.muzzin@yale.edu NR 135 TC 46 Z9 46 U1 0 U2 2 PU UNIV CHICAGO PRESS PI CHICAGO PA 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD OCT 20 PY 2008 VL 686 IS 2 BP 966 EP 994 DI 10.1086/591542 PG 29 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 364YB UT WOS:000260370500017 ER PT J AU Offner, SSR Klein, RI Mckee, CF AF Offner, Stella S. R. Klein, Richard I. McKee, Christopher F. TI DRIVEN AND DECAYING TURBULENCE SIMULATIONS OF LOW-MASS STAR FORMATION: FROM CLUMPS TO CORES TO PROTOSTARS SO ASTROPHYSICAL JOURNAL LA English DT Article DE hydrodynamics; ISM: clouds; methods: numerical; stars: formation; turbulence ID MOLECULAR CLOUD CORES; SELF-GRAVITATIONAL HYDRODYNAMICS; SMOOTHED PARTICLE HYDRODYNAMICS; ADAPTIVE MESH REFINEMENT; BROWN DWARFS; STELLAR CLUSTERS; DARK CLOUDS; DENSE CORES; MAGNETOHYDRODYNAMIC TURBULENCE; GRAVOTURBULENT FRAGMENTATION AB Molecular clouds are observed to be turbulent, but the origin of this turbulence is not well understood. As a result, there are two different approaches to simulating molecular clouds, one in which the turbulence is allowed to decay after it is initialized, and one in which it is driven. We use the adaptive mesh refinement (AMR) code, Orion, to perform high-resolution simulations of molecular cloud cores and protostars in environments with both driven and decaying turbulence. We include self-gravity, use a barotropic equation of state, and represent regions exceeding the maximum grid resolution with sink particles. We analyze the properties of bound cores such as size, shape, line width, and rotational energy, and we find reasonable agreement with observation. At high resolution the different rates of core accretion in the two cases have a significant effect on protostellar system development. Clumps forming in a decaying turbulence environment produce high-multiplicity protostellar systems with Toomre Q unstable disks that exhibit characteristics of the competitive accretion model for star formation. In contrast, cores forming in the context of continuously driven turbulence and virial equilibrium form smaller protostellar systems with fewer low-mass members. Our simulations of driven and decaying turbulence show some statistically significant differences, particularly in the production of brown dwarfs and core rotation, but the uncertainties are large enough that we are not able to conclude whether observations favor one or the other. C1 [Offner, Stella S. R.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Klein, Richard I.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Klein, Richard I.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [McKee, Christopher F.] Univ Calif Berkeley, Dept Phys & Astron, Berkeley, CA 94720 USA. RP Offner, SSR (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. EM soffner@berkeley.edu FU Lawrence Livermore National Laboratory [B-542762, DE-AC52-07NA27344]; NASA [NNG06GH96G, AST 06-06831]; National Science Foundation [PHY05-51164]; NSF San Diego Supercomputing Center; NPACI [UCB267]; Office of Science of the Department of Energy [DE-AC03-76SF00098]; ERCAP [80325] FX We thank P. S. Li, M. Krumholz, and R. Fisher for helpful discussions and suggestions. Support for this work was provided under the auspices of the Department of Energy by Lawrence Livermore National Laboratory under contacts B-542762 (S.S.R.O.) and DE-AC52-07NA27344 (R. I. K.); NASA ATP grant NNG06GH96G (C .F.M. and R. I. K.); grant AST 06-06831 (C. F. M. and R. I. K.); and National Science Foundation under grant PHY05-51164 (C. F. M. and S. S. R. O.). Computational resources were provided by the NSF San Diego Supercomputing Center through NPACI program grant UCB267; and the National Energy Research Scientific Computer Center, which is supported by the Office of Science of the Department of Energy under contract number DE-AC03-76SF00098, through ERCAP grant 80325. NR 83 TC 58 Z9 58 U1 0 U2 4 PU UNIV CHICAGO PRESS PI CHICAGO PA 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD OCT 20 PY 2008 VL 686 IS 2 BP 1174 EP 1194 DI 10.1086/590238 PG 21 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 364YB UT WOS:000260370500032 ER PT J AU Park, SH Lee, J Choe, GS Chae, J Jeong, H Yang, G Jing, J Wang, HM AF Park, Sung-Hong Lee, Jeongwoo Choe, G. S. Chae, Jongchul Jeong, Hyewon Yang, Guo Jing, Ju Wang, Haimin TI THE VARIATION OF RELATIVE MAGNETIC HELICITY AROUND MAJOR FLARES SO ASTROPHYSICAL JOURNAL LA English DT Article DE Sun: flares; Sun: magnetic fields ID INJECTION; ENERGY; MECHANISM; FLUXES; MOTION; FIELD AB We have investigated the variation of magnetic helicity over a span of several days around the times of 11 X-class flares which occurred in seven active regions (NOAA 9672, 10030, 10314, 10486, 10564, 10696, and 10720) using the magnetograms taken by the Michelson Doppler Imager (MDI) on board the Solar and Heliospheric Observatory (SOHO). As a major result we found that each of these major flares was preceded by a significant helicity accumulation, (1.8-16) x 10(42) Mx(2) over a long period (0.5 to a few days). Another finding is that the helicity accumulates at a nearly constant rate, (4.5-4.8) x 10(40) Mx(2) hr(-1), and then becomes nearly constant before the flares. This led us to distinguish the helicity variation into two phases: a phase of monotonically increasing helicity and the following phase of relatively constant helicity. As expected, the amount of helicity accumulated shows a modest correlation with time-integrated soft X-ray flux during flares. However, the average helicity change rate in the first phase shows even stronger correlation with the time-integrated soft X-ray flux. We discuss the physical implications of this result and the possibility that this characteristic helicity variation pattern can be used as an early warning sign for solar eruptions. C1 [Park, Sung-Hong; Lee, Jeongwoo; Yang, Guo; Jing, Ju; Wang, Haimin] New Jersey Inst Technol, Ctr Solar Terr Res, Newark, NJ 07102 USA. [Park, Sung-Hong; Yang, Guo; Jing, Ju; Wang, Haimin] Big Bear Solar Observ, Big Bear City, CA 92314 USA. [Choe, G. S.] Kyung Hee Univ, Dept Astron & Space Sci, Yongin 449701, South Korea. [Choe, G. S.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Chae, Jongchul; Jeong, Hyewon] Seoul Natl Univ, Astron Program, Dept Phys & Astron, Seoul 151742, South Korea. [Chae, Jongchul; Jeong, Hyewon] Seoul Natl Univ, Dept Phys & Astron, FPRD, Seoul 151742, South Korea. RP Park, SH (reprint author), New Jersey Inst Technol, Ctr Solar Terr Res, 323 Martin Luther King Blvd,101 Tiernan Hall, Newark, NJ 07102 USA. EM sp295@njit.edu RI Choe, Gwangson/E-2366-2013; Park, Sung-Hong/K-1578-2014 OI Park, Sung-Hong/0000-0001-9149-6547 FU NSF [ATM-0548952, AST 06-07544]; NASA [NNG0-6GC81G, NNG0-6GE76G, NNH04AA16I]; DOE [DE-AC02-76-CH03073] FX The authors wish to thank the referee for valuable comments on the manuscript. The work is supported by NSF grant ATM-0548952 and NASA grant NNG0-6GC81G. J. L. was supported by NSF grant AST 06-07544 and NASA grant NNG0-6GE76G. G. S. C. was supported by DOE contract DE-AC02-76-CH03073 and NASA grant NNH04AA16I. NR 23 TC 18 Z9 18 U1 0 U2 3 PU UNIV CHICAGO PRESS PI CHICAGO PA 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD OCT 20 PY 2008 VL 686 IS 2 BP 1397 EP 1403 DI 10.1086/591117 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 364YB UT WOS:000260370500049 ER PT J AU Ryutova, M Berger, T Frank, Z Title, A AF Ryutova, M. Berger, T. Frank, Z. Title, A. TI ON THE PENUMBRAL JETLIKE FEATURES AND CHROMOSPHERIC BOW SHOCKS SO ASTROPHYSICAL JOURNAL LA English DT Article DE Sun: chromosphere; Sun: filaments; Sun: magnetic fields; Sun: photosphere; sunspots ID SUNSPOT PENUMBRAE; FILAMENTARY STRUCTURE; PHOTOSPHERIC NETWORK; MAGNETIC ELEMENTS; TRANSITION REGION; FINE-STRUCTURE; APPEARANCE AB We present observations of sunspot penumbrae obtained during the disk passage of AR 10923 (2006 November 10-20) with the SOT instrument on Hinode in 4305 angstrom G band and Ca II lambda 3968 H line. Along with recently discovered jetlike features (Katsukawa et al. 2007), we find other kinds of bright elongated transients abundantly pervading the entire penumbra and drifting as a whole in a direction almost perpendicular to their long axes. Their measured velocities strongly depend on their orientation with respect to the line of sight and range from similar or equal to 1 to similar or equal to 20 km s(-1). We present quantitative analysis of these features and interpret them relative to our recent penumbral model (Ryutova et al. 2008) to show that they are produced by shocks resulting from a slingshot effect associated with the ongoing reconnection processes in neighboring penumbral filaments. Due to sharp stratification of the low atmosphere, postreconnection flux tubes moving upward quickly accelerate. At transonic velocities a bow (detached) shock is formed in front of the flux tube, as usually occurs in cases of blunt bodies moving with supersonic velocities. Observed parameters of transients are in good agreement with calculated parameters of bow shocks. On some, much more rare occasions compared to "drifting'' bow-shock-type transients, there appear compact bright transients moving in the radial direction, along their long axis, and having velocities of 20-50 km s(-1). We relate these features to a category of true microjets. C1 [Ryutova, M.] Lawrence Livermore Natl Lab, IGPP, Livermore, CA 94550 USA. [Berger, T.; Frank, Z.; Title, A.] Lockheed Martin Solar & Astrophys Lab, Palo Alto, CA 94304 USA. RP Ryutova, M (reprint author), Lawrence Livermore Natl Lab, IGPP, Livermore, CA 94550 USA. EM ryutova1@llnl.gov; berger@lmsal.com; zoe@lmsal.com; title@lmsal.com FU Lawrence Livermore National Laboratory [W-7405-Eng-48]; NASA [NAG5-10483, NN07AA01C] FX We thank Dick Shine for help and Ted Tarbell for useful discussions. We also thank the SOT team for making the observations possible. We are grateful to an anonymous referee for many helpful comments and suggestions. This work was performed under the auspices of the US DOE by UC, Lawrence Livermore National Laboratory under contract W-7405-Eng-48 and supported by NASA contract at Stanford and Lockheed Martin (NAG5-10483, MDI). T. E. B. gratefully acknowledges the support of NASA contract NN07AA01C at LMSAL. Hinode is a Japanese mission developed and launched by ISAS/JAXA, with NAOJ as domestic partner and NASA and STFC (UK) as international partners. Science operation of Hinode is conducted by the Hinode science team organized at ISAS/JAXA. NR 26 TC 17 Z9 17 U1 0 U2 2 PU UNIV CHICAGO PRESS PI CHICAGO PA 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD OCT 20 PY 2008 VL 686 IS 2 BP 1404 EP 1419 DI 10.1086/591498 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 364YB UT WOS:000260370500050 ER PT J AU Rubin-Pitel, SB Zhang, HJ Vu, T Brunzelle, JS Zhao, HM Nair, SK AF Rubin-Pitel, Sheryl B. Zhang, Houjin Vu, Trang Brunzelle, Joseph S. Zhao, Huimin Nair, Satish K. TI Distinct Structural Elements Dictate the Specificity of the Type III Pentaketide Synthase from Neurospora crassa SO CHEMISTRY & BIOLOGY LA English DT Article ID PLANT POLYKETIDE BIOSYNTHESIS; CHAIN-LENGTH CONTROL; MACROMOLECULAR STRUCTURES; CHALCONE SYNTHASE; SUPERFAMILY; REFINEMENT; CHROMONE; CHECKING; DENSITY AB The fungal type III polyketide synthase 2'-oxoalkylresorcylic acid synthase (ORAS) primes with a range of acyl-Coenzyme A thioesters (C(4)-C(20)) and extends using malonyl-Coenzyme A to produce pyrones, resorcinols, and resorcylic acids. To gain insight into this unusual substrate specificity and product profile, we have determined the crystal structures of ORAS to 1.75 angstrom resolution, the Phe-252 -> Gly site-directed mutant to 2.1 angstrom resolution, and a binary complex of ORAS with eicosanoic acid to 2.0 angstrom resolution. The structures reveal a distinct rearrangement of structural elements near the active site that allows accommodation of long-chain fatty acid esters and a reorientation of the gating mechanism that controls cyclization and polyketide chain length. The roles of these structural elements are further elucidated by characterization of various structure-based site-directed variants. These studies establish an unexpected plasticity to the PKS fold, unanticipate from structural studies of other members of this enzyme family. C1 [Rubin-Pitel, Sheryl B.; Vu, Trang; Zhao, Huimin] Univ Illinois, Dept Chem & Biomol Engn, Urbana, IL 61801 USA. [Zhang, Houjin; Zhao, Huimin; Nair, Satish K.] Univ Illinois, Dept Biochem, Urbana, IL 61801 USA. [Brunzelle, Joseph S.] Argonne Natl Labs, Life Sci Collaborat Access Team, Argonne, IL 60439 USA. [Zhao, Huimin; Nair, Satish K.] Univ Illinois, Ctr Biophys & Computat Biol, Urbana, IL 61801 USA. RP Zhao, HM (reprint author), Univ Illinois, Dept Chem & Biomol Engn, 600 S Mathews Ave, Urbana, IL 61801 USA. EM zhao5@uiuc.edu; snair@uiuc.edu FU Office of Naval Research [N00014-02-1-0725]; NIGMS; National Institutes of Health Cell and Molecular Biology Training Grant Program; National Science Foundation Graduate Research Fellowship Program; National Science Foundation [DBI-0100085] FX This research was supported by a grant from the Office of Naval Research (N00014-02-1-0725 to H.Z.) and NIGMS (S.K.N.). We thank John Chrzas and staff at SER-CAT (22-BM at Argonne National Laboratories) for facilitating data collection. We thank N. Nair for preparation of the Neurospora crassa mRNA library and Anuradha Biswas for assistance in protein purification. S.B.R.-P. acknowledges support from the National Institutes of Health Cell and Molecular Biology Training Grant Program and the National Science Foundation Graduate Research Fellowship Program. The Q-Tof Ultima mass Spectrometer was purchased in part with a grant from the National Science Foundation, Division of Biological Infrastructure (DBI-0100085). The authors declare that they have no competing interests. NR 30 TC 22 Z9 22 U1 1 U2 12 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 1074-5521 J9 CHEM BIOL JI Chem. Biol. PD OCT 20 PY 2008 VL 15 IS 10 BP 1079 EP 1090 DI 10.1016/j.chembiol.2008.08.011 PG 12 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 364UZ UT WOS:000260362200011 PM 18940668 ER PT J AU Angelici, RJ Lazar, M AF Angelici, Robert J. Lazar, Mihaela TI Isocyanide Ligands Adsorbed on Metal Surfaces: Applications in Catalysis, Nanochemistry, and Molecular Electronics SO INORGANIC CHEMISTRY LA English DT Article ID ENHANCED RAMAN-SCATTERING; GOLD NANOPARTICLE SURFACES; METHYL ISOCYANIDE; COVALENT ATTACHMENT; OXIDATION CATALYSIS; BENZYL ISOCYANIDE; PT(111) SURFACE; SINGLE-MOLECULE; ADSORPTION; COMPLEXES AB Knowledge of the coordination chemistry and reactivity of isocyanide ligands in transition-metal complexes forms the basis for understanding the adsorption and reactions of isocyanides on metal surfaces. In this overview, we explore reactions (often catalytic) of isocyanides adsorbed on metal surfaces that reflect their patterns of reactivity in metal complexes. We also examine applications of isocyanide adsorption to the stabilization of metal nanoparticles, the functionalization of metal electrodes, and the creation of conducting organic-metal junctions in molecule-scale electronic devices. C1 [Angelici, Robert J.] Iowa State Univ, US DOE, Ames Lab, Ames, IA 50011 USA. [Angelici, Robert J.] Iowa State Univ, Dept Chem, Ames, IA 50011 USA. [Lazar, Mihaela] Isotop & Mol Technol, Natl Inst Res & Dev, Cluj Napoca 400293, Romania. RP Angelici, RJ (reprint author), Iowa State Univ, US DOE, Ames Lab, Ames, IA 50011 USA. EM angelici@iastate.edu RI Lazar, Mihaela/B-7578-2011 OI Lazar, Mihaela/0000-0002-1679-1324 FU ACS Award by Strem Chemicals Inc. FX In looking back over the years, R.J.A. thanks the many people and organizations that have provided the foundation and support for his career in chemistry. On the personal side are his parents, who supported his decision to study chemistry rather than attend to the grocery business, and his wife Elizabeth of 46 years. On the professional side are his teachers at St. Olaf College, his Ph.D. mentor Fred Basolo at Northwestern University, and his postdoctoral mentor E. O. Fischer at the University of Munich. He is grateful to his graduate students and postdocs, who propelled the many different projects through to successful conclusions. 65 Most important among the many different funding agencies that have supported his work are the U.S. Department of Energy (BES), NSF, and NIH. Ongoing support of this ACS Award by Strem Chemicals Inc. is very much appreciated. Finally, Bob thanks his faculty colleagues in inorganic chemistry at ISU for their friendship and dedication and Carla J. Holbrook for her excellent secretarial support. M.L. thanks Dr. Valer Almasan for providing the time necessary to work on this manuscript. NR 68 TC 38 Z9 38 U1 1 U2 12 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 EI 1520-510X J9 INORG CHEM JI Inorg. Chem. PD OCT 20 PY 2008 VL 47 IS 20 BP 9155 EP 9165 DI 10.1021/ic800513t PG 11 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 359LQ UT WOS:000259988600012 PM 18729352 ER PT J AU Roy, LE Batista, ER Hay, PJ AF Roy, Lindsay E. Batista, Enrique R. Hay, P. Jeffrey TI Theoretical Studies on the Redox Potentials of Fe Dinuclear Complexes as Models for Hydrogenase SO INORGANIC CHEMISTRY LA English DT Article ID DENSITY-FUNCTIONAL THEORY; CLUSTER-FREE HYDROGENASE; EFFECTIVE CORE POTENTIALS; ACTIVE-SITE MODELS; ONLY HYDROGENASE; IRON HYDROGENASE; DESULFOVIBRIO-DESULFURICANS; VIBRATIONAL FREQUENCIES; MOLECULAR CALCULATIONS; METHANOGENIC ARCHAEA AB Density Functional calculations have been performed at the uB3LYP and uBP86 levels to calculate the one-electron redox potentials for a series of small models based on the diiron hydrogenase enzymes in the presence of acetonitrile (MeCN). The solvation effects in MeCN are incorporated via a self-consistent reaction field (SCRF) using the polarized continuum model (PCM). The calculated redox potentials reproduce the trends in experimental data with an average error of only 0.12 V using the BP86 functional, whereas comparing results with the B3LYP functional require a systematic shift of -0.82 and -0.53 V for oxidation and reduction, respectively. The bonding orbitals and cl-electron populations were examined using Mulliken population analysis, and the results were used to rationalize the calculated and observed redox potentials. These studies demonstrate that the redox potential correlates with the empirical spectrochemical series for the ligands, as well as with the amount of electron density donated by the ligand onto the Fe centers. C1 [Roy, Lindsay E.; Batista, Enrique R.; Hay, P. Jeffrey] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Batista, ER (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. EM erb@lanl.gov FU Laboratory Directed Research and Development (LDRD); [DE-AC52-06NA25396] FX This work was supported by the Laboratory Directed Research and Development (LDRD) program at Los Alamos National Laboratory. Los Alamos National Laboratory is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. NR 78 TC 37 Z9 37 U1 1 U2 18 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 EI 1520-510X J9 INORG CHEM JI Inorg. Chem. PD OCT 20 PY 2008 VL 47 IS 20 BP 9228 EP 9237 DI 10.1021/ic800541w PG 10 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 359LQ UT WOS:000259988600018 PM 18811143 ER PT J AU Wilson, RE Skanthakumar, S Knope, KE Cahill, CL Soderholm, L AF Wilson, Richard E. Skanthakumar, S. Knope, Karah E. Cahill, Christopher L. Soderholm, L. TI An Open-Framework Thorium Sulfate Hydrate with 11.5 angstrom Voids SO INORGANIC CHEMISTRY LA English DT Article ID CIS-DIOXIDO URANYL; CRYSTAL-STRUCTURE; SELENATES AB We report the synthesis of a thorium sulfate hydrate with 11.5 angstrom open channels that propagate through the structure. The compound crystallizes in the tetragonal space group P4(2)/nmc, a = b = 25.890(4) angstrom, c = 9.080(2) angstrom, Z = 8, V = 6086.3(2) angstrom(3). The thermal stability of the compound was investigated using thermogravimetric analysis and high-energy X-ray scattering (HEXS) revealing that the compound begins to undergo decomposition near 200 degrees C with an accompanied loss in crystallinity. The immediate coordination environment about the thorium atoms remains intact through heating to 500 degrees C as demonstrated by HEXS, Further heating reveals the formation of at least two crystalline phases, Th(SO4)(2) and ThO2, which ultimately decompose to ThO2. C1 [Wilson, Richard E.; Skanthakumar, S.; Soderholm, L.] Argonne Natl Lab, Hean Elements & Separat Sci Grp, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Knope, Karah E.; Cahill, Christopher L.] George Washington Univ, Dept Chem, Washington, DC 20052 USA. RP Wilson, RE (reprint author), Argonne Natl Lab, Hean Elements & Separat Sci Grp, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM rewilson@anl.gov RI Wilson, Richard/H-1763-2011 OI Wilson, Richard/0000-0001-8618-5680 FU U.S. Department of Energy, OBES, Chemical Sciences Division [DE-AC02-06CH11357, DE-FG02-05ER15736]; OBES, Materials Sciences Division [DE-AC02-06CHI 1357] FX This research is supported at Argonne National Laboratory by the U.S. Department of Energy, OBES, Chemical Sciences Division, under contract DE-AC02-06CHI 1357. Work at the Advanced Photon Source was supported by OBES, Materials Sciences Division, under the same contract number. Work at George Washington University is supported by the U.S. Department of Energy, OBES, Chemical Sciences Division, under contract number DE-FG02-05ER15736. NR 32 TC 25 Z9 26 U1 1 U2 13 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 J9 INORG CHEM JI Inorg. Chem. PD OCT 20 PY 2008 VL 47 IS 20 BP 9321 EP 9326 DI 10.1021/ic800931f PG 6 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 359LQ UT WOS:000259988600027 PM 18811149 ER PT J AU Palasyuk, AM Corbett, JD AF Palasyuk, Andriy M. Corbett, John D. TI BaIrIn4 and Ba2Ir4In13: Two In-Rich Polar Intermetallic Structures with Different Augmented Prismatic Environments about the Cations SO INORGANIC CHEMISTRY LA English DT Article ID GOLD SUBSTITUTION; INDIUM CUBES; AU; IR; PD; NETWORKS; EXAMPLES; METALS; MOTIFS; CAIN2 AB The title phases were synthesized via high-temperature reactions of the elements in welded Ta tubes and characterized by single-crystal X-ray diffraction methods and band calculations. BaIrIn4 adopts the LaCoAl4-type structure: Pmma, Z = 2, a = 8.642(2), b = 4,396(1), and c = 7.906(2) angstrom. Ba2Ir4In13 exhibits a new structure type: Cmc2(1), Z = 4, a = 4.4856(9), b = 29.052(6), and c = 13.687(3) angstrom. BaIrIn4 is constructed from a single basic unit, a Ba-centered pentagonal prism of indium on which two adjacent and the opposed rectangular faces are capped by In and Ir, respectively. The three capping atoms are coplanar with Ba and represent the only augmentation of the pentagonal prism. The relatively large proportions of Ba:Ir, In, and of In:Ir lead to the condensation of homoatomic pentagonal prisms into zigzag chains through the sharing of the two uncapped faces. The cation proportion is much lower in Ba2Ir4In13, and Ba atoms are surrounded by a more anionic Ir/In network without any condensation between prisms. This and the greater Ir proportion lead to a network of formal augmented pentagonal Ba@Ir5In15 and hexagonal Ba@Ir7In15 prisms with overall 5-10-5 and 6-10-6 arrangements of parallel planar rings, respectively, although most Ir is not well bound to the prisms. The latter prism, with alternating Ir/In atoms in the basal faces, is novel for Ae-T-In phases (Ae = alkaline-earth metal, T = Co, Rh, Ir). Band structure calculation results (linear-muff in-tin-orbital method in the atomic sphere approximation) emphasize the greater overlap populations (similar to strengths) of the Ir-In bonds and confirm expectations that both compounds are metallic. The Ir 5d bands are narrower and lie higher in energy than those for Au in analogous phases. C1 [Corbett, John D.] Iowa State Univ, Ames Lab DOE, Ames, IA 50011 USA. Iowa State Univ, Dept Chem, Ames, IA 50011 USA. RP Corbett, JD (reprint author), Iowa State Univ, Ames Lab DOE, Ames, IA 50011 USA. EM jdc@ameslab.gov FU Office of the Basic Energy Sciences, Materials Sciences Division, U.S. Department of Energy (DOE); Iowa State University [DE-AC02-07Ch 11358] FX This research was supported by the Office of the Basic Energy Sciences, Materials Sciences Division, U.S. Department of Energy (DOE). The Ames Laboratory is operated for DOE by Iowa State University under Contract No. DE-AC02-07Ch 11358. NR 44 TC 9 Z9 9 U1 1 U2 9 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 J9 INORG CHEM JI Inorg. Chem. PD OCT 20 PY 2008 VL 47 IS 20 BP 9344 EP 9350 DI 10.1021/ic8006124 PG 7 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 359LQ UT WOS:000259988600030 PM 18795775 ER PT J AU Jardin, SC Bateman, G Hammett, GW Ku, LP AF Jardin, S. C. Bateman, G. Hammett, G. W. Ku, L. P. TI On 1D diffusion problems with a gradient-dependent diffusion coefficient SO JOURNAL OF COMPUTATIONAL PHYSICS LA English DT Article DE Numerical methods; Newtons method; Diffusion equations; Magnetic fusion ID TRANSPORT MODEL C1 [Jardin, S. C.; Hammett, G. W.; Ku, L. P.] Princeton Univ, Plasma Phys Lab, Princeton, NJ 08543 USA. [Bateman, G.] Lehigh Univ, Dept Phys, Bethlehem, PA 18015 USA. RP Jardin, SC (reprint author), Princeton Univ, Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. EM jardin@pppl.gov RI Jardin, Stephen/E-9392-2010; Hammett, Gregory/D-1365-2011 OI Hammett, Gregory/0000-0003-1495-6647 FU US DoE [DE-AC02-76CH0307] FX The authors acknowledge helpful conversations with Drs. X.C. Cai, D. Keyes, H. St. John and D. McCune. We thank Prof. A.H. Kritz for his encouragement in publishing this technique. This work was supported by US DoE contract DE-AC02-76CH0307. NR 12 TC 5 Z9 5 U1 3 U2 4 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9991 J9 J COMPUT PHYS JI J. Comput. Phys. PD OCT 20 PY 2008 VL 227 IS 20 BP 8769 EP 8775 DI 10.1016/j.jcp.2008.06.032 PG 7 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA 363LB UT WOS:000260267700001 ER PT J AU Gyrya, V Lipnikov, K AF Gyrya, Vitaliy Lipnikov, Konstantin TI High-order mimetic finite difference method for diffusion problems on polygonal meshes SO JOURNAL OF COMPUTATIONAL PHYSICS LA English DT Article DE Diffusion equation; Locally conservative method; Mimetic discretization; High-order method; Polygonal mesh ID POLYHEDRAL MESHES; APPROXIMATIONS AB The mimetic finite difference (MFD) methods mimic important properties of physical and mathematical models. As a result, conservation laws, solution symmetries, and the fundamental identities of the vector and tensor calculus are held for discrete models. The MFD methods retain these attractive properties for full tensor coefficients and arbitrary polygonal meshes which may include non-convex and degenerate elements. The existing MFD methods for solving diffusion-type problems are second-order accurate for the conservative variable (temperature, pressure, energy, etc.) and only first-order accurate for its flux. We developed new high-order MFD methods which are second-order accurate for both scalar and vector variables. The second-order convergence rates are demonstrated with a few numerical examples on randomly perturbed quadrilateral and polygonal meshes. Published by Elsevier Inc. C1 [Gyrya, Vitaliy] Penn State Univ, Dept Math, University Pk, PA 16802 USA. [Lipnikov, Konstantin] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Gyrya, V (reprint author), Penn State Univ, Dept Math, University Pk, PA 16802 USA. EM gyrya@math.psu.edu; lipnikov@lanl.gov OI Gyrya, Vitaliy/0000-0002-5083-8878 NR 18 TC 37 Z9 37 U1 0 U2 3 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9991 J9 J COMPUT PHYS JI J. Comput. Phys. PD OCT 20 PY 2008 VL 227 IS 20 BP 8841 EP 8854 DI 10.1016/j.jcp.2008.06.028 PG 14 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA 363LB UT WOS:000260267700006 ER PT J AU Philip, B Chacon, L Pernice, M AF Philip, Bobby Chacon, Luis Pernice, Michael TI Implicit adaptive mesh refinement for 2D reduced resistive magnetohydrodynamics SO JOURNAL OF COMPUTATIONAL PHYSICS LA English DT Article DE Adaptive mesh refinement; Newton-Krylov; Implicit methods; Magnetohydrodynamics; Multilevel solvers ID PARTIAL-DIFFERENTIAL-EQUATIONS; NAVIER-STOKES EQUATIONS; INEXACT NEWTON METHODS; FINITE-ELEMENT-METHOD; MAGNETIC ISLANDS; KRYLOV METHODS; SYSTEMS; MHD; SIMULATIONS; ALGORITHM AB An implicit structured adaptive mesh refinement (SAMR) solver for 2D reduced magnetohydrodynamics (MHD) is described. The time-implicit discretization is able to step over fast normal modes, while the spatial adaptivity resolves thin, dynamically evolving features. A Jacobian-free Newton-Krylov method is used for the nonlinear solver engine. For preconditioning, we have extended the optimal "physics-based" approach developed in [L. Chacon, D.A. Knoll, J.M. Finn, An implicit, nonlinear reduced resistive MHD solver, J. Comput. Phys. 178 (2002) 15-36] (which employed multigrid solver technology in the preconditioner for scalability) to SAMR grids using the well-known Fast Adaptive Composite grid (FAC) method [S. McCormick, Multilevel Adaptive Methods for Partial Differential Equations, SIAM, Philadelphia, P& 1989]. A grid convergence study demonstrates that the solver performance is independent of the number of grid levels and only depends on the finest resolution considered, and that it scales well with grid refinement. The study of error generation and propagation in our SAMR implementation demonstrates that high-order (cubic) interpolation during regridding, combined with a robustly damping second-order temporal scheme such as BDF2, is required to minimize impact of grid errors at coarse-fine interfaces on the overall error of the computation for this MHD application. We also demonstrate that our implementation features the desired property that the overall numerical error is dependent only on the finest resolution level considered, and not on the base-grid resolution or on the number of refinement levels present during the simulation. We demonstrate the effectiveness of the tool on several challenging problems. (c) 2008 Elsevier Inc. All rights reserved. C1 [Philip, Bobby; Chacon, Luis] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Pernice, Michael] Idaho Natl Lab, Ctr Adv Modeling & Simulat, Idaho Falls, ID 83415 USA. RP Philip, B (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. EM bphilip@lanl.gov; chacon@lanl.gov; michael.pernice@inl.gov OI Philip, Bobby/0000-0001-6716-3515; Chacon, Luis/0000-0002-4566-8763 FU Los Alamos National Laboratory; DOE [DE-AC52-06NA25396]; DOE Office; ASCR program in Applied Mathematical Sciences FX The authors acknowledge useful discussions with D.A. Knoll. The work was funded by the Los Alamos Directed Research and Development program at Los Alamos National Laboratory, operated for DOE under contract No. DE-AC52-06NA25396, and by the DOE Office of ASCR program in Applied Mathematical Sciences. NR 61 TC 8 Z9 10 U1 0 U2 4 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9991 J9 J COMPUT PHYS JI J. Comput. Phys. PD OCT 20 PY 2008 VL 227 IS 20 BP 8855 EP 8874 DI 10.1016/j.jcp.2008.06.029 PG 20 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA 363LB UT WOS:000260267700007 ER PT J AU Chantis, AN Belashchenko, KD Tsymbal, EY Sus, IV AF Chantis, Athanasios N. Belashchenko, Kirill D. Tsymbal, Evgeny Y. Sus, Inna V. TI THE IMPORTANCE OF Fe SURFACE STATES FOR MAGNETIC TUNNEL JUNCTION BASED SPINTRONIC DEVICES SO MODERN PHYSICS LETTERS B LA English DT Review DE Spin transport through interfaces; electrical injection of spin polarized carriers; spin polarized transport in semiconductors; spintronics; first principles electron transport methods; tunneling anisotropic magnetoresistance; metal-semiconductor-metal structures; magnetic tunnel junctions; Rashba splitting ID TIN-ORBITAL METHOD; ELECTRONIC-STRUCTURE; SPIN INJECTION; BAND-STRUCTURE; SEMICONDUCTOR; TRANSPORT; BARRIER; FE(001) AB In this article we give a review of our recent theoretical studies of the influence of Fe(001) surface (interface) states on spin-polarized electron transport across magnetic tunnel junctions with Fe electrodes. We show that minority-spin surface (interface) states are responsible for at least two effects which are important for spin electronics. First, they can produce a sizable tunneling anisotropic magnetoresistance in magnetic tunnel junctions with a single Fe electrode. The effect is driven by a Rashba shift of the resonant surface band when the magnetization changes direction. This can introduce a new class of spintronic devices, namely, tunneling magnetoresistance junctions with a single ferro-magnetic electrode. Second, in Fe/GaAs(001) magnetic tunnel junctions minority-spin interface states produce a strong dependence of the tunneling current spin polarization on applied electrical bias. A dramatic sign reversal within a voltage range of just a few tenths of an eV is predicted. This explains the observed sign reversal of spin polarization in recent experiments of electrical spin injection in Fe/GaAs(001) and related reversal of tunneling magnetoresistance through vertical Fe/GaAs/Fe trilayers. C1 [Chantis, Athanasios N.; Sus, Inna V.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87544 USA. [Belashchenko, Kirill D.; Tsymbal, Evgeny Y.] Univ Nebraska, Dept Phys & Astron, Lincoln, NE 68588 USA. [Belashchenko, Kirill D.; Tsymbal, Evgeny Y.] Univ Nebraska, Nebraska Ctr Mat & Nanosci, Lincoln, NE 68588 USA. [Sus, Inna V.] Arizona State Univ, Sch Mat, Tempe, AZ 85287 USA. RP Chantis, AN (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87544 USA. EM achantis@lanl.gov RI Belashchenko, Kirill/A-9744-2008; Tsymbal, Evgeny/G-3493-2013; OI Belashchenko, Kirill/0000-0002-8518-1490; Chantis, Athanasios/0000-0001-7933-0579 FU DOE Office of Basic Energy Sciences [08SCPE973] FX The work at Los Alamos National Laboratory was supported by the DOE Office of Basic Energy Sciences under Work Proposal Number 08SCPE973. K. Belashchenko is supported by the Nebraska Research Initiative and is a Cottrell Scholar of Research Corporation. NR 40 TC 4 Z9 4 U1 2 U2 12 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 0217-9849 EI 1793-6640 J9 MOD PHYS LETT B JI Mod. Phys. Lett. B PD OCT 20 PY 2008 VL 22 IS 26 BP 2529 EP 2551 DI 10.1142/S0217984908017060 PG 23 WC Physics, Applied; Physics, Condensed Matter; Physics, Mathematical SC Physics GA 371AQ UT WOS:000260804600001 ER PT J AU Busuttil, RA Munoz, DP Garcia, AM Rodier, F Kim, WH Suh, Y Hasty, P Campisi, J Vijg, J AF Busuttil, Rita A. Munoz, Denise P. Garcia, Ana Maria Rodier, Francis Kim, Woo Ho Suh, Yousin Hasty, Paul Campisi, Judith Vijg, Jan TI Effect of Ku80 Deficiency on Mutation Frequencies and Spectra at a LacZ Reporter Locus in Mouse Tissues and Cells SO PLOS ONE LA English DT Article AB Non-homologous end joining (NHEJ) is thought to be an important mechanism for preventing the adverse effects of DNA double strand breaks (DSBs) and its absence has been associated with premature aging. To investigate the effect of inactivated NHEJ on spontaneous mutation frequencies and spectra in vivo and in cultured cells, we crossed a Ku80-deficient mouse with mice harboring a lacZ-plasmid-based mutation reporter. We analyzed various organs and tissues, as well as cultured embryonic fibroblasts, for mutations at the lacZ locus. When comparing mutant with wild-type mice, we observed a significantly higher number of genome rearrangements in liver and spleen and a significantly lower number of point mutations in liver and brain. The reduced point mutation frequency was not due to a decrease in small deletion mutations thought to be a hallmark of NHEJ, but could be a consequence of increased cellular responses to unrepaired DSBs. Indeed, we found a substantial increase in persistent 53BP1 and gamma H2AX DNA damage foci in Ku80(-/-) as compared to wild-type liver. Treatment of cultured Ku80-deficient or wild-type embryonic fibroblasts, either proliferating or quiescent, with hydrogen peroxide or bleomycin showed no differences in the number or type of induced genome rearrangements. However, after such treatment, Ku80-deficient cells did show an increased number of persistent DNA damage foci. These results indicate that Ku80-dependent repair of DNA damage is predominantly error-free with the effect of alternative more error-prone pathways creating genome rearrangements only detectable after extended periods of time, i.e., in young adult animals. The observed premature aging likely results from a combination of increased cellular senescence and an increased load of stable, genome rearrangements. C1 [Busuttil, Rita A.; Munoz, Denise P.; Campisi, Judith; Vijg, Jan] Buck Inst Age Res, Novato, CA USA. [Garcia, Ana Maria] Univ Texas, Dept Biol, San Antonio, TX USA. [Rodier, Francis; Campisi, Judith] Lawrence Berkeley Natl Lab, Life Sci Div, Berkeley, CA USA. [Kim, Woo Ho] Seoul Natl Univ, Coll Med, Dept Pathol, Seoul 151, South Korea. [Suh, Yousin] Albert Einstein Coll Med, Dept Med, Bronx, NY USA. [Hasty, Paul] Univ Texas, Hlth Sci Ctr, Dept Mol Med, San Antonio, TX USA. RP Busuttil, RA (reprint author), Peter MacCallum Canc Ctr, Melbourne, Vic, Australia. EM jvijg@aecom.yu.edu RI Kim, Wooho/G-3703-2011; Seoul National University, Pathology/B-6702-2012 FU NIH [AG17242] FX This research was supported by NIH program project grant AG17242. NR 40 TC 10 Z9 10 U1 0 U2 2 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD OCT 20 PY 2008 VL 3 IS 10 AR e3458 DI 10.1371/journal.pone.0003458 PG 10 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 432IB UT WOS:000265125600016 PM 18941635 ER PT J AU Jordanova, VK Albert, J Miyoshi, Y AF Jordanova, V. K. Albert, J. Miyoshi, Y. TI Relativistic electron precipitation by EMIC waves from self-consistent global simulations SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID LINEAR DIFFUSION-COEFFICIENTS; PITCH-ANGLE DIFFUSION; ION-CYCLOTRON WAVES; RADIATION BELT PARTICLES; RING CURRENT IONS; GEOMAGNETIC STORMS; MAGNETIC STORM; INNER MAGNETOSPHERE; THERMAL PLASMA; MODEL AB We study the effect of electromagnetic ion cyclotron (EMIC) wave scattering on radiation belt electrons during the large geomagnetic storm of 21 October 2001 with minimum Dst = -187 nT. We use our global physics-based model, which solves the kinetic equation for relativistic electrons and H+, O+, and He+ ions as a function of radial distance in the equatorial plane, magnetic local time, energy, and pitch angle. The model includes time-dependent convective transport and radial diffusion and all major loss processes and is coupled with a dynamic plasmasphere model. We calculate the excitation of EMIC waves self-consistently with the evolving plasma populations. Particle interactions with these waves are evaluated according to quasi-linear theory, using diffusion coefficients for a multicomponent plasma and including not only field-aligned but also oblique EMIC wave propagation. The pitch angle diffusion coefficients increase from 0 degrees to similar to 60 degrees during specific storm conditions. Pitch angle scattering by EMIC waves causes significant loss of radiation belt electrons at E >= 1 MeV and precipitation into the atmosphere. However, the relativistic electron flux dropout during the main phase at large L >= 5 is due mostly to outward radial diffusion, driven by the flux decrease at geosynchronous orbit. We show first results from global simulations indicating significant relativistic electron precipitation within regions of enhanced EMIC instability, whose location varies with time but is predominantly in the afternoon-dusk sector. The precipitating electron fluxes are usually collocated with precipitating ion fluxes but occur at variable energy range and magnitude. The minimum resonant energy increases at low L and relativistic electrons at E <= 1 MeV do not precipitate at L < 3 during this storm. C1 [Jordanova, V. K.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Albert, J.] USAF, Res Lab, Bedford, MA 01731 USA. [Miyoshi, Y.] Nagoya Univ, Solarterr Environm Lab, Nagoya, Aichi 4648601, Japan. RP Jordanova, VK (reprint author), Los Alamos Natl Lab, ISR 1 MS D466, Los Alamos, NM 87545 USA. EM vania@lanl.gov RI Miyoshi, Yoshizumi/B-5834-2015; OI Miyoshi, Yoshizumi/0000-0001-7998-1240; Albert, Jay/0000-0001-9494-7630; Jordanova, Vania/0000-0003-0475-8743 FU Ministry of Education, Science, Sports and Culture, Japan [17740326] FX Work at Los Alamos was conducted under the auspices of the U. S. Department of Energy, with partial support from the NASA LWS and GI programs, from the NSF/GEM program, and from a LANL Directed Research and Development grant. Y.M. was supported by grant-in-aid for scientific research (17740326) from the Ministry of Education, Science, Sports and Culture, Japan. NR 56 TC 103 Z9 103 U1 2 U2 7 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD OCT 18 PY 2008 VL 113 AR A00A10 DI 10.1029/2008JA013239 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 362EF UT WOS:000260180300001 ER PT J AU Chaudhuri, A Rajaram, H Viswanathan, H AF Chaudhuri, A. Rajaram, H. Viswanathan, H. TI Alteration of fractures by precipitation and dissolution in gradient reaction environments: Computational results and stochastic analysis SO WATER RESOURCES RESEARCH LA English DT Article ID VARIABLE-APERTURE FRACTURES; SINGLE FRACTURE; INTERNAL STRUCTURE; REYNOLDS-EQUATION; SOLUTE TRANSPORT; FLUID-FLOW; ROCK; GROWTH; MODEL; PERMEABILITY AB Precipitation and dissolution reactions within fractures alter apertures, which in turn affects their flow and transport properties. Different aperture alteration patterns occur in different flow and reaction regimes, and they are also influenced by preferential flow resulting from spatial variations in the aperture. We consider the alteration of variable-aperture fractures in gradient reaction regimes, where fluids are in chemical equilibrium with a mineral everywhere but precipitation and dissolution are driven by solubility gradients associated with temperature variations. The temperature field is defined by a geothermal gradient corresponding to a conduction-dominated heat transfer regime. Monte Carlo simulations on computer-generated aperture fields vividly illustrate pattern formation resulting from two-way feedback between fluid flow and reactive alteration. In dissolution-controlled systems, distinct dissolution channels develop along the dominant flow direction, while elongated precipitate bodies form perpendicular to the mean flow direction in precipitation-controlled systems. Aperture variability accelerates the increase and decrease of effective transmissivity by dissolution and precipitation, respectively. The dominance of precipitation versus dissolution is determined by the angle between the mean hydraulic gradient and solubility/temperature gradient. Development of pronounced anisotropy with oriented elongate features is the key feature of aperture alteration in gradient reaction regimes. A stochastic analysis is developed, which consistently predicts general trends in the aperture field during reactive alteration, including the mean, variance, and spatial covariance structure. Our results are relevant to understanding the long-term diagenetic evolution of fractures in conduction-dominated heat transfer regimes and related problems such as emplacement of ocean bed methane hydrates. C1 [Chaudhuri, A.; Rajaram, H.] Univ Colorado, Dept Civil Environm & Architectural Engn, Boulder, CO 80309 USA. [Viswanathan, H.] Los Alamos Natl Lab, Div Earth & Environm Sci, Los Alamos, NM 87545 USA. RP Chaudhuri, A (reprint author), Univ Colorado, Dept Civil Environm & Architectural Engn, Boulder, CO 80309 USA. EM hari@colorado.edu RI Chaudhuri, Abhijit/D-1175-2013 FU Institute for Geophysics and Planetary Physics at Los Alamos National Laboratory [IGPP Geo 1714] FX We gratefully acknowledge financial support from the Institute for Geophysics and Planetary Physics at Los Alamos National Laboratory (grant IGPP Geo 1714). NR 34 TC 9 Z9 9 U1 0 U2 15 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0043-1397 J9 WATER RESOUR RES JI Water Resour. Res. PD OCT 18 PY 2008 VL 44 IS 10 AR W10410 DI 10.1029/2008WR006982 PG 19 WC Environmental Sciences; Limnology; Water Resources SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water Resources GA 362EY UT WOS:000260182200003 ER PT J AU Choi, CL Claridge, SA Garner, EC Alivisatos, AP Mullins, RD AF Choi, Charina L. Claridge, Shelley A. Garner, Ethan C. Alivisatos, A. Paul Mullins, R. Dyche TI Protein-nanocrystal conjugates support a single filament polymerization model in R1 plasmid segregation SO JOURNAL OF BIOLOGICAL CHEMISTRY LA English DT Article ID PROKARYOTIC ACTIN HOMOLOG; DNA SEGREGATION; ESCHERICHIA-COLI; COMPLEX; GOLD; NANOPARTICLE; CHROMOSOME; PARM AB To ensure inheritance by daughter cells, many low-copy number bacterial plasmids, including the R1 drug-resistance plasmid, encode their own DNA segregation systems. The par operon of plasmid R1 directs construction of a simple spindle structure that converts free energy of polymerization of an actin-like protein, ParM, into work required to move sister plasmids to opposite poles of rod-shaped cells. The structures of individual components have been solved, but little is known about the ultrastructure of the R1 spindle. To determine the number of ParM filaments in a minimal R1 spindle, we used DNA-gold nanocrystal conjugates as mimics of the R1 plasmid. We found that each end of a single polar ParM filament binds to a single ParR/parC-gold complex, consistent with the idea that ParM filaments bind in the hollow core of the ParR/parC ring complex. Our results further suggest that multifilament spindles observed in vivo are associated with clusters of plasmids segregating as a unit. C1 [Garner, Ethan C.; Mullins, R. Dyche] Univ Calif San Francisco, Dept Cellular & Mol Pharmacol, San Francisco, CA 94143 USA. [Choi, Charina L.; Claridge, Shelley A.; Alivisatos, A. Paul] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Choi, Charina L.; Claridge, Shelley A.; Alivisatos, A. Paul] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Mullins, RD (reprint author), Univ Calif San Francisco, Dept Cellular & Mol Pharmacol, 600 16th St, San Francisco, CA 94143 USA. EM dyche@mullinslab.ucsf.edu RI Garner, Ethan/J-4025-2014; Alivisatos , Paul /N-8863-2015 OI Garner, Ethan/0000-0003-0141-3555; Alivisatos , Paul /0000-0001-6895-9048 FU National Institutes of Health [PN2 EY016546, 5R01GM079556-03]; University of California San Francisco/University of California Berkeley Nanomedicine Development Center; University of California San Francisco; Sandler Family Supporting Foundation; Office of Science, Office of Basic Energy Sciences, of the United States Department of Energy [DE-AC02-05CH11231] FX This work was supported, in whole or in part, by National Institutes of Health Grant PN2 EY016546 to the University of California San Francisco/University of California Berkeley Nanomedicine Development Center as administered through the University of California San Francisco. This work was also supported by grants from the Sandler Family Supporting Foundation, National Institutes of Health Grant 5R01GM079556-03, and the Director, Office of Science, Office of Basic Energy Sciences, of the United States Department of Energy under Contract DE-AC02-05CH11231 (to R. D. M.). The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked "advertisement" in accordance with 18 U. S. C. Section 1734 solely to indicate this fact. NR 22 TC 14 Z9 14 U1 0 U2 7 PU AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3996 USA SN 0021-9258 J9 J BIOL CHEM JI J. Biol. Chem. PD OCT 17 PY 2008 VL 283 IS 42 BP 28081 EP 28086 DI 10.1074/jbc.M803833200 PG 6 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 359EN UT WOS:000259969300010 PM 18658133 ER PT J AU Alkhaled, AA Michalak, AM Kawa, SR Olsen, SC Wang, JW AF Alkhaled, Alanood A. Michalak, Anna M. Kawa, S. Randolph Olsen, Seth C. Wang, Jih-Wang TI A global evaluation of the regional spatial variability of column integrated CO2 distributions SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID FSI WFM-DOAS; ATMOSPHERIC CO2; CARBON-DIOXIDE; SCALE FLUXES; SCIAMACHY; MODEL; CONTINENT; SATELLITE; TRANSPORT; NORTHERN AB Satellites, such as the Orbiting Carbon Observatory (OCO), are expected to provide global measurements of column-averaged carbon dioxide (CO2) dry-air mole fraction (X-CO2) with the potential of improving the scientific understanding of regional carbon cycle processes and budgets. The satellite data products, however, are expected to have large data gaps due to the satellite track and geophysical limitations (e.g., clouds and aerosols). The satellite data will also be representative of the X-CO2 distribution at the spatial scale of satellite footprints, which is smaller than the resolution of typical transport or process models. Assessing the ability of the retrieved soundings to capture X-CO2 variability over different regions and times, evaluating the representation error associated with using the retrieved X-CO2 product to represent X-CO2 at typical model resolutions, and filling data gaps while providing an estimate of the associated uncertainty all require the evaluation of the spatial variability of X-CO2. In this study, the global spatial covariance structure of X-CO2 is evaluated regionally using CO2 concentrations simulated using the MATCH/CASA model. Results show that regional and temporal changes in the X-CO2 distribution caused by seasonal changes in surface fluxes and transport produce a spatially and temporally variable X-CO2 covariance structure. The effects of model setup and the relatively low resolution of the MATCH/CASA model on the evaluated X-CO2 covariance structure are assessed by comparing the MATCH/CASA results to the spatial variability inferred from the higher-resolution PCTM/GEOS-4 global model, the SiB-RAMS regional model, and aircraft campaign point observations. The comparison with the higher-resolution models and aircraft data shows good agreement with MATCH/CASA results, thus indicating that the presented results provide an adequate representation of X-CO2 variability as will be measured by satellites such as OCO. C1 [Alkhaled, Alanood A.; Michalak, Anna M.] Univ Michigan, Dept Civil & Environm Engn, Ann Arbor, MI 48109 USA. [Kawa, S. Randolph] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Olsen, Seth C.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Wang, Jih-Wang] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. RP Alkhaled, AA (reprint author), Univ Michigan, Dept Civil & Environm Engn, Ann Arbor, MI 48109 USA. EM alanood@umich.edu; amichala@umich.edu RI Kawa, Stephan/E-9040-2012 FU NASA [NNX08AJ92G]; Kuwait University Scholarship Committee; NASA Carbon Cycle Science FX The research described in this paper was partially performed for the Orbiting Carbon Observatory Project at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. Additional support was provided by NASA under grant NNX08AJ92G "Mapping Global CO2: Development and Application of Geostatistical Algorithms for Gap Filling and Uncertainty Assessment for the Orbiting Carbon Observatory'' issued through the ROSES A. 3 Carbon Cycle Science Program. Kuwait University Scholarship Committee provided partial funding for the work presented in this study. The authors gratefully acknowledge the helpful input provided by Charles Miller (JPL) on early drafts of this manuscript. The PCTM work was enabled by G. J. Collatz and Z. Zhu and was supported by NASA Carbon Cycle Science. This paper was greatly improved as a result of detailed input provided by three anonymous reviewers. NR 49 TC 15 Z9 16 U1 1 U2 7 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD OCT 17 PY 2008 VL 113 IS D20 AR D20303 DI 10.1029/2007JD009693 PG 17 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 362DK UT WOS:000260178200004 ER PT J AU Slingo, A Bharmal, NA Robinson, GJ Settle, JJ Allan, RP White, HE Lamb, PJ Lele, MI Turner, DD McFarlane, S Kassianov, E Barnard, J Flynn, C Miller, M AF Slingo, A. Bharmal, N. A. Robinson, G. J. Settle, J. J. Allan, R. P. White, H. E. Lamb, P. J. Lele, M. Issa Turner, D. D. McFarlane, S. Kassianov, E. Barnard, J. Flynn, C. Miller, M. TI Overview of observations from the RADAGAST experiment in Niamey, Niger: Meteorology and thermodynamic variables SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID WEST-AFRICA; CIRCULATION; CLIMATE; VARIABILITY; ATLANTIC; PROJECT; DUST AB An overview is presented of the meteorological and thermodynamic data obtained during the Radiative Atmospheric Divergence using Atmospheric Radiation Measurement (ARM) Mobile Facility, Geostationary Earth Radiation Budget (GERB) data, and African Monsoon Multidisciplinary Analysis (AMMA) stations (RADAGAST) experiment in Niamey, Niger, in 2006. RADAGAST combined data from the ARM Program Mobile Facility (AMF) at Niamey airport with broadband satellite data from the GERB instrument on Meteosat-8. The experiment was conducted in collaboration with the AMMA project. The focus in this paper is on the variations through the year of key surface and atmospheric variables. The seasonal advance and retreat of the Intertropical Front and the seasonal changes in near-surface variables and precipitation in 2006 are discussed and contrasted with the behavior in 2005 and with long-term averages. Observations from the AMF at Niamey airport are used to document the evolution of near-surface variables and of the atmosphere above the site. There are large seasonal changes in these variables, from the arid and dusty conditions typical of the dry season to the much moister and more cloudy wet season accompanying the arrival and intensification of the West African monsoon. Back trajectories show the origin of the air sampled at Niamey and profiles for selected case studies from rawinsondes and from a micropulse lidar at the AMF site reveal details of typical atmospheric structures. Radiative fluxes and divergences are discussed in the second part of this overview, and the subsequent papers in this special section explore other aspects of the measurements and of the associated modeling. C1 [Slingo, A.; Bharmal, N. A.; Robinson, G. J.; Settle, J. J.; Allan, R. P.; White, H. E.] Univ Reading, Environm Syst Sci Ctr, Reading RG6 6AL, Berks, England. [McFarlane, S.; Kassianov, E.; Barnard, J.; Flynn, C.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Lamb, P. J.] Univ Oklahoma, CIMMS, Norman, OK 73072 USA. [Miller, M.] Rutgers State Univ, Dept Environm Sci, New Brunswick, NJ 08901 USA. [Turner, D. D.] Univ Wisconsin, Ctr Space Sci & Engn, Madison, WI 53706 USA. RP Slingo, A (reprint author), Univ Reading, Environm Syst Sci Ctr, Reading RG6 6AL, Berks, England. EM as@mail.nerc-essc.ac.uk RI McFarlane, Sally/C-3944-2008; Allan, Richard/B-5782-2008 OI Allan, Richard/0000-0003-0264-9447 FU Office of Biological and Environment Research, Office of Science, U.S. Department of Energy; UK Natural Environment Research Council; Office of Science (BER), U.S. Department of Energy [DE-FG02-05ER64062, DE-FG02-06ER64167, DE-AC06-76RL01830]; Environmental Sciences Department at Rutgers University; Department of Energy through Brookhaven Science Associates, LLC [DE-AC02-98CH10866] FX This paper is a combined UK-USA contribution to the multinational African Monsoon Multidisciplinary Analysis (AMMA) Project and the Atmospheric Radiation Measurement (ARM) Program of the U.S. Department of Energy. The deployment of the ARM Mobile Facility (AMF) in Niger during 2006 was funded by the Office of Biological and Environment Research, Office of Science, U.S. Department of Energy. Analyses of the AMF and other data were performed at the University of Reading with support by the UK Natural Environment Research Council; at the University of Oklahoma with support by the Office of Science (BER), U.S. Department of Energy, grant DE-FG02-05ER64062; at the University of Wisconsin-Madison with support by the Office of Science (BER), U.S. Department of Energy, grant DE-FG02-06ER64167; and at the Pacific Northwest National Laboratory with support by the Office of Science (BER), U. S. Department of Energy under contract DE-AC06-76RL01830. M. Miller is funded by the Environmental Sciences Department at Rutgers University and the Department of Energy through Brookhaven Science Associates, LLC, under contract DE-AC02-98CH10866. The Pacific Northwest National Laboratory is operated by Batelle for the U.S. Department of Energy. Long-term meteorological data were provided by the National Weather Services of Mali, Burkina Faso, Ghana, Benin, Niger, Nigeria, and Chad. The AMMA rain gauge data used in section 3.1 were obtained from the official AMMA data archive. The trajectory calculations were performed by Rick Wagener of the ARM External Data Center at Brookhaven National Laboratory. We thank EUMETSAT for providing limited area subsets of the SEVIRI radiances in near-real time. It is also a pleasure to reiterate the debt owed to the individuals acknowledged by Miller and Slingo [2007] for their contributions to making the deployment of the AMF in Niamey a success. The quantity and quality of the data obtained from the AMF would not have been possible without their professionalism and dedication. The constructive suggestions of two formal reviewers sharpened the manuscript. NR 29 TC 25 Z9 25 U1 0 U2 3 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD OCT 17 PY 2008 VL 113 IS D20 AR D00E01 DI 10.1029/2008JD009909 PG 18 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 362DK UT WOS:000260178200006 ER PT J AU Forster, F Webb, B Krukenberg, KA Tsuruta, H Agard, DA Sali, A AF Foerster, Friedrich Webb, Benjamin Krukenberg, Kristin A. Tsuruta, Hiro Agard, David A. Sali, Andrej TI Integration of small-angle X-ray scattering data into structural modeling of proteins and their assemblies SO JOURNAL OF MOLECULAR BIOLOGY LA English DT Article DE small-angle X-ray scattering; quaternary structure; macromolecular assembly modeling; statistical potentials; protein structure prediction ID BIOLOGICAL MACROMOLECULES; MOLECULAR-DYNAMICS; DENSITY MAPS; REFINEMENT; DOCKING; CONFORMATIONS; DIFFRACTION; RESTRAINTS; PREDICTION; DOMAIN AB A major challenge in structural biology is to determine the configuration of domains and proteins in multidomain proteins and assemblies, respectively. All available data should be considered to maximize the accuracy and precision of these models. Small-angle X-ray scattering (SAXS) efficiently provides low-resolution experimental data about the shapes of proteins and their assemblies. Thus, we integrated SANS profiles into our software for modeling proteins and their assemblies by satisfaction of spatial restraints. Specifically, we modeled the quaternary structures of multidomain proteins with structurally defined rigid domains as well as quaternary structures of binary complexes of structurally defined rigid proteins. In addition to SAXS profiles and the component structures, we used stereochemical restraints and an atomic distance-dependent statistical potential. The scoring function is optimized by a biased Monte Carlo protocol, including quasi-Newton and simulated annealing schemes. The final prediction corresponds to the best scoring solution in the largest cluster of many independently calculated solutions. To quantify how well the quaternary structures are determined based on their SANS profiles, we used a benchmark of 12 simulated examples as well as an experimental SANS profile of the homotetramer D-xylose isomerase. Optimization of the SAXS-dependent scoring function generally results in accurate models, if sufficiently precise approximations for the constituent rigid bodies are available; otherwise, the best scoring models can have significant errors. Thus, SAXS profiles can play a useful role in the structural characterization of proteins and assemblies if they are combined with additional data and used judiciously. Our integration of a SANS profile into modeling by satisfaction of spatial restraints will facilitate further integration of different kinds of data or structure determination of proteins and their assemblies. (C) 2008 Elsevier Ltd. All rights reserved. C1 [Foerster, Friedrich; Webb, Benjamin; Sali, Andrej] Univ Calif San Francisco, Dept Bioengn & Therapeut Sci, San Francisco, CA 94158 USA. [Foerster, Friedrich; Webb, Benjamin; Sali, Andrej] Univ Calif San Francisco, Dept Pharmaceut Chem, San Francisco, CA 94158 USA. [Foerster, Friedrich; Webb, Benjamin; Sali, Andrej] Univ Calif San Francisco, Calif Inst Quantitat Biosci QB3, San Francisco, CA 94158 USA. [Krukenberg, Kristin A.] Univ Calif San Francisco, Grad Program Chem & Chem Biol, San Francisco, CA 94158 USA. [Tsuruta, Hiro] Stanford Linear Accelerator Ctr, Stanford Synchrotron Radiat Lab, Menlo Pk, CA 94025 USA. [Agard, David A.] Univ Calif San Francisco, Howard Hughes Med Inst, San Francisco, CA 94158 USA. [Agard, David A.] Univ Calif San Francisco, Dept Biochem & Biophys, San Francisco, CA 94158 USA. RP Forster, F (reprint author), Univ Calif San Francisco, Dept Bioengn & Therapeut Sci, UCSF MC 2552,Byers Hall Mission Bay,Suite 503B,17, San Francisco, CA 94158 USA. EM frido@salilab.org; agard@msg.ucsf.edu; sali@salilab.org RI Foerster, Friedrich/D-3710-2009 OI Foerster, Friedrich/0000-0002-6044-2746 FU Human Frontier Science Project Organization; National Defense Science and Engineering; Stanford Synchrotron Radiation Laboratory; Department of Energy Basic Energy Sciences Program, and the Stanford Synchrotron Radiation Laboratory Structural Molecular Biology Program; Department of Energy Office of Biological and Environmental Research; National Institutes of Health National Center for Research Resources Biomedical Technology Program [P41 RR001209]; Howard Hughes Medical Institute; University of California Discovery [bio03-10401/Agard]; Sandler Family Supporting Foundation; National Institutes of Health [R01 GM54762, R01 GM083960, U54 RR022220, PN2 EY016525]; National Science Foundation [EIA-032645, IIS-0705196]; Hewlett-Packard, NetApps, IBM, and Intel FX F.F. is grateful for a long-term fellowship from the Human Frontier Science Project Organization. K.A. K. was supported by a National Defense Science and Engineering Graduate fellowship. The Stanford Synchrotron Radiation Laboratory is funded by the Department of Energy Basic Energy Sciences Program, and the Stanford Synchrotron Radiation Laboratory Structural Molecular Biology Program is supported by the Department of Energy Office of Biological and Environmental Research and the National Institutes of Health National Center for Research Resources Biomedical Technology Program through grant P41 RR001209. D.A.A. has been supported by the Howard Hughes Medical Institute; D.A.A. and A.S. have been supported by a University of California Discovery Grant (bio03-10401/Agard). A.S. has also been supported by the Sandler Family Supporting Foundation, the National Institutes of Health (R01 GM54762, R01 GM083960, U54 RR022220, and PN2 EY016525), the National Science Foundation (EIA-032645 and IIS-0705196), Hewlett-Packard, NetApps, IBM, and Intel. We thank Maya Topf, Narayanan Eswar, Frank Alber, Fred Davis, Min-Yi Shen, and Marc Marti-Renom for fruitful discussions. NR 53 TC 75 Z9 77 U1 2 U2 24 PU ACADEMIC PRESS LTD ELSEVIER SCIENCE LTD PI LONDON PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND SN 0022-2836 J9 J MOL BIOL JI J. Mol. Biol. PD OCT 17 PY 2008 VL 382 IS 4 BP 1089 EP 1106 DI 10.1016/j.jmb.2008.07.074 PG 18 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 359YP UT WOS:000260024500023 PM 18694757 ER PT J AU Adare, A Afanasiev, S Aidala, C Ajitanand, NN Akiba, Y Al-Bataineh, H Alexander, J Aoki, K Aphecetche, L Armendariz, R Aronson, SH Asai, J Atomssa, ET Averbeck, R Awes, TC Azmoun, B Babintsev, V Bai, M Baksay, G Baksay, L Baldisseri, A Barish, KN Barnes, PD Bassalleck, B Basye, AT Bathe, S Batsouli, S Baublis, V Baumann, C Bazilevsky, A Belikov, S Bennett, R Berdnikov, A Berdnikov, Y Bickley, AA Boissevain, JG Borel, H Boyle, K Brooks, ML Buesching, H Bumazhnov, V Bunce, G Butsyk, S Camacho, CM Campbell, S Chang, BS Chang, WC Charvet, JL Chernichenko, S Chiba, J Chi, CY Chiu, M Choi, IJ Choudhury, RK Chujo, T Chung, P Churyn, A Cianciolo, V Citron, Z Cleven, CR Cole, BA Comets, MP Constantin, P Csanad, M Csorgo, T Dahms, T Dairaku, S Das, K David, G Deaton, MB Dehmelt, K Delagrange, H Denisov, A d'Enterria, D Deshpande, A Desmond, EJ Dietzsch, O Dion, A Donadelli, M Drapier, O Drees, A Drees, KA Dubey, AK Durum, A Dutta, D Dzhordzhadze, V Efremenko, YV Egdemir, J Ellinghaus, F Emam, WS Engelmore, T Enokizono, A En'yo, H Esumi, S Eyser, KO Fadem, B Fields, DE Finger, M Finger, M Fleuret, F Fokin, SL Fraenkel, Z Frantz, JE Franz, A Frawley, AD Fujiwara, K Fukao, Y Fusayasu, T Gadrat, S Garishvili, I Glenn, A Gong, H Gonin, M Gosset, J Goto, Y de Cassagnac, RG Grau, N Greene, SV Perdekamp, MG Gunji, T Gustafsson, HA Hachiya, T Henni, AH Haegemann, C Haggerty, JS Hamagaki, H Han, R Harada, H Hartouni, EP Haruna, K Haslum, E Hayano, R Heffner, M Hemmick, TK Hester, T He, X Hiejima, H Hill, JC Hobbs, R Hohlmann, M Holzmann, W Homma, K Hong, B Horaguchi, T Hornback, D Huang, S Ichihara, T Ichimiya, R Ikeda, Y Imai, K Imrek, J Inaba, M Inoue, Y Isenhower, D Isenhower, L Ishihara, M Isobe, T Issah, M Isupov, A Ivanischev, D Jacak, BV Jia, J Jin, J Jinnouchi, O Johnson, BM Joo, KS Jouan, D Kajihara, F Kametani, S Kamihara, N Kamin, J Kaneta, M Kang, JH Kanou, H Kapustinsky, J Kawall, D Kazantsev, AV Kempel, T Khanzadeev, A Kijima, KM Kikuchi, J Kim, BI Kim, DH Kim, DJ Kim, E Kim, SH Kinney, E Kiriluk, K Kiss, A Kistenev, E Kiyomichi, A Klay, J Klein-Boesing, C Kochenda, L Kochetkov, V Komkov, B Konno, M Koster, J Kotchetkov, D Kozlov, A Kral, A Kravitz, A Kubart, J Kunde, GJ Kurihara, N Kurita, K Kurosawa, M Kweon, MJ Kwon, Y Kyle, GS Lacey, R Lai, YS Lai, YS Lajoie, JG Layton, D Lebedev, A Lee, DM Lee, KB Lee, MK Lee, T Leitch, MJ Leite, MAL Lenzi, B Liebing, P Liska, T Litvinenko, A Liu, H Liu, MX Li, X Love, B Lynch, D Maguire, CF Makdisi, YI Malakhov, A Malik, MD Manko, VI Mannel, E Mao, Y Masek, L Masui, H Matathias, F McCumber, M McGaughey, PL Means, N Meredith, B Miake, Y Mikes, P Miki, K Miller, TE Milov, A Mioduszewski, S Mishra, M Mitchell, JT Mitrovski, M Mohanty, AK Morino, Y Morreale, A Morrison, DP Moukhanova, TV Mukhopadhyay, D Murata, J Nagamiya, S Nagata, Y Nagle, JL Naglis, M Nagy, MI Nakagawa, I Nakamiya, Y Nakamura, T Nakano, K Newby, J Nguyen, M Niita, T Norman, BE Nouicer, R Nyanin, AS O'Brien, E Oda, SX Ogilvie, CA Ohnishi, H Okada, H Okada, K Oka, M Omiwade, OO Onuki, Y Oskarsson, A Ouchida, M Ozawa, K Pak, R Pal, D Palounek, APT Pantuev, V Papavassiliou, V Park, J Park, WJ Pate, SF Pei, H Peng, JC Pereira, H Peresedov, V Peressounko, DY Pinkenburg, C Purschke, ML Purwar, AK Qu, H Rak, J Rakotozafindrabe, A Ravinovich, I Read, KF Rembeczki, S Reuter, M Reygers, K Riabov, V Riabov, Y Roach, D Roche, G Rolnick, SD Romana, A Rosati, M Rosendahl, SSE Rosnet, P Rukoyatkin, P Ruzicka, P Rykov, VL Sahlmueller, B Saito, N Sakaguchi, T Sakai, S Sakashita, K Sakata, H Samsonov, V Sato, S Sato, T Sawada, S Sedgwick, K Seele, J Seidl, R Semenov, AY Semenov, V Seto, R Sharma, D Shein, I Shevel, A Shibata, TA Shigaki, K Shimomura, M Shoji, K Shukla, P Sickles, A Silva, CL Silvermyr, D Silvestre, C Sim, KS Singh, BK Singh, CP Singh, V Skutnik, S Slunecka, M Soldatov, A Soltz, RA Sondheim, WE Sorensen, SP Sourikova, IV Staley, F Stankus, PW Stenlund, E Stepanov, M Ster, A Stoll, SP Sugitate, T Suire, C Sukhanov, A Sziklai, J Tabaru, T Takagi, S Takagui, EM Taketani, A Tanabe, R Tanaka, Y Tanida, K Tannenbaum, MJ Taranenko, A Tarjan, P Themann, H Thomas, TL Togawa, M Toia, A Tojo, J Tomasek, L Tomita, Y Torii, H Towell, RS Tram, VN Tserruya, I Tsuchimoto, Y Vale, C Valle, H Vanhecke, HW Veicht, A Velkovska, J Vertesi, R Vinogradov, AA Virius, M Vrba, V Vznuzdaev, E Wagner, M Walker, D Wang, XR Watanabe, Y Wei, F Wessels, J White, SN Winter, D Woody, CL Wysocki, M Xie, W Yamaguchi, YL Yamaura, K Yang, R Yamaguchi, YL Yanovich, A Yasin, Z Ying, J Yokkaichi, S Young, GR Younus, I Yushmanov, IE Zajc, WA Zaudtke, O Zhang, C Zhou, S Zimanyi, J Zolin, L AF Adare, A. Afanasiev, S. Aidala, C. Ajitanand, N. N. Akiba, Y. Al-Bataineh, H. Alexander, J. Aoki, K. Aphecetche, L. Armendariz, R. Aronson, S. H. Asai, J. Atomssa, E. T. Averbeck, R. Awes, T. C. Azmoun, B. Babintsev, V. Bai, M. Baksay, G. Baksay, L. Baldisseri, A. Barish, K. N. Barnes, P. D. Bassalleck, B. Basye, A. T. Bathe, S. Batsouli, S. Baublis, V. Baumann, C. Bazilevsky, A. Belikov, S. Bennett, R. Berdnikov, A. Berdnikov, Y. Bickley, A. A. Boissevain, J. G. Borel, H. Boyle, K. Brooks, M. L. Buesching, H. Bumazhnov, V. Bunce, G. Butsyk, S. Camacho, C. M. Campbell, S. Chang, B. S. Chang, W. C. Charvet, J. -L. Chernichenko, S. Chiba, J. Chi, C. Y. Chiu, M. Choi, I. J. Choudhury, R. K. Chujo, T. Chung, P. Churyn, A. Cianciolo, V. Citron, Z. Cleven, C. R. Cole, B. A. Comets, M. P. Constantin, P. Csanad, M. Csoergo, T. Dahms, T. Dairaku, S. Das, K. David, G. Deaton, M. B. Dehmelt, K. Delagrange, H. Denisov, A. d'Enterria, D. Deshpande, A. Desmond, E. J. Dietzsch, O. Dion, A. Donadelli, M. Drapier, O. Drees, A. Drees, K. A. Dubey, A. K. Durum, A. Dutta, D. Dzhordzhadze, V. Efremenko, Y. V. Egdemir, J. Ellinghaus, F. Emam, W. S. Engelmore, T. Enokizono, A. En'yo, H. Esumi, S. Eyser, K. O. Fadem, B. Fields, D. E. Finger, M., Jr. Finger, M. Fleuret, F. Fokin, S. L. Fraenkel, Z. Frantz, J. E. Franz, A. Frawley, A. D. Fujiwara, K. Fukao, Y. Fusayasu, T. Gadrat, S. Garishvili, I. Glenn, A. Gong, H. Gonin, M. Gosset, J. Goto, Y. de Cassagnac, R. Granier Grau, N. Greene, S. V. Perdekamp, M. Grosse Gunji, T. Gustafsson, H. -A. Hachiya, T. Henni, A. Hadj Haegemann, C. Haggerty, J. S. Hamagaki, H. Han, R. Harada, H. Hartouni, E. P. Haruna, K. Haslum, E. Hayano, R. Heffner, M. Hemmick, T. K. Hester, T. He, X. Hiejima, H. Hill, J. C. Hobbs, R. Hohlmann, M. Holzmann, W. Homma, K. Hong, B. Horaguchi, T. Hornback, D. Huang, S. Ichihara, T. Ichimiya, R. Ikeda, Y. Imai, K. Imrek, J. Inaba, M. Inoue, Y. Isenhower, D. Isenhower, L. Ishihara, M. Isobe, T. Issah, M. Isupov, A. Ivanischev, D. Jacak, B. V. Jia, J. Jin, J. Jinnouchi, O. Johnson, B. M. Joo, K. S. Jouan, D. Kajihara, F. Kametani, S. Kamihara, N. Kamin, J. Kaneta, M. Kang, J. H. Kanou, H. Kapustinsky, J. Kawall, D. Kazantsev, A. V. Kempel, T. Khanzadeev, A. Kijima, K. M. Kikuchi, J. Kim, B. I. Kim, D. H. Kim, D. J. Kim, E. Kim, S. H. Kinney, E. Kiriluk, K. Kiss, A. Kistenev, E. Kiyomichi, A. Klay, J. Klein-Boesing, C. Kochenda, L. Kochetkov, V. Komkov, B. Konno, M. Koster, J. Kotchetkov, D. Kozlov, A. Kral, A. Kravitz, A. Kubart, J. Kunde, G. J. Kurihara, N. Kurita, K. Kurosawa, M. Kweon, M. J. Kwon, Y. Kyle, G. S. Lacey, R. Lai, Y. -S. Lai, Y. S. Lajoie, J. G. Layton, D. Lebedev, A. Lee, D. M. Lee, K. B. Lee, M. K. Lee, T. Leitch, M. J. Leite, M. A. L. Lenzi, B. Liebing, P. Liska, T. Litvinenko, A. Liu, H. Liu, M. X. Li, X. Love, B. Lynch, D. Maguire, C. F. Makdisi, Y. I. Malakhov, A. Malik, M. D. Manko, V. I. Mannel, E. Mao, Y. Masek, L. Masui, H. Matathias, F. McCumber, M. McGaughey, P. L. Means, N. Meredith, B. Miake, Y. Mikes, P. Miki, K. Miller, T. E. Milov, A. Mioduszewski, S. Mishra, M. Mitchell, J. T. Mitrovski, M. Mohanty, A. K. Morino, Y. Morreale, A. Morrison, D. P. Moukhanova, T. V. Mukhopadhyay, D. Murata, J. Nagamiya, S. Nagata, Y. Nagle, J. L. Naglis, M. Nagy, M. I. Nakagawa, I. Nakamiya, Y. Nakamura, T. Nakano, K. Newby, J. Nguyen, M. Niita, T. Norman, B. E. Nouicer, R. Nyanin, A. S. O'Brien, E. Oda, S. X. Ogilvie, C. A. Ohnishi, H. Okada, H. Okada, K. Oka, M. Omiwade, O. O. Onuki, Y. Oskarsson, A. Ouchida, M. Ozawa, K. Pak, R. Pal, D. Palounek, A. P. T. Pantuev, V. Papavassiliou, V. Park, J. Park, W. J. Pate, S. F. Pei, H. Peng, J. -C. Pereira, H. Peresedov, V. Peressounko, D. Yu. Pinkenburg, C. Purschke, M. L. Purwar, A. K. Qu, H. Rak, J. Rakotozafindrabe, A. Ravinovich, I. Read, K. F. Rembeczki, S. Reuter, M. Reygers, K. Riabov, V. Riabov, Y. Roach, D. Roche, G. Rolnick, S. D. Romana, A. Rosati, M. Rosendahl, S. S. E. Rosnet, P. Rukoyatkin, P. Ruzicka, P. Rykov, V. L. Sahlmueller, B. Saito, N. Sakaguchi, T. Sakai, S. Sakashita, K. Sakata, H. Samsonov, V. Sato, S. Sato, T. Sawada, S. Sedgwick, K. Seele, J. Seidl, R. Semenov, A. Yu. Semenov, V. Seto, R. Sharma, D. Shein, I. Shevel, A. Shibata, T. -A. Shigaki, K. Shimomura, M. Shoji, K. Shukla, P. Sickles, A. Silva, C. L. Silvermyr, D. Silvestre, C. Sim, K. S. Singh, B. K. Singh, C. P. Singh, V. Skutnik, S. Slunecka, M. Soldatov, A. Soltz, R. A. Sondheim, W. E. Sorensen, S. P. Sourikova, I. V. Staley, F. Stankus, P. W. Stenlund, E. Stepanov, M. Ster, A. Stoll, S. P. Sugitate, T. Suire, C. Sukhanov, A. Sziklai, J. Tabaru, T. Takagi, S. Takagui, E. M. Taketani, A. Tanabe, R. Tanaka, Y. Tanida, K. Tannenbaum, M. J. Taranenko, A. Tarjan, P. Themann, H. Thomas, T. L. Togawa, M. Toia, A. Tojo, J. Tomasek, L. Tomita, Y. Torii, H. Towell, R. S. Tram, V-N. Tserruya, I. Tsuchimoto, Y. Vale, C. Valle, H. Vanhecke, H. W. Veicht, A. Velkovska, J. Vertesi, R. Vinogradov, A. A. Virius, M. Vrba, V. Vznuzdaev, E. Wagner, M. Walker, D. Wang, X. R. Watanabe, Y. Wei, F. Wessels, J. White, S. N. Winter, D. Woody, C. L. Wysocki, M. Xie, W. Yamaguchi, Y. L. Yamaura, K. Yang, R. Yamaguchi, Y. L. Yanovich, A. Yasin, Z. Ying, J. Yokkaichi, S. Young, G. R. Younus, I. Yushmanov, I. E. Zajc, W. A. Zaudtke, O. Zhang, C. Zhou, S. Zimanyi, J. Zolin, L. TI Onset of pi(0) Suppression Studied in Cu plus Cu Collisions at root s(NN)=22.4, 62.4, and 200 GeV SO PHYSICAL REVIEW LETTERS LA English DT Article ID NUCLEUS COLLISIONS; TRANSVERSE-MOMENTUM; ENERGY-LOSS; SPECTRA; MATTER AB Neutral pion transverse momentum (p(T)) spectra at midrapidity (|y| less than or similar to 0.35) were measured in Cu + Cu collisions at root s(NN) = 22.4, 62.4, and 200 GeV. Relative to pi(0) yields in p + p collisions scaled by the number of inelastic nucleon-nucleon collisions (N-coll) the pi(0) yields for p(T) greater than or similar to 2 GeV/c in central Cu + Cu collisions are suppressed at 62.4 and 200 GeV whereas an enhancement is observed at 22.4 GeV. A comparison with a jet-quenching model suggests that final state parton energy loss dominates in central Cu + Cu collisions at 62.4 and 200 GeV, while the enhancement at 22.4 GeV is consistent with nuclear modifications in the initial state alone. C1 [Basye, A. T.; Deaton, M. B.; Isenhower, D.; Isenhower, L.; Omiwade, O. O.; Towell, R. S.] Abilene Christian Univ, Abilene, TX 79699 USA. [Chang, W. C.] Acad Sinica, Inst Phys, Taipei 11529, Taiwan. [Mishra, M.; Singh, B. K.; Singh, C. P.; Singh, V.] Banaras Hindu Univ, Dept Phys, Varanasi 221005, Uttar Pradesh, India. [Choudhury, R. K.; Dutta, D.; Mohanty, A. K.] Bhabha Atom Res Ctr, Bombay 400085, Maharashtra, India. [Nouicer, R.; Sukhanov, A.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. [Bai, M.; Baldisseri, A.; Drees, K. A.] Brookhaven Natl Lab, Collider Accelerator Dept, Upton, NY 11973 USA. [Aronson, S. H.; Azmoun, B.; Bazilevsky, A.; Belikov, S.; Berdnikov, A.; David, G.; Desmond, E. J.; Franz, A.; Haggerty, J. S.; Johnson, B. M.; Kistenev, E.; Lynch, D.; Mioduszewski, S.; Mitchell, J. T.; Morrison, D. P.; O'Brien, E.; Pinkenburg, C.; Purschke, M. L.; Sakaguchi, T.; Sourikova, I. V.; Stoll, S. P.; Tannenbaum, M. J.; White, S. N.; Woody, C. L.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Barish, K. N.; Bathe, S.; Dzhordzhadze, V.; Emam, W. S.; Eyser, K. O.; Hester, T.; Kotchetkov, D.; Morreale, A.; Rolnick, S. D.; Sedgwick, K.; Seto, R.; Yasin, Z.] Univ Calif Riverside, Riverside, CA 92521 USA. [Kubart, J.; Mikes, P.; Slunecka, M.] Charles Univ Prague, CR-11636 Prague 1, Czech Republic. [Li, X.; Zhou, S.] CIAE, Beijing, Peoples R China. [Gunji, T.; Hamagaki, H.; Hayano, R.; Isobe, T.; Kajihara, F.; Morino, Y.; Oda, S. X.; Ozawa, K.] Univ Tokyo, Grad Sch Sci, Ctr Nucl Study, Tokyo 1130033, Japan. [Adare, A.; Bickley, A. A.; Ellinghaus, F.; Glenn, A.; Kinney, E.; Kiriluk, K.; Nagle, J. L.; Seele, J.; Wysocki, M.] Univ Colorado, Boulder, CO 80309 USA. [Chi, C. Y.; Cole, B. A.; Engelmore, T.; Jia, J.; Jin, J.; Kravitz, A.; Lai, Y. -S.; Lai, Y. S.; Mannel, E.; Matathias, F.; Winter, D.; Zajc, W. A.] Columbia Univ, New York, NY 10027 USA. [Chi, C. Y.; Cole, B. A.; Engelmore, T.; Jia, J.; Jin, J.; Kravitz, A.; Lai, Y. -S.; Lai, Y. S.; Mannel, E.; Matathias, F.; Winter, D.; Zajc, W. A.] Nevis Labs, Irvington, NY 10533 USA. [Kral, A.; Liska, T.; Virius, M.] Czech Tech Univ, Prague 16636 6, Czech Republic. [Baldisseri, A.; Borel, H.; Charvet, J. -L.; Gosset, J.; Pereira, H.; Silvestre, C.; Staley, F.] CEA Saclay, F-91191 Gif Sur Yvette, France. [Imrek, J.; Tarjan, P.; Vertesi, R.] Univ Debrecen, H-4010 Debrecen, Hungary. [Csanad, M.; Kiss, A.; Nagy, M. I.] Eotvos Lorand Univ, ELTE, H-1117 Budapest, Hungary. [Baksay, G.; Baksay, L.; Dehmelt, K.; Hohlmann, M.; Rembeczki, S.] Florida Inst Technol, Melbourne, FL 32901 USA. [Das, K.; Frawley, A. D.] Florida State Univ, Tallahassee, FL 32306 USA. [Cleven, C. R.; He, X.; Qu, H.; Ying, J.] Georgia State Univ, Atlanta, GA 30303 USA. [Hachiya, T.; Harada, H.; Haruna, K.; Homma, K.; Kijima, K. M.; Nakamiya, Y.; Nakamura, T.; Ouchida, M.; Sakata, H.; Shigaki, K.; Sugitate, T.; Tsuchimoto, Y.; Yamaura, K.] Hiroshima Univ, Higashihiroshima 7398526, Japan. [Babintsev, V.; Bumazhnov, V.; Chernichenko, S.; Churyn, A.; Denisov, A.; Durum, A.; Kochenda, L.; Semenov, A. Yu.; Shein, I.; Yanovich, A.] State Res Ctr Russian Federat, Inst High Energy Phys, IHEP Protvino, Protvino 142281, Russia. [Chiu, M.; Hiejima, H.; Koster, J.; Layton, D.; Meredith, B.; Peng, J. -C.; Seidl, R.; Veicht, A.; Yang, R.] Univ Illinois, Urbana, IL 61801 USA. [Ruzicka, P.; Tomasek, L.; Vrba, V.] Acad Sci Czech Republic, Inst Phys, Prague 18221 8, Czech Republic. [Hill, J. C.; Kempel, T.; Lajoie, J. G.; Lebedev, A.; Ogilvie, C. A.; Pei, H.; Rosati, M.; Semenov, V.; Skutnik, S.; Vale, C.; Wei, F.] Iowa State Univ, Ames, IA 50011 USA. [Afanasiev, S.; Isupov, A.; Litvinenko, A.; Malakhov, A.; Peressounko, D. Yu.; Rukoyatkin, P.; Zolin, L.] Joint Inst Nucl Res, Dubna 141980, Moscow Region, Russia. [Chiba, J.; Nagamiya, S.; Sato, S.; Sawada, S.] High Energy Accelerator Res Org, KEK, Tsukuba, Ibaraki 3050801, Japan. [Csoergo, T.; Ster, A.; Sziklai, J.] Hungarian Acad Sci, Res Inst Particle & Nucl Phys, KFKI, MTA RMKI, H-1525 Budapest, Hungary. [Hong, B.; Kim, B. I.; Kweon, M. J.; Lee, D. M.; Park, J.; Sim, K. S.] Korea Univ, Seoul 136701, South Korea. [Fokin, S. L.; Kazantsev, A. V.; Moukhanova, T. V.; Nyanin, A. S.; Peresedov, V.; Vinogradov, A. A.; Yushmanov, I. E.] Russian Res Ctr, Kurchatov Inst, Moscow, Russia. [Dairaku, S.; Fukao, Y.; Imai, K.; Saito, N.; Togawa, M.; Wagner, M.] Kyoto Univ, Kyoto 6068502, Japan. [Atomssa, E. T.; Drapier, O.; Fleuret, F.; Gonin, M.; de Cassagnac, R. Granier; Rakotozafindrabe, A.; Tram, V-N.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Enokizono, A.; Hartouni, E. P.; Heffner, M.; Klein-Boesing, C.; Newby, J.; Silvestre, C.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Barnes, P. D.; Camacho, C. M.; Constantin, P.; Kapustinsky, J.; Kunde, G. J.; Lee, T.; Leitch, M. J.; Liu, H.; McGaughey, P. L.; Norman, B. E.; Palounek, A. P. T.; Purwar, A. K.; Sondheim, W. E.; Vanhecke, H. W.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Gadrat, S.; Roche, G.; Rosnet, P.] Univ Clermont Ferrand, CNRS, IN2P3, LPC, F-63177 Aubiere, France. [Gustafsson, H. -A.; Haslum, E.; Oskarsson, A.; Rosati, M.; Stenlund, E.] Lund Univ, Dept Phys, SE-22100 Lund, Sweden. [Aidala, C.; Kawall, D.] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA. [Baumann, C.; Klein-Boesing, C.; Sahlmueller, B.; Wessels, J.; Zaudtke, O.] Univ Munster, Inst Kernphys, D-48149 Munster, Germany. [Fadem, B.; Sim, K. S.] Muhlenberg Coll, Allentown, PA 18104 USA. [Joo, K. S.; Kim, S. H.] Myongji Univ, Yongin 449728, Kyonggido, South Korea. [Fusayasu, T.; Tanaka, Y.] Nagasaki Inst Appl Sci, Nagasaki 8510193, Japan. [Bassalleck, B.; Haegemann, C.; Hobbs, R.; Malik, M. D.; Rak, J.; Thomas, T. L.; Younus, I.] Univ New Mexico, Albuquerque, NM 87131 USA. [Al-Bataineh, H.; Armendariz, R.; Kyle, G. S.; Liu, H.; Papavassiliou, V.; Pate, S. F.; Stepanov, M.; Wang, X. R.] New Mexico State Univ, Las Cruces, NM 88003 USA. [Awes, T. C.; Batsouli, S.; Cianciolo, V.; Efremenko, Y. V.; Silvermyr, D.; Stankus, P. W.; Young, G. R.; Zhang, C.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Comets, M. P.; Jouan, D.; Suire, C.] Univ Paris 11, CNRS, IN2P3, IPN, F-91406 Orsay, France. [Han, R.; Mao, Y.] Peking Univ, Beijing 100871, Peoples R China. [Baublis, V.; Ivanischev, D.; Khanzadeev, A.; Kochenda, L.; Kochetkov, V.; Komkov, B.; Riabov, V.; Riabov, Y.; Samsonov, V.; Vznuzdaev, E.] PNPI, Gatchina 188300, Leningrad Reg, Russia. [Akiba, Y.; Aoki, K.; Asai, J.; En'yo, H.; Fujiwara, K.; Goto, Y.; Ichihara, T.; Ishihara, M.; Kamihara, N.; Kanou, H.; Kiyomichi, A.; Kurita, K.; Kurosawa, M.; Nakagawa, I.; Nakano, K.; Ohnishi, H.; Okada, H.; Onuki, Y.; Rykov, V. L.; Tojo, J.] RIKEN, Wako, Saitama 3510198, Japan. [Jinnouchi, O.; Kaneta, M.; Liebing, P.; Okada, H.; Tabaru, T.; Xie, W.] Brookhaven Natl Lab, Res Ctr, BNL, RIKEN, Upton, NY 11973 USA. [Inoue, Y.; Kurita, K.; Murata, J.] Rikkyo Univ, Dept Phys, Toshima Ku, Tokyo 1718501, Japan. [Berdnikov, A.; Berdnikov, Y.] St Petersburg State Polytech Univ, St Petersburg, Russia. [Dietzsch, O.; Donadelli, M.; Leite, M. A. L.; Lenzi, B.; Silva, C. L.; Takagi, S.] Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil. [Kim, B. I.; Lee, D. M.; Park, W. J.] Seoul Natl Univ, Syst Elect Lab, Seoul, South Korea. [Ajitanand, N. N.; Alexander, J.; Churyn, A.; Holzmann, W.; Issah, M.; Mitrovski, M.; Taranenko, A.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. [Averbeck, R.; Bennett, R.; Boyle, K.; Campbell, S.; Citron, Z.; Dahms, T.; Dion, A.; Drees, K. A.; Egdemir, J.; Frantz, J. E.; Gong, H.; Hemmick, T. K.; Kamin, J.; McCumber, M.; Means, N.; Nguyen, M.; Pantuev, V.; Reuter, M.; Themann, H.; Toia, A.; Walker, D.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Aphecetche, L.; Delagrange, H.; Henni, A. Hadj] Univ Nantes, CNRS, IN2P3, Ecole Mines,SUBATECH, F-44307 Nantes, France. [Garishvili, I.; Hornback, D.; Sorensen, S. P.] Univ Tennessee, Knoxville, TN 37996 USA. [Kanou, H.; Nakano, K.; Sakashita, K.; Shibata, T. -A.] Tokyo Inst Technol, Dept Phys, Meguro Ku, Tokyo 1528551, Japan. [Ikeda, Y.; Inaba, M.; Isupov, A.; Konno, M.; Masui, H.; Mikes, P.; Miki, K.; Nagata, Y.; Niita, T.; Oka, M.; Sakai, S.; Sato, S.; Shimomura, M.; Takagi, S.; Tanabe, R.; Tomita, Y.] Univ Tsukuba, Inst Phys, Tsukuba, Ibaraki 305, Japan. [Greene, S. V.; Hong, B.; Love, B.; Maguire, C. F.; Miller, T. E.; Mukhopadhyay, D.; Pal, D.; Roach, D.; Valle, H.; Velkovska, J.] Vanderbilt Univ, Nashville, TN 37235 USA. [Kikuchi, J.; Yamaguchi, Y. L.] Waseda Univ, Adv Res Inst Sci & Engn, Shinjuku Ku, Tokyo 1620044, Japan. [Dubey, A. K.; Kozlov, A.; Naglis, M.; Ravinovich, I.; Sharma, D.; Tserruya, I.] Weizmann Inst Sci, IL-76100 Rehovot, Israel. [Choi, I. J.; Chung, P.; Kang, J. H.; Kim, D. H.; Kim, S. H.; Lee, M. K.] Yonsei Univ, IPAP, Seoul 120749, South Korea. RP Adare, A (reprint author), Abilene Christian Univ, Abilene, TX 79699 USA. RI Taketani, Atsushi/E-1803-2017; seto, richard/G-8467-2011; Csanad, Mate/D-5960-2012; Wei, Feng/F-6808-2012; Csorgo, Tamas/I-4183-2012; YANG, BOGEUM/I-8251-2012; Tomasek, Lukas/G-6370-2014; En'yo, Hideto/B-2440-2015; Hayano, Ryugo/F-7889-2012; HAMAGAKI, HIDEKI/G-4899-2014; Durum, Artur/C-3027-2014; Sorensen, Soren /K-1195-2016; Yokkaichi, Satoshi/C-6215-2017; Semenov, Vitaliy/E-9584-2017 OI Taketani, Atsushi/0000-0002-4776-2315; Tomasek, Lukas/0000-0002-5224-1936; Hayano, Ryugo/0000-0002-1214-7806; Sorensen, Soren /0000-0002-5595-5643; FU Office of Nuclear Physics in DOE Office of Science; NSF; Renaissance Technologies (U. S.); MEXT and JSPS (Japan); CNPq and FAPESP (Brazil); NSFC (China); MSMT (Czech Republic); IN2P3/CNRS; CEA (France); BMBF; DAAD; AvH (Germany); OTKA (Hungary); DAE (India); ISF (Israel); KRF; KOSEF (Korea); MES; RAS; FAAE (Russia); VR; KAW (Sweden); U. S. CRDF for the FSU; U. S.-Hungary Fulbright; U. S.-Israel BSF FX We thank the staff of the Collider-Accelerator and Physics Departments at BNL for their vital contributions. We thank Ivan Vitev for providing the jet-quenching calculations. We acknowledge support from the Office of Nuclear Physics in DOE Office of Science, NSF, and a sponsored research grant from Renaissance Technologies (U. S.), MEXT and JSPS (Japan), CNPq and FAPESP (Brazil), NSFC (China), MSMT (Czech Republic), IN2P3/CNRS, and CEA (France), BMBF, DAAD, and AvH (Germany), OTKA (Hungary), DAE (India), ISF (Israel), KRF and KOSEF (Korea), MES, RAS, and FAAE (Russia), VR and KAW (Sweden), U. S. CRDF for the FSU, U. S.-Hungary Fulbright, and U. S.-Israel BSF. NR 26 TC 56 Z9 56 U1 6 U2 13 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD OCT 17 PY 2008 VL 101 IS 16 AR 162301 DI 10.1103/PhysRevLett.101.162301 PG 6 WC Physics, Multidisciplinary SC Physics GA 361QD UT WOS:000260141300011 ER PT J AU Aubert, B Bona, M Karyotakis, Y Lees, JP Poireau, V Prencipe, E Prudent, X Tisserand, V Tico, JG Grauges, E Lopez, L Palano, A Pappagallo, M Eigen, G Stugu, B Sun, L Abrams, GS Battaglia, M Brown, DN Cahn, RN Jacobsen, RG Kerth, LT Kolomensky, YG Kukartsev, G Lynch, G Osipenkov, IL Ronan, MT Tackmann, K Tanabe, T Hawkes, CM Soni, N Watson, AT Koch, H Schroeder, T Walker, D Asgeirsson, DJ Fulsom, BG Hearty, C Mattison, TS McKenna, JA Barrett, M Khan, A Teodorescu, L Blinov, VE Bukin, AD Buzykaev, AR Druzhinin, VP Golubev, VB Onuchin, AP Serednyakov, SI Skovpen, YI Solodov, EP Todyshev, KY Bondioli, M Curry, S Eschrich, I Kirkby, D Lankford, AJ Lund, P Mandelkern, M Martin, EC Stoker, DP Abachi, S Buchanan, C Gary, JW Liu, F Long, O Shen, BC Vitug, GM Yasin, Z Zhang, L Sharma, V Campagnari, C Hong, TM Kovalskyi, D Mazur, MA Richman, JD Beck, TW Eisner, AM Flacco, CJ Heusch, CA Kroseberg, J Lockman, WS Schalk, T Schumm, BA Seiden, A Wang, L Wilson, MG Winstrom, LO Cheng, CH Doll, DA Echenard, B Fang, F Hitlin, DG Narsky, I Piatenko, T Porter, FC Andreassen, R Mancinelli, G Meadows, BT Mishra, K Sokoloff, MD Bloom, PC Ford, WT Gaz, A Hirschauer, JF Kreisel, A Nagel, M Nauenberg, U Smith, JG Ulmer, KA Wagner, SR Ayad, R Soffer, A Toki, WH Wilson, RJ Altenburg, DD Feltresi, E Hauke, A Jasper, H Karbach, M Merkel, J Petzold, A Spaan, B Wacker, K Kobel, MJ Mader, WF Nogowski, R Schubert, KR Schwierz, R Sundermann, JE Volk, A Bernard, D Bonneaud, GR Latour, E Thiebaux, C Verderi, M Clark, PJ Gradl, W Playfer, S Watson, JE Andreotti, M Bettoni, D Bozzi, C Calabrese, R Cecchi, A Cibinetto, G Franchini, P Luppi, E Negrini, M Petrella, A Piemontese, L Santoro, V Baldini-Ferroli, R Calcaterra, A de Sangro, R Finocchiaro, G Pacetti, S Patteri, P Peruzzi, IM Piccolo, M Rama, M Zallo, A Buzzo, A Contri, R Lo Vetere, M Macri, MM Monge, MR Passaggio, S Patrignani, C Robutti, E Santroni, A Tosi, S Chaisanguanthum, KS Morii, M Marks, J Schenk, S Uwer, U Klose, V Lacker, HM Bard, DJ Dauncey, PD Nash, JA Vazquez, WP Tibbetts, M Behera, PK Chai, X Charles, MJ Mallik, U Cochran, J Crawley, HB Dong, L Meyer, WT Prell, S Rosenberg, EI Rubin, AE Gao, YY Gritsan, AV Guo, ZJ Lae, CK Denig, AG Fritsch, M Schott, G Arnaud, N Bequilleux, J D'Orazio, A Davier, M da Costa, JF Grosdidier, G Hocker, A Lepeltier, V Le Diberder, F Lutz, AM Pruvot, S Roudeau, P Schune, MH Serrano, J Sordini, V Stocchi, A Wormser, G Lange, DJ Wright, DM Bingham, I Burke, JP Chavez, CA Fry, JR Gabathuler, E Gamet, R Hutchcroft, DE Payne, DJ Touramanis, C Bevan, AJ Clarke, CK George, KA Di Lodovico, F Sacco, R Sigamani, M Cowan, G Flaecher, HU Hopkins, DA Paramesvaran, S Salvatore, F Wren, AC Brown, DN Davis, CL Alwyn, KE Bailey, DS Barlow, RJ Barlow, RJ Chia, YM Edgar, CL Lafferty, GD West, TJ Yi, JI Anderson, J Chen, C Jawahery, A Roberts, DA Simi, G Tuggle, JM Dallapiccola, C Li, X Salvati, E Saremi, S Cowan, R Dujmic, D Fisher, PH Koeneke, K Sciolla, G Spitznagel, M Taylor, F Yamamoto, RK Zhao, M Patel, PM Robertson, SH Lazzaro, A Lombardo, V Palombo, F Bauer, JM Cremaldi, L Eschenburg, V Godang, R Kroeger, R Sanders, DA Summers, DJ Zhao, HW Simard, M Taras, P Viaud, FB Nicholson, H De Nardo, G Lista, L Monorchio, D Onorato, G Sciacca, C Raven, G Snoek, HL Jessop, CP Knoepfel, KJ LoSecco, JM Wang, WF Benelli, G Corwin, LA Honscheid, K Kagan, H Kass, R Morris, JP Rahimi, AM Regensburger, JJ Sekula, SJ Wong, QK Blount, NL Brau, J Frey, R Igonkina, O Kolb, JA Lu, M Rahmat, R Sinev, NB Strom, D Strube, J Torrence, E Castelli, G Gagliardi, N Margoni, M Morandin, M Posocco, M Rotondo, M Simonetto, F Stroili, R Voci, C Sanchez, PD Ben-Haim, E Briand, H Calderini, G Chauveau, J David, P Del Buono, L Hamon, O Leruste, P Ocariz, J Perez, A Prendki, J Gladney, L Biasini, M Covarelli, R Manoni, E Angelini, C Batignani, G Bettarini, S Carpinelli, M Cervelli, A Forti, F Giorgi, MA Lusiani, A Marchiori, G Morganti, M Neri, N Paoloni, E Rizzo, G Walsh, JJ Biesiada, J Pegna, DL Lu, C Olsen, J Smith, AJS Telnov, AV Anulli, F Baracchini, E Cavoto, G del Re, D Di Marco, E Faccini, R Ferrarotto, F Ferroni, F Gaspero, M Jackson, PD Gioi, LL Mazzoni, MA Morganti, S Piredda, G Polci, F Renga, F Voena, C Ebert, M Hartmann, T Schroder, H Waldi, R Adye, T Franek, B Olaiya, EO Roethel, W Wilson, FF Emery, S Escalier, M Esteve, L Gaidot, A Ganzhur, SF de Monchenault, GH Kozanecki, W Vasseur, G Yeche, C Zito, M Chen, XR Liu, H Park, W Purohit, MV White, RM Wilson, JR Allen, MT Aston, D Bartoldus, R Bechtle, P Benitez, JF Cenci, R Coleman, JP Convery, MR Dingfelder, JC Dorfan, J Dubois-Felsmann, GP Dunwoodie, W Field, RC Gabareen, AM Gowdy, SJ Graham, MT Grenier, P Hast, C Innes, WR Kaminski, J Kelsey, MH Kim, H Kim, P Kocian, ML Leith, DWGS Li, S Lindquist, B Luitz, S Luth, V Lynch, HL MacFarlane, DB Marsiske, H Messner, R Muller, DR Neal, H Nelson, S O'Grady, CP Ofte, I Perazzo, A Perl, M Ratcliff, BN Roodman, A Salnikov, AA Schindler, RH Schwiening, J Snyder, A Su, D Sullivan, MK Suzuki, K Swain, SK Thompson, JM Va'vra, J Wagner, AP Weaver, M West, CA Wisniewski, WJ Wittgen, M Wright, DH Wulsin, HW Yarritu, AK Yi, K Young, CC Ziegler, V Burchat, PR Edwards, AJ Majewski, SA Miyashita, TS Petersen, BA Wilden, L Ahmed, S Alam, MS Ernst, JA Pan, B Saeed, MA Zain, SB Spanier, SM Wogsland, BJ Eckmann, R Ritchie, JL Ruland, AM Schilling, CJ Schwitters, RF Drummond, BW Izen, JM Lou, XC Bianchi, F Gamba, D Pelliccioni, M Bomben, M Bosisio, L Cartaro, C Della Ricca, G Lanceri, L Vitale, L Azzolini, V Lopez-March, N Martinez-Vidal, F Milanes, DA Oyanguren, A Albert, J Banerjee, S Bhuyan, B Choi, HHF Hamano, K Kowalewski, R Lewczuk, MJ Nugent, IM Roney, JM Sobie, RJ Gershon, TJ Harrison, PF Ilic, J Latham, TE Mohanty, GB Band, HR Chen, X Dasu, S Flood, KT Pan, Y Pierini, M Prepost, R Vuosalo, CO Wu, SL AF Aubert, B. Bona, M. Karyotakis, Y. Lees, J. P. Poireau, V. Prencipe, E. Prudent, X. Tisserand, V. Tico, J. Garra Grauges, E. Lopez, L. Palano, A. Pappagallo, M. Eigen, G. Stugu, B. Sun, L. Abrams, G. S. Battaglia, M. Brown, D. N. Cahn, R. N. Jacobsen, R. G. Kerth, L. T. Kolomensky, Yu. G. Kukartsev, G. Lynch, G. Osipenkov, I. L. Ronan, M. T. Tackmann, K. Tanabe, T. Hawkes, C. M. Soni, N. Watson, A. T. Koch, H. Schroeder, T. Walker, D. Asgeirsson, D. J. Fulsom, B. G. Hearty, C. Mattison, T. S. McKenna, J. A. Barrett, M. Khan, A. Teodorescu, L. Blinov, V. E. Bukin, A. D. Buzykaev, A. R. Druzhinin, V. P. Golubev, V. B. Onuchin, A. P. Serednyakov, S. I. Skovpen, Yu. I. Solodov, E. P. Todyshev, K. Yu. Bondioli, M. Curry, S. Eschrich, I. Kirkby, D. Lankford, A. J. Lund, P. Mandelkern, M. Martin, E. C. Stoker, D. P. Abachi, S. Buchanan, C. Gary, J. W. Liu, F. Long, O. Shen, B. C. Vitug, G. M. Yasin, Z. Zhang, L. Sharma, V. Campagnari, C. Hong, T. M. Kovalskyi, D. Mazur, M. A. Richman, J. D. Beck, T. W. Eisner, A. M. Flacco, C. J. Heusch, C. A. Kroseberg, J. Lockman, W. S. Schalk, T. Schumm, B. A. Seiden, A. Wang, L. Wilson, M. G. Winstrom, L. O. Cheng, C. H. Doll, D. A. Echenard, B. Fang, F. Hitlin, D. G. Narsky, I. Piatenko, T. Porter, F. C. Andreassen, R. Mancinelli, G. Meadows, B. T. Mishra, K. Sokoloff, M. D. Bloom, P. C. Ford, W. T. Gaz, A. Hirschauer, J. F. Kreisel, A. Nagel, M. Nauenberg, U. Smith, J. G. Ulmer, K. A. Wagner, S. R. Ayad, R. Soffer, A. Toki, W. H. Wilson, R. J. Altenburg, D. D. Feltresi, E. Hauke, A. Jasper, H. Karbach, M. Merkel, J. Petzold, A. Spaan, B. Wacker, K. Kobel, M. J. Mader, W. F. Nogowski, R. Schubert, K. R. Schwierz, R. Sundermann, J. E. Volk, A. Bernard, D. Bonneaud, G. R. Latour, E. Thiebaux, Ch. Verderi, M. Clark, P. J. Gradl, W. Playfer, S. Watson, J. E. Andreotti, M. Bettoni, D. Bozzi, C. Calabrese, R. Cecchi, A. Cibinetto, G. Franchini, P. Luppi, E. Negrini, M. Petrella, A. Piemontese, L. Santoro, V. Baldini-Ferroli, R. Calcaterra, A. de Sangro, R. Finocchiaro, G. Pacetti, S. Patteri, P. Peruzzi, I. M. Piccolo, M. Rama, M. Zallo, A. Buzzo, A. Contri, R. Lo Vetere, M. Macri, M. M. Monge, M. R. Passaggio, S. Patrignani, C. Robutti, E. Santroni, A. Tosi, S. Chaisanguanthum, K. S. Morii, M. Marks, J. Schenk, S. Uwer, U. Klose, V. Lacker, H. M. Bard, D. J. Dauncey, P. D. Nash, J. A. Vazquez, W. Panduro Tibbetts, M. Behera, P. K. Chai, X. Charles, M. J. Mallik, U. Cochran, J. Crawley, H. B. Dong, L. Meyer, W. T. Prell, S. Rosenberg, E. I. Rubin, A. E. Gao, Y. Y. Gritsan, A. V. Guo, Z. J. Lae, C. K. Denig, A. G. Fritsch, M. Schott, G. Arnaud, N. Bequilleux, J. D'Orazio, A. Davier, M. da Costa, J. Firmino Grosdidier, G. Hoecker, A. Lepeltier, V. Le Diberder, F. Lutz, A. M. Pruvot, S. Roudeau, P. Schune, M. H. Serrano, J. Sordini, V. Stocchi, A. Wormser, G. Lange, D. J. Wright, D. M. Bingham, I. Burke, J. P. Chavez, C. A. Fry, J. R. Gabathuler, E. Gamet, R. Hutchcroft, D. E. Payne, D. J. Touramanis, C. Bevan, A. J. Clarke, C. K. George, K. A. Di Lodovico, F. Sacco, R. Sigamani, M. Cowan, G. Flaecher, H. U. Hopkins, D. A. Paramesvaran, S. Salvatore, F. Wren, A. C. Brown, D. N. Davis, C. L. Alwyn, K. E. Bailey, D. S. Barlow, R. J. Barlow, R. J. Chia, Y. M. Edgar, C. L. Lafferty, G. D. West, T. J. Yi, J. I. Anderson, J. Chen, C. Jawahery, A. Roberts, D. A. Simi, G. Tuggle, J. M. Dallapiccola, C. Li, X. Salvati, E. Saremi, S. Cowan, R. Dujmic, D. Fisher, P. H. Koeneke, K. Sciolla, G. Spitznagel, M. Taylor, F. Yamamoto, R. K. Zhao, M. Patel, P. M. Robertson, S. H. Lazzaro, A. Lombardo, V. Palombo, F. Bauer, J. M. Cremaldi, L. Eschenburg, V. Godang, R. Kroeger, R. Sanders, D. A. Summers, D. J. Zhao, H. W. Simard, M. Taras, P. Viaud, F. B. Nicholson, H. De Nardo, G. Lista, L. Monorchio, D. Onorato, G. Sciacca, C. Raven, G. Snoek, H. L. Jessop, C. P. Knoepfel, K. J. LoSecco, J. M. Wang, W. F. Benelli, G. Corwin, L. A. Honscheid, K. Kagan, H. Kass, R. Morris, J. P. Rahimi, A. M. Regensburger, J. J. Sekula, S. J. Wong, Q. K. Blount, N. L. Brau, J. Frey, R. Igonkina, O. Kolb, J. A. Lu, M. Rahmat, R. Sinev, N. B. Strom, D. Strube, J. Torrence, E. Castelli, G. Gagliardi, N. Margoni, M. Morandin, M. Posocco, M. Rotondo, M. Simonetto, F. Stroili, R. Voci, C. Sanchez, P. del Amo Ben-Haim, E. Briand, H. Calderini, G. Chauveau, J. David, P. Del Buono, L. Hamon, O. Leruste, Ph. Ocariz, J. Perez, A. Prendki, J. Gladney, L. Biasini, M. Covarelli, R. Manoni, E. Angelini, C. Batignani, G. Bettarini, S. Carpinelli, M. Cervelli, A. Forti, F. Giorgi, M. A. Lusiani, A. Marchiori, G. Morganti, M. Neri, N. Paoloni, E. Rizzo, G. Walsh, J. J. Biesiada, J. Pegna, D. Lopes Lu, C. Olsen, J. Smith, A. J. S. Telnov, A. V. Anulli, F. Baracchini, E. Cavoto, G. del Re, D. Di Marco, E. Faccini, R. Ferrarotto, F. Ferroni, F. Gaspero, M. Jackson, P. D. Gioi, L. Li Mazzoni, M. A. Morganti, S. Piredda, G. Polci, F. Renga, F. Voena, C. Ebert, M. Hartmann, T. Schroeder, H. Waldi, R. Adye, T. Franek, B. Olaiya, E. O. Roethel, W. Wilson, F. F. Emery, S. Escalier, M. Esteve, L. Gaidot, A. Ganzhur, S. F. de Monchenault, G. Hamel Kozanecki, W. Vasseur, G. Yeche, Ch. Zito, M. Chen, X. R. Liu, H. Park, W. Purohit, M. V. White, R. M. Wilson, J. R. Allen, M. T. Aston, D. Bartoldus, R. Bechtle, P. Benitez, J. F. Cenci, R. Coleman, J. P. Convery, M. R. Dingfelder, J. C. Dorfan, J. Dubois-Felsmann, G. P. Dunwoodie, W. Field, R. C. Gabareen, A. M. Gowdy, S. J. Graham, M. T. Grenier, P. Hast, C. Innes, W. R. Kaminski, J. Kelsey, M. H. Kim, H. Kim, P. Kocian, M. L. Leith, D. W. G. S. Li, S. Lindquist, B. Luitz, S. Luth, V. Lynch, H. L. MacFarlane, D. B. Marsiske, H. Messner, R. Muller, D. R. Neal, H. Nelson, S. O'Grady, C. P. Ofte, I. Perazzo, A. Perl, M. Ratcliff, B. N. Roodman, A. Salnikov, A. A. Schindler, R. H. Schwiening, J. Snyder, A. Su, D. Sullivan, M. K. Suzuki, K. Swain, S. K. Thompson, J. M. Va'vra, J. Wagner, A. P. Weaver, M. West, C. A. Wisniewski, W. J. Wittgen, M. Wright, D. H. Wulsin, H. W. Yarritu, A. K. Yi, K. Young, C. C. Ziegler, V. Burchat, P. R. Edwards, A. J. Majewski, S. A. Miyashita, T. S. Petersen, B. A. Wilden, L. Ahmed, S. Alam, M. S. Ernst, J. A. Pan, B. Saeed, M. A. Zain, S. B. Spanier, S. M. Wogsland, B. J. Eckmann, R. Ritchie, J. L. Ruland, A. M. Schilling, C. J. Schwitters, R. F. Drummond, B. W. Izen, J. M. Lou, X. C. Bianchi, F. Gamba, D. Pelliccioni, M. Bomben, M. Bosisio, L. Cartaro, C. Della Ricca, G. Lanceri, L. Vitale, L. Azzolini, V. Lopez-March, N. Martinez-Vidal, F. Milanes, D. A. Oyanguren, A. Albert, J. Banerjee, Sw. Bhuyan, B. Choi, H. H. F. Hamano, K. Kowalewski, R. Lewczuk, M. J. Nugent, I. M. Roney, J. M. Sobie, R. J. Gershon, T. J. Harrison, P. F. Ilic, J. Latham, T. E. Mohanty, G. B. Band, H. R. Chen, X. Dasu, S. Flood, K. T. Pan, Y. Pierini, M. Prepost, R. Vuosalo, C. O. Wu, S. L. TI Observation and Polarization Measurements of B-+/- -> phi K-1(+/-) and B-+/- -> phi K-2*(+/-) SO PHYSICAL REVIEW LETTERS LA English DT Article ID DECAYS AB With the full BABAR data sample of 465 x 10(6) B (B) over bar pairs, we observe the decays B-+/- -> phi K-1(1270)(+/-) and B-+/- -> phi K-2*(1430)(+/-). We measure the branching fractions (6.1 +/- 1.6 +/- 1.1) x 10(-6) and (8.4 +/- 1.8 +/- 1.0) x 10(-6) and the fractions of longitudinal polarization 0.46(-0.13-0.07)(+0.12+0.06) and 0.80(-0.10)(+0.09) +/- 0.03, respectively. We also report on the B-+/- -> phi K-0*(1430)(+/-) decay branching fraction of (7.0 +/- 1.3 +/- 0.9) x 10(-6) and several parameters sensitive to CP violation and interference in the above three decays. Upper limits are placed on the B-+/- decay rates to final states with phi and K-1(1400)(+/-), K*(1410)(+/-), K-2(1770)(+/-), or K-2(1820)(+/-). Understanding the observed polarization pattern requires amplitude contributions from an uncertain source. C1 [Aubert, B.; Bona, M.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prencipe, E.; Prudent, X.; Tisserand, V.] CNRS, IN2P3, Phys Particules Lab, F-74941 Annecy Le Vieux, France. [Aubert, B.; Bona, M.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prencipe, E.; Prudent, X.; Tisserand, V.] Univ Savoie, F-74941 Annecy Le Vieux, France. [Tico, J. Garra; Grauges, E.] Univ Barcelona, Fac Fis, Dept ECM, E-08028 Barcelona, Spain. [Lopez, L.; Palano, A.; Pappagallo, M.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Lopez, L.; Palano, A.; Pappagallo, M.] Univ Bari, Dipartimento Fis, I-70126 Bari, Italy. [Eigen, G.; Stugu, B.; Sun, L.] Univ Bergen, Inst Phys, N-5007 Bergen, Norway. [Abrams, G. S.; Battaglia, M.; Brown, D. N.; Cahn, R. N.; Jacobsen, R. G.; Kerth, L. T.; Kolomensky, Yu. G.; Kukartsev, G.; Lynch, G.; Osipenkov, I. L.; Ronan, M. T.; Tackmann, K.; Tanabe, T.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Hawkes, C. M.; Soni, N.; Watson, A. T.] Univ Birmingham, Birmingham B15 2TT, W Midlands, England. [Koch, H.; Schroeder, T.] Ruhr Univ Bochum, Inst Expt Phys, D-44780 Bochum, Germany. [Walker, D.] Univ Bristol, Bristol BS8 1TL, Avon, England. [Asgeirsson, D. J.; Fulsom, B. G.; Hearty, C.; Mattison, T. S.; McKenna, J. A.] Univ British Columbia, Vancouver, BC V6T 1Z1, Canada. [Barrett, M.; Khan, A.; Teodorescu, L.] Brunel Univ, Uxbridge UB8 3PH, Middx, England. [Blinov, V. E.; Bukin, A. D.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.] Budker Inst Nucl Phys, Novosibirsk 630090, Russia. [Bondioli, M.; Curry, S.; Eschrich, I.; Kirkby, D.; Lankford, A. J.; Lund, P.; Mandelkern, M.; Martin, E. C.; Stoker, D. P.] Univ Calif Irvine, Irvine, CA 92697 USA. [Abachi, S.; Buchanan, C.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Gary, J. W.; Liu, F.; Long, O.; Shen, B. C.; Vitug, G. M.; Yasin, Z.; Zhang, L.] Univ Calif Riverside, Riverside, CA 92521 USA. [Sharma, V.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Campagnari, C.; Hong, T. M.; Kovalskyi, D.; Mazur, M. A.; Richman, J. D.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Beck, T. W.; Eisner, A. M.; Flacco, C. J.; Heusch, C. A.; Kroseberg, J.; Lockman, W. S.; Schalk, T.; Schumm, B. A.; Seiden, A.; Wang, L.; Wilson, M. G.; Winstrom, L. O.] Univ Calif Santa Cruz, Inst Particle Phys, Santa Cruz, CA 95064 USA. [Cheng, C. H.; Doll, D. A.; Echenard, B.; Fang, F.; Hitlin, D. G.; Narsky, I.; Piatenko, T.; Porter, F. C.] CALTECH, Pasadena, CA 91125 USA. [Andreassen, R.; Mancinelli, G.; Meadows, B. T.; Mishra, K.; Sokoloff, M. D.] Univ Cincinnati, Cincinnati, OH 45221 USA. [Bloom, P. C.; Ford, W. T.; Gaz, A.; Hirschauer, J. F.; Kreisel, A.; Nagel, M.; Nauenberg, U.; Smith, J. G.; Ulmer, K. A.; Wagner, S. R.] Univ Colorado, Boulder, CO 80309 USA. [Hirschauer, J. F.; Soffer, A.; Toki, W. H.; Wilson, R. J.] Colorado State Univ, Ft Collins, CO 80523 USA. [Altenburg, D. D.; Feltresi, E.; Hauke, A.; Jasper, H.; Karbach, M.; Merkel, J.; Petzold, A.; Spaan, B.; Wacker, K.] Tech Univ Dortmund, Fak Phys, D-44221 Dortmund, Germany. [Kobel, M. J.; Mader, W. F.; Nogowski, R.; Schubert, K. R.; Schwierz, R.; Sundermann, J. E.; Volk, A.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. [Bernard, D.; Bonneaud, G. R.; Latour, E.; Thiebaux, Ch.; Verderi, M.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Clark, P. J.; Gradl, W.; Playfer, S.; Watson, J. E.] Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. [Franchini, P.; Luppi, E.; Negrini, M.; Petrella, A.; Piemontese, L.; Santoro, V.] Ist Nazl Fis Nucl, Sez Ferrara, I-44100 Ferrara, Italy. [Andreotti, M.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Franchini, P.; Luppi, E.; Negrini, M.; Petrella, A.; Santoro, V.] Univ Ferrara, Dipartimento Fis, I-44100 Ferrara, Italy. [Baldini-Ferroli, R.; Calcaterra, A.; de Sangro, R.; Finocchiaro, G.; Pacetti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; Zallo, A.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Buzzo, A.; Contri, R.; Lo Vetere, M.; Macri, M. M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Santroni, A.; Tosi, S.; Roberts, D. A.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Contri, R.; Lo Vetere, M.; Monge, M. R.; Patrignani, C.; Santroni, A.; Tosi, S.] Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy. [Chaisanguanthum, K. S.; Morii, M.] Harvard Univ, Cambridge, MA 02138 USA. [Marks, J.; Schenk, S.; Uwer, U.] Heidelberg Univ, Inst Phys, D-69120 Heidelberg, Germany. [Klose, V.; Lacker, H. M.] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany. [Bard, D. J.; Dauncey, P. D.; Nash, J. A.; Vazquez, W. Panduro; Tibbetts, M.] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. [Behera, P. K.; Chai, X.; Charles, M. J.; Mallik, U.] Univ Iowa, Iowa City, IA 52242 USA. [Cochran, J.; Crawley, H. B.; Dong, L.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Rubin, A. E.] Iowa State Univ, Ames, IA 50011 USA. [Gao, Y. Y.; Gritsan, A. V.; Guo, Z. J.; Lae, C. K.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Denig, A. G.; Fritsch, M.; Schott, G.] Univ Karlsruhe, Inst Expt Kernphys, D-76021 Karlsruhe, Germany. [Arnaud, N.; Bequilleux, J.; D'Orazio, A.; Davier, M.; da Costa, J. Firmino; Grosdidier, G.; Hoecker, A.; Lepeltier, V.; Le Diberder, F.; Lutz, A. M.; Pruvot, S.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wormser, G.] CNRS, IN2P3, Lab Accelerateur Lineaire, F-91898 Orsay, France. [Arnaud, N.; Bequilleux, J.; D'Orazio, A.; Davier, M.; da Costa, J. Firmino; Grosdidier, G.; Hoecker, A.; Lepeltier, V.; Le Diberder, F.; Lutz, A. M.; Pruvot, S.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wormser, G.] Univ Paris 11, Ctr Sci, F-91898 Orsay, France. [Lange, D. J.; Wright, D. H.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Bingham, I.; Burke, J. P.; Chavez, C. A.; Fry, J. R.; Gabathuler, E.; Gamet, R.; Hutchcroft, D. E.; Payne, D. J.; Touramanis, C.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Bevan, A. J.; Clarke, C. K.; George, K. A.; Di Lodovico, F.; Sacco, R.; Sigamani, M.] Univ London, London E1 4NS, England. [Cowan, G.; Flaecher, H. U.; Hopkins, D. A.; Paramesvaran, S.; Salvatore, F.; Wren, A. C.] Univ London Royal Holloway & Bedford New Coll, Egham TW20 0EX, Surrey, England. [Patel, P. M.; Robertson, S. H.] McGill Univ, Montreal, PQ H3A 2T8, Canada. [Lazzaro, A.; Lombardo, V.; Palombo, F.] Ist Nazl Fis Nucl, Sez Milano, I-20133 Milan, Italy. [Lazzaro, A.; Palombo, F.] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. [Bauer, J. M.; Cremaldi, L.; Eschenburg, V.; Godang, R.; Kroeger, R.; Sanders, D. A.; Summers, D. J.; Zhao, H. W.] Univ Mississippi, University, MS 38677 USA. [Simard, M.; Taras, P.; Viaud, F. B.] Univ Montreal, Montreal, PQ H3C 3J7, Canada. [Nicholson, H.] Mt Holyoke Coll, S Hadley, MA 01075 USA. [De Nardo, G.; Lista, L.; Monorchio, D.; Onorato, G.; Sciacca, C.] Ist Nazl Fis Nucl, Sez Napoli, I-80126 Naples, Italy. [De Nardo, G.; Monorchio, D.; Onorato, G.; Sciacca, C.] Univ Naples Federico II, Dipartimento Sci Fis, I-80126 Naples, Italy. [Raven, G.; Snoek, H. L.] Natl Inst Nucl Phys & High Energy Phys, NIKHEF, NL-1009 DB Amsterdam, Netherlands. [Jessop, C. P.; Knoepfel, K. J.; LoSecco, J. M.; Wang, W. F.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Benelli, G.; Corwin, L. A.; Honscheid, K.; Kagan, H.; Kass, R.; Morris, J. P.; Rahimi, A. M.; Regensburger, J. J.; Sekula, S. J.; Wong, Q. K.] Ohio State Univ, Columbus, OH 43210 USA. [Blount, N. L.; Brau, J.; Frey, R.; Igonkina, O.; Kolb, J. A.; Lu, M.; Rahmat, R.; Sinev, N. B.; Strom, D.; Strube, J.; Torrence, E.] Univ Oregon, Eugene, OR 97403 USA. [Castelli, G.; Gagliardi, N.; Margoni, M.; Morandin, M.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.; Voci, C.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Castelli, G.; Gagliardi, N.; Margoni, M.; Simonetto, F.; Stroili, R.; Voci, C.] Univ Padua, Dipartimento Fis, I-35131 Padua, Italy. [Sanchez, P. del Amo; Ben-Haim, E.; Briand, H.; Calderini, G.; Chauveau, J.; David, P.; Del Buono, L.; Hamon, O.; Leruste, Ph.; Ocariz, J.; Perez, A.; Prendki, J.; Gladney, L.] Univ Denis Diderot Paris7, Univ Paris 06, CNRS, IN2P3,Lab Phys Nucl & Hautes Energies, F-75252 Paris, France. [Gladney, L.] Univ Penn, Philadelphia, PA 19104 USA. [Biasini, M.; Covarelli, R.; Manoni, E.] Ist Nazl Fis Nucl, Sez Perugia, I-06100 Perugia, Italy. [Biasini, M.; Covarelli, R.; Manoni, E.] Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Marchiori, G.; Morganti, M.; Neri, N.; Paoloni, E.; Rizzo, G.; Walsh, J. J.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Marchiori, G.; Morganti, M.; Neri, N.; Paoloni, E.; Rizzo, G.; Walsh, J. J.] Univ Pisa, Dipartimento Fis, I-56127 Pisa, Italy. [Biesiada, J.; Pegna, D. Lopes; Lu, C.; Olsen, J.; Smith, A. J. S.; Telnov, A. V.] Princeton Univ, Princeton, NJ 08544 USA. [Morganti, M.; Anulli, F.; Baracchini, E.; Cavoto, G.; del Re, D.; Di Marco, E.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Jackson, P. D.; Gioi, L. Li; Mazzoni, M. A.; Piredda, G.; Polci, F.; Renga, F.; Voena, C.] Ist Nazl Fis Nucl, Sez Roma, I-00185 Rome, Italy. [Baracchini, E.; del Re, D.; Di Marco, E.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Polci, F.; Renga, F.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Ebert, M.; Hartmann, T.; Schroeder, H.] Univ Rostock, D-18051 Rostock, Germany. [Waldi, R.; Adye, T.; Franek, B.; Olaiya, E. O.; Roethel, W.; Wilson, F. F.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Emery, S.; Escalier, M.; Esteve, L.; Gaidot, A.; Ganzhur, S. F.; de Monchenault, G. Hamel; Kozanecki, W.; Vasseur, G.; Yeche, Ch.; Zito, M.] CEA Saclay, DSM Dapnia, F-91191 Gif Sur Yvette, France. [Chen, X. R.; Liu, H.; Park, W.; Purohit, M. V.; White, R. M.; Wilson, J. R.] Univ S Carolina, Columbia, SC 29208 USA. [Allen, M. T.; Aston, D.; Bartoldus, R.; Bechtle, P.; Benitez, J. F.; Cenci, R.; Coleman, J. P.; Convery, M. R.; Dingfelder, J. C.; Dorfan, J.; Dubois-Felsmann, G. P.; Dunwoodie, W.; Field, R. C.; Gabareen, A. M.; Gowdy, S. J.; Graham, M. T.; Grenier, P.; Hast, C.; Innes, W. R.; Kaminski, J.; Kelsey, M. H.; Kim, H.; Kim, P.; Kocian, M. L.; Leith, D. W. G. S.; Li, S.; Lindquist, B.; Luitz, S.; Luth, V.; Lynch, H. L.; MacFarlane, D. B.; Marsiske, H.; Messner, R.; Muller, D. R.; Neal, H.; Nelson, S.; O'Grady, C. P.; Ofte, I.; Perazzo, A.; Perl, M.; Ratcliff, B. N.; Roodman, A.; Salnikov, A. A.; Schindler, R. H.; Schwiening, J.; Snyder, A.; Su, D.; Sullivan, M. K.; Suzuki, K.; Swain, S. K.; Thompson, J. M.; Va'vra, J.; Yarritu, A. K.; Yi, K.; Young, C. C.; Ziegler, V.] Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. [Burchat, P. R.; Edwards, A. J.; Majewski, S. A.; Miyashita, T. S.; Petersen, B. A.; Wilden, L.] Stanford Univ, Stanford, CA 94305 USA. [Ahmed, S.; Alam, M. S.; Ernst, J. A.; Pan, B.; Saeed, M. A.; Zain, S. B.] SUNY Albany, Albany, NY 12222 USA. [Spanier, S. M.; Wogsland, B. J.] Univ Tennessee, Knoxville, TN 37996 USA. [Eckmann, R.; Ruland, A. M.; Schilling, C. J.; Schwitters, R. F.] Univ Texas Austin, Austin, TX 78712 USA. [Drummond, B. W.; Izen, J. M.; Lou, X. C.] Univ Texas Dallas, Richardson, TX 75083 USA. [Bianchi, F.; Gamba, D.; Pelliccioni, M.] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy. [Bianchi, F.; Gamba, D.; Pelliccioni, M.] Univ Turin, Dipartimento Fis Sperimentale, I-10125 Turin, Italy. [Ritchie, J. L.; Bomben, M.; Bosisio, L.; Cartaro, C.; Della Ricca, G.; Lanceri, L.; Vitale, L.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Ritchie, J. L.; Bomben, M.; Bosisio, L.; Cartaro, C.; Della Ricca, G.; Lanceri, L.; Vitale, L.] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. [Azzolini, V.; Lopez-March, N.; Martinez-Vidal, F.; Milanes, D. A.; Oyanguren, A.] Univ Valencia, CSIC, IFIC, E-46071 Valencia, Spain. [Albert, J.; Banerjee, Sw.; Bhuyan, B.; Choi, H. H. F.; Hamano, K.; Kowalewski, R.; Lewczuk, M. J.; Nugent, I. M.; Roney, J. M.; Sobie, R. J.] Univ Victoria, Victoria, BC V8W 3P6, Canada. [Gershon, T. J.; Harrison, P. F.; Ilic, J.; Latham, T. E.; Mohanty, G. B.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Band, H. R.; Chen, X.; Dasu, S.; Flood, K. T.; Pan, Y.; Pierini, M.; Prepost, R.; Vuosalo, C. O.; Wu, S. L.] Univ Wisconsin, Madison, WI 53706 USA. [Lusiani, A.; Walsh, J. J.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. RP Aubert, B (reprint author), CNRS, IN2P3, Phys Particules Lab, F-74941 Annecy Le Vieux, France. RI Calabrese, Roberto/G-4405-2015; Martinez Vidal, F*/L-7563-2014; Kolomensky, Yury/I-3510-2015; Lo Vetere, Maurizio/J-5049-2012; Lusiani, Alberto/N-2976-2015; Lusiani, Alberto/A-3329-2016; Morandin, Mauro/A-3308-2016; Di Lodovico, Francesca/L-9109-2016; Pappagallo, Marco/R-3305-2016; Calcaterra, Alessandro/P-5260-2015; Frey, Raymond/E-2830-2016; Rizzo, Giuliana/A-8516-2015; Negrini, Matteo/C-8906-2014; Monge, Maria Roberta/G-9127-2012; Oyanguren, Arantza/K-6454-2014; Luppi, Eleonora/A-4902-2015; White, Ryan/E-2979-2015; Patrignani, Claudia/C-5223-2009; Neri, Nicola/G-3991-2012; Forti, Francesco/H-3035-2011; Rotondo, Marcello/I-6043-2012; de Sangro, Riccardo/J-2901-2012; Saeed, Mohammad Alam/J-7455-2012; Della Ricca, Giuseppe/B-6826-2013; dong, liaoyuan/A-5093-2015; OI Calabrese, Roberto/0000-0002-1354-5400; Martinez Vidal, F*/0000-0001-6841-6035; Kolomensky, Yury/0000-0001-8496-9975; Lo Vetere, Maurizio/0000-0002-6520-4480; Lusiani, Alberto/0000-0002-6876-3288; Lusiani, Alberto/0000-0002-6876-3288; Morandin, Mauro/0000-0003-4708-4240; Di Lodovico, Francesca/0000-0003-3952-2175; Pappagallo, Marco/0000-0001-7601-5602; Calcaterra, Alessandro/0000-0003-2670-4826; Frey, Raymond/0000-0003-0341-2636; Pacetti, Simone/0000-0002-6385-3508; Rizzo, Giuliana/0000-0003-1788-2866; Negrini, Matteo/0000-0003-0101-6963; Monge, Maria Roberta/0000-0003-1633-3195; Oyanguren, Arantza/0000-0002-8240-7300; Luppi, Eleonora/0000-0002-1072-5633; White, Ryan/0000-0003-3589-5900; Patrignani, Claudia/0000-0002-5882-1747; Neri, Nicola/0000-0002-6106-3756; Forti, Francesco/0000-0001-6535-7965; Rotondo, Marcello/0000-0001-5704-6163; de Sangro, Riccardo/0000-0002-3808-5455; Saeed, Mohammad Alam/0000-0002-3529-9255; Della Ricca, Giuseppe/0000-0003-2831-6982; Raven, Gerhard/0000-0002-2897-5323; Bettarini, Stefano/0000-0001-7742-2998; Cibinetto, Gianluigi/0000-0002-3491-6231; dong, liaoyuan/0000-0002-4773-5050; Covarelli, Roberto/0000-0003-1216-5235; Paoloni, Eugenio/0000-0001-5969-8712; Faccini, Riccardo/0000-0003-2613-5141 NR 25 TC 22 Z9 22 U1 0 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD OCT 17 PY 2008 VL 101 IS 16 AR 161801 DI 10.1103/PhysRevLett.101.161801 PG 7 WC Physics, Multidisciplinary SC Physics GA 361QD UT WOS:000260141300008 ER PT J AU Chernyak, VY Sinitsyn, NA AF Chernyak, V. Y. Sinitsyn, N. A. TI Pumping Restriction Theorem for Stochastic Networks SO PHYSICAL REVIEW LETTERS LA English DT Article ID OSCILLATING FIELD; KINETICS; MOTORS AB We formulate an exact result, which we refer to as the pumping restriction theorem (PRT). It imposes strong restrictions on the currents generated by periodic driving in a generic dissipative system with detailed balance, and provides a universal nonperturbative approach to explore the stochastic pump effect in nonadiabatically driven systems. C1 [Chernyak, V. Y.] Wayne State Univ, Dept Chem, Detroit, MI 48202 USA. [Chernyak, V. Y.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Sinitsyn, N. A.] Los Alamos Natl Lab, Ctr Nonlinear Studies & Comp, Computat & Stat Sci Div, Los Alamos, NM 87545 USA. RP Chernyak, VY (reprint author), Wayne State Univ, Dept Chem, 5101 Cass Ave, Detroit, MI 48202 USA. RI Sinitsyn, nikolai/B-5617-2009; Chernyak, Vladimir/F-5842-2016 OI Chernyak, Vladimir/0000-0003-4389-4238 FU National Science Foundation [CHE-0808910]; DOE [DE-AC52-06NA25396] FX We thank the authors of Ref. [9] for sharing their results prior to publication, and also B. Munsky and I. Nemenman for useful discussions. This material is based upon work supported by the National Science Foundation under CHE-0808910 and in part by DOE under Contract No. DE-AC52-06NA25396. NR 19 TC 31 Z9 31 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD OCT 17 PY 2008 VL 101 IS 16 AR 160601 DI 10.1103/PhysRevLett.101.160601 PG 4 WC Physics, Multidisciplinary SC Physics GA 361QD UT WOS:000260141300005 PM 18999654 ER PT J AU Dalvit, DAR Lamoreaux, SK AF Dalvit, Diego A. R. Lamoreaux, Steve K. TI Contribution of Drifting Carriers to the Casimir-Lifshitz and Casimir-Polder Interactions With Semiconductor Materials SO PHYSICAL REVIEW LETTERS LA English DT Article ID FORCE AB We develop a theory for Casimir-Lifshitz and Casimir-Polder interactions with semiconductor or insulator surfaces that takes into account charge drift in the bulk material through use of the classical Boltzmann equation. We derive frequency-dependent dispersion relations that give the usual Lifshitz results for dielectrics as a limiting case and, in the quasistatic limit, coincide with those recently computed to account for Debye screening in the thermal Lifshitz force with conducting surfaces with small density of carriers. C1 [Dalvit, Diego A. R.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Lamoreaux, Steve K.] Yale Univ, Dept Phys, New Haven, CT 06520 USA. RP Dalvit, DAR (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. NR 17 TC 36 Z9 36 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD OCT 17 PY 2008 VL 101 IS 16 AR 163203 DI 10.1103/PhysRevLett.101.163203 PG 4 WC Physics, Multidisciplinary SC Physics GA 361QD UT WOS:000260141300017 PM 18999666 ER PT J AU Hastings, MB AF Hastings, M. B. TI Inference from Matrix Products: A Heuristic Spin-Glass Algorithm SO PHYSICAL REVIEW LETTERS LA English DT Article ID FRUSTRATION MODEL; GROUND-STATES AB We present an algorithm for finding ground states of two-dimensional spin-glass systems based on ideas from matrix product states in quantum information theory. The algorithm works directly at zero temperature and defines an approximation to the energy whose accuracy depends on a parameter k. We test the algorithm against exact methods on random field and random bond Ising models, and we find that accurate results require a k which scales roughly polynomially with the system size. The algorithm also performs well when tested on small systems with arbitrary interactions, where no fast, exact algorithms exist. The time required is significantly less than Monte Carlo schemes. C1 [Hastings, M. B.] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. [Hastings, M. B.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Hastings, M. B.] Univ Calif Santa Barbara, Kavli Inst Theoret Phys, Santa Barbara, CA 93106 USA. RP Hastings, MB (reprint author), Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. FU U.S. DOE [DE-AC52-06NA25396] FX This work was supported by U.S. DOE Contract No. DE-AC52-06NA25396. NR 23 TC 3 Z9 3 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD OCT 17 PY 2008 VL 101 IS 16 AR 167206 DI 10.1103/PhysRevLett.101.167206 PG 4 WC Physics, Multidisciplinary SC Physics GA 361QD UT WOS:000260141300062 PM 18999711 ER PT J AU Larese, JZ Arnold, T Frazier, L Hinde, RJ Ramirez-Cuesta, AJ AF Larese, J. Z. Arnold, T. Frazier, L. Hinde, R. J. Ramirez-Cuesta, A. J. TI Direct Observation of H(2) Binding to a Metal Oxide Surface SO PHYSICAL REVIEW LETTERS LA English DT Article ID SEPARATION; ADSORPTION; HYDROGEN; MGO(100); SUBSTRATE; CHARGE; ARGON; FILMS AB Inelastic neutron scattering is used to probe the dynamical response of H(2) films adsorbed on MgO(100) as a function of film thickness. Concomitant diffraction measurements and a reduced-dimensionality quantum dynamical model provide insight into the molecule-surface interaction potential. At monolayer thickness, the rotational motion is strongly influenced by the surface, so that the molecules behave like quasiplanar rotors. These findings have a direct impact on understanding how molecular hydrogen binds to the surface of materials used in catalytic and storage applications. C1 [Larese, J. Z.; Arnold, T.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Larese, J. Z.; Frazier, L.; Hinde, R. J.] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. [Ramirez-Cuesta, A. J.] Rutherford Appleton Lab, ISIS Facil, Didcot OX11 0QX, Oxon, England. RP Larese, JZ (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM jzl@utk.edu; rhinde@utk.edu RI D20, Diffractometer/O-3123-2013; Ramirez-Cuesta, Timmy/A-4296-2010; OI D20, Diffractometer/0000-0002-1572-1367; Ramirez-Cuesta, Timmy/0000-0003-1231-0068; Arnold, Thomas/0000-0001-8295-3822; Hinde, Robert/0000-0003-3499-9222 FU Division of Materials Science; Office of Basic Energy Science; U. S. DOE [DE-AC05-00OR22725]; NSF [DMR-0412231] FX We thank H. Glyde, J. M. Hastings, S. Parker, S. Rols, A. Migone, B. Sumpter, and O. Vilches for useful discussions and R. Cook, P. Yaron, and the ISIS support team for assistance. This work was funded by the Division of Materials Science, Office of Basic Energy Science, U. S. DOE, under Contract No. DE-AC05-00OR22725 with ORNL (UT-Battelle, LLC) and by NSF under Grant No. DMR-0412231. NR 24 TC 21 Z9 22 U1 1 U2 12 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD OCT 17 PY 2008 VL 101 IS 16 AR 165302 DI 10.1103/PhysRevLett.101.165302 PG 4 WC Physics, Multidisciplinary SC Physics GA 361QD UT WOS:000260141300032 PM 18999681 ER PT J AU Lipp, MJ Jackson, D Cynn, H Aracne, C Evans, WJ McMahan, AK AF Lipp, M. J. Jackson, D. Cynn, H. Aracne, C. Evans, W. J. McMahan, A. K. TI Thermal Signatures of the Kondo Volume Collapse in Cerium SO PHYSICAL REVIEW LETTERS LA English DT Article ID ALPHA-GAMMA-TRANSITION; PHASE-TRANSITION; HIGH-PRESSURE; CE; EQUATION; LATTICE; POINT; STATE; METAL AB X-ray diffraction measurements of cerium in the vicinity of the isostructural gamma-alpha transition have been performed with high precision and accuracy from room temperature to almost 800 K. The disputed location of the critical point has been found to occur at 1.5 +/- 0.1 GPa and 480 +/- 10 K. The data are well fit by the Kondo volume collapse model plus a quasiharmonic representation of the phonons. The resultant free energy is validated against data for the thermodynamic Gruneisen parameter and, beyond the dominant spin-fluctuation contribution, indicates a dramatic change in the lattice Gruneisen parameter across the transition. C1 [Lipp, M. J.; Jackson, D.; Cynn, H.; Aracne, C.; Evans, W. J.; McMahan, A. K.] Lawrence Livermore Natl Lab, H Div, Livermore, CA 94550 USA. RP Lipp, MJ (reprint author), Lawrence Livermore Natl Lab, H Div, Livermore, CA 94550 USA. FU U. S. Department of Energy [W-7405-Eng-48, DE-AC52-07NA27344]; DOE-BES; DOE-NNSA FX This work was performed under the auspices of the U. S. Department of Energy by Lawrence Livermore National Laboratory in part under Contract W-7405-Eng-48 and in part under Contract DE-AC52-07NA27344. The x-ray work was performed at beam line 16BMB and 16BMD of the HPCAT at the APS, supported by DOE-BES and DOE-NNSA (CDAC, LLNL, UNLV). We are grateful for experimental help from H. P. Liermann, W. Yang, O. Shebanova (HPCAT), G. W. Lee, and conversations with M. Manley, J. Moriarty, and L. NR 33 TC 57 Z9 58 U1 3 U2 19 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD OCT 17 PY 2008 VL 101 IS 16 AR 165703 DI 10.1103/PhysRevLett.101.165703 PG 4 WC Physics, Multidisciplinary SC Physics GA 361QD UT WOS:000260141300038 PM 18999687 ER PT J AU McQueen, TM Stephens, PW Huang, Q Klimczuk, T Ronning, F Cava, RJ AF McQueen, T. M. Stephens, P. W. Huang, Q. Klimczuk, T. Ronning, F. Cava, R. J. TI Successive Orbital Ordering Transitions in NaVO(2) SO PHYSICAL REVIEW LETTERS LA English DT Article ID SUPERCONDUCTIVITY; NATIO2; LIVO2 AB Physical property measurements on samples of triangular-lattice NaVO(2) reveal two successive orbital ordering transitions. At 300 K, the structure is rhombohedral. At 98 K, the system undergoes a second-order transition to a monoclinic phase in which the in-plane V-V distances separate into four short and two long bonds, corresponding to orbital ordering of one electron per V(3+). Below 93 K, there is a first-order transition to a second monoclinic phase with four long and two short V-V bonds, consistent with orbital ordering of two electrons per V(3+). Long range magnetic ordering of 0.98(2)mu(B) per V(3+) (3d(2)) sets in at the 93 K structural transition. The orbital ordering relieves the geometric frustration and leads to a magnetically ordered ground state. C1 [McQueen, T. M.; Cava, R. J.] Princeton Univ, Dept Chem, Princeton, NJ 08544 USA. [Stephens, P. W.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Huang, Q.] NIST Ctr Neutron Res, Gaithersburg, MD 20899 USA. [Klimczuk, T.; Ronning, F.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Ronning, F.] Gdansk Univ Technol, Fac Appl Phys & Math, PL-80952 Gdansk, Poland. RP McQueen, TM (reprint author), Princeton Univ, Dept Chem, Princeton, NJ 08544 USA. RI Klimczuk, Tomasz/M-1716-2013; OI Klimczuk, Tomasz/0000-0003-2602-5049; Ronning, Filip/0000-0002-2679-7957 FU National Science Foundation; NSF DMF [NSF-DMR-0703095]; U. S. Department of Energy; Office of Science; Office of Basic Energy Sciences [DE-AC02-98CH10886] FX M. M. gratefully acknowledges support of the National Science Foundation Graduate Research Fellowship Program. This work was done under NSF DMF Grant No. NSF-DMR-0703095. Use of the National Synchrotron Light Source, Brookhaven National Laboratory, was supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. NR 14 TC 28 Z9 29 U1 7 U2 32 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD OCT 17 PY 2008 VL 101 IS 16 AR 166402 DI 10.1103/PhysRevLett.101.166402 PG 4 WC Physics, Multidisciplinary SC Physics GA 361QD UT WOS:000260141300041 PM 18999690 ER PT J AU Mier, JA Sanchez, R Garcia, L Carreras, BA Newman, DE AF Mier, J. A. Sanchez, R. Garcia, L. Carreras, B. A. Newman, D. E. TI Characterization of Nondiffusive Transport in Plasma Turbulence via a Novel Lagrangian Method SO PHYSICAL REVIEW LETTERS LA English DT Article ID SELF-ORGANIZED CRITICALITY; ANOMALOUS TRANSPORT; FRACTIONAL DYNAMICS; DIFFUSION; PARADIGM; CONFINEMENT; DEVICES; MODEL AB A novel method to probe and characterize the nature of the transport of passive scalars carried out by a turbulent flow is introduced. It requires the determination of two exponents which encapsulate the statistical and correlation properties of the component of interest of the Lagrangian velocities of the flow. Numerical simulations of a magnetically confined, near- critical turbulent plasma, known to exhibit superdiffusive radial transport, are used to illustrate the method. It is shown that the method can easily detect the change in the dynamics of the radial transport that takes place after adding to the simulations a (subdominant) diffusive channel of tunable strength. C1 [Mier, J. A.; Garcia, L.] Univ Carlos III Madrid, Dept Fis, Madrid 28911, Spain. [Sanchez, R.] Oak Ridge Natl Lab, Div Fus Energy, Oak Ridge, TN 37831 USA. [Carreras, B. A.] BACV Solut Inc, Oak Ridge, TN 37830 USA. [Newman, D. E.] Univ Alaska, Dept Phys, Fairbanks, AK 99775 USA. RP Mier, JA (reprint author), Univ Carlos III Madrid, Dept Fis, Madrid 28911, Spain. EM jmier@fis.uc3m.es RI Garcia, Luis/A-5344-2015 OI Garcia, Luis/0000-0002-0492-7466 FU Spanish DGES [ENE2006-15244-C03-01/FTN]; DOE Office of Science [DE-FG02-04ER54741]; U. S. DOE [DE-AC05-00OR22725] FX Research supported by Spanish DGES Grant No. ENE2006-15244-C03-01/FTN and DOE Office of Science Grant No. DE-FG02-04ER54741 at University of Alaska. ORNL researchers sponsored by U. S. DOE under Contract No. DE-AC05-00OR22725. NR 24 TC 20 Z9 20 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD OCT 17 PY 2008 VL 101 IS 16 AR 165001 DI 10.1103/PhysRevLett.101.165001 PG 4 WC Physics, Multidisciplinary SC Physics GA 361QD UT WOS:000260141300028 PM 18999677 ER PT J AU Zhao, J Yao, DX Li, SL Hong, T Chen, Y Chang, S Ratcliff, W Lynn, JW Mook, HA Chen, GF Luo, JL Wang, NL Carlson, EW Hu, JP Dai, PC AF Zhao, Jun Yao, Dao-Xin Li, Shiliang Hong, Tao Chen, Y. Chang, S. Ratcliff, W., II Lynn, J. W. Mook, H. A. Chen, G. F. Luo, J. L. Wang, N. L. Carlson, E. W. Hu, Jiangping Dai, Pengcheng TI Low Energy Spin Waves and Magnetic Interactions in SrFe(2)As(2) SO PHYSICAL REVIEW LETTERS LA English DT Article ID SUPERCONDUCTIVITY AB We report inelastic neutron scattering studies of magnetic excitations in antiferromagnetically ordered SrFe(2)As(2) (T(N)=200-220 K), the parent compound of the FeAs-based superconductors. At low temperatures (T=7 K), the magnetic spectrum S(Q,h omega) consists of a Bragg peak at the elastic position (h omega=0 meV), a spin gap (Delta <= 6.5 meV), and sharp spin-wave excitations at higher energies. Based on the observed dispersion relation, we estimate the effective magnetic exchange coupling using a Heisenberg model. On warming across T(N), the low-temperature spin gap rapidly closes, with weak critical scattering and spin-spin correlations in the paramagnetic state. The antiferromagnetic order in SrFe(2)As(2) is therefore consistent with a first order phase transition, similar to the structural lattice distortion. C1 [Zhao, Jun; Li, Shiliang; Dai, Pengcheng] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Yao, Dao-Xin; Carlson, E. W.; Hu, Jiangping] Purdue Univ, Dept Phys, W Lafayette, IN 47907 USA. [Hong, Tao; Mook, H. A.; Dai, Pengcheng] Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA. [Chen, Y.; Chang, S.; Ratcliff, W., II; Lynn, J. W.] Natl Inst Stand & Technol, NIST Ctr Neutron Res, Gaithersburg, MD 20899 USA. [Chen, G. F.; Luo, J. L.; Wang, N. L.] Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China. RP Zhao, J (reprint author), Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. EM daip@ornl.gov RI Li, Shiliang/B-9379-2009; Hong, Tao/F-8166-2010; Zhao, Jun/A-2492-2010; Dai, Pengcheng /C-9171-2012; Hu, Jiangping/A-9154-2010; hu, jiangping /C-3320-2014 OI Hong, Tao/0000-0002-0161-8588; Zhao, Jun/0000-0002-0421-8934; Dai, Pengcheng /0000-0002-6088-3170; Hu, Jiangping/0000-0003-4480-1734; FU U.S. NSF [DMR-0756568, PHY-0603759, DMR-0804748]; U.S. DOE, BES [DE-FG02-05ER46202]; Division of Scientific User Facilities; Research Corporation; NSF of China; CAS ITSNEM; Ministry of Science and Technology of China FX We thank R. Fishman for discussions on Cr. This work is supported by the U.S. NSF No. DMR-0756568, No. PHY-0603759, No. DMR-0804748, by the U.S. DOE, BES, through DOE No. DE-FG02-05ER46202, Division of Scientific User Facilities, and Research Corporation. The work at the IOP, CAS, is supported by the NSF of China, the CAS ITSNEM, and the Ministry of Science and Technology of China. NR 33 TC 149 Z9 152 U1 1 U2 16 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD OCT 17 PY 2008 VL 101 IS 16 AR 167203 DI 10.1103/PhysRevLett.101.167203 PG 4 WC Physics, Multidisciplinary SC Physics GA 361QD UT WOS:000260141300059 PM 18999708 ER PT J AU Gorostiza, P Isacoff, EY AF Gorostiza, Pau Isacoff, Ehud Y. TI Optical switches for remote and noninvasive control of cell signaling SO SCIENCE LA English DT Review ID ION CHANNELS; ACETYLCHOLINE RECEPTOR; GLUTAMATE-RECEPTOR; POTASSIUM CHANNEL; K+ CHANNEL; NEURONS; CHANNELRHODOPSIN-2; MANIPULATION; ACTIVATION; EXCITATION C1 [Isacoff, Ehud Y.] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Isacoff, Ehud Y.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Biosci, Berkeley, CA 94720 USA. [Isacoff, Ehud Y.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Phys Biosci, Berkeley, CA 94720 USA. [Gorostiza, Pau] Inst Catalana Recerca & Estud Avancats, Barcelona 08028, Spain. [Gorostiza, Pau] Inst Bioengn Catalunya, Barcelona 08028, Spain. RP Isacoff, EY (reprint author), Univ Calif Berkeley, Dept Mol & Cell Biol, 271 Life Sci Addit, Berkeley, CA 94720 USA. EM ehud@berkeley.edu RI Gorostiza, Pau/Q-2544-2015 OI Gorostiza, Pau/0000-0002-7268-5577 FU Human Frontier Science Program Organization; European Research Council; NIH Nanomedicine Development Center for the Optical Control of Biological Function [5PN2EY018241] FX P.G. is supported by the Human Frontier Science Program Organization through a Career Development Award and by the European Research Council through a Starting Grant. This work was supported by the NIH Nanomedicine Development Center for the Optical Control of Biological Function (grant 5PN2EY018241). NR 38 TC 159 Z9 162 U1 4 U2 68 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 EI 1095-9203 J9 SCIENCE JI Science PD OCT 17 PY 2008 VL 322 IS 5900 BP 395 EP 399 DI 10.1126/science.1166022 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 360YK UT WOS:000260094500034 PM 18927384 ER PT J AU Mezger, M Schroder, H Reichert, H Schramm, S Okasinski, JS Schoder, S Honkimaki, V Deutsch, M Ocko, BM Ralston, J Rohwerder, M Stratmann, M Dosch, H AF Mezger, Markus Schroder, Heiko Reichert, Harald Schramm, Sebastian Okasinski, John S. Schoder, Sebastian Honkimaki, Veijo Deutsch, Moshe Ocko, Benjamin M. Ralston, John Rohwerder, Michael Stratmann, Martin Dosch, Helmut TI Molecular layering of fluorinated ionic liquids at a charged sapphire (0001) surface SO SCIENCE LA English DT Article ID X-RAY REFLECTIVITY; SOLAR-CELLS; SOLVENTS; METAL; SYSTEMS; FILMS AB Room-temperature ionic liquids (RTILs) are promising candidates for a broad range of "green" applications, for which their interaction with solid surfaces plays a crucial role. In this high-energy x-ray reflectivity study, the temperature-dependent structures of three ionic liquids with the tris(pentafluoroethyl) trifluorophosphate anion in contact with a charged sapphire substrate were investigated with submolecular resolution. All three RTILs show strong interfacial layering, starting with a cation layer at the substrate and decaying exponentially into the bulk liquid. The observed decay length and layering period point to an interfacial ordering mechanism, akin to the charge inversion effect, which is suggested to originate from strong correlations between the unscreened ions. The observed layering is expected to be a generic feature of RTILs at charged interfaces. C1 [Mezger, Markus; Schroder, Heiko; Reichert, Harald; Schramm, Sebastian; Okasinski, John S.; Schoder, Sebastian; Dosch, Helmut] Max Planck Inst Met Res, D-70569 Stuttgart, Germany. [Schoder, Sebastian; Honkimaki, Veijo] European Synchrotron Radiat Facil, F-38043 Grenoble, France. [Deutsch, Moshe] Bar Ilan Univ, Dept Phys, IL-52900 Ramat Gan, Israel. [Deutsch, Moshe] Bar Ilan Univ, Inst Nanotechnol & Adv Mat, IL-52900 Ramat Gan, Israel. [Ocko, Benjamin M.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. [Ralston, John] Univ S Australia, Ian Wark Res Inst, Mawson Lakes, SA 5095, Australia. [Rohwerder, Michael; Stratmann, Martin] Max Planck Inst Eisenforsch GmbH, D-40237 Dusseldorf, Germany. [Dosch, Helmut] Univ Stuttgart, Inst Theoret & Angew Phys, D-70550 Stuttgart, Germany. RP Reichert, H (reprint author), Max Planck Inst Met Res, D-70569 Stuttgart, Germany. EM reichert@mf.mpg.de RI Ralston, John/B-9248-2009; Barsoum, Michel/I-2842-2012; Mezger, Markus/D-6897-2014 OI Ralston, John/0000-0002-8271-3041; Barsoum, Michel/0000-0001-7800-3517; Mezger, Markus/0000-0001-9049-6983 FU German-Israeli Foundation for Scientific Research and Development [I 779-42.10/2003]; U.S.-Israel Binational Science Foundation (Jerusalem); Division of Materials Science of the U.S. Department of Energy [DE-AC02-98CH10886]; Australian Research Council Special Research Centre Scheme FX This work was supported by the German-Israeli Foundation for Scientific Research and Development (no. I 779-42.10/2003), the U.S.-Israel Binational Science Foundation (Jerusalem), the Division of Materials Science of the U.S. Department of Energy under contract no. DE-AC02-98CH10886, and the Australian Research Council Special Research Centre Scheme. NR 30 TC 332 Z9 333 U1 15 U2 226 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD OCT 17 PY 2008 VL 322 IS 5900 BP 424 EP 428 DI 10.1126/science.1164502 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 360YK UT WOS:000260094500042 PM 18927390 ER PT J AU Aliyari, R Wu, QF Li, HW Wang, XH Li, F Green, LD Han, CS Li, WX Ding, SW AF Aliyari, Roghiyh Wu, Qingfa Li, Hong-Wei Wang, Xiao-Hong Li, Feng Green, Lance D. Han, Cliff S. Li, Wan-Xiang Ding, Shou-Wei TI Mechanism of Induction and Suppression of Antiviral Immunity Directed by Virus-Derived Small RNAs in Drosophila SO CELL HOST & MICROBE LA English DT Article ID DOUBLE-STRANDED-RNA; FLOCK-HOUSE-VIRUS; SMALL INTERFERING RNAS; TOBACCO-MOSAIC-VIRUS; DICER-LIKE PROTEINS; SOMATIC-CELLS; ANIMAL VIRUS; HOST-DEFENSE; MICRORNAS; REPLICATION AB The small RNA-directed viral immunity pathway in plants and invertebrates begins with the production by Dicer nuclease of virus-derived siRNAs (viRNAs), which guide specific antiviral silencing by Argonaute protein in an RNA-induced silencing complex (RISC). Molecular identity of the viral RNA precursor of viRNAs remains a matter of debate. Using Flock house virus (FHV) infection of Drosophila as a model, we show that replication of FHV positive-strand RNA genome produces an similar to 400 bp dsRNA from its 5'-terminus that serves as the major Dicer-2 substrate. ViRNAs; thus generated are loaded in Argonaute-2 and methylated at their 3' ends. Notably, FHV-encoded RNAi suppressor 132 protein interacts with both viral dsRNA and RNA replicase and inhibits production of the 5'-terminal viRNAs. Our findings, therefore, provide a model in which small RNA-directed viral immunity is induced during the initiation of viral progeny (+)RNA synthesis and suppressed by B2 inside the viral RNA replication complex. C1 [Aliyari, Roghiyh; Wu, Qingfa; Li, Hong-Wei; Wang, Xiao-Hong; Li, Feng; Li, Wan-Xiang; Ding, Shou-Wei] Univ Calif Riverside, Inst Integrat Genome Biol, Dept Plant Pathol & Microbiol, Riverside, CA 92521 USA. [Green, Lance D.; Han, Cliff S.] Los Alamos Natl Lab, Biosci Div, Los Alamos, NM 87545 USA. RP Ding, SW (reprint author), Univ Calif Riverside, Inst Integrat Genome Biol, Dept Plant Pathol & Microbiol, Riverside, CA 92521 USA. EM shou-wei.ding@ucr.edu FU NIH [AI052447]; National Research Initiative of the USDA Cooperative State Research, Education, and Extension Service [2007-35319-18325] FX We wish to thank Paul Ahlquist for the antibody to protein A, Mikiko Siomi for the antibodies to AGO1 and AGO2, and A.L.N. Rao for a crude FHV Delta B2 virion preparation used in the early studies. This work was supported by NIH grant AI052447 (to S.D.) and the National Research Initiative of the USDA Cooperative State Research, Education, and Extension Service grant 2007-35319-18325 (to S.D.). NR 56 TC 137 Z9 142 U1 2 U2 22 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 1931-3128 J9 CELL HOST MICROBE JI Cell Host Microbe PD OCT 16 PY 2008 VL 4 IS 4 BP 387 EP 397 DI 10.1016/j.chom.2008.09.001 PG 11 WC Microbiology; Parasitology; Virology SC Microbiology; Parasitology; Virology GA 363PF UT WOS:000260278500012 PM 18854242 ER PT J AU Zhou, D Metzler, RA Tyliszczak, T Guo, JH Abrecht, M Coppersmith, SN Gilbert, PUPA AF Zhou, Dong Metzler, Rebecca A. Tyliszczak, Tolek Guo, Jinghua Abrecht, Mike Coppersmith, Susan N. Gilbert, P. U. P. A. TI Assignment of Polarization-Dependent Peaks in Carbon K-Edge Spectra from Biogenic and Geologic Aragonite SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID TRANSMISSION X-RAY; NACRE; SPECTROSCOPY; CALCITE; SURFACE; MATRIX AB Many biominerals, including mollusk and echinoderm shells, avian eggshells, modem and fossil bacterial sediments, planktonic coccolithophores, and foraminifera, contain carbonates in the form of biogenic aragonite or calcite. Here we analyze biogenic and geologic aragonite using different kinds of surface- and bulk-sensitive X-ray absorption near-edge structure (XANES) spectroscopy at the carbon K-edge, as well as highresolution scanning transmission X-ray microscopy (STXM). Besides the well-known main, pi* and sigma* carbonate peaks, we observed and fully characterized four minor peaks, at energies between the main pi* and sigma* peaks. As expected, the main peaks are similar in geologic and biogenic aragonite, while the minor peaks differ in relative intensity. In this and previous work, the minor peaks appear to be the ones most affected in biomineralization processes, hence the interest in characterizing them. Peak assignment was achieved by correlation of polarization-dependent behavior of the minor peaks with that of the main pi* and sigma* peaks. The present characterization provides the background for future studies of aragonitic biominerals. C1 [Zhou, Dong; Metzler, Rebecca A.; Coppersmith, Susan N.; Gilbert, P. U. P. A.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Tyliszczak, Tolek; Guo, Jinghua] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Abrecht, Mike] Ctr Synchrotron Radiat, Stoughton, WI 53589 USA. RP Gilbert, PUPA (reprint author), Univ Wisconsin, Dept Phys, 1150 Univ Ave, Madison, WI 53706 USA. EM pupa@physics.wisc.edu RI Zhou, Dong/A-2675-2011; Gilbert, Pupa/A-6299-2010 OI Gilbert, Pupa/0000-0002-0139-2099 FU NSF [PHY-0523905, CHEDMR0613972, DMR-0537588]; ALS; DoE [DE-AC02-05CH11231]; UW-SRC FX We thank Paul Voyles and Ye Zhu for their help with tripod polishing, and Matthew Marcus for the geologic aragonite samples. We are grateful to Adam Hitchcock for his valuable suggestions on peak assignment. This work was supported by NSF awards PHY-0523905 and CHE&DMR0613972, DoE award DE-FG02-07ER15899 and UW Vilas and Hamel Awards to PUPAG. The experiments were performed at the ALS, supported by DoE under contract DE-AC02-05CH11231, and at the UW-SRC, supported by NSF award DMR-0537588. NR 29 TC 16 Z9 16 U1 0 U2 12 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD OCT 16 PY 2008 VL 112 IS 41 BP 13128 EP 13135 DI 10.1021/jp803176z PG 8 WC Chemistry, Physical SC Chemistry GA 358UO UT WOS:000259943200033 PM 18811192 ER PT J AU Han, HX Frei, H AF Han, Hongxian Frei, Heinz TI In Situ Spectroscopy of Water Oxidation at Ir Oxide Nanocluster Driven by Visible TiOCr Charge-transfer Chromophore in Mesoporous Silica SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID OXYGEN EVOLUTION; LIGHT; CATALYSTS; CHEMISTRY; CENTERS; SIEVE; REDOX AB An all-inorganic photocatalytic unit consisting of a binuclear TiOCr charge-transfer chromophore coupled to an Ir oxide nanocluster has been assembled on the pore surface of mesoporous silica AlMCM-41. When exciting the Ti(IV)OCr(III) --> Ti(III)OCr(IV) metal-to-metal charge-transfer chromophore of an aqueous suspension of IrxOy-TiCr-AlMCM-41 powder with visible light, oxygen evolution with a quantum efficiency of at least 13% was detected by Clark electrode measurements. In situ Fourier transform Raman and X-band electron paramagnetic resonance spectroscopy revealed the formation of superoxide species. Use of (H2O)-O-18 confirmed that the superoxide species originates from oxidation of water. Photolysis in the absence of persulfate acceptor led to accumulation of Ti(III) instead. The results indicate efficient photocatalytic oxidation of water at Ir oxide nanoclusters followed by trapping of the evolving O-2 by transient Ti(III) centers to yield superoxide. Given the flexibility of the synthetic method for selecting donor metals with appropriate redox potential, photocatalytic units consisting of a binuclear charge-transfer chromophore coupled to a water oxidation catalyst shown here constitute a step toward thermodynamically efficient visible-light water oxidation units. C1 [Han, Hongxian; Frei, Heinz] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Frei, H (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. EM hmfrei@lbl.gov RI Han, Hongxian/Q-6054-2016 OI Han, Hongxian/0000-0002-2522-1817 FU US Department of Energy [DE-AC02-05CH11231] FX This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, Division of Chemical, Geological and Biosciences of the US Department of Energy under Contract No. DE-AC02-05CH11231. The authors thank Drs. Vittal Yachandra and Yulia Pushkar for access to their EPR laboratory and for help with the experiments. NR 21 TC 45 Z9 45 U1 4 U2 29 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD OCT 16 PY 2008 VL 112 IS 41 BP 16156 EP 16159 DI 10.1021/jp803994d PG 4 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 358UP UT WOS:000259943300036 ER PT J AU Murdock, Z Nandi, S Tavartkiladze, Z AF Murdock, Zeke Nandi, S. Tavartkiladze, Zurab TI Perturbativity and a fourth generation in the MSSM SO PHYSICS LETTERS B LA English DT Article ID STANDARD MODEL FAMILIES; HIGGS-BOSON; UNIFICATION; MASS; TOP AB We study an extension of the MSSM with a fourth generation of chiral matter. With this extension no value of tan beta allows the theory to stay perturbative up to the GUT scale. We suggest one model with extra vector-like states at the TeV scale that allows perturbativity all the way up to the GUT scale. (C) 2008 Elsevier B.V. All rights reserved. C1 [Murdock, Zeke; Nandi, S.; Tavartkiladze, Zurab] Oklahoma State Univ, Dept Phys, Stillwater, OK 74078 USA. [Murdock, Zeke; Nandi, S.; Tavartkiladze, Zurab] Oklahoma State Univ, Oklahoma Ctr High Energy Phys, Stillwater, OK 74078 USA. [Murdock, Zeke; Nandi, S.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. RP Tavartkiladze, Z (reprint author), Oklahoma State Univ, Dept Phys, Stillwater, OK 74078 USA. EM zekemurdock@gmail.com; s.nandi@okstate.edu; zurab.tavartkiladze@okstate.edu FU DOE [DE-FG02-04ER41306, DE-FG02-ER46140]; GNSF [07_462_4270] FX We are grateful to K.S. Babu for useful discussions and comments. We also thank G. Kribs for his useful comments on the previous version of this Letter. S.N. and Z.M. would like to thank the Theoretical Physics Department of Fermilab for warm hospitality and support during the completion of this work. The work is supported in part by DOE grants DE-FG02-04ER41306 and DE-FG02-ER46140. Z.T. is also partially supported by GNSF grant 07_462_4270. NR 14 TC 28 Z9 28 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 J9 PHYS LETT B JI Phys. Lett. B PD OCT 16 PY 2008 VL 668 IS 4 BP 303 EP 307 DI 10.1016/j.physletb.2008.08.058 PG 5 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 366KS UT WOS:000260480300010 ER PT J AU Shen, YF Tolic, N Hixson, KK Purvine, SO Anderson, GA Smith, RD AF Shen, Yufeng Tolic, Nikola Hixson, Kim K. Purvine, Samuel O. Anderson, Gordon A. Smith, Richard D. TI De novo sequencing of unique sequence tags for discovery of post-translational modifications of proteins SO ANALYTICAL CHEMISTRY LA English DT Article ID TANDEM MASS-SPECTROMETRY; DATABASE SEARCH; IDENTIFICATION; PROTEOMICS; HYBRID AB De novo sequencing is a spectrum analysis approach for mass spectrometry data to discover post-translational modifications in proteins; however, such an approach is still in its infancy and is still not widely applied to proteomic practices due to its limited reliability. In this work, we describe a de novo sequencing approach for the discovery of protein modifications based on identification of the proteome UStags (Shen, Y.; Tolic, N.; Hixson, K. K.; Purvine, S. O.; Pasa-Tolic, L.; Qian, W. J.; Adkins, J. N.; Moore, R. J.; Smith, R. D. Anal. Chem. 2008, 80, 1871-1882). The de novo information was obtained from Fourier-transform tandem mass spectrometry data for peptides and polypeptides from a yeast lysate, and the de novo sequences obtained were selected based on filter levels designed to provide a limited yet high quality subset of UStags. The DNA-predicted database protein sequences were then compared to the UStags, and the differences observed across or in the UStags (i.e., the UStags' prefix and suffix sequences and the UStags themselves) were used to infer possible sequence modifications. With this de novo-UStag approach, we uncovered some unexpected variances within several yeast protein sequences due to amino acid mutations and/or multiple modifications to the predicted protein sequences. To determine false discovery rates, two random (false) databases were independently used for sequence matching, and similar to 3% false discovery rates were estimated for the de novo-UStag approach. The factors affecting the reliability (e.g., existence of de novo sequencing noise residues and redundant sequences) and the sensitivity of the approach were investigated and described. The combined de novo-UStag approach complements the UStag method previously reported by enabling the discovery of new protein modifications. C1 [Shen, Yufeng; Anderson, Gordon A.; Smith, Richard D.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. [Tolic, Nikola; Hixson, Kim K.; Purvine, Samuel O.; Smith, Richard D.] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. RP Shen, YF (reprint author), Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. EM Yufeng.shen@pnl.gov; rds@pnl.gov RI Smith, Richard/J-3664-2012 OI Smith, Richard/0000-0002-2381-2349 FU The William R. Wiley Environmental Molecular Sciences Laboratory (EMSL); Intramural Research and Capability Development Program [22142]; U.S. Department of Energy (DOE) Office of Biological and Environmental Research; NIH National Center for Research Resources [RR18522]; DOE [DEAC05-76RL0-1830] FX This research was partially supported by The William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) Intramural Research and Capability Development Program (Grant 22142), the U.S. Department of Energy (DOE) Office of Biological and Environmental Research, and the NIH National Center for Research Resources (Grant RR18522). Work was performed in the EMSL, a DOE national scientific user facility located on the campus of Pacific Northwest National Laboratory (PNNL) in Richland, Washington. PNNL is a multiprogram national laboratory operated by Battelle Memorial Institute for the DOE under Contract DEAC05-76RL0-1830. NR 13 TC 25 Z9 25 U1 0 U2 6 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 J9 ANAL CHEM JI Anal. Chem. PD OCT 15 PY 2008 VL 80 IS 20 BP 7742 EP 7754 DI 10.1021/ac801123p PG 13 WC Chemistry, Analytical SC Chemistry GA 359LI UT WOS:000259987800013 PM 18783246 ER PT J AU Shuai, JW Pearson, JE Parker, I AF Shuai, Jianwei Pearson, John E. Parker, Ian TI Modeling Ca2+ feedback on a single inositol 1,4,5-trisphosphate receptor and its modulation by Ca2+ buffers SO BIOPHYSICAL JOURNAL LA English DT Article ID XENOPUS-OOCYTES; TRISPHOSPHATE RECEPTOR; IP3 RECEPTORS; CALCIUM PUFFS; ELEMENTARY EVENTS; RELEASE CHANNELS; CHROMAFFIN CELLS; GATING KINETICS; GATED CHANNELS; DYNAMICS AB The inositol 1,4,5-trisphosphate receptor/channel (IP3R) is a major regulator of intracellular Ca2+ signaling, and liberates Ca2+ ions from the endoplasmic reticulum in response to binding at cytosolic sites for both IP3 and Ca2+. Although the steady-state gating properties of the IP3R have been extensively studied and modeled under conditions of fixed [IP3] and [Ca2+], little is known about how Ca2+ flux through a channel may modulate the gating of that same channel by feedback onto activating and inhibitory Ca2+ binding sites. We thus simulated the dynamics of Ca2+ self-feedback on monomeric and tetrameric IP3R models. A major conclusion is that self-activation depends crucially on stationary cytosolic Ca2+ buffers that slow the collapse of the local [Ca2+] microdomain after closure. This promotes burst-like reopenings by the rebinding of Ca2+ to the activating site; whereas inhibitory actions are substantially independent of stationary buffers but are strongly dependent on the location of the inhibitory Ca2+ binding site on the IP3R in relation to the channel pore. C1 [Shuai, Jianwei] Xiamen Univ, Dept Phys, Xiamen 361005, Fujian, Peoples R China. [Shuai, Jianwei; Parker, Ian] Univ Calif Irvine, Dept Neurobiol & Behav, Irvine, CA USA. [Pearson, John E.] Los Alamos Natl Lab, Los Alamos, NM USA. [Parker, Ian] Univ Calif Irvine, Dept Physiol & Biophys, Irvine, CA 92717 USA. RP Shuai, JW (reprint author), Xiamen Univ, Dept Phys, Xiamen 361005, Fujian, Peoples R China. EM jianweishuai@xmu.edu.cn RI Shuai, Jianwei/G-3371-2010 FU National Institutes of Health [GM65830, GM48071]; National Science Foundation of China [10775114] FX This work was supported by National Institutes of Health grants GM65830 and GM48071. J. S. also acknowledges support from the National Science Foundation of China under grant No. 10775114. NR 51 TC 24 Z9 26 U1 0 U2 1 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 0006-3495 J9 BIOPHYS J JI Biophys. J. PD OCT 15 PY 2008 VL 95 IS 8 BP 3738 EP 3752 DI 10.1529/biophysj.108.137182 PG 15 WC Biophysics SC Biophysics GA 352NM UT WOS:000259503900020 PM 18641077 ER PT J AU Long, H Chang, CH King, PW Ghirardi, ML Kim, K AF Long, Hai Chang, Christopher H. King, Paul W. Ghirardi, Maria L. Kim, Kwiseon TI Brownian dynamics and molecular dynamics study of the association between hydrogenase and ferredoxin from Chlamydomonas reinhardtii SO BIOPHYSICAL JOURNAL LA English DT Article ID PROTEIN-PROTEIN ASSOCIATION; PHOTOSYNTHETIC ELECTRON-TRANSPORT; SITE-DIRECTED MUTAGENESIS; GREEN-ALGA; PHOTOBIOLOGICAL PRODUCTION; DIFFUSIONAL ASSOCIATION; COMPUTER-SIMULATION; ENCOUNTER COMPLEXES; METABOLIC PATHWAYS; ENERGY LANDSCAPE AB The [FeFe] hydrogenase from the green alga Chlamydomonas reinhardtii can catalyze the reduction of protons to hydrogen gas using electrons supplied from photosystem I and transferred via ferredoxin. To better understand the association of the hydrogenase and the ferredoxin, we have simulated the process over multiple timescales. A Brownian dynamics simulation method gave an initial thorough sampling of the rigid-body translational and rotational phase spaces, and the resulting trajectories were used to compute the occupancy and free-energy landscapes. Several important hydrogenase-ferredoxin encounter complexes were identified from this analysis, which were then individually simulated using atomistic molecular dynamics to provide more details of the hydrogenase and ferredoxin interaction. The ferredoxin appeared to form reasonable complexes with the hydrogenase in multiple orientations, some of which were good candidates for inclusion in a transition state ensemble of configurations for electron transfer. C1 [Long, Hai; Chang, Christopher H.; King, Paul W.; Ghirardi, Maria L.; Kim, Kwiseon] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Kim, K (reprint author), Natl Renewable Energy Lab, 1617 Cole Blvd, Golden, CO 80401 USA. EM kwiseon_kim@nrel.gov RI Chang, Christopher/A-1404-2012; King, Paul/D-9979-2011; Long, Hai/C-5838-2015 OI Chang, Christopher/0000-0003-3800-6021; King, Paul/0000-0001-5039-654X; FU U.S. Department of Energy's National Renewable Energy Laboratory (NREL). FX This work was supported by the Laboratory-Directed Research and Development Program of the U.S. Department of Energy's National Renewable Energy Laboratory (NREL). Computing resources at the NREL scientific computing center were used in this work. NR 66 TC 16 Z9 18 U1 2 U2 16 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 0006-3495 J9 BIOPHYS J JI Biophys. J. PD OCT 15 PY 2008 VL 95 IS 8 BP 3753 EP 3766 DI 10.1529/biophysj.107.127548 PG 14 WC Biophysics SC Biophysics GA 352NM UT WOS:000259503900021 PM 18621810 ER PT J AU Greene, AC Trent, AM Bachand, GD AF Greene, Adrienne C. Trent, Amanda M. Bachand, George D. TI Controlling kinesin motor proteins in nanoengineered systems through a metal-binding on/off switch SO BIOTECHNOLOGY AND BIOENGINEERING LA English DT Article DE motor proteins; nanotechnology; zinc; biomolecular motors; protein engineering ID HAND-OVER-HAND; MOLECULAR MOTORS; CHEMICAL SWITCH; ATPASE ACTIVITY; DNA-MOLECULES; IN-VITRO; MICROTUBULE; TRANSPORT; DRIVEN; SURFACES AB A significant challenge in utilizing kinesin biomolecular motors in integrated nanoscale systems is the ability to regulate motor function in vitro. Here we report a versatile mechanism for reversibly controlling the function of kinesin biomolecular motors independent of the fuel supply (ATP). Our approach relied on inhibiting conformational changes in the neck-linker region of kinesin, a process necessary for microtubule transport. We introduced a chemical switch into the neck-linker of kinesin by genetically engineering three histidine residues to create a Zn2+-binding site. Gliding motility of microtubules by the 2 mutant kinesin was successfully inhibited by >= 10 mu M Zn2+, as well as other divalent metals. Motility was successfully fully restored by removal of Zn2+ using a number of different chelators. Lastly, we demonstrated the robust and cyclic nature of the switch using sequential Zn2+/chelator additions. Overall, this approach to controlling motor function is highly advantageous as it enables control of individual classes of biomolecular motors while maintaining a consistent level of fuel For all motors in a given system or device. C1 [Greene, Adrienne C.; Trent, Amanda M.; Bachand, George D.] Sandia Natl Labs, Biomol Interfaces & Syst Dept, Albuquerque, NM 87111 USA. RP Bachand, GD (reprint author), Sandia Natl Labs, Biomol Interfaces & Syst Dept, POB 5800,MS 1413, Albuquerque, NM 87111 USA. EM gdbacha@sandia.gov OI Bachand, George/0000-0002-3169-9980 FU Department of Energy Office of Basic Energy Sciences; Sandia's Laboratory Directed Research and Development Office; United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This work was supported by the Division of Materials Sciences and Engineering in the Department of Energy Office of Basic Energy Sciences and Sandia's Laboratory Directed Research and Development Office. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. NR 55 TC 14 Z9 15 U1 1 U2 9 PU JOHN WILEY & SONS INC PI HOBOKEN PA 111 RIVER ST, HOBOKEN, NJ 07030 USA SN 0006-3592 J9 BIOTECHNOL BIOENG JI Biotechnol. Bioeng. PD OCT 15 PY 2008 VL 101 IS 3 BP 478 EP 486 DI 10.1002/bit.21927 PG 9 WC Biotechnology & Applied Microbiology SC Biotechnology & Applied Microbiology GA 350NF UT WOS:000259358700007 PM 18512258 ER PT J AU Maxwell, CA Fleisch, MC Costes, SV Erickson, AC Boissiere, A Gupta, R Ravani, SA Parvin, B Barcellos-Hoff, MH AF Maxwell, Christopher A. Fleisch, Markus C. Costes, Sylvain V. Erickson, Anna C. Boissiere, Arnaud Gupta, Rishi Ravani, Shraddha A. Parvin, Bahram Barcellos-Hoff, Mary Helen TI Targeted and Nontargeted Effects of Ionizing Radiation That Impact Genomic Instability SO CANCER RESEARCH LA English DT Article ID MAMMARY EPITHELIAL-CELLS; GROWTH-FACTOR-BETA; CHROMOSOMAL INSTABILITY; TGF-BETA; DNA-DAMAGE; CENTROSOME AMPLIFICATION; BREAST-CANCER; IN-VIVO; TUMOR-SUPPRESSOR; GENOTOXIC STRESS AB Radiation-induced genomic instability, in which the progeny of irradiated cells display a high frequency of nonclonal genomic damage, occurs at a frequency inconsistent with mutation. We investigated the mechanism of this nontargeted effect in human mammary epithelial cells (HMEC) exposed to low doses of radiation. We identified a centrosome-associated expression signature in irradiated HMEC and show here that centrosome deregulation occurs in the first cell cycle after irradiation, is dose dependent, and that viable daughters of these cells are genomically unstable as evidenced by spontaneous DNA damage, tetraploidy, and aneuploidy. Clonal analysis of genomic instability showed a threshold of >10 cGy. Treatment with transforming growth factor beta 1 (TGF beta), which is implicated in regulation of genomic stability and is activated by radiation, reduced both the centrosome expression signature and centrosome aberrations in irradiated HMEC. Furthermore, TGF beta inhibition significantly increased centrosome aberration frequency, tetraploidy, and aneuploidy in nonirradiated HMEC. Rather than preventing radiation-induced or spontaneous centrosome aberrations, TGF beta selectively deleted unstable cells via p53-dependent apoptosis. Together, these studies show that radiation deregulates centrosome stability, which underlies genomic instability in normal human epithelial cells, and that this can be opposed by radiation-induced TGF beta signaling. [Cancer Res 2008;68(20):8304-11] C1 [Maxwell, Christopher A.; Fleisch, Markus C.; Costes, Sylvain V.; Erickson, Anna C.; Boissiere, Arnaud; Gupta, Rishi; Ravani, Shraddha A.; Parvin, Bahram; Barcellos-Hoff, Mary Helen] Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA. RP Barcellos-Hoff, MH (reprint author), Lawrence Berkeley Natl Lab, Div Life Sci, 1 Cyclotron Rd,Bldg 977, Berkeley, CA 94720 USA. EM mhbarcellos-hoff@nyumc.org RI Maxwell, Christopher/B-3044-2011; Fleisch, Markus/E-4134-2014 OI Maxwell, Christopher/0000-0002-0860-4031; Fleisch, Markus/0000-0002-8966-4721 FU Department of Energy Office of Biological; Environmental Research Low Dose Radiation Program; Office of Health and Environmental Research; Health Effects Division; United States Department of Energy [03-76SF00098]; NASA Specialized Center of Research; Department of Defense (DOD) [BCRP050612] FX Department of Energy Office of Biological and Environmental Research Low Dose Radiation Program and the Office of Health and Environmental Research, Health Effects Division, United States Department of Energy (contract no. 03-76SF00098) and NASA Specialized Center of Research. Department of Defense (DOD) BCRP050612 postdoctoral fellowship supported C.A. Maxwell, and a DOD postdoctoral training grant supported A.C. Erickson. NR 50 TC 31 Z9 35 U1 0 U2 3 PU AMER ASSOC CANCER RESEARCH PI PHILADELPHIA PA 615 CHESTNUT ST, 17TH FLOOR, PHILADELPHIA, PA 19106-4404 USA SN 0008-5472 J9 CANCER RES JI Cancer Res. PD OCT 15 PY 2008 VL 68 IS 20 BP 8304 EP 8311 DI 10.1158/0008-5472.CAN-08-1212 PG 8 WC Oncology SC Oncology GA 364GE UT WOS:000260323400014 PM 18922902 ER PT J AU Pointon, TD AF Pointon, T. D. TI Second-order, exact charge conservation for electromagnetic particle-in-cell simulation in complex geometry SO COMPUTER PHYSICS COMMUNICATIONS LA English DT Article DE Particle-in-cell; Plasma simulation; Charge conservation; Energy conservation ID IMPLICIT PLASMA SIMULATION; GAUSS LAW; CODES; PERFORMANCE AB A second-order, exact charge-conserving algorithm for accumulating charge and current on the spatial grid for electromagnetic particle-in-cell (EM-PIC) simulation in bounded geometry is presented. The algorithm supports standard EM-PIC exterior boundary conditions and complex internal conductors on non-uniform grids. Boundary surfaces are handled by smoothly transitioning from second to first-order weighting within half a cell of the boundary. When a particle is exactly on the boundary surface (either about to be killed, or just created), the weighting is fully first-order. This means that particle creation and particle/surface interaction models developed for first-order weighting do not need to be modified. An additional feature is the use of an energy-conserving interpolation scheme from the electric field on the grid to the particles. Results show that high-density, cold plasmas with omega(pe) Delta t similar to 1, and Delta(x)/lambda(D) >> 1, can be modeled with reasonable accuracy and good energy conservation. This opens up a significant new capability for explicit simulation of high-density plasmas in high-power devices. (C) 2008 Elsevier B.V. All rights reserved. C1 Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Pointon, TD (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM tdpoint@sandia.gov FU Sandia Corporation; Lockheed Martin company; United States Department of Energy's National Nuclear Security Administration [DE-AC04-94-AL85000] FX Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94-AL85000. NR 23 TC 4 Z9 4 U1 1 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0010-4655 J9 COMPUT PHYS COMMUN JI Comput. Phys. Commun. PD OCT 15 PY 2008 VL 179 IS 8 BP 535 EP 544 DI 10.1016/j.cpc.2008.04.017 PG 10 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA 363PX UT WOS:000260280300001 ER PT J AU Hankel, M Smith, SC Gray, SK Balint-Kurti, GG AF Hankel, Marlies Smith, Sean C. Gray, Stephen K. Balint-Kurti, Gabriel G. TI DIFFREALWAVE: A parallel real wavepacket code for the quantum mechanical calculation of reactive state-to-state differential cross sections in atom plus diatom collisions SO COMPUTER PHYSICS COMMUNICATIONS LA English DT Article DE Wavepackets; Reactive scattering; Quantum dynamics; Parallel computing ID TIME-DEPENDENT QUANTUM; POTENTIAL-ENERGY SURFACES; WAVE-PACKET; SCHRODINGER-EQUATION; TRIATOMIC-MOLECULES; SCATTERING; DYNAMICS; PHOTOFRAGMENTATION; PHOTODISSOCIATION; APPROXIMATION AB A parallel computer code for the calculation of quantum state-to-state atom-diatom differential reactive cross sections is presented and discussed. The code is based on the real wavepacket approach. The theory underlying the code is discussed and the parallelisation methods used are described. All the input parameters needed by the program are described. Results of test calculations to investigate the scaling properties of the code with grid size and number of processors are presented. (C) 2008 Elsevier B.V. All rights reserved. C1 [Hankel, Marlies; Smith, Sean C.] Univ Queensland, Ctr Computat Mol Sci, Brisbane, Qld 4072, Australia. [Gray, Stephen K.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. Univ Bristol, Sch Chem, Bristol BS8 1TS, Avon, England. RP Hankel, M (reprint author), Univ Queensland, Ctr Computat Mol Sci, Brisbane, Qld 4072, Australia. EM m.hankel@uq.edu.au; s.smith@uq.edu.au; gray@tcg.anl.gov; gabriel.balint-kurti@bris.ac.uk RI Hankel, Marlies/C-6262-2009; Smith, Sean/H-5003-2015 OI Hankel, Marlies/0000-0002-8297-7231; Smith, Sean/0000-0002-5679-8205 FU Office of Basic Energy Sciences; Division of Chemical Sciences; US Department of Energy [DE-AC02-06CH11357]; Centre for Computational Molecular Science; Australian Institute for Bioengineering and Nanotechnology; University of Queensland, Australia; University of Queensland and the Queensland Smart State Research Facilities Fund; APAC National Facility FX SKG was supported by the Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences, US Department of Energy, under Contract No. DE-AC02-06CH11357. MH would like to thank the University of Queensland and Sun Microsystems for funding. The calculations reported in this paper have been performed on the Computational Molecular Science computational facility housed by the Centre for Computational Molecular Science, Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Australia. These computational facilities have been purchased from funds provided by the University of Queensland and the Queensland Smart State Research Facilities Fund. The shared memory calculations were supported by an award under the Merit Allocation Scheme on the APAC National Facility at the ANU, Australia. NR 58 TC 27 Z9 27 U1 2 U2 12 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0010-4655 J9 COMPUT PHYS COMMUN JI Comput. Phys. Commun. PD OCT 15 PY 2008 VL 179 IS 8 BP 569 EP 578 DI 10.1016/j.cpc.2008.05.004 PG 10 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA 363PX UT WOS:000260280300005 ER PT J AU Farber, DL Meriaux, AS Finkel, RC AF Farber, Daniel L. Meriaux, Anne-Sophie Finkel, Robert C. TI Attenuation length for fast nucleon production of Be-10 derived from near-surface production profiles SO EARTH AND PLANETARY SCIENCE LETTERS LA English DT Article DE attenuation length; cosmogenic radionuclide; 10Be; geochronology; Quaternary; Sierra Nevada ID COSMOGENIC NUCLIDES; PRODUCTION-RATES; EROSION RATES; SIERRA-NEVADA; AL-26; SEDIMENT; QUARTZ; RADIONUCLIDES; HELIUM; BURIAL AB We have measured the fast nucleon production of Be-10 to depths of 2.37 m (659 g/cm(2)) in a granodiorite core of uniform density and composition from the Mt. Givens pluton on the western side of the Sierra Nevada, California, at 37 degrees 14.7' N, 118 degrees 53.7' W and 2286 m. The data are well fit with a simple exponential decrease yielding an apparent attenuation length of Be-10 production of 177 + 4 (2 sigma) g/cm(2). The shallowest data point is from a depth of 1.24 cm (3.45 g/cm(2)) and shows no indication of a near-surface flattening of the radionuclide inventory and hence the Be-10 production rate. Published by Elsevier B.V. C1 [Farber, Daniel L.] Univ Calif Santa Cruz, Dept Earth Sci, Santa Cruz, CA 95064 USA. [Farber, Daniel L.; Meriaux, Anne-Sophie] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Finkel, Robert C.] Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. RP Farber, DL (reprint author), Univ Calif Santa Cruz, Dept Earth Sci, Santa Cruz, CA 95064 USA. EM dfarber@ucsc.edu; a.s.meriaux@ncl.ac.uk; finkel@llnl.gov RI Meriaux, Anne-Sophie/G-1754-2010; Farber, Daniel/F-9237-2011 FU NSF-EAR [0345895] FX This work was supported by NSF-EAR 0345895 (DLF). We thank Bob Anderson and an anonymous reviewer for insightful comments that significantly improved and clarified the manuscript. NR 35 TC 14 Z9 14 U1 0 U2 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0012-821X J9 EARTH PLANET SC LETT JI Earth Planet. Sci. Lett. PD OCT 15 PY 2008 VL 274 IS 3-4 BP 295 EP 300 DI 10.1016/j.epsl.2008.07.015 PG 6 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 390GV UT WOS:000262153200002 ER PT J AU Wan, JM Tokunaga, TK Kim, YM Brodie, E Daly, R Hazen, TC Firestone, MK AF Wan, Jiamin Tokunaga, Tetsu K. Kim, Yongman Brodie, Eoin Daly, Rebecca Hazen, Terry C. Firestone, Mary K. TI Effects of Organic Carbon Supply Rates on Uranium Mobility in a Previously Bioreduced Contaminated Sediment SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID SUBSURFACE SEDIMENTS; REDUCING BACTERIA; REDUCTION; IRON; REOXIDATION; SULFATE; IMMOBILIZATION; SOLUBILITY; AQUIFER; NITRATE AB Bioreduction-based strategies for remediating uranium (U)-contaminated sediments face the challenge of maintaining the reduced status of U for long times. Because groundwater influxes continuously bring in oxidizing terminal electron acceptors (O-2, NO3-), it is necessary to continue supplying organic carbon (OC) to maintain the reducing environment after U bioreduction is achieved. We tested the influence of OC supply rates on mobility of previously microbial reduced uranium U(IV) in contaminated sediments. We found that high degrees of U mobilization occurred when OC supply rates were high, and when the sediment still contained abundant Fe(Ill). Although 900 days with low levels of OC supply minimized U mobilization, the sediment redox potential increased with time as did extractable U(VI) fractions. Molecular analyses of total microbial activity demonstrated a positive correlation with OC supply and analyses of Geobacteraceae activity (RT-qPCR of 16S rRNA) indicated continued activity even when the effluent Fe(II) became undetectable. These data support our hypothesis on the mechanisms responsible for remobilization of U under reducing conditions; that microbial respiration caused increased (bi)carbonate concentration and formation of stable uranyl carbonate complexes, thereby shifted U(IV)/U(VI) equilibrium to more reducing potentials. The data also suggested that low OC concentrations could not sustain the reducing condition of the sediment for much longer time. Bioreduced U(IV) is not sustainable in an oxidizing environment for a very long time. C1 [Wan, Jiamin; Tokunaga, Tetsu K.; Brodie, Eoin; Hazen, Terry C.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Wan, JM (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. EM jwan@lbl.gov RI Tokunaga, Tetsu/H-2790-2014; Wan, Jiamin/H-6656-2014; Brodie, Eoin/A-7853-2008; Kim, Yongman/D-1130-2015; Hazen, Terry/C-1076-2012 OI Tokunaga, Tetsu/0000-0003-0861-6128; Brodie, Eoin/0000-0002-8453-8435; Kim, Yongman/0000-0002-8857-1291; Hazen, Terry/0000-0002-2536-9993 FU U.S. Department of Energy [DE-AC03-76SF-00098]; Environmental Remediation Science Program (ERSP) FX This work was carried out under U.S. Department of Energy contract no. DE-AC03-76SF-00098. Funding from the U.S. Department of Energy, Environmental Remediation Science Program (ERSP) is gratefully acknowledged. We thank the anonymous reviewers and the associate editor Gary Sayler for their constructive review comments. NR 25 TC 22 Z9 22 U1 2 U2 15 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD OCT 15 PY 2008 VL 42 IS 20 BP 7573 EP 7579 DI 10.1021/es800951h PG 7 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 359LO UT WOS:000259988400008 PM 18983077 ER PT J AU Martinez-Perez, E Schvarzstein, M Barroso, C Lightfoot, J Dernburg, AF Villeneuve, AM AF Martinez-Perez, Enrique Schvarzstein, Mara Barroso, Consuelo Lightfoot, James Dernburg, Abby F. Villeneuve, Anne M. TI Crossovers trigger a remodeling of meiotic chromosome axis composition that is linked to two-step loss of sister chromatid cohesion SO GENES & DEVELOPMENT LA English DT Article DE Meiosis; chromosome axes; crossover; sister chromatid cohesion; chromosome remodeling; crossover interference ID CAENORHABDITIS-ELEGANS MEIOSIS; C-ELEGANS; CROSSING-OVER; CHIASMA FORMATION; SYNAPTONEMAL COMPLEX; HOMOLOG ALIGNMENT; HOP1 GENE; SYNAPSIS; PROTEIN; RECOMBINATION AB Segregation of homologous chromosomes during meiosis depends on linkages ( chiasmata) created by crossovers and on selective release of a subset of sister chromatid cohesion at anaphase I. During Caenorhabditis elegans meiosis, each chromosome pair forms a single crossover, and the position of this event determines which chromosomal regions will undergo cohesion release at anaphase I. Here we provide insight into the basis of this coupling by uncovering a large-scale regional change in chromosome axis composition that is triggered by crossovers. We show that axial element components HTP-1 and HTP-2 are removed during late pachytene, in a crossover-dependent manner, from the regions that will later be targeted for anaphase I cohesion release. We demonstrate correspondence in position and number between chiasmata and HTP-1/2-depleted regions and provide evidence that HTP-1/2 depletion boundaries mark crossover sites. In htp-1 mutants, diakinesis bivalents lack normal asymmetrical features, and sister chromatid cohesion is prematurely lost during the meiotic divisions. We conclude that HTP-1 is central to the mechanism linking crossovers with late-prophase bivalent differentiation and defines the domains where cohesion will be protected until meiosis II. Further, we discuss parallels between the pattern of HTP-1/2 removal in response to crossovers and the phenomenon of crossover interference. C1 [Martinez-Perez, Enrique; Barroso, Consuelo; Lightfoot, James] Univ Sheffield, Dept Mol Biol & Biotechnol, Sheffield S10 2TN, S Yorkshire, England. [Schvarzstein, Mara; Villeneuve, Anne M.] Stanford Univ, Dept Dev Biol, Stanford, CA 94305 USA. [Dernburg, Abby F.] EO Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA. [Dernburg, Abby F.] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. RP Martinez-Perez, E (reprint author), Univ Sheffield, Dept Mol Biol & Biotechnol, Sheffield S10 2TN, S Yorkshire, England. EM E.Martinez-Perez@Sheffield.ac.uk OI Dernburg, Abby/0000-0001-8037-1079 FU BBSRC; NIH [R01GM53804, R01GM67268]; CIHR FX We thank the Caenorhabditis Genetics Center, the Gene Knockout Consortium and the National Bioresource Project for strains; A. Straight, B. Meyer, and J. Schumacher for antibodies; A. Goldman for critical reading of the manuscript; and S. Wignall for timely experimental assistance in the final stages of this work. This work was supported by a BBSRC David Phillips Fellowship to E. M.-P., a BBSRC post-doctoral contract to C. B., a BBSRC Studentship to J. L., NIH grants R01GM53804 and R01GM67268 to A. M. V., and a CIHR fellowship to M. S. NR 54 TC 57 Z9 60 U1 0 U2 3 PU COLD SPRING HARBOR LAB PRESS, PUBLICATIONS DEPT PI WOODBURY PA 500 SUNNYSIDE BLVD, WOODBURY, NY 11797-2924 USA SN 0890-9369 J9 GENE DEV JI Genes Dev. PD OCT 15 PY 2008 VL 22 IS 20 BP 2886 EP 2901 DI 10.1101/gad.1694108 PG 16 WC Cell Biology; Developmental Biology; Genetics & Heredity SC Cell Biology; Developmental Biology; Genetics & Heredity GA 360QT UT WOS:000260073200015 PM 18923085 ER PT J AU Burgos, WD McDonough, JT Senko, JM Zhang, GX Dohnalkova, AC Kelly, SD Gorby, Y Kemner, KM AF Burgos, William D. McDonough, Jeffrey T. Senko, John M. Zhang, Gengxin Dohnalkova, Alice C. Kelly, Shelly D. Gorby, Yuri Kemner, Kenneth M. TI Characterization of uraninite nanoparticles produced by Shewanella oneidensis MR-1 SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Article ID TERMINAL ELECTRON-ACCEPTORS; ABSORPTION FINE-STRUCTURE; METAL-REDUCING BACTERIUM; MICROBIAL REDUCTION; PUTREFACIENS MR-1; U(VI) REDUCTION; OUTER-MEMBRANE; URANIUM; FE(III); GROWTH AB The reduction of uranium(VI) by Shewanella oneidensis MR-1 was studied to examine the effects of bioreduction kinetics and background electrolyte on the physical properties and reactivity to re-oxidation of the biogenic uraninite, UO2(s). Bioreduction experiments were conducted with uranyl acetate as the electron acceptor and sodium lactate as the electron donor under resting cell conditions in a 30 mM NaHCO3 buffer, and in a PIPES-buffered artificial groundwater (PBAGW). MR-1 was cultured in batch mode in a defined minimal medium with a specified air-to-medium volume ratio such that electron acceptor (02) limiting conditions were reached just when cells were harvested for subsequent experiments. The rate of U(VI) bioreduction was manipulated by varying the cell density and the incubation temperature (1.0 x 10(8) cell ml(-1) at 20 degrees C or 2.0 x 10(8) cell ml(-1) at 37 degrees C) to generate U(IV) solids at "fast" and "slow" rates in the two different buffers. The presence of Ca in PBAGW buffer altered U(VI) speciation and solubility, and significantly decreased U(VI) bioreduction kinetics. High resolution transmission electron microscopy was used to measure uraninite particle size distributions produced under the four different conditions. The most common primary particle size was 2.9-3.0 ran regardless of U(VI) bioreduction rate or background electrolyte. Extended X-ray absorption fine-structure spectroscopy was also used to estimate uraninite particle size and was consistent with TEM results. The reac-tivity of the biogenic uraninite products with dissolved oxygen was tested, and neither U(VI) bioreduction rate nor background electrolyte had any statistical effect on oxidation rates. With MR-1, uraninite particle size was not controlled by the bioreduction rate of U(VI) or the background electrolyte. These results for MR-1, where U(VI) bioreduction rate had no discernible effect on uraninite particle size or oxidation rate, contrast with our recent research with Shewanella putrefaciens CN32, where U(VI) bioreduction rate strongly influenced both uraninite particle size and oxidation rate. These two studies with Shewanella species can be viewed as consistent if one assumes that particle size controls oxidation rates, so the similar uraninite particle sizes produced by MR-1 regardless of U(VI) bioreduction rate would result in similar oxidation rates. Factors that might explain why U(VI) bioreduction rate was an important control on uraninite particle size for CN32 but not for MR-1 are discussed. (C) 2008 Elsevier Ltd. All rights reserved. C1 [Burgos, William D.; McDonough, Jeffrey T.; Senko, John M.; Zhang, Gengxin] Penn State Univ, Dept Civil & Environm Engn, University Pk, PA 16802 USA. [Dohnalkova, Alice C.] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. [Kelly, Shelly D.; Kemner, Kenneth M.] Argonne Natl Lab, Biosci Div, Argonne, IL 60439 USA. [Gorby, Yuri] J Craig Venter Inst, La Jolla, CA USA. RP Burgos, WD (reprint author), Penn State Univ, Dept Civil & Environm Engn, 212 Sackett Bldg, University Pk, PA 16802 USA. EM wdb3@psu.edu RI ID, MRCAT/G-7586-2011 FU Environmental Remediation Science Program (ERSP); Office of Biological and Environmental Research (BER); Environmental Remediation Science Division (ERSD); US Department of Energy (DOE) [DE-FG02-04ER63914]; National Science Foundation [CHE-0431328]; U.S. Department of Energy; Biological and Environmental Research (BER); US DOE; Office of Science, Office of Basic Energy Sciences; Office of Biological and Environmental Research [W-31-109-ENG-38]; MRCAT member institutions; Battelle Memorial Institute [DE-AC06-76RL0 1830] FX This work was supported by the Environmental Remediation Science Program (ERSP), Office of Biological and Environmental Research (BER), Environmental Remediation Science Division (ERSD), US Department of Energy (DOE) Grant No. DE-FG02-04ER63914 to The Pennsylvania State University, and by the National Science Foundation under Grant No. CHE-0431328 and the U.S. Department of Energy, Biological and Environmental Research (BER). Use of the MR-CAT sector at the Advanced Photon Source (APS) and of the APS was supported by the US DOE, Office of Science, Office of Basic Energy Sciences and Office of Biological and Environmental Research, under contract W-31-109-ENG-38 and the MRCAT member institutions. We extend our gratitude to Bruce Ravel and Maxim Boyanov (ANL) for their assistance with the EXAFS data collection and to BR for his contribution to the interpretation and correction of the EXAFS spectra. Part of this work was performed at the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the DOE's OBER, located at the Pacific Northwest National Laboratory (PNNL) in Richland, WA. PNNL is operated for DOE by Battelle Memorial Institute under Contract DE-AC06-76RL0 1830. NR 60 TC 66 Z9 70 U1 4 U2 36 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD OCT 15 PY 2008 VL 72 IS 20 BP 4901 EP 4915 DI 10.1016/j.gca.2008.07.016 PG 15 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 360DV UT WOS:000260038200001 ER PT J AU Hammer, O Dysthe, DK Lelu, B Lund, H Meakin, P Jamtveit, B AF Hammer, O. Dysthe, D. K. Lelu, B. Lund, H. Meakin, P. Jamtveit, B. TI Calcite precipitation instability under laminar, open-channel flow SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Article ID TROLL THERMAL SPRINGS; DISSOLUTION KINETICS; GROWTH; SYSTEMS; INTERFACE; STABILITY; CARBONATE; MECHANISM; DIFFUSION; SVALBARD AB We present a 2D numerical model for the growth of calcite from supersaturated aqueous solutions under laminar, open-channel flow conditions. The model couples solution chemistry, precipitation at solution/calcite interfaces, hydrodynamics, diffusion and degassing. The model output is compared with experimental results obtained using an oversaturated calcite solution produced by mixing CaCl2 and Na2CO3. The precipitation rate is observed to increase when the supersaturated solution flows over an obstruction, leading to a growth instability that causes the formation of terraces. At relatively high flow rates, the most important mechanism for this behaviour seems to be hydrodynamic advection of dissolved species either towards or away from the calcite surface, depending on location relative to the obstruction, which deforms the concentration gradients. At lower flow rates, steepening of diffusion gradients around protrusions becomes important. Enhanced degassing over the obstruction due to shallowing and pressure drop is not important on small scales. Diffusion controlled transport close to the calcite surface can lead to a fingering-type growth instability, which generates porous textures. Our results are consistent with existing diffusive boundary layer theory, but for flow over non-smooth surfaces, simple calcite precipitation models that include empirical correlations between fluid flow rate and calcite precipitation rate are inaccurate. (C) 2008 Elsevier Ltd. All rights reserved. C1 [Hammer, O.; Dysthe, D. K.; Lelu, B.; Lund, H.; Meakin, P.; Jamtveit, B.] Univ Oslo, N-0316 Oslo, Norway. [Lelu, B.] Ecole Normale Super Lyon, F-69364 Lyon 07, France. [Lund, H.] Norwegian Univ Sci & Technol, N-7491 Trondheim, Norway. [Meakin, P.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Hammer, O (reprint author), Univ Oslo, POB 1048, N-0316 Oslo, Norway. EM ohammer@nhm.uio.no; d.k.dysthe@fys.uio.no RI Dysthe, Dag Kristian/F-2247-2011; Lund, Halvor/O-6637-2016; Hammer, Oyvind/A-6319-2017; OI Dysthe, Dag Kristian/0000-0001-8336-5061; Lund, Halvor/0000-0002-9177-0064; Jamtveit, Bjorn/0000-0001-5700-1803 FU Norwegian Research Council FX This study was supported by a Center of Excellence grant to PGP from the Norwegian Research Council. NR 35 TC 16 Z9 16 U1 3 U2 18 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 EI 1872-9533 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD OCT 15 PY 2008 VL 72 IS 20 BP 5009 EP 5021 DI 10.1016/j.gca.2008.07.028 PG 13 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 360DV UT WOS:000260038200009 ER PT J AU Jacquat, O Voegelin, A Villard, A Marcus, MA Kretzschmar, R AF Jacquat, Olivier Voegelin, Andreas Villard, Andre Marcus, Matthew A. Kretzschmar, Ruben TI Formation of Zn-rich phyllosilicate, Zn-layered double hydroxide and hydrozincite in contaminated calcareous soils SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Article ID X-RAY-FLUORESCENCE; PRINCIPAL COMPONENT ANALYSIS; FINE-STRUCTURE SPECTROSCOPY; EXAFS SPECTROSCOPY; ABSORPTION SPECTROSCOPY; MICROMETER-SCALE; SEQUENTIAL EXTRACTION; NATURAL SPECIATION; DREDGED SEDIMENT; ZINC SPECIATION AB Recent studies demonstrated that Zn-phyllosilicate- and Zn-layered double hydroxide-type (Zn-LDH) precipitates may form in contaminated soils. However, the influence of soil properties and Zn content on the quantity and type of precipitate forming has not been studied in detail so far. In this work, we determined the speciation of Zn in six carbonate-rich surface soils (pH 6.2-7.5) contaminated by aqueous Zn in the runoff from galvanized power line towers (1322-30,090 mg/kg Zn). Based on 12 bulk and 23 micro-focused extended X-ray absorption fine structure (EXAFS) spectra, the number, type and proportion of Zn species were derived using principal component analysis, target testing, and linear combination fitting. Nearly pure Zn-rich phyllosilicate and Zn-LDH were identified at different locations within a single soil horizon, suggesting that the local availabilities of Al and Si controlled the type of precipitate forming. Hydrozincite was identified on the surfaces of limestone particles that were not in direct contact with the soil clay matrix. With increasing Zn loading of the soils, the percentage of precipitated Zn increased from similar to 20% to similar to 80%, while the precipitate type shifted from Zn-phyllosilicate and/or Zn-LDH at the lowest studied soil Zn contents over predominantly Zn-LDH at intermediate loadings to hydrozincite in extremely contaminated soils. These trends were in agreement with the solubility of Zn in equilibrium with these phases. Sequential extractions showed that large fractions of soil Zn (similar to 30-80%) as well as of synthetic Zn-kerolite, Zn-LDH, and hydrozincite spiked into uncontaminated soil were readily extracted by 1M NH4NO3 followed by 1M NH4-acetate at pH 6.0. Even though the formation of Zn-precipitates allows for the retention of Zn in excess to the adsorption capacity of calcareous soils, the long-term immobilization potential of these precipitates is limited. (C) 2008 Elsevier Ltd. All rights reserved. C1 [Jacquat, Olivier; Voegelin, Andreas; Kretzschmar, Ruben] ETH, Dept Environm Sci, Inst Biogeochem & Pollutant Dynam, CHN, CH-8092 Zurich, Switzerland. [Villard, Andre] Univ Neuchatel, Inst Geol, CH-2009 Neuchatel, Switzerland. [Marcus, Matthew A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Voegelin, A (reprint author), ETH, Dept Environm Sci, Inst Biogeochem & Pollutant Dynam, CHN, CH-8092 Zurich, Switzerland. EM voegelin@env.ethz.ch RI Voegelin, Andreas/B-4018-2009; Kretzschmar, Ruben/B-4579-2016 OI Voegelin, Andreas/0000-0003-2873-8966; Kretzschmar, Ruben/0000-0003-2587-2430 FU U.S. Departement of Energy [DE-AC03-76SF00098]; Swiss National Science Foundation [200021-101876, 200020-116592] FX Jakob Frommer is acknowledged for fruitful discussions regarding the analysis of XAS data. We thank Gerome Tokpa for performing the sequential extraction of the soil samples and Kurt Barmettler for help in the laboratory. Jon Chorover and Evert Elzinga provided valuable feedback on earlier versions of this manuscript. The spectrum of Zn-sorbed calcite was kindly provided by Evert Elzinga (Rutgers University). We thank Andre Puschnig (Natural History Museum, Basel) and Beda Hofmann (Natural History Museum, Bern) for providing smithonite and lithophorite, respectively. Stefan Mangold (XAS, ANKA, Germany) and Kumi Pandya (X11A, NSLS, USA) are acknowledged for their help with data acquisition. Robert Ford, Maarten Nachtegaal and an anonymous reviewer are thanked for their constructive comments on an earlier version of this manuscript. The Angstromquelle Karlsruhe GmbH (ANKA, Karlsruhe, Germany) and the Advanced Light Source (ALS, Berkeley, USA) are acknowledged for providing beamtime. The ALS is supported by the Director, Office of Science, Office of Basic Energy Sciences, Material Sciences Division, of the U.S. Departement of Energy under Contract No. DE-AC03-76SF00098 at Lawrence Berkeley National Laboratory. This project was financially supported by the Swiss National Science Foundation under Contracts Nos. 200021-101876 and 200020-116592. NR 65 TC 28 Z9 28 U1 4 U2 31 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD OCT 15 PY 2008 VL 72 IS 20 BP 5037 EP 5054 DI 10.1016/j.gca.2008.07.024 PG 18 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 360DV UT WOS:000260038200011 ER PT J AU Singer, DM Johnson, SB Catalano, JG Farges, F Brown, GE AF Singer, David M. Johnson, Stephen B. Catalano, Jeffrey G. Farges, Francois Brown, Gordon E., Jr. TI Sequestration of Sr(II) by calcium oxalate - A batch uptake study and EXAFS analysis of model compounds and reaction products SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Article ID X-RAY-ABSORPTION; AQUEOUS-SOLUTION; STRONTIUM(II) COORDINATION; CRYSTAL-STRUCTURES; FINE-STRUCTURE; XAFS ANALYSIS; SORPTION; SPECTROSCOPY; PLANTS; STRONTIANITE AB Calcium oxalate monohydrate (CaC2O4 center dot H2O-abbreviated as CaOx) is produced by two-thirds of all plant families, comprising up to 80 wt.% of the plant tissue and found in many surface environments. It is unclear, however, how CaOx in plants and soils interacts with metal ions and possibly sequesters them. This study examines the speciation of Sr(II)(aq) following its reaction with CaOx. Batch uptake experiments were conducted over the pH range 4-10, with initial Sr solution concentrations, [Sr](aq), ranging from 1 x 10(-4) to 1 x 10(-3) M and ionic strengths ranging of 0.001-0.1 M, using NaCl as the background electrolyte. Experimental results indicate that Sr uptake is independent of pH and ionic strength over these ranges. After exposure of CaOx to Sr-aq for two days, the solution Ca concentration, [Ca](aq), increased for all samples relative to the control CaOx suspension (with no Sr added). The amount of Sraq removed from solution was nearly equal to the total [Ca](aq) after exposure of CaOx to Sr. These results suggest that nearly 90% of the Sr is removed from solution to a solid phase as Ca is released into solution. We suggest that the other 10% is sequestered through surface adsorption on a solid phase, although we have no direct evidence for this. Extended X-ray absorption fine structure (EXAFS) spectroscopy was used to determine the molecular-level speciation of Sr in the reaction products. Deconvolutions of the Sr K-edge EXAFS spectra were performed to identify multi-electron excitation (MEE) features. MEE effects were found to give rise to low-frequency peaks in the Fourier transform before the first shell of oxygen atoms and do not affect EXAFS fitting results. Because of potential problems caused by asymmetric distributions of Sr-O distances when fitting Sr K-edge EXAFS data using the standard harmonic model, we also employed, a cumulant expansion model and an asymmetric analytical model to account for anharmonic effects in the EXAFS data. For Sr-bearing phases with low to moderate first-shell (Sr-O pair correlation) anharmonicity, the cumulant expansion model is sufficient for EXAFS fitting; however, for higher degrees of anharmonicity an analytical model is. required. Based on batch uptake results and EXAFS analyses of reaction products, we conclude that Sr is dominantly sequestered by a solid phase at the CaOx surface, likely the result of a dissolution-reprecipitation mechanism, to form SrC2O4 Of mixed hydration state (i.e. SrOx.nH(2)O, where n = 0, 1, or 2). Surprisingly, no spectroscopic or XRD evidence was found for a (Sr,Ca)Ox solid solution or for a separate SrCO3 phase. In addition, we found no evidence for Sr(II) inner-sphere sorption complexes on CaOx surfaces based on lack of Sr-Ca second-neighbor pair correlations in the EXAFS spectra, although some type of Sr(II) surface complex (perhaps a type B Sr-oxalate ternary complex or an outer-sphere Sr(II) complex) or some as yet undetected Sr-bearing solid phases are needed to account for approximately 10% of Sr uptake by CaOx. The formation of a hydrated SrOx phase in environments under conditions similar to those of our experiments should retard Sr mobility and could be a significant factor in the biogeochemical cycling of Sr in soils and sediments or in plants and plant litter where CaOx is present. (C) 2008 Elsevier Ltd. All rights reserved. C1 [Singer, David M.; Johnson, Stephen B.; Catalano, Jeffrey G.; Farges, Francois; Brown, Gordon E., Jr.] Stanford Univ, Dept Geol & Environm Sci, Surface & Aqueous Geochem Grp, Stanford, CA 94305 USA. [Johnson, Stephen B.] Fosters Australia, Southbank, Vic 3006, Australia. [Farges, Francois] Museum Natl Hist Nat, Unite Mineral Petrol USM 201, F-75231 Paris, France. [Farges, Francois] CNRS, UMR 7160, Paris, France. [Brown, Gordon E., Jr.] SLAC, Stanford Synchrotron Radiat Lab, Menlo Pk, CA 94025 USA. RP Singer, DM (reprint author), Stanford Univ, Dept Geol & Environm Sci, Surface & Aqueous Geochem Grp, 450 Serra Mall,Braun Hall,Bldg 320, Stanford, CA 94305 USA. EM dmsinger@stanford.edu RI Catalano, Jeffrey/A-8322-2013 OI Catalano, Jeffrey/0000-0001-9311-977X FU NSF [CHE-0431425] FX This research was funded by NSF Grant CHE-0431425 (Stanford Environmental Molecular Science Institute). The authors thank Guangchao Li for performing ICP-AES analyses, Margaret Gentile for assistance in performing IC analyses, Aaron Slowey for assistance in collecting EXAFS spectra, and the SSRL staff for continuing beamline support. We appreciate the constructive comments of Associate Editor P.A. O'Day and three anonymous reviewers that improved this manuscript significantly. Portions of this research were carried out at the Stanford Synchrotron Radiation Laboratory, a National user facility operated by Stanford University on behalf of the U.S. Department of Energy, Office of Basic Energy Sciences. The SSRL Structural Molecular Biology Program is supported by Department of Energy, Office of Biological and Environmental Research, and by the National Institute of Health, National Center for Research Resources, Biomedical Technology Program. NR 67 TC 6 Z9 7 U1 3 U2 25 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD OCT 15 PY 2008 VL 72 IS 20 BP 5055 EP 5069 DI 10.1016/j.gca.2008.07.020 PG 15 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 360DV UT WOS:000260038200012 ER PT J AU Haynes, DJ Berry, DA Shekhawat, D Xiao, TC Green, MLH Spivey, JJ AF Haynes, Daniel J. Berry, David A. Shekhawat, Dushyant Xiao, Tian-Cun Green, Malcolm L. H. Spivey, James J. TI Partial Oxidation of n-Tetradecane over 1 wt % Pt/gamma-Al2O3 and Co0.4Mo0.6Cx Carbide Catalysts: A Comparative Study SO INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH LA English DT Article ID CONTACT-TIME REACTORS; TRANSITION-METAL CARBIDES; MOLYBDENUM CARBIDE; HYDROGEN GENERATION; SYNTHESIS GAS; FUEL-CELLS; TUNGSTEN CARBIDE; LIGHT PARAFFINS; DIESEL FUEL; METHANE AB Catalytic partial oxidation (CPOX) of liquid fuels is being widely studied as an option for producing a hydrogen-rich gas stream for fuel cells. However, deactivation of catalysts by carbon deposition and sulfur poisoning in this process is a key technical challenge. Here, the deactivation of Co0.4Mo0.6Cx has been compared to that of 1 wt% Pt/gamma-Al2O3 in a fixed-bed catalytic reactor, using mixtures of n-tetradecane and either 1-methyl naphthalene (1-MN) or dibenzothiophene (DBT) to simulate diesel fuel. The results show that Co0.4Mo0.6Cx, is stable and active for the CPOX of n-tetradecane at 850 degrees C, 50000 scc/(g(cat) h), and an O/C ratio of 1.2. This catalyst produces slightly lower H, and CO yields than Pt/gamma-Al2O3, but still close to equilibrium values for 5 h, A low concentration Of Sulfur (50 ppmw as DBT) has little effect on either activity or selectivity for the carbide or Pt/gamma-Al2O3 catalyst. However, the presence of 1-MN or a high sulfur concentration (1000 ppmw as DBT) deactivates both catalysts, resulting in reaction products that are typical of gas-phase reactions in a blank reactor. The addition of 1-MN or 1000 ppmw DBT to n-tetradecane produces qualitatively similar results on both catalysts: H-2 production decreases continuously in the presence of either 1-MN or DBT, and CO drops to a stationary level. This drop in synthesis gas yields corresponds to an increase in steam, CO2, and olefin yields, suggesting that the contaminants deactivate sites that are active for steam and dry reforming reactions downstream of the reactor inlet, where rapid oxidation takes place. Once the contaminants are removed, initial activity returns more quickly for the carbide than for Pt/gamma-Al2O3. C1 [Haynes, Daniel J.; Spivey, James J.] Louisiana State Univ, Dept Chem Engn, Baton Rouge, LA 70803 USA. [Haynes, Daniel J.; Berry, David A.; Shekhawat, Dushyant] US DOE, Natl Energy Technol Lab, Morgantown, WV 26507 USA. [Xiao, Tian-Cun; Green, Malcolm L. H.] Univ Oxford, Inorgan Chem Lab, Wolfson Catalysis Ctr, Oxford OX1 3QR, England. RP Haynes, DJ (reprint author), Parsons, POB 618, South Pk, PA 15129 USA. EM Daniel.haynes@pp.netl.doe-gov FU National Energy Technology Laboratory [DE-AC26-04NT41817] FX We gratefully acknowledge Mr. Donald Floyd for his invaluable assistance with this investigation. This work was supported by National Energy Technology Laboratory Contract DE-AC26-04NT41817 Subtask 41817.610.01.01. NR 52 TC 6 Z9 6 U1 2 U2 10 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0888-5885 J9 IND ENG CHEM RES JI Ind. Eng. Chem. Res. PD OCT 15 PY 2008 VL 47 IS 20 BP 7663 EP 7671 DI 10.1021/ie071295t PG 9 WC Engineering, Chemical SC Engineering GA 358GK UT WOS:000259904900021 ER PT J AU Sun, Y Wong, N Guan, Y Salamanca, CM Cheng, JC Lee, JM Gray, JW Auersperg, N AF Sun, Yu Wong, Nicholas Guan, Yinghui Salamanca, Clara M. Cheng, Jung Chien Lee, Jonathan M. Gray, Joe W. Auersperg, Nelly TI The eukaryotic translation elongation factor eEF1A2 induces neoplastic properties and mediates tumorigenic effects of ZNF217 in precursor cells of human ovarian carcinomas SO INTERNATIONAL JOURNAL OF CANCER LA English DT Article DE ovarian cancer; ZNF217; EEF1A2; oncogene; ovarian epithelial cells; neoplastic progression ID TELOMERE DYSFUNCTION; EPITHELIAL-CELLS; BREAST-CANCER; EXPRESSION; GENE; AMPLIFICATION; OVEREXPRESSION; IDENTIFICATION; ONCOGENE AB Ovarian epithelial carcinomas (OECs) frequently exhibit amplifications at the 20q13 locus which is the site of several oncogenes, including the eukaryotic elongation factor EEF1A2 and the transcription factor ZNF217. We reported previously that overexpressed ZNF217 induces neoplastic characteristics in precursor cells of OEC. Unexpectedly, ZNF217, which is a transcriptional repressor, enhanced expression of eEF1A2. In our study, array comparative genomic hybridization, single nucleotide polymorphism and Affymetrix analysis of ZNF217-overexpressing cell lines confirmed consistently increased expression of eEF1A2 but not of other oncogenes, and revealed early changes in EEF1A2 gene copy numbers and increased expression at crisis during immortalization. We defined the influence of eEF1A2 overexpression on immortalized ovarian surface epithelial cells, and investigated interrelationships between effects of ZNF217 and eEF1A2 on cellular phenotypes. Lentivirally induced eEF1A2 overexpression caused delayed crisis, apoptosis resistance and increases in serum-independence, saturation densities and anchorage independence. siRNA to eEF1A2 reversed apoptosis resistance and reduced anchorage independence in eEF1A2-overexpressing lines. Remarkably, siRNA to eEF1A2 was equally efficient in inhibiting both anchorage independence and resistance to apoptosis conferred by ZNF217 overexpression. Our data define neoplastic properties that are caused by eEF1A2 in nontumorigenic ovarian cancer precursor cells, and suggest that eEF1A2 plays a role in mediating ZNF217-induced neoplastic progression. Published 2008 Wiley-Liss, Inc. This article is a U.S. Government work, and, as such, is in the public domain in the United States of America. C1 [Auersperg, Nelly] Univ British Columbia, Dept Obstet & Gynecol, BC Womens Hosp, Vancouver, BC V6H 3V5, Canada. [Wong, Nicholas; Guan, Yinghui; Gray, Joe W.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA. [Lee, Jonathan M.] Univ Ottawa, Dept Biochem Microbiol & Immunol, Ottawa, ON, Canada. [Gray, Joe W.] Univ Calif San Francisco, Ctr Canc, San Francisco, CA 94143 USA. RP Auersperg, N (reprint author), Univ British Columbia, Dept Obstet & Gynecol, BC Womens Hosp, Rm 2H30,4490 Oak St, Vancouver, BC V6H 3V5, Canada. EM auersper@interchange.ubc.ca FU NIH [CA58207, CA112970]; Office of Health and Environmental Research; U.S. Department of Energy [DE-AC03-76SF00098]; National Cancer Institute of Canada; OvCaRe Canada; Avon Foundation FX Grant sponsor: NIH; Grant numbers: CA58207, CA112970. Grant sponsor: Office of Health and Environmental Research, U.S. Department of Energy; Grant number: DE-AC03-76SF00098. Grant sponsors: National Cancer Institute of Canada, OvCaRe Canada, Avon Foundation. NR 26 TC 14 Z9 15 U1 1 U2 2 PU WILEY-LISS PI HOBOKEN PA DIV JOHN WILEY & SONS INC, 111 RIVER ST, HOBOKEN, NJ 07030 USA SN 0020-7136 J9 INT J CANCER JI Int. J. Cancer PD OCT 15 PY 2008 VL 123 IS 8 BP 1761 EP 1769 DI 10.1002/ijc.23708 PG 9 WC Oncology SC Oncology GA 352TA UT WOS:000259519100004 PM 18661515 ER PT J AU Choudhury, S Li, YL Odagawa, N Vasudevarao, A Tian, L Capek, P Dierolf, V Morozovska, AN Eliseev, EA Kalinin, S Cho, YS Chen, LQ Gopalan, V AF Choudhury, Samrat Li, Yulan Odagawa, Nozomi Vasudevarao, Aravind Tian, L. Capek, Pavel Dierolf, Volkmar Morozovska, Anna N. Eliseev, Eugene A. Kalinin, Sergei Cho, Yasuo Chen, Long-qing Gopalan, Venkatraman TI The influence of 180 degrees ferroelectric domain wall width on the threshold field for wall motion SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID SURFACE-STRUCTURE; LITHIUM-NIOBATE; MICROSCOPY; SCALE AB Unlike ideal 180 ferroelectric walls that are a unit cell wide (similar to 0.5 nm), real walls in ferroelectrics have been reported to be many nanometers wide (1-10 nm). Using scanning nonlinear dielectric microscopy of lithium niobate (LiNbO3) and lithium tantalate (LiTaO3) ferroelectrics, we show that the wall width at surfaces can vary considerably and even reach similar to 100 nm in places where polar defects adjoin a wall. The consequence of such variable wall widths is investigated on the specific property of threshold field required for wall motion. Using microscopic phase-field modeling, we show that the threshold field for moving an antiparallel ferroelectric domain wall dramatically drops by two to three orders of magnitude if the wall was diffuse by only similar to 1-2 nm, which agrees with experimental wall widths and threshold fields for these materials. Modeling also shows that wall broadening due to its intersection with a surface will influence the threshold field for wall motion only for very thin films (1-10 nm) where the surface broadening influences the bulk wall width. Such pre-existing and slightly diffuse domain walls with low threshold fields for wall motion may offer a general mechanism to explain significantly lower experimental coercive fields for domain reversal in ferroelectrics as compared to the thermodynamic predictions. (C) 2008 American Institute of Physics. [DOI: 10.1063/1.3000459] C1 [Choudhury, Samrat; Li, Yulan; Vasudevarao, Aravind; Tian, L.; Chen, Long-qing; Gopalan, Venkatraman] Penn State Univ, University Pk, PA 16802 USA. [Odagawa, Nozomi; Cho, Yasuo] Tohoku Univ, Res Inst Elect Commun, Aoba Ku, Sendai, Miyagi 9808577, Japan. [Capek, Pavel; Dierolf, Volkmar] Lehigh Univ, Dept Phys, Bethlehem, PA 18015 USA. [Morozovska, Anna N.] Natl Acad Sci Ukraine, V Lashkarev Inst Semicond Phys, UA-03028 Kiev, Ukraine. [Eliseev, Eugene A.] Natl Acad Sci Ukraine, Inst Problems Mat Sci, UA-03142 Kiev, Ukraine. [Kalinin, Sergei] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Kalinin, Sergei] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Choudhury, S (reprint author), Penn State Univ, University Pk, PA 16802 USA. EM vgopalan@psu.edu RI Choudhury, Samrat/B-4115-2009; Chen, LongQing/I-7536-2012 OI Chen, LongQing/0000-0003-3359-3781 FU NSF [DMR-0507146, DMR-0512165, DMR-0820404, DMR-0602986]; ARO [W911NF-04-1-0323]; DOE [DE-FG02-07ER46417]; Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, U. S. Department of Energy [DE-AC05-00OR22725]; Oak Ridge National Laboratory [CNMS2008-289] FX We would like to gratefully acknowledge NSF Grant Nos. DMR-0507146, DMR-0512165, DMR-0820404, DMR-0602986, ARO Grant No. W911NF-04-1-0323 and DOE Grant No. DE-FG02-07ER46417. Research was also sponsored in part by the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, U. S. Department of Energy, under Contract No. DE-AC05-00OR22725 and CNMS2008-289 with Oak Ridge National Laboratory. NR 36 TC 26 Z9 27 U1 2 U2 25 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD OCT 15 PY 2008 VL 104 IS 8 AR 084107 DI 10.1063/1.3000459 PG 7 WC Physics, Applied SC Physics GA 367SG UT WOS:000260572100088 ER PT J AU Fleming, RM Seager, CH Lang, DV Bielejec, E Campbell, JM AF Fleming, R. M. Seager, C. H. Lang, D. V. Bielejec, E. Campbell, J. M. TI A bistable divacancylike defect in silicon damage cascades SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID LEVEL TRANSIENT SPECTROSCOPY; IRRADIATED SILICON; ELECTRON IRRADIATION AB Two deep level transient spectroscopy (DLTS) electron emission signatures, previously labeled E4 and E5, have been shown to be bistable with respect to minority carrier injection at room temperature. These result from two charge state transitions of the same defect. We have performed DLTS measurements as function of annealing between 350 and 680 K, using minority carrier injection after each annealing stage to make E4 and E5 visible. We show that the E4-E5 pair is associated with defect clusters which dominate after neutron or ion damage with annealing characteristics that closely parallel to those of silicon divacancies found in damage clusters. At annealing temperatures above 500 K, the E4-E5 pair ceases to be bistable and exists after anneals in thermal equilibrium. We show that the stable E4 peak appears to be the same emission signature previously labeled the L center. The transformation of the E4-E5 bistable pair into the stable L center and a stable E5 companion level occurs at the same temperature, where it has been suggested that the divacancy becomes mobile. The similarity of the annealing of the E4-E5 pair to that of the divacancy, the dependence of the density of these defects on degree of clustering, and the insensitivity to common impurities combine to suggest that the E4-E5 pair is associated with primary defects located in the defect cluster and closely related to the familiar divacancy. (c) 2008 American Institute of Physics. [DOI: 10.1063/1.2991135] C1 [Fleming, R. M.; Seager, C. H.; Lang, D. V.; Bielejec, E.; Campbell, J. M.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Fleming, RM (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM rmflemi@sandia.gov RI Fleming, Robert/B-1248-2008 FU Sandia Corporation; Lockheed Martin Co. [DE-AC04094AL85000] FX We thank Don King, Normand Modine, Sam Myers, Peter Schultz, George Vizkelethy, Bill Wampler, and Alan Wright for stimulating discussions. Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Co., for the Department of Energy under Contract No. DE-AC04094AL85000. NR 31 TC 21 Z9 21 U1 0 U2 8 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD OCT 15 PY 2008 VL 104 IS 8 AR 083702 DI 10.1063/1.2991135 PG 10 WC Physics, Applied SC Physics GA 367SG UT WOS:000260572100046 ER PT J AU Lu, QM Mao, SS Mao, XL Russo, RE AF Lu, Quanming Mao, Samuel S. Mao, Xianglei Russo, Richard E. TI Theory analysis of wavelength dependence of laser-induced phase explosion of silicon SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID ABLATION; PULSE; SI; VAPORIZATION; ALUMINUM; TARGETS; VACUUM AB Wavelength dependence of laser ablation of silicon was investigated with nanosecond ultraviolet, visible, and infrared laser pulses in the irradiance range from 3 x 10(10) to 1 x 10(12) W/cm(2). For 266 and 532 nm laser pulses, the depth of laser-produced crater shows a dramatic increase at a laser irradiance threshold of approximately 2 x 10(10) and 4 x 10(11) W/cm(2) respectively, above which, large micron-sized particulates were observed to eject from the target about 300-400 ns after the laser pulse. In contrast, for 1064 nm pulse, this dramatic increase was not observed. The underlying mechanism for the observed threshold phenomenon is presented in this study, which can be attributed to the thermal diffusion and subsequent explosive boiling after the completion of the interaction between the nanosecond laser pulse and silicon. Based on our delayed phase explosive model, the ablation depths were calculated for different wavelengths and compared to experimental results. Plasma shielding during laser irradiation was included in the model, which plays a key role to the coupling of laser energy to the irradiated material. (C) 2008 American Institute of Physics. [DOI: 10.1063/1.2978369] C1 [Lu, Quanming; Mao, Samuel S.; Mao, Xianglei; Russo, Richard E.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Lu, Quanming] Univ Sci & Technol China, Sch Earth & Space Sci, Hefei 230026, Peoples R China. [Mao, Samuel S.] Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA. RP Russo, RE (reprint author), Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM rerusso@lbl.gov FU Chemical Science Division, Office of Basic Energy Sciences, U. S. Department of Energy [DE-AC02-05CH11231]; U. S. Department of Defense, Army Research Office, MURI program; National Science Foundation of China [40725013] FX This research has been supported by the Chemical Science Division, Office of Basic Energy Sciences, U. S. Department of Energy, under Contract No. DE-AC02-05CH11231, and the U. S. Department of Defense, Army Research Office, MURI program. Q. M. Lu was also supported by the National Science Foundation of China under Grant No. 40725013. NR 37 TC 16 Z9 18 U1 1 U2 14 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD OCT 15 PY 2008 VL 104 IS 8 AR 083301 DI 10.1063/1.2978369 PG 7 WC Physics, Applied SC Physics GA 367SG UT WOS:000260572100011 ER PT J AU McClure, A Kayani, A Idzerda, YU Arenholz, E Cruz, E AF McClure, Adam Kayani, A. Idzerda, Y. U. Arenholz, E. Cruz, E. TI Characteristics of CoxTi1-xO2 thin films deposited by metal organic chemical vapor deposition SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID X-RAY-ABSORPTION; DOPED TIO2 ANATASE; CIRCULAR-DICHROISM; EPITAXIAL-GROWTH; MULTILAYERS; TITANIUM; OXIDES; RUTILE AB This paper deals with the growth and characterization of ferromagnetic cobalt doped TiO2 thin films deposited by liquid precursor metal organic chemical vapor deposition using a combination of the source materials Co (TMHD)(3), tetrahydrofuran, and titanium isopropoxide. An array of experiments reveals the intrinsic ferromagnetic nature of the grown films and suggests that the magnetism is not generated by oxygen vacancies. (C) 2008 American Institute of Physics. [DOI:10.1063/1.2998971] C1 [McClure, Adam; Kayani, A.; Idzerda, Y. U.] Montana State Univ, Dept Phys, Bozeman, MT 59717 USA. [Arenholz, E.; Cruz, E.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP McClure, A (reprint author), Montana State Univ, Dept Phys, Bozeman, MT 59717 USA. EM mcclure@physics.montana.edu FU Office of Naval Research [N00014-03-1-092]; DOI and DOE subcontract to PNNL [3917 (413060-A)]; Director, Office of Science, Office of Basic Energy Sciences; U.S. Department of Energy [DE-AC02-05CH11231] FX This research was supported by the Office of Naval Research under Grant No. N00014-03-1-092. The authors wish to thank R. J. Smith for access to the Ion Beam Laboratory at Montana State University, supported by DOI and DOE subcontract to PNNL, Grant No. 3917 (413060-A). The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 30 TC 2 Z9 2 U1 2 U2 4 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD OCT 15 PY 2008 VL 104 IS 8 AR 084911 DI 10.1063/1.2998971 PG 4 WC Physics, Applied SC Physics GA 367SG UT WOS:000260572100139 ER PT J AU Park, S Fitzsimmons, MR Majkrzak, CF Schultz, BD Palmstrom, CJ AF Park, S. Fitzsimmons, M. R. Majkrzak, C. F. Schultz, B. D. Palmstrom, C. J. TI The influence of growth temperature and annealing on the magnetization depth profiles across ferromagnetic/semiconductor interfaces SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID EPITAXIAL FE FILMS; NEUTRON-SCATTERING; THIN-FILMS; HETEROSTRUCTURES; MULTILAYERS; ROUGHNESS; STABILITY; GAAS(001); SYSTEMS AB The magnetization depth profiles of three FeCo/GaAs samples grown at different temperatures and measured before and after annealing were obtained using polarized neutron reflectometry. Prior to annealing, the sample grown at 95 degrees C had the thickest magnetically degraded interfacial region between the FeCo film and the GaAs substrate. For the sample grown at -15 degrees C, the magnetic interface was sharp. For all samples, annealing promoted thicker interfacial regions with suppressed magnetization and distinct boundaries with the adjoining (FeCo or GaAs) material. Thus, the magnetic structure of the FeCo/GaAs interfacial region was very sensitive to the conditions of growth and annealing. (C) 2008 American Institute of Physics. [DOI: 10.1063/1.3000611] C1 [Park, S.] Pusan Natl Univ, Dept Phys, Pusan 609735, South Korea. [Park, S.; Fitzsimmons, M. R.] Los Alamos Natl Lab, Los Alamos, NM 87544 USA. [Majkrzak, C. F.] Natl Inst Stand & Technol, Gaithersburg, MD 20899 USA. [Schultz, B. D.; Palmstrom, C. J.] Univ Minnesota, Dept Nucl Engn & Mat Sci, Minneapolis, MN 55455 USA. RP Park, S (reprint author), Pusan Natl Univ, Dept Phys, Pusan 609735, South Korea. EM psk@pusan.ac.kr RI Lujan Center, LANL/G-4896-2012 FU Department of Energy's Office of Basic Energy Science; Los Alamos National Security LLC under DOE [DE-AC52-06NA25396]; National Science Foundation [DMR-9809364]; [DARPA-ONR N/N00014-99-11005]; [N/N00014-01-1-0830]; [ONR N/N00014-99-1-0233] FX This work has benefited from the use of the Lujan Neutron Scattering Center at LANSCE, which is funded by the Department of Energy's Office of Basic Energy Science. The Los Alamos National Laboratory is operated by Los Alamos National Security LLC under DOE Contract No. DE-AC52-06NA25396. This work was also partially supported by the following Contract Nos. DARPA-ONR N/N00014-99-11005, N/N00014-01-1-0830, and ONR N/N00014-99-1-0233 and the MRSEC program of the National Science Foundation under Award No. DMR-9809364. NR 26 TC 7 Z9 7 U1 0 U2 3 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD OCT 15 PY 2008 VL 104 IS 8 AR 083905 DI 10.1063/1.3000611 PG 6 WC Physics, Applied SC Physics GA 367SG UT WOS:000260572100067 ER PT J AU Trionfi, A Scrymgeour, DA Hsu, JWP Arlen, MJ Tomlin, D Jacobs, JD Wang, DH Tan, LS Vaia, RA AF Trionfi, A. Scrymgeour, D. A. Hsu, J. W. P. Arlen, M. J. Tomlin, D. Jacobs, J. D. Wang, D. H. Tan, L. -S. Vaia, R. A. TI Direct imaging of current paths in multiwalled carbon nanofiber polymer nanocomposites using conducting-tip atomic force microscopy SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID IN-SITU POLYMERIZATION; NANOTUBES; PERCOLATION; COMPOSITES AB Using conducting-tip atomic force microscopy (C-AFM), we study the spatial distribution of current paths and local electrical properties in carbon nanofiber/polymer nanocomposites. Previous studies of similar systems were hindered by a polymer-rich skin layer that exists at the nanocomposite surfaces. We present an experimental technique using oxygen plasma etching to controllably remove this polymer skin layer. After this treatment, we can directly probe the microscopic transport characteristics of the nanocomposite using C-AFM. The C-AFM results show that the electrical transport is solely carried by the carbon nanofiber (CNF) networks in the nanocomposites. In addition, high-resolution C-AFM maps show nonuniform distribution of current along the length of some CNFs, suggesting the presence of a heterogeneously distributed adsorbed polymer layer around nanofibers. Finally, two probe conductivity measurements in which one electrode (the C-AFM tip) is contacting a single constituent conducting particle were performed to study local conductivity. Results indicate that Ohmic pathways exist in the conducting network of the nanocomposite to the lowest measured nanofiber concentrations. However, non-Ohmic behavior indicating tunneling transport may also be present, especially near the percolation threshold. c 2008 American Institute of Physics. [DOI: 10.1063/1.3000458] C1 [Trionfi, A.; Scrymgeour, D. A.; Hsu, J. W. P.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Arlen, M. J.; Tomlin, D.; Jacobs, J. D.; Wang, D. H.; Tan, L. -S.; Vaia, R. A.] USAF, Res Lab, Wright Patterson AFB, OH 45433 USA. RP Trionfi, A (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM atrionf@sandia.gov RI Wang, David/F-7492-2013; Scrymgeour, David/C-1981-2008 OI Wang, David/0000-0001-6710-7265; FU U.S. Department of Energy [DE-AC0494AL85000] FX This work was performed in part at the U. S. Department of Energy, Center for Integrated Nanotechnologies, at Los Alamos and Sandia National Laboratories. Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a Lockheed-Martin Co., for the U. S. Department of Energy under Contract No. DE-AC0494AL85000. NR 20 TC 21 Z9 21 U1 0 U2 13 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD OCT 15 PY 2008 VL 104 IS 8 AR 083708 DI 10.1063/1.3000458 PG 6 WC Physics, Applied SC Physics GA 367SG UT WOS:000260572100052 ER PT J AU Wu, YL Chen, GD Ye, HG Zhu, YZ Wei, SH AF Wu, Yelong Chen, Guangde Ye, Honggang Zhu, Youzhang Wei, Su-Huai TI Structural and electronic properties of [0001] AIN nanowires: A first-principles study SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID TOTAL-ENERGY CALCULATIONS; WAVE BASIS-SET; BAND PARAMETERS; ALN NANOWIRES; SEMICONDUCTORS AB Using first- principles methods, we investigated the atomic relaxations, electronic structure, and formation energies of nonpassivated A1N nanowires along [0001] directions. We find that all the nanowires prefer to have (101 (1) over bar0) lateral facets and all the wires with (10 (1) over bar0) lateral facets are semiconductors with a direct band gap. However, surface states that arise from the facet atoms exist inside the bulklike band gap, which can have a large effect on the optoelectronic properties of the nanowires. Our calculated formation energies of the nanowires show that there is a sublinear relationship between the formation energy and surface- to- volume ratio, indicating that the surface effect is localized and becomes more important for small nanowires. (C) 2008 American Institute of Physics. [DOI: 10.1063/1.3003528] C1 [Wu, Yelong; Chen, Guangde; Ye, Honggang; Zhu, Youzhang] Xian Jiaotong Univ, Dept Appl Phys, Xian 710049, Peoples R China. [Wei, Su-Huai] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Wu, YL (reprint author), Xian Jiaotong Univ, Dept Appl Phys, Xian 710049, Peoples R China. EM wuyelong520@gmail.com RI Ye, Honggang/A-8035-2008; Wu, Yelong/G-1100-2010; Chen, Guangde/D-4373-2011; chen, guangde/I-4260-2014 OI Ye, Honggang/0000-0002-5643-5914; Wu, Yelong/0000-0002-4211-911X; FU China National Natural Science Fund [10474078]; Xi'an Jiaotong University; U.S. DOE [DE-AC36-99GO10337] FX We gratefully acknowledge the financial support of China National Natural Science Fund (Grant No. 10474078) and the computing support of the "Digital Information Process and Calculation Laboratory" of Xi'an Jiaotong University. The work at NREL is supported by the U.S. DOE under Contract No. DE-AC36-99GO10337. NR 21 TC 15 Z9 15 U1 1 U2 14 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD OCT 15 PY 2008 VL 104 IS 8 AR 084313 DI 10.1063/1.3003528 PG 4 WC Physics, Applied SC Physics GA 367SG UT WOS:000260572100102 ER PT J AU Hossain, A Bolotnikov, AE Camarda, GS Cui, Y Yang, G James, RB AF Hossain, A. Bolotnikov, A. E. Camarda, G. S. Cui, Y. Yang, G. James, R. B. TI Defects in cadmium zinc telluride crystals revealed by etch-pit distributions SO JOURNAL OF CRYSTAL GROWTH LA English DT Article DE Etching; Line defects; Semiconducting II-VI materials; Infrared devices ID SEMICONDUCTOR COMPOUND-CRYSTALS; CDTE CRYSTALS; DETECTOR APPLICATIONS; CDZNTE CRYSTALS; GROWTH; DISLOCATIONS AB We demonstrated the distribution of defects in cadmium zinc telluride (CZT) detectors by revealing etch pits on the surfaces with a chemical-etching method and Te inclusions in the bulk of the crystals. The dislocation networks observed from etch pits on the crystals' surfaces were traced down within the bulk by removing the material layer by layer, followed by sequential Nakagawa etching. We also identified the etch pits corresponding to Te inclusions, and correlated them with grain boundaries and dislocation lines. Published by Elsevier B.V. C1 [Hossain, A.; Bolotnikov, A. E.; Camarda, G. S.; Cui, Y.; Yang, G.; James, R. B.] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Hossain, A (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. EM hossain@bnl.gov RI Yang, Ge/G-1354-2011 FU US Department of Energy, Office of Nonproliferation Research and Development, NA-22 [DE-AC02-98CH1-886] FX This work was supported by the US Department of Energy, Office of Nonproliferation Research and Development, NA-22. The manuscript has been authored by Brookhaven Science Associates, LLC under Contract no. DE-AC02-98CH1-886 with the US Department of Energy. The United States Government retains, and the publisher, by accepting the article for publication, acknowledges, a world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for the United States Government purposes. NR 26 TC 19 Z9 21 U1 1 U2 14 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-0248 J9 J CRYST GROWTH JI J. Cryst. Growth PD OCT 15 PY 2008 VL 310 IS 21 BP 4493 EP 4498 DI 10.1016/j.jcrysgro.2008.07.088 PG 6 WC Crystallography; Materials Science, Multidisciplinary; Physics, Applied SC Crystallography; Materials Science; Physics GA 373RB UT WOS:000260988600001 ER PT J AU Sen, S Joshi, S Aitken, BG Khalid, S AF Sen, S. Joshi, S. Aitken, B. G. Khalid, S. TI Atomic structure and chemical order in binary Ge-Te and As-Te glasses: A Te K-edge X-ray absorption fine structure spectroscopic study SO JOURNAL OF NON-CRYSTALLINE SOLIDS LA English DT Article DE Chalcogenides; Medium-range order; Short-range order; X-ray absorption AB The nearest-neighbor coordination environments of Te atoms in GexTe100-x glasses with x = 15 and 20 and in AsxTe100-x glasses with 40 <= x <= 65 have been studied with Te K-edge EXAFS spectroscopy. The average coordination number of Te atoms in all glasses is found to be similar to 2.0 and no violation of the 8-N rule is observed. The compositional makeup of the first coordination shell of Te atoms indicates that chemical order is largely preserved in both glass-forming binary systems. Sudden changes in the Te coordination environment and violation of chemical order are observed at the stoichiometric As40Te60 glass implying formation of a constrained network. The compositional dependence of the physical properties in both systems can be correlated to short-range chemical order. (c) 2008 Elsevier B.V. All rights reserved. C1 [Sen, S.; Joshi, S.] Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA. [Aitken, B. G.] Corning Inc, Glass Res Div, Corning, NY 14831 USA. [Khalid, S.] Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA. RP Sen, S (reprint author), Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA. EM sbsen@ucdavis.edu FU National Science Foundation [DMR-0603933]; US Department of Energy; Division of Materials Sciences and Division of Chemical Sciences FX This work was supported by the National Science Foundation under Grant No. DMR-0603933. The National Synchrotron Light Source is supported by the US Department of Energy, Division of Materials Sciences and Division of Chemical Sciences. The authors wish to thank S.C. Currie for sample preparation. NR 38 TC 16 Z9 16 U1 0 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3093 J9 J NON-CRYST SOLIDS JI J. Non-Cryst. Solids PD OCT 15 PY 2008 VL 354 IS 40-41 BP 4620 EP 4625 DI 10.1016/j.jnoncrysol.2008.05.048 PG 6 WC Materials Science, Ceramics; Materials Science, Multidisciplinary SC Materials Science GA 362YH UT WOS:000260232600017 ER PT J AU Kerr, M Daymond, MR Holt, RA Almer, JD AF Kerr, M. Daymond, M. R. Holt, R. A. Almer, J. D. TI Strain evolution of zirconium hydride embedded in a Zircaloy-2 matrix SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID FRACTURE INITIATION; EMBRITTLEMENT; DEFORMATION; ALLOYS AB In situ synchrotron X-ray diffraction has been used to determine strain evolution in a minority phase, zirconium hydride, embedded in Zircaloy-2 (<100 wt ppm average hydrogen content). The elastic modulus of the hydride is similar to that of Zircaloy-2. Three regimes are observed: I - elastic, II - post-yield load transfer from Zircaloy-2 to hydride, and III - strain saturation, possibly due to hydride fracture. The interpretation is supported by finite element calculations and scanning electron microscopy of the fracture surface. (C) 2008 Elsevier B.V. All rights reserved. C1 [Kerr, M.; Daymond, M. R.; Holt, R. A.] Queens Univ, Dept Mech & Mat Engn, Kingston, ON K7L 3N6, Canada. [Almer, J. D.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Daymond, MR (reprint author), Queens Univ, Dept Mech & Mat Engn, Kingston, ON K7L 3N6, Canada. EM daymond@me.queensu.ca OI Daymond, Mark/0000-0001-6242-7489 FU NSERC; COG; OPG; Nu-Tech Precision Metals; US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-Ac02-06CH11357] FX Work supported by NSERC, COG, OPG and Nu-Tech Precision Metals under the Industrial Research Chair Program in Nuclear Materials at Queen's University. Use of the Advanced Photon Source was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract DE-Ac02-06CH11357. The authors would like to thank AECL Chalk River Labs for assistance with sample hydriding and metallography. M. Kerr would like to thank his colleague Feng Xu for useful discussions (data set comparisons and modeling). NR 23 TC 26 Z9 26 U1 1 U2 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD OCT 15 PY 2008 VL 380 IS 1-3 BP 70 EP 75 DI 10.1016/j.jnucmat.2008.07.004 PG 6 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 369LD UT WOS:000260695100007 ER PT J AU Kercher, AK Hunn, JD Price, JR Pappano, P AF Kercher, Andrew K. Hunn, John D. Price, Jeffery R. Pappano, Pete TI Automated optical microscopy of coated particle fuel SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article AB Fundamental technological advances have occurred during the 20 year hiatus in US research on coated particle nuclear fuel. As part of the recent US Department of Energy's Advanced Gas Reactor Fuel Development and Qualification program, Oak Ridge National Laboratory has utilized advancements in computer automation, digital imaging, and image analysis to modernize US optical microscopy techniques for coated particle nuclear fuel. Automated optical microscopy has enabled detailed and objective analysis of individual particles (hundreds of measurements per particle) and of large sample sizes that far exceed the capabilities of conventional manual microscopy methods (analysis of 1500-5000 particles is common). Demonstrative examples of the capabilities of this automated optical microscopy are given for: (a) shadow imaging of kernels, coated fuel particles, and graphite matrix overcoated particles and (b) cross-sectional analysis of coated fuel particles to determine layer thicknesses. Published by Elsevier B.V. C1 [Kercher, Andrew K.; Hunn, John D.; Pappano, Pete] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Price, Jeffery R.] Oak Ridge Natl Lab, Engn Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Kercher, AK (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. EM kercherak@ornl.gov RI Kercher, Andrew/K-1147-2016 OI Kercher, Andrew/0000-0003-1784-5686 FU US-DOE Office of Nuclear Energy, Science; Technology's Advanced Gas Reactor Fuel Development; Qualification program; Oak Ridge National Laboratory; UT-Battelle; LLC [DE-ACO5-00OR22725] FX Research was sponsored by the US-DOE Office of Nuclear Energy, Science, and Technology's Advanced Gas Reactor Fuel Development and Qualification program and by the Oak Ridge National Laboratory, managed by UT-Battelle, LLC for the US Department of Energy under Contract No. DE-ACO5-00OR22725. All TRISO-coated particles discussed in this work were produced by Richard A. Lowden. Laboratory work by Ivan Dunbar, Deniz B. Aykac, and Andy Nelson contributed to the data collection and mount preparation included in this manuscript. All NUCO and LEUCO kernels used in this research were produced by Babcock and Wilcox Company in Lynchburg, Va. NR 10 TC 2 Z9 2 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD OCT 15 PY 2008 VL 380 IS 1-3 BP 76 EP 84 DI 10.1016/j.jnucmat.2008.07.011 PG 9 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 369LD UT WOS:000260695100008 ER PT J AU Learmonth, T Glans, PA McGuinness, C Plucinski, L Zhang, Y Guo, JH Greenblatt, M Smith, KE AF Learmonth, T. Glans, P-A McGuinness, C. Plucinski, L. Zhang, Y. Guo, J-H Greenblatt, M. Smith, K. E. TI Electronic structure of the 1D conductor K0.3MoO3 studied using resonant inelastic X-ray scattering and soft X-ray emission spectroscopy SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article ID TRANSITION-METAL OXIDES; BAND-STRUCTURE; SOLIDS; PHOTOEMISSION; ABSORPTION; GRAPHITE; SURFACE; FLUORESCENCE; BRONZES; MOO3 AB The electronic structure of the quasi-one-dimensional conductor K0.3MoO3 has been measured using high resolution resonant inelastic x-ray scattering and x-ray absorption spectroscopy. The results are compared to those for the related two-dimensional insulator alpha-MoO3. Features of the scattering from both oxides are observed and are explained in terms of the band momentum selectivity of the scattering process, allowing a comparison of the scattering data with recent band structure calculations. C1 [Learmonth, T.; Glans, P-A; Plucinski, L.; Zhang, Y.; Smith, K. E.] Boston Univ, Dept Phys, Boston, MA 02215 USA. [McGuinness, C.] Univ Dublin Trinity Coll, Sch Phys, Dublin 2, Ireland. [Guo, J-H] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. [Greenblatt, M.] Rutgers State Univ, Dept Chem & Chem Biol, Piscataway, NJ 08854 USA. RP Smith, KE (reprint author), Boston Univ, Dept Phys, 590 Commonwealth Ave, Boston, MA 02215 USA. EM ksmith@bu.edu RI McGuinness, Cormac/C-6808-2008; Plucinski, Lukasz/J-4987-2013; Glans, Per-Anders/G-8674-2016 OI McGuinness, Cormac/0000-0002-3095-330X; Plucinski, Lukasz/0000-0002-6865-7274; FU Department of Energy [DE-FG02-98ER45680]; US Army Research Office [DAAD19-01-1-0364, DAAH04-95-0014]; US Department of Energy, Division of Materials and Chemical Sciences; US Department of Energy [DE-AC02-05CH11231]; ALS Doctoral Fellowship Program; Irish Higher Educational Authority and Enterprise Ireland FX The Boston University (BU) program is supported in part by the Department of Energy under DE-FG02-98ER45680. The BU XES/RIXS spectrometer system was funded by the US Army Research Office under DAAD19-01-1-0364 and DAAH04-95-0014. The experiments at the NSLS are supported by the US Department of Energy, Division of Materials and Chemical Sciences. The ALS is supported by the US Department of Energy under Contract No. DE-AC02-05CH11231. TL acknowledges support from the ALS Doctoral Fellowship Program. CMcG acknowledges financial support from the Irish Higher Educational Authority and Enterprise Ireland. NR 32 TC 1 Z9 1 U1 1 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD OCT 15 PY 2008 VL 20 IS 41 AR 415219 DI 10.1088/0953-8984/20/41/415219 PG 6 WC Physics, Condensed Matter SC Physics GA 355EZ UT WOS:000259693500026 ER PT J AU Shao, YY Kou, R Wang, J Viswanathan, VV Kwak, JH Liu, J Wang, Y Lin, YH AF Shao, Yuyan Kou, Rong Wang, Jun Viswanathan, Vilayanur V. Kwak, Ja Hun Liu, Jun Wang, Yong Lin, Yuehe TI The influence of the electrochemical stressing (potential step and potential-static holding) on the degradation of polymer electrolyte membrane fuel cell electrocatalysts SO JOURNAL OF POWER SOURCES LA English DT Article DE PEM fuel cell; Platinum; Electrocatalyst; Accelerated degradation test; Durability ID OXYGEN-REDUCTION; CARBON NANOTUBES; PLATINUM NANOPARTICLES; SUPERCRITICAL-FLUID; CATALYST SUPPORT; LOW-TEMPERATURE; DURABILITY; PT/C; DISSOLUTION; CORROSION AB The understanding of the degradation mechanisms of electrocatalysts is very important for developing durable electrocatalysts for polymer electrolyte membrane (PEM) fuel cells. The degradation of Pt/C electrocatalysts under potential-static holding conditions (at 1.2V and 1.4V vs. RHE) and potential step conditions with the upper potential of 1.4V for 150s and lower potential limits (0.85V and 0.60V) for 30s in each period [denoted as Pstep(1.4V_150s-0.85V_30s) and Pstep(1.4V_150s-0.60V_30s), respectively] were investigated. The electrocatalysts and support were characterized with electrochemical voltammetry, transmission electron microscope (TEM) and X-ray photoelectron spectroscopy (XPS). Pt/C degrades much faster under Pstep conditions than that under potential-static holding conditions. Pt/C degrades under the Pstep(1.4V_150s-0.85V30s) condition mainly through the coalescence process of Pt nanoparticles due to the corrosion of carbon support, which is similar to that under the conditions of 1.2V- and 1.4V-potential-static holding; however, Pt/C degrades mainly through the dissolution/loss and dissolution/redeposition process if stressed under Pstep(1.4V_150s-0.60V30s). The difference in the degradation mechanisms is attributed to the chemical states of Pt nanoparticles: Pt dissolution can be alleviated by the protective oxide layer under the Pstep(1.4V_150s-0.85V_30s) condition and the potential-static holding conditions. These findings are very important for understanding PEM fuel cell electrode degradation and are also useful for developing fast test Protocol for screening durable catalyst Support materials. (c) 2008 Elsevier B.V. All rights reserved. C1 [Shao, Yuyan; Kou, Rong; Wang, Jun; Viswanathan, Vilayanur V.; Kwak, Ja Hun; Liu, Jun; Wang, Yong; Lin, Yuehe] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Lin, YH (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM yuehe.lin@pnl.gov RI Shao, Yuyan/A-9911-2008; Lin, Yuehe/D-9762-2011; Wang, Yong/C-2344-2013; Kwak, Ja Hun/J-4894-2014 OI Shao, Yuyan/0000-0001-5735-2670; Lin, Yuehe/0000-0003-3791-7587; FU U.S. DOE-EERE Hydrogen Program; Battelle for DOE [DE-AC05-76L01830] FX This work is supported by the U.S. DOE-EERE Hydrogen Program. The research described in this paper was performed at the Environmental Molecular Science Laboratory, a national scientific used facility sponsored by DOE's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL). PNNL is operated by Battelle for DOE under Contract DE-AC05-76L01830. Authors would like to acknowledge Mr. Mark Engelhard for XPS measurement and Dr. Chongmin Wang for TEM measurement. NR 38 TC 52 Z9 52 U1 0 U2 21 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 J9 J POWER SOURCES JI J. Power Sources PD OCT 15 PY 2008 VL 185 IS 1 BP 280 EP 286 DI 10.1016/j.jpowsour.2008.07.008 PG 7 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA 358HB UT WOS:000259906600041 ER PT J AU Shanahan, PV Xu, LB Liang, CD Waje, M Dai, S Yan, YS AF Shanahan, Paul V. Xu, Lianbin Liang, Chengdu Waje, Mahesh Dai, Sheng Yan, Y. S. TI Graphitic mesoporous carbon as a durable fuel cell catalyst support SO JOURNAL OF POWER SOURCES LA English DT Article DE Catalyst support; Durability; Fuel cell; Graphitic carbon; Mesopores; Carbon black ID ELECTROCATALYSTS; DURABILITY AB Highly stable graphitic mesoporous carbons (GMPCs) are synthesized by heat-treating polymer-templated mesoporous carbon (MPC) at 2600 degrees C. The electrochemical durability of GMPC as Pt catalyst support (Pt/GMPC) is compared with that of carbon black (Pt/XC-72). Comparisons are made using potentiostatic and cyclic voltammetric techniques on the respective specimens under conditions simulating the cathode environment of PEMFC (proton exchange membrane fuel cell). The results indicate that the Pt/GMPC is much more stable than Pt/XC-72, with 96% lower corrosion current. The Pt/GMPC also exhibits a greatly reduced loss of catalytic surface area: 14% for Pt/GMPC vs. 39% for Pt/XC-72. (C) 2008 Elsevier B.V. All rights reserved. C1 [Liang, Chengdu; Dai, Sheng] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. [Shanahan, Paul V.; Xu, Lianbin; Waje, Mahesh; Yan, Y. S.] Univ Calif Riverside, Dept Chem & Environm Engn, Riverside, CA 92521 USA. [Xu, Lianbin] Beijing Univ Chem Technol, Key Lab Nanomat, Minist Educ, Beijing 100029, Peoples R China. RP Dai, S (reprint author), Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. EM dais@ornl.gov RI Liang, Chengdu/G-5685-2013; Dai, Sheng/K-8411-2015 OI Dai, Sheng/0000-0002-8046-3931 FU Department of Energy; DOE EERE; Center for Nanophase Materials Sciences; Division of Scientific User Facilities; U.S. Department of Energy FX The work at UC was supported by Department of Energy. The work at ORNL was supported by DOE EERE. A portion of the work was conducted at the Center for Nanophase Materials Sciences, which is sponsored at ORNL by the Division of Scientific User Facilities, U.S. Department of Energy. S.D. would like to thank Dr. Nancy Dudney for the resistivity measurement of the mesoporous carbons. NR 17 TC 100 Z9 102 U1 2 U2 33 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 J9 J POWER SOURCES JI J. Power Sources PD OCT 15 PY 2008 VL 185 IS 1 BP 423 EP 427 DI 10.1016/j.jpowsour.2008.06.041 PG 5 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA 358HB UT WOS:000259906600057 ER PT J AU Zhang, XH Kostorz, G Liu, CT Rigsbee, M Suryanarayana, C Wang, HY Zhu, YT Zhang, DL AF Zhang, Xinghang Kostorz, Gernot Liu, Chain T. Rigsbee, Mike Suryanarayana, C. Wang, Haiyan Zhu, Yuntian Zhang, Deliang TI Mechanical Behavior of Nanostructured Materials, in Honor of Carl Koch held at TMS 2007, Orlando, Florida Preface SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING LA English DT Editorial Material C1 [Zhang, Xinghang] Texas A&M Univ, Dept Mech Engn Mat Sci, College Stn, TX 77843 USA. [Kostorz, Gernot] Swiss Fed Inst Technol, Zurich, Switzerland. [Liu, Chain T.] Oak Ridge Natl Lab, Oak Ridge, TN USA. [Rigsbee, Mike; Zhu, Yuntian] N Carolina State Univ, Raleigh, NC 27695 USA. [Suryanarayana, C.] Univ Cent Florida, Orlando, FL 32816 USA. [Zhang, Deliang] Univ Waikato, Hamilton, New Zealand. RP Zhang, XH (reprint author), Texas A&M Univ, Dept Mech Engn Mat Sci, College Stn, TX 77843 USA. EM zhangx@tamu.edu RI kostorz, gernot/B-6489-2009; Wang, Haiyan/P-3550-2014 OI Wang, Haiyan/0000-0002-7397-1209 NR 0 TC 0 Z9 0 U1 0 U2 1 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0921-5093 J9 MAT SCI ENG A-STRUCT JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. PD OCT 15 PY 2008 VL 493 IS 1-2 SI SI BP 1 EP 2 DI 10.1016/j.msea.2008.01.019 PG 2 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 357KN UT WOS:000259844800001 ER PT J AU Withey, E Jin, M Minor, A Kuramoto, S Chrzan, DC Morris, JW AF Withey, E. Jin, M. Minor, A. Kuramoto, S. Chrzan, D. C. Morris, J. W., Jr. TI The deformation of "Gum Metal" in nanoindentation SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING LA English DT Article; Proceedings Paper CT Symposium on Mechanical Behavior of Nanostructured Materials held TMS 2007 Annual Meeting CY FEB 26-MAR 01, 2007 CL Orlando, FL SP TSM DE Gum Metal; nanoindentation ID PLASTIC-DEFORMATION AB "Gum Metal" describes a newly developed set of alloys with nominal composition Ti-24(Nb + V + Ta)-(ZrHf)-O. In the cold-worked condition these alloys have exceptional elastic elongation and high-strength; the available evidence suggests that they do not yield until the applied stress approaches the ideal strength of the alloy, and then deform by mechanisms that do not involve conventional crystal dislocations. The present paper reports research on the nanoindentation of this material in both the cold-worked and annealed conditions. Nanoindentation tests were conducted in situ in a transmission electron microscope (TEM) stage that allows the deformation process to be observed in real time, and ex situ in a Hysitron nanoindenter, with samples subsequently extracted for high-resolution TEM study. The results reveal unusual deformation patterns beneath the nanoindenter that are, to our knowledge, unique to this material. In the cold-worked alloy deformation is confined to the immediate neighborhood of the indentation, with no evidence of dislocation, twin or fault propagation into the bulk. The deformed volume is highly inhomogeneous; the deformation is accomplished by a series of incremental rotations that are ordinarily resolved into discrete nanodomains. The annealed material deforms in a similar way within the nanoindentation pit, but dislocations emanate from the pit boundary. These are pinned by microstructural barriers only a few nanometers apart, a condition that recent theory suggests is necessary for the material to achieve ideal strength. (c) 2007 Elsevier B.V. All rights reserved. C1 [Withey, E.; Jin, M.; Chrzan, D. C.; Morris, J. W., Jr.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Minor, A.] Lawrence Berkeley Natl Lab, Natl Ctr Electron Microscopy, Berkeley, CA 94720 USA. [Kuramoto, S.] Toyota Cent Res & Dev Labs Inc, Aichi 4801192, Japan. RP Morris, JW (reprint author), Univ Calif Berkeley, Dept Mat Sci & Engn, 210 Hearst Mem Min Bldg, Berkeley, CA 94720 USA. EM jwmorris@berkeley.edu NR 13 TC 50 Z9 51 U1 3 U2 31 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0921-5093 J9 MAT SCI ENG A-STRUCT JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. PD OCT 15 PY 2008 VL 493 IS 1-2 SI SI BP 26 EP 32 DI 10.1016/j.msea.2007.07.097 PG 7 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 357KN UT WOS:000259844800005 ER PT J AU Desai, TG Millett, P Wolf, D AF Desai, T. G. Millett, P. Wolf, D. TI Is diffusion creep the cause for the inverse Hall-Petch effect in nanocrystalline materials? SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING LA English DT Article; Proceedings Paper CT Symposium on Mechanical Behavior of Nanostructured Materials held TMS 2007 Annual Meeting CY FEB 26-MAR 01, 2007 CL Orlando, FL SP TSM DE inverse Hall-Petch; diffusion creep; coble creep; nanocrystalline; molecular dynamics ID MOLECULAR-DYNAMICS SIMULATION; LOW-TEMPERATURE; METALS; DEFORMATION; BEHAVIOR AB It has previously been demonstrated by means of molecular-dynamics (MD) simulation that for the very smallest grain sizes (typically below 20-30 nm), nanocrystalline f.c.c. metals deform via grain-boundary diffusion creep, provided the applied stress is low enough to avoid microcracking and dislocation nucleation from the grain boundaries. Experimentally, however, the nature of the deformation process in this "inverse Hall-Petch" regime (in which the yield stress decreases with decreasing grain size) remains controversial. Here we illustrate by MD simulation that in the absence of grain growth a nanocrystalline model b.c.c. metal, Mo, and a model metal oxide, UO(2), also deform via diffusion creep. However, in the case of Mo both grain-boundary and lattice diffusion are observed to contribute to the creep rate; i.e., the deformation mechanism involves a combination of Coble and Nabarro-Herring creep. While our results on Mo and UO(2) are still preliminary, they lend further support to the observation of diffusion creep previously documented in f.c.c. metals and in covalently bonded Si. (c) 2007 Elsevier B.V. All rights reserved. C1 [Desai, T. G.; Millett, P.; Wolf, D.] Idaho Natl Lab, Ctr Adv Modeling & Simulat, Idaho Falls, ID 83415 USA. RP Desai, TG (reprint author), Idaho Natl Lab, Ctr Adv Modeling & Simulat, 2151 N Blvd,POB 1625, Idaho Falls, ID 83415 USA. EM tapan.desai@inl.gov NR 32 TC 14 Z9 14 U1 0 U2 15 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0921-5093 J9 MAT SCI ENG A-STRUCT JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. PD OCT 15 PY 2008 VL 493 IS 1-2 BP 41 EP 47 DI 10.1016/j.msea.2007.06.097 PG 7 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 357KN UT WOS:000259844800007 ER PT J AU Zhao, YH Liao, XZ Horita, Z Langdon, TG Zhu, YT AF Zhao, Y. H. Liao, X. Z. Horita, Z. Langdon, T. G. Zhu, Y. T. TI Determining the optimal stacking fault energy for achieving high ductility in ultrafine-grained Cu-Zn alloys SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING LA English DT Article; Proceedings Paper CT Symposium on Mechanical Behavior of Nanostructured Materials held TMS 2007 Annual Meeting CY FEB 26-MAR 01, 2007 CL Orlando, FL SP TSM DE copper alloys; ductility; high-pressure torsion; severe plastic deformation; stacking fault energy ID SEVERE PLASTIC-DEFORMATION; HIGH-PRESSURE TORSION; CENTERED-CUBIC METALS; MICROSTRUCTURAL EVOLUTION; NANOCRYSTALLINE AL; ULTRAHIGH-STRENGTH; COPPER; ALUMINUM; NANOSTRUCTURES; TEMPERATURE AB Bulk ultrafine-grained (UFG) materials produced by severe plastic deformation (SPD) often have low ductility. A previous study demonstrated the possibility of lowering the stacking fault energy to simultaneously increase the strength and ductility. This paper demonstrates, there exists an optimal stacking fault energy for the best ductility in UFG Cu-Zn alloys processed by the same SPD processing. When the stacking fault energy is too low, the grain size lies below 15 run after SPD processing and the stacking faults are saturated so that it is difficult to accumulate dislocations and deformation twins during the subsequent tensile testing. These results provide significant guidance for the future design of UFG and nanocrystalline alloys for achieving high ductilities. (c) 2007 Elsevier B.V. All rights reserved. C1 [Zhao, Y. H.; Zhu, Y. T.] Los Alamos Natl Lab, Mat Phys & Applicat Div, Los Alamos, NM 87545 USA. [Liao, X. Z.] Univ Sydney, Sch Aerosp Mech & Mechatron Engn, Sydney, NSW 2006, Australia. [Horita, Z.] Kyushu Univ, Fac Engn, Dept Mat Sci & Engn, Fukuoka 8190395, Japan. [Langdon, T. G.] Univ So Calif, Dept Aerosp & Mech Engn & Mat Sci, Los Angeles, CA 90089 USA. [Langdon, T. G.] Univ So Calif, Dept Mat Sci, Los Angeles, CA 90089 USA. RP Zhu, YT (reprint author), N Carolina State Univ, Dept Mat Sci & Engn, 1009 Capabil Dr, Raleigh, NC 27695 USA. EM ytzhu@ncsu.edu RI Langdon, Terence/B-1487-2008; Zhu, Yuntian/B-3021-2008; Zhao, Yonghao/A-8521-2009; Liao, Xiaozhou/B-3168-2009; Lujan Center, LANL/G-4896-2012; U-ID, Kyushu/C-5291-2016 OI Zhu, Yuntian/0000-0002-5961-7422; Liao, Xiaozhou/0000-0001-8565-1758; NR 39 TC 85 Z9 88 U1 7 U2 39 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0921-5093 EI 1873-4936 J9 MAT SCI ENG A-STRUCT JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. PD OCT 15 PY 2008 VL 493 IS 1-2 SI SI BP 123 EP 129 DI 10.1016/j.msea.2007.11.074 PG 7 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 357KN UT WOS:000259844800021 ER PT J AU Cheng, S Milligan, WW Wang, XL Choo, H Liaw, PK AF Cheng, S. Milligan, W. W. Wang, X-L. Choo, H. Liaw, P. K. TI Compressive and tensile deformation behavior of consolidated Fe SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING LA English DT Article; Proceedings Paper CT Symposium on Mechanical Behavior of Nanostructured Materials held TMS 2007 Annual Meeting CY FEB 26-MAR 01, 2007 CL Orlando, FL SP TSM DE ultrafine-grained Fe; compression; tension; shear banding; Luders banding ID BULK-METALLIC-GLASS; SENSITIVE PLASTIC MATERIALS; MECHANICAL-BEHAVIOR; SHEAR BANDS; NANOCRYSTALLINE; FAILURE; IRON; CU; STRENGTH; COPPER AB The deformation behavior was investigated in a consolidated Fe with a grain size ranging from submicrometer to tens of micrometer values under uniaxial compression and tension. In compression, shear banding occurred significantly at grain sizes >500 nm while only a single band was observed in samples with grain sizes of similar to 100 nm. For the samples with grain sizes similar to 800 nm, the shear banding happened at an angle of 45 degrees (in the maximum shear-stress plane). In tension, premature fracture happened in samples with grain sizes <1 mu m while shear banding was observed at grain sizes >1 mu m, and the shear banding angle was also close to 45 degrees. For the samples with grain sizes >2 mu m, homogeneous deformation took over in compression with a yield-point phenomenon being observed, but Luders banding localization occurred in tension. (C) 2007 Elsevier B.V. All rights reserved. C1 [Cheng, S.; Choo, H.; Liaw, P. K.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Milligan, W. W.] Michigan Technol Univ, Dept Mat Sci & Engn, Houghton, MI 49931 USA. [Cheng, S.; Wang, X-L.] Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA. [Choo, H.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Cheng, S (reprint author), Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. EM scheng1@utk.edu RI Wang, Xun-Li/C-9636-2010; Cheng, Sheng/D-9153-2013; Choo, Hahn/A-5494-2009 OI Wang, Xun-Li/0000-0003-4060-8777; Cheng, Sheng/0000-0003-1137-1926; Choo, Hahn/0000-0002-8006-8907 NR 24 TC 12 Z9 12 U1 2 U2 9 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0921-5093 J9 MAT SCI ENG A-STRUCT JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. PD OCT 15 PY 2008 VL 493 IS 1-2 SI SI BP 226 EP 231 DI 10.1016/j.msea.2007.08.088 PG 6 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 357KN UT WOS:000259844800036 ER PT J AU Thomson, KE Jiang, D Lemberg, JA Koester, KJ Ritchie, RO Mukherjee, AK AF Thomson, Katherine E. Jiang, Dongtao Lemberg, Joseph A. Koester, Kurt J. Ritchie, Robert O. Mukherjee, Amiya K. TI In situ bend testing of niobium-reinforced alumina nanocomposites with and without single-walled carbon nanotubes SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING LA English DT Article; Proceedings Paper CT Symposium on Mechanical Behavior of Nanostructured Materials held TMS 2007 Annual Meeting CY FEB 26-MAR 01, 2007 CL Orlando, FL SP TSM DE spark plasma sintering (SPS); Al2O3; Nb; nanocomposites; carbon nanotubes; fracture toughness ID MATRIX NANOCOMPOSITES; COMPOSITES AB Alumina-based nanocomposites were fabricated and consolidated via spark plasma sintering. The effect of single-walled carbon nanotube (SWCNT) and niobium additions to nanocrystalline alumina was examined by in situ bend testing. The addition of 10 vol.% niobium to nanocrystalline alumina provided substantial improvement of fracture toughness (6.1 MPa m(1/2))-almost three times that of nanocrystalline alumina. Observation of cracks emanating from Vickers indents, as well as bend specimen fracture surfaces, reveal the operation of ductile phase toughening in the Nb-Al2O3 nanocomposites. Further addition of 5 vol.% SWCNTs to the 10 vol.%Nb-Al2O3 revealed a more porous structure and less impressive fracture toughness-having an indentation and bend fracture toughness of 2.9 MPa m(1/2) and 3.3 MPa m(1/2), respectively. Published by Elsevier B.V. C1 [Thomson, Katherine E.; Jiang, Dongtao; Mukherjee, Amiya K.] Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA. [Lemberg, Joseph A.; Koester, Kurt J.; Ritchie, Robert O.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Lemberg, Joseph A.; Koester, Kurt J.; Ritchie, Robert O.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. RP Mukherjee, AK (reprint author), Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA. EM akmukherjee@ucdavis.edu RI Ritchie, Robert/A-8066-2008 OI Ritchie, Robert/0000-0002-0501-6998 NR 15 TC 5 Z9 5 U1 1 U2 9 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0921-5093 J9 MAT SCI ENG A-STRUCT JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. PD OCT 15 PY 2008 VL 493 IS 1-2 SI SI BP 256 EP 260 DI 10.1016/j.msea.2007.05.123 PG 5 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 357KN UT WOS:000259844800042 ER PT J AU Xiong, YH Smugeresky, JE Ajdelsztajn, L Schoenung, JA AF Xiong, Yuhong Smugeresky, John E. Ajdelsztajn, Leonardo Schoenung, Julie A. TI Fabrication of WC-Co cermets by laser engineered net shaping SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING LA English DT Article; Proceedings Paper CT Symposium on Mechanical Behavior of Nanostructured Materials held TMS 2007 Annual Meeting CY FEB 26-MAR 01, 2007 CL Orlando, FL SP TSM DE WC-Co; laser engineered net shaping; microstructure; hardness ID DIRECT METAL-DEPOSITION; POWDER; CONSOLIDATION; COMPOSITES; LENS AB The Laser Engineered Net Shaping (LENS(R)) technology is an extension of rapid prototyping technologies into the direct fabrication of metal parts. Bulk dense tungsten carbide-cobalt (WC-Co) cermets were produced without any molds using the LENS(R) technology, starting from granules consisting of nanostructured WC crystallites in a Co matrix. Thermal behavior of the LENS(R) process, shape change and coarsening of WC crystallites were investigated in this work to study the mechanisms of microstructural evolution of the cermets. Microstructures with alternating layers were observed, which is relevant to the thermal behavior of the LENS(R) process. Variations in hardness result from the change in cooling rate along the specimen height. (C) 2007 Elsevier B.V. All rights reserved. C1 [Xiong, Yuhong; Ajdelsztajn, Leonardo; Schoenung, Julie A.] Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA. [Smugeresky, John E.] Sandia Natl Labs, Livermore, CA 94551 USA. RP Schoenung, JA (reprint author), Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA. EM jmschoenung@ucdavis.edu NR 24 TC 24 Z9 24 U1 3 U2 15 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0921-5093 J9 MAT SCI ENG A-STRUCT JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. PD OCT 15 PY 2008 VL 493 IS 1-2 SI SI BP 261 EP 266 DI 10.1016/j.msea.2007.05.125 PG 6 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 357KN UT WOS:000259844800043 ER PT J AU Mara, NA Misra, A Hoagland, RG Sergueeva, AV Tamayo, T Dickerson, P Mukherjee, AK AF Mara, N. A. Misra, A. Hoagland, R. G. Sergueeva, A. V. Tamayo, T. Dickerson, P. Mukherjee, A. K. TI High-temperature mechanical behavior/microstructure correlation of Cu/Nb nanoscale multilayers SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING LA English DT Article; Proceedings Paper CT Symposium on Mechanical Behavior of Nanostructured Materials held TMS 2007 Annual Meeting CY FEB 26-MAR 01, 2007 CL Orlando, FL SP TSM DE nanocomposite; tension test; multilayers; high-temperature deformation ID DEFORMATION MECHANISMS; THIN-FILMS; COMPOSITES; INTERFACES; BEHAVIOR; SUPERPLASTICITY; STRESSES; SLIP AB Freestanding Cu/Nb multilayers with 60 nm layer thickness were tested in tension at temperatures ranging from 20 degrees C to 700 degrees C at strain rates on the order of 1 x 10(-4) s(-1). At room temperature, the composite exhibited high strength (1.2 GPa) and 5% plastic strain to failure, while at the upper temperature regions tested (700 degrees C); the composite underwent elongation to 0.3 true strain at a flow stress of 200 MPa. At all temperatures tested, tensile strength of the composite exceeded the rule-of-mixtures estimate by up to an order of magnitude. Additionally, post-mortem cross-sectional transmission electron microscopy analysis of samples taken from both the deformed gage and undeformed shoulder regions show retention of the initial layered morphology. Strengthening mechanisms are discussed in terms of the confined layer slip model, with the trend of decreased strength and increased ductility with increasing temperature attributed to enhanced cross slip and climb of dislocations across interlayer boundaries. (C) 2008 Published by Elsevier B.V. C1 [Mara, N. A.; Misra, A.] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. [Hoagland, R. G.] Los Alamos Natl Lab, Struct Property Relat Grp, Los Alamos, NM 87545 USA. [Sergueeva, A. V.; Tamayo, T.; Mukherjee, A. K.] Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA. [Dickerson, P.] Los Alamos Natl Lab, Mat Sci Met Grp, Los Alamos, NM 87545 USA. RP Mara, NA (reprint author), Los Alamos Natl Lab, Ctr Integrated Nanotechnol, MS G756, Los Alamos, NM 87545 USA. EM namara@lanl.gov RI Hoagland, Richard/G-9821-2012; Misra, Amit/H-1087-2012; Mara, Nathan/J-4509-2014; OI Mara, Nathan/0000-0002-9135-4693 NR 21 TC 30 Z9 32 U1 0 U2 15 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0921-5093 EI 1873-4936 J9 MAT SCI ENG A-STRUCT JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. PD OCT 15 PY 2008 VL 493 IS 1-2 SI SI BP 274 EP 282 DI 10.1016/j.msea.2007.08.089 PG 9 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 357KN UT WOS:000259844800045 ER PT J AU Fu, EG Li, N Misra, A Hoagland, RG Wang, H Zhang, X AF Fu, E. G. Li, Nan Misra, A. Hoagland, R. G. Wang, H. Zhang, X. TI Mechanical properties of sputtered Cu/V and Al/Nb multilayer films SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING LA English DT Article; Proceedings Paper CT Symposium on Mechanical Behavior of Nanostructured Materials held TMS 2007 Annual Meeting CY FEB 26-MAR 01, 2007 CL Orlando, FL SP TSM DE metallic multilayers; hardness ID DISLOCATION PILE-UPS; METALLIC MULTILAYERS; STRENGTH; COMPOSITES; DEFORMATION; ENHANCEMENT; INTERFACES; FRACTURE; DESIGN; SCALE AB We have investigated the microstructure and mechanical properties of sputter-deposited Cu/V and Al/Nb metallic multilayer systems in this study and compared their mechanical properties to Cu/Cr and Cu/Nb reported earlier. These multilayer films are all of fcc/bcc type, with Kurdjumov-Sachs orientation relationship: {111}fcc//{110}bcc; < 110 > fcc//< 111 > bcc. In all cases, hardnesses of multilayers increase with decreasing layer thickness, and reach maxima at approximately 2-5 nm layer thickness. The differences in their mechanical properties (the Hall-Petch slope and peak hardness) are interpreted in terms of their differences in shear moduli, heat of mixing, and characteristics of interfaces. (C) 2007 Elsevier B.V. All rights reserved. C1 [Fu, E. G.; Li, Nan; Zhang, X.] Texas A&M Univ, Dept Mech Engn, College Stn, TX 77843 USA. [Misra, A.] Los Alamos Natl Lab, Mat Phys & Applicat Div, Los Alamos, NM 87545 USA. [Hoagland, R. G.] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. [Wang, H.] Texas A&M Univ, Dept Elect & Comp Engn, College Stn, TX 77843 USA. RP Zhang, X (reprint author), Texas A&M Univ, Dept Mech Engn, College Stn, TX 77843 USA. EM fuengang@tamu.edu; zhangx@tamu.edu RI Li, Nan /F-8459-2010; Misra, Amit/H-1087-2012; Hoagland, Richard/G-9821-2012; Zhang, Xinghang/H-6764-2013; Wang, Haiyan/P-3550-2014 OI Li, Nan /0000-0002-8248-9027; Zhang, Xinghang/0000-0002-8380-8667; Wang, Haiyan/0000-0002-7397-1209 NR 30 TC 65 Z9 69 U1 2 U2 44 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0921-5093 J9 MAT SCI ENG A-STRUCT JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. PD OCT 15 PY 2008 VL 493 IS 1-2 SI SI BP 283 EP 287 DI 10.1016/j.msea.2007.07.101 PG 5 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 357KN UT WOS:000259844800046 ER PT J AU Kennedy, MS Moody, NR Adams, DP Clift, M Bahr, DF AF Kennedy, M. S. Moody, N. R. Adams, D. P. Clift, M. Bahr, D. F. TI Environmental influence on interface interactions and adhesion of Au/SiO2 SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING LA English DT Article; Proceedings Paper CT Symposium on Mechanical Behavior of Nanostructured Materials held TMS 2007 Annual Meeting CY FEB 26-MAR 01, 2007 CL Orlando, FL SP TSM DE adhesion; humidity; interface; interfacial fracture energy ID THIN-FILMS; MECHANISMS; FATIGUE AB The mode I interfacial adhesion energy for as-deposited Au/SiO2 was measured using a stressed overlayer test, and ranged from 0.39 +/- 0.09 J/m(2) for spontaneous blisters to 0.37 +/- 0.17 J/m(2) for indentation-induced blisters. After these films were heated to 100 degrees C and 300 degrees C for I h, the interfacial fracture energies increased, to 0.9 J/m(2) and 9.9 J/m(2), respectively. This was consistent with Au/SiO2 films aged over an 8-year period, which had a mode I interfacial fracture energy between 1.2 J/m(2) and 1.9 J/m(2). The blister delamination was monitored over the course of over a year, and exhibited growth after an initial stabilization period. Subsequent testing of delaminations with controlled humidity reproduced this growth mechanism. Changes in interfacial adhesion energies are discussed in light of changes in interfacial chemistry and the exposure of an interfacial crack tip to humidity. (C) 2007 Elsevier B.V. All rights reserved. C1 [Kennedy, M. S.; Bahr, D. F.] Washington State Univ, Pullman, WA 99164 USA. [Moody, N. R.; Clift, M.] Sandia Natl Labs, Livermore, CA USA. [Adams, D. P.] Sandia Natl Labs, Albuquerque, NM USA. RP Bahr, DF (reprint author), Washington State Univ, Pullman, WA 99164 USA. EM dbahr@wsu.edu RI Bahr, David/A-6521-2012 OI Bahr, David/0000-0003-2893-967X NR 13 TC 4 Z9 4 U1 0 U2 6 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0921-5093 J9 MAT SCI ENG A-STRUCT JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. PD OCT 15 PY 2008 VL 493 IS 1-2 SI SI BP 299 EP 304 DI 10.1016/j.msea.2007.09.081 PG 6 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 357KN UT WOS:000259844800049 ER PT J AU Fowlkes, JD Fletcher, BL Retterer, ST Melechko, AV Simpson, ML Doktycz, MJ AF Fowlkes, J. D. Fletcher, B. L. Retterer, S. T. Melechko, A. V. Simpson, M. L. Doktycz, M. J. TI Size-selectivity and anomalous subdiffusion of nanoparticles through carbon nanofiber-based membranes SO NANOTECHNOLOGY LA English DT Article ID CHEMICAL-VAPOR-DEPOSITION; SINGLE-PARTICLE TRACKING; FLUORESCENCE RECOVERY; NANOTUBE MEMBRANES; MOLECULAR-TRANSPORT; MASS-TRANSPORT; MONTE-CARLO; IN-VIVO; DIFFUSION; FABRICATION AB A simulation is presented here that serves the dual functions of generating a nanoporousmembrane replica and executing the Brownian motion of nanoparticles through the virtual membrane. Specifically, the concentration profile of a dilute solution of fluorescent particles in a stochastic and SiO(2)-coated carbon nanofiber (oxCNF), nanoporous membrane was simulated. The quality of the simulated profile was determined by comparing the results with experimental concentration profiles. The experimental concentration profiles were collected adjacent to the oxCNF membrane surface from time-lapse fluorescence microscopy images. The simulation proved ideal as an accurate predictor of particle diffusion-the simulated concentration profile merged with the experimental profiles at the inlet/exit surfaces of the oxCNF membrane. In particular, the oxCNF barrier was found to hinder the transport of 50 and 100 nm particles and transmembrane trajectories were indicative of anomalous subdiffusion; the diffusion coefficient was found to be a function of time and space. C1 [Fowlkes, J. D.; Retterer, S. T.; Melechko, A. V.; Simpson, M. L.] Oak Ridge Natl Lab, Nanofabricat Res Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37381 USA. [Fletcher, B. L.; Simpson, M. L.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Fletcher, B. L.; Retterer, S. T.; Doktycz, M. J.] Oak Ridge Natl Lab, Biosci Div, Biol & Nanoscale Syst Grp, Oak Ridge, TN 37381 USA. RP Fowlkes, JD (reprint author), Oak Ridge Natl Lab, Nanofabricat Res Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37381 USA. EM fo2@ornl.gov RI Melechko, Anatoli/B-8820-2008; Retterer, Scott/A-5256-2011; Doktycz, Mitchel/A-7499-2011; Simpson, Michael/A-8410-2011 OI Retterer, Scott/0000-0001-8534-1979; Doktycz, Mitchel/0000-0003-4856-8343; Simpson, Michael/0000-0002-3933-3457 FU NIH [EB000657]; US Department of Energy, Office of Basic Energy Sciences, Division of Scientific User Facilities; US Government [DE-AC05-00OR22725] FX This research was supported by NIH Grant EB000657 and a portion of this research was conducted at the Center for Nanophase Materials Sciences, which is sponsored by the US Department of Energy, Office of Basic Energy Sciences, Division of Scientific User Facilities. AVM and MLS acknowledge support from the US Department of Energy, Office of Basic Energy Sciences, Materials Sciences and Engineering program.; This manuscript has been authorized by a contractor of the US Government under contract DE-AC05-00OR22725. Accordingly, the US Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for US Government purposes. NR 54 TC 9 Z9 9 U1 0 U2 10 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0957-4484 J9 NANOTECHNOLOGY JI Nanotechnology PD OCT 15 PY 2008 VL 19 IS 41 AR 415301 DI 10.1088/0957-4484/19/41/415301 PG 12 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA 344SH UT WOS:000258947100007 ER PT J AU Smith, DA Fowlkes, JD Rack, PD AF Smith, Daryl A. Fowlkes, Jason D. Rack, Philip D. TI Simulating the effects of surface diffusion on electron beam induced deposition via a three-dimensional Monte Carlo simulation SO NANOTECHNOLOGY LA English DT Article ID ION-BEAM; REPAIR; GROWTH; RESOLUTION; LITHOGRAPHY; FABRICATION; MICROSCOPY AB The effects that adsorbed precursor surface diffusion has on electron beam induced deposition are explored via a three-dimensional Monte Carlo simulation. Initially the growth rate and resolution are compared for a common set of deposition conditions with a variable surface diffusion coefficient ranging from 0 to 1 x 10(-8) cm(2) s(-1). The growth rate and resolution are shown to both be enhanced as the growth changes from a mass transport limited regime to a reaction rate limited regime. The complex interplay between the vertical growth rate, the lateral growth rate, the interaction volume and the adsorbed and diffused precursor species are discussed. A second scenario is also simulated in which only gas diffused from a constant source at the perimeter of the simulation boundary is assumed (no gas phase adsorption). At low diffusion coefficients, the diffusing gas is consumed by secondary and backscattered electrons and experimentally observed ring-like structures are generated. At higher diffusion coefficients, the diffusion length is sufficient for the precursor atoms to diffuse to the center (and up the pillar sidewalls) to generate nanowires. C1 [Smith, Daryl A.; Rack, Philip D.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Fowlkes, Jason D.; Rack, Philip D.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Rack, PD (reprint author), Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. EM prack@utk.edu OI Rack, Philip/0000-0002-9964-3254 FU Intel; Microsystems Technology Office of DARPA; Semiconductor Research Corporation [1281]; Science Alliance at the University of Tennessee; Oak Ridge National Laboratory by the Division of Scientific User Facilities, US Department of Energy FX The authors would like to acknowledge support from Intel (managed by Ted Liang), the Microsystems Technology Office of DARPA, and the Semiconductor Research Corporation (grant 1281 managed by Dan Herr). PDR would also like to acknowledge support from the Joint Directed Research and Development program sponsored by the Science Alliance at the University of Tennessee. PDR and JDF would like to acknowledge that a portion of this work was performed at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Division of Scientific User Facilities, US Department of Energy. NR 33 TC 30 Z9 30 U1 2 U2 8 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0957-4484 J9 NANOTECHNOLOGY JI Nanotechnology PD OCT 15 PY 2008 VL 19 IS 41 AR 415704 DI 10.1088/0957-4484/19/41/415704 PG 11 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA 344SH UT WOS:000258947100021 PM 21832655 ER PT J AU Song, SJ Moon, JH Lee, TH Dorris, SE Balachandran, U AF Song, S. -J. Moon, J. -H. Lee, T. H. Dorris, S. E. Balachandran, U. TI Thickness dependence of hydrogen permeability for Ni-BaCe0.8Y0.2O3-delta SO SOLID STATE IONICS LA English DT Article DE Ni-BCY; Hydrogen; Separation membrane ID ELECTRICAL-PROPERTIES; STRONTIUM CERATE; DEFECT STRUCTURE; MEMBRANES; PERMEATION; SRCE0.95EU0.05O3-DELTA; SEPARATION; STABILITY; GRADIENTS; MOBILITY AB The hydrogen separation properties and thickness dependence of the hydrogen flux for Ni-BCY membranes, containing a proton-conductor (BaCe0.8Y0.2O3-alpha, i.e., BCY) and an electron-conductor (Ni metal), were studied as a function of temperature in the thickness range of 0.08-1.16 mm. Feed gas was composed of 3.8% H-2 balanced with He (pH(2)O=0.03 atm) gas and sweep gas contained 100 ppm hydrogen balanced with nitrogen. The hydrogen permeation flux due to ambipolar diffusion dominates over the entire experimental temperature range. but the hydrogen permeation flux through the Ni-metal increases with temperature due to its endothermic hydrogen solubility. The hydrogen flux through the Ni-BCY membranes is inversely proportional to the thickness, indicating that bulk diffusion is the rate limiting step down to a thickness of 80 pm. For thicker (>640 mu m) membranes. the flux decreases monotonically as the temperature increases up to 900 degrees C, whereas the flux for thinner (<200 mu m) membranes increases as temperature increases up to approximate to 750 degrees C and then remains nearly constant as the temperature is further increased. (C) 2008 Elsevier B.V. All rights reserved. C1 [Song, S. -J.; Moon, J. -H.] Chonnam Natl Univ, Sch Mat Sci & Engn, Kwangju 500757, South Korea. [Lee, T. H.; Dorris, S. E.; Balachandran, U.] Argonne Natl Lab, Div Energy Syst, Argonne, IL 60439 USA. RP Song, SJ (reprint author), Chonnam Natl Univ, Sch Mat Sci & Engn, 300 Yongbong Dong, Kwangju 500757, South Korea. EM song@chonnam.ac.kr FU U.S. Department of Energy; Office of Fossil Energy; National Energy Technology Laboratory's Gasification Technologies Program [W-31-109-Eng-38] FX This work was supported by the U.S. Department of Energy, Office of Fossil Energy, National Energy Technology Laboratory's Gasification Technologies Program, under Contract W-31-109-Eng-38. NR 17 TC 46 Z9 46 U1 5 U2 24 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-2738 J9 SOLID STATE IONICS JI Solid State Ion. PD OCT 15 PY 2008 VL 179 IS 33-34 BP 1854 EP 1857 DI 10.1016/j.ssi.2008.05.012 PG 4 WC Chemistry, Physical; Physics, Condensed Matter SC Chemistry; Physics GA 386GR UT WOS:000261870800004 ER PT J AU Perelson, AS Ribeiro, RM AF Perelson, Alan S. Ribeiro, Ruy M. TI Estimating drug efficacy and viral dynamic parameters: HIV and HCV SO STATISTICS IN MEDICINE LA English DT Article; Proceedings Paper CT Workshop on Statistical Methods in HIV/AIDS and its Practical Applications CY OCT 10, 2006 CL Bethesda, MD SP NIAID DE HIV; hepatitis C; HCV; viral dynamics; parameter estimation ID HEPATITIS-C VIRUS; IN-VIVO; HIV-1-INFECTED PATIENTS; ANTIRETROVIRAL THERAPY; VIROLOGICAL RESPONSES; COMBINATION THERAPY; INTERFERON-ALFA; INFECTED CELL; BASE-LINE; T-CELLS AB Mathematical models have proven valuable in understanding the in vivo dynamics of human immuno-deficiency virus type l (HIV-1), the virus that causes AIDS, and hepatitis C Virus (HCV), the virus that causes hepatitis C infection. By comparing mathematical models with the data obtained froth patients being treated with antiviral drugs, it has been possible to determine many quantitative features of these infections. The most dramatic finding has been that even though AIDS and hepatitis C are diseases that occur on a timescale of one or more decades, there are very rapid dynamical processes that occur on timescales of hours to days, as well as slower processes that occur on timescales of weeks to months. We show how dynamical modeling and parameter estimation techniques have uncovered these important features of HIV and HCV infection and subsequently impacted the way in which patients are treated with potent antiviral drugs. Published in 2007 by John Wiley & Sons, Ltd. C1 [Perelson, Alan S.; Ribeiro, Ruy M.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Perelson, AS (reprint author), Los Alamos Natl Lab, MS K710,T-10, Los Alamos, NM 87545 USA. EM asp@lanl.gov OI Ribeiro, Ruy/0000-0002-3988-8241 FU NCRR NIH HHS [P20-RR18754, RR06555]; NIAID NIH HHS [AI28433] NR 41 TC 18 Z9 19 U1 0 U2 3 PU JOHN WILEY & SONS LTD PI CHICHESTER PA THE ATRIUM, SOUTHERN GATE, CHICHESTER PO19 8SQ, W SUSSEX, ENGLAND SN 0277-6715 J9 STAT MED JI Stat. Med. PD OCT 15 PY 2008 VL 27 IS 23 SI SI BP 4647 EP 4657 DI 10.1002/sim.3116 PG 11 WC Mathematical & Computational Biology; Public, Environmental & Occupational Health; Medical Informatics; Medicine, Research & Experimental; Statistics & Probability SC Mathematical & Computational Biology; Public, Environmental & Occupational Health; Medical Informatics; Research & Experimental Medicine; Mathematics GA 353FB UT WOS:000259550400005 PM 17960579 ER PT J AU Henderson, MA AF Henderson, Michael A. TI Ethyl radical ejection during photodecomposition of butanone on TiO2(110) SO SURFACE SCIENCE LA English DT Article; Proceedings Paper CT 11th International Workshop on Desorption Induced by Electronic Transitions CY MAR 11-15, 2007 CL Berlin, GERMANY SP Max Planck Soc, Univ Oldenburg, Interdisciplinary Ctr Interface Sci DE Titanium dioxide; Photochemistry; Ketones; Photon stimulated desorption ID VOLATILE ORGANIC-COMPOUNDS; PHOTOCATALYTIC OXIDATION; GAS-PHASE; TITANIUM-DIOXIDE; HETEROGENEOUS PHOTOCATALYSIS; CARBOXYLIC-ACIDS; WATER-VAPOR; TIO2; ACETONE; METHYL AB The photodecomposition of acetone and butanone were examined on the (110) surface of rutile TiO2 using temperature programmed desorption (TPD) and photon stimulated desorption (PSD). In both cases, photodecomposition was preceded by a required thermal reaction between the adsorbed ketone and coadsorbed oxygen resulting in an adsorbed diolate species. The diolate photodecomposed by ejection of an organic radical from the surface leaving behind a carboxylate species. In the acetone case, only methyl radical PSD was detected and acetate was left on the surface. In the butanone case there was a possibility of either methyl or ethyl radical ejection, with propionate or acetate left behind, respectively. However, only ethyl radical PSD was detected and the species left on the surface (acetate) was the same as in the acetone case. The preference for ethyl radical ejection is linked to the greater stability of the C-CH3 bond in butanone over that of the C-C2H5 bond. Unlike in the acetone case, where the ejected methyl radicals did not participate in thermal chemistry on the TiO2(110) surface after photoactivation of the acetone diolate, ethyl radicals photodesorbing at 100 K from butanone diolate showed preference for dehydrogenation to ethene on the surface through the influence of coadsorbed oxygen. These results reemphasize the mechanistic importance of organic radical production during photooxidation reactions on TiO2 Surface. (C) 2008 Elsevier B.V. All rights reserved. C1 Pacific NW Natl Lab, Inst Interfacial Catalysis, Richland, WA 99352 USA. RP Henderson, MA (reprint author), Pacific NW Natl Lab, Inst Interfacial Catalysis, POB 99,MS K8-80, Richland, WA 99352 USA. EM ma.henderson@pnl.gov NR 40 TC 25 Z9 25 U1 2 U2 12 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0039-6028 J9 SURF SCI JI Surf. Sci. PD OCT 15 PY 2008 VL 602 IS 20 BP 3188 EP 3193 DI 10.1016/j.susc.2007.06.079 PG 6 WC Chemistry, Physical; Physics, Condensed Matter SC Chemistry; Physics GA 373KB UT WOS:000260969400013 ER PT J AU Waltman, MJ Dwivedi, P Hill, HH Blanchard, WC Ewing, RG AF Waltman, Melanie J. Dwivedi, Prabha Hill, Herbert H., Jr. Blanchard, William C. Ewing, Robert G. TI Characterization of a distributed plasma ionization source (DPIS) for ion mobility spectrometry and mass spectrometry SO TALANTA LA English DT Article DE Distributed plasma ionization source (DPIS); Atmospheric pressure ionization; Ion mobility spectrometry; Mass spectrometry; Corona discharge; Explosives; Drugs ID DISCHARGE; EXPLOSIVES AB A recently developed atmospheric pressure ionization source, a distributed plasma ionization source (DPIS), was characterized and compared to commonly used atmospheric pressure ionization sources with both mass spectrometry (MS) and ion mobility spectrometry (IMS). The source consisted of two electrodes of different sizes separated by a thin dielectric. Application of a high RF voltage across the electrodes generated plasma in air yielding both positive and negative ions. These reactant ions subsequently ionized the analyte vapors. The reactant ions generated were similar to those created in a conventional point-to-plane corona discharge ion source. The positive reactant ions generated by the source were mass identified as being solvated protons of general formula (H2O)(n)H+ with (H2O)(2) H+ as the most abundant reactant ion. The negative reactant ions produced were mass identified primarily as CO3-, NO3-, NO2-, O-3(-) and O-2(-) of various relative intensities. The predominant ion and relative ion ratios varied depending upon source construction and supporting gas flow rates. A few compounds including drugs, explosives and amines were selected to evaluate the new ionization source. The source was operated continuously for 3 months and although surface deterioration was observed visually, the source continued to produce ions at a rate similar that of the initial conditions. (c) 2008 Elsevier B.V. All rights reserved. C1 [Waltman, Melanie J.; Ewing, Robert G.] Pacific NW Natl Lab, Richland, WA 99354 USA. [Waltman, Melanie J.] New Mexico Inst Min & Technol, Dept Chem, Socorro, NM 87801 USA. [Dwivedi, Prabha; Hill, Herbert H., Jr.] Washington State Univ, Dept Chem, Pullman, WA 99164 USA. [Blanchard, William C.] Blanchard & Co Inc, Phoenix, MD 21131 USA. RP Ewing, RG (reprint author), Pacific NW Natl Lab, 902 Battelle Blvd,POB 999, Richland, WA 99354 USA. EM robert.ewing@pnl.gov FU U.S. Department of Energy [DE-AC05-76RL01830]; U.S. Environmental Protection Agency Awards [X-97031101-0, X-97031102-0] FX Funding to support this research was provide by: Geo-Centers Inc., Aberdeen Proving Ground, MD: New Mexico Institute of Mining and Technology, Socorro, NM; and under the Laboratory Directed Research and Development Program at Pacific Northwest National Laboratory, a multiprogram national laboratory operated by Battelle for the U.S. Department of Energy under Contract DE-AC05-76RL01830. H.H. Hill and P. Dwivedi would also like to acknowledge support from the U.S. Environmental Protection Agency Awards, X-97031101-0 and X-97031102-0. NR 22 TC 30 Z9 30 U1 1 U2 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0039-9140 J9 TALANTA JI Talanta PD OCT 15 PY 2008 VL 77 IS 1 BP 249 EP 255 DI 10.1016/j.talanta.2008.06.014 PG 7 WC Chemistry, Analytical SC Chemistry GA 363TR UT WOS:000260290200038 PM 18804628 ER PT J AU van Wijk, JW Lawrence, JF Driscoll, NW AF van Wijk, J. W. Lawrence, J. F. Driscoll, N. W. TI Formation of the Transantarctic Mountains related to extension of the West Antarctic Rift system SO TECTONOPHYSICS LA English DT Article DE Continental rift; West Antarctic Rift; Transantarctic Mountains; Numerical model ID SOUTHERN VICTORIA LAND; MANTLE-PLUME ACTIVITY; MARIE-BYRD-LAND; NEW-ZEALAND; GEOPHYSICAL INVESTIGATIONS; SEDIMENTARY BASINS; ROSS EMBAYMENT; UPLIFT; EAST; TECTONICS AB The Transantarctic Mountains are a major rift-related mountain belt bisecting the Antarctic continent. The range is located on the tectonic boundary between non-cratonic West and cratonic East Antarctica. Formation of the mountain range and a possible relation with the West Antarctic Rift system are unclear. In this study, we find a new explanation for uplift of the Transantarctic Mountains and suggest a relation between uplift of the range, formation of a small crustal root, depression of the hinterland Wilkes Basin, and the formation of the adjacent West Antarctic Rift system. Numerical models show that upon extension of the Antarctic lithosphere, the West Antarctic Rift system is formed on the tectonic boundary between East and West Antarctica. Convergence of crustal material results in crustal thickening and uplift of the Earth's surface on the cratonic side of this rift zone, and formation of the Transantarctic Mountains. Some models predict a depression in the hinterland of the mountain range at the location of the Wilkes Basin. These models predict that the Wilkes Basin is a non-extensional basin caused by flexure of the lithosphere. This study shows that inherited lithosphere structures play an important role in localization of both extensional and convergent deformation. (C) 2008 Elsevier B.V. All rights reserved. C1 [van Wijk, J. W.] Los Alamos Natl Lab, Div Earth & Environm Sci, Los Alamos, NM 87545 USA. [Lawrence, J. F.; Driscoll, N. W.] Univ Calif San Diego, Scripps Inst Oceanog, IGPP, La Jolla, CA 92093 USA. RP van Wijk, JW (reprint author), Los Alamos Natl Lab, Div Earth & Environm Sci, MS D443, Los Alamos, NM 87545 USA. EM jolante@lanl.gov; jflawrence@stanford.edu; ndriscoll@ucsd.edu FU [NSF/OCE-0527215] FX We thank two reviewers for constructive comments. JvW and NWD received support from NSF/OCE-0527215. NR 66 TC 11 Z9 11 U1 2 U2 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0040-1951 J9 TECTONOPHYSICS JI Tectonophysics PD OCT 15 PY 2008 VL 458 IS 1-4 SI SI BP 117 EP 126 DI 10.1016/j.tecto.2008.03.009 PG 10 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 369PA UT WOS:000260705200008 ER PT J AU Fair, JM Taylor-McCabe, KJ Shou, YL Marrone, BL AF Fair, Jeanne M. Taylor-McCabe, Kirsten J. Shou, Yulin Marrone, Babetta L. TI Immunophenotyping of chicken peripheral blood lymphocyte subpopulations: Individual variability and repeatability SO VETERINARY IMMUNOLOGY AND IMMUNOPATHOLOGY LA English DT Article DE Chicken; Flow cytometry; Immunophenotyping; Hematology ID FREE-RANGE CHICKENS; MONOCLONAL-ANTIBODIES; T-CELLS; ENTERITIDIS; SYSTEMS; SPLEEN AB T-cell lymphocyte populations can be delineated into subsets based on expression of cell surface proteins that can be measured in peripheral blood by monoclonal antibodies and flow cytometry percentages of the lymphocyte subpopulations. In order to accurately assess immunocompetence in birds, natural variability in both avian immune function and the methodology must be understood. Our objectives were to (1) further develop flow cytometry for estimating subpopulations of lymphocytes in peripheral blood from poultry, (2) estimate repeatability and variability in the methodology with respect to poultry in a free-range and environmentally diverse situation, and (3) estimate the best antibody and cell marker combination for estimating lymphocyte subpopulations. This work demonstrated the repeatability of using flow cytometry for measurements of peripheral blood in chickens using anti-chicken antibodies for lymphocyte subpopulations. Immunofluorescence, staining of cells isolated from peripheral blood revealed that the CD3(+) antibodies reacted with an average of approximately 12-24% of the lymphoid cells in the blood, depending on the fluorescence type. The CD4(+) and CD8(+) molecules were expressed in a range of 4-31 % and 1-10% of the lymphoid cells in the blood, respectively. Both fluorescence label and antibody company contribute to the variability of results and should be considered in future flow cytometry studies in poultry. (c) 2008 Elsevier B.V. All rights reserved. C1 [Fair, Jeanne M.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Taylor-McCabe, Kirsten J.; Shou, Yulin; Marrone, Babetta L.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Fair, JM (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM jmfair@lan1.gov FU Laboratory Directed Research and Development Program through Los Alamos National Security LLC [DE-AC52-06NA25396]; U.S. Department of Energy; Institutional Animal Care and Use Committee; Institutional Biosafety Committee FX We thank the following people for excellence in field and laboratory assistance: C. Hathcock, D. Keller, B. Pearson, L. Marsh, L. Bare, M. Nichols, M. Shendo, S. Loftin, T. Haarmann, and A. Thomas. We thank H. Hinojosa for comments on an earlier draft. This research was funded by the Laboratory Directed Research and Development Program through Los Alamos National Security, LLC, operator of the Los Alamos National Laboratory under contract no. DE-AC52-06NA25396 with the U.S. Department of Energy. This research was approved by the Institutional Animal Care and Use Committee and the Institutional Biosafety Committee at Los Alamos National Laboratory. NR 16 TC 12 Z9 13 U1 1 U2 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0165-2427 J9 VET IMMUNOL IMMUNOP JI Vet. Immunol. Immunopathol. PD OCT 15 PY 2008 VL 125 IS 3-4 BP 268 EP 273 DI 10.1016/j.vetimm.2008.05.012 PG 6 WC Immunology; Veterinary Sciences SC Immunology; Veterinary Sciences GA 363SD UT WOS:000260286100007 PM 18602700 ER PT J AU Johnson, CS Li, NC Lefief, C Vaughey, JT Thackeray, MM AF Johnson, Christopher S. Li, Naichao Lefief, Christina Vaughey, John T. Thackeray, Michael M. TI Synthesis, Characterization and Electrochemistry of Lithium Battery Electrodes: xLi(2)MnO(3)center dot(1-x)LiMn0.333Ni0.333Co0.333O2 (0 <= x <= 0.7) SO CHEMISTRY OF MATERIALS LA English DT Article ID ION BATTERIES; MANGANESE-OXIDE; POSITIVE ELECTRODE; STRUCTURAL-CHARACTERIZATION; CATHODE MATERIAL; ANOMALOUS CAPACITY; MONOCLINIC LI2MNO3; INSERTION MATERIAL; RAY-DIFFRACTION; 1ST PRINCIPLES AB Lithium- and manganese-rich layered electrode materials, represented by the general formula xLi(2)MnO(3)center dot(1-x)LiMO2 in which M is Mn, Ni, and Co, are of interest for both high-power and high-capacity lithium ion cells. In this paper, the synthesis, structural and electrochemical characterization of xLi(2)MnO(3)center dot(1-x)LiMn0.333Ni0.333Co0.333O2 electrodes over a wide compositional range (0 <= x <= 0.7) is explored. Changes that occur to the compositional, structural, and electrochemical properties of the electrodes as a function of x and the importance of using a relatively high manganese content and a high charging potential (> 4.4 V) to generate high capacity (> 200 mAh/g) electrodes are highlighted. Particular attention is given to the electrode composition 0.3Li(2)MnO(3)center dot 0.7LiMn(0.333)Ni(0.333)Co(0.333)O(2) (x = 0.3) which, if completely delithiated during charge, yields Mn0.533Ni0.233Co0.233O2, in which the manganese ions are tetravalent and, when fully discharges, LiMn0.533Ni0.233Co0.233O2 composite electrode structures with 0.1 M HNO3 chemically activates the Li2MnO3 component and essentially eliminates the first cycle capacity loss but damages electrochemical behavior, consistent with earlier reports for Li2MnO3 component are discussed. Electrochemical charge/discharge profiles and cyclic voltammogram data suggest that small spinel-like regions, generated in cycled manganese-rich electrodes, serve to stabilize the electrodes, particularly at low lithium loadings (high potentials). The study emphasizes that, for high values of x, a relatively small LiMO2 concentration stabilizes a layered Li2MnO3 electrode to reversible lithium insertion and extraction when charged to a high potential. C1 [Johnson, Christopher S.; Li, Naichao; Lefief, Christina; Vaughey, John T.; Thackeray, Michael M.] Argonne Natl Lab, Electrochem Engn Storage Dept, Chem Sci & Engn Div, Argonne, IL 60439 USA. RP Johnson, CS (reprint author), Argonne Natl Lab, Electrochem Engn Storage Dept, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM cjohnson@anl.gov FU Office of Vehicle Technologies of the U.S. [DE-AC02-06CH11357] FX Financial support from the Office of Vehicle Technologies of the U.S. Department of Energy under Contract DE-AC02-06CH11357 is gratefully acknowledged.; The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. NR 66 TC 410 Z9 431 U1 48 U2 359 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 J9 CHEM MATER JI Chem. Mat. PD OCT 14 PY 2008 VL 20 IS 19 BP 6095 EP 6106 DI 10.1021/cm801245r PG 12 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 357UG UT WOS:000259871500022 ER PT J AU Sieve, B Gray, DL Henning, R Bakas, T Schultz, AJ Kanatzidis, MG AF Sieve, Bradley Gray, Danielle L. Henning, Robert Bakas, Thomas Schultz, Arthur J. Kanatzidis, Mercouri G. TI Al Flux Synthesis of the Oxidation-Resistant Quaternary Phase REFe4Al9Si6 (RE = Tb, Er) SO CHEMISTRY OF MATERIALS LA English DT Article ID ALUMINUM-MATRIX COMPOSITES; TRANSITION-METAL SILICIDES; LIQUID ALUMINUM; MOLTEN ALUMINUM; INTERMETALLIC COMPOUNDS; ELECTRICAL-RESISTIVITY; EXPLORATORY SYNTHESIS; MAGNETIC-PROPERTIES; DUCTILITY BEHAVIOR; AL/SI DISTRIBUTION AB Two rare earth iron aluminium silicides, REFe4Al9Si6 (RE = Tb, Er), were synthesized in liquid Al at temperatured below 850 degrees C. They crystallize in the tetragonal space group P4(2)/mnc (no. 137) with cell dimensions of a = 8.718(1) angstrom and c = 15.171(3) angstrom for the Tb analogue. The structure, which is highly intricate and represents a rare structural arrangement, is based on that of NdRh4Al15.4. It can be understood in terms of highly corrugated layers of merged Al-6 rings stacking to form a three-dimensional framework. the Fe and Si atoms are situated in various sites in the framework. The RE atoms have a very high coordination number (20) and sit in remaining pockets formed by the bonding arrangements in the structure. Magnetic measurements show that the rare earth ions are in a 3+ state, whereas Mossbauer measurements show that the Fe atoms do not exhibit a magnetic moment and are more reduced than in elemental Fe. The possible insights gained from these results into the mettallurgical processing of advanced aluminum matrix alloys are discussed. Thermal gravimetric analysis experiments in air show that REFe4Al9Si6 is resistant to oxidation up to 900 degrees C, Which is attributable to an alumina/silica surface scale. C1 [Gray, Danielle L.; Kanatzidis, Mercouri G.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. [Sieve, Bradley] No Kentucky Univ, Dept Chem, Highland Hts, KY 41099 USA. [Henning, Robert; Schultz, Arthur J.] Argonne Natl Lab, Intense Pulsed Neutron Source, Argonne, IL 60439 USA. [Bakas, Thomas] Univ Ioannina, Dept Phys, GR-45110 Ioannina, Greece. RP Kanatzidis, MG (reprint author), Northwestern Univ, Dept Chem, 2145 Sheridan Rd, Evanston, IL 60208 USA. EM m-kanatzidis@northwestern.edu OI Gray, Danielle/0000-0003-0059-2096 FU Department of Energy [DE-FG02-07ER46356]; U.S. Department of Energy, Basic Energy Sciences-Materials Sciences [W-31-109-ENG-38] FX Financial Support from the Department of Energy (Grant DE-FG02-07ER46356, Northwestern University) is gratefully acknowledged. The work at Argonne National Laboratory (IPNS) was supported by the U.S. Department of Energy, Basic Energy Sciences-Materials Sciences. under Contract No. W-31-109-ENG-38. NR 48 TC 8 Z9 8 U1 1 U2 6 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 J9 CHEM MATER JI Chem. Mat. PD OCT 14 PY 2008 VL 20 IS 19 BP 6107 EP 6115 DI 10.1021/cm801554d PG 9 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 357UG UT WOS:000259871500023 ER PT J AU Cho, JY Millican, JN Capan, C Sokolov, DA Moldovan, M Karki, AB Young, DP Aronson, MC Chan, JY AF Cho, Juno Young Millican, Jasmine N. Capan, Cigdem Sokolov, Dmitry A. Moldovan, Monica Karki, Amar B. Young, David P. Aronson, Melgan C. Chan, Julia Y. TI Crystal Growth, Structure, and Physical Properties of Ln(2)MGa(12) (Ln = La, Ce; M = Ni, Cu) SO CHEMISTRY OF MATERIALS LA English DT Article ID HEAVY-FERMION COMPOUNDS; KONDO COMPOUND CECU5; GALLIUM; SUPERCONDUCTIVITY; MAGNETORESISTANCE; SYSTEMS; METALS; CROSSOVER; CECU3AL2; GA AB Single crystals of Ln(2)MGa(12) (Ln = La, Ce; M = Ni, Cu) have been synthesized using Ga flux and their structures determined by single-crystal X-ray diffraction. The Ln(2)MGa(12) (Ln - La, Ce; M = Ni, Cu), which is isostructural to Ce2PdGa12, crystallizes in the tetragonal P4/nbm (no. 125, origin choice 2) space group, with Z = 2 and lattice parameters a approximate to 6.1 angstrom and c approximate to 15.3 angstrom. Ce2NiGa12 orders antiferromagnetically at 10 K and specific heat measurements suggest it is a moderate heavy-fermion system with gamma approximate to 191 mj mol(-1) K-2. Magnetic susceptibility data show paramagnetic behavior down to 2 K for Ce2CuGa12, whereas specific heat data suggest a magnetic transition below 1.8 K, with a moderately enhanced gamma-value of 69 mj mol(-1) K-2. Metallic behavior is observed below 300 K for each compound. A large positive and nonsaturating magnetoresistance up to 216% at a field (mu H-0) of 9 T is also observed for La2NiGa12. We present the crystal structures and physical properties of the Ln(2)MGa(12) (Ln = La, Ce; M = Ni, Cu) series. C1 [Cho, Juno Young; Millican, Jasmine N.; Chan, Julia Y.] Louisiana State Univ, Dept Chem, Baton Rouge, LA 70803 USA. [Capan, Cigdem; Moldovan, Monica; Karki, Amar B.; Young, David P.] Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA. [Millican, Jasmine N.] Natl Inst Stand & Technol, NIST Ctr Neutron Res, Gaithersburg, MD 20899 USA. [Sokolov, Dmitry A.; Aronson, Melgan C.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Aronson, Melgan C.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. RP Chan, JY (reprint author), Louisiana State Univ, Dept Chem, Baton Rouge, LA 70803 USA. EM jchan@lsu.edu RI Sokolov, D/G-7755-2011; Chan, Julia/C-5392-2008 OI Chan, Julia/0000-0003-4434-2160 FU NSF [DMR0237664)]; Alfred P. Sloan Fellowship; [DMR0449022] FX Acknowledgment. J.Y.C. acknowledges in NSF-CAREER award (Grant DMR0237664) and Alfred P. Sloan Fellowship For partial support of this project. DRY. acknowledges an NSF-CAREER award (Grant DMR0449022). Work at the Brookhaven National Laboratory Was Carried Out under the auspices of the U S Department of Energy. We also acknowledge Dr. Frank Fronczek and Judith K. Stalick for useful discussion. Certain trade names and Company)I products are identified ill order to specify adequately the experimental Procedure. In no case does Such identification imply recommendation or endorsement by the National Institute of Standards and Technology. nor does it imply that the products are necessarily the best for the Purpose. NR 37 TC 16 Z9 16 U1 1 U2 17 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 J9 CHEM MATER JI Chem. Mat. PD OCT 14 PY 2008 VL 20 IS 19 BP 6116 EP 6123 DI 10.1021/cm801693t PG 8 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 357UG UT WOS:000259871500024 ER PT J AU Sakellariou, G Ji, HN Mays, JW Baskaran, D AF Sakellariou, Georgios Ji, Haining Mays, Jimmy W. Baskaran, Durairaj TI Enhanced Polymer Grafting from Multiwalled Carbon Nanotubes through Living Anionic Surface-Initiated Polymerization SO CHEMISTRY OF MATERIALS LA English DT Article ID TRANSFER RADICAL POLYMERIZATION; CHROMATOGRAPHIC PURIFICATION; SIDEWALL FUNCTIONALIZATION; SINGLE; POLYSTYRENE; COMPOSITES AB Anionic surface-initiated polymerization of ethylene oxide and styrene has been performed using multiwalled carbon nanotubes (MWNTs) functionalized with anionic initiators. The surface of MWNTs was modified via covalent attachment of precursor anions such as 40hydroxyethyl benzocyclobutene (BCB-EO) and 1-benzocyclobutene-1 '-phenylethylene (BCB-PE) through Diels-Alder cycloaddition at 235 degrees C. Surfact-functionalized MWNTs-g-(BCB-EO)(n) and MWNTs-g-(BCB-PE)(n) with 23 and 54 wt % precursor initiators, respectively, were used for the polymerizations. Alkoxide anion on the surface of MWNTs-g-(BCB-EO)(n) was generated through reaction with potassium triphenylmethane for the polymerization of ethylene oxide in tetrahydrofuran and phenyl substituted alkyllithium was generated from the surface of MWNTs-g-(BCB-PE)(n) using sec-butyllithium for the polymerization of styrene in benzene. In both cases, the initiation was found to be very slow because of the heterogeneous reaction medium. However, the MWNTs gradually dispersed in the reaction medium during the polymerization. A pale green color was noticed in the case of ethylene oxide polymerization and the color of initiator as well as the propagating anions was not discernible visually in styrene polymerization. Polymer grafted nanocomposites, MWNTs-g-(BCB-PEO)(n) and MWNTs ( <1 wt % ) were obtained. The conversion of ethylene oxide and the weight percent of PEO on the surface of the MWNTs increased with increasing reaction time indicating a controlled polymerization. The polymer-grafted MWNTs were characterized using FT-IR. H-1 NMR. Raman spectroscopy, differential scanning calorimetry, thermogravimetric analysis, and transmission electron microscopy (TEM). Size exclusion chromatography of the polymer grafted MWNTs revealed broad molecular weight distributions (1.3 < M-w/M-n < 1.8) indicating the presence of different sizes of polymer nanocomposites. The TEM images showed the presence of thick layers of polymer upto 30 nm around the MWNTs. The living nature of the growing polystyryllithium was used to produce diblock copolymer grafts using sequential polymerization of isoprene on the surface of MWNTs. C1 [Sakellariou, Georgios; Ji, Haining; Mays, Jimmy W.; Baskaran, Durairaj] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. [Mays, Jimmy W.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. RP Baskaran, D (reprint author), Univ Tennessee, Dept Chem, 552 Buehler Hall, Knoxville, TN 37996 USA. EM baskaran@utk.edu RI Durairaj, Baskaran/C-3692-2009; Sakellariou, Georgios/B-1752-2014 OI Durairaj, Baskaran/0000-0002-6886-5604; FU Division of Materials Science and Engineering; Office of Basic Energy Sciences; U.S. Department of Energy [DE-AC05-00OR22725] FX This work was sponsored by the Division of Materials Science and Engineering, Office of Basic Energy Sciences, U.S. Department of Energy, under Contract DE-AC05-00OR22725 with Oak Ridge National Laboratory. managed and operated by UT-Battelle, LLC. NR 47 TC 35 Z9 35 U1 1 U2 33 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 J9 CHEM MATER JI Chem. Mat. PD OCT 14 PY 2008 VL 20 IS 19 BP 6217 EP 6230 DI 10.1021/cm801449t PG 14 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 357UG UT WOS:000259871500037 ER PT J AU Lowman, JP Gait, AD Gable, CW Kukreja, H AF Lowman, J. P. Gait, A. D. Gable, C. W. Kukreja, H. TI Plumes anchored by a high viscosity lower mantle in a 3D mantle convection model featuring dynamically evolving plates SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID SPHERICAL-SHELL MODELS; TECTONIC PLATES; SURFACE PLATES; FLOW; HOTSPOTS; MOTION AB Previous studies have shown that 3D vigorously convecting systems featuring plate-like surface motion and lower mantle viscosities much greater than the upper mantle viscosity can yield long lived intraplate plumes if plate boundaries remain fixed. We investigate whether plumes originating in a lower mantle 90 times more viscous than the upper mantle will maintain relatively fixed positions when dynamic plate evolution is present. We compare the findings from a pair of calculations featuring four plates in a 3 x 3 x 1 periodic Cartesian geometry model. In both calculations, plate velocities are determined dynamically in response to the stresses acting on the viscously defined lithosphere. In one case plate boundaries are held fixed, in the second dynamically determined plate evolution is enabled. In both cases, long lived mantle plumes are observed. Moreover, the locations of the plumes remain relatively fixed even as plates systematically evolve to a completely different arrangement from their initial configuration. Citation: Lowman, J. P., A. D. Gait, C. W. Gable, and H. Kukreja (2008), Plumes anchored by a high viscosity lower mantle in a 3D mantle convection model featuring dynamically evolving plates, Geophys. Res. Lett., 35, L19309, doi: 10.1029/2008GL035342. C1 [Lowman, J. P.; Kukreja, H.] Univ Toronto Scarborough, Dept Phys & Environm Sci, Toronto, ON M1C 1A4, Canada. [Gait, A. D.] Univ Manchester, Sch Math, Manchester M13 9PL, Lancs, England. [Gable, C. W.] Los Alamos Natl Lab, Hydrol Geochem & Geol Grp, Div Earth & Environm Sci, Los Alamos, NM 87545 USA. RP Lowman, JP (reprint author), Univ Toronto Scarborough, Dept Phys & Environm Sci, 1265 Mil Trail, Toronto, ON M1C 1A4, Canada. EM lowman@utsc.utoronto.ca; andrew.gait@manchester.ac.uk; gable@lanl.gov; harish.kukreja@utoronto.ca RI Gable, Carl/B-4689-2011; OI Gait, Andrew/0000-0001-9349-1096; Gable, Carl/0000-0001-7063-0815 FU NSERC of Canada [327084-06] FX JPL is grateful to the NSERC of Canada for continued funding in planetary mantle dynamics (327084-06). NR 17 TC 6 Z9 6 U1 1 U2 5 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD OCT 14 PY 2008 VL 35 IS 19 AR L19309 DI 10.1029/2008GL035342 PG 5 WC Geosciences, Multidisciplinary SC Geology GA 362CX UT WOS:000260176900005 ER PT J AU Bardhan, JP AF Bardhan, Jaydeep P. TI Interpreting the Coulomb-field approximation for generalized-Born electrostatics using boundary-integral equation theory SO JOURNAL OF CHEMICAL PHYSICS LA English DT Review ID POISSON-BOLTZMANN EQUATION; IMPLICIT SOLVENT MODELS; MOLECULAR-DYNAMICS SIMULATIONS; FREE-ENERGY LANDSCAPE; FAST MULTIPOLE ALGORITHM; DEAD-END ELIMINATION; ELEMENT METHOD; EXPLICIT SOLVENT; MACROMOLECULAR ELECTROSTATICS; CONTINUUM ELECTROSTATICS AB The importance of molecular electrostatic interactions in aqueous solution has motivated extensive research into physical models and numerical methods for their estimation. The computational costs associated with simulations that include many explicit water molecules have driven the development of implicit-solvent models, with generalized-Born (GB) models among the most popular of these. In this paper, we analyze a boundary-integral equation interpretation for the Coulomb-field approximation (CFA), which plays a central role in most GB models. This interpretation offers new insights into the nature of the CFA, which traditionally has been assessed using only a single point charge in the solute. The boundary-integral interpretation of the CFA allows the use of multiple point charges, or even continuous charge distributions, leading naturally to methods that eliminate the interpolation inaccuracies associated with the Still equation. This approach, which we call boundary-integral-based electrostatic estimation by the CFA (BIBEE/CFA), is most accurate when the molecular charge distribution generates a smooth normal displacement field at the solute-solvent boundary, and CFA-based GB methods perform similarly. Conversely, both methods are least accurate for charge distributions that give rise to rapidly varying or highly localized normal displacement fields. Supporting this analysis are comparisons of the reaction-potential matrices calculated using GB methods and boundary-element-method (BEM (simulations. An approximation similar to BIBEE/CFA exhibits complementary behavior, with superior accuracy for charge distributions that generate rapidly varying normal fields and poorer accuracy for distributions that produce smooth fields. This approximation, BIBEE by preconditioning (BIBEE/P), essentially generates initial guesses for preconditioned Krylov-subspace iterative BEMs. Thus, iterative refinement of the BIBEE/P results recovers the BEM solution; excellent agreement is obtained in only a few iterations. The boundary-integral-equation framework may also provide a means to derive rigorous results explaining how the empirical correction terms in many modern GB models significantly improve accuracy despite their simple analytical forms. c 2008 American Institute of Physics. C1 [Bardhan, Jaydeep P.] Argonne Natl Lab, Math & Comp Sci Div, Argonne, IL 60439 USA. [Bardhan, Jaydeep P.] Rush Univ, Dept Mol Biophys & Physiol, Chicago, IL 60612 USA. RP Bardhan, JP (reprint author), Argonne Natl Lab, Math & Comp Sci Div, Argonne, IL 60439 USA. EM jbardhan@alum.mit.edu FU Mathematical, Information, and Computational Sciences Division; U. S. Department of Energy [AC02-06CH11357] FX The author thanks B. Roux for the use of CHARMM and for encouragement, M. D. Altman for sharing the CDK2-inhibitor and HIV-1 protease-inhibitor geometries, M. Anitescu, M. K. Gilson, B. Egwolf, and D. F. Green for valuable discussions, and gratefully acknowledges funding from a Wilkinson Fellowship in Scientific Computing funded by the Mathematical, Information, and Computational Sciences Division Subprogram of the Office of Advanced Scientific Computing Research, Office of Science, U. S. Department of Energy, under Contract No. DE-AC02-06CH11357. The author would also like to acknowledge the referees' insightful comments, which substantially improved the paper, and the support and hospitality of the Radon Institute for Computational and Applied Mathematics at the Johannes Kepler Universitat in Linz, Austria, where a portion of this work was conducted. NR 122 TC 19 Z9 19 U1 0 U2 6 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD OCT 14 PY 2008 VL 129 IS 14 AR 144105 DI 10.1063/1.2987409 PG 12 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 359ZD UT WOS:000260025900005 PM 19045132 ER PT J AU Han, JX Tiago, ML Chan, TL Chelikowsky, JR AF Han, Jiaxin Tiago, Murilo L. Chan, T. -L. Chelikowsky, James R. TI Real space method for the electronic structure of one-dimensional periodic systems SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID TOTAL-ENERGY; COMPUTATION AB We present a real space pseudopotential method for calculating the electronic structure of one-dimensional periodic systems such as nanowires. As an application of this method, we examine Hpassivated Si nanowires. The band structure and heat of formation of the Si nanowires are presented and compared to plane wave methods. Our method is able to offer the same accuracy as the traditional plane wave methods but offers a number of computational advantages such as faster convergence for heteropolar nanowires. (C) 2008 American Institute of Physics. C1 [Han, Jiaxin; Chan, T. -L.; Chelikowsky, James R.] Univ Texas Austin, Inst Computat Engn & Sci, Ctr Computat Mat, Austin, TX 78712 USA. [Han, Jiaxin; Chelikowsky, James R.] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA. [Tiago, Murilo L.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Chelikowsky, James R.] Univ Texas Austin, Dept Chem Engn, Austin, TX 78712 USA. RP Chelikowsky, JR (reprint author), Univ Texas Austin, Inst Computat Engn & Sci, Ctr Computat Mat, Austin, TX 78712 USA. EM jrc@ices.utexas.edu RI Chan, Tzu-Liang/C-3260-2015 OI Chan, Tzu-Liang/0000-0002-9655-0917 FU National Science Foundation [DMR-0551195]; U. S. Department of Energy [DE-FG02-06ER46286, DE-FG02-06ER15760]; National Energy Research Scientific Computing Center (NERSC); Texas Advanced Computing Center (TACC) FX This work was supported in part by the National Science Foundation under Grant No. DMR-0551195 and the U. S. Department of Energy under Grant Nos. DE-FG02-06ER46286 and DE-FG02-06ER15760. Computational resources were provided in part by the National Energy Research Scientific Computing Center (NERSC) and the Texas Advanced Computing Center (TACC). M. L. T. acknowledges support from the Division of Materials Sciences and Engineering BES, U. S. DOE. Research at the Oak Ridge National Laboratory was supported by the U. S. Department of Energy under a contract with UT-Battelle, LLC. NR 27 TC 18 Z9 18 U1 0 U2 9 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-9606 EI 1089-7690 J9 J CHEM PHYS JI J. Chem. Phys. PD OCT 14 PY 2008 VL 129 IS 14 AR 144109 DI 10.1063/1.2988316 PG 7 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 359ZD UT WOS:000260025900009 PM 19045136 ER PT J AU Jackson, K Ma, L Yang, M Jellinek, J AF Jackson, K. Ma, L. Yang, M. Jellinek, J. TI Atomistic dipole moments and polarizabilities of Na(N) clusters, N=2-20 SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID SODIUM CLUSTERS; ALKALI CLUSTERS; METAL-CLUSTERS; APPROXIMATION; NA(N) AB The atomic-level response of NaN clusters, N = 2 -20, to a small static external electric field is studied using a method that decomposes the total cluster dipole moment and polarizability into contributions from nonoverlapping atomic volumes. The atomic dipole moments and polarizabilities are, in turn, partitioned into the so-called dipole and charge-transfer components. The former characterizes a dielectric type of a response, whereas the latter represents a metallic type of a response. Analysis of the atomic polarizabilities points to their strong dependence on the site, or location, of the atoms within the structure of the clusters. Surface atoms have larger polarizabilities than the interior ones. Overall, the fraction of the charge-transfer component of the averaged atomic polarizabilities is an increasing function of the cluster size. The charge-transfer component is also responsible for the structure/ shape driven variations in the atomic polarizabilities. The anisotropy of the total polarizabilities correlates with the shape anisotropy of the clusters. (C) 2008 American Institute of Physics. C1 [Jackson, K.; Ma, L.] Cent Michigan Univ, Dept Phys, Mt Pleasant, MI 48859 USA. [Yang, M.] Sichuan Univ, Inst Nanobiomed Technol & Membrane Biol, W China Med Sch, State Key Lab Biotherapy,W China Hosp, Chengdu 610041, Peoples R China. [Jellinek, J.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. RP Jackson, K (reprint author), Cent Michigan Univ, Dept Phys, Mt Pleasant, MI 48859 USA. EM jacks1ka@cmich.edu; jellinek@anl.gov RI Yang, Mingli/E-9983-2012; Ma, Li/B-1815-2016 OI Yang, Mingli/0000-0001-8590-8840; Ma, Li/0000-0003-0002-6350 NR 20 TC 18 Z9 18 U1 0 U2 7 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD OCT 14 PY 2008 VL 129 IS 14 AR 144309 DI 10.1063/1.2978169 PG 10 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 359ZD UT WOS:000260025900022 PM 19045149 ER PT J AU Hansen, SE Gaherty, JB Schwartz, SY Rodgers, AJ Al-Amri, AMS AF Hansen, Samantha E. Gaherty, James B. Schwartz, Susan Y. Rodgers, Arthur J. Al-Amri, Abdullah M. S. TI Seismic velocity structure and depth-dependence of anisotropy in the Red Sea and Arabian shield from surface wave analysis SO JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH LA English DT Article ID UPPER-MANTLE STRUCTURE; CONTINENTAL UPPER-MANTLE; AZIMUTHAL ANISOTROPY; LITHOSPHERIC STRUCTURE; SAUDI-ARABIA; RECEIVER FUNCTIONS; UPPERMOST MANTLE; KAAPVAAL CRATON; PLATE-MOTION; SIMPLE-SHEAR AB We investigate the lithospheric and upper mantle shear wave velocity structure and the depth-dependence of anisotropy along the Red Sea and beneath the Arabian Peninsula using receiver function constraints and phase velocities of surface waves traversing two transects of stations from the Saudi Arabian National Digital Seismic Network. Frequency-dependent phase delays of fundamental-mode Love and Rayleigh waves, measured using a cross-correlation procedure, require very slow shear velocities and the presence of anisotropy to depths of at least 180 km in the upper mantle. Linearized inversion of these data produce path-averaged 1D radially anisotropic models with similar to 4% anisotropy in the lithosphere and across the lithosphere-asthenosphere boundary (LAB). Models with reasonable crustal velocities in which the mantle lithosphere is isotropic cannot satisfy the data. The lithosphere, which ranges in thickness from about 70 km near the Red Sea coast to about 90 km beneath the Arabian Shield, is underlain by a pronounced low-velocity zone with shear velocities as low as 4.1 km/s. Forward models of azimuthal anisotropy, which are constructed from previously determined shear wave splitting estimates, can reconcile surface and body wave observations of anisotropy. The low shear velocities extend to greater depth than those observed in other continental rift and oceanic ridge environments. The depth extent of these low velocities combined with the sharp velocity contrast across the LAB may indicate the influence of the Afar hot spot and the presence of partial melt beneath Arabia. The anisotropic signature primarily reflects a combination of plate- and density-driven flow associated with rifting processes in the Red Sea. C1 [Al-Amri, Abdullah M. S.] King Saud Univ, Seism Studies Ctr, Riyadh 11451, Saudi Arabia. [Gaherty, James B.] Columbia Univ, Lamont Doherty Earth Observ, Palisades, NY 10964 USA. [Rodgers, Arthur J.] Lawrence Livermore Natl Lab, Energy & Environm Directorate, Livermore, CA 94551 USA. [Schwartz, Susan Y.] Univ Calif Santa Cruz, Dept Earth & Planetary Sci, Santa Cruz, CA 95064 USA. [Al-Amri, Abdullah M. S.] King Saud Univ, Dept Geol, Riyadh 11451, Saudi Arabia. RP Hansen, SE (reprint author), Penn State Univ, Dept Geosci, University Pk, PA 16802 USA. EM shansen@geosc.psu.edu RI Rodgers, Arthur/E-2443-2011 FU CSIDE/IGPP; LLNL Student Employee Graduate Research; U. S. Department of Energy by University of California; Lawrence Livermore National Laboratory [W-7405-Eng-48]; LLNL [UCRL-JRNL-233119] FX We thank Thorne Lay, Hanneke Paulssen, and Keith Priestley for their helpful discussions as well as Michael Ritzwoller and two anonymous reviewers for their thorough critiques of this manuscript. Figures were prepared using GMT [Wessel and Smith, 1998]. Support for this work was provided by CSIDE/IGPP and the LLNL Student Employee Graduate Research Fellow program. This work was performed under the auspices of the U. S. Department of Energy by University of California, Lawrence Livermore National Laboratory under contract W-7405-Eng-48. This is LLNL contribution UCRL-JRNL-233119. NR 63 TC 5 Z9 5 U1 0 U2 2 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9313 EI 2169-9356 J9 J GEOPHYS RES-SOL EA JI J. Geophys. Res.-Solid Earth PD OCT 14 PY 2008 VL 113 IS B10 AR B10307 DI 10.1029/2007JB005335 PG 16 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 362EC UT WOS:000260180000002 ER PT J AU Tao, YF Ma, BW Segalman, RA AF Tao, Yuefei Ma, Biwu Segalman, Rachel A. TI Self-Assembly of Rod-Coil Block Copolymers and Their Application in Electroluminescent Devices SO MACROMOLECULES LA English DT Article ID LIGHT-EMITTING-DIODES; CONJUGATED POLYMER BLENDS; ORDER-DISORDER TRANSITION; DIBLOCK COPOLYMERS; RADICAL POLYMERIZATION; TRANSPORT MATERIALS; SOLAR-CELLS; THIN-FILMS; GRAZING-INCIDENCE; FACILE SYNTHESIS AB The formation of alternating electron transporting and hole transporting 15 nm lamellae within the active layer of an organic light-emitting diode (OLED) is demonstrated to improve device performance. A new multifunctional bipolar rod-coil block copolymer containing a poly(alkoxy phenylenevinylene) (PPV) rodshaped block as the hole transporting and emitting material and a poly(vinyloxadiazole) coil-shaped electron transporting block is synthesized. This new block copolymer is the active material of a self-assembling multicomponent electroluminescent device that can be deposited in a single step. In the thin film, grazing incidence X-ray scattering and transmission electron microscopy demonstrate that the layers form grains which are oriented bimodally: parallel and perpendicular from the anode. In this mixed orientation, the device demonstrates better performance than those with either pure PPV or a blend of the two analogous homopolymers as the active materials, i.e., higher external quantum efficiency (EQE) and brightness. This improved device performance is mainly attributed to the bipolar functionality and microphase separation of the block copolymer, which provide highly efficient hole and electron recombination at the nanodomain interfaces. C1 [Segalman, Rachel A.] Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. [Tao, Yuefei; Ma, Biwu] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Segalman, Rachel A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Segalman, RA (reprint author), Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. EM segalman@berkeley.edu RI Ma, Biwu/B-6943-2012; OI Segalman, Rachel/0000-0002-4292-5103 FU U.S. Department of Energy Office of Basic Energy Sciences (DOEBES) [DE-AC02-05CH11231, W-31-109-ENG-38] FX We gratefully acknowledge support from the Department of Energy Office of Basic Energy Sciences (DOEBES) through the Plastic Electronics Program at Lawrence Berkeley National Laboratory (LBNL). Work at the Molecular Foundry was supported by the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract DE-AC02-05CH11231. SAXS experiments were performed at the Stanford Synchrotron Radiation Laboratory, a national user facility operated by Stanford University, and TEM experiments were performed at the National Center for Electron Microscopy at LBNL, both supported by the Department of Energy, Office of Basic Energy Sciences. GISAXS experiments were conducted at the Advanced Photon Source, supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract W-31-109-ENG-38. The authors thank the APS Sector 8 staff for assistance with these experiments and Bradley D. Olsen for helpful conversations regarding GISAXS analysis. NR 98 TC 53 Z9 53 U1 2 U2 38 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0024-9297 J9 MACROMOLECULES JI Macromolecules PD OCT 14 PY 2008 VL 41 IS 19 BP 7152 EP 7159 DI 10.1021/ma800577g PG 8 WC Polymer Science SC Polymer Science GA 357PY UT WOS:000259859800042 ER PT J AU Bissell, MJ Inman, J AF Bissell, Mina J. Inman, Jamie TI Reprogramming stem cells is a microenvironmental task SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Editorial Material ID MOUSE MAMMARY-GLAND; IN-VIVO; LIFE SPAN; FAT PADS; EPITHELIUM; MORPHOGENESIS; HIERARCHY; GROWTH; CANCER; MODEL C1 [Bissell, Mina J.; Inman, Jamie] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA. RP Bissell, MJ (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM mjbissell@ibl.gov NR 21 TC 9 Z9 9 U1 0 U2 0 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD OCT 14 PY 2008 VL 105 IS 41 BP 15637 EP 15638 DI 10.1073/pnas.0808457105 PG 2 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 363BM UT WOS:000260240900001 PM 18843110 ER PT J AU El-Kady, I Farfan, GB Rammohan, R Taha, MMR AF El-Kady, I. Farfan, G. B. Rammohan, R. Taha, M. M. Reda TI Photonic crystal high-efficiency multispectral thermal emitters SO APPLIED PHYSICS LETTERS LA English DT Article ID LIGHT-EMISSION; MU-M; TUNGSTEN; BANDGAP AB We demonstrate through numerical simulation the modification of the thermal emission spectrum by a metallic photonic crystal (PhC). Here the radiation is funneled into a narrow emission band in contrast to the broad spectrum associated with a Planckian-distribution. A detailed quantitative evaluation of the spectral, power, and angular efficiencies of a PhC thermal emitter and its portability across IR spectral bands is provided. We show that an optimized tungsten PhC possesses a predominant narrow-band forward emission profile with an emitter efficiency that is more than double that of an ideal blackbody and similar to 65-75% more power-efficient across the IR spectrum. (C) 2008 American Institute of Physics. [DOI: 10.1063/1.2993336] C1 [El-Kady, I.] Sandia Natl Labs, Dept Photon Microsyst Technol, Albuquerque, NM 87185 USA. [El-Kady, I.] Univ New Mexico, Dept Elect & Comp Engn, Albuquerque, NM 87185 USA. [Farfan, G. B.; Taha, M. M. Reda] Univ New Mexico, Dept Elect & Comp Engn, Albuquerque, NM 87131 USA. [Rammohan, R.] Univ New Mexico, Dept Comp Sci, Albuquerque, NM 87131 USA. [Taha, M. M. Reda] Univ New Mexico, Dept Civil Engn, Albuquerque, NM 87131 USA. RP El-Kady, I (reprint author), Sandia Natl Labs, Dept Photon Microsyst Technol, POB 5800, Albuquerque, NM 87185 USA. EM ielkady@sandia.gov RI El-Kady, Ihab/D-2886-2013 OI El-Kady, Ihab/0000-0001-7417-9814 FU Sandia National Laboratories operated by the Sandia Corporation; Lockheed Martin Co; U.S. DOE-NNSA [DE-AC0494AL85000] FX This work was supported by Sandia National Laboratories operated by the Sandia Corporation, a Lockheed Martin Co., for the U.S. DOE-NNSA under Contract No. DE-AC0494AL85000. NR 15 TC 7 Z9 7 U1 0 U2 3 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD OCT 13 PY 2008 VL 93 IS 15 AR 153501 DI 10.1063/1.2993336 PG 3 WC Physics, Applied SC Physics GA 361JY UT WOS:000260125100097 ER PT J AU Fang, JX Kong, P Ding, BJ Song, XP Han, Y Hahn, H Gleiter, H AF Fang, Jixiang Kong, Peng Ding, Bingjun Song, Xiaoping Han, Yong Hahn, Horst Gleiter, Herbert TI Single crystal growth via a grain rotation mechanism within amorphous matrix SO APPLIED PHYSICS LETTERS LA English DT Article ID ORIENTED ATTACHMENT; PHASE; NANOPARTICLES; METALS AB The molecular dynamics simulations were applied to study the crystallization of Ag from an amorphous matrix. The results show that the spontaneously crystallized nuclei interact with the amorphous phase, undergoing a rotation and realignment process, promote the crystallization of amorphous phase, and finally form a single crystalline nanostructure. Our results not only provide a system for the theoretical study on the amorphous formation and its function in the crystal growth but also break a path for producing single crystals. (C) 2008 American Institute of Physics. [DOI: 10.1063/1.3001576] C1 [Fang, Jixiang; Kong, Peng; Ding, Bingjun; Song, Xiaoping] Xian Jiaotong Univ, Sch Sci, State Key Lab Mech Behav Mat, Shann Xi 710049, Peoples R China. [Han, Yong] Iowa State Univ, Inst Phys Res & Technol, Ames, IA 50011 USA. [Han, Yong] Iowa State Univ, Ames Lab USDOE, Ames, IA 50011 USA. [Fang, Jixiang; Hahn, Horst; Gleiter, Herbert] Forschungszentrum Karlsruhe, Inst Nanotechnol, D-76021 Karlsruhe, Germany. RP Fang, JX (reprint author), Xian Jiaotong Univ, Sch Sci, State Key Lab Mech Behav Mat, Shann Xi 710049, Peoples R China. EM jxfang@mailst.xjtu.edu.cn RI Song, Xiaoping/E-7788-2010; Hahn, Horst/G-9018-2011; Han, Yong/F-5701-2012; Fang, Jixiang/C-5981-2015 OI Hahn, Horst/0000-0001-9901-3861; Han, Yong/0000-0001-5404-0911; NR 19 TC 4 Z9 4 U1 0 U2 13 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD OCT 13 PY 2008 VL 93 IS 15 AR 153115 DI 10.1063/1.3001576 PG 3 WC Physics, Applied SC Physics GA 361JY UT WOS:000260125100086 ER PT J AU Fister, TT Fong, DD Eastman, JA Baldo, PM Highland, MJ Fuoss, PH Balasubramaniam, KR Meador, JC Salvador, PA AF Fister, Tim T. Fong, Dillon D. Eastman, Jeffrey A. Baldo, Peter M. Highland, Matthew J. Fuoss, Paul H. Balasubramaniam, Kavaipatti R. Meador, Joanna C. Salvador, Paul A. TI In situ characterization of strontium surface segregation in epitaxial La(0.7)Sr(0.3)MnO(3) thin films as a function of oxygen partial pressure SO APPLIED PHYSICS LETTERS LA English DT Article ID PULSED-LASER DEPOSITION; OXIDE FUEL-CELL; MAGNETORESISTANCE; MANGANITES; REDUCTION; CHEMISTRY; JUNCTIONS; CATHODES AB Using in situ synchrotron measurements of total reflection x-ray fluorescence, we find evidence of strontium surface segregation in (001)-oriented La(0.7)Sr(0.3)MnO(3) thin films over a wide range of temperatures (25-900 degrees C) and oxygen partial pressures (pO(2)=0.15-150 Torr). The strontium surface concentration is observed to increase with decreasing pO(2), suggesting that the surface oxygen vacancy concentration plays a significant role in controlling the degree of segregation. Interestingly, the enthalpy of segregation becomes less exothermic with increasing pO(2), varying from -9.5 to -2.0 kJ/mol. In contrast, the La(0.7)Sr(0.3)MnO(3) film thickness and epitaxial strain state have little impact on segregation behavior. (C) 2008 American Institute of Physics. [DOI: 10.1063/1.2987731] C1 [Fister, Tim T.; Fong, Dillon D.; Eastman, Jeffrey A.; Baldo, Peter M.; Highland, Matthew J.; Fuoss, Paul H.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60349 USA. [Balasubramaniam, Kavaipatti R.; Meador, Joanna C.; Salvador, Paul A.] Carnegie Mellon Univ, Dept Mat Sci & Engn, Pittsburgh, PA 15213 USA. RP Fuoss, PH (reprint author), Argonne Natl Lab, Div Mat Sci, Argonne, IL 60349 USA. EM fuoss@anl.gov RI Salvador, Paul/A-9435-2011; Eastman, Jeffrey/E-4380-2011 OI Salvador, Paul/0000-0001-7106-0017; FU U.S. Department of Energy (DOE), Basic Energy Sciences [DE-AC02-06CH11357] FX Assistance by the beamline staff at sectors 12 and 20 at the Advanced Photon Source is gratefully acknowledged. Support was provided by the U.S. Department of Energy (DOE), Basic Energy Sciences, under Contract No. DE-AC02-06CH11357 and through the DOE Strategic Energy Conversion Alliance (SECA) program. NR 29 TC 71 Z9 71 U1 3 U2 46 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD OCT 13 PY 2008 VL 93 IS 15 AR 151904 DI 10.1063/1.2987731 PG 3 WC Physics, Applied SC Physics GA 361JY UT WOS:000260125100024 ER PT J AU Juan, ML Plain, J Bachelot, R Royer, P Gray, SK Wiederrecht, GP AF Juan, M. L. Plain, J. Bachelot, R. Royer, P. Gray, S. K. Wiederrecht, G. P. TI Stochastic model for photoinduced surface relief grating formation through molecular transport in polymer films SO APPLIED PHYSICS LETTERS LA English DT Article ID AZOBENZENE; ANISOTROPY; MOTIONS AB We use a stochastic model to study photoinduced surface relief grating (SRG) formation due to molecular transport in azobenzene polymer films. The model is shown to reproduce the essential experimental features of SRG formation. In particular, it predicts SRG formation under both p and s polarizations, and the double peaked topographies that can occur at early times of the process. The evolving molecular positions and orientations during exposure are also followed, providing a useful mechanistic picture of SRG dynamics. (C) 2008 American Institute of Physics. [DOI: 10.1063/1.2999625] C1 [Juan, M. L.; Plain, J.; Bachelot, R.; Royer, P.] Univ Technol Troyes, Lab Nanotechnol & Instrumentat Opt, ICD CNRS FRE 2848, Troyes, France. [Gray, S. K.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Wiederrecht, G. P.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. RP Bachelot, R (reprint author), Univ Technol Troyes, Lab Nanotechnol & Instrumentat Opt, ICD CNRS FRE 2848, BP 2060, Troyes, France. EM renaud.bachelot@utt.fr RI Plain, Jerome/A-2888-2009; Juan, Mathieu/C-6331-2008; Bachelot, Renaud/M-6888-2015 OI Juan, Mathieu/0000-0002-2740-8001; FU European Social Fund; Conseil General de l'Aube; French national agency for research (ANR 2007); Region Champagne-Ardenne [E2007-08052]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX One of the author's Ph.D. research (M.J.) was supported by the European Social Fund and the Conseil General de l'Aube (distric grant). This work was financially supported by the French national agency for research (ANR 2007) through the "photohybrid" project and by the Region Champagne-Ardenne (projet Emergence No. E2007-08052). Use of the Center for Nanoscale Materials and work at Argonne National Laboratory were supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 11 TC 15 Z9 15 U1 0 U2 7 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD OCT 13 PY 2008 VL 93 IS 15 AR 153304 DI 10.1063/1.2999625 PG 3 WC Physics, Applied SC Physics GA 361JY UT WOS:000260125100091 ER PT J AU Tambe, MJ Lim, SK Smith, MJ Allard, LF Gradecak, S AF Tambe, Michael J. Lim, Sung Keun Smith, Matthew J. Allard, Lawrence F. Gradecak, Silvija TI Realization of defect-free epitaxial core-shell GaAs/AlGaAs nanowire heterostructures SO APPLIED PHYSICS LETTERS LA English DT Article ID GROWTH; GAAS; HETEROJUNCTION; TRANSISTORS AB We report the controlled growth of vertically aligned GaAs/AlGaAs core-shell nanowires. By optimizing the shell deposition temperature and catalyst density we maintain high temperature stability and achieve defect-free epitaxial AlGaAs shell deposition with high aluminum incorporation. Energy dispersive x-ray analysis determines the shell composition to be Al(0.9)Ga(0.1)As and measures the uniformity of the shell thickness. Lattice-resolved high-angle annular dark-field scanning transmission electron microscopy images confirm the core-shell interface to be defect-free, epitaxial, and atomically sharp. The ability to realize GaAs/AlGaAs core-shell nanowires with precise control over the morphology and composition is essential to the development of nanowire-based high mobility electronics. (c) 2008 American Institute of Physics. C1 [Tambe, Michael J.; Lim, Sung Keun; Smith, Matthew J.; Gradecak, Silvija] MIT, Dept Mat & Engn, Cambridge, MA 02139 USA. [Allard, Lawrence F.] Oak Ridge Natl Lab, High Temp Mat Lab, Oak Ridge, TN 37831 USA. RP Gradecak, S (reprint author), MIT, Dept Mat & Engn, Cambridge, MA 02139 USA. EM gradecak@mit.edu FU Cambridge Foundation; 3M; Interconnect Focus Center; MIT; Division of Scientific User Facilities; Office of Basic Energy Sciences; U. S. Department of Energy FX The authors thank E. A. Fitzgerald for access to MOCVD facilities, the MIT Center for Materials Science and Engineering, a NSF-funded MRSEC, for use of electron microscopy facilities, and S. T. Boles for MOCVD assistance and helpful discussions. S. K. L. acknowledges the Cambridge Foundation for graduate research fellowship support. S. G. acknowledges 3M, the Interconnect Focus Center, and MIT startup funds for financial support. A portion of this research was conducted at the SHaRE User Facility, which is sponsored by the Division of Scientific User Facilities, Office of Basic Energy Sciences, U. S. Department of Energy. NR 21 TC 47 Z9 48 U1 4 U2 19 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD OCT 13 PY 2008 VL 93 IS 15 AR 151917 DI 10.1063/1.3002299 PG 3 WC Physics, Applied SC Physics GA 361JY UT WOS:000260125100037 ER PT J AU Ulrich, TJ Sutin, AM Claytor, T Papin, P Le Bas, PY TenCate, JA AF Ulrich, T. J. Sutin, Alexander M. Claytor, Thomas Papin, Pallas Le Bas, Pierre-Yves TenCate, James A. TI The time reversed elastic nonlinearity diagnostic applied to evaluation of diffusion bonds SO APPLIED PHYSICS LETTERS LA English DT Article ID SPECTROSCOPY; MODULATION; SOLIDS; DAMAGE; WAVE AB With the recent application of time reversed acoustics and nonlinear elasticity to imaging mechanical damage, the development of time reversal based nondestructive evaluation techniques has begun. Here, diffusion bonded metal disks containing intentionally disbonded regions are analyzed using the time reversed elastic nonlinearity diagnostic. The nonlinear results are compared with linear ultrasonic imaging (C scan). Scanning electron microscopy is shown to illustrate the differences between the features seen by the linear and nonlinear methods. (c) 2008 American Institute of Physics. C1 [Ulrich, T. J.; Le Bas, Pierre-Yves; TenCate, James A.] Los Alamos Natl Lab, EES 11, Los Alamos, NM 87545 USA. [Sutin, Alexander M.] Stevens Inst Technol, Hoboken, NJ 07030 USA. [Claytor, Thomas] Los Alamos Natl Lab, AET 6, Los Alamos, NM 87545 USA. [Papin, Pallas] Los Alamos Natl Lab, MST 6, Los Alamos, NM 87545 USA. RP Ulrich, TJ (reprint author), Los Alamos Natl Lab, EES 11, Los Alamos, NM 87545 USA. EM tju@lanl.gov FU Institutional Support (Campaign 8 and LDRD) FX This work was supported by Institutional Support (Campaign 8 and LDRD) at the Los Alamos National Laboratory. The authors are grateful for invaluable input from Paul Johnson, Robert Guyer and Tarik Saleh. NR 14 TC 27 Z9 27 U1 1 U2 5 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD OCT 13 PY 2008 VL 93 IS 15 AR 151914 DI 10.1063/1.2998408 PG 3 WC Physics, Applied SC Physics GA 361JY UT WOS:000260125100034 ER PT J AU Yi, DC Greve, A Hales, JH Senesac, LR Davis, ZJ Nicholson, DM Boisen, A Thundat, T AF Yi, Dechang Greve, Anders Hales, Jan H. Senesac, Larry R. Davis, Zachary J. Nicholson, Don M. Boisen, Anja Thundat, Thomas TI Detection of adsorbed explosive molecules using thermal response of suspended microfabricated bridges SO APPLIED PHYSICS LETTERS LA English DT Article ID ELECTRONIC NOSES; VAPOR MIXTURES; MICROCANTILEVERS; ADSORPTION; COATINGS; ARRAY AB Here we present a thermophysical technique that is capable of differentiating vapor phase adsorbed explosives from nonexplosives and is additionally capable of differentiating individual species of common explosive vapors. This technique utilizes pairs of suspended microfabricated silicon bridges that can be heated in a controlled fashion. The differential thermal response of the bridges with and without adsorbed explosive vapor shows unique and reproducible characteristics depending on the nature of the adsorbed explosives. The tunable heating rate method described here is capable of providing unique signals for subnanogram quantities of adsorbed explosives within 50 ms. (C) 2008 American Institute of Physics. [DOI: 10.1063/1.3002285] C1 [Yi, Dechang; Senesac, Larry R.; Nicholson, Don M.; Thundat, Thomas] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. [Greve, Anders; Hales, Jan H.; Davis, Zachary J.; Boisen, Anja] Tech Univ Denmark, MIC, DK-2800 Lyngby, Denmark. [Senesac, Larry R.; Thundat, Thomas] Univ Tennessee, Dept Phys, Knoxville, TN 37996 USA. RP Thundat, T (reprint author), Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. EM thundattg@onrl.gov RI Boisen, Anja/F-9442-2011 OI Boisen, Anja/0000-0002-9918-6567 FU U. S. Department of Energy [DE-AC05-00OR22725] FX We thank Dr. Richard Lareau and Dr. Eric Houser for discussions on explosive detection. This research was supported in part by U. S. Department of Homeland Security and the Office of Naval Research. ORNL is managed by UT-Battelle and LLC for the U. S. Department of Energy under Contract No. DE-AC05-00OR22725. NR 19 TC 22 Z9 22 U1 0 U2 5 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD OCT 13 PY 2008 VL 93 IS 15 AR 154102 DI 10.1063/1.3002285 PG 3 WC Physics, Applied SC Physics GA 361JY UT WOS:000260125100108 ER PT J AU Negres, RA Saw, CK DeMange, P Demos, SG AF Negres, R. A. Saw, C. K. DeMange, P. Demos, S. G. TI Laser damage performance of KD2-xHxPO4 crystals following X-ray irradiation SO OPTICS EXPRESS LA English DT Article ID POTASSIUM DIHYDROGEN PHOSPHATE; ELECTRON-SPIN-RESONANCE; KH2PO4 CRYSTALS; GROWTH; KD2PO4; IDENTIFICATION; ABSORPTION; CENTERS; KDP AB We investigate the laser-induced damage performance of KD2-xHxPO4 crystals following exposure to X-ray irradiation. Two important issues addressed by our study are i) the performance of the material when operational conditions lead to its exposure to ionizing irradiation and ii) the way the radiation-induced transient defects interact with the pre-existing precursor defects responsible for laser-induced damage. Our results indicate that the damage performance of the material is affected by exposure to X-rays. This behavior is attributed to a change in the physical properties of the precursors which, in turn, affect their ability to initiate damage following interaction with X-ray generated defects. C1 [Negres, R. A.; Saw, C. K.; DeMange, P.; Demos, S. G.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Negres, RA (reprint author), Lawrence Livermore Natl Lab, 7000 E Ave, Livermore, CA 94550 USA. EM negres2@llnl.gov FU Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX We thank Dr. S. O. Kucheyev and Dr. L. E. Halliburton for useful discussions. This work was performed under the auspices of the U. S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 24 TC 5 Z9 5 U1 2 U2 9 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD OCT 13 PY 2008 VL 16 IS 21 BP 16326 EP 16333 DI 10.1364/OE.16.016326 PG 8 WC Optics SC Optics GA 371XB UT WOS:000260864900005 PM 18852738 ER PT J AU Le, KQ Godoy-Rubio, R Bienstman, P Hadley, GR AF Le, Khai Q. Godoy-Rubio, R. Bienstman, Peter Hadley, G. Ronald TI The complex Jacobi iterative method for three-dimensional wide-angle beam propagation SO OPTICS EXPRESS LA English DT Article ID WAVE-GUIDE STRUCTURES; PADE APPROXIMANT; EQUATION AB A new complex Jacobi iterative technique adapted for the solution of three-dimensional (3D) wide-angle (WA) beam propagation is presented. The beam propagation equation for analysis of optical propagation in waveguide structures is based on a novel modified Pade(1,1) approximant operator, which gives evanescent waves the desired damping. The resulting approach allows more accurate approximations to the true Helmholtz equation than the standard Pade approximant operators. Furthermore, a performance comparison of the traditional direct matrix inversion and this new iterative technique for WA-beam propagation method is reported. It is shown that complex Jacobi iteration is faster and better-suited for large problems or structures than direct matrix inversion. (C) 2008 Optical Society of America C1 [Le, Khai Q.; Bienstman, Peter] Univ Ghent, IMEC, Dept Informat Technol, B-9000 Ghent, Belgium. [Godoy-Rubio, R.] Univ Malaga, Dept Ingn Comunicac, E-29071 Malaga, Spain. [Hadley, G. Ronald] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Le, KQ (reprint author), Univ Ghent, IMEC, Dept Informat Technol, St Pietersnieuwstr 4, B-9000 Ghent, Belgium. EM khai.le@intec.ugent.be OI Godoy Rubio, Rafael/0000-0002-4107-9048 FU Belgian IAP project Photonics@Be; Spanish CICYT [TEC2006-02868]; Andalusian CICYE [TIC-02946]; "Juan de la Cierva" National Fellowship program FX Parts of this work were performed within the context of the Belgian IAP project Photonics@Be. R. Godoy-Rubio would like to thank the Spanish CICYT Project TEC2006-02868, the Andalusian CICYE Project TIC-02946 and the "Juan de la Cierva" National Fellowship program. NR 20 TC 17 Z9 17 U1 0 U2 5 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD OCT 13 PY 2008 VL 16 IS 21 BP 17021 EP 17030 DI 10.1364/OE.16.017021 PG 10 WC Optics SC Optics GA 371XB UT WOS:000260864900079 PM 18852812 ER PT J AU Fortman, GC Isrow, D McDonough, JE Schleyer, PV Schaefer, HF Scott, B Kubas, GJ Kegl, T Ungvary, F Hoff, CD AF Fortman, George C. Isrow, Derek McDonough, James E. Schleyer, Paul von Rague Schaefer, Henry F., III Scott, Brian Kubas, Gregory J. Kegl, Tamas Ungvary, Ferenc Hoff, Carl D. TI Kinetic and thermodynamic studies of the reactivity of (trimethylsilyl)diazomethane with HMo(CO)(3)(C(5)R(5)) (R = H, Me). Estimation of the Mo-N(2)CH(2)SiMe(3) bond strength and experimental determination of the enthalpy of formation of (trimethylsilyl)diazomethane SO ORGANOMETALLICS LA English DT Article ID REDUCTIVE ELIMINATION; GAS-PHASE; OXIDATIVE ADDITION; COMPLEXES; DIAZOMETHANE; SPECTROSCOPY; MOLYBDENUM; ENERGY; HEATS; APPROXIMATION AB The rates of reaction of N(2)CHSiMe(3) with HMo(CO)(3)CP (CP=eta(5)-C(5)H(5)) in heptane obey the rate law -d[HMo(CO)(3)Cp]/dt=k[HMo(CO)(3)Cp][N(2)CHSiMe(3)] (k=0.035 +/- 0.01 Ms(-1)s(-1) at 0 degrees C; Delta H(double dagger)=11.7 +/- 2.0 kcal/mol and Delta S(double dagger)=-22.0 +/- 3.0 cal/(mol K)). Isotopic scrambling between DMO(CO)(3)Cp and N2CHSiMe3 occurs at a rate faster than the overall reaction. Reversible 1,2-addition to form the tightly bound intermediate [Me(3)SiCH(2)N(beta)=N(alpha)(delta+)[(delta-)Mo(CO)(3)CP] is proposed as the first step of the reaction. Spectroscopic and computational data support this formulation. The contact ion pairs can undergo heterolytic cleavage to ions or homolytic cleavage to radicals, and the solvent influence on k(obs) (THF > toluene > heptane) is interpreted in terms of this model. The enthalpy of this reaction has been measured by solution calorimetry at 272 K in THF: Delta H=-11.6 +/- 1.2 kcal/mol. These data, together with computed organic reaction energies allow estimation of the bond strength between the three-electron donors center dot N(2)CHSiMe(3) and center dot MO(CO)(2)Cp to be 25 +/- 5 kcal/mol stronger than the two-electron Mo - CO bond. Coordination of N(2)CHSiMe(3) to the complexes M(PR(3))(2)(CO)(3) (M=Mo, W; R=Cy,(i)Pr; Cy=cyclohexyl;(i)Pr=isopropyl) alters the course of reaction with HMo(CO)3CP. The stoichiometric reaction of Me(3)SiCH= N=NMo(P(i)Pr(3))(2)(CO)(3) with 2 equiv of HMo(CO)(3)Cp produces SiMe(4), Mo(N(2))(P(i)Pr(3))(2)(CO)(3), and [MO(CO)(3)CP](2). In the presence of excess N(2)CHSiMe(3) this reaction is catalytic and has been used to experimentally measure the heat of hydrogenation of N2CHSiMe3 to N2 and SiMe4 by 2 equiv of HMo(CO)(3)Cp. The derived enthalpy of formation of N(2)CHSiMe(3) (5.8 +/- 3.0 kcal/mol) is in reasonable agreement with high-level theoretical calculations. X-ray crystal structure data are reported for W(CO)(2)(N(2)CH(2)SiMe(3))Cp: triclinic, space group P (1) over bar, a=6.3928(7)angstrom, b=10.6551(12) angstrom, c=10.8766(12) angstrom, alpha=100.632(2)degrees, beta=96.254(2)degrees, V=721.32 angstrom(3), Z=2. C1 [Schleyer, Paul von Rague; Schaefer, Henry F., III] Univ Georgia, Dept Chem, Athens, GA 30606 USA. [Schleyer, Paul von Rague; Schaefer, Henry F., III] Univ Georgia, Ctr Computat Chem, Athens, GA 30606 USA. [Fortman, George C.; Isrow, Derek; McDonough, James E.; Hoff, Carl D.] Univ Miami, Dept Chem, Coral Gables, FL 33126 USA. [Scott, Brian; Kubas, Gregory J.] Los Alamos Natl Lab, Struct Inorgan Chem Grp, Div Chem, Los Alamos, NM 87545 USA. [Kegl, Tamas; Ungvary, Ferenc] Univ Pannonia, Dept Organ Chem, H-8201 Veszprem, Hungary. RP Schleyer, PV (reprint author), Univ Georgia, Dept Chem, Athens, GA 30606 USA. RI Scott, Brian/D-8995-2017 OI Scott, Brian/0000-0003-0468-5396 FU National Science Foundation [CHE 0615743, CHE 0716718]; Hungarian Scientific Research Fund [OTKA NK 71906] FX We dedicate this article to Professor R. Bruce King of the University of Georgia and thank Professor Joel Liebman, the University of Maryland, Baltimore County, and Dr. Manuel Temprado for helpful discussions. Support of this work by the National Science Foundation (Grant Nos. CHE 0615743 and CHE 0716718) and by the Hungarian Scientific Research Fund (Grant No. OTKA NK 71906) is gratefully acknowledged. NR 53 TC 1 Z9 1 U1 1 U2 7 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0276-7333 J9 ORGANOMETALLICS JI Organometallics PD OCT 13 PY 2008 VL 27 IS 19 BP 4873 EP 4884 DI 10.1021/om800336p PG 12 WC Chemistry, Inorganic & Nuclear; Chemistry, Organic SC Chemistry GA 353YB UT WOS:000259604200011 ER PT J AU Volkow, ND Wang, GJ Fowler, JS Telang, F AF Volkow, Nora D. Wang, Gene-Jack Fowler, Joanna S. Telang, Frank TI Overlapping neuronal circuits in addiction and obesity: evidence of systems pathology SO PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES LA English DT Article; Proceedings Paper CT Royal-Society-Discussion Meeting on Neurobiology of Drug Addiction CY FEB 25-26, 2008 CL London, ENGLAND SP Royal Soc Discuss DE dopamine; positron emission tomography; imaging; self-control; compulsion ID ORBITOFRONTAL CORTEX; DOPAMINE-D-2 RECEPTORS; DRUG-ADDICTION; HUMAN BRAIN; VENTRAL STRIATUM; COCAINE ABUSERS; DORSAL STRIATUM; FOOD STIMULI; ACTIVATION; METABOLISM AB Drugs and food exert their reinforcing effects in part by increasing dopamine (DA) in limbic regions, which has generated interest in understanding how drug abuse/addiction relates to obesity. Here, we integrate findings from positron emission tomography imaging studies on DA's role in drug abuse/addiction and in obesity and propose a common model for these two conditions. Both in abuse/addiction and in obesity, there is an enhanced value of one type of reinforcer (drugs and food, respectively) at the expense of other reinforcers, which is a consequence of conditioned learning and resetting of reward thresholds secondary to repeated stimulation by drugs (abuse/addiction) and by large quantities of palatable food (obesity) in vulnerable individuals (i.e. genetic factors). In this model, during exposure to the reinforcer or to conditioned cues, the expected reward (processed by memory circuits) overactivates the reward and motivation circuits while inhibiting the cognitive control circuit, resulting in an inability to inhibit the drive to consume the drug or food despite attempts to do so. These neuronal circuits, which are modulated by DA, interact with one another so that disruption in one circuit can be buffered by another, which highlights the need of multiprong approaches in the treatment of addiction and obesity. C1 [Volkow, Nora D.] NIDA, Bethesda, MD 20892 USA. [Volkow, Nora D.; Telang, Frank] NIAAA, Bethesda, MD 20892 USA. [Wang, Gene-Jack; Fowler, Joanna S.] Brookhaven Natl Lab, Dept Med, Upton, NY 11973 USA. RP Volkow, ND (reprint author), NIDA, Bethesda, MD 20892 USA. EM nvolkow@nida.nih.gov FU Intramural NIH HHS [Z99 DA999999] NR 55 TC 313 Z9 320 U1 8 U2 69 PU ROYAL SOC PI LONDON PA 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND SN 0962-8436 J9 PHILOS T R SOC B JI Philos. Trans. R. Soc. B-Biol. Sci. PD OCT 12 PY 2008 VL 363 IS 1507 BP 3191 EP 3200 DI 10.1098/rstb.2008.0107 PG 10 WC Biology SC Life Sciences & Biomedicine - Other Topics GA 345AW UT WOS:000258969400009 PM 18640912 ER PT J AU Brunet, T Jia, XP Johnson, PA AF Brunet, Thomas Jia, Xiaoping Johnson, Paul A. TI Transitional nonlinear elastic behaviour in dense granular media SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID PROPAGATION AB Nonlinear sound propagation in a stressed glass bead pack is investigated via amplitude measurements of harmonic generation. We evidence two distinct regimes of sound-matter interaction: reversible and irreversible, as a function of the ratio r(s) between dynamic strain and static one. In the reversible regime, the higher harmonics generated agree well with a mean-field model based on the Hertz contact theory, and the coefficient of nonlinearity beta deduced from the measured amplitude of second-harmonic is consistent with that deduced from the acoustoelastic measurement. Beyond a certain threshold (r(s) > 3%), the interaction of sound wave with granular matter becomes irreversible, accompanied by a small compaction of the medium. C1 [Brunet, Thomas; Jia, Xiaoping] Univ Paris Est, CNRS, UMR8108, LPMDI, F-77454 Marne La Vallee, France. [Johnson, Paul A.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Brunet, T (reprint author), Univ Paris Est, CNRS, UMR8108, LPMDI, Cite Descartes, F-77454 Marne La Vallee, France. EM jia@univ-mlv.fr OI Johnson, Paul/0000-0002-0927-4003 NR 16 TC 26 Z9 26 U1 0 U2 9 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD OCT 11 PY 2008 VL 35 IS 19 AR L19308 DI 10.1029/2008GL035264 PG 4 WC Geosciences, Multidisciplinary SC Geology GA 359LH UT WOS:000259987700002 ER PT J AU Davis, VA Mandell, MJ Thomsen, MF AF Davis, V. A. Mandell, M. J. Thomsen, M. F. TI Representation of the measured geosynchronous plasma environment in spacecraft charging calculations SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID SURFACES; ATS-6; POTENTIALS; ELECTRONS; ANALYZER; ORBIT AB Historically, the characterization of the magnetospheric environment has limited our ability to determine spacecraft surface charging levels. One difficulty lies in the common practice of fitting the plasma data to a Maxwellian or Double Maxwellian distribution function, which may not represent the data well for use in spacecraft charging simulations. We use electron and ion flux spectra measured by the Los Alamos National Laboratory (LANL) Magnetospheric Plasma Analyzer (MPA) during eclipse in September 2001 to examine how the use of different spectral representations of the charged particle environment in computations of spacecraft potentials during magnetospheric substorms affects the accuracy of the results. We examine charging and noncharging flux spectra and the relationships between the density and temperature moments. We then calculate the spacecraft potential ( zero net current) using both the measured fluxes and several different fits to these fluxes. The potential computed using the measured fluxes and secondary and backscattered fluxes computed for graphite carbon, with a constant fraction of 81% of secondary electrons escaping, is within a factor of three of the measured potential for 87% of the data. Potentials calculated using a Kappa function fit to the electron flux and a Maxwellian function fit to the ion flux agree with measured potentials nearly as well. Alternative spectral representations give less accurate estimates. The use of all the components of the net flux, along with spacecraft specific average material properties, gives a better estimate of the spacecraft potential than the measured flux from a single high-energy channel. C1 [Davis, V. A.; Mandell, M. J.] Sci Applicat Int Corp, San Diego, CA 92121 USA. [Thomsen, M. F.] Los Alamos Natl Lab, Los Alamos, NM USA. RP Davis, VA (reprint author), Sci Applicat Int Corp, 10260 Campus Point Dr,MS A-1A, San Diego, CA 92121 USA. EM victoria.a.davis@saic.com FU NASA FX The authors gratefully acknowledge funding provided by the NASA Living With a Star/Space Environment Testbeds Program Element at Goddard Space Flight Center through the Space Environments and Effects Program at the NASA/Marshall Space Flight Center. Work at Los Alamos was conducted under the auspices of the U. S. Department of Energy, with additional support from the NASA Living With a Star program. NR 29 TC 11 Z9 11 U1 2 U2 4 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD OCT 11 PY 2008 VL 113 IS A10 AR A10204 DI 10.1029/2008JA013116 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 359MU UT WOS:000259992000001 ER PT J AU Hosokawa, K Taguchi, S Suzuki, S Collier, MR Moore, TE Thomsen, MF AF Hosokawa, K. Taguchi, S. Suzuki, S. Collier, M. R. Moore, T. E. Thomsen, M. F. TI Estimation of magnetopause motion from low-energy neutral atom emission SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID SOLAR-WIND CONDITIONS; SUBSOLAR ENA JET; GEOSYNCHRONOUS ORBIT; EARTHS MAGNETOPAUSE; PLASMA OBSERVATIONS; BOW SHOCK; FIELD; SHAPE; MARS; CROSSINGS AB A new method for deriving the position of the dayside equatorial magnetopause directly from the measured intensity of energetic neutral atom (ENA) emissions is presented. This approach makes it possible to track the position of the magnetopause using data observed by the low-energy neutral atom (LENA) imager on board the Imager for Magnetopause-to-Aurora Global Exploration (IMAGE) spacecraft. The model is applied to data recorded during a period of high solar wind dynamic pressure on 13 April 2001. In this interval, significant ENA flux was observed originating from the dayside low-latitude magnetosheath. This ENA flux is primarily the result of enhanced charge exchange between the increased solar wind plasma and exospheric hydrogen neutrals. The temporal variation in the estimated magnetopause position is compared with in situ measurements of magnetopause crossings by the LANL-01A spacecraft in geosynchronous orbit and the results of a recent empirical magnetopause model. It is demonstrated that the subsolar distance of the magnetopause was successfully tracked for a period of more than 1 h. In this particular case example, the dayside magnetopause is closer to the Earth and fluctuates on a shorter timescale than predicted by the previous empirical model based on in situ data. It is also revealed that the subsolar magnetopause can move with speeds of 100-200 km s(-1) in response to marked dynamic pressure changes, and during periods of stable dynamic pressure can fluctuates with speeds of up to 50 km s(-1). C1 [Hosokawa, K.; Taguchi, S.; Suzuki, S.] Univ Electrocommun, Dept Informat & Commun Engn, Tokyo 1828585, Japan. [Collier, M. R.; Moore, T. E.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Thomsen, M. F.] Los Alamos Natl Lab, Los Alamos, NM USA. RP Hosokawa, K (reprint author), Univ Electrocommun, Dept Informat & Commun Engn, 1-5-1 Chofugaoka, Tokyo 1828585, Japan. EM hosokawa@ice.uec.ac.jp; taguchi@ice.uec.ac.jp; shin.s@ice.uec.ac.jp; michael.r.collier@nasa.gov; tmoore@pop600.gsfc.nasa.gov; mthomsen@lanl.gov RI Moore, Thomas/D-4675-2012; Collier, Michael/I-4864-2013 OI Moore, Thomas/0000-0002-3150-1137; Collier, Michael/0000-0001-9658-6605 FU Japan Society for the Promotion of Science [18540443]; Goddard Space Flight Center [UPN 370-28-20] FX This research was supported by a Grant-in-Aid (18540443, Category C) from the Japan Society for the Promotion of Science, and by the IMAGE project (UPN 370-28-20) at the Goddard Space Flight Center. The authors wish to thank N. Ness at the Bartol Research Institute for access to data from the MFI and SWE instruments on board the ACE spacecraft. NR 31 TC 7 Z9 7 U1 0 U2 1 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD OCT 11 PY 2008 VL 113 IS A10 AR A10205 DI 10.1029/2008JA013124 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 359MU UT WOS:000259992000002 ER PT J AU Lima, M Cunha, CE Oyaizu, H Frieman, J Lin, H Sheldon, ES AF Lima, Marcos Cunha, Carlos E. Oyaizu, Hiroaki Frieman, Joshua Lin, Huan Sheldon, Erin S. TI Estimating the redshift distribution of photometric galaxy samples SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE galaxies: distances and redshifts; galaxies: statistics; distance scale; large-scale structure of Universe ID DIGITAL SKY SURVEY; DEEP-FIELD-NORTH; LUMINOSITY FUNCTION; CATALOG; REQUIREMENTS; CALIBRATION; EVOLUTION AB We present an empirical method for estimating the underlying redshift distribution N(z) of galaxy photometric samples from photometric observables. The method does not rely on photometric redshift (photo-z) estimates for individual galaxies, which typically suffer from biases. Instead, it assigns weights to galaxies in a spectroscopic subsample such that the weighted distributions of photometric observables (e.g. multiband magnitudes) match the corresponding distributions for the photometric sample. The weights are estimated using a nearest neighbour technique that ensures stability in sparsely populated regions of colour-magnitude space. The derived weights are then summed in redshift bins to create the redshift distribution. We apply this weighting technique to data from the Sloan Digital Sky Survey as well as to mock catalogues for the Dark Energy Survey, and compare the results to those from the estimation of photo-zs derived by a neural network algorithm. We find that the weighting method accurately recovers the underlying redshift distribution, typically better than the photo-z reconstruction, provided the spectroscopic subsample spans the range of photometric observables covered by the photometric sample. C1 [Lima, Marcos] Univ Chicago, Dept Phys, Chicago, IL 60637 USA. [Lima, Marcos; Cunha, Carlos E.; Oyaizu, Hiroaki; Frieman, Joshua] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Cunha, Carlos E.; Oyaizu, Hiroaki; Frieman, Joshua] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [Frieman, Joshua; Lin, Huan] Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, Batavia, IL 60510 USA. [Sheldon, Erin S.] NYU, Ctr Cosmol & Particle Phys, New York, NY 10003 USA. [Sheldon, Erin S.] NYU, Dept Phys, New York, NY 10003 USA. RP Lima, M (reprint author), Univ Chicago, Dept Phys, Chicago, IL 60637 USA. EM mvlima@uchicago.edu RI Lima, Marcos/E-8378-2010 FU KICP [PHY-0114422]; NSF [PHY-0551142, AST-0239759, AST-0507666, AST-0708154, AST95-09298, AST-0071048, AST-0071198, AST-0507428, AST-0507483]; University of Chicago; DOE [DE-AC02-07CH11359]; Alfred P. Sloan Foundation; NASA [NNG04GC89G] FX We would like to thank Dinoj Surendran and Mark SubbaRao for useful discussions about nearest neighbour search methods and for introducing the authors to a fast algorithm using Cover-Trees. This work was supported by the KICP under NSF No. PHY-0114422 and NSF PHY-0551142, by NSF grants AST-0239759, AST-0507666 and AST-0708154 at the University of Chicago, by the DOE at the University of Chicago and Fermilab and by DOE contract number DE-AC02-07CH11359.; Funding for the SDSS and SDSS-II has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, the US Department of Energy, the National Aeronautics and Space Administration, the Japanese Monbukagakusho, the Max Planck Society and the Higher Education Funding Council for England.; The SDSS web site is http://www.sdss.org/ The SDSS is managed by the Astrophysical Research Consortium for the Participating Institutions. The Participating Institutions are the American Museum of Natural History, Astrophysical Institute Potsdam, University of Basel, University of Cambridge, Case Western Reserve University, University of Chicago, Drexel University, Fermilab, the Institute for Advanced Study, the Japan Participation Group, Johns Hopkins University, the Joint Institute for Nuclear Astrophysics, the Kavli Institute for Particle Astrophysics and Cosmology, the Korean Scientist Group, the Chinese Academy of Sciences ( LAMOST), Los Alamos National Laboratory, the Max-Planck-Institute for Astronomy ( MPIA), the Max-Planck-Institute for Astrophysics ( MPA), New Mexico State University, Ohio State University, University of Pittsburgh, University of Portsmouth, Princeton University, the United States Naval Observatory and the University of Washington.; Funding for the DEEP2 survey has been provided by NSF grants AST95-09298, AST-0071048, AST-0071198, AST-0507428 and AST-0507483 as well as NASA LTSA grant NNG04GC89G.; Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The observatory was made possible by the generous financial support of the W. M. Keck Foundation. The DEEP2 team and Keck Observatory acknowledge the very significant cultural role and reverence that the summit of Mauna Kea has always had within the indigenous Hawaiian community and appreciate the opportunity to conduct observations from this mountain. NR 31 TC 45 Z9 45 U1 0 U2 1 PU BLACKWELL PUBLISHING PI OXFORD PA 9600 GARSINGTON RD, OXFORD OX4 2DQ, OXON, ENGLAND SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD OCT 11 PY 2008 VL 390 IS 1 BP 118 EP 130 DI 10.1111/j.1365-2966.2008.13510.x PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 367BZ UT WOS:000260528800030 ER PT J AU Esposito, P Israel, GL Zane, S Senziani, F Starling, RLC Rea, N Palmer, DM Gehrels, N Tiengo, A De Luca, A Gotz, D Mereghetti, S Romano, P Sakamoto, T Barthelmy, SD Stella, L Turolla, R Feroci, M Mangano, V AF Esposito, P. Israel, G. L. Zane, S. Senziani, F. Starling, R. L. C. Rea, N. Palmer, D. M. Gehrels, N. Tiengo, A. De Luca, A. Goetz, D. Mereghetti, S. Romano, P. Sakamoto, T. Barthelmy, S. D. Stella, L. Turolla, R. Feroci, M. Mangano, V. TI The 2008 May burst activation of SGR 1627-41 SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE stars: neutron; X-rays: bursts; X-rays: individual: SGR 1627-41 ID SOFT GAMMA REPEATER; X-RAY-EMISSION; LOCALIZATION; SGR-1900+14; PULSARS; HETE-2 AB In 2008 May, the soft gamma-ray repeater (SGR) SGR 1627-41 resumed its bursting activity after nearly a decade of quiescence. After detection of a bright burst, Swift pointed its X-ray telescope in the direction of the source in less than five hours and followed it for over five weeks. In this Letter, we present an analysis of the data from these Swift observations and an XMM-Newton one performed when SGR 1627-41 was still in a quiescent state. The analysis of the bursts detected with Swift/Burst Alert Telescope shows that their temporal and spectral properties are similar to those found in previous observations of SGR 1627-41 and other SGRs. The maximum peak luminosity of the bursts was similar to 2 x 10(41) erg s(-1). Our data show that the outburst was accompanied by a fast flux enhancement and by a hardening of the spectrum with respect to the persistent emission. C1 [Esposito, P.; De Luca, A.] Univ Pavia, Dipartimento Fis Nucl & Teor, I-27100 Pavia, Italy. [Esposito, P.; De Luca, A.] Univ Pavia, INFN Pavia, I-27100 Pavia, Italy. [Esposito, P.; Senziani, F.; Tiengo, A.; De Luca, A.; Mereghetti, S.] INAF Ist Astrofis Spaziale & Fis Cosm Milano, I-20133 Milan, Italy. [Israel, G. L.; Stella, L.] Osserv Astron Roma, INAF, I-00040 Monte Porzio Catone, Italy. [Zane, S.; Turolla, R.] Univ Coll London, Mullard Space Sci Lab, Dorking RH5 6NT, Surrey, England. [Senziani, F.] IUSS, I-27100 Pavia, Italy. [Starling, R. L. C.] Univ Leicester, Dept Phys & Astron, Leicester LE1 7RH, Leics, England. [Rea, N.] Univ Amsterdam, Astron Inst Anton Pannekoek, NL-1098 SJ Amsterdam, Netherlands. [Palmer, D. M.; Sakamoto, T.; Barthelmy, S. D.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Gehrels, N.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Goetz, D.] CEA Saclay, DSM Irfu Serv Astrophys, F-91191 Gif Sur Yvette, France. [Romano, P.; Mangano, V.] INAF Ist Astrofis Spaziale & Fis Cosm Palermo, I-90146 Palermo, Italy. [Turolla, R.] Univ Padua, Dipartimento Fis, I-35131 Padua, Italy. [Feroci, M.] INAF Ist Astrofis Spaziale & Fis Cosm Roma, I-00133 Rome, Italy. RP Esposito, P (reprint author), Univ Pavia, Dipartimento Fis Nucl & Teor, Via A Bassi 6, I-27100 Pavia, Italy. EM paoloesp@iasf-milano.inaf.it RI Barthelmy, Scott/D-2943-2012; Gehrels, Neil/D-2971-2012; Rea, Nanda/I-2853-2015; OI Rea, Nanda/0000-0003-2177-6388; Tiengo, Andrea/0000-0002-6038-1090; Feroci, Marco/0000-0002-7617-3421; MEREGHETTI, SANDRO/0000-0003-3259-7801; Israel, GianLuca/0000-0001-5480-6438; De Luca, Andrea/0000-0001-6739-687X; Esposito, Paolo/0000-0003-4849-5092 FU ASI/INAF [I/088/06/0, AAE TH-058]; STFC; NWO Veni; CNES FX This research is based on observations with the NASA/UK/ASI Swift mission. We thank the Swift duty scientists and science planners for making these observations possible. We also used data obtained with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and NASA. The Italian authors acknowledge the partial support from ASI (ASI/INAF contracts I/088/06/0 and AAE TH-058). SZ and RLCS acknowledge support from STFC. NR is supported by an NWO Veni Fellowship. DG acknowledges the CNES for financial support. NR 32 TC 34 Z9 34 U1 0 U2 1 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD OCT 11 PY 2008 VL 390 IS 1 BP L34 EP L38 DI 10.1111/j.1745-3933.2008.00530.x PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 367BZ UT WOS:000260528800008 ER PT J AU Plaster, B Carr, R Filippone, BW Harrison, D Hsiao, J Ito, TM Liu, J Martin, JW Tipton, B Yuan, J AF Plaster, B. Carr, R. Filippone, B. W. Harrison, D. Hsiao, J. Ito, T. M. Liu, J. Martin, J. W. Tipton, B. Yuan, J. TI A solenoidal electron spectrometer for a precision measurement of the neutron beta-asymmetry with ultracold neutrons SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Neutron beta-decay; Low-energy electron magnetic spectrometer; Ultracold neutrons ID LOW-ENERGY; DECAY; TESTS; BACKSCATTERING; MODEL AB We describe an electron spectrometer designed for a precision measurement of the neutron beta-asymmetry with spin-polarized ultracold neutrons. The spectrometer consists of a 1.0-T solenoidal Held with two identical multiwire proportional chamber and plastic scintillator electron detector packages situated within 0.6-T field-expansion regions, Select results from performance studies of the spectrometer with calibration sources are reported. (C) 2008 Elsevier B.V. All rights reserved. C1 [Plaster, B.] Univ Kentucky, Dept Phys & Astron, Lexington, KY 40506 USA. [Plaster, B.; Carr, R.; Filippone, B. W.; Hsiao, J.; Ito, T. M.; Liu, J.; Martin, J. W.; Tipton, B.; Yuan, J.] CALTECH, WK Kellogg Radiat Lab, Pasadena, CA 91125 USA. [Harrison, D.; Martin, J. W.] Univ Winnipeg, Dept Phys, Winnipeg, MB R3B 2E9, Canada. [Ito, T. M.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Plaster, B (reprint author), Univ Kentucky, Dept Phys & Astron, Lexington, KY 40506 USA. EM plaster@pa.uky.edu RI Yuan, Junhua/C-7923-2009; OI Ito, Takeyasu/0000-0003-3494-6796 FU National Science Foundation [PHY-0079767, PHY-0244899, PHY-0555674]; Natural Sciences and Engineering Research Council of Canada FX We thank R. Cortez and J. Pendlay for their skillful technical contributions to the design, fabrication, and deployment of the detector systems. We thank S. Currie for his devoted efforts to the operation and maintenance of the helium liquefaction plant. We thank the entire UCNA collaboration for many valuable suggestions. This work was supported in part by the National Science Foundation under grant numbers PHY-0079767 (a Major Research Instrumentation Program grant), PHY-0244899, PHY-0555674, and also by the Natural Sciences and Engineering Research Council of Canada. NR 24 TC 15 Z9 15 U1 1 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD OCT 11 PY 2008 VL 595 IS 3 BP 587 EP 598 DI 10.1016/j.nima.2008.07.143 PG 12 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 374FM UT WOS:000261028600007 ER PT J AU Huber, T Hurth, T Lunghi, E AF Huber, Tobias Hurth, Tobias Lunghi, Enrico TI Logarithmically enhanced corrections to the decay rate and forward-backward asymmetry in (B)over-bar -> X(s)l(+)l(-) SO NUCLEAR PHYSICS B LA English DT Article DE B physics; rare decays ID DILEPTON INVARIANT MASS; UB-VERTICAL-BAR; RARE B-DECAYS; STANDARD MODEL; B->X(S)L(+)L(-) AB We study logarithmically enhanced electromagnetic corrections to the decay rate in the high dilepton invariant mass region as well as corrections to the forward-backward asymmetry (FBA) of the inclusive rare decay (B) over bar -> X(s)l(+)l(-). As expected, the relative effect of these corrections in the high dilepton mass region is around -8% for the muonic final state and therefore much larger than in the low dilepton mass region. We also present a complete phenomenological analysis, to improved NNLO accuracy, of the dilepton mass spectrum and the FBA integrated in the low dilepton mass region, including a new approach to the zero of the FBA. The latter represents one of the most precise predictions in flavour physics with a theoretical uncertainty of order 5%. We find (q(0)(2))(mu mu) = (3.50 +/- 0.12) GeV2. For the high dilepton invariant mass region, we have B((B) over bar -> X-s mu mu)(high) = (2.40(-0.62)(+0.69)) x 10(-7) . The dominant uncertainty is due to the 1/m(b) corrections and can be significantly reduced in the future. For the low dilepton invariant mass region, we confirm previous results up to small corrections. (c) 2008 Elsevier B.V. All rights reserved. C1 [Hurth, Tobias] CERN, Div Theory, Dept Phys, CH-1211 Geneva, Switzerland. [Huber, Tobias] Univ Zurich, Inst Theoret Phys, CH-8057 Zurich, Switzerland. [Huber, Tobias] Rhein Westfal TH Aachen, Inst Theoret Phys E, D-52056 Aachen, Germany. [Hurth, Tobias] Stanford Univ, Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. [Lunghi, Enrico] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. RP Hurth, T (reprint author), CERN, Div Theory, Dept Phys, CH-1211 Geneva, Switzerland. EM tobias.hurth@cern.ch OI Huber, Tobias/0000-0002-3851-0116 NR 50 TC 63 Z9 63 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0550-3213 EI 1873-1562 J9 NUCL PHYS B JI Nucl. Phys. B PD OCT 11 PY 2008 VL 802 IS 1-2 BP 40 EP 62 DI 10.1016/j.nuclphysb.2008.04.028 PG 23 WC Physics, Particles & Fields SC Physics GA 334AH UT WOS:000258194200002 ER PT J AU Seo, HJ Siegel, ER Eisenstein, DJ White, M AF Seo, Hee-Jong Siegel, Ethan R. Eisenstein, Daniel J. White, Martin TI Nonlinear structure formation and the acoustic scale SO ASTROPHYSICAL JOURNAL LA English DT Article DE cosmological parameters; cosmology : theory; distance scale; large-scale structure of universe; methods : n-body simulations ID LUMINOUS RED GALAXIES; MICROWAVE BACKGROUND ANISOTROPY; ANGULAR POWER SPECTRUM; PROBING DARK ENERGY; DIGITAL SKY SURVEY; BARYON OSCILLATIONS; REDSHIFT SURVEYS; PERTURBATION-THEORY; ANALYTIC APPROACH; REAL-SPACE AB We present high signal-to-noise ratio measurements of the acoustic scale in the presence of nonlinear growth and redshift distortions using 320 h(-3) Gpc(3) of cosmological particle-mesh simulations. Using simple fitting methods, we obtain robust measurements of the acoustic scale with scatter close to that predicted by the Fisher matrix. We detect and quantify the shift in the acoustic scale by analyzing the power spectrum: we detect at greater than 5 sigma a decrease in the acoustic scale in the real-space matter power spectrum of 0.2% at z = 1.5, growing to 0.45% at z = 0.3. In redshift space, the shifts are about 25% larger: we detect a decrease of 0.25% at z = 1.5 and 0.54% at z = 0.3. Despite the nonzero amounts, these shifts are highly predictable numerically, and hence removable within the standard ruler analysis of clustering data. Moreover, we show that a simple density field reconstruction method substantially reduces the scatter and nonlinear shifts of the acoustic scale measurements: the shifts are reduced to less than 0.1% at z = 0.3-1.5, even in the presence of nonnegligible shot noise. Finally, we show that the ratio of the cosmological distance to the sound horizon that would be inferred from these fits is robust to variations in the parameterization of the fitting method and reasonable differences in the template cosmology. C1 [Seo, Hee-Jong] Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, Batavia, IL 60510 USA. [Seo, Hee-Jong; Siegel, Ethan R.; Eisenstein, Daniel J.] Univ Arizona, Steward Observ, Tucson, AZ 85121 USA. [White, Martin] Univ Calif Berkeley, Dept Phys & Astron, Berkeley, CA 94720 USA. [White, Martin] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Seo, HJ (reprint author), Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, POB 500, Batavia, IL 60510 USA. EM sheejong@fnal.gov; ethan@as.arizona.edu; deisenstein@as.arizona.edu; mwhite@berkeley.edu RI White, Martin/I-3880-2015 OI White, Martin/0000-0001-9912-5070 FU DOE; NASA [NNX07AH11G, NNX07AC51G]; NSF [AST 07-07725] FX We thank Martin Crocce for useful conversations. H.-J.S. is supported by the DOE at Fermilab. E.R.S., D.J.E., and M. W. were supported by NASA grant NNX07AH11G. E. R.S. and D.J.E. were supported by NASA grant NNX07AC51G and NSF AST 07-07725. The simulations reported here used resources at the National Energy Research Supercomputing Center. NR 86 TC 58 Z9 58 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD OCT 10 PY 2008 VL 686 IS 1 BP 13 EP 24 DI 10.1086/589921 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 357BV UT WOS:000259822200002 ER PT J AU Tinker, JL Conroy, C Norberg, P Patiri, SG Weinberg, DH Warren, MS AF Tinker, Jeremy L. Conroy, Charlie Norberg, Peder Patiri, Santiago G. Weinberg, David H. Warren, Michael S. TI Void statistics in large galaxy redshift surveys: Does halo occupation of field galaxies depend on environment? SO ASTROPHYSICAL JOURNAL LA English DT Article DE cosmology : theory; galaxies : halos; large-scale structure of universe ID DIGITAL-SKY-SURVEY; LARGE-SCALE STRUCTURE; DARK-MATTER HALOES; PAIRWISE VELOCITY DISPERSION; MARKED CORRELATION-FUNCTION; LUMINOSITY DEPENDENCE; POWER-SPECTRUM; COSMIC VOIDS; DATA RELEASE; BIAS AB We use measurements of the projected galaxy correlation function w(p)(r(p)) and galaxy void statistics to test whether the galaxy content of halos of fixed mass is systematically different in low-density environments. We present new measurements of the void probability function (VPF) and underdensity probability function (UPF) from Data Release 4 of the Sloan Digital Sky Survey (SDSS), as well as new measurements from the Two-Degree Field Galaxy Redshift Survey. We compare these measurements to predictions calculated from models of the halo occupation distribution ( HOD) that are constrained to match both the projected correlation function wp( rp) and the space density of galaxies ng. The standard implementation of the HOD assumes that galaxy occupation depends on halo mass only, and is independent of local environment. For luminosity-defined samples, we find that the standard HOD prediction is a good match to the observations, and the data exclude models in which galaxy formation efficiency is reduced in low-density environments. More remarkably, we find that the void statistics of red and blue galaxies (at L similar to 0: 4L(*)) are perfectly predicted by standard HOD models matched to the correlation function of these samples, ruling out "assembly bias'' models in which galaxy color is correlated with large-scale environment at fixed halo mass. We conclude that the luminosity and color of field galaxies are determined predominantly by the mass of the halo in which they reside and have little direct dependence on the environment in which the host halo formed. In broader terms, our results show that the sizes and emptiness of voids found in the distribution of L greater than or similar to 2L(*) galaxies are in excellent agreement with the predictions of a standard cosmological model with a simple connection between galaxies and dark matter halos. C1 [Tinker, Jeremy L.; Conroy, Charlie] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Tinker, Jeremy L.] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [Conroy, Charlie] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. [Norberg, Peder] Univ Edinburgh, Inst Astron, Edinburgh EH19 3HJ, Midlothian, Scotland. [Patiri, Santiago G.] Inst Astrofis Canarias, Tenerife 38200, Spain. [Weinberg, David H.] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. [Warren, Michael S.] Los Alamos Natl Labs, Los Alamos, NM 87545 USA. RP Tinker, JL (reprint author), Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. OI Warren, Michael/0000-0002-1218-7904 FU NSF [AST-0407125]; US Department of Energy [W-7405-ENG-36] FX The authors wish to thank Darren Croton, Brant Robertson, Ravi Sheth, Michael Vogeley, RisaWechsler, Martin White, and Andrew Zentner for many useful discussions. J. L. T. acknowledges the use of the computing facilities of the Department of Astronomy at The Ohio State University. J. L. T. would also like to acknowledge the generous hospitality of the Institute for Computational Cosmology at the University of Durham, where part of this work was completed. D. W. acknowledges the support of NSF grant AST- 0407125. Portions of this work were performed under the auspices of the US Department of Energy and were supported by its contract W-7405-ENG-36 to Los Alamos National Laboratory (LANL). Computational resources were provided by the LANL open supercomputing initiative. C. C. thanks the Instituto de Astrofisica de Andalucia (CSIC) for their wonderful espresso bar and financial support in the spring of 2006. NR 85 TC 56 Z9 56 U1 0 U2 3 PU UNIV CHICAGO PRESS PI CHICAGO PA 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD OCT 10 PY 2008 VL 686 IS 1 BP 53 EP 71 DI 10.1086/589983 PG 19 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 357BV UT WOS:000259822200005 ER PT J AU Lee, SH Kamae, T Ellison, DC AF Lee, Shiu-Hang Kamae, Tuneyoshi Ellison, Donald C. TI Three-dimensional model of broadband emission from supernova remnants undergoing nonlinear diffusive shock acceleration SO ASTROPHYSICAL JOURNAL LA English DT Article DE acceleration of particles; cosmic rays; gamma rays : observations; supernova remnants; X-rays : general ID GAMMA-RAY EMISSION; MAGNETIC-FIELD AMPLIFICATION; VERY-HIGH-ENERGY; P-P INTERACTION; PARTICLE-ACCELERATION; COSMIC-RAYS; ASTRONOMICAL ENVIRONMENTS; RX J1713.7-3946; CASSIOPEIA-A; IC 443 AB We present a three-dimensional model of supernova remnants (SNRs) in which the hydrodynamical evolution of the remnant is modeled consistently with nonlinear diffusive shock acceleration occurring at the outer blast wave. The model includes particle escape and diffusion outside of the forward shock and particle interactions with arbitrary distributions of external ambient material, such as molecular clouds. We include synchrotron emission and cooling, bremsstrahlung radiation, neutral pion production, and inverse Compton (IC) and Coulomb energy loss. Broadband spectra have been calculated for typical parameters, including dense regions of gas external to a 1000 yr old SNR. In this paper, we describe the details of our model, but do not attempt a detailed fit to any specific remnant. We also do not include magnetic field amplification (MFA), even though this effect may be important in some young remnants. Our aim is to develop a flexible platform that can be generalized to include effects such as MFA, and that can be easily adapted to various SNR environments, including Type Ia SNRs, which explode in a constant-density medium, and Type II SNRs, which explode in a presupernova wind. When applied to a specific SNR, our model will predict cosmic-ray spectra and multiwavelength morphology in projected images for instruments with varying spatial and spectral resolutions. We show examples of these spectra and images and emphasize the importance of measurements in the hard X-ray, GeV, and TeV gamma-ray bands for investigating key ingredients in the acceleration mechanism, and for deducing whether or not TeV emission is produced by IC from electrons or pion decay from protons. C1 [Lee, Shiu-Hang; Kamae, Tuneyoshi] Stanford Univ, Stanford Linear Accelerator Ctr, Menlo Pk, CA 94025 USA. [Lee, Shiu-Hang; Kamae, Tuneyoshi] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, Menlo Pk, CA 94025 USA. [Ellison, Donald C.] N Carolina State Univ, Dept Phys, Raleigh, NC 27695 USA. RP Lee, SH (reprint author), Stanford Univ, Stanford Linear Accelerator Ctr, Menlo Pk, CA 94025 USA. EM kamae@slac.stanford.edu; shia520@slac.stanford.edu; don_ellison@ncsu.edu FU NASAATP [06-ATP06-21]; NASA LTSA [(NNH04Zss001N- LTSA]; US Department of Energy [DE-AC02-76SF00515] FX The authors wish to thank Roger Blandford, Steven Kahn, Igor Moskalenko, Niklas Karlsson, Stefan Funk, Takaaki Tanaka, Johan- Cohen Tanugi, and Masaru Ueno for helpful discussions. They are grateful to the anonymous referee for bringing new publications to their attention. D. C. E. is grateful for the hospitality of KIPAC, where part of this work was done, as well as for support from a NASAATP grant (06-ATP06-21) and a NASA LTSA grant (NNH04Zss001N- LTSA). This work was supported in part by the US Department of Energy under grant DE-AC02-76SF00515. NR 47 TC 22 Z9 22 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD OCT 10 PY 2008 VL 686 IS 1 BP 325 EP 336 DI 10.1086/591308 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 357BV UT WOS:000259822200025 ER PT J AU Greenhill, LJ Tilak, A Madejski, G AF Greenhill, Lincoln J. Tilak, Avanti Madejski, Grzegorz TI PREVALENCE OF HIGH X-RAY OBSCURING COLUMNS AMONG AGNs THAT HOST H2O MASERS SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE accretion, accretion disks; galaxies: active; galaxies: nuclei; masers; radio lines: ISM; X-rays: galaxies ID ACTIVE GALACTIC NUCLEI; NEARBY SEYFERT-GALAXIES; XMM-NEWTON; ACCRETION DISK; WATER MASER; EMISSION; PARSEC; OBSCURATION; LUMINOSITY; MEGAMASER AB Of 104 AGNs known to exhibit H2O maser emission, X-ray data that enable estimation of column densities, or lower limits, are available for 42. Contributing to this, we report analysis of new and archival X-ray data for eight galaxies and collation of values for three more. Maser emission is indicative of large columns of cold gas, and in five of the eight new cases, maser spectra point toward origins in accretion disks viewed close to edge-on (a.k.a. "disk maser" systems). In these, we detect hard continuum and Fe K alpha emission with equivalent widths on the order of 1 keV, which is consistent with Compton reflection, fluorescence by cold material, and obscuring columns greater than or similar to 10(24) cm(-2). Reviewing the full sample of 42, 95% N-H > 10(23) cm(-2) and 60% exhibit N-H > 10(24) cm(-2). Half of these are now recognized to be disk masers (up from 13); in this subsample, which is likely to be more homogeneous vis-a-vis the origin of maser emission, 76% exhibit N-H > 10(24) cm(-2). The probability of a common parent distribution of columns for disk masers and other AGN masers is less than or similar to 3%. Because ground-based surveys of AGNs to detect new disk masers are relatively unbiased with respect to X-ray brightness and comparatively inexpensive, they may also be efficient guides for the sensitive pointed X-ray observations required to identify Compton-thick objects outside of shallow surveys. C1 [Greenhill, Lincoln J.; Tilak, Avanti] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Madejski, Grzegorz] Stanford Linear Accelerator Ctr, Menlo Pk, CA 94025 USA. [Madejski, Grzegorz] Kavli Inst Astrophys & Cosmol, Menlo Pk, CA 94025 USA. RP Greenhill, LJ (reprint author), Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA. EM greenhill@cfa.harvard.edu FU NASA [NNG05GK24G]; DoE [DE-AC3-76SF00515] FX We thank A. Fruscione for help with data reduction and M. Elvis, A. Siemiginowska, and B. Wilkes for useful discussions. This research made extensive use of the NASA/IPAC Extragalactic Database and the NASA Astrophysical Data System Bibliographic Services. This work was supported in part by NASA grant NNG05GK24G and DoE contract to SLAC No. DE-AC3-76SF00515. NR 32 TC 36 Z9 37 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD OCT 10 PY 2008 VL 686 IS 1 BP L13 EP L16 DI 10.1086/592782 PG 4 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 398KO UT WOS:000262731200004 ER PT J AU Bystroff, C Webb-Robertson, BJ AF Bystroff, Christopher Webb-Robertson, Bobbie-Jo TI Pairwise covariance adds little to secondary structure prediction but improves the prediction of non-canonical local structure SO BMC BIOINFORMATICS LA English DT Article ID CORRELATED MUTATIONS; PROTEIN STRUCTURES; SEQUENCE; LIBRARY; MOTIFS AB Background: Amino acid sequence probability distributions, or profiles, have been used successfully to predict secondary structure and local structure in proteins. Profile models assume the statistical independence of each position in the sequence, but the energetics of protein folding is better captured in a scoring function that is based on pairwise interactions, like a force field. Results: I-sites motifs are short sequence/structure motifs that populate the protein structure database due to energy-driven convergent evolution. Here we show that a pairwise covariant sequence model does not predict alpha helix or beta strand significantly better overall than a profile-based model, but it does improve the prediction of certain loop motifs. The finding is best explained by considering secondary structure profiles as multivariant, all-or-none models, which subsume covariant models. Pairwise covariance is nonetheless present and energetically rational. Examples of negative design are present, where the covariances disfavor non-native structures. Conclusion: Measured pairwise covariances are shown to be statistically robust in cross-validation tests, as long as the amino acid alphabet is reduced to nine classes. An updated I-sites local structure motif library that provides sequence covariance information for all types of local structure in globular proteins and a web server for local structure prediction are available at http://www.bioinfo.rpi.edu/bystrc/hmmstr/server.php. C1 [Bystroff, Christopher] Rensselaer Polytech Inst, Dept Biol, Ctr Biotechnol & Interdisciplinary Studies, Troy, NY 12180 USA. [Bystroff, Christopher] Rensselaer Polytech Inst, Dept Comp Sci, Ctr Biotechnol & Interdisciplinary Studies, Troy, NY 12180 USA. [Webb-Robertson, Bobbie-Jo] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Bystroff, C (reprint author), Rensselaer Polytech Inst, Dept Biol, Ctr Biotechnol & Interdisciplinary Studies, Troy, NY 12180 USA. EM bystrc@rpi.edu; bobbie-jo.webb-robertson@pnl.gov FU NSF [DBI-0448072]; Data-Intensive Computing Initiative; U. S. Department of Energy [DE-AC06-76RLO 1830] FX Funding for this work was provided by NSF grant DBI-0448072 to C. B. Funding to B. W for this work was provided by the Data-Intensive Computing Initiative with the Laboratory Directed Research and Development program at the Pacific Northwest National Laboratory (PNNL). PNNL is a multi-program national laboratory operated by Battelle for the U. S. Department of Energy under contract DE-AC06-76RLO 1830. NR 15 TC 1 Z9 1 U1 0 U2 1 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1471-2105 J9 BMC BIOINFORMATICS JI BMC Bioinformatics PD OCT 10 PY 2008 VL 9 AR 429 DI 10.1186/1471-2105-9-429 PG 10 WC Biochemical Research Methods; Biotechnology & Applied Microbiology; Mathematical & Computational Biology SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology; Mathematical & Computational Biology GA 372GP UT WOS:000260890400001 PM 18847485 ER EF