FN Thomson Reuters Web of Science™ VR 1.0 PT J AU Taylor, CD AF Taylor, Christopher D. TI Evaluation of first-principles techniques for obtaining materials parameters of alpha-uranium and the (001)alpha-uranium surface SO PHYSICAL REVIEW B LA English DT Article ID GENERALIZED GRADIENT APPROXIMATION; BRILLOUIN-ZONE INTEGRATIONS; VACANCY FORMATION; LIGHT ACTINIDES; WAVE; PSEUDOPOTENTIALS; METALS AB First- principles calculations based on the projector augmented- wave ( PAW ) technique have been applied to the prediction of materials properties of alpha-uranium and its ( 001 ) surface. The results of the PAW calculations are shown to be comparable in accuracy to the full- potential calculations reported elsewhere. In addition to calculating lattice constants and elastic moduli, the vacancy formation energy ( 1.95 eV ), ( 001 ) surface relaxation (- 3.5% for delta(12) and + 1.2% for delta(23) ), (001) surface energy (1.4 J/m(2)), and (001) work function ( 3.6 eV ) were also obtained. The overall agreement with experiment is satisfactory. Using an elastic model for brittle-crack failure, a yield stress of 430 MPa was estimated. Further exploration of materials failure modes ( such as plastic deformation ) awaits a larger- scale atomistic treatment. Full spin- orbit and scalar relativistic calculations were shown to give results with similar levels of accuracy compared to experiment. C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Taylor, CD (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. OI Taylor, Christopher/0000-0002-0252-0988 NR 34 TC 50 Z9 51 U1 2 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAR PY 2008 VL 77 IS 9 AR 094119 DI 10.1103/PhysRevB.77.094119 PG 9 WC Physics, Condensed Matter SC Physics GA 282BL UT WOS:000254542500051 ER PT J AU von Lilienfeld, OA Schultz, PA AF von Lilienfeld, O. Anatole Schultz, Peter A. TI Structure and band gaps of Ga-(V) semiconductors: The challenge of Ga pseudopotentials SO PHYSICAL REVIEW B LA English DT Article ID DENSITY-FUNCTIONAL THEORY; GENERALIZED GRADIENT APPROXIMATION; ELECTRONIC-STRUCTURE; PRESSURE-DEPENDENCE; GALLIUM NITRIDE; ZINCBLENDE GAN; LOCAL-DENSITY; SOFT ACIDS; ALLOYS; ALN AB Design of gallium pseudopotentials has been investigated for use in density functional calculations of zinc-blende-type cubic phases of GaAs, GaP, and GaN. A converged construction with respect to all-electron results is described. Computed lattice constants, bulk moduli, and band gaps vary significantly depending on pseudopotential construction or exchange-correlation functional. The Kohn-Sham band gap of the Ga-(V) semiconductors exhibits a distinctive and strong sensitivity to lattice constant, with near-linear dependence of gap on lattice constant for larger lattice constants and Gamma-X crossover that changes the slope of the dependence. This crossover occurs at approximate to 98, 101, and 95% deviation from the equilibrium lattice constant for GaAs, GaP, and GaN, respectively. C1 [von Lilienfeld, O. Anatole; Schultz, Peter A.] Multiscale Dynam Materials Modeling Dept, Sandia Natl Labs, Albuquerque, NM 87185 USA. RP von Lilienfeld, OA (reprint author), Multiscale Dynam Materials Modeling Dept, Sandia Natl Labs, Albuquerque, NM 87185 USA. EM paschul@sandia.gov RI von Lilienfeld, O. Anatole/D-8529-2011 NR 66 TC 17 Z9 17 U1 1 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD MAR PY 2008 VL 77 IS 11 AR 115202 DI 10.1103/PhysRevB.77.115202 PG 8 WC Physics, Condensed Matter SC Physics GA 282BO UT WOS:000254542800083 ER PT J AU Wang, SC Yilmaz, MB Knox, KR Zaki, N Dadap, JI Valla, T Johnson, PD Osgood, RM AF Wang, S. -C. Yilmaz, M. B. Knox, K. R. Zaki, N. Dadap, J. I. Valla, T. Johnson, P. D. Osgood, R. M., Jr. TI Electronic structure of a Co-decorated vicinal Cu(775) surface: High-resolution photoemission spectroscopy SO PHYSICAL REVIEW B LA English DT Article ID SCANNING-TUNNELING-MICROSCOPY; PHOTOELECTRON-SPECTROSCOPY; STEPPED CU(111); WAVE-FUNCTION; STATES; COBALT; GROWTH; CU; MODULATION; TERRACE AB We measure the electronic structure of low-coverage Co on a Cu(775) stepped substrate using highresolution photoemission spectroscopy with the particular goal of relating the electronic dispersion to the coverage-dependent surface structure. In particular, we follow the evolution of the electronic dispersion of the sp-like Cu surface state and the position of the band minimum as a function of Co coverage. On the bare Cu(775) surface, we observe band folding of this state due to the stepped surface-superlattice array. In addition, we determine that the reference plane, as measured by the position of the band minimum of this state, changes dramatically after addition of just 0.03 ML Co. At 0.06 ML, we observe the formation of a second surface state at a binding energy of 0.68 eV. This feature is attributed to a quantum-well state hybridized with the substrate. C1 [Wang, S. -C.; Yilmaz, M. B.; Dadap, J. I.; Osgood, R. M., Jr.] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA. [Knox, K. R.] Columbia Univ, Dept Phys, New York, NY 10027 USA. [Zaki, N.; Osgood, R. M., Jr.] Columbia Univ, Dept Elect Engn, New York, NY 10027 USA. [Valla, T.; Johnson, P. D.] Brookhaven Natl Lab, Dept Condensed Matter & Mat Sci, Upton, NY 11973 USA. RP Wang, SC (reprint author), Renmin Univ China, Dept Phys, Beijing 100872, Peoples R China. RI 石, 源/D-5929-2012; ruc, phy/E-4170-2012; Dadap, Jerry/K-2788-2012; Wang, Shancai/F-6162-2013; OI Yilmaz, Mehmet Burak/0000-0002-3450-5395 NR 40 TC 8 Z9 8 U1 2 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAR PY 2008 VL 77 IS 11 AR 115448 DI 10.1103/PhysRevB.77.115448 PG 7 WC Physics, Condensed Matter SC Physics GA 282BO UT WOS:000254542800200 ER PT J AU Whitehead, LW Williams, GJ Quiney, HM Nugent, KA Peele, AG Paterson, D de Jonge, MD McNulty, I AF Whitehead, L. W. Williams, G. J. Quiney, H. M. Nugent, K. A. Peele, A. G. Paterson, D. de Jonge, M. D. McNulty, I. TI Fresnel diffractive imaging: Experimental study of coherence and curvature SO PHYSICAL REVIEW B LA English DT Article ID X-RAY-DIFFRACTION; MICROSCOPY AB A Fresnel coherent diffractive imaging experiment is performed using a pinhole as a test object. The experimental parameters of the beam curvature and coherence length of the illuminating radiation are varied to investigate their effects on the reconstruction process. It is found that a sufficient amount of curvature across the sample strongly ameliorates the effects of low coherence, even when the sample size exceeds the coherence length. C1 [Whitehead, L. W.; Williams, G. J.; Quiney, H. M.; Nugent, K. A.] Univ Melbourne, Sch Phys, Melbourne, Vic 3010, Australia. [Peele, A. G.] La Trobe Univ, Dept Phys, Bundoora, Vic 3086, Australia. [Paterson, D.] Australian Synchrotron, Clayton, Vic 3168, Australia. [de Jonge, M. D.; McNulty, I.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Whitehead, LW (reprint author), Univ Melbourne, Sch Phys, Melbourne, Vic 3010, Australia. RI de Jonge, Martin/C-3400-2011; Williams, Garth/H-1606-2012; Nugent, Keith/J-2699-2012; Nugent, Keith/I-4154-2016 OI Nugent, Keith/0000-0003-1522-8991; Nugent, Keith/0000-0002-4281-3478 NR 18 TC 17 Z9 17 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAR PY 2008 VL 77 IS 10 AR 104112 DI 10.1103/PhysRevB.77.104112 PG 6 WC Physics, Condensed Matter SC Physics GA 282BN UT WOS:000254542700028 ER PT J AU Yang, A Steger, M Lian, HJ Thewalt, MLW Uemura, M Sagara, A Itoh, KM Haller, EE Ager, JW Lyon, SA Konuma, M Cardona, M AF Yang, A. Steger, M. Lian, H. J. Thewalt, M. L. W. Uemura, M. Sagara, A. Itoh, K. M. Haller, E. E. Ager, J. W., III Lyon, S. A. Konuma, M. Cardona, M. TI High-resolution photoluminescence measurement of the isotopic-mass dependence of the lattice parameter of silicon SO PHYSICAL REVIEW B LA English DT Article ID BOUND EXCITON-TRANSITIONS; CONSTANT; SI; GE AB We have studied the dependence of the lattice parameter of silicon on isotopic mass, using high-resolution photoluminescence spectroscopy to detect splittings of the shallow donor bound exciton transitions in epitaxial layers of either isotopically enriched (28)Si or (30)Si grown on silicon substrates of natural isotopic composition. The slight lattice parameter mismatch between the isotopically enriched epitaxial layer and the natural silicon substrate induces a biaxial strain in the epitaxial layer, which results in a splitting of the hole states in the bound exciton. This can be detected with remarkable precision, especially in the highly enriched (28)Si epilayers, where the bound exciton lines are extremely sharp. C1 [Yang, A.; Steger, M.; Lian, H. J.; Thewalt, M. L. W.] Simon Fraser Univ, Dept Phys, Burnaby, BC V5A 1S6, Canada. [Uemura, M.; Sagara, A.; Itoh, K. M.] Keio Univ, Yokohama, Kanagawa 2238522, Japan. [Uemura, M.; Sagara, A.; Itoh, K. M.] CREST JST, Yokohama, Kanagawa 2238522, Japan. [Haller, E. E.; Ager, J. W., III] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Haller, E. E.; Ager, J. W., III] LBNL, Berkeley, CA 94720 USA. [Lyon, S. A.] Princeton Univ, Princeton, NJ 08544 USA. [Konuma, M.; Cardona, M.] Max Planck Inst Festkorperforsch, D-70569 Stuttgart, Germany. RP Yang, A (reprint author), Simon Fraser Univ, Dept Phys, Burnaby, BC V5A 1S6, Canada. RI Thewalt, Michael/B-3534-2008; Itoh, Kohei/C-5738-2014; OI Thewalt, Michael/0000-0002-5806-0618; Ager, Joel/0000-0001-9334-9751 NR 17 TC 2 Z9 2 U1 0 U2 11 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAR PY 2008 VL 77 IS 11 AR 113203 DI 10.1103/PhysRevB.77.113203 PG 4 WC Physics, Condensed Matter SC Physics GA 282BO UT WOS:000254542800012 ER PT J AU Zhang, WX Konstantinidis, NP Dobrovitski, VV Harmon, BN Santos, LF Viola, L AF Zhang, Wenxian Konstantinidis, N. P. Dobrovitski, V. V. Harmon, B. N. Santos, Lea F. Viola, Lorenza TI Long-time electron spin storage via dynamical suppression of hyperfine-induced decoherence in a quantum dot SO PHYSICAL REVIEW B LA English DT Article ID COUPLED ELECTRON; MAGNUS EXPANSION; RELAXATION; CONVERGENCE; SYSTEMS; NANOSTRUCTURES; MAGNETIZATION; ENTANGLEMENT; COMPUTATION; NUCLEI AB The coherence time of an electron spin decohered by the nuclear spin environment in a quantum dot can be substantially increased by subjecting the electron to suitable dynamical decoupling sequences. We analyze the performance of high-level decoupling protocols by using a combination of analytical and exact numerical methods, and by paying special attention to the regimes of large interpulse delays and long-time dynamics, which are outside the reach of standard average Hamiltonian theory descriptions. We demonstrate that dynamical decoupling can remain efficient far beyond its formal domain of applicability, and find that a protocol exploiting concatenated design provides best performance for this system in the relevant parameter range. In situations where the initial electron state is known, protocols able to completely freeze decoherence at long times are constructed and characterized. The impact of system and control nonidealities is also assessed, including the effect of intrabath dipolar interaction, magnetic field bias and bath polarization, as well as systematic pulse imperfections. While small bias field and small bath polarization degrade the decoupling fidelity, enhanced performance and temporal modulation result from strong applied fields and high polarizations. Overall, we find that if the relative errors of the control pulse flip angles do not exceed 3%, decoupling protocols can still prolong the coherence time by up to 2 orders of magnitude. C1 [Zhang, Wenxian; Konstantinidis, N. P.; Dobrovitski, V. V.; Harmon, B. N.] Iowa State Univ Sci & Technol, Ames Lab, Ames, IA 50011 USA. [Viola, Lorenza] Dartmouth Coll, Dept Phys & Astron, Hanover, NH 03755 USA. [Santos, Lea F.] Yeshiva Univ, Dept Phys, New York, NY 10016 USA. RP Zhang, WX (reprint author), Iowa State Univ Sci & Technol, Ames Lab, Ames, IA 50011 USA. RI Zhang, Wenxian/A-4274-2010; Santos, Lea/D-5332-2012 OI Santos, Lea/0000-0001-9400-2709 NR 87 TC 43 Z9 43 U1 0 U2 11 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAR PY 2008 VL 77 IS 12 AR 125336 DI 10.1103/PhysRevB.77.125336 PG 15 WC Physics, Condensed Matter SC Physics GA 282BQ UT WOS:000254543000108 ER PT J AU Abelev, BI Aggarwal, MM Ahammed, Z Anderson, BD Arkhipkin, D Averichev, GS Bai, Y Balewski, J Barannikova, O Barnby, LS Baudot, J Baumgart, S Beavis, DR Bellwied, R Benedosso, F Betts, RR Bhardwaj, S Bhasin, A Bhati, AK Bichsel, H Bielcik, J Bielcikova, J Bland, LC Blyth, SL Bombara, M Bonner, BE Botje, M Bouchet, J Braidot, E Brandin, AV Bueltmann, S Burton, TP Bystersky, M Cai, XZ Caines, H Sanchez, MCDB Callner, J Catu, O Cebra, D Cervantes, MC Chajecki, Z Chaloupka, P Chattopadhyay, S Chen, HF Chen, JH Chen, JY Cheng, J Cherney, M Chikanian, A Choi, KE Christie, W Chung, SU Clarke, RF Codrington, MJM Coffin, JP Cormier, TM Cosentino, MR Cramer, JG Crawford, HJ Das, D Dash, S Daugherity, M de Moura, MM Dedovich, TG DePhillips, M Derevschikov, AA de Souza, RD Didenko, L Dietel, T Djawotho, P Dogra, SM Dong, X Drachenberg, JL Draper, JE Du, F Dunlop, JC Mazumdar, MRD Edwards, WR Efimov, LG Elhalhuli, E Emelianov, V Engelage, J Eppley, G Erazmus, B Estienne, M Eun, L Fachini, P Fatemi, R Fedorisin, J Feng, A Filip, P Finch, E Fine, V Fisyak, Y Fu, J Gagliardi, CA Gaillard, L Ganti, MS Garcia-Solis, E Ghazikhanian, V Ghosh, P Gorbunov, YN Gordon, A Grebenyuk, O Grosnick, D Grube, B Guertin, SM Guimaraes, KSFF Gupta, A Gupta, N Guryn, W Haag, B Hallman, TJ Hamed, A Harris, JW He, W Heinz, M Henry, TW Hepplemann, S Hippolyte, B Hirsch, A Hjort, E Hoffman, AM Hoffmann, GW Hofman, DJ Hollis, RS Horner, MJ Huang, HZ Hughes, EW Humanic, TJ Igo, G Iordanova, A Jacobs, P Jacobs, WW Jakl, P Jin, F Jones, PG Judd, EG Kabana, S Kajimoto, K Kang, K Kapitan, J Kaplan, M Keane, D Kechechyan, A Kettler, D Khodyrev, VY Kiryluk, J Kisiel, A Klein, SR Knospe, AG Kocoloski, A Koetke, DD Kollegger, T Kopytine, M Kotchenda, L Kouchpil, V Kowalik, KL Kravtsov, P Kravtsov, VI Krueger, K Kuhn, C Kumar, A Kurnadi, P Lamont, MAC Landgraf, JM Lange, S LaPointe, S Laue, F Lauret, J Lebedev, A Lednicky, R Lee, CH LeVine, MJ Li, C Li, Q Li, Y Lin, G Lin, X Lindenbaum, SJ Lisa, MA Liu, F Liu, H Liu, J Liu, L Ljubicic, T Llope, WJ Longacre, RS Love, WA Lu, Y Ludlam, T Lynn, D Ma, GL Ma, JG Ma, YG Mahapatra, DP Majka, R Mangotra, LK Manweiler, R Margetis, S Markert, C Matis, HS Matulenko, YA McShane, TS Meschanin, A Millane, J Miller, ML Minaev, NG Mioduszewski, S Mischke, A Mitchell, J Mohanty, B Morozov, DA Munhoz, MG Nandi, BK Nattrass, C Nayak, TK Nelson, JM Nepali, C Netrakanti, PK Ng, MJ Nogach, LV Nurushev, SB Odyniec, G Ogawa, A Okada, H Okorokov, V Olson, D Pachr, M Pal, SK Panebratsev, Y Pavlinov, AI Pawlak, T Peitzmann, T Perevoztchikov, V Perkins, C Peryt, W Phatak, SC Planinic, M Pluta, J Poljak, N Porile, N Poskanzer, AM Potekhin, M Potukuchi, BVKS Prindle, D Pruneau, C Pruthi, NK Putschke, J Qattan, IA Raniwala, R Raniwala, S Ray, RL Relyea, D Ridiger, A Ritter, HG Roberts, JB Rogachevskiy, OV Romero, JL Rose, A Roy, C Ruan, L Russcher, MJ Rykov, V Sahoo, R Sakrejda, I Sakuma, T Salur, S Sandweiss, J Sarsour, M Schambach, J Scharenberg, RP Schmitz, N Seger, J Selyuzhenkov, I Seyboth, P Shabetai, A Shahaliev, E Shao, M Sharma, M Shi, XH Sichtermann, EP Simon, F Singaraju, RN Skoby, MJ Smirnov, N Snellings, R Sorensen, P Sowinski, J Speltz, J Spinka, HM Srivastava, B Stadnik, A Stanislaus, TDS Staszak, D Stock, R Strikhanov, M Stringfellow, B Suaide, AAP Suarez, MC Subba, NL Sumbera, M Sun, XM Sun, Z Surrow, B Symons, TJM de Toledo, AS Takahashi, J Tang, AH Tang, Z Tarnowsky, T Thein, D Thomas, JH Tian, J Timmins, AR Timoshenko, S Tokarev, M Trainor, TA Tram, VN Trattner, AL Trentalange, S Tribble, RE Tsai, OD Ulery, J Ullrich, T Underwood, DG Van Buren, G van der Kolk, N van Leeuwen, M Molen, AMV Varma, R Vasconcelos, GMS Vasilevski, IM Vasiliev, AN Vernet, R Videbaek, F Vigdor, SE Viyogi, YP Vokal, S Voloshin, SA Wada, M Waggoner, WT Wang, F Wang, G Wang, JS Wang, Q Wang, X Wang, XL Wang, Y Webb, JC Westfall, GD Whitten, C Wieman, H Wissink, SW Witt, R Wu, J Wu, Y Xu, N Xu, QH Xu, Z Yepes, P Yoo, IK Yue, Q Zawisza, M Zbroszczyk, H Zhan, W Zhang, H Zhang, S Zhang, WM Zhang, Y Zhang, ZP Zhao, Y Zhong, C Zhou, J Zoulkarneev, R Zoulkarneeva, Y Zuo, JX AF Abelev, B. I. Aggarwal, M. M. Ahammed, Z. Anderson, B. D. Arkhipkin, D. Averichev, G. S. Bai, Y. Balewski, J. Barannikova, O. Barnby, L. S. Baudot, J. Baumgart, S. Beavis, D. R. Bellwied, R. Benedosso, F. Betts, R. R. Bhardwaj, S. Bhasin, A. Bhati, A. K. Bichsel, H. Bielcik, J. Bielcikova, J. Bland, L. C. Blyth, S. -L. Bombara, M. Bonner, B. E. Botje, M. Bouchet, J. Braidot, E. Brandin, A. V. Bueltmann, S. Burton, T. P. Bystersky, M. Cai, X. Z. Caines, H. Sanchez, M. Calderon de la Barca Callner, J. Catu, O. Cebra, D. Cervantes, M. C. Chajecki, Z. Chaloupka, P. Chattopadhyay, S. Chen, H. F. Chen, J. H. Chen, J. Y. Cheng, J. Cherney, M. Chikanian, A. Choi, K. E. Christie, W. Chung, S. U. Clarke, R. F. Codrington, M. J. M. Coffin, J. P. Cormier, T. M. Cosentino, M. R. Cramer, J. G. Crawford, H. J. Das, D. Dash, S. Daugherity, M. de Moura, M. M. Dedovich, T. G. DePhillips, M. Derevschikov, A. A. de Souza, R. Derradi Didenko, L. Dietel, T. Djawotho, P. Dogra, S. M. Dong, X. Drachenberg, J. L. Draper, J. E. Du, F. Dunlop, J. C. Mazumdar, M. R. Dutta Edwards, W. R. Efimov, L. G. Elhalhuli, E. Emelianov, V. Engelage, J. Eppley, G. Erazmus, B. Estienne, M. Eun, L. Fachini, P. Fatemi, R. Fedorisin, J. Feng, A. Filip, P. Finch, E. Fine, V. Fisyak, Y. Fu, J. Gagliardi, C. A. Gaillard, L. Ganti, M. S. Garcia-Solis, E. Ghazikhanian, V. Ghosh, P. Gorbunov, Y. N. Gordon, A. Grebenyuk, O. Grosnick, D. Grube, B. Guertin, S. M. Guimaraes, K. S. F. F. Gupta, A. Gupta, N. Guryn, W. Haag, B. Hallman, T. J. Hamed, A. Harris, J. W. He, W. Heinz, M. Henry, T. W. Hepplemann, S. Hippolyte, B. Hirsch, A. Hjort, E. Hoffman, A. M. Hoffmann, G. W. Hofman, D. J. Hollis, R. S. Horner, M. J. Huang, H. Z. Hughes, E. W. Humanic, T. J. Igo, G. Iordanova, A. Jacobs, P. Jacobs, W. W. Jakl, P. Jin, F. Jones, P. G. Judd, E. G. Kabana, S. Kajimoto, K. Kang, K. Kapitan, J. Kaplan, M. Keane, D. Kechechyan, A. Kettler, D. Khodyrev, V. Yu. Kiryluk, J. Kisiel, A. Klein, S. R. Knospe, A. G. Kocoloski, A. Koetke, D. D. Kollegger, T. Kopytine, M. Kotchenda, L. Kouchpil, V. Kowalik, K. L. Kravtsov, P. Kravtsov, V. I. Krueger, K. Kuhn, C. Kumar, A. Kurnadi, P. Lamont, M. A. C. Landgraf, J. M. Lange, S. LaPointe, S. Laue, F. Lauret, J. Lebedev, A. Lednicky, R. Lee, C. -H. LeVine, M. J. Li, C. Li, Q. Li, Y. Lin, G. Lin, X. Lindenbaum, S. J. Lisa, M. A. Liu, F. Liu, H. Liu, J. Liu, L. Ljubicic, T. Llope, W. J. Longacre, R. S. Love, W. A. Lu, Y. Ludlam, T. Lynn, D. Ma, G. L. Ma, J. G. Ma, Y. G. Mahapatra, D. P. Majka, R. Mangotra, L. K. Manweiler, R. Margetis, S. Markert, C. Matis, H. S. Matulenko, Yu. A. McShane, T. S. Meschanin, A. Millane, J. Miller, M. L. Minaev, N. G. Mioduszewski, S. Mischke, A. Mitchell, J. Mohanty, B. Morozov, D. A. Munhoz, M. G. Nandi, B. K. Nattrass, C. Nayak, T. K. Nelson, J. M. Nepali, C. Netrakanti, P. K. Ng, M. J. Nogach, L. V. Nurushev, S. B. Odyniec, G. Ogawa, A. Okada, H. Okorokov, V. Olson, D. Pachr, M. Pal, S. K. Panebratsev, Y. Pavlinov, A. I. Pawlak, T. Peitzmann, T. Perevoztchikov, V. Perkins, C. Peryt, W. Phatak, S. C. Planinic, M. Pluta, J. Poljak, N. Porile, N. Poskanzer, A. M. Potekhin, M. Potukuchi, B. V. K. S. Prindle, D. Pruneau, C. Pruthi, N. K. Putschke, J. Qattan, I. A. Raniwala, R. Raniwala, S. Ray, R. L. Relyea, D. Ridiger, A. Ritter, H. G. Roberts, J. B. Rogachevskiy, O. V. Romero, J. L. Rose, A. Roy, C. Ruan, L. Russcher, M. J. Rykov, V. Sahoo, R. Sakrejda, I. Sakuma, T. Salur, S. Sandweiss, J. Sarsour, M. Schambach, J. Scharenberg, R. P. Schmitz, N. Seger, J. Selyuzhenkov, I. Seyboth, P. Shabetai, A. Shahaliev, E. Shao, M. Sharma, M. Shi, X. -H. Sichtermann, E. P. Simon, F. Singaraju, R. N. Skoby, M. J. Smirnov, N. Snellings, R. Sorensen, P. Sowinski, J. Speltz, J. Spinka, H. M. Srivastava, B. Stadnik, A. Stanislaus, T. D. S. Staszak, D. Stock, R. Strikhanov, M. Stringfellow, B. Suaide, A. A. P. Suarez, M. C. Subba, N. L. Sumbera, M. Sun, X. M. Sun, Z. Surrow, B. Symons, T. J. M. de Toledo, A. Szanto Takahashi, J. Tang, A. H. Tang, Z. Tarnowsky, T. Thein, D. Thomas, J. H. Tian, J. Timmins, A. R. Timoshenko, S. Tokarev, M. Trainor, T. A. Tram, V. N. Trattner, A. L. Trentalange, S. Tribble, R. E. Tsai, O. D. Ulery, J. Ullrich, T. Underwood, D. G. Van Buren, G. van der Kolk, N. van Leeuwen, M. Molen, A. M. Vander Varma, R. Vasconcelos, G. M. S. Vasilevski, I. M. Vasiliev, A. N. Vernet, R. Videbaek, F. Vigdor, S. E. Viyogi, Y. P. Vokal, S. Voloshin, S. A. Wada, M. Waggoner, W. T. Wang, F. Wang, G. Wang, J. S. Wang, Q. Wang, X. Wang, X. L. Wang, Y. Webb, J. C. Westfall, G. D. Whitten, C., Jr. Wieman, H. Wissink, S. W. Witt, R. Wu, J. Wu, Y. Xu, N. Xu, Q. H. Xu, Z. Yepes, P. Yoo, I. -K. Yue, Q. Zawisza, M. Zbroszczyk, H. Zhan, W. Zhang, H. Zhang, S. Zhang, W. M. Zhang, Y. Zhang, Z. P. Zhao, Y. Zhong, C. Zhou, J. Zoulkarneev, R. Zoulkarneeva, Y. Zuo, J. X. CA Star Collaboration TI rho(0) photoproduction in ultraperipheral relativistic heavy ion collisions at root s(NN)=200 GeV SO PHYSICAL REVIEW C LA English DT Article ID TIME PROJECTION CHAMBER; VECTOR-MESON PRODUCTION; DIFFRACTIVE PRODUCTION; PROTON SCATTERING; COMPLEX NUCLEI; PHOTON; HERA; COLLIDERS; ENERGIES; PHYSICS AB Photoproduction reactions occur when the electromagnetic field of a relativistic heavy ion interacts with another heavy ion. The STAR Collaboration presents a measurement of rho(0) and direct pi(+)pi(-) photoproduction in ultraperipheral relativistic heavy ion collisions at root s(NN) = 200 GeV. We observe both exclusive photoproduction and photoproduction accompanied by mutual Coulomb excitation. We find a coherent cross section of sigma(AuAu -> Au*Au*rho(0)) = 530 +/- 19(stat.) +/- 57(syst.) mb, in accord with theoretical calculations based on a Glauber approach, but considerably below the predictions of a color dipole model. The rho 0 transverse momentum spectrum (p(T)(2)) is fit by a double exponential curve including both coherent and incoherent coupling to the target nucleus; we find sigma(inc)/sigma(coh) = 0.29 +/- 0.03 (stat.) +/- 0.08 (syst.). The ratio of direct pi(+)pi(-) to rho(0) production is comparable to that observed in gamma(p) collisions at HERA and appears to be independent of photon energy. Finally, the measured rho(0) spin helicity matrix elements agree within errors with the expected s-channel helicity conservation. C1 [Abelev, B. I.; Barannikova, O.; Betts, R. R.; Callner, J.; Garcia-Solis, E.; Hofman, D. J.; Hollis, R. S.; Iordanova, A.; Suarez, M. C.] Univ Illinois, Chicago, IL 60607 USA. [Krueger, K.; Underwood, D. G.] Argonne Natl Lab, Argonne, IL 60439 USA. [Barnby, L. S.; Bombara, M.; Burton, T. P.; Elhalhuli, E.; Gaillard, L.; Jones, P. G.; Nelson, J. M.; Timmins, A. R.] Univ Birmingham, Birmingham, W Midlands, England. [Beavis, D. R.; Bland, L. C.; Bueltmann, S.; Christie, W.; Chung, S. U.; DePhillips, M.; Dunlop, J. C.; Fachini, P.; Fine, V.; Fisyak, Y.; Gordon, A.; Guryn, W.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Hughes, E. W.; Lamont, M. A. C.; Landgraf, J. M.; Laue, F.; Lauret, J.; Lebedev, A.; LeVine, M. J.; Ljubicic, T.; Longacre, R. S.; Love, W. A.; Ludlam, T.; Lynn, D.; Ogawa, A.; Okada, H.; Perevoztchikov, V.; Potekhin, M.; Relyea, D.; Ruan, L.; Sorensen, P.; Tang, A. H.; Ullrich, T.; Van Buren, G.; Videbaek, F.; Xu, Z.; Zhang, H.] CALTECH, Pasadena, CA 91125 USA. [Crawford, H. J.; Engelage, J.; Judd, E. G.; Ng, M. J.; Perkins, C.; Trattner, A. L.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Sanchez, M. Calderon de la Barca; Das, D.; Draper, J. E.; Romero, J. L.] Univ Calif Davis, Davis, CA 95616 USA. [Ghazikhanian, V.; Guertin, S. M.; Huang, H. Z.; Igo, G.; Kurnadi, P.; Ma, J. G.; Staszak, D.; Trentalange, S.; Tsai, O. D.; Wang, G.; Whitten, C., Jr.] Univ Calif Los Angeles, Los Angeles, CA 90095 USA. [de Souza, R. Derradi; Takahashi, J.; Vasconcelos, G. M. S.] Univ Estadual Campinas, Sao Paulo, Brazil. [Kaplan, M.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Abelev, B. I.; Barannikova, O.; Betts, R. R.; Callner, J.; Garcia-Solis, E.; Hofman, D. J.; Hollis, R. S.; Iordanova, A.; Suarez, M. C.] Creighton Univ, Omaha, NE 68178 USA. [Cherney, M.; Gorbunov, Y. N.; McShane, T. S.; Seger, J.; Waggoner, W. T.] Acad Sci Czech Republic, Inst Nucl Phys, Prague 25068, Czech Republic. [Bielcik, J.; Bielcikova, J.; Bystersky, M.; Chaloupka, P.; Jakl, P.; Kapitan, J.; Kouchpil, V.; Pachr, M.; Sumbera, M.] JINR, Lab High Energy, Dubna, Russia. [Averichev, G. S.; Dedovich, T. G.; Efimov, L. G.; Fedorisin, J.; Kechechyan, A.; Panebratsev, Y.; Rogachevskiy, O. V.; Shahaliev, E.; Stadnik, A.; Tokarev, M.; Vokal, S.] JINR, Particle Phys Lab, Dubna, Russia. [Arkhipkin, D.; Filip, P.; Lednicky, R.; Vasilevski, I. M.; Zoulkarneev, R.] Goethe Univ Frankfurt, Frankfurt, Germany. [Dietel, T.; Kollegger, T.; Lange, S.; Stock, R.] Inst Phys, Bhubaneswar 751005, Orissa, India. [Dash, S.; Mahapatra, D. P.; Phatak, S. C.; Viyogi, Y. P.] Indian Inst Technol, Bombay 400076, Maharashtra, India. [Nandi, B. K.; Varma, R.] Indiana Univ, Bloomington, IN 47408 USA. [Balewski, J.; Djawotho, P.; He, W.; Jacobs, W. W.; Qattan, I. A.; Sowinski, J.; Vigdor, S. E.; Wissink, S. W.] Inst Rech Subatom, Strasbourg, France. [Baudot, J.; Bhasin, A.; Coffin, J. P.; Dogra, S. M.; Estienne, M.; Gupta, A.; Hippolyte, B.; Kuhn, C.; Mangotra, L. K.; Potukuchi, B. V. K. S.; Shabetai, A.; Speltz, J.; Vernet, R.] Univ Jammu, Jammu 180001, India. [Anderson, B. D.; Keane, D.; Kopytine, M.; Margetis, S.; Nepali, C.; Rykov, V.; Subba, N. L.; Zhang, W. M.] Kent State Univ, Kent, OH 44242 USA. [Fatemi, R.] Univ Kentucky, Lexington, KY 40506 USA. [Sun, Z.; Wang, J. S.; Zhan, W.] Inst Modern Phys, Lanzhou, Peoples R China. [Blyth, S. -L.; Dong, X.; Edwards, W. R.; Hjort, E.; Horner, M. J.; Jacobs, P.; Kiryluk, J.; Klein, S. R.; Kowalik, K. L.; Matis, H. S.; Odyniec, G.; Olson, D.; Poskanzer, A. M.; Ritter, H. G.; Rose, A.; Sakrejda, I.; Sichtermann, E. P.; Sun, X. M.; Symons, T. J. M.; Thomas, J. H.; Tram, V. N.; van Leeuwen, M.; Wieman, H.; Xu, N.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Hoffman, A. M.; Kocoloski, A.; Millane, J.; Miller, M. L.; Sakuma, T.] MIT, Cambridge, MA 02139 USA. [Schmitz, N.; Seyboth, P.; Simon, F.] Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany. [Molen, A. M. Vander; Westfall, G. D.] Michigan State Univ, E Lansing, MI 48824 USA. [Brandin, A. V.; Emelianov, V.; Kotchenda, L.; Kravtsov, P.; Okorokov, V.; Ridiger, A.; Strikhanov, M.; Timoshenko, S.] Moscow Engn Phys Inst, Moscow 115409, Russia. [Lindenbaum, S. J.] CUNY City Coll, New York, NY 10031 USA. [Bai, Y.; Benedosso, F.; Botje, M.; Braidot, E.; Grebenyuk, O.; Mischke, A.; Peitzmann, T.; Russcher, M. J.; Snellings, R.; van der Kolk, N.] NIKHEF, Amsterdam, Netherlands. [Bai, Y.; Benedosso, F.; Botje, M.; Braidot, E.; Grebenyuk, O.; Mischke, A.; Peitzmann, T.; Russcher, M. J.; Snellings, R.; van der Kolk, N.] Univ Utrecht, Amsterdam, Netherlands. [Chajecki, Z.; Humanic, T. J.; Kisiel, A.; Lisa, M. A.] Ohio State Univ, Columbus, OH 43210 USA. [Aggarwal, M. M.; Bhati, A. K.; Kumar, A.; Pruthi, N. K.; Sharma, M.] Panjab Univ, Chandigarh 160014, India. [Eun, L.; Hepplemann, S.] Penn State Univ, University Pk, PA 16802 USA. [Derevschikov, A. A.; Khodyrev, V. Yu.; Kravtsov, V. I.; Matulenko, Yu. A.; Meschanin, A.; Minaev, N. G.; Morozov, D. A.; Nogach, L. V.; Nurushev, S. B.; Vasiliev, A. N.] Inst High Energy Phys, Protvino, Russia. [Hirsch, A.; Netrakanti, P. K.; Porile, N.; Scharenberg, R. P.; Skoby, M. J.; Srivastava, B.; Stringfellow, B.; Tarnowsky, T.; Ulery, J.; Wang, F.] Purdue Univ, W Lafayette, IN 47907 USA. [Choi, K. E.; Grube, B.; Lee, C. -H.; Yoo, I. -K.] Pusan Natl Univ, Pusan 609735, South Korea. [Bhardwaj, S.; Raniwala, R.; Raniwala, S.] Univ Rajasthan, Jaipur 302004, Rajasthan, India. [Bonner, B. E.; Eppley, G.; Liu, J.; Llope, W. J.; Mitchell, J.; Yepes, P.; Zhou, J.] Rice Univ, Houston, TX 77521 USA. [Cosentino, M. R.; de Moura, M. M.; Guimaraes, K. S. F. F.; Munhoz, M. G.; Suaide, A. A. P.; de Toledo, A. Szanto] Univ Sao Paulo, Sao Paulo, Brazil. [Chen, H. F.; Li, C.; Liu, H.; Lu, Y.; Shao, M.; Tang, Z.; Wang, X. L.; Wu, J.; Zhang, Y.] Univ Sci & Technol China, Anhua 230026, Peoples R China. [Cai, X. Z.; Chen, J. H.; Jin, F.; Ma, G. L.; Ma, Y. G.; Shi, X. -H.; Tian, J.; Zhang, S.; Zhong, C.; Zuo, J. X.] Shanghai Inst Appl Phys, Shanghai 201800, Peoples R China. [Bouchet, J.; Erazmus, B.; Kabana, S.; Roy, C.; Sahoo, R.] SUBATECH, Nantes, France. [Cervantes, M. C.; Clarke, R. F.; Codrington, M. J. M.; Gagliardi, C. A.; Hamed, A.; Henry, T. W.; Mioduszewski, S.; Sarsour, M.; Tribble, R. E.] Texas A&M Univ, College Stn, TX 77843 USA. [Daugherity, M.; Hoffmann, G. W.; Kajimoto, K.; Markert, C.; Ray, R. L.; Schambach, J.; Thein, D.; Wada, M.] Univ Texas Austin, Austin, TX 78712 USA. [Cheng, J.; Kang, K.; Markert, C.; Wang, X.; Wang, Y.; Yue, Q.] Tsinghua Univ, Beijing 100084, Peoples R China. [Grosnick, D.; Koetke, D. D.; Manweiler, R.; Stanislaus, T. D. S.; Webb, J. C.] Valparaiso Univ, Valparaiso, IN 46383 USA. [Ahammed, Z.; Chattopadhyay, S.; Mazumdar, M. R. Dutta; Ganti, M. S.; Ghosh, P.; Mohanty, B.; Nayak, T. K.; Pal, S. K.; Singaraju, R. N.] Bhabha Atom Res Ctr, Ctr Variable Energy Cyclotron, Kolkata 700064, W Bengal, India. [Pawlak, T.; Peryt, W.; Zawisza, M.; Zbroszczyk, H.] Warsaw Univ Technol, Warsaw, Poland. [Bichsel, H.; Cramer, J. G.; Kettler, D.; Prindle, D.; Trainor, T. A.] Univ Washington, Seattle, WA 98195 USA. [Bellwied, R.; Cormier, T. M.; LaPointe, S.; Li, Q.; Pavlinov, A. I.; Pruneau, C.; Selyuzhenkov, I.; Voloshin, S. A.] Wayne State Univ, Detroit, MI 48201 USA. [Chen, J. Y.; Feng, A.; Fu, J.; Lin, X.; Liu, F.; Liu, L.; Wu, Y.] CCNU HZNU, Inst Particle Phys, Wuhan 430079, Peoples R China. [Baumgart, S.; Caines, H.; Catu, O.; Chikanian, A.; Du, F.; Finch, E.; Harris, J. W.; Heinz, M.; Lin, G.; Majka, R.; Nattrass, C.; Putschke, J.; Salur, S.; Sandweiss, J.; Smirnov, N.; Witt, R.] Yale Univ, New Haven, CT 06520 USA. [Planinic, M.; Poljak, N.] Univ Zagreb, HR-10002 Zagreb, Croatia. RP Abelev, BI (reprint author), Univ Illinois, Chicago, IL 60607 USA. RI Strikhanov, Mikhail/P-7393-2014; Barnby, Lee/G-2135-2010; Mischke, Andre/D-3614-2011; Dogra, Sunil /B-5330-2013; Takahashi, Jun/B-2946-2012; Planinic, Mirko/E-8085-2012; Yoo, In-Kwon/J-6222-2012; Peitzmann, Thomas/K-2206-2012; Witt, Richard/H-3560-2012; Voloshin, Sergei/I-4122-2013; Lednicky, Richard/K-4164-2013; Cosentino, Mauro/L-2418-2014; Sumbera, Michal/O-7497-2014; Fornazier Guimaraes, Karin Silvia/H-4587-2016; Chaloupka, Petr/E-5965-2012; Nattrass, Christine/J-6752-2016; Derradi de Souza, Rafael/M-4791-2013; Suaide, Alexandre/L-6239-2016; van der Kolk, Naomi/M-9423-2016; Inst. of Physics, Gleb Wataghin/A-9780-2017; Okorokov, Vitaly/C-4800-2017; Ma, Yu-Gang/M-8122-2013 OI Strikhanov, Mikhail/0000-0003-2586-0405; Barnby, Lee/0000-0001-7357-9904; Takahashi, Jun/0000-0002-4091-1779; Peitzmann, Thomas/0000-0002-7116-899X; Cosentino, Mauro/0000-0002-7880-8611; Sumbera, Michal/0000-0002-0639-7323; Fornazier Guimaraes, Karin Silvia/0000-0003-0578-9533; Nattrass, Christine/0000-0002-8768-6468; Derradi de Souza, Rafael/0000-0002-2084-7001; Suaide, Alexandre/0000-0003-2847-6556; van der Kolk, Naomi/0000-0002-8670-0408; Okorokov, Vitaly/0000-0002-7162-5345; Ma, Yu-Gang/0000-0002-0233-9900 NR 46 TC 39 Z9 39 U1 0 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 EI 1089-490X J9 PHYS REV C JI Phys. Rev. C PD MAR PY 2008 VL 77 IS 3 AR 034910 DI 10.1103/PhysRevC.77.034910 PG 11 WC Physics, Nuclear SC Physics GA 282BV UT WOS:000254543500050 ER PT J AU Beun, J McLaughlin, GC Surman, R Hix, WR AF Beun, J. McLaughlin, G. C. Surman, R. Hix, W. R. TI Fission cycling in a supernova r process SO PHYSICAL REVIEW C LA English DT Article ID NEUTRINO-DRIVEN WINDS; METAL-POOR STARS; CORE-COLLAPSE SUPERNOVAE; BURST ACCRETION DISKS; PROCESS NUCLEOSYNTHESIS; EARLY GALAXY; ELEMENT SYNTHESIS; CAPTURE ELEMENTS; HEAVY-ELEMENTS; RICH AB Recent halo star abundance observations exhibit an important feature of consequence to the r process: the presence of a main r process between the second and third peaks that is consistent among halo stars. We explore fission cycling and steady beta flow as the driving mechanisms behind this feature. The presence of fission cycling during the r process can account for nucleosynthesis yields between the second and third peaks, whereas the presence of steady beta flow can account for consistent r-process patterns, robust under small variations in astrophysical conditions. We employ the neutrino-driven wind of the core-collapse supernova to examine fission cycling and steady beta flow in the r process. As the traditional neutrino-driven wind model does not produce the required very neutron-rich conditions for these mechanisms, we examine changes to the neutrino physics necessary for fission cycling to occur in the neutrino-driven wind environment, and we explore under what conditions steady beta flow is obtained. C1 [Beun, J.; McLaughlin, G. C.] N Carolina State Univ, Dept Phys, Raleigh, NC 27595 USA. [Surman, R.] Union Coll, Dept Phys, Schenectady, NY 12308 USA. [Hix, W. R.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. RP Beun, J (reprint author), N Carolina State Univ, Dept Phys, Raleigh, NC 27595 USA. EM jbbeun@unity.ncsu.edu RI Hix, William/E-7896-2011 OI Hix, William/0000-0002-9481-9126 NR 78 TC 22 Z9 22 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9985 EI 2469-9993 J9 PHYS REV C JI Phys. Rev. C PD MAR PY 2008 VL 77 IS 3 AR 035804 DI 10.1103/PhysRevC.77.035804 PG 10 WC Physics, Nuclear SC Physics GA 282BV UT WOS:000254543500061 ER PT J AU Esch, EI Reifarth, R Bond, EM Bredeweg, TA Couture, A Glover, SE Greife, U Haight, RC Hatarik, AM Hatarik, R Jandel, M Kawano, T Mertz, A O'Donnell, JM Rundberg, RS Schwantes, JM Ullmann, JL Vieira, DJ Wilhelmy, JB Wouters, JM AF Esch, E. -I. Reifarth, R. Bond, E. M. Bredeweg, T. A. Couture, A. Glover, S. E. Greife, U. Haight, R. C. Hatarik, A. M. Hatarik, R. Jandel, M. Kawano, T. Mertz, A. O'Donnell, J. M. Rundberg, R. S. Schwantes, J. M. Ullmann, J. L. Vieira, D. J. Wilhelmy, J. B. Wouters, J. M. TI Measurement of the (237)Np(n, gamma) cross section from 20 meV to 500 keV with a high efficiency, highly segmented 4 pi BaF(2) detector SO PHYSICAL REVIEW C LA English DT Article ID NEUTRON; FISSION; SCATTERING AB The (237)Np(n, gamma) (238)Np cross section has been measured in the neutron energy range from 20 meV to 500 keV using the DANCE array at the Los Alamos National Laboratory. This new facility allows experiments with submilligram samples and is therefore well suited to investigate isotopes with half-lives as low as a few hundred days. In this benchmark measurement, only 0.42 mg of 237Np was sufficient to determine differential cross sections relative to the well-known resonance at 0.5 eV. The thermal cross section was measured to sigma(2200m/s) = 177 +/- 5 barn, sigma(kT= 25.3) meV = 167 +/- 4 barn and the resonance integral to RI = 693 +/- 6 barn. C1 [Esch, E. -I.; Reifarth, R.; Bond, E. M.; Bredeweg, T. A.; Couture, A.; Glover, S. E.; Haight, R. C.; Jandel, M.; Kawano, T.; Mertz, A.; O'Donnell, J. M.; Rundberg, R. S.; Schwantes, J. M.; Ullmann, J. L.; Vieira, D. J.; Wilhelmy, J. B.; Wouters, J. M.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Reifarth, R.; Greife, U.; Hatarik, A. M.] Colorado Sch Mines, Golden, CO 80401 USA. RP Esch, EI (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87545 USA. EM ernst@lanl.gov RI Schwantes, Jon/A-7318-2009; OI Esch, Ernst/0000-0002-5179-0415 NR 38 TC 29 Z9 29 U1 0 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD MAR PY 2008 VL 77 IS 3 AR 034309 DI 10.1103/PhysRevC.77.034309 PG 10 WC Physics, Nuclear SC Physics GA 282BV UT WOS:000254543500018 ER PT J AU Gates, JM Garcia, MA Gregorich, KE Dullmann, CE Dragojevic, I Dvorak, J Eichler, R Folden, CM Loveland, W Nelson, SL Pang, GK Stavsetra, L Sudowe, R Turler, A Nitsche, H AF Gates, J. M. Garcia, M. A. Gregorich, K. E. Duellmann, Ch. E. Dragojevic, I. Dvorak, J. Eichler, R. Folden, C. M., III Loveland, W. Nelson, S. L. Pang, G. K. Stavsetra, L. Sudowe, R. Tuerler, A. Nitsche, H. TI Synthesis of rutherfordium isotopes in the U-238(Mg-26, xn)(264-x)Rf reaction and study of their decay properties SO PHYSICAL REVIEW C LA English DT Article ID SPONTANEOUS FISSION PROPERTIES; HALF-LIVES; HEAVIEST NUCLEI; EVAPORATION; KURCHATOVIUM; ELEMENT-112; CHEMISTRY; NEUTRONS; ZR; HF AB Isotopes of rutherfordium ((258-261)Rf) were produced in irradiations of U-238 targets with Mg-26 beams. Excitation functions were measured for the 4n, 5n, and 6n exit channels. Production of (261)Rf in the 3n exit channel with a cross section of 28(-26)(+92) pb was observed. alpha-decay of (258)Rf was observed for the first time with an alpha -particle energy of 9.05 +/- 0.03 MeV and an alpha/total-decay branching ratio of 0.31 +/- 0.11. In (259)Rf, the electron capture/total-decay branching ratio was measured to be 0.15 +/- 0.04. The measured half-lives for (258)Rf, (259)Rf, and (260)Rf were 14.7(-1.0)(+1.2) ms, 2.5(-0.3)(+0.4) s, and 22.2(-2.4)(+3.0) ms, respectively, in agreement with literature data. The systematics of the alpha-decay Q-values and of the partial spontaneous fission half- lives were evaluated for even-even nuclides in the region of the N = 152, Z = 100 deformed shell. The influence of the N = 152 shell on the alpha-decay Q-values for rutherfordium was observed to be similar to that of the lighter elements (96 <= Z <= 102). However, the N = 152 shell does not stabilize the rutherfordium isotopes against spontaneous fission, as it does in the lighter elements (96 <= Z <= 102). C1 [Gates, J. M.; Garcia, M. A.; Gregorich, K. E.; Duellmann, Ch. E.; Dragojevic, I.; Folden, C. M., III; Nelson, S. L.; Stavsetra, L.; Sudowe, R.; Nitsche, H.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, Berkeley, CA 94720 USA. [Gates, J. M.; Garcia, M. A.; Duellmann, Ch. E.; Dragojevic, I.; Folden, C. M., III; Nelson, S. L.; Pang, G. K.; Nitsche, H.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Duellmann, Ch. E.] Gesell Schwerionenforsch mbH, Abt Kernchem, D-64291 Darmstadt, Germany. [Dvorak, J.] Tech Univ Munich, Inst Radiochem, D-85748 Garching, Germany. [Eichler, R.] Paul Scherrer Inst, Lab Radio & Umweltchem, CH-5232 Villigen, Switzerland. [Eichler, R.] Univ Bern, Dept Chem & Biochem, CH-3012 Bern, Switzerland. [Loveland, W.] Oregon State Univ, Dept Chem, Corvallis, OR 97331 USA. RP Gates, JM (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA. RI Garcia, Mitch/G-2413-2010; Eichler, Robert/G-5130-2011; Folden, Charles/F-1033-2015; Turler, Andreas/D-3913-2014 OI Folden, Charles/0000-0002-2814-3762; Turler, Andreas/0000-0002-4274-1056 NR 48 TC 36 Z9 36 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD MAR PY 2008 VL 77 IS 3 AR 034603 DI 10.1103/PhysRevC.77.034603 PG 7 WC Physics, Nuclear SC Physics GA 282BV UT WOS:000254543500030 ER PT J AU Gezerlis, A Carlson, J AF Gezerlis, Alexandros Carlson, J. TI Strongly paired fermions: Cold atoms and neutron matter SO PHYSICAL REVIEW C LA English DT Article ID QUASI-PARTICLE INTERACTIONS; SUPERFLUIDITY; GAS; EQUATION; NUCLEI; STARS; STATE; GAPS AB Experiments with cold Fermi atoms can be tuned to probe strongly-interacting fluids that are very similar to the low-density neutron matter found in the crusts of neutron stars. In contrast to traditional superfluids and superconductors, matter in this regime is very strongly paired, with gaps of the order of the Fermi energy. We compute the T = 0 equation of state and pairing gap for cold atoms and low-density neutron matter as a function of the Fermi momentum times the scattering length. Results of quantum Monte Carlo calculations show that the equations of state are very similar. The neutron matter pairing gap at low densities is found to be very large but, except at the smallest densities, significantly suppressed relative to cold atoms because of the finite effective range in the neutron-neutron interaction. C1 [Gezerlis, Alexandros; Carlson, J.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Gezerlis, Alexandros] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. RP Gezerlis, A (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RI Gezerlis, Alexandros/O-9426-2014; OI Gezerlis, Alexandros/0000-0003-2232-2484; Carlson, Joseph/0000-0002-3163-5565 NR 38 TC 114 Z9 114 U1 2 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD MAR PY 2008 VL 77 IS 3 AR 032801 DI 10.1103/PhysRevC.77.032801 PG 4 WC Physics, Nuclear SC Physics GA 282BV UT WOS:000254543500003 ER PT J AU Gross, F Ramalho, G Pena, MT AF Gross, Franz Ramalho, G. Pena, M. T. TI Fixed-axis polarization states: covariance and comparisons SO PHYSICAL REVIEW C LA English DT Article ID EQUATIONS AB Addressing the recent criticisms of Kvinikhidze and Miller, we prove that the spectator wave functions and currents based on "fixed-axis" polarization states ( previously introduced by us) are Lorentz covariant, and find an explicit connection between them and conventional direction-dependent polarization states. The discussion shows explicitly how it is possible to construct pure S-wave models of the nucleon. C1 [Gross, Franz] Coll William & Mary, Williamsburg, VA 23185 USA. [Gross, Franz; Ramalho, G.] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. [Ramalho, G.; Pena, M. T.] Ctr Fis Teor & Particulas, P-1049001 Lisbon, Portugal. [Pena, M. T.] Univ Tecn Lisboa, Dept Phys, Inst Super Tecn, P-1049001 Lisbon, Portugal. RP Gross, F (reprint author), Coll William & Mary, Williamsburg, VA 23185 USA. RI Pena, Teresa/M-4683-2013; OI Pena, Teresa/0000-0002-3529-2408; Ramalho, Gilberto/0000-0002-9930-659X NR 11 TC 31 Z9 31 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD MAR PY 2008 VL 77 IS 3 AR 035203 DI 10.1103/PhysRevC.77.035203 PG 8 WC Physics, Nuclear SC Physics GA 282BV UT WOS:000254543500054 ER PT J AU Higa, R Valderrama, MP Arriola, ER AF Higa, R. Valderrama, M. Pavon Arriola, E. Ruiz TI Renormalization of the NN interaction with Lorentz-invariant chiral two-pion exchange SO PHYSICAL REVIEW C LA English DT Article ID EFFECTIVE-FIELD THEORY; PARTIAL-WAVE ANALYSIS; NUCLEAR-FORCES; PERTURBATION-THEORY; 2-NUCLEON SYSTEM; MESON-EXCHANGE; LAGRANGIANS; SCATTERING; REGULARIZATION; POTENTIALS AB The renormalization of the NN interaction with the chiral two-pion exchange potential computed using Lorentz-invariant baryon chiral perturbation theory is considered. The short distance singularity reduces the number of counterterms to about half those in the heavy baryon expansion. Phase shifts and deuteron properties are evaluated with clear improvements in some cases. C1 [Higa, R.] Univ Bonn, HISKP Theorie, D-53115 Bonn, Germany. [Higa, R.] Jefferson Lab, Newport News, VA 23606 USA. [Valderrama, M. Pavon; Arriola, E. Ruiz] Univ Granada, Dept Fis Atom Mol & Nucl, E-18071 Granada, Spain. [Valderrama, M. Pavon] H Niewodniczanski Inst Nucl Phys, PL-31342 Krakow, Poland. RP Higa, R (reprint author), Univ Bonn, HISKP Theorie, Nussallee 14-16, D-53115 Bonn, Germany. EM higa@itkp.uni-bonn.de; mpavon@ugr.es; earriola@ugr.es RI Ruiz Arriola, Enrique/A-9388-2015; Higa, Renato/M-2300-2016 OI Ruiz Arriola, Enrique/0000-0002-9570-2552; Higa, Renato/0000-0002-6298-8128 NR 58 TC 11 Z9 11 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9985 EI 2469-9993 J9 PHYS REV C JI Phys. Rev. C PD MAR PY 2008 VL 77 IS 3 AR 034003 DI 10.1103/PhysRevC.77.034003 PG 12 WC Physics, Nuclear SC Physics GA 282BV UT WOS:000254543500006 ER PT J AU Jones, GA Williams, SJ Walker, PM Podolyak, Z Zhu, S Carpenter, MP Carroll, JJ Chakrawarthy, RS Chowdhury, P Cullen, IJ Dracoulis, GD Garnsworthy, AB Hackman, G Janssens, RVF Khoo, TL Kondev, FG Lane, GJ Liu, Z Seweryniak, D Thompson, NJ AF Jones, G. A. Williams, S. J. Walker, P. M. Podolyak, Zs. Zhu, S. Carpenter, M. P. Carroll, J. J. Chakrawarthy, R. S. Chowdhury, P. Cullen, I. J. Dracoulis, G. D. Garnsworthy, A. B. Hackman, G. Janssens, R. V. F. Khoo, T. L. Kondev, F. G. Lane, G. J. Liu, Z. Seweryniak, D. Thompson, N. J. TI High-spin, multiparticle isomers in (121,123)Sb SO PHYSICAL REVIEW C LA English DT Article ID COINCIDENCE DATA SETS; MICROSECOND ISOMERS; NUCLEI; BANDS; INTRUDER; STATES AB Isomers in near-spherical Z = 51, antimony isotopes are reported here for the first time using fusion-fission reactions between (27)Al and a pulsed (178)Hf beam of energy, 1150 MeV. gamma rays were observed from the decay of isomeric states with half-lives, T(1/2) = 200(30) and 52(3) mu s, and angular momenta I = (25/2) and I(pi) = 23(+)/2, in (121,123)Sb, respectively. These states are proposed to correspond to nu(h(11/2))(2) configurations, coupled to an odd d(5/2) or g(7/2) proton. Nanosecond isomers were also identified at I(pi) = 19(-)/2 [T(1/2) = 8.5(5) ns] in (121)Sb and I(pi) = (15(-)/2) [T(1/2) = 37(4) ns] in (123)Sb. Information on spins and parities of states in these nuclei was obtained using a combination of angular correlation and intensity-balance measurements. The configurations of states in these nuclei are discussed using a combination of spin/energy systematics and shell-model calculations for neighboring tin isotones and antimony isotopes. C1 [Jones, G. A.; Williams, S. J.; Walker, P. M.; Podolyak, Zs.; Cullen, I. J.; Garnsworthy, A. B.; Liu, Z.; Thompson, N. J.] Univ Surrey, Dept Phys, Guildford GU2 7XH, Surrey, England. [Williams, S. J.; Chakrawarthy, R. S.; Hackman, G.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Zhu, S.; Carpenter, M. P.; Janssens, R. V. F.; Khoo, T. L.; Seweryniak, D.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Carroll, J. J.] Youngstown State Univ, Dept Phys & Astron, Youngstown, OH 44555 USA. [Chowdhury, P.] Univ Massachusetts Lowell, Lowell, MA 01854 USA. [Dracoulis, G. D.; Lane, G. J.] Australian Natl Univ, Dept Nucl Phys, RSPhysSE, Canberra, ACT 0200, Australia. [Kondev, F. G.] Argonne Natl Lab, Nucl Engn Div, Argonne, IL 60439 USA. RP Jones, GA (reprint author), Univ Surrey, Dept Phys, Guildford GU2 7XH, Surrey, England. EM gareth.jones2@barcap.com RI Lane, Gregory/A-7570-2011; Carpenter, Michael/E-4287-2015 OI Lane, Gregory/0000-0003-2244-182X; Carpenter, Michael/0000-0002-3237-5734 NR 32 TC 6 Z9 6 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD MAR PY 2008 VL 77 IS 3 AR 034311 DI 10.1103/PhysRevC.77.034311 PG 11 WC Physics, Nuclear SC Physics GA 282BV UT WOS:000254543500020 ER PT J AU Korgul, A Rykaczewski, KP Gross, CJ Grzywacz, RK Liddick, SN Mazzocchi, C Batchelder, JC Bingham, CR Darby, IG Goodin, C Hamilton, JH Hwang, JK Ilyushkin, SV Krolas, W Winger, JA AF Korgul, A. Rykaczewski, K. P. Gross, C. J. Grzywacz, R. K. Liddick, S. N. Mazzocchi, C. Batchelder, J. C. Bingham, C. R. Darby, I. G. Goodin, C. Hamilton, J. H. Hwang, J. K. Ilyushkin, S. V. Krolas, W. Winger, J. A. TI Toward (100)Sn: Studies of excitation functions for the reaction between (58)Ni and (54)Fe ions SO PHYSICAL REVIEW C LA English DT Article ID ATOMIC MASS EVALUATION; BETA-DECAY; ALPHA-DECAY; IDENTIFICATION AB Production of nuclei above (100)Sn in fusion-evaporation reactions between (58)Ni and (54)Fe ions was studied at Oak Ridge National Laboratory by means of the recoil mass spectrometer and charged particle detection. The beam energy was varied to optimize the yields for the two-, three- and four- particle evaporation channels. Experimental results verified the predictions of the statistical model code HIVAP. The optimum energy for the (54)Fe((58)Ni, 4n)(108)Xe reaction channel that allows one to study the (108)Xe-(104)Te-(100)Sn alpha decay chain is deduced as 240 MeV. C1 [Korgul, A.] Warsaw Univ, Inst Expt Phys, PL-00681 Warsaw, Poland. [Korgul, A.; Winger, J. A.] Joint Inst Heavy Ion Res, Oak Ridge, TN 37831 USA. [Korgul, A.; Grzywacz, R. K.; Liddick, S. N.; Mazzocchi, C.; Bingham, C. R.; Darby, I. G.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Korgul, A.; Goodin, C.; Hamilton, J. H.; Hwang, J. K.] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA. [Rykaczewski, K. P.; Gross, C. J.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. [Liddick, S. N.] Oak Ridge Associated Univ, UNIRIB, Oak Ridge, TN 37831 USA. [Mazzocchi, C.] Univ Milan, IFGA, I-20133 Milan, Italy. [Mazzocchi, C.] Ist Nazl Fis Nucl, I-20133 Milan, Italy. [Batchelder, J. C.; Winger, J. A.] UNIRIB, Oak Ridge Associated, Oak Ridge, TN 37831 USA. [Ilyushkin, S. V.] Dept Phys & Astron, Mississippi State, MS 39762 USA. [Krolas, W.] Polish Acad Sci, Inst Nucl Phys, PL-31342 Krakow, Poland. [Winger, J. A.] Mississippi State Univ, Dept Phys & Astron, Mississippi State, MS 39762 USA. RP Korgul, A (reprint author), Warsaw Univ, Inst Expt Phys, PL-00681 Warsaw, Poland. RI Krolas, Wojciech/N-9391-2013 NR 32 TC 6 Z9 6 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD MAR PY 2008 VL 77 IS 3 AR 034301 DI 10.1103/PhysRevC.77.034301 PG 5 WC Physics, Nuclear SC Physics GA 282BV UT WOS:000254543500010 ER PT J AU Moretto, LG Dorso, CO Elliott, JB Phair, L AF Moretto, L. G. Dorso, C. O. Elliott, J. B. Phair, L. TI Symmetry entropy and isoscaling SO PHYSICAL REVIEW C LA English DT Article AB We suggest, on general principles, that the isotopic distributions and thus isoscaling are affected by an entropic symmetry term, which is present even when the symmetry energy term is absent. C1 [Moretto, L. G.; Elliott, J. B.; Phair, L.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, Berkeley, CA 94720 USA. [Dorso, C. O.] Univ Buenos Aires, FCEN, Dept Fis, Nunez, Argentina. RP Moretto, LG (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, Berkeley, CA 94720 USA. NR 11 TC 5 Z9 5 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD MAR PY 2008 VL 77 IS 3 AR 037603 DI 10.1103/PhysRevC.77.037603 PG 3 WC Physics, Nuclear SC Physics GA 282BV UT WOS:000254543500069 ER PT J AU Tagliente, G Fujii, K Milazzo, PM Moreau, C Aerts, G Abbondanno, U Alvarez, H Alvarez-Velarde, F Andriamonje, S Andrzejewski, J Assimakopoulos, P Audouin, L Badurek, G Baumann, P Becvar, F Berthoumieux, E Bisterzo, S Calvino, F Calviani, M Cano-Ott, D Capote, R Carrapico, C Cennini, P Chepel, V Chiaveri, E Colonna, N Cortes, G Couture, A Cox, J Dahlfors, M David, S Dillman, I Domingo-Pardo, C Dridi, W Duran, I Eleftheriadis, C Embid-Segura, M Ferrant, L Ferrari, A Ferreira-Marques, R Furman, W Gallino, R Goncalves, I Gonzalez-Romero, E Gramegna, F Guerrero, C Gunsing, F Haas, B Haight, R Heil, M Herrera-Martinez, A Igashira, M Jericha, E Kaeppeler, F Kadi, Y Karadimos, D Karamanis, D Kerveno, M Koehler, P Kossionides, E Krticka, M Lamboudis, C Leeb, H Lindote, A Lopes, I Lozano, M Lukic, S Marganiec, J Marrone, S Martinez, T Massimi, C Mastinu, P Mengoni, A Mosconi, M Neves, F Oberhummer, H O'Brien, S Pancin, J Papachristodoulou, C Papadopoulos, C Paradela, C Patronis, N Pavlik, A Pavlopoulos, P Perrot, L Pigni, MT Plag, R Plompen, A Plukis, A Poch, A Praena, J Pretel, C Quesada, J Rauscher, T Reifarth, R Rubbia, C Rudolf, G Rullhusen, P Salgado, J Santos, C Sarchiapone, L Savvidis, I Stephan, C Tain, JL Tassan-Got, L Tavora, L Terlizzi, R Vannini, G Vaz, P Ventura, A Villamarin, D Vincente, MC Vlachoudis, V Vlastou, R Voss, F Walter, S Wendler, H Wiescher, M Wisshak, K AF Tagliente, G. Fujii, K. Milazzo, P. M. Moreau, C. Aerts, G. Abbondanno, U. Alvarez, H. Alvarez-Velarde, F. Andriamonje, S. Andrzejewski, J. Assimakopoulos, P. Audouin, L. Badurek, G. Baumann, P. Becvar, F. Berthoumieux, E. Bisterzo, S. Calvino, F. Calviani, M. Cano-Ott, D. Capote, R. Carrapico, C. Cennini, P. Chepel, V. Chiaveri, E. Colonna, N. Cortes, G. Couture, A. Cox, J. Dahlfors, M. David, S. Dillman, I. Domingo-Pardo, C. Dridi, W. Duran, I. Eleftheriadis, C. Embid-Segura, M. Ferrant, L. Ferrari, A. Ferreira-Marques, R. Furman, W. Gallino, R. Goncalves, I. Gonzalez-Romero, E. Gramegna, F. Guerrero, C. Gunsing, F. Haas, B. Haight, R. Heil, M. Herrera-Martinez, A. Igashira, M. Jericha, E. Kaeppeler, F. Kadi, Y. Karadimos, D. Karamanis, D. Kerveno, M. Koehler, P. Kossionides, E. Krticka, M. Lamboudis, C. Leeb, H. Lindote, A. Lopes, I. Lozano, M. Lukic, S. Marganiec, J. Marrone, S. Martinez, T. Massimi, C. Mastinu, P. Mengoni, A. Mosconi, M. Neves, F. Oberhummer, H. O'Brien, S. Pancin, J. Papachristodoulou, C. Papadopoulos, C. Paradela, C. Patronis, N. Pavlik, A. Pavlopoulos, P. Perrot, L. Pigni, M. T. Plag, R. Plompen, A. Plukis, A. Poch, A. Praena, J. Pretel, C. Quesada, J. Rauscher, T. Reifarth, R. Rubbia, C. Rudolf, G. Rullhusen, P. Salgado, J. Santos, C. Sarchiapone, L. Savvidis, I. Stephan, C. Tain, J. L. Tassan-Got, L. Tavora, L. Terlizzi, R. Vannini, G. Vaz, P. Ventura, A. Villamarin, D. Vincente, M. C. Vlachoudis, V. Vlastou, R. Voss, F. Walter, S. Wendler, H. Wiescher, M. Wisshak, K. TI Neutron capture cross section of Zr-90: Bottleneck in the s-process reaction flow SO PHYSICAL REVIEW C LA English DT Article ID GIANT BRANCH STARS; VALENCE COMPONENT; MASSIVE STARS; ENERGY RANGE; ZR ISOTOPES; N-TOF; NUCLEOSYNTHESIS; EVOLUTION; FACILITY; SYSTEM AB The neutron capture cross sections of the Zr isotopes have important implications in nuclear astrophysics and for reactor design. The small cross section of the neutron magic nucleus Zr-90, which accounts for more than 50% of natural zirconium represents one of the key isotopes for the stellar s-process, because it acts as a bottleneck in the neutron capture chain between the Fe seed and the heavier isotopes. The same element, Zr, also is an important component of the structural materials used in traditional and advanced nuclear reactors. The (n, gamma) cross section has been measured at CERN, using the n_TOF spallation neutron source. In total, 45 resonances could be resolved in the neutron energy range below 70 keV, 10 being observed for the first time thanks to the high resolution and low backgrounds at n_TOF. On average, the Gamma(gamma) widths obtained in resonance analyses with the R-matrix code SAMMY were 15% smaller than reported previously. By these results, the accuracy of the Maxwellian averaged cross section for s-process calculations has been improved by more than a factor of 2. C1 [Tagliente, G.; Colonna, N.; Marrone, S.; Terlizzi, R.] Ist Nazl Fis Nucl, I-70126 Bari, Italy. [Fujii, K.; Milazzo, P. M.; Moreau, C.; Abbondanno, U.] Ist Nazl Fis Nucl, Trieste, Italy. [Aerts, G.; Andriamonje, S.; Berthoumieux, E.; Dridi, W.; Gunsing, F.; Pancin, J.; Perrot, L.] CEA Saclay, DSM, DAPNIA, F-91191 Gif Sur Yvette, France. [Alvarez-Velarde, F.; Duran, I.; Paradela, C.] Univ Santiago de Compostela, Santiago De Compostela, Spain. [Alvarez-Velarde, F.; Cano-Ott, D.; Embid-Segura, M.; Gonzalez-Romero, E.; Guerrero, C.; Martinez, T.; Villamarin, D.; Vincente, M. C.] Ctr Invest Energet Medioambientales & Technol, Madrid, Spain. [Andrzejewski, J.; Marganiec, J.] Univ Lodz, Lodz, Poland. [Assimakopoulos, P.; Karadimos, D.; Karamanis, D.; Papachristodoulou, C.; Patronis, N.] Univ Ioannina, GR-45110 Ioannina, Greece. [Audouin, L.; Dillman, I.; Heil, M.; Kaeppeler, F.; Mosconi, M.; Plag, R.; Voss, F.; Walter, S.; Wisshak, K.] Forschungszentrum Karlsruhe GmbH FZK, Inst Kernphys, Karlsruhe, Germany. [Badurek, G.; Jericha, E.; Leeb, H.; Oberhummer, H.; Pigni, M. T.] Vienna Univ Technol, Atominst Osterreich Univ, Vienna, Austria. [Baumann, P.; David, S.; Kerveno, M.; Lukic, S.; Rudolf, G.] CNRS, IN2P3, IReS, Strasbourg, France. [Becvar, F.; Krticka, M.] Univ Karlova Praze, Prague, Czech Republic. [Bisterzo, S.; Gallino, R.] Univ Turin, Dipartimento Fis Gen, I-10124 Turin, Italy. [Calvino, F.; Cortes, G.; Poch, A.; Pretel, C.] Univ Politecn Cataluna, Barcelona, Spain. [Calviani, M.; Gramegna, F.; Mastinu, P.; Praena, J.] Ist Nazl Fis Nucl, Lab Nazl Legnaro, Rome, Italy. [Capote, R.] IAEA, NAPC, Nucl Data Sect, Vienna, Austria. [Capote, R.; Lozano, M.] Univ Seville, Seville, Spain. [Salgado, J.; Santos, C.; Tavora, L.; Vaz, P.] Inst Tecnol & Nucl ITN, Lisbon, Portugal. [Cennini, P.; Chiaveri, E.; Ferrari, A.; Kadi, Y.; Mengoni, A.; Sarchiapone, L.; Vlachoudis, V.; Wendler, H.] CERN, Geneva, Switzerland. [Chepel, V.; Ferreira-Marques, R.; Goncalves, I.; Lindote, A.; Lopes, I.; Neves, F.] Univ Coimbra, LIP Coimbra, P-3000 Coimbra, Portugal. [Chepel, V.; Ferreira-Marques, R.; Goncalves, I.; Lindote, A.; Lopes, I.; Neves, F.] Univ Coimbra, Dept Fis, P-3000 Coimbra, Portugal. [Couture, A.; Cox, J.; O'Brien, S.; Wiescher, M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Domingo-Pardo, C.; Tain, J. L.] Univ Valencia, CSIC, Inst Fis Corpuscular, E-46003 Valencia, Spain. [Eleftheriadis, C.; Lamboudis, C.; Savvidis, I.] Aristotle Univ Thessaloniki, Thessaloniki, Greece. [Ferrari, A.; Stephan, C.; Tassan-Got, L.] CNRS, IN2P3, IPN, F-91405 Orsay, France. [Furman, W.] Joint Inst Nucl Res, Frank Lab Neutron Phys, Dubna, Russia. [Haas, B.] CNRS, IN2P3, CENBG, Bordeaux, France. [Haight, R.; Reifarth, R.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Igashira, M.] Tokyo Inst Technol, Tokyo 152, Japan. [Koehler, P.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. [Kossionides, E.] NCSR Demokritos, Athens, Greece. [Massimi, C.; Vannini, G.] Sezione Ist Nazl Fis Nucl, Bologna, Italy. [Massimi, C.; Vannini, G.] Univ Bologna, Dipartmento Fis, Bologna, Italy. [Mengoni, A.] IAEA, NAPC, Nucl Data Sect, A-1400 Vienna, Austria. [Papadopoulos, C.; Vlastou, R.] Natl Tech Univ Athens, GR-10682 Athens, Greece. [Pavlik, A.] Univ Vienna, Inst Fak Phys, A-1010 Vienna, Austria. [Plompen, A.; Rullhusen, P.] CEC JRC IRMM, Geel, Belgium. [Rauscher, T.] Univ Basel, Dept Phys & Astron, Basel, Switzerland. [Rubbia, C.] Univ Pavia, I-27100 Pavia, Italy. [Ventura, A.] ENEA, Bologna, Italy. RP Tagliente, G (reprint author), Ist Nazl Fis Nucl, I-70126 Bari, Italy. EM giuseppe.tagliente@ba.infn.it RI Rauscher, Thomas/D-2086-2009; Jericha, Erwin/A-4094-2011; Cortes, Guillem/B-6869-2014; Tain, Jose L./K-2492-2014; Cano Ott, Daniel/K-4945-2014; Ventura, Alberto/B-9584-2011; Lindote, Alexandre/H-4437-2013; Neves, Francisco/H-4744-2013; Goncalves, Isabel/J-6954-2013; Vaz, Pedro/K-2464-2013; Lopes, Isabel/A-1806-2014; Calvino, Francisco/K-5743-2014; Mengoni, Alberto/I-1497-2012; Quesada Molina, Jose Manuel/K-5267-2014; Gramegna, Fabiana/B-1377-2012; Guerrero, Carlos/L-3251-2014; Gonzalez Romero, Enrique/L-7561-2014; Pretel Sanchez, Carme/L-8287-2014; Martinez, Trinitario/K-6785-2014; Capote Noy, Roberto/M-1245-2014; Massimi, Cristian/B-2401-2015; Duran, Ignacio/H-7254-2015; Alvarez Pol, Hector/F-1930-2011; Massimi, Cristian/K-2008-2015; Paradela, Carlos/J-1492-2012 OI Rauscher, Thomas/0000-0002-1266-0642; Jericha, Erwin/0000-0002-8663-0526; Cano Ott, Daniel/0000-0002-9568-7508; Ventura, Alberto/0000-0001-6748-7931; Lindote, Alexandre/0000-0002-7965-807X; Neves, Francisco/0000-0003-3635-1083; Vaz, Pedro/0000-0002-7186-2359; Lopes, Isabel/0000-0003-0419-903X; Calvino, Francisco/0000-0002-7198-4639; Mengoni, Alberto/0000-0002-2537-0038; Quesada Molina, Jose Manuel/0000-0002-2038-2814; Gramegna, Fabiana/0000-0001-6112-0602; Guerrero, Carlos/0000-0002-2111-546X; Gonzalez Romero, Enrique/0000-0003-2376-8920; Martinez, Trinitario/0000-0002-0683-5506; Capote Noy, Roberto/0000-0002-1799-3438; Massimi, Cristian/0000-0001-9792-3722; Alvarez Pol, Hector/0000-0001-9643-6252; Massimi, Cristian/0000-0003-2499-5586; NR 32 TC 24 Z9 25 U1 3 U2 21 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9985 EI 2469-9993 J9 PHYS REV C JI Phys. Rev. C PD MAR PY 2008 VL 77 IS 3 AR 035802 DI 10.1103/PhysRevC.77.035802 PG 9 WC Physics, Nuclear SC Physics GA 282BV UT WOS:000254543500059 ER PT J AU Vetter, PA Abo-Shaeer, JR Freedman, SJ Maruyama, R AF Vetter, P. A. Abo-Shaeer, J. R. Freedman, S. J. Maruyama, R. TI Measurement of the beta-nu correlation of Na-21 using shakeoff electrons SO PHYSICAL REVIEW C LA English DT Article ID NEUTRINO ANGULAR-CORRELATION; ALPHA RADIATIVE CORRECTION; DECAY; SPECTRUM; NUCLEAR; PHOTOASSOCIATION; TESTS; AR-32; ATOMS AB The beta-nu correlation coefficient, a(beta nu), is measured in Na-21 by detecting the time of flight of the recoil nucleus detected in coincidence with the atomic electrons shaken off in beta decay. The sample of Na-21 is confined in a magneto-optic trap. High detection efficiency allows low trap density, which suppresses the photoassociation of molecular sodium, which can cause a large systematic error. Suppressing the fraction of trapped atoms in the excited state by using a dark trap also reduces the photoassociation process, and data taken with this technique are consistent. The main remaining systematic uncertainties come from the measurement of the position and size of the atom trap and the subtraction of background. We find a(beta nu) = 0.5502(60), in agreement with the Standard Model prediction of a(beta nu) = 0.553(2), and disagreeing with a previous measurement, which was susceptible to an error introduced by the presence of molecular sodium. C1 [Vetter, P. A.; Abo-Shaeer, J. R.; Freedman, S. J.; Maruyama, R.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Freedman, S. J.; Maruyama, R.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. RP Vetter, PA (reprint author), Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RI Maruyama, Reina/A-1064-2013; OI Maruyama, Reina/0000-0003-2794-512X; Vetter, Paul/0000-0003-3318-1920 NR 34 TC 48 Z9 48 U1 1 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD MAR PY 2008 VL 77 IS 3 AR 035502 DI 10.1103/PhysRevC.77.035502 PG 8 WC Physics, Nuclear SC Physics GA 282BV UT WOS:000254543500057 ER PT J AU Zeitlin, C Guetersloh, S Heilbronn, L Miller, J Fukumura, A Iwata, Y Murakami, T Sihver, L Mancusi, D AF Zeitlin, C. Guetersloh, S. Heilbronn, L. Miller, J. Fukumura, A. Iwata, Y. Murakami, T. Sihver, L. Mancusi, D. TI Fragmentation cross sections of medium-energy (35)Cl, (40)Ar, and (48)Ti beams on elemental targets SO PHYSICAL REVIEW C LA English DT Article ID NICKEL PROJECTILES; RELATIVISTIC NEON; TOTAL CHARGE; HYDROGEN; NUCLEI; COLLISIONS; FE-56; PARTICLE; LIGHT; MODEL AB Charge-changing and fragment production cross sections at 0 degrees have been obtained for interactions of 290, 400, and 650 MeV/nucleon (40)Ar beams, 650 and 1000 MeV/nucleon (35)Cl beams, and a 1000 MeV/nucleon (48)Ti beam. Targets of C, CH(2), Al, Cu, Sn, and Pb were used. Using standard analysis methods, we obtained fragment cross sections for charges as low as 8 for Cl and Ar beams and as low as 10 for the Ti beam. Using data obtained with small-acceptance detectors, we report fragment production cross sections for charges as low as 5, corrected for acceptance using a simple model of fragment angular distributions. With the lower-charged fragment cross sections, we can compare the data to predictions from several models (including NUCFRG2, EPAX2, and PHITS) in a region largely unexplored in earlier work. As found in earlier work with other beams, NUCFRG2 and PHITS predictions agree reasonably well with the data for charge-changing cross sections, but these models do not accurately predict the fragment production cross sections. The cross sections for the lightest fragments demonstrate the inadequacy of several models in which the cross sections fall monotonically with the charge of the fragment. PHITS, despite its not agreeing particularly well with the fragment production cross sections on average, nonetheless qualitatively reproduces some significant features of the data that are missing from the other models. C1 [Zeitlin, C.; Guetersloh, S.; Heilbronn, L.; Miller, J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Fukumura, A.; Iwata, Y.; Murakami, T.] Natl Inst Radiol Sci, Chiba 260, Japan. [Sihver, L.; Mancusi, D.] Chalmers, SE-41296 Gothenburg, Sweden. RP Zeitlin, C (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. EM cjzeitlin@lbl.gov RI Heilbronn, Lawrence/J-6998-2013 OI Heilbronn, Lawrence/0000-0002-8226-1057 NR 38 TC 21 Z9 23 U1 0 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD MAR PY 2008 VL 77 IS 3 AR 034605 DI 10.1103/PhysRevC.77.034605 PG 21 WC Physics, Nuclear SC Physics GA 282BV UT WOS:000254543500032 ER PT J AU Aaltonen, T Adelman, J Akimoto, T Albrow, MG Gonzalez, BA Amerio, S Amidei, D Anastassov, A Annovi, A Antos, J Aoki, M Apollinari, G Apresyan, A Arisawa, T Artikov, A Ashmanskas, W Attal, A Aurisano, A Azfar, F Azzi-Bacchetta, P Azzurri, P Bacchetta, N Badgett, W Barbaro-Galtieri, A Barnes, VE Barnett, BA Baroiant, S Bartsch, V Bauer, G Beauchemin, PH Bedeschi, F Bednar, P Behari, S Bellettini, G Bellinger, J Belloni, A Benjamin, D Beretvas, A Beringer, J Berry, T Bhatti, A Binkley, M Bisello, D Bizjak, I Blair, RE Blocker, C Blumenfeld, B Bocci, A Bodek, A Boisvert, V Bolla, G Bolshov, A Bortoletto, D Boudreau, J Boveia, A Brau, B Bridgeman, A Brigliadori, L Bromberg, C Brubaker, E Budagov, J Budd, HS Budd, S Burkett, K Busetto, G Bussey, P Buzatu, A Byrum, KL Cabrera, S Campanelli, M Campbell, M Canelli, F Canepa, A Carlsmith, D Carosi, R Carrillo, S Carron, S Casal, B Casarsa, M Castro, A Catastini, P Cauz, D Cavalli-Sforza, M Cerri, A Cerrito, L Chang, SH Chen, YC Chertok, M Chiarelli, G Chlachidze, G Chlebana, F Cho, K Chokheli, D Chou, JP Choudalakis, G Chuang, SH Chung, K Chung, WH Chung, YS Ciobanu, CI Ciocci, MA Clark, A Clark, D Compostella, G Convery, ME Conway, J Cooper, B Copic, K Cordelli, M Cortiana, G Crescioli, F Almenar, CC Cuevas, J Culbertson, R Cully, JC Dagenhart, D Datta, M Davies, T de Barbaro, P De Cecco, S Deisher, A De Lentdecker, G De Lorenzo, G Dell'Orso, M Demortier, L Deng, J Deninno, M De Pedis, D Derwent, PF Di Giovanni, GP Dionisi, C Di Ruzza, B Dittmann, JR D'Onofrio, M Donati, S Dong, P Donini, J Dorigo, T Dube, S Efron, J Erbacher, R Errede, D Errede, S Eusebi, R Fang, HC Farrington, S Fedorko, WT Feild, RG Feindt, M Fernandez, JP Ferrazza, C Field, R Flanagan, G Forrest, R Forrester, S Franklin, M Freeman, JC Furic, I Gallinaro, M Galyardt, J Garberson, F Garcia, JE Garfinkel, AF Gerberich, H Gerdes, D Giagu, S Giakoumopolou, V Giannetti, P Gibson, K Gimmell, JL Ginsburg, CM Giokaris, N Giordani, M Giromini, P Giunta, M Glagolev, V Glenzinski, D Gold, M Goldschmidt, N Golossanov, A Gomez, G Gomez-Ceballos, G Goncharov, M Gonaalez, O Gorelov, I Goshaw, AT Goulianos, K Gresele, A Grinstein, S Grosso-Pilcher, C Group, RC Grundler, U da Costa, JG Gunay-Unalan, Z Haber, C Hahn, K Hahn, SR Halkiadakis, E Hamilton, A Han, BY Han, JY Handler, R Happacher, F Hara, K Hare, D Hare, M Harper, S Harr, RF Harris, RM Hartz, M Hatakeyama, K Hauser, J Hays, C Heck, M Heijboer, A Heinemann, B Heinrich, J Henderson, C Herndon, M Heuser, J Hewamanage, S Hidas, D Hill, CS Hirschbuehl, D Hocker, A Hou, S Houlden, M Hsu, SC Huffman, BT Hughes, RE Husemann, U Huston, J Incandela, J Introzzi, G Iori, M Ivanov, A Iyutin, B James, E Jayatilaka, B Jeans, D Jeon, EJ Jindariani, S Johnson, W Jones, M Joo, KK Jun, SY Jung, JE Junk, TR Kagan, M Kamon, T Kar, D Karchin, PE Kato, Y Kephart, R Kerzel, U Khotilovich, V Kilminster, B Kim, DH Kim, HS Kim, JE Kim, MJ Kim, SB Kim, SH Kim, YK Kimura, N Kirsch, L Klimenko, S Klute, M Knuteson, B Ko, BR Koay, SA Kondo, K Kong, DJ Konigsberg, J Korytov, A Kotwal, AV Kraus, J Kreps, M Kroll, J Krumnack, N Kruse, M Krutelyov, V Kubo, T Kuhlmann, SE Kuhr, T Kulkarni, NP Kusakabe, Y Kwang, S Laasanen, AT Lai, S Lami, S Lammel, S Lancaster, M Lander, RL Lannon, K Lath, A Latino, G Lazzizzera, I LeCompte, T Lee, J Lee, J Lee, YJ Lee, SW Lefevre, R Leonardo, N Leone, S Levy, S Lewis, JD Lin, C Lin, CS Linacre, J Lindgren, M Lipeles, E Lister, A Litvintsev, DO Liu, T Lockyer, NS Loginov, A Loreti, M Lovas, L Lu, RS Lucchesi, D Lueck, J Luci, C Lujan, P Lukens, P Lungu, G Lyons, L Lys, J Lysak, R Lytken, E Mack, P MacQueen, D Madrak, R Maeshima, K Makhoul, K Maki, T Maksimovic, P Malde, S Malik, S Manca, G Manousakis, A Margaroli, F Marino, C Marino, CP Martin, A Martin, M Martin, V Martinez, M Martinez-Ballarin, R Maruyama, T Mastrandrea, P Masubuchi, T Mattson, ME Mazzanti, P McFarland, KS McIntyre, P McNulty, R Mehta, A Mehtala, P Menzemer, S Menzione, A Merkel, P Mesropian, C Messina, A Miao, T Miladinovic, N Miles, J Miller, R Mills, C Milnik, M Mitra, A Mitselmakher, G Miyake, H Moed, S Moggi, N Moon, CS Moore, R Morello, M Fernandez, PM Mulmenstadt, J Mukherjee, A Muller, T Mumford, R Murat, P Mussini, M Nachtman, J Nagai, Y Nagano, A Naganoma, J Nakamura, K Nakano, I Napier, A Necula, V Neu, C Neubauer, MS Nielsen, J Nodulman, L Norman, M Norniella, O Nurse, E Oh, SH Oh, YD Oksuzian, I Okusawa, T Oldeman, R Orava, R Osterberg, K Griso, SP Pagliarone, C Palencia, E Papadimitriou, V Papaikonomou, A Paramonov, AA Parks, B Pashapour, S Patrick, J Pauletta, G Paulini, M Paus, C Pellett, DE Penzo, A Phillips, TJ Piacentino, G Piedra, J Pinera, L Pitts, K Plager, C Pondrom, L Portell, X Poukhov, O Pounder, N Prakoshyn, F Pronko, A Proudfoot, J Ptohos, F Punzi, G Pursley, J Rademacker, J Rahaman, A Ramakrishnan, V Ranjan, N Redondo, I Reisert, B Rekovic, V Renton, P Rescigno, M Richter, S Rimondi, F Ristori, L Robson, A Rodrigo, T Rogers, E Rolli, S Roser, R Rossi, M Rossin, R Roy, P Ruiz, A Russ, J Rusu, V Saarikko, H Safonov, A Sakumoto, WK Salamanna, G Salto, O Santi, L Sarkar, S Sartori, L Sato, K Savard, P Savoy-Navarro, A Scheidle, T Schlabach, P Schmidt, EE Schmidt, MA Schmidt, MP Schmitt, M Schwarz, T Scodellaro, L Scott, AL Scribano, A Scuri, F Sedov, A Seidel, S Seiya, Y Semenov, A Sexton-Kennedy, L Sfyria, A Shalhout, SZ Shapiro, MD Shears, T Shepard, PF Sherman, D Shimojima, M Shochet, M Shon, Y Shreyber, I Sidoti, A Sinervo, P Sisakyan, A Slaughter, AJ Slaunwhite, J Sliwa, K Smith, JR Snider, FD Snihur, R Soderberg, M Soha, A Somalwar, S Sorin, V Spalding, J Spinella, F Spreitzer, T Squillacioti, P Stanitzki, M Denis, RS Stelzer, B Stelzer-Chilton, O Stentz, D Strologas, J Stuart, D Suh, JS Sukhanov, A Sun, H Suslov, I Suzuki, T Taffard, A Takashima, R Takeuchi, Y Tanaka, R Tecchio, M Teng, PK Terashi, K Thom, J Thompson, AS Thompson, GA Thomson, E Tipton, P Tiwari, V Tkaczyk, S Toback, D Tokar, S Tollefson, K Tomura, T Tonelli, D Torre, S Torretta, D Tourneur, S Trischuk, W Tu, Y Turini, N Ukegawa, F Uozumi, S Vallecorsa, S van Remortel, N Varganov, A Vataga, E Vazquez, F Velev, G Vellidis, C Veszpremi, V Vidal, M Vidal, R Vila, I Vilar, R Vine, T Vogel, M Volobouev, I Volpi, G Wurthwein, F Wagner, P Wagner, RG Wagner, RL Wagner, J Wagner, W Wakisaka, T Wallny, R Wang, SM Warburton, A Waters, D Weinberger, M Wester, WC Whitehouse, B Whiteson, D Wicklund, AB Wicklund, E Williams, G Williams, HH Wilson, P Winer, BL Wittich, P Wolbers, S Wolfe, C Wright, T Wu, X Wynne, SM Yagil, A Yamamoto, K Yamaoka, J Yamashita, T Yang, C Yang, UK Yang, YC Yao, WM Yeh, GP Yoh, J Yorita, K Yoshida, T Yu, GB Yu, I Yu, SS Yun, JC Zanello, L Zanetti, A Zaw, I Zhang, X Zheng, Y Zucchelli, S AF Aaltonen, T. Adelman, J. Akimoto, T. Albrow, M. G. Gonzalez, B. Alvarez Amerio, S. Amidei, D. Anastassov, A. Annovi, A. Antos, J. Aoki, M. Apollinari, G. Apresyan, A. Arisawa, T. Artikov, A. Ashmanskas, W. Attal, A. Aurisano, A. Azfar, F. Azzi-Bacchetta, P. Azzurri, P. Bacchetta, N. Badgett, W. Barbaro-Galtieri, A. Barnes, V. E. Barnett, B. A. Baroiant, S. Bartsch, V. Bauer, G. Beauchemin, P. -H. Bedeschi, F. Bednar, P. Behari, S. Bellettini, G. Bellinger, J. Belloni, A. Benjamin, D. Beretvas, A. Beringer, J. Berry, T. Bhatti, A. Binkley, M. Bisello, D. Bizjak, I. Blair, R. E. Blocker, C. Blumenfeld, B. Bocci, A. Bodek, A. Boisvert, V. Bolla, G. Bolshov, A. Bortoletto, D. Boudreau, J. Boveia, A. Brau, B. Bridgeman, A. Brigliadori, L. Bromberg, C. Brubaker, E. Budagov, J. Budd, H. S. Budd, S. Burkett, K. Busetto, G. Bussey, P. Buzatu, A. Byrum, K. L. Cabrera, S. Campanelli, M. Campbell, M. Canelli, F. Canepa, A. Carlsmith, D. Carosi, R. Carrillo, S. Carron, S. Casal, B. Casarsa, M. Castro, A. Catastini, P. Cauz, D. Cavalli-Sforza, M. Cerri, A. Cerrito, L. Chang, S. H. Chen, Y. C. Chertok, M. Chiarelli, G. Chlachidze, G. Chlebana, F. Cho, K. Chokheli, D. Chou, J. P. Choudalakis, G. Chuang, S. H. Chung, K. Chung, W. H. Chung, Y. S. Ciobanu, C. I. Ciocci, M. A. Clark, A. Clark, D. Compostella, G. Convery, M. E. Conway, J. Cooper, B. Copic, K. Cordelli, M. Cortiana, G. Crescioli, F. Almenar, C. Cuenca Cuevas, J. Culbertson, R. Cully, J. C. Dagenhart, D. Datta, M. Davies, T. de Barbaro, P. De Cecco, S. Deisher, A. De Lentdecker, G. De Lorenzo, G. Dell'Orso, M. Demortier, L. Deng, J. Deninno, M. De Pedis, D. Derwent, P. F. Di Giovanni, G. P. Dionisi, C. Di Ruzza, B. Dittmann, J. R. D'Onofrio, M. Donati, S. Dong, P. Donini, J. Dorigo, T. Dube, S. Efron, J. Erbacher, R. Errede, D. Errede, S. Eusebi, R. Fang, H. C. Farrington, S. Fedorko, W. T. Feild, R. G. Feindt, M. Fernandez, J. P. Ferrazza, C. Field, R. Flanagan, G. Forrest, R. Forrester, S. Franklin, M. Freeman, J. C. Furic, I. Gallinaro, M. Galyardt, J. Garberson, F. Garcia, J. E. Garfinkel, A. F. Gerberich, H. Gerdes, D. Giagu, S. Giakoumopolou, V. Giannetti, P. Gibson, K. Gimmell, J. L. Ginsburg, C. M. Giokaris, N. Giordani, M. Giromini, P. Giunta, M. Glagolev, V. Glenzinski, D. Gold, M. Goldschmidt, N. Golossanov, A. Gomez, G. Gomez-Ceballos, G. Goncharov, M. Gonzalez, O. Gorelov, I. Goshaw, A. T. Goulianos, K. Gresele, A. Grinstein, S. Grosso-Pilcher, C. Group, R. C. Grundler, U. da Costa, J. Guimaraes Gunay-Unalan, Z. Haber, C. Hahn, K. Hahn, S. R. Halkiadakis, E. Hamilton, A. Han, B. -Y. Han, J. Y. Handler, R. Happacher, F. Hara, K. Hare, D. Hare, M. Harper, S. Harr, R. F. Harris, R. M. Hartz, M. Hatakeyama, K. Hauser, J. Hays, C. Heck, M. Heijboer, A. Heinemann, B. Heinrich, J. Henderson, C. Herndon, M. Heuser, J. Hewamanage, S. Hidas, D. Hill, C. S. Hirschbuehl, D. Hocker, A. Hou, S. Houlden, M. Hsu, S. -C. Huffman, B. T. Hughes, R. E. Husemann, U. Huston, J. Incandela, J. Introzzi, G. Iori, M. Ivanov, A. Iyutin, B. James, E. Jayatilaka, B. Jeans, D. Jeon, E. J. Jindariani, S. Johnson, W. Jones, M. Joo, K. K. Jun, S. Y. Jung, J. E. Junk, T. R. Kagan, M. Kamon, T. Kar, D. Karchin, P. E. Kato, Y. Kephart, R. Kerzel, U. Khotilovich, V. Kilminster, B. Kim, D. H. Kim, H. S. Kim, J. E. Kim, M. J. Kim, S. B. Kim, S. H. Kim, Y. K. Kimura, N. Kirsch, L. Klimenko, S. Klute, M. Knuteson, B. Ko, B. R. Koay, S. A. Kondo, K. Kong, D. J. Konigsberg, J. Korytov, A. Kotwal, A. V. Kraus, J. Kreps, M. Kroll, J. Krumnack, N. Kruse, M. Krutelyov, V. Kubo, T. Kuhlmann, S. E. Kuhr, T. Kulkarni, N. P. Kusakabe, Y. Kwang, S. Laasanen, A. T. Lai, S. Lami, S. Lammel, S. Lancaster, M. Lander, R. L. Lannon, K. Lath, A. Latino, G. Lazzizzera, I. LeCompte, T. Lee, J. Lee, J. Lee, Y. J. Lee, S. W. Lefevre, R. Leonardo, N. Leone, S. Levy, S. Lewis, J. D. Lin, C. Lin, C. S. Linacre, J. Lindgren, M. Lipeles, E. Lister, A. Litvintsev, D. O. Liu, T. Lockyer, N. S. Loginov, A. Loreti, M. Lovas, L. Lu, R. -S. Lucchesi, D. Lueck, J. Luci, C. Lujan, P. Lukens, P. Lungu, G. Lyons, L. Lys, J. Lysak, R. Lytken, E. Mack, P. MacQueen, D. Madrak, R. Maeshima, K. Makhoul, K. Maki, T. Maksimovic, P. Malde, S. Malik, S. Manca, G. Manousakis, A. Margaroli, F. Marino, C. Marino, C. P. Martin, A. Martin, M. Martin, V. Martinez, M. Martinez-Ballarin, R. Maruyama, T. Mastrandrea, P. Masubuchi, T. Mattson, M. E. Mazzanti, P. McFarland, K. S. McIntyre, P. McNulty, R. Mehta, A. Mehtala, P. Menzemer, S. Menzione, A. Merkel, P. Mesropian, C. Messina, A. Miao, T. Miladinovic, N. Miles, J. Miller, R. Mills, C. Milnik, M. Mitra, A. Mitselmakher, G. Miyake, H. Moed, S. Moggi, N. Moon, C. S. Moore, R. Morello, M. Fernandez, P. Movilla Muelmenstaedt, J. Mukherjee, A. Muller, Th. Mumford, R. Murat, P. Mussini, M. Nachtman, J. Nagai, Y. Nagano, A. Naganoma, J. Nakamura, K. Nakano, I. Napier, A. Necula, V. Neu, C. Neubauer, M. S. Nielsen, J. Nodulman, L. Norman, M. Norniella, O. Nurse, E. Oh, S. H. Oh, Y. D. Oksuzian, I. Okusawa, T. Oldeman, R. Orava, R. Osterberg, K. Griso, S. Pagan Pagliarone, C. Palencia, E. Papadimitriou, V. Papaikonomou, A. Paramonov, A. A. Parks, B. Pashapour, S. Patrick, J. Pauletta, G. Paulini, M. Paus, C. Pellett, D. E. Penzo, A. Phillips, T. J. Piacentino, G. Piedra, J. Pinera, L. Pitts, K. Plager, C. Pondrom, L. Portell, X. Poukhov, O. Pounder, N. Prakoshyn, F. Pronko, A. Proudfoot, J. Ptohos, F. Punzi, G. Pursley, J. Rademacker, J. Rahaman, A. Ramakrishnan, V. Ranjan, N. Redondo, I. Reisert, B. Rekovic, V. Renton, P. Rescigno, M. Richter, S. Rimondi, F. Ristori, L. Robson, A. Rodrigo, T. Rogers, E. Rolli, S. Roser, R. Rossi, M. Rossin, R. Roy, P. Ruiz, A. Russ, J. Rusu, V. Saarikko, H. Safonov, A. Sakumoto, W. K. Salamanna, G. Salto, O. Santi, L. Sarkar, S. Sartori, L. Sato, K. Savard, P. Savoy-Navarro, A. Scheidle, T. Schlabach, P. Schmidt, E. E. Schmidt, M. A. Schmidt, M. P. Schmitt, M. Schwarz, T. Scodellaro, L. Scott, A. L. Scribano, A. Scuri, F. Sedov, A. Seidel, S. Seiya, Y. Semenov, A. Sexton-Kennedy, L. Sfyria, A. Shalhout, S. Z. Shapiro, M. D. Shears, T. Shepard, P. F. Sherman, D. Shimojima, M. Shochet, M. Shon, Y. Shreyber, I. Sidoti, A. Sinervo, P. Sisakyan, A. Slaughter, A. J. Slaunwhite, J. Sliwa, K. Smith, J. R. Snider, F. D. Snihur, R. Soderberg, M. Soha, A. Somalwar, S. Sorin, V. Spalding, J. Spinella, F. Spreitzer, T. Squillacioti, P. Stanitzki, M. Denis, R. St. Stelzer, B. Stelzer-Chilton, O. Stentz, D. Strologas, J. Stuart, D. Suh, J. S. Sukhanov, A. Sun, H. Suslov, I. Suzuki, T. Taffard, A. Takashima, R. Takeuchi, Y. Tanaka, R. Tecchio, M. Teng, P. K. Terashi, K. Thom, J. Thompson, A. S. Thompson, G. A. Thomson, E. Tipton, P. Tiwari, V. Tkaczyk, S. Toback, D. Tokar, S. Tollefson, K. Tomura, T. Tonelli, D. Torre, S. Torretta, D. Tourneur, S. Trischuk, W. Tu, Y. Turini, N. Ukegawa, F. Uozumi, S. Vallecorsa, S. van Remortel, N. Varganov, A. Vataga, E. Vazquez, F. Velev, G. Vellidis, C. Veszpremi, V. Vidal, M. Vidal, R. Vila, I. Vilar, R. Vine, T. Vogel, M. Volobouev, I. Volpi, G. Wuerthwein, F. Wagner, P. Wagner, R. G. Wagner, R. L. Wagner, J. Wagner, W. Wakisaka, T. Wallny, R. Wang, S. M. Warburton, A. Waters, D. Weinberger, M. Wester, W. C., III Whitehouse, B. Whiteson, D. Wicklund, A. B. Wicklund, E. Williams, G. Williams, H. H. Wilson, P. Winer, B. L. Wittich, P. Wolbers, S. Wolfe, C. Wright, T. Wu, X. Wynne, S. M. Yagil, A. Yamamoto, K. Yamaoka, J. Yamashita, T. Yang, C. Yang, U. K. Yang, Y. C. Yao, W. M. Yeh, G. P. Yoh, J. Yorita, K. Yoshida, T. Yu, G. B. Yu, I. Yu, S. S. Yun, J. C. Zanello, L. Zanetti, A. Zaw, I. Zhang, X. Zheng, Y. Zucchelli, S. CA CDF Collaboration TI Limits on the production of narrow t(t)over-bar resonances in p(p)over-bar collisions at root s=1.96 TeV SO PHYSICAL REVIEW D LA English DT Article ID PHYSICS AB We search for evidence of resonant top quark pair production in 955 pb(-1) of p (p) over bar collisions at root s = 1: 96 TeV recorded with the CDF II detector at the Fermilab Tevatron. For fully reconstructed candidate t (t) over bar events triggered on leptons with large transverse momentum and containing at least one identified b-quark jet, we compare the invariant mass spectrum of t (t) over bar pairs to the expected superposition of standard model t (t) over bar, non-t (t) over bar backgrounds, and a simple resonance model based on a sequential Z' boson. We establish upper limits for sigma(p (p) over bar -> Z')center dot Br(Z' -> t (t) over bar) in the Z' mass interval from 450 GeV/c(2) to 900 GeV=c(2). A topcolor leptophobic Z' is ruled out below 720 GeV=c(2), and the cross section of any narrow Z'-like state decaying to t (t) over bar is found to be less than 0.64 pb at 95% C. L. for M(Z') above 700 GeV/c(2). C1 [Aaltonen, T.; Maki, T.; Mehtala, P.; Orava, R.; Osterberg, K.; Saarikko, H.; van Remortel, N.] Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. [Chen, Y. C.; Hou, S.; Lu, R. -S.; Mitra, A.; Teng, P. K.; Wang, S. M.] Acad Sinica, Inst Phys, Taipei 11529, Taiwan. [Blair, R. E.; Byrum, K. L.; Kuhlmann, S. E.; LeCompte, T.; Nodulman, L.; Proudfoot, J.; Wagner, R. G.; Wicklund, A. B.] Argonne Natl Lab, Argonne, IL 60439 USA. [Attal, A.; Cavalli-Sforza, M.; De Lorenzo, G.; D'Onofrio, M.; Martinez, M.; Portell, X.; Salto, O.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. [Dittmann, J. R.; Hewamanage, S.; Krumnack, N.] Baylor Univ, Waco, TX 76798 USA. [Aaltonen, T.; Maki, T.; Mehtala, P.; Orava, R.; Osterberg, K.; Saarikko, H.; van Remortel, N.] Helsinki Inst Phys, FIN-00014 Helsinki, Finland. [Brigliadori, L.; Castro, A.; Deninno, M.; Mazzanti, P.; Moggi, N.; Mussini, M.; Rimondi, F.] Univ Bologna, Ist Nazl Fis Nucl, I-40127 Bologna, Italy. [Blocker, C.; Clark, D.; Kirsch, L.; Miladinovic, N.] Brandeis Univ, Waltham, MA 02254 USA. [Baroiant, S.; Chertok, M.; Conway, J.; Erbacher, R.; Forrest, R.; Forrester, S.; Johnson, W.; Lander, R. L.; Lister, A.; Pellett, D. E.; Schwarz, T.; Smith, J. R.; Soha, A.] Univ Calif Davis, Davis, CA 95616 USA. [Dong, P.; Hauser, J.; Kotwal, A. V.; Plager, C.; Wallny, R.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Hsu, S. -C.; Lipeles, E.; Norman, M.; Wuerthwein, F.; Yagil, A.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Boveia, A.; Brau, B.; Garberson, F.; Incandela, J.; Koay, S. A.; Krutelyov, V.; Rossin, R.; Scott, A. L.; Stuart, D.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Gonzalez, B. Alvarez; Casal, B.; Gomez, G.; Rodrigo, T.; Ruiz, A.; Scodellaro, L.; Vila, I.; Vilar, R.] Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain. [Chung, K.; Galyardt, J.; Jun, S. Y.; Paulini, M.; Russ, J.; Tiwari, V.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Adelman, J.; Brubaker, E.; Fedorko, W. T.; Grosso-Pilcher, C.; Kim, Y. K.; Kwang, S.; Levy, S.; Paramonov, A. A.; Schmidt, M. A.; Shochet, M.; Wolfe, C.; Yorita, K.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Antos, J.; Bednar, P.; Lovas, L.; Lysak, R.; Tokar, S.] Comenius Univ, Bratislava 84248, Slovakia. [Antos, J.; Bednar, P.; Lovas, L.; Lysak, R.; Tokar, S.] Inst Expt Phys, Kosice 04001, Slovakia. [Artikov, A.; Budagov, J.; Chokheli, D.; Glagolev, V.; Poukhov, O.; Prakoshyn, F.; Semenov, A.; Sisakyan, A.; Suslov, I.] Joint Inst Nucl Res, RU-141980 Dubna, Russia. [Benjamin, D.; Bocci, A.; Deng, J.; Goshaw, A. T.; Hidas, D.; Jayatilaka, B.; Ko, B. R.; Kotwal, A. V.; Kruse, M.; Necula, V.; Oh, S. H.; Phillips, T. J.] Duke Univ, Durham, NC 27708 USA. [Albrow, M. G.; Apollinari, G.; Ashmanskas, W.; Badgett, W.; Beretvas, A.; Binkley, M.; Burkett, K.; Canelli, F.; Casarsa, M.; Chlachidze, G.; Chlebana, F.; Convery, M. E.; Culbertson, R.; Dagenhart, D.; Datta, M.; Derwent, P. F.; Eusebi, R.; Ginsburg, C. M.; Glenzinski, D.; Golossanov, A.; Group, R. C.; Hahn, S. R.; Harris, R. M.; Hocker, A.; James, E.; Kephart, R.; Kim, M. J.; Lammel, S.; Lewis, J. D.; Lindgren, M.; Litvintsev, D. O.; Liu, T.; Lukens, P.; Madrak, R.; Maeshima, K.; Miao, T.; Moore, R.; Mukherjee, A.; Murat, P.; Nachtman, J.; Palencia, E.; Papadimitriou, V.; Patrick, J.; Pronko, A.; Reisert, B.; Roser, R.; Russ, J.; Sato, K.; Schlabach, P.; Schmidt, E. E.; Sexton-Kennedy, L.; Slaughter, A. J.; Snider, F. D.; Wester, W. C., III; Wicklund, E.; Wilson, P.; Wolbers, S.; Yeh, G. P.; Yoh, J.; Yu, S. S.; Yun, J. C.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Field, R.; Furic, I.; Goldschmidt, N.; Jindariani, S.; Kar, D.; Klimenko, S.; Konigsberg, J.; Korytov, A.; Lungu, G.; Mitselmakher, G.; Oksuzian, I.; Pinera, L.; Sukhanov, A.] Univ Florida, Gainesville, FL 32611 USA. [Annovi, A.; Cordelli, M.; Giromini, P.; Happacher, F.; Torre, S.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Clark, A.; Hamilton, A.; Lefevre, R.; Sfyria, A.; Shreyber, I.; Vallecorsa, S.; Wu, X.] Univ Geneva, CH-1211 Geneva 4, Switzerland. [Bussey, P.; Davies, T.; Robson, A.; Denis, R. St.; Thompson, A. S.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. [Belloni, A.; Chou, J. P.; Franklin, M.; Grinstein, S.; da Costa, J. Guimaraes; Mills, C.; Moed, S.; Sherman, D.; Zaw, I.] Harvard Univ, Cambridge, MA 02138 USA. [Aoki, M.; Bridgeman, A.; Campbell, M.; Ciobanu, C. I.; Errede, D.; Errede, S.; Gerberich, H.; Grundler, U.; Junk, T. R.; Kraus, J.; Marino, C. P.; Neubauer, M. S.; Norniella, O.; Pitts, K.; Rogers, E.; Thompson, G. A.; Zhang, X.] Univ Illinois, Urbana, IL 61801 USA. [Barnett, B. A.; Behari, S.; Blumenfeld, B.; Maksimovic, P.; Martin, M.; Mumford, R.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Feindt, M.; Heck, M.; Hirschbuehl, D.; Kerzel, U.; Kreps, M.; Kuhr, T.; Lueck, J.; Mack, P.; Marino, C. P.; Muller, Th.; Papaikonomou, A.; Richter, S.; Scheidle, T.; Wagner, J.; Wagner, W.] Univ Karlsruhe, Inst Expt Kernphys, D-76128 Karlsruhe, Germany. [Chang, S. H.; Cho, K.; Jeon, E. J.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J.; Lee, Y. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yu, I.] Kyungpook Natl Univ, Ctr High Energy Phys, Taegu 702701, South Korea. [Chang, S. H.; Cho, K.; Iyutin, B.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J.; Lee, Y. J.; Moon, C. S.; Oh, Y. D.; Yu, I.] Seoul Natl Univ, Seoul 151742, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J.; Lee, Y. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yu, I.] Sungkyunkwan Univ, Suwon 440746, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J.; Lee, Y. J.; Moon, C. S.; Suh, J. S.; Yu, I.] Korea Inst Sci & Technol Informat, Taejon 305806, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J.; Lee, Y. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yu, I.] Chonnam Natl Univ, Kwangju 500757, South Korea. [Barbaro-Galtieri, A.; Beringer, J.; Cerri, A.; Deisher, A.; Fang, H. C.; Freeman, J. C.; Haber, C.; Heinemann, B.; Lin, C. S.; Lujan, P.; Lys, J.; Fernandez, P. Movilla; Muelmenstaedt, J.; Shapiro, M. D.; Yao, W. M.] Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Berry, T.; Farrington, S.; Houlden, M.; Manca, G.; Oldeman, R.; Shears, T.; Wynne, S. M.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Bartsch, V.; Bizjak, I.; Cooper, B.; Lancaster, M.; Malik, S.; Nurse, E.; Vine, T.; Waters, D.] UCL, London WC1E 6BT, England. [Fernandez, J. P.; Gonzalez, O.; Martinez-Ballarin, R.; Redondo, I.; Vidal, M.] Ctr Invest Energet Medioambientales & Tecnol, E-28040 Madrid, Spain. [Bauer, G.; Bolshov, A.; Choudalakis, G.; Gomez-Ceballos, G.; Hahn, K.; Henderson, C.; Iyutin, B.; Klute, M.; Knuteson, B.; Leonardo, N.; Makhoul, K.; Miles, J.; Paus, C.] MIT, Cambridge, MA 02139 USA. [Beauchemin, P. -H.; Buzatu, A.; Carron, S.; Lai, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Savard, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Trischuk, W.; Warburton, A.; Williams, G.] McGill Univ, Inst Particle Phys, Montreal, PQ H3A 2T8, Canada. [Beauchemin, P. -H.; Buzatu, A.; Carron, S.; Lai, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Savard, P.; Sinervo, P.; Spreitzer, T.; Trischuk, W.; Warburton, A.; Williams, G.] Univ Toronto, Toronto, ON M5S 1A7, Canada. [Amidei, D.; Campbell, M.; Copic, K.; Cully, J. C.; Gerdes, D.; Kagan, M.; Tecchio, M.; Varganov, A.; Wright, T.] Univ Michigan, Ann Arbor, MI 48109 USA. [Bromberg, C.; Campanelli, M.; Gunay-Unalan, Z.; Huston, J.; Messina, A.; Miller, R.; Sorin, V.; Tollefson, K.] Michigan State Univ, E Lansing, MI 48824 USA. [Gold, M.; Gorelov, I.; Rekovic, V.; Seidel, S.; Strologas, J.; Vataga, E.; Vogel, M.] Univ New Mexico, Albuquerque, NM 87131 USA. [Schmitt, M.; Stentz, D.] Northwestern Univ, Evanston, IL 60208 USA. [Efron, J.; Hughes, R. E.; Kilminster, B.; Parks, B.; Slaunwhite, J.; Winer, B. L.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.; Takashima, R.; Tanaka, R.; Yamashita, T.] Okayama Univ, Okayama 7008530, Japan. [Kato, Y.; Okusawa, T.; Seiya, Y.; Wakisaka, T.; Yamamoto, K.; Yoshida, T.] Osaka City Univ, Osaka 588, Japan. [Azfar, F.; Harper, S.; Hays, C.; Huffman, B. T.; Linacre, J.; Lyons, L.; Malde, S.; Pounder, N.; Renton, P.; Stelzer-Chilton, O.] Univ Oxford, Oxford OX1 3RH, England. [Amerio, S.; Azzi-Bacchetta, P.; Bacchetta, N.; Bisello, D.; Busetto, G.; Compostella, G.; Cortiana, G.; Donini, J.; Dorigo, T.; Gresele, A.; Lazzizzera, I.; Loreti, M.; Lucchesi, D.; Griso, S. Pagan] Univ Padua, Ist Nazl Fis Nucl, Sezione Padova Trento, I-35131 Padua, Italy. [Di Giovanni, G. P.; Piedra, J.; Savoy-Navarro, A.; Tourneur, S.] Univ Paris 06, CNRS, IN2P3, LPNHE, F-75252 Paris, France. [Canepa, A.; Heijboer, A.; Heinrich, J.; Kroll, J.; Lockyer, N. S.; Neu, C.; Thomson, E.; Tu, Y.; Wagner, P.; Williams, H. H.] Univ Penn, Philadelphia, PA 19104 USA. [Azzurri, P.; Bedeschi, F.; Bellettini, G.; Carosi, R.; Catastini, P.; Chiarelli, G.; Ciocci, M. A.; Crescioli, F.; Dell'Orso, M.; Donati, S.; Ferrazza, C.; Garcia, J. E.; Giannetti, P.; Introzzi, G.; Lami, S.; Latino, G.; Leone, S.; Menzione, A.; Morello, M.; Piacentino, G.; Punzi, G.; Ristori, L.; Sartori, L.; Scribano, A.; Scuri, F.; Sidoti, A.; Spinella, F.] Univ Pisa, Ist Nazl Fis Nucl, Siena & Scoula Normale Super, I-56127 Pisa, Italy. [Boudreau, J.; Gibson, K.; Hartz, M.; Rahaman, A.; Shepard, P. F.] Univ Pittsburgh, Pittsburgh, PA 15260 USA. [Apresyan, A.; Barnes, V. E.; Bolla, G.; Bortoletto, D.; Flanagan, G.; Garfinkel, A. F.; Jones, M.; Laasanen, A. T.; Lytken, E.; Margaroli, F.; Merkel, P.; Ranjan, N.; Sedov, A.; Veszpremi, V.] Purdue Univ, W Lafayette, IN 47907 USA. [Bodek, A.; Boisvert, V.; Budd, H. S.; Chung, Y. S.; de Barbaro, P.; Gimmell, J. L.; Han, B. -Y.; Han, J. Y.; Lee, J.; McFarland, K. S.; Sakumoto, W. K.; Yu, G. B.] Univ Rochester, Rochester, NY 14627 USA. [Bhatti, A.; Demortier, L.; Gallinaro, M.; Goulianos, K.; Hatakeyama, K.; Mesropian, C.; Terashi, K.] Rockefeller Univ, New York, NY 10021 USA. [De Cecco, S.; De Pedis, D.; Dionisi, C.; Giagu, S.; Iori, M.; Jeans, D.; Luci, C.; Mastrandrea, P.; Rescigno, M.; Salamanna, G.; Sarkar, S.] Univ Roma La Sapienza, Ist Nazl Fis Nucl, Sezione Roma 1, I-00185 Rome, Italy. [Anastassov, A.; Chuang, S. H.; Dube, S.; Halkiadakis, E.; Hare, D.; Lath, A.; Somalwar, S.; Yamaoka, J.] Rutgers State Univ, Piscataway, NJ 08855 USA. [Aurisano, A.; Goncharov, M.; Kamon, T.; Khotilovich, V.; McIntyre, P.; Safonov, A.; Toback, D.; Weinberger, M.] Texas A&M Univ, College Stn, TX 77843 USA. [Cauz, D.; Di Ruzza, B.; Giordani, M.; Pauletta, G.; Penzo, A.; Rossi, M.; Santi, L.; Zanetti, A.] Univ Trieste, Ist Nazl Fis Nucl, Udine, Italy. [Akimoto, T.; Hara, K.; Kim, S. H.; Kimura, N.; Kubo, T.; Maruyama, T.; Masubuchi, T.; Miyake, H.; Nagai, Y.; Nagano, A.; Nakamura, K.; Suzuki, T.; Takeuchi, Y.; Tomura, T.; Ukegawa, F.; Uozumi, S.] Univ Tsukuba, Tsukuba 305, Japan. [Hare, M.; Napier, A.; Rolli, S.; Sliwa, K.; Sun, H.; Whitehouse, B.] Tufts Univ, Medford, MA 02155 USA. [Arisawa, T.; Kondo, K.; Kusakabe, Y.; Naganoma, J.] Waseda Univ, Tokyo 169, Japan. [Harr, R. F.; Karchin, P. E.; Kulkarni, N. P.; Mattson, M. E.; Shalhout, S. Z.] Wayne State Univ, Detroit, MI 48201 USA. [Bellinger, J.; Carlsmith, D.; Chung, W. H.; Handler, R.; Herndon, M.; Pondrom, L.; Pursley, J.; Ramakrishnan, V.; Shon, Y.] Univ Wisconsin, Madison, WI 53706 USA. [Feild, R. G.; Husemann, U.; Lin, C.; Loginov, A.; Martin, A.; Schmidt, M. P.; Stanitzki, M.; Tipton, P.; Yang, C.] Yale Univ, New Haven, CT 06520 USA. RP Aaltonen, T (reprint author), Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. RI Leonardo, Nuno/M-6940-2016; Canelli, Florencia/O-9693-2016; Ruiz, Alberto/E-4473-2011; Lysak, Roman/H-2995-2014; Moon, Chang-Seong/J-3619-2014; Robson, Aidan/G-1087-2011; De Cecco, Sandro/B-1016-2012; Azzi, Patrizia/H-5404-2012; manca, giulia/I-9264-2012; Amerio, Silvia/J-4605-2012; messina, andrea/C-2753-2013; Annovi, Alberto/G-6028-2012; Ivanov, Andrew/A-7982-2013; Warburton, Andreas/N-8028-2013; Kim, Soo-Bong/B-7061-2014; Scodellaro, Luca/K-9091-2014; Paulini, Manfred/N-7794-2014; Russ, James/P-3092-2014; Lazzizzera, Ignazio/E-9678-2015; Cabrera Urban, Susana/H-1376-2015; Garcia, Jose /H-6339-2015; ciocci, maria agnese /I-2153-2015; Cavalli-Sforza, Matteo/H-7102-2015; Muelmenstaedt, Johannes/K-2432-2015; Introzzi, Gianluca/K-2497-2015; Gorelov, Igor/J-9010-2015; Prokoshin, Fedor/E-2795-2012 OI Leonardo, Nuno/0000-0002-9746-4594; Canelli, Florencia/0000-0001-6361-2117; Ruiz, Alberto/0000-0002-3639-0368; Moon, Chang-Seong/0000-0001-8229-7829; Azzi, Patrizia/0000-0002-3129-828X; Annovi, Alberto/0000-0002-4649-4398; Ivanov, Andrew/0000-0002-9270-5643; Warburton, Andreas/0000-0002-2298-7315; Scodellaro, Luca/0000-0002-4974-8330; Paulini, Manfred/0000-0002-6714-5787; Russ, James/0000-0001-9856-9155; Lazzizzera, Ignazio/0000-0001-5092-7531; ciocci, maria agnese /0000-0003-0002-5462; Muelmenstaedt, Johannes/0000-0003-1105-6678; Introzzi, Gianluca/0000-0002-1314-2580; Gorelov, Igor/0000-0001-5570-0133; Prokoshin, Fedor/0000-0001-6389-5399 NR 23 TC 39 Z9 39 U1 1 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD MAR PY 2008 VL 77 IS 5 AR 051102 DI 10.1103/PhysRevD.77.051102 PG 7 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 282CC UT WOS:000254544200002 ER PT J AU Aaltonen, T Adelman, J Akimoto, T Albrow, MG Gonzalez, BA Amerio, S Amidei, D Anastassov, A Annovi, A Antos, J Aoki, M Apollinari, G Apresyan, A Arisawa, T Artikov, A Ashmanskas, W Attal, A Aurisano, A Azfar, F Azzi-Bacchetta, P Azzurri, P Bacchetta, N Badgett, W Barbaro-Galtieri, A Barnes, VE Barnett, BA Baroiant, S Bartsch, V Bauer, G Beauchemin, PH Bedeschi, F Bednar, P Behari, S Bellettini, G Bellinger, J Belloni, A Benjamin, D Beretvas, A Beringer, J Berry, T Bhatti, A Binkley, M Bisello, D Bizjak, I Blair, RE Blocker, C Blumenfeld, B Bocci, A Bodek, A Boisvert, V Bolla, G Bolshov, A Bortoletto, D Boudreau, J Boveia, A Brau, B Bridgeman, A Brigliadori, L Bromberg, C Brubaker, E Budagov, J Budd, HS Budd, S Burkett, K Busetto, G Bussey, P Buzatu, A Byrum, KL Cabrera, S Campanelli, M Campbell, M Canelli, F Canepa, A Carlsmith, D Carosi, R Carrillo, S Carron, S Casal, B Casarsa, M Castro, A Catastini, P Cauz, D Cavalli-Sforza, M Cerri, A Cerrito, L Chang, SH Chen, YC Chertok, M Chiarelli, G Chlachidze, G Chlebana, F Cho, K Chokheli, D Chou, JP Choudalakis, G Chuang, SH Chung, K Chung, WH Chung, YS Ciobanu, CI Ciocci, MA Clark, A Clark, D Compostella, G Convery, ME Conway, J Cooper, B Copic, K Cordelli, M Cortiana, G Crescioli, F Almenar, CC Cuevas, J Culbertson, R Cully, JC Dagenhart, D Datta, M Davies, T de Barbaro, P De Cecco, S Deisher, A De Lentdecker, G De Lorenzo, G Dell'Orso, M Demortier, L Deng, J Deninno, M De Pedis, D Derwent, PF Di Giovanni, GP Dionisi, C Di Ruzza, B Dittmann, JR D'Onofrio, M Donati, S Dong, P Donini, J Dorigo, T Dube, S Efron, J Erbacher, R Errede, D Errede, S Eusebi, R Fang, HC Farrington, S Fedorko, WT Feild, RG Feindt, M Fernandez, JP Ferrazza, C Field, R Flanagan, G Forrest, R Forrester, S Franklin, M Freeman, JC Furic, I Gallinaro, M Galyardt, J Garberson, F Garcia, JE Garfinkel, AF Genser, K Gerberich, H Gerdes, D Giagu, S Giakoumopolou, V Giannetti, P Gibson, K Gimmell, JL Ginsburg, CM Giokaris, N Giordani, M Giromini, P Giunta, M Glagolev, V Glenzinski, D Gold, M Goldschmidt, N Golossanov, A Gomez, G Gomez-Ceballos, G Goncharov, M Lez, OG' Gorelov, I Goshaw, AT Goulianos, K Gresele, A Grinstein, S Grosso-Pilcher, C Group, RC Grundler, U da Costa, JG Gunay-Unalan, Z Haber, C Hahn, K Hahn, SR Halkiadakis, E Hamilton, A Han, BY Han, JY Handler, R Happacher, F Hara, K Hare, D Hare, M Harper, S Harr, RF Harris, RM Hartz, M Hatakeyama, K Hauser, J Hays, C Heck, M Heijboer, A Heinemann, B Heinrich, J Henderson, C Herndon, M Heuser, J Hewamanage, S Hidas, D Hill, CS Hirschbuehl, D Hocker, A Hou, S Houlden, M Hsu, SC Huffman, BT Hughes, RE Husemann, U Huston, J Incandela, J Introzzi, G Iori, M Ivanov, A Iyutin, B James, E Jayatilaka, B Jeans, D Jeon, EJ Jindariani, S Johnson, W Jones, M Joo, KK Jun, SY Jung, JE Junk, TR Kamon, T Kar, D Karchin, PE Kato, Y Kephart, R Kerzel, U Khotilovich, V Kilminster, B Kim, DH Kim, HS Kim, JE Kim, MJ Kim, SB Kim, SH Kim, YK Kimura, N Kirsch, L Klimenko, S Klute, M Knuteson, B Ko, BR Koay, SA Kondo, K Kong, DJ Konigsberg, J Korytov, A Kotwal, AV Kraus, J Kreps, M Kroll, J Krumnack, N Kruse, M Krutelyov, V Kubo, T Kuhlmann, SE Kuhr, T Kulkarni, NP Kusakabe, Y Kwang, S Laasanen, AT Lai, S Lami, S Lammel, S Lancaster, M Lander, RL Lannon, K Lath, A Latino, G Lazzizzera, I LeCompte, T Lee, J Lee, J Lee, YJ Lee, SW Lefevre, R Leonardo, N Leone, S Levy, S Lewis, JD Lin, C Lin, CS Linacre, J Lindgren, M Lipeles, E Lister, A Litvintsev, DO Liu, T Lockyer, NS Loginov, A Loreti, M Lovas, L Lu, RS Lucchesi, D Lueck, J Luci, C Lujan, P Lukens, P Lungu, G Lyons, L Lys, J Lysak, R Lytken, E Mack, P MacQueen, D Madrak, R Maeshima, K Makhoul, K Maki, T Maksimovic, P Malde, S Malik, S Manca, G Manousakis, A Margaroli, F Marino, C Marino, CP Martin, A Martin, M Martin, V Martiinez, M Martiinez-Ballariin, R Maruyama, T Mastrandrea, P Masubuchi, T Mattson, ME Mazzanti, P McFarland, KS McIntyre, P McNulty, R Mehta, A Mehtala, P Menzemer, S Menzione, A Merkel, P Mesropian, C Messina, A Miao, T Miladinovic, N Miles, J Miller, R Mills, C Milnik, M Mitra, A Mitselmakher, G Miyake, H Moed, S Moggi, N Moon, CS Moore, R Morello, M Fernandez, PM Muulmenstaadt, J Mukherjee, A Muller, T Mumford, R Murat, P Mussini, M Nachtman, J Nagai, Y Nagano, A Naganoma, J Nakamura, K Nakano, I Napier, A Necula, V Neu, C Neubauer, MS Nielsen, J Nodulman, L Norman, M Norniella, O Nurse, E Oh, SH Oh, YD Oksuzian, I Okusawa, T Oldeman, R Orava, R Osterberg, K Griso, SP Pagliarone, C Palencia, E Papadimitriou, V Papaikonomou, A Paramonov, AA Parks, B Pashapour, S Patrick, J Pauletta, G Paulini, M Paus, C Pellett, DE Penzo, A Phillips, TJ Piacentino, G Piedra, J Pinera, L Pitts, K Plager, C Pondrom, L Portell, X Poukhov, O Pounder, N Prakoshyn, F Pronko, A Proudfoot, J Ptohos, F Punzi, G Pursley, J Rademacker, J Rahaman, A Ramakrishnan, V Ranjan, N Redondo, I Reisert, B Rekovic, V Renton, P Rescigno, M Richter, S Rimondi, F Ristori, L Robson, A Rodrigo, T Rogers, E Rolli, S Roser, R Rossi, M Rossin, R Roy, P Ruiz, A Russ, J Rusu, V Saarikko, H Safonov, A Sakumoto, WK Salamanna, G Salto, O Santi, L Sarkar, S Sartori, L Sato, K Savoy-Navarro, A Scheidle, T Schlabach, P Schmidt, EE Schmidt, MA Schmidt, MP Schmitt, M Schwarz, T Scodellaro, L Scott, AL Scribano, A Scuri, F Sedov, A Seidel, S Seiya, Y Semenov, A Sexton-Kennedy, L Sfyria, A Shalhout, SZ Shapiro, MD Shears, T Shepard, PF Sherman, D Shimojima, M Shochet, M Shon, Y Shreyber, I Sidoti, A Sinervo, P Sisakyan, A Slaughter, AJ Slaunwhite, J Sliwa, K Smith, JR Snider, FD Snihur, R Soderberg, M Soha, A Somalwar, S Sorin, V Spalding, J Spinella, F Spreitzer, T Squillacioti, P Stanitzki, M Denis, RS Stelzer, B Stelzer-Chilton, O Stentz, D Strologas, J Stuart, D Suh, JS Sukhanov, A Sun, H Suslov, I Suzuki, T Taffard, A Takashima, R Takeuchi, Y Tanaka, R Tecchio, M Teng, PK Terashi, K Thom, J Thompson, AS Thompson, GA Thomson, E Tipton, P Tiwari, V Tkaczyk, S Toback, D Tokar, S Tollefson, K Tomura, T Tonelli, D Torre, S Torretta, D Tourneur, S Trischuk, W Tu, Y Turini, N Ukegawa, F Uozumi, S Vallecorsa, S Van Remortel, N Varganov, A Vataga, E Vazquez, F Velev, G Vellidis, C Veszpremi, V Vidal, M Vidal, R Vila, I Vilar, R Vine, T Vogel, M Volobouev, I Volpi, G Wurthwein, F Wagner, P Wagner, RG Wagner, RL Wagner-Kuhr, J Wagner, W Wakisaka, T Wallny, R Wang, SM Warburton, A Waters, D Weinberger, M Wester, WC Whitehouse, B Whiteson, D Wicklund, AB Wicklund, E Williams, G Williams, HH Wilson, P Winer, BL Wittich, P Wolbers, S Wolfe, C Wright, T Wu, X Wynne, SM Yagil, A Yamamoto, K Yamaoka, J Yamashita, T Yang, C Yang, UK Yang, YC Yao, WM Yeh, GP Yoh, J Yorita, K Yoshida, T Yu, GB Yu, I Yu, SS Yun, JC Zanello, L Zanetti, A Zaw, I Zhang, X Zheng, Y Zucchelli, S AF Aaltonen, T. Adelman, J. Akimoto, T. Albrow, M. G. Gonzalez, B. Alvarez Amerio, S. Amidei, D. Anastassov, A. Annovi, A. Antos, J. Aoki, M. Apollinari, G. Apresyan, A. Arisawa, T. Artikov, A. Ashmanskas, W. Attal, A. Aurisano, A. Azfar, F. Azzi-Bacchetta, P. Azzurri, P. Bacchetta, N. Badgett, W. Barbaro-Galtieri, A. Barnes, V. E. Barnett, B. A. Baroiant, S. Bartsch, V. Bauer, G. Beauchemin, P. -H. Bedeschi, F. Bednar, P. Behari, S. Bellettini, G. Bellinger, J. Belloni, A. Benjamin, D. Beretvas, A. Beringer, J. Berry, T. Bhatti, A. Binkley, M. Bisello, D. Bizjak, I. Blair, R. E. Blocker, C. Blumenfeld, B. Bocci, A. Bodek, A. Boisvert, V. Bolla, G. Bolshov, A. Bortoletto, D. Boudreau, J. Boveia, A. Brau, B. Bridgeman, A. Brigliadori, L. Bromberg, C. Brubaker, E. Budagov, J. Budd, H. S. Budd, S. Burkett, K. Busetto, G. Bussey, P. Buzatu, A. Byrum, K. L. Cabrera, S. Campanelli, M. Campbell, M. Canelli, F. Canepa, A. Carlsmith, D. Carosi, R. Carrillo, S. Carron, S. Casal, B. Casarsa, M. Castro, A. Catastini, P. Cauz, D. Cavalli-Sforza, M. Cerri, A. Cerrito, L. Chang, S. H. Chen, Y. C. Chertok, M. Chiarelli, G. Chlachidze, G. Chlebana, F. Cho, K. Chokheli, D. Chou, J. P. Choudalakis, G. Chuang, S. H. Chung, K. Chung, W. H. Chung, Y. S. Ciobanu, C. I. Ciocci, M. A. Clark, A. Clark, D. Compostella, G. Convery, M. E. Conway, J. Cooper, B. Copic, K. Cordelli, M. Cortiana, G. Crescioli, F. Almenar, C. Cuenca Cuevas, J. Culbertson, R. Cully, J. C. Dagenhart, D. Datta, M. Davies, T. de Barbaro, P. De Cecco, S. Deisher, A. De Lentdecker, G. De Lorenzo, G. Dell'Orso, M. Demortier, L. Deng, J. Deninno, M. De Pedis, D. Derwent, P. F. Di Giovanni, G. P. Dionisi, C. Di Ruzza, B. Dittmann, J. R. D'Onofrio, M. Donati, S. Dong, P. Donini, J. Dorigo, T. Dube, S. Efron, J. Erbacher, R. Errede, D. Errede, S. Eusebi, R. Fang, H. C. Farrington, S. Fedorko, W. T. Feild, R. G. Feindt, M. Fernandez, J. P. Ferrazza, C. Field, R. Flanagan, G. Forrest, R. Forrester, S. Franklin, M. Freeman, J. C. Furic, I. Gallinaro, M. Galyardt, J. Garberson, F. Garcia, J. E. Garfinkel, A. F. Genser, K. Gerberich, H. Gerdes, D. Giagu, S. Giakoumopolou, V. Giannetti, P. Gibson, K. Gimmell, J. L. Ginsburg, C. M. Giokaris, N. Giordani, M. Giromini, P. Giunta, M. Glagolev, V. Glenzinski, D. Gold, M. Goldschmidt, N. Golossanov, A. Gomez, G. Gomez-Ceballos, G. Goncharov, M. Lez, O. Gonza ' Gorelov, I. Goshaw, A. T. Goulianos, K. Gresele, A. Grinstein, S. Grosso-Pilcher, C. Group, R. C. Grundler, U. da Costa, J. Guimaraes Gunay-Unalan, Z. Haber, C. Hahn, K. Hahn, S. R. Halkiadakis, E. Hamilton, A. Han, B. -Y. Han, J. Y. Handler, R. Happacher, F. Hara, K. Hare, D. Hare, M. Harper, S. Harr, R. F. Harris, R. M. Hartz, M. Hatakeyama, K. Hauser, J. Hays, C. Heck, M. Heijboer, A. Heinemann, B. Heinrich, J. Henderson, C. Herndon, M. Heuser, J. Hewamanage, S. Hidas, D. Hill, C. S. Hirschbuehl, D. Hocker, A. Hou, S. Houlden, M. Hsu, S. -C. Huffman, B. T. Hughes, R. E. Husemann, U. Huston, J. Incandela, J. Introzzi, G. Iori, M. Ivanov, A. Iyutin, B. James, E. Jayatilaka, B. Jeans, D. Jeon, E. J. Jindariani, S. Johnson, W. Jones, M. Joo, K. K. Jun, S. Y. Jung, J. E. Junk, T. R. Kamon, T. Kar, D. Karchin, P. E. Kato, Y. Kephart, R. Kerzel, U. Khotilovich, V. Kilminster, B. Kim, D. H. Kim, H. S. Kim, J. E. Kim, M. J. Kim, S. B. Kim, S. H. Kim, Y. K. Kimura, N. Kirsch, L. Klimenko, S. Klute, M. Knuteson, B. Ko, B. R. Koay, S. A. Kondo, K. Kong, D. J. Konigsberg, J. Korytov, A. Kotwal, A. V. Kraus, J. Kreps, M. Kroll, J. Krumnack, N. Kruse, M. Krutelyov, V. Kubo, T. Kuhlmann, S. E. Kuhr, T. Kulkarni, N. P. Kusakabe, Y. Kwang, S. Laasanen, A. T. Lai, S. Lami, S. Lammel, S. Lancaster, M. Lander, R. L. Lannon, K. Lath, A. Latino, G. Lazzizzera, I. LeCompte, T. Lee, J. Lee, J. Lee, Y. J. Lee, S. W. Lefevre, R. Leonardo, N. Leone, S. Levy, S. Lewis, J. D. Lin, C. Lin, C. S. Linacre, J. Lindgren, M. Lipeles, E. Lister, A. Litvintsev, D. O. Liu, T. Lockyer, N. S. Loginov, A. Loreti, M. Lovas, L. Lu, R. -S. Lucchesi, D. Lueck, J. Luci, C. Lujan, P. Lukens, P. Lungu, G. Lyons, L. Lys, J. Lysak, R. Lytken, E. Mack, P. MacQueen, D. Madrak, R. Maeshima, K. Makhoul, K. Maki, T. Maksimovic, P. Malde, S. Malik, S. Manca, G. Manousakis, A. Margaroli, F. Marino, C. Marino, C. P. Martin, A. Martin, M. Martin, V. Martinez, M. Martinez-Ballarin, R. Maruyama, T. Mastrandrea, P. Masubuchi, T. Mattson, M. E. Mazzanti, P. McFarland, K. S. McIntyre, P. McNulty, R. Mehta, A. Mehtala, P. Menzemer, S. Menzione, A. Merkel, P. Mesropian, C. Messina, A. Miao, T. Miladinovic, N. Miles, J. Miller, R. Mills, C. Milnik, M. Mitra, A. Mitselmakher, G. Miyake, H. Moed, S. Moggi, N. Moon, C. S. Moore, R. Morello, M. Fernandez, P. Movilla Muelmenstaedt, J. Mukherjee, A. Muller, Th. Mumford, R. Murat, P. Mussini, M. Nachtman, J. Nagai, Y. Nagano, A. Naganoma, J. Nakamura, K. Nakano, I. Napier, A. Necula, V. Neu, C. Neubauer, M. S. Nielsen, J. Nodulman, L. Norman, M. Norniella, O. Nurse, E. Oh, S. H. Oh, Y. D. Oksuzian, I. Okusawa, T. Oldeman, R. Orava, R. Osterberg, K. Griso, S. Pagan Pagliarone, C. Palencia, E. Papadimitriou, V. Papaikonomou, A. Paramonov, A. A. Parks, B. Pashapour, S. Patrick, J. Pauletta, G. Paulini, M. Paus, C. Pellett, D. E. Penzo, A. Phillips, T. J. Piacentino, G. Piedra, J. Pinera, L. Pitts, K. Plager, C. Pondrom, L. Portell, X. Poukhov, O. Pounder, N. Prakoshyn, F. Pronko, A. Proudfoot, J. Ptohos, F. Punzi, G. Pursley, J. Rademacker, J. Rahaman, A. Ramakrishnan, V. Ranjan, N. Redondo, I. Reisert, B. Rekovic, V. Renton, P. Rescigno, M. Richter, S. Rimondi, F. Ristori, L. Robson, A. Rodrigo, T. Rogers, E. Rolli, S. Roser, R. Rossi, M. Rossin, R. Roy, P. Ruiz, A. Russ, J. Rusu, V. Saarikko, H. Safonov, A. Sakumoto, W. K. Salamanna, G. Salto, O. Santi, L. Sarkar, S. Sartori, L. Sato, K. Savoy-Navarro, A. Scheidle, T. Schlabach, P. Schmidt, E. E. Schmidt, M. A. Schmidt, M. P. Schmitt, M. Schwarz, T. Scodellaro, L. Scott, A. L. Scribano, A. Scuri, F. Sedov, A. Seidel, S. Seiya, Y. Semenov, A. Sexton-Kennedy, L. Sfyria, A. Shalhout, S. Z. Shapiro, M. D. Shears, T. Shepard, P. F. Sherman, D. Shimojima, M. Shochet, M. Shon, Y. Shreyber, I. Sidoti, A. Sinervo, P. Sisakyan, A. Slaughter, A. J. Slaunwhite, J. Sliwa, K. Smith, J. R. Snider, F. D. Snihur, R. Soderberg, M. Soha, A. Somalwar, S. Sorin, V. Spalding, J. Spinella, F. Spreitzer, T. Squillacioti, P. Stanitzki, M. Denis, R. St. Stelzer, B. Stelzer-Chilton, O. Stentz, D. Strologas, J. Stuart, D. Suh, J. S. Sukhanov, A. Sun, H. Suslov, I. Suzuki, T. Taffard, A. Takashima, R. Takeuchi, Y. Tanaka, R. Tecchio, M. Teng, P. K. Terashi, K. Thom, J. Thompson, A. S. Thompson, G. A. Thomson, E. Tipton, P. Tiwari, V. Tkaczyk, S. Toback, D. Tokar, S. Tollefson, K. Tomura, T. Tonelli, D. Torre, S. Torretta, D. Tourneur, S. Trischuk, W. Tu, Y. Turini, N. Ukegawa, F. Uozumi, S. Vallecorsa, S. Van Remortel, N. Varganov, A. Vataga, E. Vazquez, F. Velev, G. Vellidis, C. Veszpremi, V. Vidal, M. Vidal, R. Vila, I. Vilar, R. Vine, T. Vogel, M. Volobouev, I. Volpi, G. Wuerthwein, F. Wagner, P. Wagner, R. G. Wagner, R. L. Wagner-Kuhr, J. Wagner, W. Wakisaka, T. Wallny, R. Wang, S. M. Warburton, A. Waters, D. Weinberger, M. Wester, W. C., III Whitehouse, B. Whiteson, D. Wicklund, A. B. Wicklund, E. Williams, G. Williams, H. H. Wilson, P. Winer, B. L. Wittich, P. Wolbers, S. Wolfe, C. Wright, T. Wu, X. Wynne, S. M. Yagil, A. Yamamoto, K. Yamaoka, J. Yamashita, T. Yang, C. Yang, U. K. Yang, Y. C. Yao, W. M. Yeh, G. P. Yoh, J. Yorita, K. Yoshida, T. Yu, G. B. Yu, I. Yu, S. S. Yun, J. C. Zanello, L. Zanetti, A. Zaw, I. Zhang, X. Zheng, Y. Zucchelli, S. TI Observation of exclusive dijet production at the Fermilab Tevatron (p)over-bar-p collider SO PHYSICAL REVIEW D LA English DT Article ID DOUBLE-POMERON EXCHANGE; ELECTROMAGNETIC CALORIMETER; DIFFRACTIVE SCATTERING; MONTE-CARLO; HIGGS; COLLISIONS; EVENTS; LHC; PROTON; BOSON AB We present the first observation and cross section measurement of exclusive dijet production in (p) over barp interactions, (p) over barp -> (p) over bar + dijet + p. Using a data sample of 310 pb(-1) collected by the Run II Collider Detector at Fermilab at root s = 1.96 TeV, exclusive cross sections for events with two jets of transverse energy E-T(jet) >= 10 GeV have been measured as a function of minimum E-T(jet). The exclusive signal is extracted from fits to data distributions based on Monte Carlo simulations of expected dijet signal and background shapes. The simulated background distribution shapes are checked in a study of a largely independent data sample of 200 pb(-1) of b-tagged jet events, where exclusive dijet production is expected to be suppressed by the J(z) = 0 total angular momentum selection rule. Results obtained are compared with theoretical expectations, and implications for exclusive Higgs boson production at the pp Large Hadron Collider at root s = 14 TeV are discussed. C1 [Blair, R. E.; Blumenfeld, B.; Byrum, K. L.; Kuhlmann, S. E.; LeCompte, T.; Nodulman, L.; Proudfoot, J.; Wagner, R. G.; Wicklund, A. B.] Argonne Natl Lab, Argonne, IL 60439 USA. [Attal, A.; Cavalli-Sforza, M.; De Lorenzo, G.; Martinez, M.; Portell, X.; Salto, O.] Univ Autonoma Barcelona, Inst Fis DAltes Energies, E-08193 Barcelona, Spain. [Catastini, P.; Dittmann, J. R.; Hewamanage, S.; Krumnack, N.] Baylor Univ, Waco, TX 76798 USA. [Castro, A.; D'Onofrio, M.; Mazzanti, P.; Moggi, N.; Rimondi, F.; Zucchelli, S.] Univ Bologna, Ist Nazl Fis Nucl, I-40127 Bologna, Italy. [Blocker, C.; Clark, D.; Kirsch, L.] Brandeis Univ, Waltham, MA 02254 USA. [Baroiant, S.; Chertok, M.; Conway, J.; Almenar, C. Cuenca; Erbacher, R.; Forrest, R.; Forrester, S.; Ivanov, A.; Johnson, W.; Lander, R. L.; Lister, A.; Pellett, D. E.; Schwarz, T.; Smith, J. R.; Soha, A.] Univ Calif Davis, Davis, CA 95616 USA. [Dong, P.; Hauser, J.; Lee, J.; Plager, C.; Stelzer, B.; Wallny, R.; Zheng, Y.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Hsu, S. -C.; Lipeles, E.; Norman, M.; Wuerthwein, F.; Yagil, A.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Boveia, A.; Garberson, F.; Hill, C. S.; Incandela, J.; Koay, S. A.; Krutelyov, V.; Rossin, R.; Scott, A. L.; Stuart, D.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Gonzalez, B. Alvarez; Casal, B.; Cuevas, J.; Gomez, G.; Menzemer, S.; Rodrigo, T.; Ruiz, A.; Scodellaro, L.; Vila, I.; Vilar, R.] Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain. [Chung, K.; Galyardt, J.; Jun, S. Y.; Paulini, M.; Russ, J.; Tiwari, V.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Adelman, J.; Brubaker, E.; Fedorko, W. T.; Grosso-Pilcher, C.; Kim, Y. K.; Kwang, S.; Levy, S.; Paramonov, A. A.; Schmidt, M. A.; Shochet, M.; Wolfe, C.; Yang, U. K.; Yorita, K.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Antos, J.; Bednar, P.; Lovas, L.; Lysak, R.; Tokar, S.] Comenius Univ, Bratislava 84248, Slovakia. [Antos, J.; Bednar, P.; Lovas, L.; Lysak, R.; Tokar, S.] Slovak Acad Sci, Inst Expt Phys, Kosice 04001, Slovakia. [Artikov, A.; Budagov, J.; Chokheli, D.; Giokaris, N.; Glagolev, V.; Manousakis, A.; Poukhov, O.; Prakoshyn, F.; Semenov, A.; Sisakyan, A.; Suslov, I.] Joint Inst Nucl Res, RU-141980 Dubna, Russia. [Benjamin, D.; Bocci, A.; Cabrera, S.; Deng, J.; Goshaw, A. T.; Hidas, D.; Jayatilaka, B.; Ko, B. R.; Kotwal, A. V.; Kruse, M.; Necula, V.; Oh, S. H.; Phillips, T. J.] Duke Univ, Durham, NC 27708 USA. [Albrow, M. G.; Apollinari, G.; Ashmanskas, W.; Beretvas, A.; Binkley, M.; Burkett, K.; Canelli, F.; Casarsa, M.; Chlachidze, G.; Chlebana, F.; Convery, M. E.; Culbertson, R.; Dagenhart, D.; Datta, M.; Derwent, P. F.; Eusebi, R.; Genser, K.; Ginsburg, C. M.; Glenzinski, D.; Golossanov, A.; Group, R. C.; Hahn, S. R.; Harris, R. M.; Hocker, A.; James, E.; Kephart, R.; Kim, M. J.; Lammel, S.; Lewis, J. D.; Lindgren, M.; Litvintsev, D. O.; Liu, T.; Lukens, P.; Madrak, R.; Maeshima, K.; Miao, T.; Moore, R.; Mukherjee, A.; Nakano, I.; Palencia, E.; Papadimitriou, V.; Patrick, J.; Pronko, A.; Ptohos, F.; Reisert, B.; Roser, R.; Rusu, V.; Sato, K.; Schlabach, P.; Sexton-Kennedy, L.; Slaughter, A. J.; Snider, F. D.; Spalding, J.; Thom, J.; Tkaczyk, S.; Tonelli, D.; Torretta, D.; Velev, G.; Wagner, R. L.; Wester, W. C., III; Wicklund, E.; Wilson, P.; Wittich, P.; Wolbers, S.; Yeh, G. P.; Yoh, J.; Yu, S. S.; Yun, J. C.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Carrillo, S.; Field, R.; Furic, I.; Goldschmidt, N.; Jindariani, S.; Kar, D.; Klimenko, S.; Konigsberg, J.; Korytov, A.; Lungu, G.; Mitselmakher, G.; Oksuzian, I.; Pinera, L.; Sukhanov, A.; Vazquez, F.] Univ Florida, Gainesville, FL 32611 USA. [Annovi, A.; Cordelli, M.; Giromini, P.; Happacher, F.; Torre, S.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Clark, A.; Hamilton, A.; Lefevre, R.; Sfyria, A.; Shreyber, I.; Vallecorsa, S.; Wu, X.] Univ Geneva, CH-1211 Geneva, Switzerland. [Bussey, P.; Davies, T.; Martin, V.; Robson, A.; Denis, R. St.; Thompson, A. S.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. [Belloni, A.; Chou, J. P.; Franklin, M.; Grinstein, S.; da Costa, J. Guimaraes; Mills, C.; Moed, S.; Sherman, D.; Zaw, I.] Harvard Univ, Cambridge, MA 02138 USA. [Aaltonen, T.; Maki, T.; Mehtala, P.; Orava, R.; Osterberg, K.; Saarikko, H.; Van Remortel, N.] Univ Helsinki, Dept High Energy Phys, Dept Phys, FIN-00014 Helsinki, Finland. [Aaltonen, T.; Maki, T.; Mehtala, P.; Orava, R.; Osterberg, K.; Saarikko, H.; Van Remortel, N.] Helsinki Inst Phys, FIN-00014 Helsinki, Finland. [Aoki, M.; Bridgeman, A.; Budd, S.; Ciobanu, C. I.; Errede, D.; Errede, S.; Gerberich, H.; Grundler, U.; Junk, T. R.; Kraus, J.; Marino, C. P.; Neubauer, M. S.; Norniella, O.; Pitts, K.; Rogers, E.; Taffard, A.; Thompson, G. A.; Zhang, X.] Univ Illinois, Urbana, IL 61801 USA. [Barnett, B. A.; Behari, S.; Maksimovic, P.; Martin, M.; Mumford, R.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Feindt, M.; Heck, M.; Heuser, J.; Hirschbuehl, D.; Kerzel, U.; Kreps, M.; Kuhr, T.; Lueck, J.; Mack, P.; Marino, C.; Milnik, M.; Muller, Th.; Papaikonomou, A.; Richter, S.; Scheidle, T.; Wagner-Kuhr, J.; Wagner, W.] Univ Karlsruhe, Inst Expt Kernphys, D-76128 Karlsruhe, Germany. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J.; Lee, Y. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Kyungpook Natl Univ, Ctr High Energy Phys, Taegu 702701, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J.; Lee, Y. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Seoul Natl Univ, Seoul 151742, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J.; Lee, Y. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Sungkyunkwan Univ, Suwon 440746, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J.; Lee, Y. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Korea Inst Sci & Technol Informat, Taejon 305806, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J.; Lee, Y. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Chonnam Natl Univ, Kwangju 500757, South Korea. [Barbaro-Galtieri, A.; Beringer, J.; Cerri, A.; Deisher, A.; Fang, H. C.; Freeman, J. C.; Haber, C.; Heinemann, B.; Lin, C. S.; Lujan, P.; Lys, J.; Fernandez, P. Movilla; Muelmenstaedt, J.; Nielsen, J.; Shapiro, M. D.; Volobouev, I.; Yao, W. M.] Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Berry, T.; Forrester, S.; Houlden, M.; Manca, G.; McNulty, R.; Mehta, A.; Oldeman, R.; Shears, T.; Wynne, S. M.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Bartsch, V.; Bizjak, I.; Cerrito, L.; Cooper, B.; Lancaster, M.; Malik, S.; Nurse, E.; Vine, T.; Waters, D.] UCL, London WC1E 6BT, England. [Fernandez, J. P.; Lez, O. Gonza '; Martinez-Ballarin, R.; Redondo, I.; Vidal, M.] Ctr Invest Energet Medioambientales & Tecnol, E-28040 Madrid, Spain. [Bauer, G.; Bolshov, A.; Choudalakis, G.; Gomez-Ceballos, G.; Hahn, K.; Henderson, C.; Iyutin, B.; Klute, M.; Knuteson, B.; Leonardo, N.; Makhoul, K.; Miles, J.; Paus, C.] MIT, Cambridge, MA 02139 USA. [Beauchemin, P. -H.; Buzatu, A.; Carron, S.; Lai, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Trischuk, W.; Warburton, A.; Williams, G.] McGill Univ, Inst Particle Phys, Montreal, PQ H3A 2T8, Canada. [Beauchemin, P. -H.; Buzatu, A.; Carron, S.; Lai, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Trischuk, W.; Warburton, A.; Williams, G.] Univ Toronto, Toronto, ON M5S 1A7, Canada. [Amidei, D.; Campbell, M.; Copic, K.; Cully, J. C.; Gerdes, D.; Soderberg, M.; Tecchio, M.; Varganov, A.; Wright, T.] Univ Michigan, Ann Arbor, MI 48109 USA. [Bromberg, C.; Campanelli, M.; Gunay-Unalan, Z.; Huston, J.; Messina, A.; Miller, R.; Sorin, V.; Tollefson, K.] Michigan State Univ, E Lansing, MI 48824 USA. [Gold, M.; Gorelov, I.; Rekovic, V.; Seidel, S.; Strologas, J.; Vataga, E.; Vogel, M.] Univ New Mexico, Albuquerque, NM 87131 USA. [Schmitt, M.; Stentz, D.] Northwestern Univ, Evanston, IL 60208 USA. [Efron, J.; Hughes, R. E.; Kilminster, B.; Lannon, K.; Parks, B.; Slaunwhite, J.; Winer, B. L.] Ohio State Univ, Columbus, OH 43210 USA. [Takashima, R.; Tanaka, R.; Yamashita, T.] Okayama Univ, Okayama 7008530, Japan. [Kato, Y.; Okusawa, T.; Seiya, Y.; Wakisaka, T.; Yamamoto, K.; Yoshida, T.] Osaka City Univ, Osaka 588, Japan. [Azfar, F.; Harper, S.; Hays, C.; Huffman, B. T.; Linacre, J.; Malde, S.; Pounder, N.; Rademacker, J.; Renton, P.; Stelzer-Chilton, O.] Univ Oxford, Oxford OX1 3RH, England. [Amerio, S.; Azzi-Bacchetta, P.; Bacchetta, N.; Bisello, D.; Busetto, G.; Compostella, G.; Donini, J.; Dorigo, T.; Gresele, A.; Lazzizzera, I.; Loreti, M.; Lucchesi, D.; Griso, S. Pagan] Univ Padua, Ist Nazl Fis Nucl, Sez Padova Trento, I-35131 Padua, Italy. [Di Giovanni, G. P.; Piedra, J.; Savoy-Navarro, A.; Tourneur, S.] Univ Paris 06, LPNHE, IN2P3 CNRS, UMR 7585, F-75252 Paris, France. [Canepa, A.; Heijboer, A.; Heinrich, J.; Kroll, J.; Lockyer, N. S.; Neu, C.; Thomson, E.; Tu, Y.; Wagner, P.; Whiteson, D.; Williams, H. H.] Univ Penn, Philadelphia, PA 19104 USA. [Azzurri, P.; Bedeschi, F.; Bellettini, G.; Carosi, R.; Chiarelli, G.; Ciocci, M. A.; Crescioli, F.; Dell'Orso, M.; Donati, S.; Ferrazza, C.; Garcia, J. E.; Giakoumopolou, V.; Giannetti, P.; Introzzi, G.; Lami, S.; Latino, G.; Leone, S.; Menzione, A.; Morello, M.; Pagliarone, C.; Piacentino, G.; Punzi, G.; Ristori, L.; Sartori, L.; Scribano, A.; Scuri, F.; Sidoti, A.; Spinella, F.; Squillacioti, P.; Turini, N.; Vellidis, C.; Volpi, G.] Univ Pisa, Ist Nazl Fis Nucl, Siena, Italy. [Azzurri, P.; Bedeschi, F.; Bellettini, G.; Carosi, R.; Chiarelli, G.; Ciocci, M. A.; Crescioli, F.; Dell'Orso, M.; Donati, S.; Ferrazza, C.; Garcia, J. E.; Giakoumopolou, V.; Giannetti, P.; Giunta, M.; Introzzi, G.; Lami, S.; Latino, G.; Leone, S.; Menzione, A.; Morello, M.; Pagliarone, C.; Piacentino, G.; Punzi, G.; Ristori, L.; Sartori, L.; Scribano, A.; Scuri, F.; Sidoti, A.; Spinella, F.; Squillacioti, P.; Turini, N.; Vellidis, C.; Volpi, G.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Boudreau, J.; Gibson, K.; Hartz, M.; Rahaman, A.; Shepard, P. F.] Univ Pittsburgh, Pittsburgh, PA 15260 USA. [Apresyan, A.; Barnes, V. E.; Bolla, G.; Bortoletto, D.; Flanagan, G.; Garfinkel, A. F.; Jones, M.; Laasanen, A. T.; Lytken, E.; Margaroli, F.; Merkel, P.; Ranjan, N.; Sedov, A.; Veszpremi, V.] Purdue Univ, W Lafayette, IN 47907 USA. [Bodek, A.; Boisvert, V.; Budd, H. S.; Chung, Y. S.; de Barbaro, P.; Gimmell, J. L.; Han, B. -Y.; Han, J. Y.; McFarland, K. S.; Sakumoto, W. K.; Yu, G. B.] Univ Rochester, Rochester, NY 14627 USA. [Bhatti, A.; Demortier, L.; Gallinaro, M.; Goulianos, K.; Hatakeyama, K.; Mesropian, C.; Terashi, K.] Rockefeller Univ, New York, NY 10021 USA. [De Cecco, S.; De Pedis, D.; Dionisi, C.; Giagu, S.; Iori, M.; Jeans, D.; Luci, C.; Mastrandrea, P.; Rescigno, M.; Salamanna, G.; Sarkar, S.; Zanello, L.] Univ Roma La Sapienza, Ist Nazl Fis Nucl, Sez Roma 1, I-0018 Rome, Italy. [Anastassov, A.; Chuang, S. H.; Dube, S.; Halkiadakis, E.; Hare, D.; Lath, A.; Somalwar, S.; Yamaoka, J.] Rutgers State Univ, Piscataway, NJ 08855 USA. [Aurisano, A.; Goncharov, M.; Kamon, T.; Khotilovich, V.; Lee, S. W.; McIntyre, P.; Safonov, A.; Toback, D.; Weinberger, M.] Texas A&M Univ, College Stn, TX 77843 USA. [Cauz, D.; Di Ruzza, B.; Giordani, M.; Pauletta, G.; Penzo, A.; Rossi, M.; Santi, L.; Zanetti, A.] Univ Trieste, Ist Nazl Fis Nucl, Udine, Italy. [Akimoto, T.; Hara, K.; Kim, S. H.; Kimura, N.; Kubo, T.; Lin, C.; Maruyama, T.; Masubuchi, T.; Miyake, H.; Shimojima, M.; Suzuki, T.; Takeuchi, Y.; Ukegawa, F.; Uozumi, S.] Univ Tsukuba, Tsukuba 305, Japan. [Hare, M.; Napier, A.; Rolli, S.; Sliwa, K.; Sun, H.; Whitehouse, B.] Tufts Univ, Medford, MA 02155 USA. [Arisawa, T.; Kondo, K.; Kusakabe, Y.] Waseda Univ, Tokyo 169, Japan. [Harr, R. F.; Karchin, P. E.; Kulkarni, N. P.; Mattson, M. E.; Shalhout, S. Z.] Wayne State Univ, Detroit, MI 48201 USA. [Badgett, W.; Brau, B.; Chen, Y. C.; Hou, S.; Lu, R. -S.; Mitra, A.; Teng, P. K.; Wang, S. M.] Acad Sinica, Inst Phys, Taipei 11529, Taiwan. [Bellinger, J.; Carlsmith, D.; Chung, W. H.; Handler, R.; Herndon, M.; Pondrom, L.; Pursley, J.; Ramakrishnan, V.; Shon, Y.] Univ Wisconsin, Madison, WI 53706 USA. [Feild, R. G.; Husemann, U.; Loginov, A.; Martin, A.; Schmidt, E. E.; Stanitzki, M.; Tipton, P.; Yang, C.] Yale Univ, New Haven, CT 06520 USA. RP Aaltonen, T (reprint author), Acad Sinica, Inst Phys, Taipei 11529, Taiwan. RI Prokoshin, Fedor/E-2795-2012; Leonardo, Nuno/M-6940-2016; Canelli, Florencia/O-9693-2016; Scodellaro, Luca/K-9091-2014; Paulini, Manfred/N-7794-2014; Russ, James/P-3092-2014; Lazzizzera, Ignazio/E-9678-2015; Cabrera Urban, Susana/H-1376-2015; Garcia, Jose /H-6339-2015; ciocci, maria agnese /I-2153-2015; Cavalli-Sforza, Matteo/H-7102-2015; Muelmenstaedt, Johannes/K-2432-2015; Introzzi, Gianluca/K-2497-2015; Gorelov, Igor/J-9010-2015; Warburton, Andreas/N-8028-2013; Kim, Soo-Bong/B-7061-2014; Ruiz, Alberto/E-4473-2011; Azzi, Patrizia/H-5404-2012; manca, giulia/I-9264-2012; Amerio, Silvia/J-4605-2012; Lysak, Roman/H-2995-2014; Moon, Chang-Seong/J-3619-2014; Annovi, Alberto/G-6028-2012; messina, andrea/C-2753-2013; Ivanov, Andrew/A-7982-2013; Robson, Aidan/G-1087-2011; De Cecco, Sandro/B-1016-2012 OI Prokoshin, Fedor/0000-0001-6389-5399; Leonardo, Nuno/0000-0002-9746-4594; Canelli, Florencia/0000-0001-6361-2117; Gallinaro, Michele/0000-0003-1261-2277; Salamanna, Giuseppe/0000-0002-0861-0052; Turini, Nicola/0000-0002-9395-5230; Scodellaro, Luca/0000-0002-4974-8330; Paulini, Manfred/0000-0002-6714-5787; Russ, James/0000-0001-9856-9155; Lazzizzera, Ignazio/0000-0001-5092-7531; ciocci, maria agnese /0000-0003-0002-5462; Muelmenstaedt, Johannes/0000-0003-1105-6678; Introzzi, Gianluca/0000-0002-1314-2580; Gorelov, Igor/0000-0001-5570-0133; Warburton, Andreas/0000-0002-2298-7315; Ruiz, Alberto/0000-0002-3639-0368; Azzi, Patrizia/0000-0002-3129-828X; Moon, Chang-Seong/0000-0001-8229-7829; Annovi, Alberto/0000-0002-4649-4398; Ivanov, Andrew/0000-0002-9270-5643; NR 55 TC 78 Z9 78 U1 1 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD MAR PY 2008 VL 77 IS 5 AR 052004 DI 10.1103/PhysRevD.77.052004 PG 28 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 282CC UT WOS:000254544200011 ER PT J AU Aaltonen, T Adelman, J Akimoto, T Albrow, MG Gonzalez, BA Amerio, S Amidei, D Anastassov, A Annovi, A Antos, J Aoki, M Apollinari, G Apresyan, A Arisawa, T Artikov, A Ashmanskas, W Attal, A Aurisano, A Azfar, F Azzi-Bacchetta, P Azzurri, P Bacchetta, N Badgett, W Barbaro-Galtieri, A Barnes, VE Barnett, BA Baroiant, S Bartsch, V Bauer, G Beauchemin, PH Bedeschi, F Bednar, P Behari, S Bellettini, G Bellinger, J Belloni, A Benjamin, D Beretvas, A Beringer, J Berry, T Bhatti, A Binkley, M Bisello, D Bizjak, I Blair, RE Blocker, C Blumenfeld, B Bocci, A Bodek, A Boisvert, V Bolla, G Bolshov, A Bortoletto, D Boudreau, J Boveia, A Brau, B Bridgeman, A Brigliadori, L Bromberg, C Brubaker, E Budagov, J Budd, HS Budd, S Burkett, K Busetto, G Bussey, P Buzatu, A Byrum, KL Cabrera, S Campanelli, M Campbell, M Canelli, F Canepa, A Carlsmith, D Carosi, R Carrillo, S Carron, S Casal, B Casarsa, M Castro, A Catastini, P Cauz, D Cavalli-Sforza, M Cerri, A Cerrito, L Chang, SH Chen, YC Chertok, M Chiarelli, G Chlachidze, G Chlebana, F Cho, K Chokheli, D Chou, JP Choudalakis, G Chuang, SH Chung, K Chung, WH Chung, YS Ciobanu, CI Ciocci, MA Clark, A Clark, D Compostella, G Convery, ME Conway, J Cooper, B Copic, K Cordelli, M Cortiana, G Crescioli, F Almenar, CC Cuevas, J Culbertson, R Cully, JC Dagenhart, D Datta, M Davies, T de Barbaro, P De Cecco, S Deisher, A De Lentdecker, G De Lorenzo, G Dell'Orso, M Demortier, L Deng, J Deninno, M De Pedis, D Derwent, PF Di Giovanni, GP Dionisi, C Di Ruzza, B Dittmann, JR D'Onofrio, M Donati, S Dong, P Donini, J Dorigo, T Dube, S Efron, J Erbacher, R Errede, D Errede, S Eusebi, R Fang, HC Farrington, S Fedorko, WT Feild, RG Feindt, M Fernandez, JP Ferrazza, C Field, R Flanagan, G Forrest, R Forrester, S Franklin, M Freeman, JC Furic, I Gallinaro, M Galyardt, J Garberson, F Garcia, JE Garfinkel, AF Genser, K Gerberich, H Gerdes, D Giagu, S Giakoumopolou, V Giannetti, P Gibson, K Gimmell, JL Ginsburg, CM Giokaris, N Giordani, M Giromini, P Giunta, M Glagolev, V Glenzinski, D Gold, M Goldschmidt, N Golossanov, A Gomez, G Gomez-Ceballos, G Goncharov, M Gonzalez, O Gorelov, I Goshaw, AT Goulianos, K Gresele, A Grinstein, S Grosso-Pilcher, C Group, RC Grundler, U da Costa, JG Gunay-Unalan, Z Haber, C Hahn, K Hahn, SR Halkiadakis, E Hamilton, A Han, BY Han, JY Handler, R Happacher, F Hara, K Hare, D Hare, M Harper, S Harr, RF Harris, RM Hartz, M Hatakeyama, K Hauser, J Hays, C Heck, M Heijboer, A Heinemann, B Heinrich, J Henderson, C Herndon, M Heuser, J Hewamanage, S Hidas, D Hill, CS Hirschbuehl, D Hocker, A Hou, S Houlden, M Hsu, SC Huffman, BT Hughes, RE Husemann, U Huston, J Incandela, J Introzzi, G Iori, M Ivanov, A Iyutin, B James, E Jayatilaka, B Jeans, D Jeon, EJ Jindariani, S Johnson, W Jones, M Joo, KK Jun, SY Jung, JE Junk, TR Kamon, T Kar, D Karchin, PE Kato, Y Kephart, R Kerzel, U Khotilovich, V Kilminster, B Kim, DH Kim, HS Kim, JE Kim, MJ Kim, SB Kim, SH Kim, YK Kimura, N Kirsch, L Klimenko, S Klute, M Knuteson, B Ko, BR Koay, SA Kondo, K Kong, DJ Konigsberg, J Korytov, A Kotwal, AV Kraus, J Kreps, M Kroll, J Krumnack, N Kruse, M Krutelyov, V Kubo, T Kuhlmann, SE Kuhr, T Kulkarni, NP Kusakabe, Y Kwang, S Laasanen, AT Lai, S Lami, S Lammel, S Lancaster, M Lander, RL Lannon, K Lath, A Latino, G Lazzizzera, I LeCompte, T Lee, J Lee, J Lee, YJ Lee, SW Lefevre, R Leonardo, N Leone, S Levy, S Lewis, JD Lin, C Lin, CS Linacre, J Lindgren, M Lipeles, E Lister, A Litvintsev, DO Liu, T Lockyer, NS Loginov, A Loreti, M Lovas, L Lu, RS Lucchesi, D Lueck, J Luci, C Lujan, P Lukens, P Lungu, G Lyons, L Lys, J Lysak, R Lytken, E Mack, P MacQueen, D Madrak, R Maeshima, K Makhoul, K Maki, T Maksimovic, P Malde, S Malik, S Manca, G Manousakis, A Margaroli, F Marino, C Marino, CP Martin, A Martin, M Martin, V Martinez, M Martinez-Ballarin, R Maruyama, T Mastrandrea, P Masubuchi, T Mattson, ME Mazzanti, P McFarland, KS McIntyre, P McNulty, R Mehta, A Mehtala, P Menzemer, S Menzione, A Merkel, P Mesropian, C Messina, A Miao, T Miladinovic, N Miles, J Miller, R Mills, C Milnik, M Mitra, A Mitselmakher, G Miyake, H Moed, S Moggi, N Moon, CS Moore, R Morello, M Fernandez, PM Mulmnstadt, J Mukherjee, A Muller, T Mumford, R Murat, P Mussini, M Nachtman, J Nagai, Y Nagano, A Naganoma, J Nakamura, K Nakano, I Napier, A Necula, V Neu, C Neubauer, MS Nielsen, J Nodulman, L Norman, M Norniella, O Nurse, E Oh, SH Oh, YD Oksuzian, I Okusawa, T Oldeman, R Orava, R Osterberg, K Griso, SP Pagliarone, C Palencia, E Papadimitriou, V Papaikonomou, A Paramonov, AA Parks, B Pashapour, S Patrick, J Pauletta, G Paulini, M Paus, C Pellett, DE Penzo, A Phillips, TJ Piacentino, G Piedra, J Pinera, L Pitts, K Plager, C Pondrom, L Portell, X Poukhov, O Pounder, N Prakoshyn, F Pronko, A Proudfoot, J Ptohos, F Punzi, G Pursley, J Rademacker, J Rahaman, A Ramakrishnan, V Ranjan, N Redondo, I Reisert, B Rekovic, V Renton, P Rescigno, M Richter, S Rimondi, F Ristori, L Robson, A Rodrigo, T Rogers, E Rolli, S Roser, R Rossi, M Rossin, R Roy, P Ruiz, A Russ, J Rusu, V Saarikko, H Safonov, A Sakumoto, WK Salamanna, G Salto, O Santi, L Sarkar, S Sartori, L Sato, K Savoy-Navarro, A Scheidle, T Schlabach, P Schmidt, EE Schmidt, MA Schmidt, MP Schmitt, M Schwarz, T Scodellaro, L Scott, AL Scribano, A Scuri, F Sedov, A Seidel, S Seiya, Y Semenov, A Sexton-Kennedy, L Sfyria, A Shalhout, SZ Shapiro, MD Shears, T Shepard, PF Sherman, D Shimojima, M Shochet, M Shon, Y Shreyber, I Sidoti, A Sinervo, P Sisakyan, A Slaughter, AJ Slaunwhite, J Sliwa, K Smith, JR Snider, FD Snihur, R Soderberg, M Soha, A Somalwar, S Sorin, V Spalding, J Spinella, F Spreitzer, T Squillacioti, P Stanitzki, M Denis, RS Stelzer, B Stelzer-Chilton, O Stentz, D Strologas, J Stuart, D Suh, JS Sukhanov, A Sun, H Suslov, I Suzuki, T Taffard, A Takashima, R Takeuchi, Y Tanaka, R Tecchio, M Teng, PK Terashi, K Thom, J Thompson, AS Thompson, GA Thomson, E Tipton, P Tiwari, V Tkaczyk, S Toback, D Tokar, S Tollefson, K Tomura, T Tonelli, D Torre, S Torretta, D Tourneur, S Trischuk, W Tu, Y Turini, N Ukegawa, F Uozumi, S Vallecorsa, S van Remortel, N Varganov, A Vataga, E Vazquez, F Velev, G Vellidis, C Veszpremi, V Vidal, M Vidal, R Vila, I Vilar, R Vine, T Vogel, M Volobouev, I Volpi, G Wurthwein, F Wagner, P Wagner, RG Wagner, RL Wagner-Kuhr, J Wagner, W Wakisaka, T Wallny, R Wang, SM Warburton, A Waters, D Weinberger, M Wester, WC Whitehouse, B Whiteson, D Wicklund, AB Wicklund, E Williams, G Williams, HH Wilson, P Winer, BL Wittich, P Wolbers, S Wolfe, C Wright, T Wu, X Wynne, SM Yagil, A Yamamoto, K Yamaoka, J Yamashita, T Yang, C Yang, UK Yang, YC Yao, WM Yeh, GP Yoh, J Yorita, K Yoshida, T Yu, GB Yu, I Yu, SS Yun, JC Zanello, L Zanetti, A Zaw, I Zhang, X Zheng, Y Zucchelli, S AF Aaltonen, T. Adelman, J. Akimoto, T. Albrow, M. G. Gonzalez, B. Alvarez Amerio, S. Amidei, D. Anastassov, A. Annovi, A. Antos, J. Aoki, M. Apollinari, G. Apresyan, A. Arisawa, T. Artikov, A. Ashmanskas, W. Attal, A. Aurisano, A. Azfar, F. Azzi-Bacchetta, P. Azzurri, P. Bacchetta, N. Badgett, W. Barbaro-Galtieri, A. Barnes, V. E. Barnett, B. A. Baroiant, S. Bartsch, V. Bauer, G. Beauchemin, P. -H. Bedeschi, F. Bednar, P. Behari, S. Bellettini, G. Bellinger, J. Belloni, A. Benjamin, D. Beretvas, A. Beringer, J. Berry, T. Bhatti, A. Binkley, M. Bisello, D. Bizjak, I. Blair, R. E. Blocker, C. Blumenfeld, B. Bocci, A. Bodek, A. Boisvert, V. Bolla, G. Bolshov, A. Bortoletto, D. Boudreau, J. Boveia, A. Brau, B. Bridgeman, A. Brigliadori, L. Bromberg, C. Brubaker, E. Budagov, J. Budd, H. S. Budd, S. Burkett, K. Busetto, G. Bussey, P. Buzatu, A. Byrum, K. L. Cabrera, S. Campanelli, M. Campbell, M. Canelli, F. Canepa, A. Carlsmith, D. Carosi, R. Carrillo, S. Carron, S. Casal, B. Casarsa, M. Castro, A. Catastini, P. Cauz, D. Cavalli-Sforza, M. Cerri, A. Cerrito, L. Chang, S. H. Chen, Y. C. Chertok, M. Chiarelli, G. Chlachidze, G. Chlebana, F. Cho, K. Chokheli, D. Chou, J. P. Choudalakis, G. Chuang, S. H. Chung, K. Chung, W. H. Chung, Y. S. Ciobanu, C. I. Ciocci, M. A. Clark, A. Clark, D. Compostella, G. Convery, M. E. Conway, J. Cooper, B. Copic, K. Cordelli, M. Cortiana, G. Crescioli, F. Almenar, C. Cuenca Cuevas, J. Culbertson, R. Cully, J. C. Dagenhart, D. Datta, M. Davies, T. de Barbaro, P. De Cecco, S. Deisher, A. De Lentdecker, G. De Lorenzo, G. Dell'Orso, M. Demortier, L. Deng, J. Deninno, M. De Pedis, D. Derwent, P. F. Di Giovanni, G. P. Dionisi, C. Di Ruzza, B. Dittmann, J. R. D'Onofrio, M. Donati, S. Dong, P. Donini, J. Dorigo, T. Dube, S. Efron, J. Erbacher, R. Errede, D. Errede, S. Eusebi, R. Fang, H. C. Farrington, S. Fedorko, W. T. Feild, R. G. Feindt, M. Fernandez, J. P. Ferrazza, C. Field, R. Flanagan, G. Forrest, R. Forrester, S. Franklin, M. Freeman, J. C. Furic, I. Gallinaro, M. Galyardt, J. Garberson, F. Garcia, J. E. Garfinkel, A. F. Genser, K. Gerberich, H. Gerdes, D. Giagu, S. Giakoumopolou, V. Giannetti, P. Gibson, K. Gimmell, J. L. Ginsburg, C. M. Giokaris, N. Giordani, M. Giromini, P. Giunta, M. Glagolev, V. Glenzinski, D. Gold, M. Goldschmidt, N. Golossanov, A. Gomez, G. Gomez-Ceballos, G. Goncharov, M. Gonzalez, O. Gorelov, I. Goshaw, A. T. Goulianos, K. Gresele, A. Grinstein, S. Grosso-Pilcher, C. Group, R. C. Grundler, U. da Costa, J. Guimaraes Gunay-Unalan, Z. Haber, C. Hahn, K. Hahn, S. R. Halkiadakis, E. Hamilton, A. Han, B. -Y. Han, J. Y. Handler, R. Happacher, F. Hara, K. Hare, D. Hare, M. Harper, S. Harr, R. F. Harris, R. M. Hartz, M. Hatakeyama, K. Hauser, J. Hays, C. Heck, M. Heijboer, A. Heinemann, B. Heinrich, J. Henderson, C. Herndon, M. Heuser, J. Hewamanage, S. Hidas, D. Hill, C. S. Hirschbuehl, D. Hocker, A. Hou, S. Houlden, M. Hsu, S. -C. Huffman, B. T. Hughes, R. E. Husemann, U. Huston, J. Incandela, J. Introzzi, G. Iori, M. Ivanov, A. Iyutin, B. James, E. Jayatilaka, B. Jeans, D. Jeon, E. J. Jindariani, S. Johnson, W. Jones, M. Joo, K. K. Jun, S. Y. Jung, J. E. Junk, T. R. Kamon, T. Kar, D. Karchin, P. E. Kato, Y. Kephart, R. Kerzel, U. Khotilovich, V. Kilminster, B. Kim, D. H. Kim, H. S. Kim, J. E. Kim, M. J. Kim, S. B. Kim, S. H. Kim, Y. K. Kimura, N. Kirsch, L. Klimenko, S. Klute, M. Knuteson, B. Ko, B. R. Koay, S. A. Kondo, K. Kong, D. J. Konigsberg, J. Korytov, A. Kotwal, A. V. Kraus, J. Kreps, M. Kroll, J. Krumnack, N. Kruse, M. Krutelyov, V. Kubo, T. Kuhlmann, S. E. Kuhr, T. Kulkarni, N. P. Kusakabe, Y. Kwang, S. Laasanen, A. T. Lai, S. Lami, S. Lammel, S. Lancaster, M. Lander, R. L. Lannon, K. Lath, A. Latino, G. Lazzizzera, I. LeCompte, T. Lee, J. Lee, J. Lee, Y. J. Lee, S. W. Lefevre, R. Leonardo, N. Leone, S. Levy, S. Lewis, J. D. Lin, C. Lin, C. S. Linacre, J. Lindgren, M. Lipeles, E. Lister, A. Litvintsev, D. O. Liu, T. Lockyer, N. S. Loginov, A. Loreti, M. Lovas, L. Lu, R. -S. Lucchesi, D. Lueck, J. Luci, C. Lujan, P. Lukens, P. Lungu, G. Lyons, L. Lys, J. Lysak, R. Lytken, E. Mack, P. MacQueen, D. Madrak, R. Maeshima, K. Makhoul, K. Maki, T. Maksimovic, P. Malde, S. Malik, S. Manca, G. Manousakis, A. Margaroli, F. Marino, C. Marino, C. P. Martin, A. Martin, M. Martin, V. Martinez, M. Martinez-Ballarin, R. Maruyama, T. Mastrandrea, P. Masubuchi, T. Mattson, M. E. Mazzanti, P. McFarland, K. S. McIntyre, P. McNulty, R. Mehta, A. Mehtala, P. Menzemer, S. Menzione, A. Merkel, P. Mesropian, C. Messina, A. Miao, T. Miladinovic, N. Miles, J. Miller, R. Mills, C. Milnik, M. Mitra, A. Mitselmakher, G. Miyake, H. Moed, S. Moggi, N. Moon, C. S. Moore, R. Morello, M. Fernandez, P. Movilla Muelmnstaedt, J. Mukherjee, A. Muller, Th. Mumford, R. Murat, P. Mussini, M. Nachtman, J. Nagai, Y. Nagano, A. Naganoma, J. Nakamura, K. Nakano, I. Napier, A. Necula, V. Neu, C. Neubauer, M. S. Nielsen, J. Nodulman, L. Norman, M. Norniella, O. Nurse, E. Oh, S. H. Oh, Y. D. Oksuzian, I. Okusawa, T. Oldeman, R. Orava, R. Osterberg, K. Griso, S. Pagan Pagliarone, C. Palencia, E. Papadimitriou, V. Papaikonomou, A. Paramonov, A. A. Parks, B. Pashapour, S. Patrick, J. Pauletta, G. Paulini, M. Paus, C. Pellett, D. E. Penzo, A. Phillips, T. J. Piacentino, G. Piedra, J. Pinera, L. Pitts, K. Plager, C. Pondrom, L. Portell, X. Poukhov, O. Pounder, N. Prakoshyn, F. Pronko, A. Proudfoot, J. Ptohos, F. Punzi, G. Pursley, J. Rademacker, J. Rahaman, A. Ramakrishnan, V. Ranjan, N. Redondo, I. Reisert, B. Rekovic, V. Renton, P. Rescigno, M. Richter, S. Rimondi, F. Ristori, L. Robson, A. Rodrigo, T. Rogers, E. Rolli, S. Roser, R. Rossi, M. Rossin, R. Roy, P. Ruiz, A. Russ, J. Rusu, V. Saarikko, H. Safonov, A. Sakumoto, W. K. Salamanna, G. Salto, O. Santi, L. Sarkar, S. Sartori, L. Sato, K. Savoy-Navarro, A. Scheidle, T. Schlabach, P. Schmidt, E. E. Schmidt, M. A. Schmidt, M. P. Schmitt, M. Schwarz, T. Scodellaro, L. Scott, A. L. Scribano, A. Scuri, F. Sedov, A. Seidel, S. Seiya, Y. Semenov, A. Sexton-Kennedy, L. Sfyria, A. Shalhout, S. Z. Shapiro, M. D. Shears, T. Shepard, P. F. Sherman, D. Shimojima, M. Shochet, M. Shon, Y. Shreyber, I. Sidoti, A. Sinervo, P. Sisakyan, A. Slaughter, A. J. Slaunwhite, J. Sliwa, K. Smith, J. R. Snider, F. D. Snihur, R. Soderberg, M. Soha, A. Somalwar, S. Sorin, V. Spalding, J. Spinella, F. Spreitzer, T. Squillacioti, P. Stanitzki, M. Denis, R. St. Stelzer, B. Stelzer-Chilton, O. Stentz, D. Strologas, J. Stuart, D. Suh, J. S. Sukhanov, A. Sun, H. Suslov, I. Suzuki, T. Taffard, A. Takashima, R. Takeuchi, Y. Tanaka, R. Tecchio, M. Teng, P. K. Terashi, K. Thom, J. Thompson, A. S. Thompson, G. A. Thomson, E. Tipton, P. Tiwari, V. Tkaczyk, S. Toback, D. Tokar, S. Tollefson, K. Tomura, T. Tonelli, D. Torre, S. Torretta, D. Tourneur, S. Trischuk, W. Tu, Y. Turini, N. Ukegawa, F. Uozumi, S. Vallecorsa, S. van Remortel, N. Varganov, A. Vataga, E. Vazquez, F. Velev, G. Vellidis, C. Veszpremi, V. Vidal, M. Vidal, R. Vila, I. Vilar, R. Vine, T. Vogel, M. Volobouev, I. Volpi, G. Wuerthwein, F. Wagner, P. Wagner, R. G. Wagner, R. L. Wagner-Kuhr, J. Wagner, W. Wakisaka, T. Wallny, R. Wang, S. M. Warburton, A. Waters, D. Weinberger, M. Wester, W. C., III Whitehouse, B. Whiteson, D. Wicklund, A. B. Wicklund, E. Williams, G. Williams, H. H. Wilson, P. Winer, B. L. Wittich, P. Wolbers, S. Wolfe, C. Wright, T. Wu, X. Wynne, S. M. Yagil, A. Yamamoto, K. Yamaoka, J. Yamashita, T. Yang, C. Yang, U. K. Yang, Y. C. Yao, W. M. Yeh, G. P. Yoh, J. Yorita, K. Yoshida, T. Yu, G. B. Yu, I. Yu, S. S. Yun, J. C. Zanello, L. Zanetti, A. Zaw, I. Zhang, X. Zheng, Y. Zucchelli, S. CA CDF Collaboration TI Search for chargino-neutralino production in p(p)over-bar collisions at root s=1.96 TeV with high-p(T) leptons SO PHYSICAL REVIEW D LA English DT Article ID COLLIDER AB We present a search for the associated production of charginos and neutralinos in p (p) over bar collisions at root s = 1.96 TeV. The data were collected at the Collider Detector at Fermilab (CDF II) and correspond to integrated luminosities between 0.7 and 1.0 fb(-1). We look for final states with one high-p(T) electron or muon, and two additional leptons. Our results are consistent with the standard model expectations, and we set limits on the cross section as a function of the chargino mass in three different supersymmetric scenarios. For a specific minimal supersymmetric standard model scenario with no slepton mixing, we set a 95% C. L. limit at 151 GeV/c(2). C1 [Aaltonen, T.; Maki, T.; Mehtala, P.; Orava, R.; Osterberg, K.; Saarikko, H.; van Remortel, N.] Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. [Aaltonen, T.; Maki, T.; Mehtala, P.; Orava, R.; Osterberg, K.; Saarikko, H.; van Remortel, N.] Helsinki Inst Phys, FIN-00014 Helsinki, Finland. [Chen, Y. C.; Hou, S.; Lu, R. -S.; Mitra, A.; Teng, P. K.; Wang, S. M.] Acad Sinica, Inst Phys, Taipei 11529, Taiwan. [Blair, R. E.; Byrum, K. L.; Kuhlmann, S. E.; LeCompte, T.; Nodulman, L.; Proudfoot, J.; Wagner, R. G.; Wicklund, A. B.] Argonne Natl Lab, Argonne, IL 60439 USA. [Attal, A.; Cavalli-Sforza, M.; De Lorenzo, G.; D'Onofrio, M.; Martinez, M.; Portell, X.; Salto, O.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. [Dittmann, J. R.; Hewamanage, S.; Krumnack, N.] Baylor Univ, Waco, TX 76798 USA. [Brigliadori, L.; Castro, A.; Deninno, M.; Mazzanti, P.; Moggi, N.; Mussini, M.; Rimondi, F.] Univ Bologna, Ist Nazl Fis Nucl, I-40127 Bologna, Italy. [Blocker, C.; Clark, D.; Kirsch, L.; Miladinovic, N.] Brandeis Univ, Waltham, MA 02254 USA. [Baroiant, S.; Chertok, M.; Conway, J.; Erbacher, R.; Forrest, R.; Forrester, S.; Ivanov, A.; Johnson, W.; Lander, R. L.; Lister, A.; Pellett, D. E.; Schwarz, T.; Smith, J. R.; Soha, A.] Univ Calif Davis, Davis, CA 95616 USA. [Hsu, S. -C.; Lipeles, E.; Norman, M.; Wuerthwein, F.; Yagil, A.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Boveia, A.; Brau, B.; Garberson, F.; Incandela, J.; Koay, S. A.; Krutelyov, V.; Rossin, R.; Scott, A. L.; Stuart, D.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Gonzalez, B. Alvarez; Casal, B.; Gomez, G.; Rodrigo, T.; Ruiz, A.; Scodellaro, L.; Vila, I.; Vilar, R.] Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain. [Chung, K.; Galyardt, J.; Jun, S. Y.; Paulini, M.; Russ, J.; Tiwari, V.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Adelman, J.; Brubaker, E.; Fedorko, W. T.; Grosso-Pilcher, C.; Kim, Y. K.; Kwang, S.; Levy, S.; Paramonov, A. A.; Schmidt, M. A.; Shochet, M.; Wolfe, C.; Yorita, K.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Antos, J.; Bednar, P.; Chertok, M.; Lovas, L.; Tokar, S.] Inst Expt Phys, Kosice 04001, Slovakia. [Antos, J.; Bednar, P.; Lovas, L.; Lysak, R.; Tokar, S.] Comenius Univ, Bratislava 84248, Slovakia. [Artikov, A.; Budagov, J.; Chokheli, D.; Glagolev, V.; Poukhov, O.; Prakoshyn, F.; Semenov, A.; Sisakyan, A.; Suslov, I.] Joint Inst Nucl Res, RU-141980 Dubna, Russia. [Benjamin, D.; Bocci, A.; Deng, J.; Goshaw, A. T.; Hidas, D.; Jayatilaka, B.; Ko, B. R.; Kotwal, A. V.; Kruse, M.; Necula, V.; Oh, S. H.; Phillips, T. J.] Duke Univ, Durham, NC 27708 USA. [Albrow, M. G.; Apollinari, G.; Ashmanskas, W.; Badgett, W.; Beretvas, A.; Binkley, M.; Burkett, K.; Canelli, F.; Casarsa, M.; Chlachidze, G.; Chlebana, F.; Convery, M. E.; Dagenhart, D.; Datta, M.; Derwent, P. F.; Eusebi, R.; Ginsburg, C. M.; Glenzinski, D.; Golossanov, A.; Group, R. C.; Hahn, S. R.; Harris, R. M.; Hocker, A.; James, E.; Kephart, R.; Kim, M. J.; Lammel, S.; Lewis, J. D.; Lindgren, M.; Litvintsev, D. O.; Liu, T.; Lukens, P.; Madrak, R.; Maeshima, K.; Miao, T.; Moore, R.; Mukherjee, A.; Murat, P.; Nachtman, J.; Palencia, E.; Papadimitriou, V.; Patrick, J.; Pronko, A.; Reisert, B.; Roser, R.; Rusu, V.; Sato, K.; Schlabach, P.; Schmidt, E. E.; Sexton-Kennedy, L.; Slaughter, A. J.; Snider, F. D.; Spalding, J.; Tkaczyk, S.; Tonelli, D.; Torretta, D.; Velev, G.; Vidal, R.; Wagner, R. L.; Wester, W. C., III; Wicklund, E.; Wilson, P.; Wolbers, S.; Yeh, G. P.; Yoh, J.; Yu, S. S.; Yun, J. C.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Field, R.; Furic, I.; Goldschmidt, N.; Jindariani, S.; Kar, D.; Klimenko, S.; Konigsberg, J.; Korytov, A.; Lungu, G.; Mitselmakher, G.; Oksuzian, I.; Pinera, L.; Sukhanov, A.] Univ Florida, Gainesville, FL 32611 USA. [Annovi, A.; Cordelli, M.; Giromini, P.; Happacher, F.; Torre, S.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Clark, A.; Hamilton, A.; Lefevre, R.; Sfyria, A.; Shreyber, I.; Vallecorsa, S.; Wu, X.] Univ Geneva, CH-1211 Geneva 4, Switzerland. [Bussey, P.; Davies, T.; Robson, A.; Denis, R. St.; Thompson, A. S.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. [Belloni, A.; Chou, J. P.; Franklin, M.; Grinstein, S.; da Costa, J. Guimaraes; Mills, C.; Moed, S.; Sherman, D.; Zaw, I.] Harvard Univ, Cambridge, MA 02138 USA. [Aoki, M.; Bridgeman, A.; Campbell, M.; Ciobanu, C. I.; Errede, D.; Errede, S.; Gerberich, H.; Grundler, U.; Junk, T. R.; Kraus, J.; Marino, C. P.; Neubauer, M. S.; Norniella, O.; Pitts, K.; Rogers, E.; Thompson, G. A.; Zhang, X.] Univ Illinois, Urbana, IL 61801 USA. [Barnett, B. A.; Behari, S.; Blumenfeld, B.; Maksimovic, P.; Martin, M.; Mumford, R.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Feindt, M.; Heck, M.; Heuser, J.; Hirschbuehl, D.; Kerzel, U.; Kreps, M.; Kuhr, T.; Lueck, J.; Mack, P.; Marino, C.; Milnik, M.; Muller, Th.; Papaikonomou, A.; Richter, S.; Scheidle, T.; Wagner-Kuhr, J.; Wagner, W.] Univ Karlsruhe, Inst Expt Kernphys, D-76128 Karlsruhe, Germany. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J.; Lee, Y. J.; Moon, C. S.; Oh, Y. D.; Yu, I.] Kyungpook Natl Univ, Ctr High Energy Phys, Taegu 702701, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J.; Lee, Y. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yu, I.] Seoul Natl Univ, Seoul 151742, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J.; Lee, Y. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yu, I.] Sungkyunkwan Univ, Suwon 440746, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yu, I.] Korea Inst Sci & Technol Informat, Taejon 305806, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J.; Lee, Y. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yu, I.] Chonnam Natl Univ, Kwangju 500757, South Korea. [Barbaro-Galtieri, A.; Beringer, J.; Cerrito, L.; Deisher, A.; Fang, H. C.; Freeman, J. C.; Haber, C.; Heinemann, B.; Lin, C. S.; Lujan, P.; Lys, J.; Fernandez, P. Movilla; Muelmnstaedt, J.; Shapiro, M. D.; Yao, W. M.] Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Berry, T.; Farrington, S.; Houlden, M.; Manca, G.; Mehta, A.; Oldeman, R.; Shears, T.; Wynne, S. M.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Bartsch, V.; Bizjak, I.; Cooper, B.; Lancaster, M.; Malik, S.; Nurse, E.; Vine, T.; Waters, D.] UCL, London WC1E 6BT, England. [Fernandez, J. P.; Gonzalez, O.; Martinez-Ballarin, R.; Redondo, I.; Vidal, R.] Ctr Invest Energet Medioambientales & Tecnol, E-28040 Madrid, Spain. [Bauer, G.; Bolshov, A.; Choudalakis, G.; Gomez-Ceballos, G.; Hahn, K.; Henderson, C.; Iyutin, B.; Klute, M.; Knuteson, B.; Leonardo, N.; Makhoul, K.; Miles, J.; Paus, C.] MIT, Cambridge, MA 02139 USA. [Beauchemin, P. -H.; Buzatu, A.; Carron, S.; Lai, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Trischuk, W.; Warburton, A.; Williams, G.] McGill Univ, Inst Particle Phys, Montreal, PQ H3A 2T8, Canada. [Beauchemin, P. -H.; Buzatu, A.; Carron, S.; Lai, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Trischuk, W.; Warburton, A.; Williams, G.] Univ Toronto, Toronto, ON M5S 1A7, Canada. [Amidei, D.; Campbell, M.; Copic, K.; Cully, J. C.; Gerdes, D.; Soderberg, M.; Tecchio, M.; Varganov, A.; Wright, T.] Univ Michigan, Ann Arbor, MI 48109 USA. [Bromberg, C.; Campanelli, M.; Gunay-Unalan, Z.; Huston, J.; Messina, A.; Miller, R.; Sorin, V.; Tollefson, K.] Michigan State Univ, E Lansing, MI 48824 USA. [Gold, M.; Gorelov, I.; Rekovic, V.; Seidel, S.; Strologas, J.; Vataga, E.; Vogel, M.] Univ New Mexico, Albuquerque, NM 87131 USA. [Schmitt, M.; Stentz, D.] Northwestern Univ, Evanston, IL 60208 USA. [Efron, J.; Hughes, R. E.; Kilminster, B.; Lannon, K.; Parks, B.; Slaunwhite, J.; Winer, B. L.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.; Takashima, R.; Tanaka, R.; Yamashita, T.] Okayama Univ, Okayama 7008530, Japan. [Kato, Y.; Okusawa, T.; Seiya, Y.; Wakisaka, T.; Yamamoto, K.; Yoshida, T.] Osaka City Univ, Osaka 588, Japan. [Azfar, F.; Harper, S.; Hays, C.; Huffman, B. T.; Linacre, J.; Lyons, L.; Malde, S.; Pounder, N.; Renton, P.; Stelzer-Chilton, O.] Univ Oxford, Oxford OX1 3RH, England. [Amerio, S.; Azzi-Bacchetta, P.; Bacchetta, N.; Bisello, D.; Busetto, G.; Compostella, G.; Cortiana, G.; Donini, J.; Dorigo, T.; Gresele, A.; Lazzizzera, I.; Loreti, M.; Lucchesi, D.; Griso, S. Pagan] Univ Padua, Ist Nazl Fis Nucl, Sezione Padova Trento, I-35131 Padua, Italy. [Di Giovanni, G. P.; Piedra, J.; Savoy-Navarro, A.; Tourneur, S.] Univ Paris 06, CNRS, IN2P3, LPNHE, F-75252 Paris, France. [Canepa, A.; Heijboer, A.; Heinrich, J.; Kroll, J.; Lockyer, N. S.; Neu, C.; Thomson, E.; Tu, Y.; Wagner, P.; Williams, H. H.] Univ Penn, Philadelphia, PA 19104 USA. [Azzurri, P.; Bedeschi, F.; Bellettini, G.; Carosi, R.; Catastini, P.; Chiarelli, G.; Ciocci, M. A.; Crescioli, F.; Dell'Orso, M.; Donati, S.; Ferrazza, C.; Garcia, J. E.; Giannetti, P.; Giunta, M.; Introzzi, G.; Lami, S.; Latino, G.; Leone, S.; Menzione, A.; Morello, M.; Piacentino, G.; Punzi, G.; Ristori, L.; Sartori, L.; Scribano, A.; Scuri, F.; Sidoti, A.; Spinella, F.; Squillacioti, P.; Turini, N.; Volpi, G.] Univ Pisa, Ist Nazl Fis Nucl, I-56127 Pisa, Italy. [Boudreau, J.; Gibson, K.; Hartz, M.; Rahaman, A.; Shepard, P. F.] Univ Pittsburgh, Pittsburgh, PA 15260 USA. [Apresyan, A.; Barnes, V. E.; Bolla, G.; Bortoletto, D.; Flanagan, G.; Garfinkel, A. F.; Jones, M.; Laasanen, A. T.; Lytken, E.; Margaroli, F.; Merkel, P.; Ranjan, N.; Sedov, A.; Veszpremi, V.] Purdue Univ, W Lafayette, IN 47907 USA. [Bodek, A.; Boisvert, V.; Budd, H. S.; Chung, Y. S.; de Barbaro, P.; Gimmell, J. L.; Han, B. -Y.; Han, J. Y.; Lee, J.; McFarland, K. S.; Sakumoto, W. K.; Yu, G. B.] Univ Rochester, Rochester, NY 14627 USA. [Bhatti, A.; Demortier, L.; Gallinaro, M.; Goulianos, K.; Hatakeyama, K.; Mesropian, C.; Terashi, K.] Rockefeller Univ, New York, NY 10021 USA. [De Cecco, S.; De Pedis, D.; Dionisi, C.; Iori, M.; Jeans, D.; Luci, C.; Mastrandrea, P.; Rescigno, M.; Salamanna, G.; Sarkar, S.; Zanello, L.] Univ Roma La Sapienza, Ist Nazl Fis Nucl, I-00185 Rome, Italy. [Anastassov, A.; Chuang, S. H.; Dube, S.; Halkiadakis, E.; Hare, D.; Lath, A.; Somalwar, S.; Yamaoka, J.] Rutgers State Univ, Piscataway, NJ 08855 USA. [Aurisano, A.; Goncharov, M.; Kamon, T.; Khotilovich, V.; McIntyre, P.; Safonov, A.; Toback, D.; Weinberger, M.] Texas A&M Univ, College Stn, TX 77843 USA. [Akimoto, T.; Hara, K.; Kim, S. H.; Kimura, N.; Kubo, T.; Maruyama, T.; Masubuchi, T.; Miyake, H.; Nagai, Y.; Nagano, A.; Nakamura, K.; Suzuki, T.; Takeuchi, Y.; Tomura, T.; Ukegawa, F.; Uozumi, S.] Univ Tsukuba, Tsukuba, Ibaraki 305, Japan. [Cauz, D.; Di Ruzza, B.; Giordani, M.; Pauletta, G.; Penzo, A.; Rossi, M.; Santi, L.; Zanetti, A.] Univ Trieste, Ist Nazl Fis Nucl, Udine, Italy. [Hare, M.; Napier, A.; Rolli, S.; Sliwa, K.; Sun, H.; Whitehouse, B.] Tufts Univ, Medford, MA 02155 USA. [Arisawa, T.; Kondo, K.; Kusakabe, Y.; Naganoma, J.] Waseda Univ, Tokyo 169, Japan. [Harr, R. F.; Karchin, P. E.; Kulkarni, N. P.; Mattson, M. E.; Shalhout, S. Z.] Wayne State Univ, Detroit, MI 48201 USA. [Bellinger, J.; Carlsmith, D.; Chung, W. H.; Handler, R.; Herndon, M.; Pondrom, L.; Pursley, J.; Ramakrishnan, V.; Shon, Y.] Univ Wisconsin, Madison, WI 53706 USA. [Field, R.; Husemann, U.; Lin, C.; Loginov, A.; Martin, A.; Schmidt, M. P.; Stanitzki, M.; Tipton, P.; Yang, C.] Yale Univ, New Haven, CT 06504 USA. RP Aaltonen, T (reprint author), Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. RI Azzi, Patrizia/H-5404-2012; manca, giulia/I-9264-2012; Amerio, Silvia/J-4605-2012; messina, andrea/C-2753-2013; Annovi, Alberto/G-6028-2012; Ivanov, Andrew/A-7982-2013; Warburton, Andreas/N-8028-2013; Kim, Soo-Bong/B-7061-2014; Lysak, Roman/H-2995-2014; Moon, Chang-Seong/J-3619-2014; Ruiz, Alberto/E-4473-2011; Robson, Aidan/G-1087-2011; De Cecco, Sandro/B-1016-2012; Scodellaro, Luca/K-9091-2014; Paulini, Manfred/N-7794-2014; Russ, James/P-3092-2014; Lazzizzera, Ignazio/E-9678-2015; Cabrera Urban, Susana/H-1376-2015; Garcia, Jose /H-6339-2015; ciocci, maria agnese /I-2153-2015; Cavalli-Sforza, Matteo/H-7102-2015; Introzzi, Gianluca/K-2497-2015; Gorelov, Igor/J-9010-2015; Leonardo, Nuno/M-6940-2016; Canelli, Florencia/O-9693-2016 OI Azzi, Patrizia/0000-0002-3129-828X; Annovi, Alberto/0000-0002-4649-4398; Ivanov, Andrew/0000-0002-9270-5643; Warburton, Andreas/0000-0002-2298-7315; Moon, Chang-Seong/0000-0001-8229-7829; Ruiz, Alberto/0000-0002-3639-0368; Scodellaro, Luca/0000-0002-4974-8330; Paulini, Manfred/0000-0002-6714-5787; Russ, James/0000-0001-9856-9155; Lazzizzera, Ignazio/0000-0001-5092-7531; ciocci, maria agnese /0000-0003-0002-5462; Introzzi, Gianluca/0000-0002-1314-2580; Gorelov, Igor/0000-0001-5570-0133; Leonardo, Nuno/0000-0002-9746-4594; Canelli, Florencia/0000-0001-6361-2117 NR 33 TC 11 Z9 11 U1 1 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD MAR PY 2008 VL 77 IS 5 AR 052002 DI 10.1103/PhysRevD.77.052002 PG 20 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 282CC UT WOS:000254544200009 ER PT J AU Abe, K Hayato, Y Iida, T Ikeda, M Kameda, J Koshio, Y Minamino, A Miura, M Moriyama, S Nakahata, M Nakayama, S Obayashi, Y Ogawa, H Sekiya, H Shiozawa, M Suzuki, Y Takeda, A Takeuchi, Y Ueshima, K Watanabe, H Yamada, S Higuchi, I Ishihara, C Kajita, T Kaneyuki, K Mitsuka, G Nishino, H Okumura, K Saji, C Takenaga, Y Clark, S Desai, S Dufour, F Kearns, E Likhoded, S Litos, M Raaf, JL Stone, JL Sulak, LR Wang, W Goldhaber, M Casper, D Cravens, JP Dunmore, J Kropp, WR Liu, DW Mine, S Regis, C Smy, MB Sobel, HW Vagins, MR Ganezer, KS Hartfield, B Hill, J Keig, WE Jang, JS Jeong, IS Kim, JY Lim, IT Scholberg, K Fechner, M Tanimoto, N Walter, CW Wendell, R Tasaka, S Guillian, G Learned, JG Matsuno, S Messier, MD Hasegawa, T Ishida, T Ishii, T Kobayashi, T Nakadaira, T Nakamura, K Nishikawa, K Oyama, Y Totsuka, Y Suzuki, AT Nakaya, T Tanaka, H Yokoyama, M Haines, TJ Dazeley, S Svoboda, R Habig, A Fukuda, Y Sato, T Itow, Y Koike, T Tanaka, T Jung, CK Kato, T Kobayashi, K McGrew, C Sarrat, A Terri, R Yanagisawa, C Tamura, N Idehara, Y Sakuda, M Sugihara, M Kuno, Y Yoshida, M Kim, SB Yang, BS Ishizuka, T Okazawa, H Choi, Y Seo, HK Gando, Y Inoue, K Furuse, Y Ishii, H Nishijima, K Watanabe, Y Koshiba, M Chen, S Deng, Z Liu, Y Kielczewska, D Berns, H Shiraishi, KK Thrane, E Wilkes, RJ AF Abe, K. Hayato, Y. Iida, T. Ikeda, M. Kameda, J. Koshio, Y. Minamino, A. Miura, M. Moriyama, S. Nakahata, M. Nakayama, S. Obayashi, Y. Ogawa, H. Sekiya, H. Shiozawa, M. Suzuki, Y. Takeda, A. Takeuchi, Y. Ueshima, K. Watanabe, H. Yamada, S. Higuchi, I. Ishihara, C. Kajita, T. Kaneyuki, K. Mitsuka, G. Nishino, H. Okumura, K. Saji, C. Takenaga, Y. Clark, S. Desai, S. Dufour, F. Kearns, E. Likhoded, S. Litos, M. Raaf, J. L. Stone, J. L. Sulak, L. R. Wang, W. Goldhaber, M. Casper, D. Cravens, J. P. Dunmore, J. Kropp, W. R. Liu, D. W. Mine, S. Regis, C. Smy, M. B. Sobel, H. W. Vagins, M. R. Ganezer, K. S. Hartfield, B. Hill, J. Keig, W. E. Jang, J. S. Jeong, I. S. Kim, J. Y. Lim, I. T. Scholberg, K. Fechner, M. Tanimoto, N. Walter, C. W. Wendell, R. Tasaka, S. Guillian, G. Learned, J. G. Matsuno, S. Messier, M. D. Hasegawa, T. Ishida, T. Ishii, T. Kobayashi, T. Nakadaira, T. Nakamura, K. Nishikawa, K. Oyama, Y. Totsuka, Y. Suzuki, A. T. Nakaya, T. Tanaka, H. Yokoyama, M. Haines, T. J. Dazeley, S. Svoboda, R. Habig, A. Fukuda, Y. Sato, T. Itow, Y. Koike, T. Tanaka, T. Jung, C. K. Kato, T. Kobayashi, K. McGrew, C. Sarrat, A. Terri, R. Yanagisawa, C. Tamura, N. Idehara, Y. Sakuda, M. Sugihara, M. Kuno, Y. Yoshida, M. Kim, S. B. Yang, B. S. Ishizuka, T. Okazawa, H. Choi, Y. Seo, H. K. Gando, Y. Inoue, K. Furuse, Y. Ishii, H. Nishijima, K. Watanabe, Y. Koshiba, M. Chen, S. Deng, Z. Liu, Y. Kielczewska, D. Berns, H. Shiraishi, K. K. Thrane, E. Wilkes, R. J. CA Super Kamiokande Collaboration TI Search for matter-dependent atmospheric neutrino oscillations in Super-Kamiokande SO PHYSICAL REVIEW D LA English DT Article AB We consider nu(mu) -> nu(tau) oscillations in the context of the mass varying neutrino (MaVaN) model, where the neutrino mass can vary depending on the electron density along the flight path of the neutrino. Our analysis assumes a mechanism with dependence only upon the electron density, hence ordinary matter density, of the medium through which the neutrino travels. Fully-contained, partially-contained and upward-going muon atmospheric neutrino data from the Super-Kamiokande detector, taken from the entire SK-I period of 1489 live days, are compared to MaVaN model predictions. We find that, for the case of 2-flavor oscillations, and for the specific models tested, oscillation independent of electron density is favored over density dependence. Assuming maximal mixing, the best-fit case and the density-independent case do not differ significantly. C1 [Abe, K.; Hayato, Y.; Iida, T.; Kameda, J.; Koshio, Y.; Minamino, A.; Miura, M.; Moriyama, S.; Nakahata, M.; Obayashi, Y.; Ogawa, H.; Sekiya, H.; Shiozawa, M.; Suzuki, Y.; Takeda, A.; Takeuchi, Y.; Ueshima, K.; Watanabe, H.; Yamada, S.] Univ Tokyo, Inst Cosm Ray Res, Kamioka Observ, Gifu 5061205, Japan. [Nakayama, S.; Higuchi, I.; Ishihara, C.; Kajita, T.; Kaneyuki, K.; Mitsuka, G.; Nishino, H.; Okumura, K.; Saji, C.; Takenaga, Y.] Univ Tokyo, Inst Cosm Ray Res, Res Ctr Cosm Neutrinos, Chiba 2778582, Japan. [Clark, S.; Desai, S.; Dufour, F.; Kearns, E.; Likhoded, S.; Litos, M.; Raaf, J. L.; Stone, J. L.; Sulak, L. R.; Wang, W.] Boston Univ, Dept Phys, Boston, MA 02215 USA. [Goldhaber, M.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Casper, D.; Cravens, J. P.; Dunmore, J.; Kropp, W. R.; Liu, D. W.; Mine, S.; Regis, C.; Smy, M. B.; Sobel, H. W.; Vagins, M. R.; Haines, T. J.; Wilkes, R. J.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Ganezer, K. S.; Hartfield, B.; Hill, J.; Keig, W. E.] Calif State Univ Dominguez Hills, Dept Phys, Carson, CA 90747 USA. [Jang, J. S.; Jeong, I. S.; Kim, J. Y.; Lim, I. T.] Chonnam Natl Univ, Dept Phys, Kwangju 500757, South Korea. [Scholberg, K.; Fechner, M.; Tanimoto, N.; Walter, C. W.; Wendell, R.] Duke Univ, Dept Phys, Durham, NC 27708 USA. George Mason Univ, Dept Phys, Fairfax, VA 22030 USA. [Tasaka, S.] Gifu Univ, Dept Phys, Gifu 5011193, Japan. [Guillian, G.; Learned, J. G.; Matsuno, S.] Univ Hawaii Manoa, Dept Phys & Astron, Honolulu, HI 96822 USA. [Messier, M. D.] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. [Hasegawa, T.; Ishida, T.; Ishii, T.; Kobayashi, T.; Nakadaira, T.; Nakamura, K.; Nishikawa, K.; Oyama, Y.; Totsuka, Y.] High Energy Accelerator Res Org, KEK, Tsukuba 3050801, Japan. [Suzuki, A. T.] Kobe Univ, Dept Phys, Kobe, Hyogo 6578501, Japan. [Nakaya, T.; Tanaka, H.; Yokoyama, M.] Kyoto Univ, Dept Phys, Kyoto 6068502, Japan. [Haines, T. J.] Los Alamos Natl Lab, Div Phys, Los Alamos, NM 87544 USA. [Dazeley, S.; Svoboda, R.] Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA. Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [Habig, A.] Univ Minnesota, Dept Phys, Duluth, MN 55812 USA. [Fukuda, Y.; Sato, T.] Miyagi Univ Educ, Dept Phys, Sendai, Miyagi 9800845, Japan. [Itow, Y.; Koike, T.; Tanaka, T.] Nagoya Univ, Solar Terr Environm Lab, Aichi 4648602, Japan. [Jung, C. K.; Kato, T.; Kobayashi, K.; McGrew, C.; Sarrat, A.; Terri, R.; Yanagisawa, C.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Tamura, N.] Niigata Univ, Dept Phys, Niigata 9502181, Japan. [Idehara, Y.; Sakuda, M.; Sugihara, M.] Okayama Univ, Dept Phys, Okayama 7008530, Japan. [Kim, S. B.; Yang, B. S.] Seoul Natl Univ, Dept Phys, Seoul 151742, South Korea. [Ishizuka, T.] Shizuoka Univ, Dept Syst Engn, Hamamatsu, Shizuoka 4328561, Japan. [Okazawa, H.] Shizuoka Univ Welfare, Dept Informat Social Welfare, Shizuoka 4258611, Japan. [Choi, Y.; Seo, H. K.] Sungkyunkwan Univ, Dept Phys, Suwon 440746, South Korea. [Gando, Y.; Inoue, K.] Tohoku Univ, Res Ctr Neutino Sci, Sendai, Miyagi 9808578, Japan. [Furuse, Y.; Ishii, H.; Nishijima, K.] Tokai Univ, Dept Phys, Kanagawa 2591292, Japan. [Watanabe, Y.] Tokyo Inst Technol, Dept Phys, Tokyo 1528551, Japan. [Koshiba, M.] Univ Tokyo, Tokyo 1130033, Japan. [Chen, S.; Deng, Z.; Liu, Y.] Tsinghua Univ, Dept Engn Phys, Beijing 100084, Peoples R China. [Kielczewska, D.] Warsaw Univ, Inst Expt Phys, PL-00681 Warsaw, Poland. [Berns, H.; Shiraishi, K. K.; Thrane, E.; Wilkes, R. J.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. RP Abe, K (reprint author), Univ Tokyo, Inst Cosm Ray Res, Kamioka Observ, Gifu 5061205, Japan. RI Obayashi, Yoshihisa/A-4472-2011; Wilkes, R.Jeffrey/E-6011-2013; Kim, Soo-Bong/B-7061-2014; Koshio, Yusuke/C-2847-2015; Yokoyama, Masashi/A-4458-2011; Takeuchi, Yasuo/A-4310-2011; Nakamura, Kenzo/F-7174-2010; Sobel, Henry/A-4369-2011; Suzuki, Yoichiro/F-7542-2010 OI Koshio, Yusuke/0000-0003-0437-8505; Raaf, Jennifer/0000-0002-4533-929X; Yokoyama, Masashi/0000-0003-2742-0251; NR 16 TC 15 Z9 15 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD MAR PY 2008 VL 77 IS 5 AR 052001 DI 10.1103/PhysRevD.77.052001 PG 6 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 282CC UT WOS:000254544200008 ER PT J AU Adler, S Anisimovsky, VV Aoki, M Ardebili, M Artamonov, AV Atiya, M Bassalleck, B Bazarko, AO Bhuyan, B Blackmore, EW Bryman, DA Chen, S Chiang, IH Christidi, IA Convery, MR Cooper, PS Diwan, MV Frank, JS Fujiwara, T Haggerty, J Hu, J Inagaki, T Ito, MM Ivashkin, AP Jaffe, DE Kabe, S Kazumori, M Kuno, Y Kuriki, M Kettell, SH Khabibullin, MM Khotjantsev, AN Kitching, P Kobayashi, M Komatsubara, TK Konaka, A Kozhevnikov, AP Kudenko, YG Kushnirenko, A Landsberg, LG Lewis, B Li, KK Littenberg, LS Macdonald, JA Marlow, DR McPherson, RA Meyers, PD Mildenberger, J Mineev, OV Miyajima, M Mizouchi, K Mukhin, VA Muramatsu, N Nakano, T Nomachi, M Nomura, T Numao, T Obraztsov, VF Omata, K Patalakha, DI Petrenko, SV Poutissou, R Ramberg, EJ Redlinger, G Sato, T Sekiguchi, T Shinkawa, T Shoemaker, FC Smith, AJS Stone, JR Strand, RC Sugimoto, S Tamagawa, Y Tschirhart, R Tsunemi, T Vavilov, DV Viren, B Yershov, NV Yoshimura, Y Yoshioka, T AF Adler, S. Anisimovsky, V. V. Aoki, M. Ardebili, M. Artamonov, A. V. Atiya, M. Bassalleck, B. Bazarko, A. O. Bhuyan, B. Blackmore, E. W. Bryman, D. A. Chen, S. Chiang, I-H. Christidi, I. -A. Convery, M. R. Cooper, P. S. Diwan, M. V. Frank, J. S. Fujiwara, T. Haggerty, J. Hu, J. Inagaki, T. Ito, M. M. Ivashkin, A. P. Jaffe, D. E. Kabe, S. Kazumori, M. Kuno, Y. Kuriki, M. Kettell, S. H. Khabibullin, M. M. Khotjantsev, A. N. Kitching, P. Kobayashi, M. Komatsubara, T. K. Konaka, A. Kozhevnikov, A. P. Kudenko, Yu. G. Kushnirenko, A. Landsberg, L. G. Lewis, B. Li, K. K. Littenberg, L. S. Macdonald, J. A. Marlow, D. R. McPherson, R. A. Meyers, P. D. Mildenberger, J. Mineev, O. V. Miyajima, M. Mizouchi, K. Mukhin, V. A. Muramatsu, N. Nakano, T. Nomachi, M. Nomura, T. Numao, T. Obraztsov, V. F. Omata, K. Patalakha, D. I. Petrenko, S. V. Poutissou, R. Ramberg, E. J. Redlinger, G. Sato, T. Sekiguchi, T. Shinkawa, T. Shoemaker, F. C. Smith, A. J. S. Stone, J. R. Strand, R. C. Sugimoto, S. Tamagawa, Y. Tschirhart, R. Tsunemi, T. Vavilov, D. V. Viren, B. Yershov, N. V. Yoshimura, Y. Yoshioka, T. TI Measurement of the K+->pi(+)nu(nu)over-bar branching ratio SO PHYSICAL REVIEW D LA English DT Article ID RARE KAON DECAYS; ASSISTED TECHNICOLOR MODELS; LONG-DISTANCE CONTRIBUTIONS; STANDARD ELECTROWEAK MODEL; ENDCAP PHOTON DETECTOR; QUARK MASS MATRICES; R-PARITY VIOLATION; CP-VIOLATION; UNITARITY TRIANGLE; PARTICLE PHYSICS AB Experiment E949 at Brookhaven National Laboratory studied the rare decay K+ -> pi(+)nu(nu) over bar and other processes with an exposure of 1.77 x 10(12) K+'s. The data were analyzed using a blind analysis technique yielding one candidate event with an estimated background of 0.30 +/- 0.03 events. Combining this result with the observation of two candidate events by the predecessor experiment E787 gave the branching ratio B(K+ -> pi(+)nu (nu) = 1.47(-0.89)(+1.30) x 10(-10), consistent with the standard model prediction of (0.74 +/- 0.20) x 10(-10). This is a more detailed report of results previously published [V. V. Anisimovsky et al., Phys. Rev. Lett. 93, 031801 (2004)]. C1 [Adler, S.; Atiya, M.; Bhuyan, B.; Chiang, I-H.; Diwan, M. V.; Frank, J. S.; Haggerty, J.; Jaffe, D. E.; Kettell, S. H.; Li, K. K.; Littenberg, L. S.; Redlinger, G.; Strand, R. C.; Viren, B.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Anisimovsky, V. V.; Ivashkin, A. P.; Khabibullin, M. M.; Khotjantsev, A. N.; Kudenko, Yu. G.; Mineev, O. V.; Yershov, N. V.] Russian Acad Sci, Inst Nucl Res, Moscow 117312, Russia. [Blackmore, E. W.; Konaka, A.; Macdonald, J. A.; Mildenberger, J.; Numao, T.; Poutissou, R.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Bazarko, A. O.; Convery, M. R.; Ito, M. M.; Marlow, D. R.; McPherson, R. A.; Meyers, P. D.; Shoemaker, F. C.; Smith, A. J. S.; Stone, J. R.] Princeton Univ, Joseph Henry Labs, Princeton, NJ 08544 USA. [Artamonov, A. V.; Kozhevnikov, A. P.; Landsberg, L. G.; Patalakha, D. I.; Vavilov, D. V.] Inst High Energy Phys, Moscow 142280, Russia. [Bassalleck, B.; Lewis, B.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. [Bryman, D. A.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada. [Chen, S.] Tsinghua Univ, Dept Phys & Astron, Beijing 100084, Peoples R China. [Christidi, I. -A.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Cooper, P. S.; Kushnirenko, A.; Ramberg, E. J.; Tschirhart, R.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Fujiwara, T.; Mizouchi, K.; Nomura, T.] Kyoto Univ, Dept Phys, Sakyo Ku, Kyoto 6068502, Japan. [Inagaki, T.; Kabe, S.; Kazumori, M.; Kuno, Y.; Kuriki, M.; Kobayashi, M.; Komatsubara, T. K.; Omata, K.; Sato, T.; Sekiguchi, T.; Sugimoto, S.; Tsunemi, T.; Yoshimura, Y.; Yoshioka, T.] High Energy Accelerator Res Org KEK, Tsukuba, Ibaraki 3050801, Japan. [Kitching, P.] Univ Alberta, Ctr Subatom Res, Edmonton, AB T6G 2N5, Canada. [Tamagawa, Y.] Univ Fukui, Dept Appl Phys, Bunkyo Ku, Fukui 9108507, Japan. [Muramatsu, N.; Nakano, T.] Osaka Univ, Res Ctr Nucl Phys, Osaka 5670047, Japan. [Nomachi, M.] Osaka Univ, Nucl Studies Lab, Osaka 5600043, Japan. [Shinkawa, T.] Natl Def Acad, Dept Appl Phys, Kanagawa 2398686, Japan. RP Adler, S (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. RI Marlow, Daniel/C-9132-2014; Khabibullin, Marat/O-1076-2013; Ivashkin, Alexander/B-9725-2014 OI Ivashkin, Alexander/0000-0003-4595-5866 NR 87 TC 46 Z9 46 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD MAR PY 2008 VL 77 IS 5 AR 052003 DI 10.1103/PhysRevD.77.052003 PG 40 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 282CC UT WOS:000254544200010 ER PT J AU Arnesen, CM Ligeti, Z Rothstein, IZ Stewart, IW AF Arnesen, Christian M. Ligeti, Zoltan Rothstein, Ira Z. Stewart, Iain W. TI Power corrections in charmless nonleptonic B decays: Annihilation is factorizable and real SO PHYSICAL REVIEW D LA English DT Article ID COLLINEAR EFFECTIVE THEORY; QCD FACTORIZATION; CHARMING PENGUINS; MESON DECAYS; CP VIOLATION; OPERATORS; MATRIX; QUARKS AB We classify Lambda(QCD)/m(b) power corrections to nonleptonic B -> M1M2 decays, where M-1,M-2 are charmless nonisosinglet mesons. Using recent developments in soft- collinear effective theory, we prove that the leading contributions to annihilation amplitudes of order alpha(s) (m(b)) Lambda(QCD)/m(b) are real. The leading annihilation amplitudes depend on twist- 2 and twist- 3 three- parton distributions. A complex nonperturbative parameter from annihilation first appears at O[alpha(2)(s) (root Lambda m(b)) Lambda(QCD)/m(b)]. "Chirally enhanced'' contributions are also factorizable and real at lowest order. Thus, incalculable strong phases are suppressed in annihilation amplitudes, unless the alpha(s)(root Lambda m(b)) expansion breaks down. Modeling the distribution functions, we find that (11 +/- 9)% and (15 +/- 11)% of the absolute values of the measured (B) over bar (0) -> K- pi(+) and B- -> K- K-0 penguin amplitudes come from annihilation. This is consistent with the expected size of power corrections. C1 [Arnesen, Christian M.; Ligeti, Zoltan; Stewart, Iain W.] MIT, Ctr Theoret Phys, Nucl Sci Lab, Cambridge, MA 02139 USA. [Ligeti, Zoltan] Univ Calif Berkeley, Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Rothstein, Ira Z.] Carnegie Mellon Univ, Dept Phys, Pittsburgh, PA 15213 USA. RP Arnesen, CM (reprint author), MIT, Ctr Theoret Phys, Nucl Sci Lab, 77 Massachusetts Ave, Cambridge, MA 02139 USA. RI Rothstein, Ira/O-2747-2014 OI Rothstein, Ira/0000-0002-3374-4212 NR 60 TC 30 Z9 30 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD MAR PY 2008 VL 77 IS 5 AR 054006 DI 10.1103/PhysRevD.77.054006 PG 20 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 282CC UT WOS:000254544200031 ER PT J AU Aubert, B Bona, M Karyotakis, Y Lees, JP Poireau, V Prudent, X Tisserand, V Zghiche, A Tico, JG Grauges, E Lopez, L Palano, A Pappagallo, M Eigen, G Stugu, B Sun, L Abrams, GS Battaglia, M Brown, DN Button-Shafer, J Cahn, RN Jacobsen, RG Kadyk, JA Kerth, LT Kolomensky, YG Kukartsev, G Pegna, DL Lynch, G Orimoto, TJ Osipenkov, IL Ronan, MT Tackmann, K Tanabe, T Wenzel, WA Sanchez, PDA Hawkes, CM Soni, N Watson, T Koch, H Schroeder, T Walker, D Asgeirsson, DJ Cuhadar-Donszelmann, T Fulsom, BG Hearty, C Mattison, TS McKenna, JA Barrett, M Khan, A Saleem, M Teodorescu, L Blinov, VE Bukin, AD Buzykaev, AR Druzhinin, VP Golubev, VB Onuchin, AP Serednyakov, SI Skovpen, YI Solodov, EP Todyshev, KY Bondioli, M Curry, S Eschrich, I Kirkby, D Lankford, AJ Lund, P Mandelkern, M Martin, EC Stoker, DP Abachi, S Buchanan, C Gary, JW Liu, F Long, O Shen, BC Vitug, GM Zhang, L Paar, HP Rahatlou, S Sharma, V Berryhill, JW Campagnari, C Cunha, A Dahmes, B Hong, TM Kovalskyi, D Richman, JD Beck, TW Eisner, AM Flacco, CJ Heusch, CA Kroseberg, J Lockman, WS Schalk, T Schumm, BA Seiden, A Wilson, MG Winstrom, LO Chen, E Cheng, CH Echenard, B Fang, F Hitlin, DG Narsky, I Piatenko, T Porter, FC Andreassen, R Mancinelli, G Meadows, BT Mishra, K Sokoloff, MD Blanc, F Bloom, PC Ford, WT Hirschauer, JF Kreisel, A Nagel, M Nauenberg, U Olivas, A Smith, JG Ulmer, KA Wagner, SR Zhang, J Ayad, R Gabareen, AM Soffer, A Toki, WH Wilson, RJ Altenburg, DD Feltresi, E Hauke, A Jasper, H Merkel, J Petzold, A Spaan, B Wacker, K Klose, V Kobel, MJ Lacker, HM Mader, WF Nogowski, R Schubert, J Schubert, KR Schwierz, R Sundermann, JE Volk, A Bernard, D Bonneaud, GR Latour, E Lombardo, V Thiebaux, C Verderi, M Clark, PJ Gradl, W Muheim, F Playfer, S Robertson, AI Watson, JE Xie, Y Andreotti, M Bettoni, D Bozzi, C Calabrese, R Cecchi, A Cibinetto, G Franchini, P Luppi, E Negrini, M Petrella, A Piemontese, L Prencipe, E Santoro, V Anulli, F Baldini-Ferroli, R Calcaterra, A De Sangro, R Finocchiaro, G Pacetti, S Patteri, P Peruzzi, IM Piccolo, M Rama, M Zallo, A Buzzo, A Contri, R Lo Vetere, M Macri, MM Monge, MR Passaggio, S Patrignani, C Robutti, E Santroni, A Tosi, S Chaisanguanthum, KS Morii, M Wu, J Dubitzky, RS Marks, J Schenk, S Uwer, U Bard, DJ Dauncey, PD Nash, JA Vazquez, WP Tibbetts, M Behera, PK Chai, X Charles, MJ Mallik, U Cochran, J Crawley, HB Dong, L Eyges, V Meyer, WT Prell, S Rosenberg, EI Rubin, AE Gao, YY Gritsan, AV Guo, ZJ Lae, CK Denig, AG Fritsch, M Schott, G Arnaud, N Bequilleux, J D'Orazio, A Davier, M Grosdidier, G Hocker, A Lepeltier, V Le Diberder, F Lutz, AM Pruvot, S Roudeau, P Schune, MH Serrano, J Sordini, V Stocchi, A Wang, WF Wormser, G Lange, DJ Wright, DM Bingham, I Burke, JP Chavez, CA Fry, JR Gabathuler, E Gamet, R Hutchcroft, DE Payne, DJ Schofield, KC Touramanis, C Bevan, AJ George, KA Di Lodovico, F Sacco, R Cowan, G Flaecher, HU Hopkins, DA Paramesvaran, S Salvatore, F Wren, AC Brown, DN Davis, CL Barlow, NR Barlow, RJ Chia, YM Edgar, CL Lafferty, GD West, TJ Yi, JI Anderson, J Chen, C Jawahery, A Roberts, DA Simi, G Tuggle, JM Dallapiccola, C Hertzbach, SS Li, X Moore, TB Salvati, E Saremi, S Cowan, R Dujmic, D Fisher, PH Koeneke, K Sciolla, G Spitznagel, M Taylor, F Yamamoto, RK Zhao, M Mclachlin, SE Patel, PM Robertson, SH Lazzaro, A Palombo, F Bauer, JM Cremaldi, L Eschenburg, V Godang, R Kroeger, R Sanders, DA Summers, DJ Zhao, HW Brunet, S Cote, D Simard, M Taras, P Viaud, FB Nicholson, H De Nardo, G Fabozzi, F Lista, L Monorchio, D Sciacca, C Baak, MA Raven, G Snoek, HL Jessop, CP Knoepfel, KJ LoSecco, JM Benelli, G Corwin, LA Honscheid, K Kagan, H Kass, R Morris, JP Rahimi, AM Regensburger, JJ Sekula, SJ Wong, QK Blount, NL Brau, J Frey, R Igonkina, O Kolb, JA Lu, M Rahmat, R Sinev, NB Strom, D Strube, J Torrence, E Gagliardi, N Gaz, A Margoni, M Morandin, M Pompili, A Posocco, M Rotondo, M Simonetto, F Stroili, R Voci, C Ben-Haim, E Briand, H Calderini, G Chauveau, J David, P Del Buono, L de la Vaissiere, C Hamon, O Leruste, P Malcles, J Ocariz, J Perez, A Prendki, J Gladney, L Biasini, M Covarelli, R Manoni, E Angelini, C Batignani, G Bettarini, S Carpinelli, M Cenci, R Cervelli, A Forti, F Giorgi, MA Lusiani, A Marchiori, G Mazur, MA Morganti, M Neri, N Paoloni, E Rizzo, G Walsh, JJ Biesiada, J Lau, YP Lu, C Olsen, J Smith, AJS Telnov, AV Baracchini, E Bellini, F Cavoto, G Del Re, D Di Marco, E Faccini, R Ferrarotto, F Ferroni, F Gaspero, M Jackson, PD Mazzoni, MA Morganti, S Piredda, G Polci, F Renga, F Voena, C Ebert, M Hartmann, T Schroder, H Waldi, R Adye, T Castelli, G Franek, B Olaiya, EO Roethel, W Wilson, FF Emery, S Escalier, M Gaidot, A Ganzhur, SF de Monchenault, GH Kozanecki, W Vasseur, G Yeche, C Zito, M Chen, XR Liu, H Park, W Purohit, MV White, RM Wilson, JR Allen, MT Aston, D Bartoldus, R Bechtle, P Claus, R Coleman, JP Convery, MR Dingfelder, JC Dorfan, J Dubois-Felsmann, GP Dunwoodie, W Field, RC Glanzman, T Gowdy, SJ Graham, MT Grenier, P Hast, C Innes, WR Kaminski, J Kelsey, MH Kim, H Kim, P Kocian, ML Leith, DWGS Li, S Luitz, S Luth, V Lynch, HL MacFarlane, DB Marsiske, H Messner, R Muller, DR Nelson, S O'Grady, CP Ofte, I Perazzo, A Perl, M Pulliam, T Ratcliff, BN Roodman, A Salnikov, AA Schindler, RH Schwiening, J Snyder, A Su, D Sullivan, MK Suzuki, K Swain, SK Thompson, JM Va'vra, J Wagner, AP Weaver, M Wisniewski, WJ Wittgen, M Wright, DH Wulsin, HW Yarritu, AK Yi, K Young, CC Ziegler, V Burchat, PR Edwards, AJ Majewski, SA Miyashita, TS Petersen, BA Wilden, L Ahmed, S Alam, MS Bula, R Ernst, JA Pan, B Saeed, MA Zain, SB Spanier, SM Wogsland, BJ Eckmann, R Ritchie, JL Ruland, AM Schilling, CJ Schwitters, RF Izen, JM Lou, XC Ye, S Bianchi, F Gallo, F Gamba, D Pelliccioni, M Bomben, M Bosisio, L Cartaro, C Cossutti, F Della Ricca, G Lanceri, L Vitale, L Azzolini, V Lopez-March, N Martinez-Vidal, F Milanes, DA Oyanguren, A Albert, J Banerjee, S Bhuyan, B Hamano, K Kowalewski, R Nugent, IM Roney, JM Sobie, RJ Harrison, PF Ilic, J Latham, TE Mohanty, GB Band, HR Chen, X Dasu, S Flood, KT Hollar, JJ Kutter, PE Pan, Y Pierini, M Prepost, R Wu, SL Neal, H AF Aubert, B. Bona, M. Karyotakis, Y. Lees, J. P. Poireau, V. Prudent, X. Tisserand, V. Zghiche, A. Tico, J. Garra Grauges, E. Lopez, L. Palano, A. Pappagallo, M. Eigen, G. Stugu, B. Sun, L. Abrams, G. S. Battaglia, M. Brown, D. N. Button-Shafer, J. Cahn, R. N. Jacobsen, R. G. Kadyk, J. A. Kerth, L. T. Kolomensky, Yu. G. Kukartsev, G. Pegna, D. Lopes Lynch, G. Orimoto, T. J. Osipenkov, I. L. Ronan, M. T. Tackmann, K. Tanabe, T. Wenzel, W. A. Sanchez, P. del Amo Hawkes, C. M. Soni, N. Watson, T. Koch, H. Schroeder, T. Walker, D. Asgeirsson, D. J. Cuhadar-Donszelmann, T. Fulsom, B. G. Hearty, C. Mattison, T. S. McKenna, J. A. Barrett, M. Khan, A. Saleem, M. Teodorescu, L. Blinov, V. E. Bukin, A. D. Buzykaev, A. R. Druzhinin, V. P. Golubev, V. B. Onuchin, A. P. Serednyakov, S. I. Skovpen, Yu. I. Solodov, E. P. Todyshev, K. Yu. Bondioli, M. Curry, S. Eschrich, I. Kirkby, D. Lankford, A. J. Lund, P. Mandelkern, M. Martin, E. C. Stoker, D. P. Abachi, S. Buchanan, C. Gary, J. W. Liu, F. Long, O. Shen, B. C. Vitug, G. M. Zhang, L. Paar, H. P. Rahatlou, S. Sharma, V. Berryhill, J. W. Campagnari, C. Cunha, A. Dahmes, B. Hong, T. M. Kovalskyi, D. Richman, J. D. Beck, T. W. Eisner, A. M. Flacco, C. J. Heusch, C. A. Kroseberg, J. Lockman, W. S. Schalk, T. Schumm, B. A. Seiden, A. Wilson, M. G. Winstrom, L. O. Chen, E. Cheng, C. H. Echenard, B. Fang, F. Hitlin, D. G. Narsky, I. Piatenko, T. Porter, F. C. Andreassen, R. Mancinelli, G. Meadows, B. T. Mishra, K. Sokoloff, M. D. Blanc, F. Bloom, P. C. Ford, W. T. Hirschauer, J. F. Kreisel, A. Nagel, M. Nauenberg, U. Olivas, A. Smith, J. G. Ulmer, K. A. Wagner, S. R. Zhang, J. Ayad, R. Gabareen, A. M. Soffer, A. Toki, W. H. Wilson, R. J. Altenburg, D. D. Feltresi, E. Hauke, A. Jasper, H. Merkel, J. Petzold, A. Spaan, B. Wacker, K. Klose, V. Kobel, M. J. Lacker, H. M. Mader, W. F. Nogowski, R. Schubert, J. Schubert, K. R. Schwierz, R. Sundermann, J. E. Volk, A. Bernard, D. Bonneaud, G. R. Latour, E. Lombardo, V. Thiebaux, Ch. Verderi, M. Clark, P. J. Gradl, W. Muheim, F. Playfer, S. Robertson, A. I. Watson, J. E. Xie, Y. Andreotti, M. Bettoni, D. Bozzi, C. Calabrese, R. Cecchi, A. Cibinetto, G. Franchini, P. Luppi, E. Negrini, M. Petrella, A. Piemontese, L. Prencipe, E. Santoro, V. Anulli, F. Baldini-Ferroli, R. Calcaterra, A. De Sangro, R. Finocchiaro, G. Pacetti, S. Patteri, P. Peruzzi, I. M. Piccolo, M. Rama, M. Zallo, A. Buzzo, A. Contri, R. Lo Vetere, M. Macri, M. M. Monge, M. R. Passaggio, S. Patrignani, C. Robutti, E. Santroni, A. Tosi, S. Chaisanguanthum, K. S. Morii, M. Wu, J. Dubitzky, R. S. Marks, J. Schenk, S. Uwer, U. Bard, D. J. Dauncey, P. D. Nash, J. A. Vazquez, W. Panduro Tibbetts, M. Behera, P. K. Chai, X. Charles, M. J. Mallik, U. Cochran, J. Crawley, H. B. Dong, L. Eyges, V. Meyer, W. T. Prell, S. Rosenberg, E. I. Rubin, A. E. Gao, Y. Y. Gritsan, A. V. Guo, Z. J. Lae, C. K. Denig, A. G. Fritsch, M. Schott, G. Arnaud, N. Bequilleux, J. D'Orazio, A. Davier, M. Grosdidier, G. Hoecker, A. Lepeltier, V. Le Diberder, F. Lutz, A. M. Pruvot, S. Roudeau, P. Schune, M. H. Serrano, J. Sordini, V. Stocchi, A. Wang, W. F. Wormser, G. Lange, D. J. Wright, D. M. Bingham, I. Burke, J. P. Chavez, C. A. Fry, J. R. Gabathuler, E. Gamet, R. Hutchcroft, D. E. Payne, D. J. Schofield, K. C. Touramanis, C. Bevan, A. J. George, K. A. Di Lodovico, F. Sacco, R. Cowan, G. Flaecher, H. U. Hopkins, D. A. Paramesvaran, S. Salvatore, F. Wren, A. C. Brown, D. N. Davis, C. L. Barlow, N. R. Barlow, R. J. Chia, Y. M. Edgar, C. L. Lafferty, G. D. West, T. J. Yi, J. I. Anderson, J. Chen, C. Jawahery, A. Roberts, D. A. Simi, G. Tuggle, J. M. Dallapiccola, C. Hertzbach, S. S. Li, X. Moore, T. B. Salvati, E. Saremi, S. Cowan, R. Dujmic, D. Fisher, P. H. Koeneke, K. Sciolla, G. Spitznagel, M. Taylor, F. Yamamoto, R. K. Zhao, M. Mclachlin, S. E. Patel, P. M. Robertson, S. H. Lazzaro, A. Palombo, F. Bauer, J. M. Cremaldi, L. Eschenburg, V. Godang, R. Kroeger, R. Sanders, D. A. Summers, D. J. Zhao, H. W. Brunet, S. Cote, D. Simard, M. Taras, P. Viaud, F. B. Nicholson, H. De Nardo, G. Fabozzi, F. Lista, L. Monorchio, D. Sciacca, C. Baak, M. A. Raven, G. Snoek, H. L. Jessop, C. P. Knoepfel, K. J. LoSecco, J. M. Benelli, G. Corwin, L. A. Honscheid, K. Kagan, H. Kass, R. Morris, J. P. Rahimi, A. M. Regensburger, J. J. Sekula, S. J. Wong, Q. K. Blount, N. L. Brau, J. Frey, R. Igonkina, O. Kolb, J. A. Lu, M. Rahmat, R. Sinev, N. B. Strom, D. Strube, J. Torrence, E. Gagliardi, N. Gaz, A. Margoni, M. Morandin, M. Pompili, A. Posocco, M. Rotondo, M. Simonetto, F. Stroili, R. Voci, C. Ben-Haim, E. Briand, H. Calderini, G. Chauveau, J. David, P. Del Buono, L. de la Vaissiere, Ch. Hamon, O. Leruste, Ph. Malcles, J. Ocariz, J. Perez, A. Prendki, J. Gladney, L. Biasini, M. Covarelli, R. Manoni, E. Angelini, C. Batignani, G. Bettarini, S. Carpinelli, M. Cenci, R. Cervelli, A. Forti, F. Giorgi, M. A. Lusiani, A. Marchiori, G. Mazur, M. A. Morganti, M. Neri, N. Paoloni, E. Rizzo, G. Walsh, J. J. Biesiada, J. Lau, Y. P. Lu, C. Olsen, J. Smith, A. J. S. Telnov, A. V. Baracchini, E. Bellini, F. Cavoto, G. Del Re, D. Di Marco, E. Faccini, R. Ferrarotto, F. Ferroni, F. Gaspero, M. Jackson, P. D. Mazzoni, M. A. Morganti, S. Piredda, G. Polci, F. Renga, F. Voena, C. Ebert, M. Hartmann, T. Schroeder, H. Waldi, R. Adye, T. Castelli, G. Franek, B. Olaiya, E. O. Roethel, W. Wilson, F. F. Emery, S. Escalier, M. Gaidot, A. Ganzhur, S. F. de Monchenault, G. Hamel Kozanecki, W. Vasseur, G. Yeche, Ch. Zito, M. Chen, X. R. Liu, H. Park, W. Purohit, M. V. White, R. M. Wilson, J. R. Allen, M. T. Aston, D. Bartoldus, R. Bechtle, P. Claus, R. Coleman, J. P. Convery, M. R. Dingfelder, J. C. Dorfan, J. Dubois-Felsmann, G. P. Dunwoodie, W. Field, R. C. Glanzman, T. Gowdy, S. J. Graham, M. T. Grenier, P. Hast, C. Innes, W. R. Kaminski, J. Kelsey, M. H. Kim, H. Kim, P. Kocian, M. L. Leith, D. W. G. S. Li, S. Luitz, S. Luth, V. Lynch, H. L. MacFarlane, D. B. Marsiske, H. Messner, R. Muller, D. R. Nelson, S. O'Grady, C. P. Ofte, I. Perazzo, A. Perl, M. Pulliam, T. Ratcliff, B. N. Roodman, A. Salnikov, A. A. Schindler, R. H. Schwiening, J. Snyder, A. Su, D. Sullivan, M. K. Suzuki, K. Swain, S. K. Thompson, J. M. Va'vra, J. Wagner, A. P. Weaver, M. Wisniewski, W. J. Wittgen, M. Wright, D. H. Wulsin, H. W. Yarritu, A. K. Yi, K. Young, C. C. Ziegler, V. Burchat, P. R. Edwards, A. J. Majewski, S. A. Miyashita, T. S. Petersen, B. A. Wilden, L. Ahmed, S. Alam, M. S. Bula, R. Ernst, J. A. Pan, B. Saeed, M. A. Zain, S. B. Spanier, S. M. Wogsland, B. J. Eckmann, R. Ritchie, J. L. Ruland, A. M. Schilling, C. J. Schwitters, R. F. Izen, J. M. Lou, X. C. Ye, S. Bianchi, F. Gallo, F. Gamba, D. Pelliccioni, M. Bomben, M. Bosisio, L. Cartaro, C. Cossutti, F. Della Ricca, G. Lanceri, L. Vitale, L. Azzolini, V. Lopez-March, N. Martinez-Vidal, F. Milanes, D. A. Oyanguren, A. Albert, J. Banerjee, Sw. Bhuyan, B. Hamano, K. Kowalewski, R. Nugent, I. M. Roney, J. M. Sobie, R. J. Harrison, P. F. Ilic, J. Latham, T. E. Mohanty, G. B. Band, H. R. Chen, X. Dasu, S. Flood, K. T. Hollar, J. J. Kutter, P. E. Pan, Y. Pierini, M. Prepost, R. Wu, S. L. Neal, H. CA BABAR Collaboration TI Measurement of the B -> X-s gamma branching fraction and photon energy spectrum using the recoil method SO PHYSICAL REVIEW D LA English DT Article ID CP VIOLATION; B-DECAYS; ASYMMETRY; PHYSICS; MOMENTS AB We present a measurement of the branching fraction and photon-energy spectrum for the decay B -> X-s gamma using data from the BABAR experiment. The data sample corresponds to an integrated luminosity of 210 fb(-1), from which approximately 680 000 B (B) over bar events are tagged by a fully reconstructed hadronic decay of one of the B mesons. In the decay of the second B meson, an isolated high-energy photon is identified. We measure B(B -> X-s gamma) = (3.66 +/- 0.85(stat) +/- 0.60(syst)) x 10(-4) for photon energies E-gamma above 1.9 GeV in the B rest frame. From the measured spectrum we calculate the first and second moments for different minimum photon energies, which are used to extract the heavy-quark parameters m(b) and mu(2)(pi). In addition, measurements of the direct CP asymmetry and isospin asymmetry are presented. C1 [Aubert, B.; Bona, M.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prudent, X.; Tisserand, V.; Zghiche, A.] CNRS, IN2P3, Phys Particules Lab, F-74941 Annecy Le Vieux, France. [Aubert, B.; Bona, M.; Lees, J. P.; Poireau, V.; Prudent, X.; Tisserand, V.; Zghiche, A.] Univ Savoie, F-74941 Annecy Le Vieux, France. [Tico, J. Garra; Grauges, E.] Univ Barcelona, Fac Fis, Dept ECM, E-08028 Barcelona, Spain. [Lopez, L.; Palano, A.; Pappagallo, M.] Univ Bari, Dipartmento Fis, I-70126 Bari, Italy. [Lopez, L.; Palano, A.; Pappagallo, M.] Ist Nazl Fis Nucl, I-70126 Bari, Italy. [Eigen, G.; Stugu, B.; Sun, L.] Univ Bergen, Inst Phys, N-5007 Bergen, Norway. [Abrams, G. S.; Battaglia, M.; Brown, D. N.; Button-Shafer, J.; Cahn, R. N.; Jacobsen, R. G.; Kadyk, J. A.; Kerth, L. T.; Kolomensky, Yu. G.; Kukartsev, G.; Pegna, D. Lopes; Lynch, G.; Orimoto, T. J.; Osipenkov, I. L.; Ronan, M. T.; Tackmann, K.; Tanabe, T.; Wenzel, W. A.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Abrams, G. S.; Battaglia, M.; Brown, D. N.; Button-Shafer, J.; Cahn, R. N.; Jacobsen, R. G.; Kadyk, J. A.; Kerth, L. T.; Kolomensky, Yu. G.; Kukartsev, G.; Pegna, D. Lopes; Lynch, G.; Orimoto, T. J.; Osipenkov, I. L.; Ronan, M. T.; Tackmann, K.; Tanabe, T.; Wenzel, W. A.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Sanchez, P. del Amo; Hawkes, C. M.; Soni, N.; Watson, T.] Univ Birmingham, Birmingham B15 2TT, W Midlands, England. [Koch, H.; Schroeder, T.] Ruhr Univ Bochum, Inst Exptphys 1, D-44780 Bochum, Germany. [Walker, D.] Univ Bristol, Bristol BS8 1TL, Avon, England. [Asgeirsson, D. J.; Cuhadar-Donszelmann, T.; Fulsom, B. G.; Hearty, C.; Mattison, T. S.; McKenna, J. A.] Univ British Columbia, Vancouver, BC V6T 1Z1, Canada. [Barrett, M.; Khan, A.; Saleem, M.; Teodorescu, L.] Brunel Univ, Uxbridge UB8 3PH, Middx, England. [Blinov, V. E.; Bukin, A. D.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.] Budker Inst Nucl Phys, Novosibirsk 630090, Russia. [Bondioli, M.; Curry, S.; Eschrich, I.; Kirkby, D.; Lankford, A. J.; Lund, P.; Mandelkern, M.; Martin, E. C.; Stoker, D. P.] Univ Calif Irvine, Irvine, CA 92697 USA. [Abachi, S.; Buchanan, C.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Gary, J. W.; Liu, F.; Long, O.; Shen, B. C.; Vitug, G. M.; Zhang, L.] Univ Calif Riverside, Riverside, CA 92521 USA. [Paar, H. P.; Rahatlou, S.; Sharma, V.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Berryhill, J. W.; Campagnari, C.; Cunha, A.; Dahmes, B.; Hong, T. M.; Kovalskyi, D.; Richman, J. D.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Beck, T. W.; Eisner, A. M.; Flacco, C. J.; Heusch, C. A.; Kroseberg, J.; Lockman, W. S.; Schalk, T.; Schumm, B. A.; Seiden, A.; Wilson, M. G.; Winstrom, L. O.] Univ Calif Santa Cruz, Inst Particle Phys, Santa Cruz, CA 95064 USA. [Chen, E.; Cheng, C. H.; Echenard, B.; Fang, F.; Hitlin, D. G.; Narsky, I.; Piatenko, T.; Porter, F. C.] CALTECH, Pasadena, CA 91125 USA. [Mancinelli, G.; Meadows, B. T.; Mishra, K.; Sokoloff, M. D.] Univ Cincinnati, Cincinnati, OH 45221 USA. [Mancinelli, G.; Blanc, F.; Bloom, P. C.; Ford, W. T.; Hirschauer, J. F.; Kreisel, A.; Nagel, M.; Nauenberg, U.; Olivas, A.; Smith, J. G.; Ulmer, K. A.; Wagner, S. R.; Zhang, J.] Univ Colorado, Boulder, CO 80309 USA. [Stoker, D. P.; Ayad, R.; Soffer, A.; Toki, W. H.; Wilson, R. J.] Colorado State Univ, Ft Collins, CO 80523 USA. [Altenburg, D. D.; Feltresi, E.; Hauke, A.; Jasper, H.; Petzold, A.; Spaan, B.; Wacker, K.; Summers, D. J.] Univ Dortmund, Inst Phys, D-44221 Dortmund, Germany. [Klose, V.; Kobel, M. J.; Lacker, H. M.; Mader, W. F.; Nogowski, R.; Schubert, J.; Schubert, K. R.; Schwierz, R.; Sundermann, J. E.; Volk, A.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. [Bernard, D.; Bonneaud, G. R.; Latour, E.; Lombardo, V.; Thiebaux, Ch.; Verderi, M.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Clark, P. J.; Gradl, W.; Muheim, F.; Playfer, S.; Robertson, A. I.; Watson, J. E.; Xie, Y.] Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. [Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Franchini, P.; Luppi, E.; Negrini, M.; Petrella, A.; Piemontese, L.; Prencipe, E.; Santoro, V.] Univ Ferrara, Dipartmento Fis, I-44100 Ferrara, Italy. [Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Franchini, P.; Luppi, E.; Negrini, M.; Petrella, A.; Piemontese, L.; Prencipe, E.; Santoro, V.] Ist Nazl Fis Nucl, I-44100 Ferrara, Italy. [Anulli, F.; Baldini-Ferroli, R.; Calcaterra, A.; De Sangro, R.; Finocchiaro, G.; Pacetti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; Zallo, A.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Buzzo, A.; Contri, R.; Lo Vetere, M.; Macri, M. M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Santroni, A.; Tosi, S.] Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy. [Buzzo, A.; Contri, R.; Lo Vetere, M.; Macri, M. M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Santroni, A.; Tosi, S.] Ist Nazl Fis Nucl, I-16146 Genoa, Italy. [Chaisanguanthum, K. S.; Morii, M.; Wu, J.] Harvard Univ, Cambridge, MA 02138 USA. [Dubitzky, R. S.; Marks, J.; Schenk, S.; Uwer, U.] Heidelberg Univ, Inst Phys, D-69120 Heidelberg, Germany. [Bard, D. J.; Dauncey, P. D.; Nash, J. A.; Vazquez, W. Panduro; Tibbetts, M.] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. [Behera, P. K.; Chai, X.; Charles, M. J.; Mallik, U.] Univ Iowa, Iowa City, IA 52242 USA. [Cochran, J.; Crawley, H. B.; Dong, L.; Eyges, V.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Rubin, A. E.] Iowa State Univ, Ames, IA 50011 USA. [Gao, Y. Y.; Gritsan, A. V.; Guo, Z. J.; Lae, C. K.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Denig, A. G.; Fritsch, M.; Schott, G.] Univ Karlsruhe, Inst Expt Kernphys, D-76021 Karlsruhe, Germany. [Arnaud, N.; Bequilleux, J.; D'Orazio, A.; Davier, M.; Grosdidier, G.; Hoecker, A.; Lepeltier, V.; Le Diberder, F.; Lutz, A. M.; Pruvot, S.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wang, W. F.; Wormser, G.] CNRS, IN2P3, Lab Accelerateur Lineaire, F-91898 Orsay, France. [Lange, D. J.; Wright, D. M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Bingham, I.; Burke, J. P.; Chavez, C. A.; Fry, J. R.; Gabathuler, E.; Gamet, R.; Hutchcroft, D. E.; Payne, D. J.; Schofield, K. C.; Touramanis, C.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Bevan, A. J.; George, K. A.; Di Lodovico, F.; Sacco, R.] Univ London, London E1 4NS, England. [Cowan, G.; Flaecher, H. U.; Hopkins, D. A.; Paramesvaran, S.; Salvatore, F.; Wren, A. C.] Univ London Royal Holloway & Bedford New Coll, Egham TW20 0EX, Surrey, England. [Brown, D. N.; Davis, C. L.] Univ Louisville, Louisville, KY 40292 USA. [Barlow, N. R.; Barlow, R. J.; Chia, Y. M.; Edgar, C. L.; Lafferty, G. D.; West, T. J.; Yi, J. I.] Univ Manchester, Manchester M13 9PL, Lancs, England. [Anderson, J.; Chen, C.; Jawahery, A.; Roberts, D. A.; Simi, G.; Tuggle, J. M.] Univ Maryland, College Pk, MD 20742 USA. [Dallapiccola, C.; Hertzbach, S. S.; Li, X.; Moore, T. B.; Salvati, E.; Saremi, S.] Univ Massachusetts, Amherst, MA 01003 USA. [Cowan, R.; Dujmic, D.; Fisher, P. H.; Koeneke, K.; Sciolla, G.; Spitznagel, M.; Taylor, F.; Yamamoto, R. K.; Zhao, M.] MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. [Mclachlin, S. E.; Patel, P. M.; Robertson, S. H.] McGill Univ, Montreal, PQ H3A 2T8, Canada. [Lazzaro, A.; Palombo, F.] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. [Lazzaro, A.; Palombo, F.] Ist Nazl Fis Nucl, I-20133 Milan, Italy. [Brunet, S.; Cote, D.; Simard, M.; Taras, P.; Viaud, F. B.] Univ Montreal, Montreal, PQ H3C 3J7, Canada. [Bauer, J. M.; Cremaldi, L.; Eschenburg, V.; Godang, R.; Kroeger, R.; Sanders, D. A.; Summers, D. J.; Zhao, H. W.] Univ Mississippi, University, MS 38677 USA. [Nicholson, H.] Mt Holyoke Coll, S Hadley, MA 01075 USA. [De Nardo, G.; Fabozzi, F.; Lista, L.; Monorchio, D.; Sciacca, C.] Univ Napoli Federico II, Dipartimento Sci Fisiche, I-80126 Naples, Italy. [De Nardo, G.; Fabozzi, F.; Lista, L.; Monorchio, D.; Sciacca, C.] Ist Nazl Fis Nucl, I-80126 Naples, Italy. [Baak, M. A.; Raven, G.; Snoek, H. L.] Natl Inst Nucl & High Energy Phys, NIKHEF, NL-1009 DB Amsterdam, Netherlands. [Jessop, C. P.; Knoepfel, K. J.; LoSecco, J. M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Corwin, L. A.; Honscheid, K.; Kagan, H.; Kass, R.; Morris, J. P.; Rahimi, A. M.; Regensburger, J. J.; Sekula, S. J.; Wong, Q. K.] Ohio State Univ, Columbus, OH 43210 USA. [Blount, N. L.; Brau, J.; Frey, R.; Igonkina, O.; Kolb, J. A.; Lu, M.; Rahmat, R.; Sinev, N. B.; Strom, D.; Strube, J.; Torrence, E.] Univ Oregon, Eugene, OR 97403 USA. [Gagliardi, N.; Gaz, A.; Margoni, M.; Morandin, M.; Pompili, A.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.; Voci, C.] Univ Padua, Dipartimento Fis, I-35131 Padua, Italy. [Gagliardi, N.; Gaz, A.; Margoni, M.; Morandin, M.; Pompili, A.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.; Voci, C.] Ist Nazl Fis Nucl, I-35131 Padua, Italy. [Ben-Haim, E.; Briand, H.; Calderini, G.; Chauveau, J.; David, P.; Del Buono, L.; de la Vaissiere, Ch.; Hamon, O.; Leruste, Ph.; Malcles, J.; Ocariz, J.; Perez, A.; Prendki, J.] Univ Denis Diderot Paris 7, Univ Paris 06, CNRS,IN2P3, Lab Phys Nucl & Hautes Energies, F-75252 Paris, France. [Gladney, L.] Univ Penn, Philadelphia, PA 19104 USA. [Covarelli, R.; Manoni, E.] Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. [Biasini, M.; Covarelli, R.; Manoni, E.] Ist Nazl Fis Nucl, I-06100 Perugia, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Cenci, R.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Marchiori, G.; Mazur, M. A.; Morganti, M.; Neri, N.; Paoloni, E.; Rizzo, G.; Walsh, J. J.] Univ Pisa, Dipartimento Fis, Scoula Normal Super, I-56127 Pisa, Italy. [Manoni, E.; Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Cenci, R.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Marchiori, G.; Mazur, M. A.; Neri, N.; Paoloni, E.; Rizzo, G.; Walsh, J. J.; Morganti, S.] Ist Nazl Fis Nucl, I-56127 Pisa, Italy. [Biesiada, J.; Lau, Y. P.; Lu, C.; Olsen, J.; Smith, A. J. S.; Telnov, A. V.] Princeton Univ, Princeton, NJ 08544 USA. [Baracchini, E.; Bellini, F.; Cavoto, G.; Del Re, D.; Di Marco, E.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Jackson, P. D.; Mazzoni, M. A.; Morganti, S.; Piredda, G.; Polci, F.; Renga, F.; Voena, C.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Baracchini, E.; Bellini, F.; Cavoto, G.; Del Re, D.; Di Marco, E.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Jackson, P. D.; Mazzoni, M. A.; Morganti, S.; Piredda, G.; Polci, F.; Renga, F.; Voena, C.] Ist Nazl Fis Nucl, I-00185 Rome, Italy. [Hartmann, T.; Schroeder, H.; Waldi, R.] Univ Rostock, D-18051 Rostock, Germany. [Adye, T.; Castelli, G.; Franek, B.; Olaiya, E. O.; Roethel, W.; Wilson, F. F.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Emery, S.; Escalier, M.; Gaidot, A.; Ganzhur, S. F.; de Monchenault, G. Hamel; Kozanecki, W.; Vasseur, G.; Yeche, Ch.; Zito, M.] CEA Saclay, DSM Dapnia, F-91191 Gif Sur Yvette, France. [Chen, X. R.; Liu, H.; Park, W.; Purohit, M. V.; White, R. M.; Wilson, J. R.] Univ S Carolina, Columbia, SC 29208 USA. [Allen, M. T.; Aston, D.; Bartoldus, R.; Bechtle, P.; Claus, R.; Coleman, J. P.; Convery, M. R.; Dingfelder, J. C.; Dorfan, J.; Dubois-Felsmann, G. P.; Dunwoodie, W.; Field, R. C.; Glanzman, T.; Gowdy, S. J.; Graham, M. T.; Grenier, P.; Hast, C.; Innes, W. R.; Kaminski, J.; Kelsey, M. H.; Kim, H.; Kim, P.; Kocian, M. L.; Leith, D. W. G. S.; Li, S.; Luitz, S.; Luth, V.; Lynch, H. L.; MacFarlane, D. B.; Marsiske, H.; Messner, R.; Roodman, A.; Salnikov, A. A.; Va'vra, J.; Wagner, A. P.; Weaver, M.; Wisniewski, W. J.; Wittgen, M.; Wright, D. H.; Wulsin, H. W.; Yarritu, A. K.; Yi, K.; Young, C. C.; Ziegler, V.] Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. [Burchat, P. R.; Edwards, A. J.; Majewski, S. A.; Miyashita, T. S.; Petersen, B. A.; Wilden, L.] Stanford Univ, Stanford, CA 94305 USA. [Ahmed, S.; Alam, M. S.; Bula, R.; Ernst, J. A.; Pan, B.; Saeed, M. A.; Zain, S. B.] SUNY Albany, Albany, NY 12222 USA. [Spanier, S. M.; Wogsland, B. J.] Univ Tennessee, Knoxville, TN 37996 USA. [Eckmann, R.; Ritchie, J. L.; Ruland, A. M.; Schilling, C. J.; Schwitters, R. F.] Univ Texas Austin, Austin, TX 78712 USA. [Izen, J. M.; Lou, X. C.; Ye, S.] Univ Texas Dallas, Richardson, TX 75083 USA. [Bianchi, F.; Gallo, F.; Gamba, D.; Pelliccioni, M.] Univ Turin, Dipartimento Fis Sperimentale, I-10125 Turin, Italy. [Bianchi, F.; Gallo, F.; Gamba, D.; Pelliccioni, M.] Ist Nazl Fis Nucl, I-10125 Turin, Italy. [Bomben, M.; Bosisio, L.; Cartaro, C.; Cossutti, F.; Della Ricca, G.; Lanceri, L.; Vitale, L.] Univ Trieste, Dipartmento Fis, I-34127 Trieste, Italy. [Bomben, M.; Bosisio, L.; Cartaro, C.; Cossutti, F.; Della Ricca, G.; Lanceri, L.; Vitale, L.] Ist Nazl Fis Nucl, I-34127 Trieste, Italy. [Azzolini, V.; Lopez-March, N.; Martinez-Vidal, F.; Milanes, D. A.; Oyanguren, A.] Univ Valencia, CSIC, IFIC, E-46071 Valencia, Spain. [Albert, J.; Banerjee, Sw.; Bhuyan, B.; Hamano, K.; Kowalewski, R.; Nugent, I. M.; Roney, J. M.; Sobie, R. J.] Univ Victoria, Victoria, BC V8W 3P6, Canada. [Harrison, P. F.; Ilic, J.; Latham, T. E.; Mohanty, G. B.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Band, H. R.; Chen, X.; Dasu, S.; Flood, K. T.; Hollar, J. J.; Kutter, P. E.; Pan, Y.; Pierini, M.; Prepost, R.; Wu, S. L.] Univ Wisconsin, Madison, WI 53706 USA. [Neal, H.] Yale Univ, New Haven, CT 06511 USA. [Peruzzi, I. M.] Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. [Fabozzi, F.] Univ Basilicata, I-85100 Potenza, Italy. [Carpinelli, M.] Univ Sassari, I-07100 Sassari, Italy. RP Aubert, B (reprint author), CNRS, IN2P3, Phys Particules Lab, F-74941 Annecy Le Vieux, France. RI Rizzo, Giuliana/A-8516-2015; Della Ricca, Giuseppe/B-6826-2013; Forti, Francesco/H-3035-2011; Lista, Luca/C-5719-2008; Bellini, Fabio/D-1055-2009; Negrini, Matteo/C-8906-2014; Monge, Maria Roberta/G-9127-2012; Oyanguren, Arantza/K-6454-2014; Patrignani, Claudia/C-5223-2009; Saeed, Mohammad Alam/J-7455-2012; de Sangro, Riccardo/J-2901-2012; Rotondo, Marcello/I-6043-2012; Neri, Nicola/G-3991-2012; Frey, Raymond/E-2830-2016; dong, liaoyuan/A-5093-2015; Luppi, Eleonora/A-4902-2015; White, Ryan/E-2979-2015; Calabrese, Roberto/G-4405-2015; Martinez Vidal, F*/L-7563-2014; Kolomensky, Yury/I-3510-2015; Lo Vetere, Maurizio/J-5049-2012; Lusiani, Alberto/N-2976-2015; Morandin, Mauro/A-3308-2016; Lusiani, Alberto/A-3329-2016; Di Lodovico, Francesca/L-9109-2016; Pappagallo, Marco/R-3305-2016; Calcaterra, Alessandro/P-5260-2015 OI Covarelli, Roberto/0000-0003-1216-5235; Rizzo, Giuliana/0000-0003-1788-2866; Paoloni, Eugenio/0000-0001-5969-8712; Lanceri, Livio/0000-0001-8220-3095; Carpinelli, Massimo/0000-0002-8205-930X; Sciacca, Crisostomo/0000-0002-8412-4072; Lafferty, George/0000-0003-0658-4919; Faccini, Riccardo/0000-0003-2613-5141; Strube, Jan/0000-0001-7470-9301; Raven, Gerhard/0000-0002-2897-5323; Della Ricca, Giuseppe/0000-0003-2831-6982; Forti, Francesco/0000-0001-6535-7965; Bellini, Fabio/0000-0002-2936-660X; Negrini, Matteo/0000-0003-0101-6963; Monge, Maria Roberta/0000-0003-1633-3195; Oyanguren, Arantza/0000-0002-8240-7300; Patrignani, Claudia/0000-0002-5882-1747; Saeed, Mohammad Alam/0000-0002-3529-9255; de Sangro, Riccardo/0000-0002-3808-5455; Rotondo, Marcello/0000-0001-5704-6163; Neri, Nicola/0000-0002-6106-3756; Frey, Raymond/0000-0003-0341-2636; Bettarini, Stefano/0000-0001-7742-2998; Cibinetto, Gianluigi/0000-0002-3491-6231; Hamel de Monchenault, Gautier/0000-0002-3872-3592; dong, liaoyuan/0000-0002-4773-5050; Pacetti, Simone/0000-0002-6385-3508; Luppi, Eleonora/0000-0002-1072-5633; White, Ryan/0000-0003-3589-5900; Calabrese, Roberto/0000-0002-1354-5400; Martinez Vidal, F*/0000-0001-6841-6035; Kolomensky, Yury/0000-0001-8496-9975; Lo Vetere, Maurizio/0000-0002-6520-4480; Lusiani, Alberto/0000-0002-6876-3288; Morandin, Mauro/0000-0003-4708-4240; Lusiani, Alberto/0000-0002-6876-3288; Di Lodovico, Francesca/0000-0003-3952-2175; Pappagallo, Marco/0000-0001-7601-5602; Calcaterra, Alessandro/0000-0003-2670-4826 NR 31 TC 15 Z9 15 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD MAR PY 2008 VL 77 IS 5 AR 051103 DI 10.1103/PhysRevD.77.051103 PG 8 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 282CC UT WOS:000254544200003 ER PT J AU Barnes, T Li, X Roberts, W AF Barnes, T. Li, X. Roberts, W. TI Evidence for a J/psi p(p)over-bar Pauli strong coupling? SO PHYSICAL REVIEW D LA English DT Article ID DECAYS; BARYON; SPIN AB The couplings of charmonia and charmonium hybrids (generically psi) to p (p) over bar are of great interest in view of future plans to study these states using an antiproton storage ring at GSI. These low to moderate energy psi p (p) over bar couplings are not well understood theoretically, and currently must be determined from experiment. In this paper we note that the two independent Dirac (gamma(mu)) and Pauli (sigma(mu nu)) p (p) over bar couplings of the J/psi and psi' can be constrained by the angular distribution of e(+)e(-) --> (J/psi, psi') --> p (p) over bar on resonance. A comparison of our theoretical results to recent unpolarized data allows estimates of the p (p) over bar couplings; in the better determined J/psi case the data is inconsistent with a pure Dirac (gamma(mu)) coupling, and can be explained by the presence of a sigma(mu nu) term. This Pauli coupling may significantly affect the cross section of the PANDA process p (p) over bar --> pi(0) J/psi near threshold. There is a phase ambiguity that makes it impossible to uniquely determine the magnitudes and relative phase of the Dirac and Pauli couplings from the unpolarized angular distributions alone; we show in detail how this can be resolved through a study of the polarized reactions. C1 [Barnes, T.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. [Barnes, T.; Li, X.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Roberts, W.] Florida State Univ, Dept Phys & Astron, Tallahassee, FL 32306 USA. RP Barnes, T (reprint author), Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. EM tbarnes@utk.edu; xli22@utk.edu; wroberts@fsu.edu RI Li, Xiaoguang/F-5135-2010 NR 18 TC 8 Z9 8 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD MAR PY 2008 VL 77 IS 5 AR 056001 DI 10.1103/PhysRevD.77.056001 PG 7 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 282CC UT WOS:000254544200078 ER PT J AU Berger, EL Block, MM Mckay, DW Tan, CI AF Berger, Edmond L. Block, Martin M. Mckay, Douglas W. Tan, Chung-I TI Ultrahigh energy neutrino scattering SO PHYSICAL REVIEW D LA English DT Article ID CROSS-SECTION; TELESCOPE; QCD AB Estimates are made of ultrahigh energy neutrino cross sections based on an extrapolation to very small Bjorken x of the logarithmic Froissart dependence in x shown previously to provide an excellent fit to the measured proton structure function F(2)(p)(x, Q(2)) over a broad range of the virtuality Q(2). Expressions are obtained for both the neutral current and the charged current cross sections. Comparison with an extrapolation based on perturbative QCD shows good agreement for energies where both fit data, but our rates are as much as a factor of 10 smaller for neutrino energies above 10(9) GeV, with important implications for experiments searching for extragalactic neutrinos. C1 [Berger, Edmond L.] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Block, Martin M.] Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA. [Mckay, Douglas W.] Univ Kansas, Dept Phys & Astron, Lawrence, KS 66045 USA. [Tan, Chung-I] Brown Univ, Dept Phys, Providence, RI 02912 USA. RP Berger, EL (reprint author), Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. NR 36 TC 15 Z9 15 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD MAR PY 2008 VL 77 IS 5 AR 053007 DI 10.1103/PhysRevD.77.053007 PG 5 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 282CC UT WOS:000254544200018 ER PT J AU Brodsky, SJ de Teramond, GF AF Brodsky, Stanley J. de Teramond, Guy F. TI Light-front dynamics and AdS/QCD correspondence: The pion form factor in the space- and time-like regions SO PHYSICAL REVIEW D LA English DT Review ID PERTURBATIVE QUANTUM CHROMODYNAMICS; WAVE-FUNCTION REPRESENTATION; VIRTUAL COMPTON-SCATTERING; LANDAU GAUGE QCD; ADS/CFT CORRESPONDENCE; EXCLUSIVE PROCESSES; HIGH-ENERGY; MOMENTUM; SUPERGRAVITY; THRESHOLD AB The AdS/CFT correspondence between string theory in AdS space and conformal field theories in physical space-time leads to an analytic, semiclassical model for strongly-coupled QCD which has scale invariance and dimensional counting at short distances and color confinement at large distances. The AdS/CFT correspondence also provides insights into the inherently nonperturbative aspects of QCD such as the orbital and radial spectra of hadrons and the form of hadronic wavefunctions. In particular, we show that there is an exact correspondence between the fifth-dimensional coordinate of anti-de Sitter (AdS) space z and a specific light-front impact variable zeta which measures the separation of the quark and gluonic constituents within the hadron in ordinary space-time. This connection allows one to compute the analytic form of the frame-independent light-front wavefunctions of mesons and baryons, the fundamental entities which encode hadron properties and which allow the computation of decay constants, form factors and other exclusive scattering amplitudes. Relativistic light-front equations in ordinary space-time are found which reproduce the results obtained using the fifth-dimensional theory. As specific examples we compute the pion coupling constant f(pi), the pion charge radius < r(pi)(2)> and examine the propagation of the electromagnetic current in AdS space, which determines the space and timelike behavior of the pion form factor and the pole of the rho meson. C1 [Brodsky, Stanley J.] Stanford Univ, Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. [de Teramond, Guy F.] Univ Costa Rica, San Jose, Costa Rica. RP Brodsky, SJ (reprint author), Stanford Univ, Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. NR 102 TC 236 Z9 237 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD MAR PY 2008 VL 77 IS 5 AR 056007 DI 10.1103/PhysRevD.77.056007 PG 20 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 282CC UT WOS:000254544200084 ER PT J AU DeWolfe, O Kachru, S Mulligan, M AF DeWolfe, Oliver Kachru, Shamit Mulligan, Michael TI Gravity dual of metastable dynamical supersymmetry breaking SO PHYSICAL REVIEW D LA English DT Article ID CONFORMAL FIELD-THEORIES; SOFT; ORIENTIFOLDS; TERMS AB Metastable, supersymmetry-breaking configurations can be created in flux geometries by placing antibranes in warped throats. Via gauge/gravity duality, such configurations should have an interpretation as supersymmetry-breaking states in the dual field theory. In this paper, we perturbatively determine the asymptotic supergravity solutions corresponding to (D3) over bar -brane probes placed at the tip of the cascading warped deformed conifold geometry, which is dual to an SU (N+M) X SU(N) gauge theory. The backreaction of the antibranes has the effect of introducing imaginary anti-self-dual flux, squashing the compact part of the space and forcing the dilaton to run. Using the generalization of holographic renormalization to cascading geometries, we determine the expectation values of operators in the dual field theory in terms of the asymptotic values of the supergravity fields. C1 [DeWolfe, Oliver] Univ Colorado, Dept Phys, Boulder, CO 80309 USA. [Kachru, Shamit; Mulligan, Michael] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Kachru, Shamit; Mulligan, Michael] Stanford Univ, SLAC, Stanford, CA 94305 USA. RP DeWolfe, O (reprint author), Univ Colorado, Dept Phys, 390 UCB, Boulder, CO 80309 USA. NR 46 TC 60 Z9 60 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD MAR PY 2008 VL 77 IS 6 AR 065011 DI 10.1103/PhysRevD.77.065011 PG 17 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 282CF UT WOS:000254544500098 ER PT J AU Dodelson, S Hooper, D Serpico, PD AF Dodelson, Scott Hooper, Dan Serpico, Pasquale D. TI Extracting the gamma ray signal from dark matter annihilation in the galactic center region SO PHYSICAL REVIEW D LA English DT Article ID NEUTRALINO ANNIHILATION; BLACK-HOLE; HALOS; RADIATION; DIRECTION; GALAXIES; SKY AB The GLAST satellite mission will study the gamma ray sky with considerably greater exposure than its predecessor EGRET. In addition, it will be capable of measuring the arrival directions of gamma rays with much greater precision. These features each significantly enhance GLAST's potential for identifying gamma rays produced in the annihilations of dark matter particles. The combined use of spectral and angular information, however, is essential if the full sensitivity of GLAST to dark matter is to be exploited. In this paper, we discuss the separation of dark matter annihilation products from astrophysical backgrounds, focusing on the galactic center region, and perform a forecast for such an analysis. We consider both pointlike and diffuse astrophysical backgrounds and model them using a point-spread-function for GLAST. While the results of our study depend on the specific characteristics of the dark matter signal and astrophysical backgrounds, we find that in many scenarios it is possible to successfully identify dark matter annihilation radiation, even in the presence of significant astrophysical backgrounds. C1 [Dodelson, Scott; Hooper, Dan; Serpico, Pasquale D.] Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, Batavia, IL 60510 USA. [Dodelson, Scott] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. RP Dodelson, S (reprint author), Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, POB 500, Batavia, IL 60510 USA. NR 66 TC 46 Z9 46 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD MAR PY 2008 VL 77 IS 6 AR 063512 DI 10.1103/PhysRevD.77.063512 PG 9 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 282CF UT WOS:000254544500030 ER PT J AU Gronau, M Pirjol, D Soni, A Zupan, J AF Gronau, Michael Pirjol, Dan Soni, Amarjit Zupan, Jure TI Constraint on (rho)over-bar, (eta)over-bar from B -> K*pi SO PHYSICAL REVIEW D LA English DT Article ID QCD FACTORIZATION; CP VIOLATION; WEAK PHASE; DECAYS; EXTRACTION; MATRIX AB A linear relation between Cabibbo-Kobayashi-Maskawa (CKM) quark-mixing parameters, (eta) over bar = tan Phi(3/2) ((rho) over bar- 0.24 +/- 0.03), involving a 1 sigma range for Phi(3/2), 20 degrees < Phi(3/2) < 115 degrees, is obtained from B(0) --> K*pi amplitudes measured recently in Dalitz plot analyses of B(0) --> K(+)pi(-) pi(0) and B(0)(t) --> K(S) pi(+)pi(-). This relation is consistent within the large error on Phi(3/2) with other CKM constraints. We discuss the high sensitivity of this method to a new physics contribution in the Delta S = Delta I = 1 amplitude. C1 [Gronau, Michael] Stanford Univ, Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. [Pirjol, Dan] Natl Inst Phys & Nucl Engn, Dept Particle Phys, Bucharest 077125, Romania. [Soni, Amarjit] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Zupan, Jure] CERN, Dept Phys, Div Theory, CH-1211 Geneva, Switzerland. [Zupan, Jure] Univ Ljubljana, Fac Math & Phys, Ljubljana 1000, Slovenia. [Zupan, Jure] J Stefan Inst, Ljubljana 1001, Slovenia. RP Gronau, M (reprint author), Stanford Univ, Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. NR 28 TC 12 Z9 12 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD MAR PY 2008 VL 77 IS 5 AR 057504 DI 10.1103/PhysRevD.77.057504 PG 4 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 282CC UT WOS:000254544200093 ER PT J AU Horava, P Keeler, CA AF Horava, Petr Keeler, Cynthia A. TI M theory through the looking glass: Tachyon condensation in the E-8 heterotic string SO PHYSICAL REVIEW D LA English DT Article ID CONFORMAL FIELD-THEORY; MODELS; DIMENSIONS; DYNAMICS AB We study the spacetime decay to nothing in string theory and M-theory. First we recall a non-supersymmetric version of heterotic M-theory, in which bubbles of nothing-connecting the two E-8 boundaries by a throat-are expected to be nucleated. We argue that the fate of this system should be addressed at weak string coupling, where the nonperturbative instanton instability is expected to turn into a perturbative tachyonic one. We identify the unique string theory that could describe this process: The heterotic model with one E-8 gauge group and a singlet tachyon. We then use world sheet methods to study the tachyon condensation in the Neveu-Schwarz-Ramond formulation of this model, and show that it induces a world sheet super-Higgs effect. The main theme of our analysis is the possibility of making meaningful alternative gauge choices for world sheet supersymmetry, in place of the conventional superconformal gauge. We show in a version of unitary gauge how the world sheet gravitino assimilates the Goldstino and becomes dynamical. This picture clarifies recent results of Hellerman and Swanson. We also present analogs of R-xi gauges, and note the importance of logarithmic conformal field theories in the context of tachyon condensation. C1 [Horava, Petr] Univ Calif Berkeley, Berkeley Ctr Theoret Phys, Berkeley, CA 94720 USA. Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Div Phys, Berkeley, CA 94720 USA. RP Horava, P (reprint author), Univ Calif Berkeley, Berkeley Ctr Theoret Phys, Berkeley, CA 94720 USA. NR 35 TC 5 Z9 5 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD MAR PY 2008 VL 77 IS 6 AR 066013 DI 10.1103/PhysRevD.77.066013 PG 19 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 282CF UT WOS:000254544500128 ER PT J AU Schienbein, I Yu, JY Keppel, C Morfin, JG Olness, F Owens, JF AF Schienbein, I. Yu, J. Y. Keppel, C. Morfin, J. G. Olness, F. Owens, J. F. TI Nuclear parton distribution functions from neutrino deep inelastic scattering SO PHYSICAL REVIEW D LA English DT Article ID CHARGE-SYMMETRY VIOLATION; XF(3) STRUCTURE-FUNCTION; ELECTRON-SCATTERING; MUON SCATTERING; HEAVY QUARKS; IRON TARGETS; QCD ANALYSIS; CCFR DATA; DEPENDENCE; LEPTOPRODUCTION AB We study nuclear effects in charged current deep inelastic neutrino- iron scattering in the framework of a X(2) analysis of parton distribution functions ( PDFs). We extract a set of iron PDFs and show that under reasonable assumptions it is possible to constrain the valence, light sea, and strange quark distributions. Our iron PDFs are used to compute x(Bj)- dependent and Q(2)- dependent nuclear correction factors for iron structure functions which are required in global analyses of free nucleon PDFs. We compare our results with nuclear correction factors from neutrino- nucleus scattering models and correction factors for l(+/-) -iron scattering. We find that, except for very high x(Bj), our correction factors differ in both shape and magnitude from the correction factors of the models and charged- lepton scattering. C1 [Schienbein, I.; Yu, J. Y.; Olness, F.; Owens, J. F.] So Methodist Univ, Dallas, TX 75206 USA. [Schienbein, I.] Univ Grenoble 1, Lab Phys Subatom & Cosmol, CNRS IN2P3, Inst Natl Polytech Grenoble, F-38026 St Martin Dheres, France. [Keppel, C.] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23602 USA. [Keppel, C.] Hampton Univ, Hampton, VA 23668 USA. [Morfin, J. G.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Owens, J. F.] Florida State Univ, Tallahassee, FL 32306 USA. [Olness, F.] CERN, Div Theoret Phys, Dept Phys, CH-1211 Geneva, Switzerland. RP Schienbein, I (reprint author), So Methodist Univ, Dallas, TX 75206 USA. EM schien@lpsc.in2p3.fr; yu@physics.smu.edu; keppel@jlab.org; morfin@fnal.gov; olness@smu.edu; owens@hep.fsu.edu NR 57 TC 58 Z9 58 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD MAR PY 2008 VL 77 IS 5 AR 054013 DI 10.1103/PhysRevD.77.054013 PG 14 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 282CC UT WOS:000254544200038 ER PT J AU Simet, M Hooper, D Serpico, PD AF Simet, Melanie Hooper, Dan Serpico, Pasquale D. TI MilkyWay as a kiloparsec-scale axionscope SO PHYSICAL REVIEW D LA English DT Article ID GALACTIC MAGNETIC-FIELD; ENERGY COSMIC-RAYS; VHE GAMMA-RAYS; EXTRAGALACTIC BACKGROUND LIGHT; PKS 2155-304; SN 1987A; DISCOVERY; HESS; TELESCOPE; RADIATION AB Very high energy gamma rays are expected to be absorbed by the extragalactic background light over cosmological distances via the process of electron-positron pair production. Recent observations of cosmologically distant gamma-ray emitters by ground based gamma-ray telescopes have, however, revealed a surprising degree of transparency of the universe to very high energy photons. One possible mechanism to explain this observation is the oscillation between photons and axionlike particles (ALPs). Here we explore this possibility further, focusing on photon-ALP conversion in the magnetic fields in and around gamma-ray sources and in the magnetic field of the Milky Way, where some fraction of the ALP flux is converted back into photons. We show that this mechanism can be efficient in allowed regions of the ALP parameter space, as well as in typical configurations of the galactic magnetic field. As case examples, we consider the spectrum observed from two HESS sources: 1ES1101-232 at redshift z = 0.186 and H 2356-309 at z = 0.165. We also discuss features of this scenario which could be used to distinguish it from standard or other exotic models. C1 [Simet, Melanie] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [Hooper, Dan; Serpico, Pasquale D.] Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, Batavia, IL 60510 USA. RP Simet, M (reprint author), Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. RI Simet, Melanie/A-3415-2016 OI Simet, Melanie/0000-0001-8823-8926 NR 48 TC 74 Z9 74 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD MAR PY 2008 VL 77 IS 6 AR 063001 DI 10.1103/PhysRevD.77.063001 PG 7 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 282CF UT WOS:000254544500011 ER PT J AU Suzuki, M AF Suzuki, Mahiko TI Inelastic final-state interaction SO PHYSICAL REVIEW D LA English DT Article ID DECAYS; PHYSICS; PHASES; QUARK AB The final- state interaction in multichannel decay processes is systematically studied in the hadronic picture with application to B decay in mind. Since the final- state interaction is intrinsically interwoven with the decay interaction in this case, no simple phase theorem like " Watson's theorem'' holds for experimentally observed final states. We first solve exactly the two- channel problem as a toy model in order to clarify the issues. The constraints of the two- channel approximation turns out to be too stringent for most B decay modes, but realistic multichannel problems are too complex for useful quantitative analysis at present. To alleviate the stringent constraints of the two- body problem and to cope with complexity beyond it, we introduce a method of approximation that is applicable to the case where one prominent inelastic channel dominates over all others. We illustrate this approximation method with the amplitude of the decay B -> K pi fed by the intermediate states of a charmed- meson pair. Even with our approximation we need more accurate information of strong interactions than we have now. Nonetheless we are able to obtain some insight in the issue and draw useful conclusions on general features on the strong phases. C1 [Suzuki, Mahiko] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Suzuki, Mahiko] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Suzuki, M (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. NR 30 TC 2 Z9 2 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD MAR PY 2008 VL 77 IS 5 AR 054021 DI 10.1103/PhysRevD.77.054021 PG 13 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 282CC UT WOS:000254544200046 ER PT J AU Trueman, TL AF Trueman, T. L. TI Spin asymmetries for elastic proton scattering and the spin-dependent couplings of the Pomeron SO PHYSICAL REVIEW D LA English DT Article ID HIGH-ENERGY SCATTERING; HADRONIC INTERFERENCE; CROSS-SECTIONS; JET TARGET; POLARIZATION; NUCLEI; AMPLITUDES; MODEL; PP AB This paper serves as a report on the large amount of analysis done in conjunction with the polarized proton program at the Relavitistic Heavy Ion Collider at Brookhaven National Laboratory. This comprises elastic scattering data of protons on protons in colliding beam or fixed target mode and proton beams on carbon targets. In addition to providing a model for the energy dependence of the analyzing power of elastic scattering needed for proton polarimetry, it also provides some significant information about the spin dependence of dominant Regge poles. Most notably, the data indicate that the Pomeron has a significant spin- flip coupling. This allows the exploration of the double- spin flip asymmetry ANN for which some data over a wide energy range are now available, along with a concrete realization of a proposed Odderon search. C1 Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. RP Trueman, TL (reprint author), Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. NR 49 TC 6 Z9 6 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD MAR PY 2008 VL 77 IS 5 AR 054005 DI 10.1103/PhysRevD.77.054005 PG 14 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 282CC UT WOS:000254544200030 ER PT J AU Araujo, NAM Cadilhe, A Privman, V AF Araujo, N. A. M. Cadilhe, A. Privman, Vladimir TI Morphology of fine-particle monolayers deposited on nanopatterned substrates SO PHYSICAL REVIEW E LA English DT Article ID RANDOM-SEQUENTIAL ADSORPTION; CDSE NANOCRYSTALS; MULTILAYER ADSORPTION; SQUARE LATTICE; NONEQUILIBRIUM DEPOSITION; IRREVERSIBLE DEPOSITION; DIFFUSIONAL RELAXATION; CHARGE HETEROGENEITY; PATTERNED SURFACES; ALTERNATIVE ROUTES AB We study the effect of the presence of a regular substrate pattern on the irreversible adsorption of nanosized and colloid particles. Deposition of disks of radius r(0) is considered, with the allowed regions for their center attachment at the planar surface consisting of square cells arranged in a square lattice pattern. We study the jammed state properties of a generalized version of the random sequential adsorption model for different values of the cell size, a, and cell-cell separation, b. The model shows a surprisingly rich behavior in the space of the two dimensionless parameters alpha = a/2r(0) and beta = b/2r(0). Extensive Monte Carlo simulations for system sizes of 500 x 500 square lattice unit cells were performed by utilizing an efficient algorithm, to characterize the jammed state morphology. C1 [Araujo, N. A. M.; Cadilhe, A.] Univ Minho, Ctr Fis, GCEP, P-4710057 Braga, Portugal. [Cadilhe, A.] Los Alamos Natl Lab, T 12 Grp, Los Alamos, NM 87545 USA. [Privman, Vladimir] Clarkson Univ, Dept Phys, Potsdam, NY 13699 USA. [Privman, Vladimir] Clarkson Univ, Ctr Adv Mat Proc, Potsdam, NY 13699 USA. RP Araujo, NAM (reprint author), Univ Minho, Ctr Fis, GCEP, P-4710057 Braga, Portugal. EM cadilhe@lanl.gov RI Araujo, Nuno/B-6313-2008; Cadilhe, Antonio/G-1479-2016 OI Araujo, Nuno/0000-0002-1677-6060; Cadilhe, Antonio/0000-0002-0252-6992 NR 93 TC 19 Z9 19 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD MAR PY 2008 VL 77 IS 3 AR 031603 DI 10.1103/PhysRevE.77.031603 PN 1 PG 10 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 282AJ UT WOS:000254539700082 PM 18517391 ER PT J AU Baker, GA AF Baker, George A., Jr. TI Equation of state for a partially ionized gas. III SO PHYSICAL REVIEW E LA English DT Article ID ELECTRON-ION SYSTEM; THOMAS-FERMI; PERTURBATION-THEORY; PRESSURE; STABILITY; MATTER; ATOMS AB The derivation of equations of state for fluid phases of a partially ionized gas or plasma is addressed from a fundamental point of view. The results of the Thomas- Fermi model always yield pressures which are less than or equal to that of an ideal Fermi gas. On the other hand, the spherical cellular model shows significant "overpressure" relative to the ideal Fermi gas in certain regions of low density and low temperature. This effect is studied in considerable detail. A nonthermodynamic region, more or less overlapping the regions of overpressure, is found. It is characterized by a negative specific heat at constant volume. An independent electron model within a Z- electron cell is employed. The inadequacy of the wave function in the low- density, lowtemperature nonthermodynamic region is shown to be the cause of this overpressure. Numerical examples of the theory for several elements ( Li, N, Al, K, and Er ) are reported. These results reduce in various limits of temperature and density to the expected behavior, except in the aforementioned region. C1 Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87544 USA. RP Baker, GA (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87544 USA. NR 24 TC 3 Z9 3 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD MAR PY 2008 VL 77 IS 3 AR 031120 DI 10.1103/PhysRevE.77.031120 PN 1 PG 9 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 282AJ UT WOS:000254539700033 PM 18517342 ER PT J AU Bandi, MM Connaughton, C AF Bandi, Mahesh M. Connaughton, Colm TI Craig's XY distribution and the statistics of Lagrangian power in two-dimensional turbulence SO PHYSICAL REVIEW E LA English DT Article ID INVERSE CASCADE; FLUCTUATIONS; ENERGY; FLOW AB We examine the probability distribution function (PDF) of the energy injection rate (power) in numerical simulations of stationary two-dimensional (2D) turbulence in the Lagrangian frame. The simulation is designed to mimic an electromagnetically driven fluid layer, a well-documented system for generating 2D turbulence in the laboratory. In our simulations, the forcing and velocity fields are close to Gaussian. On the other hand, the measured PDF of injected power is very sharply peaked at zero, suggestive of a singularity there, with tails which are exponential but asymmetric. Large positive fluctuations are more probable than large negative fluctuations. It is this asymmetry of the tails which leads to a net positive mean value for the energy input despite the most probable value being zero. The main features of the power distribution are well described by Craig's XY distribution for the PDF of the product of two correlated normal variables. We show that the power distribution should exhibit a logarithmic singularity at zero and decay exponentially for large absolute values of the power. We calculate the asymptotic behavior and express the asymmetry of the tails in terms of the correlation coefficient of the force and velocity. We compare the measured PDFs with the theoretical calculations and briefly discuss how the power PDF might change with other forcing mechanisms. C1 [Bandi, Mahesh M.] Los Alamos Natl Lab, Condensed Matter & Thermal Phys Grp, MPA 10, Los Alamos, NM 87545 USA. [Bandi, Mahesh M.; Connaughton, Colm] Los Alamos Natl Lab, Ctr Nonlinear Studies, T CNLS, Los Alamos, NM 87545 USA. [Connaughton, Colm] Los Alamos Natl Lab, Complex Syst Grp T 13, Los Alamos, NM 87545 USA. [Connaughton, Colm] Univ Warwick, Ctr Complex Sci, Coventry CV4 7AL, W Midlands, England. [Connaughton, Colm] Univ Warwick, Math Inst, Coventry CV4 7AL, W Midlands, England. RP Bandi, MM (reprint author), Los Alamos Natl Lab, Condensed Matter & Thermal Phys Grp, MPA 10, POB 1663, Los Alamos, NM 87545 USA. EM mbandi@lanl.gov; connaughtonc@gmail.com RI Connaughton, Colm/E-8796-2011 OI Connaughton, Colm/0000-0003-4137-7050 NR 29 TC 11 Z9 11 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD MAR PY 2008 VL 77 IS 3 AR 036318 DI 10.1103/PhysRevE.77.036318 PN 2 PG 9 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 282AL UT WOS:000254539900076 PM 18517522 ER PT J AU Basagaoglu, H Meakin, P Succi, S Redden, GR Ginn, TR AF Basagaoglu, H. Meakin, P. Succi, S. Redden, G. R. Ginn, T. R. TI Two-dimensional lattice Boltzmann simulation of colloid migration in rough-walled narrow flow channels SO PHYSICAL REVIEW E LA English DT Article ID PARTICULATE SUSPENSIONS; POISEUILLE FLOW; RIGID SPHERES; EQUATION; PARTICLES AB A lattice Boltzmann model was used to simulate the accelerated transport of dense inert particles in low Reynolds number flows in smooth- and rough-walled narrow channels. The simulations showed that, after an initial transient, an initially immobile particle migrated faster than the average fluid velocity. The sensitivity of the particle residence time to wall roughness increased with decreasing Reynolds numbers. The relationship between the exit position and residence time of a particle was sensitive to the release position, flow strength, and the wall roughness. A particle with a density 5% larger than the density of the fluid migrated to an equilibrium position between the centerline and the wall for the slowest flow rates in rough-walled channels, displaying the Segre-Silberberg effect that a rigid neutrally buoyant spherical particle exhibits in small Reynolds number flows. However, a particle that was 35% denser than the density of the fluid drifted to the centerline in the slowest flows due to the gravitational settling effect. The difference in the residence time of the less-dense and dense particles was most sensitive to the surface roughness at the smallest Reynolds number investigated. C1 [Basagaoglu, H.] SW Res Inst, Ctr Nucl Waste Regulatory Anal, San Antonio, TX 78238 USA. [Basagaoglu, H.] Oregon State Univ, Dept Geosci, Corvallis, OR 97331 USA. [Meakin, P.; Redden, G. R.] Ctr Adv Modeling & Simulat, Idaho Natl Lab, Idaho Falls, ID 83415 USA. [Succi, S.] CNR, Inst Appl Calcolo, I-00161 Rome, Italy. [Ginn, T. R.] Univ Calif Davis, Dept Civil & Environm Engn, Davis, CA 95616 USA. RP Basagaoglu, H (reprint author), SW Res Inst, Ctr Nucl Waste Regulatory Anal, San Antonio, TX 78238 USA. RI Succi, Sauro/E-4606-2015 OI Succi, Sauro/0000-0002-3070-3079 NR 24 TC 14 Z9 14 U1 0 U2 14 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD MAR PY 2008 VL 77 IS 3 AR 031405 DI 10.1103/PhysRevE.77.031405 PN 1 PG 10 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 282AJ UT WOS:000254539700070 PM 18517379 ER PT J AU Esaulov, AA Bauer, BS Makhin, V Siemon, RE Lindemuth, IR Awe, TJ Reinovsky, RE Struve, KW Desjarlais, MP Mehlhorn, TA AF Esaulov, A. A. Bauer, B. S. Makhin, V. Siemon, R. E. Lindemuth, I. R. Awe, T. J. Reinovsky, R. E. Struve, K. W. Desjarlais, M. P. Mehlhorn, T. A. TI Radiation magnetohydrodynamic simulation of plasma formed on a surface by a megagauss field SO PHYSICAL REVIEW E LA English DT Article ID MAGNETIZED TARGET FUSION; REVERSED CONFIGURATION PLASMA; ARRAY Z-PINCHES; IMPLOSION EXPERIMENT; EDDINGTON FACTORS; FIBER ABLATION; FLUX LIMITERS; TUNGSTEN WIRE; SOLID LINER; COMPRESSION AB Radiation magnetohydrodynamic modeling is used to study the plasma formed on the surface of a cylindrical metallic load, driven by megagauss magnetic field at the 1 MA Zebra generator (University of Nevada, Reno). An ionized aluminum plasma is used to represent the "core-corona" behavior in which a heterogeneous Z-pinch consists of a hot low-density corona surrounding a dense low-temperature core. The radiation dynamics model included simultaneously a self-consistent treatment of both the opaque and transparent plasma regions in a corona. For the parameters of this experiment, the boundary of the opaque plasma region emits the major radiation power with Planckian black-body spectrum in the extreme ultraviolet corresponding to an equilibrium temperature of 16 eV. The radiation heat transport significantly exceeds the electron and ion kinetic heat transport in the outer layers of the opaque plasma. Electromagnetic field energy is partly radiated (13%) and partly deposited into inner corona and core regions (87%). Surface temperature estimates are sensitive to the radiation effects, but the surface motion in response to pressure and magnetic forces is not. The general results of the present investigation are applicable to the liner compression experiments at multi-MA long-pulse current accelerators such as Atlas and Shiva Star. Also the radiation magnetohydrodynamic model discussed in the paper may be useful for understanding key effects of wire array implosion dynamics. C1 [Esaulov, A. A.; Bauer, B. S.; Makhin, V.; Siemon, R. E.; Lindemuth, I. R.; Awe, T. J.] Univ Nevada, Dept Phys, Reno, NV 89557 USA. [Reinovsky, R. E.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Struve, K. W.; Desjarlais, M. P.; Mehlhorn, T. A.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Esaulov, AA (reprint author), Univ Nevada, Dept Phys, Reno, NV 89557 USA. NR 41 TC 7 Z9 8 U1 1 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD MAR PY 2008 VL 77 IS 3 AR 036404 DI 10.1103/PhysRevE.77.036404 PN 2 PG 12 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 282AL UT WOS:000254539900084 PM 18517530 ER PT J AU Fukuto, M Gang, O Alvine, KJ Ocko, BM Pershan, PS AF Fukuto, Masafumi Gang, Oleg Alvine, Kyle J. Ocko, Benjamin M. Pershan, Peter S. TI Wetting of liquid-crystal surfaces and induced smectic layering at a nematic-liquid interface: An x-ray reflectivity study SO PHYSICAL REVIEW E LA English DT Article ID LIGHT-SCATTERING; TRANSITION; PHASE; ALKANES; GROWTH; ORDER; FILMS AB We report the results of a synchrotron x-ray reflectivity study of bulk liquid-crystal surfaces that are coated by thin wetting films of an immiscible liquid. The liquid-crystal subphase consisted of the nematic or isotropic phase of 4-octyl-4'-cyanobiphenyl (8CB), and the wetting film was formed by the fluorocarbon perfluoromethylcyclohexane (PFMC), a volatile liquid. The thickness of the wetting film was controlled by the temperature difference Delta T(mu) between the sample and a reservoir of bulk PFMC, contained within the sealed sample cell. Phase information on the interfacial electron density profiles has been extracted from the interference between the scattering from the PFMC-vapor interface and the surface-induced smectic order of the 8CB subphase. The liquid-crystal side of the nematic-liquid (8CB-PFMC) interface is characterized by a density oscillation whose period corresponds to the smectic layer spacing and whose amplitude decays exponentially toward the underlying nematic subphase. The decay length xi of the smectic amplitude is independent of the PFMC film thickness but increases as the nematic-smectic-A transition temperature TNA is approached, in agreement with the longitudinal correlation length xi(parallel to)(T-T(NA))-(0.7) for the smectic fluctuations in the bulk nematic. The results indicate that the homeotropic orientation of the 8CB molecules is preferred at the 8CB-PFMC interface and that the observed temperature dependence of the smectic layer growth is consistent with the critical adsorption mechanism. The observed Delta T(mu) dependence of the PFMC film thickness, L(infinity)(Delta T(mu))(-1/3), implies that PFMC completely wets the 8CB surface and is dominated by the nonretarded dispersion interactions between hydro- and fluorocarbons. The complete wetting behavior of PFMC is nearly independent of the degree of interfacial smectic order in the subphase. C1 [Fukuto, Masafumi; Ocko, Benjamin M.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. [Gang, Oleg] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. [Alvine, Kyle J.; Pershan, Peter S.] Harvard Univ, Div Engn & Appl Sci, Cambridge, MA 02138 USA. [Pershan, Peter S.] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA. RP Fukuto, M (reprint author), Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. EM fukuto@bnl.gov NR 48 TC 17 Z9 17 U1 1 U2 17 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD MAR PY 2008 VL 77 IS 3 AR 031607 DI 10.1103/PhysRevE.77.031607 PN 1 PG 11 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 282AJ UT WOS:000254539700086 PM 18517395 ER PT J AU Gallis, MA Torczynski, JR Rader, DJ AF Gallis, M. A. Torczynski, J. R. Rader, D. J. TI Nanoparticle Knudsen layers in gas-filled microscale geometries SO PHYSICAL REVIEW E LA English DT Article ID SMALL LATEX SPHERES; SIMULATION; PARTICLES; EQUATION; FLOW AB Nanoparticles suspended in ambient air within microscale geometries form a Knudsen layer when diffusing in a Brownian fashion toward a solid wall. More specifically, the particle number density adjacent to the wall approaches a nonzero value proportional to the flux. An approximate theory for the coefficient of proportionality as a function of the particle sticking fraction at the wall and the drift velocity normal to the wall is compared to Langevin particle simulations. The resulting boundary condition enables accurate advection-diffusion simulations of nanoparticle-aerosol transport. C1 [Gallis, M. A.; Torczynski, J. R.; Rader, D. J.] Sandia Natl Labs, Engn Sci Ctr, Albuquerque, NM 87185 USA. RP Torczynski, JR (reprint author), Sandia Natl Labs, Engn Sci Ctr, POB 5800, Albuquerque, NM 87185 USA. EM jrtorcz@sandia.gov NR 14 TC 3 Z9 3 U1 0 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD MAR PY 2008 VL 77 IS 3 AR 036302 DI 10.1103/PhysRevE.77.036302 PN 2 PG 7 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 282AL UT WOS:000254539900060 PM 18517506 ER PT J AU Holm, DD Naraigh, LO Tronci, C AF Holm, Darryl D. Naraigh, Lennon O. Tronci, Cesare TI Emergent singular solutions of nonlocal density-magnetization equations in one dimension SO PHYSICAL REVIEW E LA English DT Article ID AGGREGATION; LITHOGRAPHY; FABRICATION AB We investigate the emergence of singular solutions in a nonlocal model for a magnetic system. We study a modified Gilbert-type equation for the magnetization vector and find that the evolution depends strongly on the length scales of the nonlocal effects. We pass to a coupled density-magnetization model and perform a linear stability analysis, noting the effect of the length scales of nonlocality on the system's stability properties. We carry out numerical simulations of the coupled system and find that singular solutions emerge from smooth initial data. The singular solutions represent a collection of interacting particles (clumpons). By restricting ourselves to the two-clumpon case, we are reduced to a two-dimensional dynamical system that is readily analyzed, and thus we classify the different clumpon interactions possible. C1 [Holm, Darryl D.; Naraigh, Lennon O.; Tronci, Cesare] Univ London Imperial Coll Sci Technol & Med, Dept Math, London SW7 2AZ, England. [Holm, Darryl D.] Los Alamos Natl Lab, Comp & Computat Sci Div, Los Alamos, NM 87545 USA. [Tronci, Cesare] TERA Fdn Oncol Hadrontherapy, I-28100 Novara, Italy. RP Naraigh, LO (reprint author), Univ London Imperial Coll Sci Technol & Med, Dept Math, Huxley Bldg, London SW7 2AZ, England. EM lennon.o-naraigh@imperial.ac.uk RI Tronci, Cesare/B-7542-2016; OI Tronci, Cesare/0000-0002-8868-8027; Holm, Darryl D/0000-0001-6362-9912 NR 30 TC 4 Z9 4 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD MAR PY 2008 VL 77 IS 3 AR 036211 DI 10.1103/PhysRevE.77.036211 PN 2 PG 13 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 282AL UT WOS:000254539900043 PM 18517489 ER PT J AU Kao, YJ Melko, RG AF Kao, Ying-Jer Melko, Roger G. TI Short-loop algorithm for quantum Monte Carlo simulations SO PHYSICAL REVIEW E LA English DT Article ID SPIN SYSTEMS; MODELS; ICE AB We present an algorithmic framework for a variant of the quantum Monte Carlo operator-loop algorithm, where nonlocal cluster updates are constructed in a way that makes each individual loop smaller. The algorithm is designed to increase simulation efficiency in cases where conventional loops become very large, do not close altogether, or otherwise behave poorly. We demonstrate and characterize some aspects of the short loop on a square lattice spin-1/2 XXZ model where, remarkably, a significant increase in simulation efficiency is observed in some parameter regimes. The simplicity of the model provides a prototype for the use of short loops on more complicated quantum systems. C1 [Kao, Ying-Jer] Natl Taiwan Univ, Dept Phys, Taipei 106, Taiwan. [Kao, Ying-Jer] Natl Taiwan Univ, Ctr Theoret Sci, Taipei 106, Taiwan. [Melko, Roger G.] Univ Waterloo, Dept Phys & Astron, Waterloo, ON N2L 3G1, Canada. [Melko, Roger G.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Kao, YJ (reprint author), Natl Taiwan Univ, Dept Phys, Taipei 106, Taiwan. EM yjkao@phys.ntu.edu.tw; rgmelko@science.uwaterloo.ca RI Kao, Ying Jer/B-5297-2009 OI Kao, Ying Jer/0000-0002-3329-6018 NR 25 TC 1 Z9 1 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD MAR PY 2008 VL 77 IS 3 AR 036708 DI 10.1103/PhysRevE.77.036708 PN 2 PG 8 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 282AL UT WOS:000254539900112 PM 18517558 ER PT J AU Krishnamurthy, VV Mankey, GJ He, B Piao, M Wiest, JM Nikles, DE Porcar, L Robertson, JL AF Krishnamurthy, V. V. Mankey, G. J. He, B. Piao, M. Wiest, J. M. Nikles, D. E. Porcar, L. Robertson, J. L. TI Orientational distributions and nematic order of rodlike magnetic nanoparticles in dispersions SO PHYSICAL REVIEW E LA English DT Article ID ANGLE NEUTRON-SCATTERING; X-RAY-DIFFRACTION; CYLINDRICAL MICELLES; TRANSITION; MICROSTRUCTURE; POLYMERS AB Using small-angle neutron scattering (SANS), we have investigated the orientational order of iron nanoparticles dispersed in cyclohexanone. The particles have rodlike shape and size distributions with an average length of 200 nm and an average diameter of 25 nm. SANS shows an anisotropy, which is a measure of orientational order, in magnetic dispersions with a volume fraction of 3.2% and 3.9% iron particles in shear flow and/or magnetic field. The scattering anisotropy can be fitted by a model assuming an Onsager distribution of the orientation of the particles in shear flow. The orientational distribution of particles oriented by a magnetic field can be described by a different model assuming the Maier-Saupe orientational distribution for uniaxial ferromagnetic particles. The orientational distribution parameter m for the Maier-Saupe distribution or alpha for the Onsager distribution and the orientational order parameter S have been determined at shear rates gamma of to 0-4000 s(-1) and in magnetic fields of 0-18 mT. The S values indicate that the particles start to orient either in a shear flow of 100 s(-1) or in a magnetic field of 6 mT. Applying only shear results in an orientational order, with the dispersion returning to the disordered state when the shear rate is decreased to zero. In sharp contrast, application of magnetic fields greater than 6 mT results in orientational order in the field-increasing cycle, and two-thirds of the orientational order remains when the field is decreased to zero. This shows that the order in a magnetic field is different from the order in a shear flow, the action of magnetizing the particles along a certain direction is irreversible, and the orientational order parameter exhibits hysteresis. C1 [Krishnamurthy, V. V.; Robertson, J. L.] Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA. [Mankey, G. J.; He, B.; Piao, M.; Wiest, J. M.; Nikles, D. E.] Univ Alabama, Ctr Mat Informat Technol, Tuscaloosa, AL 35487 USA. [Porcar, L.] Natl Inst Stand & Technol, NIST Ctr Neutron Res, Gaithersburg, MD 20899 USA. RP Krishnamurthy, VV (reprint author), Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA. RI Mankey, Gary/G-9110-2011 OI Mankey, Gary/0000-0003-3163-5159 NR 31 TC 1 Z9 1 U1 1 U2 13 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD MAR PY 2008 VL 77 IS 3 AR 031403 DI 10.1103/PhysRevE.77.031403 PN 1 PG 8 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 282AJ UT WOS:000254539700068 PM 18517377 ER PT J AU Ramazanoglu, M Larochelle, S Garland, CW Birgeneau, RJ AF Ramazanoglu, M. Larochelle, S. Garland, C. W. Birgeneau, R. J. TI High-resolution x-ray study of nematic-smectic-A and smectic-A-reentrant-nematic transitions in liquid-crystal-aerosil gels SO PHYSICAL REVIEW E LA English DT Article ID SPIN-GAS MODEL; PHASE-TRANSITIONS; 8OCB-6OCB MIXTURES; CRITICAL-BEHAVIOR; SCATTERING AB We have studied the effects of quenched random disorder created by dispersed aerosil nanoparticle gels on the nematic to smectic-A (N-SmA) and smectic-A to reentrant nematic (SmA-RN) phase transitions of thermotropic liquid-crystal mixtures of hexyloxycyanobiphenyl (6OCB) and octyloxycyanobiphenyl (8OCB). These effects are probed using high-resolution synchrotron x-ray diffraction techniques. We find that the reentrant characteristics of the system are largely unchanged by the presence of the aerosil gel network. By comparing measurements of the smectic static structure amplitude for this 8OCB-6OCB+aerosil system with those for butyloxybenzilidene-octylaniline (4O.8)+aerosil gels, we find that the short-range smectic order in the smectic-A phase is significantly weaker in the reentrant system. This result is consistent with the behavior seen in pure 8OCB-6OCB mixtures. The strength of the smectic ordering decreases progressively as the 6OCB concentration is increased. Detailed line shape analysis shows that the high-and low-temperature nematic phases (N and RN) are similar to each other. C1 [Ramazanoglu, M.; Larochelle, S.; Birgeneau, R. J.] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada. [Ramazanoglu, M.] McMaster Univ, Dept Phys & Astron, Hamilton, ON L8S 4M1, Canada. [Garland, C. W.] MIT, Dept Chem, Cambridge, MA 02139 USA. [Birgeneau, R. J.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Birgeneau, R. J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Ramazanoglu, M (reprint author), Univ Toronto, Dept Phys, 60 St George St, Toronto, ON M5S 1A7, Canada. EM mehmet@physics.mcmaster.ca; cgarland@mit.edu; chancellor@berkeley.edu NR 30 TC 9 Z9 9 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD MAR PY 2008 VL 77 IS 3 AR 031702 DI 10.1103/PhysRevE.77.031702 PN 1 PG 10 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 282AJ UT WOS:000254539700092 PM 18517401 ER PT J AU Roberts, DC AF Roberts, David C. TI Linear reformulation of the Kuramoto model of self-synchronizing coupled oscillators SO PHYSICAL REVIEW E LA English DT Article ID LIMIT-CYCLE OSCILLATORS; POPULATION; ARRAY AB The present paper introduces a linear reformulation of the Kuramoto model describing a self- synchronizing phase transition in a system of globally coupled oscillators that in general have different characteristic frequencies. The reformulated model provides an alternative coherent framework through which one can analytically tackle synchronization problems that are not amenable to the original Kuramoto analysis. It allows one to solve explicitly for the synchronization order parameter and the critical point of ( 1 ) the full phase- locking transition for a system with a finite number of oscillators (unlike the original Kuramoto model, which is solvable implicitly only in the mean- field limit ) and (2) a new class of continuum systems. It also makes it possible to probe the system's dynamics as it moves toward a steady state. While discussion in this paper is restricted to systems with global coupling, the formalism introduced by the linear reformulation also lends itself to solving systems that exhibit local or asymmetric coupling. C1 [Roberts, David C.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Roberts, David C.] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. RP Roberts, DC (reprint author), Los Alamos Natl Lab, Div Theoret, POB 1663, Los Alamos, NM 87545 USA. NR 16 TC 4 Z9 4 U1 0 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD MAR PY 2008 VL 77 IS 3 AR 031114 DI 10.1103/PhysRevE.77.031114 PN 1 PG 5 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 282AJ UT WOS:000254539700027 PM 18517336 ER PT J AU Talin, B Calisti, A Dufty, JW Pogorelov, IV AF Talin, Bernard Calisti, Annette Dufty, James W. Pogorelov, Ilya V. TI Electron dynamics at a positive ion SO PHYSICAL REVIEW E LA English DT Article ID STRONGLY COUPLED PLASMAS; FIELD DYNAMICS; NONLINEAR RESPONSE; MOLECULAR-DYNAMICS; NEUTRAL POINT; SIMULATION; SYSTEMS AB The dynamics of electrons in the presence of a positive ion is considered for conditions of weak electron-electron coupling but strong electron-ion coupling. The equilibrium electron density and the electric field time correlation functions are evaluated for semiclassical conditions using a classical statistical mechanics with a regularized electron-ion interaction for molecular dynamics simulation (MD). Results are reported for the autocorrelation function of the electron electric field at the ion for 0 <= Z <= 40, including conditions of strong electron-ion coupling. The electron stopping power and self-diffusion coefficient are determined from these results. Interpretation is provided by a theoretical analysis using the nonlinear Vlasov equation for the equilibrium structure, and a corresponding linear Vlasov equation for time correlation functions. The agreement of a simple mean field model with the semiclassical MD simulation is found to be quite good except for one state condition. C1 [Talin, Bernard; Calisti, Annette] Univ Aix Marseille 1, Ctr St Jerome, UMR6633, F-13397 Marseille 20, France. [Dufty, James W.] Univ Florida, Dept Phys, Gainesville, FL 32611 USA. [Pogorelov, Ilya V.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Accelerator & Fus Res, Berkeley, CA 94720 USA. RP Talin, B (reprint author), Univ Aix Marseille 1, Ctr St Jerome, UMR6633, F-13397 Marseille 20, France. OI Calisti, Annette/0000-0001-6727-9286 NR 35 TC 9 Z9 9 U1 1 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD MAR PY 2008 VL 77 IS 3 AR 036410 DI 10.1103/PhysRevE.77.036410 PN 2 PG 13 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 282AL UT WOS:000254539900090 PM 18517536 ER PT J AU Wang, ST Fukuto, M Yang, L AF Wang, S. T. Fukuto, M. Yang, L. TI In situ x-ray reflectivity studies on the formation of substrate-supported phospholipid bilayers and monolayers SO PHYSICAL REVIEW E LA English DT Article ID STREPTAVIDIN 2D CRYSTALS; MEMBRANES; SURFACE; CRYSTALLIZATION; FILMS AB We conducted time-dependent, in situ x-ray reflectivity measurements on the formation of substrate-supported lipid monolayers and bilayers at solid-liquid interfaces, buried under an aqueous buffer with various concentrations (5, 10, 20, 40, and 50 mu g/ml) of lipid 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC). The DOPC bilayer is formed on the hydrophilic surface of a bare Si substrate, while the DOPC monolayer is formed on a hydrophobic octadecylthricholorsilane (OTS) monolayer-coated Si substrate. The evolution of the reflectivity curves from the lipid bilayers is well described by lateral growth of bilayer islands, consistent with the rupture and fusion model for the adsorption of lipid vesicles to solid-liquid interfaces. By contrast, the formation of the lipid monolayer on OTS-coated Si occurs through a relatively fast coverage of the entire interfacial area, followed by an increase in the monolayer thickness. For both monolayers and bilayers, the rate of lipid layer growth increases with increasing lipid concentration in the buffer solution. C1 [Fukuto, M.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA. RP Fukuto, M (reprint author), Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. EM fukuto@bnl.gov; lyang@bnl.gov RI Yang, Lin/D-5872-2013 OI Yang, Lin/0000-0003-1057-9194 NR 33 TC 10 Z9 10 U1 4 U2 18 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD MAR PY 2008 VL 77 IS 3 AR 031909 DI 10.1103/PhysRevE.77.031909 PN 1 PG 8 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 282AJ UT WOS:000254539700115 PM 18517424 ER PT J AU Akre, R Dowell, D Emma, P Frisch, J Gilevich, S Hays, G Hering, P Iverson, R Limborg-Deprey, C Loos, H Miahnahri, A Schmerge, J Turner, J Welch, J White, W Wu, J AF Akre, R. Dowell, D. Emma, P. Frisch, J. Gilevich, S. Hays, G. Hering, Ph. Iverson, R. Limborg-Deprey, C. Loos, H. Miahnahri, A. Schmerge, J. Turner, J. Welch, J. White, W. Wu, J. TI Commissioning the Linac coherent light source injector SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article ID GUN TEST FACILITY; LASER; RF AB The Linac Coherent Light Source is a SASE x-ray free-electron laser (FEL) project presently under construction at SLAC [J. Arthur et al., SLAC-R-593, 2002.]. The injector section, from drive laser and rf photocathode gun through first bunch compressor chicane, was installed in the fall of 2006. The initial system commissioning with an electron beam was completed in August of 2007, with the goal of a 1.2-micron emittance in a 1-nC bunch demonstrated. The second phase of commissioning, including second bunch compressor and full linac, is planned for 2008, with FEL commissioning in 2009. We report experimental results and experience gained in the first phase of commissioning, including the photocathode drive laser, rf gun, photocathode, S-band and X-band rf systems, first bunch compressor, and the various beam diagnostics. C1 [Akre, R.; Dowell, D.; Emma, P.; Frisch, J.; Gilevich, S.; Hays, G.; Hering, Ph.; Iverson, R.; Limborg-Deprey, C.; Loos, H.; Miahnahri, A.; Schmerge, J.; Turner, J.; Welch, J.; White, W.; Wu, J.] Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. RP Akre, R (reprint author), Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. OI Loos, Henrik/0000-0001-5085-0562 NR 21 TC 113 Z9 115 U1 2 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD MAR PY 2008 VL 11 IS 3 AR 030703 DI 10.1103/PhysRevSTAB.11.030703 PG 20 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 287FN UT WOS:000254902400004 ER PT J AU Borland, M AF Borland, M. TI Modeling of the microbunching instability SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article AB We show that, through careful control of noise sources, it is possible to determine the microbunching gain curve for the FERMI@ELETTRA linac using the particle tracking code ELEGANT. In addition to using a sufficiently large number of particles (60 x 10(6)), use of a low-pass filter is very helpful in controlling noise and providing convenient intrabin interpolation. Gains of up to 1500 are seen for modulation wavelengths down to 25 mu m. Because of the high gain, very small initial modulations are needed to avoid saturation, which further motivates the use of a large number of particles. We also show, for the first time, how the density modulation evolves in detail inside the dipoles of a multichicane system. C1 Argonne Natl Lab, Argonne, IL 60439 USA. RP Borland, M (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. NR 19 TC 13 Z9 13 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD MAR PY 2008 VL 11 IS 3 AR 030701 DI 10.1103/PhysRevSTAB.11.030701 PG 8 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 287FN UT WOS:000254902400002 ER PT J AU Ding, YT Huang, ZR AF Ding, Yuantao Huang, Zhirong TI Statistical analysis of crossed undulator for polarization control in a self-amplified spontaneous emission free electron laser SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article ID SYNCHROTRON-RADIATION; SIMULATION AB There is a growing interest in producing intense, coherent x-ray radiation with an adjustable and arbitrary polarization state. In this paper, we study the crossed-undulator scheme [K.-J. Kim, Nucl. Instrum. Methods Phys. Res., Sect. A 445, 329 (2000)] for rapid polarization control in a self-amplified spontaneous emission (SASE) free electron laser (FEL). Because a SASE source is a temporally chaotic light, we perform a statistical analysis on the state of polarization using FEL theory and simulations. We show that, by adding a small phase shifter and a short (about 1.3 times the FEL power gain length), 90 degrees rotated planar undulator after the main SASE planar undulator, one can obtain circularly polarized light with over 80% polarization-near the FEL saturation. C1 [Ding, Yuantao; Huang, Zhirong] Stanford Linear Accelerator Ctr, Menlo Pk, CA 94025 USA. RP Ding, YT (reprint author), Stanford Linear Accelerator Ctr, Menlo Pk, CA 94025 USA. NR 22 TC 20 Z9 22 U1 1 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD MAR PY 2008 VL 11 IS 3 AR 030702 DI 10.1103/PhysRevSTAB.11.030702 PG 6 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 287FN UT WOS:000254902400003 ER PT J AU Tan, CY Ranjbar, VH AF Tan, C. Y. Ranjbar, V. H. TI Analytic approximation of the head-tail phase difference from continuous transverse excitation for measuring chromaticity SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article AB We will explore a method for measuring chromaticity by continuously kicking the beam transversely. This is called the continuous head-tail method for measuring chromaticity. The complete analytic approximation in terms of trigonometric functions is derived for zero transverse emittance beam. A simple formula for calculating chromaticity from experimental data is also shown. Finally, the theory is compared with experimental data. C1 [Tan, C. Y.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Ranjbar, V. H.] Tech X Corp, Boulder, CO 80303 USA. RP Tan, CY (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. EM cytan@fnal.gov; ranjbar@txcorp.com NR 12 TC 2 Z9 2 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD MAR PY 2008 VL 11 IS 3 AR 032802 DI 10.1103/PhysRevSTAB.11.032802 PG 11 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 287FN UT WOS:000254902400011 ER PT J AU Venturini, M AF Venturini, Marco TI Models of longitudinal space-charge impedance for microbunching instability SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article AB A 1D model of space-charge impedance, assuming a transversely uniform beam with circular cross section, has been proposed and is being extensively used in the modeling of the microbunching instability of relevance for the beam delivery systems of x-ray free-electron lasers. In this paper we investigate the limitation of the model when applied to studying the effect of shot noise-one of the sources of the microbunching instability. We make comparison with a fully 3D calculation and identify the upper end of the frequency spectrum for applicability of the 1D model. Relaxation of the assumptions regarding axis symmetry and uniformity of the transverse density is also reviewed. C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Venturini, M (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. EM mventurini@lbl.gov NR 17 TC 30 Z9 30 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD MAR PY 2008 VL 11 IS 3 AR 034401 DI 10.1103/PhysRevSTAB.11.034401 PG 5 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 287FN UT WOS:000254902400014 ER PT J AU Welch, DR Genoni, TC Rose, DV Bruner, NL Stygar, WA AF Welch, D. R. Genoni, T. C. Rose, D. V. Bruner, N. L. Stygar, W. A. TI Optimized transmission-line impedance transformers for petawatt-class pulsed-power accelerators SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article AB We have developed 1D analytic and 2D fully electromagnetic models of radial transmission-line impedance transformers. The models have been used to quantify the power-transport efficiency and pulse sharpening of such transformers as a function of voltage pulse width and impedance profile. For the cases considered, we find that in the limit as Gamma -> 0 ( where Gamma is the ratio of the pulse width to the one-way transit time of the transformer), the transport efficiency is maximized when the impedance profile is exponential. As Gamma increases from zero, the optimum profile gradually deviates from an exponential. A numerical procedure is presented that determines the optimum profile for a given pulse shape and width. The procedure can be applied to optimize the design of impedance transformers used in petawatt-class pulsed-power accelerators. C1 [Welch, D. R.; Genoni, T. C.; Rose, D. V.; Bruner, N. L.] LLC, Voss Sci, Albuquerque, NM 87108 USA. [Stygar, W. A.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Welch, DR (reprint author), LLC, Voss Sci, Albuquerque, NM 87108 USA. NR 16 TC 21 Z9 28 U1 1 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD MAR PY 2008 VL 11 IS 3 AR 030401 DI 10.1103/PhysRevSTAB.11.030401 PG 8 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 287FN UT WOS:000254902400001 ER PT J AU Xu, J Shepard, KW Ostroumov, PN Fuerst, JD Waldschmidt, G Gonin, IV AF Xu, J. Shepard, K. W. Ostroumov, P. N. Fuerst, J. D. Waldschmidt, G. Gonin, I. V. TI Superconducting accelerating structures for very low velocity ion beams SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article AB This paper presents designs for four types of very-low-velocity superconducting (SC) accelerating cavity capable of providing several MV of accelerating potential per cavity, and suitable for particle velocities in the range 0: 006 < v/c < 0: 06. Superconducting TEM-class cavities have been widely applied to cw acceleration of ion beams. SC linacs can be formed as an array of independently phased cavities, enabling a variable velocity profile to maximize the output energy for each of a number of different ion species. Several laboratories in the U. S. and Europe are planning exotic beam facilities based on SC linacs. The cavity designs presented here are intended for the front end of such linacs, particularly for the postacceleration of rare isotopes of low charge state. Several types of SC cavities have been developed recently to cover particle velocities above 0.06c. Superconducting four-gap quarter-wave resonators for velocities 0: 008< beta = v/c < 0: 05 were developed about two decades ago and have been successfully operated at the ATLAS SC linac at Argonne National Laboratory. Since that time, progress in simulation tools, cavity fabrication, and processing have increased SC cavity gradients by a factor of 3-4. This paper applies these tools to optimize the design of a four-gap quarter-wave resonator for exotic beam facilities and other low-velocity applications. C1 [Xu, J.; Shepard, K. W.; Ostroumov, P. N.; Fuerst, J. D.; Waldschmidt, G.] Argonne Natl Lab, Argonne, IL 60439 USA. [Gonin, I. V.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. RP Xu, J (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM jin_xu@anl.gov NR 13 TC 0 Z9 0 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD MAR PY 2008 VL 11 IS 3 AR 032001 DI 10.1103/PhysRevSTAB.11.032001 PG 8 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 287FN UT WOS:000254902400008 ER PT J AU Burton, GC AF Burton, Gregory C. TI The nonlinear large-eddy simulation method applied to Sc approximate to 1 and Sc >> 1 passive-scalar mixing SO PHYSICS OF FLUIDS LA English DT Article ID DYNAMIC LOCALIZATION MODEL; FULLY TURBULENT FLOWS; NUMBER MASS-TRANSFER; GRID TURBULENCE; TEMPERATURE; SIMILARITY; TRANSPORT; GRADIENT AB The nonlinear large-eddy simulation (nLES) method is extended here to simulations of Sc approximate to 1 and Sc >> 1 turbulent mixing of passive-scalar fields. These are the first LES studies to reproduce the instantaneous structure of the scalar-energy field phi(-2)(x,t) at viscous-convective scales in the high Schmidt-number regime. The simulations employ a refinement of the nLES method with multifractal modeling first proposed by G. C. Burton and W. J. A. Dahm [Phys. Fluids 17, 075111 (2005)]. In this approach, the nonlinear inertial stresses (u(i)u(j)) over bar in the filtered Navier-Stokes equation and the nonlinear scalar fluxes (u(j)phi) over bar in the filtered advection-diffusion equation are calculated directly, using multifractal models for the subgrid velocity and scalar fields, u(j)(sgs) and phi(sgs). Resolved energy levels are controlled by a new adaptive backscatter limiter that adjusts locally to changing flow conditions consistent with the mechanism governing energy transfer in actual hydrodynamic turbulence. No artificial viscosity or diffusivity closures are applied and no explicit de-aliasing is performed. The nLES approach is shown to simulate accurately Sc approximate to 1 mixing for flows between Re(lambda) approximate to 35 and 4100, the highest Re(lambda) tested. Characteristics of the resulting scalar field are examined, including the turbulence-to-scalar time-scale ratio and total scalar variance , indicating good agreement with prior studies. Simulations between Sc= 8 and 8192 produce the first scalar-energy spectra from an LES that exhibit k(-1) scaling in the viscous-convective range, consistent with the analytical prediction of G. K. Batchelor [J. Fluid Mech. 5, 113 (1959)]. The simulations indicate decreasing scalar anisotropy and increasing intermittency with increasing Schmidt number, also consistent with prior studies. (C) 2008 American Institute of Physics. C1 Stanford Univ, Ctr Turbulence Res, Stanford, CA 94305 USA. Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Burton, GC (reprint author), Stanford Univ, Ctr Turbulence Res, Stanford, CA 94305 USA. NR 36 TC 14 Z9 14 U1 3 U2 14 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-6631 J9 PHYS FLUIDS JI Phys. Fluids PD MAR PY 2008 VL 20 IS 3 AR 035103 DI 10.1063/1.2840199 PG 14 WC Mechanics; Physics, Fluids & Plasmas SC Mechanics; Physics GA 281ZO UT WOS:000254537600025 ER PT J AU Graham, JP Holm, DD Mininni, PD Pouquet, A AF Graham, Jonathan Pietarila Holm, Darryl D. Mininni, Pablo D. Pouquet, Annick TI Three regularization models of the Navier-Stokes equations SO PHYSICS OF FLUIDS LA English DT Article ID LARGE-EDDY SIMULATION; CAMASSA-HOLM EQUATIONS; DIRECT NUMERICAL SIMULATIONS; FULLY-DEVELOPED TURBULENCE; EXTENDED SELF-SIMILARITY; ALPHA-MODEL; ISOTROPIC TURBULENCE; AVERAGED LAGRANGIANS; ENERGY-SPECTRUM; FLUID-DYNAMICS AB We determine how the differences in the treatment of the subfilter-scale physics affect the properties of the flow for three closely related regularizations of Navier-Stokes. The consequences on the applicability of the regularizations as subgrid-scale (SGS) models are also shown by examining their effects on superfilter-scale properties. Numerical solutions of the Clark-alpha model are compared to two previously employed regularizations, the Lagrangian-averaged Navier-Stokes alpha-model (LANS-alpha) and Leray-alpha, albeit at significantly higher Reynolds number than previous studies, namely, Re approximate to 3300, Taylor Reynolds number of Re lambda approximate to 790, and to a direct numerical simulation (DNS) of the Navier-Stokes equations. We derive the de Karman-Howarth equation for both the Clark-alpha and Leray-alpha models. We confirm one of two possible scalings resulting from this equation for Clark-alpha as well as its associated k(-1) energy spectrum. At subfilter scales, Clark-alpha possesses similar total dissipation and characteristic time to reach a statistical turbulent steady state as Navier-Stokes, but exhibits greater intermittency. As a SGS model, Clark-alpha reproduces the large-scale energy spectrum and intermittency properties of the DNS. For the Leray-alpha model, increasing the filter width alpha decreases the nonlinearity and, hence, the effective Reynolds number is substantially decreased. Therefore, even for the smallest value of alpha studied Leray-alpha was inadequate as a SGS model. The LANS-alpha energy spectrum similar to k(1), consistent with its so-called "rigid bodies," precludes a reproduction of the large-scale energy spectrum of the DNS at high Re while achieving a large reduction in numerical resolution. We find, however, that this same feature reduces its intermittency compared to Clark-alpha (which shares a similar de Karman-Howarth equation). Clark-alpha is found to be the best approximation for reproducing the total dissipation rate and the energy spectrum at scales larger than alpha, whereas high-order intermittency properties for larger values of alpha are best reproduced by LANS-alpha. (c) 2008 American Institute of Physics. C1 [Graham, Jonathan Pietarila; Mininni, Pablo D.; Pouquet, Annick] Natl Ctr Atmospher Res, Boulder, CO 80307 USA. [Holm, Darryl D.] Univ London Imperial Coll Sci Technol & Med, Dept Math, London SW7 2AZ, England. [Holm, Darryl D.] Los Alamos Natl Lab, Comp & Computat Sci Div, Los Alamos, NM 87545 USA. [Mininni, Pablo D.] Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Fis, RA-1428 Buenos Aires, DF, Argentina. RP Graham, JP (reprint author), Max Planck Inst Sonnensyst Forsch, D-37191 Katlenburg Lindau, Germany. RI Pietarila Graham, Jonathan/B-5222-2008; OI Pietarila Graham, Jonathan/0000-0003-1862-0526; Mininni, Pablo/0000-0001-6858-6755; Holm, Darryl D/0000-0001-6362-9912 NR 52 TC 19 Z9 19 U1 0 U2 8 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-6631 EI 1089-7666 J9 PHYS FLUIDS JI Phys. Fluids PD MAR PY 2008 VL 20 IS 3 AR 035107 DI 10.1063/1.2880275 PG 15 WC Mechanics; Physics, Fluids & Plasmas SC Mechanics; Physics GA 281ZO UT WOS:000254537600029 ER PT J AU Ranjan, D Niederhaus, JHJ Oakley, JG Anderson, MH Bonazza, R Greenough, JA AF Ranjan, Devesh Niederhaus, John H. J. Oakley, Jason G. Anderson, Mark H. Bonazza, Riccardo Greenough, Jeffrey A. TI Shock-bubble interactions: Features of divergent shock-refraction geometry observed in experiments and simulations SO PHYSICS OF FLUIDS LA English DT Article ID ADAPTIVE MESH REFINEMENT; HYPERBOLIC CONSERVATION-LAWS; GAS INTERFACE; WAVES; GENERATION; DYNAMICS; INSTABILITY; DEPOSITION; EQUATIONS; FLOWS AB The interaction of a planar shock wave with a spherical bubble in divergent shock-refraction geometry is studied here using shock tube experiments and numerical simulations. The particular case of a helium bubble in ambient air or nitrogen (A approximate to -0.8) is considered, for 1.4 < M < 3.0. Experimental planar laser diagnostics and three-dimensional multifluid Eulerian simulations clearly resolve features arising as a consequence of divergent shock refraction, including the formation of a long-lived primary vortex ring, as well as counter-rotating secondary and tertiary upstream vortex rings that appear at late times for M >= 2. Remarkable correspondence between experimental and numerical results is observed, which improves with increasing M, and three-dimensional effects are found to be relatively insignificant. Shocked-bubble velocities, length scales, and circulations extracted from simulations and experiments are used successfully to evaluate the usefulness of various analytical models, and characteristic dimensionless time scales are developed that collapse temporal trends in these quantities. Those linked directly to baroclinicity tend to follow time scales based on shock wave speeds, while those linked to interface deformation and vortex- or shear-induced motion tend to follow a time scale based on the postshock flow speed, though no single time scale is found to be universally successful. (c) 2008 American Institute of Physics. C1 [Ranjan, Devesh; Niederhaus, John H. J.; Oakley, Jason G.; Anderson, Mark H.; Bonazza, Riccardo] Univ Wisconsin, Dept Engn Phys, Madison, WI 53706 USA. [Greenough, Jeffrey A.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Ranjan, D (reprint author), Univ Wisconsin, Dept Engn Phys, Madison, WI 53706 USA. EM devesh.ranjan@gmail.com; bonazza@engr.wisc.edu OI Ranjan, Devesh/0000-0002-1231-9313 NR 46 TC 16 Z9 19 U1 0 U2 9 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-6631 EI 1089-7666 J9 PHYS FLUIDS JI Phys. Fluids PD MAR PY 2008 VL 20 IS 3 AR 036101 DI 10.1063/1.2840198 PG 20 WC Mechanics; Physics, Fluids & Plasmas SC Mechanics; Physics GA 281ZO UT WOS:000254537600037 ER PT J AU Benisti, D Strozzi, DJ Gremillet, L AF Benisti, Didier Strozzi, David J. Gremillet, Laurent TI Breakdown of electrostatic predictions for the nonlinear dispersion relation of a stimulated Raman scattering driven plasma wave SO PHYSICS OF PLASMAS LA English DT Article ID FREQUENCY-SHIFT AB The kinetic nonlinear dispersion relation, and frequency shift delta omega(srs), of a plasma wave driven by stimulated Raman scattering are presented. Our theoretical calculations are fully electromagnetic, and use an adiabatic expression for the electron susceptibility which accounts for the change in phase velocity as the wave grows. When k lambda(D)>= 0.35 (k being the plasma wave number and lambda(D) the Debye length), delta omega(srs) is significantly larger than could be inferred by assuming that the wave is freely propagating. Our theory is in excellent agreement with 1D Eulerian Vlasov-Maxwell simulations when 0.3 <= k lambda(D)<= 0.58, and allows discussion of previously proposed mechanisms for Raman saturation. In particular, we find that no "loss of resonance" of the plasma wave would limit the Raman growth rate, and that saturation through a phase detuning between the plasma wave and the laser drive is mitigated by wave number shifts. (C) 2008 American Institute of Physics. C1 [Benisti, Didier; Gremillet, Laurent] CEA, DAM Ile France, Dept Phys Theor & Appl, F-91287 Arpajon, France. [Strozzi, David J.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Benisti, D (reprint author), CEA, DAM Ile France, Dept Phys Theor & Appl, F-91287 Arpajon, France. EM didier.benisti@cea.fr RI Gremillet, Laurent/C-5636-2008; OI Strozzi, David/0000-0001-8814-3791 NR 14 TC 29 Z9 29 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD MAR PY 2008 VL 15 IS 3 AR 030701 DI 10.1063/1.2888515 PG 4 WC Physics, Fluids & Plasmas SC Physics GA 281ZR UT WOS:000254537900001 ER PT J AU Birn, J Borovsky, JE Hesse, M AF Birn, J. Borovsky, J. E. Hesse, M. TI Properties of asymmetric magnetic reconnection SO PHYSICS OF PLASMAS LA English DT Article ID CHALLENGE; MAGNETOTAIL; MHD AB Properties of magnetic reconnection are investigated in two-dimensional, resistive magnetohydrodynamic (MHD) simulations of current sheets separating plasmas with different magnetic field strengths and densities. Specific emphasis is on the influence of the external parameters on the reconnection rate. The effect of the dissipation in the resistive MHD model is separated from this influence by evaluating resistivity dependence together with the dependence on the background parameters. Two scenarios are considered, which may be distinguished as driven and nondriven reconnection. In either scenario, the maximum reconnection rate (electric field) is found to depend on appropriate hybrid expressions based on a magnetic field strength and an Alfven speed derived from the characteristic values in the two inflow regions. The scaling compares favorably with an analytic formula derived recently by Cassak and Shay [Phys. Plasmas 14, 102114 (2007)] applied to the regime of fast reconnection. An investigation of the energy flow and conversion in the vicinity of the reconnection site revealed a significant role of enthalpy flux generation, in addition to the expected conversion of Poynting flux to kinetic energy flux. This enthalpy flux generation results from Ohmic heating as well as adiabatic, that is, compressional heating. The latter is found more important when the magnetic field strengths in the two inflow regions are comparable in magnitude. (C) 2008 American Institute of Physics. C1 [Birn, J.; Borovsky, J. E.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Hesse, M.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Birn, J (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM jbirn@lanl.gov RI Hesse, Michael/D-2031-2012; NASA MMS, Science Team/J-5393-2013 OI NASA MMS, Science Team/0000-0002-9504-5214 NR 15 TC 43 Z9 43 U1 0 U2 1 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD MAR PY 2008 VL 15 IS 3 AR 032101 DI 10.1063/1.2888491 PG 13 WC Physics, Fluids & Plasmas SC Physics GA 281ZR UT WOS:000254537900005 ER PT J AU Delzanno, GL Finn, JM AF Delzanno, Gian Luca Finn, John M. TI The effect of line-tying on tearing modes SO PHYSICS OF PLASMAS LA English DT Article ID CORONAL LOOPS; STABILITY; GEOMETRY; PLASMA; PINCH AB Cylindrical magnetohydrodynamic (MHD) constant-psi or nonconstant-psi tearing modes that are linearly unstable with periodic axial boundary conditions are studied in a line-tied cylinder. Examples of these two respective classes of modes, with m = 1 and m = 2 (m being the azimuthal mode number), are studied. With a suitable MHD equilibrium, the former modes are marginally stable in ideal MHD for periodic axial boundary conditions, and occur as fast tearing modes (resistive kinks) in the presence of resistivity eta. The latter modes are stable in ideal MHD for periodic axial boundary conditions, and with resistivity occur as constant-psi tearing modes, unstable in a range of parameters. In both cases, the results for the line-tied modes show the expected tearing scaling with mu for very long plasmas, but the scaling becomes gamma proportional to eta for smaller cylinder lengths L. These results are consistent with the following interpretation: For L --> infinity, the modes have a tearing width characteristic of tearing, leading to characteristic tearing mode growth. As L decreases, the modes develop a geometric width, which increases as L decreases; the gamma proportional to eta scaling occurs when L is small enough that the geometric width exceeds the tearing width. (C) 2008 American Institute of Physics. C1 [Delzanno, Gian Luca; Finn, John M.] Los Alamos Natl Lab, Plasma Theory Grp T 15, Los Alamos, NM 87545 USA. RP Delzanno, GL (reprint author), Los Alamos Natl Lab, Plasma Theory Grp T 15, POB 1663, Los Alamos, NM 87545 USA. EM delzanno@lanl.gov OI Delzanno, Gian Luca/0000-0002-7030-2683 NR 17 TC 17 Z9 20 U1 1 U2 3 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD MAR PY 2008 VL 15 IS 3 AR 032904 DI 10.1063/1.2876666 PG 8 WC Physics, Fluids & Plasmas SC Physics GA 281ZR UT WOS:000254537900033 ER PT J AU Fajans, J Madsen, N Robicheaux, F AF Fajans, J. Madsen, N. Robicheaux, F. TI Critical loss radius in a Penning trap subject to multipole fields SO PHYSICS OF PLASMAS LA English DT Article ID PURE ELECTRON-PLASMA; ANTIHYDROGEN PRODUCTION; CONFINEMENT; TRANSPORT; PARTICLE AB When particles in a Penning trap are subject to a magnetic multipole field, those beyond a critical radius will be lost. The critical radius depends on the history by which the field is applied, and can be much smaller if the particles are injected into a preexisting multipole than if the particles are subject to a ramped multipole. Both cases are relevant to ongoing experiments designed to trap antihydrogen. (C) 2008 American Institute of Physics. C1 [Fajans, J.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Fajans, J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Madsen, N.] Univ Coll Swansea, Dept Phys, Swansea SA2 8PP, W Glam, Wales. [Robicheaux, F.] Auburn Univ, Dept Phys, Auburn, AL 36849 USA. RP Fajans, J (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. RI Madsen, Niels/G-3548-2013; Fajans, Joel/J-6597-2016; Robicheaux, Francis/F-4343-2014 OI Madsen, Niels/0000-0002-7372-0784; Fajans, Joel/0000-0002-4403-6027; Robicheaux, Francis/0000-0002-8054-6040 NR 26 TC 14 Z9 14 U1 0 U2 2 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD MAR PY 2008 VL 15 IS 3 AR 032108 DI 10.1063/1.2899306 PG 6 WC Physics, Fluids & Plasmas SC Physics GA 281ZR UT WOS:000254537900012 ER PT J AU Gerhardt, SP Belova, EV Yamada, M Ji, H Ren, Y McGeehan, B Inomoto, M AF Gerhardt, S. P. Belova, E. V. Yamada, M. Ji, H. Ren, Y. McGeehan, B. Inomoto, M. TI Field-reversed configuration formation scheme utilizing a spheromak and solenoid induction SO PHYSICS OF PLASMAS LA English DT Article ID MINIMUM-ENERGY STATE; MAGNETIC RECONNECTION; PLASMA CONFIGURATION; STABILITY PROPERTIES; DECAYING SPHEROMAK; LABORATORY PLASMA; GLOBAL STABILITY; SPHEX SPHEROMAK; FLUX CONSERVER; COMPACT TORUS AB A new field-reversed configuration (FRC) formation technique is described, where a spheromak transitions to a FRC with inductive current drive. The transition is accomplished only in argon and krypton plasmas, where low-n kink modes are suppressed; spheromaks with a lighter majority species, such as neon and helium, either display a terminal tilt-mode, or an n = 2 kink instability, both resulting in discharge termination. The stability of argon and krypton plasmas through the transition is attributed to the rapid magnetic diffusion of the currents that drive the kink-instability. The decay of helicity during the transition is consistent with that expected from resistivity. This observation indicates a new scheme to form a FRC plasma, provided stability to low-n modes is maintained, as well as a unique situation where the FRC is a preferred state. (C) 2008 American Institute of Physics. C1 [Gerhardt, S. P.; Belova, E. V.; Yamada, M.; Ji, H.; Ren, Y.; McGeehan, B.] Princeton Plasma Phys Lab, Plainsboro, NJ 08543 USA. [Inomoto, M.] Osaka Univ, Suita, Osaka 5650871, Japan. RP Gerhardt, SP (reprint author), Princeton Plasma Phys Lab, Plainsboro, NJ 08543 USA. RI Yamada, Masaaki/D-7824-2015 OI Yamada, Masaaki/0000-0003-4996-1649 NR 78 TC 2 Z9 2 U1 1 U2 2 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD MAR PY 2008 VL 15 IS 3 AR 032503 DI 10.1063/1.2889428 PG 11 WC Physics, Fluids & Plasmas SC Physics GA 281ZR UT WOS:000254537900026 ER PT J AU Hooper, EB Cohen, BI McLean, HS Wood, RD Romero-Talamas, CA Sovinec, CR AF Hooper, E. B. Cohen, B. I. McLean, H. S. Wood, R. D. Romero-Talamas, C. A. Sovinec, C. R. TI NIMROD resistive magnetohydrodynamic simulations of spheromak physics SO PHYSICS OF PLASMAS LA English DT Article ID SSPX SPHEROMAK; PLASMA; DRIVEN; SUSTAINMENT AB The physics of spheromak plasmas is addressed by time-dependent, three-dimensional, resistive magnetohydrodynamic simulations with the NIMROD code [C. R. Sovinec et al., J. Comput. Phys. 195, 355 (2004)]. Included in some detail are the formation of a spheromak driven electrostatically by a coaxial plasma gun with a flux-conserver geometry and power systems that accurately model the sustained spheromak physics experiment [R. D. Wood et al., Nucl. Fusion 45, 1582 (2005)]. The controlled decay of the spheromak plasma over several milliseconds is also modeled as the programmable current and voltage relax, resulting in simulations of entire experimental pulses. Reconnection phenomena and the effects of current profile evolution on the growth of symmetry-breaking toroidal modes are diagnosed; these in turn affect the quality of magnetic surfaces and the energy confinement. The sensitivity of the simulation results addresses variations in both physical and numerical parameters, including spatial resolution. There are significant points of agreement between the simulations and the observed experimental behavior, e. g., in the evolution of the magnetics and the sensitivity of the energy confinement to the presence of symmetry-breaking magnetic fluctuations. (C) 2008 American Institute of Physics. C1 [Hooper, E. B.; Cohen, B. I.; McLean, H. S.; Wood, R. D.; Romero-Talamas, C. A.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Sovinec, C. R.] Univ Wisconsin, Dept Engn Phys, Madison, WI 53706 USA. RP Hooper, EB (reprint author), Lawrence Livermore Natl Lab, POB 808, Livermore, CA 94550 USA. EM hooper1@llnl.gov; cohen1@llnl.gov NR 26 TC 13 Z9 13 U1 0 U2 4 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD MAR PY 2008 VL 15 IS 3 AR 032502 DI 10.1063/1.2890772 PG 17 WC Physics, Fluids & Plasmas SC Physics GA 281ZR UT WOS:000254537900025 ER PT J AU Kantsyrev, VL Rudakov, LI Safronova, AS Esaulov, AA Chuvatin, AS Coverdale, CA Deeney, C Williamson, KM Yilmaz, MF Shrestha, I Ouart, ND Osborne, GC AF Kantsyrev, V. L. Rudakov, L. I. Safronova, A. S. Esaulov, A. A. Chuvatin, A. S. Coverdale, C. A. Deeney, C. Williamson, K. M. Yilmaz, M. F. Shrestha, I. Ouart, N. D. Osborne, G. C. TI Double planar wire array as a compact plasma radiation source SO PHYSICS OF PLASMAS LA English DT Article ID INERTIAL CONFINEMENT FUSION; Z-PINCHES; DYNAMICS; ENERGY; YIELD AB Magnetically compressed plasmas initiated by a double planar wire array (DPWA) are efficient radiation sources. The two rows in a DPWA implode independently and then merge together at stagnation producing soft x-ray yields and powers of up to 11.5 kJ/cm and more than 0.4 TW/cm, higher than other planar arrays or low wire-number cylindrical arrays on the 1 MA Zebra generator. DPWA, where precursors form in two stages, produce a shaped radiation pulse and radiate more energy in the main burst than estimates of implosion kinetic energy. High radiation efficiency, compact size (as small as 3-5 mm wide), and pulse shaping show that the DPWA is a potential candidate for ICF and radiation physics research. (C) 2008 American Institute of Physics. C1 [Kantsyrev, V. L.; Safronova, A. S.; Esaulov, A. A.; Williamson, K. M.; Yilmaz, M. F.; Shrestha, I.; Ouart, N. D.; Osborne, G. C.] Univ Nevada, Dept Phys, Reno, NV 89557 USA. [Rudakov, L. I.] Icarus Res Inc, Bethesda, MD 20824 USA. [Chuvatin, A. S.] Ecole Polytech, Lab Phys & Technol Plasmas, F-91128 Palaiseau, France. [Coverdale, C. A.] Sandia Natl Labs, Sandia, NM 87123 USA. [Deeney, C.] US DOE, NNSA, Washington, DC 20585 USA. RP Kantsyrev, VL (reprint author), Univ Nevada, Dept Phys, Reno, NV 89557 USA. NR 16 TC 37 Z9 39 U1 1 U2 3 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD MAR PY 2008 VL 15 IS 3 AR 030704 DI 10.1063/1.2896577 PG 4 WC Physics, Fluids & Plasmas SC Physics GA 281ZR UT WOS:000254537900004 ER PT J AU Krommes, JA AF Krommes, John A. TI The remarkable similarity between the scaling of kurtosis with squared skewness for TORPEX density fluctuations and sea-surface temperature fluctuations SO PHYSICS OF PLASMAS LA English DT Article ID REALIZABLE MARKOVIAN CLOSURE; NON-GAUSSIAN STATISTICS; PLASMA TURBULENCE; FIELD; DYNAMICS AB The striking similarity between the statistics of plasma density fluctuations in the TORPEX device [Labit et al., Phys. Rev. Lett. 98, 255002 (2007)] and sea-surface temperature fluctuations [Sura and Sardeshmukh, J. Phys. Oceanogr. 38, 638 (2007)] (SS) is discussed. A nonlinear Langevin theory due to SS is generalized to include linear wave propagation. An interpretation of the nonlinear Langevin equation based on statistical closure theory is proposed. (C) 2008 American Institute of Physics. C1 Princeton Univ, Plasma Phys Lab, Princeton, NJ 08543 USA. RP Krommes, JA (reprint author), Princeton Univ, Plasma Phys Lab, POB 451,MS 28, Princeton, NJ 08543 USA. EM krommes@princeton.edu NR 12 TC 22 Z9 22 U1 3 U2 6 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD MAR PY 2008 VL 15 IS 3 AR 030703 DI 10.1063/1.2894560 PG 4 WC Physics, Fluids & Plasmas SC Physics GA 281ZR UT WOS:000254537900003 ER PT J AU Rygg, JR Frenje, JA Li, CK Seguin, FH Petrasso, RD Marshall, FJ Delettrez, JA Knauer, JP Meyerhofer, DD Stoeckl, C AF Rygg, J. R. Frenje, J. A. Li, C. K. Seguin, F. H. Petrasso, R. D. Marshall, F. J. Delettrez, J. A. Knauer, J. P. Meyerhofer, D. D. Stoeckl, C. TI Observations of the collapse of asymmetrically driven convergent shocks SO PHYSICS OF PLASMAS LA English DT Article ID INERTIAL-CONFINEMENT-FUSION; OMEGA; SONOLUMINESCENCE AB The collapse of strong convergent shocks in spherical geometry is observed using measurements of induced nuclear production and x-ray emission. Precise and absolute measurements of the timing and yield of nuclear production induced by the collapse of laser-driven shocks give the same results when shocks are launched by uniform (<2% rms) or nonuniform (up to 32% rms) laser illumination. The observation was repeated for both low-mode (dominated by spherical harmonic modes l = 1-2) and high-mode (l = 31-500) drive asymmetries. For low-mode nonuniform drive, the center of collapse as observed through x-ray emission shifts away from target center toward the direction of low intensity. The x-ray emission brightness is seen to drop precipitously with larger low-mode drive asymmetry, in stark contrast to the drive-uniformity insensitivity of nuclear yields at the time of shock collapse. (C) 2008 American Institute of Physics. C1 [Rygg, J. R.; Frenje, J. A.; Li, C. K.; Seguin, F. H.; Petrasso, R. D.] MIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA. [Meyerhofer, D. D.] Univ Rochester, Laser Energet Lab, Dept Phys & Astron, Rochester, NY 14623 USA. [Meyerhofer, D. D.] Univ Rochester, Laser Energet Lab, Dept Mech Engn, Rochester, NY 14623 USA. RP Rygg, JR (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. NR 20 TC 9 Z9 9 U1 0 U2 2 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD MAR PY 2008 VL 15 IS 3 AR 034505 DI 10.1063/1.2892025 PG 4 WC Physics, Fluids & Plasmas SC Physics GA 281ZR UT WOS:000254537900054 ER PT J AU Wan, WG Lapenta, G Delzanno, GL Egedal, J AF Wan, Weigang Lapenta, Giovanni Delzanno, Gian Luca Egedal, Jan TI Electron acceleration during guide field magnetic reconnection SO PHYSICS OF PLASMAS LA English DT Article ID CURRENT SHEETS; MAGNETOTAIL; ISLANDS AB Particle-in-cell simulations of the guide field intermittent magnetic reconnection are performed to study electron acceleration and pitch angle distributions. During the growing stage of reconnection, the power-law distribution function for the high-energy electrons and the pitch angle distributions of the low-energy electrons are obtained and compare favorably with observations by the Wind spacecraft. Direct evidence is found for the secondary acceleration during the later reconnection stage. A correlation between the generation of energetic electrons and the induced reconnection electric field is found. Energetic electrons are accelerated first around the X line, and then in the region outside the diffusion region, when the reconnection electric field has a bipolar structure. The physical mechanisms of these accelerations are discussed. The in-plane electrostatic field that traps the low-energy electrons and causes the anisotropic pitch angle distributions has been observed. (C) 2008 American Institute of Physics. C1 [Wan, Weigang; Lapenta, Giovanni; Delzanno, Gian Luca] Los Alamos Natl Lab, Plasma Theory Grp, Los Alamos, NM 87545 USA. [Lapenta, Giovanni] Katholieke Univ Leuven, Dept Wiskunde, Ctr Plasma Astrofys, B-3001 Louvain, Belgium. [Egedal, Jan] MIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA. RP Wan, WG (reprint author), Los Alamos Natl Lab, Plasma Theory Grp, POB 1663, Los Alamos, NM 87545 USA. OI Delzanno, Gian Luca/0000-0002-7030-2683; Lapenta, Giovanni/0000-0002-3123-4024 NR 29 TC 21 Z9 21 U1 2 U2 6 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD MAR PY 2008 VL 15 IS 3 AR 032903 DI 10.1063/1.2876465 PG 12 WC Physics, Fluids & Plasmas SC Physics GA 281ZR UT WOS:000254537900032 ER PT J AU Yaakobi, O Friedland, L Lindberg, RR Charman, AE Penn, G Wurtele, JS AF Yaakobi, O. Friedland, L. Lindberg, R. R. Charman, A. E. Penn, G. Wurtele, J. S. TI Spatially autoresonant stimulated Raman scattering in nonuniform plasmas SO PHYSICS OF PLASMAS LA English DT Article ID SHORT LASER-PULSES; NONSTATIONARY EXCITATION; WAVES; AMPLIFICATION; EVOLUTION; BEAMS AB New solutions to the coupled three-wave equations in a nonuniform plasma medium are presented that include both space and time dependence of the waves. By including the dominant nonlinear frequency shift of the material wave, it is shown that if the driving waves are sufficiently strong (in relation to the medium gradient), a nonlinearly phase-locked solution develops that is characteristic of autoresonance. In this case, the material (electrostatic) wave develops into a front starting at the linear resonance point and moving with the wave group velocity in a manner such that the intensity increases linearly with the propagation distance. The forms of the other two (electromagnetic) waves follow naturally from the Manley-Rowe relations. (C) 2008 American Institute of Physics. C1 [Yaakobi, O.; Friedland, L.] Hebrew Univ Jerusalem, Racah Inst Phys, IL-91904 Jerusalem, Israel. [Yaakobi, O.] Soreq Nucl Res Ctr, IL-81800 Yavne, Israel. [Lindberg, R. R.; Charman, A. E.; Wurtele, J. S.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Penn, G.; Wurtele, J. S.] Univ Calif Berkeley, Lawrence Berkeley Lab, Ctr Beam Phys, Berkeley, CA 94720 USA. RP Yaakobi, O (reprint author), Hebrew Univ Jerusalem, Racah Inst Phys, IL-91904 Jerusalem, Israel. EM lazar@vms.huji.ac.il; rlindberg@berkeley.edu RI Yaakobi, Oded/J-4839-2012; Yaakobi, Oded/H-3109-2016; wurtele, Jonathan/J-6278-2016 OI wurtele, Jonathan/0000-0001-8401-0297 NR 25 TC 12 Z9 13 U1 0 U2 4 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD MAR PY 2008 VL 15 IS 3 AR 032105 DI 10.1063/1.2884717 PG 6 WC Physics, Fluids & Plasmas SC Physics GA 281ZR UT WOS:000254537900009 ER PT J AU Baltz, AJ Baur, G d'Enterria, D Frankfurt, L Gelis, F Guzey, V Hencken, K Kharlov, Y Klasen, M Klein, SR Nikulin, V Nystrand, J Pshenichnov, IA Sadovsky, S Scapparone, E Seger, J Strikman, M Tverskoy, M Vogt, R White, SN Wiedemann, UA Yepes, P Zhalov, M AF Baltz, A. J. Baur, G. d'Enterria, D. Frankfurt, L. Gelis, F. Guzey, V. Hencken, K. Kharlov, Yu. Klasen, M. Klein, S. R. Nikulin, V. Nystrand, J. Pshenichnov, I. A. Sadovsky, S. Scapparone, E. Seger, J. Strikman, M. Tverskoy, M. Vogt, R. White, S. N. Wiedemann, U. A. Yepes, P. Zhalov, M. TI The physics of ultraperipheral collisions at the LHC SO PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS LA English DT Review ID HEAVY-ION COLLISIONS; POSITRON PAIR PRODUCTION; DEEP-INELASTIC SCATTERING; LARGE-MOMENTUM-TRANSFER; COLOR GLASS CONDENSATE; TOTAL CROSS-SECTION; RELATIVISTIC NUCLEAR COLLISIONS; VECTOR-MESON PRODUCTION; GLUON DISTRIBUTION-FUNCTIONS; WEIZSACKER-WILLIAMS FIELD AB We discuss the physics of large impact parameter interactions at the LHC: ultraperipheral collisions (UPCs). The dominant processes in UPCs are photon-nucleon (nucleus) interactions. The current LHC detector configurations can explore hard phenomena at small x with nuclei and nucleons at photon-nucleon center-of-mass energies above 1 TeV, extending the x range of HERA by a factor of ten. In particular, it will be possible to probe diffractive and inclusive parton densities in nuclei using several processes. The interaction of small dipoles with protons and nuclei can be investigated in elastic and quasi-elastic J/Psi and Gamma production as well as in high t rho(0) production accompanied by a rapidity gap. Several of these phenomena provide clean signatures of the onset of the new high gluon density QCD regime. The LHC is in the kinematic range where nonlinear effects are several times larger than those at HERA. Two-photon processes in UPCs are also studied. In addition, while UPCs play a role in limiting the maximum beam luminosity, they can also be used as a luminosity monitor by measuring mutual electromagnetic dissociation of the beam nuclei. We also review similar studies at HERA and RHIC as well as describe the potential use of the LHC detectors for UPC measurements. (C) 2008 Elsevier B.V. All rights reserved. C1 [Baltz, A. J.; White, S. N.] Assoc Univ Inc, Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Baur, G.] Forschungszentrum, Inst Kernphys, Julich, Germany. [d'Enterria, D.] CERN, Expt Phys Div, Geneva, Switzerland. [Frankfurt, L.] Tel Aviv Univ, Dept Nucl Phys, IL-69978 Tel Aviv, Israel. [Gelis, F.] CEA DSM SPhT, Saclay, France. [Guzey, V.] Ruhr Univ Bochum, Inst Theoret Phys 2, D-4630 Bochum, Germany. [Hencken, K.] Univ Basel, Basel, Switzerland. [Hencken, K.] ABB Corp Res, Baden, Switzerland. [Kharlov, Yu.; Sadovsky, S.] Inst High Energy Phys, Protvino, Russia. [Klasen, M.] Univ Grenoble 1, CNRS IN2P3, Lab Phys Subatom & Cosmol, Grenoble, France. [Klein, S. R.; Vogt, R.] Lawrence Berkeley Natl Lab, Div Nucl Sci, Berkeley, CA USA. [Nikulin, V.; Tverskoy, M.; Zhalov, M.] Petersburg Nucl Phys Inst, Gatchina, Russia. [Nystrand, J.] Univ Bergen, Dept Phys & Technol, Bergen, Norway. [Pshenichnov, I. A.] Frankfurt Inst Adv Studies, Frankfurt, Germany. [Pshenichnov, I. A.] Russian Acad Sci, Inst Nucl Res, Moscow, Russia. [Scapparone, E.] Ist Nazl Fis Nucl, Sez Bologna, I-40126 Bologna, Italy. [Seger, J.] Creighton Univ, Dept Phys, Omaha, NE 68178 USA. [Strikman, M.] Penn State Univ, State Coll, Dept Phys, University Pk, PA 16802 USA. [Vogt, R.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Vogt, R.] Lawrence Livermore Natl Lab, Livermore, CA USA. [Wiedemann, U. A.] CERN, Div Theory, CH-1211 Geneva, Switzerland. [Yepes, P.] Rice Univ, Dept Phys & Astron, Houston, TX 77251 USA. [Guzey, V.] Jefferson Lab, Ctr Theory, Newport News, VA 23606 USA. RP Strikman, M (reprint author), Penn State Univ, State Coll, Dept Phys, University Pk, PA 16802 USA. EM strikman@phys.psu.edu RI Pshenichnov, Igor/A-4063-2008; SCAPPARONE, EUGENIO/H-1805-2012; OI Pshenichnov, Igor/0000-0003-1752-4524; Guzey, Vadim/0000-0002-2393-8507 NR 397 TC 150 Z9 151 U1 1 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-1573 EI 1873-6270 J9 PHYS REP JI Phys. Rep.-Rev. Sec. Phys. Lett. PD MAR PY 2008 VL 458 IS 1-3 BP 1 EP 171 DI 10.1016/j.physrep.2007.12.001 PG 171 WC Physics, Multidisciplinary SC Physics GA 286BP UT WOS:000254820700001 ER PT J AU Mathews, GJ Van Bibber, K May, M AF Mathews, Grant J. Van Bibber, Karl May, Michael TI James Ricker Wilson SO PHYSICS TODAY LA English DT Biographical-Item C1 [Mathews, Grant J.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Van Bibber, Karl; May, Michael] Lawrence Livermore Natl Lab, Livermore, CA USA. RP Mathews, GJ (reprint author), Univ Notre Dame, Notre Dame, IN 46556 USA. NR 1 TC 0 Z9 0 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0031-9228 J9 PHYS TODAY JI Phys. Today PD MAR PY 2008 VL 61 IS 3 BP 70 EP 72 DI 10.1063/1.2897960 PG 3 WC Physics, Multidisciplinary SC Physics GA 271WT UT WOS:000253820100022 ER PT J AU Crease, RP AF Crease, Robert P. TI Critical point a mind of her own SO PHYSICS WORLD LA English DT Editorial Material C1 [Crease, Robert P.] SUNY Stony Brook, Dept Philosophy, Stony Brook, NY 11790 USA. [Crease, Robert P.] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Crease, RP (reprint author), SUNY Stony Brook, Dept Philosophy, Stony Brook, NY 11790 USA. EM rcrease@notes.cc.sunysb.edu NR 0 TC 0 Z9 0 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0953-8585 J9 PHYS WORLD JI Phys. World PD MAR PY 2008 VL 21 IS 3 BP 17 EP 17 PG 1 WC Physics, Multidisciplinary SC Physics GA 274XE UT WOS:000254035300019 ER PT J AU Uehlein, N Otto, B Hanson, DT Fischer, M McDowell, N Kaldenhoff, R AF Uehlein, Norbert Otto, Beate Hanson, David T. Fischer, Matthias McDowell, Nate Kaldenhoff, Ralf TI Function of Nicotiana tabacum aquaporins as chloroplast gas pores challenges the concept of membrane CO2 permeability SO PLANT CELL LA English DT Article ID CARBON-ISOTOPE DISCRIMINATION; PLASMA-MEMBRANE; WATER CHANNELS; INTERNAL CONDUCTANCE; XENOPUS OOCYTES; MESOPHYLL CONDUCTANCE; TRANSGENIC TOBACCO; IN-VIVO; LEAVES; DIFFUSION AB Photosynthesis is often limited by the rate of CO2 diffusion from the atmosphere to the chloroplast. The primary resistances for CO2 diffusion are thought to be at the stomata and at photosynthesizing cells via a combination resulting from resistances of aqueous solution as well as the plasma membrane and both outer and inner chloroplast membranes. In contrast with stomatal resistance, the resistance of biological membranes to gas transport is not widely recognized as a limiting factor for metabolic function. We show that the tobacco (Nicotiana tabacum) plasma membrane and inner chloroplast membranes contain the aquaporin Nt AQP1. RNA interference-mediated decreases in Nt AQP1 expression lowered the CO2 permeability of the inner chloroplast membrane. In vivo data show that the reduced amount of Nt AQP1 caused a 20% change in CO2 conductance within leaves. Our discovery of CO2 aquaporin function in the chloroplast membrane opens new opportunities for mechanistic examination of leaf internal CO2 conductance regulation. C1 [Uehlein, Norbert; Otto, Beate; Fischer, Matthias; Kaldenhoff, Ralf] Tech Univ Darmstadt, Inst Bot, Dept Appl Plant Sci, D-64287 Darmstadt, Germany. [Hanson, David T.] Univ New Mexico, Dept Biol, Albuquerque, NM 87131 USA. [McDowell, Nate] Los Alamos Natl Lab, Div Earth & Environm Sci, Los Alamos, NM 87544 USA. RP Kaldenhoff, R (reprint author), Tech Univ Darmstadt, Inst Bot, Dept Appl Plant Sci, Petersenstr 30, D-64287 Darmstadt, Germany. EM uehlein@bio.tu-darmstadt.de; kaldenhoff@bio.tu-darmstadt.de RI Hanson, David/J-8034-2012; Kodama, Naomi/D-9553-2011 OI Kodama, Naomi/0000-0001-9913-9886 NR 52 TC 161 Z9 175 U1 6 U2 30 PU AMER SOC PLANT BIOLOGISTS PI ROCKVILLE PA 15501 MONONA DRIVE, ROCKVILLE, MD 20855 USA SN 1040-4651 EI 1532-298X J9 PLANT CELL JI Plant Cell PD MAR PY 2008 VL 20 IS 3 BP 648 EP 657 DI 10.1105/tpc.107.054023 PG 10 WC Biochemistry & Molecular Biology; Plant Sciences; Cell Biology SC Biochemistry & Molecular Biology; Plant Sciences; Cell Biology GA 308UM UT WOS:000256415500016 PM 18349152 ER PT J AU Browse, J Howe, GA AF Browse, John Howe, Gregg A. TI New weapons and a rapid response against insect attack SO PLANT PHYSIOLOGY LA English DT Article ID JASMONATE-REGULATED DEFENSE; BOX PROTEIN TIR1; NICOTIANA-ATTENUATA; METHYL JASMONATE; WOUND RESPONSE; PLANT DEFENSE; ARABIDOPSIS MUTANT; INDUCED RESISTANCE; SIGNALING PATHWAY; OXYLIPIN SIGNAL C1 [Howe, Gregg A.] Michigan State Univ, US DOE, Plant Res Lab, Dept Biochem & Mol Biol, E Lansing, MI 48824 USA. [Browse, John] Washington State Univ, Inst Biol Chem, Pullman, WA 99164 USA. RP Howe, GA (reprint author), Michigan State Univ, US DOE, Plant Res Lab, Dept Biochem & Mol Biol, E Lansing, MI 48824 USA. EM howeg@msu.edu OI Browse, John/0000-0002-2554-2821 FU NIGMS NIH HHS [GM 57795, R01 GM057795, R01 GM057795-10] NR 70 TC 117 Z9 132 U1 2 U2 29 PU AMER SOC PLANT BIOLOGISTS PI ROCKVILLE PA 15501 MONONA DRIVE, ROCKVILLE, MD 20855 USA SN 0032-0889 J9 PLANT PHYSIOL JI Plant Physiol. PD MAR PY 2008 VL 146 IS 3 BP 832 EP 838 DI 10.1104/pp.107.115683 PG 7 WC Plant Sciences SC Plant Sciences GA 308TF UT WOS:000256412200006 PM 18316637 ER PT J AU Van Zeeland, MA Heidbrink, WW Nazikian, R Solomon, WM Austin, ME Berk, HL Gorelenkov, NN Holcomb, CT Hyatt, AW Kramer, GJ Lohr, J Makowski, MA Mckee, GR Petty, CC Sharapov, SE Rhodes, TL AF Van Zeeland, M. A. Heidbrink, W. W. Nazikian, R. Solomon, W. M. Austin, M. E. Berk, H. L. Gorelenkov, N. N. Holcomb, C. T. Hyatt, A. W. Kramer, G. J. Lohr, J. Makowski, M. A. Mckee, G. R. Petty, C. C. Sharapov, S. E. Rhodes, T. L. TI Reversed shear Alfven eigenmode stabilization by localized electron cyclotron heating SO PLASMA PHYSICS AND CONTROLLED FUSION LA English DT Article ID DIII-D; PLASMAS; SPECTROSCOPY; SIMULATION; TOKAMAK AB Reversed shear Alfven eigenmode (RSAE) activity in DIII-D is stabilized by electron cyclotron heating (ECH) applied near the minimum of the magnetic safety factor ( q(min)) in neutral beam heated discharges with reversed-magnetic shear. The degree of RSAE stabilization, fast ion density and the volume averaged neutron production ( S-n) are highly dependent on ECH deposition location relative to q(min). While discharges with ECH stabilization of RSAEs have higher S-n and more peaked fast ion profiles than discharges with significant RSAE activity, neutron production remains strongly reduced ( up to 60% relative to TRANSP predictions assuming classical fast ion transport) even when RSAEs are stabilized. C1 [Van Zeeland, M. A.; Hyatt, A. W.; Lohr, J.; Petty, C. C.] Gen Atom Co, San Diego, CA 92186 USA. [Heidbrink, W. W.] Univ Calif Irvine, Irvine, CA 92697 USA. [Nazikian, R.; Solomon, W. M.; Gorelenkov, N. N.; Kramer, G. J.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Berk, H. L.] Univ Texas Austin, Inst Fus Studies, Austin, TX 78712 USA. [Holcomb, C. T.; Makowski, M. A.] Lawrence Livermore Natl Lab, Livermore, CA USA. [Mckee, G. R.] Univ Wisconsin, Madison, WI 53726 USA. [Sharapov, S. E.] UKAEA Euratom Fus Assoc, Abingdon OX14 3DB, Oxon, England. [Rhodes, T. L.] Univ Calif Los Angeles, Los Angeles, CA 90095 USA. RP Van Zeeland, MA (reprint author), Gen Atom Co, POB 85608, San Diego, CA 92186 USA. EM vanzeeland@fusion.gat.com OI Solomon, Wayne/0000-0002-0902-9876 NR 30 TC 26 Z9 26 U1 0 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0741-3335 EI 1361-6587 J9 PLASMA PHYS CONTR F JI Plasma Phys. Control. Fusion PD MAR PY 2008 VL 50 IS 3 AR 035009 DI 10.1088/0741-3335/50/3/035009 PG 10 WC Physics, Fluids & Plasmas SC Physics GA 279MQ UT WOS:000254359700009 ER PT J AU Zakharov, LE Foley, EL Levinton, FM Yuh, HY AF Zakharov, L. E. Foley, E. L. Levinton, F. M. Yuh, H. Y. TI Reconstruction of the q and p profiles in ITER from external and internal measurements SO PLASMA PHYSICS REPORTS LA English DT Article; Proceedings Paper CT 12th All-Russian Conference on Plasma Diagnostics CY JUN 03-09, 2007 CL Troitsk, RUSSIA ID TOKAMAK AB A method is developed for calculating uncertainties in reconstructing the equilibrium profiles of the safety factor q and plasma pressure p in the ITER device from external magnetic measurements and from motional Stark effect line polarization (MSE-LP) and motional Stark effect line shift (MSE-LS) signals from excited NBI atoms inside the plasma core. It is shown that, with MSE-LP signals, as well as with MSE-LS signals (the use of which was recently proposed by Nova Photonics, Inc.), it is possible to substantially improve the reconstruction of the profiles that determine the plasma magnetic configuration. C1 [Zakharov, L. E.] Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Foley, E. L.; Levinton, F. M.; Yuh, H. Y.] Nava Photon, Princeton, NJ 08543 USA. RP Zakharov, LE (reprint author), Princeton Univ, Princeton Plasma Phys Lab, MS-27,POB 451, Princeton, NJ 08543 USA. NR 12 TC 6 Z9 6 U1 1 U2 3 PU MAIK NAUKA/INTERPERIODICA/SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013-1578 USA SN 1063-780X J9 PLASMA PHYS REP+ JI Plasma Phys. Rep. PD MAR PY 2008 VL 34 IS 3 BP 173 EP 188 DI 10.1134/S1063780X08030021 PG 16 WC Physics, Fluids & Plasmas SC Physics GA 286HG UT WOS:000254836400002 ER PT J AU Nemenman, I Lewen, GD Bialek, W van Steveninck, RRD AF Nemenman, Ilya Lewen, Geoffrey D. Bialek, William van Steveninck, Rob R. De Ruyter TI Neural coding of natural stimuli: Information at sub-millisecond resolution SO PLOS COMPUTATIONAL BIOLOGY LA English DT Article ID OPTIC FLOW; BLOWFLY FLIGHT; VISUAL CONTROL; SPIKE TRAINS; ENTROPY; CODE; VARIABILITY; PRECISION; BEHAVIOR; SAMPLES AB Sensory information about the outside world is encoded by neurons in sequences of discrete, identical pulses termed action potentials or spikes. There is persistent controversy about the extent to which the precise timing of these spikes is relevant to the function of the brain. We revisit this issue, using the motion-sensitive neurons of the fly visual system as a test case. Our experimental methods allow us to deliver more nearly natural visual stimuli, comparable to those which flies encounter in free, acrobatic flight. New mathematical methods allow us to draw more reliable conclusions about the information content of neural responses even when the set of possible responses is very large. We find that significant amounts of visual information are represented by details of the spike train at millisecond and sub-millisecond precision, even though the sensory input has a correlation time of similar to 55 ms; different patterns of spike timing represent distinct motion trajectories, and the absolute timing of spikes points to particular features of these trajectories with high precision. Finally, the efficiency of our entropy estimator makes it possible to uncover features of neural coding relevant for natural visual stimuli: first, the system's information transmission rate varies with natural fluctuations in light intensity, resulting from varying cloud cover, such that marginal increases in information rate thus occur even when the individual photoreceptors are counting on the order of one million photons per second. Secondly, we see that the system exploits the relatively slow dynamics of the stimulus to remove coding redundancy and so generate a more efficient neural code. C1 [Nemenman, Ilya] Los Alamos Natl Lab, Comp Computat & Stat Sci Div, Los Alamos, NM 87545 USA. [Nemenman, Ilya] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. [Lewen, Geoffrey D.] Hun Sch Princeton, Princeton, NJ USA. [Bialek, William] Princeton Univ, Joseph Henry Labs Phys, Princeton, NJ 08544 USA. [Bialek, William] Princeton Univ, Lewis Sigler Inst Integrat Genom, Princeton, NJ 08544 USA. [van Steveninck, Rob R. De Ruyter] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. RP Nemenman, I (reprint author), Los Alamos Natl Lab, Comp Computat & Stat Sci Div, Los Alamos, NM 87545 USA. EM nemenman@lanl.gov OI Nemenman, Ilya/0000-0003-3024-4244 NR 50 TC 48 Z9 48 U1 1 U2 15 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1553-734X EI 1553-7358 J9 PLOS COMPUT BIOL JI PLoS Comput. Biol. PD MAR PY 2008 VL 4 IS 3 AR e1000025 DI 10.1371/journal.pcbi.1000025 PG 12 WC Biochemical Research Methods; Mathematical & Computational Biology SC Biochemistry & Molecular Biology; Mathematical & Computational Biology GA 294MM UT WOS:000255410100024 PM 18369423 ER PT J AU Wu, B Yee, A Huang, YJ Ramelot, TA Cort, JR Semesi, A Jung, JW Lee, W Montelione, GT Kennedy, MA Arrowsmith, CH AF Wu, Bin Yee, Adelinda Huang, Yuanpeng J. Ramelot, Theresa A. Cort, John R. Semesi, Anthony Jung, Jin-Won Lee, Weontae Montelione, Gaetano T. Kennedy, Michael A. Arrowsmith, Cheryl H. TI The solution structure of ribosomal protein S17E from Methanobacterium thermoautotrophicum: A structural homolog of the FF domain SO PROTEIN SCIENCE LA English DT Article DE heteronuclear NMR; Methanobacterium thermoautotrophicum; ribosomal protein S17E; northeast structural genomics consortium ID QUANTITATIVE J-CORRELATION; CRYSTAL-STRUCTURE; TRANSFER-RNA; ANGSTROM RESOLUTION; NMR; SUBUNIT; REVEALS; QUALITY; HOMONUCLEAR; ASSIGNMENTS AB The ribosomal protein S17E from the archaeon Methanobacterium thermoautotrophicum is a component of the 30S ribosomal subunit. S17E is a 62-residue protein conserved in archaea and eukaryotes and has no counterparts in bacteria. Mammalian S17E is a phosphoprotein component of eukaryotic ribosomes. Archaeal S17E proteins range from 59 to 79 amino acids, and are about half the length of the eukaryotic homologs which have an additional C-terminal region. Here we report the three-dimensional solution structure of S17E. S17E folds into a small three-helix bundle strikingly similar to the FF domain of human HYPA/FBP11, a novel phosphopeptide-binding fold. S17E bears a conserved positively charged surface acting as a robust scaffold for molecular recognition. The structure of M. thermoautotrophicum S17E provides a template for homology modeling of eukaryotic S17E proteins in the family. C1 [Wu, Bin; Yee, Adelinda; Semesi, Anthony; Arrowsmith, Cheryl H.] Ontario Canc Inst, Div Canc Genom & Proteom, Toronto M5G 2M9, ON, Canada. [Wu, Bin; Yee, Adelinda; Semesi, Anthony; Arrowsmith, Cheryl H.] Univ Toronto, Dept Med Biophys, Toronto, ON M5G 2M9, Canada. [Huang, Yuanpeng J.; Montelione, Gaetano T.] Rutgers State Univ, Ctr Adv Biotechnol & Med, Dept Mol Biol & Biochem, Piscataway, NJ 08854 USA. [Ramelot, Theresa A.; Cort, John R.; Kennedy, Michael A.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99354 USA. [Ramelot, Theresa A.; Kennedy, Michael A.] Miami Univ, Dept Chem & Biochem, Oxford, OH 45046 USA. [Cort, John R.] Washington State Univ, Richland, WA 99354 USA. [Jung, Jin-Won; Lee, Weontae] Yonsei Univ, Coll Sci, Protein Network Res Ctr, Dept Biochem, Seoul 120749, South Korea. RP Arrowsmith, CH (reprint author), Rm 4-803, TMDT MArs, 101 Coll St, Toronto, ON M5G 1L7, Canada. EM carrow@uhnres.utoronto.ca RI Jung, Jinwon/F-6038-2010; OI Jung, Jinwon/0000-0002-7981-3316 FU NIGMS NIH HHS [U54 GM074958, P50-GM62413-02, P50 GM062413] NR 42 TC 2 Z9 2 U1 1 U2 1 PU COLD SPRING HARBOR LAB PRESS, PUBLICATIONS DEPT PI WOODBURY PA 500 SUNNYSIDE BLVD, WOODBURY, NY 11797-2924 USA SN 0961-8368 J9 PROTEIN SCI JI Protein Sci. PD MAR PY 2008 VL 17 IS 3 BP 583 EP 588 DI 10.1110/ps.073272208 PG 6 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 266IK UT WOS:000253427500023 PM 18218711 ER PT J AU Wu, B Lukin, J Yee, A Lemak, A Semesi, A Ramelot, TA Kennedy, MA Arrowsmith, CH AF Wu, Bin Lukin, Jonathan Yee, Adelinda Lemak, Alexander Semesi, Anthony Ramelot, Theresa A. Kennedy, Michael A. Arrowsmith, Cheryl H. TI Solution structure of ribosomal protein L40E, a unique C4 zinc finger protein encoded by archaeon Sulfolobus solfataricus SO PROTEIN SCIENCE LA English DT Article DE heteronuclear NMR; Sulfolobus solfataricus; ribosomal protein L40E; C4 zinc finger protein; northeast structural genomics consortium ID ELONGATION-FACTOR TFIIS; N-TERMINAL DOMAIN; THERMUS-THERMOPHILUS; NMR; SUBUNIT; RNA; MOTIF; TRANSCRIPTION; TRANSLATION; RECOGNITION AB The ribosomal protein L40E from archaeon Sulfolobus solfataricus is a component of the 50S ribosomal subunit. L40E is a 56-residue, highly basic protein that contains a C4 zinc finger motif, CRKC_ X-10_ CRRC. Homologs are found in both archaea and eukaryotes but are not present in bacteria. Eukaryotic genomes encode L40E as a ubiquitin-fusion protein. L40E was absent from the crystal structure of euryarchaeota 50S ribosomal subunit. Here we report the three-dimensional solution structure of L40E by NMR spectroscopy. The structure of L40E is a three-stranded beta-sheet with a simple beta 2 beta 1 beta 3 topology. There are two unique characteristics revealed by the structure. First, a large and ordered beta 2-beta 3 loop twists to pack across the one side of the protein. L40E contains a buried polar cluster comprising Lys19, Lys20, Cys22, Asn29, and Cys36. Second, the surface of L40E is almost entirely positively charged. Ten conserved basic residues are positioned on the two sides of the surface. It is likely that binding of zinc is essential in stabilizing the tertiary structure of L40E to act as a scaffold to create a broad positively charged surface for RNA and/or protein recognition. C1 [Wu, Bin; Lukin, Jonathan; Yee, Adelinda; Lemak, Alexander; Semesi, Anthony; Arrowsmith, Cheryl H.] Ontario Canc Inst, Div Canc Genom & Proteom, Toronto, ON M5G 2M9, Canada. [Wu, Bin; Lukin, Jonathan; Yee, Adelinda; Semesi, Anthony; Arrowsmith, Cheryl H.] Univ Toronto, Dept Med Biophys, Toronto, ON M5G 2M9, Canada. [Ramelot, Theresa A.; Kennedy, Michael A.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99354 USA. [Ramelot, Theresa A.; Kennedy, Michael A.] Miami Univ, Dept Chem & Biochem, Oxford, OH 45056 USA. RP Arrowsmith, CH (reprint author), Rm 4-803, TMDT MaRS, 101 Coll St, Toronto, ON M5G 1L7, Canada. EM carrow@uhnres.utoronto.ca FU NIGMS NIH HHS [P50-GM62413-02, P50 GM062413] NR 50 TC 6 Z9 6 U1 0 U2 0 PU COLD SPRING HARBOR LAB PRESS, PUBLICATIONS DEPT PI WOODBURY PA 500 SUNNYSIDE BLVD, WOODBURY, NY 11797-2924 USA SN 0961-8368 J9 PROTEIN SCI JI Protein Sci. PD MAR PY 2008 VL 17 IS 3 BP 589 EP 596 DI 10.1110/ps.073273008 PG 8 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 266IK UT WOS:000253427500024 PM 18218710 ER PT J AU Anderson, RS Jass, RB Toney, JL Allen, CD Cisneros-Dozal, LM Hess, M Heikoop, J Fessenden, J AF Anderson, R. Scott Jass, Renata B. Toney, Jaime L. Allen, Craig D. Cisneros-Dozal, Luz M. Hess, Marcey Heikoop, Jeff Fessenden, Julianna TI Development of the mixed conifer forest in northern New Mexico and its relationship to Holocene environmental change SO QUATERNARY RESEARCH LA English DT Article DE pollen analysis; charcoal analysis; isotope analysis; paleoecology; New Mexico ID SAN-JUAN MOUNTAINS; PAST 21,000 YEARS; ORGANIC-MATTER; VEGETATION HISTORY; CHIHUAHUAN DESERT; BOTRYOCOCCUS-BRAUNII; ISOTOPIC COMPOSITION; CENTRAL COLORADO; ROCKY-MOUNTAINS; MIDDLE HOLOCENE AB Chihuahuenos Bog (2925 in) in the Jemez Mountains of northern New Mexico contains one of the few records of late-glacial and postglacial development of the mixed conifer forest in southwestern North America. The Chihuahuenos Bog record extends to over 15,000 cat yr BP. An Artemisia steppe, then an open Picea woodland grew around a small pond until ca. 11,700 cat yr BP when Pinus ponderosa became established. C/N ratios, delta(13)C and delta(15)N values indicate both terrestrial and aquatic organic matter was incorporated into the sediment. Higher percentages of aquatic algae and elevated C/N ratios indicate higher lake levels at the opening of the Holocene, but a wetland developed subsequently as climate warmed. From ca. 8500 to 6400 cat yr BP the pond desiccated in what must have been the driest period of the Holocene there. C/N ratios declined to their lowest Holocene levels, indicating intense decomposition in the sediment. Wetter conditions returned after 6400 cat yr BP, with conversion of the site to a sedge bog as groundwater levels rose. Higher charcoal influx rates after 6400 cat yr BP probably result from greater biomass production rates. Only minor shifts in the overstory species occurred during the Holocene, suggesting that mixed conifer forest dominated throughout the record. (C) 2008 University of Washington. All rights reserved. C1 [Anderson, R. Scott] No Arizona Univ, Ctr Environm Sci & Educ, Flagstaff, AZ 86011 USA. [Anderson, R. Scott; Jass, Renata B.; Toney, Jaime L.] No Arizona Univ, Quaternary Sci Program, Flagstaff, AZ 86011 USA. [Anderson, R. Scott; Jass, Renata B.; Toney, Jaime L.] No Arizona Univ, Bilby Res Ctr, Flagstaff, AZ 86011 USA. [Allen, Craig D.] US Geol Survey, Jemez Mt Field Stn, Los Alamos, NM 87544 USA. [Cisneros-Dozal, Luz M.; Hess, Marcey; Heikoop, Jeff; Fessenden, Julianna] Los Almos Natl Lab, Div Earth & Environm Sci, Hydrol Geochem & Geol Grp, Los Alamos, NM 87545 USA. RP Anderson, RS (reprint author), No Arizona Univ, Ctr Environm Sci & Educ, Box 5694, Flagstaff, AZ 86011 USA. EM Scott.Anderson@nau.edu RI Heikoop, Jeffrey/C-1163-2011; Toney, Jaime/I-5083-2012; OI Toney, Jaime/0000-0003-3182-6887; Heikoop, Jeffrey/0000-0001-7648-3385 NR 86 TC 21 Z9 21 U1 1 U2 10 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0033-5894 J9 QUATERNARY RES JI Quat. Res. PD MAR PY 2008 VL 69 IS 2 BP 263 EP 275 DI 10.1016/j.yqres.2007.12.002 PG 13 WC Geography, Physical; Geosciences, Multidisciplinary SC Physical Geography; Geology GA 285PB UT WOS:000254787600008 ER PT J AU Tsao, JY Boyack, KW Coltrin, ME Tumley, JG Gauster, WB AF Tsao, J. Y. Boyack, K. W. Coltrin, M. E. Tumley, J. G. Gauster, W. B. TI Galileo's stream: A framework for understanding knowledge production SO RESEARCH POLICY LA English DT Article DE knowledge production; S&T policy; R&D; paradigm creation; disruptive innovation ID TECHNOLOGY POLICY; INNOVATION; SCIENCE; PERSPECTIVE; DIRECTIONS; PARADIGMS; GROWTH; HELIX; MODEL AB We introduce a framework for understanding knowledge production in which: knowledge is produced in stages (along a research to development continuum) and in three discrete categories (science and understanding, tools and technology, and societal use and behavior); and knowledge in the various stages and categories is produced both non-interactively and interactively. The framework attempts to balance: our experiences as working scientists and technologists, our best current understanding of the social processes of knowledge production, and the possibility of mathematical analyses. It offers a potential approach both to improving our basic understanding, and to developing tools for enterprise management, of the knowledge-production process. Published by Elsevier B.V. C1 [Tsao, J. Y.; Boyack, K. W.; Coltrin, M. E.; Tumley, J. G.; Gauster, W. B.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Tsao, JY (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM jytsao@sandia.gov OI Boyack, Kevin/0000-0001-7814-8951 NR 54 TC 5 Z9 6 U1 3 U2 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0048-7333 J9 RES POLICY JI Res. Policy PD MAR PY 2008 VL 37 IS 2 BP 330 EP 352 DI 10.1016/j.respol.2007.10.004 PG 23 WC Management; Planning & Development SC Business & Economics; Public Administration GA 282WR UT WOS:000254598400010 ER PT J AU Yoshida, PG AF Yoshida, Phyllis Genther TI India emerging (maybe) as major R&D center SO RESEARCH-TECHNOLOGY MANAGEMENT LA English DT Editorial Material C1 US DOE, FreedomCAR & Fuel Partnership, Washington, DC 20585 USA. RP Yoshida, PG (reprint author), US DOE, FreedomCAR & Fuel Partnership, Washington, DC 20585 USA. EM Phyllis.Yoshida@ee.doe.gov NR 3 TC 0 Z9 0 U1 0 U2 0 PU INDUSTRIAL RESEARCH INST, INC PI ARLINGTON PA 2200 CLARENDON BLVD, STE 1102, ARLINGTON, VA 22201 USA SN 0895-6308 J9 RES TECHNOL MANAGE JI Res.-Technol. Manage. PD MAR-APR PY 2008 VL 51 IS 2 BP 2 EP 4 PG 3 WC Business; Engineering, Industrial; Management SC Business & Economics; Engineering GA 265WR UT WOS:000253393000001 ER PT J AU Albers, BJ Liebmann, M Schwendemann, TC Baykara, MZ Heyde, M Salmeron, M Altman, EI Schwarz, UD AF Albers, Boris J. Liebmann, Marcus Schwendemann, Todd C. Baykara, Mehmet Z. Heyde, Markus Salmeron, Miquel Altman, Eric I. Schwarz, Udo D. TI Combined low-temperature scanning tunneling/atomic force microscope for atomic resolution imaging and site-specific force spectroscopy SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID HIGH MAGNETIC-FIELDS; QUARTZ TUNING FORK; ULTRAHIGH-VACUUM; PROBE MICROSCOPY; QUANTUM CORRALS; IMPURITY ATOMS; GRAPHITE 0001; DYNAMIC-MODE; SURFACE; SENSOR AB We present the design and first results of a low-temperature, ultrahigh vacuum scanning probe microscope enabling atomic resolution imaging in both scanning tunneling microscopy (STM) and noncontact atomic force microscopy (NC-AFM) modes. A tuning-fork-based sensor provides flexibility in selecting probe tip materials, which can be either metallic or nonmetallic. When choosing a conducting tip and sample, simultaneous STM/NC-AFM data acquisition is possible. Noticeable characteristics that distinguish this setup from similar systems providing simultaneous STM/NC-AFM capabilities are its combination of relative compactness (on-top bath cryostat needs no pit), in situ exchange of tip and sample at low temperatures, short turnaround times, modest helium consumption, and unrestricted access from dedicated flanges. The latter permits not only the optical surveillance of the tip during approach but also the direct deposition of molecules or atoms on either tip or sample while they remain cold. Atomic corrugations as low as 1 pm could successfully be resolved. In addition, lateral drifts rates of below 15 pm/h allow long-term data acquisition series and the recording of site-specific spectroscopy maps. Results obtained on Cu(111) and graphite illustrate the microscope's performance. (C) 2008 American Institute of Physics. C1 [Albers, Boris J.; Liebmann, Marcus; Schwendemann, Todd C.; Baykara, Mehmet Z.; Schwarz, Udo D.] Yale Univ, Dept Mech Engn, New Haven, CT 06520 USA. [Albers, Boris J.; Liebmann, Marcus; Schwendemann, Todd C.; Baykara, Mehmet Z.; Altman, Eric I.; Schwarz, Udo D.] Yale Univ, Ctr Res Interface Struct & Phenomena, New Haven, CT 06520 USA. [Heyde, Markus; Salmeron, Miquel] Univ Calif Berkeley, Div Mat Sci, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Altman, Eric I.] Yale Univ, Dept Chem Engn, New Haven, CT 06520 USA. RP Albers, BJ (reprint author), Yale Univ, Dept Mech Engn, POB 208284, New Haven, CT 06520 USA. EM udo.schwarz@yale.edu RI Liebmann, Marcus/G-6254-2012; Baykara, Mehmet/G-9595-2012; Heyde, Markus/F-9150-2013 OI Liebmann, Marcus/0000-0003-4787-0129; Baykara, Mehmet/0000-0002-0278-6022; Heyde, Markus/0000-0002-7049-0485 NR 72 TC 44 Z9 44 U1 6 U2 37 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD MAR PY 2008 VL 79 IS 3 AR 033704 DI 10.1063/1.2842631 PG 9 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 281ZT UT WOS:000254538100024 PM 18377012 ER PT J AU Boudin, F Bernard, P Longuevergne, L Florsch, N Larmat, C Courteille, C Blum, PA Vincent, T Kammentaler, M AF Boudin, F. Bernard, P. Longuevergne, L. Florsch, N. Larmat, C. Courteille, C. Blum, P. -A. Vincent, T. Kammentaler, M. TI A silica long base tiltmeter with high stability and resolution SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article AB In order to be able to provide valuable data in multiparameter measurement field operations, tiltmeters need to have a noise level better or equal than 10(-9) rad for a period range from a few minutes to a few years and a long term stability ranging from 10(-7) to 10(-8) rad/yr. Tiltmeter measurements should also be as much as possible insensitive to thermal disturbances, by taking great care of the horizontality of the base line tube first. Secondly, thermal responses have been assessed. We also took great care of the coupling of our tiltmeters with the bedrock. We've designed a long base tiltmeter with sensors in silica which has a low dilatation coefficient. The linear variable displacement transducer is based on coil coupling (powered by an alternative voltage). Finally we show the results of two 100 m silica water tube tiltmeters which were installed in a mine in the French Vosges massif in the framework of a hydrology research project. These instruments show a remarkably good stability (6.5 x 10(-9) rad/month) and a low noise level (of the order of 10(-11) rad). Toroidal and spheroidal free modes of the Earth were observed after the two last major earthquakes on Sumatra. (C) 2008 American Institute of Physics. C1 [Bernard, P.; Courteille, C.; Blum, P. -A.] Inst Phys Globe, Dept Sismol, F-7252 Paris 05, France. [Longuevergne, L.; Florsch, N.] Univ Paris 06, Sisyphe, F-7252 Paris, France. [Larmat, C.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Kammentaler, M.] Hergauchamps, F-68160 Saintes Maries Aux Mines, France. RP Boudin, F (reprint author), Pl Eugene Bataillon, F-34095 Montpellier, France. EM frederic.boudin@gm.univ-montp2.fr RI Larmat, Carene/B-4686-2011; larzac, Larzac/I-9442-2012; bernard, pascal/B-4828-2015; Longuevergne, Laurent /F-4641-2010; OI Longuevergne, Laurent /0000-0003-3169-743X; Larmat, Carene S/0000-0002-3607-7558 NR 17 TC 7 Z9 7 U1 0 U2 4 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD MAR PY 2008 VL 79 IS 3 AR 034502 DI 10.1063/1.2829989 PG 11 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 281ZT UT WOS:000254538100045 PM 18377033 ER PT J AU Chen, H Back, NL Bartal, T Beg, FN Eder, DC Link, AJ MacPhee, AG Ping, Y Song, PM Throop, A Van Woerkom, L AF Chen, Hui Back, Norman L. Bartal, Teresa Beg, F. N. Eder, David C. Link, Anthony J. MacPhee, Andrew G. Ping, Yuan Song, Peter M. Throop, Alan Van Woerkom, Linn TI Absolute calibration of image plates for electrons at energy between 100 keV and 4 MeV SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article AB We measured the absolute response of image plate (Fuji BAS SR2040) for electrons at energies between 100 keV and 4 MeV using an electron spectrometer. The electron source was produced from a short pulse laser irradiated on solid density targets. This paper presents the calibration results of image plate photon stimulated luminescence per electron at this energy range. The Monte Carlo radiation transport code MCNPX results are also presented for three representative incident angles onto the image plates and corresponding electron energy depositions at these angles. These provide a complete set of tools that allows extraction of our absolute calibration to other spectrometer setting at this electron energy range. (C) 2008 American Institute of Physics. C1 [Chen, Hui; Back, Norman L.; Eder, David C.; MacPhee, Andrew G.; Ping, Yuan; Song, Peter M.; Throop, Alan] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Link, Anthony J.; Van Woerkom, Linn] Ohio State Univ, Columbus, OH 43210 USA. [Bartal, Teresa; Beg, F. N.] Univ Calif San Diego, La Jolla, CA 92093 USA. RP Chen, H (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM chen33@llnl.gov NR 9 TC 29 Z9 29 U1 2 U2 10 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD MAR PY 2008 VL 79 IS 3 AR 033301 DI 10.1063/1.2885045 PG 4 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 281ZT UT WOS:000254538100013 PM 18377001 ER PT J AU Clayhold, JA Kerns, BM Schroer, MD Rench, DW Logvenov, G Bollinger, AT Bozovic, I AF Clayhold, J. A. Kerns, B. M. Schroer, M. D. Rench, D. W. Logvenov, G. Bollinger, A. T. Bozovic, I. TI Combinatorial measurements of Hall effect and resistivity in oxide films SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID COMPOSITION-SPREAD APPROACH; DISCOVERY AB A system for the simultaneous measurement of the Hall effect in 31 different locations as well as the measurement of the resistivity in 30 different locations on a single oxide thin film grown with a composition gradient is described. Considerations for designing and operating a high-throughput system for characterizing highly conductive oxides with Hall coefficients as small as 10(-10) m(3)/C are discussed. Results from measurements on films grown using combinatorial molecular beam epitaxy show the usefulness of characterizing combinatorial libraries via both the resistivity and the Hall effect. (C) 2008 American Institute of Physics. C1 [Clayhold, J. A.; Kerns, B. M.; Schroer, M. D.; Rench, D. W.; Logvenov, G.] Miami Univ, Dept Phys, Oxford, OH 45056 USA. [Logvenov, G.; Bollinger, A. T.; Bozovic, I.] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Clayhold, JA (reprint author), Miami Univ, Dept Phys, Oxford, OH 45056 USA. NR 19 TC 8 Z9 10 U1 4 U2 14 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD MAR PY 2008 VL 79 IS 3 AR 033908 DI 10.1063/1.2901622 PG 7 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 281ZT UT WOS:000254538100038 PM 18377026 ER PT J AU Leitner, D Benitez, JY Lyneis, CM Todd, DS Ropponen, T Ropponen, J Koivisto, H Gammino, S AF Leitner, D. Benitez, J. Y. Lyneis, C. M. Todd, D. S. Ropponen, T. Ropponen, J. Koivisto, H. Gammino, S. TI Measurement of the high energy component of the x-ray spectra in the VENUS electron cyclotron resonance ion source SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 12th International Conference on Ion Sources CY AUG 26-31, 2007 CL Jeju Isl, SOUTH KOREA SP Korea Res Fdn, Proton Engn Fontier Project, Bergoz Instrumentat, D-Pace Inc, Plasmart Inc ID FREQUENCY AB High performance electron cyclotron resonance (ECR) ion sources, such as VENUS (Versatile ECR for NUclear Science), produce large amounts of x-rays. By studying their energy spectra, conclusions can be drawn about the electron heating process and the electron confinement. In addition, the bremsstrahlung from the plasma chamber is partly absorbed by the cold mass of the superconducting magnet, adding an extra heat load to the cryostat. Germanium or NaI detectors are generally used for x-ray measurements. Due to the high x-ray flux from the source, the experimental setup to measure bremsstrahlung spectra from ECR ion sources is somewhat different from that for the traditional nuclear physics measurements these detectors are generally used for. In particular, the collimation and background shielding can be problematic. In this paper, we will discuss the experimental setup for such a measurement, the energy calibration and background reduction, the shielding of the detector, and collimation of the x-ray flux. We will present x-ray energy spectra and cryostat heating rates depending on various ion source parameters, such as confinement fields, minimum B-field, rf power, and heating frequency. (C) 2008 American Institute of Physics. C1 [Leitner, D.; Benitez, J. Y.; Lyneis, C. M.; Todd, D. S.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Ropponen, T.; Ropponen, J.; Koivisto, H.] Univ Jyvaskyla, Accelerator Lab, Dept Phys, FIN-40014 Jyvaskyla, Finland. [Gammino, S.] Ist Nazl Fis Nucl, Lab Nazl Sud, I-95125 Catania, Italy. RP Leitner, D (reprint author), Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM dleitner@lbl.gov RI xin, xp/C-7350-2009 NR 15 TC 20 Z9 20 U1 0 U2 2 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD MAR PY 2008 VL 79 IS 3 AR 033302 DI 10.1063/1.2821137 PG 6 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 281ZT UT WOS:000254538100014 PM 18377002 ER PT J AU Reininger, R Kriesel, K Hulbert, SL Sanchez-Hanke, C Arena, DA AF Reininger, Ruben Kriesel, Ken Hulbert, S. L. Sanchez-Hanke, Cecilia Arena, D. A. TI A soft x-ray beamline capable of canceling the performance impairment due to power absorbed on its optical elements SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID PLANE-GRATING-MONOCHROMATOR; ADVANCED LIGHT-SOURCE; SYNCHROTRON-RADIATION; UNDULATOR BEAMLINE; HIGH-RESOLUTION; DESIGN AB We present an entrance slitless beamline design capable of maintaining its very high performance in terms of energy resolution (>10(4)) and spot size (4 x 4 mu m(2)) at the sample position despite being exposed to more than 2.15 kW of undulator radiation and a maximum power density on the optics of more than 0.9 W/mm(2). Ray tracing simulations of this beamline under the worst-case thermal deformations of the optical element surfaces verify that appropriate focusing corrections are able to cancel the deleterious effects of these deformations. One of the necessary conditions for this cancellation is to illuminate the optical elements with a larger solid angle than the undulator's central cone, which contains the usable photons but is considerably smaller than the angular power distribution. (C) 2008 American Institute of Physics. C1 [Reininger, Ruben] Sci Answers & Solut, Madison, WI 53711 USA. [Kriesel, Ken] Univ Wisconsin, PSL, Stoughton, WI 53589 USA. [Hulbert, S. L.; Sanchez-Hanke, Cecilia; Arena, D. A.] Brookhaven Natl Lab, NSLS, Upton, NY 11973 USA. [Hulbert, S. L.; Sanchez-Hanke, Cecilia; Arena, D. A.] Brookhaven Natl Lab, NSLS II, Upton, NY 11973 USA. RP Reininger, R (reprint author), Sci Answers & Solut, 5708 Restal St, Madison, WI 53711 USA. NR 17 TC 10 Z9 10 U1 0 U2 3 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD MAR PY 2008 VL 79 IS 3 AR 033108 DI 10.1063/1.2897587 PG 6 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 281ZT UT WOS:000254538100010 PM 18376998 ER PT J AU von Zimmermann, M Nowak, R Gu, GD Mennerich, C Klauss, HH Hucker, M AF von Zimmermann, M. Nowak, R. Gu, G. D. Mennerich, C. Klauss, H. -H. Huecker, M. TI A clamp-type pressure cell for high energy x-ray diffraction SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID SUPERCONDUCTING PROPERTIES; HYDROSTATIC PRESSURES; NEUTRON-DIFFRACTION; PHASE; LA2-XBAXCUO4; TRANSITION; CUGEO3; LA2-XSRXCUO4; TEMPERATURE; ORDER AB We present a clamp-type pressure cell for high energy x-ray diffraction. The pressure cell was specifically designed for studies of weak superstructure reflections at low temperatures in transition metal oxides, resulting from, e. g., charge density modulations. Using a photon energy of E = 100 keV, the bulk properties of single crystals with a volume of typically 2-5 mm(3) can be studied in transmission geometry. To demonstrate the performance of the pressure cell, we present data on the charge stripe order in the high-temperature superconductor La1.875Ba0.125CuO4. (C) 2008 American Institute of Physics. C1 [von Zimmermann, M.; Nowak, R.] Hamburger Synchrontronstrahlungslab HASYLAB, Deutsches Elekt Synchrotron, D-22603 Hamburg, Germany. [Gu, G. D.; Huecker, M.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Mennerich, C.; Klauss, H. -H.] Tech Univ Carolo Wilhelmina Braunschweig, Inst Phys Kondensierten Materie, D-38106 Braunschweig, Germany. RP von Zimmermann, M (reprint author), Hamburger Synchrontronstrahlungslab HASYLAB, Deutsches Elekt Synchrotron, D-22603 Hamburg, Germany. RI Klauss, Hans-Henning/G-4743-2010; Gu, Genda/D-5410-2013 OI Gu, Genda/0000-0002-9886-3255 NR 48 TC 7 Z9 7 U1 0 U2 6 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD MAR PY 2008 VL 79 IS 3 AR 033906 DI 10.1063/1.2889162 PG 6 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 281ZT UT WOS:000254538100036 PM 18377024 ER PT J AU Jager, HI Smith, BT AF Jager, Henriette I. Smith, Brennan T. TI Sustainable reservoir operation: Can we generate hydropower and preserve ecosystem values? SO RIVER RESEARCH AND APPLICATIONS LA English DT Article DE optimization; reservoir operation; hydropower; sustainability; riverine ecosystems; ecological valuation; natural flow regime ID WATER-QUALITY MANAGEMENT; GLEN-CANYON-DAM; RIVER-BASIN; INSTREAM FLOW; ENVIRONMENTAL CONSTRAINTS; FRESH-WATER; SYSTEM; OPTIMIZATION; RESOURCES; CALIFORNIA AB Hydroelectric power provides a cheap source of electricity with few carbon emissions. Yet, reservoirs are not operated sustainably, which we define as meeting societal needs for water and power while protecting long-term health of the river ecosystem. Reservoirs that generate hydropower are typically operated with the goal of maximizing energy revenue, while meeting other legal water requirements. Reservoir optimization schemes used in practice do not seek flow regimes that maximize aquatic ecosystem health. Here, we review optimization studies that considered environmental goals in one of three approaches. The first approach seeks flow regimes that maximize hydropower generation, while satisfying legal requirements, including environmental (or minimum) flows. Solutions from this approach are often used in practice to operate hydropower projects. In the second approach, flow releases from a dam are timed to meet water quality constraints on dissolved oxygen (DO), temperature and nutrients. In the third approach, flow releases are timed to improve the health of fish populations. We conclude by suggesting three steps for bringing multi-objective reservoir operation closer to the goal of ecological sustainability: (1) conduct research to identify which features of flow variation are essential for river health and to quantify these relationships, (2) develop valuation methods to assess the total value of river health and (3) develop optimal control softwares that combine water balance modelling with models that predict ecosystem responses to flow. Published in 2008 by John Wiley & Sons, Ltd. C1 [Jager, Henriette I.; Smith, Brennan T.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. RP Jager, HI (reprint author), Oak Ridge Natl Lab, Div Environm Sci, POB 2008, Oak Ridge, TN 37831 USA. EM jagerhi@ornl.gov OI Jager, Henriette/0000-0003-4253-533X NR 56 TC 88 Z9 95 U1 19 U2 122 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1535-1459 J9 RIVER RES APPL JI River Res. Appl. PD MAR PY 2008 VL 24 IS 3 BP 340 EP 352 DI 10.1002/rra.1069 PG 13 WC Environmental Sciences; Water Resources SC Environmental Sciences & Ecology; Water Resources GA 292YW UT WOS:000255303000008 ER PT J AU Noy, A AF Noy, Aleksandr TI Strength in numbers: Probing and understanding intermolecular bonding with chemical force microscopy SO SCANNING LA English DT Article DE atomic force microscope/other scanned; probe microscopes; physical sciences; scanned probe ID MOLECULAR ADHESION BONDS; SPECTROSCOPY; ENERGY; ASSEMBLIES; FRICTION; CONTACT; SOLVENT; RUPTURE; SURFACE; RADIUS AB Scanning probe microscopy (SPM) provided researchers with a simple, intuitive, and versatile tool for probing intermolecular interactions using SPM probes functionalized with distinct chemical species. Chemical force microscopy (CFM) was developed as a way to probe and map these interactions in a rational and systematic way. But does the rupture strength of a bond measured in these experiments provide the definitive and useful information about the interaction? The answer to this question is closely linked to understanding the fundamental physics of bond rupture under an external loading force. Even a simple model shows that bond rupture can proceed in a variety of different regimes. I discuss the approaches for extracting quantitative information about the interaction from these experiments and show that even though the measured rupture force is almost never unique for a given bond, force spectroscopy measurements can still determine the essential interaction parameters. C1 [Noy, Aleksandr] Lawrence Livermore Natl Lab, Chem Mat Energy & Life Sci Directorate, Livermore, CA 94550 USA. [Noy, Aleksandr] Univ Calif Merced, Sch Nat Sci, Merced, CA USA. RP Noy, A (reprint author), Lawrence Livermore Natl Lab, Chem Mat Energy & Life Sci Directorate, Livermore, CA 94550 USA. EM noy1@llnl.gov NR 35 TC 7 Z9 7 U1 1 U2 14 PU JOHN WILEY & SONS INC PI HOBOKEN PA 111 RIVER ST, HOBOKEN, NJ 07030 USA SN 0161-0457 J9 SCANNING JI Scanning PD MAR-APR PY 2008 VL 30 IS 2 BP 96 EP 105 DI 10.1002/sca.20082 PG 10 WC Instruments & Instrumentation; Microscopy SC Instruments & Instrumentation; Microscopy GA 289GK UT WOS:000255042800006 PM 18220259 ER PT J AU Chung, SW Presley, AD Elhadj, S Hok, S Hah, SS Chernov, AA Francis, MB Eaton, BE Feldheim, DL Deyoreo, JJ AF Chung, Sung-Wook Presley, Andrew D. Elhadj, Selim Hok, Saphon Hah, Sang Soo Chernov, Alex A. Francis, Matthew B. Eaton, Bruce E. Feldheim, Daniel L. Deyoreo, James J. TI Scanning probe-based fabrication of 3D nanostructures via affinity templates, functional RNA, and meniscus-mediated surface remodeling SO SCANNING LA English DT Article DE scanning probe microscopy; scanning probe nanolithography; nanostructures; affinity templates; virus; functional RNA; meniscus-mediated surface remodeling ID DIP-PEN NANOLITHOGRAPHY; TOBACCO-MOSAIC-VIRUS; SELF-ASSEMBLED MONOLAYERS; ATOMIC-FORCE MICROSCOPY; SIZED PROTEIN-PATTERNS; IN-VITRO SELECTION; QUANTUM DOTS; SOLAR-CELLS; NANOIMPRINT LITHOGRAPHY; ELECTRON-MICROSCOPY AB Developing generic platforms to organize discrete molecular elements and nanostructures into deterministic patterns on surfaces is one of the central challenges in the field of nanotechnology. Here we review three applications of the atomic force microscope (AFM) that address this challenge. In the first, we use two-step nanografting to create patterns of self-assembled monolayers (SAMs) to drive the organization of virus particles that have been either genetically or chemically modified to bind to the SAMs. Virus-SAM chemistries are described that provide irreversible and reversible binding, respectively. In the second, we use similar SAM patterns as affinity templates that have been designed to covalently bind oligonucleotides engineered to bind to the SAMs and selected for their ability to mediate the subsequent growth of metallic nanocrystals. In the final application, the liquid meniscus that condenses at the AFM tip-substrate contact is used as a physical tool to both modulate the surface topography of a water soluble substrate and guide the hierarchical assembly of Au nanoparticles into nanowires. All three approaches can be generalized to meet and thereby provide a potential route toward development of a generic platform for molecular and materials organization. C1 [Chung, Sung-Wook; Presley, Andrew D.; Elhadj, Selim; Hok, Saphon; Hah, Sang Soo; Chernov, Alex A.; Deyoreo, James J.] Lawrence Livermore Natl Lab, Chem Mat Earth & Life Sci Directorate, Livermore, CA 94551 USA. [Presley, Andrew D.; Francis, Matthew B.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Eaton, Bruce E.; Feldheim, Daniel L.] Univ Calif Berkeley, Dept Chem & Biochem, Berkeley, CA 94720 USA. [Deyoreo, James J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Mol Foundry, Berkeley, CA 94720 USA. RP Chung, SW (reprint author), Lawrence Livermore Natl Lab, Chem Mat Earth & Life Sci Directorate, 7000 E Ave, Livermore, CA 94551 USA. EM chung20@llnl.gov RI Hah, Sang Soo/D-2621-2011; Chung, Sungwook/H-6248-2012 NR 82 TC 12 Z9 13 U1 3 U2 14 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0161-0457 J9 SCANNING JI Scanning PD MAR-APR PY 2008 VL 30 IS 2 BP 159 EP 171 DI 10.1002/sca.20086 PG 13 WC Instruments & Instrumentation; Microscopy SC Instruments & Instrumentation; Microscopy GA 289GK UT WOS:000255042800012 PM 18220254 ER PT J AU Yi, D Senesac, L Thundat, T AF Yi, Dechang Senesac, Larry Thundat, Thomas TI Speciation of energetic materials on a microcantilever using surface reduction SO SCANNING LA English DT Article DE microcantilevers; surface reduction; receptor-free sensing; explosive molecules ID FORCE MICROSCOPE; TRINITROTOLUENE; EXPLOSIVES; ADSORPTION AB Although microcantilevers have been used to detect explosives with extremely high sensitivity using variations in adsorption-induced bending and resonance frequency, obtaining selectivity remains a challenge. Reversible chemoselectivity at ambient temperatures based on receptor-based detection provides only limited selectivity due to the generality of chemical interactions. The oxygen imbalance in secondary explosives presents a means to achieve receptor-free speciation of explosives using surface reduction of adsorbed molecules. We demonstrate highly selective and realtime detection of Trinitrotoluene (TNT) using a copper oxide-coated cantilever with a surface reduction approach. Not only can this technique exclusively differentiate explosives from nonexplosives, but also it has the potential to specify individual explosives such as TNT, pentaerythritol tetranitrate (PETN), and RDX. This technique together with receptor-based detection techniques provides a multimodal approach for achieving very high selectivity. C1 [Yi, Dechang; Senesac, Larry; Thundat, Thomas] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Senesac, Larry; Thundat, Thomas] Univ Tennessee, Dept Phys, Knoxville, TN 37996 USA. RP Yi, D (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM ugt@ornl.gov NR 13 TC 2 Z9 2 U1 1 U2 1 PU JOHN WILEY & SONS INC PI HOBOKEN PA 111 RIVER ST, HOBOKEN, NJ 07030 USA SN 0161-0457 J9 SCANNING JI Scanning PD MAR-APR PY 2008 VL 30 IS 2 BP 208 EP 212 DI 10.1002/sca.20096 PG 5 WC Instruments & Instrumentation; Microscopy SC Instruments & Instrumentation; Microscopy GA 289GK UT WOS:000255042800017 PM 18288710 ER PT J AU Wiley, S AF Wiley, Steven TI It's not just about innovation - New ideas are cheap; what we really need are scientists who can see them through SO SCIENTIST LA English DT Editorial Material C1 Pacific NW Natl Lab, Richland, WA 99352 USA. RP Wiley, S (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. NR 0 TC 1 Z9 1 U1 0 U2 0 PU SCIENTIST INC PI PHILADELPHIA PA 3535 MARKET ST, SUITE 200, PHILADELPHIA, PA 19104-3385 USA SN 0890-3670 J9 SCIENTIST JI Scientist PD MAR PY 2008 VL 22 IS 3 BP 33 EP 33 PG 1 WC Information Science & Library Science; Multidisciplinary Sciences SC Information Science & Library Science; Science & Technology - Other Topics GA 265IL UT WOS:000253352200019 ER PT J AU Fixel, DA Hitchon, WNG AF Fixel, D. A. Hitchon, W. N. G. TI Kinetic investigation of electron-electron scattering in nanometer-scale metal-oxide-semiconductor field-effect transistors SO SEMICONDUCTOR SCIENCE AND TECHNOLOGY LA English DT Article ID HOT-CARRIER INJECTION; SHORT-CHANNEL MOSFETS; GATE CURRENT; SUBMICROMETER MOSFETS; SUBSTRATE CURRENT; SILICON DIOXIDE; TRANSPORT; DEGRADATION; SIMULATION; ENERGY AB The effects of electron-electron scattering on the electron energy distribution, as well as substrate and gate currents in short channel MOSFETs ( metal-oxide-semiconductor field-effect transistors) are explored using the convective scheme, or CS, a method of characteristics. Effects of electron-electron scattering are explored for a MOSFET with uniform doping in the channel as well as for an asymmetric device structure, a focused-ion-beam ( FIBMOS) transistor, for both 70 nm and 250 nm channel length devices. Effects of electron-electron scattering on a standard 35 nm channel length MOSFET are also included. The high substrate doping that is required for such short channel length devices leads to large electric fields. The purpose of the FIB implant is to improve hot-carrier reliability by reducing the electric field in the channel. Electron-electron scattering increases the amount of electrons in the tail, despite the fact that the applied potential is significantly below the threshold for injection of electrons into the gate oxide. The ratio of gate-to-substrate current, I(g)/I(sub), is investigated as an indicator of the level of degradation. At such short channel lengths, there are degrading and non-degrading components of gate and substrate current. The non-degrading components of gate and substrate current correlate strongly, so that the ratio of I(g)/I(sub) is an efficient indicator of device degradation. The energy thresholds for impact ionization and for emission of electrons into the gate oxide are crucial in determining the ratio of these currents. The substrate and gate currents obtained indicate that hot-carrier effects continue to be an issue for device performance, even for nanometer-scale devices. The density of electrons is higher at very short channel lengths due to the need to have shallow junctions and leads to a greater amount of Coulomb collisions. Increased Coulomb collisions may lead to strongly reduced lifetimes in nanometer-scale devices. C1 [Fixel, D. A.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Hitchon, W. N. G.] Univ Wisconsin, Dept Elect & Comp Engn, Madison, WI 53706 USA. RP Fixel, DA (reprint author), Sandia Natl Labs, POB 5800,MS 0316, Albuquerque, NM 87185 USA. EM dafixel@sandia.gov NR 44 TC 1 Z9 1 U1 1 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0268-1242 J9 SEMICOND SCI TECH JI Semicond. Sci. Technol. PD MAR PY 2008 VL 23 IS 3 AR 035014 DI 10.1088/0268-1242/23/3/035014 PG 13 WC Engineering, Electrical & Electronic; Materials Science, Multidisciplinary; Physics, Condensed Matter SC Engineering; Materials Science; Physics GA 279WM UT WOS:000254385900014 ER PT J AU Jeong, JM Knapp, FFR AF Jeong, Jae Min Knapp, F. F. Russ, Jr. TI Use of the Oak Ridge National Laboratory tungsten-188/rhenium-188 generator for preparation of the rhenium-188 HDD/lipiodol complex for trans-arterial liver cancer therapy SO SEMINARS IN NUCLEAR MEDICINE LA English DT Review ID PRIMARY HEPATOCELLULAR-CARCINOMA; HORMONE PEPTIDE ANALOGS; LIPIODOL SOLUTION; RE-188-LABELED RADIOPHARMACEUTICALS; DIMERCAPTOSUCCINIC ACID; RHEUMATOID-ARTHRITIS; RADIONUCLIDE THERAPY; ALBUMIN MICROSPHERES; HEPATIC-ARTERY; BIODISTRIBUTION AB This work describes the installation, use, and quality control (QC) of the alumina-based tungsten-188 (W-188)/rhenium-188 (Re-188) generators provided by the Oak Ridge National Laboratory (ORNL). In addition, methods used for concentration of the Re-188-perrhenate bolus and preparation of Re-188-labeled HDD (4-hexadecyl-2,2,9,9-tetramethyl-4,7-diaza-1,10-decanethiol) for trans-arterial administration for therapy of nonresectable liver cancer also are described. The W-188/Re-188 generator has a long useful shelf-life of several months and is a convenient on-site Re-188 production system. Re-188 has excellent therapeutic and imaging properties (T-1/2 16.9 hours; E-beta max 2.12 MeV; 155-keV gamma ray, 15%) and is cost effectively obtained on demand by saline elution of the generator. The clinical efficacy of a variety of Re-188-labeled agents has been demonstrated for. several therapeutic applications. Because of the favorable physical properties of Re-188, several Re-188-labeled agents are being developed and evaluated for the treatment of non resectable/refractory liver cancer. Re-180-labeled HDD has been the most widely studied of these agents for this application and has been introduced into clinical trials at a number of institutions. The trans-arterial administration of Re-188-labeled agents for treatment of inoperable liver cancer requires use of high-level (1-2 Ci) W-188/Re-188 generators. The handling of such high levels of Re-188 imposes radiological precautions normally not encountered in a radiopharmacy and adequate care and ALARA (ie, "As Low As Reasonably Achievable") principles must be followed. The ORNL generator provides consistently high Re-188 yields (>75%) and low W-188 parent breakthrough (<10(-3)%) over an extended shelf-life of several months. However, the high elution volumes (20-40 mL for 1-2 Ci generators) can require concentration of the Re-188 bolus by postelution passage through silver cation chloride trapping columns used in the cost-effective tandem cation/anion column system. The silver column removes the high levels of chloride anion as insoluble AgCl, thus allowing subsequent specific trapping of the perrhenate anion on the small (QMA SeaPak) anion column. This method permits subsequent elution of Re-188-perrhenate with a small volume of saline, providing a very high activity-concentration solution. Because the Re-188-specific volume-activity concentration continually decreases with time, the tandem system is especially effective method for extending the useful generator shelf-life. Low elution flow rates (<1 mL/min) minimize any high back pressure which may be encountered during generator/tandern column elution when using tightly packed, small-particle-size commercial columns. In-house preparation of silver cation columns is recommended since the chloride trapping capacity is essentially unlimited, it is inexpensive and not limited in availability to any one supplier, and back pressure can be eliminated by the use of larger particles. Methods for the preparation of Re-188-HDD have been optimized and this agent can be obtained in high yield (80%). C1 [Knapp, F. F. Russ, Jr.] Oak Ridge Natl Lab, Nucl Sci & Technol Div, Nucl Med Program, Oak Ridge, TN 37831 USA. [Jeong, Jae Min] Seoul Natl Univ Hosp, Dept Nucl Med, Seoul, South Korea. RP Jeong, JM (reprint author), Oak Ridge Natl Lab, Nucl Sci & Technol Div, Nucl Med Program, POB 2008, Bethel Valley Rd, Oak Ridge, TN 37831 USA. EM knappffjr@ornl.gov RI Jeong, Jae Min/E-2102-2012 OI Jeong, Jae Min/0000-0003-2611-6020 NR 77 TC 25 Z9 25 U1 0 U2 2 PU W B SAUNDERS CO-ELSEVIER INC PI PHILADELPHIA PA 1600 JOHN F KENNEDY BOULEVARD, STE 1800, PHILADELPHIA, PA 19103-2899 USA SN 0001-2998 J9 SEMIN NUCL MED JI Semin. Nucl. Med. PD MAR PY 2008 VL 38 IS 2 BP S19 EP S29 DI 10.1053/j.semnuclmed.2007.10.003 PG 11 WC Radiology, Nuclear Medicine & Medical Imaging SC Radiology, Nuclear Medicine & Medical Imaging GA 263MJ UT WOS:000253220900012 PM 18243839 ER PT J AU Tao, AR Habas, S Yang, PD AF Tao, Andrea R. Habas, Susan Yang, Peidong TI Shape control of colloidal metal nanocrystals SO SMALL LA English DT Review ID ENHANCED RAMAN-SCATTERING; SURFACE PLASMONIC PROPERTIES; WET CHEMICAL SYNTHESIS; GOLD NANORODS; OPTICAL-PROPERTIES; ASPECT-RATIO; PLATINUM NANOCRYSTALS; SILVER NANOPARTICLES; RHODIUM NANOPARTICLES; ANISOTROPIC GROWTH AB Colloidal metal nanoparticles are emerging as key materials for catalysis, plasmonics, sensing, and spectroscopy. Within these applications, control of nanoparticle shape lends increasing functionality and selectivity. Shape-controlled nanocrystals possess well-defined surfaces and morphologies because their nucleation and growth are controlled at the atomic level. An overall picture of shaped metal particles is presented, with a particular focus on solution-based syntheses for the noble metals. General strategies for synthetic control are discussed, emphasizing key factors that result in anisotropic, nonspherical growth such as crystallographically selective adsorbates and seeding processes. C1 [Habas, Susan; Yang, Peidong] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Habas, Susan; Yang, Peidong] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Tao, Andrea R.] Univ Calif Santa Barbara, Inst Collaborat Biotechnol, Santa Barbara, CA 93111 USA. RP Yang, PD (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM p_yang@uclink.berkeley.edu RI Wei, Zhanhua/D-7544-2013 OI Wei, Zhanhua/0000-0003-2687-0293 NR 115 TC 1336 Z9 1355 U1 156 U2 1503 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1613-6810 J9 SMALL JI Small PD MAR PY 2008 VL 4 IS 3 BP 310 EP 325 DI 10.1002/smll.200701295 PG 16 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 280RP UT WOS:000254444200007 ER PT J AU West, TO Brandt, CC Wilson, BS Hellwinckel, CM Tyler, DD Marland, G Ugarte, DGD Larson, JA Nelson, RG AF West, Tristram O. Brandt, Craig C. Wilson, Bradly S. Hellwinckel, Chad M. Tyler, Donald D. Marland, Gregg Ugarte, Daniel G. De La Torre Larson, James A. Nelson, Richard G. TI Estimating regional changes in soil carbon with high spatial resolution SO SOIL SCIENCE SOCIETY OF AMERICA JOURNAL LA English DT Article ID LAND-COVER DATA; ORGANIC-CARBON; UNITED-STATES; AGRICULTURAL MANAGEMENT; CONSERVATION TILLAGE; SEQUESTRATION; IMPACTS; STORAGE; CULTIVATION; MITIGATION AB To manage lands locally for C sequestration and for emissions reductions, it is useful to have a system that can monitor and predict changes in soil C and greenhouse gas emissions with high spatial resolution. We are developing a C accounting framework that can estimate C dynamics and net emissions associated with changes in land management. One component of this framework integrates field measurements, inventory data, and remote sensing products to estimate changes in soil C and to estimate where these changes are likely to occur at a subcounty (30- by 30-m) resolution. We applied this framework component to a midwestern region of the United States that consists of 679 counties approximately centered around Iowa. We estimated the 1990 baseline soil C to a maximum depth of 3 m for this region to be 4117 Tg. Cumulative soil C accumulation of 70.3 Tg was estimated for this region between 1991 and 2000, of which 33.8 Tg is due to changes in tillage intensity. Without accounting for soil C loss following changes to more intensive tillage practices, our estimate increases to 45.0 Tg C. This difference indicates that on-site permanence of soil C associated with a change to less intensive tillage practices is approximately 75% if no additional economic incentives are provided for soil C sequestration practices. This C accounting framework offers a method to integrate inventory and remote sensing data on an annual basis and to transparently, account for alternating annual trends in land management and associated C stocks and fluxes. C1 [West, Tristram O.; Brandt, Craig C.; Marland, Gregg] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. [Wilson, Bradly S.; Hellwinckel, Chad M.; Ugarte, Daniel G. De La Torre] Univ Tennessee, Agr Policy Anal Ctr, Knoxville, TN 37996 USA. [Tyler, Donald D.] Univ Tennessee, Biosyst Engn & Soil Sci Dept, Knoxville, TN 37996 USA. [Larson, James A.] Univ Tennessee, Dept Agr Econ, Knoxville, TN 37996 USA. [Nelson, Richard G.] Kansas State Univ, Manhattan, KS 66506 USA. RP West, TO (reprint author), Oak Ridge Natl Lab, Div Environm Sci, POB 2008, Oak Ridge, TN 37831 USA. EM westto@ornl.gov RI El Husny, Chafic/G-5410-2012; West, Tristram/C-5699-2013 OI West, Tristram/0000-0001-7859-0125 NR 50 TC 29 Z9 29 U1 1 U2 11 PU SOIL SCI SOC AMER PI MADISON PA 677 SOUTH SEGOE ROAD, MADISON, WI 53711 USA SN 0361-5995 J9 SOIL SCI SOC AM J JI Soil Sci. Soc. Am. J. PD MAR-APR PY 2008 VL 72 IS 2 BP 285 EP 294 DI 10.2136/sssaj2007.0113 PG 10 WC Soil Science SC Agriculture GA 275GP UT WOS:000254060200001 ER PT J AU Wohling, T Vrugt, JA Barkle, GF AF Woehling, Thomas Vrugt, Jasper A. Barkle, Gregory F. TI Comparison of three multiobjective optimization algorithms for inverse modeling of vadose zone hydraulic properties SO SOIL SCIENCE SOCIETY OF AMERICA JOURNAL LA English DT Article ID EVOLUTIONARY ALGORITHMS; PARAMETER-ESTIMATION; GLOBAL OPTIMIZATION; HYDROLOGIC-MODELS; AUTOMATIC CALIBRATION; TRANSPORT PARAMETERS; GENETIC ALGORITHM; SOLUTE TRANSPORT; SOIL PARAMETERS; VOLCANIC SOIL AB Inverse modeling has become increasingly popular for estimating effective hydraulic properties across a range of spatial scales. In recent years, many different algorithms have been developed to solve complex multiobjective optimization problems. In this study, we compared the efficiency of the Nondominated Sorting Genetic Algorithm (NSGA-II), the Multiobjective Shuffled Complex Evolution Metropolis algorithm (MOSCEM-UA), and AMALGAM, a multialgorithm genetically adaptive search method for multiobjective estimation of soil hydraulic parameters. In our analyses, we implemented the HYDRUS-ID model and used observed pressure head data at three different depths from the Spydia experimental field site in New Zealand. Our optimization problem was posed in a multiobjective context by simultaneously using three complementary RMSE criteria at each depth. We analyzed the trade-off between these criteria and the adherent Pareto uncertainty. The results demonstrate that all three algorithms were able to find a good approximation of the Pareto set of solutions, but differed in the rate of convergence to this distribution. Small differences in performance of the various algorithms were observed because of the relative high dimension of the optimization problem in combination with the presence of multiple local optimal solutions within the three-objective search space. The Pareto parameter sets yielded satisfactory results when Simulating the transient tensiometric pressure at predetermined observation points in the investigated vadose zone profile. The overall best parameter set was found by AMALGAM with RMSE values of 0.14, 0.11, and 0.17 m at the 0.4-, 1.0-, and 2.6-m depths, respectively. In contrast, the fit errors were substantially higher at these respective depths, with RMSE values ranging from 0.87 to 1.49 in, when using soil hydraulic parameters derived from laboratory analysis of small vadose zone cores. C1 [Woehling, Thomas] Lincoln Ventures Ltd, Lincoln Environm Res, Ruakura Res Ctr, Hamilton, New Zealand. [Vrugt, Jasper A.] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. [Barkle, Gregory F.] Aqualin Res Ltd, Hamilton, New Zealand. RP Wohling, T (reprint author), Lincoln Ventures Ltd, Lincoln Environm Res, Ruakura Res Ctr, Hamilton, New Zealand. EM woehling@lvlham.lincoln.ac.nz RI Vrugt, Jasper/C-3660-2008 NR 62 TC 68 Z9 71 U1 4 U2 20 PU SOIL SCI SOC AMER PI MADISON PA 677 SOUTH SEGOE ROAD, MADISON, WI 53711 USA SN 0361-5995 EI 1435-0661 J9 SOIL SCI SOC AM J JI Soil Sci. Soc. Am. J. PD MAR-APR PY 2008 VL 72 IS 2 BP 305 EP 319 DI 10.2136/sssaj2007.0176 PG 15 WC Soil Science SC Agriculture GA 275GP UT WOS:000254060200003 ER PT J AU Xiao, XL Cheng, YZ Peng, J Wu, MM Chen, DF Hu, ZB Kiyanagi, R Fieramosca, JS Short, S Jorgensen, J AF Xiao, X. L. Cheng, Y. Z. Peng, J. Wu, M. M. Chen, D. F. Hu, Z. B. Kiyanagi, R. Fieramosca, J. S. Short, S. Jorgensen, J. TI Thermal expansion properties of A(2)(MO4)(3) (A = Ho and Tm; M = W and Mo) SO SOLID STATE SCIENCES LA English DT Article DE thermal expansion; high temperature X-ray diffraction; crystal structure ID MOLYBDATES AB Compounds Ho2W3O12, Ho2Mo3O12, Tm2W3O12 and Tm2Mo3O12 have been prepared by conventional solid-state reaction. Their crystal structures and thermal expansion properties were investigated by room temperature and high temperature X-ray diffractions. It is found that, in certain temperature ranges (200-700 degrees C for Ho sample and 200-800 degrees C for the others), Ho2Mo3O12, TM2W3O12 and Tm2Mo3O12 all adopt orthorhombic structure and show negative thermal expansion whereas Ho2W3O12 adopts monoclinic structure and shows positive thermal expansion. The volume thermal expansion coefficients obtained for Ho2W3O12, Ho2Mo3O12, Tm2W3O12 and Tm2Mo3O12 from high temperature XRD are 29.46 x 10(-6)degrees C-1, -34.50 x 10(-6)degrees C-1, -11.85 x 10(-6)degrees C-1 and -12.09 x 10(-6)degrees C-1, respectively. Thermogravimetry was used to study their hygroscopicity in air. (c) 2007 Published by Elsevier Masson SAS. C1 [Xiao, X. L.; Cheng, Y. Z.; Peng, J.; Wu, M. M.; Hu, Z. B.] Chinese Acad Sci, Grad Univ, Coll Chem & Chem Engn, Beijing 100049, Peoples R China. [Chen, D. F.] China Inst Atom Energy, Beijing 102413, Peoples R China. [Kiyanagi, R.; Fieramosca, J. S.; Short, S.; Jorgensen, J.] Argonne Natl Lab, IPNS, MSD, Argonne, IL 60439 USA. RP Hu, ZB (reprint author), Chinese Acad Sci, Grad Univ, Coll Chem & Chem Engn, Beijing 100049, Peoples R China. EM huzq@gucas.ac.cn NR 14 TC 20 Z9 23 U1 1 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1293-2558 J9 SOLID STATE SCI JI Solid State Sci. PD MAR PY 2008 VL 10 IS 3 BP 321 EP 325 DI 10.1016/j.solidstatesciences.2007.09.001 PG 5 WC Chemistry, Inorganic & Nuclear; Chemistry, Physical; Physics, Condensed Matter SC Chemistry; Physics GA 293RF UT WOS:000255351700010 ER PT J AU Herbst, RS Peterman, DR Tillotson, RD Delmau, LH AF Herbst, R. Scott Peterman, Dean R. Tillotson, Richard D. Delmau, Laetitia H. TI Fundamental chemistry of cesium extraction from acidic media by HCCD in FS-13 SO SOLVENT EXTRACTION AND ION EXCHANGE LA English DT Article DE extraction; cesium; cesium extraction; chlorinated cobalt dicarbollide; trifluoromethylphenyl sulfone; slope analysis ID SEPARATION; ANIONS AB We previously published a model for cesium extraction from acidic media by the protonated form of the hexachlorinated derivative of the chloro-protected cobalt bis(dicarbollide), HCCD, dissolved in trifluoromethylphenyl sulfone, FS-13. The model indicated that Cs extraction proceeds through a series of ion-paired and/or dissociated extraction equilibria. Additional Cs distribution ratio data has been obtained and the model refined and simplified. It is demonstrated that the equilibrium exclusively involving the exchange of proton for cesium by formation of ion-paired CsCCD models the Cs distribution data very well, particularly for the concentrations of HCCD greater than similar to 0.0005 M (0.5 mM). Finally, activity corrections for the aqueous phase to the Cs distribution data results in good agreement to the theoretical value of -1 for slope (log-log) analysis of the data over a wide range of HNO3 and HCCD concentrations. C1 [Herbst, R. Scott; Peterman, Dean R.; Tillotson, Richard D.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. [Delmau, Laetitia H.] Oak Ridge Natl Lab, Oak Ridge, TN USA. RP Herbst, RS (reprint author), Idaho Natl Lab, POB 1625, Idaho Falls, ID 83415 USA. EM r.herbst@inl.gov NR 11 TC 49 Z9 49 U1 1 U2 5 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 325 CHESTNUT ST, SUITE 800, PHILADELPHIA, PA 19106 USA SN 0736-6299 J9 SOLVENT EXTR ION EXC JI Solvent Extr. Ion Exch. PD MAR-APR PY 2008 VL 26 IS 2 BP 163 EP 174 DI 10.1080/07366290801925298 PG 12 WC Chemistry, Multidisciplinary SC Chemistry GA 281TN UT WOS:000254521900006 ER PT J AU Hathcock, CD Haarmann, TK AF Hathcock, Charles D. Haarmann, Timothy K. TI Development of a predictive model for habitat of the Mexican spotted owl in Northern New Mexico SO SOUTHWESTERN NATURALIST LA English DT Article ID NATIONAL-PARK; FORESTS AB The Mexican spotted owl (Strix occidentalis lucida) was listed as a threatened species under the Endangered Species Act in 1993. We developed a predictive, vegetation-based model for habitat of the species in the Jemez Mountains, New Mexico, using logistic-regression modeling techniques and analyzed seven habitat variables with six of the variables included in the final model. A plot analysis using Receiver Operating Characteristics indicated a high performance of the model, and validation of the model confirmed proper function. Compared with random unoccupied sites, the model indicates that owls in the Jemez Mountains prefer habitat with greater diversity, density, and height of trees, canopy cover, and shrub density, which is in agreement with much of the literature on biology of the Mexican spotted owl. This model can be used with fine-scale assessments of habitat for land-management agencies that have a priority to accurately delineate habitat of the Mexican spotted owl. Los Alamos National Laboratory will use this model to re-delineate habitat of owls to reduce assessment costs and to better protect appropriate habitat. C1 [Hathcock, Charles D.] Los Alamos Natl Lab, Ecol Grp, Los Alamos, NM 87545 USA. RP Hathcock, CD (reprint author), Los Alamos Natl Lab, Ecol Grp, POB 1663, Los Alamos, NM 87545 USA. EM hathcock@lanl.gov NR 18 TC 1 Z9 2 U1 3 U2 19 PU SOUTHWESTERN ASSOC NATURALISTS PI SAN MARCOS PA SOUTHWEST TEXAS STATE UNIV, DEPT BIOLOGY, 601 UNIVERSITY DR, SAN MARCOS, TX 78666 USA SN 0038-4909 EI 1943-6262 J9 SOUTHWEST NAT JI Southw. Natural. PD MAR PY 2008 VL 53 IS 1 BP 34 EP 38 DI 10.1894/0038-4909(2008)53[34:DOAPMF]2.0.CO;2 PG 5 WC Biodiversity Conservation; Ecology SC Biodiversity & Conservation; Environmental Sciences & Ecology GA 277FA UT WOS:000254196900005 ER PT J AU Li, H Chavan, M Schindelin, H Lennarz, WJ Li, HL AF Li, Hua Chavan, Manasi Schindelin, Hermann Lennarz, William J. Li, Huilin TI Structure of the oligosaccharyl transferase complex at 12 angstrom resolution SO STRUCTURE LA English DT Article ID SACCHAROMYCES-CEREVISIAE OLIGOSACCHARYLTRANSFERASE; PROTEIN-CONDUCTING CHANNEL; ENDOPLASMIC-RETICULUM; N-GLYCOSYLATION; TRANSLOCATION CHANNEL; SECRETORY PROTEIN; ESCHERICHIA-COLI; MEMBRANE-PROTEIN; ACTIVE-SITE; YEAST AB Oligosaccharyl transferase (OT) catalyzes the transfer of a lipid-linked oligosaccharide to the nascent polypeptide emerging from the translocon. Currently, there is no structural information on the membrane-embedded OT complex, which consists of eight different polypeptide chains. We report a 12 angstrom resolution cryo-electron microscopy structure of OT from yeast. We mapped the locations of four essential OT subunits through a maltose-binding protein fusion strategy. OT was found to have a large domain in the lumenal side of encloplasmic reticulum where the catalysis occurs. The lumenal domain mainly comprises the catalytic Stt3p, the donor substrate-recognizing Wbp1p, and the acceptor substrate-recognizing Ost1p. A prominent groove was observed between these subunits, and we propose that the nascent polypepticle from the translocon threads through this groove while being scanned by the Ost1p subunit for the presence of the glycosylation sequon. C1 [Chavan, Manasi; Lennarz, William J.; Li, Huilin] SUNY Stony Brook, Inst Cell & Dev Biol, Stony Brook, NY 11794 USA. [Chavan, Manasi; Lennarz, William J.] SUNY Stony Brook, Dept Biochem, Stony Brook, NY 11794 USA. [Li, Hua; Li, Huilin] Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. [Schindelin, Hermann] Univ Wurzburg, Inst Biol Struct, D-97078 Wurzburg, Germany. [Schindelin, Hermann] Univ Wurzburg, Rudolf Virchow Ctr Expt Biomed, D-97078 Wurzburg, Germany. RP Lennarz, WJ (reprint author), SUNY Stony Brook, Inst Cell & Dev Biol, Stony Brook, NY 11794 USA. EM wlennarz@notes.cc.sunysb.edu; hli@bnl.gov FU NIGMS NIH HHS [GM33185, GM74985] NR 50 TC 25 Z9 25 U1 2 U2 7 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 0969-2126 J9 STRUCTURE JI Structure PD MAR PY 2008 VL 16 IS 3 BP 432 EP 440 DI 10.1016/j.str.2007.12.013 PG 9 WC Biochemistry & Molecular Biology; Biophysics; Cell Biology SC Biochemistry & Molecular Biology; Biophysics; Cell Biology GA 275GQ UT WOS:000254060300015 PM 18334218 ER PT J AU Shchukarev, A Boily, JF AF Shchukarev, Andrey Boily, Jean-Francois TI XPS study of the hematite-aqueous solution interface SO SURFACE AND INTERFACE ANALYSIS LA English DT Article DE XPS; adsorption; electrolyte; hematite; solid-liquid interface; surface charge; hydration ID RAY-PHOTOELECTRON-SPECTROSCOPY; RUTILE-WATER INTERFACE; QUICK-FROZEN SOLUTIONS; DOUBLE-LAYER; IN-SITU; SURFACES; ADSORPTION AB The interaction between the surface of hematite colloidal platelets and Na(+) and Cl(-) ions was investigated by XPS using the cryogenic technique. Pastes in ionic strengths of 0 and 10 mm NaCl contained about 10 at. % water and water/NaCl atomic ratios of 3 to 6. These results fall within the range of values obtained for a variety of minerals studied with this technique. Pastes in 100 mm NaCl background electrolyte, however, contained an unusually larger water content of 25 at. %, yielding a Na(+): Cl(-): H(2)O ratio of 1 :1 :2. This result is in strong contrast with other minerals at the same ionic strength, which typically reveal about 10 at. % water. Substituting Na(+) for Cs(+) in the hematite paste with 100 mm CsCl yielded, on the other hand, the same amount of water as in the pastes with 0 and 10 mm NaCl, and underpinned the role of Na+ ions in the large water content of the hematite paste. As surface concentrations of Na(+) and Cl(-) exceeded those of hematite surface structural hydroxyl groups and Na 1s and Cl 2p spectra exhibited energy loss features, the electrolyte ions are proposed to be distributed in a three-dimensional array in the fast-frozen paste, possibly in a hydrohalite-like (NaCl center dot 2H(2)O) phase. In addition, because the fast-frozen solution of 100 mm NaCl yields a water/NaCl ratio of about 70, hematite is proposed to play an important role in the stabilization of this three-dimensional distribution of Na(+) and Cl(-) ions. The role of the neutrally charged {1001} plane, a predominant feature in the hematite particles of this study, is notably discussed in the light of recent molecular models showing that this plane can stabilize several layers of hydrated ions up to 15 angstrom from the surface. Copyright (C) 2008 John Wiley & Sons, Ltd. C1 [Shchukarev, Andrey] Umea Univ, Dept Chem Environm & Biogeochem, SE-90187 Umea, Sweden. [Boily, Jean-Francois] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Shchukarev, A (reprint author), Umea Univ, Dept Chem Environm & Biogeochem, SE-90187 Umea, Sweden. EM andrei.shchukarev@chem.umu.se NR 19 TC 13 Z9 13 U1 5 U2 24 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0142-2421 J9 SURF INTERFACE ANAL JI Surf. Interface Anal. PD MAR-APR PY 2008 VL 40 IS 3-4 BP 349 EP 353 DI 10.1002/sia.2657 PG 5 WC Chemistry, Physical SC Chemistry GA 295PK UT WOS:000255486200051 ER PT J AU Samavat, F Gladys, MJ Jenks, CJ Lograsso, TA King, BV O'Connor, DJ AF Samavat, Feridoun Gladys, Michael J. Jenks, Cynthia J. Lograsso, Thomas A. King, Bruce V. O'Connor, D. John TI Study of preferential sputtering and segregation effects on the surface composition of Al-Pd-Mn quasi-crystals SO SURFACE AND INTERFACE ANALYSIS LA English DT Article DE preferential sputtering; segregation; Al-Pd-Mn; LEIS ID ENERGY ION-SCATTERING; ALPDMN AB Using 2 keV He+ and Ne+ low-energy ion scattering (LEIS), it was found that the Al/Pd concentration ratio at the surface of a nominally Al69.9Pd20.5Mn9.6 quasi-crystal decreases to a steady-state value under bombardment as a result of preferential sputtering. Sputtering of an annealed surface results in a significant increase in Mn concentration on the surface which remained at annealing temperatures below 575 K. Variations of the Mn/Pd and Al/Pd ratios have been measured by LEIS as a function of temperature in the range 295-975 K for clean-annealed and sputtered surfaces. The results show that Al/Pd ratio does not significantly change from 295 to 575 K for both He+ and Ne+ but increases with sample temperatures up to 875 K. Copyright (C) 2008 John Wiley & Sons, Ltd. C1 [Samavat, Feridoun] Bu Ali Sina Univ, Dept Phys, Hamadan, Iran. [Jenks, Cynthia J.; Lograsso, Thomas A.] Iowa State Univ Sci & Technol, Ames Lab, Ames, IA 50011 USA. [Samavat, Feridoun; Gladys, Michael J.; King, Bruce V.; O'Connor, D. John] Univ Newcastle, Sch Math & Phys Sci, Newcastle, NSW 2308, Australia. RP Samavat, F (reprint author), Bu Ali Sina Univ, Dept Phys, Hamadan, Iran. EM FSamavat@basu.ac.ir RI OConnor, John/C-4336-2008; Gladys, Michael/C-4144-2011 OI OConnor, John/0000-0003-4427-7733; NR 14 TC 1 Z9 1 U1 1 U2 2 PU JOHN WILEY & SONS LTD PI CHICHESTER PA THE ATRIUM, SOUTHERN GATE, CHICHESTER PO19 8SQ, W SUSSEX, ENGLAND SN 0142-2421 J9 SURF INTERFACE ANAL JI Surf. Interface Anal. PD MAR-APR PY 2008 VL 40 IS 3-4 BP 433 EP 435 DI 10.1002/sia.2769 PG 3 WC Chemistry, Physical SC Chemistry GA 295PK UT WOS:000255486200068 ER PT J AU Baer, DR Amonette, JE Engelhard, MH Gaspar, DJ Karakoti, AS Kuchibhatla, S Nachimuthu, P Nurmi, JT Qiang, Y Sarathy, V Seal, S Sharma, A Tratnyek, PG Wang, CM AF Baer, D. R. Amonette, J. E. Engelhard, M. H. Gaspar, D. J. Karakoti, A. S. Kuchibhatla, S. Nachimuthu, P. Nurmi, J. T. Qiang, Y. Sarathy, V. Seal, S. Sharma, A. Tratnyek, P. G. Wang, C. -M. TI Characterization challenges for nanomaterials SO SURFACE AND INTERFACE ANALYSIS LA English DT Article DE nanomaterials; characterization; surface analysis; XPS; XRD; TEM ID IRON-OXIDE NANOPARTICLES; CORE-SHELL NANOCLUSTERS; MAGNETIC-PROPERTIES; CARBON NANOTUBES; FE NANOPARTICLES; QUANTUM DOTS; PARTICLES; NANOCRYSTALS; SPECTROSCOPY; TEMPERATURE AB Nanostructured materials are increasingly subject to nearly every type of chemical and physical analysis possible. Due to their small sizes, there is a significant focus on tools with high spatial resolution. It is also natural to characterize nanomaterials using tools designed to analyze surfaces, because of their high surface area. Regardless of the approach, nanostructured materials present a variety of obstacles to adequate, useful, and needed analysis. Case studies of measurements on ceria and iron metal-core/oxide-shell nanoparticles are used to introduce some of the issues that frequently need to be addressed during analysis of nanostructured materials. We use a combination of tools for routine analysis including X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and x-ray diffraction (XRD) and apply several other methods as needed to obtain essential information. The examples provide an introduction to other issues and complications associated with the analysis of nanostructured materials including particle stability, probe effects, environmental effects, specimen handling, surface coating, contamination, and time. Copyright (c) 2008 John Wiley & Sons, Ltd. C1 [Baer, D. R.; Engelhard, M. H.; Kuchibhatla, S.; Nachimuthu, P.; Wang, C. -M.] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. [Amonette, J. E.] Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Richland, WA 99352 USA. [Gaspar, D. J.] Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA 99352 USA. [Karakoti, A. S.; Kuchibhatla, S.] Univ Cent Florida, Mech Mat Aerosp Engn Nanosci & Technol Ctr, Adv Mat Proc & Anal Ctr, Orlando, FL 32816 USA. [Nurmi, J. T.; Sarathy, V.; Tratnyek, P. G.] Oregon Hlth & Sci Univ, Dept Environm & Biomol Syst, Beaverton, OR USA. [Qiang, Y.; Sharma, A.] Univ Idaho, Dept Phys, Moscow, ID 83843 USA. RP Baer, DR (reprint author), Pacific NW Natl Lab, Environm Mol Sci Lab, Box 999,MS K8-87, Richland, WA 99352 USA. EM don.baer@pnl.gov RI Engelhard, Mark/F-1317-2010; Gaspar, Dan/H-6166-2011; Baer, Donald/J-6191-2013; OI Baer, Donald/0000-0003-0875-5961; Gaspar, Daniel/0000-0002-8089-810X; Engelhard, Mark/0000-0002-5543-0812 NR 70 TC 60 Z9 60 U1 5 U2 41 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0142-2421 EI 1096-9918 J9 SURF INTERFACE ANAL JI Surf. Interface Anal. PD MAR-APR PY 2008 VL 40 IS 3-4 BP 529 EP 537 DI 10.1002/sia.2726 PG 9 WC Chemistry, Physical SC Chemistry GA 295PK UT WOS:000255486200090 ER PT J AU Qin, F Hunt, B Unal, B Jing, D Shen, M Jenks, CJ Gleeson, B Sordelet, DJ Thiel, PA AF Qin, F. Hunt, B. Unal, B. Jing, D. Shen, M. Jenks, C. J. Gleeson, B. Sordelet, D. J. Thiel, P. A. TI Correlations between structure and chemical composition on oxidized (Pt,Ni)(3)Al(111) surfaces SO SURFACE SCIENCE LA English DT Article DE oxidation; nickel aluminide; platinum; scanning tunneling microscopy; low-energy electron diffraction (LEED) ID RAY PHOTOELECTRON-SPECTROSCOPY; OXIDATION BEHAVIOR; INITIAL-STAGES; CORROSION-RESISTANCE; SITE PREFERENCE; NI3AL ALLOY; EARLY-STAGE; SEGREGATION; INTERMETALLICS; 1ST-PRINCIPLES AB We have investigated the fully-oxidized surface that forms on (Pt, Ni)(3)Al(111) at temperatures ranging from 300 to 1000 K and at oxygen pressures of ca. 10(-6) to 10(-7) Torr, using scanning tunneling microscopy (STM) and low-energy electron diffraction (LEED). Based on X-ray photoelectron spectroscopy data that were published previously, oxidation temperatures below 700 K at these pressures produces a mixture of surface Al2O3 and NiO, with NiO being the predominant oxide. At 800-1000 K, pure Al2O3 exists. In this work, STM data from a sample containing 10 at% Pt show that oxidation causes an increase in roughness, relative to the clean surface. The apparent roughness correlates directly with NiO content, both of which reach a maximum at an oxidation temperature of 500 K. The oxide surface is smoothest when it consists of pure Al2O3, i.e. after oxidation at 800-1000 K. In terms of crystallinity, LEED data show that the Al2O3 which forms at 1000 K is ordered, but its structure on the Pt-containing samples is different than reported previously for the Pt-free surface. This is true despite the structure of the clean surface being unperturbed by Pt, based on STM and LEED. The different structure of the oxide probably relates to the fact that the oxide is also thinner in the presence of Pt. The change in oxide structure undoubtedly correlates with a change in stability and adhesion of the oxide, both of which are of paramount importance in industrial applications. (c) 2008 Elsevier B.V. All rights reserved. C1 [Qin, F.; Unal, B.; Jing, D.; Jenks, C. J.; Gleeson, B.; Sordelet, D. J.; Thiel, P. A.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Qin, F.; Hunt, B.; Jing, D.; Shen, M.; Thiel, P. A.] Iowa State Univ, Dept Chem, Ames, IA 50011 USA. [Unal, B.; Gleeson, B.; Thiel, P. A.] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. RP Thiel, PA (reprint author), Iowa State Univ, Ames Lab, Ames, IA 50011 USA. EM pthiel@iastate.edu RI Shen, Mingmin/A-9293-2012; Jing, Dapeng/M-3455-2014 OI Jing, Dapeng/0000-0001-7600-7071 NR 41 TC 1 Z9 1 U1 0 U2 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0039-6028 J9 SURF SCI JI Surf. Sci. PD MAR 1 PY 2008 VL 602 IS 5 BP 1092 EP 1100 DI 10.1016/j.susc.2008.01.004 PG 9 WC Chemistry, Physical; Physics, Condensed Matter SC Chemistry; Physics GA 285UN UT WOS:000254801800014 ER PT J AU Ilton, ES Bagus, PS AF Ilton, Eugene S. Bagus, Paul S. TI Ligand field effects on the multiplet structure of the U4f XPS of UO2 SO SURFACE SCIENCE LA English DT Article DE X-ray photoelectron spectroscopy; uranium oxide; ab initio quantum chemical methods and calculations ID RAY PHOTOELECTRON-SPECTROSCOPY; ELECTRONIC-STRUCTURE; VACANCY LEVELS; SPECTRA; REDUCTION; OXIDES; STATES; 2P AB Ab initio, fully relativistic four component theory was used to determine atomic and interatomic many-body effects for the U4f X-ray photoelectron spectrum of an embedded UO8-12 Cluster representing UO2, Many-body effects were included through the use of configuration interaction wavefunctions that allow the mixing of XPS allowed and XPS forbidden configurations. Charge transfer configurations were not included. This work extends our earlier studies on simulations of the 4f XPS for the free U4+ cation. While the main XPS features are similar in both cases, ligand field effects changed the multiplet structure in important ways that better simulated experimental data for UO2. Neither initial nor final state covalency significantly reduced the 4f-5f exchange integrals, and the differences between the atom and cluster model were due to ligand field splitting of the 5f band and increased distributions of intensity from XPS allowed to XPS forbidden peaks. The prominent 7 eV satellites associated with UO2 were absent in the simulations, which provided further evidence that these satellites are due to charge transfer and not other interatomic effects. (c) 2008 Elsevier B.V. All rights reserved. C1 [Ilton, Eugene S.] Pacific NW Natl Lab, Div Chem & Mat Sci, Richland, WA 99353 USA. [Bagus, Paul S.] Univ N Texas, Denton, TX 76203 USA. RP Ilton, ES (reprint author), Pacific NW Natl Lab, Div Chem & Mat Sci, 902 Battelle Blvd, Richland, WA 99353 USA. EM Eugene.Ilton@pnl.gov RI Bagus, Paul/M-1273-2015 NR 30 TC 16 Z9 16 U1 0 U2 17 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0039-6028 J9 SURF SCI JI Surf. Sci. PD MAR 1 PY 2008 VL 602 IS 5 BP 1114 EP 1121 DI 10.1016/j.susc.2008.01.010 PG 8 WC Chemistry, Physical; Physics, Condensed Matter SC Chemistry; Physics GA 285UN UT WOS:000254801800016 ER PT J AU Somorjai, GA Tao, F Park, JY AF Somorjai, Gabor A. Tao, Feng Park, Jeong Young TI The nanoscience revolution: Merging of colloid science, catalysis and nanoelectronics SO TOPICS IN CATALYSIS LA English DT Article DE nanoscience; nanotechnology; colloid science; catalysis; high pressure; scanning tunnelling microscopy ID ELECTRON-BEAM LITHOGRAPHY; SINGLE-CRYSTAL SURFACES; GENERATION VIBRATIONAL SPECTROSCOPY; SIZE-REDUCTION LITHOGRAPHY; MESOPOROUS SBA-15 SILICA; PLATINUM NANOPARTICLES; N-HEXANE; NANOIMPRINT LITHOGRAPHY; ETHYLENE HYDROGENATION; STRUCTURE SENSITIVITY AB The incorporation of nanosciences into catalysis studies has become the most powerful approach to understanding reaction mechanisms of industrial catalysts and designing new-generation catalysts with high selectivity. Nanoparticle catalysts were synthesized via controlled colloid chemistry routes. Nanostructured catalysts such as nanodots and nanowires were fabricated with nanolithography techniques. Catalytic selectivity is dominated by several complex factors including the interface between active catalyst phase and oxide support, particle size and surface structure, and selective blocking of surface sites, etc. The advantage of incorporating nanosciences into the studies of catalytic selectivity is the capability of separating these complex factors and studying them one by one in different catalyst systems. The role of oxide-metal interfaces in catalytic reactions was investigated by detection of continuous hot electron flow in catalytic nanodiodes fabricated with shadow mask deposition technique. We found that the generation mechanism of hot electrons detected in Pt/TiO2 nanodiode is closely correlated with the turnover rate under CO oxidation. The correlation suggests the possibility of promoting catalytic selectivity by precisely controlling hot electron flow at the oxide-metal interface. Catalytic activity of 1.7-7.2 nm monodispersed Pt nanoparticles exhibits particle size dependence, demonstrating the enhancement of catalytic selectivity via controlling the size of catalyst. Pt-Au alloys with different An coverage grown on Pt(I 11) single crystal surface have different catalytic selectivity for four conversion channels of n-hexane, showing that selective blocking of catalytic sites is an approach to tuning catalytic selectivity. In addition, presence and absence of excess hydrogen lead to different catalytic selectivity for isomerization and dehydrocyclization of n-hexane on Pt(111) single crystal surface, suggesting that modification of reactive intermediates by the presence of coadsorbed hydrogen is one approach to shaping catalytic selectivity. Several challenges such as imaging the mobility of adsorbed molecules during catalytic reactions by high pressure STM and removing polymeric capping agents from metal nanoparticles remain. C1 [Somorjai, Gabor A.; Tao, Feng; Park, Jeong Young] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Somorjai, Gabor A.; Tao, Feng; Park, Jeong Young] Lawrence Natl Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Somorjai, GA (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM somorjai@socrates.berkeley.edu RI Park, Jeong Young/A-2999-2008 NR 40 TC 103 Z9 103 U1 10 U2 95 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1022-5528 J9 TOP CATAL JI Top. Catal. PD MAR PY 2008 VL 47 IS 1-2 BP 1 EP 14 DI 10.1007/s11244-007-9028-1 PG 14 WC Chemistry, Applied; Chemistry, Physical SC Chemistry GA 284JB UT WOS:000254701600001 ER PT J AU Hook, SE Skillman, AD Gopalan, B Small, JA Schultz, IR AF Hook, Sharon E. Skillman, Ann D. Gopalan, Banu Small, Jack A. Schultz, Irvin R. TI Gene expression profiles in rainbow trout, Onchorynchus mykiss, exposed to a simple chemical mixture SO TOXICOLOGICAL SCIENCES LA English DT Article DE gene expression; microarrays; chemical mixtures; rainbow trout; toxicokinetics ID FLOUNDER PLATICHTHYS-FLESUS; ONCORHYNCHUS-MYKISS; HEXAVALENT CHROMIUM; COMPLEX-MIXTURES; MICROARRAY DATA; ESTRADIOL; ARRAY; FISH; BETA; 17-ALPHA-ETHYNYLESTRADIOL AB Among proposed uses for microarrays in environmental toxiciology is the identification of key contributors to toxicity within a mixture. However, it remains uncertain whether the transcriptomic profiles resulting from exposure to a mixture have patterns of altered gene expression that contain identifiable contributions from each toxicant component. We exposed isogenic rainbow trout Onchorynchus mykiss, to sublethal levels of ethynylestradiol, 2,2,4,4-tetrabromodiphenyl ether, and chromium VI or to a mixture of all three toxicants Fluorescently labeled complementary DNA (cDNA) were generated and hybridized against a commercially available Salmonid array spotted with 16,000 cDNAs. Data were analyzed using analysis of variance (p < 0.05) with a Benjamani-Hochberg multiple test correction (Genespring [Agilent] software package) to identify up and downregulated genes. Gene clustering patterns that can be used as "expression signatures" were determined using hierarchical cluster analysis. The gene ontology terms associated with significantly altered genes were also used to identify functional groups that were associated with toxicant exposure. Cross-ontological analytics approach was used to assign functional annotations to genes with "unknown" function. Our analysis indicates that transcriptomic profiles resulting from the mixture exposure resemble those of the individual contaminant exposures, but are not a simple additive list. However, patterns of altered genes representative of each component of the mixture are clearly discernible, and the functional classes of genes altered represent the individual components of the mixture. These findings indicate that the use of microarrays to identify transcriptomic profiles may aid in the identification of key stressors within a chemical mixture, ultimately improving environmental assessment. C1 [Hook, Sharon E.; Skillman, Ann D.; Schultz, Irvin R.] Battelle marine Res Operat, Sequim, WA 98382 USA. [Gopalan, Banu; Small, Jack A.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Schultz, IR (reprint author), Battelle marine Res Operat, W Sequim Bay Rd, Sequim, WA 98382 USA. EM sharon.hook@pnl.gov RI Hook, Sharon/D-9067-2011 FU NIEHS NIH HHS [5R01ES012446-03] NR 56 TC 24 Z9 25 U1 2 U2 15 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 1096-6080 J9 TOXICOL SCI JI Toxicol. Sci. PD MAR PY 2008 VL 102 IS 1 BP 42 EP 60 DI 10.1093/toxsci/kfm293 PG 19 WC Toxicology SC Toxicology GA 260PY UT WOS:000253023600005 PM 18084045 ER PT J AU Metz, TO Page, JS Baker, ES Tang, KQ Ding, J Shen, YF Smith, RD AF Metz, Thomas O. Page, Jason S. Baker, Erin S. Tang, Keqi Ding, Jie Shen, Yufeng Smith, Richard D. TI High-resolution separations and improved ion production and transmission in metabolomics SO TRAC-TRENDS IN ANALYTICAL CHEMISTRY LA English DT Article DE electrospray ionization; ion mobility spectroscopy; liquid chromatography; mass spectrometry; metabolomics ID IONIZATION-MASS-SPECTROMETRY; PERFORMANCE LIQUID-CHROMATOGRAPHY; SOLUTION FLOW-RATES; ELECTROSPRAY-IONIZATION; ATMOSPHERIC-PRESSURE; PATTERN-RECOGNITION; FUNNEL INTERFACE; NANOELECTROSPRAY IONIZATION; MOBILITY SPECTROMETRY; PEPTIDE MIXTURES AB The goal of metabolomics analyses is detection and quantitation of as many sample components as reasonably possible in order to identify compounds or "features" that can be used to characterize the samples under study. When utilizing electrospray ionization to produce ions for analysis by mass spectrometry (MS), it is important that sample constituents are efficiently separated prior to ion production, in order to reduce complexity and minimize ionization suppression and thereby extend the dynamic range of the measurement, as well as the coverage of the metabolome. Similarly, optimization of the MS inlet and interface can lead to increased measurement sensitivity. This review focuses on the role of high-resolution liquid chromatography (LC) separations in conjunction with improved ion production and transmission for LC-MS-based metabolomics. We place additional emphasis on the compromise between metabolome coverage and sample-analysis throughput. (c) 2007 Elsevier Ltd. All rights reserved. C1 [Metz, Thomas O.; Page, Jason S.; Baker, Erin S.; Tang, Keqi; Ding, Jie; Shen, Yufeng; Smith, Richard D.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. RP Smith, RD (reprint author), Pacific NW Natl Lab, Div Biol Sci, POB 999, Richland, WA 99352 USA. EM rds@pnl.gov RI Smith, Richard/J-3664-2012; OI Smith, Richard/0000-0002-2381-2349; Metz, Tom/0000-0001-6049-3968 FU NCI NIH HHS [R21 CA126191, R21 CA126191-01, R33 CA126191]; NCRR NIH HHS [P41 RR018522, P41 RR018522-05]; NIDDK NIH HHS [R21 DK071283, R33 DK071283, R33 DK071283-03] NR 71 TC 29 Z9 31 U1 2 U2 18 PU ELSEVIER SCIENCE LONDON PI LONDON PA 84 THEOBALDS RD, LONDON WC1X 8RR, ENGLAND SN 0165-9936 J9 TRAC-TREND ANAL CHEM JI Trac-Trends Anal. Chem. PD MAR PY 2008 VL 27 IS 3 BP 205 EP 214 DI 10.1016/j.trac.2007.11.003 PG 10 WC Chemistry, Analytical SC Chemistry GA 298RM UT WOS:000255704800016 PM 19255623 ER PT J AU Zhang, F Jiang, L Yeh, GT Parker, JC AF Zhang, F. Jiang, L. Yeh, G. T. Parker, J. C. TI An adaptive local grid refinement and peak/valley capture algorithm to solve nonlinear transport problems with moving sharp-fronts SO TRANSPORT IN POROUS MEDIA LA English DT Article DE nonlinear advection-dispersion-reaction equations; Lagrangian-Eulerian decoupling method with an adaptive ZOOMing and Peak/valley Capture (LEZOOMPC); Burger equation; multiphase flow; peak/valley capturing; adaptive local grid refinement ID LAGRANGIAN-EULERIAN METHOD; EFFICIENT IMPLEMENTATION; EQUATIONS; SCHEMES AB Highly nonlinear advection-dispersion-reaction equations govern numerous transport phenomena. Robust, accurate, and efficient algorithms to solve these equations hold the key to the success of applying numerical models to field problems. This paper presents the development and verification of a computational algorithm to approximate the highly nonlinear transport equations of reactive chemical transport and multiphase flow. The algorithm was developed based on the Lagrangian-Eulerian decoupling method with an adaptive ZOOMing and Peak/valley Capture (LEZOOMPC) scheme. It consists of both backward and forward node tracking, rough element determination, peak/valley capturing, and adaptive local grid refinement. A second-order tracking was implemented to accurately and efficiently track all fictitious particles. Shanks' method was introduced to deal with slowly converging case. The accuracy and efficiency of the algorithm were verified with the Burger equation for a variety of cases. The robustness of the algorithm to achieve convergent solutions was demonstrated by highly nonlinear reactive contaminant transport and multiphase flow problems. C1 [Zhang, F.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. [Yeh, G. T.] Univ Cent Florida, Dept Civil & Environm Engn, Orlando, FL 32816 USA. [Parker, J. C.] Univ Tennessee, Dept Civil & Environm Engn, Knoxville, TN 37996 USA. [Jiang, L.] Univ Texas Arlington, Dept Math, Arlington, TX 76019 USA. RP Zhang, F (reprint author), Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. EM zhangf@ornl.gov NR 27 TC 2 Z9 2 U1 1 U2 2 PU SPRINGER PI NEW YORK PA 233 SPRING STREET, NEW YORK, NY 10013 USA SN 0169-3913 J9 TRANSPORT POROUS MED JI Transp. Porous Media PD MAR PY 2008 VL 72 IS 1 BP 53 EP 69 DI 10.1007/s11242-007-9135-2 PG 17 WC Engineering, Chemical SC Engineering GA 258SP UT WOS:000252890100004 ER PT J AU Lu, XJ Sun, YW AF Lu, Xinjian Sun, Yunwei TI A solution of transport in porous media with equilibrium and kinetic reactions SO TRANSPORT IN POROUS MEDIA LA English DT Article DE analytical solution; equilibrium; kinetics; transport; reaction ID MODEL DEVELOPMENT AB A solution is presented to verify numerical computer codes of reactive transport with both equilibrium and kinetic reactions. A synthetic model of A <-> B <-> C -> chain reactions is proposed to describe operator-splitting numerical schemes used in numerical computer codes. A reaction matrix is derived for both the equilibrium and the first-order kinetic reactions and further decoupled as a diagonal matrix. Therefore, the partial differential equations (PDEs) coupled by the reaction matrix can be transformed into independent PDEs, for which closed-form solutions exist or can be derived. The solution derived in this study is compared with numerical results. C1 [Sun, Yunwei] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Lu, Xinjian] Calif State Univ, E Bay, CA 94542 USA. RP Sun, YW (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM sun4@llnl.gov RI Sun, Yunwei/C-9751-2010 NR 12 TC 2 Z9 2 U1 0 U2 1 PU SPRINGER PI NEW YORK PA 233 SPRING STREET, NEW YORK, NY 10013 USA SN 0169-3913 J9 TRANSPORT POROUS MED JI Transp. Porous Media PD MAR PY 2008 VL 72 IS 2 BP 199 EP 206 DI 10.1007/s11242-007-9144-1 PG 8 WC Engineering, Chemical SC Engineering GA 263GJ UT WOS:000253205300005 ER PT J AU Garcia, E Chain, P Elliott, JM Bobrov, AG Motin, VL Kirillina, O Lao, V Calendar, R Filippov, AA AF Garcia, Emilio Chain, Patrick Elliott, Jeff M. Bobrov, Alexander G. Motin, Vladimir L. Kirillina, Olga Lao, Victoria Calendar, Richard Filippov, Andrey A. TI Molecular characterization of L-413C, a P2-related plague diagnostic bacteriophage SO VIROLOGY LA English DT Article DE Yersinia pestis; plague diagnostic bacteriophage; genome sequencing; tail fiber; H protein; preadsorbtion test; host-specificity ID ESCHERICHIA-COLI; YERSINIA-PESTIS; PASTEURELLA PESTIS; GENOME SEQUENCE; P2-LIKE COLIPHAGES; PROTEIN; P2; EVOLUTION; STRAIN; PHAGE AB Our analysis of the plague diagnostic phage L-413C genome sequence and structure reveals that L-413C is highly similar and collinear with enterobacteriophage P2, though important differences were found. Of special interest was the mosaic nature of the tail fiber protein H in L-413C, given the differentiating specificity of this phage for Yersinia pestis vs. Yersinia pseudotuberculosis. While the N-terminal 207 and C-terminal 137 amino acids of L-413C display significant homology with the P2 H protein, a large (465 amino acid) middle section appears to be derived from a T4-related H protein, with highest similarity to the T6 and RB32 distal tail fibers. This finding along with appropriate preadsorption experiments suggest that the unique H protein of L-413C may be responsible for the specificity of this phage for Y. pestis, and that the Y. pestis receptors that are recognized and bound by L-413C either do not exist in Y. pseudotuberculosis or have a different structure. (C) 2007 Elsevier Inc. All rights reserved. C1 [Garcia, Emilio; Chain, Patrick; Elliott, Jeff M.; Motin, Vladimir L.; Lao, Victoria] Lawrence Livermore Natl Lab, Chem Mat & Life Sci Directorate, Livermore, CA 94550 USA. [Chain, Patrick] Joint Genome Inst, Microbiol Genome Program, Walnut Creek, CA 94598 USA. [Bobrov, Alexander G.; Kirillina, Olga; Filippov, Andrey A.] Russian Res Antiplague Inst Microbe, Saratov 410005, Russia. [Calendar, Richard] Univ Calif Berkeley, Berkeley, CA 94720 USA. RP Garcia, E (reprint author), Lawrence Livermore Natl Lab, Chem Mat & Life Sci Directorate, 7000 E Ave, Livermore, CA 94550 USA. EM garcia12@llnl.gov RI Filippov, Andrey/B-2856-2011; chain, patrick/B-9777-2013; Motin, Vladimir/O-1535-2013 NR 85 TC 10 Z9 15 U1 1 U2 4 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0042-6822 J9 VIROLOGY JI Virology PD MAR 1 PY 2008 VL 372 IS 1 BP 85 EP 96 DI 10.1016/j.virol.2007.10.032 PG 12 WC Virology SC Virology GA 264YC UT WOS:000253325300009 PM 18045639 ER PT J AU Zou, YL Wu, J Giannone, RJ Boucher, L Du, HS Huang, Y Johnson, DK Liu, Y Wang, YS AF Zou, Yonglong Wu, Jun Giannone, Richard J. Boucher, Lorrie Du, Hansen Huang, Ying Johnson, Dabney K. Liu, Yie Wang, Yisong TI Nucleophosmin/B23 negatively regulates GCN5-dependent histone acetylation and transactivation SO JOURNAL OF BIOLOGICAL CHEMISTRY LA English DT Article ID CHROMATIN REMODELING ENZYMES; ACETYLTRANSFERASE ACTIVITY; CENTROSOME DUPLICATION; DEPENDENT KINASE; IN-VIVO; PROTEIN; PHOSPHORYLATION; TRANSCRIPTION; GENE; GCN5 AB Nucleophosmin/B23 is a multifunctional phosphoprotein that is overexpressed in cancer cells and has been shown to be involved in both positive and negative regulation of transcription. In this study, we first identified GCN5 acetyltransferase as a B23-interacting protein by mass spectrometry, which was then confirmed by in vivo co-immunoprecipitation. An in vitro assay demonstrated that B23 bound the PCAF-N domain of GCN5 and inhibited GCN5-mediated acetylation of both free and mononucleosomal histones, probably through interfering with GCN5 and masking histones from being acetylated. Mitotic B23 exhibited higher inhibitory activity on GCN5-mediated histone acetylation than interphase B23. Immunodepletion experiments of mitotic extracts revealed that phosphorylation of B23 at Thr(199) enhanced the inhibition of GCN5-mediated histone acetylation. Moreover, luciferase reporter and microarray analyses suggested that B23 attenuated GCN5-mediated transactivation in vivo. Taken together, our studies suggest a molecular mechanism of B23 in the mitotic inhibition of GCN5-mediated histone acetylation and transactivation. C1 [Zou, Yonglong; Wu, Jun; Giannone, Richard J.; Huang, Ying; Johnson, Dabney K.; Wang, Yisong] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. [Boucher, Lorrie] Mt Sinai Hosp, Samuel Lunenfeld Res Inst, Toronto, ON M5G 1X5, Canada. [Du, Hansen; Liu, Yie] NIH, NIA, Ctr Gerontol Res, Baltimore, MD 21224 USA. RP Wang, YS (reprint author), Oak Ridge Natl Lab, Biosci Div, Bethel Valley Rd, Oak Ridge, TN 37831 USA. EM ywa@ornl.gov FU Intramural NIH HHS NR 52 TC 6 Z9 7 U1 0 U2 1 PU AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3996 USA SN 0021-9258 J9 J BIOL CHEM JI J. Biol. Chem. PD FEB 29 PY 2008 VL 283 IS 9 BP 5728 EP 5737 DI 10.1074/jbc.M709932200 PG 10 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 266IC UT WOS:000253426700054 PM 18165222 ER PT J AU Xie, SC Boyle, J Klein, SA Liu, XH Ghan, S AF Xie, Shaocheng Boyle, James Klein, Stephen A. Liu, Xiaohong Ghan, Steven TI Simulations of Arctic mixed-phase clouds in forecasts with CAM3 and AM2 for M-PACE SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID GENERAL-CIRCULATION MODEL; LARGE-SCALE MODELS; LIQUID WATER PATH; MICROPHYSICAL PROCESSES; RESOLVING SIMULATIONS; STRATIFORM CLOUDS; VERSION-3 CAM3; ICE CLOUDS; PART II; CLIMATE AB Simulations of mixed-phase clouds in forecasts with the NCAR Atmosphere Model version 3 (CAM3) and the GFDL Atmospheric Model version 2 (AM2) for the Mixed-Phase Arctic Cloud Experiment (M-PACE) are performed using analysis data from numerical weather prediction centers. CAM3 significantly underestimates the observed boundary layer mixed-phase cloud fraction and cannot realistically simulate the variations of liquid water fraction with temperature and cloud height due to its oversimplified cloud microphysical scheme. In contrast, AM2 reasonably reproduces the observed boundary layer cloud fraction while its clouds contain much less cloud condensate than CAM3 and the observations. The simulation of the boundary layer mixed-phase clouds and their microphysical properties is considerably improved in CAM3 when a new physically based cloud microphysical scheme is used (CAM3LIU). The new scheme also leads to an improved simulation of the surface and top of the atmosphere longwave radiative fluxes. Sensitivity tests show that these results are not sensitive to the analysis data used for model initialization. Increasing model horizontal resolution helps capture the subgrid-scale features in Arctic frontal clouds but does not help improve the simulation of the single-layer boundary layer clouds. AM2 simulated cloud fraction and LWP are sensitive to the change in cloud ice number concentrations used in the Wegener-Bergeron-Findeisen process while CAM3LIU only shows moderate sensitivity in its cloud fields to this change. This paper shows that the Wegener-Bergeron-Findeisen process is important for these models to correctly simulate the observed features of mixed-phase clouds. C1 [Xie, Shaocheng; Boyle, James; Klein, Stephen A.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Liu, Xiaohong; Ghan, Steven] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Xie, SC (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RI Xie, Shaocheng/D-2207-2013; Liu, Xiaohong/E-9304-2011; Ghan, Steven/H-4301-2011; Klein, Stephen/H-4337-2016 OI Xie, Shaocheng/0000-0001-8931-5145; Liu, Xiaohong/0000-0002-3994-5955; Ghan, Steven/0000-0001-8355-8699; Klein, Stephen/0000-0002-5476-858X NR 57 TC 26 Z9 26 U1 0 U2 1 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD FEB 29 PY 2008 VL 113 IS D4 AR D04211 DI 10.1029/2007JD009225 PG 16 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 270JA UT WOS:000253715900009 ER PT J AU Ogden, DE Wohletz, KH Glatzmaier, GA Brodsky, EE AF Ogden, Darcy E. Wohletz, Kenneth H. Glatzmaier, Gary A. Brodsky, Emily E. TI Numerical simulations of volcanic jets: Importance of vent overpressure SO JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH LA English DT Article ID CALDERA-FORMING ERUPTIONS; MACH-DISK; EXPLOSIVE ERUPTIONS; UNDEREXPANDED JETS; PYROCLASTIC FLOWS; MAGMA COMPOSITION; FLUID-DYNAMICS; WATER-CONTENT; ST-HELENS; AD 79 AB Explosive volcanic eruption columns are generally subdivided into a gas-thrust region and a convection-dominated plume. Where vents have greater than atmospheric pressure, the gas-thrust region is overpressured and develops a jet-like structure of standing shock waves. Using a pseudogas approximation for a mixture of tephra and gas, we numerically simulate the effects of shock waves on the gas-thrust region. These simulations are of free-jet decompression of a steady state high-pressure vent in the absence of gravity or a crater. Our results show that the strength and position of standing shock waves are strongly dependent on the vent pressure and vent radius. These factors control the gas-thrust region's dimensions and the character of vertical heat flux into the convective plume. With increased overpressure, the gas-thrust region becomes wider and develops an outer sheath in which the erupted mixture moves at higher speeds than it does near the column center. The radius of this sheath is linearly dependent on the vent radius and the square root of the overpressure. The sheath structure results in an annular vertical heat flux profile at the base of the convective plume, which is in stark contrast to the generally applied Gaussian or top-hat profile. We show that the magnitude of expansion is larger than that predicted from previous 1D analyses, resulting in much slower average vertical velocities after expansion. These new relationships between vent pressure and plume expansion may be used with observations of plume diameter to constrain the pressure at the vent. C1 [Ogden, Darcy E.; Glatzmaier, Gary A.; Brodsky, Emily E.] Univ Calif Santa Cruz, Dept Earth & Planetary Sci, Santa Cruz, CA 95064 USA. [Wohletz, Kenneth H.] Los Alamos Natl Lab, Los Alamos, NM USA. RP Ogden, DE (reprint author), Univ Calif Santa Cruz, Dept Earth & Planetary Sci, Santa Cruz, CA 95064 USA. RI Brodsky, Emily/B-9139-2014; OI Brodsky, Emily/0000-0002-6855-6860 NR 60 TC 33 Z9 33 U1 1 U2 11 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9313 EI 2169-9356 J9 J GEOPHYS RES-SOL EA JI J. Geophys. Res.-Solid Earth PD FEB 29 PY 2008 VL 113 IS B2 AR B02204 DI 10.1029/2007JB005133 PG 18 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 270JQ UT WOS:000253717500002 ER PT J AU Sapra, KT Balasubramanian, GP Labudde, D Bowie, JU Muller, DJ AF Sapra, K. Tanuj Balasubramanian, G. Prakash Labudde, Dirk Bowie, James U. Muller, Daniel J. TI Point mutations in membrane proteins reshape energy landscape and populate different unfolding pathways SO JOURNAL OF MOLECULAR BIOLOGY LA English DT Article DE atomic force microscopy; energy landscape; Hammond effect; single-molecule force spectroscopy; transition states ID MOLECULE FORCE SPECTROSCOPY; NATIVE BOVINE RHODOPSIN; ANTIMICROBIAL PEPTIDE; TRANSITION-STATE; ALPHA-HELICES; SPEED LIMIT; BACTERIORHODOPSIN; STABILITY; ANTIPORTER; INTERFACES AB Using single-molecule force spectroscopy, we investigated the effect of single point mutations on the energy landscape and unfolding pathways of the transmembrane protein bacteriorhodopsin. We show that the unfolding energy barriers in the energy landscape of the membrane protein followed a Simple two-state behavior and represent a manifestation of many converging unfolding pathways. Although the unfolding pathways of wildtype and mutant bacteriorhodopsin did not change, indicating the presence of same ensemble of structural unfolding intermediates, the free energies of the rate-limiting transition states of the bacteriorhodopsin mutants decreased as the distance of those transition states to the folded intermediate states decreased. Thus, all mutants exhibited Hammond behavior and a change in the free energies of the intermediates along the unfolding reaction coordinate and, consequently, their relative occupancies. This is the first experimental proof showing that point mutations can reshape the free energy landscape of a membrane protein and force single proteins to populate certain unfolding pathways over others. (C) 2007 Elsevier Ltd. All rights reserved. C1 [Sapra, K. Tanuj; Balasubramanian, G. Prakash; Labudde, Dirk; Muller, Daniel J.] Tech Univ Dresden, Biotechnol Ctr, D-01307 Dresden, Germany. [Bowie, James U.] Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90095 USA. [Bowie, James U.] Univ Calif Los Angeles, DOE Ctr Genom & Proteom, Los Angeles, CA 90095 USA. RP Sapra, KT (reprint author), Tech Univ Dresden, Biotechnol Ctr, Tatzberg 47, D-01307 Dresden, Germany. EM sapra@biotec.tu-dresden.de; mueller@biotec.tu-dresden.de RI Muller, Daniel/A-5967-2010 OI Muller, Daniel/0000-0003-3075-0665 FU NIGMS NIH HHS [R01 GM063919, R01 GM063919-07, R01 GM063919-08] NR 53 TC 32 Z9 32 U1 1 U2 9 PU ACADEMIC PRESS LTD ELSEVIER SCIENCE LTD PI LONDON PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND SN 0022-2836 J9 J MOL BIOL JI J. Mol. Biol. PD FEB 29 PY 2008 VL 376 IS 4 BP 1076 EP 1090 DI 10.1016/j.jmb.2007.12.027 PG 15 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 273HI UT WOS:000253920600015 PM 18191146 ER PT J AU Yeamans, CB Silva, GWC Cerefice, GS Czerwinski, KR Hartmann, T Burrell, AK Sattelberger, AP AF Yeamans, Charles B. Silva, G. W. Chinthaka Cerefice, Gary S. Czerwinski, Kenneth R. Hartmann, Thomas Burrell, Anthony K. Sattelberger, Alfred P. TI Oxidative ammonolysis of uranium(IV) fluorides to uranium(VI) nitride SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID CRYSTAL-STRUCTURE; MONONITRIDE; HYDROGEN; NITROGEN; DIOXIDE; (NH4)4UF8; AMMONIA; MIXTURE; CARBON; SYSTEM AB Actinide nitrides, in particular UN, are being considered as fuel types for advanced reactor systems. Here, we demonstrate a low-temperature synthesis route on uranium that could be developed into a commercial fabrication process for UN and mixed actinide nitride fuels. UN was successfully synthesized from UO2 by first reacting with NH4HF2 in a ball mill at 20 degrees C to form tetravalent ammonium uranium fluorides. Then, reaction with an ammonia atmosphere at 800 degrees C oxidized tetravalent uranium fluorides to hexavalent UN2. The final product, UN, was obtained by decomposing UN2 at I 100 degrees C under argon to produce UN through an intermediate phase Of U2N3. (C) 2007 Elsevier B.V. All rights reserved. C1 [Silva, G. W. Chinthaka; Cerefice, Gary S.; Czerwinski, Kenneth R.; Hartmann, Thomas; Sattelberger, Alfred P.] Univ Nevada, Harry Reid Ctr Environm Studies, Las Vegas, NV 89154 USA. [Yeamans, Charles B.] Univ Calif Berkeley, Dept Nucl Engn, Berkeley, CA 94720 USA. [Burrell, Anthony K.; Sattelberger, Alfred P.] Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA. [Sattelberger, Alfred P.] Argonne Natl Lab, Argonne, IL 60517 USA. [Hartmann, Thomas] Idaho State Univ, INSE, Idaho Falls, ID 83402 USA. RP Czerwinski, KR (reprint author), Univ Nevada, Harry Reid Ctr Environm Studies, Box 454009,4505 Maryland Pkwy, Las Vegas, NV 89154 USA. EM czerwin2@unlv.nevada.edu RI Silva, Chinthaka/E-1416-2017 OI Silva, Chinthaka/0000-0003-4637-6030 NR 24 TC 19 Z9 20 U1 5 U2 23 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD FEB 29 PY 2008 VL 374 IS 1-2 BP 75 EP 78 DI 10.1016/j.jnucmat.2007.06.022 PG 4 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 280GN UT WOS:000254413900009 ER PT J AU De Diego, N Osetsky, YN Bacon, DJ AF De Diego, N. Osetsky, Yu. N. Bacon, D. J. TI Structure and properties of vacancy and interstitial clusters in alpha-zirconium SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID DISPLACEMENT CASCADES; DISLOCATION LOOPS; AB-INITIO; MICROSTRUCTURE EVOLUTION; DEFECT CLUSTERS; HCP METALS; MOBILITY; ZR; IRRADIATION; ALLOYS AB The structure and properties of planar interstitial and vacancy clusters in alpha-zirconium containing up to approximate to 300 defects were studied by atomic-scale computer modelling. Clusters of different shape and habit plane have been simulated at zero temperature. Vacancy clusters were constructed as close-packed platelets of vacancies in (000 1), {11 (2) over bar0} and {11 (0) over bar0} planes. Clusters of self-interstitial atoms were formed as planar arrays of < 11 (2) over bar 0 > crowdions (the most stable configuration for the model potential used) in a {11 (2) over bar0} plane. The most favourable shape for both types in the {11 (2) over bar0} and {1 (1) over bar 00} prism planes is rectangular and clusters relax to perfect dislocation loops with Burgers vector h = 1/3 < 11 (2) over bar0 >. Their stability is increased by dissociation of the sides in basal planes. Vacancy clusters in the (0 0 0 1) basal plane form hexagonal loops enclosing an extrinsic stacking fault with b = 1/2[0001]. Quantitative information is provided on the energy and structure parameters of the clusters. (C) 2007 Elsevier B.V. All rights reserved. C1 [De Diego, N.] Univ Complutense, Fac Ciencias Fis, Dept Fis Mat, E-28040 Madrid, Spain. [Osetsky, Yu. N.] Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA. [Bacon, D. J.] Univ Liverpool, Dept Engn, Liverpool L69 3GH, Merseyside, England. RP De Diego, N (reprint author), Univ Complutense, Fac Ciencias Fis, Dept Fis Mat, Ciudad Univ, E-28040 Madrid, Spain. EM nievesd@fis.ucm.es NR 21 TC 13 Z9 13 U1 2 U2 17 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD FEB 29 PY 2008 VL 374 IS 1-2 BP 87 EP 94 DI 10.1016/j.jnucmat.2007.07.011 PG 8 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 280GN UT WOS:000254413900011 ER PT J AU Miller, GK Petti, DA Maki, JT Knudson, DL AF Miller, Gregory K. Petti, David A. Maki, John T. Knudson, Darrell L. TI Updated solution for stresses and displacements in TRISO-coated fuel particles SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article AB A closed-form solution for stresses and displacements in TRISO-coated fuel particles of a high temperature reactor has been updated to enhance its application in fuel particle analysis. The modified solution is applied incrementally through irradiation, which allows the material properties and irradiation temperature to change with time. It also removes the restriction in the original solution that Poisson's ratio in creep for the pyrocarbon layers be set to 0.5. It is presented in a manner that would enable its application to a system of any number of coating layers, not just the three layers of a TRISO-coated particle. The solution has been implemented in the PARFUME fuel performance code, where it has been demonstrated to perform efficiently in particle failure probability determinations. Published by Elsevier B.V. C1 [Miller, Gregory K.; Petti, David A.; Maki, John T.; Knudson, Darrell L.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Miller, GK (reprint author), Idaho Natl Lab, POB 1625, Idaho Falls, ID 83415 USA. EM GregoryK.Miller@inl.gov NR 10 TC 13 Z9 14 U1 1 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD FEB 29 PY 2008 VL 374 IS 1-2 BP 129 EP 137 DI 10.1016/j.jnucmat.2007.07.016 PG 9 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 280GN UT WOS:000254413900017 ER PT J AU Snow, CS Brewer, LN Gelles, DS Rodriguez, MA Kotula, PG Banks, JC Mangan, MA Browning, JF AF Snow, C. S. Brewer, L. N. Gelles, D. S. Rodriguez, M. A. Kotula, P. G. Banks, J. C. Mangan, M. A. Browning, J. F. TI Helium release and microstructural changes in Er(D,T)(2-x)He-3(x) films SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID METAL-SEMICONDUCTOR TRANSITIONS; BLISTER FORMATION; TRITIDE FILMS; HYDROGEN; BUBBLES; HE-3; DESORPTION; EVOLUTION; SILICON; GROWTH AB Er(D,T)(2-x)He-3(x), erbium di-tritide, films of thicknesses 500 nm, 400 nm, 300 nm, 200 nm, and 100 nm were grown and analyzed by transmission electron microscopy, X-ray diffraction, and ion beam analysis to determine variations in film micro-structure as a function of film thickness and age, due to the time-dependent build-up of He-3 in the film from the radioactive decay of tritium. Several interesting features were observed: One, the amount of helium released as a function of film thickness is relatively constant. This suggests that the helium is being released only from the near surface region and that the helium is not diffusing to the surface from the bulk of the film. Two, lenticular helium bubbles are observed as a result of the radioactive decay of tritium into 3 He. These bubbles grow along the [111] crystallographic direction. Three, a helium bubble free zone, or 'denuded zone' is observed near the surface. The size of this region is independent of film thickness. Four, an analysis of secondary diffraction spots in the Transmission Electron Microscopy study indicate that small erbium oxide precipitates, 5-10 mm in size, exist throughout the film. Further, all of the films had large erbium oxide inclusions, in many cases these inclusions span the depth of the film. Published by Elsevier B.V. C1 [Snow, C. S.; Brewer, L. N.; Rodriguez, M. A.; Kotula, P. G.; Banks, J. C.; Mangan, M. A.; Browning, J. F.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Gelles, D. S.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Snow, CS (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM cssnow@sandia.gov RI Kotula, Paul/A-7657-2011 OI Kotula, Paul/0000-0002-7521-2759 NR 31 TC 25 Z9 25 U1 0 U2 12 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD FEB 29 PY 2008 VL 374 IS 1-2 BP 147 EP 157 DI 10.1016/j.jnucmat.2007.07.021 PG 11 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 280GN UT WOS:000254413900019 ER PT J AU Klueh, RL Sokolov, MA Hashimoto, N AF Klueh, R. L. Sokolov, M. A. Hashimoto, N. TI Mechanical properties of unirradiated and irradiated reduced-activation martensitic steels with and without nickel compared to properties of commercial steels SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID 12CR-1MOVW STEELS; TENSILE PROPERTIES; IMPACT PROPERTIES; 9CR-1MOVNB; MICROSTRUCTURE; EMBRITTLEMENT; HFIR AB Tensile and Charpy specimens of four normalized-and-tempered martensitic steels were irradiated to 23-33 dpa at 376-405 degrees C in the Experimental Breeder Reactor (EBR-II). The steels were the ORNL reduced-activation steel 9Cr-2WVTa and that containing 2% Ni (9Cr-2WVTa-2Ni), modified 9Cr-lMo (9Cr-2WVTa), and Sandvik HT9 (12Cr-1MoVW). Two tempering conditions were used for 9Cr-2WVTa and 9Cr-2WVTa 2Ni: 1 h at 700 degrees C and 1 h at 750 degrees C. The 9Cr-1MoVNb and 12Cr-1MoVW were tempered 1 h at 760 degrees C. These heat treatments produced tempered-martensite microstructures for all steels except 9Cr-2WVTa-2Ni tempered at 750 degrees C, where a duplex structure of tempered and untempered martensite formed. Based on changes in tensile and Charpy impact properties, the results demonstrated the superiority in strength and ductility of the 9Cr-2WVTa reduced-activation steel over the commercial steels. Comparison of the mechanical properties after irradiation of 9Cr-2WVTa-2Ni and 9Cr-2WVTa steels indicated a favorable effect of nickel that could lead to development of a heat treatment for improved irradiation resistance. Published by Elsevier B.V. C1 [Klueh, R. L.; Sokolov, M. A.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Hashimoto, N.] Hokkaido Univ, Fac & Grad Sch Engn, Sapporo, Hokkaido, Japan. RP Klueh, RL (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, POB 2008, Oak Ridge, TN 37831 USA. EM kluehrl@ornl.gov RI HASHIMOTO, Naoyuki/D-6366-2012 NR 23 TC 6 Z9 6 U1 1 U2 14 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD FEB 29 PY 2008 VL 374 IS 1-2 BP 220 EP 228 DI 10.1016/j.jnucmat.2007.08.006 PG 9 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 280GN UT WOS:000254413900028 ER PT J AU Wilson, KV Patterson, BM Phillips, J AF Wilson, Kennard V., Jr. Patterson, Brian M. Phillips, Jonathan TI Microbalance study of the corrosion kinetics of lithium hydride by water SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID FUEL-CELL GENERATORS; HYDROGEN STORAGE; HYDROLYSIS; SYSTEM; VAPOR AB The corrosion kinetics of commercial LiH powder (similar to 100 mu m, Alfa Aesar) by gaseous water in a humidified nitrogen stream was found to be constant in time and first order in gas phase water (<1% relative humidity). Data obtained using a customized microbalance system equipped with a precision water saturator, dew point analyzer, and magnetic sectoring mass spectrometer were used to derive a rough empirical rate expression for the corrosion of the powder by water at low (0. 1-0.9%) RH values. The present data are consistent with two models: (i) the tri-layer model [J. Phillips, J. Tanski, Int. Mater. Rev. 50 (2005) 265], and (ii) rate control by diffusion through a barrier layer. Published by Elsevier B.V. C1 [Wilson, Kennard V., Jr.; Patterson, Brian M.; Phillips, Jonathan] Los Alamos Natl Lab, MST 7 Polymers & Coationg Grp, Los Alamos, NM 87545 USA. RP Wilson, KV (reprint author), Los Alamos Natl Lab, MST 7 Polymers & Coationg Grp, POB 1663,MS E549, Los Alamos, NM 87545 USA. EM kvw@lanl.gov RI Phillips, Jonathan/D-3760-2011; OI Patterson, Brian/0000-0001-9244-7376 NR 23 TC 7 Z9 7 U1 1 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD FEB 29 PY 2008 VL 374 IS 1-2 BP 229 EP 240 DI 10.1016/j.jnuemat.2007.08.007 PG 12 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 280GN UT WOS:000254413900029 ER PT J AU Vasudevamurthy, G Knight, TW Roberts, E Adams, TM AF Vasudevamurthy, Gokul Knight, Travis W. Roberts, Elwyn Adams, Thad M. TI Laboratory production of zirconium carbide compacts for use in inert matrix fuels SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID PARTICLES; ZRC; PRECURSORS AB Zirconium carbide is being actively considered for use as an inert matrix material in composite nuclear fuel for gas-cooled fast reactors. ZrC can be produced either by the endothermic carbothermal reduction of zirconium dioxide or by the direct exothermic reaction of pure zirconium and graphite powder mixtures. The exothermic reaction is classified as combustion synthesis or self heating synthesis. Experiments were conducted to demonstrate the combustion synthesis reaction of zirconium and graphite powders and measure the ignition and adiabatic temperatures. The heat released during this short reaction time was sufficient only to partially sinter the compacts to less than 40% theoretical density. Subsequently, compacts of ZrC were similarly produced by combustion synthesis followed by a short, high temperature hold at 2440 degrees C to relieve residual stresses in the compacts following the rapid reaction sintering. External pressures of up to 5.2 MPa were used as an additional driving force for sintering. The effects of reactant particle size and degree of uniaxial pressing on the product density and porosity were also studied. Higher densities in the fabricated compacts were noted for higher uniaxial pressures irrespective of powder size. Also, smaller powder sizes produced compacts up to 92% TD, while larger particle sizes produced compacts up to 84% TD for the same pressure. The compacts were characterized based on composition, microstructure, and density/porosity. Results of the different experiments are presented. (C) 2007 Elsevier B.V. All rights reserved. C1 [Vasudevamurthy, Gokul; Knight, Travis W.; Roberts, Elwyn] Univ S Carolina, Dept Engn Mech, Columbia, SC 29208 USA. [Adams, Thad M.] Savannah River Ecol Lab, Aiken, SC 29808 USA. RP Knight, TW (reprint author), Univ S Carolina, Dept Engn Mech, 300 Main St, Columbia, SC 29208 USA. EM knighttw@engr.se.edu OI Knight, Travis/0000-0002-8517-7395 NR 24 TC 30 Z9 31 U1 3 U2 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD FEB 29 PY 2008 VL 374 IS 1-2 BP 241 EP 247 DI 10.1016/j.jnucmat.2007.08.016 PG 7 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 280GN UT WOS:000254413900030 ER PT J AU Tan, L Sridharan, K Allen, TR Nanstad, RK McClintock, DA AF Tan, L. Sridharan, K. Allen, T. R. Nanstad, R. K. McClintock, D. A. TI Microstructure tailoring for property improvements by grain boundary engineering SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID INCOLOY ALLOY 800H; CHARACTER-DISTRIBUTION; SUPERALLOYS; DIFFUSION AB Grain boundary engineering (GBE) was employed to improve materials properties such as corrosion resistance and strength by optimizing the grain boundary character distribution. Two high-temperature alloys, designated Incoloy 800H and Inconel 617 were selected in this study due to their potential applications for the Generation IV nuclear power systems. The GBE treatments on the alloys 800H and 617 were accomplished by a series of thermomechanical processing. The effect of the GBE treatments on the corrosion resistance and mechanical properties of the materials were evaluated using supercritical water exposure tests, cyclic oxidation tests, impact tests, and tensile tests. The microstructures of the tested samples were analyzed by means of optical microscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy, electron backscatter diffraction, X-ray photoelectron spectroscopy, and grazing incidence X-ray diffraction. The results indicate that the GBE treatments greatly mitigated the oxide exfoliation of the alloy 800H and reduced the oxidation rate of the alloy 617. The GBE treatment also greatly enhanced the strength of alloy 800H at room temperature (e.g. impact tests) and high-temperatures (e.g. tensile tests after neutron irradiation), but did not significantly impair the material's ductility. (C) 2007 Elsevier B.V. All rights reserved. C1 [Tan, L.; Sridharan, K.; Allen, T. R.] Univ Wisconsin, Madison, WI 53706 USA. [Nanstad, R. K.; McClintock, D. A.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Tan, L (reprint author), Univ Wisconsin, Madison, WI 53706 USA. EM lizhentan@wisc.edu RI Tan, Lizhen/A-7886-2009; OI Tan, Lizhen/0000-0002-3418-2450; Allen, Todd/0000-0002-2372-7259; McClintock, David/0000-0002-9292-8951 NR 28 TC 69 Z9 69 U1 4 U2 28 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD FEB 29 PY 2008 VL 374 IS 1-2 BP 270 EP 280 DI 10.1016/j.jnuemat.2007.08.015 PG 11 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 280GN UT WOS:000254413900032 ER PT J AU Zholents, AA Zolotorev, MS AF Zholents, A. A. Zolotorev, M. S. TI Attosecond x-ray pulses produced by ultra short transverse slicing via laser electron beam interaction SO NEW JOURNAL OF PHYSICS LA English DT Article ID FIELDS; FEL AB We propose a method of generation of similar to 115 attosecond x-ray pulses in a free electron laser (FEL) by means of producing ultra-fast angular modulation of the electron trajectories prior to entering the FEL. For this modulation, we employ a few-cycle laser pulse in a higher-order Gaussian mode and with carrier-envelope phase stabilization. C1 [Zholents, A. A.; Zolotorev, M. S.] LBNL, Berkeley, CA 94720 USA. RP Zholents, AA (reprint author), LBNL, Berkeley, CA 94720 USA. EM aazholents@lbl.gov NR 22 TC 43 Z9 44 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1367-2630 J9 NEW J PHYS JI New J. Phys. PD FEB 29 PY 2008 VL 10 AR 025005 DI 10.1088/1367-2630/10/2/025005 PG 12 WC Physics, Multidisciplinary SC Physics GA 270IE UT WOS:000253713700001 ER PT J AU Aaltonen, T Abulencia, A Adelman, J Akimoto, T Albrow, MG Gonzalez, Ba Amerio, S Amidei, D Anastassov, A Annovi, A Antos, J Apollinari, G Apresyan, A Arisawa, T Artikov, A Ashmanskas, W Attal, A Aurisano, A Azfar, F Azzi-Bacchetta, P Azzurri, P Bacchetta, N Badgett, W Barbaro-Galtieri, A Barnes, VE Barnett, BA Baroiant, S Bartsch, V Bauer, G Beauchemin, PH Bedeschi, F Bednar, P Behari, S Bellettini, G Bellinger, J Belloni, A Benjamin, D Beretvas, A Beringer, J Berry, T Bhatti, A Binkley, M Bisello, D Bizjak, I Blair, RE Blocker, C Blumenfeld, B Bocci, A Bodek, A Boisvert, V Bolla, G Bolshov, A Bortoletto, D Boudreau, J Boveia, A Brau, B Brigliadori, L Bromberg, C Brubaker, E Budagov, J Budd, HS Budd, S Burkett, K Busetto, G Bussey, P Buzatu, A Byrum, KL Cabrera, S Campanelli, M Campbell, M Canelli, F Canepa, A Carlsmith, D Carosi, R Carrillo, S Carron, S Casal, B Casarsa, M Castro, A Catastini, P Cauz, D Cavalli-Sforza, M Cerri, A Cerrito, L Chang, SH Chen, YC Chertok, M Chiarelli, G Chlachidze, G Chlebana, F Cho, K Chokheli, D Chou, JP Choudalakis, G Chuang, SH Chung, K Chung, WH Chung, YS Ciobanu, CI Ciocci, MA Clark, A Clark, D Compostella, G Convery, ME Conway, J Cooper, B Copic, K Cordelli, M Cortiana, G Crescioli, F Almenar, CC Cuevas, J Culbertson, R Cully, JC Dagenhart, D Datta, M Davies, T De Barbaro, P De Cecco, S Deisher, A De Lentdecker, G De Lorenzo, G Dell'Orso, M Demortier, L Deng, J Deninno, M De Pedis, D Derwent, PF Di Giovanni, GP Dionisi, C Di Ruzza, B Dittmann, JR D'Onofrio, M Donati, S Dong, P Donini, J Dorigo, T Dube, S Efron, J Erbacher, R Errede, D Errede, S Eusebi, R Fang, HC Farrington, S Fedorko, WT Feild, RG Feindt, M Fernandez, JP Ferrazza, C Field, R Flanagan, G Forrest, R Forrester, S Franklin, M Freeman, JC Furic, I Gallinaro, M Galyardt, J Garberson, F Garcia, JE Garfinkel, AF Gerberich, H Gerdes, D Giagu, S Giannetti, P Gibson, K Gimmell, JL Ginsburg, CM Giokaris, N Giordani, M Giromini, P Giunta, M Glagolev, V Glenzinski, D Gold, M Goldschmidt, N Golossanov, A Gomez, G Gomez-Ceballos, G Goncharov, M Gonzalez, O Gorelov, I Goshaw, AT Goulianos, K Gresele, A Grinstein, S Grosso-Pilcher, C Group, RC Grundler, U da Costa, JG Gunay-Unalan, Z Haber, C Hahn, K Hahn, SR Halkiadakis, E Hamilton, A Han, BY Han, JY Handler, R Happacher, F Hara, K Hare, D Hare, M Harper, S Harr, RF Harris, RM Hartz, M Hatakeyama, K Hauser, J Hays, C Heck, M Heijboer, A Heinemann, B Heinrich, J Henderson, C Herndon, M Heuser, J Hewamanage, S Hidas, D Hill, CS Hirschbuehl, D Hocker, A Hou, S Houlden, M Hsu, SC Huffman, BT Hughes, RE Husemann, U Huston, J Incandela, J Introzzi, G Iori, M Ivanov, A Iyutin, B James, E Jayatilaka, B Jeans, D Jeon, EJ Jindariani, S Johnson, W Jones, M Joo, KK Jun, SY Jung, JE Junk, TR Kamon, T Kar, D Karchin, PE Kato, Y Kephart, R Kerzel, U Khotilovich, V Kilminster, B Kim, DH Kim, HS Kim, JE Kim, MJ Kim, SB Kim, SH Kim, YK Kimura, N Kirsch, L Klimenko, S Klute, M Knuteson, B Ko, BR Koay, SA Kondo, K Kong, DJ Konigsberg, J Korytov, A Kotwal, AV Kraus, J Kreps, M Kroll, J Krumnack, N Kruse, M Krutelyov, V Kubo, T Kuhlmann, SE Kuhr, T Kulkarni, NP Kusakabe, Y Kwang, S Laasanen, AT Lai, S Lami, S Lammel, S Lancaster, M Lander, RL Lannon, K Lath, A Latino, G Lazzizzera, I LeCompte, T Lee, J Lee, J Lee, YJ Lee, SW Lefevre, R Leonardo, N Leone, S Levy, S Lewis, JD Lin, C Lin, CS Lindgren, M Lipeles, E Lister, A Litvintsev, DO Liu, T Lockyer, NS Loginov, A Loreti, M Lovas, L Lu, RS Lucchesi, D Lueck, J Luci, C Lujan, P Lukens, P Lungu, G Lyons, L Lys, J Lysak, R Lytken, E Mack, P MacQueen, D Madrak, R Maeshima, K Makhoul, K Maki, T Maksimovic, P Malde, S Malik, S Manca, G Manousakis, A Margaroli, F Marino, C Marino, CP Martin, A Martin, M Martin, V Martinez, M Martinez-Ballarin, R Maruyama, T Mastrandrea, P Masubuchi, T Mattson, ME Mazzanti, P McFarland, KS McIntyre, P McNulty, R Mehta, A Mehtala, P Menzemer, S Menzione, A Merkel, P Mesropian, C Messina, A Miao, T Miladinovic, N Miles, J Miller, R Mills, C Milnik, M Mitra, A Mitselmakher, G Miyake, H Moed, S Moggi, N Moon, CS Moore, R Morello, M Fernandez, PM Mulmenstadt, J Mukherjee, A Muller, T Mumford, R Murat, P Mussini, M Nachtman, J Nagai, Y Nagano, A Naganoma, J Nakamura, K Nakano, I Napier, A Necula, V Neu, C Neubauer, MS Nielsen, J Nodulman, L Norman, M Norniella, O Nurse, E Oh, SH Oh, YD Oksuzian, I Okusawa, T Oldeman, R Orava, R Osterberg, K Griso, SP Pagliarone, C Palencia, E Papadimitriou, V Papaikonomou, A Paramonov, AA Parks, B Pashapour, S Patrick, J Pauletta, G Paulini, M Paus, C Pellett, DE Penzo, A Phillips, TJ Piacentino, G Piedra, J Pinera, L Pitts, K Plager, C Pondrom, L Portell, X Poukhov, O Pounder, N Prakoshyn, F Pronko, A Proudfoot, J Ptohos, F Punzi, G Pursley, J Rademacker, J Rahaman, A Ramakrishnan, V Ranjan, N Redondo, I Reisert, B Rekovic, V Renton, P Rescigno, M Richter, S Rimondi, F Ristori, L Robson, A Rodrigo, T Rogers, E Rolli, S Roser, R Rossi, M Rossin, R Roy, P Ruiz, A Russ, J Rusu, V Saarikko, H Safonov, A Sakumoto, WK Salamanna, G Salto, O Santi, L Sarkar, S Sartori, L Sato, K Savard, P Savoy-Navarro, A Scheidle, T Schlabach, P Schmidt, EE Schmidt, MA Schmidt, MP Schmitt, M Schwarz, T Scodellaro, L Scott, AL Scribano, A Scuri, F Sedov, A Seidel, S Seiya, Y Semenov, A Sexton-Kennedy, L Sfyrla, A Shalhout, SZ Shapiro, MD Shears, T Shepard, PF Sherman, D Shimojima, M Shochet, M Shon, Y Shreyber, I Sidoti, A Sinervo, P Sisakyan, A Slaughter, AJ Slaunwhite, J Sliwa, K Smith, JR Snider, FD Snihur, R Soderberg, M Soha, A Somalwar, S Sorin, V Spalding, J Spinella, F Spreitzer, T Squillacioti, P Stanitzki, M Denis, RS Stelzer, B Stelzer-Chilton, O Stentz, D Strologas, J Stuart, D Suh, JS Sukhanov, A Sun, H Suslov, I Suzuki, T Taffard, A Takashima, R Takeuchi, Y Tanaka, R Tecchio, M Teng, PK Terashi, K Thom, J Thompson, AS Thompson, GA Thomson, E Tipton, P Tiwari, V Tkaczyk, S Toback, D Tokar, S Tollefson, K Tomura, T Tonelli, D Torre, S Torretta, D Tourneur, S Trischuk, W Tu, Y Turini, N Ukegawa, F Uozumi, S Vallecorsa, S van Remortel, N Varganov, A Vataga, E Vazquez, F Velev, G Vellidis, C Veszpremi, V Vidal, M Vidal, R Vila, I Vilar, R Vine, T Vogel, M Volobouev, I Volpi, G Wurthwein, F Wagner, P Wagner, RG Wagner, RL Wagner, J Wagner, W Wakisaka, T Wallny, R Wang, SM Warburton, A Waters, D Weinberger, M Wester, WC Whitehouse, B Whiteson, D Wicklund, AB Wicklund, E Williams, G Williams, HH Wilson, P Winer, BL Wittich, P Wolbers, S Wolfe, C Wright, T Wu, X Wynne, SM Yagil, A Yamamoto, K Yamaoka, J Yamashita, T Yang, C Yang, UK Yang, YC Yao, WM Yeh, GP Yoh, J Yorita, K Yoshida, T Yu, GB Yu, I Yu, SS Yun, JC Zanello, L Zanetti, A Zaw, I Zhang, X Zheng, Y Zucchelli, S AF Aaltonen, T. Abulencia, A. Adelman, J. Akimoto, T. Albrow, M. G. Alvarez Gonzalez, B. Amerio, S. Amidei, D. Anastassov, A. Annovi, A. Antos, J. Apollinari, G. Apresyan, A. Arisawa, T. Artikov, A. Ashmanskas, W. Attal, A. Aurisano, A. Azfar, F. Azzi-Bacchetta, P. Azzurri, P. Bacchetta, N. Badgett, W. Barbaro-Galtieri, A. Barnes, V. E. Barnett, B. A. Baroiant, S. Bartsch, V. Bauer, G. Beauchemin, P. -H. Bedeschi, F. Bednar, P. Behari, S. Bellettini, G. Bellinger, J. Belloni, A. Benjamin, D. Beretvas, A. Beringer, J. Berry, T. Bhatti, A. Binkley, M. Bisello, D. Bizjak, I. Blair, R. E. Blocker, C. Blumenfeld, B. Bocci, A. Bodek, A. Boisvert, V. Bolla, G. Bolshov, A. Bortoletto, D. Boudreau, J. Boveia, A. Brau, B. Brigliadori, L. Bromberg, C. Brubaker, E. Budagov, J. Budd, H. S. Budd, S. Burkett, K. Busetto, G. Bussey, P. Buzatu, A. Byrum, K. L. Cabrera, S. Campanelli, M. Campbell, M. Canelli, F. Canepa, A. Carlsmith, D. Carosi, R. Carrillo, S. Carron, S. Casal, B. Casarsa, M. Castro, A. Catastini, P. Cauz, D. Cavalli-Sforza, M. Cerri, A. Cerrito, L. Chang, S. H. Chen, Y. C. Chertok, M. Chiarelli, G. Chlachidze, G. Chlebana, F. Cho, K. Chokheli, D. Chou, J. P. Choudalakis, G. Chuang, S. H. Chung, K. Chung, W. H. Chung, Y. S. Ciobanu, C. I. Ciocci, M. A. Clark, A. Clark, D. Compostella, G. Convery, M. E. Conway, J. Cooper, B. Copic, K. Cordelli, M. Cortiana, G. Crescioli, F. Almenar, C. Cuenca Cuevas, J. Culbertson, R. Cully, J. C. Dagenhart, D. Datta, M. Davies, T. De Barbaro, P. De Cecco, S. Deisher, A. De Lentdecker, G. De Lorenzo, G. Dell'Orso, M. Demortier, L. Deng, J. Deninno, M. De Pedis, D. Derwent, P. F. Di Giovanni, G. P. Dionisi, C. Di Ruzza, B. Dittmann, J. R. D'Onofrio, M. Donati, S. Dong, P. Donini, J. Dorigo, T. Dube, S. Efron, J. Erbacher, R. Errede, D. Errede, S. Eusebi, R. Fang, H. C. Farrington, S. Fedorko, W. T. Feild, R. G. Feindt, M. Fernandez, J. P. Ferrazza, C. Field, R. Flanagan, G. Forrest, R. Forrester, S. Franklin, M. Freeman, J. C. Furic, I. Gallinaro, M. Galyardt, J. Garberson, F. Garcia, J. E. Garfinkel, A. F. Gerberich, H. Gerdes, D. Giagu, S. Giannetti, P. Gibson, K. Gimmell, J. L. Ginsburg, C. M. Giokaris, N. Giordani, M. Giromini, P. Giunta, M. Glagolev, V. Glenzinski, D. Gold, M. Goldschmidt, N. Golossanov, A. Gomez, G. Gomez-Ceballos, G. Goncharov, M. Gonzalez, O. Gorelov, I. Goshaw, A. T. Goulianos, K. Gresele, A. Grinstein, S. Grosso-Pilcher, C. Group, R. C. Grundler, U. Guimaraes da Costa, J. Gunay-Unalan, Z. Haber, C. Hahn, K. Hahn, S. R. Halkiadakis, E. Hamilton, A. Han, B. -Y. Han, J. Y. Handler, R. Happacher, F. Hara, K. Hare, D. Hare, M. Harper, S. Harr, R. F. Harris, R. M. Hartz, M. Hatakeyama, K. Hauser, J. Hays, C. Heck, M. Heijboer, A. Heinemann, B. Heinrich, J. Henderson, C. Herndon, M. Heuser, J. Hewamanage, S. Hidas, D. Hill, C. S. Hirschbuehl, D. Hocker, A. Hou, S. Houlden, M. Hsu, S. -C. Huffman, B. T. Hughes, R. E. Husemann, U. Huston, J. Incandela, J. Introzzi, G. Iori, M. Ivanov, A. Iyutin, B. James, E. Jayatilaka, B. Jeans, D. Jeon, E. J. Jindariani, S. Johnson, W. Jones, M. Joo, K. K. Jun, S. Y. Jung, J. E. Junk, T. R. Kamon, T. Kar, D. Karchin, P. E. Kato, Y. Kephart, R. Kerzel, U. Khotilovich, V. Kilminster, B. Kim, D. H. Kim, H. S. Kim, J. E. Kim, M. J. Kim, S. B. Kim, S. H. Kim, Y. K. Kimura, N. Kirsch, L. Klimenko, S. Klute, M. Knuteson, B. Ko, B. R. Koay, S. A. Kondo, K. Kong, D. J. Konigsberg, J. Korytov, A. Kotwal, A. V. Kraus, J. Kreps, M. Kroll, J. Krumnack, N. Kruse, M. Krutelyov, V. Kubo, T. Kuhlmann, S. E. Kuhr, T. Kulkarni, N. P. Kusakabe, Y. Kwang, S. Laasanen, A. T. Lai, S. Lami, S. Lammel, S. Lancaster, M. Lander, R. L. Lannon, K. Lath, A. Latino, G. Lazzizzera, I. LeCompte, T. Lee, J. Lee, J. Lee, Y. J. Lee, S. W. Lefevre, R. Leonardo, N. Leone, S. Levy, S. Lewis, J. D. Lin, C. Lin, C. S. Lindgren, M. Lipeles, E. Lister, A. Litvintsev, D. O. Liu, T. Lockyer, N. S. Loginov, A. Loreti, M. Lovas, L. Lu, R. -S. Lucchesi, D. Lueck, J. Luci, C. Lujan, P. Lukens, P. Lungu, G. Lyons, L. Lys, J. Lysak, R. Lytken, E. Mack, P. MacQueen, D. Madrak, R. Maeshima, K. Makhoul, K. Maki, T. Maksimovic, P. Malde, S. Malik, S. Manca, G. Manousakis, A. Margaroli, F. Marino, C. Marino, C. P. Martin, A. Martin, M. Martin, V. Martinez, M. Martinez-Ballarin, R. Maruyama, T. Mastrandrea, P. Masubuchi, T. Mattson, M. E. Mazzanti, P. McFarland, K. S. McIntyre, P. McNulty, R. Mehta, A. Mehtala, P. Menzemer, S. Menzione, A. Merkel, P. Mesropian, C. Messina, A. Miao, T. Miladinovic, N. Miles, J. Miller, R. Mills, C. Milnik, M. Mitra, A. Mitselmakher, G. Miyake, H. Moed, S. Moggi, N. Moon, C. S. Moore, R. Morello, M. Fernandez, P. Movilla Mulmenstadt, J. Mukherjee, A. Muller, Th. Mumford, R. Murat, P. Mussini, M. Nachtman, J. Nagai, Y. Nagano, A. Naganoma, J. Nakamura, K. Nakano, I. Napier, A. Necula, V. Neu, C. Neubauer, M. S. Nielsen, J. Nodulman, L. Norman, M. Norniella, O. Nurse, E. Oh, S. H. Oh, Y. D. Oksuzian, I. Okusawa, T. Oldeman, R. Orava, R. Osterberg, K. Griso, S. Pagan Pagliarone, C. Palencia, E. Papadimitriou, V. Papaikonomou, A. Paramonov, A. A. Parks, B. Pashapour, S. Patrick, J. Pauletta, G. Paulini, M. Paus, C. Pellett, D. E. Penzo, A. Phillips, T. J. Piacentino, G. Piedra, J. Pinera, L. Pitts, K. Plager, C. Pondrom, L. Portell, X. Poukhov, O. Pounder, N. Prakoshyn, F. Pronko, A. Proudfoot, J. Ptohos, F. Punzi, G. Pursley, J. Rademacker, J. Rahaman, A. Ramakrishnan, V. Ranjan, N. Redondo, I. Reisert, B. Rekovic, V. Renton, P. Rescigno, M. Richter, S. Rimondi, F. Ristori, L. Robson, A. Rodrigo, T. Rogers, E. Rolli, S. Roser, R. Rossi, M. Rossin, R. Roy, P. Ruiz, A. Russ, J. Rusu, V. Saarikko, H. Safonov, A. Sakumoto, W. K. Salamanna, G. Salto, O. Santi, L. Sarkar, S. Sartori, L. Sato, K. Savard, P. Savoy-Navarro, A. Scheidle, T. Schlabach, P. Schmidt, E. E. Schmidt, M. A. Schmidt, M. P. Schmitt, M. Schwarz, T. Scodellaro, L. Scott, A. L. Scribano, A. Scuri, F. Sedov, A. Seidel, S. Seiya, Y. Semenov, A. Sexton-Kennedy, L. Sfyrla, A. Shalhout, S. Z. Shapiro, M. D. Shears, T. Shepard, P. F. Sherman, D. Shimojima, M. Shochet, M. Shon, Y. Shreyber, I. Sidoti, A. Sinervo, P. Sisakyan, A. Slaughter, A. J. Slaunwhite, J. Sliwa, K. Smith, J. R. Snider, F. D. Snihur, R. Soderberg, M. Soha, A. Somalwar, S. Sorin, V. Spalding, J. Spinella, F. Spreitzer, T. Squillacioti, P. Stanitzki, M. Denis, R. St. Stelzer, B. Stelzer-Chilton, O. Stentz, D. Strologas, J. Stuart, D. Suh, J. S. Sukhanov, A. Sun, H. Suslov, I. Suzuki, T. Taffard, A. Takashima, R. Takeuchi, Y. Tanaka, R. Tecchio, M. Teng, P. K. Terashi, K. Thom, J. Thompson, A. S. Thompson, G. A. Thomson, E. Tipton, P. Tiwari, V. Tkaczyk, S. Toback, D. Tokar, S. Tollefson, K. Tomura, T. Tonelli, D. Torre, S. Torretta, D. Tourneur, S. Trischuk, W. Tu, Y. Turini, N. Ukegawa, F. Uozumi, S. Vallecorsa, S. van Remortel, N. Varganov, A. Vataga, E. Vazquez, F. Velev, G. Vellidis, C. Veszpremi, V. Vidal, M. Vidal, R. Vila, I. Vilar, R. Vine, T. Vogel, M. Volobouev, I. Volpi, G. Wurthwein, F. Wagner, P. Wagner, R. G. Wagner, R. L. Wagner, J. Wagner, W. Wakisaka, T. Wallny, R. Wang, S. M. Warburton, A. Waters, D. Weinberger, M. Wester, W. C., III Whitehouse, B. Whiteson, D. Wicklund, A. B. Wicklund, E. Williams, G. Williams, H. H. Wilson, P. Winer, B. L. Wittich, P. Wolbers, S. Wolfe, C. Wright, T. Wu, X. Wynne, S. M. Yagil, A. Yamamoto, K. Yamaoka, J. Yamashita, T. Yang, C. Yang, U. K. Yang, Y. C. Yao, W. M. Yeh, G. P. Yoh, J. Yorita, K. Yoshida, T. Yu, G. B. Yu, I. Yu, S. S. Yun, J. C. Zanello, L. Zanetti, A. Zaw, I. Zhang, X. Zheng, Y. Zucchelli, S. CA CDF Collaboration TI Observation of orbitally excited B(s) mesons SO PHYSICAL REVIEW LETTERS LA English DT Article ID HEAVY MESONS; DETECTOR; QUARK AB We report the observation of two narrow resonances consistent with states of orbitally excited (L=1) B(s) mesons using 1 fb(-1) of p (p) over bar collisions at root s =1.96 TeV collected with the Collider Detector at Fermilab II detector at the Fermilab Tevatron. We use two-body decays into K(-) and B(+) mesons reconstructed as B(+)-> J/psi K(+), J/psi ->mu(+)mu(-) or B(+)->(D) over bar (0)pi(+), (D) over bar (0)-> K(+)pi(-). We deduce the masses of the two states to be m(B(s1))=5829.4 +/- 0.7 MeV/c(2) and m(B(s2)(*))=5839.6 +/- 0.7 MeV/c(2). C1 [Aaltonen, T.; Maki, T.; Mehtala, P.; Orava, R.; Osterberg, K.; Saarikko, H.; van Remortel, N.] Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. [Aaltonen, T.; Maki, T.; Mehtala, P.; Orava, R.; Osterberg, K.; Saarikko, H.; van Remortel, N.] Helsinki Inst Phys, FIN-00014 Helsinki, Finland. [Chen, Y. C.; Hou, S.; Lu, R. -S.; Mitra, A.; Teng, P. K.; Wang, S. M.] Acad Sinica, Inst Phys, Taipei 11529, Taiwan. [Blair, R. E.; Byrum, K. L.; Kuhlmann, S. E.; LeCompte, T.; Nodulman, L.; Proudfoot, J.; Wagner, R. G.; Wicklund, A. B.] Argonne Natl Lab, Argonne, IL 60439 USA. [Attal, A.; Cavalli-Sforza, M.; De Lorenzo, G.; D'Onofrio, M.; Martinez, M.; Portell, X.; Salto, O.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. [Dittmann, J. R.; Hewamanage, S.; Krumnack, N.] Baylor Univ, Waco, TX 76798 USA. [Brigliadori, L.; Castro, A.; Deninno, M.; Mazzanti, P.; Moggi, N.; Mussini, M.; Rimondi, F.] Univ Bologna, Ist Nazl Fis Nucl, I-40127 Bologna, Italy. [Blocker, C.; Clark, D.; Kirsch, L.; Miladinovic, N.] Brandeis Univ, Waltham, MA 02254 USA. [Baroiant, S.; Chertok, M.; Conway, J.; Almenar, C. Cuenca; Erbacher, R.; Forrest, R.; Forrester, S.; Ivanov, A.; Johnson, W.; Lander, R. L.; Lister, A.; Pellett, D. E.; Schwarz, T.; Smith, J. R.; Soha, A.] Univ Calif Davis, Davis, CA 95616 USA. [Dong, P.; Hauser, J.; Plager, C.; Stelzer, B.; Wallny, R.; Zheng, Y.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Hsu, S. -C.; Lipeles, E.; Norman, M.; Wurthwein, F.; Yagil, A.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Boveia, A.; Brau, B.; Garberson, F.; Hill, C. S.; Incandela, J.; Koay, S. A.; Krutelyov, V.; Rossin, R.; Scott, A. L.; Stuart, D.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Alvarez Gonzalez, B.; Casal, B.; Cuevas, J.; Gomez, G.; Menzemer, S.; Rodrigo, T.; Ruiz, A.; Scodellaro, L.; Vila, I.; Vilar, R.] Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain. [Chung, K.; Galyardt, J.; Jun, S. Y.; Paulini, M.; Russ, J.; Tiwari, V.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Adelman, J.; Brubaker, E.; Fedorko, W. T.; Grosso-Pilcher, C.; Kim, Y. K.; Kwang, S.; Levy, S.; Paramonov, A. A.; Schmidt, M. A.; Shochet, M.; Wolfe, C.; Yang, U. K.; Yorita, K.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Antos, J.; Bednar, P.; Lovas, L.; Lysak, R.; Tokar, S.] Comenius Univ, Bratislava 84248, Slovakia. [Antos, J.; Bednar, P.; Lovas, L.; Lysak, R.; Tokar, S.] Inst Expt Phys, Kosice 04001, Slovakia. [Artikov, A.; Budagov, J.; Chokheli, D.; Giokaris, N.; Glagolev, V.; Manousakis, A.; Poukhov, O.; Prakoshyn, F.; Semenov, A.; Sisakyan, A.; Suslov, I.] Joint Inst Nucl Res, RU-141980 Dubna, Russia. [Benjamin, D.; Bocci, A.; Cabrera, S.; Deng, J.; Goshaw, A. T.; Hidas, D.; Jayatilaka, B.; Ko, B. R.; Kotwal, A. V.; Kruse, M.; Necula, V.; Oh, S. H.; Phillips, T. J.] Duke Univ, Durham, NC 27708 USA. [Albrow, M. G.; Apollinari, G.; Ashmanskas, W.; Badgett, W.; Beretvas, A.; Binkley, M.; Burkett, K.; Canelli, F.; Casarsa, M.; Chlachidze, G.; Chlebana, F.; Convery, M. E.; Culbertson, R.; Dagenhart, D.; Datta, M.; Derwent, P. F.; Eusebi, R.; Ginsburg, C. M.; Glenzinski, D.; Golossanov, A.; Group, R. C.; Hahn, S. R.; Harris, R. M.; Hocker, A.; James, E.; Kephart, R.; Kim, M. J.; Lammel, S.; Lewis, J. D.; Lindgren, M.; Litvintsev, D. O.; Liu, T.; Lukens, P.; Madrak, R.; Maeshima, K.; Miao, T.; Moore, R.; Mukherjee, A.; Murat, P.; Nachtman, J.; Palencia, E.; Papadimitriou, V.; Patrick, J.; Pronko, A.; Ptohos, F.; Reisert, B.; Roser, R.; Rusu, V.; Sato, K.; Schlabach, P.; Schmidt, E. E.; Sexton-Kennedy, L.; Slaughter, A. J.; Snider, F. D.; Spalding, J.; Thom, J.; Tkaczyk, S.; Tonelli, D.; Torretta, D.; Velev, G.; Vidal, R.; Wagner, R. L.; Wester, W. C., III; Wicklund, E.; Wilson, P.; Wittich, P.; Wolbers, S.; Yeh, G. P.; Yoh, J.; Yu, S. S.; Yun, J. C.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Carrillo, S.; Field, R.; Furic, I.; Goldschmidt, N.; Jindariani, S.; Kar, D.; Klimenko, S.; Konigsberg, J.; Korytov, A.; Lungu, G.; Mitselmakher, G.; Oksuzian, I.; Pinera, L.; Sukhanov, A.; Vazquez, F.] Univ Florida, Gainesville, FL 32611 USA. [Annovi, A.; Cordelli, M.; Giromini, P.; Happacher, F.; Torretta, D.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Clark, A.; Hamilton, A.; Lefevre, R.; Sfyrla, A.; Shreyber, I.; Vallecorsa, S.; Wu, X.] Univ Geneva, CH-1211 Geneva 4, Switzerland. [Bussey, P.; Davies, T.; Martin, V.; Robson, A.; Denis, R. St.; Thompson, A. S.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. [Belloni, A.; Chou, J. P.; Franklin, M.; Grinstein, S.; Guimaraes da Costa, J.; Mills, C.; Moed, S.; Sherman, D.; Zaw, I.] Harvard Univ, Cambridge, MA 02138 USA. [Abulencia, A.; Budd, S.; Ciobanu, C. I.; Errede, D.; Errede, S.; Gerberich, H.; Grundler, U.; Junk, T. R.; Kraus, J.; Marino, C. P.; Neubauer, M. S.; Norniella, O.; Pitts, K.; Rogers, E.; Taffard, A.; Thompson, G. A.; Zhang, X.] Univ Illinois, Urbana, IL 61801 USA. [Barnett, B. A.; Behari, S.; Blumenfeld, B.; Maksimovic, P.; Mumford, R.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Feindt, M.; Heck, M.; Heuser, J.; Hirschbuehl, D.; Kerzel, U.; Kreps, M.; Kuhr, T.; Lueck, J.; Mack, P.; Marino, C.; Milnik, M.; Muller, Th.; Papaikonomou, A.; Richter, S.; Scheidle, T.; Wagner, J.; Wagner, W.] Univ Karlsruhe, Inst Expt Kernphys, D-76128 Karlsruhe, Germany. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J.; Lee, Y. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Kyungpook Natl Univ, Ctr High Energy Phys, Taegu 702701, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J.; Lee, Y. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Seoul Natl Univ, Seoul 151742, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J.; Lee, Y. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Sungkyunkwan Univ, Suwon 440746, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J.; Lee, Y. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Korea Inst Sci & Technol Informat, Taejon 305806, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J.; Lee, Y. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Chonnam Natl Univ, Kwangju 500757, South Korea. [Barbaro-Galtieri, A.; Beringer, J.; Cerri, A.; Deisher, A.; Fang, H. C.; Freeman, J. C.; Haber, C.; Heinemann, B.; Lin, C. S.; Lujan, P.; Lys, J.; Fernandez, P. Movilla; Mulmenstadt, J.; Nielsen, J.; Shapiro, M. D.; Volobouev, I.; Yao, W. M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Berry, T.; Farrington, S.; Houlden, M.; Manca, G.; McNulty, R.; Mehta, A.; Oldeman, R.; Shears, T.; Wynne, S. M.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Bartsch, V.; Bizjak, I.; Cerrito, L.; Cooper, B.; Lancaster, M.; Malik, S.; Nurse, E.; Vine, T.; Waters, D.] UCL, London WC1E 6BT, England. [Fernandez, J. P.; Gonzalez, O.; Martinez-Ballarin, R.; Redondo, I.; Vidal, M.] Ctr Invest Energet Medioambientales & Tecnol, E-28040 Madrid, Spain. [Bauer, G.; Bolshov, A.; Choudalakis, G.; Gomez-Ceballos, G.; Hahn, K.; Henderson, C.; Iyutin, B.; Klute, M.; Knuteson, B.; Leonardo, N.; Makhoul, K.; Miles, J.; Paus, C.] MIT, Cambridge, MA 02139 USA. [Beauchemin, P. -H.; Buzatu, A.; Carron, S.; Lai, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Savard, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Trischuk, W.; Warburton, A.; Williams, G.] McGill Univ, Inst Particle Phys, Montreal, PQ H3A 2T8, Canada. [Beauchemin, P. -H.; Buzatu, A.; Carron, S.; Lai, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Savard, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Trischuk, W.; Warburton, A.; Williams, G.] Univ Toronto, Toronto, ON M5S 1A7, Canada. [Amidei, D.; Campbell, M.; Copic, K.; Cully, J. C.; Gerdes, D.; Soderberg, M.; Tecchio, M.; Varganov, A.; Wright, T.] Univ Michigan, Ann Arbor, MI 48109 USA. [Bromberg, C.; Campanelli, M.; Gunay-Unalan, Z.; Huston, J.; Messina, A.; Miller, R.; Sorin, V.; Tollefson, K.] Michigan State Univ, E Lansing, MI 48824 USA. [Gold, M.; Gorelov, I.; Rekovic, V.; Seidel, S.; Strologas, J.; Vataga, E.; Vogel, M.] Univ New Mexico, Albuquerque, NM 87131 USA. [Schmitt, M.; Stentz, D.] Northwestern Univ, Evanston, IL 60208 USA. [Efron, J.; Hughes, R. E.; Kilminster, B.; Lannon, K.; Parks, B.; Slaunwhite, J.; Winer, B. L.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.; Takashima, R.; Tanaka, R.; Yamashita, T.] Okayama Univ, Okayama 7008530, Japan. [Kato, Y.; Okusawa, T.; Seiya, Y.; Wakisaka, T.; Yamamoto, K.; Yoshida, T.] Osaka City Univ, Osaka 588, Japan. [Azfar, F.; Harper, S.; Hays, C.; Huffman, B. T.; Lyons, L.; Malde, S.; Pounder, N.; Rademacker, J.; Renton, P.; Stelzer-Chilton, O.] Univ Oxford, Oxford OX1 3RH, England. [Amerio, S.; Azzi-Bacchetta, P.; Bacchetta, N.; Bisello, D.; Busetto, G.; Compostella, G.; Cortiana, G.; Donini, J.; Dorigo, T.; Gresele, A.; Lazzizzera, I.; Loreti, M.; Lucchesi, D.; Griso, S. Pagan] Univ Padua, Ist Nazl Fis Nucl, Sez Padova Trento, I-35131 Padua, Italy. [Di Giovanni, G. P.; Piedra, J.; Savoy-Navarro, A.; Tourneur, S.] Univ Paris 06, LPNHE, IN2P3, CNRS,UMR 7585, F-75252 Paris, France. [Canepa, A.; Heijboer, A.; Heinrich, J.; Kroll, J.; Lockyer, N. S.; Neu, C.; Thomson, E.; Tu, Y.; Wagner, P.; Whiteson, D.; Williams, H. H.] Univ Penn, Philadelphia, PA 19104 USA. [Azzurri, P.; Bedeschi, F.; Bellettini, G.; Carosi, R.; Catastini, P.; Chiarelli, G.; Ciocci, M. A.; Crescioli, F.; Dell'Orso, M.; Donati, S.; Ferrazza, C.; Garcia, J. E.; Giannetti, P.; Giunta, M.; Introzzi, G.; Lami, S.; Latino, G.; Leone, S.; Menzione, A.; Morello, M.; Pagliarone, C.; Piacentino, G.; Punzi, G.; Ristori, L.; Sartori, L.; Scribano, A.; Scuri, F.; Sidoti, A.; Spinella, F.; Squillacioti, P.; Turini, N.; Vellidis, C.; Volpi, G.] Univ Pisa, Ist Nazl Fis Nucl Pisa, Siena, Italy. [Azzurri, P.; Bedeschi, F.; Bellettini, G.; Carosi, R.; Catastini, P.; Chiarelli, G.; Ciocci, M. A.; Crescioli, F.; Dell'Orso, M.; Donati, S.; Ferrazza, C.; Garcia, J. E.; Giannetti, P.; Giunta, M.; Introzzi, G.; Lami, S.; Latino, G.; Leone, S.; Menzione, A.; Morello, M.; Pagliarone, C.; Piacentino, G.; Punzi, G.; Ristori, L.; Sartori, L.; Scribano, A.; Scuri, F.; Sidoti, A.; Spinella, F.; Squillacioti, P.; Turini, N.; Vellidis, C.; Volpi, G.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Boudreau, J.; Gibson, K.; Hartz, M.; Rahaman, A.; Shepard, P. F.] Univ Pittsburgh, Pittsburgh, PA 15260 USA. [Apresyan, A.; Barnes, V. E.; Bolla, G.; Bortoletto, D.; Flanagan, G.; Garfinkel, A. F.; Jones, M.; Laasanen, A. T.; Lytken, E.; Margaroli, F.; Merkel, P.; Ranjan, N.; Sedov, A.; Veszpremi, V.] Purdue Univ, W Lafayette, IN 47907 USA. [Bodek, A.; Boisvert, V.; Budd, H. S.; Chung, Y. S.; De Barbaro, P.; De Lentdecker, G.; Gimmell, J. L.; Han, B. -Y.; Han, J. Y.; Lee, J.; McFarland, K. S.; Sakumoto, W. K.; Yu, G. B.] Univ Rochester, Rochester, NY 14627 USA. [Bhatti, A.; Demortier, L.; Gallinaro, M.; Goulianos, K.; Hatakeyama, K.; Mesropian, C.; Terashi, K.] Rockefeller Univ, New York, NY 10021 USA. [De Cecco, S.; De Pedis, D.; Dionisi, C.; Giagu, S.; Iori, M.; Jeans, D.; Luci, C.; Mastrandrea, P.; Rescigno, M.; Salamanna, G.; Sarkar, S.; Zanello, L.] Univ Roma La Sapienza, Ist Nazl Fis Nucl, Sez Roma 1, I-00185 Rome, Italy. [Anastassov, A.; Chuang, S. H.; Dube, S.; Halkiadakis, E.; Hare, D.; Lath, A.; Somalwar, S.; Yamaoka, J.] Rutgers State Univ, Piscataway, NJ 08855 USA. [Aurisano, A.; Goncharov, M.; Kamon, T.; Khotilovich, V.; Lee, S. W.; McIntyre, P.; Safonov, A.; Toback, D.; Weinberger, M.] Texas A&M Univ, College Stn, TX 77843 USA. [Cauz, D.; Di Ruzza, B.; Giordani, M.; Pauletta, G.; Penzo, A.; Rossi, M.; Santi, L.; Zanetti, A.] Univ Trieste Udine, Ist Nazl Fis Nucl, Trieste, Italy. [Akimoto, T.; Hara, K.; Kim, S. H.; Kimura, N.; Kubo, T.; Maruyama, T.; Masubuchi, T.; Miyake, H.; Nagai, Y.; Nagano, A.; Shimojima, M.; Suzuki, T.; Takeuchi, Y.; Tomura, T.; Ukegawa, F.; Uozumi, S.] Univ Tsukuba, Tsukuba, Ibaraki 305, Japan. [Hare, M.; Napier, A.; Rolli, S.; Sliwa, K.; Sun, H.; Whitehouse, B.] Tufts Univ, Medford, MA 02155 USA. [Arisawa, T.; Kondo, K.; Naganoma, J.; Okusawa, T.] Waseda Univ, Tokyo 169, Japan. [Harr, R. F.; Karchin, P. E.; Kulkarni, N. P.; Mattson, M. E.; Shalhout, S. Z.] Wayne State Univ, Detroit, MI 48201 USA. [Bellinger, J.; Carlsmith, D.; Chung, W. H.; Handler, R.; Herndon, M.; Pondrom, L.; Pursley, J.; Ramakrishnan, V.; Shon, Y.] Univ Wisconsin, Madison, WI 53706 USA. [Feild, R. G.; Husemann, U.; Lin, C.; Loginov, A.; Martin, A.; Schmidt, M. P.; Stanitzki, M.; Tipton, P.; Yang, C.] Yale Univ, New Haven, CT 06520 USA. RP Aaltonen, T (reprint author), Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. RI Ruiz, Alberto/E-4473-2011; Robson, Aidan/G-1087-2011; De Cecco, Sandro/B-1016-2012; Azzi, Patrizia/H-5404-2012; manca, giulia/I-9264-2012; Amerio, Silvia/J-4605-2012; messina, andrea/C-2753-2013; Annovi, Alberto/G-6028-2012; Ivanov, Andrew/A-7982-2013; Warburton, Andreas/N-8028-2013; Kim, Soo-Bong/B-7061-2014; Lysak, Roman/H-2995-2014; Moon, Chang-Seong/J-3619-2014; Scodellaro, Luca/K-9091-2014; Punzi, Giovanni/J-4947-2012; Paulini, Manfred/N-7794-2014; Russ, James/P-3092-2014; Lazzizzera, Ignazio/E-9678-2015; Cabrera Urban, Susana/H-1376-2015; Garcia, Jose /H-6339-2015; ciocci, maria agnese /I-2153-2015; Cavalli-Sforza, Matteo/H-7102-2015; Introzzi, Gianluca/K-2497-2015; Muelmenstaedt, Johannes/K-2432-2015; Gorelov, Igor/J-9010-2015; Leonardo, Nuno/M-6940-2016; Canelli, Florencia/O-9693-2016; Chiarelli, Giorgio/E-8953-2012; Grinstein, Sebastian/N-3988-2014; OI Ruiz, Alberto/0000-0002-3639-0368; Azzi, Patrizia/0000-0002-3129-828X; Annovi, Alberto/0000-0002-4649-4398; Ivanov, Andrew/0000-0002-9270-5643; Warburton, Andreas/0000-0002-2298-7315; Moon, Chang-Seong/0000-0001-8229-7829; Scodellaro, Luca/0000-0002-4974-8330; Punzi, Giovanni/0000-0002-8346-9052; Paulini, Manfred/0000-0002-6714-5787; Russ, James/0000-0001-9856-9155; Lazzizzera, Ignazio/0000-0001-5092-7531; ciocci, maria agnese /0000-0003-0002-5462; Introzzi, Gianluca/0000-0002-1314-2580; Muelmenstaedt, Johannes/0000-0003-1105-6678; Gorelov, Igor/0000-0001-5570-0133; Leonardo, Nuno/0000-0002-9746-4594; Canelli, Florencia/0000-0001-6361-2117; Lami, Stefano/0000-0001-9492-0147; Chiarelli, Giorgio/0000-0001-9851-4816; Giordani, Mario/0000-0002-0792-6039; Casarsa, Massimo/0000-0002-1353-8964; Vidal Marono, Miguel/0000-0002-2590-5987; Margaroli, Fabrizio/0000-0002-3869-0153; Latino, Giuseppe/0000-0002-4098-3502; Group, Robert/0000-0002-4097-5254; iori, maurizio/0000-0002-6349-0380; Grinstein, Sebastian/0000-0002-6460-8694; Lancaster, Mark/0000-0002-8872-7292; Nielsen, Jason/0000-0002-9175-4419; Jun, Soon Yung/0000-0003-3370-6109; Toback, David/0000-0003-3457-4144; MARTINEZ, MARIO/0000-0002-3135-945X; Hays, Chris/0000-0003-2371-9723; Farrington, Sinead/0000-0001-5350-9271; Robson, Aidan/0000-0002-1659-8284; Gallinaro, Michele/0000-0003-1261-2277; Salamanna, Giuseppe/0000-0002-0861-0052; Torre, Stefano/0000-0002-7565-0118; Turini, Nicola/0000-0002-9395-5230; Osterberg, Kenneth/0000-0003-4807-0414 NR 34 TC 59 Z9 59 U1 1 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD FEB 29 PY 2008 VL 100 IS 8 AR 082001 DI 10.1103/PhysRevLett.100.082001 PG 7 WC Physics, Multidisciplinary SC Physics GA 271BR UT WOS:000253764400014 ER PT J AU Abazov, VM Abbott, B Abolins, M Acharya, BS Adams, M Adams, T Aguilo, E Ahn, SH Ahsan, M Alexeev, GD Alkhazov, G Alton, A Alverson, G Alves, GA Anastasoaie, M Ancu, LS Andeen, T Anderson, S Andrieu, B Anzelc, MS Arnoud, Y Arov, M Arthaud, M Askew, A Asman, B Jesus, ACSA Atramentov, O Autermann, C Avila, C Ay, C Badaud, F Baden, A Bagby, L Baldin, B Bandurin, DV Banerjee, S Banerjee, P Barberis, E Barfuss, AF Bargassa, P Baringer, P Barreto, J Bartlett, JF Bassler, U Bauer, D Beale, S Bean, A Begalli, M Begel, M Belanger-Champagne, C Bellantoni, L Bellavance, A Benitez, JA Beri, SB Bernardi, G Bernhard, R Bertram, I Besancon, M Beuselinck, R Bezzubov, VA Bhat, PC Bhatnagar, V Biscarat, C Blazey, G Blekman, F Blessing, S Bloch, D Bloom, K Boehnlein, A Boline, D Bolton, TA Borissov, G Bose, T Brandt, A Brock, R Brooijmans, G Bross, A Brown, D Buchanan, NJ Buchholz, D Buehler, M Buescher, V Bunichev, S Burdin, S Burke, S Burnett, TH Buszello, CP Butler, JM Calfayan, P Calvet, S Cammin, J Carvalho, W Casey, BCK Cason, NM Castilla-Valdez, H Chakrabarti, S Chakraborty, D Chan, KM Chan, K Chandra, A Charles, F Cheu, E Chevallier, F Cho, DK Choi, S Choudhary, B Christofek, L Christoudias, T Cihangir, S Claes, D Coadou, Y Cooke, M Cooper, WE Corcoran, M Couderc, F Cousinou, MC Crepe-Renaudin, S Cutts, D Cwiok, M da Motta, H Das, A Davies, G De, K de Jong, SJ De la Cruz-Burelo, E Martins, CDO Degenhardt, JD Deliot, F Demarteau, M Demina, R Denisov, D Denisov, SP Desai, S Diehl, HT Diesburg, M Dominguez, A Dong, H Dudko, LV Duflot, L Dugad, SR Duggan, D Duperrin, A Dyer, J Dyshkant, A Eads, M Edmunds, D Ellison, J Elvira, VD Enari, Y Eno, S Ermolov, P Evans, H Evdokimov, A Evdokimov, VN Ferapontov, AV Ferbel, T Fiedler, F Filthaut, F Fisher, W Fisk, HE Ford, M Fortner, M Fox, H Fu, S Fuess, S Gadfort, T Galea, CF Gallas, E Galyaev, E Garcia, C Garcia-Bellido, A Gavrilov, V Gay, P Geist, W Gele, D Gerber, CE Gershtein, Y Gillberg, D Ginther, G Gollub, N Gomez, B Goussiou, A Grannis, PD Greenlee, H Greenwood, ZD Gregores, EM Grenier, G Gris, P Grivaz, JF Grohsjean, A Grunandahl, S Grunewald, MW Guo, J Guo, F Gutierrez, P Gutierrez, G Haas, A Hadley, NJ Haefner, P Hagopian, S Haley, J Hall, I Hall, RE Han, L Hanagaki, K Hansson, P Harder, K Harel, A Harrington, R Hauptman, JM Hauser, R Hays, J Hebbeker, T Hedin, D Hegeman, JG Heinmiller, JM Heinson, AP Heintz, U Hensel, C Herner, K Hesketh, G Hildreth, MD Hirosky, R Hobbs, JD Hoeneisen, B Hoeth, H Hohlfeld, M Hong, SJ Hossain, S Houben, P Hu, Y Hubacek, Z Hynek, V Iashvili, I Illingworth, R Ito, AS Jabeen, S Jaffre, M Jain, S Jakobs, K Jarvis, C Jesik, R Johns, K Johnson, C Johnson, M Jonckheere, A Jonsson, P Juste, A Kaefer, D Kajfasz, E Kalinin, AM Kalk, JR Kalk, JM Kappler, S Karmanov, D Kasper, P Katsanos, I Kau, D Kaur, R Kaushik, V Kehoe, R Kermiche, S Khalatyan, N Khanov, A Kharchilava, A Kharzheev, YM Khatidze, D Kim, H Kim, TJ Kirby, MH Kirsch, M Klima, B Kohli, JM Konrath, JP Kopal, M Korablev, VM Kozelov, AV Krop, D Kuhl, T Kumar, A Kunori, S Kupco, A Kurca, T Kvita, J Lacroix, F Lam, D Lammers, S Landsberg, G Lebrun, P Lee, WM Leflat, A Lehner, F Lellouch, J Leveque, J Lewis, P Li, J Li, QZ Li, L Lietti, SM Lima, JGR Lincoln, D Linnemann, J Lipaev, VV Lipton, R Liu, Y Liu, Z Lobo, L Lobodenko, A Lokajicek, M Love, P Lubatti, HJ Lyon, AL Maciel, AKA Mackin, D Madaras, RJ Maettig, P Magass, C Magerkurth, A Mal, PK Malbouisson, HB Malik, S Malyshev, VL Mao, HS Maravin, Y Martin, B McCarthy, R Melnitchouk, A Mendes, A Mendoza, L Mercadante, PG Merkin, M Merritt, KW Meyer, J Meyer, A Millet, T Mitrevski, J Molina, J Mommsen, RK Mondal, NK Moore, RW Moulik, T Muanza, GS Mulders, M Mulhearn, M Mundal, O Mundim, L Nagy, E Naimuddin, M Narain, M Naumann, NA Neal, HA Negret, JP Neustroev, P Nilsen, H Nogima, H Nomerotski, A Novaes, SF Nunnemann, T O'Dell, V O'Neil, DC Obrant, G Ochando, C Onoprienko, D Oshima, N Osta, J Otec, R Garzon, GJOY Owen, M Padley, P Pangilinan, M Parashar, N Park, SJ Park, SK Parsons, J Partridge, R Parua, N Patwa, A Pawloski, G Penning, B Perfilov, M Peters, K Peters, Y Petroff, P Petteni, M Piegaia, R Piper, J Pleier, MA Podesta-Lerma, PLM Podstavkov, VM Pogorelov, Y Pol, ME Polozov, P Pope, BG Popov, AV Potter, C da Silva, WLP Prosper, HB Protopopescu, S Qian, J Quadt, A Quinn, B Rakitine, A Rangel, MS Ranjan, K Ratoff, PN Renkel, P Reucroft, S Rich, P Rijssenbeek, M Ripp-Baudot, I Rizatdinova, F Robinson, S Rodrigues, RF Rominsky, M Royon, C Rubinov, P Ruchti, R Safronov, G Sajot, G Sanchez-Hernandez, A Sanders, MP Santoro, A Savage, G Sawyer, L Scanlon, T Schaile, D Schamberger, RD Scheglov, Y Schellman, H Schieferdecker, P Schliephake, T Schwanenberger, C Schwartzman, A Schwienhorst, R Sekaric, J Severini, H Shabalina, E Shamim, M Shary, V Shchukin, AA Shivpuri, RK Siccardi, V Simak, V Sirotenko, V Skubic, P Slattery, P Smirnov, D Snow, J Snow, GR Snyder, S Soldner-Rembold, S Sonnenschein, L Sopczak, A Sosebee, M Soustruznik, K Souza, M Spurlock, B Stark, J Steele, J Stolin, V Stoyanova, DA Strandberg, J Strandberg, S Strang, MA Strauss, M Strauss, E Strohmer, R Strom, D Stutte, L Sumowidagdo, S Svoisky, P Sznajder, A Talby, M Tamburello, P Tanasijczuk, A Taylor, W Temple, J Tiller, B Tissandier, F Titov, M Tokmenin, VV Toole, T Torchiani, I Trefzger, T Tsybychev, D Tuchming, B Tully, C Tuts, PM Unalan, R Uvarov, S Uvarov, L Uzunyan, S Vachon, B van den Berg, PJ Van Kooten, R van Leeuwen, WM Varelas, N Varnes, EW Vasilyev, IA Vaupel, M Verdier, P Vertogradov, LS Verzocchi, M Villeneuve-Seguier, F Vint, P Vokac, P Von Toerne, E Voutilainen, M Wagner, R Wahl, HD Wang, L Wang, MHLS Warchol, J Watts, G Wayne, M Weber, M Weber, G Wenger, A Wermes, N Wetstein, M White, A Wicke, D Williams, MRJ Wilson, GW Wimpenny, SJ Wobisch, M Wood, DR Wyatt, TR Xie, Y Yacoob, S Yamada, R Yan, M Yasuda, T Yatsunenko, YA Yip, K Yoo, HD Youn, SW Yu, J Zatserklyaniy, A Zeitnitz, C Zhao, T Zhou, B Zhu, J Zielinski, M Zieminska, D Zieminski, A Zivkovic, L Zutshi, V Zverev, EG AF Abazov, V. M. Abbott, B. Abolins, M. Acharya, B. S. Adams, M. Adams, T. Aguilo, E. Ahn, S. H. Ahsan, M. Alexeev, G. D. Alkhazov, G. Alton, A. Alverson, G. Alves, G. A. Anastasoaie, M. Ancu, L. S. Andeen, T. Anderson, S. Andrieu, B. Anzelc, M. S. Arnoud, Y. Arov, M. Arthaud, M. Askew, A. Asman, B. Jesus, A. C. S. Assis Atramentov, O. Autermann, C. Avila, C. Ay, C. Badaud, F. Baden, A. Bagby, L. Baldin, B. Bandurin, D. V. Banerjee, S. Banerjee, P. Barberis, E. Barfuss, A. -F. Bargassa, P. Baringer, P. Barreto, J. Bartlett, J. F. Bassler, U. Bauer, D. Beale, S. Bean, A. Begalli, M. Begel, M. Belanger-Champagne, C. Bellantoni, L. Bellavance, A. Benitez, J. A. Beri, S. B. Bernardi, G. Bernhard, R. Bertram, I. Besancon, M. Beuselinck, R. Bezzubov, V. A. Bhat, P. C. Bhatnagar, V. Biscarat, C. Blazey, G. Blekman, F. Blessing, S. Bloch, D. Bloom, K. Boehnlein, A. Boline, D. Bolton, T. A. Borissov, G. Bose, T. Brandt, A. Brock, R. Brooijmans, G. Bross, A. Brown, D. Buchanan, N. J. Buchholz, D. Buehler, M. Buescher, V. Bunichev, S. Burdin, S. Burke, S. Burnett, T. H. Buszello, C. P. Butler, J. M. Calfayan, P. Calvet, S. Cammin, J. Carvalho, W. Casey, B. C. K. Cason, N. M. Castilla-Valdez, H. Chakrabarti, S. Chakraborty, D. Chan, K. M. Chan, K. Chandra, A. Charles, F. Cheu, E. Chevallier, F. Cho, D. K. Choi, S. Choudhary, B. Christofek, L. Christoudias, T. Cihangir, S. Claes, D. Coadou, Y. Cooke, M. Cooper, W. E. Corcoran, M. Couderc, F. Cousinou, M. -C. Crepe-Renaudin, S. Cutts, D. Cwiok, M. da Motta, H. Das, A. Davies, G. De, K. de Jong, S. J. De la Cruz-Burelo, E. Martins, C. De Oliveira Degenhardt, J. D. Deliot, F. Demarteau, M. Demina, R. Denisov, D. Denisov, S. P. Desai, S. Diehl, H. T. Diesburg, M. Dominguez, A. Dong, H. Dudko, L. V. Duflot, L. Dugad, S. R. Duggan, D. Duperrin, A. Dyer, J. Dyshkant, A. Eads, M. Edmunds, D. Ellison, J. Elvira, V. D. Enari, Y. Eno, S. Ermolov, P. Evans, H. Evdokimov, A. Evdokimov, V. N. Ferapontov, A. V. Ferbel, T. Fiedler, F. Filthaut, F. Fisher, W. Fisk, H. E. Ford, M. Fortner, M. Fox, H. Fu, S. Fuess, S. Gadfort, T. Galea, C. F. Gallas, E. Galyaev, E. Garcia, C. Garcia-Bellido, A. Gavrilov, V. Gay, P. Geist, W. Gele, D. Gerber, C. E. Gershtein, Y. Gillberg, D. Ginther, G. Gollub, N. Gomez, B. Goussiou, A. Grannis, P. D. Greenlee, H. Greenwood, Z. D. Gregores, E. M. Grenier, G. Gris, Ph. Grivaz, J. -F. Grohsjean, A. Grunandahl, S. Grunewald, M. W. Guo, J. Guo, F. Gutierrez, P. Gutierrez, G. Haas, A. Hadley, N. J. Haefner, P. Hagopian, S. Haley, J. Hall, I. Hall, R. E. Han, L. Hanagaki, K. Hansson, P. Harder, K. Harel, A. Harrington, R. Hauptman, J. M. Hauser, R. Hays, J. Hebbeker, T. Hedin, D. Hegeman, J. G. Heinmiller, J. M. Heinson, A. P. Heintz, U. Hensel, C. Herner, K. Hesketh, G. Hildreth, M. D. Hirosky, R. Hobbs, J. D. Hoeneisen, B. Hoeth, H. Hohlfeld, M. Hong, S. J. Hossain, S. Houben, P. Hu, Y. Hubacek, Z. Hynek, V. Iashvili, I. Illingworth, R. Ito, A. S. Jabeen, S. Jaffre, M. Jain, S. Jakobs, K. Jarvis, C. Jesik, R. Johns, K. Johnson, C. Johnson, M. Jonckheere, A. Jonsson, P. Juste, A. Kaefer, D. Kajfasz, E. Kalinin, A. M. Kalk, J. R. Kalk, J. M. Kappler, S. Karmanov, D. Kasper, P. Katsanos, I. Kau, D. Kaur, R. Kaushik, V. Kehoe, R. Kermiche, S. Khalatyan, N. Khanov, A. Kharchilava, A. Kharzheev, Y. M. Khatidze, D. Kim, H. Kim, T. J. Kirby, M. H. Kirsch, M. Klima, B. Kohli, J. M. Konrath, J. -P. Kopal, M. Korablev, V. M. Kozelov, A. V. Krop, D. Kuhl, T. Kumar, A. Kunori, S. Kupco, A. Kurca, T. Kvita, J. Lacroix, F. Lam, D. Lammers, S. Landsberg, G. Lebrun, P. Lee, W. M. Leflat, A. Lehner, F. Lellouch, J. Leveque, J. Lewis, P. Li, J. Li, Q. Z. Li, L. Lietti, S. M. Lima, J. G. R. Lincoln, D. Linnemann, J. Lipaev, V. V. Lipton, R. Liu, Y. Liu, Z. Lobo, L. Lobodenko, A. Lokajicek, M. Love, P. Lubatti, H. J. Lyon, A. L. Maciel, A. K. A. Mackin, D. Madaras, R. J. Maettig, P. Magass, C. Magerkurth, A. Mal, P. K. Malbouisson, H. B. Malik, S. Malyshev, V. L. Mao, H. S. Maravin, Y. Martin, B. McCarthy, R. Melnitchouk, A. Mendes, A. Mendoza, L. Mercadante, P. G. Merkin, M. Merritt, K. W. Meyer, J. Meyer, A. Millet, T. Mitrevski, J. Molina, J. Mommsen, R. K. Mondal, N. K. Moore, R. W. Moulik, T. Muanza, G. S. Mulders, M. Mulhearn, M. Mundal, O. Mundim, L. Nagy, E. Naimuddin, M. Narain, M. Naumann, N. A. Neal, H. A. Negret, J. P. Neustroev, P. Nilsen, H. Nogima, H. Nomerotski, A. Novaes, S. F. Nunnemann, T. O'Dell, V. O'Neil, D. C. Obrant, G. Ochando, C. Onoprienko, D. Oshima, N. Osta, J. Otec, R. Garzon, G. J. Otero Y. Owen, M. Padley, P. Pangilinan, M. Parashar, N. Park, S. -J. Park, S. K. Parsons, J. Partridge, R. Parua, N. Patwa, A. Pawloski, G. Penning, B. Perfilov, M. Peters, K. Peters, Y. Petroff, P. Petteni, M. Piegaia, R. Piper, J. Pleier, M. -A. Podesta-Lerma, P. L. M. Podstavkov, V. M. Pogorelov, Y. Pol, M. -E. Polozov, P. Pope, B. G. Popov, A. V. Potter, C. da Silva, W. L. Prado Prosper, H. B. Protopopescu, S. Qian, J. Quadt, A. Quinn, B. Rakitine, A. Rangel, M. S. Ranjan, K. Ratoff, P. N. Renkel, P. Reucroft, S. Rich, P. Rijssenbeek, M. Ripp-Baudot, I. Rizatdinova, F. Robinson, S. Rodrigues, R. F. Rominsky, M. Royon, C. Rubinov, P. Ruchti, R. Safronov, G. Sajot, G. Sanchez-Hernandez, A. Sanders, M. P. Santoro, A. Savage, G. Sawyer, L. Scanlon, T. Schaile, D. Schamberger, R. D. Scheglov, Y. Schellman, H. Schieferdecker, P. Schliephake, T. Schwanenberger, C. Schwartzman, A. Schwienhorst, R. Sekaric, J. Severini, H. Shabalina, E. Shamim, M. Shary, V. Shchukin, A. A. Shivpuri, R. K. Siccardi, V. Simak, V. Sirotenko, V. Skubic, P. Slattery, P. Smirnov, D. Snow, J. Snow, G. R. Snyder, S. Soldner-Rembold, S. Sonnenschein, L. Sopczak, A. Sosebee, M. Soustruznik, K. Souza, M. Spurlock, B. Stark, J. Steele, J. Stolin, V. Stoyanova, D. A. Strandberg, J. Strandberg, S. Strang, M. A. Strauss, M. Strauss, E. Stroehmer, R. Strom, D. Stutte, L. Sumowidagdo, S. Svoisky, P. Sznajder, A. Talby, M. Tamburello, P. Tanasijczuk, A. Taylor, W. Temple, J. Tiller, B. Tissandier, F. Titov, M. Tokmenin, V. V. Toole, T. Torchiani, I. Trefzger, T. Tsybychev, D. Tuchming, B. Tully, C. Tuts, P. M. Unalan, R. Uvarov, S. Uvarov, L. Uzunyan, S. Vachon, B. van den Berg, P. J. Van Kooten, R. van Leeuwen, W. M. Varelas, N. Varnes, E. W. Vasilyev, I. A. Vaupel, M. Verdier, P. Vertogradov, L. S. Verzocchi, M. Villeneuve-Seguier, F. Vint, P. Vokac, P. Von Toerne, E. Voutilainen, M. Wagner, R. Wahl, H. D. Wang, L. Wang, M. H. L. S. Warchol, J. Watts, G. Wayne, M. Weber, M. Weber, G. Wenger, A. Wermes, N. Wetstein, M. White, A. Wicke, D. Williams, M. R. J. Wilson, G. W. Wimpenny, S. J. Wobisch, M. Wood, D. R. Wyatt, T. R. Xie, Y. Yacoob, S. Yamada, R. Yan, M. Yasuda, T. Yatsunenko, Y. A. Yip, K. Yoo, H. D. Youn, S. W. Yu, J. Zatserklyaniy, A. Zeitnitz, C. Zhao, T. Zhou, B. Zhu, J. Zielinski, M. Zieminska, D. Zieminski, A. Zivkovic, L. Zutshi, V. Zverev, E. G. CA DO Collaboration TI Observation and properties of the orbitally excited B-s2* meson SO PHYSICAL REVIEW LETTERS LA English DT Article ID PHYSICS AB We report the direct observation of the excited L=1 state B-s2* in fully reconstructed decays to B+K-. The mass of the B-s2* meson is measured to be 5839.6 +/- 1.1(stat)+/- 0.7(syst) MeV/c(2), and its production rate relative to the B+ meson is measured to be [1.15 +/- 0.23(stat)+/- 0.13(syst)]%. C1 [Piegaia, R.; Tanasijczuk, A.] Univ Buenos Aires, Buenos Aires, DF, Argentina. [Alves, G. A.; Barreto, J.; da Motta, H.; Maciel, A. K. A.; Rangel, M. S.; Souza, M.] Ctr Brasileiro Pesquisas Fis, LAFEX, Rio De Janeiro, Brazil. [Jesus, A. C. S. Assis; Begalli, M.; Carvalho, W.; Martins, C. De Oliveira; Malbouisson, H. B.; Molina, J.; Mundim, L.; Nogima, H.; da Silva, W. L. Prado; Rodrigues, R. F.; Santoro, A.; Sznajder, A.] Univ Estado Rio de Janeiro, Rio De Janeiro, Brazil. [Gregores, E. M.] Univ Fed ABC, Santo Andre, Brazil. [Lietti, S. M.; Mercadante, P. G.; Novaes, S. F.] Univ Estadual Paulista, Inst Fis Teor, BR-01405 Sao Paulo, Brazil. [Aguilo, E.; Beale, S.; Chan, K.; Coadou, Y.; Gillberg, D.; Liu, Z.; Moore, R. W.; O'Neil, D. C.; Taylor, W.; Vachon, B.] Univ Alberta, Edmonton, AB, Canada. [Aguilo, E.; Beale, S.; Chan, K.; Coadou, Y.; Gillberg, D.; Liu, Z.; Moore, R. W.; O'Neil, D. C.; Taylor, W.; Vachon, B.] Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada. [Aguilo, E.; Beale, S.; Chan, K.; Coadou, Y.; Gillberg, D.; Liu, Z.; Moore, R. W.; O'Neil, D. C.; Taylor, W.; Vachon, B.] York Univ, Toronto, ON M3J 2R7, Canada. [Aguilo, E.; Beale, S.; Chan, K.; Coadou, Y.; Gillberg, D.; Liu, Z.; Moore, R. W.; O'Neil, D. C.; Taylor, W.; Vachon, B.] McGill Univ, Montreal, PQ, Canada. [Han, L.; Liu, Y.] Univ Sci & Technol China, Hefei 230026, Peoples R China. [Avila, C.; Gomez, B.; Mendoza, L.] Univ Los Andes, Bogota, Colombia. [Hynek, V.; Kvita, J.; Soustruznik, K.] Charles Univ Prague, Ctr Particle Phys, Prague, Czech Republic. [Hubacek, Z.; Otec, R.; Simak, V.; Vokac, P.] Czech Tech Univ, CR-16635 Prague, Czech Republic. [Kupco, A.; Lokajicek, M.] Acad Sci Czech Republic, Inst Phys, Ctr Particle Phys, Prague, Czech Republic. [Hoeneisen, B.] Univ San Francisco Quito, Quito, Ecuador. [Badaud, F.; Gris, Ph.; Lacroix, F.; Tissandier, F.] Univ Clermont Ferrand, CNRS, IN2P3, Phys Corpusculaire Lab, Clermont Ferrand, France. [Arnoud, Y.; Chevallier, F.; Crepe-Renaudin, S.; Martin, B.; Sajot, G.; Stark, J.] Univ Grenoble 1, CNRS, IN2P3, Lab Phys Subatom & Cosmol, Grenoble, France. [Barfuss, A. -F.; Cousinou, M. -C.; Duperrin, A.; Kajfasz, E.; Kermiche, S.; Mendes, A.; Nagy, E.] Univ Aix Marseille 2, CNRS, IN2P3, CPPM, Marseille, France. [Calvet, S.; Duflot, L.; Grivaz, J. -F.; Jaffre, M.; Ochando, C.; Petroff, P.] CNRS, IN2P3, Lab Accelerateur Lineaire, F-91405 Orsay, France. [Calvet, S.; Duflot, L.; Grivaz, J. -F.; Jaffre, M.; Ochando, C.; Petroff, P.] Univ Paris 11, F-91405 Orsay, France. [Andrieu, B.; Bernardi, G.; Lellouch, J.; Sanders, M. P.; Sonnenschein, L.] Univ Paris 06, CNRS, LPNHE, IN2P3, Paris, France. [Andrieu, B.; Bernardi, G.; Lellouch, J.; Sanders, M. P.; Sonnenschein, L.] Univ Paris 07, CNRS, IN2P3, LPNHE, F-75221 Paris 05, France. [Arthaud, M.; Bassler, U.; Besancon, M.; Chakraborty, D.; Couderc, F.; Deliot, F.; Royon, C.; Shary, V.; Titov, M.; Tuchming, B.] CEA Saclay, DAPNIA, Serv Phys Particules, Saclay, France. [Bloch, D.; Geist, W.; Gele, D.; Ripp-Baudot, I.; Siccardi, V.] Univ Strasbourg 1, IPHC, Strasbourg, France. [Bloch, D.; Geist, W.; Gele, D.; Ripp-Baudot, I.; Siccardi, V.] Univ Haute Alsace, CNRS, IN2P3, Strasbourg, France. [Biscarat, C.; Grenier, G.; Kurca, T.; Lebrun, P.; Millet, T.; Muanza, G. S.; Verdier, P.] Univ Lyon 1, IPNL, CNRS, IN2P3, F-69622 Villeurbanne, France. [Biscarat, C.; Grenier, G.; Kurca, T.; Lebrun, P.; Millet, T.; Muanza, G. S.; Verdier, P.] Univ Lyon, Lyon, France. [Autermann, C.; Hebbeker, T.; Kaefer, D.; Kappler, S.; Kirsch, M.; Magass, C.; Meyer, A.] Rhein Westfal TH Aachen, Phys Inst A 3, Aachen, Germany. [Buescher, V.; Hohlfeld, M.; Mundal, O.; Pleier, M. -A.; Wermes, N.] Univ Bonn, Inst Phys, D-5300 Bonn, Germany. [Bernhard, R.; Fox, H.; Jakobs, K.; Konrath, J. -P.; Nilsen, H.; Penning, B.; Torchiani, I.] Univ Freiburg, Inst Phys, Freiburg, Germany. [Ay, C.; Fiedler, F.; Kuhl, T.; Trefzger, T.; Weber, G.] Johannes Gutenberg Univ Mainz, D-6500 Mainz, Germany. [Calfayan, P.; Grohsjean, A.; Haefner, P.; Nunnemann, T.; Schaile, D.; Schieferdecker, P.; Strom, D.; Tiller, B.] Univ Munich, Munich, Germany. [Hoeth, H.; Maettig, P.; Peters, Y.; Schliephake, T.; Vaupel, M.; Wicke, D.; Zeitnitz, C.] Univ Wuppertal, Fachbereich Phys, Wuppertal, Germany. [Beri, S. B.; Bhatnagar, V.; Kaur, R.; Kohli, J. M.] Panjab Univ, Chandigarh 160014, India. [Choudhary, B.; Ranjan, K.; Shivpuri, R. K.] Univ Delhi, Delhi 110007, India. [Acharya, B. S.; Banerjee, S.; Banerjee, P.; Dugad, S. R.; Mondal, N. K.] Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India. [Cwiok, M.] Univ Coll Dublin, Dublin 2, Ireland. [Ahn, S. H.; Hong, S. J.; Kim, T. J.; Park, S. K.] Korea Univ, Korea Detector Lab, Seoul 136701, South Korea. [Alton, A.; Choi, S.; Kim, H.] Sungkyunkwan Univ, Suwon, South Korea. [Castilla-Valdez, H.; Sanchez-Hernandez, A.] CINVESTAV, Mexico City 14000, DF, Mexico. [Hegeman, J. G.; van den Berg, P. J.; van Leeuwen, W. M.; Zhou, B.] FOM, Inst NIKHEF, NL-1098 SJ Amsterdam, Netherlands. [Hegeman, J. G.; Houben, P.; van den Berg, P. J.; van Leeuwen, W. M.] Univ Amsterdam, NIKHEF, Amsterdam, Netherlands. [Anastasoaie, M.; Ancu, L. S.; de Jong, S. J.; Filthaut, F.; Garcia, C.; Naumann, N. A.] Radboud Univ Nijmegen, NIKHEF, NL-6525 ED Nijmegen, Netherlands. [Abazov, V. M.; Alexeev, G. D.; Tokmenin, V. V.; Vertogradov, L. S.; Yatsunenko, Y. A.] Joint Inst Nucl Res, Dubna, Russia. [Gavrilov, V.; Polozov, P.; Safronov, G.; Stolin, V.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Bunichev, S.; Dudko, L. V.; Ermolov, P.; Karmanov, D.; Leflat, A.; Merkin, M.; Perfilov, M.] Moscow MV Lomonosov State Univ, Moscow, Russia. [Bezzubov, V. A.; Korablev, V. M.; Kozelov, A. V.; Lipaev, V. V.; Popov, A. V.; Shchukin, A. A.; Stoyanova, D. A.; Vasilyev, I. A.] Inst High Energy Phys, Protvino, Russia. [Alkhazov, G.; Lobodenko, A.; Neustroev, P.; Obrant, G.; Scheglov, Y.; Uvarov, S.; Uvarov, L.] Petersburg Nucl Phys Inst, St Petersburg, Russia. [Asman, B.; Belanger-Champagne, C.; Gollub, N.; Hansson, P.; Strandberg, S.] Royal Inst Technol, Stockholm, Sweden. [Asman, B.; Belanger-Champagne, C.; Gollub, N.; Hansson, P.; Strandberg, S.] Lund Univ, Lund, Sweden. [Asman, B.; Belanger-Champagne, C.; Gollub, N.; Hansson, P.; Strandberg, S.] Stockholm Univ, S-10691 Stockholm, Sweden. [Asman, B.; Belanger-Champagne, C.; Gollub, N.; Hansson, P.; Strandberg, S.] Uppsala Univ, Uppsala, Sweden. [Lehner, F.] Univ Zurich, Inst Phys, Zurich, Switzerland. [Bertram, I.; Borissov, G.; Love, P.; Rakitine, A.; Ratoff, P. N.; Sopczak, A.; Williams, M. R. J.] Univ Lancaster, Lancaste, England. [Bauer, D.; Beuselinck, R.; Blekman, F.; Buszello, C. P.; Christofek, L.; Davies, G.; Hays, J.; Jesik, R.; Jonsson, P.; Lewis, P.; Lobo, L.; Petteni, M.; Robinson, S.; Scanlon, T.; Villeneuve-Seguier, F.; Vint, P.] Univ London Imperial Coll Sci Technol & Med, London, England. [Ford, M.; Harder, K.; Mommsen, R. K.; Owen, M.; Peters, Y.; Rich, P.; Schwanenberger, C.; Soldner-Rembold, S.; Wyatt, T. R.] Univ Manchester, Manchester, Lancs, England. [Anderson, S.; Burke, S.; Cheu, E.; Das, A.; Johns, K.; Leveque, J.; Tamburello, P.; Temple, J.; Varnes, E. W.] Univ Arizona, Tucson, AZ 85721 USA. [Madaras, R. J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Hall, R. E.] Calif State Univ Fresno, Fresno, CA 93740 USA. [Chandra, A.; Ellison, J.; Heinson, A. P.; Li, L.; Wimpenny, S. J.] Univ Calif Riverside, Riverside, CA 92521 USA. [Adams, M.; Askew, A.; Atramentov, O.; Blessing, S.; Buchanan, N. J.; Duggan, D.; Gershtein, Y.; Hagopian, S.; Kau, D.; Prosper, H. B.; Sekaric, J.; Sumowidagdo, S.; Wahl, H. D.] Florida State Univ, Tallahassee, FL 32306 USA. [Baldin, B.; Bartlett, J. F.; Bellantoni, L.; Bellavance, A.; Bhat, P. C.; Boehnlein, A.; Bross, A.; Casey, B. C. K.; Cihangir, S.; Cooper, W. E.; Demarteau, M.; Denisov, D.; Desai, S.; Diehl, H. T.; Diesburg, M.; Elvira, V. D.; Fisher, W.; Fisk, H. E.; Fu, S.; Fuess, S.; Gallas, E.; Greenlee, H.; Grunandahl, S.; Gutierrez, G.; Hanagaki, K.; Illingworth, R.; Ito, A. S.; Johnson, C.; Jonckheere, A.; Juste, A.; Kasper, P.; Khalatyan, N.; Klima, B.; Lee, W. M.; Li, Q. Z.; Lincoln, D.; Lipton, R.; Lyon, A. L.; Mao, H. S.; Merritt, K. W.; Mulders, M.; Naimuddin, M.; Nomerotski, A.; O'Dell, V.; Oshima, N.; Garzon, G. J. Otero Y.; Podstavkov, V. M.; Rubinov, P.; Savage, G.; Sirotenko, V.; Stutte, L.; Tissandier, F.; Verzocchi, M.; Wang, L.; Weber, G.; Yamada, R.; Yasuda, T.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Adams, M.; Gerber, C. E.; Heinmiller, J. M.; Shabalina, E.; Varelas, N.] Univ Illinois, Chicago, IL 60607 USA. [Bagby, L.; Blazey, G.; Chakraborty, D.; Dyshkant, A.; Fortner, M.; Hedin, D.; Lima, J. G. R.; Uzunyan, S.; Zatserklyaniy, A.; Zutshi, V.] No Illinois Univ, De Kalb, IL 60115 USA. [Andeen, T.; Anzelc, M. S.; Buchholz, D.; Kirby, M. H.; Schellman, H.; Strom, D.; Yacoob, S.; Youn, S. W.] Northwestern Univ, Evanston, IL 60208 USA. [Evans, H.; Krop, D.; Parua, N.; Van Kooten, R.; Zieminska, D.; Zieminski, A.] Indiana Univ, Bloomington, IN 47405 USA. [Cason, N. M.; Chan, K. M.; Galyaev, E.; Goussiou, A.; Hildreth, M. D.; Lam, D.; Mal, P. K.; Osta, J.; Pogorelov, Y.; Ruchti, R.; Smirnov, D.; Svoisky, P.; Warchol, J.; Wayne, M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Parashar, N.] Purdue Univ Calumet, Hammond, IN 46323 USA. [Hauptman, J. M.] Iowa State Univ, Ames, IA 50011 USA. [Baringer, P.; Bean, A.; Hensel, C.; Moulik, T.; Wilson, G. W.] Univ Kansas, Lawrence, KS 66045 USA. [Ahsan, M.; Bandurin, D. V.; Bolton, T. A.; Ferapontov, A. V.; Maravin, Y.; Onoprienko, D.; Shamim, M.; Von Toerne, E.] Kansas State Univ, Manhattan, KS 66506 USA. [Arov, M.; Greenwood, Z. D.; Kalk, J. M.; Sawyer, L.; Steele, J.; Wobisch, M.] Louisiana Tech Univ, Ruston, LA 71272 USA. [Baden, A.; Eno, S.; Hadley, N. J.; Jarvis, C.; Kunori, S.; Toole, T.; Wang, L.; Wetstein, M.; Yan, M.] Univ Maryland, College Pk, MD 20742 USA. [Boline, D.; Butler, J. M.; Cho, D. K.; Heintz, U.; Jabeen, S.] Boston Univ, Boston, MA 02215 USA. [Alverson, G.; Barberis, E.; Harrington, R.; Hesketh, G.; Reucroft, S.; Wood, D. R.] Northeastern Univ, Boston, MA 02115 USA. [De la Cruz-Burelo, E.; Neal, H. A.; Qian, J.; Strandberg, J.; Zhou, B.] Univ Michigan, Ann Arbor, MI 48109 USA. [Abolins, M.; Benitez, J. A.; Brock, R.; Dyer, J.; Edmunds, D.; Hall, I.; Hauser, R.; Kalk, J. R.; Linnemann, J.; Piper, J.; Pope, B. G.; Schwienhorst, R.; Unalan, R.] Michigan State Univ, E Lansing, MI 48824 USA. [Melnitchouk, A.; Quinn, B.] Univ Mississippi, University, MS 38677 USA. [Bloom, K.; Claes, D.; Dominguez, A.; Eads, M.; Malik, S.; Snow, G. R.] Univ Nebraska, Lincoln, NE 68588 USA. [Haley, J.; Schwartzman, A.; Tully, C.; Wagner, R.] Princeton Univ, Princeton, NJ 08544 USA. [Iashvili, I.; Kharchilava, A.; Kumar, A.; Strang, M. A.] SUNY Buffalo, Buffalo, NY 14260 USA. [Brooijmans, G.; Haas, A.; Johnson, C.; Katsanos, I.; Khatidze, D.; Lammers, S.; Mitrevski, J.; Mulhearn, M.; Parsons, J.; Tuts, P. M.; Zivkovic, L.] Columbia Univ, New York, NY 10027 USA. [Begel, M.; Cammin, J.; Demina, R.; Ferbel, T.; Garcia, C.; Ginther, G.; Harel, A.; Park, S. -J.; Slattery, P.; Zielinski, M.] Univ Rochester, Rochester, NY 14627 USA. [Dong, H.; Grannis, P. D.; Guo, J.; Guo, F.; Herner, K.; Hobbs, J. D.; Hu, Y.; McCarthy, R.; Rijssenbeek, M.; Schamberger, R. D.; Strauss, E.; Tsybychev, D.; Zhu, J.] SUNY Stony Brook, Stony Brook, NY 11794 USA. [Evdokimov, A.; Patwa, A.; Protopopescu, S.; Snyder, S.; Yip, K.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Snow, J.] Langston Univ, Langston, OK 73050 USA. [Abbott, B.; Gutierrez, P.; Hossain, S.; Jain, S.; Kopal, M.; Rominsky, M.; Severini, H.; Skubic, P.; Strauss, M.] Univ Oklahoma, Norman, OK 73019 USA. [Khanov, A.; Rizatdinova, F.] Oklahoma State Univ, Stillwater, OK 74078 USA. [Bose, T.; Christofek, L.; Cutts, D.; Enari, Y.; Landsberg, G.; Narain, M.; Pangilinan, M.; Partridge, R.; Xie, Y.; Yoo, H. D.] Brown Univ, Providence, RI 02912 USA. [Brandt, A.; De, K.; Kaushik, V.; Li, J.; Sosebee, M.; Spurlock, B.; White, A.; Yu, J.] Univ Texas Arlington, Arlington, TX 76019 USA. [Kehoe, R.; Renkel, P.] So Methodist Univ, Dallas, TX 75275 USA. [Bargassa, P.; Cooke, M.; Corcoran, M.; Mackin, D.; Padley, P.; Pawloski, G.] Rice Univ, Houston, TX 77005 USA. [Brown, D.; Buehler, M.; Hirosky, R.] Univ Virginia, Charlottesville, VA 22901 USA. [Burnett, T. H.; Gadfort, T.; Garcia-Bellido, A.; Lubatti, H. J.; Watts, G.; Zhao, T.] Univ Washington, Seattle, WA 98195 USA. RP Abazov, VM (reprint author), Univ Buenos Aires, Buenos Aires, DF, Argentina. RI Bargassa, Pedrame/O-2417-2016; Juste, Aurelio/I-2531-2015; Fisher, Wade/N-4491-2013; Ancu, Lucian Stefan/F-1812-2010; Alves, Gilvan/C-4007-2013; Santoro, Alberto/E-7932-2014; Deliot, Frederic/F-3321-2014; Sharyy, Viatcheslav/F-9057-2014; Kupco, Alexander/G-9713-2014; Christoudias, Theodoros/E-7305-2015; KIM, Tae Jeong/P-7848-2015; Sznajder, Andre/L-1621-2016; Li, Liang/O-1107-2015; Mundim, Luiz/A-1291-2012; Nomerotski, Andrei/A-5169-2010; Novaes, Sergio/D-3532-2012; Merkin, Mikhail/D-6809-2012; Leflat, Alexander/D-7284-2012; Dudko, Lev/D-7127-2012; Perfilov, Maxim/E-1064-2012; Shivpuri, R K/A-5848-2010; Gutierrez, Phillip/C-1161-2011; Mercadante, Pedro/K-1918-2012; Yip, Kin/D-6860-2013; De, Kaushik/N-1953-2013 OI Bertram, Iain/0000-0003-4073-4941; Belanger-Champagne, Camille/0000-0003-2368-2617; Begel, Michael/0000-0002-1634-4399; Haas, Andrew/0000-0002-4832-0455; Williams, Mark/0000-0001-5448-4213; Weber, Michele/0000-0002-2770-9031; Grohsjean, Alexander/0000-0003-0748-8494; Melnychuk, Oleksandr/0000-0002-2089-8685; Bassler, Ursula/0000-0002-9041-3057; Filthaut, Frank/0000-0003-3338-2247; Naumann, Axel/0000-0002-4725-0766; Malik, Sudhir/0000-0002-6356-2655; Blekman, Freya/0000-0002-7366-7098; Blazey, Gerald/0000-0002-7435-5758; Evans, Harold/0000-0003-2183-3127; Beuselinck, Raymond/0000-0003-2613-7446; Weber, Gernot/0000-0003-4199-1640; Heinson, Ann/0000-0003-4209-6146; grannis, paul/0000-0003-4692-2142; Qian, Jianming/0000-0003-4813-8167; Madaras, Ronald/0000-0001-7399-2993; Sawyer, Lee/0000-0001-8295-0605; Bargassa, Pedrame/0000-0001-8612-3332; Hedin, David/0000-0001-9984-215X; Wahl, Horst/0000-0002-1345-0401; Juste, Aurelio/0000-0002-1558-3291; de Jong, Sijbrand/0000-0002-3120-3367; Landsberg, Greg/0000-0002-4184-9380; Blessing, Susan/0000-0002-4455-7279; Gershtein, Yuri/0000-0002-4871-5449; Duperrin, Arnaud/0000-0002-5789-9825; Hoeneisen, Bruce/0000-0002-6059-4256; Ancu, Lucian Stefan/0000-0001-5068-6723; Sharyy, Viatcheslav/0000-0002-7161-2616; Christoudias, Theodoros/0000-0001-9050-3880; KIM, Tae Jeong/0000-0001-8336-2434; Sznajder, Andre/0000-0001-6998-1108; Li, Liang/0000-0001-6411-6107; Bean, Alice/0000-0001-5967-8674; Mundim, Luiz/0000-0001-9964-7805; Novaes, Sergio/0000-0003-0471-8549; Dudko, Lev/0000-0002-4462-3192; Yip, Kin/0000-0002-8576-4311; De, Kaushik/0000-0002-5647-4489 NR 17 TC 43 Z9 43 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD FEB 29 PY 2008 VL 100 IS 8 AR 082002 DI 10.1103/PhysRevLett.100.082002 PG 7 WC Physics, Multidisciplinary SC Physics GA 271BR UT WOS:000253764400015 ER PT J AU Antonangeli, D Krisch, M Farber, DL Ruddle, DG Fiquet, G AF Antonangeli, Daniele Krisch, Michael Farber, Daniel L. Ruddle, David G. Fiquet, Guillaume TI Elasticity of hexagonal-closed-packed cobalt at high pressure and temperature: A quasiharmonic case SO PHYSICAL REVIEW LETTERS LA English DT Article ID SITU X-RAY; EARTHS INNER-CORE; THERMAL-EXPANSION; EPSILON-IRON; GPA; ANISOTROPY; DIFFRACTION; FE; GIGAPASCALS; TRANSITION AB We performed high-resolution inelastic x-ray scattering measurements on a single crystal of hcp cobalt at simultaneous high pressure and high temperature, obtaining 4 of the 5 independent elements of the elastic tensor. Our experiments indicate that the elasticity of hcp-Co is well described within the quasiharmonic approximation and that anharmonic high-temperature effects on the elastic moduli, sound velocities, and elastic anisotropy are minimal at constant density. These results support the validity of Birch's law and represent an important benchmark for ab initio thermal lattice dynamics and molecular-dynamics simulations. C1 [Antonangeli, Daniele; Farber, Daniel L.; Ruddle, David G.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Krisch, Michael] European Synchrotron Radiat Facil, F-38043 Grenoble, France. [Fiquet, Guillaume] Univ Paris 06, Inst Minerol & Phys Milieux Condenses, UMR CNRS 7590, Inst Phys Globe Paris, F-75005 Paris, France. [Fiquet, Guillaume] Univ Paris 07, F-75005 Paris, France. RP Antonangeli, D (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RI Farber, Daniel/F-9237-2011; Fiquet, Guillaume/H-1219-2011; Fiquet, Guillaume/M-6934-2014 NR 34 TC 21 Z9 21 U1 0 U2 11 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD FEB 29 PY 2008 VL 100 IS 8 AR 085501 DI 10.1103/PhysRevLett.100.085501 PG 4 WC Physics, Multidisciplinary SC Physics GA 271BR UT WOS:000253764400032 PM 18352634 ER PT J AU Aubert, B Bona, M Boutigny, D Karyotakis, Y Lees, JP Poireau, V Prudent, X Tisserand, V Zghiche, A Tico, JG Grauges, E Lopez, L Palano, A Pappagallo, M Eigen, G Stugu, B Sun, L Abrams, GS Battaglia, M Brown, DN Button-Shafer, J Cahn, RN Groysman, Y Jacobsen, RG Kadyk, JA Kerth, LT Kolomensky, YG Kukartsev, G Pegna, DL Lynch, G Mir, LM Orimoto, TJ Osipenkov, IL Ronan, MT Tackmann, K Tanabe, T Wenzel, WA Sanchez, PD Hawkes, CM Watson, AT Koch, H Schroeder, T Walker, D Asgeirsson, DJ Cuhadar-Donszelmann, T Fulsom, BG Hearty, C Mattison, TS McKenna, JA Khan, A Saleem, M Teodorescu, L Blinov, VE Bukin, AD Druzhinin, VP Golubev, VB Onuchin, AP Serednyakov, SI Skovpen, YI Solodov, EP Todyshev, KY Bondioli, M Curry, S Eschrich, I Kirkby, D Lankford, AJ Lund, P Mandelkern, M Martin, EC Stoker, DP Abachi, S Buchanan, C Foulkes, SD Gary, JW Liu, F Long, O Shen, BC Vitug, GM Zhang, L Paar, HP Rahatlou, S Sharma, V Berryhill, JW Campagnari, C Cunha, A Dahmes, B Hong, TM Kovalskyi, D Richman, JD Beck, TW Eisner, AM Flacco, CJ Heusch, CA Kroseberg, J Lockman, WS Schalk, T Schumm, BA Seiden, A Wilson, MG Winstrom, LO Chen, E Cheng, CH Fang, F Hitlin, DG Narsky, I Piatenko, T Porter, FC Andreassen, R Mancinelli, G Meadows, BT Mishra, K Sokoloff, MD Blanc, F Bloom, PC Chen, S Ford, WT Hirschauer, JF Kreisel, A Nagel, M Nauenberg, U Olivas, A Smith, JG Ulmer, KA Wagner, SR Zhang, J Gabareen, AM Soffer, A Toki, WH Wilson, RJ Winklmeier, F Altenburg, DD Feltresi, E Hauke, A Jasper, H Merkel, J Petzold, A Spaan, B Wacker, K Klose, V Kobel, MJ Lacker, HM Mader, WF Nogowski, R Schubert, J Schubert, KR Schwierz, R Sundermann, JE Volk, A Bernard, D Bonneaud, GR Latour, E Lombardo, V Thiebaux, C Verderi, M Clark, PJ Gradl, W Muheim, F Playfer, S Robertson, AI Watson, JE Xie, Y Andreotti, M Bettoni, D Bozzi, C Calabrese, R Cecchi, A Cibinetto, G Franchini, P Luppi, E Negrini, M Petrella, A Piemontese, L Prencipe, E Santoro, V Anulli, F Baldini-Ferroli, R Calcaterra, A de Sangro, R Finocchiaro, G Pacetti, S Patteri, P Peruzzi, IM Piccolo, M Rama, M Zallo, A Buzzo, A Contri, R Lo Vetere, M Macri, MM Monge, MR Passaggio, S Patrignani, C Robutti, E Santroni, A Tosi, S Chaisanguanthum, KS Morii, M Wu, J Dubitzky, RS Marks, J Schenk, S Uwer, U Bard, DJ Dauncey, PD Flack, RL Nash, JA Vazquez, WP Tibbetts, M Behera, PK Chai, X Charles, MJ Mallik, U Cochran, J Crawley, HB Dong, L Eyges, V Meyer, WT Prell, S Rosenberg, EI Rubin, AE Gao, YY Gritsan, AV Guo, ZJ Lae, CK Denig, AG Fritsch, M Schott, G Arnaud, N Bequilleux, J D'Orazio, A Davier, M Grosdidier, G Hocker, A Lepeltier, V Le Diberder, F Lutz, AM Pruvot, S Rodier, S Roudeau, P Schune, MH Serrano, J Sordini, V Stocchi, A Wang, WF Wormser, G Lange, DJ Wright, DM Bingham, I Burke, JP Chavez, CA Fry, JR Gabathuler, E Gamet, R Hutchcroft, DE Payne, DJ Schofield, KC Touramanis, C Bevan, AJ George, KA Di Lodovico, F Sacco, R Cowan, G Flaecher, HU Hopkins, DA Paramesvaran, S Salvatore, F Wren, AC Brown, DN Davis, CL Allison, J Bailey, D Barlow, NR Barlow, RJ Chia, YM Edgar, CL Lafferty, GD West, TJ Yi, JI Anderson, J Chen, C Jawahery, A Roberts, DA Simi, G Tuggle, JM Blaylock, G Dallapiccola, C Hertzbach, SS Li, X Moore, TB Salvati, E Saremi, S Cowan, R Dujmic, D Fisher, PH Koeneke, K Sciolla, G Spitznagel, M Taylor, F Yamamoto, RK Zhao, M Zheng, Y Mclachlin, SE Patel, PM Robertson, SH Lazzaro, A Palombo, F Bauer, JM Cremaldi, L Eschenburg, V Godang, R Kroeger, R Sanders, DA Summers, DJ Zhao, HW Brunet, S Cote, D Simard, M Taras, P Viaud, FB Nicholson, H De Nardo, G Fabozzi, F Lista, L Monorchio, D Sciacca, C Baak, MA Raven, G Snoek, HL Jessop, CP Knoepfel, KJ LoSecco, JM Benelli, G Corwin, LA Honscheid, K Kagan, H Kass, R Morris, JP Rahimi, AM Regensburger, JJ Sekula, SJ Wong, QK Blount, NL Brau, J Frey, R Igonkina, O Kolb, JA Lu, M Rahmat, R Sinev, NB Strom, D Strube, J Torrence, E Gagliardi, N Gaz, A Margoni, M Morandin, M Pompili, A Posocco, M Rotondo, M Simonetto, F Stroili, R Voci, C Ben-Haim, E Briand, H Calderini, G Chauveau, J David, P Del Buono, L de la Vaissiere, C Hamon, O Leruste, P Malcles, J Ocariz, J Perez, A Prendki, J Gladney, L Biasini, M Covarelli, R Manoni, E Angelini, C Batignani, G Bettarini, S Carpinelli, M Cenci, R Cervelli, A Forti, F Giorgi, MA Lusiani, A Marchiori, G Mazur, MA Morganti, M Neri, N Paoloni, E Rizzo, G Walsh, JJ Biesiada, J Elmer, P Lau, YP Lu, C Olsen, J Smith, AJS Telnov, AV Baracchini, E Bellini, F Cavoto, G del Re, D di Marco, E Faccini, R Ferrarotto, F Ferroni, F Gaspero, M Jackson, PD Gioi, LL Mazzoni, MA Morganti, S Piredda, G Polci, F Renga, F Voena, C Ebert, M Hartmann, T Schroeder, H Waldi, R Adye, T Castelli, G Franek, B Olaiya, EO Roethel, W Wilson, FF Emery, S Escalier, M Gaidot, A Ganzhur, SF de Monchenault, GH Kozanecki, W Vasseur, G Yeche, C Zito, M Chen, XR Liu, H Park, W Purohit, MV White, RM Wilson, JR Allen, MT Aston, D Bartoldus, R Bechtle, P Claus, R Coleman, JP Convery, MR Dingfelder, JC Dorfan, J Dubois-Felsmann, GP Dunwoodie, W Field, RC Glanzman, T Gowdy, SJ Graham, MT Grenier, P Hast, C Innes, WR Kaminski, J Kelsey, MH Kim, H Kim, P Kocian, ML Leith, DWGS Li, S Luitz, S Luth, V Lynch, HL MacFarlane, DB Marsiske, H Messner, R Muller, DR O'Grady, CP Ofte, I Perazzo, A Perl, M Pulliam, T Ratcliff, BN Roodman, A Salnikov, AA Schindler, RH Schwiening, J Snyder, A Su, D Sullivan, MK Suzuki, K Swain, SK Thompson, JM Va'vra, J Wagner, AP Weaver, M Wisniewski, WJ Wittgen, M Wright, DH Yarritu, AK Yi, K Young, CC Ziegler, V Burchat, PR Edwards, AJ Majewski, SA Miyashita, TS Petersen, BA Wilden, L Ahmed, S Alam, MS Bula, R Ernst, JA Jain, V Pan, B Saeed, MA Wappler, FR Zain, SB Krishnamurthy, M Spanier, SM Eckmann, R Ritchie, JL Ruland, AM Schilling, CJ Schwitters, RF Izen, JM Lou, XC Ye, S Bianchi, F Gallo, F Gamba, D Pelliccioni, M Bomben, M Bosisio, L Cartaro, C Cossutti, F Della Ricca, G Lanceri, L Vitale, L Azzolini, V Lopez-March, N Martinez-Vidal, F Milanes, DA Oyanguren, A Albert, J Banerjee, S Bhuyan, B Hamano, K Kowalewski, R Nugent, IM Roney, JM Sobie, RJ Harrison, PF Ilic, J Latham, TE Mohanty, GB Band, HR Chen, X Dasu, S Flood, KT Hollar, JJ Kutter, PE Pan, Y Pierini, M Prepost, R Wu, SL Neal, H AF Aubert, B. Bona, M. Boutigny, D. Karyotakis, Y. Lees, J. P. Poireau, V. Prudent, X. Tisserand, V. Zghiche, A. Tico, J. Garra Grauges, E. Lopez, L. Palano, A. Pappagallo, M. Eigen, G. Stugu, B. Sun, L. Abrams, G. S. Battaglia, M. Brown, D. N. Button-Shafer, J. Cahn, R. N. Groysman, Y. Jacobsen, R. G. Kadyk, J. A. Kerth, L. T. Kolomensky, Yu. G. Kukartsev, G. Pegna, D. Lopes Lynch, G. Mir, L. M. Orimoto, T. J. Osipenkov, I. L. Ronan, M. T. Tackmann, K. Tanabe, T. Wenzel, W. A. Sanchez, P. del Amo Hawkes, C. M. Watson, A. T. Koch, H. Schroeder, T. Walker, D. Asgeirsson, D. J. Cuhadar-Donszelmann, T. Fulsom, B. G. Hearty, C. Mattison, T. S. McKenna, J. A. Khan, A. Saleem, M. Teodorescu, L. Blinov, V. E. Bukin, A. D. Druzhinin, V. P. Golubev, V. B. Onuchin, A. P. Serednyakov, S. I. Skovpen, Yu. I. Solodov, E. P. Todyshev, K. Yu. Bondioli, M. Curry, S. Eschrich, I. Kirkby, D. Lankford, A. J. Lund, P. Mandelkern, M. Martin, E. C. Stoker, D. P. Abachi, S. Buchanan, C. Foulkes, S. D. Gary, J. W. Liu, F. Long, O. Shen, B. C. Vitug, G. M. Zhang, L. Paar, H. P. Rahatlou, S. Sharma, V. Berryhill, J. W. Campagnari, C. Cunha, A. Dahmes, B. Hong, T. M. Kovalskyi, D. Richman, J. D. Beck, T. W. Eisner, A. M. Flacco, C. J. Heusch, C. A. Kroseberg, J. Lockman, W. S. Schalk, T. Schumm, B. A. Seiden, A. Wilson, M. G. Winstrom, L. O. Chen, E. Cheng, C. H. Fang, F. Hitlin, D. G. Narsky, I. Piatenko, T. Porter, F. C. Andreassen, R. Mancinelli, G. Meadows, B. T. Mishra, K. Sokoloff, M. D. Blanc, F. Bloom, P. C. Chen, S. Ford, W. T. Hirschauer, J. F. Kreisel, A. Nagel, M. Nauenberg, U. Olivas, A. Smith, J. G. Ulmer, K. A. Wagner, S. R. Zhang, J. Gabareen, A. M. Soffer, A. Toki, W. H. Wilson, R. J. Winklmeier, F. Altenburg, D. D. Feltresi, E. Hauke, A. Jasper, H. Merkel, J. Petzold, A. Spaan, B. Wacker, K. Klose, V. Kobel, M. J. Lacker, H. M. Mader, W. F. Nogowski, R. Schubert, J. Schubert, K. R. Schwierz, R. Sundermann, J. E. Volk, A. Bernard, D. Bonneaud, G. R. Latour, E. Lombardo, V. Thiebaux, Ch. Verderi, M. Clark, P. J. Gradl, W. Muheim, F. Playfer, S. Robertson, A. I. Watson, J. E. Xie, Y. Andreotti, M. Bettoni, D. Bozzi, C. Calabrese, R. Cecchi, A. Cibinetto, G. Franchini, P. Luppi, E. Negrini, M. Petrella, A. Piemontese, L. Prencipe, E. Santoro, V. Anulli, F. Baldini-Ferroli, R. Calcaterra, A. de Sangro, R. Finocchiaro, G. Pacetti, S. Patteri, P. Peruzzi, I. M. Piccolo, M. Rama, M. Zallo, A. Buzzo, A. Contri, R. Lo Vetere, M. Macri, M. M. Monge, M. R. Passaggio, S. Patrignani, C. Robutti, E. Santroni, A. Tosi, S. Chaisanguanthum, K. S. Morii, M. Wu, J. Dubitzky, R. S. Marks, J. Schenk, S. Uwer, U. Bard, D. J. Dauncey, P. D. Flack, R. L. Nash, J. A. Vazquez, W. Panduro Tibbetts, M. Behera, P. K. Chai, X. Charles, M. J. Mallik, U. Cochran, J. Crawley, H. B. Dong, L. Eyges, V. Meyer, W. T. Prell, S. Rosenberg, E. I. Rubin, A. E. Gao, Y. Y. Gritsan, A. V. Guo, Z. J. Lae, C. K. Denig, A. G. Fritsch, M. Schott, G. Arnaud, N. Bequilleux, J. D'Orazio, A. Davier, M. Grosdidier, G. Hoecker, A. Lepeltier, V. Le Diberder, F. Lutz, A. M. Pruvot, S. Rodier, S. Roudeau, P. Schune, M. H. Serrano, J. Sordini, V. Stocchi, A. Wang, W. F. Wormser, G. Lange, D. J. Wright, D. M. Bingham, I. Burke, J. P. Chavez, C. A. Fry, J. R. Gabathuler, E. Gamet, R. Hutchcroft, D. E. Payne, D. J. Schofield, K. C. Touramanis, C. Bevan, A. J. George, K. A. Di Lodovico, F. Sacco, R. Cowan, G. Flaecher, H. U. Hopkins, D. A. Paramesvaran, S. Salvatore, F. Wren, A. C. Brown, D. N. Davis, C. L. Allison, J. Bailey, D. Barlow, N. R. Barlow, R. J. Chia, Y. M. Edgar, C. L. Lafferty, G. D. West, T. J. Yi, J. I. Anderson, J. Chen, C. Jawahery, A. Roberts, D. A. Simi, G. Tuggle, J. M. Blaylock, G. Dallapiccola, C. Hertzbach, S. S. Li, X. Moore, T. B. Salvati, E. Saremi, S. Cowan, R. Dujmic, D. Fisher, P. H. Koeneke, K. Sciolla, G. Spitznagel, M. Taylor, F. Yamamoto, R. K. Zhao, M. Zheng, Y. Mclachlin, S. E. Patel, P. M. Robertson, S. H. Lazzaro, A. Palombo, F. Bauer, J. M. Cremaldi, L. Eschenburg, V. Godang, R. Kroeger, R. Sanders, D. A. Summers, D. J. Zhao, H. W. Brunet, S. Cote, D. Simard, M. Taras, P. Viaud, F. B. Nicholson, H. De Nardo, G. Fabozzi, F. Lista, L. Monorchio, D. Sciacca, C. Baak, M. A. Raven, G. Snoek, H. L. Jessop, C. P. Knoepfel, K. J. LoSecco, J. M. Benelli, G. Corwin, L. A. Honscheid, K. Kagan, H. Kass, R. Morris, J. P. Rahimi, A. M. Regensburger, J. J. Sekula, S. J. Wong, Q. K. Blount, N. L. Brau, J. Frey, R. Igonkina, O. Kolb, J. A. Lu, M. Rahmat, R. Sinev, N. B. Strom, D. Strube, J. Torrence, E. Gagliardi, N. Gaz, A. Margoni, M. Morandin, M. Pompili, A. Posocco, M. Rotondo, M. Simonetto, F. Stroili, R. Voci, C. Ben-Haim, E. Briand, H. Calderini, G. Chauveau, J. David, P. Del Buono, L. de la Vaissiere, Ch. Hamon, O. Leruste, Ph. Malcles, J. Ocariz, J. Perez, A. Prendki, J. Gladney, L. Biasini, M. Covarelli, R. Manoni, E. Angelini, C. Batignani, G. Bettarini, S. Carpinelli, M. Cenci, R. Cervelli, A. Forti, F. Giorgi, M. A. Lusiani, A. Marchiori, G. Mazur, M. A. Morganti, M. Neri, N. Paoloni, E. Rizzo, G. Walsh, J. J. Biesiada, J. Elmer, P. Lau, Y. P. Lu, C. Olsen, J. Smith, A. J. S. Telnov, A. V. Baracchini, E. Bellini, F. Cavoto, G. del Re, D. di Marco, E. Faccini, R. Ferrarotto, F. Ferroni, F. Gaspero, M. Jackson, P. D. Gioi, L. Li Mazzoni, M. A. Morganti, S. Piredda, G. Polci, F. Renga, F. Voena, C. Ebert, M. Hartmann, T. Schroeder, H. Waldi, R. Adye, T. Castelli, G. Franek, B. Olaiya, E. O. Roethel, W. Wilson, F. F. Emery, S. Escalier, M. Gaidot, A. Ganzhur, S. F. de Monchenault, G. Hamel Kozanecki, W. Vasseur, G. Yeche, Ch. Zito, M. Chen, X. R. Liu, H. Park, W. Purohit, M. V. White, R. M. Wilson, J. R. Allen, M. T. Aston, D. Bartoldus, R. Bechtle, P. Claus, R. Coleman, J. P. Convery, M. R. Dingfelder, J. C. Dorfan, J. Dubois-Felsmann, G. P. Dunwoodie, W. Field, R. C. Glanzman, T. Gowdy, S. J. Graham, M. T. Grenier, P. Hast, C. Innes, W. R. Kaminski, J. Kelsey, M. H. Kim, H. Kim, P. Kocian, M. L. Leith, D. W. G. S. Li, S. Luitz, S. Luth, V. Lynch, H. L. MacFarlane, D. B. Marsiske, H. Messner, R. Muller, D. R. O'Grady, C. P. Ofte, I. Perazzo, A. Perl, M. Pulliam, T. Ratcliff, B. N. Roodman, A. Salnikov, A. A. Schindler, R. H. Schwiening, J. Snyder, A. Su, D. Sullivan, M. K. Suzuki, K. Swain, S. K. Thompson, J. M. Va'vra, J. Wagner, A. P. Weaver, M. Wisniewski, W. J. Wittgen, M. Wright, D. H. Yarritu, A. K. Yi, K. Young, C. C. Ziegler, V. Burchat, P. R. Edwards, A. J. Majewski, S. A. Miyashita, T. S. Petersen, B. A. Wilden, L. Ahmed, S. Alam, M. S. Bula, R. Ernst, J. A. Jain, V. Pan, B. Saeed, M. A. Wappler, F. R. Zain, S. B. Krishnamurthy, M. Spanier, S. M. Eckmann, R. Ritchie, J. L. Ruland, A. M. Schilling, C. J. Schwitters, R. F. Izen, J. M. Lou, X. C. Ye, S. Bianchi, F. Gallo, F. Gamba, D. Pelliccioni, M. Bomben, M. Bosisio, L. Cartaro, C. Cossutti, F. Della Ricca, G. Lanceri, L. Vitale, L. Azzolini, V. Lopez-March, N. Martinez-Vidal, F. Milanes, D. A. Oyanguren, A. Albert, J. Banerjee, Sw. Bhuyan, B. Hamano, K. Kowalewski, R. Nugent, I. M. Roney, J. M. Sobie, R. J. Harrison, P. F. Ilic, J. Latham, T. E. Mohanty, G. B. Band, H. R. Chen, X. Dasu, S. Flood, K. T. Hollar, J. J. Kutter, P. E. Pan, Y. Pierini, M. Prepost, R. Wu, S. L. Neal, H. CA Babar Collaboration TI Observation of B-0 -> K-*0(K)over-bar(*0) and search for B-0 -> K-*0(K)over-bar(*0) SO PHYSICAL REVIEW LETTERS LA English DT Article ID DECAYS; POLARIZATION; ASYMMETRIES AB We report the observation of the b -> d penguin-dominated decay B-0 -> K-*0(K) over bar (*0) with a sample of 383.2 +/- 4.2 million B (B) over bar pairs collected with the BABAR detector at the PEP-II asymmetric-energy e(+)e(-) collider at the Stanford Linear Accelerator Center. The measured branching fraction is B(B-0 -> K-*0(K) over bar (*0))=[1.28(-0.30)(+0.35)+/- 0.11]x10(-6) and the fraction of longitudinal polarization is f(L)(B-0 -> K-*0(K) over bar (*0))=0.80(-0.12)(+0.10)+/- 0.06. The first error quoted is statistical and the second systematic. We also obtain an upper limit at the 90% confidence level on the branching fraction for B(B-0 ->(KK*0)-K-*0)< 0.41x10(-6). C1 [Aubert, B.; Bona, M.; Boutigny, D.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prudent, X.; Tisserand, V.; Zghiche, A.] Univ Savoie, Phys Particules Lab, IN2P3, CNRS, F-74941 Annecy Le Vieux, France. [Tico, J. Garra; Grauges, E.] Univ Barcelona, Fac Fis, Dept ECM, E-08028 Barcelona, Spain. [Lopez, L.; Palano, A.; Pappagallo, M.] Univ Bari, Dipartmento Fis, I-70126 Bari, Italy. [Eigen, G.; Stugu, B.; Sun, L.] Univ Bergen, Inst Phys, N-5007 Bergen, Norway. [Abrams, G. S.; Battaglia, M.; Brown, D. N.; Button-Shafer, J.; Cahn, R. N.; Groysman, Y.; Jacobsen, R. G.; Kadyk, J. A.; Kerth, L. T.; Kolomensky, Yu. G.; Kukartsev, G.; Pegna, D. Lopes; Lynch, G.; Mir, L. M.; Orimoto, T. J.; Osipenkov, I. L.; Ronan, M. T.; Tackmann, K.; Tanabe, T.; Wenzel, W. A.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Abrams, G. S.; Battaglia, M.; Brown, D. N.; Button-Shafer, J.; Cahn, R. N.; Groysman, Y.; Jacobsen, R. G.; Kadyk, J. A.; Kerth, L. T.; Kolomensky, Yu. G.; Kukartsev, G.; Pegna, D. Lopes; Lynch, G.; Mir, L. M.; Orimoto, T. J.; Osipenkov, I. L.; Ronan, M. T.; Tackmann, K.; Tanabe, T.; Wenzel, W. A.] Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Sanchez, P. del Amo; Hawkes, C. M.; Watson, A. T.] Univ Birmingham, Birmingham B15 2TT, W Midlands, England. [Koch, H.; Schroeder, T.] Ruhr Univ Bochum, Inst Experimentalphys, D-44780 Bochum, Germany. [Walker, D.] Univ Bristol, Bristol BS8 1TL, Avon, England. [Asgeirsson, D. J.; Cuhadar-Donszelmann, T.; Fulsom, B. G.; Hearty, C.; Mattison, T. S.; McKenna, J. A.] Univ British Columbia, Vancouver, BC V6T 1Z1, Canada. [Khan, A.; Saleem, M.; Teodorescu, L.] Brunel Univ, Uxbridge UB8 3PH, Middx, England. [Blinov, V. E.; Bukin, A. D.; Druzhinin, V. P.; Golubev, V. B.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.] Budker Inst Nucl Phys, Novosibirsk 630090, Russia. [Bondioli, M.; Curry, S.; Eschrich, I.; Kirkby, D.; Lankford, A. J.; Lund, P.; Mandelkern, M.; Martin, E. C.; Stoker, D. P.] Univ Calif Irvine, Irvine, CA 92697 USA. [Abachi, S.; Buchanan, C.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Foulkes, S. D.; Gary, J. W.; Liu, F.; Long, O.; Shen, B. C.; Vitug, G. M.; Zhang, L.] Univ Calif Riverside, Riverside, CA 92521 USA. [Paar, H. P.; Rahatlou, S.; Sharma, V.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Berryhill, J. W.; Campagnari, C.; Cunha, A.; Dahmes, B.; Hong, T. M.; Kovalskyi, D.; Richman, J. D.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Beck, T. W.; Eisner, A. M.; Flacco, C. J.; Kroseberg, J.; Lockman, W. S.; Schalk, T.; Schumm, B. A.; Seiden, A.; Wilson, M. G.; Winstrom, L. O.; Chavez, C. A.] Univ Calif Santa Cruz, Inst Particle Phys, Santa Cruz, CA 95064 USA. [Chen, E.; Cheng, C. H.; Fang, F.; Hitlin, D. G.; Narsky, I.; Piatenko, T.; Porter, F. C.] CALTECH, Pasadena, CA 91125 USA. [Andreassen, R.; Mancinelli, G.; Meadows, B. T.; Mishra, K.; Sokoloff, M. D.] Univ Cincinnati, Cincinnati, OH 45221 USA. [Blanc, F.; Bloom, P. C.; Chen, S.; Ford, W. T.; Hirschauer, J. F.; Kreisel, A.; Nagel, M.; Nauenberg, U.; Olivas, A.; Smith, J. G.; Ulmer, K. A.; Wagner, S. R.; Zhang, J.] Univ Colorado, Boulder, CO 80309 USA. [Gabareen, A. M.; Soffer, A.; Toki, W. H.; Wilson, R. J.; Winklmeier, F.] Colorado State Univ, Ft Collins, CO 80523 USA. [Altenburg, D. D.; Feltresi, E.; Hauke, A.; Jasper, H.; Merkel, J.; Petzold, A.; Spaan, B.; Wacker, K.] Univ Dortmund, Inst Phys, D-44221 Dortmund, Germany. [Klose, V.; Kobel, M. J.; Lacker, H. M.; Mader, W. F.; Nogowski, R.; Schubert, J.; Schubert, K. R.; Schwierz, R.; Sundermann, J. E.; Volk, A.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. [Bernard, D.; Bonneaud, G. R.; Latour, E.; Lombardo, V.; Thiebaux, Ch.; Verderi, M.] Ecole Polytech, Lab Leprince Ringuet, CNRS, IN2P3, F-91128 Palaiseau, France. [Clark, P. J.; Gradl, W.; Muheim, F.; Playfer, S.; Robertson, A. I.; Watson, J. E.; Xie, Y.] Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. [Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Franchini, P.; Luppi, E.; Negrini, M.; Petrella, A.; Piemontese, L.; Prencipe, E.; Santoro, V.] Univ Ferrara, Dipartmento Fis, I-44100 Ferrara, Italy. [Peruzzi, I. M.; Piccolo, M.; Rama, M.; Zallo, A.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Buzzo, A.; Contri, R.; Lo Vetere, M.; Macri, M. M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Santroni, A.; Tosi, S.] Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy. [Chaisanguanthum, K. S.; Morii, M.; Wu, J.] Harvard Univ, Cambridge, MA 02138 USA. [Dubitzky, R. S.; Marks, J.; Schenk, S.; Uwer, U.] Heidelberg Univ, Inst Phys, D-69120 Heidelberg, Germany. [Bard, D. J.; Dauncey, P. D.; Flack, R. L.; Nash, J. A.; Vazquez, W. Panduro; Tibbetts, M.] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. [Behera, P. K.; Chai, X.; Charles, M. J.; Mallik, U.] Univ Iowa, Iowa City, IA 52242 USA. [Ford, W. T.; Cochran, J.; Crawley, H. B.; Dong, L.; Eyges, V.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Rubin, A. E.] Iowa State Univ, Ames, IA 50011 USA. [Cochran, J.; Crawley, H. B.; Dong, L.; Eyges, V.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Rubin, A. E.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Gao, Y. Y.; Gritsan, A. V.; Guo, Z. J.; Lae, C. K.] Univ Karlsruhe, Inst Expt Kernphys, D-76021 Karlsruhe, Germany. [Denig, A. G.; Fritsch, M.; Schott, G.] Univ Paris 11, Lab Accelerateur Lineaire, IN2P3, CNRS,Ctr Sci Orsay, F-91898 Orsay, France. [Arnaud, N.; Bequilleux, J.; D'Orazio, A.; Davier, M.; Grosdidier, G.; Hoecker, A.; Lepeltier, V.; Le Diberder, F.; Lutz, A. M.; Pruvot, S.; Rodier, S.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wang, W. F.; Wormser, G.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Lange, D. J.; Wright, D. M.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Bingham, I.; Burke, J. P.; Chavez, C. A.; Fry, J. R.; Gabathuler, E.; Gamet, R.; Hutchcroft, D. E.; Payne, D. J.; Schofield, K. C.; Touramanis, C.] Queen Mary Univ London, London E1 4NS, England. [Bevan, A. J.; George, K. A.; Di Lodovico, F.; Sacco, R.] Univ London Royal Holloway & Bedford New Coll, Egham TW20 0EX, Surrey, England. [Cowan, G.; Flaecher, H. U.; Hopkins, D. A.; Paramesvaran, S.; Salvatore, F.; Wren, A. C.] Univ Louisville, Louisville, KY 40292 USA. [Brown, D. N.; Davis, C. L.] Univ Manchester, Manchester M13 9PL, Lancs, England. [Allison, J.; Bailey, D.; Barlow, N. R.; Barlow, R. J.; Chia, Y. M.; Edgar, C. L.; Lafferty, G. D.; West, T. J.; Yi, J. I.] Univ Maryland, College Pk, MD 20742 USA. [Anderson, J.; Chen, C.; Jawahery, A.; Roberts, D. A.; Simi, G.; Tuggle, J. M.] Univ Massachusetts, Amherst, MA 01003 USA. [Blaylock, G.; Dallapiccola, C.; Hertzbach, S. S.; Moore, T. B.; Salvati, E.; Saremi, S.; Cervelli, A.] MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. [Cowan, R.; Dujmic, D.; Fisher, P. H.; Koeneke, K.; Sciolla, G.; Spitznagel, M.; Taylor, F.; Yamamoto, R. K.; Zhao, M.; Zheng, Y.] McGill Univ, Montreal, PQ H3A 2T8, Canada. [Mclachlin, S. E.; Patel, P. M.; Robertson, S. H.] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. [Lazzaro, A.; Palombo, F.] Univ Mississippi, University, MS 38677 USA. [Bauer, J. M.; Cremaldi, L.; Eschenburg, V.; Godang, R.; Kroeger, R.; Sanders, D. A.; Summers, D. J.; Zhao, H. W.] Univ Montreal, Montreal, PQ H3C 3J7, Canada. [Brunet, S.; Cote, D.; Simard, M.; Taras, P.; Viaud, F. B.; Nicholson, H.] Mt Holyoke Coll, S Hadley, MA 01075 USA. [Nicholson, H.] Univ Naples Federico II, Dipartimento Sci Fis, I-80126 Naples, Italy. [De Nardo, G.; Fabozzi, F.; Lista, L.; Monorchio, D.; Sciacca, C.] Ist Nazl Fis Nucl, I-80126 Naples, Italy. [Baak, M. A.; Raven, G.; Snoek, H. L.] NIKHEF, Natl Inst Nucl Phys & High Energy Phys, NL-1009 DB Amsterdam, Netherlands. [Jessop, C. P.; Knoepfel, K. J.; LoSecco, J. M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Benelli, G.; Corwin, L. A.; Honscheid, K.; Kagan, H.; Kass, R.; Morris, J. P.; Rahimi, A. M.; Regensburger, J. J.; Sekula, S. J.; Wong, Q. K.] Ohio State Univ, Columbus, OH 43210 USA. [Blount, N. L.; Brau, J.; Frey, R.; Igonkina, O.; Kolb, J. A.; Lu, M.; Rahmat, R.; Sinev, N. B.; Strom, D.; Strube, J.; Torrence, E.] Univ Oregon, Eugene, OR 97403 USA. [Gagliardi, N.; Gaz, A.; Margoni, M.; Morandin, M.; Pompili, A.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.; Voci, C.] Univ Padua, Dipartimento Fis, I-35131 Padua, Italy. [Ben-Haim, E.; Briand, H.; Calderini, G.; Chauveau, J.; David, P.; Del Buono, L.; de la Vaissiere, Ch.; Hamon, O.; Leruste, Ph.; Malcles, J.; Ocariz, J.; Perez, A.; Prendki, J.] Univ Paris 06, Phys Theor & Hautes Energies Lab, IN2P3, CNRS, F-75252 Paris, France. [Ben-Haim, E.; Briand, H.; Calderini, G.; Chauveau, J.; David, P.; Del Buono, L.; de la Vaissiere, Ch.; Hamon, O.; Leruste, Ph.; Malcles, J.; Ocariz, J.; Perez, A.; Prendki, J.] Univ Paris 07, Phys Theor & Hautes Energies Lab, IN2P3, CNRS, F-75252 Paris, France. [Gladney, L.] Univ Penn, Philadelphia, PA 19104 USA. [Biasini, M.; Covarelli, R.; Manoni, E.] Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Cenci, R.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Marchiori, G.; Mazur, M. A.; Morganti, M.; Neri, N.; Paoloni, E.; Rizzo, G.; Walsh, J. J.] Univ Pisa, Dipartimento Fis, Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Cenci, R.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Marchiori, G.; Mazur, M. A.; Morganti, M.; Neri, N.; Paoloni, E.; Rizzo, G.; Walsh, J. J.] Ist Nazl Fis Nucl, I-56127 Pisa, Italy. [Biesiada, J.; Elmer, P.; Lau, Y. P.; Lu, C.; Olsen, J.; Smith, A. J. S.; Telnov, A. V.] Princeton Univ, Princeton, NJ 08544 USA. [Baracchini, E.; Bellini, F.; Cavoto, G.; del Re, D.; di Marco, E.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Jackson, P. D.; Gioi, L. Li; Mazzoni, M. A.; Morganti, S.; Piredda, G.; Polci, F.; Renga, F.; Voena, C.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Ebert, M.; Hartmann, T.; Schroeder, H.; Waldi, R.] Univ Rostock, D-18051 Rostock, Germany. [Adye, T.; Castelli, G.; Franek, B.; Olaiya, E. O.; Roethel, W.; Wilson, F. F.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Emery, S.; Escalier, M.; Gaidot, A.; Ganzhur, S. F.; de Monchenault, G. Hamel; Kozanecki, W.; Vasseur, G.; Yeche, Ch.; Zito, M.] CEA Saclay, DSM Dapnia, F-91191 Gif Sur Yvette, France. [Chen, X. R.; Liu, H.; Park, W.; Purohit, M. V.; White, R. M.; Wilson, J. R.] Univ S Carolina, Columbia, SC 29208 USA. [Allen, M. T.; Aston, D.; Bartoldus, R.; Bechtle, P.; Claus, R.; Coleman, J. P.; Convery, M. R.; Dingfelder, J. C.; Dorfan, J.; Dubois-Felsmann, G. P.; Dunwoodie, W.; Field, R. C.; Glanzman, T.; Gowdy, S. J.; Graham, M. T.; Grenier, P.; Hast, C.; Innes, W. R.; Kaminski, J.; Kelsey, M. H.; Kim, H.; Kim, P.; Kocian, M. L.; Leith, D. W. G. S.; Li, S.; Luitz, S.; Luth, V.; Lynch, H. L.; MacFarlane, D. B.; Marsiske, H.; Messner, R.; Muller, D. R.; O'Grady, C. P.; Ofte, I.; Perazzo, A.; Perl, M.; Pulliam, T.; Ratcliff, B. N.; Roodman, A.; Salnikov, A. A.; Schindler, R. H.; Schwiening, J.; Snyder, A.; Su, D.; Sullivan, M. K.; Suzuki, K.; Swain, S. K.; Thompson, J. M.; Va'vra, J.; Wagner, A. P.; Weaver, M.; Wisniewski, W. J.; Wittgen, M.; Wright, D. H.; Yarritu, A. K.; Yi, K.; Young, C. C.; Ziegler, V.] Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. [Burchat, P. R.; Edwards, A. J.; Majewski, S. A.; Miyashita, T. S.; Petersen, B. A.; Wilden, L.] Stanford Univ, Stanford, CA 94305 USA. [Krishnamurthy, M.; Spanier, S. M.] Univ Tennessee, Knoxville, TN 37996 USA. [Eckmann, R.; Ritchie, J. L.; Ruland, A. M.; Schilling, C. J.; Schwitters, R. F.] Univ Texas Austin, Austin, TX 78712 USA. [Izen, J. M.; Lou, X. C.; Ye, S.] Univ Texas Dallas, Richardson, TX 75083 USA. [Bianchi, F.; Gallo, F.; Gamba, D.; Pelliccioni, M.] Univ Turin, Dipartimento Fis Sperimentale, I-10125 Turin, Italy. [Bianchi, F.; Gallo, F.; Gamba, D.; Pelliccioni, M.] Ist Nazl Fis Nucl, I-10125 Turin, Italy. [Bomben, M.; Bosisio, L.; Cartaro, C.; Cossutti, F.; Della Ricca, G.; Lanceri, L.; Vitale, L.] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. [Bianchi, F.; Cossutti, F.; Della Ricca, G.; Lanceri, L.; Vitale, L.] Ist Nazl Fis Nucl, I-34127 Trieste, Italy. [Azzolini, V.; Lopez-March, N.; Martinez-Vidal, F.; Milanes, D. A.; Oyanguren, A.] Univ Valencia, IFIC, E-46071 Valencia, Spain. [Albert, J.; Banerjee, Sw.; Bhuyan, B.; Hamano, K.; Kowalewski, R.; Nugent, I. M.; Roney, J. M.; Sobie, R. J.] Univ Victoria, Victoria, BC V8W 3P6, Canada. [Harrison, P. F.; Ilic, J.; Latham, T. E.; Mohanty, G. B.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Band, H. R.; Chen, X.; Dasu, S.; Flood, K. T.; Hollar, J. J.; Kutter, P. E.; Pan, Y.; Pierini, M.; Prepost, R.; Wu, S. L.] Univ Wisconsin, Madison, WI 53706 USA. [Neal, H.] Yale Univ, New Haven, CT 06511 USA. [Martinez-Vidal, F.] Univ Barcelona, Fac Fis, Dept EMC, E-08028 Barcelona, Spain. [Ahmed, S.; Alam, M. S.; Bula, R.; Ernst, J. A.; Jain, V.; Pan, B.; Saeed, M. A.; Wappler, F. R.; Zain, S. B.] SUNY Albany, Albany, NY 12222 USA. Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. Univ Basilicata, I-85100 Potenza, Italy. RP Aubert, B (reprint author), Univ Savoie, Phys Particules Lab, IN2P3, CNRS, F-74941 Annecy Le Vieux, France. RI Luppi, Eleonora/A-4902-2015; White, Ryan/E-2979-2015; Calabrese, Roberto/G-4405-2015; Mir, Lluisa-Maria/G-7212-2015; Martinez Vidal, F*/L-7563-2014; Kolomensky, Yury/I-3510-2015; Lo Vetere, Maurizio/J-5049-2012; Lusiani, Alberto/N-2976-2015; Lusiani, Alberto/A-3329-2016; Morandin, Mauro/A-3308-2016; Di Lodovico, Francesca/L-9109-2016; Pappagallo, Marco/R-3305-2016; Patrignani, Claudia/C-5223-2009; Lista, Luca/C-5719-2008; Bellini, Fabio/D-1055-2009; Neri, Nicola/G-3991-2012; Forti, Francesco/H-3035-2011; Rotondo, Marcello/I-6043-2012; de Sangro, Riccardo/J-2901-2012; Saeed, Mohammad Alam/J-7455-2012; Della Ricca, Giuseppe/B-6826-2013; Negrini, Matteo/C-8906-2014; Monge, Maria Roberta/G-9127-2012; Oyanguren, Arantza/K-6454-2014; Calcaterra, Alessandro/P-5260-2015; Frey, Raymond/E-2830-2016; OI Luppi, Eleonora/0000-0002-1072-5633; White, Ryan/0000-0003-3589-5900; Calabrese, Roberto/0000-0002-1354-5400; Mir, Lluisa-Maria/0000-0002-4276-715X; Martinez Vidal, F*/0000-0001-6841-6035; Kolomensky, Yury/0000-0001-8496-9975; Lo Vetere, Maurizio/0000-0002-6520-4480; Lusiani, Alberto/0000-0002-6876-3288; Lusiani, Alberto/0000-0002-6876-3288; Morandin, Mauro/0000-0003-4708-4240; Di Lodovico, Francesca/0000-0003-3952-2175; Pappagallo, Marco/0000-0001-7601-5602; Patrignani, Claudia/0000-0002-5882-1747; Bellini, Fabio/0000-0002-2936-660X; Neri, Nicola/0000-0002-6106-3756; Forti, Francesco/0000-0001-6535-7965; Rotondo, Marcello/0000-0001-5704-6163; de Sangro, Riccardo/0000-0002-3808-5455; Saeed, Mohammad Alam/0000-0002-3529-9255; Della Ricca, Giuseppe/0000-0003-2831-6982; Negrini, Matteo/0000-0003-0101-6963; Monge, Maria Roberta/0000-0003-1633-3195; Oyanguren, Arantza/0000-0002-8240-7300; Calcaterra, Alessandro/0000-0003-2670-4826; Frey, Raymond/0000-0003-0341-2636; Raven, Gerhard/0000-0002-2897-5323 NR 30 TC 17 Z9 17 U1 1 U2 11 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD FEB 29 PY 2008 VL 100 IS 8 AR 081801 DI 10.1103/PhysRevLett.100.081801 PG 7 WC Physics, Multidisciplinary SC Physics GA 271BR UT WOS:000253764400013 ER PT J AU Beane, SR Detmold, W Luu, TC Orginos, K Savage, MJ Torok, A AF Beane, Silas R. Detmold, William Luu, Thomas C. Orginos, Kostas Savage, Martin J. Torok, Aaron CA NPLQCD Collaboration TI Multipion systems in lattice QCD and the three-pion interaction SO PHYSICAL REVIEW LETTERS LA English DT Article ID HARD SPHERES; BOSE SYSTEM; STATES AB The ground-state energies of 2, 3, 4, and 5 pi(+)'s in a spatial volume V similar to(2.5 fm)(3) are computed with lattice QCD. By eliminating the leading contribution from three-pi(+) interactions, particular combinations of these n-pi(+) ground-state energies provide precise extractions of the pi(+)pi(+) scattering length in agreement with that obtained from calculations involving only two pi(+)'s. The three-pi(+) interaction can be isolated by forming other combinations of the n-pi(+) ground-state energies. We find a result that is consistent with a repulsive three-pi(+) interaction for m(pi)less than or similar to 352 MeV. C1 [Beane, Silas R.; Torok, Aaron] Univ New Hampshire, Dept Phys, Durham, NH 03824 USA. [Beane, Silas R.; Savage, Martin J.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Luu, Thomas C.] Lawrence Livermore Natl Lab, N Div, Livermore, CA 94551 USA. [Orginos, Kostas] Coll William & Mary, Dept Phys, Williamsburg, VA 23187 USA. [Orginos, Kostas] Jefferson Lab, Newport News, VA 23606 USA. RP Beane, SR (reprint author), Univ New Hampshire, Dept Phys, Durham, NH 03824 USA. OI Detmold, William/0000-0002-0400-8363 NR 15 TC 43 Z9 43 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD FEB 29 PY 2008 VL 100 IS 8 AR 082004 DI 10.1103/PhysRevLett.100.082004 PG 4 WC Physics, Multidisciplinary SC Physics GA 271BR UT WOS:000253764400017 PM 18352619 ER PT J AU Chou, AS Wester, W Baumbaugh, A Gustafson, HR Irizarry-Valle, Y Mazur, PO Steffen, JH Tomlin, R Yang, X Yoo, J AF Chou, A. S. Wester, W. Baumbaugh, A. Gustafson, H. R. Irizarry-Valle, Y. Mazur, P. O. Steffen, J. H. Tomlin, R. Yang, X. Yoo, J. TI Search for axionlike particles using a variable-baseline photon-regeneration technique SO PHYSICAL REVIEW LETTERS LA English DT Article ID INVISIBLE-AXION AB We report the first results of the GammeV experiment, a search for milli-eV mass particles with axionlike couplings to two photons. The search is performed using a "light shining through a wall" technique where incident photons oscillate into new weakly interacting particles that are able to pass through the wall and subsequently regenerate back into detectable photons. The oscillation baseline of the apparatus is variable, thus allowing probes of different values of particle mass. We find no excess of events above background and are able to constrain the two-photon couplings of possible new scalar (pseudoscalar) particles to be less than 3.1x10(-7) GeV(-1) (3.5x10(-7) GeV(-1)) in the limit of massless particles. C1 [Chou, A. S.; Wester, W.; Baumbaugh, A.; Irizarry-Valle, Y.; Mazur, P. O.; Steffen, J. H.; Tomlin, R.; Yang, X.; Yoo, J.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Chou, A. S.] NYU, Ctr Cosmol & Particle Phys, New York, NY 10003 USA. [Gustafson, H. R.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. RP Chou, AS (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. RI Yoo, Jonghee/K-8394-2016 NR 26 TC 101 Z9 101 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD FEB 29 PY 2008 VL 100 IS 8 AR 080402 DI 10.1103/PhysRevLett.100.080402 PG 4 WC Physics, Multidisciplinary SC Physics GA 271BR UT WOS:000253764400002 PM 18352604 ER PT J AU Fistul, MV Vinokur, VM Baturina, TI AF Fistul, M. V. Vinokur, V. M. Baturina, T. I. TI Collective Cooper-pair transport in the insulating state of Josephson-junction arrays SO PHYSICAL REVIEW LETTERS LA English DT Article ID QUANTUM PHASE-TRANSITIONS; SUPERCONDUCTOR; DEPENDENCE AB We investigate collective Cooper-pair transport of one- and two-dimensional Josephson-junction arrays. We derive an analytical expression for the current-voltage characteristic revealing thermally activated conductivity at small voltages and threshold voltage depinning. The activation energy and the related depinning voltage represent a dynamic Coulomb barrier for collective charge transfer over the whole system and scale with the system size. We show that both quantities are nonmonotonic functions of the magnetic field. We propose that formation of the dynamic Coulomb barrier and its size scaling are consequences of the mutual Josephson phase synchronization across the system. We apply the results for interpretation of experimental data in disordered films near the superconductor-insulator transition. C1 [Fistul, M. V.] Ruhr Univ Bochum, D-44801 Bochum, Germany. [Vinokur, V. M.; Baturina, T. I.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Baturina, T. I.] Russian Acad Sci, Inst Semicond Phys, Novosibirsk 630090, Russia. RP Fistul, MV (reprint author), Ruhr Univ Bochum, D-44801 Bochum, Germany. NR 24 TC 46 Z9 47 U1 1 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD FEB 29 PY 2008 VL 100 IS 8 AR 086805 DI 10.1103/PhysRevLett.100.086805 PG 4 WC Physics, Multidisciplinary SC Physics GA 271BR UT WOS:000253764400049 PM 18352651 ER PT J AU Ping, Y Shepherd, R Lasinski, BF Tabak, M Chen, H Chung, HK Fournier, KB Hansen, SB Kemp, A Liedahl, DA Widmann, K Wilks, SC Rozmus, W Sherlock, M AF Ping, Y. Shepherd, R. Lasinski, B. F. Tabak, M. Chen, H. Chung, H. K. Fournier, K. B. Hansen, S. B. Kemp, A. Liedahl, D. A. Widmann, K. Wilks, S. C. Rozmus, W. Sherlock, M. TI Absorption of short laser pulses on solid targets in the ultrarelativistic regime SO PHYSICAL REVIEW LETTERS LA English DT Article ID OVERDENSE PLASMAS; HARMONIC EMISSION; NUCLEAR-FUSION; ELECTRON-BEAMS; INTENSE; TRANSPORT; ULTRASHORT; IGNITION; DRIVEN; LIGHT AB We report the first direct measurements of total absorption of short laser pulses on solid targets in the ultrarelativistic regime. The data show an enhanced absorption at intensities above 10(20) W/cm(2), reaching 60% for near-normal incidence and 80%-90% for 45 degrees incidence. Two-dimensional particle-in-cell simulations demonstrate that such high absorption is consistent with both interaction with preplasma and hole boring by the intense laser pulse. A large redshift in the second harmonic indicates a surface recession velocity of 0.035c. C1 [Ping, Y.; Shepherd, R.; Lasinski, B. F.; Tabak, M.; Chen, H.; Chung, H. K.; Fournier, K. B.; Hansen, S. B.; Kemp, A.; Liedahl, D. A.; Widmann, K.; Wilks, S. C.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Rozmus, W.] Univ Alberta, Dept Phys, Edmonton, AB T6G 2G7, Canada. [Sherlock, M.] Rutherford Appleton Lab, Chilton, England. RP Ping, Y (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. NR 33 TC 93 Z9 94 U1 3 U2 10 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD FEB 29 PY 2008 VL 100 IS 8 AR 085004 DI 10.1103/PhysRevLett.100.085004 PG 4 WC Physics, Multidisciplinary SC Physics GA 271BR UT WOS:000253764400031 PM 18352633 ER PT J AU Singh, DJ Park, CH AF Singh, D. J. Park, Chul Hong TI Polar behavior in a magnetic perovskite from A-site size disorder: A density functional study SO PHYSICAL REVIEW LETTERS LA English DT Article ID FERROELECTRICS; TEMPERATURE; SYMMETRY; OXIDES; PBVO3 AB We elucidate a mechanism for obtaining polar behavior in magnetic perovskites based on A-site disorder and demonstrate this mechanism by density functional calculations for the double perovskite (La,Lu)MnNiO(6) with Lu concentrations at and below 50%. We show that this material combines polar behavior and ferromagnetism. The mechanism is quite general and may be applicable to a wide range of magnetic perovskites. C1 [Singh, D. J.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Park, Chul Hong] Pusan Natl Univ, Res Ctr Dielect & Adv Matter Phys, Pusan 609735, South Korea. RP Singh, DJ (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RI Singh, David/I-2416-2012 NR 42 TC 60 Z9 60 U1 2 U2 32 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD FEB 29 PY 2008 VL 100 IS 8 AR 087601 DI 10.1103/PhysRevLett.100.087601 PG 4 WC Physics, Multidisciplinary SC Physics GA 271BR UT WOS:000253764400063 PM 18352665 ER PT J AU Stock, C Broholm, C Hudis, J Kang, HJ Petrovic, C AF Stock, C. Broholm, C. Hudis, J. Kang, H. J. Petrovic, C. TI Spin resonance in the d-wave superconductor CeCoIn(5) SO PHYSICAL REVIEW LETTERS LA English DT Article ID NEUTRON-SCATTERING; FLUCTUATIONS; STATES; UPD2AL3; CEIN3; FIELD AB Neutron scattering is used to probe antiferromagnetic spin fluctuations in the d-wave heavy fermion superconductor CeCoIn(5) (T(c)=2.3 K). Superconductivity develops from a state with slow (h Gamma=0.3 +/- 0.15 meV) commensurate [Q(0)=(1/2,1/2,1/2)] antiferromagnetic spin fluctuations and nearly isotropic spin correlations. The characteristic wave vector in CeCoIn(5) is the same as CeIn(3) but differs from the incommensurate wave vector measured in antiferromagnetically ordered CeRhIn(5). A sharp spin resonance (h Gamma < 0.07 meV) at h omega=0.60 +/- 0.03 meV develops in the superconducting state removing spectral weight from low-energy transfers. The presence of a resonance peak is indicative of strong coupling between f-electron magnetism and superconductivity and consistent with a d-wave gap order parameter satisfying Delta(q+Q(0))=-Delta(q). C1 [Stock, C.; Broholm, C.; Hudis, J.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Broholm, C.; Kang, H. J.] NIST, Ctr Neutorn Res, Gaithersburg, MD 20899 USA. [Petrovic, C.] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Stock, C (reprint author), Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. RI Petrovic, Cedomir/A-8789-2009; Broholm, Collin/E-8228-2011 OI Petrovic, Cedomir/0000-0001-6063-1881; Broholm, Collin/0000-0002-1569-9892 NR 33 TC 172 Z9 174 U1 3 U2 23 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD FEB 29 PY 2008 VL 100 IS 8 AR 087001 DI 10.1103/PhysRevLett.100.087001 PG 4 WC Physics, Multidisciplinary SC Physics GA 271BR UT WOS:000253764400054 PM 18352656 ER PT J AU Abiade, JT Miao, GX Gupta, A Gapud, AA Kumar, D AF Abiade, J. T. Miao, G. X. Gupta, A. Gapud, A. A. Kumar, D. TI Structural and magnetic properties of self-assembled nickel nanoparticles in a yttria stabilized zirconia matrix SO THIN SOLID FILMS LA English DT Article DE nanomagnetism; self-assembly; nickel; YSZ; pulsed laser deposition (PLD) ID FILMS; NANOCRYSTALLITES; NANOSTRUCTURES; COERCIVITY; SOLIDS AB By controlling the early stages of thin film growth during laser ablation (i.e. Volmer-Weber type growth), we have synthesized magnetic nanocomposites consisting of nickel (Ni) nanoparticulates in multiple layers of yttria stabilized zirconia. The magnetic properties are a strong function of the nickel particle size, showing a clear transition from superparamagnetic to ferromagnetic characteristics. The coercivity at 300 K varies from 0 to nearly 4 A m(-1) (similar to 300 Oe) as the laser ablation time is increased. By applying the Scherrer formula to X-ray diffraction patterns, we estimated the average size of the Ni nanoclusters to be <5 - 20 nm for the four samples. For the superparamagnetic sample, a blocking temperature of similar to 100 K has been estimated by applying a field much lower than the saturation field and measuring magnetization versus temperature in field cooled and zero field cooled modes. (c) 2007 Elsevier B.V All rights reserved. C1 [Abiade, J. T.; Kumar, D.] N Carolina Agr & Tech State Univ, Dept Mech & Chem Engn, Greensboro, NC 27411 USA. [Miao, G. X.; Gupta, A.] Univ Alabama, Dept Chem, Tuscaloosa, AL 35487 USA. [Miao, G. X.; Gupta, A.] Univ Alabama, Dept Chem Engn, Tuscaloosa, AL 35487 USA. [Miao, G. X.; Gupta, A.] Univ Alabama, Ctr Mat Informat Technol MINT, Tuscaloosa, AL 35487 USA. [Gapud, A. A.] Univ S Alabama, Dept Phys, Mobile, AL 36688 USA. [Kumar, D.] Oak Ridge Natl Lab, Condensed Matter Sci Div, Oak Ridge, TN 37831 USA. RP Abiade, JT (reprint author), N Carolina Agr & Tech State Univ, Dept Mech & Chem Engn, 1601 E Market St, Greensboro, NC 27411 USA. EM jabiade@vt.edu RI Miao, Guo-Xing/A-2411-2008; OI Miao, Guo-Xing/0000-0002-8735-8077; Gapud, Albert/0000-0001-9048-9230 NR 20 TC 8 Z9 10 U1 0 U2 9 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0040-6090 J9 THIN SOLID FILMS JI Thin Solid Films PD FEB 29 PY 2008 VL 516 IS 8 BP 2082 EP 2086 DI 10.1016/j.tsf.2007.10.103 PG 5 WC Materials Science, Multidisciplinary; Materials Science, Coatings & Films; Physics, Applied; Physics, Condensed Matter SC Materials Science; Physics GA 272PQ UT WOS:000253872200068 ER PT J AU Demtsu, SH Albin, DS Sites, JR Metzger, WK Duda, A AF Demtsu, S. H. Albin, D. S. Sites, J. R. Metzger, W. K. Duda, A. TI Cu-related recombination in CdS/CdTe solar cells SO THIN SOLID FILMS LA English DT Article DE cadmium telluride; solar cells; photoluminescence; capacitance profiling AB Cu used in the back contact of CdS/CdTe solar cells is known to improve contact behavior and open-circuit voltage. A study of devices made with varying Cu amounts confirmed these observations. However, Cu was also found to be deleterious to current collection. Time-resolved photoluminescence measurements of CdTe devices show that carrier lifetime decreased with increased Cu concentration. Drive-level-capacitance-profiling and low-temperature photoluminescence suggest this decrease in lifetime was associated with increased recombination center density introduced by Cu in the CdTe layer. The resulting impact of increased Cu on device performance was a voltage-dependent collection of photogenerated carriers that reduced fill-factor. (C) 2007 Published by Elsevier B.V. C1 [Demtsu, S. H.; Sites, J. R.] Colorado State Univ, Dept Phys, Ft Collins, CO 80523 USA. [Albin, D. S.; Metzger, W. K.; Duda, A.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Demtsu, SH (reprint author), Colorado State Univ, Dept Phys, Ft Collins, CO 80523 USA. EM sdcmtsu@solopower.com NR 13 TC 29 Z9 29 U1 0 U2 34 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0040-6090 J9 THIN SOLID FILMS JI Thin Solid Films PD FEB 29 PY 2008 VL 516 IS 8 BP 2251 EP 2254 DI 10.1016/j.tsf.2007.08.035 PG 4 WC Materials Science, Multidisciplinary; Materials Science, Coatings & Films; Physics, Applied; Physics, Condensed Matter SC Materials Science; Physics GA 272PQ UT WOS:000253872200094 ER PT J AU Duff, MC Hunter, DB Burger, A Groza, M Buliga, V Black, DR AF Duff, M. C. Hunter, D. B. Burger, A. Groza, M. Buliga, V. Black, D. R. TI Effect of surface preparation technique on the radiation detector performance of CdZnTe SO APPLIED SURFACE SCIENCE LA English DT Article DE radiation detectors; X-ray topography (crystal defects); resistivity; X-ray topographic imaging ID SPECTROMETERS; PASSIVATION; LEAKAGE AB Synthetic CdZnTe (CZT) semiconducting crystals are highly suitable for the room temperature-based detection of gamma radiation. The surface preparation of Au contacts on surfaces of CZT detectors is typically conducted after (1) polishing to remove artifacts from crystal sectioning and (2) chemical etching, which removes residual mechanical surface damage however etching results in a Te rich surface layer that is prone to oxidize. Our studies show that CZT surfaces that are only polished ( as opposed to polished and etched) can be contacted with Au and will yield lower surface currents. Due to their decreased dark currents, these as-polished surfaces can be used in the fabrication of gamma detectors exhibiting a higher performance than polished and etched surfaces with relatively less peak tailing and greater energy resolution. Published by Elsevier B. V. C1 [Duff, M. C.; Hunter, D. B.] Savannah River Natl Lab, Aiken, SC 29808 USA. [Burger, A.; Groza, M.; Buliga, V.] Fisk Univ, Nashville, TN 37208 USA. [Black, D. R.] NIST, Gaithersburg, MD 20899 USA. RP Duff, MC (reprint author), Savannah River Natl Lab, Aiken, SC 29808 USA. EM martine.duff@srnl.doe.gov NR 12 TC 58 Z9 60 U1 4 U2 35 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0169-4332 J9 APPL SURF SCI JI Appl. Surf. Sci. PD FEB 28 PY 2008 VL 254 IS 9 BP 2889 EP 2892 DI 10.1016/j.apsusc.2007.10.064 PG 4 WC Chemistry, Physical; Materials Science, Coatings & Films; Physics, Applied; Physics, Condensed Matter SC Chemistry; Materials Science; Physics GA 277VU UT WOS:000254243600052 ER PT J AU Schofield, SP Garimella, RV Francois, MM Loubere, R AF Schofield, Samuel P. Garimella, Rao V. Francois, Marianne M. Loubere, Raphael TI Material order-independent interface reconstruction using power diagrams SO INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS LA English DT Article DE volume of fluid; interface reconstruction; material ordering; power diagram ID VOLUME TRACKING; ALGORITHMS; DYNAMICS AB We have developed a new, multi-material, piecewise linear interface reconstruction method that correctly locates the position of each material in the mesh cell and matches the required volume fractions with no material ordering required. This is different from other volume tracking interface reconstruction methods in which an improper material ordering may result in materials being incorrectly located within the cell. The new method utilizes a type of weighted Voronoi diagram, known as a power diagram, to reconstruct the interface from approximate material locations derived either from a particle model or quadrature formula. It works on structured and general polygonal grids, for an arbitrary number of materials and can be naturally extended to three dimensions. Published in 2007 by John Wiley & Sons, Ltd. C1 [Francois, Marianne M.] Los Alamos Natl Lab, Continuum Dynam CCS2, Los Alamos, NM 87545 USA. [Loubere, Raphael] Math Inst Toulouse, UMR 5219, Toulouse, France. [Schofield, Samuel P.; Garimella, Rao V.] Los Alamos Natl Lab, Math Modeling & Anal T7, Los Alamos, NM 87545 USA. RP Schofield, SP (reprint author), Los Alamos Natl Lab, Math Modeling & Anal T7, T-7 MS B284, Los Alamos, NM 87545 USA. EM sams@lanl.gov RI Francois, Marianne/B-2423-2012; OI Garimella, Rao/0000-0002-3812-2105; Francois, Marianne/0000-0003-3062-6234 NR 27 TC 13 Z9 13 U1 1 U2 2 PU JOHN WILEY & SONS LTD PI CHICHESTER PA THE ATRIUM, SOUTHERN GATE, CHICHESTER PO19 8SQ, W SUSSEX, ENGLAND SN 0271-2091 J9 INT J NUMER METH FL JI Int. J. Numer. Methods Fluids PD FEB 28 PY 2008 VL 56 IS 6 BP 643 EP 659 DI 10.1002/fld.1544 PG 17 WC Computer Science, Interdisciplinary Applications; Mathematics, Interdisciplinary Applications; Mechanics; Physics, Fluids & Plasmas SC Computer Science; Mathematics; Mechanics; Physics GA 267KF UT WOS:000253507200004 ER PT J AU Bergmann, U Di Cicco, A Wernet, P Principi, E Glatzel, P Nilsson, A AF Bergmann, Uwe Di Cicco, Andrea Wernet, Philippe Principi, Emiliano Glatzel, Pieter Nilsson, Anders TI Nearest-neighbor oxygen distances in liquid water and ice observed by x-ray Raman based extended x-ray absorption fine structure (vol 127, art no 174504, 2007) SO JOURNAL OF CHEMICAL PHYSICS LA English DT Correction C1 [Bergmann, Uwe; Nilsson, Anders] Stanford Synchrotron Radiat Lab, Stanford, CA 94309 USA. [Di Cicco, Andrea; Principi, Emiliano] Univ Camerino, CNISM, I-62032 Camerino, Italy. [Di Cicco, Andrea; Principi, Emiliano] Univ Camerino, CNR, INFM SOFT, Dipartmento Fis, I-62032 Camerino, Italy. [Wernet, Philippe] BESSY, D-12489 Berlin, Germany. [Glatzel, Pieter] European Synchrotron Radiat Facil, F-38043 Grenoble, France. [Nilsson, Anders] Stockholm Univ, Dept Phys Chem, S-10691 Stockholm, Sweden. RP Bergmann, U (reprint author), Stanford Synchrotron Radiat Lab, Stanford, CA 94309 USA. EM bergmann@slac.stanford.edu RI Nilsson, Anders/E-1943-2011; Wernet, Philippe/A-7085-2013 OI Nilsson, Anders/0000-0003-1968-8696; Wernet, Philippe/0000-0001-7011-9072 NR 1 TC 5 Z9 5 U1 0 U2 8 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD FEB 28 PY 2008 VL 128 IS 8 AR 089902 DI 10.1063/1.2828190 PG 1 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 275BP UT WOS:000254047200063 ER PT J AU Chai, JD Head-Gordon, M AF Chai, Jeng-Da Head-Gordon, Martin TI Systematic optimization of long-range corrected hybrid density functionals SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID GRADIENT APPROXIMATION FUNCTIONALS; EXCHANGE-CORRELATION FUNCTIONALS; TRANSFER EXCITED-STATES; MANY-ELECTRON SYSTEMS; RARE-GAS DIMERS; THERMOCHEMICAL KINETICS; CORRELATION ENERGIES; IONS; PARAMETRIZATION; DISSOCIATION AB A general scheme for systematically modeling long-range corrected (LC) hybrid density functionals is proposed. Our resulting two LC hybrid functionals are shown to be accurate in thermochemistry, kinetics, and noncovalent interactions, when compared with common hybrid density functionals. The qualitative failures of the commonly used hybrid density functionals in some "difficult problems," such as dissociation of symmetric radical cations and long-range charge-transfer excitations, are significantly reduced by the present LC hybrid density functionals. (c) 2008 American Institute of Physics. C1 [Head-Gordon, Martin] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Head-Gordon, M (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM jdchai@berkeley.edu; mhg@cchem.berkeley.edu RI Chai, Jeng-Da/C-3897-2009 OI Chai, Jeng-Da/0000-0002-3994-2279 NR 85 TC 1029 Z9 1029 U1 16 U2 160 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-9606 EI 1089-7690 J9 J CHEM PHYS JI J. Chem. Phys. PD FEB 28 PY 2008 VL 128 IS 8 AR 084106 DI 10.1063/1.2834918 PG 15 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 275BP UT WOS:000254047200006 PM 18315032 ER PT J AU Dawes, R Thompson, DL Wagner, AF Minkoff, M AF Dawes, Richard Thompson, Donald L. Wagner, Albert F. Minkoff, Michael TI Interpolating moving least-squares methods for fitting potential energy surfaces: A strategy for efficient automatic data point placement in high dimensions SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID NEURAL-NETWORKS; MODEL REPRESENTATIONS; DIRECT DYNAMICS; COMPONENT FUNCTIONS; RS-HDMR; IMPLEMENTATION; APPROXIMATION; MOLECULES; SYSTEMS AB An accurate and efficient method for automated molecular global potential., energy surface (PES) construction and fitting is demonstrated. An interpolating moving least-squares (IMLS) method is developed with the flexibility to fit various ab initio data: (1) energies, (2) energies and gradients, or (3) energies, gradients, and Hessian data. The method is automated and flexible so that a PES can be optimally generated for trajectories, spectroscopy, or other applications. High efficiency is achieved by employing local IMLS in which fitting coefficients are stored at a limited number of expansion points, thus eliminating the need to perform weighted least-squares fits each time the potential is evaluated. An automatic point selection scheme based on the difference in two successive orders of IMLS fits is used to determine where new ab initio data need to be calculated for the most efficient fitting of the PES. A simple scan of the coordinate is shown to work well to identify these maxima in one dimension, but this search strategy scales poorly with dimension. We demonstrate the efficacy of using conjugate gradient minimizations on the difference surface to locate optimal data point placement in high dimensions. Results that are indicative of the accuracy, efficiency, and scalability are presented for a one-dimensional model potential (Morse) as well as for three-dimensional (HCN), six-dimensional (HOCH), and nine-dimensional (CH(4)) molecular PESs. (c) 2008 American Institute of Physics. C1 [Dawes, Richard; Thompson, Donald L.] Univ Missouri, Dept Chem, Columbia, MO 65211 USA. [Wagner, Albert F.; Minkoff, Michael] Argonne Natl Lab, Div Chem, Argonne, IL 60439 USA. RP Dawes, R (reprint author), Univ Missouri, Dept Chem, Columbia, MO 65211 USA. EM thompsondon@missouri.edu RI Dawes, Richard/C-6344-2015 NR 49 TC 61 Z9 61 U1 3 U2 19 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD FEB 28 PY 2008 VL 128 IS 8 AR 084107 DI 10.1063/1.2831790 PG 10 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 275BP UT WOS:000254047200007 PM 18315033 ER PT J AU Du, SY Francisco, JS Schenter, GK Garrett, BC AF Du, Shiyu Francisco, Joseph S. Schenter, Gregory K. Garrett, Bruce C. TI Many-body decomposition of the binding energies for OH center dot(H(2)O)(2) and OH center dot(H(2)O)(3) complexes SO JOURNAL OF CHEMICAL PHYSICS LA English DT Review ID AB-INITIO CALCULATIONS; TRANSFERABLE INTERACTION MODELS; ADAPTED PERTURBATION-THEORY; CORRELATED MOLECULAR CALCULATIONS; ORBITAL ANGULAR-MOMENTUM; SMALL WATER CLUSTERS; GAUSSIAN-BASIS SETS; ATMOSPHERIC CHEMISTRY; VIBRATIONAL-SPECTRA; 1ST PRINCIPLES AB We use ab initio electronic structure methods to calculate the many-body decomposition of the binding energies of the OH center dot(H(2)O)(n) (n=2,3) complexes. We employ MP2 and CCSD(T) levels of theory with aug-cc-pVDZ and aug-cc-pVTZ basis sets and analyze the significance of the nonpairwise interactions between OH radical and the surrounding water molecules. We also evaluate the accuracy of our newly developed. potential function, the modified Thole-type model, for predicting the many-body terms in these complexes. Our analysis of the many-body contributions to the OH center dot(H(2)O), binding energies clearly shows that they are just as important in the OH interactions with water as they are for interactions in pure water systems. (c) 2008 American Institute of Physics. C1 [Du, Shiyu] Purdue Univ, Dept Chem, W Lafayette, IN 47907 USA. Purdue Univ, Dept Earth & Atmospher Sci, W Lafayette, IN 47907 USA. [Schenter, Gregory K.; Garrett, Bruce C.] Pacific NW Natl Lab, Div Chem & Mat Sci, Richland, WA 99352 USA. RP Du, SY (reprint author), Purdue Univ, Dept Chem, W Lafayette, IN 47907 USA. EM greg.schenter@pnl.gov RI Garrett, Bruce/F-8516-2011; Schenter, Gregory/I-7655-2014 OI Schenter, Gregory/0000-0001-5444-5484 NR 102 TC 8 Z9 8 U1 1 U2 16 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD FEB 28 PY 2008 VL 128 IS 8 AR 084307 DI 10.1063/1.2828522 PG 8 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 275BP UT WOS:000254047200020 PM 18315046 ER PT J AU Mattsson, AE Armiento, R Paier, J Kresse, G Wills, JM Mattsson, TR AF Mattsson, Ann E. Armiento, Rickard Paier, Joachim Kresse, Georg Wills, John M. Mattsson, Thomas R. TI The AM05 density functional applied to solids SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID GENERALIZED GRADIENT APPROXIMATION; BRILLOUIN-ZONE INTEGRATIONS; INITIO MOLECULAR-DYNAMICS; AUGMENTED-WAVE METHOD; ELECTRON-GAS; CORRELATION-ENERGY; ADIABATIC-CONNECTION; EXCHANGE-ENERGY; SURFACE-ENERGY; ACCURACY AB We show that the AM05 functional [Armiento and Mattsson, Phys. Rev. B 72, 085108 (2005)] has the same excellent performance for solids as the hybrid density functionals tested in Paier et al. [J. Chem. Phys. 124, 154709 (2006); 125, 249901 (2006)]. This confirms the original finding that AM05 performs exceptionally well for solids and surfaces. Hartree-Fock hybrid calculations are typically an order of magnitude slower than local or semilocal density functionals such as AM05, which is of a regular semilocal generalized gradient approximation form. The performance of AM05 is on average found to be superior to selecting the best of local density approximation and PBE for each solid. By comparing data from several different electronic-structure codes, we have determined that the numerical errors in this study are equal to or smaller than the corresponding experimental uncertainties. (C) 2008 American Institute of Physics. C1 [Mattsson, Ann E.] Sandia Natl Labs, Multiscale Dynam Mat Modeling, Albuquerque, NM 87185 USA. [Armiento, Rickard] Univ Bayreuth, Inst Phys, D-95440 Bayreuth, Germany. [Paier, Joachim; Kresse, Georg] Univ Vienna, Fac Phys, A-1090 Vienna, Austria. [Paier, Joachim; Kresse, Georg] Univ Vienna, Ctr Computat Mat Sci, A-1090 Vienna, Austria. [Wills, John M.] Los Alamos Natl Lab, Los Alamos, NM USA. [Mattsson, Thomas R.] Sandia Natl Labs, High Energy Dens Phys Theory, Albuquerque, NM 87185 USA. RP Mattsson, AE (reprint author), Sandia Natl Labs, Multiscale Dynam Mat Modeling, MS 1322, Albuquerque, NM 87185 USA. EM aematts@sandia.gov; rickard.armiento@uni-bayreuth.de; joachim.paier@univie.ac.at; georg.kresse@univie.ac.at; jxw@lanl.gov; trmatts@sandia.gov RI Paier, Joachim/E-5850-2012; Mattsson, Thomas/B-6057-2009; Armiento, Rickard/E-1413-2011 OI Armiento, Rickard/0000-0002-5571-0814 NR 66 TC 125 Z9 125 U1 1 U2 28 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-9606 EI 1089-7690 J9 J CHEM PHYS JI J. Chem. Phys. PD FEB 28 PY 2008 VL 128 IS 8 AR 084714 DI 10.1063/1.2835596 PG 11 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 275BP UT WOS:000254047200053 PM 18315079 ER PT J AU Tao, JM Tretiak, S Zhu, JX AF Tao, Jianmin Tretiak, Sergei Zhu, Jian-Xin TI Performance of a nonempirical meta-generalized gradient approximation density functional for excitation energies SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID EXCHANGE-CORRELATION POTENTIALS; TRANSFER EXCITED-STATES; COUPLED-CLUSTER METHOD; ADIABATIC APPROXIMATION; LARGE MOLECULES; POLARIZABILITIES; IMPLEMENTATION; COMPLEXES; SPECTRA; MODEL AB It is known that the adiabatic approximation in time-dependent density functional theory usually provides a good description of low-lying excitations of molecules. In the present work, the capability of the adiabatic nonempirical meta-generalized gradient approximation (meta-GGA) of Tao, Perdew, Staroverov, and Scuseria (TPSS) to describe atomic and molecular excitations is tested. The adiabatic (one-parameter) hybrid version of the TPSS meta-GGA and the adiabatic GGA of Perdew, Burke, and Ernzerhof (PBE) are also included in the test. The results are compared to experiments and to those obtained with two well-established hybrid functionals PBE0 and B3LYP. Calculations show that both adiabatic TPSS and TPSSh functionals produce excitation energies in fairly good agreement with experiments, and improve upon the adiabatic local spin density approximation and, in particular, the adiabatic PBE GGA. This further confirms that TPSS is indeed a reliable nonhybrid universal functional which can serve as the starting point from which higher-level approximations can be constructed. The systematic underestimate of the low-lying vertical excitation energies of molecules with time-dependent density functionals within the adiabatic approximation suggests that further improvement can be made with nonadiabatic corrections. (c) 2008 American Institute of Physics. C1 [Tao, Jianmin; Tretiak, Sergei; Zhu, Jian-Xin] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Tao, Jianmin; Tretiak, Sergei; Zhu, Jian-Xin] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. [Tretiak, Sergei] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. RP Tao, JM (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. EM jtao@lani.gov; jxzhu@lanl.gov RI Tretiak, Sergei/B-5556-2009; OI Tretiak, Sergei/0000-0001-5547-3647; Zhu, Jianxin/0000-0001-7991-3918 NR 58 TC 23 Z9 23 U1 0 U2 4 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-9606 EI 1089-7690 J9 J CHEM PHYS JI J. Chem. Phys. PD FEB 28 PY 2008 VL 128 IS 8 AR 084110 DI 10.1063/1.2837831 PG 8 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 275BP UT WOS:000254047200010 PM 18315036 ER PT J AU Weber, V VandeVondele, J Hutter, J Niklasson, AMN AF Weber, Valery VandeVondele, Joost Hutter, Juerg Niklasson, Anders M. N. TI Direct energy functional minimization under orthogonality constraints SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID ELECTRONIC-STRUCTURE CALCULATIONS; INITIO MOLECULAR-DYNAMICS; SYSTEM-SIZE; DENSITY-MATRIX; CONVERGENCE ACCELERATION; WANNIER FUNCTIONS; HARTREE-FOCK; OPTIMIZATION; ALGORITHM; ITERATION AB The direct energy functional minimization problem in electronic structure theory, where the single-particle orbitals are optimized under the constraint of orthogonality, is explored. We present an orbital transformation based on an efficient expansion of the inverse factorization of the overlap matrix that keeps orbitals orthonormal. The orbital transformation maps the orthogonality constrained energy functional to an approximate unconstrained functional, which is correct to some order in a neighborhood of an orthogonal but approximate solution. A conjugate gradient scheme can then be used to find the ground state orbitals from the minimization of a sequence of transformed unconstrained electronic energy functionals. The technique provides an efficient, robust, and numerically stable approach to direct total energy minimization in first principles electronic structure theory based on tight-binding, Hartree-Fock, or density functional theory. For sparse problems, where both the orbitals and the effective single-particle Hamiltonians have sparse matrix representations, the effort scales linearly with the number of basis functions N in each iteration. For problems where only the overlap and Hamiltonian matrices are sparse the computational cost scales as O(M-2 N), where M is the number of occupied orbitals. We report a single point density functional energy calculation of a DNA decamer hydrated with 4003 water molecules under periodic boundary conditions. The DNA fragment containing a cis-syn thymine dimer is composed of 634 atoms and the whole system contains a total of 12 661 atoms and 103 333 spherical Gaussian basis functions. (c) 2008 American Institute of Physics. C1 [Weber, Valery; VandeVondele, Joost; Hutter, Juerg] Univ Zurich, Inst Phys Chem, CH-8057 Zurich, Switzerland. [Niklasson, Anders M. N.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Niklasson, Anders M. N.] Royal Inst Technol, Dept Mat Sci & Engn, SE-10044 Stockholm, Sweden. RP Weber, V (reprint author), Univ Zurich, Inst Phys Chem, Winterthurerstr 190, CH-8057 Zurich, Switzerland. EM vweber@pci.unizh.ch; amn@lanl.gov RI Hutter, Juerg/E-9244-2011; VandeVondele, Joost/L-6420-2013 OI VandeVondele, Joost/0000-0002-0902-5111 NR 48 TC 21 Z9 21 U1 2 U2 22 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-9606 EI 1089-7690 J9 J CHEM PHYS JI J. Chem. Phys. PD FEB 28 PY 2008 VL 128 IS 8 AR 084113 DI 10.1063/1.2841077 PG 9 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 275BP UT WOS:000254047200013 PM 18315039 ER PT J AU Martin, NI Beeson, WT Woodward, JJ Marletta, MA AF Martin, Nathaniel I. Beeson, William T. Woodward, Joshua J. Marletta, Michael A. TI N-G-aminoguanidines from primary amines and the preparation of nitric oxide synthase inhibitors SO JOURNAL OF MEDICINAL CHEMISTRY LA English DT Article ID L-ARGININE ANALOGS; ELECTRON-TRANSFER; SCHIFF-BASES; INACTIVATION; DERIVATIVES; GUANIDINES; ANTICANCER; REACTIVITY; CHEMISTRY; MECHANISM AB A concise, general, and high-yielding method for the preparation of N-G-aminoguanidines from primary amines is reported. Using available and readily prepared materials, primary amines are converted to protected N-G-aminoguanidines in a one-pot procedure. The method has been successfully applied to a number of examples including the syntheses of four nitric oxide synthase (NOS) inhibitors. The inhibitors prepared were investigated as competitive inhibitors and as mechanistic inactivators of the inducible isoform of NOS (iNOS). In addition, one of the four inhibitors prepared, N-G-amino-N-G-2,2,2-trifluoroethyl-L-arginine 19, displays the unique ability to both inhibit NO formation and prevent NADPH consumption by iNOS without irreversible inactivation of the enzyme. C1 [Martin, Nathaniel I.; Beeson, William T.; Woodward, Joshua J.; Marletta, Michael A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Chem Mol & Cellular Biol, Berkeley, CA 94720 USA. [Martin, Nathaniel I.; Beeson, William T.; Woodward, Joshua J.; Marletta, Michael A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Phys Sci, Berkeley, CA 94720 USA. RP Marletta, MA (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Chem Mol & Cellular Biol, 570 Stanley Hall, Berkeley, CA 94720 USA. EM marletta@berkeley.edu NR 34 TC 17 Z9 18 U1 1 U2 4 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0022-2623 J9 J MED CHEM JI J. Med. Chem. PD FEB 28 PY 2008 VL 51 IS 4 BP 924 EP 931 DI 10.1021/jm701119v PG 8 WC Chemistry, Medicinal SC Pharmacology & Pharmacy GA 265JB UT WOS:000253353800022 PM 18220331 ER PT J AU Beste, A Buchanan, AC Britt, PF Hathorn, BC Harrison, RJ AF Beste, Ariana Buchanan, A. C., III Britt, Phillip F. Hathorn, Bryan C. Harrison, Robert J. TI Ab initio study of hydrogen abstraction reactions on toluene and tetralin SO JOURNAL OF MOLECULAR STRUCTURE-THEOCHEM LA English DT Article DE hydrogen abstraction; DFT calculations; reaction barriers; transition states ID DENSITY-FUNCTIONAL THEORY; PHENETHYL PHENYL ETHER; COUPLED ELECTRON-TRANSFER; SELF-EXCHANGE REACTIONS; ATOM-TRANSFER; PYROLYSIS; LIGNIN; MODEL; KINETICS; THERMOCHEMISTRY AB Hydrogen abstraction reactions play a key role in many thermal and catalytic processes involved in the production of fuels and chemicals. In this paper, the hydrogen abstraction reactions on toluene and tetralin by the benzyl radical are investigated by ab initio methods. These reactions are representatives of similar reactions occurring in the thermolysis of lignin model compounds containing the phenethyl phenyl ether (PPE) structural moiety. The title reactions serve to calibrate the theoretical methods to be used in the study of PPE pyrolysis through comparison of the reaction barriers with reliable experimental values. We used two different hybrid density functionals (BHandHLYP, B3LYP) and second-order perturbation theory to obtain equilibrium and transition state geometries. We recomputed selected energy barriers at the B3LYP geometries with the coupled cluster singles and doubles (CCSD) method. Multiple transition states were found for both reactions. BHandHLYP underestimates and second-order perturbation theory overestimates the reaction barriers; B3LYP energy barriers agree well with experiment and the corresponding CCSD energy barriers. The flat potential energy surface around the saddle points causes numerical inaccuracies. We observe the break down of the harmonic approximation in the calculation of low frequencies. (C) 2007 Elsevier B.V. All rights reserved. C1 [Beste, Ariana; Hathorn, Bryan C.; Harrison, Robert J.] Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN 37831 USA. [Buchanan, A. C., III; Britt, Phillip F.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. RP Beste, A (reprint author), Oak Ridge Natl Lab, Div Math & Comp Sci, Bathel Valley Rd, Oak Ridge, TN 37831 USA. EM bestea@ornl.gov OI Beste, Ariana/0000-0001-9132-792X NR 42 TC 6 Z9 7 U1 1 U2 18 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0166-1280 J9 J MOL STRUC-THEOCHEM JI Theochem-J. Mol. Struct. PD FEB 28 PY 2008 VL 851 IS 1-3 BP 232 EP 241 DI 10.1016/j.theochem.2007.11.015 PG 10 WC Chemistry, Physical SC Chemistry GA 271JP UT WOS:000253785000029 ER PT J AU Chang, TM Dang, LX AF Chang, Tsun-Mei Dang, Liem X. TI Computational studies of liquid water and diluted water in carbon tetrachloride SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID CONSTRAINED MOLECULAR-DYNAMICS; VAPOR INTERFACE; MEAN FORCE; ION-PAIR; SIMULATION; SOLVENT; MOTION; MODEL AB Molecular dynamics simulations were carried out to study solvent effects on the energetic and dynamical properties of water molecules in liquid water and in carbon tetrachloride (CCl4). In these studies, the free-energy profiles or potentials of mean force (PMF) for water dimers in both solvents were computed. The computed PMF results showed a stable minimum near 3 angstrom for the O-O separation, with a minimum free energy of about -2.8 kcal/mol in CCl4, as compared to a value of -0.5 kcal/mol in liquid water. The difference in free energy in water as compared to that in CCl4 was expected and is the result of competition from surrounding water molecules that are capable of forming hydrogen bonds in the liquid water. This capability is absent in the diluted water found in CCl4. We found that the rotational motions of H2O/D2O were nonisotropic, with the out-of-plane vector correlation times in H2O/D2O varying from 5.6/5.8 ps at 250 K to 0.57/0.56 ps at 350 K and the corresponding OH/OD bond vectors varying from 6.5/7.7 ps to 0.75/0.75 ps. The results compare reasonably well to the available NMR experimental and computer simulation data on the same system (Farrar; Skinner; et al. J. Am. Chem. Soc. 2001, 123, 8047). For diluted water in CCl4, we found the computed rotational correlation times also were nonisotropic and much longer than the corresponding NMR experimental values at the same concentration (Farrar; et al. J. Phys. Chem. A 2007, 111, 6146). Upon analyzing the water hydrogen-bonding patterns as a function of water concentration, we conclude that the differences in the rotational correlation times mainly result from the formation of water hydrogen-bonding networks as the water concentration is increased in liquid CCl4. In addition, we found the rotational correlation times to be substantially faster in liquid CCl4 than in liquid water. C1 [Dang, Liem X.] Pacific NW Natl Lab, Div Chem & Mat Sci, Richland, WA 99352 USA. [Chang, Tsun-Mei] Univ Wisconsin Parkside, Dept Chem, Kenosha, WI 53141 USA. RP Dang, LX (reprint author), Pacific NW Natl Lab, Div Chem & Mat Sci, Richland, WA 99352 USA. EM liem.dang@pnl.gov NR 18 TC 9 Z9 9 U1 1 U2 10 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD FEB 28 PY 2008 VL 112 IS 8 BP 1694 EP 1700 DI 10.1021/jp711092v PG 7 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 265JQ UT WOS:000253355300005 PM 18232676 ER PT J AU Ingham, B Illy, BN Ryan, MP AF Ingham, Bridget Illy, Benoit N. Ryan, Mary P. TI Direct observation of distinct nucleation and growth processes in electrochemically deposited ZnO nanostructures using in situ XANES SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID ZINC-OXIDE; ELECTRODEPOSITION; FILMS AB In situ synchrotron X-ray absorption was used to study the nucleation and growth of ZnO nanostructures electrochemically deposited from aqueous solutions. A fixed-energy approach was used, which facilitates faster time resolution for systems that are not amenable to transmission measurements and where species-specific information has so far been elusive. Films formed at low potentials (-0.97 V vs Ag/AgCl) show instantaneous nucleation, continued growth, and coalescence of the nanorods. The resultant film is dense with narrow dispersion of rod diameters. At less negative deposition potentials (-0.77 V vs Ag/AgCl), the nucleation is more protracted, resulting in a polydispersed film. In this higher potential region, the growth rates are slower, and there is less evidence of coalescence in the deposited structures, with continued growth along the c-axis only. C1 [Illy, Benoit N.; Ryan, Mary P.] Univ London Imperial Coll Sci & Technol, London SW7 2AZ, England. [Ingham, Bridget] Ind Res Ltd, Lower Hutt, New Zealand. [Ingham, Bridget] Stanford Synchrotron Radiat Lab, Menlo Pk, CA 94025 USA. RP Ryan, MP (reprint author), Univ London Imperial Coll Sci & Technol, Exhibit Rd, London SW7 2AZ, England. EM m.p.ryan@imperial.ac.uk OI Ryan, Mary/0000-0001-8582-3003 NR 22 TC 12 Z9 12 U1 1 U2 13 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD FEB 28 PY 2008 VL 112 IS 8 BP 2820 EP 2824 DI 10.1021/jp075775+ PG 5 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 265JU UT WOS:000253355700005 ER PT J AU Liu, J Lee, JY Pan, L Obermyer, RT Simizu, S Zande, B Li, J Sankar, SG Johnson, JK AF Liu, Jinchen Lee, Jeong Yong Pan, Long Obermyer, Richard T. Simizu, Satoru Zande, Brian Li, Jing Sankar, S. G. Johnson, J. Karl TI Adsorption and diffusion of hydrogen in a new metal-organic framework material: [Zn(bdc)(ted)(0.5)] SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID MOLECULAR-DYNAMICS SIMULATIONS; GAS-ADSORPTION; FORCE-FIELD; STORAGE; SEPARATION; DIFFUSIVITIES; HYDROCARBONS; PRESSURE; SORPTION; DESIGN AB We have experimentally measured hydrogen isotherms at 77 and 298 K up to a hydrogen pressure of 50 bar in a recently developed metal-organic framework material, [Zn(bdc)(ted)(0.5)] (bdc = benzenedicarboxylate, ted = triethylenediamine). This material has a tetragonal structure and relatively small pores. We have used atomically detailed simulations to compute adsorption isotherms of hydrogen over the same temperature and pressure ranges studied experimentally. The agreement between experiments and simulations is very good. We have included quantum effects through the Feynman-Hibbs effective potential approach; quantum effects must be included at 77 K to achieve agreement with experiments. We have used equilibrium molecular dynamics to compute self- and transport diffusivities of hydrogen in [Zn(bdc)(ted)(0.5)] at both 77 and 298 K over a range of pore loadings. Quantum effects are found to decrease the self-diffusivity compared with classical simulations at fixed loading. Conversely, at fixed pressure, quantum effects lead to a lower loading and therefore a higher self-diffusion coefficient compared with classical simulation results. Transport diffusivities with and without quantum corrections are essentially indistinguishable. The diffusivities for H-2 in [Zn(bdc)(ted)(0.5)] are comparable to H-2 in IRMOF-1 at 298 K. C1 [Liu, Jinchen; Johnson, J. Karl] Univ Pittsburgh, Dept Chem Engn, Pittsburgh, PA 15260 USA. [Lee, Jeong Yong; Li, Jing] State Univ, Dept Chem & Chem Biol, Piscataway, NJ 08854 USA. [Obermyer, Richard T.; Zande, Brian; Sankar, S. G.] Adv Mat Corp, Pittsburgh, PA 15220 USA. [Johnson, J. Karl] Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. RP Johnson, JK (reprint author), Univ Pittsburgh, Dept Chem Engn, Pittsburgh, PA 15260 USA. RI Johnson, Karl/E-9733-2013 OI Johnson, Karl/0000-0002-3608-8003 NR 41 TC 74 Z9 77 U1 2 U2 30 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD FEB 28 PY 2008 VL 112 IS 8 BP 2911 EP 2917 DI 10.1021/jp710011b PG 7 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 265JU UT WOS:000253355700018 ER PT J AU Kim, DH Kwak, JH Szanyi, J Cho, SJ Peden, CHF AF Kim, Do Heui Kwak, Ja Hun Szanyi, Janos Cho, Sung June Peden, Charles H. F. TI Roles of Pt and BaO in the sulfation of Pt/BaO/Al2O3 lean NOx trap materials: Sulfur K-edge XANES and Pt L-III XAFS studies SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID RAY-ABSORPTION SPECTRA; STORAGE CATALYSTS; EXPOSURE CONDITIONS; REDUCTION CATALYST; GAMMA-ALUMINA; DEACTIVATION; SO2; SPECTROSCOPY; TOLERANCE; OXIDATION AB The roles of barium oxide and platinum during the sulfation of Pt-BaO/Al2O3 lean NOx trap catalysts were investigated by S K edge XANES (X-ray absorption near-edge spectroscopy) and Pt L-III XAFS (X-ray absorption fine structure). All of the samples studied [Al2O3, BaO(x; x = 8 or 20 wt %)/Al2O3, Pt(2.5 wt %)/Al2O3, and Pt(2 wt %)-BaO(x; x = 8 or 20 wt %)/Al2O3] were pre-sulfated prior to the X-ray absorption measurements. It was found that barium oxide itself has the ability to directly form barium sulfate even in the absence of Pt and gas-phase oxygen. In the platinum-containing samples, the presence of Pt-O species plays an important role in the formation of sulfate species. For the case of the BaO(8)/Al2O3 sample, where the barium coverage is about 0.26 ML, both baria and alumina phases are available for sulfation. S XANES results show that barium sulfates are formed preferentially over aluminum sulfates. When oxygen is absent from the gas phase, the sulfation route that involves Pt-O is eliminated after the initially present Pt-O species are completely consumed. In this case, formation of sulfates is suppressed unless barium oxide is also present. Pt L-III XAFS results show that the first coordination sphere around the Pt atoms in the Pt particles is dependent upon the gas mixture used during the sulfation process. Sulfation under reducing environments (e.g., SO2/H-2) leads to formation of Pt-S bonds, while oxidizing conditions (e.g., SO2/O-2) continue to show the presence of Pt-O bonds. In addition, a reducing environment was found to cause Pt sintering in greater extent than an oxidizing one. This result explains why samples sulfated under reducing conditions had lower NOx uptakes than those sulfated under oxidizing conditions. Therefore, our results provide needed information for the development of optimum practical operation conditions (e.g., sulfation or desulfation) for lean NOx trap catalysts that minimize deactivation by sulfur. C1 [Kim, Do Heui; Kwak, Ja Hun; Szanyi, Janos; Peden, Charles H. F.] Pacific NW Natl Lab, Inst Interfacial Catalysis, Richland, WA 99354 USA. [Cho, Sung June] Chonnam Natl Univ, Dept Appl Chem Engn, BK21 Program, Kwangju 500757, South Korea. [Cho, Sung June] Chonnam Natl Univ, Ctr Funct Nano Fine Chem, BK21 Program, Kwangju 500757, South Korea. RP Kim, DH (reprint author), Pacific NW Natl Lab, Inst Interfacial Catalysis, Richland, WA 99354 USA. EM do.kim@pnl.gov RI Kwak, Ja Hun/J-4894-2014; Kim, Do Heui/I-3727-2015; OI Peden, Charles/0000-0001-6754-9928 NR 27 TC 16 Z9 16 U1 2 U2 17 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD FEB 28 PY 2008 VL 112 IS 8 BP 2981 EP 2987 DI 10.1021/jp077563i PG 7 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 265JU UT WOS:000253355700027 ER PT J AU Kidder, MK Buchanan, AC AF Kidder, Michelle K. Buchanan, A. C., III TI Effect of pore confinement and molecular orientation on hydrogen transfer during a free-radical reaction in mesoporous silica SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID PHENYL ETHER; PYROLYSIS; SIZE AB Mesoporous silicas with controllable pore size are providing important platforms finding a multitude of applications such as in catalysis, separations, and as nanoreactors for molecular transformations. In this study, we probe the influence of a coattached hydrogen donor molecule, fluorene, on the free-radical pyrolysis of 1,3-diphenylpropane (DPP) in MCM-41 silica as a function of pore size (1.6-2.8 nm). The influence of surface orientation of the fluorene molecule on the pyrolysis rate is examined through use of isomeric 2-hydroxyfluorene (2-FL) and 3-hydroxyfluorene (3-FL) precursors for surface attachment. The DPP pyrolysis rates are found to be sensitive to both the surface orientation of the fluorene molecule and the pore size. Furthermore, whereas the 2-FL led to faster DPP pyrolysis rates compared with 3-FL on he exterior surface of a nonporous silica nanoparticle (Cabosil), the opposite effect was observed in the mesoporous silica with the smallest pore size. The results are interpreted based on the influence of molecular orientation of the isomeric fluorene molecules on the key bimolecular hydrogen transfer steps to intermediate free-radicals on the surface and suggest that differences in surface curvature: between the Cabosil particles and MCM-41 cylindrical pores may play a key role. C1 [Kidder, Michelle K.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. RP Buchanan, AC (reprint author), Oak Ridge Natl Lab, Div Chem Sci, Bethel Valley Rd, Oak Ridge, TN 37831 USA. EM buchananac@ornl.gov RI zhang, huidong/B-5667-2011 NR 17 TC 10 Z9 10 U1 0 U2 6 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD FEB 28 PY 2008 VL 112 IS 8 BP 3027 EP 3031 DI 10.1021/jp7097558 PG 5 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 265JU UT WOS:000253355700032 ER PT J AU Cuoco, A Miele, G Serpico, PD AF Cuoco, A. Miele, G. Serpico, P. D. TI Astrophysical interpretation of the medium scale clustering in the ultrahigh energy sky SO PHYSICS LETTERS B LA English DT Article ID GALACTIC MAGNETIC-FIELD; COSMIC-RAY PROPAGATION; ARRIVAL DIRECTIONS; ANISOTROPY; SPECTRUM AB We compare the clustering properties of the combined dataset of ultra-high energy cosmic rays events, reported by the AGASA, HiRes, Yakutsk and SUGAR Collaborations, with a catalogue of galaxies of the local universe (redshift z less than or similar to 0.06). We find that the data reproduce particularly well the clustering properties of the nearby universe within z less than or similar to 0.02. There is no statistically significant cross-correlation between data and structures, although intriguingly the nominal cross-correlation chance probability drops from O(50%) to O(10%) using the catalogue with a smaller horizon. Also, we discuss the impact on the robustness of the results of deflections in some galactic magnetic field models used in the literature. These results suggest a relevant role of magnetic fields (possibly extragalactic ones, too) and/or possibly some heavy nuclei fraction in the UHECRs. The importance of a confirmation of these hints (and of some of their implications) by Auger data is emphasized. (C) 2008 Elsevier B.V. All rights reserved. C1 [Cuoco, A.] Aarhus Univ, Inst Fys Astron, DK-15208000 Aarhus, Denmark. [Miele, G.] Ist Nazl Fis Nucl, I-80125 Naples, Italy. [Miele, G.] Univ Naples Federico II, Dipartimento Sci Fis, Naples, Italy. [Miele, G.] Univ Valencia, CSIC, Inst Invest, Inst Fis Corpuscular, E-46071 Valencia, Spain. [Serpico, P. D.] Ctr Particle Astrophys, Fermi Natl Accelerator Lab, Batavia, IL 60510 USA. RP Cuoco, A (reprint author), Aarhus Univ, Inst Fys Astron, DK-15208000 Aarhus, Denmark. EM cuoco@phys.au.dk RI Miele, Gennaro/F-3628-2010 OI Miele, Gennaro/0000-0002-2028-0578 NR 41 TC 6 Z9 6 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 EI 1873-2445 J9 PHYS LETT B JI Phys. Lett. B PD FEB 28 PY 2008 VL 660 IS 4 BP 307 EP 314 DI 10.1016/j.physletb.2007.12.054 PG 8 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 272TU UT WOS:000253883700006 ER PT J AU Garnsworthy, AB Regan, PH Caceres, L Pietri, S Sun, Y Rudolph, D Gorska, M Podolyak, Z Steer, S Hoischen, R Heinz, A Becker, F Bednarczyk, P Doornenbal, P Geissel, H Gerl, J Grawe, H Grebosz, J Kelic, A Kojouharov, I Kurz, N Montes, F Prokopowicz, W Saito, T Schaffner, H Tachenov, S Werner-Malento, E Wollersheim, HJ Benzoni, G Blank, BB Brandau, C Bruce, AM Camera, F Catford, WN Cullen, IJ Dombradi, Z Estevez, E Gelletly, W Ilie, G Jolie, J Jones, GA Jungclaus, A Kmiecik, M Kondev, FG Kurtukian-Nieto, T Lalkovski, S Liu, Z Maj, A Myalski, S Pfutzner, M Schwertel, S Shizuma, T Simons, AJ Walker, PM Wielandi, O Xu, FR AF Garnsworthy, A. B. Regan, P. H. Caceres, L. Pietri, S. Sun, Y. Rudolph, D. Gorska, M. Podolyak, Zs. Steer, S. J. Hoischen, R. Heinz, A. Becker, F. Bednarczyk, P. Doornenbal, P. Geissel, H. Gerl, J. Grawe, H. Grebosz, J. Kelic, A. Kojouharov, I. Kurz, N. Montes, F. Prokopowicz, W. Saito, T. Schaffner, H. Tachenov, S. Werner-Malento, E. Wollersheim, H. J. Benzoni, G. Blank, B. B. Brandau, C. Bruce, A. M. Camera, F. Catford, W. N. Cullen, I. J. Dombradi, Zs. Estevez, E. Gelletly, W. Ilie, G. Jolie, J. Jones, G. A. Jungclaus, A. Kmiecik, M. Kondev, F. G. Kurtukian-Nieto, T. Lalkovski, S. Liu, Z. Maj, A. Myalski, S. Pfutzner, M. Schwertel, S. Shizuma, T. Simons, A. J. Walker, P. M. Wielandi, O. Xu, F. R. TI Neutron-proton pairing competition in N = Z nuclei: Metastable state decays in the proton dripline nuclei Nb-82(41) and Tc-86(43) SO PHYSICS LETTERS B LA English DT Article ID ODD-ODD; EXCITED-STATES; SHELL-MODEL; IDENTIFICATION; FRAGMENTATION; SYSTEMATICS; ISOTOPES; REGION; ZR-82; BANDS AB The low-lying structures of the self-conjugate (N = Z) nuclei Nb-82(41)41 and Tc-86(43)43 have been investigated using isomeric-decay spectroscopy following the projectile fragmentation of a Ag-107 beam. These represent the heaviest odd-odd N = Z nuclei in which internal decays have been identified to date. The resulting level schemes shed light on the shape evolution along the N = Z line between the doubly-magic systems Ni-56(28) and Sn-100(50) and support a preference for T = 1 states in T-z = 0 odd-odd nuclei at low excitation energies associated with a T = 1 neutron-proton pairing gap. Comparison with Projected Shell Model calculations suggests that the decay in Nb-82 may be interpreted as an isospin-changing K isomer. (C) 2008 Elsevier B.V. All rights reserved. C1 [Garnsworthy, A. B.; Regan, P. H.; Pietri, S.; Podolyak, Zs.; Steer, S. J.; Brandau, C.; Catford, W. N.; Cullen, I. J.; Gelletly, W.; Jones, G. A.; Liu, Z.; Shizuma, T.; Simons, A. J.] Univ Surrey, Dept Phys, Surrey GU2 7XH, England. [Garnsworthy, A. B.; Heinz, A.] Yale Univ, WNSL, New Haven, CT 06520 USA. [Caceres, L.; Gorska, M.; Hoischen, R.; Becker, F.; Bednarczyk, P.; Doornenbal, P.; Geissel, H.; Gerl, J.; Grawe, H.; Grebosz, J.; Kelic, A.; Kojouharov, I.; Kurz, N.; Montes, F.; Prokopowicz, W.; Saito, T.; Schaffner, H.; Tachenov, S.; Werner-Malento, E.; Wollersheim, H. J.; Brandau, C.] GSI Darmstadt, D-64291 Darmstadt, Germany. [Caceres, L.; Jungclaus, A.] Univ Autonoma Madrid, Dept Teor, Madrid, Spain. [Sun, Y.] Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA. [Sun, Y.] Univ Notre Dame, Joint Inst Nucl Astrophys, Notre Dame, IN 46556 USA. [Sun, Y.] Shanghai Jiao Tong Univ, Dept Phys, Shanghai 200240, Peoples R China. [Rudolph, D.; Hoischen, R.] Lund Univ, Dept Phys, S-22100 Lund, Sweden. [Bednarczyk, P.; Grebosz, J.; Kmiecik, M.; Maj, A.; Myalski, S.] Inst Nucl Phys, PL-31342 Krakow, Poland. [Werner-Malento, E.; Pfutzner, M.] Warsaw Univ, IEP, PL-00681 Hoza, Poland. [Benzoni, G.; Camera, F.; Wielandi, O.] Univ Milan, I-20133 Milan, Italy. [Benzoni, G.; Camera, F.; Wielandi, O.] Ist Nazl Fis Nucl Milano, I-20133 Milan, Italy. [Kurtukian-Nieto, T.] CEN Bordeaux Gradignan, F-33175 Gradignan, France. [Bruce, A. M.] Univ Brighton, Sch Engn, Brighton BN2 4GJ, E Sussex, England. [Dombradi, Zs.] Inst Nucl Res, H-4001 Debrecen, Hungary. [Estevez, E.; Kurtukian-Nieto, T.] Univ Santiago de Compostela, Santiago De Compostela, Spain. [Ilie, G.; Jolie, J.] Univ Cologne, IKP, D-50937 Cologne, Germany. [Ilie, G.] Natl Inst Phys & Nucl Engn, Bucharest, Romania. [Kondev, F. G.] Argonne Natl Lab, Nucl Engn Div, Argonne, IL 60439 USA. [Lalkovski, S.] Sofia Univ St Kliment Ohridski, Fac Phys, Sofia, Bulgaria. [Schwertel, S.] Tech Univ Munich, Phys Dept E12, D-8046 Garching, Germany. [Shizuma, T.] Japan Atom Energy Agcy, Kyoto 6190215, Japan. [Simons, A. J.] AWE Plc, Aldermaston RG7 4PR, Berks, England. [Xu, F. R.] Peking Univ, Dept Tech Phys, Beijing 100871, Peoples R China. RP Garnsworthy, AB (reprint author), Univ Surrey, Dept Phys, Surrey GU2 7XH, England. EM a.garnsworthy@surrey.ac.uk RI Rudolph, Dirk/D-4259-2009; Gerl, Juergen/A-3255-2011; Dombradi, Zsolt/B-3743-2012; Xu, Furong/K-4178-2013; Heinz, Andreas/E-3191-2014; Kurtukian-Nieto, Teresa/J-1707-2014; Bruce, Alison/K-7663-2016; Sun, Yang/P-2417-2015 OI Camera, Franco/0000-0003-1731-4834; Rudolph, Dirk/0000-0003-1199-3055; Kurtukian-Nieto, Teresa/0000-0002-0028-0220; Bruce, Alison/0000-0003-2871-0517; NR 40 TC 20 Z9 21 U1 0 U2 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 J9 PHYS LETT B JI Phys. Lett. B PD FEB 28 PY 2008 VL 660 IS 4 BP 326 EP 330 DI 10.1016/j.physletb.2008.01.017 PG 5 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 272TU UT WOS:000253883700009 ER PT J AU Lin, T Elster, C Polyzou, WN Glockle, W AF Lin, T. Elster, Ch. Polyzou, W. N. Gloeckle, W. TI Relativistic effects in exclusive pd breakup scattering at intermediate energies SO PHYSICS LETTERS B LA English DT Article DE relativistic quantum mechanics; Faddeev equation; the quantum mechanical three-body problem; n-d scattering ID ANGULAR-MOMENTUM DECOMPOSITION; 3-BODY BOUND-STATE; DEUTERON BREAKUP; FORCES AB The relativistic Faddeev equation for three-nucleon scattering is formulated in momentum space and directly solved in terms of momentum vectors without employing a partial wave decomposition. Relativistic invariance is achieved by constructing a dynamical unitary representation of the Poincare group on the three-nucleon Hilbert space. The exclusive breakup reaction at 508 MeV is calculated based on a Malfliet-Tjon type two-body interaction and the cross sections are compared to measured cross sections at this energy. We find that the magnitude of the relativistic effects can be quite large and depends on the configurations considered. In spite of the simple nature of the model interaction, the experimental cross sections are in surprisingly good agreement with the predictions of the relativistic calculations. We also find that although for specific configurations the multiple scattering series converges rapidly, this is in general not the case. (C) 2008 Elsevier B.V. All rights reserved. C1 [Lin, T.; Elster, Ch.] Ohio Univ, Inst Nucl & Particle Phys, Athens, OH 45701 USA. [Lin, T.; Elster, Ch.] Ohio Univ, Dept Phys & Astron, Athens, OH 45701 USA. [Lin, T.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Polyzou, W. N.] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA. [Gloeckle, W.] Ruhr Univ Bochum, Inst Theoret Phys 2, D-44780 Bochum, Germany. RP Elster, C (reprint author), Ohio Univ, Inst Nucl & Particle Phys, Athens, OH 45701 USA. EM elster@ohiou.edu RI Elster, Charlotte/N-9845-2015 NR 22 TC 25 Z9 25 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 J9 PHYS LETT B JI Phys. Lett. B PD FEB 28 PY 2008 VL 660 IS 4 BP 345 EP 349 DI 10.1016/j.physletb.2008.01.012 PG 5 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 272TU UT WOS:000253883700012 ER PT J AU Gordon, CJ Spencer, PJ Hotchkiss, J Miller, DB Hinderliter, PM Pauluhn, J AF Gordon, Christopher J. Spencer, Pamela J. Hotchkiss, Jon Miller, Diane B. Hinderliter, Paul M. Pauluhn, Juergen TI Thermoregulation and its influence on toxicity assessment SO TOXICOLOGY LA English DT Review DE radiotelemetry; core temperature; skin temperature; pesticide; rodent; metabolic rate; inhalation; stress; restraint ID INDUCED HYPOTHERMIA; BODY-TEMPERATURE; LABORATORY RAT; INHALATION; MICE; SENSITIVITY; MODULATION; MECHANISMS; TOLERANCE; EXPOSURE AB The thermoregulatory system of laboratory rodents is susceptible to a variety of chemical toxicants. Because temperature directly affects the reaction of virtually all biological processes, it is critical to consider how changes in the thermoregulatory response to a toxicant may affect physiological, behavioral, and pathological endpoints. Researchers in industry and government laboratories are often faced with addressing how changes in body temperature of their experimental subjects may affect the outcome of a particular toxicity test and/or screening panel. However, many toxicologists are either unaware of the importance or ignore the potential impact of a toxic-induced change in body temperature. This paper endeavors to summarize the importance of thermoregulation in the study of toxicology and propose recommendations for thermometry that researchers may utilize in their toxicological studies. (c) 2007 Elsevier Ireland Ltd. All rights reserved. C1 [Gordon, Christopher J.] US EPA, Natl Hlth & Environm Effects Res Lab, Div Neurotoxicol, Res Triangle Pk, NC 27711 USA. [Spencer, Pamela J.; Hotchkiss, Jon] Dow Chem Co USA, Midland, MI 48674 USA. [Miller, Diane B.] NIOSH, Ctr Dis Control & Prevent, Morgantown, WV 26505 USA. [Hinderliter, Paul M.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Pauluhn, Juergen] Bayer Healthcare, D-42096 Wuppertal, Germany. RP Gordon, CJ (reprint author), US EPA, Natl Hlth & Environm Effects Res Lab, Div Neurotoxicol, B105-04,109 STW Alexander Dr, Res Triangle Pk, NC 27711 USA. EM gordon.christopher@epa.gov NR 25 TC 25 Z9 25 U1 3 U2 7 PU ELSEVIER IRELAND LTD PI CLARE PA ELSEVIER HOUSE, BROOKVALE PLAZA, EAST PARK SHANNON, CO, CLARE, 00000, IRELAND SN 0300-483X J9 TOXICOLOGY JI Toxicology PD FEB 28 PY 2008 VL 244 IS 2-3 BP 87 EP 97 DI 10.1016/j.tox.2007.10.030 PG 11 WC Pharmacology & Pharmacy; Toxicology SC Pharmacology & Pharmacy; Toxicology GA 273PA UT WOS:000253942700001 PM 18096291 ER PT J AU Hopkins, RJ Desyaterik, Y Tivanski, AV Zaveri, RA Berkowitz, CM Tyliszczak, T Gilles, MK Laskin, A AF Hopkins, Rebecca J. Desyaterik, Yury Tivanski, Alexei V. Zaveri, Rahul A. Berkowitz, Carl M. Tyliszczak, Tolek Gilles, Mary K. Laskin, Alexander TI Chemical speciation of sulfur in marine cloud droplets and particles: Analysis of individual particles from the marine boundary layer over the California current SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID SEA-SALT SULFATE; NORTH-ATLANTIC OCEAN; DIMETHYL SULFIDE; METHANESULFONIC-ACID; SEASONAL-VARIATIONS; ARCTIC TROPOSPHERE; NSS SULFATE; GAS-PHASE; ATMOSPHERIC DIMETHYLSULFIDE; CARBON-DISULFIDE AB Detailed chemical speciation of the dry residue particles from individual cloud droplets and interstitial aerosol collected during the Marine Stratus Experiment (MASE) was performed using a combination of complementary microanalysis techniques. Techniques include computer controlled scanning electron microscopy with energy dispersed analysis of X rays (CCSEM/EDX), time-of-flight secondary ionization mass spectrometry (TOF-SIMS), and scanning transmission X-ray microscopy with near edge X-ray absorption fine structure spectroscopy (STXM/NEXAFS). Samples were collected at the ground site located in Point Reyes National Seashore, approximately 1 km from the coast. This manuscript focuses on the analysis of individual particles sampled from air masses that originated over the open ocean and then passed through the area of the California current located along the northern California coast. On the basis of composition, morphology, and chemical bonding information, two externally mixed, distinct classes of sulfur containing particles were identified: chemically modified (aged) sea salt particles and secondary formed sulfate particles. The results indicate substantial heterogeneous replacement of chloride by methanesulfonate (CH3SO3-) and non-sea-salt sulfate (nss-SO42-) in sea-salt particles with characteristic ratios of nss-S/Na > 0.10 and CH3SO3-/nss-SO42- > 0.6. C1 [Hopkins, Rebecca J.; Tivanski, Alexei V.; Gilles, Mary K.] Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Zaveri, Rahul A.; Berkowitz, Carl M.] Pacific NW Natl Lab, Atmospher Sci & Global Change Div, Richland, WA 99352 USA. [Desyaterik, Yury; Laskin, Alexander] Pacific NW Natl Lab, William R Wiley Environm Mol Sci Lab, Richland, WA 99352 USA. [Tyliszczak, Tolek] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Hopkins, RJ (reprint author), Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. EM alexander.laskin@pnl.gov; mkgilles@lbl.gov RI Laskin, Alexander/I-2574-2012; OI Laskin, Alexander/0000-0002-7836-8417; Zaveri, Rahul/0000-0001-9874-8807 NR 93 TC 42 Z9 42 U1 4 U2 41 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD FEB 27 PY 2008 VL 113 IS D4 AR D04209 DI 10.1029/2007JD008954 PG 15 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 270IZ UT WOS:000253715800003 ER PT J AU Masuda, JD Jantunen, KC Ozerov, OV Noonan, KJT Gates, DP Scott, BL Kiplinger, JL AF Masuda, Jason D. Jantunen, Kimberly C. Ozerov, Oleg V. Noonan, Kevin J. T. Gates, Derek P. Scott, Brian L. Kiplinger, Jaqueline L. TI A lanthanide phosphinidene complex: Synthesis, structure, and phospha-Wittig reactivity SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID TERMINAL PHOSPHINIDENE; METAL-COMPLEXES; LOW-COORDINATE; BOND; REAGENTS; BEARING; LIGAND; ALKYL; ABSTRACTION; ACTIVATION AB The first lanthanide complex featuring a phosphinidene functional group has been prepared and isolated. Preliminary reactivity studies demonstrate that the lutetium(III) phosphinidene complex, [{2((t)Pr(2)P)-4-Me-C(6)H(3))(2)NLu](2)(mu-PMes)(2), behaves as a phospha-Wittig reagent with aldehydes and ketones to give the corresponding phosphaalkenes. Attempts to use the bulky phosphine H(2)P-2,4,6-(t)Bu(3)-C(6)H(2) to kinetically stabilize a terminal phosphinidene resulted in C-H activation of an ortho-(t)Bu group and formation of a phosphaindole. C1 [Masuda, Jason D.; Jantunen, Kimberly C.; Scott, Brian L.; Kiplinger, Jaqueline L.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Ozerov, Oleg V.] Brandeis Univ, Dept Chem, Waltham, MA 02454 USA. [Noonan, Kevin J. T.; Gates, Derek P.] Univ British Columbia, Dept Chem, Vancouver, BC V6T 1Z1, Canada. RP Kiplinger, JL (reprint author), Los Alamos Natl Lab, Mail Stop J514, Los Alamos, NM 87545 USA. EM kiplinger@lani.gov RI Kiplinger, Jaqueline/B-9158-2011; Scott, Brian/D-8995-2017; Ozerov, Oleg/D-4175-2015 OI Kiplinger, Jaqueline/0000-0003-0512-7062; Scott, Brian/0000-0003-0468-5396; Masuda, Jason/0000-0002-6195-9691; NR 31 TC 81 Z9 82 U1 2 U2 19 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD FEB 27 PY 2008 VL 130 IS 8 BP 2408 EP 2409 DI 10.1021/ja7105306 PG 2 WC Chemistry, Multidisciplinary SC Chemistry GA 265ZP UT WOS:000253400900018 PM 18232691 ER PT J AU Xiong, HM van der Lelie, D Gang, O AF Xiong, Huiming van der Lelie, Daniel Gang, Oleg TI DNA linker-mediated crystallization of nanocolloids SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article AB Biofunctionalized nanocolloids offer a promising platform for creation of novel materials using addressable interactions. Crystalline phases are of especial interest for the development of novel plasmonic, magnetic, and catalytic metamaterials. When flexible single-stranded linker DNAs are added to the mixture of two types of dispersed, ssDNAs capped gold nanocolloids which are noncomplementary to each other but complementary to the respective ends of the linker DNA, a crystalline phase of body-centered cubic unit cell is formed at the premelting temperature of the system. An evolution of the structure, crystal formation, and thermodynamic path toward equilibrium state have been studied in details using in-situ small-angle X-ray scattering for different DNA linker designs. C1 [Xiong, Huiming; Gang, Oleg] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. [van der Lelie, Daniel] Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. RP Gang, O (reprint author), Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. EM ogang@bnl.gov NR 19 TC 43 Z9 43 U1 2 U2 18 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD FEB 27 PY 2008 VL 130 IS 8 BP 2442 EP 2443 DI 10.1021/ja710710j PG 2 WC Chemistry, Multidisciplinary SC Chemistry GA 265ZP UT WOS:000253400900035 PM 18247620 ER PT J AU Yotphan, S Bergman, RG Ellman, JA AF Yotphan, Sirilata Bergman, Robert G. Ellman, Jonathan A. TI The stereoselective formation of bicyclic enamines with bridgehead unsaturation via tandem C-H bond activation/alkenylation/electrocyclization SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID DIELS-ALDER REACTION; ALPHA,BETA-UNSATURATED IMINES; LACTAMS; ACTIVATION; MORPHINE AB Bridgehead bicyclic unsaturated enamines were prepared by a tandem rhodium-catalyzed C-H bond activation/alkenylation/electrocyclizaton of alkyne-tethered unsaturated imines. These strained bicyclic enamines exhibit unique reactivity: for example, they give N-alkylated products upon treatment with alkylating reagents and undergo double-bond isomerization to alleviate ring strain upon reduction. C1 [Bergman, Robert G.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Bergman, RG (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM bergman@cchem.berkeley.edu; jellman@uclink.berkeley.edu RI Ellman, Jonathan/C-7732-2013 FU NIGMS NIH HHS [GM069559, R01 GM069559, R01 GM069559-08] NR 13 TC 27 Z9 27 U1 2 U2 11 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD FEB 27 PY 2008 VL 130 IS 8 BP 2452 EP 2453 DI 10.1021/ja710981b PG 2 WC Chemistry, Multidisciplinary SC Chemistry GA 265ZP UT WOS:000253400900040 PM 18247623 ER PT J AU Lewis, JC Berman, AM Bergman, RG Ellman, JA AF Lewis, Jared C. Berman, Ashley M. Bergman, Robert G. Ellman, Jonathan A. TI Rh(I)-catalyzed arylation of heterocycles via C-H bond activation: expanded scope through mechanistic insight SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID PALLADIUM-CATALYZED ARYLATION; OLEFIN METATHESIS; BORANE COMPLEXES; ARYL CHLORIDES; BORONIC ACIDS; ALKENES; HALIDES; EFFICIENT; FUNCTIONALIZATION; HYDROFORMYLATION AB A practical, functional group tolerant method for the Rh-catalyzed direct arylation of a variety of pharmaceutically important azoles with aryl bromides is described. Many of the successful azole and aryl bromide coupling partners are not compatible with methods for the direct arylation of heterocycles using Pd(0) or Cu(1) catalysts. The readily prepared, low molecular weight ligand, Z-1-tert-butyl-2,3,6,7-tetrahydrophosphepine, which coordinates to Rh in a bidentate P-olefin fashion to provide a highly active yet thermally stable arylation catalyst, is essential to the success of this method. By using the tetrafluoroborate salt of the corresponding phosphonium, the reactions can be assembled outside of a glovebox without purification of reagents or solvent. The reactions are also conducted in THF or dioxane, which greatly simplifies product isolation relative to most other methods for direct arylation of azoles employing high-boiling amide solvents. The reactions are performed with heating in a microwave reactor to obtain excellent product yields in 2 h. C1 [Bergman, Robert G.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Bergman, RG (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM rbergman@berkeley.edu; jellman@berkeley.edu RI 丹丹, 李/D-2431-2010; Ellman, Jonathan/C-7732-2013 FU NIGMS NIH HHS [R01 GM069559, GM069559, R01 GM069559-05] NR 70 TC 177 Z9 178 U1 1 U2 45 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD FEB 27 PY 2008 VL 130 IS 8 BP 2493 EP 2500 DI 10.1021/ja0748985 PG 8 WC Chemistry, Multidisciplinary SC Chemistry GA 265ZP UT WOS:000253400900049 PM 18251465 ER PT J AU Datta, A Hooker, JM Botta, M Francis, MB Aime, S Raymond, KN AF Datta, Ankona Hooker, Jacob M. Botta, Mauro Francis, Matthew B. Aime, Silvio Raymond, Kenneth N. TI High relaxivity gadolinium hydroxypyridonate-viral capsid conjugates: Nanosized MRI contrast agents SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID MAGNETIC-RESONANCE RELAXATION; FAST WATER EXCHANGE; MODEL-FREE APPROACH; NEXT-GENERATION; GD COMPLEXES; NANOPARTICLES; STABILITY; MACROMOLECULES; SELECTIVITY; LANTHANIDE AB High relaxivity macromolecular contrast agents based on the conjugation of gadolinium chelates to the interior and exterior surfaces of MS2 viral capsids are assessed. The proton nuclear magnetic relaxation dispersion (NMRD) profiles of the conjugates show up to a 5-fold increase in relaxivity, leading to a peak relaxivity (per Gd(3+) ion) of 41.6 mM(-1) s(-1) at 30 MHz for the internally modified capsids. Modification of the exterior was achieved through conjugation to flexible lysines, while internal modification was accomplished by conjugation to relatively rigid tyrosines. Higher relaxivities were obtained for the internally modified capsids, showing that (i) there is facile diffusion of water to the interior of capsids and (ii) the rigidity of the linker attaching the complex to the macromolecule is important for obtaining high relaxivity enhancements. The viral capsid conjugated gadolinium hydroxypyridonate complexes appear to possess two inner-sphere water molecules (q = 2), and the NMRD fittings highlight the differences in the local motion for the internal (tau(RI) = 440 ps) and external (tau(RI) = 310 ps) conjugates. These results indicate that there are significant advantages of using the internal surface of the capsids for contrast agent attachment, leaving the exterior surface available for the installation of tissue targeting groups. C1 [Datta, Ankona; Hooker, Jacob M.; Francis, Matthew B.; Raymond, Kenneth N.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Botta, Mauro] Univ Piemonte Orientale, Dipartimento Sci Ambiente & Vita, I-15100 Alessandria, Italy. [Francis, Matthew B.] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Aime, Silvio] Univ Turin, Dipartimento Chim, IFM, I-10125 Turin, Italy. RP Raymond, KN (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM raymond@socrates.berkeley.edu RI Botta, Mauro/E-9049-2011; OI Hooker, Jacob/0000-0002-9394-7708; Botta, Mauro/0000-0003-4192-355X FU NHLBI NIH HHS [HL69832] NR 44 TC 112 Z9 113 U1 4 U2 29 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD FEB 27 PY 2008 VL 130 IS 8 BP 2546 EP 2552 DI 10.1021/ja0765363 PG 7 WC Chemistry, Multidisciplinary SC Chemistry GA 265ZP UT WOS:000253400900054 PM 18247608 ER PT J AU Li, SD Zhai, HJ Wang, LS AF Li, Si-Dian Zhai, Hua-Jin Wang, Lai-Sheng TI B-2(BO)(2)(2-) - Diboronyl diborene: A linear molecule with a triple boron-boron bond SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID COLLISION-INDUCED DISSOCIATION; TRANSITION-METAL CLUSTERS; AB-INITIO; PHOTOELECTRON-SPECTROSCOPY; SOLID ARGON; ELECTRONIC-STRUCTURE; OXIDE CLUSTERS; GAS-PHASE; B-13(+) CLUSTERS; INFRARED-SPECTRA AB We have produced and investigated an unique boron oxide cluster, B4O2, using photoelectron spectroscopy and ab initio calculations. Relatively simple and highly vibrationally resolved PIES spectra were obtained at two photon energies (355 and 193 nm). The electron affinity of neutral B4O2 was measured to be 3.160 +/- 0.015 eV. Two excited states were observed for B4O2 at excitation energies of 0.48 and 0.83 eV above the ground state. Three vibrational modes were resolved in the 355 nm spectrum for the ground state of B4O2 with frequencies of 350 +/- 40, 1530 +/- 30, and 2040 +/- 30 cm(-1). Ab initio calculations showed that neutral B4O2 (D-infinity h, (3)Sigma(-)(g)) and anionic B4O2- (D-infinity h, (2)Pi(u)) both possess highly stable linear structures (O B-B = B-B O), which can be viewed as a B-2 dimer bonded to two terminal boronyl groups. The lowest nonlinear structures are at least 1.5 eV higher in energy. The calculated electron detachment energies from the linear B4O2- and the vibrational frequencies agree well with the experimental results. The three observed vibrational modes are due to the B-B, B = B, and B O symmetric stretching vibrations, respectively, in the linear B-2(BO)(2). Chemical bonding analyses revealed that the HOMO of B-2(BO)(2), which is half-filled, is a bonding 7 orbital in the central B-2 unit. Thus, adding two electrons to B-2(BO)(2) leads to a B B triple bond in [O B-B B-B O](2-). Possibilities for stabilizing B-2(BO)(2)(2-) in the form of B-2(BO)(2)Li-2 are considered computationally and compared with other valent isoelectronic, triple bonded species, B2H2-Li-2; B2H22-, and C2H2. The high stability of B-2(BO)(2)(2-) suggests that it may exist as a viable building block in the condensed phase. C1 [Li, Si-Dian] Shanxi Univ, Inst Mol Sci, Taiyuan 030006, Peoples R China. [Li, Si-Dian] Xinzhou Teachers Univ, Xinzhou 034000, Shanxi, Peoples R China. [Zhai, Hua-Jin; Wang, Lai-Sheng] Washington State Univ, Dept Phys, Richland, WA 99354 USA. [Zhai, Hua-Jin; Wang, Lai-Sheng] Pacific NW Natl Lab, Div Mat & Chem Sci, Richland, WA 99352 USA. RP Li, SD (reprint author), Shanxi Univ, Inst Mol Sci, Taiyuan 030006, Peoples R China. EM lisidian@yahoo.com; ls.wang@pnl.gov NR 72 TC 84 Z9 84 U1 4 U2 34 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD FEB 27 PY 2008 VL 130 IS 8 BP 2573 EP 2579 DI 10.1021/ja0771080 PG 7 WC Chemistry, Multidisciplinary SC Chemistry GA 265ZP UT WOS:000253400900057 PM 18251470 ER PT J AU Wolf, DM Fontaine-Bodin, L Bischofs, I Price, G Keasling, J Arkin, AP AF Wolf, Denise M. Fontaine-Bodin, Lisa Bischofs, Ilka Price, Gavin Keasling, Jay Arkin, Adam P. TI Memory in Microbes: Quantifying History-Dependent Behavior in a Bacterium SO PLOS ONE LA English DT Article AB Memory is usually associated with higher organisms rather than bacteria. However, evidence is mounting that many regulatory networks within bacteria are capable of complex dynamics and multi-stable behaviors that have been linked to memory in other systems. Moreover, it is recognized that bacteria that have experienced different environmental histories may respond differently to current conditions. These "memory'' effects may be more than incidental to the regulatory mechanisms controlling acclimation or to the status of the metabolic stores. Rather, they may be regulated by the cell and confer fitness to the organism in the evolutionary game it participates in. Here, we propose that history-dependent behavior is a potentially important manifestation of memory, worth classifying and quantifying. To this end, we develop an information-theory based conceptual framework for measuring both the persistence of memory in microbes and the amount of information about the past encoded in history-dependent dynamics. This method produces a phenomenological measure of cellular memory without regard to the specific cellular mechanisms encoding it. We then apply this framework to a strain of Bacillus subtilis engineered to report on commitment to sporulation and degradative enzyme (AprE) synthesis and estimate the capacity of these systems and growth dynamics to 'remember' 10 distinct cell histories prior to application of a common stressor. The analysis suggests that B. subtilis remembers, both in short and long term, aspects of its cell history, and that this memory is distributed differently among the observables. While this study does not examine the mechanistic bases for memory, it presents a framework for quantifying memory in cellular behaviors and is thus a starting point for studying new questions about cellular regulation and evolutionary strategy. C1 [Wolf, Denise M.; Fontaine-Bodin, Lisa; Bischofs, Ilka; Price, Gavin; Keasling, Jay; Arkin, Adam P.] Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Fontaine-Bodin, Lisa; Bischofs, Ilka; Price, Gavin; Keasling, Jay; Arkin, Adam P.] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA USA. [Keasling, Jay] Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA USA. RP Wolf, DM (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. EM dmwolf@lbl.gov; aparkin@lbl.gov RI Keasling, Jay/J-9162-2012; Arkin, Adam/A-6751-2008 OI Keasling, Jay/0000-0003-4170-6088; Arkin, Adam/0000-0002-4999-2931 FU National Institutes of Health [R01 GM073010-01]; Department of Energy and the Howard Hughes Medical Institute FX The authors would like to acknowledge the National Institutes of Health (R01 GM073010-01), the Department of Energy and the Howard Hughes Medical Institute for support during the period of this project. NR 81 TC 41 Z9 41 U1 0 U2 8 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD FEB 27 PY 2008 VL 3 IS 2 AR e1700 DI 10.1371/journal.pone.0001700 PG 14 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 367XS UT WOS:000260586500044 PM 18324309 ER PT J AU Abreu, IA Hearn, A An, H Nick, HS Silverman, DN Cabelli, DE AF Abreu, Isabel A. Hearn, Amy An, Haiqain Nick, Harry S. Silverman, David N. Cabelli, Diane E. TI The kinetic mechanism of manganese-containing superoxide dismutase from Deinococcus radiodurans: A specialized enzyme for the elimination of high superoxide concentrations SO BIOCHEMISTRY LA English DT Article ID ESCHERICHIA-COLI; EXTREME RADIORESISTANCE; PRODUCT INHIBITION; PULSE-RADIOLYSIS; CATALASE KATA; RADIATION; BACTERIUM; PROTEIN; CELLS; GAMMA AB Deinococcus radiodurans (Drad), a bacterium with an extraordinary capacity to tolerate high levels of ionizing radiation, produces only a manganese-containing superoxide dismutase (MnSOD). As MnSOD has been shown to remove superoxide radical with varying efficiency depending upon its cellular origin, a comparison of the Drad MnSOD efficiency with that of both human and Escherichia coli MnSODs was undertaken. Pulse radiolysis studies demonstrate that, under identical ratios of enzyme to superoxide radical, the dismutation efficiencies scaled as Drad MnSOD > E. coli MnSOD > human MnSOD. Further, Drad MnSOD is most effective at high superoxide fluxes found under conditions of high radioactivity. A mechanism is postulated to account for the differences in the activities of the MnSODs that considers the release of peroxide as not always an optimal process. C1 [Abreu, Isabel A.; Cabelli, Diane E.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. [Hearn, Amy; An, Haiqain; Nick, Harry S.; Silverman, David N.] Univ Florida, Dept Pharmacol, Gainesville, FL 32610 USA. RP Cabelli, DE (reprint author), Brookhaven Natl Lab, Dept Chem, Bldg 555, Upton, NY 11973 USA. EM cabelli@bnl.gov RI Abreu, Isabel/I-5081-2013 OI Abreu, Isabel/0000-0002-5566-2146 FU NIGMS NIH HHS [GM54903] NR 39 TC 18 Z9 18 U1 0 U2 6 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0006-2960 J9 BIOCHEMISTRY-US JI Biochemistry PD FEB 26 PY 2008 VL 47 IS 8 BP 2350 EP 2356 DI 10.1021/bi7016206 PG 7 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 264JJ UT WOS:000253283300011 PM 18247479 ER PT J AU Ogale, S Kundaliya, D Mehraeen, S Fu, LF Zhang, SX Lussier, A Dvorak, J Browning, N Idzerda, Y Venkatesan, T AF Ogale, Satishchandra Kundaliya, Darshan Mehraeen, Shareghe Fu, Lian-feng Zhang, Shixiong Lussier, Alexandre Dvorak, Joe Browning, Nigel Idzerda, Yves Venkatesan, Thirumalai TI Chemical inhomogeneity and mixed-state ferromagnetism in diluted magnetic semiconductor Co : TiO2 SO CHEMISTRY OF MATERIALS LA English DT Article ID ROOM-TEMPERATURE FERROMAGNETISM; OXIDE; SPINTRONICS; NANOCRYSTALS; ORIGIN; SYSTEM; MODEL; TIO2 AB Diluted magnetic semiconductors (DMS) are among the most intensely investigated materials in recent times in view of their great application potential. Yet, they are also the most controversial because of the possibility of extrinsic effects attributable to dopant solubility and clustering, point defects, incorporation of unintentional impurities, etc. This has highlighted the central role of materials chemistry in rendering a specific microstate and property response. In this work, we provide a combined window of high-resolution scanning transmission electron microscopy and electron energy-loss spectrometry, X-ray absorption (XAS)/X-ray magnetic circular dichroism (XMCD), and magnetization measurements on epitaxial rutile CoxTi1-xO2 (x = 0-0.06) system (the first discovered oxide-DMS, which continues to be controversial) grown at low temperature (400 degrees C) under different ambient atmospheres. The study brings out a mixed-state scenario of ferromagnetism involving intrinsic DMS (uniform dopant distribution at low dopant concentration) and coupled cluster magnetism, involving cobalt associations within the matrix at higher concentrations. We also show that by matrix valence control during growth, it is possible to realize a uniform embedded cluster state and the related coupled cluster magnetism. C1 [Ogale, Satishchandra] Natl Chem Lab, Phys & Mat Chem Div, Pune 411008, Maharashtra, India. [Kundaliya, Darshan; Zhang, Shixiong; Venkatesan, Thirumalai] Univ Maryland, Ctr Superconduct Res, Dept Phys, College Pk, MD 20742 USA. [Mehraeen, Shareghe; Fu, Lian-feng; Browning, Nigel] Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA. [Mehraeen, Shareghe; Fu, Lian-feng; Browning, Nigel] Univ Calif Berkeley, Lawrence Berkeley Lab, Natl Ctr Electron Microscopy, Berkeley, CA 94720 USA. [Lussier, Alexandre; Dvorak, Joe; Idzerda, Yves] Montana State Univ, Dept Phys, Bozeman, MT 59717 USA. [Venkatesan, Thirumalai] Natl Univ Singapore, Singapore 119077, Singapore. RP Ogale, S (reprint author), Natl Chem Lab, Phys & Mat Chem Div, Dr Homi Bhabha Rd, Pune 411008, Maharashtra, India. EM sb.ogale@nct.res.in RI Venkatesan, Thirumalai/E-1667-2013; OI Browning, Nigel/0000-0003-0491-251X NR 47 TC 24 Z9 24 U1 2 U2 27 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 J9 CHEM MATER JI Chem. Mat. PD FEB 26 PY 2008 VL 20 IS 4 BP 1344 EP 1352 DI 10.1021/cm702089z PG 9 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 264JN UT WOS:000253283700034 ER PT J AU Suescun, L Dabrowski, B Mais, J Remsen, S Richardson, JW Maxey, ER Jorgensen, JD AF Suescun, Leopoldo Dabrowski, Bogdan Mais, James Remsen, Steven Richardson, James W., Jr. Maxey, Evan R. Jorgensen, James D. TI Oxygen ordered phases in LaxSr1-xMnOy (0 <= x <= 0.2, 2.5 <= y <= 3): An in situ neutron powder diffraction study SO CHEMISTRY OF MATERIALS LA English DT Article ID DEFICIENT MANGANITE PEROVSKITE; DEFECT PEROVSKITE; CRYSTAL; OXIDES AB In situ neutron powder diffraction experiments have been performed on samples of SrMnOy, La0.1Sr0.9MnOy, and La0.2Sr0.8MnOy (2.5 <= y <= 3) to determine the existence of oxygen-vacancy ordering and study order-disorder transformations in the LaxSr1-xMnOy system. The vacancy ordered monoclinic Sr7Mn7O13. tetragonal (LaxSr1-x)(5)Mn5O13 and orthorhombic (LaxSr1-x)(2)Mn2O5 (x = 0, 0.1, and 0.2) phases have been observed, together with already described La0.1Sr0.9MnO2.55. Reversible vacancy order-disorder transitions have been observed for the La-containing (LaxSr1-x)(5)Mn5O13 phases. Oxygen-vacancy disordered cubic or pseudocubic phases have also been observed with increasing stability range in y with increasing x. Preliminary phase diagrams of the system have been derived as a function of temperature and oxygen content. C1 [Suescun, Leopoldo; Dabrowski, Bogdan; Richardson, James W., Jr.; Maxey, Evan R.; Jorgensen, James D.] Argonne Natl Lab, Div Sci Mat, Argonne, IL 60439 USA. [Suescun, Leopoldo; Dabrowski, Bogdan; Richardson, James W., Jr.; Maxey, Evan R.; Jorgensen, James D.] Argonne Natl Lab, Intense Pulsed Neuron Source Div, Argonne, IL 60439 USA. [Suescun, Leopoldo; Dabrowski, Bogdan; Mais, James; Remsen, Steven] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. RP Suescun, L (reprint author), Argonne Natl Lab, Div Sci Mat, 9700 S Cass Ave, Argonne, IL 60439 USA. EM leopoldo@ant.gov RI Suescun, Leopoldo/A-9697-2008 OI Suescun, Leopoldo/0000-0002-7606-8074 NR 23 TC 16 Z9 16 U1 1 U2 17 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 J9 CHEM MATER JI Chem. Mat. PD FEB 26 PY 2008 VL 20 IS 4 BP 1636 EP 1645 DI 10.1021/cm703139c PG 10 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 264JN UT WOS:000253283700070 ER PT J AU Holdych, DJ Noble, DR Secor, RB AF Holdych, David J. Noble, David R. Secor, Robert B. TI Quadrature rules for triangular and tetrahedral elements with generalized functions SO INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING LA English DT Article DE finite elements; material discontinuity; extended finite elements; enriched finite elements; quadrature; level sets ID LEVEL SETS AB Quadrature rules are developed for exactly integrating products of polynomials and generalized functions over triangular and tetrahedral domains. These quadrature rules greatly simplify the implementation of finite element methods that involve integrals over volumes and interfaces that are not coincident with the element boundaries. Specifically, the integrands considered here consist of a quadratic polynomial multiplied by a Heaviside or Dirac delta function operating on a linear polynomial. This form allows for exact integration of expressions obtained from linear finite elements over domains and interfaces defined by a linear level set function. Exact quadrature rules are derived that involve fixed quadrature point locations with weights that depend continuously on the nodal level set values. Compared with methods involving explicit integration over subdomains, the quadrature rules developed here accommodate degenerate interface geometries without any need for special consideration and provide analytical Jacobian information describing the dependence of the integrals on the nodal level set values. The accuracy of the method is demonstrated for a simple conduction problem with the Neumann and Robin-type boundary conditions. Copyright (C) 2007 John Wiley & Sons, Ltd. C1 [Holdych, David J.; Noble, David R.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Secor, Robert B.] 3M Co, Corp Res Proc Labs, St Paul, MN 55144 USA. RP Noble, DR (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM drnoble@sandia.gov NR 11 TC 21 Z9 21 U1 0 U2 8 PU JOHN WILEY & SONS LTD PI CHICHESTER PA THE ATRIUM, SOUTHERN GATE, CHICHESTER PO19 8SQ, W SUSSEX, ENGLAND SN 0029-5981 J9 INT J NUMER METH ENG JI Int. J. Numer. Methods Eng. PD FEB 26 PY 2008 VL 73 IS 9 BP 1310 EP 1327 DI 10.1002/nme.2123 PG 18 WC Engineering, Multidisciplinary; Mathematics, Interdisciplinary Applications SC Engineering; Mathematics GA 288VG UT WOS:000255013300006 ER PT J AU Mayer, BP Reimer, JA Maxwell, RS AF Mayer, Brian P. Reimer, Jeffrey A. Maxwell, Robert S. TI A methodology for the indirect determination and spatial resolution of shear modulus of PDMS - Silica Elastomers SO MACROMOLECULES LA English DT Article ID RESIDUAL DIPOLAR COUPLINGS; NUCLEAR-MAGNETIC-RESONANCE; MULTIPLE-QUANTUM NMR; NETWORK STRUCTURE; CHAIN DYNAMICS; RELAXATION; POLYMERS; ORIENTATION; ECHO AB A methodology is described that allows for the spatial resolution of shear modulus in silica-filled PDMS elastomers via (1)H relaxation measurements and stray-field imaging (STRAFI) techniques. Traditional Hahn echoes provide a simple, robust route to the extraction of a proton residual dipolar coupling constant (RDC), a direct measure of chain mobility and a parameter that can be corollated to numerous mechanical properties. Defining a dimensionless RDC eliminates any artifacts associated with low-field measurement and allows the RDC to become independent of field strength. A direct correlation between the NMR determined dimensionless RDC and results from dynamic mechanical analysis are presented, then employed via STRAFI to determine spatial variations in moduli associated with irradiated elastomeric materials. Reliable performance, despite poorly optimized STRAFI conditions, is demonstrated with an error of no more than 22% between the calculated shear modulus and the measured value via DMA. C1 [Mayer, Brian P.; Reimer, Jeffrey A.] Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. [Maxwell, Robert S.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Mayer, BP (reprint author), Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. NR 24 TC 6 Z9 6 U1 0 U2 14 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0024-9297 J9 MACROMOLECULES JI Macromolecules PD FEB 26 PY 2008 VL 41 IS 4 BP 1323 EP 1327 DI 10.1021/ma702007m PG 5 WC Polymer Science SC Polymer Science GA 265AJ UT WOS:000253331200039 ER PT J AU Chongsiriwatana, NP Patch, JA Czyzewski, AM Dohm, MT Ivankin, A Gidalevitz, D Zuckermann, RN Barron, AE AF Chongsiriwatana, Nathaniel P. Patch, James A. Czyzewski, Ann M. Dohm, Michelle T. Ivankin, Andrey Gidalevitz, David Zuckermann, Ronald N. Barron, Annelise E. TI Peptoids that mimic the structure, function, and mechanism of helical antimicrobial peptides SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE antibiotics; peptidomimetics; structure-activity studies ID HOST-DEFENSE PEPTIDES; N-SUBSTITUTED GLYCINES; SOLID-PHASE SYNTHESIS; AROMATIC SIDE-CHAINS; SECONDARY STRUCTURE; SELECTIVE CYTOTOXICITY; BETA-PEPTIDES; OLIGOMERS; ANTIBACTERIAL; MAGAININ AB Antimicrobial peptides (AMPs) and their mimics are emerging as promising antibiotic agents. We present a library of "ampetoids" (antimicrobial peptoid oligomers) with helical structures and biomimetic sequences, several members of which have low-micromolar antimicrobial activities, similar to cationic AMPs like pexiganan. Broad-spectrum activity against six clinically relevant BSL2 pathogens is also shown. This comprehensive structure-activity relationship study, including circular dichroism spectroscopy, minimum inhibitory concentration assays, hemolysis and mammalian cell toxicity studies, and specular x-ray reflectivity measurements shows that the in vitro activities of ampetoids are strikingly similar to those of AMPs themselves, suggesting a strong mechanistic analogy. The ampetoids' antibacterial activity, coupled with their low cytotoxicity against mammalian cells, make them a promising class of antimicrobials for biomedical applications. Peptoids are biostable, with a protease-resistant N-substituted glycine backbone, and their sequences are highly tunable, because an extensive diversity of side chains can be incorporated via facile solid-phase synthesis. Our findings add to the growing evidence that nonnatural foldamers will emerge as an important class of therapeutics. C1 Stanford Univ, Dept Bioengn, Stanford, CA 94305 USA. [Chongsiriwatana, Nathaniel P.; Patch, James A.; Czyzewski, Ann M.; Barron, Annelise E.] Northwestern Univ, Dept Chem & Biol Engn, Evanston, IL 60208 USA. [Zuckermann, Ronald N.] Lawrence Berkeley Natl Lab, Mol Foundry, Biol Nanostruct Facil, Berkeley, CA 94720 USA. [Ivankin, Andrey; Gidalevitz, David] IIT, Div Phys, Dept Biol Chem & Phys Sci, Chicago, IL 60616 USA. RP Chongsiriwatana, NP (reprint author), Stanford Univ, Dept Bioengn, W300B James H Clark Ctr,318 Campus Dr, Stanford, CA 94305 USA. EM aebarron@stanford.edu RI Barron, Annelise/B-7639-2009; Gidalevitz, David/D-6717-2012; Zuckermann, Ronald/A-7606-2014; OI Zuckermann, Ronald/0000-0002-3055-8860; Dohm, Michelle/0000-0002-4961-501X FU NHLBI NIH HHS [1 R01 HL67984, R01 HL067984]; NIAID NIH HHS [1 R01 AI072666, R01 AI072666, R01 AI073892, R01 AI073892-01A1]; NIGMS NIH HHS [5 T32 GM08382-10, T32 GM008382] NR 54 TC 280 Z9 284 U1 7 U2 146 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD FEB 26 PY 2008 VL 105 IS 8 BP 2794 EP 2799 DI 10.1073/pnas.0708254105 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 268GQ UT WOS:000253567900011 PM 18287037 ER PT J AU Rajakulendran, T Sahmi, M Kurinov, I Tyers, M Therrien, M Sicheri, F AF Rajakulendran, Thanashan Sahmi, Malha Kurinov, Igor Tyers, Mike Therrien, Marc Sicheri, Frank TI CNK and HYP form a discrete dimer by their SAM domains to mediate RAF kinase signaling SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE MAPK signaling; RAF activation; sterile alpha-motif; x-ray crystallography ID RNA RECOGNITION; ACTIVATION; DROSOPHILA; PROTEIN; VTS1P; POLYMERIZATION; REFINEMENT; INHIBITORS; SCAFFOLDS; KSR AB RAF kinase functions in the mitogen-activated protein kinase (MAPK) pathway to transmit growth signals to the downstream kinases MEK and ERK. Activation of RAF catalytic activity is facilitated by a regulatory complex comprising the proteins CNK (Connector enhancer of KSR), HYP (Hyphen), and KSR (Kinase Suppressor of Ras). The sterile a-motif (SAM) domain found in both CNK and HYP plays an essential role in complex formation. Here, we have determined the x-ray crystal structure of the SAM domain of CNK in complex with the SAM domain of HYP. The structure reveals a single-junction SAM domain dimer of 1:1 stoichiometry in which the binding mode is a variation of polymeric SAM domain interactions. Through in vitro and in vivo mutational analyses, we show that the specific mode of dimerization revealed by the crystal structure is essential for RAF signaling and facilitates the recruitment of KSR to form the CNK/HYP/KSR regulatory complex. We present two docking-site models to account for how SAM domain dimerization might influence the formation of a higher-order CNK/HYP/KSR complex. C1 [Sahmi, Malha; Therrien, Marc] Univ Montreal, Lab Intracellular Parasite, Inst Res Immunol & Canc, Montreal, PQ H3C 3J7, Canada. [Rajakulendran, Thanashan; Tyers, Mike; Sicheri, Frank] Samuel Lunenfeld Res Inst, Ctr Syst Biol, Toronto, ON M5G 1X5, Canada. [Rajakulendran, Thanashan; Tyers, Mike; Sicheri, Frank] Univ Toronto, Dept Mol Genet, Toronto, ON M5S 1A8, Canada. [Kurinov, Igor] Cornell Univ, Dept Chem & Chem Biol, Ithaca, NY 14853 USA. [Kurinov, Igor] Argonne Natl Lab, NE CAT, Argonne, IL 60439 USA. [Therrien, Marc] Univ Montreal, Dept Pathol & Biol Cellulaire, Montreal, PQ H3C 3J7, Canada. RP Therrien, M (reprint author), Univ Montreal, Lab Intracellular Parasite, Inst Res Immunol & Canc, Montreal, PQ H3C 3J7, Canada. EM marc.therrien@umontreal.ca; sicheri@mshri.on.ca RI Sicheri, Frank/F-8856-2013 NR 31 TC 23 Z9 23 U1 0 U2 5 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD FEB 26 PY 2008 VL 105 IS 8 BP 2836 EP 2841 DI 10.1073/pnas.0709705105 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 268GQ UT WOS:000253567900018 PM 18287031 ER PT J AU Cai, XY Padmaperuma, AB Sapochak, LS Vecchi, PA Burrows, PE AF Cai, Xiuyu Padmaperuma, Asanga B. Sapochak, Linda S. Vecchi, Paul A. Burrows, Paul E. TI Electron and hole transport in a wide bandgap organic phosphine oxide for blue electrophosphorescence SO APPLIED PHYSICS LETTERS LA English DT Article ID HOST MATERIAL; DEVICES; EFFICIENT AB We report blue phosphorescent organic light-emitting devices (OLEDs) using an ambipolar host, N-(4-diphenylphosphoryl phenyl) carbazole (MPO12), doped with iridium (111) bis[(4,6-difluorophenyl)-pyridinato-N, C(2)']picolinate (FIrpic). The external quantum efficiency and operating voltage is 9.1(-0.1)% and 4.8 V, respectively, measured at a brightness of 800 cd/m(2) with no outcoupling enhancement. By varying the layer structure of the OLEDs, we show that MPO12 is capable of transporting both electrons and holes, in contrast to previous demonstrations using diphosphine oxides, which only transported electrons. The improved hole transport results in improved device efficiency. (c) 2008 American Institute of Physics. C1 [Cai, Xiuyu; Padmaperuma, Asanga B.; Sapochak, Linda S.; Vecchi, Paul A.; Burrows, Paul E.] Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA 99352 USA. RP Cai, XY (reprint author), Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA 99352 USA. EM xiuyu.cai@pnl.gov NR 11 TC 97 Z9 99 U1 4 U2 20 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD FEB 25 PY 2008 VL 92 IS 8 AR 083308 DI 10.1063/1.2885117 PG 3 WC Physics, Applied SC Physics GA 278OX UT WOS:000254297300096 ER PT J AU Cherepy, NJ Hull, G Drobshoff, AD Payne, SA Van Loef, E Wilson, CM Shah, KS Roy, UN Burger, A Boatner, LA Choong, WS Moses, WW AF Cherepy, Nerine J. Hull, Giulia Drobshoff, Alexander D. Payne, Stephen A. Van Loef, Edgar Wilson, Cody M. Shah, Kanai S. Roy, Utpal N. Burger, Arnold Boatner, Lynn A. Choong, Woon-Seng Moses, William W. TI Strontium and barium iodide high light yield scintillators SO APPLIED PHYSICS LETTERS LA English DT Article AB Europium-doped strontium and barium iodide are found to be readily growable by the Bridgman method and to produce high scintillation light yields. SrI2(Eu) emits into the Eu(2+) band, centered at 435 nm, with a decay time of 1.2 mu s and a light yield of similar to 90 00 photons/MeV. It offers energy resolution better than 4% full width at half maximum at 662 keV, and exhibits excellent light yield proportionality. BaI(2)(Eu) produces >30 000 photons/MeV into the Eu(2+) band at 420 nm (<1 mu s decay). An additional broad impurity-mediated recombination band is present at 550 nm (>3 mu s decay), unless high-purity feedstock is used. (c) 2008 American Institute of Physics. C1 [Cherepy, Nerine J.; Hull, Giulia; Drobshoff, Alexander D.; Payne, Stephen A.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Van Loef, Edgar; Wilson, Cody M.; Shah, Kanai S.] Radiat Monitoring Devices Inc, Boston, MA 02134 USA. [Roy, Utpal N.; Burger, Arnold] Fisk Univ, Ctr Phys & Chem Mat, Nashville, TN 37208 USA. [Boatner, Lynn A.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Choong, Woon-Seng; Moses, William W.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Cherepy, NJ (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM cherepyl@llnl.gov RI Cherepy, Nerine/F-6176-2013; Boatner, Lynn/I-6428-2013 OI Cherepy, Nerine/0000-0001-8561-923X; Boatner, Lynn/0000-0002-0235-7594 NR 12 TC 162 Z9 165 U1 1 U2 24 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD FEB 25 PY 2008 VL 92 IS 8 AR 083508 DI 10.1063/1.2885728 PG 3 WC Physics, Applied SC Physics GA 278OX UT WOS:000254297300109 ER PT J AU Mirman, B Kalinin, SV AF Mirman, Boris Kalinin, Sergei V. TI Resonance frequency analysis for surface-coupled atomic force microscopy cantilever in ambient and liquid environments SO APPLIED PHYSICS LETTERS LA English DT Article AB Shifts in the resonance frequencies of surface-coupled atomic force microscope (AFM) probes are used as the basis for the detection mechanisms in a number of scanning probe microscopy techniques including atomic force acoustic microscopy (AFAM), force modulation microscopy, and resonance enhanced piezoresponse force microscopy (PFM). Here, we analyze resonance characteristics for AFM cantilever coupled to surface in liquid environment, and derive approximate expressions for resonant frequencies as a function of vertical and lateral spring constant of the tip-surface junction. This analysis provides a simplified framework for the interpretation of AFAM and PFM data in ambient, liquid, and vacuum environments. (c) 2008 American Institute of Physics. C1 Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Kalinin, Sergei V.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Mirman, Boris] Suffolk Univ, Dept Math, Boston, MA 02114 USA. RP Kalinin, SV (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. EM sergei2@ornl.gov RI Kalinin, Sergei/I-9096-2012 OI Kalinin, Sergei/0000-0001-5354-6152 NR 8 TC 12 Z9 12 U1 0 U2 11 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD FEB 25 PY 2008 VL 92 IS 8 AR 083102 DI 10.1063/1.2801524 PG 3 WC Physics, Applied SC Physics GA 278OX UT WOS:000254297300072 ER PT J AU Zhao, YH Bingert, JF Zhu, YT Liao, XZ Valiev, RZ Horita, Z Langdon, TG Zhou, YZ Lavernia, EJ AF Zhao, Y. H. Bingert, J. F. Zhu, Y. T. Liao, X. Z. Valiev, R. Z. Horita, Z. Langdon, T. G. Zhou, Y. Z. Lavernia, E. J. TI Tougher ultrafine grain Cu via high-angle grain boundaries and low dislocation density SO APPLIED PHYSICS LETTERS LA English DT Article ID SEVERE PLASTIC-DEFORMATION; DUCTILITY; STRENGTH; METALS; ALLOYS AB Although there are a few isolated examples of excellent strength and ductility in single-phase metals with ultrafine grained (UFG) structures, the precise role of different microstructural features responsible for these results is not fully understood. Here, we demonstrate that a large fraction of high-angle grain boundaries and a low dislocation density may significantly improve the toughness and uniform elongation of UFG Cu by increasing its strain-hardening rate without any concomitant sacrifice in its yield strength. Our study provides a strategy for synthesizing tough UFG materials. (C) 2008 American Institute of Physics. C1 [Zhao, Y. H.; Bingert, J. F.; Zhu, Y. T.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Liao, X. Z.] Univ Sydney, Sch Aerosp Mech & Mechatron Engn, Sydney, NSW 2006, Australia. [Valiev, R. Z.] Ufa State Aviat Tech Univ, Inst Phys Adv Mat, Ufa 450000, Russia. [Horita, Z.] Kyushu Univ, Dept Mat Sci & Engn, Fukuoka 8190395, Japan. [Langdon, T. G.] Univ So Calif, Dept Aerosp & Mech Engn, Los Angeles, CA 90089 USA. [Langdon, T. G.] Univ So Calif, Dept Mat Sci, Los Angeles, CA 90089 USA. [Zhao, Y. H.; Zhou, Y. Z.; Lavernia, E. J.] Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA. RP Zhao, YH (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM yhzhao@ucdavis.edu; ytzhu@ncsu.edu RI Langdon, Terence/B-1487-2008; Zhu, Yuntian/B-3021-2008; Zhao, Yonghao/A-8521-2009; Liao, Xiaozhou/B-3168-2009; Lujan Center, LANL/G-4896-2012; Lavernia, Enrique/I-6472-2013; U-ID, Kyushu/C-5291-2016 OI Zhu, Yuntian/0000-0002-5961-7422; Liao, Xiaozhou/0000-0001-8565-1758; Lavernia, Enrique/0000-0003-2124-8964; NR 18 TC 104 Z9 104 U1 3 U2 35 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD FEB 25 PY 2008 VL 92 IS 8 AR 081903 DI 10.1063/1.2870014 PG 3 WC Physics, Applied SC Physics GA 278OX UT WOS:000254297300024 ER PT J AU Schwarz, JA Brokstein, PB Voolstra, C Terry, AY Miller, DJ Szmant, AM Coffroth, MA Medina, M AF Schwarz, Jodi A. Brokstein, Peter B. Voolstra, Christian Terry, Astrid Y. Miller, David J. Szmant, Alina M. Coffroth, Mary Alice Medina, Monica TI Coral life history and symbiosis: Functional genomic resources for two reef building Caribbean corals, Acropora palmata and Montastraea faveolata SO BMC GENOMICS LA English DT Article ID AMINO-ACID SITES; POSITIVE SELECTION; SEA-ANEMONE; ANCESTRAL COMPLEXITY; AIPTASIA-PULCHELLA; INNATE IMMUNITY; GENE LOSS; EVOLUTION; ACCURACY; FERRITIN AB Background: Scleractinian corals are the foundation of reef ecosystems in tropical marine environments. Their great success is due to interactions with endosymbiotic dinoflagellates ( Symbiodinium spp.), with which they are obligately symbiotic. To develop a foundation for studying coral biology and coral symbiosis, we have constructed a set of cDNA libraries and generated and annotated ESTs from two species of corals, Acropora palmata and Montastraea faveolata. Results: We generated 14,588 ( Ap) and 3,854 ( Mf) high quality ESTs from five life history/ symbiosis stages ( spawned eggs, early-stage planula larvae, late- stage planula larvae either infected with symbionts or uninfected, and adult coral). The ESTs assembled into a set of primarily stage- specific clusters, producing 4,980 ( Ap), and 1,732 ( Mf) unigenes. The egg stage library, relative to the other developmental stages, was enriched in genes functioning in cell division and proliferation, transcription, signal transduction, and regulation of protein function. Fifteen unigenes were identified as candidate symbiosis- related genes as they were expressed in all libraries constructed from the symbiotic stages and were absent from all of the non symbiotic stages. These include several DNA interacting proteins, and one highly expressed unigene ( containing 17 cDNAs) with no significant protein- coding region. A significant number of unigenes ( 25) encode potential pattern recognition receptors ( lectins, scavenger receptors, and others), as well as genes that may function in signaling pathways involved in innate immune responses ( toll- like signaling, NFkB p105, and MAP kinases). Comparison between the A. palmata and an A. millepora EST dataset identified ferritin as a highly expressed gene in both datasets that appears to be undergoing adaptive evolution. Five unigenes appear to be restricted to the Scleractinia, as they had no homology to any sequences in the nr databases nor to the non- scleractinian cnidarians Nematostella vectensis and Hydra magnipapillata. Conclusion: Partial sequencing of 5 cDNA libraries each for A. palmata and M. faveolata has produced a rich set of candidate genes ( 4,980 genes from A. palmata, and 1,732 genes from M. faveolata) that we can use as a starting point for examining the life history and symbiosis of these two species, as well as to further expand the dataset of cnidarian genes for comparative genomics and evolutionary studies. C1 [Voolstra, Christian; Medina, Monica] Univ Calif, Sch Nat Sci, Merced, CA 95344 USA. [Schwarz, Jodi A.] Vassar Coll, Dept Biol, Poughkeepsie, NY 12604 USA. [Brokstein, Peter B.; Terry, Astrid Y.] Joint Genome Inst, Dept Energy, Walnut Creek, CA 94598 USA. [Miller, David J.] James Cook Univ N Queensland, Comparat Genom Ctr, Townsville, Qld 4811, Australia. [Szmant, Alina M.] Ctr Marine Sci, Wilmington, NC 28409 USA. [Coffroth, Mary Alice] SUNY Buffalo, Dept Geol Sci, Buffalo, NY 14260 USA. RP Medina, M (reprint author), Univ Calif, Sch Nat Sci, POB 2039, Merced, CA 95344 USA. EM joschwarz@vassar.edu; pbbrokstein@lbl.gov; cvoolstra@ucmerced.edu; ayterry@lbl.gov; david.miller@jcu.edu.au; szmanta@uncw.edu; coffroth@buffalo.edu; mmedina@ucmerced.edu RI Voolstra, Christian/H-7158-2014 OI Voolstra, Christian/0000-0003-4555-3795 NR 61 TC 78 Z9 81 U1 2 U2 29 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1471-2164 J9 BMC GENOMICS JI BMC Genomics PD FEB 25 PY 2008 VL 9 AR 97 DI 10.1186/1471-2164-9-97 PG 16 WC Biotechnology & Applied Microbiology; Genetics & Heredity SC Biotechnology & Applied Microbiology; Genetics & Heredity GA 287BJ UT WOS:000254891000001 PM 18298846 ER PT J AU Mayrhofer, KJJ Strmcnik, D Blizanac, BB Stamenkovic, V Arenz, M Markovic, NM AF Mayrhofer, K. J. J. Strmcnik, D. Blizanac, B. B. Stamenkovic, V. Arenz, M. Markovic, N. M. TI Measurement of oxygen reduction activities via the rotating disc electrode method: From Pt model surfaces to carbon-supported high surface area catalysts SO ELECTROCHIMICA ACTA LA English DT Article DE RDE; ORR; Pt; HSA-catalyst; particle size effect ID SINGLE-CRYSTAL ELECTRODES; PARTICLE-SIZE; CO ELECTROOXIDATION; PHOSPHORIC-ACID; PT-NI; PLATINUM; ALLOY; NANOPARTICLES; ELECTROCATALYSTS; STABILITY AB The aim of this report is to scrutinize the thin-film rotating disc electrode (TF-RDE) method for investigating the electrocatalytic activity of high surface area catalysts. Special emphasis is given to the oxygen reduction reaction (ORR) on carbon-supported platinum catalysts. On the basis of measurements on four different Pt catalyst samples with various average particle sizes, it is demonstrated in detail how the intrinsic properties of the catalyst, i.e., the mass activity (A/g(Pt)) and the specific activity (A/m(Pt)(2)), are evaluated. The potential sources of error are critically discussed and guidelines for the measurements are given. Furthermore, the specific ORR activities determined for the different catalyst samples are analyzed and compared to polycrystalline Pt. The previously reported effect of the particle size on the specific activity for the ORR is interpreted on the basis of the shift in the potential of zero total charge and the concomitant alteration of the adsorption properties. (C) 2007 Elsevier Ltd. All rights reserved. C1 [Mayrhofer, K. J. J.; Arenz, M.] Tech Univ Munich, PCI, D-85748 Garching, Germany. [Strmcnik, D.; Blizanac, B. B.; Stamenkovic, V.; Markovic, N. M.] Argonne Natl Lab, Dept Mat Sci, Argonne, IL 60439 USA. RP Mayrhofer, KJJ (reprint author), Tech Univ Munich, PCI, Lichtenbergstr 4, D-85748 Garching, Germany. EM karl.mayrhofer@mytum.de RI Mayrhofer, Karl/D-4166-2009; Arenz, Matthias/C-7385-2009; Arenz, Matthias/C-3195-2016 OI Arenz, Matthias/0000-0001-9765-4315; Arenz, Matthias/0000-0001-9765-4315 NR 39 TC 466 Z9 468 U1 40 U2 302 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0013-4686 J9 ELECTROCHIM ACTA JI Electrochim. Acta PD FEB 25 PY 2008 VL 53 IS 7 BP 3181 EP 3188 DI 10.1016/j.electacta.2007.11.057 PG 8 WC Electrochemistry SC Electrochemistry GA 271QR UT WOS:000253804300020 ER PT J AU Grossman, D Aranson, IS Ben Jacob, E AF Grossman, D. Aranson, I. S. Ben Jacob, E. TI Emergence of agent swarm migration and vortex formation through inelastic collisions SO NEW JOURNAL OF PHYSICS LA English DT Article ID ANIMAL GROUPS; MODEL AB Biologically inspired models of self-propelled interacting agents display a wide variety of collective motion such as swarm migration and vortex formation. In these models, active interactions among agents are typically included such as velocity alignment and cohesive and repulsive forces that represent agents' short- and long-range 'sensing' capabilities of their environment. Here, we show that similar collective behaviors can emerge in a minimal model of isotropic agents solely due to a passive mechanism inelastic collisions among agents. The model dynamics shows a gradual velocity correlation build-up into the collective motion state. The model displays a discontinuous transition of collective motion with respect to noise and exhibits several collective motion types such as vortex formation, swarm migration and also complex spatio-temporal group motion. This model can be regarded as a hybrid model, connecting granular materials and agent-based models. C1 [Grossman, D.; Ben Jacob, E.] Tel Aviv Univ, Sch Phys & Astron, Raymond & Beverly Sackler Fac Exact Sci, IL-69978 Tel Aviv, Israel. [Aranson, I. S.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Ben Jacob, E.] Univ Calif San Diego, Ctr Theoret Biol Phys, La Jolla, CA 92093 USA. RP Ben Jacob, E (reprint author), Tel Aviv Univ, Sch Phys & Astron, Raymond & Beverly Sackler Fac Exact Sci, IL-69978 Tel Aviv, Israel. EM eshelbj@gmail.com RI Aranson, Igor/I-4060-2013 NR 25 TC 59 Z9 60 U1 2 U2 15 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1367-2630 J9 NEW J PHYS JI New J. Phys. PD FEB 25 PY 2008 VL 10 AR 023036 DI 10.1088/1367-2630/10/2/023036 PG 11 WC Physics, Multidisciplinary SC Physics GA 270IC UT WOS:000253713500001 ER PT J AU Masuda, JD Jantunen, KC Scott, BL Kiplinger, JL AF Masuda, Jason D. Jantunen, Kimberly C. Scott, Brian L. Kiplinger, Jaqueline L. TI Lutetium alkyls supported by a dearomatized and functionalized terpyridine ligand: Preparation of fluorinated anilide complexes SO ORGANOMETALLICS LA English DT Article ID ALKYLIDENE COMPLEXES; LANTHANIDE COMPLEXES; TITANIUM COMPLEXES; IMIDO COMPLEXES; BOND-CLEAVAGE; ACTIVATION; CHEMISTRY; PHOSPHINIDENE; NICKEL(II); REACTIVITY AB Lutetium alkyl complexes supported by a monoanionic, tridentate ligand system formed by the dearomatization and junctionalization of a 2,2':6',2 ''-terpyridine have been reacted with 2,4,6-triphenylaniline or the fluorinated anilines 4-F-C6H4NH2 and C6F5NH2 to give both terminal mono(amide) and bis(amide) lutetium(III) complexes, which have been fully characterized. Both [Bu-t(3)(2'-Me3SiCH2)tpy]Lu[NH(2,4,6-Ph-3-C6H2)](2) (3) and [Bu-t(3)(2'-Me3SiCH2)tPy](C5Me5)Lu(NHC6F5) (7) have been structurally characterized. The fluorinated anilide complexes [Bu-t(3)(2'-Me3SiCH2)tpy](C5Me5)Lu(NHArF) (Ar-F = 4-F-C6H4 (6), C6F5 (7)) provide rare examples of lutetium organofluorine complexes, with 7 featuring an intramolecular F center dot center dot center dot H-C interaction that is present in both solid state and solution. C1 [Masuda, Jason D.; Jantunen, Kimberly C.; Scott, Brian L.; Kiplinger, Jaqueline L.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Kiplinger, JL (reprint author), Los Alamos Natl Lab, Mail Stp J514, Los Alamos, NM 87545 USA. EM kiplinger@lanl.gov RI Kiplinger, Jaqueline/B-9158-2011; Scott, Brian/D-8995-2017; OI Kiplinger, Jaqueline/0000-0003-0512-7062; Scott, Brian/0000-0003-0468-5396; Masuda, Jason/0000-0002-6195-9691 NR 38 TC 19 Z9 19 U1 0 U2 5 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0276-7333 J9 ORGANOMETALLICS JI Organometallics PD FEB 25 PY 2008 VL 27 IS 4 BP 803 EP 806 DI 10.1021/om701076n PG 4 WC Chemistry, Inorganic & Nuclear; Chemistry, Organic SC Chemistry GA 264EG UT WOS:000253268000047 ER PT J AU Pryor, SC Barthelmie, R Schoof, JT Binkowskid, FS Delle Monache, L Stullf, R AF Pryor, S. C. Barthelmie, Rj. Schoof, J. T. Binkowskid, F. S. Delle Monache, L. Stullf, R. TI Modeling the impact of sea-spray on particle concentrations in a coastal city SO SCIENCE OF THE TOTAL ENVIRONMENT LA English DT Article DE air pollution; sea-spray; aerosol; urban; heterogeneous chemistry ID LOWER FRASER VALLEY; 2001 AIR-QUALITY; PARTICULATE MATTER; CHLORINE EMISSIONS; NUMERICAL SCHEMES; AEROSOL FORMATION; REGIONAL-SCALE; CHEMISTRY; POLLUTION; VARIABILITY AB With the worlds population becoming increasingly focused on coastal locations there is a need to better understand the interactions between anthropogenic emissions and marine atmospheres. Herein an atmospheric chemistry-transport model is used to assess the impacts of sea-spray chemistry on the particle composition in and downwind of a coastal city-Vancouver, British Columbia. It is shown that the model can reasonably represent the average features of the gas phase and particle climate relative to in situ measurements. It is further demonstrated that reactions in/on sea-spray affect the entire particle ensemble and particularly the size distribution of particle nitrate, but that the importance of these heterogeneous reactions is critically dependent on both the initial vertical profile of sea spray and the sea-spray source functions. The results emphasize the need for improved understanding of sea spray production and dispersion and further that model analyses of air quality in coastal cities conducted without inclusion of sea-spray interactions may yield mis-leading results in terms of emission sensitivities of particle composition and concentrations. (c) 2007 Elsevier B.V. All rights reserved. C1 [Pryor, S. C.] Indiana Univ, Dept Geog, Atmospher Sci Program, Bloomington, IN 47405 USA. [Barthelmie, Rj.] Univ Edinburgh, Sch Engn & Elect, Inst Energy Syst, Edinburgh, Midlothian, Scotland. [Schoof, J. T.] So Illinois Univ, Dept Geog, Carbondale, IL USA. [Binkowskid, F. S.] Univ N Carolina, Inst Environm, Chapel Hill, NC USA. [Delle Monache, L.] Lawrence Livermore Natl Lab, Livermore, CA USA. [Stullf, R.] Univ British Columbia, Earth & Ocean Sci Dept, Atmospher Sci Programme, Vancouver, BC V5Z 1M9, Canada. RP Pryor, SC (reprint author), Indiana Univ, Dept Geog, Atmospher Sci Program, Bloomington, IN 47405 USA. EM spryor@indiana.edu OI Barthelmie, Rebecca J/0000-0003-0403-6046; Pryor, S.C./0000-0003-4847-3440 NR 47 TC 6 Z9 6 U1 2 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0048-9697 J9 SCI TOTAL ENVIRON JI Sci. Total Environ. PD FEB 25 PY 2008 VL 391 IS 1 BP 132 EP 142 DI 10.1016/j.scitotenv.2007.10.059 PG 11 WC Environmental Sciences SC Environmental Sciences & Ecology GA 255DZ UT WOS:000252638500014 PM 18061242 ER PT J AU Primo, ME Klinke, S Sica, MP Goldbaum, FA Jakoncic, J Poskus, E Ermacora, MR AF Primo, Maria E. Klinke, Sebastian Sica, Mauricio P. Goldbaum, Fernando A. Jakoncic, Jean Poskus, Edgardo Ermacora, Mario R. TI Structure of the mature ectodomain of the human receptor-type protein-tyrosine phosphatase IA-2 SO JOURNAL OF BIOLOGICAL CHEMISTRY LA English DT Article ID SEA MODULE; MACROMOLECULAR STRUCTURES; CLEAVAGE; DOMAIN; TRANSMEMBRANE; IA-2-BETA; ALPHA; INHIBITION; REFINEMENT; EXPRESSION AB IA-2 (insulinoma-associated protein 2) is a protein-tyrosine phosphatase receptor located in secretory granules of neuroendocrine cells. Initially, it attracted attention due to its involvement in the autoimmune response associated to diabetes. Later it was found that upon exocytosis, the cytoplasmic domain of IA-2 is cleaved and relocated to the nucleus, where it enhances the transcription of the insulin gene. A concerted functioning of the whole receptor is to be expected. However, very little is known about the structure and function of the transmembrane and extracellular domains of IA-2. To address this issue, we solved the x-ray structure of the mature ectodomain of IA-2 (meIA-2) to 1.30 A resolution. The fold of meIA-2 is related to the SEA ( sea urchin sperm protein, enterokinase, agrin)) domains of mucins, suggesting its participation in adhesive contacts to the extracellular matrix and providing clues on how this kind of molecule may associate and form homo- and heterodimers. Moreover, we discovered that meIA-2 is self-proteolyzed in vitro by reactive oxygen species, suggesting the possibility of a new shedding mechanism that might be significant in normal function or pathological processes. Knowledge of meIA-2 structure should facilitate the search of its possible ligands and molecular interactions. C1 [Primo, Maria E.; Klinke, Sebastian; Sica, Mauricio P.; Goldbaum, Fernando A.; Poskus, Edgardo; Ermacora, Mario R.] Consejo Nacl Invest Cient & Tecn, RA-1033 Buenos Aires, DF, Argentina. [Primo, Maria E.; Poskus, Edgardo] Idehu Conicet UBA, Junin 954, Buenos Aires, DF, Argentina. [Primo, Maria E.; Poskus, Edgardo] Univ Buenos Aires, Fac Farm & Bioquim, Catedra Inmunol, Buenos Aires, DF, Argentina. [Klinke, Sebastian; Goldbaum, Fernando A.] Consejo Nacl Invest Cient & Tecn, IIBBA, Fdn Inst Leloir, RA-1033 Buenos Aires, DF, Argentina. [Sica, Mauricio P.; Ermacora, Mario R.] Univ Nacl Quilmes, Dept Ciencia Tecnol, Buenos Aires, DF, Argentina. [Jakoncic, Jean] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Ermacora, MR (reprint author), Consejo Nacl Invest Cient & Tecn, Rivadavia 1917 C1033AAJ,Ciudad Autonoma, RA-1033 Buenos Aires, DF, Argentina. EM ermacora@unq.edu.ar NR 48 TC 11 Z9 14 U1 1 U2 4 PU AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3996 USA SN 0021-9258 J9 J BIOL CHEM JI J. Biol. Chem. PD FEB 22 PY 2008 VL 283 IS 8 BP 4674 EP 4681 DI 10.1074/jbc.M708144200 PG 8 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 266IA UT WOS:000253426500025 PM 18048354 ER PT J AU VanDemark, AP Xin, H McCullough, L Rawlins, R Bentley, S Heroux, A Stillman, DJ Hill, CP Formosa, T AF VanDemark, Andrew P. Xin, Hua McCullough, Laura Rawlins, Robert Bentley, Shayla Heroux, Annie Stillman, David J. Hill, Christopher P. Formosa, Tim TI Structural and functional analysis of the Spt16p N-terminal domain reveals overlapping roles of yFACT subunits SO JOURNAL OF BIOLOGICAL CHEMISTRY LA English DT Article ID NUCLEOSOME CORE PARTICLE; DNA-POLYMERASE ALPHA; SACCHAROMYCES-CEREVISIAE; METHIONINE AMINOPEPTIDASE; CREATINE AMIDINOHYDROLASE; CRYSTAL-STRUCTURE; ESCHERICHIA-COLI; YEAST FACT; REPLICATION; TRANSCRIPTION AB yFACT (heterodimers of Saccharomyces cerevisiae Spt16-Pob3 combined with Nhp6) binds to and alters the properties of nucleosomes. The essential function of yFACT is not disrupted by deletion of the N-terminal domain (NTD) of Spt16 or by mutation of the middle domain of Pob3, but either alteration makes yeast cells sensitive to DNA replication stress. We have determined the structure of the Spt16 NTD and find evidence for a conserved potential peptide-binding site. Pob3-M also contains a putative binding site, and we show that these two sites perform an overlapping essential function. We find that yFACT can bind the N-terminal tails of some histones and that this interaction is important for yFACT-nucleosome binding. However, neither the Spt16 NTD nor a key residue in the putative Pob3-M-binding site was required for interactions with histone N termini or for yFACT-mediated nucleosome reorganization in vitro. Instead, both potential binding sites interact functionally with the C-terminal docking domain of the histone H2A. yFACT therefore appears to make multiple contacts with different sites within nucleosomes, and these interactions are partially redundant with one another. The docking domain of H2A is identified as an important participant in maintaining stability during yFACT-mediated nucleosome reorganization, suggesting new models for the mechanism of this activity. C1 [VanDemark, Andrew P.; Xin, Hua; McCullough, Laura; Rawlins, Robert; Hill, Christopher P.; Formosa, Tim] Univ Utah, Sch Med, Dept Biochem, Salt Lake City, UT 84112 USA. [Heroux, Annie] Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. [Bentley, Shayla; Stillman, David J.] Univ Utah, Sch Med, Dept Pathol, Salt Lake City, UT 84112 USA. RP Hill, CP (reprint author), Univ Utah, Sch Med, Dept Biochem, Salt Lake City, UT 84112 USA. EM chris@biochem.utah.edu; tim@biochem.utah.edu OI Stillman, David/0000-0002-5268-2416 FU NIGMS NIH HHS [R01 GM076242] NR 49 TC 45 Z9 45 U1 0 U2 0 PU AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3996 USA SN 0021-9258 J9 J BIOL CHEM JI J. Biol. Chem. PD FEB 22 PY 2008 VL 283 IS 8 BP 5058 EP 5068 DI 10.1074/jbc.M708682200 PG 11 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 266IA UT WOS:000253426500063 PM 18089575 ER PT J AU Galea, CA Nourse, A Wang, Y Sivakolundu, SG Heller, WT Kriwacki, RW AF Galea, Charles A. Nourse, Amanda Wang, Yuefeng Sivakolundu, Sivashankar G. Heller, William T. Kriwacki, Richard W. TI Role of intrinsic flexibility in signal transduction mediated by the cell cycle regulator, p27(Kip1) SO JOURNAL OF MOLECULAR BIOLOGY LA English DT Article DE cell cycle; cyclin-dependent kinase inhibitor; disordered protein; intrinsically unstructured protein; p27(Kip1) ID SMALL-ANGLE SCATTERING; CDK INHIBITOR P27; UBIQUITIN LIGASE; PROTEIN-KINASE; PHASE; DEGRADATION; PROTEOLYSIS; PROGRESSION; COMPLEXES; MODELS AB p27(Kip1) (p27), which controls eukaryotic cell division through interactions with cyclin-dependent kinases (Cdks), integrates and transduces promitogenic signals from various nonreceptor tyrosine kinases by orchestrating its own phosphorylation, ubiquitination and degradation. Intrinsic flexibility allows p27 to act as a "conduit" for sequential signaling mediated by tyrosine and threonine phosphorylation and ubiquitination. While the structural features of the Cdk/cyclin-binding domain of p27 are understood, how the C-terminal regulatory domain coordinates multistep signaling leading to p27 degradation is poorly understood. We show that the 100-residue p27 C-terminal domain is extended and flexible when p27 is bound to Cdk2/cyclin A. We propose that the intrinsic flexibility of p27 provides a molecular basis for the sequential signal transduction conduit that regulates p27 degradation and cell division. Other intrinsically unstructured proteins possessing multiple sites of posttranslational modification may participate in similar signaling conduits. (C) 2007 Elsevier Ltd. All rights reserved. C1 [Galea, Charles A.; Wang, Yuefeng; Sivakolundu, Sivashankar G.; Kriwacki, Richard W.] St Jude Childrens Res Hosp, Dept Biol Struct, Memphis, TN 38105 USA. [Nourse, Amanda] St Jude Childrens Res Hosp, Hartwell Ctr Bioinformat & Biotechnol, Memphis, TN 38105 USA. [Heller, William T.] Oak Ridge Natl Lab, Ctr Struct Mol Biol, Oak Ridge, TN 37831 USA. [Heller, William T.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. [Kriwacki, Richard W.] Univ Tennessee, Dept Mol Sci, Memphis, TN 38163 USA. RP Kriwacki, RW (reprint author), St Jude Childrens Res Hosp, Dept Biol Struct, 332 N Lauderdale, Memphis, TN 38105 USA. EM richard.kriwacki@squde.org RI Galea, Charles/C-5074-2013; Galea, Charles/O-8800-2014 OI Galea, Charles/0000-0003-0485-7709; Galea, Charles/0000-0003-2730-1105 FU NCI NIH HHS [2R01CA082491, 5P30CA021765, P30 CA021765, R01 CA082491, R01 CA082491-01A2, R01 CA082491-02, R01 CA082491-03, R01 CA082491-04, R01 CA082491-05, R01 CA082491-06A2] NR 47 TC 68 Z9 69 U1 0 U2 13 PU ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD PI LONDON PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND SN 0022-2836 J9 J MOL BIOL JI J. Mol. Biol. PD FEB 22 PY 2008 VL 376 IS 3 BP 827 EP 838 DI 10.1016/j.jmb.2007.12.016 PG 12 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 265JM UT WOS:000253354900019 PM 18177895 ER PT J AU Aaltonen, T Adelman, J Akimoto, T Albrow, MG Gonzalez, BA Amerio, S Amidei, D Anastassov, A Annovi, A Antos, J Aoki, M Apollinari, G Apresyan, A Arisawa, T Artikov, A Ashmanskas, W Attal, A Aurisano, A Azfar, F Azzi-Bacchetta, P Azzurri, P Bacchetta, N Badgett, W Barbaro-Galtieri, A Barnes, VE Barnett, BA Baroiant, S Bartsch, V Bauer, G Beauchemin, PH Bedeschi, F Bednar, P Beecher, D Behari, S Bellettini, G Bellinger, J Belloni, A Benjamin, D Beretvas, A Beringer, J Berry, T Bhatti, A Binkley, M Bisello, D Bizjak, I Blair, RE Blocker, C Blumenfeld, B Bocci, A Bodek, A Boisvert, V Bolla, G Bolshov, A Bortoletto, D Boudreau, J Boveia, A Brau, B Bridgeman, A Brigliadori, L Bromberg, C Brubaker, E Budagov, J Budd, HS Budd, S Burkett, K Busetto, G Bussey, P Buzatu, A Byrum, KL Cabrera, S Campanelli, M Campbell, M Canelli, F Canepa, A Carlsmith, D Carosi, R Carrillo, S Carron, S Casal, B Casarsa, M Castro, A Catastini, P Cauz, D Cavalli-Sforza, M Cerri, A Cerrito, L Chang, SH Chen, YC Chertok, M Chiarelli, G Chlachidze, G Chlebana, F Cho, K Chokheli, D Chou, JP Choudalakis, G Chuang, SH Chung, K Chung, WH Chung, YS Ciobanu, CI Ciocci, MA Clark, A Clark, D Compostella, G Convery, ME Conway, J Cooper, B Copic, K Cordelli, M Cortiana, G Crescioli, F Almenar, CC Cuevas, J Culbertson, R Cully, JC Dagenhart, D Datta, M Davies, T de Barbaro, P De Cecco, S Deisher, A De Lentdecker, G De Lorenzo, G Dell'Orso, M Demortier, L Deng, J Deninno, M De Pedis, D Derwent, PF Di Giovanni, GP Dionisi, C Di Ruzza, B Dittmann, JR D'Onofrio, M Donati, S Dong, P Donini, J Dorigo, T Dube, S Efron, J Erbacher, R Errede, D Errede, S Eusebi, R Fang, HC Farrington, S Fedorko, WT Feild, RG Feindt, M Fernandez, JP Ferrazza, C Field, R Flanagan, G Forrest, R Forrester, S Franklin, M Freeman, JC Furic, I Gallinaro, M Galyardt, J Garberson, F Garcia, JE Garfinkel, AF Gerberich, H Gerdes, D Giagu, S Giakoumopolou, V Giannetti, P Gibson, K Gimmell, JL Ginsburg, CM Giokaris, N Giordani, M Giromini, P Giunta, M Glagolev, V Glenzinski, D Gold, M Goldschmidt, N Golossanov, A Gomez, G Gomez-Ceballos, G Goncharov, M Gonzalez, O Gorelov, I Goshaw, AT Goulianos, K Gresele, A Grinstein, S Grosso-Pilcher, C Group, RC Grundler, U Da Costa, JG Gunay-Unalan, Z Haber, C Hahn, K Hahn, SR Halkiadakis, E Hamilton, A Han, BY Han, JY Handler, R Happacher, F Hara, K Hare, D Hare, M Harper, S Harr, RF Harris, RM Hartz, M Hatakeyama, K Hauser, J Hays, C Heck, M Heijboer, A Heinemann, B Heinrich, J Henderson, C Herndon, M Heuser, J Hewamanage, S Hidas, D Hill, CS Hirschbuehl, D Hocker, A Hou, S Houlden, M Hsu, SC Huffman, BT Hughes, RE Husemann, U Huston, J Incandela, J Introzzi, G Iori, M Ivanov, A Iyutin, B James, E Jayatilaka, B Jeans, D Jeon, EJ Jindariani, S Johnson, W Jones, M Joo, KK Jun, SY Jung, JE Junk, TR Kamon, T Kar, D Karchin, PE Kato, Y Kephart, R Kerzel, U Khotilovich, V Kilminster, B Kim, DH Kim, HS Kim, JE Kim, MJ Kim, SB Kim, SH Kim, YK Kimura, N Kirsch, L Klimenko, S Klute, M Knuteson, B Ko, BR Koay, SA Kondo, K Kong, DJ Konigsberg, J Korytov, A Kotwal, AV Kraus, J Kreps, M Kroll, J Krumnack, N Kruse, M Krutelyov, V Kubo, T Kuhlmann, SE Kuhr, T Kulkarni, NP Kusakabe, Y Kwang, S Laasanen, AT Lai, S Lami, S Lammel, S Lancaster, M Lander, RL Lannon, K Lath, A Latino, G Lazzizzera, I LeCompte, T Lee, J Lee, J Lee, YJ Lee, SW Vre, RL Leonardo, N Leone, S Levy, S Lewis, JD Lin, C Lin, CS Linacre, J Lindgren, M Lipeles, E Lister, A Litvintsev, DO Liu, T Lockyer, NS Loginov, A Loreti, M Lovas, L Lu, RS Lucchesi, D Lueck, J Luci, C Lujan, P Lukens, P Lungu, G Lyons, L Lys, J Lysak, R Lytken, E Mack, P MacQueen, D Madrak, R Maeshima, K Makhoul, K Maki, T Maksimovic, P Malde, S Malik, S Manca, G Manousakis, A Margaroli, F Marino, C Marino, CP Martin, A Martin, M Martin, V Martinez, M Martinez-Ballarin, R Maruyama, T Mastrandrea, P Masubuchi, T Mattson, ME Mazzanti, P McFarland, KS McIntyre, P McNulty, R Mehta, A Mehtala, P Menzemer, S Menzione, A Merkel, P Mesropian, C Messina, A Miao, T Miladinovic, N Miles, J Miller, R Mills, C Milnik, M Mitra, A Mitselmakher, G Miyake, H Moed, S Moggi, N Moon, CS Moore, R Morello, M Fernandez, PM Muelmenstaedt, J Mukherjee, A Muller, T Mumford, R Murat, P Mussini, M Nachtman, J Nagai, Y Nagano, A Naganoma, J Nakamura, K Nakano, I Napier, A Necula, V Neu, C Neubauer, MS Nielsen, J Nodulman, L Norman, M Norniella, O Nurse, E Oh, SH Oh, YD Oksuzian, I Okusawa, T Oldeman, R Orava, R Osterberg, K Griso, SP Pagliarone, C Palencia, E Papadimitriou, V Papaikonomou, A Paramonov, AA Parks, B Pashapour, S Patrick, J Pauletta, G Paulini, M Paus, C Pellett, DE Penzo, A Phillips, TJ Piacentino, G Piedra, J Pinera, L Pitts, K Plager, C Pondrom, L Portell, X Poukhov, O Pounder, N Prakoshyn, F Pronko, A Proudfoot, J Ptohos, F Punzi, G Pursley, J Rademacker, J Rahaman, A Ramakrishnan, V Ranjan, N Redondo, I Reisert, B Rekovic, V Renton, P Rescigno, M Richter, S Rimondi, F Ristori, L Robson, A Rodrigo, T Rogers, E Rolli, S Roser, R Rossi, M Rossin, R Roy, P Ruiz, A Russ, J Rusu, V Saarikko, H Safonov, A Sakumoto, WK Salamanna, G Salto, O Santi, L Sarkar, S Sartori, L Sato, K Savoy-Navarro, A Scheidle, T Schlabach, P Schmidt, EE Schmidt, MA Schmidt, MP Schmitt, M Schwarz, T Scodellaro, L Scott, AL Scribano, A Scuri, F Sedov, A Seidel, S Seiya, Y Semenov, A Sexton-Kennedy, L Sfyria, A Shalhout, SZ Shapiro, MD Shears, T Shepard, PF Sherman, D Shimojima, M Shochet, M Shon, Y Shreyber, I Sidoti, A Sinervo, P Sisakyan, A Slaughter, AJ Slaunwhite, J Sliwa, K Smith, JR Snider, FD Snihur, R Soderberg, M Soha, A Somalwar, S Sorin, V Spalding, J Spinella, F Spreitzer, T Squillacioti, P Stanitzki, M Denis, RS Stelzer, B Stelzer-Chilton, O Stentz, D Strologas, J Stuart, D Suh, JS Sukhanov, A Sun, H Suslov, I Suzuki, T Taffard, A Takashima, R Takeuchi, Y Tanaka, R Tecchio, M Teng, PK Terashi, K Thom, J Thompson, AS Thompson, GA Thomson, E Tipton, P Tiwari, V Tkaczyk, S Toback, D Tokar, S Tollefson, K Tomura, T Tonelli, D Torre, S Torretta, D Tourneur, S Trischuk, W Tu, Y Turini, N Ukegawa, F Uozumi, S Vallecorsa, S Van Remortel, N Varganov, A Vataga, E Vazquez, F Velev, G Vellidis, C Veszpremi, V Vidal, M Vidal, R Vila, I Vilar, R Vine, T Vogel, M Volobouev, I Volpi, G Rthwein, FW Wagner, P Wagner, RG Wagner, RL Wagner-Kuhr, J Wagner, W Wakisaka, T Wallny, R Wang, SM Warburton, A Waters, D Weinberger, M Wester, WC Whitehouse, B Whiteson, D Wicklund, AB Wicklund, E Williams, G Williams, HH Wilson, P Winer, BL Wittich, P Wolbers, S Wolfe, C Wright, T Wu, X Wynne, SM Yagil, A Yamamoto, K Yamaoka, J Yamashita, T Yang, C Yang, UK Yang, YC Yao, WM Yeh, GP Yoh, J Yorita, K Yoshida, T Yu, GB Yu, I Yu, SS Yun, JC Zanello, L Zanetti, A Zaw, I Zhang, X Zheng, Y Zucchelli, S AF Aaltonen, T. Adelman, J. Akimoto, T. Albrow, M. G. Gonzalez, B. Alvarez Amerio, S. Amidei, D. Anastassov, A. Annovi, A. Antos, J. Aoki, M. Apollinari, G. Apresyan, A. Arisawa, T. Artikov, A. Ashmanskas, W. Attal, A. Aurisano, A. Azfar, F. Azzi-Bacchetta, P. Azzurri, P. Bacchetta, N. Badgett, W. Barbaro-Galtieri, A. Barnes, V. E. Barnett, B. A. Baroiant, S. Bartsch, V. Bauer, G. Beauchemin, P. -H. Bedeschi, F. Bednar, P. Beecher, D. Behari, S. Bellettini, G. Bellinger, J. Belloni, A. Benjamin, D. Beretvas, A. Beringer, J. Berry, T. Bhatti, A. Binkley, M. Bisello, D. Bizjak, I. Blair, R. E. Blocker, C. Blumenfeld, B. Bocci, A. Bodek, A. Boisvert, V. Bolla, G. Bolshov, A. Bortoletto, D. Boudreau, J. Boveia, A. Brau, B. Bridgeman, A. Brigliadori, L. Bromberg, C. Brubaker, E. Budagov, J. Budd, H. S. Budd, S. Burkett, K. Busetto, G. Bussey, P. Buzatu, A. Byrum, K. L. Cabrera, S. Campanelli, M. Campbell, M. Canelli, F. Canepa, A. Carlsmith, D. Carosi, R. Carrillo, S. Carron, S. Casal, B. Casarsa, M. Castro, A. Catastini, P. Cauz, D. Cavalli-Sforza, M. Cerri, A. Cerrito, L. Chang, S. H. Chen, Y. C. Chertok, M. Chiarelli, G. Chlachidze, G. Chlebana, F. Cho, K. Chokheli, D. Chou, J. P. Choudalakis, G. Chuang, S. H. Chung, K. Chung, W. H. Chung, Y. S. Ciobanu, C. I. Ciocci, M. A. Clark, A. Clark, D. Compostella, G. Convery, M. E. Conway, J. Cooper, B. Copic, K. Cordelli, M. Cortiana, G. Crescioli, F. Almenar, C. Cuenca Cuevas, J. Culbertson, R. Cully, J. C. Dagenhart, D. Datta, M. Davies, T. de Barbaro, P. De Cecco, S. Deisher, A. De Lentdecker, G. De Lorenzo, G. Dell'Orso, M. Demortier, L. Deng, J. Deninno, M. De Pedis, D. Derwent, P. F. Di Giovanni, G. P. Dionisi, C. Di Ruzza, B. Dittmann, J. R. D'Onofrio, M. Donati, S. Dong, P. Donini, J. Dorigo, T. Dube, S. Efron, J. Erbacher, R. Errede, D. Errede, S. Eusebi, R. Fang, H. C. Farrington, S. Fedorko, W. T. Feild, R. G. Feindt, M. Fernandez, J. P. Ferrazza, C. Field, R. Flanagan, G. Forrest, R. Forrester, S. Franklin, M. Freeman, J. C. Furic, I. Gallinaro, M. Galyardt, J. Garberson, F. Garcia, J. E. Garfinkel, A. F. Gerberich, H. Gerdes, D. Giagu, S. Giakoumopolou, V. Giannetti, P. Gibson, K. Gimmell, J. L. Ginsburg, C. M. Giokaris, N. Giordani, M. Giromini, P. Giunta, M. Glagolev, V. Glenzinski, D. Gold, M. Goldschmidt, N. Golossanov, A. Gomez, G. Gomez-Ceballos, G. Goncharov, M. Gonzalez, O. Gorelov, I. Goshaw, A. T. Goulianos, K. Gresele, A. Grinstein, S. Grosso-Pilcher, C. Group, R. C. Grundler, U. Da Costa, J. Guimaraes Gunay-Unalan, Z. Haber, C. Hahn, K. Hahn, S. R. Halkiadakis, E. Hamilton, A. Han, B. -Y. Han, J. Y. Handler, R. Happacher, F. Hara, K. Hare, D. Hare, M. Harper, S. Harr, R. F. Harris, R. M. Hartz, M. Hatakeyama, K. Hauser, J. Hays, C. Heck, M. Heijboer, A. Heinemann, B. Heinrich, J. Henderson, C. Herndon, M. Heuser, J. Hewamanage, S. Hidas, D. Hill, C. S. Hirschbuehl, D. Hocker, A. Hou, S. Houlden, M. Hsu, S. -C. Huffman, B. T. Hughes, R. E. Husemann, U. Huston, J. Incandela, J. Introzzi, G. Iori, M. Ivanov, A. Iyutin, B. James, E. Jayatilaka, B. Jeans, D. Jeon, E. J. Jindariani, S. Johnson, W. Jones, M. Joo, K. K. Jun, S. Y. Jung, J. E. Junk, T. R. Kamon, T. Kar, D. Karchin, P. E. Kato, Y. Kephart, R. Kerzel, U. Khotilovich, V. Kilminster, B. Kim, D. H. Kim, H. S. Kim, J. E. Kim, M. J. Kim, S. B. Kim, S. H. Kim, Y. K. Kimura, N. Kirsch, L. Klimenko, S. Klute, M. Knuteson, B. Ko, B. R. Koay, S. A. Kondo, K. Kong, D. J. Konigsberg, J. Korytov, A. Kotwal, A. V. Kraus, J. Kreps, M. Kroll, J. Krumnack, N. Kruse, M. Krutelyov, V. Kubo, T. Kuhlmann, S. E. Kuhr, T. Kulkarni, N. P. Kusakabe, Y. Kwang, S. Laasanen, A. T. Lai, S. Lami, S. Lammel, S. Lancaster, M. Lander, R. L. Lannon, K. Lath, A. Latino, G. Lazzizzera, I. LeCompte, T. Lee, J. Lee, J. Lee, Y. J. Lee, S. W. Vre, R. Lefe Leonardo, N. Leone, S. Levy, S. Lewis, J. D. Lin, C. Lin, C. S. Linacre, J. Lindgren, M. Lipeles, E. Lister, A. Litvintsev, D. O. Liu, T. Lockyer, N. S. Loginov, A. Loreti, M. Lovas, L. Lu, R. -S. Lucchesi, D. Lueck, J. Luci, C. Lujan, P. Lukens, P. Lungu, G. Lyons, L. Lys, J. Lysak, R. Lytken, E. Mack, P. MacQueen, D. Madrak, R. Maeshima, K. Makhoul, K. Maki, T. Maksimovic, P. Malde, S. Malik, S. Manca, G. Manousakis, A. Margaroli, F. Marino, C. Marino, C. P. Martin, A. Martin, M. Martin, V. Martinez, M. Martinez-Ballarin, R. Maruyama, T. Mastrandrea, P. Masubuchi, T. Mattson, M. E. Mazzanti, P. McFarland, K. S. McIntyre, P. McNulty, R. Mehta, A. Mehtala, P. Menzemer, S. Menzione, A. Merkel, P. Mesropian, C. Messina, A. Miao, T. Miladinovic, N. Miles, J. Miller, R. Mills, C. Milnik, M. Mitra, A. Mitselmakher, G. Miyake, H. Moed, S. Moggi, N. Moon, C. S. Moore, R. Morello, M. Fernandez, P. Movilla Muelmenstaedt, J. Mukherjee, A. Muller, Th. Mumford, R. Murat, P. Mussini, M. Nachtman, J. Nagai, Y. Nagano, A. Naganoma, J. Nakamura, K. Nakano, I. Napier, A. Necula, V. Neu, C. Neubauer, M. S. Nielsen, J. Nodulman, L. Norman, M. Norniella, O. Nurse, E. Oh, S. H. Oh, Y. D. Oksuzian, I. Okusawa, T. Oldeman, R. Orava, R. Osterberg, K. Griso, S. Pagan Pagliarone, C. Palencia, E. Papadimitriou, V. Papaikonomou, A. Paramonov, A. A. Parks, B. Pashapour, S. Patrick, J. Pauletta, G. Paulini, M. Paus, C. Pellett, D. E. Penzo, A. Phillips, T. J. Piacentino, G. Piedra, J. Pinera, L. Pitts, K. Plager, C. Pondrom, L. Portell, X. Poukhov, O. Pounder, N. Prakoshyn, F. Pronko, A. Proudfoot, J. Ptohos, F. Punzi, G. Pursley, J. Rademacker, J. Rahaman, A. Ramakrishnan, V. Ranjan, N. Redondo, I. Reisert, B. Rekovic, V. Renton, P. Rescigno, M. Richter, S. Rimondi, F. Ristori, L. Robson, A. Rodrigo, T. Rogers, E. Rolli, S. Roser, R. Rossi, M. Rossin, R. Roy, P. Ruiz, A. Russ, J. Rusu, V. Saarikko, H. Safonov, A. Sakumoto, W. K. Salamanna, G. Salto, O. Santi, L. Sarkar, S. Sartori, L. Sato, K. Savoy-Navarro, A. Scheidle, T. Schlabach, P. Schmidt, E. E. Schmidt, M. A. Schmidt, M. P. Schmitt, M. Schwarz, T. Scodellaro, L. Scott, A. L. Scribano, A. Scuri, F. Sedov, A. Seidel, S. Seiya, Y. Semenov, A. Sexton-Kennedy, L. Sfyria, A. Shalhout, S. Z. Shapiro, M. D. Shears, T. Shepard, P. F. Sherman, D. Shimojima, M. Shochet, M. Shon, Y. Shreyber, I. Sidoti, A. Sinervo, P. Sisakyan, A. Slaughter, A. J. Slaunwhite, J. Sliwa, K. Smith, J. R. Snider, F. D. Snihur, R. Soderberg, M. Soha, A. Somalwar, S. Sorin, V. Spalding, J. Spinella, F. Spreitzer, T. Squillacioti, P. Stanitzki, M. Denis, R. St. Stelzer, B. Stelzer-Chilton, O. Stentz, D. Strologas, J. Stuart, D. Suh, J. S. Sukhanov, A. Sun, H. Suslov, I. Suzuki, T. Taffard, A. Takashima, R. Takeuchi, Y. Tanaka, R. Tecchio, M. Teng, P. K. Terashi, K. Thom, J. Thompson, A. S. Thompson, G. A. Thomson, E. Tipton, P. Tiwari, V. Tkaczyk, S. Toback, D. Tokar, S. Tollefson, K. Tomura, T. Tonelli, D. Torre, S. Torretta, D. Tourneur, S. Trischuk, W. Tu, Y. Turini, N. Ukegawa, F. Uozumi, S. Vallecorsa, S. Van Remortel, N. Varganov, A. Vataga, E. Vazquez, F. Velev, G. Vellidis, C. Veszpremi, V. Vidal, M. Vidal, R. Vila, I. Vilar, R. Vine, T. Vogel, M. Volobouev, I. Volpi, G. Rthwein, F. Wu Wagner, P. Wagner, R. G. Wagner, R. L. Wagner-Kuhr, J. Wagner, W. Wakisaka, T. Wallny, R. Wang, S. M. Warburton, A. Waters, D. Weinberger, M. Wester, W. C., III Whitehouse, B. Whiteson, D. Wicklund, A. B. Wicklund, E. Williams, G. Williams, H. H. Wilson, P. Winer, B. L. Wittich, P. Wolbers, S. Wolfe, C. Wright, T. Wu, X. Wynne, S. M. Yagil, A. Yamamoto, K. Yamaoka, J. Yamashita, T. Yang, C. Yang, U. K. Yang, Y. C. Yao, W. M. Yeh, G. P. Yoh, J. Yorita, K. Yoshida, T. Yu, G. B. Yu, I. Yu, S. S. Yun, J. C. Zanello, L. Zanetti, A. Zaw, I. Zhang, X. Zheng, Y. Zucchelli, S. TI Direct measurement of the W boson width in p(p)over-bar collisions at root s=1.96 TeV SO PHYSICAL REVIEW LETTERS LA English DT Article ID QED RADIATIVE-CORRECTIONS; UNIVERSAL MONTE-CARLO; HIGH-PT W; E(+)E(-) COLLISIONS; MASS; DETECTOR; PHYSICS; DECAYS; GLUONS; PHOTOS AB A direct measurement of the total decay width of the W boson Gamma(W) is presented using 350 pb(-1) of data from p (p) over bar collisions at root s = 1.96 TeV collected with the CDF II detector at the Fermilab Tevatron. The width is determined by normalizing predicted signal and background distributions to 230 185 W candidates decaying to e nu and mu nu in the transverse-mass region 50 < M(T) < 90 GeV and then fitting the predicted shape to 6055 events in the high-M(T) region, 90 < M(T) < 200 GeV. The result is Gamma(W) = 2032 +/- 45(stat) +/- 57(syst) MeV, consistent with the standard model expectation. C1 [Aaltonen, T.; Maki, T.; Mehtala, P.; Orava, R.; Osterberg, K.; Saarikko, H.; Van Remortel, N.] Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. [Blair, R. E.; Byrum, K. L.; Kuhlmann, S. E.; LeCompte, T.; Nodulman, L.; Proudfoot, J.; Wagner, R. G.; Wicklund, A. B.] Argonne Natl Lab, Argonne, IL 60439 USA. [Attal, A.; Cavalli-Sforza, M.; De Lorenzo, G.; D'Onofrio, M.; Martin, M.; Portell, X.; Salto, O.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. [Dittmann, J. R.; Hewamanage, S.; Krumnack, N.] Baylor Univ, Waco, TX 76798 USA. [Brigliadori, L.; Castro, A.; Deninno, M.; Moggi, N.; Mussini, M.; Rimondi, F.; Zucchelli, S.] Univ Bologna, Ist Nazl Fis Nucl, I-40127 Bologna, Italy. [Blocker, C.; Clark, D.; Miladinovic, N.] Brandeis Univ, Waltham, MA 02254 USA. [Baroiant, S.; Chertok, M.; Conway, J.; Almenar, C. Cuenca; Erbacher, R.; Forrest, R.; Forrester, S.; Ivanov, A.; Johnson, W.; Lander, R. L.; Lister, A.; Pellett, D. E.; Schwarz, T.; Smith, J. R.; Soha, A.] Univ Calif Davis, Davis, CA 95616 USA. [Dong, P.; Hauser, J.; Plager, C.; Stelzer, B.; Wallny, R.; Zheng, Y.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Hsu, S. -C.; Lipeles, E.; Norman, M.; Rthwein, F. Wu; Yagil, A.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Boveia, A.; Brau, B.; Garberson, F.; Incandela, J.; Koay, S. A.; Krutelyov, V.; Rossin, R.; Scott, A. L.; Stuart, D.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Carrillo, S.; Chen, Y. C.; Hou, S.; Lu, R. -S.; Mitra, A.; Teng, P. K.; Wang, S. M.] Acad Sinica, Inst Phys, Taipei 11529, Taiwan. [Gonzalez, B. Alvarez; Casal, B.; Cuevas, J.; Gomez, G.; Menzemer, S.; Rodrigo, T.; Ruiz, A.; Scodellaro, L.; Vila, I.; Vilar, R.] Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain. [Chung, K.; Galyardt, J.; Jun, S. Y.; Paulini, M.; Russ, J.; Tiwari, V.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Grosso-Pilcher, C.; Kim, Y. K.; Kwang, S.; Levy, S.; Paramonov, A. A.; Schmidt, M. A.; Shochet, M.; Wolfe, C.; Yang, U. K.; Yorita, K.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Antos, J.; Bednar, P.; Lovas, L.; Lysak, R.; Tokar, S.] Comenius Univ, Bratislava 84248, Slovakia. [Antos, J.; Bednar, P.; Lovas, L.; Lysak, R.; Tokar, S.] Inst Expt Phys, Kosice 04001, Slovakia. [Artikov, A.; Giokaris, N.; Glagolev, V.; Manousakis, A.; Poukhov, O.; Prakoshyn, F.; Semenov, A.; Sisakyan, A.; Suslov, I.] Joint Inst Nucl Res, RU-141980 Dubna, Russia. [Benjamin, D.; Cabrera, S.; Deng, J.; Glagolev, V.; Goshaw, A. T.; Hidas, D.; Jayatilaka, B.; Ko, B. R.; Kotwal, A. V.; Kruse, M.; Necula, V.; Oh, S. H.; Phillips, T. J.] Duke Univ, Durham, NC 27708 USA. [Albrow, M. G.; Apollinari, G.; Ashmanskas, W.; Badgett, W.; Beretvas, A.; Binkley, M.; Canelli, F.; Casarsa, M.; Chlachidze, G.; Chlebana, F.; Convery, M. E.; Culbertson, R.; Dagenhart, D.; Datta, M.; Derwent, P. F.; Fang, H. C.; Ginsburg, C. M.; Glenzinski, D.; Golossanov, A.; Group, R. C.; Hahn, S. R.; Harris, R. M.; Hocker, A.; James, E.; Kephart, R.; Kim, M. J.; Lammel, S.; Lewis, J. D.; Lindgren, M.; Litvintsev, D. O.; Liu, T.; Lukens, P.; Madrak, R.; Maeshima, K.; Miao, T.; Mukherjee, A.; Murat, P.; Nachtman, J.; Palencia, E.; Papadimitriou, V.; Patrick, J.; Pronko, A.; Ptohos, F.; Reisert, B.; Roser, R.; Rusu, V.; Sato, K.; Schlabach, P.; Schmidt, E. E.; Sexton-Kennedy, L.; Slaughter, A. J.; Snider, F. D.; Spalding, J.; Thom, J.; Tkaczyk, S.; Tonelli, D.; Torretta, D.; Velev, G.; Vidal, R.; Wagner, R. L.; Wester, W. C., III; Wicklund, E.; Wilson, P.; Wittich, P.; Wolbers, S.; Yeh, G. P.; Yoh, J.; Yu, S. S.; Yun, J. C.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Carrillo, S.; Field, R.; Furic, I.; Goldschmidt, N.; Jindariani, S.; Kar, D.; Klimenko, S.; Konigsberg, J.; Korytov, A.; Lungu, G.; Mitselmakher, G.; Oksuzian, I.; Pinera, L.; Sukhanov, A.; Vazquez, F.] Univ Florida, Gainesville, FL 32611 USA. [Annovi, A.; Cordelli, M.; Giromini, P.; Happacher, F.; Torre, S.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Clark, A.; Hamilton, A.; Vre, R. Lefe; Sfyria, A.; Shreyber, I.; Vallecorsa, S.; Wu, X.] Univ Geneva, CH-1211 Geneva, Switzerland. [Aaltonen, T.; Bussey, P.; Davies, T.; Martin, V.; Robson, A.; Denis, R. St.; Thompson, A. S.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. [Belloni, A.; Chou, J. P.; Franklin, M.; Grinstein, S.; Da Costa, J. Guimaraes; Moed, S.; Sherman, D.; Zaw, I.] Harvard Univ, Cambridge, MA 02138 USA. [Aaltonen, T.; Maki, T.; Mehtala, P.; Orava, R.; Osterberg, K.; Saarikko, H.; Van Remortel, N.] Helsinki Inst Phys, FIN-00014 Helsinki, Finland. [Bridgeman, A.; Budd, S.; Ciobanu, C. I.; Errede, D.; Errede, S.; Gerberich, H.; Grundler, U.; Junk, T. R.; Kraus, J.; Marino, C. P.; Neubauer, M. S.; Norniella, O.; Pitts, K.; Rogers, E.; Taffard, A.; Thompson, G. A.; Zhang, X.] Univ Illinois, Urbana, IL 61801 USA. [Behari, S.; Blumenfeld, B.; Maksimovic, P.; Martin, M.; Mumford, R.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Feindt, M.; Heck, M.; Heuser, J.; Hirschbuehl, D.; Kerzel, U.; Kreps, M.; Kuhr, T.; Lueck, J.; Mack, P.; Marino, C.; Milnik, M.; Muller, Th.; Papaikonomou, A.; Richter, S.; Scheidle, T.; Wagner, W.] Univ Karlsruhe, Inst Expt Kernphys, D-76128 Karlsruhe, Germany. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J.; Lee, Y. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Kyungpook Natl Univ, Ctr High Energy Phys, Taegu 702701, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J.; Lee, Y. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Seoul Natl Univ, Seoul 151742, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J.; Lee, Y. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Sungkyunkwan Univ, Suwon 440746, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J.; Lee, Y. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Korea Inst Sci & Technol, Taejon 305806, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J.; Lee, Y. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Chonnam Natl Univ, Kwangju 500757, South Korea. [Barbaro-Galtieri, A.; Beringer, J.; Cerri, A.; Deisher, A.; Fang, H. C.; Freeman, J. C.; Haber, C.; Heinemann, B.; Lin, C. S.; Lujan, P.; Lys, J.; Fernandez, P. Movilla; Muelmenstaedt, J.; Shapiro, M. D.; Yao, W. M.] Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Berry, T.; Farrington, S.; Houlden, M.; Manca, G.; Mehta, A.; Oldeman, R.; Shears, T.; Wynne, S. M.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Bartsch, V.; Beecher, D.; Bizjak, I.; Cooper, B.; Lancaster, M.; Malik, S.; Nurse, E.; Vine, T.; Waters, D.] UCL, London WC1E 6BT, England. [Fernandez, J. P.; Gonzalez, O.; Martinez-Ballarin, R.; Redondo, I.; Vidal, M.] Ctr Invest Energet Medioambientales & Tecnol, E-28040 Madrid, Spain. [Bauer, G.; Bolshov, A.; Choudalakis, G.; Gomez-Ceballos, G.; Hahn, K.; Henderson, C.; Iyutin, B.; Klute, M.; Knuteson, B.; Leonardo, N.; Makhoul, K.; Miles, J.; Paus, C.] MIT, Cambridge, MA 02139 USA. [Beauchemin, P. -H.; Buzatu, A.; Carron, S.; Lai, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Trischuk, W.; Warburton, A.; Williams, G.] McGill Univ, Inst Particle Phys, Montreal, PQ H3A 2T8, Canada. [Beauchemin, P. -H.; Buzatu, A.; Carron, S.; Lai, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Trischuk, W.; Warburton, A.; Williams, G.] Univ Toronto, Toronto, ON M5S 1A7, Canada. [Amidei, D.; Campanelli, M.; Copic, K.; Cully, J. C.; Gerdes, D.; Soderberg, M.; Tecchio, M.; Varganov, A.; Wright, T.] Univ Michigan, Ann Arbor, MI 48109 USA. [Bromberg, C.; Campanelli, M.; Gunay-Unalan, Z.; Huston, J.; Messina, A.; Miller, R.; Sorin, V.; Tollefson, K.] Michigan State Univ, E Lansing, MI 48824 USA. [Gold, M.; Gorelov, I.; Rekovic, V.; Seidel, S.; Strologas, J.; Vataga, E.; Vogel, M.] Univ New Mexico, Albuquerque, NM 87131 USA. [Schmitt, M.; Stentz, D.] Northwestern Univ, Evanston, IL 60208 USA. [Efron, J.; Hughes, R. E.; Kilminster, B.; Lannon, K.; Parks, B.; Slaunwhite, J.; Winer, B. L.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.; Takashima, R.; Tanaka, R.; Yamashita, T.] Okayama Univ, Okayama 7008530, Japan. [Kato, Y.; Okusawa, T.; Seiya, Y.; Wakisaka, T.; Yamamoto, K.; Yoshida, T.] Osaka City Univ, Osaka 588, Japan. [Azfar, F.; Harper, S.; Hays, C.; Huffman, B. T.; Linacre, J.; Lyons, L.; Malde, S.; Pounder, N.; Renton, P.; Stelzer-Chilton, O.] Univ Oxford, Oxford OX1 3RH, England. [Amerio, S.; Azzi-Bacchetta, P.; Bacchetta, N.; Bisello, D.; Busetto, G.; Compostella, G.; Cortiana, G.; Donini, J.; Dorigo, T.; Gresele, A.; Lazzizzera, I.; Loreti, M.; Lucchesi, D.; Griso, S. Pagan] Univ Padua, Ist Nazl Fis Nucl, Sez Padova Trento, I-35131 Padua, Italy. [Di Giovanni, G. P.; Piedra, J.; Savoy-Navarro, A.; Tourneur, S.] Univ Paris 06, CNRS, IN2P3, LPNHE, F-75252 Paris, France. [Canepa, A.; Heijboer, A.; Heinrich, J.; Kroll, J.; Lockyer, N. S.; Neu, C.; Thomson, E.; Tu, Y.; Wagner, P.; Williams, H. H.] Univ Penn, Philadelphia, PA 19104 USA. [Azzurri, P.; Bedeschi, F.; Bellettini, G.; Carosi, R.; Catastini, P.; Chiarelli, G.; Ciocci, M. A.; Crescioli, F.; Dell'Orso, M.; Donati, S.; Ferrazza, C.; Garcia, J. E.; Giannetti, P.; Giunta, M.; Introzzi, G.; Lami, S.; Latino, G.; Leone, S.; Menzione, A.; Morello, M.; Pagliarone, C.; Piacentino, G.; Punzi, G.; Ristori, L.; Sartori, L.; Scribano, A.; Scuri, F.; Sidoti, A.; Squillacioti, P.; Turini, N.; Volpi, G.] Univ Pisa, Ist Nazl Fis Nucl Pisa, Siena, Italy. [Azzurri, P.; Bedeschi, F.; Bellettini, G.; Carosi, R.; Catastini, P.; Chiarelli, G.; Ciocci, M. A.; Crescioli, F.; Dell'Orso, M.; Donati, S.; Ferrazza, C.; Garcia, J. E.; Giannetti, P.; Giunta, M.; Introzzi, G.; Lami, S.; Latino, G.; Leone, S.; Menzione, A.; Morello, M.; Pagliarone, C.; Piacentino, G.; Punzi, G.; Ristori, L.; Sartori, L.; Scribano, A.; Scuri, F.; Sidoti, A.; Squillacioti, P.; Turini, N.; Volpi, G.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Boudreau, J.; Gibson, K.; Hartz, M.; Rahaman, A.; Shepard, P. F.] Univ Pittsburgh, Pittsburgh, PA 15260 USA. [Apresyan, A.; Barnes, V. E.; Bolla, G.; Bortoletto, D.; Flanagan, G.; Garfinkel, A. F.; Jones, M.; Laasanen, A. T.; Lytken, E.; Margaroli, F.; Merkel, P.; Ranjan, N.; Sedov, A.; Veszpremi, V.] Purdue Univ, W Lafayette, IN 47907 USA. [Bodek, A.; Boisvert, V.; Budd, H. S.; Chung, Y. S.; de Barbaro, P.; Gimmell, J. L.; Han, B. -Y.; Han, J. Y.; Lee, J.; McFarland, K. S.; Sakumoto, W. K.; Yu, G. B.] Univ Rochester, Rochester, NY 14627 USA. [Bhatti, A.; Demortier, L.; Gallinaro, M.; Goulianos, K.; Hatakeyama, K.; Mesropian, C.; Terashi, K.] Rockefeller Univ, New York, NY 10021 USA. [De Cecco, S.; De Pedis, D.; Dionisi, C.; Giagu, S.; Iori, M.; Jeans, D.; Luci, C.; Mastrandrea, P.; Rescigno, M.; Salamanna, G.; Sarkar, S.; Zanello, L.] Univ Roma La Sapienza, Ist Nazl Fis Nucl, Sez Roma 1, I-00185 Rome, Italy. [Anastassov, A.; Chuang, S. H.; Dube, S.; Halkiadakis, E.; Hare, D.; Lath, A.; Somalwar, S.; Yamaoka, J.] Rutgers State Univ, Piscataway, NJ 08855 USA. [Aurisano, A.; Goncharov, M.; Kamon, T.; Khotilovich, V.; McIntyre, P.; Safonov, A.; Toback, D.; Weinberger, M.] Texas A&M Univ, College Stn, TX 77843 USA. [Cauz, D.; Di Ruzza, B.; Giordani, M.; Pauletta, G.; Penzo, A.; Rossi, M.; Santi, L.; Zanetti, A.] Univ Trieste, Ist Nazl Fis Nucl, Udine, Italy. [Akimoto, T.; Hara, K.; Kim, S. H.; Kimura, N.; Kubo, T.; Maruyama, T.; Masubuchi, T.; Miyake, H.; Nagai, Y.; Nagano, A.; Nakamura, K.; Suzuki, T.; Takeuchi, Y.; Tomura, T.; Ukegawa, F.; Uozumi, S.] Univ Tsukuba, Tsukuba, Ibaraki 305, Japan. [Hare, M.; Napier, A.; Rolli, S.; Sliwa, K.; Sun, H.; Whitehouse, B.] Tufts Univ, Medford, MA 02155 USA. [Arisawa, T.; Kondo, K.; Kusakabe, Y.; Naganoma, J.] Waseda Univ, Tokyo 169, Japan. [Harr, R. F.; Karchin, P. E.; Kulkarni, N. P.; Mattson, M. E.; Shalhout, S. Z.] Wayne State Univ, Detroit, MI 48201 USA. [Bellinger, J.; Carlsmith, D.; Chung, W. H.; Handler, R.; Herndon, M.; Leonardo, N.; Pondrom, L.; Pursley, J.; Ramakrishnan, V.; Shon, Y.] Univ Wisconsin, Madison, WI 53706 USA. [Field, R.; Husemann, U.; Lin, C.; Loginov, A.; Martin, A.; Schmidt, M. P.; Stanitzki, M.; Tipton, P.; Yang, C.] Yale Univ, New Haven, CT 06520 USA. RP Aaltonen, T (reprint author), Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. RI Scodellaro, Luca/K-9091-2014; Paulini, Manfred/N-7794-2014; Russ, James/P-3092-2014; Lazzizzera, Ignazio/E-9678-2015; vilar, rocio/P-8480-2014; Cabrera Urban, Susana/H-1376-2015; Garcia, Jose /H-6339-2015; ciocci, maria agnese /I-2153-2015; Cavalli-Sforza, Matteo/H-7102-2015; Muelmenstaedt, Johannes/K-2432-2015; Introzzi, Gianluca/K-2497-2015; Gorelov, Igor/J-9010-2015; Amerio, Silvia/J-4605-2012; messina, andrea/C-2753-2013; Annovi, Alberto/G-6028-2012; Ivanov, Andrew/A-7982-2013; Warburton, Andreas/N-8028-2013; Kim, Soo-Bong/B-7061-2014; Lysak, Roman/H-2995-2014; Ruiz, Alberto/E-4473-2011; Robson, Aidan/G-1087-2011; De Cecco, Sandro/B-1016-2012; Azzi, Patrizia/H-5404-2012; manca, giulia/I-9264-2012; Moon, Chang-Seong/J-3619-2014; Prokoshin, Fedor/E-2795-2012; Leonardo, Nuno/M-6940-2016; Canelli, Florencia/O-9693-2016 OI Scodellaro, Luca/0000-0002-4974-8330; Paulini, Manfred/0000-0002-6714-5787; Russ, James/0000-0001-9856-9155; Lazzizzera, Ignazio/0000-0001-5092-7531; ciocci, maria agnese /0000-0003-0002-5462; Muelmenstaedt, Johannes/0000-0003-1105-6678; Introzzi, Gianluca/0000-0002-1314-2580; Gorelov, Igor/0000-0001-5570-0133; Annovi, Alberto/0000-0002-4649-4398; Ivanov, Andrew/0000-0002-9270-5643; Warburton, Andreas/0000-0002-2298-7315; Ruiz, Alberto/0000-0002-3639-0368; Azzi, Patrizia/0000-0002-3129-828X; Moon, Chang-Seong/0000-0001-8229-7829; Prokoshin, Fedor/0000-0001-6389-5399; Leonardo, Nuno/0000-0002-9746-4594; Canelli, Florencia/0000-0001-6361-2117 NR 30 TC 11 Z9 11 U1 1 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD FEB 22 PY 2008 VL 100 IS 7 AR 071801 DI 10.1103/PhysRevLett.100.071801 PG 7 WC Physics, Multidisciplinary SC Physics GA 265CO UT WOS:000253336900016 ER PT J AU Aubert, B Bona, M Karyotakis, Y Lees, JP Poireau, V Prudent, X Tisserand, V Zghiche, A Tico, JG Grauges, E Lopez, L Palano, A Pappagallo, M Eigen, G Stugu, B Sun, L Abrams, GS Battaglia, M Brown, DN Button-Shafer, J Cahn, RN Jacobsen, RG Kadyk, JA Kerth, LT Kolomensky, YG Kukartsev, G Pegna, DL Lynch, G Orimoto, TJ Osipenkov, IL Ronan, MT Tackmann, K Tanabe, T Wenzel, WA Sanchez, PDA Hawkes, CM Soni, N Watson, AT Koch, H Schroeder, T Walker, D Asgeirsson, DJ Cuhadar-Donszelmann, T Fulsom, BG Hearty, C Mattison, TS McKenna, JA Barrett, M Khan, A Saleem, M Teodorescu, L Blinov, VE Bukin, AD Buzykaev, AR Druzhinin, VP Golubev, VB Onuchin, AP Serednyakov, SI Skovpen, YI Solodov, EP Todyshev, KY Bondioli, M Curry, S Eschrich, I Kirkby, D Lankford, AJ Lund, P Mandelkern, M Martin, EC Stoker, DP Abachi, S Buchanan, C Gary, JW Liu, F Long, O Shen, BC Vitug, GM Zhang, L Paar, HP Rahatlou, S Sharma, V Berryhill, JW Campagnari, C Cunha, A Dahmes, B Hong, TM Kovalskyi, D Richman, JD Beck, TW Eisner, AM Flacco, CJ Heusch, CA Kroseberg, J Lockman, WS Schalk, T Schumm, BA Seiden, A Wilson, MG Winstrom, LO Chen, E Cheng, CH Echenard, B Fang, F Hitlin, DG Narsky, I Piatenko, T Porter, FC Andreassen, R Mancinelli, G Meadows, BT Mishra, K Sokoloff, MD Blanc, F Bloom, PC Ford, WT Hirschauer, JF Kreisel, A Nagel, M Nauenberg, U Olivas, A Smith, JG Ulmer, KA Wagner, SR Zhang, J Ayad, R Gabareen, AM Soffer, A Toki, WH Wilson, RJ Altenburg, DD Feltresi, E Hauke, A Jasper, H Merkel, J Petzold, A Spaan, B Wacker, K Klose, V Kobel, MJ Lacker, HM Mader, WF Nogowski, R Schubert, J Schubert, KR Schwierz, R Sundermann, JE Volk, A Bernard, D Bonneaud, GR Latour, E Lombardo, V Thiebaux, C Verderi, M Clark, PJ Gradl, W Muheim, F Playfer, S Robertson, AI Watson, JE Xie, Y Andreotti, M Bettoni, D Bozzi, C Calabrese, R Cecchi, A Cibinetto, G Franchini, P Luppi, E Negrini, M Petrella, A Piemontese, L Prencipe, E Santoro, V Anulli, F Baldini-Ferroli, R Calcaterra, A De Sangro, R Finocchiaro, G Pacetti, S Patteri, P Peruzzi, IM Piccolo, M Rama, M Zallo, A Buzzo, A Contri, R Lo Vetere, M Macri, MM Monge, MR Passaggio, S Patrignani, C Robutti, E Santroni, A Tosi, S Chaisanguanthum, KS Morii, M Wu, J Dubitzky, RS Marks, J Schenk, S Uwer, U Bard, DJ Dauncey, PD Nash, JA Vazquez, WP Tibbetts, M Behera, PK Chai, X Charles, MJ Mallik, U Cochran, J Crawley, HB Dong, L Eyges, V Meyer, WT Prell, S Rosenberg, EI Rubin, AE Gao, YY Gritsan, AV Guo, ZJ Lae, CK Denig, AG Fritsch, M Schott, G Arnaud, N Bequilleux, J D'Orazio, A Davier, M Grosdidier, G Hocker, A Lepeltier, V Le Diberder, F Lutz, AM Pruvot, S Roudeau, P Schune, MH Serrano, J Sordini, V Stocchi, A Wang, WF Wormser, G Lange, DJ Wright, DM Bingham, I Burke, JP Chavez, CA Fry, JR Gabathuler, E Gamet, R Hutchcroft, DE Payne, DJ Schofield, KC Touramanis, C Bevan, AJ George, KA Di Lodovico, F Sacco, R Cowan, G Flaecher, HU Hopkins, DA Paramesvaran, S Salvatore, F Wren, AC Brown, DN Davis, CL Barlow, NR Barlow, RJ Chia, YM Edgar, CL Lafferty, GD West, TJ Yi, JI Anderson, J Chen, C Jawahery, A Roberts, DA Simi, G Tuggle, JM Dallapiccola, C Hertzbach, SS Li, X Moore, TB Salvati, E Saremi, S Cowan, R Dujmic, D Fisher, PH Koeneke, K Sciolla, G Spitznagel, M Taylor, F Yamamoto, RK Zhao, M Mclachlin, SE Patel, PM Robertson, SH Lazzaro, A Palombo, F Bauer, JM Cremaldi, L Eschenburg, V Godang, R Kroeger, R Sanders, DA Summers, DJ Zhao, HW Brunet, S Cote, D Simard, M Taras, P Viaud, FB Nicholson, H De Nardo, G Fabozzi, F Lista, L Monorchio, D Sciacca, C Baak, MA Raven, G Snoek, HL Jessop, CP Knoepfel, KJ LoSecco, JM Benelli, G Corwin, LA Honscheid, K Kagan, H Kass, R Morris, JP Rahimi, AM Regensburger, JJ Sekula, SJ Wong, QK Blount, NL Brau, J Frey, R Igonkina, O Kolb, JA Lu, M Rahmat, R Sinev, NB Strom, D Strube, J Torrence, E Gagliardi, N Gaz, A Margoni, M Morandin, M Pompili, A Posocco, M Rotondo, M Simonetto, F Stroili, R Voci, C Ben-Haim, E Briand, H Calderini, G Chauveau, J David, P Del Buono, L de la Vaissiere, C Hamon, O Leruste, P Malcles, J Ocariz, J Perez, A Prendki, J Gladney, L Biasini, M Covarelli, R Manoni, E Angelini, C Batignani, G Bettarini, S Carpinelli, M Cenci, R Cervelli, A Forti, F Giorgi, MA Lusiani, A Marchiori, G Mazur, MA Morganti, M Neri, N Paoloni, E Rizzo, G Walsh, JJ Biesiada, J Lau, YP Lu, C Olsen, J Smith, AJS Telnov, AV Baracchini, E Bellini, F Cavoto, G Del Re, D Di Marco, E Faccini, R Ferrarotto, F Ferroni, F Gaspero, M Jackson, PD Mazzoni, MA Morganti, S Piredda, G Polci, F Renga, F Voena, C Ebert, M Hartmann, T Schroder, H Waldi, R Adye, T Castelli, G Franek, B Olaiya, EO Roethel, W Wilson, FF Emery, S Escalier, M Gaidot, A Ganzhur, SF De Monchenault, GH Kozanecki, W Vasseur, G Yeche, C Zito, M Chen, XR Liu, H Park, W Purohit, MV White, RM Wilson, JR Allen, MT Aston, D Bartoldus, R Bechtle, P Claus, R Coleman, JP Convery, MR Dingfelder, JC Dorfan, J Dubois-Felsmann, GP Dunwoodie, W Field, RC Glanzman, T Gowdy, SJ Graham, MT Grenier, P Hast, C Innes, WR Kaminski, J Kelsey, MH Kim, H Kim, P Kocian, ML Leith, DWGS Li, S Luitz, S Luth, V Lynch, HL MacFarlane, DB Marsiske, H Messner, R Muller, DR Nelson, S O'Grady, CP Ofte, I Perazzo, A Perl, M Pulliam, T Ratcliff, BN Roodman, A Salnikov, AA Schindler, RH Schwiening, J Snyder, A Su, D Sullivan, MK Suzuki, K Swain, SK Thompson, JM Va'vra, J Wagner, AP Weaver, M Wisniewski, WJ Wittgen, M Wright, DH Wulsin, HW Yarritu, AK Yi, K Young, CC Ziegler, V Burchat, PR Edwards, AJ Majewski, SA Miyashita, TS Petersen, BA Wilden, L Ahmed, S Alam, MS Bula, R Ernst, JA Pan, B Saeed, MA Zain, SB Spanier, SM Wogsland, BJ Eckmann, R Ritchie, JL Ruland, AM Schilling, CJ Schwitters, RF Izen, JM Lou, XC Ye, S Bianchi, F Gallo, F Gamba, D Pelliccioni, M Bomben, M Bosisio, L Cartaro, C Cossutti, F Della Ricca, G Lanceri, L Vitale, L Azzolini, V Lopez-March, N Martinez-Vidal, F Milanes, DA Oyanguren, A Albert, J Banerjee, S Bhuyan, B Hamano, K Kowalewski, R Nugent, IM Roney, JM Sobie, RJ Harrison, PF Ilic, J Latham, TE Mohanty, GB Band, HR Chen, X Dasu, S Flood, KT Hollar, JJ Kutter, PE Pan, Y Pierini, M Prepost, R Wu, SL Neal, H AF Aubert, B. Bona, M. Karyotakis, Y. Lees, J. P. Poireau, V. Prudent, X. Tisserand, V. Zghiche, A. Tico, J. Garra Grauges, E. Lopez, L. Palano, A. Pappagallo, M. Eigen, G. Stugu, B. Sun, L. Abrams, G. S. Battaglia, M. Brown, D. N. Button-Shafer, J. Cahn, R. N. Jacobsen, R. G. Kadyk, J. A. Kerth, L. T. Kolomensky, Yu. G. Kukartsev, G. Pegna, D. Lopes Lynch, G. Orimoto, T. J. Osipenkov, I. L. Ronan, M. T. Tackmann, K. Tanabe, T. Wenzel, W. A. Sanchez, P. Del Amo Hawkes, C. M. Soni, N. Watson, A. T. Koch, H. Schroeder, T. Walker, D. Asgeirsson, D. J. Cuhadar-Donszelmann, T. Fulsom, B. G. Hearty, C. Mattison, T. S. McKenna, J. A. Barrett, M. Khan, A. Saleem, M. Teodorescu, L. Blinov, V. E. Bukin, A. D. Buzykaev, A. R. Druzhinin, V. P. Golubev, V. B. Onuchin, A. P. Serednyakov, S. I. Skovpen, Yu. I. Solodov, E. P. Todyshev, K. Yu. Bondioli, M. Curry, S. Eschrich, I. Kirkby, D. Lankford, A. J. Lund, P. Mandelkern, M. Martin, E. C. Stoker, D. P. Abachi, S. Buchanan, C. Gary, J. W. Liu, F. Long, O. Shen, B. C. Vitug, G. M. Zhang, L. Paar, H. P. Rahatlou, S. Sharma, V. Berryhill, J. W. Campagnari, C. Cunha, A. Dahmes, B. Hong, T. M. Kovalskyi, D. Richman, J. D. Beck, T. W. Eisner, A. M. Flacco, C. J. Heusch, C. A. Kroseberg, J. Lockman, W. S. Schalk, T. Schumm, B. A. Seiden, A. Wilson, M. G. Winstrom, L. O. Chen, E. Cheng, C. H. Echenard, B. Fang, F. Hitlin, D. G. Narsky, I. Piatenko, T. Porter, F. C. Andreassen, R. Mancinelli, G. Meadows, B. T. Mishra, K. Sokoloff, M. D. Blanc, F. Bloom, P. C. Ford, W. T. Hirschauer, J. F. Kreisel, A. Nagel, M. Nauenberg, U. Olivas, A. Smith, J. G. Ulmer, K. A. Wagner, S. R. Zhang, J. Ayad, R. Gabareen, A. M. Soffer, A. Toki, W. H. Wilson, R. J. Altenburg, D. D. Feltresi, E. Hauke, A. Jasper, H. Merkel, J. Petzold, A. Spaan, B. Wacker, K. Klose, V. Kobel, M. J. Lacker, H. M. Mader, W. F. Nogowski, R. Schubert, J. Schubert, K. R. Schwierz, R. Sundermann, J. E. Volk, A. Bernard, D. Bonneaud, G. R. Latour, E. Lombardo, V. Thiebaux, Ch. Verderi, M. Clark, P. J. Gradl, W. Muheim, F. Playfer, S. Robertson, A. I. Watson, J. E. Xie, Y. Andreotti, M. Bettoni, D. Bozzi, C. Calabrese, R. Cecchi, A. Cibinetto, G. Franchini, P. Luppi, E. Negrini, M. Petrella, A. Piemontese, L. Prencipe, E. Santoro, V. Anulli, F. Baldini-Ferroli, R. Calcaterra, A. De Sangro, R. Finocchiaro, G. Pacetti, S. Patteri, P. Peruzzi, I. M. Piccolo, M. Rama, M. Zallo, A. Buzzo, A. Contri, R. Lo Vetere, M. Macri, M. M. Monge, M. R. Passaggio, S. Patrignani, C. Robutti, E. Santroni, A. Tosi, S. Chaisanguanthum, K. S. Morii, M. Wu, J. Dubitzky, R. S. Marks, J. Schenk, S. Uwer, U. Bard, D. J. Dauncey, P. D. Nash, J. A. Vazquez, W. Panduro Tibbetts, M. Behera, P. K. Chai, X. Charles, M. J. Mallik, U. Cochran, J. Crawley, H. B. Dong, L. Eyges, V. Meyer, W. T. Prell, S. Rosenberg, E. I. Rubin, A. E. Gao, Y. Y. Gritsan, A. V. Guo, Z. J. Lae, C. K. Denig, A. G. Fritsch, M. Schott, G. Arnaud, N. Bequilleux, J. D'Orazio, A. Davier, M. Grosdidier, G. Hoecker, A. Lepeltier, V. Le Diberder, F. Lutz, A. M. Pruvot, S. Roudeau, P. Schune, M. H. Serrano, J. Sordini, V. Stocchi, A. Wang, W. F. Wormser, G. Lange, D. J. Wright, D. M. Bingham, I. Burke, J. P. Chavez, C. A. Fry, J. R. Gabathuler, E. Gamet, R. Hutchcroft, D. E. Payne, D. J. Schofield, K. C. Touramanis, C. Bevan, A. J. George, K. A. Di Lodovico, F. Sacco, R. Cowan, G. Flaecher, H. U. Hopkins, D. A. Paramesvaran, S. Salvatore, F. Wren, A. C. Brown, D. N. Davis, C. L. Barlow, N. R. Barlow, R. J. Chia, Y. M. Edgar, C. L. Lafferty, G. D. West, T. J. Yi, J. I. Anderson, J. Chen, C. Jawahery, A. Roberts, D. A. Simi, G. Tuggle, J. M. Dallapiccola, C. Hertzbach, S. S. Li, X. Moore, T. B. Salvati, E. Saremi, S. Cowan, R. Dujmic, D. Fisher, P. H. Koeneke, K. Sciolla, G. Spitznagel, M. Taylor, F. Yamamoto, R. K. Zhao, M. Mclachlin, S. E. Patel, P. M. Robertson, S. H. Lazzaro, A. Palombo, F. Bauer, J. M. Cremaldi, L. Eschenburg, V. Godang, R. Kroeger, R. Sanders, D. A. Summers, D. J. Zhao, H. W. Brunet, S. Cote, D. Simard, M. Taras, P. Viaud, F. B. Nicholson, H. De Nardo, G. Fabozzi, F. Lista, L. Monorchio, D. Sciacca, C. Baak, M. A. Raven, G. Snoek, H. L. Jessop, C. P. Knoepfel, K. J. LoSecco, J. M. Benelli, G. Corwin, L. A. Honscheid, K. Kagan, H. Kass, R. Morris, J. P. Rahimi, A. M. Regensburger, J. J. Sekula, S. J. Wong, Q. K. Blount, N. L. Brau, J. Frey, R. Igonkina, O. Kolb, J. A. Lu, M. Rahmat, R. Sinev, N. B. Strom, D. Strube, J. Torrence, E. Gagliardi, N. Gaz, A. Margoni, M. Morandin, M. Pompili, A. Posocco, M. Rotondo, M. Simonetto, F. Stroili, R. Voci, C. Ben-Haim, E. Briand, H. Calderini, G. Chauveau, J. David, P. Del Buono, L. de la Vaissiere, Ch. Hamon, O. Leruste, Ph. Malcles, J. Ocariz, J. Perez, A. Prendki, J. Gladney, L. Biasini, M. Covarelli, R. Manoni, E. Angelini, C. Batignani, G. Bettarini, S. Carpinelli, M. Cenci, R. Cervelli, A. Forti, F. Giorgi, M. A. Lusiani, A. Marchiori, G. Mazur, M. A. Morganti, M. Neri, N. Paoloni, E. Rizzo, G. Walsh, J. J. Biesiada, J. Lau, Y. P. Lu, C. Olsen, J. Smith, A. J. S. Telnov, A. V. Baracchini, E. Bellini, F. Cavoto, G. Del Re, D. Di Marco, E. Faccini, R. Ferrarotto, F. Ferroni, F. Gaspero, M. Jackson, P. D. Mazzoni, M. A. Morganti, S. Piredda, G. Polci, F. Renga, F. Voena, C. Ebert, M. Hartmann, T. Schroeder, H. Waldi, R. Adye, T. Castelli, G. Franek, B. Olaiya, E. O. Roethel, W. Wilson, F. F. Emery, S. Escalier, M. Gaidot, A. Ganzhur, S. F. De Monchenault, G. Hamel Kozanecki, W. Vasseur, G. Yeche, Ch. Zito, M. Chen, X. R. Liu, H. Park, W. Purohit, M. V. White, R. M. Wilson, J. R. Allen, M. T. Aston, D. Bartoldus, R. Bechtle, P. Claus, R. Coleman, J. P. Convery, M. R. Dingfelder, J. C. Dorfan, J. Dubois-Felsmann, G. P. Dunwoodie, W. Field, R. C. Glanzman, T. Gowdy, S. J. Graham, M. T. Grenier, P. Hast, C. Innes, W. R. Kaminski, J. Kelsey, M. H. Kim, H. Kim, P. Kocian, M. L. Leith, D. W. G. S. Li, S. Luitz, S. Luth, V. Lynch, H. L. MacFarlane, D. B. Marsiske, H. Messner, R. Muller, D. R. Nelson, S. O'Grady, C. P. Ofte, I. Perazzo, A. Perl, M. Pulliam, T. Ratcliff, B. N. Roodman, A. Salnikov, A. A. Schindler, R. H. Schwiening, J. Snyder, A. Su, D. Sullivan, M. K. Suzuki, K. Swain, S. K. Thompson, J. M. Va'vra, J. Wagner, A. P. Weaver, M. Wisniewski, W. J. Wittgen, M. Wright, D. H. Wulsin, H. W. Yarritu, A. K. Yi, K. Young, C. C. Ziegler, V. Burchat, P. R. Edwards, A. J. Majewski, S. A. Miyashita, T. S. Petersen, B. A. Wilden, L. Ahmed, S. Alam, M. S. Bula, R. Ernst, J. A. Pan, B. Saeed, M. A. Zain, S. B. Spanier, S. M. Wogsland, B. J. Eckmann, R. Ritchie, J. L. Ruland, A. M. Schilling, C. J. Schwitters, R. F. Izen, J. M. Lou, X. C. Ye, S. Bianchi, F. Gallo, F. Gamba, D. Pelliccioni, M. Bomben, M. Bosisio, L. Cartaro, C. Cossutti, F. Della Ricca, G. Lanceri, L. Vitale, L. Azzolini, V. Lopez-March, N. Martinez-Vidal, F. Milanes, D. A. Oyanguren, A. Albert, J. Banerjee, Sw. Bhuyan, B. Hamano, K. Kowalewski, R. Nugent, I. M. Roney, J. M. Sobie, R. J. Harrison, P. F. Ilic, J. Latham, T. E. Mohanty, G. B. Band, H. R. Chen, X. Dasu, S. Flood, K. T. Hollar, J. J. Kutter, P. E. Pan, Y. Pierini, M. Prepost, R. Wu, S. L. Neal, H. TI Search for lepton flavor violating decays tau(+/-)-> l(+/-)omega SO PHYSICAL REVIEW LETTERS LA English DT Article ID HIGH-ENERGY-PHYSICS; TAU-DECAYS; DETECTOR; JETS AB A search for lepton flavor violating decays of a tau to a lighter-mass charged lepton and an omega vector meson is performed using 384.1 fb(-1) of e(+)e(-) annihilation data collected with the BABAR detector at the Stanford Linear Accelerator Center PEP-II storage ring. No signal is found, and the upper limits on the branching ratios are determined to be B(tau(+/-) --> e(+/-)omega) < 1.1 x 10(-7) and B(tau(+/-) --> mu(+/-)omega) < 1.0 x 10(-7) at 90% confidence level. C1 [Aubert, B.; Bona, M.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prudent, X.; Tisserand, V.; Zghiche, A.] Lab Annecy Le Vieux Phys Particules, IN2P3, CNRS, F-74941 Annecy Le Vieux, France. [Aubert, B.; Bona, M.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prudent, X.; Tisserand, V.; Zghiche, A.] Univ Savoie, F-74941 Annecy Le Vieux, France. [Tico, J. Garra; Grauges, E.] Univ Barcelona, Fac Fis, Dept ECM, E-08028 Barcelona, Spain. [Lopez, L.; Palano, A.; Pappagallo, M.] Univ Bari, Dipartmento Fis, I-70126 Bari, Italy. [Lopez, L.; Palano, A.; Pappagallo, M.] Ist Nazl Fis Nucl, I-70126 Bari, Italy. [Eigen, G.; Stugu, B.; Sun, L.] Univ Bergen, Inst Phys, N-5007 Bergen, Norway. [Abrams, G. S.; Battaglia, M.; Brown, D. N.; Button-Shafer, J.; Cahn, R. N.; Jacobsen, R. G.; Kadyk, J. A.; Kerth, L. T.; Kolomensky, Yu. G.; Kukartsev, G.; Pegna, D. Lopes; Lynch, G.; Orimoto, T. J.; Osipenkov, I. L.; Ronan, M. T.; Tackmann, K.; Tanabe, T.; Wenzel, W. A.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Abrams, G. S.; Battaglia, M.; Brown, D. N.; Button-Shafer, J.; Cahn, R. N.; Jacobsen, R. G.; Kadyk, J. A.; Kerth, L. T.; Kolomensky, Yu. G.; Kukartsev, G.; Pegna, D. Lopes; Lynch, G.; Orimoto, T. J.; Osipenkov, I. L.; Ronan, M. T.; Tackmann, K.; Tanabe, T.; Wenzel, W. A.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Sanchez, P. Del Amo; Hawkes, C. M.; Soni, N.; Watson, A. T.] Univ Birmingham, Birmingham B15 2TT, W Midlands, England. [Koch, H.; Schroeder, T.] Ruhr Univ Bochum, Inst Expt Phys 1, D-44780 Bochum, Germany. [Walker, D.] Univ Bristol, Bristol BS8 1TL, Avon, England. [Asgeirsson, D. J.; Cuhadar-Donszelmann, T.; Fulsom, B. G.; Hearty, C.; Mattison, T. S.; McKenna, J. A.] Univ British Columbia, Vancouver, BC V6T 1Z1, Canada. [Barrett, M.; Khan, A.; Saleem, M.; Teodorescu, L.] Brunel Univ, Uxbridge UB8 3PH, Middx, England. [Blinov, V. E.; Bukin, A. D.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.] Budker Inst Nucl Phys, Novosibirsk 630090, Russia. [Bondioli, M.; Curry, S.; Eschrich, I.; Kirkby, D.; Lankford, A. J.; Lund, P.; Mandelkern, M.; Martin, E. C.; Stoker, D. P.] Univ Calif Irvine, Irvine, CA 92697 USA. [Abachi, S.; Buchanan, C.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Gary, J. W.; Liu, F.; Long, O.; Shen, B. C.; Vitug, G. M.; Zhang, L.] Univ Calif Riverside, Riverside, CA 92521 USA. [Paar, H. P.; Rahatlou, S.; Sharma, V.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Berryhill, J. W.; Campagnari, C.; Cunha, A.; Dahmes, B.; Hong, T. M.; Kovalskyi, D.; Richman, J. D.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Beck, T. W.; Eisner, A. M.; Flacco, C. J.; Heusch, C. A.; Kroseberg, J.; Lockman, W. S.; Schalk, T.; Schumm, B. A.; Seiden, A.; Wilson, M. G.; Winstrom, L. O.] Univ Calif Santa Cruz, Inst Particle Phys, Santa Cruz, CA 95064 USA. [Chen, E.; Cheng, C. H.; Echenard, B.; Fang, F.; Hitlin, D. G.; Narsky, I.; Piatenko, T.; Porter, F. C.] CALTECH, Pasadena, CA 91125 USA. [Andreassen, R.; Mancinelli, G.; Meadows, B. T.; Nauenberg, U.] Univ Cincinnati, Cincinnati, OH 45221 USA. [Blanc, F.; Bloom, P. C.; Ford, W. T.; Hirschauer, J. F.; Kreisel, A.; Nagel, M.; Nauenberg, U.; Olivas, A.; Smith, J. G.; Ulmer, K. A.; Wagner, S. R.; Zhang, J.] Univ Colorado, Boulder, CO 80309 USA. [Altenburg, D. D.; Feltresi, E.; Hauke, A.; Jasper, H.; Merkel, J.; Petzold, A.; Spaan, B.; Wacker, K.] Univ Dortmund, Inst Phys, D-44221 Dortmund, Germany. [Ayad, R.; Gabareen, A. M.; Soffer, A.; Toki, W. H.; Wilson, R. J.] Colorado State Univ, Ft Collins, CO 80523 USA. [Klose, V.; Kobel, M. J.; Lacker, H. M.; Mader, W. F.; Nogowski, R.; Schubert, J.; Schubert, K. R.; Schwierz, R.; Sundermann, J. E.; Volk, A.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. [Bernard, D.; Bonneaud, G. R.; Latour, E.; Lombardo, V.; Thiebaux, Ch.; Verderi, M.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Clark, P. J.; Gradl, W.; Muheim, F.; Playfer, S.; Robertson, A. I.; Watson, J. E.; Xie, Y.] Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. [Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Franchini, P.; Luppi, E.; Negrini, M.; Petrella, A.; Piemontese, L.; Prencipe, E.; Santoro, V.] Univ Ferrara, Dipartimento Fis, I-44100 Ferrara, Italy. [Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Franchini, P.; Luppi, E.; Negrini, M.; Petrella, A.; Piemontese, L.; Prencipe, E.; Santoro, V.] Ist Nazl Fis Nucl, I-44100 Ferrara, Italy. [Anulli, F.; Baldini-Ferroli, R.; Calcaterra, A.; De Sangro, R.; Finocchiaro, G.; Pacetti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; Zallo, A.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Buzzo, A.; Contri, R.; Lo Vetere, M.; Macri, M. M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Santroni, A.; Tosi, S.] Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy. [Buzzo, A.; Contri, R.; Lo Vetere, M.; Macri, M. M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Santroni, A.; Tosi, S.] Ist Nazl Fis Nucl, I-16146 Genoa, Italy. [Chaisanguanthum, K. S.; Morii, M.; Wu, J.] Harvard Univ, Cambridge, MA 02138 USA. [Dubitzky, R. S.; Marks, J.; Schenk, S.; Uwer, U.] Univ Heidelberg, Inst Phys, D-69120 Heidelberg, Germany. [Bard, D. J.; Dauncey, P. D.; Nash, J. A.; Vazquez, W. Panduro; Tibbetts, M.] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. [Behera, P. K.; Chai, X.; Charles, M. J.; Mallik, U.] Univ Iowa, Iowa City, IA 52242 USA. [Cochran, J.; Crawley, H. B.; Dong, L.; Eyges, V.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Rubin, A. E.] Iowa State Univ, Ames, IA 50011 USA. [Gao, Y. Y.; Gritsan, A. V.; Guo, Z. J.; Lae, C. K.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Denig, A. G.; Fritsch, M.; Schott, G.] Univ Karlsruhe, Inst Expt Kernphys, D-76021 Karlsruhe, Germany. [Arnaud, N.; Bequilleux, J.; D'Orazio, A.; Davier, M.; Grosdidier, G.; Hoecker, A.; Lepeltier, V.; Le Diberder, F.; Lutz, A. M.; Pruvot, S.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wang, W. F.; Wormser, G.] CNRS, IN2P3, Lab Accelerateur Lineaire, F-91898 Orsay, France. [Arnaud, N.; Bequilleux, J.; D'Orazio, A.; Davier, M.; Grosdidier, G.; Hoecker, A.; Lepeltier, V.; Le Diberder, F.; Lutz, A. M.; Pruvot, S.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wang, W. F.; Wormser, G.] Univ Paris 11, Ctr Sci Orsay, F-91898 Orsay, France. [Lange, D. J.; Wright, D. M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Bingham, I.; Burke, J. P.; Chavez, C. A.; Fry, J. R.; Gabathuler, E.; Gamet, R.; Hutchcroft, D. E.; Payne, D. J.; Schofield, K. C.; Touramanis, C.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Bevan, A. J.; George, K. A.; Di Lodovico, F.; Sacco, R.] Queen Mary Univ London, London E1 4NS, England. [Cowan, G.; Flaecher, H. U.; Hopkins, D. A.; Paramesvaran, S.; Salvatore, F.; Wren, A. C.] Univ London, Royal Holloway & Bedford New Coll, Egham TW20 0EX, Surrey, England. [Brown, D. N.; Davis, C. L.] Univ Louisville, Louisville, KY 40292 USA. [Barlow, N. R.; Barlow, R. J.; Chia, Y. M.; Edgar, C. L.; Lafferty, G. D.; West, T. J.; Yi, J. I.] Univ Manchester, Manchester M13 9PL, Lancs, England. [Anderson, J.; Chen, C.; Jawahery, A.; Roberts, D. A.; Simi, G.; Tuggle, J. M.] Univ Maryland, College Pk, MD 20742 USA. [Dallapiccola, C.; Hertzbach, S. S.; Li, X.; Moore, T. B.; Salvati, E.; Saremi, S.] Univ Massachusetts, Amherst, MA 01003 USA. [Cowan, R.; Dujmic, D.; Fisher, P. H.; Koeneke, K.; Sciolla, G.; Spitznagel, M.; Taylor, F.; Yamamoto, R. K.; Zhao, M.] MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. [Mclachlin, S. E.; Patel, P. M.; Robertson, S. H.] McGill Univ, Montreal, PQ H3A 2T8, Canada. [Lazzaro, A.; Palombo, F.] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. [Lazzaro, A.; Palombo, F.] Ist Nazl Fis Nucl, I-20133 Milan, Italy. [Bauer, J. M.; Cremaldi, L.; Eschenburg, V.; Godang, R.; Kroeger, R.; Sanders, D. A.; Summers, D. J.; Zhao, H. W.] Univ Mississippi, University, MS 38677 USA. [Brunet, S.; Cote, D.; Simard, M.; Taras, P.; Viaud, F. B.] Univ Montreal, Montreal, PQ H3C 3J7, Canada. [Nicholson, H.] Mt Holyoke Coll, S Hadley, MA 01075 USA. [De Nardo, G.; Fabozzi, F.; Lista, L.; Monorchio, D.; Sciacca, C.] Univ Naples Federico 2, Dipartimento Sci Fis, I-80126 Naples, Italy. [De Nardo, G.; Fabozzi, F.; Lista, L.; Monorchio, D.; Sciacca, C.] Ist Nazl Fis Nucl, I-80126 Naples, Italy. [Baak, M. A.; Raven, G.; Snoek, H. L.] Natl Inst Nucl & High Energy Phys, NIKHEF, NL-1009 DB Amsterdam, Netherlands. [Jessop, C. P.; Knoepfel, K. J.; LoSecco, J. M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Benelli, G.; Corwin, L. A.; Honscheid, K.; Kagan, H.; Kass, R.; Morris, J. P.; Rahimi, A. M.; Regensburger, J. J.; Sekula, S. J.; Wong, Q. K.] Ohio State Univ, Columbus, OH 43210 USA. [Blount, N. L.; Brau, J.; Frey, R.; Igonkina, O.; Kolb, J. A.; Lu, M.; Rahmat, R.; Sinev, N. B.; Strom, D.; Strube, J.; Torrence, E.] Univ Oregon, Eugene, OR 97403 USA. [Gagliardi, N.; Gaz, A.; Margoni, M.; Morandin, M.; Pompili, A.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.; Voci, C.] Univ Padua, Dipartimento Fis, I-35131 Padua, Italy. [Gagliardi, N.; Gaz, A.; Margoni, M.; Morandin, M.; Pompili, A.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.; Voci, C.] Ist Nazl Fis Nucl, I-35131 Padua, Italy. [Ben-Haim, E.; Briand, H.; Calderini, G.; Chauveau, J.; David, P.; Del Buono, L.; de la Vaissiere, Ch.; Hamon, O.; Leruste, Ph.; Malcles, J.; Ocariz, J.; Perez, A.; Prendki, J.] Univ Paris 06, Univ Paris 07, CNRS,IN2P3, Lab Phys Nucl & Hautes Energies, F-75252 Paris, France. [Gladney, L.] Univ Penn, Philadelphia, PA 19104 USA. [Biasini, M.; Covarelli, R.; Manoni, E.] Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. [Biasini, M.; Covarelli, R.; Manoni, E.] Ist Nazl Fis Nucl, I-06100 Perugia, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Cenci, R.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Marchiori, G.; Mazur, M. A.; Morganti, M.; Neri, N.; Paoloni, E.; Rizzo, G.; Walsh, J. J.] Univ Pisa, Dipartimento Fis, Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Cenci, R.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Marchiori, G.; Mazur, M. A.; Morganti, M.; Neri, N.; Paoloni, E.; Rizzo, G.; Walsh, J. J.] Ist Nazl Fis Nucl, I-56127 Pisa, Italy. [Biesiada, J.; Lau, Y. P.; Lu, C.; Olsen, J.; Smith, A. J. S.; Telnov, A. V.] Princeton Univ, Princeton, NJ 08544 USA. [Baracchini, E.; Bellini, F.; Cavoto, G.; Del Re, D.; Di Marco, E.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Jackson, P. D.; Mazzoni, M. A.; Morganti, S.; Piredda, G.; Polci, F.; Renga, F.; Voena, C.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Baracchini, E.; Bellini, F.; Cavoto, G.; Del Re, D.; Di Marco, E.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Jackson, P. D.; Mazzoni, M. A.; Morganti, S.; Piredda, G.; Polci, F.; Renga, F.; Voena, C.] Ist Nazl Fis Nucl, I-00185 Rome, Italy. [Ebert, M.; Hartmann, T.; Schroeder, H.; Waldi, R.] Univ Rostock, D-18051 Rostock, Germany. [Adye, T.; Castelli, G.; Franek, B.; Olaiya, E. O.; Roethel, W.; Wilson, F. F.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Emery, S.; Escalier, M.; Gaidot, A.; Ganzhur, S. F.; De Monchenault, G. Hamel; Kozanecki, W.; Vasseur, G.; Yeche, Ch.; Zito, M.] CEA Saclay, DSM Dapnia, F-91191 Gif Sur Yvette, France. [Wilson, F. F.; Chen, X. R.; Liu, H.; Park, W.; Purohit, M. V.; White, R. M.] Univ S Carolina, Columbia, SC 29208 USA. [Allen, M. T.; Aston, D.; Bartoldus, R.; Bechtle, P.; Claus, R.; Coleman, J. P.; Convery, M. R.; Dingfelder, J. C.; Dorfan, J.; Dubois-Felsmann, G. P.; Dunwoodie, W.; Field, R. C.; Glanzman, T.; Gowdy, S. J.; Graham, M. T.; Grenier, P.; Hast, C.; Innes, W. R.; Kaminski, J.; Kelsey, M. H.; Kim, H.; Kim, P.; Kocian, M. L.; Leith, D. W. G. S.; Li, S.; Luitz, S.; Luth, V.; Lynch, H. L.; MacFarlane, D. B.; Marsiske, H.; Messner, R.; Muller, D. R.; Nelson, S.; O'Grady, C. P.; Ofte, I.; Perazzo, A.; Perl, M.; Pulliam, T.; Ratcliff, B. N.; Roodman, A.; Salnikov, A. A.; Schindler, R. H.; Schwiening, J.; Snyder, A.; Su, D.; Sullivan, M. K.; Suzuki, K.; Swain, S. K.; Thompson, J. M.; Va'vra, J.; Wagner, A. P.; Weaver, M.; Wisniewski, W. J.; Wittgen, M.; Wright, D. H.; Wulsin, H. W.; Yarritu, A. K.; Yi, K.; Young, C. C.; Ziegler, V.] Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. [Burchat, P. R.; Edwards, A. J.; Majewski, S. A.; Miyashita, T. S.; Petersen, B. A.; Wilden, L.] Stanford Univ, Stanford, CA 94305 USA. [Ahmed, S.; Alam, M. S.; Bula, R.; Ernst, J. A.; Pan, B.; Saeed, M. A.; Zain, S. B.] SUNY Albany, Albany, NY 12222 USA. [Spanier, S. M.; Wogsland, B. J.] Univ Tennessee, Knoxville, TN 37996 USA. [Eckmann, R.; Ritchie, J. L.; Ruland, A. M.; Schilling, C. J.; Schwitters, R. F.] Univ Texas Austin, Austin, TX 78712 USA. [Izen, J. M.; Lou, X. C.; Ye, S.] Univ Texas Dallas, Richardson, TX 75083 USA. [Bianchi, F.; Gallo, F.; Gamba, D.; Pelliccioni, M.] Univ Turin, Dipartimento Fis Sperimentale, I-10125 Turin, Italy. [Bomben, M.; Bosisio, L.; Cartaro, C.; Cossutti, F.; Della Ricca, G.; Lanceri, L.; Vitale, L.] Univ Trieste, Dipartmento Fis, I-34127 Trieste, Italy. [Bomben, M.; Bosisio, L.; Cartaro, C.; Cossutti, F.; Della Ricca, G.; Lanceri, L.; Vitale, L.] Ist Nazl Fis Nucl, I-34127 Trieste, Italy. [Azzolini, V.; Lopez-March, N.; Martinez-Vidal, F.; Milanes, D. A.; Oyanguren, A.] Univ Valencia, CSIC, IFIC, E-46071 Valencia, Spain. [Albert, J.; Banerjee, Sw.; Bhuyan, B.; Hamano, K.; Kowalewski, R.; Nugent, I. M.; Roney, J. M.; Sobie, R. J.] Univ Victoria, Victoria, BC V8W 3P6, Canada. [Harrison, P. F.; Ilic, J.; Latham, T. E.; Mohanty, G. B.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Band, H. R.; Chen, X.; Dasu, S.; Flood, K. T.; Hollar, J. J.; Kutter, P. E.; Pan, Y.; Pierini, M.; Prepost, R.; Wu, S. L.] Univ Wisconsin, Madison, WI 53706 USA. [Neal, H.] Yale Univ, New Haven, CT 06511 USA. [Carpinelli, M.] Univ Sassari, I-07100 Sassari, Italy. [Fabozzi, F.] Univ Basilicata, I-85100 Potenza, Italy. [Bianchi, F.; Gallo, F.; Gamba, D.; Pelliccioni, M.] Ist Nazl Fis Nucl, I-10125 Turin, Italy. RP Aubert, B (reprint author), Lab Annecy Le Vieux Phys Particules, IN2P3, CNRS, F-74941 Annecy Le Vieux, France. RI Frey, Raymond/E-2830-2016; White, Ryan/E-2979-2015; Calabrese, Roberto/G-4405-2015; Martinez Vidal, F*/L-7563-2014; Kolomensky, Yury/I-3510-2015; Lo Vetere, Maurizio/J-5049-2012; Lusiani, Alberto/N-2976-2015; Morandin, Mauro/A-3308-2016; Lusiani, Alberto/A-3329-2016; Della Ricca, Giuseppe/B-6826-2013; Di Lodovico, Francesca/L-9109-2016; Pappagallo, Marco/R-3305-2016; Calcaterra, Alessandro/P-5260-2015; Luppi, Eleonora/A-4902-2015; Lista, Luca/C-5719-2008; Bellini, Fabio/D-1055-2009; Neri, Nicola/G-3991-2012; Forti, Francesco/H-3035-2011; Rotondo, Marcello/I-6043-2012; Patrignani, Claudia/C-5223-2009; de Sangro, Riccardo/J-2901-2012; Saeed, Mohammad Alam/J-7455-2012; Negrini, Matteo/C-8906-2014; Monge, Maria Roberta/G-9127-2012; Oyanguren, Arantza/K-6454-2014 OI Frey, Raymond/0000-0003-0341-2636; Raven, Gerhard/0000-0002-2897-5323; White, Ryan/0000-0003-3589-5900; Calabrese, Roberto/0000-0002-1354-5400; Martinez Vidal, F*/0000-0001-6841-6035; Kolomensky, Yury/0000-0001-8496-9975; Lo Vetere, Maurizio/0000-0002-6520-4480; Lusiani, Alberto/0000-0002-6876-3288; Morandin, Mauro/0000-0003-4708-4240; Lusiani, Alberto/0000-0002-6876-3288; Della Ricca, Giuseppe/0000-0003-2831-6982; Di Lodovico, Francesca/0000-0003-3952-2175; Pappagallo, Marco/0000-0001-7601-5602; Calcaterra, Alessandro/0000-0003-2670-4826; Luppi, Eleonora/0000-0002-1072-5633; Bellini, Fabio/0000-0002-2936-660X; Neri, Nicola/0000-0002-6106-3756; Forti, Francesco/0000-0001-6535-7965; Rotondo, Marcello/0000-0001-5704-6163; Patrignani, Claudia/0000-0002-5882-1747; de Sangro, Riccardo/0000-0002-3808-5455; Saeed, Mohammad Alam/0000-0002-3529-9255; Negrini, Matteo/0000-0003-0101-6963; Monge, Maria Roberta/0000-0003-1633-3195; Oyanguren, Arantza/0000-0002-8240-7300 NR 26 TC 12 Z9 12 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD FEB 22 PY 2008 VL 100 IS 7 AR 071802 DI 10.1103/PhysRevLett.100.071802 PG 7 WC Physics, Multidisciplinary SC Physics GA 265CO UT WOS:000253336900017 ER PT J AU Kallos, E Katsouleas, T Kimura, WD Kusche, K Muggli, P Pavlishin, I Pogorelsky, I Stolyarov, D Yakimenko, V AF Kallos, Efthymios Katsouleas, Tom Kimura, Wayne D. Kusche, Karl Muggli, Patric Pavlishin, Igor Pogorelsky, Igor Stolyarov, Daniil Yakimenko, Vitaly TI High-gradient plasma-wakefield acceleration with two subpicosecond electron bunches SO PHYSICAL REVIEW LETTERS LA English DT Article ID RELATIVISTIC ELECTRONS; BEAMS; RADIATION; LENGTH AB A plasma-wakefield experiment is presented where two 60 MeV subpicosecond electron bunches are sent into a plasma produced by a capillary discharge. Both bunches are shorter than the plasma wavelength, and the phase of the second bunch relative to the plasma wave is adjusted by tuning the plasma density. It is shown that the second bunch experiences a 150 MeV/m loaded accelerating gradient in the wakefield driven by the first bunch. This is the first experiment to directly demonstrate high-gradient, controlled acceleration of a short-pulse trailing electron bunch in a high-density plasma. C1 [Kallos, Efthymios; Katsouleas, Tom; Muggli, Patric] Univ So Calif, Los Angeles, CA 90089 USA. [Kimura, Wayne D.] STI Optron, Bellevue, WA 98004 USA. [Kusche, Karl; Pavlishin, Igor; Pogorelsky, Igor; Stolyarov, Daniil; Yakimenko, Vitaly] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Kallos, E (reprint author), Univ So Calif, Los Angeles, CA 90089 USA. NR 23 TC 28 Z9 28 U1 1 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD FEB 22 PY 2008 VL 100 IS 7 AR 074802 DI 10.1103/PhysRevLett.100.074802 PG 4 WC Physics, Multidisciplinary SC Physics GA 265CO UT WOS:000253336900037 PM 18352561 ER PT J AU Li, YL Lewellen, JW AF Li, Yuelin Lewellen, John W. TI Generating a quasiellipsoidal electron beam by 3D laser-pulse shaping SO PHYSICAL REVIEW LETTERS LA English DT Article ID PROGRAMMABLE DISPERSIVE FILTER; PHOTOINJECTORS; COMPENSATION; SYSTEMS AB A generic 3D laser-pulse-shaping scheme is proposed towards the generation of a uniform ellipsoidal particle distribution, an ideal distribution due to the linear dependence of the space-charge force on the particle position. The shaping is accomplished via spatiotemporal coupling of the laser dynamics via chromatic aberration in an optical lens. Particle tracking simulations show that the electron beam initiated by such a laser pulse in a high-gradient radio-frequency photoinjector delivers very low emittance, ideal for beam-based light sources such as the x-ray free-electron laser. C1 [Li, Yuelin] Argonne Natl Lab, Accelerator Syst Div, Argonne, IL 60439 USA. [Li, Yuelin; Lewellen, John W.] Argonne Natl Lab, Argonne Accelerator Inst, Argonne, IL 60439 USA. [Lewellen, John W.] Argonne Natl Lab, Argonne ONR Project Off, Argonne, IL 60439 USA. RP Li, YL (reprint author), Argonne Natl Lab, Accelerator Syst Div, 9700 S Cass Ave, Argonne, IL 60439 USA. OI Li, Yuelin/0000-0002-6229-7490 NR 28 TC 16 Z9 16 U1 2 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD FEB 22 PY 2008 VL 100 IS 7 AR 074801 DI 10.1103/PhysRevLett.100.074801 PG 4 WC Physics, Multidisciplinary SC Physics GA 265CO UT WOS:000253336900036 PM 18352560 ER PT J AU Perl, ML AF Perl, M. L. TI Essay: The tau lepton and thirty years of changes in elementary particle physics research SO PHYSICAL REVIEW LETTERS LA English DT Editorial Material AB Starting with the 1975 discovery of the tau lepton, I look back on the last three decades of change in the substance and style of experimental and theoretical research in elementary particle physics. I recount the major accomplishments of those decades and predict a bright future for particle physics in the next two decades. Turning to three problems, I lament the change in theoretical style and taste, I discuss the growth in the complexity, size, and cost of particle physics experiments, and I conclude with a pessimistic comment on the size of particle physics collaborations. C1 Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. RP Perl, ML (reprint author), Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. EM martin@slac.stanford.edu NR 9 TC 0 Z9 0 U1 1 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD FEB 22 PY 2008 VL 100 IS 7 AR 070001 DI 10.1103/PhysRevLett.100.070001 PG 5 WC Physics, Multidisciplinary SC Physics GA 265CO UT WOS:000253336900001 PM 18352525 ER PT J AU Tegenkamp, C Ohta, T McChesney, JL Dil, H Rotenberg, E Pfnur, H Horn, K AF Tegenkamp, C. Ohta, T. McChesney, J. L. Dil, H. Rotenberg, E. Pfnuer, H. Horn, K. TI Coupled Pb chains on Si(557): Origin of one-dimensional conductance SO PHYSICAL REVIEW LETTERS LA English DT Article ID ELECTRONIC STATES; VICINAL SURFACES; MONOLAYER AB The Pb/Si(557) system exhibits a strong anisotropy in conductance below 78 K, with the evolution of a characteristic chain structure. Here we show, using angle-resolved photoemission, that chain ordering results in complete Fermi-like nesting in the direction normal to the chains; in addition, the domain structure along the chains forms split-off valence bands with mesoscopic Fermi wavelengths which induce the 1D conductance without further instabilities at low temperatures. C1 [Tegenkamp, C.; Pfnuer, H.] Leibniz Univ Hannover, Inst Festkorperphys, D-30167 Hannover, Germany. [Ohta, T.; McChesney, J. L.; Rotenberg, E.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. [Ohta, T.; Dil, H.; Horn, K.] Max Planck Gesell, Fritz Haber Inst, D-14195 Berlin, Germany. [McChesney, J. L.] Montana State Univ, Bozeman, MT USA. RP Tegenkamp, C (reprint author), Leibniz Univ Hannover, Inst Festkorperphys, D-30167 Hannover, Germany. RI Rotenberg, Eli/B-3700-2009; Dil, Hugo/F-6995-2012; McChesney, Jessica/K-8911-2013 OI Rotenberg, Eli/0000-0002-3979-8844; Dil, Hugo/0000-0002-6016-6120; McChesney, Jessica/0000-0003-0470-2088 NR 20 TC 35 Z9 35 U1 0 U2 11 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD FEB 22 PY 2008 VL 100 IS 7 AR 076802 DI 10.1103/PhysRevLett.100.076802 PG 4 WC Physics, Multidisciplinary SC Physics GA 265CO UT WOS:000253336900060 PM 18352584 ER PT J AU Umucalilar, RO Zhai, H Oktel, MO AF Umucalilar, R. O. Zhai, Hui Oktel, M. Oe. TI Trapped fermi gases in rotating optical lattices: Realization and detection of the topological Hofstadter insulator SO PHYSICAL REVIEW LETTERS LA English DT Article ID QUANTIZED HALL CONDUCTANCE; MAGNETIC-FIELDS AB We consider a gas of noninteracting spinless fermions in a rotating optical lattice and calculate the density profile of the gas in an external confinement potential. The density profile exhibits distinct plateaus, which correspond to gaps in the single particle spectrum known as the Hofstadter butterfly. The plateaus result from insulating behavior whenever the Fermi energy lies within a gap. We discuss the necessary conditions to realize the Hofstadter insulator in a cold atom setup and show how the quantized Hall conductance can be measured from density profiles using the Streda formula. C1 [Umucalilar, R. O.; Oktel, M. Oe.] Bilkent Univ, Dept Phys, TR-06800 Ankara, Turkey. [Zhai, Hui] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Zhai, Hui] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Umucalilar, RO (reprint author), Bilkent Univ, Dept Phys, TR-06800 Ankara, Turkey. EM oktel@fen.bilkent.edu.tr RI Zhai, Hui/H-9496-2012; Umucalilar, Onur/A-2869-2014; Oktel, Mehmet /M-7250-2015 OI Zhai, Hui/0000-0001-8118-6027; Oktel, Mehmet /0000-0001-8921-8388 NR 28 TC 67 Z9 67 U1 1 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD FEB 22 PY 2008 VL 100 IS 7 AR 070402 DI 10.1103/PhysRevLett.100.070402 PG 4 WC Physics, Multidisciplinary SC Physics GA 265CO UT WOS:000253336900003 PM 18352527 ER PT J AU Wang, F Vishwanath, A AF Wang, Fa Vishwanath, Ashvin TI Spin phonon induced collinear order and magnetization plateaus in triangular and kagome antiferromagnets: Applications to CuFeO(2) SO PHYSICAL REVIEW LETTERS LA English DT Article ID LATTICE ANTIFERROMAGNET; MULTIFERROICS; PHASE; STATE AB We study the effect of spin-lattice coupling on triangular and kagome antiferromagnets and find that even moderate couplings can induce complex collinear orders. On coupling classical Heisenberg spins on the triangular lattice to Einstein phonons, a rich variety of phases emerge including the experimentally observed four sublattice state and the five sublattice 1/5th plateau state seen in the magnetoelectric material CuFeO(2). Also, we predict magnetization plateaus at 1/3, 3/7, 1/2, 3/5, and 5/7 at these couplings. Strong spin-lattice couplings induce a striped collinear state, seen in alpha-NaFeO(2) and MnBr(2). On the kagome lattice, moderate spin-lattice couplings induce collinear order, but an extensive degeneracy remains. C1 [Wang, Fa] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Wang, F (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. RI Wang, Fa/D-3817-2015 OI Wang, Fa/0000-0002-6220-5349 NR 24 TC 37 Z9 37 U1 2 U2 13 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD FEB 22 PY 2008 VL 100 IS 7 AR 077201 DI 10.1103/PhysRevLett.100.077201 PG 4 WC Physics, Multidisciplinary SC Physics GA 265CO UT WOS:000253336900065 PM 18352589 ER PT J AU Wolf, MM Verstraete, F Hastings, MB Cirac, JI AF Wolf, Michael M. Verstraete, Frank Hastings, Matthew B. Cirac, J. Ignacio TI Area laws in quantum systems: Mutual information and correlations SO PHYSICAL REVIEW LETTERS LA English DT Article ID ENTROPY; STATES; ENTANGLEMENT AB The holographic principle states that on a fundamental level the information content of a region should depend on its surface area rather than on its volume. In this Letter we show that this phenomenon not only emerges in the search for new Planck-scale laws but also in lattice models of classical and quantum physics: the information contained in part of a system in thermal equilibrium obeys an area law. While the maximal information per unit area depends classically only on the number of degrees of freedom, it may diverge as the inverse temperature in quantum systems. It is shown that an area law is generally implied by a finite correlation length when measured in terms of the mutual information. C1 [Wolf, Michael M.; Cirac, J. Ignacio] Max Planck Inst Quantum Opt, D-85748 Garching, Germany. [Verstraete, Frank] Univ Vienna, Fak Phys, A-1090 Vienna, Austria. [Hastings, Matthew B.] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. [Hastings, Matthew B.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Wolf, MM (reprint author), Max Planck Inst Quantum Opt, Hans Kopfermann Str 1, D-85748 Garching, Germany. RI Verstraete, Frank/F-1306-2014; Wolf, Michael/J-8135-2016 OI Verstraete, Frank/0000-0003-0270-5592; Wolf, Michael/0000-0002-1862-6912 NR 33 TC 192 Z9 192 U1 4 U2 12 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD FEB 22 PY 2008 VL 100 IS 7 AR 070502 DI 10.1103/PhysRevLett.100.070502 PG 4 WC Physics, Multidisciplinary SC Physics GA 265CO UT WOS:000253336900007 PM 18352531 ER PT J AU Breault, RW Guenther, CP Shadle, LJ AF Breault, Ronald W. Guenther, Christopher P. Shadle, Lawrence J. TI Velocity fluctuation interpretation in the near wall region of a dense riser SO POWDER TECHNOLOGY LA English DT Article DE granular temperature; solids dispersion; circulating fluidized bed; particle turbulent kinetic energy ID GRANULAR TEMPERATURE; KINETIC-THEORY; PARTICLE; FLOWS; CFB AB Tests were conducted in a cold flow circulating fluidized bed to gather computational fluid dynamics (CFD) model validation data. Particle velocity measurements were obtained with an LDV system under various operating conditions at locations near the wall to provide data in terms of a time series of particle velocity values. Time scale criteria were developed to characterize the variance of the velocity fluctuations from LDV measurements as either granular temperature or granular turbulent kinetic energy. By applying these criteria to categorize the variations in the velocities for adjacent particles passing the sample volume, the resulting granular temperatures were found to be much smaller than the granular (particle) turbulent kinetic energy. Average values for the granular temperature in this system ranged between 0.02 to 0.1 m(2)/s(2), while the particle turbulent kinetic energy ranged from 0.6 to 0.9 m(2)/s(2). Both were dependent upon solids fraction; decreasing with increasing solids fraction. The velocity fluctuation data was also analyzed using the autocorrelation technique providing axial solids dispersion coefficients. These values range from 0.005 to 0.8 m(2)/s and were found to be a function of both the gas velocity and solids fraction. A method was developed to estimate the local solids fraction with the LDV data. Published by Elsevier B.V. C1 [Breault, Ronald W.; Guenther, Christopher P.; Shadle, Lawrence J.] US DOE, Natl Technol Energy Lab, Morgantown, WV 26507 USA. RP Breault, RW (reprint author), US DOE, Natl Technol Energy Lab, 3610 Collins Ferry Rd, Morgantown, WV 26507 USA. EM Ronald.Breault@NETL.DOE.gov OI Breault, Ronald/0000-0002-5552-4050; Shadle, Lawrence/0000-0002-6283-3628 NR 18 TC 27 Z9 27 U1 2 U2 14 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0032-5910 J9 POWDER TECHNOL JI Powder Technol. PD FEB 22 PY 2008 VL 182 IS 2 BP 137 EP 145 DI 10.1016/j.powtec.2007.08.018 PG 9 WC Engineering, Chemical SC Engineering GA 271ON UT WOS:000253798000003 ER PT J AU Barnett, TP Pierce, DW Hidalgo, HG Bonfils, C Santer, BD Das, T Bala, G Wood, AW Nozawa, T Mirin, AA Cayan, DR Dettinger, MD AF Barnett, Tim P. Pierce, David W. Hidalgo, Hugo G. Bonfils, Celine Santer, Benjamin D. Das, Tapash Bala, Govindasamy Wood, Andrew W. Nozawa, Toru Mirin, Arthur A. Cayan, Daniel R. Dettinger, Michael D. TI Human-induced changes in the hydrology of the western United States SO SCIENCE LA English DT Article ID NORTH-AMERICA; CLIMATE-CHANGE; TRENDS; WATER; MODEL; ATTRIBUTION; STREAMFLOW; SNOWPACK; CYCLE AB Observations have shown that the hydrological cycle of the western United States changed significantly over the last half of the 20th century. We present a regional, multivariable climate change detection and attribution study, using a high- resolution hydrologic model forced by global climate models, focusing on the changes that have already affected this primarily arid region with a large and growing population. The results show that up to 60% of the climate- related trends of river flow, winter air temperature, and snow pack between 1950 and 1999 are human- induced. These results are robust to perturbation of study variates and methods. They portend, in conjunction with previous work, a coming crisis in water supply for the western United States. C1 [Barnett, Tim P.; Pierce, David W.; Hidalgo, Hugo G.; Das, Tapash; Cayan, Daniel R.; Dettinger, Michael D.] Univ Calif San Diego, Scripps Inst Oceanog, La Jolla, CA 92093 USA. [Bonfils, Celine; Santer, Benjamin D.; Bala, Govindasamy; Mirin, Arthur A.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Wood, Andrew W.] Univ Washington, Land Surface Hydrol Res Grp, Seattle, WA 98195 USA. [Nozawa, Toru] Natl Inst Environm Studies, Tsukuba, Ibaraki 3058506, Japan. [Cayan, Daniel R.; Dettinger, Michael D.] US Geol Survey, La Jolla, CA 92093 USA. RP Barnett, TP (reprint author), Univ Calif San Diego, Scripps Inst Oceanog, La Jolla, CA 92093 USA. EM tbarnett-ul@ucsd.edu RI Santer, Benjamin/F-9781-2011; Bonfils, Celine/H-2356-2012; Wood, Andrew/L-5133-2013; OI Bonfils, Celine/0000-0002-4674-5708; Wood, Andrew/0000-0002-6231-0085; Hidalgo, Hugo/0000-0003-4638-0742 NR 29 TC 502 Z9 528 U1 31 U2 236 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD FEB 22 PY 2008 VL 319 IS 5866 BP 1080 EP 1083 DI 10.1126/science.1152538 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 264SW UT WOS:000253311700040 PM 18239088 ER PT J AU Tanaka, S Kerfeld, CA Sawaya, MR Cai, F Heinhorst, S Cannon, GC Yeates, TO AF Tanaka, Shiho Kerfeld, Cheryl A. Sawaya, Michael R. Cai, Fei Heinhorst, Sabine Cannon, Gordon C. Yeates, Todd O. TI Atomic-level models of the bacterial carboxysome shell SO SCIENCE LA English DT Article ID THIOBACILLUS-NEAPOLITANUS; POLYHEDRAL BODIES; ORGANELLES; CYANOBACTERIA; HOMOLOGS; PROTEINS; REVEALS; VIRUSES AB The carboxysome is a bacterial microcompartment that functions as a simple organelle by sequestering enzymes involved in carbon fixation. The carboxysome shell is roughly 800 to 1400 angstroms in diameter and is assembled from several thousand protein subunits. Previous studies have revealed the three- dimensional structures of hexameric carboxysome shell proteins, which self- assemble into molecular layers that most likely constitute the facets of the polyhedral shell. Here, we report the three- dimensional structures of two proteins of previously unknown function, CcmL and OrfA ( or CsoS4A), from the two known classes of carboxysomes, at resolutions of 2.4 and 2.15 angstroms. Both proteins assemble to form pentameric structures whose size and shape are compatible with formation of vertices in an icosahedral shell. Combining these pentamers with the hexamers previously elucidated gives two plausible, preliminary atomic models for the carboxysome shell. C1 [Tanaka, Shiho; Yeates, Todd O.] Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90095 USA. [Sawaya, Michael R.; Yeates, Todd O.] Univ Calif Los Angeles, Dept Energy Inst Genom & Proteom, Los Angeles, CA 90095 USA. [Kerfeld, Cheryl A.] Joint Genome Inst, Dept Energy, Walnut Creek, CA 94598 USA. [Kerfeld, Cheryl A.] Univ Calif Berkeley, Dept Plant & Microbial Biol, Berkeley, CA 94720 USA. [Cai, Fei; Heinhorst, Sabine; Cannon, Gordon C.] Univ So Mississippi, Dept Chem & Biochem, Hattiesburg, MS 39406 USA. RP Yeates, TO (reprint author), Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90095 USA. EM yeates@mbi.ucla.edu OI Yeates, Todd/0000-0001-5709-9839 NR 26 TC 166 Z9 168 U1 3 U2 44 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD FEB 22 PY 2008 VL 319 IS 5866 BP 1083 EP 1086 DI 10.1126/science.1151458 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 264SW UT WOS:000253311700041 PM 18292340 ER PT J AU DeWeaver, ET Hunke, EC Holland, MM AF DeWeaver, Eric T. Hunke, Elizabeth C. Holland, Marika M. TI On the reliability of simulated Arctic sea ice in global climate models SO GEOPHYSICAL RESEARCH LETTERS LA English DT Editorial Material ID THICKNESS C1 [DeWeaver, Eric T.] Univ Wisconsin, Ctr Climat Res, Atmospher & Ocean Sci Dept, Madison, WI 53706 USA. [Holland, Marika M.] Natl Ctr Atmospher Res, Boulder, CO 80305 USA. [Hunke, Elizabeth C.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP DeWeaver, ET (reprint author), Univ Wisconsin, Ctr Climat Res, Atmospher & Ocean Sci Dept, 1225 W Dayton St, Madison, WI 53706 USA. EM deweaver@aos.wisc.edu NR 4 TC 16 Z9 16 U1 0 U2 3 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD FEB 21 PY 2008 VL 35 IS 4 AR L04501 DI 10.1029/2007GL031325 PG 2 WC Geosciences, Multidisciplinary SC Geology GA 267TC UT WOS:000253531100001 ER PT J AU Fanourgakis, GS Xantheas, SS AF Fanourgakis, George S. Xantheas, Sotiris S. TI Development of transferable interaction potentials for water. V. Extension of the flexible, polarizable, Thole-type model potential (TTM3-F, v. 3.0) to describe the vibrational spectra of water clusters and liquid water SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID CENTROID MOLECULAR-DYNAMICS; TIME-CORRELATION FUNCTIONS; AB-INITIO CALCULATIONS; BINDING-ENERGIES; INFRARED-SPECTRA; 1ST PRINCIPLES; EMPIRICAL POTENTIALS; COMPUTER-SIMULATION; ORDER CORRECTION; PATH-INTEGRALS AB We present a new parametrization of the flexible, polarizable Thole-type model for water [J. Chem. Phys. 116, 5115 (2002); J. Phys. Chem. A 110, 4100 (2006)], with emphasis in describing the vibrational spectra of both water clusters and liquid water. The new model is able to produce results of similar quality with the previous versions for the structures and energetics of water clusters as well as structural and thermodynamic properties of liquid water evaluated with classical and converged quantum statistical mechanical atomistic simulations. At the same time it yields accurate redshifts for the OH vibrational stretches of both water clusters and liquid water. (C) 2008 American Institute of Physics. C1 [Fanourgakis, George S.; Xantheas, Sotiris S.] Pacific NW Natl Lab, Chem & Mat Sci Div, Richland, WA 99352 USA. RP Xantheas, SS (reprint author), Pacific NW Natl Lab, Chem & Mat Sci Div, 902 Battelle Blvd,POB 999,MS K1-83, Richland, WA 99352 USA. EM fanourg@iesl.forth.gr; sotiris.xantheas@pnl.gov RI Xantheas, Sotiris/L-1239-2015; OI Xantheas, Sotiris/0000-0002-6303-1037 NR 78 TC 209 Z9 209 U1 1 U2 36 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 EI 1089-7690 J9 J CHEM PHYS JI J. Chem. Phys. PD FEB 21 PY 2008 VL 128 IS 7 AR 074506 DI 10.1063/1.2837299 PG 11 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 265CN UT WOS:000253336800025 PM 18298156 ER PT J AU Kamiya, M Hirata, S Valiev, M AF Kamiya, Muneaki Hirata, So Valiev, Marat TI Fast electron correlation methods for molecular clusters without basis set superposition errors SO JOURNAL OF CHEMICAL PHYSICS LA English DT Review ID HYDROGEN-BOND NETWORK; N-BODY CLUSTERS; APPROXIMATE COMPUTATIONAL METHOD; ADAPTED PERTURBATION-THEORY; POTENTIAL-ENERGY SURFACES; DENSITY-FUNCTIONAL THEORY; WATER HEXAMER CLUSTERS; ORBITAL METHOD; LIQUID WATER; AB-INITIO AB Two critical extensions to our fast, accurate, and easy-to-implement binary or ternary interaction method for weakly interacting molecular clusters [S. Hirata , Mol. Phys. 103, 2255 (2005)] have been proposed, implemented, and applied to water hexamers, hydrogen fluoride chains and rings, and neutral and zwitterionic glycine-water clusters with an excellent initial performance assessment result. Our original method included up to two- or three-body Coulomb, exchange, and correlation energies exactly and higher-order Coulomb energies in the dipole-dipole interaction approximation. In this work, the dipole moments are replaced by atom-centered point charges determined so that they reproduce the electrostatic potentials of the cluster subunits accurately and also self-consistently with one another in the cluster environment. They have been shown to lead to a dramatic improvement in the description of short-range electrostatic potentials not only of large, charge-separated subunits such as zwitterionic glycine but also of small subunits. Furthermore, basis set superposition errors (BSSEs) have been eliminated by combining the Valiron-Mayer function counterpoise (VMFC) correction with our binary or ternary interaction method. A new BSSE-correction scheme has been proposed on this basis, wherein three-body and all higher-order Coulomb effects on BSSE are also estimated. The BSSE-corrected ternary interaction method with atom-centered point charges reproduces the VMFC-corrected results within 0.1 kcal/mol. The proposed method is not only more efficient but also significantly more accurate than conventional correlation methods uncorrected of BSSE. (C) 2008 American Institute of Physics. C1 [Kamiya, Muneaki; Hirata, So] Univ Florida, Dept Chem, Quantum Theory Project, Gainesville, FL 32611 USA. [Valiev, Marat] Pacific NW Natl Lab, William R Wiley Environm Mol Sci Lab, Richland, WA 99352 USA. RP Hirata, S (reprint author), Univ Florida, Dept Chem, Quantum Theory Project, Gainesville, FL 32611 USA. EM hirata@qtp.ufl.edu NR 112 TC 72 Z9 72 U1 2 U2 17 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD FEB 21 PY 2008 VL 128 IS 7 AR 074103 DI 10.1063/1.2828517 PG 11 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 265CN UT WOS:000253336800005 PM 18298136 ER PT J AU Yuan, TL Li, ZQ Zhang, RY Fan, JW AF Yuan, Tianle Li, Zhanqing Zhang, Renyi Fan, Jiwen TI Increase of cloud droplet size with aerosol optical depth: An observation and modeling study SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID RESOLUTION IMAGING SPECTRORADIOMETER; CONDENSATION NUCLEI; EFFECTIVE RADIUS; MARINE STRATOCUMULUS; RADIATIVE PROPERTIES; REMOTE SENSORS; SATELLITE DATA; ART.; ALBEDO; MODIS AB Cloud droplet effective radius (DER) is generally negatively correlated with aerosol optical depth (AOD) as a proxy of cloud condensation nuclei. In this study, cases of positive correlation were found over certain portions of the world by analyzing the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite products, together with a general finding that DER may increase or decrease with aerosol loading depending on environmental conditions. The slope of the correlation between DER and AOD is driven primarily by water vapor amount, which explains 70% of the variance in our study. Various potential artifacts that may cause the positive relation are investigated including the effects of aerosol swelling, partially cloudy, atmospheric dynamics, cloud three-dimensional (3-D) and surface influence effects. None seems to be the primary cause for the observed phenomenon, although a certain degree of influence exists for some of the factors. Analyses are conducted over seven regions around the world representing different types of aerosols and clouds. Only two regions show positive dependence of DER on AOD, near coasts of the Gulf of Mexico and South China Sea, which implies physical processes may at work. Using a 2-D Goddard Cumulus Ensemble model (GCE) with spectral-bin microphysics which incorporated a reformulation of the Kohler theory, two possible physical mechanisms are hypothesized. They are related to the effects of slightly soluble organics (SSO) particles and giant cloud condensation nuclei (CCN). Model simulations show a positive correlation between DER and AOD, due to a decrease in activated aerosols with an increasing SSO content. Addition of a few giant CCNs also increases the DER. Further investigations are needed to fully understand and clarify the observed phenomenon. C1 [Yuan, Tianle; Li, Zhanqing] Univ Maryland, Det Atmospher & Ocean Sci, College Pk, MD 20742 USA. [Yuan, Tianle; Li, Zhanqing] Univ Maryland, ESSIC, College Pk, MD 20742 USA. [Zhang, Renyi; Fan, Jiwen] Texas A&M Univ, Dept Atmospher Sci, College Stn, TX 77843 USA. [Li, Zhanqing] Nanjing Univ Informat Sci & Technol, Sch Environm Sci & Technol, Nanjing, Jiangsu, Peoples R China. [Fan, Jiwen] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Yuan, TL (reprint author), Univ Maryland, Det Atmospher & Ocean Sci, College Pk, MD 20742 USA. EM zli@atmos.umd.edu RI Zhang, Renyi/A-2942-2011; Yuan, Tianle/D-3323-2011; Fan, Jiwen/E-9138-2011; Li, Zhanqing/F-4424-2010 OI Li, Zhanqing/0000-0001-6737-382X NR 67 TC 55 Z9 57 U1 0 U2 15 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD FEB 21 PY 2008 VL 113 IS D4 AR D04201 DI 10.1029/2007JD008632 PG 16 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 267TH UT WOS:000253531600001 ER PT J AU Redington, RL Redington, TE Sams, RL AF Redington, Richard L. Redington, Theresa E. Sams, Robert L. TI Tunneling splittings for "O center dot center dot center dot O Stretching" and other vibrations of tropolone isotopomers observed in the infrared spectrum below 800 cm(-1) SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID JET-COOLED TROPOLONE; GROUND-STATE; AROMATIC-MOLECULES; ELECTRONIC-SPECTRA; PROTON-TRANSFER; FTIR SPECTRUM; SPECTROSCOPY; DYNAMICS; MALONALDEHYDE; EXCITATION AB Fourier transform infrared absorption spectra containing evidence for about two dozen spectral tunneling doublets are reported for gaseous tropolone(OH), tropolone (OD), and O-18,O-18-tropolone(OH) in the 800 to 300 cm(-1) spectral range. No FTIR absorption was detected in the 300-150 cm(-1) range. The known zeropoint (ZP) tunneling splitting values Delta(0) = 0.974 cm(-1) for tropolone(OH) (Tanaka et al.) and 0.051 cm(-1) for tropolone(OD) (Keske et al.) allow vibrational state-specific tunneling splittings Delta(nu) to be estimated for fundamentals including three with strong O center dot center dot center dot O stretching displacements [cf. for tropolone(OH) nu(13)(al) = 435.22 cm(-1) with (H)Delta(13) = 1.71 cm(-1) = 1.76 (H)Delta(0), and for tropolone(OD) nu(13)(a(1)) = 429.65 cm(-1) With (D)Delta(13) = 0.32 cm(-1) = 6.27 (D)Delta(0)]. The majority of A, splittings in the sub-800 cm-1 range are dilated relative to the isotopomer Delta(0) values. The FTIR spectra demonstrate the presence of dynamic couplings and potential function anharmonicity in addition to revealing A, splittings and many OH/D and O-18/O-16 isotope effects. Approximate values are obtained for the ZP splittings (88)Delta(0) and (86)Delta(0) of the doubly and singly O-18-labeled isotopomers of tropolone(OH). The diverse values of the observed Delta(nu)/Delta(0) splitting ratios underscore the inherent multidimensionality and corner-cutting activities entering the state-specific tunneling processes of the tropolone tautomerization reaction. C1 [Redington, Richard L.; Redington, Theresa E.] Texas Tech Univ, Dept Chem & Biochem, Lubbock, TX 79409 USA. [Sams, Robert L.] Pacific NW Natl Lab, Wiley Environm Mol Sci Lab, Richland, WA 99352 USA. RP Redington, RL (reprint author), Texas Tech Univ, Dept Chem & Biochem, Lubbock, TX 79409 USA. NR 49 TC 7 Z9 7 U1 0 U2 3 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD FEB 21 PY 2008 VL 112 IS 7 BP 1480 EP 1492 DI 10.1021/jp0757255 PG 13 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 263MV UT WOS:000253222100014 PM 18217730 ER PT J AU Liu, Y Gibson, ER Cain, JP Wang, H Grassian, VH Laskin, A AF Liu, Y. Gibson, E. R. Cain, J. P. Wang, H. Grassian, V. H. Laskin, A. TI Kinetics of heterogeneous reaction of CaCO3 particles with gaseous HNO3 over a wide range of humidity SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID X-RAY-MICROANALYSIS; NITRIC-ACID UPTAKE; KNUDSEN CELL; CALCIUM-CARBONATE; ADSORBED WATER; MINERAL DUST; SEA-SALT; SURFACE; AEROSOL; HYDRATION AB Heterogeneous reaction kinetics of gaseous nitric acid (HNO3) with calcium carbonate (CaCO3) particles was investigated using a particle-on-substrate stagnation flow reactor (PS-SFR). This technique utilizes the exposure of substrate deposited, isolated, and narrowly dispersed particles to a gas mixture of HNO3/H2O/N-2, followed by microanalysis of individual reacted particles using computer-controlled scanning electron microscopy with energy-dispersive X-ray analysis (CCSEM/EDX). The first series of experiments were conducted at atmospheric pressure, room temperature and constant relative humidity (40%) with a median dry particle diameter of (D) over bar (P) = 0.85 mu m, particle loading densities 2 x 104 <= N-s <= 6 x 10(6) cm(-2) and free stream HNO3 concentrations of 7, 14, and 25 ppb. The apparent, pseudo first-order rate constant for the reaction was determined from oxygen enrichment in individual particles as a function of particle loading. Quantitative treatment of the data using a diffusion-kinetic model yields a lower limit to the net reaction probability gamma(net) >= 0.06 (x3/divided by 2). In a second series of experiments, HNO3 uptake on CaCO3 particles of the same size was examined over a wide range of relative humidity, from 10 to 80%. The net reaction probability was found to increase with increasing relative humidity, from gamma(net) >= 0.003 at RH = 10% to 0.21 at 80%. C1 [Liu, Y.; Laskin, A.] Pacific NW Natl Lab, William R Wiley Environm Mol Sci Lab, Richland, WA 99352 USA. [Gibson, E. R.; Grassian, V. H.] Univ Iowa, Dept Chem, Iowa City, IA 52242 USA. [Cain, J. P.; Wang, H.] Univ So Calif, Dept Aerosp & Mech Engn, Los Angeles, CA 90089 USA. RP Laskin, A (reprint author), Pacific NW Natl Lab, William R Wiley Environm Mol Sci Lab, PO Box 999,MSIN K8-88, Richland, WA 99352 USA. EM vicki-grassian@uiowa.edu; Alexander.Laskin@pnl.gov RI Wang, Hai/A-1292-2009; liu, yong/F-6736-2012; Laskin, Alexander/I-2574-2012 OI Wang, Hai/0000-0001-6507-5503; Laskin, Alexander/0000-0002-7836-8417 NR 57 TC 44 Z9 45 U1 3 U2 39 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD FEB 21 PY 2008 VL 112 IS 7 BP 1561 EP 1571 DI 10.1021/jp076169h PG 11 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 263MV UT WOS:000253222100024 PM 18232670 ER PT J AU Stare, J Panek, J Eckert, J Grdadolnik, J Mavri, J Hadzi, D AF Stare, Jernej Panek, Jaroslaw Eckert, Juergen Grdadolnik, Joze Mavri, Janez Hadzi, Dusan TI Proton dynamics in the strong chelate hydrogen bond of crystalline picolinic acid N-oxide. A new computational approach and infrared, Raman and INS study SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID PARRINELLO MOLECULAR-DYNAMICS; DENSITY-FUNCTIONAL THEORY; GRID HAMILTONIAN METHOD; VIBRATIONAL ASSIGNMENT; SCHRODINGER-EQUATION; AB-INITIO; NEUTRON-SCATTERING; MALONALDEHYDE; SPECTRA; POLARIZABILITY AB Infrared, Raman and INS spectra of picolinic acid N-oxide (PANG) were recorded and examined for the location of the hydronic modes, particularly O-H stretching and COH bending. PANG is representative of strong chelate hydrogen bonds (H-bonds) with its short O center dot center dot center dot O distance (2.425 angstrom). H-bonding is possibly well-characterized by diffraction, NMR and NQR data and calculated potential energy functions. The analysis of the spectra is assisted by DFT frequency calculations both in the gas phase and in the solid state. The Car-Parrinello quantum mechanical solid-state method is also used for the proton dynamics simulation; it shows the hydron to be located about 99% of time in the energy minimum near the carboxylic oxygen; jumps to the N-O acceptor are rare. The infrared spectrum excels by an extended absorption (Zundel's continuum) interrupted by numerous Evans transmissions. The model proton potential functions on which the theories of continuum formation are based do not correspond to the experimental and computed characteristics of the hydrogen bond in PANG, therefore a novel approach has been developed; it is based on crystal dynamics driven hydronium potential fluctuation. The envelope of one hundred 0 -> 1 OH stretching transitions generated by molecular dynamics simulation exhibits a maximum at 1400 cm(-1) and a minor hump at similar to 1600 cm-1. These positions square well with ones predicted for the COH bending and OH, stretching frequencies derived from various one- and two-dimensional model potentials. The coincidences with experimental features have to be considered with caution because the CPMD transition envelope is based solely on the OH stretching coordinate while the observed infrared bands correspond to heavily mixed modes as was previously shown by the normal coordinate analysis of the IR spectrum of argon matrix isolated PANO, the present CPMD frequency calculation and the empirical analysis of spectra. The experimental infrared spectra show some unusual characteristics such as large temperature effects on the intensity of some bands, thus presenting a challenge for theoretical band shape treatments. Our calculations clearly show that the present system is characterized by an asymmetric single well potential with no large amplitudes in the hydronium motion, which extends the existence of Zundel-type spectra beyond the established set of hydrogen bonds with large hydronic vibrational amplitudes. C1 [Stare, Jernej; Grdadolnik, Joze; Mavri, Janez; Hadzi, Dusan] Natl Inst Chem, Ljubljana, Slovenia. [Stare, Jernej; Eckert, Juergen] Los Alamos Natl Lab, Los Alamos Neutron Sci Ctr, Ctr Nonlinear Studies, Los Alamos, NM USA. [Panek, Jaroslaw] Univ Wroclaw, Fac Chem, PL-50138 Wroclaw, Poland. [Eckert, Juergen] Univ Calif Santa Barbara, Mat Res Lab, Santa Barbara, CA USA. RP Stare, J (reprint author), Natl Inst Chem, Ljubljana, Slovenia. EM jernej@cmm.ki.si; dusan.hadzi@ki.si NR 63 TC 48 Z9 48 U1 1 U2 14 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD FEB 21 PY 2008 VL 112 IS 7 BP 1576 EP 1586 DI 10.1021/jp077107u PG 11 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 263MV UT WOS:000253222100026 PM 18225869 ER PT J AU Li, L Hitchcock, AP Cornelius, R Brash, JL Scholl, A Doran, A AF Li, Li Hitchcock, Adam P. Cornelius, Rena Brash, John L. Scholl, Andreas Doran, Andrew TI X-ray microscopy studies of protein adsorption on a phase segregated polystyrene/polymethylmethacrylate surface. 2. Effect of pH on site preference SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID BOVINE SERUM-ALBUMIN; POLYMER SURFACES; FIBRINOGEN; SPECTROMICROSCOPY; TRANSITIONS; RESOLUTION; GLASS AB X-ray photoemission electron microscopy (XPEEM) using synchrotron radiation illumination has been used to study the adsorption of human serum albumin (HSA) onto a phase segregated polystyrene/polymethyl-methacrylate (PS/PMMA) blend surface from solutions of five different pH values. The absolute coverage of albumin on each of three chemically distinct components of the surface, PS domains, PMMA domains, and the interface between the domains, was determined from a quantitative analysis of C is image sequences. At all pH values, the preferred adsorption site is the interface. At neutral pH (7.0), albumin showed a slight preference for PS regions relative to PMMA. At strongly acidic pH (2.0) and strongly basic pH (10.0), similar amounts of albumin adsorb on the PS and PMMA regions. However, at pH 4.0, the amount of albumin adsorbed on PMMA domains is similar to-1.6 times greater than that on PS domains, while at pH 8.6 the amount of albumin adsorbed on PMMA is one-half that adsorbed on PS domains. The pH dependence of the site preference is rationalized in terms of the known changes of albumin conformation with pH [Peters, T., Jr. All About Albumin: Biochemistry, Genetics, and Medical Applications; Academic Press: New York, 1995]. We infer from our results that the site preference of albumin adsorption on PS/PMMA blends is related mainly to changes in hydrophobic interactions, which are driven by pH-dependent electrostatic effects, that is, changes to the protein surface structure as the charge on the protein changes. The results provide insight into changes in the secondary structure of albumin in acid and basic media. C1 [Li, Li; Hitchcock, Adam P.; Brash, John L.] McMaster Univ, BIMR, Hamilton, ON L8S 4M1, Canada. [Cornelius, Rena; Brash, John L.] McMaster Univ, Hamilton, ON L8S 4L7, Canada. [Brash, John L.] McMaster Univ, Sch Biomed Engn, Hamilton, ON L8S 4K1, Canada. [Scholl, Andreas; Doran, Andrew] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Hitchcock, AP (reprint author), McMaster Univ, BIMR, Hamilton, ON L8S 4M1, Canada. EM aph@mcmaster.ca RI Scholl, Andreas/K-4876-2012; OI Doran, Andrew/0000-0001-5158-4569 NR 32 TC 25 Z9 26 U1 1 U2 17 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD FEB 21 PY 2008 VL 112 IS 7 BP 2150 EP 2158 DI 10.1021/jp076583h PG 9 WC Chemistry, Physical SC Chemistry GA 263MX UT WOS:000253222300037 PM 18229913 ER PT J AU Vazquez-Mayagoita, A Huertas, O Fuentes-Cabrera, M Sumpter, BG Orozco, M Luque, FJ AF Vazquez-Mayagoita, Alvaro Huertas, Oscar Fuentes-Cabrera, Miguel Sumpter, Bobby G. Orozco, Modesto Luque, F. Javier TI Ab initio study of naphtho-homologated DNA bases SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID SIZE-EXPANDED DNA; PAIRED GENETIC HELIX; FORCE-FIELD; ELECTRONIC-PROPERTIES; BUILDING-BLOCKS; FREE-ENERGY; ANALOGS; XDNA; PARAMETRIZATION; TAUTOMERISM AB Naphtho-homologated DNA bases have been recently used to build a new type of size-expanded DNA known as yyDNA. We have used theoretical techniques to investigate the structure, tautomeric preferences, base-pairing ability, stacking interactions, and HOMO-LUMO gaps of the naphtho-bases. The structure of these bases is found to be similar to that of the benzo-fused predecessors (y-bases) with respect to the planarity of the aromatic rings and amino groups. Tautomeric studies reveal that the canonical-like forms of naphthothymine (yyT) and naphtho-adenine (yyA) are the most stable tautomers, leading to hydrogen-bonded dimers with the corresponding natural nucleobases that mimic the Watson-Crick pairing. However, the canonical-like species of naphtho-guanine (yyG) and naphtho-cytosine (yyC) are not the most stable tautomers, and the most favorable hydrogen-bonded dimers involve wobble-like pairings. The expanded size of the naphtho-bases leads to stacking interactions notably larger than those found for the natural bases, and they should presumably play a dominant contribution in modulating the structure of yyDNA duplexes. Finally, the HOMO-LUMO gap of the naphtho-bases is smaller than that of their benzo-base counterparts, indicating that size-expansion of DNA bases is an efficient way of reducing their HOMO-LUMO gap. These results are examined in light of the available experimental evidence reported for yyT and yyC. C1 [Fuentes-Cabrera, Miguel; Sumpter, Bobby G.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Fuentes-Cabrera, Miguel; Sumpter, Bobby G.] Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN 37831 USA. [Vazquez-Mayagoita, Alvaro] Univ Autonoma Metropolitana Iztapalapa, Dept Quim, Div Ciencias Basicas & Ingn, Mexico City 09340, DF, Mexico. [Huertas, Oscar; Luque, F. Javier] Univ Barcelona, Fac Farm, Dept Fisicoquim, E-08028 Barcelona, Spain. [Huertas, Oscar; Luque, F. Javier] Univ Barcelona, Fac Farm, Inst Biomed, E-08028 Barcelona, Spain. [Orozco, Modesto] Inst Recerca Biomed, Unitat Modelitzacio Mol Bioinformat, E-08028 Barcelona, Spain. [Orozco, Modesto] Univ Barcelona, Fac Biol, Dept Bioquim & Biol Mol, E-08028 Barcelona, Spain. [Orozco, Modesto] Univ Barcelona, Fac Biol, Dept Bioquim, E-08028 Barcelona, Spain. [Orozco, Modesto] Barcelona Supercomp Ctr, Computac Biol Program, Barcelona 08034, Spain. RP Fuentes-Cabrera, M (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. EM fuentescabma@ornl.gov; fjluque@ub.edu RI Sumpter, Bobby/C-9459-2013; Vazquez-Mayagoitia, Alvaro/A-9755-2010; Fuentes-Cabrera, Miguel/Q-2437-2015; Luque, F. Javier/L-9652-2014; OI Sumpter, Bobby/0000-0001-6341-0355; Fuentes-Cabrera, Miguel/0000-0001-7912-7079; Luque, F. Javier/0000-0002-8049-3567; Orozco Lopez, Modesto/0000-0002-8608-3278 NR 49 TC 17 Z9 18 U1 0 U2 10 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD FEB 21 PY 2008 VL 112 IS 7 BP 2179 EP 2186 DI 10.1021/jp7095746 PG 8 WC Chemistry, Physical SC Chemistry GA 263MX UT WOS:000253222300040 PM 18225888 ER PT J AU Haranczykt, M Lupica, G Dabkowska, I Gutowski, M AF Haranczykt, Maciej Lupica, Giovanni Dabkowska, Iwona Gutowski, Maciej TI Cylindrical projection of electrostatic potential and image analysis tools for damaged DNA: The substitution of thymine with thymine glycol SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID STEREOSELECTIVE EXCISION; TRANSLESION SYNTHESIS; OXIDATIVE DAMAGE; THYMIDINE GLYCOL; DENSITY; LESIONS; BASE; OLIGONUCLEOTIDES; CARCINOGENESIS; MUTAGENESIS AB Changes of electrostatic potential around the DNA molecule resulting from chemical modifications of nucleotides may play a role in enzymatic recognition of damaged sites. Effects of chemical modifications of nucleotides on the structure of DNA have been characterized through electronic structure computations. Quantum mechanical structural optimizations of fragments of five pairs of nucleotides with thymine or thymine glycol were performed at the density functional level of theory with a B3LYP exchange-correlation functional and 6-31G(d,p) basis sets. The electrostatic potential (EP) around DNA fragments was projected on a cylindrical surface around the double helix. The 2D maps of EP of intact and damaged DNA fragments were compared using image analysis methods to identify and measure modifications of the EP that result from the occurrence of thymine glycol. It was found that distortions of phosphate groups and displacements of the accompanying countercations by up to similar to 0.5 angstrom along the axis of DNA are clearly reflected in the EP maps. Modifications of the EP in the major groove of DNA near the damaged site are also reported. C1 [Haranczykt, Maciej; Dabkowska, Iwona; Gutowski, Maciej] Univ Gdansk, Dept Chem, PL-80952 Gdansk, Poland. [Haranczykt, Maciej; Dabkowska, Iwona; Gutowski, Maciej] Pacific NW Natl Lab, Div Chem Sci, Richland, WA 99352 USA. [Haranczykt, Maciej] Univ Sheffield, Dept Informat Studies, Sheffield S1 4DP, S Yorkshire, England. [Lupica, Giovanni] Univ Sheffield, Dept Elect & Elect Engn, Sheffield S1 3JD, S Yorkshire, England. [Dabkowska, Iwona] Free Univ Berlin, Inst Chem & Biochem Phys & Theoret Chem, D-14195 Berlin, Germany. [Gutowski, Maciej] Heriot Watt Univ, Chem Sch Engn & Phys Sci, Edinburgh EH14 4AS, Midlothian, Scotland. RP Haranczykt, M (reprint author), Univ Gdansk, Dept Chem, Sobieskiego 18, PL-80952 Gdansk, Poland. EM m.gutowski@hw.ac.uk; maharan@chem.univ.gda.pl NR 49 TC 2 Z9 2 U1 0 U2 2 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD FEB 21 PY 2008 VL 112 IS 7 BP 2198 EP 2206 DI 10.1021/jp709751w PG 9 WC Chemistry, Physical SC Chemistry GA 263MX UT WOS:000253222300042 PM 18225889 ER PT J AU Pierce, MS Chang, KC Hennessy, DC Komanicky, V Menzel, A You, H AF Pierce, M. S. Chang, K-C Hennessy, D. C. Komanicky, V. Menzel, A. You, H. TI CO-induced lifting of Au(001) surface reconstruction SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID PHASE-TRANSITION; GOLD; PT(100); CHEMISORPTION; ADSORPTION AB We report CO-induced lifting of the hexagonal surface reconstruction on Au(001). Using in situ surface X-ray scattering, we determined a pressure-temperature phase diagram for the reconstruction and measured tine dynamical evolution of the surface structure in real time. Our observations provide evidence that, under certain conditions, even macroscopic Au surfaces, much larger than catalytic Au nanoparticles (Haruta, M. Catal. Today 1997, 36, 153), can exhibit some of the reactive properties and surface transitions observed in systems known to be catalytically active such as Pt(001). C1 [Pierce, M. S.; Chang, K-C; Hennessy, D. C.; Komanicky, V.; Menzel, A.; You, H.] Argonne Natl Lab, Mat Sci Div, Argonne, IL 60439 USA. [Komanicky, V.] Slovak Acad Sci, Inst Expt Phys, Kosice 04353, Slovakia. [Menzel, A.] Paul Scherrer Inst, CH-5232 Villigen, Switzerland. RP You, H (reprint author), Argonne Natl Lab, Mat Sci Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM hyou@anl.gov RI Hennessy, Daniel/A-6203-2011; Menzel, Andreas/C-4388-2012; Pierce, Michael/D-5570-2014; Chang, Kee-Chul/O-9938-2014; You, Hoydoo/A-6201-2011 OI Menzel, Andreas/0000-0002-0489-609X; Pierce, Michael/0000-0002-9209-8556; Chang, Kee-Chul/0000-0003-1775-2148; You, Hoydoo/0000-0003-2996-9483 NR 25 TC 14 Z9 14 U1 2 U2 23 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD FEB 21 PY 2008 VL 112 IS 7 BP 2231 EP 2234 DI 10.1021/jp7105764 PG 4 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 263MW UT WOS:000253222200001 ER PT J AU Mao, YB Huang, JY Ostroumov, R Wang, KL Chang, JP AF Mao, Yuanbing Huang, Jian Y. Ostroumov, Roman Wang, Kang L. Chang, Jane P. TI Synthesis and luminescence properties of erbium-doped Y2O3 nanotubes SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID UP-CONVERSION LUMINESCENCE; OPTICAL-PROPERTIES; OXIDE NANOTUBES; THIN-FILM; NANOCRYSTALLINE Y2O3-EU; HYDROTHERMAL SYNTHESIS; CALCIUM-CARBONATE; ENERGY-TRANSFER; NANOPARTICLES; PHOTOLUMINESCENCE AB Erbium-doped yttrium oxide nanotubes (Er3+:Y2O3 NTs) with 0-100% doping levels were synthesized by a hydrothermal procedure followed by a dehydration process from Er3+:Y2O3 NTs. The as-synthesized Er3+:Y2O3 nanotubes ranged from 100 to 400 nm in outer diameter and 2 to 5 mu m in length with a hexagonal cross section. A time-dependent nanostructure evolution study was performed under hydrothermal conditions, and the effects of other processing parameters, including pH, concentration, and ionic strength of the precursor solution as well as the time span for adding the alkaline solution, were found to dictate the purity and morphology of the as-synthesized Er3+:Y(OH)(3) nanostructures. A kinetics-controlled dissolution-recrystallization mechanism is proposed to explain the anisotropic growth of these hollow nanotubes from the hexagonal crystal structure of yttrium and erbium hydroxides. Outstanding room-temperature photoluminescence around 1535 nm was demonstrated for these Er3+:Y2O3 NTs, making them promising for optical amplifier, laser, and active waveguide applications in telecommunications. C1 [Mao, Yuanbing; Chang, Jane P.] Univ Calif Los Angeles, Dept Chem & Biomol Engn, Los Angeles, CA 90095 USA. [Huang, Jian Y.] Ctr Integrated Nanotechnol, Sandia Natl Labs, Albuquerque, NM 87185 USA. [Ostroumov, Roman; Wang, Kang L.] Univ Calif Los Angeles, Dept Elect Engn, Los Angeles, CA 90095 USA. RP Chang, JP (reprint author), Univ Calif Los Angeles, Dept Chem & Biomol Engn, Los Angeles, CA 90095 USA. RI Mao, Yuanbing/D-5580-2009; Huang, Jianyu/C-5183-2008 NR 68 TC 89 Z9 92 U1 2 U2 50 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD FEB 21 PY 2008 VL 112 IS 7 BP 2278 EP 2285 DI 10.1021/jp0773738 PG 8 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 263MW UT WOS:000253222200011 ER PT J AU Sarathy, V Tratnyek, PG Nurmi, JT Baer, DR Amonette, JE Chun, CL Penn, RL Reardon, EJ AF Sarathy, Vaishnavi Tratnyek, Paul G. Nurmi, James T. Baer, Donald R. Amonette, James E. Chun, Chan Lan Penn, R. Lee Reardon, Eric J. TI Aging of iron nanoparticles in aqueous solution: Effects on structure and reactivity SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID CARBON-TETRACHLORIDE; TCE DECHLORINATION; POWDER ELECTRODES; GRANULAR IRON; CORROSION; RATES; PARTICLES; EVOLUTION; PURITY AB Aging (or longevity) is one of the most important and potentially limiting factors in the use of nano-Fe-0 to reduce groundwater contaminants. We investigated the aging of Fe-H2 (Toda RNIP-10DS) in water with a focus on changes in (i) the composition and structure of the particles (by XRD, TEM, XPS, and bulk Fe-0 content) and (ii) the reactivity of the particles (by carbon tetrachloride reaction kinetics, electrochemical corrosion potentials, and H-2 production rates). Our results show that Fe-H2 becomes more reactive between 0 and similar to 2 days exposure to water and then gradually loses reactivity over the next few hundred days. These changes in reactivity correlate with evidence for rapid destruction of the original Fe(III) oxide film on Fe-H2 during immersion and the subsequent formation of a new passivating mixed-valence Fe(II)-Fe(III) oxide shell. The effect of aging on the rate of carbon tetrachloride reduction was best described by the corrosion potential of Fe-H2, whereas the yield of chloroform from this reaction correlated best with the rate of H-2 production. The behavior of unaged nano-Fe-0 in the laboratory may be similar to that in field-scale applications for source-zone treatment due to the short reaction times involved. Long-term aged Fe-H2 acquires properties that are relatively stable over weeks or even months. C1 [Sarathy, Vaishnavi; Tratnyek, Paul G.; Nurmi, James T.] Oregon Hlth & Sci Univ, Dept Environm & Biomol Syst, Beaverton, OR 97006 USA. [Baer, Donald R.; Amonette, James E.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Chun, Chan Lan; Penn, R. Lee] Univ Minnesota, Dept Chem, Minneapolis, MN 55455 USA. [Reardon, Eric J.] Univ Waterloo, Dept Earth & Environm Sci, Waterloo, ON N2L 3G1, Canada. RP Tratnyek, PG (reprint author), Oregon Hlth & Sci Univ, Dept Environm & Biomol Syst, 20000 NW Walker Rd, Beaverton, OR 97006 USA. EM tratnyek@ebs.ogi.edu; don.baer@pnl.gov RI Baer, Donald/J-6191-2013 OI Baer, Donald/0000-0003-0875-5961 NR 31 TC 104 Z9 107 U1 10 U2 66 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD FEB 21 PY 2008 VL 112 IS 7 BP 2286 EP 2293 DI 10.1021/jp0777418 PG 8 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 263MW UT WOS:000253222200012 ER PT J AU Yang, A Shipman, ST Garrett-Roe, S Johns, J Strader, M Szymanski, P Muller, E Harris, C AF Yang, Aram Shipman, Steven T. Garrett-Roe, Sean Johns, James Strader, Matt Szymanski, Paul Muller, Eric Harris, Charles TI Two-photon photoemission of ultrathin film PTCDA morphologies on Ag(111) SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID MOLECULE-METAL INTERFACES; FIELD-EFFECT TRANSISTORS; ELECTRON DYNAMICS; THIN-FILMS; ORGANIC SEMICONDUCTOR; FEMTOSECOND DYNAMICS; TRANSPORT; SURFACES; LOCALIZATION; TEMPERATURE AB Morphology- and layer-dependent electronic structure and dynamics at the PTCDA/Ag(111) interface have been studied with angle-resolved two-photon photoemission. In Stranski-Krastanov growth modes, the exposed wetting layer inhibited the evolution of the vacuum level and valence band to bulk values. For layer-by-layer growth, we observed the transition of electron structure from monolayer to bulk values within eight monolayers. Effective masses and lifetimes of the conduction band and the n = 1 image potential state were measured to be larger for disordered layers. The effective mass was interpreted in the context of charge mobility measurements. C1 [Harris, Charles] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Harris, C (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM cbharris@berkeley.edu RI Garrett-Roe, Sean/C-6037-2011; Muller, Eric/J-2161-2012 OI Garrett-Roe, Sean/0000-0001-6199-8773; Muller, Eric/0000-0002-9629-1767 NR 42 TC 31 Z9 31 U1 0 U2 15 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD FEB 21 PY 2008 VL 112 IS 7 BP 2506 EP 2513 DI 10.1021/jp076632q PG 8 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 263MW UT WOS:000253222200044 ER PT J AU Graciani, J Alvarez, LJ Rodriguez, JA Sanz, JF AF Graciani, Jesus Alvarez, Luis Javier Rodriguez, Jos A. Sanz, Javier Fdez. TI N doping of rutile TiO2 (110) surface. A theoretical DFT study SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID SCANNING-TUNNELING-MICROSCOPY; DENSITY-FUNCTIONAL THEORY; DOPED TITANIUM-DIOXIDE; VISIBLE-LIGHT; ELECTRONIC-STRUCTURE; MOLECULAR-DYNAMICS; TIO2(110) SURFACE; OXYGEN VACANCIES; 1ST PRINCIPLES; NITROGEN AB A realistic model, consisting of six-layer slabs, and density-functional calculations were used to perform a detailed analysis of the structural and electronic properties of N doped TiO2(110). All the positions examined for adsorption of atomic N are unstable regarding the formation and further escape of N-2(g). The adsorption of atomic N could take place only when having isolated adatoms. In this case, N prefers to bond to O centers located either on the surface or in the interstitial channels of the oxide lattice. These N adatoms probably give rise to the peak seen at similar to 400 eV in N 1s XPS spectra. The coexistence of N with O vacancies and surface reconstructions are explained in terms of cooperative behaviors and the special electronic structure of the TiNxO2-2x(110) system. Here, electrons move from the O vacancies to implanted N to fill up its electronic shell. Such electron transfer yields the normal oxidation state of nitrogen, N3-, and explains a number of things: the easiness to form O vacancies when implanted N is present, the easiness to implant N when O vacancies are present, and the difficulty for the implanted N to escape. It is not likely that N-doping will improve the photocatalytic behavior of TiO2-x(110) surfaces. For these compounds the band gap will be always equal or larger than that of pure stoichiometric TiO2. C1 [Graciani, Jesus; Alvarez, Luis Javier; Sanz, Javier Fdez.] Univ Seville, Fac Quim, Dept Quim Fis, E-41012 Seville, Spain. [Rodriguez, Jos A.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. RP Sanz, JF (reprint author), Univ Seville, Fac Quim, Dept Quim Fis, E-41012 Seville, Spain. RI Graciani, Jesus/B-1136-2009 NR 45 TC 82 Z9 85 U1 7 U2 48 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD FEB 21 PY 2008 VL 112 IS 7 BP 2624 EP 2631 DI 10.1021/jp077417c PG 8 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 263MW UT WOS:000253222200059 ER PT J AU Du, YG Dohnalek, Z Lyubinetsky, I AF Du, Yingge Dohnalek, Zdenek Lyubinetsky, Igor TI Transient mobility of oxygen adatoms upon O-2 dissociation on reduced TiO2(110) SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID MOLECULAR-OXYGEN; TIO2 SURFACES; ADSORPTION; DEFECTS; PHOTOCATALYSIS; CHEMISORPTION; DIFFUSION; VACANCIES; CHLORINE; AL(111) AB Tracking the same region of the reduced TiO2(110) surface by scanning tunneling microscopy before and after oxygen exposure at room temperature (RT) confirms that O-2 molecules dissociate only at the bridging oxygen vacancies, with one O atom healing a vacancy and other O atom bonding at the neighboring Ti site as an adatom. The majority of O adatoms (similar to 81%) are found separated from the original vacancy positions by up to two lattice constants along the [001] direction. Since at RT the thermal diffusivity of O adatoms has been found to be rather small, with an experimentally estimated activation energy of similar to 1.1 eV, we conclude that the observed lateral distribution of the oxygen adatoms is attained through a nonthermal, transient mobility during the course of O-2 dissociation. Unlike for other known cases of the dissociation of diatomic molecules where both "hot" adatoms accommodate at equivalent sites, in the studied system, the oxygen atoms filling the vacancies are locked into the bridging oxygen rows, and only the O adatoms are relatively free to move. The transient motion of the hyperthermal oxygen adatoms on the TiO2(110) surface occurs exclusively along the Ti troughs. C1 [Du, Yingge; Lyubinetsky, Igor] Environm Mol Sci Lab, Richland, WA 99352 USA. [Dohnalek, Zdenek] Fund Sci Directorate, Inst Interfac Catal, Pacific NW Natl Lab, Richland, WA 99352 USA. RP Lyubinetsky, I (reprint author), Environm Mol Sci Lab, Richland, WA 99352 USA. EM igor.lyubinetsky@pnl.gov OI Dohnalek, Zdenek/0000-0002-5999-7867 NR 29 TC 81 Z9 81 U1 1 U2 24 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD FEB 21 PY 2008 VL 112 IS 7 BP 2649 EP 2653 DI 10.1021/jp077677u PG 5 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 263MW UT WOS:000253222200062 ER PT J AU Lu, T Goldfield, EM Gray, SK AF Lu, Tun Goldfield, Evelyn M. Gray, Stephen K. TI Chemical reactivity within carbon nanotubes: A quantum mechanical study of the D+H-2 -> HD+H reaction SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID GEOMETRIC PHASE; DYNAMICS; HYDROGEN; SCATTERING; CHEMISTRY; ISOTOPES; STATES AB Chemical reactivity may be significantly altered when reagents are confined to move within a nanoscale environment. Chemical reactions inside carbon nanotubes (CNTs), in particular, have been the focus of some attention. To help lay theoretical foundations for understanding such nanoscale-confined chemistry, we study the quantum dynamics of the D + H-2 -> HD + H exchange reaction, one of the most fundamental reactions in gas-phase chemistry, within a CNT. A five-dimensional Hamiltonian model for the system is developed, and numerous wavepacket calculations are carried out. Quantum reaction probabilities are compared with Gas-phase reaction probabilities. Several different sized CNTs are considered. The smaller CNT diameter reaction probabilities are considerably higher than the gas-phase ones. C1 [Lu, Tun; Goldfield, Evelyn M.] Wayne State Univ, Dept Chem, Detroit, MI 48202 USA. [Gray, Stephen K.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. RP Goldfield, EM (reprint author), Wayne State Univ, Dept Chem, Detroit, MI 48202 USA. EM evi@chem.wayne.edu NR 31 TC 22 Z9 23 U1 3 U2 15 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD FEB 21 PY 2008 VL 112 IS 7 BP 2654 EP 2659 DI 10.1021/jp077737w PG 6 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 263MW UT WOS:000253222200063 ER PT J AU Ohta, T El Gabaly, F Bostwick, A McChesney, JL Emtsev, KV Schmid, AK Seyller, T Horn, K Rotenberg, E AF Ohta, Taisuke El Gabaly, Farid Bostwick, Aaron McChesney, Jessica L. Emtsev, Konstantin V. Schmid, Andreas K. Seyller, Thomas Horn, Karsten Rotenberg, Eli TI Morphology of graphene thin film growth on SiC(0001) SO NEW JOURNAL OF PHYSICS LA English DT Article ID ENERGY-ELECTRON MICROSCOPY; INTERFACE FORMATION; EPITAXIAL GRAPHENE; GRAPHITE; 6H-SIC(0001); SURFACES; PHASE; GAS AB Epitaxial films of graphene on SiC(0001) are interesting from a basic physics as well as an applications-oriented point of view. Here, we study the emerging morphology of in vacuo prepared graphene films using low-energy electron microscopy (LEEM) and angle-resolved photoemission spectroscopy (ARPES). We obtain an identification of single-layer and bilayer graphene films by comparing the characteristic features in electron reflectivity spectra in LEEM to the pi-band structure as revealed by ARPES. We demonstrate that LEEM serves as a tool to accurately determine the local extent of graphene layers as well as the layer thickness. C1 [Ohta, Taisuke; Bostwick, Aaron; McChesney, Jessica L.; Rotenberg, Eli] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA USA. [Ohta, Taisuke; McChesney, Jessica L.; Horn, Karsten] Max Planck Gesell, Fritz Haber Inst, D-1000 Berlin, Germany. [El Gabaly, Farid; Schmid, Andreas K.] Lawrence Berkeley Natl Lab, Natl Ctr Electron Microscopy, Berkeley, CA USA. [Emtsev, Konstantin V.; Seyller, Thomas] Univ Erlangen Nurnberg, Lehrstuhl Tech Phys, Erlangen, Germany. RP Ohta, T (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM erotenberg@lbl.gov RI Rotenberg, Eli/B-3700-2009; Seyller, Thomas/F-8410-2011; Bostwick, Aaron/E-8549-2010; McChesney, Jessica/K-8911-2013 OI Rotenberg, Eli/0000-0002-3979-8844; Seyller, Thomas/0000-0002-4953-2142; McChesney, Jessica/0000-0003-0470-2088 NR 30 TC 119 Z9 119 U1 7 U2 100 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1367-2630 J9 NEW J PHYS JI New J. Phys. PD FEB 21 PY 2008 VL 10 AR 023034 DI 10.1088/1367-2630/10/2/023034 PG 7 WC Physics, Multidisciplinary SC Physics GA 270IA UT WOS:000253713300006 ER PT J AU Gronlund, T Li, Z Carini, G Li, M AF Gronlund, Tanja Li, Zheng Carini, Gabriella Li, Michael TI Full 3D simulations of BNL one-sided silicon 3D detectors and comparisons with other types of 3D detectors SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE silicon detectors; 3D sensors; 3D detectors; device simulation; electric field ID RADIATION DETECTORS; CHARGE AB Full three-dimensional (3D) simulations have been carried out on the BNL one-sided single-type column and dual-type column 3D Si detectors (p-type substrate). Due to the facts that columns are not etched all the way through, all electrodes are on the front side, and the backside is neither supported nor processed at all, the BNL one-sided 3D detectors are true one-sided detectors. Simulations show that the volume under the columns, where it is supposed to be dead space (about 10%), can be depleted at high biases with some modest electric field, leading to the possibility of recovering some sensitivity from this region. This region can also provide some sensitivity to particle tracks directly through the columns. The dual-type column detectors are the best in radiation hardness due to their low depletion voltages and short drift distances. Single-type column detectors are more radiation hard than the planar detectors due to their lower depletion voltages. Single-type column detectors are easier to process than dual-type column detectors, but have a more complicated, non-uniform electric field profile. The BNL one-sided 3D detectors were compared to various 3D detector structures developed by other institutes. The field profiles for all types of dual-type column 3D detectors are similar with just some minor differences on both surfaces (front and back). The BNL single-type column one-sided 3D detectors have some major differences from the Trento ones: (1) the high electric field is on the sensine electrode side (pixel or strip); and (2) it can develop some high electric field along the junction column as the bias voltage increases. (C) 2007 Elsevier B.V. All rights reserved. C1 [Gronlund, Tanja] Lappeenranta Univ Technol, FIN-53851 Lappeenranta, Finland. [Gronlund, Tanja; Li, Zheng; Carini, Gabriella; Li, Michael] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Gronlund, T (reprint author), Lappeenranta Univ Technol, POB 20, FIN-53851 Lappeenranta, Finland. EM tanja.gronlund@lut.fi NR 11 TC 5 Z9 6 U1 1 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD FEB 21 PY 2008 VL 586 IS 2 BP 180 EP 189 DI 10.1016/j.nima.2007.12.005 PG 10 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 268XJ UT WOS:000253613300008 ER PT J AU McKnight, TK Czirr, JB Littrell, K Campbell, BJ AF McKnight, T. K. Czirr, J. B. Littrell, K. Campbell, B. J. TI The flexible embedded-fiber neutron detector SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE neutron detector; powder diffraction; zinc sulfide scintillator; wavelength-shifting fiber ID SCINTILLATORS; EFFICIENCY AB We present a novel area-detector design, the flexible embedded-fiber detector (FEFD), which combines high-efficiency, low-cost, and very simple signal processing. It consists of wavelength-shifting fibers embedded in a zinc-sulfide lithium-fluoride-based scintillator and a physically flexible binder that allows the detecting surface to be wrapped into circular paths, so that each fiber is concentric with a single Debye-Scherrer cone. The FEFD design has been investigated via Monte Carlo simulations and by efficiency measurements performed using the CHEX instrument at the Intense Pulsed Neutron Source. (C) 2008 Elsevier B.V. All rights reserved. C1 [McKnight, T. K.; Czirr, J. B.] Mission Support Inc, Provo, UT 84606 USA. [McKnight, T. K.; Campbell, B. J.] Brigham Young Univ, Dept Phys & Astron, Provo, UT 84602 USA. [Littrell, K.] Argonne Natl Lab, Intense Pulsed Neutron Source, Argonne, IL 60439 USA. RP McKnight, TK (reprint author), Mission Support Inc, 515 East 1860 South, Provo, UT 84606 USA. EM mcknight_thomas@yahoo.com RI Littrell, Kenneth/D-2106-2013 OI Littrell, Kenneth/0000-0003-2308-8618 NR 9 TC 4 Z9 4 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD FEB 21 PY 2008 VL 586 IS 2 BP 246 EP 250 DI 10.1016/j.nima.2007.11.044 PG 5 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 268XJ UT WOS:000253613300016 ER PT J AU Suarez, R Orrell, JL Aalseth, CE Hossbach, TW Miley, HS AF Suarez, R. Orrell, J. L. Aalseth, C. E. Hossbach, T. W. Miley, H. S. TI Real-time digital signal-processor implementation of self-calibrating pulse-shape discriminator for high-purity germanium SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE digital signal processing; pulse-shape analysis; gamma-ray spectroscopy ID BACKGROUND REDUCTION; GE DETECTORS AB Pulse-shape analysis of the ionization signals from germanium gamma-ray spectrometers is a method for obtaining information that can characterize an event beyond just the total energy deposited in the crystal. However, as typically employed, this method is data-intensive requiring the digitization, transfer, and recording of electronic signals from the spectrometer. A hardware realization of a real-time digital signal processor for implementing a parametric pulse shape analysis is presented. Specifically, a previously developed method for distinguishing between single-site and multi-site gamma-ray interactions is demonstrated in an on-line digital signal processor, compared with the original off-line pulse-shape analysis routine, and shown to have no significant difference. Reduction of the amount of the recorded information per event is shown to translate into higher duty-cycle data-acquisition rates while retaining the benefits of additional event characterization from pulse-shape analysis. (C) 2008 Elsevier B.V. All rights reserved. C1 [Suarez, R.; Orrell, J. L.; Aalseth, C. E.; Hossbach, T. W.; Miley, H. S.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Suarez, R (reprint author), Pacific NW Natl Lab, 902 Battelle Blvd, Richland, WA 99352 USA. EM Reynold.Suarez@pnl.gov RI Orrell, John/E-9313-2015 OI Orrell, John/0000-0001-7968-4051 NR 14 TC 1 Z9 1 U1 1 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD FEB 21 PY 2008 VL 586 IS 2 BP 276 EP 285 DI 10.1016/j.nima.2007.11.075 PG 10 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 268XJ UT WOS:000253613300019 ER PT J AU Martinez, E Marian, J Arsenlis, A Victoria, M Perlado, JM AF Martinez, E. Marian, J. Arsenlis, A. Victoria, M. Perlado, J. M. TI Dislocation dynamics study of the strength of stacking fault tetrahedra. Part I: interactions with screw dislocations SO PHILOSOPHICAL MAGAZINE LA English DT Article DE dislocation dynamics; stacking-fault tetrahedra; irradiation damage; Cu plasticity ID NEUTRON-IRRADIATED COPPER; MOLECULAR-DYNAMICS; ATOMIC-SCALE; FCC METALS; DEFECT INTERACTIONS; POLYCRYSTALLINE METALS; GLISSILE DISLOCATIONS; PLASTIC INSTABILITY; ELASTIC INTERACTION; TENSILE PROPERTIES AB We present a comprehensive dislocation dynamics (DD) study of the strength of stacking fault tetrahedra (SFT) to screw dislocation glide in fee Cu. Our methodology explicitly accounts for partial dislocation reactions in fee crystals, which allows us to provide more detailed insights into the dislocation-SFT processes than previous DD studies. The resistance due to stacking fault surfaces to dislocation cutting has been computed using atomistic simulations and added in the form of a point stress to our DD methodology. We obtain a value of 1658.9 MPa, which translates into an extra force resolved on the glide plane that dislocations must overcome before they can penetrate SFTs. In fact, we see they do not, leading to two well differentiated regimes: (i) partial dislocation reactions, resulting in partial SFT damage, and (ii) impenetrable SFT resulting in the creation of Orowan loops. We obtain SFT strength maps as a function of dislocation glide plane-SFT intersection height, interaction orientation, and dislocation line length. In general SFTs are weaker obstacles the smaller the encountered triangular area is, which has allowed us to derive simple scaling laws with the slipped area as the only variable. These laws suffice to explain all strength curves and are used to derive a simple model of dislocation-SFT strength. The stresses required to break through obstacles in the 2.5-4.8-nm size range have been computed to be 100-300 MPa, in good agreement with some experimental estimations and molecular dynamics calculations. C1 [Martinez, E.; Marian, J.; Arsenlis, A.; Victoria, M.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Martinez, E.; Victoria, M.; Perlado, J. M.] Univ Politecn Madrid, Inst Fus Nucl, E-28040 Madrid, Spain. RP Marian, J (reprint author), Lawrence Livermore Natl Lab, 7000 E Ave, Livermore, CA 94551 USA. EM marian1@llnl.gov NR 67 TC 23 Z9 23 U1 8 U2 21 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 1478-6435 J9 PHILOS MAG JI Philos. Mag. PD FEB 21 PY 2008 VL 88 IS 6 BP 809 EP 840 DI 10.1080/14786430801986662 PG 32 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering; Physics, Applied; Physics, Condensed Matter SC Materials Science; Metallurgy & Metallurgical Engineering; Physics GA 317KZ UT WOS:000257020400002 ER PT J AU Martinez, E Marian, J Perlado, JM AF Martinez, E. Marian, J. Perlado, J. M. TI A dislocation dynamics study of the strength of stacking fault tetrahedra. Part II: interactions with mixed and edge dislocations SO PHILOSOPHICAL MAGAZINE LA English DT Article DE dislocation dynamics; irradiation damage; stacking-fault tetrahedron; mechanical properties; Cu ID ATOMISTIC SIMULATION; DEFECT INTERACTIONS; IRRADIATED METALS; SCALE; CU; MECHANISMS; CRYSTALS; COPPER AB In this paper we present the sequel to Part I and present a comprehensive dislocation dynamics study of the strength of stacking fault tetrahedra to mixed and edge dislocation glides in fcc Cu. C1 [Martinez, E.; Marian, J.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Martinez, E.; Perlado, J. M.] Univ Politecn Madrid, Inst Fus Nucl, E-28040 Madrid, Spain. RP Marian, J (reprint author), Lawrence Livermore Natl Lab, 7000 E Ave, Livermore, CA 94551 USA. EM marian1@llnl.gov NR 16 TC 10 Z9 10 U1 6 U2 14 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 1478-6435 J9 PHILOS MAG JI Philos. Mag. PD FEB 21 PY 2008 VL 88 IS 6 BP 841 EP 863 DI 10.1080/14786430801986654 PG 23 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering; Physics, Applied; Physics, Condensed Matter SC Materials Science; Metallurgy & Metallurgical Engineering; Physics GA 317KZ UT WOS:000257020400003 ER PT J AU Khovaylo, V Kainuma, R Ishida, K Omori, T Miki, H Takagi, T Datesman, A AF Khovaylo, V. Kainuma, R. Ishida, K. Omori, T. Miki, H. Takagi, T. Datesman, A. TI New aspects of martensite stabilization in Ni-Mn-Ga high-temperature shape memory alloy SO PHILOSOPHICAL MAGAZINE LA English DT Article DE martensitic transformation; martensite stabilization; Heusler alloys; shape memory alloys; ageing ID RUBBER-LIKE BEHAVIOR; COMPOSITION DEPENDENCE; HEUSLER ALLOYS; POINT-DEFECTS; TRANSFORMATION; SYSTEM AB We report on new aspects of martensite stabilization in high-ternperature shape memory alloys. We show that, due to the difference in activation energies among various structural defects, an incomplete stabilization of martensite can be realized. In material aged at high temperatures, this gives rise to a variety of unusual features which are found to occur in the martensitic transformation. Specifically, it is shown that both forward and reverse martensitic transformations in a Ni-Mn-Ga high-temperature shape memory alloy can occur in two steps. The observed abnormal behaviour is evidence that, in certain circumstances, thermoelastic martensitic transformation can be induced by diffusion. C1 [Khovaylo, V.] RAS, Inst Radioengn & Elect, Moscow 125009, Russia. [Kainuma, R.] Tohoku Univ, Inst Multidisciplinary Res Adv Mat, Sendai, Miyagi 9808577, Japan. [Ishida, K.; Omori, T.] Tohoku Univ, Grad Sch Engn, Dept Mat Sci, Sendai, Miyagi 9808579, Japan. [Miki, H.; Takagi, T.] Tohoku Univ, Inst Fluid Sci, Sendai, Miyagi 9808577, Japan. [Datesman, A.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Khovaylo, V (reprint author), RAS, Inst Radioengn & Elect, Moscow 125009, Russia. EM v-khovaylo@cplire.ru RI Khovaylo, Vladimir/A-9706-2010; Kainuma, Ryosuke/I-6482-2013; Omori, Toshihiro/A-4478-2017; OI Khovaylo, Vladimir/0000-0001-7815-100X; Takagi, Toshiyuki/0000-0003-1283-4320 NR 29 TC 10 Z9 10 U1 2 U2 8 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 1478-6435 J9 PHILOS MAG JI Philos. Mag. PD FEB 21 PY 2008 VL 88 IS 6 BP 865 EP 882 DI 10.1080/14786430801986670 PG 18 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering; Physics, Applied; Physics, Condensed Matter SC Materials Science; Metallurgy & Metallurgical Engineering; Physics GA 317KZ UT WOS:000257020400004 ER PT J AU Link, JM Yager, PM Anjos, JC Bediaga, I Castromonte, C Machado, AA Magnin, J Massafferri, A De Miranda, JM Pepe, IM Polycarpo, E Dos Reis, AC Carrillo, S Casimiro, E Cuautle, E Sanchez-Hernandez, A Uribe, C Vasquez, F Agostino, L Cinquini, L Cumalat, JP Frisullo, V O'Reilly, B Segoni, I Stenson, K Tucker, RS Butler, JN Cheung, HWK Chiodini, G Gaines, I Garbincius, PH Garren, LA Gottschalk, E Kasper, PH Kreymer, AE Kutschke, R Wang, M Benussi, L Bianco, S Fabbri, FL Zallo, A Reyes, M Cawlfield, C Kim, DY Rahimi, A Wiss, J Gardner, R Kryemadhi, A Chung, YS Kang, JS Ko, BR Kwaki, JW Lee, KB Cho, K Park, H Alimonti, G Barberis, S Boschini, M Cerutti, A D'Angelo, P DiCorato, M Dini, P Edera, L Erba, S Inzani, P Leveraro, F Malvezzi, S Menasce, D Mezzadri, M Moroni, L Pedrini, D Pontoglio, C Prelz, F Rovere, M Sala, S Davenport, TF Arena, V Boca, G Bonorni, G Gianini, G Liguori, G Pegna, DL Merlo, MM Pantea, D Ratti, SP Riccardi, C Vitulo, P Gobel, C Otalora, J Hernandez, H Lopez, AM Mendez, H Paris, A Quinones, J Ramirez, JE Zhang, Y Wilson, JR Handler, T Mitchell, R Engh, D Hosack, M Johns, WE Luiggi, E Nehring, M Sheldon, PD Vaandering, EW Webster, M Sheaff, M AF Link, J. M. Yager, P. M. Anjos, J. C. Bediaga, I. Castromonte, C. Machado, A. A. Magnin, J. Massafferri, A. De Miranda, J. M. Pepe, I. M. Polycarpo, E. Dos Reis, A. C. Carrillo, S. Casimiro, E. Cuautle, E. Sanchez-Hernandez, A. Uribe, C. Vasquez, F. Agostino, L. Cinquini, L. Cumalat, J. P. Frisullo, V. O'Reilly, B. Segoni, I. Stenson, K. Tucker, R. S. Butler, J. N. Cheung, H. W. K. Chiodini, G. Gaines, I. Garbincius, P. H. Garren, L. A. Gottschalk, E. Kasper, P. H. Kreymer, A. E. Kutschke, R. Wang, M. Benussi, L. Bianco, S. Fabbri, F. L. Zallo, A. Reyes, M. Cawlfield, C. Kim, D. Y. Rahimi, A. Wiss, J. Gardner, R. Kryemadhi, A. Chung, Y. S. Kang, J. S. Ko, B. R. Kwaki, J. W. Lee, K. B. Cho, K. Park, H. Alimonti, G. Barberis, S. Boschini, M. Cerutti, A. D'Angelo, P. DiCorato, M. Dini, P. Edera, L. Erba, S. Inzani, P. Leveraro, F. Malvezzi, S. Menasce, D. Mezzadri, M. Moroni, L. Pedrini, D. Pontoglio, C. Prelz, F. Rovere, M. Sala, S. Davenport, T. F., III Arena, V. Boca, G. Bonorni, G. Gianini, G. Liguori, G. Pegna, D. Lopes Merlo, M. M. Pantea, D. Ratti, S. P. Riccardi, C. Vitulo, P. Goebel, C. Otalora, J. Hernandez, H. Lopez, A. M. Mendez, H. Paris, A. Quinones, J. Ramirez, J. E. Zhang, Y. Wilson, J. R. Handler, T. Mitchell, R. Engh, D. Hosack, M. Johns, W. E. Luiggi, E. Nehring, M. Sheldon, P. D. Vaandering, E. W. Webster, M. Sheaff, M. TI Study of Cabibbo suppressed decays of the D-s(+) charmed-strange meson involving a K-S(0) SO PHYSICS LETTERS B LA English DT Article ID FINAL-STATE INTERACTIONS; FOCUS SPECTROMETER; D+ AB We study the decay of D-s(+) mesons into final states involving a K-S(0) and report the discovery of Cabibbo suppressed decay modes D-s(+) --> K-S(0)pi(-)pi(+)pi(+) (179+/-36 events) and D-s(+) --> K-S(0)pi(+) (113+/-26 events). The branching fraction ratios for the new modes are Gamma(D-s(+) --> K-S(0)pi(-)pi(+)pi(+)) / Gamma(D-s(+) --> K-S(0)pi(-)pi(+)pi(+)) = 0.18+/-0.04+/-0.05 and Gamma(D-s(+) --> K-S(0)pi(+)) / Gamma(D-s(+) --> K-S(0)pi(+)) = 0.104+/-0.024+/-0.014. (C) 2008 Published by Elsevier B.V. C1 [Agostino, L.; Cinquini, L.; Cumalat, J. P.; Frisullo, V.; O'Reilly, B.; Segoni, I.; Stenson, K.; Tucker, R. S.] Univ Colorado, Boulder, CO 80309 USA. [Link, J. M.; Yager, P. M.] Univ Calif Davis, Davis, CA 95616 USA. [Anjos, J. C.; Bediaga, I.; Castromonte, C.; Machado, A. A.; Magnin, J.; Massafferri, A.; De Miranda, J. M.; Pepe, I. M.; Polycarpo, E.; Dos Reis, A. C.] Ctr Brasileiro Pesquisas Fis, Rio De Janeiro, Brazil. [Carrillo, S.; Casimiro, E.; Cuautle, E.; Sanchez-Hernandez, A.; Uribe, C.; Vasquez, F.] CINVESTAV, Mexico City 07000, DF, Mexico. [Butler, J. N.; Cheung, H. W. K.; Chiodini, G.; Gaines, I.; Garbincius, P. H.; Garren, L. A.; Gottschalk, E.; Kasper, P. H.; Kreymer, A. E.; Kutschke, R.; Wang, M.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Benussi, L.; Bianco, S.; Fabbri, F. L.; Zallo, A.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Reyes, M.] Univ Guanajuato, Guanajuato 37150, Mexico. [Cawlfield, C.; Kim, D. Y.; Rahimi, A.; Wiss, J.] Univ Illinois, Urbana, IL 61801 USA. [Gardner, R.; Kryemadhi, A.] Indiana Univ, Bloomington, IN 47405 USA. [Chung, Y. S.; Kang, J. S.; Ko, B. R.; Kwaki, J. W.; Lee, K. B.] Korea Univ, Seoul 136701, South Korea. [Cho, K.; Park, H.] Kyungpook Natl Univ, Taegu 702701, South Korea. [Alimonti, G.; Barberis, S.; Boschini, M.; Cerutti, A.; D'Angelo, P.; DiCorato, M.; Dini, P.; Edera, L.; Erba, S.; Inzani, P.; Leveraro, F.; Malvezzi, S.; Menasce, D.; Mezzadri, M.; Moroni, L.; Pedrini, D.; Pontoglio, C.; Prelz, F.; Rovere, M.; Sala, S.] Ist Nazl Fis Nucl, I-20133 Milan, Italy. [Alimonti, G.; Barberis, S.; Boschini, M.; Cerutti, A.; D'Angelo, P.; DiCorato, M.; Dini, P.; Edera, L.; Erba, S.; Inzani, P.; Leveraro, F.; Malvezzi, S.; Menasce, D.; Mezzadri, M.; Moroni, L.; Pedrini, D.; Pontoglio, C.; Prelz, F.; Rovere, M.; Sala, S.] Univ Milan, Milan, Italy. [Davenport, T. F., III] Univ N Carolina, Asheville, NC 28804 USA. [Arena, V.; Boca, G.; Bonorni, G.; Gianini, G.; Liguori, G.; Pegna, D. Lopes; Merlo, M. M.; Pantea, D.; Ratti, S. P.; Riccardi, C.; Vitulo, P.] Univ Pavia, Dipartimento Fis Nucl & Teor, I-27100 Pavia, Italy. [Arena, V.; Boca, G.; Bonorni, G.; Gianini, G.; Liguori, G.; Pegna, D. Lopes; Merlo, M. M.; Pantea, D.; Ratti, S. P.; Riccardi, C.; Vitulo, P.] Ist Nazl Fis Nucl, I-27100 Pavia, Italy. [Goebel, C.; Otalora, J.] Pontificia Univ Catolica Rio de Janeiro, Rio De Janeiro, Brazil. [Hernandez, H.; Lopez, A. M.; Mendez, H.; Paris, A.; Quinones, J.; Ramirez, J. E.; Zhang, Y.] Univ Puerto Rico, Mayaguez, PR 00681 USA. [Wilson, J. R.] Univ S Carolina, Columbia, SC 29208 USA. [Handler, T.; Mitchell, R.] Univ Tennessee, Knoxville, TN 37996 USA. [Engh, D.; Hosack, M.; Johns, W. E.; Luiggi, E.; Nehring, M.; Sheldon, P. D.; Vaandering, E. W.; Webster, M.] Vanderbilt Univ, Nashville, TN 37235 USA. [Sheaff, M.] Univ Wisconsin, Madison, WI 53706 USA. RP Cumalat, JP (reprint author), Univ Colorado, Boulder, CO 80309 USA. EM john.p.cumalat@colorado.edu RI Anjos, Joao/C-8335-2013; Link, Jonathan/L-2560-2013; Castromonte Flores, Cesar Manuel/O-6177-2014; Benussi, Luigi/O-9684-2014; Gobel Burlamaqui de Mello, Carla /H-4721-2016; Menasce, Dario Livio/A-2168-2016; OI Link, Jonathan/0000-0002-1514-0650; Castromonte Flores, Cesar Manuel/0000-0002-9559-3704; Benussi, Luigi/0000-0002-2363-8889; Gobel Burlamaqui de Mello, Carla /0000-0003-0523-495X; Menasce, Dario Livio/0000-0002-9918-1686; bianco, stefano/0000-0002-8300-4124 NR 13 TC 1 Z9 1 U1 0 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 J9 PHYS LETT B JI Phys. Lett. B PD FEB 21 PY 2008 VL 660 IS 3 BP 147 EP 153 DI 10.1016/j.physletb.2007.12.050 PG 7 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 270SF UT WOS:000253739800012 ER PT J AU Oyaizu, H Lima, M Cunha, CE Lin, H Frieman, J Sheldon, ES AF Oyaizu, Hiroaki Lima, Marcos Cunha, Carlos E. Lin, Huan Frieman, Joshua Sheldon, Erin S. TI A galaxy photometric redshift catalog for the sloan digital sky survey Data Release 6 SO ASTROPHYSICAL JOURNAL LA English DT Article DE catalogs; distance scale; galaxies : distances and redshifts; large-scale structure of universe ID SPECTROSCOPIC TARGET SELECTION; EARLY DATA RELEASE; SDSS; SYSTEM; CLASSIFICATION; TELESCOPE; MONITOR; SAMPLE; SPACE; FIELD AB We present and describe a catalog of galaxy photometric redshifts (photo-z's) for the Sloan Digital Sky Survey (SDSS) Data Release 6 (DR6). We use the neural network (NN) technique to calculate photo-z's and the nearest neighbor error (NNE) method to estimate photo-z errors for similar to 77 million objects classified as galaxies in DR6 with r < 22. The photo-z and photo-z error estimators are trained and validated on a sample of similar to 640,000 galaxies that have SDSS photometry and spectroscopic redshifts measured by SDSS, the Two Degree Field, the SDSS Luminous Red Galaxy and Quasi-stellar Object Survey (2SLAQ), the Canada-France Redshift Survey (CFRS), the Canadian Network for Observational Cosmology Field Galaxy Survey (CNOC2), the Team Keck Redshift Survey (TKRS), the Deep Extragalactic Evolutionary Probe (DEEP), and DEEP2. For the two best NN methods we have tried, we find that 68% of the galaxies in the validation set have a photo-z error smaller than sigma(68) = 0.021 or 0.024. After presenting our results and quality tests, we provide a short guide for users accessing the public data. C1 [Oyaizu, Hiroaki; Cunha, Carlos E.; Frieman, Joshua] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [Oyaizu, Hiroaki; Lima, Marcos; Cunha, Carlos E.; Frieman, Joshua] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Lima, Marcos] Univ Chicago, Dept Phys, Chicago, IL 60637 USA. [Lin, Huan; Frieman, Joshua] Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, Batavia, IL 60510 USA. [Sheldon, Erin S.] NYU, Ctr Cosmol & Particle Phys, New York, NY 10003 USA. [Sheldon, Erin S.] NYU, Dept Phys, New York, NY 10003 USA. RP Oyaizu, H (reprint author), Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. RI Lima, Marcos/E-8378-2010 NR 42 TC 116 Z9 116 U1 0 U2 4 PU UNIV CHICAGO PRESS PI CHICAGO PA 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD FEB 20 PY 2008 VL 674 IS 2 BP 768 EP 783 DI 10.1086/523666 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 266RK UT WOS:000253454500012 ER PT J AU Ryutov, DD AF Ryutov, D. D. TI On the virial theorem for interstellar medium SO ASTROPHYSICAL JOURNAL LA English DT Article DE ISM : clouds; ISM : kinematics and dynamics; ISM : magnetic fields ID MOLECULAR CLOUDS; MAGNETIC-FIELDS; DARK-MATTER; MILKY-WAY; STARS; MODEL; M16 AB An attempt has been made to derive a version of the virial integral that would describe average properties of the interstellar medium (ISM) at the scale similar to 1 kpc. The role of the dark matter is accounted for only via its effect on the global gravitational potential. It is suggested to eliminate the ( large) contribution of stellar matter by introducing "exclusion zones'' surrounding stars. Such an approach leads to the appearance of several types of additional surface integrals in the general expression. Their contribution depends on the rate of energy and matter exchange between the stars and ISM. If this exchange is weak, one can obtain a desired virial integral for the ISM. However, the presence of intermittent large-scale energetic events significantly constrains the applicability of the virial theorem. If valid, the derived virial integral for the ISM is dominated by cold molecular/atomic clouds, with only a minor contribution from the global magnetic field and low-density warm part. The main message of our study is that one has to be very cautious in applying the virial theorem to the ISM at large scales (of the order of thickness of the spiral arm). C1 [Ryutov, D. D.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Ryutov, DD (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. EM ryutov1@llnl.gov NR 25 TC 3 Z9 3 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD FEB 20 PY 2008 VL 674 IS 2 BP 976 EP 983 DI 10.1086/525521 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 266RK UT WOS:000253454500025 ER PT J AU Trilling, DE Bryden, G Beichman, CA Rieke, GH Su, KYL Stansberry, JA Blaylock, M Stapelfeldt, KR Beeman, JW Haller, EE AF Trilling, D. E. Bryden, G. Beichman, C. A. Rieke, G. H. Su, K. Y. L. Stansberry, J. A. Blaylock, M. Stapelfeldt, K. R. Beeman, J. W. Haller, E. E. TI Debris disks around Sun-like stars SO ASTROPHYSICAL JOURNAL LA English DT Article DE circumstellar matter; infrared : stars; planetary systems : formation ID SOLAR-TYPE STARS; MAIN-SEQUENCE STARS; MULTIBAND IMAGING PHOTOMETER; SPITZER MIPS SURVEY; BOLOMETRIC CORRECTIONS; INFRARED PHOTOMETRY; PLANETARY SYSTEM; DWARF STARS; FGK STARS; F-DWARF AB We have observed nearly 200 FGK stars at 24 and 70 mu m with the Spitzer Space Telescope. We identify excess infrared emission, including a number of cases where the observed flux is more than 10 times brighter than the predicted photospheric flux, and interpret these signatures as evidence of debris disks in those systems. We combine this sample of FGK stars with similar published results to produce a sample of more than 350 main sequence AFGKM stars. The incidence of debris disks is 4.2(-1.1)(+2.0)% at 24 mu m for a sample of 213 Sun-like (FG) stars and 16.4(-2.9)(+2.8)% at 70 mu m for 225 Sun-like (FG) stars. We find that the excess rates for A, F, G, and K stars are statistically indistinguishable, but with a suggestion of decreasing excess rate toward the later spectral types; this may be an age effect. The lack of strong trend among FGK stars of comparable ages is surprising, given the factor of 50 change in stellar luminosity across this spectral range. We also find that the incidence of debris disks declines very slowly beyond ages of 1 billion years. C1 [Trilling, D. E.; Rieke, G. H.; Su, K. Y. L.; Stansberry, J. A.; Blaylock, M.] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. [Bryden, G.; Beichman, C. A.; Stapelfeldt, K. R.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Beeman, J. W.; Haller, E. E.] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Haller, E. E.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. RP Trilling, DE (reprint author), Univ Arizona, Steward Observ, 933 N Cherry Ave, Tucson, AZ 85721 USA. EM trilling@as.arizona.edu RI Stapelfeldt, Karl/D-2721-2012; OI Su, Kate/0000-0002-3532-5580 NR 70 TC 184 Z9 185 U1 0 U2 2 PU UNIV CHICAGO PRESS PI CHICAGO PA 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD FEB 20 PY 2008 VL 674 IS 2 BP 1086 EP 1105 DI 10.1086/525514 PG 20 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 266RK UT WOS:000253454500035 ER PT J AU Padmanabhan, N Schlegel, DJ Finkbeiner, DP Barentine, JC Blanton, MR Brewington, HJ Gunn, JE Harvanek, M Hogg, DW Ivezic, Z Johnston, D Kent, SM Kleinman, SJ Knapp, GR Krzesinski, J Long, D Neilsen, EH Nitta, A Loomis, C Lupton, RH Roweis, S Snedden, SA Strauss, MA Tucker, DL AF Padmanabhan, Nikhil Schlegel, David J. Finkbeiner, Douglas P. Barentine, J. C. Blanton, Michael R. Brewington, Howard J. Gunn, James E. Harvanek, Michael Hogg, David W. Ivezic, Zeljko Johnston, David Kent, Stephen M. Kleinman, S. J. Knapp, Gillian R. Krzesinski, Jurek Long, Dan Neilsen, Eric H., Jr. Nitta, Atsuko Loomis, Craig Lupton, Robert H. Roweis, Sam Snedden, Stephanie A. Strauss, Michael A. Tucker, Douglas L. TI An improved photometric calibration of the sloan digital sky survey imaging data SO ASTROPHYSICAL JOURNAL LA English DT Article DE techniques : photometric ID LUMINOUS RED GALAXIES; LARGE MAGELLANIC CLOUD; DATA RELEASE; STANDARD STARS; CELESTIAL EQUATOR; SYSTEM; TELESCOPE; CATALOG; EXTINCTION; EMISSION AB We present an algorithm to photometrically calibrate wide-field optical imaging surveys, which simultaneously solves for the calibration parameters and relative stellar fluxes using overlapping observations. The algorithm decouples the problem of "relative'' calibrations from that of "absolute'' calibrations; the absolute calibration is reduced to determining a few numbers for the entire survey. We pay special attention to the spatial structure of the calibration errors, allowing one to isolate particular error modes in downstream analyses. Applying this to the SDSS imaging data, we achieve similar to 1% relative calibration errors across 8500 deg(2) in griz; the errors are similar to 2% for the u band. These errors are dominated by unmodeled atmospheric variations at Apache Point Observatory. These calibrations, dubbed "uber-calibration,'' are now public with SDSS Data Release 6 and will be a part of subsequent SDSS data releases. C1 [Padmanabhan, Nikhil; Schlegel, David J.] Lawrence Berkeley Natl Labs, Div Phys, Berkeley, CA 94720 USA. [Padmanabhan, Nikhil] Princeton Univ, Joseph Henry Labs, Princeton, NJ 08544 USA. [Schlegel, David J.; Finkbeiner, Douglas P.; Gunn, James E.; Johnston, David; Knapp, Gillian R.; Loomis, Craig; Lupton, Robert H.; Strauss, Michael A.] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. [Finkbeiner, Douglas P.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Barentine, J. C.] Univ Texas Austin, Dept Astron, Austin, TX 78712 USA. [Barentine, J. C.; Brewington, Howard J.; Harvanek, Michael; Kleinman, S. J.; Krzesinski, Jurek; Long, Dan; Neilsen, Eric H., Jr.; Nitta, Atsuko; Loomis, Craig; Snedden, Stephanie A.] Apache Point Observ, Sunspot, NM 88349 USA. [Blanton, Michael R.; Hogg, David W.] NYU, Dept Phys, New York, NY 10003 USA. [Ivezic, Zeljko] Univ Washington, Dept Astron, Seattle, WA 98195 USA. [Johnston, David] Jet Prop Lab, Pasadena, CA 91109 USA. [Kent, Stephen M.; Neilsen, Eric H., Jr.; Tucker, Douglas L.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Kleinman, S. J.] Subaru Telescope, Hilo, HI 96720 USA. [Krzesinski, Jurek] Cracow Pedag Univ, Mt Suhora Observ, PL-30084 Krakow, Poland. [Nitta, Atsuko] Gemini Observ, Hilo, HI 96720 USA. [Roweis, Sam] Univ Toronto, Dept Comp Sci, Toronto, ON M5S 3G4, Canada. RP Padmanabhan, N (reprint author), Lawrence Berkeley Natl Labs, Div Phys, Berkeley, CA 94720 USA. EM npadmanabhan@lbl.gov RI Padmanabhan, Nikhil/A-2094-2012; OI Tucker, Douglas/0000-0001-7211-5729; Hogg, David/0000-0003-2866-9403 NR 54 TC 323 Z9 323 U1 0 U2 6 PU UNIV CHICAGO PRESS PI CHICAGO PA 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD FEB 20 PY 2008 VL 674 IS 2 BP 1217 EP 1233 DI 10.1086/524677 PG 17 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 266RK UT WOS:000253454500048 ER PT J AU Hong, JM Jeong, MS Kim, JH Kim, BG Holbrook, SR Jang, SB AF Hong, Ji-Man Jeong, Mi Suk Kim, Jae Ho Kim, Boo Gil Holbrook, Stephen R. Jang, Se Bok TI Identification and functional analysis of SEDL-binding and homologue proteins by immobilized GST fusion and motif based methods SO BULLETIN OF THE KOREAN CHEMICAL SOCIETY LA English DT Article DE SEDL-binding proteins; immobilized GST fusion; motif analysis ID SPONDYLOEPIPHYSEAL DYSPLASIA-TARDA; MULTIPLE SEQUENCE ALIGNMENT; CRYSTAL-STRUCTURE; VESICLE DOCKING; MESSENGER-RNA; TRAPP; DATABASE; GOLGI; FORM; INTERACTS AB An X-linked skeletal disorder, SEDT (spondyloepiphyseal dysplasia tarda) is a genetic disease characterized by a disproportionately short trunk and short stature caused by mutations in the SEDL gene. This gene is evolutionarily conserved from yeast to human. The yeast SEDL protein ortholog, Trs20p, has been isolated as a member of a large multi-protein complex called the transport protein particle (TRAPP), which is involved in endoplasmic reticulum (ER)-to-Golgi transport. The interaction between SEDL and partner proteins is important in order to understand the molecular mechanism of SEDL functions. We isolated several SEDL-binding proteins derived from rat cells by an immobilized GST-fusion method. Furthermore, the SEDL-homologue proteins were identified using motif based methods. Common motifs between SEDL-binding proteins and SEDL-homologue proteins were classified into seven types and 78 common motifs were revealed. Sequence similarities were contracted to seven types using phylogenetic trees. In general, types I-III and VI were classified as having the function of acetyl-CoA carboxylase, glycogen phosphorylase, isocitrate dehydrogenase, and enolase, respectively, and type IV was found to be functionally related to the GST protein. Types V and VII were found to contribute to TRAPP vesicle trafficking. C1 [Hong, Ji-Man; Jang, Se Bok] Pusan Natl Univ, Dept Mol Biol, Pusan 609735, South Korea. [Jeong, Mi Suk] Dongseo Univ, Adv Sci & Technol Res Ctr, Pusan 617716, South Korea. [Kim, Jae Ho] Pusan Natl Univ, Dept Physiol, Coll Med, Pusan 602739, South Korea. [Kim, Boo Gil] Dongseo Univ, Div Architecture & Civil Engn, Pusan 617716, South Korea. [Holbrook, Stephen R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Dept Biol Struct, Phys Biosci Div, Berkeley, CA 94720 USA. RP Jang, SB (reprint author), Pusan Natl Univ, Dept Mol Biol, Pusan 609735, South Korea. EM sbjang@pusan.ac.kr NR 44 TC 3 Z9 3 U1 0 U2 2 PU KOREAN CHEMICAL SOC PI SEOUL PA 635-4 YEOGSAM-DONG, KANGNAM-GU, SEOUL 135-703, SOUTH KOREA SN 0253-2964 J9 B KOREAN CHEM SOC JI Bull. Korean Chem. Soc. PD FEB 20 PY 2008 VL 29 IS 2 BP 381 EP 388 PG 8 WC Chemistry, Multidisciplinary SC Chemistry GA 293OR UT WOS:000255345100020 ER PT J AU Minitti, ME Leshin, LA Dyar, MD Ahrens, TJ Guan, Y Luo, SN AF Minitti, Michelle E. Leshin, Laurie A. Dyar, M. Darby Ahrens, Thomas J. Guan, Yunbin Luo, Sheng-Nian TI Assessment of shock effects on amphibole water contents and hydrogen isotope compositions: 2. Kaersutitic amphibole experiments SO EARTH AND PLANETARY SCIENCE LETTERS LA English DT Article DE Mars; Martian meteorites; amphibole; impact shock; hydrogen isotopes ID IMPLANTED NOBLE-GASES; INDUCED DEVOLATILIZATION; MARTIAN METEORITE; FRACTIONATION; MANTLE; SERPENTINE; MINERALS; EXCHANGE; ROCKS AB To constrain the influence of impact shock on water and hydrogen isotope signatures of Martian meteorite kaersutites, we conducted shock recovery experiments on three terrestrial kaersutite crystals. Homogeneous impact shock to 32 GPa, commensurate with shock levels experienced by Martian meteorite kaersutites, led to increases in kaersutite water contents (Delta H2O-0.25-0.89 wt. %), decreases in Fe3+/Sigma Fe (4-20%), and enrichments in hydrogen isotope composition (Delta D=+66 to +87 parts per thousand) relative to pre-shock values. The latter values represent the largest shock-induced hydrogen isotope fractionations measured to date. These observations are explained most completely by a two-step shock process. First, shock-induced devolatilization led to hydrogen isotope enrichment through preferential loss of H relative to D. Second, reaction of the kaersutite with the ambient atmosphere led to increased water contents and reduced Fe. Fe reduction and water addition via the reaction Fe2+ + OH- <-> Fe3+ + O2- + 1/2H(2) explain the Fe3+/Sigma Fe data and some of the water data, Further water addition mechanisms (irreversible adsorption, shock implantation) are necessary to fully explain the increased water contents. Addition of water from the terrestrial atmosphere, which is isotopically light relative to the experimental kaersutite compositions, means the measured hydrogen isotope enrichments are likely minima. The measured (minimum) levels of hydrogen isotope enrichment are relevant to the hydrogen isotope variability within and among Martian kaersutites, but are minor relative to their absolute delta D values. Alternatively, addition of water from the enriched Martian atmosphere could explain both Martian kaersutite hydrogen isotope variability and absolute 6D values. However, the low Martian kaersutite water contents leave little room for significant water addition. The importance of the ambient atmosphere to the outcome of the shock experiments makes it difficult to translate our results to Mars given the unknown influence of its more tenuous atmosphere on the processes observed in the experiments. Our results suggest that shock is a feasible mechanism for influencing C1 [Minitti, Michelle E.] Arizona State Univ, Res Earth & Space Explorat, Ctr Meteorite Studies, Tempe, AZ 85287 USA. [Leshin, Laurie A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Dyar, M. Darby] Mt Holyoke Coll, Dept Astron, S Hadley, MA 01075 USA. [Ahrens, Thomas J.; Guan, Yunbin] CALTECH, Dept Geol & Planetary Sci, Pasadena, CA 91125 USA. [Luo, Sheng-Nian] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Minitti, ME (reprint author), Arizona State Univ, Res Earth & Space Explorat, Ctr Meteorite Studies, Tempe, AZ 85287 USA. EM minitti@asu.edu RI Luo, Sheng-Nian /D-2257-2010 OI Luo, Sheng-Nian /0000-0002-7538-0541 NR 29 TC 11 Z9 11 U1 0 U2 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0012-821X J9 EARTH PLANET SC LETT JI Earth Planet. Sci. Lett. PD FEB 20 PY 2008 VL 266 IS 3-4 BP 288 EP 302 DI 10.1016/j.epsl.2007.11.012 PG 15 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 271QC UT WOS:000253802800006 ER PT J AU McClarren, RG Holloway, JP Brunner, TA AF McClarren, Ryan G. Holloway, James Paul Brunner, Thomas A. TI On solutions to the P-n equations for thermal radiative transfer SO JOURNAL OF COMPUTATIONAL PHYSICS LA English DT Article DE thermal radiation transport; P-n approximation; nonlinear solver; implicit time integration ID RIEMANN SOLVERS; DIFFUSION; TRANSPORT; P-1 AB We present results for the spherical harmonics (P-n) method for solving problems of time-dependent thermal radiative transport, We prove a theorem that demonstrates that in the streaming limit, the spatially and temporally continuous P-n equations will allow negative energy densities for any finite order of n. We also develop an implicit numerical method for solving the P-n equations to explore the impact of the theorem. The numerical method uses a high-resolution Riemann solver to produce an upwinded discretization. We employ a quasi-linear approach to integrate the nonlinearites added to make the scheme non-oscillatory. We use the backward Euler method for time integration and treat the material interaction terms fully nonlinearly. Reflecting boundary conditions for the P-n equations are presented and we show how to implement this boundary condition using ghost cells. The implicit method was able to produce robust results to thermal transport problems in one and two dimensions. The numerical method is used to analyze the accuracy of various P-n expansion orders on several problems. In two-dimensional problems the numerical P-n solutions contained negative radiation energy densities as predicted by our theorem. The numerical results showed that the material temperature also became negative, a result outside the scope of the theorem. Our numerical method can handle these negative values, but they would cause problems in a radiation-hydrodynamics calculation. Published by Elsevier Inc. C1 [McClarren, Ryan G.] Los Alamos Natl Lab, Computat Phys & Method Grp, Los Alamos, NM 87545 USA. [Holloway, James Paul] Univ Michigan, Coll Engn, Dept Nucl Engn & Radiol Sci, Ann Arbor, MI 48109 USA. [Brunner, Thomas A.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP McClarren, RG (reprint author), Los Alamos Natl Lab, Computat Phys & Method Grp, POB 1663,MS D413, Los Alamos, NM 87545 USA. EM ryanmc@lanl.gov NR 21 TC 24 Z9 24 U1 0 U2 2 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9991 J9 J COMPUT PHYS JI J. Comput. Phys. PD FEB 20 PY 2008 VL 227 IS 5 BP 2864 EP 2885 DI 10.1016/j.jcp.2007.11.027 PG 22 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA 268SC UT WOS:000253598700007 ER PT J AU Comolli, LR Spakowitz, AJ Siegerist, CE Jardine, PJ Grimes, S Anderson, DL Bustamante, C Downing, KH AF Comolli, Luis R. Spakowitz, Andrew J. Siegerist, Cnistina E. Jardine, Paul J. Grimes, Shelley Anderson, Dwight L. Bustamante, Carlos Downing, Kenneth H. TI Three-dimensional architecture of the bacteriophage phi 29 packaged genome and elucidation of its packaging process SO VIROLOGY LA English DT Article DE DNA packaging; cryo-electron microscopy; bacteriophage structure; Monte Carlo; phi 29 ID DOUBLE-STRANDED DNA; CRYOELECTRON MICROSCOPY; FLOW DICHROISM; VIRAL CAPSIDS; ORGANIZATION; MODEL; PACKING; FORCE; T7; ARRANGEMENT AB The goal of the work reported here is to understand the precise molecular mechanism of the process of DNA packaging in dsDNA bacteriophages. Cryo-EM was used to directly visualize the architecture of the DNA inside the capsid and thus to measure fundamental physical parameters such as inter-strand distances, local curvatures, and the degree of order. We obtained cryo-EM images of bacteriophage that had packaged defined fragments of the genome as well as particles that had partially completed the packaging process. The resulting comparison of structures observed at intermediate and final stages shows that there is no unique, deterministic DNA packaging pathway. Monte Carlo simulations of the packaging process provide insights on the forces involved and the resultant structures. (C) 2007 Elsevier Inc. All rights reserved. C1 [Comolli, Luis R.; Downing, Kenneth H.] Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA. [Spakowitz, Andrew J.] Stanford Univ, Dept Chem Engn, Stanford, CA 94305 USA. [Siegerist, Cnistina E.] Lawrence Berkeley Natl Lab, Sci Visualizat Grp, Berkeley, CA 94720 USA. [Jardine, Paul J.; Grimes, Shelley; Anderson, Dwight L.] Univ Minnesota, Dept Diagnost & Biol Sci, Minneapolis, MN 55455 USA. [Anderson, Dwight L.] Univ Minnesota, Dept Microbiol, Minneapolis, MN 55455 USA. [Bustamante, Carlos] Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Bustamante, Carlos] Univ Calif Berkeley, Howard Hughes Med Inst, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. RP Downing, KH (reprint author), Lawrence Berkeley Natl Lab, Div Life Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM KHDowning@lbl.gov FU NIDCR NIH HHS [DE03606]; NIGMS NIH HHS [GM051487] NR 41 TC 56 Z9 56 U1 1 U2 12 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0042-6822 J9 VIROLOGY JI Virology PD FEB 20 PY 2008 VL 371 IS 2 BP 267 EP 277 DI 10.1016/j.virol.2007.07.035 PG 11 WC Virology SC Virology GA 261DV UT WOS:000253060200007 PM 18001811 ER PT J AU Opresko, DM Loiola, LD AF Opresko, D. M. Loiola, L. de Laia TI Two new species of Chrysopathes (Cnidaria : Anthozoa : Antipatharia) from the western Atlantic SO ZOOTAXA LA English DT Article DE Cladopathidae; Chrysopathes oligocrada; Chrysopathes micracantha; Yucatan; Mexico; United States; Brazil AB Two new species of Chrysopathes are described, C. oligocrada from Yucatan and Brazil, and C. micracantha from the southeastern coast of the U. S. and Brazil. Chrysopathes oligocrada is characterized by lateral pinnules mostly 7-8 mm long (to 2 cm); 18-21 primary pinnules per cm; anterior-most primary pinnules with no more than one secondary pinnule (absent on some); some posterior primaries with a single secondary pinnule; lateral primary pinnules usually simple, rarely with a single subpinnule; tertiary pinnules absent; pinnular spines to 0.07 mm. This species is similar to C. formosa Opresko 2003 from the Pacific; the latter species differing in density of pinnulation (15-18 per cm) and size of the spines (to 0.16 mm). Chrysopathes micracantha is characterized by lateral pinnules mostly 5-6 mm long (to 2 cm); 24 33 primary pinnules per cm; anterior and posterior primary pinnules with as many as two subopposite secondary pinnules; lateral primary pinnules usually simple but with subpinnules on the thicker branches and stem; tertiary pinnules rarely present; pinnular spines to 0.1 mm. Chrysopathes micracantha is similar to C. speciosa Opresko 2003 from the Pacific, the latter species differing in a greater number of secondary pinnules per primary (three or more) and in size of the spines (to 0.18 mm). C1 [Opresko, D. M.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37830 USA. [Loiola, L. de Laia] Arraial Dajuda Eco Parque, Projeto Coral Vivo, BR-45816000 Porto Seguro, BA, Brazil. RP Opresko, DM (reprint author), Oak Ridge Natl Lab, Div Environm Sci, 1060 Commerce Pk, Oak Ridge, TN 37830 USA. EM opreskodm@ornl.gov; livialoiola@hotmail.com NR 9 TC 1 Z9 1 U1 1 U2 3 PU MAGNOLIA PRESS PI AUCKLAND PA PO BOX 41383, AUCKLAND, ST LUKES 1030, NEW ZEALAND SN 1175-5326 EI 1175-5334 J9 ZOOTAXA JI Zootaxa PD FEB 20 PY 2008 IS 1707 BP 49 EP 59 PG 11 WC Zoology SC Zoology GA 266GZ UT WOS:000253423800004 ER PT J AU Bamba, A Fukazawa, Y Hiraga, JS Hughes, JP Katagiri, H Kokubun, M Koyama, K Miyata, E Mizuno, T Mori, K Nakajima, H Ozaki, M Petre, R Takahashi, H Takahashi, T Tanaka, T Terada, Y Uchiyama, Y Watanabe, S Yamaguch, H AF Bamba, Aya Fukazawa, Yasushi Hiraga, Junko S. Hughes, John P. Katagiri, Hideaki Kokubun, Motohide Koyama, Katsuji Miyata, Emi Mizuno, Tsunefumi Mori, Koji Nakajima, Hiroshi Ozaki, Masanobu Petre, Rob Takahashi, Hiromitsu Takahashi, Tadayuki Tanaka, Takaaki Terada, Yukikatsu Uchiyama, Yasunobu Watanabe, Shin Yamaguch, Hiroya TI Suzaku wide-band observations of SN 1006 SO PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF JAPAN LA English DT Article DE acceleration of particles; ISM : individual (SN 1006); X-rays : ISM ID SUPERNOVA REMNANT SN-1006; X-RAY-DETECTOR; BOARD SUZAKU; PARTICLE-ACCELERATION; SHOCK ACCELERATION; ELECTRONS; EMISSION; MAXIMUM; CHANDRA; SN1006 AB We report on the wide-band spectra of SN 1006, as observed by Suzaku. Thermal and nonthermal emissions were successfully resolved thanks to the excellent spectral response of Suzaku's X-ray CCD XIS. The nonthermal emission could not be reproduced by a simple power-law model, but needed a roll-off at 5.7 x 10(16) Hz = 0.23 keV. The roll-off frequency is significantly higher in the northeastern rim than in the southwestern rim. We also placed the most stringent upper limit of the flux above 10 keV using the Hard X-ray Detector. C1 [Bamba, Aya; Ozaki, Masanobu; Takahashi, Tadayuki; Uchiyama, Yasunobu; Watanabe, Shin] Japan Aerosp Explorat Agcy, Inst Space & Astronaut Sci, Dept High Energy Astrophys, Sagamihara, Kanagawa 2298510, Japan. [Hiraga, Junko S.] RIKEN, Cosm Radiat Grp, Wako, Saitama 3510198, Japan. [Fukazawa, Yasushi; Katagiri, Hideaki] Hiroshima Univ, Dept Phys, Hiroshima 7398526, Japan. [Hughes, John P.] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA. [Koyama, Katsuji; Yamaguch, Hiroya] Kyoto Univ, Grad Sch Sci, Dept Phys, Kyoto 6068502, Japan. [Miyata, Emi; Nakajima, Hiroshi] Osaka Univ, Fac Sci, Dept Astrophys, Osaka 5600043, Japan. [Mori, Koji] Miyazaki Univ, Fac Engn, Dept Appl Phys, Miyazaki 8892192, Japan. [Petre, Rob] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Tanaka, Takaaki] Stanford Linear Accelerator Ctr, Menlo Pk, CA 94025 USA. [Terada, Yukikatsu] Saitama Univ, Sch Sci, Dept Phys, Saitama 3388570, Japan. RP Bamba, A (reprint author), Japan Aerosp Explorat Agcy, Inst Space & Astronaut Sci, Dept High Energy Astrophys, 3-1-1 Yoshinodai, Sagamihara, Kanagawa 2298510, Japan. EM bamba@astro.isas.jaxa.jp RI Terada, Yukikatsu/A-5879-2013; Ozaki, Masanobu/K-1165-2013; XRAY, SUZAKU/A-1808-2009 OI Terada, Yukikatsu/0000-0002-2359-1857; NR 40 TC 30 Z9 30 U1 0 U2 0 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0004-6264 EI 2053-051X J9 PUBL ASTRON SOC JPN JI Publ. Astron. Soc. Jpn. PD FEB 20 PY 2008 VL 60 SI 1 BP S153 EP S161 DI 10.1093/pasj/60.sp1.S153 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 300IY UT WOS:000255818700016 ER PT J AU Itoh, T Done, C Makishima, K Madejski, G Awaki, H Gandhi, P Isobe, N Dewangan, GC Griffthis, RE Anabuki, N Okajima, T Reeves, JN Takahashi, T Ueda, Y Eguchi, S Yaqoob, T AF Itoh, Takeshi Done, Chris Makishima, Kazuo Madejski, Grzegorz Awaki, Hisamitsu Gandhi, Poshak Isobe, Naoki Dewangan, Gulab C. Griffthis, Richard E. Anabuki, Naohisa Okajima, Takashi Reeves, James N. Takahashi, Tadayuki Ueda, Yoshihiro Eguchi, Satohi Yaqoob, Tahir TI Suzaku wide-band X-ray spectroscopy of the Seyfert 2 AGN in NGC 4945 SO PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF JAPAN LA English DT Article DE galaxies : active; galaxies : individual (NGC 4945); galaxies : Seyfert; X-rays : galaxies ID ACTIVE GALACTIC NUCLEI; NGC 4945; XMM-NEWTON; ASCA OBSERVATIONS; GALAXY NGC-4945; BOARD SUZAKU; EMISSION; SPECTRA; IRON; BEPPOSAX AB Suzaku observed a nearby Seyfert 2 galaxy, NGC 4945, which hosts one of the brightest active galactic nuclei above 20keV. Combining data from the two detectors aboard Suzaku, the AGN intrinsic nuclear emission and its reprocessed signals were observed simultaneously. The intrinsic emission is highly obscured with an absorbing column of similar to 5 X 10(24) CM-2. The spectrum below 10 keV is dominated by a reflection continuum and emission lines from neutral/ionized material. Along with a neutral iron K alpha line, a neutral iron K alpha line and a neutral nickel Ka line were detected for the first time from this source. The neutral lines and the cold reflection continuum are consistent with both originating in the same location. The Compton down-scattered shoulder in the neutral Fe-K alpha line is similar to 10% in flux of the narrow core, which confirms that the line originates from reflection, rather than transmission. The flux of the intrinsic emission varied by a factor of similar to 2 within similar to 20 ks, which requires the obscuring material to be geometrically thin. Broadband spectral modeling showed that the solid angle of the neutral reflector is less than a few x 10(-2) x 2 pi. All of this evidence regarding the reprocessed signals suggests that a disk-like absorber/reflector is viewed from a near edge-on angle. C1 [Itoh, Takeshi; Makishima, Kazuo] Univ Tokyo, Fac Sci, Dept Phys, Bunkyo Ku, Tokyo 1130033, Japan. [Done, Chris] Univ Durham, Dept Phys, Durham DH1 3LE, England. [Makishima, Kazuo; Gandhi, Poshak; Isobe, Naoki] RIKEN, Cosm Radiat Lab, Wako, Saitama 3510198, Japan. [Madejski, Grzegorz] Stanford Linear Accelerator Ctr, Menlo Pk, CA 94025 USA. [Awaki, Hisamitsu] Ehime Univ, Dept Phys & Astron, Matsuyama, Ehime 7908577, Japan. [Dewangan, Gulab C.; Griffthis, Richard E.] Carnegie Mellon Univ, Dept Phys, Pittsburgh, PA 15213 USA. [Anabuki, Naohisa] Osaka Univ, Dept Earth & Space Sci, Osaka 5600043, Japan. [Okajima, Takashi; Reeves, James N.] NASA, Goddard Space Flight Ctr, Explorat Universe Div, Greenbelt, MD 20771 USA. [Okajima, Takashi; Reeves, James N.; Yaqoob, Tahir] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Takahashi, Tadayuki] Japan Aerosp Explorat Agcy, Inst Space & Astronaut Sci, Sagamihara, Kanagawa 2298510, Japan. [Ueda, Yoshihiro; Eguchi, Satohi] Kyoto Univ, Dept Astron, Sakyo Ku, Kyoto 6068502, Japan. [Yaqoob, Tahir] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Greenbelt, MD 20771 USA. RP Itoh, T (reprint author), Univ Tokyo, Fac Sci, Dept Phys, Bunkyo Ku, 7-3-1 Hongo, Tokyo 1130033, Japan. EM titoh@amalthea.phys.s.u-tokyo.ac.jp RI XRAY, SUZAKU/A-1808-2009; done, chris/D-4605-2016 OI done, chris/0000-0002-1065-7239 NR 69 TC 37 Z9 37 U1 0 U2 0 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0004-6264 EI 2053-051X J9 PUBL ASTRON SOC JPN JI Publ. Astron. Soc. Jpn. PD FEB 20 PY 2008 VL 60 SI 1 BP S251 EP S261 DI 10.1093/pasj/60.sp1.S251 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 300IY UT WOS:000255818700026 ER PT J AU Takahashi, T Tanaka, T Uchiyama, Y Hiraga, JS Nakazawa, K Watanabe, S Bamba, A Hughes, JP Katagiri, H Kataoka, J Kokubun, M Koyama, K Mori, K Petre, R Takahashi, H Tsuboi, Y AF Takahashi, Tadayuki Tanaka, Takaaki Uchiyama, Yasunobu Hiraga, Junko S. Nakazawa, Kazuhiro Watanabe, Shin Bamba, Aya Hughes, John P. Katagiri, Hideaki Kataoka, Jun Kokubun, Motohide Koyama, Katsuji Mori, Koji Petre, Robert Takahashi, Hiromitsu Tsuboi, Yoko TI Measuring the broad-band X-ray spectrum from 400 eV to 40 keV in the southwest part of the supernova remnant RX J1713.7-3946 SO PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF JAPAN LA English DT Article DE acceleration of particles; ISM : individual (RX J1713.7-3946); ISM : supernova remnants; X-rays : ISM ID DIFFUSIVE SHOCK ACCELERATION; MONTE-CARLO SIMULATOR; MAGNETIC-FIELD; BOARD SUZAKU; COSMIC-RAYS; HIGH-ENERGY; DETECTOR HXD; XMM-NEWTON; SHELL; EMISSION AB We report on results from Suzaku broadband X-ray observations of the southwest part of the galactic supernova remnant (SNR) RX J1713.7-3946 with an energy coverage of 0.4-40keV. The X-ray spectrum, presumably of synchrotron origin, is known to be completely lineless, making this SNR ideally suited for a detailed study of the X-ray spectral shape formed through efficient particle acceleration at high-speed shocks. With a sensitive hard X-ray measurement from the HXD PIN aboard Suzaku, we determined the hard X-ray spectrum in the 12-40 keV range to be described by a power law with photon index of Gamma = 3.2 +/- 0.2, significantly steeper than the soft X-ray index of Gamma = 2.4 +/- 0.05 measured previously with ASCA and other missions. We find that a simple power law fails to describe the full spectral range of 0.4-40 keV, and instead a power-law with an exponential cutoff with a hard index of Gamma = 1.50 +/- 0.09 and a high-energy cutoff of epsilon(c) = 1.2 +/- 0.3 keV formally provides an excellent fit over the full bandpass. If we use the so-called SRCUT model, as an alternative model, it gives a best-fit rolloff energy of epsilon(roll) = 0.95 +/- 0.04 keV. Together with the TeV gamma-ray spectrum, ranging from 0.3 to 100 TeV, recently obtained by HESS observations, our Suzaku observations of RX J1713.7-3946 provide stringent constraints on the highest-energy particles accelerated in a supernova shock. C1 [Takahashi, Tadayuki; Tanaka, Takaaki; Uchiyama, Yasunobu; Watanabe, Shin; Bamba, Aya; Kokubun, Motohide] Japan Aerosp Explorat Agcy, Inst Space & Astronaut Sci, Dept High Energy Astrophys, Sagamihara, Kanagawa 2298510, Japan. [Takahashi, Tadayuki; Nakazawa, Kazuhiro; Watanabe, Shin] Univ Tokyo, Dept Phys, Bunkyo Ku, Tokyo 1130033, Japan. [Tanaka, Takaaki] Stanford Linear Accelerator Ctr, Menlo Pk, CA 94025 USA. [Hiraga, Junko S.] RIKEN, Cosm Radiat Lab, Wako, Saitama 3510198, Japan. [Hughes, John P.] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA. [Katagiri, Hideaki; Takahashi, Hiromitsu] Hiroshima Univ, Dept Phys Sci, Hiroshima 7398526, Japan. [Koyama, Katsuji] Kyoto Univ, Dept Phys, Sakyo Ku, Kyoto 6068502, Japan. [Kataoka, Jun] Tokyo Inst Technol, Dept Phys, Meguro Ku, Tokyo 1528551, Japan. [Mori, Koji] Miyazaki Univ, Dept Appl Phys, Miyazaki 8892198, Japan. [Petre, Robert] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Greenbelt, MD 20771 USA. [Tsuboi, Yoko] Chuo Univ, Dept Phys, Bunkyo Ku, Tokyo 1128551, Japan. RP Takahashi, T (reprint author), Japan Aerosp Explorat Agcy, Inst Space & Astronaut Sci, Dept High Energy Astrophys, 3-1-1 Yoshinodai, Sagamihara, Kanagawa 2298510, Japan. RI XRAY, SUZAKU/A-1808-2009 NR 45 TC 32 Z9 32 U1 0 U2 0 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0004-6264 EI 2053-051X J9 PUBL ASTRON SOC JPN JI Publ. Astron. Soc. Jpn. PD FEB 20 PY 2008 VL 60 SI 1 BP S131 EP S140 DI 10.1093/pasj/60.sp1.S131 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 300IY UT WOS:000255818700014 ER PT J AU Terada, Y Enoto, T Miyawaki, R Ishisaki, Y Dotani, T Ebisawa, K Ozaki, M Ueda, Y Kuiper, L Endo, M Fukazawa, Y Kamae, T Kawaharada, M Kokubun, M Kuroda, Y Makishinia, K Masukawa, K Mizuno, T Murakami, T Nakazawa, K Nakajima, A Nomach, M Shibayama, N Takahash, T Takahashi, H Tashiro, MS Tamagawa, T Watanabe, S Yamaguchi, M Yamaoka, K Yonetoku, D AF Terada, Yukikatsu Enoto, Teruaki Miyawaki, Ryouhei Ishisaki, Yoshitaka Dotani, Tadayasu Ebisawa, Ken Ozaki, Masanobu Ueda, Yoshihiro Kuiper, Lucien Endo, Manabu Fukazawa, Yasushi Kamae, Tsuneyoshi Kawaharada, Madoka Kokubun, Motohide Kuroda, Yoshikatsu Makishinia, Kazuo Masukawa, Kazunori Mizuno, Tsunefumi Murakami, Toshio Nakazawa, Kazuhiro Nakajima, Atsushi Nomach, Masaharu Shibayama, Naoki Takahash, Tadayuki Takahashi, Hiromitsu Tashiro, Makoto S. Tamagawa, Toru Watanabe, Shin Yamaguchi, Makio Yamaoka, Kazutaka Yonetoku, Daisuke TI In-orbit timing calibration of the hard X-ray detector on board Suzaku SO PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF JAPAN LA English DT Article DE space vehicles : instruments; time; X-rays : general ID HXD-II; CRAB PULSAR; PERFORMANCE; ASTRO-E2 AB The hard X-ray detector (HXD) aboard the X-ray satellite Suzaku is designed to have a good timing capability with a 61 its time resolution. In addition to detailed descriptions of the HXD timing system, results of in-orbit timing calibration and the performance of the HXD are summarized. The relative accuracy of time measurements of the HXD event was confirmed to have an accuracy of 1.9 x 10(-9) s s(-1) per day, and the absolute timing was confirmed to be accurate to 360 mu s or better. The results were achieved mainly through observations of the Crab pulsar, including simultaneous ones with RXTE, INTEGRAL, and Swift. C1 [Terada, Yukikatsu; Tashiro, Makoto S.] Saitama Univ, Sch Sci, Dept Phys, Sakura Ku, Saitama 3388570, Japan. [Enoto, Teruaki; Miyawaki, Ryouhei; Makishinia, Kazuo; Nakazawa, Kazuhiro] Univ Tokyo, Sch Sci, Dept Phys, Tokyo 1130033, Japan. [Ishisaki, Yoshitaka] Tokyo Metroporitan Univ, Dept Phys, Tokyo 1920397, Japan. [Dotani, Tadayasu; Ebisawa, Ken; Ozaki, Masanobu; Kokubun, Motohide; Takahash, Tadayuki; Watanabe, Shin] Japan Aerosp Explorat Agcy, Inst Space & Astronaut Sci, Kanagawa 2298510, Japan. [Ueda, Yoshihiro] Kyoto Univ, Dept Astron, Sakyo Ku, Kyoto 6068502, Japan. [Kuiper, Lucien] SRON, Natl Space Res Lab, NL-3584 CA Utrecht, Netherlands. [Endo, Manabu; Kuroda, Yoshikatsu; Masukawa, Kazunori; Nakajima, Atsushi; Shibayama, Naoki; Yamaguchi, Makio] Mitsubishi Heavy Ind Co Ltd, Aichi 4858561, Japan. [Fukazawa, Yasushi; Mizuno, Tsunefumi; Takahashi, Hiromitsu] Hiroshima Univ, Dept Phys Sci, Hiroshima 7398526, Japan. [Kamae, Tsuneyoshi] Stanford Linear Accelerator Ctr, Menlo Pk, CA 94025 USA. [Kawaharada, Madoka; Makishinia, Kazuo; Tamagawa, Toru] RIKEN, Makishima Cosm Radiat Lab, Saitama 3510198, Japan. [Murakami, Toshio; Yonetoku, Daisuke] Kanazawa Univ, Fac Sci, Dept Phys, Kanazawa, Ishikawa 9201192, Japan. [Nomach, Masaharu] Osaka Univ, Grad Sch Sci, Dept Phys, Osaka 5600043, Japan. [Yamaoka, Kazutaka] Aoyama Gakuin Univ, Dept Math & Phys, Kanagawa 2298558, Japan. RP Terada, Y (reprint author), Saitama Univ, Sch Sci, Dept Phys, Sakura Ku, 255 Shimo Ohkubo, Saitama 3388570, Japan. EM terada@phys.saitama-u.ac.jp RI Tashiro, Makoto/J-4562-2012; Terada, Yukikatsu/A-5879-2013; Ozaki, Masanobu/K-1165-2013; XRAY, SUZAKU/A-1808-2009 OI Terada, Yukikatsu/0000-0002-2359-1857; NR 17 TC 29 Z9 29 U1 1 U2 3 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0004-6264 EI 2053-051X J9 PUBL ASTRON SOC JPN JI Publ. Astron. Soc. Jpn. PD FEB 20 PY 2008 VL 60 SI 1 BP S25 EP S33 DI 10.1093/pasj/60.sp1.S25 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 300IY UT WOS:000255818700003 ER PT J AU Augustine, AJ Kragh, ME Sarangi, R Fujii, S Liboiron, BD Stoj, CS Kosman, DJ Hodgson, KO Hedman, B Solomon, EI AF Augustine, Anthony J. Kragh, Mads Emil Sarangi, Ritimukta Fujii, Satoshi Liboiron, Barry D. Stoj, Christopher S. Kosman, Daniel J. Hodgson, Keith O. Hedman, Britt Solomon, Edward I. TI Spectroscopic studies of perturbed T1 Cu sites in the multicopper oxidases Saccharomyces cerevisiae Fet3p and Rhus vernicifera laccase: Allosteric coupling between the T1 and trinuclear Cu sites SO BIOCHEMISTRY LA English DT Article ID COPPER ACTIVE-SITE; MAGNETIC CIRCULAR-DICHROISM; RESONANCE RAMAN-SPECTRA; RAY ABSORPTION-EDGE; ELECTRONIC-STRUCTURE; CRYSTAL-STRUCTURE; NATIVE LACCASE; ASCORBATE OXIDASE; IRON UPTAKE; PROTEINS AB The multicopper oxidases catalyze the 4e(-) reduction of O-2 to H2O coupled to the 1e(-) oxidation of 4 equiv of substrate. This activity requires four Cu atoms, including T1, T2, and coupled binuclear T3 sites. The T2 and T3 sites form a trinuclear cluster (TNC) where O-2 is reduced. The T1 is coupled to the TNC through a T1-Cys-His-T3 electron transfer (ET) pathway. In this study the two T3 Cu coordinating His residues which lie in this pathway in Fet3 have been mutated, H483Q, H483C, H485Q, and H485C, to study how perturbation at the TNC impacts the T1 Cu site. Spectroscopic methods, in particular resonance Raman (rR), show that the change from His to G1n to Cys increases the covalency of the T1 Cu-S Cys bond and decreases its redox potential. This study of T1-TNC interactions is then extended to Rhus vernicifera laccase where a number of well-defined species including the catalytically relevant native intermediate (NI) can be trapped for spectroscopic study. The T1 Cu-S covalency and potential do not change in these species relative to resting oxidized enzyme, but interestingly the differences in the structure of the TNC in these species do lead to changes in the T1 Cu rR spectrum. This helps to confirm that vibrations in the cysteine side chain of the T1 Cu site and the protein backbone couple to the Cu-S vibration. These changes in the side chain and backbone provide a possible mechanism for regulating intramolecular T1 to TNC ET in NI and partially reduced enzyme forms for efficient turnover. C1 [Stoj, Christopher S.; Kosman, Daniel J.] SUNY Buffalo, Sch Med & Biomed Sci, Dept Chem, Buffalo, NY 14214 USA. [Augustine, Anthony J.; Kragh, Mads Emil; Sarangi, Ritimukta; Fujii, Satoshi; Liboiron, Barry D.; Hodgson, Keith O.; Solomon, Edward I.] Stanford Univ, Dept Chem, Stanford, CA 94305 USA. [Kragh, Mads Emil] Univ Copenhagen, Fac Life Sci, Dept Nat Sci, Copenhagen, Denmark. [Hodgson, Keith O.; Hedman, Britt; Solomon, Edward I.] Stanford Univ, SLAC, Stanford Synchrotron Radiat Lab, Stanford, CA 94309 USA. RP Kosman, DJ (reprint author), SUNY Buffalo, Sch Med & Biomed Sci, Dept Chem, Buffalo, NY 14214 USA. EM camkos@buffalo.edu; edward.solomon@stanford.edu FU NCRR NIH HHS [RR-01209]; NIDDK NIH HHS [DK31450, DK53820] NR 57 TC 31 Z9 34 U1 5 U2 21 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0006-2960 J9 BIOCHEMISTRY-US JI Biochemistry PD FEB 19 PY 2008 VL 47 IS 7 BP 2036 EP 2045 DI 10.1021/bi7020052 PG 10 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 261TD UT WOS:000253102000021 PM 18197705 ER PT J AU Chylek, P Lohmann, U AF Chylek, Petr Lohmann, Ulrike TI Aerosol radiative forcing and climate sensitivity deduced from the last glacial maximum to Holocene transition SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID MODEL; DUST; GCM AB We use the temperature, carbon dioxide, methane, and dust concentration record from the Vostok ice core to deduce the aerosol radiative forcing during the Last Glacial Maximum (LGM) to Holocene transition and the climate sensitivity. A novel feature of our analysis is the use of a cooling period between about 42 KYBP (thousand years before present) and LGM to provide a constraint on the aerosol radiative forcing. We find the change in aerosol radiative forcing during the LGM to Holocene transition to be 3.3 +/- 0.8 W/m(2) and the climate sensitivity between 0.36 and 0.68 K/Wm(-2) with a mean value of 0.49 +/- 0.07 K/ Wm(-2). This suggests a 95% likelihood of warming between 1.3 and 2.3 K due to doubling of atmospheric concentration of CO2. The ECHAM5 model simulation suggests that the aerosol optical depth during the LGM may have been almost twice the current value (increase from 0.17 to 0.32). C1 [Chylek, Petr] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Lohmann, Ulrike] ETH, Inst Atmospher & Climate Sci, CH-8093 Zurich, Switzerland. RP Chylek, P (reprint author), Los Alamos Natl Lab, MS B244, Los Alamos, NM 87545 USA. EM chylek@lanl.gov RI Lohmann, Ulrike/B-6153-2009 OI Lohmann, Ulrike/0000-0001-8885-3785 NR 21 TC 20 Z9 21 U1 0 U2 6 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD FEB 19 PY 2008 VL 35 IS 4 AR L04804 DI 10.1029/2007GL032759 PG 5 WC Geosciences, Multidisciplinary SC Geology GA 267TA UT WOS:000253530900006 ER PT J AU Moore, NW Mulder, DJ Kuhl, TL AF Moore, Nathan W. Mulder, Dennis J. Kuhl, Tonya L. TI Adhesion from tethered ligand-receptor bonds with microsecond lifetimes SO LANGMUIR LA English DT Article ID SURFACE FORCES APPARATUS; LONG-RANGE ATTRACTION; MOLECULAR RECOGNITION; ENERGY LANDSCAPES; PDBBIND DATABASE; POLYMER; SPECTROSCOPY; STRENGTH; INTERFEROMETRY; STREPTAVIDIN AB According to classical thermodynamics, biological ligand-receptor bonds should have a median lifetime of about 2 ms, and nearly half should have lifetimes of nanoseconds to microseconds. As a result, it is clear that many "weak" bonds are indispensable for cellular adhesion, signaling, and other critical events. However, the forces required to rupture such weak bonds and the adhesion they provide between surfaces are largely unknown because of their propensity to dissociate rapidly from a measuring probe. To measure such weak bond forces quantitatively, we followed nature's example of adhering surfaces with many weak ligand-receptor bonds. Analogously to how multiplicity promotes stronger adhesion between cellular membranes, multiple bonds created significant adhesion between model cellular surfaces. Specifically, we used an automated surface forces apparatus to measure the adhesion between complementary surfaces bearing dense populations of streptavidin receptors and flexible PEG tethers that each anchored a weakly binding ligand (HABA, or 2-(4-hydroxyphenylazo) benzoic acid). We show that this short-lived bond (< 100 mu s) leads to low forces of dissociation and only a small fraction being simultaneously bound. These results are significant because the HABA-streptavidin bond energy (similar to 10.5k(B)T) is similar to the average found in nature (14.7k(B)T)The measurements exemplify how a single ligand-receptor bond may fall apart and rejoin many times before completing a cellular function yet can still exhibit strength in numbers. C1 [Mulder, Dennis J.; Kuhl, Tonya L.] Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA. [Moore, Nathan W.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Kuhl, TL (reprint author), Univ Calif Davis, Dept Chem Engn & Mat Sci, 1 Shields Ave, Davis, CA 95616 USA. EM tlkuhl@ucdavis.edu NR 54 TC 16 Z9 16 U1 0 U2 18 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0743-7463 J9 LANGMUIR JI Langmuir PD FEB 19 PY 2008 VL 24 IS 4 BP 1212 EP 1218 DI 10.1021/la702202x PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 262ED UT WOS:000253130900013 PM 18081329 ER PT J AU Blanchette, CD Orme, CA Ratto, TV Longo, ML AF Blanchette, Craig D. Orme, Christine A. Ratto, Timothy V. Longo, Marjorie L. TI Quantifying growth of symmetric and asymmetric lipid bilayer domains SO LANGMUIR LA English DT Article ID GIANT UNILAMELLAR VESICLES; ATOMIC-FORCE MICROSCOPY; LINE TENSION; FLUORESCENCE MICROSCOPY; LATERAL DIFFUSION; CELL-MEMBRANES; PHASE; CHOLESTEROL; MIXTURES; PROTEINS AB Here, we examine by atomic force microscopy (AFM) the kinetics and morphology of lipid domain growth during lipid phase separation by rapid thermal cooling of fully mixed two-component supported lipid bilayers. At the undercooled temperatures chosen, symmetric 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC)-rich domains favored slower reaction-limited growth whereas asymmetric galactosylceramide (GalCer)-rich domains favored faster diffusion-limited growth, indicated by shape factors and kinetic exponents. Because kinetically limited conditions could be accessed, we were able to estimate the activation energy barrier (similar to 16 kT) and lateral diffusion coefficient (similar to 0.20 mu m(2)/S) of lipid molecular addition to a growing domain. We discuss these results with respect to transition states, obstructed diffusion, and the necessity for coordinating growth in both leaflets in a symmetric lipid domain. C1 [Orme, Christine A.; Longo, Marjorie L.] Univ Calif Davis, Coll Biol Sci, Dept Chem & Mat Engn, Biophys Grad Grp, Davis, CA 95616 USA. [Blanchette, Craig D.; Ratto, Timothy V.] Lawrence Livermore Natl Lab, Biophys & Interfacial Sci Grp, Livermore, CA 94550 USA. RP Longo, ML (reprint author), Univ Calif Davis, Coll Biol Sci, Dept Chem & Mat Engn, Biophys Grad Grp, Davis, CA 95616 USA. EM mllongo@ucdavis.edu RI Orme, Christine/A-4109-2009; Wunder, Stephanie/B-5066-2012; Zdilla, Michael/B-4145-2011 FU NIGMS NIH HHS [T32 GM 08799] NR 26 TC 36 Z9 36 U1 1 U2 22 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0743-7463 J9 LANGMUIR JI Langmuir PD FEB 19 PY 2008 VL 24 IS 4 BP 1219 EP 1224 DI 10.1021/la702364g PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 262ED UT WOS:000253130900014 PM 18062709 ER PT J AU Chandross, M Lorenz, CD Stevens, MJ Grest, GS AF Chandross, Michael Lorenz, Christian D. Stevens, Mark J. Grest, Gary S. TI Simulations of nanotribology with realistic probe tip models SO LANGMUIR LA English DT Article ID SELF-ASSEMBLED MONOLAYERS; MOLECULAR-DYNAMICS SIMULATIONS; SCANNING FORCE MICROSCOPY; FRICTIONAL-PROPERTIES; TRIBOLOGICAL PROPERTIES; ALKANE MONOLAYERS; SLIDING FRICTION; CHAIN-LENGTH; SILICON; VELOCITY AB We present the results of massively parallel molecular dynamics simulations aimed at understanding the nanotribological properties of alkylsilane self-assembled monolayers (SAMs) on amorphous silica. In contrast to studies with opposing flat plates, as found in the bulk of the simulation literature, we use a model system with a realistic AFM tip (radius of curvature ranging from 3 to 30 nm) in contact with a SAM-coated silica substrate. We compare the differences, in response between systems in which chains are fully physisorbed, fully chemisorbed, and systems with a mixture of the two. Our results demonstrate that the ubiquitous JKR and DMT models do not accurately describe the contact mechanics of these systems. In shear simulations, we find that the chain length has minimal effects on both the friction force and coefficient. The tip radius affects the friction force only (i.e., the coefficient is unchanged) by a constant shift in magnitude due to the increase in pull-off force with increasing radius. We also find that at extremely low loads, on the order of 10 nN, shearing from the tip causes damage to the physisorbed monolayers by removal of molecules. C1 [Chandross, Michael; Stevens, Mark J.; Grest, Gary S.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Lorenz, Christian D.] Kings Coll London, Mat Res Grp, London WC2R 2LS, England. RP Chandross, M (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM mechand@sandia.gov RI Lorenz, Christian/A-6996-2017 OI Lorenz, Christian/0000-0003-1028-4804 NR 49 TC 81 Z9 83 U1 3 U2 37 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0743-7463 J9 LANGMUIR JI Langmuir PD FEB 19 PY 2008 VL 24 IS 4 BP 1240 EP 1246 DI 10.1021/la702323y PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 262ED UT WOS:000253130900017 PM 18184018 ER PT J AU Tomasi, D Chang, L Caparelli, EC Ernst, T AF Tomasi, D. Chang, L. Caparelli, E. C. Ernst, T. TI Sex differences in sensory gating of the thalamus during auditory interference of visual attention tasks SO NEUROSCIENCE LA English DT Article DE acoustic noise; fMRI; gender; connectivity; thalamic; volumetric ID WORKING-MEMORY TASK; FMRI-ACOUSTIC NOISE; GENDER-DIFFERENCES; BRAIN ACTIVATION; 4 TESLA; FUNCTIONAL-ORGANIZATION; SELECTIVE ATTENTION; SPATIAL MEMORY; BOLD FMRI; MECHANISMS AB Men and women have different cognitive abilities that might reflect sex-specific neural organization. Here we studied sex effects on brain function using functional magnetic resonance imaging (fMRI) with variable acoustic noise (AN) to modulate the cognitive challenge and enhance the sensitivity for the detection of sex differences in brain activation. During the performance of a visual attention (VA) task that requires the tracking of multiple moving objects and has graded levels of difficulty, women (n=15) but not men (n=13) had shorter reaction times for "Loud" than for "Quiet" scans. Men activated more than women in the superior prefrontal and occipital cortices and the anterior thalamus. The latent connectivity of the prefrontal cortex was higher with the anterior thalamus but lower with the auditory cortex for men than for women. Increases in activation with visual attention load were larger for men than for women in the superior parietal and auditory cortices. Increased AN reduced brain activation in the parietal cortex and the anterior thalamus for men but not for women. Together, these sex-specific differences in brain activation during the VA task, at different cognitive and acoustic levels suggest differences in auditory gating of the thalamus for men and women. Published by Elsevier Ltd on behalf of IBRO. C1 [Tomasi, D.; Caparelli, E. C.] Brookhaven Natl Lab, Dept Med, Upton, NY 11973 USA. [Chang, L.; Ernst, T.] Univ Hawaii, Dept Med, Honolulu, HI 96813 USA. RP Tomasi, D (reprint author), Brookhaven Natl Lab, Dept Med, Bldg 490,30 Bell Ave, Upton, NY 11973 USA. EM tomasi@bnl.gov RI Tomasi, Dardo/J-2127-2015 FU NCRR NIH HHS [M01 RR010710, 5-M01-RR-10710]; NIDA NIH HHS [K02 DA016991, K02 DA16991, K24 DA016170, K24 DA16170, R03 DA 017070-01, R03 DA017070, R03 DA017070-01] NR 61 TC 14 Z9 14 U1 2 U2 8 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0306-4522 J9 NEUROSCIENCE JI Neuroscience PD FEB 19 PY 2008 VL 151 IS 4 BP 1006 EP 1015 DI 10.1016/j.neuroscience.2007.08.040 PG 10 WC Neurosciences SC Neurosciences & Neurology GA 264PS UT WOS:000253301500008 PM 18201838 ER PT J AU Verpillat, F Ledbetter, MP Xu, S Michalak, DJ Hilty, C Bouchard, LS Antonijevic, S Budker, D Pines, A AF Verpillat, F. Ledbetter, M. P. Xu, S. Michalak, D. J. Hilty, C. Bouchard, L. -S. Antonijevic, S. Budker, D. Pines, A. TI Remote detection of nuclear magnetic resonance with an anisotropic magnetoresistive sensor SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE anisotropic magnetoresistance; microfluidics; NMR; adiabatic fast passage ID ATOMIC MAGNETOMETER; NMR; H-1-NMR; SAMPLES; MRI AB We report the detection of nuclear magnetic resonance (NMR) using an anisotropic magnetoresistive (AMR) sensor. A "remote-detection" arrangement was used in which protons in flowing water were prepolarized in the field of a superconducting NMR magnet, adiabatically inverted, and subsequently detected with an AMR sensor situated downstream from the magnet and the adiabatic inverter. AMR sensing is well suited for NMR detection in microfluidic "lab-on-a-chip" applications because the sensors are small, typically on the order of 10 mu m. An estimate of the sensitivity for an optimized system indicates that approximate to 6 x 10(13) protons in a volume of 1,000 mu m(3), prepolarized in a 10-kG magnetic field, can be detected with a signal-to-noise ratio of 3 in a 1-Hz bandwidth. This level of sensitivity is competitive with that demonstrated by microcoils in superconducting magnets and with the projected sensitivity of microfabricated atomic magnetometers. C1 [Xu, S.; Michalak, D. J.; Hilty, C.; Bouchard, L. -S.; Antonijevic, S.; Pines, A.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Verpillat, F.] Ecole Normale Super Lyon, F-69364 Lyon 07, France. [Ledbetter, M. P.; Budker, D.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Budker, D.] Lawrence Berkeley Natl Lab, Div Nucl Sci, Berkeley, CA 94720 USA. RP Pines, A (reprint author), Univ Calif Berkeley, Dept Chem, Hildebrand Hall D64, Berkeley, CA 94720 USA. EM pines@berkeley.edu RI Antonov, Alexander/I-2413-2012; Hilty, Christian/C-1892-2015; Budker, Dmitry/F-7580-2016 OI Hilty, Christian/0000-0003-2539-2568; Budker, Dmitry/0000-0002-7356-4814 NR 17 TC 14 Z9 15 U1 1 U2 12 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD FEB 19 PY 2008 VL 105 IS 7 BP 2271 EP 2273 DI 10.1073/pnas.0712129105 PG 3 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 266XB UT WOS:000253469900006 PM 18268323 ER PT J AU Ledbetter, MP Savukov, IM Budker, D Shah, V Knappe, S Kitching, J Michalak, DJ Xu, S Pines, A AF Ledbetter, M. P. Savukov, I. M. Budker, D. Shah, V. Knappe, S. Kitching, J. Michalak, D. J. Xu, S. Pines, A. TI Zero-field remote detection of NMR with a microfabricated atomic magnetometer SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE microfluidics; signal-to-noise ratio; mass-limited sample ID MAGNETIC-RESONANCE; SPIN-EXCHANGE; SAMPLES; SPECTROSCOPY; RELAXATION; H-1-NMR; MRI AB We demonstrate remote detection of nuclear magnetic resonance (NMR) with a microchip sensor consisting of a microfluidic channel and a microfabricated vapor cell (the heart of an atomic magnetometer). Detection occurs at zero magnetic field, which allows operation of the magnetometer in the spin-exchange relaxation-free (SERF) regime and increases the proximity of sensor and sample by eliminating the need for a solenoid to create a leading field. We achieve pulsed NMR linewidths of 26 Hz, limited, we believe, by the residence time and flow dispersion in the encoding region. In a fully optimized system, we estimate that for 1 s of integration, 7 x 10(13) protons in a volume of 1 mm(3), prepolarized in a 10-kG field, can be detected with a signal-to-noise ratio of approximate to 3. This level of sensitivity is competitive with that demonstrated by microcoils in 100-kG magnetic fields, without requiring superconducting magnets. C1 [Michalak, D. J.; Xu, S.; Pines, A.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Ledbetter, M. P.; Savukov, I. M.; Budker, D.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Budker, D.] Lawrence Berkeley Natl Lab, Div Nucl Sci, Berkeley, CA 94720 USA. [Shah, V.; Knappe, S.; Kitching, J.] Natl Inst Stand & Technol, Div Time & Frequency, Boulder, CO 80305 USA. RP Pines, A (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM pines@berkeley.edu RI Budker, Dmitry/F-7580-2016 OI Budker, Dmitry/0000-0002-7356-4814 NR 26 TC 57 Z9 58 U1 2 U2 21 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD FEB 19 PY 2008 VL 105 IS 7 BP 2286 EP 2290 DI 10.1073/pnas.0711505105 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 266XB UT WOS:000253469900009 PM 18287080 ER PT J AU Guan, JY Molz, FJ Zhou, QL Liu, HH Zheng, CM AF Guan, Jianyong Molz, Fred J. Zhou, Quanlin Liu, Hui Hai Zheng, Chunmiao TI Behavior of the mass transfer coefficient during the MADE-2 experiment: New insights SO WATER RESOURCES RESEARCH LA English DT Article ID MATRIX DIFFUSION-COEFFICIENT; HETEROGENEOUS AQUIFER; MACRODISPERSION EXPERIMENT; SUBSURFACE HYDROLOGY; SOLUTE TRANSPORT; TRACER TESTS; DISPERSION; SCALE; SITE; CONDUCTIVITY AB Using a dual-porosity transport model, a more complete analysis of the MADE-2 experiment, a natural gradient tracer ( tritium) test, is presented. Results show that a first-order, mass transfer rate coefficient is scale-dependent and decreasing with experiment duration. This is in agreement with previous studies and predictions. Factors contributing to the scale-dependency are errors or approximations in boundary conditions, hydraulic conductivity ( K) measurements and interpolations, mass transfer rate expressions and conceptual errors in model development. In order to formulate a self-consistent, dual-porosity model, it was necessary to assume that the injected tracer was trapped hydraulically in the vicinity of the injection site. This was accomplished by lowering all K values near the injection site by a factor of 30, while holding all other K values, boundary conditions and parameters at their measured or estimated magnitudes. Resulting simulations, using the same scale-dependent mass transfer rate coefficient, were then able to reasonably match the movement of the center of mass, overall plume geometry and the anomalous mass recovery ratios observed at each snapshot. The dual-porosity model is conceptually simple, relatively easy to apply mathematically and it simulates differences in advection that are probably the root cause of dispersion in natural heterogeneous sediments. Also, a small more realistic amount of local hydrodynamic dispersion is not precluded. C1 [Guan, Jianyong] Stephens & Assoc Inc, Albuquerque, NM 87111 USA. [Molz, Fred J.] Clemson Univ, Dept Environm Engn & Earth Sci, Anderson, SC USA. [Zhou, Quanlin; Liu, Hui Hai] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Zheng, Chunmiao] Univ Alabama, Dept Geol Sci, Tuscaloosa, AL 35487 USA. RP Guan, JY (reprint author), Stephens & Assoc Inc, Albuquerque, NM 87111 USA. EM fredi@clemson.edu RI Zhou, Quanlin/B-2455-2009; Zheng, Chunmiao/I-5257-2014 OI Zhou, Quanlin/0000-0001-6780-7536; Zheng, Chunmiao/0000-0001-5839-1305 NR 35 TC 19 Z9 19 U1 1 U2 16 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0043-1397 J9 WATER RESOUR RES JI Water Resour. Res. PD FEB 19 PY 2008 VL 44 IS 2 AR W02423 DI 10.1029/2007WR006120 PG 14 WC Environmental Sciences; Limnology; Water Resources SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water Resources GA 267UW UT WOS:000253535700003 ER PT J AU Singamaneni, S LeMieux, MC Lang, HP Gerber, C Lam, Y Zauscher, S Datskos, PG Lavrik, NV Jiang, H Naik, RR Bunning, TJ Tsukruk, VV AF Singamaneni, Srikanth LeMieux, Melburne C. Lang, Hans P. Gerber, Christoph Lam, Yee Zauscher, Stefan Datskos, Panos G. Lavrik, Nikolay V. Jiang, Hao Naik, Rajesh R. Bunning, Timothy J. Tsukruk, Vladimir V. TI Bimaterial microcantilevers as a hybrid sensing platform SO ADVANCED MATERIALS LA English DT Review ID SELF-ASSEMBLED MONOLAYERS; ATOMIC-FORCE MICROSCOPY; STIMULI-RESPONSIVE POLYMERS; MICROFABRICATED CANTILEVER ARRAY; SCHIZOPHRENIC DIBLOCK COPOLYMER; MICROMECHANICAL CANTILEVER; CHEMICAL SENSORS; PIEZORESISTIVE MICROCANTILEVER; SILICON MICROCANTILEVERS; SURFACE STRESS AB Microcantilevers, one of the most common MEMS structures, have been introduced as a novel sensing paradigm nearly a decade ago. Ever since, the technology has emerged to find important applications in chemical, biological and physical sensing areas. Today the technology stands at the verge of providing the next generation of sophisticated sensors (such as artificial nose, artificial tongue) with extremely high sensitivity and miniature size. The article provides an overview of the modes of detection, theory behind the transduction mechanisms, materials employed as active layers, and some of the important applications. Emphasizing the material design aspects, the review underscores the most important findings, current trends, key challenges and future directions of the microcantilever based sensor technology. C1 [Jiang, Hao; Naik, Rajesh R.; Bunning, Timothy J.] Wright Patterson Air Force Base, Air Force Res Lab, Mat & Mfg Directorate, Wright Patterson AFB, OH 45433 USA. [Singamaneni, Srikanth; LeMieux, Melburne C.; Tsukruk, Vladimir V.] Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA. [Singamaneni, Srikanth; Tsukruk, Vladimir V.] Georgia Inst Technol, Sch Polymer Textile & Fiber Engn, Atlanta, GA 30332 USA. [LeMieux, Melburne C.] Stanford Univ, Dept Chem Engn, Stanford, CA 94305 USA. [Lang, Hans P.; Gerber, Christoph] Univ Basel, Inst Phys, Natl Ctr Competence Res Nanoscale Sci, CH-4056 Basel, Switzerland. [Lam, Yee; Zauscher, Stefan] Duke Univ, Dept Mech Engn & Mat Sci, Ctr Biol Inspired Mat & Mat Syst, Durham, NC 27706 USA. [Datskos, Panos G.; Lavrik, Nikolay V.] Oak Ridge Natl Lab, Engn Sci & Technol Div, Oak Ridge, TN USA. [Datskos, Panos G.; Lavrik, Nikolay V.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. RP Bunning, TJ (reprint author), Wright Patterson Air Force Base, Air Force Res Lab, Mat & Mfg Directorate, Wright Patterson AFB, OH 45433 USA. EM Timothy.Bunning@WPAFB.AF.MIL; vladimir@mse.gatech.edu RI Singamaneni, Srikanth/A-8010-2008; Zauscher, Stefan/C-3947-2008; Lang, Hans Peter/G-3884-2011; Gerber, Christoph/G-4851-2011; Lavrik, Nickolay/B-5268-2011 OI Lavrik, Nickolay/0000-0002-9543-5634 NR 258 TC 117 Z9 122 U1 6 U2 64 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 0935-9648 EI 1521-4095 J9 ADV MATER JI Adv. Mater. PD FEB 18 PY 2008 VL 20 IS 4 BP 653 EP 680 DI 10.1002/adma.200701667 PG 28 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 270SV UT WOS:000253741400001 ER PT J AU Peng, HS Lu, YF AF Peng, Huisheng Lu, Yunfeng TI Squarely mesoporous and functional nanocomposites by self-directed assembly of organosilane SO ADVANCED MATERIALS LA English DT Article ID POLYDIACETYLENE/SILICA NANOCOMPOSITES; ORGANIC GROUPS; ORGANIZATION; FRAMEWORKS; SILICATES; CHANNELS; SIEVES; WALLS AB This work reports the first example to synthesize squarely mesoporous and functional nanocomposites by self-directed assembly of porphyrin-bridged silsesquioxane. Due to the formation of robust silica networks around conjugated porphyrin moieties, the resultant mesoporous materials exhibit excellent optoelectronic properties and good thermal stability, providing unique platforms for many applications. C1 [Peng, Huisheng] Los Alamos Natl Lab, Div Phys Math & Applicat, Los Alamos, NM 87545 USA. [Lu, Yunfeng] Univ Calif Los Angeles, Dept Chem & Biomol Engn, Los Angeles, CA 90095 USA. RP Peng, HS (reprint author), Los Alamos Natl Lab, Div Phys Math & Applicat, POB 1663, Los Alamos, NM 87545 USA. EM hpeng@lanl.gov RI Peng, Huisheng/G-8867-2011 NR 27 TC 21 Z9 21 U1 1 U2 16 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 0935-9648 J9 ADV MATER JI Adv. Mater. PD FEB 18 PY 2008 VL 20 IS 4 BP 797 EP + DI 10.1002/adma.200701927 PG 5 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 270SV UT WOS:000253741400025 ER PT J AU Kim, JK Chhajed, S Schubert, MF Schubert, EF Fischer, AJ Crawford, MH Cho, J Kim, H Sone, C AF Kim, Jong Kyu Chhajed, Sameer Schubert, Martin F. Schubert, E. Fred Fischer, Arthur J. Crawford, Mary H. Cho, Jaehee Kim, Hyunsoo Sone, Cheolsoo TI Light-extraction enhancement of GaInN light-emitting diodes by graded-refractive-index indium tin oxide anti-reflection contact SO ADVANCED MATERIALS LA English DT Article ID GLANCING ANGLE DEPOSITION; THIN-FILMS; COATINGS; REFLECTION; GROWTH AB GaInN LEDs with a six-layer graded-refractive-index antireflection coating made entirely of indium tin oxide (ITO) are demonstrated to have 24.3 % higher light output than LEDs with dense ITO coating. The increased light-output of the LEDs with graded-refractive-index antireflection coating is attributed to the virtual elimination of Fresnel reflection and surface roughening of low-refractive index ITO. C1 [Kim, Jong Kyu; Chhajed, Sameer; Schubert, Martin F.; Schubert, E. Fred] Rensselaer Polytech Inst, Dept Elect Comp & Syst Engn, Troy, NY 12180 USA. [Fischer, Arthur J.; Crawford, Mary H.] Sandia Natl Labs, Semiconductor Mat & Device Sci Dept, Albuquerque, NM 87185 USA. [Cho, Jaehee; Kim, Hyunsoo; Sone, Cheolsoo] Samsung Electromechan Co Ltd, OS Lab, Suwon 443743, South Korea. RP Kim, JK (reprint author), Rensselaer Polytech Inst, Dept Elect Comp & Syst Engn, 110 8th St, Troy, NY 12180 USA. EM kimj4@rpi.edu RI Cho, Jaehee/H-3506-2013 OI Cho, Jaehee/0000-0002-8794-3487 NR 19 TC 194 Z9 195 U1 8 U2 85 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 0935-9648 J9 ADV MATER JI Adv. Mater. PD FEB 18 PY 2008 VL 20 IS 4 BP 801 EP + DI 10.1002/adma.200701015 PG 5 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 270SV UT WOS:000253741400026 ER PT J AU Rodriguez, JA Langell, M AF Rodriguez, Jose A. Langell, Marjorie TI Special issue - Selected papers from the Proceedings of the 4th San Luis Pan-American Conference on the Study of Surfaces, Interfaces and Catalysis - Preface SO JOURNAL OF MOLECULAR CATALYSIS A-CHEMICAL LA English DT Editorial Material C1 [Rodriguez, Jose A.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. [Langell, Marjorie] Univ Nebraska, Dept Chem, Lincoln, NE 68588 USA. RP Rodriguez, JA (reprint author), Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. EM rodrigez@bnl.gov; mlangell@unlserve.unl.edu NR 0 TC 0 Z9 0 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1381-1169 J9 J MOL CATAL A-CHEM JI J. Mol. Catal. A-Chem. PD FEB 18 PY 2008 VL 281 IS 1-2 SI SI BP 1 EP 2 DI 10.1016/j.molcata.2008.01.004 PG 2 WC Chemistry, Physical SC Chemistry GA 274SE UT WOS:000254020500001 ER PT J AU Rodriguez, JA Liu, R Hrbek, J Perez, M Evans, J AF Rodriguez, J. A. Liu, R. Hrbek, J. Perez, M. Evans, J. TI Water-gas shift activity of Au and Cu nanoparticles supported on molybdenum oxides SO JOURNAL OF MOLECULAR CATALYSIS A-CHEMICAL LA English DT Article; Proceedings Paper CT 4th San Luis Symposium on Surfaces, Interfaces and Catalysis CY APR 14-23, 2007 CL Pan-Amer Adv Studies Inst, Cuernavaca, MEXICO SP State Luis, Argentinean Natl Govt HO Pan-Amer Adv Studies Inst DE copper; gold; molybdenum oxides; carbon monoxide; hydrogen production; water; water-gas shift; CO oxidation ID GOLD; CATALYSTS; CERIA; ACTIVATION; CHEMISTRY; MECHANISM; TITANIA; CU(111); SURFACE; SO2 AB The water-gas shift (WGS, CO + H2O -> H-2 + CO2) reaction was studied on a series of gold/molybdena and copper/molybdena surfaces. Films of MoO2 were grown by exposing a Mo(110) substrate to NO2 at 1000 K. Then, Au and Cu nanoparticles were deposited on the oxide surfaces and their WGS activity was measured in a reaction cell (P-CO = 20 Torr; P-H2O = 10 Torr; T=575-650 K). Although bulk metallic Au is inactive as a catalyst for the WGS and worthless in this respect when compared to bulk metallic Cu, Au nanoparticles supported on MoO2 are a little bit better catalysts than Cu nanoparticles. The WGS activity of the Au and Cu nanoparticles supported on MoO2 is five to eight times larger than that of Cu(100). The apparent activation energies are 7.2 kcal/mol for Au/MoO2, 7.8 kcal/mol for Cu/MoO2, and 15.2 kcal/mol for Cu(100). The Cu/MoO2 surfaces have a catalytic activity comparable to that of Cu/CeO2(111) surfaces and superior to that of Cu/ZnO(000 (1) over bar) surfaces. Post-reaction surface characterization indicates that the admetals in Au/MoO2 and Cu/MoO2 remain in a metallic state, while there is a minor MoO2 -> MoO3 transformation. Formate- and/or carbonate-like species are present on the surface of the catalysts. DFT calculations indicate that the oxide support in Au/MoO2 and Cu/MoO2 is directly involved in the WGS process. (C) 2007 Elsevier B.V. All rights reserved. C1 [Rodriguez, J. A.; Liu, R.; Hrbek, J.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. [Perez, M.; Evans, J.] Cent Univ Venezuela, Fac Ciencias, Caracas 1020A, Venezuela. RP Rodriguez, JA (reprint author), Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. EM rodrigez@bnl.gov RI Hrbek, Jan/I-1020-2013 NR 28 TC 39 Z9 40 U1 4 U2 81 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1381-1169 J9 J MOL CATAL A-CHEM JI J. Mol. Catal. A-Chem. PD FEB 18 PY 2008 VL 281 IS 1-2 SI SI BP 59 EP 65 DI 10.1016/j.molcata.2007.07.032 PG 7 WC Chemistry, Physical SC Chemistry GA 274SE UT WOS:000254020500009 ER PT J AU Hau-Riege, SP AF Hau-Riege, Stefan P. TI Effect of the coherence properties of self-amplified-spontaneous-emission x-ray free electron lasers on single-particle diffractive imaging SO OPTICS EXPRESS LA English DT Article AB The longitudinal coherence properties of self-amplified-spontaneous-emission x-ray free electron lasers limit the resolution of single-particle diffraction imaging. We found that for the Linac Coherent Light Source (LCLS) at a wavelength of 1.5 angstrom the particles have to be smaller than 500 nm in diameter to achieve atomic-resolution imaging with a resolution length of less than 2 angstrom, suggesting that the longitudinal coherence is sufficient for imaging most biomolecular samples of interest. (c) 2008 Optical Society of America. C1 Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Hau-Riege, SP (reprint author), Lawrence Livermore Natl Lab, POB 808, Livermore, CA 94551 USA. EM hauriege1@llnl.gov NR 16 TC 7 Z9 7 U1 0 U2 1 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD FEB 18 PY 2008 VL 16 IS 4 BP 2840 EP 2844 DI 10.1364/OE.16.002840 PG 5 WC Optics SC Optics GA 268BE UT WOS:000253552100060 PM 18542368 ER PT J AU McGrath, LM Parnas, RS King, SH Schroeder, JL Fischer, DA Lenhart, JL AF McGrath, Laura M. Parnas, Richard S. King, Saskia H. Schroeder, John L. Fischer, Daniel A. Lenhart, Joseph L. TI Investigation of the thermal, mechanical, and fracture properties of alumina-epoxy composites SO POLYMER LA English DT Article DE epoxy; composite; filled polymer ID GLASS-TRANSITION TEMPERATURE; ULTRATHIN POLYMER-FILMS; ANGULAR-SHAPED SILICA; BEAD FILLED EPOXIES; PARTICLE-SIZE; THIN-FILMS; PARTICULATE COMPOSITES; SPHERICAL SILICA; NETWORK FILMS; RESIN AB A combination of dynamic shear rheology, thermomechanical analysis (TMA), scanning electron microscopy (SEM), Near-Edge X-ray Absorption Fine Structure (NEXAFS), and fracture toughness testing was utilized to characterize the thermal, mechanical, chemical, and fracture properties of alumina (alpha-Al2O3)-filled epoxy resins as a function of average filler size, size distribution, particle shape, loading, and epoxy crosslink density. In general the cured properties of the filled composites were robust. Small changes in particle size, shape, and size distribution had little impact on the final properties. Resin crosslink density and filler loading were the most critical variables, causing changes in all properties. However, most applications could likely tolerate small changes in these variables also. SEM and NEXAFS characterization of the fracture surfaces revealed that the fracture occurs at the filler interface and the interfacial epoxy composition is similar to the bulk resin, indicating a weak epoxy-alumina interaction. These results are critical for implementation of particulate-filled polymer composites in practical applications because relaxed material specifications and handling procedures can be incorporated in production environments to improve efficiency. (C) 2007 Elsevier Ltd. All rights reserved. C1 [McGrath, Laura M.; King, Saskia H.; Schroeder, John L.; Lenhart, Joseph L.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [McGrath, Laura M.; Parnas, Richard S.] Univ Connecticut, Inst Mat Sci, Polymer Program, Storrs, CT 06269 USA. [Fischer, Daniel A.] NIST, Div Ceram, Gaithersburg, MD 20899 USA. RP Lenhart, JL (reprint author), Sandia Natl Labs, POB 5800,MS 0888, Albuquerque, NM 87185 USA. EM jllenha@sandia.gov NR 89 TC 89 Z9 91 U1 8 U2 57 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0032-3861 J9 POLYMER JI Polymer PD FEB 18 PY 2008 VL 49 IS 4 BP 999 EP 1014 DI 10.1016/j.polymer.2007.12.014 PG 16 WC Polymer Science SC Polymer Science GA 272GA UT WOS:000253846700022 ER PT J AU Oden, M Niemi, A Tsang, CF Ohman, J AF Oden, Magnus Niemi, Auli Tsang, Chin-Fu Ohman, Johan TI Regional channelized transport in fractured media with matrix diffusion and linear sorption SO WATER RESOURCES RESEARCH LA English DT Article ID HETEROGENEOUS POROUS-MEDIA; SOLUTE TRANSPORT; CRYSTALLINE ROCK; TRACER TRANSPORT; CONTINUUM REPRESENTATION; SINGLE FRACTURE; FLOW; NETWORKS; MODEL; RETARDATION AB A regional-scale solute transport model with long-range flow channeling is used to study the effect of matrix diffusion and linear sorption on channelized transport. We start from a fracture-network-based block model to build up a large-scale flow and transport model with regional flow channeling, and then incorporate the processes of matrix diffusion and linear sorption. Regional-scale solute transport is then studied by applying the model to the fracture data set from Sellafield, England. The results demonstrate the significant impact that matrix diffusion has on regional-scale solute travel times for different degrees of long-range channeling. With no channeling, a relatively sharp and significantly delayed arrival can be observed, which is the well-known retardation effect of matrix diffusion and linear sorption. However, with increasing regional channeling the delay becomes much smaller while the spread of transit times becomes much larger. The solute breakthrough curves obtained are analyzed with both the traditional advection-dispersion equation (ADE) and a Continuous Time Random Walk (CTRW) method developed for non-Fickian transport. The low beta values obtained from the CTRW model indicate an extremely non-Fickian transport, which is also confirmed by the low Peclet numbers (much less than 1) required for the best fit to the ADE model. In particular, the times for the first arrival of solute are much earlier when regional channeling occurs. In other words, the degree of large-scale channeling is a crucial parameter for determining the first arrival of particles, and it becomes even more important when matrix diffusion and linear sorption are included in the model. C1 [Oden, Magnus; Niemi, Auli] Uppsala Univ, Dept Earth Sci, S-75236 Uppsala, Sweden. [Tsang, Chin-Fu] Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA USA. [Ohman, Johan] Golden Assoc AB, Uppsala, Sweden. RP Oden, M (reprint author), Uppsala Univ, Dept Earth Sci, Villavagen 16, S-75236 Uppsala, Sweden. EM magnus.oden@hyd.uu.se; johan_ohman@golder.se NR 69 TC 11 Z9 11 U1 1 U2 7 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0043-1397 EI 1944-7973 J9 WATER RESOUR RES JI Water Resour. Res. PD FEB 16 PY 2008 VL 44 IS 2 AR W02421 DI 10.1029/2006WR005632 PG 16 WC Environmental Sciences; Limnology; Water Resources SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water Resources GA 263SW UT WOS:000253237800001 ER PT J AU Guo, X Bandyopadhyay, P Schilling, B Young, MM Fujii, N Aynechi, T Guy, RK Kuntz, ID Gibson, BW AF Guo, Xin Bandyopadhyay, Pradipta Schilling, Birgit Young, Malin M. Fujii, Naoaki Aynechi, Tiba Guy, R. Kiplin Kuntz, Irwin D. Gibson, Bradford W. TI Partial acetylation of lysine residues improves intraprotein cross-linking SO ANALYTICAL CHEMISTRY LA English DT Article ID RESONANCE MASS-SPECTROMETRY; TOP-DOWN APPROACH; PROTEIN STRUCTURES; CYTOCHROME-P450; BIOINFORMATICS; IDENTIFICATION; REDUCTASE AB Intramolecular cross-linking coupled with mass spectrometric identification of cross-linked amino acids is a rapid method for elucidating low-resolution protein tertiary structures or fold families. However, previous cross-linking studies on model proteins, such as cytochrome c and ribonuclease A, identified a limited number of peptide cross-links that are biased toward only a few of the potentially reactive lysine residues. Here, we report an approach to improve the diversity of intramolecular protein cross-linking starting with a systematic quantitation of the reactivity of lysine residues of a model protein, bovine cytochrome c. Relative lysine reactivities among the 18 lysine residues of cytochrome c were determined by the ratio of d(0) and acetyl-d(3) groups at each lysine after partial acetylation with sulfosuccinimidyl acetate followed by denaturation and quantitative acetylation of remaining unmodified lysines with acetic-d(6) anhydride. These lysine reactivities were then compared with theoretically derived pK(a) and relative solvent accessibility surface values. To ascertain if partial N-acetylation of the most reactive lysine residues prior to cross-linking can redirect and increase the observable Lys-Lys cross-links, partially acetylated bovine cytochrome c was cross-linked with the amine-specific, bis-functional reagent, bis(sulfosuccinimidyl)suberate. After proteolysis and mass spectrometry analysis, partial acetylation was shown to significantly increase the number of observable peptides containing Lys-Lys cross-links, shifting the pattern from the most reactive lysine residues to less reactive ones. More importantly, these additional cross-linked peptides contained novel Lys-Lys cross-link information not seen in the non-acetylated protein and provided additional distance constraints that were consistent with the crystal structure and facilitated the identification of the proper protein fold. C1 [Guo, Xin; Bandyopadhyay, Pradipta; Fujii, Naoaki; Aynechi, Tiba; Kuntz, Irwin D.; Gibson, Bradford W.] Univ Calif San Francisco, Dept Pharmaceut Chem, San Francisco, CA 94143 USA. [Guo, Xin] Univ Pacific, Dept Pharmacetu & Med Chem, Stockton, CA 95211 USA. [Schilling, Birgit; Gibson, Bradford W.] Buck Inst Age Res, Novato, CA USA. [Young, Malin M.] Sandia Natl Labs, Livermore, CA 94551 USA. [Guy, R. Kiplin] St Jude Childrens Hosp, Memphis, TN 38105 USA. RP Gibson, BW (reprint author), Univ Calif San Francisco, Dept Pharmaceut Chem, San Francisco, CA 94143 USA. EM bgibson@buckinstitute.org RI Fujii, Naoaki/I-6423-2013; Guy, Rodney/J-7107-2013 OI Guy, Rodney/0000-0002-9638-2060 NR 20 TC 24 Z9 25 U1 0 U2 12 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 J9 ANAL CHEM JI Anal. Chem. PD FEB 15 PY 2008 VL 80 IS 4 BP 951 EP 960 DI 10.1021/ac701636w PG 10 WC Chemistry, Analytical SC Chemistry GA 262RJ UT WOS:000253165400006 PM 18201069 ER PT J AU Kertesz, V van Berkel, GJ AF Kertesz, Vilmos van Berkel, Gary J. TI Scanning and surface alignment considerations in chemical imaging with desorption electrospray mass spectrometry SO ANALYTICAL CHEMISTRY LA English DT Article ID THIN-LAYER-CHROMATOGRAPHY; IONIZATION DESI; AMBIENT CONDITIONS; PHARMACEUTICAL SAMPLES; TISSUE; ALKALOIDS; ANALYTES; PLATES AB The effects of surface scanning mode (raster vs unidirectional scanning) and the constancy of spray tip-to-surface and atmospheric sampling interface capillary-to-surface distances on chemical image quality using desorption electrospray ionization mass spectrometry were investigated. Unidirectional scanning was found to provide a spatially and a quantitatively more precise chemical image of the surface as compared to raster scanning. Maintaining constant spray tip-to-surface and atmospheric sampling interface capillary-to-surface distances during an imaging experiment was found to also be critical. An automation process was implemented using a custom image analysis software (HandsFree Surface Analysis) to keep these distances constant during the surface sampling experiment. Improved chemical image quality afforded through this software control was illustrated by imaging printed objects on normal copy paper. C1 [Kertesz, Vilmos; van Berkel, Gary J.] Oak Ridge Natl Lab, Organ & biol Mass Spect Grp, Div Chem Sci, Oak Ridge, TN 37831 USA. RP Kertesz, V (reprint author), Oak Ridge Natl Lab, Organ & biol Mass Spect Grp, Div Chem Sci, Oak Ridge, TN 37831 USA. EM kerteszv@ornl.gov RI Kertesz, Vilmos/M-8357-2016 OI Kertesz, Vilmos/0000-0003-0186-5797 NR 20 TC 39 Z9 39 U1 3 U2 24 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 J9 ANAL CHEM JI Anal. Chem. PD FEB 15 PY 2008 VL 80 IS 4 BP 1027 EP 1032 DI 10.1021/ac701947d PG 6 WC Chemistry, Analytical SC Chemistry GA 262RJ UT WOS:000253165400016 PM 18193892 ER PT J AU Pasilis, SP Kertesz, V Van Berkel, GJ AF Pasilis, Sofie P. Kertesz, Vilmos Van Berkel, Gary J. TI Unexpected analyte oxidation during desorption electrospray ionization-mass spectrometry SO ANALYTICAL CHEMISTRY LA English DT Article ID RADICAL PROBE; CAPILLARY; MECHANISMS; EMITTER; DESI AB During the analysis of surface-spotted analytes using desorption electrospray ionization-mass spectrometry (DESI-MS), abundant ions are sometimes observed that appear to be the result of oxygen addition reactions. In this investigation, the effect of sample aging, the ambient lab environment, spray voltage, analyte surface concentration, and surface type on this oxidative modification of spotted analytes, exemplified by tamoxifen and reserpine, during analysis by DESI-MS was studied. Simple exposure of the samples to air and to ambient fighting increased the extent of oxidation. Increased spray voltage also led to increased analyte oxidation, possibly as a result of oxidative species formed electrochemically at the emitter electrode or in the gas phase by discharge processes. These oxidative species are carried by the spray and impinge on and react with the sampled analyte during desorption/ionization. The relative abundance of oxidized species was more significant for the analysis of deposited analyte having a relatively low surface concentration. Increasing the spray solvent flow rate and the addition of hydroquinone as a redox buffer to the spray solvent were found to decrease, but not entirely eliminate, analyte oxidation during analysis. The major parameters that both minimize and maximize analyte oxidation were identified, and DESI-MS operational recommendations to avoid these unwanted reactions are suggested. C1 [Pasilis, Sofie P.; Kertesz, Vilmos; Van Berkel, Gary J.] Oak Ridge Natl Lab, Div Chem Sci, Organ & Biol Mass Spectrometry Grp, Oak Ridge, TN 37831 USA. RP Van Berkel, GJ (reprint author), Oak Ridge Natl Lab, Div Chem Sci, Organ & Biol Mass Spectrometry Grp, Oak Ridge, TN 37831 USA. EM vanberkelgj@ornl.gov RI Kertesz, Vilmos/M-8357-2016 OI Kertesz, Vilmos/0000-0003-0186-5797 NR 32 TC 47 Z9 47 U1 2 U2 22 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 J9 ANAL CHEM JI Anal. Chem. PD FEB 15 PY 2008 VL 80 IS 4 BP 1208 EP 1214 DI 10.1021/ac701791w PG 7 WC Chemistry, Analytical SC Chemistry GA 262RJ UT WOS:000253165400040 PM 18183963 ER PT J AU Kolasinski, RD Polk, JE Goebel, D Johnson, LK AF Kolasinski, Robert D. Polk, James E. Goebel, Dan Johnson, Lee K. TI Carbon sputtering yield measurements at grazing incidence SO APPLIED SURFACE SCIENCE LA English DT Article DE sputtering; QCM; thin film; ion beam; carbon ID ENERGY-DEPENDENCE; MONATOMIC SOLIDS; ION-BOMBARDMENT AB In this investigation, carbon sputtering yields were measured experimentally at varying angles of incidence under Xe+ bombardment. The measurements were obtained by etching a coated quartz crystal microbalance (QCM) with a low energy ion beam. The material properties of the carbon targets were characterized with a scanning electron microscope (SEM) and Raman spectroscopy. C sputtering yields measured under Ar+ and Xe+ bombardment at normal incidence displayed satisfactory agreement with previously published data over an energy range of 200 eV-1 keV. For Xe+ ions, the dependence of the yields on angle of incidence theta was determined for 0 degrees <= theta <= 80 degrees. Over this range, an increase in C sputtering yield by a factor of 4.8 was observed, with the peak in yield occurring at 70 degrees. This is a much higher variation compared to Xe+ -> Mo yields under similar conditions, a difference that may be attributed to higher scattering of the incident particles transverse to the beam direction than in the case of Xe+! C. In addition, the variation of the yields with theta was not strongly energy dependent. Trapping of Xe in the surface was observed, in contrast to observations using the QCM technique with metallic target materials. Finally, target surface roughness was characterized using atomic force microscope measurements to distinguish between the effects of local and overall angle of incidence of the target. (c) 2007 Elsevier B. V. All rights reserved. C1 [Kolasinski, Robert D.] CALTECH, Pasadena, CA 91125 USA. [Polk, James E.; Goebel, Dan; Johnson, Lee K.] CALTECH, Jet Prop Lab, NASA, Pasadena, CA 91109 USA. RP Kolasinski, RD (reprint author), Sandia Natl Labs, POB 969,MS 9161, Livermore, CA 94551 USA. EM rkolasi@sandia.gov NR 28 TC 14 Z9 14 U1 1 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0169-4332 J9 APPL SURF SCI JI Appl. Surf. Sci. PD FEB 15 PY 2008 VL 254 IS 8 BP 2506 EP 2515 DI 10.1016/j.apsusc.2007.09.082 PG 10 WC Chemistry, Physical; Materials Science, Coatings & Films; Physics, Applied; Physics, Condensed Matter SC Chemistry; Materials Science; Physics GA 277FN UT WOS:000254198200048 ER PT J AU Briknarova, K Zhou, X Satterthwait, A Hoyt, DW Ely, KR Huang, S AF Briknarova, Kldra Zhou, Xin Satterthwait, Arnold Hoyt, David W. Ely, Kathryn R. Huang, Shi TI Structural studies of the SET domain from RIZ1 tumor suppressor SO BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS LA English DT Article DE SET domain; PR domain; RIZ1; histone lysine methyltransferase; PRDM2 ID ZINC-FINGER PROTEIN; HISTONE METHYLTRANSFERASE; CHEMICAL-SHIFT; PR DOMAIN; NMR; GENE; INACTIVATION; INTERFACE; PROGRAM; QUALITY AB RIZ1 is a transcriptional regulator and tumor suppressor that catalyzes methylation of lysine 9 of histone H3. It contains a distinct SET domain, sometimes referred to as PR (PRDI-BF1 and RIZ1 homology) domain, that is responsible for its catalytic activity. We determined the solution structure of the PR domain from RIZ1 and characterized its interaction with S-adenoSyl-L-homocysteine (SAH) and a peptide from histone H3. Despite low sequence identity with canonical SET domains, the PR domain displays a typical SET fold including a pseudo-knot at the C-terminus. The N-flanking sequence of RIZ1 PR domain adopts a novel conformation and interacts closely with the SET fold. The C-flanking sequence contains an alpha-helix that points away from the protein face that harbors active site in other SET domains. The SET fold of RIZ1 does not have detectable affinity for SAH but it interacts with a synthetic peptide comprising residues 1-20 of histone H3. (c) 2007 Elsevier Inc. All rights reserved. C1 [Briknarova, Kldra] Univ Montana, Dept Chem, Missoula, MT 59812 USA. [Zhou, Xin; Satterthwait, Arnold; Ely, Kathryn R.; Huang, Shi] Burnham Inst Med Res, La Jolla, CA 92037 USA. [Hoyt, David W.] Pacific NW Natl Lab, WR Wiley Environm Mol Sci Lab, Richland, WA 99352 USA. RP Briknarova, K (reprint author), Univ Montana, Dept Chem, 32 Campus Dr, Missoula, MT 59812 USA. EM klara.briknarova@umontana.edu RI Hoyt, David/H-6295-2013 NR 26 TC 12 Z9 14 U1 0 U2 4 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0006-291X J9 BIOCHEM BIOPH RES CO JI Biochem. Biophys. Res. Commun. PD FEB 15 PY 2008 VL 366 IS 3 BP 807 EP 813 DI 10.1016/j.bbrc.2007.12.034 PG 7 WC Biochemistry & Molecular Biology; Biophysics SC Biochemistry & Molecular Biology; Biophysics GA 253KZ UT WOS:000252518400033 PM 18082620 ER PT J AU Badireddy, AR Chellam, S Yanina, S Gassman, P Rosso, KM AF Badireddy, Appala Raju Chellam, Shankararaman Yanina, Svetlana Gassman, Paul Rosso, Kevin M. TI Bismuth dimercaptopropanol (BisBAL) inhibits the expression of extracellular polysaccharides and proteins by Brevundimonas diminuta: Implications for membrane microfiltration SO BIOTECHNOLOGY AND BIOENGINEERING LA English DT Article DE biofilm; extracellular polymeric substances (EPS); membrane filtration; biofouling; bismuth; microfiltration; ultrafiltration ID PSEUDOMONAS-AERUGINOSA; POLYMERIC SUBSTANCES; BACILLUS-SUBTILIS; WASTE-WATER; BIOFILMS; DIMERCAPROL; SPECTROSCOPY; ENHANCEMENT; SURFACTANTS; ADSORPTION AB A 2:1 molar ratio preparation of bismuth with a lipophilic dithiol (3-dimercapto-1-propanol, BAL) significantly reduced extracellular polymeric substances (EPS) expression by Brevundimonas diminuta in suspended cultures at levels just below the minimum inhibitory concentration (MIC). Total polysaccharides and proteins secreted by B. diminuta decreased by approximately 95% over a 5-day period when exposed to the bismuth-BAL chelate (BisBAL) at near MIC (12 mu M). Fourier-transform infrared spectroscopy (FTIR) suggested that a possible mechanism of biofilm disruption by BisBAL is the inhibition of carbohydrate O-acetylation. FTIR also revealed extensive homology between EPS samples with and without BisBAL treatment, with proteins, polysaccharides, and peptides varying predominantly only in the amount expressed. EPS secretion decreased following BisBAL treatment as verified by atomic force microscopy and scanning electron microscopy. Without BisBAL treatment, a slime-like EPS matrix secreted by B. diminuta resulted in biofouling and inefficient hydrodynamic backwashing of microfiltration membranes. C1 [Chellam, Shankararaman] Univ Houston, Dept Chem & Biomol Engn, Houston, TX 77204 USA. [Badireddy, Appala Raju; Chellam, Shankararaman] Univ Houston, Dept Civil & Environm Engn, Houston, TX 77204 USA. [Yanina, Svetlana; Gassman, Paul; Rosso, Kevin M.] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. RP Chellam, S (reprint author), Univ Houston, Dept Chem & Biomol Engn, Houston, TX 77204 USA. EM chellam@uh.edu NR 43 TC 23 Z9 23 U1 2 U2 14 PU JOHN WILEY & SONS INC PI HOBOKEN PA 111 RIVER ST, HOBOKEN, NJ 07030 USA SN 0006-3592 J9 BIOTECHNOL BIOENG JI Biotechnol. Bioeng. PD FEB 15 PY 2008 VL 99 IS 3 BP 634 EP 643 DI 10.1002/bit.21615 PG 10 WC Biotechnology & Applied Microbiology SC Biotechnology & Applied Microbiology GA 253IL UT WOS:000252511800016 PM 17705249 ER PT J AU Ding, BS Hong, N Murciano, JC Ganguly, K Gottstein, C Christofidou-Solomidou, M Albelda, SM Fisher, AB Cines, DB Muzykantov', VR AF Ding, Bi-Sen Hong, Nankang Murciano, Juan-Carlos Ganguly, Kumkum Gottstein, Claudia Christofidou-Solomidou, Melpo Albelda, Steven M. Fisher, Aron B. Cines, Douglas B. Muzykantov', Vladimir R. TI Prophylactic thrombolysis by thrombin-activated latent prourokinase targeted to PECAM-1 in the pulmonary vasculature SO BLOOD LA English DT Article ID CHIMERIC PLASMINOGEN-ACTIVATOR; SINGLE-CHAIN UROKINASE; TISSUE FACTOR; FUSION PROTEIN; IN-VIVO; ANTIBODY; MICE; FIBRIN; INJURY; TPA AB A recombinant prodrug, single-chain urokinase-type plasminogen activator (scuPA) fused to an anti-PECAM-1 antibody single-chain variable fragment (anti-PECAM scFv/scuPA) targets endothelium and augments thrombolysis in the pulmonary vasculature.(1) To avoid premature activation and inactivation and to limit systemic toxicity, we replaced the native plasmin activation site in scFv/low-molecular-weight (Imw)-scuPA with a thrombin activation site, generating anti-PECAM scFv/uPA-T that (1) is latent and activated by thrombin instead of plasmin; (2) binds to PECAM-1; (3) does not consume plasma fibrinogen; (4) accumulates in mouse lungs after intravenous injection; and (5) resists PA inhibitor PAI-1 until activated by thrombin. In mouse models of pulmonary thrombosis caused by thromboplastin and ischemia-reperfusion (I/R), scFv/uPA-T provided more potent thromboprophylaxis and greater lung protection than plasminsensitive scFv/uPA. Endothelium-targeted thromboprophylaxis triggered by a, prothrombotic enzyme illustrates a novel approach to time- and site-specific regulation of proteolytic reactions that can be modulated for therapeutic benefit. C1 [Ding, Bi-Sen; Muzykantov', Vladimir R.] Univ Penn, Dept Pharmacol, Inst Translat Med & Therapeut, Philadelphia, PA 19104 USA. [Hong, Nankang; Fisher, Aron B.; Muzykantov', Vladimir R.] Univ Penn, Inst Environm Med, Philadelphia, PA 19104 USA. [Murciano, Juan-Carlos] Ctr Nacl Invest Cardiovasc, Madrid, Spain. [Ganguly, Kumkum] Los Alamos Natl Lab, Los Alamos, NM USA. [Gottstein, Claudia] Univ Calif Santa Barbara, Dept Chem Engn, Santa Barbara, CA 93106 USA. [Cines, Douglas B.] Univ Penn, Dept Pathol & Lab Med, Philadelphia, PA 19104 USA. RP Ding, BS (reprint author), Univ Penn, Dept Pharmacol, Inst Translat Med & Therapeut, Philadelphia, PA 19104 USA. FU NCI NIH HHS [CA83121, R01 CA083121]; NHLBI NIH HHS [HL076406, P01 HL079063, R01 HL071174, HL076206, R01 HL076206, P01 HL076406, HL71175, HL071174, HL079063, R01 HL071175] NR 35 TC 33 Z9 33 U1 0 U2 5 PU AMER SOC HEMATOLOGY PI WASHINGTON PA 1900 M STREET. NW SUITE 200, WASHINGTON, DC 20036 USA SN 0006-4971 J9 BLOOD JI Blood PD FEB 15 PY 2008 VL 111 IS 4 BP 1999 EP 2006 DI 10.1182/blood-2007-07-103002 PG 8 WC Hematology SC Hematology GA 263XZ UT WOS:000253251100046 PM 18045968 ER PT J AU Jeon, B Kress, JD Collins, LA Gronbech-Jensen, N AF Jeon, Byoungseon Kress, Joel D. Collins, Lee A. Gronbech-Jensen, Niels TI Parallel TREE code for two-component ultracold plasma analysis SO COMPUTER PHYSICS COMMUNICATIONS LA English DT Article DE uhracold plasma; two-component plasma; TREE; domain decomposition; intermediate granularity; ghost TREE; dynamic memory management; hybrid parallel computing ID ALGORITHM; SIMULATION AB The TREE method has been widely used for long-range interaction N-body problems. We have developed a parallel TREE code for two-component classical plasmas with open boundary conditions and highly non-uniform charge distributions. The program efficiently handles millions of particles evolved over long relaxation times requiring millions of time steps. Appropriate domain decomposition and dynamic data management were employed, and large-scale parallel processing was achieved using an intermediate level of granularity of domain decomposition and ghost TREE communication. Even though the computational load is not fully distributed in fine grains, high parallel efficiency was achieved for ultracold plasma systems of charged particles. As an application, we performed simulations of an ultracold neutral plasma with a half million particles and a half million time steps. For the long temporal trajectories of relaxation between heavy ions and light electrons, large configurations of ultracold plasmas can now be investigated, which was not possible in past studies. (C) 2007 Elsevier B.V. All rights reserved. C1 [Jeon, Byoungseon; Kress, Joel D.; Collins, Lee A.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Jeon, Byoungseon; Gronbech-Jensen, Niels] Univ Calif Davis, Dept Appl Sci, Davis, CA 95616 USA. RP Jeon, B (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. EM bjeon@ucdavis.edu RI Jeon, ByoungSeon/D-2281-2012 NR 21 TC 8 Z9 8 U1 0 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0010-4655 EI 1879-2944 J9 COMPUT PHYS COMMUN JI Comput. Phys. Commun. PD FEB 15 PY 2008 VL 178 IS 4 BP 272 EP 279 DI 10.1016/j.cpc.2007.09.003 PG 8 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA 277BV UT WOS:000254188600002 ER PT J AU Xu, J Ostroumov, PN Nolen, J AF Xu, J. Ostroumov, P. N. Nolen, J. TI A parallel 3D Poisson solver for space charge simulation in cylindrical coordinates SO COMPUTER PHYSICS COMMUNICATIONS LA English DT Article DE space charge; Poisson equation; Fourier expansion; spectral element method; domain decomposition ID ARBITRARY ORDER ACCURACY; EQUATION; BEAM AB This paper presents the development of a parallel three-dimensional Poisson solver in cylindrical coordinate system for the electrostatic potential of a charged particle beam in a circular tube. The Poisson solver uses Fourier expansions in the longitudinal and azimuthal directions, and Spectral Element discretization in the radial direction. A Dirichlet boundary condition is used on the cylinder wall, a natural boundary condition is used on the cylinder axis and a Dirichlet or periodic boundary condition is used in the longitudinal direction. A parallel 2D domain decomposition was implemented in the (r, theta) plane. This solver was incorporated into the parallel code PTRACK for beam dynamics simulations. Detailed benchmark results for the parallel solver and a beam dynamics simulation in a high-intensity proton LINAC are presented. When the transverse beam size is small relative to the aperture of the accelerator line, using the Poisson solver in a Cartesian coordinate system and a Cylindrical coordinate system produced similar results. When the transverse beam size is large or beam center located off-axis, the result from Poisson solver in Cartesian coordinate system is not accurate because different boundary condition used. While using the new solver, we can apply circular boundary condition easily and accurately for beam dynamic simulations in accelerator devices. (C) 2007 Elsevier B.V. All rights reserved. C1 [Xu, J.; Ostroumov, P. N.; Nolen, J.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. RP Xu, J (reprint author), Argonne Natl Lab, Div Phys, 9700 S Cass Ave, Argonne, IL 60439 USA. EM jin_xu@anl.gov; ostroumov@phy.anl.gov; nolen@anl.gov RI Xu, Jin/C-7751-2014 OI Xu, Jin/0000-0002-1147-7408 NR 16 TC 5 Z9 5 U1 2 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0010-4655 J9 COMPUT PHYS COMMUN JI Comput. Phys. Commun. PD FEB 15 PY 2008 VL 178 IS 4 BP 290 EP 300 DI 10.1016/j.cpc.2007.09.008 PG 11 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA 277BV UT WOS:000254188600004 ER PT J AU Cey, BD Hudson, GB Moran, JE Scanlon, BR AF Cey, Bradley D. Hudson, G. Bryant Moran, Jean E. Scanlon, Bridget R. TI Impact of artificial recharge on dissolved noble gases in groundwater in California SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID AQUIFER; FLOW; WATER; AIR; ISOTOPE; ENGLAND; BASIN; PALEOCLIMATE; TRACERS; CLIMATE AB Dissolved noble gas concentrations in groundwater can provide valuable information on recharge temperatures and enable H-3-He-3 age-dating with the use of physically based interpretive models. This study presents a large (905 samples) data set of dissolved noble gas concentrations from drinking water supply wells throughout California, representing a range of physiographic, climatic, and water management conditions. Three common interpretive models (unfractionated air, UA; partial re-equilibration, PR; and closed system equilibrium, CE) produce systematically different recharge temperatures or ages; however, the ability of the different models to fit measured data within measurement uncertainty indicates that goodness-of-fit is not a robust indicator for model appropriateness. Therefore caution is necessary when interpreting model results. Samples from multiple locations contained significantly higher Ne and excess air concentrations than reported in the literature, with maximum excess air tending toward 0.05 cm(3) STP g(-1) (Delta Ne similar to 400%). Artificial recharge is the most plausible cause of the high excess air concentrations. The ability of artificial recharge to dissolve greater amounts of atmospheric gases has important implications for oxidation-reduction dependent chemical reactions. Measured gas concentration ratios suggest that diffusive degassing may have occurred. Understanding the physical processes controlling gas dissolution during groundwater recharge is critical for optimal management of artificial recharge and for predicting changes in water quality that can occur following artificial recharge. C1 [Cey, Bradley D.] Univ Texas Austin, Jackson Sch Geosci, Dept Geol Sci, Austin, TX 78712 USA. [Hudson, G. Bryant; Moran, Jean E.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Scanlon, Bridget R.] Univ Texas Austin, Bur Econ Geol, Jackson Sch Geosci, Austin, TX 78712 USA. RP Cey, BD (reprint author), Univ Texas Austin, Jackson Sch Geosci, Dept Geol Sci, Austin, TX 78712 USA. EM bdc@mail.utexas.edu RI Scanlon, Bridget/A-3105-2009 OI Scanlon, Bridget/0000-0002-1234-4199 NR 45 TC 21 Z9 22 U1 2 U2 19 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD FEB 15 PY 2008 VL 42 IS 4 BP 1017 EP 1023 DI 10.1021/es0706044 PG 7 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 263XW UT WOS:000253250800013 PM 18351066 ER PT J AU Stephan, CH Sullivan, J AF Stephan, Craig H. Sullivan, John TI Environmental and energy implications of plug-in hybrid-electric vehicles SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article AB We analyze the effect of charging a significant number of plug-in hybrid vehicles (PHEVs) in the United States using presently available night-time spare electric capacity in the short term and new base-load capacity in the long term, Nationwide, there is currently ample spare night-time utility capacity to charge even a large fleet of PHEVs. Using the mix of generating plants expected to be used for PHEV charging, we find that, while driving on battery power, PHEVs compared to their conventional hybrid counterparts reduce CO2 emissions by 25% in the short term and as much as 50% in the long term. The short-term fractional increase in demand for margin fuels such as natural gas is found to be roughly twice the fractional penetration of PHEVs into the nationwide light-duty vehicle fleet. We also compare, on an energy basis, the CO2 savings of replacing coal plants versus replacing conventional vehicles with PHEVs. The result is found to depend critically on the fuel economy of the vehicles displaced by the PHEVs. C1 [Stephan, Craig H.; Sullivan, John] Ford Motor Co, Dearborn, MI 48121 USA. RP Stephan, CH (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM cstephan@ani.gov NR 19 TC 80 Z9 90 U1 2 U2 25 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD FEB 15 PY 2008 VL 42 IS 4 BP 1185 EP 1190 DI 10.1021/es062314d PG 6 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 263XW UT WOS:000253250800038 PM 18351091 ER PT J AU van de Lagemaat, J Zhu, K Benkstein, KD Frank, AJ AF van de Lagemaat, Jao Zhu, Kai Benkstein, Kurt D. Frank, Arthur J. TI Temporal evolution of the electron diffusion coefficient in electrolyte-filled mesoporous nanocrystalline TiO2 films SO INORGANICA CHIMICA ACTA LA English DT Article DE dye-sensitized solar cells; TiO2; random walk; dispersive transport; ambipolar diffusion ID SENSITIZED SOLAR-CELLS; NANOSTRUCTURED SEMICONDUCTOR ELECTRODES; NANOPOROUS TIO2; POTENTIAL DISTRIBUTION; ACTIVATION-ENERGIES; AMBIPOLAR DIFFUSION; CHARGE-TRANSPORT; BACK-REACTION; RECOMBINATION; PHOTOCURRENT AB Electron transport in electrolyte-filled mesoporous TiO2-based solar cells is described quantitatively from the perspective of the continuous-time random walk model. An analytical expression is derived for the time-dependent diffusion coefficient of electrons, which transforms at a characteristic ( Fermi) time from strongly time-dependent values (dispersive transport) at short times to relatively time-independent values (nondispersive transport) at long times. At short times, the diffusion coefficient displays a power-law behavior with time. The timescale for the diffusion coefficient to reach its steady-state value is substantially longer than the Fermi time. The Fermi time and the steepness of the distribution of waiting times associated with trap sites have a strong influence on both the steady-state diffusion coefficient of electrons and on the dispersiveness of electron transport. At short timescales, ionic drag, associated with the ambipolar effect, slows electron transport through the TiO2 matrix, whereas at steady state, transport is trap limited. Decreasing the electron density lowers the steady-state limit of the diffusion coefficient and increases the timescale over which transport is dispersive. (c) 2007 Published by Elsevier B.V. C1 [van de Lagemaat, Jao; Zhu, Kai; Benkstein, Kurt D.; Frank, Arthur J.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Frank, AJ (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM afrank@nrel.gov RI van de Lagemaat, Jao/J-9431-2012 NR 46 TC 21 Z9 21 U1 3 U2 20 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0020-1693 J9 INORG CHIM ACTA JI Inorg. Chim. Acta PD FEB 15 PY 2008 VL 361 IS 3 BP 620 EP 626 DI 10.1016/j.ica.2007.03.051 PG 7 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 280KV UT WOS:000254426600008 ER PT J AU Eggleston, CM Voros, J Shi, L Lower, BH Droubay, TC Colberg, PJS AF Eggleston, Carrick M. Voeroes, Janos Shi, Liang Lower, Brian H. Droubay, Timothy C. Colberg, Patricia J. S. TI Binding and direct electrochemistry of OmcA, an outer-membrane cytochrome from an iron reducing bacterium, with oxide electrodes: A candidate biofuel cell system SO INORGANICA CHIMICA ACTA LA English DT Article DE cytochrome; OmcA; adsorption; voltammetry; OWLS; AFM ID SHEWANELLA-ONEIDENSIS MR-1; C-TYPE CYTOCHROMES; MICROBIAL FUEL-CELLS; GEOBACTER-SULFURREDUCENS; PROTEIN ADSORPTION; DISSIMILATORY REDUCTION; HISTORY DEPENDENCE; FE(III) REDUCTION; MN(IV) REDUCTION; GEN. NOV. AB Dissimilatory iron-reducing bacteria transfer electrons to solid ferric respiratory electron acceptors. Outer-membrane cytochromes expressed by these organisms are of interest in both microbial fuel cells and biofuel cells. We use optical waveguide lightmode spectroscopy ( OWLS) to show that OmcA, an 85 kDa decaheme outer-membrane c-type cytochrome from Shewanella oneidensis MR-1, adsorbs to isostructural Al2O3 and Fe2O3 in similar amounts. Adsorption is ionic-strength and pH dependent ( peak adsorption at pH 6.5-7.0). The thickness of the OmcA layer on Al2O3 at pH 7.0 [5.8 +/- 1.1 (2 sigma) nm] from OWLS is similar, within error, to that observed using atomic force microscopy (4.8 +/- 2 nm). The highest adsorption density observed was 334 ng cm(-2) (2.4 x 10(12) molecules cm(-2)), corresponding to a monolayer of 9.9 nm diameter spheres or submonolayer coverage by smaller molecules. Direct electrochemistry of OmcA on Fe2O3 electrodes was observed using cyclic voltammetry, with cathodic peak potentials of -380 to -320 mV versus Ag/AgCl. Variations in the cathodic peak positions are speculatively attributed to redox-linked conformation change or changes in molecular orientation. OmcA can exchange electrons with ITO electrodes at higher current densities than with Fe2O3. Overall, OmcA can bind to and exchange electrons with several oxides, and thus its utility in fuel cells is not restricted to Fe2O3. (c) 2007 Elsevier B.V. All rights reserved. C1 [Eggleston, Carrick M.] Univ Wyoming, Dept Geol & Geophys, Laramie, WY 82071 USA. [Voeroes, Janos] Swiss Fed Inst Technol, Inst Biomed Engn, CH-8092 Zurich, Switzerland. [Shi, Liang] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. [Lower, Brian H.] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. [Droubay, Timothy C.] Pacific NW Natl Lab, Fundamental Sci Directorate, Richland, WA 99352 USA. [Colberg, Patricia J. S.] Univ Wyoming, Dept Zool & Physiol, Laramie, WY 82071 USA. RP Eggleston, CM (reprint author), Univ Wyoming, Dept Geol & Geophys, Laramie, WY 82071 USA. EM carrick@uwyo.edu RI Droubay, Tim/D-5395-2016 OI Droubay, Tim/0000-0002-8821-0322 NR 50 TC 47 Z9 47 U1 10 U2 76 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0020-1693 J9 INORG CHIM ACTA JI Inorg. Chim. Acta PD FEB 15 PY 2008 VL 361 IS 3 BP 769 EP 777 DI 10.1016/j.ica.2007.07.015 PG 9 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 280KV UT WOS:000254426600023 ER PT J AU Buttler, WT AF Buttler, W. T. TI Comment on "Accuracy limits and window corrections for photon Doppler velocimetry" [J. Appl. Phys. 101, 013523 (2007)] SO JOURNAL OF APPLIED PHYSICS LA English DT Editorial Material ID VELOCITIES; WAVES; LIGHT; FLOW C1 Los Alamos Natl Lab, Div Phys, Los Alamos, NM 87545 USA. RP Buttler, WT (reprint author), Los Alamos Natl Lab, Div Phys, MS H803, Los Alamos, NM 87545 USA. EM buttler@lanl.gov NR 16 TC 2 Z9 2 U1 1 U2 7 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD FEB 15 PY 2008 VL 103 IS 4 AR 046102 DI 10.1063/1.2838238 PG 2 WC Physics, Applied SC Physics GA 277CW UT WOS:000254191300088 ER PT J AU Jiang, C Srinivasan, SG Caro, A Maloy, SA AF Jiang, C. Srinivasan, S. G. Caro, A. Maloy, S. A. TI Structural, elastic, and electronic properties of Fe3C from first principles SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID GENERALIZED-GRADIENT APPROXIMATION; DENSITY-FUNCTIONAL THEORY; AB-INITIO; PHONON DISPERSIONS; THERMAL-EXPANSION; YOUNG MODULUS; CEMENTITE; IRON; TEMPERATURE; CONSTANTS AB Using first-principles calculations within the generalized gradient approximation, we predicted the lattice parameters, elastic constants, vibrational properties, and electronic structure of cementite (Fe3C). Its nine single-crystal elastic constants were obtained by computing total energies or stresses as a function of applied strain. Furthermore, six of them were determined from the initial slopes of the calculated longitudinal and transverse acoustic phonon branches along the [100], [010], and [001] directions. The three methods agree well with each other; the calculated polycrystalline elastic moduli are also in good overall agreement with experiments. Our calculations indicate that Fe3C is mechanically stable. The experimentally observed high elastic anisotropy of Fe3C is also confirmed by our study. Based on electronic density of states and charge density distribution, the chemical bonding in Fe3C was analyzed and was found to exhibit a complex mixture of metallic, covalent, and ionic characters. (c) 2008 American Institute of Physics. C1 [Jiang, C.; Srinivasan, S. G.; Maloy, S. A.] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. [Caro, A.] Lawrence Livermore Natl Lab, Div Mat Sci & Technol, Livermore, CA 94550 USA. RP Jiang, C (reprint author), Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. EM chao@lanl.gov RI Jiang, Chao/A-2546-2011; Maloy, Stuart/A-8672-2009; Jiang, Chao/D-1957-2017 OI Maloy, Stuart/0000-0001-8037-1319; Jiang, Chao/0000-0003-0610-6327 NR 46 TC 61 Z9 61 U1 4 U2 43 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD FEB 15 PY 2008 VL 103 IS 4 AR 043502 DI 10.1063/1.2884529 PG 8 WC Physics, Applied SC Physics GA 277CW UT WOS:000254191300010 ER PT J AU Rossi, M Mun, BS Enta, Y Fadley, CS Lee, KS Kim, SK Shin, HJ Hussain, Z Ross, PN AF Rossi, Massimiliano Mun, Bongjin S. Enta, Yoshiharti Fadley, Charles S. Lee, Ki-Suk Kim, Sang-Koog Shin, Hyun-Joon Hussain, Zahid Ross, Philip N., Jr. TI In situ observation of wet oxidation kinetics on Si(100) via ambient pressure x-ray photoemission spectroscopy SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID 2P CORE-LEVEL; THERMAL-OXIDATION; SILICON; INTERFACE; GROWTH AB The initial stages of wet thermal oxidation of Si(100)-(2 X 1) have been investigated by in situ ambient pressure x-ray photoemission spectroscopy, including chemical-state resolution via Si 2p core-level spectra. Real-time growth rates of silicon dioxide have been monitored at 100 mTorr of water vapor. This pressure is considerably higher than in any prior study using x-ray photoemission spectroscopy. Substrate temperatures have been varied between 250 and 500 degrees C. Above a temperature of similar to 400 degrees C, two distinct regimes, a rapid and a quasisaturated one, are identified, and growth rates show a strong temperature dependence which cannot be explained by the conventional Deal-Grove model. (C) 2008 American Institute of Physics. C1 [Rossi, Massimiliano; Mun, Bongjin S.; Fadley, Charles S.; Hussain, Zahid] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Mun, Bongjin S.] Hanyang Univ, Dept Appl Phys, Ansan 426791, Kyeonggi, South Korea. [Enta, Yoshiharti] Hirosaki Univ, Fac Sci & Technol, Hirosaki, Aomori 0368561, Japan. [Fadley, Charles S.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Lee, Ki-Suk; Kim, Sang-Koog] Seoul Natl Univ, Coll Engn, Dept Mat Sci & Engn, Res Ctr Spin Dynam & Spin Wave Devices, Seoul 151744, South Korea. [Lee, Ki-Suk; Kim, Sang-Koog] Seoul Natl Univ, Coll Engn, Dept Mat Sci & Engn, Nanospintron Lab, Seoul 151744, South Korea. [Shin, Hyun-Joon] POSTECH, Pohang Accelerator Lab, Pohang 790784, Kyungbuk, South Korea. [Ross, Philip N., Jr.] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Fadley, Charles S.] Forschungszentrum Julich, Inst Solid State Res, DE-52425 Julich, Germany. RP Mun, BS (reprint author), Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. EM bsmun@lbl.gov; enta@cc.hirosaki-u.ac.jp RI MSD, Nanomag/F-6438-2012; Enta, Yoshiharu/F-6995-2013; Mun, Bongjin /G-1701-2013; Kim, Sang-Koog/J-4638-2014 OI Enta, Yoshiharu/0000-0003-0199-1814; NR 15 TC 7 Z9 7 U1 0 U2 8 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD FEB 15 PY 2008 VL 103 IS 4 AR 044104 DI 10.1063/1.2832430 PG 4 WC Physics, Applied SC Physics GA 277CW UT WOS:000254191300059 ER PT J AU Xu, ZH Hu, B Howe, J AF Xu, Zhihua Hu, Bin Howe, Jane TI Improvement of photovoltaic response based on enhancement of spinorbital coupling and triplet states in organic solar cells SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID PHOTOINDUCED ELECTRON-TRANSFER; EXCITON DIFFUSION; ENERGY-TRANSFER; HIGH-EFFICIENCY; POLYMER; HETEROJUNCTIONS; FILMS; ABSORPTION; PHOTOEXCITATIONS; GENERATION AB This article reports an improvement of photovoltaic response by dilspersing phosphorescent Ir(ppy)(3) molecules in an organic solar cell of poly[2-methoxy-5-(2'-ethylhexyloxy)-1 4-phenylenevinylene] (MEH-PPV) blended with surface-functionalized fullerene 1-(3-methyloxycarbonyl)propy(1-phenyl [6,6]) C(61) (PCBM). The magnetic field-dependent photocurrent indicates that the dispersed lr(ppy)(3) molecules increase the spin-orbital coupling strength with the consequence of changing the singlet and triplet ratios through intersystem crossing due to the penetration of the delocalized pi electrons of MEH-PPV into the large orbital magnetic field of Ir(ppy)(3) dopants. The tuning of singlet and triplet exciton ratios can lead to an enhancement of photovoltaic response due to their different contributions to the two different photocurrent generation channels: exciton dissociation and exciton-charge reaction in organic materials. In addition, the photoluminescence temperature dependence reveals that the dispersed Ir(ppy)(3) reduces the recombination of dissociated charge carriers in the PCBM doped MEH-PPV. As a result, adjusting singlet and triplet ratios by introducing heavy-metal complex Ir(ppy)(3) provides a mechanism to improve the photovoltaic response through controlling exciton dissociation, exciton-charge reaction, and recombination of dissociated charge carriers in organic bulk-heterojunction solar cells. (C) 2008 American Institute Of Physics. C1 [Xu, Zhihua; Hu, Bin] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Howe, Jane] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Hu, B (reprint author), Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. EM bhu@utk.edu RI Xu, Zhihua/G-3956-2011; Howe, Jane/G-2890-2011; Hu, Bin/A-2954-2015 OI Hu, Bin/0000-0002-1573-7625 NR 43 TC 33 Z9 34 U1 1 U2 38 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD FEB 15 PY 2008 VL 103 IS 4 AR 043909 DI 10.1063/1.2885349 PG 8 WC Physics, Applied SC Physics GA 277CW UT WOS:000254191300051 ER PT J AU Zhou, SQ Potzger, K Kuepper, K Grenzer, J Helm, M Fassbender, J Arenholz, E Denlinger, JD AF Zhou, Shengqiang Potzger, K. Kuepper, K. Grenzer, J. Helm, M. Fassbender, J. Arenholz, E. Denlinger, J. D. TI Ni implanted ZnO single crystals: Correlation between nanoparticle formation and defect structure SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID MAGNETIC SEMICONDUCTORS; ALKALI-METALS; GIANT MOMENTS; CS FILMS; FE; CO; MYSTERY AB We show that metallic secondary phase formation inside ZnO(0001) single crystals implant-doped with Ni at an atomic concentration of 5% can be suppressed. All the Ni ions are in the 2(+) valence state after mild postannealing. The suppression is achieved by means of annealing of the crystals in high vacuum prior to implantation and is correlated with the introduction of structural disorder. The observed ferromagnetic properties of the preannealed crystals are evidently induced by defects and not primarily by the Ni doping. They degrade at ambient temperature within several days. (c) 2008 American Institute of Physics. C1 [Zhou, Shengqiang; Potzger, K.; Kuepper, K.; Grenzer, J.; Helm, M.; Fassbender, J.] Forschungszentrum Dresden Rossendorf, Inst Ion Beam Phys & Mat Res, D-01314 Dresden, Germany. [Arenholz, E.; Denlinger, J. D.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Potzger, K (reprint author), Forschungszentrum Dresden Rossendorf, Inst Ion Beam Phys & Mat Res, POB 510119, D-01314 Dresden, Germany. EM k.potzger@fzd.de RI Helm, Manfred/B-2284-2009; Zhou, Shengqiang/C-1497-2009; Fassbender, Juergen/A-8664-2008; Kupper, Karsten/G-1397-2016 OI Zhou, Shengqiang/0000-0002-4885-799X; Fassbender, Juergen/0000-0003-3893-9630; NR 25 TC 25 Z9 26 U1 2 U2 8 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD FEB 15 PY 2008 VL 103 IS 4 AR 043901 DI 10.1063/1.28370581 PG 5 WC Physics, Applied SC Physics GA 277CW UT WOS:000254191300043 ER PT J AU Tan, K Duquette, M Liu, JH Shanmugasundaram, K Joachimiak, A Gallagher, JT Rigby, AC Wang, JH Lawler, J AF Tan, Kemin Duquette, Mark Liu, Jin-huan Shanmugasundaram, Kumaran Joachimiak, Andrzej Gallagher, John T. Rigby, Alan C. Wang, Jia-huai Lawler, Jack TI Heparin-induced cis- and trans-dimerization modes of the thrombospondin-1 N-terminal domain SO JOURNAL OF BIOLOGICAL CHEMISTRY LA English DT Article ID FIBROBLAST-GROWTH-FACTOR; PROMOTES ANGIOGENESIS; CRYSTAL-STRUCTURE; MOLECULAR DIPOLE; COMPLEX REVEALS; TERNARY COMPLEX; BINDING; RECOGNITION; PROTEINS; INTEGRIN AB Through its interactions with proteins and proteoglycans, thrombospondin-1 (TSP-1) functions at the interface of the cell membrane and the extracellular matrix to regulate matrix structure and cellular phenotype. We have previously determined the structure of the high affinity heparin-binding domain of TSP-1, designated TSPN-1, in association with the synthetic heparin, Arixtra. To establish that the binding of TSPN-1 to Arixtra is representative of the association with naturally occurring heparins, we have determined the structures of TSPN-1 in complex with heparin oligosaccharides containing eight (dp8) and ten (dp10) subunits, by x-ray crystallography. We have found that dp8 and dp10 bind to TSPN-1 in a manner similar to Arixtra and that dp8 and dp10 induce the formation of trans and cis TSPN-1 dimers, respectively. In silico docking calculations partnered with our crystal structures support the importance of arginine residues in positions 29, 42, and 77 in binding sulfate groups of the dp8 and dp10 forms of heparin. The ability of several TSPN-1 domains to bind to glycosaminoglycans simultaneously probably increases the affinity of binding through multivalent interactions. The formation of cis and trans dimers of the TSPN-1 domain with relatively short segments of heparin further enhances the ability of TSP-1 to participate in high affinity binding to glycosaminoglycans. Dimer formation may also involve TSPN-1 domains from two separate TSP-1 molecules. This association would enable glycosaminoglycans to cluster TSP-1. C1 [Wang, Jia-huai] Harvard Univ, Beth Israel Deaconess Med Ctr, Sch Med, Vasc Biol Res Ctr,Dept Med,Div Mol & Vasc Med, Boston, MA 02215 USA. [Tan, Kemin; Liu, Jin-huan; Wang, Jia-huai] Dana Farber Canc Inst, Dept Med Oncol, Boston, MA 02115 USA. [Duquette, Mark; Lawler, Jack] Beth Israel Deaconess Med Ctr, Dept Pathol, Div Canc Biol & Angiogenesis, Boston, MA 02215 USA. [Tan, Kemin; Liu, Jin-huan] Harvard Univ, Sch Med, Dept Med, Boston, MA 02115 USA. [Lawler, Jack] Harvard Univ, Sch Med, Dept Pathol, Boston, MA 02115 USA. [Wang, Jia-huai] Harvard Univ, Sch Med, Dept Pediat, Boston, MA 02115 USA. [Wang, Jia-huai] Harvard Univ, Sch Med, Dept Biol Chem & Mol Pharmacol, Boston, MA 02115 USA. [Tan, Kemin; Joachimiak, Andrzej] Argonne Natl Lab, Midwest Ctr Struct Gem & Struct Biol Ctr, Biosci Div, Argonne, IL 60439 USA. [Gallagher, John T.] Univ Manchester, Christie Hosp NHS Trust, Dept Med Oncol, Manchester M20 4BX, Lancs, England. RP Rigby, AC (reprint author), Harvard Univ, Beth Israel Deaconess Med Ctr, Sch Med, Vasc Biol Res Ctr,Dept Med,Div Mol & Vasc Med, 330 Brookline Ave, Boston, MA 02215 USA. EM arigby@bidmc.harvard.edu; jwang@red.dfci.harvard.edu; jlawler@bidmc.harvard.edu FU NHLBI NIH HHS [R01 HL049081-10, HL48675, HL49081, HL68003, P01 HL048675, R01 HL049081, R01 HL068003] NR 51 TC 17 Z9 18 U1 0 U2 1 PU AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3996 USA SN 0021-9258 J9 J BIOL CHEM JI J. Biol. Chem. PD FEB 15 PY 2008 VL 283 IS 7 BP 3932 EP 3941 DI 10.1074/jbc.M705203200 PG 10 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 261MO UT WOS:000253083500027 PM 18065761 ER PT J AU Salameh, MA Soares, AS Hockla, A Radisky, ES AF Salameh, Moh'd A. Soares, Alexei S. Hockla, Alexandra Radisky, Evette S. TI Structural basis for accelerated cleavage of bovine pancreatic trypsin inhibitor (BPTI) by human mesotrypsin SO JOURNAL OF BIOLOGICAL CHEMISTRY LA English DT Article ID HUMAN CATIONIC TRYPSINOGEN; SITE PEPTIDE-BOND; REACTIVE-SITE; ALPHA-CHYMOTRYPSIN; CRYSTAL-STRUCTURE; HUMAN BRAIN; PROTEIN INHIBITORS; ZYMOGEN ACTIVATION; ACTIVE SITE; EXPRESSION AB Human mesotrypsin is an isoform of trypsin that displays unusual resistance to polypeptide trypsin inhibitors and has been observed to cleave several such inhibitors as substrates. Whereas substitution of arginine for the highly conserved glycine 193 in the trypsin active site has been implicated as a critical factor in the inhibitor resistance of mesotrypsin, how this substitution leads to accelerated inhibitor cleavage is not clear. Bovine pancreatic trypsin inhibitor (BPTI) forms an extremely stable and cleavage-resistant complex with trypsin, and thus provides a rigorous challenge of mesotrypsin catalytic activity toward polypeptide inhibitors. Here, we report kinetic constants for mesotrypsin and the highly homologous (but inhibitor sensitive) human cationic trypsin, describing inhibition by, and cleavage of BPTI, as well as crystal structures of the mesotrypsin-BPTI and human cationic trypsin-BPTI complexes. We find that mesotrypsin cleaves BPTI with a rate constant accelerated 350-fold over that of human cationic trypsin and 150,000-fold over that of bovine trypsin. From the crystal structures, we see that small conformational adjustments limited to several side chains enable mesotrypsin-BPTI complex formation, surmounting the predicted steric clash introduced by Arg-193. Our results show that the mesotrypsin-BPTI interface favors catalysis through (a) electrostatic repulsion between the closely spaced mesotrypsin Arg-193 and BPTI Arg-17, and (b) elimination of two hydrogen bonds between the enzyme and the amine leaving group portion of BPTI. Our model predicts that these deleterious interactions accelerate leaving group dissociation and deacylation. C1 [Salameh, Moh'd A.; Hockla, Alexandra; Radisky, Evette S.] Mayo Clin, Ctr Canc, Dept Canc Biol, Jacksonville, FL 32224 USA. [Soares, Alexei S.] Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. RP Radisky, ES (reprint author), 310 Griffin Bldg,4500 San Pablo Rd, Jacksonville, FL 32224 USA. EM radisky.evette@mayo.edu RI Radisky, Evette/C-8526-2012; Soares, Alexei/F-4800-2014 OI Radisky, Evette/0000-0003-3121-109X; Soares, Alexei/0000-0002-6565-8503 NR 54 TC 27 Z9 27 U1 0 U2 7 PU AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3996 USA SN 0021-9258 EI 1083-351X J9 J BIOL CHEM JI J. Biol. Chem. PD FEB 15 PY 2008 VL 283 IS 7 BP 4115 EP 4123 DI 10.1074/jbc.M708268200 PG 9 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 261MO UT WOS:000253083500047 PM 18077447 ER PT J AU Rioux, RM Komor, R Song, H Hoefelmeyer, JD Grass, M Niesz, K Yang, PD Somorjai, GA AF Rioux, Robert M. Komor, Russell Song, Hyunjoon Hoefelmeyer, James D. Grass, Michael Niesz, Krisztian Yang, Peidong Somorjai, Gabor A. TI Kinetics and mechanism of ethylene hydrogenation poisoned by CO on silica-supported monodisperse Pt nanoparticles SO JOURNAL OF CATALYSIS LA English DT Article DE Pt; nanoparticles; monodisperse; ethylene hydrogenation; CO; poisoning; kinetics; mechanism; structure insensitivity ID SUM-FREQUENCY GENERATION; ELECTRON-BEAM LITHOGRAPHY; MESOPOROUS SBA-15 SILICA; CARBON-MONOXIDE; PLATINUM NANOPARTICLES; METHYLCYCLOPROPANE HYDROGENOLYSIS; CATALYTIC-PROPERTIES; VIBRATIONAL-SPECTRA; THERMAL-DESORPTION; PT(111) SURFACE AB The influence of particle size on the poisoning of ethylene hydrogenation by CO was Studied over a series of catalysts composed of nearly monodisperse Pt nanoparticles (1.7-7.1 nm) encapsulated in mesoporous silica (SBA-15). The turnover frequency at 403 K in the presence of 0.5 Torr CO was similar to 2 x 10(-2) s(-1) (compared with similar to 10(2) s(-1) in the absence of CO). The apparent activation energy in the absence and presence of 0.2 Torr CO was similar to 10 and 20 kcal mol(-1), respectively. The pressure dependency changes significantly in the presence of CO; reaction orders in hydrogen were 1/2 in the presence of CO at 403 K and noncompetitive with regard to co-adsorption with C2H4. In the absence of CO at similar temperatures, H-2 adsorption was primarily irreversible (first-order dependence), and H-2 and C2H4 compete for the same sites. Ethylene orders at 403 K were first order in the presence of 0.2 Torr CO and remained unity with increasing CO pressure. At similar reaction conditions in the absence of CO, ethylene had an inhibitory effect (negative reaction order) on the overall hydrogenation reaction. The change in C2H4 and H-2 kinetics suggests strong competitive adsorption between C2H4 and CO for the same type of site, whereas H-2 apparently adsorbs on distinct surface sites due either to steric hindrance or H-2-induced CO desorption. Incorporation of a quasi-equilibrated CO adsorption step into a noncompetitive Langmuir-Hinshelwood mechanism predicts the experimentally observed pressure dependencies and a doubling of the apparent activation energy. Hydrogenation of ethylene in the presence of 1 Torr CO was examined under reaction conditions at 403 K by infrared spectroscopy; the only surface species identified under reaction conditions was linear-bound CO. The hydrogenation of ethylene on clean Pt catalysts was structure-insensitive and remains insensitive in the presence of CO; rates decreased only by a factor of two with increasing particle size. (c) 2007 Elsevier Inc. All rights reserved. C1 [Rioux, Robert M.; Komor, Russell; Song, Hyunjoon; Hoefelmeyer, James D.; Grass, Michael; Niesz, Krisztian; Yang, Peidong; Somorjai, Gabor A.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Rioux, Robert M.; Komor, Russell; Song, Hyunjoon; Hoefelmeyer, James D.; Grass, Michael; Niesz, Krisztian; Yang, Peidong; Somorjai, Gabor A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat & Chem Sci, Berkeley, CA 94720 USA. RP Somorjai, GA (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM somorjai@berkeley.edu RI Hoefelmeyer, James/B-5278-2011; Song, Hyunjoon/C-1638-2011; OI Song, Hyunjoon/0000-0002-1565-5697; Hoefelmeyer, James/0000-0002-5955-8557 NR 65 TC 35 Z9 35 U1 7 U2 69 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9517 J9 J CATAL JI J. Catal. PD FEB 15 PY 2008 VL 254 IS 1 BP 1 EP 11 DI 10.1016/j.jcat.2007.10.015 PG 11 WC Chemistry, Physical; Engineering, Chemical SC Chemistry; Engineering GA 269JU UT WOS:000253646100001 ER PT J AU Follstaedt, DM Allerman, AA Lee, SR Michael, JR Bogart, KHA Crawford, MH Missert, NA AF Follstaedt, D. M. Allerman, A. A. Lee, S. R. Michael, J. R. Bogart, K. H. A. Crawford, M. H. Missert, N. A. TI Dislocation reduction in AlGaN grown on patterned GaN SO JOURNAL OF CRYSTAL GROWTH LA English DT Article DE dislocations; nanostructures; metalorganic vapor phase epitaxy; nitrides ID EPITAXIAL LATERAL OVERGROWTH; FABRICATION; ALLOYS AB Metalorganic vapor phase epitaxy was used to grow 15 mu m of Al0.26Ga0.74N on GaN that was patterned with trenches 10 mu m wide and I gm deep. The top of the AlGaN showed 4-mu m-wide areas on either side of the trench centerline that had low threading dislocation densities, measured to be less than similar to 1.5 x 10(8) cm(-2). Cross-sectional transmission electron microscopy showed that in the early stages of growth, AlGaN grew at an angle from the corners of the trench and eventually coalesced over the center. These laterally propagating growth sections overgrew the vertical growth in the trench bottom, with the result that low dislocation-density areas formed at the top of the AlGaN. Detailed examination showed that the vertical dislocations from the trench bottom were bent by the angled growth toward the center of the trench where they annihilated with other dislocations, allowing the low dislocation-density areas to form above. Elemental analysis showed that the angled growth sections had slightly lower Al content. The low dislocation-density areas are sufficiently wide to permit optically emitting devices to be grown. (C) 2007 Elsevier B.V. All rights reserved. C1 [Follstaedt, D. M.; Allerman, A. A.; Lee, S. R.; Michael, J. R.; Bogart, K. H. A.; Crawford, M. H.; Missert, N. A.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Follstaedt, DM (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM dmfolls@sandia.gov NR 14 TC 6 Z9 6 U1 1 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-0248 J9 J CRYST GROWTH JI J. Cryst. Growth PD FEB 15 PY 2008 VL 310 IS 4 BP 766 EP 776 DI 10.1016/j.jcrysgro.2007.11.157 PG 11 WC Crystallography; Materials Science, Multidisciplinary; Physics, Applied SC Crystallography; Materials Science; Physics GA 269LH UT WOS:000253650000006 ER PT J AU Vasiljevic, N Viyannalage, LT Dimitrov, N Sieradzki, K AF Vasiljevic, Natasa Viyannalage, Lasantha T. Dimitrov, Nikolay Sieradzki, Karl TI High resolution electrochemical STM: New structural results for underpotentially deposited Cu on Au(111) in acid sulfate solution SO JOURNAL OF ELECTROANALYTICAL CHEMISTRY LA English DT Article DE in situ scanning tunneling microscopy; underpotential deposition; copper; Au(111); sulfate; anion adsorption ID QUARTZ-CRYSTAL MICROBALANCE; RAY-ABSORPTION-SPECTROSCOPY; PHASE-TRANSITIONS; SULFURIC-ACID; COPPER DEPOSITION; SURFACE EXAFS; GOLD; ADSORPTION; ELECTRODE; ADLAYERS AB Adsorption of sulfate assists Cu monolayer underpotential deposition (upd) on Au(111) in a unique way, rendering two distinct structural stages: (i) formation of a low-density Cu phase at coverage of 2/3 ML known as the (root 3 x root 3)R30 degrees or honeycomb phase; (ii) formation of a complete monolayer, i.e., Cu-(1 x 1) phase pseudomorphic with respect to underlying Au(111) substrate. In this paper we present new structural in situ scanning tunneling microscopy (STM) results for this system. We show and discuss the STM imaging of the copper honeycomb superstructure probed underneath the co-adsorbed (\/3- x root 3)R30 degrees sulfate adlayer in the low-density phase. High resolution imaging during the phase transition from the low to high density copper phase unambiguously shows the existence of an ordered sulfate structure p(2 x 2) on the pseudomorphic Cu-(1 x 1) layer. The new structure is seen during the co-existence of two copper phases as well as upon completion of the Cu-(1 x 1) monolayer. While supported by earlier chronocoulometric measurements in the same system, the new structural results raise questions that need to be addressed in a future work. (C) 2007 Elsevier B.V. All rights reserved. C1 [Vasiljevic, Natasa] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Viyannalage, Lasantha T.; Dimitrov, Nikolay] SUNY Binghamton, Dept Chem, Binghamton, NY 13902 USA. [Sieradzki, Karl] Arizona State Univ, Ira A Fulton Sch Engn, Tempe, AZ 85287 USA. RP Vasiljevic, N (reprint author), Sandia Natl Labs, POB 5800,MS 1415, Albuquerque, NM 87185 USA. EM nvasilj@sandia.gov OI Vasiljevic, Natasa/0000-0002-7515-9708 NR 35 TC 12 Z9 12 U1 3 U2 27 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 1572-6657 J9 J ELECTROANAL CHEM JI J. Electroanal. Chem. PD FEB 15 PY 2008 VL 613 IS 2 BP 118 EP 124 DI 10.1016/j.jelechem.2007.10.021 PG 7 WC Chemistry, Analytical; Electrochemistry SC Chemistry; Electrochemistry GA 288BX UT WOS:000254962300002 ER PT J AU Lewis, ER AF Lewis, Ernie R. TI An examination of Kohler theory resulting in an accurate expression for the equilibrium radius ratio of a hygroscopic aerosol particle valid up to and including relative humidity 100% SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID THERMODYNAMIC PROPERTIES; HIGH SUPERSATURATION; ORGANIC-COMPOUNDS; WATER-UPTAKE; SIZE; ACTIVATION; ELECTROLYTES; NUCLEI; SUBSTANCES; DENSITIES AB The equilibrium hygroscopic behavior of an aqueous solution drop is investigated using the Kohler model to relate the radius ratio xi r/r (dry), where r(dry) is the volume-equivalent dry radius, and the fractional relative humidity h. The Kohler equation is derived and results obtained from it are presented for three situations: when the effect of surface tension can be neglected, for h = 1, and for cloud-drop activation. The exact solution to this equation is presented, as is an accurate approximate solution for h < 1 that yields insight into the dependences of the equilibrium radius on relative humidity, surface tension, and dry radius. The approximations made in the derivation of the Kohler equation are examined, errors in quantities obtained from this equation are quantified, and the so-called Debye approximation is introduced which allows accurate parameterization of these errors as a function of r(dry). Errors in the radius ratio at activation obtained from the Kohler equation are up to 20% for ammonium sulfate solution drops of the size that typically form cloud drops. Attempts to extend the Kohler model to higher concentrations are examined, and it is seen that the primary cause of inaccuracy in the model is the assumption that the practical osmotic coefficient is unity. On the basis of this analysis, a simple two-parameter expression is presented for the equilibrium radius ratio as a function of h and rdry that is accurate over a wide range of rdry and for h up to and including unity. C1 [Lewis, Ernie R.] Brookhaven Natl Lab, Div Atmospher Sci, Upton, NY 11973 USA. RP Lewis, ER (reprint author), Brookhaven Natl Lab, Div Atmospher Sci, Upton, NY 11973 USA. NR 44 TC 6 Z9 6 U1 0 U2 1 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD FEB 15 PY 2008 VL 113 IS D3 AR D03205 DI 10.1029/2007JD008590 PG 17 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 263RJ UT WOS:000253233900001 ER PT J AU Lin, SC Chung, JY Lamothe, B Rajashankar, K Lu, M Lo, YC Lam, AY Darnay, BG Wu, H AF Lin, Su-Chang Chung, Jee Y. Lamothe, Betty Rajashankar, Kanagalaghatta Lu, Miao Lo, Yu-Chih Lam, Amy Y. Darnay, Bryant G. Wu, Hao TI Molecular basis for the unique deubiquitinating activity of the NF-kappa B inhibitor A20 SO JOURNAL OF MOLECULAR BIOLOGY LA English DT Article DE A20; crystal structure; deubiquitination; DUB; TRAF6 ID ZINC-FINGER PROTEIN; ENDOTHELIAL-CELL ACTIVATION; DEPENDENT GENE-EXPRESSION; KINASE TAK1; INTERLEUKIN-1 RECEPTOR; SIGNAL-TRANSDUCTION; UBIQUITIN-ALDEHYDE; CRYSTAL-STRUCTURE; STRUCTURAL BASIS; MAP KINASE AB Nuclear factor kappa B (NF-kappa B) activation in tumor necrosis factor, interleukin-1, and Toll-like receptor pathways requires Lys63-linked nondegradative polyubiquitination. A20 is a specific feedback inhibitor of NF-kappa B activation in these pathways that possesses dual ubiquitin-editing functions. While the N-terminal domain of A20 is a deubiquitinating enzyme (DUB) for Lys63-linked polyubiquitinated signaling mediators such as TRAF6 and RIP, its C-terminal domain is a ubiquitin ligase (E3) for Lys48-linked degradative polyubiquitination of the same substrates. To elucidate the molecular basis for the DUB activity of A20, we determined its crystal structure and performed a series of biochemical and cell biological studies. The structure reveals the potential catalytic mechanism of A20, which may be significantly different from papain-like cysteine proteases. Ubiquitin can be docked onto a conserved A20 surface; this interaction exhibits charge complementarity and no steric clash. Surprisingly, A20 does not have specificity for Lys63-linked polyubiquitin chains. Instead, it effectively removes Lys63-linked polyubiquitin chains from TRAF6 without dissembling the chains themselves. Our studies suggest that A20 does not act as a general DUB but has the specificity for particular polyubiquitinated substrates to assure its fidelity in regulating NF-kappa B activation in the tumor necrosis factor, interleukin-1, and Toll-like receptor pathways. (C) 2007 Elsevier Ltd. All rights reserved. C1 [Lin, Su-Chang; Chung, Jee Y.; Lu, Miao; Lo, Yu-Chih; Lam, Amy Y.; Wu, Hao] Cornell Univ, Weill Med Coll, Dept Biochem, New York, NY 10021 USA. [Lamothe, Betty; Darnay, Bryant G.] Univ Texas Houston, Dept Expt Therapeut, MD Anderson Canc Ctr, Houston, TX 77030 USA. [Rajashankar, Kanagalaghatta] Argonne Natl Lab, NE CAT, Argonne NAtl Lab, Argonne, IL 60439 USA. RP Darnay, BG (reprint author), Cornell Univ, Weill Med Coll, Dept Biochem, 1300 York Ave, New York, NY 10021 USA. EM bdarnay@mdanderson.org; haowu@med.cornell.edu OI Lin, Su-Chang/0000-0003-0687-3139 FU NCRR NIH HHS [RR-15301]; NIAID NIH HHS [R01 AI045937, R01 AI045937-07]; NIAMS NIH HHS [R01 AR053540] NR 66 TC 90 Z9 96 U1 0 U2 3 PU ACADEMIC PRESS LTD ELSEVIER SCIENCE LTD PI LONDON PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND SN 0022-2836 J9 J MOL BIOL JI J. Mol. Biol. PD FEB 15 PY 2008 VL 376 IS 2 BP 526 EP 540 DI 10.1016/j.jmb.2007.11.092 PG 15 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 268CE UT WOS:000253554700020 PM 18164316 ER PT J AU Enomoto, K LaVerne, JA Tandon, L Enriquez, AE Matonic, JH AF Enomoto, Kazuyuki LaVerne, Jay A. Tandon, Lav Enriquez, Alejandro E. Matonic, John H. TI The radiolysis of poly(4-vinylpyridine) quaternary salt ion exchange resins SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID HYDROGEN-PEROXIDE PRODUCTION; RADIATION-CHEMISTRY; HYDRATED ELECTRON; AQUEOUS SOLUTIONS; ANION-EXCHANGE; GAMMA-RADIOLYSIS; LIQUID PYRIDINE; HEAVY-IONS; WATER; BENZENE AB The radiation chemical yields of gaseous products, especially molecular hydrogen (H-2), have been determined in the radiolysis of different poly(4-vinylpyridine) quaternary salt ion exchange resins with up to about 30 wt% of absorbed water. Irradiations were performed with 5 MeV He-4 ions to simulate alpha-particle radiolysis and with gamma-rays for comparison. The resins were quaternary salts of chloride and nitrate that are commonly used as matrixes in anion exchange and in plutonium recovery processes. An increase in H-2 yields with increasing water loading was observed for both types of ionizing radiation in all of the resins. The yield of H-2 for the nitrate-form was lower than that for the chloride and the yield of H-2 was lower when the pyridinium nitrogen atom is coordinated to a methyl group rather than to atomic hydrogen. Spectroscopic studies included UV/vis, IR, and Raman and suggested that all the resins exhibit a high radiolytic stability. (c) 2007 Published by Elsevier B.V. C1 [Enomoto, Kazuyuki; LaVerne, Jay A.] Univ Notre Dame, Radiat Lab, Notre Dame, IN 46556 USA. [LaVerne, Jay A.] Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA. [Tandon, Lav] Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA. [Enriquez, Alejandro E.; Matonic, John H.] Los Alamos Natl Lab, PMT 5 Pu 238 Sci & Engn Grp, Los Alamos, NM 87545 USA. RP LaVerne, JA (reprint author), Univ Notre Dame, Radiat Lab, Notre Dame, IN 46556 USA. EM laverne.l@nd.edu RI kazuyuki, enomoto/G-8592-2015; OI Matonic, John/0000-0002-6059-1514 NR 49 TC 5 Z9 5 U1 1 U2 21 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD FEB 15 PY 2008 VL 373 IS 1-3 BP 103 EP 111 DI 10.1016/j.jnucmat.2007.05.032 PG 9 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 261DK UT WOS:000253059100015 ER PT J AU Hosemann, P Thau, HT Johnson, AL Maloy, SA Li, N AF Hosemann, P. Thau, H. T. Johnson, A. L. Maloy, S. A. Li, N. TI Corrosion of ODS steels in lead-bismuth eutectic SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID FERRITIC ALLOYS; ALUMINA SCALES; OXIDATION; DIFFUSION AB Oxide dispersion strengthened (ODS) ferritic steels are advanced materials being developed for high temperature applications. Their properties (high temperature strength, creep resistance, corrosion/oxidation resistance) make them potentially usable for high temperature applications in liquid metal cooled systems like liquid lead-bismuth eutectic cooled reactors and spallation sources. Corrosion tests on five different ODS alloys were performed in flowing liquid lead-bismuth eutectic in the DELTA Loop at the Los Alamos National Laboratory at 535 C for 200 h and 600 h. The tested materials were chromium alloyed ferritic/martensitic steels (12YWT, 14YWT, MA957) and Cr-Al alloyed steels (PM2000, MA956). It was shown that the Al alloyed ODS steel above 5.5 wt% Al (PM2000) is highly resistant to corrosion and oxidation in the conditions examined, and that the corrosion properties of the ODS steels depend strongly on their grain size. (C) 2007 Elsevier B.V. All rights reserved. C1 [Hosemann, P.; Maloy, S. A.; Li, N.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Hosemann, P.] Univ Leoben, Leoben, Austria. [Thau, H. T.; Johnson, A. L.] Univ Nevada, Las Vegas, NV 89154 USA. RP Hosemann, P (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM peterh@lanl.gov RI Maloy, Stuart/A-8672-2009; OI Maloy, Stuart/0000-0001-8037-1319; Hosemann, Peter/0000-0003-2281-2213 NR 14 TC 44 Z9 45 U1 2 U2 17 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD FEB 15 PY 2008 VL 373 IS 1-3 BP 246 EP 253 DI 10.1016/j.jnucmat.2007.05.049 PG 8 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 261DK UT WOS:000253059100035 ER PT J AU Zhang, JS Li, N AF Zhang, Jinsuo Li, Ning TI Review of the studies on fundamental issues in LBE corrosion SO JOURNAL OF NUCLEAR MATERIALS LA English DT Review ID LIQUID LEAD-BISMUTH; FLOWING PB-BI; MOLTEN LEAD; STEEL CORROSION; OXYGEN CONTROL; THERMODYNAMIC PROPERTIES; DIFFUSION-COEFFICIENT; COMPATIBILITY TESTS; REFRACTORY-METALS; EUTECTIC SYSTEMS AB Lead bismuth eutectic (LBE) technology is being developed for applications in advanced nuclear systems and high-power spallation neutron targets. In this paper, the current understanding of corrosion and the fundamental issues relevant to corrosion when using LBE as a heavy liquid metal nuclear coolant are reviewed. Corrosion mechanisms and processes in LBE are examined. Prospective methods to mitigate corrosion are briefly surveyed. We then discuss the oxygen control technique for corrosion mitigation in detail, including the range of oxygen concentrations in LBE, oxygen sensors, and the surface oxidation kinetics. Existing experimental results are summarized and reviewed. Theoretical corrosion models for non-isothermal liquid metal loops are refined and compared each other. The applications of these models to a few practical lead-alloy systems are used to illustrate the corrosion mechanisms and the parameter dependency, and to benchmark. Based on the current state of knowledge, a number of R&D tasks are proposed to fill the gaps and firmly establish the scientific underpinning before LBE nuclear coolant technology is ready for programmatic and industrial applications. (C) 2007 Elsevier B.V. All rights reserved. C1 Los Alamos Natl Lab, Decis Applicat Div, Int Nucl Syst Engn Grp, Los Alamos, NM 87545 USA. Los Alamos Natl Lab, Mat Phys & Applicat Div, Los Alamos, NM 87545 USA. RP Zhang, JS (reprint author), Los Alamos Natl Lab, Decis Applicat Div, Int Nucl Syst Engn Grp, MS K-575, Los Alamos, NM 87545 USA. EM jszhang@lanl.gov RI Zhang, Jinsuo/H-4717-2012 OI Zhang, Jinsuo/0000-0002-3412-7769 NR 117 TC 87 Z9 89 U1 8 U2 36 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD FEB 15 PY 2008 VL 373 IS 1-3 BP 351 EP 377 DI 10.1016/j.jnucmat.2007.06.019 PG 27 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 261DK UT WOS:000253059100049 ER PT J AU Talamo, A AF Talamo, Alberto TI Prediction of TRISO coated particle performances for a one-pass deep burn SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID GAS-COOLED REACTORS; FISSION-PRODUCT RELEASE; HIGH-TEMPERATURE; FUEL-PARTICLES; IRRADIATION BEHAVIOR; LAYER; MCB AB In the present studies, TRISO coated particle performances have been investigated for incinerating plutonium and minor actinides by the Gas Turbine-Modular Helium Reactor, whose fresh fuel is fabricated after the uranium extraction (UREX) process applied to Light Water Reactors irradiated fuel. The analyses divide into two parts: in the first part, the latest design of the reactor core proposed by General Atomics, which takes advantage of four fuel rings, has been modeled in deep details by the Monte Carlo MCNP code and a burnup process has been simulated by the MCB code. In the second part, the TRISO coated particle performances have been investigated by the PANAMA code with the goal of verifying the design constraints proposed by General Atomics. During burnup, the refueling and shuffling schedule followed the one-pass deep burn concept, where the fuel is utilized, since fabrication for the Gas Turbine-Modular Helium Reactor, without any reprocessing until the final disposal into the geological repository. During the reactor operation, the fast fluence on all TRISO particles layers has been evaluated and the production of the key fission products monitored. During an hypothetical reactor accident scenario, the TRISO particle failure fraction has been estimated. (C) 2007 Elsevier B.V. All rights reserved. C1 Argonne Natl Lab, Nucl Engn Div, Argonne, IL 60439 USA. RP Talamo, A (reprint author), Argonne Natl Lab, Nucl Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM alby@anl.gov OI talamo, alberto/0000-0001-5685-0483 NR 25 TC 5 Z9 5 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD FEB 15 PY 2008 VL 373 IS 1-3 BP 407 EP 414 DI 10.1016/j.jnucmat.2007.07.001 PG 8 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 261DK UT WOS:000253059100053 ER PT J AU Barnes, LA Rago, NLD Leibowitz, L AF Barnes, L. A. Rago, N. L. Dietz Leibowitz, L. TI Corrosion of ternary carbides by molten lead SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID CERAMICS AB Two ternary carbides, TiZAlC and Ti3SiC2 were tested for corrosion in circulating molten lead at 650 degrees C and 800 degrees C for possible application as cladding or structural materials in a lead-cooled fast reactor. The extent of reaction was minimal for both materials. The only observed interaction with the lead was a result of surface cracks and strains in the Ti2AlC produced by machining prior to exposure to the lead. (C) 2007 Elsevier B.V. All rights reserved. C1 [Barnes, L. A.; Rago, N. L. Dietz; Leibowitz, L.] Argonne Natl Lab, Div Chem Engn, Argonne, IL 60439 USA. RP Barnes, LA (reprint author), Argonne Natl Lab, Div Chem Engn, 9700 S Cass Ave, Argonne, IL 60439 USA. EM barnes@cmt.anl.gov NR 7 TC 34 Z9 34 U1 3 U2 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD FEB 15 PY 2008 VL 373 IS 1-3 BP 424 EP 428 DI 10.1016/j.jnucmat.2007.04.054 PG 5 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 261DK UT WOS:000253059100055 ER PT J AU Ahluwalia, RK Wang, XH AF Ahluwalia, Rajesh K. Wang, Xiaohua. TI Fuel cell systems for transportation: Status and trends SO JOURNAL OF POWER SOURCES LA English DT Article DE fuel cell systems; polymer electrolyte membrane; heat rejection; water management; air management; transportation ID VEHICLES; ECONOMY AB The U.S. program for the development of direct hydrogen-fueled automotive fuel cell systems has established ambitious performance and cost targets for the 2010 and 2015 time frames. These targets include peak and rated power efficiencies of 60% and 50%, respectively, specific power and power densities of 650We kg(-1) and 650 We L-1, and manufactured costs of $45 and 30 kWe(-1) for 80 kWe(-1) net systems in the 2010 and 2015 systems, respectively. In this paper, we discuss the use of fuel cell system models to examine the performance and projected manufactured costs of 2005 systems and the improvements needed to meet the 2010 and 2015 system level targets. It appears possible to meet most of the 2010 performance targets with advances such as the nano-structured thin film electrocatalysts and a modified electrolyte membrane capable of operating at up to 95 degrees C, at least for short periods. To meet the 2015 targets, however, the fuel cell systems may need to operate without pressurization at higher temperatures of up to 120 degrees C without the need to humidify the fuel gas and air, along with several other improvements in stack and balance-of-plant components. Our simulations provide quantitative estimates of the various performance and cost parameters of the near-term and the advanced systems that can achieve the targets set for automotive fuel cell system development. Published by Elsevier B.V. C1 [Ahluwalia, Rajesh K.; Wang, Xiaohua.] Argonne Natl Lab, Argonne, IL 60439 USA. RP Ahluwalia, RK (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM walia@ne.anl.gov NR 18 TC 85 Z9 89 U1 1 U2 18 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 J9 J POWER SOURCES JI J. Power Sources PD FEB 15 PY 2008 VL 177 IS 1 BP 167 EP 176 DI 10.1016/j.jpowsour.2007.10.026 PG 10 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA 262YS UT WOS:000253185400024 ER PT J AU Park, SH Kang, SH Belharouak, I Sun, YK Amine, K AF Park, S. -H. Kang, S. -H. Belharouak, I. Sun, Y. K. Amine, K. TI Physical and electrochemical properties of spherical Li1+x(Ni1/3Co1/3Mn1/3)(1-x)O-2 cathode materials SO JOURNAL OF POWER SOURCES LA English DT Article DE carbonate precipitation; Li(Ni1/3Co1/3Mn1/3)O-2; lithium secondary batteries; positive materials; layered materials ID LITHIUM INSERTION MATERIAL; ION BATTERIES; LICO1/3NI1/3MN1/3O2; ELECTRODE; CAPACITY AB A (Ni1/3Co1/3 Mn-1/3)CO3 precursor with an uniform, spherical morphology was prepared by coprecipitation using a continuously stirred tank reactor method. The as-prepared spherical (Ni1/3Co1/3Mn1/3)CO3 precursor served to produce dense, spherical Li1+x(Ni1/3Co1/3Mn1/3)(1-x)O-2 (0 <= x <= 0.15) cathode materials. These Li-rich cathodes were also prepared by a second synthesis route that involved the use of an M3O4 (M = Ni1/3Co1/3Mn1/3) spinel compound, itself obtained from the carbonate (Ni1/3Co1/3Mn1/3)CO3 precursor. In both cases, the final Li1+x(Ni1/3Co1/3Mn1/3)(1-x)O-2 products were highly uniform, having a narrow particle size distribution (10-mu m average particle size) as a result of the homogeneity and spherical morphology of the starting mixed-metal carbonate precursor. The rate capability of the Li1+x(Ni1/3Co1/3Mn1/3)(1-x)O-2 electrode materials, which was significantly improved with increased lithium content, was found to be better in the case of the denser materials made from the spinel precursor compound. This result suggests that spherical morphology, high density, and increased lithium content were key factors in enabling the high rate capabilities, and hence the power performances, of the Li-rich Li1+x(Ni1/3Co1/3Mn1/3)(1-x)O-2 cathodes. (c) 2007 Elsevier B.V. All rights reserved. C1 [Park, S. -H.; Kang, S. -H.; Belharouak, I.; Amine, K.] Argonne Natl Lab, Div Chem Engn, Argonne, IL 60439 USA. [Sun, Y. K.] Hanyang Univ, Dept Chem Engn, Seoul 133791, South Korea. RP Amine, K (reprint author), Argonne Natl Lab, Div Chem Engn, 9700 S Cass Ave, Argonne, IL 60439 USA. EM amine@cmt.anl.gov RI Kang, Sun-Ho/E-7570-2010; Sun, Yang-Kook/B-9157-2013; Amine, Khalil/K-9344-2013; OI Sun, Yang-Kook/0000-0002-0117-0170; Belharouak, Ilias/0000-0002-3985-0278 NR 21 TC 136 Z9 137 U1 8 U2 130 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 J9 J POWER SOURCES JI J. Power Sources PD FEB 15 PY 2008 VL 177 IS 1 BP 177 EP 183 DI 10.1016/j.jpowsour.2007.10.062 PG 7 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA 262YS UT WOS:000253185400025 ER PT J AU Zhao, YH Horita, Z Langdon, TG Zhu, YT AF Zhao, Y. H. Horita, Z. Langdon, T. G. Zhu, Y. T. TI Evolution of defect structures during cold rolling of ultrafine-grained Cu and Cu-Zn alloys: Influence of stacking fault energy SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING LA English DT Article DE copper; copper-zinc alloys; high-pressure torsion; severe plastic deformation; stacking fault energy; ultrafine-grained materials ID SEVERE PLASTIC-DEFORMATION; HIGH-PRESSURE TORSION; CENTRED CUBIC METALS; ULTRAHIGH-STRENGTH; DISLOCATION DENSITIES; MECHANICAL-PROPERTIES; PROFILE ANALYSIS; NANOCRYSTALLINE; DUCTILITY; COPPER AB Samples of pure Cu, bronze (Cu-10 wt.% Zn) and brass (Cu-30 wt.% Zn) with stacking fault energies (SFE) of 78,35, and 14 mJ/m(2), respectively, were processed by high-pressure torsion (HPT) and by a combination of HPT followed by cold-rolling (CR). X-ray diffraction measurements indicate that a decrease in SFE leads both to a decrease in crystallite size and to increases in microstrain, dislocation and twin densities for the HPT and HPT + CR processed ultrafine-grained (UFG) samples. Compared with processing by HPT, subsequent processing by CR refines the crystallite size of all samples, increases the twin densities of UFG bronze and brass, and increases the dislocation density in UFG bronze. It also decreases the dislocation density in UFG brass and leads to an unchanged dislocation density in UFG copper. The results suggest there may be an optimum stacking fault energy for dislocation accumulation in UFG Cu-Zn alloys and this has important implications in the production of materials having reasonable strain hardening and good tensile ductility. (C) 2007 Elsevier B.V. All rights reserved. C1 [Zhao, Y. H.; Zhu, Y. T.] Los Alamos Natl Lab, Mat Phys & Applicat Div, Los Alamos, NM 87545 USA. [Horita, Z.] Kyushu Univ, Fac Engn, Dept Mat Sci & Engn, Fukuoka 8190395, Japan. [Langdon, T. G.] Univ So Calif, Dept Aerosp & Mech Engn, Los Angeles, CA 90089 USA. [Langdon, T. G.] Univ So Calif, Dept Chem Engn & Mat Sci, Los Angeles, CA 90089 USA. RP Zhu, YT (reprint author), Los Alamos Natl Lab, Mat Phys & Applicat Div, MS G755,POB 1663, Los Alamos, NM 87545 USA. EM yzhu@lanl.gov RI Langdon, Terence/B-1487-2008; Zhu, Yuntian/B-3021-2008; Zhao, Yonghao/A-8521-2009; Lujan Center, LANL/G-4896-2012; U-ID, Kyushu/C-5291-2016 OI Zhu, Yuntian/0000-0002-5961-7422; NR 39 TC 81 Z9 85 U1 8 U2 45 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0921-5093 J9 MAT SCI ENG A-STRUCT JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. PD FEB 15 PY 2008 VL 474 IS 1-2 BP 342 EP 347 DI 10.1016/j.msea.2007.06.014 PG 6 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 260SK UT WOS:000253030500045 ER PT J AU Wang, GJ Tomasi, D Backus, W Wang, R Telang, F Geliebter, A Korner, J Bauman, A Fowler, JS Thanos, PK Volkow, ND AF Wang, Gene-Jack Tomasi, Dardo Backus, Walter Wang, Ruiliang Telang, Frank Geliebter, Allan Korner, Judith Bauman, Angela Fowler, Joanna S. Thanos, Panayotis K. Volkow, Nora D. TI Gastric distention activates satiety circuitry in the human brain SO NEUROIMAGE LA English DT Article DE amygdala; fMRI; gastric distention; insula ID TEST-MEAL INTAKE; NEURAL RESPONSES; BULIMIC WOMEN; FOOD-INTAKE; GHRELIN; AMYGDALA; CAPACITY; BEHAVIOR; NUCLEUS; RAT AB Gastric distention during meal ingestion activates vagal afferents, which send signals from the stomach to the brain and result in the perception of fullness and satiety. Distention is one of the mechanisms that modulates food intake. We measured regional brain activation during dynamic gastric balloon distention in 18 health subjects using functional magnetic resonance imaging and the blood oxygenation level-dependent (BOLD) responses. The BOLD signal was significantly changed by both inflow and outflow changes in the balloon's volume. For lower balloon volumes, water inflow was associated with activation of sensorimotor cortices and right insula. The larger volume condition additionally activated left posterior amygdala, left posterior insula and the left precuneus. The response in the left amygdala and insula was negatively associated with changes in self-reports of fullness and positively with changes in plasma ghrelin concentration, whereas those in the right amygdala and insula were negatively associated with the subject's body mass index. The widespread activation induced by gastric distention corroborates the influence of vagal afferents on cortical and subcortical brain activity. These findings provide evidence that the left amygdala and insula process interoceptive signals of fullness produced by gastric distention involved in the controls of food intake. Published by Elsevier Inc. C1 [Wang, Gene-Jack; Tomasi, Dardo; Wang, Ruiliang; Bauman, Angela; Fowler, Joanna S.; Thanos, Panayotis K.] Brookhaven Natl Lab, Dept Med, Upton, NY 11973 USA. [Wang, Gene-Jack; Fowler, Joanna S.] Mt Sinai Sch Med, New York, NY USA. [Backus, Walter; Bauman, Angela] SUNY Stony Brook, Dept Anesthesiol, Stony Brook, NY 11794 USA. [Telang, Frank; Thanos, Panayotis K.; Volkow, Nora D.] NIAAA, NIDA, Rockville, MD 20852 USA. [Geliebter, Allan] St Lukes Roosevelt Hosp, New York, NY USA. [Geliebter, Allan; Korner, Judith] Columbia Univ, Coll Phys & Surg, New York, NY 10027 USA. RP Wang, GJ (reprint author), Brookhaven Natl Lab, Dept Med, 30 Bell Ave, Upton, NY 11973 USA. EM gjwang@bnl.gov RI Tomasi, Dardo/J-2127-2015 FU NCRR NIH HHS [M01 RR 10710]; NIAAA NIH HHS [AA 9481, Y1 AA 3009]; NIDA NIH HHS [DA 00280, DA 7092]; NIDDK NIH HHS [DK 072011, R01 DK054318-01A1, R01 DK054318-02, R01 DK054318-03, R01 DK080153-01A2, R01 DK080153-02, R01 DK080153-03, R01 DK080153-04, R03 DK068603-01A2, R03 DK068603-02] NR 49 TC 128 Z9 130 U1 4 U2 18 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 1053-8119 J9 NEUROIMAGE JI Neuroimage PD FEB 15 PY 2008 VL 39 IS 4 BP 1824 EP 1831 DI 10.1016/j.neuroimage.2007.11.008 PG 8 WC Neurosciences; Neuroimaging; Radiology, Nuclear Medicine & Medical Imaging SC Neurosciences & Neurology; Radiology, Nuclear Medicine & Medical Imaging GA 263UK UT WOS:000253241800031 PM 18155924 ER PT J AU Imry, Y Strongin, M Homes, CC AF Imry, Y. Strongin, M. Homes, C. C. TI An inhomogeneous Josephson phase in thin-film and high-T-c superconductors SO PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS LA English DT Article; Proceedings Paper CT Workshop on Fluctuations and Phase Transitions in Superconductors CY JUN 10-14, 2007 CL Nazareth Ilit, ISRAEL DE inhomogenous superconductivity; Josephson phase; (Super)conductor-insulator transition; n(s)-T-c correlations ID HIGH-TEMPERATURE SUPERCONDUCTORS; CUPRATE SUPERCONDUCTORS; DISORDERED-SYSTEMS; STATE; TRANSITIONS; PSEUDOGAP; LIMIT AB In many cases inhomogeneities are known to exist near the metal (or superconductor)-insulator transition, as follows from well-known domain-wall arguments. If the conducting regions are large enough (i.e. when the T = 0 superconducting gap is much larger than the single-electron level spacing), and if they have superconducting correlations, it becomes energetically favorable for the system to go into a Josephson-coupled zero-resistance state before (i.e. at higher resistance than) becoming a "real" metal. We show that this is plausible by a simple comparison of the relevant coupling constants. For small grains in the above sense, the electronic grain structure is washed out by delocalization and thus becomes irrelevant. When the proposed "Josephson state" is quenched by a magnetic field, an insulating, rather than a metallic, state should appear. This has been shown [J. Tu, M. Strongin, Y. Imry, cond-mat/0405625 (2004)] to be consistent with the existing data on oxide materials as well as ultra-thin-films. We discuss the Uemura correlations versus Homes' law, and derive the former for the large-grain Josephson array (inhomogenous superconductor) model. The small-grain case behaves like a dirty homogenous metal. It should obey Homes' law provided that the system is in the dirty supeconductivity limit. A speculation as to why that is typically the case for d-wave superconductors is presented. (c) 2007 Elsevier B.V. All rights reserved. C1 [Imry, Y.] Weizmann Inst Sci, Dept Condensed Matter Phys, IL-76100 Rehovot, Israel. [Strongin, M.; Homes, C. C.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. RP Imry, Y (reprint author), Weizmann Inst Sci, Dept Condensed Matter Phys, IL-76100 Rehovot, Israel. EM yoseph.irnry@weizmann.ac.il NR 47 TC 24 Z9 25 U1 1 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4534 J9 PHYSICA C JI Physica C PD FEB 15 PY 2008 VL 468 IS 4 BP 288 EP 293 DI 10.1016/j.physc.2007.08.021 PG 6 WC Physics, Applied SC Physics GA 286AE UT WOS:000254816500010 ER PT J AU Baturina, TI Bilusic, A Mironov, AY Vinokur, VM Baklanov, MR Strunk, C AF Baturina, T. I. Bilusic, A. Mironov, A. Yu. Vinokur, V. M. Baklanov, M. R. Strunk, C. TI Quantum-critical region of the disorder-driven superconductor-insulator transition SO PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS LA English DT Article; Proceedings Paper CT Workshop on Fluctuations and Phase Transitions in Superconductors CY JUN 10-14, 2007 CL Nazareth Ilit, ISRAEL DE superconductivity; localization; quantum phase transition ID MAGNETIC-FIELD; JOSEPHSON-JUNCTIONS; FILMS; OSCILLATIONS; ONSET AB We investigate low temperature transport properties of thin TiN superconducting films, differing by the degree of disorder. At zero magnetic field we find an extremely sharp separation between the superconducting- and insulating phases, indicating a direct superconductor-insulator transition without an intermediate metallic phase. We show that in the critical region of the transition a peculiar highly inhomogeneous insulating state with superconducting correlations forms. The insulating films exhibit thermally activated conductivity and huge positive magnetoresistance at low magnetic fields. A sharp depinning transition at some voltage V-T is observed in the I-V curves at very low temperatures. We propose a percolation type of depinning with the threshold voltage determined by the Coulomb blockade energy for the Cooper pairs between neighboring self-induced superconducting islands, with VT being the total voltage along the first conduction path. The observed hysteretic behavior of the threshold and steps on the dI/dV vs. V curves support this percolation picture of the depinning transition. (c) 2007 Elsevier B.V. All rights reserved. C1 [Baturina, T. I.; Mironov, A. Yu.] Russian Acad Sci, Inst Semicond Phys, Novosibirsk 630090, Russia. [Baturina, T. I.; Bilusic, A.; Mironov, A. Yu.; Strunk, C.] Univ Regensburg, Inst Expt & Angew Phys, D-93025 Regensburg, Germany. [Vinokur, V. M.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Baklanov, M. R.] IMEC, B-3001 Louvain, Belgium. RP Baturina, TI (reprint author), Russian Acad Sci, Inst Semicond Phys, 13 Lavrentjev Ave, Novosibirsk 630090, Russia. EM tatbat@isp.nsc.ru RI Bilusic, Ante/H-2101-2012 NR 37 TC 19 Z9 20 U1 0 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4534 J9 PHYSICA C JI Physica C PD FEB 15 PY 2008 VL 468 IS 4 BP 316 EP 321 DI 10.1016/j.physc.2007.08.023 PG 6 WC Physics, Applied SC Physics GA 286AE UT WOS:000254816500015 ER PT J AU Aaltonen, T Adelman, J Akimoto, T Albrow, MG Gonzalez, BA Amerio, S Amidei, D Anastassov, A Annovi, A Antos, J Aoki, M Apollinari, G Apresyan, A Arisawa, T Artikov, A Ashmanskas, W Attal, A Aurisano, A Azfar, F Azzi-Bacchetta, P Azzurri, P Bacchetta, N Badgett, W Barbaro-Galtieri, A Barnes, VE Barnett, BA Baroiant, S Bartsch, V Bauer, G Beauchemin, PH Bedeschi, F Bednar, P Behari, S Bellettini, G Bellinger, J Belloni, A Benjamin, D Beretvas, A Beringer, J Berry, T Bhatti, A Binkley, M Bisello, D Bizjak, I Blair, RE Blocker, C Blumenfeld, B Bocci, A Bodek, A Boisvert, V Bolla, G Bolshov, A Bortoletto, D Boudreau, J Boveia, A Brau, B Bridgeman, A Brigliadori, L Bromberg, C Brubaker, E Budagov, J Budd, HS Budd, S Burkett, K Busetto, G Bussey, P Buzatu, A Byrum, KL Cabrera, S Campanelli, M Campbell, M Canelli, F Canepa, A Carlsmith, D Carosi, R Carrillo, S Carron, S Casal, B Casarsa, M Castro, A Catastini, P Cauz, D Cavalli-Sforza, M Cerri, A Cerrito, L Chang, SH Chen, YC Chertok, M Chiarelli, G Chlachidze, G Chlebana, F Cho, K Chokheli, D Chou, JP Choudalakis, G Chuang, SH Chung, K Chung, WH Chung, YS Ciobanu, CI Ciocci, MA Clark, A Clark, D Compostella, G Convery, ME Conway, J Cooper, B Copic, K Cordelli, M Cortiana, G Crescioli, F Almenar, CC Cuevas, J Culbertson, R Cully, JC Dagenhart, D Datta, M Davies, T De Barbaro, P DeCecco, S Deisher, A De Lentdecker, G De Lorenzo, G Dell'Orso, M Demortier, L Deng, J Deninno, M De Pedis, D Derwent, PF Di Giovanni, GP Dionisi, C Di Ruzza, B Dittmann, JR D'Onofrio, M Donati, S Dong, P Donini, J Dorigo, T Dube, S Efron, J Erbacher, R Errede, D Errede, S Eusebi, R Fang, HC Farrington, S Fedorko, WT Feild, RG Feindt, M Fernandez, JP Ferrazza, C Field, R Flanagan, G Forrest, R Forrester, S Franklin, M Freeman, JC Furic, I Gallinaro, M Galyardt, J Garberson, F Garcia, JE Garfinkel, AF Gerberich, H Gerdes, D Giagu, S Giakoumopolou, V Giannetti, P Gibson, K Gimmell, JL Ginsburg, CM Giokaris, N Giordani, M Giromini, P Giunta, M Glagolev, V Glenzinski, D Gold, M Goldschmidt, N Golossanov, A Gomez, G Gomez-Ceballos, G Goncharov, M Group, RC Gorelov, I Goshaw, AT Goulianos, K Gresele, A Grinstein, S Grosso-Pilcher, C Group, RC Grundler, U da Costa, JG Gunay-Unalan, Z Haber, C Hahn, K Hahn, SR Halkiadakis, E Hamilton, A Han, BY Han, JY Handler, R Happacher, F Hara, K Hare, D Hare, M Harper, S Harr, RF Harris, RM Hartz, M Hatakeyama, K Hauser, J Hays, C Heck, M Heijboer, A Heinemann, B Heinrich, J Henderson, C Herndon, M Heuser, J Hewamanage, S Hidas, D Hill, CS Hirschbuehl, D Hocker, A Hou, S Houlden, M Hsu, SC Huffman, BT Hughes, RE Husemann, U Huston, J Incandela, J Introzzi, G Iori, M Ivanov, A Iyutin, B James, E Jayatilaka, B Jeans, D Jeon, EJ Jindariani, S Johnson, W Jones, M Joo, KK Jun, SY Jung, JE Junk, TR Kamon, T Kar, D Karchin, PE Kato, Y Kephart, R Kerzel, U Khotilovich, V Kilminster, B Kim, DH Kim, HS Kim, JE Kim, MJ Kim, SB Kim, SH Kim, YK Kimura, N Kirsch, L Klimenko, S Klute, M Knuteson, B Ko, BR Koay, SA Kondo, K Kong, DJ Konigsberg, J Korytov, A Kotwal, AV Kraus, J Kreps, M Kroll, J Krumnack, N Kruse, M Krutelyov, V Kubo, T Kuhlmann, SE Kuhr, T Kulkarni, NP Kusakabe, Y Kwang, S Laasanen, AT Lai, S Lami, S Lammel, S Lancaster, M Lander, RL Lannon, K Lath, A Latino, G Lazzizzera, I LeCompte, T Lee, J Lee, J Lee, YJ Lee, SW Lefevre, R Leonardo, N Leone, S Levy, S Lewis, JD Lin, C Lin, CS Linacre, J Lindgren, M Lipeles, E Lister, A Litvintsev, DO Liu, T Lockyer, NS Loginov, A Loreti, M Lovas, L Lu, RS Lucchesi, D Lueck, J Luci, C Lujan, P Lukens, P Lungu, G Lyons, L Lys, J Lysak, R Lytken, E Mack, P MacQueen, D Madrak, R Maeshima, K Makhoul, K Maki, T Maksimovic, P Malde, S Malik, S Manca, G Manousakis, A Margaroli, F Marino, C Marino, CP Martin, A Martin, M Martin, V Martinez, M Martinez-Ballarin, R Maruyama, T Mastrandrea, P Masubuchi, T Mattson, ME Mazzanti, P McFarland, KS McIntyre, P McNulty, R Mehta, A Mehtala, P Menzemer, S Menzione, A Merkel, P Mesropian, C Messina, A Miao, T Miladinovic, N Miles, J Miller, R Mills, C Milnik, M Mitra, A Mitselmakher, G Miyake, H Moed, S Moggi, N Moon, CS Moore, R Morello, M Fernandez, PM Mulmenstadt, J Mukherjee, A Muller, T Mumford, R Murat, P Mussini, M Nachtman, J Nagai, Y Nagano, A Naganoma, J Nakamura, K Nakano, I Napier, A Necula, V Neu, C Neubauer, MS Nielsen, J Nodulman, L Norman, M Norniella, O Nurse, E Oh, SH Oh, YD Oksuzian, I Okusawa, T Oldeman, R Orava, R Osterberg, K Griso, SP Pagliarone, C Palencia, E Papadimitriou, V Papaikonomou, A Paramonov, AA Parks, B Pashapour, S Patrick, J Pauletta, G Paulini, M Paus, C Pellett, DE Penzo, A Phillips, TJ Piacentino, G Piedra, J Pinera, L Pitts, K Plager, C Pondrom, L Portell, X Poukhov, O Pounder, N Prakoshyn, F Pronko, A Proudfoot, J Ptohos, F Punzi, G Pursley, J Rademacker, J Rahaman, A Ramakrishnan, V Ranjan, N Redondo, I Reisert, B Rekovic, V Renton, P Rescigno, M Richter, S Rimondi, F Ristori, L Robson, A Rodrigo, T Rogers, E Rolli, S Roser, R Rossi, M Rossin, R Roy, P Ruiz, A Russ, J Rusu, V Saarikko, H Safonov, A Sakumoto, WK Salamanna, G Salto, O Santi, L Sarkar, S Sartori, L Sato, K Savoy-Navarro, A Scheidle, T Schlabach, P Schmidt, EE Schmidt, MA Schmidt, MP Schmitt, M Schwarz, T Scodellaro, L Scott, AL Scribano, A Scuri, F Sedov, A Seidel, S Seiya, Y Semenov, A Sexton-Kennedy, L Sfyria, A Shalhout, SZ Shapiro, MD Shears, T Shepard, PF Sherman, D Shimojima, M Shochet, M Shon, Y Shreyber, I Sidoti, A Sinervo, P Sisakyan, A Slaughter, AJ Slaunwhite, J Sliwa, K Smith, JR Snider, FD Snihur, R Soderberg, M Soha, A Somalwar, S Sorin, V Spalding, J Spinella, F Spreitzer, T Squillacioti, P Stanitzki, M Denis, RS Stelzer, B Stelzer-Chilton, O Stentz, D Strologas, J Stuart, D Suh, JS Sukhanov, A Sun, H Suslov, I Suzuki, T Taffard, A Takashima, R Takeuchi, Y Tanaka, R Tecchio, M Teng, PK Terashi, K Thom, J Thompson, AS Thompson, GA Thomson, E Tipton, P Tiwari, V Tkaczyk, S Toback, D Tokar, S Tollefson, K Tomura, T Tonelli, D Torre, S Torretta, D Tourneur, S Trischuk, W Tu, Y Turini, N Ukegawa, F Uozumi, S Vallecorsa, S van Remortel, N Varganov, A Vataga, E Vazquez, F Velev, G Vellidis, C Veszpremi, V Vidal, M Vidal, R Vila, I Vilar, R Vine, T Vogel, M Volobouev, I Volpi, G Wurthwein, F Wagner, P Wagner, RG Wagner, RL Wagner-Kuhr, J Wagner, W Wakisaka, T Wallny, R Wang, SM Warburton, A Waters, D Weinberger, M Wester, WC Whitehouse, B Whiteson, D Wicklund, AB Wicklund, E Williams, G Williams, HH Wilson, P Winer, BL Wittich, P Wolbers, S Wolfe, C Wright, T Wu, X Wynne, SM Yagil, A Yamamoto, K Yamaoka, J Yamashita, T Yang, C Yang, UK Yang, YC Yao, WM Yeh, GP Yoh, J Yorita, K Yoshida, T Yu, GB Yu, I Yu, SS Yun, JC Zanello, L Zanetti, A Zaw, I Zhang, X Zheng, Y Zucchelli, S AF Aaltonen, T. Adelman, J. Akimoto, T. Albrow, M. G. Gonzalez, B. Alvarez Amerio, S. Amidei, D. Anastassov, A. Annovi, A. Antos, J. Aoki, M. Apollinari, G. Apresyan, A. Arisawa, T. Artikov, A. Ashmanskas, W. Attal, A. Aurisano, A. Azfar, F. Azzi-Bacchetta, P. Azzurri, P. Bacchetta, N. Badgett, W. Barbaro-Galtieri, A. Barnes, V. E. Barnett, B. A. Baroiant, S. Bartsch, V. Bauer, G. Beauchemin, P. -H. Bedeschi, F. Bednar, P. Behari, S. Bellettini, G. Bellinger, J. Belloni, A. Benjamin, D. Beretvas, A. Beringer, J. Berry, T. Bhatti, A. Binkley, M. Bisello, D. Bizjak, I. Blair, R. E. Blocker, C. Blumenfeld, B. Bocci, A. Bodek, A. Boisvert, V. Bolla, G. Bolshov, A. Bortoletto, D. Boudreau, J. Boveia, A. Brau, B. Bridgeman, A. Brigliadori, L. Bromberg, C. Brubaker, E. Budagov, J. Budd, H. S. Budd, S. Burkett, K. Busetto, G. Bussey, P. Buzatu, A. Byrum, K. L. Cabrera, S. Campanelli, M. Campbell, M. Canelli, F. Canepa, A. Carlsmith, D. Carosi, R. Carrillo, S. Carron, S. Casal, B. Casarsa, M. Castro, A. Catastini, P. Cauz, D. Cavalli-Sforza, M. Cerri, A. Cerrito, L. Chang, S. H. Chen, Y. C. Chertok, M. Chiarelli, G. Chlachidze, G. Chlebana, F. Cho, K. Chokheli, D. Chou, J. P. Choudalakis, G. Chuang, S. H. Chung, K. Chung, W. H. Chung, Y. S. Ciobanu, C. I. Ciocci, M. A. Clark, A. Clark, D. Compostella, G. Convery, M. E. Conway, J. Cooper, B. Copic, K. Cordelli, M. Cortiana, G. Crescioli, F. Almenar, C. Cuenca Cuevas, J. Culbertson, R. Cully, J. C. Dagenhart, D. Datta, M. Davies, T. De Barbaro, P. DeCecco, S. Deisher, A. De Lentdecker, G. De Lorenzo, G. Dell'Orso, M. Demortier, L. Deng, J. Deninno, M. De Pedis, D. Derwent, P. F. Di Giovanni, G. P. Dionisi, C. Di Ruzza, B. Dittmann, J. R. D'Onofrio, M. Donati, S. Dong, P. Donini, J. Dorigo, T. Dube, S. Efron, J. Erbacher, R. Errede, D. Errede, S. Eusebi, R. Fang, H. C. Farrington, S. Fedorko, W. T. Feild, R. G. Feindt, M. Fernandez, J. P. Ferrazza, C. Field, R. Flanagan, G. Forrest, R. Forrester, S. Franklin, M. Freeman, J. C. Furic, I. Gallinaro, M. Galyardt, J. Garberson, F. Garcia, J. E. Garfinkel, A. F. Gerberich, H. Gerdes, D. Giagu, S. Giakoumopolou, V. Giannetti, P. Gibson, K. Gimmell, J. L. Ginsburg, C. M. Giokaris, N. Giordani, M. Giromini, P. Giunta, M. Glagolev, V. Glenzinski, D. Gold, M. Goldschmidt, N. Golossanov, A. Gomez, G. Gomez-Ceballos, G. Goncharov, M. Gonzalez, O. Gorelov, I. Goshaw, A. T. Goulianos, K. Gresele, A. Grinstein, S. Grosso-Pilcher, C. Group, R. C. Grundler, U. da Costa, J. Guimaraes Gunay-Unalan, Z. Haber, C. Hahn, K. Hahn, S. R. Halkiadakis, E. Hamilton, A. Han, B. -Y. Han, J. Y. Handler, R. Happacher, F. Hara, K. Hare, D. Hare, M. Harper, S. Harr, R. F. Harris, R. M. Hartz, M. Hatakeyama, K. Hauser, J. Hays, C. Heck, M. Heijboer, A. Heinemann, B. Heinrich, J. Henderson, C. Herndon, M. Heuser, J. Hewamanage, S. Hidas, D. Hill, C. S. Hirschbuehl, D. Hocker, A. Hou, S. Houlden, M. Hsu, S. -C. Huffman, B. T. Hughes, R. E. Husemann, U. Huston, J. Incandela, J. Introzzi, G. Iori, M. Ivanov, A. Iyutin, B. James, E. Jayatilaka, B. Jeans, D. Jeon, E. J. Jindariani, S. Johnson, W. Jones, M. Joo, K. K. Jun, S. Y. Jung, J. E. Junk, T. R. Kamon, T. Kar, D. Karchin, P. E. Kato, Y. Kephart, R. Kerzel, U. Khotilovich, V. Kilminster, B. Kim, D. H. Kim, H. S. Kim, J. E. Kim, M. J. Kim, S. B. Kim, S. H. Kim, Y. K. Kimura, N. Kirsch, L. Klimenko, S. Klute, M. Knuteson, B. Ko, B. R. Koay, S. A. Kondo, K. Kong, D. J. Konigsberg, J. Korytov, A. Kotwal, A. V. Kraus, J. Kreps, M. Kroll, J. Krumnack, N. Kruse, M. Krutelyov, V. Kubo, T. Kuhlmann, S. E. Kuhr, T. Kulkarni, N. P. Kusakabe, Y. Kwang, S. Laasanen, A. T. Lai, S. Lami, S. Lammel, S. Lancaster, M. Lander, R. L. Lannon, K. Lath, A. Latino, G. Lazzizzera, I. LeCompte, T. Lee, J. Lee, J. Lee, Y. J. Lee, S. W. Lefevre, R. Leonardo, N. Leone, S. Levy, S. Lewis, J. D. Lin, C. Lin, C. S. Linacre, J. Lindgren, M. Lipeles, E. Lister, A. Litvintsev, D. O. Liu, T. Lockyer, N. S. Loginov, A. Loreti, M. Lovas, L. Lu, R. -S. Lucchesi, D. Lueck, J. Luci, C. Lujan, P. Lukens, P. Lungu, G. Lyons, L. Lys, J. Lysak, R. Lytken, E. Mack, P. MacQueen, D. Madrak, R. Maeshima, K. Makhoul, K. Maki, T. Maksimovic, P. Malde, S. Malik, S. Manca, G. Manousakis, A. Margaroli, F. Marino, C. Marino, C. P. Martin, A. Martin, M. Martin, V. Martinez, M. Martinez-Ballarin, R. Maruyama, T. Mastrandrea, P. Masubuchi, T. Mattson, M. E. Mazzanti, P. McFarland, K. S. McIntyre, P. McNulty, R. Mehta, A. Mehtala, P. Menzemer, S. Menzione, A. Merkel, P. Mesropian, C. Messina, A. Miao, T. Miladinovic, N. Miles, J. Miller, R. Mills, C. Milnik, M. Mitra, A. Mitselmakher, G. Miyake, H. Moed, S. Moggi, N. Moon, C. S. Moore, R. Morello, M. Fernandez, P. Movilla Muelmenstaedt, J. Mukherjee, A. Muller, Th. Mumford, R. Murat, P. Mussini, M. Nachtman, J. Nagai, Y. Nagano, A. Naganoma, J. Nakamura, K. Nakano, I. Napier, A. Necula, V. Neu, C. Neubauer, M. S. Nielsen, J. Nodulman, L. Norman, M. Norniella, O. Nurse, E. Oh, S. H. Oh, Y. D. Oksuzian, I. Okusawa, T. Oldeman, R. Orava, R. Osterberg, K. Griso, S. Pagan Pagliarone, C. Palencia, E. Papadimitriou, V. Papaikonomou, A. Paramonov, A. A. Parks, B. Pashapour, S. Patrick, J. Pauletta, G. Paulini, M. Paus, C. Pellett, D. E. Penzo, A. Phillips, T. J. Piacentino, G. Piedra, J. Pinera, L. Pitts, K. Plager, C. Pondrom, L. Portell, X. Poukhov, O. Pounder, N. Prakoshyn, F. Pronko, A. Proudfoot, J. Ptohos, F. Punzi, G. Pursley, J. Rademacker, J. Rahaman, A. Ramakrishnan, V. Ranjan, N. Redondo, I. Reisert, B. Rekovic, V. Renton, P. Rescigno, M. Richter, S. Rimondi, F. Ristori, L. Robson, A. Rodrigo, T. Rogers, E. Rolli, S. Roser, R. Rossi, M. Rossin, R. Roy, P. Ruiz, A. Russ, J. Rusu, V. Saarikko, H. Safonov, A. Sakumoto, W. K. Salamanna, G. Salto, O. Santi, L. Sarkar, S. Sartori, L. Sato, K. Savoy-Navarro, A. Scheidle, T. Schlabach, P. Schmidt, E. E. Schmidt, M. A. Schmidt, M. P. Schmitt, M. Schwarz, T. Scodellaro, L. Scott, A. L. Scribano, A. Scuri, F. Sedov, A. Seidel, S. Seiya, Y. Semenov, A. Sexton-Kennedy, L. Sfyria, A. Shalhout, S. Z. Shapiro, M. D. Shears, T. Shepard, P. F. Sherman, D. Shimojima, M. Shochet, M. Shon, Y. Shreyber, I. Sidoti, A. Sinervo, P. Sisakyan, A. Slaughter, A. J. Slaunwhite, J. Sliwa, K. Smith, J. R. Snider, F. D. Snihur, R. Soderberg, M. Soha, A. Somalwar, S. Sorin, V. Spalding, J. Spinella, F. Spreitzer, T. Squillacioti, P. Stanitzki, M. Denis, R. St. Stelzer, B. Stelzer-Chilton, O. Stentz, D. Strologas, J. Stuart, D. Suh, J. S. Sukhanov, A. Sun, H. Suslov, I. Suzuki, T. Taffard, A. Takashima, R. Takeuchi, Y. Tanaka, R. Tecchio, M. Teng, P. K. Terashi, K. Thom, J. Thompson, A. S. Thompson, G. A. Thomson, E. Tipton, P. Tiwari, V. Tkaczyk, S. Toback, D. Tokar, S. Tollefson, K. Tomura, T. Tonelli, D. Torre, S. Torretta, D. Tourneur, S. Trischuk, W. Tu, Y. Turini, N. Ukegawa, F. Uozumi, S. Vallecorsa, S. van Remortel, N. Varganov, A. Vataga, E. Vazquez, F. Velev, G. Vellidis, C. Veszpremi, V. Vidal, M. Vidal, R. Vila, I. Vilar, R. Vine, T. Vogel, M. Volobouev, I. Volpi, G. Wuerthwein, F. Wagner, P. Wagner, R. G. Wagner, R. L. Wagner-Kuhr, J. Wagner, W. Wakisaka, T. Wallny, R. Wang, S. M. Warburton, A. Waters, D. Weinberger, M. Wester, W. C., III Whitehouse, B. Whiteson, D. Wicklund, A. B. Wicklund, E. Williams, G. Williams, H. H. Wilson, P. Winer, B. L. Wittich, P. Wolbers, S. Wolfe, C. Wright, T. Wu, X. Wynne, S. M. Yagil, A. Yamamoto, K. Yamaoka, J. Yamashita, T. Yang, C. Yang, U. K. Yang, Y. C. Yao, W. M. Yeh, G. P. Yoh, J. Yorita, K. Yoshida, T. Yu, G. B. Yu, I. Yu, S. S. Yun, J. C. Zanello, L. Zanetti, A. Zaw, I. Zhang, X. Zheng, Y. Zucchelli, S. CA CDF Collaboration TI Cross-section-constrained top-quark mass measurement from dilepton events at the tevatron SO PHYSICAL REVIEW LETTERS LA English DT Article AB We report the first top-quark mass measurement that uses a cross-section constraint to improve the mass determination. This measurement is made with a dilepton t (t) over bar event candidate sample collected with the Collider Detector II at Fermilab. From a data sample corresponding to an integrated luminosity of 1.2 fb(-1), we measure a top-quark mass of 170.7(-3.9)(+4.2)(stat)+/- 2.6(syst)+/- 2.4(theory) GeV/c(2). The measurement without the cross-section constraint is 169.7(-4.9)(+5.2)(stat)+/- 3.1(syst) GeV/c(2). C1 [Chen, Y. C.; Hou, S.; Lu, R. -S.; Mitra, A.; Teng, P. K.; Wang, S. M.] Acad Sinica, Inst Phys, Taipei 11529, Taiwan. [Blair, R. E.; Byrum, K. L.; Kuhlmann, S. E.; LeCompte, T.; Nodulman, L.; Proudfoot, J.; Wagner, R. G.; Wicklund, A. B.] Argonne Natl Lab, Argonne, IL 60439 USA. [Attal, A.; Cavalli-Sforza, M.; De Lorenzo, G.; D'Onofrio, M.; Martinez, M.; Portell, X.; Salto, O.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. [Dittmann, J. R.; Hewamanage, S.; Krumnack, N.] Baylor Univ, Waco, TX 76798 USA. [Brigliadori, L.; Castro, A.; Deninno, M.; Mazzanti, P.; Moggi, N.; Mussini, M.; Rimondi, F.] Univ Bologna, Ist Nazl Fis Nucl, I-40127 Bologna, Italy. [Blocker, C.; Clark, D.; Kirsch, L.; Miladinovic, N.] Brandeis Univ, Waltham, MA 02254 USA. [Baroiant, S.; Chertok, M.; Conway, J.; Almenar, C. Cuenca; Erbacher, R.; Forrest, R.; Forrester, S.; Ivanov, A.; Johnson, W.; Lander, R. L.; Lister, A.; Pellett, D. E.; Schwarz, T.; Smith, J. R.; Soha, A.] Univ Calif Davis, Davis, CA 95616 USA. [Dong, P.; Hauser, J.; Plager, C.; Stelzer, B.; Wallny, R.; Zheng, Y.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Hsu, S. -C.; Lipeles, E.; Norman, M.; Wuerthwein, F.; Yagil, A.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Boveia, A.; Brau, B.; Garberson, F.; Incandela, J.; Koay, S. A.; Krutelyov, V.; Rossin, R.; Scott, A. L.; Stuart, D.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Gonzalez, B. Alvarez; Casal, B.; Cuevas, J.; Gomez, G.; Menzemer, S.; Rodrigo, T.; Ruiz, A.; Scodellaro, L.; Vila, I.; Vilar, R.] Univ Cantabria, Inst Fis Cantabria, CSIC, E-39005 Santander, Spain. [Chung, K.; Galyardt, J.; Jun, S. Y.; Paulini, M.; Russ, J.; Tiwari, V.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Adelman, J.; Brubaker, E.; Fedorko, W. T.; Grosso-Pilcher, C.; Kim, Y. K.; Kwang, S.; Levy, S.; Paramonov, A. A.; Schmidt, M. A.; Shochet, M.; Wolfe, C.; Yang, U. K.; Yorita, K.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Antos, J.; Bednar, P.; Lovas, L.; Lysak, R.; Tokar, S.] Inst Expt Phys, Kosice 04001, Slovakia. [Antos, J.; Bednar, P.; Lovas, L.; Lysak, R.; Tokar, S.] Comenius Univ, Bratislava 84248, Slovakia. [Artikov, A.; Budagov, J.; Chokheli, D.; Giokaris, N.; Glagolev, V.; Manousakis, A.; Poukhov, O.; Prakoshyn, F.; Semenov, A.; Sisakyan, A.; Suslov, I.] Joint Inst Nucl Res, RU-141980 Dubna, Russia. [Benjamin, D.; Bocci, A.; Deng, J.; Goshaw, A. T.; Hidas, D.; Jayatilaka, B.; Ko, B. R.; Kotwal, A. V.; Kruse, M.; Necula, V.; Oh, S. H.; Phillips, T. J.] Duke Univ, Durham, NC 27708 USA. [Palencia, E.; Papadimitriou, V.; Patrick, J.; Pronko, A.; Ptohos, F.; Reisert, B.; Roser, R.; Rusu, V.; Sato, K.; Schlabach, P.; Schmidt, E. E.; Sexton-Kennedy, L.; Slaughter, A. J.; Snider, F. D.; Spalding, J.; Thom, J.; Tkaczyk, S.; Tonelli, D.; Torretta, D.; Velev, G.; Vidal, R.; Wagner, R. L.; Wester, W. C., III; Wicklund, E.; Wilson, P.; Wittich, P.; Wolbers, S.; Yeh, G. P.; Yoh, J.; Yu, S. S.; Yun, J. C.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Carrillo, S.; Field, R.; Furic, I.; Goldschmidt, N.; Jindariani, S.; Kar, D.; Klimenko, S.; Konigsberg, J.; Korytov, A.; Lungu, G.; Mitselmakher, G.; Oksuzian, I.; Pinera, L.; Sukhanov, A.] Univ Florida, Gainesville, FL 32611 USA. [Annovi, A.; Cordelli, M.; Giromini, P.; Happacher, F.; Torre, S.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Clark, A.; Hamilton, A.; Lefevre, R.; Sfyria, A.; Shreyber, I.; Vallecorsa, S.; Wu, X.] Univ Geneva, CH-1211 Geneva 4, Switzerland. [Bussey, P.; Davies, T.; Martin, V.; Robson, A.; Denis, R. St.; Thompson, A. S.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. [Belloni, A.; Chou, J. P.; Franklin, M.; Grinstein, S.; da Costa, J. Guimaraes; Mills, C.; Moed, S.; Sherman, D.; Zaw, I.] Harvard Univ, Cambridge, MA 02138 USA. [Aaltonen, T.; Maki, T.; Mehtala, P.; Orava, R.; Osterberg, K.; Saarikko, H.; van Remortel, N.] Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. [Aaltonen, T.; Maki, T.; Mehtala, P.; Orava, R.; Osterberg, K.; Saarikko, H.; van Remortel, N.] Helsinki Inst Phys, FIN-00014 Helsinki, Finland. [Marino, C. P.; Neubauer, M. S.; Norniella, O.; Pitts, K.; Rogers, E.; Taffard, A.; Thompson, G. A.; Zhang, X.] Univ Illinois, Urbana, IL 61801 USA. [Barnett, B. A.; Behari, S.; Blumenfeld, B.; Maksimovic, P.; Martin, M.; Mumford, R.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Feindt, M.; Heck, M.; Heuser, J.; Hirschbuehl, D.; Kerzel, U.; Kreps, M.; Kuhr, T.; Lueck, J.; Mack, P.; Marino, C.; Milnik, M.; Muller, Th.; Papaikonomou, A.; Richter, S.; Scheidle, T.; Wagner-Kuhr, J.; Wagner, W.] Univ Karlsruhe, Inst Expt Kernphys, D-76128 Karlsruhe, Germany. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J.; Lee, Y. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Kyungpook Natl Univ, Ctr High Energy Phys, Taegu 702701, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J.; Lee, Y. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Seoul Natl Univ, Seoul 151742, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J.; Lee, Y. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Sungkyunkwan Univ, Suwon 440746, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J.; Lee, Y. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Korea Inst Sci & Technol Informat, Taejon 305806, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J.; Lee, Y. J.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Yang, Y. C.; Yu, I.] Chonnam Natl Univ, Kwangju 500757, South Korea. [Beringer, J.; Cerri, A.; De Barbaro, P.; Deisher, A.; Fang, H. C.; Freeman, J. C.; Haber, C.; Heinemann, B.; Lin, C. S.; Lujan, P.; Lys, J.; Fernandez, P. Movilla; Muelmenstaedt, J.; Shapiro, M. D.; Volobouev, I.; Yao, W. M.] Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Berry, T.; Farrington, S.; Houlden, M.; Manca, G.; McNulty, R.; Mehta, A.; Oldeman, R.; Shears, T.; Wynne, S. M.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Bizjak, I.; Cerrito, L.; Cooper, B.; Lancaster, M.; Malik, S.; Nurse, E.; Vine, T.; Waters, D.] UCL, London WC1E 6BT, England. [Fernandez, J. P.; Gonzalez, O.; Martinez-Ballarin, R.; Redondo, I.; Vidal, M.] Ctr Invest Energet Medioambientales & Tecnol, E-28040 Madrid, Spain. [Bauer, G.; Bolshov, A.; Choudalakis, G.; Gomez-Ceballos, G.; Hahn, K.; Henderson, C.; Iyutin, B.; Klute, M.; Knuteson, B.; Leonardo, N.; Makhoul, K.; Miles, J.; Paus, C.] MIT, Cambridge, MA 02139 USA. [Beauchemin, P. -H.; Buzatu, A.; Carron, S.; Lai, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Trischuk, W.; Warburton, A.; Williams, G.] McGill Univ, Inst Particle Phys, Montreal, PQ H3A 2T8, Canada. [Beauchemin, P. -H.; Buzatu, A.; Carron, S.; Lai, S.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Spreitzer, T.; Trischuk, W.; Warburton, A.; Williams, G.] Univ Toronto, Toronto, ON M5S 1A7, Canada. [Amidei, D.; Campbell, M.; Copic, K.; Cully, J. C.; Gerdes, D.; Soderberg, M.; Tecchio, M.; Varganov, A.; Wright, T.] Univ Michigan, Ann Arbor, MI 48109 USA. [Bromberg, C.; Campanelli, M.; Gunay-Unalan, Z.; Huston, J.; Messina, A.; Miller, R.; Sorin, V.; Tollefson, K.] Michigan State Univ, E Lansing, MI 48824 USA. [Gold, M.; Gorelov, I.; Rekovic, V.; Seidel, S.; Strologas, J.; Vataga, E.; Vogel, M.] Univ New Mexico, Albuquerque, NM 87131 USA. [Schmitt, M.; Stentz, D.] Northwestern Univ, Evanston, IL 60208 USA. [Efron, J.; Hughes, R. E.; Kilminster, B.; Lannon, K.; Parks, B.; Slaunwhite, J.; Winer, B. L.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.; Takashima, R.; Tanaka, R.; Yamashita, T.] Okayama Univ, Okayama 7008530, Japan. [Kato, Y.; Okusawa, T.; Seiya, Y.; Wakisaka, T.; Yamamoto, K.; Yoshida, T.] Osaka City Univ, Osaka 588, Japan. [Azfar, F.; Harper, S.; Hays, C.; Huffman, B. T.; Linacre, J.; Lyons, L.; Malde, S.; Pounder, N.; Renton, P.; Stelzer, B.] Univ Oxford, Oxford OX1 3RH, England. [Amerio, S.; Azzi-Bacchetta, P.; Bacchetta, N.; Bisello, D.; Busetto, G.; Compostella, G.; Cortiana, G.; Donini, J.; Dorigo, T.; Gresele, A.; Lazzizzera, I.; Loreti, M.; Lucchesi, D.; Griso, S. Pagan] Univ Padua, Ist Nazl Fis Nucl, Sez Padova Trento, I-35131 Padua, Italy. [Di Giovanni, G. P.; Piedra, J.; Savoy-Navarro, A.] Univ Paris 06, LPNHE, IN2P3, CNRS,UMR 7585, F-75252 Paris, France. [Canepa, A.; Heijboer, A.; Heinrich, J.; Kroll, J.; Lockyer, N. S.; Neu, C.; Thomson, E.; Tu, Y.; Wagner, P.; Whiteson, D.; Williams, H. H.] Univ Penn, Philadelphia, PA 19104 USA. [Azzurri, P.; Bedeschi, F.; Bellettini, G.; Carosi, R.; Catastini, P.; Chiarelli, G.; Ciocci, M. A.; Crescioli, F.; Dell'Orso, M.; Donati, S.; Ferrazza, C.; Garcia, J. E.; Giakoumopolou, V.; Giannetti, P.; Giunta, M.; Introzzi, G.; Lami, S.; Latino, G.; Leone, S.; Menzione, A.; Morello, M.; Pagliarone, C.; Piacentino, G.; Punzi, G.; Ristori, L.; Sartori, L.; Scribano, A.; Scuri, F.; Sidoti, A.; Spinella, F.; Squillacioti, P.; Turini, N.; Vellidis, C.; Volpi, G.] Univ Pisa, Ist Nazl Fis Nucl Pisa, Siena, Italy. [Azzurri, P.; Bedeschi, F.; Bellettini, G.; Carosi, R.; Catastini, P.; Chiarelli, G.; Ciocci, M. A.; Crescioli, F.; Dell'Orso, M.; Donati, S.; Ferrazza, C.; Garcia, J. E.; Giakoumopolou, V.; Giannetti, P.; Giunta, M.; Introzzi, G.; Lami, S.; Latino, G.; Leone, S.; Menzione, A.; Morello, M.; Pagliarone, C.; Piacentino, G.; Punzi, G.; Ristori, L.; Sartori, L.; Scribano, A.; Scuri, F.; Sidoti, A.; Spinella, F.; Squillacioti, P.; Turini, N.; Vellidis, C.; Volpi, G.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Boudreau, J.; Gibson, K.; Hartz, M.; Rahaman, A.; Shepard, P. F.] Univ Pittsburgh, Pittsburgh, PA 15260 USA. [Apresyan, A.; Barnes, V. E.; Bolla, G.; Bortoletto, D.; Flanagan, G.; Garfinkel, A. F.; Jones, M.; Laasanen, A. T.; Lytken, E.; Margaroli, F.; Merkel, P.; Ranjan, N.; Sedov, A.; Veszpremi, V.] Purdue Univ, W Lafayette, IN 47907 USA. [Bodek, A.; Boisvert, V.; Budd, H. S.; Chung, Y. S.; De Barbaro, P.; De Lentdecker, G.; Gimmell, J. L.; Han, B. -Y.; Han, J. Y.; Lee, J.; McFarland, K. S.; Sakumoto, W. K.; Yu, G. B.] Univ Rochester, Rochester, NY 14627 USA. [Bhatti, A.; Demortier, L.; Gallinaro, M.; Goulianos, K.; Hatakeyama, K.; Mesropian, C.; Terashi, K.] Rockefeller Univ, New York, NY 10021 USA. [DeCecco, S.; De Pedis, D.; Dionisi, C.; Giagu, S.; Iori, M.; Jeans, D.; Luci, C.; Mastrandrea, P.; Rescigno, M.; Salamanna, G.; Sarkar, S.; Zanello, L.] Univ Roma La Sapienza, Sez Roma 1, Ist Nazl Fis Nucl, I-00185 Rome, Italy. [Anastassov, A.; Chuang, S. H.; Dube, S.; Halkiadakis, E.; Hare, D.; Lath, A.; Somalwar, S.; Yamaoka, J.] Rutgers State Univ, Piscataway, NJ 08855 USA. [Aurisano, A.; Goncharov, M.; Kamon, T.; Khotilovich, V.; Lee, S. W.; McIntyre, P.; Safonov, A.; Toback, D.] Texas A&M Univ, College Stn, TX 77843 USA. [Cauz, D.; Di Ruzza, B.; Giordani, M.; Pauletta, G.; Penzo, A.; Rossi, M.; Santi, L.; Zanetti, A.] Univ Trieste Udine, Ist Nazl Fis Nucl, Udine, Italy. [Akimoto, T.; Hara, K.; Kim, S. H.; Kimura, N.; Kubo, T.; Maruyama, T.; Masubuchi, T.; Miyake, H.; Nagai, Y.; Nagano, A.; Nakamura, K.; Shimojima, M.; Suzuki, T.; Takeuchi, Y.; Tomura, T.; Ukegawa, F.; Uozumi, S.] Univ Tsukuba, Tsukuba, Ibaraki 305, Japan. [Hare, M.; Napier, A.; Rolli, S.; Sliwa, K.; Sun, H.; Whitehouse, B.] Tufts Univ, Medford, MA 02155 USA. [Arisawa, T.; Kondo, K.; Kusakabe, Y.; Naganoma, J.] Waseda Univ, Tokyo 169, Japan. [Harr, R. F.; Karchin, P. E.; Kulkarni, N. P.; Mattson, M. E.; Shalhout, S. Z.] Wayne State Univ, Detroit, MI 48201 USA. [Bellinger, J.; Carlsmith, D.; Chung, W. H.; Handler, R.; Herndon, M.; Pondrom, L.; Pursley, J.; Ramakrishnan, V.; Shon, Y.] Univ Wisconsin, Madison, WI 53706 USA. [Feild, R. G.; Husemann, U.; Lin, C.; Loginov, A.; Martin, A.; Schmidt, M. P.; Stanitzki, M.; Tipton, P.; Yang, C.] Yale Univ, New Haven, CT 06520 USA. RP Aaltonen, T (reprint author), Acad Sinica, Inst Phys, Taipei 11529, Taiwan. RI Azzi, Patrizia/H-5404-2012; manca, giulia/I-9264-2012; Amerio, Silvia/J-4605-2012; messina, andrea/C-2753-2013; Annovi, Alberto/G-6028-2012; Ivanov, Andrew/A-7982-2013; St.Denis, Richard/C-8997-2012; Warburton, Andreas/N-8028-2013; Kim, Soo-Bong/B-7061-2014; Lysak, Roman/H-2995-2014; Ruiz, Alberto/E-4473-2011; Robson, Aidan/G-1087-2011; De Cecco, Sandro/B-1016-2012; Grinstein, Sebastian/N-3988-2014; Prokoshin, Fedor/E-2795-2012; Leonardo, Nuno/M-6940-2016; Canelli, Florencia/O-9693-2016; Lazzizzera, Ignazio/E-9678-2015; Chiarelli, Giorgio/E-8953-2012; Moon, Chang-Seong/J-3619-2014; Scodellaro, Luca/K-9091-2014; Paulini, Manfred/N-7794-2014; Russ, James/P-3092-2014; vilar, rocio/P-8480-2014; Cabrera Urban, Susana/H-1376-2015; Garcia, Jose /H-6339-2015; ciocci, maria agnese /I-2153-2015; Cavalli-Sforza, Matteo/H-7102-2015; Muelmenstaedt, Johannes/K-2432-2015; Introzzi, Gianluca/K-2497-2015; Gorelov, Igor/J-9010-2015 OI Azzi, Patrizia/0000-0002-3129-828X; Annovi, Alberto/0000-0002-4649-4398; Ivanov, Andrew/0000-0002-9270-5643; Warburton, Andreas/0000-0002-2298-7315; Ruiz, Alberto/0000-0002-3639-0368; Robson, Aidan/0000-0002-1659-8284; Gallinaro, Michele/0000-0003-1261-2277; Salamanna, Giuseppe/0000-0002-0861-0052; Torre, Stefano/0000-0002-7565-0118; Turini, Nicola/0000-0002-9395-5230; Osterberg, Kenneth/0000-0003-4807-0414; Margaroli, Fabrizio/0000-0002-3869-0153; Latino, Giuseppe/0000-0002-4098-3502; Group, Robert/0000-0002-4097-5254; iori, maurizio/0000-0002-6349-0380; Grinstein, Sebastian/0000-0002-6460-8694; Lancaster, Mark/0000-0002-8872-7292; Nielsen, Jason/0000-0002-9175-4419; Jun, Soon Yung/0000-0003-3370-6109; Toback, David/0000-0003-3457-4144; Hays, Chris/0000-0003-2371-9723; Farrington, Sinead/0000-0001-5350-9271; Prokoshin, Fedor/0000-0001-6389-5399; Leonardo, Nuno/0000-0002-9746-4594; Canelli, Florencia/0000-0001-6361-2117; Lazzizzera, Ignazio/0000-0001-5092-7531; Lami, Stefano/0000-0001-9492-0147; Chiarelli, Giorgio/0000-0001-9851-4816; Giordani, Mario/0000-0002-0792-6039; Casarsa, Massimo/0000-0002-1353-8964; Vidal Marono, Miguel/0000-0002-2590-5987; Moon, Chang-Seong/0000-0001-8229-7829; Scodellaro, Luca/0000-0002-4974-8330; Paulini, Manfred/0000-0002-6714-5787; Russ, James/0000-0001-9856-9155; ciocci, maria agnese /0000-0003-0002-5462; Muelmenstaedt, Johannes/0000-0003-1105-6678; Introzzi, Gianluca/0000-0002-1314-2580; Gorelov, Igor/0000-0001-5570-0133 NR 19 TC 15 Z9 15 U1 1 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD FEB 15 PY 2008 VL 100 IS 6 AR 062005 DI 10.1103/PhysRevLett.100.062005 PG 7 WC Physics, Multidisciplinary SC Physics GA 263TC UT WOS:000253238400018 PM 18352461 ER PT J AU Abazov, VM Abbott, B Abolins, M Acharya, BS Adams, M Adams, T Aguilo, E Ahn, SH Ahsan, M Alexeev, GD Alkhazov, G Alton, A Alverson, G Alves, GA Anastasoaie, M Ancu, LS Andeen, T Anderson, S Andrieu, B Anzelc, MS Amoud, Y Arov, M Arthaud, M Askew, A Asman, B Jesus, ACSA Atramentov, O Autermann, C Avila, C Ay, C Badaud, F Baden, A Bagby, L Baldin, B Bandurin, DV Banerjee, S Banerjee, P Barberis, E Barfuss, AF Bargassa, P Baringer, P Barreto, J Bartlett, JF Bassler, U Bauer, D Beale, S Bean, A Begalli, M Begel, M Belanger-Champagne, C Bellantoni, L Bellavance, A Benitez, JA Beri, SB Bernardi, G Bernhard, R Bertram, I Besancon, M Beuselinck, R Bezzubov, VA Bhat, PC Bhatnagar, V Biscarat, C Blazey, G Blekman, F Blessing, S Bloch, D Bloom, K Boehnlein, A Boline, D Bolton, TA Borissov, G Bose, T Brandt, A Brock, R Brooijmans, G Bross, A Brown, D Buchanan, NJ Buchholz, D Buehler, M Buescher, V Bunichev, V Burdin, S Burke, S Burnett, TH Buszello, CP Butler, JM Calfayan, P Calvet, S Cammin, J Carvalho, W Casey, BCK Cason, NM Castilla-Valdez, H Chakrabarti, S Chakraborty, D Chan, KM Chan, K Chandra, A Charles, F Cheu, E Chevallier, F Cho, DK Choi, S Choudhary, B Christofek, L Christoudias, T Cihangir, S Claes, D Coadou, Y Cooke, M Cooper, WE Corcoran, M Couderc, F Cousinou, MC Crepe-Renaudin, S Cutts, D Cwiok, M da Motta, H Das, A Davies, G De, K de Jong, SJ De la Cruz-Burelo, E Martins, CDO Degenhardt, JD Deliot, F Demarteau, M Demina, R Denisov, D Denisov, SP Desai, S Diehl, HT Diesburg, M Dominguez, A Dong, H Dudko, LV Duflot, L Dugad, SR Duggan, D Duperrin, A Dyer, J Dyshkant, A Eads, M Edmunds, D Ellison, J Elvira, VD Enari, Y Eno, S Ermolov, P Evans, H Evdokimov, A Evdokimov, VN Ferapontov, AV Ferbel, T Fiedler, F Filthaut, F Fisher, W Fisk, HE Ford, M Fortner, M Fox, H Fu, S Fuess, S Gadfort, T Galea, CF Gallas, E Galyaev, E Garcia, C Garcia-Bellido, A Gavrilov, V Gay, P Geist, W Gele, D Gerber, CE Gershtein, Y Gillberg, D Ginther, G Gollub, N Gomez, B Goussiou, A Grannis, PD Greenlee, H Greenwood, ZD Gregores, EM Grenier, G Gris, P Grivaz, JF Grohsjean, A Grunendahl, S Grunewald, MW Guo, J Guo, F Gutierrez, P Gutierrez, G Haas, A Hadley, NJ Haefner, P Hagopian, S Haley, J Hall, I Hall, RE Han, L Hansson, P Harder, K Harel, A Harrington, R Hauptman, JM Hauser, R Hays, J Hebbeker, T Hedin, D Hegeman, JG Heinmiller, JM Heinson, AP Heintz, U Hensel, C Herner, K Hesketh, G Hildreth, MD Hirosky, R Hobbs, JD Hoeneisen, B Hoeth, H Hohlfeld, M Hong, SJ Hossain, S Houben, P Hu, Y Hubacek, Z Hynek, V Iashvili, I Illingworth, R Ito, AS Jabeen, S Jaffre, M Jain, S Jakobs, K Jarvis, C Jesik, R Johns, K Johnson, C Johnson, M Jonckheere, A Jonsson, P Juste, A Kajfasz, E Kalinin, AM Kalk, JR Kalk, JM Kappler, S Karmanov, D Kasper, PA Katsanos, I Kau, D Kaur, R Kaushik, V Kehoe, R Kermiche, S Khalatyan, N Khanov, A Kharchilava, A Kharzheev, YM Khatidze, D Kim, TJ Kirby, MH Kirsch, M Klima, B Kohli, JM Konrath, JP Korablev, VM Kozelov, AV Krop, D Kuhl, T Kumar, A Kunori, S Kupco, A Kurca, T Kvita, J Lacroix, F Lam, D Lammers, S Landsberg, G Lebrun, P Lee, WM Leflat, A Lehner, F Lellouch, J Leveque, J Li, J Li, QZ Li, L Lietti, SM Lima, JGR Lincoln, D Linnemann, J Lipaev, VV Lipton, R Liu, Y Liu, Z Lobodenko, A Lokajicek, M Love, P Lubatti, HJ Luna, R Lyon, AL Maciel, AKA Mackin, D Madaras, RJ Mattig, P Magass, C Magerkurth, A Mal, PK Malbouisson, HB Malik, S Malyshev, VL Mao, HS Maravin, Y Martin, B McCarthy, R Melnitchouk, A Mendoza, L Mercadante, PG Merkin, M Merritt, KW Meyer, J Meyer, A Millet, T Mitrevski, J Molina, J Mommsen, RK Mondal, NK Moore, RW Moulik, T Muanza, GS Mulders, M Mulhearn, M Mundal, O Mundim, L Nagy, E Naimuddin, M Narain, M Naumann, NA Neal, HA Negret, JP Neustroev, P Nilsen, H Nogima, H Novaes, SF Nunnemann, T O'Dell, V O'Neil, DC Obrant, G Ochando, C Onoprienko, D Oshima, N Osta, J Otec, R Garzon, GJOY Owen, M Padley, P Pangilinan, M Parashar, N Park, SJ Park, SK Parsons, J Partridge, R Parua, N Patwa, A Pawloski, G Penning, B Perfilov, M Peters, K Peters, Y Petroff, P Petteni, M Piegaia, R Piper, J Pleier, MA Podesta-Lerma, PLM Podstavkov, VM Pogorelov, Y Pol, ME Polozov, P Pope, BG Popov, AV Potter, C da Silva, WLP Prosper, HB Protopopescu, S Qian, J Quadt, A Quinn, B Rakitine, A Rangel, MS Ranjan, K Ratoff, PN Renkel, P Reucroft, S Rich, P Rieger, J Rijssenbeek, M Ripp-Baudot, I Rizatdinova, F Robinson, S Rodrigues, RF Rominsky, M Royon, C Rubinov, P Ruchti, R Safronov, G Sajot, G Sanchez-Hernandez, A Sanders, MP Santoro, A Savage, G Sawyer, L Scanlon, T Schaile, D Schamberger, RD Scheglov, Y Schellman, H Schliephake, T Schwanenberger, C Schwartzman, A Schwienhorst, R Sekaric, J Severini, H Shabalina, E Shamim, M Shary, V Shchukin, AA Shivpuri, RK Siccardi, V Simak, V Sirotenko, V Skubic, P Slattery, P Smirnov, D Snow, J Snow, GR Snyder, S Soldner-Rembold, S Sonnenschein, L Sopczak, A Sosebee, M Soustruznik, K Spurlock, B Stark, J Steele, J Stolin, V Stoyanova, DA Strandberg, J Strandberg, S Strang, MA Strauss, M Strauss, E Strohmer, R Strom, D Stutte, L Sumowidagdo, S Svoisky, P Sznajder, A Talby, M Tamburello, P Tanasijczuk, A Taylor, W Temple, J Tiller, B Tissandier, F Titov, M Tokmenin, VV Toole, T Torchiani, I Trefzger, T Tsybychev, D Tuchming, B Tully, C Tuts, PM Unalan, R Uvarov, S Uvarov, L Uzunyan, S Vachon, B van den Berg, PJ Van Kooten, R van Leeuwen, WM Varelas, N Varnes, EW Vasilyev, IA Vaupel, M Verdier, P Vertogradov, LS Verzocchi, M Villeneuve-Seguier, F Vint, P Vokac, P Von Toerne, E Voutilainen, M Wagner, R Wahl, HD Wang, L Wang, MHLS Warchol, J Watts, G Wayne, M Weber, M Weber, G Welty-Rieger, L Wenger, A Wermes, N Wetstein, M White, A Wicke, D Wilson, GW Wimpenny, SJ Wobisch, M Wood, DR Wyatt, TR Xie, Y Yacoob, S Yamada, R Yan, M Yasuda, T Yatsunenko, YA Yip, K Yoo, HD Youn, SW Yu, J Zatserklyaniy, A Zeitnitz, C Zhao, T Zhou, B Zhu, J Zielinski, M Zieminska, D Zieminski, A Zivkovic, L Zutshi, V Zverev, EG AF Abazov, V. M. Abbott, B. Abolins, M. Acharya, B. S. Adams, M. Adams, T. Aguilo, E. Ahn, S. H. Ahsan, M. Alexeev, G. D. Alkhazov, G. Alton, A. Alverson, G. Alves, G. A. Anastasoaie, M. Ancu, L. S. Andeen, T. Anderson, S. Andrieu, B. Anzelc, M. S. Amoud, Y. Arov, M. Arthaud, M. Askew, A. Asman, B. Jesus, A. C. S. Assis Atramentov, O. Autermann, C. Avila, C. Ay, C. Badaud, F. Baden, A. Bagby, L. Baldin, B. Bandurin, D. V. Banerjee, S. Banerjee, P. Barberis, E. Barfuss, A. -F. Bargassa, P. Baringer, P. Barreto, J. Bartlett, J. F. Bassler, U. Bauer, D. Beale, S. Bean, A. Begalli, M. Begel, M. Belanger-Champagne, C. Bellantoni, L. Bellavance, A. Benitez, J. A. Beri, S. B. Bernardi, G. Bernhard, R. Bertram, I. Besancon, M. Beuselinck, R. Bezzubov, V. A. Bhat, P. C. Bhatnagar, V. Biscarat, C. Blazey, G. Blekman, F. Blessing, S. Bloch, D. Bloom, K. Boehnlein, A. Boline, D. Bolton, T. A. Borissov, G. Bose, T. Brandt, A. Brock, R. Brooijmans, G. Bross, A. Brown, D. Buchanan, N. J. Buchholz, D. Buehler, M. Buescher, V. Bunichev, V. Burdin, S. Burke, S. Burnett, T. H. Buszello, C. P. Butler, J. M. Calfayan, P. Calvet, S. Cammin, J. Carvalho, W. Casey, B. C. K. Cason, N. M. Castilla-Valdez, H. Chakrabarti, S. Chakraborty, D. Chan, K. M. Chan, K. Chandra, A. Charles, F. Cheu, E. Chevallier, F. Cho, D. K. Choi, S. Choudhary, B. Christofek, L. Christoudias, T. Cihangir, S. Claes, D. Coadou, Y. Cooke, M. Cooper, W. E. Corcoran, M. Couderc, F. Cousinou, M. -C. Crepe-Renaudin, S. Cutts, D. Cwiok, M. da Motta, H. Das, A. Davies, G. De, K. de Jong, S. J. De la Cruz-Burelo, E. Martins, C. De Oliveira Degenhardt, J. D. Deliot, F. Demarteau, M. Demina, R. Denisov, D. Denisov, S. P. Desai, S. Diehl, H. T. Diesburg, M. Dominguez, A. Dong, H. Dudko, L. V. Duflot, L. Dugad, S. R. Duggan, D. Duperrin, A. Dyer, J. Dyshkant, A. Eads, M. Edmunds, D. Ellison, J. Elvira, V. D. Enari, Y. Eno, S. Ermolov, P. Evans, H. Evdokimov, A. Evdokimov, V. N. Ferapontov, A. V. Ferbel, T. Fiedler, F. Filthaut, F. Fisher, W. Fisk, H. E. Ford, M. Fortner, M. Fox, H. Fu, S. Fuess, S. Gadfort, T. Galea, C. F. Gallas, E. Galyaev, E. Garcia, C. Garcia-Bellido, A. Gavrilov, V. Gay, P. Geist, W. Gele, D. Gerber, C. E. Gershtein, Y. Gillberg, D. Ginther, G. Gollub, N. Gomez, B. Goussiou, A. Grannis, P. D. Greenlee, H. Greenwood, Z. D. Gregores, E. M. Grenier, G. Gris, Ph. Grivaz, J. -F. Grohsjean, A. Gruenendahl, S. Gruenewald, M. W. Guo, J. Guo, F. Gutierrez, P. Gutierrez, G. Haas, A. Hadley, N. J. Haefner, P. Hagopian, S. Haley, J. Hall, I. Hall, R. E. Han, L. Hansson, P. Harder, K. Harel, A. Harrington, R. Hauptman, J. M. Hauser, R. Hays, J. Hebbeker, T. Hedin, D. Hegeman, J. G. Heinmiller, J. M. Heinson, A. P. Heintz, U. Hensel, C. Herner, K. Hesketh, G. Hildreth, M. D. Hirosky, R. Hobbs, J. D. Hoeneisen, B. Hoeth, H. Hohlfeld, M. Hong, S. J. Hossain, S. Houben, P. Hu, Y. Hubacek, Z. Hynek, V. Iashvili, I. Illingworth, R. Ito, A. S. Jabeen, S. Jaffre, M. Jain, S. Jakobs, K. Jarvis, C. Jesik, R. Johns, K. Johnson, C. Johnson, M. Jonckheere, A. Jonsson, P. Juste, A. Kajfasz, E. Kalinin, A. M. Kalk, J. R. Kalk, J. M. Kappler, S. Karmanov, D. Kasper, P. A. Katsanos, I. Kau, D. Kaur, R. Kaushik, V. Kehoe, R. Kermiche, S. Khalatyan, N. Khanov, A. Kharchilava, A. Kharzheev, Y. M. Khatidze, D. Kim, T. J. Kirby, M. H. Kirsch, M. Klima, B. Kohli, J. M. Konrath, J. -P. Korablev, V. M. Kozelov, A. V. Krop, D. Kuhl, T. Kumar, A. Kunori, S. Kupco, A. Kurca, T. Kvita, J. Lacroix, F. Lam, D. Lammers, S. Landsberg, G. Lebrun, P. Lee, W. M. Leflat, A. Lehner, F. Lellouch, J. Leveque, J. Li, J. Li, Q. Z. Li, L. Lietti, S. M. Lima, J. G. R. Lincoln, D. Linnemann, J. Lipaev, V. V. Lipton, R. Liu, Y. Liu, Z. Lobodenko, A. Lokajicek, M. Love, P. Lubatti, H. J. Luna, R. Lyon, A. L. Maciel, A. K. A. Mackin, D. Madaras, R. J. Maettig, P. Magass, C. Magerkurth, A. Mal, P. K. Malbouisson, H. B. Malik, S. Malyshev, V. L. Mao, H. S. Maravin, Y. Martin, B. McCarthy, R. Melnitchouk, A. Mendoza, L. Mercadante, P. G. Merkin, M. Merritt, K. W. Meyer, J. Meyer, A. Millet, T. Mitrevski, J. Molina, J. Mommsen, R. K. Mondal, N. K. Moore, R. W. Moulik, T. Muanza, G. S. Mulders, M. Mulhearn, M. Mundal, O. Mundim, L. Nagy, E. Naimuddin, M. Narain, M. Naumann, N. A. Neal, H. A. Negret, J. P. Neustroev, P. Nilsen, H. Nogima, H. Novaes, S. F. Nunnemann, T. O'Dell, V. O'Neil, D. C. Obrant, G. Ochando, C. Onoprienko, D. Oshima, N. Osta, J. Otec, R. Otero y Garzon, G. J. Owen, M. Padley, P. Pangilinan, M. Parashar, N. Park, S. -J. Park, S. K. Parsons, J. Partridge, R. Parua, N. Patwa, A. Pawloski, G. Penning, B. Perfilov, M. Peters, K. Peters, Y. Petroff, P. Petteni, M. Piegaia, R. Piper, J. Pleier, M. -A. Podesta-Lerma, P. L. M. Podstavkov, V. M. Pogorelov, Y. Pol, M. -E. Polozov, P. Pope, B. G. Popov, A. V. Potter, C. da Silva, W. L. Prado Prosper, H. B. Protopopescu, S. Qian, J. Quadt, A. Quinn, B. Rakitine, A. Rangel, M. S. Ranjan, K. Ratoff, P. N. Renkel, P. Reucroft, S. Rich, P. Rieger, J. Rijssenbeek, M. Ripp-Baudot, I. Rizatdinova, F. Robinson, S. Rodrigues, R. F. Rominsky, M. Royon, C. Rubinov, P. Ruchti, R. Safronov, G. Sajot, G. Sanchez-Hernandez, A. Sanders, M. P. Santoro, A. Savage, G. Sawyer, L. Scanlon, T. Schaile, D. Schamberger, R. D. Scheglov, Y. Schellman, H. Schliephake, T. Schwanenberger, C. Schwartzman, A. Schwienhorst, R. Sekaric, J. Severini, H. Shabalina, E. Shamim, M. Shary, V. Shchukin, A. A. Shivpuri, R. K. Siccardi, V. Simak, V. Sirotenko, V. Skubic, P. Slattery, P. Smirnov, D. Snow, J. Snow, G. R. Snyder, S. Soeldner-Rembold, S. Sonnenschein, L. Sopczak, A. Sosebee, M. Soustruznik, K. Spurlock, B. Stark, J. Steele, J. Stolin, V. Stoyanova, D. A. Strandberg, J. Strandberg, S. Strang, M. A. Strauss, M. Strauss, E. Stroehmer, R. Strom, D. Stutte, L. Sumowidagdo, S. Svoisky, P. Sznajder, A. Talby, M. Tamburello, P. Tanasijczuk, A. Taylor, W. Temple, J. Tiller, B. Tissandier, F. Titov, M. Tokmenin, V. V. Toole, T. Torchiani, I. Trefzger, T. Tsybychev, D. Tuchming, B. Tully, C. Tuts, P. M. Unalan, R. Uvarov, S. Uvarov, L. Uzunyan, S. Vachon, B. van den Berg, P. J. Van Kooten, R. van Leeuwen, W. M. Varelas, N. Varnes, E. W. Vasilyev, I. A. Vaupel, M. Verdier, P. Vertogradov, L. S. Verzocchi, M. Villeneuve-Seguier, F. Vint, P. Vokac, P. Von Toerne, E. Voutilainen, M. Wagner, R. Wahl, H. D. Wang, L. Wang, M. H. L. S. Warchol, J. Watts, G. Wayne, M. Weber, M. Weber, G. Welty-Rieger, L. Wenger, A. Wermes, N. Wetstein, M. White, A. Wicke, D. Wilson, G. W. Wimpenny, S. J. Wobisch, M. Wood, D. R. Wyatt, T. R. Xie, Y. Yacoob, S. Yamada, R. Yan, M. Yasuda, T. Yatsunenko, Y. A. Yip, K. Yoo, H. D. Youn, S. W. Yu, J. Zatserklyaniy, A. Zeitnitz, C. Zhao, T. Zhou, B. Zhu, J. Zielinski, M. Zieminska, D. Zieminski, A. Zivkovic, L. Zutshi, V. Zverev, E. G. CA D0 Collaboration TI Model-independent measurement of the W-boson helicity in top-quark decays at D0 SO PHYSICAL REVIEW LETTERS LA English DT Article ID STANDARD-MODEL; POLARIZATION; B->S-GAMMA; PHYSICS; EVENTS AB We present the first model-independent measurement of the helicity of W bosons produced in top quark decays, based on a 1 fb(-1) sample of candidate t (t) over bar events in the dilepton and lepton plus jets channels collected by the D0 detector at the Fermilab Tevatron p (p) over bar Collider. We reconstruct the angle theta(*) between the momenta of the down-type fermion and the top quark in the W boson rest frame for each top quark decay. A fit of the resulting cos theta(*) distribution finds that the fraction of longitudinal W bosons f(0)=0.425 +/- 0.166(stat)+/- 0.102(syst) and the fraction of right-handed W bosons f(+)=0.119 +/- 0.090(stat)+/- 0.053(syst), which is consistent at the 30% C.L. with the standard model. C1 [Piegaia, R.] Univ Buenos Aires, Buenos Aires, DF, Argentina. [Alves, G. A.; Barreto, J.; da Motta, H.; Maciel, A. K. A.; Pol, M. -E.; Rangel, M. S.] Ctr Brasileiro Pesquisas Fis, LAFEX, Rio De Janeiro, Brazil. [Jesus, A. C. S. Assis; Begalli, M.; Carvalho, W.; Martins, C. De Oliveira; Luna, R.; Malbouisson, H. B.; Molina, J.; Mundim, L.; Nogima, H.; da Silva, W. L. Prado; Rodrigues, R. F.; Santoro, A.; Sznajder, A.] Univ Estado Rio de Janiero, Rio De Janeiro, Brazil. [Gregores, E. M.] Univ Fed ABC, Santo Andre, Brazil. [Lietti, S. M.; Mercadante, P. G.; Novaes, S. F.] Univ Estadual Paulista, Inst Fis Teor, BR-01405 Sao Paulo, Brazil. [Aguilo, E.; Beale, S.; Chan, K.; Coadou, Y.; Gillberg, D.; Liu, Z.; Moore, R. W.; O'Neil, D. C.; Taylor, W.; Vachon, B.] Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada. [Aguilo, E.; Beale, S.; Chan, K.; Coadou, Y.; Gillberg, D.; Liu, Z.; Moore, R. W.; O'Neil, D. C.; Taylor, W.; Vachon, B.] Univ Alberta, Edmonton, AB, Canada. [Aguilo, E.; Beale, S.; Chan, K.; Coadou, Y.; Gillberg, D.; Liu, Z.; Moore, R. W.; O'Neil, D. C.; Taylor, W.; Vachon, B.] York Univ, Toronto, ON M3J 2R7, Canada. [Aguilo, E.; Beale, S.; Chan, K.; Coadou, Y.; Gillberg, D.; Liu, Z.; Moore, R. W.; O'Neil, D. C.; Taylor, W.; Vachon, B.] McGill Univ, Montreal, PQ, Canada. [Han, L.; Liu, Y.] Univ Sci & Technol China, Hefei, Peoples R China. [Avila, C.; Gomez, B.; Mendoza, L.; Negret, J. P.] Univ Los Andes, Bogota, Colombia. [Hynek, V.; Kvita, J.; Soustruznik, K.] Charles Univ Prague, Ctr Particle Phys, Prague, Czech Republic. [Hubacek, Z.; Otec, R.; Simak, V.; Vokac, P.] Czech Tech Univ, CR-16635 Prague, Czech Republic. [Kupco, A.; Lokajicek, M.] Acad Sci Czech Republic, Inst Phys, Ctr Particle Phys, Prague, Czech Republic. [Hoeneisen, B.] Univ San Francisco Quito, Quito, Ecuador. [Badaud, F.; Gris, Ph.; Lacroix, F.; Tissandier, F.] Univ Blaise Pascal, LPC, CNRS, IN2P3, Clermont, France. [Amoud, Y.; Chevallier, F.; Crepe-Renaudin, S.; Martin, B.; Sajot, G.; Stark, J.] Univ Grenoble 1, LPSC, CNRS, IN2P3,Inst Natl Polytech Grenoblt, F-38041 Grenoble, France. [Barfuss, A. -F.; Cousinou, M. -C.; Duperrin, A.; Kajfasz, E.; Kermiche, S.; Nagy, E.; Talby, M.] Univ Aix Marseille 2, CNRS, IN2P3, CPPM, Marseille, France. [Calvet, S.; Duflot, L.; Grivaz, J. -F.; Jaffre, M.; Ochando, C.; Petroff, P.] Univ Paris 11, CNRS, IN2P3, LAL, F-91405 Orsay, France. [Andrieu, B.; Bernardi, G.; Lellouch, J.; Sanders, M. P.; Sonnenschein, L.] Univ Paris 06, CNRS, IN2P3, LPNHE, Paris, France. [Andrieu, B.; Bernardi, G.; Lellouch, J.; Sanders, M. P.; Sonnenschein, L.] Univ Paris 07, CNRS, IN2P3, LPNHE, Paris, France. [Arthaud, M.; Bassler, U.; Besancon, M.; Chakrabarti, S.; Couderc, F.; Deliot, F.; Royon, C.; Shary, V.; Titov, M.; Tuchming, B.] CEA, DAPNIA, Serv Phys Particules, Saclay, France. [Bloch, D.; Charles, F.; Geist, W.; Gele, D.; Ripp-Baudot, I.; Siccardi, V.] Univ Strasbourg, IPHC, Strasbourg, France. [Bloch, D.; Charles, F.; Geist, W.; Gele, D.; Ripp-Baudot, I.; Siccardi, V.] Univ Haute Alsace, CNRS, IN2P3, Strasbourg, France. [Biscarat, C.; Grenier, G.; Kurca, T.; Millet, T.; Muanza, G. S.; Verdier, P.] Univ Lyon, Lyon, France. [Biscarat, C.; Grenier, G.; Kurca, T.; Millet, T.; Muanza, G. S.; Verdier, P.] Univ Lyon 1, CNRS, IPNL, IN2P3, F-69622 Villeurbanne, France. [Autermann, C.; Hebbeker, T.; Kappler, S.; Kirsch, M.; Magass, C.; Meyer, A.] Rhein Westfal TH Aachen, Phys Inst A 3, Aachen, Germany. [Buescher, V.; Hohlfeld, M.; Meyer, J.; Mundal, O.; Pleier, M. -A.; Quadt, A.; Wermes, N.] Univ Bonn, Inst Phys, D-5300 Bonn, Germany. [Bernhard, R.; Fox, H.; Jakobs, K.; Konrath, J. -P.; Nilsen, H.; Penning, B.; Torchiani, I.] Univ Freiburg, Inst Phys, Freiburg, Germany. [Ay, C.; Fiedler, F.; Kuhl, T.; Trefzger, T.; Weber, G.] Johannes Gutenberg Univ Mainz, Inst Phys, D-6500 Mainz, Germany. [Calfayan, P.; Grohsjean, A.; Haefner, P.; Nunnemann, T.; Schaile, D.; Stroehmer, R.; Tiller, B.] Univ Munich, Munich, Germany. [Hoeth, H.; Maettig, P.; Peters, Y.; Schliephake, T.; Vaupel, M.; Wicke, D.; Zeitnitz, C.] Univ Wuppertal, Fachbereich Phys, Wuppertal, Germany. [Barberis, E.; Bhatnagar, V.; Kaur, R.; Kohli, J. M.] Panjab Univ, Chandigarh 160014, India. [Choudhary, B.; Ranjan, K.; Shivpuri, R. K.] Univ Delhi, Delhi 110007, India. [Acharya, B. S.; Banerjee, S.; Banerjee, P.; Dugad, S. R.; Mondal, N. K.] Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India. [Cwiok, M.; Gruenewald, M. W.] Univ Coll Dublin, Dublin 2, Ireland. [Ahn, S. H.; Hong, S. J.; Kim, T. J.; Park, S. K.] Korea Univ, Korea Detector Lab, Seoul 136701, South Korea. [Choi, S.] Sungkyunkwan Univ, Suwon, South Korea. [Castilla-Valdez, H.; Podesta-Lerma, P. L. M.; Sanchez-Hernandez, A.] CINVESTAV, Mexico City 14000, DF, Mexico. [Hegeman, J. G.; Houben, P.; van den Berg, P. J.; van Leeuwen, W. M.] FOM, Inst NIKHEF, NL-1098 SJ Amsterdam, Netherlands. [Hegeman, J. G.; Houben, P.; van den Berg, P. J.; van Leeuwen, W. M.] Univ Amsterdam, NIKHEF H, Amsterdam, Netherlands. [Anastasoaie, M.; Ancu, L. S.; de Jong, S. J.; Filthaut, F.; Galea, C. F.; Naumann, N. A.] Radboud Univ Nijmegen, NIKHEF H, NL-6525 ED Nijmegen, Netherlands. [Abazov, V. M.; Alexeev, G. D.; Kalinin, A. M.; Kharzheev, Y. M.; Malyshev, V. L.; Tokmenin, V. V.; Vertogradov, L. S.; Yatsunenko, Y. A.] Joint Inst Nucl Res, Dubna, Russia. [Gavrilov, V.; Polozov, P.; Safronov, G.; Stolin, V.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Bunichev, V.; Dudko, L. V.; Ermolov, P.; Karmanov, D.; Leflat, A.; Merkin, M.; Perfilov, M.] Moscow MV Lomonosov State Univ, Moscow, Russia. [Bezzubov, V. A.; Denisov, D.; Evdokimov, V. N.; Korablev, V. M.; Kozelov, A. V.; Lipaev, V. V.; Popov, A. V.; Shchukin, A. A.; Stoyanova, D. A.; Vasilyev, I. A.] Inst High Energy Phys, Protvino, Russia. [Alkhazov, G.; Lobodenko, A.; Neustroev, P.; Obrant, G.; Scheglov, Y.; Uvarov, S.; Uvarov, L.] Petersburg Nucl Phys Inst, St Petersburg, Russia. [Asman, B.; Belanger-Champagne, C.; Gollub, N.; Hansson, P.; Strandberg, S.] Lund Univ, Lund, Sweden. [Asman, B.; Belanger-Champagne, C.; Gollub, N.; Hansson, P.; Strandberg, S.] Royal Inst Technol, Stockholm, Sweden. [Asman, B.; Belanger-Champagne, C.; Gollub, N.; Hansson, P.; Strandberg, S.] Stockholm Univ, S-10691 Stockholm, Sweden. [Asman, B.; Belanger-Champagne, C.; Gollub, N.; Hansson, P.; Strandberg, S.] Uppsala Univ, Uppsala, Sweden. [Lehner, F.; Wenger, A.] Univ Zurich, Inst Phys, Zurich, Switzerland. [Bertram, I.; Borissov, G.; Burdin, S.; Love, P.; Rakitine, A.; Ratoff, P. N.; Sopczak, A.] Univ Lancaster, Lancaster, England. [Bauer, D.; Beuselinck, R.; Blekman, F.; Buszello, C. P.; Christoudias, T.; Davies, G.; Hays, J.; Jesik, R.; Jonsson, P.; Petteni, M.; Robinson, S.; Scanlon, T.; Villeneuve-Seguier, F.; Vint, P.] Univ London Imperial Coll Sci Technol & Med, London, England. [Ford, M.; Harder, K.; Mommsen, R. K.; Owen, M.; Peters, K.; Rich, P.; Schwanenberger, C.; Soeldner-Rembold, S.; Wyatt, T. R.] Univ Manchester, Manchester, Lancs, England. [Anderson, S.; Burke, S.; Cheu, E.; Das, A.; Johns, K.; Leveque, J.; Tamburello, P.; Temple, J.; Varnes, E. W.] Univ Arizona, Tucson, AZ 85721 USA. [Madaras, R. J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Hall, R. E.] Calif State Univ Fresno, Fresno, CA 93740 USA. [Chandra, A.; Ellison, J.; Heinson, A. P.; Li, L.; Wimpenny, S. J.] Univ Calif Riverside, Riverside, CA 92521 USA. [Adams, T.; Askew, A.; Atramentov, O.; Blessing, S.; Buchanan, N. J.; Duggan, D.; Gershtein, Y.; Hagopian, S.; Kau, D.; Prosper, H. B.; Sekaric, J.; Sumowidagdo, S.; Wahl, H. D.] Florida State Univ, Tallahassee, FL 32306 USA. [Baldin, B.; Bartlett, J. F.; Bellantoni, L.; Bellavance, A.; Bhat, P. C.; Boehnlein, A.; Bross, A.; Casey, B. C. K.; Cihangir, S.; Cooper, W. E.; Demarteau, M.; Denisov, D.; Desai, S.; Diehl, H. T.; Diesburg, M.; Elvira, V. D.; Fisher, W.; Fisk, H. E.; Fu, S.; Fuess, S.; Gallas, E.; Greenlee, H.; Gruenendahl, S.; Gutierrez, G.; Illingworth, R.; Ito, A. S.; Johnson, M.; Jonckheere, A.; Juste, A.; Kasper, P. A.; Khalatyan, N.; Klima, B.; Lee, W. M.; Li, Q. Z.; Lincoln, D.; Lyon, A. L.; Mao, H. S.; Merritt, K. W.; Mulders, M.; Naimuddin, M.; O'Dell, V.; Oshima, N.; Otero y Garzon, G. J.; Podstavkov, V. M.; Rubinov, P.; Savage, G.; Sirotenko, V.; Stutte, L.; Verzocchi, M.; Wang, M. H. L. S.; Weber, M.; Yamada, R.; Yasuda, T.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Adams, M.; Gerber, C. E.; Heinson, A. P.; Shabalina, E.; Varelas, N.] Univ Illinois, Chicago, IL 60607 USA. [Bagby, L.; Blazey, G.; Chakraborty, D.; Dyshkant, A.; Fortner, M.; Hedin, D.; Lima, J. G. R.; Uzunyan, S.; Zatserklyaniy, A.; Zutshi, V.] No Illinois Univ, De Kalb, IL 60115 USA. [Andeen, T.; Anzelc, M. S.; Buchholz, D.; Kirby, M. H.; Schellman, H.; Strom, D.; Yacoob, S.; Youn, S. W.] Northwestern Univ, Evanston, IL 60208 USA. [Evans, H.; Krop, D.; Parua, N.; Rieger, J.; Van Kooten, R.; Welty-Rieger, L.; Zieminska, D.; Zieminski, A.] Indiana Univ, Bloomington, IN 47405 USA. [Cason, N. M.; Chan, K. M.; Galyaev, E.; Goussiou, A.; Hildreth, M. D.; Lam, D.; Mal, P. K.; Osta, J.; Pogorelov, Y.; Ruchti, R.; Smirnov, D.; Svoisky, P.; Warchol, J.; Wayne, M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Parashar, N.] Purdue Univ Calumet, Indiana, PA USA. [Hauptman, J. M.] Iowa State Univ, Ames, IA 50011 USA. [Baringer, P.; Bean, A.; Hensel, C.; Moulik, T.; Wilson, G. W.] Univ Kansas, Lawrence, KS 66045 USA. [Ahsan, M.; Bandurin, D. V.; Bolton, T. A.; Ferapontov, A. V.; Maravin, Y.; Onoprienko, D.; Shamim, M.; Von Toerne, E.] Kansas State Univ, Manhattan, KS 66506 USA. [Arov, M.; Greenwood, Z. D.; Kalk, J. M.; Sawyer, L.; Steele, J.; Wobisch, M.] Louisiana Tech Univ, Ruston, LA 71272 USA. [Baden, A.; Eno, S.; Hadley, N. J.; Jarvis, C.; Kunori, S.; Toole, T.; Wang, L.; Wetstein, M.; Yan, M.] Univ Maryland, College Pk, MD 20742 USA. [Boline, D.; Butler, J. M.; Cho, D. K.; Heintz, U.; Jabeen, S.] Boston Univ, Boston, MA 02215 USA. [Alverson, G.; Barberis, E.; Harrington, R.; Hesketh, G.; Reucroft, S.; Wood, D. R.] Northeastern Univ, Boston, MA 02115 USA. [Alton, A.; De la Cruz-Burelo, E.; Degenhardt, J. D.; Magerkurth, A.; Neal, H. A.; Qian, J.; Strandberg, J.; Zhou, B.] Univ Michigan, Ann Arbor, MI 48109 USA. [Abolins, M.; Benitez, J. A.; Brock, R.; Dyer, J.; Edmunds, D.; Hall, I.; Hauser, R.; Kalk, J. R.; Linnemann, J.; Piper, J.; Pope, B. G.; Schwienhorst, R.; Unalan, R.] Michigan State Univ, E Lansing, MI 48824 USA. [Melnitchouk, A.; Quinn, B.] Univ Mississippi, University, MS 38677 USA. [Bloom, K.; Claes, D.; Dominguez, A.; Eads, M.; Malik, S.; Snow, G. R.; Voutilainen, M.] Univ Nebraska, Lincoln, NE 68588 USA. [Haley, J.; Tully, C.; Wagner, R.] Princeton Univ, Princeton, NJ 08544 USA. [Iashvili, I.; Kharchilava, A.; Kumar, A.; Strang, M. A.] SUNY Buffalo, Buffalo, NY 14620 USA. [Brooijmans, G.; Gadfort, T.; Haas, A.; Johnson, C.; Katsanos, I.; Khatidze, D.; Lammers, S.; Mitrevski, J.; Mulhearn, M.; Parsons, J.; Tuts, P. M.; Zivkovic, L.] Columbia Univ, New York, NY 10027 USA. [Begel, M.; Cammin, J.; Demina, R.; Ferbel, T.; Garcia, C.; Ginther, G.; Harel, A.; Park, S. -J.; Slattery, P.; Zielinski, M.] Univ Rochester, Rochester, NY 14627 USA. [Dong, H.; Grannis, P. D.; Guo, J.; Guo, F.; Herner, K.; Hobbs, J. D.; Hu, Y.; McCarthy, R.; Rijssenbeek, M.; Schamberger, R. D.; Strauss, E.; Tsybychev, D.; Zhu, J.] SUNY Stony Brook, Stony Brook, NY 11794 USA. [Evdokimov, A.; Patwa, A.; Protopopescu, S.; Snyder, S.; Yip, K.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Snow, J.] Langston Univ, Langston, OK 73050 USA. [Abbott, B.; Gutierrez, P.; Hossain, S.; Jain, S.; Rominsky, M.; Severini, H.; Skubic, P.; Strauss, M.] Univ Oklahoma, Norman, OK 73019 USA. [Khanov, A.; Rizatdinova, F.] Oklahoma State Univ, Stillwater, OK 74078 USA. [Bose, T.; Christofek, L.; Cutts, D.; Enari, Y.; Landsberg, G.; Narain, M.; Pangilinan, M.; Partridge, R.; Xie, Y.; Yoo, H. D.] Brown Univ, Providence, RI 02912 USA. [Brandt, A.; De, K.; Kaushik, V.; Li, J.; Sosebee, M.; Spurlock, B.; White, A.; Yu, J.] Univ Texas Arlington, Arlington, TX 76019 USA. [Kehoe, R.; Renkel, P.] So Methodist Univ, Dallas, TX 75275 USA. [Bargassa, P.; Cooke, M.; Corcoran, M.; Martin, B.; Padley, P.; Pawloski, G.] Rice Univ, Houston, TX 77005 USA. [Brown, D.; Buehler, M.; Hirosky, R.] Univ Virginia, Charlottesville, VA 22901 USA. [Burnett, T. H.; Garcia-Bellido, A.; Lubatti, H. J.; Watts, G.; Zhao, T.] Univ Washington, Seattle, WA 98195 USA. RP Abazov, VM (reprint author), Univ Buenos Aires, Buenos Aires, DF, Argentina. RI Bargassa, Pedrame/O-2417-2016; Juste, Aurelio/I-2531-2015; Ancu, Lucian Stefan/F-1812-2010; Alves, Gilvan/C-4007-2013; Santoro, Alberto/E-7932-2014; Deliot, Frederic/F-3321-2014; Sharyy, Viatcheslav/F-9057-2014; Kupco, Alexander/G-9713-2014; Christoudias, Theodoros/E-7305-2015; KIM, Tae Jeong/P-7848-2015; Guo, Jun/O-5202-2015; Sznajder, Andre/L-1621-2016; Li, Liang/O-1107-2015; Shivpuri, R K/A-5848-2010; De, Kaushik/N-1953-2013; Fisher, Wade/N-4491-2013; Gutierrez, Phillip/C-1161-2011; Leflat, Alexander/D-7284-2012; Dudko, Lev/D-7127-2012; Perfilov, Maxim/E-1064-2012; Merkin, Mikhail/D-6809-2012; Novaes, Sergio/D-3532-2012; Mercadante, Pedro/K-1918-2012; Mundim, Luiz/A-1291-2012; Yip, Kin/D-6860-2013; OI Malik, Sudhir/0000-0002-6356-2655; Blazey, Gerald/0000-0002-7435-5758; Wahl, Horst/0000-0002-1345-0401; Gershtein, Yuri/0000-0002-4871-5449; Weber, Gernot/0000-0003-4199-1640; Bean, Alice/0000-0001-5967-8674; Bargassa, Pedrame/0000-0001-8612-3332; de Jong, Sijbrand/0000-0002-3120-3367; Hedin, David/0000-0001-9984-215X; Juste, Aurelio/0000-0002-1558-3291; Landsberg, Greg/0000-0002-4184-9380; Blessing, Susan/0000-0002-4455-7279; Duperrin, Arnaud/0000-0002-5789-9825; Hoeneisen, Bruce/0000-0002-6059-4256; Blekman, Freya/0000-0002-7366-7098; Beuselinck, Raymond/0000-0003-2613-7446; Heinson, Ann/0000-0003-4209-6146; grannis, paul/0000-0003-4692-2142; Qian, Jianming/0000-0003-4813-8167; Madaras, Ronald/0000-0001-7399-2993; Evans, Harold/0000-0003-2183-3127; Ancu, Lucian Stefan/0000-0001-5068-6723; Sharyy, Viatcheslav/0000-0002-7161-2616; Christoudias, Theodoros/0000-0001-9050-3880; KIM, Tae Jeong/0000-0001-8336-2434; Guo, Jun/0000-0001-8125-9433; Sznajder, Andre/0000-0001-6998-1108; Li, Liang/0000-0001-6411-6107; Sawyer, Lee/0000-0001-8295-0605; De, Kaushik/0000-0002-5647-4489; Dudko, Lev/0000-0002-4462-3192; Novaes, Sergio/0000-0003-0471-8549; Mundim, Luiz/0000-0001-9964-7805; Yip, Kin/0000-0002-8576-4311; Begel, Michael/0000-0002-1634-4399; Haas, Andrew/0000-0002-4832-0455; Weber, Michele/0000-0002-2770-9031; Grohsjean, Alexander/0000-0003-0748-8494; Melnychuk, Oleksandr/0000-0002-2089-8685; Bassler, Ursula/0000-0002-9041-3057; Filthaut, Frank/0000-0003-3338-2247; Naumann, Axel/0000-0002-4725-0766; Belanger-Champagne, Camille/0000-0003-2368-2617 NR 27 TC 35 Z9 35 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD FEB 15 PY 2008 VL 100 IS 6 AR 062004 DI 10.1103/PhysRevLett.100.062004 PG 7 WC Physics, Multidisciplinary SC Physics GA 263TC UT WOS:000253238400017 ER PT J AU Aubert, B Bona, M Boutigny, D Karyotakis, Y Lees, JP Poireau, V Prudent, X Tisserand, V Zghiche, A Tico, JG Grauges, E Lopez, L Palano, A Pappagallo, M Eigen, G Stugu, B Sun, L Abrams, GS Battaglia, M Brown, DN Button-Shafer, J Cahn, RN Groysman, Y Jacobsen, RG Kadyk, JA Kerth, LT Kolomensky, YG Kukartsev, G Pegna, DL Lynch, G Mir, LM Orimoto, TJ Osipenkov, IL Ronan, MT Tackmann, K Tanabe, T Wenzel, WA Sanchez, PDA Hawkes, CM Watson, AT Koch, H Schroeder, T Walker, D Asgeirsson, DJ Cuhadar-Donszelmann, T Fulsom, BG Hearty, C Mattison, TS McKenna, JA Barrett, M Khan, A Saleem, M Teodorescu, L Blinov, VE Bukin, AD Druzhinin, VP Golubev, VB Onuchin, AP Serednyakov, SI Skovpen, YI Solodov, EP Todyshev, KY Bondioli, M Curry, S Eschrich, I Kirkby, D Lankford, AJ Lund, P Mandelkern, M Martin, EC Stoker, DP Abachi, S Buchanan, C Foulkes, SD Gary, JW Liu, F Long, O Shen, BC Vitug, GM Zhang, L Paar, HP Rahatlou, S Sharma, V Berryhill, JW Campagnari, C Cunha, A Dahmes, B Hong, TM Kovalskyi, D Richman, JD Beck, TW Eisner, AM Flacco, CJ Heusch, CA Kroseberg, J Lockman, WS Schalk, T Schumm, BA Seiden, A Wilson, MG Winstrom, LO Chen, E Cheng, CH Fang, F Hitlin, DG Narsky, I Piatenko, T Porter, FC Andreassen, R Mancinelli, G Meadows, BT Mishra, K Sokoloff, MD Blanc, F Bloom, PC Chen, S Ford, WT Hirschauer, JF Kreisel, A Nagel, M Nauenberg, U Olivas, A Smith, JG Ulmer, KA Wagner, SR Zhang, J Gabareen, AM Soffer, A Toki, WH Wilson, RJ Winklmeier, F Altenburg, DD Feltresi, E Hauke, A Jasper, H Merkel, J Petzold, A Spaan, B Wacker, K Klose, V Kobel, MJ Lacker, HM Mader, WF Nogowski, R Schubert, J Schubert, KR Schwierz, R Sundermann, JE Volk, A Bernard, D Bonneaud, GR Latour, E Lombardo, V Thiebaux, C Verderi, M Clark, PJ Gradl, W Muheim, F Playfer, S Robertson, AI Watson, JE Xie, Y Andreotti, M Bettoni, D Bozzi, C Calabrese, R Cecchi, A Bettoni, D Bozzi, C Calabrese, R Cibinetto, G Franchini, P Luppi, E Negrini, M Petrella, A Piemontese, L Prencipe, E Santoro, V Anulli, F Baldini-Ferroli, R Calcaterra, A de Sangro, R Finocchiaro, G Pacetti, S Patteri, P Peruzzi, IM Piccolo, M Rama, M Zallo, A Buzzo, A Contri, R Lo Vetere, M Macri, MM Monge, MR Passaggio, S Patrignani, C Robutti, E Santroni, A Tosi, S Chaisanguanthum, KS Morii, M Wu, J Dubitzky, RS Marks, J Schenk, S Uwer, U Bard, DJ Dauncey, PD Flack, RL Nash, JA Vazquez, WP Tibbetts, M Behera, PK Chai, X Charles, MJ Mallik, U Cochran, J Crawley, HB Dong, L Eyges, V Meyer, WT Prell, S Rosenberg, EI Rubin, AE Gao, YY Gritsan, AV Guo, ZJ Lae, CK Denig, AG Fritsch, M Schott, G Arnaud, N Bequilleux, J D'Orazio, A Davier, M Grosdidier, G Hocker, A Lepeltier, V Le Diberder, F Lutz, AM Pruvot, S Rodier, S Roudeau, P Schune, MH Serrano, J Sordini, V Stocchi, A Wang, WF Wormser, G Lange, DJ Wright, DM Bingham, I Burke, JP Chavez, CA Fry, JR Gabathuler, E Gamet, R Hutchcroft, DE Payne, DJ Schofield, KC Touramanis, C Bevan, AJ George, KA Di Lodovico, F Sacco, R Cowan, G Flaecher, HU Hopkins, DA Paramesvaran, S Salvatore, F Wren, AC Brown, DN Davis, CL Allison, J Bailey, D Barlow, NR Barlow, RJ Chia, YM Edgar, CL Lafferty, GD West, TJ Yi, JI Anderson, J Chen, C Jawahery, A Roberts, DA Simi, G Tuggle, JM Blaylock, G Dallapiccola, C Hertzbach, SS Li, X Moore, TB Salvati, E Saremi, S Cowan, R Dujmic, D Fisher, PH Koeneke, K Sciolla, G Spitznagel, M Taylor, F Yamamoto, RK Zhao, M Zheng, Y Mclachlin, SE Patel, PM Robertson, SH Lazzaro, A Palombo, F Bauer, JM Cremaldi, L Eschenburg, V Godang, R Kroeger, R Sanders, DA Summers, DJ Zhao, HW Brunet, S Cote, D Simard, M Taras, P Viaud, FB Nicholson, H De Nardo, G Fabozzi, F Lista, L Monorchio, D Sciacca, C Baak, MA Raven, G Snoek, HL Jessop, CP Knoepfel, KJ LoSecco, JM Benelli, G Corwin, LA Honscheid, K Kagan, H Kass, R Morris, JP Rahimi, AM Regensburger, JJ Sekula, SJ Wong, QK Blount, NL Brau, J Frey, R Igonkina, O Kolb, JA Lu, M Rahmat, R Sinev, NB Strom, D Strube, J Torrence, E Gagliardi, N Gaz, A Margoni, M Morandin, M Pompili, A Posocco, M Rotondo, M Simonetto, F Stroili, R Voci, C Ben-Haim, E Briand, H Calderini, G Chauveau, J David, P Del Buono, L de la Vaissiere, C Hamon, O Leruste, P Malcles, J Ocariz, J Perez, A Prendki, J Gladney, L Biasini, M Covarelli, R Manoni, E Angelini, C Batignani, G Bettarini, S Carpinelli, M Cenci, R Cervelli, A Forti, F Giorgi, MA Lusiani, A Marchiori, G Mazur, MA Morganti, M Neri, N Paoloni, E Rizzo, G Walsh, JJ Biesiada, J Elmer, P Lau, YP Lu, C Olsen, J Smith, AJS Telnov, AV Baracchini, E Bellini, F Cavoto, G del Re, D Di Marco, E Faccini, R Ferrarotto, F Ferroni, F Gaspero, M Jackson, PD Gioi, LL Mazzoni, MA Morganti, S Piredda, G Polci, F Renga, F Voena, C Ebert, M Hartmann, T Schroder, H Waldi, R Adye, T Castelli, G Franek, B Olaiya, EO Roethel, W Wilson, FF Emery, S Escalier, M Gaidot, A Ganzhur, SF de Monchenault, GH Kozanecki, W Vasseur, G Yeche, C Zito, M Chen, XR Liu, H Park, W Purohit, MV White, RM Wilson, JR Allen, MT Aston, D Bartoldus, R Bechtle, P Claus, R Coleman, JP Convery, MR Dingfelder, JC Dorfan, J Dubois-Felsmann, GP Dunwoodie, W Field, RC Glanzman, T Gowdy, SJ Graham, MT Grenier, P Hast, C Innes, WR Kaminski, J Kelsey, MH Kim, H Kim, P Kocian, ML Leith, DWGS Li, S Luitz, S Luth, V Lynch, HL MacFarlane, DB Marsiske, H Messner, R Muller, DR O'Grady, CP Ofte, I Perazzo, A Perl, M Pulliam, T Ratcliff, BN Roodman, A Salnikov, AA Schindler, RH Schwiening, J Snyder, A Su, D Sullivan, MK Suzuki, K Swain, SK Thompson, JM Va'vra, J Wagner, AP Weaver, M Wisniewski, WJ Wittgen, M Wright, DH Yarritu, AK Yi, K Young, CC Ziegler, V Burchat, PR Edwards, AJ Majewski, SA Miyashita, TS Petersen, BA Wilden, L Ahmed, S Alam, MS Bula, R Ernst, JA Jain, V Pan, B Saeed, MA Wappler, FR Zain, SB Krishnamurthy, M Spanier, SM Eckmann, R Ritchie, JL Ruland, AM Schilling, CJ Schwitters, RF Izen, JM Lou, XC Ye, S Bianchi, F Gallo, F Gamba, D Pelliccioni, M Bomben, M Bosisio, L Cartaro, C Cossutti, F Della Ricca, G Lanceri, L Vitale, L Azzolini, V Lopez-March, N Martinez-Vidal, F Milanes, DA Oyanguren, A Albert, J Banerjee, S Bhuyan, B Hamano, K Kowalewski, R Nugent, IM Roney, JM Sobie, RJ Harrison, PF Ilic, J Latham, TE Mohanty, GB Band, HR Chen, X Dasu, S Flood, KT Hollar, JJ Kutter, PE Pan, Y Pierini, M Prepost, R Wu, SL Neal, H AF Aubert, B. Bona, M. Boutigny, D. Karyotakis, Y. Lees, J. P. Poireau, V. Prudent, X. Tisserand, V. Zghiche, A. Tico, J. Garra Grauges, E. Lopez, L. Palano, A. Pappagallo, M. Eigen, G. Stugu, B. Sun, L. Abrams, G. S. Battaglia, M. Brown, D. N. Button-Shafer, J. Cahn, R. N. Groysman, Y. Jacobsen, R. G. Kadyk, J. A. Kerth, L. T. Kolomensky, Yu. G. Kukartsev, G. Pegna, D. Lopes Lynch, G. Mir, L. M. Orimoto, T. J. Osipenkov, I. L. Ronan, M. T. Tackmann, K. Tanabe, T. Wenzel, W. A. Sanchez, P. del Amo Hawkes, C. M. Watson, A. T. Koch, H. Schroeder, T. Walker, D. Asgeirsson, D. J. Cuhadar-Donszelmann, T. Fulsom, B. G. Hearty, C. Mattison, T. S. McKenna, J. A. Barrett, M. Khan, A. Saleem, M. Teodorescu, L. Blinov, V. E. Bukin, A. D. Druzhinin, V. P. Golubev, V. B. Onuchin, A. P. Serednyakov, S. I. Skovpen, Yu. I. Solodov, E. P. Todyshev, K. Yu. Bondioli, M. Curry, S. Eschrich, I. Kirkby, D. Lankford, A. J. Lund, P. Mandelkern, M. Martin, E. C. Stoker, D. P. Abachi, S. Buchanan, C. Foulkes, S. D. Gary, J. W. Liu, F. Long, O. Shen, B. C. Vitug, G. M. Zhang, L. Paar, H. P. Rahatlou, S. Sharma, V. Berryhill, J. W. Campagnari, C. Cunha, A. Dahmes, B. Hong, T. M. Kovalskyi, D. Richman, J. D. Beck, T. W. Eisner, A. M. Flacco, C. J. Heusch, C. A. Kroseberg, J. Lockman, W. S. Schalk, T. Schumm, B. A. Seiden, A. Wilson, M. G. Winstrom, L. O. Chen, E. Cheng, C. H. Fang, F. Hitlin, D. G. Narsky, I. Piatenko, T. Porter, F. C. Andreassen, R. Mancinelli, G. Meadows, B. T. Mishra, K. Sokoloff, M. D. Blanc, F. Bloom, P. C. Chen, S. Ford, W. T. Hirschauer, J. F. Kreisel, A. Nagel, M. Nauenberg, U. Olivas, A. Smith, J. G. Ulmer, K. A. Wagner, S. R. Zhang, J. Gabareen, A. M. Soffer, A. Toki, W. H. Wilson, R. J. Winklmeier, F. Altenburg, D. D. Feltresi, E. Hauke, A. Jasper, H. Merkel, J. Petzold, A. Spaan, B. Wacker, K. Klose, V. Kobel, M. J. Lacker, H. M. Mader, W. F. Nogowski, R. Schubert, J. Schubert, K. R. Schwierz, R. Sundermann, J. E. Volk, A. Bernard, D. Bonneaud, G. R. Latour, E. Lombardo, V. Thiebaux, Ch. Verderi, M. Clark, P. J. Gradl, W. Muheim, F. Playfer, S. Robertson, A. I. Watson, J. E. Xie, Y. Andreotti, M. Bettoni, D. Bozzi, C. Calabrese, R. Cecchi, A. Bettoni, D. Bozzi, C. Calabrese, R. Cibinetto, G. Franchini, P. Luppi, E. Negrini, M. Petrella, A. Piemontese, L. Prencipe, E. Santoro, V. Anulli, F. Baldini-Ferroli, R. Calcaterra, A. de Sangro, R. Finocchiaro, G. Pacetti, S. Patteri, P. Peruzzi, I. M. Piccolo, M. Rama, M. Zallo, A. Buzzo, A. Contri, R. Lo Vetere, M. Macri, M. M. Monge, M. R. Passaggio, S. Patrignani, C. Robutti, E. Santroni, A. Tosi, S. Chaisanguanthum, K. S. Morii, M. Wu, J. Dubitzky, R. S. Marks, J. Schenk, S. Uwer, U. Bard, D. J. Dauncey, P. D. Flack, R. L. Nash, J. A. Vazquez, W. Panduro Tibbetts, M. Behera, P. K. Chai, X. Charles, M. J. Mallik, U. Cochran, J. Crawley, H. B. Dong, L. Eyges, V. Meyer, W. T. Prell, S. Rosenberg, E. I. Rubin, A. E. Gao, Y. Y. Gritsan, A. V. Guo, Z. J. Lae, C. K. Denig, A. G. Fritsch, M. Schott, G. Arnaud, N. Bequilleux, J. D'Orazio, A. Davier, M. Grosdidier, G. Hoecker, A. Lepeltier, V. Le Diberder, F. Lutz, A. M. Pruvot, S. Rodier, S. Roudeau, P. Schune, M. H. Serrano, J. Sordini, V. Stocchi, A. Wang, W. F. Wormser, G. Lange, D. J. Wright, D. M. Bingham, I. Burke, J. P. Chavez, C. A. Fry, J. R. Gabathuler, E. Gamet, R. Hutchcroft, D. E. Payne, D. J. Schofield, K. C. Touramanis, C. Bevan, A. J. George, K. A. Di Lodovico, F. Sacco, R. Cowan, G. Flaecher, H. U. Hopkins, D. A. Paramesvaran, S. Salvatore, F. Wren, A. C. Brown, D. N. Davis, C. L. Allison, J. Bailey, D. Barlow, N. R. Barlow, R. J. Chia, Y. M. Edgar, C. L. Lafferty, G. D. West, T. J. Yi, J. I. Anderson, J. Chen, C. Jawahery, A. Roberts, D. A. Simi, G. Tuggle, J. M. Blaylock, G. Dallapiccola, C. Hertzbach, S. S. Li, X. Moore, T. B. Salvati, E. Saremi, S. Cowan, R. Dujmic, D. Fisher, P. H. Koeneke, K. Sciolla, G. Spitznagel, M. Taylor, F. Yamamoto, R. K. Zhao, M. Zheng, Y. Mclachlin, S. E. Patel, P. M. Robertson, S. H. Lazzaro, A. Palombo, F. Bauer, J. M. Cremaldi, L. Eschenburg, V. Godang, R. Kroeger, R. Sanders, D. A. Summers, D. J. Zhao, H. W. Brunet, S. Cote, D. Simard, M. Taras, P. Viaud, F. B. Nicholson, H. De Nardo, G. Fabozzi, F. Lista, L. Monorchio, D. Sciacca, C. Baak, M. A. Raven, G. Snoek, H. L. Jessop, C. P. Knoepfel, K. J. LoSecco, J. M. Benelli, G. Corwin, L. A. Honscheid, K. Kagan, H. Kass, R. Morris, J. P. Rahimi, A. M. Regensburger, J. J. Sekula, S. J. Wong, Q. K. Blount, N. L. Brau, J. Frey, R. Igonkina, O. Kolb, J. A. Lu, M. Rahmat, R. Sinev, N. B. Strom, D. Strube, J. Torrence, E. Gagliardi, N. Gaz, A. Margoni, M. Morandin, M. Pompili, A. Posocco, M. Rotondo, M. Simonetto, F. Stroili, R. Voci, C. Ben-Haim, E. Briand, H. Calderini, G. Chauveau, J. David, P. Del Buono, L. de la Vaissiere, Ch. Hamon, O. Leruste, Ph. Malcles, J. Ocariz, J. Perez, A. Prendki, J. Gladney, L. Biasini, M. Covarelli, R. Manoni, E. Angelini, C. Batignani, G. Bettarini, S. Carpinelli, M. Cenci, R. Cervelli, A. Forti, F. Giorgi, M. A. Lusiani, A. Marchiori, G. Mazur, M. A. Morganti, M. Neri, N. Paoloni, E. Rizzo, G. Walsh, J. J. Biesiada, J. Elmer, P. Lau, Y. P. Lu, C. Olsen, J. Smith, A. J. S. Telnov, A. V. Baracchini, E. Bellini, F. Cavoto, G. del Re, D. Di Marco, E. Faccini, R. Ferrarotto, F. Ferroni, F. Gaspero, M. Jackson, P. D. Gioi, L. Li Mazzoni, M. A. Morganti, S. Piredda, G. Polci, F. Renga, F. Voena, C. Ebert, M. Hartmann, T. Schroeder, H. Waldi, R. Adye, T. Castelli, G. Franek, B. Olaiya, E. O. Roethel, W. Wilson, F. F. Emery, S. Escalier, M. Gaidot, A. Ganzhur, S. F. de Monchenault, G. Hamel Kozanecki, W. Vasseur, G. Yeche, Ch. Zito, M. Chen, X. R. Liu, H. Park, W. Purohit, M. V. White, R. M. Wilson, J. R. Allen, M. T. Aston, D. Bartoldus, R. Bechtle, P. Claus, R. Coleman, J. P. Convery, M. R. Dingfelder, J. C. Dorfan, J. Dubois-Felsmann, G. P. Dunwoodie, W. Field, R. C. Glanzman, T. Gowdy, S. J. Graham, M. T. Grenier, P. Hast, C. Innes, W. R. Kaminski, J. Kelsey, M. H. Kim, H. Kim, P. Kocian, M. L. Leith, D. W. G. S. Li, S. Luitz, S. Luth, V. Lynch, H. L. MacFarlane, D. B. Marsiske, H. Messner, R. Muller, D. R. O'Grady, C. P. Ofte, I. Perazzo, A. Perl, M. Pulliam, T. Ratcliff, B. N. Roodman, A. Salnikov, A. A. Schindler, R. H. Schwiening, J. Snyder, A. Su, D. Sullivan, M. K. Suzuki, K. Swain, S. K. Thompson, J. M. Va'vra, J. Wagner, A. P. Weaver, M. Wisniewski, W. J. Wittgen, M. Wright, D. H. Yarritu, A. K. Yi, K. Young, C. C. Ziegler, V. Burchat, P. R. Edwards, A. J. Majewski, S. A. Miyashita, T. S. Petersen, B. A. Wilden, L. Ahmed, S. Alam, M. S. Bula, R. Ernst, J. A. Jain, V. Pan, B. Saeed, M. A. Wappler, F. R. Zain, S. B. Krishnamurthy, M. Spanier, S. M. Eckmann, R. Ritchie, J. L. Ruland, A. M. Schilling, C. J. Schwitters, R. F. Izen, J. M. Lou, X. C. Ye, S. Bianchi, F. Gallo, F. Gamba, D. Pelliccioni, M. Bomben, M. Bosisio, L. Cartaro, C. Cossutti, F. Della Ricca, G. Lanceri, L. Vitale, L. Azzolini, V. Lopez-March, N. Martinez-Vidal, F. Milanes, D. A. Oyanguren, A. Albert, J. Banerjee, Sw. Bhuyan, B. Hamano, K. Kowalewski, R. Nugent, I. M. Roney, J. M. Sobie, R. J. Harrison, P. F. Ilic, J. Latham, T. E. Mohanty, G. B. Band, H. R. Chen, X. Dasu, S. Flood, K. T. Hollar, J. J. Kutter, P. E. Pan, Y. Pierini, M. Prepost, R. Wu, S. L. Neal, H. CA BaBar Collaboration TI Search for CP violation in the decays D(0)-> K(-)K(+) and D(0)->pi(-)pi(+) SO PHYSICAL REVIEW LETTERS LA English DT Article AB We measure time-integrated CP-violating asymmetries of neutral charmed mesons in the modes D(0)-> K(-)K(+) and D(0)->pi(-)pi(+) with the highest precision to date by using D(0)-> K(-)pi(+) decays to correct detector asymmetries. An analysis of 385.8 fb(-1) of data collected with the BABAR detector yields values of a(CP)(KK)=(0.00 +/- 0.34(stat)+/- 0.13(syst))% and a(CP)(pi pi)=(-0.24 +/- 0.52(stat)+/- 0.22(syst))%, which agree with standard model predictions. C1 [Aubert, B.; Bona, M.; Boutigny, D.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prudent, X.; Tisserand, V.; Zghiche, A.] CNRS, IN2P3, Phys Particules Lab, F-74941 Annecy Le Vieux, France. [Aubert, B.; Bona, M.; Boutigny, D.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prudent, X.; Tisserand, V.; Zghiche, A.] Univ Savoie, F-74941 Annecy Le Vieux, France. [Tico, J. Garra; Grauges, E.; Martinez-Vidal, F.] Univ Barcelona, Fac Fis, Dept ECM, E-08028 Barcelona, Spain. [Lopez, L.; Palano, A.; Pappagallo, M.] Univ Bari, Dipartimento Fis, I-70126 Bari, Italy. [Lopez, L.; Palano, A.; Pappagallo, M.] Ist Nazl Fis Nucl, I-70126 Bari, Italy. [Eigen, G.; Stugu, B.; Sun, L.] Univ Bergen, Inst Phys, N-5007 Bergen, Norway. [Abrams, G. S.; Battaglia, M.; Brown, D. N.; Button-Shafer, J.; Cahn, R. N.; Groysman, Y.; Jacobsen, R. G.; Kadyk, J. A.; Kerth, L. T.; Kolomensky, Yu. G.; Kukartsev, G.; Pegna, D. Lopes; Lynch, G.; Mir, L. M.; Orimoto, T. J.; Osipenkov, I. L.; Ronan, M. T.; Tackmann, K.; Tanabe, T.; Wenzel, W. A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Sanchez, P. del Amo; Hawkes, C. M.; Watson, A. T.] Univ Birmingham, Birmingham B15 2TT, W Midlands, England. [Koch, H.; Schroeder, T.] Ruhr Univ Bochum, Inst Expt Phys, D-44780 Bochum, Germany. [Walker, D.] Univ Bristol, Bristol BS8 1TL, Avon, England. [Asgeirsson, D. J.; Cuhadar-Donszelmann, T.; Fulsom, B. G.; Hearty, C.; Mattison, T. S.; McKenna, J. A.] Univ British Columbia, Vancouver, BC V6T 1Z1, Canada. [Barrett, M.; Khan, A.; Saleem, M.; Teodorescu, L.] Brunel Univ, Uxbridge UB8 3PH, Middx, England. [Blinov, V. E.; Bukin, A. D.; Druzhinin, V. P.; Golubev, V. B.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.] Budker Inst Nucl Phys, Novosibirsk 630090, Russia. [Bondioli, M.; Curry, S.; Eschrich, I.; Kirkby, D.; Lankford, A. J.; Lund, P.; Mandelkern, M.; Martin, E. C.; Stoker, D. P.] Univ Calif Irvine, Irvine, CA 92697 USA. [Abachi, S.; Buchanan, C.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Foulkes, S. D.; Gary, J. W.; Liu, F.; Long, O.; Shen, B. C.; Vitug, G. M.; Zhang, L.] Univ Calif Riverside, Riverside, CA 92521 USA. [Paar, H. P.; Rahatlou, S.; Sharma, V.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Berryhill, J. W.; Campagnari, C.; Cunha, A.; Dahmes, B.; Hong, T. M.; Kovalskyi, D.; Richman, J. D.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Beck, T. W.; Eisner, A. M.; Flacco, C. J.; Heusch, C. A.; Kroseberg, J.; Lockman, W. S.; Schalk, T.; Schumm, B. A.; Seiden, A.; Winstrom, L. O.; Wilson, F. F.] Univ Calif Santa Cruz, Inst Particle Phys, Santa Cruz, CA 95064 USA. [Chen, E.; Cheng, C. H.; Fang, F.; Hitlin, D. G.; Narsky, I.; Piatenko, T.; Porter, F. C.] CALTECH, Pasadena, CA 91125 USA. [Andreassen, R.; Mancinelli, G.; Meadows, B. T.; Mishra, K.; Sokoloff, M. D.] Univ Cincinnati, Cincinnati, OH 45221 USA. [Blanc, F.; Bloom, P. C.; Chen, S.; Ford, W. T.; Hirschauer, J. F.; Kreisel, A.; Nagel, M.; Nauenberg, U.; Olivas, A.; Smith, J. G.; Ulmer, K. A.; Wagner, S. R.; Zhang, J.] Univ Colorado, Boulder, CO 80309 USA. [Gabareen, A. M.; Soffer, A.; Toki, W. H.; Wilson, R. J.; Winklmeier, F.] Colorado State Univ, Ft Collins, CO 80523 USA. [Altenburg, D. D.; Feltresi, E.; Hauke, A.; Jasper, H.; Merkel, J.; Petzold, A.; Spaan, B.; Wacker, K.] Univ Dortmund, Inst Phys, D-44221 Dortmund, Germany. [Klose, V.; Kobel, M. J.; Lacker, H. M.; Mader, W. F.; Nogowski, R.; Schubert, J.; Schubert, K. R.; Schwierz, R.; Sundermann, J. E.; Volk, A.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. [Bernard, D.; Bonneaud, G. R.; Latour, E.; Lombardo, V.; Thiebaux, Ch.; Verderi, M.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Clark, P. J.; Gradl, W.; Muheim, F.; Playfer, S.; Robertson, A. I.; Watson, J. E.; Xie, Y.] Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. [Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Franchini, P.; Luppi, E.; Negrini, M.; Petrella, A.; Piemontese, L.; Prencipe, E.; Santoro, V.] Univ Ferrara, Dipartimento Fis, I-44100 Ferrara, Italy. [Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Franchini, P.; Luppi, E.; Negrini, M.; Petrella, A.; Piemontese, L.; Prencipe, E.; Santoro, V.] Ist Nazl Fis Nucl, I-44100 Ferrara, Italy. [Anulli, F.; Baldini-Ferroli, R.; Calcaterra, A.; de Sangro, R.; Finocchiaro, G.; Pacetti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; Zallo, A.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Buzzo, A.; Contri, R.; Lo Vetere, M.; Macri, M. M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Santroni, A.; Tosi, S.] Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy. [Buzzo, A.; Contri, R.; Lo Vetere, M.; Macri, M. M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Santroni, A.; Tosi, S.] Ist Nazl Fis Nucl, I-16146 Genoa, Italy. [Chaisanguanthum, K. S.; Morii, M.; Wu, J.] Harvard Univ, Cambridge, MA 02138 USA. [Marks, J.; Schenk, S.; Uwer, U.] Univ Heidelberg, Inst Phys, D-69120 Heidelberg, Germany. [Bard, D. J.; Dauncey, P. D.; Flack, R. L.; Nash, J. A.; Vazquez, W. Panduro; Tibbetts, M.] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. [Behera, P. K.; Chai, X.; Charles, M. J.; Mallik, U.] Univ Iowa, Iowa City, IA 52242 USA. [Cochran, J.; Crawley, H. B.; Dong, L.; Eyges, V.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Rubin, A. E.] Iowa State Univ, Ames, IA 50011 USA. [Gao, Y. Y.; Gritsan, A. V.; Guo, Z. J.; Lae, C. K.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Denig, A. G.; Fritsch, M.; Schott, G.] Univ Karlsruhe, Inst Expt Kernphys, D-76021 Karlsruhe, Germany. [Arnaud, N.; Bequilleux, J.; D'Orazio, A.; Davier, M.; Grosdidier, G.; Hoecker, A.; Lepeltier, V.; Le Diberder, F.; Lutz, A. M.; Pruvot, S.; Rodier, S.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wang, W. F.; Wormser, G.] CNRS, IN2P3, Lab Accelerateur Lineaire, D-91898 Orsay, France. [Arnaud, N.; Bequilleux, J.; D'Orazio, A.; Davier, M.; Grosdidier, G.; Hoecker, A.; Lepeltier, V.; Le Diberder, F.; Lutz, A. M.; Pruvot, S.; Rodier, S.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wang, W. F.; Wormser, G.] Univ Paris 11, Ctr Sci Orsay, D-91898 Orsay, France. [Lange, D. J.; Wright, D. M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Bingham, I.; Burke, J. P.; Chavez, C. A.; Fry, J. R.; Gabathuler, E.; Gamet, R.; Hutchcroft, D. E.; Payne, D. J.; Schofield, K. C.; Touramanis, C.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Bevan, A. J.; George, K. A.; Di Lodovico, F.; Sacco, R.] Queen Mary Univ London, London E1 4NS, England. [Cowan, G.; Flaecher, H. U.; Hopkins, D. A.; Paramesvaran, S.; Salvatore, F.; Wren, A. C.] Univ London Royal Holloway & Bedford New Coll, Egham TW20 0EX, Surrey, England. [Brown, D. N.; Davis, C. L.] Univ Louisville, Louisville, KY 40292 USA. [Allison, J.; Bailey, D.; Barlow, N. R.; Barlow, R. J.; Chia, Y. M.; Edgar, C. L.; Lafferty, G. D.; West, T. J.; Yi, J. I.] Univ Manchester, Manchester M13 9PL, Lancs, England. [Anderson, J.; Chen, C.; Jawahery, A.; Roberts, D. A.; Simi, G.; Tuggle, J. M.] Univ Maryland, College Pk, MD 20742 USA. [Blaylock, G.; Dallapiccola, C.; Hertzbach, S. S.; Li, X.; Moore, T. B.; Salvati, E.; Saremi, S.] Univ Massachusetts, Amherst, MA 01003 USA. [Cowan, R.; Dujmic, D.; Fisher, P. H.; Koeneke, K.; Sciolla, G.; Spitznagel, M.; Taylor, F.; Yamamoto, R. K.; Zhao, M.; Zheng, Y.] MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. [Mclachlin, S. E.; Patel, P. M.; Robertson, S. H.] McGill Univ, Montreal, PQ H3A 2T8, Canada. [Lazzaro, A.; Palombo, F.] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. [Lazzaro, A.; Palombo, F.] Ist Nazl Fis Nucl, I-20133 Milan, Italy. [Bauer, J. M.; Cremaldi, L.; Eschenburg, V.; Godang, R.; Kroeger, R.; Sanders, D. A.; Summers, D. J.; Zhao, H. W.] Univ Mississippi, University, MS 38677 USA. [Brunet, S.; Cote, D.; Simard, M.; Taras, P.; Viaud, F. B.] Univ Montreal, Montreal, PQ H3C 3J7, Canada. [Nicholson, H.] Mt Holyoke Coll, S Hadley, MA 01075 USA. [De Nardo, G.; Fabozzi, F.; Lista, L.; Monorchio, D.; Sciacca, C.] Univ Naples Federico 2, Dipartimento Sci Fisiche, I-80126 Naples, Italy. [De Nardo, G.; Fabozzi, F.; Lista, L.; Monorchio, D.; Sciacca, C.] Ist Nazl Fis Nucl, I-80126 Naples, Italy. [Baak, M. A.; Raven, G.; Snoek, H. L.] Natl Inst Nucl Phys & High Energy Phys, NIKHEF, NL-1009 DB Amsterdam, Netherlands. [Snoek, H. L.; Jessop, C. P.; Knoepfel, K. J.; LoSecco, J. M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Benelli, G.; Corwin, L. A.; Honscheid, K.; Kagan, H.; Kass, R.; Morris, J. P.; Rahimi, A. M.; Regensburger, J. J.; Sekula, S. J.; Wong, Q. K.] Ohio State Univ, Columbus, OH 43210 USA. [Blount, N. L.; Brau, J.; Frey, R.; Igonkina, O.; Kolb, J. A.; Lu, M.; Rahmat, R.; Sinev, N. B.; Strom, D.; Strube, J.; Torrence, E.] Univ Oregon, Eugene, OR 97403 USA. [Gagliardi, N.; Gaz, A.; Margoni, M.; Morandin, M.; Pompili, A.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.; Voci, C.] Univ Padua, Dipartimento Fis, I-35131 Padua, Italy. [Gagliardi, N.; Gaz, A.; Margoni, M.; Morandin, M.; Pompili, A.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.; Voci, C.] Ist Nazl Fis Nucl, I-35131 Padua, Italy. [Ben-Haim, E.; Briand, H.; Calderini, G.; Chauveau, J.; David, P.; Del Buono, L.; de la Vaissiere, Ch.; Hamon, O.; Leruste, Ph.; Malcles, J.; Ocariz, J.; Perez, A.; Prendki, J.] Univ Paris 07, Univ Paris 06, IN2P3, CNRS,Lab Phys Nucl & Hautes Energies, F-75252 Paris, France. [Gladney, L.] Univ Penn, Philadelphia, PA 19104 USA. [Peruzzi, I. M.; Biasini, M.; Covarelli, R.; Manoni, E.] Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. [Biasini, M.; Covarelli, R.; Manoni, E.] Ist Nazl Fis Nucl, I-06100 Perugia, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Cenci, R.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Marchiori, G.; Mazur, M. A.; Morganti, M.; Neri, N.; Paoloni, E.; Rizzo, G.; Walsh, J. J.] Univ Pisa, Dipartimento Fis, Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Cenci, R.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Marchiori, G.; Mazur, M. A.; Morganti, M.; Neri, N.; Paoloni, E.; Rizzo, G.; Walsh, J. J.] Ist Nazl Fis Nucl, I-56127 Pisa, Italy. [Biesiada, J.; Elmer, P.; Lau, Y. P.; Lu, C.; Olsen, J.; Smith, A. J. S.; Telnov, A. V.] Princeton Univ, Princeton, NJ 08544 USA. [Baracchini, E.; Bellini, F.; Cavoto, G.; del Re, D.; Di Marco, E.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Jackson, P. D.; Gioi, L. Li; Mazzoni, M. A.; Morganti, S.; Piredda, G.; Polci, F.; Renga, F.; Voena, C.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Baracchini, E.; Bellini, F.; Cavoto, G.; del Re, D.; Di Marco, E.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Jackson, P. D.; Gioi, L. Li; Mazzoni, M. A.; Morganti, S.; Piredda, G.; Polci, F.; Renga, F.; Voena, C.] Ist Nazl Fis Nucl, I-00185 Rome, Italy. [Ebert, M.; Hartmann, T.; Schroeder, H.; Waldi, R.] Univ Rostock, D-18051 Rostock, Germany. [Adye, T.; Castelli, G.; Franek, B.; Olaiya, E. O.; Roethel, W.; Wilson, F. F.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Emery, S.; Escalier, M.; Gaidot, A.; Ganzhur, S. F.; de Monchenault, G. Hamel; Kozanecki, W.; Vasseur, G.; Yeche, Ch.; Zito, M.] CEA Saclay, DSM Dapnia, F-91191 Gif Sur Yvette, France. [Chen, X. R.; Liu, H.; Park, W.; Purohit, M. V.; White, R. M.; Wilson, J. R.] Univ S Carolina, Columbia, SC 29208 USA. [Allen, M. T.; Aston, D.; Bartoldus, R.; Bechtle, P.; Claus, R.; Coleman, J. P.; Convery, M. R.; Dingfelder, J. C.; Dorfan, J.; Dubois-Felsmann, G. P.; Dunwoodie, W.; Field, R. C.; Glanzman, T.; Gowdy, S. J.; Graham, M. T.; Grenier, P.; Hast, C.; Innes, W. R.; Kaminski, J.; Kelsey, M. H.; Kim, H.; Kim, P.; Kocian, M. L.; Leith, D. W. G. S.; Li, S.; Luitz, S.; Luth, V.; Lynch, H. L.; MacFarlane, D. B.; Marsiske, H.; Messner, R.; Muller, D. R.; O'Grady, C. P.; Ofte, I.; Perazzo, A.; Perl, M.; Pulliam, T.; Ratcliff, B. N.; Roodman, A.; Salnikov, A. A.; Schindler, R. H.; Schwiening, J.; Snyder, A.; Su, D.; Sullivan, M. K.; Suzuki, K.; Swain, S. K.; Thompson, J. M.; Va'vra, J.; Wagner, A. P.; Weaver, M.; Wisniewski, W. J.; Wittgen, M.; Wright, D. H.; Yarritu, A. K.; Yi, K.; Young, C. C.; Ziegler, V.] Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. [Burchat, P. R.; Edwards, A. J.; Majewski, S. A.; Miyashita, T. S.; Petersen, B. A.; Wilden, L.] Stanford Univ, Stanford, CA 94305 USA. [Ahmed, S.; Alam, M. S.; Bula, R.; Ernst, J. A.; Jain, V.; Pan, B.; Saeed, M. A.; Wappler, F. R.; Zain, S. B.] SUNY Albany, Albany, NY 12222 USA. [Krishnamurthy, M.; Spanier, S. M.] Univ Tennessee, Knoxville, TN 37996 USA. [Eckmann, R.; Ritchie, J. L.; Ruland, A. M.; Schilling, C. J.; Schwitters, R. F.] Univ Texas Austin, Austin, TX 78712 USA. [Izen, J. M.; Lou, X. C.; Ye, S.] Univ Texas Dallas, Richardson, TX 75083 USA. [Bianchi, F.; Gallo, F.; Gamba, D.; Pelliccioni, M.] Univ Turin, Dipartimento Fis Sperimentale, I-10125 Turin, Italy. [Bianchi, F.; Gallo, F.; Gamba, D.; Pelliccioni, M.] Ist Nazl Fis Nucl, I-10125 Turin, Italy. [Bomben, M.; Bosisio, L.; Cartaro, C.; Cossutti, F.; Della Ricca, G.; Lanceri, L.; Vitale, L.] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. [Bomben, M.; Bosisio, L.; Cartaro, C.; Cossutti, F.; Della Ricca, G.; Lanceri, L.; Vitale, L.] Ist Nazl Fis Nucl, I-34127 Trieste, Italy. [Azzolini, V.; Lopez-March, N.; Martinez-Vidal, F.; Milanes, D. A.; Oyanguren, A.] Univ Valencia, CSIC, IFIC, E-46071 Valencia, Spain. [Albert, J.; Banerjee, Sw.; Bhuyan, B.; Hamano, K.; Kowalewski, R.; Nugent, I. M.; Roney, J. M.; Sobie, R. J.] Univ Victoria, Victoria, BC V8W 3P6, Canada. [Harrison, P. F.; Ilic, J.; Latham, T. E.; Mohanty, G. B.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Band, H. R.; Chen, X.; Dasu, S.; Flood, K. T.; Hollar, J. J.; Kutter, P. E.; Pan, Y.; Pierini, M.; Prepost, R.; Wu, S. L.] Univ Wisconsin, Madison, WI 53706 USA. [Neal, H.] Yale Univ, New Haven, CT 06511 USA. [Fabozzi, F.] Univ Basilicata, I-85100 Potenza, Italy. RP Aubert, B (reprint author), CNRS, IN2P3, Phys Particules Lab, F-74941 Annecy Le Vieux, France. RI Negrini, Matteo/C-8906-2014; Monge, Maria Roberta/G-9127-2012; Oyanguren, Arantza/K-6454-2014; Lista, Luca/C-5719-2008; Bellini, Fabio/D-1055-2009; Neri, Nicola/G-3991-2012; Forti, Francesco/H-3035-2011; Rotondo, Marcello/I-6043-2012; Patrignani, Claudia/C-5223-2009; de Sangro, Riccardo/J-2901-2012; Saeed, Mohammad Alam/J-7455-2012; Della Ricca, Giuseppe/B-6826-2013; Calcaterra, Alessandro/P-5260-2015; Frey, Raymond/E-2830-2016; dong, liaoyuan/A-5093-2015; Rizzo, Giuliana/A-8516-2015; Luppi, Eleonora/A-4902-2015; White, Ryan/E-2979-2015; Calabrese, Roberto/G-4405-2015; Mir, Lluisa-Maria/G-7212-2015; Martinez Vidal, F*/L-7563-2014; Kolomensky, Yury/I-3510-2015; Lo Vetere, Maurizio/J-5049-2012; Lusiani, Alberto/N-2976-2015; Lusiani, Alberto/A-3329-2016; Morandin, Mauro/A-3308-2016; Di Lodovico, Francesca/L-9109-2016; Pappagallo, Marco/R-3305-2016 OI Negrini, Matteo/0000-0003-0101-6963; Monge, Maria Roberta/0000-0003-1633-3195; Oyanguren, Arantza/0000-0002-8240-7300; Bellini, Fabio/0000-0002-2936-660X; Neri, Nicola/0000-0002-6106-3756; Forti, Francesco/0000-0001-6535-7965; Rotondo, Marcello/0000-0001-5704-6163; Patrignani, Claudia/0000-0002-5882-1747; de Sangro, Riccardo/0000-0002-3808-5455; Saeed, Mohammad Alam/0000-0002-3529-9255; Della Ricca, Giuseppe/0000-0003-2831-6982; Paoloni, Eugenio/0000-0001-5969-8712; Faccini, Riccardo/0000-0003-2613-5141; Raven, Gerhard/0000-0002-2897-5323; Calcaterra, Alessandro/0000-0003-2670-4826; Frey, Raymond/0000-0003-0341-2636; Bettarini, Stefano/0000-0001-7742-2998; Cibinetto, Gianluigi/0000-0002-3491-6231; dong, liaoyuan/0000-0002-4773-5050; Pacetti, Simone/0000-0002-6385-3508; Covarelli, Roberto/0000-0003-1216-5235; Rizzo, Giuliana/0000-0003-1788-2866; Luppi, Eleonora/0000-0002-1072-5633; White, Ryan/0000-0003-3589-5900; Calabrese, Roberto/0000-0002-1354-5400; Mir, Lluisa-Maria/0000-0002-4276-715X; Martinez Vidal, F*/0000-0001-6841-6035; Kolomensky, Yury/0000-0001-8496-9975; Lo Vetere, Maurizio/0000-0002-6520-4480; Lusiani, Alberto/0000-0002-6876-3288; Lusiani, Alberto/0000-0002-6876-3288; Morandin, Mauro/0000-0003-4708-4240; Di Lodovico, Francesca/0000-0003-3952-2175; Pappagallo, Marco/0000-0001-7601-5602 NR 17 TC 57 Z9 57 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD FEB 15 PY 2008 VL 100 IS 6 AR 061803 DI 10.1103/PhysRevLett.100.061803 PG 7 WC Physics, Multidisciplinary SC Physics GA 263TC UT WOS:000253238400013 ER PT J AU Baltz, AJ AF Baltz, A. J. TI Evidence for higher order QED effects in e(+)e(-) pair production at the BNL relativistic heavy ion collider SO PHYSICAL REVIEW LETTERS LA English DT Article ID COLLISIONS AB A new lowest order QED calculation for BNL Relativistic Heavy-Ion Collider e(+)e(-) pair production has been carried out with a phenomenological treatment of the Coulomb dissociation of the heavy-ion nuclei observed in the STAR ZDC triggers. The lowest order QED result for the experimental acceptance is nearly 2 standard deviations larger than the STAR data. A corresponding higher-order QED calculation is consistent with the data. C1 Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. RP Baltz, AJ (reprint author), Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. NR 27 TC 14 Z9 14 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD FEB 15 PY 2008 VL 100 IS 6 AR 062302 DI 10.1103/PhysRevLett.100.062302 PG 4 WC Physics, Multidisciplinary SC Physics GA 263TC UT WOS:000253238400021 PM 18352464 ER PT J AU Dunwoodie, W Ziegler, V AF Dunwoodie, W. Ziegler, V. TI Simple explanation for the X(3872) mass shift observed in the decay X(3872)-> D(*0)(D)over-bar(0) SO PHYSICAL REVIEW LETTERS LA English DT Article AB We propose a simple explanation for the increase of approximately 3 MeV/c(2) in the mass value of the X(3872) obtained from D(*0)(D) over bar (0) decay relative to that obtained from decay to J/psi pi(+)pi(-). If the total width of the X(3872) is 2-3 MeV, the peak position in the D(*0)(D) over bar (0) invariant mass distribution is sensitive to the final state orbital angular momentum because of the proximity of the X(3872) to D(*0)(D) over bar (0) threshold. We show that for total width 3 MeV and one unit of orbital angular momentum, a mass shift similar to 3 MeV/c(2) is obtained; experimental mass resolution should slightly increase this value. A consequence is that spin-parity 2(-) is favored for the X(3872). C1 [Dunwoodie, W.; Ziegler, V.] Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. RP Dunwoodie, W (reprint author), Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. NR 12 TC 11 Z9 11 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD FEB 15 PY 2008 VL 100 IS 6 AR 062006 DI 10.1103/PhysRevLett.100.062006 PG 3 WC Physics, Multidisciplinary SC Physics GA 263TC UT WOS:000253238400019 PM 18352462 ER PT J AU Garlea, VO Jin, R Mandrus, D Roessli, B Huang, Q Miller, M Schultz, AJ Nagler, SE AF Garlea, V. O. Jin, R. Mandrus, D. Roessli, B. Huang, Q. Miller, M. Schultz, A. J. Nagler, S. E. TI Magnetic and orbital ordering in the spinel MnV(2)O(4) SO PHYSICAL REVIEW LETTERS LA English DT Article ID TRANSITIONS AB Neutron inelastic scattering and diffraction techniques have been used to study the MnV(2)O(4) spinel system. Our measurements show the existence of two transitions to long-range ordered ferrimagnetic states, the first collinear and the second noncollinear. The lower temperature transition, characterized by development of antiferromagnetic components in the basal plane, is accompanied by a tetragonal distortion and the appearance of a gap in the magnetic excitation spectrum. The low-temperature noncollinear magnetic structure has been definitively resolved. Taken together, the crystal and magnetic structures indicate a staggered ordering of the V d orbitals. The anisotropy gap is a consequence of unquenched V orbital angular momentum. C1 [Garlea, V. O.; Nagler, S. E.] Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA. [Jin, R.; Mandrus, D.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Roessli, B.] ETH, Paul Scherrer Inst, Lab Neutron Scattering, CH-5232 Villigen, Switzerland. [Huang, Q.] NIST, Ctr Neutron Res, Gaithersburg, MD 20899 USA. [Miller, M.; Schultz, A. J.] Argonne Natl Lab, IPNS Div, Argonne, IL 60439 USA. RP Garlea, VO (reprint author), Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA. EM garleao@ornl.gov RI Nagler, Stephen/B-9403-2010; Nagler, Stephen/E-4908-2010; Mandrus, David/H-3090-2014; Garlea, Vasile/A-4994-2016 OI Nagler, Stephen/0000-0002-7234-2339; Garlea, Vasile/0000-0002-5322-7271 NR 21 TC 84 Z9 84 U1 0 U2 27 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD FEB 15 PY 2008 VL 100 IS 6 AR 066404 DI 10.1103/PhysRevLett.100.066404 PG 4 WC Physics, Multidisciplinary SC Physics GA 263TC UT WOS:000253238400052 PM 18352495 ER PT J AU Howes, GG Dorland, W Cowley, SC Hammett, GW Quataert, E Schekochihin, AA Tatsuno, T AF Howes, G. G. Dorland, W. Cowley, S. C. Hammett, G. W. Quataert, E. Schekochihin, A. A. Tatsuno, T. TI Kinetic simulations of magnetized turbulence in astrophysical plasmas SO PHYSICAL REVIEW LETTERS LA English DT Article ID ELECTRON MAGNETOHYDRODYNAMIC TURBULENCE; SMALL-SCALE ANISOTROPY; SOLAR-WIND TURBULENCE; DISSIPATION RANGE; ALFVENIC TURBULENCE; FLUCTUATIONS; EQUATIONS; SPECTRUM; DYNAMICS; WAVES AB This Letter presents the first ab initio, fully electromagnetic, kinetic simulations of magnetized turbulence in a homogeneous, weakly collisional plasma at the scale of the ion Larmor radius (ion gyroscale). Magnetic- and electric-field energy spectra show a break at the ion gyroscale; the spectral slopes are consistent with scaling predictions for critically balanced turbulence of Alfven waves above the ion gyroscale (spectral index -5/3) and of kinetic Alfven waves below the ion gyroscale (spectral indices of -7/3 for magnetic and -1/3 for electric fluctuations). This behavior is also qualitatively consistent with in situ measurements of turbulence in the solar wind. Our findings support the hypothesis that the frequencies of turbulent fluctuations in the solar wind remain well below the ion cyclotron frequency both above and below the ion gyroscale. C1 [Howes, G. G.; Quataert, E.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Dorland, W.] Univ Maryland, CSCAMM, Dept Phys, College Pk, MD 20742 USA. [Cowley, S. C.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Cowley, S. C.; Schekochihin, A. A.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, London SW7 2AZ, England. [Hammett, G. W.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Tatsuno, T.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. RP Howes, GG (reprint author), Univ Calif Berkeley, Dept Astron, 601 Campbell Hall, Berkeley, CA 94720 USA. EM ghowes@astro.berkeley.edu RI Schekochihin, Alexander/C-2399-2009; Tatsuno, Tomo/A-3467-2011; Hammett, Gregory/D-1365-2011; Dorland, William/B-4403-2009 OI Hammett, Gregory/0000-0003-1495-6647; Dorland, William/0000-0003-2915-724X NR 29 TC 155 Z9 156 U1 2 U2 16 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD FEB 15 PY 2008 VL 100 IS 6 AR 065004 DI 10.1103/PhysRevLett.100.065004 PG 4 WC Physics, Multidisciplinary SC Physics GA 263TC UT WOS:000253238400041 PM 18352484 ER PT J AU Moore, RG Nascimento, VB Zhang, JD Rundgren, J Jin, R Mandrus, D Plummer, EW AF Moore, R. G. Nascimento, V. B. Zhang, Jiandi Rundgren, J. Jin, R. Mandrus, D. Plummer, E. W. TI Manifestations of broken symmetry: The surface phases of Ca(2-x)Sr(x)RuO(4) SO PHYSICAL REVIEW LETTERS LA English DT Article ID INSULATOR-TRANSITION; SR2RUO4; SUPERCONDUCTIVITY; PEROVSKITE AB The surface structural phases of Ca(2-x)Sr(x)RuO(4) are investigated using quantitative low energy electron diffraction. The broken symmetry at the surface enhances the structural instability against the RuO(6) rotational distortion while diminishing the instability against the RuO(6) tilt distortion occurring within the bulk crystal. As a result, suppressed structural and electronic surface phase transition temperatures are observed, including the appearance of an inherent Mott metal-to-insulator transition for x=0.1 and possible modifications of the surface quantum critical point near x(c)similar to 0.5. C1 [Moore, R. G.; Nascimento, V. B.; Plummer, E. W.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Zhang, Jiandi] Florida Int Univ, Dept Phys, Miami, FL 33199 USA. [Zhang, Jiandi; Jin, R.; Mandrus, D.; Plummer, E. W.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Rundgren, J.] Royal Inst Technol, Alba Nova Res Ctr, Dept Theoret Phys, SE-10691 Stockholm, Sweden. [Plummer, E. W.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Moore, RG (reprint author), Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. RI Mandrus, David/H-3090-2014 NR 26 TC 16 Z9 16 U1 1 U2 13 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD FEB 15 PY 2008 VL 100 IS 6 AR 066102 DI 10.1103/PhysRevLett.100.066102 PG 4 WC Physics, Multidisciplinary SC Physics GA 263TC UT WOS:000253238400048 PM 18352491 ER PT J AU Rech, J Matveev, KA AF Rech, Jerome Matveev, K. A. TI Resistivity of inhomogeneous quantum wires SO PHYSICAL REVIEW LETTERS LA English DT Article ID DIMENSIONAL ELECTRON-GAS; POINT CONTACTS; CONDUCTANCE; SPIN; LEADS AB We study the effect of electron-electron interactions on the transport in an inhomogeneous quantum wire. We show that contrary to the well-known Luttinger liquid result, nonuniform interactions contribute substantially to the resistance of the wire. In the regime of weakly interacting electrons and moderately low temperatures we find a linear in T resistivity induced by the interactions. We then use the bosonization technique to generalize this result to the case of arbitrarily strong interactions. C1 [Rech, Jerome; Matveev, K. A.] Argonne Natl Lab, Mat Sci Div, Argonne, IL 60439 USA. RP Rech, J (reprint author), Argonne Natl Lab, Mat Sci Div, 9700 S Cass Ave, Argonne, IL 60439 USA. NR 28 TC 26 Z9 26 U1 1 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD FEB 15 PY 2008 VL 100 IS 6 AR 066407 DI 10.1103/PhysRevLett.100.066407 PG 4 WC Physics, Multidisciplinary SC Physics GA 263TC UT WOS:000253238400055 PM 18352498 ER PT J AU Sykora, M Mangolini, L Schaller, RD Kortshagen, U Jurbergs, D Klimov, VI AF Sykora, Milan Mangolini, Lorenzo Schaller, Richard D. Kortshagen, Uwe Jurbergs, David Klimov, Victor I. TI Size-dependent intrinsic radiative decay rates of silicon nanocrystals at large confinement energies SO PHYSICAL REVIEW LETTERS LA English DT Article ID POROUS SILICON; NANOSCALE SILICON; QUANTUM DOTS; LUMINESCENCE; EMISSION; STATES; NANOPARTICLES AB We study ultrafast photoluminescence (PL) dynamics of Si nanocrystals (NCs). The early-time PL spectra (< 1 ns), which show strong dependence on NC size, are attributed to emission involving NC quantized states. The PL spectra recorded for long delays (> 10 ns) are almost independent of NC size and are likely due to surface-related recombination. Based on instantaneous PL intensities measured 2 ps after excitation, we determine intrinsic radiative rate constants for NCs of different sizes. These constants sharply increase for confinement energies greater than similar to 1 eV indicating a fast, exponential growth of the oscillator strength of zero-phonon, pseudodirect transitions. C1 [Sykora, Milan; Schaller, Richard D.; Klimov, Victor I.] Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA. [Mangolini, Lorenzo; Kortshagen, Uwe] Univ Minnesota, Dept Mech Engn, High Temperature & Plasma Lab, Minneapolis, MN 55444 USA. [Jurbergs, David] Innovalight Inc, Santa Clara, CA 95054 USA. RP Sykora, M (reprint author), Los Alamos Natl Lab, Div Chem, POB 1663,MS-J567, Los Alamos, NM 87545 USA. RI Mangolini, Lorenzo/J-2470-2015; Kortshagen, Uwe/B-8744-2016; OI Kortshagen, Uwe/0000-0001-5944-3656; Klimov, Victor/0000-0003-1158-3179 NR 24 TC 102 Z9 103 U1 1 U2 43 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD FEB 15 PY 2008 VL 100 IS 6 AR 067401 DI 10.1103/PhysRevLett.100.067401 PG 4 WC Physics, Multidisciplinary SC Physics GA 263TC UT WOS:000253238400070 PM 18352513 ER PT J AU van der Laan, G Arenholz, E Schmehl, A Schlom, DG AF van der Laan, Gerrit Arenholz, Elke Schmehl, Andreas Schlom, Darrell G. TI Weak anisotropic X-ray magnetic linear dichroism at the Eu M(4,5) edges of ferromagnetic EuO(001): Evidence for 4f-state contributions SO PHYSICAL REVIEW LETTERS LA English DT Article ID MAGNETOCRYSTALLINE ANISOTROPY; SEMICONDUCTORS AB We have observed a weak anisotropic x-ray magnetic linear dichroism (AXMLD) at the Eu M(4,5) edges of ferromagnetic EuO(001), which indicates that the 4f states are not rotationally invariant. A quantitative agreement of the AXMLD is obtained with multiplet calculations where the 4f state is split by an effective cubic crystalline electrostatic field. The results indicate that the standard model of rare earths, where 4f electrons are treated as core states, is not correct and that the 4f orbitals contribute weakly to the magnetic anisotropy. C1 [van der Laan, Gerrit] Daresbury Lab, Magnet Spectroscopy Grp, Warrington WA4 4AD, Cheshire, England. [van der Laan, Gerrit] Diamond Light Source, Didcot OX11 0DE, Oxon, England. [Arenholz, Elke] Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. [Schmehl, Andreas] Univ Augsburg, Inst Phys, Augsburg, Germany. [Schlom, Darrell G.] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA. RP van der Laan, G (reprint author), Daresbury Lab, Magnet Spectroscopy Grp, Warrington WA4 4AD, Cheshire, England. RI Schlom, Darrell/J-2412-2013; van der Laan, Gerrit/Q-1662-2015 OI Schlom, Darrell/0000-0003-2493-6113; van der Laan, Gerrit/0000-0001-6852-2495 NR 20 TC 26 Z9 26 U1 0 U2 18 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD FEB 15 PY 2008 VL 100 IS 6 AR 067403 DI 10.1103/PhysRevLett.100.067403 PG 4 WC Physics, Multidisciplinary SC Physics GA 263TC UT WOS:000253238400072 PM 18352515 ER PT J AU Zeng, CG Zhang, ZY van Benthem, K Chisholm, MF Weitering, HH AF Zeng, Changgan Zhang, Zhenyu van Benthem, Klaus Chisholm, Matthew F. Weitering, Hanno H. TI Optimal doping control of magnetic semiconductors via subsurfactant epitaxy SO PHYSICAL REVIEW LETTERS LA English DT Article ID TEMPERATURE FERROMAGNETISM; GROWTH AB "Subsurfactant epitaxy" is established as a conceptually new approach for introducing manganese as a magnetic dopant into germanium. A kinetic pathway is devised in which the subsurface interstitial sites on Ge(100) are first selectively populated with Mn, while lateral diffusion and clustering on or underneath the surface are effectively suppressed. Subsequent Ge deposition as a capping layer produces a novel surfactantlike phenomenon as the interstitial Mn atoms float towards newly defined subsurface sites at the growth front. Furthermore, the Mn atoms that failed to float upwards are uniformly distributed within the Ge capping layer. The resulting doping levels of order 0.25 at. % would normally be considered too low for ferromagnetic ordering, but the Curie temperature exceeds room temperature by a comfortable margin. Subsurfactant epitaxy thus enables superior dopant control in magnetic semiconductors. C1 [Zeng, Changgan; Zhang, Zhenyu; Weitering, Hanno H.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Zhang, Zhenyu; van Benthem, Klaus; Chisholm, Matthew F.; Weitering, Hanno H.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Zeng, CG (reprint author), Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. NR 23 TC 43 Z9 43 U1 1 U2 16 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD FEB 15 PY 2008 VL 100 IS 6 AR 066101 DI 10.1103/PhysRevLett.100.066101 PG 4 WC Physics, Multidisciplinary SC Physics GA 263TC UT WOS:000253238400047 PM 18352490 ER PT J AU Zhu, LY Reimer, PE Mueller, BA Awes, TC Brooks, ML Brown, CN Bush, JD Carey, TA Chang, TH Cooper, WE Gagliardi, CA Garvey, GT Geesaman, DF Hawker, EA He, XC Howell, DE Isenhower, LD Kaplan, DM Kaufman, SB Klinksiek, SA Koetke, DD Lee, DM Lee, WM Leitch, MJ Makins, N McGaughey, PL Moss, JM Nord, PM Papavassiliou, V Park, BK Petitt, G Peng, JC Sadler, ME Sondheim, WE Stankus, PW Thompson, TN Towell, RS Tribble, RE Vasiliev, MA Webb, JC Willis, JL Winter, P Wise, DK Yin, Y Young, GR AF Zhu, L. Y. Reimer, P. E. Mueller, B. A. Awes, T. C. Brooks, M. L. Brown, C. N. Bush, J. D. Carey, T. A. Chang, T. H. Cooper, W. E. Gagliardi, C. A. Garvey, G. T. Geesaman, D. F. Hawker, E. A. He, X. C. Howell, D. E. Isenhower, L. D. Kaplan, D. M. Kaufman, S. B. Klinksiek, S. A. Koetke, D. D. Lee, D. M. Lee, W. M. Leitch, M. J. Makins, N. McGaughey, P. L. Moss, J. M. Nord, P. M. Papavassiliou, V. Park, B. K. Petitt, G. Peng, J. C. Sadler, M. E. Sondheim, W. E. Stankus, P. W. Thompson, T. N. Towell, R. S. Tribble, R. E. Vasiliev, M. A. Webb, J. C. Willis, J. L. Winter, P. Wise, D. K. Yin, Y. Young, G. R. CA FNAL E866 NuSsea Collaboration TI Measurement of Upsilon Production for p+p and p+d Interactions at 800 GeV/c SO PHYSICAL REVIEW LETTERS LA English DT Article ID PARTON DISTRIBUTIONS; COLLISIONS; NUCLEON; SEA AB We report a high statistics measurement of Upsilon production with an 800 GeV/c proton beam on hydrogen and deuterium targets. The dominance of the gluon-gluon fusion process for Upsilon production at this energy implies that the cross section ratio, sigma(p + d -> Upsilon)/2 sigma(p + p -> Upsilon), is sensitive to the gluon content in the neutron relative to that in the proton. Over the kinematic region 0 < x(F) < 0.6, this ratio is found to be consistent with unity, in striking contrast to the behavior of the Drell-Yan cross section ratio sigma(p + d)(DY)/2 sigma(p + p)(DY). This result shows that the gluon distributions in the proton and neutron are very similar. The Upsilon production cross sections are also compared with the p + d and p + Cu cross sections from earlier measurements. C1 [Bush, J. D.; Isenhower, L. D.; Sadler, M. E.; Towell, R. S.; Willis, J. L.; Wise, D. K.] Abilene Christian Univ, Abilene, TX 79699 USA. [Reimer, P. E.; Mueller, B. A.; Geesaman, D. F.; Kaufman, S. B.; Makins, N.; Winter, P.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Brown, C. N.; Cooper, W. E.; Lee, W. M.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [He, X. C.; Lee, W. M.; Petitt, G.] Georgia State Univ, Atlanta, GA 30303 USA. [Kaplan, D. M.] IIT, Chicago, IL 60616 USA. [Zhu, L. Y.; Howell, D. E.; Makins, N.; Peng, J. C.] Univ Illinois, Urbana, IL 61801 USA. [Reimer, P. E.; Brooks, M. L.; Carey, T. A.; Garvey, G. T.; Lee, D. M.; Leitch, M. J.; McGaughey, P. L.; Moss, J. M.; Park, B. K.; Peng, J. C.; Sondheim, W. E.; Thompson, T. N.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Klinksiek, S. A.] Univ New Mexico, Albuquerque, NM 87131 USA. [Chang, T. H.; Webb, J. C.] New Mexico State Univ, Las Cruces, NM 88003 USA. [Awes, T. C.; Stankus, P. W.; Young, G. R.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Gagliardi, C. A.; Hawker, E. A.; Tribble, R. E.; Vasiliev, M. A.] Texas A&M Univ, College Stn, TX 77843 USA. [Koetke, D. D.; Nord, P. M.] Valparaiso Univ, Valparaiso, IN 46383 USA. RP Zhu, LY (reprint author), Abilene Christian Univ, Abilene, TX 79699 USA. RI Reimer, Paul/E-2223-2013 NR 19 TC 20 Z9 20 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD FEB 15 PY 2008 VL 100 IS 6 AR 062301 DI 10.1103/PhysRevLett.100.062301 PG 5 WC Physics, Multidisciplinary SC Physics GA 263TC UT WOS:000253238400020 PM 18352463 ER PT J AU Xie, N Battaglia, F Pannala, S AF Xie, Nan Battaglia, Francine Pannala, Sreekanth TI Effects of using two- versus three-dimensional computational modeling of fluidized beds - Part I, hydrodynamics SO POWDER TECHNOLOGY LA English DT Article DE gas-solid flow; fluidization; hydrodynamics; computational fluid dynamics ID DISCRETE PARTICLE; EXPERIMENTAL VALIDATION; NUMERICAL-SIMULATION; BUBBLE PROPERTIES; GRANULAR FLOW; DYNAMICS AB Simulations of fluidized beds are performed to study and determine the effect on the use of coordinate systems and geometrical configurations to model fluidized bed reactors. Computational fluid dynamics is employed for an Eulerian-Eulerian model, which represents each phase as an interspersed continuum. The transport equation for granular temperature is solved and a hyperbolic tangent function is used to provide a smooth transition between the plastic and viscous regimes for the solid phase. The aim of the present work is to show the range of validity for employing simulations based on a 2D Cartesian coordinate system to approximate both cylindrical and rectangular fluidized beds. Three different fluidization regimes, bubbling, slugging and turbulent regimes, are investigated and the results of 2D and 3D simulations are presented for both cylindrical and rectangular domains. The results demonstrate that a 2D Cartesian system can be used to successfully simulate and predict a bubbling regime. However, caution must be exercised when using 2D Cartesian coordinates for other fluidized regimes. A budget analysis that explains all the differences in detail is presented in Part II [N. Xie, F. Battaglia, S. Pannala, Effects of Using Two-Versus Three-Dimensional Computational Modeling of Fluidized Beds: Part II, budget analysis, 182 (1) (2007) 14] to complement the hydrodynamic theory of this paper. (C) 2007 Elsevier B.V. All rights reserved. C1 [Xie, Nan; Battaglia, Francine] Iowa State Univ, Dept Mech Engn, Ames, IA 50011 USA. [Pannala, Sreekanth] Oak Ridge Natl Lab, Div Math & Comp Sci, Computat Math Grp, Oak Ridge, TN 37831 USA. RP Xie, N (reprint author), Iowa State Univ, Dept Mech Engn, Ames, IA 50011 USA. EM xienan@iastate.edu RI Pannala, Sreekanth/F-9507-2010; Battaglia, Francine/E-9189-2014 OI Battaglia, Francine/0000-0002-0380-3402 NR 45 TC 93 Z9 96 U1 4 U2 33 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0032-5910 J9 POWDER TECHNOL JI Powder Technol. PD FEB 15 PY 2008 VL 182 IS 1 BP 1 EP 13 DI 10.1016/j.powtec.2007.07.005 PG 13 WC Engineering, Chemical SC Engineering GA 269RG UT WOS:000253666300001 ER PT J AU Xie, N Battaglia, F Pannala, S AF Xie, Nan Battaglia, Francine Pannala, Sreekanth TI Effects of using two- versus three-dimensional computational modeling of fluidized beds: Part II, budget analysis SO POWDER TECHNOLOGY LA English DT Article DE gas-solid flow; fluidization; budget analysis; computational fluid dynamics ID BUBBLE PROPERTIES; SIMULATION; VALIDATION; FLOW; HYDRODYNAMICS; DYNAMICS AB The partial differential equations for modeling gas-solid flows using computational fluid dynamics are compared for different coordinate systems. The numerical results of 2D and 3D simulations for both cylindrical and rectangular domains are presented in Part I (N. Xie, F. Battaglia, S. Parmala, Effects of using two- versus three-dimensional computational modeling of fluidized beds: Part I, Hydrodynamics (2007-this volume), doi:10.1016/j.powtec.2007.07.005), comparing the hydrodynamic features of a fluidized bed. The individual terms of the governing equations in 2D and 3D simulations with the cylindrical and Cartesian coordinate systems are evaluated in this study through a budget analysis. The additional terms appearing in the 3D equations can be used to explain the discrepancies between 2D and 3D simulations. The values of the additional terms is shown to increase as inlet gas velocity increases. This explains the good agreement between 2D and 3D simulations that is observed for bubbling regimes with low gas velocity, and why the differences between 2D and 3D simulations increases for slugging and turbulent regimes. (C) 2007 Elsevier B.V. All rights reserved. C1 [Xie, Nan; Battaglia, Francine] Iowa State Univ, Dept Mech Engn, Ames, IA 50011 USA. [Pannala, Sreekanth] Oak Ridge Natl Lab, Div Math & Comp Sci, Computat Math Grp, Oak Ridge, TN 37831 USA. RP Xie, N (reprint author), Iowa State Univ, Dept Mech Engn, Ames, IA 50011 USA. EM xienan@iastate.edu RI Pannala, Sreekanth/F-9507-2010; Battaglia, Francine/E-9189-2014 OI Battaglia, Francine/0000-0002-0380-3402 NR 19 TC 37 Z9 39 U1 1 U2 17 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0032-5910 J9 POWDER TECHNOL JI Powder Technol. PD FEB 15 PY 2008 VL 182 IS 1 BP 14 EP 24 DI 10.1016/j.powtec.2007.09.014 PG 11 WC Engineering, Chemical SC Engineering GA 269RG UT WOS:000253666300002 ER PT J AU Shin, DH Proudfoot, M Lim, HJ Choi, IK Yokota, H Yakunin, AF Kim, R Kim, SH AF Shin, Dong Hae Proudfoot, Michael Lim, Hyo Jin Choi, In-Kyu Yokota, Hisao Yakunin, Alexander F. Kim, Rosalind Kim, Sung-Hou TI Structural and enzymatic characterization of DR1281: A calcineurin-like phosphoesterase from Deinococcus radiodurans SO PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS LA English DT Article DE DR1281; crystal structure; dinuclear center; phosphatase; phosphodiesterase ID ESCHERICHIA-COLI; 2',3'-CYCLIC PHOSPHODIESTERASE; CRYSTAL-STRUCTURES; PROTEIN FAMILIES; RIBONUCLEASE-A; RNA; MECHANISM; CRYSTALLOGRAPHY; 5'-NUCLEOTIDASE; CLASSIFICATION AB We have determined the crystal structure of DR1281 from Deinococcus radiodurans. DR1281 is a protein of unknown function with over 170 homologs found in prokaryotes and eukaryotes. To elucidate the molecular function of DR1281, its crystal structure at 2.3 angstrom resolution was determined and a series of biochemical screens for catalytic activity was performed. The crystal structure shows that DR1281 has two domains, a small alpha domain and a putative catalytic domain formed by a four-layered structure of two beta-sheets flanked by five alpha-helices on both sides. The small 2 domain interacts with other molecules in the asymmetric unit and contributes to the formation of oligomers. The structural comparison of the putative catalytic domain with known structures suggested its biochemical function to be a phosphatase, phosphodiesterase, nuclease, or nucleotidase. Structural analyses with its homologues also indicated that there is a dinuclear center at the interface of two domains formed by Asp8, Glu37, Asn38, Asn65, His148, His173, and His-175. An absolute requirement Of metal ions for activity has been proved by enzymatic assay with various divalent metal ions. A panel of general enzymatic assays of DR1281 revealed metal-dependent catalytic activity toward model substrates for phosphatases (p-nitrophenyl phosphate) and phosphodiesterases (bis-p-nitrophenyl phosphate). Subsequent secondary enzymatic screens with natural substrates demonstrated significant phosphatase activity toward phosphoenolpyruvate and phosphodiesterase activity toward 2 ',3 '-cAMP. Thus, our structural and enzymatic studies have identified the biochemical function of DR1281 as a novel phosphatase/phosphodiesterase and disclosed key conserved residues involved in metal binding and catalytic activity. C1 [Shin, Dong Hae] Ewha Womans Univ, Coll Pharm, Seoul 120750, South Korea. [Proudfoot, Michael; Yakunin, Alexander F.] Univ Toronto, Banting & Best Dept Med Res, Toronto, ON, Canada. [Lim, Hyo Jin; Kim, Sung-Hou] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Choi, In-Kyu] Univ Calif Berkeley, Dept Integrat Biol, Berkeley, CA 94720 USA. [Yokota, Hisao; Kim, Rosalind; Kim, Sung-Hou] Lawrence Berkeley Natl Lab, Berkely Struct Genom Ctr, Berkeley, CA 94720 USA. RP Shin, DH (reprint author), Ewha Womans Univ, Coll Pharm, Seoul 120750, South Korea. EM dhshin55@ewha.ac.kr RI Yakunin, Alexander/J-1519-2014; OI Yakunin, Alexander/0000-0003-0813-6490 FU NIGMS NIH HHS [GM 62412] NR 41 TC 8 Z9 8 U1 2 U2 2 PU WILEY-LISS PI HOBOKEN PA DIV JOHN WILEY & SONS INC, 111 RIVER ST, HOBOKEN, NJ 07030 USA SN 0887-3585 J9 PROTEINS JI Proteins PD FEB 15 PY 2008 VL 70 IS 3 BP 1000 EP 1009 DI 10.1002/prot.21584 PG 10 WC Biochemistry & Molecular Biology; Biophysics SC Biochemistry & Molecular Biology; Biophysics GA 257YT UT WOS:000252836300034 PM 17847097 ER PT J AU McCabe, MF Wood, EF Wojcik, R Pan, M Sheffield, J Gao, H Su, H AF McCabe, M. F. Wood, E. F. Wojcik, R. Pan, M. Sheffield, J. Gao, H. Su, H. TI Hydrological consistency using multi-sensor remote sensing data for water and energy cycle studies SO REMOTE SENSING OF ENVIRONMENT LA English DT Article DE remote sensing; satellite; hydrology; hydrometeorology; climate dynamics; feedback; atmospheric processes; multi-sensor; data assimilation; evapotranspiration; soil moisture; AMSR-E; TRMM; MODIS; land surface temperature; hydrological consistency; hydrological cycle; North American Monsoon System; NAMS; SMEX; NAME ID NORTH-AMERICAN MONSOON; BOUNDARY LAYER INTERACTIONS; SOUTHERN UNITED-STATES; SURFACE SOIL-MOISTURE; TRMM MICROWAVE IMAGER; ATMOSPHERIC CONTROLS; VARIABILITY; MODEL; EVAPOTRANSPIRATION; CALIBRATION AB A multi-sensor/multi-platform approach to water and energy cycle prediction is demonstrated in an effort to understand the variability and feedback of land surface and atmospheric processes over large space and time scales. Remote sensing-based variables including soil moisture (from AMSR-E), surface heat fluxes (from MODIS) and precipitation rates (from TRMM) are combined with North American Regional Reanalysis derived atmospheric components to examine the degree of hydrological consistency throughout these diverse and independent hydrologic data sets. The study focuses on the influence of the North American Monsoon System (NAMS) over the southwestern United States, and is timed to coincide with the SMEX04 North American Monsoon Experiment (NAME). The study is focused over the Arizona portion of the NAME domain to assist in better characterizing the hydrometeorological processes occurring across Arizona during the summer monsoon period. Results demonstrate that this multi-sensor approach, in combination with available atmospheric observations, can be used to obtain a comprehensive and hydrometeorologically consistent characterization of the land surface water cycle, leading to an improved understanding of water and energy cycles within the NAME region and providing a novel framework for future remote observation and analysis of the coupled land surface-atmosphere system. (C) 2007 Elsevier Inc. All rights reserved. C1 [McCabe, M. F.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [McCabe, M. F.; Wood, E. F.; Wojcik, R.; Pan, M.; Sheffield, J.; Su, H.] Princeton Univ, Dept Civil & Environm Engn, Princeton, NJ 08542 USA. [Gao, H.] Georgia Inst Technol, Sch Earth & Atmospher Sci, Atlanta, GA 30332 USA. RP McCabe, MF (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM mmccabe@lanl.gov RI Sheffield, Justin/A-6388-2008; Pan, Ming/B-6841-2011; McCabe, Matthew/G-5194-2011; Su, Hongbo/C-9490-2009 OI Pan, Ming/0000-0003-3350-8719; McCabe, Matthew/0000-0002-1279-5272; NR 55 TC 65 Z9 67 U1 2 U2 27 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0034-4257 J9 REMOTE SENS ENVIRON JI Remote Sens. Environ. PD FEB 15 PY 2008 VL 112 IS 2 BP 430 EP 444 DI 10.1016/j.rse.2007.03.027 PG 15 WC Environmental Sciences; Remote Sensing; Imaging Science & Photographic Technology SC Environmental Sciences & Ecology; Remote Sensing; Imaging Science & Photographic Technology GA 261GW UT WOS:000253068100012 ER PT J AU Gaudi, BS Bennett, DP Udalski, A Gould, A Christie, GW Maoz, D Dong, S McCormick, J Szymanski, MK Tristram, PJ Nikolaev, S Paczynski, B Kubiak, M Pietrzynski, G Soszynski, I Szewczyk, O Ulaczyk, K Wyrzykowski, L Depoy, DL Han, C Kaspi, S Lee, CU Mallia, F Natusch, T Pogge, RW Park, BG Abe, F Bond, IA Botzler, CS Fukui, A Hearnshaw, JB Itow, Y Kamiya, K Korpela, AV Kilmartin, PM Lin, W Masuda, K Matsubara, Y Motomura, M Muraki, Y Nakamura, S Okumura, T Ohnishi, K Rattenbury, NJ Sako, T Saito, T Sato, S Skuljan, L Sullivan, DJ Sumi, T Sweatman, WL Yock, PCM Albrow, MD Allan, A Beaulieu, JP Burgdorf, MJ Cook, KH Coutures, C Dominik, M Dieters, S Fouque, P Greenhill, J Horne, K Steele, I Tsapras, Y Chaboyer, B Crocker, A Frank, S Macintosh, B AF Gaudi, B. S. Bennett, D. P. Udalski, A. Gould, A. Christie, G. W. Maoz, D. Dong, S. McCormick, J. Szymanski, M. K. Tristram, P. J. Nikolaev, S. Paczynski, B. Kubiak, M. Pietrzynski, G. Soszynski, I. Szewczyk, O. Ulaczyk, K. Wyrzykowski, L. Depoy, D. L. Han, C. Kaspi, S. Lee, C. -U. Mallia, F. Natusch, T. Pogge, R. W. Park, B. -G. Abe, F. Bond, I. A. Botzler, C. S. Fukui, A. Hearnshaw, J. B. Itow, Y. Kamiya, K. Korpela, A. V. Kilmartin, P. M. Lin, W. Masuda, K. Matsubara, Y. Motomura, M. Muraki, Y. Nakamura, S. Okumura, T. Ohnishi, K. Rattenbury, N. J. Sako, T. Saito, To. Sato, S. Skuljan, L. Sullivan, D. J. Sumi, T. Sweatman, W. L. Yock, P. C. M. Albrow, M. D. Allan, A. Beaulieu, J. -P. Burgdorf, M. J. Cook, K. H. Coutures, C. Dominik, M. Dieters, S. Fouque, P. Greenhill, J. Horne, K. Steele, I. Tsapras, Y. Chaboyer, B. Crocker, A. Frank, S. Macintosh, B. CA OGLE Collaboration uFUN Collaboration MOA Collaboration PLANET Collaboration RoboNET Collaborations TI Discovery of a Jupiter/Saturn analog with gravitational microlensing SO SCIENCE LA English DT Article ID HIGH-MAGNIFICATION; EXTRASOLAR PLANETS; LENSING EXPERIMENT; LIGHT CURVES; SYSTEMS; SEARCH; STAR; DISK; EXOPLANETS; COMPANION AB Searches for extrasolar planets have uncovered an astonishing diversity of planetary systems, yet the frequency of solar system analogs remains unknown. The gravitational microlensing planet search method is potentially sensitive to multiple- planet systems containing analogs of all the solar system planets except Mercury. We report the detection of a multiple- planet system with microlensing. We identify two planets with masses of similar to 0.71 and similar to 0.27 times the mass of Jupiter and orbital separations of similar to 2.3 and similar to 4.6 astronomical units orbiting a primary star of mass similar to 0.50 solar mass at a distance of similar to 1.5 kiloparsecs. This system resembles a scaled version of our solar system in that the mass ratio, separation ratio, and equilibrium temperatures of the planets are similar to those of Jupiter and Saturn. These planets could not have been detected with other techniques; their discovery from only six confirmed microlensing planet detections suggests that solar system analogs may be common. C1 [Gaudi, B. S.; Gould, A.; Dong, S.; Depoy, D. L.; Pogge, R. W.; Frank, S.] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. [Bennett, D. P.] Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA. [Udalski, A.; Szymanski, M. K.; Kubiak, M.; Pietrzynski, G.; Soszynski, I.; Szewczyk, O.; Ulaczyk, K.; Wyrzykowski, L.] Univ Warsaw Observ, PL-00478 Warsaw, Poland. [Christie, G. W.; Mallia, F.; Natusch, T.] Auckland Observ, Auckland, New Zealand. [Maoz, D.; Kaspi, S.] Tel Aviv Univ, Raymond & Beverly Sackler Fac Exact Sci, Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [McCormick, J.] Farm Cove Observ, Auckland 1706, New Zealand. [Tristram, P. J.; Kilmartin, P. M.] Mt John Observ, Lake Tekapo 8770, New Zealand. [Nikolaev, S.; Cook, K. H.; Macintosh, B.] Lawrence Livermore Natl Lab, Inst Geophys & Planetary Phys, Livermore, CA 94550 USA. [Paczynski, B.] Princeton Univ Observ, Princeton, NJ 08544 USA. [Pietrzynski, G.] Univ Concepcion, Dept Fis, Concepcion, Chile. [Wyrzykowski, L.] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. [Han, C.] Chungbuk Natl Univ, Program Brain Korea, Dept Phys, Chonju 371763, South Korea. [Lee, C. -U.; Park, B. -G.] Korea Astron & Space Sci Inst, Taejon 305348, South Korea. [Mallia, F.] Campo Catino Astron Observ, I-03016 Guarcino, Frosinone, Italy. [Abe, F.; Fukui, A.; Itow, Y.; Kamiya, K.; Masuda, K.; Matsubara, Y.; Motomura, M.; Nakamura, S.; Okumura, T.; Sako, T.; Sumi, T.] Nagoya Univ, Solar Terr Environm Lab, Nagoya, Aichi 4648601, Japan. [Bond, I. A.; Lin, W.; Skuljan, L.; Sweatman, W. L.] Massey Univ, Inst Informat & Math Sci, Auckland 1330, New Zealand. [Botzler, C. S.; Yock, P. C. M.] Univ Auckland, Dept Phys, Auckland 1001, New Zealand. [Hearnshaw, J. B.; Albrow, M. D.] Univ Canterbury, Dept Phys & Astron, Christchurch 8020, New Zealand. [Korpela, A. V.; Sullivan, D. J.] Univ Victoria, Sch Chem & Phys Sci, Wellington, New Zealand. [Muraki, Y.] Konan Univ, Dept Phys, Kobe, Hyogo 6588501, Japan. [Ohnishi, K.] Nagano Natl Coll Technol, Nagano 3818550, Japan. [Rattenbury, N. J.] Univ Manchester, Jodrell Bank Ctr Astrophys, Manchester M13 9PL, Lancs, England. [Saito, To.] Tokyo Metropolitan Coll Aeronaut, Tokyo 1168523, Japan. [Sato, S.] Nagoya Univ, Dept Phys & Astrophys, Fac Sci, Nagoya, Aichi 4648602, Japan. [Allan, A.] Univ Exeter, Sch Phys, Exeter EX4 4QL, Devon, England. [Beaulieu, J. -P.; Coutures, C.] Univ Paris 06, Inst Astrophys Paris, CNRS, UMR7095, F-75014 Paris, France. [Burgdorf, M. J.; Steele, I.; Tsapras, Y.] Liverpool John Moores Univ, Astrophys Res Inst, Birkenhead CH41 1LD, Merseyside, England. [Dominik, M.; Horne, K.] Univ St Andrews, Sch Phys & Astron, St Andrews KY16 9SS, Fife, Scotland. [Dieters, S.; Greenhill, J.] Univ Tasmania, Sch Math & Phys, Hobart, Tas 7001, Australia. [Fouque, P.] Univ Toulouse 3, Observ Midi Pyrenees, Astrophys Lab, F-31400 Toulouse, France. [Chaboyer, B.] Dartmouth Coll, Dept Phys & Astron, Hanover, NH 03755 USA. [Crocker, A.] Univ Oxford, Oxford OX1 3RH, England. RP Gaudi, BS (reprint author), Ohio State Univ, Dept Astron, 140 W 18Th Ave, Columbus, OH 43210 USA. EM gaudi@astronomy.ohio-state.edu RI Gaudi, Bernard/I-7732-2012; Dong, Subo/J-7319-2012; Greenhill, John/C-8367-2013; OI Dominik, Martin/0000-0002-3202-0343; Chaboyer, Brian/0000-0003-3096-4161 NR 29 TC 184 Z9 184 U1 1 U2 19 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD FEB 15 PY 2008 VL 319 IS 5865 BP 927 EP 930 DI 10.1126/science.1151947 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 262RM UT WOS:000253165700038 PM 18276883 ER PT J AU Behnke, E Collar, JI Cooper, PS Crum, K Crisler, M Hu, M Levine, I Nakazawa, D Nguyen, H Odom, B Ramberg, E Rasmussen, J Riley, N Sonnenschein, A Szydagis, M Tschirhart, R AF Behnke, E. Collar, J. I. Cooper, P. S. Crum, K. Crisler, M. Hu, M. Levine, I. Nakazawa, D. Nguyen, H. Odom, B. Ramberg, E. Rasmussen, J. Riley, N. Sonnenschein, A. Szydagis, M. Tschirhart, R. TI Spin-dependent WIMP limits from a bubble chamber SO SCIENCE LA English DT Article ID DARK-MATTER SEARCH; NUCLEUS SCATTERING; LIQUIDS AB Bubble chambers were the dominant technology used for particle detection in accelerator experiments for several decades, eventually falling into disuse with the advent of other techniques. We report here on a new application for these devices. We operated an ultraclean, room- temperature bubble chamber containing 1.5 kilograms of superheated CF3I, a target maximally sensitive to spin- dependent and - independent weakly interacting massive particle ( WIMP) couplings. An extreme intrinsic insensitivity to the backgrounds that commonly limit direct searches for dark matter was measured in this device under operating conditions leading to the detection of low- energy nuclear recoils like those expected from WIMPs. Improved limits on the spin- dependent WIMP- proton scattering cross section were extracted during our experiments, excluding this type of coupling as a possible explanation for a recent claim of particle dark- matter detection. C1 [Collar, J. I.; Crum, K.; Nakazawa, D.; Odom, B.; Rasmussen, J.; Riley, N.; Szydagis, M.] Univ Chicago, Enrico Fermi Inst, Dept Phys, Chicago, IL 60637 USA. [Behnke, E.; Levine, I.] Indiana Univ, Dept Phys & Astron, South Bend, IN 46634 USA. [Collar, J. I.; Crum, K.; Nakazawa, D.; Odom, B.; Rasmussen, J.; Riley, N.; Szydagis, M.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Cooper, P. S.; Crisler, M.; Hu, M.; Nguyen, H.; Ramberg, E.; Sonnenschein, A.; Tschirhart, R.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. RP Collar, JI (reprint author), Univ Chicago, Enrico Fermi Inst, Dept Phys, Chicago, IL 60637 USA. EM collar@uchicago.edu OI Odom, Brian/0000-0002-3992-8864 NR 23 TC 119 Z9 119 U1 3 U2 10 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 EI 1095-9203 J9 SCIENCE JI Science PD FEB 15 PY 2008 VL 319 IS 5865 BP 933 EP 936 DI 10.1126/science.1149999 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 262RM UT WOS:000253165700040 PM 18276885 ER PT J AU Eustis, SN Radisic, D Bowen, KH Bachorz, RA Haranczyk, M Schenter, GK Gutowski, M AF Eustis, Soren N. Radisic, Dunja Bowen, Kit H. Bachorz, Rafal A. Haranczyk, Maciej Schenter, Gregory K. Gutowski, Maciej TI Electron-driven acid-base chemistry: Proton transfer from hydrogen chloride to ammonia SO SCIENCE LA English DT Article ID GAS-PHASE; HALIDE-COMPLEXES; VAPOR-PHASE; AB-INITIO; DIPOLE; BINDING; ANION; DIMER; SPECTROSCOPY; AFFINITIES AB In contrast to widely familiar acid- base behavior in solution, single molecules of NH3 and HCl do not react to form the ionic salt, NH4+Cl-, in isolation. We applied anion photoelectron spectroscopy and ab initio theory to investigate the interaction of an excess electron with the hydrogen- bonded complex NH3. HCl. Our results show that an excess electron induces this complex to form the ionic salt. We propose a mechanism that proceeds through a dipole- bound state to form the negative ion of ionic ammonium chloride, a species that can also be characterized as a deformed Rydberg radical, NH4, polarized by a chloride anion, Cl-. C1 [Eustis, Soren N.; Radisic, Dunja; Bowen, Kit H.] Johns Hopkins Univ, Dept Chem, Baltimore, MD 21218 USA. [Bachorz, Rafal A.] Univ Karlsruhe, CFN, D-76128 Karlsruhe, Germany. [Bachorz, Rafal A.] Univ Karlsruhe, Inst Chem Phys, D-76128 Karlsruhe, Germany. [Bachorz, Rafal A.; Haranczyk, Maciej; Schenter, Gregory K.; Gutowski, Maciej] Pacific NW Natl Lab, Div Chem & Mat Sci, Richland, WA 99352 USA. [Haranczyk, Maciej; Gutowski, Maciej] Univ Gdansk, Dept Chem, PL-80952 Gdansk, Poland. [Gutowski, Maciej] Heriot Watt Univ, Dept Chem, Edinburgh EH14 4AS, Midlothian, Scotland. RP Bowen, KH (reprint author), Johns Hopkins Univ, Dept Chem, Charles & 34Th St, Baltimore, MD 21218 USA. EM kbowen@jhu.edu; m.gutowski@hw.ac.uk RI Eustis, Soren/F-1911-2011; Haranczyk, Maciej/A-6380-2014; Schenter, Gregory/I-7655-2014 OI Haranczyk, Maciej/0000-0001-7146-9568; Schenter, Gregory/0000-0001-5444-5484 NR 30 TC 34 Z9 34 U1 1 U2 41 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD FEB 15 PY 2008 VL 319 IS 5865 BP 936 EP 939 DI 10.1126/science.1151614 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 262RM UT WOS:000253165700041 PM 18276886 ER PT J AU Zhang, GJ Yu, R Vyas, S Stettler, J Reimer, JA Harley, G De Jonghe, LC AF Zhang, Guojing Yu, Rong Vyas, Shashi Stettler, Joel Reimer, Jeffrey A. Harley, Gabriel De Jonghe, Lutgard C. TI Proton conduction and characterization of an La(PO3)(3)-Ca(PO3)(2) glass-cerarnic SO SOLID STATE IONICS LA English DT Article DE rare earth phosphates; glass-ceramic; proton conduction ID SR-SUBSTITUTED LAPO4; NUCLEAR-MAGNETIC-RESONANCE; FUEL-CELL ELECTROLYTES; METAPHOSPHATE GLASSES; PHOSPHATE GLASSES; DOPED LAP3O9; MAS-NMR; LANTHANUM; SPECTROSCOPY; CERAMICS AB A dual phase glass-ceramic composite is produced by heating a CaLa(PO3)(5) glass at 800 degrees C for 20 h. The glass-ceramic consists of intertwined crystalline La(PO3)(3) and amorphous Ca(PO3)(2) with an overall conductivity of 1.52 x 10(-5) S/cm(-1) at 550 degrees C in humidified air. For the water vapor treated glass, the vibration modes of the incorporated water, as well as of P-OH groups, are detected by infrared spectroscopy in the range 3440-1660 cm(-1). The conductivity of the glass-ceramic is higher in humidified air than in dry air, consistent with proton conduction. Published by Elsevier B.V. C1 [Reimer, Jeffrey A.; Harley, Gabriel; De Jonghe, Lutgard C.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Vyas, Shashi; Stettler, Joel; Reimer, Jeffrey A.] Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. [Zhang, Guojing; Yu, Rong; Vyas, Shashi; Stettler, Joel; Harley, Gabriel; De Jonghe, Lutgard C.] Ernest Orlando Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP De Jonghe, LC (reprint author), Ernest Orlando Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. EM dejonghe@lbl.gov RI Yu, Rong/A-3011-2008 OI Yu, Rong/0000-0003-1687-3597 NR 35 TC 15 Z9 16 U1 1 U2 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-2738 J9 SOLID STATE IONICS JI Solid State Ion. PD FEB 15 PY 2008 VL 178 IS 35-36 BP 1811 EP 1816 DI 10.1016/j.ssi.2007.11.038 PG 6 WC Chemistry, Physical; Physics, Condensed Matter SC Chemistry; Physics GA 280TD UT WOS:000254448200005 ER PT J AU Schlaup, C Friebel, D Broekmann, P Wandelt, K AF Schlaup, C. Friebel, D. Broekmann, P. Wandelt, K. TI Potential dependent adlayer structures of a sulfur-covered Au(111) electrode in alkaline solution: An in situ STM study SO SURFACE SCIENCE LA English DT Article DE scanning tunneling microscopy; electrochemical phenomena; surface chemical reaction; gold; sufur; sufides; metal-electrolyte interfaces ID SCANNING-TUNNELING-MICROSCOPY; GOLD; MONOLAYERS; SULFIDE AB A sulfur-covered Au(111) electrode (Theta(S) =0.33 ML) subjected to potential increases in an S-free NaOH solution, i.e., at a fixed S coverage, leads to the reversible formation of a rhombic phase at anodic potentials. The local S coverage increase which is required for the formation of the rhombic phase results from a coverage decrease within the (root 3 x root 3)R30 degrees regions, where single-S-atom-defects and, in later stages, S vacancy islands are formed. Due to the high potential induced S-Au bond strength, it was possible for the first time to retain islands of this incomplete (root 3 x root 3)R30 degrees S layer in the 2D solid state. Furthermore, a Au mass transport was observed during the growth of the rhombic phase. This clearly calls for a reinterpretation of its chemical nature. (C) 2008 Elsevier B.V. All rights reserved. C1 [Schlaup, C.; Broekmann, P.; Wandelt, K.] Univ Bonn, Inst Phys & Theoret Chem, D-53115 Bonn, Germany. [Friebel, D.] Stanford Synchrotron Radiat Lab, Menlo Pk, CA 94025 USA. RP Schlaup, C (reprint author), Univ Bonn, Inst Phys & Theoret Chem, Wegelerstr 12, D-53115 Bonn, Germany. EM schlaup@pc.uni-bonn.de RI Broekmann, Peter/D-1987-2013 NR 19 TC 12 Z9 12 U1 0 U2 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0039-6028 J9 SURF SCI JI Surf. Sci. PD FEB 15 PY 2008 VL 602 IS 4 BP 864 EP 870 DI 10.1016/j.susc.2007.12.017 PG 7 WC Chemistry, Physical; Physics, Condensed Matter SC Chemistry; Physics GA 273LA UT WOS:000253930700008 ER PT J AU Khan, NA Matranga, C AF Khan, Neetha A. Matranga, Christopher TI Nucleation and growth of Fe and FeO nanoparticles and films on Au(111) SO SURFACE SCIENCE LA English DT Article DE iron oxide; Au(111); scanning tunneling microscopy (STM); X-ray photoelectron spectroscopy (XPS) ID SCANNING-TUNNELING-MICROSCOPY; IRON-OXIDE FILMS; EPITAXIAL-GROWTH; HETEROEPITAXIAL GROWTH; MOS2 NANOCLUSTERS; SURFACE; PT(111); OXYGEN; STM; RECONSTRUCTION AB We have studied the formation of Fe and FeO nanoparticles and thin films on the reconstructed Au(111) surface. Scanning tunneling microscopy (STM), X-ray photoelectron spectroscopy (XPS), and ion-scattering spectroscopy (ISS) were used to evaluate the structure and composition of Fe and FeO nanoparticles and films at different growth conditions. Iron grows as one monolayer high triangular particles on the Au(111) reconstruction. FeO was grown by exposing the Fe nanoparticles to molecular oxygen at 323 K, followed by annealing at 500-700 K. XPS results indicate that FeO is formed after room temperature oxidation. STM images show that well-ordered iron oxide particles form after annealing to 700 K. STM images also show evidence of a overlayer lattice with a short periodicity of 3.3 angstrom modulated by a larger periodicity of approximately 35 angstrom. The larger periodicity results from a moire pattern formed between the iron oxide overlayer and the underlying Au(111) surface. (C) 2007 Elsevier B.V. All rights reserved. C1 [Khan, Neetha A.; Matranga, Christopher] US DOE, NETL, Pittsburgh, PA 15236 USA. [Khan, Neetha A.] Parsons Project Serv Inc, South Park, PA 15129 USA. RP Khan, NA (reprint author), US DOE, NETL, POB 10940, Pittsburgh, PA 15236 USA. EM Neetha.Khan@nett.doe.gov RI Matranga, Christopher/E-4741-2015 OI Matranga, Christopher/0000-0001-7082-5938 NR 48 TC 45 Z9 46 U1 4 U2 61 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0039-6028 J9 SURF SCI JI Surf. Sci. PD FEB 15 PY 2008 VL 602 IS 4 BP 932 EP 942 DI 10.1016/j.susc.2007.12.027 PG 11 WC Chemistry, Physical; Physics, Condensed Matter SC Chemistry; Physics GA 273LA UT WOS:000253930700016 ER PT J AU Bajt, S Edwards, NV Madey, TE AF Bajt, Sasa Edwards, N. V. Madey, Theodore E. TI Properties of ultrathin films appropriate for optics capping layers exposed to high energy photon irradiation SO SURFACE SCIENCE REPORTS LA English DT Review DE optics contamination; protective film; capping layer; multilayer; extreme ultraviolet; extreme ultraviolet lithography; oxidation; carbonization; ruthenium; rhodium; TiO2; ZrO2 ID EXTREME-ULTRAVIOLET LITHOGRAPHY; INDUCED CARBON CONTAMINATION; RAY PROJECTION LITHOGRAPHY; MO/SI MULTILAYER MIRRORS; GRAIN-BOUNDARY DIFFUSION; LONG-TERM STABILITY; STIMULATED DESORPTION; PHOTOABSORPTION MEASUREMENTS; SURFACE SCIENCE; MO-SI AB The contamination of optical surfaces by photon irradiation in the presence of background vacuum gases shortens optics lifetime and is one of the main concerns for reflection optics used in conjunction with intense light sources, such as high power lasers, 3rd and 4th generation synchrotron sources or plasma sources used in extreme ultraviolet lithography (EUVL) tools. This paper focuses on properties and surface chemistry of different materials, which as thin films could be used as capping layers to protect and extend the lifetime of multilayer mirror optics, especially those exposed to 13.5 nm (92 eV) radiation for EUVL applications. The most promising candidates include single element materials such as ruthenium and rhodium, and oxides such as TiO2 and ZrO2. (c) 2007 Elsevier B.V. All rights reserved. C1 [Bajt, Sasa] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Edwards, N. V.] Freescale Semicond Inc, Platform Technol Off Program Management, Austin, TX 78721 USA. [Madey, Theodore E.] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA. [Madey, Theodore E.] Rutgers State Univ, Surface Modificat Lab, Piscataway, NJ 08854 USA. RP Bajt, S (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM bajt@llnl.gov RI Bajt, Sasa/G-2228-2010 NR 151 TC 46 Z9 50 U1 1 U2 19 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-5729 J9 SURF SCI REP JI Surf. Sci. Rep. PD FEB 15 PY 2008 VL 63 IS 2 BP 73 EP 99 DI 10.1016/j.surfrep.2007.09.001 PG 27 WC Chemistry, Physical; Physics, Condensed Matter SC Chemistry; Physics GA 268MU UT WOS:000253584700002 ER PT J AU Glass, LM Glass, RJ AF Glass, Laura M. Glass, Robert J. TI Social contact networks for the spread of pandemic influenza in children and teenagers SO BMC PUBLIC HEALTH LA English DT Article ID PERSONAL NETWORKS; TRANSMISSION; STRATEGIES; HOUSEHOLDS; DIARY AB Background: Influenza is a viral infection that primarily spreads via fluid droplets from an infected person's coughs and sneezes to others nearby. Social contact networks and the way people interact within them are thus important to its spread. We developed a method to characterize the social contact network for the potential transmission of influenza and then applied the method to school aged children and teenagers. Methods: Surveys were administered to students in an elementary, middle and high-school in the United States. The social contact network of a person was conceptualized as a set of groups to which they belong (e.g., households, classes, clubs) each composed of a sub-network of primary links representing the individuals within each group that they contact. The size of the group, number of primary links, time spent in the group, and level of contact along each primary link (near, talking, touching, or kissing) were characterized. Public activities done by groups venturing into the community where random contacts occur (e.g., friends viewing a movie) also were characterized. Results: Students, groups and public activities were highly heterogeneous. Groups with high potential for the transmission of influenza were households, school classes, friends, and sports; households decreased and friends and sports increased in importance with grade level. Individual public activity events (such as dances) were also important but lost their importance when averaged over time. Random contacts, primarily in school passing periods, were numerous but had much lower transmission potential compared to those with primary links within groups. Students are highly assortative, interacting mainly within age class. A small number of individual students are identified as likely "super-spreaders". Conclusion: High-school students may form the local transmission backbone of the next pandemic. Closing schools and keeping students at home during a pandemic would remove the transmission potential within these ages and could be effective at thwarting its spread within a community. Social contact networks characterized as groups and public activities with the time, level of contact and primary links within each, yields a comprehensive view, which if extended to all ages, would allow design of effective community containment for pandemic influenza. C1 [Glass, Laura M.] Albuquerque Publ Sch Syst, Albuquerque, NM USA. [Glass, Robert J.] Sandia Natl Labs, Dept Homeland Secur Infrastruct Protect Risk Mana, Natl Infrastruct Simulat & Anal Ctr NISAC, Albuquerque, NM 87185 USA. [Glass, Robert J.] Sandia Corp, Sandia Natl Labs, Dept Energy Nucl Secur Adm, Albuquerque, NM USA. [Glass, Robert J.] Los Alamos Natl Lab, Albuquerque, NM USA. RP Glass, RJ (reprint author), Sandia Natl Labs, Dept Homeland Secur Infrastruct Protect Risk Mana, Natl Infrastruct Simulat & Anal Ctr NISAC, POB 5800, Albuquerque, NM 87185 USA. EM arual721@comcast.net; rjglass@sandia.gov NR 28 TC 82 Z9 84 U1 2 U2 14 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1471-2458 J9 BMC PUBLIC HEALTH JI BMC Public Health PD FEB 14 PY 2008 VL 8 AR 61 DI 10.1186/1471-2458-8-61 PG 15 WC Public, Environmental & Occupational Health SC Public, Environmental & Occupational Health GA 282EZ UT WOS:000254551700001 PM 18275603 ER PT J AU Lee, YB Caes, B Harmon, BN AF Lee, Yongbin Caes, Benjamin Harmon, B. N. TI Role of oxygen 2p states for anti-ferromagnetic interfacial coupling and positive exchange bias of ferromagnetic LSMO/SRO bilayers SO JOURNAL OF ALLOYS AND COMPOUNDS LA English DT Article DE magnetically ordered materials; oxide materials; surfaces and interfaces; electronic band structure ID ELECTRONIC-STRUCTURE; MAGNETIC-PROPERTIES; THIN-FILMS; ANISOTROPY; SRRUO3; LA1-XCAXMNO3; MANGANITES; OXIDES; LAMNO3 AB We have investigated possible physical origins of the anti-ferromagnetic exchange interaction of ferromagnetic La2/3Sr1/3MnO3/SrRuO3 (LSMO/SRO) bilayers reported to have a positive exchange bias. We have performed first principles calculations with both ferro, and anti-ferromagnetic spin configurations for these layers and found that anti-ferromagnetic spin configuration has lower total energy. The role of 2p states of oxygen atoms located at the interface and their interaction with neighbors account for this magnetic ordering preference. Published by Elsevier B.V. C1 [Lee, Yongbin; Caes, Benjamin; Harmon, B. N.] Iowa State Univ Sci & Technol, Ames Lab, US DOE, Ames, IA 50011 USA. [Caes, Benjamin] Augustana Coll, Dept Chem, Rock Isl, IL 61201 USA. [Harmon, B. N.] Iowa State Univ Sci & Technol, Dept Phys, Ames, IA 50011 USA. RP Harmon, BN (reprint author), Iowa State Univ Sci & Technol, Ames Lab, US DOE, Ames, IA 50011 USA. EM harmon@ameslab.gov NR 42 TC 19 Z9 19 U1 0 U2 35 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0925-8388 J9 J ALLOY COMPD JI J. Alloy. Compd. PD FEB 14 PY 2008 VL 450 IS 1-2 BP 1 EP 6 DI 10.1016/j.jallcom.2006.10.085 PG 6 WC Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Chemistry; Materials Science; Metallurgy & Metallurgical Engineering GA 258IF UT WOS:000252860900002 ER PT J AU Elles, CG Shkrob, IA Crowell, RA Arms, DA Landahl, EC AF Elles, Christopher G. Shkrob, Ilya A. Crowell, Robert A. Arms, Dohn A. Landahl, Eric C. TI Transient x-ray absorption spectroscopy of hydrated halogen atom SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID ELECTRON PHOTODETACHMENT; DYNAMICS; CHLORINE; WATER; SIMULATIONS; HYDROXYL; RADICALS; BROMINE; SPECTRA AB Time-resolved x-ray absorption spectroscopy has been used to observe the transient species generated by one-photon detachment of an electron from aqueous bromide. The K-edge spectrum of the short-lived Br(0) atom exhibits a resonant 1s-4p transition that is absent for the Br(-) precursor. The strong 1s-4p resonance suggests that there is very little charge transfer from the solvent to the open-shell atom, whereas weak oscillations above the absorption edge indicate that the solvent shell around a neutral Br(0) atom is defined primarily by hydrophobic interactions. These conclusions are in agreement with Monte Carlo and quantum chemical simulations of the solvent structure. (C) 2008 American Institute of Physics. C1 [Elles, Christopher G.; Shkrob, Ilya A.; Crowell, Robert A.] Argonne Natl Lab, Div Chem, Argonne, IL 60439 USA. [Arms, Dohn A.; Landahl, Eric C.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Elles, CG (reprint author), Univ So Calif, Dept Chem, Los Angeles, CA 90089 USA. EM elles@usc.edu; shkrob@anl.gov; crowell@bnl.gov RI Elles, Christopher/C-3906-2008; Landahl, Eric/A-1742-2010 NR 16 TC 27 Z9 27 U1 0 U2 11 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD FEB 14 PY 2008 VL 128 IS 6 AR 061102 DI 10.1063/1.2827456 PG 4 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 263TA UT WOS:000253238200002 PM 18282020 ER PT J AU Ibrahim, H Guhr, M Schwentner, N AF Ibrahim, Heide Guehr, Markus Schwentner, Nikolaus TI Valence transitions of Br-2 in Ar matrices: Interaction with the lattice and predissociation SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID RARE-GAS SOLIDS; ULTRAVIOLET-VISIBLE ABSORPTION; FRANCK-CONDON FACTORS; CONDENSED-PHASE; VIBRATIONAL-RELAXATION; MOLECULAR-DYNAMICS; POTENTIAL CURVES; QUANTUM CONTROL; EXCITED-STATE; ARGON MATRIX AB Fluorescence spectra from v'=0 of the B, A and A' states of Br-2/Ar are presented for excitation wavelengths from 630 to 540 nm with high resolution, to evaluate isotopic splittings in emission and absorption. The observed progression of sharp zero phonon lines (ZPLs) from v'=2 to v'=19 in B excitation is used to derive spectroscopic constants. The ZPL broadening and the growing phonon sideband (PSB) contributions indicate an increase of matrix influence on the X-B transition with rising v'. Contributions of the PSB are parameterized with the Huang-Rhys coupling constant S, where S=1 near the potential minimum reflects the electron-phonon coupling and S=4 close to Franck-Condon maximum originates from vibrational coupling. The PSB spectral composition correlates with the matrix phonon density of states, and the ZPL broadens and shifts with temperature. Two crossings with repulsive states (between v'=4-5 and v'=7-9) leading to matrix induced predissociation and a third tentative one between v'=14 and 15 are indicated by ZPL broadening, population flow, and spectral shifts. The crossing energies are close to gas phase and matrix calculations. The stepwise flow of intensity from B via repulsive states to A' and, similarly, from the A continuum to A' is discussed. Emission quantum efficiency of the B state decreases from near unity at v'=0 to less than 10(-3) at v'=19. Broadening of ZPL near crossings yields predissociation times of 5 and 2.5 ps corresponding to probabilities of 5% and 10% per round-trip for the two lowest crossings, respectively. (c) 2008 American Institute of Physics. C1 [Ibrahim, Heide; Schwentner, Nikolaus] Free Univ Berlin, Inst Expt Phys, D-14195 Berlin, Germany. [Guehr, Markus] Stanford Univ, Stanford PULSE Ctr, Stanford, CA 94305 USA. [Guehr, Markus] Stanford Linear Accelerator Ctr, Menlo Pk, CA 94025 USA. RP Ibrahim, H (reprint author), Free Univ Berlin, Inst Expt Phys, Arnimallee 14, D-14195 Berlin, Germany. EM heide.ibrahim@physik.fu-berlin.de; nikolaus.schwentner@physik.fu-berlin.de RI Guehr, Markus/B-7446-2015 OI Guehr, Markus/0000-0002-9111-8981 NR 61 TC 7 Z9 7 U1 0 U2 3 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 EI 1089-7690 J9 J CHEM PHYS JI J. Chem. Phys. PD FEB 14 PY 2008 VL 128 IS 6 AR 064504 DI 10.1063/1.2826341 PG 13 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 263TA UT WOS:000253238200035 PM 18282053 ER PT J AU Kathmann, SM Palmer, BJ Schenter, GK Garrett, BC AF Kathmann, Shawn M. Palmer, Bruce J. Schenter, Gregory K. Garrett, Bruce C. TI Activation energies and potentials of mean force for water cluster evaporation SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID TRANSITION-STATE THEORY; DYNAMICAL NUCLEATION THEORY; MOLECULAR-DYNAMICS; CHEMICAL-REACTIONS; RATE CONSTANTS; KINETICS; PERTURBATION; SENSITIVITY; LIQUID; DIMER AB Activation energies for water cluster evaporation are of interest in many areas of chemical physics. We present the first computation of activation energies for monomer evaporation of small water clusters using the formalism of dynamical nucleation theory (DNT). To this end, individual evaporation rate constants are computed for water clusters (H(2)O)(i), where i=2-10 for temperatures ranging from 243 to 333 K. These calculations employ a parallel sampling technique utilizing a Global Arrays toolkit. The resulting evaporation rate constants for each cluster are then fitted to Arrhenius equations to obtain activation energies. We discuss DNT evaporation rate constants and their relation to potentials of mean force, activation energies, and how to account for nonseparability of the reaction coordinate in the reactant state partition function. (C) 2008 American Institute of Physics. C1 [Kathmann, Shawn M.; Schenter, Gregory K.; Garrett, Bruce C.] Pacific NW Natl Lab, Div Chem & Mat Sci, Richland, WA 99352 USA. [Palmer, Bruce J.] Pacific NW Natl Lab, Comp Sci & Math Div, Richland, WA 99352 USA. RP Kathmann, SM (reprint author), Pacific NW Natl Lab, Div Chem & Mat Sci, Richland, WA 99352 USA. EM shawn.kathmann@pnl.gov RI Garrett, Bruce/F-8516-2011; Schenter, Gregory/I-7655-2014 OI Schenter, Gregory/0000-0001-5444-5484 NR 33 TC 8 Z9 8 U1 2 U2 24 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD FEB 14 PY 2008 VL 128 IS 6 AR 064306 DI 10.1063/1.2837282 PG 8 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 263TA UT WOS:000253238200019 PM 18282037 ER PT J AU McGraw, R Zhang, RY AF McGraw, Robert Zhang, Renyi TI Multivariate analysis of homogeneous nucleation rate measurements. Nucleation in the p-toluic acid/sulfuric acid/water system SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID BINARY NUCLEATION; SULFURIC-ACID; TERNARY NUCLEATION; PARTICLE FORMATION; WATER; MIXTURES; VAPOR; TROPOSPHERE; CLUSTERS; NUCLEUS AB Recent kinetic extensions of the nucleation theorem suggest that the logarithm of the steady-state nucleation rate has strong multilinear dependence on the log concentrations of condensable species present in the vapor phase. A further remarkable result is that the coefficients of this linear dependency provide a direct determination of the molecular content of the critical nucleus itself. Building on these results, the powerful utility of multivariate statistical methods is demonstrated here for physically based parametrization and interpretation of nucleation rate measurements. The new approach is applied to recent measurements by Zhang [Science 304, 1487 (2004)] on the p-toluic acid/sulfuric acid/water ternary vapor system. A linear minimum variance parametrization for nucleation rate dependence on vapor composition, accurate over the range of the measurements, is obtained. Estimates of critical nucleus molecular composition are also presented. These suggest that a single molecule of p-toluic acid present in the critical nucleus is sufficient to trigger a ternary nucleation event. Efforts under way to apply the new methods to analysis of new particle formation in the atmosphere are discussed. (c) 2008 American Institute of Physics. C1 [McGraw, Robert] Brookhaven Natl Lab, Dept Environm Sci, Div Atmospher Sci, Upton, NY 11973 USA. [Zhang, Renyi] Texas A&M Univ, Dept Atmospher Sci, College Stn, TX 77843 USA. RP McGraw, R (reprint author), Brookhaven Natl Lab, Dept Environm Sci, Div Atmospher Sci, Upton, NY 11973 USA. EM rlm@bnl.gov RI Zhang, Renyi/A-2942-2011 NR 30 TC 28 Z9 28 U1 2 U2 16 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD FEB 14 PY 2008 VL 128 IS 6 AR 064508 DI 10.1063/1.2830030 PG 9 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 263TA UT WOS:000253238200039 PM 18282057 ER PT J AU Soullard, J Santamaria, R Jellinek, J AF Soullard, Jacques Santamaria, Ruben Jellinek, Julius TI Pressure and size effects in endohedrally confined hydrogen clusters SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID SOLID MOLECULAR-HYDROGEN; X-RAY-DIFFRACTION; DEUTERIUM CLUSTERS; MEGABAR PRESSURES; SUPERFLUID-HELIUM; METALLIC HYDROGEN; DENSE HYDROGEN; SPECTROSCOPY; TRANSITION; EQUATION AB Density functional theory is used to carry out a systematic study of zero-temperature structural and energy properties of endohedrally confined hydrogen clusters as a function of pressure and the cluster size. At low pressures, the most stable structural forms of (H-2)(n) possess rotational symmetry that changes from C-4 through C-5 to C-6 as the cluster grows in size from n=8 through n=12 to n=15. The equilibrium configurational energy of the clusters increases with an increase of the pressure. The rate of this increase, however, as gauged on the per atom basis is different for different clusters sizes. As a consequence, the size dependencies of the configurational energies per atom at different fixed values of pressure are nonmonotonic functions. At high pressures, the molecular (H-2)(n) clusters gradually become atomic or dominantly atomic. The pressure-induced changes in the HOMO-LUMO gap of the clusters indicate a finite-size analog of the pressure-driven metallization of the bulk hydrogen. The ionization potentials of the clusters decrease with the increase of pressure on them. (c) 2008 American Institute of Physics. C1 [Soullard, Jacques] Univ Nacl Autonoma Mexico, Inst Fis, Dept Estado Solido, Mexico City, DF, Mexico. [Santamaria, Ruben] Univ Nacl Autonoma Mexico, Inst Fis, Dept Fis Teor, Mexico City, DF, Mexico. [Jellinek, Julius] Argonne Natl Lab, Div Chem, Argonne, IL 60439 USA. RP Soullard, J (reprint author), Univ Nacl Autonoma Mexico, Inst Fis, Dept Estado Solido, AP 20-364, Mexico City, DF, Mexico. EM soullard@fisica.unam.mx; rso@fisica.unam.mx; jellinek@anl.gov NR 50 TC 11 Z9 12 U1 0 U2 3 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD FEB 14 PY 2008 VL 128 IS 6 AR 064316 DI 10.1063/1.2827487 PG 7 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 263TA UT WOS:000253238200029 PM 18282047 ER PT J AU Hofstein, J Xu, HF Sears, T Johnson, P AF Hofstein, Jason Xu, Haifeng Sears, Trevor Johnson, Philip TI Fate of excited states in jet-cooled aromatic molecules: Bifurcating pathways and very long lived species from the S-1 excitation of phenylacetylene and benzonitrile SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID ANALYZED THRESHOLD IONIZATION; RESOLVED UV SPECTROSCOPY; RADIATIONLESS TRANSITIONS; 2-COLOR PHOTOIONIZATION; DELAYED IONIZATION; TIME EVOLUTION; PYRAZINE; SPECTRA; ETHYNYLBENZENE; LIFETIMES AB Pump-probe delayed ionization studies on phenylacetylene and benzonitrile in a supersonic beam reveal the production of a low-ionization-potential (similar to 5.7 eV) species lasting more than hundreds of microseconds after excitation to the S I state. Excitation of the molecules was done with a frequency-doubled, Fourier transform-limited, pulse-amplified cw laser, and the rotationally resolved structure of the S-1-S-0 transition ensures that the excited molecules are monomers. Excited-state photoelectron spectroscopy shows that the long-lived species are formed during the light pulse but not by transfer from the fluorescing S, population after the pulse, even though the S, spectral signature is present in the long-lived action spectrum. This behavior differs greatly from that found in benzene and with most commonly held pictures of radiationless transitions in large molecules. C1 [Hofstein, Jason; Xu, Haifeng; Sears, Trevor; Johnson, Philip] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. [Hofstein, Jason] Siena Coll, Dept Chem & Biochem, Loudonville, NY 12211 USA. [Sears, Trevor] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. RP Johnson, P (reprint author), SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. EM Philip.johnson@sunysb.edu RI Sears, Trevor/B-5990-2013 OI Sears, Trevor/0000-0002-5559-0154 NR 39 TC 6 Z9 6 U1 1 U2 11 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD FEB 14 PY 2008 VL 112 IS 6 BP 1195 EP 1201 DI 10.1021/jp077367b PG 7 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 259VB UT WOS:000252967900014 PM 18205337 ER PT J AU Aliaga, C Baker, GA Baldelli, S AF Aliaga, Cesar Baker, Gary A. Baldelli, Steven TI Sum frequency generation studies of ammonium and pyrrolidinium ionic liquids based on the bis-trifluoromethanesulfonimide anion SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID AIR-WATER-INTERFACE; CH STRETCHING MODES; NORMAL-ALKYL CHAINS; VIBRATIONAL SPECTROSCOPY; MOLTEN-SALTS; QUANTITATIVE-ANALYSIS; SURFACE; CATIONS; MONOLAYERS; BIS(TRIFLUOROMETHYLSULFONYL)IMIDE AB A systematic sum frequency generation vibrational spectroscopy study is conducted on the gas-liquid interface of room-temperature ionic liquids. The compounds contain ammonium and pyrrolidinium based cations, to which alkyl substituents of different length and/or functional groups are attached, and they are all combined with the bis-trifluoromethanesulfonimide anion ([imide](-)). The alkyl chain length shows a strong effect on the ordering of the chains at the topmost layer, reaching the maximum order for (C4H9)N+(CH3)(2)(C3H7) and (C6H13)N+C4H8(CH3). There is also evidence of gauche defects for longer alkyl chains, and changes in the spectral features for the shortest ones. The substitution of a carbon atom in the chain by oxygen, and its per-deuteration, provides the means to acquire a more complete description of the surface structure, and an unambiguous assignment of the vibrations detected in the SFG spectra. Finally, a brief comparison between alkylpyrrolidinium, and previously studied alkylimidazolium, cations is also established. C1 [Aliaga, Cesar; Baker, Gary A.; Baldelli, Steven] Univ Houston, Dept Chem, Houston, TX 77204 USA. [Aliaga, Cesar; Baker, Gary A.; Baldelli, Steven] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Baldelli, S (reprint author), Univ Houston, Dept Chem, Houston, TX 77204 USA. RI Baker, Gary/H-9444-2016 OI Baker, Gary/0000-0002-3052-7730 NR 67 TC 29 Z9 29 U1 3 U2 29 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD FEB 14 PY 2008 VL 112 IS 6 BP 1676 EP 1684 DI 10.1021/jp077008g PG 9 WC Chemistry, Physical SC Chemistry GA 259VC UT WOS:000252968000014 PM 18201078 ER PT J AU Payne, CM Zhao, X Vlcek, L Cummings, PT AF Payne, Christina M. Zhao, Xiongce Vlcek, Lukas Cummings, Peter T. TI Molecular dynamics simulation of ss-DNA translocation between copper nanoelectrodes incorporating electrode charge dynamics SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID EMPIRICAL FORCE-FIELD; SOLID-STATE NANOPORE; NUCLEIC-ACIDS; INTERFACE; TRANSPORT; SYSTEM; WATER AB Molecular dynamics simulations have been performed to, study the translocation of single-stranded (ss)-DNA through the nanoscale gap between the nanoscale electrodes of a proposed genomic sequencing device. Using a fixed gap width between the electrodes and a small sample segment of ss-DNA as initial starting points in this project, the effect of applied electric fields on translocation velocity was studied. To describe the electrostatic interactions of the water, ions, and ss-DNA with the nanoscale electrodes, we applied the electrode charge dynamics (ECD) method. Through the density profile and comparison of translocation velocities to extrapolated experimental data, we found the ECD potential to be a better descriptor of the metal/nonmetal electrostatic interactions compared to the commonly used universal force field (UFF). Translocation velocities obtained using the ECD potential were consistent with simulated bulk data. C1 [Payne, Christina M.; Vlcek, Lukas; Cummings, Peter T.] Vanderbilt Univ, Dept Chem Engn, Nashville, TN 37235 USA. [Zhao, Xiongce; Cummings, Peter T.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Payne, CM (reprint author), Vanderbilt Univ, Dept Chem Engn, 221 Kirkland Hall, Nashville, TN 37235 USA. EM christy.payne@gmail.com RI Payne, Christina/C-7338-2011; Cummings, Peter/B-8762-2013; Vlcek, Lukas/N-7090-2013 OI Payne, Christina/0000-0001-5264-0964; Cummings, Peter/0000-0002-9766-2216; Vlcek, Lukas/0000-0003-4782-7702 FU NHGRI NIH HHS [1 R21 HG 003578-01] NR 36 TC 17 Z9 17 U1 1 U2 10 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD FEB 14 PY 2008 VL 112 IS 6 BP 1712 EP 1717 DI 10.1021/jp077483e PG 6 WC Chemistry, Physical SC Chemistry GA 259VC UT WOS:000252968000019 PM 18211061 ER PT J AU Okamoto, NL Reed, BW Mehraeen, S Kulkarni, A Morgan, DG Gates, BC Browning, ND AF Okamoto, Norihiko L. Reed, Bryan W. Mehraeen, Shareghe Kulkarni, Apoorva Morgan, David Gene Gates, Bruce C. Browning, Nigel D. TI Determination of nanocluster sizes from dark-field scanning transmission electron microscopy images SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID CLUSTERS; MGO; SPECTROSCOPY; CARBON; STEM AB A novel method of determining nanocluster sizes and size distributions using high-angle annular dark-field imaging in scanning transmission electron microscopy is described. This method is demonstrated for MgO-supported [Os10C(CO)(24)](2-) clusters formed by treating Os-3(CO)(12) precursors in CO. The image analysis identified the presence of both Os-3(CO)(12) precursors and [Os10C(CO)(24)](2-) clusters in the expected ratio (with the sizes matching those calculated on the basis of their crystallographically determined structures within 6%) and also larger clusters that can be readily identified as combinations of the former clusters. C1 [Okamoto, Norihiko L.; Mehraeen, Shareghe; Kulkarni, Apoorva; Morgan, David Gene; Gates, Bruce C.; Browning, Nigel D.] Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA. [Reed, Bryan W.; Browning, Nigel D.] Lawrence Livermore Natl Lab, Mat Sci & Technol Div, Livermore, CA 94550 USA. RP Okamoto, NL (reprint author), Univ Calif Davis, Dept Chem Engn & Mat Sci, 1 Shields Ave, Davis, CA 95616 USA. EM nlokamoto@ucdavis.edu RI Okamoto, Norihiko/A-7345-2010; Reed, Bryan/C-6442-2013 OI Okamoto, Norihiko/0000-0003-0199-7271; NR 19 TC 16 Z9 16 U1 0 U2 5 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD FEB 14 PY 2008 VL 112 IS 6 BP 1759 EP 1763 DI 10.1021/jp710959x PG 5 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 259VD UT WOS:000252968100008 ER PT J AU Shiraishi, Y Robinson, D Ge, YB Head, JA AF Shiraishi, Yukihide Robinson, David Ge, Yingbin Head, John A. TI Low-energy structures of ligand passivated si nanoclusters: Theoretical investigation of Si2L4 and Si10L16 (L = H, CH3, OH, and F) SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID MOLECULAR-ORBITAL METHODS; ELECTRONIC-STRUCTURE; GLOBAL OPTIMIZATION; POROUS SILICON; THERMOCHEMISTRY; NANOCRYSTALS; CLUSTERS AB The influence of the ligands H, CH3, OH, and F on the preferred geometric structure of passivated silicon tranoclusters was investigated by ab initio density functional calculations. Si10L16 has enough ligands to allow the silicon core to form the bulk Si like structure often anticipated to be present in silicon nanoparticles. Our calculations confirm that H and CH3 ligands do favor being uniformly spread over the Si core to form the expected passivated nanoparticle structures. However, we find the more electronegative F or OH ligands to more strongly favor forming SiL3 groups thereby causing the bulk Si like analog to be appreciably higher in energy. Similar structural trends were also found when comparing the relative energies of L2SiSiL2 against LSiSiL3 with the same series of ligands L. The calculations suggest that to theoretically understand the properties, such as the bright photoluminescence, of passivated Si nanoclusters is going to require a model which takes into account the appropriate structural features of the particle. C1 [Head, John A.] Univ Hawaii, Dept Chem, Honolulu, HI 96822 USA. [Shiraishi, Yukihide] Tokyo Univ Sci, Dept Mat Sci & Environm Engn, Yamaguchi 7560884, Japan. [Robinson, David] Univ Tulsa, Dept Chem, Oklahoma City, OK 74014 USA. [Ge, Yingbin] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. RP Head, JA (reprint author), Univ Hawaii, Dept Chem, Honolulu, HI 96822 USA. EM johnh@hawaii.edu NR 19 TC 1 Z9 1 U1 1 U2 5 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD FEB 14 PY 2008 VL 112 IS 6 BP 1819 EP 1824 DI 10.1021/jp076905h PG 6 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 259VD UT WOS:000252968100016 ER PT J AU Elam, JW Baker, DA Martinson, ABF Pellin, MJ Hupp, JT AF Elam, Jeffrey W. Baker, David A. Martinson, Alex B. F. Pellin, Michael J. Hupp, Joseph T. TI Atomic layer deposition of indium tin oxide thin films using nonhalogenated precursors SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID QUARTZ-CRYSTAL MICROBALANCE; ELECTRICAL-PROPERTIES; GROWTH; EPITAXY AB This article describes a new atomic layer deposition (ALD) method for preparing indium tin oxide (ITO) thin films using nonlialogenated precursors. The indium oxide (In2O3) was deposited using alternating exposures to cyclopentadienyl indium (InCp) and ozone, and the tin oxide (SnO2) used alternating exposures to tetrakis(dimethylamino) tin (TDMASn) and hydrogen peroxide. By adjusting the relative number of In2O3 and SnO2 ALD cycles, we deposited ITO films with well-controlled SnO2 content. The ITO films were examined using four-point probe and Hall probe measurements, spectrophotometry, ellipsometry, scanning electron microscopy, atomic force microscopy, X-ray fluorescence, and X-ray diffraction. The lowest resistivity Q x 10(-4) Omega cm) and highest optical transparency (92%) were obtained for films containing 5% Sn02. The ITO films were slightly thinner and contained more SnO2 than expected on the basis of rule-of-mixtures predictions. In situ measurements revealed that these discrepancies result from an inhibition of the In2O3 growth following the SnO2 doping layers. This new ALD method is suitable for applying, ITO layers on very high aspect ratio nanoporous membranes to be used in photovoltaic or spectroelectrochemical applications. C1 [Elam, Jeffrey W.; Baker, David A.; Martinson, Alex B. F.; Pellin, Michael J.] Argonne Natl Lab, Div Energy Syst, Argonne, IL 60439 USA. [Martinson, Alex B. F.; Hupp, Joseph T.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. RP Elam, JW (reprint author), Argonne Natl Lab, Div Energy Syst, 9700 S Cass Ave, Argonne, IL 60439 USA. EM jelam@anl.gov RI Pellin, Michael/B-5897-2008; Hupp, Joseph/K-8844-2012; OI Pellin, Michael/0000-0002-8149-9768; Hupp, Joseph/0000-0003-3982-9812; Martinson, Alex/0000-0003-3916-1672 NR 24 TC 56 Z9 57 U1 6 U2 66 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD FEB 14 PY 2008 VL 112 IS 6 BP 1938 EP 1945 DI 10.1021/jp7097312 PG 8 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 259VD UT WOS:000252968100036 ER PT J AU Selvan, ME Liu, J Keffer, DJ Cui, S Edwards, BJ Steele, WV AF Selvan, Myvizhi Esai Liu, Junwu Keffer, David J. Cui, Shengting Edwards, Brian J. Steele, William V. TI Molecular dynamics study of structure and transport of water and hydronium ions at the membrane/vapor interface of Nafion SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID POLYMER ELECTROLYTE MEMBRANES; STATISTICAL-MECHANICAL MODEL; PERFLUOROSULFONIC ACID MEMBRANES; PROTON-EXCHANGE MEMBRANE; DIFFUSION-COEFFICIENTS; FUEL-CELL; VIBRATIONAL SPECTROSCOPY; MATHEMATICAL-MODEL; HYDRATED PROTON; SIMULATIONS AB Through the use of molecular dynamics simulation, we examine the structural and transport properties of water and hydronium ions at the interface of a Nafion polymer electrolyte membrane and a vapor phase. The effect of humidity was studied by examining water contents of 5%, 10%, 15%, and 20% by weight. We observe a region of water depletion in the membrane near the vapor interface. We report the vehicular diffusion of hydronium ions and water as components parallel and perpendicular to the interface. In the interfacial region, for hydronium ions, we find that the component of the vehicular diffusivity parallel to the interface is largely unchanged from that in the bulk hydrated membrane, but the component perpendicular to the interface has increased, due to local decrease in density. We find similar behavior with water in the interfacial region. On the basis of these diffusivities, we conclude that there is no observable additional resistance to mass transport of the vehicular component of water and hydronium ions due to the interface. In terms of structure at the interface, we find that there is a decrease in the fraction of fully hydrated hydronium ions. This translates into a lower probability of forming Eigen ions, which are necessary for structural diffusion. Finally, we observe that the hydronium ions display a preferential orientation at the interface with their oxygen atoms exposed to the vapor phase. C1 [Selvan, Myvizhi Esai; Liu, Junwu; Keffer, David J.; Cui, Shengting; Edwards, Brian J.; Steele, William V.] Univ Tennessee, Chem & Biomol Engn Dept, Knoxville, TN 37996 USA. [Steele, William V.] Oak Ridge Natl Lab, Nucl Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Keffer, DJ (reprint author), Univ Tennessee, Chem & Biomol Engn Dept, 327 Dougherty Engn Bldg,1512 Middle Dr, Knoxville, TN 37996 USA. EM dkeffer@utk.edu RI Keffer, David/C-5133-2014; OI Keffer, David/0000-0002-6246-0286; Edwards, Brian/0000-0002-2378-5627 NR 53 TC 26 Z9 26 U1 0 U2 23 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD FEB 14 PY 2008 VL 112 IS 6 BP 1975 EP 1984 DI 10.1021/jp075611t PG 10 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 259VD UT WOS:000252968100041 ER PT J AU Liu, JW Selvan, ME Cui, S Edwards, BJ Keffer, DJ Steele, WV AF Liu, Junwu Selvan, Myvizhi Esai Cui, Shengting Edwards, Brian J. Keffer, David J. Steele, William V. TI Molecular-level Modeling of the structure and wetting of Electrode/Electrolyte interfaces in hydrogen fuel cells SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID PERFLUORINATED IONOMER MEMBRANES; X-RAY-SCATTERING; POLYMER ELECTROLYTE MEMBRANES; ION-EXCHANGE MEMBRANES; PERFLUOROSULFONIC ACID MEMBRANE; STATISTICAL-MECHANICAL MODEL; DYNAMICS SIMULATIONS; NAFION MEMBRANES; CATALYST LAYER; WATER AB Molecular dynamics (MD) simulations were performed to investigate the structural and dynamical behavior of water and hydronium ions at the electrode/electrolyte interface of hydrogen polymer electrolyte membrane (PEM) fuel cells. Specifically, we have studied the hydrated Nafion membrane, humidified for four different water contents, 5, 10, 15, and 20%, at 300 K. We analyzed the three-phase interface where the hydrated PEM is in contact with the vapor phase and with either the catalyst surface (platinum in this paper) or the catalyst(-)support surface (graphite in this paper). These molecular simulations represent portions of interfaces that exist within the PEM fuel cells. We observed significant wetting of the catalyst surface by a mixture of polymer, water, and hydronium ions but not beyond a monolayer. We observed virtually no wetting of the graphite surface. On the catalyst surface, the degree of wetting of the catalyst surface depends strongly on the level of membrane humidity. The pair correlation functions indicate that the water molecules adsorbed in a monolayer on the catalyst surface form small domains of ordered structures, which are bound by fragments of Nafion on the surface. The diffusion of protons from the catalyst surface into the membrane must proceed across this highly inhomogeneous surface. C1 [Liu, Junwu; Selvan, Myvizhi Esai; Cui, Shengting; Edwards, Brian J.; Keffer, David J.; Steele, William V.] Univ Tennessee, Dept Chem & Biomol Engn, Knoxville, TN 37996 USA. [Steele, William V.] Oak Ridge Natl Lab, Nucl Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Keffer, DJ (reprint author), Univ Tennessee, Dept Chem & Biomol Engn, Knoxville, TN 37996 USA. EM dkeffer@utk.edu RI Keffer, David/C-5133-2014; OI Keffer, David/0000-0002-6246-0286; Edwards, Brian/0000-0002-2378-5627 NR 71 TC 31 Z9 31 U1 0 U2 33 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD FEB 14 PY 2008 VL 112 IS 6 BP 1985 EP 1993 DI 10.1021/jp0756121 PG 9 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 259VD UT WOS:000252968100042 ER PT J AU Wen, W Calderon, JE Brito, JL Marinkovic, N Hanson, JC Rodriguez, JA AF Wen, Wen Calderon, Jean E. Brito, Joaquin L. Marinkovic, Nebojsa Hanson, Jonathan C. Rodriguez, Jose A. TI In situ time-resolved characterization of Ni-MoO2 catalysts for the water-gas shift reaction SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID RAY-ABSORPTION SPECTROSCOPY; OXIDATIVE DEHYDROGENATION; PHASE-TRANSFORMATIONS; ELECTRONIC-PROPERTIES; CARBON-MONOXIDE; METAL OXIDES; O-VACANCIES; NIMOO4; XANES; CERIA AB Active catalysts for the water-gas shift (WGS, CO + H2O -> H-2 + CO2) reaction were synthesized from nickel molybdates (beta-NiMoO4 and nH(2)O-NiMoO4) as precursors, and their structural transformations were monitored using in situ time-resolved X-ray diffraction and X-ray absorption near-edge spectroscopy. In general, the nickel molybdat s were not stable and underwent partial reduction in the presence of CO or CO/H2O mixtures at high temperatures. The interaction of beta-NiMoO4 with the WGS reactants at 500 degrees C led to the formation of a mixture of Ni (similar to 24 nm particle size) and MoO2 (similar to 10 nm particle size). These Ni-MoO2 systems displayed good catalytic activity at 350, 400, and 500 degrees C. At 350 and 400 degrees C, catalytic tests revealed that the Ni-MoO2 system was much more active than isolated Ni (some activity) or isolated MoO2 (negligible activity). Thus, cooperative interactions between the admetal and oxide support were probably responsible for the high WGS activity of Ni-MoO2. In a second synthetic approach, the NiMoO4 hydrate was reduced to a mixture of metallic Ni, NiO, and amorphous molybdenum oxide by direct reaction with H-2 gas at 350 degrees C. In the first pass of the water-gas shift reaction, MoO2 appeared gradually at 500 degrees C with a concurrent increase of the catalytic activity. For these catalysts, the particle size of Ni (similar to 4 nm) was much smaller than that of the MoO2 (similar to 13 nm). These systems were found to be much more active WGS catalysts than Cu-MoO2, which in turn is superior to commercial low-temperature Cu-ZnO catalysts. C1 [Wen, Wen; Hanson, Jonathan C.; Rodriguez, Jose A.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. [Calderon, Jean E.] Univ Puerto Rico, Dept Chem, Cayey, PR 00736 USA. [Brito, Joaquin L.] Inst Venezolano Invest Cient, Ctr Quim, Caracas 1010A, Venezuela. [Marinkovic, Nebojsa] Univ Delaware, Dept Chem Engn, Newark, DE 19716 USA. RP Rodriguez, JA (reprint author), Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. EM rodrigez@bnl.gov RI Brito, Joaquin/F-4974-2010; Hanson, jonathan/E-3517-2010; Marinkovic, Nebojsa/A-1137-2016 OI Marinkovic, Nebojsa/0000-0003-3579-3453 NR 55 TC 14 Z9 15 U1 2 U2 20 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD FEB 14 PY 2008 VL 112 IS 6 BP 2121 EP 2128 DI 10.1021/jp709771c PG 8 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 259VD UT WOS:000252968100062 ER PT J AU Chen, ZH Wang, HH Vissers, DR Zhang, LZ West, R Lyons, LJ Amine, K AF Chen, Zonghai Wang, H. H. Vissers, D. R. Zhang, Lingzhi West, R. Lyons, L. J. Amine, K. TI Kinetic investigation of the solvation of lithium salts in siloxanes SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID PC-EC SOLUTIONS; ION BATTERIES; CONDUCTIVITY; VISCOSITY; DEC; ELECTROLYTE; CARBONATES; CATHODE; LIBOB AB The solvation of lithium salts in siloxanes was investigated with the aim to understand the key barriers that limit the ionic conductivity of siloxane-based electrolytes. The conductivity and kinetic data were measured for electrolytes with different salts, different salt concentrations, and solvents. The results show that both the conductivity and the kinetics of ionic transportation were greatly impacted by the specific interactions between ions and the solvent molecules. The high content of ion pairs in the electrolytes can be one of the main reasons for the low ionic conductivity observed in the siloxane-based electrolytes. C1 [Chen, Zonghai; Wang, H. H.; Vissers, D. R.; Amine, K.] Argonne Natl Lab, Argonne, IL 60439 USA. [Zhang, Lingzhi; West, R.] Univ Wisconsin, Organosilicon Res Ctr, Madison, WI 53706 USA. [Lyons, L. J.] Grinnell Coll, Dept Chem, Grinnell, IA 50112 USA. RP Amine, K (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM amine@cmt.anl.gov RI Chen, Zonghai/K-8745-2013; Amine, Khalil/K-9344-2013 NR 14 TC 21 Z9 21 U1 0 U2 14 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD FEB 14 PY 2008 VL 112 IS 6 BP 2210 EP 2214 DI 10.1021/jp076744h PG 5 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 259VD UT WOS:000252968100073 ER PT J AU King, N Westbrook, MJ Young, SL Kuo, A Abedin, M Chapman, J Fairclough, S Hellsten, U Isogai, Y Letunic, I Marr, M Pincus, D Putnam, N Rokas, A Wright, KJ Zuzow, R Dirks, W Good, M Goodstein, D Lemons, D Li, WQ Lyons, JB Morris, A Nichols, S Richter, DJ Salamov, A Bork, P Lim, WA Manning, G Miller, WT McGinnis, W Shapiro, H Tjian, R Grigoriev, IV Rokhsar, D AF King, Nicole Westbrook, M. Jody Young, Susan L. Kuo, Alan Abedin, Monika Chapman, Jarrod Fairclough, Stephen Hellsten, Uffe Isogai, Yoh Letunic, Ivica Marr, Michael Pincus, David Putnam, Nicholas Rokas, Antonis Wright, Kevin J. Zuzow, Richard Dirks, William Good, Matthew Goodstein, David Lemons, Derek Li, Wanqing Lyons, Jessica B. Morris, Andrea Nichols, Scott Richter, Daniel J. Salamov, Asaf Bork, Peer Lim, Wendell A. Manning, Gerard Miller, W. Todd McGinnis, William Shapiro, Harris Tjian, Robert Grigoriev, Igor V. Rokhsar, Daniel CA JGI Sequencing TI The genome of the choanoflagellate Monosiga brevicollis and the origin of metazoans SO NATURE LA English DT Article ID ANIMAL EVOLUTION; UNICELLULAR RELATIVES; EXTRACELLULAR-MATRIX; CELL-ADHESION; INSIGHTS; PROTEINS; GENES; CONSERVATION; ARCHITECTURE; EUKARYOTES AB Choanoflagellates are the closest known relatives of metazoans. To discover potential molecular mechanisms underlying the evolution of metazoan multicellularity, we sequenced and analysed the genome of the unicellular choanoflagellate Monosiga brevicollis. The genome contains approximately 9,200 intron- rich genes, including a number that encode cell adhesion and signalling protein domains that are otherwise restricted to metazoans. Here we show that the physical linkages among protein domains often differ between M. brevicollis and metazoans, suggesting that abundant domain shuffling followed the separation of the choanoflagellate and metazoan lineages. The completion of the M. brevicollis genome allows us to reconstruct with increasing resolution the genomic changes that accompanied the origin of metazoans. C1 [King, Nicole; Westbrook, M. Jody; Young, Susan L.; Abedin, Monika; Chapman, Jarrod; Fairclough, Stephen; Isogai, Yoh; Putnam, Nicholas; Wright, Kevin J.; Zuzow, Richard; Dirks, William; Goodstein, David; Lyons, Jessica B.; Nichols, Scott; Richter, Daniel J.; Tjian, Robert; Rokhsar, Daniel] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [King, Nicole; Westbrook, M. Jody; Young, Susan L.; Abedin, Monika; Chapman, Jarrod; Fairclough, Stephen; Isogai, Yoh; Putnam, Nicholas; Wright, Kevin J.; Zuzow, Richard; Dirks, William; Goodstein, David; Lyons, Jessica B.; Nichols, Scott; Richter, Daniel J.; Tjian, Robert; Rokhsar, Daniel] Univ Calif Berkeley, Ctr Integrat Genom, Berkeley, CA 94720 USA. [King, Nicole] Univ Calif Berkeley, Dept Integrat Biol, Berkeley, CA 94720 USA. [Kuo, Alan; Hellsten, Uffe; Salamov, Asaf; Shapiro, Harris; Grigoriev, Igor V.; Rokhsar, Daniel; JGI Sequencing] Dept Energy Joint Genome Inst, Walnut Creek, CA 94598 USA. [Letunic, Ivica; Bork, Peer] European Mol Biol Lab, D-69012 Heidelberg, Germany. [Marr, Michael] Brandeis Univ, Dept Biol, Waltham, MA 02454 USA. [Pincus, David; Good, Matthew; Lim, Wendell A.] Univ Calif San Francisco, Dept Cellular & Mol Pharmacol, San Francisco, CA 94158 USA. [Rokas, Antonis] Vanderbilt Univ, Dept Biol Sci, Nashville, TN 37235 USA. [Lemons, Derek; McGinnis, William] Univ Calif San Diego, Div Biol Sci, La Jolla, CA 92093 USA. [Li, Wanqing; Miller, W. Todd] SUNY Stony Brook, Dept Physiol & Biophys, Stony Brook, NY 11794 USA. [Morris, Andrea] Univ Michigan, Dept Cellular & Mol Biol, Ann Arbor, MI 48109 USA. [Manning, Gerard] Salk Inst Biol Studies, Razavi Newman Bioinformat Ctr, La Jolla, CA 92037 USA. RP King, N (reprint author), Univ Calif Berkeley, Dept Mol & Cell Biol, 229 Stanley Hall, Berkeley, CA 94720 USA. EM nking@berkeley.edu; dsrokhsar@lbl.gov RI Putnam, Nicholas/B-9968-2008; Letunic, Ivica/A-6032-2009; Bork, Peer/F-1813-2013; Rokas, Antonis/A-9775-2008; OI Putnam, Nicholas/0000-0002-1315-782X; Bork, Peer/0000-0002-2627-833X; Rokas, Antonis/0000-0002-7248-6551; Lyons, Jessica/0000-0002-3886-2146; Manning, Gerard/0000-0002-5087-9151; Letunic, Ivica/0000-0003-3560-4288 FU NCI NIH HHS [R01 CA058530-14, R01 CA058530]; NHGRI NIH HHS [R01 HG004164, R01 HG004164-01]; NICHD NIH HHS [R37 HD028315]; NIGMS NIH HHS [R01 GM077197] NR 50 TC 558 Z9 609 U1 9 U2 86 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 J9 NATURE JI Nature PD FEB 14 PY 2008 VL 451 IS 7180 BP 783 EP 788 DI 10.1038/nature06617 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 263BA UT WOS:000253191400033 PM 18273011 ER PT J AU Desai, AR Noormets, A Bolstad, PV Chen, JQ Cook, BD Davis, KJ Euskirchen, ES Gough, CM Martin, JG Ricciuto, DM Schmid, HP Tang, JW Wang, WG AF Desai, Ankur R. Noormets, Asko Bolstad, Paul V. Chen, Jiquan Cook, Bruce D. Davis, Kenneth J. Euskirchen, Eugenie S. Gough, Christopher M. Martin, Jonathan G. Ricciuto, Daniel M. Schmid, Hans Peter Tang, Jianwu Wang, Weiguo TI Influence of vegetation and seasonal forcing on carbon dioxide fluxes across the Upper Midwest, USA: Implications for regional scaling SO AGRICULTURAL AND FOREST METEOROLOGY LA English DT Article DE carbon cycle; eddy covariance; managed and natural ecosystems; regional upscaling ID GREAT-LAKES REGION; ECOSYSTEM-ATMOSPHERE EXCHANGE; NORTHERN WISCONSIN FOREST; SOUTHERN BOREAL FORESTS; NET PRIMARY PRODUCTION; TALL TOWER; HARDWOOD FOREST; WATER-VAPOR; EUROPEAN SETTLEMENT; MANAGED LANDSCAPE AB Carbon dioxide fluxes were examined over the growing seasons of 2002 and 2003 from 14 different sites in Upper Midwest (USA) to assess spatial variability of ecosystem-atmosphere CO2 exchange. These sites were exposed to similar temperature/precipitation regimes and spanned a range of vegetation types typical of the region (northern hardwood, mixed forest, red pine, jack pine, pine barrens and shrub wetland). The hardwood and red pine sites also spanned a range of stand ages (young, intermediate, mature). While seasonal changes in net ecosystem exchange (NEE) and photosynthetic parameters were coherent across the 2 years at most sites, changes in ecosystem respiration (ER) and gross ecosystem production (GEP) were not. Canopy height and vegetation type were important variables for explaining spatial variability of CO2 fluxes across the region. Light-use efficiency (LUE) was not as strongly correlated to GEP as maximum assimilation capacity (Amax). A bottom-up multi-tower land cover aggregated scaling of CO2 flux to a 2000 km(2) regional flux estimate found June to August 2003 NEE, ER and GEP to be -290 +/- 89, 408 +/- 48, and 698 +/- 73 gC m(-2), respectively. Aggregated NEE, ER and GEP were 280% larger, 32% smaller and 3% larger, respectively, than that observed from a regionally integrating 447 m tall flux tower. However, when the tall tower fluxes were decomposed using a footprint-weighted influence function and then re-aggregated to a regional estimate, the resulting NEE, ER and GEP were within 11% of the multi-tower aggregation. Excluding wetland and young stand age sites from the aggregation worsened the comparison to observed fluxes. These results provide insight on the range of spatial sampling, replication, measurement error and land cover accuracy needed for multi-tiered bottom-up scaling of CO2 fluxes in heterogeneous regions such as the Upper Midwest, USA. (C) 2007 Elsevier B.V. All rights reserved. C1 [Desai, Ankur R.] Univ Wisconsin, Atmospher & Ocean Sci Dept, Madison, WI 53706 USA. [Noormets, Asko] N Carolina State Univ, Dept Forestry & Environm Resources, Raleigh, NC 27695 USA. [Bolstad, Paul V.; Cook, Bruce D.] Univ Minnesota, Dept Forest Resources, St Paul, MN 55108 USA. [Chen, Jiquan] Univ Toledo, Dept Environm Sci, Toledo, OH 43606 USA. [Davis, Kenneth J.] Penn State Univ, Dept Meteorol, University Pk, PA 16802 USA. [Euskirchen, Eugenie S.] Univ Alaska, Fairbanks Inst Arct Biol, Fairbanks, AK 99701 USA. [Gough, Christopher M.] Ohio State Univ, Dept Evolut Ecol & Organism Biol, Columbus, OH 43210 USA. [Martin, Jonathan G.] Oregon State Univ, Dept Forest Sci, Corvallis, OR 97331 USA. [Ricciuto, Daniel M.] Oak Ridge Natl Lab, Oak Ridge, TN USA. [Schmid, Hans Peter] Indiana Univ, Dept Geog, Bloomington, IN 47405 USA. [Tang, Jianwu] Chicago Bot Garden, Glencoe, IL USA. [Wang, Weiguo] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Desai, AR (reprint author), Univ Wisconsin, Atmospher & Ocean Sci Dept, AOSS 1549,1225 W Dayton St, Madison, WI 53706 USA. EM desai@aos.wisc.edu RI Noormets, Asko/A-7257-2009; Chen, Jiquan/D-1955-2009; Martin, Jonathan/G-4558-2010; Schmid, Hans Peter/I-1224-2012; Wang, Weiguo/B-4948-2009; Cook, Bruce/M-4828-2013; Tang, Jianwu/K-6798-2014; Desai, Ankur/A-5899-2008; Ricciuto, Daniel/I-3659-2016 OI Noormets, Asko/0000-0003-2221-2111; Schmid, Hans Peter/0000-0001-9076-4466; Cook, Bruce/0000-0002-8528-000X; Tang, Jianwu/0000-0003-2498-9012; Desai, Ankur/0000-0002-5226-6041; Ricciuto, Daniel/0000-0002-3668-3021 NR 95 TC 62 Z9 66 U1 4 U2 34 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-1923 EI 1873-2240 J9 AGR FOREST METEOROL JI Agric. For. Meteorol. PD FEB 13 PY 2008 VL 148 IS 2 BP 288 EP 308 DI 10.1016/j.agrformet.2007.08.001 PG 21 WC Agronomy; Forestry; Meteorology & Atmospheric Sciences SC Agriculture; Forestry; Meteorology & Atmospheric Sciences GA 274TB UT WOS:000254022900011 ER PT J AU Ricciuto, DM Butler, MP Davis, KJ Cook, BD Bakwin, PS Andrews, A Teclaw, RM AF Ricciuto, Daniel M. Butler, Martha P. Davis, Kenneth J. Cook, Bruce D. Bakwin, Peter S. Andrews, Arlyn Teclaw, Ronald M. TI Causes of interannual variability in ecosystem-atmosphere CO2 exchange in a northern Wisconsin forest using a Bayesian model calibration SO AGRICULTURAL AND FOREST METEOROLOGY LA English DT Article DE carbon cycle; eddy covariance; respiration; ecosystems, managed and natural ID CARBON-DIOXIDE FLUXES; MIXED HARDWOOD FOREST; SOIL-WATER CONTENT; EDDY COVARIANCE; TALL TOWER; LONG-TERM; DECIDUOUS FOREST; CLIMATE-CHANGE; SPATIAL VARIABILITY; NET PRIMARY AB Variability in fluxes of CO2 observed at the WLEF tall tower in northern Wisconsin was analyzed for the years 1997-2004. During this time, the WLEF region was a source of CO2 to the atmosphere averaging 120 g C m(-2) year(-1), with a range of interannual variability of 140 g C m(-2) year(-1). Random uncertainty in annual sums of net ecosystem exchange (NEE) due to turbulent variability and gap-filling was estimated to be 15-20 g C m(-2) year(-1). Although magnitudes of NEE sums were affected systematically by the choice of friction velocity (u*) threshold, this choice had little effect on interannual variability of annual sums. The WLEF region was, on average, a source of carbon from 1997 to 2004 regardless of the u* threshold applied. Interannually, daytime NEE sums varied more than nighttime NEE sums, and spring and summer NEE sums varied more than autumn and winter NEE sums. Interannual variations in seasonal sums of daytime, nighttime and total NEE were often strongly correlated with changes in soil moisture and soil temperature. Standard nonlinear gap-filling regression models of respiration and gross ecosystem productivity were extended to incorporate the effects of soil moisture and phenology and combined into a single model of NEE. The Markov Chain Monte Carlo (MCMC) data assimilation technique was performed using observed WLEF NEE to derive full probability density functions (PDFs) of time-invariant model parameters. Prior values had little effect on posterior parameter PDFs, but significant differences in parameter PDFs occurred depending on whether daytime NEE, nighttime NEE, or total NEE data were used. This simple model was moderately successful in producing statistically significant correlations with interannual variations in annual and growing season NEE sums, but was generally unsuccessful in spring and autumn. In all cases, the model underestimated the degree of variability in NEE sums. (C) 2007 Elsevier B.V. All rights reserved. C1 [Ricciuto, Daniel M.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. [Butler, Martha P.; Davis, Kenneth J.] Penn State Univ, Dept Meteorol, University Pk, PA 16802 USA. [Cook, Bruce D.] Univ Minnesota, Dept Forest Resources, St Paul, MN 55108 USA. [Bakwin, Peter S.; Andrews, Arlyn] Natl Ocean & Atmospher Adm, Earth Syst Res Lab, Global Monitoring Div, Boulder, CO 80305 USA. [Teclaw, Ronald M.] US Forest Serv, Forest Sci Lab, Rhinelander, WI 54501 USA. RP Ricciuto, DM (reprint author), Oak Ridge Natl Lab, Div Environm Sci, POB 2008,MS 6335, Oak Ridge, TN 37831 USA. EM ricciutodm@ornl.gov RI Andrews, Arlyn/K-3427-2012; Cook, Bruce/M-4828-2013; Ricciuto, Daniel/I-3659-2016 OI Cook, Bruce/0000-0002-8528-000X; Ricciuto, Daniel/0000-0002-3668-3021 NR 69 TC 33 Z9 33 U1 1 U2 22 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-1923 J9 AGR FOREST METEOROL JI Agric. For. Meteorol. PD FEB 13 PY 2008 VL 148 IS 2 BP 309 EP 327 DI 10.1016/j.agrformet.2007.08.007 PG 19 WC Agronomy; Forestry; Meteorology & Atmospheric Sciences SC Agriculture; Forestry; Meteorology & Atmospheric Sciences GA 274TB UT WOS:000254022900012 ER PT J AU Leung, K AF Leung, Kevin TI Ion-dipole interactions are asymptotically unscreened by water in dipolar nanopores, yielding patterned ion distributions SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID TRANSPORT; MEMBRANE; PERMEATION; CHANNELS; DYNAMICS; BARRIERS AB The permeation, rejection, and transport of electrolytes in water-filled nanopores are critical to ion current gating and desalinalion processes in synthetic porous membranes and the functions of biological ion channels. Mile the effects of confinement pore polarizability, and discrete channel charge sites have been much studied, the potentially dramatic impact of dipole-lined synthetic pores on electrolytes has seldom been addressed. Dipole layers naturally occur on the interior surfaces of certain nanopores, leading to intrinsic preference for cations or anions. This preference can be exploited when the membrane surface is functionalized differently from the pore interior or when there are alternating dipolar/nondipolar stretches inside a long pore. The dipole-ion interaction is asymptotically unscreened by water, leading to ionic, charge segregated, insulating behavior that can block ion transport, and potentially novel current-voltage (I-V) characteristics. C1 Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Leung, K (reprint author), Sandia Natl Labs, MS 1415, Albuquerque, NM 87185 USA. NR 19 TC 7 Z9 7 U1 1 U2 9 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD FEB 13 PY 2008 VL 130 IS 6 BP 1808 EP + DI 10.1021/ja076229xS0002-7863(07)06229-4 PG 3 WC Chemistry, Multidisciplinary SC Chemistry GA 261SL UT WOS:000253100200006 PM 18201086 ER PT J AU Zeng, W Barabanschikov, A Zhang, Y Zhao, J Sturhahn, W Alp, EE Sage, JT AF Zeng, Weiqiao Barabanschikov, Alexander Zhang, Yunbin Zhao, Jiyong Sturhahn, Wolfgang Alp, E. Ercan Sage, J. Timothy TI Synchrotron-derived vibrational data confirm unprotonated oxo ligand in myoglobin compound II SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID RESONANCE RAMAN-SPECTROSCOPY; HORSERADISH-PEROXIDASE; HIGH-RESOLUTION; CYTOCHROME-P450; OXOIRON(IV); ABSORPTION; OXYGENASES; CHEMISTRY; DYNAMICS; DENSITY AB Recent structural investigations have generated uncertainty regarding the protonation state of the exogenous oxo ligand in ferryl derivatives of several heme proteins. We used nuclear resonance vibrational spectroscopy (NRVS) to reveal the complete spectrum of Fe-ligand modes for compound II of myoglobin. Comparison with vibrational DFT predictions allows us to identify vibrations involving FeO tilting, coupled with stretching of the Fe-N bonds to the heme, and stretching of the proximal Fe-His bond, in addition to the previously observed Fe-O stretching vibration. Additional calculations, coupled with measurements on the hydroxyl derivative of metmyoglobin, reveal vibrational signatures for the putative protonated ferryl species. These include a 33 cirri splitting of the FeO tilling modes due to the asymmetrically placed proton, as well as a 250 cm(-1) decrease of the Fe-O stretching frequency. The vibrational data suggest a fully deprotonated oxo ligand in compound II. C1 [Zeng, Weiqiao; Barabanschikov, Alexander; Zhang, Yunbin; Sage, J. Timothy] Northeastern Univ, Dept Phys, Boston, MA 02115 USA. [Zeng, Weiqiao; Barabanschikov, Alexander; Zhang, Yunbin; Zhao, Jiyong; Sage, J. Timothy] Northeastern Univ, Ctr Interdisciplinary Res Complex Syst, Boston, MA 02115 USA. [Zhao, Jiyong; Sturhahn, Wolfgang; Alp, E. Ercan] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Sage, JT (reprint author), Northeastern Univ, Dept Phys, Boston, MA 02115 USA. EM jtsage@neu.edu RI Zeng, Weiqiao/F-7628-2013; Barabanschikov, Alexander/L-3048-2013 OI Zeng, Weiqiao/0000-0002-0577-932X; NR 24 TC 19 Z9 19 U1 0 U2 10 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD FEB 13 PY 2008 VL 130 IS 6 BP 1816 EP + DI 10.1021/ja077823+ PG 3 WC Chemistry, Multidisciplinary SC Chemistry GA 261SL UT WOS:000253100200010 PM 18201090 ER PT J AU Stiles, RL Balasubramanian, R Feldberg, SW Murray, RW AF Stiles, Rebecca L. Balasubramanian, Ramjee Feldberg, Stephen W. Murray, Royce W. TI Anion-induced adsorption of ferrocenated nanoparticles SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID CHEMICALLY-MODIFIED ELECTRODES; PROTECTED GOLD CLUSTERS; LINEAR POTENTIAL SWEEP; QUARTZ-CRYSTAL MICROBALANCE; SELF-ASSEMBLED MONOLAYERS; TRANSFER RATE CONSTANTS; POLYMER-FILMS; DOUBLE-LAYER; PLATINUM-ELECTRODES; CYCLIC VOLTAMMETRY AB Au nanoparticles fully coated with to-ferrocenyl hexanethiolate ligands, with average composition Au-225(omega-ferrocenyl hexanethiolate)(43), exhibit a unique combination of adsorption properties on Pt electrodes. The adsorbed layer is so robust that electrodes bearing submonolayer, monolayer, and multilayer quantities of these nanoparticles can be transferred to fresh electrolyte solutions and there exhibit stable ferrocene voltammetry over long periods of time. The kinetics of forming the robustly adsorbed layer are slow; monolayer and submonolayer deposition can be described by a rate law that is first order in nanoparticle concentration and in available electrode surface. The adsorption mechanism is proposed to involve entropically enhanced (multiple) ion-pair bridges between oxidized (ferrocenium) sites and certain specifically adsorbed electrolyte anions on the electrode. Adsorption is promoted by scanning to positive potentials (through the ferrocene wave) and by high concentrations of Bu4N+X- electrolyte (X- = ClO4-, PF6(-)) in the CH2Cl2 solvent; there is no adsorption if X- = p-toluenesulfonate or if the electrode is coated with an alkanethiolate monolayer. The electrode double layer capacity is not appreciably diminished by the adsorbed ferrocenated nanoparticles, which are gradually desorbed by scanning to potentials more negative than the electrode's potential of zero charge. At very slow scan rates, voltammetric current peaks are symmetrical and nearly reversible, but exhibit E-fwhm considerably narrower (typically 35 mV) than ideally expected (90.6 mV, at 298 K) for a one-electron transfer or for reactions of multiple, independent redox centers with identical formal potentials. The peak narrowing is qualitatively explicable by a surface-activity effect invoking large, attractive lateral interactions between nanoparticles and, or alternatively, by a model in which ferrocene sites react serially at formal potentials that become successively altered as ion-pair bridges are formed. At faster scan rates, both AE(peak) and E-fwhm increase in a manner consistent with a combination of uncompensated ohmic resistance of the electrolyte solution and of the adsorbed film, as distinct from behavior produced by slow electron transfer. C1 [Stiles, Rebecca L.; Balasubramanian, Ramjee; Murray, Royce W.] Univ N Carolina, Kenan Labs Chem, Chapel Hill, NC 27599 USA. [Feldberg, Stephen W.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. RP Murray, RW (reprint author), Univ N Carolina, Kenan Labs Chem, Chapel Hill, NC 27599 USA. EM rwm@email.unc.edu NR 73 TC 31 Z9 32 U1 4 U2 33 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD FEB 13 PY 2008 VL 130 IS 6 BP 1856 EP 1865 DI 10.1021/ja074161f PG 10 WC Chemistry, Multidisciplinary SC Chemistry GA 261SL UT WOS:000253100200023 PM 18198868 ER PT J AU Cicero, G Grossman, JC Schwegler, E Gygi, F Galli, G AF Cicero, Giancarlo Grossman, Jeffrey C. Schwegler, Eric Gygi, Francois Galli, Giulia TI Water confined in nanotubes and between graphene sheets: A first principle study SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID MOLECULAR-DYNAMICS SIMULATION; 1ST PRINCIPLES SIMULATIONS; DENSITY-FUNCTIONAL THEORY; CARBON NANOTUBES; LIQUID WATER; HYDROPHILIC SURFACES; WANNIER FUNCTIONS; HYDRATION; ICE; NANOPORES AB Water confined at the nanoscale has been the focus of numerous experimental and theoretical investigations in recent years, yet there is no consensus on such basic properties as diffusion and the nature of hydrogen bonding (HB) under confinement. Unraveling these properties is important to understand fluid flow and transport at the nanoscale, and to shed light on the solvation of biomolecules. Here we report on a first principle, computational study focusing on water confined between prototypical nonpolar substrates, i.e., single-wall carbon nanotubes and graphene sheets, 1-2.5 nm apart. The results of our molecular dynamics simulations show the presence of a thin, interfacial liquid layer (similar to 5 angstrom) whose microscopic structure and, thickness are independent of the distance between confining layers. The properties of the HB network are very similar to those of the bulk outside the interfacial region, even in the case of strong confinement. Our findings indicate that the perturbation induced by the presence of confining media is extremely local in liquid water, and we propose that many of the effects attributed to novel phases under confinement are determined by subtle electronic structure rearrangements occurring at the interface with the confining medium. C1 [Cicero, Giancarlo] Politecn Torino, Dept Phys, I-10129 Turin, Italy. [Grossman, Jeffrey C.] Univ Calif Berkeley, Ctr Integrated Nanomech Syst, Berkeley, CA 94720 USA. [Schwegler, Eric] Lawrence Livermore Natl Lab, Livermore, CA USA. [Gygi, Francois; Galli, Giulia] Univ Calif Davis, Davis, CA 95616 USA. RP Cicero, G (reprint author), Politecn Torino, Dept Phys, Cso Duca Abruzzi 24, I-10129 Turin, Italy. EM giancarlo.cicero@polito.it RI Schwegler, Eric/F-7294-2010; Schwegler, Eric/A-2436-2016; OI Schwegler, Eric/0000-0003-3635-7418; Cicero, Giancarlo/0000-0002-2920-9882 NR 61 TC 202 Z9 203 U1 12 U2 195 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD FEB 13 PY 2008 VL 130 IS 6 BP 1871 EP 1878 DI 10.1021/ja074418+ PG 8 WC Chemistry, Multidisciplinary SC Chemistry GA 261SL UT WOS:000253100200025 PM 18211065 ER PT J AU Rosokha, SV Newton, MD Jalilov, AS Kochi, JK AF Rosokha, Sergiy V. Newton, Marshall D. Jalilov, Almaz S. Kochi, Jay K. TI The spectral elucidation versus the X-ray structure of the critical precursor complex in bimolecular electron transfers: Application of Experimental/Theoretical solvent probes to Ion-radical (Redox) dyads SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID AROMATIC CATION-RADICALS; MIXED-VALENCE SYSTEMS; CHARGE-TRANSFER; SELF-EXCHANGE; REORGANIZATION ENERGY; DIMER CATIONS; ABSORPTION SPECTRA; COUPLING ELEMENTS; CRYSTAL-STRUCTURE; AMMINE COMPLEXES AB The mechanistic conundrum is commonly posed by the intrinsic structural disconnect between a bimolecular (reactive) intermediate that is fleetingly detected spectroscopically in solution versus that rigorously defined by isolation and X-ray crystallography. We resolve this ambiguity by the combined experimental and theoretical application of the solvent media probe to the transient (1:1) precursor complex in the simplest chemical reaction involving direct adiabatic electron transfer (ET) among various donor/ acceptor pairs. Of particular help in our resolution of such an important ET problem is the characterization of the bimolecular precursor complex as Robin-Day class II (localized) or class III (delocalized) from either the solvent-dependent or the solvent-independent response of the diagnostic intervalence absorption bands for the quantitative evaluation of the electronic coupling elements. The magnitudes of these intracomplex bindings are confirmed by theoretical (ab initio and DFT) computations that derive from X-ray structures and Marcus-Hush theories. Most importantly, the experimental solvent-induced ET barriers evaluated from the intervalence absorption bands are also quantitatively verified by the calculated outer-shell reorganization energies to establish unambiguously the intimate interconnection between the loosely bound bimolecular intermediate identified concurrently in solution and in the solid state. C1 [Kochi, Jay K.] Univ Houston, Dept Chem, Houston, TX 77204 USA. Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. RP Kochi, JK (reprint author), Univ Houston, Dept Chem, Univ Pk, Houston, TX 77204 USA. EM jkochi@uh.edu RI Jalilov, Almaz/O-3210-2015; OI Jalilov, Almaz/0000-0002-8932-2107 NR 89 TC 25 Z9 25 U1 1 U2 10 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD FEB 13 PY 2008 VL 130 IS 6 BP 1944 EP 1952 DI 10.1021/ja076591b PG 9 WC Chemistry, Multidisciplinary SC Chemistry GA 261SL UT WOS:000253100200032 PM 18211069 ER PT J AU Hambourger, M Gervaldo, M Svedruzic, D King, PW Gust, D Ghirardi, M Moore, AL Moore, TA AF Hambourger, Michael Gervaldo, Miguel Svedruzic, Drazenka King, Paul W. Gust, Devens Ghirardi, Maria Moore, Ana L. Moore, Thomas A. TI [FeFe]-Hydrogenase-Catalyzed H(2) production in a photoelectrochemical biofuel cell SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID CATALYTIC ELECTRON-TRANSPORT; PROTEIN-FILM VOLTAMMETRY; SOLAR-ENERGY CONVERSION; FE-ONLY HYDROGENASES; CLOSTRIDIUM-PASTEURIANUM; ENZYME ELECTROKINETICS; ALLOCHROMATIUM-VINOSUM; CHARGE RECOMBINATION; CARBON ELECTRODES; NIFE HYDROGENASE AB The Clostridium acetobutylicum [FeFe]-hydrogenase HydA has been investigated as a hydrogen production catalyst in a photoelectrochemical biofuel cell. Hydrogenase was adsorbed to pyrolytic graphite edge and carbon felt electrodes. Cyclic voltammograms of the immobilized hydrogenase films reveal cathodic proton reduction and anodic hydrogen oxidation, with a catalytic bias toward hydrogen evolution. When corrected for the electrochemically active surface area, the cathodic current densities are similar for both carbon electrodes, and similar to 40% of those obtained with a platinum electrode. The high surface area carbon felt/hydrogenase electrode was subsequently used as the cathode in a photoelectrochemical biofuel cell. Under illumination, this device is able to oxidize a biofuel substrate and reduce protons to hydrogen. Similar photocurrents and hydrogen production rates were observed in the photoelectrochemical biofuel cell using either hydrogenase or platinum cathodes. C1 [Svedruzic, Drazenka; King, Paul W.; Ghirardi, Maria] Natl Renewable Energy Lab, Chem & Biosci Ctr, Golden, CO 80401 USA. [Hambourger, Michael; Gervaldo, Miguel; Gust, Devens; Moore, Ana L.; Moore, Thomas A.] Arizona State Univ, Ctr Bioenergy & Photosysnth, Tempe, AZ 85287 USA. [Hambourger, Michael; Gervaldo, Miguel; Gust, Devens; Moore, Ana L.; Moore, Thomas A.] Arizona State Univ, Dept Chem & Biochem, Tempe, AZ 85287 USA. RP King, PW (reprint author), Natl Renewable Energy Lab, Chem & Biosci Ctr, Golden, CO 80401 USA. EM tmoore@asu.edu RI King, Paul/D-9979-2011 OI King, Paul/0000-0001-5039-654X NR 60 TC 178 Z9 180 U1 8 U2 103 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD FEB 13 PY 2008 VL 130 IS 6 BP 2015 EP 2022 DI 10.1021/ja077691k PG 8 WC Chemistry, Multidisciplinary SC Chemistry GA 261SL UT WOS:000253100200040 PM 18205358 ER PT J AU Han, Q Gao, YG Robinson, H Li, J AF Han, Qian Gao, Yi Gui Robinson, Howard Li, Jianyong TI Structural insight into the mechanism of substrate specificity of Aedes kynurenine aminotransferase SO BIOCHEMISTRY LA English DT Article ID GLUTAMINE-PHENYLPYRUVATE AMINOTRANSFERASE; CYTOSOLIC ASPARTATE-AMINOTRANSFERASE; THERMUS-THERMOPHILUS HB8; CRYSTAL-STRUCTURES; ESCHERICHIA-COLI; TRYPTOPHAN CATABOLISM; NICOTINIC RECEPTORS; TRANSAMINASE-K; CLOSED-FORM; ACID AB Aedes aegypti kynurenine aminotransferase (AeKAT) is a multifunctional aminotransferase. It catalyzes the transamination of a number of amino acids and uses many biologically relevant alpha-keto acids as amino group acceptors. AeKAT also is a cysteine S-conjugate beta-lyase. The most important function of AeKAT is the biosynthesis of kynurenic acid, a natural antagonist of NMDA and alpha 7-nicotinic acetylcholine receptors. Here, we report the crystal structures of AeKAT in complex with its best amino acid substrates, glutamine and cysteine. Glutamine is found in both subunits of the biological dimer, and cysteine is found in one of the two subunits. Both substrates form external aldemines with pyridoxal 5-phosphate in the structures. This is the first instance in which one pyridoxal 5-phosphate enzyme has been crystallized with cysteine or glutamine forming external aldimine complexes, cysteinyl aldimine and glutaminyl aldimine. All the units with substrate are in the closed conformation form, and the unit without substrate is in the open form, which suggests that the binding of substrate induces the conformation change of AeKAT. By comparing the active site residues of the AeKAT-cysteine structure with those of the human KAT I-phenylalanine structure, we determined that Tyr286 in AeKAT is changed to Phe278 in human KAT I, which may explain why AeKAT transaminates hydrophilic amino acids more efficiently than human KAT I does. C1 [Han, Qian; Li, Jianyong] Virginia Tech, Dept Biochem, Blacksburg, VA 24061 USA. [Gao, Yi Gui] Univ Illinois, Sch Chem Sci, Urbana, IL 61801 USA. [Robinson, Howard] Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. RP Li, J (reprint author), Virginia Tech, Dept Biochem, Blacksburg, VA 24061 USA. EM lij@vt.edu RI Han, Qian/J-8696-2014 OI Han, Qian/0000-0001-6245-5252 FU NIAID NIH HHS [AI 44399, R01 AI044399, R01 AI044399-10] NR 41 TC 11 Z9 11 U1 0 U2 1 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0006-2960 J9 BIOCHEMISTRY-US JI Biochemistry PD FEB 12 PY 2008 VL 47 IS 6 BP 1622 EP 1630 DI 10.1021/bi701800j PG 9 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 259LK UT WOS:000252940600016 PM 18186649 ER PT J AU Boschek, CB Sun, H Bigelow, DJ Squier, TC AF Boschek, Curt B. Sun, Hongye Bigelow, Diana J. Squier, Thomas C. TI Different conformational switches, underlie the calmodulin-dependent modulation of calcium pumps and channels SO BIOCHEMISTRY LA English DT Article ID MEMBRANE CA-ATPASE; RELEASE CHANNEL; RYANODINE RECEPTOR; STRUCTURAL BASIS; TARGET RECOGNITION; ENERGY-TRANSFER; BINDING-SITE; ACTIVATION; DOMAIN; OXIDATION AB We have used fluorescence spectroscopy to investigate the structure of calmodulin (CaM) bound with CaM-binding sequences of either the plasma membrane Ca-ATPase or the skeletal muscle ryanodine receptor (RyR1) calcium release channel. Following derivatization with N-(1-pyrene)maleimide, at engineered sites (T34C and T110C) within the N- and C-domains of CaM, contact interactions between these opposing domains of CaM resulted in excimer fluorescence that permits us to monitor conformational states of bound CaM. Complementary measurements take advantage of the unique conserved Trp within CaM-binding sequences that functions as a hydrophobic anchor in CaM binding and permits measurements of both a local and global peptide structure. We find that CaM binds with high affinity in a collapsed structure to the CaM-binding sequences of both the Ca-ATPase and RyR1, resulting in excimer formation that is indicative of contact interactions between the N- and the C-domains of CaM in complex with these CaM-binding peptides. There is a 4-fold larger amount of excimer formation for CaM bound to the CaM-binding sequence of the Ca-ATPase in comparison to RyR1, indicating a closer structural coupling between CaM domains in this complex. Prior to CaM association, the CaM-binding sequences of the Ca-ATPase and RyR1 are conformationally disordered. Upon CaM association, the CaM-binding sequence of the Ca-ATPase assumes a highly ordered structure. In comparison, the CaM-binding sequence of RyR1 remains conformationally disordered irrespective of CaM binding. These results suggest an important role for interdomain contact interactions between the opposing domains of CaM in stabilizing the structure of the peptide complex. The substantially different structural responses associated with CaM binding to Ca-ATPase and RyR1 indicates a plasticity in their respective binding mechanisms that accomplishes different physical mechanisms of allosteric regulation, involving either the dissociation of a C-terminal regulatory domain necessary for pump activation or the modulation of intersubunit interactions to diminish RyR1 channel activity. C1 [Boschek, Curt B.; Sun, Hongye; Bigelow, Diana J.; Squier, Thomas C.] Pacific NW Natl Lab, Div Biol Sci, Cell Biol & Biochem Grp, Richland, WA 99352 USA. RP Squier, TC (reprint author), Appl Biosyst Inc, 850 Lincoln Ctr Dr, Foster City, CA 94404 USA. EM thomas.squier@pnl.gov FU NIA NIH HHS [AG12993] NR 50 TC 12 Z9 12 U1 0 U2 6 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0006-2960 J9 BIOCHEMISTRY-US JI Biochemistry PD FEB 12 PY 2008 VL 47 IS 6 BP 1640 EP 1651 DI 10.1021/bi701987n PG 12 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 259LK UT WOS:000252940600018 PM 18201104 ER PT J AU Shin, Y Fryxell, GE Johnson, CA Haley, MM AF Shin, Yongsoon Fryxell, Glen E. Johnson, Charles A., II Haley, Michael M. TI Templated synthesis of pyridine functionalized mesoporous carbons through the cyclotrimerization of diethynylpyridines SO CHEMISTRY OF MATERIALS LA English DT Article ID ACETYLENE CYCLOTRIMERIZATION; SILICA; TRIMERIZATION; CLUSTERS AB Templated mesoporous carbons designed around the pyridine functionality have been made using the cyclotrimerization of a variety of diethynylpyridines. The substitution pattern of the ethynyl moieties about the pyridine ring system was found to have a significant impact on the structure and properties of the final product. A model is proposed that focuses on the self-assembly of the diethynylpyridine monomer on the silica surface and the order and orientation of the ethynyl moieties within this monolayer. C1 [Shin, Yongsoon; Fryxell, Glen E.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Johnson, Charles A., II; Haley, Michael M.] Univ Oregon, Dept Chem, Eugene, OR 97403 USA. [Johnson, Charles A., II; Haley, Michael M.] Univ Oregon, Inst Mat Sci, Eugene, OR 97403 USA. RP Fryxell, GE (reprint author), Pacific NW Natl Lab, POB 999, Richland, WA 99352 USA. EM glen.fryxell@pnl.gov NR 37 TC 30 Z9 30 U1 1 U2 11 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 J9 CHEM MATER JI Chem. Mat. PD FEB 12 PY 2008 VL 20 IS 3 BP 981 EP 986 DI 10.1021/cm070979o PG 6 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 259WE UT WOS:000252970800027 ER PT J AU Han, TYJ Aizenberg, J AF Han, T. Yon-Jin Aizenberg, Joanna TI Calcium carbonate storage in amorphous form and its template-induced crystallization SO CHEMISTRY OF MATERIALS LA English DT Article ID SELF-ASSEMBLED MONOLAYERS; PRECURSOR PILP PROCESS; SEA-URCHIN EMBRYOS; THIN-FILMS; STRUCTURAL-CHARACTERIZATION; ORIENTED GROWTH; PHASE; BIOMINERALIZATION; MAGNESIUM; MINERALIZATION AB Calcium carbonate crystallization in organisms often occurs through the transformation from the amorphous precursor. It is believed that the amorphous phase could be temporarily stabilized and stored, until its templated transition to the crystalline form is induced. Here we develop a bioinspired crystallization strategy that is based on the above mechanism. Amorphous calcium carbonate (ACC) spherulitic particles are induced to form on a self-assembled monolayer (SAM) of hydroxyl-terminated alkanethiols on a gold surface. The ACC can then be stored in a dry atmosphere as a reservoir for ions and be induced to crystallize on command by the introduction of water and a secondary surface that is functionalized with carboxylic acid-terminated SAM. This secondary surface acts as a template for oriented and patterned nucleation. Various oriented crystalline arrays and micropatterned films are formed. We also show that the ACC phase can be doped with foreign ions (e.g., magnesium) and organic molecules (e.g., dyes) and that these dopants later function as growth modifiers of calcite crystals and become incorporated into the crystals during the transformation process of ACC to calcite. We believe. that our strategy opens the way to using a stabilized amorphous phase as a versatile reservoir system that can be converted in a highly controlled fashion to a crystalline form upon contacting a specially designed nucleating template in water. C1 [Han, T. Yon-Jin] Lawrence Livermore Natl Lab, Div Chem & Chem Engn, Chem & Mat Sci Directorate, Livermore, CA 94551 USA. [Aizenberg, Joanna] Harvard Univ, Dept Chem & Chem Biol, Sch Engn & Appl Sci, Cambridge, MA 02138 USA. RP Han, TYJ (reprint author), Lawrence Livermore Natl Lab, Div Chem & Chem Engn, Chem & Mat Sci Directorate, Livermore, CA 94551 USA. EM han5@llnl.gov; jaizenberg@seas.harvard.edu NR 41 TC 67 Z9 67 U1 4 U2 56 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 J9 CHEM MATER JI Chem. Mat. PD FEB 12 PY 2008 VL 20 IS 3 BP 1064 EP 1068 DI 10.1021/cm702032v PG 5 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 259WE UT WOS:000252970800037 ER PT J AU Vidyasagar, A Majewski, J Toomey, R AF Vidyasagar, Ajay Majewski, Jaroslaw Toomey, Ryan TI Temperature induced volume-phase transitions in surface-tethered Poly(N-isopropylacrylamide) networks SO MACROMOLECULES LA English DT Article ID CONSISTENT-FIELD THEORY; CONFORMATIONAL-CHANGE; POLYMER NETWORKS; AQUEOUS CHROMATOGRAPHY; N-ISOPROPYLACRYLAMIDE; RESPONSIVE POLYMER; NEUTRON REFLECTION; FTIR SPECTROSCOPY; SWELLING BEHAVIOR; PLASMON RESONANCE AB The swelling behavior of a surface-tethered poly(N-isopropylacrylamide) (polyNIPAAm) network in D2O was characterized with neutron reflection and compared to the demixing behavior of linear poly(NIPAAm) in solution. The surface-tethered network was fabricated by cross-linking a 250 A thick film of a copolymer comprised of NIPAAm and 3 mol % methacroylbenzophenone. As the temperature was varied between 15 and 29 degrees C, the thickness of the poly(NIPAAm) network in aqueous solution decreased gradually from I 100 to 750 A. In this regime, the network lay entirely in the single phase region of the phase diagram for linear poly(NIPAAm). At approximately 30 degrees C, the network entered the two-phase region of the phase diagram and collapsed along the tie line to a thickness of 339 A. Above 30 degrees C, the thickness of the network adjusted to the binodal curve of the phase diagram. The agreement between the swelling discontinuity in the surface-tethered network and the two-phase region of uncross-linked poly(NIPAAm) suggests that confinement does not alter the miscibility gap of poly(NIPAAm). With the use of a temperature, T, and polymer volume fraction, q5, Flory interaction parameter, v(TO), that is tabulated from the demixing data of the linear poly(NIPAAm), the swelling behavior of the surface-tethered network could be modeled using the mean-field Flory-Rehner theory modified for uniaxial swelling. C1 [Vidyasagar, Ajay; Toomey, Ryan] Univ S Florida, Dept Chem Engn, Tampa, FL 33647 USA. [Majewski, Jaroslaw] Los Alamos Natl Lab, Manuel Lujan Jr Neutron Scattering Ctr, Los Alamos, NM 87545 USA. RP Toomey, R (reprint author), Univ S Florida, Dept Chem Engn, 4202 E Fowler Ave, Tampa, FL 33647 USA. RI Vidyasagar, Ajay/A-5412-2012; Lujan Center, LANL/G-4896-2012 NR 42 TC 38 Z9 38 U1 1 U2 11 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0024-9297 J9 MACROMOLECULES JI Macromolecules PD FEB 12 PY 2008 VL 41 IS 3 BP 919 EP 924 DI 10.1021/ma071438n PG 6 WC Polymer Science SC Polymer Science GA 259NB UT WOS:000252944900059 ER PT J AU Huang, ZY Ji, HN Mays, JW Dadmun, MD AF Huang, Zhenyu Ji, Haining Mays, Jimmy W. Dadmun, Mark D. TI Understanding the grafting of telechelic polymers on a solid substrate to form loops SO MACROMOLECULES LA English DT Article ID LIQUID-CHROMATOGRAPHIC DETERMINATION; FLUORESCENT LABELING REAGENT; END-FUNCTIONALIZED CHAINS; SELF-ASSEMBLED MONOLAYERS; REACTION-KINETICS; POLYSTYRENE LAYERS; NEUTRON REFLECTIVITY; ALCOHOLYSIS LIGNIN; GLASS-TRANSITION; CARBOXYLIC-ACIDS AB Recent experimental and theoretical studies have demonstrated that relative to singly tethered chains, the presence of polymer loops at interfaces significantly improves interfacial properties such as adhesion, friction, and wettability. In the present study, a simple system was studied to examine the formation of polymeric loops on a solid surface, where the grafting of carboxylic acid terminated telechelic polystyrene from the melt to an epoxy functionalized silicon is chosen. The impact of telechelic molecular weight, grafting temperature, and surface functionality on the telechelic attachment process is studied. It was found that grafting of the telechelic to the surface at both ends to form loops is the primary product of this grafting process. Moreover, examination of the kinetics of the grafting process indicates that it is reaction controlled. Fluorescence tagging of the dangling ends of singly bound chains provides a mechanism to monitor their time evolution during grafting, and these results indicate that the grafting process is accurately described by recent Monte Carlo simulation work. The results also provide a method to control the extent of loop formation at interfaces and therefore provide an opportunity to further understand the role of the loops in the interfacial properties in multicomponent polymer systems. C1 [Huang, Zhenyu; Ji, Haining; Mays, Jimmy W.; Dadmun, Mark D.] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. [Mays, Jimmy W.; Dadmun, Mark D.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. RP Dadmun, MD (reprint author), Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. OI Dadmun, Mark/0000-0003-4304-6087 NR 73 TC 13 Z9 13 U1 1 U2 11 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0024-9297 J9 MACROMOLECULES JI Macromolecules PD FEB 12 PY 2008 VL 41 IS 3 BP 1009 EP 1018 DI 10.1021/ma071836q PG 10 WC Polymer Science SC Polymer Science GA 259NB UT WOS:000252944900069 ER PT J AU Daniel, RC Poloski, AP Saez, AE AF Daniel, R. C. Poloski, A. P. Saez, A. E. TI Vane rheology of cohesionless glass beads SO POWDER TECHNOLOGY LA English DT Article DE granular theology; shear vane; cohesionless powders; friction ID DENSE GRANULAR FLOWS; SLURRIES; POWDER; ROUGH AB The rheology of a single coarse granular powder has been studied with shear vane rotational viscometry. The torque required to maintain constant rotation of a vane tool in a loose bed of glass beads (with a mean particle size of 203 mu m) is measured as a function of vane immersion depth and rotational speed. The resulting torque profiles exhibit both Coulombic behavior at low rotational rates and fluid-like, collisional behavior at high rotational rates. Analyzing vane shaft and end effects allows the flow dynamics at the cylindrical and top and bottom disk surfaces of vane rotation to be determined. Disk surfaces show a uniform torque profile consistent with Coulombic friction over most of the rotational rates studied. In contrast, cylindrical surfaces show both frictional and collisional torque contributions, with significant dynamic torque increases at deep immersion depths and fast vane rotation. (c) 2007 Published by Elsevier B.V. C1 [Daniel, R. C.; Poloski, A. P.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Saez, A. E.] Univ Arizona, Dept Chem & Environm Engn, Tucson, AZ 85721 USA. RP Poloski, AP (reprint author), Pacific NW Natl Lab, POB 999, Richland, WA 99352 USA. EM adam.poloski@pnl.gov RI Saez, Avelino/K-1136-2016 OI Saez, Avelino/0000-0002-3548-6325 NR 29 TC 7 Z9 7 U1 0 U2 6 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0032-5910 J9 POWDER TECHNOL JI Powder Technol. PD FEB 12 PY 2008 VL 181 IS 3 BP 237 EP 248 DI 10.1016/j.powtec.2007.05.003 PG 12 WC Engineering, Chemical SC Engineering GA 270VF UT WOS:000253747600002 ER PT J AU Glaeser, RM AF Glaeser, Robert M. TI Macromolecular structures without crystals SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Editorial Material ID ELECTRON CRYSTALLOGRAPHY; MEMBRANE-PROTEINS; CRYOMICROSCOPY; MICROSCOPY; MODEL C1 [Glaeser, Robert M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Glaeser, RM (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM rmglaeser@lbl.gov NR 17 TC 5 Z9 5 U1 0 U2 1 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD FEB 12 PY 2008 VL 105 IS 6 BP 1779 EP 1780 DI 10.1073/pnas.0800032105 PG 2 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 264CC UT WOS:000253261900002 PM 18256181 ER PT J AU Blakeley, MP Ruiz, F Cachau, R Hazemann, I Meilleur, F Mitschler, A Ginell, S Afonine, P Ventura, ON Cousido-Siah, A Haertlein, M Joachimiak, A Myles, D Podjarny, A AF Blakeley, Matthew P. Ruiz, Federico Cachau, Raul Hazemann, Isabelle Meilleur, Flora Mitschler, Andre Ginell, Stephan Afonine, Pavel Ventura, Oscar N. Cousido-Siah, Alexandra Haertlein, Michael Joachimiak, Andrzej Myles, Dean Podjarny, Alberto TI Quantum model of catalysis based on a mobile proton revealed by subatomic x-ray and neutron diffraction studies of h-aldose reductase SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE enzymatic mechanism; helium cooling; subatomic resolution crystallography; x-ray plus neutrons joint refinement ID PROTEIN CRYSTALLOGRAPHY; DIABETIC COMPLICATIONS; CRYSTAL-STRUCTURE; ACTIVE-SITE; MUTAGENESIS; MECHANISM; ANGSTROM; HYDROGEN AB We present results of combined studies of the enzyme human aldose reductase (h-AR, 36 kDa) using single-crystal x-ray data (0.66 angstrom, 100K; 0.80 angstrom, 15K; 1.75 angstrom, 293K), neutron Laue data (2.2 angstrom, 293K), and quantum mechanical modeling. These complementary techniques unveil the internal organization and mobility of the hydrogen bond network that defines the properties of the catalytic engine, explaining how this promiscuous enzyme overcomes the simultaneous requirements of efficiency and promiscuity offering a general mechanistic view for this class of enzymes. C1 [Ruiz, Federico; Hazemann, Isabelle; Mitschler, Andre; Cousido-Siah, Alexandra; Podjarny, Alberto] Inst Natl Sante & Rech Med, Ctr Natl Rech Sci, Inst Genet & Biol Mol & Cellulaire, ULP, F-67404 Illkirch Graffenstaden, France. [Blakeley, Matthew P.; Haertlein, Michael] Inst Laue Langevin, F-38042 Grenoble, France. [Cachau, Raul] SAIC Frederick Inc, Natl Canc Inst, Frederick, MD 21702 USA. [Meilleur, Flora; Myles, Dean] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Ginell, Stephan; Joachimiak, Andrzej] Argonne Natl Lab, Struct Biol Ctr, Argonne, IL 60439 USA. [Afonine, Pavel] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Ventura, Oscar N.] Univ Republica, Fac Quim, Computat Chem Phys Grp, Dept Expt & Teoria Estruct Mat & Aplicac, Montevideo 11800, Uruguay. RP Podjarny, A (reprint author), Inst Natl Sante & Rech Med, Ctr Natl Rech Sci, Inst Genet & Biol Mol & Cellulaire, ULP, 1 Rue Laurent Fries, F-67404 Illkirch Graffenstaden, France. EM podiarny@titus.u-strasbg.fr RI myles, dean/D-5860-2016; Blakeley, Matthew/G-7984-2015; OI myles, dean/0000-0002-7693-4964; Blakeley, Matthew/0000-0002-6412-4358; Podjarny, Alberto/0000-0002-7685-1077 FU NCI NIH HHS [N01-CO-12400, N01CO12400]; NIGMS NIH HHS [R01 GM071939, R01GM071939] NR 24 TC 51 Z9 51 U1 0 U2 11 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD FEB 12 PY 2008 VL 105 IS 6 BP 1844 EP 1848 DI 10.1073/pnas.0711659105 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 264CC UT WOS:000253261900015 PM 18250329 ER PT J AU Pushkar, YL Yano, J Sauer, K Boussac, A Yachandra, VK AF Pushkar, Yulia Yano, Junko Sauer, Kenneth Boussac, Alain Yachandra, Vittal K. TI Structural changes in the Mn4Ca cluster and the mechanism of photosynthetic water splitting SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE manganese enzyme; oxygen evolution; photosynthesis; photosystern II 1; x-ray spectroscopy ID OXYGEN-EVOLVING COMPLEX; FTIR DIFFERENCE SPECTROSCOPY; RAY-ABSORPTION SPECTROSCOPY; O BOND FORMATION; PHOTOSYSTEM-II; MANGANESE CLUSTER; MN CLUSTER; D1 POLYPEPTIDE; UNDERGOES OXIDATION; CA2+/SR2+ EXCHANGE AB Photosynthetic water oxidation, where water is oxidized to dioxygen, is a fundamental chemical reaction that sustains the biosphere. This reaction is catalyzed by a Mn4Ca complex in the photosystem II (PS II) oxygen-evolving complex (OEC): a multiprotein assembly embedded in the thylakoid membranes of green plants, cyanobacteria, and algae. The mechanism of photosynthetic water oxidation by the Mn4Ca cluster in photosystem 11 is the subject of much debate, although lacking structural characterization of the catalytic intermediates. Biosynthetically exchanged Ca/Sr-PS II preparations and x-ray spectroscopy, including extended x-ray absorption fine structure (EXAFS), allowed us to monitor Mn-Mn and Ca(Sr)-Mn distances in the four intermediate S states, S-0 through S-3, of the catalytic cycle that couples the one-electron photochemistry occurring at the PS 11 reaction center with the four-electron water-oxidation chemistry taking place at the Mn4Ca(Sr) cluster. We have detected significant changes in the structure of the complex, especially in the Mn-Mn and Ca(Sr)-Mn distances, on the S-2-to-S-3 and S-3-to-S-0 transitions. These results implicate the involvement of at least one common bridging oxygen atom between the Mn-Mn and Mn-Ca(Sr) atoms in the O-O bond formation. Because PS II cannot advance beyond the S-2 state in preparations that lack Ca(Sr), these results show that Ca(Sr) is one of the critical components in the mechanism of the enzyme. The results also show that Ca is not just a spectator atom involved in providing a structural framework, but is actively involved in the mechanism of water oxidation and represents a rare example of a catalytically active Ca cofactor. C1 [Pushkar, Yulia; Yano, Junko; Sauer, Kenneth; Yachandra, Vittal K.] Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Pushkar, Yulia; Sauer, Kenneth] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Boussac, Alain] CEA Saclay, Unite Rech Assoc, Ctr Natl Rech Sci 2096, BiTec S, F-91191 Gif Sur Yvette, France. RP Yano, J (reprint author), Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. EM jyano@lbl.gov; alain.boussac@cea.fr; vkyachandra@lbl.gov FU NIGMS NIH HHS [R56 GM055302, R01 GM055302, GM 55302] NR 46 TC 119 Z9 121 U1 2 U2 44 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD FEB 12 PY 2008 VL 105 IS 6 BP 1879 EP 1884 DI 10.1073/pnas.0707092105 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 264CC UT WOS:000253261900021 PM 18250316 ER PT J AU Pertz, OC Wang, Y Yang, F Wang, W Gay, LJ Gristenko, MA Clauss, TR Anderson, DJ Liu, T Auberry, KJ Camp, DG Smith, RD Klemke, RL AF Pertz, Olivier C. Wang, Yingchun Yang, Feng Wang, Wei Gay, Laurie J. Gristenko, Marina A. Clauss, Therese R. Anderson, David J. Liu, Tao Auberry, Kenneth J. Camp, David G., II Smith, Richard D. Klemke, Richard L. TI Spatial mapping of the neurite and soma proteomes reveals a functional Cdc42/Rac regulatory network SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE GAPS; GEFs; neuritogenesis; proteomics; Rho GTPase ID RHO GTPASES; OUTGROWTH; CELLS; MIGRATION; PROTEINS; ACTIN; FAMILY; RAC1; GEF AB Neurite extension and growth cone navigation are guided by extracellular cues that control cytoskeletal rearrangements. However, understanding the complex signaling mechanisms that mediate neuritogenesis has been limited by the inability to biochemically separate the neurite and soma for spatial proteomic and bioinformatic analyses. Here, we apply global proteome profiling in combination with a neurite purification methodology for comparative analysis of the soma and neurite proteomes of neuroblastoma cells. The spatial relationship of 4,855 proteins were mapped, revealing networks of signaling proteins that control integrins, the actin cytoskeleton, and axonal guidance in the extending neurite. Bioinformatics and functional analyses revealed a spatially compartmentalized Rac/Cdc42 signaling network that operates in conjunction with multiple guanine-nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs) to control neurite formation. Interestingly, RNA interference experiments revealed that the different GEFs and GAPs regulate specialized functions during neurite formation, including neurite growth and retraction kinetics, cytoskeletal organization, and cell polarity. Our findings provide insight into the spatial organization of signaling networks that enable neuritogenesis and provide a comprehensive system-wide profile of proteins that mediate this process, including those that control Rac and Cdc42 signaling. C1 [Pertz, Olivier C.; Wang, Yingchun; Wang, Wei; Gay, Laurie J.; Klemke, Richard L.] Univ Calif San Diego, Dept Pathol, La Jolla, CA 92093 USA. [Pertz, Olivier C.; Wang, Yingchun; Wang, Wei; Gay, Laurie J.; Klemke, Richard L.] Univ Calif San Diego, Moores Canc Ctr, La Jolla, CA 92093 USA. [Yang, Feng; Gristenko, Marina A.; Clauss, Therese R.; Anderson, David J.; Liu, Tao; Auberry, Kenneth J.; Camp, David G., II; Smith, Richard D.] Pacific NW Natl Lab, Environm Mol Sci Lab, Div Biol Sci, Richland, WA 99354 USA. RP Klemke, RL (reprint author), Univ Calif San Diego, Dept Pathol, La Jolla, CA 92093 USA. EM rklemke@ucsd.edu RI Smith, Richard/J-3664-2012; Liu, Tao/A-9020-2013 OI Smith, Richard/0000-0002-2381-2349; Liu, Tao/0000-0001-9529-6550 FU NCI NIH HHS [R01 CA097022, CA097022]; NCRR NIH HHS [P41 RR018522, P41 RR018522-05, RR018522]; NIGMS NIH HHS [GM064346, GM068487, R01 GM068487, U54 GM064346] NR 21 TC 46 Z9 46 U1 1 U2 10 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD FEB 12 PY 2008 VL 105 IS 6 BP 1931 EP 1936 DI 10.1073/pnas.0706545105 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 264CC UT WOS:000253261900030 PM 18245386 ER PT J AU Ahrens, B Eisenschmidt, C Johnson, JA Miclea, PT Schweizer, S AF Ahrens, Bernd Eisenschmidt, Christian Johnson, Jacqueline A. Miclea, Paul T. Schweizer, Stefan TI Structural and optical investigations of Nd-doped fluorozirconate-based glass ceramics for enhanced upconverted fluorescence SO APPLIED PHYSICS LETTERS LA English DT Article AB We found enhanced upconverted fluorescence in Nd(3+)-doped fluorozirconate glasses which were additionally doped with chlorine ions. Upon annealing between 240 and 290 degrees C, hexagonal phase BaCl(2) nanocrystals between 20 and 180 nm in diameter were formed in the glass. During the thermal processing, some of the Nd(3+) ions enter the nanocrystals leading to additional splitting of the infrared fluorescence spectra and to increased upconverted fluorescence intensities. The optimum value was found for the 270 degrees C sample where the upconverted fluorescence intensity is approximately a factor of 60 stronger than the one found for the as-made glass. (c) 2008 American Institute of Physics. C1 [Miclea, Paul T.; Schweizer, Stefan] Fraunhofer Ctr Silicon Photovolta, D-06120 Halle, Germany. [Eisenschmidt, Christian; Miclea, Paul T.; Schweizer, Stefan] Univ Halle Wittenberg, Inst Phys, D-06120 Halle, Germany. [Ahrens, Bernd] Univ Gesamthsch Paderborn, Fac Sci, Dept Phys, D-33098 Paderborn, Germany. [Johnson, Jacqueline A.] Univ Tennessee, Inst Space, Ctr Laser Applicat, Tullahoma, TN 37388 USA. [Johnson, Jacqueline A.] Argonne Natl Lab, Nucl Engn Div, Argonne, IL 60439 USA. RP Schweizer, S (reprint author), Fraunhofer Ctr Silicon Photovolta, Walter Hulse Str 1, D-06120 Halle, Germany. EM stefan.schweizer@csp.fraunhofer.de RI Schweizer, Stefan/H-3518-2011; Johnson, Jacqueline/P-4844-2014 OI Johnson, Jacqueline/0000-0003-0830-9275 NR 10 TC 26 Z9 27 U1 4 U2 15 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD FEB 11 PY 2008 VL 92 IS 6 AR 061905 DI 10.1063/1.2837542 PG 3 WC Physics, Applied SC Physics GA 263SX UT WOS:000253237900027 ER PT J AU Bickel, JE Modine, NA Van der Ven, A Millunchick, JM AF Bickel, Jessica E. Modine, Normand A. Van der Ven, Anton Millunchick, Joanna Mirecki TI Atomic size mismatch strain induced surface reconstructions SO APPLIED PHYSICS LETTERS LA English DT Article ID SEGREGATION; PSEUDOPOTENTIALS; GAAS(001); STATE; FILMS AB The effects of lattice mismatch strain and atomic size mismatch strain on surface reconstructions are analyzed using density functional theory. These calculations demonstrate the importance of an explicit treatment of alloying when calculating the energies of alloyed surface reconstructions. Lattice mismatch strain has little impact on surface dimer ordering for the alpha 2(2x4) reconstruction of GaAs alloyed with In. However, atomic size mismatch strain induces the surface In atoms to preferentially alternate position, which, in turn, induces an alternating configuration of the surface anion dimers. These results agree well with experimental data for alpha 2(2x4) domains in InGaAs/GaAs surfaces. (c) 2008 American Institute of Physics. C1 [Bickel, Jessica E.; Van der Ven, Anton; Millunchick, Joanna Mirecki] Univ Michigan, Dept Mat Sci & Engn, Ann Arbor, MI 48109 USA. [Modine, Normand A.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Millunchick, JM (reprint author), Univ Michigan, Dept Mat Sci & Engn, Ann Arbor, MI 48109 USA. EM joannamm@umich.edu RI Bickel, Jessica/A-6833-2016 OI Bickel, Jessica/0000-0002-7506-1831 NR 16 TC 8 Z9 10 U1 0 U2 2 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD FEB 11 PY 2008 VL 92 IS 6 AR 062104 DI 10.1063/1.2841846 PG 3 WC Physics, Applied SC Physics GA 263SX UT WOS:000253237900040 ER PT J AU Shao, L Wang, YQ Swadener, JG Nastasi, M Thompson, PE Theodore, ND AF Shao, Lin Wang, Y. Q. Swadener, J. G. Nastasi, M. Thompson, Phillip E. Theodore, N. David TI Cracking in hydrogen ion-implanted Si/Si(0.8)Ge(0.2)/Si heterostructures SO APPLIED PHYSICS LETTERS LA English DT Article ID SI1-XGEX/SI(100) HETEROSTRUCTURES; STRAIN RELAXATION; SILICON AB We demonstrate that a controllable cracking can be realized in Si with a buried strain layer when hydrogen is introduced using traditional H-ion implantation techniques. However, H stimulated cracking is dependent on H projected ranges; cracking occurs along a Si(0.8)Ge(0.2) strain layer only if the H projected range is shallower than the depth of the strained layer. The absence of cracking for H ranges deeper than the strain layer is attributed to ion-irradiation induced strain relaxation, which is confirmed by Rutherford-backscattering-spectrometry channeling angular scans. The study reveals the importance of strain in initializing continuous cracking with extremely low H concentrations. (c) 2008 American Institute of Physics. C1 [Shao, Lin] Texas A&M Univ, Dept Nucl Engn, College Stn, TX 77843 USA. [Shao, Lin; Wang, Y. Q.; Swadener, J. G.; Nastasi, M.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Thompson, Phillip E.] USN, Res Lab, Code 6812, Washington, DC 20375 USA. [Theodore, N. David] Free Semiconductor Inc, Analog & Mixed Signal Technol, Tempe, AZ 85284 USA. RP Shao, L (reprint author), Texas A&M Univ, Dept Nucl Engn, College Stn, TX 77843 USA. EM lshao@mailaps.org OI Swadener, John G/0000-0001-5493-3461 NR 17 TC 4 Z9 4 U1 0 U2 2 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD FEB 11 PY 2008 VL 92 IS 6 AR 061904 DI 10.1063/1.2838338 PG 3 WC Physics, Applied SC Physics GA 263SX UT WOS:000253237900026 ER PT J AU Yang, H Wang, H Luo, HM Feldmann, DM Dowden, PC DePaula, RF Jia, QX AF Yang, H. Wang, H. Luo, H. M. Feldmann, D. M. Dowden, P. C. DePaula, R. F. Jia, Q. X. TI Structural and dielectric properties of epitaxial Sm2O3 thin films SO APPLIED PHYSICS LETTERS LA English DT Article ID SAMARIUM OXIDE; GATE DIELECTRICS; DEPOSITION; SILICON AB Epitaxial Sm2O3 thin films were deposited on (001) SrTiO3 substrates by pulsed laser deposition. The structural and dielectric properties were investigated. Microstructural studies by x-ray diffraction and transmission electron microscopy showed that the Sm2O3 thin films have a cubic structure and an epitaxial relationship of (004)(Sm2)O-3 parallel to(002)(SrTiO3) and [440](Sm2)O-3 parallel to[200](SrTiO3). A high dielectric constant of 30.5 was found, which can be attributed to the cubic structure and the high crystalline quality and shows a potential application of epitaxial Sm2O3 thin film for high-k material. (C) 2008 American Institute of Physics. C1 [Yang, H.; Luo, H. M.; Feldmann, D. M.; Dowden, P. C.; DePaula, R. F.; Jia, Q. X.] Los Alamos Natl Lab, Superconduct Technol Ctr, Mat Phys & Applicat Div, Los Alamos, NM 87545 USA. [Wang, H.] Texas A&M Univ, Dept Elect & Comp Engn, College Stn, TX 77843 USA. RP Yang, H (reprint author), Los Alamos Natl Lab, Superconduct Technol Ctr, Mat Phys & Applicat Div, POB 1663, Los Alamos, NM 87545 USA. EM hyang@lanl.gov; qxjia@lanl.gov RI Jia, Q. X./C-5194-2008; Wang, Haiyan/P-3550-2014 OI Wang, Haiyan/0000-0002-7397-1209 NR 24 TC 37 Z9 37 U1 2 U2 13 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD FEB 11 PY 2008 VL 92 IS 6 AR 062905 DI 10.1063/1.2842416 PG 3 WC Physics, Applied SC Physics GA 263SX UT WOS:000253237900065 ER PT J AU Yellampalle, B Chia, EEM Kim, K Taylor, AJ Averitt, R AF Yellampalle, Balakishore Chia, Elbert E. M. Kim, Kiyong Taylor, Antoinette J. Averitt, Richard TI Three envelope approach for ultrafast pulse characterization in a pump-probe experiment SO APPLIED PHYSICS LETTERS LA English DT Article ID 2ND-HARMONIC GENERATION; SPECTRUM AB We demonstrate an approach for the complete characterization of temporally identical ultrashort pulses at the focal point in a pump-probe experiment for potential use of pump-probe data deconvolution. Our approach uses three envelope measurements, autocorrelation, fundamental, and second harmonic spectra, combined with an error minimization pulse retrieval scheme. The three envelope approach is suitable when the measured envelopes have low noise and minimal systematic errors. (c) 2008 American Institute of Physics. C1 [Yellampalle, Balakishore; Chia, Elbert E. M.; Kim, Kiyong; Taylor, Antoinette J.] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. [Averitt, Richard] Boston Univ, Dept Phys, Boston, MA 02215 USA. [Chia, Elbert E. M.] Nanyang Technol Univ, Sch Phys & Math Sci, Div Phys & Appl Phys, Singapore 637371, Singapore. RP Yellampalle, B (reprint author), Los Alamos Natl Lab, Ctr Integrated Nanotechnol, POB 1663, Los Alamos, NM 87545 USA. EM balakishorey@gmail.com RI Chia, Elbert/B-6996-2011 OI Chia, Elbert/0000-0003-2066-0834 NR 15 TC 1 Z9 1 U1 0 U2 1 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD FEB 11 PY 2008 VL 92 IS 6 AR 061111 DI 10.1063/1.2837660 PG 3 WC Physics, Applied SC Physics GA 263SX UT WOS:000253237900011 ER PT J AU Gibbons, J Holm, DD Tronci, C AF Gibbons, John Holm, Darryl D. Tronci, Cesare TI Vlasov moments, integrable systems and singular solutions SO PHYSICS LETTERS A LA English DT Article ID CAMASSA-HOLM EQUATION; HAMILTONIAN-STRUCTURE; WAVES; DYNAMICS AB The Vlasov equation governs the evolution of the single-particle probability distribution function (PDF) for a system of particles interacting without dissipation. Its singular solutions correspond to the individual particle motions. The operation of taking the moments of the Vlasov equation is a Poisson map. The resulting Lie-Poisson Hamiltonian dynamics of the Vlasov moments is found to be integrable is several cases. For example, the dynamics for coasting beams in particle accelerators is associated by a hodograph transformation to the known integrable Benney shallow-water equation. After setting the context, the Letter focuses on geodesic Vlasov moment equations. Continuum closures of these equations at two different orders are found to be integrable systems whose singular solutions characterize the geodesic motion of the individual particles. (C) 2007 Elsevier B.V. All rights reserved. C1 [Gibbons, John; Holm, Darryl D.; Tronci, Cesare] Univ London Imperial Coll Sci Technol & Med, Dept Math, London SW7 2AZ, England. [Holm, Darryl D.] Los Alamos Natl Lab, Comp & Computat Sci Div, Los Alamos, NM 87545 USA. [Tronci, Cesare] TERA Fdn Oncol Hadrontherapy, I-28100 Novara, Italy. RP Holm, DD (reprint author), Univ London Imperial Coll Sci Technol & Med, Dept Math, London SW7 2AZ, England. EM d.holm@ic.ac.uk RI Tronci, Cesare/B-7542-2016; OI Tronci, Cesare/0000-0002-8868-8027; Holm, Darryl D/0000-0001-6362-9912 NR 41 TC 17 Z9 18 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9601 J9 PHYS LETT A JI Phys. Lett. A PD FEB 11 PY 2008 VL 372 IS 7 BP 1024 EP 1033 DI 10.1016/j.physleta.2007.08.054 PG 10 WC Physics, Multidisciplinary SC Physics GA 272UA UT WOS:000253884300012 ER PT J AU Ellis, RS Sullivan, M Nugent, PE Howell, DA Gal-Yam, A Astier, P Balam, D Balland, C Basa, S Carlberg, RG Conley, A Fouchez, D Guy, J Hardin, D Hook, I Pain, R Perrett, K Pritchet, CJ Regnault, N AF Ellis, R. S. Sullivan, M. Nugent, P. E. Howell, D. A. Gal-Yam, A. Astier, P. Balam, D. Balland, C. Basa, S. Carlberg, R. G. Conley, A. Fouchez, D. Guy, J. Hardin, D. Hook, I. Pain, R. Perrett, K. Pritchet, C. J. Regnault, N. TI Verifying the cosmological utility of Type Ia Supernovae: Implications of a dispersion in the ultraviolet spectra SO ASTROPHYSICAL JOURNAL LA English DT Article DE cosmological parameters; supernovae : general; surveys ID HIGH-REDSHIFT SUPERNOVAE; HUBBLE-SPACE-TELESCOPE; STAR-FORMING GALAXIES; DARK ENERGY; LEGACY SURVEY; LIGHT CURVES; ACCELERATING UNIVERSE; METALLICITY RELATION; OPTICAL-SPECTRA; HOST GALAXIES AB We analyze the mean rest-frame ultraviolet (UV) spectrum of Type Ia Supernovae (SNe) and its dispersion using high signal-to-noise ratio Keck-I/LRIS-B spectroscopy for a sample of 36 events at intermediate redshift ((z) over bar = 0.5) discovered by the Canada-France-Hawaii Telescope Supernova Legacy Survey (SNLS). We introduce a new method for removing host galaxy contamination in our spectra, exploiting the comprehensive photometric coverage of the SNLS SNe and their host galaxies, thereby providing the first quantitative view of the UV spectral properties of a large sample of distant SNe Ia. Although the mean SN Ia spectrum has not evolved significantly over the past 40% of cosmic history, precise evolutionary constraints are limited by the absence of a comparable sample of high-quality local spectra. The mean UV spectrum of our z similar or equal to 0: 5 SNe Ia and its dispersion is tabulated for use in future applications. Within the high-redshift sample, we discover significant UV spectral variations and exclude dust extinction as the primary cause by examining trends with the optical SN color. Although progenitor metallicity may drive some of these trends, the variations we see are much larger than predicted in recent models and do not follow expected patterns. An interesting new result is a variation seen in the wavelength of selected UV features with phase. We also demonstrate systematic differences in the SN Ia spectral features with SN light curve width in both the UV and the optical. We show that these intrinsic variations could represent a statistical limitation in the future use of high-redshift SNe Ia for precision cosmology. We conclude that further detailed studies are needed, both locally and at moderate redshift where the rest-frame UV can be studied precisely, in order that future missions can confidently be planned to fully exploit SNe Ia as cosmological probes. C1 [Ellis, R. S.; Gal-Yam, A.] CALTECH, Pasadena, CA 91125 USA. [Sullivan, M.; Howell, D. A.; Carlberg, R. G.; Conley, A.; Perrett, K.] Univ Toronto, Dept Phys & Astron, Toronto, ON M5S 3H4, Canada. [Sullivan, M.; Hook, I.] Univ Oxford, Dept Phys Astrophys, Oxford OX1 3RH, England. [Nugent, P. E.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Astier, P.; Balland, C.; Guy, J.; Hardin, D.; Pain, R.; Regnault, N.] CNRS, LPHNE, IN2P3, F-75252 Paris 05, France. [Astier, P.; Balland, C.; Guy, J.; Hardin, D.; Pain, R.; Regnault, N.] Univ Paris 06, F-75252 Paris 05, France. [Astier, P.; Balland, C.; Guy, J.; Hardin, D.; Pain, R.; Regnault, N.] Univ Paris 07, F-75252 Paris 05, France. [Balam, D.; Pritchet, C. J.] Univ Victoria, Dept Phys & Astron, Victoria, BC V8T 3P6, Canada. [Basa, S.] CNRS, LAM, F-13376 Marseille 12, France. [Fouchez, D.] CNRS, CPPM, IN2P3, F-13288 Marseille 9, France. [Fouchez, D.] Univ Aix Marseille 2, F-13288 Marseille 9, France. RP Ellis, RS (reprint author), CALTECH, E Calif Blvd, Pasadena, CA 91125 USA. EM rse@astro.caltech.edu RI Carlberg, Raymond/I-6947-2012; OI Carlberg, Raymond/0000-0002-7667-0081; Sullivan, Mark/0000-0001-9053-4820 NR 85 TC 93 Z9 94 U1 0 U2 2 PU UNIV CHICAGO PRESS PI CHICAGO PA 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD FEB 10 PY 2008 VL 674 IS 1 BP 51 EP 69 DI 10.1086/524981 PG 19 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 266RJ UT WOS:000253454400005 ER PT J AU Urrutia, T Lacy, M Becker, RH AF Urrutia, Tanya Lacy, Mark Becker, Robert H. TI Evidence for quasar activity triggered by galaxy mergers in HST observations of dust-reddened quasars SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies : active; galaxies : evolution; galaxies : interactions; quasars : general ID HUBBLE-SPACE-TELESCOPE; DIGITAL SKY SURVEY; SUPERMASSIVE BLACK-HOLES; HOST GALAXIES; LUMINOSITY FUNCTION; GALACTIC NUCLEI; INFRARED GALAXIES; ADAPTIVE OPTICS; RED QUASARS; 1ST SURVEY AB We present Hubble Space Telescope ACS images of 13 dust-reddened type I quasars selected from the FIRST/2MASS Red Quasar Survey. These quasars have high intrinsic luminosities after correction for dust obscuration ( -23.5 >= M-B >= -26.2 from K-magnitude). The images show strong evidence of recent or ongoing interaction in 11 of the 13 cases, even before the quasar nucleus is subtracted. None of the host galaxies are well fit by a simple elliptical profile. The fraction of quasars showing interaction is significantly higher than the 30% seen in samples of host galaxies of normal, unobscured quasars. There is a weak correlation between the amount of dust reddening and the magnitude of interaction in the host galaxy, measured using the Gini coefficient and the concentration index. Although few host galaxy studies of normal quasars are matched to ours in intrinsic quasar luminosity, no evidence has been found for a strong dependence of merger activity on host luminosity in samples of the host galaxies of normal quasars. We thus believe that the high merger fraction in our sample is related to their obscured nature, with a significant amount of reddening occurring in the host galaxy. The red quasar phenomenon seems to have an evolutionary explanation, with the young quasar spending the early part of its lifetime enshrouded in an interacting galaxy. This might be further indication of a link between AGNs and starburst galaxies. C1 [Urrutia, Tanya; Becker, Robert H.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Urrutia, Tanya; Becker, Robert H.] Lawrence Livermore Natl Lab, IGPP, Livermore, CA 94550 USA. [Lacy, Mark] CALTECH, Spitzer Sci Ctr, Pasadena, CA 91125 USA. RP Urrutia, T (reprint author), Univ Calif Davis, Dept Phys, 1 Shields Ave, Davis, CA 95616 USA. EM urrutia@physics.ucdavis.edu; mlacy@ipac.caltech.edu; bob@igpp.ucllnl.org OI Urrutia, Tanya/0000-0001-6746-9936 NR 62 TC 96 Z9 96 U1 0 U2 1 PU UNIV CHICAGO PRESS PI CHICAGO PA 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD FEB 10 PY 2008 VL 674 IS 1 BP 80 EP 96 DI 10.1086/523959 PG 17 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 266RJ UT WOS:000253454400008 ER PT J AU Karlsson, N Kamae, T AF Karlsson, Niklas Kamae, Tuneyoshi TI Parameterization of the angular distribution of gamma rays produced by p-p interaction in astronomical environments SO ASTROPHYSICAL JOURNAL LA English DT Article DE cosmic rays; galaxies : jets; gamma rays : theory; ISM : general; neutrinos; supernovae : general ID SYNCHROTRON-PROTON BLAZAR; NEUTRAL PION-DECAY; SUPERNOVA REMNANT; PARTICLE PRODUCTION; SPECTRUM; EMISSION; EGRET; MODEL; SHELL; RX-J1713.7-3946 AB We present the angular distribution of gamma rays produced by proton-proton interactions in parameterized formulae to facilitate calculations in astrophysical environments. The parameterization is derived from Monte Carlo simulations of the up-to-date proton-proton interaction model and its extension by Kamae and coworkers. This model includes the logarithmically rising inelastic cross section, the diffraction dissociation process, and the Feynman scaling violation. The extension adds two baryon resonance contributions: one representing the Delta(1232) and the other representing multiple resonances around 1600 MeV/c(2). We demonstrate the use of the formulae by calculating the predicted gamma-ray spectrum for two different cases: the first is a pencil beam of protons following a power law, and the second is a fanned proton jet with a Gaussian intensity profile impinging on the surrounding material. In both cases we find the predicted gamma-ray spectrum to be dependent on the viewing angle. C1 [Karlsson, Niklas; Kamae, Tuneyoshi] Stanford Linear Accelerator Ctr, Menlo Pk, CA 94025 USA. [Kamae, Tuneyoshi] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, Menlo Pk, CA 94025 USA. RP Karlsson, N (reprint author), Stanford Linear Accelerator Ctr, Menlo Pk, CA 94025 USA. EM niklas@slac.stanford.edu; kamae@slac.stanford.edu NR 59 TC 21 Z9 21 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD FEB 10 PY 2008 VL 674 IS 1 BP 278 EP 285 DI 10.1086/524353 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 266RJ UT WOS:000253454400025 ER PT J AU Achterberg, A Ackermann, M Adams, J Ahrens, J Andeen, K Auffenberg, J Bahcall, JN Bai, X Baret, B Barwick, SW Bay, R Beattie, K Becka, T Becker, JK Becker, KH Berghaus, P Berley, D Bernardini, E Bertrand, D Besson, DZ Blaufuss, E Boersma, DJ Bohm, C Bolmont, J Boser, S Botner, O Bouchta, A Braun, J Burgess, C Burgess, T Castermans, T Chirkin, D Christy, B Clem, J Cowen, DF D'Agostino, MV Davour, A Day, CT De Clercq, C Demirores, L Descamps, F Desiati, P DeYoung, T Diaz-Velez, JC Dreyer, J Dumm, JP Duvoort, MR Edwards, WR Ehrlich, R Eisch, J Ellsworth, RW Evenson, PA Fadiran, O Fazely, AR Filimonov, K Foerster, MM Fox, BD Franckowiak, A Gaisser, TK Gallagher, J Ganugapati, R Geenen, H Gerhardt, L Goldschmidt, A Goodman, JA Gozzini, R Griesel, T Gross, A Grullon, S Gunasingha, RM Gurtner, M Hallgren, A Halzen, F Han, K Hanson, K Hardtke, D Hardtke, R Hart, JE Hasegawa, Y Hauschildt, T Hays, D Heise, J Helbing, K Hellwig, M Herquet, P Hill, GC Hodges, J Hoffman, KD Hommez, B Hoshina, K Hubert, D Hughey, B Hulth, PO Huss, JP Hultqvist, K Hundertmark, S Inaba, M Ishihara, A Jacobsen, J Japaridze, GS Johansson, H Jones, A Joseph, JM Kampert, KH Kappes, A Karg, T Karle, A Kawai, H Kelley, JL Kitamura, N Klein, SR Klepser, S Kohnen, G Kolanoski, H Pke, LK Kowalski, M Kowarik, T Krasberg, M Kuehn, K Labare, M Landsman, H Leich, H Leier, D Liubarsky, I Lundberg, J Lunemann, J Madsen, J Mase, K Matis, HS McCauley, T McParland, CP Meli, A Messarius, T Meszaros, P Miyamoto, H Mokhtarani, A Montaruli, T Morey, A Morse, R Movit, SM Munich, K Nahnhauer, R Nam, JW Niessen, P Nygren, DR Ogelman, H Olivas, A Patton, S Pena-Garay, C Heros, CPL Piegsa, A Pieloth, D Pohl, AC Porrata, R Pretz, J Price, PB Przybylski, GT Rawlins, K Razzaque, S Resconi, E Rhode, W Ribordy, M Rizzo, A Robbins, S Roth, P Rott, C Rutledge, D Ryckbosch, D Sander, HG Sarkar, S Schlenstedt, S Schmidt, T Schneider, D Seckel, D Semburg, B Seo, SH Seunarine, S Silvestri, A Smith, AJ Solarz, M Song, C Sopher, JE Spiczak, GM Spiering, C Stamatikos, M Stanev, T Steffen, P Stezelberger, T Stokstad, RG Stoufer, MC Stoyanov, S Strahler, EA Straszheim, T Sulanke, KH Sullivan, GW Sumner, TJ Taboada, I Tarasova, O Tepe, A Thollander, L Tilav, S Tluczykont, M Toale, PA Turcan, D Van Eijndhoven, N Vandenbroucke, J Van Overloop, A Viscomi, V Voigt, B Wagner, W Walck, C Waldmann, H Walter, M Wang, YR Wendt, C Wiebusch, CH Wikstrom, G Williams, DR Wischnewski, R Wissing, H Woschnagg, K Xu, XW Yodh, G Yoshida, S Zornoza, JD Boer, M Cline, T Crew, G Feroci, M Frontera, F Hurley, K Lamb, D Rau, A Rossi, F Ricker, G Von Kienlin, A AF Achterberg, A. Ackermann, M. Adams, J. Ahrens, J. Andeen, K. Auffenberg, J. Bahcall, J. N. Bai, X. Baret, B. Barwick, S. W. Bay, R. Beattie, K. Becka, T. Becker, J. K. Becker, K. -H. Berghaus, P. Berley, D. Bernardini, E. Bertrand, D. Besson, D. Z. Blaufuss, E. Boersma, D. J. Bohm, C. Bolmont, J. Boeser, S. Botner, O. Bouchta, A. Braun, J. Burgess, C. Burgess, T. Castermans, T. Chirkin, D. Christy, B. Clem, J. Cowen, D. F. D'Agostino, M. V. Davour, A. Day, C. T. De Clercq, C. Demiroeres, L. Descamps, F. Desiati, P. DeYoung, T. Diaz-Velez, J. C. Dreyer, J. Dumm, J. P. Duvoort, M. R. Edwards, W. R. Ehrlich, R. Eisch, J. Ellsworth, R. W. Evenson, P. A. Fadiran, O. Fazely, A. R. Filimonov, K. Foerster, M. M. Fox, B. D. Franckowiak, A. Gaisser, T. K. Gallagher, J. Ganugapati, R. Geenen, H. Gerhardt, L. Goldschmidt, A. Goodman, J. A. Gozzini, R. Griesel, T. Gross, A. Grullon, S. Gunasingha, R. M. Gurtner, M. Hallgren, A. Halzen, F. Han, K. Hanson, K. Hardtke, D. Hardtke, R. Hart, J. E. Hasegawa, Y. Hauschildt, T. Hays, D. Heise, J. Helbing, K. Hellwig, M. Herquet, P. Hill, G. C. Hodges, J. Hoffman, K. D. Hommez, B. Hoshina, K. Hubert, D. Hughey, B. Hulth, P. O. Huess, J. -P. Hultqvist, K. Hundertmark, S. Inaba, M. Ishihara, A. Jacobsen, J. Japaridze, G. S. Johansson, H. Jones, A. Joseph, J. M. Kampert, K. -H. Kappes, A. Karg, T. Karle, A. Kawai, H. Kelley, J. L. Kitamura, N. Klein, S. R. Klepser, S. Kohnen, G. Kolanoski, H. Pke, L. Ko Kowalski, M. Kowarik, T. Krasberg, M. Kuehn, K. Labare, M. Landsman, H. Leich, H. Leier, D. Liubarsky, I. Lundberg, J. Luenemann, J. Madsen, J. Mase, K. Matis, H. S. McCauley, T. McParland, C. P. Meli, A. Messarius, T. Meszaros, P. Miyamoto, H. Mokhtarani, A. Montaruli, T. Morey, A. Morse, R. Movit, S. M. Muenich, K. Nahnhauer, R. Nam, J. W. Niessen, P. Nygren, D. R. Oegelman, H. Olivas, A. Patton, S. Pena-Garay, C. De Los Heros, C. Perez Piegsa, A. Pieloth, D. Pohl, A. C. Porrata, R. Pretz, J. Price, P. B. Przybylski, G. T. Rawlins, K. Razzaque, S. Resconi, E. Rhode, W. Ribordy, M. Rizzo, A. Robbins, S. Roth, P. Rott, C. Rutledge, D. Ryckbosch, D. Sander, H. -G. Sarkar, S. Schlenstedt, S. Schmidt, T. Schneider, D. Seckel, D. Semburg, B. Seo, S. H. Seunarine, S. Silvestri, A. Smith, A. J. Solarz, M. Song, C. Sopher, J. E. Spiczak, G. M. Spiering, C. Stamatikos, M. Stanev, T. Steffen, P. Stezelberger, T. Stokstad, R. G. Stoufer, M. C. Stoyanov, S. Strahler, E. A. Straszheim, T. Sulanke, K. -H. Sullivan, G. W. Sumner, T. J. Taboada, I. Tarasova, O. Tepe, A. Thollander, L. Tilav, S. Tluczykont, M. Toale, P. A. Turcan, D. Van Eijndhoven, N. Vandenbroucke, J. Van Overloop, A. Viscomi, V. Voigt, B. Wagner, W. Walck, C. Waldmann, H. Walter, M. Wang, Y. -R. Wendt, C. Wiebusch, C. H. Wikstroem, G. Williams, D. R. Wischnewski, R. Wissing, H. Woschnagg, K. Xu, X. W. Yodh, G. Yoshida, S. Zornoza, J. D. Boer, M. Cline, T. Crew, G. Feroci, M. Frontera, F. Hurley, K. Lamb, D. Rau, A. Rossi, F. Ricker, G. Von Kienlin, A. TI The search for muon neutrinos from northern hemisphere gamma-ray bursts with amanda SO ASTROPHYSICAL JOURNAL LA English DT Article DE gamma rays : bursts; neutrinos ID HIGH-ENERGY NEUTRINOS; SUPERNOVAE; CONNECTION; TELESCOPES; DETECTORS; SELECTION; EMISSION; PARADIGM; BATSE; IB/C AB We present the results of the analysis of neutrino observations by the Antarctic Muon and Neutrino Detector Array (AMANDA) correlated with photon observations of more than 400 gamma-ray bursts (GRBs) in the northern hemisphere from 1997 to 2003. During this time period, AMANDA's effective collection area for muon neutrinos was larger than that of any other existing detector. After the application of various selection criteria to our data, we expect similar to 1 neutrino event and <2 background events. Based on our observations of zero events during and immediately prior to the GRBs in the data set, we set the most stringent upper limit on muon neutrino emission correlated with GRBs. Assuming a Waxman-Bahcall spectrum and incorporating all systematic uncertainties, our flux upper limit has a normalization at 1 PeV of E-2 Phi(nu) <= 6.3 x 10(-9) GeV cm(-2) s(-1) sr(-1), with 90% of the events expected within the energy range of similar to 10 TeV to similar to 3 PeV. The impact of this limit on several theoretical models of GRBs is discussed, as well as the future potential for detection of GRBs by next-generation neutrino telescopes. Finally, we briefly describe several modifications to this analysis in order to apply it to other types of transient point sources. C1 [Achterberg, A.; Duvoort, M. R.; Heise, J.; Van Eijndhoven, N.] Univ Utrecht, Dept Phys & Astron, NL-3584 CC Utrecht, Netherlands. [Ackermann, M.; Bernardini, E.; Bolmont, J.; Boeser, S.; Klepser, S.; Leich, H.; Nahnhauer, R.; Pieloth, D.; Schlenstedt, S.; Steffen, P.; Sulanke, K. -H.; Tarasova, O.; Tluczykont, M.; Voigt, B.; Waldmann, H.; Walter, M.; Wischnewski, R.] Deutsches Elektron Synchrotron, D-15735 Zeuthen, Germany. [Adams, J.; Han, K.; Spiering, C.] Univ Canterbury, Dept Phys & Astron, Christchurch 1, New Zealand. [Ahrens, J.; Becka, T.; Gozzini, R.; Griesel, T.; Hellwig, M.; Pke, L. Ko; Kowarik, T.; Piegsa, A.] Johannes Gutenberg Univ Mainz, Inst Phys, D-55099 Mainz, Germany. [Andeen, K.; Boersma, D. J.; Braun, J.; Desiati, P.; Diaz-Velez, J. C.; Dumm, J. P.; Ganugapati, R.; Grullon, S.; Halzen, F.; Hanson, K.; Hill, G. C.; Hodges, J.; Hoshina, K.; Hughey, B.; Ishihara, A.; Kappes, A.; Karle, A.; Kelley, J. L.; Kitamura, N.; Krasberg, M.; Landsman, H.; Morse, R.; Oegelman, H.; Schneider, D.; Stamatikos, M.; Strahler, E. A.; Wang, Y. -R.; Wendt, C.; Zornoza, J. D.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Auffenberg, J.; Becker, K. -H.; Franckowiak, A.; Geenen, H.; Gurtner, M.; Helbing, K.; Kampert, K. -H.; Karg, T.; Robbins, S.; Semburg, B.; Taboada, I.; Tepe, A.; Vandenbroucke, J.] Univ Wuppertal, Dept Phys, D-42119 Wuppertal, Germany. [Bai, X.] Univ Delaware, Bartol Res Inst, Newark, DE 19716 USA. [Baret, B.; De Clercq, C.; Hubert, D.; Labare, M.; Rizzo, A.] Vrije Univ Brussel, Dienst ELEM, B-1050 Brussels, Belgium. [Barwick, S. W.; Gerhardt, L.; Kuehn, K.; Nam, J. W.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Bay, R.; Filimonov, K.; Hardtke, D.; Morey, A.; Porrata, R.; Price, P. B.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Beattie, K.; Becker, J. K.; Dreyer, J.; Luenemann, J.; Meli, A.; Messarius, T.; Muenich, K.; Rhode, W.; Wagner, W.] Univ Dortmund, Dept Phys, D-44221 Dortmund, Germany. [Bertrand, D.] Univ Libre Brussels, Fac Sci, B-1050 Brussels, Belgium. [Berley, D.; Blaufuss, E.; Ehrlich, R.; Goodman, J. A.; Hoffman, K. D.; Olivas, A.; Pretz, J.; Roth, P.; Schmidt, T.; Smith, A. J.; Straszheim, T.; Sullivan, G. W.; Turcan, D.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [Besson, D. Z.] Univ Kansas, Dept Phys & Astron, Lawrence, KS 66045 USA. [Bohm, C.; Burgess, C.; Burgess, T.; Hulth, P. O.; Hultqvist, K.; Hundertmark, S.; Johansson, H.; Thollander, L.; Walck, C.; Wikstroem, G.] Univ Stockholm, Dept Phys, SE-10691 Stockholm, Sweden. [Botner, O.; Bouchta, A.; Davour, A.; Hallgren, A.; Lundberg, J.; De Los Heros, C. Perez; Pohl, A. C.] Uppsala Univ, Div High Energy Phys, S-75121 Uppsala, Sweden. [Cowen, D. F.; Fox, B. D.; Hart, J. E.; Meszaros, P.; Rutledge, D.; Seo, S. H.; Toale, P. A.; Viscomi, V.; Williams, D. R.] Univ Mons, B-7000 Mons, Belgium. [Hommez, B.; Ryckbosch, D.; Van Overloop, A.] Univ Ghent, Dept Subatom & Radiat Phys, B-9000 Ghent, Belgium. [Eisch, J.; Hardtke, D.; Madsen, J.; Spiczak, G. M.] Univ Wisconsin, Dept Phys, River Falls, WI 54022 USA. [Fadiran, O.] Clark Atlanta Univ, CTSPS, Atlanta, GA 30314 USA. [Fazely, A. R.; Gunasingha, R. M.; Xu, X. W.] So Univ, Dept Phys, Baton Rouge, LA 70813 USA. [Gallagher, J.] Univ Wisconsin, Dept Astron, Madison, WI 53706 USA. [Resconi, E.] Max Planck Inst Kernphys, D-69177 Heidelberg, Germany. [Hasegawa, Y.; Inaba, M.; Kawai, H.; Mase, K.; Miyamoto, H.; Yoshida, S.] Chiba Univ, Dept Phys, Chiba 2638522, Japan. [Huess, J. -P.; Wiebusch, C. H.; Wissing, H.] Rhein Westfal TH Aachen, Inst Phys 3, D-52074 Aachen, Germany. [Kolanoski, H.; Kowalski, M.] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany. [Liubarsky, I.; Sumner, T. J.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, London SW7 2BW, England. [Pohl, A. C.] Kalmar Univ, Dept Chem & Biomed Sci, S-39182 Kalmar, Sweden. [Sarkar, S.] Univ Oxford, Dept Phys, Oxford OX1 3NP, England. [Zornoza, J. D.] Univ Valencia, CSIC, IFIC, Valencia 46071, Spain. [Boer, M.] Observ Haute Provence, St Michel Observ, F-04870 St Michel, France. [Crew, G.; Ricker, G.] MIT, Kavli Inst Astrophys & Space Res, Cambridge, MA 02139 USA. [Feroci, M.] CNR, Area Ric Roma Tor Vergata, Inst Nazl Astrofis, Inst Astrofis Spaziale & Fis Cosmica, I-00133 Rome, Italy. [Lamb, D.] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [Rau, A.] CALTECH, Caltech Opt Observ, Pasadena, CA 91125 USA. [Von Kienlin, A.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Frontera, F.; Rossi, F.] Univ Ferrara, Dept Phys, I-44100 Ferrara, Italy. [Stamatikos, M.; Cline, T.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Beattie, K.; Goldschmidt, A.; Hays, D.; Jacobsen, J.; Jones, A.; Joseph, J. M.; Klein, S. R.; Matis, H. S.; McParland, C. P.; Nygren, D. R.; Patton, S.; Przybylski, G. T.; Stezelberger, T.; Stokstad, R. G.; Stoufer, M. C.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Rawlins, K.] Univ Alaska Anchorage, Dept Phys & Astron, Anchorage, AK 99508 USA. [Cowen, D. F.; Meszaros, P.; Movit, S. M.; Razzaque, S.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Foerster, M. M.; Fox, B. D.; Hart, J. E.; Seo, S. H.; Viscomi, V.] Penn State Univ, Dept Phys, University Pk, PA 16802 USA. [Bahcall, J. N.] Inst Adv Study, Princeton, NJ 08540 USA. RP Achterberg, A (reprint author), Univ Utrecht, Dept Phys & Astron, NL-3584 CC Utrecht, Netherlands. RI Song, Chihwa/A-3455-2008; Hundertmark, Stephan/A-6592-2010; Wiebusch, Christopher/G-6490-2012; Kowalski, Marek/G-5546-2012; Botner, Olga/A-9110-2013; Hallgren, Allan/A-8963-2013; Tjus, Julia/G-8145-2012; Auffenberg, Jan/D-3954-2014; Zornoza, Juan de Dios/L-1604-2014; Sarkar, Subir/G-5978-2011 OI Hubert, Daan/0000-0002-4365-865X; Perez de los Heros, Carlos/0000-0002-2084-5866; Feroci, Marco/0000-0002-7617-3421; Wiebusch, Christopher/0000-0002-6418-3008; Auffenberg, Jan/0000-0002-1185-9094; Zornoza, Juan de Dios/0000-0002-1834-0690; Sarkar, Subir/0000-0002-3542-858X NR 65 TC 40 Z9 40 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD FEB 10 PY 2008 VL 674 IS 1 BP 357 EP 370 DI 10.1086/524920 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 266RJ UT WOS:000253454400032 ER PT J AU Okhuysen, BS Riahi, DN AF Okhuysen, B. S. Riahi, D. N. TI On weakly nonlinear convection in mushy layers during solidification of alloys SO JOURNAL OF FLUID MECHANICS LA English DT Article ID AMMONIUM-CHLORIDE SOLUTION; COMPOSITIONAL CONVECTION; BINARY-ALLOYS; DIRECTIONAL SOLIDIFICATION; FRECKLES AB We consider the problem of weakly nonlinear buoyant convection in horizontal mushy layers with permeable mush-liquid interface during the solidification of binary alloys. We analyse the effects of several parameters of the problem on the stationary modes of convection in the form of either a hexagonal pattern or a non-hexagonal pattern such as rolls, rectangles and squares. No assumption is made on the thickness of the mushy layer, and a number of simplifying assumptions made in previous theoretical investigations of the problem are relaxed here in order to study the problem based on a more realistic model. Using both analytical and numerical methods, we determine the steady solutions for the nonlinear problem in a range of the Rayleigh number R near its critical value. Both the nonlinear basic state and variable permeability of the present problem favour hexagon-pattern convection. The results of the analyses and computations indicate that depending on the range of values of the parameters, bifurcation to hexagonal or non-hexagonal convection can be either supercritical or subcritical. However, among all the computed solutions in the particular range of values of the parameters that are most relevant to those of the experiments, only convection in the form of down-hexagons with downflow at the cell centres and upflow at the cell boundaries, was found to be realizable, in the sense that its amplitude increases with R. C1 [Okhuysen, B. S.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Riahi, D. N.] Univ Texas Pan Amer, Dept Math, Edinburg, TX 78541 USA. RP Okhuysen, BS (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. NR 24 TC 11 Z9 11 U1 0 U2 2 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0022-1120 J9 J FLUID MECH JI J. Fluid Mech. PD FEB 10 PY 2008 VL 596 BP 143 EP 167 DI 10.1017/S0022112007009366 PG 25 WC Mechanics; Physics, Fluids & Plasmas SC Mechanics; Physics GA 262VZ UT WOS:000253177400007 ER PT J AU Zhou, G Hanson, J Gorte, RJ AF Zhou, Gong Hanson, Jonathan Gorte, Raymond J. TI A thermodynamic investigation of the redox properties of ceria-titania mixed oxides SO APPLIED CATALYSIS A-GENERAL LA English DT Article DE ceria-titania; ceria; coulometric titration; thermodynamic properties; oxidation enthalpy; water-gas shift ID WATER-GAS-SHIFT; ZIRCONIA SOLID-SOLUTIONS; PEM FUEL-CELL; ELECTRICAL-PROPERTIES; EXHAUST CATALYSTS; OXYGEN; OXIDATION; CEO2; PD; ENTHALPIES AB Ceria-titania solutions with compositions of Ce0.9Ti0.1O2 and Ce0.8TiO0.2O2 were prepared by the citric-acid (Pechini) method and characterized using X-ray diffraction (XRD) for structure, coulometric titration for redox thermodynamics, and water-gas-shift (WGS) reaction rates. Following calcination at 973 K, XRD suggests that the mixed oxides exist as single phase, fluorite structures, although there was no significant change in the lattice parameter compared to pure ceria. The mixed oxides are shown to be significantly more reducible than bulk ceria, with enthalpies for reoxidation being approximately -500 kJ/mol O-2, compared to -760 kJ/mol O-2 for bulk ceria. However, WGS rates over 1 wt% Pd supported on ceria, Ce0.8Ti0.2O2, and Ce0.8Zr0.2O2 were nearly the same. For calcination at 1323 K, the mixed oxides separated into ceria and titania phases, as indicated by both the XRD and thermodynamic results. (c) 2007 Elsevier B.V. All rights reserved. C1 [Zhou, Gong; Gorte, Raymond J.] Univ Penn, Dept Chem & Biomol Engn, Philadelphia, PA 19104 USA. [Hanson, Jonathan] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. RP Gorte, RJ (reprint author), Univ Penn, Dept Chem & Biomol Engn, Philadelphia, PA 19104 USA. EM gzhou@seas.upenn.edu; gorte@seas.upenn.edu RI Zhou, Gong/C-7085-2009; Hanson, jonathan/E-3517-2010 NR 40 TC 26 Z9 27 U1 2 U2 32 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0926-860X J9 APPL CATAL A-GEN JI Appl. Catal. A-Gen. PD FEB 8 PY 2008 VL 335 IS 2 BP 153 EP 158 DI 10.1016/j.apcata.2007.11.011 PG 6 WC Chemistry, Physical; Environmental Sciences SC Chemistry; Environmental Sciences & Ecology GA 264DY UT WOS:000253267100003 ER PT J AU Aziz, RK Bartels, D Best, AA DeJongh, M Disz, T Edwards, RA Formsma, K Gerdes, S Glass, EM Kubal, M Meyer, F Olsen, GJ Olson, R Osterman, AL Overbeek, RA McNeil, LK Paarmann, D Paczian, T Parrello, B Pusch, GD Reich, C Stevens, R Vassieva, O Vonstein, V Wilke, A Zagnitko, O AF Aziz, Ramy K. Bartels, Daniela Best, Aaron A. DeJongh, Matthew Disz, Terrence Edwards, Robert A. Formsma, Kevin Gerdes, Svetlana Glass, Elizabeth M. Kubal, Michael Meyer, Folker Olsen, Gary J. Olson, Robert Osterman, Andrei L. Overbeek, Ross A. McNeil, Leslie K. Paarmann, Daniel Paczian, Tobias Parrello, Bruce Pusch, Gordon D. Reich, Claudia Stevens, Rick Vassieva, Olga Vonstein, Veronika Wilke, Andreas Zagnitko, Olga TI The RAST server: Rapid annotations using subsystems technology SO BMC GENOMICS LA English DT Article ID GENOME ANNOTATION; PROKARYOTE GENOMES; SYSTEM; IDENTIFICATION; CLASSIFICATION; BACTERIAL; PROTEINS; RESOURCE; GENES AB Background: The number of prokaryotic genome sequences becoming available is growing steadily and is growing faster than our ability to accurately annotate them. Description: We describe a fully automated service for annotating bacterial and archaeal genomes. The service identifies protein-encoding, rRNA and tRNA genes, assigns functions to the genes, predicts which subsystems are represented in the genome, uses this information to reconstruct the metabolic network and makes the output easily downloadable for the user. In addition, the annotated genome can be browsed in an environment that supports comparative analysis with the annotated genomes maintained in the SEED environment. The service normally makes the annotated genome available within 12-24 hours of submission, but ultimately the quality of such a service will be judged in terms of accuracy, consistency, and completeness of the produced annotations. We summarize our attempts to address these issues and discuss plans for incrementally enhancing the service. Conclusion: By providing accurate, rapid annotation freely to the community we have created an important community resource. The service has now been utilized by over 120 external users annotating over 350 distinct genomes. C1 [Edwards, Robert A.; Gerdes, Svetlana; Osterman, Andrei L.; Overbeek, Ross A.; Parrello, Bruce; Pusch, Gordon D.; Vassieva, Olga; Vonstein, Veronika; Zagnitko, Olga] Fellowship Interpretat Genomes, Burr Ridge, IL 60527 USA. [Disz, Terrence; Edwards, Robert A.; Glass, Elizabeth M.; Meyer, Folker; Olsen, Gary J.; Olson, Robert; Stevens, Rick] Argonne Natl Lab, Div Math & Comp Sci, Argonne, IL 60439 USA. [Olsen, Gary J.] Univ Illinois, Dept Microbiol, Urbana, IL 61801 USA. [Osterman, Andrei L.] Burnham Inst, La Jolla, CA 92037 USA. [McNeil, Leslie K.; Reich, Claudia] Univ Illinois, Natl Ctr Supercomp Applicat, Urbana, IL 61801 USA. [Best, Aaron A.; DeJongh, Matthew; Formsma, Kevin] Hope Coll, Holland, MI 49423 USA. [Aziz, Ramy K.] Univ Tennessee, Hlth Sci Ctr, Memphis, TN 38136 USA. [Aziz, Ramy K.] Cairo Univ, Dept Microbiol & Immunol, Cairo, Egypt. [Bartels, Daniela; Disz, Terrence; Kubal, Michael; Meyer, Folker; Olson, Robert; Paarmann, Daniel; Paczian, Tobias; Pusch, Gordon D.; Stevens, Rick; Wilke, Andreas] Univ Chicago, Computat Inst, Chicago, IL 60637 USA. RP Overbeek, RA (reprint author), Fellowship Interpretat Genomes, Burr Ridge, IL 60527 USA. EM ramy.aziz@gmail.com; bartels@mcs.anl.gov; Best@hope.edu; dejongh@hope.edu; disz@mcs.anl.gov; RobE@theFIG.info; kevin.formsma@hope.edu; Sveta@theFIG.info; marland@mcs.anl.gov; mkubal@mcs.anl.gov; folker@mcs.anl.gov; gary@life.uiuc.edu; olson@mcs.anl.gov; osterman@burnham.org; Ross@theFIG.info; lkmcneil@ncsa.uiuc.edu; paarmann@mcs.anl.gov; paczian@mcs.anl.gov; drake@mkrules.net; gdpusch@xnet.com; creich@ncsa.uiuc.edu; stevens@anl.gov; OlgaV@theFIG.info; Veronika@theFIG.info; wilke@mcs.anl.gov; OlgaZ@theFIG.info RI Aziz, Ramy/B-2918-2009; OI Aziz, Ramy/0000-0002-4448-7100; Meyer, Folker/0000-0003-1112-2284 FU PHS HHS [HHSN266200400042C] NR 22 TC 2136 Z9 2156 U1 21 U2 167 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1471-2164 J9 BMC GENOMICS JI BMC Genomics PD FEB 8 PY 2008 VL 9 AR 75 DI 10.1186/1471-2164-9-75 PG 15 WC Biotechnology & Applied Microbiology; Genetics & Heredity SC Biotechnology & Applied Microbiology; Genetics & Heredity GA 274GA UT WOS:000253988600002 PM 18261238 ER PT J AU Baerson, SR Dayan, FE Rimando, AM Nanayakkara, NPD Liu, CJ Schroerder, J Fishbein, M Pan, Z Kagan, IA Pratt, LH Le Cordonnier-Pratt, MM Duke, SO AF Baerson, Scott R. Dayan, Franck E. Rimando, Agnes M. Nanayakkara, N. P. Dhammika Liu, Chang-Jun Schroerder, Joachim Fishbein, Mark Pan, Zhiqiang Kagan, Isabelle A. Pratt, Lee H. Le Cordonnier-Pratt, Marie-Miche Duke, Stephen O. TI A functional genomics investigation of allelochemical biosynthesis in Sorghum bicolor root hairs SO JOURNAL OF BIOLOGICAL CHEMISTRY LA English DT Article ID PLANT O-METHYLTRANSFERASES; EXPRESSED SEQUENCE TAGS; SUBSTRATE-SPECIFICITY; RESORCINOLIC LIPIDS; GLANDULAR TRICHOMES; INHIBITORY-ACTIVITY; NATURAL-PRODUCTS; STRUCTURAL BASIS; SORGOLEONE; METHYLATION AB Sorghum is considered to be one of the more allelopathic crop species, producing phytotoxins such as the potent benzoquinone sorgoleone (2-hydroxy-5-methoxy-3-[(Z,Z)-8',11',14'-pentadecatriene]-p-benzoquinone) and its analogs. Sorgoleone likely accounts for much of the allelopathy of Sorghum spp., typically representing the predominant constituent of Sorghum bicolor root exudates. Previous and ongoing studies suggest that the biosynthetic pathway for this plant growth inhibitor occurs in root hair cells, involving a polyketide synthase activity that utilizes an atypical 16:3 fatty acyl-CoA starter unit, resulting in the formation of a pentadecatrienyl resorcinol intermediate. Subsequent modifications of this resorcinolic intermediate are likely to be mediated by S-adenosylmethionine-dependent O-methyltransferases and dihydroxylation by cytochrome P450 monooxygenases, although the precise sequence of reactions has not been determined previously. Analyses performed by gas chromatography-mass spectrometry with sorghum root extracts identified a 3-methyl ether derivative of the likely pentadecatrienyl resorcinol intermediate, indicating that dihydroxylation of the resorcinol ring is preceded by O-methylation at the 3'-position by a novel 5-n-alk(en)ylresorcinol-utilizing O-methyltransferase activity. An expressed sequence tag data set consisting of 5,468 sequences selected at random from an S. bicolor root hair-specific cDNA library was generated to identify candidate sequences potentially encoding enzymes involved in the sorgoleone biosynthetic pathway. Quantitative real time reverse transcription-PCR and recombinant enzyme studies with putative O-methyltransferase sequences obtained from the expressed sequence tag data set have led to the identification of a novel O-methyltransferase highly and predominantly expressed in root hairs (designated SbOMT3), which preferentially utilizes alk(en)ylresorcinols among a panel of benzene-derivative substrates tested. SbOMT3 is therefore proposed to be involved in the biosynthesis of the allelochemical sorgoleone. C1 [Baerson, Scott R.; Dayan, Franck E.; Rimando, Agnes M.; Pan, Zhiqiang; Kagan, Isabelle A.; Duke, Stephen O.] USDA ARS, Nat Prod Utilizat Res Unit, University, MS 38677 USA. [Nanayakkara, N. P. Dhammika] Univ Mississippi, Sch Pharm, Natl Ctr Nat Prod Res, University, MS 38677 USA. [Liu, Chang-Jun] Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. [Schroerder, Joachim] Univ Freiburg, Inst Biol 2, D-79104 Freiburg, Germany. [Fishbein, Mark] Portland State Univ, Dept Biol, Portland, OR 97207 USA. [Pratt, Lee H.; Le Cordonnier-Pratt, Marie-Miche] Univ Georgia, Dept Plant Biol, Athens, GA 30602 USA. RP Baerson, SR (reprint author), USDA ARS, Nat Prod Utilizat Res Unit, POB 8048, University, MS 38677 USA. EM sbaerson@ars.usda.gov RI Dayan, Franck/A-7592-2009 OI Dayan, Franck/0000-0001-6964-2499 NR 76 TC 32 Z9 42 U1 6 U2 26 PU AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3996 USA SN 0021-9258 EI 1083-351X J9 J BIOL CHEM JI J. Biol. Chem. PD FEB 8 PY 2008 VL 283 IS 6 BP 3231 EP 3247 DI 10.1074/jbc.M706587200 PG 17 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 261MJ UT WOS:000253083000027 PM 17998204 ER PT J AU Avenson, TJ Ahn, TK Zigmantas, D Niyogi, KK Li, Z Ballottari, M Bassi, R Fleming, GR AF Avenson, Thomas J. Ahn, Tae Kyu Zigmantas, Donatas Niyogi, Krishna K. Li, Zhirong Ballottari, Matteo Bassi, Roberto Fleming, Graham R. TI Zeaxanthin radical cation formation in minor light-harvesting complexes of higher plant antenna SO JOURNAL OF BIOLOGICAL CHEMISTRY LA English DT Article ID RESOLVED FLUORESCENCE ANALYSIS; PHOTOSYSTEM-II; CHLOROPHYLL FLUORESCENCE; XANTHOPHYLL CYCLE; GREEN PLANTS; OXYGENIC PHOTOSYNTHESIS; ENERGY-DISSIPATION; EXCITED-STATES; PROTEIN CP26; IN-VIVO AB Previous work on intact thylakoid membranes showed that transient formation of a zeaxanthin radical cation was correlated with regulation of photosynthetic light-harvesting via energy-dependent quenching. A molecular mechanism for such quenching was proposed to involve charge transfer within a chlorophyll-zeaxanthin heterodimer. Using near infrared (880 - 1100 nm) transient absorption spectroscopy, we demonstrate that carotenoid (mainly zeaxanthin) radical cation generation occurs solely in isolated minor light-harvesting complexes that bind zeaxanthin, consistent with the engagement of charge transfer quenching therein. We estimated that less than 0.5% of the isolated minor complexes undergo charge transfer quenching in vitro, whereas the fraction of minor complexes estimated to be engaged in charge transfer quenching in isolated thylakoids was more than 80 times higher. We conclude that minor complexes which bind zeaxanthin are sites of charge transfer quenching in vivo and that they can assume Non-quenching and Quenching conformations, the equilibrium LHC(N) reversible arrow LHC(Q) of which is modulated by the transthylakoid pH gradient, the PsbS protein, and protein-protein interactions. C1 [Avenson, Thomas J.; Ahn, Tae Kyu; Fleming, Graham R.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Ahn, Tae Kyu; Zigmantas, Donatas; Niyogi, Krishna K.; Li, Zhirong; Fleming, Graham R.] Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Avenson, Thomas J.; Zigmantas, Donatas; Niyogi, Krishna K.; Li, Zhirong] Univ Calif Berkeley, Dept Plant & Microbial Biol, Berkeley, CA 94720 USA. [Ballottari, Matteo; Bassi, Roberto] Univ Verona, Dept Sci & TEchnol, I-37134 Verona, Italy. RP Fleming, GR (reprint author), Univ Calif Berkeley, Dept Chem, Hildebrand B77, Berkeley, CA 94720 USA. EM GRFleming@lbl.gov RI Ahn, Tae/A-5838-2013; Zigmantas, Donatas/E-5541-2014; OI Zigmantas, Donatas/0000-0003-2007-5256; Ballottari, Matteo/0000-0001-8410-3397; bassi, roberto/0000-0002-4140-8446 NR 45 TC 139 Z9 139 U1 4 U2 39 PU AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3996 USA SN 0021-9258 J9 J BIOL CHEM JI J. Biol. Chem. PD FEB 8 PY 2008 VL 283 IS 6 BP 3550 EP 3558 DI 10.1074/jbc.M705645200 PG 9 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 261MJ UT WOS:000253083000060 PM 17991753 ER PT J AU Han, Q Robinson, H Li, JY AF Han, Qian Robinson, Howard Li, Jianyong TI Crystal structure of human kynurenine aminotransferase II SO JOURNAL OF BIOLOGICAL CHEMISTRY LA English DT Article ID ALPHA-AMINOADIPATE AMINOTRANSFERASE; MITOCHONDRIAL ASPARTATE-AMINOTRANSFERASE; HUNTINGTONS-DISEASE; ESCHERICHIA-COLI; RAT-BRAIN; 3-NITROPROPIONIC ACID; TRYPTOPHAN CATABOLISM; MOLECULAR REPLACEMENT; SYNAPTIC-TRANSMISSION; ANGSTROM RESOLUTION AB Human kynurenine aminotransferase II (hKAT-II) efficiently catalyzes the transamination of knunrenine to kynurenic acid (KYNA). KYNA is the only known endogenous antagonist of N-methyl-D-aspartate (NMDA) receptors and is also an antagonist of 7-nicotinic acetylcholine receptors. Abnormal concentrations of brain KYNA have been implicated in the pathogenesis and development of several neurological and psychiatric diseases in humans. Consequently, enzymes involved in the production of brain KYNA have been considered potential regulatory targets. In this article, we report a 2.16 angstrom crystal structure of hKAT-II and a 1.95 angstrom structure of its complex with kynurenine. The protein architecture of hKAT-II reveals that it belongs to the fold-type I pyridoxal 5-phosphate (PLP)-dependent enzymes. In comparison with all subclasses of fold-type I-PLP-dependent enzymes, we propose that hKAT-II represents a novel subclass in the fold-type I enzymes because of the unique folding of its first 65 N-terminal residues. This study provides a molecular basis for future effort in maintaining physiological concentrations of KYNA through molecular and biochemical regulation of hKAT-II. C1 [Robinson, Howard] Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. [Han, Qian; Li, Jianyong] Virginia Tech Univ, Dept Biochem, Blacksburg, VA 24061 USA. RP Li, JY (reprint author), Virginia Tech, Dept Biochem, Blacksburg, VA 24061 USA. EM lij@vt.edu RI Han, Qian/J-8696-2014 OI Han, Qian/0000-0001-6245-5252 FU NIAID NIH HHS [R01 AI44399] NR 66 TC 25 Z9 26 U1 0 U2 5 PU AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3996 USA SN 0021-9258 J9 J BIOL CHEM JI J. Biol. Chem. PD FEB 8 PY 2008 VL 283 IS 6 BP 3567 EP 3573 DI 10.1074/jbc.M708358200 PG 7 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 261MJ UT WOS:000253083000062 PM 18056995 ER PT J AU Gritti, F Perdu, C Guiochon, G AF Gritti, Fabrice Perdu, Cecile Guiochon, Georges TI Comparison of the performance of a few packing materials designed to minimize the thermodynamic band tailing of basic compounds in reversed-phase liquid chromatography SO JOURNAL OF CHROMATOGRAPHY A LA English DT Article DE column performance; adsorption isotherm; basic compounds; peak tailing; Luna-C-18; Cogent-C-18; XTerra-C-18; Extend-C-18; phenol; caffeine; propranolol chloride; amitriptyline chloride ID STATIONARY PHASES; ADSORPTION MECHANISM; C-18-BONDED SILICA; COLUMN PACKINGS; HPLC; RETENTION; OVERLOAD; PH; HETEROGENEITY; SEPARATIONS AB The adsorption isotherms of phenol, caffeine, propranolol chloride, and amitriptyline chloride were measured on three new brands of C-18-bonded silica that have been designed to be more resistant than conventional C-18-bonded silica at high pHs (> 8). These columns were the 4 mu m Bidendate Cogent-C-18 (Microsolv Technology Corporation, Long Branch, NJ, USA), the 3.5 mu m Zorbax Extend-C-18 (Agilent Technologies, Palo Alto, CA, USA), and the 5 mu m XTerra-C-18 (Waters, Milford, MA, USA). The originality of these adsorbents is due to their surface chemistry, which protects them from rapid hydrolysis or dissolution at extreme pH conditions. Their adsorption properties were compared to those of the 3 mu m Luna-C-18 (Phenomenex, Torrance, CA), which is a more conventional monofunctional material. The adsorption data were acquired by frontal analysis (FA) and the adsorption energy distributions (AEDs) of all systems studied were calculated by the expectation-maximization (EM) method. The experimental results show that neither a simple surface protection (Extend-C-18) nor the elimination of most of the silanol groups (Cogent-C-18) is sufficient to avoid a peak tailing of the basic compounds at pH 8 that is of thermodynamic origin. The incorporation of organic moieties in the silica matrix, which was achieved in XTerra-C-18, the first generation of hybrid methyl/silica material, reduces the silanols activity and is more successful in reducing this peak tailing. (c) 2007 Elsevier B.V. All rights reserved. C1 [Gritti, Fabrice; Perdu, Cecile; Guiochon, Georges] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. [Gritti, Fabrice; Perdu, Cecile; Guiochon, Georges] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. RP Guiochon, G (reprint author), Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. EM guiochon@utk.edu NR 35 TC 11 Z9 11 U1 1 U2 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0021-9673 J9 J CHROMATOGR A JI J. Chromatogr. A PD FEB 8 PY 2008 VL 1180 IS 1-2 BP 73 EP 89 DI 10.1016/j.chroma.2007.12.022 PG 17 WC Biochemical Research Methods; Chemistry, Analytical SC Biochemistry & Molecular Biology; Chemistry GA 261EC UT WOS:000253060900009 PM 18164715 ER PT J AU Varma, S Sabo, D Rempe, SB AF Varma, Sarneer Sabo, Dubravko Rempe, Susan B. TI K+/Na+ selectivity in K channels and valinomycin: Over-coordination versus cavity-size constraints SO JOURNAL OF MOLECULAR BIOLOGY LA English DT Article DE ion coordination; quantum chemistry; molecular association; solvation phase; ligand binding ID ENERGY PERTURBATION SIMULATIONS; INITIO MOLECULAR-DYNAMICS; POTASSIUM CHANNELS; AQUEOUS-SOLUTIONS; ION SELECTIVITY; WATER; TRANSPORT; HYDRATION; SODIUM; KCSA AB Potassium channels and valinomycin molecules share the exquisite ability to select K+ over Na+. Highly selective K channels maintain a special local environment around their binding sites devoid of competing hydrogen bond donor groups, which enables spontaneous transfer of K+ from states of low coordinations in water into states of over-coordination by eight carbonyl ligands. In such a phase-activated state, electrostatic interactions from these 8-fold binding sites, constrained to maintain high coordinations, result in K+/Na+ selectivity with no need for a specific cavity size. Under such conditions, however, direct coordination from five or six carbonyl ligands does not result in selectivity. Yet, valinomycin molecules achieve selectivity by providing only six carbonyl ligands. Does valinomycin use additional coordinating ligands from the solvent or does it have special structural features not present in K channels? Quantum chemical investigations undertaken here demonstrate that valinomycin selectivity is due to cavity size constraints that physically prevent it from collapsing onto the smaller sodium ion. Valinomycin enforces these constraints by using a combination of intramolecular hydrogen bonds and other structural features, including its specific ring size and the spacing between its connected ligands. Results of these investigations provide a consistent explanation for the experimental data available for the ion-complexation properties of valinomycin in solvents of varying polarity. Together, investigations of these two systems reveal how nature, despite being popular for its parsimony in recycling functional motifs, can use different combinations of phase, coordination number, cavity size, and rigidity (constraints) to achieve K+/Na+ selectivity. (C) 2007 Elsevier Ltd. All rights reserved. C1 [Varma, Sarneer; Sabo, Dubravko; Rempe, Susan B.] Sandia Natl Labs, Computat Biosci Dept, Albuquerque, NM 87185 USA. RP Rempe, SB (reprint author), Sandia Natl Labs, Computat Biosci Dept, POB 5800, Albuquerque, NM 87185 USA. EM sirempe@sandia.gov RI Rempe, Susan/H-1979-2011 FU NEI NIH HHS [PN2 EY016570, PN2 EY016570-04] NR 60 TC 80 Z9 81 U1 6 U2 20 PU ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD PI LONDON PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND SN 0022-2836 EI 1089-8638 J9 J MOL BIOL JI J. Mol. Biol. PD FEB 8 PY 2008 VL 376 IS 1 BP 13 EP 22 DI 10.1016/j.jmb.2007.11.059 PG 10 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 262XK UT WOS:000253181500003 PM 18155244 ER PT J AU Alava, MJ Nukala, PKVV Zapperi, S AF Alava, Mikko J. Nukala, Phani K. V. V. Zapperi, Stefano TI Role of disorder in the size scaling of material strength SO PHYSICAL REVIEW LETTERS LA English DT Article ID FRACTURE; MECHANICS AB We study the sample-size dependence of the strength of disordered materials with a flaw, by numerical simulations of lattice models for fracture. We find a crossover between a regime controlled by the disorder and another controlled by stress concentrations, ruled by continuum fracture mechanics. The results are formulated in terms of a scaling law involving a statistical fracture process zone. Its existence and scaling properties are revealed only by sampling over many configurations of the disorder. The scaling law is in good agreement with experimental results obtained from notched paper samples. C1 [Alava, Mikko J.] Helsinki Univ Technol, Phys Lab, FIN-02015 Espoo, Finland. [Nukala, Phani K. V. V.] Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN 37831 USA. [Zapperi, Stefano] Univ Modena, Dipartimento Fis, INFM CNR, S3, I-41100 Modena, Italy. [Zapperi, Stefano] Univ Reggio Emilia, I-41100 Modena, Italy. [Zapperi, Stefano] ISI Fdn, I-10133 Turin, Italy. RP Alava, MJ (reprint author), Helsinki Univ Technol, Phys Lab, FIN-02015 Espoo, Finland. RI Alava, Mikko/G-2202-2013; Zapperi, Stefano/C-9473-2009 OI Alava, Mikko/0000-0001-9249-5079; Zapperi, Stefano/0000-0001-5692-5465 NR 18 TC 19 Z9 19 U1 0 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD FEB 8 PY 2008 VL 100 IS 5 AR 055502 DI 10.1103/PhysRevLett.100.055502 PG 4 WC Physics, Multidisciplinary SC Physics GA 260OM UT WOS:000253019600043 PM 18352386 ER PT J AU Aubert, B Bona, M Boutigny, D Karyotakis, Y Lees, JP Poireau, V Prudent, X Tisserand, V Zghiche, A Tico, JG Grauges, E Lopez, L Palano, A Pappagallo, M Eigen, G Stugu, B Sun, L Abrams, GS Battaglia, M Brown, DN Button-Shafer, J Cahn, RN Groysman, Y Jacobsen, RG Kadyk, JA Kerth, LT Kolomensky, YG Kukartsev, G Pegna, DL Lynch, G Mir, LM Orimoto, TJ Osipenkov, IL Ronan, MT Tackmann, K Tanabe, T Wenzel, WA Sanchez, PD Hawkes, CM Watson, AT Koch, H Schroeder, T Walker, D Asgeirsson, DJ Cuhadar-Donszelmann, T Fulsom, BG Hearty, C Mattison, TS McKenna, JA Barrett, M Khan, A Saleem, M Teodorescu, L Blinov, VE Bukin, AD Druzhinin, VP Golubev, VB Onuchin, AP Serednyakov, SI Skovpen, YI Solodov, EP Todyshev, KY Bondioli, M Curry, S Eschrich, I Kirkby, D Lankford, AJ Lund, P Mandelkern, M Martin, EC Stoker, DP Abachi, S Buchanan, C Foulkes, SD Gary, JW Liu, F Long, O Shen, BC Vitug, GM Zhang, L Paar, HP Rahatlou, S Sharma, V Berryhill, JW Campagnari, C Cunha, A Dahmes, B Hong, TM Kovalskyi, D Richman, JD Beck, TW Eisner, AM Flacco, CJ Heusch, CA Kroseberg, J Lockman, WS Schalk, T Schumm, BA Seiden, A Wilson, MG Winstrom, LO Chen, E Cheng, CH Fang, F Hitlin, DG Narsky, I Piatenko, T Porter, FC Andreassen, R Mancinelli, G Meadows, BT Mishra, K Sokoloff, MD Blanc, F Bloom, PC Chen, S Ford, WT Hirschauer, JF Kreisel, A Nagel, M Nauenberg, U Olivas, A Smith, JG Ulmer, KA Wagner, SR Zhang, J Gabareen, AM Soffer, A Toki, WH Wilson, RJ Winklmeier, F Altenburg, DD Feltresi, E Hauke, A Jasper, H Merkel, J Petzold, A Spaan, B Wacker, K Klose, V Kobel, MJ Lacker, HM Mader, WF Nogowski, R Schubert, J Schubert, KR Schwierz, R Sundermann, JE Volk, A Bernard, D Bonneaud, GR Latour, E Lombardo, V Thiebaux, C Verderi, M Clark, PJ Gradl, W Muheim, F Playfer, S Robertson, AI Watson, JE Xie, Y Andreotti, M Bettoni, D Bozzi, C Calabrese, R Cecchi, A Cibinetto, G Franchini, P Luppi, E Negrini, M Petrella, A Piemontese, L Prencipe, E Santoro, V Anulli, F Baldini-Ferroli, R Calcaterra, A de Sangro, R Finocchiaro, G Pacetti, S Patteri, P Peruzzi, IM Piccolo, M Rama, M Zallo, A Buzzo, A Contri, R Lo Vetere, M Macri, MM Monge, MR Passaggio, S Patrignani, C Robutti, E Santroni, A Tosi, S Chaisanguanthum, KS Morii, M Wu, J Dubitzky, RS Marks, J Schenk, S Uwer, U Bard, DJ Dauncey, PD Flack, RL Nash, JA Vazquez, WP Tibbetts, M Behera, PK Chai, X Charles, MJ Mallik, U Cochran, J Crawley, HB Dong, L Eyges, V Meyer, WT Prell, S Rosenberg, EI Rubin, AE Gao, YY Gritsan, AV Guo, ZJ Lae, CK Denig, AG Fritsch, M Schott, G Arnaud, N Bequilleux, J D'Orazio, A Davier, M Grosdidier, G Hocker, A Lepeltier, V Le Diberder, F Lutz, AM Pruvot, S Rodier, S Roudeau, P Schune, MH Serrano, J Sordini, V Stocchi, A Wang, WF Wormser, G Lange, DJ Wright, DM Bingham, I Burke, JP Chavez, CA Fry, JR Gabathuler, E Gamet, R Hutchcroft, DE Payne, DJ Schofield, KC Touramanis, C Bevan, AJ George, KA Di Lodovico, F Sacco, R Cowan, G Flaecher, HU Hopkins, DA Paramesvaran, S Salvatore, F Wren, AC Brown, DN Davis, CL Allison, J Bailey, D Barlow, NR Barlow, RJ Chia, YM Edgar, CL Lafferty, GD West, TJ Yi, JI Anderson, J Chen, C Jawahery, A Roberts, DA Simi, G Tuggle, JM Blaylock, G Dallapiccola, C Hertzbach, SS Li, X Moore, TB Salvati, E Saremi, S Cowan, R Dujmic, D Fisher, PH Koeneke, K Sciolla, G Spitznagel, M Taylor, F Yamamoto, RK Zhao, M Zheng, Y Mclachlin, SE Patel, PM Robertson, SH Lazzaro, A Palombo, F Bauer, JM Cremaldi, L Eschenburg, V Godang, R Kroeger, R Sanders, DA Summers, DJ Zhao, HW Brunet, S Cote, D Simard, M Taras, P Viaud, FB Nicholson, H De Nardo, G Fabozzi, F Lista, L Monorchio, D Sciacca, C Baak, MA Raven, G Snoek, HL Jessop, CP Knoepfel, KJ LoSecco, JM Benelli, G Corwin, LA Honscheid, K Kagan, H Kass, R Morris, JP Rahimi, AM Regensburger, JJ Sekula, SJ Wong, QK Blount, NL Brau, J Frey, R Igonkina, O Kolb, JA Lu, M Rahmat, R Sinev, NB Strom, D Strube, J Torrence, E Gagliardi, N Gaz, A Margoni, M Morandin, M Pompili, A Posocco, M Rotondo, M Simonetto, F Stroili, R Voci, C Ben-Haim, E Briand, H Calderini, G Chauveau, J David, P Del Buono, L de la Vaissiere, C Hamon, O Leruste, P Malcles, J Ocariz, J Perez, A Prendki, J Gladney, L Biasini, M Covarelli, R Manoni, E Angelini, C Batignani, G Bettarini, S Carpinelli, M Cenci, R Cervelli, A Forti, F Giorgi, MA Lusiani, A Marchiori, G Mazur, MA Morganti, M Neri, N Paoloni, E Rizzo, G Walsh, JJ Biesiada, J Elmer, P Lau, YP Lu, C Olsen, J Smith, AJS Telnov, AV Baracchini, E Bellini, F Cavoto, G del Re, D Di Marco, E Faccini, R Ferrarotto, F Ferroni, F Gaspero, M Jackson, PD Gioi, LL Mazzoni, MA Morganti, S Piredda, G Polci, F Renga, F Voena, C Ebert, M Hartmann, T Schroder, H Waldi, R Adye, T Castelli, G Franek, B Olaiya, EO Roethel, W Wilson, FF Emery, S Escalier, M Gaidot, A Ganzhur, SF de Monchenault, GH Kozanecki, W Vasseur, G Yeche, C Zito, M Chen, XR Liu, H Park, W Purohit, MV White, RM Wilson, JR Allen, MT Aston, D Bartoldus, R Bechtle, P Claus, R Coleman, JP Convery, MR Dingfelder, JC Dorfan, J Dubois-Felsmann, GP Dunwoodie, W Field, RC Glanzman, T Gowdy, SJ Graham, MT Grenier, P Hast, C Innes, WR Kaminski, J Kelsey, MH Kim, H Kim, P Kocian, ML Leith, DWGS Li, S Luitz, S Luth, V Lynch, HL MacFarlane, DB Marsiske, H Messner, R Muller, DR O'Grady, CP Ofte, I Perazzo, A Perl, M Pulliam, T Ratcliff, BN Roodman, A Salnikov, AA Schindler, RH Schwiening, J Snyder, A Su, D Sullivan, MK Suzuki, K Swain, SK Thompson, JM Va'vra, J Wagner, AP Weaver, M Wisniewski, WJ Wittgen, M Wright, DH Yarritu, AK Yi, K Young, CC Ziegler, V Burchat, PR Edwards, AJ Majewski, SA Miyashita, TS Petersen, BA Wilden, L Ahmed, S Alam, MS Bula, R Ernst, JA Jain, V Pan, B Saeed, MA Wappler, FR Zain, SB Krishnamurthy, M Spanier, SM Eckmann, R Ritchie, JL Ruland, AM Schilling, CJ Schwitters, RF Izen, JM Lou, XC Ye, S Bianchi, F Gallo, F Gamba, D Pelliccioni, M Bomben, M Bosisio, L Cartaro, C Cossutti, F Della Ricca, G Lanceri, L Vitale, L Azzolini, V Lopez-March, N Martinez-Vidal, F Milanes, DA Oyanguren, A Albert, J Banerjee, S Bhuyan, B Hamano, K Kowalewski, R Nugent, IM Roney, JM Sobie, RJ Harrison, PF Ilic, J Latham, TE Mohanty, GB Band, HR Chen, X Dasu, S Flood, KT Hollar, JJ Kutter, PE Pan, Y Pierini, M Prepost, R Wu, SL Neal, H AF Aubert, B. Bona, M. Boutigny, D. Karyotakis, Y. Lees, J. P. Poireau, V. Prudent, X. Tisserand, V. Zghiche, A. Garra Tico, J. Grauges, E. Lopez, L. Palano, A. Pappagallo, M. Eigen, G. Stugu, B. Sun, L. Abrams, G. S. Battaglia, M. Brown, D. N. Button-Shafer, J. Cahn, R. N. Groysman, Y. Jacobsen, R. G. Kadyk, J. A. Kerth, L. T. Kolomensky, Yu. G. Kukartsev, G. Pegna, D. Lopes Lynch, G. Mir, L. M. Orimoto, T. J. Osipenkov, I. L. Ronan, M. T. Tackmann, K. Tanabe, T. Wenzel, W. A. Sanchez, P. del Amo Hawkes, C. M. Watson, A. T. Koch, H. Schroeder, T. Walker, D. Asgeirsson, D. J. Cuhadar-Donszelmann, T. Fulsom, B. G. Hearty, C. Mattison, T. S. McKenna, J. A. Barrett, M. Khan, A. Saleem, M. Teodorescu, L. Blinov, V. E. Bukin, A. D. Druzhinin, V. P. Golubev, V. B. Onuchin, A. P. Serednyakov, S. I. Skovpen, Yu. I. Solodov, E. P. Todyshev, K. Yu. Bondioli, M. Curry, S. Eschrich, I. Kirkby, D. Lankford, A. J. Lund, P. Mandelkern, M. Martin, E. C. Stoker, D. P. Abachi, S. Buchanan, C. Foulkes, S. D. Gary, J. W. Liu, F. Long, O. Shen, B. C. Vitug, G. M. Zhang, L. Paar, H. P. Rahatlou, S. Sharma, V. Berryhill, J. W. Campagnari, C. Cunha, A. Dahmes, B. Hong, T. M. Kovalskyi, D. Richman, J. D. Beck, T. W. Eisner, A. M. Flacco, C. J. Heusch, C. A. Kroseberg, J. Lockman, W. S. Schalk, T. Schumm, B. A. Seiden, A. Wilson, M. G. Winstrom, L. O. Chen, E. Cheng, C. H. Fang, F. Hitlin, D. G. Narsky, I. Piatenko, T. Porter, F. C. Andreassen, R. Mancinelli, G. Meadows, B. T. Mishra, K. Sokoloff, M. D. Blanc, F. Bloom, P. C. Chen, S. Ford, W. T. Hirschauer, J. F. Kreisel, A. Nagel, M. Nauenberg, U. Olivas, A. Smith, J. G. Ulmer, K. A. Wagner, S. R. Zhang, J. Gabareen, A. M. Soffer, A. Toki, W. H. Wilson, R. J. Winklmeier, F. Altenburg, D. D. Feltresi, E. Hauke, A. Jasper, H. Merkel, J. Petzold, A. Spaan, B. Wacker, K. Klose, V. Kobel, M. J. Lacker, H. M. Mader, W. F. Nogowski, R. Schubert, J. Schubert, K. R. Schwierz, R. Sundermann, J. E. Volk, A. Bernard, D. Bonneaud, G. R. Latour, E. Lombardo, V. Thiebaux, Ch. Verderi, M. Clark, P. J. Gradl, W. Muheim, F. Playfer, S. Robertson, A. I. Watson, J. E. Xie, Y. Andreotti, M. Bettoni, D. Bozzi, C. Calabrese, R. Cecchi, A. Cibinetto, G. Franchini, P. Luppi, E. Negrini, M. Petrella, A. Piemontese, L. Prencipe, E. Santoro, V. Anulli, F. Baldini-Ferroli, R. Calcaterra, A. de Sangro, R. Finocchiaro, G. Pacetti, S. Patteri, P. Peruzzi, I. M. Piccolo, M. Rama, M. Zallo, A. Buzzo, A. Contri, R. Lo Vetere, M. Macri, M. M. Monge, M. R. Passaggio, S. Patrignani, C. Robutti, E. Santroni, A. Tosi, S. Chaisanguanthum, K. S. Morii, M. Wu, J. Dubitzky, R. S. Marks, J. Schenk, S. Uwer, U. Bard, D. J. Dauncey, P. D. Flack, R. L. Nash, J. A. Vazquez, W. Panduro Tibbetts, M. Behera, P. K. Chai, X. Charles, M. J. Mallik, U. Cochran, J. Crawley, H. B. Dong, L. Eyges, V. Meyer, W. T. Prell, S. Rosenberg, E. I. Rubin, A. E. Gao, Y. Y. Gritsan, A. V. Guo, Z. J. Lae, C. K. Denig, A. G. Fritsch, M. Schott, G. Arnaud, N. Bequilleux, J. D'Orazio, A. Davier, M. Grosdidier, G. Hocker, A. Lepeltier, V. Le Diberder, F. Lutz, A. M. Pruvot, S. Rodier, S. Roudeau, P. Schune, M. H. Serrano, J. Sordini, V. Stocchi, A. Wang, W. F. Wormser, G. Lange, D. J. Wright, D. M. Bingham, I. Burke, J. P. Chavez, C. A. Fry, J. R. Gabathuler, E. Gamet, R. Hutchcroft, D. E. Payne, D. J. Schofield, K. C. Touramanis, C. Bevan, A. J. George, K. A. Di Lodovico, F. Sacco, R. Cowan, G. Flaecher, H. U. Hopkins, D. A. Paramesvaran, S. Salvatore, F. Wren, A. C. Brown, D. N. Davis, C. L. Allison, J. Bailey, D. Barlow, N. R. Barlow, R. J. Chia, Y. M. Edgar, C. L. Lafferty, G. D. West, T. J. Yi, J. I. Anderson, J. Chen, C. Jawahery, A. Roberts, D. A. Simi, G. Tuggle, J. M. Blaylock, G. Dallapiccola, C. Hertzbach, S. S. Li, X. Moore, T. B. Salvati, E. Saremi, S. Cowan, R. Dujmic, D. Fisher, P. H. Koeneke, K. Sciolla, G. Spitznagel, M. Taylor, F. Yamamoto, R. K. Zhao, M. Zheng, Y. Mclachlin, S. E. Patel, P. M. Robertson, S. H. Lazzaro, A. Palombo, F. Bauer, J. M. Cremaldi, L. Eschenburg, V. Godang, R. Kroeger, R. Sanders, D. A. Summers, D. J. Zhao, H. W. Brunet, S. Cote, D. Simard, M. Taras, P. Viaud, F. B. Nicholson, H. De Nardo, G. Fabozzi, F. Lista, L. Monorchio, D. Sciacca, C. Baak, M. A. Raven, G. Snoek, H. L. Jessop, C. P. Knoepfel, K. J. LoSecco, J. M. Benelli, G. Corwin, L. A. Honscheid, K. Kagan, H. Kass, R. Morris, J. P. Rahimi, A. M. Regensburger, J. J. Sekula, S. J. Wong, Q. K. Blount, N. L. Brau, J. Frey, R. Igonkina, O. Kolb, J. A. Lu, M. Rahmat, R. Sinev, N. B. Strom, D. Strube, J. Torrence, E. Gagliardi, N. Gaz, A. Margoni, M. Morandin, M. Pompili, A. Posocco, M. Rotondo, M. Simonetto, F. Stroili, R. Voci, C. Ben-Haim, E. Briand, H. Calderini, G. Chauveau, J. David, P. Del Buono, L. de la Vaissiere, Ch. Hamon, O. Leruste, Ph. Malcles, J. Ocariz, J. Perez, A. Prendki, J. Gladney, L. Biasini, M. Covarelli, R. Manoni, E. Angelini, C. Batignani, G. Bettarini, S. Carpinelli, M. Cenci, R. Cervelli, A. Forti, F. Giorgi, M. A. Lusiani, A. Marchiori, G. Mazur, M. A. Morganti, M. Neri, N. Paoloni, E. Rizzo, G. Walsh, J. J. Biesiada, J. Elmer, P. Lau, Y. P. Lu, C. Olsen, J. Smith, A. J. S. Telnov, A. V. Baracchini, E. Bellini, F. Cavoto, G. del Re, D. Di Marco, E. Faccini, R. Ferrarotto, F. Ferroni, F. Gaspero, M. Jackson, P. D. Gioi, L. Li Mazzoni, M. A. Morganti, S. Piredda, G. Polci, F. Renga, F. Voena, C. Ebert, M. Hartmann, T. Schroeder, H. Waldi, R. Adye, T. Castelli, G. Franek, B. Olaiya, E. O. Roethel, W. Wilson, F. F. Emery, S. Escalier, M. Gaidot, A. Ganzhur, S. F. de Monchenault, G. Hamel Kozanecki, W. Vasseur, G. Yeche, Ch. Zito, M. Chen, X. R. Liu, H. Park, W. Purohit, M. V. White, R. M. Wilson, J. R. Allen, M. T. Aston, D. Bartoldus, R. Bechtle, P. Claus, R. Coleman, J. P. Convery, M. R. Dingfelder, J. C. Dorfan, J. Dubois-Felsmann, G. P. Dunwoodie, W. Field, R. C. Glanzman, T. Gowdy, S. J. Graham, M. T. Grenier, P. Hast, C. Innes, W. R. Kaminski, J. Kelsey, M. H. Kim, H. Kim, P. Kocian, M. L. Leith, D. W. G. S. Li, S. Luitz, S. Luth, V. Lynch, H. L. MacFarlane, D. B. Marsiske, H. Messner, R. Muller, D. R. O'Grady, C. P. Ofte, I. Perazzo, A. Perl, M. Pulliam, T. Ratcliff, B. N. Roodman, A. Salnikov, A. A. Schindler, R. H. Schwiening, J. Snyder, A. Su, D. Sullivan, M. K. Suzuki, K. Swain, S. K. Thompson, J. M. Va'vra, J. Wagner, A. P. Weaver, M. Wisniewski, W. J. Wittgen, M. Wright, D. H. Yarritu, A. K. Yi, K. Young, C. C. Ziegler, V. Burchat, P. R. Edwards, A. J. Majewski, S. A. Miyashita, T. S. Petersen, B. A. Wilden, L. Ahmed, S. Alam, M. S. Bula, R. Ernst, J. A. Jain, V. Pan, B. Saeed, M. A. Wappler, F. R. Zain, S. B. Krishnamurthy, M. Spanier, S. M. Eckmann, R. Ritchie, J. L. Ruland, A. M. Schilling, C. J. Schwitters, R. F. Izen, J. M. Lou, X. C. Ye, S. Bianchi, F. Gallo, F. Gamba, D. Pelliccioni, M. Bomben, M. Bosisio, L. Cartaro, C. Cossutti, F. Della Ricca, G. Lanceri, L. Vitale, L. Azzolini, V. Lopez-March, N. Martinez-Vidal, F. Milanes, D. A. Oyanguren, A. Albert, J. Banerjee, Sw. Bhuyan, B. Hamano, K. Kowalewski, R. Nugent, I. M. Roney, J. M. Sobie, R. J. Harrison, P. F. Ilic, J. Latham, T. E. Mohanty, G. B. Band, H. R. Chen, X. Dasu, S. Flood, K. T. Hollar, J. J. Kutter, P. E. Pan, Y. Pierini, M. Prepost, R. Wu, S. L. Neal, H. TI Observation of B+ -> a(1)(+)(1260)K-0 and B-0 -> a(1)(-)(1260)K+ SO PHYSICAL REVIEW LETTERS LA English DT Article AB We present branching fraction measurements of the decays B+ -> a(1)(+)(1260)K-0 and B-0 -> a(1)(-)(1260)K+ with a(1)(+/-)(1260) -> pi -/+pi(+/-)pi(+/-). The data sample corresponds to 383 x 10(6) B (B) over bar pairs produced in e(+)e(-) annihilation through the Y(4S) resonance. We measure the products of the branching fractions B(B+ -> a(1)(+)) (1260)K-0)B(a(1)(+)(1260) -> pi(-)pi(+)pi(+)) = (17.4 +/- 2.5 +/- 2.2) x 10(-6) and B(B-0 -> a(1)(-)(1260)K+)B(a(1)(-)(1260) -> pi(-)pi(+)pi(+)) = 8.2 +/- 1.5 +/- 1.2) x 10(-6). We also measure the charge asymmetries A(ch)(B+ -> a(1)(+)(1260)K-0) = 0.12 +/- 0.11 +/- 0.02 and A(ch)(B-0 -> a(1)(-)(1260)K+) = -0.16 +/- 0.12 +/- 001. The first uncertainty quoted is statistical and the second is systematic. C1 [Aubert, B.; Bona, M.; Boutigny, D.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prudent, X.; Tisserand, V.; Zghiche, A.] IN2P3 CNRS, Phys Particules Lab, F-74941 Annecy Le Vieux, France. [Aubert, B.; Bona, M.; Boutigny, D.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prudent, X.; Tisserand, V.; Zghiche, A.] Univ Savoie, F-74941 Annecy Le Vieux, France. [Garra Tico, J.; Grauges, E.] Univ Barcelona, Fac Fis, Dept ECM, E-08028 Barcelona, Spain. [Lopez, L.; Palano, A.; Pappagallo, M.] Univ Bari, Dipartimento Fis, I-70126 Bari, Italy. [Lopez, L.; Palano, A.; Pappagallo, M.] Univ Bari, INFN, I-70126 Bari, Italy. [Eigen, G.; Stugu, B.; Sun, L.] Univ Bergen, Inst Phys, N-5007 Bergen, Norway. [Abrams, G. S.; Battaglia, M.; Brown, D. N.; Button-Shafer, J.; Cahn, R. N.; Groysman, Y.; Jacobsen, R. G.; Kadyk, J. A.; Kerth, L. T.; Kolomensky, Yu. G.; Kukartsev, G.; Pegna, D. Lopes; Lynch, G.; Mir, L. M.; Orimoto, T. J.; Osipenkov, I. L.; Ronan, M. T.; Tackmann, K.; Tanabe, T.; Wenzel, W. A.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Abrams, G. S.; Battaglia, M.; Brown, D. N.; Button-Shafer, J.; Cahn, R. N.; Groysman, Y.; Jacobsen, R. G.; Kadyk, J. A.; Kerth, L. T.; Kolomensky, Yu. G.; Kukartsev, G.; Pegna, D. Lopes; Lynch, G.; Mir, L. M.; Orimoto, T. J.; Osipenkov, I. L.; Ronan, M. T.; Tackmann, K.; Tanabe, T.; Wenzel, W. A.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Sanchez, P. del Amo; Hawkes, C. M.; Watson, A. T.] Univ Birmingham, Birmingham B15 2TT, W Midlands, England. [Koch, H.; Schroeder, T.] Ruhr Univ Bochum, Inst Expt Phys 1, D-44780 Bochum, Germany. [Walker, D.] Univ Bristol, Bristol BS8 1TL, Avon, England. [Asgeirsson, D. J.; Cuhadar-Donszelmann, T.; Fulsom, B. G.; Hearty, C.; Mattison, T. S.; McKenna, J. A.] Univ British Columbia, Vancouver, BC V6T 1Z1, Canada. [Barrett, M.; Khan, A.; Saleem, M.; Teodorescu, L.] Brunel Univ, Uxbridge UB8 3PH, Middx, England. [Blinov, V. E.; Bukin, A. D.; Druzhinin, V. P.; Golubev, V. B.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.] Budker Inst Nucl Phys, Novosibirsk 630090, Russia. [Bondioli, M.; Curry, S.; Eschrich, I.; Kirkby, D.; Lankford, A. J.; Lund, P.; Mandelkern, M.; Martin, E. C.; Stoker, D. P.] Univ Calif Irvine, Irvine, CA 92697 USA. [Abachi, S.; Buchanan, C.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Foulkes, S. D.; Gary, J. W.; Liu, F.; Long, O.; Shen, B. C.; Vitug, G. M.; Zhang, L.] Univ Calif Riverside, Riverside, CA 92521 USA. [Paar, H. P.; Rahatlou, S.; Sharma, V.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Berryhill, J. W.; Campagnari, C.; Cunha, A.; Dahmes, B.; Hong, T. M.; Kovalskyi, D.; Richman, J. D.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Beck, T. W.; Eisner, A. M.; Flacco, C. J.; Heusch, C. A.; Kroseberg, J.; Lockman, W. S.; Schalk, T.; Schumm, B. A.; Seiden, A.; Wilson, M. G.; Winstrom, L. O.] Univ Calif Santa Cruz, Inst Particle Phys, Santa Cruz, CA 95064 USA. [Chen, E.; Cheng, C. H.; Fang, F.; Hitlin, D. G.; Narsky, I.; Piatenko, T.; Porter, F. C.] CALTECH, Pasadena, CA 91125 USA. [Andreassen, R.; Mancinelli, G.; Meadows, B. T.; Mishra, K.; Sokoloff, M. D.] Univ Cincinnati, Cincinnati, OH 45221 USA. [Blanc, F.; Bloom, P. C.; Chen, S.; Ford, W. T.; Hirschauer, J. F.; Kreisel, A.; Nagel, M.; Nauenberg, U.; Olivas, A.; Smith, J. G.; Ulmer, K. A.; Wagner, S. R.; Zhang, J.] Univ Colorado, Boulder, CO 80309 USA. [Gabareen, A. M.; Soffer, A.; Toki, W. H.; Wilson, R. J.; Winklmeier, F.] Colorado State Univ, Ft Collins, CO 80523 USA. [Soffer, A.; Feltresi, E.; Hauke, A.; Jasper, H.; Merkel, J.; Petzold, A.; Spaan, B.; Wacker, K.] Univ Dortmund, Inst Phys, D-44221 Dortmund, Germany. [Klose, V.; Kobel, M. J.; Lacker, H. M.; Mader, W. F.; Nogowski, R.; Schubert, J.; Schubert, K. R.; Schwierz, R.; Sundermann, J. E.; Volk, A.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. [Bernard, D.; Bonneaud, G. R.; Latour, E.; Lombardo, V.; Thiebaux, Ch.; Verderi, M.] Ecole Polytech, CNRS IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Clark, P. J.; Gradl, W.; Muheim, F.; Playfer, S.; Robertson, A. I.; Watson, J. E.; Xie, Y.] Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. [Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Franchini, P.; Luppi, E.; Negrini, M.; Petrella, A.; Piemontese, L.; Prencipe, E.; Santoro, V.] Univ Ferrara, Dipartimento Fis, I-44100 Ferrara, Italy. [Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Franchini, P.; Luppi, E.; Negrini, M.; Petrella, A.; Piemontese, L.; Prencipe, E.; Santoro, V.] Univ Ferrara, INFN, I-44100 Ferrara, Italy. [Anulli, F.; Baldini-Ferroli, R.; Calcaterra, A.; de Sangro, R.; Finocchiaro, G.; Pacetti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; Zallo, A.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Buzzo, A.; Contri, R.; Lo Vetere, M.; Macri, M. M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Santroni, A.; Tosi, S.] Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy. [Buzzo, A.; Contri, R.; Lo Vetere, M.; Macri, M. M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Santroni, A.; Tosi, S.] Univ Genoa, INFN, I-16146 Genoa, Italy. [Chaisanguanthum, K. S.; Morii, M.; Wu, J.] Harvard Univ, Cambridge, MA 02138 USA. [Dubitzky, R. S.; Marks, J.; Schenk, S.; Uwer, U.] Heidelberg Univ, Inst Phys, D-69120 Heidelberg, Germany. [Bard, D. J.; Dauncey, P. D.; Flack, R. L.; Nash, J. A.; Vazquez, W. Panduro; Tibbetts, M.] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. [Behera, P. K.; Chai, X.; Charles, M. J.; Mallik, U.] Univ Iowa, Iowa City, IA 52242 USA. [Cochran, J.; Crawley, H. B.; Dong, L.; Eyges, V.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Rubin, A. E.] Iowa State Univ, Ames, IA 50011 USA. [Gao, Y. Y.; Gritsan, A. V.; Guo, Z. J.; Lae, C. K.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Denig, A. G.; Fritsch, M.; Schott, G.] Univ Karlsruhe, Inst Expt Kernphys, D-76021 Karlsruhe, Germany. [Arnaud, N.; Bequilleux, J.; D'Orazio, A.; Davier, M.; Grosdidier, G.; Hocker, A.; Lepeltier, V.; Le Diberder, F.; Lutz, A. M.; Pruvot, S.; Rodier, S.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wang, W. F.; Wormser, G.] IN2P3 CNRS, Lab Accelerateur Lineaire, F-91898 Orsay, France. [Arnaud, N.; Bequilleux, J.; D'Orazio, A.; Davier, M.; Grosdidier, G.; Hocker, A.; Lepeltier, V.; Le Diberder, F.; Lutz, A. M.; Pruvot, S.; Rodier, S.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wang, W. F.; Wormser, G.] Univ Paris Sud 11, Ctr Sci Orsay, F-91898 Orsay, France. [Lange, D. J.; Wright, D. M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Bingham, I.; Burke, J. P.; Chavez, C. A.; Fry, J. R.; Gabathuler, E.; Gamet, R.; Hutchcroft, D. E.; Payne, D. J.; Schofield, K. C.; Touramanis, C.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Bevan, A. J.; George, K. A.; Di Lodovico, F.; Sacco, R.] Univ London, London E1 4NS, England. [Cowan, G.; Flaecher, H. U.; Hopkins, D. A.; Paramesvaran, S.; Salvatore, F.; Wren, A. C.] Univ London, Royal Holloway & Bedford New Coll, Egham TW20 0EX, Surrey, England. [Brown, D. N.; Davis, C. L.] Univ Louisville, Louisville, KY 40292 USA. [Allison, J.; Bailey, D.; Barlow, N. R.; Barlow, R. J.; Chia, Y. M.; Edgar, C. L.; Lafferty, G. D.; West, T. J.; Yi, J. I.] Univ Manchester, Manchester M13 9PL, Lancs, England. [Anderson, J.; Chen, C.; Jawahery, A.; Roberts, D. A.; Simi, G.; Tuggle, J. M.] Univ Maryland, College Pk, MD 20742 USA. [Blaylock, G.; Dallapiccola, C.; Hertzbach, S. S.; Li, X.; Moore, T. B.; Salvati, E.; Saremi, S.] Univ Massachusetts, Amherst, MA 01003 USA. [Cowan, R.; Dujmic, D.; Fisher, P. H.; Koeneke, K.; Sciolla, G.; Spitznagel, M.; Taylor, F.; Yamamoto, R. K.; Zhao, M.; Zheng, Y.] MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. [Mclachlin, S. E.; Patel, P. M.; Robertson, S. H.] McGill Univ, Montreal, PQ H3A 2T8, Canada. [Lazzaro, A.; Palombo, F.] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. [Lazzaro, A.; Palombo, F.] Univ Milan, INFN, I-20133 Milan, Italy. [Bauer, J. M.; Cremaldi, L.; Eschenburg, V.; Godang, R.; Kroeger, R.; Sanders, D. A.; Summers, D. J.; Zhao, H. W.] Univ Mississippi, University, MS 38677 USA. [Brunet, S.; Cote, D.; Simard, M.; Taras, P.; Viaud, F. B.] Univ Montreal, Montreal, PQ H3C 3J7, Canada. [Nicholson, H.] Mt Holyoke Coll, S Hadley, MA 01075 USA. [De Nardo, G.; Fabozzi, F.; Lista, L.; Monorchio, D.; Sciacca, C.] Univ Naples Federico II, Dipartimento Sci Fis, I-80126 Naples, Italy. [De Nardo, G.; Fabozzi, F.; Lista, L.; Monorchio, D.; Sciacca, C.] Univ Naples Federico II, INFN, I-80126 Naples, Italy. [Baak, M. A.; Raven, G.; Snoek, H. L.] Natl Inst Nucl & High Energy Phys, NIKHEF, NL-1009 DB Amsterdam, Netherlands. [Jessop, C. P.; Knoepfel, K. J.; LoSecco, J. M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Benelli, G.; Corwin, L. A.; Honscheid, K.; Kagan, H.; Kass, R.; Morris, J. P.; Rahimi, A. M.; Regensburger, J. J.; Sekula, S. J.; Wong, Q. K.] Ohio State Univ, Columbus, OH 43210 USA. [Blount, N. L.; Brau, J.; Frey, R.; Igonkina, O.; Kolb, J. A.; Lu, M.; Rahmat, R.; Sinev, N. B.; Strom, D.; Strube, J.; Torrence, E.] Univ Oregon, Eugene, OR 97403 USA. [Gagliardi, N.; Gaz, A.; Margoni, M.; Morandin, M.; Pompili, A.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.; Voci, C.] Univ Padua, Dipartimento Fis, I-35131 Padua, Italy. [Gagliardi, N.; Gaz, A.; Margoni, M.; Morandin, M.; Pompili, A.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.; Voci, C.] Univ Padua, INFN, I-35131 Padua, Italy. [Ben-Haim, E.; Briand, H.; Calderini, G.; Chauveau, J.; David, P.; Del Buono, L.; de la Vaissiere, Ch.; Hamon, O.; Leruste, Ph.; Malcles, J.; Ocariz, J.; Perez, A.; Prendki, J.] Univ Denis Diderot Paris 7, Univ Paris 06, IN2P3 CNRS, Lab Phys Nucl & Hautes Energies, F-75252 Paris, France. [Gladney, L.] Univ Penn, Philadelphia, PA 19104 USA. [Biasini, M.; Covarelli, R.; Manoni, E.] Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. [Biasini, M.; Covarelli, R.; Manoni, E.] Univ Perugia, INFN, I-06100 Perugia, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Cenci, R.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Marchiori, G.; Mazur, M. A.; Morganti, M.; Neri, N.; Paoloni, E.; Rizzo, G.; Walsh, J. J.] Univ Pisa, Dipartimento Fis, Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Cenci, R.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Marchiori, G.; Mazur, M. A.; Morganti, M.; Neri, N.; Paoloni, E.; Rizzo, G.; Walsh, J. J.] Univ Pisa, Dipartimento Fis, INFN, I-56127 Pisa, Italy. [Biesiada, J.; Elmer, P.; Lau, Y. P.; Lu, C.; Olsen, J.; Smith, A. J. S.; Telnov, A. V.] Princeton Univ, Princeton, NJ 08544 USA. [Baracchini, E.; Bellini, F.; Cavoto, G.; del Re, D.; Di Marco, E.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Jackson, P. D.; Gioi, L. Li; Mazzoni, M. A.; Morganti, S.; Piredda, G.; Polci, F.; Renga, F.; Voena, C.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Baracchini, E.; Bellini, F.; Cavoto, G.; del Re, D.; Di Marco, E.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Jackson, P. D.; Gioi, L. Li; Mazzoni, M. A.; Morganti, S.; Piredda, G.; Polci, F.; Renga, F.; Voena, C.] Univ Roma La Sapienza, INFN, I-00185 Rome, Italy. [Ebert, M.; Hartmann, T.; Schroeder, H.; Waldi, R.] Univ Rostock, D-18051 Rostock, Germany. [Adye, T.; Castelli, G.; Franek, B.; Olaiya, E. O.; Roethel, W.; Wilson, F. F.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Emery, S.; Escalier, M.; Gaidot, A.; Ganzhur, S. F.; de Monchenault, G. Hamel; Kozanecki, W.; Vasseur, G.; Yeche, Ch.; Zito, M.] CEA Saclay, DSM Dapnia, F-91191 Gif Sur Yvette, France. [Chen, X. R.; Liu, H.; Park, W.; Purohit, M. V.; White, R. M.; Wilson, J. R.] Univ S Carolina, Columbia, SC 29208 USA. [Allen, M. T.; Aston, D.; Bartoldus, R.; Bechtle, P.; Claus, R.; Coleman, J. P.; Convery, M. R.; Dingfelder, J. C.; Dorfan, J.; Dubois-Felsmann, G. P.; Dunwoodie, W.; Field, R. C.; Glanzman, T.; Gowdy, S. J.; Graham, M. T.; Grenier, P.; Hast, C.; Innes, W. R.; Kaminski, J.; Kelsey, M. H.; Kim, H.; Kim, P.; Kocian, M. L.; Leith, D. W. G. S.; Li, S.; Luitz, S.; Luth, V.; Lynch, H. L.; MacFarlane, D. B.; Marsiske, H.; Messner, R.; Muller, D. R.; O'Grady, C. P.; Ofte, I.; Perazzo, A.; Perl, M.; Pulliam, T.; Ratcliff, B. N.; Roodman, A.; Salnikov, A. A.; Schindler, R. H.; Schwiening, J.; Snyder, A.; Su, D.; Sullivan, M. K.; Suzuki, K.; Swain, S. K.; Thompson, J. M.; Va'vra, J.; Wagner, A. P.; Weaver, M.; Wisniewski, W. J.; Wittgen, M.; Wright, D. H.; Yarritu, A. K.; Yi, K.; Young, C. C.; Ziegler, V.] Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. [Burchat, P. R.; Edwards, A. J.; Majewski, S. A.; Miyashita, T. S.; Petersen, B. A.; Wilden, L.] Stanford Univ, Stanford, CA 94305 USA. [Ahmed, S.; Alam, M. S.; Bula, R.; Ernst, J. A.; Jain, V.; Pan, B.; Saeed, M. A.; Wappler, F. R.; Zain, S. B.] SUNY Albany, Albany, NY 12222 USA. [Krishnamurthy, M.; Spanier, S. M.] Univ Tennessee, Knoxville, TN 37996 USA. [Eckmann, R.; Ritchie, J. L.; Ruland, A. M.; Schilling, C. J.; Schwitters, R. F.] Univ Texas Austin, Austin, TX 78712 USA. [Izen, J. M.; Lou, X. C.; Ye, S.] Univ Texas Dallas, Richardson, TX 75083 USA. [Bianchi, F.; Gallo, F.; Gamba, D.; Pelliccioni, M.] Univ Turin, Dipartimento Fis Sperimentale, I-10125 Turin, Italy. [Bianchi, F.; Gallo, F.; Gamba, D.; Pelliccioni, M.] Univ Turin, INFN, I-10125 Turin, Italy. [Bomben, M.; Bosisio, L.; Cartaro, C.; Cossutti, F.; Della Ricca, G.; Lanceri, L.; Vitale, L.] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. [Bomben, M.; Bosisio, L.; Cartaro, C.; Cossutti, F.; Della Ricca, G.; Lanceri, L.; Vitale, L.] Univ Trieste, INFN, I-34127 Trieste, Italy. [Azzolini, V.; Lopez-March, N.; Martinez-Vidal, F.; Milanes, D. A.; Oyanguren, A.] Univ Valencia CSIC, IFIC, E-46071 Valencia, Spain. [Albert, J.; Banerjee, Sw.; Bhuyan, B.; Hamano, K.; Kowalewski, R.; Nugent, I. M.; Roney, J. M.; Sobie, R. J.] Univ Victoria, Victoria, BC V8W 3P6, Canada. [Harrison, P. F.; Ilic, J.; Latham, T. E.; Mohanty, G. B.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Band, H. R.; Chen, X.; Dasu, S.; Flood, K. T.; Hollar, J. J.; Kutter, P. E.; Pan, Y.; Pierini, M.; Prepost, R.; Wu, S. L.] Univ Wisconsin, Madison, WI 53706 USA. [Neal, H.] Yale Univ, New Haven, CT 06511 USA. RP Aubert, B (reprint author), IN2P3 CNRS, Phys Particules Lab, F-74941 Annecy Le Vieux, France. RI Lusiani, Alberto/N-2976-2015; Forti, Francesco/H-3035-2011; Lusiani, Alberto/A-3329-2016; Morandin, Mauro/A-3308-2016; Della Ricca, Giuseppe/B-6826-2013; Di Lodovico, Francesca/L-9109-2016; Pappagallo, Marco/R-3305-2016; Calcaterra, Alessandro/P-5260-2015; Frey, Raymond/E-2830-2016; Calabrese, Roberto/G-4405-2015; Mir, Lluisa-Maria/G-7212-2015; Martinez Vidal, F*/L-7563-2014; Kolomensky, Yury/I-3510-2015; Lo Vetere, Maurizio/J-5049-2012; Saeed, Mohammad Alam/J-7455-2012; Negrini, Matteo/C-8906-2014; Monge, Maria Roberta/G-9127-2012; Patrignani, Claudia/C-5223-2009; Oyanguren, Arantza/K-6454-2014; Bellini, Fabio/D-1055-2009; Luppi, Eleonora/A-4902-2015; dong, liaoyuan/A-5093-2015; Rizzo, Giuliana/A-8516-2015; OI Carpinelli, Massimo/0000-0002-8205-930X; Sciacca, Crisostomo/0000-0002-8412-4072; Adye, Tim/0000-0003-0627-5059; Lafferty, George/0000-0003-0658-4919; Faccini, Riccardo/0000-0003-2613-5141; Cavoto, Gianluca/0000-0003-2161-918X; Wilson, Robert/0000-0002-8184-4103; Strube, Jan/0000-0001-7470-9301; Barlow, Roger/0000-0002-8295-8612; Chen, Chunhui /0000-0003-1589-9955; Lusiani, Alberto/0000-0002-6876-3288; Forti, Francesco/0000-0001-6535-7965; Lusiani, Alberto/0000-0002-6876-3288; Morandin, Mauro/0000-0003-4708-4240; Della Ricca, Giuseppe/0000-0003-2831-6982; Di Lodovico, Francesca/0000-0003-3952-2175; Pappagallo, Marco/0000-0001-7601-5602; Calcaterra, Alessandro/0000-0003-2670-4826; Frey, Raymond/0000-0003-0341-2636; Bettarini, Stefano/0000-0001-7742-2998; Calabrese, Roberto/0000-0002-1354-5400; Mir, Lluisa-Maria/0000-0002-4276-715X; Martinez Vidal, F*/0000-0001-6841-6035; Kolomensky, Yury/0000-0001-8496-9975; Lo Vetere, Maurizio/0000-0002-6520-4480; Saeed, Mohammad Alam/0000-0002-3529-9255; Negrini, Matteo/0000-0003-0101-6963; Monge, Maria Roberta/0000-0003-1633-3195; Patrignani, Claudia/0000-0002-5882-1747; Oyanguren, Arantza/0000-0002-8240-7300; Bellini, Fabio/0000-0002-2936-660X; Luppi, Eleonora/0000-0002-1072-5633; Ebert, Marcus/0000-0002-3014-1512; Cibinetto, Gianluigi/0000-0002-3491-6231; Hamel de Monchenault, Gautier/0000-0002-3872-3592; dong, liaoyuan/0000-0002-4773-5050; Pacetti, Simone/0000-0002-6385-3508; Covarelli, Roberto/0000-0003-1216-5235; Rizzo, Giuliana/0000-0003-1788-2866; Paoloni, Eugenio/0000-0001-5969-8712; Lanceri, Livio/0000-0001-8220-3095; Corwin, Luke/0000-0001-7143-3821 FU DOE (U.S.A.); NSF (U.S.A.); NSERC (Canada); IHEP (China); CEA (France); CNRS-IN2P3 (France); BMBF (Germany); DFG (Germany); INFN (Italy); FOM (The Netherlands); NFR (Norway); MIST (Russia); STFC (U.K.); CONACyT (Mexico); Marie Curie EIF (European Union); A. P. Sloan Foundation; Research Corporation; Alexander von Humboldt Foundation FX We are grateful for the excellent luminosity and machine conditions provided by our PEP-II colleagues, and for the substantial dedicated effort from the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and kind hospitality. This work is supported by DOE and NSF (U.S.A.), NSERC (Canada), IHEP (China), CEA and CNRS-IN2P3 (France), BMBF and DFG (Germany), INFN (Italy), FOM (The Netherlands), NFR (Norway), MIST (Russia), and STFC (U. K.). Individuals have received support from CONACyT (Mexico), Marie Curie EIF (European Union), the A. P. Sloan Foundation, the Research Corporation, and the Alexander von Humboldt Foundation. NR 19 TC 14 Z9 14 U1 0 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD FEB 8 PY 2008 VL 100 IS 5 AR 051803 DI 10.1103/PhysRevLett.100.051803 PG 7 WC Physics, Multidisciplinary SC Physics GA V25KY UT WOS:000208478100001 ER PT J AU Aubert, B Bona, M Boutigny, D Karyotakis, Y Lees, JP Poireau, V Prudent, X Tisserand, V Zghiche, A Tico, JG Grauges, E Lopez, L Palano, A Eigen, G Ofte, I Stugu, B Sun, L Abrams, GS Battaglia, M Brown, DN Button-Shafer, J Cahn, RN Groysman, Y Jacobsen, RG Kadyk, JA Kerth, LT Kolomensky, YG Kukartsev, G Pegna, DL Lynch, G Mir, LM Orimoto, TJ Pripstein, M Roe, NA Ronan, MT Tackmann, K Wenzel, WA Sanchez, PA Hawkes, CM Watson, AT Held, T Koch, H Lewandowski, B Pelizaeus, M Schroeder, T Steinke, M Cottingham, WN Walker, D Asgeirsson, DJ Cuhadar-Donszelmann, T Fulsom, BG Hearty, C Knecht, NS Mattison, TS McKenna, JA Khan, A Saleem, M Teodorescu, L Blinov, VE Bukin, AD Druzhinin, VP Golubev, VB Onuchin, AP Serednyakov, SI Skovpen, YI Solodov, EP Todyshev, KY Bondioli, M Curry, S Eschrich, I Kirkby, D Lankford, AJ Lund, P Mandelkern, M Martin, EC Stoker, DP Abachi, S Buchanan, C Foulkes, SD Gary, JW Liu, F Long, O Shen, BC Zhang, L Paar, HP Rahatlou, S Sharma, V Berryhill, JW Campagnari, C Cunha, A Dahmes, B Hong, TM Kovalskyi, D Richman, JD Beck, TW Eisner, AM Flacco, CJ Heusch, CA Kroseberg, J Lockman, WS Schalk, T Schumm, BA Seiden, A Williams, DC Wilson, MG Winstrom, LO Chen, E Cheng, CH Dvoretskii, A Fang, F Hitlin, DG Narsky, I Piatenko, T Porter, FC Mancinelli, G Meadows, BT Mishra, K Sokoloff, MD Blanc, F Bloom, PC Chen, S Ford, WT Hirschauer, JF Kreisel, A Nagel, M Nauenberg, U Olivas, A Smith, JG Ulmer, KA Wagner, SR Zhang, J Gabareen, AM Soffer, A Toki, WH Wilson, RJ Winklmeier, F Zeng, Q Altenburg, DD Feltresi, E Hauke, A Jasper, H Merkel, J Petzold, A Spaan, B Wacker, K Brandt, T Klose, V Lacker, HM Mader, WF Nogowski, R Schubert, J Schubert, KR Schwierz, R Sundermann, JE Volk, A Bernard, D Bonneaud, GR Latour, E Lombardo, V Thiebaux, C Verderi, M Clark, PJ Gradl, W Muheim, F Playfer, S Robertson, AI Xie, Y Andreotti, M Bettoni, D Bozzi, C Calabrese, R Cecchi, A Cibinetto, G Franchini, P Luppi, E Negrini, M Petrella, A Piemontese, L Prencipe, E Santoro, V Anulli, F Baldini-Ferroli, R Calcaterra, A de Sangro, R Finocchiaro, G Pacetti, S Patteri, P Peruzzi, IM Piccolo, M Rama, M Zallo, A Buzzo, A Contri, R Lo Vetere, M Macri, MM Monge, MR Passaggio, S Patrignani, C Robutti, E Santroni, A Tosi, S Chaisanguanthum, KS Morii, M Wu, J Dubitzky, RS Marks, J Schenk, S Uwer, U Bard, DJ Dauncey, PD Flack, RL Nash, JA Nikolich, MB Vazquez, WP Behera, PK Chai, X Charles, MJ Mallik, U Meyer, NT Ziegler, V Cochran, J Crawley, HB Dong, L Eyges, V Meyer, WT Prell, S Rosenberg, EI Rubin, AE Gritsan, AV Guo, ZJ Lae, CK Denig, AG Fritsch, M Schott, G Arnaud, N Bequilleux, J Davier, M Grosdidier, G Hoecker, A Lepeltier, V Le Diberder, F Lutz, AM Pruvot, S Rodier, S Roudeau, P Schune, MH Serrano, J Sordini, V Stocchi, A Wang, WF Wormser, G Lange, DJ Wright, DM Chavez, CA Forster, IJ Fry, JR Gabathuler, E Gamet, R Hutchcroft, DE Payne, DJ Schofield, KC Touramanis, C Bevan, AJ George, KA Di Lodovico, F Menges, W Sacco, R Cowan, G Flaecher, HU Hopkins, DA Jackson, PS McMahon, TR Salvatore, F Wren, AC Brown, DN Davis, CL Allison, J Barlow, NR Barlow, RJ Chia, YM Edgar, CL Lafferty, GD West, TJ Yi, JI Anderson, J Chen, C Jawahery, A Roberts, DA Simi, G Tuggle, JM Blaylock, G Dallapiccola, C Hertzbach, SS Li, X Moore, TB Salvati, E Saremi, S Cowan, R Fisher, PH Sciolla, G Sekula, SJ Spitznagel, M Taylor, F Yamamoto, RK Mclachlin, SE Patel, PM Robertson, SH Lazzaro, A Palombo, F Bauer, JM Cremaldi, L Eschenburg, V Godang, R Kroeger, R Sanders, DA Summers, DJ Zhao, HW Brunet, S Coto, D Simard, M Taras, P Viaud, FB Nicholson, H De Nardo, G Fabozzi, F Lista, L Monorchio, D Sciacca, C Baak, MA Raven, G Snoek, HL Jessop, CP LoSecco, JM Benelli, G Corwin, LA Gan, KK Honscheid, K Hufnagel, D Kagan, H Kass, R Morris, JP Rahimi, AM Regensburger, JJ Ter-Antonyan, R Wong, QK Blount, NL Brau, J Frey, R Igonkina, O Kolb, JA Rahmat, MLR Sinev, NB Strom, D Strube, J Torrence, E Gagliardi, N Gaz, A Margoni, M Morandin, M Pompili, A Posocco, M Rotondo, M Simonetto, F Stroili, R Voci, C Ben-Haim, E Briand, H Chauveau, J David, P Del Buono, L de la Vaissiere, C Hamon, O Hartfiel, BL Leruste, P Malcles, J Ocariz, J Perez, A Gladney, L Biasini, M Covarelli, R Manoni, E Angelini, C Batignani, G Bettarini, S Calderini, G Carpinelli, M Cenci, R Cervelli, A Forti, F Giorgi, MA Lusiani, A Marchiori, G Mazur, MA Morganti, M Neri, N Paoloni, E Rizzo, G Walsh, JJ Haire, M Biesiada, J Elmer, P Lau, YP Lu, C Olsen, J Smith, AJS Telnov, AV Baracchini, E Bellini, F Cavoto, G D'Orazio, A del Re, D Di Marco, E Faccini, R Ferrarotto, F Ferroni, F Gaspero, M Jackson, PD Gioi, LL Mazzoni, MA Morganti, S Piredda, G Polci, F Renga, F Voena, C Ebert, M Schroder, H Waldi, R Adye, T Castelli, G Franek, B Olaiya, EO Ricciardi, S Roethel, W Wilson, FF Aleksan, R Emery, S Escalier, M Gaidot, A Ganzhur, SF de Monchenault, GH Kozanecki, W Legendre, M Vasseur, G Yeche, C Zito, M Chen, XR Liu, H Park, W Purohit, MV Wilson, JR Allen, MT Aston, D Bartoldus, R Bechtle, P Berger, N Claus, R Coleman, JP Convery, MR Dingfelder, JC Dorfan, J Dubois-Felsmann, GP Dujmic, D Dunwoodie, W Field, RC Glanzman, T Gowdy, SJ Graham, MT Grenier, P Hast, C Hryn'ova, T Innes, WR Kelsey, MH Kim, H Kim, P Leith, DWGS Li, S Luitz, S Luth, V Lynch, HL MacFarlane, DB Marsiske, H Messner, R Muller, DR O'Grady, CP Perazzo, A Perl, M Pulliam, T Ratcliff, BN Roodman, A Salnikov, AA Schindler, RH Schwiening, J Snyder, A Stelzer, J Su, D Sullivan, MK Suzuki, K Swain, SK Thompson, JM Va'vra, J van Bakel, N Wagner, AP Weaver, M Wisniewski, WJ Wittgen, M Wright, DH Yarritu, AK Yi, K Young, CC Burchat, PR Edwards, AJ Majewski, SA Petersen, BA Wilden, L Ahmed, S Alam, MS Bula, R Ernst, JA Jain, V Pan, B Saeed, MA Wappler, FR Zain, SB Bugg, W Krishnamurthy, M Spanier, SM Eckmann, R Ritchie, JL Ruland, AM Schilling, CJ Schwitters, RF Izen, JM Lou, XC Ye, S Bianchi, F Gallo, F Gamba, D Pelliccioni, M Bomben, M Bosisio, L Cartaro, C Cossutti, F Della Ricca, G Lanceri, L Vitale, L Azzolini, V Lopez-March, N Martinez-Vidal, F Milanes, DA Oyanguren, A Albert, J Banerjee, S Bhuyan, B Hamano, K Kowalewski, R Nugent, IM Roney, JM Sobie, RJ Back, JJ Harrison, PF Latham, TE Mohanty, GB Pappagallo, M Band, HR Chen, X Dasu, S Flood, KT Hollar, JJ Kutter, PE Pan, Y Pierini, M Prepost, R Wu, SL Yu, Z Neal, H AF Aubert, B. Bona, M. Boutigny, D. Karyotakis, Y. Lees, J. P. Poireau, V. Prudent, X. Tisserand, V. Zghiche, A. Tico, J. Garra Grauges, E. Lopez, L. Palano, A. Eigen, G. Ofte, I. Stugu, B. Sun, L. Abrams, G. S. Battaglia, M. Brown, D. N. Button-Shafer, J. Cahn, R. N. Groysman, Y. Jacobsen, R. G. Kadyk, J. A. Kerth, L. T. Kolomensky, Yu. G. Kukartsev, G. Pegna, D. Lopes Lynch, G. Mir, L. M. Orimoto, T. J. Pripstein, M. Roe, N. A. Ronan, M. T. Tackmann, K. Wenzel, W. A. Sanchez, P. del Amo Hawkes, C. M. Watson, A. T. Held, T. Koch, H. Lewandowski, B. Pelizaeus, M. Schroeder, T. Steinke, M. Cottingham, W. N. Walker, D. Asgeirsson, D. J. Cuhadar-Donszelmann, T. Fulsom, B. G. Hearty, C. Knecht, N. S. Mattison, T. S. McKenna, J. A. Khan, A. Saleem, M. Teodorescu, L. Blinov, V. E. Bukin, A. D. Druzhinin, V. P. Golubev, V. B. Onuchin, A. P. Serednyakov, S. I. Skovpen, Yu. I. Solodov, E. P. Todyshev, K. Yu Bondioli, M. Curry, S. Eschrich, I. Kirkby, D. Lankford, A. J. Lund, P. Mandelkern, M. Martin, E. C. Stoker, D. P. Abachi, S. Buchanan, C. Foulkes, S. D. Gary, J. W. Liu, F. Long, O. Shen, B. C. Zhang, L. Paar, H. P. Rahatlou, S. Sharma, V. Berryhill, J. W. Campagnari, C. Cunha, A. Dahmes, B. Hong, T. M. Kovalskyi, D. Richman, J. D. Beck, T. W. Eisner, A. M. Flacco, C. J. Heusch, C. A. Kroseberg, J. Lockman, W. S. Schalk, T. Schumm, B. A. Seiden, A. Williams, D. C. Wilson, M. G. Winstrom, L. O. Chen, E. Cheng, C. H. Dvoretskii, A. Fang, F. Hitlin, D. G. Narsky, I. Piatenko, T. Porter, F. C. Mancinelli, G. Meadows, B. T. Mishra, K. Sokoloff, M. D. Blanc, F. Bloom, P. C. Chen, S. Ford, W. T. Hirschauer, J. F. Kreisel, A. Nagel, M. Nauenberg, U. Olivas, A. Smith, J. G. Ulmer, K. A. Wagner, S. R. Zhang, J. Gabareen, A. M. Soffer, A. Toki, W. H. Wilson, R. J. Winklmeier, F. Zeng, Q. Altenburg, D. D. Feltresi, E. Hauke, A. Jasper, H. Merkel, J. Petzold, A. Spaan, B. Wacker, K. Brandt, T. Klose, V. Lacker, H. M. Mader, W. F. Nogowski, R. Schubert, J. Schubert, K. R. Schwierz, R. Sundermann, J. E. Volk, A. Bernard, D. Bonneaud, G. R. Latour, E. Lombardo, V. Thiebaux, Ch. Verderi, M. Clark, P. J. Gradl, W. Muheim, F. Playfer, S. Robertson, A. I. Xie, Y. Andreotti, M. Bettoni, D. Bozzi, C. Calabrese, R. Cecchi, A. Cibinetto, G. Franchini, P. Luppi, E. Negrini, M. Petrella, A. Piemontese, L. Prencipe, E. Santoro, V. Anulli, F. Baldini-Ferroli, R. Calcaterra, A. de Sangro, R. Finocchiaro, G. Pacetti, S. Patteri, P. Peruzzi, I. M. Piccolo, M. Rama, M. Zallo, A. Buzzo, A. Contri, R. Lo Vetere, M. Macri, M. M. Monge, M. R. Passaggio, S. Patrignani, C. Robutti, E. Santroni, A. Tosi, S. Chaisanguanthum, K. S. Morii, M. Wu, J. Dubitzky, R. S. Marks, J. Schenk, S. Uwer, U. Bard, D. J. Dauncey, P. D. Flack, R. L. Nash, J. A. Nikolich, M. B. Vazquez, W. Panduro Behera, P. K. Chai, X. Charles, M. J. Mallik, U. Meyer, N. T. Ziegler, V. Cochran, J. Crawley, H. B. Dong, L. Eyges, V. Meyer, W. T. Prell, S. Rosenberg, E. I. Rubin, A. E. Gritsan, A. V. Guo, Z. J. Lae, C. K. Denig, A. G. Fritsch, M. Schott, G. Arnaud, N. Bequilleux, J. Davier, M. Grosdidier, G. Hoecker, A. Lepeltier, V. Le Diberder, F. Lutz, A. M. Pruvot, S. Rodier, S. Roudeau, P. Schune, M. H. Serrano, J. Sordini, V. Stocchi, A. Wang, W. F. Wormser, G. Lange, D. J. Wright, D. M. Chavez, C. A. Forster, I. J. Fry, J. R. Gabathuler, E. Gamet, R. Hutchcroft, D. E. Payne, D. J. Schofield, K. C. Touramanis, C. Bevan, A. J. George, K. A. Di Lodovico, F. Menges, W. Sacco, R. Cowan, G. Flaecher, H. U. Hopkins, D. A. Jackson, P. S. McMahon, T. R. Salvatore, F. Wren, A. C. Brown, D. N. Davis, C. L. Allison, J. Barlow, N. R. Barlow, R. J. Chia, Y. M. Edgar, C. L. Lafferty, G. D. West, T. J. Yi, J. I. Anderson, J. Chen, C. Jawahery, A. Roberts, D. A. Simi, G. Tuggle, J. M. Blaylock, G. Dallapiccola, C. Hertzbach, S. S. Li, X. Moore, T. B. Salvati, E. Saremi, S. Cowan, R. Fisher, P. H. Sciolla, G. Sekula, S. J. Spitznagel, M. Taylor, F. Yamamoto, R. K. Mclachlin, S. E. Patel, P. M. Robertson, S. H. Lazzaro, A. Palombo, F. Bauer, J. M. Cremaldi, L. Eschenburg, V. Godang, R. Kroeger, R. Sanders, D. A. Summers, D. J. Zhao, H. W. Brunet, S. Cote, D. Simard, M. Taras, P. Viaud, F. B. Nicholson, H. De Nardo, G. Fabozzi, F. Lista, L. Monorchio, D. Sciacca, C. Baak, M. A. Raven, G. Snoek, H. L. Jessop, C. P. LoSecco, J. M. Benelli, G. Corwin, L. A. Gan, K. K. Honscheid, K. Hufnagel, D. Kagan, H. Kass, R. Morris, J. P. Rahimi, A. M. Regensburger, J. J. Ter-Antonyan, R. Wong, Q. K. Blount, N. L. Brau, J. Frey, R. Igonkina, O. Kolb, J. A. Rahmat, M. Lu R. Sinev, N. B. Strom, D. Strube, J. Torrence, E. Gagliardi, N. Gaz, A. Margoni, M. Morandin, M. Pompili, A. Posocco, M. Rotondo, M. Simonetto, F. Stroili, R. Voci, C. Ben-Haim, E. Briand, H. Chauveau, J. David, P. Del Buono, L. de la Vaissiere, Ch. Hamon, O. Hartfiel, B. L. Leruste, Ph. Malcles, J. Ocariz, J. Perez, A. Gladney, L. Biasini, M. Covarelli, R. Manoni, E. Angelini, C. Batignani, G. Bettarini, S. Calderini, G. Carpinelli, M. Cenci, R. Cervelli, A. Forti, F. Giorgi, M. A. Lusiani, A. Marchiori, G. Mazur, M. A. Morganti, M. Neri, N. Paoloni, E. Rizzo, G. Walsh, J. J. Haire, M. Biesiada, J. Elmer, P. Lau, Y. P. Lu, C. Olsen, J. Smith, A. J. S. Telnov, A. V. Baracchini, E. Bellini, F. Cavoto, G. D'Orazio, A. del Re, D. Di Marco, E. Faccini, R. Ferrarotto, F. Ferroni, F. Gaspero, M. Jackson, P. D. Gioi, L. Li Mazzoni, M. A. Morganti, S. Piredda, G. Polci, F. Renga, F. Voena, C. Ebert, M. Schroeder, H. Waldi, R. Adye, T. Castelli, G. Franek, B. Olaiya, E. O. Ricciardi, S. Roethel, W. Wilson, F. F. Aleksan, R. Emery, S. Escalier, M. Gaidot, A. Ganzhur, S. F. de Monchenault, G. Hamel Kozanecki, W. Legendre, M. Vasseur, G. Yeche, Ch. Zito, M. Chen, X. R. Liu, H. Park, W. Purohit, M. V. Wilson, J. R. Allen, M. T. Aston, D. Bartoldus, R. Bechtle, P. Berger, N. Claus, R. Coleman, J. P. Convery, M. R. Dingfelder, J. C. Dorfan, J. Dubois-Felsmann, G. P. Dujmic, D. Dunwoodie, W. Field, R. C. Glanzman, T. Gowdy, S. J. Graham, M. T. Grenier, P. Hast, C. Hryn'ova, T. Innes, W. R. Kelsey, M. H. Kim, H. Kim, P. Leith, D. W. G. S. Li, S. Luitz, S. Luth, V. Lynch, H. L. MacFarlane, D. B. Marsiske, H. Messner, R. Muller, D. R. O'Grady, C. P. Perazzo, A. Perl, M. Pulliam, T. Ratcliff, B. N. Roodman, A. Salnikov, A. A. Schindler, R. H. Schwiening, J. Snyder, A. Stelzer, J. Su, D. Sullivan, M. K. Suzuki, K. Swain, S. K. Thompson, J. M. Va'vra, J. van Bakel, N. Wagner, A. P. Weaver, M. Wisniewski, W. J. Wittgen, M. Wright, D. H. Yarritu, A. K. Yi, K. Young, C. C. Burchat, P. R. Edwards, A. J. Majewski, S. A. Petersen, B. A. Wilden, L. Ahmed, S. Alam, M. S. Bula, R. Ernst, J. A. Jain, V. Pan, B. Saeed, M. A. Wappler, F. R. Zain, S. B. Bugg, W. Krishnamurthy, M. Spanier, S. M. Eckmann, R. Ritchie, J. L. Ruland, A. M. Schilling, C. J. Schwitters, R. F. Izen, J. M. Lou, X. C. Ye, S. Bianchi, F. Gallo, F. Gamba, D. Pelliccioni, M. Bomben, M. Bosisio, L. Cartaro, C. Cossutti, F. Della Ricca, G. Lanceri, L. Vitale, L. Azzolini, V. Lopez-March, N. Martinez-Vidal, F. Milanes, D. A. Oyanguren, A. Albert, J. Banerjee, Sw. Bhuyan, B. Hamano, K. Kowalewski, R. Nugent, I. M. Roney, J. M. Sobie, R. J. Back, J. J. Harrison, P. F. Latham, T. E. Mohanty, G. B. Pappagallo, M. Band, H. R. Chen, X. Dasu, S. Flood, K. T. Hollar, J. J. Kutter, P. E. Pan, Y. Pierini, M. Prepost, R. Wu, S. L. Yu, Z. Neal, H. CA BABAR Collaboration TI Measurement of the absolute branching fraction of D(0)-> K(-)pi(+) SO PHYSICAL REVIEW LETTERS LA English DT Article AB We measure the absolute branching fraction for D(0) --> K(-)pi(+) using partial reconstruction of (B) over bar (0) --> D(*+)Xl(-)(nu) over bar (l) decays, in which only the charged lepton and the pion from the decay D(*+) --> D(0)pi(+) are used. Based on a data sample of 230x10(6) (B) over bar pairs collected at the Y(4S) resonance with the BABAR detector at the PEP-II asymmetric-energy B factory at SLAC, we obtain B(D(0) --> K(-)pi(+))=(4.007 +/- 0.037 +/- 0.072)%, where the first uncertainty is statistical and the second is systematic. C1 [Aubert, B.; Bona, M.; Boutigny, D.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prudent, X.; Tisserand, V.; Zghiche, A.] CNRS, IN2P3, Phys Particules Lab, F-74941 Annecy Le Vieux, France. [Aubert, B.; Bona, M.; Boutigny, D.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prudent, X.; Tisserand, V.; Zghiche, A.] Univ Savoie, F-74941 Annecy Le Vieux, France. [Tico, J. Garra; Grauges, E.] Univ Barcelona, Fac Fis, Dept ECM, E-08028 Barcelona, Spain. [Lopez, L.; Palano, A.] Univ Bari, Dipartmento Fis, I-70126 Bari, Italy. [Lopez, L.; Palano, A.] Ist Nazl Fis Nucl, I-70126 Bari, Italy. [Eigen, G.; Ofte, I.; Stugu, B.; Sun, L.] Univ Bergen, Dept Phys, N-5007 Bergen, Norway. [Abrams, G. S.; Battaglia, M.; Brown, D. N.; Button-Shafer, J.; Cahn, R. N.; Groysman, Y.; Jacobsen, R. G.; Kadyk, J. A.; Kerth, L. T.; Kolomensky, Yu. G.; Kukartsev, G.; Pegna, D. Lopes; Lynch, G.; Mir, L. M.; Orimoto, T. J.; Pripstein, M.; Roe, N. A.; Ronan, M. T.; Tackmann, K.; Wenzel, W. A.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Abrams, G. S.; Battaglia, M.; Brown, D. N.; Button-Shafer, J.; Cahn, R. N.; Groysman, Y.; Jacobsen, R. G.; Kadyk, J. A.; Kerth, L. T.; Kolomensky, Yu. G.; Kukartsev, G.; Pegna, D. Lopes; Lynch, G.; Mir, L. M.; Orimoto, T. J.; Pripstein, M.; Roe, N. A.; Ronan, M. T.; Tackmann, K.; Wenzel, W. A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Sanchez, P. del Amo; Hawkes, C. M.; Watson, A. T.] Univ Birmingham, Birmingham B15 2TT, W Midlands, England. [Held, T.; Koch, H.; Lewandowski, B.; Pelizaeus, M.; Schroeder, T.; Steinke, M.] Ruhr Univ Bochum, Inst Expt Phys 1, D-44780 Bochum, Germany. [Cottingham, W. N.; Walker, D.] Univ Bristol, Bristol BS8 1TL, Avon, England. [Asgeirsson, D. J.; Cuhadar-Donszelmann, T.; Fulsom, B. G.; Hearty, C.; Knecht, N. S.; Mattison, T. S.; McKenna, J. A.] Univ British Columbia, Vancouver, BC V6T 1Z1, Canada. [Khan, A.; Saleem, M.; Teodorescu, L.] Brunel Univ, Uxbridge UB8 3PH, Middx, England. [Blinov, V. E.; Bukin, A. D.; Druzhinin, V. P.; Golubev, V. B.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu] Budker Inst Nucl Phys, Novosibirsk 630090, Russia. [Bondioli, M.; Curry, S.; Eschrich, I.; Kirkby, D.; Lankford, A. J.; Lund, P.; Mandelkern, M.; Martin, E. C.; Stoker, D. P.] Univ Calif Irvine, Irvine, CA 92697 USA. [Abachi, S.; Buchanan, C.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Foulkes, S. D.; Gary, J. W.; Liu, F.; Long, O.; Shen, B. C.; Zhang, L.] Univ Calif Riverside, Riverside, CA 92521 USA. [Paar, H. P.; Rahatlou, S.; Sharma, V.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Berryhill, J. W.; Campagnari, C.; Cunha, A.; Dahmes, B.; Hong, T. M.; Kovalskyi, D.; Richman, J. D.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Beck, T. W.; Eisner, A. M.; Flacco, C. J.; Heusch, C. A.; Kroseberg, J.; Lockman, W. S.; Schalk, T.; Schumm, B. A.; Seiden, A.; Williams, D. C.; Wilson, M. G.; Winstrom, L. O.] Univ Calif Santa Cruz, Inst Particle Phys, Santa Cruz, CA 95064 USA. [Chen, E.; Cheng, C. H.; Dvoretskii, A.; Fang, F.; Hitlin, D. G.; Narsky, I.; Piatenko, T.; Porter, F. C.] CALTECH, Pasadena, CA 91125 USA. [Mancinelli, G.; Meadows, B. T.; Mishra, K.; Sokoloff, M. D.] Univ Cincinnati, Cincinnati, OH 45221 USA. [Blanc, F.; Bloom, P. C.; Chen, S.; Ford, W. T.; Hirschauer, J. F.; Kreisel, A.; Nagel, M.; Nauenberg, U.; Olivas, A.; Smith, J. G.; Ulmer, K. A.; Wagner, S. R.; Zhang, J.] Univ Colorado, Boulder, CO 80309 USA. [Gabareen, A. M.; Soffer, A.; Toki, W. H.; Wilson, R. J.; Winklmeier, F.; Zeng, Q.] Colorado State Univ, Ft Collins, CO 80523 USA. [Altenburg, D. D.; Feltresi, E.; Hauke, A.; Jasper, H.; Merkel, J.; Petzold, A.] Univ Dortmund, Inst Phys, D-44221 Dortmund, Germany. [Brandt, T.; Klose, V.; Lacker, H. M.; Mader, W. F.; Nogowski, R.; Schubert, J.; Schubert, K. R.; Schwierz, R.; Sundermann, J. E.; Volk, A.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. [Bernard, D.; Bonneaud, G. R.; Latour, E.; Lombardo, V.; Thiebaux, Ch.; Verderi, M.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Clark, P. J.; Gradl, W.; Muheim, F.; Playfer, S.; Robertson, A. I.; Xie, Y.] Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. [Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Franchini, P.; Luppi, E.; Negrini, M.; Petrella, A.; Piemontese, L.; Prencipe, E.; Santoro, V.] Univ Ferrara, Dipartmento Fis, I-44100 Ferrara, Italy. [Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Franchini, P.; Luppi, E.; Negrini, M.; Petrella, A.; Piemontese, L.; Prencipe, E.; Santoro, V.] Ist Nazl Fis Nucl, I-44100 Ferrara, Italy. [Anulli, F.; Baldini-Ferroli, R.; Calcaterra, A.; de Sangro, R.; Finocchiaro, G.; Pacetti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; Zallo, A.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Buzzo, A.; Contri, R.; Lo Vetere, M.; Macri, M. M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Santroni, A.; Tosi, S.] Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy. [Buzzo, A.; Contri, R.; Lo Vetere, M.; Macri, M. M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Santroni, A.; Tosi, S.] Ist Nazl Fis Nucl, I-16146 Genoa, Italy. [Chaisanguanthum, K. S.; Morii, M.; Wu, J.] Harvard Univ, Cambridge, MA 02138 USA. [Dubitzky, R. S.; Marks, J.; Schenk, S.; Uwer, U.] Univ Heidelberg, Inst Phys, D-69120 Heidelberg, Germany. [Bard, D. J.; Dauncey, P. D.; Flack, R. L.; Nash, J. A.; Nikolich, M. B.; Vazquez, W. Panduro] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. [Behera, P. K.; Chai, X.; Charles, M. J.; Mallik, U.; Meyer, N. T.; Ziegler, V.] Univ Iowa, Iowa City, IA 52242 USA. [Cochran, J.; Crawley, H. B.; Dong, L.; Eyges, V.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Rubin, A. E.] Iowa State Univ Sci & Technol, Ames, IA 50011 USA. [Gritsan, A. V.; Guo, Z. J.; Lae, C. K.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Denig, A. G.; Fritsch, M.; Schott, G.] Univ Karlsruhe, Inst Expt Kernphys, D-76021 Karlsruhe, Germany. [Arnaud, N.; Bequilleux, J.; Davier, M.; Grosdidier, G.; Hoecker, A.; Lepeltier, V.; Le Diberder, F.; Lutz, A. M.; Pruvot, S.; Rodier, S.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wang, W. F.; Wormser, G.] Univ Paris 11, Ctr Sci Orsay, F-91898 Orsay, France. [Arnaud, N.; Bequilleux, J.; Davier, M.; Grosdidier, G.; Hoecker, A.; Lepeltier, V.; Le Diberder, F.; Lutz, A. M.; Wormser, G.] CNRS, IN2P3, Lab Accelerateur Lineaire, F-91898 Orsay, France. [Lange, D. J.; Wright, D. M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Chavez, C. A.; Forster, I. J.; Fry, J. R.; Gabathuler, E.; Gamet, R.; Hutchcroft, D. E.; Payne, D. J.; Schofield, K. C.; Touramanis, C.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Bevan, A. J.; George, K. A.; Di Lodovico, F.; Menges, W.; Sacco, R.] Univ London Queen Mary Coll, London E1 4NS, England. [Cowan, G.; Salvatore, F.; Wren, A. C.] Univ London, Royal Holloway & Bedford New Coll, Egham TW20 0EX, Surrey, England. [Brown, D. N.; Davis, C. L.] Univ Louisville, Louisville, KY 40292 USA. [Allison, J.; Barlow, N. R.; Barlow, R. J.; Chia, Y. M.; Edgar, C. L.; Lafferty, G. D.; West, T. J.; Yi, J. I.] Univ Manchester, Manchester M13 9PL, Lancs, England. [Anderson, J.; Chen, C.; Jawahery, A.; Roberts, D. A.; Simi, G.; Tuggle, J. M.] Univ Maryland, College Pk, MD 20742 USA. [Blaylock, G.; Dallapiccola, C.; Hertzbach, S. S.; Li, X.; Moore, T. B.; Salvati, E.; Saremi, S.] Univ Massachusetts, Amherst, MA 01003 USA. [Cowan, R.; Fisher, P. H.; Sciolla, G.; Sekula, S. J.; Spitznagel, M.; Taylor, F.; Yamamoto, R. K.] MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. [Mclachlin, S. E.; Patel, P. M.; Robertson, S. H.] McGill Univ, Montreal, PQ H3A 2T8, Canada. [Lazzaro, A.; Palombo, F.] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. [Lazzaro, A.; Palombo, F.] Ist Nazl Fis Nucl, I-20133 Milan, Italy. [Bauer, J. M.; Cremaldi, L.; Eschenburg, V.; Godang, R.; Kroeger, R.; Sanders, D. A.; Summers, D. J.; Zhao, H. W.] Univ Mississippi, University, MS 38677 USA. [Brunet, S.; Cote, D.; Simard, M.; Taras, P.; Viaud, F. B.] Univ Montreal, Montreal, PQ H3C 3J7, Canada. [Nicholson, H.] Mt Holyoke Coll, S Hadley, MA 01075 USA. [De Nardo, G.; Fabozzi, F.; Lista, L.; Monorchio, D.; Sciacca, C.] Ist Nazl Fis Nucl, I-80126 Naples, Italy. [De Nardo, G.; Fabozzi, F.; Lista, L.; Monorchio, D.; Sciacca, C.] Univ Naples Federico 2, Dipartimento Sci Fis, I-80126 Naples, Italy. [Baak, M. A.; Raven, G.; Snoek, H. L.] Natl Inst Nucl & High Energy Phys, NIKHEF, NL-1009 DB Amsterdam, Netherlands. [Jessop, C. P.; LoSecco, J. M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Benelli, G.; Corwin, L. A.; Gan, K. K.; Honscheid, K.; Hufnagel, D.; Kagan, H.; Kass, R.; Morris, J. P.; Rahimi, A. M.; Regensburger, J. J.; Ter-Antonyan, R.; Wong, Q. K.] Ohio State Univ, Columbus, OH 43210 USA. [Blount, N. L.; Brau, J.; Frey, R.; Igonkina, O.; Kolb, J. A.; Rahmat, M. Lu R.; Sinev, N. B.; Strom, D.; Strube, J.; Torrence, E.; Lu, C.] Univ Oregon, Eugene, OR 97403 USA. [Gagliardi, N.; Gaz, A.; Margoni, M.; Morandin, M.; Pompili, A.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.; Voci, C.] Univ Padua, Dipartimento Fis, I-35131 Padua, Italy. [Gagliardi, N.; Gaz, A.; Margoni, M.; Morandin, M.; Pompili, A.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.; Voci, C.] Ist Nazl Fis Nucl, I-35131 Padua, Italy. [Ben-Haim, E.; Briand, H.; Chauveau, J.; David, P.; Del Buono, L.; de la Vaissiere, Ch.; Hamon, O.; Hartfiel, B. L.; Leruste, Ph.; Malcles, J.; Ocariz, J.; Perez, A.] Univ Paris 07, Univ Paris 06, CNRS, IN2P3,Lab Phys Nucl & Hautes Energies, F-75252 Paris, France. [Gladney, L.] Univ Penn, Philadelphia, PA 19104 USA. [Peruzzi, I. M.; Biasini, M.; Covarelli, R.; Manoni, E.] Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. [Biesiada, J.; Elmer, P.; Lau, Y. P.; Lu, C.; Olsen, J.; Smith, A. J. S.; Telnov, A. V.] Princeton Univ, Princeton, NJ 08544 USA. [Baracchini, E.; Bellini, F.; Cavoto, G.; D'Orazio, A.; del Re, D.; Di Marco, E.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Jackson, P. D.; Gioi, L. Li; Mazzoni, M. A.; Morganti, S.; Piredda, G.; Polci, F.; Renga, F.; Voena, C.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Baracchini, E.; Bellini, F.; Cavoto, G.; D'Orazio, A.; del Re, D.; Di Marco, E.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Jackson, P. D.; Gioi, L. Li; Mazzoni, M. A.; Morganti, S.; Piredda, G.; Polci, F.; Renga, F.; Voena, C.] Ist Nazl Fis Nucl, I-00185 Rome, Italy. [Ebert, M.; Schroeder, H.; Waldi, R.] Univ Rostock, D-18051 Rostock, Germany. [Adye, T.; Castelli, G.; Franek, B.; Olaiya, E. O.; Ricciardi, S.; Roethel, W.; Wilson, F. F.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Aleksan, R.; Emery, S.; Escalier, M.; Gaidot, A.; Ganzhur, S. F.; de Monchenault, G. Hamel; Kozanecki, W.; Legendre, M.; Vasseur, G.; Yeche, Ch.; Zito, M.] CEA Saclay, DSM Dapnia, F-91191 Gif Sur Yvette, France. [Chen, X. R.; Liu, H.; Park, W.; Purohit, M. V.; Wilson, J. R.] Univ S Carolina, Columbia, SC 29208 USA. [Allen, M. T.; Aston, D.; Bartoldus, R.; Bechtle, P.; Berger, N.; Claus, R.; Coleman, J. P.; Convery, M. R.; Dingfelder, J. C.; Dorfan, J.; Dubois-Felsmann, G. P.; Dujmic, D.; Dunwoodie, W.; Field, R. C.; Glanzman, T.; Gowdy, S. J.; Graham, M. T.; Grenier, P.; Hast, C.; Hryn'ova, T.; Innes, W. R.; Kelsey, M. H.; Kim, H.; Kim, P.; Leith, D. W. G. S.; Li, S.; Luitz, S.; Luth, V.; Lynch, H. L.; MacFarlane, D. B.; Marsiske, H.; Messner, R.; Muller, D. R.; O'Grady, C. P.; Perazzo, A.; Perl, M.; Pulliam, T.; Ratcliff, B. N.; Roodman, A.; Salnikov, A. A.; Schindler, R. H.; Schwiening, J.; Snyder, A.; Stelzer, J.; Su, D.; Sullivan, M. K.; Suzuki, K.; Swain, S. K.; Thompson, J. M.; Va'vra, J.; van Bakel, N.; Wagner, A. P.; Weaver, M.; Wisniewski, W. J.; Wittgen, M.; Wright, D. H.; Yarritu, A. K.; Yi, K.; Young, C. C.] Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. [Burchat, P. R.; Edwards, A. J.; Majewski, S. A.; Petersen, B. A.; Wilden, L.] Stanford Univ, Stanford, CA 94305 USA. [Ahmed, S.; Alam, M. S.; Bula, R.; Ernst, J. A.; Jain, V.; Pan, B.; Saeed, M. A.; Wappler, F. R.; Zain, S. B.] SUNY Albany, Albany, NY 12222 USA. [Bugg, W.; Krishnamurthy, M.; Spanier, S. M.] Univ Tennessee, Knoxville, TN 37996 USA. [Eckmann, R.; Ritchie, J. L.; Ruland, A. M.; Schilling, C. J.; Schwitters, R. F.] Univ Texas Austin, Austin, TX 78712 USA. [Izen, J. M.; Lou, X. C.; Ye, S.] Univ Texas Dallas, Richardson, TX 75083 USA. [Bianchi, F.; Gallo, F.; Gamba, D.; Pelliccioni, M.] Univ Turin, Dipartimento Fis Sperimentale, I-10125 Turin, Italy. [Bianchi, F.; Gallo, F.; Gamba, D.; Pelliccioni, M.] Ist Nazl Fis Nucl, I-10125 Turin, Italy. [Bomben, M.; Bosisio, L.; Cartaro, C.; Cossutti, F.; Della Ricca, G.; Lanceri, L.; Vitale, L.] Univ Trieste, Dipartmento Fis, I-34127 Trieste, Italy. [Bomben, M.; Bosisio, L.; Cartaro, C.; Cossutti, F.; Della Ricca, G.; Lanceri, L.; Vitale, L.] Ist Nazl Fis Nucl, I-34127 Trieste, Italy. [Azzolini, V.; Lopez-March, N.; Martinez-Vidal, F.; Milanes, D. A.; Oyanguren, A.] Univ Politecn Valencia, CSIC, IFIC, E-46071 Valencia, Spain. [Albert, J.; Banerjee, Sw.; Bhuyan, B.; Hamano, K.; Kowalewski, R.; Nugent, I. M.; Roney, J. M.; Sobie, R. J.] Univ Victoria, Victoria, BC V8W 3P6, Canada. [Back, J. J.; Harrison, P. F.; Latham, T. E.; Mohanty, G. B.; Pappagallo, M.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Band, H. R.; Chen, X.; Dasu, S.; Flood, K. T.; Hollar, J. J.; Kutter, P. E.; Pan, Y.; Pierini, M.; Prepost, R.; Wu, S. L.; Yu, Z.] Univ Wisconsin, Madison, WI 53706 USA. [Neal, H.] Yale Univ, New Haven, CT 06511 USA. [Biasini, M.; Covarelli, R.; Manoni, E.] Ist Nazl Fis Nucl, I-06100 Perugia, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Calderini, G.; Carpinelli, M.; Cenci, R.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Marchiori, G.; Mazur, M. A.; Morganti, M.; Neri, N.; Paoloni, E.; Rizzo, G.; Walsh, J. J.] Univ Pisa, Dipartimento Fis, Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Calderini, G.; Carpinelli, M.; Cenci, R.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Marchiori, G.; Mazur, M. A.; Morganti, M.; Neri, N.; Paoloni, E.; Rizzo, G.; Walsh, J. J.] Ist Nazl Fis Nucl, I-56127 Pisa, Italy. [Haire, M.] Prairie View A&M Univ, Prairie Veiw, TX 77446 USA. [Fabozzi, F.] Univ Basilicata, I-85100 Potenza, Italy. [Pappagallo, M.] Univ Durham, Dept Phys, IPPP, Durham DH1 3LE, England. RP Aubert, B (reprint author), CNRS, IN2P3, Phys Particules Lab, F-74941 Annecy Le Vieux, France. RI Rizzo, Giuliana/A-8516-2015; Luppi, Eleonora/A-4902-2015; van Bakel, Niels/B-6233-2015; Calabrese, Roberto/G-4405-2015; Mir, Lluisa-Maria/G-7212-2015; Martinez Vidal, F*/L-7563-2014; Kolomensky, Yury/I-3510-2015; Lo Vetere, Maurizio/J-5049-2012; Lusiani, Alberto/N-2976-2015; Morandin, Mauro/A-3308-2016; Lusiani, Alberto/A-3329-2016; Della Ricca, Giuseppe/B-6826-2013; Di Lodovico, Francesca/L-9109-2016; Patrignani, Claudia/C-5223-2009; de Sangro, Riccardo/J-2901-2012; Saeed, Mohammad Alam/J-7455-2012; Roe, Natalie/A-8798-2012; Negrini, Matteo/C-8906-2014; Monge, Maria Roberta/G-9127-2012; Oyanguren, Arantza/K-6454-2014; Lista, Luca/C-5719-2008; Bellini, Fabio/D-1055-2009; Neri, Nicola/G-3991-2012; Forti, Francesco/H-3035-2011; Rotondo, Marcello/I-6043-2012; Pappagallo, Marco/R-3305-2016; Calcaterra, Alessandro/P-5260-2015; Frey, Raymond/E-2830-2016; dong, liaoyuan/A-5093-2015; OI Covarelli, Roberto/0000-0003-1216-5235; Rizzo, Giuliana/0000-0003-1788-2866; Paoloni, Eugenio/0000-0001-5969-8712; Faccini, Riccardo/0000-0003-2613-5141; Raven, Gerhard/0000-0002-2897-5323; Luppi, Eleonora/0000-0002-1072-5633; van Bakel, Niels/0000-0002-4053-7588; Calabrese, Roberto/0000-0002-1354-5400; Mir, Lluisa-Maria/0000-0002-4276-715X; Martinez Vidal, F*/0000-0001-6841-6035; Kolomensky, Yury/0000-0001-8496-9975; Lo Vetere, Maurizio/0000-0002-6520-4480; Lusiani, Alberto/0000-0002-6876-3288; Morandin, Mauro/0000-0003-4708-4240; Lusiani, Alberto/0000-0002-6876-3288; Della Ricca, Giuseppe/0000-0003-2831-6982; Di Lodovico, Francesca/0000-0003-3952-2175; Patrignani, Claudia/0000-0002-5882-1747; de Sangro, Riccardo/0000-0002-3808-5455; Saeed, Mohammad Alam/0000-0002-3529-9255; Negrini, Matteo/0000-0003-0101-6963; Monge, Maria Roberta/0000-0003-1633-3195; Oyanguren, Arantza/0000-0002-8240-7300; Bellini, Fabio/0000-0002-2936-660X; Neri, Nicola/0000-0002-6106-3756; Forti, Francesco/0000-0001-6535-7965; Rotondo, Marcello/0000-0001-5704-6163; Pappagallo, Marco/0000-0001-7601-5602; Calcaterra, Alessandro/0000-0003-2670-4826; Frey, Raymond/0000-0003-0341-2636; Bettarini, Stefano/0000-0001-7742-2998; Cibinetto, Gianluigi/0000-0002-3491-6231; dong, liaoyuan/0000-0002-4773-5050; Pacetti, Simone/0000-0002-6385-3508 NR 8 TC 7 Z9 7 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD FEB 8 PY 2008 VL 100 IS 5 AR 051802 DI 10.1103/PhysRevLett.100.051802 PG 7 WC Physics, Multidisciplinary SC Physics GA 260OM UT WOS:000253019600016 ER PT J AU Detlefs, C Duc, F Kazei, ZA Vanacken, J Frings, P Bras, W Lorenzo, JE Canfield, PC Rikken, GLJA AF Detlefs, C. Duc, F. Kazei, Z. A. Vanacken, J. Frings, P. Bras, W. Lorenzo, J. E. Canfield, P. C. Rikken, G. L. J. A. TI Direct observation of the high magnetic field effect on the Jahn-Teller state in TbVO(4) SO PHYSICAL REVIEW LETTERS LA English DT Article ID RARE-EARTH VANADATES; SYNCHROTRON-RADIATION; PHASE-TRANSITIONS; FLUX GROWTH AB We report the first direct observation of the influence of high magnetic fields on the Jahn-Teller (JT) transition in TbVO(4). Contrary to spectroscopic and magnetic methods, x-ray diffraction directly measures the JT distortion; the splitting between the (311)/(131) and (202)/(022) pairs of Bragg reflections is proportional to the order parameter. Our experimental results are compared to mean-field calculations, taking into account all possible orientations of the grains relative to the applied field, and qualitative agreement is obtained. C1 [Detlefs, C.] European Synchrotron Radiat Facil, F-38043 Grenoble, France. [Duc, F.; Frings, P.; Rikken, G. L. J. A.] Univ Toulouse, CNRS INSA UPS, Lab Natl Champs Magnet Pulses, F-31400 Toulouse, France. [Kazei, Z. A.] Moscow State Pedag Univ, Moscow 119992, Russia. [Vanacken, J.] Inst Nanoscale Phys & Chem, Pulsveldengroep, B-3001 Louvain, Belgium. [Bras, W.] DUBBLE CRG ESRF, Netherlands Org Sci Res NWO, F-38043 Grenoble, France. [Lorenzo, J. E.] CNRS, Inst Neel, F-38043 Grenoble, France. [Canfield, P. C.] Iowa State Univ Sci & Technol, USDOE & Dept Phys & Astron, Ames Lab, Ames, IA 50011 USA. RP Detlefs, C (reprint author), European Synchrotron Radiat Facil, BP 220, F-38043 Grenoble, France. RI Detlefs, Carsten/B-6244-2008; Bras, Wim/A-1026-2011; Vanacken, Johan/F-3026-2013; Canfield, Paul/H-2698-2014 OI Detlefs, Carsten/0000-0003-2573-2286; NR 22 TC 14 Z9 14 U1 0 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD FEB 8 PY 2008 VL 100 IS 5 AR 056405 DI 10.1103/PhysRevLett.100.056405 PG 4 WC Physics, Multidisciplinary SC Physics GA 260OM UT WOS:000253019600059 PM 18352402 ER PT J AU Horava, P Keeler, CA AF Horava, Petr Keeler, Cynthia A. TI Closed-string tachyon condensation and the worldsheet super-Higgs effect SO PHYSICAL REVIEW LETTERS LA English DT Article AB Alternative gauge choices for worldsheet supersymmetry can elucidate dynamical phenomena obscured in the usual superconformal gauge. In the particular example of the tachyonic E(8) heterotic string, we use a judicious gauge choice to show that the process of closed-string tachyon condensation can be understood in terms of a worldsheet super-Higgs effect. The worldsheet gravitino assimilates the goldstino and becomes a dynamical propagating field. Conformal, but not superconformal, invariance is maintained throughout. C1 [Horava, Petr] Univ Calif Berkeley, Berkeley Ctr Theoret Phys, Berkeley, CA 94720 USA. Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Div Phys, Berkeley, CA 94720 USA. RP Horava, P (reprint author), Univ Calif Berkeley, Berkeley Ctr Theoret Phys, Berkeley, CA 94720 USA. NR 6 TC 6 Z9 6 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD FEB 8 PY 2008 VL 100 IS 5 AR 051601 DI 10.1103/PhysRevLett.100.051601 PG 4 WC Physics, Multidisciplinary SC Physics GA 260OM UT WOS:000253019600013 PM 18352356 ER PT J AU Ireland, DG McKinnon, B Protopopescu, D Ambrozewicz, P Anghinolfi, M Asryan, G Avakian, H Bagdasaryan, H Baillie, N Ball, JP Baltzell, NA Batourine, V Battaglieri, M Bedlinskiy, I Bellis, M Benmouna, N Berman, BL Biselli, AS Blaszczyk, L Bouchigny, S Boiarinov, S Bradford, R Branford, D Briscoe, WJ Brooks, WK Burkert, VD Butuceanu, C Calarco, JR Careccia, SL Carman, DS Casey, L Chen, S Cheng, L Cole, PL Collins, P Coltharp, P Crabb, D Crede, V Dashyan, N De Masi, R De Vita, R De Sanctis, E Degtyarenko, PV Deur, A Dickson, R Djalali, C Dodge, GE Donnelly, J Doughty, D Dugger, M Dzyubak, OP Egiyan, KS El Fassi, L Elouadrhiri, L Eugenio, P Fedotov, G Feldman, G Fradi, A Funsten, H Garcon, M Gavalian, G Gevorgyan, N Gilfoyle, GP Giovanetti, KL Girod, FX Goetz, JT Gohn, W Gonenc, A Gothe, RW Griffioen, KA Guidal, M Guler, N Guo, L Gyurjyan, V Hafidi, K Hakobyan, H Hanretty, C Hassall, N Hersman, FW Hleiqawi, I Holtrop, M Hyde-Wright, CE Ilieva, Y Ishkhanov, BS Isupov, EL Jenkins, D Jo, HS Johnstone, JR Joo, K Juengst, HG Kalantarians, N Kellie, JD Khandaker, M Kim, W Klein, A Klein, FJ Kossov, M Krahn, Z Kramer, LH Kubarovsky, V Kuhn, J Kuleshov, SV Kuznetsov, V Lachniet, J Laget, JM Langheinrich, J Lawrence, D Livingston, K Lu, HY MacCormick, M Markov, N Mattione, P Mecking, BA Mestayer, MD Meyer, CA Mibe, T Mikhailov, K Mirazita, M Miskimen, R Mokeev, V Moreno, B Moriya, K Morrow, SA Moteabbed, M Munevar, E Mutchler, GS Nadel-Turonski, P Nasseripour, R Niccolai, S Niculescu, G Niculescu, I Niczyporuk, BB Niroula, MR Niyazov, RA Nozar, M Osipenko, M Ostrovidov, AI Park, K Pasyuk, E Paterson, C Pereira, SA Pierce, J Pivnyuk, N Pogorelko, O Pozdniakov, S Price, JW Procureur, S Prok, Y Raue, BA Ricco, G Ripani, M Ritchie, BG Ronchetti, F Rosner, G Rossi, P Sabatie, F Salamanca, J Salgado, C Santoro, JP Sapunenko, V Schumacher, RA Serov, VS Sharabian, YG Sharov, D Shvedunov, NV Smith, LC Sober, DI Sokhan, D Stavinsky, A Stepanyan, SS Stepanyan, S Stokes, BE Stoler, P Strauch, S Taiuti, M Tedeschi, DJ Tkabladze, A Tkachenko, S Tur, C Ungaro, M Vineyard, MF Vlassov, AV Watts, DP Weinstein, LB Weygand, DP Williams, M Wolin, E Wood, MH Yegneswaran, A Zana, L Zhang, J Zhao, B Zhao, ZW AF Ireland, D. G. McKinnon, B. Protopopescu, D. Ambrozewicz, P. Anghinolfi, M. Asryan, G. Avakian, H. Bagdasaryan, H. Baillie, N. Ball, J. P. Baltzell, N. A. Batourine, V. Battaglieri, M. Bedlinskiy, I. Bellis, M. Benmouna, N. Berman, B. L. Biselli, A. S. Blaszczyk, L. Bouchigny, S. Boiarinov, S. Bradford, R. Branford, D. Briscoe, W. J. Brooks, W. K. Burkert, V. D. Butuceanu, C. Calarco, J. R. Careccia, S. L. Carman, D. S. Casey, L. Chen, S. Cheng, L. Cole, P. L. Collins, P. Coltharp, P. Crabb, D. Crede, V. Dashyan, N. De Masi, R. De Vita, R. De Sanctis, E. Degtyarenko, P. V. Deur, A. Dickson, R. Djalali, C. Dodge, G. E. Donnelly, J. Doughty, D. Dugger, M. Dzyubak, O. P. Egiyan, K. S. El Fassi, L. Elouadrhiri, L. Eugenio, P. Fedotov, G. Feldman, G. Fradi, A. Funsten, H. Garcon, M. Gavalian, G. Gevorgyan, N. Gilfoyle, G. P. Giovanetti, K. L. Girod, F. X. Goetz, J. T. Gohn, W. Gonenc, A. Gothe, R. W. Griffioen, K. A. Guidal, M. Guler, N. Guo, L. Gyurjyan, V. Hafidi, K. Hakobyan, H. Hanretty, C. Hassall, N. Hersman, F. W. Hleiqawi, I. Holtrop, M. Hyde-Wright, C. E. Ilieva, Y. Ishkhanov, B. S. Isupov, E. L. Jenkins, D. Jo, H. S. Johnstone, J. R. Joo, K. Juengst, H. G. Kalantarians, N. Kellie, J. D. Khandaker, M. Kim, W. Klein, A. Klein, F. J. Kossov, M. Krahn, Z. Kramer, L. H. Kubarovsky, V. Kuhn, J. Kuleshov, S. V. Kuznetsov, V. Lachniet, J. Laget, J. M. Langheinrich, J. Lawrence, D. Livingston, K. Lu, H. Y. MacCormick, M. Markov, N. Mattione, P. Mecking, B. A. Mestayer, M. D. Meyer, C. A. Mibe, T. Mikhailov, K. Mirazita, M. Miskimen, R. Mokeev, V. Moreno, B. Moriya, K. Morrow, S. A. Moteabbed, M. Munevar, E. Mutchler, G. S. Nadel-Turonski, P. Nasseripour, R. Niccolai, S. Niculescu, G. Niculescu, I. Niczyporuk, B. B. Niroula, M. R. Niyazov, R. A. Nozar, M. Osipenko, M. Ostrovidov, A. I. Park, K. Pasyuk, E. Paterson, C. Pereira, S. Anefalos Pierce, J. Pivnyuk, N. Pogorelko, O. Pozdniakov, S. Price, J. W. Procureur, S. Prok, Y. Raue, B. A. Ricco, G. Ripani, M. Ritchie, B. G. Ronchetti, F. Rosner, G. Rossi, P. Sabatie, F. Salamanca, J. Salgado, C. Santoro, J. P. Sapunenko, V. Schumacher, R. A. Serov, V. S. Sharabian, Y. G. Sharov, D. Shvedunov, N. V. Smith, L. C. Sober, D. I. Sokhan, D. Stavinsky, A. Stepanyan, S. S. Stepanyan, S. Stokes, B. E. Stoler, P. Strauch, S. Taiuti, M. Tedeschi, D. J. Tkabladze, A. Tkachenko, S. Tur, C. Ungaro, M. Vineyard, M. F. Vlassov, A. V. Watts, D. P. Weinstein, L. B. Weygand, D. P. Williams, M. Wolin, E. Wood, M. H. Yegneswaran, A. Zana, L. Zhang, J. Zhao, B. Zhao, Z. W. CA CLAS Collaboration TI Bayesian analysis of pentaquark signals from CLAS data SO PHYSICAL REVIEW LETTERS LA English DT Article AB We examine the results of two measurements by the CLAS collaboration, one of which claimed evidence for a Theta(+) pentaquark, while the other found no such evidence. The unique feature of these two experiments was that they were performed with the same experimental setup. Using a Bayesian analysis, we find that the results of the two experiments are in fact compatible with each other, but that the first measurement did not contain sufficient information to determine unambiguously the existence of a Theta(+). Further, we suggest a means by which the existence of a new candidate particle can be tested in a rigorous manner. C1 [Ireland, D. G.; McKinnon, B.; Protopopescu, D.; Donnelly, J.; Hassall, N.; Johnstone, J. R.; Kellie, J. D.; Livingston, K.; Paterson, C.; Rosner, G.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. [El Fassi, L.; Hafidi, K.] Argonne Natl Lab, Argonne, IL 60439 USA. [Ball, J. P.; Collins, P.; Dugger, M.; Pasyuk, E.; Ritchie, B. G.] Arizona State Univ, Tempe, AZ 85287 USA. [Goetz, J. T.] Univ Calif Los Angeles, Los Angeles, CA 90095 USA. [Price, J. W.] Calif State Univ Dominguez Hills, Carson, CA 90747 USA. [Bellis, M.; Biselli, A. S.; Bradford, R.; Dickson, R.; Krahn, Z.; Kuhn, J.; Meyer, C. A.; Moriya, K.; Schumacher, R. A.; Williams, M.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Casey, L.; Cheng, L.; Klein, F. J.; Santoro, J. P.; Sober, D. I.] Catholic Univ Amer, Washington, DC 20064 USA. [De Masi, R.; Garcon, M.; Girod, F. X.; Morrow, S. A.; Procureur, S.; Sabatie, F.] CEA Saclay, Serv Phys Nucl, F-91191 Gif Sur Yvette, France. [Doughty, D.] Christopher Newport Univ, Newport News, VA 23606 USA. [Gohn, W.; Joo, K.; Markov, N.; Ungaro, M.; Zhao, B.] Univ Connecticut, Storrs, CT 06269 USA. [Sokhan, D.; Watts, D. P.] Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. [Biselli, A. S.; Branford, D.] Fairfield Univ, Fairfield, CT 06824 USA. [Gonenc, A.; Kramer, L. H.; Raue, B. A.] Florida Int Univ, Miami, FL 33199 USA. [Ambrozewicz, P.; Blaszczyk, L.; Chen, S.; Coltharp, P.; Crede, V.; Eugenio, P.; Hanretty, C.; Moteabbed, M.; Ostrovidov, A. I.; Stokes, B. E.] Florida State Univ, Tallahassee, FL 32306 USA. [Benmouna, N.; Berman, B. L.; Feldman, G.; Ilieva, Y.; Munevar, E.; Nadel-Turonski, P.; Tkabladze, A.] George Washington Univ, Washington, DC 20052 USA. [Briscoe, W. J.; Cole, P. L.; Salamanca, J.] Idaho State Univ, Pocatello, ID 83209 USA. [De Sanctis, E.; Mirazita, M.; Pereira, S. Anefalos; Ronchetti, F.; Rossi, P.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Anghinolfi, M.; Battaglieri, M.; De Vita, R.; Ricco, G.; Ripani, M.; Taiuti, M.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Bouchigny, S.; De Masi, R.; Fradi, A.; Guidal, M.; Jo, H. S.; MacCormick, M.; Moreno, B.; Morrow, S. A.; Niccolai, S.; Osipenko, M.] Inst Phys Nucl, F-91406 Orsay, France. [Bedlinskiy, I.; Kossov, M.; Kuleshov, S. V.; Mikhailov, K.; Pivnyuk, N.; Pogorelko, O.; Pozdniakov, S.; Serov, V. S.; Stavinsky, A.; Vlassov, A. V.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Giovanetti, K. L.; Niculescu, G.; Niculescu, I.] James Madison Univ, Harrisonburg, VA 22807 USA. [Batourine, V.; Kim, W.; Kuznetsov, V.; Park, K.; Stepanyan, S. S.] Kyungpook Natl Univ, Taegu 702701, South Korea. [Lawrence, D.; Miskimen, R.] Univ Massachusetts, Amherst, MA 01003 USA. [Fedotov, G.; Ishkhanov, B. S.; Isupov, E. L.; Mokeev, V.; Osipenko, M.; Sharov, D.; Shvedunov, N. V.] Moscow MV Lomonosov State Univ, Gen Nucl Phys Inst, Moscow 119899, Russia. [Hersman, F. W.; Holtrop, M.; Zana, L.] Univ New Hampshire, Durham, NH 03824 USA. [Calarco, J. R.; Khandaker, M.; Salgado, C.] Norfolk State Univ, Norfolk, VA 23504 USA. [Hleiqawi, I.; Mibe, T.] Ohio Univ, Athens, OH 45701 USA. [Bagdasaryan, H.; Careccia, S. L.; Dodge, G. E.; Gavalian, G.; Guler, N.; Hyde-Wright, C. E.; Lachniet, J.; Niroula, M. R.; Tkachenko, S.; Weinstein, L. B.; Zhang, J.] Old Dominion Univ, Norfolk, VA 23529 USA. [Juengst, H. G.; Kalantarians, N.; Klein, A.; Kubarovsky, V.; Stoler, P.] Rensselaer Polytech Inst, Troy, NY 12180 USA. [Mattione, P.] Rice Univ, Houston, TX 77005 USA. [Gilfoyle, G. P.; Mutchler, G. S.] Univ Richmond, Richmond, VA 23173 USA. [Baltzell, N. A.; Djalali, C.; Dzyubak, O. P.; Gothe, R. W.; Langheinrich, J.; Lu, H. Y.; Strauch, S.; Tedeschi, D. J.; Tur, C.; Wood, M. H.; Zhao, Z. W.] Univ S Carolina, Columbia, SC 29208 USA. [Avakian, H.; Boiarinov, S.; Brooks, W. K.; Butuceanu, C.; Carman, D. S.; Degtyarenko, P. V.; Deur, A.; Doughty, D.; Elouadrhiri, L.; Girod, F. X.; Guo, L.; Gyurjyan, V.; Kramer, L. H.; Kubarovsky, V.; Laget, J. M.; Mecking, B. A.; Mestayer, M. D.; Mokeev, V.; Nasseripour, R.; Niczyporuk, B. B.; Niyazov, R. A.; Nozar, M.; Raue, B. A.; Sapunenko, V.; Sharabian, Y. G.; Stepanyan, S. S.; Weygand, D. P.; Wolin, E.; Yegneswaran, A.] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. [Vineyard, M. F.] Union Coll, Schenectady, NY 12308 USA. [Jenkins, D.] Virginia Polytech Inst & State Univ, Blacksburg, VA 24061 USA. [Crabb, D.; Pierce, J.; Prok, Y.; Smith, L. C.] Univ Virginia, Charlottesville, VA 22901 USA. [Baillie, N.; Butuceanu, C.; Funsten, H.; Griffioen, K. A.] Coll William & Mary, Williamsburg, VA 23187 USA. [Asryan, G.; Dashyan, N.; Egiyan, K. S.; Gevorgyan, N.; Hakobyan, H.] Yerevan Phys Inst, Yerevan 375036, Armenia. RP Ireland, DG (reprint author), Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. RI Osipenko, Mikhail/N-8292-2015; Zhang, Jixie/A-1461-2016; Kuleshov, Sergey/D-9940-2013; Ireland, David/E-8618-2010; Lu, Haiyun/B-4083-2012; Schumacher, Reinhard/K-6455-2013; Meyer, Curtis/L-3488-2014; Sabatie, Franck/K-9066-2015; Zana, Lorenzo/H-3032-2012; Isupov, Evgeny/J-2976-2012; Ishkhanov, Boris/E-1431-2012; Zhao, Bo/J-6819-2012; Brooks, William/C-8636-2013; Protopopescu, Dan/D-5645-2012 OI Osipenko, Mikhail/0000-0001-9618-3013; RIPANI, Maurizio/0000-0003-4450-8511; Sapunenko, Vladimir/0000-0003-1877-9043; Kuleshov, Sergey/0000-0002-3065-326X; Ireland, David/0000-0001-7713-7011; Schumacher, Reinhard/0000-0002-3860-1827; Meyer, Curtis/0000-0001-7599-3973; Sabatie, Franck/0000-0001-7031-3975; Zhao, Bo/0000-0003-3171-5335; Brooks, William/0000-0001-6161-3570; NR 6 TC 13 Z9 13 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD FEB 8 PY 2008 VL 100 IS 5 AR 052001 DI 10.1103/PhysRevLett.100.052001 PG 5 WC Physics, Multidisciplinary SC Physics GA 260OM UT WOS:000253019600018 PM 18352361 ER PT J AU Larson, J Damski, B Morigi, G Lewenstein, M AF Larson, Jonas Damski, Bogdan Morigi, Giovanna Lewenstein, Maciej TI Mott-insulator states of ultracold atoms in optical resonators SO PHYSICAL REVIEW LETTERS LA English DT Article ID BOSE-HUBBARD MODEL; LATTICES; CAVITY; BISTABILITY; TRANSITION; SUPERFLUID; MATTER; LIGHT AB We study the low temperature physics of an ultracold atomic gas in the potential formed inside a pumped optical resonator. Here, the height of the cavity potential, and hence the quantum state of the gas, depends not only on the pump parameters, but also on the atomic density through a dynamical ac-Stark shift of the cavity resonance. We derive the Bose-Hubbard model in one dimension and use the strong coupling expansion to determine the parameter regime in which the system is in the Mott-insulator state. We predict the existence of overlapping, competing Mott-insulator states, and bistable behavior in the vicinity of the shifted cavity resonance, controlled by the pump parameters. Outside these parameter regions, the state of the system is in most cases superfluid. C1 [Larson, Jonas; Lewenstein, Maciej] ICFO, Inst Ciencies Foton, E-08860 Barcelona, Spain. [Damski, Bogdan] Los Alamos Natl Lab, Theory Div, Los Alamos, NM 87545 USA. [Morigi, Giovanna] Univ Autonoma Barcelona, Dept Fis, Grp Opt, E-08193 Barcelona, Spain. [Lewenstein, Maciej] ICREA, Inst Catalana Recerca & Estudis Avancats, E-08010 Barcelona, Spain. RP Larson, J (reprint author), ICFO, Inst Ciencies Foton, E-08860 Barcelona, Spain. RI Damski, Bogdan/E-3027-2013; Lewenstein, Maciej/I-1337-2014; OI Lewenstein, Maciej/0000-0002-0210-7800; Morigi, Giovanna/0000-0002-1946-3684 NR 30 TC 99 Z9 99 U1 0 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD FEB 8 PY 2008 VL 100 IS 5 AR 050401 DI 10.1103/PhysRevLett.100.050401 PG 4 WC Physics, Multidisciplinary SC Physics GA 260OM UT WOS:000253019600002 PM 18352345 ER PT J AU Miller, CE Majewski, J Watkins, EB Mulder, DJ Gog, T Kuhl, TL AF Miller, C. E. Majewski, J. Watkins, E. B. Mulder, D. J. Gog, T. Kuhl, T. L. TI Probing the local order of single phospholipid membranes using grazing incidence x-ray diffraction SO PHYSICAL REVIEW LETTERS LA English DT Article ID FLUORESCENCE MICROSCOPY; LIQUID INTERFACE; LIPID MONOLAYERS; SCATTERING; BILAYERS; DOMAINS; FILMS AB We report the first grazing incidence x-ray diffraction measurements of a single phospholipid bilayer at the solid-liquid interface. Our grazing incidence x-ray diffraction and reflectivity measurements reveal that the lateral ordering in a supported DPPE (1, 2-Dipalmitoyl-sn-Glycero-3-Phosphoethanolamine) bilayer is significantly less than that of an equivalent monolayer at the air-liquid interface. Our findings also indicate that the leaflets of the bilayer are uncoupled in contrast to the scattering from free standing phosphatidylcholine bilayers. The methodology presented can be readily implemented to study more complicated biomembranes and their interaction with proteins. C1 [Miller, C. E.; Majewski, J.; Watkins, E. B.] Los Alamos Natl Lab, Manuel Lujan Neutron Scattering Ctr, Los Alamos, NM 87545 USA. [Watkins, E. B.] Univ Calif Davis, Biophys Grad Grp, Davis, CA 95616 USA. [Mulder, D. J.; Kuhl, T. L.] Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA. [Gog, T.] Argonne Natl Lab, Argonne, IL 60439 USA. [Kuhl, T. L.] Univ Calif Davis, Dept Biomed Engn, Davis, CA 95616 USA. RP Miller, CE (reprint author), Los Alamos Natl Lab, Manuel Lujan Neutron Scattering Ctr, POB 1663, Los Alamos, NM 87545 USA. RI Lujan Center, LANL/G-4896-2012 NR 22 TC 36 Z9 37 U1 1 U2 26 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD FEB 8 PY 2008 VL 100 IS 5 AR 058103 DI 10.1103/PhysRevLett.100.058103 PG 4 WC Physics, Multidisciplinary SC Physics GA 260OM UT WOS:000253019600093 PM 18352436 ER PT J AU Morozov, VS Chao, AW Krisch, AD Leonova, MA Raymond, RS Sivers, DW Wong, VK Garishvili, A Gebel, R Lehrach, A Lorentz, B Maier, R Prasuhn, D Stockhorst, H Welsch, D Hinterberger, F Ulbrich, K Schnase, A Stephenson, EJ Brantjes, NPM Onderwater, CJG da Silva, M AF Morozov, V. S. Chao, A. W. Krisch, A. D. Leonova, M. A. Raymond, R. S. Sivers, D. W. Wong, V. K. Garishvili, A. Gebel, R. Lehrach, A. Lorentz, B. Maier, R. Prasuhn, D. Stockhorst, H. Welsch, D. Hinterberger, F. Ulbrich, K. Schnase, A. Stephenson, E. J. Brantjes, N. P. M. Onderwater, C. J. G. da Silva, M. TI Experimental verification of predicted beam-polarization oscillations near a spin resonance SO PHYSICAL REVIEW LETTERS LA English DT Article ID COSY; SYNCHROTRON; SCATTERING; DEUTERONS; PROTONS AB The Chao matrix formalism allows analytic calculations of a beam's polarization behavior inside a spin resonance. We recently tested its prediction of polarization oscillations occurring in a stored beam of polarized particles near a spin resonance. Using a 1.85 GeV/c polarized deuteron beam stored in the COoler SYnchrotron, we swept a new rf solenoid's frequency rather rapidly through 400 Hz during 100 ms, while varying the distance between the sweep's end frequency and the central frequency of an rf-induced spin resonance. Our measurements of the deuteron's polarization near and inside the resonance agree with the Chao formalism's predicted oscillations. C1 [Morozov, V. S.; Chao, A. W.; Krisch, A. D.; Leonova, M. A.; Raymond, R. S.; Sivers, D. W.; Wong, V. K.] Univ Michigan, Spin Phys Ctr, Ann Arbor, MI 48109 USA. [Garishvili, A.; Gebel, R.; Lehrach, A.; Lorentz, B.; Maier, R.; Prasuhn, D.; Stockhorst, H.; Welsch, D.] Forschungszentrum Julich, Inst Kernphys, D-52425 Julich, Germany. [Hinterberger, F.; Ulbrich, K.] Univ Bonn, Helmholtz Inst Strahlen & Kernphys, D-53115 Bonn, Germany. [Schnase, A.] Ring RF Grp, JAEA J PARC, Ibaraki 3191195, Japan. [Stephenson, E. J.] Indiana Univ, IUCF, Bloomington, IN 47408 USA. [Brantjes, N. P. M.; Onderwater, C. J. G.; da Silva, M.] Univ Groningen, Groningen, Netherlands. [Chao, A. W.] SLAC, Menlo Pk, CA 94025 USA. RP Morozov, VS (reprint author), Univ Michigan, Spin Phys Ctr, Ann Arbor, MI 48109 USA. OI Lehrach, Andreas/0000-0002-6991-2257 NR 29 TC 14 Z9 14 U1 1 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD FEB 8 PY 2008 VL 100 IS 5 AR 054801 DI 10.1103/PhysRevLett.100.054801 PG 4 WC Physics, Multidisciplinary SC Physics GA 260OM UT WOS:000253019600035 PM 18352378 ER PT J AU Wu, C Malinin, SV Tretiak, S Chernyak, VY AF Wu, Chao Malinin, Sergey V. Tretiak, Sergei Chernyak, Vladimir Y. TI Multiscale modeling of electronic excitations in branched conjugated molecules using an exciton scattering approach SO PHYSICAL REVIEW LETTERS LA English DT Article ID DENDRIMERS; SPECTROSCOPY; LOCALIZATION AB The exciton scattering (ES) approach attributes excited electronic states in quasi-1D branched polymer molecules to standing waves of quantum quasiparticles (excitons) scattered at the molecular vertices. We extract their dispersion and frequency-dependent scattering matrices at termini, ortho, and meta joints for pi-conjugated phenylacetylene-based molecules from atomistic time-dependent density-functional theory (TD DFT) calculations. This allows electronic spectra for any structure of arbitrary size within the considered molecular family to be obtained with negligible numerical effort. The agreement is within 10-20 meV for all test cases, when comparing the ES results with the reference TD DFT calculations. C1 [Wu, Chao; Malinin, Sergey V.; Chernyak, Vladimir Y.] Wayne State Univ, Dept Chem, Detroit, MI 48202 USA. [Tretiak, Sergei] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. [Tretiak, Sergei] Los Alamos Natl Lab, Ctr Nonlinear Studies, Div Theoret, Los Alamos, NM 87545 USA. RP Wu, C (reprint author), Wayne State Univ, Dept Chem, 5101 Cass Ave, Detroit, MI 48202 USA. EM serg@lanl.gov; chernyak@chem.wayne.edu RI wu, chao/A-1303-2011; Tretiak, Sergei/B-5556-2009; Chernyak, Vladimir/F-5842-2016 OI wu, chao/0000-0002-8573-7196; Tretiak, Sergei/0000-0001-5547-3647; Chernyak, Vladimir/0000-0003-4389-4238 NR 19 TC 22 Z9 22 U1 0 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD FEB 8 PY 2008 VL 100 IS 5 AR 057405 DI 10.1103/PhysRevLett.100.057405 PG 4 WC Physics, Multidisciplinary SC Physics GA 260OM UT WOS:000253019600086 PM 18352429 ER PT J AU Hammache, S Evans, LR Coker, EN Miller, JE AF Hammache, Sonia Evans, Lindsey R. Coker, Eric N. Miller, James E. TI Impact of copper on the performance and sulfur tolerance of barium-based NOx storage-reduction catalysts SO APPLIED CATALYSIS B-ENVIRONMENTAL LA English DT Article DE lean-NOx trap; NOx storage reduction; deactivation; Pt-BaO/gamma-Al2O3; Pt-Cu-BaOPy-Al2O3 ID NO(X) STORAGE; SO2; DEACTIVATION; EXHAUST; METALS; AL2O3; PHASE; TRAP; CUO AB The presence of sulfur in automotive exhaust is known to be detrimental to lean-NO, traps as SO2 is oxidized to SO3 that competes with NO2 for sites on the trap and is difficult to remove. In this study the effect of adding Cu to the prototypical Pt-BaO/gamma-Al2O3 formulation on the system's tolerance for sulfur was investigated. It was found that in the absence of sulfur, Cu decreases the performance in terms of both NO, storage capacity and reduction of NOx to N-2 during regeneration. In the presence of SO2, Cu provides a significant improvement in sulfur tolerance so that, after sulfur exposure, the storage capacity of the Cu-modified material can exceed that of the baseline material. The sulfur tolerance afforded by Cu is attributed to a moderation in the activity for SO2 oxidation resulting from the formation of a Pt-Cu bimetallic phase. The propensity for NO oxidation is also modified, but to a lesser effect. Evidence for the bimetallic phase is provided by temperature-programmed reduction (TPR) and electron microscopy. The impact of SO2 on the Cu-modified material is greater during the regenerative reduction cycle. In this case, the results suggest that sulfur blocks Pt and possibly Cu sites and that the sulfur is not removed by oxidation during the subsequent storage cycle. Hence, activity lost during the reduction cycle is not restored. In contrast, sulfur that blocks Pt sites on the baseline material during the reduction cycle is subsequently oxidized and desorbs from the Pt, restoring the activity. However, some of the resulting SO3 reacts with the BaO to form BaSO4, and there is a partial loss of storage capacity. Published by Elsevier B.V. C1 [Hammache, Sonia; Evans, Lindsey R.; Coker, Eric N.; Miller, James E.] Adv Mat Labs, Sandia Natl Labs, Albuquerque, NM 87106 USA. [Hammache, Sonia] Univ New Mexico, Dept Chem, Albuquerque, NM 87106 USA. RP Miller, JE (reprint author), Adv Mat Labs, Sandia Natl Labs, 1001 Univ Blvd SE, Albuquerque, NM 87106 USA. EM jemille@sandia.gov RI Miller, James/C-1128-2011 OI Miller, James/0000-0001-6811-6948 NR 26 TC 14 Z9 15 U1 0 U2 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0926-3373 J9 APPL CATAL B-ENVIRON JI Appl. Catal. B-Environ. PD FEB 7 PY 2008 VL 78 IS 3-4 BP 315 EP 323 DI 10.1016/j.apcatb.2007.09.010 PG 9 WC Chemistry, Physical; Engineering, Environmental; Engineering, Chemical SC Chemistry; Engineering GA 255HR UT WOS:000252649300014 ER PT J AU Liu, YG Geerts, B Miller, M Daum, P McGraw, R AF Liu, Yangang Geerts, Bart Miller, Mark Daum, Peter McGraw, Robert TI Threshold radar reflectivity for drizzling clouds SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID AUTOCONVERSION PARAMETERIZATION; MICROWAVE RADIOMETER; SIZE DISTRIBUTIONS; STRATIFORM CLOUDS; EFFECTIVE RADIUS; MARINE STRATUS; DOPPLER RADAR; WATER-CONTENT; RADIATION; RETRIEVAL AB Empirical studies have suggested the existence of a threshold radar reflectivity between nonprecipitating and precipitating clouds; however, there has been neither a rigorous theoretical basis for the threshold reflectivity nor a sound explanation as to why empirically determined threshold reflectivities differ among studies. Here we present a theory for the threshold reflectivity by relating it to the autoconversion process. This theory not only demonstrates the sharp transition from cloud to rain when the radar reflectivity exceeds some value (threshold reflectivity) but also reveals that the threshold reflectivity is an increasing function of the cloud droplet concentration. The dependence of threshold reflectivity on droplet concentration suggests that the differences in empirically determined threshold reflectivity arise from the differences in droplet concentration. The favorable agreement with measurements collected over a wide range of conditions further provides observational support for the theoretical formulation. The results have many potential applications, especially to remote sensing of cloud properties and studies of the second aerosol indirect effect. C1 [Liu, Yangang; Miller, Mark; Daum, Peter; McGraw, Robert] Brookhaven Natl Lab, Div Atmospher Sci, Upton, NY 11973 USA. [Geerts, Bart; Miller, Mark] Univ Wyoming, Dept Atmospher Sci, Laramie, WY 82071 USA. RP Liu, YG (reprint author), Brookhaven Natl Lab, Div Atmospher Sci, Bldg 815E, Upton, NY 11973 USA. EM lyg@bnl.gov RI Liu, Yangang/H-6154-2011 NR 26 TC 19 Z9 19 U1 0 U2 8 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD FEB 7 PY 2008 VL 35 IS 3 AR L03807 DI 10.1029/2007GL031201 PG 5 WC Geosciences, Multidisciplinary SC Geology GA 261FE UT WOS:000253063700001 ER PT J AU Lee, JM Ruckes, S Prausnitz, JM AF Lee, Jong-Min Ruckes, Sebastian Prausnitz, John M. TI Solvent polarities and Kamlet-Taft parameters for ionic liquids containing a pyridinium cation SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID 1-BUTYL-3-METHYLIMIDAZOLIUM HEXAFLUOROPHOSPHATE; TEMPERATURE; EXTRACTION; SOLVATION; CATALYSIS; DYES AB Five recently synthesized pyridinium ionic liquids [(1-butyl-4-methylpyridinium, 1-octylpyridinium, 1-octyl-2-methylpyridinium, 1-octyl-3-methylpyridinium, and 1-octyl-4-methylpyridinium, all with anion bis(trifluoromethylsulfonyl)imide], were investigated to establish the influence of substituting a methyl group and the influence of alkyl chain length on the cation on polarity E-T(N) and on three Kamlet-Taft parameters: dipolarity/polarizabilty (pi*), hydrogen-bond acidity (alpha), and hydrogen-bond basicity (beta). Experimental measurements cover the range 25 to 65 degrees C. C1 [Lee, Jong-Min; Ruckes, Sebastian; Prausnitz, John M.] Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. [Lee, Jong-Min; Prausnitz, John M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Ruckes, Sebastian] Rhein Westfal TH Aachen, Aachen, Germany. RP Lee, JM (reprint author), Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. EM JMLee@lbl.gov NR 22 TC 85 Z9 85 U1 4 U2 36 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD FEB 7 PY 2008 VL 112 IS 5 BP 1473 EP 1476 DI 10.1021/jp076895k PG 4 WC Chemistry, Physical SC Chemistry GA 257QX UT WOS:000252814700021 PM 18201076 ER PT J AU Song, JK Willer, U Szarko, JM Leone, SR Li, S Zhao, Y AF Song, Jae Kyu Willer, Ulrike Szarko, Jodi M. Leone, Stephen R. Li, Shihong Zhao, Yiping TI Ultrafast upconversion probing of lasing dynamics in single ZnO nanowire lasers SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID EPITAXIAL THIN-FILMS; TIME-RESOLVED PHOTOLUMINESCENCE; STIMULATED-EMISSION; NANORIBBON LASERS; NANOROD ARRAYS; HIGH-DENSITY; TEMPERATURE; NANONEEDLES; NANOLASERS; CARRIERS AB The ultrafast lasing dynamics of single zinc oxide nanowires are studied by time-resolved upconversion of the lasing emission as a function of the ultraviolet excitation intensity. Induction times for stimulated emission in individual nanowires are observed to be 1-5 ps or 3-15 roundtrips for nominal 20 mu m long nanowires, depending on the 267 nm excitation intensity. In separate experiments, transient absorption profiles are also obtained for time-delayed 800 and 400 nm pulses to elucidate the carrier dynamics, such as rapid decay (2-3 ps) of the electron-hole plasma (EHP) states at high carrier densities during lasing in the nanowire and the slower exciton decay component (15-60 ps) at lower excitation densities. The dynamics of the lasing wavelength dependence on carrier density is also studied and related to the band gap renormalization in the EHP regime. C1 [Willer, Ulrike; Szarko, Jodi M.; Leone, Stephen R.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Willer, Ulrike; Szarko, Jodi M.; Leone, Stephen R.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Willer, Ulrike; Szarko, Jodi M.; Leone, Stephen R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Song, Jae Kyu] Kyung Hee Univ, Dept Chem, Seoul 130701, South Korea. [Li, Shihong; Zhao, Yiping] Univ Georgia, Dept Phys & Astron, Athens, GA 30602 USA. RP Leone, SR (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM srl@berkeley.edu RI Zhao, Yiping/A-4968-2008; Willer, Ulrike/G-3099-2014; OI Willer, Ulrike/0000-0002-4501-5025; Szarko, Jodi/0000-0002-2181-9408 NR 32 TC 45 Z9 45 U1 3 U2 34 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD FEB 7 PY 2008 VL 112 IS 5 BP 1679 EP 1684 DI 10.1021/jp0757513 PG 6 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 257QY UT WOS:000252814800055 ER PT J AU Hristov, D Maltz, J AF Hristov, Dimitre Maltz, Jonathan TI A calculation model for primary intensity distributions from cylindrically symmetric x-ray lenses SO PHYSICS IN MEDICINE AND BIOLOGY LA English DT Article ID CONTRAST-ENHANCED RADIOTHERAPY; MICROBEAM RADIATION-THERAPY; RESEARCH PLATFORM SARRP; STEREOTACTIC RADIOTHERAPY; DOSIMETRY; IODINE; SYSTEM AB A calculation model for the quantitative prediction of primary intensity fluence distributions obtained by the Bragg diffraction focusing of kilovoltage radiation by cylindrical x-ray lenses is presented. The mathematical formalism describes primary intensity distributions from cylindrically-symmetric x-ray lenses, with a planar isotropic radiation source located in a plane perpendicular to the lens axis. The presence of attenuating medium inserted between the lens and the lens focus is accounted for by energy-dependent attenuation. The influence of radiation scattered within the media is ignored. Intensity patterns are modeled under the assumption that photons that are not interacting with the lens are blocked out at any point of interest. The main characteristics of the proposed calculation procedure are that (i) the application of vector formalism allows universal treatment of all cylindrical lenses without the need of explicit geometric constructs; (ii) intensity distributions resulting from x-ray diffraction are described by a 3D generalization of the mosaic spread concept; (iii) the calculation model can be immediately coupled to x-ray diffraction simulation packages such as XOP and Shadow. Numerical simulations based on this model are to facilitate the design of focused orthovoltage treatment (FOT) systems employing cylindrical x-ray lenses, by providing insight about the influence of the x-ray source and lens parameters on quantities of dosimetric interest to radiation therapy. C1 [Hristov, Dimitre] Stanford Univ, Dept Radiat Oncol, Stanford, CA 94305 USA. [Maltz, Jonathan] Siemens Med Solut Oncol Care Syst, Concord, CA 94520 USA. [Maltz, Jonathan] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Dept Med Imaging Technol, Berkeley, CA 94720 USA. RP Hristov, D (reprint author), Stanford Univ, Dept Radiat Oncol, Stanford, CA 94305 USA. EM dimitre.hristov@stanford.edu; jonathan.maltz@siemens.com NR 18 TC 0 Z9 0 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0031-9155 J9 PHYS MED BIOL JI Phys. Med. Biol. PD FEB 7 PY 2008 VL 53 IS 3 BP 515 EP 527 DI 10.1088/0031-9155/53/3/001 PG 13 WC Engineering, Biomedical; Radiology, Nuclear Medicine & Medical Imaging SC Engineering; Radiology, Nuclear Medicine & Medical Imaging GA 257IP UT WOS:000252792700001 PM 18199899 ER PT J AU Raylman, RR Majewski, S Smith, MF Proffitt, J Hammond, W Srinivasan, A McKisson, J Popov, V Weisenberger, A Judy, CO Kross, B Ramasubramanian, S Banta, LE Kinahan, PE Champley, K AF Raylman, Raymond R. Majewski, Stan Smith, Mark F. Proffitt, James Hammond, William Srinivasan, Amarnath McKisson, John Popov, Vladimir Weisenberger, Andrew Judy, Clifford O. Kross, Brian Ramasubramanian, Srikanth Banta, Larry E. Kinahan, Paul E. Champley, Kyle TI The positron emission mammography/tomography breast imaging and biopsy system (PEM/PET): design, construction and phantom-based measurements SO PHYSICS IN MEDICINE AND BIOLOGY LA English DT Article ID MICROPET SCANNER; CANCER DETECTION; NORMAL-TISSUES; CLEAR-PEM; TOMOGRAPHY; RESOLUTION; SCINTIMAMMOGRAPHY; FLUORODEOXYGLUCOSE; CARCINOMA; DETECTOR AB Tomographic breast imaging techniques can potentially improve detection and diagnosis of cancer in women with radiodense and/or fibrocystic breasts. We have developed a high-resolution positron emission mammography/tomography imaging and biopsy device (called PEM/PET) to detect and guide the biopsy of suspicious breast lesions. PET images are acquired to detect suspicious focal uptake of the radiotracer and guide biopsy of the area. Limited-angle PEM images could then be used to verify the biopsy needle position prior to tissue sampling. The PEM/PET scanner consists of two sets of rotating planar detector heads. Each detector consists of a 4 x 3 array of Hamamatsu H8500 flat panel position sensitive photomultipliers (PSPMTs) coupled to a 96 x 72 array of 2 x 2 x 15 mm(3) LYSO detector elements (pitch = 2.1 mm). Image reconstruction is performed with a three-dimensional, ordered set expectation maximization (OSEM) algorithm parallelized to run on a multiprocessor computer system. The reconstructed field of view (FOV) is 15 x 15 x 15 cm(3). Initial phantom-based testing of the device is focusing upon its PET imaging capabilities. Specifically, spatial resolution and detection sensitivity were assessed. The results from these measurements yielded a spatial resolution at the center of the FOV of 2.01 +/- 0.09 mm (radial), 2.04 +/- 0.08 mm (tangential) and 1.84 +/- 0.07 mm (axial). At a radius of 7 cm from the center of the scanner, the results were 2.11 +/- 0.08 mm (radial), 2.16 +/- 0.07 mm (tangential) and 1.87 +/- 0.08 mm (axial). Maximum system detection sensitivity of the scanner is 488.9 kcps mu Ci(-1) ml(-1) (6.88%). These promising findings indicate that PEM/PET may be an effective system for the detection and diagnosis of breast cancer. C1 [Raylman, Raymond R.; Srinivasan, Amarnath; Ramasubramanian, Srikanth] W Virginia Univ, Dept Radiol, Ctr Adv Imaging, Morgantown, WV 26506 USA. [Majewski, Stan; Smith, Mark F.; Proffitt, James; Hammond, William; McKisson, John; Popov, Vladimir; Weisenberger, Andrew; Kross, Brian] Thomas Jefferson Natl Accelerator Facility, Newport News, VA USA. [Smith, Mark F.] Univ Maryland, Sch Med, Dept Radiol, Baltimore, MD 21201 USA. [Judy, Clifford O.; Banta, Larry E.] W Virginia Univ, Dept Mech & Aerosp Engn, Morgantown, WV 26506 USA. [Kinahan, Paul E.; Champley, Kyle] Univ Washington, Dept Radiol, Seattle, WA 98195 USA. RP Raylman, RR (reprint author), W Virginia Univ, Dept Radiol, Ctr Adv Imaging, Morgantown, WV 26506 USA. EM rraylman@wvu.edu OI Kinahan, Paul/0000-0001-6461-3306; Hammond, William/0000-0001-9535-7974 FU NCI NIH HHS [R01 CA094196] NR 67 TC 83 Z9 86 U1 2 U2 14 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0031-9155 EI 1361-6560 J9 PHYS MED BIOL JI Phys. Med. Biol. PD FEB 7 PY 2008 VL 53 IS 3 BP 637 EP 653 DI 10.1088/0031-9155/53/3/009 PG 17 WC Engineering, Biomedical; Radiology, Nuclear Medicine & Medical Imaging SC Engineering; Radiology, Nuclear Medicine & Medical Imaging GA 257IP UT WOS:000252792700009 PM 18199907 ER PT J AU Abazov, VM Abbott, B Abolins, M Acharya, BS Adams, M Adams, T Aguilo, E Ahn, SH Ahsan, M Alexeev, GD Alkhazov, G Alton, A Alverson, G Alves, GA Anastasoaie, M Ancu, LS Andeen, T Anderson, S Andrieu, B Anzelc, MS Arnoud, Y Arov, M Arthaud, M Askew, A Asman, B Jesus, ACSA Atramentov, O Autermannu, C Avila, C Ay, C Badaud, F Baden, A Bagby, L Baldin, B Bandurin, DV Banerjee, S Banerjee, P Barberis, E Barfuss, AF Bargassa, P Baringer, P Barreto, J Bartlett, JF Bassler, U Bauer, D Beale, S Bean, A Begalli, M Begel, M Belanger-Champagne, C Bellantoni, L Bellavance, A Benitez, JA Beri, SB Bernardi, G Bernhard, R Bertram, I Besancon, M Beuselinck, R Bezzubov, VA Bhat, PC Bhatnagar, V Biscarat, C Blazey, G Blekman, F Blessing, S Bloch, D Bloom, K Boehnlein, A Boline, D Bolton, TA Borissov, G Bose, T Brandt, A Brock, R Brooijmans, G Bross, A Brown, D Buchanan, NJ Buchholz, D Buehler, M Buescher, V Bunichev, S Burdin, S Burke, S Burnett, TH Buszello, CP Butler, JM Calfayan, P Calvet, S Cammin, J Carvalho, W Casey, BCK Cason, NM Castilla-Valdez, H Chakrabarti, S Chakraborty, D Chan, KM Chan, K Chandra, A Charles, F Cheu, E Chevallier, F Cho, DK Choi, S Choudhary, B Christofek, L Christoudias, T Cihangir, S Claes, D Coadou, Y Cooke, M Cooper, WE Corcoran, M Couderc, F Cousinou, MC Crepe-Renaudin, S Cutts, D Cwiok, M da Motta, H Das, A Davies, G De, K de Jong, SJ De La Cruz-Burelo, E Martins, CDO Degenhardt, JD Deliot, F Demarteau, M Demina, R Denisov, D Denisov, SP Desai, S Diehl, HT Diesburg, M Dominguez, A Dong, H Dudko, LV Duflot, L Dugad, SR Duggan, D Duperrin, A Dyer, J Dyshkant, A Eads, M Edmunds, D Ellison, J Elvira, VD Enari, Y Eno, S Ermolov, P Evans, H Evdokimov, A Evdokimov, VN Ferapontov, AV Ferbel, T Fiedler, F Filthaut, F Fisher, W Fisk, HE Ford, M Fortner, M Fox, H Fu, S Fuess, S Gadfort, T Galea, CF Gallas, E Galyaev, E Garcia, C Garcia-Bellido, A Gavrilov, V Gay, P Geist, W Gele, D Gerber, CE Gershtein, Y Gillberg, D Ginther, G Gollub, N Gomez, B Goussiou, A Grannis, PD Greenlee, H Greenwood, ZD Gregores, EM Grenier, G Gris, P Grivaz, JE Grohsjean, A Grunendahl, S Griinewald, MW Guo, J Guo, F Gutierrez, P Gutierrez, G Haas, A Hadley, NJ Haefner, P Hagopian, S Haley, J Hall, I Hall, RE Han, L Hanagaki, K Hansson, P Harder, K Harel, A Harrington, R Hauptman, JM Hauser, R Hays, J Hebbeker, I Hedin, D Hegeman, JG Heinmiller, JM Heinson, AP Heintz, U Hensel, C Herner, K Hesketh, G Hildreth, MD Hirosky, R Hobbs, JD Hoeneisen, B Hoeth, H Hohlfeld, M Hong, SJ Hossain, S Houben, P Hu, Y Hubacek, Z Hynek, V Lashvili, I Illingworth, R Ito, AS Jabeen, S Jaffre, M Jain, S Jakobs, K Jarvis, C Jesik, R Johns, K Johnson, C Johnson, M Jonckheere, A Jonsson, P Juste, A Kafer, D Kajfasz, E Kalinin, AM Kalk, JR Kalk, JM Kappler, S Karmanov, D Kasper, P Katsanos, I Kau, D Kaur, R Kaushik, V Kehoe, R Kermiche, S Khalatyan, N Khanov, A Kharchilava, A Kharzheev, YM Khatidze, D Kim, H Kim, TJ Kirby, MH Kirsch, M Klima, B Kohli, JM Konrath, JP Kopal, M Korablev, VM Kozelov, AV Krop, D Kuhl, T Kumar, A Kunori, S Kupco, A Kurca, T Kvita, J Lacroix, F Lam, D Lammers, S Landsberg, G Lebrun, P Lee, WM Leflat, A Lehner, F Lellouch, J Leveque, J Lewis, P Li, J Li, QZ Li, L Lietti, SM Lima, JGR Lincoln, D Linnemann, J Lipaev, VV Lipton, R Liu, Y Liu, Z Lobo, L Lobodenko, A Lokajicek, M Love, P Lubatti, HJ Lyon, AL Maciel, AKA Mackin, D Madaras, RJ Mattig, P Magass, C Magerkurth, A Mal, PK Malbouisson, HB Malik, S Malyshev, VL Mao, HS Maravin, Y Martin, B McCarthy, R Melnitchouk, A Mendes, A Mendoza, L Mercadante, PG Merkin, M Merritt, KW Meyer, J Meyer, A Millet, T Mitrevski, J Molina, J Mommsen, RK Mondal, NK Moore, RW Moulik, T Muanza, GS Mulders, M Mulhearn, M Mundal, O Mundim, L Nagy, E Naimuddin, M Narain, M Naumann, NA Neal, HA Negret, JP Neustroev, P Nilsen, H Nogima, H Nomerotski, A Novaes, SF Nunnemann, T O'Dell, V O'Neil, DC Obrant, G Ochando, C Onoprienko, D Oshima, N Osta, J Otec, R Garzon, GJOY Owen, M Padley, P Pangilinan, M Parashar, N Park, SJ Park, SK Parsons, J Partridge, R Parua, N Patwa, A Pawloski, G Penning, B Perfilov, M Peters, K Peters, Y Petroff, P Petteni, M Piegaia, R Piper, J Pleier, MA Podesta-Lerma, PLM Podstavkov, VM Pogorelov, Y Pol, ME Polozov, P Pope, BG Popov, AV Potter, C da Silva, WLP Prosper, HB Protopopesu, S Qian, J Quadt, A Quinn, B Rakitine, A Rangel, MS Ranjan, K Ratoff, PN Renkel, P Reucroft, S Rich, P Rijssenbeek, M Ripp-Baudot, I Rizatdinova, F Robinson, S Rodrigues, RF Rominsky, M Royon, C Rubinov, P Ruchti, R Safronov, G Sajot, G Sanchez-Hernandez, A Sanders, MP Santoro, A Savage, G Sawyer, L Scanlon, I Schaile, D Schamberger, RD Scheglov, Y Schellman, H Schieferdecker, P Schliephake, T Schwanenberger, C Schwartzman, A Schwienhorst, R Sekaric, J Severini, H Shabalina, E Shamim, M Shary, V Shchukin, AA Shivpuri, RK Siccardi, V Sirriak, V Sirotenko, V Skubic, P Slattery, P Smirnov, D Snow, J Snow, GR Snyder, S Soldner-Rembold, S Sonnenschein, L Sopczak, A Sosebee, M Soustruznik, K Souza, M Spurlock, B Stark, J Steele, J Stolin, V Stoyanova, DA Strandberg, J Strandberg, S Strang, MA Strauss, M Strauss, E Strohmer, R Strom, D Stutte, L Surnowidagdo, S Svoisky, P Sznajder, A Talby, M Tamburello, P Tanasijczuk, A Taylor, W Temple, J Tiller, B Tissandier, F Titov, M Tokmenin, VV Toole, T Torchiani, I Trefzger, T Tsybychev, D Tuchming, B Tully, C Tuts, PM Unalan, R Uvarov, S Uvarov, L Uzunyan, S Vachon, B van den Berg, PJ Van Kooten, R van Leeuwen, WM Varelas, N Varnes, EW Vasilyev, IA Vaupel, M Verdier, P Vertogradov, LS Verzocchi, M Villeneuve-Seguier, F Vint, P Vokac, P Von Toerne, E Voutilainen, M Wagner, R Wahl, HD Wang, L Wang, MHLS Warchol, J Watts, G Wayne, M Weber, M Weber, G Wenger, A Wermes, N Wetstein, M White, A Wicke, D Wilson, GW Wimpenny, SJ Wobisch, M Wood, DR Wyatt, TR Xie, Y Yacoob, S Yarnada, R Yan, M Yasuda, T Yatsunenko, YA Yip, K Yoo, HD Youn, SW Yu, J Zatserklyaniy, A Zeitnitz, C Zhao, T Zhou, B Zhu, J Zielinski, M Zierninska, D Zieminski, A Zivkovic, L Zutshi, V Zverev, EG AF Abazov, V. M. Abbott, B. Abolins, M. Acharya, B. S. Adams, M. Adams, T. Aguilo, E. Ahn, S. H. Ahsan, M. Alexeev, G. D. Alkhazov, G. Alton, A. Alverson, G. Alves, G. A. Anastasoaie, M. Ancu, L. S. Andeen, T. Anderson, S. Andrieu, B. Anzelc, M. S. Arnoud, Y. Arov, M. Arthaud, M. Askew, A. Asman, B. Jesus, A. C. S. Assis Atramentov, O. Autermannu, C. Avila, C. Ay, C. Badaud, F. Baden, A. Bagby, L. Baldin, B. Bandurin, D. V. Banerjee, S. Banerjee, P. Barberis, E. Barfuss, A. -F. Bargassa, P. Baringer, P. Barreto, J. Bartlett, J. F. Bassler, U. Bauer, D. Beale, S. Bean, A. Begalli, M. Begel, M. Belanger-Champagne, C. Bellantoni, L. Bellavance, A. Benitez, J. A. Beri, S. B. Bernardi, G. Bernhard, R. Bertram, I. Besancon, M. Beuselinck, R. Bezzubov, V. A. Bhat, P. C. Bhatnagar, V. Biscarat, C. Blazey, G. Blekman, F. Blessing, S. Bloch, D. Bloom, K. Boehnlein, A. Boline, D. Bolton, T. A. Borissov, G. Bose, T. Brandt, A. Brock, R. Brooijmans, G. Bross, A. Brown, D. Buchanan, N. J. Buchholz, D. Buehler, M. Buescher, V. Bunichev, S. Burdin, S. Burke, S. Burnett, T. H. Buszello, C. P. Butler, J. M. Calfayan, P. Calvet, S. Cammin, J. Carvalho, W. Casey, B. C. K. Cason, N. M. Castilla-Valdez, H. Chakrabarti, S. Chakraborty, D. Chan, K. M. Chan, K. Chandra, A. Charles, F. Cheu, E. Chevallier, F. Cho, D. K. Choi, S. Choudhary, B. Christofek, L. Christoudias, T. Cihangir, S. Claes, D. Coadou, Y. Cooke, M. Cooper, W. E. Corcoran, M. Couderc, F. Cousinou, M. -C. Crepe-Renaudin, S. Cutts, D. Cwiok, M. da Motta, H. Das, A. Davies, G. De, K. de Jong, S. J. De La Cruz-Burelo, E. Martins, C. De Oliveira Degenhardt, J. D. Deliot, F. Demarteau, M. Demina, R. Denisov, D. Denisov, S. P. Desai, S. Diehl, H. T. Diesburg, M. Dominguez, A. Dong, H. Dudko, L. V. Duflot, L. Dugad, S. R. Duggan, D. Duperrin, A. Dyer, J. Dyshkant, A. Eads, M. Edmunds, D. Ellison, J. Elvira, V. D. Enari, Y. Eno, S. Ermolov, P. Evans, H. Evdokimov, A. Evdokimov, V. N. Ferapontov, A. V. Ferbel, T. Fiedler, F. Filthaut, F. Fisher, W. Fisk, H. E. Ford, M. Fortner, M. Fox, H. Fu, S. Fuess, S. Gadfort, T. Galea, C. F. Gallas, E. Galyaev, E. Garcia, C. Garcia-Bellido, A. Gavrilov, V. Gay, P. Geist, W. Gele, D. Gerber, C. E. Gershtein, Yu Gillberg, D. Ginther, G. Gollub, N. Gomez, B. Goussiou, A. Grannis, P. D. Greenlee, H. Greenwood, Z. D. Gregores, E. M. Grenier, G. Gris, Ph. Grivaz, J. -E Grohsjean, A. Grunendahl, S. Griinewald, M. W. Guo, J. Guo, F. Gutierrez, P. Gutierrez, G. Haas, A. Hadley, N. J. Haefner, P. Hagopian, S. Haley, J. Hall, I. Hall, R. E. Han, L. Hanagaki, K. Hansson, P. Harder, K. Harel, A. Harrington, R. Hauptman, J. M. Hauser, R. Hays, J. Hebbeker, I. Hedin, D. Hegeman, J. G. Heinmiller, J. M. Heinson, A. P. Heintz, U. Hensel, C. Herner, K. Hesketh, G. Hildreth, M. D. Hirosky, R. Hobbs, J. D. Hoeneisen, B. Hoeth, H. Hohlfeld, M. Hong, S. J. Hossain, S. Houben, P. Hu, Y. Hubacek, Z. Hynek, V. Lashvili, I. Illingworth, R. Ito, A. S. Jabeen, S. Jaffre, M. Jain, S. Jakobs, K. Jarvis, C. Jesik, R. Johns, K. Johnson, C. Johnson, M. Jonckheere, A. Jonsson, P. Juste, A. Kaefer, D. Kajfasz, E. Kalinin, A. M. Kalk, J. R. Kalk, J. M. Kappler, S. Karmanov, D. Kasper, P. Katsanos, I. Kau, D. Kaur, R. Kaushik, V. Kehoe, R. Kermiche, S. Khalatyan, N. Khanov, A. Kharchilava, A. Kharzheev, Y. M. Khatidze, D. Kim, H. Kim, T. J. Kirby, M. H. Kirsch, M. Klima, B. Kohli, J. M. Konrath, J. -P. Kopal, M. Korablev, V. M. Kozelov, A. V. Krop, D. Kuhl, T. Kumar, A. Kunori, S. Kupco, A. Kurca, T. Kvita, J. Lacroix, F. Lam, D. Lammers, S. Landsberg, G. Lebrun, P. Lee, W. M. Leflat, A. Lehner, F. Lellouch, J. Leveque, J. Lewis, P. Li, J. Li, Q. Z. Li, L. Lietti, S. M. Lima, J. G. R. Lincoln, D. Linnemann, J. Lipaev, V. V. Lipton, R. Liu, Y. Liu, Z. Lobo, L. Lobodenko, A. Lokajicek, M. Love, P. Lubatti, H. J. Lyon, A. L. Maciel, A. K. A. Mackin, D. Madaras, R. J. Maettig, P. Magass, C. Magerkurth, A. Mal, P. K. Malbouisson, H. B. Malik, S. Malyshev, V. L. Mao, H. S. Maravin, Y. Martin, B. McCarthy, R. Melnitchouk, A. Mendes, A. Mendoza, L. Mercadante, P. G. Merkin, M. Merritt, K. W. Meyer, J. Meyer, A. Millet, T. Mitrevski, J. Molina, J. Mommsen, R. K. Mondal, N. K. Moore, R. W. Moulik, T. Muanza, G. S. Mulders, M. Mulhearn, M. Mundal, O. Mundim, L. Nagy, E. Naimuddin, M. Narain, M. Naumann, N. A. Neal, H. A. Negret, J. P. Neustroev, P. Nilsen, H. Nogima, H. Nomerotski, A. Novaes, S. F. Nunnemann, T. O'Dell, V. O'Neil, D. C. Obrant, G. Ochando, C. Onoprienko, D. Oshima, N. Osta, J. Otec, R. Garzon, G. J. Otero y Owen, M. Padley, P. Pangilinan, M. Parashar, N. Park, S. -J. Park, S. K. Parsons, J. Partridge, R. Parua, N. Patwa, A. Pawloski, G. Penning, B. Perfilov, M. Peters, K. Peters, Y. Petroff, P. Petteni, M. Piegaia, R. Piper, J. Pleier, M. -A. Podesta-Lerma, P. L. M. Podstavkov, V. M. Pogorelov, Y. Pol, M. -E. Polozov, P. Pope, B. G. Popov, A. V. Potter, C. da Silva, W. L. Prado Prosper, H. B. Protopopesu, S. Qian, J. Quadt, A. Quinn, B. Rakitine, A. Rangel, M. S. Ranjan, K. Ratoff, P. N. Renkel, P. Reucroft, S. Rich, P. Rijssenbeek, M. Ripp-Baudot, I. Rizatdinova, F. Robinson, S. Rodrigues, R. F. Rominsky, M. Royon, C. Rubinov, P. Ruchti, R. Safronov, G. Sajot, G. Sanchez-Hernandez, A. Sanders, M. P. Santoro, A. Savage, G. Sawyer, L. Scanlon, I. Schaile, D. Schamberger, R. D. Scheglov, Y. Schellman, H. Schieferdecker, P. Schliephake, T. Schwanenberger, C. Schwartzman, A. Schwienhorst, R. Sekaric, J. Severini, H. Shabalina, E. Shamim, M. Shary, V. Shchukin, A. A. Shivpuri, R. K. Siccardi, V. Sirriak, V. Sirotenko, V. Skubic, P. Slattery, P. Smirnov, D. Snow, J. Snow, G. R. Snyder, S. Soldner-Rembold, S. Sonnenschein, L. Sopczak, A. Sosebee, M. Soustruznik, K. Souza, M. Spurlock, B. Stark, J. Steele, J. Stolin, V. Stoyanova, D. A. Strandberg, J. Strandberg, S. Strang, M. A. Strauss, M. Strauss, E. Stroehmer, R. Strom, D. Stutte, L. Surnowidagdo, S. Svoisky, P. Sznajder, A. Talby, M. Tamburello, P. Tanasijczuk, A. Taylor, W. Temple, J. Tiller, B. Tissandier, F. Titov, M. Tokmenin, V. V. Toole, T. Torchiani, I. Trefzger, T. Tsybychev, D. Tuchming, B. Tully, C. Tuts, P. M. Unalan, R. Uvarov, S. Uvarov, L. Uzunyan, S. Vachon, B. van den Berg, P. J. Van Kooten, R. van Leeuwen, W. M. Varelas, N. Varnes, E. W. Vasilyev, I. A. Vaupel, M. Verdier, P. Vertogradov, L. S. Verzocchi, M. Villeneuve-Seguier, F. Vint, P. Vokac, P. Von Toerne, E. Voutilainen, M. Wagner, R. Wahl, H. D. Wang, L. Wang, M. H. L. S. Warchol, J. Watts, G. Wayne, M. Weber, M. Weber, G. Wenger, A. Wermes, N. Wetstein, M. White, A. Wicke, D. Wilson, G. W. Wimpenny, S. J. Wobisch, M. Wood, D. R. Wyatt, T. R. Xie, Y. Yacoob, S. Yarnada, R. Yan, M. Yasuda, T. Yatsunenko, Y. A. Yip, K. Yoo, H. D. Youn, S. W. Yu, J. Zatserklyaniy, A. Zeitnitz, C. Zhao, T. Zhou, B. Zhu, J. Zielinski, M. Zierninska, D. Zieminski, A. Zivkovic, L. Zutshi, V. Zverev, E. G. CA DO Collaboration TI Search for supersymmetry in di-photon final states at root s=1.96 TeV SO PHYSICS LETTERS B LA English DT Article ID LIGHT GRAVITINO; BREAKING; DETECTOR; MODELS AB We report results of a search for supersymmetry (SUSY) with gauge-mediated symmetry breaking in di-photon events collected by the DO experiment at the Fermilab Tevatron Collider in 2002-2006. In 1.1 fb(-1) of data, we find no significant excess beyond the background expected from the standard model and set the most stringent lower limits to date for a standard benchmark model on the lightest neutralino and chargino masses of 125 GeV and 229 GeV, respectively, at 95% confidence. (C) 2007 Elsevier B.V. All rights reserved. C1 [Askew, A.; Atramentov, O.; Buchanan, N. J.; Gershtein, Yu; Wahl, H. D.] Florida State Univ, Tallahassee, FL 32306 USA. [Piegaia, R.] Univ Buenos Aires, Buenos Aires, DF, Argentina. [Alves, G. A.; Barreto, J.; da Motta, H.; Souza, M.] Ctr Brasileiro Pesquisas Fis, LAFEX, Rio De Janeiro, Brazil. [Jesus, A. C. S. Assis; Begalli, M.; Carvalho, W.; Molina, J.; da Silva, W. L. Prado; Rodrigues, R. F.] Univ Estado Rio De Janeiro, Rio De Janeiro, Brazil. [Gregores, E. M.] Univ Fed ABC, Santo Andre, Brazil. [Lietti, S. M.; Mercadante, P. G.] Univ Estadual Paulista, Inst Fis Teor, BR-01405 Sao Paulo, Brazil. [Aguilo, E.; Beale, S.; Coadou, Y.; Gillberg, D.; Liu, Z.; Moore, R. W.; O'Neil, D. C.; Potter, C.; Taylor, W.] Univ Alberta, Edmonton, AB, Canada. [Aguilo, E.; Beale, S.; Coadou, Y.; Gillberg, D.; Liu, Z.; Moore, R. W.; O'Neil, D. C.; Potter, C.; Taylor, W.] Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada. [Aguilo, E.; Avila, C.; Beale, S.; Coadou, Y.; Gillberg, D.; Liu, Z.; Moore, R. W.; O'Neil, D. C.; Potter, C.; Taylor, W.] York Univ, Toronto, ON M3J 2R7, Canada. [Aguilo, E.; Beale, S.; Coadou, Y.; Gillberg, D.; Liu, Z.; Moore, R. W.; O'Neil, D. C.; Potter, C.; Taylor, W.] McGill Univ, Montreal, PQ, Canada. [Han, L.; Liu, Y.] Univ Sci & Technol China, Hefei 230026, Peoples R China. [Avila, C.; Mendoza, L.] Univ Los Andes, Bogota, Colombia. [Hynek, V.; Kvita, J.; Soustruznik, K.] Charles Univ Prague, Ctr Particle Phys, Prague, Czech Republic. [Hubacek, Z.; Vokac, P.] Czech Tech Univ Prague, CR-16635 Prague, Czech Republic. [Lokajicek, M.] Acad Sci Czech Republic, Inst Phys, Ctr Particle Phys, Prague, Czech Republic. [Hoeneisen, B.] Univ San Francisco Quito, Quito, Ecuador. [Badaud, F.; Gay, P.; Gris, Ph.; Lacroix, F.] Univ Clermont Ferrand, CNRS, IN2P3, Phys Corpusculaire Lab, Clermont Ferrand, France. [Arnoud, Y.] Univ Grenoble 1, CNRS, IN2P3, Lab Phys Subatom & Cosmol, Grenoble, France. [Barfuss, A. -F.; Cousinou, M. -C.; Duperrin, A.; Mendes, A.; Nagy, E.] Univ Aix Marseille 2, CNRS, IN2P3, CPPM, Marseille, France. [Calvet, S.; Duflot, L.; Ochando, C.] CNRS, IN2P3, Lab Accelerateur Lineaire, F-91405 Orsay, France. [Calvet, S.; Duflot, L.; Ochando, C.] Univ Paris 11, Orsay, France. [Andrieu, B.; Bernardi, G.; Grohsjean, A.; Haefner, P.; Lellouch, J.; Nunnemann, T.; Sanders, M. P.; Schaile, D.; Stroehmer, R.; Tiller, B.] Univ Paris 06, CNRS, IN2P3, LPNHE, Paris, France. [Andrieu, B.; Bernardi, G.; Grohsjean, A.; Haefner, P.; Lellouch, J.; Nunnemann, T.; Sanders, M. P.; Schaile, D.; Stroehmer, R.; Tiller, B.] Univ Paris 07, CNRS, IN2P3, LPNHE, Paris, France. [Arthaud, M.; Bassler, U.; Royon, C.; Shary, V.] CEA, DAPNIA, Serv Phys Particules, Saclay, France. [Charles, F.; Gele, D.; Ripp-Baudot, I.] Univ Strasbourg 1, IPHC, Strasbourg, France. [Charles, F.; Gele, D.; Ripp-Baudot, I.] Univ Haute Alsace, CNRS, IN2P3, Strasbourg, France. [Biscarat, C.; Kurca, T.; Lebrun, P.] Univ Lyon 1, IPNL, CNRS, IN2P3, F-69622 Villeurbanne, France. [Biscarat, C.; Kurca, T.; Lebrun, P.] Univ Lyon, Lyon, France. [Kaefer, D.; Kirsch, M.; Magass, C.; Meyer, A.] Rhein Westfal TH Aachen, Phys Inst A3, Aachen, Germany. [Hohlfeld, M.; Pleier, M. -A.] Univ Bonn, Inst Phys, D-5300 Bonn, Germany. [Bernhard, R.; Torchiani, I.; Wenger, A.] Univ Freiburg, Inst Phys, Freiburg, Germany. [Ay, C.; Fiedler, F.; Trefzger, T.] Johannes Gutenberg Univ Mainz, Inst Phys, D-6500 Mainz, Germany. [Calfayan, P.; Schieferdecker, P.; Stroehmer, R.] Univ Munich, Munich, Germany. [Hoeth, H.; Vaupel, M.] Univ Wuppertal, Fachbereich Phys, Wuppertal, Germany. [Beri, S. B.; Bhatnagar, V.] Panjab Univ, Chandigarh 160014, India. [Choudhary, B.] Univ Delhi, Delhi 110007, India. [Acharya, B. S.] Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India. [Cwiok, M.; Grunendahl, S.] Univ Coll Dublin, Dublin 2, Ireland. [Hong, S. J.; Kim, T. J.; Park, S. K.] Korea Univ, Korea Detector Lab, Seoul 136701, South Korea. Sungkyunkwan Univ, Suwon, South Korea. [Podesta-Lerma, P. L. M.; Sanchez-Hernandez, A.] CINVESTAV, Mexico City 14000, DF, Mexico. [Hegeman, J. G.; van den Berg, P. J.; van Leeuwen, W. M.] FOM Inst NIKHEF, Amsterdam, Netherlands. [Naumann, N. A.] Univ Amsterdam, NIKHEF, Amsterdam, Netherlands. [Abazov, V. M.; Alexeev, G. D.] Radboud Univ Nijmegen, NIKHEF, NL-6525 ED Nijmegen, Netherlands. [Polozov, P.] Joint Inst Nucl Res, Dubna, Russia. [Leflat, A.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Korablev, V. M.; Kozelov, A. V.] Moscow MV Lomonosov State Univ, Moscow, Russia. [Lobodenko, A.] Inst High Energy Phys, Protvino, Russia. [Asman, B.] Petersburg Nucl Phys Inst, St Petersburg, Russia. [Asman, B.] Uppsala Univ, Uppsala, Sweden. [Asman, B.] Lund Univ, Lund, Sweden. [Asman, B.] Royal Inst Technol, Stockholm, Sweden. [Asman, B.] Stockholm Univ, S-10691 Stockholm, Sweden. [Lehner, F.] Univ Zurich, Inst Phys, Zurich, Switzerland. [Bertram, I.] Univ Lancaster, Lancaster, England. [Beuselinck, R.; Jesik, R.; Jonsson, P.] Univ London Imperial Coll Sci Technol & Med, London, England. [Mommsen, R. K.] Univ Manchester, Manchester, Lancs, England. [Johns, K.] Univ Arizona, Tucson, AZ 85721 USA. [Madaras, R. J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. Calif State Univ Fresno, Fresno, CA 93740 USA. [Li, L.] Univ Calif Riverside, Riverside, CA 92521 USA. [Prosper, H. B.] Florida State Univ, Tallahassee, FL 32306 USA. [Lee, W. M.; Li, Q. Z.; Lipton, R.; Lyon, A. L.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Adams, M.] Univ Illinois, Chicago, IL 60607 USA. [Blazey, G.] No Illinois Univ, De Kalb, IL 60115 USA. [Andeen, T.; Parua, N.] Northwestern Univ, Evanston, IL 60208 USA. [Hildreth, M. D.; Lam, D.; Osta, J.] Northwestern Univ, Evanston, IL 60208 USA. [Parashar, N.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Kunori, S.] Purdue Univ Calumet, Hammond, IN 46323 USA. [Hauptman, J. M.] Iowa State Univ, Ames, IA 50011 USA. [Hensel, C.] Univ Kansas, Lawrence, KS 66045 USA. [Ahsan, M.] Kansas State Univ, Manhattan, KS 66506 USA. [Arov, M.] Louisiana Tech Univ, Ruston, LA 71272 USA. [Baden, A.] Univ Maryland, College Pk, MD 20742 USA. [Boline, D.] Boston Univ, Boston, MA 02215 USA. [Barberis, E.] Northeastern Univ, Boston, MA 02115 USA. [Degenhardt, J. D.] Univ Michigan, Ann Arbor, MI 48109 USA. [Edmunds, D.] Michigan State Univ, E Lansing, MI 48824 USA. [Melnitchouk, A.] Univ Mississippi, University, MS 38677 USA. [Malik, S.] Univ Nebraska, Lincoln, NE 68588 USA. [Schwartzman, A.] Princeton Univ, Princeton, NJ 08544 USA. [Tuts, P. M.] SUNY Buffalo, Buffalo, NY 14260 USA. [Zielinski, M.] Columbia Univ, New York, NY 10027 USA. [Hobbs, J. D.] Univ Rochester, Rochester, NY 14627 USA. [Yip, K.] SUNY Stony Brook, Stony Brook, NY 11794 USA. [Snow, J.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Abbott, B.] Langston Univ, Langston, OK 73050 USA. [Khanov, A.] Univ Oklahoma, Norman, OK 73019 USA. [Landsberg, G.] Oklahoma State Univ, Stillwater, OK 74078 USA. [Landsberg, G.] Brown Univ, Providence, RI 02912 USA. [Brandt, A.] Univ Texas Arlington, Arlington, TX 76019 USA. So Methodist Univ, Dallas, TX 75275 USA. [Cooke, M.] Rice Univ, Houston, TX 77005 USA. Univ Virginia, Charlottesville, VA 22901 USA. [Burnett, T. H.] Univ Washington, Seattle, WA 98195 USA. RP Gershtein, Y (reprint author), Florida State Univ, Tallahassee, FL 32306 USA. RI Ancu, Lucian Stefan/F-1812-2010; Nomerotski, Andrei/A-5169-2010; Shivpuri, R K/A-5848-2010; De, Kaushik/N-1953-2013; Gutierrez, Phillip/C-1161-2011; Leflat, Alexander/D-7284-2012; Dudko, Lev/D-7127-2012; Perfilov, Maxim/E-1064-2012; Merkin, Mikhail/D-6809-2012; Novaes, Sergio/D-3532-2012; Mercadante, Pedro/K-1918-2012; Mundim, Luiz/A-1291-2012; Yip, Kin/D-6860-2013; Fisher, Wade/N-4491-2013; Alves, Gilvan/C-4007-2013; Deliot, Frederic/F-3321-2014; Sharyy, Viatcheslav/F-9057-2014; Kupco, Alexander/G-9713-2014; Christoudias, Theodoros/E-7305-2015; KIM, Tae Jeong/P-7848-2015; Guo, Jun/O-5202-2015; Sznajder, Andre/L-1621-2016; Li, Liang/O-1107-2015 OI Ancu, Lucian Stefan/0000-0001-5068-6723; De, Kaushik/0000-0002-5647-4489; Dudko, Lev/0000-0002-4462-3192; Novaes, Sergio/0000-0003-0471-8549; Mundim, Luiz/0000-0001-9964-7805; Yip, Kin/0000-0002-8576-4311; Sharyy, Viatcheslav/0000-0002-7161-2616; Christoudias, Theodoros/0000-0001-9050-3880; KIM, Tae Jeong/0000-0001-8336-2434; Guo, Jun/0000-0001-8125-9433; Sznajder, Andre/0000-0001-6998-1108; Li, Liang/0000-0001-6411-6107 NR 31 TC 33 Z9 33 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 J9 PHYS LETT B JI Phys. Lett. B PD FEB 7 PY 2008 VL 659 IS 5 BP 856 EP 863 DI 10.1016/j.physletb.2007.12.006 PG 8 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 264RF UT WOS:000253305900004 ER PT J AU Koike, Y Vogelsang, W Yuan, F AF Koike, Yuji Vogelsang, Werner Yuan, Feng TI On the relation between mechanisms for single-transverse-spin asymmetries SO PHYSICS LETTERS B LA English DT Article ID DEEP-INELASTIC SCATTERING; FINAL-STATE INTERACTIONS; DRELL-YAN PROCESSES; PARTON DISTRIBUTIONS; PION-PRODUCTION; HARD PROCESSES; QCD; GAUGE; OPERATORS; MOMENTUM AB Recent studies have shown that two widely-used mechanisms for single-transverse-spin asymmetries based on either twist-three contributions or on transverse-momentum-dependent (Sivers) parton distributions become identical in a kinematical regime of overlap. This was demonstrated for the so-called soft-gluon-pole and hard-pole contributions to the asymmetry associated with a particular quark-gluon correlation function in the nucleon. In this Letter, using semi-inclusive deep inelastic scattering as an example, we extend the study to the contributions by soft-fermion poles and by another independent twist-three correlation function. We find that these additional terms organize themselves in such a way as to maintain the mutual consistency of the two mechanisms for single-spin asymmetries. (C) 2007 Elsevier B.V. All rights reserved. C1 [Yuan, Feng] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, Berkeley, CA 94720 USA. [Koike, Yuji] Niigata Univ, Dept Phys, Niigata 9502181, Japan. [Vogelsang, Werner] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Yuan, Feng] Brookhaven Natl Lab, RIKEN, BNL Res Ctr, Upton, NY 11973 USA. RP Yuan, F (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, Berkeley, CA 94720 USA. EM fyuan@quark.phy.bnl.gov RI Yuan, Feng/N-4175-2013 NR 39 TC 71 Z9 71 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 J9 PHYS LETT B JI Phys. Lett. B PD FEB 7 PY 2008 VL 659 IS 5 BP 878 EP 884 DI 10.1016/j.physletb.2007.11.096 PG 7 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 264RF UT WOS:000253305900007 ER PT J AU McCarty, TA Page, PM Baker, GA Bright, FV AF McCarty, Taylor A. Page, Phillip M. Baker, Gary A. Bright, Frank V. TI Behavior of acrylodan-labeled human serum albumin dissolved in ionic liquids SO INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH LA English DT Article ID RESONANCE ENERGY-TRANSFER; ALPHA-CHYMOTRYPSIN; CHEMICAL-MODIFICATION; FLUORESCENCE METHODS; CATALYZED REACTIONS; SPECTRAL PROPERTIES; ORGANIC-SOLVENTS; ENZYME CATALYSIS; BIOCATALYSIS; BOVINE AB Researchers have reported enzymatic reactions performed in ionic liquids (ILs). Currently very little is known about the behavior of biomolecules in ILs in comparison to their better understood aqueous behavior. We report the temperature-dependent behavior of human serum albumin (HSA) that is site-selectively labeled at cysteine-34 (located in loop 1 of domain I) with a single fluorescent reporter molecule (acrylodan, Ac) when it is dissolved in phosphate buffered saline (PBS) or one of three ILs. In PBS, the Ac reporter motion is always coupled to the global HSA protein motion. In the ILs, loop 1 of domain I appears to be almost completely decoupled from the HSA global motion. As temperature increases, neighboring nonpolar amino acid residues and/or IL components apparently become strongly associated with the Ac rotating body. These results show that protein structure and dynamics in an IL can markedly deviate from that which exists in aqueous media. C1 [McCarty, Taylor A.; Page, Phillip M.; Bright, Frank V.] SUNY Buffalo, Dept Chem, Buffalo, NY 14260 USA. [Baker, Gary A.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. RP Bright, FV (reprint author), SUNY Buffalo, Dept Chem, Nat Sci Complex, Buffalo, NY 14260 USA. EM chefvb@buffalo.edu RI Baker, Gary/H-9444-2016; OI Baker, Gary/0000-0002-3052-7730; Bright, Frank/0000-0002-1500-5969 NR 75 TC 16 Z9 17 U1 0 U2 6 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0888-5885 J9 IND ENG CHEM RES JI Ind. Eng. Chem. Res. PD FEB 6 PY 2008 VL 47 IS 3 BP 560 EP 569 DI 10.1021/ie071165k PG 10 WC Engineering, Chemical SC Engineering GA 257CT UT WOS:000252777500010 ER PT J AU Huang, JF Luo, HM Liang, CD Jiang, DE Dai, S AF Huang, Jing-Fang Luo, Huimin Liang, Chengdu Jiang, De-en Dai, Sheng TI Advanced liquid membranes based on novel ionic liquids for selective separation of olefin/parafrin via olefin-facilitated transport SO INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH LA English DT Article ID GAS-CHROMATOGRAPHY; STATIONARY PHASES; CROWN-ETHER; EXTRACTION; ELECTROLYTES; SOLVENTS; ZEOLITE; SALTS; PRECURSORS; PROPYLENE AB A novel series of ionic liquids containing cationic silver complexes have been synthesized via a new methodology. The essence of this methodology is to form the cations of ionic liquids through the complexation reaction of neutral organic ligands with silver ion, followed by the metathesis reaction of the resulting salts with a hydrophobic anion donor (e.g., N-lithiotrifluoromethanesulfonimide). Olefin, amide, and amine compounds have been demonstrated to be effective neutral organic ligands to use in forming these silver-based ionic liquids. These novel ionic liquids, in which silver ion is an integrated component of the corresponding cations, give rise to the efficient transport of olefins through (a) the fast molecular diffusion of the silver-olefin complexes and (b) the hopping motion of the olefin ligands among neighboring cationic silver sites. This dual-transport mechanism entails the olefin-tran sport modes of both liquid and polymer membranes, leading to significantly improved transport efficiencies and energy savings for separation of olefins from paraffins via silver complexation. C1 [Huang, Jing-Fang; Liang, Chengdu; Jiang, De-en; Dai, Sheng] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. [Luo, Huimin] Oak Ridge Natl Lab, Nucl Sci & Technol Div, Oak Ridge, TN 37831 USA. [Huang, Jing-Fang] Natl Chung Hsing Univ, Dept Chem, Taichung 402, Taiwan. RP Dai, S (reprint author), Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. EM dais@ornl.gov RI Jiang, De-en/D-9529-2011; Liang, Chengdu/G-5685-2013; Dai, Sheng/K-8411-2015 OI Jiang, De-en/0000-0001-5167-0731; Dai, Sheng/0000-0002-8046-3931 NR 51 TC 53 Z9 54 U1 5 U2 31 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0888-5885 J9 IND ENG CHEM RES JI Ind. Eng. Chem. Res. PD FEB 6 PY 2008 VL 47 IS 3 BP 881 EP 888 DI 10.1021/ie0707523 PG 8 WC Engineering, Chemical SC Engineering GA 257CT UT WOS:000252777500045 ER PT J AU Troparevsky, MC Franceschetti, A AF Troparevsky, M. C. Franceschetti, A. TI An optimized configuration interaction method for calculating electronic excitations in nanostructures SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article ID SEMICONDUCTOR QUANTUM DOTS; EXCITONIC ARTIFICIAL ATOMS; PSEUDOPOTENTIAL CALCULATIONS; OPTICAL-PROPERTIES; COULOMB; LIMIT; INP AB The configuration interaction method has been widely used to calculate electronic excitations in nanostructures, but it suffers from a slow rate of convergence with the number of configurations in the basis set and from the inability to select a priori the most important configurations. The optimized configuration interaction method presented here removes the limitations of the conventional approach by identifying at the outset the configurations that are most relevant for describing electronic excitations. We show that the 'best' configurations are remarkably different from the configurations that one would expect on the basis of the single-particle energy ladder, and that a small, optimized set of configurations predicts excitation energies with accuracy comparable to that for much larger, non-optimized sets of configurations. This approach opens the way to a new generation of configuration interaction methods where the configurations are pre-selected using heuristic search methods. C1 [Troparevsky, M. C.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Troparevsky, M. C.; Franceschetti, A.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Troparevsky, MC (reprint author), Oak Ridge Natl Lab, POB 2008, Oak Ridge, TN 37831 USA. NR 25 TC 11 Z9 11 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD FEB 6 PY 2008 VL 20 IS 5 AR 055211 DI 10.1088/0953-8984/20/5/055211 PG 5 WC Physics, Condensed Matter SC Physics GA 259FB UT WOS:000252923400014 ER PT J AU Puretzky, AA Eres, G Rouleau, CM Ivanov, IN Geohegan, DB AF Puretzky, A. A. Eres, G. Rouleau, C. M. Ivanov, I. N. Geohegan, D. B. TI Real-time imaging of vertically aligned carbon nanotube array growth kinetics SO NANOTECHNOLOGY LA English DT Article ID CHEMICAL-VAPOR-DEPOSITION; DIFFUSION-CONTROLLED KINETICS; MECHANISM; SCALE AB In situ time-lapse photography and laser irradiation are applied to understand unusual coordinated growth kinetics of vertically aligned carbon nanotube arrays including pauses in growth, retraction, and local equilibration in length. A model is presented which explains the measured kinetics and determines the conditions for diffusion-limited growth. Laser irradiation of the growing nanotube arrays is first used to prove that the nanotubes grow from catalyst particles at their bases, and then increase their growth rate and terminal lengths. C1 [Puretzky, A. A.; Eres, G.; Rouleau, C. M.; Ivanov, I. N.; Geohegan, D. B.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Puretzky, AA (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM puretzkya@ornl.gov RI ivanov, ilia/D-3402-2015; Rouleau, Christopher/Q-2737-2015; Puretzky, Alexander/B-5567-2016; Geohegan, David/D-3599-2013; Eres, Gyula/C-4656-2017 OI ivanov, ilia/0000-0002-6726-2502; Rouleau, Christopher/0000-0002-5488-3537; Puretzky, Alexander/0000-0002-9996-4429; Geohegan, David/0000-0003-0273-3139; Eres, Gyula/0000-0003-2690-5214 NR 23 TC 45 Z9 45 U1 1 U2 17 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0957-4484 J9 NANOTECHNOLOGY JI Nanotechnology PD FEB 6 PY 2008 VL 19 IS 5 AR 055605 DI 10.1088/0957-4484/19/05/055605 PG 5 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA 259UT UT WOS:000252967100015 PM 21817613 ER PT J AU Rotenberg, E Krupin, O Kevan, SD AF Rotenberg, Eli Krupin, Oleg Kevan, S. D. TI Surface states and spin density wave periodicity in Cr(110) films SO NEW JOURNAL OF PHYSICS LA English DT Article ID ELECTRONIC-STRUCTURE; CR(001) SURFACE; PHASE-TRANSITION; W(110) SURFACE; CHROMIUM; ANTIFERROMAGNETISM; FERROMAGNETISM; SPECTROSCOPY; MAGNETISM; MO(110) AB Using angle-resolved photoemission, we have mapped the dispersion relations and Fermi contours for surface-localized electron states onto clean and hydrogen-covered Cr(110) surfaces. In particular, we have probed the relationship between hydrogen adsorption and the evolution of the spin density wave (SDW) periodicity in chromium thin films observed previously. We find qualitatively similar surface band dispersion relations to those on W( 110) and Mo(110), although with a narrower bandwidth, broader spectral features, and a smaller impact from the spin-orbit interaction. We compare our results to existing first-principles calculations and find a significant disagreement for a surface band that produces a prominent surface Fermi contour. Upon hydrogen adsorption, the Fermi contour for a particular surface band becomes well nested at a wave vector that stabilizes a commensurate SDW. We suggest that a competition between commensurate two-dimensional (2D) and incommensurate 3D Fermi surface nesting plays an important role in the SDW energetics in thin Cr(110) films. C1 [Rotenberg, Eli; Krupin, Oleg] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. [Krupin, Oleg; Kevan, S. D.] Univ Oregon, Dept Phys, Eugene, OR 97403 USA. RP Rotenberg, E (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, MS 6-2100, Berkeley, CA 94720 USA. EM kevan@uoregon.edu RI Rotenberg, Eli/B-3700-2009; Kevan, Stephen/F-6415-2010 OI Rotenberg, Eli/0000-0002-3979-8844; Kevan, Stephen/0000-0002-4621-9142 NR 37 TC 16 Z9 16 U1 1 U2 21 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1367-2630 J9 NEW J PHYS JI New J. Phys. PD FEB 6 PY 2008 VL 10 AR 023003 DI 10.1088/1367-2630/10/2/023003 PG 15 WC Physics, Multidisciplinary SC Physics GA 261NF UT WOS:000253085600003 ER PT J AU Callister, SJ Mccue, LA Turse, JE Monroe, ME Auberry, KJ Smith, RD Adkins, JN Lipton, MS AF Callister, Stephen J. McCue, Lee Ann Turse, Joshua E. Monroe, Matthew E. Auberry, Kenneth J. Smith, Richard D. Adkins, Joshua N. Lipton, Mary S. TI Comparative Bacterial Proteomics: Analysis of the Core Genome Concept SO PLOS ONE LA English DT Article AB While comparative bacterial genomic studies commonly predict a set of genes indicative of common ancestry, experimental validation of the existence of this core genome requires extensive measurement and is typically not undertaken. Enabled by an extensive proteome database developed over six years, we have experimentally verified the expression of proteins predicted from genomic ortholog comparisons among 17 environmental and pathogenic bacteria. More exclusive relationships were observed among the expressed protein content of phenotypically related bacteria, which is indicative of the specific lifestyles associated with these organisms. Although genomic studies can establish relative orthologous relationships among a set of bacteria and propose a set of ancestral genes, our proteomics study establishes expressed lifestyle differences among conserved genes and proposes a set of expressed ancestral traits. C1 [Callister, Stephen J.; Turse, Joshua E.; Monroe, Matthew E.; Smith, Richard D.; Adkins, Joshua N.; Lipton, Mary S.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. [McCue, Lee Ann] Pacific NW Natl Lab, Comp Sci & Math Div, Richland, WA USA. [Auberry, Kenneth J.] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA USA. RP Adkins, JN (reprint author), Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. EM Joshua.Adkins@pnl.gov; mary.lipton@pnl.gov RI Smith, Richard/J-3664-2012; Adkins, Joshua/B-9881-2013; OI Smith, Richard/0000-0002-2381-2349; Adkins, Joshua/0000-0003-0399-0700; McCue, Lee Ann/0000-0003-4456-517X; /0000-0001-7041-1823 FU Environmental Molecular Sciences Laboratory; Department of Energy's Office of Biological and Environmental Research, Pacific Northwest National Laboratory [ER63232-1018220-0007203]; National Institute of Allergy and Infectious Diseases; NIH/DHHS [Y1-AI-4894-01]; NIH National Center for Research Resources [RR18522]; DOE [DE-AC05-76RLO 1830] FX The research described in this paper was performed in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. Portions of this work were supported by the Department of Energy Office of Biological and Environmental Research at PNNL grant (ER63232-1018220-0007203), the National Institute of Allergy and Infectious Diseases (NIH/DHHS through interagency agreement Y1-AI-4894-01) and the NIH National Center for Research Resources (RR18522). PNNL is a multi-program national laboratory operated by Battelle for the DOE under Contract DE-AC05-76RLO 1830. NR 60 TC 42 Z9 43 U1 1 U2 5 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD FEB 6 PY 2008 VL 3 IS 2 AR e1542 DI 10.1371/journal.pone.0001542 PG 8 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 367EQ UT WOS:000260535700014 PM 18253490 ER PT J AU Bashir, O Willcox, K Ghattas, O Waanders, BV Hill, J AF Bashir, O. Willcox, K. Ghattas, O. Waanders, B. van Bloemen Hill, J. TI Hessian-based model reduction for large-scale systems with initial-condition inputs SO INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING LA English DT Article DE model reduction; optimization; initial-condition problem ID POSTERIORI ERROR-BOUNDS; BALANCED TRUNCATION; EQUATIONS; APPROXIMATION; DYNAMICS AB Reduced-order models that are able to approximate output quantities of interest of high-fidelity computational models over a wide range of input parameters play an important role in making tractable large-scale optimal design, optimal control, and inverse problem applications. We consider the problem of determining a reduced model of an initial value problem that spans all important initial conditions, and pose the task of determining appropriate training sets for reduced-basis construction as a sequence of optimization problems. We show that, under certain assumptions, these optimization problems have an explicit solution in the form of an eigenvalue problem, yielding an efficient model reduction algorithm that scales well to systems with states of high dimension. Furthermore, tight upper bounds are given for the error in the outputs of the reduced models. The reduction methodology is demonstrated for a large-scale contaminant transport problem. Copyright (c) 2007 John Wiley & Sons, Ltd. C1 [Ghattas, O.] Univ Texas Austin, Austin, TX 78712 USA. [Waanders, B. van Bloemen; Hill, J.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Bashir, O.; Willcox, K.] MIT, Cambridge, MA 02139 USA. RP Willcox, K (reprint author), 77 Massachusetts Ave,Room 37-447, Cambridge, MA 02139 USA. EM kwilleox@mit.edu NR 33 TC 15 Z9 15 U1 0 U2 2 PU JOHN WILEY & SONS LTD PI CHICHESTER PA THE ATRIUM, SOUTHERN GATE, CHICHESTER PO19 8SQ, W SUSSEX, ENGLAND SN 0029-5981 J9 INT J NUMER METH ENG JI Int. J. Numer. Methods Eng. PD FEB 5 PY 2008 VL 73 IS 6 BP 844 EP 868 DI 10.1002/nme.2100 PG 25 WC Engineering, Multidisciplinary; Mathematics, Interdisciplinary Applications SC Engineering; Mathematics GA 270BE UT WOS:000253694100005 ER PT J AU Kent, MS Yim, H Murton, JK Sasaki, DY Polizzotti, BD Charati, MB Kiick, KL Kuzmenko, I Satija, S AF Kent, M. S. Yim, H. Murton, J. K. Sasaki, D. Y. Polizzotti, B. D. Charati, M. B. Kiick, K. L. Kuzmenko, I. Satija, S. TI Synthetic polypeptide adsorption to Cu-IDA containing lipid films: A model for protein-membrane interactions SO LANGMUIR LA English DT Article ID FUNCTIONALIZED LANGMUIR MONOLAYERS; ALPHA-HELIX; 2-DIMENSIONAL CRYSTALLIZATION; CHELATOR LIPIDS; HELICITY; PEPTIDES; BINDING; DESIGN; POLYALANINES; COORDINATION AB Adsorption of synthetic alanine-rich peptides to lipid monolayers was studied by X-ray and neutron reflectivity, grazing incidence X-ray diffraction (GIXD), and circular dichroic spectroscopy. The peptides contained histidine residues to drive adsorption to Langmuir monolayers of lipids with iminodiacetate headgroups loaded With Cu2+. Adsorption was found to be irreversible with respect to bulk peptide concentration. The peptides were partially helical in solution at room temperature, the temperature of the adsorption assays. Comparisons of the rate of binding and the structure of the adsorbed layer were made as a function of the number of histidines (from 0 to 2) and also as a function of the positioning of the histidines along the backbone. For peptides containing two histidines on the same side of the helical backbone, large differences were observed in the structure of the adsorbed layer as a function of the spacing of the histidines. With a spacing of 6 A, there was a substantial increase in helicity upon binding (from 17% to 31%), and the peptides adsorbed to a final density approaching that of a nearly completed monolayer of (x-helices adsorbed side-on. The thickness of the adsorbed layer (17 +/- 2.5 angstrom) was slightly greater than the diameter of alpha-helices, suggesting that the free, unstructured ends extended into solution. With a spacing of 30 angstrom between histidines, a far weaker increase in helicity upon binding was observed (from 13% to 19%) and a much lower packing density resulted. The thickness of the adsorbed layer (10 +/- 4 angstrom) was smaller, consistent with the ends being bound to the monolayer. Striking differences were observed in the interaction of the two types of peptide with the lipid membrane by GIXD, consistent with binding by two correlated sites only for the case of 6 A spacing. All these results are attributed to differences in spatial correlation between the histidines as a function of separation distance along the backbone for these partially helical peptides., Finally, control over orientation was demonstrated by placing a histidine on an end of the sequence, which resulted in adsorbed peptides oriented perpendicular to the membrane. C1 [Kent, M. S.; Yim, H.; Murton, J. K.; Sasaki, D. Y.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Polizzotti, B. D.; Charati, M. B.; Kiick, K. L.] Univ Delaware, Dept Mat Sci & Engn, Newark, DE USA. [Kuzmenko, I.] Argonne Natl Lab, Argonne, IL 60439 USA. [Satija, S.] Natl Inst Stand & Technol, Gaithersburg, MD 20899 USA. RP Kent, MS (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. FU NCRR NIH HHS [1-P20-RR17716-01, P20 RR015588, P20 RR017716-010004, P20 RR017716, P20 RR015588-01, 5-P20-RR015588] NR 43 TC 7 Z9 7 U1 1 U2 12 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0743-7463 J9 LANGMUIR JI Langmuir PD FEB 5 PY 2008 VL 24 IS 3 BP 932 EP 942 DI 10.1021/la700940x PG 11 WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 257CV UT WOS:000252777700054 PM 18179259 ER PT J AU Kucheyev, SO Biener, J Baumann, TF Wang, YM Hamza, AV Li, Z Lee, DK Gordon, RG AF Kucheyev, S. O. Biener, J. Baumann, T. F. Wang, Y. M. Hamza, A. V. Li, Z. Lee, D. K. Gordon, R. G. TI Mechanisms of atomic layer deposition on substrates with ultkahigh aspect ratios SO LANGMUIR LA English DT Article ID SILICA; COPPER; ADSORPTION; PRECURSORS; AEROGELS; AMMONIA; METAL; SIO2 AB Atomic layer deposition (ALD) appears to be uniquely suited for coating substrates with ultrahigh aspect ratios (>= 10(3)), including nanoporous solids. Here, we study the ALD of Cu and Cu3N on the inner surfaces of low-density nanoporous silica aerogel monoliths. Results show that Cu depth profiles in nanoporous monoliths are limited not only by Knudsen diffusion of heavier precursor molecules into the pores, as currently believed, but also by other processes such as the interaction of precursor and reaction product molecules with pore walls. Similar behavior has also been observed for Fe, Ru, and Pt ALD on aerogels. On the basis of these results, we discuss design rules for ALD precursors specifically geared for coating nanoporous solids. C1 [Kucheyev, S. O.; Biener, J.; Baumann, T. F.; Wang, Y. M.; Hamza, A. V.] Lawrence Livermore Natl Lab, Nanoscale Synth & Characterizat Lab, Livermore, CA 94551 USA. [Li, Z.; Lee, D. K.; Gordon, R. G.] Harvard Univ, Dept Chem & Biol Chem, Cambridge, MA 02138 USA. RP Kucheyev, SO (reprint author), Lawrence Livermore Natl Lab, Nanoscale Synth & Characterizat Lab, Livermore, CA 94551 USA. RI Wang, Yinmin (Morris)/F-2249-2010 OI Wang, Yinmin (Morris)/0000-0002-7161-2034 NR 25 TC 52 Z9 53 U1 3 U2 61 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0743-7463 J9 LANGMUIR JI Langmuir PD FEB 5 PY 2008 VL 24 IS 3 BP 943 EP 948 DI 10.1021/la7018617 PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 257CV UT WOS:000252777700055 PM 18166066 ER PT J AU Huang, T Zhou, H Hong, K Simonson, JM Mays, JW AF Huang, Tianzi Zhou, Hongliang Hong, Kunlun Simonson, J. Michael Mays, Jimmy W. TI Architecturally and chemically modified poly(1,3-cyclohexadiene) SO MACROMOLECULAR CHEMISTRY AND PHYSICS LA English DT Article DE block copolymers; hyperbranched; modification; poly(cyclohexadiene); star polymers ID LIVING ANIONIC-POLYMERIZATION; 1,3-CYCLOHEXADIENE POLYMERS; STAR; POLYSTYRENE; MICROSTRUCTURE; COPOLYMERS; CHAIN AB Star-shaped, star-block-linear, and hyperbranched poly(1,3-cyclohexadiene) (PCHD) (co)polymers were synthesized through a convergent living anionic polymerization process or via addition of divinylbenzene. Chemical modification of star-shaped PCHDs, including aromatization, hydrogenation, fluorination, and sulfonation, was carried out in order to manipulate the physical and thermal properties of these materials. The obtained (co)polymers were characterized by gel permeation chromatography, H-1 NMR, DSC, and thermal gravimetric analysis in order to elucidate their molecular weights, molecular weight distributions, chemical nature, and physical and thermal properties. The synthetic approaches described herein offer routes to novel structure and functionality in PCHD-based materials. [GRAPHICS] C1 [Huang, Tianzi; Zhou, Hongliang; Mays, Jimmy W.] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. [Hong, Kunlun; Simonson, J. Michael; Mays, Jimmy W.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. [Hong, Kunlun; Simonson, J. Michael; Mays, Jimmy W.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Mays, JW (reprint author), Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. EM mays@ion.chem.utk.edu RI Hong, Kunlun/E-9787-2015 OI Hong, Kunlun/0000-0002-2852-5111 NR 22 TC 9 Z9 12 U1 0 U2 3 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 1022-1352 J9 MACROMOL CHEM PHYSIC JI Macromol. Chem. Phys. PD FEB 5 PY 2008 VL 209 IS 3 BP 308 EP 314 DI 10.1002/macp.200700409 PG 7 WC Polymer Science SC Polymer Science GA 265AW UT WOS:000253332500008 ER PT J AU Holesinger, TG Civale, L Maiorov, B Feldmann, DM Coulter, JY Miller, J Maroni, VA Chen, ZJ Larbalestier, DC Feenstra, R Li, XP Huang, MB Kodenkandath, T Zhang, W Rupich, MW Malozemoff, AP AF Holesinger, Terry G. Civale, Leonardo Maiorov, Boris Feldmann, D. Matthew Coulter, J. Yates Miller, J. Maroni, Victor A. Chen, Zhijun Larbalestier, David C. Feenstra, Ron Li, Xiaoping Huang, Yibing Kodenkandath, Thomas Zhang, Wei Rupich, Martin W. Malozemoff, Alex P. TI Progress in nanoengineered microstructures for tunable high-current, high-temperature superconducting wires SO ADVANCED MATERIALS LA English DT Review ID CRITICAL-CURRENT DENSITY; YBCO-COATED CONDUCTORS; YBA2CU3O7-X THIN-FILMS; TFA-MOD METHOD; YTTRIA-STABILIZED-ZIRCONIA; PULSED-LASER DEPOSITION; OXYGEN PARTIAL-PRESSURE; METALORGANIC DEPOSITION; BUFFER LAYERS; BAF2 PROCESS AB High critical current densities (J(c)) in thick films of the Y1Ba2Cu3O7-delta (YBCO, T-c approximate to 92 K) superconductor directly depend upon the types of nanoscale defects and their densities within the films. A major challenge for developing a viable wire technology is to introduce nanoscale defect structures into the YBCO grains of the thick film suitable for flux pinning and the tailoring of the superconducting properties to specific, application-dependent, temperature and magnetic field conditions. Concurrently, the YBCO film needs to be integrated into a macroscopically defect-free conductor in which the grain-to-grain connectivity maintains levels of inter-grain Jc that are comparable to the intra-grain J(c). That is, high critical current (I-c) YBCO coated conductors must contain engineered inhomogeneities on the nanoscale, while being homogeneous on the macroscale. An analysis is presented of the advances in high-performance YBCO coated-conductors using chemical solution deposition (CSD) based on metal trifluoroacetates and the subsequent processing to nano-engineer the microstructure for tuneable superconducting wires. Multi-scale structural, chemical, and electrical investigations of the CSD film processes, thick film development, key microstructural features, and wire properties are presented. Prospects for further development of much higher I-c wires for large-scale, commercial application are discussed within the context of these recent advances. C1 [Holesinger, Terry G.; Civale, Leonardo; Maiorov, Boris; Feldmann, D. Matthew; Coulter, J. Yates] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Miller, J.; Maroni, Victor A.] Argonne Natl Lab, Argonne, IL 60439 USA. [Chen, Zhijun; Larbalestier, David C.] Florida State Univ, Natl High Magnet Field Lab, Tallahassee, FL 32310 USA. [Chen, Zhijun; Larbalestier, David C.] Florida State Univ, Dept Mech Engn, Tallahassee, FL 32310 USA. [Feenstra, Ron] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Li, Xiaoping; Huang, Yibing; Kodenkandath, Thomas; Zhang, Wei; Rupich, Martin W.; Malozemoff, Alex P.] American Supercond, Westborough, MA 01581 USA. RP Holesinger, TG (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM holesinger@lanl.gov RI Chen, Zhijun/D-2871-2009; Larbalestier, David/B-2277-2008; OI Larbalestier, David/0000-0001-7098-7208; Maiorov, Boris/0000-0003-1885-0436; Civale, Leonardo/0000-0003-0806-3113 NR 116 TC 103 Z9 105 U1 8 U2 77 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 0935-9648 EI 1521-4095 J9 ADV MATER JI Adv. Mater. PD FEB 4 PY 2008 VL 20 IS 3 BP 391 EP 407 DI 10.1002/adma.200700919 PG 17 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 264YE UT WOS:000253325500001 ER PT J AU Armatas, GS Kanatzidis, MG AF Armatas, Gerasimos S. Kanatzidis, Mercouri G. TI High-surface-area mesoporous germanium from oxidative polymerization of the deltahedral [(Ge-9](4-) cluster: Electronic structure modulation with donor and acceptor molecules SO ADVANCED MATERIALS LA English DT Article ID ZINTL IONS; AEROGELS; PROGRAM AB Materials that exhibit a high ratio of surface-to-bulk atoms are anticipated to have unique optical and electronic properties.([1]) Generally, such materials are semiconductors and have been available as discrete quantum dot systems. Mesoporous semiconductors, however, with extended frameworks and well-defined pore structure, can be expected to achieve similar characteristics and yet possess additional features such as absorption. The coexistence of regular mesoporosity with a narrow energy gap in a host framework is a unique combination not available with nanodots or conventional porous materials. Systems that blend these disparate features can be of considerable scientific interest for applications in photocatalysis, solar energy conversion, environmental remediation, and optoelectronics.([2,3]). C1 [Armatas, Gerasimos S.; Kanatzidis, Mercouri G.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. [Kanatzidis, Mercouri G.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Kanatzidis, MG (reprint author), Northwestern Univ, Dept Chem, 2145 Sheridan Rd, Evanston, IL 60208 USA. EM m-kanatzidis@northwestern.edu RI Armatas, Gerasimos/F-4753-2011 OI Armatas, Gerasimos/0000-0001-9475-1929 NR 27 TC 24 Z9 24 U1 0 U2 8 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 0935-9648 J9 ADV MATER JI Adv. Mater. PD FEB 4 PY 2008 VL 20 IS 3 BP 546 EP + DI 10.1002/adma.200701751 PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 264YE UT WOS:000253325500029 ER PT J AU Pan, W Lyo, SK Reno, JL Simmons, JA Li, D Brueck, SRJ AF Pan, W. Lyo, S. K. Reno, J. L. Simmons, J. A. Li, D. Brueck, S. R. J. TI Negative differential conductance in two-dimensional electron grids SO APPLIED PHYSICS LETTERS LA English DT Article ID FIELD-INDUCED LOCALIZATION; SEMICONDUCTOR SUPERLATTICES; CONDUCTIVITY; OSCILLATIONS; RESISTANCE; SCATTERING; DOMAIN AB Negative differential conductance has been observed in grid-shaped surface superlattices, realized in a high mobility two-dimensional electron system. The current-voltage characteristics vary with the modulation strength, indicating that the two-dimensional electronic transport properties can be manipulated in a controllable way. Theoretical modeling yields reasonable agreement with the experimental data. (c) 2008 American Institute of Physics. C1 [Pan, W.; Lyo, S. K.; Reno, J. L.; Simmons, J. A.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Li, D.; Brueck, S. R. J.] Univ New Mexico, Ctr High Technol Mat, Albuquerque, NM 87108 USA. RP Pan, W (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM wpan@sandia.gov OI Brueck, Steven/0000-0001-8754-5633 NR 25 TC 15 Z9 15 U1 1 U2 5 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD FEB 4 PY 2008 VL 92 IS 5 AR 052104 DI 10.1063/1.2840996 PG 3 WC Physics, Applied SC Physics GA 260NH UT WOS:000253016500039 ER PT J AU Reese, MO White, MS Rumbles, G Ginley, DS Shaheen, SE AF Reese, Matthew O. White, Matthew S. Rumbles, Garry Ginley, David S. Shaheen, Sean E. TI Optimal negative electrodes for poly(3-hexylthiophene): [6,6]-phenyl C61-butyric acid methyl ester bulk heterojunction photovoltaic devices SO APPLIED PHYSICS LETTERS LA English DT Article ID SOLAR-CELLS; EFFICIENCY; GENERATION AB The role of the work function and interfacial chemistry on organic device performance was investigated by using a series of contact materials. The active layer was a standard blend of poly(3-hexylthiophene) and [6-6]-phenyl C61-butyric acid methyl ester. Over 100 devices were fabricated and measured to obtain good statistics. Ba/Al and Ca/Al electrodes performed best, with similar open-circuit voltages and power conversion efficiencies. Device stability studies showed devices with these two electrodes remained similar after six weeks with degradation of 11%-16% in net conversion efficiency observed. The incorporation of silver into the electrodes led to considerably more degradation than other electrode types. (c) 2008 American Institute of Physics. C1 [Reese, Matthew O.; White, Matthew S.; Rumbles, Garry; Ginley, David S.] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Shaheen, Sean E.] Univ Denver, Denver, CO 80208 USA. RP Reese, MO (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM matthew_reese@nrel.gov RI White, Matthew/B-3405-2013; Shaheen, Sean/M-7893-2013; OI White, Matthew/0000-0001-6719-790X; Rumbles, Garry/0000-0003-0776-1462 NR 14 TC 118 Z9 118 U1 5 U2 27 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD FEB 4 PY 2008 VL 92 IS 5 AR 053307 DI 10.1063/1.2841067 PG 3 WC Physics, Applied SC Physics GA 260NH UT WOS:000253016500083 ER PT J AU Weston, DJ Gunter, LE Rogers, A Wullschleger, SD AF Weston, David J. Gunter, Lee E. Rogers, Alistair Wullschleger, Stan D. TI Connecting genes, coexpression modules, and molecular signatures to environmental stress phenotypes in plants SO BMC SYSTEMS BIOLOGY LA English DT Article ID ACTIVATED PROTEIN-KINASE; HEAT-SHOCK RESPONSE; ABIOTIC STRESS; ARABIDOPSIS-THALIANA; ABSCISIC-ACID; EXPRESSION PROFILES; ELEVATED CO2; SIGNALING PATHWAYS; DISEASE RESISTANCE; PHOSPHOLIPASE-C AB Background: One of the eminent opportunities afforded by modern genomic technologies is the potential to provide a mechanistic understanding of the processes by which genetic change translates to phenotypic variation and the resultant appearance of distinct physiological traits. Indeed much progress has been made in this area, particularly in biomedicine where functional genomic information can be used to determine the physiological state (e. g., diagnosis) and predict phenotypic outcome (e. g., patient survival). Ecology currently lacks an analogous approach where genomic information can be used to diagnose the presence of a given physiological state (e. g., stress response) and then predict likely phenotypic outcomes (e. g., stress duration and tolerance, fitness). Results: Here, we demonstrate that a compendium of genomic signatures can be used to classify the plant abiotic stress phenotype in Arabidopsis according to the architecture of the transcriptome, and then be linked with gene coexpression network analysis to determine the underlying genes governing the phenotypic response. Using this approach, we confirm the existence of known stress responsive pathways and marker genes, report a common abiotic stress responsive transcriptome and relate phenotypic classification to stress duration. Conclusion: Linking genomic signatures to gene coexpression analysis provides a unique method of relating an observed plant phenotype to changes in gene expression that underlie that phenotype. Such information is critical to current and future investigations in plant biology and, in particular, to evolutionary ecology, where a mechanistic understanding of adaptive physiological responses to abiotic stress can provide researchers with a tool of great predictive value in understanding species and population level adaptation to climate change. C1 [Weston, David J.; Gunter, Lee E.; Wullschleger, Stan D.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. [Rogers, Alistair] Brookhaven Natl Lab, Dept Environm Sci, Upton, NY 11973 USA. [Rogers, Alistair] Univ Illinois, Dept Crop Sci, Urbana, IL 61801 USA. RP Weston, DJ (reprint author), Oak Ridge Natl Lab, Div Environm Sci, POB 2008, Oak Ridge, TN 37831 USA. EM westondj@ornl.gov; gunterle@ornl.gov; arogers@bnl.gov; wullschlegsd@ornl.gov RI Weston, David/A-9116-2011; Wullschleger, Stan/B-8297-2012; Rogers, Alistair/E-1177-2011; Gunter, Lee/L-3480-2016 OI Weston, David/0000-0002-4794-9913; Wullschleger, Stan/0000-0002-9869-0446; Rogers, Alistair/0000-0001-9262-7430; Gunter, Lee/0000-0003-1211-7532 NR 65 TC 50 Z9 50 U1 0 U2 25 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1752-0509 J9 BMC SYST BIOL JI BMC Syst. Biol. PD FEB 4 PY 2008 VL 2 AR 16 DI 10.1186/1752-0509-2-16 PG 17 WC Mathematical & Computational Biology SC Mathematical & Computational Biology GA 282DX UT WOS:000254548900001 PM 18248680 ER PT J AU Stavros, VG Leone, SR AF Stavros, Vasihos G. Leone, Stephen R. TI The influence of ion gratings on rotational wavepacket dynamics in H-2 SO CHEMICAL PHYSICS LETTERS LA English DT Article ID PENDULAR STATES; LASER FIELD; MOLECULES; FEMTOSECOND; IONIZATION; ALIGNMENT AB We generalize earlier work [V. G. Stavros, E. Harel, S. R. Leone, J. Chem. Phys. 122 (2005) 064301] by illustrating the plausible role of ion gratings in time-dependent degenerate four-wave mixing (TD-DFWM) experiments in H-2. We postulate that at high laser intensities (10(14)-10(15) W/cm(2)), H-2(+)/H+ ions generate a static ion grating, it's signature manifested in the transformation from homodyne- to hetero dyne-detection of the TD-DFWM signal, depending on laser intensity. The change in signal detection agrees with the calculated intensity for barrier suppression ionization (BSI) in H-2 and the reported onset of saturation for H-2(+) and H+, pointing towards the likely role of ion gratings in intense laser field, FWM experiments. (c) 2007 Elsevier B.V. All rights reserved. C1 [Stavros, Vasihos G.; Leone, Stephen R.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Stavros, Vasihos G.; Leone, Stephen R.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Leone, SR (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM srl@berkeley.edu NR 19 TC 3 Z9 3 U1 1 U2 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0009-2614 J9 CHEM PHYS LETT JI Chem. Phys. Lett. PD FEB 4 PY 2008 VL 452 IS 1-3 BP 33 EP 37 DI 10.1016/j.cplett.2007.12.034 PG 5 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 271QT UT WOS:000253804500006 ER PT J AU Di Bernardo, P Zanonato, PL Melchior, A Portanova, R Tolazzi, M Choppin, GR Wang, Z AF Di Bernardo, P. Zanonato, P. L. Melchior, A. Portanova, R. Tolazzi, M. Choppin, G. R. Wang, Z. TI Thermodynamic and spectroscopic studies of lanthanides(III) complexation with polyamines in dimethyl sulfoxide SO INORGANIC CHEMISTRY LA English DT Article ID ANHYDROUS ACETONITRILE; CRYSTAL-STRUCTURE; LANTHANIDE(III) IONS; SOLVATING SOLVENTS; RARE-EARTH; FT-IR; DIMETHYLSULFOXIDE; SILVER(I); DMSO; PERCHLORATES AB The thermodynamic parameters of complexation of Ln(III) cations with tris(2-aminoethyl)amine (tren) and tetraethylenepentamine (tetren) were determined in dimethyl sulfoxide (DMSO) by potentiometry and calorimetry. The excitation and emission spectra and luminescence decay constants of Eu3+ and Tb3+ complexed by tren and tetren, as well as those of the same lanthanides(III) complexed with diethylenetriamine (dien) and triethylenetetramine (trien), were also obtained in the same solvent. The combination of thermodynamic and spectroscopic data showed that, in the 1:1 complexes, all nitrogens of the ligands are bound to the lanthanides except in the case of tren, in which the pendant N is bound. For the larger ligands (trien, tren, tetren) in the higher complexes (ML2), there was less complete binding by available donors, presumably due to steric crowding. FT-IR studies were carried out in an acetonitrile/DMSO mixture, suitably chosen to follow the changes in the primary solvation sphere of lanthanide(111) due to complexation of amine groups. Results show that the mean number of molecules of DMSO removed from the inner coordination sphere of lanthanides(III) is lower than ligand denticity and that the coordination number of the metal ions increases with amine complexation from -8 to -10. Independently of the number and structure of the amines, linear trends, similar for all lanthanides, were obtained by plotting the values of Delta Gj(o), Delta Hj(o), and T Delta Sj(o) for the complexation of ethylenediamine (en), dien, trien, tren, and tetren as a function of the number of amine metal-coordinated nitrogen atoms. The main factors on which the thermodynamic functions of lanthanide(III) complexation reactions in DMSO depend are discussed. C1 [Di Bernardo, P.; Zanonato, P. L.] Univ Padua, Dipartimento Sci Chim, I-35131 Padua, Italy. [Melchior, A.; Portanova, R.; Tolazzi, M.] Univ Udine, Dipartimento Sci & Tecnol Chim, I-33100 Udine, Italy. [Choppin, G. R.] Florida State Univ, Dept Chem, Tallahassee, FL 32306 USA. [Wang, Z.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Di Bernardo, P (reprint author), Univ Padua, Dipartimento Sci Chim, Via Marzolo 1, I-35131 Padua, Italy. EM plinio.dibernardo@unipd.it; choppin@chem.fsu.edu RI Wang, Zheming/E-8244-2010 OI Wang, Zheming/0000-0002-1986-4357 NR 59 TC 29 Z9 29 U1 1 U2 14 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 J9 INORG CHEM JI Inorg. Chem. PD FEB 4 PY 2008 VL 47 IS 3 BP 1155 EP 1164 DI 10.1021/ic701337u PG 10 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 256GA UT WOS:000252714500049 PM 18166040 ER PT J AU Sakdinawat, A Liu, YW AF Sakdinawat, Anne Liu, Yanwei TI Phase contrast soft x-ray microscopy using Zernike zone plates SO OPTICS EXPRESS LA English DT Article ID LENS AB Soft x-ray Zernike phase contrast microscopy was implemented using a "Zernike zone plate" (ZZP) without the use of a separate phase filter in the back focal plane. The ZZP is a single optic that integrates the appropriate +/-pi/2 radians phase shift through selective zone placement shifts in a Fresnel zone plate. Imaging using a regular zone plate, positive ZZP, and negative ZZP was performed at a wavelength of lambda=2.163 nm. Contrast enhancement with the positive ZZP and contrast reversal with the negative ZZP were observed. (c) 2008 Optical Society of America. C1 [Sakdinawat, Anne] Univ Calif San Francisco, Berkeley, CA 94720 USA. [Sakdinawat, Anne] Univ Calif Berkeley, Joint Grad Grp Bioengn, Berkeley, CA 94720 USA. [Sakdinawat, Anne; Liu, Yanwei] Univ Calif Berkeley, NSF ERC Extreme Ultraviolet Sci & Technol, Berkeley, CA 94720 USA. [Sakdinawat, Anne; Liu, Yanwei] Lawrence Berkeley Natl Lab, Ctr Xray Opt, Berkeley, CA 94720 USA. RP Sakdinawat, A (reprint author), Univ Calif San Francisco, Berkeley, CA 94720 USA. EM aesakdinawat@lbl.gov NR 16 TC 24 Z9 25 U1 3 U2 15 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD FEB 4 PY 2008 VL 16 IS 3 BP 1559 EP 1564 DI 10.1364/OE.16.001559 PG 6 WC Optics SC Optics GA 259IH UT WOS:000252932500019 PM 18542232 ER PT J AU Patterson, W Bigotta, S Sheik-Bahae, M Parisi, D Tonelli, M Epstein, R AF Patterson, Wendy Bigotta, Stefano Sheik-Bahae, Mansoor Parisi, Daniela Tonelli, Mauro Epstein, Richard TI Anti-stokes luminescence cooling of Tm3+ doped BaY2F8 SO OPTICS EXPRESS LA English DT Article ID OPTICAL REFRIGERATION; PARAMETRIC OSCILLATOR; LASER; GLASS AB We report laser-induced cooling with thulium-doped BaY2F8 single crystals grown using the Czochralski technique. The spectroscopic characterization of the crystals has been used to evaluate the laser cooling performance of the samples. Cooling by 3 degrees below ambient temperature is obtained in a single-pass geometry with 4.4 Watts of pump laser power at lambda = 1855 nm. C1 [Patterson, Wendy; Sheik-Bahae, Mansoor] Univ New Mexico, Dept Phys & Astron, Opt Sci & Engn Program, Albuquerque, NM 87131 USA. [Bigotta, Stefano; Parisi, Daniela; Tonelli, Mauro] INFN, Sez Pisa, I-56127 Pisa, Italy. [Bigotta, Stefano; Parisi, Daniela; Tonelli, Mauro] Scuola Normale Super Pisa, NEST, I-56126 Pisa, Italy. [Epstein, Richard] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Sheik-Bahae, M (reprint author), Univ New Mexico, Dept Phys & Astron, Opt Sci & Engn Program, Albuquerque, NM 87131 USA. EM msb@unm.edu RI Bigotta, Stefano/F-8652-2011; OI Epstein, Richard/0000-0002-3929-4363; Patterson, Wendy/0000-0002-8761-8457 NR 13 TC 34 Z9 34 U1 0 U2 8 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD FEB 4 PY 2008 VL 16 IS 3 BP 1704 EP 1710 DI 10.1364/OE.16.001704 PG 7 WC Optics SC Optics GA 259IH UT WOS:000252932500036 PM 18542249 ER PT J AU Kim, ZH Leone, SR AF Kim, Zee Hwan Leone, Stephen R. TI Polarization-selective mapping of near-field intensity and phase around gold nanoparticles using apertureless near-field microscopy SO OPTICS EXPRESS LA English DT Article ID CONTRAST; SCATTERING; PLASMONS; PROBES; MODES AB Enhanced near-field distributions around a single gold nanosphere are imaged using scattering-type apertureless near field scanning optical microscopy (ANSOM) at a wavelength of 632.8 nm. For the first time, polarization-selected ANSOM images are obtained that show both the transverse (perpendicular to the tip axis) and the longitudinal (parallel to the tip axis) vector components of the near-field in a phase sensitive manner. A model calculation using a Green's dyadic propagator method successfully reproduces the features of the observed intensity and phase images, providing an interpretation of the ANSOM images. The results open up the possibility that the field vector directions as well as the field magnitude around plasmonic nanostructures and nanodevices can be directly mapped using the ANSOM technique. C1 [Leone, Stephen R.] Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Chem, Berkeley, CA 94720 USA. [Kim, Zee Hwan] Korea Univ, Ctr Electro & Photo Respons Mol, Dept Chem, Seoul 136701, South Korea. RP Leone, SR (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Chem, Berkeley, CA 94720 USA. EM srl@berkeley.edu RI Kim, Zee Hwan/A-9273-2010 NR 20 TC 31 Z9 31 U1 0 U2 10 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD FEB 4 PY 2008 VL 16 IS 3 BP 1733 EP 1741 DI 10.1364/OE.16.001733 PG 9 WC Optics SC Optics GA 259IH UT WOS:000252932500039 PM 18542252 ER PT J AU O'Hara, JF Singh, R Brener, I Smirnova, E Han, JG Taylor, AJ Zhang, WL AF O'Hara, John F. Singh, Ranjan Brener, Igal Smirnova, Evgenya Han, Jiaguang Taylor, Antoinette J. Zhang, Weili TI Thin-film sensing with planar terahertz metamaterials: sensitivity and limitations SO OPTICS EXPRESS LA English DT Article ID TIME-DOMAIN SPECTROSCOPY; SPLIT-RING RESONATORS; TRANSMISSION PROPERTIES; DNA; MODES AB The limiting effects of varying the thickness of a dielectric overlayer on planar double split-ring resonator (SRR) arrays are studied by terahertz time-domain spectroscopy. Uniform dielectric overlayers from 100 nm to 16 mu m thick are deposited onto fixed SRR arrays in order to shift the resonance frequency of the electric response. We discuss the bounds of resonance shifting and emphasize the resulting limitations for SRR-based sensing. These results are presented in the context of typical biosensing situations and are compared to previous work and other existing sensing platforms. C1 [O'Hara, John F.; Taylor, Antoinette J.] Los Alamos Natl Lab, MPA CINT, Los Alamos, NM 87545 USA. [Singh, Ranjan; Han, Jiaguang; Zhang, Weili] Oklahoma State Univ, Sch Elect & Comp Engn, Stillwater, OK 74078 USA. [Brener, Igal] Sandia Natl Labs, Albuquerque, NM 87122 USA. [Smirnova, Evgenya] Los Alamos Natl Lab, ISR 6, Los Alamos, NM 87545 USA. RP O'Hara, JF (reprint author), Los Alamos Natl Lab, MPA CINT, POB 1663,MS K771, Los Alamos, NM 87545 USA. EM johara@lanl.gov RI Singh, Ranjan/B-4091-2010; Brener, Igal/G-1070-2010; Zhang, Weili/C-5416-2011; OI Singh, Ranjan/0000-0001-8068-7428; Brener, Igal/0000-0002-2139-5182; Zhang, Weili/0000-0002-8591-0200; Simakov, Evgenya/0000-0002-7483-1152 NR 28 TC 224 Z9 228 U1 8 U2 64 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD FEB 4 PY 2008 VL 16 IS 3 BP 1786 EP 1795 DI 10.1364/OE.16.001786 PG 10 WC Optics SC Optics GA 259IH UT WOS:000252932500045 PM 18542258 ER PT J AU Phillips, MC Ho, N AF Phillips, Mark C. Ho, Nicolas TI Infrared hyperspectral imaging using a broadly tunable external cavity quantum cascade laser and microbolometer focal plane array SO OPTICS EXPRESS LA English DT Article ID MIDINFRARED SEMICONDUCTOR-LASER; CONTINUOUS-WAVE OPERATION; ROOM-TEMPERATURE; SPECTROSCOPY; REFLECTANCE; RESOLUTION AB A versatile mid-infrared hyperspectral imaging system is demonstrated by combining a broadly tunable external cavity quantum cascade laser and a microbolometer focal plane array. The tunable mid-infrared laser provided high brightness illumination over a tuning range from 985 cm(-1) to 1075 cm(-1) (9.30- 10.15 mu m). Hypercubes containing images at 300 wavelengths separated by 0.3 cm(-1) were obtained in 12 s. High spectral resolution chemical imaging of methanol vapor was demonstrated for both static and dynamic systems. The system was also used to image and characterize multiple component liquid and solid samples. C1 [Phillips, Mark C.; Ho, Nicolas] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Phillips, MC (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM mark.phillips@pnl.gov NR 31 TC 37 Z9 37 U1 5 U2 13 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD FEB 4 PY 2008 VL 16 IS 3 BP 1836 EP 1845 DI 10.1364/OE.16.001836 PG 10 WC Optics SC Optics GA 259IH UT WOS:000252932500049 PM 18542262 ER PT J AU Lawrence, SJ Hawke, BR Gillis-Davis, JJ Taylor, GJ Lawrence, DJ Cahill, JT Hagerty, JJ Lucey, PG Smith, GA Keil, K AF Lawrence, Samuel J. Hawke, B. Ray Gillis-Davis, Jeffrey J. Taylor, G. Jeffrey Lawrence, David J. Cahill, Joshua T. Hagerty, Justin J. Lucey, Paul G. Smith, Gregory A. Keil, Klaus TI Composition and origin of the Dewar geochemical anomaly SO JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS LA English DT Article ID BIDIRECTIONAL REFLECTANCE SPECTROSCOPY; LUNAR PYROCLASTIC DEPOSITS; IMPACT-MELT BRECCIAS; POLE-AITKEN BASIN; MARE VOLCANISM; MOON; SURFACE; CLEMENTINE; EVOLUTION; PROSPECTOR AB [1] Dewar crater is a 50-km diameter impact structure located in the highlands northwest of the South Pole-Aitken basin on the lunar farside. A low-albedo area with enhanced Th and Sm values is centered east-northeast of Dewar crater. This area also exhibits elevated FeO abundances (9.0-16.6 wt %) and TiO(2) values (0.6-2 wt %). The range of FeO and TiO2 abundances determined for the darkest portions of the geochemical anomaly overlap the range of FeO and TiO2 values determined for nearside mare basalt deposits. Analysis of Clementine spectra obtained from the darkest portions of the Dewar geochemical anomaly indicates that the low-albedo materials contain large amounts of high-Ca clinopyroxene consistent with the presence of major amounts of mare basalt. Cryptomare deposits have played an important role in the formation of the Dewar geochemical anomaly. The evidence indicates that buried basalt, or cryptomare, was excavated from depth during impact events that formed dark-haloed craters in the region. We show that an early Imbrian- or Nectarian- age, low-TiO(2) mare basalt deposit with enhanced Th concentrations (6-7 mu g/g) exists in the Dewar region. This ancient mare unit was buried by ejecta from Dewar crater, creating a cryptomare. Although most mare units on the central farside of the Moon exhibit low Th abundances, the enhanced Th values associated with the Dewar cryptomare deposit indicate that at least some portions of the underlying lunar interior ( mantle and crust) on the farside of the Moon were not Th poor. C1 [Lawrence, Samuel J.; Hawke, B. Ray; Gillis-Davis, Jeffrey J.; Taylor, G. Jeffrey; Cahill, Joshua T.; Lucey, Paul G.; Smith, Gregory A.; Keil, Klaus] Univ Hawaii Manoa, Sch Ocean & Earth Sci & Technol, Hawaii Inst Geophys & Planetol, Honolulu, HI 96822 USA. [Lawrence, Samuel J.] Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ USA. [Lawrence, David J.; Hagerty, Justin J.] Los Alamos Natl Lab, Los Alamos, NM USA. RP Lawrence, SJ (reprint author), Univ Hawaii Manoa, Sch Ocean & Earth Sci & Technol, Hawaii Inst Geophys & Planetol, Honolulu, HI 96822 USA. RI Cahill, Joshua/I-3656-2012; Lawrence, David/E-7463-2015 OI Cahill, Joshua/0000-0001-6874-5533; Lawrence, David/0000-0002-7696-6667 NR 75 TC 7 Z9 7 U1 0 U2 3 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-PLANET JI J. Geophys. Res.-Planets PD FEB 2 PY 2008 VL 113 IS E2 AR E02001 DI 10.1029/2007JE002904 PG 13 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 258RF UT WOS:000252886500001 ER PT J AU Kollet, SJ Maxwell, RM AF Kollet, Stefan J. Maxwell, Reed M. TI Capturing the influence of groundwater dynamics on land surface processes using an integrated, distributed watershed model SO WATER RESOURCES RESEARCH LA English DT Article ID SPATIALLY-VARIABLE WATER; ENERGY-BALANCE PROCESSES; SOIL-MOISTURE; PARAMETERIZATION SCHEMES; BOUNDARY-LAYER; PART I; FLOW; SIMULATIONS; PROJECT; KANSAS AB The influence of groundwater dynamics on the energy balance at the land surface is studied using an integrated, distributed watershed modeling platform. This model includes the mass and energy balance at the land surface; three-dimensional variably saturated subsurface flow; explicit representation of the water table; and overland flow. The model is applied to the Little Washita watershed in Central Oklahoma, USA and compared to runoff, soil moisture and energy flux observations. The connection between groundwater dynamics and the land surface energy balance is studied using a variety of conventional and spatial statistical measures. For a number of energy variables a strong interconnection is demonstrated with water table depth. This connection varies seasonally and spatially depending on the spatial composition of water table depth. A theoretical critical water table depth range is presented where a strong sensitivity between groundwater and land-surface processes may be observed. For this particular watershed, a critical depth range is established between 1 and 5 m in which the land surface energy budget is most sensitive to groundwater storage. Finally, concrete recommendations are put forth to characterize this interconnection in the field. C1 [Kollet, Stefan J.; Maxwell, Reed M.] Lawrence Livermore Natl Lab, Atmohspher Earth & Energy Dept, Livermore, CA USA. RP Kollet, SJ (reprint author), Univ Bonn, Inst Meteorol, D-5300 Bonn, Germany. EM stefan.kollet@uni-bonn.de RI Maxwell, Reed/D-7980-2013 OI Maxwell, Reed/0000-0002-1364-4441 NR 43 TC 138 Z9 140 U1 4 U2 39 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0043-1397 J9 WATER RESOUR RES JI Water Resour. Res. PD FEB 2 PY 2008 VL 44 IS 2 AR W02402 DI 10.1029/2007WR006004 PG 18 WC Environmental Sciences; Limnology; Water Resources SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water Resources GA 258RQ UT WOS:000252887600001 ER PT J AU Fletcher, BL Retterer, ST McKnight, TE Melechko, AV Fowlkes, JD Simpson, ML Doktycz, MJ AF Fletcher, Benjamin L. Retterer, Scott T. McKnight, Timothy E. Melechko, Anatoli V. Fowlkes, Jason D. Simpson, Michael L. Doktycz, Mitchel J. TI Actuatable membranes based on polypyrrole-coated vertically aligned carbon nanofibers SO ACS NANO LA English DT Article DE carbon nanofibers; polypyrrole; electropolymerization; surface modification; nanomaterial; actuation; membranes; nanopore ID DODECYLBENZENESULFONATE-DOPED POLYPYRROLE; ATOMIC-FORCE MICROSCOPY; NANOTUBE MEMBRANES; IONIC EXCHANGES; VOLUME CHANGE; TRANSPORT; SEPARATION; CHANNEL; ARRAYS; MODEL AB Nanoporous membranes are applicable to a variety of research fields due to their ability to selectively separate molecules with high efficiency. Of particular interest are methods for controlling membrane selectivity through externally applied stimuli and integrating such membrane structures within multiscale systems. Membranes comprised of deterministically grown, vertically aligned carbon nanofibers; (VACNFs) are compatible with these needs. VACNF membranes can regulate molecular transport by physically selecting species as they pass between the fibers. Defined interfiber spacing allows for nanoscale control of membrane pore structure and resultant size selectivity. Subsequent physical or chemical modification of VACNF structures enables the tuning of physical pore size and chemical specificity allowing further control of membrane permeability. In this work, the dynamic physical modulation of membrane permeability that results when VACNFs are coated with an electrically actuatable polymer, polypyrrole, is demonstrated. Electrochemical reduction of polypyrrole on the VACNFs results in controlled swelling of the diameter of the nanofibers that in turn decreases the pore size. Dynamic control of membrane pore size enables selective transport and gating of nanoscale pores. C1 [Fletcher, Benjamin L.; Retterer, Scott T.; McKnight, Timothy E.; Melechko, Anatoli V.; Fowlkes, Jason D.; Simpson, Michael L.; Doktycz, Mitchel J.] Oak Ridge Natl Lab, Mol Scale Engn & Nanoscale Technol Res Grp, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Fletcher, Benjamin L.; Fowlkes, Jason D.; Simpson, Michael L.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Retterer, Scott T.; Doktycz, Mitchel J.] Oak Ridge Natl Lab, Biol & Nanoscale Syst Grp, Oak Ridge, TN 37831 USA. [McKnight, Timothy E.] Oak Ridge Natl Lab, Monolith Syst Grp, Engn Sci & Technol Div, Oak Ridge, TN 37831 USA. [Retterer, Scott T.; Melechko, Anatoli V.; Simpson, Michael L.; Doktycz, Mitchel J.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Doktycz, MJ (reprint author), Oak Ridge Natl Lab, Mol Scale Engn & Nanoscale Technol Res Grp, Mat Sci & Technol Div, Bethel Valley Rd, Oak Ridge, TN 37831 USA. EM doktyczmj@ornl.gov RI Melechko, Anatoli/B-8820-2008; Retterer, Scott/A-5256-2011; Doktycz, Mitchel/A-7499-2011; Simpson, Michael/A-8410-2011; McKnight, Tim/H-3087-2011 OI Retterer, Scott/0000-0001-8534-1979; Doktycz, Mitchel/0000-0003-4856-8343; Simpson, Michael/0000-0002-3933-3457; McKnight, Tim/0000-0003-4326-9117 FU NIBIB NIH HHS [EB000657] NR 52 TC 18 Z9 18 U1 2 U2 41 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 J9 ACS NANO JI ACS Nano PD FEB PY 2008 VL 2 IS 2 BP 247 EP 254 DI 10.1021/nn700212k PG 8 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 267IS UT WOS:000253503300013 PM 19206624 ER PT J AU Sirbuly, DJ Fischer, NO Huang, SCJ Artyukhin, AB Tok, JBH Bakajin, O Noy, A AF Sirbuly, Donald J. Fischer, Nicholas O. Huang, Shih-Chieh J. Artyukhin, Alexander B. Tok, Jeffrey B. -H. Bakajin, Olgica Noy, Aleksandr TI Biofunctional subwavelength optical waveguides for biodetection SO ACS NANO LA English DT Article DE photonics; evanescent field; subwavelength; sensor; lipid bilayer; waveguide ID PHOTONICS INTEGRATION; LIPID-BILAYERS; MEMBRANES; MOBILITY AB We report a versatile biofunctional subwavelength photonic device platform for real-time detection of biological molecules. Our devices contain lipid bilayer membranes fused onto metal oxide nanowire waveguides stretched across polymeric flow channels. The lipid bilayers incorporating target receptors are submersed in the propagating evanescent field of the optical cavity. We show that the lipid bilayers in our devices are continuous, have very high mobile fraction, and are resistant to fouling. We also demonstrate that our platform allows rapid membrane exchange. Finally, we use this device to detect the hybridization of specific DNA target sequences in solution to complementary probe DNA strands anchored to the lipid bilayer. This evanescent wave sensing architecture holds great potential for portable, all-optical detection systems. C1 [Sirbuly, Donald J.; Fischer, Nicholas O.; Huang, Shih-Chieh J.; Artyukhin, Alexander B.; Tok, Jeffrey B. -H.; Bakajin, Olgica; Noy, Aleksandr] Lawrence Livermore Natl Lab, Chem Mat Earth & Life Sci Directorate, Livermore, CA 94550 USA. RP Sirbuly, DJ (reprint author), Lawrence Livermore Natl Lab, Chem Mat Earth & Life Sci Directorate, 7000 E Ave, Livermore, CA 94550 USA. EM sirbuly2@llnl.gov; noyl@llnl.gov RI Bakajin, Olgica/A-9745-2008 NR 18 TC 20 Z9 20 U1 0 U2 9 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 J9 ACS NANO JI ACS Nano PD FEB PY 2008 VL 2 IS 2 BP 255 EP 262 DI 10.1021/nn700220b PG 8 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 267IS UT WOS:000253503300014 PM 19206625 ER PT J AU Luther, JM Law, M Song, Q Perkins, CL Beard, MC Nozik, AJ AF Luther, Joseph M. Law, Matt Song, Qing Perkins, Craig L. Beard, Matthew C. Nozik, Arthur J. TI Structural, optical and electrical properties of self-assembled films of PbSe nanocrystals treated with 1,2-ethanedithiol SO ACS NANO LA English DT Article DE nanocrystals; PbSe; multiple exciton generation; films; 1,2-ethanedithiol; field-effect transistor; oxidation ID FIELD-EFFECT TRANSISTORS; MULTIPLE EXCITON GENERATION; BINARY NANOPARTICLE SUPERLATTICES; QUANTUM DOTS; CROSS-LINKING; ELECTRONIC-PROPERTIES; SURFACE-CHEMISTRY; SOLAR-CELLS; THIN-FILMS; MOLECULES AB We describe the structural, optical, and electrical properties of high-quality films of PbSe nanocrystals fabricated by a layer-by-layer (LbL) dip-coating method that utilizes 1,2-ethanedithiol (EDT) as an insolubilizing agent. Comparative characterization of nanocrystal films made by spin-coating and by the LbL process shows that EDT quantitatively displaces oleic acid on the PbSe surface, causing a large volume loss that electronically couples the nanocrystals while severely degrading their positional and crystallographic order of the films. Field-effect transistors based on EDT-treated films are moderately conductive and ambipolar in the dark, becoming p-type and 30-60 times more conductive under 300 mW cm(-2) broadband illumination. The nanocrystal films oxidize rapidly in air to yield, after short air exposures, highly conductive p-type solids. The LbL process described here is a general strategy for producing uniform, conductive nanocrystal films for applications in optoelectronics and solar energy conversion. C1 [Luther, Joseph M.; Law, Matt; Song, Qing; Perkins, Craig L.; Beard, Matthew C.; Nozik, Arthur J.] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Luther, Joseph M.] Colorado Sch Mines, Dept Phys, Golden, CO 80401 USA. RP Nozik, AJ (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM arthur_nozik@nrel.gov RI Nozik, Arthur/A-1481-2012; Nozik, Arthur/P-2641-2016; OI BEARD, MATTHEW/0000-0002-2711-1355 NR 56 TC 427 Z9 429 U1 11 U2 192 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 J9 ACS NANO JI ACS Nano PD FEB PY 2008 VL 2 IS 2 BP 271 EP 280 DI 10.1021/nn7003348 PG 10 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 267IS UT WOS:000253503300016 PM 19206627 ER PT J AU Schlueter, JA Geiser, U Funk, KA AF Schlueter, John A. Geiser, Urs Funk, Kylee A. TI KCd2[N(CN)(2)](5)(H2O)(4): an enmeshed honeycomb grid SO ACTA CRYSTALLOGRAPHICA SECTION C-CRYSTAL STRUCTURE COMMUNICATIONS LA English DT Article ID COORDINATION POLYMERS; DICYANAMIDE; MAGNETISM; NETWORKS; CATIONS AB The title compound, poly[potassium [diaquapenta-mu(2)-dicyanamido-dicadmium(II)] dehydrate], {K[Cd-2(C2N3)(5)(H2O)(2)]-2H(2)O}(n), contains two-dimensional anionic sheets of {[Cd-2{N(CN)(2)}(H2O)(2)](-)}(n) with a modified (6,3)-net (layer group cm2m, No. 35). Two sets of equivalent sheets interpenetrate orthogonally to form a tetragonal enmeshed grid. C1 [Schlueter, John A.; Geiser, Urs; Funk, Kylee A.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Schlueter, JA (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM jaschlueter@anl.gov NR 20 TC 0 Z9 0 U1 0 U2 0 PU BLACKWELL PUBLISHING PI OXFORD PA 9600 GARSINGTON RD, OXFORD OX4 2DQ, OXON, ENGLAND SN 0108-2701 J9 ACTA CRYSTALLOGR C JI Acta Crystallogr. Sect. C-Cryst. Struct. Commun. PD FEB PY 2008 VL 64 BP I9 EP I11 DI 10.1107/S0108270107061628 PN 2 PG 3 WC Chemistry, Multidisciplinary; Crystallography SC Chemistry; Crystallography GA 258QF UT WOS:000252881900002 PM 18252988 ER PT J AU Kazhdan, D AF Kazhdan, Daniel TI Di-mu-hydroxido-kappa O-4 : O-mu-trifluoro-methanesulfonato-kappa O-2 : O '-bis[(5,5 '-dimethyl-2,2-bipyridine-kappa N-2,N ')-(eta(5)-pentamethylcyclopentadienyl)-ytterbium(III)] tetraphenylborate 5,5 '-dimethyl-2,2-bipyridine SO ACTA CRYSTALLOGRAPHICA SECTION E-STRUCTURE REPORTS ONLINE LA English DT Article AB The title compound, [Yb-2(CF3O3S)(C10H15)(2)(OH)(2)-( C12H12N2)(2)](C24H20B)center dot C12H12N2, crystallizes as a half-sandwich complex with a bridging trifluoromethanesulfonate as well as two bridging hydroxide groups. The bound bipyridine ligands have N-C-C- torsion angles of 13.1 (9) and - 12.1 (8)(omicron). The structure also contains an uncoordinated 5,5'-dimethyl- 2,2'-bipyridine molecule with an N-C-C-N torsion angle of 169.5 (7)degrees. The triply bridged Yb centers are 3.5990 (4) angstrom apart. The Yb-N bond lengths are in the range 2.389 (6)-2.424 (5) angstrom. C1 [Kazhdan, Daniel] Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Chem, Berkeley, CA 94720 USA. [Kazhdan, Daniel] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Kazhdan, D (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Chem, Berkeley, CA 94720 USA. EM kazhdan@berkeley.edu NR 7 TC 0 Z9 0 U1 0 U2 2 PU BLACKWELL PUBLISHING PI OXFORD PA 9600 GARSINGTON RD, OXFORD OX4 2DQ, OXON, ENGLAND SN 1600-5368 J9 ACTA CRYSTALLOGR E JI Acta Crystallogr. Sect. E.-Struct Rep. Online PD FEB PY 2008 VL 64 BP M435 EP U1466 DI 10.1107/S1600536808002791 PN 2 PG 20 WC Crystallography SC Crystallography GA 271HO UT WOS:000253779700136 PM 21201376 ER PT J AU Byrnes, LJ Badarau, A Vakulenko, SB Smith, CA AF Byrnes, Laura J. Badarau, Adriana Vakulenko, Sergei B. Smith, Clyde A. TI Purification, crystallization and preliminary X-ray analysis of aminoglycoside-2 ''-phosphotransferase-Ic [APH(2 '')-Ic] from Enterococcus gallinarum SO ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY AND CRYSTALLIZATION COMMUNICATIONS LA English DT Article; Proceedings Paper CT Workshop on Validation of Macromolecular Structures CY JUL 21, 2007 CL Salt Lake City, UT SP Amer Crystallog Assoc ID ANTIBIOTIC-RESISTANCE; CRYSTAL-STRUCTURE; PROTEIN CRYSTALS; ENZYME AB Bacterial resistance to aminoglycoside antibiotics is primarily the result of deactivation of the drugs. Three families of enzymes are responsible for this activity, with one such family being the aminoglycoside phosphotransferases (APHs). The gene encoding one of these enzymes, aminoglycoside-2 ''-phosphotransferase-Ic [APH(2 '')-Ic] from Enterococcus gallinarum, has been cloned and the wild-type protein (comprising 308 amino-acid residues) and three mutants that showed elevated minimum inhibitory concentrations towards gentamicin (F108L, H258L and a double mutant F108L/H258L) were expressed in Escherichia coli and subsequently purified. All APH(200)-Ic variants were crystallized in the presence of 14-20%(w/v) PEG 4000, 0.25 M MgCl2, 0.1 M Tris-HCl pH 8.5 and 1 mM Mg(2)GTP. The crystals belong to the monoclinic space group C2, with one molecule in the asymmetric unit. The approximate unit-cell parameters are a = 82.4, b = 54.2, c = 77.0 angstrom, beta = 108.8 degrees. X-ray diffraction data were collected to approximately 2.15 angstrom resolution from an F108L crystal at beamline BL9-2 at SSRL, Stanford, California, USA. C1 [Byrnes, Laura J.; Smith, Clyde A.] Stanford Univ, Stanford Synchrotron Radiat Lab, Menlo Pk, CA 94025 USA. [Badarau, Adriana; Vakulenko, Sergei B.] Univ Notre Dame, Dept Chem & Biochem, Notre Dame, IN 46556 USA. RP Smith, CA (reprint author), Stanford Univ, Stanford Synchrotron Radiat Lab, Menlo Pk, CA 94025 USA. EM csmith@slac.stanford.edu FU NCRR NIH HHS [P41 RR001209]; NIAID NIH HHS [AI057393, R01 AI057393, R01 AI057393-03] NR 23 TC 2 Z9 2 U1 0 U2 2 PU BLACKWELL PUBLISHING PI OXFORD PA 9600 GARSINGTON RD, OXFORD OX4 2DQ, OXON, ENGLAND SN 1744-3091 J9 ACTA CRYSTALLOGR F JI Acta Crystallogr. F-Struct. Biol. Cryst. Commun. PD FEB PY 2008 VL 64 BP 126 EP 129 DI 10.1107/S1744309108001450 PN 2 PG 4 WC Biochemical Research Methods; Biochemistry & Molecular Biology; Biophysics; Crystallography SC Biochemistry & Molecular Biology; Biophysics; Crystallography GA 257RY UT WOS:000252817400018 PM 18259066 ER PT J AU Sudbrack, CK Ziebell, TD Noebe, RD Seidman, DN AF Sudbrack, Chantal K. Ziebell, Tiffany D. Noebe, Ronald D. Seidman, David N. TI Effects of a tungsten addition on the morphological evolution, spatial correlations and temporal evolution of a model Ni-Al-Cr superalloy SO ACTA MATERIALIA LA English DT Article DE nickel alloys; tungsten; nanostructure; coarsening; precipitation ID ELASTIC INTERACTION ENERGY; NICKEL-BASE SUPERALLOYS; ATOMIC-FORCE MICROSCOPY; MICROSTRUCTURAL DEVELOPMENT; ELECTRON-MICROSCOPY; COARSENING BEHAVIOR; RHENIUM ADDITION; MO ALLOYS; GAMMA'; NANOSTRUCTURE AB The effect of adding 2 at.% W to a model Ni-Al-Cr superalloy on the morphological evolution, spatial correlations and temporal evolution of gamma'(L1(2))-precipitates at 1073 K is studied with scanning electron microscopy and atomic force microscopy. Adding W yields a larger microhardness, earlier onset of spheroidal-to-cuboidal precipitate morphological transition, larger volume fraction (from similar to 20% to 30%), reduction in coarsening kinetics by one-third and a larger number density (N-v) of smaller mean radii (< R >) precipitates. The kinetics of (R) and interfacial area per unit volume obey t(1/3) and t-(1/3) relationships, respectively, which is consistent with coarsening driven by interfacial energy reduction. The N-v power-law dependencies deviate, however, from model predictions, indicating that a stationary state is not achieved. Quantitative analyses with precipitate size distributions, pair correlation functions and edge-to-edge interprecipitate distance distributions give insight into two-dimensional microstructural evolution, including the elastically driven transition from a uniform gamma'-distribution to one-dimensional < 001 >-strings to eventually clustered packs Of gamma'-precipitates in the less densely packed Ni-Al-Cr alloy. (c) 2007 Acta Materialia, Inc. Published by Elsevier Ltd. All rights reserved. C1 [Sudbrack, Chantal K.; Ziebell, Tiffany D.; Seidman, David N.] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA. [Sudbrack, Chantal K.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Ziebell, Tiffany D.] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA. [Noebe, Ronald D.] NASA, Glenn Res Ctr, Cleveland, OH 44135 USA. [Seidman, David N.] Northwestern Univ, Ctr Atom Probe Tomog, Evanston, IL 60208 USA. RP Seidman, DN (reprint author), Northwestern Univ, Dept Mat Sci & Engn, 2220 Campus Dr, Evanston, IL 60208 USA. EM d-seidman@northwestern.edu RI Seidman, David/B-6697-2009 NR 57 TC 28 Z9 28 U1 0 U2 18 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 J9 ACTA MATER JI Acta Mater. PD FEB PY 2008 VL 56 IS 3 BP 448 EP 463 DI 10.1016/j.actamat.2007.09.042 PG 16 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 260OZ UT WOS:000253020900016 ER PT J AU Chumbley, LS Ugurlu, O McCallum, RW Dennis, KW Mudryk, Y Gschneidner, KA Pecharsky, VK AF Chumbley, L. S. Ugurlu, O. McCallum, R. W. Dennis, K. W. Mudryk, Y. Gschneidner, K. A., Jr. Pecharsky, V. K. TI Linear microstructural features in R-5(Si,Ge)(4)-type alloys: Difficulties in identification SO ACTA MATERIALIA LA English DT Article DE analytical electron microscopy; X-ray diffraction; rare-earth; magnetic properties; transmission electron microscopy ID PHASE-COMPOSITION; GD-5(SIXGE1-X)(4); GD5SI2GE2; GD-5(SI2GE2); GD5GE4; SYSTEM AB A brief review of the current literature concerning compounds based upon the R-5(SixGe1-x)(4) structure reveals that essentially all examined alloys contain "linear features" similar to those first observed by Szade et al. on the surface of Gd5Si4, Gd5Si2Ge, and Gd5Ge4 samples. Attempts to characterize these features, using a variety of techniques, have proven to be a difficult task. Rather than becoming clearer and better understood, discrepancies in the reported data have resulted in much confusion. A series of comprehensive experiments involving optical, scanning and transmission electron microscopy, X-ray diffractometry, magnetization, and heat capacity measurements have been performed in an attempt to clarify the situation. These experiments, coupled with a critical examination of published data, allow certain misconceptions and apparent contradictions to be understood and explained. Of major importance is the discovery that the volume fraction of the linear feature present is far lower than what one may estimate on the basis of etched samples. The results of this study support previous data that show the linear features are a second phase of composition R-5(SixGe1-x)(3), and reveal the various difficulties associated with proper identification of this phase due to its small size scale and low volume percentage. Published by Elsevier Ltd on behalf of Acta Materialia Inc. C1 [Chumbley, L. S.; Gschneidner, K. A., Jr.; Pecharsky, V. K.] Iowa State Univ, Ames, IA 50011 USA. [Ugurlu, O.] Los Alamos Natl Lab, Los Alamos, NM 87544 USA. [Chumbley, L. S.; McCallum, R. W.; Dennis, K. W.; Mudryk, Y.; Gschneidner, K. A., Jr.; Pecharsky, V. K.] Ames Lab, Ames, IA 50011 USA. RP Chumbley, LS (reprint author), Iowa State Univ, 214 Wilhelm Ames, Ames, IA 50011 USA. EM chumbley@iastate.edu NR 23 TC 14 Z9 14 U1 1 U2 15 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 EI 1873-2453 J9 ACTA MATER JI Acta Mater. PD FEB PY 2008 VL 56 IS 3 BP 527 EP 536 DI 10.1016/j.actamat.2007.10.009 PG 10 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 260OZ UT WOS:000253020900024 ER PT J AU Budiman, AS Han, SM Greer, JR Tamura, N Patel, JR Nix, WD AF Budiman, A. S. Han, S. M. Greer, J. R. Tamura, N. Patel, J. R. Nix, W. D. TI A search for evidence of strain gradient hardening in Au submicron pillars under uniaxial compression using synchrotron X-ray micro diffraction SO ACTA MATERIALIA LA English DT Article DE materials with reduced dimensions; size effects; dislocation; synchrotron radiation; X-ray diffraction (XRD) ID MECHANICAL-PROPERTIES; METALLIC MATERIALS; SINGLE-CRYSTALS; THIN-FILMS; SIZE; PLASTICITY; HARDNESS; STRENGTH; SCALE AB When crystalline materials are mechanically deformed in small volumes, higher stresses are needed for plastic flow. This has been called the "smaller is stronger" phenomenon and has been widely observed. Various size-dependent strengthening mechanisms have been proposed to account for such effects, often involving strain gradients. Here we report on a search for strain gradients as a possible source of strength for single-crystal submicron pillars of gold subjected to uniform compression, using a submicron white-beam (Lane) X-ray diffraction technique. We have found, both before and after uniaxial compression, no evidence of either significant lattice curvature or subgrain structure. This is true even after 35% strain and a high flow stress of 300 MPa were achieved during deformation. These observations suggest that plasticity here is not controlled by strain gradients or substructure hardening, but rather by dislocation source starvation, wherein smaller volumes are stronger because fewer sources of dislocations are available. (C) 2007 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Budiman, A. S.; Han, S. M.; Patel, J. R.; Nix, W. D.] Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA. [Greer, J. R.] CALTECH, Dept Mat Sci, Pasadena, CA 91125 USA. [Tamura, N.; Patel, J. R.] Univ Calif Berkeley, Lawrence Berkeley Lab, ALS, Berkeley, CA 94720 USA. RP Budiman, AS (reprint author), Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA. EM suriadi@stanford.edu RI Han, Seung Min/C-1809-2011 NR 31 TC 56 Z9 57 U1 3 U2 36 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 J9 ACTA MATER JI Acta Mater. PD FEB PY 2008 VL 56 IS 3 BP 602 EP 608 DI 10.1016/j.actamat.2007.10.031 PG 7 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 260OZ UT WOS:000253020900031 ER PT J AU Chandler, MQ Horstemeyer, MF Baskes, MI Wagner, GJ Gullett, PM Jelinek, B AF Chandler, Mei Q. Horstemeyer, M. F. Baskes, M. I. Wagner, G. J. Gullett, P. M. Jelinek, B. TI Hydrogen effects on nanovoid nucleation at nickel grain boundaries SO ACTA MATERIALIA LA English DT Article DE hydrogen; grain boundaries; nanovoid nucleation; molecular dynamics ID ASSISTED DUCTILE FRACTURE; POLYCRYSTALLINE NICKEL; MOLECULAR-DYNAMICS; SINGLE-CRYSTALS; LATTICE-DEFECTS; VOID NUCLEATION; CHARGED NICKEL; DISLOCATIONS; METALS; STEEL AB We performed molecular dynamics (MD) simulations to study hydrogen effects on nanovoid nucleation at nickel grain boundaries using an embedded atom method (EAM) potential. Monte Carlo (MC) simulations were performed to introduce hydrogen atoms in low-angle and high-angle symmetrical [00 1] tilt boundaries at 300 K for analysis of plasticity and nanovoid nucleation. The simulation results show that hydrogen atoms were trapped at the grain boundaries and reduced the critical stresses and strains for nanovoid nucleation. The MD results also show that the effects of hydrogen on nanovoid nucleation depended on the grain-boundary hydrogen concentration regardless of the grain-boundary misorientations. The MD results were then inserted into a new hydrogen associated void nucleation model that operates as an internal state variable in the context of continuum thermodynamic plasticity. Published by Elsevier Ltd on behalf of Acta Materialia Inc. C1 [Chandler, Mei Q.; Horstemeyer, M. F.] Mississippi State Univ, Dept Mech Engn, Mississippi State, MS 39762 USA. [Baskes, M. I.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Wagner, G. J.] Sandia Natl Labs, Livermore, CA 94551 USA. [Gullett, P. M.] Mississippi State Univ, Dept Civil Engn, Mississippi State, MS 39762 USA. [Jelinek, B.] Mississippi State Univ, Dept Phys & Astron, Mississippi State, MS 39762 USA. RP Chandler, MQ (reprint author), USA, Engineer Res & Dev Ctr, Vicksburg, MS 39180 USA. EM Mei.Q.Chandler@erde.usace.army.mil RI Jelinek, Bohumir/C-4376-2008; Wagner, Gregory/I-4377-2015; OI Jelinek, Bohumir/0000-0002-2622-4235; Horstemeyer, Mark/0000-0003-4230-0063 NR 51 TC 15 Z9 15 U1 3 U2 23 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 J9 ACTA MATER JI Acta Mater. PD FEB PY 2008 VL 56 IS 3 BP 619 EP 631 DI 10.1016/j.actamat.2007.10.037 PG 13 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 260OZ UT WOS:000253020900033 ER PT J AU Wu, L Jain, A Brown, DW Stoica, GM Agnew, SR Clausen, B Fielden, DE Liaw, PK AF Wu, L. Jain, A. Brown, D. W. Stoica, G. M. Agnew, S. R. Clausen, B. Fielden, D. E. Liaw, P. K. TI Twinning-detwinning behavior during the strain-controlled low-cycle fatigue testing of a wrought magnesium alloy, ZK60A SO ACTA MATERIALIA LA English DT Article DE magnesium alloy; cyclic deformation; twinning; in situ neutron diffraction ID CHANNEL ANGULAR EXTRUSION; SITU NEUTRON-DIFFRACTION; CLOSE-PACKED METALS; TEXTURE EVOLUTION; HARDENING EVOLUTION; ZN ALLOY; DEFORMATION; AZ31B; MECHANISMS; SLIP AB The twinning and detwinning behavior in a strongly textured magnesium alloy was investigated using in situ neutron diffraction during the cyclic deformation along the prior extrusion direction at the fully reversed total constant strain amplitude of 1.2% at room temperature. The initial preferred orientation places the c-axis in most grains perpendicular to the loading axis, and this favors extensive {10 (1) over bar2} < 10 (1) over bar1 > twinning under compressive loading. In contrast, the grains are not favorably oriented to undergo such twinning during monotonic tensile loading along the prior extrusion axis. This is the reason for the well-known tension-compression strength asymmetry of wrought magnesium alloys. The strength in compression is controlled by the stress required to activate twinning, while the strength in tension is controlled by the harder non-basal slip mechanisms. The unique orientation relationship between the parent grains and the twin grains favors detwinning during the subsequent loading reversal. In situ neutron-diffraction results indicate that such twinning and detwinning alternates with the cyclic loading, i.e. most of the twins formed during compression are removed when the load is reversed. However, a small volume fraction of residual twins gradually increases with increasing cycles, which may be an important factor in dictating the low-cycle fatigue behavior of the magnesium alloy. (C) 2007 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Wu, L.; Stoica, G. M.; Fielden, D. E.; Liaw, P. K.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Jain, A.; Agnew, S. R.] Univ Virginia, Dept Mat Sci & Engn, Charlottesville, VA 22904 USA. [Brown, D. W.; Clausen, B.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Wu, L (reprint author), Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. EM lwu7@utk.edu RI Clausen, Bjorn/B-3618-2015 OI Clausen, Bjorn/0000-0003-3906-846X NR 33 TC 234 Z9 243 U1 12 U2 111 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 J9 ACTA MATER JI Acta Mater. PD FEB PY 2008 VL 56 IS 4 BP 688 EP 695 DI 10.1016/j.actamat.2007.10.030 PG 8 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 272XQ UT WOS:000253895400002 ER PT J AU Hattar, K Follstaedt, DM Knapp, JA Robertson, IM AF Hattar, K. Follstaedt, D. M. Knapp, J. A. Robertson, I. M. TI Defect structures created during abnormal grain growth in pulsed-laser deposited nickel SO ACTA MATERIALIA LA English DT Article DE abnormal grain growth; nickel; laser deposited; electron microscopy ID STACKING-FAULT TETRAHEDRA; NANOCRYSTALLINE NICKEL; MECHANICAL-PROPERTIES; ANNEALING TWINS; QUENCHED GOLD; CUBIC METALS; NI; STABILITY; EVOLUTION; DAMAGE AB The thermal stability of nanograined pulsed-laser deposited nickel was studied by annealing free-standing thin films in situ in a transmission electron microscope. The observed grain growth was sporadic and catastrophic, as expected for abnormal grain growth. The large grains contained a variety of defects that included twins, dislocation lines, small dislocation loops and stacking-fault tetrahedra. This microstructure was developed at annealing temperatures as low as 498 K and was stable at the annealing temperature. The proposed source of the defects and especially the stacking-fault tetrahedra is the grain boundaries, which have excess free volume. This defect source provides insight to the structure of the deposited grain boundaries, which has important consequences for the macroscopic mechanical properties of nanograined pulsed-laser deposited nickel. (C) 2007 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Hattar, K.; Robertson, I. M.] Univ Illinois, Dept Mat Sci & Engn, Urbana, IL 61801 USA. [Follstaedt, D. M.; Knapp, J. A.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Robertson, IM (reprint author), Univ Illinois, Dept Mat Sci & Engn, 1304 W Green St, Urbana, IL 61801 USA. EM ianr@uiuc.edu NR 41 TC 24 Z9 24 U1 2 U2 31 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 J9 ACTA MATER JI Acta Mater. PD FEB PY 2008 VL 56 IS 4 BP 794 EP 801 DI 10.1016/j.actamat.2007.10.027 PG 8 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 272XQ UT WOS:000253895400013 ER PT J AU Balogh, L Ungar, T Zhao, Y Zhu, YT Horita, Z Xu, C Langdon, TG AF Balogh, Levente Ungar, Tamas Zhao, Yonghao Zhu, Y. T. Horita, Zenji Xu, Cheng Langdon, Terence G. TI Influence of stacking-fault energy on microstructural characteristics of ultrafine-grain copper and copper-zinc alloys SO ACTA MATERIALIA LA English DT Article DE copper alloys; high-pressure torsion; severe plastic deformation; stacking-fault energy; X-ray diffraction ID HIGH-PRESSURE TORSION; SEVERE PLASTIC-DEFORMATION; HALL-PETCH RELATIONSHIP; HPT-PROCESSED CU; FLOW-STRESS; SPATIAL-DISTRIBUTION; SIZE DEPENDENCE; REFINEMENT; EVOLUTION; AL AB Experiments were conducted on samples of pure Cu and two Cu-Zn alloys to evaluate the influence of the stacking-fault energy (SFE) on microstructural development when processing using high-pressure torsion (HPT). Transmission electron microscopy, X-ray diffraction and hardness measurements were used for microstructural evaluation and the results show consistency between these techniques. Grain sizes in the nanometer range were formed at the edges of the HPT disks, larger submicrometer grains were formed in the disk centers and the measured grain sizes decreased with decreasing SFE. There was negligible twinning in pure Cu but the densities of dislocations and twins increased with increasing Zn content and thus with decreasing SFE. The values of the Vickers microhardness were lower in the centers of the disks for the two Cu-Zn alloy and this is consistent with the low SFE and slow rates of recovery. (C) 2007 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Xu, Cheng; Langdon, Terence G.] Univ So Calif, Dept Aerosp & Mech Engn, Los Angeles, CA 90089 USA. [Xu, Cheng; Langdon, Terence G.] Univ So Calif, Dept Mat Sci, Los Angeles, CA 90089 USA. [Langdon, Terence G.] Univ Southampton, Sch Engn Sci, Mat Res Grp, Southampton SO17 1BJ, Hants, England. [Balogh, Levente; Ungar, Tamas] Eotvos Lorand Univ, Dept Mat Phys, H-1518 Budapest, Hungary. [Zhao, Yonghao] Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA. [Zhu, Y. T.] Los Alamos Natl Lab, Mat Phys & Applicat Div, Los Alamos, NM 87545 USA. [Horita, Zenji] Kyushu Univ, Fac Engn, Dept Mat Sci & Engn, Fukuoka 8190395, Japan. RP Langdon, TG (reprint author), Univ So Calif, Dept Aerosp & Mech Engn, Los Angeles, CA 90089 USA. EM langdon@usc.edu RI Lujan Center, LANL/G-4896-2012; Langdon, Terence/B-1487-2008; Zhu, Yuntian/B-3021-2008; Zhao, Yonghao/A-8521-2009; Xu, Cheng/D-5112-2009; U-ID, Kyushu/C-5291-2016; Balogh, Levente/S-1238-2016 OI Zhu, Yuntian/0000-0002-5961-7422; NR 55 TC 132 Z9 135 U1 5 U2 55 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 J9 ACTA MATER JI Acta Mater. PD FEB PY 2008 VL 56 IS 4 BP 809 EP 820 DI 10.1016/j.actamat.2007.10.053 PG 12 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 272XQ UT WOS:000253895400015 ER PT J AU Xie, ZH Hoffman, M Munroe, P Bendavid, A Martin, PJ AF Xie, Z. H. Hoffman, M. Munroe, P. Bendavid, A. Martin, P. J. TI Deformation mechanisms of TiN multilayer coatings alternated by ductile or stiff interlayers SO ACTA MATERIALIA LA English DT Article DE TiN; multilayers; indentation; transmission electron microscopy; shear ID HYBRID CATHODIC ARC; THIN-FILMS; SENSING INDENTATION; SMALL VOLUMES; SI-N; NANOINDENTATION; DEPOSITION; MICROSTRUCTURE; SUBSTRATE; FRACTURE AB TiN multilayers that alternate with either titanium (ductile) or nanocomposite TiSiN (hard) interlayers were surface coated by filtered arc deposition onto stainless steel substrates. Hardness and deformation mechanisms of these multilayer coatings were investigated using depth-sensing indentation in comparison with traditional monolithic TiN coatings. A dual ion/electron beam microscope was used to analyse subsurface indentation damage. It was found that microstructural layering and the presence of interlayers in TiN multilayers jointly provided resistance to deformation by intercolumnar shear sliding, observed more evidently in the monolithic TiN coatings. This resulted in an increase in hardness, which also increased with both the number of layers and the presence of interlayers. Calculations based upon a mechanistic-based model revealed that the resistance by interlayers played a more important role than an increase in inter-granular shear area due to the layered structure in resisting deformation. Compared with the titanium interlayer, the use of a hard nanocomposite interlayer increased the resistance to deformation; however, cracking occurred within both the TiN layers and the nanocomposite interlayers. Crown Copyright (C) 2007 Published by Elsevier Ltd on behalf of Acta Materialia Inc. All rights reserved. C1 [Xie, Z. H.; Hoffman, M.; Munroe, P.] Univ New S Wales, Sch Mat Sci & Engn, Sydney, NSW 2052, Australia. [Bendavid, A.; Martin, P. J.] CSIRO Ind Phys, Lindfield, NSW 2070, Australia. RP Xie, ZH (reprint author), Los Alamos Natl Lab, MPA CINT, MS K771, Los Alamos, NM 87545 USA. EM zonghan_xie@lanl.gov RI Hoffman, Mark/E-5021-2012; Xie, Zonghan/D-7873-2013; Bendavid, Avi/G-4234-2013; Munroe, Paul/I-9313-2016 OI Hoffman, Mark/0000-0003-2927-1165; Xie, Zonghan/0000-0001-8647-7958; Bendavid, Avi/0000-0002-2454-9714; Munroe, Paul/0000-0002-5091-2513 NR 24 TC 38 Z9 39 U1 3 U2 18 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 J9 ACTA MATER JI Acta Mater. PD FEB PY 2008 VL 56 IS 4 BP 852 EP 861 DI 10.1016/j.actamat.2007.10.047 PG 10 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 272XQ UT WOS:000253895400018 ER PT J AU Wang, YD Huang, EW Ren, Y Nie, ZH Wang, G Liu, YD Deng, JN Choo, H Liaw, PK Brown, DE Zuo, L AF Wang, Y. D. Huang, E. W. Ren, Y. Nie, Z. H. Wang, G. Liu, Y. D. Deng, J. N. Choo, H. Liaw, P. K. Brown, D. E. Zuo, L. TI In situ high-energy X-ray studies of magnetic-field-induced phase transition in a ferromagnetic shape memory Ni-Co-Mn-In alloy SO ACTA MATERIALIA LA English DT Article DE ferromagnetic shape memory alloy; high-energy X-ray diffraction; martensitic transformation ID INDUCED STRAIN; SINGLE-CRYSTALS; NI2MNGA; STRESS; TRANSFORMATION; MARTENSITE; DEFORMATION; GROWTH AB The magnetic-field-induced phase transition behavior in a Ni45Co5Mn36.6In13.4 alloy, with and without an imposed stress, at various temperatures has been studied in situ by high-energy synchrotron X-ray diffraction. The crystallographic structure and microstructural characteristics in response to multiple external parameters (stress, temperature and magnetic fields) are traced, enabling the reversible and irreversible magnetic-field-induced transformations to be understood. The transformation kinetics as a function of temperature and magnetic field is determined by monitoring the changes of the specified diffraction peaks, which may be accurately described by the Clausius-Clapeyron relation. The X-ray absorption topographic measurements give direct evidence that inhomogeneous deformation occurred during magnetic-field-induced transformation in the polycrystalline materials. These investigations provide the fundamental structural information and functional characteristics that is crucial for the potential applications of this sort of new functional material. (C) 2007 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Wang, Y. D.; Nie, Z. H.; Wang, G.; Liu, Y. D.; Deng, J. N.; Zuo, L.] Northeastern Univ, Minist Educ, Key Lab Anisotropy & Texture Mat, Shenyang 110004, Peoples R China. [Wang, Y. D.; Huang, E. W.; Choo, H.; Liaw, P. K.; Brown, D. E.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Ren, Y.] Argonne Natl Lab, Xray Serv Div, Argonne, IL 60439 USA. [Brown, D. E.] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. RP Wang, YD (reprint author), Northeastern Univ, Minist Educ, Key Lab Anisotropy & Texture Mat, Shenyang 110004, Peoples R China. EM ydwang@mail.neu.edu.cn RI Huang, E-Wen/A-7509-2009; Nie, Zhihua/G-9459-2013; wang, yandong/G-9404-2013; Choo, Hahn/A-5494-2009; Huang, E-Wen/A-5717-2015 OI Nie, Zhihua/0000-0002-2533-933X; Choo, Hahn/0000-0002-8006-8907; Huang, E-Wen/0000-0003-4986-0661 NR 25 TC 29 Z9 30 U1 5 U2 36 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 J9 ACTA MATER JI Acta Mater. PD FEB PY 2008 VL 56 IS 4 BP 913 EP 923 DI 10.1016/j.actamat.2007.10.045 PG 11 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 272XQ UT WOS:000253895400024 ER PT J AU Miernik, K Dominik, W Janas, Z Pfutzner, M Grigorenko, L Bingham, C Czyrkowski, H Cwiok, M Darby, I Dabrowski, R Ginter, T Grzywacz, R Karny, M Korgul, A Kusmierz, W Liddick, S Rajabali, M Rykaczewski, K Stolz, A AF Miernik, K. Dominik, W. Janas, Z. Pfutzner, M. Grigorenko, L. Bingham, C. Czyrkowski, H. Cwiok, M. Darby, I. Dabrowski, R. Ginter, T. Grzywacz, R. Karny, M. Korgul, A. Kusmierz, W. Liddick, S. Rajabali, M. Rykaczewski, K. Stolz, A. TI Studies of charged particle emission in the decay of Fe-45 SO ACTA PHYSICA POLONICA B LA English DT Article; Proceedings Paper CT 30th Mazurian Lakes Conference on Physics CY SEP 02-09, 2007 CL Piaski, POLAND SP Univ Warsaw, Andrzej Soltan Inst Nucl Studies, Pro Phys Fdn ID TIME PROJECTION CHAMBER; 2-PROTON DECAY; PROTON; NUCLEI AB The decay of extremely neutron-deficient isotope Fe-45 has been studied by using a new type of gaseous detector in which a technique of optical imaging is used to record tracks of charged particles. The two-proton radioactivity and the beta-decay channels accompanied by proton(s) emission were clearly identified. For the first time, the angular and energy correlations between two protons emitted from the Fe-45 ground-state were measured. The obtained distributions were confronted with predictions of a three-body model. Studies of beta-decay channels of Fe-45 provided first unambiguous evidence for the beta-delayed three proton emission. C1 [Miernik, K.; Dominik, W.; Janas, Z.; Pfutzner, M.; Czyrkowski, H.; Cwiok, M.; Dabrowski, R.; Karny, M.; Korgul, A.; Kusmierz, W.] Warsaw Univ, Inst Expt Phys, Dubna, Russia. [Bingham, C.; Darby, I.; Grzywacz, R.; Liddick, S.; Rajabali, M.] Univ Tennessee, Knoxville, TN USA. [Ginter, T.; Stolz, A.] Michigan State Univ, Natl Superconducting Cyclotron Lab, E Lansing, MI 48824 USA. [Rykaczewski, K.] Oak Ridge Natl Lab, Oak Ridge, TN USA. RP Miernik, K (reprint author), Warsaw Univ, Inst Expt Phys, Dubna, Russia. NR 12 TC 2 Z9 2 U1 0 U2 0 PU ACTA PHYSICA POLONICA B, JAGELLONIAN UNIV, INST PHYSICS PI KRAKOW PA REYMONTA 4, 30-059 KRAKOW, POLAND SN 0587-4254 J9 ACTA PHYS POL B JI Acta Phys. Pol. B PD FEB PY 2008 VL 39 IS 2 BP 477 EP 482 PG 6 WC Physics, Multidisciplinary SC Physics GA 269FR UT WOS:000253635400026 ER PT J AU Winger, JA Ilyushkin, SV Korgul, A Gross, CJ Rykaczewski, KP Batchelder, JC Goodin, C Grzywacz, R Hamilton, JH Krolas, W Liddick, SN Mazzocchi, C Nelson, C Padgett, S Piechaczek, A Rajabali, MM Shapira, D Zganjar, EF AF Winger, J. A. Ilyushkin, S. V. Korgul, A. Gross, C. J. Rykaczewski, K. P. Batchelder, J. C. Goodin, C. Grzywacz, R. Hamilton, J. H. Krolas, W. Liddick, S. N. Mazzocchi, C. Nelson, C. Padgett, S. Piechaczek, A. Rajabali, M. M. Shapira, D. Zganjar, E. F. TI Decay studies of very neutron rich nuclei near Ni-78 SO ACTA PHYSICA POLONICA B LA English DT Article; Proceedings Paper CT 30th Mazurian Lakes Conference on Physics CY SEP 02-09, 2007 CL Piaski, POLAND SP Univ Warsaw, Andrzej Soltan Inst Nucl Studies, Pro Phys Fdn ID SPECTROSCOPY AB The properties of beta-gamma and beta-delayed neutron emission from Cu76-79 and Ga83-85 were measured at the Holifield Radioactive Ion Beam Facility (HRIBF) at Oak Ridge National Laboratory. Selected results on the decay properties of copper isotopes are briefly presented and discussed. C1 [Winger, J. A.; Ilyushkin, S. V.] Mississippi State Univ, Dept Phys & Astron, Mississippi State, MS 39762 USA. [Korgul, A.] Univ Warsaw, Inst Expt Phys, PL-00325 Warsaw, Poland. [Korgul, A.] Joint Inst Heavy Ion Res, Oak Ridge, TN 37831 USA. [Korgul, A.; Grzywacz, R.; Liddick, S. N.; Mazzocchi, C.; Padgett, S.; Rajabali, M. M.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Korgul, A.; Goodin, C.; Hamilton, J. H.; Nelson, C.] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN USA. [Gross, C. J.; Rykaczewski, K. P.; Shapira, D.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. [Batchelder, J. C.] Oak Ridge Associated Univ, UNIRIB, Oak Ridge, TN USA. [Krolas, W.] Polish Acad Sci, Inst Nucl Phys, Krakow, Poland. [Mazzocchi, C.] Univ Milan, IFGA, Milan, Italy. [Mazzocchi, C.] Ist Nazl Fis Nucl, I-20133 Milan, Italy. [Piechaczek, A.; Zganjar, E. F.] Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA. RP Winger, JA (reprint author), Mississippi State Univ, Dept Phys & Astron, Mississippi State, MS 39762 USA. RI Krolas, Wojciech/N-9391-2013 NR 13 TC 6 Z9 6 U1 0 U2 0 PU ACTA PHYSICA POLONICA B, JAGELLONIAN UNIV, INST PHYSICS PI KRAKOW PA REYMONTA 4, 30-059 KRAKOW, POLAND SN 0587-4254 J9 ACTA PHYS POL B JI Acta Phys. Pol. B PD FEB PY 2008 VL 39 IS 2 BP 525 EP 529 PG 5 WC Physics, Multidisciplinary SC Physics GA 269FR UT WOS:000253635400034 ER PT J AU Bono, MJ Cervantes, O Akaba, CM Hamza, AV Foreman, RJ Teslich, NE AF Bono, Matthew J. Cervantes, Octavio Akaba, Craig M. Hamza, Alex V. Foreman, Ronald J. Teslich, Nick E. TI Bonding low-density nanoporous metal foams using sputtered solder SO ADVANCED ENGINEERING MATERIALS LA English DT Article ID ALUMINUM C1 [Bono, Matthew J.; Cervantes, Octavio; Akaba, Craig M.; Hamza, Alex V.; Foreman, Ronald J.; Teslich, Nick E.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Bono, MJ (reprint author), Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94550 USA. EM bono1@llnl.gov NR 17 TC 1 Z9 1 U1 1 U2 8 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 1438-1656 J9 ADV ENG MATER JI Adv. Eng. Mater. PD FEB PY 2008 VL 10 IS 1-2 BP 51 EP 55 DI 10.1002/adem.200700239 PG 5 WC Materials Science, Multidisciplinary SC Materials Science GA 270SX UT WOS:000253741600006 ER PT J AU Ekoto, IW Bowersox, RDW Beutner, T Goss, L AF Ekoto, Isaac W. Bowersox, Rodney D. W. Beutner, Thomas Goss, Larry TI Supersonic boundary layers with periodic surface roughness SO AIAA JOURNAL LA English DT Article ID TURBULENT-FLOW STRUCTURE; DILATATION; CURVATURE AB In the present study, the effects of large-scale periodic surface roughness on a high-speed (M = 2.86), high Reynolds number (Reo approximate to 60, 000), supersonic turbulent boundary layer was examined. Two roughness topologies (square and diamond) were compared with an aerodynamically smooth wall. The measurements included planar contours of the mean and fluctuating velocity, pitot pressure profiles, pressure-sensitive paint, and schlieren photography. The local strain-rate distortion parameters for the square roughness pattern were small (similar to - 0.01), and the mean and turbulent flow properties followed the canonical rough-wall boundary-layer trends. The diamond-shaped roughness topology produced a pattern of attached oblique shocks and expansion waves that led to strong distortion parameters. The distortions varied from -0.3 to 0.4 across the roughness elements, which resulted in localized extra turbulence production that generated large periodic variations in the turbulence levels across individual roughness elements that spanned the boundary-layer thickness; for example, the Reynolds shear stress varied by similar to 100 %. This result demonstrated a mechanism for altering the turbulence in supersonic boundary layers. C1 [Ekoto, Isaac W.] Sandia Natl Labs, Combust Res Facil, Livermore, CA 94551 USA. [Bowersox, Rodney D. W.] Texas A&M Univ, College Stn, TX 77843 USA. [Beutner, Thomas] Def Adv Res Projects Agcy, Arlington, VA 22203 USA. [Goss, Larry] Innovat Sci Solut Inc, Dayton, OH 45440 USA. RP Ekoto, IW (reprint author), Sandia Natl Labs, Combust Res Facil, Livermore, CA 94551 USA. NR 37 TC 6 Z9 6 U1 0 U2 3 PU AMER INST AERONAUT ASTRONAUT PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0001-1452 J9 AIAA J JI AIAA J. PD FEB PY 2008 VL 46 IS 2 BP 486 EP 497 DI 10.2514/1.31729 PG 12 WC Engineering, Aerospace SC Engineering GA 257TZ UT WOS:000252822800019 ER PT J AU Bender, MA Bunde, DP Demaine, ED Fekete, SP Leung, VJ Meijer, H Phillips, CA AF Bender, Michael A. Bunde, David P. Demaine, Erik D. Fekete, Sandor P. Leung, Vitus J. Meijer, Henk Phillips, Cynthia A. TI Communication-aware processor allocation for supercomputers: Finding point sets of small average distance SO ALGORITHMICA LA English DT Article; Proceedings Paper CT 9th International Workshop on Algorithms and Data Structures (WADS 2005) CY AUG 15-17, 2005 CL Univ Waterloo, Waterloo, CANADA SP Carleton Univ HO Univ Waterloo DE processor allocation; supercomputers; communication cost; Manhattan distance; clustering; approximation; polynomial-time approximation scheme (PTAS) ID COMPUTERS AB We give processor-allocation algorithms for grid architectures, where the objective is to select processors from a set of available processors to minimize the average number of communication hops. The associated clustering problem is as follows: Given n points in R-d, find a size-k subset with minimum average pairwise L-1 distance. We present a natural approximation algorithm and show that it is a 7/4-approximation for two-dimensional grids; in d dimensions, the approximation guarantee is 2-1/2d, which is tight. We also give a polynomial-time approximation scheme (PTAS) for constant dimension d, and we report on experimental results. C1 [Fekete, Sandor P.] Tech Univ Carolo Wilhelmina Braunschweig, Dept Comp Sci, D-38106 Braunschweig, Germany. [Bender, Michael A.] SUNY Stony Brook, Dept Comp Sci, Stony Brook, NY 11794 USA. [Bunde, David P.] Knox Coll, Dept Comp Sci, Galesburg, IL 61401 USA. [Demaine, Erik D.] MIT, Comp Sci & Artificial Intelligence Lab, Cambridge, MA 02139 USA. [Leung, Vitus J.; Phillips, Cynthia A.] Sandia Natl Labs, Discrete Algorithms & Math Dept, Albuquerque, NM 87185 USA. [Meijer, Henk] Roosevelt Acad, Dept Sci, Middelburg, ZL, Netherlands. RP Fekete, SP (reprint author), Tech Univ Carolo Wilhelmina Braunschweig, Dept Comp Sci, D-38106 Braunschweig, Germany. EM bender@cs.sunysb.edu; dbunde@knox.edu; edemaine@mit.edu; s.fekete@tu-bs.de; vjleung@sandia.gov; h.meijer@roac.nl; caphill@sandia.gov NR 30 TC 15 Z9 15 U1 0 U2 4 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0178-4617 EI 1432-0541 J9 ALGORITHMICA JI Algorithmica PD FEB PY 2008 VL 50 IS 2 BP 279 EP 298 DI 10.1007/s00453-007-9037-2 PG 20 WC Computer Science, Software Engineering; Mathematics, Applied SC Computer Science; Mathematics GA 248XO UT WOS:000252190700008 ER PT J AU Davalos, RV McGraw, GJ Wallow, TI Morales, AM Krafcik, KL Fintschenko, Y Cummings, EB Simmons, BA AF Davalos, Rafael V. McGraw, Gregory J. Wallow, Thomas I. Morales, Alfredo M. Krafcik, Karen L. Fintschenko, Yolanda Cummings, Eric B. Simmons, Blake A. TI Performance impact of dynamic surface coatings on polymeric insulator-based dielectrophoretic particle separators SO ANALYTICAL AND BIOANALYTICAL CHEMISTRY LA English DT Article DE microfluidics; microfabrication; surfactants; biological samples; bioanalytical methods ID DOUBLE-STRANDED DNA; MICROFLUIDIC DEVICES; ELECTRODELESS DIELECTROPHORESIS; ELECTROPHORESIS; MANIPULATION; BACTERIA; CELLS; FLOW; MICROCHANNELS; FIELDS AB Efficient and robust particle separation and enrichment techniques are critical for a diverse range of lab-on-a-chip analytical devices including pathogen detection, sample preparation, high-throughput particle sorting, and biomedical diagnostics. Previously, using insulator-based dielectrophoresis (iDEP) in microfluidic glass devices, we demonstrated simultaneous particle separation and concentration of various biological organisms, polymer microbeads, and viruses. As an alternative to glass, we evaluate the performance of similar iDEP structures produced in polymer-based microfluidic devices. There are numerous processing and operational advantages that motivate our transition to polymers such as the availability of numerous innate chemical compositions for tailoring performance, mechanical robustness, economy of scale, and ease of thermoforming and mass manufacturing. The polymer chips we have evaluated are fabricated through an injection molding process of the commercially available cyclic olefin copolymer Zeonor 1060R. This publication is the first to demonstrate insulator-based dielectrophoretic biological particle differentiation in a polymeric device injection molded from a silicon master. The results demonstrate that the polymer devices achieve the same performance metrics as glass devices. We also demonstrate an effective means of enhancing performance of these microsystems in terms of system power demand through the use of a dynamic surface coating. We demonstrate that the commercially available nonionic block copolymer surfactant, Pluronic F127, has a strong interaction with the cyclic olefin copolymer at very low concentrations, positively impacting performance by decreasing the electric field necessary to achieve particle trapping by an order of magnitude. The presence of this dynamic surface coating, therefore, lowers the power required to operate such devices and minimizes Joule heating. The results of this study demonstrate that iDEP polymeric microfluidic devices with surfactant coatings provide an affordable engineering strategy for selective particle enrichment and sorting. C1 [Davalos, Rafael V.; McGraw, Gregory J.; Wallow, Thomas I.; Morales, Alfredo M.; Krafcik, Karen L.; Fintschenko, Yolanda; Cummings, Eric B.; Simmons, Blake A.] Sandia Natl Labs, Livermore, CA 94551 USA. [Davalos, Rafael V.] Virginia Tech Wake Forest Univ, Sch Biomed Engn & Sci, Blacksburg, VA 24061 USA. RP Simmons, BA (reprint author), Sandia Natl Labs, 7011 E Ave MS9292, Livermore, CA 94551 USA. EM basimmo@sandia.gov RI Davalos, Rafael/F-9012-2011; Sano, Michael/E-1715-2011; OI Simmons, Blake/0000-0002-1332-1810 NR 38 TC 37 Z9 37 U1 4 U2 24 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 1618-2642 J9 ANAL BIOANAL CHEM JI Anal. Bioanal. Chem. PD FEB PY 2008 VL 390 IS 3 BP 847 EP 855 DI 10.1007/s00216-007-1426-5 PG 9 WC Biochemical Research Methods; Chemistry, Analytical SC Biochemistry & Molecular Biology; Chemistry GA 252AS UT WOS:000252417800009 PM 17624517 ER PT J AU Leboeuf, E Immerzeel, P Gibon, Y Steup, M Pauly, M AF Leboeuf, Edouard Immerzeel, Peter Gibon, Yves Steup, Martin Pauly, Markus TI High-throughput functional assessment of polysaccharide-active enzymes using matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry as exemplified on plant cell wall polysaccharides SO ANALYTICAL BIOCHEMISTRY LA English DT Article DE glycosyltransferase; esterase; substrate specificity; MALDI-TOF mass spectrometry ID FUCOSYL-TRANSFERASE; CARBOHYDRATE MICROARRAYS; ASSAY; SPECIFICITY; INHIBITORS; BINDING AB Despite a wealth of sequence information on genes encoding carbohydrate-active enzymes (e.g., transferases, esterases, hydrolases), very few of these enzymes have been described in detail, particularly regarding substrate specificities. A facile and rapid method for the characterization of substrate specificities of polysaccharide-active enzymes that uses matrix-assisted laser desorption-time of flight mass spectrometry (MALDI-TOF MS) has been developed. This method has been applied to characterize a xyloglucan fucosyltransferase and a pectin methyl-esterase. Reactions were performed in liquid phase, and aliquots of the reaction mixtures were spotted on a polyvinylidene fluoride (PVDF) membrane. Reaction products were precipitated onto the membrane and cleaned by treatment with an ethanol-water mixture. Subsequently, the reaction products were hydrolyzed by specific endoglycanases, and the resulting oligosaccharides were directly analyzed onto the PVDF membrane by MALDI-TOF MS. The new method is amenable to high-throughput analysis and, thus, constitutes an emerging avenue to rapidly fill the gap in our knowledge of the specificities of polysaccharide-active enzymes. (c) 2007 Elsevier Inc. All rights reserved. C1 [Pauly, Markus] Michigan State Univ, MSU DOE Plant Res Lab, E Lansing, MI 48824 USA. [Leboeuf, Edouard; Steup, Martin] Univ Potsdam, Inst Biochem & Biol, Dept Plant Physiol, D-14476 Potsdam, Germany. [Immerzeel, Peter; Gibon, Yves] Max Planck Inst Mol Plant Physiol, D-14476 Potsdam, Germany. RP Pauly, M (reprint author), Michigan State Univ, MSU DOE Plant Res Lab, E Lansing, MI 48824 USA. EM paulymar@msu.edu RI Pauly, Markus/B-5895-2008; Gibon, Yves/B-9919-2011 OI Pauly, Markus/0000-0002-3116-2198; NR 28 TC 10 Z9 10 U1 2 U2 5 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0003-2697 J9 ANAL BIOCHEM JI Anal. Biochem. PD FEB 1 PY 2008 VL 373 IS 1 BP 9 EP 17 DI 10.1016/j.ab.2007.10.007 PG 9 WC Biochemical Research Methods; Biochemistry & Molecular Biology; Chemistry, Analytical SC Biochemistry & Molecular Biology; Chemistry GA 247HM UT WOS:000252069000002 PM 17980141 ER PT J AU Fischer, NO Tarasow, TM Tok, JBH AF Fischer, Nicholas O. Tarasow, Theodore M. Tok, Jeffrey B. -H. TI Protein detection via direct enzymatic amplification of short DNA aptamers SO ANALYTICAL BIOCHEMISTRY LA English DT Article DE aptamers; rolling circle amplification; PCR; limit of detection ID ROLLING-CIRCLE AMPLIFICATION; SENSITIVE ANTIGEN-DETECTION; IN-VITRO SELECTION; IMMUNO-PCR; ULTRASENSITIVE DETECTION; STRAND DISPLACEMENT; SPECIFICALLY BIND; LIGATION ASSAYS; HUMAN THROMBIN; RNA MOLECULES AB Aptamers are single-stranded nucleic acids that fold into defined tertiary structures to bind target molecules with high specificities and affinities. DNA aptamers have garnered much interest as recognition elements for biodetection and diagnostic applications due to their small size, ease of discovery and synthesis, and chemical and thermal stability. Here we describe the design and application of a short DNA molecule capable of both protein target binding and amplifiable bioreadout processes. Because both recognition and readout capabilities are incorporated into a single DNA molecule, tedious conjugation procedures required for protein-DNA hybrids can be omitted. The DNA aptamer is designed to be amplified directly by either polymerase chain reaction (PCR) or rolling circle amplification (RCA) processes, taking advantage of real-time amplification monitoring techniques for target detection. A combination of both RCA and PCR provides a wide protein target dynamic range (1 mu M to 10 pM). (c) 2007 Elsevier Inc. All rights reserved. C1 [Fischer, Nicholas O.; Tarasow, Theodore M.; Tok, Jeffrey B. -H.] Lawrence Livermore Natl Lab, BioSecurity & NanoSci Lab, Livermore, CA 94551 USA. [Fischer, Nicholas O.; Tarasow, Theodore M.; Tok, Jeffrey B. -H.] Lawrence Livermore Natl Lab, Life Sci Directorate, Livermore, CA 94551 USA. RP Tok, JBH (reprint author), Lawrence Livermore Natl Lab, BioSecurity & NanoSci Lab, Livermore, CA 94551 USA. EM tok2@llnl.gov FU NIAID NIH HHS [AI065359, U54 AI065359, U54 AI065359-010022] NR 45 TC 53 Z9 53 U1 2 U2 35 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0003-2697 J9 ANAL BIOCHEM JI Anal. Biochem. PD FEB 1 PY 2008 VL 373 IS 1 BP 121 EP 128 DI 10.1016/j.ab.2007.09.035 PG 8 WC Biochemical Research Methods; Biochemistry & Molecular Biology; Chemistry, Analytical SC Biochemistry & Molecular Biology; Chemistry GA 247HM UT WOS:000252069000015 PM 17980857 ER PT J AU Zhang, Y Phillips, GJ Yeung, ES AF Zhang, Yun Phillips, Grogory J. Yeung, Edward S. TI Quantitative imaging of gene expression in individual bacterial cells by chemiluminescence SO ANALYTICAL CHEMISTRY LA English DT Article ID P-BAD PROMOTER; ESCHERICHIA-COLI; TIGHT REGULATION; ARABAD PROMOTER; TIME; PROTEIN; SYSTEM; ATP; ANHYDROBIOSIS; FLUORESCENCE AB Recent gene expression studies at the single bacterial cell level have primarily used green fluorescent protein (GFP) as the reporter. However, fluorescence monitoring has intrinsic limitations, such as GFP maturation time, high background, and photobleaching. To overcome those problems, we introduce the alternative approach of chemiluminescence (CL) detection with firefly luciferase as the probe. Firefly luciferase is roughly 100 times more efficient and is faster in generating CL than bacterial luciferase but requires the introduction of luciferin, a species that is not native to bacteria. The difficulty of luciferin diffusion into the cells was solved by making use of cell membrane leakage during bacteria dehydration. In this scheme, the overall sensitivity of the system approaches the single protein molecule level. Quantitative studies of gene expression in BL21 and XLU102 bacteria can thus be performed. C1 [Zhang, Yun; Yeung, Edward S.] Iowa State Univ, Ames Lab, USDOE, Ames, IA 50011 USA. [Zhang, Yun; Yeung, Edward S.] Iowa State Univ, Dept Chem, Ames, IA 50011 USA. [Phillips, Grogory J.] Iowa State Univ, Dept Vet Microbiol & Prevent Med, Ames, IA 50011 USA. RP Yeung, ES (reprint author), Iowa State Univ, Ames Lab, USDOE, Ames, IA 50011 USA. EM yeung@ameslab.gov NR 31 TC 9 Z9 9 U1 2 U2 12 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 J9 ANAL CHEM JI Anal. Chem. PD FEB 1 PY 2008 VL 80 IS 3 BP 597 EP 605 DI 10.1021/ac071545 PG 9 WC Chemistry, Analytical SC Chemistry GA 258LW UT WOS:000252870400012 PM 18179241 ER PT J AU Clowers, BH Ibrahim, YM Prior, DC Danielson, WF Belov, ME Smith, RD AF Clowers, Brian H. Ibrahim, Yehia M. Prior, David C. Danielson, William F., III Belov, Mikhail E. Smith, Richard D. TI Enhanced ion utilization efficiency using an electrodynamic ion funnel trap as an injection mechanism for ion mobility spectrometry SO ANALYTICAL CHEMISTRY LA English DT Article ID FLIGHT MASS-SPECTROMETRY; PRESSURE; INTERFACE; PEPTIDES; PHASE AB Conventional ion mobility spectrometers that sample ion packets from continuous sources have traditionally been constrained by an inherently low duty cycle. As such, ion utilization efficiencies have been limited to < 1% in order to maintain instrumental resolving power. Using a modified electrodynamic ion funnel, we demonstrated the ability to accumulate, store, and eject ions in conjunction with ion mobility spectrometry (IMS), which elevated the charge density of the ion packets ejected from the ion funnel trap (IFT) and provided a considerable increase in the overall ion utilization efficiency of the IMS instrument. A 7-fold increase in signal intensity was revealed by comparing continuous ion beam current with the amplitude of the pulsed ion current in IFT-IMS experiments using a Faraday plate. Additionally, we describe the, IFT operating characteristics using a time-of-flight mass spectrometer attached to the IMS drift tube. C1 [Clowers, Brian H.; Ibrahim, Yehia M.; Prior, David C.; Danielson, William F., III; Belov, Mikhail E.; Smith, Richard D.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. RP Belov, ME (reprint author), Pacific NW Natl Lab, Div Biol Sci, POB 999, Richland, WA 99352 USA. EM mikhail.belov@pnl.gov RI Smith, Richard/J-3664-2012 OI Smith, Richard/0000-0002-2381-2349 FU NCI NIH HHS [R21 CA12619-01, R21 CA126191, R21 CA126191-01]; NCRR NIH HHS [P41 RR018522, P41 RR018522-05] NR 42 TC 55 Z9 55 U1 5 U2 42 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 J9 ANAL CHEM JI Anal. Chem. PD FEB 1 PY 2008 VL 80 IS 3 BP 612 EP 623 DI 10.1021/ac701648p PG 12 WC Chemistry, Analytical SC Chemistry GA 258LW UT WOS:000252870400014 PM 18166021 ER PT J AU Liu, Y Yang, Z Desyaterik, Y Gassman, PL Wang, H Laskin, A AF Liu, Yong Yang, Zhiwei Desyaterik, Yury Gassman, Paul L. Wang, Hai Laskin, Alexander TI Hygroscopic behavior of substrate-deposited particles studied by micro-FT-IR spectroscopy and complementary methods of particle analysis SO ANALYTICAL CHEMISTRY LA English DT Review ID AMMONIUM-SULFATE PARTICLES; MULTICOMPONENT AEROSOL CRYSTALLIZATION; DIFFERENTIAL MOBILITY ANALYZER; SODIUM-CHLORIDE PARTICLES; ION SOLVENT INTERACTIONS; MINERAL DUST AEROSOL; SEA-SALT PARTICLES; NITRIC-ACID; PHASE-TRANSITIONS; ATMOSPHERIC IMPORTANCE C1 [Liu, Yong; Desyaterik, Yury; Gassman, Paul L.; Laskin, Alexander] Pacific NW Natl Lab, William R Wiley Environm Mol Sci Lab, Richland, WA 99352 USA. [Yang, Zhiwei] Univ Delaware, Dept Mech Engn, Newark, DE 19716 USA. [Wang, Hai] Univ So Calif, Dept Aerosp & Mech Engn, Los Angeles, CA 90089 USA. RP Laskin, A (reprint author), Pacific NW Natl Lab, William R Wiley Environm Mol Sci Lab, POB 999,MSIN K8-88, Richland, WA 99352 USA. EM Alexander.Laskin@pnl.gov RI Wang, Hai/A-1292-2009; liu, yong/F-6736-2012; Laskin, Alexander/I-2574-2012 OI Wang, Hai/0000-0001-6507-5503; Laskin, Alexander/0000-0002-7836-8417 NR 116 TC 64 Z9 64 U1 3 U2 42 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 J9 ANAL CHEM JI Anal. Chem. PD FEB 1 PY 2008 VL 80 IS 3 BP 633 EP 642 DI 10.1021/ac701638r PG 10 WC Chemistry, Analytical SC Chemistry GA 258LW UT WOS:000252870400016 PM 18179242 ER PT J AU Petyuk, VA Jaitly, N Moore, RJ Ding, J Metz, TO Tang, K Monroe, ME Tolmachev, AV Adkins, JN Belov, ME Dabney, AR Qian, WJ Camp, DG Smith, RD AF Petyuk, Vladislav A. Jaitly, Navdeep Moore, Ronald J. Ding, Jie Metz, Thomas O. Tang, Keqi Monroe, Matthew E. Tolmachev, Aleksey V. Adkins, Joshua N. Belov, Mikhail E. Dabney, Alan R. Qian, We-Jun Camp, David G., II Smith, Richard D. TI Elimination of systematic mass measurement errors in liquid chromatography-mass spectrometry based proteomics using regression models and a Priori partial knowledge of the sample content SO ANALYTICAL CHEMISTRY LA English DT Article ID ION-CYCLOTRON RESONANCE; ACCURATE MASS; INTERNAL CALIBRATION; MOUSE-BRAIN; IDENTIFICATION; RECALIBRATION; PERFORMANCE; TAGS AB The high mass measurement accuracy and precision available with recently developed mass spectrometers is increasingly used in proteomics analyses to confidently identify tryptic peptides from complex mixtures of proteins, as well as post-translational modifications and peptides from nonannotated proteins. To take full advantage of high mass measurement accuracy instruments, it is necessary to limit systematic mass measurement errors. It is well known that errors in m/z measurements can be affected by experimental parameters that include, for example, outdated calibration coefficients, ion intensity, and temperature changes during the measurement. Traditionally, these variations have been corrected through the use of internal calibrants (well-characterized standards introduced with the sample being analyzed). In this paper, we describe an alternative approach where the calibration is provided through the use of a priori knowledge of the sample being analyzed. Such an approach has previously been demonstrated based on the dependence of systematic error on m/z,alone. To incorporate additional explanatory variables, we employed multidimensional, non-parametric regression models, which were evaluated using several commercially available instruments. The applied approach is shown to remove any noticeable biases from the overall mass measurement errors and decreases the overall standard deviation of the mass measurement error distribution by 1.2-2-fold, depending on instrument type. Subsequent reduction of the random errors based on multiple measurements over consecutive spectra, further improves accuracy and results in an overall decrease of the standard deviation by 1.8-3.7-fold. Ibis new procedure will decrease the false discovery rates for peptide identifications using high-accuracy mass measurements. C1 [Petyuk, Vladislav A.; Jaitly, Navdeep; Moore, Ronald J.; Ding, Jie; Metz, Thomas O.; Tang, Keqi; Monroe, Matthew E.; Tolmachev, Aleksey V.; Adkins, Joshua N.; Belov, Mikhail E.; Qian, We-Jun; Camp, David G., II; Smith, Richard D.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. [Petyuk, Vladislav A.; Jaitly, Navdeep; Moore, Ronald J.; Ding, Jie; Metz, Thomas O.; Tang, Keqi; Monroe, Matthew E.; Tolmachev, Aleksey V.; Adkins, Joshua N.; Belov, Mikhail E.; Qian, We-Jun; Camp, David G., II; Smith, Richard D.] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. [Dabney, Alan R.] Texas A&M Univ, Dept Stat, College Stn, TX 77843 USA. RP Smith, RD (reprint author), Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. EM rds@pnl.gov RI Dabney, Alan/C-1171-2011; Smith, Richard/J-3664-2012; Adkins, Joshua/B-9881-2013 OI Smith, Richard/0000-0002-2381-2349; Adkins, Joshua/0000-0003-0399-0700 FU NCRR NIH HHS [P41 RR018522, P41 RR018522-05, RR18522]; NHLBI NIH HHS [P01 HL066973, P01 HL066973-05] NR 37 TC 23 Z9 23 U1 0 U2 7 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 J9 ANAL CHEM JI Anal. Chem. PD FEB 1 PY 2008 VL 80 IS 3 BP 693 EP 706 DI 10.1021/ac701863c PG 14 WC Chemistry, Analytical SC Chemistry GA 258LW UT WOS:000252870400023 PM 18163597 ER PT J AU Shaikh, AS Tang, YJ Mukhopadhyay, A Keasling, JD AF Shaikh, Afshan S. Tang, Yinjie J. Mukhopadhyay, Aindrila Keasling, Jay D. TI Isotopomer distributions in amino acids from a highly expressed protein as a proxy for those from total protein SO ANALYTICAL CHEMISTRY LA English DT Article ID CENTRAL METABOLIC PATHWAYS; CHROMATOGRAPHY-MASS SPECTROMETRY; CENTRAL CARBON METABOLISM; FLUX ANALYSIS; ESCHERICHIA-COLI; MICROBIAL COMMUNITY; BIODEGRADATION; CONSORTIA; CULTURES; WATER AB C-13-Based metabolic flux analysis provides valuable information about bacterial physiology. Though many biological processes rely on the synergistic functions. of microbial communities, study of individual organisms in a mixed culture using existing flux analysis methods is difficult lsotopomer-based flux analysis typically relies on hydrolyzed amino acids from a homogeneous biomass. Thus, metabolic flux analysis of a given organism in a mixed culture requires its separation from the mixed culture. Swift and efficient cell separation is difficult and a major hurdle for isotopomer-based flux analysis of mixed cultures. Here we demonstrate the use of a single highly expressed protein to analyze the isotopomer distribution of amino acids from one organism. Using the model organism Escherichia coli expressing a plasmid-borne, His-tagged green fluorescent protein (GFP), we show that induction of GFP does not affect E. coli growth kinetics or the isotopomer distribution in nine key metabolites. Further, the isotopomer labeling patterns of amino acids derived from purified GFP and total cell protein are indistinguishable, indicating that amino acids from a purified protein can be used to infer metabolic fluxes of targeted organisms in a mixed culture. This study provides the foundation to extend isotopomer-based flux analysis to study metabolism of individual strains in microbial communities. C1 [Shaikh, Afshan S.; Tang, Yinjie J.; Keasling, Jay D.] Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. [Keasling, Jay D.] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA. [Tang, Yinjie J.; Mukhopadhyay, Aindrila; Keasling, Jay D.] Lawrence Berkeley Natl Lab, Virtual Inst Microbial Stress & Survival, Phys Biosci Div, Berkeley, CA 94720 USA. RP Keasling, JD (reprint author), Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. EM keasling@berkeley.edu RI Keasling, Jay/J-9162-2012 OI Keasling, Jay/0000-0003-4170-6088 NR 27 TC 15 Z9 15 U1 1 U2 7 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 J9 ANAL CHEM JI Anal. Chem. PD FEB 1 PY 2008 VL 80 IS 3 BP 886 EP 890 DI 10.1021/ac071445+ PG 5 WC Chemistry, Analytical SC Chemistry GA 258LW UT WOS:000252870400048 PM 18179240 ER PT J AU Carroll, WL Hunger, SP Borowitz, MJ Bhojwani, D Willman, CL Devidas, M Schultz, K Loh, ML Raetz, EA AF Carroll, W. L. Hunger, S. P. Borowitz, M. J. Bhojwani, D. Willman, C. L. Devidas, M. Schultz, K. Loh, M. L. Raetz, E. A. TI Risk-adapted therapy for children with acute lymphoblastic leukemia (ALL): The children's oncology group (COG) approach SO ANNALS OF HEMATOLOGY LA English DT Meeting Abstract ID ACUTE MYELOID-LEUKEMIA; STEM-CELL TRANSPLANTATION; ACUTE MYELOGENOUS LEUKEMIA; 1ST COMPLETE REMISSION; MINIMAL RESIDUAL DISEASE; UK MRC AML-10; NORMAL KARYOTYPE; YOUNGER ADULTS; GENE-MUTATIONS; MARROW-TRANSPLANTATION C1 [Carroll, W. L.; Bhojwani, D.; Raetz, E. A.] NYU, Sch Med, NYU Canc Inst, Dept Pediat, New York, NY USA. [Hunger, S. P.] Univ Colorado, Hlth Sci Ctr, Boulder, CO 80309 USA. [Borowitz, M. J.] Johns Hopkins Med Inst, Dept Pathol, Baltimore, MD 21205 USA. [Willman, C. L.] Univ New Mexico, Sandia Natl Labs, Canc Res & Treatment Ctr, Albuquerque, NM 87131 USA. [Devidas, M.] Childrens Oncol Grp, Gainesville, FL USA. [Schultz, K.] British Columbia Childrens Hosp, Dept Pediat, Vancouver, BC V6H 3V4, Canada. [Loh, M. L.] Univ Calif San Francisco, Sch Med, Dept Pediat, San Francisco, CA 94143 USA. NR 33 TC 2 Z9 2 U1 0 U2 0 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0939-5555 EI 1432-0584 J9 ANN HEMATOL JI Ann. Hematol. PD FEB PY 2008 VL 87 SU 1 BP S42 EP S44 PG 3 WC Hematology SC Hematology GA 265QD UT WOS:000253375100057 ER PT J AU Nicolino, C Lapenta, G Dulla, S Ravetto, P AF Nicolino, Claudio Lapenta, Giovanni Dulla, Sandra Ravetto, Piero TI Coupled dynamics in the physics of molten salt reactors SO ANNALS OF NUCLEAR ENERGY LA English DT Article ID SYSTEMS AB The present paper is devoted to the analysis of the coupled thermo-fluid and neutronic dynamics of fast fluid-fuel multiplying nuclear systems. A completely coupled model is needed since in some fast reactors designs, the velocity pattern could be very complicated and strongly affected by the neutron dynamics via the heat source from fission reactions. Furthermore, the neutron dynamics is strongly affected by the thermohydrodynamics via the motion of precursors and by feedback effects. The methods typical of solid fuel reactors of previous generations are not sufficient to handle these more highly coupled concepts. In the preset paper, we consider the coupling between neutronics and thermohydrodynamics with simple but realistic hypotheses assumed to model the evolution of all the variables involved in the calculation. The numerical scheme used represents the current state of the art in the solution of non-linear systems: the Newton-Krylov algorithm. Several calculations are presented to demonstrate the ability of the methods described here to study the behavior of molten salt reactors in both steady state and transient situations. (C) 2007 Elsevier Ltd. All rights reserved. C1 [Lapenta, Giovanni] Katholieke Univ Leuven, Dept Wiskunde, B-3001 Heverlee, Belgium. [Nicolino, Claudio; Dulla, Sandra; Ravetto, Piero] Politecn Torino, Dipartimento Energet, I-10129 Turin, Italy. [Lapenta, Giovanni] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Lapenta, G (reprint author), Katholieke Univ Leuven, Dept Wiskunde, Celestijnenlaan 200B,Bus 2400, B-3001 Heverlee, Belgium. EM giovanni.lapenta@wis.kuleuven.be OI Lapenta, Giovanni/0000-0002-3123-4024 NR 15 TC 18 Z9 19 U1 3 U2 13 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0306-4549 J9 ANN NUCL ENERGY JI Ann. Nucl. Energy PD FEB PY 2008 VL 35 IS 2 BP 314 EP 322 DI 10.1016/j.anucene.2007.06.015 PG 9 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 269PY UT WOS:000253662600019 ER PT J AU Merkli, M Sigal, IM Berman, GP AF Merkli, M. Sigal, I. M. Berman, G. P. TI Resonance theory of decoherence and thermalization SO ANNALS OF PHYSICS LA English DT Article DE decoherence; thermalization; open quantum systems; quantum resonances; reduced density matrix; coupling to environment; non-equilibrium quantum statistical mechanics; thermal quantum fields; Liouville operator; complex spectral deformation ID POSITIVE TEMPERATURE; MATHEMATICAL-THEORY; QUANTUM; EQUILIBRIUM; RESERVOIRS; DYNAMICS; SYSTEMS; STATES; RETURN; DECAY AB We present a rigorous analysis of the phenomenon of decoherence for general N-level systems coupled to reservoirs. The latter are described by free massless bosonic fields. We apply our general results to the specific cases of the qubit and the quantum register. We compare our results with the explicitly solvable case of systems whose interaction with the environment does not allow for energy exchange (non-demolition, or energy conserving interactions). We suggest a new approach which applies to a wide variety of systems which are not explicitly solvable. (C) 2007 Elsevier Inc. All rights reserved. C1 [Merkli, M.] Mem Univ Newfoundland, Dept Math & Stat, St John, NF A1C 5S7, Canada. [Sigal, I. M.] Univ Toronto, Dept Math, Toronto, ON M5S 2E4, Canada. [Berman, G. P.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Merkli, M (reprint author), Mem Univ Newfoundland, Dept Math & Stat, St John, NF A1C 5S7, Canada. EM merkli@math.mun.ca; im.sigal@utoronto.ca; gpb@lanl.gov NR 41 TC 23 Z9 23 U1 0 U2 4 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0003-4916 J9 ANN PHYS-NEW YORK JI Ann. Phys. PD FEB PY 2008 VL 323 IS 2 BP 373 EP 412 DI 10.1016/j.aop.2007.04.013 PG 40 WC Physics, Multidisciplinary SC Physics GA 265EO UT WOS:000253342100007 ER PT J AU Macdonald, TE Helma, CH Ticknor, LO Jackson, PJ Okinaka, RT Smith, LA Smith, TJ Hill, KK AF Macdonald, Thomas E. Helma, Charles H. Ticknor, Lawrence O. Jackson, Paul J. Okinaka, Richard T. Smith, Leonard A. Smith, Theresa J. Hill, Karen K. TI Differentiation of Clostridium botulinum serotype a strains by multiple-locus variable-number tandem-repeat analysis SO APPLIED AND ENVIRONMENTAL MICROBIOLOGY LA English DT Article ID FIELD GEL-ELECTROPHORESIS; BACILLUS-ANTHRACIS; YERSINIA-PESTIS; PCR; IDENTIFICATION; DIVERSITY; SAMPLES AB Ten variable-number tandem-repeat (VNTR) regions identified within the complete genomic sequence of Clostridium botulinum strain ATCC 3502 were used to characterize 59 C. botulinum strains of the botulism neurotoxin A1 (BoNT/A1) to BoNT/A4 (BoNT/A1-A4) subtypes to determine their ability to discriminate among the serotype A strains. Two strains representing each of the C. botulinum serotypes B to G, including five bivalent strains, and two strains of the closely related species Clostridium sporogenes were also tested. Amplified fragment length polymorphism analyses revealed the genetic diversity among the serotypes and the high degree of similarity among many of the BoNT/A1 strains. The 10 VNTR markers amplified fragments within all of the serotype A strains but were less successful with strains of other serotypes. The composite multiple-locus VNTR analysis of the 59 BoNT/A1-A4 strains and 3 bivalent B strains identified 38 different genotypes. Thirty genotypes were identified among the 53 BoNT/A1 and BoNT/A1(B) strains, demonstrating discrimination below the subtype level. Contaminating DNA within crude toxin preparations of three BoNT/A subtypes (BoNT/A1 to BoNT/A3) also supported amplification of all of the VNTR regions. These markers provide clinical and forensics laboratories with a rapid, highly discriminatory tool to distinguish among C. botulinum BoNT/A1 strains for investigations of botulism outbreaks. C1 [Macdonald, Thomas E.; Helma, Charles H.; Okinaka, Richard T.; Hill, Karen K.] Los Alamos Natl Lab, Biosci Div, Los Alamos, NM 87545 USA. [Ticknor, Lawrence O.] Los Alamos Natl Lab, Div Comp Computat & Stat Sci, Los Alamos, NM 87545 USA. [Jackson, Paul J.] Lawrence Livermore Natl Lab, Def Biol Div, Livermore, CA 94551 USA. [Smith, Leonard A.; Smith, Theresa J.] USA, Med Res Inst Infect Dis, Integrated Toxicol Div, Ft Detrick, MD 21702 USA. RP Hill, KK (reprint author), Los Alamos Natl Lab, Biosci Div, MS M888, Los Alamos, NM 87545 USA. EM khill@lanl.gov OI Ticknor, Lawrence/0000-0002-7967-7908 NR 23 TC 32 Z9 33 U1 2 U2 7 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0099-2240 J9 APPL ENVIRON MICROB JI Appl. Environ. Microbiol. PD FEB PY 2008 VL 74 IS 3 BP 875 EP 882 DI 10.1128/AEM.01539-07 PG 8 WC Biotechnology & Applied Microbiology; Microbiology SC Biotechnology & Applied Microbiology; Microbiology GA 260OG UT WOS:000253019000039 PM 18083878 ER PT J AU Sievert, SM Scott, KA Klotz, MG Chain, PSG Hauser, LJ Hemp, J Hugler, M Land, M Lapidus, A Larimer, FW Lucas, S Malfatti, SA Meyer, F Paulsen, IT Ren, Q Simon, J AF Sievert, Stefan M. Scott, Kathleen A. Klotz, Martin G. Chain, Patrick S. G. Hauser, Loren J. Hemp, James Huegler, Michael Land, Miriam Lapidus, Alta Larimer, Frank W. Lucas, Susan Malfatti, Stephanie A. Meyer, Folker Paulsen, Ian T. Ren, Qinghu Simon, Jorg CA USF Genom Class TI Genome of the epsilonproteobacterial chemolithoautotroph Sulfurimonas denitrificans SO APPLIED AND ENVIRONMENTAL MICROBIOLOGY LA English DT Article ID NITRIC-OXIDE REDUCTASE; AMMONIA-OXIDIZING BACTERIUM; MEMBRANE-TRANSPORT SYSTEMS; ESCHERICHIA-COLI; THIOMICROSPIRA-DENITRIFICANS; BRADYRHIZOBIUM-JAPONICUM; EPSILON-PROTEOBACTERIAL; WOLINELLA-SUCCINOGENES; ALLOCHROMATIUM-VINOSUM; HELICOBACTER-PYLORI AB Sulfur-oxidizing epsilonproteobacteria are common in a variety of sulfidogenic environments. These autotrophic and mixotrophic sulfur-oxidizing bacteria are believed to contribute substantially to the oxidative portion of the global sulfur cycle. In order to better understand the ecology and roles of sulfur-oxidizing epsilonproteobacteria, in particular those of the widespread genus Sulfurimonas, in biogeochemical cycles, the genome of Sulfurimonas denitrificans DSM1251 was sequenced. This genome has many features, including a larger size (2.2 Mbp), that suggest a greater degree of metabolic versatility or responsiveness to the environment than seen for most of the other sequenced epsilonproteobacteria. A branched electron transport chain is apparent, with genes encoding complexes for the oxidation of hydrogen, reduced sulfur compounds, and formate and the reduction of nitrate and oxygen. Genes are present for a complete, autotrophic reductive citric acid cycle. Many genes are present that could facilitate growth in the spatially and temporally heterogeneous sediment habitat from where Sulfurimonas denitrificans was originally isolated. Many resistance-nodulation-development family transporter genes (10 total) are present; of these, several are predicted to encode heavy metal efflux transporters. An elaborate arsenal of sensory and regulatory protein-encoding genes is in place, as are genes necessary to prevent and respond to oxidative stress. C1 [Sievert, Stefan M.; Huegler, Michael] Woods Hole Oceanog Inst, Dept Biol, Woods Hole, MA 02543 USA. [Scott, Kathleen A.] Univ S Florida, Dept Biol, Tampa, FL USA. Univ Louisville, Dept Biol, Louisville, KY 40292 USA. Univ Louisville, Dept Microbiol & Immunol, Louisville, KY 40292 USA. [Chain, Patrick S. G.; Malfatti, Stephanie A.] Lawrence Livermore Natl Lab, Livermore, CA USA. [Chain, Patrick S. G.; Lapidus, Alta; Lucas, Susan; Malfatti, Stephanie A.] Joint Genome Inst, Walnut Creek, CA USA. [Hauser, Loren J.; Larimer, Frank W.] Oak Ridge Natl Lab, Oak Ridge, TN USA. [Hemp, James] Univ Illinois, Ctr Biophys & Computat Biol, Urbana, IL 61801 USA. [Huegler, Michael] Leibniz Inst Meereswissensch, Kiel, Germany. [Meyer, Folker] Argonne Natl Lab, Math & Comp Sci Div, Argonne, IL 60439 USA. [Paulsen, Ian T.; Ren, Qinghu] Inst Genom Res, Rockville, MD USA. [Simon, Jorg] Univ Frankfurt, Inst Mol Biosci, Frankfurt, Germany. RP Sievert, SM (reprint author), Woods Hole Oceanog Inst, Watson Bldg 207, Woods Hole, MA 02543 USA. EM ssievert@whoi.edu RI Land, Miriam/A-6200-2011; Hauser, Loren/H-3881-2012; Paulsen, Ian/K-3832-2012; chain, patrick/B-9777-2013; Klotz, Martin/D-2091-2009; Simon, Jorg/F-2355-2016; Lapidus, Alla/I-4348-2013; OI Meyer, Folker/0000-0003-1112-2284; Hemp, James/0000-0001-7193-0553; Land, Miriam/0000-0001-7102-0031; Paulsen, Ian/0000-0001-9015-9418; Klotz, Martin/0000-0002-1783-375X; Simon, Jorg/0000-0003-0214-3745; Lapidus, Alla/0000-0003-0427-8731; Sievert, Stefan/0000-0002-9541-2707 NR 76 TC 108 Z9 386 U1 2 U2 32 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0099-2240 J9 APPL ENVIRON MICROB JI Appl. Environ. Microbiol. PD FEB PY 2008 VL 74 IS 4 BP 1145 EP 1156 DI 10.1128/AEM.01844-07 PG 12 WC Biotechnology & Applied Microbiology; Microbiology SC Biotechnology & Applied Microbiology; Microbiology GA 263MP UT WOS:000253221500025 PM 18065616 ER PT J AU Pinchuk, GE Ammons, C Culley, DE Li, SMW McLean, JS Romine, MF Nealson, KH Fredrickson, JK Beliaev, AS AF Pinchuk, Grigoriy E. Ammons, Christine Culley, David E. Li, Shu-Mei W. McLean, Jeff S. Romine, Margaret F. Nealson, Kenneth H. Fredrickson, Jim K. Beliaev, Alexander S. TI Utilization of DNA as a sole source of phosphorus, carbon, and energy by Shewanella spp.: Ecological and physiological implications for dissimilatory metal reduction SO APPLIED AND ENVIRONMENTAL MICROBIOLOGY LA English DT Article ID HYDROUS FERRIC-OXIDE; EXTRACELLULAR DNA; DISSOLVED DNA; AQUATIC ENVIRONMENTS; BIOFILM FORMATION; CORYNEBACTERIUM-GLUTAMICUM; PSEUDOMONAS-AERUGINOSA; HETEROTROPHIC BACTERIA; NUTRIENT LIMITATION; MARINE-SEDIMENTS AB The solubility of orthophosphate (PO43-) in iron-rich sediments can be exceedingly low, limiting the bioavailability of this essential nutrient to microbial populations that catalyze critical biogeochemical reactions. Here we demonstrate that dissolved extracellular DNA can serve as a sole source of phosphorus, as well as carbon and energy, for metal-reducing bacteria of the genus Shewanella. Shewanella oneidensis MR-1, Shewanella putrefaciens CN32, and Shewanella sp. strain W3-18-1 all grew with DNA but displayed different growth rates. W3-18-1 exhibited the highest growth rate with DNA. While strain W3-18-1 displayed Ca2+-independent DNA utilization, both CN32 and MR-1 required millimolar concentrations of Ca2+ for growth with DNA. For S. oneidensis MR-1, the utilization of DNA as a sole source of phosphorus is linked to the activities of extracellular phosphatase(s) and a Ca2+-dependent nuclease(s), which are regulated by phosphorus availability. Mass spectrometry analysis of the extracellular proteome of MR-1 identified one putative endonuclease (SO1844), a predicted UshA (bifunctional UDP-sugar hydrolase/5' nucleotidase), a predicted PhoX (calcium-activated alkaline phosphatase), and a predicted CpdB (bifunctional 2',3' cyclic nucleotide 2' phosphodiesterase/3' nucleotidase), all of which could play important roles in the extracellular degradation of DNA under phosphorus-limiting conditions. Overall, the results of this study suggest that the ability to use exogenous DNA as the sole source of phosphorus is widespread among the shewanellae, and perhaps among all prokaryotes, and may be especially important for nutrient cycling in metal-reducing environments. C1 [Pinchuk, Grigoriy E.; Culley, David E.; Li, Shu-Mei W.; McLean, Jeff S.; Romine, Margaret F.; Fredrickson, Jim K.; Beliaev, Alexander S.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. [Ammons, Christine; Nealson, Kenneth H.] Univ So Calif, Dept Earth Sci, Los Angeles, CA 90089 USA. RP Beliaev, AS (reprint author), Pacific NW Natl Lab, Div Biol Sci, PO Box 999,MS P7-54, Richland, WA 99352 USA. EM alex.beliaev@pnl.gov RI McLean, Jeffrey/A-8014-2012; Beliaev, Alexander/E-8798-2016; OI McLean, Jeffrey/0000-0001-9934-5137; Beliaev, Alexander/0000-0002-6766-4632; Romine, Margaret/0000-0002-0968-7641 NR 60 TC 64 Z9 65 U1 2 U2 15 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0099-2240 J9 APPL ENVIRON MICROB JI Appl. Environ. Microbiol. PD FEB PY 2008 VL 74 IS 4 BP 1198 EP 1208 DI 10.1128/AEM.02026-07 PG 11 WC Biotechnology & Applied Microbiology; Microbiology SC Biotechnology & Applied Microbiology; Microbiology GA 263MP UT WOS:000253221500031 PM 18156329 ER PT J AU Auger, S Galleron, N Bidnenko, E Ehrlich, SD Lapidus, A Sorokin, A AF Auger, Sandrine Galleron, Nathalie Bidnenko, Elena Ehrlich, S. Dusko Lapidus, Alla Sorokin, Alexei TI The genetically remote pathogenic strain NVH391-98 of the Bacillus cereus group is representative of a cluster of thermophilic strains SO APPLIED AND ENVIRONMENTAL MICROBIOLOGY LA English DT Article ID POPULATION-STRUCTURE; GROWTH; GENES; WEIHENSTEPHANENSIS; DISCRIMINATION; THURINGIENSIS; PREVALENCE; CYTOTOXIN; FOODS AB Bacteria of the Bacillus cereus group are known to cause food poisoning. A rare phylogenetically remote strain, NVH391-98, was recently characterized to encode a particularly efficient cytotoxin K presumably responsible for food poisoning. This pathogenic strain and its close relatives can be phenotypically distinguished from other strains of the B. cereus group by the inability to grow at temperatures below 17 degrees C and by the ability to grow at temperatures from 48 to 53 degrees C. A temperate phage, phBC391A2, residing in the genome of NVH391-98 allows us to distinguish the three known members of this thermophilic strain cluster. C1 [Auger, Sandrine; Galleron, Nathalie; Bidnenko, Elena; Ehrlich, S. Dusko; Sorokin, Alexei] INRA Domaine Vilvert, F-78352 Jouy En Josas, France. [Lapidus, Alla] DOE Joint Genom Inst, Walnut Creek, CA USA. RP Sorokin, A (reprint author), INRA Domaine Vilvert, F-78352 Jouy En Josas, France. EM alexei.sorokine@jouy.inra.fr RI Lapidus, Alla/I-4348-2013 OI Lapidus, Alla/0000-0003-0427-8731 NR 24 TC 29 Z9 29 U1 1 U2 6 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0099-2240 J9 APPL ENVIRON MICROB JI Appl. Environ. Microbiol. PD FEB PY 2008 VL 74 IS 4 BP 1276 EP 1280 DI 10.1128/AEM.02242-07 PG 5 WC Biotechnology & Applied Microbiology; Microbiology SC Biotechnology & Applied Microbiology; Microbiology GA 263MP UT WOS:000253221500043 PM 18156332 ER PT J AU Emmons, ED Velisavljevic, N Schoonoiver, JR Dattelbaum, DM AF Emmons, E. D. Velisavljevic, N. Schoonoiver, J. R. Dattelbaum, D. M. TI High-pressure Raman spectroscopy and X-ray diffraction studies of a terpolymer of tetrafluoroethylene-hexafluoropropylene-vinylidene fluoride: THV 500 SO APPLIED SPECTROSCOPY LA English DT Article DE high pressure; X-ray diffraction; Raman spectroscopy; fluoropolymers ID POLY(VINYLIDENE FLUORIDE); SHOCK COMPRESSION; PHASE-TRANSITION; POLYTETRAFLUOROETHYLENE TEFLON; POLY(METHYL METHACRYLATE); VIBRATIONAL ANALYSIS; INFRARED-SPECTRA; POLYETHYLENE; POLYMERS; DEFORMATION AB High-pressure Raman spectroscopy and X-ray diffraction of THV 500, a terpolymer of tetrafluoroethylene-hexafluoropropylene-vinylidene fluoride, were performed using diamond anvil cells (DAC). Changes in the interatomic spacing as well as shifts of several of the vibrational bands as a function of pressure were measured up to similar to 10 GPa. The changes in interatomic spacing and shifts of the vibrational bands are compared to those of polytetrafluoroethylene, showing the effects of copolymerization and reduced crystallinity. The high-pressure behavior of polymers is a relatively unexplored field but is becoming increasingly important due to applications where polymers experience extreme conditions. C1 [Velisavljevic, N.; Dattelbaum, D. M.] Los Alamos Natl Lab, Dynam & Energet Mat Div, Los Alamos, NM 87545 USA. [Emmons, E. D.; Schoonoiver, J. R.] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. [Emmons, E. D.] Univ Nevada, Dept Phys, Reno, NV 89557 USA. [Emmons, E. D.] Univ Nevada, Nevada Terawatt Facil, Reno, NV 89557 USA. RP Dattelbaum, DM (reprint author), Los Alamos Natl Lab, Dynam & Energet Mat Div, MS P952, Los Alamos, NM 87545 USA. EM danadat@lanl.gov NR 44 TC 11 Z9 11 U1 2 U2 16 PU SOC APPLIED SPECTROSCOPY PI FREDERICK PA 201B BROADWAY ST, FREDERICK, MD 21701 USA SN 0003-7028 J9 APPL SPECTROSC JI Appl. Spectrosc. PD FEB PY 2008 VL 62 IS 2 BP 142 EP 148 DI 10.1366/000370208783575573 PG 7 WC Instruments & Instrumentation; Spectroscopy SC Instruments & Instrumentation; Spectroscopy GA 262VH UT WOS:000253175600003 PM 18284788 ER PT J AU Harbottle, G AF Harbottle, G. TI The vinland map: A critical review of archaeometric research on its authenticity SO ARCHAEOMETRY LA English DT Article DE Vinland map; anatase; titanium dioxide; walter McCrone; titanium pigment; ink ID SPECTROSCOPY; PARCHMENT; ANATASE; TIO2 AB The authenticity of the 'Vinland Map' (Beinecke Library of Rare Books and Manuscripts at Yale University) has been challenged on both codicological and scientific grounds, the latter resulting from a microscopic study of the ink employed. McCrone Associates of Chicago examined, between 1972 and 1974, a total of 29 microparticles, including 16 of ink from the Vinland Map, and in 1974 reported to Yale that it contained a pigment, anatase, only available after 1920. In 1974, Yale announced that the map was 'probably a modern forgery'. This review critically examines archaeometric research leading to, and testing, this conclusion. C1 [Harbottle, G.] SUNY Stony Brook, Dept Geosci, Stony Brook, NY 11794 USA. [Harbottle, G.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. RP Harbottle, G (reprint author), SUNY Stony Brook, Dept Geosci, Stony Brook, NY 11794 USA. NR 51 TC 8 Z9 8 U1 2 U2 10 PU BLACKWELL PUBLISHING PI OXFORD PA 9600 GARSINGTON RD, OXFORD OX4 2DQ, OXON, ENGLAND SN 0003-813X J9 ARCHAEOMETRY JI Archaeometry PD FEB PY 2008 VL 50 BP 177 EP 189 DI 10.1111/j.1475-4754.2007.00378.x PN 1 PG 13 WC Archaeology; Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Geosciences, Multidisciplinary SC Archaeology; Chemistry; Geology GA 253ZJ UT WOS:000252555800012 ER PT J AU Zogg, R Roth, K Brodrick, J AF Zogg, Robert Roth, Kurt Brodrick, James TI Lake source district cooling systems SO ASHRAE JOURNAL LA English DT Editorial Material C1 [Zogg, Robert; Roth, Kurt] TIAX LLC, Cambridge, MA USA. [Brodrick, James] US DOE, Bldg Technol Program, Washington, DC USA. RP Zogg, R (reprint author), TIAX LLC, Cambridge, MA USA. NR 8 TC 5 Z9 5 U1 1 U2 3 PU AMER SOC HEATING REFRIGERATING AIR-CONDITIONING ENG, INC, PI ATLANTA PA 1791 TULLIE CIRCLE NE, ATLANTA, GA 30329 USA SN 0001-2491 J9 ASHRAE J JI ASHRAE J. PD FEB PY 2008 VL 50 IS 2 BP 55 EP 56 PG 2 WC Thermodynamics; Construction & Building Technology; Engineering, Mechanical SC Thermodynamics; Construction & Building Technology; Engineering GA 261OI UT WOS:000253088900012 ER PT J AU Liu, YG Daum, PH Yum, SS AF Liu, Yangang Daum, Peter H. Yum, Seong Soo TI Ship tracks revisited: New understanding and cloud parameterization SO ASIA-PACIFIC JOURNAL OF ATMOSPHERIC SCIENCES LA English DT Article DE ship tracks; cloud parameterization; indirect aerosol effect; effective radius; mean-volume radius; radius ratio ID DROPLET EFFECTIVE RADIUS; MARINE STRATOCUMULUS CLOUDS; GENERAL-CIRCULATION MODEL; LIQUID-WATER-CONTENT; ATMOSPHERIC RADIATION; SPECTRAL DISPERSION; OPTICAL-PROPERTIES; SIZE DISTRIBUTION; BOUNDARY-LAYER; CLIMATE MODEL AB Ship tracks have been considered the Rosetta Stone demonstrating the effects of anthropogenic aerosols on cloud radiative properties through alteration of cloud microphysical properties. Previous ship-track studies have focused on identifying the signatures of indirect aerosol effects (e.g. enhanced droplet concentration) caused by ship emissions, and have been mainly concerned with comparing cloud properties within ship tracks to those of surrounding clouds on an individual track-by-track basis. Here we show that, examined together, ship-track studies can also provide crucial insights into cloud parameterizations in climate models, as well as understanding the conditions conducive to ship-track fortnation. It is found that unlike the measurements from general stratiform clouds where the effective radius is larger than the mean volume radius, the effective radius is smaller than the mean volume radius for some clouds in which ship tracks form. The radius ratio (the ratio of the effective radius to the mean volume radius) varies significantly and cannot be ignored in cloud parameterizations. The relation between the radius ratio and the spectral shape descriptors (relative dispersion and skewness) of the cloud droplet size distribution is further examined, revealing that the clouds with the effective radius smaller than the mean volume radius are likely to have negatively skewed cloud droplet size distributions with a higher concentration of relatively big droplets. C1 [Liu, Yangang; Daum, Peter H.] Assoc Univ Inc, Brookhaven Natl Lab, Div Atmospher Sci, Upton, NY 11973 USA. [Yum, Seong Soo] Yonsei Univ, Dept Atmospher Sci, Seoul 120749, South Korea. RP Liu, YG (reprint author), Assoc Univ Inc, Brookhaven Natl Lab, Div Atmospher Sci, Bldg 815E,75Rutherford Dr, Upton, NY 11973 USA. EM lyg@bnl.gov RI Liu, Yangang/H-6154-2011 NR 58 TC 2 Z9 4 U1 0 U2 2 PU KOREAN METEOROLOGICAL SOC PI SEOUL PA 460-18 SHINDAEBANG-DONG, TONGJAK-GU, SEOUL, 156-720, SOUTH KOREA SN 1225-0899 J9 ASIA-PAC J ATMOS SCI JI Asia-Pac. J. Atmos. Sci. PD FEB PY 2008 VL 44 IS 1 BP 1 EP 9 PG 9 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 287UP UT WOS:000254942300001 ER PT J AU Inada, N Oguri, M Becker, RH Shin, MS Richards, GT Hennawi, JF White, RL Pindor, B Strauss, MA Kochanek, CS Johnston, DE Gregg, MD Kayo, I Eisenstein, D Hall, PB Castander, FJ Clocchiatti, A Anderson, SF Schneider, DP York, DG Lupton, R Chiu, K Kawano, Y Scranton, R Frieman, JA Keeton, CR Morokuma, T Rix, HW Turner, EL Burles, S Brunner, RJ Sheldon, ES Bahcall, NA Masataka, F AF Inada, Naohisa Oguri, Masamune Becker, Robert H. Shin, Min-Su Richards, Gordon T. Hennawi, Joseph F. White, Richard L. Pindor, Bartosz Strauss, Michael A. Kochanek, Christopher S. Johnston, David E. Gregg, Michael D. Kayo, Issha Eisenstein, Daniel Hall, Patrick B. Castander, Francisco J. Clocchiatti, Alejandro Anderson, Scott F. Schneider, Donald P. York, Donald G. Lupton, Robert Chiu, Kuenley Kawano, Yozo Scranton, Ryan Frieman, Joshua A. Keeton, Charles R. Morokuma, Tomoki Rix, Hans-Walter Turner, Edwin L. Burles, Scott Brunner, Robert J. Sheldon, Erin Scott Bahcall, Neta A. Masataka, Fukugita TI The Sloan Digital Sky Survey Quasar Lens Search. II. Statistical lens sample from the third data release SO ASTRONOMICAL JOURNAL LA English DT Article DE cosmology : observations; gravitational lensing; quasars : general ID 5TH DATA RELEASE; GRAVITATIONAL LENS; IMAGE SEPARATION; CANDIDATE SELECTION; LUMINOSITY FUNCTION; BINARY QUASARS; DARK ENERGY; DISCOVERY; CATALOG; CONSTRAINTS AB We report the first results of our systematic search for strongly lensed quasars using the spectroscopically confirmed quasars in the Sloan Digital Sky Survey (SDSS). Among 46,420 quasars from the SDSS Data Release 3 (similar to 4188 deg(2)), we select a subsample of 22,683 quasars that are located at redshifts between 0.6 and 2.2 and are brighter than the Galactic extinction-corrected i-band magnitude of 19.1. We identify 220 lens candidates from the quasar subsample, for which we conduct extensive and systematic follow-up observations in optical and near-infrared wavebands, in order to construct a complete lensed quasar sample at image separations between 1 '' and 20 '' and flux ratios of faint to bright lensed images larger than 10(-0.5). We construct a statistical sample of 11 lensed quasars. Ten of these are galaxy-scale lenses with small image separations (similar to 1 ''-2 '') and one is a large separation (15 '') system which is produced by a massive cluster of galaxies, representing the first statistical sample of lensed quasars including both galaxy- and cluster-scale lenses. The Data Release 3 spectroscopic quasars contain an additional 11 lensed quasars outside the statistical sample. C1 [Inada, Naohisa] RIKEN, Phys & Chem Res Organ, Cosm Radiat Lab, Wako, Saitama 3510015, Japan. [Inada, Naohisa] Univ Tokyo, Fac Sci, Inst Astron, Tokyo 1810015, Japan. [Oguri, Masamune] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, Menlo Pk, CA 94025 USA. [Oguri, Masamune; Shin, Min-Su; Strauss, Michael A.; Lupton, Robert; Turner, Edwin L.; Bahcall, Neta A.] Princeton Univ Observ, Princeton, NJ 08544 USA. [Becker, Robert H.; Gregg, Michael D.] IGPP LLNL, Livermore, CA USA. [Becker, Robert H.; Gregg, Michael D.] Univ Calif Davis, Dept Phys, Davis, CA USA. [Richards, Gordon T.] Drexel Univ, Dept Phys, Philadelphia, PA 19104 USA. [Hennawi, Joseph F.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [White, Richard L.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Pindor, Bartosz] Univ Leicester, Space Res Ctr, Leicester, Leics, England. [Kochanek, Christopher S.] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. [Johnston, David E.] Jet Propuls Lab, Pasadena, CA 91109 USA. [Johnston, David E.] CALTECH, Pasadena, CA 91125 USA. [Kayo, Issha; Kawano, Yozo] Nagoya Univ, Dept Phys & Astron, Chikusa Ku, Nagoya, Aichi 4648062, Japan. [Eisenstein, Daniel] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. [Hall, Patrick B.] York Univ, Dept Phys & Astron, N York, ON M3J 1P3, Canada. [Castander, Francisco J.] CSIC, Inst Estud Espacials Catalunya, Barcelona 08034, Spain. [Clocchiatti, Alejandro] Pontificia Univ Catolica Chile, Dept Astron & Astrofis, Santiago 22, Chile. [Anderson, Scott F.] Univ Washington, Dept Astron, Seattle, WA 98195 USA. [Schneider, Donald P.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [York, Donald G.] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [York, Donald G.; Frieman, Joshua A.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Chiu, Kuenley] Univ Exeter, Sch Phys, Exeter EX4 4QL, Devon, England. [Scranton, Ryan] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Frieman, Joshua A.] Ctr Particle Astrophys, Fermilab, Batavia, IL 60510 USA. [Frieman, Joshua A.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Keeton, Charles R.] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA. [Morokuma, Tomoki] Natl Astron Observ, Tokyo 1818588, Japan. [Rix, Hans-Walter] Max Planck Inst Astron, D-69117 Heidelberg, Germany. [Burles, Scott] MIT, Dept Phys, Cambridge, MA 02139 USA. [Burles, Scott] MIT, Kavli Inst Astrophys & Space Res, Cambridge, MA 02139 USA. [Brunner, Robert J.] Univ Illinois, Dept Astron, Urbana, IL 61801 USA. [Sheldon, Erin Scott] NYU, Dept Phys, Ctr Cosmol & Particle Phys, New York, NY 10003 USA. [Masataka, Fukugita] Univ Tokyo, Inst Cosm Ray Res, Chiba 2778582, Japan. RP Inada, N (reprint author), RIKEN, Phys & Chem Res Organ, Cosm Radiat Lab, 2-1 Hirosawa, Wako, Saitama 3510015, Japan. RI Oguri, Masamune/C-6230-2011; White, Richard/A-8143-2012; Turner, Edwin/A-4295-2011; Kayo, Issha/A-4389-2011 OI PINDOR, BARTOSZ/0000-0003-3240-2437; NR 74 TC 54 Z9 54 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 J9 ASTRON J JI Astron. J. PD FEB PY 2008 VL 135 IS 2 BP 496 EP 511 DI 10.1088/0004-6256/135/2/496 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 260VY UT WOS:000253039700004 ER PT J AU Oguri, M Inada, N Strauss, MA Kochanek, CS Richards, GT Schneider, DP Becker, RH Fukugita, M Gregg, MD Hall, PB Hennawi, JF Johnston, DE Kayo, I Keeton, CR Pindor, B Shin, MS Turner, EL White, RL York, DG Anderson, SF Bahcall, NA Brunner, RJ Burles, S Castander, FJ Chiu, K Clocchiatti, A Eisenstein, D Frieman, JA Kawano, Y Lupton, R Morokuma, T Rix, HW Scranton, R Sheldon, ES AF Oguri, Masamune Inada, Naohisa Strauss, Michael A. Kochanek, Christopher S. Richards, Gordon T. Schneider, Donald P. Becker, Robert H. Fukugita, Masataka Gregg, Michael D. Hall, Patrick B. Hennawi, Joseph F. Johnston, David E. Kayo, Issha Keeton, Charles R. Pindor, Bartosz Shin, Min-Su Turner, Edwin L. White, Richard L. York, Donald G. Anderson, Scott F. Bahcall, Neta A. Brunner, Robert J. Burles, Scott Castander, Francisco J. Chiu, Kuenley Clocchiatti, Alejandro Eisenstein, Daniel Frieman, Joshua A. Kawano, Yozo Lupton, Robert Morokuma, Tomoki Rix, Hans-Walter Scranton, Ryan Sheldon, Erin Scott TI The Sloan Digital Sky Survey Quasar Lens Search. III. Constraints on dark energy from the third data release quasar lens catalog SO ASTRONOMICAL JOURNAL LA English DT Review DE cosmological parameters; cosmology : theory; gravitational lensing ID EARLY-TYPE GALAXIES; MICROWAVE BACKGROUND-RADIATION; IMAGE SEPARATION DISTRIBUTION; VELOCITY DISPERSION FUNCTION; PROBE WMAP OBSERVATIONS; N-BODY SIMULATIONS; GRAVITATIONAL LENS; LUMINOSITY FUNCTION; COSMOLOGICAL CONSTANT; REDSHIFT SURVEY AB We present cosmological results from the statistics of lensed quasars in the Sloan Digital Sky Survey (SDSS) Quasar Lens Search. By taking proper account of the selection function, we compute the expected number of quasars lensed by early-type galaxies and their image separation distribution assuming a flat universe, which is then compared with seven lenses found in the SDSS Data Release 3 to derive constraints on dark energy under strictly controlled criteria. For a cosmological constant model (w = - 1) we obtain Omega = 0.74(-0.15)(+0.11) (stat.)(-0.06)(+0.13) (syst.). Allowing w to be a free parameter we find Omega(M) = 0.26(-0.06)(+0.07) (stat.)(-0.05)(+0.03) (syst.) and w = - 1.1 +/- 0.6(stat.)(-0.5)(+0.3) (syst.) when combined with the constraint from the measurement of baryon acoustic oscillations in the SDSS luminous red galaxy sample. Our results are in good agreement with earlier lensing constraints obtained using radio lenses, and provide additional confirmation of the presence of dark energy consistent with a cosmological constant, derived independently of type Ia supernovae. C1 [Oguri, Masamune] Stanford Univ, Kavli Inst Particle Astrophys Cosmol, Menlo Pk, CA 94025 USA. [Oguri, Masamune; Strauss, Michael A.; Shin, Min-Su; Turner, Edwin L.; Bahcall, Neta A.; Lupton, Robert] Princeton Univ Observ, Princeton, NJ 08544 USA. [Inada, Naohisa] Univ Tokyo, Fac Sci, Inst Astron, Tokyo 1810015, Japan. [Inada, Naohisa] RIKEN, Cosm Radiat Lab, Phys & Chem Res Organ, Wako, Saitama 3510198, Japan. [Strauss, Michael A.] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. [Richards, Gordon T.] Drexel Univ, Dept Phys, Philadelphia, PA 19104 USA. [Schneider, Donald P.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Becker, Robert H.; Gregg, Michael D.] IGPP LLNL, Livermore, CA 94550 USA. [Becker, Robert H.; Gregg, Michael D.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Fukugita, Masataka] Univ Tokyo, Inst Cosm Ray Res, Chiba 2778582, Japan. [Hall, Patrick B.] York Univ, Dept Phys & Astron, N York, ON M3J 1P3, Canada. [Hennawi, Joseph F.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Johnston, David E.] Jet Propuls Lab, Pasadena, CA 91109 USA. [Johnston, David E.] CALTECH, Pasadena, CA 91125 USA. [Kayo, Issha; Kawano, Yozo] Nagoya Univ, Dept Phys & Astrophys, Nagoya, Aichi 4648602, Japan. [Keeton, Charles R.] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA. [Pindor, Bartosz] Univ Leicester, Space Res Ctr, Leicester LE1 7RH, Leics, England. [White, Richard L.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [York, Donald G.; Frieman, Joshua A.] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [York, Donald G.; Frieman, Joshua A.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Anderson, Scott F.] Univ Washington, Dept Astron, Seattle, WA 98195 USA. [Brunner, Robert J.] Univ Illinois, Dept Astron, Urbana, IL 61801 USA. [Burles, Scott] MIT, Kavli Inst Astrophys & Space Res, Cambridge, MA 02139 USA. [Burles, Scott] MIT, Dept Phys, Cambridge, MA 02139 USA. [Castander, Francisco J.] CSIC, Inst Estud Espacials Catalunya, Barcelona 08034, Spain. [Chiu, Kuenley] Univ Exeter, Sch Phys, Exeter EX4 4QL, Devon, England. [Clocchiatti, Alejandro] Pontificia Univ Catolica Chile, Dept Astron & Astrofis, Santiago 22, Chile. [Eisenstein, Daniel] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. [Frieman, Joshua A.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Frieman, Joshua A.] Ctr Partical Astrophys, Fermilab, Batavia, IL 60510 USA. [Morokuma, Tomoki] Natl Astron Observ, Tokyo 1818588, Japan. [Rix, Hans-Walter] Max Planck Inst Astron, D-69117 Heidelberg, Germany. [Scranton, Ryan] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Sheldon, Erin Scott] NYU, Dept Phys, Ctr Cosmol & Particle Phys, New York, NY 10003 USA. RP Oguri, M (reprint author), Stanford Univ, Kavli Inst Particle Astrophys Cosmol, Menlo Pk, CA 94025 USA. RI Oguri, Masamune/C-6230-2011; Turner, Edwin/A-4295-2011; Kayo, Issha/A-4389-2011; White, Richard/A-8143-2012; OI PINDOR, BARTOSZ/0000-0003-3240-2437 NR 119 TC 59 Z9 59 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 J9 ASTRON J JI Astron. J. PD FEB PY 2008 VL 135 IS 2 BP 512 EP 519 DI 10.1088/0004-6256/135/2/512 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 260VY UT WOS:000253039700005 ER PT J AU Hennawi, JF Gladders, MD Oguri, M Dalal, N Koester, B Natarajan, P Strauss, MA Inada, N Kayo, I Lin, H Lampeitl, H Annis, J Bahcall, NA Schneider, DP AF Hennawi, Joseph F. Gladders, Michael D. Oguri, Masamune Dalal, Neal Koester, Benjamin Natarajan, Priyamvada Strauss, Michael A. Inada, Naohisa Kayo, Issha Lin, Huan Lampeitl, Hubert Annis, James Bahcall, Neta A. Schneider, Donald P. TI A new survey for giant arcs SO ASTRONOMICAL JOURNAL LA English DT Article DE cosmology : observations; dark matter; galaxies : clusters : general; gravitational lensing; large-scale structure of universe; techniques : image processing ID DIGITAL SKY SURVEY; HUBBLE-SPACE-TELESCOPE; SEQUENCE CLUSTER SURVEY; COLD DARK-MATTER; LUMINOUS GALAXY CLUSTERS; STEEP MASS PROFILE; X-RAY; DATA RELEASE; SYSTEMATIC SEARCH; LENSING ANALYSIS AB We (s) overdot (w) overdot report on the first results of an imaging survey to detect strong gravitational lensing targeting the richest clusters selected from the photometric data of the Sloan Digital Sky Survey ( SDSS) with follow-up deep imaging observations from the Wisconsin - Indiana - Yale NOAO ( WIYN) 3.5 m telescope and the University of Hawaii 88 inch telescope ( UH88). The clusters are selected from an area of 8000 deg(2) using the red cluster sequence technique and span the redshift range 0.1 less than or similar to z less than or similar to 0.6, corresponding to a comoving cosmological volume of similar to 2 Gpc(3). Our imaging survey thus targets a volume more than an order of magnitude larger than any previous search. A total of 240 clusters were imaged of which 141 had sub-arcsecond image quality. Our survey has uncovered 16 new lensing clusters with definite giant arcs, an additional 12 systems for which the lensing interpretation is very likely, and 9 possible lenses which contain shorter arclets or candidate arcs which are less certain and will require further observations to confirm their lensing origin. Among these new systems are several of the most dramatic examples of strong gravitational lensing ever discovered, with multiple bright arcs at large angular separation. These will likely become "poster-child" gravitational lenses similar to Abell 1689 and CL0024+1654. The new lenses discovered in this survey will enable future systematic studies of the statistics of strong lensing and their implications for cosmology and our structure formation paradigm. C1 [Hennawi, Joseph F.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Gladders, Michael D.] Carnegie Observ, Pasadena, CA 91101 USA. [Gladders, Michael D.] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [Oguri, Masamune] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, Menlo Pk, CA 94025 USA. [Oguri, Masamune; Strauss, Michael A.; Bahcall, Neta A.] Princeton Univ Observ, Princeton, NJ 08544 USA. [Dalal, Neal] Univ Toronto, Canadian Inst Theoret Astrophys, Toronto, ON M5S 3H8, Canada. [Koester, Benjamin] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Natarajan, Priyamvada] Yale Univ, Dept Astron, New Haven, CT 06511 USA. [Natarajan, Priyamvada] Yale Univ, Dept Phys, New Haven, CT 06520 USA. [Inada, Naohisa] Univ Tokyo, Fac Sci, Inst Astron, Tokyo 1810015, Japan. [Kayo, Issha] Nagoya Univ, Dept Phys & Astrophys, Nagoya, Aichi 4648062, Japan. [Lin, Huan; Lampeitl, Hubert; Annis, James] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Schneider, Donald P.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. RP Hennawi, JF (reprint author), Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. RI Oguri, Masamune/C-6230-2011; Kayo, Issha/A-4389-2011 NR 74 TC 67 Z9 67 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 J9 ASTRON J JI Astron. J. PD FEB PY 2008 VL 135 IS 2 BP 664 EP 681 DI 10.1088/0004-6256/135/2/664 PG 18 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 260VY UT WOS:000253039700020 ER PT J AU Anchordoqui, LA Hooper, D Sarkar, S Taylor, AM AF Anchordoqui, Luis A. Hooper, Dan Sarkar, Subir Taylor, Andrew M. TI High energy neutrinos from astrophysical accelerators of cosmic ray nuclei SO ASTROPARTICLE PHYSICS LA English DT Review ID ACTIVE GALACTIC NUCLEI; GAMMA-RAYS; RADIO GALAXIES; BURSTS; SPECTRUM; EMISSION; MODEL; RADIATION; BATSE; FLUX AB Ongoing experimental efforts to detect cosmic sources of high energy neutrinos are guided by the expectation that astrophysical accelerators of cosmic ray protons would also generate neutrinos through interactions with ambient matter and/or photons. However, there will be a reduction in the predicted neutrino flux if cosmic ray sources accelerate not only protons but also significant numbers of heavier nuclei, as is indicated by recent air shower data. We consider plausible extragalactic sources such as active galactic nuclei, gamma ray bursts and starburst galaxies and demand consistency with the observed cosmic ray composition and energy spectrum at Earth after allowing for propagation through intergalactic radiation fields. This allows us to calculate the expected neutrino fluxes from the sources, normalized to the observed cosmic ray spectrum. We find that the likely signals are still within reach of next generation neutrino telescopes such as IceCube. (c) 2007 Elsevier B.V. All rights reserved. C1 [Anchordoqui, Luis A.] Univ Wisconsin, Dept Phys, Milwaukee, WI 53201 USA. [Hooper, Dan] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Sarkar, Subir] Univ Oxford, Rudolf Peierls Ctr Theoret Phys, Oxford OX1 3NP, England. [Taylor, Andrew M.] Univ Oxford, Oxford OX1 3RH, England. RP Anchordoqui, LA (reprint author), Univ Wisconsin, Dept Phys, POB 413, Milwaukee, WI 53201 USA. EM anchordo@uwm.edu RI Sarkar, Subir/G-5978-2011 OI Sarkar, Subir/0000-0002-3542-858X NR 119 TC 41 Z9 41 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0927-6505 EI 1873-2852 J9 ASTROPART PHYS JI Astropart Phys. PD FEB PY 2008 VL 29 IS 1 BP 1 EP 13 DI 10.1016/j.astropartphys.2007.10.006 PG 13 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 271MS UT WOS:000253793100001 ER PT J AU Desai, S Abe, K Hayato, Y Lida, K Ishihara, K Kameda, J Koshio, Y Minamino, A Mitsuda, C Miura, M Moriyama, S Nakahata, M Obayashi, Y Ogawa, H Shiozawa, M Suzuki, Y Takeda, A Takeuchi, Y Ueshima, K Watanabe, H Yamada, S Higuchi, I Ishihara, C Ishitsuka, M Kajita, T Kaneyuki, K Mitsuka, G Nakayama, S Nishino, H Okumura, K Saji, C Takenaga, Y Clark, ST Dufour, F Kearns, E Likhoded, S Raaf, JL Stone, JL Sulak, LR Wang, W Goldhaber, M Casper, D Cravens, JP Dunmore, J Kropp, WR Liu, DW Mine, S Regis, C Smy, MB Sobel, HW Vagins, MR Ganezer, KS Hartfiel, B Hill, J Keig, WE Jang, JS Jeong, IS Kim, JY Lim, IT Fechner, M Scholberg, K Tanimoto, N Walter, CW Wendell, R Tasaka, S Guillian, G Learned, JG Matsuno, S Messier, MD Ichikawa, AK Ishida, T Ishii, T Kobayashi, T Nakadaira, T Nakamura, K Nitta, K Oyama, Y Totsuka, Y Suzuki, AT Hasegawa, M Hiraide, K Kato, I Maesaka, H Nakaya, T Nishikawa, K Sasaki, T Sato, H Yamamoto, S Yokoyama, M Haines, TJ Dazeley, S Hatakeyama, S Svoboda, R Swanson, M Clough, A Gran, R Habig, A Fukuda, Y Sato, T Itow, Y Koike, T Tanaka, T Jung, CK Kato, T Kobayashi, K McGrew, C Sarrat, A Terri, R Yanagisawa, C Tamura, N Idehara, Y Sakuda, M Sugihara, M Kuno, Y Yoshida, M Kim, SB Yang, BS Yoo, J Ishizuka, T Okazawa, H Choi, Y Seo, HK Gando, Y Hasegawa, T Inoue, K Furuse, Y Ishii, H Nishijima, K Ishino, H Watanabe, Y Koshiba, M Kielczewska, D Berns, H Shiraishi, KK Thrane, E Washburn, K Wilkes, RJ AF Desai, S. Abe, K. Hayato, Y. Lida, K. Ishihara, K. Kameda, J. Koshio, Y. Minamino, A. Mitsuda, C. Miura, M. Moriyama, S. Nakahata, M. Obayashi, Y. Ogawa, H. Shiozawa, M. Suzuki, Y. Takeda, A. Takeuchi, Y. Ueshima, K. Watanabe, H. Yamada, S. Higuchi, I. Ishihara, C. Ishitsuka, M. Kajita, T. Kaneyuki, K. Mitsuka, G. Nakayama, S. Nishino, H. Okumura, K. Saji, C. Takenaga, Y. Clark, S. T. Dufour, F. Kearns, E. Likhoded, S. Raaf, J. L. Stone, J. L. Sulak, L. R. Wang, W. Goldhaber, M. Casper, D. Cravens, J. P. Dunmore, J. Kropp, W. R. Liu, D. W. Mine, S. Regis, C. Smy, M. B. Sobel, H. W. Vagins, M. R. Ganezer, K. S. Hartfiel, B. Hill, J. Keig, W. E. Jang, J. S. Jeong, I. S. Kim, J. Y. Lim, I. T. Fechner, M. Scholberg, K. Tanimoto, N. Walter, C. W. Wendell, R. Tasaka, S. Guillian, G. Learned, J. G. Matsuno, S. Messier, M. D. Ichikawa, A. K. Ishida, T. Ishii, T. Kobayashi, T. Nakadaira, T. Nakamura, K. Nitta, K. Oyama, Y. Totsuka, Y. Suzuki, A. T. Hasegawa, M. Hiraide, K. Kato, I. Maesaka, H. Nakaya, T. Nishikawa, K. Sasaki, T. Sato, H. Yamamoto, S. Yokoyama, M. Haines, T. J. Dazeley, S. Hatakeyama, S. Svoboda, R. Swanson, M. Clough, A. Gran, R. Habig, A. Fukuda, Y. Sato, T. Itow, Y. Koike, T. Tanaka, T. Jung, C. K. Kato, T. Kobayashi, K. McGrew, C. Sarrat, A. Terri, R. Yanagisawa, C. Tamura, N. Idehara, Y. Sakuda, M. Sugihara, M. Kuno, Y. Yoshida, M. Kim, S. B. Yang, B. S. Yoo, J. Ishizuka, T. Okazawa, H. Choi, Y. Seo, H. K. Gando, Y. Hasegawa, T. Inoue, K. Furuse, Y. Ishii, H. Nishijima, K. Ishino, H. Watanabe, Y. Koshiba, M. Kielczewska, D. Berns, H. Shiraishi, K. K. Thrane, E. Washburn, K. Wilkes, R. J. CA Super-Kamiokande Collaboration TI Study of TeV neutrinos with upward showering muons in Super-Kamiokande SO ASTROPARTICLE PHYSICS LA English DT Article DE high-energy neutrinos; muon energy losses; astrophysics ID HIGH-ENERGY NEUTRINOS; UPWARD-GOING MUONS; NEUTRALINO ANNIHILATIONS; DARK-MATTER; PARTICLE PHYSICS; ASTRONOMY; DETECTOR; SPECTRA; EARTH; FLUX AB A subset of neutrino-induced upward through-going muons in the Super-Kamiokande detector consists of high-energy muons which lose energy through radiative processes such as bremsstrahlung, e(+)e(-) pair production and photonuclear interactions. These "upward showering muons" comprise an event sample whose mean parent neutrino energy is approximately 1 TeV. We show that the zenith angle distribution of upward showering muons is consistent with negligible distortion due to neutrino oscillations, as expected of such a high-energy neutrino sample. We present astronomical searches using these high-energy events, such as those from WIMP annihilations in the Sun, Earth and Galactic Center, some suspected point sources, as well as searches for diffuse flux from the interstellar medium. (c) 2007 Elsevier B.V. All rights reserved. C1 [Abe, K.; Hayato, Y.; Lida, K.; Ishihara, K.; Kameda, J.; Koshio, Y.; Minamino, A.; Mitsuda, C.; Miura, M.; Moriyama, S.; Nakahata, M.; Obayashi, Y.; Ogawa, H.; Shiozawa, M.; Suzuki, Y.; Takeda, A.; Takeuchi, Y.; Ueshima, K.; Watanabe, H.; Yamada, S.] Univ Tokyo, Inst Cosm Ray Res, Kamioka Observat, Gifu 5061205, Japan. [Higuchi, I.; Ishihara, C.; Ishitsuka, M.; Kajita, T.; Kaneyuki, K.; Mitsuka, G.; Nakayama, S.; Nishino, H.; Okumura, K.; Saji, C.; Takenaga, Y.] Univ Tokyo, Inst Cosm Ray Res, Res Ctr Cosm Netrinos, Chiba 2778582, Japan. [Desai, S.; Clark, S. T.; Dufour, F.; Kearns, E.; Likhoded, S.; Raaf, J. L.; Stone, J. L.; Sulak, L. R.; Wang, W.] Boston Univ, Dept Phys, Boston, MA 02215 USA. [Goldhaber, M.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Casper, D.; Cravens, J. P.; Dunmore, J.; Kropp, W. R.; Liu, D. W.; Mine, S.; Regis, C.; Smy, M. B.; Sobel, H. W.; Vagins, M. R.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Ganezer, K. S.; Hartfiel, B.; Hill, J.; Keig, W. E.] Calif State Univ Dominguez Hills, Dept Phys, Carson, CA 90747 USA. [Jang, J. S.; Jeong, I. S.; Kim, J. Y.; Lim, I. T.] Chonnam Natl Univ, Dept Phys, Kwangju 500757, South Korea. [Fechner, M.; Scholberg, K.; Tanimoto, N.; Walter, C. W.; Wendell, R.] Duke Univ, Dept Phys, Durham, NC 27708 USA. [Tasaka, S.] Gifu Univ, Dept Phys, Gifu 5011193, Japan. [Guillian, G.; Learned, J. G.; Matsuno, S.] Univ Hawaii, Dept Phys & Astron, Honolulu, HI 96822 USA. [Messier, M. D.] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. [Ichikawa, A. K.; Ishida, T.; Ishii, T.; Kobayashi, T.; Nakadaira, T.; Nakamura, K.; Nitta, K.; Oyama, Y.; Totsuka, Y.] High Energy Accelerator Res Org, KEK, Tsukuba, Ibaraki 3050801, Japan. [Suzuki, A. T.] Kobe Univ, Dept Phys, Kobe, Hyogo 6578501, Japan. [Hasegawa, M.; Hiraide, K.; Kato, I.; Maesaka, H.; Nakaya, T.; Nishikawa, K.; Sasaki, T.; Sato, H.; Yamamoto, S.; Yokoyama, M.] Kyoto Univ, Dept Phys, Kyoto 6068502, Japan. [Haines, T. J.] Los Alamos Natl Lab, Div Phys, Los Alamos, NM 87544 USA. [Dazeley, S.; Hatakeyama, S.; Svoboda, R.] Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA. [Swanson, M.] MIT, Dept Phys, Cambridge, MA 02139 USA. [Clough, A.; Gran, R.; Habig, A.] Univ Minnesota, Dept Phys, Duluth, MN 55812 USA. [Fukuda, Y.; Sato, T.] Miyagi Univ Educ, Dept Phys, Sendai, Miyagi 9800845, Japan. [Itow, Y.; Koike, T.; Tanaka, T.] Nagoya Univ, Solar Terrestrial Environm Lab, Aichi 4648602, Japan. [Jung, C. K.; Kato, T.; Kobayashi, K.; McGrew, C.; Sarrat, A.; Terri, R.; Yanagisawa, C.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Tamura, N.] Niigata Univ, Dept Phys, Niigata 9502181, Japan. [Idehara, Y.; Sakuda, M.; Sugihara, M.] Okayama Univ, Dept Phys, Okayama 7008530, Japan. [Kuno, Y.; Yoshida, M.] Osaka Univ, Dept Phys, Osaka 5300043, Japan. [Kim, S. B.; Yang, B. S.; Yoo, J.] Seoul Natl Univ, Dept Phys, Seoul 151742, South Korea. [Okazawa, H.] Shizuoka Seika Coll, Int & Cultural Studies, Shizuoka 4258611, Japan. [Ishizuka, T.] Shizuoka Univ, Dept Syst Engn, Hamamatsu, Shizuoka 4328561, Japan. [Choi, Y.; Seo, H. K.] Sungkyunkwan Univ, Dept Phys, Suwon 440746, South Korea. [Gando, Y.; Hasegawa, T.; Inoue, K.] Tohoku Univ, Res Ctr Neutrino Sci, Sendai, Miyagi 9808578, Japan. [Furuse, Y.; Ishii, H.; Nishijima, K.] Tokai Univ, Dept Phys, Kanagawa 2591292, Japan. [Ishino, H.; Watanabe, Y.] Tokyo Inst Technol, Dept Phys, Tokyo 1528551, Japan. [Koshiba, M.] Univ Tokyo, Tokyo 1130033, Japan. [Kielczewska, D.] Univ Warsaw, Inst Expt Phys, PL-00681 Warsaw, Poland. [Berns, H.; Shiraishi, K. K.; Thrane, E.; Washburn, K.; Wilkes, R. J.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. RP Desai, S (reprint author), Penn State Univ, Dept Phys, 104 Davey Lab, University Pk, PA 16802 USA. EM shantanu@neutrino.bu.edu RI Kim, Soo-Bong/B-7061-2014; Ishino, Hirokazu/C-1994-2015; Koshio, Yusuke/C-2847-2015; Hiraide, Katsuki/A-4479-2011; Yoo, Jonghee/K-8394-2016; Yokoyama, Masashi/A-4458-2011; Takeuchi, Yasuo/A-4310-2011; Nakamura, Kenzo/F-7174-2010; Sobel, Henry/A-4369-2011; Suzuki, Yoichiro/F-7542-2010; Obayashi, Yoshihisa/A-4472-2011; Wilkes, R.Jeffrey/E-6011-2013; OI Ishino, Hirokazu/0000-0002-8623-4080; Koshio, Yusuke/0000-0003-0437-8505; Yokoyama, Masashi/0000-0003-2742-0251; Raaf, Jennifer/0000-0002-4533-929X NR 60 TC 40 Z9 40 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0927-6505 EI 1873-2852 J9 ASTROPART PHYS JI Astropart Phys. PD FEB PY 2008 VL 29 IS 1 BP 42 EP 54 DI 10.1016/j.astropartphys.2007.11.005 PG 13 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 271MS UT WOS:000253793100006 ER PT J AU Casanova, S Dingus, BL AF Casanova, S. Dingus, B. L. TI Constraints on the TeV source population and its contribution to the galactic diffuse TeV emission SO ASTROPARTICLE PHYSICS LA English DT Article DE gamma rays : theory; TeV gamma rays; TeV sources ID GAMMA-RAY EMISSION; SUPERNOVA-REMNANTS; EGRET OBSERVATIONS; COSMIC-RAY; GALAXY; DISCOVERY; PULSARS; PLANE; SPECTRA; EXCESS AB The detection by the HESS atmospheric Cerenkov telescope of 14 new sources from the Galactic plane makes it possible to estimate the contribution of unresolved sources like those detected by HESS to the diffuse Galactic emission measured by the Milagro Collaboration. The number intensity relation and the luminosity function for the HESS source population are investigated. By evaluating the contribution of such a source population to the diffuse emission we conclude that a significant fraction of the TeV energy emission measured by the Milagro experiment could be due to unresolved sources like HESS sources. Predictions concerning the number of sources which Veritas, Milagro, and HAWC should detect are also given. (c) 2007 Elsevier B.V. All rights reserved. C1 [Casanova, S.; Dingus, B. L.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Casanova, S (reprint author), Univ Roma La Sapienza, ICRA, I-00185 Rome, Italy. EM Sabrina.Casanova@mpi-hd.mpg.de RI Casanova, Sabrina/J-8935-2013; OI Casanova, Sabrina/0000-0002-6144-9122; Dingus, Brenda/0000-0001-8451-7450 NR 37 TC 10 Z9 10 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0927-6505 J9 ASTROPART PHYS JI Astropart Phys. PD FEB PY 2008 VL 29 IS 1 BP 63 EP 69 DI 10.1016/j.astropartphys.2007.11.008 PG 7 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 271MS UT WOS:000253793100008 ER PT J AU Abbasi, R Abu-Zayyad, T Belov, K Beiz, J Cao, Z Dalton, M Fedorova, Y Huentemeyer, P Jones, BF Jui, CCH Loh, EC Manago, N Martens, K Matthews, JN Maestas, M Rodriguez, D Smith, J Sokolsky, P Springer, RW Thomas, J Thomas, S Chen, P Field, C Hast, C Iverson, R Ng, JST Odian, A Reil, K Walz, D Bergman, DR Thomson, G Zech, A Chang, FY Chen, CC Chen, CW Huang, MA Hwang, WYP Lin, GL AF Abbasi, R. Abu-Zayyad, T. Belov, K. Beiz, J. Cao, Z. Dalton, M. Fedorova, Y. Huentemeyer, P. Jones, B. F. Jui, C. C. H. Loh, E. C. Manago, N. Martens, K. Matthews, J. N. Maestas, M. Rodriguez, D. Smith, J. Sokolsky, P. Springer, R. W. Thomas, J. Thomas, S. Chen, P. Field, C. Hast, C. Iverson, R. Ng, J. S. T. Odian, A. Reil, K. Walz, D. Bergman, D. R. Thomson, G. Zech, A. Chang, F. -Y. Chen, C. -C. Chen, C. W. Huang, M. A. Hwang, W. -Y. P. Lin, G. -L. TI Air fluorescence measurements in the spectral range 300-420 nm using a 28.5 GeV electron beam SO ASTROPARTICLE PHYSICS LA English DT Article DE air fluorescence; fluorescence spectrum; ultra-high energy cosmic rays ID ENERGY COSMIC-RAYS; PHOTON YIELDS; NITROGEN; TRANSITION; EMISSION; PROFILES; BURSTS; ARRAY AB Measurements are reported of the yield and spectrum of fluorescence, excited by a 28.5 GeV electron beam, in air at a range of pressures of interest to ultra-high energy cosmic ray detectors. The wavelength range was 300-420 nm. System calibration has been performed using Rayleigh scattering of a nitrogen laser beam. In atmospheric pressure dry air at 304 K the total yield is 20.8 +/- 1.6 photons per MeV. (c) 2007 Elsevier B.V. All rights reserved. C1 [Field, C.; Hast, C.; Iverson, R.; Ng, J. S. T.; Odian, A.; Reil, K.; Walz, D.] Stanford Univ, Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. [Abbasi, R.; Abu-Zayyad, T.; Belov, K.; Beiz, J.; Cao, Z.; Dalton, M.; Fedorova, Y.; Huentemeyer, P.; Jones, B. F.; Jui, C. C. H.; Loh, E. C.; Manago, N.; Martens, K.; Matthews, J. N.; Maestas, M.; Rodriguez, D.; Smith, J.; Sokolsky, P.; Springer, R. W.; Thomas, J.; Thomas, S.; Chen, P.] Univ Utah, Salt Lake City, UT 84112 USA. [Bergman, D. R.; Thomson, G.; Zech, A.] Rutgers State Univ, Piscataway, NJ 08854 USA. [Chang, F. -Y.; Chen, C. -C.; Chen, C. W.; Huang, M. A.; Hwang, W. -Y. P.; Lin, G. -L.] CosPA, Taipei 10617, Taiwan. RP Field, C (reprint author), Stanford Univ, Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. EM sargon@slac.stanford.edu RI Martens, Kai/A-4323-2011; Belov, Konstantin/D-2520-2013; OI HWANG, W-Y/0000-0003-1563-8683 NR 49 TC 28 Z9 28 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0927-6505 J9 ASTROPART PHYS JI Astropart Phys. PD FEB PY 2008 VL 29 IS 1 BP 77 EP 86 DI 10.1016/j.astropartphys.2007.11.010 PG 10 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 271MS UT WOS:000253793100010 ER PT J AU Whalen, D Norman, ML AF Whalen, Daniel Norman, Michael L. TI Ionization front instabilities in primordial HII regions SO ASTROPHYSICAL JOURNAL LA English DT Article DE cosmology : theory; early universe; HII regions ID PROBE WMAP OBSERVATIONS; 2ND-GENERATION STAR-FORMATION; 1ST STARS; RADIATIVE FEEDBACK; UNIVERSE; EVOLUTION; GAS; PHOTODISSOCIATION; FRAGMENTATION; CHEMISTRY AB Radiative cooling by metals in shocked gas mediates the formation of ionization front instabilities in the galaxy today that are responsible for a variety of phenomena in the interstellar medium, from the morphologies of nebulae to triggered star formation in molecular clouds. An important question in early reionization and chemical enrichment of the intergalactic medium is whether such instabilities arose in the H II regions of the first stars and primeval galaxies, which were devoid of metals. We present three-dimensional numerical simulations that reveal both shadow and thin-shell instabilities readily formed in primordial gas. We find that the hard UV spectra of Population III stars broadened primordial ionization fronts, causing H-2 formation capable of inciting violent thin-shell instabilities in D-type fronts, even in the presence of intense Lyman-Werner flux. The high postfront gas temperatures associated with He ionization sustained and exacerbated shadow instabilities, unaided by molecular hydrogen cooling. Our models indicate that metals eclipsed H-2 cooling in I-front instabilities at modest concentrations, from 1 x 10(-3) to 1 x 10(-2) Z(circle dot). We conclude that ionization front instabilities were prominent in the H II regions of the first stars and galaxies, influencing the escape of ionizing radiation and metals into the early universe. C1 [Whalen, Daniel] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Norman, Michael L.] Univ Calif San Diego, Ctr Astrophys & Space Sci, La Jolla, CA 92093 USA. RP Whalen, D (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87545 USA. EM dwhalen@cosmos.ucsd.edu NR 36 TC 54 Z9 54 U1 0 U2 8 PU UNIV CHICAGO PRESS PI CHICAGO PA 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD FEB 1 PY 2008 VL 673 IS 2 BP 664 EP 675 DI 10.1086/524400 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 266RI UT WOS:000253454300002 ER PT J AU Juric, M Ivezic, Z Brooks, A Lupton, RH Schlegel, D Finkbeiner, D Padmanabhan, N Bond, N Sesar, B Rockosi, CM Knapp, GR Gunn, JE Sumi, T Schneider, DP Barentine, JC Brewington, HJ Brinkmann, J Fukugita, M Harvanek, M Kleinman, SJ Krzesinski, J Long, D Neilsen, EH Nitta, A Snedden, SA York, DG AF Juric, Mario Ivezic, Zeljko Brooks, Alyson Lupton, Robert H. Schlegel, David Finkbeiner, Douglas Padmanabhan, Nikhil Bond, Nicholas Sesar, Branimir Rockosi, Constance M. Knapp, Gillian R. Gunn, James E. Sumi, Takahiro Schneider, Donald P. Barentine, J. C. Brewington, Howard J. Brinkmann, J. Fukugita, Masataka Harvanek, Michael Kleinman, S. J. Krzesinski, Jurek Long, Dan Neilsen, Eric H., Jr. Nitta, Atsuko Snedden, Stephanie A. York, Donald G. TI The milky way tomography with SDSS. I. Stellar number density distribution SO ASTROPHYSICAL JOURNAL LA English DT Review DE galaxy : disk; galaxy : fundamental parameters; galaxy : halo; galaxy : structure ID DIGITAL SKY SURVEY; METAL-POOR STARS; PHOTOMETRIC PARALLAX ESTIMATION; TRIANGULUM-ANDROMEDA REGION; SYNOPTIC SURVEY TELESCOPE; SURVEY COMMISSIONING DATA; GALACTIC LATITUDE FIELDS; HORIZONTAL-BRANCH STARS; DARK-MATTER UNIVERSE; PROPER-MOTION STARS AB Using the photometric parallax method we estimate the distances to similar to 48 million stars detected by the Sloan Digital Sky Survey (SDSS) and map their three-dimensional number density distribution in the Galaxy. The currently available data sample the distance range from 100 pc to 20 kpc and cover 6500 deg(2) of sky, mostly at high Galactic latitudes (vertical bar b vertical bar > 25). These stellar number density maps allow an investigation of the Galactic structure with no a priori assumptions about the functional form of its components. The data show strong evidence for a Galaxy consisting of an oblate halo, a disk component, and a number of localized overdensities. The number density distribution of stars as traced by M dwarfs in the solar neighborhood (D < 2 kpc) is well fit by two exponential disks ( the thin and thick disk) with scale heights and lengths, bias corrected for an assumed 35% binary fraction, of H-1 = 300 pc and L-1 = 2600 pc, and H-2 = 900 pc and L-2 = 3600 pc, and local thick-to-thin disk density normalization rho(thick)(R-circle dot)/rho(thin)(R-circle dot) = 12%. We use the stars near main-sequence turnoff to measure the shape of the Galactic halo. We find a strong preference for oblate halo models, with best-fit axis ratio c/a = 0.64, rho(H) alpha r(-2.8) power-law profile, and the local halo-to-thin disk normalization of 0.5%. Based on a series of Monte Carlo simulations, we estimate the errors of derived model parameters not to be larger than similar to 20% for the disk scales and similar to 10% for the density normalization, with largest contributions to error coming from the uncertainty in calibration of the photometric parallax relation and poorly constrained binary fraction. While generally consistent with the above model, the measured density distribution shows a number of statistically significant localized deviations. In addition to known features, such as the Monoceros stream, we detect two overdensities in the thick disk region at cylindrical galactocentric radii and heights (R, Z) similar to (6.5, 1.5) kpc and (R, Z) similar to (9.5, 0.8) kpc and a remarkable density enhancement in the halo covering over 1000 deg(2) of sky toward the constellation of Virgo, at distances of similar to 6-20 kpc. Compared to counts in a region symmetric with respect to the l = 0 degrees line and with the same Galactic latitude, the Virgo overdensity is responsible for a factor of 2 number density excess and may be a nearby tidal stream or a low-surface brightness dwarf galaxy merging with the Milky Way. The u - g color distribution of stars associated with it implies metallicity lower than that of thick disk stars and consistent with the halo metallicity distribution. After removal of the resolved overdensities, the remaining data are consistent with a smooth density distribution; we detect no evidence of further unresolved clumpy substructure at scales ranging from similar to 50 pc in the disk to similar to 1-2 kpc in the halo. C1 [Juric, Mario; Lupton, Robert H.; Schlegel, David; Finkbeiner, Douglas; Bond, Nicholas; Knapp, Gillian R.; Gunn, James E.; Sumi, Takahiro] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. [Juric, Mario] Inst Adv Study, Sch Nat Sci, Princeton, NJ 08540 USA. [Ivezic, Zeljko; Brooks, Alyson; Sesar, Branimir; Rockosi, Constance M.] Univ Washington, Dept Astron, Seattle, WA 98195 USA. [Schlegel, David; Padmanabhan, Nikhil] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Finkbeiner, Douglas] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Padmanabhan, Nikhil] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. [Rockosi, Constance M.] Univ Calif Santa Cruz, Santa Cruz, CA USA. [Sumi, Takahiro] Nagoya Univ, Solar Terrestrial Environm Lab, Chikusa Ku, Nagoya, Aichi, Japan. [Schneider, Donald P.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Barentine, J. C.; Brewington, Howard J.; Brinkmann, J.; Harvanek, Michael; Kleinman, S. J.; Krzesinski, Jurek; Long, Dan; Nitta, Atsuko; Snedden, Stephanie A.] Apache Point Observ, Sunspot, NM 88349 USA. [Fukugita, Masataka] Univ Tokyo, Inst Cosm Ray Res, Chiba, Japan. [Krzesinski, Jurek] Cracow Pedagog Univ, Mt Suhora Observ, PL-30084 Krakow, Poland. [Neilsen, Eric H., Jr.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Nitta, Atsuko] Univ Chicago, Enrico Fermi Inst, Dept Astron & Astrophys, Chicago, IL 60637 USA. RP Juric, M (reprint author), Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. RI Padmanabhan, Nikhil/A-2094-2012 NR 134 TC 578 Z9 581 U1 0 U2 14 PU UNIV CHICAGO PRESS PI CHICAGO PA 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD FEB 1 PY 2008 VL 673 IS 2 BP 864 EP 914 DI 10.1086/523619 PG 51 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 266RI UT WOS:000253454300020 ER PT J AU Kuznetsova, N Barbary, K Connolly, B Kim, AG Pain, R Roe, NA Aldering, G Amanullah, R Dawson, K Doi, M Fadeyev, V Fruchter, AS Gibbons, R Goldhaber, G Goobar, A Gude, A Knop, RA Kowalski, M Lidman, C Morokuma, T Meyers, J Perlmutter, S Rubin, D Schlegel, DJ Spadafora, AL Stanishev, V Strovink, M Suzuki, N Wang, L Yasuda, N AF Kuznetsova, N. Barbary, K. Connolly, B. Kim, A. G. Pain, R. Roe, N. A. Aldering, G. Amanullah, R. Dawson, K. Doi, M. Fadeyev, V. Fruchter, A. S. Gibbons, R. Goldhaber, G. Goobar, A. Gude, A. Knop, R. A. Kowalski, M. Lidman, C. Morokuma, T. Meyers, J. Perlmutter, S. Rubin, D. Schlegel, D. J. Spadafora, A. L. Stanishev, V. Strovink, M. Suzuki, N. Wang, L. Yasuda, N. TI A new determination of the high-redshift type Ia supernova rates with the Hubble Space Telescope advanced camera for surveys SO ASTROPHYSICAL JOURNAL LA English DT Article DE supernovae : general ID DEEP FIELD NORTH; ABSOLUTE MAGNITUDE DISTRIBUTIONS; STAR-FORMATION; LEGACY SURVEY; DARK ENERGY; SOUTH; CONSTRAINTS; EXTINCTION; CLASSIFICATION; IDENTIFICATION AB We present a new measurement of the volumetric rate of SNe Ia up to a redshift of 1.7, using the HST GOODS data combined with an additional HST data set covering the GOODS-North field collected in 2004. We employ a novel technique that does not require spectroscopic data for identifying SNe Ia ( although spectroscopic measurements of redshifts are used for over half the sample); instead, we employ a Bayesian approach using only photometric data to calculate the probability that an object is an SN Ia. This Bayesian technique can easily be modified to incorporate improved priors on SN properties, and it is well-suited for future high-statistics SN searches in which spectroscopic follow-up of all candidates will be impractical. Here the method is validated on both ground- and space-based SN data having some spectroscopic follow-up. We combine our volumetric rate measurements with low-redshift SN data and fit to a number of possible models for the evolution of the SN Ia rate as a function of redshift. The data do not distinguish between a flat rate at redshift >0.5 and a previously proposed model, in which the Type Ia rate peaks at redshift similar to 1 due to a significant delay from star formation to the SN explosion. Except for the highest redshifts, where the signal-to-noise ratio is generally too low to apply this technique, this approach yields uncertainties that are smaller than or comparable to previous work. C1 [Kuznetsova, N.; Barbary, K.; Kim, A. G.; Roe, N. A.; Aldering, G.; Dawson, K.; Goldhaber, G.; Goobar, A.; Meyers, J.; Perlmutter, S.; Rubin, D.; Schlegel, D. J.; Spadafora, A. L.; Stanishev, V.; Strovink, M.; Suzuki, N.] EO Lawerence Berkley Lab, Berkeley, CA 94720 USA. [Barbary, K.; Gude, A.; Perlmutter, S.; Rubin, D.; Strovink, M.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Connolly, B.] Columbia Univ, Dept Phys, New York, NY 10027 USA. [Pain, R.] Univ Paris 06, CNRS IN2P3, LPNHE, Paris, France. [Pain, R.] Univ Paris 07, CNRS IN2P3, LPNHE, Paris, France. [Amanullah, R.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Doi, M.] Univ Tokyo, Sch Sci, Inst Astron, Tokyo 1810015, Japan. [Fadeyev, V.] Univ Calif Santa Cruz, Dept Phys, Santa Cruz, CA 95064 USA. [Fruchter, A. S.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Gibbons, R.; Knop, R. A.] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37240 USA. [Goobar, A.; Stanishev, V.] Univ Stockholm, Albanova Univ Ctr, S-10691 Stockholm, Sweden. [Kowalski, M.] Humboldt Univ, Inst Phys, D-12849 Berlin, Germany. [Lidman, C.] European So Observ, Santiago 19, Chile. [Morokuma, T.] Natl Astron Observ, Div Opt & Infrared Astron, Mitaka, Tokyo 1818588, Japan. [Wang, L.] Texas A&M Univ, Dept Phys, College Stn, TX 77843 USA. [Yasuda, N.] Univ Tokyo, Inst Cosm Ray Res, Kashiwa, Chiba 2778582, Japan. RP Kuznetsova, N (reprint author), Hamilton Coll, Dept Phys, Clinton, NY 13323 USA. EM nvkuznetsova@lbl.gov RI Roe, Natalie/A-8798-2012; Yasuda, Naoki/A-4355-2011; Kowalski, Marek/G-5546-2012; Stanishev, Vallery/M-8930-2013; Perlmutter, Saul/I-3505-2015; OI Stanishev, Vallery/0000-0002-7626-1181; Perlmutter, Saul/0000-0002-4436-4661; Meyers, Joshua/0000-0002-2308-4230 NR 56 TC 59 Z9 60 U1 1 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD FEB 1 PY 2008 VL 673 IS 2 BP 981 EP 998 DI 10.1086/524881 PG 18 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 266RI UT WOS:000253454300028 ER PT J AU Wojdowski, PS Liedahl, DA AF Wojdowski, Patrick S. Liedahl, Duane A. TI Constraints on the velocity and spatial distribution of helium-like ions in the wind of SMC X-1 from observations with the XMM-Newton reflection grating spectrometer SO ASTROPHYSICAL JOURNAL LA English DT Article DE line : formation; stars : winds; outflows; X-rays : binaries ID X-RAY BINARIES; LINE-INTENSITIES; CHANDRA AB We present here X-ray spectra of the HMXB SMC X-1 obtained in an observation with the XMM-Newton observatory beginning before eclipse and ending near the end of eclipse. With RGS on board XMM-Newton, we observe emission lines from hydrogen-like and helium-like ions of nitrogen, oxygen, neon, magnesium, and silicon. Although the resolution of the RGS is sufficient to resolve the helium-like n=2 -> 1 emission into three line components, only one of these components, the intercombination line, is detected in our data. The lack of flux in the forbidden lines of the helium-like triplets is explained by pumping by ultraviolet photons from the B0 star, and, from this, we set an upper limit on the distance of the emitting ions from the star. The lack of observable flux in the resonance lines of the helium-like triplets indicates a lack of enhancement due to resonance line scattering, and, from this, we derive a new observational constraint on the distribution of the wind in SMC X-1 in velocity and coordinate space. We find that the solid angle subtended by the volume containing the helium-like ions at the neutron star multiplied by the velocity dispersion of the helium-like ions must be less than 4 pi sr km s(-1). This constraint will be satisfied if the helium-like ions are located primarily in clumps distributed throughout the wind or in a thin layer along the surface of the B0 star. C1 [Wojdowski, Patrick S.] MIT, Kavli Inst Astrophys & Space Res, Cambridge, MA 02139 USA. [Liedahl, Duane A.] Lawrence Livermore Natl Lab, Dept Phys & Adv Technol, Livermore, CA 94551 USA. RP Wojdowski, PS (reprint author), Arete Assoc, Northridge, CA 91324 USA. EM pswoj@space.mit.edu NR 17 TC 2 Z9 2 U1 0 U2 2 PU UNIV CHICAGO PRESS PI CHICAGO PA 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD FEB 1 PY 2008 VL 673 IS 2 BP 1023 EP 1032 DI 10.1086/524884 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 266RI UT WOS:000253454300032 ER PT J AU Fan, ZH Liu, SM Wang, JM Fryer, CL Li, H AF Fan, Zhong-Hui Liu, Siming Wang, Jian-Min Fryer, Christopher L. Li, Hui TI Stochastic acceleration in the western hot spot of Pictor A SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE acceleration of particles; galaxies : individual (Pictor A); galaxies : jets radiation; mechanisms : nonthermal ID X-RAY JET; II RADIO-SOURCES; PARTICLE-ACCELERATION; SYNCHROTRON LOSSES; CYGNUS-A; CHANDRA; GALAXIES; ELECTRONS; SPECTRUM; COMPTON AB Chandra's high-resolution observations of radio galaxies require a revisit of the relevant electron acceleration processes. Although the diffusive shock particle acceleration model may explain spectra of spatially unresolved sources, it encounters difficulties in explaining the structure and spectral properties of recently discovered Chandra X-ray features in several low-power radio sources. We argue that these observations strongly suggest stochastic electron acceleration by magnetized turbulence, and show that the simplest stochastic particle acceleration model with energy-independent acceleration and escape timescales can overcome most of these difficulties. We use the bright core of the western hot spot of Pictor A as an example to demonstrate the model characteristics, which may be tested with high-energy observations. C1 [Fan, Zhong-Hui; Wang, Jian-Min] Chinese Acad Sci, Inst High Energy Phys, Key Lab Particle Astrophys, Beijing 100049, Peoples R China. [Liu, Siming; Fryer, Christopher L.; Li, Hui] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Fryer, Christopher L.] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. RP Fan, ZH (reprint author), Chinese Acad Sci, Inst High Energy Phys, Key Lab Particle Astrophys, 19B Yuquan Rd, Beijing 100049, Peoples R China. EM zhfan@ihep.ac.cn; liusm@lanl.gov; wangjm@ihep.ac.cn; clfreyer@lanl.gov; hli@lanl.gov RI liu, siming/B-5389-2011 NR 30 TC 6 Z9 6 U1 0 U2 2 PU UNIV CHICAGO PRESS PI CHICAGO PA 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD FEB 1 PY 2008 VL 673 IS 2 BP L139 EP L142 DI 10.1086/528372 PG 4 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 291YI UT WOS:000255233000009 ER PT J AU Coleman, BK Destaillats, H Hodgson, AT Nazaroff, WW AF Coleman, Beverly K. Destaillats, Hugo Hodgson, Alfred T. Nazaroff, William W. TI Ozone consumption and volatile byproduct formation from surface reactions with aircraft cabin materials and clothing fabrics SO ATMOSPHERIC ENVIRONMENT LA English DT Article DE cabin air quality; indoor chemistry; ozone deposition; surfaces; volatile byproducts; skin oil ID INDOOR AIR-QUALITY; INITIATED CHEMISTRY; ORGANIC-COMPOUNDS; REMOVAL; RATES; EMISSIONS; DECOMPOSITION; ENVIRONMENTS; VELOCITIES; EXPOSURES AB We measured ozone consumption and byproduct formation on materials commonly found in aircraft cabins at flight-relevant conditions. Two series of small-chamber experiments were conducted, with most runs at low relative humidity (10%) and high air-exchange rate (similar to 20 h(-1)). New and used cabin materials (seat fabric, carpet, and plastic) and laundered and worn clothing fabrics (cotton, polyester, and wool) were studied. We measured ozone deposition to many material samples, and we measured ozone uptake and primary and secondary emissions of volatile organic compounds (VOCs) from a subset of samples. Deposition velocities ranged from 0.06 to 0.54 cm s(-1). Emissions of VOCs were higher with ozone than without ozone in every case. The most commonly detected secondary emissions were C-1 through C-10 saturated aldehydes and the squalene oxidation products 6-methyl-5-hepten-2-one and acetone. For the compounds measured, summed VOC emission rates in the presence of 55-128 ppb (residual level) ozone ranged from 1.0 to 8.9 mu mol h(-1) m(-2). Total byproduct yield ranged from 0.07 to 0.24 moles of product volatilized per mole of ozone consumed. Results were used to estimate the relative contribution of different materials to ozone deposition and byproduct emissions in a typical aircraft cabin. The dominant contributor to both was clothing fabrics, followed by seat fabric. Results indicate that ozone reactions with surfaces substantially reduce the ozone concentration in the cabin but also generate volatile byproducts of potential concern for the health and comfort of passengers and crew. (C) 2007 Elsevier Ltd. All rights reserved. C1 [Coleman, Beverly K.; Nazaroff, William W.] Univ Calif Berkeley, Dept Civil & Environm Engn, Berkeley, CA 94720 USA. [Destaillats, Hugo; Hodgson, Alfred T.] Univ Calif Berkeley, Lawrence Berkeley Lab, Environ Energy Technol Div, Indoor Environm Dept, Berkeley, CA 94720 USA. [Destaillats, Hugo] Arizona State Univ, Dept Civil & Environm Engn, Tempe, AZ 85287 USA. RP Coleman, BK (reprint author), Univ Calif Berkeley, Dept Civil & Environm Engn, Berkeley, CA 94720 USA. EM BKColeman@lbl.gov RI Nazaroff, William/C-4106-2008; Destaillats, Hugo/B-7936-2013 OI Nazaroff, William/0000-0001-5645-3357; NR 32 TC 71 Z9 71 U1 5 U2 37 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1352-2310 J9 ATMOS ENVIRON JI Atmos. Environ. PD FEB PY 2008 VL 42 IS 4 BP 642 EP 654 DI 10.1016/j.atmosenv.2007.10.001 PG 13 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA 270BC UT WOS:000253693800004 ER PT J AU Pan, L Carmichael, GR Adhikary, B Tang, YH Streets, D Woo, JH Friedli, HR Radke, LF AF Pan, Li Carmichael, Gregory R. Adhikary, Bhupesh Tang, Youhua Streets, David Woo, Jung-Hun Friedli, Hans R. Radke, Lawrence F. TI A regional analysis of the fate and transport of mercury in East Asia and an assessment of major uncertainties SO ATMOSPHERIC ENVIRONMENT LA English DT Article DE mercury; STEM-Hg model simulation; East Asia; budget; uncertainties ID TOKYO METROPOLITAN-AREA; DRY DEPOSITION FLUXES; ATMOSPHERIC MERCURY; ELEMENTAL MERCURY; RATE CONSTANTS; INITIATED REACTIONS; HYDROGEN-PEROXIDE; AQUEOUS-SOLUTIONS; MODEL DEVELOPMENT; GASEOUS MERCURY AB The fate and transport of mercury in East Asia is evaluated using the Sulfur Transport and dEposition Model (STEM)Hg 3-D model. The model calculates mercury transport, transformation and deposition in East Asia during April 2001, the period of the ACE-Asia field campaign. Model predictions of dry and wet deposition are compared with the observations from 10 sampling sites in Japan. The model results are consistent with the observations, but tend to over-predict dry deposition. Sensitivity analysis of predicted results to uncertainties in the mercury reaction rates suggests that the oxidation of Hg-0 to Hg(II) in the gas phase is the dominant pathway for atmospheric mercury removal processes. Simulation based on the most recently published reaction rate constants for gas phase oxidation of Hg-0 to Hg(II) overestimates the production of Hg(II) in the gas phase. The regional mercury budget is calculated which shows that most of the reactive gas phase mercury (RGM) and particulate mercury (Hg-p) are deposited around the source region while 28.5 Mg of Hg-0 is exported out of East Asia during April 2001. The sensitivity analysis in the regional Hg budget to major uncertainties associated with Hg emission estimates and Hg chemistry are also evaluated. (c) 2007 Elsevier Ltd. All rights reserved. C1 [Pan, Li; Carmichael, Gregory R.; Adhikary, Bhupesh; Tang, Youhua] Univ Iowa, Ctr Global & Reg Environm Res, Iowa City, IA 52242 USA. [Streets, David] Argonne Natl Lab, Argonne, IL 60439 USA. [Woo, Jung-Hun] NESCAUM, Boston, MA 02111 USA. [Friedli, Hans R.; Radke, Lawrence F.] Natl Ctr Atmospher Res, Boulder, CO 80307 USA. RP Pan, L (reprint author), Univ Iowa, Ctr Global & Reg Environm Res, Iowa City, IA 52242 USA. EM lpan@cgrer.uiowa.edu RI Pan, Li/G-1327-2012; Tang, Youhua/D-5205-2016; OI Tang, Youhua/0000-0001-7089-7915; Streets, David/0000-0002-0223-1350 NR 64 TC 18 Z9 22 U1 1 U2 15 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1352-2310 J9 ATMOS ENVIRON JI Atmos. Environ. PD FEB PY 2008 VL 42 IS 6 BP 1144 EP 1159 DI 10.1016/j.atmosenv.2007.10.045 PG 16 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA 277NK UT WOS:000254219800007 ER PT J AU Vogler, AJ Driebe, EM Lee, J Auerbach, RK Allender, CJ Stanley, M Kubota, K Andersen, GL Radnedge, L Worsham, PL Keim, P Wagner, DM AF Vogler, Amy J. Driebe, Elizabeth M. Lee, Judy Auerbach, Raymond K. Allender, Christopher J. Stanley, Miles Kubota, Kristy Andersen, Gary L. Radnedge, Lyndsay Worsham, Patricia L. Keim, Paul Wagner, David M. TI Assays for the rapid and specific identification of North American Yersinia pestis and the common laboratory strain CO92 SO BIOTECHNIQUES LA English DT Article ID COMPLETE GENOME SEQUENCE; NUMBER TANDEM REPEATS; BACILLUS-ANTHRACIS; PNEUMONIC PLAGUE; EVOLUTION; GENE AB We present TaqMan-minor groove binding (MGB) assays for an SNP that separates the Yersinia pestis strain CO92 from all other strains and for another SNP that separates North American strains from all other global strains. C1 [Vogler, Amy J.; Driebe, Elizabeth M.; Lee, Judy; Auerbach, Raymond K.; Allender, Christopher J.; Stanley, Miles; Keim, Paul; Wagner, David M.] No Arizona Univ, Dept Biol Sci, Flagstaff, AZ 86011 USA. [Kubota, Kristy] Ctr Dis Control & Prevent, Ft Collins, CO USA. [Andersen, Gary L.] Lawrence Berkeley Natl Lab, Berkeley, CA USA. [Radnedge, Lyndsay] Lawrence Livermore Natl Lab, Livermore, CA USA. [Worsham, Patricia L.] USA, Med Res Inst Infect Dis, Frederick, MD USA. RP Wagner, DM (reprint author), No Arizona Univ, Dept Biol Sci, Box 5640, Flagstaff, AZ 86011 USA. EM Dave.Wagner@nau.edu RI Wagner, David/A-5125-2010; Keim, Paul/A-2269-2010; Andersen, Gary/G-2792-2015 OI Andersen, Gary/0000-0002-1618-9827 FU NIAID NIH HHS [1R15-AI070183-01, R15 AI070183, R15 AI070183-01] NR 21 TC 13 Z9 13 U1 0 U2 2 PU BIOTECHNIQUES OFFICE PI NEW YORK PA 52 VANDERBILT AVE, NEW YORK, NY 10017 USA SN 0736-6205 J9 BIOTECHNIQUES JI Biotechniques PD FEB PY 2008 VL 44 IS 2 BP 201 EP + DI 10.2144/000112701 PG 4 WC Biochemical Research Methods; Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 269AB UT WOS:000253620800015 PM 18330347 ER PT J AU Templeton, DC Nadeau, RM Burgmann, R AF Templeton, Dennise C. Nadeau, Robert M. Burgmann, Roland TI Behavior of repeating earthquake sequences in central California and the implications for subsurface fault creep SO BULLETIN OF THE SEISMOLOGICAL SOCIETY OF AMERICA LA English DT Article ID SAN-ANDREAS FAULT; CALAVERAS FAULT; HAYWARD FAULT; ASEISMIC SLIP; GEODETIC DATA; PARKFIELD; MICROEARTHQUAKES; RECURRENCE; JAPAN; ZONE AB Repeating earthquakes (REs) are sequences of events that have nearly identical waveforms and are interpreted to represent fault asperities driven to failure by loading from aseismic creep on the surrounding fault surface at depth. We investigate the occurrence of these REs along faults in central California to determine which faults exhibit creep and the spatiotemporal distribution of this creep. At the juncture of the San Andreas and southern Calaveras-Paicines faults, both faults as well as a smaller secondary fault, the Quien Sabe fault, are observed to produce REs over the observation period of March 1984 through May 2005. REs in this area reflect a heterogeneous creep distribution along the fault plane with significant variations in time. Cumulative slip over the observation period at individual sequence locations is determined to range from 5.5-58.2 cm on the San Andreas fault, from 4.8-14.1 cm on the southern Calaveras-Paicines fault, and from 4.9-24.8 cm on the Quien Sabe fault. Creep at depth appears to mimic the behaviors seen for creep on the surface in that evidence of steady slip, triggered slip, and episodic slip phenomena are also observed in the RE sequences. For comparison, we investigate the occurrence of REs west of the San Andreas fault within the southern Coast Range. Events within these RE sequences occurred only minutes to weeks apart from each other and then did not repeat again over the observation period, suggesting that REs in this area are not produced by steady aseismic creep of the surrounding fault surface. C1 [Templeton, Dennise C.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Nadeau, Robert M.; Burgmann, Roland] Univ Calif Berkeley, Berkeley Seismolog Lab, Berkeley, CA 94720 USA. RP Templeton, DC (reprint author), Lawrence Livermore Natl Lab, 700 E Ave, Livermore, CA 94550 USA. RI Templeton, Dennise/J-8254-2015 OI Templeton, Dennise/0000-0003-0598-7273 NR 45 TC 22 Z9 26 U1 1 U2 7 PU SEISMOLOGICAL SOC AMER PI ALBANY PA 400 EVELYN AVE, SUITE 201, ALBANY, CA 94706-1375 USA SN 0037-1106 EI 1943-3573 J9 B SEISMOL SOC AM JI Bull. Seismol. Soc. Amer. PD FEB PY 2008 VL 98 IS 1 BP 52 EP 65 DI 10.1785/0120070026 PG 14 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 267FF UT WOS:000253494200004 ER PT J AU Stankova, J Bilek, SL Rowe, CA Aster, RC AF Stankova, Jana Bilek, Susan L. Rowe, Charlotte A. Aster, Richard C. TI Characteristics of the October 2005 microearthquake swarm and reactivation of similar event seismic swarms over decadal time periods near Socorro, New Mexico SO BULLETIN OF THE SEISMOLOGICAL SOCIETY OF AMERICA LA English DT Article ID LONG VALLEY CALDERA; RIO-GRANDE RIFT; WESTERN UNITED-STATES; CAMPI-FLEGREI CALDERA; MAGMA BODY; EARTHQUAKE SWARM; TRIGGERED SEISMICITY; VELOCITY VARIATIONS; FARALLON SLAB; CALIFORNIA AB Seismicity in the Rio Grande rift in central New Mexico, Southwestern United States, has been dominated by microearthquakes occurring above the midcrustal Socorro magma body (SMB) for at least the past century. The SMB is a sill-like feature >= 3400 km(2) in area, with a top surface at 19-km depth and centered below the inner rift half-graben system. A recent swarm of microearthquakes above the magma body began on 20 October 2005. The activity intensified toward 30 October 2005, with the largest event being a shallow felt local magnitude (M-L) 2.4 earthquake at 02:57:35 (UTC). Seismicity increased in the region following this event, with over 1600 earthquakes detectable at a minimum of one local seismic station during the subsequent month. Seismic waveforms for the earthquakes in this sequence are remarkably similar, implying consistently similar location and faulting geometry. The time-space distribution of earthquakes indicates that this sequence is highly swarmlike, in contrast to tectonic mainshock-aftershock sequences. Given the local tectonic setting and shallow (<8 km) depth of individual events above the SMB, a likely explanation for the Socorro earthquake sequence is fluid flow- or pressure-induced triggering associated with the evolution of the SMB. Swarms such as the 2005 sequence are not uncommon in this area (e.g., prominent previous sequences occurred in May and July of 1983). Here we characterize the 2005 earthquake sequence by presenting composite focal mechanisms, magnitude estimates, and high-precision relative locations based on waveform cross-correlation techniques that capitalize on the similar waveforms. A new waveform scanning technique identifies over 1600 small similar earthquakes during this period from continuous seismic records. Waveforms and locations are also observed to be similar between the 2005 and 1983 sequences, suggesting consistency in source location, geometry, and thus mechanism over decadal time scales. C1 [Stankova, Jana; Bilek, Susan L.; Aster, Richard C.] New Mexico Inst Min & Technol, Earth & Envrionm Sci Dept, Socorro, NM 87801 USA. [Rowe, Charlotte A.] Los Alamos Natl Lab, EES 11, Los Alamos, NM 87545 USA. RP Stankova, J (reprint author), New Mexico Inst Min & Technol, Earth & Envrionm Sci Dept, 801 Leroy Pl, Socorro, NM 87801 USA. EM janas@nmt.edu RI Aster, Richard/E-5067-2013; OI Aster, Richard/0000-0002-0821-4906; Rowe, Charlotte/0000-0001-5803-0147 NR 65 TC 13 Z9 15 U1 0 U2 6 PU SEISMOLOGICAL SOC AMER PI EL CERRITO PA PLAZA PROFESSIONAL BLDG, SUITE 201, EL CERRITO, CA 94530 USA SN 0037-1106 J9 B SEISMOL SOC AM JI Bull. Seismol. Soc. Amer. PD FEB PY 2008 VL 98 IS 1 BP 93 EP 105 DI 10.1785/0120070108 PG 13 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 267FF UT WOS:000253494200006 ER PT J AU Walston, LJ Mullin, SJ AF Walston, Leroy J. Mullin, Stephen J. TI Variation in amount of surrounding forest habitat influences the initial orientation of juvenile amphibians emigrating from breeding ponds SO CANADIAN JOURNAL OF ZOOLOGY-REVUE CANADIENNE DE ZOOLOGIE LA English DT Article ID RANA-SYLVATICA; AMBYSTOMA-MACULATUM; MOVEMENT PATTERNS; CONSERVATION; SALAMANDERS; POPULATION; RESPONSES; SELECTION; WETLANDS; MAINE AB Juvenile dispersal is important for the persistence of amphibian populations. Previous studies have observed nonrandom orientation in juvenile amphibians emigrating from breeding ponds; however, the environmental cues associated with these movements are not well understood. We examined the emigration behavior of recently metamorphosed juveniles of three pond-breeding amphibian species from three woodland ponds. We found that juvenile small-mouthed salamanders (Ambystoma texanum (Matthes, 1855)), American toads (Bufo americanus Holbrook, 1836), and wood frogs (Rana sylvatica LeConte, 1825) exhibited nonrandom orientation upon exiting the breeding ponds. Furthermore, we found a positive relationship between captures of juvenile small-mouthed salamanders and wood frogs and width of the surrounding forest habitat, indicating that these species are selecting areas with broader forested habitat upon exiting the breeding ponds. Our results indicate that migrating juvenile amphibians may rely on direct environmental cues because the orientation of small-mouthed salamanders and wood frogs was influenced by width of the surrounding forested habitat. These observations support previous studies suggesting that maintaining forest habitat, along at least a portion of breeding ponds, is important for the persistence of amphibian populations. C1 [Walston, Leroy J.; Mullin, Stephen J.] Eastern Illinois Univ, Dept Biol Sci, Charleston, IL 61920 USA. RP Walston, LJ (reprint author), Argonne Natl Lab, Div Environm Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM lwalston@anl.gov NR 22 TC 11 Z9 11 U1 10 U2 36 PU NATL RESEARCH COUNCIL CANADA-N R C RESEARCH PRESS PI OTTAWA PA BUILDING M 55, OTTAWA, ON K1A 0R6, CANADA SN 0008-4301 J9 CAN J ZOOL JI Can. J. Zool.-Rev. Can. Zool. PD FEB PY 2008 VL 86 IS 2 BP 141 EP 146 DI 10.1139/Z07-117 PG 6 WC Zoology SC Zoology GA 283NZ UT WOS:000254644500007 ER PT J AU Antao, SM Hassan, I AF Antao, Sytle M. Hassan, Ishmael TI Gaudefroyite, Ca8Mn63+[(Bo(3))(6)(Co-3)(2)O-6]: High-temperature crystal structure SO CANADIAN MINERALOGIST LA English DT Article DE gaudefroyite; high-temperature structure; exsolution; Rietveld refinements; synchrotron radiation ID CANCRINITE; REFINEMENT AB The structural behavior of gaudefroyite, Ca8Mn63+[(BO3)(6)(CO3)(2)O-6], was determined by using Rietveld refinements based on synchrotron powder X-ray-diffraction data from 25 to 486 degrees C. The structure was also refined at 25 degrees C using synchrotron high-resolution powder X-ray-diffraction (HRPXRD) data that gave the pseudohexagonal unit-cell parameters a 10.60791(2), c 5.88603(l) angstrom, and V 573.605(2) angstrom(3) at room temperature. The expansion of the gaudefroyite structure is nearly isotropic and is caused mainly by all increase in the Cal-O3 distance. The volume change from 25 degrees to 486 degrees C is 2.2(2)%. Beyond 486 degrees C, significant changes were observed in the X-ray-diffraction traces; they indicate the formation of a minor second phase that exsolved from the host gaudefroyite. C1 [Antao, Sytle M.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Hassan, Ishmael] Univ W Indies, Dept Chem, Kingston 7, Jamaica. RP Antao, SM (reprint author), Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. EM sytle.antao@anl.gov NR 15 TC 6 Z9 6 U1 0 U2 3 PU MINERALOGICAL ASSOC CANADA PI OTTAWA PA PO BOX 78087, MERILINE POSTAL OUTLET, 1460 MERIVALE RD, OTTAWA, ONTARIO K2E 1B1, CANADA SN 0008-4476 J9 CAN MINERAL JI Can. Mineral. PD FEB PY 2008 VL 46 BP 183 EP 193 DI 10.3749/canmin.46.1.183 PN 1 PG 11 WC Mineralogy SC Mineralogy GA 288WQ UT WOS:000255017100013 ER PT J AU Acharya, CK Lane, AM Krause, TR AF Acharya, Chethan K. Lane, Alan M. Krause, Theodore R. TI Analysis of Gd level and Pt dispersion on ceria support for isobutane steam reforming SO CATALYSIS LETTERS LA English DT Article DE steam reforming; isobutane; ceria-gadolinia; platinum dispersion; propylene hydrogenation; chemisorption ID NOBLE-METAL CATALYSTS; CARBON-MONOXIDE; DOPED CERIA; N-BUTANE; OXIDATION; PD/CERIA; SURFACE; OXIDE; ADSORPTION; PLATINUM AB Ceria-supported platinum catalysts were used to produce hydrogen by isobutane steam reforming. The influence of gadolinia, as a trivalent cationic oxide (M2O3) dopant at 0-20%, is investigated here. The gadolinia content in the catalysts did not correlate well with reforming activity. The platinum dispersion ranged from 29 to 38% as measured by the propylene hydrogenation method and it did correlate well with reforming activity. C1 [Acharya, Chethan K.; Lane, Alan M.] Univ Alabama, Dept Chem & Biol Engn, Tuscaloosa, AL 35401 USA. [Krause, Theodore R.] Argonne Natl Lab, Elect Technol Program, Argonne, IL 60439 USA. RP Lane, AM (reprint author), Univ Alabama, Dept Chem & Biol Engn, Box 870203, Tuscaloosa, AL 35401 USA. EM alane@eng.ua.edu NR 23 TC 0 Z9 0 U1 1 U2 5 PU SPRINGER PI NEW YORK PA 233 SPRING STREET, NEW YORK, NY 10013 USA SN 1011-372X J9 CATAL LETT JI Catal. Lett. PD FEB PY 2008 VL 121 IS 1-2 BP 12 EP 18 DI 10.1007/s10562-007-9304-5 PG 7 WC Chemistry, Physical SC Chemistry GA 254CF UT WOS:000252563300002 ER PT J AU Lindblad, MS Keyes, BM Gedvilas, LM Rials, TG Kelley, SS AF Lindblad, Margaretha Soederqvist Keyes, Brian M. Gedvilas, Lynn M. Rials, Timothy G. Kelley, Stephen S. TI FTIR imaging coupled with multivariate analysis for study of initial diffusion of different solvents in cellulose acetate butyrate films SO CELLULOSE LA English DT Article DE cellulose acetates butyrate; diffusion rate; FTIR-imaging; Hansen solubility parameters; initial diffusion coefficients; methyl ethyl ketone; methyl isobutyl ketone; methyl propyl ketone; multivariate analysis ID POLYMER DISSOLUTION; INDUCED CRYSTALLIZATION; MIXTURES; WOOD; SPECTROSCOPY; SECTIONS; BLENDS AB Fourier transform infrared (FTIR) spectroscopic imaging was used to study the initial diffusion of different solvents in cellulose acetate butyrate (CAB) films containing different amounts of acetyl and butyryl substituents. Different solvents and solvent/non-solvent mixtures were also studied. The FTIR imaging system allowed acquisition of sequential images of the CAB films as solvent penetration proceeded without disturbing the system. The interface between the non-swollen polymer and the initial swelling front could be identified using multivariate data analysis tools. For a series of ketone solvents the initial diffusion coefficients and diffusion rates could be quantified and were found to be related to the polar and hydrogen interaction parameters in the Hansen solubility parameters of the solvents. For the solvent/non-solvent system the initial diffusion rate decreased less than linearly with the weight-percent of non-solvent present in the solution, which probably was due to the swelling characteristic of the non-solvent. For a given solvent, increasing the butyryl content of the CAB increased the initial diffusion rate. Increasing the butyryl content from 17 wt.% butyryl to 37 wt.% butyryl produced a considerably larger increase in initial diffusion rate compared to an increase in butyryl content from 37 wt.% to 50 wt.% butyryl. C1 [Lindblad, Margaretha Soederqvist; Keyes, Brian M.; Gedvilas, Lynn M.; Kelley, Stephen S.] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Rials, Timothy G.] Univ Tennessee, Forest Prod Ctr, Knoxville, TN 37996 USA. RP Lindblad, MS (reprint author), Sodra Cell AB, Varobacka 43024, Sweden. EM margaretha.soderqvist-lindblad@sodra.com NR 23 TC 4 Z9 4 U1 1 U2 21 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0969-0239 J9 CELLULOSE JI Cellulose PD FEB PY 2008 VL 15 IS 1 BP 23 EP 33 DI 10.1007/s10570-007-9173-5 PG 11 WC Materials Science, Paper & Wood; Materials Science, Textiles; Polymer Science SC Materials Science; Polymer Science GA 248ME UT WOS:000252156600003 ER PT J AU Li, J Liu, YY AF Li, Jie Liu, Yung Y. TI Particle-wave duality and coherent instability control in dense gas-solid flows SO CHEMICAL ENGINEERING SCIENCE LA English DT Article DE gas fluidization; discrete particle simulation; instability mechanisms; particle-wave duality; coherent control ID WALLED CARBON NANOTUBES; BUBBLING FLUIDIZED-BED; INTERPARTICLE FORCES; ULTRASONIC SEPARATION; PRESSURE-FLUCTUATIONS; SUSPENDED PARTICLES; COHESIVE POWDER; KINETIC-THEORY; GRANULAR FLOW; MASS-TRANSFER AB The collective effect of transport behaviors in a multibody system can either drastically enhance or deteriorate system performance depending on the nature of the internal interactions (i.e., constructive or deconstructive) and the structure established. For most powder processes, flow instability leads to poor performance. Control strategies have been attempted previously, but with limited success. The ability to drive such a system that is far from equilibrium into its "ordered" state by tuning the interactions can effectively reduce internal energy dissipation, which may lead to a technological breakthrough. By using a hybrid dynamics simulation and multiphase flow experiments, we will first elucidate two fundamental mechanisms underlying flow instabilities in a dense.-as-solid flow: nonlinear drag and collisional dissipation. Then we clarify how gas-fluidized particles exhibit "particle-wave" duality (e.g.. exhibit standing waves in a thin layer of granular bed that are driven by superimposed oscillating air, when the exciting frequencies of the oscillating air match the system's natural frequency). On this basis, we show experimentally that dense gas-fluidized granules can be synchronized into "ordered" structures by developing an adaptively exciting fluid wave. The introduction of an additional fluid wave enables the flow structures to be fine-tuned. Our method results in remarkably improved fluidization: highly expanded particulate beds with significantly suppressed gas bubble formation (for coarse particles) and channel formation (for ultra-fine powders), as has always prevailed in conventional dense gas-particle systems. By applying our methodology to several systems that are normally difficult to fluidize, we achieve unprecedented, well-controlled suspension of solids in gas flow. A scientific understanding of complex, dense gas-solid flows should enable the dispersion of solids in the gas flow to be controlled effectively. This work contributes to the basic science of dense gas-solid flows and would have impacts on powder technology, pharmaceutical manufacturing. and the optimum design of the third generation of fluidized bed reactors, such as the use of fast pyrolysis, to produce fuels from biomass and coal feedstock. Published by Elsevier Ltd. C1 [Li, Jie; Liu, Yung Y.] Argonne Natl Lab, Argonne, IL 60439 USA. RP Li, J (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM jieli@anl.gov NR 93 TC 6 Z9 6 U1 1 U2 12 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0009-2509 J9 CHEM ENG SCI JI Chem. Eng. Sci. PD FEB PY 2008 VL 63 IS 3 BP 732 EP 750 DI 10.1016/j.ces.2007.09.047 PG 19 WC Engineering, Chemical SC Engineering GA 260RK UT WOS:000253027700016 ER PT J AU Stewart, ME Anderton, CR Thompson, LB Maria, J Gray, SK Rogers, JA Nuzzo, RG AF Stewart, Matthew E. Anderton, Christopher R. Thompson, Lucas B. Maria, Joana Gray, Stephen K. Rogers, John A. Nuzzo, Ralph G. TI Nanostructured plasmonic sensors SO CHEMICAL REVIEWS LA English DT Review ID ENHANCED-RAMAN-SPECTROSCOPY; NANOSCALE OPTICAL BIOSENSOR; SHAPE-CONTROLLED SYNTHESIS; SUBWAVELENGTH HOLE ARRAYS; GOLD NANOPARTICLE PROBES; PLACE-EXCHANGE-REACTIONS; SELF-ASSEMBLED-MONOLAYER; SINGLE-MOLECULE SERS; SCATTERING SUBMICROSCOPIC PARTICLES; RESOLVED NANOSPHERE LITHOGRAPHY C1 [Stewart, Matthew E.; Anderton, Christopher R.; Thompson, Lucas B.; Rogers, John A.; Nuzzo, Ralph G.] Univ Illinois, Dept Chem, Urbana, IL 61801 USA. [Maria, Joana; Rogers, John A.; Nuzzo, Ralph G.] Univ Illinois, Dept Mat Sci & Engn, Urbana, IL 61801 USA. [Gray, Stephen K.] Argonne Natl Lab, Div Chem, Argonne, IL 60439 USA. [Gray, Stephen K.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. RP Nuzzo, RG (reprint author), Univ Illinois, Dept Chem, 1209 W Calif St, Urbana, IL 61801 USA. EM r-nuzzo@uiuc.edu RI Rogers, John /L-2798-2016; OI Thompson, Lucas/0000-0003-3805-2431 NR 485 TC 1296 Z9 1307 U1 121 U2 1103 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0009-2665 EI 1520-6890 J9 CHEM REV JI Chem. Rev. PD FEB PY 2008 VL 108 IS 2 BP 494 EP 521 DI 10.1021/cr068126n PG 28 WC Chemistry, Multidisciplinary SC Chemistry GA 262RK UT WOS:000253165500008 PM 18229956 ER PT J AU Grate, JW Egorov, OB O'Hara, MJ Devol, TA AF Grate, Jay W. Egorov, Oleg B. O'Hara, Matthew J. DeVol, Timothy A. TI Radionuclide sensors for environmental monitoring: From flow injection solid-phase absorptiometry to equilibration-based preconcentrating minicolumn sensors with radiometric detection SO CHEMICAL REVIEWS LA English DT Review ID EXTRACTION CHROMATOGRAPHIC-SEPARATIONS; SCINTILLATION PROXIMITY ASSAY; NUCLEAR-WASTE SAMPLES; SEQUENTIAL INJECTION; RADIOCHEMICAL ANALYSIS; RENEWABLE MICROCOLUMNS; FLUORESCENCE DETECTION; STRIPPING ANALYSIS; AUTOMATED-ANALYSIS; AQUEOUS-SOLUTIONS C1 [Grate, Jay W.; Egorov, Oleg B.; O'Hara, Matthew J.] Pacific NW Natl Lab, Richland, WA 99352 USA. [DeVol, Timothy A.] Clemson Univ, Anderson, SC USA. RP Grate, JW (reprint author), Pacific NW Natl Lab, POB 999, Richland, WA 99352 USA. EM jwgrate@pnl.gov NR 100 TC 32 Z9 32 U1 1 U2 18 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0009-2665 J9 CHEM REV JI Chem. Rev. PD FEB PY 2008 VL 108 IS 2 BP 543 EP 562 DI 10.1021/cr068115u PG 20 WC Chemistry, Multidisciplinary SC Chemistry GA 262RK UT WOS:000253165500010 PM 18171088 ER PT J AU Grate, JW AF Grate, Jay W. TI Hydrogen-bond acidic polymers for chemical vapor sensing SO CHEMICAL REVIEWS LA English DT Review ID ACOUSTIC-WAVE SENSORS; THICKNESS-SHEAR-MODE; FUNCTIONALIZED SILICONE POLYMERS; SOLVATION ENERGY RELATIONSHIPS; QUARTZ PIEZOELECTRIC CRYSTAL; VOLATILE ORGANIC-COMPOUNDS; PARTITION-COEFFICIENTS; PATTERN-RECOGNITION; SORBENT COATINGS; SAW SENSORS C1 Pacific NW Natl Lab, Richland, WA 99352 USA. RP Grate, JW (reprint author), Pacific NW Natl Lab, POB 999, Richland, WA 99352 USA. EM jwgrate@pnl.gov NR 170 TC 126 Z9 135 U1 4 U2 39 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0009-2665 EI 1520-6890 J9 CHEM REV JI Chem. Rev. PD FEB PY 2008 VL 108 IS 2 BP 726 EP 745 DI 10.1021/cr068109y PG 20 WC Chemistry, Multidisciplinary SC Chemistry GA 262RK UT WOS:000253165500017 PM 18220425 ER PT J AU Taatjes, C AF Taatjes, Craig TI Watching the burn SO CHEMISTRY WORLD LA English DT Editorial Material C1 Sandia Natl Labs, Livermore, CA 94551 USA. RP Taatjes, C (reprint author), Sandia Natl Labs, Livermore, CA 94551 USA. NR 1 TC 0 Z9 0 U1 0 U2 3 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1473-7604 J9 CHEM WORLD-UK JI Chem. World PD FEB PY 2008 VL 5 IS 2 BP 33 EP 33 PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA 262WX UT WOS:000253180000049 ER PT J AU He, ZH Liu, ZX Shen, C Duan, SP Zhang, YC Reeves, GD AF He Zhao-Hai Liu Zhen-Xing Shen Chao Duan Su-Ping Zhang Yong-Cun Reeves, G. D. TI Identification of radial distance of plasma dispersionless injection boundary from the injection source SO CHINESE PHYSICS LETTERS LA English DT Article ID ELECTRIC-FIELDS; MODEL; SUBSTORMS; MAGNETOSPHERE; REGION AB Measurements of energetic particles obtained by the two geosynchronous satellites (1991-080 and LANL-97A) are performed to investigate the plasma injection boundary and source region during the magnetospheric substorms. The measurement method is developed to allow remote sensing of the plasma injection time and the radial distance of injection boundaries by using measured energy dispersion and modelling particle drifts within the Volland-Stern electric field and the dipole magnetic field model. The radial distance of the injection boundary deduced from a dispersion event observed by the LANL-97A satellite on 14 June 1998 is 7.1R(E), and the injection time agrees well with the substorm onset time identified by the Polar Ultraviolet Imager. The method has been applied to an event happened at 22.9 UT on 11 March 1998, when both the satellites (1991-080 and LANL-97A) observed the dispersionless character. The results indicate that the radial distance of injection source locates at 8.1R(E) at magnetotail, and particles move earthward from magnetotail into inner magnetosphere at 22.5 UT. C1 [He Zhao-Hai; Liu Zhen-Xing; Shen Chao; Duan Su-Ping; Zhang Yong-Cun] Chinese Acad Sci, Ctr Space Sci & Appl Res, Key Lab Space Weather, Beijing 100080, Peoples R China. [He Zhao-Hai; Zhang Yong-Cun] Chinese Acad Sci, Grad Univ, Beijing 100049, Peoples R China. [Reeves, G. D.] Los Alamos Natl Lab, Los Alamos, NM USA. RP He, ZH (reprint author), Chinese Acad Sci, Ctr Space Sci & Appl Res, Key Lab Space Weather, Beijing 100080, Peoples R China. EM he_zh@cssar.ac.cn RI Reeves, Geoffrey/E-8101-2011 OI Reeves, Geoffrey/0000-0002-7985-8098 NR 18 TC 0 Z9 1 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0256-307X J9 CHINESE PHYS LETT JI Chin. Phys. Lett. PD FEB PY 2008 VL 25 IS 2 BP 783 EP 786 PG 4 WC Physics, Multidisciplinary SC Physics GA 264UT UT WOS:000253316600117 ER PT J AU Misulovin, Z Schwartz, YB Li, XY Kahn, TG Gause, M MacArthur, S Fay, JC Eisen, MB Pirrotta, V Biggin, MD Dorsett, D AF Misulovin, Ziva Schwartz, Yuri B. Li, Xiao-Yong Kahn, Tatyana G. Gause, Maria MacArthur, Stewart Fay, Justin C. Eisen, Michael B. Pirrotta, Vincenzo Biggin, Mark D. Dorsett, Dale TI Association of cohesin and Nipped-B with transcriptionally active regions of the Drosophila melanogaster genome SO CHROMOSOMA LA English DT Article ID SISTER-CHROMATID COHESION; DE-LANGE-SYNDROME; XENOPUS EGG EXTRACTS; BITHORAX COMPLEX; SACCHAROMYCES-CEREVISIAE; GENE-EXPRESSION; SILENT CHROMATIN; FISSION YEAST; ABDOMINAL-A; IN-VITRO AB The cohesin complex is a chromosomal component required for sister chromatid cohesion that is conserved from yeast to man. The similarly conserved Nipped-B protein is needed for cohesin to bind to chromosomes. In higher organisms, Nipped-B and cohesin regulate gene expression and development by unknown mechanisms. Using chromatin immunoprecipitation, we find that Nipped-B and cohesin bind to the same sites throughout the entire non-repetitive Drosophila genome. They preferentially bind transcribed regions and overlap with RNA polymerase II. This contrasts sharply with yeast, where cohesin binds almost exclusively between genes. Differences in cohesin and Nipped-B binding between Drosophila cell lines often correlate with differences in gene expression. For example, cohesin and Nipped-B bind the Abd-B homeobox gene in cells in which it is transcribed, but not in cells in which it is silenced. They bind to the Abd-B transcription unit and downstream regulatory region and thus could regulate both transcriptional elongation and activation. We posit that transcription facilitates cohesin binding, perhaps by unfolding chromatin, and that Nipped-B then regulates gene expression by controlling cohesin dynamics. These mechanisms are likely involved in the etiology of Cornelia de Lange syndrome, in which mutation of one copy of the NIPBL gene encoding the human Nipped-B ortholog causes diverse structural and mental birth defects. C1 [Misulovin, Ziva; Gause, Maria; Dorsett, Dale] St Louis Univ, Sch Med, Edward A Doisy Dept Biochem & Mol Biol, St Louis, MO 63104 USA. [Schwartz, Yuri B.; Kahn, Tatyana G.; Pirrotta, Vincenzo] Rutgers State Univ, Dept Mol Biol & Biochem, Piscataway, NJ 08854 USA. [Li, Xiao-Yong; MacArthur, Stewart; Eisen, Michael B.; Biggin, Mark D.] Lawrence Berkeley Lab, Genom Div, Berkeley Drosophila Transcript Network Project, Berkeley, CA 94720 USA. [Fay, Justin C.] Washington Univ, Sch Med, Dept Genet, St Louis, MO 63108 USA. [Eisen, Michael B.] Univ Calif Berkeley, Dept Mol & Cell Biol, Ctr Intergrat Genom, Berkeley, CA 94720 USA. RP Dorsett, D (reprint author), St Louis Univ, Sch Med, Edward A Doisy Dept Biochem & Mol Biol, St Louis, MO 63104 USA. EM dorsettd@slu.edu RI Dorsett, Dale/A-8197-2009; OI Dorsett, Dale/0000-0002-0507-2762; Eisen, Michael/0000-0002-7528-738X FU NICHD NIH HHS [P01 HD052860, P01 HD052860-010003, P01HD052860]; NIGMS NIH HHS [R01 GM055683, R01 GM055683-09, R01 GM070444, R01GM055683, R01GM070444] NR 62 TC 137 Z9 139 U1 0 U2 6 PU SPRINGER PI NEW YORK PA 233 SPRING STREET, NEW YORK, NY 10013 USA SN 0009-5915 J9 CHROMOSOMA JI Chromosoma PD FEB PY 2008 VL 117 IS 1 BP 89 EP 102 DI 10.1007/s00412-007-0129-1 PG 14 WC Biochemistry & Molecular Biology; Genetics & Heredity SC Biochemistry & Molecular Biology; Genetics & Heredity GA 252AU UT WOS:000252418000008 PM 17965872 ER PT J AU Yakes, BJ Lipert, RJ Bannantine, JP Porter, MD AF Yakes, Betsy Jean Lipert, Robert J. Bannantine, John P. Porter, Marc D. TI Detection of Mycobacterium avium subsp paratuberculosis by a sonicate immunoassay based on surface-enhanced Raman scattering SO CLINICAL AND VACCINE IMMUNOLOGY LA English DT Article ID JOHNES-DISEASE; FECAL CULTURE; BOVINE-PARATUBERCULOSIS; MONOCLONAL-ANTIBODIES; IMMUNOGOLD LABELS; PARA-TUBERCULOSIS; RAPID DETECTION; NANOPARTICLES; INFECTION; DIAGNOSIS AB A sandwich immunoassay for the rapid, low-level detection of Mycobacterium avium subsp. paratuberculosis has been developed. M. avium subsp. paratuberculosis is the causative agent of Johne's disease in cattle, and one of the major obstacles in controlling the spread of this disease is the inability to rapidly detect small amounts of bacteria or other diagnostic markers shed during the subclinical stage of infection. This paper details the development and performance of an assay for sonicated M. avium subsp. paratuberculosis lysate that is based on surface-enhanced Raman scattering (SERS). There are two key components of the assay: (i) an immobilized layer of monoclonal antibodies that target a surface protein on the microorganism; and (ii) extrinsic Raman labels (ERLs) that are designed to selectively bind to captured proteins and produce large SERS signals. By correlating the number of M. avium subsp. paratuberculosis bacilli present prior to sonication to the amount of total protein in the resulting sonicate, the detection limit determined for total protein can be translated to the microorganism concentration. These findings yield detection limits of 100 and 200 ng/ml ( estimated to be 500 and 1,000 M. avium subsp. paratuberculosis bacilli/ml) for sonicate spiked in phosphate buffer and sonicate spiked in whole milk, respectively. Moreover, the time required to complete the assay, which includes sample preparation, antigen extraction, ERL incubation, and readout, is less than 24 h. The potential for incorporation of this novel assay into diagnostic laboratories is also briefly discussed. C1 [Yakes, Betsy Jean; Lipert, Robert J.; Porter, Marc D.] Iowa State Univ, Inst Combinatorial Discovery, Ames, IA 50011 USA. [Yakes, Betsy Jean; Lipert, Robert J.; Porter, Marc D.] US DOE, Ames Lab, Dept Chem, Ames, IA 50011 USA. [Yakes, Betsy Jean; Lipert, Robert J.; Porter, Marc D.] US DOE, Ames Lab, Dept Chem & Biol Engn, Ames, IA 50011 USA. [Bannantine, John P.] USDA ARS, Natl Anim Dis Ctr, Bacterial Dis Livestock Res Unit, Ames, IA 50010 USA. RP Porter, MD (reprint author), Univ Utah, Dept Chem, Salt Lake City, UT 84108 USA. EM marc.porter@utah.edu RI Lipert, Robert/A-8571-2009; Yakes, Betsy/K-2646-2012; OI Bannantine, John/0000-0002-5692-7898 FU Institute for Combinatorial Discovery of Iowa State University [CEROS/DARPA]; U. S. Department of Energy by Iowa State University [DE-AC0207CH11358]; USDA-NRI-CAP Johne's Disease Integrated Program; USDA's Agricultural Research Service FX We acknowledge Jeremy Driskell for helpful conversations.; This work was supported by the Institute for Combinatorial Discovery of Iowa State University and by a grant through the CEROS/DARPA. The Ames Laboratory is operated for the U. S. Department of Energy by Iowa State University under contract no. DE-AC0207CH11358. We also acknowledge support from the USDA-NRI-CAP Johne's Disease Integrated Program to J.P.B. as well as support from the USDA's Agricultural Research Service. NR 68 TC 38 Z9 39 U1 3 U2 30 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 1556-6811 J9 CLIN VACCINE IMMUNOL JI Clin. Vaccine Immunol. PD FEB PY 2008 VL 15 IS 2 BP 227 EP 234 DI 10.1128/CVI.00334-07 PG 8 WC Immunology; Infectious Diseases; Microbiology SC Immunology; Infectious Diseases; Microbiology GA 340SZ UT WOS:000258666600008 PM 18077613 ER PT J AU Yakes, BJ Lipert, RJ Bannantine, JP Porter, MD AF Yakes, Betsy Jean Lipert, Robert J. Bannantine, John P. Porter, Marc D. TI Impact of protein shedding on detection of Mycobacterium avium subsp paratuberculosis by a whole-cell immunoassay incorporating surface-enhanced Raman scattering SO CLINICAL AND VACCINE IMMUNOLOGY LA English DT Article ID MEDIATED CAPTURE PCR; RAPID DETECTION; JOHNES-DISEASE; FECAL CULTURE; CATTLE; NANOPARTICLES; SPECTROSCOPY; DIAGNOSIS; INFECTION; TESTS AB The etiological agent of Johne's disease is Mycobacterium avium subsp. paratuberculosis. Controlling the spread of this disease is hindered by the lack of sensitive, selective, and rapid detection methods for M. avium subsp. paratuberculosis. By using a recently optimized sandwich immunoassay (B. J. Yakes, R. J. Lipert, J. P. Bannantine, and M. D. Porter, Clin. Vaccine Immunol. 15: 227-234, 2008), which incorporates a new monoclonal antibody for the selective capture and labeling of M. avium subsp. paratuberculosis and surface-enhanced Raman scattering for sensitive readout, detection limits of similar to 630 and similar to 740 M. avium subsp. paratuberculosis cells/ml are achieved in phosphate-buffered saline and whole milk samples, respectively, after spiking with heat-treated M. avium subsp. paratuberculosis. Surprisingly, these detection limits are 3 orders of magnitude lower than expected based on theoretical predictions. Experiments designed to determine the origin of the improvement revealed that the major membrane protein targeted by the monoclonal antibody was present in the sample suspensions as shed protein. This finding indicates that the capture and labeling of shed protein function as a facile amplification strategy for lowering the limit of detection for M. avium subsp. paratuberculosis that may also be applicable to the design of a wide range of highly sensitive assays for other cells and viruses. C1 [Yakes, Betsy Jean; Lipert, Robert J.; Porter, Marc D.] Iowa State Univ, Inst Combinatorial Discovery, Ames, IA 50011 USA. [Yakes, Betsy Jean; Lipert, Robert J.; Porter, Marc D.] US DOE, Ames Lab, Dept Chem, Ames, IA 50011 USA. [Yakes, Betsy Jean; Lipert, Robert J.; Porter, Marc D.] US DOE, Ames Lab, Dept Chem & Biol Engn, Ames, IA 50011 USA. [Bannantine, John P.] USDA ARS, Natl Anim Dis Ctr, Bacterial Dis Livestock Res Unit, Ames, IA 50010 USA. RP Porter, MD (reprint author), Univ Utah, Dept Chem, Salt Lake City, UT 84108 USA. EM marc.porter@utah.edu RI Lipert, Robert/A-8571-2009; Yakes, Betsy/K-2646-2012; OI Bannantine, John/0000-0002-5692-7898 FU Institute for Combinatorial Discovery of Iowa State University [CEROS/DARPA]; U. S. Department of Energy by Iowa State University [DE-AC02-07CH11358]; USDA-NRI-CAP JDIP program; USDA's Agricultural Research Service FX We acknowledge Rachel Millen for expert assistance in obtaining the SEM images, Jeremy Driskell for valuable discussions, and the insightful input of one of the reviewers.; This work was supported by the Institute for Combinatorial Discovery of Iowa State University and by a grant from CEROS/DARPA. The Ames Laboratory is operated for the U. S. Department of Energy by Iowa State University under contract no. DE-AC02-07CH11358. We also acknowledge support from the USDA-NRI-CAP JDIP program to J.P.B. as well as support from the USDA's Agricultural Research Service. NR 57 TC 19 Z9 19 U1 0 U2 9 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 1556-6811 J9 CLIN VACCINE IMMUNOL JI Clin. Vaccine Immunol. PD FEB PY 2008 VL 15 IS 2 BP 235 EP 242 DI 10.1128/CVI.00335-07 PG 8 WC Immunology; Infectious Diseases; Microbiology SC Immunology; Infectious Diseases; Microbiology GA 340SZ UT WOS:000258666600009 PM 18077615 ER PT J AU Araujo, FC Gray, LJ AF Araujo, F. C. Gray, L. J. TI Evaluation of effective material parameters of CNT-reinforced composites via 3D BEM SO CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES LA English DT Article DE CNT-based composites; 3D BE formulations; singular and quasi-singular quadratures; subregion-by-subregion techniques; the boundary element method ID BOUNDARY-ELEMENT METHOD; 3-DIMENSIONAL GREENS-FUNCTIONS; GENERIC DOMAIN-DECOMPOSITION; CARBON NANOTUBES; SOLID MECHANICS; DEFORMATION; FORMULATION; SYSTEMS AB In recent years, carbon nanotubes (CNTs) have been widely employed to build advanced composites. In this work, a Boundary Element Method (BEM) is applied to 3D representative volume elements (RVEs) to estimate mechanical properties of CNT-based composites. To model the thin-walled nanotubes, special integration procedures for calculating nearly-strongly-singular integrals have been developed. The generic BE substructuring algorithm allows modeling complex CNT-reinforced polymers, containing any number of nanotubes of any shape (straight or curved). The subregion-by-subregion strategy, based on Krylov solvers, makes the independent generation, assembly, and storage of the many parts of the complete BE model possible. Thus, significant memory and CPU-time reductions are achieved in avoiding working with an explicit global system of equations. Further CPU-time reduction is obtained by employing a matrix-copy option for repeated subregions. Several applications will illustrate the ability of this algorithm to analyze CNT-based composites. C1 [Araujo, F. C.] Univ Fed Ouro Preto, Dept Civil Engn, Ouro Preto, MG, Brazil. [Araujo, F. C.; Gray, L. J.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Araujo, FC (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RI de Araujo, Francisco/L-9770-2014 NR 35 TC 13 Z9 13 U1 0 U2 0 PU TECH SCIENCE PRESS PI NORCROSS PA 6825 JIMMY CARTER BLVD, STE 1850, NORCROSS, GA 30071 USA SN 1526-1492 J9 CMES-COMP MODEL ENG JI CMES-Comp. Model. Eng. Sci. PD FEB PY 2008 VL 24 IS 2-3 BP 103 EP 121 PG 19 WC Engineering, Multidisciplinary; Mathematics, Interdisciplinary Applications SC Engineering; Mathematics GA 280AD UT WOS:000254396400003 ER PT J AU Magliano, JP Skowronski, JJ Britt, MA Guss, CD Forsythe, C AF Magliano, Joseph P. Skowronski, John J. Britt, M. Anne Guss, C. Dominik Forsythe, Chris TI What do you want? How perceivers use cues to make goal inferences about others SO COGNITION LA English DT Article DE goals; situation models; inference ID NARRATIVE COMPREHENSION; SITUATION MODELS; IMPRESSION-FORMATION; CONFIRMATORY BIAS; EXTREMITY BIASES; MEMORY; DIAGNOSTICITY; CONSTRUCTION; JUDGMENT; BEHAVIOR AB Variables influencing inferences about a stranger's goal during an unsolicited social interaction were explored. Experiment I developed a procedure for identifying cues. Experiments 2 and 3 assessed the relative importance of various cues (space, time, characteristics of oneself, characteristics of the stranger, and the stranger's behavior) for goal judgments. Results indicated that situational context cues informed goal judgments in ways that were consistent with diagnosticity ratings and typicality ratings of those cues. Stranger characteristics and stranger behaviors affected goal judgments more than would be expected from these quantitative measures of their informativeness. Nonetheless, the results are consistent with a mental model view that assumes perceivers monitor situational cues present during interactions and that goal inferences are guided by the informativeness of these cues. (C) 2007 Elsevier B.V. All rights reserved. C1 [Magliano, Joseph P.; Skowronski, John J.; Britt, M. Anne] No Illinois Univ, Dept Psychol, De Kalb, IL 60115 USA. [Guss, C. Dominik] Univ N Florida, Jacksonville, FL 32224 USA. [Forsythe, Chris] Sandia Natl Labs, Livermore, CA 94550 USA. RP Magliano, JP (reprint author), No Illinois Univ, Dept Psychol, De Kalb, IL 60115 USA. EM jmagliano@niu.edu NR 60 TC 4 Z9 4 U1 8 U2 16 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0010-0277 J9 COGNITION JI Cognition PD FEB PY 2008 VL 106 IS 2 BP 594 EP 632 DI 10.1016/j.cognition.2007.03.010 PG 39 WC Psychology, Experimental SC Psychology GA 254JC UT WOS:000252581900002 PM 17475232 ER PT J AU Wang, GH Clemens, NT Varghese, PL Barlow, RS AF Wang, G. -H. Clemens, N. T. Varghese, P. L. Barlow, R. S. TI Turbulent time scales in a nonpremixed turbulent jet flame by using high-repetition rate thermometry SO COMBUSTION AND FLAME LA English DT Article ID DIFFUSION FLAME; SPATIAL-RESOLUTION; DISSIPATION RATE; RAYLEIGH THERMOMETRY; THERMAL DISSIPATION; SERIES MEASUREMENTS; PASSIVE SCALAR; SHEAR FLOWS; TEMPERATURE; NOISE AB High-repetition-rate (10-kHz), single-point laser Rayleigh scattering thermometry was used to measure temperature and thermal dissipation rate fluctuations in a turbulent nonpremixed jet flame at a Reynolds number of 15,200. The measurements were made along the jet-flame centerline for downstream locations in the vicinity of the flame tip and were aimed at obtaining one-dimensional (I D) energy and dissipation spectra and estimates of the integral and Batchelor scales. The signal-to-noise ratios of the measured correlations, energy spectra, and dissipation spectra were significantly improved by using two detectors to measure redundant scattering signals from the same point, followed by computing the cross-correlation of these signals. Measurements of the integral scales show good agreement with measurements in isothermal jets except near the stoichiometric flame length, where the flame scales are smaller. These smaller scales are attributed to the state relationship between temperature and mixture fraction. The cutoff frequency of the dissipation range (i.e., the Batchelor frequency) is determined from the ID thermal dissipation spectra. The experimentally determined cutoff frequencies agree with those estimated using nonreacting jet scaling laws, provided an appropriate local Reynolds number is used that is significantly smaller than the jet exit Reynolds number. The resulting ID energy and dissipation spectra at all downstream stations collapse when properly normalized and fit well to model spectra at a Taylor Reynolds number near 55. This Reynolds number is considerably smaller than the corresponding nonreacting jet value of 150. The measured energy and dissipation spectra exhibit significant overlap at intermediate frequencies, which indicates that the largest scales of the dissipation range may be significantly influenced by the large, energy containing scales. The time-series data are also used to determine the influence of the probe resolution on the temperature variance and mean 1D thermal dissipation rate. It is shown that the resolution requirements are similar to those in nonreacting jet flows, provided the difference in the local Reynolds number is considered. (C) 2007 The Combustion Institute. Published by Elsevier Inc. All rights reserved. C1 [Wang, G. -H.; Barlow, R. S.] Sandia Natl Labs, Combust Res Facil, Livermore, CA 94550 USA. [Clemens, N. T.; Varghese, P. L.] Univ Texas Austin, Dept Aerosp Engn & Engn Mech, Austin, TX 78712 USA. RP Clemens, NT (reprint author), Sandia Natl Labs, Combust Res Facil, Livermore, CA 94550 USA. EM clemens@mail.utexas.edu OI Wang, Guanghua/0000-0002-6313-663X NR 53 TC 12 Z9 12 U1 1 U2 10 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0010-2180 J9 COMBUST FLAME JI Combust. Flame PD FEB PY 2008 VL 152 IS 3 BP 317 EP 335 DI 10.1016/j.combustflame.2007.08.010 PG 19 WC Thermodynamics; Energy & Fuels; Engineering, Multidisciplinary; Engineering, Chemical; Engineering, Mechanical SC Thermodynamics; Energy & Fuels; Engineering GA 259CK UT WOS:000252916500002 ER PT J AU Bochev, PB Gunzburger, MD AF Bochev, P. B. Gunzburger, M. D. TI A locally conservative least-squares method for Darcy flows SO COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERING LA English DT Article DE least-squares; finite-element methods; mixed methods; Darcy flow; local conservation ID FINITE-ELEMENT METHODS; PARTIAL-DIFFERENTIAL EQUATIONS; ELLIPTIC PROBLEMS; SYSTEMS AB Least-squares finite-element methods for Darcy flow offer several advantages relative to the mixed-Galerkin method: the avoidance of stability conditions between finite-element spaces, the efficiency of solving symmetric and positive definite systems, and the convenience of using standard, continuous nodal elements for all variables. However, conventional C(0) implementations conserve mass only approximately and for this reason they have found limited acceptance in applications where locally conservative velocity fields are of primary interest. In this paper, we show that a properly formulated compatible least-squares method offers the same level of local conservation as a mixed method. The price paid for gaining favourable conservation properties is that one has to give up what is arguably the least important advantage attributed to least-squares finite-element methods: one can no longer use continuous nodal elements for all variables. As an added benefit, compatible least-squares methods inherit the best computational properties of both Galerkin and mixed-Galerkin methods and, in some cases, yield identical results, while offering the advantages of not having to deal with stability conditions and yielding positive definite discrete problems. Numerical results that illustrate our findings are provided. Copyright (c) 2006 John Wiley & Sons, Ltd. C1 [Bochev, P. B.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Gunzburger, M. D.] Florida State Univ, Sch Computat Sci, Tallahassee, FL 32306 USA. RP Bochev, PB (reprint author), Sandia Natl Labs, POB 5800,MS 1110, Albuquerque, NM 87185 USA. EM pbboche@sandia.gov NR 22 TC 21 Z9 22 U1 0 U2 5 PU JOHN WILEY & SONS LTD PI CHICHESTER PA THE ATRIUM, SOUTHERN GATE, CHICHESTER PO19 8SQ, W SUSSEX, ENGLAND SN 1069-8299 J9 COMMUN NUMER METH EN JI Commun. Numer. Methods Eng. PD FEB PY 2008 VL 24 IS 2 BP 97 EP + DI 10.1002/cnm.957 PG 15 WC Engineering, Multidisciplinary; Mathematics, Interdisciplinary Applications SC Engineering; Mathematics GA 270EL UT WOS:000253703000002 ER PT J AU Araujo, FC Gray, LJ AF Araujo, F. C. Gray, L. J. TI Analysis of thin-walled structural elements via 3D standard BEM with generic substructuring SO COMPUTATIONAL MECHANICS LA English DT Article DE the boundary element method; thin-walled structural elements; singular and quasi-singular quadratures; subregion-by-subregion storage formats; structured matrix-vector products ID DOMAIN-DECOMPOSITION; FINITE-ELEMENTS; SOLID MECHANICS; FORMULATION; PLATE; CONSTRAINTS; INTEGRALS AB This paper is concerned with the application of standard 3D Boundary Element Methods to solve thin-walled structural elements (needle-like/shell-like solids). A subregion-by-subregion data structure, incorporating iterative solvers and discontinuous boundary elements, is presented. To efficiently and accurately evaluate the quasi-singular integrals, special quadrature methods are applied. In addition, structured matrix-vector products, designed to avoid the excessive number of conditional tests during solver iterations, are proposed. Numerical results for complex thin-walled BE models are validated by comparison with FEM calculations and previously published BEM analyses. C1 [Araujo, F. C.] Univ Fed Ouro Preto, Dept Civil Engn, BR-35400000 Ouro Preto, MG, Brazil. [Gray, L. J.] Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN USA. RP Araujo, FC (reprint author), Univ Fed Ouro Preto, Dept Civil Engn, BR-35400000 Ouro Preto, MG, Brazil. EM fcelio@em.ufop.br RI de Araujo, Francisco/L-9770-2014 NR 26 TC 6 Z9 6 U1 0 U2 1 PU SPRINGER PI NEW YORK PA 233 SPRING STREET, NEW YORK, NY 10013 USA SN 0178-7675 J9 COMPUT MECH JI Comput. Mech. PD FEB PY 2008 VL 41 IS 5 BP 633 EP 645 DI 10.1007/s00466-007-0220-8 PG 13 WC Mathematics, Interdisciplinary Applications; Mechanics SC Mathematics; Mechanics GA 255QC UT WOS:000252671500002 ER PT J AU Sauer, K Yano, J Yachandra, VK AF Sauer, Kenneth Yano, Junko Yachandra, Vittal K. TI X-ray spectroscopy of the photosynthetic oxygen-evolving complex SO COORDINATION CHEMISTRY REVIEWS LA English DT Review DE photosystem II; X-ray spectroscopy; water oxidation; manganese enzyme ID WATER-OXIDATION COMPLEX; ABSORPTION FINE-STRUCTURE; PHOTOSYSTEM-II MEMBRANES; PARAMAGNETIC-RES SIGNAL; EPR MULTILINE SIGNAL; MANGANESE COMPLEX; MN4CA CLUSTER; MN-CLUSTER; CRYSTAL-STRUCTURE; S-0 STATE AB Water oxidation to dioxygen in photosynthesis is catalyzed by a Mn4Ca cluster with 0 bridging in Photosystem, II (PS II) of plants, algae and cyanobacteria. A variety of spectroscopic methods have been applied to analyzing the participation of the complex. X-ray spectroscopy is particularly useful because it is element- speci fi c, and because it can reveal important structural features of the complex with high accuracy and identify the participation of Mn in the redox chemistry. Following a brief history of the application of X-ray spectroscopy to PS II, an overview of newer results will be presented and a description of the present state of our knowledge based on this approach. (c) 2007 Elsevier B.V. All rights reserved. C1 [Sauer, Kenneth; Yachandra, Vittal K.] Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Sauer, Kenneth; Yano, Junko] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94707 USA. RP Sauer, K (reprint author), Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. EM KliSauer@lbl.gov; JYano@lbl.gov; VKYachandra@lbl.gov FU NCRR NIH HHS [P41 RR008630]; NIGMS NIH HHS [R56 GM055302, R01 GM055302, R01 GM055302-11] NR 79 TC 88 Z9 91 U1 2 U2 17 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0010-8545 J9 COORDIN CHEM REV JI Coord. Chem. Rev. PD FEB PY 2008 VL 252 IS 3-4 BP 318 EP 335 DI 10.1016/j.ccr.2007.08.009 PG 18 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 262WK UT WOS:000253178500008 PM 19190720 ER PT J AU Monnard, PA DeClue, MS Ziock, HJ AF Monnard, P. -A. DeClue, M. S. Ziock, H. -J. TI Organic nano-compartments as biomimetic reactors and protocells SO CURRENT NANOSCIENCE LA English DT Review DE nanoscale bioreactors; biopolymerization; protocell; artificial cells; origin of life ID IN-VITRO COMPARTMENTALIZATION; ALPHA-AMINO-ACIDS; CRYOTRANSMISSION ELECTRON-MICROSCOPY; ASSISTED SELECTIVE POLYCONDENSATION; TRIBLOCK COPOLYMER MEMBRANES; SELF-REPRODUCING VESICLES; PEPTIDE-BOND FORMATION; DIRECTED EVOLUTION; LIPID VESICLES; NUCLEIC-ACIDS AB In recent years, nanoscale self-assembled structures have attracted ever increasing attention because of their potential to act as molecular templates for the synthesis of novel materials, delivery vehicles for therapeutic agents, and compartments defined at the molecular level that provide environmental conditions conducive to specific chemical reactions. In this review, we will focus mostly on this latter application. Amphiphiles that self-assemble to yield nano-compartments such as micelles, reverse-micelles and liposomes, have been used to build nanoscale reactors that can effect chemical reactions through spatial co-localization of the reacting species. The reacting species may include the compartment building amphiphiles themselves. These nano-compartments provide not only the conditions for the reaction to occur, but also allow the buildup of complex reaction networks by retaining primary reaction products which may in turn be capable of additional reactions. Ultimately, such complex systems could also serve as starting points for minimal artificial cells, i.e. protocells which would be highly simplified versions of biological cells and which might be engineered for specific tasks related to therapeutic and diagnostic applications. We will report on advances in the design of these chemical self-assembled systems and the challenges that still lie ahead. C1 [Monnard, P. -A.; Ziock, H. -J.] Los Alamos Natl Lab, EES 6, MS D 462, Los Alamos, NM 87545 USA. [DeClue, M. S.] Los Alamos Natl Lab, MPA MC, MS J 514, Los Alamos, NM 87545 USA. RP Monnard, PA (reprint author), Los Alamos Natl Lab, EES 6, MS D 462, POB 1663, Los Alamos, NM 87545 USA. EM pmonnard@lanl.gov NR 155 TC 10 Z9 12 U1 1 U2 21 PU BENTHAM SCIENCE PUBL LTD PI SHARJAH PA EXECUTIVE STE Y26, PO BOX 7917, SAIF ZONE, 1200 BR SHARJAH, U ARAB EMIRATES SN 1573-4137 J9 CURR NANOSCI JI Curr. Nanosci. PD FEB PY 2008 VL 4 IS 1 BP 71 EP 87 DI 10.2174/157341308783591771 PG 17 WC Biotechnology & Applied Microbiology; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Biotechnology & Applied Microbiology; Science & Technology - Other Topics; Materials Science GA 274RQ UT WOS:000254019100008 ER PT J AU Jett, JH AF Jett, James H. TI Raman spectroscopy comes to flow Cytometry SO CYTOMETRY PART A LA English DT Editorial Material DE flow cytometry; spectral analysis; Raman scattering; SERS ID MICROSCOPY; SCATTERING C1 Los Alamos Natl Lab, Biosci Div, Natl Flow Cytometry Resource, Los Alamos, NM 87545 USA. RP Jett, JH (reprint author), Los Alamos Natl Lab, Biosci Div, Natl Flow Cytometry Resource, Los Alamos, NM 87545 USA. EM jjett22@comcast.net FU NCRR NIH HHS [RR-01315] NR 12 TC 11 Z9 11 U1 0 U2 3 PU WILEY-LISS PI HOBOKEN PA DIV JOHN WILEY & SONS INC, 111 RIVER ST, HOBOKEN, NJ 07030 USA SN 1552-4922 J9 CYTOM PART A JI Cytom. Part A PD FEB PY 2008 VL 73A IS 2 BP 109 EP 110 DI 10.1002/cyto.a.20526 PG 2 WC Biochemical Research Methods; Cell Biology SC Biochemistry & Molecular Biology; Cell Biology GA 257JH UT WOS:000252794600001 PM 18186088 ER PT J AU Watson, DA Brown, LO Gaskill, DR Naivar, M Graves, SW Doorn, SK Nolan, JP AF Watson, Dakota A. Brown, Leif O. Gaskill, Daniel R. Naivar, Mark Graves, Steven W. Doorn, Stephen K. Nolan, John P. TI A flow cytometer for the measurement of Raman spectra SO CYTOMETRY PART A LA English DT Article DE multiplex; EMCCD; polychromatic; multispectral ID SURFACE-ENHANCED RAMAN; SPECTROSCOPIC TAGS; SCATTERING; NANOSTRUCTURES; NANOPARTICLES; FLUORESCENCE; SYSTEM AB Multiparameter measurements in flow cytometry are limited by the broad emission spectra of fluorescent labels. By contrast, Raman spectra are notable for their narrow spectral features. To increase the multiparameter analysis capabilities of flow cytometry, we investigated the possibility of measuring Raman signals in a flow cytometry-based system. We constructed a Raman Spectral Flow Cytometer, substituting a spectrograph and CCD detector for the traditional mirrors, optical filters, and photomultiplier tubes. Excitation at 633 nm was provided by a HeNe laser, and forward-angle light scatter is used to trigger acquisition of complete spectra from individual particles. Microspheres were labeled with nanoparticle surface enhanced Raman scattering (SERS) tags and measured using the RSFC. Fluorescence and Raman spectra from labeled microspheres were acquired using the Raman Spectral Flow Cytometer. SERS spectral intensities were dependent on integration time, laser power, and detector pixel binning. Spectra from particles labeled with one each of four different SERS tags could be distinguished by either a virtual bandpass approach using commercial flow cytometry data analysis software or by principal component analysis. Raman flow cytometry opens up new possibilities for highly multiparameter and multiplexed measurements of cells and other particles using a simple optical design and a single detector and light source. (c) 2008 International Society for Analytical Cytology. C1 [Watson, Dakota A.; Gaskill, Daniel R.; Nolan, John P.] La Jolla Bioengn Inst, La Jolla, CA 92037 USA. [Brown, Leif O.; Naivar, Mark; Graves, Steven W.; Doorn, Stephen K.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Nolan, JP (reprint author), 505 Coast Blvd S, La Jolla, CA 92037 USA. EM jnolan@ljbi.org FU NCRR NIH HHS [P41 RR01315, R21 RR020064]; NIBIB NIH HHS [R01 EB003824, R01 EB003824-03] NR 21 TC 79 Z9 80 U1 0 U2 38 PU WILEY-LISS PI HOBOKEN PA DIV JOHN WILEY & SONS INC, 111 RIVER ST, HOBOKEN, NJ 07030 USA SN 1552-4922 J9 CYTOM PART A JI Cytom. Part A PD FEB PY 2008 VL 73A IS 2 BP 119 EP 128 DI 10.1002/cyto.a.20520 PG 10 WC Biochemical Research Methods; Cell Biology SC Biochemistry & Molecular Biology; Cell Biology GA 257JH UT WOS:000252794600003 PM 18189283 ER PT J AU Blagoev, KB Goodwin, EH AF Blagoev, Krastan B. Goodwin, Edwin H. TI Telomere exchange and asymmetric segregation of chromosomes can account for the unlimited proliferative potential of ALT cell populations SO DNA REPAIR LA English DT Article DE telomere; cell senescence; proliferative potential; alternative lengthening of telomeres; ALT; cancer; modeling ID REPLICATIVE SENESCENCE; HUMAN CANCER; DYNAMICS; PROGRESSION; MECHANISM; BEHAVIOR; STRAINS; DISEASE; LENGTH AB Telomerase-negative cancer cells show increased telomere sister chromatid exchange (T-SCE) rates, a phenomenon that has been associated with an alternative lengthening of telomeres (ALT) mechanism for maintaining telomeres in this subset of cancers. Here we examine whether or not T-SCE can maintain telomeres in human cells using a combinatorial model capable of describing how telomere lengths evolve over time. Our results show that random T-SCE is unlikely to be the mechanism of telomere maintenance of ALT human cells, but that increased T-SCE rates combined with a recently proposed novel mechanism of non-random segregation of chromosomes with long telomeres preferentially into the same daughter cell during cell division can stabilize chromosome ends in ALT cancers. At the end we discuss a possible experiment that can validate the findings of this study. Published by Elsevier B.V. C1 [Blagoev, Krastan B.; Goodwin, Edwin H.] Los Alamos Natl Lab, Los Alamos, NM 87544 USA. [Blagoev, Krastan B.] MIND Inst, Albuquerque, NM 87131 USA. RP Blagoev, KB (reprint author), Natl Sci Fdn, Room 1015,4201Wilson Blvd, Arlington, VA 22230 USA. EM kblagoev@nsf.gov NR 27 TC 13 Z9 13 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1568-7864 J9 DNA REPAIR JI DNA Repair PD FEB 1 PY 2008 VL 7 IS 2 BP 199 EP 204 DI 10.1016/j.dnarep.2007.09.012 PG 6 WC Genetics & Heredity; Toxicology SC Genetics & Heredity; Toxicology GA 260SS UT WOS:000253031300009 PM 18006387 ER PT J AU Day, SM Graves, R Bielak, J Dreger, D Larsen, S Olsen, KB Pitarka, A Ramirez-Guzman, L AF Day, Steven M. Graves, Robert Bielak, Jacobo Dreger, Douglas Larsen, Shawn Olsen, Kim B. Pitarka, Arben Ramirez-Guzman, Leonardo TI Model for basin effects on long-period response spectra in southern California SO EARTHQUAKE SPECTRA LA English DT Article ID LOS-ANGELES BASIN; SEDIMENT-FILLED VALLEY; GROUND-MOTION; 3-DIMENSIONAL SIMULATION; WAVE-PROPAGATION; EFFICIENT SIMULATION; AMPLIFICATION; EARTHQUAKE; DEPTH; ACCOUNTS AB We propose a model for the effect of sedimentary basin depth on long-period response spectra. The model is based on the analysis of 3-D numerical simulations (finite element and finite difference) of long-period (2-10 s) ground motions for a suite of sixty scenario earthquakes (Mw 6.3 to Mw 7.1) within the Los Angeles basin region. We find depth to the 1.5 km/s S-wave velocity isosurface to be a suitable predictor variable, and also present alternative versions of the model based on depths to the 1.0 and 2.5 km/s isosurfaces. The resulting mean basin-depth effect is period dependent, and both smoother (as a function of period and depth) and higher in amplitude than predictions from local 1-D models. The main requirement for the use of the results in construction of attenuation relationships is determining the extent to which the basin effect, as defined and quantified in this study, is already accounted for implicitly in existing attenuation relationships, through (1) departures of the average "rock" site from our idealized reference model, and (2) correlation of basin depth with other predictor variables (such as Vs(30)). C1 [Day, Steven M.; Olsen, Kim B.] San Diego State Univ, Dept Geol Sci, San Diego, CA 92182 USA. [Graves, Robert; Pitarka, Arben] URS Corp, Pasadena, CA 91101 USA. [Bielak, Jacobo; Ramirez-Guzman, Leonardo] Carnegie Mellon Univ, Dept Civil & Environm Engn, Pittsburgh, PA 15213 USA. [Dreger, Douglas] Univ Calif Berkeley, Berkeley Seismol Lab, Berkeley, CA 94720 USA. [Larsen, Shawn] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Day, SM (reprint author), San Diego State Univ, Dept Geol Sci, San Diego, CA 92182 USA. RI Graves, Robert/B-2401-2013; pitarka, arben/K-5491-2014 NR 42 TC 48 Z9 48 U1 1 U2 7 PU EARTHQUAKE ENGINEERING RESEARCH INST PI OAKLAND PA 499 14TH ST, STE 320, OAKLAND, CA 94612-1934 USA SN 8755-2930 J9 EARTHQ SPECTRA JI Earthq. Spectra PD FEB PY 2008 VL 24 IS 1 BP 257 EP 277 DI 10.1193/1.2857545 PG 21 WC Engineering, Civil; Engineering, Geological SC Engineering GA 316FU UT WOS:000256935500011 ER PT J AU Kim, MK McCarl, BA Murray, BC AF Kim, Man-Keun McCarl, Bruce A. Murray, Brian C. TI Permanence discounting for land-based carbon sequestration SO ECOLOGICAL ECONOMICS LA English DT Article DE carbon sequestration; permanence; discount ID GREENHOUSE-GAS MITIGATION; SEQUESTERING CARBON; AGRICULTURAL LAND; US AGRICULTURE; COST; ECONOMICS; FORESTRY; MARKETS; SOILS AB One major concern regarding land-based carbon sequestration involves the issue of permanence. Sequestration may not last forever and may either be released in the future or require expenditures to maintain the practices that keep it sequestered. In this paper, we investigate the differential value of offsets in the face of impermanent characteristics by forming a price discount that equalizes the effective price per ton between a "perfect offset" and one possessing some with impermanent characteristics. We find this discount to be a function of the future needs to replace offsets (in the face of lease expiration quantity or volatilization upon activities such as timber harvest) and the magnitude of any needed maintenance costs. We investigate the magnitude of the discounts under alternative agricultural tillage and forest management cases. In those studies, we find that permanence discounts in the range of 50% are not uncommon. This means that in the market place an impermanent sequestration offset may only receive payments amounting to 50% of the market carbon price. Furthermore, we find that in the face of escalating carbon prices that offsets may prove to be worthless. (C) 2007 Elsevier B.V. All rights reserved. C1 [Kim, Man-Keun] Univ Maryland, PNNL, Joint Global Change Res Inst, College Pk, MD 20740 USA. [McCarl, Bruce A.] Texas A&M Univ, Dept Agr Econ, College Stn, TX 77843 USA. [Murray, Brian C.] Duke Univ, Nicholas Inst Environm Policy Solut, Durham, NC 27708 USA. RP Kim, MK (reprint author), Univ Maryland, PNNL, Joint Global Change Res Inst, 8400 Baltimore Ave,Ste 201, College Pk, MD 20740 USA. EM man-keun.kim@pnl.gov; mccarl@tamu.edu; brian.murray@duke.edu RI McCarl, Bruce/E-9445-2011 NR 27 TC 31 Z9 31 U1 6 U2 25 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-8009 J9 ECOL ECON JI Ecol. Econ. PD FEB 1 PY 2008 VL 64 IS 4 BP 763 EP 769 DI 10.1016/j.ecolecon.2007.04.013 PG 7 WC Ecology; Economics; Environmental Sciences; Environmental Studies SC Environmental Sciences & Ecology; Business & Economics GA 270WY UT WOS:000253752100008 ER PT J AU Rich, PM Breshears, DD White, AB AF Rich, Paul M. Breshears, David D. White, Amanda B. TI Phenology of mixed woody-herbaceous ecosystems following extreme events: Net and differential responses SO ECOLOGY LA English DT Article DE die-off; disturbance; drought; extreme events; fire; Mesita del Buey; mortality; normalized difference vegetation index; phenology; pinon; semiarid woodlands; woody and herbaceous plants ID PINYON-JUNIPER WOODLANDS; GRASSLAND/FOREST CONTINUUM; SOUTHWESTERN COLORADO; RESTORATION ECOLOGY; TALLGRASS PRAIRIE; SEMIARID WOODLAND; SPATIAL-PATTERN; SOLAR-RADIATION; CLIMATE-CHANGE; SOIL-MOISTURE AB Ecosystem responses to key climate drivers are reflected in phenological dynamics such as the timing and degree of "green-up'' that integrate responses over spatial scales from individual plants to ecosystems. This integration is clearest in ecosystems dominated by a single species or life form, such as seasonally dynamic grasslands or more temporally constant evergreen forests. Yet many ecosystems have substantial contribution of cover from both herbaceous and woody evergreen plants. Responses of mixed woody herbaceous ecosystems to climate are of increasing concern due to their extensive nature, the potential for such systems to yield more complex responses than those dominated by a single life form, and projections that extreme climate and weather events will increase in frequency and intensity with global warming. We present responses of a mixed woody-herbaceous ecosystem type to an extreme event: regional-scale pinon pine mortality following an extended drought and the subsequent herbaceous green-up following the first wet period after the drought. This example highlights how reductions in greenness of the slower, more stable evergreen woody component can rapidly be offset by increases associated with resources made available to the relatively more responsive herbaceous component. We hypothesize that such two-phase phenological responses to extreme events are characteristic of many mixed woody herbaceous ecosystems. C1 [Rich, Paul M.] Creekside Ctr Earth Observat, Menlo Pk, CA 94025 USA. [Breshears, David D.] Univ Arizona, Sch Nat Resources, Inst Study Planet Earth, Tucson, AZ 85721 USA. [Breshears, David D.] Univ Arizona, Dept Ecol & Evolutionary Biol, Tucson, AZ 85721 USA. [White, Amanda B.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Rich, PM (reprint author), Creekside Ctr Earth Observat, 27 Bishop Lane, Menlo Pk, CA 94025 USA. EM paul@creeksidescience.com RI Breshears, David/B-9318-2009 OI Breshears, David/0000-0001-6601-0058 NR 61 TC 48 Z9 52 U1 2 U2 38 PU ECOLOGICAL SOC AMER PI WASHINGTON PA 1707 H ST NW, STE 400, WASHINGTON, DC 20006-3915 USA SN 0012-9658 J9 ECOLOGY JI Ecology PD FEB PY 2008 VL 89 IS 2 BP 342 EP 352 DI 10.1890/06-2137.1 PG 11 WC Ecology SC Environmental Sciences & Ecology GA 276EN UT WOS:000254124200007 PM 18409424 ER PT J AU Cook, BD Bolstad, PV Martin, JG Heinsch, FA Davis, KJ Wang, WG Desai, AR Teclaw, RM AF Cook, Bruce D. Bolstad, Paul V. Martin, Jonathan G. Heinsch, Faith Ann Davis, Kenneth J. Wang, Weiguo Desai, Ankur R. Teclaw, Ron M. TI Using light-use and production efficiency models to predict photosynthesis and net carbon exchange during forest canopy disturbance SO ECOSYSTEMS LA English DT Review DE Malacosoma disstria Hubner; primary production; ecosystem respiration; quantum efficiency; carbon utilization efficiency; MODIS ID GROSS PRIMARY PRODUCTION; LEAF-AREA INDEX; RADIATION-USE EFFICIENCY; QUERCUS-RUBRA L; TENT CATERPILLAR; DECIDUOUS FOREST; SUGAR MAPLE; LEPIDOPTERA-LASIOCAMPIDAE; MAINTENANCE RESPIRATION; GROWTH RESPIRATION AB Vegetation growth models are used with remotely sensed and meteorological data to monitor terrestrial carbon dynamics at a range of spatial and temporal scales. Many of these models are based on a light-use efficiency equation and two-component model of whole-plant growth and maintenance respiration that have been parameterized for distinct vegetation types and biomes. This study was designed to assess the robustness of these parameters for predicting interannual plant growth and carbon exchange, and more specifically to address inconsistencies that may arise during forest disturbances and the loss of canopy foliage. A model based on the MODIS MOD17 algorithm was parameterized for a mature upland hardwood forest by inverting CO(2) flux tower observations during years when the canopy was not disturbed. This model was used to make predictions during a year when the canopy was 37% defoliated by forest tent caterpillars. Predictions improved after algorithms were modified to scale for the effects of diffuse radiation and loss of leaf area. Photosynthesis and respiration model parameters were found to be robust at daily and annual time scales regardless of canopy disturbance, and differences between modeled net ecosystem production and tower net ecosystem exchange were only approximately 2 g C m(-2) d(-1) and less than 23 g C m(-2) y(-1). Canopy disturbance events such as insect defoliations are common in temperate forests of North America, and failure to account for cyclical outbreaks of forest tent caterpillars in this stand could add an uncertainty of approximately 4-13% in long-term predictions of carbon sequestration. C1 [Cook, Bruce D.; Bolstad, Paul V.] Univ Minnesota, Dept Forest Resources, St Paul, MN 55108 USA. [Martin, Jonathan G.] Oregon State Univ, Dept Forest Sci, Corvallis, OR 97331 USA. [Heinsch, Faith Ann] Univ Montana, Coll Forestry & Conservat, Missoula, MT 59812 USA. [Davis, Kenneth J.] Penn State Univ, Dept Meteorol, University Pk, PA 16802 USA. [Wang, Weiguo] Pacific NW Natl Lab, US Dept Energy, Richland, WA 99352 USA. [Desai, Ankur R.] Univ Wisconsin, Dept Atmospher & Ocean Sci, Madison, WI 53706 USA. [Teclaw, Ron M.] US Forest Serv, USDA, N Cent Res Stn, Rhinelander, WI 54501 USA. RP Cook, BD (reprint author), Univ Minnesota, Dept Forest Resources, 1530 N Cleveland Ave, St Paul, MN 55108 USA. EM brucecook@umn.edu RI Martin, Jonathan/G-4558-2010; Wang, Weiguo/B-4948-2009; Cook, Bruce/M-4828-2013; Desai, Ankur/A-5899-2008 OI Cook, Bruce/0000-0002-8528-000X; Desai, Ankur/0000-0002-5226-6041 NR 125 TC 41 Z9 42 U1 2 U2 30 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1432-9840 J9 ECOSYSTEMS JI Ecosystems PD FEB PY 2008 VL 11 IS 1 BP 26 EP 44 DI 10.1007/s10021-007-9105-0 PG 19 WC Ecology SC Environmental Sciences & Ecology GA 265LE UT WOS:000253359600004 ER PT J AU Garten, CT Classen, AT Norby, RJ Brice, DJ Weltzin, JF Souza, L AF Garten, Charles T., Jr. Classen, Aimee T. Norby, Richard J. Brice, Deanne J. Weltzin, Jake F. Souza, Lara TI Role of N-2-fixation in constructed old-field communities under different regimes of [CO2], temperature, and water availability SO ECOSYSTEMS LA English DT Article DE Lespedeza; legumes; N-15 natural abundance method; multi-factor experiments; climate change; constructed ecosystems ID SYMBIOTIC N-2 FIXATION; BIOLOGICAL NITROGEN-FIXATION; ELEVATED ATMOSPHERIC PCO(2); SERICEA-LESPEDEZA RESIDUES; TROPICAL FORAGE LEGUMES; BELOW-GROUND NITROGEN; TRIFOLIUM-SUBTERRANEUM; TERRESTRIAL ECOSYSTEMS; FERTILE GRASSLAND; PHALARIS-AQUATICA AB Nitrogen fixation was measured in constructed old-field ecosystems that were exposed for 3 years to different combinations of elevated atmospheric [CO2] and temperature (300 ppm and 3 degrees C above ambient, respectively), and ambient or reduced soil moisture (corresponding to 25 or 2 mm rainfall per week). The old-fields included seven planted herbaceous annual and perennial species, including two legumes (Trifolium pratense and Lespedeza cuneata). Potential asymbiotic N-2-fixation by soils, measured in laboratory incubations, was significantly less under the "dry" treatment but was estimated to contribute little overall to annual ecosystem N budgets. Foliar N concentrations declined significantly under elevated [CO2]. Effects of the three environmental factors on the mean (+/- SE) fraction of legume N derived from atmospheric N-2 (FNdfa) varied from year-to-year, and FNdfa ranged from 0.64 +/- 0.05 to 0.94 +/- 0.03 depending on species and growing season. High rates of symbiotic N-2-fixation (4.6-12 g N m(-2) y(-1)) that annually contributed from 44% to 51% to the aboveground N stock in the old-field community was an important process driving changes in species composition over the 3-year experiment. Lespedeza biomass increased over time at the expense of several other species, including the other N-fixer, Trifolium. The dominance of Lespedeza in our ecosystem was due to high symbiotic N-2-fixation rates, as well as shading effects on other species. The high symbiotic N-2-fixation rates were largely independent of manipulations of [CO2], temperature, and water. The relatively high percentage of the aboveground N stock in this ecosystem contributed by symbiotic N-2-fixation suggests that non-legume species may have benefited indirectly via reduced community demands on soil N supplies. Species-specific traits were important in the constructed ecosystems, indicating that multi-species studies are required for understanding complex interactions among environmental factors and dynamic changes in community composition. C1 [Garten, Charles T., Jr.; Classen, Aimee T.; Norby, Richard J.; Brice, Deanne J.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. [Weltzin, Jake F.; Souza, Lara] Univ Tennessee, Dept Ecol & Evolutionary Biol, Knoxville, TN 37996 USA. RP Garten, CT (reprint author), Oak Ridge Natl Lab, Div Environm Sci, Mail Stop 6038,POB 2008, Oak Ridge, TN 37831 USA. EM gartenctjr@ornl.gov RI Classen, Aimee/C-4035-2008; Brice, Deanne/B-9048-2012; Norby, Richard/C-1773-2012 OI Classen, Aimee/0000-0002-6741-3470; Norby, Richard/0000-0002-0238-9828 NR 53 TC 30 Z9 31 U1 4 U2 30 PU SPRINGER PI NEW YORK PA 233 SPRING STREET, NEW YORK, NY 10013 USA SN 1432-9840 J9 ECOSYSTEMS JI Ecosystems PD FEB PY 2008 VL 11 IS 1 BP 125 EP 137 DI 10.1007/s10021-007-9112-1 PG 13 WC Ecology SC Environmental Sciences & Ecology GA 265LE UT WOS:000253359600011 ER PT J AU Kashiwa, BA Kashiwa, CB AF Kashiwa, B. A. Kashiwa, Corey B. TI The solar cyclone: A solar chimney for harvesting atmospheric water SO ENERGY LA English DT Article; Proceedings Paper CT 19th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems (ECOS 2006) CY JUL 12-14, 2006 CL Aghia Pelagia, GREECE SP Natl Tech Univ Athens DE fresh water; solar power; renewable resource; sustainable resource; solar chimney; atmospheric updraft; cyclone separator; Ranque-Hilsch; tornado vortex AB The Solar Cyclone has been introduced as a means of extracting fresh water from Earth's atmosphere. The conceptual device operates in the fashion of a Solar Chimney; it is composed of a greenhouse for collecting and storing solar energy as heat, with a central chimney that channels an updraft of surface air heated in the greenhouse. An expansion cyclone separator for condensing and removing atmospheric water is placed at the base of the chimney. The separator consists of a strongly rotating vortex in which the central temperature is well below the dew point for the greenhouse air. Power consumed in the expansion and separation is furnished by the motive potential of the chimney updraft. Turbulent flow conditions are established in the expansion cyclone separator to enhance the centrifugal separation. Excess updraft power is used to generate electricity, as is done in the Solar Chimney. The article furnishes a theoretical basis for the feasibility of the Solar Cyclone, suggesting that an experimental study of the separation device would be worthwhile. (C) 2007 Elsevier Ltd. All rights reserved. C1 [Kashiwa, B. A.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Kashiwa, BA (reprint author), Los Alamos Natl Lab, MS B216, Los Alamos, NM 87545 USA. EM bak@lanl.gov NR 19 TC 24 Z9 26 U1 1 U2 8 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0360-5442 J9 ENERGY JI Energy PD FEB PY 2008 VL 33 IS 2 BP 331 EP 339 DI 10.1016/j.energy.2007.06.003 PG 9 WC Thermodynamics; Energy & Fuels SC Thermodynamics; Energy & Fuels GA 268IY UT WOS:000253574700027 ER PT J AU Mills, E Shamshoian, G Blazek, M Naughton, P Seese, RS Tschudi, W Sartor, D AF Mills, Evan Shamshoian, Gary Blazek, Michele Naughton, Phil Seese, Robert S. Tschudi, William Sartor, Dale TI The business case for energy management in high-tech industries SO ENERGY EFFICIENCY LA English DT Article DE Energy efficiency; Laboratories; Cleanrooms; Data centers; Non-energy benefits; Green buildings; Decision-making AB The high-technology sector - characterized by facilities such as laboratories, cleanrooms, and data centers - is often where innovation first occurs. These facilities are sometimes referred to as the "racecars" of the buildings sector because new technologies and strategies to increase performance often trickle down to other building types. Although these facilities are up to 100 times as energy-intensive as conventional buildings, highly cost-effective energy efficiency opportunities are often overlooked. Facility engineers are in the trenches identifying opportunities to improve energy productivity but often are unable to make the broader business case to financial decision makers. This article presents the technical opportunities for reducing energy costs, along with their broader strategic value for high-tech industries. C1 [Mills, Evan; Tschudi, William; Sartor, Dale] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Shamshoian, Gary] Genentech Inc, San Francisco, CA 94080 USA. [Blazek, Michele] AT&T Serv Inc, Environm Hlth & Safety, Fairfax, CA 94930 USA. [Naughton, Phil] Appl Mat Inc, Austin, TX 78724 USA. [Seese, Robert S.] Crit Facil Associates, Sunnyvale, CA 94087 USA. RP Mills, E (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, MS90-4000, Berkeley, CA 94720 USA. EM emills@lbl.gov; garysham@gene.com; mblazek@att.com; phil_naughton@amat.com; bob@criticalassociates.com; WFTschudi@lbl.gov; DASartor@lbl.gov FU Office of Science, Office of Basic Energy Sciences, of the US Department of Energy [DE-AC02-05CH11231]; California Energy Commission; Pacific Gas and Electric Company FX This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under contract no. DE-AC02-05CH11231, the California Energy Commission's Public Interest Energy Research Program (PIER), and the Pacific Gas and Electric Company. Helpful review comments were provided by Jonathan Livingston, Bruce Nordman, and two anonymous referees. This article is based on an earlier report by the same authors. NR 23 TC 6 Z9 6 U1 1 U2 3 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1570-646X J9 ENERG EFFIC JI Energy Effic. PD FEB PY 2008 VL 1 IS 1 BP 5 EP 20 DI 10.1007/s12053-007-9000-8 PG 16 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels; Environmental Studies SC Science & Technology - Other Topics; Energy & Fuels; Environmental Sciences & Ecology GA V18HQ UT WOS:000207996300002 ER PT J AU Vine, E AF Vine, Edward TI Breaking down the silos: the integration of energy efficiency, renewable energy, demand response and climate change SO ENERGY EFFICIENCY LA English DT Article DE Integration; Energy efficiency; Demand response; Renewable energy; Climate change; Evaluation AB This paper explores the feasibility of integrating energy efficiency program evaluation with the emerging need for the evaluation of programs from different "energy cultures" (demand response, renewable energy, and climate change). The paper reviews key features and information needs of the energy cultures and critically reviews the opportunities and challenges associated with integrating these with energy efficiency program evaluation. There is a need to integrate the different policy arenas where energy efficiency, demand response, and climate change programs are developed, and there are positive signs that this integration is starting to occur. C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. RP Vine, E (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Environm Energy Technol Div, Bldg 90-4000, Berkeley, CA 94720 USA. EM elvine@lbl.gov NR 40 TC 28 Z9 28 U1 3 U2 16 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1570-646X J9 ENERG EFFIC JI Energy Effic. PD FEB PY 2008 VL 1 IS 1 BP 49 EP 63 DI 10.1007/s12053-008-9004-z PG 15 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels; Environmental Studies SC Science & Technology - Other Topics; Energy & Fuels; Environmental Sciences & Ecology GA V18HQ UT WOS:000207996300005 ER EF